1991_Fujitsu_CMOS_Channeled_Gate_Arrays 1991 Fujitsu CMOS Channeled Gate Arrays
User Manual: 1991_Fujitsu_CMOS_Channeled_Gate_Arrays
Open the PDF directly: View PDF .
Page Count: 1086
Download | |
Open PDF In Browser | View PDF |
~i;' CI)!"Io cQ'~ :::I~ "'a ~~ - ~Q) ~5:! .... g' ~ ~ CMOS Channeled Gate Arrays 1991 Data Book and Design Evaluation Guide ........ .----.- .. .... ~ 1991 cP FUJITSU . . .. ........ ........ ........ Design Information UHB Series Unit Cell Library CG10 Series Unit Cell Library IIIDII Sales Information 1m cO FUJITSU CMOS Channeled Gate Arrays 1991 Data Book and Design Evaluation Guide Fujitsu Microelectronics. Inc. Integrated Circuits Division 3545 North First Street. San Jose. CA 95734-7804 Tel: (408) 922-9000 FAX: (408) 432-9044 Copyright@ 1990 Fujitsu Microelectronics, Inc., San Jose, California All Rights Reserved. Circuit diagrams using Fujitsu products are included to illustrate typical semiconductor applications. Information sufficient for construction purposes may not be shown. The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu Microelectronics, Inc. assumes no responsibility for inaccuracies. The information conveyed in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu Limited, its subsidiaries, or Fujitsu Microelectronics, Inc. Fujitsu Microelectronics, Inc. reserves the right to change products or specifications without notice. Nopartofthispublicationmaybecopiedorreproducedinanyformorbyanymeans,ortrans!erred to any third party without prior written consent of Fujitsu Microelectronics, Inc. This document is published by the Publications Department, Integrated Circuits Division, Fujitsu Microelectronics, Inc., 3545 North First Street, San Jose, California, U.S.A. 95134-1804; U.S.A. Printed in the U.S.A. Edition 1.0 Ethernet™ is a registered trademark of Xerox Corporation. EtherStar™ is a trademark of Fujitsu Microelectronics, Inc. StarLANTM is a trademark of AT&T. UNIX"M is a trademark of Bell Telephone Laboratories, Inc. Vl9wCADTM is a trademark of Fujitsu Limited X Window System™ is a trademark of Massachusetts Institute of Technology (MIT) VERILOGTM is a trademark of Cadence Design Systems LASARTM is a trademark of Teradyne, Inc. HILO@ is a registered trademark of GenRad, Inc. IKOSTM is a trademark of IKOS Systems, Inc. Synopsys@ Design Compiler™ is a trademark of Synopys Inc. Contents CMOS Channeled Gate Arrays Preface .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. iii Fujitsu ASIC Products ............................................................... xiii Section 1 - Design Information Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Fujitsu CMOS Channeled Gate Array Products ........................ 1-3 Data Sheet: UHB Series CMOS Gate Arrays ........................ 1-13 Data Sheet: CG10 Series CMOS Gate Arrays ....................... 1-41 Steps Toward Design ........................................... 1-69 Design Procedures ............................................ 1-73 Design Considerations .......................................... 1-61 Delay Estimation Principles ...................................... 1-93 Quality and Reliability ......................................... 1-103 Application Notes ............................................. 1-119 Developing Test Patterns that Work with the Physical Tester ........... 1-121 Selecting the Best Package for Your ASIC Design ................... 1-127 Section 2 - UHB Series CMOS Gate Array Unit Cell library Section 3 - CG10 Series CMOS Gate Array Unit Cell library Section 4 - Sales Information Fujitsu Limited (Japan) ................................................... 10-3 Fujitsu Microelectronics, Inc. (U.S.A.) ........................................ 10-4 Fujitsu Electronic Devices Europe ........................................... 10-6 Fujitsu Microelectronics Asia PTE Ltd. (Singapore) ............................. 10-8 Integrated Circuits Corporate Headquarters - Worldwide ......................... 10-9 FMI Sales Offices for North and South America . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-10 FMI Representatives - USA .............................................. 10-11 FMI Representatives - Canada. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-13 FMI Representatives - Mexico ............................................ 10-13 FMI Representatives - Puerto Rico ........................................ 10-13 FMI Distributors - USA .................................................. 10-14 FMI Distributors - Canada ............................................... 10-18 FMG Sales Offices for Europe ............................................ 10-19 FMG Distributors - Europe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-20 FMAP Sales Offices for Asia Australia ...................................... 10-22 FMAP Representatives - Asia ............................................ 10-23 FMAP Distributors - ASia, Australia and Oceanian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-24 III Illustrations Figures 1-1. 1-2. 1-3. 1-4. 1-5. 1-6. 1-7. 1-8. 1-9. 3-1. 4-1. 4-2. 4-3. 4-4. 4-5. 5-1. 5-2. 5-3. 6-1. 6-1. 6-2. 6-3. 6-4. 6-5. Page Physical Construction of the Unit Cell NAND Gate .................................. 1-4 The Basic Cell .............................................................. 1-5 The Basic Cell Configured as a 2-lnput NAND Gate ................................. 1-5 Input Buffer (12B) ............................................................ 1-6 Output Buffer (02B) .......................................................... 1-6 Channeled Gate Array Chip Structure ............................................ 1-8 Channeliess Gate Array Chip Structure ........................................... 1-8 Equivalent Gate Count vs. Processing Speed. Fujitsu CMOS Gate Array Technologies .... 1-10 Equivalent Gate Count. Fujitsu CMOS ASIC Technology Families ..................... 1-11 Workstation Design Flow ..................................................... 1-75 Arrangement of Hierarchical Blocks ............................................ 1-83 Recommended Hierarchial Organization of UHB/CG10 Designs ...................... 1-83 SSO-Generated Noise ....................................................... 1-87 SSO Pin Assignments ....................................................... 1-89 Scan Circuit Configuration .................................................... 1-90 Delay Time vs. Loading Factor ................................................ 1-94 Delay Path Sample Circuit .................................................... 1-95 Factors Influencing Delay .................................................... 1-99 Quality Control Processes at Fujitsu ........................................... 1-102 Quality Control Processes at Fujitsu (Continued) ................................. 1-103 Distribution of Component Failure ............................................. 1-107 Example of Life Test Data on IC .............................................. 1-108 Acceleration Rate vs. Junction Temperature .................................... 1-109 DigitallC Failures and Corrective Actions ....................................... 1-111 Figures - Test Patterns Application Note 1. 2. 3. 4. Iv Determining a Successful Test Cycle Length .................................... Determining Preferred Cycle Length ........................................... Input-to-Input Skew ........................................................ Input-to-Output Skew ....................................................... 1-123 1-123 1-124 1-125 Illustrations (Continued) Figures - Packaging Infonnatlon Application Note 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. Tables 5-1. 5-2. 5-3. 6-1a. 6-1b. 6-1c. 6-1d. 6-2. 6-3. 6-4. Page Package Size versus Pin Count .............................................. 1-129 Minimizing Interconnect Length ............................................... 1-130 Impact of Noise on Speed ................................................... 1-130 PLCC Package Construction (Front View) ...................................... 1-133 PLCC Lead Frame Construction (Top View) ..................................... 1-133 321-Pin Ceramic Pin Grid Array .............................................. 1-136 Staggered Pin Grid Array Routing ............................................. 1-137 Flatpack Configurations ..................................................... 1-138 Defect Caused by Difference in Thermal Coefficient of Expansion .................... 1-139 PLCC Package ........................................................... 1-140 Cross-Section of a Plastic Small-Outline J-Iead Package ........................... 1-140 Surface Mount PGA ................. , ............................. , ........ 1-141 Solder Pad Design for Surface Mount Pin Grid Arrays ............................. 1-141 CMOS Output Buffer Model (Totem Pole) ....................................... 1-145 I/O Model, CMOS Input ..................................................... 1-145 I/O Model, TTL Input ....................................................... 1-146 CMOS Basic Gate Structure: The Pull-up/Pull-down Network ....................... 1-146 CMOS Basic Gate Structure: The Transmission Gate .............................. 1-147 Electrical Model of Simultaneously Switching Outputs ............................. 1-148 Effect of SSO Noise on Thresholds ............................................ 1-149 Variation in Inductance, Resistance, and Capacitance as a Function of Pin Position ...... 1-151 Measured Pin Capacitance by Package Position ................................. 1-152 Self-inductance in a Circuit .................................................. 1-153 Causes of Crosstalk ........................................................ 1-154 Heat Flow through a Cavity-down Ceramic PGA with an Annular Fin Heat Sink ......... 1-157 Page AC Parameters of Unit Cells .................................................. 1-96 NDI vs. CL* ............................................................... 1-97 Pre-Layout Delay Multipliers ................................................. 1-100 Sampling Plan for Engineering Testing: Endurance Test ............................ 1-106 Sampling Plan for Engineering Testing: Environmental and Mechanical Test ........... 1-107 Sampling Plan for Engineering Testing: Environmental and Mechanical Test (Optional) ... 1-108 Sampling Plan for Engineering Testing: Continuity Test ............................ 1-108 Determination of Coefficient ................................................. 1-112 Process Defects Analysis ................................................... 1-114 Relationship between Failure Causes and Analytical Test Methods ................... 1-115 v Illustrations (Continued) Tables (Continued) 6-5. 6-7. 6-6. 6-8. Sampling Plan for Reliability Testing ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Example of Electrical Testing ................................................. Example of Reliability Testing ................................................ Example of Electrical Criteria ................................................ Page 1-116 1-117 1-117 1-118 Tables - Packaging Information Application Note 1. 2. 3. 4. 5. 6. vi Considerations for Package Selection .......................................... Package Material Characteristics ............................................. Fujitsu Package Types ...................................................... PGAs Available from Fujitsu ................................................. Comparison of Critical Features .............................................. ASIC CMOS Package Types and their Characteristics ............................. 1-128 1-132 1-134 1-135 1-142 1-144 Preface Fujitsu Microelectronics introduced its first commercially available gate array, a bipolar chip called the B200, in 1974 (Fujitsu had been making them for internal use since 1972). Over the years it has been so popular that it is regarded as the world's most widely implemented gate array. Since that first array, Fujitsu has produced over 9000 successful bipolar and CMOS custom designs. Fujitsu designs are successful because they are implemented using the most advanced design verification CAD systems available, allowing the production of chips with 90% cell utilization (more functional logic per chip than the industry standard) and one of the highest performance records in the industry. This data book provides you with information necessary to choose an application specific IC (ASIC) design using one of Fujitsu's advanced CMOS channeled gate array technologies (UHB and CG10). The data book describes Fujitsu's CMOS channeled gate array technologies, explains the benefits and specifications applicable to each, and outlines the process by which logic and circuit designers create a chip. Except where noted, the material presented in this data book is common to all of Fujitsu's CMOS channeled technologies. The device (unit cell) libraries for these channeled gate array technologies are included at the end of this volume. Another volume in this series provides the same information for Fujitsu's channelless or sea-of-gates ASIC technologies. Fujitsu has pioneered and maintained a technological lead in the production of bipolar as well as CMOS ASIC devices; data books describing Fujitsu's other ASIC product families, as well as any other technical or sales-related information, may be obtained from any Fujitsu Technical Resource Center or Sales Office listed at the end of this book or by calling or writing Fujitsu Microelectronics Inc., 3545 North First Street, San Jose, CA 94135-1804, (408) 922-9000. vII Fujitsu ASIC Products Listing CMOS Channeled Gate Arrays Data Book UHB serJes High Drive CMOS Gate Arrays - 1.5p., 0.9 ns typical delay Deacrlptlon Name Device Part Number 336 Gales, 58 I/O 530 Gales, 64 I/O 830 Gales, 741/0 1,233 Gales. 88 110 1,724 Gales, 102 I/O 2,220 Gales, 115 I/O 3,066 Gales, 140 110 4,174 Gales, 155 110 6,000 Gales, 155 110 8,768 Gales, 188110 12,734 Gales, 220 I/O C330UHB C530UHB C830UHB C1200UHB C1700UHB C2200UHB C3000UHB C4100UHB C6000UHB C8700UHB CI2000UHB MB625xxx MB624xxx MB623xxx MB622xxx MB621 xxx MB620xxx MB606xxx MB605xxx MB604xxx MB603xxx MB602xxx CG10 Series High Drive CMOS Gate Arrays - 0.8fJ., 0.5 ns tYPIC~'d~I,; 3,256 G8tas, 108 I/O 4,032 Gales, 123 110 5,072 Gales, 148 110 6,510 Gales, 1631/0 7,684 Gales, 163110 11,080 Gales, 188 110 14,720 Gales, 220 110 CMOS Channelless AU series . .•"',,. >,. 9G10272 ·CG1·0342 CG1:0492 CG10s72 CG10692 ci:hil103 CG10133 Gate~t;:~.Data Book CN!9SSe~ Gat~lt;;~\ ~~:~u GaleS:j~8 vo 1 ........ s.i381/O 2O,81S( 155 I/O 31,500· s, 178 VO 41,184 Gales, 220 VO 52,164 Gales, 257 I/O 75,140 Gales, 300 I/O 102,144 Gales, 332 I/O 1.2J,1. 0.6 ns typical MBCG10272xxx MBCG10342xxx MBCG10492xxx MBCG10572xxx MBCG10692xxx MBCG10l03xxx MBCG10133xxx detli~":t g:~~~ir C2OKAU''''' CSOKAU C40KAU C50KAU C75KAU Cl00KAU MB637xxx MB636xxx MB635xxx MB634xxx MB633xxx MB632xxx t.(IB631xxx MB630xxx CG21 SerIeS CMOS Series Gate Arrays - 0.8fJ., 370 ps typical delay 10,224 Gales, 1081/0 15,486 Gales, 1421/0 20,876 Gales, 1551/0 31,500 Gales, 1781/0 41,184 Gales, 220 I/O 52,164 Gales, 245 1/0 75,140 Gales, 284.1/0 102,144 Gales, 332 I/O viii CG21103 CG21153 CG21203 CG21303 CG21403 CG21503 CG21753 CG21104 MBCG21103xxx MBCG21153xxx MBCG21203xxx MBCG21303xxx MBCG21403xxx MBCG21503xxx MBCG21753xxx MBCG21104xxx Fujitsu ASIC Products Listing (Continued) BiCMOS Gate Arrays Data Book BC Series BICMOS Gate Arrays - 1.5IlI1.41J, 0.65 ns typical delay Description Nama Device Part Number 645 Gates, 52 I/O 1,218 Gates, 721/0 1,872 Gates, 96 I/O 3,240 Gates, 112 I/O B0400 B0800 BOl200 B02oo0 MB211xxx MB212xxx MB213xxx MB214xxx BC-H Series BICMOS Gate Arrays - 1.0J.l/O.5~. OA5 ns typical delay 4,312 Gates, 96 I/O 8,160 Gates, 128 110 11,968 Gates, 160 I/O 16,720 Gates, 200 1/0 7,920 Gates, 200 VO with 40Kb RAM BC4oo0H BC8oo0H BCl2000H BOl6000H B08040HM MB221xxx MB222xxx MB223xxx MB224xxx MB228xxx ~t750 ETl500 ET3000 ET4500 ET2004M ~i~~tt"""" MB121Kxxx MB123Kxxx MB125Kxxx MBl28Kxxx MB1811191xxx MB1821192xxx MB1831193xxx El0000H E5005HM MB147/157xxx MBI481158xxx MBI851195xxx ECl Gate Arrays Data Book ET Series ECl Gate Arrays -1.0~. 220 ps typical delay \ 1,056 Gates, 64 I/O 2,112 Gates, 881/0 4,224 Gates, 120 110 6,160 Gates, 120 1Iq... 2,640 Gates, 120 liO')iilith 4$'Kb RAM 2,640 Gates, 136 I/o, wjlb9:2~RAM 3,969Gate~t~ I/o, wiiljA.6 KbRAM H Series EC(~'te A;~YS - 0.~~.100 ps typical delay :::~~=::=~ 4,928 Gates, 200 VO, with 5.1 Kb RAM Ultra High Performance ECl Gate Arrays - 0.5~. 75 ps typical delay 128 Gates, 23 /I/O 32 Gates, 13 128 Gates 16 I/O va VH Series ECl Gate Arrays - 0.4~. mJ EI28H E32 El28 MBI800 MBI700 MBI600 E30000VH El0040VHM El0160VHR ETZSOOVH MBI621172xxx MBI651175xxx MBI681178xxx MBBG31262xx 80 ps typical delay 38,948 Gates, 300 VO . 13,440 Gates, 290 I/o, 40Kb RAM 13,440 Gilles, 2941/0, 160Kb ROM 2,544 Gates, 104 110 CMOS Standard Cell Data Book AU Series Standard Cells - 1.2~. 0.6 ns typical delay AS Series Standard Cells - O.BIL. 370 ps typical delay Ix 11 - - - - - - - - - - - - - - - - - - Section 1 Design Information I Page 1-3 Chapter 1 1-13 Fujitsu CMOS Products Data Sheet: UHB Series CMOS Gate Arrays 1-41 Data Sheet: CG 10 Series CMOS Gate Arrays 1-69 Chapter 2 Steps Toward Design 1-73 Chapter 3 Design Procedures 1-81 Chapter 4 Design Considerations 1-93 Chapter 5 Delay Estimation Principles 1-103 Chapter 6 Quality and Reliability 1-119 Chapter 7 Application Notes 1-121 Developing Test Patterns that Work with the Physical Tester 1-127 Selecting the Best Package for Your ASIC Design 1-1 Design Information 1-2 CMOS Channeled Gate Arrays CMOS Channeled Gate AtTars Fujhsu CMOS Products Chapter 1 - Fujitsu CMOS Products Contents of This Chapter 1.1 1.2 1.3 1.4 Introduction CMOS Technology for ASICs CMOS Gate Array Structure Fujitsu's CMOS Channeled Gate Array Technologies: CG10 and UHB Data Sheets 1.1 Introduction This section of the data book gives an overview of CMOS technology and introduces the CMOS channeled gate array technology families developed by Fujitsu to implement ASIC designs. 1.2 CMOS Technology for ASICs ASICs (Application Specific Integrated Circuits) are large scale integrated circuits that provide customers with made-to-order functions. These ICs implement the unique value designed into customer products by producing custom semiconductor deSigns that allow customers to take advantage of perc~ived market opportunities in a timely manner. The customized solutions offered by ASICs combine the power of personalized electronics and the advantage of increased system efficiency. CMOS technology has long been chosen for ASIC applications because of its low power and high density characteristics. AdvanCing process technology and new production and fabrication techniques have now allowed device speed to increase to the point where it is competitive with bipolar devices. Fujitsu manufactures CMOS gate arrays with advanced silicon gate technology utilizing two-layer and three-layer metal. This fabrication process yields parts that: a. require very low power dissipation (typically less than 500 mW per channeled array) b. operate at speeds equaling existing bipolar technologies c. feature higher gate densities than competing bipolar devices d. use a Single power supply of 5 volts or less e. provide top-grade noise immunity and programmable logic levels compatible with TTL and CMOS logic families 1.3 CMOS Gate Array Structure Fujitsu CMOS gate arrays are configured in a matrix of basic cells in the center of the chip with input/output (1/0) cells on the device periphery. One basic cell is equivalent to a two-input NAND gate and is the physical building block used to construct the unit cells that perform specific logic functions. The custom logic function is realized by interconnecting basic cells with double- or triple-layer metallization. Fujitsu's CMOS gate array products are fabricated using a twin-tUb polysilicon process to produce high-speed, high-density arrays consisting of 300 to 100,000 basic cells. 1.3.1 Process Technology The process by which the gate array is manufactured varies somewhat among Fujitsu's CMOS technologies; however, the following explanation provides a good model of how a basic cell is fabricated 1-3 CMOS Channeled Gate Arrays Fujitsu CMOS Products in any of the CMOS families. The basic cell is constructed from an N-type silicon substrate upon which a P-well is deposited. The surface of the substrate is then covered with a thin layer of silicon dioxide (glass) and two strips of polysilicon are deposited perpendicular to the P-well and geometrically parallel. (Polysilicon is a silicon-based compound chemically altered so that it has good electrical conduction properties.) The polysilicon strips serve as the gate control elements of the basic cell and also as the two electrical interconnections between the sources of the P and N transistor pairs. See Figure 1-1. INPUT INPUT OUTPUT Figure 1-1. Physical Construction ofthe Unit Cell NAND Gate The silicon dioxide layer is then stripped away from all areas of the substrate not protected by polysilicon. In two separate steps. the N-type and the P-type material of the twin tubs is diffused onto the substrate. For the next step. N-type material is diffused or implanted into the P-well that was previously laid down. It straddles the two strips of polysilicon close to their ends. The polysilicon resists the diffusion. which results in the formation of three pads of N-type material separated by the two strips of polysilicon (self-aligned processing). The center pad of N-type material serves as a common drain terminal for both N-channel transistors. The outer pads are the separate source elements. Then the P-type material is depoSited on the N-type substrate straddling the two polysilicon strips. Similarly the center pad of P-type material forms the common source connection for both P-channel transistors. Figure 1-2 diagrams the structure of a basic cell before the custom metallization is applied. The basic cell is then converted to a unit cell by application of a custom metallization pattern that connects (or wires) various points of the basic cell. or a number of basic cells. together. Figure 1-3 diagrams the stl'\lcture of a basic cell configured as a NAND gate after metallization (represented by the solid bold line connections) has been laid down. 1-4 CMOS Channeled Gate Arrays Fujitsu CMOS Products Some unit cells require two or even three layers of metal to be applied. Such layers are separated by an insulating layer of silicon dioxide. Interconnections between the metal layers are made by means of "vias" passing through the glass. 1.3.2 The Basic Cell The basic cell of Fujitsu's CMOS gate array is a common building block consisting of one pair of P-channel and one pair of N-channel MOS transistors interconnected as shown in Figure 1-2. Figure 1-2. The Basic Cell Since this is a "generic" basic cell, no connections are shown to the power supply (+5 volts). to ground, or to the two common control gate terminals of the circuit. These connections are made as required during the metallization phase of the manufacturing process. All CMOS gate arrays are built up of basic cells. Figure 1-3 shows a schematic representation of the basic cell with the addition of the custom metallization required to convert the generic basic cell into a 2-input NAND gate. F Output A Input B Input Figure 1-3. The Basic Cell Configured as a 2-lnput NAND Gate 1-5 CMOS Channeled Gate Arrays Fujitsu CMOS Products 1.3.3 Basic Cell Arrangement Basic cells can be arranged as: a. Fundamental logic function units called unit cells (for example, NAND gates, flip-flops, etc.). b. User macros, which are composed of unit cells to form higher level logic block functions (e.g., shift register or decoder). Such blocks are user-defined and may contain any unit cell configuration. c. SuperMacros, which are very high level organizations performing complex functions such as ALUs and progammable timers, as well as CRT, SCSI, and Ethernet controllers. 1.3.4 I/O Cells 110 cells are a specially configured type of unit cells which serve as input/output buffer cells and are located on the periphery of the basic cell matrix. 1/0 cells are usually not included in the basic cell count. These buffer cells convert external voltage levels into internal CMOS levels. The output buffers provide a sufficient voltage level to drive TTL components but the input buffers must convert TTL levels to CMOS levels when appropriate. Figure 1-4 shows the structure of a typical input buffer (12B) and Figure 1-5 shows the structure of a typical output buffer (02B). PAD EXTERNALVO INTERNAL I/O PROTECTION CIRCUIT X ) A ...- X A ~t IN Figure 1-4. Input Buffer (12B) INTERNALVO EXTERNAL I/O A Figure 1-5. Output Buffer (02B) 1-6 PAD X Fujitsu CMOS Products CMOS Channeled Gate Arrays 1.3.5 User Macros Different user macros are available for each technology group. For a list of available user macros for each technology, contact any of the Fujitsu Technical Resource Centers listed in the back of this volume. 1.3.6 Supermacro Implementations for CMOS ASIC Fujitsu's next step upward in ASIC functionalHy is embodied in the concept of SuperMacros. SuperMacros are large functional organizations implemented as an integral part of a chip. SuperMacros can be large-scale compiled cells or core cells, as well as generic or proprietary LSI functions. Reduction of board space, reduction of cost, and reduction of design cycle time, as well as extended functionality, reliability, performance, and security of design are all advantages of SuperMacros. Since SuperMacros are not bound to a particular CMOS technology, they may be migrated from one CMOS technology to another. Fujitsu provides customers with gate and behavioral level models, macro symbols, and data sheets/specifications as well as kit parts in order to provide complete support from development to system integration. The SuperMacros listed in Table 1-1 below are the first to be developed for Fujitsu's CMOS supermacro library. Table 1-1. Fujitsu Supermacros Compatible Device Technology Universal Synchronous/Asynchronous ReceiverITransmitter (USARl) Function Gate Complexity 8251A UHB/AU/CG10/21 2900 Universal Asynchronous ReceiverITransmitter (UART) 8868 UHB/AUlCG10121 608 Programmable Intervallimer 8253 UHB/AUlCG1 0121 5680 Programmable Peripheral Interface 8255A UHB/AUlCG10121 785-1403 1 Programmable Interrupt Controller 8259A UHB/AUlCG10121 2205 Programmable DMA Controller 8237 UHB/AU/CG10121 5100 Clock Generator/Driver 8284 UHB/AUlCG10121 99 Bus Controller 8288 UHB/AUlCG10121 250 Programmable Intervallimer 8254 UHB/AUlCG10121 3500 CRT Controller 6845 UHB/AUlCG10121 2843 SCSI Protocol Controller'! 87030 UHB/AUlCG10121 3630 EtherNet Controller'! 87012 UHB/AUlCG10121 4233 First In First Out (FIFO) N/A3 UHB/AUlCG10121 360 4-bit Arithmetic Logic Unit (ALU) Slice 2901 UHB/AUlCG10121 917 Carry Lookahead 2902 UHB/AU/CG10121 33 Status and Shift Control 2904 UHB/AUlCG1 0121 449 4-bit Microprogram Sequencer 2909 UHB/AUlCG10121 428 2910 UHB/AUlCG10121 1682 12-bit Microprogram Controller lSeveral options are available (Mode 0 IS 785 gates) 2Full-featured Fujitsu proprietary supermacro 3Na! Applicable 1-7 CMOS Channeled Gate Arrays Fujitsu CMOS Products 1.3.7 Structure of the Chip The arrangement of the basic cells on the chip differs according to the technology. The fundamental chip layout is a matrix of basic cells surrounded by a perimeter 01 I/O cells. Basic cells are arranged in double columns in the UHB and CG1 0 technologies (Figure 1-6). The channelless or sea-ol-gates technologies are constructed with no wiring channels between the double columns, allowing the wiring to go over the cells, rather than between the cells (Figure 1-7). The channelless technologies are covered in a separate data book. CI CI Basic Cell (Double Column) ".c..................................... mil mil mil 11 n m . a n ClCI·:I.: ..................................... mIImII / Typical UHB Chip Layout, Double Column Structure External 1/0 Figure 1-6. Channeled Gate Array Chip Structure Basic Cell (Double Columllt /--------- I - ~r:: t;: I I I I I I I I rr1.1 Extemal 110 ' ~: ~ I I I I I I I I I I I ::;:; ... -; -------- I I I I I I I I I I ·············· ···• ··········· -------- ··, .. ·· r··············· ····-------- · I I I I I I I I ;- IJ Typical Channelless Gate Array Chip Layout, Double Column Structure with No Wiring Channels Figure 1-7. Channelless Gate Array Chip Structure 1-8 CMOS Channeled Gate Arrays Fujitsu CMOS Products 1.4 Fujitsu's CMOS Channeled Gate Array Technologies Fujitsu offers over 30 different CMOS gate array devices, fabricated with advanced silicon gate technology. Fujitsu's channeled CMOS gate arrays include the technology options described in detail in the data sheets that follow: • UHB Series CMOS Gate Arrays • CG10 Series CMOS Gate Arrays Complete information on Fujitsu's channelless (sea-ol-gates) CMOS gate array families is provided in a separate data book. All offer the same fast turnaround on design, simplified customer interface, full support by Fujitsu ViewCAD system design software if requested, full design support on other major CAE workstations, and a wide variety of packaging options. The number of gates in relationship to the processing speed of each new CMOS technology is shown in Figure 1-8. Figure 1-9 shows in tabular form the equivalent gate count for each CMOS technology family. 1-9 Fujitsu CMOS Products CMOS Channeled Gats A"ays Gate Delay (In nslgate) ~--~--------------------------------------------------------,500K 10~------------------------------------------~~-----------------;100K r---------------------------~~--,.~----------~~~----------_;10K 1980 Gate Length (in microns) 1985 Year of Production Start 1990 1K 1992 Gate Count (Gates/Chip) • = Gate Count = Gate Length (In microns) • = Gate Delay (in nslgate) o Figure 1-8. Equivalent Gate Count vs. Processing Speed, FujHsu CMOS Gate Array Technologies 1-10 Fujitsu CMOS Products CMOS Channeled Gate Arrays Increasing Gate Count '7 ~"", C-100KAU 100K ,';, I~I ""~' C-7SKAU III~II "~'" C-SOKAU ::,,'::: C-4OKAU :::::: C-30KAU ,"/' C-20KAU C-1SKAU 7SK IIII ~ SOK 40K 30K 20K 1SK 12K : : ~: ~ :::1::::: IIIIII11 l 10K SK :::~: C-12000UHB ~: ,~" .t. C-10KAU C-a700UHB '~,,~,' 1-" C-6000UHB 6K SK ~:: II~I C-4100UHB ~:: ~~I I~: 4K 3K II ~I C-3000UHB ~~:/",/' C-2200UHB 2K l ,~ I~ ~,/, C-1700UHB ~ C-1200UHB ~ C-630UHB 1K /"". 800 II~ ~ C-530UHB I~ SOO ~ C-330UHB 300 L...._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _• • UHB Version 0.9 nslgate CG10 Version O.S nslgale AU Version O.S nslgale (Sea of Gates) Increasing Speed CG21 Version 0.37 nslgate (Sea of Gates) ·planned Figure 1-9. Equivalent Gate Count, Fujitsu CMOS ASIC Technology Families 1-11 Fujitsu CMOS Products 1-12 CMOS Channeled Gate Arrays cO September 1988 Edition 1.1 PRODUCT PROFILE FUJITSU UHB Series 1.5-micron CMOS Gate Arrays DESCRIPTION The UHB series of 1.S-micron CMOS gate arrays is a highly integrated low-power, ultra high-speed product family that derives ~s enhanced performance and increased user flexibility from the use of a system-proven, dual-column gate structure and 2-layer metal interconnect technology. The unique dual-column gate structure increases density and speed performance, as well as gate utilization. Internal high-drive clock buffers minimize clock skew across the chip while internal bus performance and integrity is assured by incorporating 3-state transmission gate logic underneath the routing channels. The high-drive output buffers provide highly symmetrical output waveforms. FEATURES • High·dens~y silicon gate CMOS technology - 330 to 12,000 usable gates - 90% maximum utilization fully autorouted • Uttra high speed - typical 0.9 ns gate delay - narrow delay variation High sink current capabil~y - 3.2 mA, 8 mA, 12 mA, and 24 mA options available - selectable edge rate control • • • Low-skew clock signal distribution - High-performance clock drivers - Hierarchical clock distribution - Frequency·dependent clock routing • • 2·column gate structure that enhances macro performance High-performance internal 3-state bus - buried cells w~hin the routing channels ensure high density and reliable performance • • Proven 1.5-micron 2-layer metal technology Highest pin-toil ate count commercially available - 60 logic 1/0 for 336 gates - 222 logic I/O for 1200 gates • • Input buffers w~h pull-up/pull-down resistance Built-in feedback resistors for oscillators • User-defined hierarchy-driven placement Automatic test pattern generation for 6K gates and up - complete family of scan design macros available Device Name Utilizable Gates 1 Maximum Signal Plns 2 336 gates 530 gates 830 gates 60 C-1700UHB C-2200UHB C...,'l()QOUHB 1233 gates 1724 gates 2220 gates 92 108 123 3066 gates C-4100UHB C-6OOOUHB 4t74 gates 6000 gates 148 163 163 C-330UH8 C-530UHB C-830UHB C-1200UHB 66 76 C-a700UHB 8768 gates 188 C-12000UHB 12734 gates 220 Gates available for logic (exclusive of I/O usage). 'Maximum signal pin numbers depend on the output drive requirements and the package selected. Copyright@ 1990 FWITSU LIMITED and Fujhsu Microelectronics. Inc. 1-13 UHB Series CMOS Gate Arrays PRODUCT FAMILY DESCRIPTIONS1 Device Name Part Number 2-lnput Gate Equivalent Complexity Maximum Signal Plns2 Total Number of Basic Cells on Chlp304 C-330UHB MB625xxx 336 gates 60 610 gates C-530UHB MB624xxx 530 gates 66 840 gates C-830UHB MB623xxx 830 gates 76 1176 gates C-1200UHB MB622xxx 1233 gates 92 1680 gates 2232 gates C-1700UHB MB621 xxx 1724 gates 108 C-2200UHB MB620xxx 2220 gates 123 2800 gates C-3000UHB MB606xxx 3066 gates 148 3744 gates C-4100UHB MB605xxx 4174 gates 163 4888 gates C-6000UHB MB604xxx 6000 gates 163 6976 gates C-8700UHB MB603xxx 8768 gates 188 9720 gates C-12000UHB MB602xxx 12734 gates 220 13728 gates Notes: 1Typical device gate speed, with FlO = 2, for a 2-input NAND gate, is 0.9 ns. 2'fhe maximum signal pin numbers depend on the output drive requirements and the package selection. 3A basic cell is equivalent to a 2-input gate. 4Basic cells on chip are also used for 110 buffer function. AC CHARACTERISTICS BESTIWORST CASE MULTIPLIERS FOR PROPAGATION DELAYS Propagation delays characteristic of a gate array are a function of several factors, including operating temperature, supply voltage, fanout loading, interconnection routing metal, process variation, input transition time, and input signal polarity. Temperature and supply voltage factors affecting propagation delays in the UHB CMOS family of gate arrays are given in the table below. Pre-Layout Simulation Temperature Range VDo = 5 V ±5O/. Post-Layout Simulation VDO =5V±10% VDo =5V±5% VDO =5V±10% Best Case Worst Case Best Case Worst Case Best Case Worst Case Best Case Worst Case 0-70 0 C1 0.35 1.65 0.30 1.75 0.40 1.60 0.35 1.70 -20-70°C 0.35 1.65 0.25 1.75 0.35 1.60 0.30 1.70 -40-70°C 0.25 1.65 0.20 1.75 0.30 1.60 0.25 1.70 -40-85°C2 0.25 1.75 0.20 1.85 0.30 1.70 0.25 1.80 Notes: 1Commercial temperature range 21ndustrial temperature range 1-14 UHB Series CMOS Gate Arrays REPRESENTATIVE PROPAGATION DELAYS Constants for calculating the delays due to process variation, fanout loading, interconnection routing metal, transition time, and signal polarity are given for each unit cell in the UHB Unit Cell library. Delays using these factors are calculated for a representative selection of unit cells and are shown in the Propagation Delays tables below. Calculations are representative of unit cells in the C12000UHB (UHB 12000-Gate CMOS gate array). Typical values are indicated. Worst case multipliers are applied to typical values. Smaller arrays can exhibit significantly greater speed. Propagation Delays (in ns) Unit Cell Function Unit Cell Name Equivalent Gate Count Input Transition NO! (Fan-out) 1 2 8 4 16 32 Inverter V1N 1 tplH tpHl 0.86 0.67 1.51 1.04 2.36 1.52 3.53 2.18 5.19 3.11 8.09 4.74 Power 2-lnput NAND N2K 2 tplH tpHl 0.66 0.68 .99 .97 1.41 1.34 1.99 1.85 2.83 2.58 4.27 3.85 Power 16-lnput NAND NGB 11 tplH tPHL 1.82 3.69 2.15 3.93 2.57 4.25 3.15 4.69 3.99 5.31 5.43 6.40 Power 2-lnput NOR R2K 2 tplH tpHl 0.95 0.67 1.53 0.91 2.27 1.23 3,29 1.67 4.75 2.29 7.28 3.38 Power Exclusive OR X2B 4 tplH tpHl 1.72 1.82 2.05 2.03 2.47 2.29 3.05 2.66 3.89 3.18 5.33 4.08 3-wide 2-AND 6-lnput 036 3 tpLH tpHl 1.78 1.22 2.93 1.80 4.41 2.54 6.45 3.56 9.37 5.02 4.43 7.55 G24 2 tplH tpHL 1.54 1.20 2.73 1.78 4.27 2.52 6.39 3.54 9.40 5.00 14.65 7.53 T28 11 tplH tpHL 2.41 1.66 2.74 1.83 3.16 2.04 3.74 2.33 4.58 2.75 6.02 3.47 Power Clock Buffer K2B 3 tplH tpHl 1.30 1.38 1.57 1.58 1.90 1.83 2.30 2.13 2.81 2.51 3.61 3.11 Scan 8-bit 0 Flip-flop with Clock Inhibit and 3:1 SHK 88 tpLH tpHL 5.22 4.92 5.87 5.29 6.72 5.77 7.89 6.43 9.55 7.36 12.45 8.99 FDO 7 tpLH tpHl 2.51 2.14 3.16 2.55 4.01 3.08 5.18 3.81 6.84 4.85 9.74 6.66 FD5 8 tplH tpHl 2.17 1.89 2.50 2.10 2.92 2.36 3.50 2.73 4.34 3.25 5.78 4.15 C43 48 tplH tpHL 2.18 1.10 2.83 1.43 3.68 1.85 4.85 2.43 6.51 3.27 9.41 4.71 C45 48 tplH tpHl 2.52 1.68 3.22 2.05 4.12 2.53 5.36 3.19 7.13 4.12 10.21 5.75 AND-OR Inverter (A -+ Y) 2-wide 2-OR 4-input OR-AND-Inverter (A -+ X) Power 2-AND 8-Wide Muttiplexer (A -+ X) Data Muttiplexer (CK,IH -+ 0) Non-Scan 0 Flip-flop with Reset (CK -+ 0) Non-Scan Power 0 Flip-flop with Clear (CK -+ 0) Non-Scan 4-bit Binary Synchronous Up Counter (CI -+ CO) Non-Scan 4-bit Binary Synchronous Up Counter (CI -+ CO) Note: Delays for inter-block wiring are not included Conffnued on next page 1-15 UHB Series CMOS Gate Arrays REPRESENTATIVE PROPAGATION DELAYS (Continued) Propagation Delays (In ns) Unit Cell Function Unit Cell Name Equivalent Gate Count Input TransHlon 1 Non-Scan 4-bit Binary Synchronous UplDown NIlI (Fan-out) 4 8 2 16 32 047 68 IpLH IpHL 2.87 3.30 3.32 3.63 3.90 4.05 4.70 4.63 5.85 5.47 7.84 6.91 MH 48 tpLH IpHL 1.97 2.13 2.87 2.71 4.04 3.45 5.65 4.47 7.93 5.93 11.92 8.46 T5A 5 11.79 Counter (DU -+ CO) 4-bit Binary Full Adder with Fast Carry (CI-+ 51) 4:1 Selector (55 -+ X) tpLH 1.39 2.33 3.55 5.23 7.62 IpHL 1.12 1.77 2.62 3.79 5.45 8.35 4-bit Shift Register with Synchronous Load FS2 30 tpLH tpHL 2.90 3.46 3.55 3.83 4.40 4.31 5.57 4.97 7.23 5.90 10.13 7.53 9-bit Odd Parity Generator/Checker P09 22 tpLH tpHL 5.78 6.00 6.43 6.33 7.28 6.75 8.45 7.33 10.11 8.17 13.01 9.61 4-wide 2:1 Data P24 12 tpLH tpHL 1.24 0.97 1.57 1.14 1.99 1.35 2.57 1.64 3.41 2.06 4.85 2.78 MC4 42 tpLH tpHL 3.17 2.60 4.36 2.93 5.90 3.35 8.02 3.93 11.03 4.n 16.28 6.21 ~41 9 tpLH tpHL 1.99 2.48 3.05 3.76 1.87 2.29 2.78 3.39 4.64 4.14 6.04 5.34 Selector (A -+ X) 4-bit Magnitude Comparator (IS -+ OG) 4-bit Bus Driver (A -+ X) Input Buffer (Inverter) 11B 5 tpLH tpHL 1.84 1.78 2.11 2.05 2.44 2.38 2.84 2.78 3.35 3.29 4.15 4.09 Clock Input Buffer (Inverter) IKB 4 tpLH tpHL 2.49 1.94 2.63 2.08 2.79 2.24 2.99 2.44 3.24 2.69 3.64 3.09 Unit Cell Name Equivalent Gate Count Input TransHion 1/0 Cell Function Output Buffer Load In pF 25 200 028 2 IpLH IpHL 2.37 3.24 3.10 4.85 4.50 7.95 7.30 14.15 12.90 26.55 24.10 51.35 Power Output Buffer (True) 02L 2 tpLH tpHL 2.53 2.47 3.02 3.01 3.94 4.03 5.79 6.08 9.49 10.18 16.89 18.38 3-State Output Buffer (True) 04T 4 tpLH tpHL 3.09 4.08 3.82 5.n 5.22 9.02 8.02 15.52 13.62 28.52 24.82 54.52 Power 3-State Output Buffer (True) 04W IpLH tpHL 3.48 4.68 4.92 6.47 6.82 8.82 10.62 13.52 18.22 22.92 3-State Output and Input Buffer (True) H6T 8 IpLH IpHL 3.09 4.08 5.n 3.82 5.22 9.02 8.02 15.57 13.62 28.52 24.82 54.52 Power 3-State Output and Input Buffer (True) H6W 8 tpLH tpHL 3.48 4.68 3.97 5.30 4.92 6.47 6.82 8.82 10.62 13.52 18.22 22.92 4 Note: Delays for inter-block wiring are not included 1-16 3197 5.30 50 400 100 Output Buffer (True) 12 UHB Series CMOS Gate Arrays DC CHARACTERISTICS ABSOLUTE MAXIMUM RATINGS' Symbol Rating Supply Voltage Input Voltage Output Voltage Minimum 10l=BmA Unit VSS - 0.52 6.0 V VI VSS - 0.52 Voo +0.5 V Vo VSS - 0.52 Voo +0.5 V 1m = 3.2mA Output Current3 Maximum Voo -40 -40 los IOl= 12 mA -60 10l = 24 mA -90 mA Storage Temperature Ceramic Plastic -65 -40 +150 +125 5C TSIg Temperature Under Bias Ceramic Plastic -40 -25 +125 +B5 5C Tbias .. Notes: 1 Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the oonditions as detailed in the operation sections of the data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2Vss = 0 V. 30nly one output at a time may be shorted for more than one second. RECOMMENDED OPERATING CONDITIONS Symbol Minimum Typical Maximum Supply Voltage Parameter Voo 4.75 5.0 5.25 Unit V Input High Voltage for TTL Input VIH 2.2 - V Input Low Voltage for TTL Input V il - - 0.8 V Input High Voltage for CMOS Input VIH Voo x 0.7 - - V Input Low Voltage for CMOS Input V il - - Voox 0.3 V Operating Temperature TA 0 - 70 °C Typical Maximum Unit 16 pF 16 pF CAPACITANCE (TA = 2SoC. VDD = VI = 0 V. f = Parameter Symbol 1 MHz) Minimum Output Pin Capacitance (l0l - 3.2 mAo 8 mAo or 12 mAl COUT - Output Pin Capacitance (lot. -24mA) COUT - 18 pF I/O Pin Capacitance (lot. -3.2 mAo 8 mAo or 12 mAl ClIO - 16 pF I/O Pin Capacitance (l0l-24mA) Coo - 23 pF Input Pin Capacitance C IN 1-17 UHB Series CMOS Gate Arrays DC CHARACTERISTICS (Recommended Operating Conditions unless otherwise noted) Symbol Condition Minimum 1\'plcal Maximum Unit Power Supply Current loos Steady State 1 0 - 100 ~ Output High Voltage for Normal Output (101.. - 3.2 rnA) VOH IQHm-2 rnA 4.0 - Vee V Output High Voltage for Driver Output (loL =.8 rnA) VOH IOH s-2 rnA 4.0 - Veo V Output High Voltagefor Driver Output (IoL -12 rnA) VOH IOH =-4mA 4.0 - Veo V Output High Voltage for Driver Output (101.. =24 rnA) VOH IOH ~-8mA 4.0 - Voo V Output Low Voltage2 for Normal Output (IOL = 3.2 rnA) VOL IOL m3.2mA Vss - 0.4 V Output Low Voltage for Driver Output (loL = 8 rnA) VOL IOL=8mA Vss - 0.4 V Output Low Voltage2 for Driver Output (IoL - 12 rnA) VOL IOL= 12 rnA Vss - 0.4 V Output Low Voltage2 for Driver Output (loL = 24 rnA) VOL 10L- 24 rnA Vss - 0.5 V Input High Voltage for TIL Input V'H - 2.2 - - V Input Low Voltage for TIL Input V'L - - - 0.8 V Input High Voltage for CMOS Input V'H - Veo x 0.7 - - V Input Low Voltage for CMOS Input V'L - - - Voox 0.3 V - 2.5 0.7 1.1 3.3 1.4 1.9 4.0 2.0 2.7 V 1.4 0.8 0.4 1.9 1.3 0.6 2.5 1.8 0.7 V V V 25 50 100 ill - 10 ~ 10 ~ Parameter Input3 Schmitt Trigger CMOS Positive-going Threshold Negative-going Threshold Hysteresis Vr• Vr_ Vr.-Vr Schmitt Trigger TTL Input3 Posnive-going Threshold Negative-going Threshold Hysteresis Vr• Vr_ Vr.-Vr Input Puil-uplPuil-down Resistor Rp - V'L to V'H. V'H. to V'L V'H to Veo V'L to Vss Input Leakage Current III V,=O-Veo -10 Input Leakage Current (3-state) ILZ V,=O-Voo -10 Notes: lV'N = Veo. V'L = Vss 2With certain restrictions on pin assignment 3These values for reference only 1-18 V'L to V'H. V'H. to V'L V V UHB Series CMOS Gate Arrays ARRAY ARCHITECTURE The typical UHB chip is composed of double columns of CMOS gates (basic cells) separated by dedicated wiring channels. Abasiccell consists of a pair of N-channel and a pair of P-channeltransistors interconnected by polysilicon gate control terminals. Groups of basic cells are interconnected by custom metallization into unit cells. Fujitsu unit cells provide a wide range of standard logic functions such as exclusive OR gates, flip-flops, buffers, and counters. The UHB Series CMOS gate array family includesover250different unit cells. These unit cells are the building blocks from which complex designs are constructed. The spaces between the double columns of basic cells are occupied by channels for custom metallization. Nearly half of these wiring channels contain transmission gates that implement internal3-state buses. Bus terminators located althe ends olthe double columns of cells maintain the last value to be sent through the bus to ensure proper operation under all condHions. The I/O cells around the perimeter of the matrix of cells are composed of internal cells wHh input protection networks and the potential to be configured as input buffers, clock input buffers, output buffers, power output buffers, or bidirectional buffers. Ell_ •••••.••.••.•.••••.••..•..••.•.•..••.•.• 1illlI1illlI1illlI --~IU~, D I tI>-- 4 D 2 --+--EBiH 5 ~ • j d 3---H.U~ '. 1illlI1illlI1illlI •• • •• • •••••••••••••••••••••••••••••••••• 6 m m _mm m Typical Chip Layout, Double Column Structure 1. 2. 3. 4_ 5_ 6_ Dedicated Clock Network - for high frequency clocks 3-state Bus Logic -located in wiring channels Bus Terminators - prevent floating state on buses Driver Transistors and 110 Protection Networks - provide high I/O count Double Columns - for optional macro utilization and speed Wiring Channel Area - for metallization between unit cells 1-19 UHB Series CMOS Gate Arrays DESIGN COMPONENTS DESIGNING WITH THE UHB PRODUCT FAMILY To implement logic functions, you build up the elements of the circuit from unit cells. Simple unit cells are used hierarchically to build higher level functions until the logic is completely defined. Fujitsu offers acomplete line of standard logic functions inthe unit cell library. Super macros are used to implement large super-cell functions such as expandable ALUs and multipliers. 1/0 BUFFERS Each UHB 110 buffer around the perimeter of the array consists of an input protection network and large N-channel and P-channel transistors capable of supplying the standard 3.2-mA, S-mA, and 12-mA output currents. Two of these large transistor pairs may be connected in parallel, using high-output-current macros, to obtain 24-mA drive. One of the 110 pads whose output transistors have been used for the 24-mA high-current option may still be used as an input. Input 110 buffers convert external TTL levels to internal CMOS levels or may receive CMOS level signals directly. Output 110 buffers are totem pole and may drive either CMOS and TTL levels, depending on their AC and DC loads. Any of the pins except the dedicated power and ground pads can be designed to be an input buffer, an input buffer with pull-uplpull-down resistance, a clock input buffer, an output buffer, a high-drive output buffer, an output buffer with noise limiting resistance, a 3-state output buffer, a bi-directional buffer, or a Schmitt trigger Input buffer. There are some restrictions on the location of 24-mA buffers. INPUT CLOCK DRIVERS The large output 1/0 transistor pair is used in a high-drive input clock driver for high fanout applications within the array. This allows you \0 fully utilize the high speed capabilities of the UHB technology. TESTING UHB DEVICES Two options are availablefortesting UHB designs: (1) the standard designer-supplied test patterns and test vectors (in Fujitsu's FTDL format) and (2) the use of scan cells combined with Automatic Test Generation (ATG) performed by Fujitsu computers for additional diagnostic test patterns. H you have designed with scan cells and other scan logic elements, Fujitsu will complete the scan test program generation. Regardless of the selected test option, you need to furnish Fujitsu with enough test patterns to guarantee that the submitted design completely performs its intended logic functions. These patterns include the test function of each 110 pin. Dlagramatlc Representation of Design Structure for ScanTesting 1-20 UHB Series CMOS Gate Arrays Vee and Vss REQUIREMENTS Each UHB Series gate array device has two options for each package type, both supporting a different number of power and ground pins. The number of power and ground pins required depends on the number of simuttaneously switching outputs used in the design. Simuttaneously switching outputs (SSOs) are output signals that change from H to L or L to H or from Z to H or Z to L within a 20-ns window (including possible skew). Muttiple outputs that switch althe same time can cause noise on Voo and Vss lines and affect the performance of a device:Therefore, to achieve maximum reliability, Fujitsu limits the number of SSOs per Veo pin according to the table below. The maximum number of SSOS per pin is determined by a representative value specifiedforthe driving capability of each type of output. The total representative value of all SSOs used in a design must not exceed 80 per Vss pin. For example, 11 normaI3.2-mA outputs with edge rate control, four 12-mA outputs, or three 24-mA outputs per Vss pin may be SSOs. Output Drive Type Normal (3.2 rnA) 10 High Drive (12 rnA) 20 Normal (3.2 rnA) with Edge Rate Control .. Representative Value per Output 7 High Drive (12 rnA) with Edge Rate Control 14 High Drive (24 rnA) with Edge Rate Control 26 1-21 UHB Series CMOS Gate Arrays FUNCTIONAL INDEX OF UNIT CELL LIBRARY Note: The load unn (Iu) is a normalized loading unn of capaenanee representing the input load of an inverter wnhout metal interconnection. Invener and Buffer Family Basic Calls Drive (Iu) V1N Inverter 1 18 Neg V2B Power Inverter 1 36 Neg Description UnltCaIl Name Polarity B1N True Buffer 1 18 Pos BD3 True Delay Buffer (> 5 ns) 5 18 Pos BD4 Delay Cell (> 4 ns) 4 6 Pos BD5 Delay Cell (>10 ns) 9 18 Pos BD6 Delay Cell (>22 ns) 17 18 Pos Clock Buffer Family UnltCaIl Name BasleCelis Drive (Iu) Polarity K1B True Clock Buffer Description 2 36 Pos K2B Power Clock Buffer 3 55 Pos K3B Gated Clock (AND) Buffer 2 36 Pos K4B Gated Clock (OR) Buffer 2 36 Pos Neg KSB Gated Clock (NAND) Buffer 3 36 KAB Block Clock (OR) Buffer 3 55 Pos KBB Block Clock (OR x 10) Buffer 30 55 Pos V1L Double Power Inverter 2 55 Neg NAND Family UnltCaIl Name Description BasleCelis Drive (Iu) N2N 2-input NAND 1 18 N2B Power 2-input NAND 3 36 36 N2K Fast Power 2-input NAND 2 N3N 3-input NAND 2 14 N3B Power 3-input NAND 3 36 N4N 4-input NAND 2 10 N4B Power 4-input NAND 4 36 N6B Power 6-input NAND 5 36 N8B Power 8-input NAND 6 36 N9B Power 9-input NAND 8 36 NCB Power 12-input NAND 10 36 NGB Power 16-input NAND 11 36 N3K Fast Power 3-input NAND 3 28 N4K Fast Power 4-input NAND 4 20 Convnued on next page 1-22 UHB Series CMOS Gate Arrays FUNCTIONAL INDEX OF UNIT CELL LIBRARY (Continued) NOR Family Description Unit Cell Name Drive (Iu) Basic Cells R2N 2-input NOR 1 14 R2B Power 2-input NOR 3 36 36 R2K Power 2-input NOR 2 R3N 3-input NOR 2 10 R3B Power 3-input NOR 3 36 20 R3K Power 3-input NOR 3 R4N 4-input NOR 2 6 R4B Power 4-input NOR 4 36 R4K Power 4-input NOR 4 12 R6B Power 6-input NOR 5 36 RSB Power S-input NOR 6 36 R9B Power 9-input NOR S 36 RCB Power 12-input NOR 10 36 RGB Power 16-input NOR 11 36 AND Family Basic Cells Drive (Iu) N2P Power 2-input AND 2 36 N3P Power 3--input AND 3 36 N4P Power 4-input AND 3 36 NSP Power S-input AND 6 36 Basic Cells Drive (Iu) Unit Cell Name Description OR Family Unit Cell Name Description R2P Power 2-input OR 2 36 R3P Power 3--input OR 3 36 R4P Power 4-input OR 3 36 RSP Power 8--input OR 6 36 Exclusive NOR/OR Family (EXOR/EXNOR) Unit Cell Name Basic Cells Drive (Iu) Polarity X1N Exclusive NOR Description 3 1S Neg X1B Power Exclusive NOR 4 36 Neg X2N Exclusive OR 3 14 Pos X2B Power Exclusive OR 4 36 Neg X3N 3-input Exclusive NOR 5 14 Neg X3B Power 3--input Exclusive NOR 6 36 Neg X4N 3--input Exclusive OR 5 14 Pos X4B Power 3--input Exclusive OR6 6 36 Pos Con&nued on next page 1-23 UHB Series CMOS Gate Arrays FUNCTIONAL INDEX OF UNIT CELL LIBRARY (Continued) AND·OR·lnverter Family (AOI) Basic Cells Drive (Iu) D23 2-wide 2-AND 3-input AOI 2 14 D14 2-wide 3-AND 4-input AOI 2 14 D24 2-wide 2-AND 4-input AOI 2 14 D34 3-wide 2-AND 4-input AOI 2 10 D36 3-wide 2-AND 6-input AOI 3 10 Unit Cell Name Description 2-wide 2-0R 2-AND 4-input AOI D44 2 Note. AND-OR-Inverter Unit cells are uselulln Implementing sum-aI-products (SOP) expressions 10 OR·AND·lnverter Family (OAI) Unit Cell Name Basic Cells Drive (Iu) G23 2-wide 2-0R 3-input OAI Description 2 18 G14 2-wide 3-0R 4-input OAI 2 10 G24 2-wide 2-0R 4-input OAI 2 10 G34 3-wide 2-0R 4-input OAI 2 10 G44 2-wide 2-AND 2-0R 4-input OAI 2 14 Note: OR-AND-Inverter Unit cells are uselulln Implementing product-aI-sums (POS) expressions. Multiplexer Family Unit Cell Name Type Description Basic Cells Drive (Iu) Function T24' 4:1 Power 2-AND 4-wide Multiplexer 6 36 SOP T26' 6:1 Power 2-AND 6-wide Multiplexer 10 36 SOP T28' 8:1 Power 2-AND 8-wide Multiplexer 11 36 SOP T32 2:1 Power 3-AND 2-wide Multiplexer 5 36 SOP T33' 3:1 Power 3-AND 3-wide Multiplexer 8 36 SOP T34' 4:1 Power 3-AND 4-wide Multiplexer 9 36 SOP T42 2:1 Power 4-AND 2-wide Multiplexer 6 36 SOP T43 3:1 Power 3-AND 3-wide Multiplexer 10 36 SOP T44 4:1 Power 4-AND 4-wide Multiplexer 11 36 SOP T54 4:1 Power 4-2-3-2 AND 4-wide Multiplexer 10 36 SOP U24' 4:1 Power 2-0R 4-wide Multiplexer 6 36 POS U26' 6:1 Power 2-0R 6-wide Multiplexer 9 36 POS U28' 8:1 Power 2-0R 8-wide Multiplexer 11 36 POS U32 2:1 Power 3-0R 2-wide Multiplexer 5 36 POS U33' 3:1 Power 3-0R 3-wide Multiplexer 7 36 POS U34' 4:1 Power 3-0R 4-wide Mu~iplexer 9 36 POS U42 2:1 Power 4-0R 2-wide Mu~iplexer 6 36 POS U43 3:1 Power 4-0R 3-wide Multiplexer 9 36 POS U44 4:1 Power 4-0R 4-wide Multiplexer \;onvenlent lor t yp leal mum pJleXer appJllcatlons 11 36 POS Continued on next page 1-24 UHB Series CMOS Gate Arrays FUNCTIONAL INDEX OF UNIT CELL LIBRARY (Continued) Data Selectors/MuHlplexers Unit Cell Name Type Description Basic Cells Drive (Iu) Selects Output Bit Width P24' 2:1 Data Selector 12 36 S,XS Q 4 T2E 2:1 Selector 5 18 S XQ 2 T2F 2:1 Selector 8 18 S XQ 4 T2B' 2:1 Selector 2 18 S,XS XQ 1 T2C' 2:1 Selector 4 18 S,XS XQ 2 T2D' 2:1 Selector 2 14 S,XS XQ 1 T5A' 4:1 Selector 5 9 S,XS XQ 1 V3A' 1:2 Selector 2 14 S,XS XQ 1 .. S,XS XQ 2 V3B' Selector 4 14 1:2 .. , These are transmission gate devices whose outputs can be tied because they can be Inhlbaed wah truelinverted selects . Decoders Unit Cell Name Type Description Basic Cells Drive (Iu) Active Level Outputs DE2 2:4 Decoder 5 18 Low DE3 3:8 Decoder 15 14 Low DE4 2:4 Decoder 8 14 Low Low Low 1 High 2 Low DE6 3:8 Decoder 30 18 Output - Internal Bus UnH Cells Unit Cell Name B41 I I Description 4-bit Bus Driver I I Basic Cells 9 J Drive (Iu) I 36 I 1 Bus Size 4 bits I Enable L Low Notes: 1The number of B41s used is limited by the chosen array series, as shown in the table below. 20 n-chip buses (managing more than one bus source and/or a bi-directional bus) may be implemented with either muniplexer-type unit cells or bus drivers. While bus drivers impose certain design restrictions, the optimum choice is dictated by the specHic design. Device Name Maximum B41s C-330UHB 4 C-530UHB 5 C-830UHB 6 C-1200UHB 8 C-1700UHB 12 C-2200UHB 16 C-3000UHB 21 C-4100UHB 26 C-6000UHB 50 1-25 UHB Series CMOS Gate Arrays FUNCTIONAL INDEX OF UNIT CELL LIBRARY (Continued) Data Latch Family UnR Cell Name Basic Cells Drive (Iu) Enable BRs Output VL2 Data Latch with TM 5 36 High 1 Q VL4 Data Latch with TM 14 36 High 4 Q LTK Data Latch 4 18 Low 1 Q,XQ Async LTL Data Latch with Clear 5 18 Low 1 Q,XQ Async LTM Data Latch with Clear 16 18 Low 4 Q,XQ - LTI S-R Latch with Clear 4 18 Low 1 Q,XQ Async LT4 Data Latch 14 18 Low 4 Q,XQ - Description Clear - Note: V-type latches incorporate inhibit inputs and transparent mode (TM) to facilitate scan implementation. Continued on next page Scan Flip-flop Family (Positive-Edge Triggered) UnRCeIl Name Description Basic Cells Drive (Iu) BRs Output Clear Preset Clock InhlbR - Ves SOH' Scan 0 Flip-flop with 2:1 Multiplex 14 36 1 Q,XQ Async SDJ' Scan 0 Flip-flop with 4:1 Multiplex 15 36 1 Q,XQ Async SDK' Scan 0 Flip-flop with 3:1 Mu~iplex 16 36 1 Q,XQ Async SJH Scan J-K Flip-flop 16 36 1 Q,XQ Async - SOD' Scan OFlip-flop with 2:1 16 36 1 Q,XQ Async Async Ves SDA Scan I-input 0 Flip-flop 12 36 1 Q,XQ - Ves SOB Scan I-input 0 Aip-f1op 42 36 4 Q,XQ - SHA Scan I-input 0 Flip-flop 68 18 8 Q,XQ - Ves SHB Scan I-input 0 Flip-flop 62 18 8 Q - Ves SHC Scan I-input 0 Aip-f1op 62 18 8 XQ SHJ' Scan 0 Flip-flop with 2:1 Mu~iplex 78 18 8 Q,XQ SHK' Scan 0 Flip-flop with 3:1 Muniplex 88 18 8 Q,XQ Note: ' Indicates 0 Flip-flop with Mu~iplex mu~iplexed - - Ves Ves Ves Ves - Ves - Ves Ves inputs. Continued on next page 1-26 UHB Series CMOS Gate Arrays FUNCTIONAL INDEX OF UNIT CELL LIBRARY (Continued) Non-Scan Flip-flop Family Unit Cell Name Description Basic Cells Drive (Iu) Bits Output Clear Preset - Async Clock Inhibit FDS o Flip-flop o Flip-flop with Set o Flip-flop with Reset o Flip-flop with Set and Reset o Flip-flop o Flip-flop with Clear o Flip-flop FD2 Power 0 Flip-flop FD3 Power 0 Flip-flop with Preset 8 36 I a,xa - Async Neg FD4 Power 0 Flip-flop with Clear and Preset 9 36 I a,xa Async Async Neg FD5 Power 0 Flip-flop with Clear 8 36 I a,xa Async Neg FJD Positive Edge Clocked Power J-K Flip-flop with Clear 12 36 I a,xa Async - FDM FDN FDO FOP FDa FOR Note: - 6 18 1 a,xa 7 18 1 a,xa Pas 7 18 1 a,xa Async 8 18 1 a,xa Async Async Pas 21 18 4 a - - Neg 26 18 4 a Async - Pas 20 18 4 a 7 36 1 a,xa - Neg - - Pas Pas Pas Pas Synchronous flip-flops my be constructed by adding a simple AND gate (such as N2P) to the input of a flip-flop to create a synchronous clear. Binary Counter Family Unit Cell Name Description Basic Cells Drive (Iu) Bits Outputs' Load Clear Enable Carry In Upl Down SCf'! Scan 4-bit Synchronous Binary Up Counter with Parallel Load 62 36 4 a,xa, COtS) Sync - Low High Up SC82 Scan 4-bit Synchronous Binary Down Counter with Parallel Load 66 36 4 a,xa, COtS) Sync - High Low Down Cll" Non-Scan Flip-Flop for Counter 11 18 - a,xa - - - - - C41 Non-Scan 4-bit Binary Asynchronous Counter 24 18 4 a,(A) Async - - Up C42 Non-Scan 4-bit Binary Synchronous Counter 32 18 4 a - Async - - Up C43 Non-Scan 4-bit Binary Synchronous Up Counter 48 18 4 a,co (S) Sync Async High High Up C45 Non-Scan Binary Synchronous Up Counter 48 18 4 a,co Sync Sync High High Up C47 Non-Scan Binary Synchronous Up/Down Counter 68 18 4 a,co Async Low Low Upl Down - Notes: l(S), (A) indicate the counter is (S)ynchronous or (A)synchronous. 2Scan counters include clock inhibit and high drive (CDR = 36 lu). For non-Scan counters CDR _ 18 lu. 'Ctt may by used for purposes other than counters. Continued on next page 1-27 UHB Series CMOS Gate Arrays FUNCTIONAL INDEX OF UNIT CELL LIBRARY (Continued) Shift Register Family Unit Cell Name Basic Cells Description Drive (Iu) Bit Width Load Outputs Clock Polarity FSI Serial-in Parallel-out Shift Register 18 16 4 Serial-In only a-Parallel Neg FS2 Shift Register wtlh Synchronous Load 30 16 4 Sync-High a-Parallel Neg FS3 Shift Register wtlh Asynchronous Load 34 18 4 Async-Low a-Parallel Pos SRI Serial-in Parallel-out Shift Register with Scan 36 36 4 Serial-In only a-Parallel Pos Datapath Operators (Adder, ALU, Parity) Unit Cell Name Description Basic Cells Drive (Iu) 4 A>B,A=B,AB,A=B,ALB - AlA I-btl HaH Adder 5 36 1 S,CO AIN I-bit Full Adder 8 18 1 S,CO CI A2N 2-btl Full Adder 16 14 2 S,CO CI A4H 4-btl Binary Full Adder w/Fast Carry 48 18(00) 14(S) 4 S,OO CI - PE5 Even Parity GeneratorlChecker 12 36 5 EVEN,OOU P05 Odd Parity Generator/Checker 12 36 5 ODD, EVEN - PE8 Even Parity GeneratorlChecker 18 18 8 EVEN,OOU - P08 Odd Parity Generator/Checker 18 18 8 ODD, EVEN - PEg Even Parity Generator/Checker 22 18 g EVEN,OOU - POg Odd Partly Generator/Checker 22 18 g ODD, EVEN - Miscellaneous Cells Unit Cell Name Description Basic Cells Function ZOO o Clip 0 lie to Vss ZOI 1 Clip 0 lietoVoo Continued on next page 1-28 UHB Series CMOS Gate Arrays FUNCTIONAL INDEX OF UNIT CELL LIBRARY (Continued) Input Buffer Family Unit Cell Name Description Basic Cells Drive (Iu) Logic Level Type Input/Output Polarity 11B 11BU 11BO Input Buffer 11 B with Pull-up Resistance 11 B with Pull-down Resistance 5 5 5 36 36 36 TTL TTL TTL Signal Signal Signal Invert Invert Invert 12B 12BU 12BO Input Buffer 12B with Pull-up Resistance 12B with Pull-down Resistance 4 4 4 36 36 36 TTL TTL TTL Signal Signal Signal True True True IKB IKBU IKBO Clock Input Buffer IKB With Pull-up Resistance IKB w~h Pull-down Resistance 4 4 4 72 72 72 TTL TTL TTL Clock Clock Clock Invert Invert Invert ILB ILBU ILBO Clock Input Buffer ILB with Pull-up Resistance ILB with Pull-down Resistance 6 6 6 72 72 72 TTL TTL TTL Clock Clock Clock True True True 11C 11CU 11CO CMOS Interface Input Buffer 11 C with Pull-up Resistance 11 C with Pull-down Resistance 5 5 5 36 36 36 CMOS CMOS CMOS Signal Signal Signal Invert Invert Invert 12C 12CU 12CO CMOS Interface Input Buffer 12C with Pull-up Resistance 12C with Pull-down Resistance 4 4 4 36 36 36 CMOS CMOS CMOS Signal Signal Signal True True True 11S 11SU 11S0 Schmitt Trigger Input Buffer 11S with Pull-up Resistance 11 S with Pull-down Resistance 8 8 8 18 18 18 CMOS CMOS CMOS Schmitt Schmitt Schmitt Invert Invert Invert 12S 12SU 12S0 Schm~t Trigger Input Buffer 12S with Pull-up Resistance 12S with Pull-down Resistance 8 8 8 18 18 18 CMOS CMOS CMOS Schmitt Schmitt Schmitt True True True 11R 11RU 11RO Schm~t Trigger Input Buffer 11 R with Pull-up Resistance 11 R with Pull-down Resistance 6 6 6 18 18 18 TTL TTL TTL Schmitt Schmitt Schmitt Invert Invert Invert 12R 12RU 12RO Schmitt Trigger Input Buffer 12R With Pull-up Resistance 12R with Pull-down Resistance 8 8 8 18 18 18 TTL TTL TTL Schmitt Schmitt Schmitt True True True Note: A "UK suffixed to the name of an input buffer indicates pull-up resistance of 5DK!} (typical) and a "0" indicates a pull-down resistance of the equivalent value. Continued on next page 1-29 UHB Series CMOS Gate Arrays FUNCTIONAL INDEX OF UNIT CELL LIBRARY (Continued) Output Buffer Family Unit Cell Name Description Basic Cells Drive (loJ Logic2 Level Type Edge Rate Control Input/Output Polarity 01B Output Buffer 3 3.2mA TTUCMOS Standard No Invert 01L Power Output Buffer 3 12mA TTUCMOS Standard No Invert 01S Power Output Buffer 5 12mA TTUCMOS Standard Yes Invert 02B Output Buffer 2 3.2mA TTUCMOS Standard No True 02L Power Output Buffer 2 12mA TTUCMOS Standard No True 02S Power Output Buffer 4 12mA TTUCMOS Standard Yes True 04T' Output Buffer 4 3.2mA TTUCMOS 3-state No True 04W' Power 3-state Output Buffer 4 12mA TTUCMOS 3-state No True 04S! Power 3-state Output Buffer 5 12mA TTUCMOS 3-state Yes True 01R Output Buffer 5 3.2mA TTUCMOS Standard Yes Invert 02R Output Buffer 4 3.2mA TTUCMOS Standard Yes True 04R' Output Buffer 5 3.2mA TTUCMOS 3-state Yes True 02S2 High Power Output Buffer 6 24mA TTUCMOS Standard Yes True 0452' High Power Output Buffer 7 24mA TTUCMOS 3-state Yes True 01BF Output Buffer 3 SmA TTUCMOS Standard No Invert 01RF Output Buffer 5 SmA TTUCMOS Standard Yes Invert 02BF Output Buffer 2 SmA TTUCMOS Standard No True 02RF Output Buffer 4 SmA TTUCMOS Standard Yes True 04RF 3-state Output Buffer 5 SmA TTUCMOS 3-state Yes True 3-state No True 3-state Output Buffer 4 SmA TTUCMOS 04TF Note: 'Whlle all outputs are totem-pole type, Open Drain and Open Source types can easily be defined for all3-state type outputs. Example of Open Drain Output Rp.,lh4> (min) = Vee (max) Z01 10L (rated) IN------I Internal L Rpulldn(min) = Voo (max) Provides Wire OR ~LL>.r-T- OUT ZOO Internal OUT L Z H IN X OUT o H H 1 Z L External Example of Open Source Output 1-30 X o '-.r:":'-'-_ OUT Provides Wire AND Note: IN 10L (rated) External 2Totem pole outputs, such as these buffers have, can drive both TTL and CMOS levels. Voltage margins depend on actual source or sink current (see DC specifications). UHB Series CMOS Gate Arrays FUNCTIONAL INDEX OF UNIT CELL LIBRARY (Continued) Bidirectional 110 Buffers (Buses) Unit Cell Name Description Basic Cells Drive (101..) Logic Level Edge Rate Control Input/Output Polarity No No No True True True 12mA 12mA 12mA TTL TTL TTL TTL TTL TTL No No No True True True 8 8 8 3.2mA 3.2mA 3.2mA CMOS CMOS CMOS No No No True True True Power 3-state Output and CMOS Interface Input Buffer H6E with Pull-up Resistance H6E with Pull-down Resistance 8 8 8 12mA 12mA 12mA CMOS CMOS CMOS No No No True True True 3-state Output and Schmttt Trigger Input Buffer H6S with Pull-up Resistance H6S with Pull-down Resistance 12 12 12 3.2mA 3.2mA 3.2mA CMOS CMOS CMOS No No No True True True 12 12 12 3.2mA 3.2mA 3.2mA TTL H6RU H6RD 3-state Output and Schmitt Trigger Input Buffer H6R with Pull-up Resistance H6R with Pull-down Resistance True True True H8T H8TU H8TD 3-state Output and Input Buffer H8T with Pull-up Resistance H8T with Pull-down Resistance 9 9 9 3.2mA 3.2mA 3.2 mA Ves Ves Ves True True True H8W H8WU H8WD Power 3-state Output and Input Buffer H8W with Pull-up Resistance H8W with Pull-down Resistance 9 9 9 12mA 12mA 12mA Ves Ves Ves True True True H8W2 H8W1 H8WO High Power 3-state Output and Input Buffer H8W2 with Pull-up Resistance H8W2 wtth Pull-down Resistance 11 11 11 24mA 24mA 24mA TTL TTL TTL TTL TTL TTL TTL TTL TTL TTL No No No Ves Ves Ves True True True H8C 3-state Output Buffer and CMOS Interface Input Buffer H8C with Pull-up Resistance H8C with Pull-down Resistance 9 9 9 3.2mA 3.2mA 3.2mA CMOS CMOS CMOS Ves Ves Ves True True True Power 3-state Output Buffer and Interface Input Buffer 9 12mA CMOS Ves True H6T H6TU H6TD 3-state Output and Input Buffer H6T with Pull-up Resistance H6T with Pull-down Resistance 8 8 8 3.2mA 3.2mA 3.2mA H6W H6WU H6WD Power 3-state Output and Input Buffer H6W wtth Pull-up Resistance H6W with Pull-down Resistance 8 8 8 H6C 3-state Output and CMOS Interface Input Buffer H6C with Pull-up Resistance H6C with Pull-down Resistance H6CU H6CD H6E H6EU H6ED H6S H6SU H6SD H6R H8CU H8eD H8E TTL .. H8EU H8E with Pull-up Resistance 9 12mA CMOS Ves True H8E with Pull-down Resistance H8ED 9 12mA CMOS Ves True ft' Note: A U suffixed to the name of a bidirectIOnal buffer Indicates a pull-up resistance of son (tYPical) and a D indicates a pull-down resistance of the equivalent value. Continued on next page ... .. II 1-31 UHB Series CMOS Gate Arrays FUNCTIONAL INDEX OF UNIT CELL LIBRARY (Continued) Bidirectional 110 Buffers (Buses) (Continued) Basic Cells Drive (Iu) Logic Lavel Type High Power 3-state Output and Input Buffer HSE2 w~h Pull-up Resistance HSE2 w~h PUll-down Resistance 11 11 11 24mA 24mA 24mA CMOS CMOS CMOS Ves Ves Ves True True True 3-state Ou1put and Schmitt Trigger Input Buffer True HSS with Pull-up Resistance HSS with Pull-down Resistance 13 13 13 3.2mA 3.2mA 3.2mA CMOS CMOS CMOS Ves Ves Ves True True True 3-state Output and Schmitt Trigger Input BufferTrue HSR with Pull-up Resistance HSR with Pull-down Resistance 13 13 13 3.2mA 3.2mA 3.2mA TTL TTL TTL Ves Ves Ves True True True H6TFU H6TFD 3-state Output and Schm~tTrigger Input BufferTrue H6TF wnh Pull-up Resistance H6TF wnh Pull-down Resistance S S S SmA SmA SmA TTL TTL TTL No No No True True True H6CF H6CFU H6CFD 3-state Output and Input Buffer H6CF with Pull-up Resistance H6CF with Pull-down Resistance S S S SmA SmA SmA CMOS CMOS CMOS No No No True True True HSTF HSTFU HSTFD 3-state Output and Input Buffer HSTF with Pull-up Resistance HSTF w~h Pull-down Resistance 9 9 9 SmA SmA SmA TTL TTL TTL Ves Ves Ves True True True HSCF HSCFU HSCFD 3-state Output and Input Buffer HSCF with Pull-up Resistance HSCF with Pull-down Resistance 9 9 9 SmA SmA SmA CMOS CMOS CMOS Ves Ves Ves True True True Unit Cell Name HSE2 HSEl HSEO HSS HSSU HSSD HSR HSRU HSRD H6TF Note: Description While all outputs are totem-pole type, Open Drain and Open Source types can easily be defined for all3-state type outputs, which includes all bidirectional buffers. Oscillator Circuits Unit Cell Name Description Basic Cells Input Logic Level HOC Output Buffer for Oscillator and Input Buffer S CMOS HOCS Output Buffer for Oscillator and Schmitt Trigger Input Buffer S TTL HOCR Output Buffer for Oscillator wnh feedback Resistance S CMOS ITlO Input Buffer for Oscillator 0 - 1-32 Input/Output Polarity UHB Series CMOS Gate Arrays UHB GATE ARRAY PACKAGE CHARACTERISTICS Dual In-line Packages (Standard DIP) Package Code Pinout Code DIP-16 Plastic Ceramic Number of Vee Number of Vss Available Number or Signal Pins DIP-16P-M02 DIP-16C-C03 1 2 13 1 2 17 1 1 18 DIP-22C-C02 2 2 18 1 1 20 DIP-24C-COl 2 2 20 1 1 22 DIP-28C-C02 2 2 24 1 1 26 DIP-40C-AOl 2 4 34 DIP-16P-M04 DIP-18 DIP-18P-MOl DIP-18C-COl DIP-18P-M02 DIP-20 DIP-20P-M02 DIP-20C-C02 DIP-20U DIP-22 DIP-22P-M02 DIP-22P-M03 DIP-22U DIP-24 DIP24P-MOl DIP24P-M02 DlP-24U DIP-28 DIP-28P-M02 DIP-28P-M03 DIP-28U DIP-40 DIP-40P-MOl DIP-40C-A02 DIP-40U DIP-42 DIP-42P-MOl 1 1 38 DIP-42C-AOl 2 4 36 1 1 40 DIP-48C-AOl 2 4 42 1 1 46 DIP-42P-M02 DIP-42U DIP-48 DIP-48P-MOl DIP-48P-M02 DIP-48U Continued on next page 1-33 UHB Series CMOS Gate Arrays UHB GATE ARRAY PACKAGE CHARACTERISTICS (Continued) Dual In-line Packages (Shrink DIP, 70 mil Pin Pitch) Package Code Available Number of Signal Pins Number of Voo Number of Vss DIP-28SH 2 2 24 DIP-28SHU 1 1 26 DIP-42SH 2 4 36 DlP-42SHU 1 1 40 DIP-48SH 2 4 36 Pinout Code Plastic Ceramic DIP-48SHU 1 1 46 DIP~SH 2 4 58 DIP--04SHU 2 2 60 Number of V00 Number of Vss Available Number of Signal Pins DIP-22SK 2 2 18 DIP-22SKU 1 1 20 DIP-24SK 2 2 20 DIP-24SKU 1 1 22 DIP-28SK 2 2 24 DIP-28SKU 1 1 26 Number of Voo Number of Vss Available Number of Signal Pins 1 2 13 1 1 14 FPT-20P-M02 1 2 17 1 1 18 FPT-24-M02 2 2 20 1 1 22 FPT-28P-M01 2 2 24 1 1 26 Dual In-line Packages (Skinny DIP, 300 mil Body Pitch) Package Code Pinout Code Plastic Ceramic Flatpack Packages (Dual-Leaded) Package Code Pinout Code FPT-16 Plastic FPT-16P-M03 FPT-16U FPT-20 FPT-20U FPT-24 FPT-24U FPT-28 FPT-28U Ceramic Continued on next page 1-34 UHB Series CMOS Gate Arrays UHB GATE ARRAY PACKAGE CHARACTERISTICS (Continued) Flatpack Packages (Quad-Leaded) Package Code Pinout Code Plastic Ceramic Number of VDD Number of Vss Available Number of Signal Pins FPT-44 2 4 36 FPT-44U 2 2 40 2 4 42 FPT-48U 2 2 44 FPT-48' 2 4 42 FPT-48U' 2 2 44 58 FPT-48 FPT-48P-M02 FPT-64' FPT-64P-MOl 2 4 FPT-64U FPT-70P-MOl 1 1 62 FPT-80 FPT-80P-MOl 2 6 72 FPT-80U FPT-l00 FPT-l00P-MOl FPT-l00U 2 4 74 4 8 88 92 102 4 4 FPT-120 6 12 FPT-120U 4 8 108 FPT-160 8 14 138 FPT-160U 6 12 142 - • Small body size. Subject to Change Pin Grid Arrays (PGA, Thru-Hole, 100 mil Pin Pitch) Package Code Pinout Code PGA-64 Plastic Ceramic PGA-64C-A02 PGA-64U PGA-88 PGA-88C-AOl Number of VDD Number of Vss Available Number of Signal Pins 58 2 4 2 2 60 4 6 78 PGA-88U 4 4 80 PGA-135 8 12 115 PGA-135U 4 8 127 PGA-179 8 16 155 163 PGA-179U 8 8 PGA-208 12 18 178 PGA-256. 16 20 220 Conffnued on next page 1-35 UHB Series CMOS Gate Arrays UHB GATE ARRAY PACKAGE CHARACTERISTICS (Continued) Flatpack Packages (Dual-Leaded) Package Code Pinout Code Plastic LCC-28 Number of VDD Number of Vss LCC-28C-A02 2 2 24 1 1 26 2 4 42 1 2 45 LCC-28U LCC-48 Available Number of Signal Pins Ceramic LCC-48C-A01 LCC-48U 2 4 58 LCC-64U LCC-64C-A01 2 2 60 LCC-68 2 4 62 LCC-68U 2 2 64 LCC-64 LCC-84 4 6 74 LCC-84U 3 4 77 Number of VDD 2 Number of Vss 2 Available Number of Signal Pins 24 Plastic Leaded Chip carriers (PLCCs, 50 mil Pitch) Package Code Pinout Code PLCC-28 Plastic LCC-28P-M01 1 1 26 LCC-44P-M01 2 4 38 1 2 41 LCC-68P-M01 2 4 62 2 2 64 4 6 74 2 4 78 PLCC-28U PLCC-44 PLCC-44U PLCC-68 PLCC-68U PLCC-84 PLCC-84U Ceramic LCC-84P-M01 Subject to Change 1-36 UHB Series CMOS Gate Arrays UHB GATE ARRAY PACKAGE AVAILABILITY C-330 C-530 C-830 C-1200 C-1700 C-2200 C-3000 C-4100 C-8000 C-8700 C-12000 C C C C C C C C C C C UHB DIP 16 18 20 22 24 28 40 42 48 SDIP (SHRINK) 28 42 48 64 SKDIP (SKINNy) 22 24 28 FPT with leads on two sides of the package 16 20 24 28 FPT with leads on four sides of the package 44 48 48" 64 80 P UHB P UHB P UHB P UHB • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 28 44 68 • 84 • 88 135 • • • • • ·•• • • • • • • • • • • • • • • • • • • • • • · • • • UHB 256 • • • • • • • • • P UHB P UHB P • • • • • • • • C=Ceramlc P = Plastic " = 48-pin FPT. smaller then the other 48 FPT ·•• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ·• ·• ·• · · ·• ·• ·· • • • • • • • • • • • • • • • · ·• ·• ·• ·•• ·• ··• ·•• ·•• ·• · 179 28 48 64 68 84 P • • • • • 208 LCC UHB UHB P • • • • • • • • • • • • • • • • • • • • • 160 64 P • · • • · • • • • • • • • • • • • • ·• ·• · ·· ·• ·• ·• ·• • ·• • ·• ·· ·• • • • • • • • • • • • • • • • • • • · • • • • • • • ·• • ·• • • • • • • ·• • • • • • 120 PGA UHB • 100 PLCC P • • • • • • 0 0 0 0 0 0 · · ·•• ·• ·• · 0 0: available now a. under development 1-37 UHB Series CMOS Gate Arrays PACKAGE DIMENSIONS PGA-256C-A03 256-LEAD CERAMIC (METAL SEAL) PIN GRID ARRAY PACKAGE (Case No.: PGA-256C-A03) , .100 ± .010 V D 1.800 (45.72) REF -1--1._ INDEX AREA ~ sa 1.970 ± .020 (50.04 ± 0.51) (O.4a~g:J:) .050 ± .010 (1.27±0.51) .130 ~:g (3.30~g:iJ .250 6.35) MAX 1-38 ) UHB Series CMOS Gate Arrays PACKAGE DIMENSIONS (Continued) .. PGA-20BC-A02 208-LEAD CERAMIC (METAL SEAL) PIN GRID ARRAY PACKAGE (Case No.: PGA-208C-A02) , .100 ± .010 f I. D .050 (1.27) OIA TYP L~(4PLCS) @G>@@@@@@@@@@@@@O @@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@ @@@@ @@@@ @@@@ @@@@ 1.600 (40.64) REF @@@)@ @@@@ @@@)@ @@@@ @@@@ @@@@ @@@)@ INDEX ~ @@@@ @@@@ @@@@ @ @ @ @ @ @@@@ @@@@ @@@@ @@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@ o@@@@@@@@@@@@@@@o INDEX AREA .005 1.693 + .020 sa (43.00 ±0.51) .018 .003 .1 .050 ± .010 (1.27 ± 0.51) (O.46~ .134 g)!) ~ ..g1'! (3.40:g·:J) .240 6.10) MAX 1-39 UHB Series CMOS Gate Arrays 1-40 cO May 1990 Edition 1.0 FUJITSU PRODUCT PROFILE CG1D Series D.8-micron CMOS Gate Arrays DESCRIPTION The CG1 0 series of 0.8-micron CMOS gate arrays is a highly integrated low-power, ultra high-speed product family that derives its enhanced performance and increased user flexibility from the use of a system-proven, dual-column gate structure and 2-layer metal interconnect technology. The unique dual-column gate structure increases density and speed performance, as well as gate utilization. CG10 architecture is fully compatible with Fujitsu's 1.5-micron UHB arrays. Internal high-drive clock buffers minimize clock skew across the chip while internal bus performance and integrity is assured by incorporating 3-state transmission gate logic underneath the routing channels. Input buffer options include pull-up and pull-down resistance, Schmitt trigger, CMOS input, and clock driver. Output buffer options include 3-state, bidirectional, edge rate control, and high-drive output. The high-drive output buffers provide highly symmetrical output waveforms. FEATURES • • • - High-dens~y silicon gate CMOS technology 3200 to 14,000 usable gates 90% maximum utilization fully autorouted Ultra high speed typical 0.5 ns/0.6 ns gate delay (power type/normal type) narrow delay variation • • - Low-skew clock signal distribution High-performance clock drivers Hierarchical clock distribution Frequency-dependent clock routing Automatic test pattern generation complete family of scan design macros available High sink current capability 3.2 mA, 8 mA, 12 mA, and 24 mA options available selectable edge rate control PRODUCT FAMILY Device Name Available Gales' Maximum Sianal Pins' Power Disslpallon all0 MHz CG10272 3,256 t08 150mW CGt0342 4,032 t23 200mW CG10492 5,572 148 200mW CG10572 6,510 163 200mW CG10692 7,684 163 250mW CG10l03 11,OBO 188 250mW CG10133 14,720 220 250mW 1Gale counl based on 2-lnpul NAN D and Includes basIc cells to form I/O buffer functions 2Maximum signal pin numbers depend on the outpul drive requirements and Ihe package selected. Copyrlght© 1990 FUJITSU LIMITED and Fujitsu Microelectronics. Inc. 1-41 CG10 Series CMOS Gate Arrays AC CHARACTERISTICS BESTIWORST CASE MULTIPLIERS FOR PROPAGATION DELAYS Propagation delays characteristic of a gate array are a function of several factors, including operating temperature, supply voltage, fanout loading, interconnection routing metal, process variation, input transition time, and input signal polarity. Temperature and supply voltage factors affecting propagation delays in the OGl 0 OMOS family of gate arrays are given in the table below. Pre-Layout Simulation Temperature Range VDD = 5 V ±SO/O Voo Post-Layout Simulation = 5 V ±100/0 Voo = 5 V ±50/0 Voo = 5 V ±100/0 Best Case Worst Case Best Case Worst Case Best Case Worst Case Best Case Worst Case 0-70°01 0.35 1.65 0.30 1.75 0.40 1.60 0.35 1.70 -20-70°0 0.35 1.65 0.25 1.75 0.35 1.60 0.30 1.70 -40-70°0 0.25 1.65 0.20 1.75 0.30 1.60 0.25 1.70 -40-85°02 0.25 1.75 0.20 1.85 0.30 1.70 0.25 1.80 Notes: 1-42 1Commercial temperature range 21ndustrial temperature range CG10 Series CMOS Gate Arrays REPRESENTATIVE PROPAGATION DELAYS Constants for calculating the delays due to process variation, fanout loading, interconnection routing metal, transition time, and signal polarity are given for each un~ cell in the CGl0 Unit Cell Library. Delays using these factors are calculated for a representative selection of un~ cells and are shown in the Propagation Delay tables below. Calculations are representative of unit cells in the CG10672 (CG10 6700-gate CMOS gate array). Typical values are indicated. Worst case multipliers are applied to typical values. Smaller arrays can exhib~ significantly greater speed. Propagation Delays (In ns) Unit Cell Function Unit Cell Name Equivalent Gate Count Input Transition 1 2 NDI (Fan-out) 4 8 16 32 Inverter V1N 1 tpLH tpHL 0.38 0.38 0.60 0.57 0.91 0.79 1.34 1.13 2.33 1.88 5.00 0.12 Power 2-lnput NAND N2K 2 tpLH tpHL 0.33 0.38 0.45 0.56 0.60 0.74 0.82 0.99 1.16 1.38 1.91 2.25 Power 16-lnput NAND NGB 11 tpLH tpHL 1.06 1.11 1.17 1.28 1.33 1.46 1.55 1.68 1.89 2.02 2.64 2.78 Power 2-lnput NOR R2K 2 tpLH tpHL 0.46 0.38 0.60 0.50 0.92 0.65 1.31 0.87 1.90 1.21 3.20 1.96 Power Exclusive OR X2B 4 tpLH tpHL 1.00 1.01 1.11 1.14 1.26 1.28 1.49 1.46 1.83 1.74 2.58 2.36 3-wide 2-AND 6-lnput 036 3 tplH tpHL 0.84 0.72 1.24 0.99 1.82 1.38 2.97 2.15 6.05 4.21 ### 8.38 G24 2 tpLH ipHL 0.68 0.55 1.09 0.82 1.70 1.21 2.89 1.98 6.07 4.04 ### 8.21 T28 11 ipLH tpHL 1.43 1.39 1.54 1.47 1.70 1.58 1.92 1.73 2.26 1.96 3.01 2.46 Power Clock Buffer K2B 3 tplH ipHL 0.71 0.81 0.77 0.86 0.85 0.94 0.96 1.05 1.13 1.26 1.43 1.52 Scan 8-b~ 0 Flip-flop with Clock Inhibit and 3:1 SHK 88 tpLH ipHL 3.10 3.07 3.33 3.25 3.63 3.48 4.07 3.81 5.05 4.56 7.72 2.80 FOO 7 tplH tpHL 1.41 1.37 1.63 1.56 1.94 1.81 2.37 2.18 3.36 3.00 6.03 5.24 FD5 8 tpLH tpHL 1.28 1.34 1.39 1.53 1.55 1.68 1.77 1.86 2.11 2.14 2.86 2.76 043 48 tpLH tpHL 1.20 1.14 1.43 1.29 1.73 1.49 2.17 1.78 3.15 2.44 5.82 4.24 045 48 tpLH tpHL 1.41 1.35 1.65 1.52 1.98 1.75 2.45 2.08 3.51 2.83 6.38 4.87 AND-OR Inverter (A -+ Y) 2-wide 2-OR 4-input OR-AND-Inverter (A -+ X) Power 2-AND 8-Wide Multiplexer (A -+ X) Data Mu~iplexer (CK,IH -+ 0) Non-5can 0 Flip-flop w~h Reset (CK -+ 0) Non-Scan Power 0 Flip-flop wnh Clear (CK -+ 0) Non-Scan 4-bn Binary Synchronous Up Counter (CI -+ CO) Non-Scan 4-b~ Binary Synchronous Up Counter (CI -+ CO) Note: Delays for inter-block wiring are not included Continued on next page 1-43 .. CG10 Series CMOS Gate Arrays REPRESENTATIVE PROPAGATION DELAYS (Continued) Propagation Delays (in ns) Unit Cell Function Unit Cell Name ~ulvalent Gate Count Input Transition NDI (Fan-out) 8 16 32 C47 68 tpLH IpHL 1.68 1.68 1.84 1.83 2.05 2.03 2.34 2.33 3.02 2.99 4.86 4.78 A4H 48 IpLH tpHL 1.02 0.98 1.33 1.24 1.75 1.60 2.51 2.25 3.91 3.43 ### 7.53 T5A 5 tpLH 0.64 0.97 1.50 2.45 ### ### tpHL 0.62 0.93 1.42 2.29 4.91 9.67 1 Non-Scan 4-btt Binary Synchronous UpIDown 4 2 Counter (DU ~ CO) 4-bit Binary Full Adder with Fast Carry (CI ~ 51) 4:1 Selector (55 ~ X) 4-bit Shift Register with Synchronous Load FS2 30 tpLH tpHL 1.65 1.65 1.88 1.84 2.18 2.07 2.66 2.44 3.67 3.20 6.74 1.75 9-bit Odd Partty Generator/Checker P09 22 tpLH tpHL 3.45 3.39 3.68 3.54 3.98 3.74 4.42 4.03 5.40 4.69 8.07 6.49 4-wide 2:1 Data P24 12 tpLH tpHL 0.70 0.66 0.81 0.74 0.96 0.84 1.19 0.99 1.53 1.22 2.28 1.73 MC4 42 tpLH tpHL 1.70 1.52 2.11 1.69 2.72 1.91 3.91 2.35 7.09 -0.30 ### 2.08 B41 9 tpLH 1.08 1.18 1.32 1.51 1.81 2.47 tpHL 1.09 1.21 1.36 1.58 1.92 2.67 Selector (A ~ X) 4-bit Magnitude Comparator (IS ~ 00) 4-bit Bus Driver (A ~ X) Input Buffer (Inverter) lIB 5 tpLH tpHL 1.05 1.07 1.11 1.15 1.19 1.25 1.30 1.40 1.47 1.63 1.84 2.14 Clock Input Buffer (Inverter) IKB 4 IpLH IpHL 1.56 1.56 1.58 1.57 1.61 1.59 1.64 1.63 1.70 1.68 1.81 1.77 12 25 I/O Cell Function Unit Cell Equivalent Input Name Gate Count Transition Output Buffer Load In pF 50 100 200 Output Buffer (True) 02B 2 tPLH tPHL 0.93 1.75 1.40 2.78 2.30 4.75 4.10 8.70 7.70 16.60 14.90 32.40 Power Output Buffer (True) 02L 2 tpLH tpHL 0.90 1.21 1.21 1.54 1.81 2.19 3.01 3.49 5.41 6.09 10.21 11.29 3-State Output Buffer O4T 4 tpLH tPHL 1.07 2.42 1.54 3.46 2.44 5.46 4.24 9.46 7.84 17.46 15.04 33.46 O4W 4 tPLH tpHL 1.09 3.03 1.41 3.47 2.00 4.32 3.00 6.02 5.60 9.42 10.40 16.22 H6T 8 tpLH tpHL 0.87 1.43 1.09 1.73 1.51 2.30 2.36 3.45 4.06 5.75 7.46 10.35 H6W 8 tPLH tPHL 1.09 3.03 1.40 3.47 2.00 4.32 3.20 6.02 5.60 9.42 10.40 16.22 (True) (OT ~ X) Power 3-State Output Buffer (True) (OT ~ X) 3-State Output and Input Buffer (True) (X ~ IN) Power 3-State Output and Input Buffer (True) (OT ~ X) Note: Delays for inter-block wiring are not included 1-44 400 CG10 Series CMOS Gate Arrays DC CHARACTERISTICS ABSOLUTE MAXIMUM RATINGS' Rating Symbol Supply Voltage Input Voltage Output Voltage Unit VSS -0.52 6.0 V VI VSS -0.52 Von +0.5 V Vo Vss-0.52 Voo +0.5 V -40 101.=3.2 mA Output Current" Maximum Minimum Voo IOl~8mA -40 los rnA ~O 10l= 12mA ~5 Storage Temperature Ceramic Plastic -40 +150 +125 5C T.1g Temperature Under Bias Ceramic Plastic -40 -25 +125 +85 5C T biaa Notes: .. -90 IOl=24 rnA damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of the data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2VSS = 0 V. "Only one output at a time may be shorted for more than one second. 1 Permanent device RECOMMENDED OPERATING CONDITIONS Symbol Minimum Typical Maximum Unit Supply Vottage Parameter Voo 4.75 5.0 5.25 V Input High Voltage for TTL Input VIH 2.2 - V Input Low Vottage for TTL Input Vil - 0.8 V Input High Voltage for CMOS Input VIH Voo x 0.7 Input Low Voltage for CMOS Input Vil - Operating Temperature TA 0 - CAPACITANCE (TA = 25°C, Voo = VI = Parameter - V Voo x 0.3 V 70 °C Maximum Unit 16 pF 16 pF 0 V, f = 1 MHz) Symbol Minimum Typical Output Pin Capacitance (1m. - 3.2 rnA, 8 rnA, or 12 rnA) COUT - Output Pin Capacitance (Iol -24 rnA) COUT - 18 pF Coo - 16 pF ClIO - 23 pF Input Pin Capac~ance VO Pin Capac~ance (Iol - 3.2 rnA, 8 rnA, or 12 rnA) VO Pin Capacitance (10I.-24mA) C IN 1-45 CG10 Series CMOS Gate Arrays DC CHARACTERISTICS (Recommended Operating Conditions unless otherwise noted) Parameter Symbol Condition Minimum Typical Maximum Unit Power Supply Current loos Steady State1 0 - 100 J.1A Output High Voltage for Normal Output (IOL - 3.2 rnA) VOH IoH m-2 rnA 4.0 - Voo V Output High Voltage for Driver Output (lot. = SmA) VOH IOH =-2 rnA 4.0 - Voo V Output High VoHagefor Driver Output (lol-12 rnA) VOH IOH --4 rnA 4.0 - Voo V Output High Voltage for Driver Output (Iol =24 rnA) VOH 1oH--SmA 4.0 - Voo V Output Low Voltage2 for Normal Output (Iol = 3.2 rnA) VOL IOL =3.2 mA Vss - 0.4 V Output Low Voltage for Driver Output (IOL = SmA) VOL 10l=SmA Vss - 0.4 V Output Low Voltage2 for Driver Output (lel = 12 rnA) VOL IOl=12mA Vss - 0.4 V Output Low Voltage2 for Driver Output (IOL - 24 rnA) VOL IOL=24mA Vss - 0.5 V Input High VoHage for TTL Input VIH - 2.2 - - V Input Low Voltage for TTL Input Vil - - - O.S V Input High VoHage for CMOS Input VIH - - - V Input Low Voltage for CMOS Input Vil - - - Voox 0.3 V Schmitt Trigger CMOS Inpur Positive-going Threshold Negative-going Threshold Hysteresis VT• VT_ VT.-VT - 2.5 0.7 1.1 3.3 1.4 1.9 4.0 2.0 2.7 V V V Schmitt Trigger TTL Input3 Positive-going Threshold Negative-going Threshold Hysteresis VT• VT_ VT.-VT 1.4 O.S 0.4 1.9 1.3 0.6 2.5 1.S 0.7 V V V 25 50 100 ItO VI-O-VOO ,-10 J.1A VI-O-VOO - 10 -10 10 J.1A Input Pull-uplPull-down Resistor Rp Input Leakage Current III Input Leakage Current (3-state) Noles: 'VIN = Voo. Vil = Vss 2With certain resbictions on pin assignment 3These values for reference only 1-46 ILZ - Vil to VIH• VIH• to Vil - Vil to VIH• VIH • to Vil VIHtO Voo Vil to Vss Voox 0.7 CG10 Series CMOS Gate Arrays ARRAY ARCHITECTURE The typical CG1 0 chip is composed of double columns of CMOS gates (basic cells) separated by dedicated wiring channels. A basic cell consists of a pair of N-channel and a pair of P-channel transistors interconnected by polysilicon gate control terminals. Groups of basic cells are interconnected by custom metallization into unit cells. Fuj~su un~ cells provide a wide range of standard logic functions such as exclusive OR gates, flip-flops, buffers, and counters. The CG10 Series CMOS gate array family includes over 250 different unit cells. These unit cells are the building blocks from which complex designs are constructed. The spaces between the double columns of basic cells are occupied by channels for custom metallization. Nearly half ofthese wiring channels contain transmission gates that implement internal3-state buses. Bus terminators located althe ends olthe double columns of cells maintain the last value to be sent through the bus to ensure proper operation under all conditions. The I/O cells around the perimeter of the matrix of cells are composed of internal cells with input protection networks and the potential to be configured as input buffers, clock input buffers, output buffers, power output buffers, or bidirectional buffers. _ D .....•.................................. _ _ _ --~I~ : ~ ,~- 4 2 - -........i--I3:iH 5 • J v.rm D m em III d 3 --+1.... lem _ _ ••••..•••••..••••.•••.J ••••••••••••••••• 6 Typical Chip Layout, Double Column Structure 1. 2. 3. 4. 5. 6. Dedicated Clock Network - for high frequency clocks 3-state Bus Logic -located In wiring channels Bus Terminators - prevent ftoating state on buses Driver Transistors and 110 Protection Networks - provide high 110 count Double Columns - for optional macro utilization and speed Wiring Channel Area - for metallization between unit cells 1-47 CG10 Series CMOS Gate Arrays DESIGN COMPONENTS DESIGNING WITH THE CG10 PRODUCT FAMILY To implement logic functions, you build up the elements of the circuit from unit cells. Simple unit cells are used hierarchically to build higherlevelfunctions until the logic is completely defined. Fujitsu offers acomplete line of standard logic functions in the unit cell library. Super macros are used to implement large super-cell functions such as expandable ALUs and multipliers. 1/0 BUFFERS Each CGI 0 1/0 buffer around the perimeter of the array consists of an input protection network and large N-channel and P-channel transistors capable of supplying the standard 3.2-mA, S-mA, and 12-mA output currents. Two of these large transistor pairs may be connected in parallel, using high-output-current macros, to obtain 24-mA drive. One of the I/O pads whose output transistors have been used for the 24-mA high-current option may still be used as an input. Input VO buffers convert external TTL levels to internal CMOS levels or may receive CMOS level signals directly. Output I/O buffers are totem pole and may drive either CMOS and TTL levels, depending on their AC and DC loads. Any of the pins except the dedicated power and ground pads can be designed to be an input buffer, an input buffer with pull-uplpull-down resistance, a clock input buffer, an output buffer, a high-drive output buffer, an output buffer with noise limiting resistance, a 3-state output buffer, a bi-directional buffer, or a Schmitt trigger input buffer. There are some restrictions on the location of 24-mA buffers. INPUT CLOCK DRIVERS The large output VOtransistor pair is used in a high-drive input clock driver for high fanout applications within the array. This allows you to fully utilize the high speed capabilities of the CGI 0 technology. TESTING CG10 DEVICES Two options are available for testing CGIO designs: (I) the standard designer-supplied test patterns and test vectors (in Fujitsu's FTDL format) and (2) the use of scan cells combined with Automatic Test Generation (ATG) performed by Fujitsu computers for additional diagnostic test patterns. If you have designed with scan cells and other scan logic elements, Fujitsu will complete the scan test program generation. Regardless of the selected test option, you need to furnish Fujitsu with enough test patterns to guarantee that the submitted design completely performs its intended logic functions. These patterns include your test function of each 1/0 pin. Diagramatlc Representation of Design Structure for ScanTestlng 1-48 CG10 Series CMOS Gate Arrays Voo and Vss REQUIREMENTS Each CG1 0 Series gate array device has two options for each package type, both supporting a different numberof power and ground pins. The numberof power and ground pins required depends on the number of simultaneously switching outputs used in the design. Simultaneously switching outputs (SSOs) are output signals that change from H to Lor L to H or from Z to H or Z to L within a 20-ns window (including possible skew). Muniple outputs that switch at the same time can cause noise on Voo and Vss lines and affect the performance of a device. Therefore, to achieve maximum reliability, Fujitsu limits the number of SSOs per Voo pin according to the table below. The maximum number of SSOs per pin is determined by a representative value specifiedforthedriving capability of each type of output. The total representative value of all SSOs used in adesign must not exceed 80 per Vss pin. For example, 11 normaI3.2-mA outputs with edge rate control, four 12-mA outputs, or three 24-mA outputs per Vss pin may be SSOs. Output Drive Type Representative Value per Output Normal (3.2 mAl 10 High Drive (12 mAl 20 Normal (3.2 mAl with Edge Rate Control 7 High Drive (12 mAl with Edge Rate Control 14 High Drive (24 mAl with Edge Rate Control 26 1-49 CG10 Series CMOS Gate Arrays FUNCTIONAL INDEX OF UNIT CELL LIBRARY Note: The load unit (Iu) is a normalized loading unit of capacitance representing the input load of an inverter without metal interconnection. Inverter and Buffer Family Basic Cells Drive (/u) Polarity V1N Inverter 1 18 Neg V2B Power Inverter 1 36 Neg B1N True Buffer 1 18 Pas BD3 True Delay Buffer (> 5 ns) 5 18 Pas BD4 Delay Cell (> 4 ns) 4 6 Pas BD5 Delay Cell (>10 ns) 9 18 Pas. BD6 Delay Cell (>22 ns) 17 18 Pas Description Unit Cell Name Clock Buffer Family Basic Cells Drive (Iu) Polarity K1B True Clock Buffer 2 36 Pas K2B Power Clock Buffer 3 55 Pas K3B Gated Clock (AND) Buffer 2 36 Pas K4B Gated Clock (OR) Buffer 2 36 Pas KSB Gated Clock (NAND) Buffer 3 36 Neg Description Unit Cell Name KAB Block Clock (OR) Buffer 3 55 Pas KBB Block Clock (OR x 10) Buffer 30 55 Pas V1L Double Power Inverter 2 55 Neg NAND Family Unit Cell Name Description Basic Cells Drive (Iu) N2N 2-input NAND 1 18 N2B Power 2-input NAND 3 36 36 N2K Fast Power 2-input NAND 2 N3N 3-input NAND 2 14 N3B Power 3-input NAND 3 36 N4N 4-input NAND 2 10 N4B Power 4-input NAND 4 36 N6B Power 6-input NAND 5 36 N8B Power 8-input NAND 6 36 N9B Power 9-input NAND 8 36 NCB Power 12-input NAND 10 36 NGB Power 16-input NAND 11 36 N3K Fast Power 3-input NAND 3 28 N4K Fast Power 4-input NAND 4 20 ConMued on next page 1-50 CG10 Series CMOS Gate Arrays FUNCTIONAL INDEX OF UNIT CELL LIBRARY (Continued) NOR Family Description UnltCeIl Name Drive (Iu) Basic Cells R2N 2-input NOR 1 14 R2B Power 2-input NOR 3 36 36 R2K Power 2-input NOR 2 R3N 3-inputNOR 2 10 R3B Power 3-input NOR 3 36 20 R3K Power 3-input NOR 3 R4N 4-input NOR 2 6 R4B Power 4-input NOR 4 36 R4K Power 4-input NOR 4 12 R6B Power 6-input NOR 5 36 RaB Power a-input NOR 6 36 R9B Power 9-input NOR 8 36 RCB Power 12-input NOR 10 36 RGB Power 16-input NOR 11 36 Basic Cells Drive (Iu) AND Family Unit Cell Name Description N2P Power 2-input AND 2 36 N3P Power 3-input AND 3 36 N4P Power 4-input AND 3 36 Nap Power a-input AND 6 36 OR Family Basic Cells Drive (Iu) R2P Power 2-input OR 2 36 R3P Power 3-input OR 3 36 R4P Power 4-input OR 3 36 RSP Power B-input OR 6 36 Unit Cell Name Description Exclusive NORIOR Family (EXOR/EXNOR) Unit Cell Name Description Basic Cells Drive (Iu) X1N Exclusive NOR 3 18 Neg X1B Power Exclusive NOR 4 36 Neg X2N Exclusive OR 3 14 Pas X2B Power Exclusive OR 4 36 Neg X3N 3-input Exclusive NOR 5 14 Neg X3B Power 3-input Exclusive NOR 6 36 Neg X4N 3-input Exclusive OR 5 14 Pos X4B Power 3-input Exclusive OR6 6 36 Pos Convnued on next page Polarity 1-51 CG10 Series CMOS Gate Arrays FUNCTIONAL INDEX OF UNIT CELL LIBRARY (Continued) AND-OR-Invener Family (AOI) Basic Cells Drive (Iu) 023 2-wide 2-ANO 3-input AOI 2 14 014 2-wide 3-ANO 4-input AOI 2 14 024 2-wide 2-ANO 4-input AOI 2 14 034 3-wide 2-ANO 4-input AOI 2 10 036 3-wide 2-ANO 6-input AOI 3 10 2 10 Basic Cells Drive (Iu) Unit Cell Name Description 2-wide 2-0R 2-ANO 4-input AOI 044 Note: AND-OR-Inverter unit cells are useful in ImplemenUng sum-of-products (SOP) expressions OR-AND-Invener Family (OAI) Description Unit Cell Name G23 2-wide 2-0R 3-input OAI 2 18 G14 2-wide 3-0R 4-input OAI 2 10 G24 2-wide 2-0R 4-input OAI 2 10 004 3-wide 2-0R 4-input OAI 2 10 G44 2-wide 2-ANO 2-0R 4-input OAI 2 14 .. Note: OR-AND-Inverter Unit cells are useful In ImplemenUOg product-of-sums (POS) expressions. Multiplexer Family Unit Cell Name Type Basic Cells Drive (Iu) Function T24* 4:1 Power 2-ANO 4-wide MUHiplexer Description 6 36 SOP T26* 6:1 P.()wer 2-ANO 6-wide MuHiplexer 10 36 SOP T2S* S:l Power 2-ANO S-wide Multiplexer 11 36 SOP T32 2:1 Power 3-ANO 2-wide MuHiplexer 5 36 SOP T33* 3:1 Power 3-ANO 3-wide Multiplexer 8 36 SOP T34* 4:1 Power 3-ANO 4-wide Multiplexer 9 36 SOP T42 2:1 Power 4-ANO 2-wide Multiplexer 6 36 SOP T43 3:1 Power 3-ANO 3-wide MuHiplexer 10 36 SOP T44 4:1 Power 4-ANO 4-wide MuHiplexer 11 36 SOP T54 4:1 Power 4-2-3-2 ANO 4-wide Muniplexer 10 36 SOP U24* 4:1 Power 2-OR 4-wide MuHiplexer 6 36 P~S U26* 6:1 Power 2-0R 6-wide MUHiplexer 9 36 P~S U28* 8:1 Power 2-0R 8-wide MuHiplexer 11 36 P~S U32 2:1 Power 3-0R 2-wide Multiplexer 5 36 P~S U33* 3:1 Power 3-0R 3-wide MuHiplexer 36 P~S U34* 4:1 Power 3-0R 4-wide MUHiplexer 7 9 36 P~S U42 2:1 Power 4-0R 2-wide MuHiplexer 6 36 P~S U43 3:1 Power 4-0R 3-wide MuHiplexer 9 36 P~S Power 4-0R 4-wide Multiplexer U44 4:1 * Convenient for typical multiplexer apphcaUons 11 36 P~S Continued on next page 1-52 CG10 Series CMOS Gate Arrays FUNCTIONAL INDEX OF UNIT CELL LIBRARY (Continued) Data Selectors/Multiplexers . Unit Cell Name Type Description Basic Cells Drive (/u) Selects Bit Width Outputs P24· 2:1 Data Selector 12 36 S,XS Q 4 T2E 2:1 Selector 5 18 S XQ 2 4 T2F 2:1 Selector 8 18 S XQ T2B· 2:1 Selector 2 18 S,XS XQ 1 T2C· 2:1 Selector 4 18 S,XS XQ 2 T2D· 2:1 Selector 2 14 S,XS XQ 1 T5A· 4:1 Selector 5 9 S,XS XQ 1 V3A· 1:2 Selector 2 14 S,XS XQ 1 V3B· 1:2 Selector 4 14 S,XS XQ 2 .. These are transmission gate deVICeS whose outputs can be tied because they can be Inhibited With true/Inverted selects . Decoders Unit Cell Name lYpe Description Basic Cells Drive (Iu) Active Lavel Outputs DE2 2:4 Decoder 5 18 Low - DE3 3:8 Decoder 15 14 Low - DE4 2:4 Decoder 8 14 Low Low DE6 3:8 Decoder 30 18 Low 1. High 2. Low Enable Internal Bus Un" Cells Unit Cell Name Basic Cells Drive (Iu) Bus Size Enable B41 4-b~ Description Bus Driver 9 36 4 bits Low Bll l-b~ Bus Driver 5 36 1 bit Low 1-53 CG10 Series CMOS Gate Arrays FUNCTIONAL INDEX OF UNIT CELL LIBRARY (Continued) Data Latch Family UnHCeIINarne Basic Cells Drive (Iu) Enable BHs Output YL2 Data Latch with TM 5 36 High 1 Q YL4 Data Latch with TM 14 36 High 4 Q Description Clear - LTK Data Latch 4 18 low 1 Q,XQ Async LTL Data Latch with Clear 5 18 low 1 Q,XQ Async LTM Data Latch with Clear 16 18 Low 4 Q,XQ LT1 S-R Latch with Clear 4 18 low 1 Q,XQ Async LT4 Data Latch 14 18 low 4 Q,XQ - - Note: Y-type latches incorporate inhibit inputs and transparent mode (TM) to facilitate scan implementation. Scan Flip-flop Family (Positive-Edge Triggered) Unit Cell Name Description Basic Cells Drive (Iu) Bits Output SDW Scan D Flip-flop with 2:1 Multiplex 14 36 1 SDJ· Scan 0 Flip-flop with 4:1 MuRiplex 15 36 1 SDK· Scan D Flip-flop with 3:1 MuRiplex 16 36 Scan J.-K Flip-flop 16 SOD· Scan OFIip-flop with 2:1 Multiplex SDA Clock Inhibit Clear Preset Q,XQ Async Async - Yes Q,XQ 1 Q,XQ Async Yes 36 1 Q,XQ Async - 16 36 1 Q,XQ Async Async Yes Scan 1-input D Flip-flop 12 36 1 Q,XQ - Yes SOB Scan 1-input D Flip-flop 42 36 4 Q,XQ - Yes SHA Scan 1-input DRip-flop 68 18 8 Q,XQ Scan 1-input DRip-flop 62 18 8 Q - Yes SHB SHC Scan 1-input D Flip-flop 62 18 8 XQ Scan D Flip-flop with 2:1 MuRiplex 78 18 8 Q,XQ SHK· Scan D Flip-flop with 3:1 MuRiplex 88 18 8 Q,XQ SFDM Scan 1-input 0 Flip-flop 10 18 1 Q,XQ - Yes SHJ· - SFDO Scan 1-input D Flip-flop 11 18 1 Q,XQ Async - Yes SFDP Scan 1-input 0 Flip-flop 12 18 1 Q,XQ Async Async Yes SFDR Scan 4-input D Flip-flop 36 18 4 QA-QD Async - Yes SFDS Scan 4-input D Flip-flop 31 18 4 QA-QD Scan J-K Flip-flop 14 18 1 Q,XQ - Yes SFJD SJH Note: • Indicates 0 Flip-flop with muRiplexed inputs. 1-54 - Yes Yes Yes Yes Yes Yes Yes CG10 Series CMOS Gate Arrays FUNCTIONAL INDEX OF UNIT CELL LIBRARY (Continued) Non-Scan Flip-flop Family Unit Cell Name Description FDS o Flip-flop o Flip-flop with Set o Flip-flop with Reset o Flip-flop with Set and Reset o Flip-flop o Flip-flop with Clear o Flip-flop FD2 Power 0 Flip-flop FDM FDN FDO FOP FDQ FOR Basic Cells Drive (Iu) Bits Output Clear Preset Clock Inhibit 6 18 1 Q,XQ - 7 18 1 Q,XQ - Async Pos 7 18 1 Q,XQ Async - Pos 8 18 1 Q,XQ Async Async Pos 21 18 4 Q - Neg 26 18 4 Q Async - 20 18 4 Q 7 36 1 Q,XQ - - Pos Pos - Neg FD3 Power 0 Flip-flop with Preset 8 36 1 Q,XQ FD4 Power 0 Flip-flop with Clear and Preset 9 36 1 Q,XQ Async FD5 Power 0 Flip-flop with Clear 8 36 1 Q,XQ Async - Neg FJD Positive Edge Clocked Power J-K Flip-flop with Clear 12 36 1 Q,XQ Async - Pos Note: .. Pos Async Neg Async Neg Synchronous flip-flops my be oonstructed by adding a simple AND gate (such as N2P) to the input of a flip-flop to create a synchronous clear. Scan Counter Family Unit Cell Name Description Basic Cells Drive (Iu) Bits Outputs' Load Clear Enable Carry In Upl Down SC72 Scan 4-bit Synchronous Binary Up Counter with Parallel Load 62 36 4 Q,XQ, COtS) Sync - Low High Up SC82 Scan 4-bit Synchronous Binary Down Counter with Parallel Load 66 36 4 Q,XQ, COtS) Sync - High Low Down High Low Up Low - Up/ Down SC43 Scan 4-bit Synchronous Binary Up Counter with Asynchronous Clear 59 18 4 QA,QD, Sync SC47 Scan 4-bit Synchronous Binary Up/Down Counter 78 18 4 QA,QD, Sync Async - Notes: 1(5), (A) indicate the oounter is (S)ynchronous or (A)synchronous. 2Scan oounters include clock inhibit and high drive (CDR = 36 lu). For non-Scan oounters CDR = 181u. Continued on next page 1-55 CG10 Series CMOS Gate Arrays FUNCTIONAL INDEX OF UNIT CEll LIBRARY (Continued) Non-Scan Counter Family Unit Cell Name Description Basic Cells Drive (Iu) Bits - Outputs1 Load Clear Down - - - a,xa - 4 a,(A) - Async - - Up 18 4 a - Async - - Up 48 18 4 a,CO(S) Sync Async High High Up 48 18 4 a,co Sync Sync High High Up 68 18 4 a,co Async Low Low Up/ Down Cl1 3 Non-Scan Flip-Flop for Counter 11 18 C41 Non-Scan 4-b~ Binary Asynchronous Counter 24 18 C42 Non-Scan 4-b~ Binary Synchronous Counter 32 C43 Non-Scan 4-b~ Binary Synchronous Up Counter C45 Non-8can Binary Synchronous Up Counter 047 Non-Scan Binary Synchronous UplOown Counter - Upl Carry In Enable - Notes: 1(S), (A) indicate the counter is (S)ynchronous or (A)synchronous. 2Scan counters include clock inhibit and high drive (CDR = 36lu). For non-Scan counters CDR = lSlu. 3C 11 may by used for purposes other than counters. Shift Register Family Unit Cell Name Basic Cells Drive (Iu) Bit Width Serial-in Parallel-out ShiftRegister 18 16 4 FS2 Shift Register w~h Synchronous Load 30 16 FS3 Shift Register with Asynchronous Load 34 SRl Serial-in Parallel-out ShiftRegister with Scan 36 1-56 Description Outputs Clock Polarity Serial-In only a-Parallel Neg 4 Sync-High a-Parallel Neg 18 4 Async-Low a-Parallel Pas 36 4 Serial-In only a-Parallel Pas Load CG10 Series CMOS Gate Arrays Datapath Operators (Adder, ALU, Parity) Unit Cell· Name Description Basic Cells Drive (Iu) Bit Width MC4 Magnitude Comparator 42 18 (=) 10 «,» 4 Outputs A>B,A=B,AB,A=B,ALB AlA I-bit Half Adder 5 36 1 S,OO - AIN I-bit Full Adder 8 18 1 S,OO CI A2N 2-bit Full Adder 16 14 2 S,OO CI 4-bit Binary Full Adder wlFast Carry 48 18(00) 14 (S) 4 S,CO CI A4H PE5 Even Parity Generator/Checker 12 36 5 EVEN,OUU - P05 Odd Parity Generator/Checker 12 36 5 ODD,EVEN PE8 Even Parity Generator/Checker 18 18 8 EVEN,OUU - P08 Odd Parity Generator/Checker 18 18 8 ODD,EVEN - PE9 Even Parity Generator/Checker 22 18 9 EVEN,OUU P09 Odd Parity Generator/Checker 22 18 9 ODD, EVEN - Miscellaneous Cells Unit Cell Name Description Basic Cells Function ZOO o Clip 0 lie to Vss ZOI 1 Clip 0 lie to VDD Continued on next page 1-57 CG10 Series CMOS Gate Arrays FUNCTIONAL INDEX OF UNIT CELL LIBRARY (Continued) Input Buffer Family Unit Cell Name Basic Cells Drive (Iu) logic Level lYpe Input/Output Polarity 11B 11BU 11BO Input Buffer 11 B with Pull-up Resistance 11 B with Pull-down Resistance 5 5 5 36 36 36 TTL TTL TTL Signal Signal Signal Invert Invert Invert 12B 12BU 12BO Input Buffer 12B with Pull-up Resistance 12B with Pull-down Resistance 4 4 4 36 36 36 TTL TTL TTL Signal Signal Signal True True True IKB IKBU IKBO Clock Input Buffer IKB With Pull-up Resistance IKB with Pull-down Resistance 4 4 4 72 72 72 TTL TTL TTL Clock Clock Clock Invert Invert Invert IKC IKCU IKCO Clock Input Buffer IKC With Pull-up Resistance. IKC with Pull-down Resistance 4 4 4 200 200 200 CMOS CMOS CMOS Clock Clock Clock Invert Invert Invert ILB ILBU ILBO Clock Input Buffer ILB with Pull-up Resistance ILB with Pull-down Resistance 6 6 6 72 72 72 TTL TTL TTL Clock Clock Clock True True True ILC ILCU ILCO Clock Input Buffer ILC with Pull-up Resistance ILC with Pull-down Resistance 6 6 6 200 200 200 CMOS CMOS CMOS Clock Clock Clock True True True 11C 11CU 11CO CMOS Interface Input Buffer 11C with Pull-up Resistance 11 C with Pull-down Resistance 5 5 5 36 36 36 CMOS CMOS CMOS Signal Signal Signal Invert Invert Invert 12C 12CU 12CO CMOS Interface Input Buffer 12C with Pull-Up Resistance I2C with Pull-down Resistance 4 4 4 36 36 36 CMOS CMOS CMOS Signal Signal Signal True True True 11S 11SU 11S0 Schmitt Trigger Input Buffer 11S with Pull-up Resistance 11 S with Pull-down Resistance 8 8 8 18 18 18 CMOS CMOS CMOS Schmitt Schmitt Schmitt Invert Invert Invert I2S 12SU 12S0 Schmitt Trigger Input Buffer 12S with Pull-up Resistance 12S with Pull-down Resistance 8 8 8 18 18 18 CMOS CMOS CMOS Schmitt Schmitt Schmitt True True True 11R 11RU 11RO Schmitt Trigger Input Buffer 11 R with Pull-up Resistance 11 R with Pull-down Resistance 6 6 6 18 18 18 TTL TTL TTL Schmitt Schmitt Schmitt Invert Invert Invert 12R 12RU 12RO Schmitt Trigger Input Buffer 12R With Pull-up Resistance 12R with Pull-down Resistance 8 8 8 18 18 18 TTL TTL TTL Schmitt Schmitt Schmitt True True True Note: 1-58 Description A "U" suffixed to the name of an input buffer indicates pull-up resistance of SOK!} (typical) and a "0" indicates a pull-down resistanoe of the equivalent value. CG10 Series CMOS Gate Arrays FUNCTIONAL INDEX OF UNIT CELL LIBRARY (Continued) Output Buffer Family Unit Cell Name Description Basic Cells Drive.rT- ZOO Internal Note: IN OUT lot. (rated) External ITotem pole outputs, such as these buffers have, can drive both TIL and CMOS levels. Voltage margins depend on actual source or sink currant (see DC specifications). 1-59 CG10 Series CMOS Gate Arrays FUNCTIONAL INDEX OF UNIT CELL LIBRARY (Continued) Bidirectional 110 Buffers (Buses) Unit Cell Name Description Basic Cells Drive (Iu) Logic Level TTL H6T H6TU H6TD 3-state Output and Input Buffer H6T with Pull-up Resistance H6T with Pull-down Resistance 8 8 8 3.2mA 3.2mA 3.2mA TTL H6W H6WU H6WD Power 3-state Output and Input Buffer H6W with Pull-up Resistance H6W w~h Pull-down Resistance 8 8 8 12mA 12mA 12mA H6C 3-state Output and CMOS Interface Input Buffer H6C with Pull-up Resistance H6C with Pull-down Resistance 8 8 8 Power 3-state Output and CMOS Interface Input Buffer H6E with Pull-up Resistance H6E with Pull-down Resistance 'TYpe Input/Output Polarity TTL No No No True True True TTL TTL TTL No No No True True True 3.2mA 3.2mA 3.2mA CMOS CMOS CMOS No No No True True True 8 8 8 12mA 12mA 12mA CMOS CMOS CMOS No No No True True True 3-state Output and Schmit! Trigger Input Buffer H6S with Pull-up Resistance H6S with Pull-down Resistance 12 12 12 3.2mA 3.2mA 3.2mA CMOS CMOS CMOS No No No True True True H6RU H6RD 3-state Output and Schmitt Trigger Input Buffer H6R w~h Pull-up Resistance H6R with Pull-down Resistance 12 12 12 3.2mA 3.2mA 3.2mA No No No True True True H8T H8TU H8TD 3-state Output and Input Buffer H8T with Pull-up Resistance H8T with Pull-down Resistance 9 9 9 3.2mA 3.2mA 3.2mA TTL TTL TTL TTL True True True H8W H8WU H8WD Power 3-state Output and Input Buffer H8W w~h Pull-up Resistance H8W w~h Pull-down Resistance 9 9 9 12mA 12mA 12mA Yes Yes Yes True True True H8W2 H8W1 H8WO High Power 3-state Output and Input Buffer H8W2 w~h Pull-up Resistance H8W2 wah Pull-down Resistance 11 11 11 24mA 24mA 24mA TTL TTL TTL TTL TTL TTL TTL Yes Yes Yes Yes Yes Yes True True True H8C 3-state Output Buffer and CMOS Interface Input Buffer H8C with Pull-up Resistance H8C with Pull-down Resistance 9 9 9 3.2mA 3.2mA 3.2mA CMOS CMOS CMOS Yes Yes Yes True True True H8E Power 3-state Output Buffer and Interface Input Buffer 9 12mA CMOS Yes True H8EU H8ED H8E with Pull-up Resistance H8E with Pull-down Resistance 9 9 12mA 12mA CMOS CMOS Yes Yes True True H6CU H6CD H6E H6EU H6ED H6S H6SU H6SD H6R H8CU H8CD Nole: A ·U- suffixed to the name of a bidirectional buffer indicates a pull-up resistance of resistance of the equivalent value. TTL SOn (typical) and a "D" indicates a pull-down Continued on next page 1-60 CG10 Series CMOS Gate Arrays FUNCTIONAL INDEX OF UNIT CELL LIBRARY (Continued) Bidirectional 1/0 Buffers (Buses) (Continued) Input/Output Polarity Basic Cells Drive (Iu) Logic Level Type High Power 3-state Output and Input Buffer H8E2 w~h Pull-up Resistance H8E2 with Pull-down Resistance 11 11 11 24mA 24mA 24 rnA CMOS CMOS CMOS Yes Yes Yes True True True 3-state Output and Schmitt Trigger Input Buffer True H8S with Pull-up Resistance H8S with Pull-down Resistance 13 13 13 3.2 rnA 3.2mA 3.2mA CMOS CMOS CMOS Yes Yes Yes True True True 3-state Output and Schmitt Trigger Input BufferTrue H8R with Pull-up Resistance H8R with Pull-down Resistance 13 13 13 3.2 rnA 3.2 rnA 3.2 rnA TIL TIL TIL Yes Yes Yes True True True H6TFU H6TFD 3-state Output and SchmittTrigger Input BufferTrue H6TF with Pull-up Resistance H6TF with Pull-down Resistance 8 8 8 8mA 8mA 8 rnA TIL TIL TIL No No No True True True H6CF H6CFU H6CFD 3-state Output and Input Buffer H6CF with Pull-up Resistance H6CF with Pull-down Resistance 8 8 8 8mA 8mA 8mA CMOS CMOS CMOS No No No True True True H8TF H8TFU H8TFD 3-state Output and Input Buffer H8TF with Pull-up Resistance H8TF with Pull-down Resistance 9 9 9 8mA 8 rnA 8 rnA TIL TIL TIL Yes Yes Yes True True True H8CF H8CFU H8CFD 3-state Output and Input Buffer H8CF with Pull-up Resistance H8CF with Pull-down Resistance 9 9 9 SmA 8mA 8mA CMOS CMOS CMOS Yes Yes Yes True True True Unit Cell Name H8E2 H8El H8EO H8S H8SU H8SD H8R H8RU H8RD H6TF Note: Description .. While all outputs are totem-pole type, Open Drain and Open Source types can easily be defined for all3-state type outputs, which includes all bidirectional buffers. 1-61 CG10 Series CMOS Gate Arrays CG10 GATE ARRAY PACKAGE CHARACTERISTICS Dualln·llne Packages (Standard DIP) Package Code Pinout Code DIP-16 Plastic Ceramic Number of Voo Number of Vss Available Number or Signal Pins DIP-16P-M02 DIP-16C-C03 1 2 13 1 2 17 1 1 18 DIP-22C-C02 2 2 18 1 1 20 DIP-24C-C01 2 2 20 1 1 22 DIP-28C-C02 2 2 24 1 1 26 DIP-40C-A01 2 4 34 DIP-16P-M04 DIP-18 DIP-18P-M01 DIP-18C-C01 DIP-18P-M02 DIP-20 DIP-20P-M02 DIP-20C-C02 DIP-20U DIP-22 DIP-22P-M02 DIP-22P-M03 DIP-22U DIP-24 DIP24P-M01 DIP24P-M02 DIP-24U DIP-28 DIP-28P-M02 DIP-28P-M03 DIP-28U DIP-40 DIP-40P-M01 DIP-40C-A02 DIP-40U DIP-42 DIP-42P-M01 1 1 38 DIP-42C-A01 2 4 36 1 1 40 DIP-48C-A01 2 4 42 1 1 DIP-42P-M02 DIP-42U DIP-48 DIP-48P-M01 DIP-48P-M02 DIP-48U 46 Continued on next page 1-62 CG10 Series CMOS Gate Arrays CG10 GATE ARRAY PACKAGE CHARACTERISTICS (Continued) Dual In-line Packages (Shrink DIP, 70 mil Pin Pitch) Package Code Number of VDD Number of Vss Available Number of Signal Pins DIP-28SH 2 2 24 DIP-28SHU 1 1 26 DIP-42SH 2 4 36 Pinout Code Plastic Ceramic DIP-42SHU 1 1 40 DlP-48SH 2 4 36 DIP-48SHU 1 1 46 DIP-64SH 2 4 58 DIP-64SHU 2 2 60 Number of VDD Number of Vss Available Number of Signal Pins DIP-22SK 2 2 18 DIP-22SKU 1 1 20 DIP-24SK 2 2 20 DIP-24SKU 1 1 22 DIP-28SK 2 2 24 DIP-28SKU 1 1 26 Number of VDD Number of Vss Available Number of Signal Pins FPT-16P-M03 1 2 13 1 1 14 FPT-20P-M02 1 2 17 1 1 18 FPT-24-M02 2 2 20 1 1 22 FPT-28P-M01 2 2 24 1 1 26 .. Dual In-line Packages (Skinny DIP, 300 mil Body Pitch) Package Code Pinout Code Plastic Ceramic Flatpack Packages (Dual-Leaded) Package Code Pinout Code FPT-16 Plastic FPT-16U FPT-20 FPT-20U FPT-24 FPT-24U FPT-28 FPT-28U Ceramic Continued on next page 1-63 CG10 Series CMOS Gate Arrays CG10 GATE ARRAY PACKAGE CHARACTERISTICS (Continued) Flatpack Packages (Dual-Leaded) Package Code Pinout Code Plastic Ceramic Number of Voo Number of Vss Available Number of Signal Pins FPT-44 2 4 36 FPT-44U 2 2 40 2 4 42 FPT-48U 2 2 44 FPT-48 • 2 4 42 FPT-48 FPT-48P-M02 2 2 44 FPT-64' FPT-64P-M01 2 4 58 FPT-64U FPT-70P-M01 1 1 62 FPT-80 FPT-80P-M01 2 6 72 2 4 74 88 FPT-48U' FPT-80U FPT-100 4 8 FPT-100U FPT-100P-M01 4 4 92 FPT-120 6 12 102 FPT-120U 4 8 108 FPT-160 8 14 138 FPT-160U 6 12 142 • Small body size. Subject to Change Pin Grid Arrays (PGA, Thru-Hole, 100 mil Pin Pitch) Package Code Pinout Code PGA-64 Plastic Ceramic Number of Voo Number of Vss Available Number of Signal Pins PGA-64C-A02 2 4 58 2 2 60 4 6 78 PGA-64U PGA-88 PGA-88C-A01 PGA-88U 4 4 80 PGA-135 8 12 115 PGA-135U 4 8 127 PGA-179 8 16 155 PGA-179U 8 8 163 PGA-208 12 18 178 PGA-256 16 20 220 Continued on next page 1-64 CG10 Series CMOS Gate Arrays CG10 GATE ARRAY PACKAGE CHARACTERISTICS (Continued) Flatpack Packages (Dual-Leaded) Package Code Pinout Code Plastic lCC--28 Ceramic Number of VDD Number of Vss Available Number of Signal Pins lCC--28C--A02 2 2 24 1 1 26 2 4 42 1 2 45 2 4 58 lCC--28U lCC--48 lCC--48C--A01 lCC--48U lCc-64 lCc-64C--A01 lCc-64U 2 2 60 lCC--68 2 4 62 64 .. lCc-68U 2 2 lCc-B4 4 6 74 lCc-B4U 3 4 77 Number of VDD 2 Number of Vss 2 Available Number of Signal Pins 24 Plastic Leaded Chip carriers (PLCCs, 50 mil Pitch) Package Code Pinout Code PlCC--28 Plastic lCC--28P-M01 PlCC--28U PlCC--44 1 1 26 lCC--44P-M01 2 4 38 1 2 41 lCC--68P-M01 2 4 62 2 2 64 4 6 74 2 4 78 PlCC--44U PlCc-68 PlCc-68U PlCC--84 PlCc-B4U Ceramic lCc-B4P-M01 Subject to Change 1-65 CG10 Series CMOS Gate Arrays CG10 AVAILABLE PACKAGE TYPES CG10272 CG10342 CG10492 CG10572 CG10692 CG1 01 03 CG10133 Number of VDD I Vss DIP (Dual In-Line Package) DIP28 C,P C,P P P - - 2 (1) C,P C,P P P P 2 (1) 4 (1) DIP42 C,P P C,P P P - - 2(1) DIP40 - 2 (1) 4(1) C,P C,P P P - - 2 (1) 4(1) - 2 (1) 4(1') 2 (2) 4(2) 4 DIP48 C,P SH-DIP (Shrink Dual In-Line Package) SH-DIP42 C,P C,P P P P - SH-DIP64 P P P P P - QFP (Quad Flat Package) OFP48 P P P - - - - 2 OFP64 P P P P P P - 2 4 OFP80 P P P P P P - 2 (2) 6 (4) OFP100 P P P P P P - 4(4) 8(4) OFP120 P P P P P P P 6 (4) 12 (8) OFP160 - - P P P P P 8 (6) 14(12) - - - - - 10 18 - - 2 4 - 4(4) 8(4) P P 8 16 - P 12 18 OFP196 SQFP (Shrink Quad Flat Package) SOFP64 P P - - - SOFP100 P P P SOFP176 - - - - - - SOFP208 PGA (Pin Grid Array Package) PGA64 C,P C,P C,P C,P C,P C,P C,P 2 4 PGA88 C,P C,P C,P C,P C,P C,P C,P 4(4) 6(4) PGA135 C C C,P C,P C,P C,P C,P 8 (4) 12 (8) PGA179 - - C,P C,P C,P C,P C,P 8 (8) 16(8) - - C C C 12 18 - - - C C 16 20 - - - C 16 20 - 2 4 4 (2) 6 (4) PGA208 PGA256 PGA-SO mil (Pin Grid Array Package-50 mil) PGA256 - - - PLCC (Plastic Leaded Chip Carriers) PLCC68 P P P P P P PLCC84 P P P P P P C = Ceramic, P = Plastic 1-66 CG10 Series CMOS Gate Arrays PACKAGE DIMENSIONS .. PGA-256C-A03 256-LEAD CERAMIC (METAL SEAL) PIN GRID ARRAY PACKAGE (Case No.: PGA-256C-A03) V I. o 1.800 (45.72) REF INDEX AREA 1.970 ± .020 sa (50.04± 0.51) .1 .050 ± .010 (1.27± 0.51) ~I. ~ (0.46~g:J: ) .130 ~:8rg (3·30~8.-:J ) .250 6.35) MAX 1-67 CG10 Series CMOS Gate Arrays PACKAGE DIMENSIONS (Continued) PGA-208C-A02 208-LEAD CERAMIC (METAL SEAL) PIN GRID ARRAY PACKAGE (Case No.: PGA-208C-A02) .100.t..010 L if D +1 .. .... REF I. INDEX AREA 1.693 : .020 so (43.00 :0.51) .1 .050%.010 (1.27±0.51) (O.46~8.'~! ~.~~: (3.40~8."~ ) .240 6.10) MAX 1-68 •••• ~ .134 (4PLCS) •••••••••••••••• ••••••••••••••••• ••••••••••••••••• ••••••••••••••••• •••• •• ••• •••• •••• •• ••• ••• •••• •••• • ••• ••• 1.600 (40.64) V .050 (1.27) DIA TYP ) INDEX ~ .... ..... .. •••• ••• •••• • •• ••• ••••••••••••••••• ••••••••••••••••• ••••••••••••••••• ••••••••••••••••• CMOS Channeled Gate Arrays Steps Toward Design Chapter 2 - Steps Toward Design Contents of This Chapter 2.1 2.2 2.3 2.4 2.5 2.6 Introduction Choosing Fujitsu as your ASIC Manufacturer Choosing a Device Choosing a Package Technical Review Design Interface Options 2.1 Introduction This section of the data book takes a look at the issues that must be considered before a design is ready to be entered on a computer-aided engineering (CAE) workstation. 2.2 Choosing FujHsu as Your ASIC Manufacturer The first step in implementing a given ASIC design is to choose the manufacturer that offers semiconductor processes capable of actualizing the performance requirements of the IC. The manufacturer should also offer consistent and easily accessible customer support, timely transfer of the design into . Silicon, and a highly reliable end product. The data sheet and supplementary information in Chapter 1 enable customers to determine whether their requirements fall within the broad range of Fujitsu's technical capability. The second step is to discuss the design requirements with one of Fujitsu's Field Applications Engineers at either a Regional Sales Office or a Technical Resource Center. Regional Sales Office and Technical Resource Center addresses and telephone numbers are listed at the back of this volume. Fujitsu's Field Applications Engineers work with each customer to determine which technology would be most suitable for a given deSign, taking into account the factors outlined in more detail below. Fujitsu's highly developed software tools, high-capacity manufacturing facilities (the largest in the world) and long history of excellence in the field (Fujitsu has been producing custom gate arrays commercially since 1974) enable customers to turn designs into highly reliable products in a cost-effective time frame. 2.3 Choosing A Device Speed is usually the deciding factor in choosing the technology for a design, but sometimes special requirements such as package availability or on-chip memory (available in the AU and CG21 technologies) influence the final decision. Usually the device type is a requirement of the design and is chosen before the package size is determined. The size of the package will depend on array size. partitioning, the number of power and ground pins required by the SSOs (Simultaneously switching outputs) used in the design. and the high power drive buffers and clock inputs used in the design. To determine the most suitable device within a given technology. the designer must determine the gate count and pinout requirements from the schematic diagram of the design to be implemented. The functions in the schematic or logic block diagram may be described using standard logic functions, programmable logic, or Fujitsu's Unit Cell Library. Gate counts are calculated in terms of how many basic cells make up each component function (unit cell). This number is given for each unit cell in the unit cell library for each technology. By adding up the number of basic cells used in each logic element in a design, a designer can arrive at a good first estimate of the design complexity. 1-69 .. Steps Toward Design CMOS Channeled Gate Arrays 2.4 Choosing a Package Before the final choice of an array can be made, however, the choice of a package must be considered. The intended use of the IC generally determines the type of package used: packaging issues are discussed in detail in the application note "Choosing the Best Package for Your ASIC DeSign" included in Chapter 7 of Section 1 of this data book. The types of packages available for Fujitsu's CMOS channeled arrays are shown in the data sheets in Section 1 and in Appendix D of the UHB Unit Cell Library (Section 2) and Appendix D of the CG10 Unit Cell Library (Section 3). . The size of the package chosen is regulated by the number of inputs and outputs required, the number of Vss and Voo pins required, and the number of simultaneously switching outputs (SSOs) included in the design. Package Size vs. SSOs The number of SSOs can influence the size of the package chosen because additional ground pins are sometimes required in a design that has more simultaneously switching outputs than is acceptable for a given package type. Simultaneously switching outputs are those that switch from a logiC low or a high impedance (Z) to a logic high or from a logic high or Z state to a logic low within 20 nanoseconds of each other. A general rule is to use one ground pin for each group of 10 simultaneously switching low power outputs or for 20 non-simultaneous outputs. Chapter 4 of Section 1 of this book and the Package Pin ASSignments section of the Design Manuals cover pin requirement issues in more detail. Although the Vss and Voo pins are preassigned in each package and cannot be changed, alternate packages are available offering varying numbers of power and ground pins. 2.5 Technical Review When the CMOS technology, the device, and the package have been decided upon, the customer and Fujitsu's Field Applications Engineer hold a technical review to ensure that all the information necessary to implement the design is available and to allow Fujitsu to derive a schedule and price. 2.6 Design Interface Options The next step is to determine which computer-aided engineering (CAE) workstation will be used to enter the design. The desired result of entering the design on a CAE workstation is the generation of a successful net list or Fujitsu Logic Description Language (FLDL) file and a list of test vectors or Fujitsu Test Description Language (FTDL) file. These two files (which may be generated on any of several different CAE workstation systems) enable Fujitsu's host mainframe to perform automated layout and rigorous test and simulation of the design. Four popular dedicated CAE workstation systems (Valid, Mentor, Dazix, and the HP 9000) as well as several hardware-independent CAE packages support Fujitsu's design software. In addition, Fujitsu now offers design support on ViewCADTM, a computer-aided engineering system originated by Fujitsu for ASIC designs. ViewCAD is written in the C programming language and runs on any UNI)(TM platform that supports the X Window System™ (such as the Sun 3 or 4 series of workstations). It includes in one package all of the necessary functions for the deSign, Simulation, and analysis of an ASIC design. ViewCAD makes use of a graphics-oriented interface that allows visual examination of all circuits, circuit test data, and simulation results. Its final product is the logic and test data description files (FLDL and FTDL) that are required by the host mainframe computer to process a design. Through long experience, Fujitsu has found that by far the most efficient way to achieve a trouble-free end product is for customers to implement the design on a workstation themselves. This can be done: 1-70 CMOS Channeled Gate Arrays Steps Toward Design a. on CAD equipment that the customer is already using (Fujitsu provides cell library information files and the expertise to help write a conversion program to produce the FLDL and FTDL files if necessary) b. on one of the design systems that specifically support Fujitsu software (Daisy, Mentor, Valid, HP 9000) either at the customer's workplace or in one of the Technical Resource Centers c. on ViewCAD either on the customer's own Sun equipment or at a Technical Resource Center. .. 1-71 Stees Toward Design 1-72 CMOS Channeled Gate AlTBys CMOS Channeled Gate Arrays Design Procedures Chapter 3 - Design Procedures Contents of This Chapter 3.1 3.2 3.3 3.4 3.5 Introduction Workstation Options Workstation Design Procedures Post-Design Process Engineering Sample Testing 3.1 Introduction This section of the data book explains the steps necessary to implement an ASIC design in one of Fujitsu's channeled CMOS technologies using a computer-aided engineering (CAE) workstation. Designs can be implemented with Fujitsu's ViewCAD design software or with one of the CAE systems or software applications that support Fujitsu designs. 3.2 Workstation Options 3.2.1 VlewCAD Fujitsu developed the ViewCAD design software to generate the logic circuit (net list) and test data files necessary to design Fujitsu ASIC devices and to simulate the logic both before and after layout. ViewCAD complements a wide range of customer third party design tools and includes: • A Schematic Capture Module utilizing the X Window System • A LogiC Design Rule Check Module that screens for design violations in the areas of fanout and drive, gate count, 110 requirements, etc. • A Test Data or Waveform Entry Module for test vector entry • An Interactive Simulation Module that replicates the Fujitsu software for both functional and timing simulation • Conversion Modules to define the net list in the Fujitsu LogiC Description Language (FLDL) and the test vectors in the Fujitsu Test Data Description Language ( FTDL) formats required by Fujitsu's design implementation software. 3.2.2 Generic (CAE-dedicated) Workstations Fujitsu provides ASIC Design Software Kits for deSigners using some of the popular design tools on generic hardware-dedicated CAE workstations. The kits offer support for Dazix, Mentor, Valid, and HP9000 and include: • Fujitsu Symbol Model Libraries for the CAE system's schematic capture module • A Logic DeSign Rule Check module • Fujitsu TIming Model Libraries for the system's simulator • A Delay Calculator module • Conversion Modules to define the net list and test vectors in the FLDL and FTDL formats required by Fujitsu software. 1-73 .. Design Procedures CMOS Channeled Gate Arrays In addition, Fujitsu now offers FAME (Fujitsu's ASIC Management Environment), a menu-driven design management program. FAME enables the user to select the technology, the array size, and the package, to assign the pinout, and to create a design database that is referenced by the other modules to ensure correct-by-construction design. FAME includes a test vector module that allows designers to edit test vectors, assists in defining test groupings, cycle times, and strobe settings, and checks created test files against restrictions. Fujitsu designs are also supported by several high-performance third party CAE tools. These include: • Verilog-XL® (Cadence Design Systems, Inc.) mixed-mode system simulator • LASARTM Version 6 (Teradyne) design simulator and test program generator with fault simulation • HIL0-3® (GenRad) design verification, fault Simulation, and test generation tools • IKOS'M 800 logic validation hardware accelerator • Synopsys® Design Compiler™ interactive behavioraVlogic synthesizer 3.3 Workstation Design Procedures Figure 3-1 shows a flowchart of the design process. Because the function and file names used by each design system may differ, generalized names for each operation are used rather than system-specific names for each step in the process. 1-74 CMOS ChaflllfllBd Gate Anays Design Procedures CUstomerlDesl ner Environment I r---------------~ ~--~------,_--o.__;~nEn~y A1 = B~ + 'BC A2=C·D+A1+E A3 = D(B+C)+(OE) C InBPuAts oUz>m X X X H L L L L DO L L H H 01 ~----------~~------~~~ Boolean Equation Truth Table ~D arl-~--'~-'~ inputclk; input [7 : 0] data; output [7 : 0] out; wire clki, [7 : 0] datai; ~------------~ Behavioral Description r - CK ----.J Schematic Capture .. Back Annotation Fujitsu Softwa~e Environment I,,' i' .,i' .i' .1 = Optional Approval and Purchase Order Figure 3-1. Workstation Design Flow 1-75 Design Proceduf8/1 CMOS Channeled Gate Arrays 3.3.1 Design Entry Design entry (schematic capture) is the first step in the design automation process. The designer can use the schematic editor program of ViewCAD or the applicable workstation software and Fujitsu's symbol model libraries for schematic capture. In most of the Fujitsu-compatible CAE applications, as in ViewCAD, circuits can be defined as macros, for use as sub-parts of other circuits. DeSigns can also be entered using Boolean equations, truth tables, or behavioral descriptions. 3.3.2 Design Synthesis/Optimization The information entered in the design entry process can be subsequently subjected to design synthesis/optimization using a behavioraViogic synthesizer such as the one offered by Synopsis. 3.3.3 Logic Data Conversion (FLDL Generator) Fujitsu's FLDL Generator (FLDLGEN) is a program that uses the results of data input (and design synthesis, Hused) to create the FLDL file or net list. The purpose of the FLDL file is to provide information to the Fujitsu software environment for automatic layout and logic simulation. The designer creates an FLDL control file containing the customer's name, the workstation type, the revision, the date, and the designer. The FLDLGEN program receives this information from the FLDL control file and combines it with the schematic data base file created at schematic capture. The FLDLGEN program can then create an FLDL file that describes the design for the Fujitsu design implementation software. 3.3.4 Logic Design Rule Check The Logic Design Rule Check (LDRC) examines the files produced by the schematic capture and Fujitsu formatting processes for conformity to the design rules of the technology in which the design is executed. This program is run before simulation because it catches errors that, undetected under normal workstation design rules, often cannot be tolerated in a Fujitsu gate array. LDRC checks that the design conforms to the logic design rules applicable to all Fujitsu deSigns, to those unique to a technology, and to those required by the chosen package type. When hierarchy is used, LDRC checks for hierarchy violations. Even in the general workstation environment, LDRC is Fujitsu software, written specifically for each trechnology. In order to tailor the LDRC to a particular technology, device, and package, the customer enters required information via an LDRC Control File, which supplies the device and package name and sets the LDRC to output information in the form of a report either on all nets or only on nets that contain errors. Errors detected during LDRC can then be corrected before the Logic Simulation Program is run. 3.3.5 Functional SlmulatlonlTlmlng Analysis The steps that make up the functional simulation and analysis process vary between design environments. For some workstations, as for ViewCAD, functional simulation is all one step, while jor others it is three separate steps: a. Logic simulator data base file compilation 1-76 b. Delay calculation c. Logic simulation and analysis CMOS Channeled Gate A"ays Design Procedures Logic Simulator Data Base File The logic simulator data base file uses a Fujitsu-supplied library to apply behavioral characteristics such as component functions, delay parameters, loading factors, and minimum pulse width, set-up time, and hold time for flip-flops. These values are supplied by the Fujitsu libraries for the appropriate technology. Input stimulus to the circuit is supplied by the designer in the form of the Control File. Delay Calculator Fujitsu provides the program for performing the delay timing calculations. The execution of the program calculates the delay times unique to each net in accordance with the loading condition (fan-out and hierarchy) in the schematic data file. These calculated delays are representative of pre-layout loading conditions. The calculations for metal loading are based on the same look-up tables and load equations used in the Design Manual. These loads are subject to change after layout, reflecting the actual metal loads experienced. Logic Simulator The event-driven logic simulator evaluates the outputs of each gate as a function of its inputs and displays the results as either a waveform drawing or as a data file. Workstation simulations performed under the influence of the Delay Calculator are vitally important to verification of design functionality and to the creation of successful test vectors. Using in-circuit application stimulus from the Logic Simulator Data Base File, simulations are executed in typical, maximum, and minimum modes, with timing checks enabled, to ensure that the design is responding as expected and is stable under all conditions. The results are written to a print-on-change file, which is a list of the signals that changed state, their new state, and the time at which they changed. 3.3.6 Test Data Conversion (FTDL Generator) Fujitsu's FTDL Generator (FTDLGEN) is a conversion program that translates the Functional Simulator's output file into the FTDL file. In the process of doing this, it applies Fujitsu tester restrictions to the simulator results. If any signal or timing violations are detected, the designer is informed so that the necessary changes can be made to the data file. The final output file of the FTDL Generator becomes the FTDL File, that is, the test vectors for Fujitsu's simulator as well as for the LSI tester. 3.4 Post-Design Process At this point, the customer has gone as far as possible in designing a CMOS gate array on a CAE workstation. Now the design is transferred to the Fujitsu software environment at one of the Technical Resource Centers for Fujitsu's simulation. 3.4.1 LDRC and TORC The designer provides the FLDL and FTDL files to a Technical Resource Center usually in the form of magnetic tape or floppy disk. Fujitsu then checks the FLDL using its own proprietary and more detailed logiC design rule check to confirm the validity of the logic data and for formatting errors, unconnected inputs and outputs, loading conditions, etc. The FTDL file is checked by Fujitsu's proprietary test data rule check, which flags any violations of the published test data restrictions. 3.4.2 Pre-layout Simulation After the LDRC and TDRC have been run successfully on the FLDL and FTDL, the pre-layout simulation can be performed. This is a logic simulation run at typical, maximum, and minimum propagation delay times using estimated metallization capacitance values. If there is no discrepancy between simulation 1-77 Design Procedures CMOS Channeled Gate Arrays results and the expected outputs, the design is presumed to be correct. One of two simulators, LBS6 or ViewCAD, runs functional simulations and timing verification including the checking of set-up and hold time, pulse width, and removal times. 3.4.3 Automatic Layout After a successful pre-layout simulation has taken place and customer approval has been obtained, a proprietary Fujitsu application performs automatic placement and metal interconnection routing. 3.4.4 Post-Layout Simulation Post-layout Simulation, also known as final validation, is again performed at typical, maximum, and minimum propagation delay times, but using actual calculated capacitance based on the metal interconnection routing resulting from automatic layout. Customers who are using ViewCAD can perform the Fujitsu pre-layout and post-layout simulation themselves using the ViewCAD software to provide a sign-off quality design before the design files are even turned over to Fujitsu. 3.4.5 Fault Grading After post-layout simulation is completed, customers have the option of requesting that Fujitsu subject the test data to a process called fault grading. This CPU-intensive process analyzes the customer's circuit and test data to calculate the percentage of fault coverage. The input test data is analyzed to determine the adequacy of the stimulus patterns to detect any "stuck" (malfunctioning) nodes. The result, a report of all nodes not tested by the stimulus provided, is given to the customer. The customer then has the option of either changing the test vectors or acknowledging that the untested nodes are acceptable. 3.4.6 Sample Fabrication After a successful post-layout simulation has been performed and customer approval has again been obtained, engineering samples of the array are fabricated for customer evaluation. 3.5 Engineering Sample Testing 3.5.1 LSI Tester Once sample chips have been fabricated, they are tested on the LSI Tester, a test instrument located at the manufacturing facility. Sample chips are tested with input test patterns and expected outputs obtained from the FTDL file. One of the most important tasks of post-layout simulation is to validate the test vectors for later use on the LSI Tester. For this reason, simulation is executed under conditions adhering as closely as possible to the conditions imposed by the tester. A device that passes all phases of simulation Is likely to pass the LSI tester. The limitations of the LSI Tester place various restrictions upon test data. These restrictions must be respected when preparing the test data pattern and when creating the (stimulus) Control file for running workstation simulations. A summary of test data restrictions for each technology is included in the appropriate DeSign Manual. Test data restrictions involve such issues at the numbers of test patterns acceptable for each test type, the minimum test cycle length, input signal timing, output strobe timing, bidirectional buffer Simulation, input and output cycle timing, tester skew, and the treatment of data Signals. Tests performed on the LSI Tester include the function test, the delay test, the DC test, and the high impedance ("Z function") test. Specific data found in the UHB or CG1 0 Design Manual must be included in FTDL to perform each of these tests. 1-78 CMOS Channeled Gate Arrays Design Procedures 3.5.2 Function Test The function test guarantees the designed function of the gate array by exercising as many of the internal nodes as possible and detecting functional failures. Fujitsu requires the function test because it is the primary means of determining if an ASIC is functioning properly as it comes from manufacturing. In the course of the function test, input signals are applied in accordance with customer timing specifications, using worst-case input voltage at a clock frequency not to exceed 16 MHz (a period of 63 ns). The dynamic performance of this test also partially verifies the AC characteristics of the device. The function test may be run in multiple units (blocks), allowing changes to be made in the test vectors to assure thorough testing of the device. The transition from one block to the next requires that the device be powered off, adjustments made to the tester, and pins regrouped as required. After all changes have been made, the test is restarted. For this reason, each test block must re-initialize the circuit. 3.5.3 Z-Functlon Test The Z-Function test is administered in the last block(s) of the function test. Its purpose is limited to the verHication of the high-impedance function of 3-state and bidirectional output buffers. The Z-function test is necessary only when there are two or more logic combinations that can generate the high-impedance state for a given I/O cell. The test can verify all these logic combinations. If only one logic combination generates the high-impedance condition, then the DC test is adequate. 3.5.4 DC Test The DC test, as its name implies, verifies the DC characteristics of the array. It is not intended to check circuit functionality, but it can be used as a function test of 3-state circuits having only one signal path that generates the high-impedance condition. The designer supplies the sequence of input signals and expected outputs in the FTDL. These test patterns must generate every possible state for every type of output and input buffer being used (high, low, and high-impedance). The DC test applies the designer-specified input signals to measure the following DC parameters: a. b. c. d. e. Steady state power supply current (Ioos) Output high voltage (VOH) Output low voltage (Vou Input leakage current (Ill) High-impedance output leakage current (lLZ) 3.5.5 Delay Test The delay test is optional. It is used to verify critical paths or as a means to characterize the device by testing a small number of paths. The purpose of the delay test is to check that signal paths from various inputs of the chip to their respective outputs meet the customer's standards for minimum and/or maximum delay times. The paths may be sequential and/or combinatorial but only the propagation delay, not the toggle frequency, is measured. 3.6 ATG Testing and Scan Design ATG testing is a special technique that supplements the customer's submitted test patterns (FTDL) to assure both Fujitsu and the customer of a highly reliable gate array by achieving a high degree of fault coverage. ATG testing is implemented by using scan design techniques described at the end of Chapter 4, Design Considerations. Scan test patterns (both applied input stimulus and expected outputs) are automatically generated by Fujitsu's Automatic Test Generator (ATG) software. ATG is offered by Fujitsu for partitioned arrays of the UHB and CG10 technologies and for all arrays in the channelless gate array technologies (AU, CG21, and CG31). 1-79 .. Design Procedures 1-80 CMOS Channeled Gate Arrays CMOS Channeled Gate Anays Design Consid9f'ations Chapter 4 - Design Considerations Contents of This Chapter 4.1 Introduction 4.2 Basic Cell Usage 4.3 Designing for Reliability and Testability 4.4 Designing for Speed 4.5 Bus Circuit Design 4.6 I/O Design 4.7 Designing for Scan Test Technology 4.1 Introduction This section of the data book gives an overview of the logic and I/O design considerations that are important for a successful design in Fujitsu's CMOS channeled gate array technology. Specific design recommendations for each technology can be found in the Design Manual for that technology. 4.2 BasiC Cell Usage In order to benefit from fully automated layout, a designer may use no more than 90% of the actual cell count of a UHB or CG1 0 gate array. The actual cell count is the number of basic cells used in the device. In Fujitsu's channeled CMOS technologies, the unit cells are grouped in double columns alternating with wiring channels. Within the columnar architectures, unit cells are always constructed on a double column, Le., a unit cell cannot bridge the wiring channel between two basic cell columns. This limits the number and complexity of unit cells that can be placed on a column. The number of inputs and outputs and therefore input and output buffers required also limit the number of basic cells available for logic design since internal basic cells are also used for input/output buffer cell implementation. 4.3 Designing for ReliabliHy and Testability Following the design guidelines below ensures maximum testability and therefore reliability of a design: a. External signal paths must be interfaced to the array by an I/O buffer. b. Only one I/O buffer cell can be connected to an external terminal. c. Inputs to the same cell may not be tied together. d. Inputs to two or more input buffers may not be tied together. e. Unused inputs must be tied high or low using clip cells ZOO or Z01, never left floating. f. The outputs of a unit cell other than 3-state bus macros may not be wire-ANDed. Generally, if output functions must be tied together, they must be combined through a logic function. g. Outputs of unit cells should not be left open. In the case of flip-flops, latches, shift registers, or counters, however, outputs may be left open if at least one output is connected. h. Functions such as one-shots and other monostable or astable circuits cannot be incorporated into a Fujitsu CMOS gate array. All logic state changes detected at the output of the array must be predictable for the purpose of test, and as such, be the direct result of changes of input stimulus. 1-81 Design Considerations CMOS Channeled Gate Anays i. Series inverters must not be used for the purpose of creating a delay. Fujitsu supplies delay unit cells to assist the designer in solving timing problems such as set-up and hold time requirements. The designer should not, however, use delay cells to construct asynchronous circuits (one-shots or glitch generators). j. Circuits incorporating sequential devices (for instance, flip-flops, counters, shift registers, and so on) must have a traceable method of initialization designed into the circuit, independent of feedback loops. k. No logic function should be incorporated within the array if it cannot be directly or indirectly set or initialized from a primary input. Designers have two choices for initialization: 1. Supply an external signal (for CLEAR, LOAD, etc.). 2. Supply known inputs and allow time for them to propagate through the circuit. If the propagation method is used, UNKNOWN ("X" state) must be an acceptable output state until the initialization is completed. 4.4 Designing for Speed In general, signal delays are caused by the Signal having to travel through more gates or over longer distances, especially to enter a different block in gate arrays having block architecture (partitioned arrays). Delay is proportional to length of interconnection metal along which the signal must travel. The following recommendations are therefore made to optimize overall design speed by minimizing the interconnect metal length. 4.4.1 Hierarchical Design Devices that are not physically partitioned do not allow the designer to control relative path lengths. It is highly recommended, therefore, to design hierarchically, dividing the cell into blocks and the blocks into sub-blocks so that functional groups of unit cells are laid out in close proximity and signals have less far to travel. When it becomes necessary to link blocks, the use of high-power "high-drive" unit cells is recommended to drive signals in the inter-block metal. It is especially helpful to use hierarchical design for the three largest arrays in the UHB and CG10 series. Not using hierarchy design for these larger arrays imposes a risk of considerable difference between estimated interconnection loading and actual layout loading values. 1-82 Design Considerations CMOS Channeled Gate A"ays The suggested hierarchical structure for the larger arrays is a division of the array into four quadrants as shown in Figure 4-1. Each of these quadrants is considered a level 1 listing under the CHIP level. See Figure 4-2. Figure 4-1. Arrangement of Hierarchical Blocks Figure 4-2. Recommended Hierarchial Organization of UHB/CG10 Designs The CHIP level is the highest level in the hierarchy and represents the entire chip. All 110 cells are defined immediately below the CHIP level, along with any clip cells they may require. Levell blocks must be defined immediately beneath the CHIP level and cannot exceed eight in number (when used for digital logic). Unit cells cannot be described immediately beneath the CHIP level. Level 2 is defined beneath the Levell blocks, Level 3 beneath Level 2, etc. Levels must always be defined in numerical order. There is no limit to the number of Level 2, Level 3, or Level 4 blocks that may be used (when defined below a higher block level). Unit cells may be defined beneath Levels 2, 3, or 4, but the lower in the hierarchy the unit cells are defined, the greater the designer's control of delay will be. Any level may be the first defined under the CHIP level and any of the levels may be omitted; however, the more the designer deviates from the standard structure, the greater the differences between estimated pre-layout delay and actual post-layout delay will be. The recommended number of basic cells per each quadrant of an array is shown in Figure 4-1. It is highly recommended that the designer adhere to the guidelines in this table since the tables of estimated metallization load for the cells are based on these block sizes. The basic cell level counts overlap from level to level. The designer may select either of the levels covered by the cell count, but must also use the appropriate table of estimated metallization load for delay calculations. 1-83 CMOS Channeled Gate Arrays Design Considerations Table 4-1. Basic Cells per Quadrant Array/Series Minimum Bc/Block 6000UHB 1000 Maximum Bc/Block 2500 8700UHB 12000UHB 1500 2000 3000 4000 0010692 1200 2600 0010103 1700 3400 0010133 2300 4300 4.4.2 Clock Line Design A clock network is a circuit used for the efficient distribution of an external clock signal to the clock input of internal sequential and combinatorial unit cells. Clock skew is the differential delay of a clock signal as it proceeds through a system; it is determined by the types and relative positions of the gates and blocks within the array. Clock networks must be optimized to minimize skews for both internal and inter-chip clock distribution to ensure accurate high-speed operation. The designer can optimize clock networks by using dedicated input buffers called clock input buffers and dedicated unit cells called clock distribution buffers. Clocks must enter the array through the clock input buffers. They should be further distributed via the clock distribution buffers. Proper use of clock buffers to boost signal strength and balance loads reduces the problems of clock skew and clock pulse variation. The locations of clock input buffers for signals with frequencies greater than 5 MHz are limited to paths on two sides of the die. The number of such buffers is limited depending on the size of the array, as specified in the design manual for each technology. External clock signals must be wired in parallel with chips; once inside the chip, clock signals must be wired in parallel with logic blocks. 4.5 Bus Circuit Design The UHB and CG10 families have special provisions for implementing high-performance internal3-state buses. The internal 3-state bus can be implemented on the chip using bus driver cells and bus terminators that maintain the last logic level on each bus line when all bus drivers switch to their high impedance state. The bus terminator maintains this logic level until any bus driver begins to drive the bus line. The bus terminator is invisible to a logic designer; it is connected to each of the bus lines automatically by Fujitsu's CAD software. It uses only one basic cell per bus line. The number of internal 3-state buses permitted depends on the technology and on the size of the gate array and the bus width (number of bits per bus) required. Table 4-2 shows the number of bus driver cells permitted per UHB chip; Table 4-3 shows the number of bus driver cells permitted per CG1 0 chip. 1-84 Design Considerations CMOS Channeled Gate Arrays Table 4-2. Maximum Number of Bus Driver Cells per Chip (UHB) Maximum B41 Bus Driver Cells Device Name C330UHB 4 C530UHB 5 C830UHB 6 C1200UHB 8 C1700UHB 12 C2200UHB 16 C3000UHB 21 C4100UHB 26 C6000UHB 50 C8700UHB 70 C12000UHB 90 Table 4-3. Maximum and Recommended Number of Bus Driver Cells per Chip (CG10) B41 Bus Driver Cells B11 Bus Driver Cells Device Name Maximum Recommended Maximum Recommended CG10272 22 19 88 76 CC10392 26 23 104 92 CG10492 30 27 120 108 CGl0592 34 30 136 210 CG10692 72 64 288 256 CGl0l03 105 94 420 376 CGl0133 144 128 576 512 In the largest three arrays of both the UHB and CGl 0 technologies, there is also a limit on the number of bus driver cells per block (UL, UR, LL, LR, as shown in Figure 4-1) if the array is divided into the four recommended hierarchical blocks . The maximum number of B41 bus driver cells (or CG10 Bl1 bus driver cells) permitted in each block is calculated using the following formulas. B41 Bus Driver Unit Cells CG10692 (number of basic cells per block 11 00) - 1 CG10103 (number of basic cells per block 11 00) + 1 CG10303 (number of basic cells per block 1100) - 5 C6000UHB (number of basic cells per block 11 00) - 2 C8700UHB (number of basic cells per block 11 00) + 1 C12000UHB (number of basic cells per block 11 00) - 4 1-85 Design Considerations CMOS Channeled Gate Arrays B11 Bus Driver UnH Cells The maximum nuni>er of B11 bus driver cells permitted in each block is determined by multiplying the permitted number of B41 bus driver cells by 4. For example, if there are 3480 basic cells in a block of a CG10131 array: 3480/1 00 - 1 = 33.8 Therefore, a maximum of 33 B41 s can be used in that block. 33 x4 =132 A maximum of 132 B11s can be used in that block. 4.6 1/0 Design 4.6.1 Pin Assignment Guidelines The following parameters apply to the assignment of I/O pins: a. All Vss pins must be tied to ground. b. All Voo pins must be tied to 5 volts. c. Voltage and ground pins are predetermined by the package type and cannot be altered. d. Pins deSignated "No Connection" cannot be used. e. Additional Vss and Voo pins may not be assigned by the designer without first negotiating this deviation with Fujitsu. f. Fujitsu recommends thatthe designer assign the pin numbers to the circuit in the' ASSIGN or 'OPTION section of FLDL or submit the complete pin assignment table with the design. It is also possible to allow the Technical Resource Center to do the assignment automatically using Fujitsu's design software or manually from a customer-supplied form. g. The maximum output low current (IoU must not exceed 70 mA per Vss Pin. 4.6.2 Simultaneously SwHchlng Outputs (SSOs) Outputs are defined as switching simultaneously when they switch from a logic low (or a high impedance state) to a logic high or switch from a logic high (or high impedance state) to a logic low within 20 nanoseconds of each other. Simultaneously switching outputs increase the momentary charge/discharge current flow at the gate array and cause noise in the form of momentary spikes or ringing in the power and ground lines. When the ground level is raised by the nOise, the input threshold voltage of the gates is also raised, relatively, for the duration of the impulse (as illustrated in Figure 4-3). If VTH rises, momentarily, above the VIHmin level, a logic high with a level just above VIHmin will be recognized as a low level for the duration of the spike. Similar problems are experienced when the ground level is depressed by the nOise, affecting logic low levels close to VILrnax. The greater the number of SSOs, the greater the noise produced. Therefore, this noise, which may appear as signals to the CMOS logic, must be avoided. 1-86 Design Considerations CMOS Channeled Gate Arrays V1H V I -------- I I I V r---------- I A I o V1H(min.) = -2.2 V VTH u V 1L V1dmax.) = .08 V GND Level ! - Figure 4-3. SSO-Generated Noise The severity of the effect of SSOs is determined by: • The number of SSOs • The density and distribution of SSOs in the package • The size of the load capacitance being driven The number of SSOs allowed in a package is restricted by the number of ground (Vss) pins available, the drive capability of the output buffers, and the location of ground pins on the package (See the Available Package and Pin Assignments section in the appropriate Design Manual). Representative values have been assigned to the effects of output buffers per single ground pin. Output buffers are capable of 3.2 mA, 8 rnA, or 12 rnA drive capability, and each may be selected with an optional noise-limiting resistance (NLR) value to minimize generated switching noise. The representative values are given in Table 4-4. Table 4-4. Representative Value of Output Buffers Output Buffer Normal Drive wnh NLR (loL = 3.2 rnA) Representative Values (per Output) 7 High Drive with NLR (IOL = 8 rnA) 12 High Drive with NLR (loL = 12 rnA) 14 High Drive with NLR (loL = 24 rnA) 26 Normal Drive (loL = 3.2 rnA) 10 High Drive (IoL = 8 rnA) 16 High Drive (IoL = 12 rnA) 20 The sum of the representative values for each of the SSOs used in a design must not exceed 80 per Vss pin, regardless of the type of package used. 1-87 .. CMOS Channeled Gate MayS Design Considerations 4.6.3 Maximum Load per Ground Pin The maximum total output load per ground pin is limited as a function of the output switching frequency. The product of the output switching frequency in MHz and the total output load in pF per ground pin cannot exceed 12,700 pF x (frequency in MHz), at the maximum junction temperature, Tjmax, of 70°C. As the junction temperature increases, the allowable maximum load per ground pin decreases per the following formula: ex (s ( 12,700 x Kt) pF x (([MHz] I(number o( ground pins) where C = the output load, in pF ( = the output switching frequency, in MHz Kt = the junction temperature coefficient of load, a constant determined from Table 4-5. Table 4-5. Junction Temperature Coefficient of Load Tjllax °C Kt 70 1.0 85 0.7 100 0.5 125 0.3 150 0.2 4.6.4 Maximum Load per Output Pin The maximum total output load per output pin is limited as a function of the output switching frequency. The product of the output switching frequency in MHz and the total output load in pF of any pin cannot exceed 1200 pF x (MHZ, at a maximum junction temperature (Tjmax) of 70°C. As the junction temperature increases, the allowable maximum load per output pin decreases per the following formula: C x (S (1200 x Kt)pF x (([MHz] I(number o( ground pins) where C = the output load, in pF ( = the output switching frequency, in MHz Kt = the junction temperature coefficient of load, a constant determined from Table 4-2. 4.6.5 Pin Assignment Guidelines The locations of all Vss and Voo pins are predetermined and fixed. Since the placement of SSOs on any package is critical, SSOs must be assigned within certain pin groups. Within these pin groups, other restrictions apply regarding the separation of SSOs from each other or their proximity to the Vss pins. As noted above, the total representative value of any SSO group shown in Table 4-4 must not exceed 80. The SSO pin groups differ between packages. The package outlines and designated grouping of SSO pins for specific devices are shown in the Available Packages and Pin Assignment section of the appropriate Design Manual. As a general rule, however, the pins available for SSOs between two Vss pins are assigned as shown in Figure 4-4. 1-88 Design Considerations CMOS Channeled Gate Affays , JL 2 a / 0 ~ ~ 0 0 , 0 0 " ~ ~ N Pins Vss Figure 4-4. • b ,,:/ , Vss ssa Pin Assignments Assume that N pins exist between adjacent Vss pins Find the center point on the package between the two Vss pins There are N/2 pins in the area between the center point and the first Vss pin (part A), and N/2 pins in the area between the center point and the second Vss pin (part B) The SSOs must be equally distributed between parts A and B, within ±1 4.6.6 ssa Pin Placement Summary The following is a general summary of recommendations for the placement of pins. a. SSOs must be placed in close proximity to Vss pins. b. High-drive SSOs should be placed closer to Vss pins than normal-drive SSOs. c. Asynchronous inputs such as clocks, presets, and clears should be kept away from SSOs. It is preferable that these inputs be placed close to Vss pins, if available, and away from SSOs. d. Clock, preset, and clear inputs must not be placed on the corners of a package, especially when the array is packaged in a DIP. e. Output signals to be used as clock, preset, or clear for other devices must be kept away from SSOs and close to a Vss pin. f. SSOs should not be placed in the outer row of pins of PGA packages. 4.6.7 Test Pins To facilitate testing, external pins should be provided whenever conditions warrant. The addition of supplementary test pins often allows the reduction of the overall test complexity for a circuit, thus reducing the number of test patterns required and the time necessary to determine functionality of the circuit. 4.7 Designing for Scan Test Technology Scan testing is a supplementary, optional test technique that, when used in conjunction with the function and DC test required of the designer, allows greatly increased fault coverage. This increased fault coverage assures both Fujitsu and the designer of a highly reliable gate array. 4.7.1 Scan Test Design The designer implements scan testing by arbitrarily connecting all the sequential logic elements to form an enormous shift register. This shift register can contain up to 3000 stages and is formed by connecting the Q-output of one stage to the dedicated scan input (SI) of the next. If the Q-output cannot be used for this 1-89 .. CMOS Channeled Gate Arrays Design Considerations purpose, then the XQ-output may be used, but an inverter must be placed between the XQ-output and the SI input of the following stage in order that the data not be inverted. To implement scan testing, designers use special scan-compatible unit cells for all sequential logic functions. With the use of the serial scan method, the difficult problem of testing a logic circuit containing both combinatorial and sequential logic is simplified to testing combinatorial logic and a shift register, as shown in Figure 4-5 below. SFF SFF SFF V1N SFF Q Q ~------.. I SI: SI SFF SFF Figure 4-5. Scan Circuit Configuration Dedicated scan inputs are also used to isolate elements that are not part of the scan test path. Some of these elements can also be tested during the scan test cycle by the use of an alternate scan test mode. The scan chain design can be considered a data carrier with the ability to carry test input stimulus provided by the LSI tester deep into the design and to apply it to the unit cells under test. Once a unit cell has been tested, its output test result may be stored in the scan data chain and be carried out of the design for comparison to that which was expected. To the deSigner, scan unit cells perform exactly the same as non-scan unit cells, the only difference being the provision of additional basic cells to facilitate the scan test. Scan testing usually entails an extra 8 to 20 percent basic cell count, requires the use of seven extra 1/0 pins, and can cause some degree of propagation delay. Nevertheless, when absolute reliability is the issue, designers find that these considerations are within an acceptable range. 4.7.2 Test Pattern Generation A circuit that is designed for scan testing in this way allows Fujitsu automatic test pattern generation (ATG) software to generate the scan test patterns automatically (both applied input stimulus and expected outputs). The ATG software uses the logic design data from the FLDL file as input from which it generates the test patterns for scan tests. The process requires that all sequential unit cells be of the scan type with the exception of data latches YL2 and YL4. Inclusion of non-scan sequential circuits constructed with combinatorial logic, (i.e., NAND-gate flip-flops, NOR-gate flip-flops, etc.), are discouraged in a scan design because they reduce the overall fault coverage attainable with scan testing. If their use is unavoidable, they must be disabled or isolated by one of the scan test signals discussed below during the ATG process and the scan test. Scan testing is optional and is applicable only to digital logic unit cells. 1-90 Design Considerarions CMOS Channeled Gate Arrays 4.7.3 Scan Test Signals Scan test implementation requires the assignment of a dedicated output pin and up to six input pins, six of which are in predefined package locations. The package locations for these pins in each device type are shown in the Available Package and Pin Assignment section of the appropriate Design Manual. Pin Name Description 1. XACK is the scan input, scan output (5150) A-clock signal. It is generated by the LSI tester and is applied, inverted, to all scan devices at their A-clock input. It writes data from the unit cell's scan input to the master latch. 2. BCK is the SISO B-clock signal. It is generated by the LSI tester and is applied, inverted, to all scan devices at their B-clock input. It transfers data between the unit cell's master and slave latches (the output of the device). 3. XSM is the 5150 mode signal. It is used for set-up of bidirectional buffers, bus drivers, and RAM. If bidirectional buffers or bus drivers are not used, then XSM is not required and need not be included in the design. 4. XTST is the scan test signal. It is used to reconfigure the array to make it suitable for scan test and to establish all conditions required for the use of Fujitsu's ATG software. This includes the isolation or removal of certain circuits unsuitable for scan testing, such as non-scan sequential functions and the asynchronous inputs of all sequential elements. (Since they are inaccessible to scan testing, these circuits and disabled functions must, therefore, be tested with user-prepared test patterns.) If all sequential functions utilize scan type unit cells, if no asynchronous functions are employed (including direct sets and clears), and if circuit isolation is not required, then XTST is not required and is not provided for. S. XTCK is the TC mode clock signal. It is generated by the LSI tester. It is applied, inverted, to the IH-inputs of all sequential unit cells. 6. SOl is the serial data input port to the first device of the scan path from outside the Chip. It is connected to the 51 port of the unit cell. Test data entering the SI input in subsequent devices in the scan path is derived either from the Q-Output of the immediately previous stage or via an inverter from the XQ-output. 7. SOO 501 is the only one of the scan test ports that may be used for anoiher function. The designer may use 501 as a prinCipal input by paralleling the user input with the scan data input. is the serial data output port from the last device of the scan-configured shift register to the environment outside the chip. Test data from 500 is taken from the C-output of the last stage (or from the XC-output via an inverter) of the giant scan shift register. 500 is the only one of the scan test ports whose location is not fixed; 500 may be placed by the designer at any convenient location. 4.7.4 Scan Test Modes Scan testing consists of two modes of operation: 5150 (Scan inpuVscan output) mode and TC (test clock) mode. Sequential logic is primarily addressed by 5150 and combinatorial logic is addressed by TC; the two modes are alternated during the scan test. The SISO Mode This mode causes all elements of the scan path to be written to and read from. In this mode of operation, the following occurs: a. The scan 5150 path is activated by making XSM = 0 1-91 Design Considerations CMOS Channeled Gate Arrays b. The scan clocks XACK and BCK are supplied c. The data to be written is supplied to SDI serial data input d. The data is read out of SDO and compared with the expected values These writing and reading operations are performed in parallel. TheTC Mode This mode tests the array as a normally configured device, but the data is clocked by special clocks provided to the gate array by the LSI tester. In this mode of operation, the following occurs: a. The scan SISO path is disabled by making XSM = 1. b. All normal system clocks are disabled, forcing the clock inputs (CK) of all scan unit cells to a logic low. c. Input signals are applied to the normal input pins' principal inputs. d. The TC system clock, XTCK, is applied to the unit cells' IH-inputs. e. Output signals are read from the normal output pins' principal output and compared with the expected values. The alternation of these two modes allows the correct functioning of logic elements not directly accessible from a prinCipal input to be verified. The data scanned in is especially useful in providing control inputs to otherwise difficuH-to-control internal logic. Prior to the input of the data to the scan path, some detectable fauHs can be observed externally by application of data to some non-scan external inputs. After data has been clocked into the scan path, other detectable faults can be observed externally. The remaining detectable fauHs are observable externally after the data has been clocked into the scan path, the TC system clock (XTCK) has been applied, and the resuHant data shifted out of the scan path. 1-92 CMOS Chann9led Gate Arrays Delay Estimation Principles Chapter 5 - Delay Estimation Principles Contents of This Chapter 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 Introduction Choosing Critical Paths Load Units and Loading Guidelines The Delay Equation Estimating Gate Delay Estimating Total Circuit Delay Delay Calculations when Load Exceeds CDR Delay Calculations and the Operating Environment Clock Loading 5.1 Introduction This section of the data book gives an overview of the engineering considerations important to the design of an ASIC using Fujitsu's CMOS technologies. Included are the loading rules for CMOS gate arrays and a demonstration of how to estimate the delay through a circuit. In addition to the basic delay equation, this chapter also considers the loading limitations for clock signals and the effects of the operating environment on typical delay figures. 5.2 Choosing Critical Paths A critical path is a logic path whose timing requirements must be satisfied to ensure proper system function. In an ordinary synchronous circuit, data propagates from one register through combinatorial logic into another register. For the circuit to function properly, the sum of the clock-to-Q delay of the source register, the propagation delay through the logic, and the set-up time on the target register must be less than the worst-case system clock period. Correct timing of the signal along the critical path guarantees that this condition is met. Usually, the critical path is the one with the greatest number of gate levels. However, if such a path is speeded up by redesign, another, less complex path may become the new critical path. For example, in a design in which a path has eight levels of gating, the designer may determine upon inspection that two groups of NAND-NAND structures can be changed to AND-OR inverters, an efficient CMOS implementation that noticeably increases the speed of the path. In this case, aiter applying DeMorgan's theorem and reducing the result, the designer finds that another path is now the critical path. Since each logic state sensitizes different branches, logic paths must be analyzed using the inputs (rising or falling) that will actually be applied to them (since riSing and falling delays are not equal) to determine the longest path that will be sensitized and ensure that it meets critical path requirements. The path delay calculation worked through in this section shows how a designer can analyze each element of a Fujitsu CMOS circuit to make sure the design meets critical path requirements. In this case, the effect of a riSing input on the sample circuit is calculated as it would be if this were a critical path and the riSing input were forcing the transition of interest. 1-93 .. CMOS Channeled Gate Amiys Delay Estimation Principles 5.3 Load Units and Loading Guidelines The Fujitsu CMOS load unit (Iu) is the input capacitance of an inverter used as the basic unit for measurement and calculation of capacitive loads presented to unit cells within the gate array. Both the output drive factor of a unit cell and its input load factor are defined in terms of load units. Both factors are listed for each unit cell in the unit cell library for the appropriate technology. 5.3.1 Output Drive Factor The output drive factor (CDR) is a parameter expressing the load driving capability of a unit cell. Unit cells can drive loads greater than the output drive factor. The performance of CMOS circuits degrades exponentially with increased loading; if too great a load is driven. an exaggerated increase in delay through the unit cell may be experienced. It is permissible for the load to exceed CDR if the associated additional delays are anticipated and tolerable. Additional calculation factors are required to estimate delays of loads greater than CDR. Figure 5-1 indicates the delays that may be generated when the load exceeds these guidelines. -r----- tpd (ns) 3KcL x (C - 2COR ) ____________1____ _ t--------------------------- -~~~~---1.5KcL X CDR ------------- to o o 2COR 3COR Total Load (in terms of 4CoR C(lu) CDR) Figure 5-1. Delay Time vs. Loading Factor 5.3.2 Input Load Factor The input load factor of a unit cell is used to estimate the propagation delay of a critical path in a design. The total propagation delay of a path is defined as the sum of the delay factor of each of the unit cells in the path. 5.3.3 Delay Factor The delay factor of each unit cell is made up of two types of capacitive loading: a. Load capacitance inherent in the input of each cell (the input loading lactor) b. Load capacitance due to the metal interconnection 01 unit cells (CLl The total load (C) presented by a unit cell is estimated by adding the total cell input load or NF/o (the input loading factors of all other cells connected to the output network of the cell in question) to the total metal load (Ct.). orC = NF/o + CL 1-94 Delay Estimation Principles CMOS Channeled Gate Arrays 5.4 The Delay Equation The basic delay equation combines the AC parameters of a cell and its associated capacitive loads to estimate the delay time through the cell. The rise and fall time of a unit cell may not be symmetrical due to differences in the transconductivity of the Nand P transistors as well as to differences in the arrangement of the transistors to form unit cells. The same equation is used with different variables for positive'going and negative-going signals at the unit cell output. These signal polarity variables must be considered separately. fup ~ = toup + KCLup(NFIO + CL) = todn + KCLdn(NFIO + CL) where: toxx is the circuit delay through the unit cell under no-load conditions (a value given in ns for each cell in the unit cell library). KcLXX is the load derating constant or delay time per loading unit conversion factor (ns/pF) defined for each unit cell (and given in the unit cell library). NFIO is the sum total of the input loads of all unit cells driven on the net (expressed in load units). CL is the amount of loading, in load units, on the unit cell output due to interconnect metal (metal load). The term "net" refers to the network of metal wiring connecting all the unit cells driven by a specified unit cell. Interconnect metal refers to the metal wiring, also called routing metal, that makes up each net. 5.5 Estimating Gate Delay Figure 5-2 shows a sample circuit for the purposes of demonstrating how the total accumulated delay (tpd) through a short path is estimated. A B c D INo---;~ OUT V2B t t Figure 5-2. Delay Path Sample Circuit Ordinarily a designer looks up the the specifications of each unit cell in the unit cell library of the applicable technology. For this example, however, all of the necessary specifications have been assembled in Table 5-1, using the values for UHB technology. 1-95 .. CMOS Channeled Gate Arrays Delay Estimation Principles Table 5-1. AC Parameters of UnH Cells Input Load Factor Output Drive Factor Propagation t ... to I Kcl Delay Time Cell Name Basic Cells Used 2-lnputNOR R2K" 2 2 36 0.45 0.14 0.45 0.06 2-lnput NAND N2N 1 1 18 0.37 0.16 0.56 0.14 3-lnput NAND N3B" 3 1 36 1.28 0.08 1.70 0.04 Inverter V2B 1 2 36 0.25 0.08 0.25 0.05 Cell Function let. to Kcl "These are high drive cells that operate faster than their low drive equivalents under these circumstances. The delays for rising (tup) and falling (tdn) edges of a pulse can differ widely. Digital pulses are either lengthened or shortened while passing through a unit cell. It is therefore important to calculate the pulse width variations along the entire signal path to verify that pulse width is sufficient to pass through each gate. In the example that follows, based on Figure 5-2, calculations are based on a rising pulse entering the input of unit cell A and changing state several times as it proceeds through the sample circuit. To find the total delay for the circuit, it would be necessary to calculate the values resulting from the opposite case, in which a falling pulse enters the circuit at unit cell A. 5.5.1 Delay Parameter for Rising Edge (tup) The unit cell library shows that the delay time (to) for an upward transitioning signal at the unit cell output (tup) for R2K, a 2-input NOR, is 0.45. It shows that the load/delay conversion factor for an upward transitioning signal (KCLup) for R2K is 0.14. 5.5.2 Number of Fan-outs (NF/O) The sample schematic in Figure 5-2 shows that the NF/O, the number of cells that the R2K must drive, is one (an N2N). The unit cell library shows that the N2N has an input load factor of 1 lu. 5.5.3 Number of Driven Inputs (NOI) and Metal Load (Cd The value for CL is based on the number of inputs the cell in question must drive and is derived from the Estimation Tables for Metal Loading at the beginning of the unit cell library. Table 5-2 is a sample metal load table; each technology and device has unique load/delay characteristics. Since the number of driven inputs (or NOI) for R2K, N2N, and V2B in Figure 5-2 is one, the amount of loading due to metallization (L) is 1.0 lu. The NOI for N3B in Figure 5-2 is three; therefore the CL is 3.0. 1-96 CMOS Channeled Gate Arrays Delay Estimation Principles Table 5-2. NOI vs. CL" NOI CL(lu) 1 2 3 4 5 6 1.0 2.2 3.0 3.5 3.9 4.2 4.6 4.8 4.9 5.0 7 8 9 10 • For a 330UHB gate array. The value given for CL in the Estimation Tables for Metal Loading is an estimate of the loading effect of the metallization capacitance on the output based on Fujitsu's careful statistical analysis of typical designs. Actual metal loading is based on the effect of the routing and therefore may vary from these estimates. To compensate for this uncertainty, Fujitsu incorporates a ± 5 percent variation into the prelayout delay multipliers. After routing, another set of simulations is run to verify the effect of the actual metal routing. Note: In an array partitioned into blocks, if the interconnected unit cells are located in different blocks, the loading is greatly increased. The deSigner can avoid this worst-case situation by using the hierarchical approach during the schematic capture process to confine circuits to one block whenever path delay is critical. 5.6 Estimating Total Circuit Delay Based on the values from Table 5-1 and Table 5-2, the propagation delay for R2K in the sample circuit is: fdn A tcJn tcJn fdn fdn fdn A = Wn + KCLdn (NF/o + CL) 0.45 + 0.06 (1 +1.0) 0.45 + 0.06 (2.0) 0.45 + 0.12 0.57 0.6 (rounded up to the next 0.1 ns) The propagation delay for N2N, found by following the same procedure, is: lup B lup lup lup lup lup B = laup + = 0.37 + KcLup (NF/o + CL) 0.16 (1 + 1.0) = 0.37 + 0.16 (2.0) = 0.37 + 0.32 = 0.69 = 0.7 (rounded up to the next 0.1 ns) 1-97 CMOS Channeled Gate Arrays Delay Estimation Principles The propagation delay for N3B, found by following the same procedure, is: too C ~dn + KCLdn (NF/o + CL) 1.70 + 0.04 (3 + 3.0) 1.70 + 0.04 (6.0) 1.70 + 0.24 1.94 2.0 (rounded up to the next 0.1 ns) too too too too too C The propagation delay for V2B, found by following the same procedure, is: toup 0.25 0.25 0.25 0.41 0.5 + KCLup (NF/o + CL) + 0.08 (1 +1.0) + 0.08 (2.0) + 0.16 (rounded up to the next 0.1 ns) Therefore, the delay for a rising pulse through the sample circuit shown in Figure 5-2 is: fpc! fpc! fpc! too A+fupB+fcJn C+fup D 0.6 + 0.7 + 2.0 + 0.5 3.8 ns 5.7 Delay Calculations when Loads Exceed CDR Fujitsu CMOS unit cells are capable of driving loads beyond their published Output Drive Factor (CDR)' It must be emphasized, however, that the delays that result from this practice are considerably increased. Unit cells may be loaded beyond their CORS provided that the increased delay is acceptable. Anticipation of the effects of loading beyond the published CDR requires recalculation of delay. Different delay equations must be used depending on the technology being used and the amount that the loading exceeds CDR. The different delay equations listed below for Fujitsu's channeled gate array technologies must be used depending on the degree that the loading exceeds CDR. When C is CDR or less: fpc! = ~ + (KCL x C) where C = NF/o + CL When C is between CDR and 2CDR: fpc! = ~ + (KcL2 x CDR2) + KCL (CDR-CDR2) + 1.5 KcL(C- CDR) When C is between 2CDR and 3CDR: fpc! = ~ + (KcL2 x CoR2) + KcL (CDR - CDR2) + (1.5 KCL x CDR) + 3KcdC - 2CDR) When C is greater than 3CoR: FORBIDDEN 1-98 Oelay Estimation Principles CMOS Channeled Gate Arrays In these equations: KcL2 is an initial delay time per load unit defined for cells that have been assigned a COR2 value. COR2 is an initial output driving factor defined for certain cells. COR2 = in the specification for the cell in the unit cell library. awhen the value is not defined Some additional calculations are required to estimate the delay of a downward transitioning signal through certain cells for which the parameter COR2 has been assigned. For these cells, when C is equal to or less than COR2, the following formula is used: fpd = to + (KcL2 x C) When C is between COR2 and COR, the following formula is used: ~d = NOTE: to + (KcL2 x COR2) + (KCL x (C-COR2)) Clock networks are never loaded beyond COR because clock timing is critical to the proper functioning of the gate array. (See Section 5.9) 5.8 Delay Calculations and the Operating Environment The operating environment of the array can cause variations from the calculated typical delay figures. Influencing factors include ambient temperature, applied voltage, and variations in the manufacturing processes. Figure 5-3 shows how supply voltage and temperature affect the performance of a sample array. It is necessary, therefore, to simulate worst-case conditions during test. Revised estimates of delay under these harsher circumstances may be arrived at by multiplying the typical delay figures by delay multipliers. The actual multipliers used depend on the device technology and/or the device type. Propagation Delay vs. Ambient Temperature (normalized) Propagation Delay vs. Voo (normalized) 1.4 1.3 1.2 1.4 f'. 1.1 tpd (ns) 1.3 ........ 1.0 0.9 ....... I""-- .... tpd (ns) ............ ....... 1.0 0.7 0.6 5.5 6 ./'" 0.8 0.6 5 ~ 0.9 0.7 4.5 ~ 1.1 "'- 0.8 4 ~ 1.2 o 25 75 100 Voo(V) Figure 5-3. Factors Influencing Delay 1-99 .. Delay Estimation Principles CMOS Channeled Gate Atrays 5.8.1 Minimum/Maximum Pre-Layout Delay Multipliers The minimum delay multiplier and the maximum delay multiplier for Fujitsu's channeled CMOS technologies given in Table 5-3 below incorporate process, power supply, and temperature variation. Table 5-3. Pre-Layout Delay Multipliers Technology Minimum Delay Multiplier (O·C, 2.5 V) Maximum Delay Multiplier (70·C, 4.75 V) UHB Technology 0.35 1.65 0010 Technology 0.35 1.65 These delay multipliers are applied in one of two different ways, depending upon whether they are to be used for the optional delay test calculations or for the other tests performed by Fujitsu using the information in the Fujitsu Test Description Language (FTDL) file, such as DC test, function test, or high impedance test. 5.8.2 Delay Calculations for Delay Test (AC Test) The minimax delays for the delay test are determined by taking the sum of the typical delays and multiplying it by the appropriate minimum or maximum delay factor. The maximum delay figure must be rounded up to the next highest 0.1 ns, while the minimum delay figure must be rounded down to the next lowest 0.1 ns. The result of the sample equation used in section 5.6 to show delay calculation is repeated here and also shown in its modified form. The delay factors used are those for UHB technology. Typical delay: ~d =0.6 + 0.7 + 2.0 + 0.5 =3.B ns Maximum delay (rounded upto 0.1 ns): ~ = (0.6 + 0.7 + 2.0 + 0.5) x 1.65 = 6.27 = 6.3 ns Minimum delay (rounded down to 0.1 ns): ~d = (0.6 + 0.7 + 2.0 + 0.5) x 0.35 = 1.33 = 1.3 ns 5.8.3 Delay Calculations for DC Test, Function Test, and High Impedance Test The minimum and maximum delays for these tests are determined by multiplying the typical delays for each cell individually by the delay factors. The resulting figures for both maximum and minimum delays are rounded up to the next 0.1 ns for each cell. The final figures for each unit cell of the path are totaled. The delay calculation used earlier is repeated here and is also shown calculated for the DC, function and high impedance tests. The delay factors used are those for UHB technology. Typical delay (rounded up to 0.1 ns): ~ = 0.6 + 0.7+ 2.0 + 0.5 = 3.B ns Maximum delay (delay for each gate rounded up to the next 0.1 ns): tpd = (0.6 x 1.65) + (0.7 x 1.65) + (2.0 x 1.65) + (0.5 x 1.65) = 0.99 + 1.155 + 3.3 + 0.825 = 1.0 + 1.2 + 3.3 + 0.9 = 6.4 ns 1-100 CMOS Channeled Gate Arrays Delay Estimarion Principles Minimum delay (delay for each gate rounded up to the next 0.1 ns): ~= = (0.6 x 0.35) + (0.7 x 0.35) + (2.0 x 0.35) + (0.5 x 0.35) 0.21 + 0.245 + 0.7 + 0.175 = 0.3 + 0.3 + 0.7 + 0.2 = 1.5 ns Minimum/maximum delays are also calculated this way for minimum clock pulse width, minimum data set-up time, minimum data hold time, preset timing, and clear timing. The values of the maximum and minimum delay multipliers shown above apply to pre-layout calculations only; different factors, specific to each technology, are used for post-layout analysis. 5.9 Clock Loading It is acceptable, though not a recommended design practice, to load the output of a unit cell that does not carry a clock signal beyond its Output Drive Factor (CDR). To ensure maximum clock accuracy, however, unit cells that output clock signals must never be loaded beyond CDR. These different loading limitations for clock and non-clock unit cells can lead to "race conditions," in which the clock signal arrives at a flip-flop before the data signal set-up time has elapsed. It is therefore most important, when loading a unit cell beyond CDR, to modify the fundamental delay equation using the extra delay factors explained in Section 5.7. 1-101 Delay Eslimalion Principles 1-102 CMOS Channeled Gate Anays CMOS Channeled Gate Arrays Quality and Reliability Chapter 6 - Quality and Reliability Contents of This Chapter 6.1 6.2 6.3 6.4 6.5 6.6 Introduction Engineering Testing In-process Inspection and Quality Control Reliability Theory Reliability Testing Test Methods and Criteria 6.1 Introduction Fujitsu's integrated circuits work. The reason they work is Fujitsu's single-minded approach to built-in quality and reliability, and its dedication to providing components and systems that meet exacting requirements allowing no room for failure. Fujitsu's philosophy is to build quality and reliability into every step of the manufacturing process. Each design and process is scrutinized by individuals and teams of professionals dedicated to perfection. The quest for perfection does not end when the product leaves the Fujitsu factory. It extends to the customer's factory as well, where integrated circuits are subsystems of the customer's final product. Fujitsu emphasizes meticulous interaction between the individuals who deSign, manufacture, evaluate, sell, and use its products. Quality control for all Fujitsu products is an integrated process that crosses all lines of the manufacturing cycle. The quality control process begins with inspection of all incoming raw materials and ends with shipping and reliability tests following final test of the finished product. Prior to warehousing, Fujitsu products have been subjected to the scrutiny of man, machine, and technology, and are ready to serve the customer in the designated application. 1-103 .. CMOS Channeled Gate Arrays Quality and Reliability Process Inspection of Incoming Material Check Items Wafer Processing Inspection of Wafers, Masks, Packages, Piece Diffusion/Ion Implantation Parts, Chemicals, Etc Wafer Surface Inspection and Photoetching Sample Tests of Thickness, Surface Resistance, Diffusion Depth, Electrical Parameters, and Doping Wafer Surface and Pattern Inspection Wafer Surface Inspection, Passivation (Insulating Layer Formation) Monitor Test of Film Thickness Wafer Surface Inspection, Monitor Test of Film Thickness Wafer Shipping Inspection Test of Electrical Characteristics, Stress Test Dicing (CHIP Separation) Wafer Surface and Pattern Sampling Inspection CHIP Selection CHIP Shipping Inspection Bond-Position and Surface Inspection, Sample Wire Bond Strength Test, Monitor Test of Sample run for Machine Calibration Internal Visual Inspection Internal Sampling Visual Inspection Figure 6-1. Quality Control Processes at Fujitsu 1-104 PrlrCap Visual Inspection Internal Merchant Inspection CMOS Channeled Gate Amrys Quality and Reliability Sealing or Molding Aging (After Encapsulation) Leak Test (Hermetic Package Only) Fine and Gross Leak Tests External Sampling Visual Inspection External Sampling Visual Inspection External Sampling Visual Inspection Curing External Visual Inspection External Visual Inspection External Mechanical Inspection External Sampling Visual Inspection Shipping Tests Test of AC/DC Characteristics and Functions Hermeticity (Fine and Gross Leak Tests). External and Marking Inspection~ Electrical Characteristics Tests. All Sampling Tests U Endurance and Environmental Tests Legend: o o IQI <> Reliability Tests 0 Lot Tests/Periodic Tes Production Process Test/Inspection Production Process and Test/Inspection ac Gate (Sampling) Note: The flow sequence may vary slighHy with individual product type. Figure 6-1. Quality Control Processes at Fujitsu (Continued) 1-105 CMOS Channeled Gate Amws Quality and ReliabiHty 6.2 Engineering Testing Engineering testing is the heart of reliability and quality control. The reliability engineering department plans and performs most engineering testing. Whenever a device is developed, it must undergo engineering approval tests. After the device passes these tests, production engineering approval tests are performed on a representative sample of the device. All factors that could influence production of the device are examined. Only if all conditions are favorable and the device passes thorough testing, can the new device go into production. Tables 6-1 a through 6-1d show a sampling plan for engineering testing. These tests are in compliance with MIL-STD-883, Class B. When a change in production (e.g., a material change) is needed, engineering tests are performed on specific items for the change. Since the representative samples tested must accurately reflect the reliability of the device, the following conditions must also be satisfied: the functions performed by the same basic circuit; the same processing techniques, materials, parts and packages used; and the same processing followed at the same factory. Table 6-1a. Sampling Plan for Engineering Testing: Endurance Test T••tltem. MIL-8TD-883 LTPD* (%) Acceptance number- l008C l00S0 7 7 1 1 High-temperature continuous operation 12SoC 10S50 S 2 Low-temperature continuous operation --65°C High-temperature high-humidity storage (l05SCorO) 7 7 1 1 As applicable Plastic package only (I00SCorO) 7 1 Plastic package only High-temll9l8ture sloraaG IS00C High-temperature continuous operation Note lSOoC or 12SoC 8S0C,85%RH High-temperature high-humidity continuous operation asoc, 85% RH Lot test percent defects Number of failures permitted per lot 1-106 ) Quality and Reliability CMOS Channeled Gats Arrays Table 6-1b. Sampling Plan for Engineering Testing: Environmental and Mechanical Test T.atltema MIL-STD-883 External visual inspection Physical cimensions RaciophotoaraDhy Internal visual insP&ction 2009 2016 2012 2013 Lead integrity: Tension Bending slnlss Lead fatigue 2004 A B B LTPD (%) Acceptance number 15 15 3devicas 15 1 1 0 0 15 15 15 0 0 0 Not. Same sample Devices which failed in electrical characteristics test ara acceptable to this test. Each test is performed on one third of the leads of each sample. Same sample Resistance to solderina heat Temperatura cycling Thermal shock Vibration, variable-freQuency Mechanical shock Constent acceleration - Seal: (Fine and gross leak checks) 1014A C Resistance to solvents 2015 40 devices 1 Devices which failed in electrical characteristics test ara acceptable to this test. Solderability (260°C) 2003 15 1 Devices which failed in electrical characteristics test ara acceptable to this test. Solderability (230°C) - 15 1 Devices which tailed in electrical characteristics test ara acceptable to this test. Internal water-vapor content 1018 3 devices 0 Hermetic package only Electrostatic cischarge sensitivity Prassure-Temperature-Humidity Storage - 1010C 1011 A 2007 A 2oo2B 20010 3015A 7 7 7 1 1 1 10 1 7 7 1 1 15 15 1 1 Hermetic package only Plastic package only (PTHS) 121°C, 2 atm. 1-107 CMOS Channe/ad Gate Arrays Quality and ReHability The following tests are performed only when required or when requested by the customer. Table 6-1C. Sampling Plan for EngineerIng TestIng: EnvIronmental and Mechanical Test (OptIonal) Teatltema MIL-8T[)'883 I.TPD (%) Acceptance number Bond strength Die shear strength 2011 D(orC) 2019 15 3 devices 2 wires 0 Moisture resistance Salt atmosphere corrosion Vibration fatiaue Immersion SEM inspection of metallization Particle impact noise detection (PINO) tast 1004 1009 A 2005 10028 2018 20208 15 15 15 15 3 devices 15 0 0 0 0 0 1 Lid torque 2024 Adhesion of lead finish 2025 Note 34 wiresJ4 devices Hennetic package only Hermetic package only Frit sealed package only. aSJll1Qlicable As~icable Table 6-1d. Sampling Plan for Engineering TestIng: Continuity Test Te.tltem Continuity check MIL·STO·883 - LTPD Acceptance (%) number Note 5 2 Plastic package only 6.3 In-process Inspection and Quality Control Every department involved in the manufacturing process is responsible for the quality-control inspection in Its sphere of operation. In-process checks, sampling tests, and other inspections are assigned so that each department has certain allotted tasks for which It takes full responsibility. This total control system has rationalized overall operations dramatically. 6.3.1 In-process Checks (Including screening) In-process checks are performed after each step critical to the next process in wafer processing and assembly. Defective or substandard products are weeded out at an early stage. Testing falls into the following three categories: (a) Probe testing, chip selection, and final testing. These are defined for each process. (b) Voluntary checks. These include inspection of the wafer surface after window opening (before the diffusion process) and inspection of the wafer surface after the metallization. (c) 100 percent screening. This includes the aging and visual inspection performed during wafer processing and assembly. 6.3.2 In-process Sampling Test The in-process sampling test is performed as a part of process quality control. The Manufacturing and QC departments check randomly drawn samples at key points in the manufacturing process to check process and facility conditions. This helps in maintaining product quality at the customary high level. The following Items are checked in these sampling inspections or monitoring: (a) Surface resistance after diffusion, film thickness, evaporated or sputtered electrode thickness, and device characteristics 1-108 Quality and Reliability CMOS Channeled Gate Arrays (b) Product quality (checked by visual inspection of the chip surface) (c) Bonding machine calibration, visual inspection and bond strength after wire bonding, product appearance, marking permanency 6.3.3 In-process Inspection ac The Manufacturing and departments perform stringent quality checks between major processes to ensure the highest quality. The following four types of inspections are performed: (a) Incoming materials, parts, and chemicals Inspection (b) Wafer shipping inspection (c) Chip shipping inspection (d) Shipping test 6.3.4 Lot Configuration A "lot" consists of the same devices produced over a stated period, having the same design and using the same processing techniques, materials, and production line. In addition to the Fujitsu logo, part number, and other markings, each device is marked with a lot code as shown below. Lot code Last two digits of the year xx xx --=r "l:.- Weokcodo 6.4 Reliability Theory 6.4.1 Estimating the Failure Rate The graph of a component failure distribution is usually a downward-bowed curve, often called the bathtub curve (Figure 6-2). Life tests show that the instantaneous failure rate decreases with time and graphs as a straight line on a Weibull probability chart (Figure 6-3). Shape parameter m, which shows the instantaneous failure rate, is between 0.3 and 0.7. (In an exponential distribution, the instantaneous failure rate does not change and m = 1. As m becomes smaller than 1, the instantaneous failure rate decreases with time.) Instantaneous failure rate I. .1. I :::::Ia/uro I Random 'a/uro period .1.I Wear·out failure period TIME Figure 6-2. Distribution of Component Failure 1-109 CMOS Channeled Gate Arrays Quality and Reliability Usually, the failure rates during the initial and random failure periods are the most important for semiconductors. Figure 6-3 shows an example of life test data graphed on a Weibull probability chart. -n 1.0 2.0 Cumulative -2.0 -1.0 0.0 failure rate 99.9 99.0 95.0 90.0 70.0 SO.O 30.0 Sample size: 855 20.0 Test temperature: 1SOoC 15.0 _ Test time: 1000 hrs. 10.0 F(t) 5.0 [%] 3.0 2.0 1.5 1.0 3.0 4.0 2.0 ; 1.0 0.0 -0.53 -1.0 = l 0.5 0.3 0.2 0.15 0.1 0.1 0.2 0.3 0.5 0.7 -- 1 l Inln-11--1'(t) -2.0 -3.0 m 1 Exponential distribution _ ,/ a .,..,- m=O.53 ~ -4.0 -5.0 -6.0 -6.2 2 3 5 7 10 20 30 so -7.0 70 100 Figure 6-3. Example of Life Test Data on IC 6.4.2 Accelerated Life Test Modern applications require an extremely low failure rate for semiconductors. To guarantee such strict quality requirements, Fujitsu uses an accelerated life test. There is no fixed acceleration rate for semiconductors but, since semiconductor failure is usually caused by physical and chemical changes in materials, an acceleration rate can be calculated from the Arrhenius equation below for the progress speed of physical and chemical phenomena (assuming the R is proportional to the degradation speed): R = A exp(-Ea/kT) where: R: A: Ea: k: T: Reaction rate Proportionality constant Activation energy Boltzmann constant Absolute temperature The proportionality constant A corresponds to the component reliability. The activation energy, Ea, depends on the component's materials and their combination, but it ranges from 0.3 to 1.35 eV for semiconductors. This equation does not fit the data perfectly because it assumes that the failure rate is affected only by temperature when, in fact, there are many contributing factors. However, the equation does give a good rough fit. Using the equation on data from the accelerated life test, engineers can estimate and guarantee the field failure rate with reasonable accuracy. The calculation method for the field failure rate is given below for Fujitsu semiconductor products. Although this method is not generally accepted yet, it has been found to be useful. (1) Calculate the junction temperature (Tj(op)) for actual use from the temperature rise (Tj) and the ambient temperature (Ta) under an average load (do not use the worst-case 10ad),Tj(op) = 6Tj + Ta. (2) Calculate the junction temperature (Tjt) for a life test. For a high-temperature storage test, Tjt equals Ta (the storage temperature). For a continuous operation test, the temperature rise 1-110 Quality and Reliability CMOS Channeled Gate A"ays under load plus the ambient temperature (25°C except for high-temperature operation) for an operating temperature. Tjt = L\Tj + Ta . (3) Calculate the acceleration rate (a) from the difference of Tj(op) and T~ using Figure 6-4. Acceleration Rate 10.000 8.000 6.000 4.000 2,000 , '\. 600 400 200 '\ ... r\. 1,000 800 Ea .. a.SeV ~ ~, 1\ Ea_ 0.358V' 100 80 60 40 20 10 8 Ea .. 0.7 eV ~, ~ ~~ \.. '\ ~ ~~ ~ ~ " .'- .'-'"'- ,~ "'- " ~~ 1\' , ,1\ ~, ,~ ~, ~ 1 250 ° 200 175 150 120 100 80 60 50 40 T( C) Junction tel11>8ralure at testing , 1.8 2.0 2.2 2.4 , 2.6 I 2.8 , 3.0 3.2 3.4 Slanted tines show junction temperature at operation Reciprocal of absolute junction t8rJ1)e1'ature llT~ (10 -31<) Figure 6-4. Acceleration Rate VS. Junction Temperature (4) If planning reliability testing or calculating reliability in the field from data obtained in steps (1) to (3). determine the coefficient yfor the 60% confidence level in Table 6-2 from the number of defective units allowed or from the total number of failures found in the test. Reliability = ~ x y x 109 [FIT) where: N: Number of samples T: Total test time (hrs) n: Number of failed samples in test 1-111 Quality and ReliabHity CMOS Channeled Gate Arrays Table 6-2. Determination of Coefficient No. of failures 0 1 2 3 4 5 6 7 8 9 10 Confidence level 60% (0.92) 2.02 1.55 1.39 1.31 1.26 1.22 1.20 1.18 1.16 1.15 90% (2.30) 3.89 2.66 2.23 2.00 1.85 1.76 1.68 1.62 1.58 1.54 The above equation applies only when nlN is equal to or less than 10% for the total test time, T. If nlN exceeds 10 percent, use the following method of calculation: divide the total test duration time, T, into subsections, Ati (i = 1,2, ... , m), so that for each Ati the failure rate, (ni+ 1 - ni)/(N - nil (where ni is the cumulative number of failed samples for Ati), does not exceed 10 percent. Calculate (N - nil Ati for each time section Ati. Calculate the summation l:(N - nil Ati for all the time sections in T. The summation I(N - nil Ati must then be substituted for NT in the above equation. 6.4.3 Failure and causes Circuit format differences, package types, and operating environments can change the mechanisms of IC failures, so it is difficult to foresee which factor will be the most important in a failure mechanism. Figure 6-5 shows specific electrical failures for ICs, their most common causes, and general corrective actions. Causes of IC failures are largely the same as for planar transistor failures, but the following problems are more common or specific to ICs: (a) Surface degradation (b) Flaws in an evaporated or sputtered metal film (c) Contact failures due to an increased number of wire bondings per package (d) Package failures due to an increased number of external leads Table 6-3 lists failures with their most common causes, and Table 6-4 shows the relationship between operating environments and failure causes. Test items can be listed only if the failure cause can be pinpointed by the test. 1-112 Quality and Reliability CMOS Channeled Gate Arrays .Metal migration Moisture penetratiqn Gate~unction short Leakage or short between package leads Parasitic'transistor Oxide filin impeife9~Qn Channeling Mask misalignmllnt Figure 6-5. DlgltallC Failures and Corrective Actions 1-113 Quality and Reliability CMOS Channeled Gate Arravs Table 6-3. Process Defects Analysis Defect Area Defect mechanism Frequency Sourcs Design Junction (Internal) Junction failure due to current crowding High Metal migration Low Junction (Surface) Oxide film imperfection (Pinhole, crack, void, etc.) Interconnection Impurity contamination Wire Others Mask misalignment Medium Incomplete metallization Medium Improper metallization Medium • Manuf. Tech. Operator Skill Medium Aluminum migration Medium· Bonding peel High Purple plague Medium Wire over-stress High Particlelwire short Low • • • • • • • • • • • • • • • • • Medium Die bond failure Low lead breakage Medium Package corrosion Medium Chip crack Medium Low User Application • • • • • High Aluminum corrosion Seal contamination 1-114 High Medium leakage Package Medium Metal peeling Metal over-stress • • Factory Process Control • • • • • • • • • • • • • • • • • • • • • • • QuaRt and ReHabHiry CMOS Channeled Gate Arrays Table 6-4. Relationship between Failure causes and Analytical Test Methods Test T....,.,· Failure Cause SoIdor· ability (2003.2) ature Cydirv (1010.2) Bond integrity (Chip or wire) • • Cracked chip .- Thermal (1011.2) • Ilaro- Conllant Acceleration shock (2001.2) • • • Wire or chip breakage Glass crack Lead fatigue contamination of junction (Surface) • • (20(2.2) • VlJratlon. varlablo Inoquancy (2007.1) _ric preoaore Load fatigue (2004.2) reduoad (1001) Sal Moiltura ...is..... atmooph... (100402) (1008.2) VIbration l8Iiguo (2005.1) Vbration noi.. (2008.1) • • • • • • • • • • • • • • • Internal structural defect Contamination-l contact-induced short Mechanlca • • • • • • • Thermal fatigue Seal integrity • • • • • • Seal contamination Leakage • • Package/material integrity • · • • • • • • • • • • • 6.5 Reliability Testing Reliability testing includes three types of tests-lot tests, periodic tests, and "occasional" tests. This section explains the details of each test in turn. 6.5.1 Lot Tests There are two types of lot tests, Group A and Group B. Group A and Group B tests are performed on items that are tested regularly, usually every week. Table 6-5 lists the specific lot tests. Details of individual tests vary with the product under test, but all samples are selected at random from every weekly lot Tests are not performed in any particular order unless specified, but are performed for each device type. Note that the high-temperature storage and continuous-operation tests for Group B usually take 500 hours, although they may take only 168 hours in special cases. Good samples are returned to their lots after non-destructive testing. No-good samples and samples that have undergone destructive testing are destroyed. 6.5.2 Periodic Tests Particulars of the periodic tests are also listed in Table 6-5. There are two types of periodic tests: Group C tests and Group D tests. Group C tests are performed on items that are tested regularly, usually every 13 weeks. Group D tests include special reliability tests and very long life tests. The Group D tests are usually done once every 26 weeks. 1-115 CMOS Channeled Gate Arrays Quality and Reliability Details of individual tests vary with the product under test, but all samples are selected at random. Tests are not performed in any particular order unless specified, but are performed for each device type. Note that the high-temperature storage and continuous-operation tests for Group C take 1000 hours and those for Group D take 3000 hours. Table 6-5. Sampling Plan for Reliability Testing Group Subgroup A Al A2 A3 A4 Bl B2 Device classification Test Items External visual inspection Function test Electrical Static characteristics Characteristics DynamiclSwitching characteristics Phvsical dimensions Resistance to solvant +temp-cycling Environmental tests Thermal shock test B B6 B7 C3 01 0 Ac=O Sample size 6 9 18 9 9 18 9 1 9 1 Solderability (230°C, 5s)' 9 1 3 1 Solderability (260°C, 5s)' 9 1 3 1 Lead integrity' 9 1 3 1 Pressure-temperature-humidity storage2 9 13 3 13 9 17 3 17 Mechanical environmental test Pressure-temperature-humidity bias2 High-temperature storage Endurance test 14 I' 7 I' Continuous operation High-humidity storage Bd'c 85%RH2 High-temperature storage 24 I' 11 1- 24 I- 11 I- 14 15 7 15 Continuous operation High-humidity storage 8!f'C 85%RH2 High-temperature storage6 24 15 11 15 24 15 11 15 14 - 7 - 11 - 11 - 02 Continuous operation 24 High-humidity storage 03 24 Bd'c 85% RH2.6 Test cycle: Group A and B for every weekly-lot, Group C every 13 weeks, Group 0 every 26 weeks - Notes IElectrical reject devices can be used in this test. 2'fhese tests are performed on resin-sealed devices. 3This test takes 96 hours. 4These tests normally take 500 hours. But if no defects are found in the first 168 hours, the Jot can be passed and the test may be terminated. 5These tests take 1000 hours. ~ese tests take 3000 hours. 7This test takes 48 hours. 8These tests take 100 cycles. 1-116 Acceptance number 1 18 Cl C2 5% Acceptance number 1 18 B8 69 C LTPO Ssmple size 9 9 B3 94-1 94-11 B5 Device group 2 I SsmDlIna plan 100% test of sampled devices (All sariioled deviceS) A" - 0 LTPD 5% Ac-O LTPO 5% Device group 1 Quality and Reliability CMOS Channeled Gate Arrays 6.5.3 Occasional Tests Occasional tests are performed on products whenever necessary. The tests are similar to periodic tests, but their details are specified by the QC/Reliability Engineering Division according to the purpose of the test. 6.6 Test Methods and Criteria The reliability of Fujitsu ICs is assured by severe environmental and endurance testing. Test methods are usually based on Japan Industrial Standards (JIS), the standards of the Electronic Industrial Association of Japan (EIAJ), and MIL standards. Reliability tests are performed for two reasons. Firstly, they check or guarantee the reliability of a type or a lot according to specified standards. Secondly, they are used to determine the failure rate or mode. The most appropriate test method is chosen for each test, and test results are processed in the most suitable manner. Fujitsu usually performs the tests listed in Tables 6-6, 6-7, and 6-8. Table 6-6. Example of Reliability Testing Teslilems Condition MIL-STD-4I83 - Resistance to soldering heat 260°C, lOs Temperature cycling 1010C -65°C (lO min.) to 1500 C{lO min,), 100 C¥cles Thermal shock Vibration, variable-frequency Mechanical shock Constant acceleration Fine leak' 1011 A 2007 A 2002 B 2001 E 1014A, OOC (5 min.) to 100°C (5 min.), 100 cycles 20 to 2,OOOHz, 20G 1,SOOG, 0.5ms lO,OOOG, 1 min. y, only Using compressed helium 99.5 psig. 4 hrs. Gross leak' 1014C Using fluorocarbon 75 psig. 1 hr.• 125°C - Solderability 230°C.5s 2003 Lead fatigue 260°C.5s 2004 B2 - PTHSIPTHB' High-temperature storage 121°C. 2 atm 1008C Continuous operation 1005 A to D - High-humidity storage' 0.25kgf. 90°. twice 150°C. 1.000 hrs. 125°C. 1.000 hrs. 85°C.85%RH. 1.000 hrs. Notes: 1 Applies to hermetic packages. 2 Applies to plastic packages. Table 6-7. Circuit classlflcetlon Gates Flip-flops Shift registers Memories Random-logic devices Analog devices Characteristics DC AC DC AC DC AC DC AC DC AC DC AC Example of Electrical Testing Bipolar VOH, VOL. IIH. ilL. Icc (lEE) Function VOH• VOL. IIH. IlL. IOH' Icc (lEE) Function VOH. VOL. IIH. ilL. IOH. Icc (lEE) Function VOH, VOL. IIH. IlL. ICC (lEE) Function VOH• VOL. IIH, IlL. Icc (lEE) Function Via. 110, II. VOM. VOH.VOL• Av. Koo. No MOS VoH, VoL. IIH. IlL. 100 (Isub) Function VOH• VOL. IIH. IlL. 100 (I. ub) Function VoH• VOL. IIH. IlL. 100 (I,ub) Function VoH• VOL. IIH, ilL. (IOH).(IOL) 100 (Isub) Function VOH, VOL. IIH, IlL, (IOH),(IOL) 100 (I,ub) Function - 1-117 CMOS Channeled Gate Anays Table W. Example of Electrical Criteria Paramater VOH VOl. Umlt value (In mutdplee of the abaolute value) Lo_r Upper Ux 1.1 - IH U x2 (No leak: U x 1.1) IL Ux2 (leak: U x2 - IoH 1cc(1u) Ux2 (Leak: U x2 - Icc (/sus) "U. and "L. stand for IIIe upper and /ower Nmhs 1-118 lxO.9 CMOS Channeled Gate Arrays Application Note Chapter 7 - Application Notes Contents of This Chapter Developing Test Patterns That Work with the Physical Tester Selecting the Best Package for Your ASIC Design 1-119 APplication Note 1-120 CMOS Channeled Gate Arrays 00 March 1990 Edition 1.1 APPLICATION NOTE lA' FUJITSU CAA·oS····ASI·C······· .... Developing Test Patterns That Work with the Physical Tester by J. Scott Runner .. Fujitsu Microelectronics, Inc. Copyright© 1990 by Fujitsu Microelectronics, Inc. Introduction This application note briefly describes the process of developing test patterns for the simulation and test of Fujitsu CMOS ASIC designs. This information supplements testing information found in the Design Manual for the appropriate Fujitsu CMOS ASIC technology. Tests to be Created Fujitsu supports the following five types of test a. DC test b. Dynamic function test c. High impedance test (Z-function test) d. Delay test (AC test) e. Scan test (optional for certain Fujitsu technologies) The DC test measures DC characteristics such as IDOS, YOH, ILl, and ILZ, while the function test screens for manufacturing faults (metal and transistor faults, principally). The Z-function test augments the DC test and is required for circuits in which one or more enable signals from a 3-state buffer can be generated by logic deeper than one gate of complexity within the ASIC device. The delay test may be used to verify critical timing paths that are necessary for proper system operation. Scan test methods are used to simplify the [process of testing for manufacturing defects traditionally uncovered by the function test. Automatic test generation is supported in conjunction with scan testing in the UHB/CGlO and AU/CG21 technolOgies as an option. 1-121 CMOS Channeled Gate AlT8ys Application Notes Overview of Test Vector Creation For each set of test patterns defined as a test block, the customer must specify input states and output states (in either vector or wave format), and the timing of inputs and outputs (with bidirectionals being considered both an input and an output). Many designers rely on one of the Fujitsu-supported CAE workstations when generating test vectors, easing the burden of test pattern development. In these cases, the customer creates input stimuli for the workstation simulator, which then generates a print-on-change file containing the resulting output response and the associated input stimulus previously defined by the designer. The print-on-change file is converted by Fujitsu's workstation software into FTDL (Fujitsu Test Description Language), which is the accepted test pattern description format regardless of the method by which patterns are created. Developing the Tester Timing Information Whether or not the patterns are generated on the CAE workstation, it is necessary for the customer to generate in the FTDL file a Common Block file, containing administrative information and the test type, and a Test Block file, containing the timing information for all chip inputs and outputs by group (discussed further in the Design Manual). The definition of this overall timing is critical to the success of the test program itself. For example, input timing defines when input signals will transition, while output timing defines when outputs will be compared with their expected values or measured at a transition point. The designer is responsible for specifying the following timing parameters for the Test Block, depending on the specific type of test: a. Test cycle b. Grouping of inputs and, if necessary, outputs and bidirectionals c. Delay-to-transition (DT) time for each input group of non-return to zero (NRZ) signals d. Propagation time (tp) and pulsewidth (Wp) times for the positive-going pulse (PP) and negative-going pulse (NP) for each input group of return to zero (RTZ) signals e." Delay-to-strobe time (STB) point for each output group f." DT and STB times for bidirectionals g..... T time in the SPAlli statement for AC tests "Specified in DC, function, and Z-function tests ....Applicable only to AC tests. This timing is established for the entire test block and is invariant until another test block is invoked. Therefore, test pattern timing is periodic, that is, a group of inputs may only transition at the time specified in the Test Block, which is relative to the beginning of the test cycle. This delay to transition time for inputs is programmed for each input group with the t" parameter in the FTDL INTIM or BUSTIM statement. Similarly, common output groups are strobed, or sampled, periodically at a time determined by the test cycle and the delay-to-strobe time specified in the OUTTIM or BUSTIM statement, or the Tp parameter in the FTDL SPAlli statement in the case of an AC test. Determining Input and Output Timing Parameters During the function test, outputs should stabilize before being strobed. Therefore, the minimum permissible test cycle programmed by the TIMING statement in the Test Block should be set with consideration of the maximum propagation delay from any input to any output, and the respective DT and STB times for those groups should be set far enough apart in time to assure that the outputs are stable under maximum 1-122 Application Notes CMOS Chaflflflltld Gate AlTBys conditions. Similarly, if the output is strobed before the transition, it must be stable under minimum delay conditions. Test patterns are required to be invariant over minimum and maximum delay conditions. This is verified in simulation by scaling the typical delays by multipliers representing process, temperature, and power supply variations. Similarly, the strobed or expected output states must be identical under typical, maximum, and minimum conditions. If a propagation delay from input to output is greater than the test cycle defined, output states may not fulfill this requirement (see Figure 1). Furthermore, designers should be careful that glitches or short pulses do not occur anywhere within this minimum/maximum window (see Figure 2). FAILED /' IN 1 OUT 1 (MIN) • OUT 1 (TYP) OUT 1 (MAX) STROBE STROBE VALUE · ··· ·. [[]:· · [[]: · • I : •• ·. ••·• . ·· ··• •• • • •• /IIl~ . • • Test Cycle TooShortG) FAILED ./ LUCKY [I] OJ OJ (]J OJ OJ I .I ! Successful Test Cycle Length <2> X a State When Strobed; X - 0 or 1 as indicated. The minImax variation results in inconsistent values being strobed if the test C)'cle is too short (1) or the strobe is poorly located. Successful test programs therefore require the determination of a reasonable test cycle length. (2) Figure 1. Determining a Successful Test Cycle Length MIN CASE OUT 1 STROBE STROBE VAL I I lID IW11 TYP CASE OUT 1 STROBE STROBE VAL I J lID I@] MAX CAS~ OUT 1 TROBE STROBE VAL ·•• I lID Dangerous Cycle Length I I@] Preferred Strobe Range Preferred Cycle Length X - State when Strobed - X - 0 or 1 as indicated. I!J The output contains a pulse that goes undeteCted at minimum, typical or maximum simulations. However, since any pulse or gl~ch appearl~ over the range of minimum to maximum may be strobed by the tester, or appear in the end system, all pulses 0 this kind must be considered when placing the strobe and determining cycle length. Figure 2. Determining Preferred Cycle Length 1-123 AppI~tion CMOS Channeled Gate Arrays Notes Generating Functional Input Stimulus Given Test Pattern Timing One issue that must be considered when determining test pattern timing is the relationship between input signals, such as clockldata pairs, which must satisfy set-up and hold times. Other considerations guiding the timing definition are dependent on the particular circuit being tested, and on restrictions imposed by the tester. These restrictions are published in the Summary of Test Data Restriction section of Fujitsu's Design Manuals. Tester Skew and Its Compensation of Test Timing The designer must pay particular attention to the issue of tester skew when determining input and output timing for Test Blocks; otherwise, the timing will not correctly represent the behavior of the device under test. Tester skew, specified for each technology in the Summary of Test Data Restrictions, is a result of the variation in the time at which a given signal generator triggers a transition or a comparator measures an output state. Several timings are affected by this skew. Input-to-Input Skew For the purpose of estimating the skew between two signal generators, (one driving data and the other driving its clock, for example), the driver skew, linearity of clocks, clock-to-clock skew, and jitter are collectively called driver accuracy, denoted tnSKEW. In the case of datalclock pairs, the clocked data may fail either a set-up or hold time, depending on the direction of the skew. Therefore, when determining DT and t" for datal clock pairs, the designer should adjust times to satisfy the following relationships (see Figure 3): Set-up Time Criteria for Testing: (t,,(CLOCK) - DT(DATA» >= ts(MIN) + 2 Hold Time Criteria for Testing: (DT(DATA) - t,,(CLOCK» >= fH(MIN) + 2 * toSKEW * tDSKEW Where ts(MIN) and fH(MIN) are the worst case set-up and hold times, respectively, sensitized from the internal circuit to the inputs, toSKEW is not directly specified in the Summary of Test Data Restriction; however, TACC, the overall system timing accuracy, is specified and can be substituted for tDSKEW. Expected Actual '..: D Q ;,I TLO DATA .. ,' DT , , tOSKEW D CK Actual 'lIoI, :~xpected', , W~ Ip ClK ClK ',.. CK TLCK , , , , ;.....ts .' --. Figure 3. Input-to-Input Skew Input-to-Output Skew In addition to the skew incurred by the signal driver, skew is also introduced by the output comparator of the tester. This skew is dependent on the linearity of the strobe, pin-to-pin skew, skew between dual com- 1-124 Application Notes CMOS Channeled Gate Arrays Input-to-Output Skew In addition to the skew incurred by the signal driver, skew is also introduced by the output comparator of the tester. This skew is dependent on the linearity of the strobe, pin-to-pin skew, skew between dual comparators, and the driver-to-comparator timing error. All factors are considered in the overall system timing accuracy, tACC, which in tum affects output timing as shown in Figure 4. Ipo (MIN) or tpo (MAX) -13>----11 IN IN • LOGIC I-----ib>----... OUT DT (Expected) . Actual Output Possible tOSKEW OUT __:_ .. ' Actual Strobe Possible ,-- Expected Strobe STB IACC = IOSKEW + tCSKEW Driver Plus Com aralor Skew Figure 4. Input-to-Output Skew Skew Effect on Input/Output Pairs - Minimum Delay Case The 5TB (or T parameter in the SPATH statement) should expect an output transition at a time relative to the stimulated input transition dictated by (5TB - OT) >=tpD(MIN) - tACC where 5TB is the strobe point of the output under consideration, OT is the OT time of the stimulating input of interest, and tpD(MIN) is the minimum propagation delay from this input to the strobed (or measured) output. In the case of the AC test, the quantity (5TB - on should be replaced by the minimum T parameter in the SPATH statement. Note that if the path delay spans a test cycle boundary, 5TB should be set to 5TB plus the test cycle period. Skew Effect on Input/Output Pairs - Maximum Delay Case The complementary case occurs for maximum delay measurements, as described by (5TB - OT) <= tpd(MAX) + tACC Note that these guidelines regarding the specification of test data timing as affected by tester skew apply to DC and Z-function tests as well. In these cases, the same rules apply as for the function test. Again, for the specific values of tAcC, and toSKEW, please refer to the Summary of Test Data Restrictions in the Fujitsu Design Manual for the appropriate technology. A designer interested in a methodical approach to the generation and verification of a good set of test vectors must consider the tester hardware on which it is running. Fujitsu has simplified designer responsibility by providing this information as part of the Test Block Information. However, a lack of implementation and careful analysis of the timing characteristics of the circuit may result in a poor or unfeasible test, resulting in schedule delays or reduced device yield. Therefore, plan a test approach early, design for testability, and consider the effect and operation of the physical tester. 1-125 CMOS Channeled Gate AlT!IJ(s 1-126 cO March 1990 Edition 1.1 APPLICATION NOTE FUJITSU I Selecting the Best Package for Your ASIC Design by J. Scott Runner Fujitsu Microelectronics, Inc. Copyright© 1990 by Fujitsu Microelectronics, Inc. 1.0 Introduction The widely varying degrees of complexity (gate count) of Fujitsu's CMOS and BiCMOS devices and the flexibility of their I/O configurations combine to produce devices that take advantage of the broad selection of packages available from Fujitsu. However, the requirements for package selection go far beyond pin count as the sole determinant of the best package. Selection issues include surface mount versus through-hole, plastic versus ceramic, and exotic versus conventional packaging. In fact, Fujitsu offers over 100 packages and 1000 package-die combinations from which to choose. Compounding the selection problem is the effect of increasingly faster outputs coupled with higher drive and wider bus structure, resulting in greater numbers of simultaneously switching outputs (and thereby greater amounts of noise). The result is that designers are finding ASIC packaging implementation to be an increasingly complex task. This application note provides information about ASIC packaging that is meant to simplify the designer's task. It provides designers with a review of the various Fujitsu packages and their electrical, thermal, and mechanical characteristics, as well as some problem-solving strategies for their use. Sections 2.0 and 3.0 address system requirements and package availability; Sections 4.0 and 5.0 discuss noise and thermal issues. 1-127 .. CMOS Channeled Gate Anays Application Notes 2.0 How System Requirements Affect Package Choice Section 2.0 presents considerations involved in the selection of packages from a system designer's perspective. Table 1 lists issues a designer must consider when determining the optimal packaging for an ASIC design. Table 1. Considerations for Package Selection Manufacturing and Cost Speed Requirements Board Integration Package and Interconnect Delays Double-sided Component Mounting The Effect of Package on Noise Number of Packages Thermal Considerations Package Outline Area Power Densny Limitations Produclbility Quality Board Layout Package Quality and Reliability Package Construction Number of Devices Packaging Complexity Noise Manufacturing Flow Thermal Considerations 2.1 Manufacturing and Cost The manufacturing-related factors discussed below, although not directly related to the design of the device or the number of power and ground pins it requires, are nonetheless important in the choice of an ASIC package. 2.1.1 Board Area One of the most important issues is the board area consumed by a circuit. Some of the factors affecting overall board density are: Integration (gates per square inch of board) Double-sided mounting capability (integration) Number of packages Package outline area Additional board space required (for spacing, resistors, capacitors, probe areas, etc.) Power density area (discussed in Section 5.0) The critical issue in board area reduction, however, is overall integration. For example, s :trface mount devices (SMDs) can be densely mounted on both sides of the board, making them ideal for systems demanding high package integration. But a large design integrated into a few very large Sea-of-Gates arrays, even if packaged in large, through-hole packages, may well consume less board space than the same design using surface mount plastic J-Ieaded chip carriers (PLCCs). The PLCC version would require more space because the PLCCs, although small in outline, cannot house as large a die and therefore require the design to be partitioned into a greater number of devices. Figure 1 illustrates the board area taken up by the outline of each kind of package Fujitsu offers, excluding any area around the package necessary for spacing, decoupling capacitors, series damping resistors, or solder pads. 1-128 CMOS Channeled Gate Arrays Application Notes 100 -----+1 .••........... ~1~00~M~il~P~in~G~ri~d~A~rr~ay~(~P~G~A~)____________~I ............. . ~5~0~M~i~IP~i~n~G~ri~d~A~rr~a~y~(P~G~A~)____________________ __~F~'a=t~P~ac~k~r~yp~e~(~FP~n~__-+1 ............. . Leadless Chip CarriefJ~9......... . 50milLCC 20 mil FPT 50 .-. __ - -100 mil PGA .. - _==:::::=::======- _ Package Outline (mm) .. 50 mil PGA 4Bonding mil Tape(TAB) Automated Pin Count Figure 1. Package Size versus Pin Count 2.1.2 Board Layout Restrictions in board layout or construction must be identified and resolved early in the design process. For example, a design containing large buses (16 bits or 32 bits or more) must be split up to avoid too high a concentration of simultaneously switching outputs per ground pin. Splitting up the buses, however, may result in variations in signal trace length and require extra care in routing. Similarly, flatpacks, a form of SMDs, are a convenient way to support high pin counts in relatively inexpensive plastic packages. However, with pin pitches as narrow as 15 mils, they demand extremely accurate positioning of solder pads. Dense PGAs, on the other hand, provide a spacious l00-mil pin separation, but because of the number of rows of pins, normally require a large number of board layers. 2.2 Produclblllty Though some unusual packages may appear to promise ultra-high speed or dense integration or minimized component/board cost, the designer must always keep manufacturability in mind. The cost of a system is only partially dependent on materials and labor costs per unit; it is also highly dependent on the manufacturing yield of the end product. Therefore, design and production engineers must jointly consider the choice of package in order to guarantee that the chosen package conforms to existing (or purchasable) manufacturing equipment and that the manufacturing process can meet yield goals. 2.3 Speed Requirements The speed requirements of a system strongly affect package choice. If the interconnect lengths in the system (both inter- and intra-board) can be reduced, system speed may be increased. Reducing interconnect lengths may involve reducing the required number of packages, choosing packages with smaller outlines, changing to double-sided, modular, or piggy-backed mounting, using small form factors, reorganizing boards, and even changing the number of metal routing layers of the board. See Figure 2. 1-129 CMOS Channeled Gate Arrays Application Notes Board interconnect at midpoints may reduce interconnect length. but may increase noise. Splitting boards on opposite sides of the mother board can reduce by half the length of the board. Devices mounted double-sided on mother board. which contains the backplane. Coax or ribbon connectors between boards with mother board connections at oppos~e ends reduces board interconnection length Perpendicular organization of boards to a mother board compared to conventional organization helps to reduce trace length. on the average. by a factor of 2. Interconnection directly between boards avoids delays down the length of the board and across the backplane. Figure 2. Minimizing Interconnect Length 2.3.1 The Effect of Noise on Speed There are various sources of noise that can affect an integrated circuit (IC), each with its own effect; all forms of noise influence signal speed, quality, and consequently, system reliability. Certain types of noise arise between a chip I/O and ground or power, while other forms of noise are coupled to the power rails and influence system power and ground lines, propagating noise throughout the entire system. Noise appears to an input buffer (receiver) relative to the receiver's ground. Any noise on this referenced signal is superimposed onto the incoming signal itself, as shown in Figure 3. The VIH or input threshold level of the receiver indicates when the input will switch, if the signal is stable at that level. Therefore, although the input voltage ordinarily would switch 4 ns after the driver switches, when the signal first crosses the threshold, the designer must assume it will not switch until it is stable; in this case at 8 ns, producing a loss of 4 ns due to noise. IH • • • • • ~ • ••••••••••••••••••••• : •••• I· I I Smooth transition System ground :• • • • • • • • • • -, I il.t I Signal must sellie before it can be considered to switch '+_ _ _ _ _ I .~ (relative to system ground) Chip ground I Setting time to I :~.~_s~t~ab~l~e~g~rO~U~n~d~.: Selling time including ground rise Figure 3. Impact of Noise on Speed 1-130 IRdropand ground bounce will dynamically change VIH and V 1L CMOS Channeled Gate An'ays 2.3.2 Controlling Noise through Package Selection Each fonn of noise is dependent not only on current or its first derivative with respect to time, but also on the real and imaginary components of impedance: resistance (R), inductance (L), and capacitance (C). One solution to noise can be to minimize the package Land R and to locate high drive pins where they will minimize Land R. 2.3.3 The Effect of Thermal Characteristics on Speed The speed performance of a CMOS or BiCMOS circuit degrades with temperature rise. Therefore, in very high speed systems, it is sometimes necessary to reduce the junction temperature (Tj) or die temperature as a way to improve speed. Certain packages offer better cooling properties than others, making them more suitable for high speed systems. Thermal issues are discussed in Section 5.0. 2.4 Quality Reliability refers to the defects or failures that appear during the lifetime of a device. Quality, on the other hand, refers to the frequency of occurrence of defects or faults in a device as a result of the manufacturing process. Quality defects are revealed by testing immediately after manufacturing, while reliability defects are revealed by speciallong-tenn or intensive test sequences or by time. 2.4.1 How Package Type Affects Quality Testing Conventional (through-hole) packages lend themselves to simplified testing because it is easy to access the leads in order to force a state (1 or 0) at a node and/or to observe the state of the node. These tests are perfonned with board-level in-circuit or functional testers. Such tests facilitate the manufacture of high-quality systems by ensuring proper connectivity and function. Surface mount devices, however, generally provide poor probe access, and are known to occasionally possess faulty joints that make temporary connections during probe. Through-hole packages also have occasional bad solder joints, although their node access is fairly good. 2.4.2 How Device Integration Affects Reliability Total system reliability is related to the reliability of the individual devices and to their configurations. Systems may be configured as a series in which all devices are interdependent, in which case anyone failure will cause overall system failure, or they may be configured in parallel, in which case all devices must fail for the system to fail. Parallel configuration is used in redundant or fault-tolerant systems. The reliability of a system also depends on the reliability of the devices that comprise the system. The long-tenn reliability of a single device is defined as an inverse natural log function in a variable lambda, which is the failure rate of the device in the region of lifetime operation characterized by a constant failure rate. In the first hours of a device's life (the infant mortality period), the failure rate declines. The majority of a device's life is characterized by random failures (expressed as lambda), and the end of a device's life exhibits an increasing failure rate. Today's ICs, however, are designed so that wearout does not even begin to occur for at least several hundred years, and can be considered never to occur. To understand how the partitioning of a system into circuits can affect the reliability of a system, consider a system in which N components are configured in series. Although the density of ASIC devices has increased by two orders of magnitude in the last decade, the reliability of the devices has remained roughly constant. Therefore, it can be assumed that the failure rate of each of the components is constant. The reliability of systems and subsystems in which components are series-dependent is the product of the individual reliability terms for each component. The reliability function of the system just described is therefore: R(t)sys =R(t)l * R(t)2 * ...R(t)N 1-131 CMOS Channeled Gate Arrays Application Noles where R(t)N =e - NAt, t is the independent variable time, and A. is lambda, the failure rate. Since all components have the same failure rate, the reliability function of the system is: R(t)sys =e - NAt Because the number of packages affects the reliability more than the integration factor does, a designer'S goal in constructing a reliable system should be to maximize integration and thereby reduce part count. The disadvantage is that increased integration may in tum increase the package pin count, requiring a more complex package, which usually costs more than a simpler, smaller package. Additionally, the larger die sizes cost slightly more per gate than the smaller ones, although the total non-recurring engineering charges (NNE) would typically be lower. 2.4.3 How Noise Affects Reliability Even when Schmitt trigger input buffers are used to receive clock signals, noise may go beyond the hysteresis value of the input buffer and cause a counter to be incorrectly clocked or other circuit malfunction. Noise is in this sense a threat to reliability as well as to speed and must be considered in the package choice as well. 2.4.4 How Thermal Issues Affect Reliability While the junction temperature of a device affects its speed, it also affects reliability expressed as mean time between failures (MTBF) or the mean time a device will operate in a given environment before failure occurs. Figure 6--4 in the previous chapter, Quality and Reliablility, illustrates this concept by plotting life test failures as a function of junction temperature. System reliability goals, then, restrict the desired maximum junction temperature in a manner that affects the choice of package according to its thermal characteristics, the chosen type of system thermal management (cooling), and the maximum allowable device power dissipation. 2.4.5 How Package Material Affects Reliability The different materials used in package construction each have distinct thermal and mechanical properties. The most common materials and their characteristics are listed in Table 2 below. Table 2. Package Material Characteristics Body Material Thermal Coefficient of Expansion (ppml5C) Ceramic AI2 0 3 (Alumina) 7.0 20 10 Plastic PGAs Epoxy Fiberglass 14-18 0.16 4.5-5.0 Other plastic packages (DIP. PLCC. Flatpack) Polyimide Epoxy 15-18 0.38 4.5-5.0 Package lYpe Thermal Conductivity (W/m' 5C) Dielectric Constant (K) To better understand the different characteristics of plastic and ceramic packages, it is helpful to know something about the way they are constructed. Packages provide electrical connection from the Ie to the system and isolate the device from destructive elements of the environment. The choice of materials and construction of a package affect its final dimensions, thermal characteristics, and electrical characteristics, as well as device reliability. Fujitsu carefully determines the most appropriate manufacturing methods for a given package and then performs extensive qualification tests to determine its success. 1-132 CMOS Channeled Gate Arrays Application Notes The largest part of the package is the body, which houses the die. The die may be affixed to a lead frame, which physically supports the die and provides the leads that electrically connect the die to the system by means of bonding wires or tab leads. Alternatively, the die may be supported by a cavity on the body of the package or attached to the bottom of the body by a chip carrier. The die is attached to the surface of the lead frame or to the metallized surface of the cavity or carrier with gold or silver paste, or eutectic. After the die is attached to the lead frame, cavity, or carrier and the bonding pads are bonded to the leads, the assembly is encapsulated. In plastic packages, an epoxy resin is molded around the assembly. In ceramic packages, a cap is sealed onto the lower part of the body or carrier using a frit glass or metal seal (the metal seal has a higher melting temperature than the glass). A solder seal can be used if the cap is metal. To ensure that the device is completely isolated from its environment, the surface of the die is then coated with glass (Si~) and then polyimide or other coating that prevents gas and moisture from coming in contact with the surface of the die. Figure 4 shows a frontal cross section of the structure of a PLCC package; Figure 5 provides a top view. Gold bonding wires Carrier and arm, molded into the body for support Figure 4. PlCC Package Construction (Front View) of the Package Figure 5. PlCC lead Frame Construction (Top View) Each of the various packaging methods has its advantages and disadvantages; for instance each body type and each type of seal has a different maximum case temperature. While plastic packages can tolerate tem- 1-133 CMOS Channeled Gate Arrays Application Notes peratures up to 125"<: and high humidity levels with outstanding reliability, ceramic packages are the most reliable for harsh extremes of cold. Each package type also responds differently to the thermal environment of the board to which the device is attached. Heat can cause thermal stress on the device when different materials expand at different rates, a particularly important factor when surface mount packages are involved. Different packages also exhibit different electrical characteristics. As the speed and gate densities of CMOS devices rise, the avoidance of electrical parasitics in the form of package delays and noise becomes an increasingly important factor in choosing a package type. Fujitsu's plastic PGA provides a good example of the tradeoffs involved in package construction. In 1986, Fujitsu introduced the plastic version of its ceramic PGA. The plastic configuration proved to have several advantages over the ceramic version. The body is formed from glass epoxy (VG-10) with an aluminum cap and an epoxy resin sealer. This combination of materials has the same rate of expansion as the PC boards onto which it is mounted; it is also less expensive than ceramic. Ceramic PGAs have a hermetic seal of solder between the metal lid and the cavity, but plastic PGAs are sealed by filling the cavity with epoxy resin to form an inner seal, then placing a resin sheet over the inner seal to form an outer seal, and then securing an aluminum cap over the outer seal. The aluminum cap provides the necessary rigidity to support the fragile glass epoxy, as well as improving the thermal conductivity of the package. Connections from the bonding wires to the pins are provided by copper traces designed to minimize mutual and self inductance. Because the plastic PGA is a large package, however, and generally houses a large die, the thermal coefficient of expansion (TeE) difference between the die and the cavity can exert stress on the bonding wires and the die attach. Table 3 lists the package types discussed in this section and the materials used to construct each type. Table 3. FujItsu Package Types Package Type Lead framal Metallization Plastic DIP Ie-Ni erCu Alloy Lead frame Same Solder Dippad -- Resin Resin Ceramic DIP Tungsten Metallization Kovar or FeNi AulSnPlated Metal or Aluminum Laminated Alumina Solder, Glass Frit CERDIP Fe-NiAlloy Lead frame Fe-Ni Sn Plated Alumina Alumina Glass Frit Plastic Ratoack Fe-NiAlloy Laadframe Same Sn Plated -- Resin Resin Ceramic Flatpack Fe-Ni or Kovar Lead frame Same Au Plated Metal or Aluminum Laminated Alumina Solderer Glass Frit Cerpack Fe-NiAlloy Lead frame Same Sn Platad and Solder Dipped Alumina Alumina Glass Frit PlasticPGA Cu Conductor on Epoxy glass Kovar Ni Plated and Solder Dipped Aluminum Epoxy Glass Resin CeramicPGA Tungsten Metallization Kovar Au Plated and Solder Dipped Metal or Alumina Laminated Alumina Glass Frit PlasticLCC CuAlloy Lead frame Same Solder Plated -- Resin Resin CeramicLCC Tungsten Metallization lead/Pad Lead Finish Cap Material Body Material Seal Material Metal or Alulaminated Solder, Tungsten Au Plated mina Alumina Glass Frit Metal Pad .. Note: All above packages are hermeac. Alumina IS a ceramIC. Solder IS PbSn. Fe-NilS ferrous (Iron) nickel. Kovar IS an alloy of cobalt iron, and nickel. Bonding wires are gold in the case of molded packages (epoxy resin PLCCs, DIPs, Flatpacks) and gold or aluminum for the other cases. Cerpack is the ceramic ftatpack equivalent of CERDIP. 1-134 CMOS Channeled Gete Arreys Application Notes 2.4.6 Package Qualification to Ensure Reliability Fujitsu performs extensive six-month minimum qualification tests for every package-die combination. Mter such qualification is performed, the package die-combination is added to a package matrix in the Design Manual for the appropriate technology. The designer can be assured that Fujitsu has considered the issues presented here, as well as others, when releasing an approved package-die combination. 3.0 Package Types Very large scale integration (VLSI) ASIC devices are supported by a wide variety of packages, of both surface mount and through-hole types. Through-hole devices, including DIPs and PGAs, are a proven technology and are supported by widely available production equipment. The pins of these devices are inserted though holes in the PC board to form electrical contact with traces (usually copper) which are embedded in the board or applied to the surface and are routed to drilled pin holes. Solder applied by reflow or wave technique then completes the connection. 3.1 Through-hole Packages 3.1.1 Dual In-line Packages (DIPs) DIPs have two rows of pins spaced 300 mils to 900 mils apart, with a pin spacing of 70 to 100 mils. Since the length of the package increases as each pair of pins is added, the size of a DIP tends to be unmanageable over 64 pins. The lead width and length of a DIP varies widely, causing variation in the· input and output response of the device and thus, skew. Also, due to their high pin inductance, DIPs tend to be noisy, the degree of noise being a function of the location of outputs and sensitive inputs. The DIP is relatively simple for manufacturing to support, thanks to a large installed base of well-proven equipment and is one of the least expensive packages available. Furthermore, DIPs, being well established, come in many JEDEC-approved options (see JEDEC Standard 95), and are available in both ceramic and plastic cases. 3.1.2 Pin Grid Arrays (PGAs) Although PGAs are usuaIly through-hole (Fujitsu also offers SMD versions), they differ from DIPs in that pins are arranged in rows on all four sides. While the pin spacing is usuaIly the same as for DIPs (70 to 100 mils), nesting the pins in rows permits a larger number of pins to be contained within a smaIler area allowing PGAs to support high pin counts of more than 300 pins. See Table 4 for a list of Fujitsu PGAs. Table 4. PGAs Available from Fujitsu Package PGA - 64C, 64P PGA - 88C, 88P PGA-135C, 135P PGA - 179C, 179P PGA-208C PGA-256C PGA-256C PGA-299C PGA-321C PGA-361C PGA-401C Type Through-hole Through-hole Through-hole Through-hole Through-hole Through-hole Surface Through-hole Staggered Staggered Staggered Construction Ceramic/Plastic Ceramic/Plastic Ceramic/Plastic Ceramic/Plastic Ceramic Ceramic Ceramic Ceramic Ceramic Ceramic Ceramic Number of Pins 64 88 135 179 208 256 256 299 321 361 401 Through-hole = 100 mil through-hole Surface = 50 mil surface mount PGA Staggered = 71 mil staggered PGA 1-135 .. Application Notes CMOS Channeled Gate Arrays Although PGAs are generally easy to support from a manufacturing standpoint, they may also raise problems. The PC board designer may find it difficult to route signals to and from the inner rows of the PGA, since it has only 100 mils spacing between pins. Additionally, the large cluster of pins confined to a small area tends to create trace congestion and may require boards of up to six layers to be used to support the PGAs. Manufacturing engineers find the solder joints for the pins of inner rows are difficult to inspect, forcing them to rely on the results of "bed-of-nails" in-circuit testers, or sophisticated inspection techniques such as x-ray or infrared. Although more expensive than DIPs, PGAs have come down in cost with the introduction of plastic PGAs (previous PGAs were usually ceramic). These plastic PGAs are generally constructed of G-10 glass-type epoxy with the traces routed through the epoxy the way they are routed on a typical PC board. (The electrical characteristics are, of course, tightly controlled). Although the reliability of plastic PGAs was initially in question, Fujitsu built them using special construction techniques employing metal lids and heat spreaders to provide rigidity and heat dissipation. Their excellent reliability history up to this point seems to indicate that plastic PGAs will continue to be popular. The widely-used epoxy thick-film substrate, once a quality and reliability concern, has the same TCE as the most common PC boards, and reduces the stress of expansion and contraction that is typically a concern with larger packages. (The distance of expansion per unit change in temperature increases with the size of the package.) 3.1.3 Advances In Through-hole Packaging at Fujitsu The demand for high pin-count plastic packages cannot be satisfied by merely increasing the number of pins a package supports. As size increases, so do the problems inherent in these lower-cost packages. These problems include greater lead inductance and thermal expansion mismatch between die and package. Ceramic flatpacks can support more pins than plastic packages, but they require special manufacturing capabilities, and are difficult to work with since they may have pin pitches down to 10 mils. Surface mount PGAs (discussed in Section 3.2) can support a large number of pins, but require difficult manufacturing processes. Fujitsu's answer to these problems, for the customer who wants high levels of integration without the need for exotic manufacturing methods, is the staggered PGA, shown in Figure 6. m [[] q: '" / 9° On-board decoupling capacitor pads (Capacitors not included) ~OoOoOoOooOoOoOoOoOoOoOoOoOoOoOoOoOoOoOooOoOoOooOooo~ 00'0000000'000'000'000'000'000'000'000'000'000000'00'0'00000 'OOo'OOo'OOo'OOo'OOo'OOoOoOo'OOoOoOoOoOoO(J>(ffPO°Oo'OoOo '000'000'000 0'000'00 00 0000'000'000 0'00 000000 0000'0000000 0 000'00000 '000000 '000 0'00 '00000 '000'000'000 0'00 '00 00 '000'00 '000 0'000'00000 '000'000'000 00'000'00000 00000000'000 0'000000000 0000'000'000 0'000'00000 000 '00000 00'000'00000000000000000000000000000000000000000000000°00°00'000 ogg'OOo'OOoOoOo'OOo§qo~~~~OoOo~~O~OoOoOo"_ i Oo'OOo'OOo'OOo'OOo'ltOo?Oo'OtlfOotlfOo'O Z ' ,'-, ,......, ,-', T~·10C , ~, 0.050 0.070 0.100 0.100 As with all Fujitsu PGAs, corner pins have seating rings Figure 6. 321-Pin Ceramic Pin Grid Array 1-136 9'fl'JQ,OO? - Application Notes CMOS Channeled Gate Arrays Figure 7 illustrates the footprint of the staggered PGA and the method for routing traces through the leads. Note that the routing is oblique, with the traces offset 45 degrees compared to traditional routing. At this angle, the lead spacing is 71 mils, providing the trace density available with standard through-hole devices, while reducing the package outline by approximately 40 percent. Two 32-bit buses routed through the PGA orthogonally on two layers permits high interconnect density Traces routed at 45°. Pass-through clearance between pins is 0.070' ... ..•...••...••...••..•.•.. ····........ ·····.......... ··•·•..•.•..•.• .. • •• • • • • 0 • 0 • • • • 0 • •• • • • ••• 0 •• 0 •••• • • • ••• 0 •• • • • • • • • • • • • • • • • • • 0 • • • • • • • • • • • • • • • 0 ;'!';;""i'!!flf!t~=f='" Traces routed at " 90°, pass-through clearance between pins is 0.050' Figure 7_ Staggered Pin Grid Array Routing The lead configuration of a package affects the pin assignment of the ASIC device. For example, Figure 7 shows a situation in which a 32-bit address bus and a 32-bit data bus are routed through the device, with one offset 90 degrees from the other. If you assign consecutive bit significance to the bus, you will notice that the resulting pinout is quite different from an equivalent circuit packaged in a traditional orthogonal PGA. High drive buses can still be distributed around the ground pins, but the associated pads are not concentrated in one specific area of the die, reducing the concentration of SSOs, thereby reducing signal noise. 3.2 Surface Mount Devices (SMDs) The demands of military applications, space-constrained systems, and boards containing large numbers of memory devices were initially responsible for the development of surface mount technology (SMT). However, the accelerated push for physically reduced systems, the appearance of higher pin count ASICs, and the cost of pin grid arrays have encouraged many more designers to consider surface mount options. Easing the strain of the migration to SMT is the broader availability of pick and place, vapor phase soldering, and other necessary SMT equipment, as well as the availability of SMDs for an increasing percentage of devices on the boards. SMT for VLSI is gaining momentum due to the smaller board area consumption, smaller profile, and proven reliability. 3.2.1 Flatpacks Plastic fiatpacks have been popular for years with manufacturers of peripherals in which the board area is constrained and height is restricted. And recently, the low cost of flatpacks (in plastic) has made them an attractive alternate to PGAs and even to DIPs in cases of higher pin count. As the following figures show, 1-137 CMOS Channeled Gate Arrays Application Notes flatpacks come in several lead type and location configurations. Figure Sa illustrates a small outline integrated circuit (SOlC), with gullwing leads on two sides, Figure 8b illustrates a quad flatpack (QFPT) with gullwing leads on four sides. Flatpacks with axial leads require special assembly, and are generally used only for ECL circuits in which leads may have to be trimmed and formed to tune impedance. Sb. Quad Flatpack Sa. Small Outline IC Sc. Ceramic Leadless Chip Carrier Figure 8. Flatpack Configurations Because flatpacks feature pin pitches (pin spacing from center to center) down to 10 mils, they can support high pin counts within a small board area. However, the narrow pin spacing means that accuracy in device placement, pad size and placement, and solder paste application tolerance are all more critical. PC board designers also need to determine whether the true package dimensions are in metric or English dimensions, and, when converting between the systems of measure, ensure that enough precision is maintained so that pins on the end of large packages won't roll off due to inaccuracies in pad location. Probing devices with fine pin pitches can be difficult because the pins do not pierce the bottom of the board, and if probes are attached to the leads, they can easily slip off and short adjacent leads. 3.2.2 Leadless Chip carriers (LCCs) Ceramic leadless chip carriers (CLCCs), such as the example shown in Figure 8c, have a long history in surface mount packaging. Ceramic packages perform well in high temperature environments, explaining their popularity in military applications. The term "chip carrier" comes from the process of mounting the die directly to a thick-film chip carrier, which also has pads for external connection on the opposite side of the substrate. This configuration differs from that of the PCA, in which the die is housed in the cavity of the package, or the flatpack, in which the die is held by the lead frame and molded with the package. CLCCs are available in pad counts ranging from 28 to 84 and beyond. Pads, not leads, are located on the bottom of the carrier and are generally spaced at a 40-mil pitch (standard). Solder paste is applied to the pads on the board to which the device will be mounted, usually by screen printing, and the board is then vapor phase or infrared reflow soldered. Because the pads are 10- 1-138 Application Notes CMOS Channeled Gate Atrars cated beneath the package, they are typically very difficult to probe and are subject to manufacturing defects such as solder voiding (gas bubbles in solder formed during reflow). The most challenging problem inherent to LCC devices relates to TCE mismatch between the chip carrier and the board to which it is mounted. As the temperature of boards and packages rises, the materials expand at different rates. This difference translates to mechanical shear force at the solder joint. This force temporarily deforms the leads of PLCCs and flatpacks, but CLCCs have no leads. Consequently, the force is directed at the solder joint, tending to promote thermal fractures, (shown in Figure 9). Difference in thermal coefficient of expansion results in shear force applied at the solder joint. .. Thermal Fracture TeEpeB. t1T FIgure 9. Defect caused by Difference In Thennal Coefficient of Expansion Even though CLCC SMDs cost more than equivalent plastic packages, their resistance to high temperatures, availability in hermetically sealed (moisture resistant) packages, and low profile of the CLCC SMDs make them very useful for applications in extreme environments. The TCE mismatch problem affecting LCCs is less severe when they are mounted to ceramic hybrids or PC boards, making their disadvantages acceptable in many circumstances. 3.2.3 Plastic J·leaded Chip carriers (PLCCs) If cost and TCE mismatch are a Significant deterrent to the use of LCCs, leaded chip carriers may be more attractive. Though the chip is still mounted on a carrier (see Figure 10), the electrical connections of PLCCs are through pins that deform to absorb the TCE-induced thermal stress. Furthermore, while solvents used in the post-soldering cleaning process may be retained beneath the low profile of the CLCC and flatpack, the board offset of the PLCC permits it to remain free of these contaminants. In addition, the LCC in a plastic package costs less than the eqUivalent CLCe. When more pins are necessary (in the 44-, 68-, 84-pin packages necessary for ASICs), the LCC is called a PLCe. It is also available in a ceramic body version; both are available in pin counts of 28 to 84 and beyond. 1-139 Application Nolas CMOS Channeled Gate A"ays Figure 10. PLCC Package This package is tenned a small outline Head (SO}) when its bent leads are located on only two sides (Figure 11). The leads are bent into the fonn of a J in order to pennit it to be placed on top of the solder pad. Metallic lead frame Figure 11. Cross-Section of a Plastic Small-Outline J-Iead Package On the list of drawbacks of the PLCC is its limited ability to withstand high case temperatures, and its unavailability as a hermetic package. It is nevertheless very well suited for industrial and commercial environments. With a 50-mil pin pitch and only slightly greater height and width, the profile of the PLCC is nearly equivalent to the corresponding CLCC. 3.2.4 Advances In Surface Mounted Packages While smaller process geometries themselves have few disadvantages, the associated increase in integration, speed, power, and particularly pin count place heavy burdens on packaging. The greatest challenges CMOS faces is supporting pin counts in excess of 300 in packages with low lead inductance, capacitance, and resistance. To respond to these demands, Fujitsu has developed a clever solution in packaging to obtain the highest average pin density per board area yet achieved. This is accomplished with surface mount PGAs, which rely on narrow pin pitch (SO and even 25 mils) in a dense grid of multiple rows of pins. Since through-hole packages cannot effectively support pin pitches narrower than 70 mils, these PGAs must be surface mounted, though they still possess pins (see Figure 12). 1-140 CMOS Channeled Gate Arrays Application Notes Surface mount PGAs offer the greatest pin density and lowest inductance . ::: ... I • ".: I ,''' : .... .. I .... ... I ...... I , I - I " ., 6· I ... I .. •• •• ___olio ...... I ,.e &.6 Figure 12. Surface Mount PGA The surface mount technology also permits traces to run beneath the package leads, increasing available trace density. Figure 13 shows the solder pad design required by these high-pin-density packages. , 50 MIL '" ..' I I~ A~ernatively. 0.6mm Diameter ---:- t t - an octagonal pad geometry may be employed -200 - 300 11m solder paste - thickness Figure 13. Solder Pad Design for Surface Mount Pin Grid Arrays 1-141 Application Notes CMOS Channeled Gate Arrays Table 5 provides an item-by-item comparison between PGAs, surface mount PGAs, and flatpacks of similar pin counts. Table 5. Comparison of ernlcal Features PACKAGE TYPE PIN PITCH OUTliNE (MAX) PIN DENSITY (Pins Par Sq Inch) FPT-160 Surface 25 mil 1.276" x 1.276" (1.63 sq In) 98 PGA-256 Through 100 mil 2" x 2" (4 sq In) 64 PGA-256 Surface 50 mil 1" x 1"(1 sq In) 256 PGA-321 Staggered 71 mil 1.72" x 1.72" (2.96 sq In) 109 PGA-401 Staggered 71 mil 1.922" x 1.922" (3.69 sq In) 109 The numerous electrical and mechanical advantages of surface-mount PGAs would seem to outweigh their disadvantages. However, the general state of high volume manufacturing has not kept pace with the rapid advances in semiconductor packaging. This is partly due to the requirement for state-of-the-art manufacturing equipment, which is quite expensive, and also to the need to maintain board yields with such complex devices. Therefore, in order to establish these packages as an attractive alternative, Fujitsu personnel are available to assist customers in the mounting and inspecting of these highly complex packages. 3.3 A Comparison of Through-hole and Surface Mount Devices SMDs provide improved electrical performance and reduced system size and costs. Furthermore, with plastic flatpacks of up to 160 pins and beyond available, SMDs show promise in supporting the rapidly advancing gate size complexities and high pin count of today's ASIC products at a substantially lower cost than the large ceramic PGAs. However, as the manufacturing complexities that have just been reviewed indicate, surface mounting large ASIC devices may be difficult and risky, and the designer should be cautious in their use. If board space constraints are not critical, if the economic impact of scaling down the end system is not great, if optimal electrical characteristics in packaging are not a critical concern, then through-hole packaging may be the best solution. On the other hand, if speed and integration requirements dictate the use of very dense gate arrays, PGAs or SMT PGAs provide both through-hole and surface mount alternatives. 3.3.1 Socketing Surface Mount Devices Some benefits of SMDsare available to manufacturers employing through-hole packages through the use of sockets for SMDs. Sockets are available for QFPTs, small outline packages (SOPs), CLCCs and PLCCs; however, the use of QFPT and SOP sockets is normally restricted to prototyping and bum-in, while lowcost, reliable production sockets are more commonly available for PLCCs and CLCCs. These production sockets house the SMD (they are tightly tailored to the specific package) in one of two ways. Flatpacks and LCCs use low/zero insertion force with a lid that closes down on the package. PLCCs use pressured socket contacts that drive a pin into the underside of the socket. Socket pins are arranged like those of PGAs: they are through-hole, they have l00-mil spacing (generally), and they are most commonly oriented in a grid of two rows. One advantage of these sockets is that in applications where through-hole packaging is required and the choice of through-hole packages is limited to PGAs, a plastic SM package plus the production socket will cost less than the through-hole PGA. The scenario typically occurs when the reqUired number of pins is between 40 and 84 for PLCCs and LCCs and up to 160 or more for the flatpacks. 1-142 CMOS Channeled Gate Arrays Application Notes Another significant reason to socket SMDs results from the manufacturing difficulties of SMDs that were presented earlier. ASIC devices are usually among the largest in the system, and the most vital and expensive. For the purpose of field maintenance, many companies feel it is more economical and reliable not to risk running an ASIC device through wave or reflow solder and risking stress fractures or other damage. Furthermore, the test probing difficulties alluded to earlier are alleviated with sockets, which usually provide easy access to the contacts. Often, once reliability of the system is proven, the boards are re-laid out with surface mount devices. Therefore, simply because a manufacturing facility isn't geared up for SMT does not mean that SMT devices cannot be used there. 3.3.2 Noise Problems With Sockets Sockets for SMDs are convenient for manufacturers not yet ready to go to SMT, or for initial prototyping where the device may frequently be removed. Socketing permits the user to gain many of the benefits of SMDs, such as reduced profile and support of high pin counts in plastic, while avoiding the drawbacks, such as special manufacturing equipment and lead probing difficulties. Unfortunately a major electrical advantage of SMDs, low pin inductance, is compromised when sockets are used. The primary result is greatly increased noise, which adversely affects overall speed and signal quality. In fact, a socketed SMD generally has a higher lead inductance than an equivalent through-hole PGA. 3.4 Summary of the Packaging Alternatives Having reviewed the package selection alternatives presented in Section 2.0 and the various tradeoffs between the packages discussed in this section and summarized in Table 6 below, the designer can weigh the benefits and limitations of the various packages and arrive at an optimal packaging scheme. 1-143 CMOS Channeled Gate Arrays AepliC8lion Noles Table 6. ASIC CMOS Package Types and their Characteristics Package Type Range of Physical Dimensions Electrical Characteristics' Thermal Characteristics (CClWatt) Usable Gates3 Relative Cost (per Pin) ThroughHole DIP # Pins: Pin Pitch: Body Length: Body Width: 16 to 64 100 mils .7S" to 2.3" .300" to .700" R: Medium L: High C: Low Ceramic/Plastic 9JA2: 70 - 40/ 120-80 Upto 17K gates 1 Surface Mount SOIC # Pins: Pin Pitch: Body Length: Body Width: 16t028 10 mils SO to 70 mils .300" to .400" R:Medium L: Medium C:Low Ceramic/Plastic 9JA2: 110 - 80/ 130 -lOS Up to 6S00 gates 1 # Pins: Pin Pitch: Body Width: 48 to 260 10 mils .65" to 1.7" Plastic Surface Mount QFPT R: Medium L: Medium C: Low 9JA2: 9S - 60 Upto 17K gates 1 Ceramic Surface Mount CLCC # Pins: Pin Pitch: Body Width: 28 to 84 40 to SO mils .45" to .97" R: Medium L: Medium C: Medium 9JA2: 70-45 Upt02SK gates S Plastic Surface Mount PLCC # Pins: 28 to 84 Pin Pitch: SO mils Body Width: .49" to 1.19" R: Medium L: Medium C:Low 9JA2: 6S - SO Upto 17K gates Ceramic/Plastic CeramiC/Plastic ThroughHole PGA # Pins: Pin Pitch: Body Width: 64 to 299 .100 mils, 70 mils 1.033" to 1.7" R: Low/Low L: Lowllow C: High/Low 9JN 40 -19/ 46 -38 1.0S Ceramic/Plastic Upto 7SK gates 11/3.S-S Notes: 'R = Resistance, L = Inductance, C = Capacitance 2Assuming Static Airflow 3Assuming I.SI! CMOS Technology 4.0 Electrical Considerations for the Assignment of Signal, Power, and Ground Pins Driven by the continual demand for high speed systems, CMOS ASICs that exhibit output drive levels, rise and fall times, and propagation delays comparable to yesterday's ECL circuits are now being developed. Consequently, the problems intrinsic to ECL design (even thermal management> are now appearing in CMOS designs. These problems, based on noise and its effect on the device, are introduced in this section and possible solutions are discussed. 4.1 Sources and Magnitude of Noise CMOS circuits operate by charging and discharging node capacitances through pull-up or pull-down transistor networks constructed of P channel and N channel enhancement mode (normally off) MOSFET transistors. As a result, these circuits generate noise when switching. The following review of basic CMOS circuits and how they work explains this phenomenon in greater depth. 1-144 Application Notes CMOS Channeled Gate Arrays 4.1.1 Basic CMOS Circuits Figure 14 shows a CMOS totem pole output buffer, the typical implementation for CMOS circuits, while Figure 15 illustrates a CMOS-compatible input buffer, and Figure 16 depicts a CMOS input buffer configured to be TIL compatible. Rp-ON Bonding Pad Interconnect T cL Figure 14. CMOS Output Buffer Model (Totem Pole) Input Package Capac~ance 1KQ Bonding Pad Capacitance Wire and Input Gate Capacitance Figure 15.110 Model, CMOS Input 1-145 CMOS Channeled Gate Arrays Application Notes The sw~ching threshold of an inverter is dependent on the supply voltages and mobility (11) of the P and N type transistors, as well as the W to L (transistor width to gate length) ratio of the Nand P transistors. By varying the effective width (W) of the P and N transistors, it is possible to devise inverters (input buffers) that will sw~ch at TTL levels even though they are implemented with FETs. External Input Internal Array Thresholds of P and N transistors Supply vottage Figure 16.1/0 Model, TTL Input Internal CMOS circuits, such as the NAND gate shown in Figure 17 are typical of CMOS logic designs, which can be represented as a pull-up network and a pull-down network, each with its own logic and analog characteristics. 7 Pull-up Network I T O~tput '-- Pull-down Network ..l General Structure: Output Is either pulled up or down. Inputs are never active or inactive simultaneously An Example of a 2-lnput NAND Gate Figure 17. CMOS Basic Gate Structure: The Pull-up/Pull-down Network 1-146 Application Notes CMOS Channeled Gate Arrays The other type of element used in CMOS circuits is the transmission gate, or T-gate, which is useful for the efficient construction of multiplexers and sequential circuits (D-flops, latches, etc.) as shown in Figure 18. !SE[ IN 0 I t I SEL OUT P Transistor 0 o OUT Hi-Z (floating) IN (pass) N Transistor SEL Transmission gates either pass a signal or inhib~ ~ by floating, perm~ting another, active transmission gate to drive the bus to which multiple transmission gates are often tied. Transmission gates are useful for constructing multiplexers and flip-flops. Figure 18_ CMOS Basic Gate Structure: The Transmission Gate 4.1.2 Output SwHchlng Noise and Simultaneous Switching Outputs (SSOs) The greatest source of noise in a CMOS circuit is the result of an output switching either high to low or low to high, particularly into or out of a high capacitive load. CMOS outputs drive two types of loads, either CMOS loads, which are high in capacitance but low in leakage current, or TIL loads, which are lower in capacitance but higher in leakage current. Therefore, the AC and DC currents that the buffers see when they switch depend greatly on the type of driven load and its capacitance. When this load discharges through the N-type transistor of the totem pole output, as illustrated in Figure 14, the effect is that of a capacitor discharging through resistance. Consequently, the initial current is high and decreases over time as the output node capacitance becomes charged. Similar currents may be observed when charging the node capacitance, as in the case of a low-to-high transition. 1-147 Application Notes CMOS Channeled Gate Arrays Figure 19 shows the characteristic resistance and capacitance of various parts of the output of an ASIC device. Chip Power Plane C 0 ...•.. '" d~ and it ' - - t - - Chip Ground Plane -= Vss System Ground Plane SSO noise is proportional to the number of SSOs, the current switched by each in a common direction (H to L in this case), and the inductance between the load and the system ground. This is represented as .1. V (ground bounce) = (- L) where N is the number of SSOs, assuming all have the same dildt. Figure 19. Electrical Model of Simultaneously Switching Outputs Although small, the total inductance becomes a critical factor when discharging or charging output capacitance, since the instantaneous current (i) is high. Recall that the self-induced voltage in an inductance, (L) is expressed by .1.VINDUCED = L *di ----at where t is time and d is rate of change. In a high-drive CMOS device driving high loads, such as 200 pF, through a voltage swing approaching 5 volts with a rise/fall time of < 2 ns, the instantaneous current may be i = C • dv dt ... C • .1.v M (average over rise and fall time) This induced voltage appears as noise on the receiving end of the signal as referenced to the ground. The current on a high-to-low transition is sunk into ground, causing the current to "bounce" or rise relative to other signals referenced to it. This ground bounce phenomenon may also apply to power on low-to-high transitions, yielding a similar noise problem. Noise on signals may cause false triggering on the input buffer(s) being driven, or at least create a window of ambiguity in the time at which the driven input should switch (see Figure 20). Therefore, noise may result in degradation in speed resulting from adding settling time to a delay and may even result in 1-148 Application Notes CMOS Channeled Gate Arrays functional effects if false triggering occurs. Furthennore, if N multiple outputs under this condition switch simultaneously, the induced voltage is increased as a multiple of the number of outputs ill nV =N· L· dt V1N • E 2.0V 0.8 V 0.0 V Noise Margin Reduction Due to SSOs • In this example, outputs switching H to L resu~ in a ground bounce or rise in the chip ground relative to system ground. • The rise appears as IT the input signal voltage levels are reduced proportionally. If the bounce is too great, the input voltage is below V1H causing false triggering. • In the L to H case, it is the low input levels (VIL ) that are affected. Figure 20. Effect of SSO Noise on Thresholds Not only inductance but also characteristic resistance can create noise problems. The following paragraphs summarize the types of noise that exist in CMOS systems and explain how packaging impacts this noise. 4.1.3 Self·lnduced Noise Self-induced noise results when high-speed, high-drive outputs switch and introduce a spike on the signal relative to ground. The SSO effect, discussed previously, is an example of the level of self-induced noise that can occur. It is predicted by ~VSI =L ill f1t where L is the inductance between the pin and ground as well as the trace inductance. ~i is the instantaneous current and M is the fall/rise time. 4.1.4 Mutually Induced Noise Mutually induced noise (a fonn of crosstalk) occurs when a signal trace that has been running parallel to another for some distance switches, inducing a voltage into the adjacent wire. Since both inductive and capacitive coupling occur only during signal transition and propagation, the effect is additive, as the signal propagates down the trace. Resultant noise propagates in both the forward and backward directions down the line. The forward crosstalk has a pulse duration equal to the rise and fall of the signal, with an amplitude equal to the difference between the capacitive and inductive coupling. Backward crosstalk has a pulse duration equal to the transition time down the trace and an amplitude dependent on the sum of the inductive and capacitive coupling as well as the trace length. 1-149 CMOS Channeled Gate Arrays Application Notes 4.1.5 capacitive Coupled Noise Another form of crosstalk resulting from mutual signal coupling, this noise occurs in proportion to the dielectric constant of the board, the distance of trace separation, and the trace length and width. Acting as two thin parallel plates, these traces couple switching current as integrated over time. 4.1.6 Ringing on Signals From basic circuit theory, the designer will recall that if the signal line impedance does not match the output impedance of the buffer, then the signal is not naturally dampened. If the impedance of the load is less than that of the buffer, the signal is over-damped and will have a slow rise/ fall time. However, if the buffer possesses lower impedance, then the signal is under-damped and may ring, as illustrated by Figure 3. Typically, signal line impedances are in the range of 50 to 250 0, while in the past buffers possessed "on" resistances of 500 0 to 2 Kn. However, due to the need for higher current sourcing/sinking and faster switching speeds, "on" resistances of output buffers have come down to the 10- to 50- 0 range, requiring the use of special termination techniques, discussed in the Fujitsu Application Note ''Interfacing CMOS and BiCMOS VLSls." 4.1.7IR Drop Up to this point, the sources of noise discussed have depended on inductance or capacitance. Since the DC current that a ground pin may sink, or that a power supply pin may source can be significant, the familiar voltage drop across a resistor, as current passes through it, is also a source of noise. This iR drop is the phenomenon that limits the sum of source and sink currents through power and ground pins respectively. Ohm's Law describes the effect of this noise source in the following equation defining voltage rise or drop due to iR effects: N-l ~V=R * ~ 4. n=O where R is the output pin-ta-ground (sink) resistance, or power pin return-loop (source) resistance (including the "on" resistance of the respective N or P channel device) and 4. is the current through the nth output pin connected to this common ground or power pin. 4.1.8 Current Spiking or "Crowbar Noise" As Figure 14 illustrated, a CMOS output buffer is constructed as a totem pole in which the output is taken from the common source (P type) and drain (N type) with the drain of the P type connected to power and the source of the N type connected to ground. When the input to the totem pole (the P and N gates) switches, the Miller capacitance of the gate causes the gates to charge or discharge at some specified time constant. It is possible that both transistors can be on, one in saturation and the other passing through the linear region, creating a current path between power and ground that can damage the device. This is less a concern for internal transistors than it is for the "beefy" transistors at the I/O. This current spiking can not only introduce noise on the power and ground planes, but may damage the device as well. For this reason, Fujitsu has taken precautions in the design of the CMOS output buffers to prevent this problem from occurring. 4.2 Recommended Strategy for Pin Assignment The assignment of Oock, Scan, and other signals, as well as power and ground, to specific pins on the package affects electrical behavior (speed, noise, reliability, etc.), board manufacturing requirements, and device reliability. Therefore, optimal pin assignment strategies should consider the variables over which the user has control (placement of non-scan inputs, outputs and bi-directionals) and the variables over 1-150 Application Notes CMOS Channeled Gate AmilYs which the vendor has control (power, ground and scan signal placement). Out of these relationships a method of placement can be developed, using the following approach: (a) Prioritize the signals whose placement is most critical. (b) Establish guidelines for the location of these signals, both in absolute position and relative to other signals. 4.2.1 Prioritization of Signals for Placement Noise minimization is used to establish signal prioritization. All of the various forms of noise discussed in the last section are dependent on either i or di/ dt, and L, M, R, or C. The signals affect i and di/ dt, while the package pin location affects L, Rand C. Figure 21 provides an illustration of how electrical characteristics vary by pin position. l R C ~ t Increasing C::::' : :::: I ~ Ilncreasin g l RC Figure 21. Variation in Inductance, ReSistance, and Capacitance as a Function of Pin POSition In general, the further a pin's external contact is from the die connection, the greater its resistance, impedance, and capacitance. Therefore, signal prioritization is established according to current or its time derivative, while location is guided by package pin characteristics. Input signals are classified by their noise sensitivity. If a spike on an input could be disastrous (as with a clock), that signal should be carefully located. Table 7 classifies signal type by electrical characteristics. Table 7. Electrical Characteristics of Each Signal Type Signal Type Ground Current Characteristics (General) Highest i, DC, and di/dt Power High i, DC. and di/dt High d rive outputs High di/dt Clocks Highest noise sensitivity low drive outputs --- Other Signals 4.2.2 Characteristics of Package Pins by Location The inductance, capacitance, and resistance, all of which are critical to minimizing noise, are related not only to board construction, but also to the pin position on given packages, and the circuit to which the pins are bonded. The pin, lead frame, bonding wires, pads, and buffers (input, output or bi-directional) all influence the characteristic L, R, and C of the line. See Figure 22. 1-151 CMOS Channeled Gate Arrays Application Notes • 0 • 00 • • 00 • • 00 • 0 • • 0 • 00 • • 0 • 00 • • • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 0 I I II I " 76543210 (pF) I I I I I I I I o1 2 3 4 5 6 7 I (pF) • Package Pin Capac~ance Total 110 Pin Capacitance Figure 22. Measured Pin Capacitance by Package Position 4.2.3 Relating SlgnallYpe to Pin Location Since power and ground pins demand a large DC current (i), iR drops are of great concern. Therefore, Fujitsu assigns power and ground to pins with minimum resistance (and inductance). High-drive outputs exhibit a large di/ dt, resulting from high capacitive loading, so the best pins for these signals are those of minimum inductance. Furthermore, adjacent pins possess the greatest M, and thus couple the most M di/ dt noise. This means that noise-sensitive inputs, such as clock inputs, should be isolated from pins that handle high di/ dt, such as high-drive outputs. 4.2.4 Minimizing IR Drops on Power and Ground Pins Placement of ground pins is critical because noise on ground affects the voltage level of all signals referenced to it. For this reason, Fujitsu has preassigned power (VDD) and ground (VSS> signals for all packages in a given gate array family according to the electrically optimal locations. Preassigning power pins permits Fujitsu to develop load boards (which interface the packaged device to the tester) advanced enough to carry out high-speed functional testing of devices with high I/O count and to drive devices with relatively low noise. Fujitsu also took into consideration manufacturing issues such as adjacent pin shorting due to probes and package rotation. The predefined power and ground assignments for Fujitsu devices are found in the Package Pin ASSignment Guide in the Design Manual for the appropriate gate array family, and are used in conjunction with the Package Matrix to determine pin assignment. 4.2.5 Minimizing the Self-Inductance of a Signal Fujitsu believes that an ASIC designer concerned about designing a mini-computer, PC, mainframe or other complex system should not have to be concerned with determining specific on-chip noise issues, particularly since board-level noise issues are demanding enough. Therefore, Fujitsu developed a straightforward grouping scheme for the placement of various types of signals relative to their distance from the nearest power and ground pins. As Figure 23 shows, the self-inductance associated with a given signal is 1-152 Application Notes CMOS Channeled Gate AlTays a function of the length of wire between it and its nearest ground (for a falling transition) or power (for a rising transition). .. T Second-order model of an output driving interconnect metal and four input buffers. As wire-length increases. so does inductance and resistance. Figure 23. Self-inductance In a Circuit Since di/dt can vary greatly for outputs within a group, there are some general restrictions relating to SSOs and their total current to the number of grounds on the chip. This is done by summing representative values like those shown in Table 5-4 in Chapter 4, which are weighed depending on the IOL of the given output buffer. Notice that, if the output buffer employs noise limiting circuitry (edge rate grading) then di/dt is less and the representative value is also less, meaning more of these outputs can be supported per ground pin. In summary, to ensure that the iR drops and the ground bounce effect (L di/dt) are within reasonable limitations, Fujitsu has established guidelines for determining the number of necessary grounds and defining the pinout. 4.2.6 Placement of Clock and Asynchronous Clear/Preset Signals In addition to causing the ground bounce and iR drops that can deteriorate an output signal's quality and alter the ground reference, output switching can also couple noise into adjacent sensitive inputs by mutual inductance, as shown in Figure 24. For that reason, the designer should ensure that clocks and asynchronous clear and preset signals are not placed near outputs, particularly high drive outputs. To further isolate inputs from noise, the designer should minimize the inductance (length) of the return loop from the input buffer to ground by placing this type of input near a ground pin. The mutual inductance of the input buffer itself can be minimized if it, and any outputs nearby, are not assigned to high inductance pins. As discussed in Section 4.2.1, the center pins of a DIP, flatpack, or PLCC possess the lowest Land R, as do the inner rows of PGAs, making them most suitable for VDD, Vss and high drive outputs. But the edges of the package, while suitable for data signals, should be avoided when placing clock and other sensitive Signals, as they exhibit a high mutual inductance and large iR drop. 1-153 CMOS Channeled Gate AlTars Application Noles 0-' : ' .. INput Signal fs1'\ 0 ; ~ :A_t;.;\ o-y:---::v 6 Ignored for simplicity • I .' Noise is introduced on the adjacent lead S2 as Sl is driven in a manner described by Faraday as di 51 Vs= -M'"Cit where M is the mutual inductance between the adjacent leads. I! S2 is also being driven, then the mutually induced noise is superimposed on the sel! induced noise already present, as described by di 51 di 52 VS2 = -M '"Cit + L:!'"Cit Figure 24. causes 01 Crosstalk 4.3 Summary: Choosing the Package and Assigning the Pins This discussion of noise as related to packaging and its effect on pinout should help the designer appreciate the care Fujitsu has taken to ensure that noise margins within the device are restricted to maximize system reliability. It should also provide the designer with a basis for establishing optimum pin assignments. A step-by-step procedure for choosing an optimal package and assigning pins to it follows. 4.4 Package Selection Checklist When selecting a package for an ASIC device, the designer should consider the following points: a. Define a subset of the Fujitsu packages that can be supported by your company's manufacturing capabilities. b. Estimate, as closely as possible, the gate and I/O counts of the circuit(s) to be packaged. c. Determine the number of power and ground pins reqUired by considering the following: 1. 1-154 Representative value limitations for SSOs 2. Limitation of the sum of the sink current (lOL) per ground pin 3. Limitation of instantaneous current per ground pin to satisfy metal migration restrictions d. Using the package and pin assignment section of the Design Manual, determine the packages that satisfy the signal, power, and ground pin requirements of the circuit. e. Make sure that the electrical, mechanical, and thermal properties of the chosen packages are suitable for the application. f. Check the mechanical dimensions in Fujitsu's ASIC Package Catalog and the power and ground pin assignment tables and grouping charts in the appropriate package and pin assignment tables for the chosen technology. Please contact Fujitsu regarding pricing trade-offs when evaluating packages or partitioning the system. CMOS Channeled Gate Arrays Ape/ication Notes 4.5 Pin Assignment Checklist a. Follow Fujitsu's pin assignments in the Package and Pin Assignment section of the Design Manuals. Although multiple pinouts of the same package may be offered in some cases, all power and ground signals indicated on the chosen package must be connected on the board. b. Assign input pins (in excess of 5 MHz) and high power output buffers (IOL = 24 mAl according to the appropriate pin assignment table. c. Place all high-drive (power and high power) outputs near ground pins; the higher the drive, the closer they should be placed. SSOs should be placed particularly close to ground pins. d. Place SSOs in groups belonging to given ground pins. e. Distance noise-sensitive signals such as clock and asynchronous clear and preset signals away from SSOs and high-drive outputs. Also, assign them to pins with low inductance and resistance, preferably near a ground, if one is available away from SSOs or high-drive outputs. f. Place SSOs on low inductance pins, such as those located on the inner rows and middle position of the PGAs. These guidelines assist the designer in choosing the best package for the application, resulting in a device with reliable and predictable electrical performance and without harmful DC and AC effects on the system. There are other system interface issues such as device decoupling and termination that should be considered during design. These are discussed in Fujitsu's application note, "Interfacing CMOS and BiCMOSVLSls." 5.0 Thermal Issues In CMOS ASIC Packaging CMOS has traditionally been associated with low power, one of the classic advantages it has over ECL. While ECL continually draws high current to supply its internal differential amplifiers and emitter-follower circuits, CMOS draws current primarily when it is switching. The total power diSSipation of a CMOS device is dependent on the number of gates, the switching frequency, and the loading on the output of the gates. The revolution in CMOS technology that has resulted in densities of lOOK gates has been accompanied by increases in all of the factors influencing power dissipation. Prior to 1985, when FUjitsu introduced the world's first 20,000 gate array, the C2ooooUH, CMOS gate arrays were not of sufficient integration density to warrant concerns about thermal control, but advancing CMOS technologies have forced this issue to the surface. Because power is the product of current and voltage, power dissipation is important when defining the necessary power supply currents. Propagation delays and reliability of a device are also dependent on the temperature at which the die operates, as discussed in Sections 2.3.3 and 2.4.4. To ensure that speed and reliability requirements are satisfied, the designer needs to estimate the power diSSipation of the device and, from this information, choose appropriate packages and system cooling techniques. 5.1 Estimation of Power Dissipation In CMOS Circuits There are two constituent factors in the power dissipation of a semiconductor device: the DC power, which is dependent on the steady-state (quiescent) current, and the AC or dynamic power. 5.1.1 Estimation of Dynamic (AC) Power Dissipation CMOS circuits are constructed of PETs, which possess very small leakage currents. Therefore, CMOS possesses a low quiescent or steady-state current. CMOS dissipates power primarily while it is charging or discharging node capacitance, or drawing switching current, which occurs as a gate changes state. This can be modeled as the familiar pull-up/pull-down circuit discussed in Section 4.1, charging and discharging a node capacitance, CL (shown in Figure 14). This model holds true whether the node is internal or off-chip. 1-155 .. Application Notes CMOS Channeled Gate Arrays The switching current is a result of charging and discharging the node capacitance which, for periodiC signals, occurs twice a cycle: once while charging the capacitance, and once while discharging it. The energy involved in charging or discharging a capacitance is 1/2(CLV2). The power is the energy divided by the period of time between successive changes (the clock period, T), multiplied by the two transitions that occur per cycle. Therefore, the dynamic or switching current of a CMOS circuit is defined as Pd-dyn=2 • (CL. V2) 2 • T where V is the supply voltage and f is the frequency of the given signal. This is the power calculation for a single gate. The power dissipation for entire chip, however is much more complicated, since not all gates are simultaneously active. The degree of switching activity varies greatly within a circuit and depends on the nature of the circuits (synchronous sequential gates tend to switch concurrently, while combinatorial gates switch more randomly), the input stimulus (whether the circuit is stimulated at a periodic interval or asynchronously), and other design-dependent issues. Based on Fujitsu's experience, gate activity is on the average about 20 percent. This same figure is applied to the power estimation for output and input buffers. 5.1.2 Estimation of Quiescent (DC) Power Dissipation There are two sources/ sinks of DC current in a CMOS ASIC: the leakage current of the gates (gate leakage) and the DC current that flows through output and bidirectional buffers in output mode. The gate leakage in CMOS devices, even dense ones, is in the range of tens of microamperes, and is negligible. The DC current of the output buffers is the current that the buffer sources or sinks in steady state. This current level depends on the leakage currents of the driven loads, but for simplicity will be assumed to be equivalent to the IOL and IoH rating of the buffers. The DC power can be estimated for each output buffer by analyzing: a. the product of source current times the voltage difference from the power rail (V DO - VOH), and b. the sink current times the low-level voltage (VOL). This calculation is valid provided the duty cycle, or the portion of the cycle in which the output is low versus the portion of the cycle in which the output is high, weighs the sum of the two components. The total DC power may be determined by extending this method to each output and bidirectional buffer. 5.1.3 Estimation of Total Power Dissipation The total power dissipation of a circuit is the sum of the DC and AC components. I/O buffers dissipate both DC and AC power when switching, while internal gates may be considered for the sake of simplicity, to dissipate only AC. The theory behind CMOS power dissipation is simple; however, the task of calculating the power dissipation can be tedious and prone to error. Therefore, Fujitsu has devised methods for estimating the power dissipation for each CMOS technology. These methods are presented in the Design Manual for the appropriate technology, available through the Field Applications Engineers at local Fujitsu Sales Offices or Technical Resource Centers. 5.2 The Relationship Between Power Dissipation and Temperature A device draws current through the power supply pins and the I/O buffers. As it does so, it dissipates thermal energy proportional to the power dissipated in the device. Assuming that the power diSSipation of a device has been estimated as Pd, using the method described in Section 5.1.1, how can one relate this power to the temperature of the die and the package, and also determine the warming effect on the surrounding environment? The answer lies with two principles of heat transfer: conduction and convection. When an object is in a state of thermal equilibrium it is isothermal, seeing a constant temperature across its body. As the tem- 1-156 Application Notes CMOS Channeled Gate Arrays perature of one end of the object is raised by the introduction of energy, it is no longer in equilibrium; heat begins to flow from the warmer region to the cooler region through the process of conduction. When a lake in winter is filled with water at a constant temperature, just above 32°F, it may still freeze. It will freeze at the surface, however, not the bottom. This is because heat is drawn from the water into the air through convection, the act of cooling by a gas. These same mechanisms, conduction and convection, act upon a packaged semiconductor device and determine its junction temperature, the package or case temperature, and the warming effect on the surroundings. 5.2.1 Determining the Junction Temperature of a Device Figure 25 shows the paths through which heat flows in a packaged device. Each interface of materials with different properties of thermal conduction must be considered when determining the flow of heat from the die to the surroundings. The back side of the die is attached to a lead frame or slug, usually by means of a eutectic bond (material heat bonded with some conductive material, such as silver). Heat flows through this path from the die to the package, then from the package to the surrounding air. TA VA t..rv+ t..rv+ ...t..rv+ "n t..rv+ t..rv+ t..rv+ t..rv+ I I:~~rrl ~ .JI JI , ~ .......... -----,, ie I ~ 9ii,!ity ••••••• _ ••T!. •• _: .~~ u rnJ=l II u .ij-l I Figure 25. Heat Flow through a Cavity-down Ceramic PGA with an Annular Fin Heat Sink From the die junction to the package, there is some associated thermal impedance (or resistance to the flow of heat). This impedance can be calculated, but may also be estimated in the following way. Operate a device and determine its power dissipation. Then, using some mechanism such as a thermal diode, whose forward bias voltage tracks linearly with temperature, determine the junction temperature. Then, after measuring the case temperature, determine the thermal impedance along the path from the die junction to the case (package body) using the following equation: Sjc = (Tc - TO Pd where Tc and Tj are the case and junction temperatures, respectively. A similar procedure is followed when determining the thermal impedance between the junction and the ambient environment, except that the case temperature is replaced by the measurement of the ambient temperature 1-157 .. Application Notes CMOS Channeled Gate AlTlIys While OJ, relies on conduction as its cooling mechanism, 9p. reflects convective cooling. Therefore, 9j" varies with airflow and is specified at a given airflow, or as static (= 0). Since thermal impedance depends on the heat conduction path between the die and some other interface, it can be modeled the same way as current flOwing through real impedance or resistance. Therefore, as in circuit theory, when multiple interfaces are oriented in parallel, the thermal impedance is lowered. However, the situation is different from circuit theory in that when a very low impedance interface, such as a heat sink, is placed in the conduction path the flow capacity is increased, with the heat sink pulling heat out at a faster rate, lowering the thermal impedance. 5.2.2 Using Thermal Impedance Data Thermal impedance information and power dissipation information are used to estimate junction temperature and ambient temperature rise. Which impedance figure to use is based on how the device is to be cooled. H the device is air cooled (convective), then 9ja should be applied, while 9jc should be used if conductive techniques such as heat pipes or cold plates are employed. For example, the junction temperature may be obtained by multiplying the power dissipation of the device by the appropriate 8ja and adding the ambient temperature. It is not surprising that this indicates that a small thermal impedance is desirable to achieve a low junction temperature. Junction temperature is used to determine worst case delay multipliers and the package options for Fujitsu's CMOS AU (Sea-<>f-Gates) family. The junction temperature also indicates whether reliability goals are being met. The designer can trade off packages (which exhibit varying thermal impedances) with cooling techniques (such as varying the amount of airflow in a system) to achieve the desired junction temperature and consequently, worst case delay multiplier and reliability targets. 5.3 Summary Of Thermal Issues Although thermal factors in CMOS design have not previously been an issue, the increased frequency and density of current generations of CMOS devices require such considerations to be made. This section ha.s surveyed some of the issues involved in applying thermal analysis to CMOS devices and using the information gained from such analysis to determine the appropriate packaging and cooling techniques. 6.0 Summary of the Note As VLSI circuits increase in complexity, pin count and die size increase as well, placing greater demands on packaging, board layout, and manufacturing. Fujitsu has addressed these problems with exotic forms of packaging such as the surface mount PGA and the staggered PGA, while also stressing the importance of other surface mount packages. But simply making these packages available is not enough; FUjitsu must also provide the technical support necessary to ensure that these packages can be used successfully by our customers. Field Applications support in the local sales offices, technical information such as this Application Note, and packaging consultants at Fujitsu's San Jose headquarters all provide this support. 1-158 CMOS Channflled Gate Arrays Application Notes References Applications Engineering Staff. Points and Problems on Reliability and Mounting of Surface Mount ICs. Fujitsu Limited,1988. Hoshino, H. and K. Gotanda. Reliability of Surface Mount ICs. Fujitsu Limited, 1987. Kane, Jim. Surface Mount Technology. Santa Clara: Fujitsu Microelectronics Inc.; August 1986. Fujitsu Limited, Semiconductor Marketing. Integrated Circuits Quality and Reliability. Tokyo, Japan: Fujitsu Limited, 1984. Mather, John C. "A Status Report on Multilayer Circuit Boards." Proceedings, 30th Electronic Components Conference. 1980, pp 302-306. Vest, Roger. "How to Design a Fine Pitch Footprint." Nepcon East: 1988. .. 1-159 Application Notes 1-160 CMOS Channeled Gate Arrays Section 2 UHB Series CMOS Gate Array Unit Cell Library I Page Contents 2-2 2-5 2-15 2-31 2-47 2-53 2-59 2--69 2-77 2-85 2-107 2-117 2-157 2-185 2-217 2-225 2-243 2-255 2-283 2-287 2-293 Unit Cell Specification Information Inverter and Buffer Family NAND Family NOR Family AND Family OR Family EXNOR/EXOR Family AND-OR-Inverter Family OR-AND-Inverter Family Multiplexer Family Clock Buffer Family Scan Flip-flop (Positive Edge Type) Family Non-Scan Flip-flop Family Binary Counter Family Adder Family Data Latch Family Shift Register Family Parity Generator/Selector/Decoder Family Bus Driver Clip Cells 110 Buffer Family 2-403 2-405 2-407 2-413 2-415 2-419 Appendix A: General AC Specifications Appendix B: Hierarchical Structure Appendix C: Estimation Tables for Metal Loading Appendix D: Available Package Types Appendix E: TTL 7400 Function Conversion Table Appendix F: Alphanumeric Index of Unit Cells I 2-1 UHB Series Unit Cell Library CMOS Channeled Gate Arrays Unit Cell Specification Information This section contains specifications for all the unit cells available for the UHB Series CMOS Gate Arrays. The unit cell (gate array) is a functional group of one or more basic cells or gates. A basic cell contains one pair of P-channel and one pair of N-channel transistors. How to Read a Unit Cell Specification The following paragraphs numbered 1-10 explain how the information given in the UHB Unit Cell Library is organized. Each of the numbers corresponds to an area of the Unit Cell Library page illustrated on the right. 1. The unit cell name appears in the upper left corner of the page. 2. The unit cell function is given on the same line as the unit cell name. 3. The number of basic cells (BC) or equivalent that make up the unit cell is shown in the upper right corner of the page. 4. Propagation delay parameters for the unit cell are given in a table on the upper right side of the page. The basic delay time of the unit cell (to) is given in ns. KCL, the delay constant for the cell (delay time per load unit) is given in ns/pF. KCL2 and COR2 are a delay constant and an output drivinm factor used to calculate delay when a unit cell is loaded beyond its published output driving factor (CDR)· 5. The cell (logic) symbol is shown in the top left box under the cell name. 6. Clock parameters (in ns) for unit cells such as flip-flops and counters that make use of clock signals are given in a table directly below the propagation delay parameters. 7. Input loading factors are shown in a table directly under the cell symbol box on the left side of the page. The input loading factor is the value of the load placed on a net by the connection of the unit cell input. Unit cell loading factors are shown in load units (Iu). The Fujitsu CMOS load unit is the input capacitance of an inverter used for the measurement and calculation of capacitive loads presented to unit cells within the gate array. 8. The output drive factor is shown directly under the input loading factor. The output drive factor is the maximum number of load units the unit cell can drive while performing at published specifications. 9. The function (truth) table, if applicable, is shown in a box at the lower left side of the page. 10. The unil cell schematic, or equivalent circuit, illustrates how discrete components would be connected to perform the unit cell function. II is shown in the lower righl corner of the page or on the page following. 2-2 CMOS Channeled Gate AtTars UHB Series Unit Call Ubrary I FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name 1 T2D NumberofBC 2 2:1 SYlector I CeASymbol Propagation Delay Parameter I 2 3 A to KCL to KCL 0.50 0.54 0.15 0.15 0.56 0.41 0.10 0.10 Path CDR2 A,B~X S~X p-X '--- 6 Parameter Pin Name Input Loading Factor (Iu) A,B 5 1 1 Pin Name Output Driving Factor (Iu) X 14 8 Typ(ns)* Equivalent Circuit Inputs Output A B 51 S2 X L H X X L L H H X X L L H H L H L H H H L L L H L H H L H L INHIBIT INHIBIT INHIBIT INHIBIT L H H H L L Symbol * Minimum values for the typical operating conditon. The values for the worst case operating condition are given by the maximum delay mUltiplier. Function Table 9 KCL2 - B:::O SI S2- 7 tdn \up 4 5 UHB Version Function A 10 f-o B X - 51 S2 UHB-T2D-E2 Sheet 111 I I Page 17-17 2-3 UHB Series Unit CfIIl LibrIllY 2-4 CMOS Channflled Gate Amrys CMOS Channeled Gale AlTBys UHB Series Unit Cell Ubrarr Inverter and Buffer Family Basic UnRCeIl Page Name 2-7 V1N Inverter 2~ V2B Power Inverter 1 2-9 V1L Double Power Inverter 2 2-10 B1N True Buffer 2-11 BD3 True Delay Buffer (> 5 ns) Function Cells 1 5 2-12 BD4 Delay Cell (>4ns) 4 2-13 BD5 Delay Cell (>10 ns) 9 2-14 BDS Delay Cell (>22 ns) 17 2-5 CMOS CharrnBIsd Gate Anays 2-6 I "URB" Version I Number of BC FUJITSU C~OS GATE ARRAY UNIT CELL SPECIFICATION Cell Name _I Function I I Inverter V1N Cell Symbol to 0.28 A ~ Propagation Delav Parameter tup tdn KCL to KCL KCL2 CDR2 0.16 Pin Name X 0.09 0.12 4 Path A ... X X Parameter Pin Name A 0.35 1 Symbol Typ(ns)* Input Loading Factor (Rou) 1 Output Driving Factor (Rou) 18 * UHB-V1N-E1 I Sheet 1/1 I Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum de1av multiplier. I Page 1-1 2-7 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Power Inverter V2B Cell Svmbol A -{>o- I Propagation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 0.25 0.08 0.05 7 0.25 0.08 Pin Name Input Loading Factor (R.u) A 2 Path A'" X Symbol Typ(ns)* Output Driving Factor (R.u) 36 * UHB-V2B-El I Sheet 1/1 I 2-8 1 X Parameter Pin Name X I UHB Version I Number of BC Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. I Page 1-2 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Inverting Clock Buffer V1L Cell Symbol A I UHB" Version I Number of BC I Propagation Delay Parameter tup tdn KCL2 CDR2 KCL to KCL to 0.04 0.03 0.67 0.35 --{»- 2 Path A ... X X Parameter Pin Name A Input Loading Factor (.tu) 4 Pin Name X Output Driving Factor (.tu) 55 Symbol Typ(ns)* * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. UHB-VIL-E2 I Sheet 1/1 1 JPaJ!:e 1-3 2-9 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I True Buffer BIN Cell Symbol Pro~aEation tup to 0.58 A -+- KCL 0.16 to 0.68 I UHB Version I Number of BC I Delav Parameter tdn KCL KCL2 CDR2 0.08 1 Path A .. X X Parameter Pin Name A Input Loading Factor (lu) 1 Pin Name X Output Driving Factor (.tu) 18 Symbol Typ(ns)'" * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. UHB-BIN-El I Sheet 1/1 I 2-10 I Page 1-4 ----'-- FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Delay Cell BD3 Ce11 Symbol A I Pro;agation Delay Parameter tup tdn to KCLZ CDRZ KCL to KCL 4 5.33 0.16 4.71 0.12 0.13 5 Path A .. X -[>---x Parameter Pin Name A Pin Name X I ORB Version I Number of BC Symbol Typ(ns)* Input Loading Factor (lu) 1 Output Driving Factor (.r.u) 18 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multit:llier. UHB-BD3-El I Sheet 1/1 I I Page 1 5 2-11 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Delay Cell BD4 Cell Symbol Pro~a2ation tup to KCL 3.56 0.57 A to 4.10 I "ORB Version I Number of BC I Delay Parameter tdn KCL2 CDR2 KCL 4 0.36 0.31 4 Path A-+X --[>--x Parameter A Input Loading Factor (lu) 4 Pin Name X Output Driving Factor (1u) 6 Pin Name Symbol Typ(ns)* * Minimum values for the typical operating condition. The valuea for the worst case operating condition are 2iven bv the maximum delav multiplier. UHB-BD4-E2 I Sheet 1/1 I 2-12 I Page 1-6 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Delav Cell BD5 Cell Symbol I "UHB Version I Number of BC I Proilal/;ation Delav Parameter tup tdn to KCL to KCL KCL2 CDR2 10.92 0.16 10.35 0.15 4 0.10 9 Path A-+X A -{>-X Parameter Pin Name A Pin Name X Svmbol 1'yp(ns) * Input Loading Factor (R.ul 1 Output Driving Factor (R.u) 18 * UHB-BD5 E1 I Sheet 1/1 I Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Page l-i 2-13 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function J Delay Cell BD6 Cell Svmbol I UHB Version I Number of BC I Pronaltation Delav Parame"t1!T tun tdn to KCL to KCL KCL2 CDR2 0.14 22.00 0.17 21.82 0.09 4 17 Path A-+X A-{>-X Parameter Pin Name A Pin Name X Symbol Typ(ns)* Input Loading Factor (Jtu) 1 Output Driving Factor (Jtu) 18 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multinlier. UHB-BD6-El I Sheet 1/1 I 2-14 I Page 1-8 CMOS Channeled Gate Arrays UHB Series Unit Cell Ubraty NAND Family Page Unit Cell Name 2-17 N2N 2-18 N2B Power 2-input NAND 3 2-19 N2K Fast Power 2-input NAND 2 2-20 N3N 3-input NAND 2 2-21 N3B Power 3-input NAND 3 2-22 N4N 4-input NAND 2 2-23 N4B Power 4-input NAND 4 2-24 N6B Power 6-input NAND 5 2-25 N8B Power 8-input NAND 6 2-26 N9B Power 9-input NAND 8 2-27 NCB Power 12-input NAND 10 2-28 NGB Power 16-input NAND 11 2-29 N3K Fast Power 3-input NAND 3 2-30 N4K Fast Power 4-input NAND 4 Function Basic Cells 2-input NAND 2-15 UHB Series Unit Cell Library 2-16 CMOS Channeled Gate AlTBYs FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I 2-input NAND N2N Cell Symbol A1 A2 =C?- I "UHB" Version I Number of BC I Propagation Delav Parameter tup tdn to KCL to KCL KCL2 CDR2 0.37 0.16 0.56 0.14 1 Path A~X X Parameter Pin Name A Input Loading Factor (J1.u) 1 Pin Name X Output Driving Factor (J1.u) 18 Symbol Typ(ns)'" * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. UHB-N2N E2 I Sheet 1/1 I I Page 2-1 2-17 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Power 2-input NAND N2B Cell Svmbol Al A2 "UHB" Version I Number of BC I Propagation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 1.10 0.08 1.42 0.04 =C?- 3 Path A->X X Parameter Pin Name A Input Loading Factor (.tu) 1 Pin Name X Output Driving Factor J.tu) 36 Symbol Typ(ns)* * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. UHB-N2B-E2 I Sheet 1/1 I 2-18 I Page 2-2 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Power 2-input NAND N2K Cell Svmbol Al A2 I Prota2ation Delav Parameter tu'P tdn to KCL to KCL KCL2 CDR2 0.08 0.43 0.07 0.09 7 0.37 :::if- 2 Path A-+X X Parameter Pin Name A Input Loading Factor (R.u) 2 Pin Name Output Driving Factor (R.u) 36 X I UHB Version I Number of BC Svmbol Typ(ns)'" ,., Minimum values for the typical operatins condition. The values for the worst case operatins condition are given by the maximum delay multi'Plier. UHB-N2K-E2 I Sheet: 1/1 I I Page 2--.3.. 2-18 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I 3-input NAND N3N Cell Svmbol A1 A2 A3 =0- I "UHB" Version I Number of BC I ProJ:agation Delay Parameter tup tdn to to KCL2 CDR2 KCL KCL 0.52 0.16 0.69 0.19 2 Path A"X X Parameter Pin Name A Input Loading Factor (.tu) 1 Pin Name X Output Driving Factor (.tu) 14 Symbol Typ(ns)* * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. UHB-N3N-E2 I Sheet 1/1 I 2-20 I Page 2-4 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Power 3-input NAND N3B Cell Svmbol Pro~agation to 1.28 Al A2 A3 =:j}- tUJ) KCL 0.08 to 1.70 Pin Name X I Delav Parameter tdn KCL KCL2 CDR2 0.04 3 Path A'" X X Parameter Pin Name A L "UHB" Version I Number of BC Symbol Typ(ns)* Input Loading Factor (R.u} 1 Output Driving Factor (R.u) 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are ltiven bv the maximum delay multiplier. UHB-N3B-E2 I Sheet 1/1 I Page 2-5 2-21 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name .1 Function I 4-input NAND N4N Cell Symbol A1 A2 A3 A4 ill- I UHB Version 1Number of BC I ProllaJtation Delay Parameter tup tdn to to KCL KCL KCL2 CDR2 0.62 0.16 0.74 0.24 2 Path A-+X X Parameter Pin Name A Input Loading Factor (R.u) 1 Pin Name X Output Driving Factor (R.u) 10 Symbol Typ(ns)* * Minimum values for the typical operating condition. The values for the worst case operating condition are Jtiven by the maximum delay multiplier. UHB-N4N-E2 I Sheet: 111 I 2-22 I Page 2-6 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Power 4-input NAND N4B Cell Symbol Al A2 A3 A4 I Propagation Delav Parameter tup tdn to KCL to KCL KCL2 CDR2 1. 38 0.08 1. 90 0.04 m- Pin Name X 4 Path A--X X Parameter Pin Name A I UHB Version I Number of BC Symbol Typ(ns)~' Input Loading Factor (.tu) 1 Output Driving Factor (iu) 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. UHB-N4B-E2 I Sheet lllL I Page 2-7 2-23 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I I Power 6-input NAND N6B Cell Symbol Al A2 A3 A4 AS A6 Pin Name X Pro,agation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 0.07 1..37 0.08 2.02 0.04 7 ID- Pin Name A I UHB Version I Number of BC 5 Path A ... X X Parameter Symbol Typ(ns)* Input Loading Factor (lu) 1 Output Driving Factor (lu) .36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit Al A2 A.3 X A4 AS A6 UHB-N6B-E2 I Sheet 1/1 I 2-24 I Page 2-8 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function N8B Ce 11 Symbol Al A2 A3 A4 AS A6 A7 A8 I ORB Version I Number of BC I Power 8-input NAND ProJ:a.l1;ation Delav ParameJ:er tun tdn to KCL to KCL KCL2 CDR2 1.44 0.08 2.21 0.04 0.07 7 6 Path A->X _r-, :>-- X -,./ Parameter Pin Name A Input Loading Factor (R.u) 1 Pin Name X Output Driving Factor (R.lll 36 * Symbol Typ(ns)* Minimum values for the typical operating condition. The values for the worst case operating condition are ~iven bv the maximum de1av multiplier. Equivalent Circuit Al _r-, A2 A3 A4 -L../ AS _r-, A6 A7 A8 -L../ UHB-N8B-E2 I Sheet 1/1 I X Page 2-9 2-25 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function N9B Cell Svmbol Power 9-input NAND Pro~agation tup to 1.42 KCL 0.08 to 2.66 I "UHll Version I Number of BC I Delay Parameter tdn KCL KCL2 CDR2 0.05 0.09 7 8 Path A -+ X A1-f"'I A2A3 A4 ::>-- X AS - A6 A7 A8 A9 -,../ Parameter Pin Name A Input Loading Factor (.tu) 1 Pin Name X Output Driving Factor (.tu) 36 Svmbol 1YP(ns)* * Minimum values for the typical operating condition. The values for the worst case operating condition are R:iven by the maximum delay multiplier. Equivalent Circuit Al A2 A3 A4 AS A6 X A7 A8 A9 UHB-N9B-E2 I Sheet 1/1 I 2-26 I Pue 2-10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function NCB Power 12-input NAND Cell Symbol Pro~a~ation tup to 1.52 Al A2 A3 A4 AS KCL O.OS to 2.S6 I UHB Version I Number of BC I Delav Parameter tdn KCL2 CDR2 KCL 0.05 0.09 S 10 Path A-+X _r"I - A6 :>-- X A7 AS A9 AIO All A12 - . . / Pin Name A Pin Name X Parameter Symbol ~(ns)* Input Loading Factor (R.u) I Output Driving Factor (R.u) 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit Al _r"I A2 PA3 A4 - L . / AS A6 A7 AS _ ...... -../ X A9 - , AI0- p-AllAl2-J UHB-NCB-E2 I Sheet 1/1 I I Fag" 2-11 2-27 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function NGB Cell SYDlbol Al A2 A3 A4 AS A6 A7 A8 A9 AlO All AI2 Al3 AI4 Als Al6 Power I6-in.p_ut NAND I UHB Version 1 Number of BC I Prota2ation Delav Parameter tup tdn to KCL KCL2 CDR2 to KCL 1.53 0.08 3.47 0.06 0.09 8 --'""" -- -- 11 Path A-+X 0-- X - Parameter Symbol Typ' ns)'~ -l,../ Pin Name A Pin Name X Input Loading Factor (iu) 1 Output Driving Factor (iu) 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are 2iven by the maximum delay multiplier. Equivalent Circuit Al -'""" A2 pA3 A4 - . " AS _r-A6 A7 ~r-A8 -l,../ I......( ~X A 9-W AlO"cL/ A11AI2-L/ AI3-r--. Al4AlS- PAI6 -L/ UHB-NGB-E2 I Sheet 1/1 I 2-28 I Page 2-12 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Power 3-input NAND N3K Cell Symbol Al A2 A3 I UHB Version I Number of BC I Propagation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 0.48 0.07 0.65 0.08 =v- 3 Path A'" X X Parameter Pin Name A Input Loading Factor (R.u) 2 Pin Name X Output Driving Factor (R.u) 28 Symbol Typ(ns)* * Minimum values for the typical operating condition. The values for the worst case operating condition are ~iven bv the maximum delay multiplier. UHB-N3K-El I Sheet 1/1 I I Page 2-13 2-29 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Power 4-input NAND N4K Cell Symbol Pro~agation tup to 0.56 Al A2 A3 A4 ~ KCL 0.07 Pin Name X 4 Path A -+ X Symbol Typ(ns)* Input Loading Factor. (.tu) 2 Output Driving Factor (.tu) 20 * UHB-N4K-E1 I Sheet 1/1 I 2-30 I Delay Parameter tdn KCL KCL2 CDR2 0.10 X Parameter Pin Name A to 0.76 I "UHB" Version I Number of BC Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. I Page 2-14 CMOS Channeled Gate Amlys UHB Series Unit Cell Ubrary NOR Family UnRCeIl Page Name Function Basic Cells 2-33 R2N 2-inputNOR 1 2-34 R2B Power 2-input NOR 3 2-35 R2K Power 2-input NOR 2 2-36 R3N 3-inputNOR 2 2-37 R3B Power 3-input NOR 3 2-38 R4N 4-inputNOR 2 2-39 R4B Power 4-input NOR 4 2-40 R6B Power 6-input NOR 5 2-41 RaB Power a-input NOR 6 2-42 R9B Power 9-input NOR a 2-43 RCB Power 12-input NOR 10 2-44 RGB Power 16-input NOR 11 2-45 R3K Power 3-input NOR 3 2-46 R4K Power 4-input NOR 4 2-31 UHB $erios Unit CoI'Library lflii 2-32 CMOS Ch9nnol9d Gate AlTBYs FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I 2-input NOR R2N Ce 11 Svmbo 1 Al A2 =t>-- I Pro.agation Delav Parameter tup tdn to to KCL KCL KCL2 CDR2 0.40 0.29 0.44 0.08 0.11 4 Pin Name X 1 Path A -+ X X Parameter Pin Name A I "UHB" Version I Number of BC Symbol Typ(ns)* Input Loading Factor _CR.u) 1 Output Driving Factor (R.u) 14 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. UHB-R2N-E2 I Sheet 1/1 I I Page 3-1 2-33 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Power 2-input NOR R2B Cell Svmbol Al A2 =t}- I 3 Propagation Delay Parameter tdn t~p to KCL to KCL KCL2 CDR2 0.04 1.36 0.08 1.25 Path A"" X Symbol Typ(ns X Parameter Pin Name Input Loading Factor (.eu) A 1 Pin Name X I UHB Version I Number of BC »'r Output Driving Factor (.eu) 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. UHB-R2B-E2 I Sheet 1/1 I 2-34 - I Page 3-2 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Func.ion I Power 2-input NOR R2K Cell Symbol Al A2 =V- I "UHB" Version I Number of BC I Propagation Delay PaTatneteT tup tdn to KCL to KCL KCL2 CDR2 0.45 0.14 0.45 0.06 2 Path A .. X X Parameter Pin Name A Input Loading Factor (.h) 2 Pin Name X Output Driving Factor (!u) 36 * UHB-R2K-E2 I Sheet 1/1 I Symbol Typ(ns)'~ Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. I Page 3-3 2-35 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I 3-input NOR R3N Cell SYlIIbol Al A2 A3 =&- I Prollaltation Delav Parameter tUl) tdn to KCL to KCL KCL2 CDR2 0.84 0.41 0.46 0.09 0.12 4 A Pin Name X 2 Path A -+ X X Parameter Pin Name I UHB Version I Number of BC SYlIIbol Typ(ns)* Input Loading Factor (R.u) 1 Output Driving Factor (R.u) 10 * Minimum values for the typical operating condition. The values for the worst case operating condition are Itiven bv the maximum delay multiplier. UHB-R3N-E2 I Sheet 1/1 I 2-36 r Page 3-4 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Power 3-input NOR R3B Cell Symbol Al A2 A3 =&- Pin Name X Version I Number of BC "UH]" I Propagation Delav Parameter tup tdn KCL2 CDR2 to KCL to KCL 0.08 1.37 0.04 1. 99 3 Path A-+X X Parameter Pin Name A J Symbol Tvo(ns)* Input Loading Factor (.tu) I Output Driving Factor (.tu) 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are J;:iven by the maximum delay multiplier. UHB-R3B-E2 I Sheet 1/1 I I Page 3-5 2-37 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I 4-input NOR R4N Cell Svmbol A1 A2 A3 A4 ~ I Propagation Delav Parameter tup tdn to KCL to KCL KCL2 CDR2 1.24 0.54 0.46 0.09 0.13 4 Pin Name X Path A ... X Symbol TD(ns)'" Input Loading Factor (.tu) 1 Output Driving Factor (.tu) 6 * UHB-R4N-E2 I Sheet: 1/1 I 2-38 2 X Parameter Pin Name A I "UHB" Version I Number of BC Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multi!llier. _. I Page 3-6 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Power 4-input NOR R4B Cell Symbol Al A2 A3 A4 ~ I UHB Version I Number of BC I Propa2ation Delay Parameter tup tdn to to KCL2 CDR2 KCL KCL 0.08 0.04 2.50 1.34 4 Path A'" X X Parameter Pin Name A Input Loading Factor (Rou) 1 Pin Name X Output Driving Factor (Rou) 36 Symbol Tvp(ns)* * Minimum values for the typical operating condition. The values for the worst case operating condition are Kiven bv the maximum delay multiplier. UHB-R4B-E2 I Sheet 1/1 I rPage 3-; 2-39 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Power 6-input NOR R6B Cell Symbol Al A2 A3 A4 AS A6 l- Pin Name A Pin Name X I UHB Version I Number of BC I Propagation Delav Parameter tdn t~ to ·KCL2 CDR2 KCL to KCL 2.25 0.08 1.48 0.04 5 Path A-+X X Parameter Symbol Typ(ns)* Input Loading Factor (Lu) 1 Output Driving Factor Clu) 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A1-n. A2 A3-b! X A4-n. A5'--I:! A6 UHB-R6B-E2 I Sheet 1/1 I 2-40 I Page 3-8 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function RBB Cell Symbol I UHB Version I Number of BC I Power B-input NOR Pro!,agation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 2.B4 O.OB 1.51 0.04 6 Path A'" X A1-~ ,A2 1A3 A 4 - f-p.X rA5 IA6 IA7 AB - t 7 Parameter Pin Name A Input Loading Factor (.tu) 1 Pin Name X Output Driving Factor (.tu) 36 * Symbol TvP(ns)" Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A1 _c::. A2 - ,A3 - :A4 -t7 X A5 _c::. A6 - IA7 - IAB -t7 UHB-RBB-E2 Sheet 1/1 I Page 3-9 2-41 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function R9B Cell Svmbol "UHB" Version I Number of BC I Power 9-input NOR Prollagation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 2.49 1.68 0.04 0.08 - 8 Path A .. X Al -P> rA2 fA3 A 4 - fX AS A6 A7 A8 A9 - ' : ; J Parameter Pin Name A Pin Name X Symbol Typ(nsl* Input Loading Factor (R.u) 1 Output Driving Factor (R.u) 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given bv the maximum delay multiplier. Equivalent Circuit Al A2 A3 -A. -b! -n. ~-b! -n. -b! A4 A7 A8 A9 ~ r UHB-R9B-E2 I Sheet 1/1 I 2-42 X I Page 3-10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Power l2-input NOR RCB Cell Symbol Al A2 A3 A4 AS I "UHB" Version I NllIDber of BC I Propagation Delay Parameter tuP tdn to KCL to KCL KCL2 CDR2 2.74 0.08 0.04 1. 75 10 Path A .... X -~ - - ..... ~ ~ ~ A6 I-p-X ~ A7 IA8 ~ A9 ~ AlO IAll A12 -I::;:> Pin Name A Input Loading Factor (.tu) 1 Pin Name X Output Driving Factor (.tu) 36 Symbol Parameter * TVtl (ns ) ,', Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximlllD delay multiplier. Equivalent Circuit Al A2 A3 A4 AS A6 A7 A8 A9 --n -b! --A. -bJ -n. -bJ I L-.cP X l--(b4- Al0---F\ All A12-b! UHB-RCB-E2 Sheet 1/1 I I Page 3-11 2-43 FUJITSU C~OS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function RGB Cell Svmbol Power I6-input NOR tun -p. Al A2 A3 A4 AS A6 A7 A8 A9 AIO All AI2 Al3 Al4 AIS Al6 -- KCL 0.08 I Delav Parameter tc1n to KCL KCL2 CDR2 0.04 1.82 Pro~a2ation to 3.43 I UHB Version I Number of BC 11 Path A -+ X ffffff- '-0-- X ,- frrffr-t::;:> Parameter Pin Name A Input Loading Factor (R.u) 1 Pin Name X Output Driving Factor (R.u) 36 Symbol Typ(ns)* * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit Al -I==:> -i- A2 A3 - t A4 -t::; AS -::::, A6 - A7 A8 -::;0 --f1 -1,J A9 AIO-All-AI2-:::::: -c~ -ct::;{---t»- X A13-p A14~ AIS A16 UHB-RGB-E2 I Sheet 1/1 I 2-44 I Page 3-12 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Power 3-input NOR R3K Cell Symbol Al A2 A3 =t1- I UHB Version I Number of BC I Propagation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 0.66 0.17 0.32 0.04 0.07 7 3 Path A .. X X Parameter Pin Name A Input Loading Factor (lu) 2 Pin Name X Output Driving Factor (lut 20 Symbol Typ(ns)* * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. UHB-R3K-El I Sheet 1/1 I Page 3-13 2-45 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Power 4-input NOR R4K Cell Symbol Pro~agation tup to 1.08 Al A2 A3 A4 ~ KCL 0.23 to 0.35 I UHB Version I Number of BC I Delay Parameter tdn KCL2 CDR2 KCL 0.03 0.05 7 4 Path A->X X Parameter Pin Name A Input Loading Factor (.tu) 2 Pin Name X Output Driving Factor (.tu) 12 Symbol 1"yp(ns)* * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. UHB-R4K-El I Sheet 1/1 I 2-46 I Page 3-14 UHB Series Unit Cell UbraIY CMOS Channeled Gate Amlys AND Family Basic UnH Cell Page Name 2-49 N2P Power 2-input AND 2 2-50 N3P Power 3-input AND 3 2-51 N4P Power 4-input AND 3 2-52 N8P Power 8-input AND 6 Function Cells 2-47 UHB Seri9$ Unit Ce/lLibraIy 2-48 CMOS Channeled Gate AmI)'s FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Power 2-input N2P Cell Symbol Al A2 =D- L UHB Version I Number of BC I AND Propagation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 1. 01 0.08 0.86 0.04 0.06 7 2 Path A ... X X Parameter Pin Name A Input Loading Factor (R.u) 1 Pin Name X Output Driving Factor (R.u) 36 * UHB-N2P-E21 Sheet 1/1 J Symbol Typ(ns)* Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. I Page 4-1 2-49 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Funcdon I Power 3-input N3P Cell Svmbol A1 A2 A3 =v- UHB" Version I Number of Be I AND Prooagation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 1.32 0.08 1.07 0.04 0.06 7 3 Path A .. X X Parameter Pin Name A Input Loading Factor (Jlu) 1 Pin Name X Output Driving Factor (Jlu) 36 Symbol TYPJns)* * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. UHB-N3P-E2 I Sheet 1/11 2-50 Page 4-2 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Power 4-input N4P Cell Symbol A1 A2 A3 A4 ~ UHB" Version I Number of BC I AND Propagation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 0.08 0.04 0.06 8 1.58 1.19 3 Path A .. X X Parameter Pin Name A Input Loading Factor _LR.u) 1 Pin Name X Output Driving Factor (R.u) 36 Symbol Typ(ns)* * Minimum values for the typical operating condition. The values for the worst case operating condition are g;iven by the maximum delay multiplier. UHB N4P-E2 I Sheet 1/1 I I Page 4-3 2-51 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function NSP Cell Symbol I "UHB Version I Number of BC I Power S-input AND Propagation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 0.04 0.06 1.72 0.14 1.45 S Al _ r " I A2 A3 A4AS - 6 Path A .. X t--- X A6 A7 AS - L . , / Parameter Pin Name A Input Loading Factor (iu) 1 Pin Name X Output Driving Factor (iu) 36 Symbol Typ(ns)* * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit Al -'"'" A2 A3 A4 - , . - I X AS -'"'" A6 A7 AS - , . - I UHB-N8P-E2 2-52 Sheet 1/1 I I Page 4-4 CMOS ChannslBd Gats .4mrys UHB Series Unit Cell Ubrarr OR Family Basic Unit Cell Page Name 2-55 R2P Power 2-input OR 2 2-56 R3P Power 3-input OR 2-57 R4P Power 4-input OR 3 3 2-58 R8P Power 8-input OR 6 Function Cells 2-53 UHB Series Unit Cell Librsty 2-54 CMOS ChanneI8d Gate Arrays FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Power 2-input OR R2P Cell Symbol Al A2 =tJ- I Propagation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 0.78 0.08 1.14 0.05 0.07 8 Pin Name X 2 Path A -+ X X Parameter Pin Name A I "UHB Version I Number of BC Symbol Typ(ns)~' Input Loading Factor (Rou) 1 Output Driving Factor (Rou) 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. UHB-R2P-E2 I Sheet 1/1 I I Page 5-1 2-55 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Power 3-input OR R3P Ce 11 Symbo 1 A1 A2 A3 =&- I Prollagation Delay Parameter tup tdn to KCL2 CDR2 KCL to KCL 0.90 0.08 1.84 0.06 0.08 8 Pin Name X 3 Path A -+ X X Parameter Pin Name A I UHB Version I Number of BC Symbol Typ(ns)~' Input Loading Factor (Rou) 1 Output Driving Factor _CRou) 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. UHB-R3P-E2 I Sheet 1/1 I 2-56 I Page 5-2 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Power 4-input OR R4P Cell Symbol Al A2 A3 A4 ~ I Propagation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 0.10 0.90 0.08 2.52 0.07 8 Pin Name X 3 Path A -+ X X Parameter Pin Name A I "UHB Version I Number of BC - Symbol Typ(ns);' Input Loading Factor (iu) I Output Driving Factor (iu) 36 * UHB-R4P-E2 I Sheet 1/1 I Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Page 5-3 2-57 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function R8P Cell Symbol I ORB Version I Number of BC I Power 8-input OR Prolla.v;ation Delav Parameter tu'O tdn to to KCL KCL KCL2 CDR2 0.98 0.08 2.68 0.08 0.10 8 6 Path A-+X A1-=::' A2 - , A3 - A4 - r--- X AS - i- A6 - i IA7 A8 -t::;7 Parameter Pin Name A Pin Name X Symbol Typ(ns)* Input Loading Factor (.tu) 1 Output Driving Factor (.tu) 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are .v;iven by the maximum delay multiplier. Equivalent Circuit Al - p A2 - IA3 - IA4 - b AS -=::. A6 - A7 - A8 -:::;; UHB-R8P-El I Sheet 1/1 I 2-58 X I Page 5-4 CMOS Chsflllflled Gate Amlys UHB Series Unit Cell Ubra7 EXNOR/EXOR Family Basic Cells Page Un" Cell Name 2-91 X1N Exclusive NOR 2-92 X1B Power Exclusive NOR 4 2-63 X2N Exclusive OR 3 2-94 X2B Power Exclusive OR 4 2-95 X3N 3-input Exclusive NOR 5 2-96 X3B Power 3-input Exclusive NOR 6 2-97 X4N 3-input Exclusive OR 5 2-68 X4B Power 3-input Exclusive OR 6 Function 3 2-59 UHB Series Unit CsII Ubraty 2-60 CMOS Channeled Gale Anays FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function I Exclusive NOR XIN Cell Symbol Pro~agation tup to 1.16 Al A2 =ID>- KCL 0.29 Pin Name X I Delay Parameter tdn KCL KCL2 CDR2 0.13 4 0.16 3 Path A'" X X Parameter Pin Name A to 0.96 J UHB . Version I Number of BC Symbol Typ(ns)* Input Loading Factor (1u) 2 Output Driving Factor (R.u) 18 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit Al A2 ~ I UHB-X1N-E2 I Sheet 1/1 I cV-X I Page 6-1 2-61 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Power Exclusive NOR XIB Cell Svmbol Prona~ation tun to 1.49 Al A2 KCL 0.08 to 1.77 I "UHB" Version I Number of BC I Delay Parameter tdn KCL KCL2 CDR2 0.05 0.09 7 4 Path A ... X =W- x Parameter Pin Name A Input Loading Factor (.tu) 2 Pin Name Output Driving Factor (.tu) X Svmbol Typ(ns)* 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit Al A2 =re I ORB XIB-E2 LSheet 1/1 I 2-62 tr»-x I Pag;e 6-2 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Exclusive OR X2N Cell Svmbol Al A2 =ID- I "UHB" Version I Number of BC I Propagation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 0.29 1.17 0.13 0.16 4 1.11 3 Path A ... X X Symbol Parameter Pin Name A Input Loading Factor (lu) 2 Pin Name X Output Driving Factor (lu) 14 Typ(ns)~' * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A1 A2 ~ L=-cV- UHB-X2N-E2 I Sheet 1/1 I X I Page 6-3 2-63 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Power Exclusive OR X2B Cell Symbol Al A2 I Proj:agation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 0.07 1.43 0.08 1.64 0.05 7 =©- Pin Name X 4 Path A-+X X Symbol Parameter Pin Name A I ORB" Version I Number of BC Typ(ns)~' Input Loading Factor (R.u) 2 Output Driving Factor (R.u) 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. EqUivalent Circuit Al A2 =re I UHB-X2B-E2 I She.et 1/1 I 2-64 cV--V- X I Page 6-4 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I 3-input Exclusive NOR X3N Cell Symbol Al A2 A3 I Number of BC j Propagation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 2.72 0.29 2.32 0.13 0.16 4 =9- 5 Path A ... X X Parameter Pin Name A Input Loading Factor (R.u) 2 Pin Name Output Driving Factor (R.u) X 1 "UHB Version Symbol Typ(ns)'" 18 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A2 A3 Al ~ UHB-X3N-E2 I Sheet 1/1 I X _. Page 6-5 2-65 I "UHB Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Power 3-input Exclusive NORPropagation Delay Parameter I X3B Cell Svmbol tup to 2.64 Al A2 A3 =w- KCL 0.08 Pin Name X tdn KCL KCL2 0.05 0.09 CDR2 7 Path A-+X X Parameter Pin Name A to 3.39 6 Svmbol Typ(ns)* Input Loading Factor (Rou) 2 Output Driving Factor (Rou) 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are ltiven by the maximum delay multiplier. Equivalent Circuit A2 A3 Al ~ UHB-X3B-E2 I Sheet 1/1 I 2-66 X r Page 6-6 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name 'Function I 3-input Exclusive OR X4N Cell Svmbol Al A2 A3 Version , Number of BC '''UHB I Propagation Delay Parameter tup tdn to to KCL KCL KCL2 CDR2 4 2.82 0.29 2.53 0.13 0.16 5 Path A'" X =ID-x Parameter Pin Name A Input Loading Factor (Lu) 2 Pin Name X Output Driving Factor (Lu) 14 * Svmbol Typ(ns)* Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A2 AS Al ~ UHB-X4N-E2 , Sheet 1/1 , X Page 6-7 2-67 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I UHB Version I Number of BC I Power 3-inDut Exclusive ORProj:ag_ation Delay Parameter I X4B Cell Svmbol to 2.4; Al A2 A3 =W- tUD Jct 0.08 to 3.13 tdn KCt KCt2 0.07 0.05 CDR2 7 6 Path A .. X x Parameter Pin Name A Input Loading Factor (.tu) 2 Pin Name X Output Driving Factor (lu) 36 Symbol Typ(ns)* * Minimum valuea for the typical operating condition. The values for the worst case operating condition are given by the maximum delay lIul ti Dlier • Equivalent Circuit A2~ A3 A1 UHB-X4B-E2 2-68 Sheet 1/1 I X I Page 6-8 UHB Selie. Unit Cell Library AND-OR-Inverter Family (AOt) Unit Cell Page Name Function BasIC Cells 2-71 023 2 AND Into 2 NOR AOI 2 2-72 014 3 AND Into 2 NOR AOI 2-73 024 2, 2 ANDS Into 2 NOR AOI 2 2 2-74 2-75 D34 D36 2 AND Into 3 NOR AOI 2 3, 2 ANDS Into 3 NOR AOI 3 2-76 D44 2 OR into 2 AND inot 2 NOR AOl2 2-69 CMOS ChannrIIed Gate Am. 2..70 "UHB" Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I 2-wide 2-AND 3-input AOI ProJ:agation Delay Parameter I D23 Cell Svmbol tup to 0.73 0.37 Al A2 B ~ KCL 0.29 0.22 to 0.68 0.37 tdn KCL KCL2 0.14 0.09 0.12 CDR2 2 Path A~X 4 B ~ X X Parameter Pin Name A B Input Loading Factor (J1.u) 1 1 Pin Name X Output Driving Factor (J1.u) 14 Symbol Typ(ns)* * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. UHB-D23-El I Sheet lLll I Page 7-1 2-71 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I tJ1iB Version J Number of BC I 2-wide 3-AND 4-input AOI Pro;agation Delav Parameter I D14 Cell Svmbol tup to 0.90 0.32 Al A2 A3 B ~ KCL 0.29 0.20 Pin Name X tdn KCL KCL2 0.19 0.21 0.09 0.12 CDR2 4 4 Path A ... X B ... X X Parameter Pin Name A B to 0.70 0.36 2 Symbol Typ(ns)* Input Loading Factor (tu) 1 1 Output Driving Factor (tu) 14 * Minimum values for the typical operating condition. The values for the worst case operating condition are lI:iven by the maximum delay multiplier. UHB-DI4-El I Sheet 1/1 I 2-72 I Page 7-2 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I UHB Version I Number of BC I 2-wide 2-AND 4-input AO! Pro"J:agation DellaL Parameter I D24 Cell Svmbol tUt) to 0.54 0.67 Al A2 B1 B2 ~ KCL 0.22 0.22 Pin Name X tdn KCL KCL2 0.14 0.14 CDR2 Path A--X B ... X X Parameter Pin Name A B to 0.62 0.83 2 Symbol Typ(ns)* Input Loading Factor (iLu) 1 1 Output Driving Factor (iLu) 14 * UHB-D24-E2 I Sheet 1/1 I Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. I Page 7-3 2-73 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I UHB" Version I Number of BC I 3-wide 2-AND 4-input AD! Protal!;ation Delav Parameter I D34 Cell Svmbol tup to 1.15 0.62 Al A2 B1 B2 ~ KCL 0.41 0.35 Pin Name X CDR2 4 Path A .. X B .. X Symbol Typ(ns)* Input Loading Factor (J1.u) 1 1 Output Driving Factor (J1.u) 10 * UHB-D34-E2 I Sheet 1/1 I 2-74 tdn KCL KCL2 0.15 0.09 0.12 X Parameter Pin Name A B to 0.73 0.43 2 Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. I Page 7-4 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I "UMB Version I Number of BC I 3-wide 2-AND 6-input AOI Pro a2ation Delav Parameter I D36 Cell Svmbol tUl) to 0.77 0.98 1.17 KCL 0.28 0.28 0.28 to 0.72 0.87 1.02 tdn KCL KCL2 0.14 0.14 0.14 CDR2 3 Path A -+ X B-+X C-+X Al A2 B1 B2 X C1 C2 Parameter Pin Name A B C Pin Name X Svmbol Typ(ns)* Input Loading Factor (tu) 1 1 1 Output Driving Factor (.f.u) 10 * Minimum values for the typical operating condition. The values for the worst case operating condition are 2iven by the maximum delay multiplier. UHB-D36-E1 I Sheet 1/1 I I Page 7-5 2-75 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I UHB Version I Number of BC AOI I 2-wide 2-0R 2-AND 4-in1:lutProllagation I Delay Parameter D44 Cell Svmbol tup to KCL 1.04 0.41 1.03 0.41 0.99 0.29 A1 A2 B C to 0.78 0.64 0.48 tdn KCL KCL2 0.14 0.14 0.09 0.11 CDR2 4 2 Path A"X B" X C .. X ~, Parameter Pin Name A B C Input Loading Factor (Iu) 1 1 1 Pin Name X Output Driving Factor (lu) 10 Symbol Ty1J(ns)* * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. UHB-D44-E1J Sheet 1/1 I 2-76 r Page 7-6 CMOS Channeled Gale Arrays UHB Series Unil Cell Ubta/l OR-AND-Inverter Family (OAI) UnItCel! Basic Cells Page Name 2-79 G23 2 OR Into 2 NAND OAi 2 2-60 G14 3 OR into 2 NAND OAI 2 2-61 G24 2, 2 OR into 2 NAND OAI 2 2-62 G34 2 OR Into 3 NAND OAI 2-63 G44 2 AND into 2 OR into 2 NAND OAI 2 2 Function 2-77 UHB Series Unit Ce/l1.!I1r!y 2-78 CMOS ChaMeIsd Galli Ami)'! FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I 2-wide 2-0R 3-input OAI G23 Cell Symbol Al A2 B I I I 2 Path A" X B .. X X Parameter Pin Name X L Number of BC Propagation Delay Parameter tup tdn KCL to to KCL KCL2 CDR2 0.14 0.72 0.29 0.55 0.16 0.14 0.28 0.55 ~ Pin Name A B I UHB Version Symbol Typ(ns)'" Input Loading Factor (.eu) 1 1 Output Driving Factor (.eu) 18 * UHB-G23 E1 j Sheet 1/1 I Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Page 8-1 2-79 FUJITSU CMOS GATE ARRAY Cell Name I Function u~ITCELL SPECIFICATION I 2-wide 3-0R 4-input OAl G14 Cell Symbol Al A2 A3 B 2 Path A -+ X B -+ X X Parameter Pin Name X I Pro]:agation Delay Parameter tuo tdn to KCL to KCL KCL2 CDR2 1.20 0.42 0.65 0.14 0.25 0.16 0.65 0.14 ~ Pin Name A B I "UHB" Version I Number of BC Symbol Typ(ns)* Input Loading Factor (R.u) 1 1 Output Driving Factor (R.u) 10 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. UHB-G14-E1 I Sheet 1/1 I 2-80 I Page 8-2 FUJITSU CMOS GATE ARRAY Cell Name I Function u~IT CELL SPECIFICATION I 2-wide 2-0R 4-input OAI G24 Cell Symbol A1 A2 B1 B2 I "UHB Version I Number of BC I Pro al1:ation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 0.50 0.14 0.29 0.70 0.90 0.29 0.14 0.60 ~ Path A-+X B -+ X X Parameter Pin Name A B Input Loading Factor (R.ut 1 1 Pin Name X Output Driving Factor (R.u) 10 * UHB-G24-E2 I Sheet 1/1 I 2 Symbol Typ(ns)~' Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. I Page 8-3 2-81 FUJITSU CMOS GATE ARRAY Cell Name I Function u~IT CELL SPECIFICATION I 3-wide 2-0R 4-input OAI G34 Cell Svmbol Al A2 Bl B2 I Propagation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 0.95 0.29 0.70 0.19 0.70 0.19 0.45 0.16 ~ Pin Name A B Input Loading Factor (Lul 1 1 Pin Name X Output Driving Factor (Lu) 10 * UHB-G34-E2 I Sheet 1/1\ 2 Path A-+X B -+ X X Parameter 2-82 I "UMB" Version I Number of BC Symbol Typ{ns)* Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. r Page 8-4 FUJITSU C~OS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I IJHB Version I Number of BC OAI I 2-wide 2-AND 2-0R 4-inputProllaJ1;ation I Delav Parameter G44 Cell Svmbol tup to 0.73 0.43 0.50 Al A2 B C KCL 0.29 0.29 0.16 to 0.86 0.62 0.52 tdn KCL KCL2 0.19 0.19 0.14 CDR2 2 Path A"X B .. X C .. X ~x Parameter Pin Name A B C Pin Name X Symbol Typ(ns)>" Input Loading Factor (lu) 1 1 1 Output Driving Factor (1u) 14 * Minimum values for the typical operating condition. The values for the worst case operating condition are J1;iven bv the maximum delav multiplier. UHB-G44-El I Sheet 1/1 I I Page 8-5 2-83 2-84 CMOS Channeled Gate Arrays UHB Series Unit Cell Ubrary Multiplexer Family Page Un" Cell Name 2--87 T24 2--88 2--89 Function Basic Cells 4:1 Power 4, 2 ANDs into 4 NOR Multiplexer 6 T26 6:1 Power 6, 2 ANDs into 6 NOR Multiplexer 10 T28 8:1 Power 8, 2 ANDs into 8 NOR Multiplexer 11 2-91 T32 2:1 Power 2, 3 ANDs into 2 NOR Multiplexer 5 2-92 T33 3:1 Power 3, 3 ANDs into 3 NOR Multiplexer 7 2-93 T34 4:1 Power 4, 3 AND into 4 NOR Multiplexer 9 2-94 T42 2:1 Power 2, 4 ANDs into 2 NOR Multiplexer 6 2-95 T43 3:1 Power 3, 4 ANDs into 3 NOR Multiplexer 10 2-96 T44 4:1 Power 4, 4 ANDs into 4 NOR Multiplexer 11 2-97 T54 4:1 Power 2, 2-3-4 ANDs into 4 NOR Multiplexer 10 2-98 U24 4:1 Power 4, 2 OR into 4 NAND Multiplexer 6 2-99 U26 6:1 Power 6, 2 OR into 6 NAND Multiplexer 9 11 2-100 U28 8:1 Power 8, 2 OR into 8 NAND Multiplexer 2-101 U32 2:1 Power 2, 3 OR into 2 NAND Multiplexer 5 2-102 U33 3:1 Power 3, 3 OR into 3 NAND Multiplexer 7 2-103 U34 4:1 Power 4, 3 OR into 4 NAND Multiplexer 9 2-104 U42 2:1 Power 2, 4 OR into 4 NAND Multiplexer 6 2-105 U43 3:1 Power 3, 4 OR into 3 NAND Multiplexer 9 2-106 U44 4:1 Power 4, 4 OR into 4 NAND Multiplexer 11 2-85 UHB Series Unit Cell Library 2-86 CMOS Channeled Gate AtTSYs FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I UHB Version I Number of BC I Power 2-AND 4-wide Multiplexer I Propagation Delay Parameter T24 Cell Svmbol tup to 1.62 1.80 1.58 1.72 Al A2 BI B2 CI C2 KCL 0.08 0.08 0.08 0.08 to 1.52 1. 76 1.64 1.88 tdn KCL KCL2 0.04 0.04 0.04 0.04 CDR2 6 Path A-+X B -+X C -+ X D -+X ~~ =:::(Yr =t;::; X DI D2 Pin Name A B C D Pin Name X Parameter Symbol Typ(ns)* Input Loading Factor (iu) I I I I Output Driving Factor (iu) 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit !~ =CD1 =C g =Ct)J =C BI B2 -"'" J X "L/ DI D2 UHB-T24-E1 I Sheet 1/1 I Page 9-1 2-87 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function T26 Cell Svmbol Version Number of BC Power 2-AND 6-wide Multi 10 Dela to KCL to Parameter tdn KCL KCL2 CDR2 1.88 2.07 1.88 2.04 1.90 2.06 0.08 0.08 0.08 0.08 0.08 0.08 1.57 1.81 1.66 1. 92 1.84 2.08 0.04 0.04 0.04 0.04 0.04 0.04 tup Al A2 B1 B2 CI C2 Path A'" X B ... X C ... X D'" X E ... X F"'X x Dl D2 EI E2 Parameter (ns)'" F1 F2 Pin·· Name A B C D Input Loading Factor (Jl.u) 1 1 1 I F 1 1 Pin Name Output Driving Factor (Jl.u E X 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are iven b the maximum dela multi lier. Equivalent Circuit Al A2 B1 B2 CI C2 x Dl D2 EI E2 Fl F2 UHB-T26-EI 2-88 Pa e 9-2 I UHB Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Power 2-AND 8-wide Multiplexer I Prooagation Delay Paramet:er T28 Cell Svmbol tuo t:0 2.12 2.32 2.12 2.28 2.20 2.36 2.20 2.36 KCL 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 Parameter Pin Name tdn KCL KCL2 0.04 0.04 0.04 CDR2 0.04 0.04 0.04 0.04 0.04 Svmbo1 Path A ... X B ... X C ... X D ... X E ... X F ... X G ... X H ... X Typ(ns)'" Input Loading Factor (.eu) A B 1 C D 1 E F 1 1 G H 1 Pin Name X to 1.52 1. 80 1. 68 1. 96 2.16 2.08 1.92 2.18 11 1 1 1 Output Driving Factor (.eu) 36 ,~ UHB-T28-El I Sheet 1/2 I Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Page 9-3 2-89 FUJITSU C~OS GATE ARRAY UNIT CELL SPECIFICATION Cell Name T28 UHB Version Equivalent Circuit Al A2 Bl B2 Cl C2 Dl D2 El E2 x F1 F2 Gl G2 HI H2 UHB-T28-El 2-90 Pa e 9-4 I UHB Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Power 3-AND 2-wide Multiplexer I Pro,:agation Delay Parameter T32 Cell Svmbol tup to 1.52 1.52 KCL 0.08 0.08 to 1. 68 1. 80 tdn KCL KCL2 0.04 0.04 CDR2 5 Path A'" X B ... X Al A2 A3 X BI B2 B3 Parameter Pin Name A B Pin Name X Svmbol Typ(ns l'~ Input Loading Factor (iuJ 1 1 Output Driving Factor (iu) 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given bv the maximum delay multiplier. Equivalent Circuit A1 A2 A3 B1 B2 B3 ~ ::J X '1../ UHB-T32-E1 I Sheet 1/1 I I Page 9-5 2-91 FUJITSU CMOS GATE ARRAY UNIT CELl SPECIFICATION Cell Name I Function I UHB Version I Number of BC I Power 3-AND 3-wide Multiplexer I Propaltation Delay_ Parameter T33 Cell Symbol tup to 1. 75 1. 75 1. 75 KCL 0.08 0.08 0.08 to 1.66 1. 78 1.95 tdn KCL KCL2 0.04 0.04 0.04 CDR2 7 Path A ... X B ... X C ... X A1 A2 A3 B1 B2 B3 X C1 C2 C3 Pin Name A B C Pin Name X Parameter TvP(ns)* Input Loading Factor (R.u) 1 1 1 Output Driving Factor (R.u) 36 * UHB-T33-E1 I Sheet 1/1 I 2-92 Svmbol Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. I Page 9-6 I "UHB" Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Power 3-AND 4-wide Multiplexer I ProJ:agation Delay Parameter T34 Cell Symbol tup to 2.08 2.08 2.18 2.18 A2 l = D A A3 KCL 0.08 0.08 0.08 0.08 to 1.72 1.88 2.00 2.01 tdn KCL KCL2 0.04 0.04 0.04 0.04 CDR2 9 Path A" X B .. X C .. X D" X B1~ :::, B2 B3 C1 C2 C3 =Vr P - - X :::;:> Parameter D1 D2 = D D3 Pin Name A B C D Input Loading Factor (R.u) 1 1 1 1 Pin Name X Output Driving Factor (R.u) 36 Symbol Typ(ns)* * Minimum values for the typical operating condition. The values for the worst case operating condition are ltiven by the maximum delay multiplier. Equivalent Circuit A1 A2 A3 B1 B2 B3 Cl C2 C3 ~1-v- X ,c::7 Dl D2 D3 UHB-T34-El I Sheet 1/1 I Page 9-7 2-93 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function T42 Cell Symbol I "UHB Version I Number of BC I Power 4-AND 2-wide Multiplexer Propagation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 1.60 0.08 1.88 0.04 0.08 2.00 0.04 1.60 6 Path A ... X B ... X Al-""" A2 A3 A4 - . . / X Bl B2 B3 B4 -""" -../ Parameter Symbol TYPinsL* Input Loading Factor (.h) Pin Name A B 1 1 Output Driving Factor (iu) 36 Pin Name X * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A1 A2 A3 A4 h -""" --,../ -1-J ......... :J-...., X B1 B2 B3 B4 -,../ UHB-T42-El I Sheet 1/1 I 2-94 I Page 9-8 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function T43 Cell Svmbol Power 4-AND 3-wide Multiplexer Pro~agation tup to 1.88 1.88 1.88 Al _r-A2 ~ A3 I A4 - l . / B l - ....... B2 1 B3 B4 -,.../ Lf\ to 1. 92 2.04 2.20 I Delay Parameter tdn KCL KCL2 CDR2 0.04 0.04 0.04 10 Path A -+ X B -+ X C -+ X X I -b! Cl _ KCL 0.08 0.08 0.08 I UHB Version I Number of BC ....... C2 }C3 C4 -,.../ Parameter Svmbol Typ(ns)* Input Loading Factor (Rou) Pin Name A B C 1 1 1 Output Driving Factor (Rou) 36 Pin Name X * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delav multiplier. Equivalent Circuit Al A2 A3 A4 _r-- P- -V Bl _r-B2 B3 B4 - l . / l;fj rCbl X Cl _r-C2 p-C3 C4 - l . / UHB-T43-El Sheet 1/1 I Page 9-9 2-95 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I T44 Cell Symbol A1 A2 A3 A4 I UHB Version I Number of BC Power 4-AND 4-wide Multiplexer Pro}:agation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 _f' 2.16 0.08 1.92 0.04 2.16 0.08 1.64 0.04 t2.16 0.08 2.20 0.04 -L/ 2.16 0.08 2.32 0.04 B1 _ f ' B2 B3- ~~ B4 - L / Symbol Parameter J:r- 11 Path A-+X B -+ X C -+ X D -+ X Typ(ns)* X C C2 1 - - Y r7 C3 C4 - l . . / D1 _ f ' t D2 D3 D4 - l . . / Pin Name A B C D Input Loading Factor (R.u) 1 1 1 1 Pin Name X Output Driving Factor (R.u) 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are J?;iven by the maximum delay multiplier. Equivalent Circuit A1 _ f ' A2 A3 A4 - L / B1 _ f ' h B2 B3 B4 - l . . / ,---<:::::' -1-J ,--c::::;;}--{>o---- X C1 C2 C3 C4 - L / D1 D2 D3 D4 -""'" -../ UHB-T44-E2 J 2-96 Sh,~et 1/1 I Page 9-10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function T54 Cell Symbol Power 4-2-3-2 AND 4-wide Multiplexer Pro~agation tup Al A2 A3 A4 to 2.06 1.92 2.06 1. 92 _r'\ - t-- KCL 0.08 0.08 0.08 0.08 to 1. 96 1.64 2.06 1. 88 I "UHB" Version I Number of BC I Delay Parameter tdn KCL KCL2 CDR2 0.04 0.04 0.04 0.04 10 Path A ... X B ... X C ... X D ... X -L./ B1~ P ~X B2 C1 C2 C3 =ifr D1 D2 ==D- Pin Name A B C D Pin Name X t7 Symbol Parameter Typ(ns)* Input Loading Factor (iu) 1 1 1 1 Output Driving Factor (iu) 36 ,~ Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit Al _r'\ A2 A3 A4 - J B1 B2 C1 C2 C3 L--(:::::' ,-c)-Vo- X Dl D2 UHB-T54-E2 I Sheet 1/1 I I Page 9-11 2-97 FUJITSU CMOS GATE ARRAY UNIT CELL Cell Name I Function I "UHB" Version I Number of BC SPECIFICATIO~ I Power 2-0R 4-wide Multiplexer I Propagation Delay Parameter U24 Cell Symbol tup to KCL 0.08 2.00 1.44 0.08 0.08 1.90 1.38 0.08 Al A2 BI B2 Cl C2 to 1. 80 1. 75 1. 78 1. 70 tdn KCL 0.05 0.05 0.05 0.05 KCL2 0.08 0.08 0.08 0.08 CDR2 7 7 7 7 6 Path A'" X B ... X C ... X D ... X ~r'\P-X =lfrv D1 D2 Parameter Pin Name A B C D Input Loading Factor (R.u) I I I I Pin Name X Output Driving Factor (R.u) 36 * UHB-U24-El I Sheet 1/1 I 2-98 Symbol Typ(ns)* Minimum values for the typical operating condition. The values for the worst case operating condition are_given by the maximum delay multiplier. I Page 9-12 I "UHB" Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Power 2-0R 6-wide Multiplexer I Propagation Delay Parameter U26 Cell Svmbol Al A2 tup to KCL 2.00 0.08 0.08 1.55 2.04 0.08 1.58 0.08 1.64 0.08 0.08 2.10 =4}- Bl B2 "" Cl~ C2 Dl~ D2 tdn KCL 0.05 0.05 0.05 0.05 0.05 0.05 KCL2 0.08 0.08 0.08 0.08 0.08 0.08 CDR2 7 7 7 7 7 7 Path A"X B .. X C .. X D .. X E .. X F .. X 0--- X ../ El E2 Fl F2 to 2.34 2.26 2.40 2.40 2.58 2.58 9 Parameter Symbol Typ(ns)* =4}- Pin Name A B C D E F Pin Name X Input Loading Factor (R.u) 1 1 1 1 1 1 Output Driving Factor (R.u) 36 * UHB-U26-E1 I Sheet 1/1 I Minimum values for the typical operating condition. The values for the worst case operating condition are .dven bv the maximum delay multiplier. I Page 9-13 2-99 I UHB Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Power 2-0R S-wide Multiplexer Pro.agation Delav Parameter U2S Cell Symbol tup to ~=P- 2.11 1.55 1.51 B1~ =till 2.07 B2~ C2 C1 D1 D2 2.11 1.55 1.46 2.03 ~ KCL O.OS O.OS 0.08 O.OS O.OS O.OS O.OS 0.08 to 3.1S 3.14 2.S1 2.S6 3.14 3.09 2.54 2.63 tdn KCL 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 KCL2 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 CDR2 7 7 7 7 7 7 7 7 11 Path A .. X B"X C" X D"X E" X F"X G"X H"X ---P'L L:: ---b'C g~~ F1 F2 P--X Parameter Symbol Typ(ns)* 1../ G1~ G2~ H1~ H2~ Pin Name A B C D E F G H Pin Name X Input Loading Factor (lu) 1 1 1 1 1 1 1 1 Output Driving Factor (lu) 36 * Minimum values for the typical operating condition. The values for the worst ease operating condition are~iven bv the maximum delay multiplier. UHB-U28 El I Sheet 1/1 I 2-100 I Page 9-14 I UHB Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Power 3-0R 2-wide Multiplexer I Prolagation Delay PaTameteT U32 Cell Svmbol tup to 2.15 2.11 A1 A2 A3 B1 B2 B3 KCL 0.08 0.08 to 1.66 1.63 tdn KCL KCL2 0.08 0.05 0.05 0.08 CDR2 7 7 5 Path A ... X B"'X ?x Parameter Pin Name A Svmbol Typ(ns)* Input Loading Factor (lu) B 1 1 Pin Name X Output Driving Factor (lu) 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. UHB-U32-E1 I Sheet 1/1 I I Page 9-15 2-101 . . caos GmAARAr UNI.T CEU; JiPtGlnCATION FUJJ;T_~U Cell Name Func.t:~ion I }lowe,!; 3-0l'! 3-IJl,i4eMl,I,lt,ipl.:x.e:r U.33 Cell SYlllbol P~9iia2at,icn tup to. Al A2 A3 Bl B2 B3 2.28 2.25 .2.31 -il j$:C;L 0.08 0.08 0.0.8 --b' ---fl --b' C1 .---fl C2 --b' C3 Pin Name. A B C Pin Name X . to .2.28 2.38 2.52 I ORB Version J Number of BC I Dday P;n.-~1:_ t\ln KCL2 CDR2 KCt O.OS· 0.11 7 0.11 0.05 7 0.05 0.10 7 7 Path A .. X B .. X C .. X X . Parp"'ter SYlllbol Typ(ns)* Input LOl\din, Factor. (.tu.) 1 1 1 Output Driving Factor (.tu) 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the. maximum delay multiplier. UHB U33-El I Sheet 1/1 I 2-102 Page 9-16 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I UHB Version I Number of BC I Power 3-0R 4-wide Multiplexer I Prollagation Delay Par:mreter U34 Cell Symbol tup to 2.11 2.13 1.92 2.11 --n --bI B1=eJ Al A2 A3 B2 B3 C1 C2 C3 Dl D2 D3 }=trr KCL 0.08 0.08 0.08 0.08 to 2.98 3.00 2.44 2.69 tdn KCL 0.06 0.06 0.06 0.06 KCL2 0.10 0.10 0.10 0.10 CDR2 7 7 7 7 9 Path A-+X B -+ X C -+ X D-+X X ../ -n --bI Parameter Pin Name A B C D Input Loading Factor (R.u) 1 1 1 1 Pin Name X Output Driving Factor (R.u) 36 * UHB-U34-El I Sheet 1/1 I Symbol Typ(ns)* Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Page 9-17 2-103 I UHB Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Power 4-0R 2-wide Multiplexer I Proj:agation Delay Parameter U42 Cell Symbol tup to 2.60 2.53 AI-P IA2 A3 - f - ) A4 - t / KCL 0.08 0.08 Parameter to 1.71 1.64 tdn KCL2 KCL 0.05 0.08 0.05 0.08 CDR2 7 7 Symbol 6 Path A .... X B .... X Typ(ns2* X Bl - PJ B2 - I B3 -~ B4 - b Pin Name A B Input Loading Factor (Jl.u) 1 1 Pin Name X Output Driving Factor (Jl.u) 36 UHB-U42-E1 I Sheet 1/1 I 2-104 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Page 9-18 I "UHB" Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Power 4-0R 3-wide Multiplexer I Propagation Delay Parameter U43 Cell Symbol tup to 2.57 2.62 2.70 A1-::::: A2 -rA3 A4 -==' Bl-l-D-B2 - B3 - B4 -==' KCL 0.08 0.08 0.08 Parameter to 2.13 2.26 2.39 tdn KCL 0.06 0.06 0.06 KCL2 0.08 0.08 0.08 CDR2 7 7 7 Symbol 9 Path A-+ X B -+ X C -+ X Typ(ns)* X C1 -::::: C2 -rC3 C4 -==' Pin Name A B C Input Loading Factor (.h) 1 1 1 Pin Name X Output Driving Factor (iu) 36 UHB-U43-E1 I Sheet 1/1 I * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Pal!;e 9-19 2-105 FCJITSU C~OS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I UHlI Version I Number of BC I Power 4-0R 4-wide Multiplexer J Propaltation Delay Parameter U44 Cell Svmbol to 2.73 2.72 2.63 2.67 A1 -P> A2 r-IrA3 A4 - t / tup KCL 0.08 0.08 0.08 0.08 to 3.00 2.88 2.44 2.69 tdn KCL 0.05 0.05 0.05 0.05 KCL2 0.11 0.11 0.11 0.11 CDR2 7 7 7 7 11 Path A-+X B -+ X C -+ X D-+X Bl -p>J B2 - r - B3-~ ...... B4 - t / -jfr Cl C2 - r C3 - I C4 - t / Parameter P--- Svmbol Typ(ns)* X ./ D1 _=:::'J D2 - D3 D4 --::;; --r- Pin Name A B C D Pin Name X Input Loading Factor (Iou) 1 1 1 1 Output Driving Factor (Iou) 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier • . " UHB U44-E1 I Sheet: 1/1 I 2-106 I Palte 9-20 CMOS Chann~ed ~te Arrays UHB Sarles Unit Cell Ubrary Clock Buffer Family Page Unit Cell Name Function Basic Cells 2-109 K1B True Clock Buffer 2 2-110 K2B Power Clock Buffer 3 2-111 K3B Gated Clock (AND) Buffer 36 2-112 K4B Gated Clock (OR) Buffer 36 2-113 K5B Gated Clock (NAND) Buffer 2-114 KAB Block Clock (OR) Buffer 55 2-115 KBB Block Clock (OR x 10) Buffer 30 3 2-107 UHB Series UnIt Cell L.Ibn!y 2-108 CMOS Channeled Gate A/?'S}'S FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Ce 11 Name I Function I True Clock Buffer KlB Cell Svmbol A -+- I Pronagation Delav Parameter tup tdn KCL2 CDR2 to KCL to KCL 0.04 0.72 0.08 0.86 Pin Name X 2 Path A" X X Parameter Pin Name A I t.'HB Version Number of BC Svmbol Typ(ns)* Input Loading Factor (Lu) 1 Output Driving Factor (R.u) 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given bv the maximum delay multiplier. Equivalent Circuit A -{>o----{>- UHB-KlB-E1 I Sheet 1/1 I X I Pae;e 10-1 2-109 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Power Clock Buffer K2B Cell Symbol Pro~agation tup to 1.06 A -t>- KCL 0.04 Pin Name X I Delav Parameter tdn KCL KCL2 CDR2 0.03 3 Path A ... X X Parameter Pin Name A to 1.20 I "UHB" Versl.on I Number of BC Symbol 1YP(ns)* Input Loading Factor (iu) 1 Output Driving Factor (ill) 55 * Minimum values for the typl.cal operating condition. The values for the worst case operating condition are given bv the maximum delav multiplier. Equivalent Circuit A -{>o-------c{>- UHB-K2B-E1 I Sheet 1/1 I 2-110 X I Page 10-2 FUJITSU CMOS GATE ARRAY UNIT CELL Cell Name I Function I Gated Clock K3B Cell Symbol Al A2 =D- I UHB Version I Number of BC SPECIFICA'!'In~ I (AND) Buffer Propagation Delay Parameter tup tdn KCL to KCL KCL2 CDR2 to 0.04 1.00 0.08 1. 00 Pin Name X Path A ... X X Svmbol Parameter Pin Name A 2 Tvp(ns)~' Input Loading Factor (R.u) 1 Output Driving Factor (R.u) 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delav multiplier. Equivalent Circuit Al A2 ==C?---V- UHB-K3B-E2 I Sheet 1/1 I X . r Page 10-3 2-111 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Gated Clock (OR) Buffer K4B Cell Symbol Pro~agation tun Al A2 =Y- to KCL 0.78 0.08 Pin Name X I Delay Parameter tdn KCL KCL2 CDR2 0.05 0.07 8 2 Path A ... X X Parameter Pin Name A to 1.14 I UHB Version I Number of BC Symbol 1'yp(ns)* Input Loading Factor (iu) 1 Output Driving Factor (iu) 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit A1 A2 ==t>--V- UHB-K4B-E1 I Sheet 1/1 I 2-112 X I Page 10-4 FUJITSU cnos GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I UHB Version I Number of BC I Gated Clock (NAND) BufferProj:agation Delav Parameter I KSB Cell Svmbol tup to KCL 1.14 0.08 Al A2 =V- Pin Name X tdn KCL2 KCL 0.04 CDR2 Path A-+X X Parameter Pin Name A to 1.48 3 Symbol Typ(ns)'" Input Loading Factor (Rou) 1 Output Driving Factor (Rou) 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit Al A2 =L>-----V---C>o UHB-KSB-E2 I Sheet; 1/1 I X I Page 10-5 2-113 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Block Clock (OR KAB Ce1l Svmbol Al A2 =V- Buffer I "UHB Version I Number of BC I Propagation Delav Parameter tup tdn to to KCL KCL2 CDR2 KCL 0.04 0.03 1.08 1.85 3 Path A .. X X Parameter Pin Name A Input Loading Factor (Rou) 1 Pin Name X Output Driving Factor (Rou) 55 Symbol Typ(ns)* * Minimum values for the typical operating condition. The values for the worst case operating condition are J!;iven by the maximum delay multiplier. Equivalent Circuit Al A2 =V---V- UHB-KAB-E2 I Sheet 1/1 I 2-114 X I Page 10-6 I ljHB Version I Number of BC FuJITSu CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function 10) I Block Clock Buffer (OR x Propagation I Delav Parameter KBB Cell Svmbol tup to KCL 1.34 0.04 0.04 1.08 CK - IHO IHI IH2 IH3 IH4 IH5 IH6 IH7 IH8 IH9 - f-f-f-f-f-- to 2.08 1.85 tdn KCL KCL2 0.03 0.03 CDR2 30 Path CK .. X IH .. X XO Xl X2 X3 X4 r---- XS r---- X6 I-- X7 f-f-- X8 X9 Pin Name CK IH Input Loading Factor (Rou) 10 1 Pin Name X Output Driving Factor (Roll) 55 Parameter Symbol Typ(ns)* * MinimUM values for the typical operating condition. The values for the worst case operating condition are -'iven /;l~ the \IIaximum delay multiplier. UHB-KBB-E1 I Sheet 1/2 I I Paj;(e 10-7 2-115 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name KBB UltB Version Equivalent Circuit CK IHO XO ~------------------~ Xl IHl ~------------------~ X2 IH2 ~------------------1 X3 IH3 ~------------------~ X4 IH4 ~------------------~ X5 IHS ~------------------~ X6 IH6 ~------------------~ X7 IH7 ~------------------i XB IHB ~------------------~ IH9 UHB-KBB-E1 2-116 X9 Pa e 10-8 CMOS Channeled Gale AlTars UHB Series Unit Cell Ubrary Scan Flip-flop (Positive Edge Type) Family UnnCeIl Basic Cells Page Name 2-119 SDH Scan D Flip-flop with 2:1 Multiplex with Clear and Clock Inhibit 14 2-122 SDJ Scan D Flip-flop with 4:1 Multiplex with Clear and Clock Inhibit 15 Function 2-125 SDK Scan D Flip-flop with 3:1 Multiplex with Clear and Clock Inhibit 16 2-128 SJH Scan J-K F with Clear and Clock Inhibit 36 2-131 SDD Scan D Flip-flop with 2:1 Multiplex, Preset Clear, and Clock Inhibit 16 2-135 SDA Scan 1-input D Flip-flop with Clock Inhibit 12 2-138 SDB Scan 1-input D Flip-flop with Clock Inhibit 42 2-142 SHA Scan 1-input D Flip-flop with Clock Inhibit 68 2-145 SHB Scan 1-input D Flip-flop with Clock Inhibit and QOutput 62 2-148 SHC Scan 1-input D Flip-flop with Clock Inhibit and XQ Output 62 2-151 SHJ Scan D Flip-flop with 2:1 Multiplex and Clock Inhibit 78 2-154 SHK Scan D Flip-flop with 3:1 Multiplex and Clock Inhibit 88 2-117 UHB Ssries Unit Cell /.ibraJy 2-118 CMOS Channeled Gate Anaya FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I UHB Version I Number of BC & Clock-Inhibit I SCAN 2-input DFF with ClearPropagation I Delay Parameter SDH Cell Svmbol tup to 3.72 . 2.35 3.79 ~ SI A B --( KCL2 0.08 0.12 0.08 CDR2 7 7 7 Path CK,IH ... Q CK,IH ... XQ CL ... Q, P--XQ Parameter Clock Pulse Width Clock Pause Time I Q XQ tdn KCL 0.04 0.06 0.04 Q CL Pin Name to 2.98 2.15 1.07 XQ Al A2 CK IR- Pin Name Al,A2 CK IR CL SI A,B KCL 0.08 0.08 0.08 14 Input Loading Factor (Rou) 1 Svmbol tCW tCWH Typ(ns)* 5.4 4.5 Data Setup Time Data Hold Time tSD tHD 3.7 1.0 Clear Pulse Width Clear Release Time Clear Hold Time tLW tREM tINH 4.5 3.0 1.5 1 1 3 1 2 Output Driving Factor (Rou) 36 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay_ mul tiplier. Function Table MODE OUTPUT INPUT CLK CL D A B SI Q XQ CLEAR X L X X X X L H CLOCK L"'H H Di L L X Di Di H H X L L X Qo XQo H H X L...H...L H Si Qo XQo H R X L H"'L"'H X Si Si SCAN Note : CLK D UHB-SDH-E2 I Sheet 1/3 I = CK = Al + IH x A2 I Page 11-1 2-119 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name SDH UHB Version Equivalent Circuit CLK XBCK XCLK -.L -.L -.L Al A2 Q CL XCLK ACK -.L -.L CLK -.L II CLK XACK XACK -.L I 51 XBCK I XQ ACK A OI--1"~------ ACK ~XACK B OI--1"~------ XBCK ~BCK UHB-5DH-E2 2-120 Pa e 11-2 FUJITSU CMOS GATE ARRAY UNIT CELL SPEC IFI CATION Cell Name I SDH I I UHB Version Definitions of Parameters i) Clock Mode i'--tCWH Clock ----... I'--tcw- I--tSD' I-- tHD .... Data I--tpd -- Q. XQ I (Output) I ii) Clear Mode tREM ... CK Clear - -tLW ---0 it-- tpd'" Q. XQ (Output) I CL UHB-SDH-E2 I Sheet 3/3 I I·"~ t I I Pas;e 11-3 2-121 I nUHB Version I Number of BC FUJITSU C~OS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function & Clock-Inhibit I SCAN 4-inout DFF with ClearPropagation I Delav Parameter SDJ Cell Svmbol tup to 2.75 2.36 3.74 AlA2 BlB2 CK IH- - Pin Name Q XQ KCL2 0.08 0.12 0.08 CDR2 7 7 7 Path CK,IH'" Q CK,IH .... XQ CL ... Q, P"--XQ Symbol tCW tCWH Typ(ns)* 5.4 4.5 Data Setup Time Data Hold Time tSD tHO 4.4 0.8 Clear Pulse Width Clear Release Time Clear Hold Time tLW tREM tINH 4.5 3.0 1.5 Parameter Clock Pulse Width Clock Pause Time I IH tdn KCL 0.04 0.06 0.04 Q CL CL SI A,B to 3.02 2.14 1.06 XQ SI A B --C Pin Name A1,A2 B1,B2 CK KCL 0.08 0.08 0.08 15 Input Loading Factor (.~u) 1 1 1 1 3 1 2 Output Driving Factor (iu) 36 * Minimum values for the typical operating condition. 36 The values for the worst case operating condition are given by the maximum dela~mult~lier. Function Table MODE CLK CL D A B SI Q XQ CLEAR X L X X X X L H CLOCK L-+H H Di L L X Di Di H H X L L X Qo XQo H H X L...H....L H Si Qo XQo H H X L H....L-+H X Si Si SCAN UHB-SDJ-Ell Sheel: 1/3 I 2-122 OUTPUT INPUT Note : CLK = CK + IH D = (AI x A2) + (B1 x B2) I Page 11-4 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name SDJ UHB Version Equivalent Circuit Al A2 Bl B2 Q CL XCLK ACK CLK --L --L --L II CLK XACK XACK --L I 81 XBCK XQ I ACK CK~ IH 1:: := A0 4=~' XACK B0 4=~cr XCLK BCK Pa e 11-5 2-123 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I SDJ I I "1JlIB" Version Definitions of Parameters i) Clock Mode -tCWHClock -----.. I'--tcw- Data ~tHD'" -tSD 1~'Pdl Q. XQ (Output) I I ii) Clear Mode CK Clear tREM -----.. j<--tLW ---" I- tpd" Q. XQ (Output) CL UHB-SDJ-El I Sheet 3/3 I 2-124 I' '~ t I Page 11-6 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I UHB" Version I Number of BC & Clock-Inhibit I SCAN 6-input DFF with ClearPropagation I Delay Parameter SDK Cell Svmbol tup to 3.70 2.32 3.74 AlA2 Bl B2 ClC2 CKIH - KCL 0.08 0.08 0.08 to 3.00 2.16 1.02 tdn KCL 0.04 0.06 0.04 KCL2 0.08 0.12 0.08 CDR2 7 7 7 16 Path CK,IH'" Q CK,IH ... XQ CL ... Q, XQ - Q :>-- XQ SI A B -( Parameter Clock Pulse Width Clock Pause Time I Symbol tCW tCWH Typ(ns)* 5.4 4.5 Data Setup Time Data Hold Time tSD tHD 5.0 0.5 Clear Pulse Width Clear Release Time Clear Hold Time tLW tREM 4.5 3.0 1.5 CL Pin Name Al,A2 Bl,B2 Cl,C2 CK IH CL SI A,B Pin Name Q XQ Input Loading Factor (lu) tINH 1 1 1 1 1 3 1 2 Output Driving Factor (lu) 36 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table MODE OUTPUT INPUT CLK CL D A B SI Q XQ CLEAR X L X X X X L H CLOCK L"'H H Di L L X Di Di H H X L L X Qo XQo H H X L..H...L H Si Qo XQo H H X L H...L"'H X Si 5i SCAN UHB-SDK-El I Sheet 1/3 I Note : CLK = CK + IH D = (AI x A2) + (Bl x B2) + (Cl x C2) Page 11-7 2-125 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name SDK UHB Version Equivalent Circuit Al A2 Bl B2 Cl C2 Q CL XCLK ACK CLK --L --L --L II CLK XACK XACK --L I SI XBCK XQ I ACK A o>--...~----- ACK L.{>o-XACK B o-.,..~----- XBCK L.{>o-BCK UHB-SDK-El 2-126 Pa e 11-8 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I SDK I I lJllB" Vers ion Definitions of Parameters i) Clock Mode ---tCWH <--tcwClock ~ -tSD~ .... Data tHD-> -tpd- Q, XQ (Output) I I ii) Clear Mode r CK Clear Q, XQ tREM ... ~ -tLW- -tpd"" I (Output) I CL UHB-SDK-EI I Sheet 3/3 I f I ,,~ t I Page 11-9 2-127 FUJITSU C:10S GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I UHB Version I Number of BC I SCAN J-K FF with Clear & Clock-Inhibit I Propagation Delay Parameter SJH Cell Svmbol tup to 4.24 2.36 3.76 -Q SI A B --C 0--- XQ I Q XQ KCL2 0.08 0.12 0.08 Parameter Clock Pulse Width Clock Pause Time CL Pin Name tdn KCL 0.04 0.06 0.04 to 3.37 2.16 1.39 CDR2 7 7 7 Path CK,IH" Q CK,IH .. XQ CL .. Q, XQ J K --C CK IH- Pin Name J,K CK IH CL SI A,B KCL 0.08 0.08 0.08 16 Symbol tCW tCWH Typ(ns)* 5.4 4.5 Data Setup Time (J) Data Setup Time (K) Data Hold Time (J K) tSD tSD tHD 4.4 4.8 0.5 Clear Pulse Width Clear Release Time Clear Hold Time tLW tREM tINH 4.5 3.0 1.5 Input Loading Factor (Rou) 1 1 1 3 1 2 Output Driving Factor (Rou) 36 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table OUTPUT INPUT MODE CLEAR CLOCK SCAN CLK CL J K A B SI Q XQ X L X X X X X L H L..H H L L L L X L H L->H H H H L L X H L L-+H H L H L L X Qo XQo L-+H H H L L L X XQo Qo H H X X L L X Qo XQo H H X X L-+H-+L H Si Qo XQo H H X X L H-+L-+H X Si Si Note : CLK UHB-SJH-E1 I Sheet 1/3 I 2-128 = CK + IH I Page 11-10 FUJITSU C~OS GATE ARRAY UNIT CELL SPECIFICATIO~ Version mill Cell Name SJH Equivalent Circuit J Q K CLo-----4 XACK -L I 51 X1!CK XQ I ACK := .. A o-----..,.~----- ACK ~XACK XCLK B o-----..,.~----.. X1!CK ~BCK Pap;e 11-11 2-129 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I SJH I I UHB Version Definitions of Parameters i) Clock Mode Io--tCWH Clock ------ -tcw- <-tSD' I<- tHD-I Data I--tpd Q, XQ (Output) -0 I I ii) Clear Mode CK Clear tREM .. -----.. I<---tLW I<- tpd .... Q. XQ (Output) I CL UHB-SJH-~l 2-130 I Sheet 3/3 I fu~ t I Page 11-12 I "UHS" Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function Clock-Inhibit I SCAN 2-input DFF with Clear, Preset &Delay Parameter SDD Cell Symbol tup PR Al A2 CKIH- 1 Pin Name Q XQ to 3.70 2.65 4.50 KCL 0.08 0.08 0.08 to 3.22 2.14 1.02 tdn KCL 0.04 0.06 0.04 KCL2 0.08 0.12 0.08 3.84 0.08 2.35 0.06 0.12 CDR2 7 7 7 Path CK,IH -+ Q CK,IH -+ XQ CL -+ Q, XQ I-- Q 7 PR -+ Q, XQ Symbol tCW tCWH Ty}l(ns) 5.4 4.5 I Data Setup Time Data Hold Time tSD tHD 5.4 1.0 CL Clear Pulse Width Clear Release Time Clear Hold Time tLW tREM tINH 5.0 3.0 1.5 Preset Pulse Width Preset Release Time Preset Hold Time tPW tREM tlNH 6.8 3.7 1.0 SI A B ---c Pin Name Al,A2 CK IH CL PR SI A,B 16 Pro~agation Parameter Clock Pulse Width Clock Pause Time P--XQ Input Loading Factor (~u) 1 1 1 * 3 3 1 2 Output Driving Factor (~u) 36 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table MODE INPUT OUTPUT CLK CL PR D A B SI Q XQ CLEAR X L H X X X X L H PRESET X H L X X X X H L CLOCK L-+H H H Di L L X Di Di H H H X L L X Qo XQo H H H X L-+H-+L H Si Qo XQo H H H X L H-+L-+H X Si Si X L L X X X SCAN CL/PR Note : CLK D UHB-SDD-E3 I Sheet 1/4 I X = CK = Al Prohibited IH x A2 + I Page 11-13 2-131 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION UHB Version Cell Name SDD Equivalent Circuit Al A2 CL Q II CLK XACK XACK --.L I SI XBCK L..-_ _ _- , XQ IACK PR := XCLK A O-'t"~----- ACK L-f>o-- XACK B O-'t"~----- XBCK L-f>o-- UHB-SDD-E3 2-132 BCK Pa e 11-14 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I SDD I I UHB Version Definitions of Parameters i) Clock Mode Clock - -tcw Data -tCWH----0 o-tSD o-tHD "" -tpdQ. XQ (Output) ii) Clear Mode CK Clear tREM - -tLW ----0 -tpd"" Q. XQ (Output) tINH Clear UHB-SDD-E3 I Sheet 3/4 I I Page 11-15 2-133 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I SDD I I UHB Version iii) Preset Mode CK Preset IotREM .. - o-tpw- .... tpd'" Q. XQ (Output) tINH Preset '. UHB-SDD-E3 I Sheet 4/4 I 2-134 I Page 11-16 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I UllB" Version I Number of BC I SCAN I-input DFF with Clock-Inhibit I Propagation Delav Parameter SDA Cell Svmbol tup to 3.18 2.33 D - CK IH SI A B - KCL 0.08 0.08 tdn KCL KCL2 0.04 0.08 0.06 0.12 to 3.00 2.17 CDR2 7 7 12 Path CK,IH .. Q CK,IH .. XQ r0- f-- P- Q XQ - --C Parameter Clock Pulse Width Clock Pause Time '--- Data Setup Time Data Hold Time Pin Name D CK IH SI A,B Pin Name Q XQ Symbol tCW tCWH Typ(ns)* 5.4 4.5 tSD tHD 3.5 1.4 Input Loading Factor (.h) 1 1 1 1 2 Output Driving Factor (Jl.u) 36 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table MODE CLOCK SCAN OUTPUT INPUT CLK D A B SI Q XQ L"H Di L L X Di Di H X L L X Qo XQo H X L-+H"L H Si Qo XQo H X L H"L..H X Si Si Note UHB-SDA-El I Sheet 1/3 I : CLK = CK + IH Page 11-17 2-135 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION UHB Version Cell Name SDA Equivalent Circuit CLK XBCK -L -L -L XCLK D Q I II XCLK BCK XCLK ACK CLK CLK -L -L -L II CLK XACK XACK -L I SI XBCK XQ I ACK V2B A O)-~~------ ACK :CLK L.{>o-XACK XCLK B o>--~~----...., XBCK L . { > o - BCK UHB-SDA-El 2-136 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I SDA I I "UHB" Version Definitions of Parameters i) Clock Mode Clock ----- __ tcw --01'-- tCWH Data t t SD t Q, XQ (Output) UHB-SDA-El I Sheet 3/3 I --0 .... tHD .... -tpd- I I I I Page 11-19 2-137 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I UHB Version I Number of BC I SCAN I-input 4-bit DFF with Clock-Inhibit I Delay Parameter SDB Cell Symbol 42 Pro~agation tup to 4.24 3.25 KCL 0.08 0.08 to 3.94 3.32 tdn KCL KCL2 0.04 0.08 0.06 0.12 CDR2 7 7 Path CK,IH'" Q CK,IH'" XQ r--- I - - Q1 D1D2 D3 D4 - P-P-- XQl I - - Q2 XQ2 I - - Q3 p- CKIHSI A B -C XQ3 I - - Q4 P-- XQ4 '--- Pin Name D CK IH SI A,B Pin Name Q XQ Parameter Clock Pulse Width Clock Pause Time Data Setup Time Data Hold Time Symbol tCW tCWH Typ(ns)* 6.8 5.0 tSD tHD 2.2 3.3 Input Loading Factor (Rou) 1 1 1 I 2 Output Driving Factor (Rou) 36 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table MODE CLOCK SCAN INPUT OUTPUT Qn XQn X Di Di L X Qn o XQn o L....H....L H Si Qn o XQn o L H...L....H X Si Si CLK Dn A B L...H Di L L H X L H X H X SI Qn-1 Note : CLK = CK + IH n =1 - 4 UHB-SDB-E2 I Sheet 1/4 I 2-138 I Page 11-20 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name SDB Equivalent Circuit Dl D2 D3 XQl Ql D SIo-____________ XQ D QoQ-'r QoQI-'i S ~ FFl CK 0-- CK CLK I--_~CLK IH 0-- IH XCLK XCLK ACK ACK A0-- A XACK XACK BCK BCK B o-c ii XBCK XBCK p- FFl ,..--CLK _XCLK r - - ACK __ XACK r- BCK XBCK Version D4 XQ2 Q2 XQ ::>- ~S UHB XQ3 Q3 XQ D p- XQ4 Q4 XQ ::>- D QoQI 'is Qo Q- S FFl _CLK ,------ XCLK r - - ACK ,..- XACK r- BCK XBCK FFI _CLK ,------ XCLK _ACK ,.-- XACK _ BCK XBCK FFO Equivalent Circuit (FFO) CK IH )()-------+ CLK XCLK AO~~~K 4>r-------- XACK BO~~ XBCK BCK Pa e 11-21 2-139 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION UHB Version Cell Name SDB CLK -L Equivalent Circuit (FFl) XBCK XCLK -L l Q D t-------oQo S I XBCK XQ V2B UHB-SDB-E2 2-140 Pa e 11-22 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name J SDB I I UHB Version Definitions of Parameters i) Clock Mode Clock ----.... - tcw --~- tCWH - Data 0- tSD.~ tHO .... II-tpdQ. XQ (Output) UHB-SDB-E2 I Sheet 4/4 I r-~------------------ I Page 11-23 2-141 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Fimction I "UHB" Version I Number of BC Clock-Inhibit I SCAN I-input 8-bit DFF withPropagation SHA Cell Symbol tup - r-- Dl- pr-p- D2 D3 D4DS D6 D7 D8 - r-Pr-- P-r-- PCKIH SI A B ----c Pin Name D Cl< IH S1 '---- Q1 XQ1 Q2 XQ2 Q3 XQ3 Q4 XQ4 KCL 0.16 0.16 to 4.72 4.00 Path CK,IH ... Q CK,IH ... XQ Parameter Clock Pulse Width Clock Pause Time Data Setup Time Data Hold Time Symbol tCW tCWH ryp ns 7.2 5.5 tSD tHD 1.8 3.3 * Input Loading Factor (R.u) 1 1 B Pin Name Q XQ Output Driving Factor (R.u) 18 18 UHB-SHA-E1 I Sheet 1/3 I 2-142 to 4.72 4.12 68 QS XQS I-- Q6 P- XQ6 r-- Q7 P- XQ7 r-- Q8 P- XQ8 1 1 1 1 A I Parameter tdn KCL KCL2 CDR2 0.09 0.10 4 0.13 0.18 4 Del~ * Minimum values for the typical operating condition. The values for the worst case operating condition are ltiven by the maximum delay multiplier . .1 Page 11-24 FUJITSU C~OS GATE ARRAY UNIT CELL SPECIFICATION Version DuB Cell Name SHA Equivalent Circuit D1 CK IH DB ) O - - - -... CKI XCKI FFo CKI XCKI AI XAI BI XBI FFo X5Io X50 0 XSIo X50 0 x x 5I XSIo X Q Ql l---oXQI Q QB Q2 l---oXQB 1---oXQ2 Equivalent XQo .-----0 XSOo (VIN) XAI -L II CKI XAI XSIo I I AI XCKI BI -L I XBI Pa e 11-25 2-143 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Sa! I UHB Version I Definitions of Parameters i) Clock Mode I-- tcw -_01"-- tcWH Clock ~ Data I>- tSD'~ tHD ... Q, XQ (Output) UHB-SHA-El I Sheet 3/3 I 2-144 r Page 11-26 I "UHB" Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Func1:ion Clock-Inhibit & Q I SCAN I-input 8-bit DFF withPropagation Delav Parameter SHB Cel1 Symbol Output tup DlD2 D3 D4 D5 D6 D7 D8 CKIH SI A B ---<: Pin Name D CK IH S1 A B Pin Name Q to 4.32 - -- KCL 0.16 to 4.42 tdn KCL KCL2 0.09 0.10 1 62 CDR2 4 Path CK.IH .... Q Symbol tCW tCWH lYP(ns)* 7.2 5.5 Ql Q2 Q3 Q4 Q5 Q6 Q7 Q8 Parameter Clock Pulse Width Clock Pause Time - Data Setup Time Data Hold Time tSD tHD 1.9 3.3 Input Loading Factor (Rou) 1 1 I I 1 I Output Driving Factor (Rou) 18 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. UHB-SHB-El I Sheet 1/3 I fPage 11-27 2-145 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name SHB UHB Version Equivalent Circuit Dl CK IH D8 X>----CKI FFo CKI XCKI AI XAI BI XBI ~ XSIo XSOo XSIo XSOo XSIo Q SI Q2 Ql CKI --.L Q8 Equivalent Circuit (FFo) XBI XCKI --.L --.L ,.------QXSO o X>---0Qo XAI --.L II CKI XAI XS10 o------i I I AI XCKI BI --.L I XBI UHB-SHB-El 2-146 Pa e 11-28 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I SHB I I ORB Version Definitions of Parameters i) Clock Mode Clock - tCWH - ~tcw Data Q. XQ (Output) UHB-SHB-El I Sheet 3/3 I ~tSD ... tHO'" r'¢l I I I I Pall:e 11-29 2-147 I "UHB Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function Clock-Inhibit XQ I I SCAN l-inout 8-bit DFF withPro):altation Delay_Parameter SHC Cell Symbol & tuo DlD2 D3 D4 Ds D6 D7 D8 CK IH SI A B to 4.18 - Pin Name XQ tdh KCL KCL2 0.13 0.18 CDR2 4 Path CK,IH .. XQ o--XQ3 XQ4 XQs XQ6 XQ7 o--XQ8 0-0-0-0-- Parameter Clock Pulse Width Clock Pause Time '--- B to 4.10 62 0-- XQI 0-- XQ2 -C Pin Name D CK IH SI A KCL 0.16 Output Data Setuo Time Data Hold Time Svmbol tCW tCWH Typ(ns)'" 7.2 5.5 tSD tHO 3.3 1.9 Input Loading Factor (R.u) I I 1 1 1 1 Output Driving Factor (R.u) 18 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiolier. UHB-SHC-El I Sheet 1/3 I 2-148 I Page 11-30 FUJITSU Cell Name SHC GATE ARRAY UNIT CELL SPECIFICATION C~OS UHB Version Equivalent Circuit Dl CK IH D2 D8 CKI AoV[t: BoV[t: FFo FFo = XCKI ~ : XAI AI X5Io X50 0 XSlo XSOo X XSIo X X ::1 51 XQl XQ8 XQ2 Equivalent Circuit (FF.) XBI XCKI -L -L ; ; 0 - - - - - 0 XQo Do XCKI XAI -L X5Io BI II CKI XAI , . . - - - - - 0 XSOo CKI eKI -L I I AI XeKI BI -L I XBI Pa e 11-31 2-149 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I SHC I I "UHB Version Definitions of Parameters i) Clock Mode Clock Data ~tSD .. tHD-o ------~r_~I~~Jr_--+-----------~ Q, XQ (Output) UHB-SHC-Elj Sheet 3/3 I 2-150 ~tPd? i =t=~I========== I Page 11-32 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I UHB Version Cell Name I Function I Number of BC SCAN 8-bit DFF with Clock-Inhibit SHJ 78 & 2-to-1 Data Multiplexer Cell Svmbol ProJ:agation Delay Parameter tup tdn Path to KCL to KCL KCL2 CDR2 CK,IH -+ Q 0.08 4 4.82 0.16 4.84 0.12 CK,IH -+ XQ 0.11 0.20 4 4.12 0.16 4.00 Al -Q1 Bl ::>- XQ1 A2 -Q2 B2 ::>- XQ2 A3 -Q3 B3 P-- XQ3 A4r--Q4 B4 P--XQ4 f--QS AS BS XQS A6 f--Q6 B6 P--XQ6 A7 r--Q7 B7 P--XQ7 t--Q8 A8 B8 XQ8 AS --C BS --C CK1H SI Symbol Typ(ns)* Parameter A 7.2 tCW Clock Pulse Width --C B 5.5 tCWH Clock Pause Time I I P---- P---- - Data Setll£Time Data Hold Time Pin Name An,Bn (n=1-8) AS,BS CK IH SI A,B Pin Name Q XQ tSD tHD 3.0 3.1 Input Loading Factor (Rou) 1 1 1 1 1 1 Output Driving Factor (Rou) 18 18 UHB-SHJ-E2 I Sheet 1/3 I * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Page 11-33 2-151 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name SHJ UHB' Version Equivalent Circuit Al CK IH CKI Ao XCKI Ao-{>ol; ::1 Bo-{>ol; ::, BI A2 B2 A8 Bo B8 Ao Bo FFo CKI XCKI AI XA1 BI XBI AS o BS o XSIo XSOo Qo XQo ASo-[)o- AS o QI XQI XSIo XSOo Qo XQo Q2 XSIo XSOo Qo XQo XQ2 Q8 XQ8 BSo-[)o- BS o S1 Equivalent r-----{) XSO o (VIN) XAI -L II CK1 XAI XS10 <>----1 I I AI XCKI BI -L I XBI lJHB-SHJ-E2 2-152 Pa e 11-34 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I SHJ I I UHB Version Definitions of Parameters i) Clock Mode Clock _ I - - tcw Data -->1-- tCWH - -- tSD·1-- tHO .... Q. XQ (Output) UHB-SHJ-E2 I Sheet 3/31 I Page 11 35 2-153 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I UHB Version Cell Name I Function I Number of BC SCAN 8-bit DFF with Clock Inhibit SHK & 3-to-1 Data Multiplexer 88 Cell Symbol PrOfli&ation Delay Parameter tup tdn to to Path KCL KCL KCL2 CDR2 r--Al _ 4.64 0.16 4.60 0.09 0.10 4 CK,IH'" Q B1 _ -Q1 CK,IH ... XQ 4.08 0.16 4.00 0.13 0.18 4 C1_ :r-XQ1 A2 _ B2 _ -Q2 C2 _ :r-XQ2 A3 _ B3 _ -Q3 C3 _ :r-- XQ3 A4 _ B4 _ -Q4 C4 _ :r-XQ4 A5 _ B5 _ -Q5 C5 _ :r-- XQ5 A6 _ B6 _ :--Q6 C6 _ XQ6 A7 _ B7 _ r--Q7 C7 _ P-- XQ7 A8 _ B8 _ I--Q8 C8 _ P--XQ8 AS --( BS --( CS --( CK IH Tvp(ns)'~ Parameter Symbol SI tCW 7.2 Clock Pulse Width 5.5 A Clock Pause Time tCWH B --( tSD 3.8 Data Setup Time 2.9 Data Hold Time tHD I I P-- Pin Name An,Bn,Cn (n=1-8) AS,BS,CS CK IH SI A,B Pin Name Q XQ Input Loading Factor (Rou) 1 1 1 1 1 1 Output Driving Factor (Rou) 18 18 UHB-SHK E2 I Sheet 1/3 I 2-154 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. I Page 11-36 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name UHB Version SHK A1 B1 C1 Equivalent Circuit CK IH Ao-{)o L[>O ::1 Bo-{)o L[>O ::1 o--{>o--BS o--{>o--CS o--{>o--- AS B2 CZ A8 B8 C8 I CKI XCKI A2 Ao Bo Co Ao Bo Co FFo CKI XCKI AI XAI BI XB1 AS o BS o CS o XSIo XSOo Qo XQ. FFo AS. Ql XQl A. Bo Co CKI XCKI AI XAI BI XBI AS o BS o CS. XS10 XSOo Qo XQo Q2 XQ2 Q8 XQ8 BS. lID CS o SI Equivalent Ao AS. B. BS o Co CS o XQo .------0 XSO o (VlN) )O----0Qo XAI -L II CKI XAI XSI.o---- I I AI XCK1 B1 -L I XB1 Pa e 11-37 2-155 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I SHK I I UHB Version Definitions of Parameters i) Clock Mode _ - tcw - - - - tCWH ----0 Clock Data Q, XQ (Output) UHB-SHK-E2 I Sheet 3/3 I 2-156 1 P~e 11-38 UHB Series Unit Cell Ubrary CMOS Charmeleel Gate Arrays Non Scan Flip-flop Family Page Unit Cell Name 2-159 FOM Non-Scan 0 Flip-flop 2-161 FON Non-Scan 0 Flip-flop with Set 7 2-163 FOO Non-Scan 0 Flip-flop with Reset 7 2-165 FOP Non-Scan 0 Flip-flop with Set and Reset 2-168 FDa Non-Scan 0 Flip-flop 21 2-170 FOR Non-Scan 0 Flip-flop with Clear 26 2-173 FOS Non-Scan 0 Flip-flop 20 2-175 F02 Non-Scan Power 0 Flip-flop 7 2-177 F03 Non-Scan Power 0 Flip-flop with Preset 8 2-179 F04 Non-Scan Power 0 Flip-flop with Clear and Preset 9 2-181 F05 Non-Scan Power 0 Flip-flop with Clear 8 2-183 FJO Non-Scan Positive Edge Clocked Power J-K Flip-flop with Clear Function Basic Cells 6 8 12 2-157 UHB Series. Unit Cell Ubraty 2-158 CMOS Channeled Gars ATJys FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Non-SCAN DIT FDM Cell Symbol Pro]:agation tup to 1. 75 2.16 KCL 0.16 0.16 to 1.80 2.36 I UHB Version I Number of BC I Parameter tdn KCL KCL2 CDR2 0.09 0.09 Del~y 6 Path CK -+ Q CK -+ XQ DU' CK XQ Parameter Clock Pulse Width Clock Pause Time Data Setup Time Data Hold Time Pin Name D CK Input Loading Factor (iu) 2 1 Pin Name Q XQ Output Driving Factor (iu) 18 18 * Symbol tCW tCWH Typ(ns)* 4.0 4.0 tSD tHD 2.1 1.5 Minimum values for the typical operating condition. The values for the worst case operating condition are .ll:iven bv the maximum delay multiplier. Function Table Inputs Outputs D CK Q XQ H t H L L H L t UHB-FDM-E2 I Sheet 1/2 I Page 12-1 2-159 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION UHB Version Cell Name FDM Equivalent Circuit CLK XCLK -L -L Q XQ D I I XCLK ex CLK XCLK CLK -L -L ICLK I XCLK o--tt:= XCLK Definition of Parameters CK D tcw tSD Q,XQ UHB-FDM-E2 2-160 Pa e 12-2 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name LFunction I Non-SCAN DFF with SET FDN Cell Symbol Pro~al!;ation tup to 1.80 2.46 2.24 8 D CK KCL 0.16 0.16 0.16 to 1. 75 2.42 1.07 I "UHB Version I Number of BC I Delay Parameter tdn KCL2 CDR2 KCL 0.12 0.09 4 0.08 0.08 7 Path CK .. Q CK .. XQ 8 .. Q,XQ =6=:, 8ymbol tCW tCWH Typ(ns)* 4.0 4.0 Data Setup Time Data Hold Time tSD tHO 2.1 1.5 Set Pulse Width Set Release Time (8) Set Hold Time tSW tREM tINH 4.0 0.3 3.8 Parameter Clock Pulse Width Clock Pause Time Pin Name D 8 CK Input Loading Factor (Lu) 2 2 1 Pin Name Q XQ Output Driving Factor (Lu) 18 18 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs S D CK Outputs Q XQ L H X X H H L t t H H L UHB-FDN-E3 I Sheet 1/2 I L L H Page 12-3 2-161 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name FDN UHB Version Equivalent Circuit S CKO XCKO -L -L Q p---~~xr-----oXQ D CKO -L ICKO IXCKO cx~c~ XCKO Definition of Parameters 1) tcw, tCWH' tSD, tHD and tpd (CK ~ Q,XQ) CK D Q,XQ 2) tsw, tREM' tINH and tpd (5 ~ Q,XQ) tcw CK tsw s ))_..J tREM ~----)) tpd Q XQ ............. ~----+----)) ....... . )) ))---+............. UHB-FDN-E3 2-162 ~lo...-_+-- _ _ _ _ )) ............ ~ _ __ Pa e 12-4 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function 1 FDO Cell Symbol Pro~aJ;tation tup D I Non-SCAN DFF with RESET to 1.93 2.16 2.00 CK I UHB Version I Number of BC KCL 0.16 0.16 0.16 to 1. 78 2.58 1.64 Delav Parameter tdn KCL2 CDR2 KCL 0.10 0.09 0.10 7 Path CK -+ Q CK -+ XQ R -+ Q,XQ =0=:, Input Loading Factor (Lu) Pin Name D R CK Symbol tCW tClwll Typ(ns)* 4.0 4.0 Data Setu~ Time Data Hold Time tSD tHO 2.1 1.5 Reset Pulse Width Reset Release Time (R) Reset Hold Time tRW tREM tINH 4.0 0.9 3.3 Parameter Clock Pulse Width Clock Pause Time R 2 2 1 Output Driving Factor (Lu) 18 18 Pin Name Q XQ * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs R D CK Outputs Q X L H H X L H t t H L L H X H L UHB-FDO-E31 Sheet 1/2 I I Page 12-5 2-163 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION 'Cell Name FDO UHB Version Equivalent Circuit XCKO CKO. --'- --'- Q XQ o T T ~CKO CKO CK XCKO L • XCKO R Definition of Parameters 1) tCW. tCWH. tSD. tHO and tpd (CK • Q.XQ) tcw --+--tCWH CK o Q.XQ tCW ---1I;:..::.:t~tL..:.:::;'l CK ~~--I tREM "I~+-----~~ R ~~........ ............. - I . , . - _ t - - - - - - ~~ ........... ., . . . - - - - UHB-FDO-E3 2-164 --"1"'- lo.-...--+_ _ _ _ _ ~~---+- '--_ __ Q XQ tINH ~~ Pa e 12-6 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function I UHB Version I Number of BC I Non-SCAN DFF with Set andProResetaltation Delay Parameter I FDP Cell Symbol to 1.96 2.45 2.24 2.54 S tup KCL 0.16 0.16 0.16 0.16 to 1. 76 2.50 1.59 1.01 tdn KCL KCL2 0.10 0.09 0.10 0.09 CDR2 8 Path CK .. Q CK .. XQ R .. Q.XQ S .. Q.XQ -Q D- CIt :>-- XQ Parameter Clock Pulse Width Clock Pause Time R Input Loading Factor (iu) 2 2 2 1 Pin Name D S R CIt Symbol tCW tCWH Typ(ns)* 4.0 4.0 Data Setup Time Data Hold Time tSD tHO 2.1 1.5 Set Pulse Width Set Release Time (S) Set Hold Time tSW tREM tlNH 4.0 0.3 3.8 Reset Pulse Width Reset Release Time (R) Reset Hold Time tRW tREM tINH 4.0 0.9 3.3 Output Driving Factor (iu) 18 18 Pin Name Q XQ * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs Outputs S R D CIt Q X X X L H L X L H L L H H H X X H H L t t XQ H L Inhibited H L UHB-FDP-E3 I Sheet 1/3 I H L H I Page 12-7 2-165 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name FDP UHB Version Equivalent Circuit S CKO Q -L D XQ I XCKO CKO XCKO CKO -L -L I I CKO XCKO R CK o----{>--rf)o " 'VHB-FDP-E3 2-166 : exo 1 ..._ "_____ XCKO Pa e 12-8 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION UHB Version Cell Name FDP Definition of Parameters 1) tcw, tCWH, tSD, tHO and tpd (CK - CK -tcw ~ Q,XQ) tCWH- r---.... tSD ... tHO D ..... tpdQ,XQ 2) tRW, tREM' tINH and tpd (R CK ~ Q,XQ) --"","I'"-tcW ))--'1 tREM ,-+----)) R ))---+-~ lo---+_ _ _ _ _ ))........ Q XQ ,-----+-----)) ............'~---+--- ~ 3) tSW, tREM, tINH and tpd (S CK tcw 'SW S Q XQ "--_ __ tpd ............. 'REM ~ Q,XQ) =i= II 1,-+---)) ~r------~~ tINH ----..Ir---1 .. ·...... ·1 ~-----~~ ..........\ _ - - Pa e 12-9 2-167 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I "UHB Version I Number of BC I Non-SCAN 4-bit DFF FDQ Cell Svmbol DA I Propagation Delay Parameter tup tdn to to KCL KCL2 CDR2 KCL 3.37 0.16 2.74 0.08 21 Path CK ... Q DC (i (f CK -QA -QB -QC -QD --< Parameter Clock Pulse Width Clock Pause Time Data Setup Time Data Hold Time Pin Name D CK Input Loading Factor (iu) 1 1 Pin Name Q Output Driving Factor (iu) 18 Svmbol tCW tCWL TvP(ns)* 4.0 4.0 tSD tHD 1.1 2.8 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by_ the maximum delay multiplier. Function Table Input CK D • ~ H L Output Q H L UHB-FDQ-E3 I Sheet 1/2 I 2-168 I Page 12-10 FUJITSU CXOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name FDQ UHB Version Equivalent Circuit r-------------------------, XCKO CKO --L --L QA DA 0 - - - - - - , - / 1 1 CK~: v CKO ~I 1 XCK0 1 XCKO CKO ~-------------------------~ ..l.....oQB DB 0 > - - - - - - ' - 1 ~-------------------------~ -}--o QC DC 0>------'-1 ~-------------------------~ DD o>------J... ..l.....o QD 1 L _________________________ 1 ~ Definition of Parameters ~tcw tCWL - V- CK Io-tSD- tHD .... D .... tpd..... Q Pa e 12-11 2-169 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Non-SCAN 4-bit DFF with CLEAR FDR Cell Symbol Pro~agation to 2.64 DA (r - DC tup' KCL 0.16 - to 3.62 2.18 I UHB Version ~ Number of BC I Delay Parameter tdn KCL KCL2 CDR2 0.08 0.08 26 Path CK -+ Q CL -+ Q IDf -QA -QB -QC -QD CK - J Symbol tCW tCWH Typ(ns)* 4.0 4.0 Data Setup Time Data Hold Time tSD tHD 1.1 2.8 Clear Pulse Width Clear Release Time Clear Hold Time tLW tREM tINH 4.0 1.5 4.5 Parameter Clock Pulse Width Clock Pause Time Pin Name D CK CL Input Loading Factor (tu) 1 1 1 Pin Name Q Output Driving Factor (tu) 18 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table CK X t t Inputs D X L H CL Output Q L H H L L H UHB-FDR-E4 I Sheet 1/3 I 2-170 I Page 12-12 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION UHB Version Cell Name FDR Equivalent Circuit r-------------------------, I CKO XCKO -L. -1.... CLO DAo-----r-i I I I CK~: v XCKO ~I I XCKO , I CLO I I I CL~~ ______ ~K~ _________ X~K~ ______ ~ DB 0 ' I ...L.oQB I ~-------------------------~ DC O"~-----'-: -{-o QC ~-------------------------~ DDO------'...L.oQD IL _________________________ I ~ Pa e 12-13 2-171 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION UHB Version Cell Name FDR Definition of Parameters 1) tCW. tCWH. tSD' tHD' and tpd (CK+QA-QD) tcw CK D QA-QD 2) tLW' tREM. tINH and tpd tcw tv tLW CL tpd QA-QD ...... ....... UHB-FDR-E4 2-172 tREM SS SS tINH SS SS··········· . Pa e 12-14 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name -' Function FDS Cell Svmbol I "UHB" Version J Number of BC I Non-SCAN 4-bit DFF Propaltation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 3.03 0.16 0.09 2.45 20 Path CK .. Q DA DB DC DD CK u~ QB QC QD Parameter Clock Pulse Width Clock Pause Time Data Setup Time Data Hold Time Pin Name D CK Pin Name Q Symbol tCW tCWH TypJns1* 4.0 4.0 tSD tHD 1.1 2.5 Input Loading Factor (Lu) 2 1 Output Driving Factor (Lu) 18 * Minimum values for the typical operating condition. The values for the worst case operating condition are Itiven bv the maximum delay multiplier. Function Table Inputs Outputs CK D Q t t L L H H UHB-FDS-E3 I Sheet 1/2 I I Palte 12-15 2-173 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name FDS UHB Version Equivalent Circuit r----·---------~--------, ICLK I -L XCLK -L .-----i )()----..--oQA I DAo------------- MI I II CK~ . LLK I IXCLK CLK I XCLK XCLK CLK -L -L I XCLK I f- ~ - - - - - - - - - - - - - - - - - - - - - _--;--l_oQB DBO~----------~ I I f- - - - - - - - - - - - - - - - - - - - - - - _--;--l_oQC DCO~----------~ f- - - - - - - - - - - - - - - - - - - - - - - _--;--l_oQD DDO~----------~I I IL _______________________ I ~ Definition of Parameters CK DA-DD QA-QD UHB-FDS-E3 2-174 Pa e 12-16 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I UHB Version I Number of BC I Non-SCAN Power DFF FD2 Cell Svmbol I Propagation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 0.08 1. 65 1.72 0.05 0.10 7 2.55 0.08 2.34 0.04 0.07 7 7 Path CK ... Q CK ... XQ DU' CK XQ Parameter Clock Pulse Width Clock Pause Time Data Setup Time Data Hold Time Symbol tCW tCW Typ(ns)* 4.0 4.0 tSD tHD 1.1 2.4 Input Loading Factor (R.u) 2 Pin Name D CK 1 Output Driving Factor (R.u) 36 36 Pin Name Q XQ * Minimum values for the typical operating condition. The values for the worst case operating condition are ,given by the maximum delay multiplier. Function Table Inputs CK D ,, ~El2-E3 Outputs XQ Q H H L L L H I Sheet 1/2 I Page 12-17 2-175 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name FD2 UHB Version Equivalent Circuit CKe XCKO --L --L Q XQ D T T XCKO CKO CKO XCKO --L --L TCKO T XCKO CK o---I)o-r!)o--XCKO . L CKO Definition of Parameters -tcw tCWL - V- CK - t S D - tHD'" D 10- tpd- Q,XQ UHB-FD2-E3 2-176 Pa e 12-18 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Non-SCAN Power DFF with Preset FD3 Cell Symbol Pro~agation tup to 1.71 2.80 2.39 PR XCL 0.06 0.06 0.06 to 1. 73 2.50 0.91 I "UHB" Version I Number of BC I Delay Parameter tdn XCL2 CDR2 XCL 0.04 0.10 7 0.04 0.07 7 0.07 0.04 7 8 Path CX .. Q CX .. XQ PR .. Q.XQ '=0=' CK XQ Symbol tCW tCWL Typ(ns)* 4.0 4.0 Data Setup Time Data Hold Time tSD tHD 2.1 1.5 Preset Pulse Width Preset Release Time Preset Hold Time tPW tREM tINH 4.0 0.3 3.8 Parameter Clock Pulse Width Clock Pause Time Input Loading Factor (tu) 2 Pin Name D CX PR 1 2 Output Driving Factor (tu) 36 36 Pin Name Q XQ * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay mul tiplier. Function Table PH L H H Inputs CK X + + Outputs D Q XQ X H H L L L H H L UHB-FD3-E2 I Sheet 1/2 I I Page 12-19 2-177 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name FD3 UHB Version Equivalent Circuit PR XCKO CKO l l r-~--------~ X~--~Q I>---t---I )O-------oXQ D xeKO l IXeKO cx~cxo XeKO Definition of Parameters o--tcw eK '~=r - t S D - tHIJ-4 D io-tpd - Q,XQ i'-tREM ... PR PR -tINH- tpw Q,XQ UHB-FD3-E2 2-178 Pa e 12-20 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name J Function I FD4 Cell Symbol Non-SCAN Power DFF with PR DCK---< f--- I Number of BC I ~lear and Preset Pro~agation Delay tup to 1. 90 2.81 2.41 2.49 i UHB Version KCL 0.01 0.06 0.06 0.01 to 1.12 2.12 1.46 0.92 Parameter tdn KCL2 CDR2 KCL 1 0.10 0.05 0.01 0.04 7 0.10 7 0.05 0.07 0.04 7 9 Path CK .. Q CK .. XQ CL .. Q.XQ PR .. Q.XQ Q P--XQ CL Parameter Clock Pulse Width Clock Pause Time Input Loading Factor (.tu) 2 1 2 2 Pin Name D CK CL PR Output Driving Factor (.tu) 36 36 Pin Name Q XQ Symbol tCW tCWL Typ(ns 4.0 4.0 Data Setup Time Data Hold Time tSD tHD 2.1 1.5 Preset Pulse Width Preset Release Time Preset Hold Time tPW tREI1 tINH 4.0 0.3 3.8 Clear Palse Width Clear Release Time Clear Hold Time tLW tREM tINH 4.0 0.9 3.3 * * Minimum values for the typical operating condition. The values for the worst case operating condition are ~iven by the maximum delay multiplier. Function Table Outputs In~uts PR CL L H L H H H H H CK D Q XQ X X X X H L H L L H L H •• UHB-FD4-E2 I Sheet lL2 J H L -, I PaJ!:e 12-21 2-179 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name FD4 UHB Version Equivalent Circuit PRo---~--------------~ XCKO ,..---r-----i X>---<>Q -L D XQ T CKO XCKO CKO XCKO -L -L T T XCKO CKO ~~ CL "'---------XCKO Definition of Parameters I>-- tcw :CKO tCWL --I V- CK 10- tSD- tJID"' D io-tpd ..... Q,XQ I I'-tREM ... PR !O--tINH ..... CL PR CL Q,XQ UHB-FD4-E2 2-180 Pa e 12-22 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I UHB Version I Number of BC I I Non-SCAN Power DFF with CLEAR Pro aRation Delay Parameter FDS Cell Symbol tUIl to KCL 1.88 0.08 2.S7 0.08 2.36 0.08 DCK--< - to 1.71 2.57 l.S2 tdn KCL O.OS 0.04 O.OS KCL2 0.10 0.07 0.10 CDR2 7 7 7 8 Path CK .. Q CK .. XQ CL .. Q.XQ r-Q P--XQ I CL Parameter Clock Pulse Width Clock Pause Time Input Loading Factor (lu) 2 Pin Name D CK CL Symbol tCW tCWL Typ(ns)* 4.0 4.0 Data Setup Time Data Hold Time tSD tHD 1.1 2.4 Clear Pulse Width Clear Release Time Clear Hold Time tLW tREM tINH 4.0 l.S 4.S 1 2 Output Driving Factor (lu) 36 36 Pin Name Q XQ • Minimum values for the typical operating condition. The values for the worst case operating condition are Riven by the maximum delaY multiplier. Function Table CL Inputs CK L X H H + + D Out uts XO 0 X L H H H L L L H UHB-FDS-E4 I Sheet 1/2 I I Page 12-23 2-181 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name UHB Version FD5 Equivalent Circuit CKO XCKO -L .---------1 .",.,----vQ -L XQ D I I ~XCKOCKO CK XCKO L r CKO CL Definition of Parameters CK I'-tcw tCWL~ It-tSD'" ...tHD • D I'-tpd -< Q.XQ - CL Q.XQ CL Io--tINH t-- tLW I;- f-tpd - - I X tREM r UHB';'FD5-E4 2-182 Pa e 12-24 I "UHB" Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function Power with Clear I I Non-SCAN Positive edge clocked Propagation Delay Parameter FJD Cell Symbol JKFF tup to 4.40 4.43 2.40 J CK K KCL 0.08 0.08 0.08 to 2.96 2.48 1.29 tdn KCL 0.05 0.05 0.05 KCL2 0.08 0.08 0.08 CDR2 7 7 7 12 Path CK .. Q CK .. XQ CL .. Q.XQ =1J=:, r.L Parameter Clock Pulse Width Clock Pause Time Input Loading Factor (tu) 2 1 1 Pin Name CL J K CK Symbol tCW tCWH Typ(ns)* 5.6 5.6 J K Setup Time J K Hold Time tSD tHD 2.5 1.2 Clear Pulse Width Clear Release Time Clear Hold Time tLW tREM tINH 4.0 2.5 4.5 1 Output Driving Factor (tu) 36 36 Pin Name Q XQ * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs CL CK J L H H X X L L H H + + + + H H Outputs XQ K 0 X L H L H L H Qo XQo L H H L XQ. Qo UHB-FJD-E3 I Sheet 1/2 I I Page 12-25 2-183 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION UHB Version Cell Name FJD Equivalent Circuit J K XQ CK CL Q Definition of Parameters CK -------. I--tcw tCWH ---0 r----I'-tSD .... tllD • J,K !O-tpd- Q,XQ CL I-- tINH I-- r-- tLW ---0 r- <-- I-tpd ~ Q,XQ tHIB-FJD-E2 2-184 Pa e 12-26 UHB Series Unit Cell Ubrary CMOS Channeled Gate Arrays Binary Counter Family Basic Cells Page Un" Cell Name 2-187 SC7 Scan 4-bit Synchronous Binary Up Counter with Parallel Load 62 2-192 sea Scan 4-bit Synchronous Binary Down Counter with Parallel Load 66 2-197 C11 Non-Scan Flip-flop for Counter 11 2-199 C41 Non-Scan 4-bit Binary Asynchronous Counter 24 2-202 C42 Non-Scan 4-bit Binary Synchronous Counter 32 2-205 C43 Non-Scan 4-bit Binary Synchronous Up Counter 48 2-209 C45 Non-Scan Binary Synchronous Up Counter 48 2-213 C47 Non-Scan Binary Synchronous Up/Down Counter 68 Function 2-185 UH8 Series Unit Cell Ubrary 2-186 CMOS Channeled Gate Arrays FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I UHB" Version Cell Name I Function I Number of BC SCAN 4-bit Synchronous Binary SC7 Up Counter with Parallel Load 62 Cell Svmbol Propagation Delav Parameter tup tdn to KCL to KCL Path KCL2 CDR2 3.30 0.08 3.05 0.06 0.15 7 CK,IH'" Q 5.78 0.08 5.34 0.06 0.15 7 CK,IH'" XQ 7.80 0.08 5.23 0.04 CK,IH'" CO DA2.00 0.08 1.00 0.04 CI ... CO -QA DB :>-XQA DC -QB DD :>-- XQB CK-QC IH:>-- XQC -QD L --< Parameter Symbol Typ(ns)* CI :>-- XQD tCW 7.2 Clock Pulse Width EN -CO 7.2 Clock Pause Time tCWH SI A Data Setup Time tSD 2.0 B --< Data Hold Time tHD 3.3 I I - - Pin Name D CK IH L CI EN S1 A,B Input Loading Factor (Rou) 1 1 1 1 2 1 1 1 Pin Name Q XQ CO Output Driving Factor (Rou) 36 36 36 UHB-SC7-E2 I Sheet 1/5 I Load Setup Time Load Hold Time tSL tHL 6.3 3.6 CI Setuo Time CI Hold Time tSC tHC 7.2 2.7 EN Setup Time EN Hold Time tSE tHE 7.2 2.7 * Minimum values for the typical operating condition. The values for the worst case operating condition are .e:iven bv the maximum delay multiplier. Page 13-1 2-187 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name SC7 UHB Version Equivalent Circuit DA QA XQA DB QB XQB DC QC XQC DD QD XQD XCKI CKI LDI XLDI XAI AI XBI BI SI EN CI CO C~CKI AO-[>o ~XCKI L 0>-------1[>0 ~ LDI Lt>o-- XLDI UHB-SC7-E2 2-188 ~XAI Lt>o--AI BO_[>o ~BI Lt>o--XBI Pa e 13-2 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name SC7 UHB Version Equivalent Circuit (FFu) Q D XQ BI XCKI I XLDI XAI XCKI -L -L-L I II CKI QO AI S AI CKI XAI I XBI XTG o-+--------+-l X>---+ Pa e 13-3 2-189 UHB FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Version Cell Name SC7 Function Load u L DA DB Data Input DC DD Clock CK+IH Enable EN I Data Output L-J II Carry in CI QA IL.J1J"L...JU QB ~ .QC I QD n CO Mode Inhibit UHB-SC7-E2 2-190 Load Count Inhibit Pa e .13-4 FUJITSU C~OS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I SC7 I I UHB Version Definitions of Parameters i) Clock Mode Clock Data L CI ----""'I. Io-tSD .... l--tHD- _t=tSL~'HL=r_- -Ftse-+i__________ EN UHB-SC7-E2 I Sheet 5/5 I I P~e 13-5 2-191 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "UHB Version Cell Name I Function I Number of BC SCAN 4 bit Synchronous Binary SCB Down Counter with Parallel Load 66 Cell Symbol ProJ:agation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 Path 3.37 0.07 3.1B 0.06 0.13 7 CK,IH'" Q 4.40 0.06 4.32 0.04 CK,IH'" XQ 6.41 B.37 0.04 CK,IH ... BO O.OB DA 0.04 1.49 O.OB 2.27 BI ... BO f--QA DB P-XQA DC f--QB DD P-XQB CKf--QC IHP-XQC L --<: f--QD Parameter Symbol Typ(nsJ* BI - C P-XQD Clock Pulse Width tCW 6.B EN - C 6.B Clock Pause Time tCWH SI P-BO A Data Setup Time tSD 2.0 B -C tHD 3.3 Data Hold Time I I Pin Name D CK IH L BI EN SI A,B Input Loading Factor (J1.u) 1 1 1 1 2 1 1 1 Pin Name Q XQ BO Output Driving Factor (iu) 36 36 36 UHB-SCB-E2 I Sheet 1/5 I 2-192 Load Setup Time Load Hold Time tSL tHL 6.3 3.6 EN Set1!P Time EN Hold Time tSE tHE B.1 loB B1 Setup Time BI Hold Time tSB tHB B.1 loB * Minimum values for the typical operating condition. The values for the worst case operating condition are given bv the maximum delay multiplier. I Pa,l!:e 13-6 FUJITSU C~OS GATE ARRAY UNIT CELL SPECIFICATION UHB Version Cell Name sca Equivalent Circuit 51 EN BI CTV--CKI L[>o-t>o--XCKI L o----..,~ ~ LDI ~XLDI AO>---~ ~XAI ~AI BO>---~ ~BI ~XBI Pa'e 13-7 2-193 FUJITSU Cell Name SC8 C~OS GATE ARRAY UNIT CELL SPECIFICATION UHB Version Equivalent Circuit (FFu) V2B V2B Q D XQ XQO XAI XCKI AI ..l ..l..l I II XS AI CKI XAI I XBI XTG o-+--------+--i UHB-SC8-E2 2-194 X>---t Pa e 13-8 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cel1 Name sca UHB Version Function Load u L DA DB Data Input DC DD Clock CK+IH Enable EN :I~----------------------~ Carry in BI QA QB Data Output ---+--'~ ~'----- QC QD BO LJ Mode Inhibit Load Count down Inhibit Pa e 13-9 2-195 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name SC8 UHB Version Definitions of Parameters i) Clock Mode Clock Data tcw tCWH tSD tHD L EN BI UHB-SC8-E2 2-196 Pa e 13-10 I UHB Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I I Non-SCAN Flip-Flop for Counter Propagation Delay Parameter Cll Cell Symbol tup to 1.90 2.53 2.62 KCL 0.16 0.16 0.16 to 1. 75 2.97 1.73 tdn KCL XCL2 0.10 0.10 0.10 CDR2 11 Path CX .. Q CX .. XQ CL .. Q.XQ r--- DL- ~Q CK TG - P--XQ CL Pin Name L TG CL D.CX Symbol tCW tCIr.'H Typ(ns)* 4.0 4.2 Clear Pulse Width Clear Release Time Clear Hold Time tLW tREM tINH 4.0 1.0 0.5 Input Loading Factor (Lu) 2 2 Load Setup Time Load Hold Time (CX) CK tSL tHL 2.3 0.5 2 1 Data Setup Time Data Hold Time (CX) (CX) tSD tHD 2.5 0.5 TG Setup Time TG Hold Time CX) (CX) tST tNT 2.9 0.0 Output Driving Factor (Lu) Pin Name Parameter Clock Pulse Width Clock Pause Time Q XQ 18 18 * Hinimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table L 0 'I'G CL CK X X X L X L H H X H t H H L X H t L L X L H t Q(Qo) L X H H t Q(Qo) tJHB-Cll-E3 I Sheet 1/2 I Q(Qo) I Page 13-11 2-197 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION UHB Version Cell Name Cll Equivalent Circuit XLO CL -L Q D XQ LO ICKO I XCKO CL TG 0--+-+1 C<~= XCKO Lt: Definition of Parameters tCWH CK CL tREM tiNH CL t L tSD tIlL tHD D tJIT Pa e 13-12 2-198 FUJITSU C~OS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I UHB Version I Number of BC Counter I Non-SCAN 4-bit Binary Asynchronous I ProJ:agation Delav Parameter C41 Cell Symbol tup to 2.00 3.67 5.13 6.60 -QA -QB -QC -QD - KCL 0.14 0.14 0.14 0.14 - to 1.86 3.28 4.75 6.20 4.19 tdn KCL KCL2 0.10 0.10 0.10 0.10 0.10 - - 24 CDR2 Path CK ... QA CK ... QB CK ... QC CK ... QD CL ... Q - - - CK - CL Pin Name CK CL Input Loading Factor (R.u) 1 1 Pin Name Q Output Driving Factor (R.u) 18 Parameter Clock Pulse Width Clock Pause Time Symbol tCW tCIYll Clear Pulse Width Clear Release Time Clear Hold Time tLW tREM Typ(ns)'~ 4.3 4.6 3.9 2.1 6.7 tINH * Minimum values for the typical operating condition. The values for the worst case operating condition are .e:iven bv the maximum delay multiplier. Function Table InJ:uts CL eK H L t X Outputs Q Count up L UHB-C41-E2 I Sheet 1/3 I J Pa.e:e 13-13 2-199 FUJITSU Cell Name C41 C~OS GATE ARRAY UNIT CELL SPECIFICATION Equivalent Circuit QA UHB QB Version QD QC CKO FTO FTO FTO FTO XCKO CLO CL o-{>o-{)o- CLO CK~CKO L- XCKO v FTO (Flip-Flop for Counter) (not Unit Cell) Symbol CKO XCKO 8 Function Table Q CLO CKO Q QO L X L XQO H t Qn-l CLO CLO Q QO I I XCKO CKO XCKO CKO -L -L ICKO I XCKO ~----------------------------~-----o UHB-C41-E2 2-200 CLO XQO Pap;e 13-14 FUJITSU C~OS GATE ARRAY UNIT CELL SPECIFICATION UHB Version Cell Name C41 Definition of Parameters CK CL I Page 13-15 I 2-201 I "UHB Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function Counter I Non-SCAN 4-bit Binary. Synchronous I Propaution Delay Parameter C42 Cell Symbol tup to 3.18 - XCL 0.14 - to 2.34 3.36 tdn XCL2 XCL 0.12 0.09 0.09 0.12 CDR2 4 4 32 Path CX .. Q CL .. Q r-- r-QA r-QB r-QC r-QD CX - CL Pin Name CL CX Pin Name Q Input Loading Factor (iu) Parameter Clock Pulse Width Clock Pause Time Symbol tCW tCWH Typ(ns)i' 4.3 4.6 Clear Pulse Width Clear Release Time Clear Hold Time tLW tREM tINH 4.0 2.1 6.7 1 1 Output Driving Factor (lu) 18 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs CL CX H L + X Outputs Q Count up L UHB-C42-E3 I Sheet 1j31 2-202 Pa£e 13-16 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name C42 Equivalent Circuit QA CKO UHB QB CKO Version QD QC CKO CKO XCKO CLO . . XCKO CK o----{)o--+---'[)o-- CKO FT2 (Flip-Flop for Counter)(not Unit Cell) Function Table Inputs CKO Q XCKO QO XTG Output CLO XTG CKO L X X H H Q(QO} L H , Qn-l L t Qn-l CLO UHB-C42-E3 Pa e 13-17 2-203 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION UHB Version Cell Name C42 Equivalent Circuit of FT2 CLO CKO XCKO Q -L QO CLO CKO XCKO I CKO XTG CKO -L I XCKO 0---+---+--1 Definition of Parameters tcw --'1-- tCWH CK CL UHB-C42-E3 2-204 ~~- ~......-+-----~~ tINH --'1""- Pa e 13-18 FUJITSU C~OS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I UHB Version I Number of BC Up Counter I Non-SCAN 4-bit Binary Synchronous Propagation Delav Parameter C43 Cell Svmbol tup to 2.96 5.60 1.60 - - r--- DADB DC DDL --< CKENCI - I--QA f--QB f--QC f--QD Input Loading Factor (lu) 1 1 1 2 Output Dr! ving Factor (lu) 18 18 Pin Name Q CO - to 2.40 3.56 0.81 3.88 2.64 tdn KCL KCL2 0.09 0.08 0.08 0.09 0.08 CDR2 48 Path CK ... Q CK ... CO CI ... CO CL'" Q CL ... CO f--CO CL Pin Name D L,EN CK,CL CI KCL 0.16 0.16 0.16 j Parameter Clock Pulse Width Clock Pause Time Data Setup Time Data Hold Time Load Setup Time Load Hold Time CI Setull Time CI Hold Tillie EN Setup Time EN Hold Time Clear Pulse Width Clear Release Time Clear Hold Time Symbol tCW tCWH tSD tHD tSL tHL tSC tHC tSE tHE tLW tREM tINH TV'P'ns 4.7 6.7 2.6 2.9 4.4 1.3 4.3 0.9 4.3 0.9 5.6 * 1.9 8.3 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay_multiplier. Function Table Im:uts D EN CL L L H H H H H X X L L H H H H L Note : X X X X X X X L H Outputs CI CK Q X X X X L X X X H t L H L No Counting No Counting Count up t t The CO output produces a high level output data when the counter overflows. UHB-C43-E3 I Sheet 1/4 I I Page 13-19 2-205 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION UHB Version Cell Name C43 Equivalent Circuit DA QA DB .... FT3 CKOXCKO~ "'"- r- LOXLO-C FT3 CKO- r- XCKO-C g:vf" Jo QC DC "'"- r- LOXLO~ QB r< FT3 r- LOXLO-C CKO- CKO- ~ r- XCKO-C r< r< f- XCKO QD "'"- r- LOXLO~ DD FT3 r- CI Jo EN r- Jo r-r- Jo r~ L-r'" ~ 4> CL o---{>o---- L UHB-C43-E3 2-206 CO '-' CLO LO XCKO XLO CKO Pa e 13-20 FUJITSU CMOS GATE ARRAYA UNIT CELL SPECIFICATION UHB Version Cell Name C43 . FT3 (Flip-Flop for Counter)(not Unit Cell) Function Table D LO LO CK XLO CKO XTGO CLO X X X L H X X X H H H L L H H I. L L t t t t L X X L XCKO Q(QO) D Q L L Q(QO) Q(QO) XTGO CLO Equivalent Circuit of FT3 CLO XLO -.L Q D LO QO O~--------~ CKa XTGa XCKa 0--++..., UHB-C43-E3 Pa e 13-21 2-207 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION UHB Version Cell Name C43 Definition of Parameters ,~-~~;i )) I II G'lNH=r- L Ir-----~-------------- CI I~----~-------------- EN UHB-C43-E3 2-208 ~----~-------------- I Page 13-22 I I "UMB" Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I FlUlction Up COlUlter I Non-SCAN 4-bit Binary Synchronous I Propagation Delav Parameter C45 Cell Svmbol tU1) to 2.67 5.07 1.91 KCL 0.14 0.17 0.17 to 1. 87 2.82 1.36 tdn KCL KCL2 0.09 0.13 0.09 0.09 CDR2 4 48 Path CK .... Q CK .... CO CI .... CO ,-- DADB DC DD L ---c CK EN CI - ~QA ~QB ~QC ~QD ~CO CL Input Loading Factor (R.u) 1 1 1 2 Pin Name D L,EN CK,CL CI Parameter Clock Pulse Width Clock Pause Time Data Setup Time Data Hold Time Load Setu1) Time Load Hold Time CI Setup Time CI Hold Time EN Setup Time EN Hold Time Clear Setup Time Clear Hold Time Symbol tCW tCWH tSD tHD tSL tHL tSC tHC tSE tHE tSR tHR Typ(ns)''< 4.0 4.6 3.8 2.1 5.0 2.1 6.6 1.9 6.6 1.9 3.8 2.0 Output Driving Factor (R.u) 18 Pin Name Q CO 18 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs D EN CL L L H H H H H X X L L H H H H L X X X CI CK X X X X X X X + + + L H X X X H + L Outputs Q L H L No Counting No Counting Count up Note : The CO output produces a high level output data when the cOlUlter overflows. UHB-C45-E1 I Sheet 1/4 J I Page 13-23 2-209 FUJITSU Cell Name C45 cnos GATE ARRAY UNIT CELL SPECIFICATION UHB Version Equivalent Circuit DA QA "- LO- t- IT! XLO-<: DC QC "- ~ LOXLO-( QB DB tIT! tIT! LOXLO-( CKO- CKO- CKO- CKO- XCKO -<: t- XCKO-<: t- XCKO-( t- XCKO-( ~~r r< r< r< CI EN Jo 1 Jo r tIT! t- Jo CLO r-r- QD "- LOXLO-( DD ~ --.... ~ LV CL o----{>o--- L UHB-C45-E1 2-210 CO '--' CLO LO XCKO XLO CKO Pa e 13-24 FUJITSU CMOS GATE ARRAYA UNIT CELL SPECIFICATION UHB Version Cell Name C45 . FTl (Flip-Flop for Counter)(not Unit Cell) Function Table D LO LO Q XLO CKO QO XCKO XTGO L H H L L D XTGO CLO CK Q(QO) X X X X H L L H H L L L t t t t t H L X X L L Q(QO) Q(QO) CLO Equivalent Circuit of FT3 CLOo---------------~ XLO -L Q D LO QO O----------~ I CKO XTGO I XCKO 0--++--1 UHB-C45-EI Pa e 13-25 2-211 FUJITSU CMOS GATE ARRAY UNIT CELL PECIFICATION UHB Version Cell Name C45 Definition of Parameters ex tcw ----of- tCWH tSD D CL L CI EN UHB-C45-E1 2-212 Pa e 13-26 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name J Function C47 Cell Symbol I "UHB" Version I Number of BC I Non-SCAN 4-bit Binary Synchronous Up/Down Counter Propagation Delay Parameter tup tdn KCL to KCL KCL2 CDR2 to 3.59 0.16 0.25 4 3.99 0.16 5.41 6.12 0.08 0.11 5.54 4 0.25 5.01 0.16 0.16 0.08 2.47 0.11 3.01 .-DADB DC DDL --< CKEN --< DU- 68 Path CK -+ Q CK -+ CO L-+Q DU -+ CO r--QA r--- QB r--- QC r--- QD P--- CO - Parameter Clock Pulse Width Clock Pause Time Input Loading Factor Clu) Pin Name D L DU CK EN 1 Symbol tCW tCWH Typ(ns)* 5.6 8.9 Data Setup Time Data Hold Time tSD tHO 0.7 1.8 DU Setup Time DU Hold Time tSU tHU 5.3 0.8 EN Setup Time EN Hold Time tSE tHE 5.0 1.2 2 1 I 3 Clear Release Time tREH 2.3 11.1 Output Driving Clear Hold Time tINH Factor Clu) tLW 4.6 Load Pulse Width 18 18 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Pin Name Q CO Function Table 0 L H L L L X X X H H H Inputs EN DU X X H L L X X X L H Outputs CK X X t + + J I H ! L No Counting Count Up Count Down Note : The CO output produces a low level output pulse when the counter overflows or underflows. UHB-C47-E2 I Sheet 1/4 I I Page 13-27 2-213 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name C47 Equivalent Circuit - UHB Version ""'" .....- CO rDU Y>oEN L./ DA 0-:-:-LO- ;&- -=v- CKO- FT7 XCKO -{ CKO 0 QA - ~J I- ~ I XCKO r--- r--QB LO- CKO- FT7 CKO-{ I-- "-1 r--- I I DC QC 0-- LOCKO - FT7 XCKO -{ I r- L..- ,-----r" I-- "-~ r--- DD QD 0-LO- CKO- FT7 XCKO -{ r-- L-t- J UHB-C47-E2 2-214 Pa e 13-28 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name UHB Version C47 • FT7 (Flip-Flop for Counter)(not Unit Cell) Function Table In! uts L~EQ Out[luts LO D TGO CKO QO(Q) H H X X H L H L X X L H L X L t Qn-l Qn-l L X H t Qn-l Qn-l Q(QO) FT7 CKO XCKO TGO QO XQO Equivalent Circuit of FT7 r------------------------oXQO t - - - - - - - { )O-------oQ I XCKO I XCKO CKO CKO --L --L XDO LO DO LO CKO XCKO TGO o-f--+-i )0---; D~DO v L- XDO Pa c 13-29 2-215 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name C47 UHB Version Definition of Parameters CK tcw ~~ D ~~ ~~ L ~~ EN tSE tsu DU UHB-C47-E2 2-216 tCWH tHE tINH ~)~ tHU ~~ Pa e 13-30 CMOS Channeled Gate Arrays UHB Series Unit Cell UbralY Adder Family Basic Cells Page Un" Cell Name 2-219 A1A 1-bit HaH Adder 2-220 A1N 1-bit Full Adder 8 2-221 A2N 2-bit Full Adder 16 2-223 A4H 4-bit Binary Full Adder with Fast Carry 48 Function 5 2-217 UHB Series Unit Cell LibrB!}' 2-218 CMOS Channeled Gale Anays FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I I-bit Half Adder AlA Cell Svmbol A Input Loading Factor (R.u) 2 B 2 I Symbol 5 Path A ... S B ... S A ... CO B ... CO Typ(ns)* Output Driving Factor (R.u) Pin Name CO 36 36 S * Minimum values for the typical operating condition. The values for the worst case operating condition are given bv the maximum delay multiplier. Equivalent Circuit Function Table A B CO s L L H H L H L H L L L H L H H L LSheet 1/1 UHB-AlA-E2 I Number of BC Propagation Delay Parameter tup tdn KCL to KCL KCL2 CDR2 to 1.22 0.08 1.44 0.04 1.09 0.08 1.46 0.04 1.12 0.08 1.25 0.04 1.27 0.08 1.15 0.04 Parameter Pin Name J UHB" Version I A B I Page 14-1 2-219 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function AIN I I-bit Full Adder ...£ill Symbol B- I--CO A- I--S J I Pro]:a2ation Delav Parameter tup tdn to KCL to KCL KCL2 CDR2 2.64 0.16 3.15 0.08 1.35 0.08 1.25 0.16 2.98 0.16 2.38 0.08 1.02 0.16 1.17 0.08 Symbol Parameter Pin Name A B CI Input Loading Factor (R.u) 3 3 3 Pin Name CO S Output Driving Factor (R.u) 18 18 * Outputs A B CI S CO L L L L L L L L H H L L L H L H L H H H L L H H H H H H UHB-A1N-E2 I Sheet 1/1 L 2-220 Path A,B .. S CI .. S A,B .. CO CI .. CO TypJns) * Equivalent Circuit Inputs L 8 Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table H I UHB Version I Number of BC L H H L L L H H H H A B I'"" II 11./ '""- ---tb S CI ~}-t>o-co I 1../ I Page 14-2 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I 2-bit Full Adder A2N Cell Svmbol to 2.85 2.74 1.58 1.47 2.79 2.97 2.97 1.18 2.82 3.11 2.71 3.11 2.76 r--CO r--52 r--51 J I Delay Parameter tdn to KCL KCL2 CDR2 2.81 0.14 2.87 0.14 1.36 0.09 0.12 4 1.36 0.09 0.12 4 0.14 2.58 2.75 0.14 2.75 0.14 1.19 0.14 0.14 2.75 0.14 2.95 2.81 0.14 0.14 2.95 0.14 2.52 Propa~ation tUll B2A2BlAl- I UHB Version I Number of BC KCL 0.29 0.29 0.29 0.29 0.29 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 Svmbo1 Parameter Pin Name A,B CI Input Loading Factor (Rou) 2 2 Pin Name S CO Output Driving Factor (Rou) 14 14 * 16 Path Al ... CO Bl ... CO A2 ... CO B2 ... CO CI ... CO Al ... 51 Bl .. 51 CI ... SI A1 ... 52 A2 ... S2 Bl ... S2 B2 ... 52 CI ... 52 Typ(ns)* Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs CI =L Outputs CI =H Al Bl A2 B2 51 52 CO Sl S2 CO L H L L H H L L H H L L H H L L H H L H H L L H H L L H H L L H H L L L L H L L L L L L L L H H H H H H H H L L L L L L L H L L L H H H H H H L L H H L L H H L L H H L L H L H L L L L L H H H H L L L L H H H H L L L L L L H L H L H L H L H L H UHB-A2N-E2 I 5heet 1/2 I H H H H L H H H L L L L H H H H L L L H L L L L H H H H H H L H H H H H H H Page 14-3 2-221 FUJITSU CMOS GATE ARRAY Cell Name A2N u~IT CELL SPECIFICATION UHB Version Equivalent Circuit CO A2 B2 S2 Al B1 Sl C1 UHB-A2N-E2 2-222 Pa e 14-4 J "UHB" Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Number of BC I 4-bit A4H Cell Symbol I Binary Full Adder with Fast Carry Propagation Delay Parameter tup tdn to to KCL2 CDR2 KCL KCL 1.18 0.22 1.63 0.14 2.65 0.29 3.07 0.14 0.14 3.03 0.29 2.98 -CO 3.14 0.29 3.54 0.14 -S4 2.87 0.16 3.21 0.08 B4 A4 B3 A3 B2 A2 B1 A1- -S3 -S2 -Sl I CI Pin Name A B CI Input Loading Factor (R.u) 2 2 2 Pin Name CO Sl,S3,S4 S2 Output Driving Factor (R.u) 18 14 18 Function Table Al B1 A2 B2 L H L H L H L H L H L H L L L H L L L L L L H H L L L L H H H H L L L L L L H H H H H H H H H 1\3- B3- 1\4- B4- H L H L L H H L Path CI -+ CI -+ CI -+ CI -+ CI -+ Sl S2 S3 S4 CO 3.81 3.17 3.42 3.75 3.30 0.22 0.29 0.29 0.29 0.16 3.39 3.08 3.85 3.92 3.78 0.14 0.14 0.14 0.14 0.08 Al,Bl ... SI A1,B1 -+ S2 A1,B1 -+ S3 A1,Bl ... S4 A1,Bl -+ CO 3.09 3.66 3.74 3.87 0.29 0.29 0.29 0.16 3.37 3.60 4.05 3.83 0.14 0.14 0.14 0.08 A2,B2 A2,B2 A2,B2 A2,B2 2.81 3.84 3.80 0.29 0.29 0.16 2.85 4.04 3.82 0.14 0.14 0.08 A3,B3 ... S3 A3,B3 .. S4 A3,B3 -+ CO 2.90 3.66 0.22 0.16 3.01 3.51 0.09 0.08 0.12 4 .. .. ... .. S2 S3 S4 CO A4,B4 ... S4 A4,B4 ... CO Note : Input conditions at AI, A2, OUTPUT B1, B2 and CI are used to determine outputs Sl and S2 CI L CI - H -d ;; ii - -C2;; L - and the value of the interSl S2 C2 nal carry C2. The values Sl S2 C2 83- 84- CO- 83- 84- COat C2, A3, B3, A4 and B4 are then used to determine outputs S3, 54 and CO. L L L H L L H L L L H L H L L L H L L H H L H L H H L L H L H H L L L H H H L L L H L L H H L H L H L H H L L H H H L L L L L H H H L L H H L H L L H H L H H L H L H H H L H L H H L H H H H H = INPUT H 48 L L L H H H H H UHB-A4H-E3 I Sheet 1/2 I I Page 14-5 2-223 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I A4H I UHB I Version Equivalent Circuit " r------.. ~" ~ CO '---u " ~ 'u p-- r-- B4 'u r-.. H-J ri=k' A4 D ..I"" I pr S4 V ~ B3]C ~ f-lJ t- " t- t- t- ~ IrV ~u ~ A3 cr--+-t7' B2 L=" Ip- ~ t- ~ t- s-., rl-bf t-U r-, if S3 ~ ~ ~ L-Us1:jd A2 Vr-- f\ S2 I u ~ Sl ~ I L/ Bl Al CI~ UHB-A4H E3 I Sheet 2/2 I 2-224 W t- r-U ~ S=[V I Page 14-6 UHB Series Unit Cell Ubrary CMOS ChanneIBd Gate Arrays Data Latch Family Page Unit Cell Name 2-227 YL2 Data Latch with TM 5 2-229 YL4 Data Latch with TM 14 2-231 LTK Data Latch 2-233 LTL Data Latch with Clear 5 2-235 LTM Data Latch with Clear 16 2-238 LT1 S-R Latch with Clear 2-240 LT4 Data Latch Function Basic Cells 4 4 14 2-225 UHB Series Unit Cell Ubrary 2-226 CMOS Channeled Gate Arrays FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I I-bit Data Latch with YL2 Cell Symbol CK IH 'I'M I 'I'M Propagation Delay Parameter tup tdn KCL2 CDR2 KCL to to KCL 0.04 2.73 0.08 2.81 0.08 0.04 1.16 1.28 D D I UHB Version I Number of BC 5 Path CK.IH ... Q D ... Q Q Parameter Symbol Typ ns Clock Pulse Width tCW 6.8 Data Setup Time Data Hold Time tSD tHD 3.2 2.5 * Input Loading Factor (iu) 2 1 1 1 Pin Name D CK 1H 'I'M Output Driving Factor (iu) 36 Pin Name Q * Minimum values for the typical operating condition. The values for the worst case operating condition are d ven by the maximum de lay mul ti plier . Note : The 'I'M terminal must be kept LOW during the SCAN Mode. Function Table 'I'M L H H H Input IH CK X H X L X X H L D D Output Q D X X Q. Q. D D trnB-YL2-E3 I Sheet 1/2 I Mode SCAN LATCH Page 15-1 2-227 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION B Version Cell Name YL2 Equivalent Circuit :>0----0 Q CKI ..L D I XCKI XCKI ..L I CKI XCKI eKI Definitions of Parameters ex i'--- tew - - - tSD D Q UHB-YL2-E3 2-228 i I tHO I )j( -tp~~ .II' Pa e 15-2 I "UHB Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I 4-bit Data Latch with TK PrQl 8ltation Delay Parameter I YL4 Cell Symbol tup to ICCL 3.33 0.08 1.10 0.08 Dl D2 D3 D4 CIC -< IH TK-< to 3.43 1.29 tdn ICCL2 ICCL 0.04 0.04 14 CDR2 Path CIC.IH ," Q D"Q Symbol Typ(ns)* -Ql -Q2 -Q3 -Q4 Parameter Pin Name D CIC IH TK Input Laadina Factor. (lu) 2 1 1 1 Pin Name Q Output Drivina Factor (1u) 36 Clock Pulse Width (CIC) tCW 7.2 Data Setu!) Time Data Hold Time (D) (D) tSD tHD 1.8 4.0 * Minimum valuea for the tJPical operatina condition. The value. for the wor.t ca.e operatina condition are dven by the maximum delay multi1)Uer. Note : The TK terminal must be kept LOW durina the SCAN Kode. Function Table In~ut TK IH CIC Dn L X H H H X X X H H L L 4 n '" 1 - D X X D Output Qn D Qno Qno D UHB-YL4-E3 I Sheet 1/2 I Kode SCAN LATCH I Page 15-3 2-229 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION UHB Version Cell Name YL4 Equivalent Circuit r----------------, I QI CKI -.L Dl I XCKI XCKI D2 -.L I ~------~~--------~ I --r--o C>---f I ~----------------~ --r--o I D3 C>---f Q3 1 ~----------------~ D4 Q2 --r--o I I <>---t- Q4 L ______ ~---------J , . . - - - - - _ XCKI E~ Dv-Lf»- CKI Definitions of Parameters CK tcw D Q UHB-YL4-E3 2-230 Pa e 15-4 FUJITSU C~OS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function LTK Cel1 Symbol D G I UHB Version I Number of BC I Data Latch Propagat:ion Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 1.03 0.16 0.08 1.15 1.45 0.16 1.63 0.08 1. 75 0.16 1.82 0.08 2.12 0.16 2.34 0.08 4 Path D -fo Q D -fo XQ G -fo Q G -fo XQ u: Parameter G Input Pulse Width Data Setup Time Data Hold Time Pin Name D G Pin Name Q XQ Symbol tGW Typ(ns)"< 4.0 tSD tHD 1.6 2.3 Input Loading Factor (.tu) 2 1 Output Driving Factor (.tu) 18 18 * Minimum values for the typical operating condition. The values for the worst case operating condition are given bv the maximum delay multiplier. Function Table Inouts Outputs D G Q X H L L Qo XQo H L H H L L XQ UHB-LTK-E2 I Sheet: 1/2 I Page 15-5 2-231 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name LTK UHB Version Equivalent Circuit Q CO -L XQ D T XCO XCO -L T CO G o---i>o-tI)o~ CO Lxco Definition of Parameters (Casel) G D tHD Q,XQ ----~---------------JI (Case2) o..tSD G ,..-- D Q,XQ UHB-LTK-E2 2-232 "--- I r- tpd Pa e 15-6 I nUHB Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I I-bit Data Latch with ClearPropagation Delay Parameter I LTL Cell Symbol tup to 1.39 1.18 1.52 1.96 2.22 D- G - KCL 0.16 0.16 0.16 0.16 0.16 to 0.85 1.22 1.71 1.92 2.51 tdn KCL KCL2 0.09 0.09 0.09 0.09 0.09 LD2 5 Path CL .. Q,XQ D .. Q D .. XQ G .. Q G .. XQ Q --< :>-- XQ cl Symbol tGW Typ(ns)* 4.0 Data Setup Time Data Hold Time tSD tHD 1.3 0.5 Clear Pulse Width tLW 4.0 Parameter G Input Pulse Width Input Loading Factor (R.u) 2 1 1 Pin Name D G CL Output Driving Factor (R.u) 18 18 Pin Name Q XQ * Minimum values for the typical operating condition. The values for the worst case operating condition are lI:iven by the maximum delay multiplier. Funcion Table CL Inputs D G L H H H X X H UHB-LTL-E2 L Outputs X H L H Qo H L L L J Sheet 1/2 I H XQo L H I Page 15-7 2-233 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION UHB Version Cell Name LTI. Equivalent Circuit CL GO Q --.L XQ D T XGO T GO G o----,[>o~[>o~: GO XGO Definition of Parameters (Case 1) (Case 3) I'- tGW - - CL G D tHD io--o K tLW-y-- G* II"" Q,XQ ---.t1"____ 1 1- Note*: G input must be high level at the time this latch is cleared. tpd (Case 2) -~-.... L_ tSD G D Q,XQ _ _ _-+____..,/ UHB-LTI.-E2 2-234 Pa e 15-8 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I I UHB Version I Number of BC I LTM Cell Symbol 4-bit Data Latch with Clear ProJ:altation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 1.54 0.16 0.97 0.08 0.08 1.22 0.16 1.29 1. 79 0.08 1.60 o 16 0.08 0.16 2.45 2.61 I-- PA 2.73 3.15 0.08 o 16 P-NA f-PB P-NB I-- PC P-NC· f-PD P-ND DA DB - DC DD G ---c I Parameter G Input Pulse Width CL 16 Path CL .. P,N D .. P D .. N G .. P G .. N Symbol tGW Typ(ns)* 4.0 Clear Pulse Width tLW 4.0 Data Setup Time Data Hold Time tSD tHD 1.6 2.3 Input Loading Factor (lu) 2 1 4 Pin Name D G CL Output Driving Factor (lu) 18 18 Pin Name P N * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs Outputs CL D G P N L X X H H L L L Po H L H No L H H H H L H UHB-LTM-E3 I Sheet 1/3 I I Page 15-9 2-235 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION UHB Version Cell Name LTM Equivalent Circuit r------------------------, ct I I PA GO -L NA DA I XGO XGO -L GO I ~----------~-------------~ r--<> PB I DB L--...o I NB ~------------------------~r--<> PC DC I L--...o NC ~------------------~-----~,--<> PD I DD 0----1 IL ________________________ J L--...o NO G~GO r. UHB-LTM-E3 2-236 LXGO Pa e 15-10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name UHB Version LTM Definition of Parameters (Casel) tGW G D P,N (Case2) G D P,N (Case3) CL - -tLW- *G P,N I'-tpd .... Note *: G input must be high level at the time this latch is cleared. Pa e 15-11 2-237 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Ce 11 Name I Function I UHB Version I Number of BC I I S-R Latch with CLEAR LTl Cell ~bol Propagation Delay Parameter tdn tup KCL KCLZ CDRZ to KCL to 0.16 0.08 0.86 1. 76 0.08 1.56 0.16 1.04 0.06 1.44 0.16 0.9Z 4 Path S .. Q,XQ R .. Q,XQ CL .. Q,XQ r-- S --<: ~Q R --<: P--XQ CL Symbol tSW Typ(ns)* 4.0 Reset Pulse Width tRW 4.0 Clear Pulse Width tLW 4.0 Parameter Set Pulse Width Pin Name S R CL Pin Name Q XQ Input Loading Factor (iu) 1 1 1 Output Driving Factor (iu) 18 18 * Minimum values for the typical operating condition. The values for the worst case operating condition are J(iven by the maximum delay multiplier. Function Table CL L H H H H Inputs S Outputs R Q H H H H H L H Qo XQo L L L L H H H L L XQ Inhibited UHB-LTl-E3 J Sheet l/Z I 2-238 I Page 15-12 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION UHB Version Cell Name LTl Equivalent Circuit 5 XQ R Q CL Definition of Parameters 5 Q. XQ tJi tpd CL Q. XQ tJi tpd R Q.XQ Pa e 15-13 2-239 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I 4-bit Data Latch LT4 Cell Svmbol DA DB DC DD - G --C I "UHB" Version I Number of BC I Propag"tion Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 2.50 0.16 2.28 0.08 3.05 0.08 2.50 0.16 1.05 o 16 1.18 0.08 0.08 1.40 0.16 1.60 14 Path G -+ P G-+N D -+ P D -+ N -PA J - NA -PB J - NB -PC J - NC -PD J-ND Parameter G Input Pulse Width Data Setup Time Data Hold Time Pin Name D G Input Loading Factor (~u) 2 1 Pin Name P N Output Driving Factor (Rou) 18 18 Symbol tGW Typ(ns)* 4.0 tSD tHD 1.6 2.3 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs D G H L H L H H L L Outputs P N Po Po H L No No L H UHB-LT4-E2 I Sheet 1/3 I 2-240 I Page 15-14 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION UHB Version Cell Name LT4 Equivalent Circuit r---------------------, 1~ U 1.-L 1 DA NA 1 XGO I GO ~---------------------~ - + - - 0 PB - + - - 0 NB 1 DB o----t DC o---!-1 ~---------------------~ -+-~O PC -+-~O NC ~---------------------~ --~I--~O 1 DD G o----tL _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ o-t>o>----t---t>o------: 1 0 PD ND ~ GO L...------- XGO UHB-LT4-E2 Pa e 15-15 2-241 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I LT4 I I "UHB Version Definition of Parameters (Case 1) G I<- tGW - - ,r- D tHD Io--P,N ~ i'I---tpd (Case 2) G V- D "'tSD- -tHD-o P,N - tpd UHB-LT4-E2 I Sheet: 3/3 I 2-242 ---0 [\- --- I Page 15-16 CMOS Channeled Gate Arreys UHB Series Unit Cell Ubrarr Shift Register Family Basic Un" Cell Page Name Function Cells 2-245 FS1 Serial-in Parallel-out Shift Register 18 2-247 FS2 Shift Register with Synchronous Load 30 2-249 FS3 Shift Register with Asynchronous Load 34 2-252 SR1 Serial-in Parallel-out Shift Register with Scan 36 2-243 UHB SerIBa Unit 2-244 c.n Lib!!ry CMOS Channe/fld Gate Anays FUJITSU C~OS GATE ARRAY UNIT CELL SPECIFICATION Cel1 Name I Function I UHB Version I Number of BC Shift Register I 4-bit Serial-in Parallel-out I ProJ:agation Delay Parameter FSI Cell Svmbol tup to 2.42 SD CK KCL 0.16 to 3.14 tdn KCL KCL2 0.09 0.12 CDR2 4 18 Path CK ... Q DQ' QB QC QD Parameter Clock Pulse Width SD Setup Time SD Hold Time Pin Name SD CX Input Loading Factor (.tu) 1 1 Pin Name Q Output Driving Factor (Jl.u) 16 Clock Pause Time '* C ;;; 16 I.u I I 16 < C ;;; 32 I.u J 32 < C ;;; 48 I.u Symbol tCW Typ(ns)* 4.0 tSSD tHSD 0.6 0.2 tCWL** tCWL** tCWL** 5.8 8.4 10.9 Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay mul tiplier . ** The value of tCWL depends on the load(C) connected to the output terminals, QA, QB, QC and QD. Function Table In.uts SD CK SD Outlluts QA I QB QC I QD • SD I QAIl QBJ QCr Note: ·SD = H or L 'QAn, QBn and QCn are levels of QA, QB and QC respectively, before the falling edge of CX, i.e. 1 bit shift by the falling edge of CX. UHB-FSI-E1 I Sheet 1/2 I Page 16-1 2-245 FUJITSU Cell Name FSl C~OS GATE ARRAY UNIT CELL SPECIFICATION UHB Version Equivalent Circuit ,-~-----------------~------------T1- -lrL QA QB QC QD T I I I CKO L I XCKO CKO XCKO -L -L J_ pi 1i _____ ~:~~ _________________ ~~~ _________ .l.. ___ .l.. ___ .l.. ___ J CK o---Dx>-rf)o-• CKO LXCKO Definition of Parameters ~tcw tCWL- CK Io--tss SD Q UHB-FS1-E1 2-246 V- tHSD riPa e 16-2 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I UHB Version I Number of BC I FS2 14-bit Shift Register with Svnchronous Load Cell Svrnbol Propagation Delav Parameter tup tdn to KCL to KCL KCL2 CDR2 2.32 0.16 3.14 0.09 4 0.12 PA PB PC PD - 30 Path CK ... Q I--QA I--QB I--QC I--QD SD CK --C L- Symbol tCW Typ(ns)'·' 4.0 SD Setup Time SD Hold Time tSSD tHSD 2.8 1.2 Load Setup Time Load Hold Time tSL tHL 4.3 0.5 P SetuJl Time P Hold Time tSP tHP 3.6 1.5 Parameter Clock Pulse Width Pin Name CK SD L P Input Loading Factor (Rou) 1 1 1 1 Pin Name Q Output Driving Factor (Rou) 16 Clock Pause Time * C ~ 16 Rou I I 16 < C ::: 32 Rou 32 < C ::: 48 Rou tCWL** tCWL'~* tCWL*'~ 5.8 8.4 11.0 Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay mul tiplier. ** The value of tCWL depends on the load(C) connected to the output terminals, QA, QB, QC and QD. Function Table SD Inputs L P CK • QA SD L X X H P • =H or L Note: ·SD Outputs QB QC QD SD QArl QBn QCn PA PB PC PD ·QAn, QBn and QCn are levels of QA, QB and QC respectively, before the falling edge of CK, i.e. 1 bit shift by the falling edge of CK . • p represents PA, PB, PC and PD. UHB-FS2-E1j Sheet 1/2 I Page 16-3 2-247 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name FS2 UHB Version Equivalent Circuit PA QA PB [-------------~o-- --------- --------~-- ------------if r+jTrii PC PD I SD I I CKO XCKO CKO XCKO _1- -L -11 bit XCKO CKO ~-------------------------------------------------------~---~---~--- CK~X:: L 0---{»-- XLO Definition of Parameters ~tcw tCWL- CK V- tHSD Io--tss SD t::.tsp P L l' -i-tSL i'- tHP- X 'io.. tHL -tEd Q UHB-FS2-E1 2-248 Pa e 16-4 FUJITSU C~OS GATE ARRAY UNIT CELL SPECIFICATION Cell :-lame I Function I UHB Version I Number of BC I FS3 14-bit Shift Register with Asvnchronous Load Cell Symbol Propagation Delav Parameter tuo tdn to KCL to KCL KCL2 CDR2 2.28 0.17 2.12 0.11 4.64 0.17 3.50 0.11 2.03 0.17 3.02 0.11 PA PB PC PD - 34 Path CK ... Q L ... Q P ... Q i-QA i-QB i-QC i--QD SD CK L --C Pin Name CK SD Input Loading Factor(.h) Svmbol tCW tCWH Typ(ns)* 4.0 4.0 Load Pulse Width tLW 6.2 SD Setup Time SD Hold Time tSSD. tHSD 1.0 1.7 P getup Time P Hold Time tSP tHP 0.3 2.3 2 2 L 1 P 2 Pin Name Q Parameter Clock Pulse Width Clock Pause Time Output Driving Factor (J/.u) 18 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table L Inouts P SD CK Output Q L L H X X X X L L H X X L H t t L H H H UHB-FS3-El I Sheet 1/3 I I Page 16-5 2-249 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION lJ1iB Version Cell Name FS3 Equivalent Circuit SD PA QA 0----.., ITO PB 1 - - - - 1 ITO QB PC I - - - - - - i ITO QC PD QD FFO Equivalent Circuit of ITO P Q DO QO CKO XCKO XLDO LDO DO CKO UHB-FS3-E1 2-250 XCKO Pa e 16-6 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name FS3 I J I UHB" Version Definition of Parameters .1 CK I'- tCWH 1"---- SD L P t='LWl ---t'sp-+~f= UHB-FS3-E1 I Sheet 3/3 I I Page 16-; 2-251 Ell FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I "UHB Version I Number of BC I SRI 4-bit Serial-in Parallel-out Shift Register with SCAN Cell Svmbol Pro]:agation Delay Parameter tup tdn to to KCL KCL2 CDR2 KCL 3.27 3.37 0.07 0.11 7 0.09 2.58 0.09 2.90 0.07 0.11 7 36 Path CK ... Q B ... Q r--- DCK IH SI AB -C r--QA I - QB I - QC r--QD Parameter Clock Pulse Width Clock Pause TIme Data Setup Time Dau Hold Time Pin Name D CK IH SI AB Pin Name Q Symbol tCW tCWH tSD tHD Typ(ns)* 5.5 5.6 3.3 1.5 Input Loading Factor (R.u) 1 1 1 1 1 Output Driving Factor (R.u) 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. UHB-SRI-El I Sheet 1/3 I 2-252 I Page 16-8 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION UHB Version Cell Name SR1 QA QB QC DO QO SDO 5QO CLK XCLK ACK XACK BCK XBCK D 51 ITO ITO ITO CLK XBCK XCLK -L -L -L DO ITO )O------0Qo ~~-~ xr~----o5QO I XCLK XACK XCLK ACK -L -L -L I II CLK SDO ACK CK CLK I XACK XCLK CLK I IH XCLK XBCK B~BCK ~XBCK Pa e 16-9 2-253 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I SR1 I I UHB Version Definitions of Parameters tcw CK } ~I tSn- ~HD'" D lJHB-SR1-E1 I Sheet 3/3 I 2-254 I Page 16-10 CMOS Channeled Gate Arrays UHB Series Unit Cell Ubrary Parity Generator/Selector/Decoder Family Page Unit Cell Name Function Basic Cells Parity Generators/Checkers 2-257 PE5 Even Parity Generator/Checker 12 2-258 POS Odd Parity Generator/Checker 12 2-259 PE8 Even Parity Generator/Checker 18 2-260 P08 Odd Parity Generator/Checker 18 2-261 PE9 Even Parity Generator/Checker 22 2-262 P09 Odd Parity Generator/Checker 22 2:1 Data Selector 12 Data Selector 2-263 P24 Decoders 2-264 DE2 2:4 Decoder 5 2-265 DE3 3:8 Decoder 15 2-267 DE4 2:4 Decoder 8 2-268 DE6 3:8 Decoder 30 2-270 T2B 2:1 Selector 2 2-272 T2C 2:1 Selector 4 2-273 T2D 2:1 Selector 2 2-274 T2E 2:1 Selector 5 2-275 T2F 2:1 Selector 8 2-277 T5A 4:1 Selector 5 2-279 V3A 1:2 Selector 2 2-280 V3B 1:2 Selector 4 Selectors Magnitude Comparator 2-281 MC4 Magnitude Comparator 42 2-255 UHB Series Unit Cell LIbr8!Y 2-256 CMOS Chamleled Gale AITIIYs , "UHB" Version , Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell l " Input Loading Factor (Rou) 2 2 2 Output Driving Factor (Rou) 36 * Equivalent Circuit Function Table Hnout X Odd L Even H Bl B2 r-.. " l/ X Cl C2 A UHB-PE5-E1 , Sheet 1/1 I Minimum values for the typical operating condition. The values for the worst case operating condition are given bv the maximum delay multiplier. r-.. " Ir-- l/ Page 17-1 2-257 I "UHB" Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I s-bit Odd Parity Generator/Checker I Propagation Delay Parameter POS Cell Svmbol tup to 2.63 2.86 4.19 A B1 B2 Cl C2 KCL 0.08 0.08 0.08 to 3.07 3.04 4.56 tdn KCL KCL2 0.04 0.04 0.04 Path A-+X B ... X C -+ X {J-x Svmbol Parameter C Input Loading Factor (R.u) 2 2 2 Pin Name X Output Driving Factor (R.u) 36 Pin Name A B * Hnput X Odd H Even L Bl B2 Cl C2 A UHB-POs-El I Sheet 1/1 I Typ(ns)" Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit Function Table 2-258 CDR2 12 r-... " l L./ r-... " .,u::::,. X Ir--. L./ I Page 17-2 I UHB" Version INumber of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I PE8 Cell Symbol 8-bit Even Parit~ Prota~ation tup to KCL 3.85 0.16 3.94 0.16 3.93 0.16 4.02 0.16 AlA2 BlB2 ClC2 DlD2 - p- I Generator/Checker to 4.33 4.42 4.40 4.49 Delay Parameter tdn KCL2 CDR2 KCL 0.08 0.08 0.08 0.08 D Pin Name X Symbol Typ(nsJ* Input Loading Factor (£u) 2 2 2 2 Output Driving Factor (£u) 18 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit Function Table !input Path A'" X B ... X C ... X D ... X X Parameter Pin Name A B C 18 X Odd L Even H UHB-PE8-El I Sheet 1/1 I A1 A2 B1 B2 1["-" JI L/ r-- ["-., II L/ II L./ C1 C2 iJ"".. D1 D2 1["-" II L/ X II'"'-.. II 11../ II L/ I Page 17-3 2-259 I "UHB" Version I Number of BC FUJITSU CMOS GArB ARRAY UNIT CELL SPECIFICATION Ce11 Name I Function I 8-bit Odd Parity Generator/Checker I Prollagation Delay parameter P08 Ce11 Symbol tup to KCL 3.77 0.16 3.86 0.16 3.87 0.16 3.96 0.16 AlA2 BlB2 Cl C2 Dl D2 - tdn KCL KCL2 0.08 0.08 0.08 0.08 to 4.28 4.37 4.17 4.26 Pin Name X Path A .. X B .. X C .. X D .. X I-- X Parameter Pin Name A B C D CDR2 18 Symbol 1'yp(ns) * Input Loading Factor (R.u) 2 2 2 2 Output Driving Factor (R.u) 18 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Iinput Odd Even X H Equivalent Circuit Al A2 Bl B2 L Cl C2 Dl D2 UHB-P08-r:2 I Sheet 1/1 I 2-260 r-- II L/ It'.. II It'.. II L/ L/ X t'.. II 11./ It'.. Ll r-... II L/ 1./ I Page 17-4 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I UHB Version I Number of BC I 9-bit Even Parity Generator/Checker I Pronagation Delav Parameter PE9 Cell SYmbol tup to S.29 A1A2 A3 A4 AS A6 A7 A8 A9 - KCL 0.16 to S.7l tdn KCL KCL2 0.08 Pin Name X Path A-+X 0-- X Symbol Parameter Pin Name A CDR2 22 Typ(ns)* Input Loading Factor (lu) 2 Output Driving Factor (lu) 18 * MinilDUlD values for the typical operating condition. The values for the worst case operating condition are given by the maximUID delay multinlier. Equivalent Circuit Function Table A3 !input X A8 Odd L Even H Al A2 A9 A4 ...., r.... II...., X AS A6 A7 UHB-PE9-E1 I Sheet 1/1 I I Palte li-5 2-261 FUJITSU CMOS GATE Cell Name I Function AR~AY I UHB Version I Number of BC. UNIT CELL SPECIFICATION I 9-bit Odd Parity Generator/Checker I Prooa{tation Delay Parameter P09 Cell Svmbol tup to 5.20 A1A2 A3 A4AS A6 A7 A8 A9 - r-- KCL 0.16 to 5.71 tdn KCL2 KCL 0.08 CDR2 22 Path A~X X Symbol Parameter Pin Name A Input Loading Factor (Rou) 2 Pin Name X Output Driving Factor (Rou) 18 Typ(ns)* * Minimum va~ues for the typical operating condition. The values for the worst case operating condition are ltiven by the maximum delay multiplier. Equivalent Circuit Function Table A3 Iinput X A8 A9 Odd H Even L A1 A2 A4 AS A6 A7 UHB-P09-E1 I Sheet 1/1 I 2-262 '-'" _I'"'" I~. r X I Page 17-6 I UHB" Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I 4-wide 2:1 Data Selector Propagation Delav Parameter I P24 Cell Svmbol tup to 0.95 1.16 0.81 1.00 AIB1 A2 B2 A3 B3 A4 B4 SA SB - r-- - KCL 0.08 0.08 0.08 0.08 to 0.83 0.97 0.95 1.08 tdn KCL2 KCL 0.04 0.04 0.04 0.04 CDR2 12 Path A .. X B .. X SA .. X SB .. X Xl X2 X3 X4 Parameter Pin Name A B S Input Loading Factor _(tu) 1 1 4 Pin Name X Output Driving Factor (tu) 36 Symbol Typ(ns)* * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit Function Table Al SA SB Xn Bl L H L H L L H H L An Bn An+Bn A2 B2 A3 B3 - Xl ..... - X2 ..... ...... - X3 ...... A4 ...... 1- B4 SA - X4 !- SB UHB-P24-E2 I Sheet 1/1 I I Page 17-7 2-263 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Ce1l Name I Function I 2:4 Decoder DE2 Ce1l Svmbol Pro~agation tup to 0.79 0.88 0.37 0.88 0.28 0.79 A~XC KCL 0.16 0.16 0.16 0.16 0.16 0.16 to 1.08 0.97 0.45 0.97 0.56 1.08 I UHB Version I Number of BC I Delav Parameter tdn KCL KCL2 CDR2 0.14 0.14 0.14 0.14 0.14 0.14 5 Path A ... XO A ... Xl A ... X2,X B .. XO B .. Xl,X B .. X2 Xl X2 X3 B Symbol Parameter B Input Loading Factor (£u) 3 3 Pin Name X Output Driving Factor (£u) 18 Pin Name A Typ(ns)* * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table InJ:uts A B X3 Outputs X2 Xl XO H H H L L L H H H L H L H H H H H H L L L H H H A B UHB-DE2-E2 I Sheet 1/1 I 2-264 ~ XO tg X2 t»-~ Xl X3 I Page 1 i-8 I "UHB Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I I 3:8 Decoder DE3 Cell Svmbol f--XO f--X1 -X2 -X3 -X4 -X5 -X6 -X7 ABC- 15 Prooagation Delay Parameter tuo tdn to KCL to KCL KCL2 CDR2 1.44 1.67 0.16 0.19 2.44 0.16 2.44 0.19 1.33 0.16 0.19 1.72 0.16 2.49 0.19 2.33 1.23 0.16 1. 78 0.19 0.19 2.23 0.16 2.55 Path A ... XO-X3 A ... X4-X7 B ... XO-X3 B ... X4-X7 C ... XO-X3 C ... X4-X7 Svmbol Typ(ns)''< Parameter Input Loading Factor (iu) 1 1 1 Pin Name A B C Output Driving Factor (iu) 14 Pin Name X * Minimum values for the typical operating condition. The values for the worst case operating condition are given bv the maximum delay multiolier. Function Table Inputs A B C L L L L L L H H H L H H H L H H L H L H L H L H XO Xl X2 L H H H H H H H H L H H H H H H H H L H H H H H UHB-DE3-E2J Sheet 1/2 I Outputs X3 X4 H H H L H H H H H H H H L H H H X5 X6 X7 H H H H H L H H H H H H H H H H H H H L H H L H I Pal1;e 17-9 2-265 FUJITSU CXOS GATE ARRAY UNIT CELL SPECIFICATION tJ1!B Version Cell Name DE3 Equivalent Circuit A XO Xl B X2 X3 c X4 X5 X6 X7 UHB-DE3-E2 2-266 Pa e 17-10 "UHB" Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I 2:4 Decoder with Enable DE4 Cell Svmbol I Propagation Delay Parameter tUl) tdn to KCL to KCL KCL2 CDR2 0.16 1.46 0.19 1.19 0.86 0.16 0.19 1.11 1.07 0.16 1.14 0.19 8 Path G ... X A ... X B ... X ~xo A B Xl X2 X3 G Symbol Parameter G Input Loading Factor (.Iou) 3 3 1 Pin Name X Output Driving Factor (R.u) 14 Pin Name A B * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit Function Table G A B X3 X2 Xl XO G H X X H H H H A L L L L L L L H H H L L L H H H H L H H H H H H H Typ(ns ),,: L H H FirFir-n - FirXO '-- B X2 ~X3 UHB-DE4-E2 I Sheet 1/1 I I Page 17-11 2-267 I "UHB Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I 3:8 Decoder with Enable DE6 Cell Symbol I Propagation Delay Parameter tup tdn to KCL KCL2 CDR2 to KCL 3.0S 0.16 S.9S 0.08 2.89 0.16 3.28 0.08 G1G2 G3 SlS2 S3 - 30 Path G"'X S ... X -XO r-X1 ~X2 r--- X3 r---- X4 r--- XS r--- X6 r--- X7 Symbol Parameter Pin Name G S Input Loading Factor (R.u) 1 1 Pin Name X Output Driving Factor (R.u) 18 Typ(ns)* * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table G1 G2+G3 S3 S2 Sl X7 X6 XS X4 X3 X2 Xl XO X H L X X X X X X X H H H H H H H H H H H H H H H H H H H H H H H H L L L L L L L L L L L L H H H H L L H H L L H H L H L H L H L H H H H H H H H L H H H H H H L H H H H H H L H H H H H H L H H H H H H L H H H H H H L H H H H H H L H H H H H H L H H H H H H H UHB-DE6-E3 I Sheet 1/2 I 2-268 I Page 17-12 FUJITSU cnos GATE ARRAY UNIT CELL SPECIFICATION UHB Version Cell Name DE6 Equivalent Circuit Gl XO G20-------~~~r+----------~--~ G3 o-------_+_-I Xl X2 X3 X4 XS S2 0-----1 )(>------O---j....., S3 0-----1 )(>---------....., X6 X7 UHB-DE6-E3 )::>-----+------i Pa e 17-13 2-269 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I UHB Version J Number of BC I T2B 2:1 Selector Cell Svmbo1 Pro.agation Delay Parameter tU1) tdn to KCL to KCL KCL2 CDR2 0.52 0.16 0.78 0.09 0.61 0.16 0.99 0.09 2 Path A,B .. X S .. X t{J-. S2 Symbol Parameter Pin Name A,B S Input Loading Factor (iu) 2 1 Pin Name Output Driving Factor (iu) 18 X * Typ(ns)'~ Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit Function Table A In1)uts 51 B 52 X L H X X X L H L L H H L L H H L H L H H H L L L H L H H L H L Inhibit Inhibit Inhibit Inbibit -L Output A X H H L L :E-- 2-270 I 5heet 1/1 I X B -r 51 52 UHB T2B-E2 H> ~ I Page 17-14 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I T2C Dual 2:1 Selector Cell Symbol I UHB Version I Number of BC I Propagation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 0.51 0.16 0.77 0.09 0.67 0.16 1.03 0.09 4 Path A,B ... X S ... X Sl S2 ~I [)-XO A1A2B1B2- P--X1 Parameter Pin Name A,B S Input Loading Factor (R.u) 2 2 Pin Name X Output Driving Factor (R.u) 18 Symbol Typ(ns)'" * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum de1av multiplier. Function Table Inputs A1,B1 A2,B2 L H X X L H L H X X L H H L H L Sl S2 L L H H H H L L L L L L H H H H UHB-T2C-E2 I Sheet 1/2 I Outputs XO H L H Xl H L H L L Inhibit Inhibit Inhibit Inhibit Inhibit Inhibit Inhibit Inhibit I Pa~e 17 15 I 2-271 FUJITSU C~OS GATE ARRAY UNIT CELL SPECIFICATION Cell Name UHB Version T2C Equivalent Circuit Al ) 0 - - - - 0 XO A2 O---!----I Bl ) 0 - - - - 0 Xl B2 0---+---1 5lo--_--...J 52 O>-------...J UHB-T2C-E2 2-272 Pa e 17-16 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I UHB Version I Number of BC I T2D 2:1 Selector Cell Symbol Propagation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 0.62 0.18 0.70 0.12 0.67 0.18 0.51 0.12 2· Path A,B ... X S ... X tD-x 52 Symbol Parame.ter Pin Name A,B 5 Pin Name X Input Loading Factor (iu) 1 1 Output Driving Factor (iu) 14 * Minimum values for the typical operating condition. The values for the worst case operating condition are ~iven bv the maximum delay multiplier. Function Table InJ:uts S1 A B L X H X X X L T~(ns)* Equivalent Circuit ---L Output S2 X H H L H A L L H H H H H L L L L H H L L L H L H H L H L =:E- H L Inhibit Inhibit Inhibit Inhibit B I Sheet 1/1 I --r Sl S2 UHB-T2D-E2 r---oX ~ I Page Ii-Ii 2-273 I "ullB Version 1 Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Dual 2:1 Selector T2E Cell Svmbol A1A2 B1B2 - I 5 Pro,agation Delay PaTameter tup tdn to to KCL KCL KCL2 CDR2 0.54 0.16 0.54 0.10 0.14 4 4 1.64 0.16 1.62 0.10 0.14 Path A,B ... X S ... X Symbol Typ(ns)>" :r-XO :r-X1 - S Parameter Pin Name A,B Input Loading Factor (R.u) 2 S 1 Pin Name X Output Driving Factor (R.u) 18 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalet Ciruit ----:L Al ---r--'-- ~ XO A2 f----3= BI --.---'-- ~ Xl B2 S Lv UHB-T2E-El I Sheet: I / 1 I 2-274 I I Page 17-18 I UHB Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I 2:1 Selector T2F Cell Symbol Pro~a,l1;ation tup A1A2 B1 B2 C1 C2 D1D2 S - to 0.54 KCL 0.16 to 0.54 1.64 0.16 1. 62 I Delay Parameter tdn KCL KCL2 CDR2 0.10 0.14 4 0.10 0.14 4 8 Path A,B, C,D .. X S .. X ::>-- XO ::>-- Xl ::>-- X2 t:r- X3 Parameter Pin Name A,B,C,n S Input Loading Factor (R.u) 2 1 Pin Name X Output Driving Factor (R.u) 18 Symbol Typ(ns)* * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. UHB-T2F-E1 I Sheet 1/2 I I Pa,l1;e 17-19 2-275 FUJITSU Cell Name T2F C~OS GATE.ARRAY UNIT CELL SPECIFICATION UHB Version Equivalent Circuit Al XO A2 Bl Xl B2 -....--'-- Cl X2 C2 -,Dl X3 D2 S UHB-T2F-E1 2-276 Sheet 2/2 Pa e 17-20 I "UHB" Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function T5A 14:1 Selector Cell Svmbol 1 Propagation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 1.00 0.23 1. 00 0.16 0.84 1.00 0.23 0.16 0.56 0.23 0.54 0.16 S1 S2 S3 S4 AI_ A2_ B1_ B2_ tiLl 5 Path A,B -+ X S1-4 -+ X S5-6 -+ X P--x TI S5 S6 Symbol Parameter Pin Name A,B S Pin Name X Typ(ns)* Input Loading Factor (.tu) 1 1 Output Driving Factor LR.ul 9 * Minimum values for the typical operating condition. The values for the worst case operating condition are ltiven by the maximum delay multiplier. Function Table A1 A2 B1 B2 In uts S2 S1 L L H L H H L H S3 S4 S5 S6 H H L L L L L L H H H H H H H H L L L L H H L L L H L H L L H H Output X H L H L H L H L A1=A2 -+ S1=S2 or S5=S6 Inhibit B1=B2 -+ S3=S4 or S5=S6 Inhibit A1,A2=B1,B2 or S5=S6 Inhibit UHB-T5A-E2 I Sheet 1/2 I I Page 1;-21 2-277 FUJITSU C~OS GATE ARRAY UNIT CELL SPECIFICATION Cell Name UHB Version T5A Equivalnt Circuit Al A2 Sl S2 x S4 S3 Bl B2 S5 S6 UHB-T5A-E2 2-278 Pa e 17-22 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name J Function V3A 11: 2 Selector Cell Svmbol Sl =[}=xo S2 Xl A Input Loading Factor (R.u) 1 1 Pin Name X Output Loading Factor (R.u) 1 Pin Name X Output Driving Factor (R.u) 14 I * Symbol Inputs Sl S2 2 Path A'" X S ... X Typ(ns)~' Minimum values for the typical operating condition. The values for the worst case operating condition are .lti ven by the maximum delay multiplier. Equivalent Circuit Function Table A I Number of BC Propagation Delay Parameter tup tdn to to KCL KCL KCL2 CDR2 0.18 0.70 0.12 0.62 0.55 0.18 0.45 0.12 Parameter Pin Name A S J "UHB" Version I-l- Outputs XO I Xl -~XO Inhibit L L L L H L X H L L H H X L H H H L L H H L X L H L H L X H H H Inhibit A cr-[>oSl ~ ~~~n -r S2 Inhibit UHB-V3A-E1 I Sheet 1/1 I I Page 17-23 2-279 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I V3B Dual 1:2 Selector Cell 5vmbol Pro.a!l;ation Delay Parameter tup tdn KCL2 CDR2 to KCL to KCL 0.64 0.18 0.76 0.12 0.48 0.12 0.57 0.18 ADxo B 51 52 Pin Name A B 5 Pin Name X Pin Name X Path A,B -+ X 5 -+ X 5ymbol Output Loading Factor (Rou) 1 Output Driving Factor (Rou) 14 Inputs 51 S2 * Minimum values for the typical operating condition. The values for the worst case operating condition are given b~ the maximum delay multiplier. Equivalent Circuit Outputs XO, X2 I Xl, X3 A~ L L L L H L X H L L H H X L H H Inhibit Inhibit H L 1. H H L X L H L H L X H H H XO =t=- -~ B~-~ -~ Inhibit 5heet 1/1 I -~ Xl ~ 51 UHB-V3B-E2 Typ(ns)* Input Loading Factor (.h) 1 1 2 Function Table 2-280 4 Xl X2 X3 Parameter AB I UHB Version I Number of BC 52 X2 X3 -r I Page 17-24 FUJITSU cnos GATE ARRAY Cell Name I Funct:ion L~IT CELL SPECIFICATION I URB Version I Number of BC I 4-bit Magnitude ComoaratorPrq]: agation Dela-v Paramet:e-r I MC4 Cell Svmbol tup A3 A2 A1 AO B3:= B2:= B1:= BO:= IG- -OG -DE -OS IEIS- to 5.29 5.38 2.36 1. 93 5.18 5.27 2.25 2.13 5.69 5.58 2.14 KCL 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.16 0.16 0.16 to 6.32 6.21 2.78 2.41 6.53 6.42 2.99 2.31 4.36 4.45 1.43 tdn KCL 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.09 0.09 0.09 KCL2 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.12 0.12 0.12 Symbol Parameter Pin Name A B IE Typ(ns)* 1 1 1 IS as Path A .. as B .. as IE .. as IG .. OS A .. OG B ... OG IE ... OG IS ... OG A ... DE B .. DE IE .. OE Input Loading Factor (Rou) 3 3 IG Pin Name OE OG CDR2 4 4 4 4 4 4 4 4 4 4 4 42 Output Driving Factor (Rou) 18 10 10 * Minimum values for the typical operating condHion. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Comoarin Inputs A3,B3 A2 B2 Al,Bl AO,BO A3>B3 A3 B2 A2 B1 Al BO AO B) (AB) Outouts OS OE (A- if Version Equivalent Circuit I r"- OG l./ r"- if A2 B2 IS - t- j - ~ W r---l./ f"\ >- ,..... p-- r-rl./ r-IE OE l- t - t--l./ IG f"\ Al v- Bl ~ I :~ t-- '- p-- v j--r-- v OS r-.. ~W AO BO ~ v I LJ1lB-MC4-E1 I Sheet 2/2 I 2-282 Q> V- V- I Page 17-26 CMOS Channeled Gate Anays UHB Series Unit Cell Ubrary Bus Driver Basic UnRCeIl Page Name 2-285 B41 Function 4-bit Bus Driver Cells 9 2-283 UHB Series Unit Cell Ubraty 2-284 CMOS Channeled Gate Arrays FUJITSU C~OS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I 4-bit Bus Driver B41 Cell SVlDDol I Prooagation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 1.58 0.07 1.52 0.06 2.50 0.07 1.90 0.06 9 Path A ... X C ... X r--XO r--X1 r--- X2 I--- X3 AO AlA2 A3 C --<: Parameter Pin Name A C I "UHB" Version I Number of BC Symbol Typ(ns)'~ Input Loading Factor (Iou) 1 1 Pin Name X Output Loading Factor (Iou) 1 Pin Name X Output Driving Factor (Iou) 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given bv the maximum delay multiplier. Maximum Number of B41 used in each UHB device Device Name Max. B41 Device Name Max. B41 C-330UHB 4 C-3000UHB 21 C-530UHB 5 C-4100UHB 26 C-830UHB 6 C-6000UHB 50 C-1200UHB 8 C-8700UHB 70 C-1700UHB 12 C-12000UHB 90 C-2200UHB 16 UHB-B41-E3 I Sheet 1/21 Page 18-1 2-285 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I B41 I I DRB Version Equivalent Circuit i .------------------. r-±-i J' Ao---+--~l--~ )o-~:--~~ r-~-----+--- xo I 'BD-----------------TJ-T-- J I I I I : : I , Al A2 , m -l-;m-uum----mw--- - i I i :~~:::::::::::::::~ fm-----j i T':: ::J: :LL 'n-, ~ 'sil----------------- A3 ~TG I I ~--·-·-·-4 I; ~ G ! j g~= ,L______ , X3 I , I , r----~--------------: C X2 i ~------------------1 I, ;~BD----------------J Xl I I :: ~Co DC---------------, L _________ .J ~Co Note: TG is configured using the special transmission gates buried in the channel area of the DRB devices_ BD and DC use the regular internal baisc cells in the DRB devices. A Bus Terminator is invisible to logic designers and is automatically connected to each Bus line, when B41 is used. UHB-B41-E3 2-286 J Sheet 2/2 I LP~e 18-2 UHB Series Unit Cell Ubrary CMOS Channeled Gate Arrays Clip Cells Page UnH Cell Name 2-289 2-290 2-291 ZOO Z01 KD2 Function o Clip 1 Clip Basic Cells o o Load Gate (Fan-in = 2) 2-287 UHB Series Unit Cell Library 2-288 CMOS Channeled Gate Arrays FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I UHB Version I Number of BC J J o Clip ZOO Cell Symbol to Prol=agation Delav Parameter tup tdn KCL to KCL KCL2 CDR2 0 Path X ~ Parameter Pin Name Pin Name X Symbol Typ(ns)* Input Loading Factor (R.u) Output Driving Factor (R.u) 200 * UHB-ZOO-E1 I Sheet 1/1 I Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. I Page 19-1 2-289 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function ZOI I 1 Clip I UHB Version I Number of BC I Cell Svmbol to Propagation Delav Parameter tun tdn KCL to KCL KCL2 CDR2 0 Pa1:h r X Parameter Pin Name Input Loading Factor (!u) Pin Name X Output Driving Factor (!u) 200 * UHB-Z01-El I Sheet 1/1 I 2-290 Symbol Typ (ns ) ,', Minimum values for the typical operating condition. The values for the worst case operating condition are ltiven by the maximum delay multiplier. I Page 19-2 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name -' Function I Load Gate Fan-in = 2 KD2 Cell Symbol Pro~agation tup to A KCL to I "UHB" Version I Number of BC I Delay Parameter tdn KCL KCL2 CDR2 1 Path -t> Parameter Pin Name A Input Loading Factor (iu) 2 Pin Name Output Driving Factor (iu) Symbol Typ(ns)1( * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. UHB-KD2-E1 I Sheet 1/1 I Page 19-3 2-291 CMOS Channeled Gate Ana¥! 2-292 UHB Series Unit Cell Ub(alf UHB SeIifIs Unit CslI LibraIy CMOS Channeled Gale Anars 1/0 Buffer Family Page Unit Cell Name Function Basic Cells Input BuHers 2-295 2-296 2-297 2-298 2-299 2-300 2-301 2-302 2-303 2-304 2-305 2-306 2-307 2-308 2-309 2-310 2-311 2-312 2-313 2-314 2-315 2-316 2-317 2-318 2-319 2-320 2-321 2-322 2-323 2-324 11B 11BU 11BO 12B 12BU 12BO IKB IKBU IKBO ILB ILBU ILBO 11C 11CU 11CO 12C 12CU 12CO 11S 11SU 11S0 12S 12SU 12S0 11R 11RU 11RO 12R 12RU 12RO Input Buffer 11 B with Pull-up Resistance 11 B with Pull-down Resistance Input Buffer 12B with Pull-up Resistance 12B with Pull-down Resistance Clock Input Buffer IKB with Pull-up Resistance IKB with Pull-down Resistance Clock Input Buffer ILB with Pull-up Resistance ILB with Pull-down Resistance CMOS Interface Input Buffer 11 C with Pull-up Resistance 11 C with Pull-down Resistance CMOS Interface Input Buffer 12C with Pull-up Resistance 12C with Pull-down Resistance Schmitt t~er Input Buffer 11S with Pu -up Resistance 11S with Pull-down Resistance Schmitt trigger I~t Buffer 12S with Pu -up esistance 12S with Pull-down Resistance Schmitt tri~er Inre: Buffer 11 R with Pu -up esistance 11 R with Pull-down Resistance Schmitt trefter Inre: Buffer 12R with Pu I-up esistance 12R With Pull-down Resistance 5 5 5 4 4 4 4 4 4 6 6 6 5 5 5 4 4 4 8 8 8 8 8 8 6 6 6 8 8 8 Output Buffer Power Output Buffer Output Buffer Power Output Buffer Output Buffer Power Output Buffer Output Buffer Power Output Buffer High Power Output Buffer OUtput Buffer Power 3-state Output Buffer High Power Output Buffer OUtput Buffer Power 3-state Output Buffer Output Buffer Output Buffer Output Buffer Output Buffer 3-state Output Buffer 3-state Output Buffer 3 3 5 5 2 2 4 4 6 5 5 7 4 4 3 5 2 4 5 4 Output BuHers 2-325 2-326 2-327 2-328 2-329 2-330 2-331 2-332 2-333 2-334 2-335 2-336 2-337 2-338 2-339 2-340 2-341 2-342 2-343 2-344 01B 01L 01R 018 02B 02L 02R 028 0282 O4R O4S 0482 O4T O4W 01BF 01RF 02BF 02RF O4RF O4TF Bidirectional 110 BuHers (Buses) 2-345 2-346 2-347 H6T H6TU H6TD 3-state Output and Input Buffer H6T with Pull-up ReSistance H6T with Pull-down Resistance 8 8 8 2-293 CMOS Channeled Gate Arrays UHB Series Unit Cell UbrSry I/O Buffer Family (Continued) 2-348 2-349 2-350 2-351 2-352 2-353 H6W H6WU H6WD H6C H7CU H6CD Power 3-state Out~ut and Input Buffer H6W with Pull-up esistance H6W with Pull-down Resistance 3-state Output and CMOS Interface Input Buffer H6C with Pull-up Resistance H6C with Pull-down Resistance 8 8 8 8 8 8 Output Buffers 2-354 2-355 2-356 2-357 2-358 2-359 2-360 2-361 2-362 2-363 2-364 2-365 2-366 2-367 2-368 2-369 2-370 2-371 2-372 2-373 2-374 2-375 2-376 2-377 2-378 2-379 2-380 2-3S1 2-3S2 2-3S3 2-384 2-3S5 2-3S6 2-3S7 2-3S8 2-389 2-390 2-391 2-392 2-393 2-394 2-395 2-396 2-397 2-39S H6E H6EU H6ED H6S H6SU H6SD H6R H6RU H6RD H8T H8TU H8TD H8W HBWU HSWD H8W2 H8W1 HSWO HSC H8CU HSCD H8E HSEU HSED H8E2 HSE1 HSEO HSS HSSU HSSD HSR HSRU HSRD H6TF H6TFU H6TFD H6CF H6CFU H6CFD HSTF HSTFU HSTFD HSCF H8CFU HSCFD Power 3-state Output and CMOS Interface Input Buffer H6E with Pull-up Resistance H6E with Pull-down Resistance 3-state Output and Schmitt trigger Input Buffer H6S with Pull-up Resistance H6S with Pull-down Resistance 3-state Output and Schmitt trigger Input Buffer H6R with Pull-up Resistance H6R with Pull-down Resistance 3-state Output and Input Buffer H8T with Pull-up Resistance H8T with Pull-down Resistance Power 3-state Output and Input Buffer HSW with Pull-up Resistance HSW with Pull-down Resistance High Power 3-state Output and Input Buffer HSW2 with Pull-up Resistance HSW2 with Pull-down Resistance 11 3-state Output and CMOS Interface Input Buffer HSC with Pull-up Resistance H8C with Pull-down Resistance Power 3-state Output and CMOS Interface Input Buffer HSE with Pull-up Resistance HSE with Pull-down Resistance High Power 3-state Output and Input Buffer HSE2 with Pull-up Resistance HSE2 with Pull-down Resistance 3-state Output and Schmitt trigger Input Buffer HSS with Pull-up Resistance HSS with Pull-down Resistance 3-state Output and Schmitt trigger Input Buffer HSR with Pull-up Resistance HSR with Pull-down Resistance 3-state Output and Schmitt trigger Input Buffer H6TF with Pull-up Resistance H6TF with Pull-down Resistance 3-state Output and Input Buffer H6CF with Pull-up Resistance H6CF with Pull-down Resistance 3-state Output and Input Buffer H8TF with Pull-up Resistance HSTF with Pull-down Resistance 3-state Output and Input Buffer H8CF with Pull-up Resistance HSCF with Pull-down Resistance 8 B 8 12 12 12 12 12 12 9 9 9 9 9 9 11 11 9 9 9 9 9 9 11 11 11 13 13 13 13 13 13 S S 8 S 8 S 9 9 9 9 9 9 OSCillator Circuits 2-294 2-399 2-400 2-401 IT10 HOC HOS 2-402 HOCR Input Buffer for Oscillator Output Buffer for Oscillator and Input Buffer Output Buffer for Oscillator and Schmitt trigger Input Buffer Output Buffer for Oscillator 0 S S B FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Input Buffer 11B Cell Svmbol X --[>r-- (Inverter) Pin Name IN I Propagation Delav Parameter tup tdn to KCL to KCL KCL2 CDR2 1. 60 0.04 1.54 0.04 5 Path X .. IN IN Parameter Pin Name I "UHB" Version I Number of BC Symbol Typ(ns)* Input Loading Factor (Rou) Output Driving Factor (Rou) 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delav multiplier. UHB-IlB-E1 I Sheet 1/1 I I Page 20-1 2-295 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I UHB Version Cell Name I Function I Number of BC Input Buffer (Inverter) with Pull-up Resistance IlBU 5 Cell Svmbol Pro~agation Delay Parameter tU1) tdn Path to KCL to KCL KCL2 CDR2 0.04 0.04 X -+ IN 1.60 1.54 I X I -[>- IN Parameter Pin Name Input Loading Factor (lu) Pin Name IN Output Driving Factor (lu) 36 * lJ1!B-IlBU-El 2-296 Sheet 1/1 I Symbol Typ(ns)* Minimum values for the typical operating condition. The values for the worst case operating condition are given by the. maximum delay multiplier. I Page 20-2 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I UHB Version Cell Name I Function I Number of BC Input Buffer (Inverter) !lBD with Pull-down Resistance 5 Propagation Dela" Parameter Ce 11 S"mbo I tup tdn to KCL to KCL KCL2 CDR2 Path 0.04 1.54 0.04 X -> IN 1. 60 I X J -[>0- IN Parameter Pin Name Input Loading Factor (Rou) Pin Name IN Output Driving Factor (Rou) 36 * UHB-IlBD-El Sheet 1/1 I Symbol Typ(ns)* Minimum values for the typical operating condition. The values for the worst case operating condition are_given bv the maximum delay multiplier. I Paoe 20-3 2-297 FUJITSU C~OS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I I2B Input Buffer Cell Svmbol -[>- X (True) I "ORB" Version I Number of BC I Prooagation Delay Parameter tuo tdn to KCL KCL KCL2 CDR2 to 0.04 1.06 1.84 0.04 4 Path X ... IN IN Parameter Pin Name Input Loading Factor (R.u) Pin Name IN Output Driving Factor (R.u) 36 * Symbol Typ(ns)* Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. TTL Equivalent Circuit r'-- ....... ., , , , I" . . . . . . . . . . . . , ~ , , I I , t I I I I I I L. ............ 74S04 74LS04 I L ........ .. .J 74S04 74LS04 UHB-I2B-E1 I Sheet 1/1 I 2-298 I Pa!!;8 20-4 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I UHB Version Cell Name I Function I Number of BC Input Buffer (True) I2BU with Pull-up Resistance 4 Propagation Delay Parameter Cell Svmbol tup tdn to KCL to KCL KCL2 CDR2 Path X ... IN 0.04 1.84 0.04 1.06 I X I ---t>- IN Parameter Pin Name Input Loading Factor (iu) Pin Name IN Output Driving Factor (iu) 36 * UHB-I2BU-E1 I Sheet 1/1 I Svmbol Typ(ns)'" Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. I Page 20-5 2-299 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I UHB Version Cell Name I Function I Number of BC Input Buffer (True) I2BD with Pull-down Resistance 4 Cell Symbol Prollaltation Delav Parameter tUJ) tdn to KCL to KCL KCL2 CDR2 Path X ... IN 1.06 0.04 1.84 0.04 I X I -t>- IN Parameter Pin Name Input Loading Factor (lu) Pin Name IN Output Driving Factor (lu) 36 Symbol Typ(ns)* ... Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay mult:;plier. UHB-I2BD-E1 I Sheet 1/1 I 2-300 I Page 20-6 FUJITSU C~OS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I IKB Clock Input Buffer Cell Svmbol X -[>0- I "UHB" Version I Number of BC I (Inverter) Pro.agation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 0.02 2.37 0.02 1.82 4 Path X ... CI eI Parameter Pin Name Input Loading Factor (lu) Pin Name CI Output Driving Factor (lu) 150 Svmbol Typ(ns)* * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. TTL Equivalent Circuit r-----., ~ , , , , , L ___ .. _.I 74S40 "1" UHB-IKB-E2 I Sheet: III I Page 20-7 2-301 FUJITSU C~OS GATE ARRAY UNIT CELL SPECIFICATION I UHB Version Cell Name I Function I Number of BC Clock Input Buffer (Inverter) IKBU with Pull-un Resistance 4 Cell Svmbol Pronagation Delav Parameter tup tdn to to KCL KCL KCL2 CDR2 Path 2.37 X -+ CI 0.02 1.82 0.02 I X I -{>o- CI Parameter Pin Name Input Loading Factor (R.u) Pin Name CI Output Driving Factor (J1.u) 150 * Symbol Typ(ns)* Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. TTL Equivalent Circuit ,. ... - .... ., It ' ,, , , , , , ';~~~~' "1" UHB-IKBU-E2 2-302 Sheet 1/1 I I Page 20-8 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I UHB Version Cell Name I Function I Number of BC Clock Input Buffer (Inverter) IKBD with Pull-down Resistance 4 Cell Svmbol Pro}: agation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 Path X ... CI 2.37 0.02 1.82 0.02 I X I --{:>o- CI Parameter Pin Name Input Loading Factor (Rou) Pin Name CI Output Driving Factor (Rou) 150 Symbol Typ(ns)* * Minimum values for the typical operating condition. The values for the worst case operating condition are given bv the maximum delay multiplier. TTL Equivalent Circuit r-----" ~ , , , , ';~~~~' ttl" UHB-IKBD-E2 I Sheet 1/1 I I Page 20-9 2-303 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I ILB Clock Input Buffer Cell Svmbol (True) Pro~agation tup to 2.03 X ---t>- KCL 0.02 I Delay Parameter tdn KCL KCL2 CDR2 0.02 6 Path X -> CI CI Parameter Pin Name Input Loading Factor (R.u) Pin Name CI Output Driving Factor (R.u) 150 * UHB- ILB-E2 LSheet 1/1 I 2-304 to 2.56 I lJliB Version I Number of BC Svmbol TVIJ(ns ~, Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delaJ'_multiplier. I Pal1;e 20-10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I UHB" Version Cell !'lame I Function J Number of BC Clock Input Buffer (True) ILBU with Pull-up Resistance 6 Cell Svmbol Pro.agation Delay Parameter tUD tdn to to KCL KCL2 CDR2 Path KCL X .. CI 2.03 0.02 2.56 0.02 I X I -t>- CI Parameter Svmbol Typ(ns)* !!... Pin Name Input Loading Factor (Rou) Pin Name CI Output Driving Factor (Rou) 150 * Minimum values for the typical operating condition. The values for the worst case operating condition are given bv the maximum delay multiplier. TTL Equivalent Circuit ,r .. ~ ...... '" I ,L _____ 74S04 74LS04 , , , .I ,. .......... ., , , , r"'\ , r-- ~ ~l../ p+, CI , . . . . . . . . . . . . .,1 74540 UHB-ILBU-E2 I Sheet 1/1 I Pa.;e 20-11 2-305 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I UHB Version Cell Name I Function I Number of BC Clock Input Buffer (True) 6 ILBD with Pull-down Resistance Prota2ation Delav Parameter Cell Svmbol tup tdn to KCL to KCL KCL2 CDR2 Path X ... CI 0.02 2.56 0.02 2.03 I X I -t>- CI Parameter Pin Name Input Loading Factor (.eu) Pin Name CI Output Driving Factor (.eu) 150 * UHB-ILBD-E2 2-306 Sheet 1/1 I Symbol TVtl(ns)i' Minimum values for the typical operating condition. The values for the worst case operating condition are 2iven bv the maximum delay multiplier. I Palte 20-12 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I I "UHB Version I Number of BC I IlC CMOS Interface Input Buffer (Inverter) Cell Svmbol Propagation Delay Parameter tUD tdn to KCL to KCL KCL2 CDR2 0.04 1. 32 0.04 1.44 X -[>- Pin Name IN Path X .. IN IN Parameter Pin Name 5 Svmbol Typ(ns * Input Loading Factor (Rou) Output Driving Factor (R.u) 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. UHB-IlC-EI I Sheet 1/1 I I Pas:e 20-13 2-307 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I UHB Version Cell Name I Function I Number of BC CMOS Interface Input Buffer (Inverter) with Pull-ul) Resistance ncu 5 Ce 11 SYlllbol Proca2ation Delav Parame~er tuc tdn to KCL to KCL KCL2 CDR2 Path X ... IN 0.04 1.44 0.04 1.32 I X I ~ IN Parameter Pin Name Input Loading Factor (lu) Pin Name Output Driving Factor (R.u) 36 IN SYlllbol 1'yp(ns)* * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. UHB- IlCU-EI 2-308 Sheet 1/1 I 1 Pal1;e 20-14 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I "UHB" Version Cell Name I Function I Number of BC CMOS Interface Input Buffer (Inverter) neD wi th Pull-down Resistance 5 Cell Svmbol Propagation Delav Parameter tup tdn to KCL2 CDR2 Path KCL to KCL 1.44 0.04 X ... IN 1.35 0.04 I X I ----{>o- IN Parameter Pin Name Input Loading Factor (Rou) Pin Name IN Output Driving Factor (Rou) 36 * UHB-I1CD-E1 Sheet 1/1 I Svmbol Typ(ns)* Minimum values for the typical operating condition. The values for the worst case operating condition are_given bv the maximum delay multiplier. I Page 20-15 2-309 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I I "u1fB" Version I Number of BC I I2C CMOS Interface Innut Buffer (True) Cell Svmbol Propagation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 0.92 0.04 1.33 0.04 X -[>- Path X ... IN IN Parameter Pin Name 4 Symbol Typ(ns)* Input Loading Factor (J1.u) IfJI Pin Name IN Output Driving Factor (J1.u) 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. UHB-I2C-E2 I Sheet 1/1 I 2-310 I Page 20-16 FUJITSU CXOS GATE ARRAY UNIT CELL SPECIFICATION I UHB" Version Cell Name I Function LNumber of BC CXOS Interface Input Buffer I2CU with Pull-up Resistance (True) 4 Propagation Delay Parameter Cell Svmbol tup tdn Path to KCL to KCL KCL2 CDR2 X ... IN 0.92 0.04 0.04 1.33 I X I -t>- IN Symbol Parameter Typ(ns)* I Pin Name Pin Name IN Input Loading Factor (iu) Output Driving Factor (iu) 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. UHB-I2CU-E2 LSheet 1/1 I I Page 20-17 2-311 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I "UHB" Version Cell Name I Function I Number of BC CMOS Interface Input Buffer with Pull-down Resistance (True) 4 I2CD Cell Svmbol Propagation Delay Parameter tup tdn to Path to KCL KCL KCL2 CDR2 X ... IN 0.04 0.04 0.92 1.33 I X I -t>- IN Parameter Pin Name Pin Name IN Symbol Typ(ns)* Input Loading Factor (Rou) Output Driving Factor (Rou) 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delav multiplier. UHB-I2CD-E2 I Sheet 1/1 I 2-312 I Page 20-18 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I UHB" Version Cell Name I Function I Number of BC Schmitt Trigger Input Buffer 11S (CMOS Type Inverter) 8 Cell Symbol Propagation Delay Parameter tup tdn Path to KCL2 CDR2 KCL to KCL X ... IN 3.90 0.16 2.68 0.08 I X I --f9o- IN Parameter Pin Name Input Loading Factor (R.u) Pin Name IN Output Driving Factor (R.u) 18 * UHB-IlS-El I Sheet 1/1 I Symbol Typ(ns)* Minimum values for the typical operating condition. The values for the worst case operating condition are given bv the maximum delay multiplier. r Page 20-19 2-313 FuJITSU C~OS GATE ARRAY UNIT CELL SPECIFICATION I "UHB" Version Cell Name I Function I Number of BC Schad t1: Trigger Input Buffer IlSU (CMOS Type, Inverter) with Pull-up Resistance 6 Propagation Delav Parameter Cell Svrnbol tUll tdn to KCL to KCL KCL2 CDR2 Path X .. IN 0.16 2.68 0.06 3.90 I X I ~ IN Parameter Pin Name Input Loading Factor (iu) Pin Name IN Output Driving Factor (iu) 16 Symbol Typ(ns)* * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum de1a.ymultilllier. UHB-IlSU-El I Sheet 1/1 I 2-314 I Page 20-20 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I UHB Version Cell Name I Function I Number of BC Schmitt Trigger Input Buffer (CMOS Type Inverter) with Pull-down Resistance IlSD 8 Cell S~"Illbol Pro;agation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 Path X ... IN 3.90 0.16 0.08 2.68 I X I ----iPo- IN Parameter Pin Name Input Loading Factor _flU) Pin Name IN Output Driving Factor (lu) 18 Symbol Typ(ns)* * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. UHB-IlSD-EI Sheet 1/1 I I Page 20-21 2-315 FUJITSU C~OS GATE ARRAY ~~IT CELL SPECIFICATION I UHB Version Cell Name I Func1:ion I Number of BC Schmitt Trigger Input Buffer (CMOS Type, True) I2S 8 Cell Symbol Propagation Delav Parameter tup tdn KCL2 CDR2 to KCL to KCL Path 0.16 3.08 0.10 X -+ IN 2.48 I X I ~ IN Parameter Pin Name Input Loading Factor (iu) Pin Name IN Output Driving Factor (iu) 18 Svmbol Typ(ns)* * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. UHB-I2S El I Sheet 1/1 I 2-316 I Pal(e 20-22 FUJITSU C~OS GATE ARRAY UNIT CELL SPECIFICATION I tiRE" Version Cell Name I Function I Number of BC Schmitt Trigger Input Buffer I2SU (CMOS Type, True) with Pull-up Resistance 8 Cell Svmbol Pro.agation Delav Parameter tup tdn to KCL to KCL KCL2 CDR2 Path X -+ IN 2.48 0.16 3.08 0.10 I X I --i9- IN Parameter Pin Name Input Loading Factor (iu) Pin Name IN Output Driving Factor (iu) 18 Svmbol Typ(ns)* * Minimum values for the typical operating condition. The values for the worst case operating condition are ~iven bv the maximum delay multiplier. UHB-I2SU-El Sheet 1/1 I I Page 20-23 2-317 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I UHB" Version Cell Name I Function I Number of BC Schmitt Trigger Input Buffer 12SD (CMOS Type True with Pull-down Resistance 8 Cell Svmbol Propagation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 Path X ... IN 2.48 0.16 3.08 0.10 I X I --w- IN Parameter Pin Name Input Loading Factor (R.u) Pin Name IN Output Driving Factor (R.u) 18 * UHB-I2SD-El I Sheet 111 I 2-318 Symbol Typ(ns)* Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. I Page 20-24 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I UHB Version Cell Name I Function I Number of BC Schmitt Trigger Input Buffer IlR (TTL Type Inverter) 8 Cell Symbol ProJagationDelay Parameter tup tdn KCL2 CDR2 to KCL to KCL Path 4.48 0.16 2.36 0.08 X .. IN I I I ! X --{Po- IN Parameter Pin Name Input Loading Factor (iu) Pin Name IN Output Driving Factor (iu) 18 Symbol Typ(ns)* * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. UHB-IlR-E2 I Sheet 1/1 I I Page 20-25 2-319 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I "UHB" Version Cell Name I Function I Number of BC Schmitt Trigger Input Buffer (TTL Type, Inverter) with Pull-up Resistance IlRU 8 Cell Symbol Propagation Delay Parameter tup tdn KCL KCL2 CDR2 to KCL to Path 2.36 0.08 4.48 0.16 X -+ IN I X I --P- IN Parameter Pin Name Input Loading Factor (Lu) Pin Name IN Output Driving Factor (.tu) 18 I Symbol Typ(ns)* Ell * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. UHB-IlRU-E2 ·2-320 Sheet 1/1 I Page 20-26 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I UHB Version Cell Name I Function I Number of BC Schmitt Trigger Input Buffer IIRD (TTL Type Inverter) with Pull-down Resistance 8 Cell Symbol Propagation Delay Parameter tup tdn KCL2 CDR2 to KCL KCL to Path 4.48 0.16 2.36 0.08 X -+ IN I X I ----f9r- IN Parameter Pin Name Input Loading Factor (tu) Pin Name IN Output Driving Factor (tu) 18 Symbol Typ(ns)* * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. UHB- IlRD-E2 Sheet 1/1 I I Page 20 27 2-321 FUJITSU C~OS GATE ARRAY UNIT CELL SPECIFICATION I "UHB" Version Ce11 Name I Function I Number of BC Schmitt Trigger Input Buffer (TTL Type True) I2R 8 Ce11 Symbol Propagation Delay Parameter tup tdn to to KCL KCL KCL2 CDR2 Path 2.24 3.72 0.13 0.16 X'" IN I X I --%>- IN Symbol Parameter Pin Name Input Loading Factor (J1.u) Pin Name IN Output Driving Factor (J1.u) 18 Typ(ns)'" "\ * Minimum values for the typical opera~ing condition. The values for the worst case operating condition are given by the maximum delay multiplier. UHB-I2R-El I Sheet 1/1 I 2-322 I Page 20-28 FGJITSU C~OS GATE ARRAY UNIT CELL SPECIFICATION I UHB" Version Cell Name I Function I Number of BC Schmitt Trigger Input Buffer I2RU (TTL Type, True) with Pull-IlP Resistance 8 Cell Sv"lllbol Propagation Delav Parameter tup tdn to KCL to KCL KCL2 CDR2 Pa1:h 2.24 X -+ IN 0.16 3.72 0.13 I X I --w- IN Parameter Pin Name Input Loading Factor (iu) Pin Name IN Output Driving Factor (iu) 18 * UHB-I2RU-E1 I Sheet 1/1 I Symbol Typ(ns)": Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Page 20-29 2-323 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I UHB Version Cell Name I Function I Number of BC Schmitt Trigger Input Buffer CIT!. Type, True) with Pull-down Resistance I2RD 8 1 Cell Svmbol Propa2ation Delav Parameter tup tdn to KCL to KCL KCL2 CDR2 Path X .. IN 2.24 0.16 3.72 0.13 I X ~ IN Parameter Pin Name Input Loading Factor (R.u) Pin Name IN Output Driving Factor (R.u) 18 * UHB-I2RD-El 2-324 Sheet 1/1 I Symbol Typ(ns)* Minimum values for the typical operating condition. The values for the worst case operating condition are 2iven by the maximum delay multiplier. I Page 20-30 I UHB" Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I I OIB Output Buffer(IOL=3.2mA Inverter) Cell Symbol Pro~al!:ation Delay Parameter tdn tup KCL2 CDR2 KCL to KCL to 1. 93 0.056 2.24 0.124 (5.29) (9.68) OT -{>- 3 Path OT .. X X Parameter Pin Name OT Input Loading Factor (Lu) 2 Pin Name Output Driving Factor (Lu) * Symbol Typ(ns)* Minimum values for the typical operating condition. The values for the worst case operating condition are dven by the maximum delay multiplier. Note: 1. The unit of KcL is ns/pF. 2. Output load capacitance of 60 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-01B-E4 I Sheet 1/1 I I Page 20-31 2-325 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I UHB Version I Number of BC I OIL Output Buffer(IOL=12mA Cell Symbol OT Inverter) Propagation Delay Parameter tup tdn KCL KCL2 CDR2 to KCL to 2.29 0.037 2.47 0.041 (4.51) (4.93) -t>- 3 Path OT .. X X Parameter Pin Name OT Input Loading Factor (luJ 2 Pin Name Output Driving Factor (lu) Symbol Typ(ns)* • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Note: 1. The unit of KcL is ns/pF. 2. Output load capacitance of 60 pF is used for Fujitsu'. logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-OIL-E3 I Sheet 1/1 2-326 I Page 20-32 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I "UHB Version Cell Name I Function I Number of BC Output Buffer(IOL=3.2mA, Inverter) OlR with Noise Limit Resistance 5 Cell Symbol Propagation Delay Parameter tup tdn KCL2 CDR2 to KCL to KCL Path 3.30 0.056 5.18 0.13 OT ... X (6.66) (12.98) I OT I -{>- X Parameter Pin Name OT Input Loading Factor (R.u) 1 Pin Name Output Driving Factor _lR.u) Symbol Typ(ns)* * Minimum values for the typical operating condition. The values for the worst case operating condition are Itiven bv the maximum delay multiplier. Note: 1. The unit of KCL is ns/pF. 2. Output load capacitance of 60 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-01R-E3 I Sheet 1/1 I I Page 20-33 2-327 UHB Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Ce1l Na-me I Function I Number of BC Output Buffer(IOL=12mA, Inverter) 01S with Noise Limit Resistance 5 Ce1l Symbol Propagation Delay Parameter tup tdn lCL2 CDR2 lCL Path to lCL to OT .. X 4.02 0.038 6.39 0.054 (6.30) (9.63) I OT I -[>- X Parameter Pin Name OT Pin Name Symbol Typ(ns)* Input Loading Factor (R.u) 1 Output Driving Factor (R.u) * Minimum values for the typical operating condition. The values for the worst case operating condition are dven by the maximum delay multiplier. Note: 1. The unit of KCL is ns/pF. 2. Output load capacitance of 60 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-OIS-E3 I Sheet 1/1 I 2-328 I Page 20-34 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name J Function I UHS Version I Number of BC J J 02B Output Buffer (lOL=3. 2mA True) Cell Symbol ProJ:agation Delay Parameter tup tdn to KCL KCL2 CDR2 to KCL 1. 70 0.056 1. 75 0.124 (9.19) (5.09) -[>- OT 2 Path OT ... X X Parameter Pin Name OT Input Loading Factor (.tu) 4 Pin Name Output Driving Factor (.tu) * Symbol Typ(ns)~t Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum de lay mul tiplier. TTL Equivalent Circuit ,. .......... r ............ I I I I ~ I I I I , I " I I I • ~ .......... "" 74S04 74LS04 0 ............ J 74S04 74LS04 Note: 1- The unit of KCL is ns/pF. 2. Output load capacitance of 60 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHS-02B-E4 I Sheet 1/1 I Page 20-35 2-329 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function UHB Version I Number of BC I I 02L Output BufferOOL=12mA Truel Cell Symbol Pro~aJ;tation Delay. Parameter tup tdn to KCL KCL2 .CDR2 to KCL 1.98 0.041 2.09 0.037 (4.44) (4.31) OT ----[>- 2 Path OT .. X X Parameter Pin Name OT Input Loading Factor (iu) 4 Pin Name Output Driving Factor (iu) Symbol Typ(ns)* * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delaj'multiplier. Note: 1. The unit of KCL is ns/pF. 2. Output load capacitance of 60 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-02L-E3 I Sheet 111 I 2-330 I Page 20-36 I "UHB Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I Number of BC Output Buffer(IOL=3.2mA, True) 02R with Noise Limit Resistance 4 Cell Symbol Pro~agation Delay Parameter tup tdn J(CL2 CDR2 to KCL to KCL Path 2.99 0.056 4.69 0.13 OT .. X (6.35) (12.49) I OT I -[>-- X Parameter Pin Name OT Input Loading Factor (lu) 2 Pin Name Output Driving Factor (lu) * Symbol Typ(ns)* Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Note: 1- The unit of KcL is ns/pF. 2. Output load capacitance of 60 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-02R-E3 I Sheet III I I Page 20-37 2-331 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I UHB Version Cell Name I Function I Number of BC Output Buffer(IOL=12mA, True) 02S with Noise Limit Resistance 4 Cell Symbol Pro~agation Delay Parameter tup tdn KCL2 CDR2 to KCL to KCL Path 3.71 0.038 5.87 0.054 OT .. X (5.99) (9.11) I OT I -[>- X Parameter Pin Name OT Pin Name Symbol Typ(ns * Input Loading Factor (.tu) 2 Output Driving Factor (.tu) * Minimum values for the typical operating condition. The values for the worst case operating condition are Riven by the maximum delay multiplier. Note: 1- The unit of KcL is ns/pF. 2. Output load capacitance of 60 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-02S-E3 I Sheet 1/1 I 2-332 I Page 20-38 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I UHB Version Cell Name I Function I Number of BC Output Buffer(IOL=24mA, True) 0252 with Noise Limit Resistance 6 Cell Symbol Propaution Delay Parameter tup tdn KCL2 CDR2 to KCL to KCL Path 0.06 5.27 0.032 9.51 OT .. X (7.19) (13.11) I OT I -t>- X Parameter Pin Name OT Input Loading Factor Clu) 2 Pin Name Output Driving Factor Clu) Symbol TypCns)* * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Note: 1. The unit of leL is ns/pF. 2. Output load capacitance of 60 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-02S2-E3 I Sheet 1/1 I I Page 20-39 2-333 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I UHB Version Cell Name I Function I Number of BC Tri-state Output Buffer(IOL=3.2mA, True) 04R with Noise Limit Resistance 5 Cell Symbol Propagation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 Path 0.13 3.12 0.056 5.66 OT" X (6.76) (14.11) I OT I --tr X C to 2.22 (13.44) Pin Name OT C Pin Name * Input Loading Factor (.tu) 2 2 Output Driving Factor (.tu) to 3.07 (13.44) L" Z KCL to 6.47 (14.92) * H .. Z KCL * to 3.20 (14.92) Z .. L KCL 0.13 C .. X Z .. H KCL 0.056 These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ, ZL, HZ and ZH are as follows: wi" LSI 21d2 e ~ - 3 Path OT" X X Parameter Pin Name OT Input Loading Factor (tu) 2 Pin Name Output Driving Factor (tu) Symbol TY'P(ns)~t * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay_ multilllier. Note: 1. The unit of KcL is ns/pF. 2. Output load capacitance of 60 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-OIBF-El I Sheet 111 I J Page 20-87 2-339 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION UHB Version Cell Name I Function I Number of BC Output Buffer (IOL=8mA, Inverter) 01RF with Noise Limit Resistance 5 Cell Symbol PrQ~agation Delay Parameter tup tdn KCL2 CDR2 to KCL KCL to Path OT .. X 3.39 0.056 5.60 0.063 (6.75) (9.38) I OT I --[>- X Parameter Pin Name OT Pin Name Symbol Typi nsJ_* Input Loading Factor (iu) 1 Output Driving Factor (iu) * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Note: 1. The unit of KCL is ns/pF. 2. Output load capacitance of 60 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-01RF-EI I Sheet 1/1 I 2-340 - I Page 20-88 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I 02BF Output Buffer (IOL=8mA Cell Symbol --[>- I True) Pro~agation tup to KCL 1. 76 0.056 (5.12) OT I UHB Version I Number of BC to 1.52 (5.30) Delay Parameter tdn KCL2 CDR2 KCL 0.063 2 Path OT ... X X Parameter Pin Name OT Input Loading Factor (lu) 4 Pin Name Output Driving Factor (lu) Symbol Typ(ns)* * Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. TTL Equivalent Circuit ,._a ___ .. ,.. ----- ~ ~ , , , I I I , • I I I • I I L _____ " 74S04 74LS04 L . ___ . " 74504 74LS04 Note: 1. The unit of RCL is ns/pF. 2. Output load capacitance of 60 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-02BF-EI Sheet 1/1 I j Page 20-89 2-341 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I UHB Version Cell Name I Function I Number of BC Output Buffer (IOL=8mA. True) 02RF with Noise Limit Resistance 4 Cell Symbol Prot:aJ!.ation Delay Parameter tup tdn KCL2 CDR2 to KCL KCL to Path 3.08 0.056 OT .. X 5.11 0.063 (6.44) (8.89) I OT I -[>- X Parameter Pin Name OT Pin Name Symbol Typlns * Input Loading Factor (R.u) 2 Output Driving Factor (R.u) • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Note: 1- The unit of leL is ns/pF. 2. Output load capacitance of 60 pF is used for FUjitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-02RF-El I Sheet 1/1 1 2-342 I Page 20-90 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I UHB Version Cell Name I Function I Number of BC Tri-state Output Buffer (IOL=8mA, True) 04RF with Noise Limit Resistance 5 Cell Symbol Propagation Delay Parameter tup tdn KCL2 CDR2 to KCL KCL to Path OT .. X 3.21 0.056 5.96 0.070 (6.85) (10.51) I OT I --i1 X C to 2.62 (15.89) Pin Name OT C Pin Name * Input Loading Factor (tu) 2 2 Output Driving Factor (tu) to 3.30 (15.89) L .. Z KCL Z .. L to 6.82 (11.37) * H .. Z KCL * C .. KCL 0.070 X Z .. H to 3.21 (11. 37) KCL 0.056 These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ, ZL, HZ and ZH are as follows: ~' = 21dl C ;:L (a) Measurement of tpd at LZ and ZL. J:l lc ,-I 1"2 Idl (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KcL is ns/pF. 2. Output load capacitance of 65 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-04RF-EI Sheet 1/1 I I Page 20-91 2-343 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I UHB Version I Number of BC I I 04TF Tri-state Output Buffer (IOL=8mA True) Cell Symbol Pro~agation Delay Parameter tup tdn KCL2 CDR2 to KCL KCL to 2.51 0.056 3.27 0.063 (6.15) (7.37) OT ---f1- t+ Path OT .. X X C to 2.29 (14.80) Pin Name OT C Pin Name Input Loading Factor (R.u) 4 2 Output Driving Factor (R.u) to 3.12 (14.80) L .. Z KCL * H .. Z KCL * to 3.35 (7.45) to 2.37 (7.45) Z .. L KCL 0.063 C .. X Z .. H KCL 0.056 * These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ. ZL. HZ and ZH are as follows: c=HR'2~ LSI C ~ (a) Measurament of tpd at LZ and ZL. W lc 1'2~ ~ (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL is ns/pF. 2. Output load capacitance of 65 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-04TF-E1 2-344 Sheet 1/1 I I Page 20-92 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I UHB Version I Number of BC I I H6T Tri-state Output IOL=3.2mA) & Input Buffer (True) Cell Symbol ProJ:agation Delay Parameter tup tdn KCL2 CDR2 KCL to KCL to 1.84 0.04 1.06 0.04 2.42 0.056 2.52 0.13 (7.18) (13.57) IN OT =cr- 8 Path X" IN OT .. X X C to 2.07 (15.35) Pin Name OT C Pin Name IN L .. Z KCL to 2.55 (13.60) * Z .. L KCL 0.13 c.. X Input Loading Factor _(Lu~ 4 2 Output Driving Factor (Lu) 36 to 3.41 (15.35) H .. Z KCL to 2.31 (13.60) * Z" H KeL 0.056 * These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ, ZL, HZ and ZH are as follows: c:H'- 2ldl LSI C ~ (a) Measurement of tpd at LZ and ZL. LSI lc ,I 1- 2kll (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. 2. Output load capacitance of 85 pF is used for FUjitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-H6T-E4 I Sheet 1/1 I I Page 20-45 2-345 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I UHB" Version Cell Name I Function I Number of BC Tri-state Output(IOL=3.2mA) & Input Buffer (True) with Pull-up Resistance H6TU 8 Cell Symbol Pro~agation Delay Parameter tup tdn XCL2 CDR2 to to XCL XCL Path 1.84 0.04 1.06 0.04 X -+ IN 2.42 0.056 2.52 0.13 OT -+ X (13.57) (7.18) 1 IN OT I =rr X C to 2.07 (15.35) Pin Name OT C Pin Name IN * Input Loading Factor. (.tut 4 2 Output Driving Factor (.tu) 36 to 3.41 (15.35) L'" Z KCL * H-+ Z KCL * to 2.55 (13.60) to 2.31 (13.60) Z -+ L KCL 0.13 C ... X Z ... H KCL 0.056 These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ, ZL, HZ and ZH are as follows: c:H 2idl R - LSI C ,;L (a) Measurement of tpd at LZ and ZL. r:l lc ,I 1'.2kll (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KcL for paths OT, C to X is ns/pF. 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-H6TU-E4 I Sheet 1/1 I 2-346 I Page 20-46 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I DBB Version Cell Name I Function I Number of BC Tri-state Output(IOL=3.2mA) & Input Buffer (True) H6TD with Pull-down Resistance 8 Cell Symbol ProJ:agation Delay Parameter tdn tup KCL KCL2 CDR2 KCL to to Path 1.84 0.04 1.06 0.04 X .. IN 2.42 0.056 0.13 OT .. X 2.52 (7.18) (13.57) I IN OT I ~ X C to 2.07 (15.35) Pin Name OT C Pin Name IN * L .. Z KCL to 2.55 (13.60) * Z ... L KCL 0.13 C .. X Input Loading Factor (.tu) 4 2 Output Driving Factor (.tu) 36 to 3.41 (15.35) H ... Z KCL to 2.31 (13.60) * Z ... H KCL 0.056 These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ, ZL, HZ and ZH are as follows: cH'LSI 2iU2 c ~ (a) Measurement of tpd at LZ "and ZL. I LSI I I lc ~ 1"'" (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-H6TD-E4 Sheet 1/1 I I Page 20-47 2-347 ~ UHB FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function Version I Number of BC I I H6W Tri-state Output(IOL=12mA) & Input Buffer JTrue) Cell Symbol Pr~ajgation Delay Parameter tdn tup KCL2 CDR2 KCL to KCL to 1.64 0.04 1.06 0.04 4.12 0.047 3.02 0.036 (6.25) (8.12) IN OT =cr- 8 Path X oO IN OToO X X C to 2.96 (20.25) Pin Name OT C Pin Name IN * Input Loading Factor (lul 4 2 Output Driving Factor (lu) 36 to 4.03 (20.25) LoO Z KCL to 3.69 (7.69) * H .. Z KCL to 2.72 (7.69) * Z .. L KCL 0.047 C oO X Z .. H KCL 0.036 These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ, ZL, HZ and ZH are as follows: cij'. 21d2 LSI C ~ (a) Measurement of tpd at LZ and ZL. LSI lc ,I 1- Ull (b) Measurement of tpd at HZ and ZH. Note: l. The unit of leL for paths OT, C to X is ns/pF. 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-H6W-E3 I Sheet 1/1 I 2-348 I Page 20-46 1 "UHB" Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name J Function I Number of BC Tri-state Output(IOL=12mA) & Input Buffer (True) with Pull-up Resistance H6WU 8 Cell Symbol Prougation Delay Parameter tup tdn KCL2 CDR2 to KCL Path to KCL X .. IN 1.84 0.04 1.06 0.04 OT .. X 4.12 0.047 3.02 0.038 (8.12) (6.25) I IN OT I =rr X C to 2.96 (20.25) Pin Name OT C Pin Name IN Input Loading Factor (R.u) 4 2 Output Driving Factor (R.u) 36 z .. L .. Z KCL to 3.69 (7.69) * H ... Z to 4.03 (20.25) KCL to 2.72 (7.69) * L KCL 0.047 C .. X Z ... H KCL 0.038 * These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ, ZL, HZ and ZH are as follows: ~R- 2ldl LSI LSI C ,I ~ (a) Measurement of tpd at LZ and ZL. lc 1'.2 ldl (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KcL for paths OT, C to ~ is ns/pF. 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-H6WU-E3 I Sheet 1/1 I I Pas:e 20-49 2-349 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I "UHB" Version Cell Name I Function I Number of BC Tri-state Output(IOL=12mA) & Input Buffer (True) H6 ..'D with Pull-down Resistance 8 Cell Symbol Propagation Delay Parameter tup tdn to to KCL KCL2 CDR2 KCL Path 1.84 0.04 1.06 0.04 X .. IN 4.12 0.047 3.02 0.038 OT .. X (6.25) (8.12) IN I OT I =rr- X C to 2.96 (20.25) Pin Name OT C Pin Name IN Input Loadi%18 Factor (Lu) 4 2 Output Driving Factor (Lu) 36 to 4.03 (20.25) L ... Z KCL to 3.69 (7.69) * H .. Z KCL to 2.72 (7.69) * Z" L KCL 0.047 C .. X Z .. H KCL 0.038 * These values are subject to external loadi%18 condition. Measurement circuits of propaga,tion delay time at LZ, ZL, HZ and ZH are as follows: ~RLSI 2kS2 c I I LSI lc ,L ~ (a) Measurement of tpd at LZ and ZL. I 1'"'" (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to ~ is ns/pF. 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-H6WD-E3 I Sheet 1/1 I 2-350 I Page 20-50 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I UHB Version Cell Name I Function I Number of BC Tri-state Output(IOL=3.2mA) H6C & CMOS Interface Input Buffer (True) 8 Cell Symbol Pro]: agation Delay Parameter tup tdn KCL2 CDR2 to KCL to KCL Path 0.04 X .. IN 0.92 0.04 1.33 2.52 0.13 OToO X 2.42 0.056 (7.18) (13.57) I IN OT I =cr- X C to 2.07 (15.35) Pin Name OT C Pin Name IN * Input Loading Factor (R.u) 4 2 Output Driving Factor (R.u) 36 to 3.41 (15.35) LoO Z KCL * H ... Z KCL * to 2.55 (13.60) to 2.31 (13.60) Z ... L KCL 0.13 C oO X Z ... H KCL 0.056 These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ. ZL. HZ and ZH are as follows: c:B 2kSl R - LSI C ~ (a) Measurement of tpd at LZ and ZL. ~ lc ,I 1" ,.. (b) Measurement of tpd at HZ and ZH. Note: 1- The unit of XcL for paths OTt C to X is ns/pF. 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-H6C-E4 I Sheet 1/1 I I Page 20-51 2-351 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I "UHB Version Cell Name I Function I Number of BC Tri-state Output(IOL=3.2mA) & CMOS Interface H6CU Input Buffer (True) with Pull-up Resistance 8 Cell Symbol ProtaJ:(ation Delay Parameter tup tdn KCL2 CDR2 KCL to KCL to Path 0.04 X .. IN 0.92 0.04 1.33 0.13 OT .. X 2.42 0.056 2.52 (7.18) (13.57) IN I OT I =cr- X C to 2.07 (15.35) Pin Name OT C Pin Name IN * Input Loading Factor (.tu) 4 2 Output Driving Factor (.tu) 36 to 3.41 (15.35) L" 2 KCL to 2.55 (13.60) * H .. 2 KCL * to 2.31 (13.60) 2 .. L KCL 0.13 C .. X 2" H KCL 0.056 These values are subject to external loading condition. Measurement circuits of propagation delay time at L2, 2L, H2 and 2H are as follows: cH 21Ul R - LSI LSI C ~ (a) Measurement of tpd at L2 and 2L. lc ~ 1'. "'" (b) Measurement of tpd at H2 and 2H. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-H6CU-E4 2-352 Sheet 1/1 I I Page 20-52 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION J "UHB" Version Cell Name I Function J Number of BC Tri-state Output(IOL=3.2mA) & CMOS Interface H6CD Input Buffer = 0 (b) Measurement of tpd at HZ and ZH. e to X is ns/pF. 2. Output load capacitance of 85 pF is used for FUjitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-H8S-E2 I Sheet 1/1 I I Page 20-81 2-381 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION UHB Version Cell Name Function Number of BC Tri-state Output(IOL=3.2mA) & Schmitt Trigger Input Buffer(CMOS Type,True) wi Noise Limit Resistance H8SU w/ Pull-up Resistance 13 Cell Symbol Pro~agation Delay Parameter tup tdn KCL2 CDR2 to KCL to KCL Path 0.10 2.48 0.16 3.08 X .. IN 0.13 3.12 0.056 5.66 OT .. X (7.88) (16.71) IN I OT =rr- X C to 2.22 (16.44) Pin Name OT C Pin Name IN * Input Loading Factor (l.u) 2 2 Output Driving Factor (lu) 18 to 3.07 (16.44) z .. L L .. Z KCL to 6.47 (17.52) * H .. Z KCL to 3.20 (17.52) * KCL 0.13 C .. X Z .. H KCL 0.056 These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ, ZL, HZ and ZH are as follows: c=H'LSI 2kS2 . C ~ (a) Measurement of tpd at LZ and ZL. I LSI I I ic ~ 1- 2>" (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-H8SU-E21 Sheet 1/1 I 2-382 I Page 20-82 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I UHB Version Cell Name Function Number of BC Tri-state Output(IOL=3.2mA) & Schmitt Trigger Input Buffer(CMOS Type ,True) wi Noise Limit Resistance H8SD w/- Pull-down Resistance 13 Cell Symbol Pro.a.l(ation Delay Parameter tup tdn KCL2 CDR2 to KCL to KCL Path X ... IN 2.48 0.16 3.08 0.10 OT ... X 3.12 0.056 5.66 0.13 (16.71) (7.88) IN OT ~ X C to 2.22 (16.44) Pin Name OT C Pin Name IN Input Loading Factor (tu) 2 2 Output Driving Factor (tu) 18 to 3.07 (16.44) L ... Z KCL to 6.47 (17.52) * H ... Z KCL to 3.20 (17.52) * Z ... L KCL 0.13 C ... X Z ... H KCL 0.056 * These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ, ZL, HZ and ZH are as follows: cij' = 21d2 C ~ (a) Measurement of tpd at LZ and ZL. LSI lc ,I 1'=' 1d2 (b) Measurement of tpd at HZ and ZH. Note: l. The unit of KCL for paths OT, C to X is ns/pF. 2. Output load capacitance of 85 pF is used for FUjitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-HBSD-E2! Sheet 1/1 I I Page 20-83 2-383 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION 1 UHB Version Cell Name I Function Number of BC Tri-state Output(IOL=3.2mA) & Schmitt Trigger H8R Input Buffer (TTL Type True) wI Noise Limit Resistance 13 Cell Symbol Propagation Delay Parameter tup tdn J(CL J(CL2 CDR2 J(CL to to Path 2.24 0.16 0.13 X ... IN 3.72 OT ... X 3.12 0.056 5.66 0.13 (7.88) (16.71) IN 1 OT I =rr- X C to 2.22 (16.44) Pin Name OT C Pin Name IN * Input Loading Factor (lu) 2 2 Output Driving Factor (lu) 18 to 3.07 (16.44) L ... Z J(CL to 6.47 (17.52) * H'" Z J(CL to 3.20 (17.52) * Z ... L J(CL 0.13 C ... X Z ... H KCL 0.056 These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ, ZL, HZ and ZH are as follows: cl LSI 2kS2 R - c ,...:L (a) Measurement of tpd at LZ and ZL. I I LSI I lc .I t"' . (b) Measurement of tpd at HZ and ZH. Note: 1- The unit of KCL for paths OT, C to X is ns/pF. 2. Output load capacitance of 85 pF is used for FUjitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-H8R-E2 I Sheet 1}1 I 2-384 I Page 20-84 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I UHB Version Ce11 Name Function Number of BC Tri state Output(IOL=3.2mA) & Schmitt Trigger Input Buffer(TTL Type, True) w/ Noise Limit Resistance H8RU wi Pull-up Resistance 13 Cell Symbol Propa.e,ation Delay Parameter tup tdn KCL2 CDR2 to KCL KCL to Path X .. IN 2.24 0.16 3.72 0.13 3.12 0.056 5.66 0.13 OT .. X (7.88) (16.71) IN OT ~ X C to 2.22 (16.44) Pin Name OT C Pin Name IN * Input Loading Factor (iu) 2 2 Output Driving Factor (iu) 18 to 3.07 (16.44) L .. Z KCL to 6.47 (17.52) * H .. Z KCL to 3.20 (17.52) * Z .. L KCL 0.13 C .. X Z .. H KCL 0.056 These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ, ZL, HZ and ZH are as follows: cH = 2 \ill R I LSI C I I lc rI rL (a) Measurement of tpd at LZ and ZL. 1'0 2 \ill (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. 2. Output load capacitance of 85 pF is used for FUjitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-H8RU-E2 .§~~~1."",1 / 1 I I Page 20-85 2-385 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I UHB Version Cell Name Function Number of BC Tri-state Output(IOL=3.2mA) & Schmitt Trigger Input Buffer(TTL Type, True) wI Noise Limit Resistance w/" Pull-down Resistance H8RD 13 Cell Symbol Pro.a~ation Delay Parameter tup tdn KCL2 CDR2 KCL to KCL to Path 2.24 0.16 0.13 X -+ IN 3.72 OT .. X 0.13 3.12 0.056 5.66 (7.88) (16.71) IN OT =cr- X C to 2.22 (16.44) Pin Name OT C Pin Name IN * Input Loadins Factor (R.u) 2 2 Output Driving Factor (lu) 18 to 3.07 (16.44) L-+ Z lCL to 6.47 (17.52) * H-+ Z KCL to 3.20 (17.52) * Z .. L KCL C -+ X 0.13 Z .. H KCL 0.056 These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ, ZL, HZ and ZH are as follows: CJ1'- 2kSl LSI C ~ (a) Measurement of tpd at LZ and ZL. LSI lc .J: 1 02 .. (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. 2. Output load capacitance of 85 pF is used for FUjitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-H8RD-E2 I Sheet 1/1 I 2-386 I Page 20-86 I "UHB Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I I H6TF Tri-state Output IOL=8mA) & Input Buffer (True) Cell Symbol Propagation Delay Parameter tup tdn to KCL KCL2 CDR2 KCL to 1.06 0.04 1. 84 0.04 2.51 0.056 3.27 0.063 (8.63) (7.27) IN OT =tfl 8 Path X .. IN OT .. X X C to 2.29 (18.62) Pin Name OT C Pin Name IN * Input Loading Factor (£u) 4 2 Output Driving Factor (£u) 36 to 3.12 (18.62) L .. Z KCL to 3.35 (8.71) * H .. Z KCL to 2.37 (8.71) * Z .. L KCL 0.063 C .. X Z .. H KCL 0.056 These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ, ZL, HZ and ZH are as follows: D{' = 2kSl C ~ (a) Measurement of tpd at LZ and ZL. I LSI I I lc ~ 1'=2 kQ (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-H6TF-E1 I Sheet 1/1 I I Page 20-93 2-387 Ell FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION UHB Version Cell Name I Function I Number of BC Tri-state Output(IOL=8mA) & Input Buffer (True) H6TFU with Pull-up Resistance 8 Cell Symbol Pro;agation Delay Parameter tup tdn KCL2 CDR2 to KCL to KCL Path 1.06 0.04 1.84 0.04 X .. IN 2.51 0.056 3.27 0.063 OT" X (7.27) (8.63) IN I OT I ~ X C to 2.29 (18.62) Pin Name OT C Pin Name IN Input Loading Factor (Lu) 4 2 Output Driving Factor (Lu) 36 to 3.12 (18.62) L .. Z KCL to 3.35 (8.71) * H .. Z KCL to 2.37 (8.71) * Z .. L KCL 0.063 C .. X Z .. H KCL 0.056 * These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ, ZL, HZ and ZH are as follows: ~RLSI 2kSl c ~ (a) Measurement of tpd at LZ and ZL. I LSI I I lc ,L 1- nil (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-H6TFU-EI J Sheet 1/1 I 2-388 J Page 20-94 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I "UHB" Version Cell Name I Function I Number of BC Tri-state Output(IOL=8mA) & Input Buffer (True) H6TFD with Pull-down Resistance 8 Cell Symbol Pro~agation Delay Parameter tup tdn J(CL J(CL2 CDR2 J(CL to to Path X .. IN 1. 06 0.04 1.84 0.04 2.51 0.056 3.27 0.063 OT .. X (7.27) (8.63) I IN OT I =cr- X C to 2.29 (18.62) Pin Name OT C Pin Name IN Input Loading Factor (lu) 4 2 Output Driving Factor (lu) 36 to 3.12 (18.62) z .. L .. Z J(CL to 3.35 (8.71) * H .. Z J(CL to 2.37 (8.71) * L lCL 0.063 C .. X Z .. H leL 0.056 * These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ, ZL, HZ and ZH are as follows: ~R'2~ LSI C ,;L (a) Measurement of tpd at LZ and ZL. I I LSI I lc 1"2~ ,I (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of lCL for paths OT, C to X is ns/pF. 2. Output load capacitance of 85 pF is used for FUjitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-H6TFD-El I Sheet 1/) I I Page 20-95 2-389 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION UHB Version Cell Name I Function J Number of BC Tri-state Output(IOL=8mA) H6CF & CMOS Interface Inout Buffer (True) 8 Ce 11 Symbol Pro~aJtation Delay Parameter tdn tuo RCL2 CDR2 RCL to RCL Path to 1.33 0.04 X .. IN 0.92 0.04 3.27 0.063 OT .. X 2.51 0.056 (8.63) (7.27) IN I OT I =tr- X C to 2.29 (18.62) Pin Name OT C Pin Name IN L .. Z RCL to 3.35 (8.71) * Z" L RCL 0.063 C .. X Input Loading Factor (l.u) 4 2 Output Driving Factor (lu) 36 to 3.12 (18.62) H" Z RCL to 2.37 (8.71) * Z" H KCL 0.056 * These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ. ZL. HZ and ZH are as follows: ~'.2~ LSI I I LSI C lc rL ~ (a) Measurement of tpd at LZ and ZL. I (b) >R"2kSl ~ rr'r7 Measurement of tpd at HZ and ZH. Note: 1. The unit of RCL for paths OT. C to X is ns/pF. 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-H6CF-El I Sheet 111 I 2-390 I Page 20-96 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I UHB Version Cell Name I Function I Number of BC Tri-state Output(IOL=6mA) & CMOS Interface Input Buffer H6CFU (True) with Pull-up Resistance 8 Cell Symbol ProFagation Delay~Parameter tup tdn KCL2 CDR2 to KCL to KCL Path 0.92 0.04 1.33 0.04 X" IN OT .. X 2.51 0.056 3.27 0.063 (6.63) (7.27) I IN OT I ~ X C to 2.29 (16.62) Pin Name OT C Pin Name IN * Input Loading Factor (iu) 4 2 Output Driving Factor (iu) 36 to 3.12 (18.62) L .. Z KCL to 3.35 (6.71) * H .. Z KCL to 2.37 (6.71) * Z .. L KCL 0.063 C .. X Z .. H KCL 0.056 These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ, ZL, HZ and ZH are as follows: cB' = 2k52 C ".L (a) Measurement of tpd at LZ and ZL. LSI lc ~ t·, k52 (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. 2. Output load capacitance of 65 pF is used for FUjitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-H6CFU-El I Sheet 1/1 I I Page 20-97 2-391 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION J UHB Version Cell Name J Function I Number of BC Tri-state Output(IOL=8mA) & CMOS Interface Input Buffer H6CFD (True) with Pull-down Resistance 8 Cell Symbol Propagation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 Path 0.92 0.04 1.33 0.04 X .. IN OT .. X 2.51 0.056 3.27 0.063 (7.27) (8.63) I IN OT I =rr- X C to 2.29 (18.62) Pin Name OT C Pin Name IN Input Loading Factor (tu) 4 2 Output Driving Factor (tu) 36 to 3.12 (18.62) L .. Z KCL * H .. Z KCL * to 3.35 (8.71) to 2.37 (8.71) Z .. L KCL 0.063 C .. X Z .. H KCL 0.056 * These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ, ZL, HZ and ZH are as follows: cH 2kSl R - LSI C ~ (a) Measurement of tpd at LZ and ZL. I:l lc rL 1=2"" (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-H6CFD-El I Sheet 1/1 1 2-392 I Page 20-98 J nUHB Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function Number of BC Tri-state Output(IOL=8mA) with Noise Limit Resistance HBTF & Input Buffer (True) 9 Cell Symbol Pro~a2ation Delay Parameter tup tdn KCL2 CDR2 KCL Path to KCL to X .. IN 1.06 0.04 1.84 0.04 OT .. X 3.21 0.056 5.96 0.070 (7.97) (11.91) IN I OT I =cr- X C to 2.62 (19.71) Pin Name OT C Pin Name IN Input Loading Factor (tu) 2 2 Output Driving Factor (tu) 36 to 3.30 (19.71) L .. Z KCL * H .. Z KCL * to 6.82 (12.77) to 3.21 (12.77) Z" L KCL 0.070 C .. X Z .. H KCL 0.056 * These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ, ZL, HZ and ZH are as follows: wr 21d2 R - LSI C ~ (a) Measurement of tpd at LZ and ZL. W ic ~ 1'=2kll (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-H8TF-EI I Sheet 1/1 I Page 20-99 2-393 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION UHB Version Cell Name I Function I Number of BC Tri-state Output(IOL=8mA) with Noise Limit Resistance H8TFU & Input Buffer (True) with Pull-up Resistance 9 Cell Symbol Propagation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 Path 1.06 0.04 1.84 0.04 X .. IN 3.21 0.056 5.96 0.070 OT .. X (7.97) (11.91) IN I OT I =cr- X C to 2.62 (19.71) Pin Name OT C Pin Name IN Input Loading Factor (lu) 2 2 Output Driving Factor (lu) 36 to 3.30 (19.71) L .. Z KCL to 6.82 (12.77) • H .. Z KCL to 3.21 (12.77) • Z" L KCL 0.070 C .. X Z .. H KCL 0.056 • These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ, ZL, HZ and ZH are as follows: c:H 21d2 R - I LSI LSI C ....:L (a) Measurement of tpd at LZ and ZL. I I lc ~ to,.. (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KcL for paths OT, C to X is ns/pF. 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-H8TFU-El 2-394 Sheet 1/1 J I Pa~e 20-100 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I UHB Version Cell Name I Function I Number of BC Tri-state Output(IOL=8mA) with Noise Limit Resistance H8TFD & Input Buffer (True) with Pull-down Resistance 9 Cell Symbol Pro:pagation Delay Parameter tup tdn KCL2 CDR2 to KCL to KCL Path X .. IN 1.84 0.04 1.06 0.04 OT .. X 3.21 0.056 5.96 0.070 (7.97) (11.91) I IN OT I =tr- X C to 2.62 (19.71) Pin Name OT to 6.82 (12.77) .,. Z .. L KCL 0.070 C .. X Input Loading Factor (Lu) 2 c 2 Pin Name IN L .. Z KCL Output Driving Factor (Lu) 36 to 3.30 (19.71) H .. Z KCL to 3.21 (12.77) .,. Z .. H KCL 0.056 .,. These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ, ZL, HZ and ZH are as follows: ~.- 2ldl LSI c rL (a) Measurement of tpd at LZ and ZL. I LSI I I lc -I 1 0 ''''' (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-H8TFD-El I Sheet 1/1 I "-'-"'~'" I Page 20-101 2-395 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I UHB Version Cell Name I Function I Number of BC Tri-state Output(IOL=8mA) with Noise Limit Resistance H8CF & CMOS Interface Input Buffer. (True) 9 Proj:aJ1;ation Delay Parameter Cell Symbol tup tdn to KCL KCL2 CDR2 to KCL Path X .. IN 0.92 0.04 1.33 0.04 5.96 0.070 3.21 0.056 OT" X (11.91) (7.97) I IN OT I =rr- X C to 2.62 (19.71) Pin Name OT * to 6.82 (12.77) Z .. L lCL 0.070 C .. X Input Loading Factor (lu) 2 2 C Pin Name IN L .. Z KCL Output Driving Factor (lu) to 3.30 (19.71) H .. Z KCL * to 3.21 (12.77) Z" H KCL 0.056 36 * These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ, ZL, HZ and ZH are as follows: w!R- 2ld2 LSI C ~ (a) Measurement of tpd at LZ and ZL. r:l lc rL 1 "0' = (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-H8CF-E1 I Sheet 1/1 I 2-396 I PaJ!;e 20-10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I UHB Version Cell Name I Function I Number of BC Tri-state Output(IOL=8mA) wI Noise Limit Resistance 6. H8CFU CMOS Interface Input Buffer (True) wI Pull-up Resistance 9 Cell Symbol Prot a~ation Delav Parameter tup tdn KCL KCL2 CDR2 to KCL to Path 0.92 0.04 1.33 0.04 X .. IN OT .. X 3.21 0.056 5.96 0.070 (7.97) (11. 91) I IN OT I =cr- X C to 2.62 '(19.71) Pin Name OT C Pin Name IN ~, Input Loading Factor (luJ_ 2 2 Output Dr! ving Factor (lu) 36 to 3.30 (19.71) L .. Z KCL to 6.82 (12.77) '* H .. Z KCL to 3.21 (12.77) '* Z .. L KCL 0.070 C .. X Z .. H KCL 0.056 These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ, ZL, HZ and ZH are as follows: CJl' = 2 kll C ~ (a) Measurement of tpd at LZ and ZL. LSI lc rL 1'. ,kO (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHB-H8CFU-E1 I Sheet 111 I I Page 20-10 2-397 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I UHB Version Cell Name I Function I Number of BC Tri-state Output(IOL=8mA) wI Noise Limit Resistance & H8CFD CMOS Interface Input BufferCTrue) wI Pull-down Resistanc 9 Cell Symbol Pro):8.ution Dela}' Parameter tup tdn KCL2 CDR2 to KCL KCL Path to 0.92 0.04 X .. IN 1.33 0.04 OT .. X 3.21 0.056 5.96 0.070 C7.97) (11.91) :J I IN OT ~ X C to 2.62 (19.71) Pin Name OT C Pin Name IN '* Input Loading Factor (lu) 2 2 Output Driving Factor (lu) 36 to 3.30 (19.71) L .. Z KCL '* H .. Z KCL '* to 6.82 (12.77) to 3.21 (12.77) Z .. L KCL 0.070 C .. X Z .. H KCL 0.056 These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ, ZL, HZ and ZH are as follows: c:B 2kSl R - LSI C ~ Ca) Measurement of tpd at LZ and ZL. W lc ~ 1" Hll Cb) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is ns/pF. 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. UHi-H8CFD-El I Sheet 1/1 I 2-398 J Page 20-104 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function I I "UHB" Version jNumber of BC I Input Buffer for Oscillator Circuit ITIO Cell Symbol Prollastation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 0 0 0 0 X -1>- 0 Path X'" IN IN Parameter Pin Name Input Loading Factor (.tu) Pin Name Output Driving Factor (.tu) Symbol Typ(ns)* ... Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. This cell if for the oscillator circuit only. Please refer to the document Fujitsu CMOS Gate Array 'UHB' Version User's Manual for I/O Cell for Oscillator Circuit GATI0281d for the details. UHB-ITlO-El I Sheet 1/1 I I Pue 20-105 2-399 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I URB Version Cell Name I Function I Number of BC Output Buffer for Oscillator HOC with CMOS Interface Input Buffer 8 Cell Symbol ProJ:agation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 Path 0.92 0.04 1.33 0.04 X -+ IN I IN OT J ~x Parameter Pin Name Pin Name IN Symbol Typ(ns)* Input Loading Factor (R.u) Output Driving Factor (R.u) 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are l!;iven by the maximum delay_ muitilllier. This cell is for the oscillator circuit only. Please refer to the document "Fujitsu CMOS Gate Array 'URB' Version User's Manual for I/O Cell for Oscillator Circuit (GATI0281t.)" for the details. URB-HOC-E1 I Sheet 1/1 I 2-400 I Page 20-10E FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I UHB Version Cell Name I Function I Number of BC Output Buffer for Oscillator HOS with Schmitt Trigger Input Buffer 8 Cell Symbol Propagation Delay Parameter tup tdn KCL KCL2 CDR2 Path to KCL to 2.48 0.16 3.08 0.10 X'" IN I I Parameter Pin Name Input Loading Factor (Jl.u) Pin Name IN Output Driving Factor (Jl.u) 18 * Symbol Typ(ns)'~ Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. This cell is for the oscillator circuit only. Please refer to the document "Fujitsu CMOS Gate Array 'UHB' Version User's Manual for I/O Ce11 for Osci11ator Circuit (GATI028lt.)" for the details. UHB-HOS-E1 ! Sheet 1/1 I I Page 20-107 2-401 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I UHB Version I Number of BC Cell Name I Function Output Buffer for Oscillator HOCR w/ CMOS Interface Input Buffer wi Feedback Resistance 8 Cell Symbol Propagation Delay Parameter tup tdn to KCL to KCL KCL2 CDR2 Path X .... IN 0.92 0.04 1.33 0.04 I IN OT I =six Parameter Pin Name Pin Name IN Symbol Typ(ns)* Input Loading Factor (Jl.u) Output Driving Factor (Jl.u) 36 * Minimum values for the typical operating condition. The values for the worst case operating condition are Riven bv the maximum delav multiplier. This cell is for the oscillator circuit only. Please refer to the document "Fujitsu CMOS Gate Array 'UHB' Version User's Manual for I/O Cell for Oscillator Circuit (GATI0281t.)" for the details. UHB HOCR-E1 2-402 Sheet 1/1 I I Page 20-10 UHB Series Unit Cell Ubrarr CMOS Channeled Gate Atrars Appendix A: General AC Specifications SImulatIon Delay SpecifIcations (Recommended OperatIng ConditIons, Ta =0 to 70°C, Y =5 Y;t5% DD Delay MultIpliers MIn. Max. Pre-layout Simulation 0.35 1.65 Post-layout Simulation 0.40 1.60 2-403 UHB Series Unit Cell Library 2-404 CMOS Channeled Gate Amoys CMOS Channeled Gate Arrays UHB Series Unit Cell Ubrary Appendix B: Hierarchical Structure Hierarchical blocks (or Functional Logic Blocks) within other hierarchical blocks are user-defined groups of cells laid out in close proximity to each other in both X and Y dimensions of the array. The hierarchical method of design allows circuit sections to be placed within the array at positions relative to each other. This is made possible by the designer's defining and placing functional logic blocks within the hierarchy and thus controlling path lengths. There are five levels of hierarchy, also referred to as Functional Logic Blocks (FLBs). Certain deSign rules regarding what may and what must appear at certain levels are condensed in the diagram below. A: C-6000UHB Through C-12000UHB B: C-330UHB Through C-4100UHB Use of the hierarchical design method is mandatory for partitioned arrays and optional for non-partitioned arrays. Section A ofthe figure above addresses partitioned arrays C-6000UHB through C-12000UHB. Section B of the figure above addresses non-partitioned arrays C330UHB through C41 OOUHB. Immediately below the chip level, four Level 1 (FLB 1) blocks must be defined, giving identity to each ofthe four partitioned quadrants of the array. 2-405 UHB Series Unit Cell Libraty CMOS Channeled Gate Arrays Appendix B: Hierarchical Structure (Continued) All 110 buffers and their associated circuitry must be defined immediately beneath the chip level with the FLB1 blocks. Nothing but 1/0 buffers may be so defined. If pull-up or pull-down cells (A01 s or XOOs) are required for unused inputs ofthe I/O buffers, they must also be defined atthis level. Unit cells (UC) may be defined at each level. For optimum delay characteristics, Level 2 blocks should be defined under each of the Level 1 blocks, Level 3 Blocks under Level 2 blocks, and so on. Unit cells should be defined under Level 4. 2-406 UHB Series Unit Cell Ubrary CMOS Channeled Gate Arrays Appendix C: Estimation Tables for Metal loading C-330UHB NOI C-530UHB CL(lu) 1 2 3 4 5 6 7 8 9 1.0 2.2 3.0 3.5 3.9 4.2 4.6 4.8 4.9 NOI 10 11 12 13 14 15 16--30 31-50 51-75 76-100 CL(lu) 5.0 5.0 5.1 5.2 5.3 5.3 5.7 6.6 6.7 7.4 C-830UHB NOI CL(lu) 1 2 3 4 5 6 7 8 9 1.1 2.5 3.4 3.9 4.4 4.7 5.1 5.4 5.5 NOI 10 11 12 13 14 15 16--30 31-50 51-75 76-100 CL(lu) 5.6 5.6 5.7 5.8 5.9 5.9 6.4 7.4 7.5 8.3 C-1200UHB CL(lu) 1 2 3 4 5 6 7 8 9 NOI 1.3 3.0 4.0 4.7 5.2 5.6 6.1 6.4 6.6 NOI 10 11 12 13 14 15 16-30 31-50 51-75 76-100 CL(lu) 6.7 6.7 6.8 6.9 7.1 7.1 7.7 8.8 9.0 9.9 NOI 1 2 3 4 5 6 7 8 9 CL(lu) 1.7 3.6 4.9 5.7 6.3 6.8 7.4 7.8 8.0 NOI 10 11 12 13 14 15 16--30 31-50 51-75 76-100 CL(lu) 8.2 8.2 8.3 8.4 8.6 8.6 9.3 10.6 10.9 12.0 C-1700UHB NOI 1 2 3 4 5 6 7 8 9 CL(lu) 1.8 3.9 5.3 6.2 6.8 7.4 8.1 8.4 8.6 NOI 10 11 12 13 14 15 16--30 31-50 51-75 76-100 CL(lu) 8.8 8.8 9.0 9.1 9.3 9.3 10.1 11.5 11.8 13.0 2-407 UHB Series Unit Cell Library CMOS Channeled Gate Arrays Appendix C: Estimation Tables for Metal Loading 4 (Continued) C-3000UHB C-2200UHB NOI 1 2 3 4 5 6 7 8 9 CL(lu) 2.2 4.7 6.4 7.4 8.2 8.9 9.7 10.1 10.4 NOI CL(lu) NOI CL(lu) 10 11 12 13 14 15 16-30 31-50 51-75 76-100 10.7 10.7 10.8 10.9 11.2 11.2 12.1 13.9 14.3 15.7 1 2 3 4 5 6 7 8 9 2.6 5.7 7.7 9.0 10.0 10.8 11.8 12.3 12.6 NOI CL(lu) 10 11 12 13 14 15 16-30 31-50 51-75 76-100 14.8 14.8 15.0 15.2 15.5 15.5 16.8 19.3 19.8 21.8 NOI 10 11 12 13 14 15 16-30 31-50 51-75 76-100 CL(lu) 12.9 12.9 13.1 13.2 13.6 13.6 14.7 16.8 17.3 19.0 C-4100UHB NOI 1 2 3 4 5 6 7 8 9 CL(lu) 3.0 6.6 8.8 10.3 11.4 12.4 13.5 14.0 14.4 C-6000UHB (Within Block) NOI 1 2 3 4 5 6 7 8 9 CL(lu) 1.6 3.5 4.7 5.5 6.1 6.6 7.2 7.5 7.7 C-6000UHB (Inter-Block) NOI CL(lu) NOI CL(lu) NOI 10 11 12 13 14 15 16-30 31-50 51-75 76-100 7.9 7.9 8.0 8.2 8.4 8.4 9.1 10.4 10.6 11.7 1 2 3 4 5 6 7 8 9 3.5 7.6 10.2 12.0 13.3 14.4 15.7 16.3 16.8 10 11 12 13 14 15 16-30 31-50 51-75 76-100 CL(lu) 17.2 17.2 17.4 17.6 18.1 18.1 19.6 22.4 23.0 25.3 Inter-Block tables must be applied to a net which has an inter-block connection. If a net, for example, has 3 NOI in a block and 1 NOI in a different block, NOI = 4 of the Inter-Block table must be applied. 2-408 UHB Series Unit Cell Ubrary CMOS Channeled Gate Mllys Appendix C: Estimation Tables for Metal Loading c-B700UHB (Inter-Block) C-S700UHB (Within Block) NOI 1 2 3 4 5 6 7 8 9 CL(lu) 2.2 4.7 6.4 7.4 8.2 8.9 9.7 10.1 10.4 NOI CL(lu) NOI CL(lu) 10 11 12 13 14 15 16-30 31-50 51-75 76--100 10.7 10.7 10.8 10.9 11.2 11.2 12.1 13.9 14.3 15.7 1 2 3 4 5 6 7 8 9 4.2 9.2 12.4 14.5 16.0 17.3 18.9 19.7 20.2 C-12000UHB (Within Block) NOI 1 2 3 4 5 6 7 8 9 CL(lu) 2.6 5.7 7.7 9.0 10.0 10.8 11.8 12.3 12.6 (Continued) NOI 10 11 12 13 14 15 16-30 31-50 51-75 76--100 CL(lu) 20.8 20.8 21.0 21.3 21.8 21.8 23.6 27.1 27.8 30.5 C-12000UHB (Inter-Block) NOI CL(lu) NOI CL(lu) NOI 10 11 12 13 14 15 16-30 31-50 51-75 76--100 12.9 12.9 13.1 13.2 13.6 13.6 14.7 16.8 17.3 19.0 1 2 3 4 5 6 7 8 9 4.9 10.8 14.5 17.0 18.8 20.3 22.2 23.1 23.7 10 11 12 13 14 15 16-30 31-50 51-75 76--100 CL(lu) 24.3 24.3 24.6 25.0 25.6 25.6 27.7 31.7 32.6 35.8 Inter-Block tables must be applied to a net which has an inter-block connection. If a net, for example, has 3 NOI in a block and 1 NOI in a different block, NOI = 4 of the Inter-Block table must be applied. 2-409 CMOS Channeled Gate Anays UHB Series Unit Cell Library Appendix C: Estimation Tables for Metal Loading for Clock Nets C-330UHB (for CK60, CK8D) C-330UHB (for CK20, CK4D) NOI 1-2 3-4 5-6 7-8 9-10 CL(lu) 5.1 9.5 11.9 12.2 12.4 NOI 11 -12 13-15 16-30 31-50 51-80 CL(lu) NOI CL(lu) 12.7 13.0 13.3 15.4 18.1 1-2 3-4 5-6 7-8 9-10 7.0 13.4 16.7 17.0 17.3 C-530UHB (for CK2D, CK4D) NOI 1-2 3-4 5-6 7-8 9-10 CL(lu) 5.1 9.6 14.1 14.4 14.6 NOI 11 -12 13-15 16-30 31-50 51-80 NOI CL(lu) 5.6 10.5 15.4 18.0 18.2 NOI 11 -12 13-15 16-30 31-50 51-80 CL(lu) NOI CL(lu) 14.9 15.1 15.4 17.3 19.8 1-2 3-4 5-6 7-8 9-10 7.3 14.0 20.7 20.9 21.2 NOI 2-410 CL(lu) 6.2 11.7 17.2 22.7 23.0 NOI 11 -12 13-15 16-30 31-50 51-80 17.6 17.9 18.1 20.2 23.0 NOI 11-12 13-15 16-30 31-50 51-80 CL(lu) 21.4 21.7 21.9 23.8 26.4 C-830UHB (for CK60, CK8D) CL(lu) NOI CL«I~) 18.5 18.8 19.1 21.2 24.1 1-2 3-4 5-6 7-8 9-10 8.1 15.5 22.9 26.7 27.0 C-1200UHB (for CK20, CK4D) 1-2 3-4 5-6 7-8 9-10 CL(lu) C-530UHB (for CK60, CK8D) C-83DUHB (for CK20, CK4D) 1-2 3-4 5-6 7-8 9-10 NOI 11-12 13-15 16-30 31-50 51-80 NOI 11-12 13-15 16-30 31-50 51-80 CL(lu) 27.3 27.6 27.8 30.0 32.8 C-12DOUHB (for CK60, CK8D) CL(lu) NOI CL(lu) 23.3 23.7 24.0 26.3 29.3 1-2 3-4 5-6 7-8 9-10 9.3 18.0 26.7 35.4 35.7 NOI 11-12 13-15 16-30 31-50 51-80 CL (Iu) 36.0 36.3 36.6 38.9 41.9 UHB Series Unit Cell Ubrary CMOS Channeled Galli AITIIYS Estimation Tables for Metal Loading for Clock Nets (Continued) C-1700UHB (for CK60, CK80) C-1700UHB (for CK20, CK40) NOI 1-2 3-4 5-6 7-8 9-10 CL(lu) 6.6 12.6 18.6 24.5 27.7 NOI 11 -12 13-15 16-30 31-50 51-80 CL(lu) 28.0 28.3 28.6 31.0 34.2 NOI CL(lu) 7.1 13.5 19.9 26.3 32.8 NOI 11 -12 13-15 16-30 31-50 51-80 CL(lu) 33.1 33.4 33.8 36.3 39.6 C-3000UHB (for CK20, CK40) NOI 1-2 3-4 5-6 7-8 9-10 CL(lu) 7.7 14.8 21.8 28.9 35.9 NOI 11 -12 13-15 16-30 31-50 51-80 1-2 3-4 5-6 7-8 9-10 CL(lu) 8.4 16.2 24.0 31.7 39.5 NOI 11 -12 13-15 16-30 31-50 51-80 NDI 11 -12 13-15 16-30 31-50 51-80 CL(lu) 44.4 44.7 45.0 47.4 50.6 NOI 1-2 3-4 5-6 7-8 9-10 CL(lu) 11.2 21.8 32.3 42.8 53.4 NOI 11 -12 13-15 16-30 31-50 51-80 CL(lu) 53.7 54.1 54.4 56.9 60.2 c-3000UHB (for CK60, CK80) CL(lu) NOI 43.0 43.3 43.7 46.3 49.8 1-2 3-4 5-6 7-8 9-10 c-4100UHB (for CK20, CK40) NOI CL(lu) 10.3 19.9 29.5 39.1 44.1 C-2200UHB (for CK60, CK80) C-2200UHB (for CK20, CK40) 1-2 3-4 5-6 7-8 9-10 NOI 1-2 3-4 5-6 7-8 9-10 CL(lu) 12.6 24.5 36.4 48.3 60.2 NOI 11 -12 13-15 16-30 31-50 51-80 CL(lu) 72.1 72.4 72.8 75.4 78.9 c-4100UHB (for CK60, CK80) CL(lu) NOI 47.3 51.4 51.7 54.6 58.4 1-2 3-4 5-6 7-8 9-10 CL(lu) 14.0 27.4 40.7 54.1 67.4 NOI 11 -12 13-15 16-30 31-50 51-80 CL(lu) 80.8 87.6 88.0 90.9 94.6 2-411 CMOS Channeled Gate Arrays UHB Series Unit Cell Library Estimation Tables for Metal Loading for Clock Nets C·6000UHB (for CK20, CK40) NOI 1 2 3 4 CL(lu) 9.9 14.9 24.1 29.2 C-8700UHB (for CK20, CK40) NOI 1 2 3 4 CL(lu) 11.8 17.8 28.9 34.9 C-12000UHB (for CK20, CK40) NOI 1 2 3 4 2-412 CL(lu) 13.7 20.7 33.7 40.8 (Continued) c-6OOOUHB (for CK60, CK80) NOI 1 2 3 4 CL(lu) 13.2 24.8 37.3 48.9 C-8700UHB (for CK60, CK80) NOI 1 2 3 4 CL(lu) 15.7 29.7 44.8 58.7 C-12000UHB (for CK60, CK80) NOI 1 2 3 4 CL(lu) 18.3 34.7 52.3 68.7 UHB Series Unit Cell Ubrary CMOS Channeled Gate Arrays Appendix D: Available Package Types UHB CMOS Available Package Types Plastic Standard 16DIP 18 DIP 20 DIP 22 DIP 24 DIP 28 DIP 40 DIP 42 DIP 48 DIP (100 mil pin pitch) Shrink 28SHDIP 42SHDIP 48SHDIP 64SHDIP (70 mil pin pitch) Skinny 22SKDIP 24SKDIP 28 SKDIP (300 mil wide body) 16FPT 20FPT 24FPT 28FPT • • • • • • • • CH • • • • • • • • • • • • • • 48 FPT 48 FPT-S' 64 FPT BOFPT 100FPT 120 FPT 160FPT • • • • • • • • • • • • • • • • • • • • • • • CH NW • • • CH CH CH CH CH CH • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • CH • • • • • • • • • • • • • • • • CH • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 'smaller than the other 48-pin FPT 64PGA 88PGA 135PGA NOTES: • UD NW CH • • CH CH CH • CH NW (leads on all four sides) 44 FPT • • • • • • • • • • • • • • • • • • • • Available Not Available Under Development Newly Available The availability 01 the package has changed, i.e., become unavailable 2-413 UHB Series Unit Cell Library CMOS Channeled Gate AlTSys Appendix D: Available Package Types (Continued) UHB CMOS Available Package Types Ceramic 20 DIP 22 DIP 24 DIP 28 DIP 40 DIP 42 DIP 48 DIP Shrink 28SHDIP 42SHDIP Ell • • • • • • • • • (70 mil pin pitch) • • 48FPT 80FPT l00FPT 120FPT • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • NW NW NW NW NW UD UD • 160FPT 64PGA 88PGA 135PGA 179PGA 208PGA 256PGA • • CH • • • • • • • • • NOTES: • UD NW CH 2-414 Available Not Available Under Development Newly Available The availability of the package has been changed, i.e., become unavailable • • • • • • NW • UD CH UD • UD • • • NW UHB Series Unit Cell Ubrary CMOS Chann6Ied Gats Arrays Appendix E: TTL 7400 Function Conversion Table TTl 7400 SarI. . 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7430 7432 7433 7434 7435 7437 743819 7440 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7460 7461 7462 7464 7465 Fujitsu BaalcCails Function Name Qua:! 2-input NAND Qua:! 2-input NAND, Open Collector Outputs Qua:! 2-input NOR Quad 2-input NAND, Open Collector Outputs HexlnYerllllr Hex InYerllllr, Open Collector Outputs Hex Inverllllr/Bufler, Open Collector Outputs Hex Buffer, Open Collector Outputs Qua:! 2-input AND Quad 2-input AND, Open Collector Outputs Triple 3-input NAND Triple 3-input AND Triple 3-NAND, Open Collector Outputs Dual4-input NAND, Schmitt Trigger Hex Schmitt Trigger Inverter Triple 3-input AND, Open Collector Outputs Dual4-input NAND, Schmitt Trigger Hex Schmitt Trigger Inverter Dual 4-input NAND Dual 4-input AND Dual4-input NAND, Open Collector Outputs Expended Dual 4-input NOR with Strobe Quad Schmitt Trigger 2-input NAND Dual 4-input NOR with Strobe Quad 2-input NAND, High Voltage Output Triple 3-input NOR Qua:! 2-input NOR Buffer 8-inputNAND Qua:! 2-input OR Quad 2-input NOR Buffer, Open Collector Outputs Hex Noninverter Hex Noninverter with Open Collector Outputs Qua:! 2-input NAND Buller Quad 2-input NAND Buller, Open Collector Outputs Dual 4-input NAND Buller BCD to Decimal Decoder EXS to Decimal Decoder 4 to 10 Una Decoder BCD to Decimal Decoder/driwr (SOV) BCD to 7....egment DecoderlDriver (30V) BCD to 7....egment DecoderlDriver(15V) BCD to 7....egment Decoder/Driver BCD to 7-segment, Open Collector Outputs Dual 2-input, 2-wide AOI (One Expandable) AOI Expendable 4-wide AND-OR Expandeble o--X Parameter Pin Name Input loading Factor (Iu) A 2 Pin Name Output Driving Factor (Iu) X 36 Typ(ns) • Symbol • Minimum values for the typical oparating condition. The values for the worst case oparating condition ara given by the maximum delay multiplier. C1Q-V2B-EO 3-8 Sheet 1/1 J l Page 1-2 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I • CG10 • Version Number 01 BC Funcllon I True Buffer B1N Cell Symbol !Up to KCL 0.363 0.067 Proplgallon Delay Parlmeter tdn KCL2 to KCL CDR2 0.425 1 Palh AtoX 0.045 A~X Parameter Pin Name Symbol Typ(nl)' Input loading Factor (Iu) A 1 Pin Name Output Driving Factor (Iu) X 18 • Minimum values lor Iha typical operating CXlndition. The valuaslor Iha worst casa operating CXlnclition era givan by Iha maximum delay multiplier. C10-81N-EO I Sheet 111 I Page 1-3 3-9 I • CG10 • Version I Number 01 BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Function I Cell Name 8D3 I Delay Cell Cell Symbol tu to 3.331 KCL 0.067 Propagation Delay Parameter Jdn KCL to KCL2 CDR2 2.944 0.067 0.073 5 Path AtoX 4 A-[>-X Parameter Pin Name Symbol Typ (ns)' Input loading Factor (Iu) A 1 Pin Name Output Driving Factor (Iu) X 18 • Minimum values for the typical operating oondition. The values for the worst case operating oondition are given by the maximum delay multiplier. C1O-BD3-EO Sheet 1/1 I 3-10 Page 1-4 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Call Nam. Function BD4 Delay Cell Number 01 Be I Propagation Delay Parameter Cell Symbol 1 -X Parameter Pin Name Input loading Factor (Iu) A 4 Pin Name Output DrIving Factor (Iu) X 6 Symbol Typ(ns) • • Minimum values lor the typical operating condition. The values lor the worst case operating concition are given by the maximum delay multiplier. C10-BD4-EO Sheet 1/1 I Page 1-5 3-11 .1 • CG10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Function I • Version Cell Name 805 NumberolBC Delay Cell Call Symbol !Up to KCL 6.825 0.067 Propagation Delay Parameter tdn 1'0 KCL KCL2 CDR2 6.469 0.056 0.084 J 9 Palh AtoX 4 A-{:>-X Parameter Pin Name Input Loading FactorClu) A 1 Pin Name Output Driving FactorClu) X 18 Symbol Typ Cns)· • Minimum values for Ihe typical operating condition. The values for Ihe worst case operating condition Bra gill8n by !he maximum delay multiplier. C10-BD5-EO 3-12 Sheet 111 I Page 1-6 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CEll SPECIFICATION Cell Name Function BD6 Delay Cell J Cell Symbol !up to KCL 13.750 0.072 I Propagation Delay P...meter II:In to KCL KCL2 CDR2 13.638 0.051 0.079 Number 01 BC 17 Pall1 AtoX 4 A-[>-X Parameter PIn Name Input loadIng Factor (Iu) A 1 PlnN.me Output DrIving F.ctor (Iu) X 18 Symbol Typ (na)' • Minimum va\uallor Ihe typical Oparatinll c:oncition. The values for lI1e worst case oparatinll condition are given by Ihe maximum dalay multiplier. C10-BD6-EO I Sheet 111 I Page 1-7 3-13 CGIO Series Unit CfII/ Ubraty 3-14 CMOS Channeled Gate Arrays CGIO Series Unit CeO Library CMOS Channeled Gats Arrays NAND Family Page Unit Cell Name 3-17 N2N 2-input NAND 3-18 N2B Power 2-input NAND 3 2 Function Basic Cells 3-19 N2K Fast Power 2-input NAND 3-20 N3N 3-input NAND 2 3-21 N3B Power 3-input NAND 3 3-22 N3K Fast Power 3-input NAND 3 3-23 N4N 4-input NAND 2 3-24 N4B Power 4-input NAND 4 3-25 N4K Fast Power 4-input NAND 4 3-26 N6B Power 6-input NAND 5 3-27 N8B Power 8-input NAND 6 3-28 N9B Power 9-input NAND 8 3-29 NCB Power 12-input NAND 10 3-30 NGB Power 16-input NAND 11 3-15 CG10 Series Unit Cell Library 3-16 CMOS Channe/sd Gate AITBYs FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION CenName Function N2N Number 01 BC I 2-input NAND Cen Symbol \up AI A2 I • CG10 • Version ::={»-- to KCL 0.231 0.067 Propagation Delay Parameter Idn to KCL KC12 CDR2 0.350 1 Palh AtoX 0.079 X Parameter Pin Name Input loading FaClor(lu) A 1 Pin Name Output Driving Flctor(lu) X 18 Typ(ns)· Symbol lID • Minimum values lor \he typical operating condition. The values lor Ihe worst case operating condition are given by !he maximum delay multiplier. C1o-N2N-EO Sheet 1/1 I Page 2-1 3-17 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cel/Nama N2B Number 01 BC Function Power 2-input NAND Propagation Delay Parameter \dn Cell Symbol \up to KCl to KCl 0.688 0.034 0.888 0.023 KCL2 I 3 Path CDR2 AtoX ~=D>-x Parameter Pin Name Input loading Factor (Iu) A 1 Pin Name Output Driving Factor (Iu) X 36 Symbol Typ (ns)' • Minimum value. lor the typical operating condition. The values for the worst case operating condition are given by Ihe maximum delay multiplier. C1Q-N2B-E Sheel1/1 I I 3-18 Page 2-2 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Function Cell Name N2K Number 01 BC I Power 2-input NAND Propagation Delay Parameter Cell Symbol !Up !dn to KCL to KCL KCL2 CDR2 0.231 0.034 0.269 0.039 0.051 7 2 Path AtoX ~=D>---x Parameter Pin Name Input loading Factor (Iu) A 2 Pin Name Output Driving Factor (Iu) X 36 Symbol Typ (ns)· • Minimum values lor the typical operating conation. The values lor the worst case operating condition are gi\l8n by !he maximum delay multiplier. C10-N2K-EO Sheet 1/1 I I Page 2-3 3-19 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION CeIlNlme I • CG10 • Version Number 01 BC Function I 3-input NAND N3N Cell Symbol \Up Al=!)- A2 to KCL 0.325 0.067 Propagallon Delay Parameter !dn KCL to KCL2 CDR2 0.431 2 Path AloX 0.107 X A3 Parameter A Pin Name Typ (ns)· Symbol Input loading Factor (Iu) 1 Pin Name Output Driving Factor (Iu) X 14 • Minimum values lor !he typical operating condition. The values lor the worst case operating condition ara given by the maximum delay multiplier. C10-N3N-EO Shee 1/1 I I 3-20 Page 2-4 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Numb.. 01 BC Funellon N38 I Power 3-input NAND Cell Symbol Prop.g.tlon Delay P...m.... \up AI=1}A2 Idn 10 KCL 10 KCL 0.800 0.034 1.063 0.023 KCL2 3 Pa'" CDR2 AloX X A3 Parameter A Pin Name Typ(ns)· Symbol Input loading Factor (lu) 1 Pin Name OUtput Driving Faclor(lu) X 36 • Minimum value. lor .... typical operating concition. The value. lor "'e worst case operaling condition are given by Iha maximum delay multiplier. C1o-N3B-EO Sheel1/1 I I Page 2-5 3-21 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Call Name I Funollon N3K I • CG10 • Version I NumberolBC I Power 3-input NAND Cell Symbol IIJ AI*- A2 A3 10 KCL 0.300 0.030 A 0.406 3 Palh AtoX 0.045 X Para meier Pin Name PropegaUon Delay Parameter Idn 10 KCL2 CDR2 KCL Svmbol Typ (no)' Input loading Faclor (Iu) 2 Pin Name Output Driving Facio. (Iu) X 28 , Minimum values for the typical operating conation. The values lor Ihe worst case operating concition are given by the maximum delay multiplier. C10-N3K-EO Sheet 1/1 I 3-22 Page 2-6 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I • CG10 • Version Function Cell Name Number 01 BC I 4-input NAND N4N Cell Symbol !Up "illA2 .0 KCL 0.388 0.067 Propagation Delay Parame.er Idn 10 KCL KCL2 CDR2 0.463 2 Path AtoX 0.135 X A3 A4 Para meier Symbol Typ (ns)' Inpul Laadlng Factor (Iu) Pin Name A 1 Pin Name OUIPUI Driving Factor (Iu) X 10 • Minimum values for the Iypicai operating conation. The values lor the worsl case operating conation are given by the maximum delay multiplier. C1o-N4N-EO I Sheet 1/1 I Page 2-7 3-23 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I • CG10 • Version Numb.olBC FunctIon N4B Power 4-input NAND CenSymbol \Up .oroA2 to KCL 0.863 0.034 Propagation Delay Parameter tdn to KCL KCL2 CDR2 1.188 I 4 Palll AtoX 0.023 X AS A4 Parameter Pin Name Input loadIng Factor (Iu) A 1 PIn Name Output Drlvtng Faclor(lu) X 36 Typ (ns)· Symbol • Minimum value. lor the typical operating condition. The values lor the worst case operating oondiIion are givan by \he maximum delay multiplier. C1O-N4B-EO 3-24 Sheet 1/1 I Page2~ FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I • CG10 • Version Function N4K Number 01 BC I Power 4-input NAND Cell Symbol !up "~ A2 1>3 A4 to KCL 0.350 0.030 PropaglUon DeilY Plrameter teln to KCL KCL2 COR2 0.475 4 Palh AtoX 0.056 X Parameter Pin Name Input loading Factor (Iu) A 2 Pin Nama Output Driving Factor (Iu) X 20 Typ (ns)· Symbol .. • Minimum values for the typical operating concition. The values lor Ih& worst case operating condition are given by Ih& maximum delay multiplier. C1o-N4K EO I Sheet 111 I Page 2-9 3-25 I • CG1D • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function N6B Number of BC Power 6-input NAND Cell Symbol !Up to 0.856 "ro- KCL 0.034 PropaglUon Delay Parameter teln to KCL KCL2 COR2 1.263 0.023 0.039 I 5 Path AtoX 7 A2 A3 A4 AS A6 X Parameter Pin Name Input loading Factor (Iu) A 1 Pin Name Output Driving Factor (Iu) X 36 Symbol , Minimum values for !he typical operating condition. The value. lor the worst case operating oondition 818 givan mUIlip/ier. Typ(ns)' bY !he maximum delay Equivalent Circuit AI A2 AS X A4 AS AS C1O-N6B-EO 3-26 Shee 1/1 I Page2-10 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION CellNlme Number of BC Funcllon NBB I Power a-input NAND Cell Symbol tup 10 KCL 0.900 0.034 Propagallon Delay Parameler Idn 10 KCL KCL2 CDR2 1.381 0.023 0.039 6 Path AtoX 7 A l - ...... A2- A3A4- AS- p.--X A6A7AS-L,..I Parameter Pin Name Inpul loading Faclor (lui A 1 Pin Name Oulpul Driving Faclor(lu) X 36 Symbol Typ (ns)' • Minimum values for the typical operating condition. The values for the worst case operating CXlndilion are given by the maximum delay multiplier. Equivalent Circuil A t - ...... A2A3A4-~ X A S - ...... A6A7AS-~ C10-N8B-EO I Sheet 1/1 I Page 2-11 3-27 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function N98 Number olBC I Power 9-input NAND Cell Symbol \up to KCL 0.888 0.034 Propagation Delay Parameler tdn to KCL KCL2 CDR2 1.663 0.028 0.051 8 Path AloX 7 Al-r"'I A2- 1.3MAS:>-- X A6A7A6A9-"", Parameter Pin Name Input loading Factor (Iu) A 1 Pin Name Output Driving Factor (Iu) X 36 Symbol Typ (ns)· • Minimum values for !he Iypical operating condition. The values lor the worst case operadng condition are given by the maximum delay multiplier. Equivalent Circuit AI A2 1.3 M AS A6 X A7 A6 A9 Cl0-N9B-EO 3-28 I Sheet 111 I Page2-12 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Call Name Function NCB Number 01 BC Power 12-input NAND Cell Symbol tup At-"" A2A3A4ASA6A7- to KCL 0.950 0.034 Propagation Delay Parameter tdn to KCL KCL2 CDR2 1.788 0.028 0.051 I 10 Palh AtoX 8 ;>-- X MA9AtOAtlAI2-L..' Parameter Pin Name Input Loading Factor (Iu) A 1 Pin Nama Output Driving Factor (Iu) X 36 Symbol Typ (no)· lID • Minimum values lor the typical operating conation. The values lor Ihe worst case operating conation are given by the maximum delay multiplier. Equivalent Ciralit Al-"" A2A3A4-.,; ASA6A7- l J X M-.,; A9-}- Al0A12A12-l..oI C1o-NCB-EO Sheet 1/1 I Page2-13 3-29 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function NumberolBC I Power1~nputNAND NGB Cell Symbol IUp to KCL 0.956 0.034 Propagation Delay Parameler ttln io KCL CDR2 KCL2 2.169 0.034 0.051 11 Palh AtoX 8 A 1 - ..... A2A3MASA6A7ASASA10A11A12A13A14A15A16-1.;' P--- X Parameter Pin Name Input loading Factor (Iu) A 1 Pin Name Output Driving Factor (Iu) X 36 Symbol Typ (ns)' • Minimum values for the typical operating condition. The values lor Ihe worst case operating condition are given by !he meximum delay multiplier. Equivalent Circuit A1-l A2- J A3M-., M-hl )--t>o. . - VrAS- '-< ..... A7- AS - ., X A 9 - ..... A11A12-., A13A14- l J A15A16-., C1D-NGB-EO 3-30 Sheet 111 I Page2-14 CMOS Channeled Gate Arrays CG10 Series Unit Cell Library NOR Family Unit Cell BasIc Cells Page Name 3-33 R2N 3-34 R2B Power 2-input NOR 3 3-35 R2K Power 2-input NOR 2 3-36 R3N 3-inputNOR 2 3-37 R3B Power 3-input NOR 3 3 FunctIon 2-input NOR 3-38 R3K Power 3-input NOR 3-39 R4N 4-input NOR 2 3-40 R4B Power 4-input NOR 4 3-41 R4K Power 4-input NOR 4 3-42 R6B Power 6-input NOR 5 3-43 R8B Power 8-input NOR 6 3-44 R9B Power 9-input NOR 8 3-45 RCB Power 12-input NOR 10 3-46 RGB Power 16-input NOR 11 lID 3-31 CGtO Series Unit Cell Library 3-32 CMOS Channeled Gale Arrays I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function R2N Number of BC !Up to 0.250 AI A2 I 2-input NOR Cell Symbol ::::t;>--- KCL 0.122 PropagaUon Delay Parameter Illn to CDR2 KCL KC1.2 0.275 0.045 0.062 1 Path Ato X 4 X Parameter Typ (ns) , Symbol Input loading Factor (Iu) Pin Nama A 1 Pin Name Output Driving Factor (Iu) X 14 , Minimum values for the typical operating oondition. The values for the worst casa operating oondition era gilllln by the maximum delay multiplier. C1D-R2N-EO I Sheet 1/1 I I Page 3-1 3-33 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I I • CG10 • Version Function Number 01 BC I Power 2-input NOR R2B Cell Symbol tup to KCL 0.850 0.034 Propagallon Delay Parameter IIln to KCL KCL2 CDR2 0.781 3 Pa'" AtoX 0.023 Al~X A2 Parameter Pin Name Typ (ns) , Symbol Input loading Flctor(lu) A 1 Pin Nlme Output Driving Factor (Iu) X 36 , Minimum values lor the typical operating condition. The values lor the worst case operating condition are given by the maximum delay multiplier. C1o-R2B-EO I 3-34 Sheet 1/1 I I Page 3-2 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name R2K Number 01 SC I Power 2-input NOR Cell Symbol IUp 10 0.281 Al A2 I' CG10 ·Version Funcllon =t;>--- KCL 0.059 Propagation Delay Parameler Idn 10 KCL KCL2 CDR2 0.281 2 Palh AtoX 0.034 X Parameter Pin Name Input loading Factor (Iu) A 2 Pin Name Output Driving Factor (Iu) X 36 Typ (ns)' Symbol • Minimum values lor Ihe Iypica/ operating condition. The values for Ihe worsl case operaling condition 8/11 given by Ihe maximum delay multiplier. C10 R2K-EO Sheel1/1 I Page 3-3 3-35 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function I NumberolBC I 3-input NOR R3N Cell Symbol IUp A1*- A2 to KCL 0.525 0.172 Propagallon Delay Parameter IIIn KCL2 to KCL CDR2 0.288 0.051 0.067 2 Path 4 AloX X A3 Parameter A Typ (ns) , Symbol Input loading Faclor(lu) Pin Name 1 Pin Name Output Driving Faclor(lu) X 10 • Minimum valuas lor the typical oparating oondition. The values lor the worst case oparating oondition are given by the maximum delay multiplier. C10-R3N-EO 3-36 I Sheet 1/1 I I Page 3-4 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I • CG10 • Version Function R3B Number 01 BC I Power 3-input NOR CeIJSymbol \up Al=lt- : to KCL 1.244 0.034 0.856 3 Path AloX 0.023 X Parameter A Propagallon Delay Parameter tdn to KCL KCL2 CDR2 Typ (ns • Symbol Input loading Factor (Iu) Pin Name 1 Pin Name Output Driving Factor (Iu) X 36 • Minimum values lor the typical operating condition. The values for the worst case operating condition . . given by the maximum delay multiplier. C10-R3B-EO I Sheel1/1 I Page 3-5 3-37 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Function Cell Nam. R3K Number 01 BC I Power 3-input NOR Cell Symbol Propagation Delay Parameter Idn !Up AI=&- A2 AS to KCL to KCL KCL2 CDR2 0.413 0.072 0.200 0.023 0.039 7 A Palh AtoX X Parameter Pin Name 3 Symbol Typ (ns)' Input Loadlnll Factor (Iu) 2 Pin Name Output Driving Factor (Iu) X 20 • Minimum values lor the typical operating condition. The values lor the worst case operating condition ara given by !he maximum delay multiplier. C10-R3K-EO 3-38 Sheet 1/1 I I Page 3-6 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Number 01 BC Function I 4-input NOR R4N Cell Symbol tup "~ : to KCL 0.775 0.227 Propagation Delay Parameter Jdn KCL2 to KCL CDR2 0.288 0.051 0.073 2 Path AtoX 4 X A4 Parameter Pin Name Symbol Typ (ns)' Inpul Loading Factor (Iu) A 1 Pin Name Output Driving Factor (Iu) X 6 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C1Q-R4N EO Sheet 111 I Page 3-7 3-39 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Nam. R4B I • CG10 • Version Function NumberolBC Power 4-input NOR Cell Symbol IU "~ A2 10 KCL 1.563 0.034 Propllllalion Delay Parameter tdn 10 KCL KCL2 CDR2 0.838 I 4 Path AtoX 0.023 X A3 A4 Parameler Pin Name Symbol Typ na)' Inpul loading Faclor(lu) A 1 Pin Name OUlpul DrIving Faclor(lu) X 36 • Minimum values lor the typical operaling condilion. The values lor the worst case operating condition are given by !he maximum delay multiplier. r.1G-R4B-EO Sheet 1/1 I I 3-40 Page 3-8 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CEll SPECIFICATION Cell Name Function R4K Number of BC 4 Power 4-input NOR Cell Symbol IUp 10 KCL 0.675 0.097 Propagallon Delay Parameler Idn 10 KCL KC12 CDR2 0.219 0.017 0.028 Path AtoX 7 .,~ X A2 A3 A4 Paramel.r Pin Name Input loading Factor (Iu) A 2 Pin Name Output Driving Faclor(lu) X 12 Symbol Typ (nl)' • Minimum values for the typical oparating concition. The values for the worsl case operating concition are given by the maximum delay multiplier. C10 R4K-EO Sheet 1/1 I Page 3-9 3-41 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Function I I • CG10 • Version I Call Name R68 Power 6-input NOR Cell Symbol tup ~ "j- to KCL 1.406 0.034 Propagation Delay Parameter tdn KCL2 CDR2 1'0 KCL 0.925 Number 01 BC I 5 Path AtoX 0.023 X AS Parameter Pin Name Input loading Factor (Iu) A 1 Pin Name Output Driving Factor (Iu) X 36 Symbol Typ(ns)* * Minimum values lor the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circu~ Al-f\ ~ ----bf A4-f\ :!----bf C10-R6B-EO 3-42 L r ~ 4:,. Sheet 1/1 X I Page3-10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name J RB8 I • CG10 • Version Number 01 BC Function 6 Power 8-input NOR Cell Symbol !Up Al-:::::' A2A3A4- AS- to KCL 1.nS 0.034 Propagation Delay Parameter IeIn to KCL KCl2 CDR2 0.944 Path AtoX 0.023 p.--X A6A7- AB-t::; Parlmeter Pin Name Symbol Typ (nl) " Input loading Factor (Iu) A 1 Pin Name Output Driving Factor (Iu) X 36 " Minimum values for the typical operating condition. The values lor the worst case operating condition are given by the maximum delay multiplier. h Equivalent Circu~ MA2- ~=J AS-~ AS-I- .A:::l. .(b. X A7-~ AB-t::; C10-R8B-EO I Sheet 111 I Page 3-11 3-43 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name NumberolBC Function R98 8 Power 9-input NOR Propagallon Delay Parameter IeIn Cell Symbol to 1.556 KCl 0.034 to 1.050 KCl 0.023 KCL2 Pa!h CDR2 AtoX Al-P. A2-1A3-1A4-iX AS AS-IA7-1AS-IA9-b Parameter Symbol Typ(ns) • Input loading Faclor(lu) Pin Name A 1 Pin Nama Output Driving Faclor(lu) X 36 • Minimum valuas for !he typical operating condition. The values for !he worst casa operating condition are given by the maximum delay multiplier. Equivalent Circuit Al-f\ ~-t/ ~ r A4-f\ :-t/ A7-f\ AS A9--bT C10-R9B-EO 3-44 I Sheet 1/1 X I I Page3-12 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I • CG10 • Version NumberolBC Funcllon RCB Power 12-input NOR Coil Symbol lup to KCL 1.713 0.034 Propagallon Delay Parameler IIIn to KCL KCL2 COR2 1.094 I 10 Palll AtoX 0.023 AI-~ A2A:3A4M-- ASA7- P--- X ASASAIOAtlA12-::;;o Parameler Pin Name Input loading Factor (Iu) A 1 Pin Name Output Driving Factor (Iu) X 36 Symbol Typ (ns)· • Minimum value. lor lIIe typical openating condition. The vaIu.. lor !he worst case operating condition ere givan by !he maximum delay multiplier. Equivalent Circu~ Al--F\ :--w :!--w A4 - - - F \ A7---F\ I L....(P\ X I r -x Para meIer Pin Name Inpul loading Faclor(lu) A 2 Pin Name Output Driving Factor (Iu) X 18 Typ (no)· Symbol lID • Minimum values lor lIIe typical operating condition. The values lor the worst case operating concfdion are given by \he maximum delay multiplier. ZTI2-rr-, Equivalent Circuil C10 X1N-EO Function Table Outpul Inputs AI A2 X H H H L H L H L L L L H Sheet 1/1 I Page 6-1 3-61 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function Cell Symbol \up At A2 I Power Exclusive NOR X18 =+V-- to KCL 0.931 0.034 Propagation Delay Parameter tdn to KCL KCL2 CDR2 1.106 0.028 0.051 Number 01 BC 4 Path AtoX 7 X Symbol Parameter Pin Nama Input loading Factor (Iu) A 2 Pin Nama Output Driving Faclor(lu) X 36 Typ (ns)' • Minimum values lor tha typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit Function Table ::~ C10-X1B-EO I Inpuls tJ>-+-x Sheet 1/1 Output At A2 X H H H L L H H L L L L H I I 3-62 Page 6-2 I • CG10 • Version I Number 01 BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION CeIlNlme Function I I Exclusive OR X2N Cell Symbol tup to KCL 0.694 0.122 Propagation Delay Plrlmeter teln to KCL KCL2 CDR2 0.731 0.073 0.090 3 Path AloX 4 Al=+tjA2 X Symbol Plrlmeter Pin Name Input Loldlng Flctor(lu) A 2 Typ (nl)· .. Output Driving Factor (Iu) 14 Pin Name X • Minimum values lor the typical oparating condition. The values lor the worst case oparating conation are given by the maximum delay multiplier. Equivalent Circu~ Function Table :;~ C1D-X2N-EO I Inputs tJ>-x Output X AI A2 H H L L H H H L H L L L Sheel1/1 I Page 6-3 3-63 I • CG10 • Version . I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Function I Cell Nam. X28 I Power Exclusive OR Co"Symbol tu to 0.894 KCL 0.034 Propogatlon Delay Parameter tdn to KCL KCL2 CDR2 1.025 0.028 0.039 4 Palh AloX 7 A1=©A2 X Symbol Parameter Pin Name Input loading Factor (Iu) A 2 PlnN...... Outpul Driving Factor (Iu) X 36 Typ (n.)· • Minimum values for the typical operating ooncition. The values for Ihe worst case operating oondition ara given by !he maximum delay multiplier. Function Table Equivalenl Circuit ~~x C10-X2B-EO Shee 111 Inputs 0uIput X A1 A2 H H L L H H H L H L L L I I 3-64 Page 6-4 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name NumberolBC Function X3N I 3-input Exclusive NOR Cell Symbol tup to KCL 1.700 0.122 Propagation Delay Parameter tdn to KCL KCl2 CDR2 1.450 0.073 0.090 5 Path AloX 4 At. ~ X Symbol Parameter Pin Name Input Loading Factor (Iu) A 2 Pin Name Output Driving Factor (Iu) X 18 Typ (ns)· • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay mul~plier. Fu~onTabie Equivalent Circuit :~, C10-X3N-EO Sheet 1/1 OUtput Inputs I X At A2 A3 H H H L H H L H H H L H H L L L L H H H L H L L L L H L L L L H I Page 6-5 3-65 r" CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Function I Cell Nlm. X38 NumberolBC Power 3-input Exclusive NOR CellS1mboi \up to KCL 1.650 0.034 Propagation Delay Parameter tdn to KCL KCL2 COR2 2.119 0.028 I Path AtoX 7 0.051 6 A 1*- x A2 A3 Symbol Parameter Pin Name Input Loading Factor (Iu) A 2 Pin Name Output Driving FaClor (Iu) X 36 Typ (na)· • Minimum values lor the typical operating ooncfition. The values lor the worst case operating ooncition ana given by the maximum delay multiplier. Equivalent Circu~ Function Table :~, C10-X3B-EO I Inputs OUtput A1 A2 A3 H H H L H H L H H L H H H L L L L H H H L X L H L L L H L L L L H Sheel1/1 I 3-66 Page 6-S I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Number 01 BC Function X4N I 3-input Exclusive OR Cell Symbol tup Al=&- A2 A3 10 KCL 1.763 0.122 Propagation Delay Parameter tdn 10 KCL KCL2 CDR2 1.581 0.073 0.090 5 Palll AloX 4 x Parameter PIn Name Input loadIng Factor (Iu) A 2 PIn Name Output DrIvIng Faclor(lu) X 14 Typ (no)· Symbol • Minimum values lor lIle typical operating condilion. The values lor lIle worsl case operating condition are given by !he maximum delay multiplier. Function Tabla Equivalent Circuil Al ~~ : C10-X4N-EO J X Sheel1/1 Output Inputs A2 A3 X H H H H H L H L H L H L H L L H L H H L L H L H L L H H L L L L I Page 6-7 3-67 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Number 01 BC Function X48 Power 3-input Exclusive OR Cell Symbol \up to 1.544 KCL 0.034 Propagation Delay Parameter IIln CDR2 to KCL KCL2 1.956 0.028 I Pa!h AloX 7 0.039 6 Al*- X A2 A3 Pin Name Input loading Factor (Iu) A 2 Pin Name Output Driving Factor (Iu) X 36 Typ (ns) , Symbol Parameter • Minimum values lor !he typical operating condition. The values for !he worst case operating condition are given by !he maximum delay multiplier. Function Table Equivalent Circu~ A2 A3 ....... Al C10-X4B-EO 3-68 OutpUt Inputs I Sheet 1/1 X Al A2 A3 X H H H H H H L L H L H L H L L H L H H L L H L H L L H H L L L L I Page 6-8 CMOS Channeled Gale Arrays CG10 Series Unit CeU Ubrary AND-OR-Inverter Family (AOI) Basic UnH Cell Page Name 3-71 023 2-wide 2-ANO 3-input AOI 2 3-72 014 2-wide 3-ANO 4-input AOI 2 3-73 024 2-wide 2-ANO 4-input AOI 2 3-74 034 3-wide 2-ANO 4-input AOI 2 3-75 036 3-wide 2-ANO 6-input AOI 3 3-76 044 2-wide 2-0R 2-ANO 4-input AOI 2 Function Cells 3-69 CG10 Seriss Unit Cell Library 3-70 CMOS Chann9led Gate Anays I • CG10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Name 023 • Version I Function Cell Symbol tup A1~ A= to KCL 0.456 0.231 0.122 0.093 A B 0.079 0.051 0.067 2 Path AloX BloX 4 X Parameter Pin Name Propagation Delay Parameter tefn to KCL KCL2 CDR2 0.425 0.231 Number 01 BC I 2-wide 2-AND 3-input AOI Symbol Typ (ns)' Input loading Factor (Iu) 1 1 Pin Name Output Driving Faclor (luJ X 14 • Minimum values lor the typical operating condition. The values lor the worst case operating ccndition ere given by the maximum delay multiplier. C1Q-023-EO Sheel1/1 I Page 7-1 3-71 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION CeUName Number 01 BC Function D14 2-wide 3-AND 4-input AOI Cell Symbol IUp "~ to KCL 0.563 0.200 0.122 0.084 Propagation Delay Parameter teln to KCL KCL2 CDR2 0.438 0.225 0.107 0.051 0.118 0.067 I 2 Palh AtoX BtoX 4 4 A2 A3 B X Parameter Pin Nama Symbol Typ (ns)' Input loading Faclor(lu) A B 1 1 Pin Name Oulput Driving Faclor(lu) X 14 • Minimum values for !he typical operating con -- x L..' El E2 Parameter Symbol Typ (ns)· Fl=t}- F2 Pin Name Inpul Loading Faclor(lu) D E F 1 1 1 1 1 1 Pin Name OulpUI Driving Factor (Iu) X 36 A B c C1O-U26-EO Sheet 111 • Minimum values lor Ihe typicei operating condition. The values lor !he worsl case operaling condilion are given by 1he maximum delay mulliplier. I Page 9-13 3-99 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION CeUName Number 01 BC FunctIon U28 Power 2-QR 8-wide Multiplexer Cell Symbol !Up AI={}A2 BI=tjB2 "=till ;;~ ~~ FI F2 r-. to KCL 1.319 0.969 0.944 1.294 1.319 0.969 0.913 1.269 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 Propagation Delay Parameler Idn io KCL KCL2 CDR2 1.988 1.963 1.756 1.788 1.963 1.931 1.588 1.644 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 I 11 Path Ato X BtoX CtoX DtoX EtoX Fto X GtoX H toX 7 7 7 7 7 7 7 7 :>-- x Parameter Symbol Typ(n.)" '-" GI=tjG2 HI={}H2 PIn Name A B C D E F G H Input loadIng Factor (Iu) 1 1 1 1 1 1 1 1 PIn Name Output DrIving Faclor (Iu) X 36 " Minimum values for the typical operating condition. The values lor the worst case operating oondilion ere given by the maximum delay multiplier. C1o-U28-EO I 3-100 Sheet 1/1 I Page9-14 I . CG10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name U32 I Propagation Delay Parameter tdn tup to 1.344 1.319 A2 A3 Bl B2 B3 ----fI --bJ ----fI KCL 0.034 0.034 to 1.038 1.019 KCL 0.028 0.028 KCL2 0.045 0.045 Number 01 BC I Power 3-0R 2-wide Multiplexer Cell Symbol Al "Version Function 5 Path CDR2 AloX Slo X 7 7 X ---b' Parameter Pin Name Typ (ns)' Symbol Input Loading Factor (Iu) A B 1 1 Pin Name Output Driving Factor (Iu) X 36 • Minimum values lor the typical operating condition. The values lor the worst case operating condition are given by the maximum delay multiplier. C1Q-U32 EO Sheel1/1 I I Page 9-15 3-101 IIDII I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function U33 Number of BC Power 3-OR 3-wide Multiplexer Cell Symbol !Up to KCL 1.425 1.406 1.444 0.034 0.034 0.034 Propagation Delay Parameter !dn to KCL KCL2 CDR2 1.425 1.488 1.575 0.028 0.028 0.028 0.062 0.062 0.056 I 7 Path AtoX BtoX CtoX 7 7 7 A1.~ A2--bJ A3 B1 ---F\ :----b' x C1~ C2 - - b J C3 Pin Name A B C Parameter Symbol Typ (ns)' Input loading Factor (Iu) 1 1 1 Pin Name Output Driving Factor (Iu) X 36 • Minimum values lor the typical operating condition. The values for !he worst case operating condition are 9illlln by !he maximum delay multiplier. C10-U33-EO 3-102 Sheet 1/1 I Page9-16 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name NumberolBC Function U34 Cell Symbol rup AI - - - f l : ----bJ Bl - - - f l :---bJL: C1 C2 C3 r.: ----bJ ------p\ 10 KCL 1.319 1.331 1.200 1.319 0.034 0.034 0.034 0.034 Propagation Delay Parameler Idn 10 KCL KCL2 CDR2 1.863 1.875 1.525 1.681 0.034 0.034 0.034 0.034 0.056 0.056 0.056 0.056 9 Path AtoX BtoX CtoX DtoX 7 7 7 7 }-, Parameter Dl---fl D2 D3 I Power 3-OR 4-wide Multiplexer Typ (ns)· Symbol ----bJ Pin Name Inpul loading Faclor(lu) A B C D 1 1 1 1 Pin Name Oulpul Driving Faclor(lu) X 36 • Minimum values for lhe typical operating condition. The values lor the worst case operaling oondition are given by the maximum delay multiplier. C1o-U34-EO Sheet 111 l Page 9-17 3-103 ... I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION J Cell Nlme U42 Function Number 01 BC I Power 4-0R 2-wide Multiplexer Cell Symbol III to 1.625 1.581 KCL 0.034 0.034 Propagation Delay Parameler teln to KCL KCL2 CDR2 1.069 1.025 0.028 0.028 0.045 0.045 6 Pa!h AtoX BtoX 7 7 AlA2A3A4- X 8182- 8384Para meier Pin Name Input loading Factor (Iu) A 8 1 1 Pin Name Output Driving Fac\or(lu) X 36 Symbol Typ nl)· • Minimum valuel lor the Iypical operating condition. The values lor !he worst case operating oondition are given by the maximum delay multiplier. C10-U42 EO 3-104 Sheet 1/1 I Page9-18 I • CG10 ·Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Call Name Numb.. olBC FUnction U43 Power 4-OR 3-wide Multiplexer Cell Symbol IUP .. -~ 10 KCL 1.606 1.638 1.688 0.034 0.034 0.034 PrODlalllon DeI.y P.r.m.... Irln KCL KCL2 to CDR2 1.331 1.413 1.494 0.034 0.034 0.034 0.045 0.045 0.045 I 9 Palll AloX BloX CloX 7 7 7 A2A3A4- "-~ 828384- X c,-~ C2- Parame1er C3C4- Pin Name Typ(ns) • Symbol Input loading Factor (Iu) A 8 C 1 1 1 Pin Name Output Driving Factor (Iu) X 36 • Minimum values lor !he typical operating candition. The values for lIle worst case operating condition are given by !he maximum delay multiplier. C1o-U43-EO Sheet 1/1 I I Page 9-19 3-105 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Nama Numbar01 BC Function Power 4-OR 4-wide Multiplexer U44 Cell Symbol \up .. -} A2A3A4-:;:I "-\1 828384-:;:1 c,-~ C2C3C4- to KCL 1.706 1.700 1.644 1.669 0.034 0.034 0.034 0.034 Propagation Delay Parameter teln to KCL KCL2 CDR2 1.875 1.800 1.525 1.681 0.028 0.028 0.028 0.028 0.062 0.062 0.062 0.062 7 7 7 7 I 11 Path AtoX BtoX CtoX DtoX D--' O,-} Parameter Symbol Typ (ns)' D2D304-:;:1 Pin Nama Input loading Factor (Iu) A B C D 1 1 1 1 Pin Nama Output Driving Factor (Iu) X 36 • Minimum values for the typical operating condition. The values for the worst case operating condition are gi1l9n by the maximum delay multiplier. C1D-U44-EO 3-106 Sheet 1/1 I T Page9-20 CMOS Channeled Gate Arrays CG 10 Series Unit Cell Library Clock Buffer Family Page Unit Cell Name 3-109 K1B True Clock Buffer 2 3-110 K2B Power Clock Buffer 3 3-111 K3B Gated Clock (AND) Bl.Iffer 2 3-112 K4B Gated Clock (OR) Buffer 2 3-113 K5B Gated Clock (NAND) IBuffer 3 3-114 KAB Block Clock (OR) Buffer 3-115 KBB Block Clock (OR x 10) liIuffer 3-117 VIL Inverting Clock Bufler FwneUeA Basic Cells 3 30 2 3-107 CG10 Series Unit eeH Ubrary .. 3-108 CMOS Channeled Gate Arrays FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I • CG10 • Version Funciion Cell Nam. K1B Numb.r01 SC I True Clock Buffer Cell Symbol !Up 10 KCL 0.450 0.034 Propagallon Delay Parameler IIIn 10 KCL KCL2 CDR2 0.538 2 Path AtoX 0.023 A~X Parameter Pin Name Typ(ns) • Symbol Input loading Factor (Iu) A 1 Pin Name Oulpul Driving Factor (Iu) X 36 • Minimum values lor the typical operating condition. The values for the worsl case operating condition are giY8n by the maximum delay multiplier. Equivalent Circuit At ---{>o----ct>- C1o-K1B-EO X Sheet 111 I Page 10-1 3-109 .. FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Name K2B Function I • CG10 • Version I Number 01 BC I Power Clock Buffer Cell Symbol !Up to KCL 0.663 0.017 Propagation Delay Parameter !dn to KCL KCL2 CDR2 0.750 3 Palh AtoX 0.017 A~X Parameter Pin Name Input loading Factor (Iu) A 1 Pin Name Output Driving Factor (Iu) X 55 Symbol Typ (ns)· • Minimum valuas lor Ihe Iypical operating condition. The values lor Ihe worst case operating condition are given by Ihe maximum delay multiplier. Equivalent Circun AI --t>o---- --- C10-K2B-EO 3-110 X Sheet 1/1 I Page 10-2 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function K38 I • CG10 • Version Number 01 BC I Gated Clock (AND) Buffer Cell Symbol !Up to KCL 0.625 0.034 Propagation Delay Parameter !dn to KCL KCl2 CDR2 0.625 2 Path AtoX 0.023 AI::::[)- X A2 Parameter Pin Name Input loading Factor (Iu) A 1 Pin Name Output Driving Factor (Iu) X 36 Symbol Typ (ns)' • Minimum values for Ihe typical operating condition. The values lor Ihe worst case operating concilion are giWln by the maximum delay multiplier. Equivalent Circuit AI A2 :::[»---c{>-- C10-K3B-EO J X Sheet 111 I Page 10-3 3-111 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name NumberofBC Function K4B 2 Gated Clock (OR) Buffer Cell Symbol IUp to KCL 0.488 0.034 Propagation Delay Parameter Idn to KCL KCL2 CDR2 0.713 0.028 0.039 8 Path AtoX ~=tr-x Parameter Pin Name Input loading Factor (Iu) A 1 Pin Name Output Driving Factor (Iu) X 36 Symbol Typ(ns)" " Minimum values for the typical operating oondition. The values for the worst case operating oonclition are given by the maximum delay mul~plier. Equivalent Circuit ~~x C1o-K4B-EO J Sheet 1/1 I Page 10-4 3-112 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name • CG10 • Version Number 01 BC Function K58 I Gated Clock (NAND) Buffer Cell Symbol \up to KCL 0.713 0.034 Propagation Delay Parlmeter Idn to KCL KCL2 COR2 0.925 3 Pa!h AtoX 0.023 ~:::[)-- X Parameter Pin Name Symbol Typ (ns)' Input loading Factor (Iu) A 1 Pin Name Output Driving Factor (Iu) X 36 • Minimum values for !he typical operating condition. The values for !he worst case operating condition are given by !he maximum delay mUltiplier. Equivalent Circuit AI A2 =[»---c{>---t> C1Q-K5B-EO Sheet 1/1 I X I Page 10-5 3-113 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Call Name I • CG10 • Version Number 01 BC Function KAB I Block Clock (OR) Buffer Cell Symbol !Up to KCL 0.675 0.017 Propagation Delay Parameter ttln to KCL KCl2 CDR2 1.156 3 Palh AloX 0.017 Al=t;-X A2 Parameter Typ (ns)' Input loading Factor (Iu) Pin Name II1II Symbol A 1 Pin Name Output Driving Factor (Iu) X 55 • Minimum values lor Ihe typical operating condition. The values lor Ihe worst case operating condition are given by !he maximum delay multiplier. Equivalent Circu" ~~x C1o-KAB-EO 3-114 I Sheel1f1 I I Page 10-6 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Nama KBB 1" CGtO • Version I Function I Block Clock Buffer (OR x 10) Cell Symbol IlJp to KCL 0.838 0.675 0.017 0.017 Propagation Dalay Parameler Idn to KCL KCL2 CDR2 1.300 1.156 Number 01 Be 30 Palll CKtoX IHtoX 0.017 0.017 CKIHOIH1IH2IH3IH4IHSIH6IH7IHSIH9- -XO -XI -X2 -X3 -X4 -XS -X6 -X7 ~X8 ~X9 Pin Nama Input loading Factor (Iu) CK IH 10 1 Pin Nama Output Driving Factor (Iu) X 55 Parameter Symbol Typ (ns)' • Minimum values lor lIIe typical operating condition. The values for ilia worst case operating condition are given by lIIe maximum delay multiplier. C10-KBB-EO Sheet 1/2 I Page 10-7 3-115 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION " CG10 • Version Cell Name KBB Equivalent Circuit r---------, I CK IHO XI IHI X2 IH2 X3 IH3 X4 IH4 X5 IH5 X6 IH6 X7 IH7 X8 IH8 IH9 C1G-KBB-EO XO X9 L _ _ _ _ _ _ _ _ ..1I Sheet 212 Page 10-8 3-116 I • CG10 • Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Name V1L Function Inverting Clock Buffer Cell Symbol Propagation Delay Parameler IeIn IUp 10 KCL 10 KCL 0.219 0.017 0.419 0.017 KCL2 I 2 Palh CDR2 Ato X A-{>o--X Parameter Pin Name Inpul loading Faclor(lu) A 4 Pin Name Oulpul Driving Faclor(lu) X 55 Symbol Typ (no)' • Minimum values for lIle Iypical operating condilion. The values lor lIle worsl case operaling condilion are given by !he maximum delay multiplier. C10-V1L-EO J Sheet 1/1 I Page 10-9 3-117 Ell CGtO Series Unit CeH Ubrary .. 3-118 CMOS Channeled Gate Arrays CMOS Channeled Gate A"ays CG10 Serias Unit Cell Ubrary Scan Flip-flop (Positive Edge Type) Family Page Unit Cell Name 3-121 SDH Scan D Flip-flop with 2:1 Multiplex with Clear and Clock Inhibit 14 3-124 SDJ Scan D Flip-flop with 4:1 Multiplex with Clear and Clock Inhibit 15 3-127 SDK Scan D Flip-flop with 3:1 Multiplex with Clear and Clock Inhibit 16 Function Basic Cells 3-130 SJH Scan J-K F with Clear and Clock Inhibit 16 3-133 SDD Scan D Flip-flop with 2:1 Multiplex, Preset Clear, and Clock Inhibit 16 3-137 SDA Scan 1-input D Flip-flop with Clock Inhibit 12 3-140 SDB Scan 1-input D Flip-flop with Clock Inhibit 42 3-144 SHA Scan 1-input D Flip-flop with Clock Inhibit 68 3-147 SHB Scan 1-input D Flip-flop with Clock Inhibit and QOutput 62 3-150 SHC Scan 1-input D Flip-flop with Clock Inhibit and XQ Output 62 3-153 SHJ Scan D Flip-flop with 2:1 Multiplex and Clock Inhibit 78 3-156 SHK Scan D Flip-flop with 3:1 Multiplex and Clock Inhibit 88 3-159 SFDM Scan 1-input D Flip-flop with Clock Inhibit 10 3-162 SFDO Scan 1-input D Flip-flop with Clear and Clock Inhibit 11 3-165 SFDP Scan 1-input D Flip-flop with Clear, Preset, and Clock Inhibit 12 3-169 SFDR Scan 4-input D Flip-flop with Clear and Clock Inhibit 36 3-173 SFDS Scan 4-input D Flip-flop with Clock Inhibit 31 3-177 SFJD Scan J-K Flip-flop with Clock Inhibit 14 3-119 CGIO Seriss Unit CeH Ubra2' 3-120 CMOS Channeled Gate A"ays I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CEll SPECIFICATION Cell Name Number 01 BC Function SOH I SCAN 2-input OFF with Clear & Clock-Inhibit Cell Symbol Propagallon Delay Parameter !dn to KCL KCL2 CDR2 \up to KCL 2.325 1.469 2.369 0.034 0.034 0.034 1.863 1.344 0.669 0.023 0.034 0.023 0.045 0.067 0.045 7 7 7 14 Path CK,IHtoa CK,lHtoXa Cltoa, xa r--AlA2- -a CKIH- 51 AB--< p.- XO Parameter CL Input loading Factor (Iu) Pin Name Symbol tew tCWH Clock Pulse Width Clock Pause Time 1 1 1 3 1 2 Al,A2 CK IH CL 51 A. B Typ (ns)' 3.4 2.9 Data SetuD Time Data Hold Time tso tHO 2.4 0.7 Clear Pulse Width Clear Release Time Clear Hold Time tLW tRE!! 2.9 tiN'" 1.0 1.9 Output Driving Factor (Iu) Pin Name a 36 36 XO • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table INPUT OUTPUT MODE CLK CL 0 A B 51 a X L X X X X L H L10X H OJ L L X OJ OJ H H X L L X 00 XOo H H X LtoHtoL H Si 00 XOo H H X x Si T CLEAR CLOCK SCAN L HtoLtoH XO Note: CLK • CK + IH AtxA2 o• C1o-SDH EO Sheet 113 I I Page 11-1 3-121 . T APiF{AY UN)! CE J. SPE:CIFICATION SOH Equivalent Cirevit CLK XBCK • CG10 • Version XCLK -L ...L --L Al A2 . Q CL Slo-....-, T XBCK TACK XQ ~~ ~ D>-t ::~~ AO : ACK {)o XACK BO {)o : ::K Page 11-2 3-122 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION • CG10 • Version Cell Name SDH Definitions of Parameters i) CLOCK MODE _ , CLOCK ICWH _ lew 1--150 • . . tHO .. DATA _Ipd_ a,xa (OUTPUT) i i) CLEAR MODE --IREM .... CK _ILW- CLEAR ~ ... Ipd ..... a,xa (OUTPUT) I--- tlNH_ CL C1Q-SDH-EO Sheet 3/3 Page 11-3 3-123 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name NumberolBC Function SDJ I SCAN 4-input OFF with Clear & Clock-Inhibit Cell Symbol PropaglUon Delay Parameler KIn 10 KCL KCL2 CDR2 !Up 10 KCL 1.719 1.475 2.338 0.034 0.034 0.034 1.888 1.338 0.663 0.023 0.034 0.023 0.045 0.067 0.045 7 7 7 15 Path CK.IHloQ CK.IHloXQ CLio Q. XQ r--AIA28182- -0 CKIHSIA8--< p-- XO Parameler Symbol lew ICWH Clock Pulse Width Clock Pause Time CL Pin Name Inpul Loading Factor (Iu) AI.A2 81.82 CK IH CL SI A,8 1 1 1 1 3 1 2 Pin Name Output Driving Factor(lu) 0 36 36 XO Typ(ns)' 3.4 2.9 Dala SetuD Time Data Hold Time Iso IHO 2.8 0.5 Clear Pulse Width Clear Release Time Clear Hold Time ILW IREM 2.9 1.9 1.0 tlNW • Minimum values for the typical operating condition. The values for the worst cese operating condition are given by the maximum delay multiplier. Function Teble INPUT OUTPUT MODE XO CLK CL 0 A 8 SI 0 X L X X X X L H LIDH H Oi L L X Oi Oi H H X L L X 00 XOo H H X LIDHIDL H Si 00 XQD H H X 51 51 CLEAR CLOCK SCAN L HIDLtoH X Nota: CLK • CK+ IH O. (AI xA2)+(81 x 82) C10-SDJ-EO 3-124 I Sheet 1/3 I Page 11-4 • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name SOJ Equivalent Circuit Al A2 Bl B2 "'---'.J1 Q CL o----i T XBCK TACK XQ ~~ ~ D>-t :CLK AO : ACK [>0 XCLK BO : XBCK [>0 C1O-SDJ-EO XACK BCK Sheet 213 Page 11-5 3-125 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION • CG10 • Version Cell Name SOJ Definitions of Parameters i) CLOCK MODE tCM-I_ I---tcw CLOCK ~. ~ ~tso .. • tHO .. DATA _tpd_ a,xa (OUTPUT) .. i i) CLEAR MODE ~tREM"" CK !--tLW_ CLEAR ~ I--tpd .... a,xa (OUTPUT) I«-- tlM!_ CL C10-SDJ-EO She /3 Page 11-6 3-126 I· CG10 FUJITSU CMOS GATE ARRAY UNIT CEll SPECIFICATION Cell Name • Version I Function SDK I SCAN 6-input DFF with Clear & Clock-Inhibit Cell Symbol PropagaUon Delay Parameler teln 10 KCl KCl2 CDR2 !Up - AlA2Bl B2ClC2- to KCl 2.313 1.450 2.338 0.034 0.034 0.034 1.B75 1.350 0.638 0.023 0.034 0.023 0.045 0.067 0.045 7 7 7 Number 01 BC 16 Pa!h CK,IHtoa CK,lHto xa CLIo a, xa -a CKIHSI AB --C p-- xo Symbol lew Parameter Cl Input loading Factor (Iu) Pin Name 1 1 1 1 1 3 1 Al,A2 Bl, B2 Cl,C2 CK IH Cl SI A,B Typ (ns)' tCWH 3.4 2.9 Data Setup Time Data Hold Time tSD t"D 3.2 0.4 Clear Pulse Width Clear Release Time Clear Hold Time tLW t REM 2.9 1.9 1.0 Clock Pulse Width Clock Pause Time tIN'" 2 Output Driving Factor (Iu) Pin Name a • Minimum values lor the typical operating condition. The values lor !he worst case operating condition are given by tihe maximum delay multiplier. 36 36 xa Function Table INPUT OUTPUT MODE CLK Cl 0 A B SI a x L X X X X L H LIIIH H Oi L L X Oi Oi H H X L L X 00 H H X LIII Hili L H Si 00 H H X CLEAR CLOCK SCAN L HIIILIIIH X Note: CLK a o• C1D-SDK-EO I Sheet 1/3 Si xa xc.. xc.. sr CK + IH (AI xA2)+(Bl x B2)+(Cl xC2) I Page 11-7 3-127 • CG10 "Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name SDK Equivalent Circuit Bl B2 Q Clo---+ -,- -,- ACK XBCK XQ ~~~ ~ AO : ClK : [> XCLK BO C1o-SDK-EO XACK : [> ACK XBCK BCK Sheet 2J3 Page 11-6 3-128 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I • CG10, • Version Cell Name SDK I Definnions of Parameters i) CLOCK MODE ICWH_ I--Icw CLOCK .. Iso .. I-- IHO .. DATA ~Ipd- a,xa (OUTPUT) i i) CLEAR MODE f4-IREM .... CK CLEAR -- :'-ILW_ ... Ipd'" a,xa (OUTPUT) _IIIH_ CL C10-SDK EO Sheet 3/3 I Page 11-9 3-129 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Name SJH Function Number 01 BC SCAN J-K FF with Clear & Clock-Inhibit Propagation Delay Parameler kin to KCL KCL2 CDR2 Cell Symbol tup to KCL 2.650 1.475 2.350 0.034 0.034 0.034 2.106 1.350 0.869 0.023 0.034 0.023 0.045 0.067 0.045 7 7 7 I 16 Path CK,lHtoQ CK,lHtoXQ CLtoQ,XQ - JK--< I-Q CKIHSI AB--< P-XQ Parameter Symbol lew ICWH Clock Pulse Width Clock Pause Time CL Pin Name Input loading Factor (Iu) J.K CK IH CL SI A,B 1 1 1 3 1 2 Pin Name Output Driving Factor (Iu) a xa 36 36 Typ(n.) • 3.4 2.9 Data Setue Time J Data Selue Time K Data Hold Time(J Kl Iso Iso IHO 2.8 3.0 0.4 Clear Pulse Widlh Clear Release TIme Clear Hold Time I w I REM 2.9 1.9 1.0 tlNI-4 • Minimum values lor the typical operating condition. The values for the worst case operating condilion are given by !he maximum delay multiplier. Function Table INPUT OUTPUT MODE CLEAR CLOCK CLK CL J K A B SI Q X L X X X X X L XQ H LIoH H L L L L X L H LIoH H H H L L X H L Llo H H L H L L X QD XOo Llo H H H L L L X Xe. QD H H X· X L L X QD Xe. H H X X LIoHtoL H Si aD xe. H H X X Si Si SCAN L HtoLtoH X NOIII:CLK. CK+IH C10-SJH-EO I 3-130 Sheet 113 I I Page 11-10 • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Ce"Name SJH Equivalent Circuit c T XBCK TACK xc ~~ ~ Dt: ::~~ AO : ACK ~ BO : XBCK ~ C10-SJH-EO XACK BCK Sheet 213 Page 11-11 3-131 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION • CG10 • Version Cell Name SJH Definitions of Parameters i) CLOCK MODE ICWH_ le--Ic;w CLOCK . . Iso .. I-- IHO ... DATA I+-- Ipd_ a,xa (OUTPUT) i i) CLEAR MODE lID ... tREM ..... CK I+-CLEAR tLW_ ~ ~tpd"'" a,xa (OUTPUT) I-- tlNH_ CL C10-SJH-EO Sheet 3/3 Page 11-12 3-132 I • CG10 • Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function SDD SCAN 2-input DFF with Clear, Preset & Clock-Inhibit Cen Symbol Propagation Delay Parameler Idn 10 KCL KCl2 CDR2 !Up PR AlA2- 10 KCL 2.313 1.656 2.813 2.400 0.034 0.034 0.034 0.034 2.013 1.338 0.638 1.469 0.023 0.034 0.023 0.034 7 7 7 7 0.045 0.067 0.045 0.067 I 16 Path CK,lHtoQ CK,lHto XQ CLtoQ, XQ PRtoQ, XQ -a CKIHSIAB ---<: :>-- XO Symbol lew Parameter Pin Name Input Loading Factor (Iu) Al.A2 CK IH CL PR SI A.B 1 1 1 3 3 1 2 PIn Name Output DrIving Factor (Iu) a 3.4 2.9 Data Setuo Time Data Hold Time tso tHD 3.4 0.7 Clear Pulse Width Clear Release Time Clear Hold Time tLW tREM tlNH 3.2 1.9 1.0 Preset Pulse Width Preset Release Time Preset Hold Time tpw tREM tlNH 4.3 2.4 0.7 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by !he maximum delay multiplier. 36 36 XO Typ (ns)' tcw~ Clock Pulse Width Clock Pause Time CL Function Table INPUT OUTPUT MODE CLK CL PR 0 A B SI a XO CLEAR X L H X X X X L H PRESET X L X X X X H L X Oi Oi X 00 XOo Si 00 XOo Si Si CLOCK H LIOH H H Oi L L H H H X l l H H H X llOHlOl H H H H X SCAN CLJPR X l L X l X HIOLIOH X X X Prohibited Note: ClK • CK + IH _AlxA2 o C1o-SDD-EO J Sheet 1/4 I Page 11-13 3-133 • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION CeIlN;,me SDD Equivalent Circuit AI 0---; A20---; CL 0----..-1 c 51 1.-_ _ _---. TACK T XBCK xc PR ~~ ~ D>E : ClK AO : ACK ~ XCLK BO : XBCK ~ C1D-SDD-EO XACK BCK Sheet 2/4 Page 11-14 3-134 FUJITSU CMOS GATE ARRAY UNIT CEll SPECIFICATION Cell Name I SDD I I • CG10 • Version Definitions of Parameters i) CLOCK MODE ~Icw ICWH_ CLOCK 1--150 .. . . IHO .. DATA I--- IprJ-' a,xa (OUTPUT) i i) CLEAR MODE 4-IREM'" CK _ILW_ ~ CLEAR 4-lprJ'" a,xa (OUTPUT) 14- tINH_ CLEAR C1D-SDD-EO I Sheet 3/4 I Page 11-15 3-135 FUJITSU CMOS GATE ARRAY UNIT CEll SPECIFICATION I • CG10 • Version Cell Name SDD I iii) PRESET MODE CK PRESET - !--IPW- a,xa (OUTPUT) !--IINH- PRESET C10-50D-EO 3-136 Sheet 4/4 I Page 11-16 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Nama Function I SDA Number 01 BC SCAN 1-input DFF with Clock-Inhibit Cell Svmbol PropagaUon Delay Paramaler tdn 10 KCL KCL2 COR2 rup 10 KCL 1.988 1.456 0.034 0.034 1.875 1.356 0.023 0.034 0.045 0.067 7 7 I 12 Palh CK,lHtoQ CK,lHtoXQ DflD CK IH 51 ~ xa Para meIer Clock Pulse Width Clock Pause Time Data SetuD Time Data Hold Time Symbol lew ICWH Iso IHO Typ (no)' 3.4 2.9 2.2 0.9 Inpul Loading Faclor(lu) Pin Nama 0 1 CK IH 51 A,B 1 1 1 2 Pin Nama OUlpul Driving Faclor(lu) a xa 36 36 • Minimum values lor the typical operating oondition. The values lor Ihe worsl casa operaling oondition are given by !he maximum delay multiplier. Function Table INPUT OUTPUT MODE CLK 0 A B 51 0 Llo H Oi L L X Oi Oi H X L L X 00 XOo H X LIoHIoL H Si 00 XOo H X Si 51 CLOCK SCAN L HloLIoH X XO Note: CLK • CK + IH C1D-SDA EO I Sheet 1/3 I I Page 11-17 3-137 • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name SDA Equivalent Circuit CLK XBCK --L XCLK --L --L 00---1 Q SI IACK IXBCK XQ V2B ~~ ~ 7 : :~LK AO : ACK l>o BO : XBCK l>o C1Q-SDA-EO XACK BCK Sheet 213 Page 11-18 3-138 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I SDA I I • CG10 • Version Definitions of Parameters i) CLOCK MODE i--- ICW-~~- ICWH-- CLOCK DATA : - - - 1011--1 a,xa +-____~rl~--~------------------- (OUTPUn ________________ .. C1o-SDA EO Sheet 3/3 I I Page 11-19 3-139 • CG10 "Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Number 01 BC Function soa SCAN 1-input 4- bit OFF with Clock-Inhibit Cell Symbol !Up 10 KCL 2.650 2.031 0.034 0.034 Propagation Delay Para meIer tdn 10 KCL KCL2 COR2 2.463 2.075 0.023 0.034 0.045 0.067 7 7 I 42 Path CK,lHto Q CK,lHtoXQ r01020304- - 01 : > - XOI -02 :>-X02 -03 :>-X03 -04 :>-X04 CKIHSI A- B--< Symbol Icw ICWH Parameter '--- Clock Pulse Width Clock Pause Time Data SetuD Time Data Hold Time Iso IHO Typ (ns)' 4.3 3.2 1.4 2.1 Inpul loading Faclor(lu) Pin Name 1 1 1 1 2 0 CK IH SI A,B Pin Name Oulpul Driving Faclor(lu) 0 36 36 XO • Minimum values for the typical operating ccndition. The values lor the worst case operaling oondition ere given by the maximum delay multiplier. Function Table INPUT OUTPUT MODE B SI,On-l 0 XOn L L X Oi Di H X L L X H X LIOHtoL H Si Ono xOno Ono xOn o CLK On LIOH 01 A CLOCK SCAN H X L HtoLIOH X Si sr NoIII:CLK. CK+IH n • 1-4 C10-S0B-EO 3-140 Sheet 1/4 I I Page 11-20 I • CG10 "Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I I SDa Equivalent Circuit 01 02 o XO P 03 o 04 o XO o XO xo b 510---------15 01-- FF1 = CLK XCLK ACK XACK BCK XBCK CKe- CK CLK IHe- IH XCLK ACK Ae- A XACK BCK BO-< B XBCK .---- CLK XCLK ACK r-- XACK r- BCK XBCK -r - - --- ;-- - r CLK XCLK ACK XACK BCK XBCK .---- CLK XCLK ACK XACK r- BCK XBCK ;-- -- FFO = Equivalent Circuit (FFO) AO--"'~- ACK BO---"~-I ::K 4>o-------+o------+XACK C1o-SDB-E Sheet 2/4 l Page 11-21 3-141 • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Call Ham. SDa Equivalent CircuH (FF1) CLK .l XBCK XCLK .l.l o Q so---I TACK T XBCK XQ V2B C1D-SDB-E Page 11-22 3-142 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I· CG10 • Version Cell Name SDB I Definitions of Parameters i) CLOCK MODE _ lew -~14-- ICWH _ CLOCK DATA _ 1 .. _ a,xa (OUTPUn C10-SDB-EO .....------------~-------I Sheel4/4 I I Page 11-23 3-143 I . CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function I SHA Number of BC SCAN 1-input B-bit OFF with Clock-Inhibit CelfSymbof III - 01020304050607- f - - 01 p-- XOI .0 KCl 2.950 2.575 0.067 0.067 Propagation Delay Parame.er IeIn .0 KCl KCL2 COR2 2.950 2.500 0.051 0.073 0.056 0.101 4 4 I 68 Path CK,lHloQ CK,lHloXQ f - - 02 P-- X02 r--- 03 p-- XQ3 p-- XQ4 f - - Q4 08- f - - OS P-- XOS ~Q6 p-- XQ6 CKIHSI AB--< f - - 07 Parame.er Clock Pulse Width Clock Pause Time p-X07 ~Q8 p-- XQ8 L.--- Data Setup Time Data Hold Time Pin Name Inpu' loading Faclor (Iu) 0 CK IH SI A B 1 1 1 1 1 Symbol lew 'CWH Iso 'HO Typ (ns)· 4.5 3.5 1.2 2.1 1 Pin Name OU.put Driving Faclor (Iu) 0 XO 18 18 • Minimum values for Ihe typical operating condition. The values lor the worst case operating condition ara given by Ihe maximum delay multiplier. Function Table InpulS Mode CLOCK OUUlpulS CLK On A B SI On xOn S 01 l l X 01 H X l l X H X n H Si H X L U X SCAN OJ Hold Hold Si Si Note: ClK g CK + IH n • 1-8 C1O-SHA-EO 3-144 Sheet 113 I Page 11-24 • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION CeUNam. SHA Equivalent Circuit 01 CK o---;"""\... 08 02 CKI IH n - - - I - r ' Do XCKI £&. :~ : :~I FFo CKI XCKI CKI XCKI AI XAI BI XBI XSlo XSOo xc., FFo ~ AI AI XAI BI XBI XAI BI XBI XSIo XSOo xc., 00 L...---o X01 XSIo XO 00 01 SI CKI XCKI 00 as 02 L...---o xas L....--oX02 Equivalent Circuit (FFO) ) 0 - - - - - - 0 xc., Do o----i .-------0 XSOo (V1N) » - - 0 00 CKI ...L XSlo o------i TAI TXBI C1D-SHA-EO Sheet 213 Page 11-25 3-145 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name SHA I T· CG10 • Version I Definitions of Parameters i) CLOCK MODE I--- lew --.114-- ICYM _ _ CLOCK DATA I_------.J _ _ _ _-JI _ _-+-_.JI\.~_ _ i-Q,XQ (OUTPUT) _ _ _ _ _ _ _ _ lpeI_ V +-__-JJI\. C10-SHA-EO 3-146 Sheet 3/3 I Page 11-26 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Call Name NumberofBC Function SCAN 1-input 8-bit DFF with Clock-Inhibit & a Output SHB Call Symbol IUp 10 KCL 2.700 0.067 62 Propagation Delay Parameter IIln 10 KCL KCl2 COR2 2.763 0.051 4 0.056 Palh CK,lHto Q r--0102030405060708- -01 -02 -03 -04 -05 -06 -07 -08 CKIHSIAB--< Parameter Clock Pulse Width Clock Pause Time '--- Data Setup Time Data Hold Time Pin Name Input Loading Factor (Iu) 0 CK IH SI A B 1 1 1 1 1 1 Pin Name Oulpul Driving Factor (Iu) a 18 Symbol lew ICWH Iso IHO Typ(n.)· 4.5 3.5 1.2 2.1 • Minimum values for !he Iypical operating condition. The values for !he worsl case operating condition ara given by !he maximum delay multiplier. Function Table OUtpul Inputs Mcde CLOCK CLK On A B Sf S Oi L L X 01 H X l l X Hold H X n H Si Hold H X l U X Si SCAN On Note: ClK - CK + IH n • 1 ~8 C10-SHB-EO j Sheet 113 I Page 11-27 3-147 • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name SHB Equivalent Circuit 01 CK v---r"""l.... 02 08 CKI IH n-.....I...J"' Do Do Do FFo £&. £&. XCKI ::1 : :~I CKI XCKI AI XAI BI XBI CKI XCKI AI XAI BI XBI XSIo XSOo XSIo XSOo 00 SI ~ 0 XSIo 00 0 01 CKI XCKI AI XAI BI XBI 02 08 Equivalent Circuit (FFO) CKI -L Do XBI XCKI -L -L o---i .....----OXSOo » - - 0 00 CKI -L XSlo o-----i TAI TXBI C1D- HB-EO Sheet Page 11-28 3-148 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I • CG10 • Version Cell Name SHB I Definitions of Parameters i) CLOCK MODE i--- lew --14-- ICWH - CLOCK DATA ~tpd_ a,xa (OUTPUT) C10-SHB-EO Sheet 3/3 I Page 11-29 3-149 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Nam. NumberolBC Funcllon SHe SCAN 1-input 8-bit DFF with Clock-Inhibit & XQ Output C.IISymbol IUp_ 1O 2.613 KCL 0.067 Propagation De/ay Parlmel.. IeIn 1O KCL KCL2 CDR2 2.563 0.073 0.101 4 I 62 Path CK,lHtoXQ r--D1D2D3D4D5D60708CKIHSIAB--< :>-- X01 :>-- X02 :>--X03 :>--XQ4 :>--xas :>--X06 :>-- X07 :>--xaa Parameler Clock Pulse Width Clock Pause Time - Data SetuD Time Data Hold Time Pin Name Inpul Loading Faelor(lu) 0 CK IH SI A B 1 1 1 1 1 1 Pin Name OUlpuI Driving Faelor(lu) XO 18 Symbol lew ICWH Iso IHO Typ (ns)' 4.5 3.5 1.2 2.1 • Minimum values for !he typical operating condition. The values lor the worsl case operating condition are given by !he maximum delay multiplier. Function Table Inputs Mode CLOCK CLK Dn Oulpul xOn A B S Dn L L X Di H X L L X Hold H X n H Si Hold H X L U X Si SCAN SI NOIe: CLK • CK + IH n = 1 ~8 C1D-SHC-EO 3-150 Sheet 113 I Page 11-30 • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name SHe Equivalent Circuit 01 CK v---r-,.... 02 OS CKI IH n---'.....r' D. D. D. FF. FF. FF. XCKI ::1 : :~I CKI XCKI AI XAI BI XBI CKI XCKI AI XAI BI XBI XSIo XSOo XSIo XSOo ~ CKI XCKI AI XAI BI XBI XSI. xc. xc. ' - - - 0 XCI L....--o xc. SI XC2 L....--oxcs Equivalent Circuit (FFO) ) 0 - - - - - - 0 XC. 0.0---1 .------0 XS~ CKI -L XSlo 0-----1 I AI I XBI C10-5HC-EO Sheet 213 Page 11-31 3-151 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Call Nam. SHe 1 • CG10 • Version I OefinHions of Parameters i) CLOCK MODE - Ir;w--+Ot--- ICWH_ CLOCK DATA : - - - Ipd ___ a,xa (OUTPUT) C10-SHC-EO 3-152 --------1----'1"'-+---------- Sheet 313 I Page 11-32 I • CG10 "Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Number of 8C Function SCAN 8-bit DFF with Clock-Inhibit & 2-t0-1 Data Multiplexer SHJ Cell Symbol !Up - Al81A282A3- to - 01 3.013 2.575 ~XOI - KCL 0.067 0.067 Propagation Delay Parameter teln CDR2 to KCL KCL2 3.025 2.500 0.045 0.062 0.067 0.112 4 4 I 78 Path CK,lHtoQ CK,lHtoXQ 02 ~X02 - 03 83- ~XQ3 A4- ,--- Q4 84- ~XQ4 A585A686A787A886- -05 ~X05 -06 ~X06 -07 ~X07 -08 Parameter ~X08 Clock Pulse Width Clock Pause Time --< --< AS 8S CKIHSI A8 Data SetuD Time Data Hold Time Symbol tcw tcw>< tso tHO Typ (no)· 4.5 3.5 1.9 2.0 --< '--- Input loading Factor (Iu) Pin Name 1 An, Bn (n=I-8) AS,BS CK IH SI A,B 1 1 1 1 1 Output Driving Factor (Iu) Pin Name a • Minimum values for the typical operating condition. The values for the worst case operating condition are given by !he maximum delay multiplier. 18 18 XO Function Table Inputs Outputs Mode CLOCK CLK DO A B SI On XOn S Di l l X Di Di H X l l X H X n H Si H X l U X SCAN Hold Hold Si Si = = Note: ClK CK+ IH DO = AO-ASC+1I0BSC n 1-8 C1o-SHJ EO Sheet 113 I Page 11-33 3-153 • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Nam. SHJ Equivalent Circuit Al CK IH Bl A2 AS B2 B8 CKI Bo Ao XCKI Lt: ,0---1)0 Lt: .0---1)0 :~ : AS~ASo :~I ~ Ao Ao Bo FFo Bo FFo = CKI XCKI AI XAI BI XBI ASo As. As. BSo BSo BSo XSIo XSOo XSIo XSOo XSIo XSOo 01 CKI XCKI AI XAI BI XBI XOI 02 ~ CKI XCKI AI XAI BI XBI X02 00 XOo as X08 BS~BSo SI Equivalent Circuit (FFO) ) 0 - - - - - - 0 XOo Ao ASo Bo SSo ....----- -- XOI A282- -02 C2- :>--XQ2 10383- -03 C3A484C4A5- :>--X03 -04 :>--XQ4 - 85C5A6- 86C6A7B7C7AS- 05 :>--xas Parameter -06 Clock Pulse Width Clock Pause Time Symbol tew tCWH Typ (ns)· 4.5 3.5 :>--X06 - 07 Data SetuD Time Data Hold Time tso tHD 2.4 1.9 :>-- X07 - 88C8- 08 :>--X06 AS--( BS--( CS--( CKIHSI AB--( '--- Pin Name Input loading Faclor (Iu) An, Bn, Cn 1 (n-l ~8) AS,BS,CS 1 1 1 1 1 CK IH SI A,B Pin Name Output Driving Factor (Iu) 0 XO 18 18 C10-SHK-EO 3-156 I Sheet 1/3 • Minimum values for !he typical operating condition. The values for Ihe worst case operating condition are gill9n by !he maximum delay multiplier. I Page 11-36 • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name SHK Equivalent Circuit CKv-"""""'T.... AI BI CI A2 B2 C2 Ao Bo Co Ao Bo AS B8 CS CKI IHn...~-r Co Ao Bo Co XCKl FFo : :1 : :~I CKI XCKl AI XAI BI XBI AS o BS o CSo XSIj, Xso., 01 XOI FFo FFo CKl XCKl 1'1 ~ XAI BI XBI AS o BS o CSo XSIo Xso., 02 CKl XCKI AI XAI BI XBI AS o BS o CS o XSIo XSq, X02 00 XOo as XOS S l o - - - - I ) ( > - - - - - - -....... Equivalent Circuit (FFO) Ao AS o Bo ) 0 - - - - - - 0 xOo BSo Co CSo ....----0() xsq, (VIN) ) 0 - - - 0 00 CKI --L XSlo 0-----1 TAI TXBI C10-SHK-EO Sheet 213 Page 11-37 3-157 I . CG10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name SHK • Version I I DefinHions of Parameters i) CLOCK MODE 'CYM_ I---'cw CLOCK , '( .,so .. I-- IHO .. DATA I-- 'peI_ a,xa (OUTPUT) Function Table Inpuls Mode CLOCK SCAN Outpuls ClK DO A B SI an XOn S Oi l l l( 01 01 H X l l X H X n H Si H X l U X Hold Hold Si SI Note: ClK = CK + IH DO • AOeASO+BOeBSO+CO n .1-8 -CSO C1D-SHK EO 3-158 I Sheet 3/3 I I Page 11-38 I . CG10 FUJITSU CMOS GATE ARRAY UNIT CEll SPECIFICATION Call Name SFDM • Version I Function SCAN 1-input OFF with Clock-Inhibit Cell Symbol !Up to KCL 1.444 1.831 0.067 0.067 Propagation Delay Parameter teln to KCL KCL2 COR2 1.481 1.806 0.056 0.045 0.095 0.056 4 4 Number 01 BC I 10 Path CKtoQ CKtoXQ '[fa xc CK IH SI A B SO Parameter Clock Pulse Width Clock Pause Time Data Setup Time Data Hold Time Symbol tew Typ (ns)' tew>< 2.5 2.5 tso tHO 1.0 0.9 Input loading Factor (Iu) Pin Name 2 1 1 0 CK IH SI A.B 2 2 Pin Name Output Driving FactorClu) 18 18 C SO • Minimum values lor the typical opereting condition. The values lor the worst case operating CXlndition are given by the maximum delay multiplier. Function Table Outputs Inputs Mode CLOCK CLK 0 A B 51 C.SO XC S Oi L L X Oi l5r H X L L X Hold H X n H SI Hold H X L 1I SCAN X SI Sf" NOla : CLK • CK + IH C10-5FDM-EO Sheet 113 I Page 11-39 3-159 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION • CG10 • Version Cell Name SFDM Equivalent Circuit ClK --L XBCK XClK --L --L 00---1 xc Slo---I c T ACK so ~~'----::: AO-"'4O---~~~~~":.:, BO_4O-==: :' C10-SFDM-EO Sheet 213 Page 11-40 3-160 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name SFDM I • CG10 • Version I Definitions of Parameters i) CLOCK MODE i---tcw--t--tCWHCLOCK '{ DATA i--tpda,xa (OUTPUT) C10-SFDM-EO I Sheet 3/3 I I Page 11-41 3-161 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CEll SPECIFICATION Cell Name Function SFDO Number 01 BC SCAN 1-input OFF with Clear and Clock Inhibit Cell Symbol Propagation Delay Parameler Idn 10 KCL KCL2 CDR2 \Up 10 KCL 1.669 1.850 1.963 0.072 0.067 0.067 1.594 2.044 1.700 0.062 0.045 0.062 0.101 0.056 0.101 4 4 4 I 11 Path CKloQ CKloXQ ClloQ,XQ r-0- -a :r--- xa -so CKIHSIAB --< CL Parameter Inpul Loldlng Faclor(lu) Pin Name CK.IH SI A,B CL 2 1 2 2 2 Pin Name Oulput Driving Factor (Iu) 0 .. a xa 18 18 18 SO Symbol Typ (ns)' Clock Pulse Width Clock Pause Time lew lew!< 2.9 2.7 Data SetuD Time Data Hold Time Iso 1.7 1.1 Clear Pulse Width Clear Release Time Clear Hold Time ILW IHO I REM 2.7 1.2 tlNH 3.0 • Minimum values lor the typical operating condition. The values lor the worsl case operating oonation are given by !he maximum delay multiplier. Function Table Outputs Inputs Mode CL 0 A S H Oi H H X B SI L L X X L L X L X X X X H H X n H Si H H X L U X CLK CLOCK SCAN a,so xa 01 Di Hold L H Hold Si 51 Note : CLK • CK + IH C1~FD:>-EO 3-162 Sheet 1/3 J I Page 11-42 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION • CG10 • Version Cell Name SFDO Equivalent Circuit XBCK CLK .....L. D XCLK .....L. .....L. o-----i xc Slo---\ c T ACK so ~~ ~L. ---I:~:: ____ 4-_:: AO_ BO-4---~=: C1o-SFDO-EO : Sheet 2/3 Page 11-43 3-163 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION • CG10 • Version Cell Name SFDO Definitions of Parameters i) CLOCK MODE tCWH- I---tcw CLOCK ~tso"" -tHO.... , DATA -tpel- a,xa (OUTPUT) i i) CLEAR MODE i.-tRe.r-- CK -tLW--' CLEAR ~ -tpel.... a,xa (OUTPUT) -tlNHCL C10-SFDO-EO Sheet 313 Page 11-44 3-164 I • CG10 • Version I Number 01 BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function SFDP SCAN 1-input DFF with Clear, Preset, and Clock Inhibit Cell Symbol PropagaUon Delay Parameler !dn 10 KCL KCL2 COR2 !Up PR 0- KCL 1.688 2.231 2.269 2.844 0.072 0.067 0.067 0.072 1.588 2.044 1.675 0.644 0.062 0.045 0.062 0.045 0.101 0.056 0.101 0.056 4 4 4 4 12 Path CKtoQ CKto XQ CLtoQ,XQ PRtoQ,XQ -0 CKIHSIA- B 10 I ::>- XO -so --< Parameter CL Symbol lew Input loadIng Factor (Iu) Pin Name CK,IH SI A, B CL. PR 2 1 2 2 2 Pin Name Oulput Driving Factor (Iu) 0 2.9 2.7 Data SetuD Time Data Hold Time tso tHO 1.7 1.1 Clear Pulse Width Clear Release Time Clear Hold Time tLW 2.7 1.2 3.0 tREM tlNH Preset Pulse Width Preset Release Time Preset H old Time 18 18 18 0 xo SO Typ (ns)· ICWH Clock Pulse Width Clock Pause Time tpw I REM tlNH 3.9 0.6 3.9 • Minimum values for the typical operating condition. The values lor the worst case operating condition are given by the maximum delay multiplier. Function Table Outputs Inputs Mode CLOCK CLK Cl PR 0 A B SI O,SO XQ S H H OJ L l X Oi Oi H H H X L l X Hold X L H X X X X L H X H l X X X X H L X l l X X X X Prohib"ed H H H X n H Si H H H X L U X SCAN Hold Si Si Note: ClK • CK+ IH C1D-SFDP EO I Sheet 1/4 I Page 11-45 3-165 IIIDIII • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Nome SFDP Equivalent Circuit Clo-------------~------------------------------~ XBCK CLK XClK -L -L -L Oo---l XQ BCK XClK ClK CLK ....---.J-J XACK PRo----------r------------~ XACK -L Slo----/ T T XBCK ACK Q so ~~ ---------:.. :: AOl----f--c;-_: : ... BO~-c;------~~~~~~: : C10-5FDP-EO Sheet 2/4 Page 11-46 3-166 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cefl Name SFDP I • CG10 "Version I I Definitions 01 Parameters i) CLOCK MODE ICWH- !---Icw CLOCK -Iso- -IHO.... DATA f - - I .. Q,XQ (OUTPUl) i i) CLEAR MODE -IREM- '( CK CLEAR - i---llW- :'-1 ..Q,XQ (OUTPUl) J :'-IINH- CLEAR C10 SFDP EO Sheet 3/4 I Page 11-47 3-167 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION 1 • CG10 • Version eeilN.me SFDP I Definitions of Parameters iii) PRESET MODE CK i---Ipw- PLESET - a,xa (OUTPUT) 1,---------------- i--IINH- PLESET C10-5FDP-EO 3-168 1 Sheet 4/4 1 I Page 11-48 I . CG10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION _l Cell Name SFDR • Version Number 01 BC Function 36 SCAN 4-input OFF with Clear and Clock Inhibit Cen Symbol Propeg.llon Delay Parameler Idn KCL KCL2 COR2 10 IUp 10 KCL 2.325 - 0.072 - 2.344 2.400 0.062 0.062 0.101 0.112 4 4 Path CKtoQ CLtoQ ;-- DC- -OA OS OC 00- -00 OA- osCKIHSIAB -so --< Symbol Typ (ns)' Clock Pulse Width Clock Pause Time Icw ICWH 3.2 3.5 Data Setup Time Data Hold Time Iso IHO 0.7 1.5 Clear Pulse Width Clear Release Time Clear Hold Time ILW I R~" 3.2 1.8 3.6 Parameter CL Inpul loading Factor (Iu) Pin Name CK.IH Sl A,B CL 2 1 2 1 1 Pin Name OulpUI Driving Factor (Iu) 0 18 18 0 so tlNH • Minimum values for the typical operating oondition. The values !orthe worsl case operaling condition are given by the maximum delay multiplier. Function Table Inputs Mode CLK CLOCK CL 0 Outputs A a.,SO B SI Pi Hold S H Di L L X H H X L L X X L X X X X L H H X n H Si Hold H H X L U X Si SCAN Note: CLK = CK+ IH C1o-SFDR EO Sheet 1/4 I Page 11-49 3-169 • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION eellName SFDR Equivalent Circun DA DC DB DO ( ) OB QA OC 00 ) o 0 0 ( 0 Slo---------1 S 0- SOl-FFO CK IH g:: CK IH A 0-- A B 0-<:8 Cl 0 - ClKXClKACKXACKBCK XBCK ClK XCLK ACK XACK BCK XBCcK FFO -,...- CLK XClK ,....-- ACK ; - XACK BCK xe~K FFO CLK XClK ,....-- ACK ; - XACK r- eCK XB~K r- r- ClK XClK ACK ; - XACK r- BCK so XB~~ CNTO Cl. I Equivalent Circun (CNTO) CK u----t-.... IH ) ( ) - - - - - - . ClK )(>-...-. XCLK ---~~ AO........ L-L..------XACK C10-SFDR-EO eO---I )O--_XSCK '------BCK She t 214 Page 11-50 3-170 • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name SFDR Equivalent Circuit (FFO) XBCK ClK -'-- XCLK -'-- -'-- 00----; t----oCl. 50----; I ACK XBCK ' - - - - - - - - 1 )0---00 Equivalent Circuit (FF1) ClK -'-- XBCK XClK -'-- -'-- 00----; t----oCLo 50----; ACK I XBCK C10-SFDR-EO ~-------I )0---00 L...-_ _ _ _- ; )0---050 Sheet 3/4 Page 11-51 3-171 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I • CG10 • Version J SFDR I Definitions of Parameters i) CLOCK MODE -lew tcWH- CLOCK I--tso- ;---t HO- DATA -tpd- a,xa (OUTPUT) i i) CLEAR MODE ~tRE"- CK CLEAR - -tLW- -tpd- a,xa (OUTPUT) i---t.NH- CL C10-SFDR EO 3-172 Sheet 4/4 I Page 11-52 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function I SFDS '" CG10 • Version I Cell Symbol Propagation Delay Parameter \Up Number 01 BC I SCAN 4-input DFF with Clock Inhibit !dn to KCl to KCl KCL2 CDR2 1.919 2.056 0.067 0.067 1.888 2.031 0.056 0.056 0.090 0.090 4 4 31 Path CKto QA-QC CKtoQD ~ DADSDC00- r--- as r-- oc CKIHSIAS --< r--- ~ OA ~OD SO - Parameter Clock Pulse Widlh Clock Pause Time Data SetuD Time Data Hold Time Pin Name Input loading Factor (Iu) 0 CK.IH SI A.S 2 1 2 1 Pin Name Output Driving Factor (Iu) 18 18 a so Symbol tew tCWH tso tHO Typ (ns)· 2.9 2.6 0.0 1.4 • Minimum values lor the typical operating condition. The values lor the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs Mode CLOCK Outputs On A S SI S Di l l X Di H X l l X Hold H X n H Si H X l U X SCAN an. so ClK Hold Si Si Nola: ClK = CK+ IH n = A-D Cl0 SFD5-EO I Sheet 1/4 I Page 11-53 3-173 • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name SFDS Equivalent Circuit OA SI QA DB OB DC QC DO C>-------.. . so CK CNTO~=~:d IH A B °iJ S ClK XClK ACK XACK BCK XBCK a QQ FFI Equivalent Circuit (FF1) XBCK ClK -.L XCLK -.L -.L r--~~-----O 1-+----1 00---1 BCK XClK XACK XClK -.L -.L -.L I II a » ......- - - - 0 QQ ClK ACK s ACK ClK XACK I XBCK IH K B C L K XCLK C CNTO ACK A XACK B BCK XBCK CK v---r"""\... IH Equivalent Circuit (CNTOl A o----j)o,--I)or ~XACK »-----... ClK B ) ( ) . - -.. XCLK o----j)o,--I)o.. C10-5FDS-EO ACK XBCK ~BCK Sheet 214 Page 11-54 3-174 • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name SFDS ott s CLK XCLK ACK XACK BCK XBCK FF2 0 co Equivalent CiraJit (FF2) r---i)c>-----O so XBCK CLK --L XCLK --L --L ...-.-~ )0------00 0 XCLK XACK XCLK --L --L --L ACK T s XCLK T ACK T CLK T BCK -L XACK T XBCK C10-5FOS-EO Sheet 3/4 Page 11-55 3-175 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I • CG10 .. Version Cell Name SFDS I Definitions of Parameters i) CLOCK MODE i---1cw--i---ICWHCLOCK 1\ :-Iso-I-IHO'" DATA 1---1",,a,xa (OUTPUl) C10-SFD5-EO 3-176 I Sheet 4/4 I Page 11-56 I • CG1D • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function I SFJD Number of BC SCAN J-K FF with Clock Inhibit Cell Symbol Propagation Delay Parameter tdn KCL KCL2 COR2 to !Up to KCL 2.025 2.163 1.750 0.072 0.067 0.067 1.875 2.369 1.544 0.067 0.045 0.051 0.112 0.056 0.095 4 4 4 I 14 Path CKtoQ CKtoXQ CLtoQ,XQ r-JK- -a ::>-- xa CKIHSIAB --C -so Symbol tew tcWH Parameter CL Clock Pulse Width Clock Pause Time Pin Name Input Loading Factor (Iu) J, K CK,IH SI A,B CL 1 1 2 2 2 Pin Name Output Driving Factor (Iu) a xa Data SetuD Time Data Hold Time (J) J tso tHO 2.4 0.4 Data SetuD Time Data Hold Time (K) (K) tso tHO 2.0 0.1 tLW t REM 2.7 1.3 2.7 Clear Pulse Width Clear Release Time Clear Hold Time 18 18 18 SO Typ (ns)' 2.7 3.1 tlNI-f • Minimum values lor the Iypical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs Mode CLOCK OLK CL S S S S H L H H H J K Oulputs a,so xa A B SI L L L X Hold H L L X Toggle H L H L L X L H H L L L X H H X X L L X X L X X X X X H H X X n H Si H H X X L U X SCAN Sheet 1/3 L Hold H L Hold SI Nole : CLK C1D-SFJD-EO H SI ~ OK + IH I Page 11-57 3-177 • CG10 • VersiOn FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name SFJD Equivalent Circuit »--oxo Ko----' CLo-----------------4---~------~----------+_--------~ I ACK IIIDI ~~ ~--t---i[>o-e CLK '------_e XCLK I XBCK ~----1 ~>--- -- - XACK B O----_~----------- XBCK L-...j)c>- BCK C1o-SFJD-EO Sheet 213 Page 11-58 3-178 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION • CG10 • Version Cell Name SFJD Definitions of Parameters i) CLOCK MODE f---1cw ICWH- CLOCK 1\ 1-190- -tHO.... DATA ~Ipd- a,xa (OUTPUT) i i) CLEAR MODE -IRE.... CK -ILW- CLEAR ~ -Ipd .... a,xa (OUTPUT) f4- t INHCL C10-SFJD-EO Sheet 3/3 Page 11-59 3-179 CG 10 Series Unit can libra?, .. 3-180 CMOS Channeled Gate Arrays CMOS Channeled Gate Arrays CG10 Series Unit Cell Ubrary Non-scan Flip-flop Family Page Unit Cell Name Function Basic Cells 3-183 FOM Non-scan 0 Flip-flop 6 3-185 FON Non-scan 0 Flip-flop with Set 7 3-187 FOO Non-scan 0 Flip-flop with Reset 7 3-189 FOP Non-scan 0 Flip-flop with Set and Reset 8 3-192 FOO Non-scan 4-bit 0 Flip-flop 3-194 FOR Non-scan 4-bit 0 Flip-flop with Clear 26 3-197 FOS Non-scan 4-bit 0 Flip-flop 20 3-199 F02 Non-scan Power 0 Flip-flop 7 3-201 F03 Non-scan Power 0 Flip-flop with Preset 8 3-203 F04 Non-scan Power 0 Flip-flop with Clear and Preset 9 3-205 F05 Non-scan Power 0 Flip-flop with Clear 8 3-207 FJO Non-scan Positive Edge Clocked Power J-K Flip-flop with Clear 21 12 3-181 CG10 Series Unit CeR Ubraty 3-182 CMOS Channeled Gate Atrars FUJITSU CMOS GATE ARRAY UNIT CEll SPECIFICATION Cell Name I • CG10 • Version Number of BC Function FDM I Non-SCAN OFF Cell Symbol tup to KCL 1.094 1.350 0.067 0.067 Propagation Delay Parameter tdn 10 KCL KCL2 CDR2 1.125 1.475 6 Path CKtoQ CKtoXQ 0.051 0.051 '={to CK XQ Parameter Symbol Typ (ns)' Clock Pulse Width Clock Pause Time tew tCWH 2.5 2.5 Data SetuD Time Data Hold Time Iso 1.4 1.0 tHO Input loading Factor (Iu) Pin Name 2 1 0 CK Pin Name Output Driving Factor (Iu) Q XQ 18 18 • Minimum values for the typical operating conation. The values for the worst case operating condition era given by the maximum delay multiplier. Function Table Outputs Inputs 0 CK Q H i i H L L H L C10-FDM EO XQ Sheet 1/2 I I Page 12-1 3-183 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION • CG10 • Version Cell Name FDM Equivalent Circuit XCLK -L ..------i ) 0 - - - - - - 0 ClK -L xc 00---1 TXClK CK c TClK XClK CLK -L -L TClK TXCLK o------J>orl)o- CLK • L-.XClK Definitions of Parameters I---- lew ICWH-" CK ~ I - - - I s o - 4-IHO'" o W' JI\ +-Ipd-' Q,XQ C1D-FDM-EO Sheel2l2 Page 12-2 3-184 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Funcllon FDN Number I Non-SCAN DFF with SET Cell Symbol rup 10 KCL 1.125 1.538 1.400 0.067 0.067 0.067 Propagation Delay Parameler tdn 10 KCL2 KCL CDR2 1.094 1.513 0.669 0.051 0.045 0.045 0.067 0' Be 7 Path CKloQ CKlo XQ SIOQ,XQ 4 S '=D=a CK XQ Parameter Clock Pulse Width Clock Pause Time Data SeluD Time Data Hold Time Inpul loading faclor(lu) Pin Name Set Pulse Width Set Release Time S Set Hold Time 2 2 1 0 S CK OUlpul Driving faclor(lu) 18 18 Pin Name 0 xo Symbol lew lew>< Typ (ns)' 2.5 2.5 1.4 1.0 Iso 1"0 2.5 0.2 2.4 Isw I REM tlNH • Minimum values for !he typical operating condition. The values for the worsl case operaling condition are gillen bv the maximum delay multiplier. function Table Inputs Outputs S 0 CK 0 XO L X X H L H H H L H L i i L H C1o-FDN EO Sheet 1/2 I I Page 12-3 3-185 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION • CG10 • Version Cell Name FDN Equivalent Circuit So-~r-----------~ CKO XCKO -L 0 -L XQ o T TCKO XCKO -L XCKO TCKO CKO -L T XCKO CK~CKO . L---. XCKO Dllfiniti9[lS Q.f Param!1ters 11 tCw, tGWH, tsD, tHD and tpd (CK- 0, XO) ICWH- I---Icw CK ~ J - I s o -!--IHO" o ~Ipd'" a,xa 2) t8W, tREM, tlNH, and tpd (8 _0, XO) CK S--JI I,..-+-----S s --+------S-- --S--+-' S--+- a xa ------ -------I"---+-----S -- --- C1D-FDN-EO Sheet 2/2 Page 12-4 3-186 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Name Function FDO I • CG10 • Version I Number of Be Non-SCAN DFF with RESET Cell Symbol tup to KCL 1.206 1.350 1.250 0.067 0.067 0.067 Propagation Delay Parameter tdn to KCL KCl2 CDR2 1.113 1.613 1.025 J 7 Path CKtoQ CKto XQ RtoQ, XQ 0.056 0.051 0.056 'yO CK XC Parameter R Clock Pulse Width Clock Pause Time Input loading Factor (Iu) Pin Name D R CK 2 2 1 Pin Name Output Driving Factor (Iu) C XC 18 18 Typ (ns)' Symbol tcw tcw>< 2.5 2.5 Data Setup Time Data Hold Time tso tHO 1.4 1.0 Reset Pulse Width Reset Release Time (R) Reset Hold Time tRW 2.5 0.6 2.1 tREM ttNI-f • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs Outputs R D CK C XC L X X L H H H H L H L l' l' L H C1Q-FDO-EO Sheet 1/2 I Page 12-5 3-187 lID FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION • CG10 • Version Cell Name FDO Equivalent CircuH CKO XCKO -L -L c xc 00---1 TCKO T XCKO CK~CKO . L--.. XCKO R Definitions of Parameters 1) tCW, tCWH, tSO, tHO and tpd (CK _Q, XQ) ICWH- I--tcw CK ~ - I s o - ... tHO'" D .... tpel ..... a,xa 2) tRW, tREM, tINH, and tpd (R_ Q, XQ) CK \ 1,.-+-----\ R \---f-\ a -I~--+-----\ -1_--+-----\ .... . xa C1~FDO-EO .... . \---+Sheet 212 Page 12-6 3-188 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function FDP I • CG10 "Version I Number of BC I Non-SCAN DFF with Set and Reset Cell Symbol !Up 10 1.225 1.531 1.400 1.588 S D- I-- KCL 0.067 0.067 0.067 0.067 Propagation Delay Parameler Idn KCL KCL2 io CDR2 1.100 0.056 1.563 0.051 0.994 0.056 0.631 0.051 8 Path CKtoO CKtoXO RtoO. XO StoO. XO C CK- ~XC R Parameter Clock Pulse Width Clock Pause Time Inpul Loading Factor (Iu) Pin Name D 2 2 2 1 S R CK Oulpul Driving Faclor(lu) 18 18 Pin Name C xc Symbol lew ICWH Typ (ns)' 2.5 2.5 Data SetuD Time Data Hold Time Iso IHO 1.4 1.0 Set Pulse Wid1h Set Release TimelS) Set Hold Time tsw IRE\! 2.5 0.2 2.4 Reset Pulse Width Reset Release Time (R) Reset Hold Time IRW IRE\! tlNH 2.5 0.6 2.1 tlNH • Minimum values for the typical operating condition. The values for the worsl case operaling condition are given by the maximum delay multiplier. Function Table Inputs Outputs S R D CK C XC H L X X L H L H X X H L L L X X inhibited H H H H H L C1Q-FDP-EO I t t Sheet 1/3 H L L H I I Page 12-7 3-189 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION • CG10 • Version Cell Name FDP Equivalent Circuit SO-~~----------~ CKO c -L o xc -,- -,- CKO XCKO R CK~CKO • C1Q-FDP-EO ~XCKO Sheet 213 Page 12-8 3-190 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION • CG10 • Version eellName FOP Definitions of Parameters 1} tCW, tCWH, tSD, tHD and tpd (CK-.O, XO) tcWH- : - - - tcw CK ~ I-- tso- .. tHO" W Jr\. o ~ tpd __ a,xa 2} tRW, tREM, tlNH, and tpd (R -.0, XO) --+01--- tCWH CK ~ Ir+-----~ R ~---t--\. a "'---+-----~ - - - --Ir--+-----~ ----~--+-' xa 3} tSW, tREM, tlNH, and tpd (S-.O, XO) tCWH- :---tcw CK I--- tsw ~ s a xa --=: REM ... ~ Ipd_ -_._.- .-_... ~----~--+-' ...... ....... C10-FDP-EO ~-~ ~----- Sheet 3/3 Page 12-9 3-191 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I • CG10 • Version Function FDQ Number of BC Non-SCAN 4-bit DFF Cell Symbol !Up to KCL 2.106 0.067 Propagation Delay Parameter tdn to KCL KCl2 CDR2 1.713 I 21 Path CKtoQ 0.045 Dnsyy r-- QA CK r-os r-OC r - OD ---< Parameter Clock Pulse Width Clock Pause Time Data SetuD Time Data Hold Time Symbol tew teWL tso tHO Typ (ns)' 2.5 2.5 0.7 1.8 Input loading Factor (Iu) Pin Name D CK 1 1 Pin Name Output Driving Factor (Iu) 0 18 • Minimum values lor the typical operating condition. The values for the worst case operating ccndition are given by the maximum delay multiplier. Function Table Input Output CK 0 Q J.. J.. H H l L C10-FDO-EO 3-192 Sheet 1/2 I Page 12-10 • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name FDQ Equivalent Circun XCKO CKO ..l ..l DAo-------~ )0-";--0 OA CK~CKO • LXCKO, ,, ICKO IXCKO DB .----------------------------------------4 0-------+ +-oOB DC 0-------+ DD +-oOC +-OOD 0-------+ , ----------------------------------------, Definitions of Parameters ICWL- i-"-Icw CK i J V- - I s o - 4-IHO'" o - I ..... a C10-FDQ-EO Sheet 212 Page 12-11 3-193 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I • CG10 • Version Function FOR Number 01 BC Non-SCAN 4-bit DFF with CLEAR Cell Symbol Propagation Delay Parameter IeIn KCL KCL2 COA2 to \up to KCL 1.650 0.067 - - 2.263 1.363 I 26 Path CKtoQ CLtoQ 0.045 0.045 TrYT -QA ,..-- OB CK- r -00 -00 Parameter Input loading Factor (Iu) Pin Name 1 1 1 0 CK CL Pin Name Output Driving FaClor(lu) 0 18 Symbol Typ(ns) • Clock Pulse Width Clock Pause Time tew tcww 2.5 2.5 Data Setup Time Data Hold Time tso tHO 0.7' 1.8 Clear Pulse Width Clear Release Time Clear Hold Time tlW tRE!! tlNH 2.5 1.0 2.9 • Minimum values lor the typical operating condition. The values lor the worst case operating condition 818 gill8n by the maximum delay multiplier. Function Table Inputs 0 D CL X X L L l' l' L H L H H H C1G-FDR-EO 3-194 Output CK Sheet 113 I Page 12-12 • CG10 "Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name FOR Equivalent Circuit CLO DA o---------!-I CK o---/:>orI)o-. • )(>--;--0 OA CKO LXCKO CL~CLO CLO ___ • _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 4 DBO~------~ +-oOB _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ • _ _ _ _ _ _ 4I DC O~------+ +-ooc _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 4I DO O~------+ +-000 I --------------------------------------_ .. lID C1D-FDR-EO Sheet 213 Page 12-13 3-195 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION • CG10 • Version Cell Namlt FDR Definitions of Parameters 1) tCW. tCWH. tSD. tHD and tpd (CK - OA - OD) CK o 2) tLW. tREM. tINH. and tpd (CL_ OA - OD) --14'-- I CWH CK ~ r+-----~ CL IINH ~-~ '--+-----~-- --- C1Q-FDR-EO Sheet 313 Page 12-14 3-196 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function I • CG10 • Version I Number 01 BC Non-SCAN 4-bit DFF FOS Cell Symbol !Up 10 KCL 1.894 0.067 Propagation Delay Parameler Idn 10 KCL KCL2 COR2 1.531 I 20 Path CKtoQ 0.051 Tyoror -QA -os CK- -OC -00 Parameter Clock Pulse Width Clock Pause Time Data Setup Time Data Hold Time Pin Name Inpul Loading Faclor(lu) 0 2 1 CK Pin Name Oulpul Driving Faclor(lu) 0 18 Symbol Icw ICW" Iso '"0 Typ (ns)' 2.5 2.5 0.7 1.6 • Minimum values lor the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs Outputs a CK 0 i i L L H H C1o-FDS-EO I Sheet 112 I I Page 12-15 3-197 • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name FDS Equivalent Circuit p-----------_._._----------_._-----------., ClK -L DA , XCLK )O-----!--o -L QA 0---------+---\ CK~ClK • L..XCLK TClK T XCLK DB O>---------i-· •••••••••••• - ••••••••••••••••••••••••••- - 0 OB DCO>---------i-········································~ OC DO 0>--------...,....· •••• - •• - • - •• - •••••••• - •••••••••••••••••~ 00 Definitions 0 Parameters ---lew ICWH- CK ~ I-- 180- !e-IHO"" OA-OO I--Ipd~ OA-OO C10-FD5-EO Sheet 212 Page 12-16 3-198 I • CG10 "Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name _L Function FD2 Non-SCAN Power OFF Cell Symbol !Up to KCL 1.031 1.594 0.034 0.034 PropagaUon Delay Parameter \dn fo KCL KCL2 CDR2 1.075 1.463 0.028 0.023 0.056 0.039 7 7 Number 01 BC I 7 Palh CKtoQ CK to XQ '1J=a CK XQ Symbol Typ (ns)' Clock Pulse Width Clock Pause Time tew tcw\' 2.5 2.5 Data Setup Time Data Hold Time tso tHO 1.4 1.0 Parameter Input loading Factor (Iu) Pin Name 2 1 0 CK Pin Name Output Driving Factor (Iu) Q XQ 36 36 • Minimum values lor the typical operating condition. The values lor Ihe worst case operating condition are given by !he maximum delay multiplier. Function Table Inputs Outputs CK 0 Q .l. .l. H H L L L H CID-FD2-EO Sheet 112 XQ I Page 12-17 3-199 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION • CG10 • Version Cell Name FD2 Equivalent Circuit XCKO CKO -L -L r-----~ ~-----------o o xa T XCKO CK a TCKO XCKO CKO -L -L TCKO T XCKO o-----J>orf>o-- . L---. XCKO CKO Definitions of Parameters _lew ICY.\.--- V- CK i"'- I s o - - - .. IHO..... D J _ a,xa C1D-FDS-EO Ipd-to J~ Sheet 212 Page 12-18 3-200 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function FD3 Number 01 BC Non-SCAN Power DFF with Preset Cell Symbol Propagation Delay Parameter !Up to 1.069 1.750 1.494 tdn KCL 0.025 0.025 0.025 to 1.081 1.563 0.569 KCL 0.023 0.023 0.023 KCL2 0.056 0.039 0.039 CDR2 7 7 7 I 8 Path CKtoQ CKtoXQ PRtoQ,XQ PR '=6= CK aXQ Clock Pulse Width Clock Pause Time tCWl Typ(ns) • 2.5 2.5 Data SetuD Time Data Hold Time tso tHn 1.4 1.0 Preset Pulse Width Preset Release Time Preset Hold Time tpw tREM 2.5 0.2 2.4 Parame1er Input Loading Factor (Iu) Pin Name 2 1 2 D CK PR Output Driving FaClor (Iu) 36 36 Pin Name Q XQ Symbol lew tlNH • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs OulpUts PR CK 0 Q XQ L X X H L H J. J. H H L L L H H C1o-FD3 EO Sheet 112 I Page 12-19 3-201 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION • CG10 • Version Cell Name FD3 Equivalent Circuit PRo---~------------~ XCKO CKO -L Q -L XQ 00----1 -,- -,- CKO -L CKO XCKO -,- -,XCKO CK XCKO -L CKO o------I>or/)o- CKO . L---. XCKO Definitions of Parameters f4--- Icw IcW!. - CK ~ ~Iso- 4-I Ho" o J , _Ipd_ Q,XQ JI\. ~IREM- PR _IINH- PR Q,XQ C10-FD3-EO Sheet 2/2 Page 12-20 3-202 ~ FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Nam. • CGtO • Version I Function FD4 Non-SCAN Power OFF with Clear and Preset Cell Symbol Propagation Delay Parameler tdn to KCL KCL2 CDR2 \Up to KCL 1.188 1.756 1.544 1.556 0.030 0.025 0.025 0.030 1.075 1.700 0.913 0.575 0.028 0.023 0.028 0.023 0.056 0.039 0.056 0.039 7 7 7 7 PR Number 01 BC J 9 Path CKtoC CKto XC CLtoC. XC PRto C. XC -0 0CK--<: :>-- xo Parameter CL Clock Pulse Width Clock Pause Time Input Loading Factor (Iu) Pin Name 2 1 2 2 0 CK CL PR Symbol tew tCWL Typ(ns) • 2.5 2.5 Data SetuD Time Data Hold Time tso tHO 1.4 1.0 Preset Pulse Width Preset Release Time Preset Hold Time tpw 2.5 0.2 2.4 Clear Pulse Width Clear Release Time Clear Hold Time tLW tR.M tR.M tlNH tlNH 2.5 0.6 2.1 Output Driving Factor (Iu) Pin Name 36 36 0 xo • Minimum values lor the typical oparating conation. The values lor the worst case oparating condition are given by the maximum delay multiplier. Function Table Inputs Outputs XO PR CL CK D 0 L H X X H L H L X X L H H H H L H J. J. H H L L H C10-FD4-EOI Sheet 112 I Page 12-21 3-203 IDI FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION • CG10 • Version Cell Name FD4 Equivalent Circuit PRo--1-------------, XCKO o .L Do--~ XQ XCKO .L TCKO T XCKO CL Definitions of Parameters CK o------C>orI)o- CKO . L-----. XCKO CK o Q,XQ PR CL PR CL Q,XQ C10-FD4-EO heet 212 Page 12-22 3-204 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION CenNam. FunCllon I FD5 J • CG10 • Version I Number 01 BC Non-SCAN Power DFF with CLEAR CenSymbol IUp 10 1.175 1.606 1.475 KCL 0.034 0.034 0.034 PropagaUon Delay Parameler !dn 10 KCL CDR2 KCl2 1.069 0.028 0.056 7 1.606 0.023 0.039 7 0.950 0.028 7 0.056 I 8 Palh CKtoQ CKtoXQ CLtoQ, XQ ,va OK xc OL Icwt Typ (ns)' 2.5 2.5 Data SetuD Time Data Hold Time Iso IHO 1.4 1.0 Clear Pulse Width Clear Release Time Clear Hold Time ILW 2.5 1.0 2.9 Parameter Clock Pulse Width Clock Pause TIme Pin Nam. Input loading Factor (Iu) D OK OL 2 1 2 Pin Name OUlput Driving Factor (Iu) 36 36 C xc Symbol lew tREM tlNH • Minimum values lor the typical operating condition. The values for Ihe worst case operating ooncfrtion are given by !he maximum delay multiplier. Function Table Inputs OL Outputs OK D L H H C1Q-FD5 EO C XC X X L H ,I. ,I. H H L L L H Sheet 112 I I Page 12-23 3-205 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION • CG10 • Version Cell Name FD5 Equivalent Circuit XCKO CKO o -L -L 00---1 XO TCKO CK T XCKO o---/>orI)o--+ XCKO . L-. CKO CL Definitions of Parameters ICWl-- -1<::1< CK r- ... ISD .... ... IHD" o .... IpeI .... a,xa -IIIHIlW Cl ~ r-lpel It- - a,xa I---IREM- Cl C1o-FD5-EO If Sheet 212 Page 12-24 3-206 , , • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name FJD Function Number 01 BC Non-SCAN Positive edge clocked Power JKFF with Clear Cell Symbol PropagaUon Delay Parameler Idn 10 KCL KCL2 CDR2 \Up 10 KCL 2.750 2.769 1.500 0.034 0.034 0.034 1.850 1.550 0.806 0.028 0.028 0.028 0.045 0.045 0.045 7 7 7 I 12 Palh CKtoQ CKtoXQ CLto Q, XQ '=9=0 CK K XC CL Typ(ns) • lew lew>< 3.5 3.5 J K SetuD Time J K Hold Time Iso 1"0 1.6 0.8 Clear Pulse Width Clear Release Time Clear Hold Time Inpul loading Faclor(lu) Pin Name Symbol Clock Pulse Width Clock Pause Time Parameter CL 2 1 1 1 J K CK Pin Name OUlpul Driving Faclor,'u) C XC 36 36 ILW IR~" tlNH 2.5 1.6 2.9 • Minimum values lor !he typical operating condition. The values lor Ihe worsl cese operating oonditlon are given by !he maximum delay multiplier. Function Table Inpuls aulpUis CL CK J K C XC L H X X H l' l' l' l' L L L CO XCO H H H C10-FJD-EO H L H L H H L H H H XCO L CO Sheet 112 I Page 12-25 3-207 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION • CG10 • Version Cell Nlme FJD CK Equivalent Circuit ;p---t1}+--_-I)p-I-r~-l=l~b---nc)----o CLo-------------+--~------~----~ XQ b--<~....nc~--_o Q Definitions of Parameters tCWH- -tew CK '-.... tso" f4- tHO"" W J, K J~ f4-- tpd'" a,xa , CL f....---tINHtLW r- ~ ~tpd_ a,xa ~tREMCL C1Q-FJD-EO If Sheet 212 Page 12-26 3 .... 208 CMOS Channeled Gate A"ays CG 1DB Series Unit Cell Library Scan Counter Family Page Unit Cell Name 3-211 SC7 Scan 4-bit Synchronous Binary Up Counter with Parallel Load 62 3-216 SC8 Scan 4-bit Synchronous Binary Down Counter with Parallel Load 66 3-221 SC43 Scan 4-bit Synchronous Binary Up Counter with Asynchronous Clear 59 3-225 SC47 Scan 4-bit Synchronous Binary Up/Down Counter 78 Function Basic Cells l1li 3-209 CG10 Series Unit CsII LIbra?, 3-210 CMOS Channeled Gate Arrays I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function Number oieC I SCAN 4-bit Synchronous Binary Up Counter with Parallel Load Sel Cell Symbol Propagation Delay Parameter tdn to KCL KCl2 CDR2 !Up DADBDCDD- I---OA P--XOA I---oe P--XOB I---OC p--XOC I---OD P--XOD CKIHL--< CIENSIAe--< Input loadIng Factor (Iu) 0 CK IH L CI EN SI A.B 1 1 1 1 2 1 1 1 Pin Name Output Driving Factor (Iu) Q XQ CO 36 36 36 KCL 2.063 3.613 4.875 1.250 0.034 0.034 0.034 0.034 1.906 3.338 3.269 0.625 0.034 0.034 0.023 0.023 0.084 0.084 7 7 - - Path CK,IHtoQ CK,IHtoXQ CK,IHtoCO Clto CO Symbol tew tcww Parameter Clock Pulse Width Clock Pause Time I---CO Pin Name to 62 Typ(ns)' 4.5 4.5 Data Setup Time Data Hold Time tso tHO 1.3 2.1 Load Setup Time Load Hold Time tsL tH 4.0 2.3 CI SetuD Time CI Hold Time tse tHC 4.5 1.7 EN Setup Time EN Hold Time tsE 4.5 1.7 tHE , Minimum values for the typical operating condition. The values for the worst case operating condition ara given by the maximum delay multiplier. Function Table Mode CLOCK SCAN OUtputs Inputs CI EN L CLK On A e SI X X L L L X Oi H H H S S S S Di X L L X Count Up X L L X X L L X Si X L X H X L H X X X H X n H X X X H X L U On NoCotmt Si Note: CLK • CK+ IH n • A~O C10-SC7 EO I Sheet 1/5 I Page 13-1 3-211 • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Ham. sel Equivalent Circuit DA QA XQA DB aB XQB DC QCxac DO aDxaD XCKI CKI LDI XLDI XAI AI BI FFu XBI 00 SI EN CI co CK o--~L. IH o---I-r ) ( ) - - - -... CKI XCKI Ao---I »_---- XAI X>---AI B o - - - I X>--t----... BI »---<~ XBI C1Q-SC7-EO Sheet 215 Page 13-2 3-212 • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name SC7 Equivalent CiraJit (FFu) XLDI XBI CKL ..L ..L XCKI Q -L ..L XQ 0 '---.....000 CKI XAI XCKI AI ..L ..L ..L I AI II s CKI XAI I XTG XBI o--f---------+--t ,.,_---. C1Q-SC7-EO Sheet 3/5 Page 13-3 3-213 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION • CG10 • Version Cell Name se7 Function LJ L LOAD DA DB DATA INPUT DC DO CLOCK CK+IH ENABLE CARRY IN EN :1 CI ~ OA DATA OUTPUT OB OC 00 n CO I I MODE Inhibit Cl0-SC7-EO Load Count Inhibit Sheet 4/5 Page 13-4 3-214 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "CG10 "Version Cell Name SCl Definitions of Parameters i) CLOCK MODE tewH- -tew CLOCK i--tso- - t H O DATA -tSl tHL-- L -tse CI ---1 I---tSE EN C10-SC7-EO tHe tHE 'I ---1 Sheet 515 Page 13-5 3-215 I "CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function SGB Cell Symbol Propagation Delay Parameler letn Ie KCL KCL2 CDR2 lop OAOSOC00- t--QA P--XQA r--CB p--XCS t--CC p--XCC r--CO p--XCO CKIHL--C SI--C EN--C SIAB--C 10 KCL 2.106 2.750 4.006 0.931 0.030 0.025 0.034 0.034 1.988 2.700 5.231 1.419 0.034 0.023 0.023 0.023 0.073 7 - - I Palh a CK,lHto CK,IHtoXQ CK,lHto BO BlloBO Symbol lew !CWH Parameter Clock Pulse Width Clock Pause Time 66 Typ (ns)· 4.3 4.3 p-so Inpul Loading Faclor(lu) Pin Name IDI Number 01 BC SCAN 4-bit Synchronous Binaly Down Counter with Parallel Load 0 CK IH L SI EN SI A.S 1 1 1 1 2 1 1 1 Pin Name Oulpu! Driving Factor (Iu) C sa 1"0 1.3 2.1 Load Setup Time Load Hold Time I Sl I "L 4.0 2.3 EN SetuD Time EN Hold Time ISE 5.1 1.2 Iso I "E BI Setup Time BI Hold Time 36 36 36 xc Data Setup Time Data Hold Time 5.1 1.2 158 1"8 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Mode X CLOCK EN X L CLK On A S SI L S S S S OJ L L X Oi X L L X Counl Down X L l X X l l X L L H X H H H SCAN Oulpuls Inpu!s BI X H X X X H X n H Si X X X H X l U X On NoCounl Si Nole: ClK = CK. IH n s A-O C10-SC8-EO 3-216 Sheet 1/5 I I Page 13-6 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION .. CG10 .. Version Cell Name SGB Equivalent Circuit 51 EN BI so CK IH o---+-",- o---+-.r ) 0 - - - -... CKI A 0----1 )(>-_---- XAI )O---~AI XCKI B 0----1 )C:>-,.....---- BI )O--~XBI C10-SC8-EO Sheet 2/5 Page 13-7 3-217 • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION SGB Equivalent Circun (FFu) XLDI CKL XBI --L --L XCKI Q --L --L XQ 0 XCKI XAI XLDI CKI XCKI ...---+oxao AI --L --L --L TAI T xs CKI T XAI T XBI XTG 0--1--------+---1 C10-SC8-EO )C)---i Sheet 3/5 Page 13-8 3-218 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION " CG10 "Version Cell Name SGB Function LJ L LOAD DA DATA INPUT DB DC DO CLOCK CK+IH ENABLE CARRY IN EN BI IL..JL...JL.r'L OA DATA OUTPUT OB OC 00 LJ BO I I MODE Inhibit C10-SC8-EO Load Count down Inhibit Sheet 4/5 Page 13-9 3-219 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION • CG10 • Version Cell Name SGB Definitions of Parameters i) CLOCK MODE I cw--oi----1CWH CLOCK DATA L 1 se---+...I;,::H:;,E-I EN 1 5 B - -.... 81 C10-SC8-EO Sheet 5/5 Page 13-10 3-220 I • CG10 FUJITSU CMOS GATE ARRAY UNIT CEll SPECIFICATION Cell Name Function SCAN 4-bit Synchronous Binary Up Counter with Asynchronous Clear SC43 Cell Symbol PropagaUon Delay Parameler !dn CDR2 1'0 KCL KCL2 tup r-DADSDCDD- 10 KCL 2.669 3.219 0.067 0.067 1.138 0.067 - -OA -as -OC -aD CKIHL--< CIEN51AS--< 0.045 0.045 0.045 0.045 0.045 2.569 3.438 1.631 0.781 2.231 - - 0.067 0.067 0.067 0.067 0.067 4 4 4 4 4 "Version I Number of BC I 59 Path CKtoQ CK to CO CltoQ CltoCO CltoCO -co -so Symbol lew Parameter Clock Pulse Widlh Clock Pause Time Data Setuo Time Data Hold Time load Setuo Time load Hold Time CI Setup Time CI Hold Time EN Setuo Time EN Hold Time Clear Pulse Width Clear Release Time Clear Hold Time CL Pin Name Inpul Loading Faclor(lu) D CK,IH L. CL, 51 EN A, B. CI 2 1 1 1 2 Pin Name a OUlpul Driving Faclor(lu) 18 18 18 co SO tcw~ Iso IHO I Sl I HL Ise IHe I S~ I H~ IlW t REt.! t INI-4 Typ (ns)' 3.2 4.6 1.2 1.4 1.9 1.5 2.5 1.1 2.5 1.1 3.9 0.9 3.6 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Outputs Inputs Mode CLOCK SCAN CI EN CL CLK X X L X X X H H H H S S X X H H Dn A B 51 X X X X X L L Di L L X Di Count Up L H X L L X H X L L X an, sa No Count X L H X H X L L X l X H X H X l l X X X H H X X n H Si Hold X X H H X X l U X Si Note: ClK n C10-SC43 EO Sheet 1/4 c CK+ IH = A- D I Page 13-11 3-221 " CG10 "Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name 8C43 Equivalent Circuit DA OA XCKI CKI LDI DS OS DC CKI A OC DD OD XCKI CKI LDI XLDI XAI AI SI XSI XLDI XAI AI SI XSI SI EN CI CK o--rl... IH 0--+-:'''- )O----~ XCKI L~LDI 4»-XLDI )0-..,...---- XAI )O----AI S )0-..,...---)O--~ SI XSI CL~CLO C10-SC43-EO Sheet 2/4 Page 13-12 3-222 • CG10 "Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name SC43 Equivalent XLDI CKI -L -L Circu~ (FFu) XBI XCKI -L-L X>----oo o XCKI XLDI BI XCKI XAI -L 1.-..--_--0 xo CKI AI -L-L S CL. aa II I AI CKI XAI I XBI XTGo--t--------+--t C 1O-SC43-EO Sheet 3/4 Page 13-13 3-223 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Nome SC43 I Definition of Parameters -lew lewH- CK ~ll--' Iso IHO- 0 II II IREM I---ILW i--I'NH- CL ~ '( 1 II i---ISL- - I H L - J II L i - - - - I s c - -IHC'" CI II i - - - - I s e - - I He'" EN 1\ C10-SC43-EO 3-224 Sheet 4/4 II I Page 13-14 I • CG10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name FUnction SC47 I SCAN 4-bit Synchronous Binary Up/Down Counter Cell Symbol Propagation Delay Parameter tup DADBDCDD- .--r--OA i--- OB i--- OC i--- aD CKIHL---<: TMENDUSIAB---<: tdn 10 KCL 10 KCL 2.813 3.825 5.375 1.469 0.067 0.067 0.067 0.067 2.938 5.438 6.781 1.838 0.101 0.045 0.135 0.045 KCL2 0.140 CDR2 4 - 4 - 0.179 .. Version I Number of BC 78 Path CKtoQ CKto CO Lto Q DUtoCO :>-co -so Symbol lew Parameter Clock Pulse Width Clock Pause Time Data Setup Time Data Hold Time EN SetupTime EN Hold Time DU Input Setup Time DU Input Hold Time Load Pulse Width Clear Release Time Clear Hold Time '-- Pin Name Input Loading Factor (Iu) D CK, IH, TM, L EN DU,A, B SI 2 1 3 1 2 OUlput Driving Factor (Iu) 18 18 18 Pin Name a so CO tCWI-I Iso I~o I SE I~E I su I~u ILW t f:lEM t INH Typ (ns)' 5.7 6.9 8.4 1.4 4.9 0.5 5.5 0.4 12.0 2.3 9.5 • Minimum values for Ihe typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Inpuls Mode CLOCK SCAN Oulputs CLK LO EN DU On A B SI an, SO S S S L H X X L L X No Counl L L H X L L X L L L X L L X Count Down X H X X Di L L X Di H L X X X L L X No Count H X X X X n H Si Hold H X H X X L U X Si Note: CLK = CK+ IH LO=TMoL n = A~ D C1D-SC47-EO Sheet 1/4 I Page 13-15 3-225 .. CG10 .. Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name SC47 Ao--{)o~~- LJ»-AI Equivalent Circuit f'" eo--{)o r--- l..-' DU ~ ~ EN [ ~ ::~I co f'" ~ ~ XAI l..-' DA D--=::: r - - - == 510--:::: OA FFu =~:n ~~ _ as FFu =~Jl ~~~ _ ac FFu =~Jl 1"\ DDD--=:::- -== _ aD FFu ,./ _1"\ == -'--=:;:: ~sa ,./ TM~ La L C10-SC47-EO Sheet 2/4 Page 13-16 3-226 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION .. CG10 .. Version Cell Name SC47 Symbol o 0 LO CKO XCKO S XAI AI 81 XBI TGO FFu 00 XOo Equivalent Circuit xao (FFu) 0 ao CKO BI CKO -L DO LO s XCKO IDI BI AI CKO -L XAI TX81 TGOo--+------1-~ o O>---..-~~--- XOO ~-----------DO C10-SC47-EO Sheet 3/4 Page 13-17 3-227 " CG10 "Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name SC47 Definition of Parameters tew tCWH CK II tHO II II D tREM tlW II L tSE tHE ll~ EN tsu tHU DU II C10-SC47-EO Sheet 4/4 Page 13-18 3-228 CG10 Series Unit CeU Library CMOS Channeled Gate Arnlys Non-scan Counter Family Page Unit Cell Name Function Basic Cells 3-231 C11 Non-scan Flip-flop for Counter 11 3-233 C41 Non-scan 4-bit Binary Asynchronous Counter 24 3-236 C42 Non-scan 4-bit Binary Synchronous Counter 32 3-239 C43 Non-scan 4-bit Binary Synchronous Up Counter 48 3-243 C45 Non-scan 4-bit Binary Synchronous Up Counter 48 3-247 C47 Non-scan 4-bit Binary Synchronous Up/Down Counter 68 3-229 CG10 Series Unit Ceo Ubrary 3-230 CMOS Channeled Gate A"ays I .. CG10 .. Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function Number of BC I Non-SCAN Flip-Flop for Counter C11 Cell Symbol Propagation Delay Parameter Idn !Up 10 1.188 1.581 1.638 ;---- DL- KCL 0.067 0.067 0.067 10 1.094 1.856 1.081 KCL KCL2 11 Path CDR2 CKtoO CKto XO CL toO,XO 0.056 0.056 0.056 -0 CK- >--xo TG- Symbol lew Parameter CL Clock Pulse Width Clock Pause Time tCWI-I Inpul Loading Faclor (Iu) L TG CL D,CK 2 2 2 1 Pin Name OulPUI Driving FaClor (Iu) 18 18 0 XO I, " 2.5 0.7 0.4 IlW Clear Pulse Width Clear Release Time Clear Hold Time Pin Name TVp (ns)' 2.5 2.7 t REM Load Setup Time Load Hold Time CK CK I Sl I"" 1.5 0.4 Data Setup Time Data Hold Time (CK) CK Iso 1.6 0.4 TG SetuD Time TG Hold Time (CK) CK 1ST I HT '"0 1.9 0.0 • Minimum values for the typical operating condition. Th~ values for the worst case operating condition are given by the maximum delay mulliplier. Function Table L D TG X X X L X L H H X H H H L X H L X L H l' l' l' l X H H l' C1D-C11 EO I CL Sheet 1/2 CK 0(00) L 0(00) -- 0(00) I Page 14-1 3-231 • CG10 .. Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name e11 Equivalent Circuit CL XLO ..l )0------00 o Xo T T xeo XCKO CL TGo-~f-H CK~CKO V ~XCKO Definition of Parameters -lew ICWH--- CK ~ I---ILW I RE"-' '( CL I -I,NH CL ISL IHL- Iso IHO- 1 L o 1ST TG C10-C11-EO IHr- --' Sheet 2/2 Page 14-2 3-232 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Name I Function C41 Cell Symbol Propagation Delay Parameter tdn 1'0 KCL KCL2 COA2 tup - I--OA to KCL 1.250 2.294 3.206 4.125 0.059 0.059 0.059 0.059 - 1--08 - 1.163 2.050 2.969 3.875 2.619 0.056 0.056 0.056 0.056 0.056 - Number of BC I Non-SCAN 4-bit Binary Asynchronous Counter 24 Path - CKtoQA CKto QB CKtoQC CKto QD CLtoQ Symbol Typ (ns)' - - I--OC 1--00 CK- Parameter CL Clock Pulse Width Clock Pause Time tew Clear Pulse Width Clear Release Time Clear Hold Time tLW tREM 2.7 2.9 tCWI-l 2.5 1.4 4.2 tllll,", Input Loading Factor (Iu) Pin Name CK CL 1 1 Pin Name Output Driving Factor (Iu) 0 18 • Minimum values for the typical operating condition. The values for the worst case operating oondition are given by the maximum delay multiplier. Function Table Inputs Output CL CK Q H t Count up L X L C1o-C41 EO Sheet 1/3 I I Page 14-3 3-233 • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name C41 Equivalent Circuit as OA OC 00 CKO FTO XCKO CLoo-----~~------------~------------~------------~ CK~CKO ~XCKO V FTO (Flip-Flop for Counter) (not Uint Cell ) e Symbol CKO FTO XCKO Function Table o ao xao CLO CKO a L x i Or>--l H L CLO a ao -,XCKO XCKO CKO CKO --L --L -,- -,- CKO XCKO CLO xao C10-C41-EO Sheet 2/3 Page 14-4 3-234 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION .. CG10 .. Version Cell Name C41 Definition of Parameters CK CL C10-C41-EO Sheet 3/3 Page 14-5 3-235 I • CG10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Name C42 • Version I Function I Non-SCAN 4-bit Binary Synchronous Counter Cell Symbol Propagation Delay Parameler Idn !Up to KCL to KCL KCL2 COR2 1.988 0.059 1.463 2.100 0.051 0.051 0.067 0.067 4 4 - - Number of BC 32 Path CKtoQ CLtoQ ;--QA -OB -OC -00 CK- Parameter Clock Pulse Width Clock Pause Time CL Clock Pulse Width Clear Release Time Clear Hold Time 2.7 2.9 tCWH 2.5 1.4 4.2 tlW t REM tiN" Input Loading Factor (Iu) Pin Name CL CK 1 1 Pin Name Output Driving Factor (Iu) 0 18 IDI Typ (ns)' Symbol tew • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs CK Q H i Count up L X C10-C42 EO 3-236 Outputs CL L Sheet 1/3 I I Page 14-6 • CG10 " Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name C42 Equivalent Circuit OC 08 OA 00 CKO XCKO CLOo---------~--_+--------~----~--~----~----r_--t_--~ '" r-:-- XCKO CK~ CKO CL o-----{>o--{>o- CLO FT2 (Flip-Flop for Counter) (not Unit Cell) Symbol Function Table o CKO Inputs CLO XTG Outputs CKO 0(00 ) XCKO XTG QO L X X L H H On-l H L l' l' a;:;::; CLO C1D-C42-EO Sheet 2/3 Page 14-7 3-237 • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name C42 Equivalent Circuit of FT2 CLO )0------00 /-T-+--; )O----- o- CLO L~LO - C10-C43-EO L-..{>o-- XLO CK~XCKO - L-..{>o-- CKO Sheet 2/4 Page14-10 3-240 • CG10 .. Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name C43 FT3 (Flip-Flop for Counter) (not Unit Cell) Function Table Symbol 0 LO LO 0 XTGO CLO CK 0 o. XLO CKO XCKO XTGO 0(00) X X X H X L H H X L t t t t H H L X L L X H L L X L L L 0(00) 0(00) CLO Eguivalent Circuit of FT3 CLO o )0---00 CKO XTGO T XCKO o---1f-H C10-C43-EO Sheet 3/4 Page14-11 3-241 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I C43 I Defin~ion of Parameters ICWH_ !---Icw CK I\--ll-' Iso IHo_ 'I 0 II II t REM' !---ILW I--I'NH_ CL ~ 'I II _ I S L _ f4-IHL.... 'I L I--Isc CI IDI 'I J 3-242 , II 1--18E C10 C43 EO IHC J EN I Sheet 4/4 II IHE , ~ I I Page14-12 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function C45 Number 01 BC I Non-SCAN 4-bit Binary Synchronous Up Counter Cell Symbol \Up r---OA -OB -OC -OD DADBDCDDL--< CKENCI- 10 KCL 1.669 3.169 1.194 0.059 0.072 0.072 Propagation Delay Para meIer Idn 10 KCL KCL2 CDR2 1.169 0.051 4 0.073 1.763 0.051 0.051 0.850 - 48 Path CKtoQ CKtoCO CltoCO -co Parameter CL Pin Name Input Loading D L,EN CK,CL CI 1 1 1 2 Pin Name OUlput Driving Faclor(lu) 0 CO 18 18 Clock Pulse Width Clock Pause Time Data SetuD Time Data Hold Time Load SetuD Time Load Hold Time CI Setup Time CI Hold Time EN SetupTime EN Hold Time Clear SetuD Time Clear Hold Time FaClor (Iu) Symbol Icw Typ (ns)· 2.5 2.9 2.4 1.4 3.2 1.4 4.2 1.2 4.2 1.2 2.4 1.3 ICWH Iso IHO I Sl IHl Isc IHC I SE I HE ISR I HR the typical operating condition. The values for the worst case operating condition are given by the maximum delay * Minimum values for multiplier. Function Table Outputs Inputs CL L D EN CI CK Q L X X X X H L H X X H H L L X X 't 't 't X No Counting L L H H X X L H H X L X X No Counting H H X H H 't Count up Note: The CO output produces a high level output data when the counter overflows. C1Q-C45-EO Sheet 114 I I Page14-13 3-243 "CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name C45 Equivalent Circu~ DA DB OA OB DC OC DO 00 CI EN IDII CL L C10-C4S-EO 0----[>0--- CLO o----{)o---r- - Lt>o-- LO XLO CK o----{)o---r- - Lt>o-- XCKO CKO Sheel2/4 Page14-14 3-244 • CG10 .. Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name C45 FTl (Flil>-Flop for Counter) (not Unit Cell) Function Table Symbol 0 0 XTGO CLO L X X H H H X L LO a LO XLO 00 CKO H L X L L X H L L X L L XCKO XTGO CK i i i i i 0(00) L H L 0(00) -- 0(00) CLO Eguivalent Circuit of FT3 CLO XLO -.L Yl---Oo 0 10--.-......--1 CKO )()-_+--O 00 I XCKO XTGO o--H~-I Cl0-C45-EO Sheet 314 Pagel4-15 3-245 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I C45 Definition of Parameters ICWH_ I---Icw CK f-Iso" i---IHO- , D ~If 1\ !--ISR.... _ I H R _ CL _ ISL IHL_ L I--Isc lHe- I--ISE IHE- CI EN C10-C45-EO 3-246 , j Sheet 4/4 1 Page14-16 I "CG10 • Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function C47 I Non-SCAN 4-bit Binary Synchronous Up/Down Counter Cell Symbol Propagation Delay Parameter !dn tup r---DADSDC00L--< CKEN--< DU- KCL to 2.494 3.381 3.131 1.544 -aA -as 0.067 0.046 0.067 0.046 to 2.244 3.825 3.463 1.881 KCL KCL2 CDR2 0.090 0.045 0.090 0.045 0.140 4 0.140 4 - - 68 Path CKtoO CKto CO lIoO DUto CO -ac -aD ::>-- co - Parameter Clock Pulse Width Clock Pause Time Input Loading Factor (Iu) Pin Name 1 2 1 1 3 0 L DU CK EN Pin Name Output Driving Factor (Iu) a CO 18 18 Symbol tew tCWI-l Typ (ns)' 3.5 5.6 Data SetuD Time Data Hold Time tso tHO 0.5 1.2 D 'Setuo Time DU Hold Time t su tHU 3.4 0.5 EN SetuD Time EN Hold Time t SE tHE 3.2 0.8 Load Release Time Load Hold Time t REM t INH 1.5 7.0 tLW 2.9 Load Pulse Width • Minimum values for the typical operating condition. The values for the worst ease operating condition are given by the maximum delay mUltiplier. Function Table Inputs 0 Outputs L EN DU CK 0 H L X X X H L L X X X L X H H X No Counting X H L L X H L H i i i Count Up Count Down Note: The CO output produces a low level output pulse when the counter overflows or underflows. C10 C47 EO Sheet 1/4 I Page14-17 3-247 • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CEll SPECIFICATION Cell Name C47 Equivalent Circuit .--- r-t> »- "'" .. - - - 0 OA OAe-LOCKOXCKO -C FT7 ~ ~ ~ I CK co .... OU EN .... ~XCKO CKO Lo-{>o-LO CKOXCKO -C ~ ---0 FT7 ~ - - - 0 OC DC 0-LOCKOXCKO -C FT7 ~ .... .... - - - 0 00 DOe-LOCKOXCKO -C """-- os LO- FT7 - "'" C10-C47-EO Sheel2/4 Page14-18 3-248 • CG10 .. Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name C47 FT7 (Flip-Flop for Counter) (not Unit Cell) 00 LO Function Table InpulS 0 OutpulS LO 0 TGO CKO QO(O) H H X L L X x x H H L H L X L On-1 a;;:; a;;:; On-1 0(00) FT7 CKO XCKO TGO 00 XOO L X H ; ; Equivalent Circuit of FT7 XOO 0 CO T XCKO XCKO -L T CKO CKO -L XDO LO DO LO CKO XCKO mo D~DO v C10-C47-EO ~XDO Sheel3/4 Page14-19 3-249 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION • CG10 "Version Cell Name C47 Definition of Parameters --to_-tCWH CK o L II tSE tHE II EN tsu tHU DU Ii C10-C47-EO Sheet 4/4 Page14-20 3-250 CMOS Channeled Gate Arrays CGto Series Unit Cell LibraI}' Adder Family UnHCeIl Basic Cells Page Name 3-253 A1A 1-bil HaH Adder 5 3-254 A1N 1-bil Full Adder 8 Function 3-255 A2N 2-bil Full Adder 16 3-257 A4H 4-bil Binary Full Adder with Fast Carry 48 3-251 0010 Series Unit CeH Library 3-252 CMOS Channeled Gate Arrays FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell N.m. I • CG10 "Version Number 01 Be Function A1A 1-bit Half Adder Cell Symbol Prop'gaUon Delay P...m.'er !dn 10 KCL KCL2 CDR2 IIJp 10 KCL 0.763 0.681 0.700 0.794 0.034 0.034 0.034 0.034 0.900 0.913 0.781 0.719 15 Path AloS 610S AloCO 610CO 0.023 0.023 0.023 0.023 ,=[}=oo A S Symbol Parameter Pin Name Inpul Loading Faclor(lu) A B 2 2 Pin Nam. Oulpul Driving Faclor(lu) CO S 36 36 • Minimum values lor the typical operating condition. The values lor the worst case operating condition are given by the maximum delay multiplier. Function Table Equivalenl Circuil A B CO S L L L L L H L H H L L H H H H L C1D-A1A-EO Typ (ns)' Sheel1/1 A B th) r:=~ I Page 15-1 3-253 • CG10 'Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function A1N I Cell Symbol Propagation Delay Parameter Idn !Up 10 KCL to KCL 1.650 0.781 1.863 0.638 0.067 0.067 0.067 0.067 1.969 0.844 1.488 0.731 0.045 0.045 0.045 0.045 KCL2 Number of BC I 1-bit Full Adder 8 Path CDR2 A.810S ClloS A. 810 CO ClloCO '=Q=OO A S CI Symbol Parameter Pin Name Input Loading Faclor (Iu) A B CI 3 3 3 Pin Name OUlput Driving Factor (Iu) CO S 18 18 • Minimum values for the typical operating condition. The values lor the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit Function Table CI S CO L L L L L H L L H L L H L H L H H L L H L L H H L H L H L H L H H L H H H H H H C10-A1N EO 3-254 B A B Outputs Inputs A Typ (ns)' Sheel1/1 ,,...... ,...... j] S ,v CI ~~oo V I Page 15-2 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Name Number 01 BC Function A2N 2-bit Full Adder Cell 5ymbol IUp 82A281A1- f-- CO f-- S2 51 r-- 1. 10 KCL 1.781 1.713 0.988 0.919 1.744 1.856 1.856 0.738 1.763 1.944 1.694 1.944 1.725 0.122 0.122 0.122 0.122 0.122 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 I Propagation Delay Parameler Idn 1"0 KCL KCL2 CDR2 1.756 1.794 0.850 0.850 1.613 1.719 1.719 0.744 1.719 1.844 1.756 1.844 1.575 0.079 0.079 0.051 0.051 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 Pa'" - - 0.067 0.067 - A1 to CO B1 to CO A2toCO B2toCO CltoCO Al to Sl Bl to Sl CI to Sl Al to S2 A2 to S2 Bl to S2 82 to S2 Clto S2 4 4 - --- Typ (ns)· 5ymbol Parameter 16 Inpul Loading Faclor (Iu) Pin Name A.B CI 2 2 Pin Name Oulput Driving Faclor(lu) 5 CO 14 14 • Minimum values lor Ihe typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Oulputs Inputs A1 L H L H L 81 L L H H L H L H L H L H L H L H L H H L L H H L L H H Cl0 A2N EO I A2 L L L L H H H H L L L L H H H H 82 L L L 51 L H H L L L L L H H H H H H H H L L H H L L H H L L H H L Sheet 1/2 I CI = L 52 L L L H H H H L H H H L L L L H CO L L L 51 H L L CI = H 52 L H H L L L L H L L L H H H H H H H L L H H L L H H L L H H H L L L H L L L L H H H CO L L L L L H H H L H H H H H H H I Page 15-3 3-255 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION " CG10 "Version Cell Name A2N Equivalent Circuit ~ ________________+-____-+J>-------oCO A20-__- - l B20--......-+7 0-----052 Alo-__- - l Bl 0---4--+:,' 0-----051 Cl 0------1-~~-~--------~~ ... C10-A2N-EO She' 212 Page 15-4 3-256 I "CG10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function A4H Propagation Delay Parameter tup Idn 10 84A483A382A281AI- r-- r-- CO 54 r-- 53 I - - 52 r-- 51 J Inpul Loading Faclor (Iu) Pin Name A 8 CI 2 2 2 10 KCL KCL2 CO 51.53.54 52 Path CDR2 0.738 1.656 1.894 1.963 1.794 0.093 0.122 0.122 0.122 0.067 1.019 1.919 1.863 2.213 2.006 0.079 0.079 0.079 0.079 0.045 - Clto Sl ClIo S2 ClIo S3 Clto S4 CltoCO 2.381 1.981 2.138 2.344 2.063 0.093 0.122 0.122 0.122 0.067 2.119 1.925 2.406 2.450 2.363 0.079 0.079 0.079 0.079 0.045 - A1. A1. A1. A1. A1. B1 B1 B1 B1 B1 to to to to to Sl S2 S3 S4 CO 1.931 2.288 2.338 2.419 0.122 0.122 0.122 0.067 2.106 2.250 2.531 2.394 0.079 0.079 0.079 0.045 A2. A2. A2. A2. B2 to B2to B2 to B2 to S2 S3 S4 CO 1.756 2.400 2.375 0.122 0.122 0.067 1.781 2.525 2.388 0.079 0.079 0.045 - 1.813 2.288 0.093 0.067 1.881 2.194 0.051 0.045 0.067 Function Table - A3. B3 to S3 A3. B3 to S4 A3. B3to CO - - 4 A4. B4to S4 A4. B410 CO Nete; Inputs Al Bl - -A3 - - - 83- L H H L L H H L L L L H H H H L L L C10 A4H-EO L L L L H H H H L L L H H H H H H H H =L 51 S2 C2 SI - -S3 - - -$1,- - - 60 - - - - 53 L L H H L L H H L L H H and S2 and the value of the internal cany C2. The values at C2, A3. 83, A4 and B4 82 L L Inpul conditions al AI, A2, 81, 82 and CI =H -----Cz":C----- ------ci:'f(---- A2 - - 1.4 - - -84 - - L L H Outputs CI L H H L H L H L H L H 48 OulPUI Driving FaClor (Iu) 18 14 18 Pin Name L I 4-bit Binary Full Adder with Fast Carry Cell 5ymbol H "Version I Number of BC L L H H L L H H L L H H L L L L H H H H L H H H L L L L H L H L L L L L L L H L L L H H H H H L H H L L H H L L H H L L H S2 C2 L H H H H L L - - -S4 - - -co - L L H L L L L H H H CI are used to determine outputs 51 are then used to determine outputs S3, S4 and CO. L L L L H H H L H H H H H H H Sheet 1/2 I Page 15-5 3-257 I "CG10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name 1 A4H I V- ~)-. - u--t:7 '-~ ~ 83o-rrDI A3 v - ft>, ~ A2v- CI C10-A4H-EO 3-258 1 Sheet ;~ '-f:C~ r-V '" t1> 2121 r--- FU rt--bJ ~ ~ 81o-rrDI A10 " -U rt--tJ H~ '" 82o-rrDI co P- ~ '-~ ,--r-'--- r"1./ r-- .--l..I ~O-~ A4 "Version Equivalent Circuit ~ " rr~ rr " S3 S2 " V' ~ '1...I~S1 Jr[ I Page 15-6 CG10 Series Unit Cell Ubrary CMOS Channeled Gate Arrays Data Latch Family Un" Cell Page Function Name Basic Cells 3-261 YL2 1-bit Data Latch with TM 5 3-263 YL4 4-bit Data Latch with TM 14 3-265 LTK Data Latch 4 3-267 LTL 1-bit Data Latch with Clear 5 3-269 LTM 4-bit Data Latch with Clear 16 3-272 LT1 S-R Latch with Clear 3-274 LT4 4-bit Data Latch 4 14 3-259 CG10 Series Unit Cell library 3-260 CMOS Channeled Gate Arrays FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Name YL2 Function I • CG10 "Version I Number of BC 1-bit Data Latch with TM Cell Symbol IUP to KCL 1.706 0.725 0.034 0.034 Propagallon Delay Parameter tdn 10 KCL KCL2 CDR2 1.756 0.800 1 5 Path CK,lHto 0 0.023 0.023 0100 'D' CK IH TM Parameter Pin Name Input loading Factor (Iu) D CK IH TM 2 1 1 1 Pin Name Output Driving Factor (Iu) a 36 Symbol Typ (ns)· Clock Pulse width tew 4.3 Data SetuD Time Data Hold Time Iso 2.0 1.6 t"O • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Note: The TM tenninal must be kept LOW during the SCAN Mode. Function Table Input TM Output IH CK 0 a L x X 0 D H H X X 00 H X H X 00 H L L 0 D C10-YL2 EO Sheet 1/2 Mode SCAN LATCH I I Page 16-1 3-261 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION • CG10 • Version Cell Name YL2 Equivalent Circu~ X>------------------~Q o 0--------1 T XCKI -L XCKI TCKI J~~---.: ::~I Definitions of Parameters -tew - - CK tso tHO D 4-t .. _ Q C1D-YL2-EO Sheet 2/2 Page 16-2 3-262 I • CG10 .. Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Number of BC Function 4-bit Data Latch with TM YL4 Cell Symbol Propagation Delay Parameter tdn tup to KCL to KCL 2.081 0.688 0.034 0.034 2.144 0.806 0.023 0.023 KCL2 COR2 I 14 Path CK,lHto DtoO a -01 -02 01 020304- ~03 -04 CK --C IHTM--C Parameter Symbol Typ (ns)' Clock Pulse width (CK) tew 4.5 Data Setuo Time (0) Data Hold Time D tso 1.2 2.5 t"D Input Loading Factor (Iu) Pin Name 0 CK IH TM 2 1 1 1 Pin Name Output Driving Factor (Iu) Q 36 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Note: The TM terminal must be kept LOW during the SCAN Mode. Function Table Input Output Mode TM IH CK On On L X X 0 0 H H X X Ono H X H X Ono H L L 0 0 SCAN LATCH n=I-4 C10 YL4 EO I Sheet 1/2 I Page 16-3 3-263 .. CG10 .. Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name YL4 Equivalent Circu~ ~-----+-------------oOI 01 O-----------__H TXCKI XCKI -.L TCKI , 02 .-----------------------------...,.,...-------------<0 0-----------.....,... 03 0-----------.....,... 02 • _____________________________ 4 ..",...-------------<0 03 04 0>---------.-'------ - ----- - --- ----- -- -------'..--------004 J~ ~-----...,:~ ::~I Definitions of Parameters I--- lew --Ii CK Iso IHO o J f.- lpel - - Q C10-YL4-EO Sheet 212 Page 16-4 3-264 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I • CG10 "Version Number 01 BC Function LTK I Data Latch Cen Symbol Propagation Delay Parameler IeIn 10 KCL KCL2 CDR2 IUp 10 KCL 0.644 0.906 1.094 1.325 0.067 0.067 0.067 0.067 0.719 1.019 1.138 1.463 4 Pa!h 0.045 0.045 0.045 0.045 DtoO DtoXa GtoO GtoXa :Da XQ Parameter Pin Name Inpul loading Faclor(lu) D 2 1 G Pin Name Oulpul Driving Faclor(lu) Q XQ 18 18 Symbol Typ (ns)· G Inout Pulse Width IGW 2.5 Data SetuD Time Data Hold Time Iso 1.0 1.5 I~D • Minimum values lor Ihe Iypical operating condition. The values lor !he worsl case operaling condilion are given by lIIe maximum delay mull/pller. Function Table OulpulS In puIS D G Q XC X H CD XCD H L H L L L L H C 1O-LTK-EO I Sheet 112 I Page 16-5 3-265 .. FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION • CG10 • Version Cell Name LTK Equivalent Circu~ ....----------1 )0----0 0 )0--'---1):>--_--0(>----0 0 xo xco Txco -L Tco G~ : :~o Definitions of Parameters (Case1) G D a,XQ (Case2) o..-tso - ~ tHO .... 'I G D tpd a,xa C10-LTK-EO Sheet 2/2 Page 1/1-6 3-266 I . CG10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function LTL "Version I Number I 1-bit Data Latch with Clear Cell Symbol Propagation Delay Parameter tup Idn to KCL to KCL 0.869 0.738 0.950 1.225 1.388 0.067 0.067 0.067 0.067 0.067 0.531 0.763 1.069 1.200 1.569 0.051 0.051 0.051 0.051 0.051 KCL2 0' BC 5 Path CDR2 CLloQ, XQ DloQ DloXQ GloQ GloXQ r---- a DG--C r P-- xo Parameter G InDut Pulse Width Pin Name Input Loading Factor (Iu) 0 G CL 2 1 1 Output Driving Factor (Iu) 18 18 Pin Name a xo Symbol tGW Typ (ns)' 2.5 Data SetuD Time Data Hold Time tso tHO 0.9 0.4 Clear Pulse Width tew 2.5 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs Outputs CL 0 G a XQ L X H L H a. xOo H X H H H L H L H L L L H C10 LTL EO Sheet 1/2 l Page 16-7 3-267 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION • CG10 • Version Cell Name LTL Equivalent Circuit CLo--------------------, ...---------l P---<~-i o 0--------1 )0----0 c )C>--"""'--i ) ( > - - - - 0 xc XGO IXGO -L I GO Definitions of Parameters (Case1) taw --~I G D a,xa (Case2) G J - tHO"" tso D t.., a,xa 1\ G· Note·: G input must be high level at the time this latch is cleared. C1D-LTL-EO Sheet 2/2 Page 16-8 3-268 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I • CG10 .. Version Number of Be Function LTM I 4-bit Data Latch with Clear Cell Symbol Propagation Delay Parameler Idn CDR2 10 KCL KCl2 lup DADBDC- 00G --C r 10 KCL 0.963 0.763 1.000 1.631 1.706 0.067 0.067 0.067 0.067 0.067 0.606 0.806 1.119 1.531 1.969 16 Palll 0.045 0.045 0.045 0.045 0.045 CL 10 P, N 010 P 010 N GloP GloN f--PA p--NA f - - PB p - - NB I - - PC p - - NC f - - PO NO p-- Parameter G Input Pulse Width Pin Name Input Loading Factor (Iu) D 2 Typ (ns)· Symbol IGW 2.5 Clear Pulse Width ILW 2.5 Data Setup Time Data Hold Time Iso 1"0 1.0 1.5 1 4 G CL Pin Name Output Driving Factor (Iu) P N 18 18 • Minimum values for Ihe typical operating condition. The values for lIIe worsl case operaling condilion are given by lIIe maximum delay multiplier. Funclion Table Inputs Outputs CL 0 G P N L X H L H H X H Po No H H L H L H L L L H C10 LTM-EO Sheel113 I I Page 16-9 3-269 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION .. CG10 .. Version Cell Name LTM Equivalent Circuit CLo--~~-------, PA DA 0---+-----1 IXGO p---4i---i)C>---,---; )C>--~-o NA XGO -L I GO ~PB DB o---+: DC DO :---0 o---H :---0 NC ~PD C>------i C1Q-LTM-EO NB ~PC :---0 NO Sheet 21 Page 16-10 3-270 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION • CG10 • Version Cell Name LTM Definitions of Parameters (Case1) ---'\1 G o lpO P,N (Case2) G ~ISO- . . IHO- I{ o _Ipd_ P,N (CaSe3) ~llW- CL "G i-- Ipd ... P,N NOle" : G inpul must be high level al the time this latch is cleared. C10-LTM-EO Sheet 3/3 Page 16-11 3-271 FUJITSU CMOS GATE ARRAY UNIT CEll SPECIFICATION Cell Name Function LT1 I " CG10 .. Version . I Number of BC S-R Latch with CLEAR Cell Symbol tup to KCL 1.100 0.975 0.900 0.067 0.067 0.067 Propagation Delay Parameter teln fO KCL KCL2 CDR2 0.550 0.650 0.575 0.045 0.045 0.045 I 4 Path SIOO, XO RIOO, XO CLio 0, xo '=0=0 R XO Parameter CL Symbol Typ (n5)' Sel Pulse Width tsw 2.5 Resel Pulse Width tRW 2.5 Clear Pulse Width tlW 2.5 Input loading Faclor(lu) Pin Name 1 1 1 S R CL Oulpul Driving Factor (Iu) Pin Name a 18 18 xo • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs S R a L H H L H H H H 00 XOo H H L L H H L H H L H L L Inhibited C1o-LT1 EO 3-272 Outputs CL I Sheet 1/2 XO I I Page 16-12 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION • CG10 • Version Cell Name LT1 Equivalent Circuit S 0---------1 »---------1r-----D::>-------<> R xc C CL Definitions of Parameters -Isw -- S ..... I ....... Q,XQ -IRW -- R ..... I ....... Q,XQ , I4--ILW CL f4- -- Ipd ..... Q,XQ C10-LT1-EO Sheet 2/2 Page 16-13 3-273 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Name LT4 I .. CG10 .. Version Number 01 BC Function 4-bit Data Latch Cen Symbol Propagation Delay Parameler Idn KCL KCL2 COR2 10 lup I-- OAOB- p-- r--- oc- 10 KCL 1.563 1.563 0.656 0.875 0.067 0.067 0.067 0.067 1.425 1.906 0.738 1.000 0.045 0.045 0.045 0.045 I 14 Path GtoP GtoN Dto P Dto N PA NA PB NB p---p---- NC 00- I-- pc G-( I-- po ~NO Parameter Pin Nama Inpul Loading Faclor(lu) 0 2 1 G ... Symbol Typ (ns)' G Input Pulse Width IGW 2.5 Data Setup Time Data Hold Time Iso tHO 1.0 1.5 Output Prlvlng Factor (Iu) Pin Name 18 18 P N • Minimum values lor Ihe Iypical operating condition. The values lor the worst case operating condition are given by the maximum delay multiplier. Function Table Inputs Pulputs 0 G P H H Po No L H Po No H L H L L L L H C1D-LT4-EO 3-274 N Sheet 1/3 I Page 16-14 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION " CG10 " Version Cell Name LT4 Equivalent Circuit PA DA 0---'-------1 TXGO NA XGO -L TGO DB 0---+ DC 0---+ DO 0---+ C10-LT4-EO ~P8 ~NB ~pc ~NC Sheet 2/3 Page H>-15 3-275 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION • CG10 .. Version Cell Name LT4 Definitions of Parameters (Case1) G D 1 4 - - - - - lpel ----~ P,N (Case2) G j -tso- 'I I-- tHO- o 1\ _t"._ P,N C1D-LT4-EO Sheet 3/3 Page 16-16 3-276 CG10 Series Unit Cell Ubrary CMOS Channeled Gate Arrays Shift Register Family Page UnH Cell Name 3-279 FS1 4-bit Serial-in Parallel-out Shift Register 18 3-281 FS2 4-bit Shift Register with Synchronous Load 30 3-283 FS3 4-bit Shift Register with Asynchronous Load 34 3-286 SR1 4-bit Serial-in Parallel-out Shift Register with Scan 36 Function Basic Cells II1II 3-277 CG10 Series Unit CeR Library 3-278 CMOS Channeled Gate Arrays I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CEll SPECIFICATION Cell Name Function Number of BC I 4-bit Serial-in Parallel-out Shift Register FS1 Cell Symbol Propagation Delay Parameter tdn !up to KCL to KCL KCL2 COR2 1.513 0.067 1.963 0.051 0.067 4 18 Path CKtoO "D~ CK as OC 00 Symbol Parameter so tew 2.5 SD Setup Time SD Hold Time tSSD h-4S0 0.4 0.2 Clock Pause Time Input Loading Factor (Iu) Pin Name Typ (ns)' Clock Pulse Width C ~161u I I 16 < C <321u 32 < C ~481u 3.7 5.3 6.9 tCWl·· tcWL.... tcWLu 1 1 CK • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Pin Name Output Driving Factor (Iu) a 16 •• The value of !Cwe depends on the load(c) connected 10 the output terminals, OA, as, oc and 00. Function Table Inputs Outputs SD CK OA OB SD J. SO OAn OC OD OBn OCn NOTE: • SD = H or l • OAn, OBn and OCn are levels of OA, OB, and OC respectively, before the falling edge of CK, i.e. 1 bit shift by the falling edge of CK. C10-FS1-EO Sheet 1/2 I Page17-1 3-279 • CG10 "Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name FS1 Equivalent Circuit OA as OC 00 ------------------------------------------- --f---I- f-1 XCKO CKO -L -L so I I T T XCKO CKO CKO XCKO -L -L T T XCKO CKO 1 bil ----.----.------ .. ---------------------------~-CK~CKO V ~XCKO Definition of Parameters lew ICWL_ ,-- CK ~ISSD tHS~ so -'pda C1D-FS1-EO Sheet 212 Page17-2 3-280 I . CG70 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Name .. Version I Number of BC Function FS2 I 4-bit Shift Register with Synchronous Load Cell Symbol Propagation Delay Parameter tup to to 1.963 KCL KCL2 0.067 Path CDR2 4 CKtoO Symbol lew Typ (ns)" 2.5 SO SetuD Time SO Hold Time t sso '"so 1.8 0.8 Load Setup Time Load Hold Time I SL t"L 2.7 0.4 P Setup Time P Hold Time I sp I HP 2.3 1.0 tCWl'" 3.7 5.3 6.9 1.450 PAP8PCPD- tdn KCL 30 0.067 0.051 I--OA 1--08 I--OC I--OD SDCK--< L- Parameter Clock Pulse Width Pin Name Inpul Loading Faclor (Iu) CK L P 1 1 1 1 Pin Name Output Driving Faclor (Iu) 0 16 so C ~161u 16 < C <32 lu I 32 < C ~481u I Clock Pause Time ICWL" tCWl·" " Minimum values for Ihe typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. ""The value of iCWL depends on the load(e) connected 10 the output terminals. OA, 08, OC and 00. Function Table Inputs Outputs SO L P CK OA OB SO L X J,. SO OAn X H P J,. PA PB OC 00 OBn OCn PC PO NOTE: • SO = H or L • OAn, OBn and OCn are levels of OA, OB, and OC respectively, before the falling edge of CK, Le. 1 bit shift by the falling edge of CK . • P represents PA, PB, PC and PD. C1D-FS2-EO I Sheet 1/2 I Page 17-3 3-281 • CG10 .. Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name FS2 PA Equivalent Circuit SO C>--i---I----- OA PB rr-r-r '1- • - - - • - - - - •• - - - - - - - - • - - - - - - - - - - - • - • --)O---+-!- - - - - PC PO -r- T T XCKO CKO , 1 bit ............................................................................................... -'- .......................... .. CK~CKO L- V XCKO Definition of Parameters lew tCWL CK _tsse v--- tHSo- If so _Isp tHP- )( P ISl IHL L !--Ipd- a C10-FS2-EO Sheet 2/2 Page17-4 3-282 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function FS3 I • CG10 • Version I Number 01 BC I 4-bit Shift Register with Asynchronous Load Cell Symbol !Up PAPBPCPD- to KCL 1.425 2.900 1.269 0.072 0.072 0.072 Propagation Delay Parameter !dn to KCL KCL2 CDR2 1.325 2.188 1.888 34 Path CKloQ LloQ PloQ 0.062 0.062 0.062 f--OA f--os f--OC f--OD soCKL--< Parameter Pin Name Input Loading Factor (Iu) CK SO L P 2 2 1 2 Pin Name Outpul Driving Factor (Iu) 0 18 Symbol lew Typ (ns)' tCWH 2.5 2.5 Load Pulse Width ILW 3.9 SD SetuD Time SD Hold Time I SSD 0.7 1.1 Clock Pulse Width Clock Pause Time P SetuD Time P Hold Time IHSD 0.2 1.5 I SP I HP • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Outputs Inputs L P SD CK Q X X X X H i i H L L L H H X L H X H C10-FS3-EO I L L Sheet 113 I Page17-5 3-283 • CG10 .. Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cel/Name FS3 PA aA PB aB pc ac PO Equivalent Circuit SO 0 - - - - - - 1 .. Equivalent Circuit of FFO P DO CKO XCKO XLDO LOO a a ao ao DO T CKO C10-FS3-EO XCKO Sheet 2/3 Page17-6 3-284 1 . CG10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION • Version I Cell Name I FS3 Definition of Parameters CK ---""', t---1cw ----1--- Icw><_ , , so J - I s s o - !---IHSO- 'k l ILW P r---ISp IHP" .. C1o-FS3 EO I Sheet3~ l Page17-7 3-285 I .. CG10 .. Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Number of BC Funcllon Cell Name I 4-bit Serial-in Parallel-out Shift Register with SCAN SR1 Cell Symbol Propagation Delay Parameter !up !dn 10 KCL 10 KCL KCL2 CDR2 2.044 0.D38 2.106 0.039 0.062 7 36 Path CKtoQ 'U~ CK OB OC 00 IH SI A B Parameter Clock Pulse Width Clock Pause Time Data Setuo Time Data Hold Time Pin Name 3.5 3.5 2.1 1.0 tCWH Iso I"D Inpul Loading Faclor (Iu) 0 CK IH SI A.B 1 1 1 1 1 Pin Name Oulpul Driving FaClor (luJ a 36 C10-SR1 EO Typ (ns)' Symbol lew • Minimum values for Ihe typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Sheet 1/3 I 3-286 Page17-8 • CG10 "Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name SR1 OA D OB DO 00 SDO SOO CLK XClK ACK XACK BCK XBCK 51 CLK XClK ACK XACK BCK XBCK OC OD CLK XClK ACK XACK BCK XBCK XClK ACK XACK BCK XBCK FFO FFO FFO XBCK ClK ---L XClK ---L ---L FFO r - - - - i )0------000 1-+---1 DO BCK XClK XClK XACK )O---t----o SOO CLK ACK ---L ---L ---L I I SDO ACK ClK I I XACK XCLK BCK ---L ClK CK IH IXBCK XCLK o---J>o--r--- A . C10-SR1-EO XACK L.[>o-ACK o---J>o--r--- B . BCK L . [ > o - XBCK Sheet 2/3 Page 17-9 3-287 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I .. CG10 .. Version Cell Name SR1 Definition of Parameters t - - - 1 c w - - - i - - - ICWH_ CK o .. C10 SR1-EO 3-288 Sheet 3/3 I Page17-10 CG 10 Series Unit Cell Library CMOS Channeled Gate Arrays Parity Generator/Selector/Decoder Family Page UnH Cell Name Function Basic Cells Parity Generators/Checkers 3-291 PE5 5-bit Even Parity Generator/Checker 12 3-292 P05 5-bit Odd Parity Generator/Checker 12 3-293 PE8 8-bit Even Parity Generator/Checker 18 3-294 POB 8-bit Odd Parity Generator/Checker 18 3-295 PE9 9-bit Even Parity Generator/Checker 22 3-296 P09 9-bit Odd Parity Generator/Checker 22 2:1 Data Selector 12 Data Selector 3-297 P24 Decoders 3-298 DE2 2:4 Decoder 5 3-299 DE3 3:8 Decoder 15 3-301 DE4 2:4 Decoder 8 3-302 DE6 3:8 Decoder 30 3-304 T2B 2:1 Selector 2 3-305 T2C 2:1 Selector 4 3-307 T2D 2:1 Selector 2 3-308 T2E 2:1 Selector 5 3-309 T2F 2:1 Selector 8 3-311 T5A 4:1 Selector 5 3-313 V3A 1:2 Selector 2 3-314 V3S 1:2 Selector 4 .. Selectors Magnitude Comparator 3-315 MC4 Magnitude Comparator 42 3-289 CG10 Series Unit CaN UbrSry 3-290 CMOS Channeled Gale Arrays FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I • CG10 • Version Number 01 BC Function PES I 5-bit Even Parity Generator/Checker Cell Symbol Propagation Delay Parameler Idn 10 KCL KCL2 CDR2 lup AD Bl B2 Cl C2 10 KCL 1.638 1.638 2.S88 0.034 0.034 0.034 2.131 2.044 3.019 12 Palh AtoX BtoX CtoX 0.023 0.023 0.023 X Parameter Symbol Typ (ns)' Inpul Loading Faclor(lu) Pin Name B C 2 2 2 Pin Name OUlpul Driving Faclor(lu) X 36 A • Minimum values lor Ihe Iypical operating condition. The values lor Ihe worst case operating condilion are given by Ihe maximum delay multiplier. Function Table Equivalent Circuit l:input X Odd l Even H Bl I'"' B2 ....... X Cl C2 ..... II ..... ....... A C1o-PES EO Sheet 111 I Page 20-1 3-291 1m I " CG10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function I POS • Version I Propagation Delay Parameter tdn !Up AD Bl B2 Cl C2 to KCL 1"0 KCL 1.644 1.788 2.619 0.034 0.034 0.034 1.919 1.900 2.850 0.023 0.023 0.023 KCL2 12 I 5-bit Odd Parity Generator/Checker Cen Symbol Number of BC Path CDR2 AtoX Bto X CtoX X Symbol Parameter Pin Name Input Loading Factor (Iu) A B C 2 2 2 Pin Name Output Driving Factor (Iu) X 36 Typ (ns)' • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit Function Table l:input X Odd H Even L Bl B2 'r-.. ,L/ X Cl C2 Ir-.. r-.. .L/ A C1D-POS EO 3-292 Sheel1/1 I Page 20-2 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION -' Cell Name PE8 Function I • CG10 .. Version I Number of BC -r 5-bit Even Parity Generator/Checker Cell Symbol Propagallon Delay Parame.er .dn .0 KCL KCL2 COR2 tup .0 2.406 2.463 2.456 2.513 A1A28182C1C20102- 18 KCL 0.067 0.067 0.067 0.067 2.706 2.763 2.750 2.806 Palh AtoX Bto X CtoX DtoX 0.045 0.045 0.045 0.045 P-X Symbol Parameter Pin Name Input Loading Fac'orClu) A 8 C 0 2 2 2 2 Typ Cns)' Output Driving Pin Name Fac.or Clu) X 18 • Minimum values for .he typical operating condition. The values for Ihe worst case operating condition are given by the maximum delay multiplier. Function Table Equivalent Circuit A1 l:input A2 X Odd L 81 Even H 82 Ir-... II ...... Ir-... II ...... X , ....... 01 'r-... 02 C1D-PE8 EO Sheet 111 I r-... C1 C2 ...... I Page 20-3 3-293 .. FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Function Cell Name POS I • CG10 • Version I Number of BC I 8-bit Odd Parity Generater/Checker Cell Symbol Propagation Delay Parameter tdn to KCL KCL2 CDR2 lup A1A29192C1C201D2- to KCL 2.356 2.413 2.419 2.475 0.067 0.067 0.067 0.067 2.675 2.731 2.606 2.663 18 Path AtoX BtoX CtoX DtoX 0.045 0.045 0.045 0.045 -X Symbol Parameter Pin Name Input Loading Factor (Iu) A 8 C D 2 2 2 2 Pin Name Output Driving Factor (Iu) X 18 Typ (ns)' • Minimum values for the typical operating condition. The values lor the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit Function Table tinput X Odd L Even H A1 A2 81 82 11'"' ...... '"' /I I ...... X C1 C2 I'"' 01 '"' 02 C10-P08 EO 3-294 Sheet 1/1 I II ...... ...... I Page 20-4 I .. CG10 .. Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Name PE9 Number of BC Function I 9-bit Even Parity Generator/Checker Cell Symbol Propagation Delay Parameter lup Idn 10 KCL 10 KCL 3.306 0.067 3.569 0.045 KCL2 22 Path CDR2 Ato X AlA2A3- M- ~X ASA6A7ASA9- Symbol Parameter Pin Name Inpul Loading Factor (Iu) A 2 Pin Name Oulput Driving Factor (Iu) X 18 Typ (ns)· • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Equivalent Circuit A3 l:input X Odd L AS A9 Even H AI C10-PE9-EO I Sheet 1/1 I ...... A2 +PTt7 A4 ...u:::::.. AS Tt7 A6 A7 --J..+::>.. ...... X Tt7 I Page 20-5 3-295 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I . CG10 .. Version _1 Function P09 9-bit Odd Parity Generator/Checker Prop~9a1ion Cell Symbol tup AtA2A3A4ASA6A7ASA9- to KCL to 3.250 0.067 3.569 Delay Parameter tdn KCL KCL2 CDR2 Number of BC I 22 Path AtoX 0.045 t--x Symbot Parameter Typ (n5)' Input Loading Factor (Iu) Pin Name A 2 Pin Name Output Driving Factor (Iu) X 18 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit Function Table A3 :Einput X AS Odd H A9 Even L Al A2 C10 P09-EO 3-296 I Sheet 1'1 I ..... ~ II Tt7 A4 AS ~ AS A7 ~ IV' X I Page20-6 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I • CG10 " Version Number 01 BC Function P24 I 4-wide 2 : 1 Data Selector Cell Symbol PropagaUon Delay Parameter !dn io CDR2 KCL KCL2 !up A181A282A3B3M84SAS8- to KCL 0.594 0.725 0.506 0.625 0.034 0.034 0.034 0.034 0.519 0.606 0.594 0.675 12 Path AtoX Bto X SAtoX SBto X 0.023 0.023 0.023 0.023 -X1 -X2 -X3 -X4 Symbol Parameter Pin Name Input Loading Factor (Iu) A 8 S 1 1 4 Pin Name Output Driving Factor (lui X 36 Typ (ns)' • Minimum values lor the typical operating condition. The values for the worst case operating condition are given by !he maximum delay multiplier. Function Table Equivalent Circuit SA SB Xn L H L H L L H H L An Bn An+Bn A1 roo-B1 X1 - A2 ~ B2 X2 A3 ~ B3 X3 A4 ~ 84 X4 ~ SASB- C10-P24-EO I Sheet 1/1 I I Page20-7 3-297 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I • CG10 • Version Number 01 BC Function DE2 I 2: 4 Decoder Cell Symbol tup to KCL 0.494 0.550 0.231 0.550 0.175 0.494 0.067 0.067 0.067 0.067 0.067 0.067 Propagation Delay Parameter tdn to KCL KCL2 CDR2 0.675 0.606 0.281 0.606 0.350 0.675 5 Path AtoXO AtoX1 Ato X2,X3 Bto XO B to X1,X3 BtoX2 0.079 0.079 0.079 0.079 0.079 0.079 'D" X, X2 X3 B Symbol Parameter Pin Name Input Loading Factor (Iu) A B 3 3 Pin Name Output Driving Factor (Iu) X 18 Typ (ns)' • Minimum values lor the typical operating condition. The values tor the worst case operating c:ondition are given by the maximum delay multiplier. Function Table Inputs Equivalent Circuit Outputs A A B X3 X2 X1 XO L L H H L H H H H L H H L H H L H H H L H L H H B ~ XO x, r~ X2 X3 Cl0 DE2 EO 3-298 Sheet 1/1 I Page 20-8 I • CG10 " Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Number of BC Function 3: 8 Decoder DE3 Cell Symbol Propagation Delay Parameter Idn tup -XO -Xl -X2 -X3 -X4 -X5 -X6 AB- c- 15 I to KCL to KCL 0.900 1.525 0.831 1.456 0.769 1.394 0.067 0.067 0.067 0.067 0.067 0.067 1.044 1.525 1.075 1.556 1.113 1.594 0.107 0.107 0.107 0.107 0.107 0.107 KCL2 Path CDR2 Ato Ato Bto Bto C to C to XO-X3 X4-X7 XO-X3 X4-X7 XO-X3 X4-X7 r--X7 Symbol Parameter Typ (ns)' Inpul Loading Faclor (Iu) Pin Name C 1 1 1 Pin Name Oulpul Driving Faclor (Iu) X 14 A B • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay mul~plier. Function Table Inputs Outputs A B C XO X1 X2 X3 X4 X5 X6 X7 L L L H H L L H H L H L H L H L H L H H H H H H H H L H H H H H H H H L H H H H H H H H L H H H H H H H H L H H H H H H H H L H H H H H H H H L H H H H H H H H L L L L H H H H C10-DE3-EO Sheet 1/2 I Page 20-9 3-299 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION .. CG10 .. Version Cell Name DE3 Equivalent Circuit A 0----1 )0.-1>----------..--1 0 - - - 0 XO B 0----1 c 0---1 )o.-1-----+-1f-4 b---o Xl b---o X2 0---0 X3 b---o X4 ~-1-----+- 1}--xo -Ff) -- Ff) L::f) C10 DE4 EO I Sheet 111 I XI X2 X3 I Page 20-11 3-301 Ell I .. CG10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Name DE6 " Version Number 01 BC Function 3 : 8 Decoder with Enable Cell Symbol Propagation Delay Parameter tdn tup to KCL fO KCL 1.906 1.806 0.067 0.067 3.719 2.050 0.045 0.045 KCL2 CDR2 I 30 Path GloX Slo X r-- XO GtG2G3- t--Xt t--X2 t--X3 t--X4 t--X5 f--X6 t--X7 S1S2S3- Symbol Parameter Typ (ns)' Input Loading Factor (Iu) Pin Name G S 1 1 Pin Name Output Driving Factor (Iu) X 18 • Minimum values tor the typical operating condition. The values for the worst case operating condition arB given by the maximum delay multiplier. Function Table Gl G2+G3 S3 S2 Sl X7 X6 X5 X4 X3 X2 Xl XO X L H X X X X X X H H H H H H H H H H H H H H H H H H H H H H H H L L L L L L L L L L L L L L L H H H H L L L L L L H H H H H H H H H L H H H H H H H H H H H L H H L H H H H H H H H H L H L H H H H H H H H H H H H H H H H H H H H H H H H H H H H C10-DE6-EO I 3-302 X H H H H Sheet 1/2 L L I Page 20-12 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION .. CG10 • Version Cell Name DE6 Equivalent Circuit Gl " > - - - 0 XO G2o-----4~r--+~-----~~~ G3O-----+~ ) - - - 0 Xl )---0 X2 >---<> X3 >---OX4 Sl 0----4 )o---H-I--t )c)--+--+-I--l---I " > - - - 0 X5 )---OX6 )---OX7 S3 0----4 C10-DE6-EO )O-----~ )(>---~--t Sheet 2/2 Page 20-13 3-303 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Function Cell Name I • CG10 "Version I Number of BC 2 : 1 Selector T2B Cen Symbof Propagation Delay Parameter !dn to KCL KCL2 CDR2 !Up to KCL 0.325 0.381 0.067 0.067 0.488 0.619 I 2 Path A.BtoX StoX 0.051 0.051 :D' SI S2 Parameter Symbol Typ (ns)' Input Loading Factor (Iu) Pin Name A.B S 2 1 Pin Name Output Driving Factor (Iu) X 18 • Minimum values lor the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Equivalent Circuit Inputs Outputs A B S1 S2 X L H H L L H H H L H H H ...LA H X X L L H H H H H L L L L L L H H L L H H L L Inhibit Inhibit Inhibit Inhibit =t- ~X B SI -r S2 C10 T2B-EO 3-304 Sheet 1/1 I I Page 20-14 I • CG10 "Version I Number 01 BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Function I Cell Name T2C Dual 2 : 1 Selector Cell Symbol Propagation Delay Parameter Idn lup 10 KCL 10 KCL 0.319 0.419 0.067 0.067 0.481 0.644 0.051 0.051 KCL2 CDR2 I 4 Path A,Bto X Sto X lr s A1A2B1B2- p..-XO p.--X1 Symbol Parameter Typ (ns)' Inpul Loading Faclor (Iu) Pin Name S 2 2 Pin Name Output Driving Faclor (Iu) X 18 A,B • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Tab)e Inputs Outputs A1 ,B1 A2, B2 S1 52 XO X1 L H X X L H L H X X L H H L L H H L L H L L H H H H L L L L H H H L H L Inhibit Inhibit Inhibit Inhibit H L H L Inhibn Inhibn Inhibit Inhibit C1Q-T2C-EO I Sheet 1/2 I I Page 2Q-15 3-305 " CG10 "Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name T2C Equivalent Circuit A1 0---+---1 XO A2 0---/---1 Bl 0---/---1 Xl B2 0---/---1 Slo------' S20---------' lID C10-T2C-EO Sheet 2/2 Page 20-16 3-306 " CG10 .. Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Number of Be Function 2 : 1 Selector T2D I Cell Symbol 2 Propagation Delay Parameter !up tdn to KCL 0.388 0.419 0.076 0.076 1'0 0.438 0.319 KCL KCL2 COR2 Path A.Sto X Sto X 0.067 0.067 :D' SI S2 Symbol Parameter Typ (ns)' Input Loading Factor (Iu) Pin Name 5 1 1 Pin Name Output Driving Factor (Iu) X 14 A.B • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Equivalent Circuit Function Table Inputs Outputs A S S1 S2 X L X X H H H H L L H H L H L L H X X L L H H L H H H L L L H L H L H A L L Inhibit Inhibit Inhibit Inhibit B 51 Etr- -Ox B--,- 52 C10 T20-EO Sheet 1/1 Page 20-17 3-307 • CG10 .. Version FUJITSU CMOS GATE ARRAY UNiT CELL SPECIFICATION Cell Name Function T2E Number 01 BC Dual 2 : 1 Selector Cell Symbol Propagation Delay Parameter tdn to KCL KCL2 CDR2 tup to KCL 0.338 1.025 0.067 0.067 0.338 1.013 0.056 0.056 4 4 0.079 0.079 I 5 Path A,BtoX StoX "D~ A2 Bl B2 XI S Symbol Parameter Input Loading Factor (Iu) Pin Name A.B S 2 1 Pin Name Outpul Driving Faclor (Iu) X 18 l1.li Typ (ns)' • Minimum values lor the typical operating condition. The values lor the worst case operaling condilion are given by the maximum delay mUltiplier. Equivalent Circuit Il AI ::E- ~XO A2 r---=c Bl ::E- ~Xl 82 T S C10-T2E EO 3-308 I Sheet 1/1 4 I Page 20-18 I "CG10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function T2F I 2 : 1 Selector Cell Symbol Propagation Delay Parameter !dn tup AlA2BlB2ClC2DlD2- to KCL 0.338 1.025 0.067 0.067 to 0.338 1.013 KCL KCl2 0.056 0.056 0.079 0.079 "Version Number of Be CDR2 4 4 8 Path A,B,C,DIO X SloX p.--XO p-Xl p.--X2 p.--X3 5Parameter Pin Name Inpul Loading Faclor (Iu) A,B.C,D 5 2 1 Pin Name Oulpul Driving Faclor (Iu) X 18 Symbol Typ (ns)' • Minimum values for the typical operating condition. The values for the worsl case operaling condilion are given by the maximum delay multiplier. C10-T2F-EO I Sheel1/2 I I Page 20-19 3-309 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "CG10 "Version Cell Name T2F Equivalent Circuit XO Xl X2 X3 s C10-T2F-EO Sheet 2/2 Page 20-20 3-310 I "CG10 " Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Number of BC Function T5A 4 : 1 Selector Cell Symbol Propagation Delay Parameter tdn to KCL KCL2 CDR2 lup to KCL 0.625 0.625 0.350 0.097 0.097 0.097 0.625 0.525 0.338 I 5 Palh A,810X Sl-410X S5-610 X 0.090 0.090 0.090 !SrrT A1A2B1B2- p..-X IJs Symbol Parameter Typ (ns)' Input Loading Factor (Iu) Pin Name A.B S 1 1 Pin Name Output Driving Factor (Iu) X 9 • Minimum values tor the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Oulput Inputs A1 A2 81 82 51 52 L L H L H H H H L L L H L H L H 53 L L H H 54 55 56 X H H L L L L L L H H H H H H H H L L L L H L H L H L H L A1",A2 to Sl=S2 or S5=S6lnhibit 81",82 to 53=54 or S5=S6lnhibit A1,A2",81,82 or SS=S6lnhibit C10-TSA EO I Sheet 1/2 I Page 20-21 3-311 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION • CG10 • Version Cell Name T5A Equivalent Circuit A1 0 - - - 1 )o--+---1 A20---I )0--+-1 51o_------1 520_--------------~ +---<>x 540_----------, 530_-----, B1 0 - - - 1 )o--+---1 B2 0----1 )0---+----1 ~o_--------------------------~ ~o_----------------~ Cl0-TSA-EO Sheet 2/2 Page 20-22 3-312 I • CG10 • Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Function I Cell Name V3A I 1 : 2 Selector Cell Symbol PropagaUon Delay Parameter tdn to KCL KCL2 CDR2 tup to KCL 0.388 0.344 0.076 0.076 0.438 0.281 2 Path Ato X Sto X 0.067 0.067 'U'" SI S2 XI Sy_mbol Parameter Typ (ns)' Input Loading Factor (Iu) Pin Name A 1 1 S Output Loading Factor (Iu) Pin Name 1 X Pin Name Output Driving Factor (Iu) X 14 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. lID Equivalent Circuit Function Table Inputs Outputs XO Il- X1 A 81 S2 L L L L H L X H L L H H X L H H xo Inhibit Ao-{>o- r XI Inhibit H L L H H L X L H L H L X H H H 51 C10-V3A EO --r 52 Inhibit Sheet 1/1 I Page 20-23 3-313 " CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function V38 J Dual 1 : 2 Selector Cell5ymbol top to KCL 0.400 0.356 0.076 0.076 Propagation Delay Parameter tdn to KCL2 CDR2 KCL 0.475 0.300 Number of BC I 4 Path A,Bto X stoX 0.067 0.067 'D" B 51 52 Xl X2 X3 ~mbol Parameter Pin Name Input Loading Factor (Iu) A B 5 1 1 2 Typ (ns)' Output Loading Factor (Iu) Pin Name X 1 Pin Name Output Driving Factor (Iu) X 14 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Equivalent Circuit Inputs Outputs A,B 51 52 XO, L L L L H L X H L L H H X L H H H L L H H L X L H L H L X H H H X2 X1, X3 Inhibit I-l- ,~r~ ~D XO Xl -3: Inhibit ,~r~ ~~ Inhibit 51 X2 X3 -r 52 C10-V3B EO 3-314 Sheet 1/1 I Page 20-24 I " CG10 " Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Number of BC Funcllon MC4 Propagation Delay Parameter tup A3B~== A2 B: = = BlA1 BO = = AO " IGIEIS- -OG r--OE r--OS tdn to KCL to KCL KCL2 CDR2 3.306 3.363 1.475 1.206 3.238 3.294 1.406 1.331 3.556 3.488 1.338 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.122 0.067 0.067 0.067 3.950 3.881 1.738 1.506 4.081 4.013 1.869 1.444 2.725 2.781 0.894 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.051 0.051 0.051 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.067 0.067 0.067 4 4 4 4 4 4 4 4 4 4 4 Path Ato OS BtoOS IEtoOS IGtoOS AtoOG BtoOG IEtoOG IStoOG AtoOE BtoOE IEto OE Symbol Parameter 42 I 4-bit Magnitude Comparator Cell Symbol Typ (ns)' Input Loading Factor (Iu) Pin Name A B IE IG IS 3 3 1 1 1 Pin Name Output Driving Factor (Iu) OE OG OS 18 10 10 • Minimum value. for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Comparing Inputs Cascading Inputs A3,B3 A2,B2 Al,Bl AO,BO A3>B3 A3 B2 A2 Bl Al BO AO B) IS (AB) OS (A V- if-Equivalent Circuit 1 OG r-- A2 B2~ V- IS f- => - ~t~ P- f-- .---L.I r-- IE OE I-~l.-' r-- IG Al Bl -I :~ ~ Pl.-' -f--r-- l.-' OS 1\ U 1 1 AO BO C10 MC4-EO 3-316 1 Sheet 2/2 ~ if-I Page 20-26 CMOS Channeled Gate Arrays CGIO Series Unit CeO Library Bus Driver Family Basic Unit Cell Page Name Function Cells 3-319 B11 1-bit Bus Driver 5 3-320 B41 4-bit Bus Driver 9 IDI 3-317 CG10 Series Unit CaN Ubrary 3-318 CMOS Channeled Gate Arrays • CG10 .. Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Name Number of BC Function I 1-bit Bus Driver 811 Cell Symbol Propagation Delay Parameter tdn tup to 0.931 0.738 KCL 0.038 0.038 1'0 KCL 0.869 0.606 0.028 0.028 KCL2 5 Path CDR2 Ato X Cto X ';=o-~ Symbol Parameter Typ (ns)' fnput Loading Factor (Iu) Pin Name 1 1 A C Output Loading Factor (Iu) Pin Name X 1 Pin Name Output Driving Factor (Iu) X 36 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Function Table Equivalent Circuit Co Inputs --L XO AO T Co C h{»--c Output AO C XO X H Z L L L H L H o Co Cl0 Bll EO I Sheet 111 I Page 18-1 3-319 I "CG10 "Version I Number 01 BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Name 841 Function 4-bit Bus Driver Cell Symbol Propagation Delay Parameter !Up AOAlA2A3C I teln to KCL to KCL 0.988 1.563 0.030 0.030 0.950 1.188 0.034 0.034 KCL2 9 Path CDR2 AtoX CtoX -XO XI -X2 -X3 --< Symbol Parameter Typ (n$)' Input Loading Factor (Iu) Pin Name 1 1 A C Output Loading Factor (Iu) Pin Name X 1 Pin Name Output Driving Factor (Iu) X 36 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay mul1iplier. Function Table Equivalent Circuit Co AO ; ................................... ... -(- ..... ~ ,, ,,, ,, , ,, ,, Inputs XO :-------------~-: CO .------------------. ' - , - - - XI ... _--_ ... ----_ . .._-----_ -------.----------. Al---: A2---: Output An C Xn X H Z L L L H L H n=0-3 : - - - X2 .,-----------------_ ------------------.. A3---:,----_ ...................... --- -_.' - , - - - X3 C [»-rl»-co CO C10-B41 EO 3-320 I Sheet 1/1 I Page 18-2 CMOS Channeled Gate Arrays CG10 Series Unit Cell Library Clip Cells Page Unit Cell Name 3-323 zoo 0 Clip 3-324 Z01 1 Clip Function Basic Cells o o .. 3-321 CG10 Series Unit Cell Ubrary 3-322 CMOS Channeled Gate Arrays FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I . CG10 • Version I Function Cell Name o Clip ZOO Cen Symbol \Up 10 KCL Number 01 Be I Propagation Delay Parameler Idn KCL 10 KCL2 CDR2 a Path X ~ Parameter Pin Name Inpul Loading Faclor(lu) Pin Name OUlpul Driving Faclor(lu) X 200 Typ (ns)' Symbol • Minimum values for Ihe typical operating condition. The values for the worsl case operating condilion are given by !he maximum delay multiplier. C1Q-ZOQ-EO I Sheet 1/1 I Page 19-1 3-323 IDII FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I • CG10 • Version Number 01 BC Function Z01 I 1 Clip Cell Symbol !Up 10 KCL Propagallon Delay Parameler !dn 10 CDR2 KCL KCl2 0 Palh Y X Parameter Pin Name Input Loading Faclor(lu) Pin Name Output Driving Faclor (Iu) X 200 Typ (ns)· Symbol • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10-Z01-EO 3-324 Sheet 1/1 I Page 19-2 CMOS Channeled Gate Arrays CG10 Series Unit Cell Library, I/O Buffer Family Page Unit Cell Name Function Basic Cells Input Buffers 3-329 3-330 3-331 3-332 3-333 3-334 3-335 3-336 3-337 3-338 3-339 3-340 3-341 3-342 3-343 3-344 3-345 3-346 3-347 3-348 3-349 3-350 3-351 3-352 3-353 3-354 3-355 3-356 3-357 3-358 3-359 3-360 3-361 3-362 3-363 3-364 11B 11BU 11BO 12B 12BU 12BO IKB IKBU IKBO IKC IKCU IKCO ILB ILBU ILBO ILC ILCU ILCO 11C 11CU 11CO 12C 12CU 12CO 11S 11SU 11S0 12S 12SU 12S0 11R 11RU 11RO 12R 12RU 12RO Output Buffers 01B1 01BF2 3-365 3-366 Input Buffer (Inverter) 11B with Pull-up Resistance 11B with Pull-down Resistance Input Buffer (True) 12B with Pull-up Resistance 12B with Pull-down Resistance Clock Input Buffer (Inverter) IKB with Pull-up Resistance IKB with Pull-down Resistance CMOS Interface Clock Input Buffer (Inverter) IKC with Pull-up Resistance IKC with Pull-down Resistance Clock Input Buffer (True) ILB with Pull-up Resistance ILB with Pull-down Resistance CMOS Interface Clock Input Buffer (True) IKC with Pull-up Resistance IKC with Pull-down Resistance CMOS Interface Input Buffer (Inverter) 11Cwith Pull-up Resistance 11C with Pull-down Resistance CMOS Interface Input Buffer (True) 12C with Pull-up Resistance 12C with Pull-down Resistance Schmitt Trigger Input Buffer (CMOS, Inverter) 11 S with Pull-up Resistance 11S with Pull-down Resistance Schmitt Trigger Input Buffer (CMOS, True) 12S with Pull-up Resistance 12S with Pull-down Resistance Schmitt Trigger Input Buffer (TTL, Inverter) 11 R with Pull-up Resistance 11 R with Pull-down Resistance Schmitt Trigger Input Buffer (TTL, True) 12R with Pull-up Resistance 12R with Pull-down Resistance Output Buffer (Inverter) Output Buffer (Inverter) 5 5 5 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 5 5 5 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 3 3 Continued on next page 110L=3.2 rnA 210L = 8 rnA 310L = 12 rnA 3-325 CG10 Series Unit Ceu Ubrary CMOS Channeled Gate AmI)'s 1/0 Buffer Family Page Unit Cell Name Output Buffers 01L3 3-367 01Rl 3-368 01RF2 3-369 3-370 01S3 02Bl 3-371 02BF2 3-372 02L3 3-373 02Rl 3-374 3-375 02RF2 02S3 3-376 O4Tl 3-377 O4TF2 3-378 3-379 04W3 O4Rl 3-380 O4RF2 3-381 O4S3 3-382 3-383 02S24 3-384 O4S24 Basic Cells Function Power Output Buffer (Inverter) 3 5 Output Buffer (Inverter) with Noise Limit Resistance Output Buffer (Inverter) 5 Power Output Buffer (Inverter) with Noise Limit Resistance 5 Output Buffer (True) 2 Output Buffer (True) 2 Power Output Buffer (True) 2 4 Output Buffer (True) with Noise Limit Resistance Output Buffer (True) with Noise Limit Resistance 4 Power Output Buffer (True) with Noise Limit Resistance 4 3-state Output Buffer (True) 4 4 3-state Output Buffer (True) Power 3-state Output Buffer (True) 4 Output Buffer (True) with Noise Limit Resistance 5 3-state Output Buffer (True) with Noise Limit Resistance 5 Power 3-state Output Buffer (True) with Noise Limit Resistance 5 High Power Output Buffer (True) with Noise Limit Resistance 6 High Power Output Buffer (True) with Noise Limit Resistance 7 Bidirectional 1/0 Buffers (Buses) H6Tl 3-state Output and Input Buffer (True) 3-385 H6T with Pull-up Resistance 3-386 H6TU 3-387 H6TD H6T with Pull-down Resistance H6TF2 3-state Output and Input Buffer (True) 3-388 H6TFU H6TF with Pull-up Resistance 3-389 3-390 H6TFD H6TF with Pull-down Resistance 3-391 H6W3 Power 3-state Output and Input Buffer (True) 3-392 H6WU H6W with Pull-up Resistance H6W with Pull-down Resistance 3-393 H6WD H6Cl 3-394 3-state Output and CMOS Interface Input Buffer (True) H6CU 3-395 HSC with Pull-up Resistance HSCD 3-396 H6C with Pull-down Resistance HSCF2 3-397 3-state Output and CMOS Interface Input Buffer (True) H6CFU 3-398 HSCF with Pull-up Resistance HSCFD 3-399 HSCF with Pull-down Resistance H6E3 3-400 Power 3-state Output and CMOS Interface Input Buffer (True) 3-401 H6EU H6E with Pull-up Resistance 1101. =3.2 rnA 2101._ 8 rnA 310L -12 rnA 4101L=24 rnA 3-326 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 Continued on next page CMOS Channeled Gate Arrays CG10 Series Unit Cell Library 1/0 Buffer Family Page Unit Cell Name Basic Cells Function Bidirectional I/O Buffers (Buses) 3-402 H6ED H6E with Pull-down Resistance 3-403 H6S t 3-state Output and Schmitt Trigger Input Buffer (CMOS, True) H6S with Pull-up Resistance 3-404 H6SU H6SD H6S with Pull-down Resistance 3-405 H6Rt 3-406 3-state Output and Schmitt Trigger Input Buffer (TTL, True) 3-407 H6RU H6R with Pull-up Resistance 3-408 H6RD H6R with Pull-down Resistance H8Tt 3-state Output with Noise Limit Resistance (True) and 3-409 Input Buffer 3-410 H8TU H8T with Pull-up Resistance 3-411 H8TD H8T with Pull-down Resistance H8TF2 3-state Output with NOise Limit Resistance (True) and 3-412 Input Buffer 3-413 H8TFU H8TF with Pull-up Resistance H8TF with Pull-down Resistance 3-414 H8TFD 3-415 H8W3 Power 3-state Output and Input Buffer (True) 3-416 H8WU H8W with Pull-up Resistance 3-417 H8WD H8W with Pull-down Resistance H8Ct 3-state Output with Noise Limit Resistance and 3-418 CMOS Interface Input Buffer (True) 3-419 H8CU H8C with Pull-up Resistance 3-420 H8CD H8C with Pull-down Resistance H8CF2 3-421 3-state Output with Noise Limit Resistance (True) and Input Buffer 3-422 H8CFU H8CF with Pull-up Resistance 3-423 H8CFD H8CF with Pull-down Resistance H8E3 3-424 Power 3-state Output with Noise Limit Resistance and CMOS Interface Input Buffer (True) 3-425 H8EU H8E with Pull-up Resistance 3-426 H8ED H8E with Pull-down Resistance 3-427 H8S t 3-state Output with NOise Limit Resistance and Schmitt Trigger Input Buffer (True) H8S with Pull-up Resistance H8SU 3-428 3-429 H8SD H8S with Pull-down Resistance H8Rt 3-state Output with Noise Limit Resistance and 3-430 Schmitt Trigger Input Buffer (True) 3-431 H8RU H8R with Pull-up Resistance H8RD 3-432 H8R with Pull-down Resistance H8W24 High Power 3-state Output and Input Buffer 3-433 8 12 12 12 12 12 12 9 9 9 9 9 9 9 9 9 9 9 9 13 13 13 13 13 13 11 Continued on next page 'loL -3.2 rnA 210L = 8 rnA 310L -12 rnA 4101L=24rnA 3-327 CGfO Ssrifls Unit Gel Library CMOS Channelfld Gate Anays 1/0 Buffer Family Page Unn Cell Name Function Bidirectional 110 Buffers (Buses) 3-434 H8W1 H8W2 with Pull-up Resistance 3-435 H8WO H8W2 with Pull-down Resistance 3-436 H8E24 High Power 3-state Output with Noise Limit Resistance and Input Buffer (True) 3-437 H8E1 H8E2 with Pull-up Resistance 3-438 H8EO H8E2 with Pull-down Resistance '101. - 3.2 mA 210l_8mA 31ot. _12 mA 4101L_24 mA 3-328 Basic Cells 11 11 11 11 11 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Name Function I • CG10 • Version I Number of Be Input Buffer (Inverter) 118 Cell Symbol tup to 1.000 KCL 0.017 Propag.llon DeI.y P.r.m.... IIIn KCL KCL2 COR2 to 0.963 I 5 Path XtolN 0.023 X-{:>o--IN Parameter Pin Name Inpul Loading Factor (Iu) Pin Name Output Driving Factor (Iu) IN Typ n•• Symbol 36 • Minimum values for the typical operating condition. The values for the worst case operating oondition are given by lhe maximum delay multiplier. C10-11B-EO Sheet 1/1 I Page 21-1 3-329 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I • CGtO • Version Number 01 Be Function Input Buffer (Inverter) with Pull-up Resistance 11BU Cell Symbol \lJ to KCL 1.000 0.017 Propagation Delay Parameter IIln to KCL KCL2 CDR2 0.963 I 5 Path XlolN 0.023 X-[::>o-IN Parameter Pin Name Input Loading Factor (Iu) Pin Name Output Driving Factor (Iu) IN Typ, n •• Symbol 36 • Minimum values fOf lIle typical operating condition. The values for lIle worst case operating condition are given by !he maximum delay multiplier. C10-11 B lJ-EO 3-330 Sheel1/1 J I Page 21-2 I • CG10 • Version I Number 01 Be FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function Input Buffer (Inverter) with Pull-down Resistance 1180 Cell Symbol ProPIIgatlon Delay Parameter !Up I !dn to KCL to KCL 1.000 0.017 0.963 0.023 KCL2 5 Path CDR2 Xto IN X-(:>o--IN Parameter Pin Name Input Loading Factor (Iu) Pin Name Output Driving Factor (Iu) IN Typ(nl) • Symbol 36 • Minimum values for the typical operating condition. The values for the worst case operating oondition are given by the maximum delay multiplier. C1G-11BD-EO_ I Sheet 1/1 I I Page 21-3 3-331 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I • CG10 • Version Number 01 Function Cell Nam. Input Buffer (True) 128 Cell Symbol tu 10 KCL 0.663 0.017 Propagation Delay P.r.metor 1I:In KCL 10 KCL2 CDR2 1.150 I Be 4 Pa!h Xto IN 0.023 X-{»-IN Parame1er Pin Nam. Input L""dlng Factor (Iu) Pin Name Output Driving Feclor(lu) IN Tvp, n• • Svmbol 36 • Minimum values for !he typical operating condition. The values for !he worst case operating conation are given by !he maximum delay multiplier. C1o-I2B-EO 3-332 Sheet 1/1 I Page 21-4 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Nam. • Version Numbe.olBC Input Buffer (True) with Pull-pu Resistance 12BU Cell Symbol IUp X I . CG10 Function ----[:>-- to KCL 0.663 0.017 1.150 4 Path XtolN 0.023 IN Parameler Pin Name Inpul Loading Fletor(lu) Pin Name Output Driving Fletor(lu) IN Propagation DeIlY Perimeter USn '10 KCL KCl2 COR2 I Typ n• • Symbol 36 • Minimum values lor the typical operating condition. The values lor the worsl case operating conation are given by the maximum delay multiplier. C1D-12BU-EO Sheet 1/1 I Page 21-5 3-333 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Nam. I • CG10 • Version Numt>erol Function Input Buffer (True) with Pull-down Resistance 128D Cell Symbol IUp to KCL 0.663 0.017 Propagation Dalay Parameler tdn CDR2 KCL KCL2 to 1.150 I Be 4 Path Xto IN 0.023 X - - - [ : ) - - - IN Parameter Pin Name Input Loading Factor (Iu) Pin Name Output Driving Factor (Iu) IN Symbol Typ (n.)· 36 • Minimum values for the typical operating conation. The values lor the worst case operating condition are given by IhII maximum delay multiplier. C10-12BD-EO 3-334 Shee 1/1 I Page 21-6 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I • CG10 • Version I Funcllon Cell Name IKB Clock Input Buffer (Inverter) Cell Symbol III x-{:>o-- to KCL 1.540 0.006 Propagation Delay Parameter IIIn to KCL KCl2 CDR2 1.010 Number of Be I 4 Path Xlo CI 0.005 CI Parameter Pin Name Input Loading Factor (Iu) Pin Name Output Driving Factor (Iu) CI 200 Symbol Typ (nl)· • Minimum values lor the typical operating condition. The values lor the worst case operating condition are given by the maximum delay multiplier. C10-IKB-EO I Sheel1/1 I Page 21-7 3-335 I . CG10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION • Version Number 01 BC Function Cell Name Clock Input Buffer (Inverter) with Pull-up Resistance IKBU Propagation Delay Parameter Cell Symbol I tdn IUp to KCL to KCL 1.540 0.006 1.010 0.005 KCL2 4 Path CDR2 XtoCI X~CI Parameter Pin Name Input Loading Factor (Iu) Pin Name Output Driving Factor (Iu) CI 200 Typ (no)· Symbol • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C1G-IKBU-EO 3-336 I Sheet 1/1 I I Page21-8 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Function Cell Name I I • CG10 NumberolBC Clock Input Buffer (Inverter) with Pull-down Resistance IKBD Cell Symbol !Up to KCL 1.540 0.006 Propagation Delay P.r.m.... ttln KCL2 CDR2 to KCL 1.010 • Version I 4 Path XloCI 0.005 X-{::>o-CI Parameter Pin Name Input Loading Factor (tu) Pin Name Output Driving Factor (Iu) CI 200 Tn (nol' Symbol • Minimum values lor the typical operating conation. The values lor the worst case operating condition are given by the maximum delay multiplier. C1CHKBD-EO Sheel1/1 I Page 21-9 3-337 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name IKG I Numberolac CMOS Interface Clock Input Buffer (Inverter) Cell Symbol tu x--{»o- to KCL 1.320 0.006 Propagation Delay Parameter IIIn . to KCL2 CDR2 KCL 0.960 I 4 Path XtoCI 0.005 CI Parameter Pin Name Input Loading Factor (Iu) Pin Name Output Driving Flctor (Iu) CI I . CG10 • Version Function Symbol Typ ns • 200 • Minimum values for the typical operating oondition. The values lor the worst case operating oonation ere given by the maximum delay multiplier. C10-IKG-E 3-338 Sheet 1'1 I Page 21-10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I . CG10 CMOS Interface Clock Input Buffer (Inverter) with Pull-up Resistance IKCU Cell Symbol IUp x-(::>o- to KCL 1.320 0.006 Propagation Delay Porameter \dn KCLZ COR2 to KCL 0.960 Number 01 BC I 4 Path XtoCI 0.005 CI Parameter Pin Name Input Loading Factor (Iu) Pin Name Output Driving Faclor (Iu) CI • Version I Function Cell Name Symbol Typ (ns)· 200 • Minimum values lor the typical operating conation. The values lor the worst case operating condition are given by the maximum delay multiplier. C1o-IKCU-EO Sheet 1/1 I Page 21-11 3-339 Ell FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Function Cell Name Number 01 BC CMOS Interface Clock Input Buffer (Inverter) with Pull-down Resistance IKeD Cell Symbol \up X I • CG10 • Version ---[::>0-- to KCL 1.320 0.006 0.960 4 Path XtoCI 0.005 CI Parameter Pin Name Input Loading Factor (Iu) Pin Name Output Driving Factor (Iu) CI Pro...,gatlon DeIlY Parameter Idn KCL2 to KCL CDR2 I Symbol Typ no)' 200 , Minimum values for the typical operating conchon. The values lor the worst case operating condition are given by the maximum delay multiplier. 1o-IKCD-EO 3-340 Sheet 1/1 I Page 21-12 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Number 01 Be Function Cell Name ILB Clock Input Buffer (True) Cell Symbol Propagation Delay Parameter !dn \up to KCL to KCL 0.530 0.006 1.300 0.005 KCLZ CDR2 I 6 Path XtoCI X-[:::>-CI Parameter Pin Name Input Loading Factor (Iu) Pin Name Output Driving Factor (Iu) CI Symbol Typ (no)' 200 • Minimum values for the typical operating conation. The values for the worst case operating conation are given by lhe maximum delay multiplier. C1D-ILB-EO Sheet 1/1 I Page 21-13 3-341 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Function Cell Name ., • CG10 • Version Number of BC Clock Input Buffer (True) with Pull-up Resistance ILBU 6 Cell Symbol !Up to KCL 0.530 0.006 Propagation Delay Parameter IIln CDR2 to KCL KCL2 1.300 0.005 Palh XloCI X-{::>--CI Parameter Pin Name Input Loading Factor (Iu) Pin Name Output Driving Factor (Iu) CI 200 Symbol TvD ns • • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C1o-ILBU-EO 3-342 Sheet 1/1 I Page 21-14 FUJITSU CMOS GATE ARRAY UNIT CEll SPECIFICATION I Cell Name NumberolBC Clock Input Buffer (True) with Pull-down Resistance ILBD Cell Symbol IUp X • CG10 • Version Function ---t:>-- to KCL 0.530 0.006 1.300 Path XloCI 0.005 CI Parameter Pin Name Input LOIdlng Fletor (Iu) Pin Name Output Driving Factor (Iu) CI 6 PropagaUon Delay Plr.meter IIln 'to KCL KCl2 COR2 Symbol Typ (ns)' 200 • Minimum values lor the typical operating condition. The values lor the worst case operating condition are given by the maximum delay multiplier. C1Q-llBD-EO Sheel1l1 I I Page 21-15 3-343 IIDII FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I • CG10 • Version NumberolBC Function Cell Name CMOS Interface Clock Input Buffer (True) ILC Cell Symbol III to KCL 0.900 0.006 Propaogatlon Delay ""ramet. 1I:In to KCL KCl2 CDR2 1.550 I 6 Path XtoCI 0.005 X-{::>--CI Parlmeter Pin Name Input Loading Factor (Iu) PinNa_ Output Driving Factor (Iu) CI Symbol TypI nl) • 200 • Minimum values lor the typical operating concition. The values lor the worst ease operating condition are given by the maximum dalay multiplier. C1o-ILC-EO 3-344 Sheet 1/1 I Page 21-16 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I • CG10 • Version NumberolBC Funcllon CMOS Interface Clock Input Buffer (True) with Pull-up Resistance ILeU Cell Symbol IUP 10 KCL 0.900 0.006 Propagation DeI.y_ Par.m.... IIIn KCL KCL2 CDR2 10 1.550 I 6 Path XtoCI 0.005 X-[::>-CI Parameter Pin Name Inpul Loading Faclor (Iu) Pin Name Oulpul Drlvtng Faclor (Iu) CI Symbol Typ (no)' 200 • Minimum values lor the typical oparating condition. The values lor the worsl case operating condition are given by the maximum delay multiplier. C1D-ILCU-EO I SheetH1 I I Page 21-17 3-345 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I eellName I • CG10 CMOS Interface Clock Input Buffer (True) with Pull-down Resistance fLCD • Version I Function Cell Symbol IU to KCL 0.900 0.006 Propagation DeIlY P...meter Idn KCL2 to KCL CDR2 1.550 Number 01 BC I 6 Path XloCI 0.005 X-{::>--CI Parameter Pin Name Input Loading Flctor (Iu) Pin Name Outpul Driving Factor (Iu) CI Symbol TYI>(n.) • 200 • Minimum values lor the typical operating condition. The values for Ihe worsl case operating condition are given by !he matimum dalay multiplier. C1Q-ILCD-EO 3-346 Sheel1/1 I Page 21-18 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name f1C Number 01 BC CMOS Interiace Input Buffer (Inverter) Cell Symbol tup 10 0.600 X I • CG10 • Version Function --[::>0-- KCL 0.017 Propagation Delay Parameler !dn KCL to KCL2 CDR2 0.100 I 5 Path Xto IN 0.017 IN Parameter Pin Name Input Loedlng Foetor (Iu) Pin Name Oulpul Driving Faclor (Iu) IN 36 Symbol Typ(ns) • • Minimum values lor the typical operating condition. The values lor the worsl case operating condition are given by the maximum delay multiplier. C10-11C-EO Sheet 1/1 I Page 21-19 3-347 .. FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Function I I . CG1D CMOS Interface Input Buffer (Inverter) with Pull-up Resistance /1eU Cell Symbol lUI' X ---{:>ao-- to KCL 0.600 0.017 5 Propagation DeIlY Par.m.... 1IIn ·to KCL KCL2 CDR2 0.100 • Version NumberolBC CellNlme Path XtolN 0.017 CI Paramet.. Pin Name Input LOIdlng Fletor(lu) Pin Name Output Driving FlCtor (lu) IN 36 Symbol Typ(no) • • Minimum values lor the typical operating conation. The values lor the woral case operating conation are given by the maximum delay multiplier. C10-ItCU-EO I Sheet 111 Page 21-20 3-348 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name "Version Number 01 Be CMOS Interface Input Buffer (Inverter) with Pull-down Resistance 1teD Cell Symbol tup X I • CG10 Function ---[:>0-- to KCL Q.600 0.017 0.100 I 5 Path XlolN 0.017 IN Parameter Pin Name Input Loading Factor (Iu) Pin Name Output Driving Factor (Iu) IN Propagation Delay Parameter teln KCL 10 KCl2 COA2 Symbol Typ' nl • 36 • Minimum values lor the typical operating condition. The values lor the worst case operating condition are given by the maximum delay multiplier. C1Q-11CD-EO Sheell/1 I Page 21-21 3-349 IDI I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION NumberolBC Function Cell Name 12C CMOS Interface Input Buffer (True) Cell Symbol Propagation !Up DeI.y Parameter IIIn to KCL to KCL 0.575 0.017 0.831 0.023 KCl2 CDR2 I 4 Path XtolN X~IN Parameter Pin Name Input Loedlng Factor (Iu) Pin Name Output Driving Factor (Iu) IN Symbol Typ na • 36 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10-12C-EO 3-350 Sheet 1/1 I Page 21-22 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Name I CMOS Interface Input Buffer with Pull-up Resistance (True) 12CU Cell Symbol \Up X " CG10 • Version Function ----{:::>-- to KCL 0.575 0.017 0.831 1 4 Path XtolN 0.023 IN Parameter Pin Name Input LOldlng Factor (Iu) Pin Name Output Drlylng Flctor (Iu) IN Propagation DeIlY Plrlmeter tdn KCL2 CDR2 to KCL Number of BC Symbol Typ I ns • 36 • Minimum values lor the typical operating condition. The values for the worst case operating condition are given by the maximum delay mUltiplier. C1 D-12CU-EO Sheet 1/1 I Page 21-23 3-351 lID FUJITSU CMOS GATE ARRAY UNIT CEll SPECIFICATION Function Cell Name I "CG10 I CMOS Interface Input Buffer with Pull-down Resistance (True) 12CD Cell Symbol tup to KCL 0.575 0.017 Propagation Delay Parameter tdn to KCL KCL2 CDR2 0.831 • Version Number of Be I 4 Path XtolN 0.023 X--t:>--IN Parameter Pin Name Input loading Factor (Iu) Pin Name Output Driving Factor (Iu) IN Symbol Typ (ns)' 36 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10-12CD-EO 3-352 Sheet 1/1 I I Page 21-24 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I • CG10 Schmitt Trigger Input Buffer (CMOS Type, Inverter) 11S • Version I Function Cell Name Cell Symbol \Up to KCL 2.438 0.067 Propagation Delay Parameter tdn ·to KCL KCL2 CDR2 1.675 Number 01 Be I 8 Path XlolN 0.045 X~IN Parameter Pin Name Inpul Loading Factor (Iu) Pin Name Oulput Driving Faclor (Iu) IN Symbol Typ (ns • 18 • Minimum values lor the typical operating condition. The values lor the worsl case operating condition are given by lhe maximum delay multiplier. C1(}--11S-EO Sheel1l1 I Page 21-25 3-353 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION • CG10 • Version Number of BC Function Cell Name Schmitt Trigger Input Buffer (CMOS Type, Inverter) with Pull-up Resistance 11SU CeIiSymbof \up 10 KCL 2.438 0.067 Propagation Delay Parameler Idn KCL 10 KCL2 CDR2 1.675 I 8 Path XtolN 0.045 X~IN Parameter Pin Name fnput Loading Factor (Iu) Pin Name OulpUI Driving Factor (Iu) IN Symbol Typ n• • 18 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by lhe maximum delay multiplier. C1D-11SU-EO 3-354 Sheet 1/1 I I Page 21-26 FUJITSU CMOS GATE ARRAY UNIT CEll SPECIFICATION I Cell Name Function I • CG10 • Version I Number 01 BC Schmitt Trigger Input Buffer (CMOS Type, Inverteri with Pull-down Resistance 115D Cell Symbol 1\1 10 KCL 2.438 0.067 Propagltlon Delay Plrlmeler Idn 10 KCL KCL2 CDR2 1.675 l 8 Pa!h XtolN 0.045 X~IN Parameter Pin Name Inpul LOldlng Faclor (Iu) Pin Name OUlpul Driving Faclor (Iu) IN Symbol Typ n• • 18 • Minimum values for !he Iypical operating condition. The values for !he worsl case operating condition are given by !he maximum delay multiplier. C1 0-11 SO-EO Sheet 1/1 I Page 21-27 3-355 .. FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I • CG10 • Version NumberofBC Function Schmitt Trigger Input Buffer (CMOS Type, True) 128 Cell Symbol l\Jp to KCL 1.550 0.067 Propagation DelaYPlramel.. tdn to KCL KCl2 CDR2 1.925 I 8 Path Xto IN 0.056 X~IN Parameter Pin Name Input Loading Factor (Iu) Pin Name Output Driving Factor (Iu) IN Symbol Typ (nl)' 18 • Minimum values for the typical operating condition. The values lor the worst case operating condition ere given by the maximum delay multiplier. C1o-I25-EO 3-356 Sheet 1/1 I Page 21-28 I • CG10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION • Version Number of Be Function Cell Name Schmitt Trigger Input Buffer (CMOS Type, True) with Pull-up Resistance 12SU Cell Symbol ProjlaaaUon DeIlY Parameter !dn tup to KCL to KCL 1.550 0.067 1.925 0.056 KCL2 CDR2 I 8 Path XtolN X~IN Parameter Pin Name Input Loading Factor (Iu) Pin Name Output Driving Factor (Iu) IN Symbol Typ, na • 18 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10-12SU-EO I Sheet 111 I I Page 21-29 3-357 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Function Cell Name I " CG10 • Version t Number of BC Schmitt Trigger Input Buffer (CMOS Type, True) with Pulklown Resistance 1280 Cell Symbol tu to KCL 1.550 0.067 Propagation Delay Paramet.. IIIn ·to KCL KC1.2 COR2 1.925 I 8 Path Xlo IN 0.056 X~IN Parameter Pin Name Input Loading Factor (Iu) Pin Name Output Driving Factor (Iu) IN Symbol Typ ,ns • 18 • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. C10-12SD-EO 3-358 Sheel1/1 I Page 21-30 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I • CG10 • Version I Function Cell Name Schmitt Trigger Input Buffer (TTL Type, Inverter) 11R Cell Symbol tup to 2.800 KCL 0.067 Propagation Delay Perameter IIln to KCL KCl2 CDR2 1.475 Number 01 Be I 8 Path Xto IN 0.045 X~IN Parameter Pin Nama Input Loading Foetor (Iu) Pin Name Output Driving Factor (Iu) IN Symbol Typ(ns) • 18 • Minimum values for the typical operating conation. The values for the worst case operating condition are given by the maximum delay multiplier. C1 0-11 R-EO Sheet 1/1 I Page 21-31 3-359 IDI FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I • CG10 Function Cell Name Number 01 BC Schmitt Trigger Input Buffer (TTL Type, Inverter) with Pull-up Resistance 11RU • Version Cell Symbol !Up to 2.800 KCL 0.067 Propagation Delar P.rameter !dn KCL KCL2 CDR2 to 1.475 I 8 Path XtolN 0.045 X~IN Parameter Pin Name 'nput Loading Factor ('u) Pin Name Output Dr'vlng Factor (Iu) IN Symbol TYPln• • 18 • Minimum values lor the typical operadng condidon. The values lor the worst case operadng condition are given by the maximum delay mUldplier. C1o-I1RU- EO 3-360 Sheet 1/1 I Page 21-32 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I • CG10 Schmitt Trigger Input Buffer (TTL Type, Inverter) with Pull-down Resistance 11RO • Version I Function Cell Symbol !Up 10 KCL 2.800 0.067 Pr -X Parameter Pin Name Symbol TYPln• • Inpul Loading Flclor (Iu) 2 OT PinNlme Oulpul Driving Faclor (Iu) • Minimum values lor the typical operating condition. The values lor \he worsl case operating condition are given by the maximum delay multiplier. Note: 1. The unit of KCL is nslpF. 2. Output load capacitance of 60 pF is used for Fujitsu's logic sirrulation. 3. The parameters in parentheses are the values applied to the simulation. C1Q-01B-EO Sheel1/1 I I Page 21-37 3-365 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Funcllon 01BF I • CG10 • Version I Number 01 BC Output Buffer (IOL=8mA, Inverter) Cell Symbol tu 10 KCL 0.850 (3.01) 0.036 Propagallon Delay Parameler Idn KCL KCl2 COR2 10 0.980 (3.32) I 3 Path OTto X 0.039 OT--{>-X Paramet .. Pin Name OT Symbol Typ ns • Inpul Loading Faclor Clu) 2 Pin Name Oulpul Driving FaclorClu) • Minimum values lor the typical operating condition. The values lor the worsl case operating condition are given by lhe maximum delay multiplier. Note: 1. The unit of KCL is nslpF. 2. Output load capacHance of 60 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the Simulation. C1Q-01BF-EO I 3-366 Sheet 1/1 I Page 21-38 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I . CG10 • Version Number 01 BC Funcllon 01L Power Output Buffer (IOl= 12mA. Inverter) Cell Symbol lup to KCL 0.870 (2.31) 0.024 Propagation Delay Parlmeter 1I:In to KCL KCL.2 CDR2 1.100 (2.66) I 3 Path OTto X 0.026 OT----{>-X Parameler Pin Name OT Symbol Typ(n.) • Input LOlding Factor (Iu) 2 Pin Name Output Driving Factor (Iu) • Minimum values for the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Note: 1. The unit 01 KCL is ns/pF. 2. Output load capacHance 01 60 pF is used lor Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C10-01L-EO j Sheet 1/1 I I Page 21-39 3-367 IDII FUJITSU CMOS GATE ARRAY UNIT CEll SPECIFICATION Cell Nam. I • CG10 • Version Funcllon NumberolBC Output Buffer (IOL=3.2mA, Inverter) with Noise Limit Resistance 01R Cell Symbol IUp 10 1.nO (3.93) KCL 0.036 Propagallon Delay Parameler ttln . 10 KCL KCL2 CDR2 4310 (9.11) I 5 Path OTto X 0.080 OT--{)o-X Parameter Pin Name OT Symbol Tvp, na)' Inpul Loading Faclor (Iu) 1 Pin Name OUlpul Driving Factor (Iu) • Minimum values lor the typical operating condition. The values for the worst case operating condition are given by the maximum delay multiplier. Note: 1. The unit of KCL is nslpF. 2. Output load capacHance of 60 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. Cl0-01R-E 3-368 Sheet 1/1 I Page 21-40 I • CG10 • Version I Number 01 Be FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Funcllon Output Buffer (IOL=8mA, Inverter) with Noise Limit Resistance 01RF Cell Symbol Propagallon Delay Idn IU 10 KCL 10 KCL 1.824 (3.99) 0.036 5.013 0.044 P.ram ... CDR2 KCL2 I 5 Path OTto X (7.66) OT-[>--X Paramet .. S~1I'bol Typlno}· Inpul Loading Faclor(lu) Pin Name OT 1 OulpUI Driving Faclor (Iu) Pin Name • Minimum values for the typical operating oondition. The values for the worsl case operating oondition are given by the maximum delay multiplier. Note: 1. The unit 01 KCL is ns/pF. 2. Output load capacnance 01 60 pF is used lor Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C10-01RF-EO I Sheet 1/1 I I Page 21-41 3-369 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION J • CG10 • Version NumberolBC Function CeIiHame Power Output Buffer (IOl=12mA, Inverter) with Noise limit Resistance 015 Cell Symbol tup to KCL 1.992 (3.44) 0.024 Propagation Delay Parlmeter IIIn KCL KCL2 CDR2 to 5.660 (7.70) I 5 Path OTto X 0.034 OT-l>-X Parameter Pin Name Symbol Typ{nl) • Input Loading Factor (Iu) 1 OT Pin Name Output Drlvlng Factor (Iu) • Minimum values for the Iypical operating oondition. The values for the worst case operating oondition are given by the maximum delay multiplier. Note: 1. The unit 01 KCL is ns/pF. 2. Output load capacHance 01 60 pF is used lor Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C10-015-EO 3-370 Sheet 111 I Page 21-42 I . CG10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name 028 • Version I Function Output Buffer (IOL=3.2mA, True) PropagaUon Delay Parameter IIIn Cell Symbol !Up to 0.500 (2.66) KCL 0.036 to 0.803 (5.55) KCL 0.079 CDR2 KC12 Number of Be I 2 Path OTtoX OT-t>-X Parameter Pin Name OT S)'mbol Typ(ns) • Input Loading Factor (Iu) 6 Pin Name Output Driving Flctor (Iu) • Minimum values for the typical operating condition. The values for the worsl case operating condition are given by the maximum delay multiplier. Note: 1. The unit of KCLis nslpF. 2. Output load capacitance of 60 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C10-02B-EO Sheet 111 I Page 21-43 3-371 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I • CG10 • Version J FuneUon Cell Name 02BF Output Buffer (IOL=8mA, True) Cell Symbol til 10 0.590 (2.75) KCL 0.036 PropagaUon Delay Pa..m.... 1IIn 10 KCL CDR2 KCL2 0.773 (3.12) Number 01 BC I 2 Path OTto X 0.039 OT-{>-X P.ram.... Pin Nama Input Loading Faelor(lu) OT 6 PlnNlma Output Driving Flclor (Iu) Symbol Typ n•• • Minimum values for the typical operating condition. The values for the worst case operating condition ere given by the maximum delay multiplier. Note: 1. The unit of KCL is nslpF. 2. Output load capacnance of 60 pF is used for Fujitsu's logic sirrulation. 3. The parameters in parentheses are the values applied to the simulation. C1G-02BF-EO 3-372 Sheet 1/1 I Page 21-44 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Name 02L I . CG10 • Version Number 01 BC Function Power Output Buffer (IOL=12mA, True) Cell Symbol tup to KCL 0.610 (2.05) 0.024 PropagaUon DeIlY Plrlmel.. !dn ·to KCL KCl2 COA2 0.893 (2.46) I 2 Path OTtoX 0.026 OT-{>-X Parameter Pin Name OT Symbol Typ(ns) • Input Loading Factor (Iu) 6 Pin Name Outpul Driving Faclor (Iu) • Minimum values for the typical operating condition. The values lor the worst case operating condition are given by the maximum delay multiplier. Nole: 1. The unit of KCL is ns/pF. 2. Output load capacitance of 60 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C10-02L-EO Sheet 1/1 I Page 21-45 3-373 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Nom. I • CG10 • Version Number of Be FUnction Output Buffer (IOL=3.2mA. True) with Noise Limit Resistance 02R Cell Symbol tup to KCL 1.383 (3.55) 0.036 Propagation DelayParamet.. IIIn KCL to KCl2 CDR2 3.335 (8.14) I 4 Path OTto X 0.080 OT---{>-X Parameter Pin Name OT IIDI Symbol Typ (ns)' Input Loading Factor (Iu) 2 Pin Name Output Driving Factor (Iu) • Minimum values for the typical operating condition. The values lor the worst case operating condition are given by the maximum delay multiplier. Note: 1. The unit of KCL is nslpF. 2. Output load capacHance of 60 pF is used for Fujitsu's logiC simulation. 3. The parameters in parentheses are the values applied to the simulation. ClO-C2R-EO 3-374 Sheet 111 I Page 21-46 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Name J • CG10 • Version Number 01 BC Function Output Buffer (IOL=8mA. True) with Noise Limit Resistance 02RF Cell Symbol tup 10 KCL 1.437 (3.60) 0.036 4 Propagation DeIlY Parameter Idn KCL 10 KCl2 CDR2 4.038 (6.68) Path OTto X 0.044 OT-[>-X Parameter Pin Name Input Loading Faclor (Iu) OT 2 Pin Name OUlput Driving Faclor (Iu) Symbol Typ (no)' • Minimum values for Ihe typical operating condition. The values for Ihe worst case operating condition are given by the maximum delay multiplier. Note: 1. The unit of KCL is ns/pF. 2. Outpulload capacitance of 60 pF is used for Fujitsu's logic sirrulation. 3. The parameters in parentheses are the values applied to the simuiation. C10-02RF-EO Sheet 1/1 I I Page 21-47 3-375 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION CeIlNlme 1 ~• CG10 • Version I Function Power Output Buffer (IOL=12mA, True) with Noise Umit Resistance 025 Cell Symbol III to KCL 1.605 (3.05) 0.024 Propagation DeIlY Plramet.. IeIn KCL to KCl2 CDR2 4.685 (6.73) Number 01 BC I 4 Path OTto X 0.034 OT-[>--X Par.meler Pin Name OT Symbol Tvp nl • Input loading Flctor (Iu) 2 Pin Name Output Driving Factor (Iu) • Minimum values lor the typical operating condition. The values lor the worst case operating condition are given by the maximum delay multiplier. Note: 1. The unit of KCL is nslpF. 2. Output load capacHance of 60 pF is used for Fujitsu's logic sirrulation. 3. The parameters in parentheses are the values applied to the simulation. C1G-02&-EO J 3-376 Sheet 1/1 J I Page21-48 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Number 01 BC Function 04T I Tri-state Output Buffer (IOL=3.2mA, True) Cell Symbol III to KCL 0.639 (2.98) 0.036 Propagation Delay Parameter tdn KCL KCL2 CDR2 10 1.460 (6.66) 4 Path OTtoX 0.080 my' C ZtoL LtoZ 1.780 (13.97) Pin Name Input Loading Factor (Iu) OT C 6 2 Oulpul Driving Faclor (Iu) KCL 1.170 (6.57) 0.083 KCL to 2.120 (13.97) KCL 0.700 (6.57) 0.037 CtoX Zto H HtoZ to Pin Name . to KCL to . III • These values are subject to external loading condition. Measurement circuHs of propagation delay time at LZ, ZL, HZ and ZH are as follows: DI ,-"" LSI LSI ,Ic (a) Measurement of tpd at LZ and ZL. 1c ,I ~ ?- R= 2kQ ",'"r7 (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL is nslpF. 2. Output load capacHance of 65 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C1C>-04T-EO Sheet 1/1 I Page 21-49 3-377 .. I . CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Function Call Nam. 04TF I Tn-state Output Buffer (IOL=8mA, True) Call Symbol Propagation Delay Parameter tu tdn KCL 10 0.693 (3.04) 0.036 KCL '10 2.343 (5.21) KCL2 Number 01 BC 4 Path CDR2 OTtoX 0.044 a'-t(' C KCL 2.140 (15.68) Pin Nam. Input Loading Factor (lu) OT C 6 2 . 10 KCL 1.575 (4.44) 0.044 KCL 10 KCL 0.700 (4.44) 0.037 HIDZ 10 2.120 (15.68) Oulpul Driving Faclor (Iu) Pin Name ZIDL LtoZ 10 CtoX ZIDH . • These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ. ZL. HZ and ZH are as follows: DI.."n LSI LSI lc ,1 ,lC (a) Measurement of tpd at LZ and ZL. ~ R.2kn .1~Jn. (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL is nslpF. 2. Output load capacitance of 65 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C1Q-04TF-EO I 3-378 Sheet 1/1 I I Page 21-50 I • CG10 " Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Number of BC Function 04W I Power Tri-state Output Buffer (IOL=12mA, True) Cell Symbol !Up KCL 10 0.804 (2.37) 0.024 Propagation Delay Parameter tdn 10 KCL2 CDR2 KCL 2.620 (4.83) 4 Path OTto X 0.034 my' C ZroL LloZ KCL 10 2.560 (16.44) . to KCL 1.219 (4.60) 0.052 KCL 10 KCL 0.800 (4.60) 0.025 CtoX Input Loading Factor (Iu) Pin Name 6 2 OT C Output Driving Factor (Iu) Pin Name ZroH HloZ to 2.540 (16.44) . ID • These values are subject to external loading condition. Measurement circuits of propagation delay time at 12, ZL, HZ and ZH are as follows: DI ,.,.0 LSI LSI ,IC (a) Measurement of tpd at 12 and ZL. 1, .• R-2kn m," (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL is ns/pF. 2. Output load capacitance of 65 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C1D-04W-EO I Sheet 1/1 I Page 21-51 3-379 I • CG10 • Version I Number 01 BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function I Tri-state Output Buffer (IOl=3.2mA, True) with Noise limit Resistance 04R Propagation Delay Parameter Cell Symbol tup Ill" to KCL to KCL un 0.036 3.190 (8.39) 0.080 (3.52) my KCL2 5 Path CDR2 OTto X x c ZtoL LtoZ KCL to 1.730 (13.91) KCL 3.575 (8.97) 0.083 KCL to KCL 1.300 (8.97) 0.037 CtoX Input Loading Factor (Iu) Pin Name 2 2 OT C HtoZ to Output Driving Factor (Iu) Pin Name lID . to 1.860 (13.91) ZtoH . • These values are subject to extemalloading condition. Measurement circuns of propagation delay time at LZ, ZL, HZ and ZH are as follows: ~. ,.,,0 LSI l,C (a) Measurement of tpel at LZ and ZL. LSI 1, ~ R= 2kn "'77 (b) Measurement of tpel at HZ and ZH. Note: 1. The unit 01 KCL is ns/pF. 2. Output load capacitance of 65 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C10-04R-EO 3-380 Sheel1/1 I Page 21-52 L• CG10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Name • Version I Function Tri-state Output Buffer (IOL=8mA, True) with Noise Limit Resistance 04RF Cell Symbol 1u to KCL 1.231 (3.57) 0.036 Propagallon Delay Per.meter IIIn to KCL KCl2 CDR2 4.073 (6.94) Number 01 BC I 5 Path OTto X 0.044 my' C ZtoL LtoZ KCL . to KCL 3.980 (6.84) 0.044 to KCL to KCL 1.860 (15.61) . 1.300 (6.84) 0.037 to 2.240 (15.61) CtoX Input Loading FlCtor (Iu) Pin Name OT 2 2 C HtoZ Output Drlvtng Factor (Iu) Pin Name ZtoH • These values are subject to extemalloading condition. Measurement circuns of propagation delay time at LZ, ZL, HZ and ZH are as follows: DI ,.,,0 LSI LSI ,rc (a) Measurement of tpel at LZ and ZL. -1 .. ,rc R=2kO rTln (b) Measurement of tpel at HZ and ZH. Note: 1. The unn of KCL is ns/pF. 2. Output load capacnance of 65 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C10-04RF-EO Sheet 111 Page 21-53 3-381 I . CG10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "Version Number 01 BC Function Cell Name I Power Tri-state Output Buffer (IOL=12mA, True) with Noise Limit Resistance 04S Cell Symbol Propagation Delay Parameter !dn !up 10 KCL 10 KCL 1.477 (3.04) 0.024 4.770 (6.98) 0.034 Path CDR2 KCL2 5 OTtoX O'Y' C LloZ . KCL 3.759 (7.14) 0.052 10 KCL to KCL 2.290 (16.37) . 1.400 (7.14) 0.025 2.600 (16.37) Pin Name Input Loading Faclor (Iu) OT C 2 2 C to X Zle H H leZ OUlPUI Driving Faclor (Iu) Pin Name Zle L 10 KCL 10 • These values are subject to extemalloading condition. Measurement circuits of propagation delay time at LZ, ZL. HZ and ZH are as follows: DI ,., " LSi LSI ~c ~ (a) Measurement oftpd at LZ and ZL. Note: 1. The unit of KCL R=2kO Ic ",77 (b) Measurement oftpd at HZ and ZH. is nS/pF. 2. Output load capacitance of 65 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C1D-045-EO 3-382 Sheet 1/1 I Page 21-54 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name • CG10 • Version I Function Power Output Buffer (IOL=24mA, True) with Noise Limit Resistance 0252 Cell Symbol IUp 10 KCL 2.625 (3.65) 0.017 Propagation DeIlY Parlmeler IIln KCL KCL2 COR2 10 9.765 (11.99) Number 01 BC I 6 Path OTtoX 0.037 OT-t>- X Parameter Pin Name Inpul LOldlng Faclor (Iu) OT 2 Pin Name Oulpul Driving Faclor (Iu) Symbol Typ n5)' • Minimum values lor !he Iypical operating condition. The values for !he worsl case operating condition are given by the maximum delay multiplier. Nole: 1. The unit 01 KCL is nSlpF. 2. Output load capacnance 01 60 pF is used lor Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C1D-02S2-EO I Sheet 1/1 I I Page 21-103 3-383 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Nam. Number 01 BC Function I Power Tri-state Output Buffer (IOL=24mA. True) with Noise Limit Resistance 0452 Propagation Delay Parameler Cell Symbol !Up \dn 10 KCL 10 KCL KCL2 3.050 (4.16) 0.017 10.400 (12.81) 0.037 7 Palh CDR2 OTtoX mT' C L10Z ZIOL 10 KCL 10 KCL 4.800 (18.52) . 9.005 (11.67) 0.041 KCL 10 KCL 2.000 (11.67) 0.020 CtoX Inpul Loading Faclor (Iu) Pin Nam. 2 2 OT c H toZ 10 Oulpul Driving Faclor (Iu) Pin Nam• 3.620 (18.52) ZtoH . • These values are subject to external loading condition. Measurement circuns of propagation delay time at LZ. ZL. HZ and ZH are as follows: c:rI '.H" LSI LSI 1c ..~ R=2kO ,IC ,I (a) Measurement of tpel at LZ and ZL. min (b) Measurement of tpel at HZ and ZH. Note: 1. The unit of KCL is nslpF. 2. Output load capacitance of 65 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. Cl()....()4S2-EO 3-384 Sheet 1/1 I Page 21-104 I . CG10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name "Version Number of BC Function H6T I Tn-state Output & Input Buffer (IOL=3.2mA, True) Cell Symbol \Up "=tr- OT to KCL 0.663 0.639 (3.70) 0.017 0.036 Propagation Delay Parameter Idn KCL2 · to KCL CDR2 1.150 1.460 (8.26) 8 Path XtolN OTto X 0.023 0.080 X C Zte L LtoZ to KCL to KCL · 1.170 (8.23) 0.083 to KCL to KCL 2.120 (17.72) · 0.700 (8.23) 0.037 1.780 (17.72) Pin Name Input Loading Factor Clu) OT C 6 2 H teZ Pin Name Output Driving Factor Clu) IN 36 CtoX ZtoH • These values are subject to external loading condition. Measurement circuits of propagation delay lime at LZ, ZL, HZ and ZH are as follows: DI ,.,,0 LSI LSI ,1 ,IC (a) Measurement of tpc! at LZ and ZL. Note: 1. The unij of 1c . R=2kil rn77 (b) Measurement of tpc! at HZ and ZH. KCL for paths OT, C to X is nslpF. 2. Output load capacitance of 85 pF is used for Fujitsu's logic sirrulation. 3. The parameters in parentheses are the values applied to the simulation. C1Q-H6T-EO Sheet 1/1 I Page 21-55 3-385 I • CG10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION • Version Function Cell Name Number 01 BC I Tn-state Output & Input Buffer (IOL=3.2mA, True) with Pull-up Resistance H6TU Cell Symbol tup "~ OT to KCL 0.663 0.639 (3.70) 0.017 0.036 Propagation Delay Parameter !dn to KCL KCL2 CDR2 1.150 1.460 (8.26) 8 Path XtolN OTto X 0.023 0.080 X C ZtaL LtoZ . to KCL 1.780 (17.72) Pin Name Input Loading Factor (Iu) OT C 6 2 Pin Name Output Driving Factor (Iu) IN 36 1.170 (8.23) 2.120 (17.72) CtoX 0.083 ZtoH HtoZ to KCL to KCL to . 0.700 (8.23) KCL 0.037 • These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ, ZL, HZ and ZH are as follows: CJI ,_. 0 LSI LSI I C (a) Measurement of tpd at LZ and ZL. Note: 1. The un~ 1, ~ Rc2kO ",'n (b) Measurement of tpd at HZ and ZH. of KCL for paths OT, C to X is nslpF. 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C1CHi6TU-EO 3-386 Sheet 1/1 I Page 21-56 I • CG10 • Version I Number 01 BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Name Function I Tn-state Output & Input Buffer (IOL=3.2mA, True) with Pull- R=2kO ",77 (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT. C to X is nslpF. 2. Output load capac~ance of 85 pF is used for Fuj~su's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C1O-H6CF-EO I Sheet 1/1 I I Page 21~7 3-397 I • CG10 • Version I Number 01 BC Tn-state Output & CMOS Interface Input Buffer (IOL=8mA, True)1 8 with Pull-up Resistance FUJITSU CMOS GATE ARRAY UNIT CEll SPECIFICATION j Cell Name H6CFU Function Cell Symbol rup "~ OT to KCL 0.575 0.693 (3.76) 0.017 0.036 Propagation Delay Parameter !dn to KCL KCL2 COR2 0.831 2.343 (6.09) Path XtolN OTto X 0.023 0.044 X C LtoZ to Inpul Loading Faclor(lu) OT C 4 2 KCL to . 2.140 (19.83) Pin Name ZtoL KCL 1.575 (5.32) HtoZ 10 Pin Name OUlpul Driving Faclor (Iu) IN 36 2.120 (19.83) CloX 0.044 Zlo H KCL KCL 10 . 0.700 (5.32) 0.037 • TheSe values are subject to external loading condition. Measurement circuits of propagation delay time atll, Zl, HZ and ZH are as follows: 04 ,_,,0 LSI LSI lc ~ R_an ,Ic ,I (a) Measurement oltpel at I I and Zl. n:fn (b) Measurement of tpel at HZ and ZH. Note: 1. The unit 01 KCL for paths OT, C to X is nslpF. 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simutation. C1~H6CFU-EO 3-398 Sheet 1/1 I Page 21-68 I • CG10 • Version I Number 01 Be Tn-state Output & CMOS Interface Input Buffer (IOL=8mA. True) 8 with Pull-down Resistance FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Function Cell Name H6CFD Cell Symbol !up "=tr- OT 10 KCL 0.575 0.693 (3.76) 0.017 0.036 Propagation Delay Per.meter Idn KCL KCl2 CDR2 10 0.831 2.343 (6.09) Path XtoiN OTtoX 0.023 0.044 X C LtoZ to . 2.140 (19.83) Pin Name Inpul Loading Faclor (Iu) OT C 4 2 ZIDL 10 KCL HroZ 10 Pin Name Oulpul Driving Faclor (Iu) IN 36 2.120 (19.83) KCL CtoX 0.044 1.575 (5.32) ZID H 10 KCL . KCL 0.700 (5.32) 0.037 Ell • These values are subject to extemalloading condition. Measurement circu~s of propagation delay time at LZ. ZL, HZ and ZH are as follows: D! R.,.n LSI LSI I C (a) Measurement of tpel at LZ and ZL. Note: 1. The un~ -1 I ~ R=2k{l ?> C n:frf (b) Measurement of tpel at HZ and ZH. of KCL for paths OT, C to X is nslpF. 2. Output load capac~ance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C1Q-H6CFD-EO Sheet 1/1 l Page 21~9 3-399 I • CG10 • Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell N.me I Function I Power Tri-state Output & CMOS Interface Input Buffer (IOL=12mA, True) H6E Cell Symbol III "=tr- OT to KCL 0.575 0.804 (2.85) 0.017 0.024 Propagation DeI.y Parameter IIIn . to KCL KCL2 COR2 0.831 2.620 (5.51) 8 Path XtolN OTto X 0.023 0.034 X C LtoZ Input Loading Factor (Iu) OT C 6 2 Output Driving Factor (Iu) IN 36 2.540 (20.71) CtoX KCL 0.052 1.219 (5.64) HtoZ to Pin Name to . 2.560 (20.71) Pin Name ZtoL KCL to ZtoH KCL to . 0.800 (5.64) KCL 0.025 • These values are subject to external loading condition. Measurement circuns of propagation delay time at LZ, ZL, HZ and ZH are as follows: DI'""" LSI LSI ~C (a) Measurement of tpd at LZ and Zl. 1, .. R-2kO min (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is nsipF. 2. Output load capacitance of 85 pF is used lor Fujitsu's logic sirrulation. 3. The parameters in parentheses are the values applied to the simulation. C1o-H6E-EO I 3-400 Sheet 1/1 I Page 21-70 • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name I Function H6EU Propagation Delay Per.meter ttln to KCL KCl2 CDR2 Cell Symbol tu "~ OT to KCL 0.575 0.804 (2.85) 0.017 0.024 0.831 2.620 (5.51) Number of BC I Power Tri-state Output & CMOS Interface Input Buffer (IOL=12mA, True) with Pull-up Resistance 8 Path XtolN OTto X 0.023 0.034 X C LtoZ to Input Loading Factor (Iu) OT C 6 2 KCL to . 2.560 (20.71) Pin Name ZtoL KCL H toZ to Pin Name Output Driving Factor (Iu) IN 36 2.540 (20.71) CtoX 0.052 1.219 (5.64) ZtoH KCL KCL to . 0.800 (5.64) 0.025 • These values are subject to external loading condition. Measurement circuHs of propagation delay time at LZ, ZL, HZ and ZH are as follows: DI ,.,.0 LSI LSI l, l,c (al Measurement of tpd at LZ and ZL. Ie ~ ~ Rc2kQ n+rT (b) Measurement of tpd at HZ and ZH. Note: 1. The unH of KCL for paths OT, C to X is nslpF. 2. Output load capacHance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C10-H6EU-EO Sheet 1/1 I Page 21-71 3-401 • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Name I Function H6ED Cell Symbol Propagation Delay Parameter IIln KCL KCL2 CDR2 to tup "~ OT to KCL 0.575 0.804 (2.85) 0.017 0.024 0.831 2.620 (5.51) Number 01 BC I Power Tri-state Output & CMOS Interface Input Buffer (IOL=12mA. True) with Pull-down Resistance 8 Path XtolN OTto X 0.023 0.034 X C LtoZ to . 2.560 (20.71) Pin Name Input Loading Factor (Iu) OT C 6 2 ZtoL to KCL HtaZ to Pin Name Output Drlvlng Factor (Iu) IN 36 2.540 (20.71) CtoX KCL 0.052 1.219 (5.64) Zto H to KCL . KCL 0.800 (5.64) 0.025 • These values are subject to external loading condition. Measurement circuns of propagation delay time at LZ. ZL. HZ and ZH are as follows: DI ""0 LSI LSI ,I ,LC (a) Measurement of tpd at LZ and ZL. lc .• R=2kO m'7r (b) Measurement of tpd at HZ and ZH. Note: 1. The unn of KCL for paths OT, C to X is nsipF. 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C10-H6ED-EO 3-402 Sheet 1/1 I Page 21-72 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Name Function Number 01 BC Tri-state Output & Schmitt Trigger Input Buffer (IOL=3.2mA. CMOS Type. True) H6S Cell Symbol !Up '"=tr- OT to KCL 1.550 0.639 (3.70) 0.067 0.036 12 Propagation Delay Parameter IIln to KCL KCL2 CDR2 1.925 1.460 (8.26) Path XlolN OTloX 0.056 0.080 X C LtoZ . 1.780 (17.72) Pin Name Input Loading Factor (Iu) OT C 6 2 ZtoL KCL to to KCL 1.170 (8.23) 0.083 Zte H HteZ to Pin Name Output Driving Factor (Iu) IN 18 2.120 (17.72) CloX KCL . to KCL 0.700 (8.23) 0.037 • These values are subject 10 exlernalloading condition. Measurement circuits of propagation delay lime at LZ. ZL. HZ and ZH are as follows: DI ,."n LSI LSI ,IC (a) Measurement of tpd at LZ and Zl. l' : R=2k{l ~ mw (b) Measurement of tpd at HZ and 2H. Note: 1. The unit of KCL for paths OT. C to X is nSlpF. 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C1o-H6S-EO Sheet 111 1 I Page 21-73 3-403 • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Name I Function Tri-state Output & Schmitt Trigger Input Buffer (IOL=3.2mA, CMOS Type, True) with Pull-up Resistance H6SU Cell Symbol Propagation Delay Parameler Idn CDR2 to KCL KCL2 tu "~ OT to KCL 1.550 0.639 (3.70) 0.067 0.036 1.925 1.460 (8.26) Number of BC 1 12 Path XtolN OTto X 0.056 0.080 X C ZtoL LtoZ to KCL . 1.780 (17.72) Pin Name Input Loading Flctor (Iu) OT C 6 2 Output Driving Flctor (Iu) IN 18 KCL 1.170 (8.23) 0.063 2.120 (17.72) CtoX Zto H HtoZ to Pin Name to KCL . to KCL 0.700 (8.23) 0.037 • These values are subject to external loading condition. Measurement circuits 01 propagation delay time at LZ. ZL. HZ and ZH are as lollows: Gi'·"O LSI LSI ,IC (a) Measurement of tpd at LZ and ZL. Nole: l' " ". R~2kQ min- (b) Measurement of tpd at HZ and ZH. 1. The unH 01 KCL for paths OT, C to X is nslpF. 2. Output load capacHance 01 85 pF is used lor Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C1Q-H6SU-EO 3-404 I Sheet 1/1 I Page 21-74 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Numbarof BC Function Cell N8me I Tri-state Output & Schmitt Trigger Input Buffer (IOL=3.2mA, CMOS Type, True) with Pull-down Resistance H6SD Cell Symbol tup "~ OT to KCL 1.550 0.639 (3.70) 0.067 0.036 Propagation Delay Parameter Idn KCL COR2 to KCl2 1.925 1.460 (8.26) 12 Path XtolN OTto X 0.056 0.080 X C LtoZ . 1.780 (17.72) Pin Name Input Loading Factor (Iu) OT C 6 2 ZtoL KCL to to KCL 1.170 (8.23) 0.083 ZtoH H toZ to Pin Name Output Driving Factor (Iu) IN 18 2.120 (17.72) CtoX KCL . to KCL 0.700 (8.23) 0.037 • These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ, ZL, HZ and ZH are as follows: D! ,.,.n LSI LSI ,IC (a) Measurement of tpd at LZ and ZL. Note: 1. The unit of KCL for 1, • R.2kO rr.77 (b) Measurement of tpd at HZ and ZH. paths OT, C to X is nSipF. 2. OUtput load capacitance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C10-H8SD-EO Sheet 1'1 I I Page 21-75 3-405 I • CG10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Name • Version I Function H6R Cell Symbol Propagation Delay Parameter tdn to KCL COR2 KCL2 tup '"=tr- OT to KCL 1.400 0.639 (3.70) 0.067 0.036 2.325 1.460 (8.26) Number 01 Be I Tri-state Output & Schmitt Trigger Input Buffer (IOL=3.2mA. TTL Type. True) 12 Path XtolN OTto X 0.073 0.080 X C LtoZ . 1.780 (17.72) Pin Name Input Loading Factor (lu) OT C 6 2 ZtoL KCL to to KCL 1.170 (8.23) 0.083 ZtoH HtoZ to Pin Name Output Driving Factor (Iu) IN 18 2.120 (17.72) CtoX . KCL to KCL 0.700 (8.23) 0.037 • These values are subject to external loading condition. Measurement circuHs of propagation delay time at LZ. ZL. HZ and ZH are as fOllows: 04 '.Hn LSI LSI ,IC (a) Measurement 01 t~ at LZ and ZL. l' • • Rc 2kO ,.,..'77 (b) Measurement 01 tpel at HZ and ZH. Note: 1. The unit 01 KCL for paths OT. C to X is ns/pF. 2. Output load capacitance 0185 pF is used lor Fujitsu's logic sirrulation. 3. The parameters in parentheses are the values applied to the simulation. C1D-H6R-EO 3-406 Sheel1/1 I Page 21-76 Cell I . CG10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Function Name I • Version Number of BC Tri-state Output & Schmitt Trigger Input Buffer (IOL=3.2mA, TIL Type, True) with Pull-up Resistance H6RU Cell Symbol !Up to 1.400 0.639 (3.70) "~ OT KCL 0.067 0.036 12 Propagation Delay Paramel .. Idn to KCL KCL2 CDR2 0.073 2.325 1.460 0.080 (8.26) Path XtolN OTto X X C LtoZ to ZtoL KCL to . 1.780 (17.72) KCL 0.083 1.170 (8.23) CtoX Input Loading Factor (Iu) Pin Name 6 2 OT C HtoZ ZtoH KCL Pin Name Output Driving Factor (Iu) IN 18 2.120 (17.72) . to KCL 0.700 (8.23) 0.037 • These values are subject to external loading condition. Measurement circuijs of propagation delay time atU, ZL, HZ and ZH are as follows: DI LSI ,-,,0 LSI ,Lc (a) Measurement of tpd atU and ZL. lc ,I ,.. R~2kO n-.fn (b) Measurement of tpd at HZ and ZH. Note: 1. The unij of KCL for paths OT, C to X is nslpF. 2. Output load capacijance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C1D-H6RU-EO Sheet 1/1 l Page 21-n 3-407 I . CG10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Neme I • Version Function Number 01 BC Tri-state Output & Schmitt Trigger Input Buffer (IOL=3.2mA, TIL Type, True) with Pull-down Resistance H6RD Cell Symbol Propagation Delay Parameler Idn 10 KCL KCl2 COR2 tu "~ OT 10 KCL 1.400 0.639 (3.70) 0.067 0.036 12 2.325 1.460 (8.26) Palh XtolN OTto X 0.073 0.080 X C LtoZ 10 . 1.780 (17.72) Pin Name Inpul Loading Factor (Iu) OT C 6 2 ZtoL KCL 10 KCL 1.170 (8.23) 0.083 H toZ to Pin Name Output Driving Factor (Iu) IN 18 2.120 (17.72) CtoX ZtoH KCL . 10 KCL 0.700 (8.23) 0.037 • These values are subject to external loading condition. Measurement circuits of propagation delay lime at LZ. ZL. HZ and ZH are as follows: CJoI ,.nO LSI LSI ,IC (a) Measurement of tpd at LZ and ZL. l' .• R=2kO m"" (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is nslpF. 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C1Q-H6RD-EO I Sheet 111 I Page 21-78 3-408 • CG10 ·Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Name Number 01 Be Function Tri-state Output with Noise Limit Resistance & Input Buffer (IOL=3.2mA. True) HBT Cell Symbol 9 Propagation Delay Paramel.. !Up III" to KCL to KCL 0.663 0.017 0.036 1.150 3.190 (9.99) 0.023 0.080 un (4.24) "=tr- OT KCl2 Path CDR2 Xto IN OTto X x C LtoZ . 1.730 (17.65) Pin Name Input Loading Factor (Iu) OT C 2 2 ZtoL KCL to to KCL 3.575 (10.63) 0.083 HtoZ to Pin Name Output Driving Factor (Iu) IN 36 1.860 (17.65) CtoX ZtoH KCL . to KCL 1.300 (10.63) 0.037 • These values are subject to external loading condition. Measurement circuns of propagation delay time at LZ, ZL. HZ and ZH are as follows: DI ,.,.n LSI LSI ,lC (a) Measurement of tpd at LZ and ZL. l' ~ 1- R=2kO ~~ (b) Measurement of tpd at HZ and ZH. Note: 1. The unn of KCL for paths OT, C to X is nsipF. 2. Output load capacHance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C1o-H8T-EO I Sheet 1/1 I I Page 21-79 3-409 I • CG10 • Version I Number 01 BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Nam. FUnction I Tri-state Output with Noise Limit Resistance & Input Buffer (IOl=3.2mA, True) with Pull-up Resistance H8TU Cell Symbol tu '"~ to KCL 0.663 1.177 (4.24) 0.017 0.036 . to Propagation Delay Parameter tIIn KCL KCl2 CDR2 1.150 3.190 (9.99) 9 Path XtolN OTto X 0.023 0.080 X OT C LtaZ ZtoL KCL to . 1.730 (17.65) to KCL 3.575 (10.63) 0.083 CtoX Input Loading Factor (Iu) Pin Name 2 2 OT C HtaZ to Pin Name Output Driving Flctor(lu) IN 36 1.860 (17.65) Zto H KCL . to KCL 1.300 (10.63) 0.037 • These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ, ZL, HZ and ZH are as follows: DI R."n LSI LSi ,lC (a) Measurement of tpel at LZ and ZL. i' .~ R.2kO mint (b) Measurement of tpel at HZ and ZH. Note: 1. The unH of KCL for paths OT, C to X is nsipF. 2. Output load capacHance of 85 pF is used for FujHsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C1o-H8TU-EO 3-410 Sheet 1/1 I Page 21-80 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Name J Function HBTD Cell Symbol Propagation Delay Parameler !dn 10 KCL KCL2 CDR2 IUp '"~ or 10 KCL 0.663 1.177 (4.24) 0.017 0.036 1.150 3.190 (9.99) Number 01 BC I Tri-state Output with Noise Limit Resistance & Input Buffer (IOL=3.2mA, True) with Pull-down Resistance 9 Path Xto IN OTto X 0.023 0.080 x C LIDZ 10 ZIDL . 10 KCL 3.575 (10.63) 0.083 KCL 10 KCL 1.300 (10.63) 0.037 KCL 1.730 (17.65) CtoX Inpul Loading Faclor Clu) Pin Name or 2 2 C Pin Name Oulpul Driving Faclor Clu) IN 36 ZIDH HloZ 10 1.860 (17.65) . • These values are subject to external loading condition. Measurement circuHs of propagation delay time at LZ, ZL, HZ and ZH are as follows: DI ,., " LSI LSI ~C (a) Measurement of tpd at LZ and ZL. l' R-2kO "'''" (b) Measurement of tpd at HZ and ZH. Note: 1. The unH of KCL for paths OT, C to X is nslpF. 2. Output load capacHance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. Clo-H8TD-EO Sheet 1/1 I Page 21-81 3-411 -' • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Funcllon Cell Name I Number 01 BC I Tn-state Output with Noise Limit Resistance & Input Buffer (IOL=8mA, True) HBTF Cell Symbol \up to 0.663 1.231 (4.30) '"=tr- OT KCL 0.017 0.036 " 9 Path XtolN OTto X X C LIoZ Input Loading Factor (Iu) 2 2 Pin Name Output Driving Factor (Iu) IN 36 ZIoL KCL to 2.240 (19.76) Pin Name OT e Prop8[allon Dela}' Parameter IIIn to KCL KCL2 CDR2 1.150 0.023 4.073 0.044 (7.82) to 3.980 (7.72) . CtoX ZIoH HIoZ to 1.860 (19.76) KCL 0.044 KCL to 1.300 (7.72) . KCL 0.037 • These values are subject to external loading condition. Measurement circuHs of propagation delay time at LZ, ZL, HZ and ZH are as fOllows: D! ,.,.0 LSI LSI (a) Measuremel'll of Ipd at LZ and ZL. Ie ,I ,rc R=2kO ?' .mfno (b) Measurement of tpd at HZ and ZH. Note: 1. The unH of KeL for paths OT, C 10 X is nsipF. 2. Output load capacitance of 85 pF is used for Fujitsu'S logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C10-H8TF-EO 3-412 Sheet 1/1 I Page 21-82 I . CG10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Name Function • Version I Number 01 BC Tri-state Output with Noise Limit Resistance & Input Buffer (IOL=8mA, True) with Pull-up Resistance H8TFU Cell Symbol I Propagation Delay Plrlmeler Idn \up "=cr- OT 10 KCL to KCL 0.663 1.231 (4.30) 0.017 0.036 1.150 4.073 (7.82) 0.023 0.044 KCl2 9 P';' CDR2 XlolN OTtoX X C LloZ Pin Name Inpul Loading Factor (Iu) OT C 2 2 ZIDL 10 KCL 10 KCL 2.240 (19.76) . 3.980 (7.72) 0.044 KCL 10 KCL 1.300 (7.72) 0.037 HloZ 10 Pin Name Output Driving Faclor (Iu) IN 36 1.860 (19.76) Clo X ZID H . • These values are subject to exlernalloading condition. Measurement circuits of propagation delay time at LZ, ZL, HZ and ZH are as follows: c=rI ,.,.n LSI LSI ,IC (a) Measurement of tpd at LZ and Zl. 11- i' "''" R= 2kil (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is nslpF. 2. Output load capacitance of 85 pF is used for Fujitsu's logic sirrulation. 3. The parameters in parentheses are the values applied to the simulation. C1~H8TFU-EO Sheet 1/1 I I Page2Hl3 3-413 I • CG10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Name • Version Function NumberofBC Tn-state Output with Noise Limit Resistance & Input Buffer (IOL=8mA, True) with Pull-down Resistance HBTFD Cell Symbol I Propagation DeIlY Plrameter tup "~ OT tdn to KCL to KCL 0.663 1.231 (4.30) 0.017 0.036 1.150 4.073 (7.82) 0.023 0.044 KCL2 9 Path CDR2 XtolN OTto X X C LtoZ Pin Name Input LOldlng Factor (Iu) OT C 2 2 ZtoL to KCL to KCL 2.240 (19.76) . 3.9S0 (7.72) 0.044 KCL to KCL 1.300 (7.72) 0.037 ZtoH Hlo Z to Pin Name Output Driving Factor (Iu) IN 36 1.S60 (19.76) CtoX . • These values are subject to external loading condition. Measurement circuHs of propagation delay time at LZ, ZL, HZ and ZH are as follows: DI ,.,,0 LSI LSI ~C (a) Measurement of tpd at LZ and ZL. i' ~ R=2kO ",,," (b) Measurement of tpd at HZ and ZH. Note: 1. The unH of KCL for paths OT, C to X is nslpF. 2. Output load capacHance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C1o-HSTFD-EO 3-414 Sheet 1/1 I Page 21-84 I . CG10 FUJITSU CMOS GATE ARRAY UNIT CEll SPECIFICATION Cell Name Function • Version Number 01 BC I Power Tri-state Output with Noise Limit Resistance & Input Buffer (IOL=12mA, True) H8W Cell Symbol !up "=t(L OT 10 KCL 0.663 1.477 (3.52) 0.017 0.024 Propagation Delay Parameler Idn KCL KCl2 CDR2 'to 1.150 4.770 (7.66) 9 Path XtolN OTto X 0.023 0.034 X C ZtoL LtoZ KCL 1O . 2.600 (20.64) 1O KCL 3.759 (8.18) 0.052 CtoX Input Loading Faclor (Iu) Pin Name 2 2 OT C Pin Name Outpul Driving Factor (Iu) IN 36 H toZ 'o 2.290 (20.64) ZtoH KCL . 'o 1.400 (8.18) KCL 0.025 • These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ, ZL, HZ and ZH are as follows: CJI ,., " LSI LSI ~C (a) Measurement of tpc! at LZ and Zl. i' R=2kQ m'rr (b) Measurement of tpc! at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is nslpF. 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C10--H8W-EO Sheet 1/1 I Page 21-85 3-415 I . CG10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION "Version Funcllon Cell Name Number of BC I Power Tri-state Output with Noise Limit Resistance & Input Buffer (IOL=12mA, True) with Pull-up Resistance H8WU Cell Symbol tup KCL 10 0.663 1.4n (3.52) '"~ OT 0.017 0.024 Propagation DeIlY Parameler ttln 10 KCL KCL2 CDR2 1.150 4.nO (7.66) 9 Path Xto IN OTtoX 0.023 0.034 X C ZIO L L to Z KCL 10 . 2.600 (20.64) 10 KCL 3.759 (8.18) 0.052 Cto X Inpul Loading Faclor (Iu) Pin Name 2 2 OT C Pin Name Oulpul Driving Faclor (Iu) IN 36 Zto H H 10Z 10 2.290 (20.64) KCL . 10 KCL 1.400 (8.18) 0.025 • These values are subject to external loading condition. Measurement circuijs of propagation delay time at LZ, ZL, HZ and ZH are as follows: c:rI '"'~ LSI LSI ~c (a) Measurement of tpd at LZ and ZL. l' ~ ~ R=2Kn rrl77 (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is nsipF. 2. Output load capacitance of 85 pF is used lor Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C10-H8WU-EO 3-416 I Sheet 1/1 I I Page 21-86 "CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Function Cell Name Number 01 BC I Power Tri-state Output with Noise Limit Resistance & Input Buffer (IOL=12mA, True) with Pull-down Resistance HBWD Cell Symbol Propagation Delay Parameler ldn KCl2 10 KCL CDR2 !up "=tr- OT 10 KCL 0.663 1.477 (3.52) 0.017 0.024 1.150 4.770 (7.66) 9 Path XtolN OTto X 0.023 0.034 X C L to Z to . 2.600 (20.64) Pin Name Inpul Loading Faclor (Iu) OT C 2 2 ZtoL KCL to KCL 3.759 (8.18) 0.052 H 10Z 10 Pin Name Oulpul Driving Faclor (Iu) IN 36 2.290 (20.64) Cto X ZtoH KCL . 10 KCL 1.400 (8.18) 0.025 • These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ, ZL, HZ and ZH are as follows: DI ,.,.n LSI LSI ,Ic (a) Measurement of tpd at LZ and ZL. t, . ~ R=2kO n+n (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KcLior paths OT, C to X is nsipF. 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C1D-H8WD-EO Sheet 1/1 I I Page 21-87 3-417 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Function Number 01 BC Cell Nam. Tri-state Output Buffer with Noise Limit Resistance & CMOS Interiace Input Buffer (IOL=3.2mA, True) HBC Cell Symbol 9 Delay Paramet.. Idn KCL CDR2 KCL2 0.023 0.080 Prop~atlon !Up to 0.575 1.177 (4.24) '"~ OT KCL 0.017 0.036 to 0.831 3.190 (9.99) Path XtolN OTtoX X C LtoZ to 1.730 (17.65) ZtoL KCL . to 3.575 (lo.s3) KCL to 1.300 (10.63) KCL 0.083 CtoX Input Loading Factor (Iu) Pin Name 0 2 2 OT HtoZ to 1.860 (17.65) Output Driving Factor (Iu) Pin Name IN ZtoH . KCL 0.037 36 • These values are subject to external loading condition. Measurement circuijs of propagation delay time at LZ, ZL, HZ and ZH are as follows: Di,·. n LSI LSI ,I0 (a) Measurement oltpd at LZ and ZL. 10 ,I : R.2kG ~ m77 (b) Measurement of tpd at HZ and ZH. Note: 1. The unij of KOL for paths OT, C to X is nslpF. 2. Output load capacitance of 85 pF is used for Fujitsu's logic sirrulation. 3. The parameters in parentheses are the values applied to the simulation. C1D-HSC-EO I Sheet1f1 I Page 21-88 3-418 I • CG10 • Version ~ L Number 01 BC Tn-state Output Buffer wI Noise Limit Resistance & CMOS 9 Interface Input Buffer (IOL=3.2mA. True) wI Pull-up Resistance FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Function Cell Name HBCU Propagation Delay Plrameler !dn to KCL KCL2 CDR2 Cell Symbol hlp to KCL 0.575 un 0.017 0.036 (4.24) "=er- OT 0.831 3.190 (9.99) Path Xto IN OTto X 0.023 0.080 x C LtoZ to . 1.730 (17.65) Pin Name Input Loading Factor (Iu) OT C 2 2 Output Driving Factor (Iu) IN 36 to KCL 3.575 (10.63) 0.083 HtoZ to Pin Name ZtoL KCL 1.860 (17.65) CtoX Zto H KCL . to KCL 1.300 (10.63) 0.037 • These values are subject to external loading condition. Measurement circu~s 01 propagation delay time at LZ. ZL. HZ and ZH are as follows: D! ,., " LSI LSI -1 ;- Rs2kCl ,Ic ,Ic ~'" (a) Measurement of tpd at LZ and ZL. Note: 1. The un~ (b) Measurement of tpd at HZ and ZH. of KCL for paths OT. C to X is nSlpF'. 2. Output load capacnance of 85 pF is used for Fujitsu's logic sirrulation. 3. The parameters in parentheses are the values applied to the simulation. C1O-H8CU-EO Sheet 1/1 I Page 21-89 3-419 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function II Tri-state Output Buffer wI Noise Limit Resistance & CMOS Interface Input Buffer (IOL=3.2mA, True) wI Pull-down Resistance HBCD Cell Symbol !Up to KCL 0.575 0.017 0.036 un (4.24) "=tr- OT Propagation Delay Parameter Idn . 10 KCL KCl2 CDR2 0.831 3.190 (9.99) NumberolBC 9 Path XtolN OTtoX 0.023 0.080 x C ZloL LtoZ KCL 10 . 1.730 (17.65) Pin Name Input Loading Faclor (Iu) OT C 2 2 Output Driving Faclor (Iu) IN 36 KCL 3.575 (1M3) 0.083 1.860 (17.65) CtoX Zte H H teZ to Pin Name to KCL . to KCL 1.300 (10.63) 0.037 • These values are subject to external loading condition. Measurement circu~s of propagation delay time at LZ, ZL, HZ and ZH are as follows: ~'."O LSI LSI lc ,1 ,lC (al Measurement of tpd at LZ and ZL. ~ R.2kO "'''" (b) Measurement of tpd at HZ and ZH. NOle: 1. The un" of KCL for paths OT, C to X is nslpF. 2. Output load capac~ance of 85 pF is used for Fujitsu's logic sirrulation. 3. The parameters in parentheses are the values applied to the simulation. C1Q-H8CD-EO 3-420 Sheet 1/1 I Page 21-90 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Name I Function HBCF Cell Symbol !Up "=tr- OT Propagation DeIlY Parameter Idn KCL KCl2 COR2 to KCL to 0.575 1.231 (4.30) 0.017 0.036 0.831 4.073 (7.82) Number 01 BC I Tri-state Output Buffer with Noise Limit Resistance & CMOS Interface Input Buffer (IOL=8mA. True) 9 Path XtolN OTto X 0.023 0,044 X C ZtoL LtoZ Pin Name Input Loading Factor (Iu) OT C 2 2 to KCL 2.240 (19.76) . to KCL 3.980 (7.72) H 10Z Pin Name Output Driving Factor (Iu) IN 36 CtoX 0.044 ZIO H 10 KCL 1.860 (19.76) . to KCL 1.300 (7.72) 0.037 • These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ. ZL, HZ and ZH are as follows: DI ,.,,0 LSI LSI lc ~C ~ (a) Measurement of tpd at LZ and ZL. Note: 1. The unit of .. RK2kQ rr.f.n (b) Measurement of tpd at HZ and ZH. KCL for paths OT, C to X is nslpF. 2. Output load capacitance of 85 pF is used for Fujitsu's logic sirrulation. 3. The parameters in parentheses are the values applied to the Simulation. C10-H8CF-EO Sheet 1/1 J I Page 21-91 3-421 I • CG10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION • Version Number 01 BC Funcllon Cell N.me HBCFU Tn-state Output Buffer wI Noise Limit Resistance & CMOS Interface Input Buffer (IOL=8mA, True) wI Pull-up Resistance Cell Symbol tu "~ OT to KCL 0.575 1.231 (4.30) 0.017 0.036 I Propagation DeI.y P.r.m.... Idn KCL KCl2 CDR2 10 0.831 4.073 (7.82) 9 Path Xto IN OTtoX 0.023 0.044 X C LtoZ Pin Name Input Loading Factor (Iu) OT C 2 2 ZIOL 10 KCL 2.240 (19.76) . to KCL 3.980 (7.72) ZIO H HloZ to Pin N.me Oulpul Driving Faclor (Iu) IN 36 1.860 (19.76) CtoX 0.044 KCL to . KCL 1.300 (7.72) 0.037 • These values are subject to extemalloading condition. Measurement circuns of propagation delay time at LZ, ZL, HZ and ZH are as follows: DI ,.,.0 LSI LSI ~c lc ,1 (a) Measurement of tpd at LZ and Zl. ~ •• R-2kO min (b) Measurement of Ipd at HZ and ZH. Note: 1. The unn of KCL for paths OT, C 10 X is nslpF. 2. Output load capacnance of 85 pF is used for Fujitsu's logic sirrulation. 3. The parameters in parentheses are the values applied to the simulation. C 1D-H8CFU-EO I 3-422 Sheet 1/1 I I Page 21-92 I "CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Function Cell Name HBCFD Tri-state Output Buffer wI Noise Limit Resistance & CMOS Interface Input Buffer (IOL=8mA, True) wI Pull-down Resistance Cell Symbol IUp "~ OT to KCL 0.575 1.231 (4.30) 0.017 0.036 Propagation Delay Parameter ldn KCL KCl2 CDR2 to 0.S31 4.073 (7.S2) Number 01 BC 9 Path Xto IN OTto X 0.023 0.044 X C lto L Ltol to KCL . 2.240 (19.76) Pin Name Input Loading Factor Clu) OT C 2 2 to H tol to Pin Name Output Driving Factor Clu) IN 36 1.S60 (19.76) KCL 3.980 (7.72) CtoX 0.044 ltoH to KCL . 1.300 (7.72) KCL 0.037 IDI • These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ. ZL. HZ and ZH are as follows: DI ,.,.0 LSI LSI ,lc (a) Measurement of tpd at LZ and ZL. l' l' l' R=2kO ",m (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is nslpF. 2. Output load capacitance of 85 pF is used for Fujitsu's logic sirrulation. 3. The parameters in parentheses are the values applied to the simulation. C 1Q-HSCFD-EO I Sheet 1/1 I I Page 21-93 3-423 I • CG10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name • Version Number 01 BC Function I Power Tri-state Output Buffer wI Noise Limit Resistance & CMOS Interface Input Buffer (IOL=12mA. True) HBE Cell Symbol lIJp "~ OT to KCL 0.575 1.4n (3.52) 0.017 0.024 Propagallon Delay Plramelar II:In 10 KCL KCL2 CDR2 0.831 4.nO 9 Palll Xto IN OTtoX 0.023 0.034 (7.66) X C ZtoL LtoZ 10 KCL . 2.600 (20.64) Pin Name Inpul Loading Faclor (Iu) OT C 2 2 10 KCL 3.759 (8.18) 0.052 HtoZ 10 Pin Name Oulpul Drlvlng Faclor(lu) IN 36 2.290 (20.64) Cto X Zto H KCL . 10 KCL 1.400 (8.18) 0.025 • These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ. ZL. HZ and ZH are as follows: DI ,.,,0 LSI LSI lc ,IC ,I (a) Measurement QI tpd at LZ and ZL. Note: 1. The unit of KCL for :• R-2kO m'rT (b) Measurement of tpd at HZ and ZH. paths OT. C to X is nsipF. 2. Output load capacitance of 85 pF Is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C1Q-H8E-EO 3-424 Sheet 1/1 1 I Page 21-94 I . CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Number 01 BC Function I Power Tri-state Output Buffer wI Noise Limit Resistance & CMOSI 9 Interface Input Buffer (IOL=12mA, True) wI Pull-up Resistance Cell Name HBEU Cell Symbol IlJp "=tr- OT to KCL 0.575 1.477 (3.52) 0.017 0.024 Propagation Delay Plr8mel.. 1I:In KCL · to KCL2 CDR2 0.831 4.770 (7.66) Pali1 XtolN OTto X 0.023 0.034 X C LtoZ ZtoL to KCL to KCL 2.600 (20.64) · 3.759 (8.18) 0.052 to KCL to KCL 2.290 (20.64) · 1.400 (8.18) 0.025 CtoX Input Loading Faclor (Iu) Pin Name or 2 2 C HtoZ Pin Name Output Driving Faclor(lu) iN 36 ZIOH • These values are subject to external loading condition. Measurement circuits 01 propagation delay time at LZ, ZL, HZ and ZH are as lollows: DI ,.,.n LSI LSI lc ~ R a 2 kQ l' ,IC ,I (a) Measurement 01 tpd at LZ and Zl. n:f77 (b) Measurement 01 tpd at HZ and ZH. Note: 1. The unit 01 KCL lor paths OT, C to X is nSlpF. 2. Output load capacitance 0185 pF is used lor Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. CID-H8EU-EO Sheet 111 I Page 21-95 3-425 I • CG10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION • Version Function Call Nam. NumberolBC Power Tri-state Output Buffer wi Noise Limit Resistance & CMO~I Interface Input Buffer (IOL=12mA, True) wi Pull-down Resistance HBED Call Symbol !Up "~ OT to KCL 0.575 1.477 (3.52) 0.017 0.024 Propagation Delay Parameter IIln to KCL KCl2 CDR2 0.831 4.770 (7.66) 9 Path Xto IN OTtoX 0.023 0.034 X C ZtoL LtoZ to KCL . 2.600 (20.64) Pin Name Input Loading Factor (Iu) OT C 2 2 KCL 3.759 (8.18) 0.052 Pin Name Output Driving Factor (Iu) iN 36 2.290 (20.64) CtoX ZtoH HtoZ to l1li to KCL . to KCL 1.400 (8.18) 0.025 • These values are subject to external loading condition. Measurement circuHs of propagation delay time at LZ, ZL, HZ and ZH are as follows: D! ,.,"0 LSI LSI ~C (a) Measurement of tpd at LZ and ZL. i' ~ R=2kO rrl77 (b) Measurement of tpd at HZ and ZH. Note: 1. The unH of KCL for paths OT, C to X is nslpF. 2. Output load capacHance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C1D-H8ED-EO 3-426 Sheet 1/1 I Page 21-96 I • CG10 • Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Funcllon Ce" Name I Tri-state Output & Schmitt Trigger Input Buffer (IOl=3.2mA, CMOS Type, True) with Noise limit Resistance HBS Cell Symbol IUp 10 KCL 1.550 0.067 0.036 un (4.24) "=er- OT Propagation DeIlY Parlmel.. Idn 10 KCL KCL2 CDR2 1.925 3.190 (9.99) 13 Path Xto IN OTto X 0.056 0.080 x C LtoZ ZtoL KCL 10 t.730 (17.65) . 10 KCL 3.575 (lo.s3) 0.083 KCL 10 KCL 1.300 (lo.s3) 0.037 CtoX Inpul Loading Flclor (Iu) Pin Name 2 2 OT C Zto H HtoZ 10 Pin Name OulpUI Driving Faclor (Iu) IN 18 1.860 (17.65) . • These values are subject to external loading condition. Measurement circuits of propagation delay time atl2, ZL, HZ and ZH are as follows: DI ,.,.0 LSI LSI ,lc (a) Measurement of tpd atl2 and Zl. 1, .• R.2k(l TTl 77 (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is nSlpF. 2. Output load capacitance of 85 pF is used for Fujitsu's logic Simulation. 3. The parameters in parentheses are the values applied to the simulation. C1Q-H85-EO 1 Sheet 111 J I Page 21-97 3-427 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name H8SU I Number of BC Function Tri-state Output & Schmitt Trigger Input Buffer (IOL=3.2mA, CMO~ Type, True) wI Noise Limit Resistance wI Pull-up Resistance Cell Symbol tup "=tr- OT to KCL 1.550 1.177 (4.24) 0.067 0.036 Propagation Delay Parameter tdn KCL KCL2 CDR2 to 1.925 3.190 (9.99) 13 Pam Xto IN OTtoX 0.056 0.080 x C LtoZ to . 1.730 (17.65) Pin Name Input Loading Factor (Iu) OT C 2 2 Output Driving Factor (Iu) IN 18 to KCL 3.575 (10.63) 0.083 HtoZ to Pin Name ZtoL KCL 1.860 (17.65) Cto X Zto H KCL to KCL . 1.300 (10.63) 0.037 • These values are subject to external loading condition. Measurement circuHs of propagation delay time at LZ, ZL, HZ and ZH are as follows: wI,·. e LSI LSI lc ,l ,Ic (a) Measurement of tpd at LZ and ZL. ~ R=2kn "'n (b) Measurement of tpd at HZ and ZH. Note: 1. The unH of KCL for paths OT, C to X is nslpF. 2. Output toad capacHance of 85 pF is used for Fujitsu's logic simutation. 3. The parameters in parentheses are the values applied to the simulation. Clo-H8SU-EO 3-428 I Sheet 1/1 I Page 21-98 ~• FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Nlm. HBSD CG10 • Version Number 01 BC I Function ITri-state Output & Schmitt Trigger Input Buffer (IOL=3.2mA, CMOS Type, True) wI Noise Limit Resistance wI Pull-down Resistance Cell Symbol 1u~ to KCL 1.550 0.067 0.036 un (4.24) "=tr- OT Propagallon Delay Parameter IIdn KCL COR2 10 KCL2 1.925 3.190 (9.99) 13 Path Xto IN OTto X 0.056 0.080 X C L to Z to 1.730 (17.65) ZtoL KCL to KCL . 3.575 (1Q.63) 0.083 KCL to KCL 1.300 (1Q.63) 0.037 CtoX Input Loading Factor (luI Pin Name 2 2 OT C HioZ to Pin Name Outpul Driving Factor (luI IN 18 1.860 (17.65) ZtoH . Ell • These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ, ZL, HZ and ZH are as follows: LSI (a) Measurement of tpd at LZ and ZL. (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is nslpF. 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C1D-H8SD-EO Sheet 1/1 I Page 21-99 3-429 I • CG10 • Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Name Function I Tri-state Output & Schmitt Trigger Input Buffer (IOL=3.2mA, TIL Type, Truej'with Noise Limit Resistance HBR Cell Symbol tup "~ OT to KCL 1.400 1.177 (4.24) 0.067 0.036 Propagation Delay Perameter tdn · 10 KCL KCL2 COR2 2.325 3.190 (9.99) 13 Path Xto IN OTto X 0.073 0.080 X C LtoZ to 1.730 (17.65) ZtoL KCL 10 KCL · 3.575 (10.63) 0.083 KCL to KCL · 1.300 (10.63) 0.037 CtoX Input Loading Factor (Iu) Pin Name 2 2 OT C HloZ 10 Pin Name Output Driving Faclor(lu) IN 18 1.860 (17.65) ZtoH • These values are subject to external loading condition. Measurement circuHs of propagation delay time at LZ, ZL, HZ and ZH are as follows: c:rI ,.,.0 LSI LSI ,Ic (a) Measurement of tpd at LZ and ZL. Note: 1. The unit of l' ~ R= 2kO > "'77 (b) Measurement of tpd at HZ and ZH. KCL for paths OT, C to X is nsipF. 2. Output load capacitance of 85 pF is used lor Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the Simulation. C1o-H8R-EO 3-430 J Sheet 1/1 I I Page 21-100 • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function Tri-state Output & Schmitt Trigger Input Buffer (IOL=3.2mA, TTL Type. True) wi Noise Limit Resistance wi Pull-up Resistance HBRU Cell Symbol tup to KCl 1.400 0.067 0.036 un (4.24) "~ OT I Propagation Delay Parameter Idn KCl KCl2 to CDR2 2.325 3.190 (9.99) Number of BC 13 Path Xto IN OTto X 0.073 0.080 X C ltoZ to 1.730 (17.65) Pin Name Input loading Factor (Iu) OT C 2 2 Ztol KCl to KCl . 3.575 (10.63) 0.083 KCl to KCl . 1.300 (10.63) 0.037 ZtoH HtoZ to Pin Name Oulput Driving Faclor (Iu) IN 18 1.860 (17.65) CtoX • These values are subject to external loading condition. Measurement circuns of propagation delay time at LZ. ZL. HZ and ZH are as follows: DI '_H" lSI lSI ,IC (a) Measurement of tpd at LZ and ZL. l' • • R=2kn mn (b) Measurement of tpd at HZ and ZH. Note: 1. The unn of KCl for paths OT. C to X is nslpF. 2. Output load capacnance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C10-H8RU-EO Sheet 1/1 I I Page 21-101 3-431 I . CG10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Name • Version Function Tri-state Output & Schmitt Trigger Input Buffer (IOL=3.2mA,TIL Type, True) wI Noise Limit Resistance wI Pull-down Resistance H8RD Cell Symbol tu to KCL 1.400 1.177 (4.24) "~ OT 0.067 0.036 I Propagation Delay Parameter llin to KCL KCl2 CDR2 2.325 3.190 (9.99) NumberolBC 13 Path XtolN OTto X 0.073 0.080 X C ZtoL LtoZ KCL to 1.730 (17.65) KCL 3.575 (10.63) 0.083 KCL to KCL 1.300 (10.63) 0.037 CtoX Input Loading Factor (Iu) Pin Name 2 2 OT C HtoZ to Pin Name Output Driving Factor (Iu) IN 18 IDII . to 1.860 (17.65) Zto H . • These values are subject to external loading condition. Measurement circuHs 01 propagation delay time at LZ, ZL, HZ and ZH are as lollows: DIM" LSI LSI lc . R=2kil !" 1,C 1, (a) Measurement 01 tpel at LZ and ZL. IT. In (b) Measurement 01 tpel at HZ and ZH. Note: 1. The unH of KCL lor paths OT, C to X is nslpF. 2. Output load capacHance 0185 pF is used lor Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C1Q-H8RD-EO 3-432 Sheet 1/1 I Page 21-102 I • CG10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Name Function "Version I Number 01 BC I Power Tri-state Output with Noise Limit Resistance & Input Buffer (IOL=24mA, True) HBW2 Cell Symbol tup to 0.663 3.050 (4.50) "=tr OT KCL 0.017 0.017 LtoZ to 4.800 (22.74) Input Loading Factor (Iu) 2 2 OT C Output Driving Factor (Iu) Pin Name IN Path Xto IN OTto X X C Pin Name Propagation Delay Parameter tdn ·to KCL KCL2 CDR2 1.150 0.023 10.400 0.037 (13.55) 11 ZtoL KCL . to 12.490 (9.01) KCL to KCL 2.000 (12.49) 0.020 HtoZ to 3.620 (22.74) KCL 0.041 CtoX Zto H . 36 • These values are subject to external loading condition. Measurement circuijs of propagation delay time at LZ, ZL, HZ and ZH are as follows: ~""" LSI LSI ,IC (a) Measurement of tpd at LZ and ZL. i' ; > R.2kQ ",In (b) Measurement of tpd at HZ and ZH. Note: 1. The unij of KCLIor paths OT, C to X is nsipF. 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C10-H8W2-EO Sheet 111 I Page 21-105 3-433 I . CG10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name "Version NumberofBC Function I Power Tri-state Output with Noise Limit Resistance & Input Buffer (IOL=24mA, True) with Pull-up Resistance HBW1 Cell Symbol !Up "~ 10 KCL 0.663 3.050 (4.50) 0.017 0.017 Propagation Delay Parameter !dn 10 KCL KCl2 CDR2 1.150 10.400 (13.55) 11 Path XtolN OTto X 0.023 0.037 X OT C ZtoL LtoZ to KCL . 4.800 (22.74) Pin Name Input Loading Factor (Iu) OT C 2 2 KCL 12.490 (9.01) 0.041 HloZ to Pin Name Output Driving Factor (Iu) IN 36 IDI to 3.620 (22.74) CtoX ZtoH KCL . to KCL 2.000 (12.49) 0.020 • These values are subject to external loading condition. Measurement circuits of propagation delay time at LZ, ZL, HZ and ZH are as follows: c:rI ,.,.0 LSI LSi l,C (a) Measurement of tpd at LZ and ZL. l' "''" >- R = 2 kCl (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is nsipF. 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are It e values applied to the simulation. C1D-H8Wl-EO\ 3-434 Sheet 1/1 I I Page 21-106 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Number 01 BC Function I Power Tri-state Output with Noise Limit Resistance & Input Buffer (IOL=24mA, True) with Pull-down Resistance H8WO Cell Symbol tup to KCL Q.663 3.050 (4.50) "~ OT 0.017 0.017 Propagation Delay Parameter tIln to KCL KCl2 CDR2 1.150 10.400 (13.55) 11 Path Xto IN OTto X 0.023 0.037 X C LtoZ . 4.800 (22.74) Pin Name Input Loedlng Factor (Iu) OT C 2 2 ZtoL KCL to to KCL 12.490 (9.01) 0.041 HtoZ to Pin Name Output Driving Factor (Iu) IN 36 3.620 (22.74) CtoX ZtoH KCL . to KCL 2.000 (12.49) 0.020 • These values are subject to external loading condition. Measurement circuns of propagation delay time at LZ, ZL, HZ and ZH are as follows: DI ,."e LSI LSI ,Ic Ic .. ,I (a) Measurement of tpd at LZ and ZL. R=2kQ ",77 (b) Measurement of tpd at HZ and ZH. Note: 1. The unit of KCL for paths OT, C to X is nsipF. 2. Output load capacitance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C10-H8WO-EO Sheet 1/1 I Page 21-107 3-435 I " CG10 FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name "Version Numbero! BC Function I Power Tri-state Output wI Noise Umit Resistance & CMOS Interface Input Buffer (IOL=24mA. True) HBE2 Cell Symbol IUp '"~ OT to KCL 0.575 3.050 (4.50) 0.017 0.017 Propagation Delay Parameler tdn KCL KCL2 CDR2 10 0.831 10.400 (13.55) 11 Path XtolN OTto X 0.023 0.037 X C LtoZ . 4.800 (22.74) Pin Name Input Loading Faclor(lu) OT C 2 2 ZIoL KCL 10 to KCL 12.490 (9.01) 0.041 ZIO H HloZ 10 Pin Name Oulput Driving Faclor(lu) IN 36 3.620 (22.74) CtoX KCL . 10 KCL 2.000 (12.49) 0.020 • These values are subject to external loading condition. Measurement circu~s of propagation delay time at LZ. ZL, HZ and ZH are as follows: DI LSI ,.,.0 LSI ,Ic (a) Measurement of tpd at LZ and ZL. 1c ,I ~ R=2kQ ?' nh7 (b) Measurement of tpd at HZ and ZH. Note: 1. The unH of KCL for paths OT, C to X is nsipF. 2. Output load capacitance of 85 pF is used lor Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. Clo-H8E2-EO 3-436 Sheet 1/1 I Page 21-108 I " CG10 • Version I Number of BC FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION Cell Name Function Power Tri-state Output wI Noise Limit Resistance HBE1 & CMOS Input Buffer (IOL=24mA, True) wI Pull-up Resistance Cell Symbol \Up "=tr- OT to KCL 0.575 3.050 (4.50) 0.017 0.017 I Propagation Delay Parameter !dn to KCL KCl2 CDR2 0.831 10.400 (13.55) 11 Path XtolN OTto X 0.023 0.037 X C LtoZ to . 4.800 (22.74) Pin Name Input Loading Factor (Iu) OT C 2 2 ZtoL KCL 10 KCL 12.490 (9.01) 0.041 H 10Z 10 Pin Name Oulput Driving Faclor (Iu) IN 36 3.620 (22.74) CtoX Zto H KCL . to KCL 2.000 (12.49) 0.020 • These values are subject to ex1ernalloading condition. Measurement circuns of propagation delay time at L2, ZL, HZ and ZH are as follows: DI LSI ,.an LSI ,rc (a) Measurement of tpd at L2 and ZL. 1, R=2kQ "77 (b) Measurement of tpd at HZ and ZH. Note: 1. The unn of KCL for paths OT, C to X is nsipF. 2. Output load capacnance of 85 pF is used for Fujitsu's logic simulation. 3. The parameters in parentheses are the values applied to the simulation. C1D-H8E1-EO Sheet 1/1 I Page 21-109 3-437 I • CG10 • Version FUJITSU CMOS GATE ARRAY UNIT CELL SPECIFICATION I Cell Nam. j Number of BC Function II Power Tri-state Output wI Noise Umit Resistance & CMOS Input Buffer (IOL=24mA, True) wI Pull-down Resistance HBEO Propagation Delay Parameter Idn Cell Symbol tu "=tr- OT to KCL 0,575 3,050 (4.50) 0,017 0.017 KCL ' to 0,831 10,400 (13,55) Path CDR2 KCL2 11 XtolN OTtoX 0,023 0.037 X C LtoZ ZtoL KCL to . 4,800 (22,74) to KCL 12.490 (9.01) 0,041 CtoX Input LoadIng Factor (Iu) PIn Name 2 2 OT C HIoZ 10 Pin Name Oulpul DrIvIng Faclor (Iu) IN 36 3,620 (22.74) ZtoH KCL . to KCL 2.000 (12.49) 0,020 • These values are subject to external loading condition. Measurement circuHs of propagation delay time at LZ, ZL, HZ and ZH are as follows: DI ,_,,0 LSI LSI lc ,I ,LC (a) Measurement of tpd at LZ and ZL. ~ R~2kn ;. nm (b) Measurement of tpd at HZ and ZH. Note: 1. The unH of KCL for paths OT, C to X is nslpF. 2. Output load capacHance of 85 pF is used for Fujitsu's logic sirrulation. 3. The parameters in parentheses are the values applied to the simulation. C1D-H8ED-EO 3-438 Sheet 1/1 I Page 21-110 CMOS Channeled Gate Anays CG10 Series Unit Cell Library Appendix A: General AC Specifications Mlmlmum/maxlmum Delay Multipliers (Recommended Operating Conditions, Ta =0 to 70°C, V Delay Multipliers Min. Max. Pre-layout Simulation 0.35 1.65 Post-layout Simulation 0.40 1.60 DD = 5 V±S% .. 3-439 CG10 Series Unit Cell Ubrary 3-440 CMOS Channeled Gate Arrays CMOS Channeled Gate A"ays CG10 Series Unit Cell Library Appendix B: Hierarchical Structure Hierarchical blocks (or Functional Logic Blocks) within other hierarchical blocks are user-defined groups of cells laid out in close proximity to each other in both X and Y dimensions of the array. The hierarchical method of design allows circuit sections to be placed within the array at positions relative to each other. This is made possible by the designer's defining and placing functional logic blocks within the hierarchy and thus contrOlling path lengths. There are five levels of hierarchy, also referred to as Functional Logic Blocks (FLBs). The design rules regarding what may and what must appear at certain levels are condensed in the diagram below. All 1/0 buffers and their associated circuitry must be defined immediately beneath the chip level with the FLB1 blocks. Nothing but 1/0 buffers may be so defined. If pull-up or pull-down cells (A01 s or XOOs) are required for unused inputs of the 1/0 buffers, they must also be defined at this level. Unit cells (UC) may be defined at each level. For optimum delay characteristics, Level 2 blocks should be defined under each of the Level 1 blocks, Level 3 Blocks under Level 2 blocks, and so on. Unit cells should be defined under Level 4. 3-441 CG10 Series Unit Cell Ubraty 3-442 CMOS Channeled Gate A"ays CG 10 Series Unit Cell Library CMOS Channeled Gate AITBYs Appendix C: Estimation Tables for Metal Loading CG10272 (2700-gate device) Clock Net NO! CL(lu) NO! CK20, CK40 CL (Iu) CK60, CK80 CL(lu) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16-30 31-50 51-75 76 -100 2.3 4.9 6.7 7.8 8.5 9.3 10.2 10.5 10.8 11.0 11.0 11.3 11.4 11.7 11.7 12.7 14.4 14.8 16.3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16-30 31-50 51-80 8.3 8.3 15.8 15.8 23.3 23.3 30.7 30.7 34.7 34.7 35.0 35.0 35.4 35.4 35.4 35.8 38.8 42.8 12.9 12.9 24.9 24.9 36.9 36.9 48.9 48.9 55.2 55.2 55.5 55.5 55.9 55.9 55.9 56.3 59.3 63.3 NO! CK20, CK40 CK60, CK80 CL(lu) CL(lu) 8.9 8.9 16.9 16.9 24.9 24.9 32.9 32.9 41.0 41.0 41.4 14.0 14.0 27.3 27.3 40.4 40.4 53.5 53.5 66.8 66.8 67.2 67.2 67.7 67.7 67.7 68.0 71.2 75.3 CG10342 (3400-gate device) Clock Net NO! 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16-30 31-50 51-75 76-100 CL(lu) 2.8 5.9 8.0 9.3 10.3 11.2 12.2 12.7 13.0 13.4 13.4 13.5 13.7 14.0 14.0 15.2 17.4 17.9 19.7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16-30 31-50 51 -80 41.4 41.8 41.8 41.8 42.3 45.4 49.5 Continued on next page 3-443 CG10 Series Unit CeN Ubrary CMOS Channeled Gate Anays Appendix C: Estimation Tables for Metal Loading CG10492 (490O-gate device) Clock Net NDI CL(lu) NDI CK20,CK40 CL(Iu) CK60,CKBO CL(Iu) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16-30 31-50 51-75 76-100 3.3 7.2 9.7 11.3 12.5 13.5 14.8 15.4 15.8 16.2 16.2 16.4 16.5 17.0 17.0 18.4 21.0 21.7 23.8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16-30 31-50 51-80 9.7 9.7 18.5 18.5 27.3 27.3 36.2 36.2 44.9 44.9 53.8 53.8 54.2 54.2 54.2 54.7 57.9 62.3 15.8 15.8 30.7 30.7 45.5 45.5 60.4 60.4 75.3 75.3 90.2 90.2 90.5 90.5 90.5 91.0 94.3 98.7 CG10572 (5700-gate device) Clock Net NI)I CL(lu) NDI CK20,CK40 CL (Iu) CK60, CK80 CL (Iu) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16-30 31-50 51-75 76 -100 3.8 8.2 11.1 12.9 14.4 15.5 17.0 17.6 18.1 18.5 18.5 18.8 18.9 19.5 19.5 21.1 24.1 24.8 27.3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16-30 31-50 51-80 10.0 10.0 19.4 19.4 28.6 28.6 38.1 38.1 46.7 46.7 60.6 60.6 60.9 60.9 60.9 61.5 64.6 69.4 16.7 16.7 32.6 32.6 46.5 46.5 64.5 64.5 79.6 79.6 101.0 101.0 101.7 101.7 101.7 102.7 107.9 115.9 Contmued on next page 3-444 CG10 Series Unit Cell Library CMOS Channeled Gate Arrays Appendix C: Estimation Tables for Metal Loading CG10672 (6700-gate device) Not Within Block CL(lu) Not Inter-Block CL(lu) Not 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16-30 31 -50 51 -75 76 -100 2.0 4.4 5.9 6.9 7.7 8.3 9.0 9.4 9.7 9.9 9.9 10.0 10.3 10.5 10.5 11.4 13.0 13.3 14.7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16-30 31 -50 51 -80 76 -100 4.4 9.5 12.8 15.0 16.7 18.0 19.7 20.4 21.0 21.5 21.5 21.8 22.0 22.7 22.7 24.5 28.0 28.8 31.7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16-30 31 -50 51 -80 Clock Net CK20, CK40 CK60,CKSO CL(lu) CL(lu) 12.4 18.7 30.2 36.5 16.5 31.0 46.7 61.2 - - - - - - - - - - - - - - - - CG10103 (10000-gate device) Not Within Block CL(lu) Not Inter-Block CL(lu) Not 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 -30 31-50 51-75 76-100 2.8 5.9 8.0 9.3 10.3 11.2 12.2 12.7 13.0 13.4 13.4 13.5 13.7 14.0 14.0 15.2 17.4 17.9 19.7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16-30 31-50 51-80 76-100 5.3 11.5 15.5 18.2 20.0 21.7 23.7 24.7 25.3 26.0 26.0 26.3 26.7 27.3 27.3 29.5 33.9 34.8 38.2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16-30 31 -50 51-80 Clock Net CK20, CK40 CK60, CKSO CL (Iu) CL(lu) 14.8 22.3 36.2 43.7 19.7 37.2 56.0 73.4 - - - - - - - - - - - - - - - Continued on next page 3-445 CG10 Series Unit Cell Ubrary CMOS Channeled Gate Arrays Appendix C: Estimation Tables for Metal Loading CG10133 (13000-gate device) NOI Within Block CL(lu) NOI Inter-Block CL (Iu) NOI 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16-30 31-50 51-75 76-100 3.3 7.2 9.7 11.3 12.5 13.5 14.B 15.4 15.B 16.2 16.2 16.4 16.5 17.0 17.0 1B.4 21.0 21.7 23.B 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16-30 31-50 51-BO 76-100 6.2 13.5 1B.2 21.3 23.5 25.4 27.B 2B.9 29.7 30.4 30.4 30.B 31.3 32.0 32.0 34.7 39.7 40.B 44.B 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16-30 31-50 51-BO Clock Net CK20, CK40 CK60, CK80 CL(lu) CL(IU) 17.2 25.9 42.2 51.0 - - - - - 22.9 43.4 65.4 B5.9 - - - - "Inter-Block" tables must be applied to a net which has an inter-block connection. If a net, for example, has three NDI in a block and one NDI in a different block, NDI = 4 of the "Inter-Block" table must be applied. 3-446 CMOS Channeled Gate Arrays CG10 Series Unit Cell LibraI}' Appendix 0: Available Package Types CG10 CMOS Available Package Types CG10272 CG10342 ,.". CG10492 • • • DIP40 • • • • • • • • DIP48 SH-DIP42 • SH-DIP64 CG10692 • • • • • • • • • • • • ..... OFP80 OFP100 • • • CG10133 .... ·.,.·,i, • • • OFP48 OFP64 CG10103 .. DIP28 DIP42 CG10572 ..'.... ,., • • • • • • • • • OFP120 • OFP160 • • • • • • • • • OFP196 SOFP64 SOFP100 • • • • • SOFP176 SOFP208 P(lA (Pln~,.i~~~r~)'Packrigii) PGA64 PGA88 PGA135 • • • .. :,.',;. • • • PGA179 i··:i> ...... • • • • .... .., • • • • • • PGA208 PGA256 . . .,......<> .......... • • • • • • • • • • • . • PGA256 PLCC68 PLCC84 • • • • • • • • ... .. ,.... • ., ,' , .. . . • • 3-447 CG10 Series Unit Cell Ubrary 3-448 CMOS Channeled Gate Arrays CG 10 Series Unit Cell Library CMOS Channeled Gate Arrays Appendix E: TTL 7400 Function Conversion Table TIL 7400 Series Name 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7430 7432 7433 7434 7435 7437 7438/9 7440 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7460 7461 7462 7464 7465 Quad 2-input NAND Quad 2-input NAND, Open Collector Outputs Quad 2-input NOR Quad 2-input NAND, Open Collector Outputs Hex Inverter Hex Inverter, Open Collector Outputs Hex Inverter/Buffer, Open Collector Outputs Hex Buffer, Open Collector Outputs Quad 2-input AND Quad 2-input AND, Open Collector Outputs Triple 3-input NAND Triple 3-input AND Triple 3-NAND, Open Collector Outputs Dual4-input NAND, Schmitt Trigger Hex Schmitt Trigger Inverter Triple 3-input AND, Open Collector Outputs Dual4-input NAND, Schmitt Trigger Hex Schmitt Trigger Inverter Dual4-input NAND Dual4-input AND Dual4-input NAND, Open Collector Outputs Expanded Dual 4-input NOR with Strobe Quad Schmitt Trigger 2-input NAND Dual 4-input NOR with Strobe Quad 2-input NAND, High Voltage Output Triple 3-input NOR Quad 2-input NOR Buffer 8-input NAND Quad 2-input OR Quad 2-input NOR Buffer, Open Collector Outputs Hex Noninverter Hex Noninverter with Open Collector Outputs Quad 2-input NAND Buffer Quad 2-input NAND Buffer, Open Collector Outputs Dual 4-input NAND Buffer BCD to Decimal Decoder EX3 to Decimal Decoder 4 to 10 Line Decoder BCD to Decimal Decoder/driver (30V) BCD to 7-segment Decoder/Driver (30V) BCD to 7-segment Decoder/Driver (15V) BCD to 7-segment Decoder/Driver BCD to 7-segment, Open Collector Outputs Dual 2-input, 2-wide AOI (One Expandable) AOI Expandable 4-wide AND-OR Expandable 4-wide AOI 4-wideAOI 2-wide 4-input AOI Dual 4-input Expander Triple 3-input Expander 4-wide AND-OR Expander 4-2-3-2AOI 4-2-3-2 AOI (Open Collector) Number of Unit Cells Fujitsu Basic Cells Function 4 6 4 6 6 5 5 5 8 6 6 9 7 4x N2N T24 multiplexer 4x R2N T24 multiplexer 6x VIN R6B R6B 2 x N3N into R2N 4. N2P N8P 3x N3N 3 x N3P T33 2 x (4 x 12R to N4N) 6x 11R N8P to N2P 2 x (4 x 12R to N4N) 6 xllR 2xN4N 2x N4P 2 x N4N + N2P R4P to D23 + R4P to R2N 8 x 12R + 4 x N2N 2 x (R4P + R2N) 4 x N2N 3x R3N 4 x R2N N8B 4 x R2P 68 48 8 68 48 4 6 6 9 68 8 4 6 4 6 8 4 x R2N + N4P 7 6 x BIN 6 5 2 x N3N into R2N 4 x N2B 12 4 x N2N + N4P 2 x N4B (N4N if not power) 4xV2B+ 10xN4N 4 x V2B + lOx N4N 4xV2B+l0xN4N 4 x V2B + lOx N4N 4 x VIN + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P 4 x VIN + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P 4 x VIN + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P 4 x VIN + 11 x N2N + 10 x N3N + 4 x N3P + 3 x N2P D36 + D24 2x D24 N3N + D36 + VI N into N3N D36 + D23 into N2P 2 x N3N + 2 x N2N + N4N + VI N T42 2 xN4P 3 xN3P 2 x N3N + 2 x N2N + N4N T54 T54 7 8(4) 24 24 24 24 53 53 53 53 5 4 8 7 9 6 6 6 8 10 10 Continued on next page 3-449 CG 10 Series Unit CeO Ubrary CMOS Channeled Gate Arrays TTL 7400 Function Conversion Table TIL 7400 Series Name 7470 Function ANO-gated positive-edge JK FF with Preset and Clear or: 7471 7472 AND-gated RS MIS FF with Preset and Clear or: ANO-gated JK MIS FF with Preset and Clear or: 7473 7474 7475 7476 7477 7478 7480 7482 7483 7484 7486 7487 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 74100 74101 74102 74103 74106 74107 74108 74109 74110 74111 74112 Dual JK FF with Clear Dual positive-edge D-FF with Preset and Clear 4-bit Bistable Latch Dual JK FF with Preset and Clear 4-bit Bistable Latch Dual JK FF with Preset and Common Clear and Clock Gated Full Adder 2-bit Binary Full Adder 4-bit Binary Full Adder with Fast Carry 4-bit Magnitude Comparator Quad 2-input XOR 4-bit True/Complement Zero/One Element 64-bit (16 x 4) Memory Decade Counter (Different Implementation) 8-bit Shift Register Divide-by-12 Counter 4-bit Binary Counter 4-bit Shift Register, 2 asynchronous Presets 4-bit Shift Register, 2 asynchronous Presets, Full Implementation 4-bit Parallel-access Shift Register 5-bit Shift Register Synch 6-bit Binary Rate Multiplier 4-bit Data SelectoriStorage Register 4-bit Universal Shift Register 8-bit Bistable Latch AO-gated JK Negative-Edge FF, with Preset AND-gated JK Negative-Edge FF with Preset and Clear Dual JK FF with Clear or: Dual JK Negative-Edge FF with Preset and Clear Dual JK FF with Clear Dual JK Negative-Edge FF with Preset and Common Clear and Clock Dual JK Positive-Edge FF with Preset and Clear AND-gated JK MIS FF with Data Lockout Dual JK MIS FF with Data Lockout Dual JK Negative-Edge FF with Preset and Clear Number of Unit Cells Fujitsu Basic Cells 3 x V1N + 2 x N3N + N2N + R2N + FJD FD4 + 2 x N2N + R2N + VI N + R2P + 024 21 17 FD4 + 2 x N3N + 2 x 023 + 2 x V1N LT1+ 2 x N4N + N2P 19 10 V1N + 2 x N3N + N2N + R2N + FJD FD4 + N3P + N3N + V1N + 024 2x FJD 19 17 24 2x FOP LTM 2 x (FJD + N2N + R2N + VI N) LTM 2 x (FJD + N2N + R2N + VI N) 16 16 30 16 30 A1N A2N A4H MC4 4xX2N 4 x N2N + VI N + 4 x N2N 2 x DE6 + VI N + 16 x LT4 + 5 x (V2B + TSA) + 10 x V2B 2 x (FOP + FDO + N2P + N2N + R2N) + V1N 4 x N2P + 2 x R2P + N2N + C41 + LTI 2x FDS+ V1N 4 x FDO + 2 x V1N + 2 x R2N + N2N C41 + N2N (for the resets) FS3 8 16 48 42 12 17 298 39 41 41 33 25 34 4 x FOP + 4 x 024 + 2 x V1N FS2 + 024 + 2 x VI N 5 x FOP + 5 x N2N + VI N(clock) FOR + 2 x FDO + 3 x VI N + 2 x N2N + 2 x N3N + 2 x N4N + 5 x N6B + 3 x N8B + R2B + X2N + 5 x X1B. FDa + T2F +4x V1N FS2 + LTK + 2 x 024 + 4 x V1N 2 x YL4 + 2 x VI N 42 34 46 122 FD3 + V1N + 3 x 024 15 FD4 + 024 + N3P + N3N 2 x FJD + 2 x V1N (for clock) 2 x (FD5 + 024 + VI N) 16 26 22 2 x (FD4 + 024 + V1N) 2 x (FJD + 2 x VI N) 24 22 2 x (FD4 + 024 + V1N) 24 2 x (FOP + V1N + 024) 22 FOP + 024 + N3P + N3N 2 x (FOP + 024 + V1N) 15 22 2 x (FD4 + 024 + V1N) 24 33 42 30 Continued on next page 3-450 CG10 Series Unit Cell Library CMOS Channeled Gate Arrays TTL 7400 Function Conversion Table TTL 7400 Series Name 74113 74114 74138 74139 74141 74145 74147 Dual JK Negative-Edge FF with Preset Dual JK Negative-Edge FF with Preset and Common Clear and Clock Dual 4-bit Latch with Clear Dual Pulse Synchronizer/Driver Quad Bus Buller with 3-state Output Quad Bus Buller with 3-state Output Quad 2-input NAND Schmitt Trigger IS-input NAND 12-input NAND with S-state Outputs Quad 3-input EXORlEXNOR Quad 2-input EXOR with Open-Collector Outputs 3-line to 6-line Decoder with Address Latch 3-line to 8-iine Decoder with Enable Dual 2-line to 4-iine Decoder BCD-to-Decimal Decoder BCD-Io- 323 FAX: (612) 454-{)601 Fujitsu Microelectronics, Inc. 14785 Preston Road Suite 670 Dallas, TX 75240 Tel: (214) 23~394 FAX: (214) 386-7917 COLORADO (Denver) Fujitsu Microelectronics, Inc. 5445 DTC Parkway Suite 300 Englewood, C080111 Tel: (303) 740-8880 FAX: (303) 740-8988 GEORGIA (Atlanta) Fujitsu Microelectronics, Inc. 3500 Parkway Lane Suite 210 Norcross, GA 30092 Tel: (404) 449-8539 FAX: (404) 441-2016 4-10 NEW JERSEY (MI. Laurel) Fujitsu Microelectronics, Inc. Horizon Corporate Center 3000 Atrium Way Suite 100 Mt. Laurel, NJ 08054 Tel: (609) 727-'il700 FAX: (609) 727-9797 CMOS Channeled Gate Arrays Sales Informauon FMI Representatives - USA For product information, contact your nearest Representative. Alabama Connecticut Indiana The Novus Group, Inc. 2905 Westcorp Blvd. Suite 120 Huntsville, AL 35805 Tel: (205) 534-{)044 FAX: (205) 534-{)186 Conntech Sales. Inc. 605 Washington Avenue Suite 33 New Haven, CT 06473 Tel: (203) 234-0577 FAX: (203) 234-0576 Fred Dorsey & Associates 3518 Eden Place Carmel, IN 46032 Tel: (317) 844-4842 FAX: (317) 844-4843 Arizona Florida Aztech Component Sales Inc. 15230 N 75th Street Suite 1031 Scottsdale, AZ 85260 Tel: (602) 991~00 FAX: (602) 991-{)563 Semtronic Associates, Inc. 657 Maidand Avenue Altamonte Springs, FL 32701 Tel: (407) 83 t-8233 FAX: (407) 831-2844 Iowa California Harvey King, Inc. 6393 Nancy Ridge Drive San Diego, CA 92121 Tel: (619) 587-8300 FAX: (619) 587-{)507 Infinity Sales, Inc. 4500 Campus Drive Suite 300 Newport Beach, CA 92660 Tel: (714) 833-0300 FAX: (714) 833-{)303 Norcomp 3350 Scott Blvd., Suite 24 Santa Clara, CA 95054 Tel: (408) 727-7707 FAX: (408) 98S-1947 Norcomp 2140 Professional Drive Suite 200 Roseville, CA 95661 Tel: (916) 782-8070 FAX: (916) 782-8073 Sonika Electronica of America 925 Hale Place SuiteA-8 Chula Vista, CA 92013 Tel: (619) 482-8700 FAX: (619) 482-7598 Semtronic Associates, Inc. 1467 S. Missouri Avenue Clearwater. FL 33516 Tel: (813) 461-4675 FAX: (813) 442-2234 Semtronic Associates, Inc. 3471 NW 55th Street Ft. Lauderdale, FL 33309 Tel: (305) 731-2484 FAX: (305) 731-1019 Georgia The Novus Group, Inc. 6115-A Oakbrook Pkwy Norcross, GA 30093 Tel: (404) 263-0320 FAX: (404) 263-8946 Idaho Intermountain Technical Marketing 1406 E. First Street Suite 101 Meridan,lD 83642 Tel: (208) 888-6071 FAX: (208) 888 6074 Illinois Beta Technology 1009 Hawthorne Drive Itasca,IL60143 Tel: (708) 25S-9586 FAX: (708) 256-8592 Electromec Sales Executive Plaza 4403 First Avenue, S.E. Suite 302 Cedar Rapids, IA 52402 Tel: (319) 393-1637 FAX: (319) 393-1752 Kansas Rothkopf & Associates, Inc. 1948 E. Santa Fe Suite H Olathe, KS 66062 Tel: (913) 829-8897 FAX: (913) 829-1664 Kentucky Spectra-Com 303UHL Road Melbourne, KY 41059 Tel: (606) 781-3904 Maryland Arbotek Associates 1404 E. Joppa Road Towson, MD 21204 Tel: (301) 825-{)775 FAX: (301) 337-2781 Massachusetts Mill-Bern Associates 2 Mack Road Woburn, MA 01801 Tel: (617)932-3311 FAX: (617) 932-{)511 4-11 Sales Information CMOS Channeled Gate Arrays FMI Representatives - USA Michigan Greiner Associates, Inc. 15324 E. Jefferson Avenue Suite 12 Grosse Point Park, MI 48230 Tel: (313) 49~188 FAX: (313) 491Hl665 Minnesota Electromec Sales 1601 E. Highway 13 Suite 200 Burnsville, MN 55337 Tel: (612) 894-<1200 FAX: (612) 894-9352 Missouri Rothkopf & Associates, Inc. 8721 Manchester Road SI. Louis, M063144 Tel: (314) 961-4485 FAX: (314)961-4736 New Jersey BGR Associates Evesham Commons 525 Route 73 Suite 100 Marlton, NJ 08053 Tel: (609) 983-1020 FAX: (609) 983-1879 (Continued) Quality Components 116 Fayette Street Manlius, NY 13104 Tel: (315) 682-8885 FAX: (315) 682-2277 Quality Components 2318litus Ave. Rochester, NY 14622 Tel: (716) 342-7229 FAX: (716) 342-7227 North carolina The Novus Group, Inc. 1026 Commonwealth Court Cary, NC 27511 Tel: (919) 460--7771 FAX: (919) 460--5703 Ohio Spectra-Com 3809 Wilmington Pike Suite 209 Kettering, OH 45429 Tel: (513) 29~64 FAX: (513) 299-0865 Spectro-Com 8925 Galloway Trail Novelty, OH 44072 Tel: (216) 338-5226 FAX: (216) 338-3214 Oregon Technical Applications & Marketing 91 Clinton Road Suite1D Fairfield, NJ 07006 Tel: (201) 575-4130 FAX: (201) 575-4563 L--5quared Limited 15234 NW Greenbrier Pkwy Beaverton, OR 97006 Tel: (503) 629-<1555 FAX: (503) 645--S196 New York Texas Quality Components 3343 Harlem Road Buffalo, NY 14225 Tel: (716) 837--6430 FAX: (716) 837-0062 Technical Marketing, Inc. 3320 Wiley Post Road Carrollton, TX 75006 Tel: (214) 387-3601 FAX: (214) 387-3605 4-12 Technical Marketing, Inc. 2901 Wilcrest Drive Suite 139 Houston, TX 77042 Tel: (713) 763-4497 FAX: (713) 783-5307 Technical Marketing, Inc. 1315 Sam Bass Circle Suite B-3 Round Rock, TX 78681 Tel: (512) 244-2291 FAX: (512) 338-1596 Utah Wasatch Representatives 5282 S. 320 West Suite 0-100 Salt Lake City, ut 84107 Tel: (801) 265-0286 FAX: (801) 26~15 Washington L-Squared Limited 105 Central Way Suite 203 Kirkland, WA 98033 Tel: (206) 827-<1555 FAX: (206) 828--6102 Wisconsin Beta Technology 9401 W Beloit Street Suite304C Milwaukee, WI 53227 Tel: (414) 543--S609 FAX: (414) 543-9288 CMOS Channeled Gate Arrays Sales Informaffon FMI Representatives - Canada, Mexico and Puerto Rico canada Mexico Puerto Rico Pipe-Thompson Limited 5468 Dundas SlnIet W. Suite 206 Islington, Ontario M9B 6E3 Tel: (416) 236-2355 FAX: (416) 236-3387 Solano Electronica (Sonika) Ermita t039- to Colonia Chapalita Guadalajara, JAL. 45042 Tel: (52) 3647-4250 FAX: (52) 3647-3433 Semtronic Associates Mercantil Plaza Building Suite 816 Hato Ray, Puerto Rico 00918 Tel: (809) 766-0700 Pipe-Thompson Limited RR2 North Gower Ottawa, Ontario KOZ 2TO Tel: (613) 258-4067 FAX: (613) 258-7649 Solano Electronics, S.A. De C.V. Cienfuego tl651-A 07300 Mexico City, D.F. FAX: (52) 5586-8443 .. 4-13 .. CMOS Channeled Gate Arrays Sales Information FMI Distributors Alabama Marshall Industries 3313 S. Memorial Highway Suite 150 Huntsville, AL 35801 (205)881-9235 Repton Electronics 4950 Corporate Drive Suite I05C Huntsville, AL 35805 (205) 722-9565 Arizona Insight Electronics 1515 W. University Drive Suite 103 Tempe, AZ 85281 (602) 829-1800 Marshall Industries 9830 S. 51 st Street Suite B121 Phoenix, AZ 85044 (602) 491Hl290 california Bell Microproducts 18350 Mt Langley Suite 207 Fountain Valley, CA 92708 (714) 963-0067 Bell Microproducts 550 Sycamore Drive Milpitas, CA 95035 (408) 434-1150 Insight Electronics 28035 Dorothy Drive Suite 2 Agoura, CA 91301 (818) 707-2100 Insight Electronics 15635 Alton Parkway Suite 120 Irvine, CA 92718 (714) 727~111 Insight Electronics 6885 Flanders Drive Suite C San Diego, CA 92126 (619) 587-9757 Marshall Industries 9710 Desoto Ave. Chatsworth, CA 91311 (818)407-4100 4-14 USA Marshall Industries 9320 Telstar Ave. EI Monte, CA 91731 (818)307~094 Marshall Industries One Morgan Irvine, CA 92718 (714) 458-5308 Marshall Industries 336 Los Caches Street Milpitas, CA 95035 (408) 942-4600 Marshallinduslries 3039 Kilgore Ave. Suite 140 Rancho Cordova, CA 95670 (916) 635-9700 Marshall Industries 10105 Carroll Canyon Road San Diego, CA 92131 (619) 578-9600 Marit Electronics 2070 Ringwood Avenue San Jose, CA 95131 (408) 434-
Source Exif Data:File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No XMP Toolkit : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19 Create Date : 2017:08:16 18:41:03-08:00 Modify Date : 2017:08:16 19:19:06-07:00 Metadata Date : 2017:08:16 19:19:06-07:00 Producer : Adobe Acrobat 9.0 Paper Capture Plug-in Format : application/pdf Document ID : uuid:ea2d2d3e-2527-3a4c-94ba-515be00a70c3 Instance ID : uuid:960a4a1b-4b1e-c143-9a2c-448a68d4caa1 Page Layout : SinglePage Page Mode : UseNone Page Count : 1086EXIF Metadata provided by EXIF.tools