1991_Motorola_TVS_Zener_Device_Data 1991 Motorola TVS Zener Device Data
User Manual: 1991_Motorola_TVS_Zener_Device_Data
Open the PDF directly: View PDF
.
Page Count: 454
| Download | |
| Open PDF In Browser | View PDF |
Index of
Part Numbers
Cross Reference
Guide
Preferred
Part Numbers Guide
Selector Guides
and Data Sheets
•
•
•
II
Packaging
Information
Technical
Information
Application Notes
and Articles
•
•
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
/
Surmetic and MOSORS are trademarks of Motorola, Inc.
ii
MOTOROLA
TRANSIENT VOLTAGE
SUPPRESSORS AND
ZENER DIODES
Prepared by
Technical Information Center
This book presents technical data for the broad line of Motorola Transient Voltage Suppressors and
Zener Diodes. Complete specifications for the individual devices are provided in the form of data
sheets. A comprehensive Selector Guide and Industry Cross-Reference Guide are included to simplify the task of choosing the best set of components required for a specific application. A preferred parts
list is also provided to assist in the selection process.
Finally, to assist the circuit designer the popular Motorola Zener Diode Handbook and related application notes and technical articles have been added to make this a more complete reference book.
Motorola reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Motorola does not assume any liability arising out of the application or
use of any product or circuit described herein; neither does it convey any license under its patent rights
nor the rights of others. Motorola products are not deSigned, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create
a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subSidiaries, affiliates, and distributors harmless against all claims, costs,
damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim
of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and
® are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
© Motorola Inc., 1991
First Edition
First Printing
"All Rights Reserved"
iii
iv
INTRODUCTION
Motorola is the number 1 supplier of Zener Diodes and Zener Transient Voltage
Suppressors in the world market. Our product performance and Six Sigma quality and service initiatives have enabled us to be the Zener Diode supplier of
choice around the world.
The Motorola Zener product portfolio includes Zener regulators, temperature
compensated devices, and transient voltage suppressors. Nearly all of these
devices are offered in both the conventional through hole construction packages
and the newer surface mount packages.
Our emphasis on continuous improvement and total customer satisfaction applies to everything we do. This data book is a good example of this continuous
improvement process. For the first time the Motorola Zener Data Book includes
theory and applications information in addition to the actual product specific
data. The actual layout has been revised to be more user friendly with Sections
on the three major categories of Zener Diodes - Regulation, Temperature
Compensation, and Transient Voltage Protection.
This never ending improvement process relies on you, the customer, for future
changes to our products and processes. We look forward to the opportunity to
satisfy all of your Zener Diode needs.
Gary Beaudin
Manager, Zener Diodes
v
vi
Index of
Part Numbers
This section is the master index of all the basic part
numbers specified on the Data Sheets in Section 4. For
your convenience this Index is presented in two different formats.
The first listing is organized by category, i.e., application, type of package mounting, power wattage level,
and part number series within each subcategory. This
list is in the same sequence as that of Data Sheet Section 4.
The second listing is by individual part number in alphanumeric sequence. For brevity many of the available
suffixes are omitted and only the prime 5% tolerance
and in some cases the 10% tolerance suffixes are
listed. Consult the Data Sheet section which specifies
the prime part number to determine the status of other
suffixes.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
1-1
•
INDEX OF PART NUMBERS BY CATEGORY
Section 4.1 - Transient Voltage Suppressors
4.1.4.1
I
Transient Voltage Suppressors Axial Leaded
:~~~~1;~ru :~;~:t .~~I~~~~ .~~~~~~~~r.s. ~~~~I. ~~~~~~ .~~~ ~~~ ~~~~ ~~~~r............................ . 4-1-25
4.1.4.1.2 Transient Voltage Suppressors Axial Leaded 600 Watt Peak Power
P6KE6.8, A thru P6KE200, A ..................................................................... . 4-1-32
4.1.4.1.3 Transient Voltage Suppressors Axial Leaded 1500 Watt Peak Power
1.
2.
3.
4.
General Data ...............................................................................
1N5908 ....................................................................................
1N6267 thru 1N6303A, 1.5KE6.8 thru 1.5KE250A ..................................................
1N6373 thru 1N6389, ICTE-5 thru ICTE-45C, MPTE-5 thru MPTE-45C ..................................
4-1-38
4-1-42
4-1-43
4-1-46
4.1.4.1.4 Transient Voltage Suppressors Axial Leaded Automotive 110 Amp Peak
MR2535L ..................................................................................... 4-1-48
4.1.4.2.1 Transient Voltage Suppressors Surface Mounted 40 Watt Peak Power SOT-23
MMBZ15VDLT1 ................................................................................ 4-1-52
4.1.4.2.2 Transient Voltage Suppressors Surface Mounted 600 Watt Peak Power 5MB
1. General Data ............................................................................... 4-1-56
2. 1SMB5.0AT3 thru 1SMB170AT3 ................................................................ 4-1-59
3. P6SMB6.8AT3 thru P6SMB200AT3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-1-60
4.1.4.2.3 Transient Voltage Suppressors Surface Mounted 1500 Watt Peak Power SMC
1. General Data ............................................................................... 4-1-62
2. 1SMC5.0AT3thru 1SMC78AT3 ................................................................. 4-1-65
3. 1.5SMC6.8AT3thru 1.5SMC91AT3 .............................................................. 4-1-66
Section 4.2 - Zener Voltage Regulator Diodes
4.2.4.1
Zener Voltage Regulator Diodes Axial Leaded
4.2.4.1.1
Zener Voltage Regulator Diodes Axial Leaded 500 mWatt 00-35 Glass
1. General Data ............................................................'................... 4-2-22
2. 1N746A thru 1N759A, 1N957B thru 1N992B, 1N4370A thru 1N4372A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-2-28
3. 1N4678 thru 1N4717 ......................................................................... 4-2-30
4.
5.
6.
7.
8.
1N5221Bthru 1N5281B .......................................................................
1N5985B thru 1N6025B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
BZX55C2V4 thru BZX55C91 ...................................................................
BZX79C2V4 thru BZX79C200 ..................................................................
BZX83C2V7 thru BZX83C33, M-ZPD2.7 thru M-ZPD33 ..............................................
4-2-31
4-2-33
4-2-34
4-2-35
4-2-36
9. MZ4099 thru MZ4104, MZ4614 thru MZ4627 ...................................................... 4-2-37
10. MZ5520B thru MZ5530B ...................................................................... 4-2-38
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
1-2
INDEX OF PART NUMBERS BY CATEGORY (continued)
Section 4.2 - Zener Voltage Regulator Diodes (continued)
4.2.4.1.2 Zener Voltage Regulator Diodes Axial Leaded 1-1.3 Watt 00-41 Glass
1.
2.
3.
4.
General Data ...............................................................................
1N4728A thru 1N4764A .......................................................................
BZX85C3V3 thru BZX85C100 ..................................................................
M-ZPY3.9 thru M-ZPY100 .....................................................................
4-2-40
4-2-44
4-2-45
4-2-46
4.2.4.1.3 Zener Voltage Regulator Diodes Axial Leaded 1-3 Watt 00-41 Surmetic 30
1.
2.
3.
4.
5.
General Data ...............................................................................
1N5913Bthru 1N5956B .......................................................................
3EZ3.9D5 thru 3EZ400D5 .....................................................................
MZD3.9 thru MZD200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MZP4728A thru MZP4764A, 1M11 OZS5 thru 1M200ZS5 ..............................................
4-2-48
4-2-51
4-2-53
4-2-55
4-2-56
4.2.4.1.4 Zener Voltage Regulator Diodes Axial Leaded 5 Watt Surmetlc 40
1N5333B thru 1N5388B .......................................................................... 4-2-58
4.2.4.2
Zener Voltage Regulator Diodes Surface Mounted
4.2.4.2.1
Zener Voltage Regulator Diodes Surface Mounted 225 mW SOT-23
1. General Data ............................................................................... 4-2-64
2. BZX84C2V4L thru BZX84C75L ................................................................. 4-2-65
3. MMBZ5221 BL thru MMBZ5270BL ............................................................... 4-2-66
4.2.4.2.2 Zener Voltage Regulator Diodes Surface Mounted 500 mWatt Leadless 00-34
1.
2.
3.
4.
General Data ...............................................................................
BZV55C2V4 thru BZV55C56 ...................................................................
MLL4678 thru MLL4717 .......................................................................
MLL5221 B thru MLL5263B .....................................................................
4-2-68
4-2-73
4-2-74
4-2-75
4.2.4.2.3 Zener Voltage Regulator Diodes Surface Mounted 1.5 Watt DC Power 5MB
1SMB5913BT3thru 1SMB5956BT3 ................................................................. 4-2-78
Section 4.3 - Zener Voltage Reference Diodes
4.3.4
Zener Voltage Reference Diodes
4.3.4.1.1
Zener Voltage Reference Diodes Axial Leaded 6.2 V OTC 400 mW 00-35
1N821 thru 1N829A ............................................................................. 4-3-10
4.3.4.1.2 Zener Voltage Reference Diodes Axial Leaded 6.4 V OTC 400 mW 00-35
1N4565thru 1N4574A ........................................................................... 4-3-14
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
1-3
•
ALPHANUMERIC INDEX
I
DEVICE
PAGE
DEVICE
PAGE
DEVICE
PAGE
1M110ZS5
4-2-56
1N967B
4-2-28
1N4571
4-3-15
4-3-15
1M120ZS5
4-2-56
1N968B
4-2-28
1N4571 A
1M130ZS5
4-2-56
1N969B
4-2-28
1N4572
4-3-15
1M150ZS5
4-2-56
1N970B
4-2-28
1N4572A
4-3-15
1M160ZS5
4-2-56
1N971 B
4-2-28
1N4573
4-3-15
1M180ZS5
4-2-56
1N972B
4-2-28
1N4573A
4-3-15
4-3-15
1M200ZS5
4-2-56
1N973B
4-2-28
1N4574
1N746A
4-2-28
1N974B
4-2-28
1N4574A
4-3-15
1N747A
4-2-28
1N975B
4-2-28
1N4678
4-2-30
1N748A
4-2-28
1N976B
4-2-28
1N4679
4-2-30
1N749A
4-2-28
1N977B
4-2-28
1N4680
4-2-30
1N750A
4-2-28
1N978B
4-2-28
1N4681
4-2-30
1N751A
4-2-28
1N979B
4-2-28
1N4682
4-2-30
1N752A
4-2-28
1N980B
4-2-28
1N4683
4-2-30
1N753A
4-2-28
1N981B
4-2-29
1N4684
4-2-30
1N754A
4-2-28
1N982B
4-2-29
1N4685
4-2-30
1N755A
4-2-28
1N983B
4-2-29
1N4686
4-2-30
1N756A
4-2-28
1N984B
4-2-29
1N4687
4-2-30
1N757A
4-2-28
1N985B
4-2-29
1N4688
4-2-30
1N758A
4-2-28
1N986B
4-2-29
1N4689
4-2-30
1N759A
4-2-28
1N987B
4-2-29
1N4690
4-2-30
1N821
4-3-10
1N988B
4-2-29
1N4691
4-2-30
1N821A
4-3-10
1N989B
4-2-29
1N4692
4-2-30
1N823
4-3-10
1N990B
4-2-29
1N4693
4-2-30
1N823A
4-3-10
1N991 B
4-2-29
1N4694
4-2-30
1N825
4-3-10
1N992B
4-2-29
1N4695
4-2-30
1N825A
4-3-10
1N4370A
4-2-28
1N4696
4-2-30
1N827
4-3-10
1N4371A
4-2-28
1N4697
4-2-30
1N827A
4-3-10
1N4372A
4-2-28
1N4698
4-2-30
1N829
4-3-10
1N4565
4-3-15
1N4699
4-2-30
1N829A
4-3-10
1N4565A
4-3-15
1N4700
4-2-30
1N957B
4-2-28
1N4566
4-3-15
1N4701
4-2-30
1N958B
4-2-28
1N4566A
4-3-15
1N4702
4-2-30
1N959B
4-2-28
1N4567
4-3-15
1N4703
4-2-30
1N960B
4-2-28
1N4567A
4-3-15
1N4704
4-2-30
1 N961 B
4-2-28
1N4568
4-3-15
1N4705
4-2-30
1N962B
4-2-28
1N4568A
4-3-15
1N4706
4-2-30
1N963B
4-2-28
1N4569
4-3-15
1N4707
4-2-30
1N964B
4-2-28
1N4569A
4-3-15
1N4708
4-2-30
1N965B
4-2-28
1N4570
4-3-15
1N4709
4-2-30
1N966B
4-2-28
1N4570A
4-3-15
1N4710
4-2-30
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
1-4
ALPHANUMERIC INDEX (continued)
DEVICE
PAGE
DEVICE
PAGE
DEVICE
PAGE
1N4711
4-2-30
1N4762A
4-2-44
1N5259B
4-2-31
1N4712
4-2-30
1N4763A
4-2-44
1N5260B
4-2-31
1N4713
4-2-30
1N4764A
4-2-44
1N5261B
4-2-31
1N4714
4-2-30
1N5221B
4-2-31
1N5262B
4-2-31
1N4715
4-2-30
1N5222B
4-2-31
1N5263B
4-2-31
1N4716
4-2-30
1N5223B
4-2-31
1N5264B
4-2-31
1N4717
4-2-30
1N5224B
4-2-31
1N5265B
4-2-31
1N4728A
4-2-44
1N5225B
4-2-31
1N5266B
4-2-32
1N4729A
4-2-44
1N5226B
4-2-31
1N5267B
4-2-32
1N4730A
4-2-44
1N5227B
4-2-31
1N5268B
4-2-32
1N4731 A
4-2-44
1N5228B
4-2-31
1N5269B
4-2-32
1N4732A
4-2-44
1N5229B
4-2-31
1N5270B
4-2-32
1N4733A
4-2-44
1N5230B
4-2-31
1N5271B
4-2-32
1N4734A
4-2-44
1N5231B
4-2-31
1N5272B
4-2-32
1N4735A
4-2-44
1N5232B
4-2-31
1N5273B
4-2-32
1N4736A
4-2-44
1N5233B
4-2-31
1N5274B
4-2-32
1N4737A
4-2-44
1N5234B
4-2-31
1N5275B
4-2-32
1N4738A
4-2-44
1N5235B
4-2-31
1N5276B
4-2-32
1N4739A
4-2-44
1N5236B
4-2-31
1N5277B
4-2-32
1N4740A
4-2-44
1N5237B
4-2-31
1N5278B
4-2-32
1N4741A
4-2-44
1N5238B
4-2-31
1N5279B
4-2-32
1N4742A
4-2-44
1N5239B
4-2-31
1N5280B
4-2-32
1N4743A
4-2-44
1N5240B
4-2-31
1N5281B
4-2-32
1N4744A
4-2-44
1N5241B
4-2-31
1N5333B
4-2-59
1N4745A
4-2-44
1N5242B
4-2-31
1N5334B
4-2-59
1N4746A
4-2-44
1N5243B
4-2-31
1N5335B
4-2-59
1N4747A
4-2-44
1N5244B
4-2-31
1N5336B
4-2-59
1N4748A
4-2-44
1N5245B
4-2-31
1N5337B
4-2-59
1N4749A
4-2-44
1N5246B
4-2-31
1N5338B
4-2-59
1N4750A
4-2-44
1N5247B
4-2-31
1N5339B
4-2-59
1N4751A
4-2-44
1N5248B
4-2-31
1N5340B
4-2-59
1N4752A
4-2-44
1N5249B
4-2-31
1N5341B
4-2-59
1N4753A
4-2-44
1N5250B
4-2-31
1N5342B
4-2-59
1N4754A
4-2-44
1N5251B
4-2-31
1N5343B
4-2-59
1N4755A
4-2-44
1N5252B
4-2-31
1N5344B
4-2-59
1N4756A
4-2-44
1N5253B
4-2-31
1N5345B
4-2-59
4-2-59
1N4757A
4-2-44
1N5254B
4-2-31
1N5346B
1N4758A
4-2-44
1N5255B
4-2-31
1N5347B
4-2-59
1N4759A
4-2-44
1N5256B
4-2-31
1N5348B
4-2-59
1N4760A
4-2-44
1N5257B
4-2-31
1N5349B
4-2-59
1N4761A
4-2-44
1N5258B
4-2-31
1N5350B
4-2-59
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
1-5
•
ALPHANUMERIC INDEX (continued)
I
DEVICE
PAGE
DEVICE
PAGE
DEVICE
PAGE
1N5351B
4-2-59
1N5915B
4-2-51
1N5956B
4-2-52
1N5352B
4-2-59
1N5916B
4-2-51
1N5985B
4-2-33
1N5353B
4-2-59
1N5917B
4-2-51
1N5986B
4-2-33
1N5354B
4-2-59
1N5918B
4-2-51
1N5987B
4-2-33
1N5355B
4"2-59
1N5919B
4-2-51
1N5988B
4-2-33
1N5356B
4-2-59
1N5920B
4-2-51
1N5989B
4-2-33
1N5357B
4-2-59
1N5921B
4-2-51
1N5990B
4-2-33
1N5358B
4-2-59
1N5922B
4-2-51
1N5991B
4-2-33
1N5359B
4-2-59
1N5923B
4-2-51
1N5992B
4-2-33
1N5360B
4-2-59
1N5924B
4-2-51
1N5993B
4-2-33
1N5361B
4-2-59
1N5925B
4-2-51
1N5994B
4-2-33
1N5362B
4-2-59
1N5926B
4-2-51
1N5995B
4-2-33
1N5363B
4-2-59
1N5927B
4-2-51
1N5996B
4-2-33
1N5364B
4-2-59
1N5928B
4-2-51
1N5997B
4-2-33
1N5365B
4-2-59 .
1N5929B
4-2-51
1N5998B
4-2-33
1N5366B
4-2-59
1N5930B
4-2-51
1N5999B
4-2-33
1N5367B
4-2-59
1N5931B
4-2-51
1N6000B
4-2-33
1N5368B
4-2-59
1NS932B
4-2-51
1N6001B
4-2-33
1N5369B
4-2-S9
1N5933B
4-2-51
1N6002B
4-2-33
1N5370B
4-2-59
1NS934B
4-2-51
1N6003B
4-2-33
1NS371B
4-2-S9
1NS935B
4-2-S1
1N6004B
4-2-33
1N5372B
4-2-59
1N5936B
4-2-S1
1N600SB
4-2-33
1N5373B
4-2-59
1N5937B
4-2-51
1N6006B
4-2-33
1N5374B
4-2-S9
1NS938B
4-2-S1
1N6007B
4-2-33
1N5375B
4-2-59
1N5939B
4-2-51
1N6008B
4-2-33
1N5376B
4-2-S9
1N5940B
4-2-51
1N6009B
4-2-33
1N5377B
4-2-S9
1N5941B
4-2-S1
1N601OB
4-2-33
1N5378B
4-2-59
1NS942B
4-2-51
1N6011B
4-2-33
1N5379B
4-2-S9
1N5943B
4-2-S1
1N6012B
4-2-33
1N5380B
4-2-S9
1N5944B
4-2-S1
1N6013B
4-2-33
1N5381B
4-2-59
1N594SB
4-2-51
1N6014B
4-2-33
1N5382B
4-2-59
1N5946B
4-2-51
1N6015B
4-2-33
1N5383B
4-2-60
1NS947B
4-2-51
1N6016B
4-2-33
1N5384B
4-2-60
1N5948B
4-2-52
1N6017B
4-2-33
1N5385B
4-2-60
1N5949B
4-2-52
1N6018B
4-2-33
1N5386B
4-2-60
1N5950B
4-2-52
1N6019B
4-2-33
1N5387B
4-2-60
1NS951B
4-2-S2
1N6020B
4-2-33
1N5388B
4-2-60
1NS952B
4-2-52
1N6021B
4-2-33
1N5908
4-1-42
1NS953B
4-2-52
1N6022B
4-2-33
1N5913B
4-2-S1
1N5954B
4-2-S2
1N6023B
4-2-33
1N5914B
4-2-51
1N5955B
4-2-52
1N6024B
4-2-33
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
1-6
ALPHANUMERIC INDEX (continued)
DEVICE
PAGE
DEVICE
PAGE
DEVICE
PAGE
1N6025B
4-2-33
1N6287
4-1-43
1N6380
4-1-46
1N6267
4-1-43
1N6287A
4-1-43
1N6381
4-1-46
1N6267A
4-1-43
1N6288
4-1-43
1N6382
4-1-46
1N6268
4-1-43
1N6288A
4-1-43
1N6383
4-1-46
1N6268A
4-1-43
1N6289
4-1-44
1N6384
4-1-46
1N6269
4-1-43
1N6289A
4-1-44
1N6385
4-1-46
1N6269A
4-1-43
1N6290
4-1-44
1N6386
4-1-46
1N6270
4-1-43
1N6290A
4-1-44
1N6387
4-1-46
1N6270A
4-1-43
1N6291
4-1-44
1N6388
4-1-46
1N6271
4-1-43
1N6291A
4-1-44
1N6389
4-1-46
1N6271A
4-1-43
1N6292
4-1-44
1SMB5.0AT3
4-1-59
1N6272
4-1-43
1N6292A
4-1-44
1SMB6.0AT3
4-1-59
1N6272A
4-1-43
1N6293
4-1-44
1SMB6.5AT3
4-1-59
1N6273
4-1-43
1N6293A
4-1-44
1SMB7.0AT3
4-1-59
1N6273A
4-1-43
1N6294
4-1-44
1SMB7.5AT3
4-1-59
1N6274
4-1-43
1N6294A
4-1-44
1SMB8.0AT3
4-1-59
1N6274A
4-1-43
1N6295
4-1-44
1SMB8.5AT3
4-1-59
1N6275
4-1-43
1N6295A
4-1-44
1SMB9.0AT3
4-1-59
1N6275A
4-1-43
1N6296
4-1-44
1SMB10AT3
4-1-59
1N6276
4-1-43
1N6296A
4-1-44
1SMB11AT3
4-1-59
1N6276A
4-1-43
1N6297
4-1-44
1SMB12AT3
4-1-59
1N6277
4-1-43
1N6297A
4-1-44
1SMB13AT3
4-1-59
1N6277A
4-1-43
1N6298
4-1-44
1SMB14AT3
4-1-59
1N6278
4-1-43
1N6298A
4-1-44
1SMB15AT3
4-1-59
1N6278A
4-1-43
1N6299
4-1-44
1SMB16AT3
4-1-59
1N6279
4-1-43
1N6299A
4-1-44
1SMB17AT3
4-1-59
1N6279A
4-1-43
1N6300
4-1-44
1SMB18AT3
4-1-59
1N6280
4-1-43
1N6300A
4-1-44
1SMB20AT3
4-1-59
1N6280A
4-1-43
1N6301
4-1-44
1SMB22AT3
4-1-59
1N6281
4-1-43
1N6301A
4-1-44
1SMB24AT3
4-1-59
1N6281A
4-1-43
1N6302
4-1-44
1SMB26AT3
4-1-59
1N6282
4-1-43
1N6302A
4-1-44
1SMB28AT3
4-1-59
1N6282A
4-1-43
1N6303
4-1-44
1SMB30AT3
4-1-59
1N6283
4-1-43
1N6303A
4-1-44
1SMB33AT3
4-1-59
1N6283A
4-1-43
1N6373
4-1-46
1SMB36AT3
4-1-59
1N6284
4-1-43
1N6374
4-1-46
1SMB40AT3
4-1-59
1N6284A
4-1-43
1N6375
4-1-46
1SMB43AT3
4-1-59
1N6285
4-1-43
1N6376
4-1-46
1SMB45AT3
4-1-59
4-1-59
1N6285A
4-1-43
1N6377
4-1-46
1SMB48AT3
1N6286
4-1-43
1N6378
4-1-46
1SMB51AT3
4-1-59
1N6286A
4-1-43
1N6379
4-1-46
1SMB54AT3
4-1-59
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
1-7
•
ALPHANUMERIC INDEX (continued)
•
DEVICE
PAGE
DEVICE
PAGE
DEVICE
PAGE
1SMB58AT3
4-1-59
15MB5939BT3
4-2-79
1SMC33AT3
4-1-65
1SMB60AT3
4-1-59
15MB5940BT3
4-2-79
1SMC36AT3
4-1-65
1SMB64AT3
4-1-59
15MB5941 BT3
4-2-79
1SMC40AT3
4c1-65
1SMB70AT3
4-1-59
15MB5942BT3
4-2-79
1SMC43AT3
4-1-65
1SMB75AT3
4-1-59
15MB5943BT3
4-2-79
1SMC45AT3
4-1-65
1SMB78AT3
4-1-59
15MB5944BT3
4-2-79
1SMC48AT3
4-1-65
1SMB85AT3
4-1-59
15MB5945BT3
4-2-79
1SMC51AT3
4-1-65
1SMB90AT3
4-1.59
1SMB5946BT3
4-2-79
1SMC54AT3
4-1-65
1SMB100AT3
4-1-59
1SMB5947BT3
4-2-79
1SMC58AT3
4-1-65
1SMB11QAT3
4-1-59
15MB5948BT3
4-2-79
1SMC60AT3
4-1-65
1SMB120AT3
4-1-59
1SMB5949BT3
4-2-79
1SMC64AT3
4-1-65
1SMB130AT3
4-1-59
15MB5950BT3
4-2-79
1SMC70AT3
4-1-65
1SMB150AT3
4-1-59
1SMB5951BT3
4-2-79
1SMC75AT3
4-1-65
1SMB160AT3
4-1-59
15MB5952BT3
4-2-79
1SMC78AT3
4-1-65
1SMB170AT3
4-1-59
15MB5953BT3
4-2-79
1.5KE6.8
4-1-43
15MB5913BT3
4-2-78
15MB5954BT3
4-2-79
1.5KE6.8A
4-1-43
1SMB5914BT3
4-2-78
15MB5955BT3
4-2-79
1.5KE7.5
4-1-43
1SMB5915BT3
4-2-78
15MB5956BT3
4-2-79
1.5KE7.5A
4-1-43
15MB5916BT3
4-2-78
1SMC5.0AT3
4-1-65
1.5KE8.2
4-1-43
1SMB5917BT3
4-2-78
1SMC6.0AT3
4-1-65
1.5KE8.2A
4-1-43
15MB5918BT3
4-2-78
1SMC6.5AT3
4-1-65
1.5KE9.1
4-1-43
1SMB5919BT3
4-2-78
1SMC7.0AT3
4-1-65
1.5KE9.1A
4-1-43
15MB5920BT3
4-2-78
1SMC7.5AT3
4-1-65
1.5KE10
4-1-43
15MB5921 BT3
4-2-78
1SMC8.0AT3
4-1-65
1.5KE10A
4-1-43
15MB5922BT3
4-2-78
1SMC8.5AT3
4-1-65
1.5KE11
4-1-43
15MB5923BT3
4-2-78
1SMC9.0AT3
4-1-65
1.5KE11A
4-1-43
15MB5924BT3
4-2-78
1SMC10AT3
4-1-65
1.5KE12
4-1-43
15MB5925BT3
4-2-78
1SMC11AT3
4-1-65
1.5KE12A
4-1-43
15MB5926BT3
4-2-78
1SMC12AT3
4-1-65
1.5KE13
4-1-43
15MB5927BT3
4-2-78
1SMC13AT3
4-1'65
1.5KE13A
4-1-43
15MB5928BT3
4-2-78
1SMC14AT3
4-1-65
1.5KE15
4-1-43
15MB5929BT3
4-2-79
1SMC15AT3
4-1-65
1.5KE15A
4-1-43
15MB5930BT3
4-2-79
1SMC16AT3
4-1-65
1.5KE16
4-1-43
15MB5931BT3
4-2-79
1SMC17AT3
4-1-65
1.5KE16A
4-1,43
15MB5932BT3
4-2-79
1SMC18AT3
4-1-65
1.5KE18
4-1-43
15MB5933BT3
4-2-79
1SMC20AT3
4-1-65
1.5KE18A
4-1-43
15MB5934BT3
4-2-79
1SMC22AT3
4-1-65
1.5KE20
4-1-43
15MB5935BT3
4-2-79
1SMC24AT3
4-1-65
1.5KE20A
4-1-43
15MB5936BT3
4-2-79
1SMC26AT3
4-1-65
1.5KE22
4-1-43
15MB5937BT3
4-2-79
1SMC28AT3
4-1-65
1.5KE22A
4-1-43
15MB5938BT3
4-2-79
1SMC30AT3
4-1-65
1.5KE24.
4-1-43
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
1-8
ALPHANUMERIC INDEX (continued)
DEVICE
PAGE
DEVICE
PAGE
DEVICE
PAGE
1.SKE24A
4-1-43
1.SKE170
4-1-44
3EZS.1DS
4-2-S3
1.SKE27
4-1-43
1.SKE170A
4-1-44
3EZS.6DS
4-2-S3
1.SKE27A
4-1-43
1.SKE1S0
4-1-44
3EZ6.2DS
4-2-S3
1.SKE30
4-1-43
1.SKE1S0A
4-1-44
3EZ6.SDS
4-2-S3
1.SKE30A
4-1-43
1.SKE200
4-1-44
3EZ7.SDS
4-2-S3
1.SKE33
4-1-43
1.SKE200A
4-1-44
3EZS.2DS
4-2-S3
1.SKE33A
4-1-43
1.SKE220
4-1-44
3EZ9.1DS
4-2-S3
1.SKE36
4-1-43
1.SKE220A
4-1-44
3EZ10DS
4-2-S3
1.SKE36A
4-1-43
1.SKE2S0
4-1-44
3EZ11DS
4-2-S3
1.SKE39
4-1-43
1.SKE2S0A
4-1-44
3EZ12DS
4-2-S3
1.SKE39A
4-1-43
1.SSMC6.SAT3
4-1-66
3EZ13DS
4-2-S3
1.SKE43
4-1-43
1.SSMC7.SAT3
4-1-66
3EZ14DS
4-2-S3
,4-1-66
3EZ1SDS
4-2-S3
1.SKE43A
4-1-43
1.SSMCS.2AT3
1.SKE47
4-1-43
1.SSMC9.1AT3
4-1-66
3EZ16DS
4-2-S3
1.SKE47A
4-1-43
1.SSMC10AT3
4-1-66
3EZ17DS
4-2-S3
1.SKES1
4-1-43
1.SSMC11AT3
4-1-66
3EZ1SDS
4-2-S3
1.SKES1A
4-1-43
1.SSMC12AT3
4-1-66
3EZ19DS
4-2-S3
1.SKES6
4-1-44
1.SSMC13AT3
4-1-66
3EZ20DS
4-2-S3
1.SKES6A
4-1-44
1.SSMC1SAT3
4-1-66
3EZ22DS
4-2-S3
1.SKE62
4-1-44
1.SSMC16AT3
4-1-66
3EZ24DS
4-2-S3
1.SKE62A
4-1-44
1.SSMC1SAT3
4-1-66
3EZ27D5
4-2-S3
1.SKE6S
4-1-44
1.SSMC20AT3
4-1-66
3EZ2SDS
4-2-S3
1.SKE6SA
4-1-44
1.SSMC22AT3
4-1-66
3EZ30DS
4-2-S3
1.SKE75
4-1-44
1.SSMC24AT3
4-1-66
3EZ33D5
4-2-S3
1.SKE7SA
4-1-44
1.SSMC27AT3
4-1-66
3EZ36DS
4-2-S3
1.SKES2
4-1-44
1.SSMC30AT3
4-1-66
3EZ39DS
4-2-S3
1.SKES2A
4-1-44
1.SSMC33AT3
4-1-66
3EZ43DS
4-2-S3
1.SKE91
4-1-44
1.SSMC36AT3
4-1-66
3EZ47D5
4-2-S3
1.SKE91A
4-1-44
1.SSMC39AT3
4-1-66
3EZS1D5
4-2-S3
1.SKE100
4-1-44
1.SSMC43AT3
4-1-66
3EZS6DS
4-2-S3
1.SKE100A
4-1-44
1.SSMC47AT3
4-1-66
'3EZ62DS
4-2-S3
1.SKE110
4-1-44
1.SSMCS1AT3
4-1-66
3EZ6SD5
4-2-S3
1.SKE110A
4-1-44
1.SSMCS6AT3
4-1-66
3EVSDS
4-2-S3
1.SKE120
4-1-44
1.SSMC62AT3
4-1-66
3EZ82DS
4-2-S3
1.SKE120A
4-1-44
1.SSMC6SAT3
4-1-66
3EZ91DS
4-2-S3
1.SKE130
4-1-44
1.SSMC7SAT3
4-1-66
3EZ100DS
4-2-S3
4-1-66
3EZ110DS
4-2-S3
1.SKE130A
4-1-44
1.SSMCS2AT3
1.SKE1S0
4-1-44
1.SSMC91T3
4-1-66
3EZ120DS
4-2-S3
1.SKE1S0A
4-1-44
3EZ3.9DS
4-2-S3
3EZ130DS
4-2-S3
1.SKE160
4-1-44
3EZ4.3DS
4"2-S3
3EZ140DS
4-2-S3
1.SKE160A
4-1-44
3EZ4.7DS
4-2-S3
3EZ1S0DS
4-2-S3
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
1-9
•
ALPHANUMERIC INDEX (continued)
•
DEVICE
PAGE
DEVICE
PAGE
DEVICE
PAGE
3EZ160D5
4-2-53
BZV55C39
3EZ170D5
4-2-53
BZV55C43
4-2-73
BZX55C82
4-2-34
4-2-73
BZX55C91
3EZ180D5
4-2-53
4-2-34
BZV55C47
4-2-73
BZX79C2V4
3EZl90D5
4-2-53
4-2-35
BZV55C51
4-2-73
BZX79C2V7
4-2-35
4-2-35
3EZ200D5
4-2-54
BZV55C56
4-2-73
BZX79C3VO
3EZ220D5
4-2-54
BZX55C2V4
4-2-34
BZX79C3V6
4-2-35
3EZ240D5
4-2-54
BZX55C2V7
4-2-34
BZX79C3V9
4-2-35
3EZ270D5
4-2-54
BZX55C3VO
4-2-34
BZX79C4V3
4-2-35
3EZ300D5
4-2-54
BZX55C3V3
4-2-34
BZX79C5V1
4-2-35
3EZ330D5
4-2-54
BZX55C3V6
4-2-34
BZX79C5V6
4-2-35
3EZ360D5
4-2-54
BZX55C3V9
4-2-34
BZX79C6V2
4-2-35
3EZ400D5
4-2-54
BZX55C4V3
4-2-34
BZX79C6V8
4-2-35
BZV55C2V4
4-2-73
BZX55C4V7
4-2-34
BZX79C7V5
4-2-35
BZV55C2V7
4-2-73
BZX55C5V1
4-2-34
BZX79C8V2
4-2-35
4-2-35
BZV55C3VO
4-2-73
BZX55C5V6
4-2-34
BZX79C9V1
BZV55C3V3
4-2-73
BZX55C6V2
4-2-34
BZX79C10
4-2-35
BZV55C3V6
4-2-73
BZX55C6V8
4-2-34
BZX79C11
4-2-35
BZV55C3V9
4-2-73
BZX55C7V5
4-2-34
BZX79C12
4-2-35
BZV55C4V3
4-2-73
BZX55C8V2
4-2-34
BZX79C13
4-2-35
BZV55C4V7
4-2-73
BZX55C9V1
4-2-34
BZX79C15
4-2-35
BZV55C5V1
4-2-73
BZX55C10
4-2-34
BZX79C16
4-2-35
BZV55C5V6
4-2-73
BZX55C11
4-2-34
BZX79C18
4-2-35
BZV55C6V2
4-2-73
BZX55C12
4-2-34
BZX79C20
4-2-35
BZV55C6V8
4-2-73
BZX55C13
4-2-34
BZX79C22
4-2-35
BZV55C7V5
4-2-73
BZX55C15
4-2-34
BZX79C24
4-2-35
BZV55C8V2
4-2-73
BZX55C16
4-2-34
BZX79C27
4-2-35
BZV55C!lV1
4-2-73
BZX55C18
4-2-34
BZX79C30
4-2-35
BZV55C10
4-2-73
BZX55C20
4-2-34
BZX79C33
4-2-35
4"2-73
BZX55C22
4-2-34
BZX79C36
4-2-35
BZV55C12
4-2-73
BZX55C24
4-2-34
BZX79C39
4-2-35
BZV55C13
4-2-73
BZX55C27
4-2-34
BZX79C43
4-2-35 .
BZV55C15
4-2-73
BZX55C30
4-2-34
BZX79C47
4-2-35
BZV55C16
4-2-73
BZX55C33
4-2-34 .
BZX79C51
4-2-35
BZV55C18
4-2-73
BZX55C36
4-2-34
BZX79C56
4-2-35
BZV55C20
4-2-73
BZX55C39
4-2-34
BZX79C62
4-2-35
BZV55C22
4-2-73
BZX55C43
4-2-34
BZX79C68
4-2-35
BZV55C24
4-2-73
BZX55C47
4-2-34
BZX79C75
4-2-35
BZV55C27
4-2-73
BZX55C51
4-2-34
BZX79C82
4-2-35
BZV55C30
4-2-73
BZX55C56
4-2-34
BZX79C91
4-2-35
BZV55C33
4-2-73 .
BZX55C62
4-2-34
BZX79C100
4-2-35
BZV55C36
4-2-73 .
BZX55C68
4-2-34
BZX79C110
4-2-35
BZV55C11
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
1-10
ALPHANUMERIC INDEX (continued)
DEVICE
PAGE
DEVICE
PAGE
DEVICE
PAGE
BZX79C120
4-2-35
BZX84C5V1L
4-2-65
BZX85C10
4-2-45
BZX79C130
4-2-35
BZX84C5V6L
4-2-65
BZX85C11
4-2-45
BZX79C150
4-2-35
BZX84C6V2L
4-2-65
BZX85C12
4-2-45
BZX79C160
4-2-35
BZX84C6V8L
4-2-65
BZX85C13
4-2-45
BZX79C180
4-2-35
BZX84C7V5L
4-2-65
BZX85C15
4-2-45
BZX79C200
4-2-35
BZX84C8V2L
4-2-65
BZX85C16
4-2-45
BZX83C2V7
4-2-36
BZX84C9V1L
4-2-65
BZX85C18
4-2-45
BZX83C3VO
4-2-36
BZX84C10L
4-2-65
BZX85C20
4-2-45
BZX83C3V3
4-2-36
BZX84C11L
4-2-65
BZX85C22
4-2-45
BZX83C3V6
4-2-36
BZX84C12L
4-2-65
BZX85C24
4-2-45
BZX83C3V9
4-2-36
BZX84C13L
4-2-65
BZX85C27
4-2-45
BZX83C4V3
4-2-36
BZX84C15L
4-2-65
BZX85C30
4-2-45
BZX83C4V7
4-2-36
BZX84C16L
4-2-65
BZX85C33
4-2-45
BZX83C5V1
4-2-36
BZX84C18L
4-2-65
BZX85C36
4-2-45
BZX83C5V6
4-2-36
BZX84C20L
4-2-65
BZX85C39
4-2-45
BZX83C6V2
4-2-36
BZX84C22L
4-2-65
BZX85C43
4-2-45
BZX83C6V8
4-2-36
BZX84C24L
4-2-65
BZX85C47
4-2-45
BZX83C7V5
4-2-36
BZX84C27L
4-2-65
BZX85C51
4-2-45
BZX83C8V2
4-2-36
BZX84C30L
4-2-65
BZX85C56
4-2-45
BZX83C9V1
4-2-36
BZX84C33L
4-2-65
BZX85C62
4-2-45
BZX83C10
4-2-36
BZX84C36L
4-2-65
BZX85C68
4-2-45
BZX83C11
4-2-36
BZX84C39L
4-2-65
BZX85C75
4-2-45
BZX85C82
4-2-45
BZX83C12
4-2-36
BZX84C43L
4-2-65
BZX83C13
4-2-36
BZX84C47L
4-2-65
BZX85C91
4-2-45
BZX83C15
4-2-36
BZX84C51L
4-2-65
BZX85C100
4-2-45
BZX83C16
4-2-36
BZX84C56L
4-2-65
ICTE-5
4-1-46
4-2-36
BZX84C62L
4-2-65
ICTE-8
4-1-46
ICTE-8C
4-1-46
BZX83C18
BZX83C20
4-2-36
BZX84C68L
4-2-65
BZX83C22
4-2-36
BZX84C75L
4-2-65
ICTE-10
4-1-46
BZX83C24
4-2-36
BZX85C3V3
4-2-45
ICTE-10C
4-1-46
BZX83C27
4-2-36
BZX85C3V6
4-2-45
ICTE-12
4-1-46
BZX83C30
4-2-36
BZX85C3V9
4-2-45
ICTE-12C
4-1-46
BZX83C33
4-2-36
BZX85C4V3
4-2-45
ICTE-15
4-1-46
BZX84C2V4L
4-2-65
BZX85C4V7
4-2-45
ICTE-15C
4-1-46
BZX84C2V7L
4-2-65
BZX85C5V1
4-2-45
ICTE-18
4-1-46
4-2-65
BZX85C5V6
4-2-45
ICTE-18C
4-1-46
BZX84C3V3L
4-2-65
BZX85C6V2
4-2-45
ICTE-22
4-1-46
BZX84C3V6L
4-2-65
BZX85C6V8
4-2-45
ICTE-22C
4-1-46
BZX84C3V9L
4-2-65
BZX85C7V5
4-2-45
ICTE-36
4-1-46
BZX84C4V3L
4-2-65
BZX85C8V2
4-2-45
ICTE-36C
4-1-46
4-2-65
BZX85C9V1
4-2-45
ICTE-45
4-1-46
BZX84C3VOL
BZX84C4V7L
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
1-11
•
ALPHANUMERIC INDEX (continued)
•
DEVICE
PAGE
DEVICE
PAGE
DEVICE·
PAGE
ICTE-45C
4-1-46
MLL5221B
4-2-75
MLL5263B
4-2-75
MLL4678
4-2-74
MLL5222B
4-2-75
MMBZ15VDLT1
4-1-52
MLL4679
4-2-74
MLL5223B
4-2-75
MMBZ5221BL
4-2-66
MLL4680
4-2-74
MLL5224B
·4-2-75
MMBZ5222BL
4-2-66
MLL4681
4-2-74
MLL5225B
4-2-75
MMBZ5223BL
4-2-66
MLL4682
4-2-74
MLL5226B
4-2-75
MMBZ5224BL
4-2-66
MLL4683
4-2-74
MLL5227B
4-2-75
MMBZ5225BL
4-2-66
MLL4684
4-2-74
MLL5228B
4-2-75
MMBZ5226BL
4-2-66
MLL4685
4-2-74
MLL5229B
4-2-75
MMBZ5227BL
4-2-66
MLL4686
4-2-74
MLL5230B
4-2-75
MMBZ5228BL
4-2-66
MLL4687
4-2-74
MLL5231B
4-2-75
MMBZ5229BL
4-2-66
MLL4688
4-2-74
MLL5232B
4-2-75
MMBZ5230BL
4-2-66
MLL4689
4-2-74
MLL5233B
4-2-75
MMBZ5231BL
4-2-66
MLL4690
4-2-74
MLL5234B
4-2-75
MMBZ5232BL
4-2-66
MLL4691
4-2-74
MLL5235B
4-2-75
MMBZ5233BL
4-2-66
MLL4692
4-2-74
MLL5236B
4-2-75
MMBZ5234BL
4-2'-66
MLL4693
4-2-74
MLL5237B
4-2-75
MMBZ5235BL
4-2-66
MLL4694
4-2-74
MLL5238B
4-2~75
MMBZ5236BL
4-2-66
MLL4695
4-2-74
MLL5239B
4-2-75
MMBZ5237BL
4-2-66
MLL4696
4-2-74
MLL5240B
4-2-75
MMBZ5238BL
4c2-66
MLL4697
4-2-74
MLL5241B
4-2-75
MMBZ5239BL
4-2-66
MLL4698
4-2-74
MLL5242B
4-2-75
MMBZ5240BL
4-2-66
MLL4699
4-2-74
MLL5243B
4-2-75
MMBZ5241BL
4-2-66
MLL4700
4-2-74
MLL5244B
4-2-75
MMBZ5242BL
4-2-66
MLL4701
4-2-74
MLL5245B
4-2-75
MMBZ5243BL
4-2-66
MLL4702
4~2-74
MLL5246B
4-2-75
MMBZ5244BL
4-2-66
MLL4703
4-2-74
MLL5247B
4-2-75
MMBZ5245BL
4-2-66
MLL4704
4-2-74
MLL5248B
4-2-75
MMBZ5246BL
4-2-66
MLL4705
4-2-74
MLL5249B
4-2-75
MMBZ5247BL
4-2-66
MLL4706
4-2-74
MLL5250B
4-2-75
MMBZ5248BL
4-2-66
MLL4707
4-2-74
MLL5251B
4-2-75
MMBZ5249BL
4-2-66
MLL4708
4-2-74
MLL5252B
4-2-75
MMBZ5250BL
4-2-66
MLL4709
4-2-74
MLL5253B
4-2-75
MMBZ5251BL
4-2-66
MLL4710
4-2-74
MLL5254B
4-2-75
MMBZ5252BL
4-2-66
MLL4711
4-2-74
MLL5255B
4-2-75
MMBZ5253BL
4-2-66
MLL4712
4-2-74
MLL5256B
4-2-75
MMBZ5254BL
4-2-66
MLL4713
4-2-74
MLL5257B
4-2-75
MMBZ5255BL
4-2-66
MLL4714
4-2-74
MLL5258B
4-2-75
MMBZ5256BL
4-2-66
MLL4715
4-2-74
MLL5259B
·4-2-75
MMBZ5257BL
4-2-66
MLL4716
4-2-74
MLL5260B
4-2-75
MMBZ5258BL
4-2-66
MLL4717
4-2-74
MLL5261B
4-2-75
MMBZ5259BL
4-2-66
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
1-12
ALPHANUMERIC INDEX (continued)
DEVICE
PAGE
DEVICE
PAGE
DEVICE
PAGE
MMBZ5260BL
4-2-66
MZ4620
4-2-37
MZD33
4-2-55
MMBZ5261BL
4-2-66
MZ4621
4-2-37
MZD36
4-2-55
MMBZ5262BL
4-2-66
MZ4622
4-2-37
MZD39
4-2-55
4-2-55
MMBZ5263BL
4-2-66
MZ4623
4-2-37
MZD43
MMBZ5264BL
4-2-66
MZ4624
4-2-37
MZD47
4-2-55
MMBZ5265BL
4-2-66
MZ4625
4-2-37
MZD51
4-2-55
MMBZ5266BL
4-2-66
MZ4626
4-2-37
MZD56
4-2-55
MMBZ5267BL
4-2-66
MZ4627
4-2-37
MZD62
4-2-55
MMBZ5268BL
4-2-66
MZ5520B
4-2-38
MZD68
4-2-55
MMBZ5269BL
4-2-66
MZ5521B
4-2-38
MZD75
4-2-55
MMBZ5270BL
4-2-66
MZ5522B
4-2-38
MZD82
4-2-55
MPTE-5
4-1-46
MZ5523B
4-2-38
MZD91
4-2-55
MPTE-8
4-1-46
MZ5524B
4-2-38
MZD100
4-2-55
MPTE-8C
4-1-46
MZ5525B
4-2-38
MZD110
4-2-55
4-2-38
MPTE-10
4-1-46
MZ5526B
MZD120
4-2-55
MPTE-10C
4-1-46
MZ5527B
4-2-38
MZD130
4-2-55
MPTE-12
4-1-46
MZ5528B
4-2-38
MZD150
4-2-55
MPTE-12C
4-1-46
MZ5529B
4-2-38
MZD160
4-2-55
4-1-46
MZ5530B
4-2-38
MZD180
4-2-55
4-2-55
MPTE-15
MPTE-15C
4-1-46
MZD3.9
MZD200
4-2-55
MPTE-18
4-1-46
MZD4.3
4-2-55
MZP4728A
4-2-56
MPTE-18C
4-1-46
MZD4.7
4-2-55
MZP4729A
4-2-56
MPTE-22
4-1-46
MZD5.1
4-2-55
MZP4730A
4-2-56
MPTE-22C
4-1-46
MZD5.6
4-2-55
MZP4731A
4-2-56
MPTE-36
4-1-46
MZD6.2
4-2-55
MZP4732A
4-2-56
MPTE-36C
4-1-46
MZD6.8
4-2-55
MZP4733A
4-2-56
MPTE-45
4-1-46
MZD7.5
4-2-55
MZP4734A
4-2-56
MPTE-45C
4-1-46
MZD8.2
4-2-55
MZP4735A
4-2-56
MR2535L
4-1-48
MZD9.1
4-2-55
MZP4736A
4-2-56
MZ4099
4-2-37
MZD10
4-2-55
MZP4737A
4-2-56
4-2-56
MZ41 00
4-2-37
MZD11
4-2-55
MZP4738A
MZ41 01
4-2-37
MZD12
4-2-55
MZP4739A
4-2-56
MZ41 02
4-2-37
MZD13
4-2-55
MZP4740A
4-2-56
MZ41 03
4-2-37
MZD15
4-2-55
MZP4742A
4-2-56
MZ41 04
4-2-37
MZD16
4-2-55
MZP4743A
4-2-56
MZ4614
4-2-37
MZD18
4-2-55
MZP4744A
4-2-56
MZ4615
4-2-37
MZD20
4-2-55
MZP4745A
4-2-56
MZ4616
4-2-37
MZD22
4-2-55
MZP4746A
4-2-56
MZ4617
4-2-37
MZD24
4-2-55
MZP4747A
4-2-56
4-2-56
4-2-56
MZ4618
4-2-37
MZD27
4-2-55
MZP4748A
MZ4619
4-2-37
MZD30
4-2-55
MZP4749A
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
1-13
I
ALPHANUMI:RIC'INDEX (continued)
I
DEVICE
PAGE
DEVICE
PAGE
DEVICE
PAGE
MZP4750A
4-2-56
MZPY47
4-2-46
P6KE33A
4:1-33
MZP4751A
4-2-56
MZPY51
4-2-46
P6KE36
4-1-33
MZP4752A
4-2-56
MZPY56
4-2-46
P6KE36A
4-1-33
MZP4753A
4-2-56
MZPY62
4-2-46
P6KE39
4-1-33
MZP4754A
4-2-56
MZPY68
4-2-46
P6KE39A
4-1-33
MZP4755A
4-2-56
MZPY75
4-2-46
PSKE43
4-1-33
MZP4756A
4-2-56
MZPY82
4-2-46
P6KE43A
4-1-33
MZP4757A
4-2-56
MZPY91
4-2-46
P6KE47
4-1-33
MZP4758A
4-2-56
MZPY100
4-2-46
P6KE47A
4-1-33
. MZP4759A
4-2-56
P6KE6.8
4-1-33
P6KE51
4-1-33
MZP4760A
4-2-56
P6KE6.8A
4-1-33
P6KE51A
4-1-33
MZP4761A
4-2-56 .
P6KE7.5
4-1-33
P6KE56
4-1-33
MZP4762A
4-2-56
P6KE7.5A
4-1-33
P6KE56A
4-1-33
MZP4763A
4-2-56
P6KE8.2
4-1-33
P6KE62
4-1-33
4-2-56
P6KE8.2A
4-1-33
P6KE62A
4-1-33
P6KE68
4-1-34
MZP4764A
MZPY3.9
4-2-46
P6KE9.1
4-1-33
MZPY4.3
4-2-46
P6KE9.1A
4-1-33
P6KE68A
4-1-34
MZPY4.7
4-2-46
P6KE10
4-1-33
P6KE75
4-1-34
MZPY5.1
4-2-46
P6KE10A
4-1-33
P6~75A
4-1-34
MZPY5.6
4-2-46
P6KE11
4-1-33
P6KE82
4-1-34
MZPY6.2
4-2-46
P6KE11A
4-1-33
P6KE82A
4-1-34
MZPY6.8
4-2-46
P6KE12
4-1-33
P6KE91
4-1-34
MZPY7.5
4-2-46
P6KE12A
4-1-33
P6KE91A
4-1-34
MZPY8.2
4-2-46
P6KE13
4-1-33
P6KE100
4-1-34
MZPY9.1
4-2-46
P6KE13A
4-1-33
P6KE100A
4-1-34
MZPY10
4-2-46
P6KE15
4-1-33
P6KE110
4-1-34
MZPY11
4-2-46
P6KE15A
4-1-33
P6KE110A
4-1-34
MZPY12
4-2-46
P6KE16
4-1-33
P6KE120
4-1-34
MZPY13
4-2-46
P6KE16A
4-1-33
P6KE120A
4-1-34
4-2-46
P6KE18
4-1-33
P6KE130
4-1-34
MZPY16
4'2-46
P6KE18A
4-1-33
P6KE130A
4-1-34
MZPY18
4-2-46
P6KE20
4-1-33
P6KE150
4-1-34
MZPY20
4-2-46
P6KE20A
4-1-33
P6KE150A
4-1-34
MZPY22
4-2-46
P6KE22
4-1-33
P6KE160
4-1-34
MZPY24
4-2-46
P6KE22A
4-1-33
P6KE160A
4-1-34
MZPY15
MZPY27
4-2-46
P6KE24
4-1-33
P6KE170
4"1-34
MZPY30
4-2-46
P6KE24A
4-1-33
P6KE170A
4-1-34
MZPY33
4-2-46
P6KE27
4-1-33
P6KE180
4-1-34
MZPY36
4-2-46
P6KE27A
4-1-33
P6KE180A
4-1-34
MZPY39
4-2-46
P6KE30
4-1-33
P6KE200
4-1-34
4-2-46
P6KE33
4-1-33
P6KE200A
4-1-34
MZPY43
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
1-14
ALPHANUMERIC INDEX (continued)
DEVICE
PAGE
DEVICE
PAGE
DEVICE
PAGE
P6SMB6.8AT3
4-1-60.
SA6.5
4-1-26
SA3o.A
4-1-26
P6SMB7.5AT3
4-1-60.
SA6.5A
4-1-26
SA33
4-1-26
P6SMB8.2AT3
4-1-60.
SA7.o.
4-1-26
SA33A
4-1-26
P6SMB9.1AT3
4-1-60.
SA7.o.A
4-1-26
SA36
4-1-27
P6SMBlo.AT3
4-1-60.
SA7.5
4-1-26
SA36A
4-1-27
P6SMBllAT3
4-1-60.
SA7.5A
4-1-26
SA4o.
4-1-27
P6SMB12AT3
4-1-60.
SA8.0
4-1-26
SA4o.A
4-1-27
P6SMB13AT3
4-1-60.
SA8.0A
4-1-26
SA43
4-1-27
P6SMB15AT3
4-1-60.
SA8.5
4-1-26
SA43A
4-1-27
P6SMB16AT3
4-1-60.
SA8.5A
4-1-26
SA45
4-1-27
P6SMB18AT3
4-1-60.
SA9.o.
4-1-26
SA45A
4-1-27
P6SMB2o.AT3
4-1-60.
SA9.o.A
4-1-26
SA48
4-1-27
P6SMB22AT3
4-1-60.
SAlo.
4-1-26
SA48A
4-1-27
P6SMB24AT3
4-1-60.
SAlo.A
4-1-26
SA51
4-1-27
P6SMB27AT3
4-1-60.
SAll
4-1-26
SA51 A
4-1-27
P6SMB3o.AT3
4-1-60.
SAllA
4-1-26
SA54
4-1-27
P6SMB33AT3
4-1-60.
SA12
4-1-26
SA54A
4-1-27
P6SMB36AT3
4-1-60.
SA12A
4-1-26
SA58
4-1-27
P6SMB39AT3
4-1-60.
SA13
4-1-26
SA58A
4-1-27
P6SMB43AT3
4-1-60
SA13A
4-1-26
SA6o.
4-1-27
P6SMB47AT3
4-1-60.
SA14
4-1-26
SA6o.A
4-1-27
P6SMB51AT3
4-1-60.
SA14A
4-1-26
SA64
4-1-27
P6SMB56AT3
4-1-60.
SA15
4-1-26
SA64A
4-1-27
P6SMB62AT3
4-1-60.
SA15A
4-1-26
SA7o.
4-1-27
P6SMB68AT3
4-1-60.
SA16
4-1-26
SA7o.A
4-1-27
P6SMB75AT3
4-1-60.
SA16A
4-1-26
SA75
4-1-27
P6SMB82AT3
4-1-60.
SA17
4-1-26
SA75A
4-1-27
P6SMB91AT3
4-1-60.
SA17A
4-1-26
SA78
4-1-27
4-1-27
P6SMBlo.o.AT3
4-1-60.
SA18
4-1-26
SA78A
P6SMBllo.AT3
4-1-60.
SA18A
4-1-26
SA85
4-1-27
P6SMB12o.AT3
4-1-60.
SA2o.
4-1-26
SA85A
4-1-27
P6SMB13o.AT3
4-1-60.
SA2o.A
4-1-26
SA89o.
4-1-27
P6SMB15o.AT3
4-1-60.
SA22
4-1-26
SA90A
4-1-27
P6SMB16o.AT3
4-1-60.
SA22A
4-1-26
SAl 00
4-1-27
P6SMB17o.AT3
4-1-60.
SA24
4-1-26
SAlo.OA
4-1-27
P6SMB18o.AT3
4-1-60.
SA24A
4-1-26
SAllo.
4-1-27
P6SMB20o.AT3
4-1-60.
SA26
4-1-26
SAll0A
4-1-27
SA5.o.
4-1-26
SA26A
4-1-26
SA12o.
4-1-27
SA5.0A
4-1-26
SA28
4-1-26
SA12o.A
4-1-27
SA6.o.
4-1-26
SA28A
4-1-26
SA13o.
4-1-27
SA6.o.A
4-1-26
SA30
4-1-26
SA13o.A
4-1-27
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
1-15
I
ALPHANUMERIC INDEX (continued)
I
DEVICE
PAGE
DEVICE
PAGE
DEVICE
PAGE
SA150
4-1-27
ZPD4.3
4-2-36
ZPD12
4-2-36
SA150A
4-1-27
ZPD4.7
4-2-36
ZPD13
4-2-36
SA160
4-1-27
ZPD5.1
4-2-36
ZPD15
4-2-36
SA160A
4-1-27
ZPD5.6
4-2-36
ZPD16
4-2-36
SA170
4-1-27
ZPD6.2
4-2-36
ZPD18
4-2-36
SA170A
4-1-27
ZPD6.8
4-2-36
ZPD20
4-2-36
ZPD2.7
4-2-36
ZPD7.5
4-2-36
ZPD22
4-2-36
ZPD3.0
4-2-36
ZPD8.2
4-2-36
ZPD24
4-2-36
ZPD3.3
4-2-36
ZPD9.1
4-2-36
ZPD27
4-2-36
ZPD3.6
4-2-36
ZPD10
4-2-36
ZPD30
4-2-36
ZPD3.9
4-2-36
ZPD11
4-2-36
ZPD33
4-2-36
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
1-16
Cross Reference
Guide
This Cross Reference Guide lists industry devices by
the EIA, European, or in-house part number for which
there is a direct or similar Motorola replacement. The
replacement columns show direct or similar replacements. The similar device differs in electrical and/or
case style from the referenced industry type number.
Substitution acceptability can be determined by reviewing the Electrical Characteristics and Case Dimensions
given on the Motorola Data Sheet. For devices not
shown in this Cross Reference Guide, or for further information, the user should contact a Motorola factory
representative.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-1
•
CROSS-REFERENCE (continued)
Industry
Part
Number
I
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
Industry
Part
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
.4T110
.4T110A
.4T110B
.4T12
.4T12A
.4T128
.4TS.S
.4TS.6A
.4T5.68
.4TS.8
1NS272A
1NS272A
1NS272B
1NS242A
1NS242A
1NS242B
1NS232A
1NS232A
1N5232B
1NS235A
4-2-32
4-2-32
4-2-32
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1.0KE1S0CA
1.0KE1SA
1.0KE1SCA
1.0KE170A
1.0KE170CA
1.0KE17A
1.0KE17CA
1.0KE1BA
1.0KE1BCA
1.0KE20A
1.5KE200CA
1NS27BA
1.5KE20CA
1N6303A
1.SKE200CA
1N627BA
1.5KE20CA
1NS279A
1.SKE22CA
1NS2BOA
4-1-44
4-1-43
4-1-43
4-1-44
4-1-44
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
.4TS.8A
.4TS.88
.4Z1100
.4Z110010
.4Z11005
.4Z6.80
.4ZS.8010
.4Z6.80S
.SM110Z10
.SM110Z5
1NS23SA
1NS23S8
1N5272A
1N5272A
1NS2728
1NS23SA
1NS23SA
1NS23S8
4-2-31
4-2-31
4-2-32
4-2-32
4-2-32
4-2-31
4-2-31
4-2-31
4-2-32
4-2-32
1.0KE20CA
1.0KE22A
1.0KE22CA
1.0KE24A
1.0KE24CA
1.0KE2SA
1.0KE26CA
1.0KE2BA
1.0KE2BCA
1.0KE30A
1.5KE24CA
1N62B1A
1.5KE27CA
1NS2B2A
1.5KE30CA
1NS283A
1.SKE33CA
1NS283A
1.5KE33CA
1N6284A
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
1NS2728
1NS2728
1NS2328
1N52328
1N6297A
l.SKE120CA
4-2-32
4-2-31
4-2-31
4-2-31
4-2-32
4-2-32
4-2-31
4-2-31
4-1-44
4-1-44
1.0KE30CA
1.0KE33A
1.0KE33CA
1.0KE36A
1.0KE36CA
1.0KE40A
1.0KE40CA
1.0KE43A
1.0KE43CA
1.0KE45A
1.5KE3SCA
1N6285A
1.5KE39CA
1N62B6A
1.5KE43CA
1N62B7A
1.5KE47CA
1N62BBA
1.5KE51CA
1N62B9A
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-44
1.0KE10A
1.0KE10CA
1.0KE110A
1.0KE110CA
1.0KE11A
1.0KE11CA
1.0KE120A
1.0KE120CA
1.0KE12A
1.0KE12CA
1N6273A
1.5KE12CA
1N6298A
1.5KE130CA
1N6274A
1.5KE13CA
1NS299A
1.5KE150CA
1NS275A
1.5KE15CA
4-1-43
4-1-43
4-1-44
4-1-44
4-1-43
4-1-43
4-1-44
4-1-44
4-1-43
4-1-43
1.0KE45CA
1.0KE4BA
1.0KE48CA
1.0KE5.0A
1.0KE5.0CA
1.0KES1A
1.0KE51CA
1.0KE54A
1.0KE54CA
1.0KE5BA
1.sKE56CA
1N62B9A
1.5KE56CA
1NS267A
1.5KES.BCA
1N6290A
1.5KE62CA
1N6291 A
1.5KE68CA
1N6291A
4-1-44
4-1-44
4-1-44
4-1-43
4-1-43
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
1.0KE130A
1.0KE130CA
1.0KE13A
1.0KE13CA
1.0KE14A
1.0KE14CA
1.0KE150A
1.0KE150CA
1.0KE15A
1.0KE15CA
1.0KE160A
1N6300A
1.SKE160CA
1NS275A
1.5KE15CA
1NS277A
1.5KE18CA
1N6302A
1.SKE1BOCA
1NS277A
1.5KE18CA
1NS303A
4-1-44
4-1-44
4-1-43
4-1-43
4-1-43
4-1-43
4-1-44
4-1-44
4-1-43
4-1-43
4-1-44
1.0KE5BCA
1.0KE6.0A
1.0KE6.0CA
1.0KE6.SA
1.0KE6.5CA
1.0KE60A
1.0KE60CA
1.0KE64A
1.0KE64CA
1.0KE7.0A
1.0KE7.0CA
1.5KE6BCA
1N626BA
1.5KE7.5CA
1N6268A
1.5KE7.5CA
1N6292A
1.5KE75CA
1N6292A
1.5KE75CA
1N6269A
1.5KEB.2CA
4-1-44
4-1-43
4-1-43
4-1-43
4-1-43
4-1-44
4-1-44
4-1-44
4-1-44
4-1-43
4-1-43
.SM110ZS
.SM2.4ZS
.5M2.4ZS10
.5M2.4ZS5
0.2ST110
0.2ST110A
0.2STS.6
0.2STS.6A
1.0KE1 OOA
1.0KE100CA
1NS272A
1N52728
1N5272A
1N5221A
1NS221 A
1NS2218
CF =consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-2
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Similar
Direct
Replacement Replacement
Page
Number
1.0KE7.5A
1.0KE7.5CA
1.0KE70A
1.0KE70CA
1.0KE75A
1.0KE75CA
1.0KE78A
1.0KE78CA
1.0KE8.0A
1.0KE8.0CA
1N6270A
1.5KE9.1CA
1N6293A
1.5KE82CA
1N6294A
1.5KE91CA
1N6294A
1.5KE91CA
1N6271A
1.5KE10CA
4-1-43
4-1-43
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-43
4-1-43
1.2KE20CA
1.2KE22A
1.2KE22CA
1.2KE24A
1.2KE24CA
1.2KE26A
1.2KE26CA
1.2KE28A
1.2KE28CA
1.2KE30A
1.5KE24CA
1N6281A
1.5KE27CA
1N6282A
1.5KE30CA
1N6283A
1.5KE33CA
1N6283A
1.5KE33CA
1N6284A
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
1.0KE8.5A
1.0KE8.5CA
1.0KE85A
1.0KE85CA
1.0KE9.0A
1.0KE9.0CA
1.0KE90A
1.0KE90CA
1.2KE100A
1.2KE100CA
1N6271 A
1.5KE10CA
1N6295A
1.5KE100CA
1N6272A
1.5KE11CA
1N6296A
1.5KE110CA
1N6297A
1.5KE120CA
4-1-43
4-1-43
4-1-44
4-1-44
4-1-43
4-1-43
4-1-44
4-1-44
4-1-44
4-1-44
1.2KE30CA
1.2KE33A
1.2KE33CA
1.2KE36A
1.2KE36CA
1.2KE40A
1.2KE40CA
1.2KE43A
1.2KE43CA
1.2KE4SA
1.5KE36CA
1N6285A
1.5KE39CA
1N6286A
1.5KE43CA
1N6287A
1.5KE47CA
1N6288A
1.5KE51CA
1N6289A
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-44
1.2KE10A
1.2KE10CA
1.2KE110A
1.2KE110CA
1.2KE11A
1.2KE11CA
1.2KE120A
1.2KE120CA
1.2KE12A
1.2KE12CA
1N6273A
1.5KE12CA
1N6298A
1.5KE130CA
1N6274A
1.5KE13CA
1N6299A
1.5KE150CA
1N6275A
1.5KE15CA
4-1-43
4-1-43
4-1-44
4-1-44
4-1-43
4-1-43
4-1-44
4-1-44
4-1-43
4-1-43
1.2KE45CA
1.2KE48A
1.2KE48CA
1.2KE5.0A
1.2KE5.0CA
1.2KE51A
1.2KE51CA
1.2KE&4A
1.2KE54CA
1.2KE58A
1.5KE56CA
1N6289A
1.5KE56CA
1N6267A
1.5KE6.8CA
1N6290A
1.5KE62CA
1N6291A
1.5KE68CA
1N6291A
4-1-44
4-1-44
4-1-44
4-1-43
4-1-43
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
1.2KE130A
1.2KE130CA
1.2KE13A
1.2KE13CA
1.2KE14A
1.2KE14CA
1.2KE150A
1.2KE150CA
1.2KE15A
1.2KE15CA
1N6300A
1.5KE160CA
1N6275A
1.5KE15CA
1N6277A
1.5KE18CA
1N6302A
1.5KE180CA
1N6277A
1.5KE18CA
4-1-44
4-1-44
4-1-43
4-1-43
4-1-43
4-1-43
4-1-44
4-1-44
4-1-43
4-1-43
1.2KE58CA
1.2KE6.0A
1.2KE6.0CA
1.2KE6.5A
1.2KE6.5CA
1.2KE60A
1.2KE60CA
1.2KE64A
1.2KE64CA
1.2KE7.0A
1.5KE68CA
1N6268A
1.5KE7.5CA
1N6268A
1.5KE7.5CA
1N6292A
1.5KE75CA
1N6292A
1.5KE75CA
1N6269A
4-1-44
4-1-43
4-1-43
4-1-43
4-1-43
4-1-44
4-1-44
4-1-44
4-1-44
4-1-43
1.2KE160A
1.2KE160CA
1.2KE16A
1.2KE16CA
1.2KE170A
1.2KE170CA
1.2KE17A
1.2KE17CA
1.2KE18A
1.2KE18CA
1.2KE20A
1N6303A
1.5KE200CA
1N6278A
1.5KE2OCA
1N6303A
1.5KE200CA
1N6278A
1.5KE20CA
1N6279A
1.5KE22CA
1N6280A
4-1-44
4-1-44
4-1-43
4-1-43
4-1-44
4-1-44
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
1.2KE7.0CA
1.2KE7.5A
1.2KE7.5CA
1.2KE70A
1.2KE70CA
1.2KE75A
1.2KE75CA
1.2KE78A
1.2KE78CA
1.2KE8.0A
1.2KE8.0CA
1.5KE8.2CA
1N6270A
1.5KE9.1CA
1N6293A
1.5KE82CA
1N6294A
1.5KE91CA
1N6294A
1.5KE91CA
1N6271A
1.5KE1OCA
4-1-43
4-1-43
4-1-43
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-43
4-1-43
CF =consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-3
CROSS-REFERENCE (continued)
Industry
Part
Number
I
1.2KE8.5A
1.2KE8.5CA
1.2KE85A
1.2KE85CA
1.2KE9.0A
1.2KE9.0CA
1.2KE90A
1.2KE90CA
1.5KE10
1.5KE100
Motorola
Motorola
Direct
Similar
Replacement Replacement
1N6271A
1.5KE10CA
1N6295A
1.5KE100CA
1N6272A
1.5KE11CA
1N6296A
1.5KE110CA
1.5KE10
1.5KE100
1.5KE100A
1.5KE100C
1.5KE100CA
1.5KE100CP
1.5KE100P
1.5KE10A
1.5KE10C
1.5KE10CA
1.5KE10CP
1.5KE10P
1.5KE100A
1.5KE100C
1.5KE100CA
1.5KE11
1.5KEl1 0
1.5KE110A
1.5KE110C
1.5KE110CA
1.5KE110CP
1.5KE110P
1.5KE11A
1.5KE11C
1.5KE11CA
1.5KE11
1.5KE110
1.5KE110A
1.5KE110C
1.5KE110CA
1.5KE11CP
1.5KE11P
1.5KE12
1.5KE120
1.5KE120A
1.5KE120C
1.5KE120CA
1.5KE120CP
1.5KE120P
1.5KE12A
1.5KE12C
1.5KE12CA
1.5KE12CP
1.5KE12P
1.5KE13
1.5KE130
1.5KE130A
1.5KE130C
1.5KE130CA
1.5KE130CP
1.5KE130P
1.5KE100CA
1.5KE100A
1.5KE10A
1.5KE10C
1.5KE10CA
1.5KE10CA
1.5KE10A
1.5KE110CA
1.5KE110A
1.5KE11A
1.5KE11C
1.5KE11CA
1.5KE11CA
1.5KE11A
1.5KE12
1.5KE120
1.5KE120A
1.5KE120C
1.5KE120CA
1.5KE120CA
1.5KE120A
1.5KE12A
1.5KE12C
1.5KE12CA
1.5KE12CA
1.5KE12A
1.5KE13
1.5KE130
1.5KE130A
1.5KE130C
1.5KE130CA
1.5KE130CA
1.5KE130A
Page
Number
Industry
Part
Number
4·1-43
4-1-43
4-1-44
4-1-44
4-1-43
4-1-43
4-1-44
4-1-44
4-1-43
4-1-44
1.5KE13A
1.5KE13C
1.5KE13CA
1.5KE13CP
1.5KE13P
1.5KE15
1.5KE150
1.5KE150A
1.5KE150C
1.5KE150CA
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
1.5KE150CP
1.5KE150P
1.5KE15A
1.5KE15C
1.5KE15CA
1.5KE15CP
1.5KE15P
1.5KE16
1.5KE160
1.5KE160A
4-1-43
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-43
4-1-43
4-1-43
1.5KE160C
1.5KE160CA
1.5KE160CP
1.5KE160P
1.5KE16A
1.5KE16C
1.5KE16CA
1.5KE16CP
1.5KE16P
1.5KE170
4-1-43
4-1-43
4-1-43
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-43
1.5KE170A
1.5KE170C
1.5KE170CA
1.5KE170CP
1.5KE170P
1.5KE18
1.5KE180
1.5KE180A
1.5KE180C
1.5KE180CA
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
1.5KE180CP
1.5KE180P
1.5KE18A
1.5KE18C
1.5KE18CA
1.5KE18CP
1.5KE18P
1.5KE20
1.5KE200
1.5KE200A
1.5KE200C
Motorola
Motorola
Direct
Similar
Replacement Replacement
1.5KE13A
1.5KE13C
1.5KE13CA
1.5KE13CA
1.5KE13A
1.5KE15
1.5KE150
1.5KE150A
1.5KE150C
1.5KE150CA
1.5KE150CA
1.5KE150A
1.5KE15A
1.5KE15C
1.5KE15CA
1.5KE15CA
1.5KE15A
1.5KE16
1.5KE160
1.5KE160A
1.5KE160C
1.5KE160CA
1.5KE160CA
1.5KE160A
1.5KE16A
1.5KE16C
1.5KE16CA
1.5KE16CA
1.5KE16A
1.5KE170
1.5KE170A
1.5KE170C
1.5KE170CA
1.5KE170CA
1.5KE170A
1.5KE18
1.5KE180
1.5KE180A
1.5KE180C
1.5KE180CA
1.5KE180CA
1.5KE180A
1.5KE18A
1.5KE18C
1.5KE18CA
1.5KE18CA
1.5KE18A
1.5KE20
1.5KE200
1.5KE200A
1.5KE200C
CF = consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-4
Page
Number
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-43
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-44
4-1-44
4-1-44
CROSS-REFERENCE (continued)
Industry
Part
Number
1.5KE200CA
1.5KE200CP
1.5KE200P
1.5KE20A
1.5KE20C
1.5KE20CA
1.5KE20CP
1.5KE20P
1.5KE22
1.5KE220
Motorola
Motorola
Direct
Similar
Replacement Replacement
1.5KE200CA
1.5KE200CA
1.5KE200A
1.5KE20A
1.5KE20C
1.5KE20CA
1.5KE20CA
1.5KE20A
1.5KE22
1.5KE220
1.5KE220A
1.5KE220C
1.5KE220CA
1.5KE220CP
1.5KE220P
1.5KE22A
1.5KE22C
1.5KE22CA
1.5KE22CP
1.5KE22P
1.5KE220A
1.5KE220C
1.5KE220CA
1.5KE24
1.5KE24A
1.5KE24C
1.5KE24CA
1.5KE24CP
1.5KE24P
1.5KE250
1.5KE250A
1.5KE250C
1.5KE250CA
1.5KE24
1.5KE24A
1.5KE24C
1.5KE24CA
1.5KE250CP
1.5KE250P
1.5KE27
1.5KE27A
1.5KE27C
1.5KE27CA
1.5KE27CP
1.5KE27P
1.5KE30
1.5KE30A
1.5KE30C
1.5KE30CA
1.5KE30CP
1.5KE30P
1.5KE33
1.5KE33A
1.5KE33C
1.5KE33CA
1.5KE33CP
1.5KE33P
1.5KE3S
1.5KE220CA
1.5KE220A
1.5KE22A
1.5KE22C
1.5KE22CA
1.5KE22CA
1.5KE22A
1.5KE24CA
1.5KE24A
1.5KE250
1.5KE250A
1.5KE250C
1.5KE250CA
1.5KE250CA
1.5KE250A
1.5KE27
1.5KE27A
1.5KE27C
1.5KE27CA
1.5KE27CA
1.5KE27A
1.5KE30
1.5KE30A
1.5KE30C
1.5KE30CA
1.5KE30CA
1.5KE30A
1.5KE33
1.5KE33A
1.5KE33C
1.5KE33CA
1.5KE33CA
1.5KE33A
1.5KE3S
Industry
Part
Number
Page
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
4-1-44
4-1-44
4-1-44
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-44
1.5KE3SA
1.5KE3SC
1.5KE3SCA
1.5KE3SCP
1.5KE3SP
1.5KE39
1.5KE39A
1.5KE39C
1.5KE39CA
1.5KE39CP
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
1.5KE39P
1.5KE43
1.5KE43A
1.5KE43C
1.5KE43CA
1.5KE43CP
1.5KE43P
1.5KE47
1.5KE47A
1.5KE47C
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-44
4-1-44
4-1-44
4-1-44
1.5KE47CA
1.5KE47CP
1.5KE47P
1.5KE51
1.5KE51A
1.5KE51C
1.5KE51CA
1.5KE51CP
1.5KE51P
1.5KE5S
4-1-44
4-1-44
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
1.5KE5SA
1.5KE5SC
1.5KE5SCA
1.5KE5SCP
1.5KE5SP
1.5KES.8
1.5KES.8A
1.5KES.8C
1.5KES.8CA
1.5KES2
1.5KE5SA
1.5KE5SC
1.5KE5SCA
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
1.5KES2A
1.5KES2C
1.5KES2CA
1.5KES2CP
1.5KES2P
1.5KES8
1.5KES8A
1.5KE68C
1.5KES8CA
1.5KES8CP
1.5KES8P
1.5KES2A
1.5KES2C
1.5KES2CA
1.5KE3SA
1.5KE3SC
1.5KE3SCA
1.5KE3SCA
1.5KE3SA
1.5KE39
1.5KE39A
1.5KE39C
1.5KE39CA
1.5KE39CA
1.5KE39A
1.5KE43
1.5KE43A
1.5KE43C
1.5KE43CA
1.5KE43CA
1.5KE43A
1.5KE47
1.5KE47A
1.5KE47C
1.5KE47CA
1.5KE47CA
1.5KE47A
1.5KE51
1.5KE51A
1.5KE51C
1.5KE51CA
1.5KE51CA
1.5KE51A
1.5KE5S
1.5KE5SCA
1.5KE5SA
1.5KES.8
1.5KES.8A
1.5KES.8C
1.5KES.8CA
1.5KES2
1.5KES2CA
1.5KES2A
1.5KES8
1.5KES8A
1.5KE68C
1.5KESBCA
CF =consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-5
1.5KES8CA
1.5KES8A
Page
Number
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-43
4-1-43
4-1-43
4-1-43
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
I
CROSS-REFERENCE (continued)
Industry
Part
Number
I
1.SKE6VSA
1.SKE6V8CA
1.SKE6VSCP
1.SKE6VSP
1.SKE7.S
1.5KE7.SA
1.SKE7.SC
1.SKE7.SCA
1.SKE7S
1.SKE7SA
1.SKE7SC
1.SKE7SCA
1.SKE7SCP
1.SKE7SP
1.5KE7VSA
1.5KE7VSCA
1.5KE7VSCP
1.SKE7VSP
l.SKES.2
1.5KES.2A
1.5KES.2C
1.5KES.2CA
1.5KE82
1.SKES2A
1.SKES2C
1.5KEB2CA
1.5KEB2CP
1.SKE82P
1.SKESV2A
1.5KEBV2CA
1.SKEBV2CP
1.SKEBV2P
l.SKE9.1
l.SKE9.1A
l.SKE9.1C
l.SKE9.1CA
1.5KE91
1.5KE91A
l.SKE91C
l.SKE91CA
1.SKE91CP
1.SKE91P
l.SKE9V1A
l.SKE9V1CA
l.SKE9V1CP
1.SKE9V1P
1.SR200
1.SR200A
1.SR200B
l.SR6.B
1.SR6.BA
Motorola
Motorola
Similar
Direct
Replacement Replacement
Industry
Motorola
Motorola
Similar
Part
Direct
Number . Replacement Replacement
Page
Number
Page
Number
.4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-44
4-1-44
1.SR6.BB
l.SSMC10AT3
l.SSMC11AT3
l.SSMC12AT3
l.SSMC13AT3
l.SSMC1SAT3
l.SSMC16AT3
l.SSMC1BAT3
1.5SMC20AT3
1.SSMC22AT3
l.SSMC10AT3
·1.5SMC11AT3
l.SSMC12AT3
l.SSMC13AT3
l.SSMC1SAT3
l.SSMC16AT3
l.SSMC18AT3
1.5SMC20AT3
1.SSMC22AT3
4-2-S1
4-1-66
4-1-66
. 4-1-66
4-1-66
4-1-66
4-1-66
4-1-66
4-1-66
4-1-66
4-1-44
4-1-44
4-1-44
4-1-44
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
1.SSMC24AT3
l.SSMC27AT3
1.SSMC30AT3
1.SSMC33AT3
1.SSMC36AT3
1.SSMC39AT3
1.SSMC43AT3
l.SSMC47AT3
l.SSMCS1AT3
1.SSMCS6AT3
1.SSMC24AT3
l.SSMC27AT3
1.SSMC30AT3
1.SSMC33AT3
1.SSMC36AT3
1.SSMC39AT3
1.SSMC43AT3
l.SSMC47AT3
l.SSMCS1 AT3
l.SSMCS6AT3
4-1-66
4-1-66
4-1-66
4-1-66
4-1-66
4-1-66
4-1-66
4-1-66
4-1-66
4-1-66
4-1-43
4-1-43
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-43
4-1-43
1.SSMC6.BAT3
1.SSMC62AT3
1.SSMC6BAT3
l.SSMC7.SAT3
1.SSMC7SAT3
1.SSMCB.2AT3
1.SSMCB2AT3
1.SSMC9.1 AT3
1.SSMC91 AT3
1/2R200
1.SSMC6.BAT3
1.SSMC62AT3
1.SSMC68AT3
l.SSMC7.SAT3
1.SSMC7SAT3
1.SSMCB.2AT3
1.SSMCB2AT3
1.SSMC9.1AT3
1.SSMC91 AT3
1NS2B1A
4-1-66
4-1-66
4-1-66
4-1-66
4-1-66
4-1-66
4-1-66
4-1-66
4-1-66
4-2-32
1.SKE8.2CA
1.5KEB.2A
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-44
4-1-44
4-1-44
4-1-44
1/2R200A
1/2R200B
1/2R6.8
112R6.8A
1/2R6.BB
1/4LZ2.2D
1/4LZ2.2D10
1/4LZ2.2DS
1/4LZ6.BD
1/4LZ6.BD10
1NS281 A
1NS2B1B
1NS23SA
1NS23SA
1NS23SB
1NS221 A
1N5221A
1NS221B
1NS23SA
1NS23SA
4-2-32
4-2-32
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
l.SKE91CA
l.SKE91A
l.SKE9.1A
l.SKE9.1CA
l.SKE9.1CA
l.SKE9.1A
1NS9S6A
1N5956A
1NS9S6B
1NS921 A
1NS921 A
4-1-44
4-1-44
4-1-43
4-1-43
4-1-43
4-1-43
4-2-S2
4-2-52
4-2-S2
4-2-S1
4-2-S1
1/4LZ6.8DS
1/4M100Z10
1I4M100ZS
1/4M10SZ10
114M1 OSZS
1/4M10Z10
1/4M10ZS
1/4M110Z10
1/4M110ZS
1/4M11Z10
1/4M11ZS
1NS23SB
1NS271B
1NS271B
1NS272B
1NS272B
1NS240B
1NS240B
1N5272B
1NS272B
1NS241B
1NS241B
4-2-31
4-2-32
4-2-32
4-2-32
4-2-32
.4-2-31
4-2-31
4-2-32
4-2-32
4-2-31
4-2-31
1.SKE6.SA
l.SKE6.SCA
1.SKE6.SCA
1.SKE6.BA
l.SKE7.S
1.SKE7.SA
l.SKE7.SC
1.SKE7.SCA
l.SKE7S
1.SKE7SA
1.SKE7SC
1.SKE7SCA
1.SKE7SCA
1.5KE75A
1.SKE7.SA
1.SKE7.SCA
1.5KE7.SCA
1.5KE7.SA
1.SKES.2
1.5KES.2A
1.5KES.2C
1.5KES.2CA
1.5KES2
1.SKES2A
1.5KES2C
1.5KES2CA
1.SKEB2CA
1.SKEB2A
1.SKEB.2A
1.SKES.2CA
l.SKE9.1
l.SKE9.1A
l.SKE9.1C
1.5KE9.1CA
1.5KE91
1.5KE91A
l.SKE91C
l.SKE91CA
1NS921B
CF =consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-6
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
Industry
Part
Number
Motorola
Motorola
Similar
Direct
Replacement Replacement
Page
Number
1/4M120Z10
1/4M120ZS
1/4M12Z10
1/4M12ZS
1/4M130Z10
1/4M130ZS
1/4M13Z10
1/4M13Z5
1/4M140Z10
1/4M140ZS
1NS273B
1NS273B
1NS242B
1NS242B
1NS274B
1NS274B
1NS243B
1NS243B
1NS27SB
1NS27SB
4-2-32
4-2-32
4-2-31
4-2-31
4-2-32
4-2-32
4-2-31
4-2-31
4-2-32
4-2-32
1/4M30Z5
1/4M33Z10
1/4M33ZS
1/4M36Z10
1/4M36ZS
1/4M39Z10
1/4M39ZS
1/4M4.3AZ10
1/4M4.3AZ5
1/4M4.7AZ1 0
1NS2S6B
1NS257B
1NS257B
1NS2S8B
1NS2S8B
1NS2S9B
1NS2S9B
1NS229B
1N5229B
1NS230B
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1/4M14Z10
1/4M14Z5
1/4M1S0Z10
1/4M1S0ZS
1/4M1SZ10
1/4M1SZS
1/4M16Z10
1/4M16ZS
1/4M17SZ10
1/4M17SZS
1NS244B
1NS244B
1NS276B
1NS276B
1NS24SB
1NS24SB
1NS246B
1NS246B
1NS279B
1N5279B
4-2-31
4-2-31
4-2-32
4-2-32
4-2-31
4-2-31
4-2-31
4-2-31
4-2-32
4-2-32
1/4M4.7AZS
1/4M43Z10
1/4M43ZS
1/4M4SZ10
1/4M4SZ5
1/4M47Z10
1/4M47Z5
1/4MS.1AZ10
1/4MS.1AZ5
1/4M5.6AZ10
1N5230B
1N5260B
1NS260B
1NS261B
1NS261B
1N5261B
1NS261B
1N5231B
1NS231B
1N5232B
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1/4M17Z1 0
1/4M17ZS
1/4M18Z10
1/4M18ZS
1/4M19Z10
1/4M19ZS
1/4M2.4AZ10
1/4M2.4AZS
1/4M2.7AZ10
1/4M2.7AZS
1NS247B
1NS247B
1NS248B
1NS248B
1NS249B
1NS249B
1N5222B
1NS222B
1N5224B
1NS224B
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1/4M5.6AZ5
1/4M50Z10
1/4M50Z5
1/4MS2Z10
1/4MS2Z5
1/4M56Z10
1/4M56ZS
1/4M6.2AZ10
1/4M6.2AZ5
1/4M6.8Z10
1NS232B
1N5262B
1N5262B
1NS262B
1NS262B
1N5263B
1N5263B
1N5234B
1NS234B
1NS234B
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1/4M200Z10
1/4M200ZS
1/4M20Z10
1/4M20Z5
1/4M22Z10
1/4M22Z5
1/4M24Z10
1/4M24ZS
1/4M2SZ10
1/4M2SZS
1NS281B
1N5281B
1NS2S0B
1NS2S0B
1N52S1B
1N5251B
1NS2S2B
1N52S2B
1N5253B
1NS2S3B
4-2-32
4-2-32
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1/4M6.8Z5
1/4M62Z10
1/4M62Z5
1/4M68Z10
1/4M68ZS
1/4M7.SZ10
1/4M7.SZS
1/4M7SZ10
1/4M7SZS
1/4M8.2Z10
1NS234B
1.N5265B
1N526SB
1NS266B
1NS266B
1NS236B
1NS236B
1NS267B
1NS267B
1NS237B
4-2-31
4-2-31
4-2-31
4-2-32
4-2-32
4-2-31
4-2-31
4-2-32
4-2-32
4-2-31
1/4M27Z10
1/4M27Z5
1/4M3.0AZ10
1/4M3.0AZS
1/4M3.3AZ10
1/4M3.3AZS
1/4M3.6AZ10
1/4M3.6AZ5
1/4M3.9AZ10
1/4M3.9AZS
1/4M30Z10
1N5254B
1NS254B
1N5225B
1NS22SB
1NS226B
1NS226B
1NS227B
1NS227B
1NS228B
1N5228B
1NS2S6B
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1/4M8.2ZS
1/4M82Z10
1/4M82ZS
1/4M9.1Z10
1/4M9.1ZS
1/4M91Z10
1/4M91ZS
1/4Z110D
1/4Z110D10
1/4Z110DS
1/4Z6.8D
1NS237B
1NS268B
1NS268B
1NS239B
1NS239B
1NS270B
1NS270B
1NS272A
1NS272A
1NS272B
1NS23SA
4-2-31
4-2-32
4-2-32
4-2-31
4-2-31
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-31
CF
=consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-7
I
-----
..
---
C~REFERENCE(continued)
IMlUstry
Part
Num&Ier
.
DIr!tct
Metwela
SiR'liler
RepIfIcemeftt
AetalaselMftt
1/4ZUD10
1N5235A
1N5235B
,..
tnGllIIStry
~
~
Motorola
Similar
Replacement Replacement
Page
Nutl1ber
4-2·56
1N1510A
1N1S11
tN15.11A
.m1512
1N1512A
1N1513
1Nl,513A
1N1514
1N15t4A
1N1515
1N4736A
1N4738
1N4738A
1N4740
1N474OA
1N4742
1N4742A
1N4744
1N4744A
1N4746
4-2-44
4·2-44
4-2-44
4·2·44
4-2·44
4·2·44
4·2·44
4·2·44
4·2·44
4·2·44
MZ41 02
MZ41 02
1N4697
1N4697
4·2·56
4·2·56
4·2·56
4·2·56
4·2·56
4·2·56
4·2·37
4·2·37
4·2·30
4·2·30
lN1515A
1N151S
1N1516A
1N1517
1N1517A
1N1518
1N1518A
1N1519
1N1519A
1N1520
1N4746A
1N4748
1N4748A
1N4750
1N4750A
1N4730
1N4730A
1N4732
1N4732A
1N4734
4·2·44
4-2·4.4
4·2·44
4·2·44
4·2·44
4·2-44
4·2·44
4·2·44
4·2-44
4-2-44
1N1315
1N1315A
1N1316
1N1316A
1N1317
1N1317A
1N1318
1N1318A
1N1319
1N1319A
1N4700
1N4700
1N4703
1N4703
1N4706
1N4706
1N4709
1N4709
1N4712
1N4712
4·2·30
4·2·30
4·2·30
4·2·30
4·2'30
4·2·30
4·2·30
4·2·30
4·2·30
4·2·30
1N1520A
1N1521
1N1521A
1N1522
1N1522A
1N1523
1N1523A
1N1524
1N1.524A
1N1525
1N4734A
1N4736
1N4736A
1N4738
1N4738A
1N4740
1N4740A
1N4742
1N4742A
1N4744
4-2-44
4·2-44
4·2-44
4·2-44
4-2-44
4-2-44
4·2-44
4·2-44
4-2·44
4-2-44
1N1320
1N1320A
1N1321
1N1321A
1N1425
1N1426
1N1427
1N1428
1N1429
1N1430
1N4715
1N4715
1N4717
1N4717
1N4738A
1N4742A
1N4744A
1N4746A
1N4748A
1N4750A
4·2·30
4·2·30
4·2·30
4·2-30
4·2-44
4·2-44
4·2·44
4·2·44
4·2·44
4·2·44
1N1525A
1N1526
1N1526A
1N1527
1N1527A
1N1528
1N1528A
1N1735
1N1744
1N1765
1N4744A
1N4746
1N4746A
1N4748
1N4748A
1N4750
1N4750A
1N823
1N4740
1N4734
4-2-44
4-2·44
4-2·44
4·2·44
4·2-44
4·2-44
4·2·44
4-3-10
4-2-44
4·2-44
1N1431
1N1432
1N1484
1N1485
1N1507
1N1507A
1N1508
1N150SA
1N1S09
1N150SA
1N1510
1N4760A
1N4764A
1N4732A
1N4735A
1N4730
1N4730A
1N4732
1N4732A
1N4734
1N4734A
1N4736
4·2·44
4·2·44
4·2·44
4·2·44
4·2-44
4·2·44
4·2·44
4·2·44
4·2·44
4·2·44
4·2·44
1N1765A
1N1766
1N1766A
1N1767
1N1767A
1N1768
1N1768A
1N1769
1N1769A
1N1770
1N1770A
1N4734A
1N4735
1N473SA
1N4736
1N4736A
1N4737
1N4737A
1N4738
1N4738A
1N4739
1N4739A
4-2-44
4-2·44
4·2·44
4·2-44
4·2·44
4-2-44
4·2-44
4·2-44
4-2-44
4-2·44
4·2·44
1/426.805
1M110ZS10
lM11ezs5
lM120ZS1Q
1M12QlSS
1M13OZS1Q
1M130ZS5
1Ml50ZS10
1M150ZS5
,tM11OZSJ9
1M11C1ZS5
1M12025·10
1M12tZS5
1M130ZS10.
1M13OZS5
1M150ZStO
1M1sQZS5
1M16OZS10
1M160ZS5
1M180ZS10
1M180ZSS
1M200ZS10
1M200ZS5
1N1313
1N1313A
1N1314
1N1314A
lM160ZS10
1M160ZSS
11.1 180.Z51 0
1M1S0ZS5
1M200ZS1 0
1M200ZS5
CF
4·2·31
4,2-81
4,2.56
4-2·56
4-2·56
+2-56 '.
4·2·56
4-2-56
M!DteroIa
.D~
Part
4·2~56
=consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND
2-8
ZEN~R
DIODES
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
1N1771
1N1771A
1N1772
1N1772A
1N1773
1N1773A
1N1774
1N1774A
1N1775
1N1775A
1N4740
1N4740A
1N4741
1N4741 A
1N4742
1N4742A
1N4743
1N4743A
1N4744
1N4744A
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N1796A
1N1797
1N1797A
1N1798
1N1798A
1N1799
1N1799A
1N1800
1N1800A
1N1801
1M110ZS5
1M120ZS5
1M120ZS5
1M130ZS5
1M130ZS5
1M150ZS5
1M150ZS5
1M160ZS5
1M160ZS5
1M180ZS5
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
1N1776
1N1776A
1N1777
1N1777A
1N1778
1N1778A
1N1779
1N1779A
1N1780
1N1780A
1N4745
1N4745A
1N4746
1N4746A
1N4747
1N4747A
1N4748
1N4748A
1N4749
1N4749A
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N1801A
1N1802
1N1802A
1N1876
1N1877
1N1878
1N1879
1N1880
1N1881
1N1882
1M180ZS5
1M200ZS5
1M200ZS5
1N4740
1N4742
1N4744
1N4746
1N4748
1N4750
1N4752
4-2-56
4-2-56
4-2-56
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N1781
1N1781A
1N1782
1N1782A
1N1783
1N1783A
1N1784
1N1784A
1N1785
1N1785A
1N4750
1N4750A
1N4751
1N4751A
1N4752
1N4752A
1N4753
1N4753A
1N4754
1N4754A
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N1883
1N1884
1N1885
1N1886
1N1887
1N1888
1N1927
1N1928
1N1929
1N1930
1N4754
1N4756
1N4758
1N4760
1N4762
1N4764
1N5228A
1N5230A
1N5232A
1N5235A
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-31
4-2-31
4-2-31
4-2-31
1N1786
1N1786A
1N1787
1N1787A
1N1788
1N1788A
1N1789
1N1789A
1N1790
1N1790A
1N4755
1N4755A
1N4756
1N4756A
1N4757
1N4757A
1N4758
1N4758A
1N4759
1N4759A
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N1931
1N1932
1N1933
1N1934
1N1935
1N1936
1N1937
1N1938
1N1939
1N1940
1N5237A
1N5240A
1N5242A
1N5245A
1N5248A
1N5251A
1N5254A
1N5257A
1N5259A
1N5261 A
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N1791
1N1791A
1N1792
1N1792A
1N1793
1N1793A
1N1794
1N1794A
1N1795
1N1795A
1N1796
1N4760
1N4760A
1N4761
1N4761 A
1N4762
1N4762A
1N4763
1N4763A
1N4764
1N4764A
1M110ZS5
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-56
1N1941
1N1942
1N1943
1N1944
1N1945
1N1946
1N1947
1N1954
1N1955
1N1956
1N1957
1N5263A
1N5266A
1N5268A
1N5271 A
1N5273A
1N5276A
1N5279A
1N5228A
1N5230A
1N5232A
1N5235A
4-2-31
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-31
4-2-31
4-2-31
4-2-31
CF = consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-9
I
CROSS-REFERENCE (continued)
Industry
Part
Number
I
Motorola
Motorola
Direct
Similar
.Replacement Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
1N1958
1N1959
1Nl960
1N1961
1Nl962
1N1963
1N1964
1N1965
1N1966
1Nl967
1N5237A
1N5240A
1N5242A
1N5245A
1N5248A
1N5251 A
1N5254A
1N5257A
1N5259A
1N5261A
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N2038A
1N2039
1N2039A
1N2040
1N2040A
1N2387.
1N2765
1N2765A
1N3016
1N3016A
1N4745D
1N4747A
1N4747D
1N4749A
1N4749C
1N4751
1N823A
1N825A
MZP4736
MZP4736
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-3-10
4-3-10
4-2-56
4-2-56
1N1968
1N1969
1N1970
1N1971
1N1972
1N1973
1N1974
1N1981
1N1982
1N1983
1N5263A
1N5266A
1N5268A
1N5271A
1N5273A
1N5276A
1N5279A
1N5228A
1N5230A
1N5232A
4-2-31
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-31
4-2-31
4-2-31
1N3016B
1N3017
1N3017A
1N3017B
1N3018
1N3018A
1N3018B
1N3019
1N3019A
1N3019B
MZP4736A
MZP4737
MZP4737
MZP4737A
MZP4738
MZP4738
MZP4738A
MZP4739
MZP4739
MZP4739A
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2,56
1N1984
1N1985
1N1986
1N1987
1Nl988
1N1989
1N1990
1Nl991
1N1992
1N1993
1N5235A
1N5237A
1N5240A
1N5242A
1N5245A
1N5248A
1N5251 A
1N5254A
1N5257A
1N5259A
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N3020
1N3020A
1N3020B
1N3021
1N3021 A
1N3021B
1N3022
1N3022A
1N3022B
1N3023
MZP4740
MZP4740
MZP4740A
MZP4741
MZP4741
MZP4741A
MZP4742
MZP4742
MZP4742A
MZP4743
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
1Nl994
1N1995
1N1996
1N1997
1N1998
1N1999
1N2000
1N2001
1N2032
1N2032A
lN2033
1N2033A
1N5261 A
1N5263A
1N5266A
1N5268A
1N5271 A
1N5273A
1N5276A
1N5279A
1N4733A
1N4733A
1N4734A
1N4734A
4-2-31
4-2-31.
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-44
4-2-44
4-2-44
4-2-44
1N3023A
1N3023B
1N3024
1N3024A
1N3024B
1N3025
1N3025A
1N30258
1N3026
1N3026A
1N3026B
lN3027
MZP4743
MZP4743A
MZP4744
MZP4744
MZP4744A
MZP4745
MZP4745
MZP4745A
MZP4746
MZP4746
MZP4746A
MZP4747
4-2-56
4-2-56
4.-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
1N2034
1N2034A
lN2035
1N2035A
1N2036
1N2036A
1N2037
lN2037A
1N2038
1N4736A
1N4736D
1N4739A
1N4739D
1N4741 A
1N4741 0
1N4743A
1N4743D
1N4745A
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N3027A
lN3027B
1N3028
1N3028A
lN3028B
1N3029
1N3029A
1N3029B
1N3030
MZP4747
MZP4747A
MZP4748
MZP4748
MZP4748A
MZP4749
MZP4749
MZP4749A
MZP4750
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
CF =consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-10
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Direct
Replacement
Motorola
Similar
Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Similar
Direct
Replacement Replacement
Page
Number
1N3030A
1N3030B
1N3031
1N3031A
1N3031B
1N3032
1N3032A
1N3032B
1N3033
1N3033A
MZP4750
MZP4750A
MZP4751
MZP4751
MZP4751A
MZP4752
MZP4752
MZP4752A
MZP4753
MZP4753
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
1N3047A
1N3047B
1N3048
1N3048A
1N3048B
1N3049
1N3049A
1N3049B
1N3050
1N3050A
1M130ZS10
1M130ZS5
1M150ZS10
1M150ZS10
1M150ZS5
1M160ZS10
1M160ZS10
1M160ZS5
1M180ZS10
1M180ZS10
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
1N3033B
1N3034
1N3034A
1N3034B
1N3035
1N3035A
1N3035B
1N3036
1N3036A
1N3036B
MZP4753A
MZP4754
MZP4754
MZP4754A
MZP4755
MZP4755
MZP4755A
MZP4756
MZP4756
MZP4756A
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
1N3050B
1N3051
1N3051A
1N3051B
1N3098
1N3098A
1N3099
1N3099A
1N3100
1N3100A
1M180ZS5
1M200ZS10
1M200ZS10
1M200ZS5
1M120ZS10
1M120ZS10
1M150ZS10
1M150ZS10
1M180ZS10
1M180ZS10
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
1N3037
1N3037A
1N3037B
1N3038
1N3038A
1N3038B
1N3039
1N3039A
1N3039B
1N3040
MZP4757
MZP4757
MZP4757A
MZP4758
MZP4758
MZP4758A
MZP4759
MZP4759
MZP4759A
MZP4760
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
1N3101
1N3101A
1N3112
1N3181
1N3198
1N3411
1N3412
1N3413
1N3414
1N3415
1M200ZS10
1M200ZS10
1N4737A
1N5237A
1N5221B
1N5234A
1N5235A
1N5236A
1N5237A
1N5240A
4-2-56
4-2-56
4-2-44
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N3040A
1N3040B
1N3041
1N3041 A
1N3041B
1N3042
1N3042A
1N3042B
1N3043
1N3043A
MZP4760
MZP4760A
MZP4761
MZP4761
MZP4761A
MZP4762
MZP4762
MZP4762A
MZP4763
MZP4763
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
1N3416
1N3417
1N3418
1N3419
1N3420
1N3421
1N3422
1N3423
1N3424
1N3425
1N5242A
1N5245A
1N5248A
1N5251 A
1N5254A
1N5256A
1N5257A
1N5259A
1N5261A
1N5263A
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N3043B
1N3044
1N3044A
1N3044B
1N3045
1N3045A
1N3045B
1N3046
1N3046A
1N3046B
1N3047
MZP4763A
MZP4764
MZP4764
MZP4764A
1M110ZS10
1M110ZS10
1M110ZS5
1M120ZS10
1M120ZS10
1M120ZS5
1M130ZS10
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
1N3426
1N3427
1N3428
1N3429
1N3430
1N3431
1N3432
1N3443
1N3444
1N3445
1N3446
1N5266A
1N5268A
1N5271 A
1N5273A
1N5276A
1N5279A
1N5281A
3EZ6.2D5
3EZ6.8D5
3EZS.2D5
3EZ10D5
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-53
4-2-53
4-2-53
4-2-53
CF
=consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-11
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
1N3447
1N3448
1N3449
1N3450
1N3451
1N3452
1N3453
1N3454
1N3455
1N3456
3EZ12D5
3EZ15D5
3EZ18D5
3EZ22D5
3EZ27D5
3EZ30D5
3EZ33D5
3EZ39D5
3EZ47D5
3EZ56D5
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
1N3533
1N3534
1N3553
1N3675
1N3675A
1N3675B
1N3676
1N3676A
1N3676B
1N3677
1N5260B
1N5261B
1N821
1N4736A
1N4736A
1N4736A
1N4737A
1N4737A
1N4737A
1N4738A
4-2-31
4-2-31
4-3-10
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N3457
1N3458
1N3459
1N3460
1N3461
1N3462
1N3463
1N3477
1N3477A
1N3496
3EZ68D5
3EZ82D5
3EZ100D5
3EZ120D5
3EZ150D5
3EZ180D5
3EZ220D5
1N5985B
1N5985B
1N823
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
4-2-54
4-2-33
4-2-33
4-3-10
1N3677A
1N3677B
1N3678
1N3678A
1N3678B
1N3679
1N3679A
1N3679B
1N3680
1N3680A
1N4738A
1N4738A
1N4739A
1N4739A
1N4739A
1N4740A
1N4740A
1N4740A
1N4741 A
1N4741 A
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N3497
1N3498
1N3499
1N3500
1N3506
1N3507
1N3508
1N3509
1N3510
1N3511
1N825
1N827
1N829
1N821
1N5226B
1N5227B
1N5228B
1N5229B
1N5230B
1N5231B
4-3-10
4-3-10
4-3-10
4-3-10
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N3680B
1N3681
1N3681 A
1N3681B
1N3682
1N3682A
1N3682B
1N3683
1N3683A
1N3683B
1N4741 A
1N4742A
1N4742A
1N4742A
1N4743A
1N4743A
1N4743A
1N4744A
1N4744A
1N4744A
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N3512
1N3513
1N3514
1N3515
1N3516
1N3517
1N3518
1N3519
1N3520
1N3521
1N5232B
1N5234B
1N5235B
1N5236B
1N5237B
1N5239B
1N5240B
1N5241B
1N5242B
1N5243B
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N3684
1N3684A
1N3684B
1N3685
1N3685A
1N3685B
1N3686
1N3686A
1N3686B
1N3687
1N4745A
1N4745A
1N4745A
1N4746A
1N4746A
1N4746A
1N4747A
1N4747A
1N4747A
1N4748A
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N3522
1N3523
1N3524
1N3525
1N3526
1N3527
1N3528
1N3529
1N3530
1N3531
1N3532
1N5245B
1N5246B
1N5248B
1N5250B
1N5251B
1N5252B
1N5254B
1N5256B
1N5257B
1N5258B
1N5259B
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N3687A
1N3687B
1N3688
1N3688A
1N3688B
1N3689
1N3689A
1N3689B
1N3690
1N3690A
1N3690B
1N4748A
1N4748A
1N4749A
1N4749A
1N4749A
1N4750A
1N4750A
1N4750A
1N4751 A
1N4751 A
1N4751 A
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
CF
=consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-12
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
1N3691
1N3691A
1N3691B
1N3692
1N3692A
1N3692B
1N3693
1N3693A
1N3693B
1N3694
1N4752A
1N4752A
1N4752A
1N4753A
1N4753A
1N4753A
1N4754A
1N4754A
1N4754A
1N4755A
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N3707B
1N3708
1N3708A
1N3708B
1N3709
1N3709A
1N3709B
1N371
1N3710
1N3710A
1M150ZS5
lM160ZS10
lM160ZS10
1M160ZS5
1M180ZS10
lM180ZS10
1M180ZS5
1N5221 A
lM200ZS10
1M200ZS10
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-31
4-2-56
4-2-56
1N3694A
1N3694B
1N3695
1N3695A
1N3695B
1N3696
1N3696A
1N3696B
1N3697
1N3697A
1N4755A
1N4755A
1N4756A
1N4756A
1N4756A
1N4757A
1N4757A
1N4757A
1N4758A
1N4758A
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
lN3710B
lN372
lN373
1N374
lN375
lN376
lN377
lN3779
1N378
lN3780
lM200ZS5
lN5225A
lN5227A
lN5229A
lN5230A
lN5233A
lN5236A
lN821A
lN5238A
lN821A
4-2-56
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-3-10
4-2-31
4-3-10
1N3697B
lN3698
lN3698A
lN3698B
1N3699
1N3699A
lN3699B
lN370
1N3700
1N3700A
1N4758A
1N4759A
lN4759A
lN4759A
1N4760A
lN4760A
lN4760A
lN5221B
1N4761A
1N4761 A
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-31
4-2-44
4-2-44
1N3781
lN3782
lN3783
1N3784
1N3785
1N3785A
lN3785B
lN3786
lN3786A
1N3786B
lN823A
lN825A
lN827A
lN829A
1N5921 A
1N5921 A
lN5921B
lN5922A
lN5922A
lN5922B
4-3-10
4-3-10
4-3-10
4-3-10
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
1N3700B
lN3701
lN3701A
lN3701B
1N3702
lN3702A
lN3702B
1N3703
1N3703A
1N3703B
1N4761A
lN4762A
lN4762A
lN4762A
1N4763A
lN4763A
1N4763A
1N4764A
1N4764A
lN4764A
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N3787
lN3787A
lN3787B
lN3788
lN3788A
lN3788B
lN3789
lN3789A
lN3789B
lN379
lN5923A
lN5923A
lN5923B
lN5924A
lN5924A
lN5924B
lN5925A
lN5925A
lN5925B
lN5240A
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-31
lN3704
1N3704A
lN3704B
lN3705
1N3705A
1N3705B
1N3706
lN3706A
1N3706B
1N3707
lN3707A
1M110ZS10
1Ml10ZS10
1M110ZS5
lM120ZS10
1M120ZS10
1M120ZS5
1M130ZS10
lM130ZS10
lM130ZS5
1M150ZS10
1M150ZS10
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
lN3790
lN3790A
lN3790B
lN3791
lN3791A
lN3791B
lN3792
lN3792A
lN3792B
lN3793
lN3793A
lN5926A
lN5926A
lN5926B
lN5927A
lN5927A
lN5927B
lN5928A
lN5928A
lN5928B
lN5929A
lN5929A
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
CF
=consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-13
•
CROSS-REFERENCE (continued)
Industry
Part
Number
Industry
Part
Number
Motorola
Motorola
Direct
Similar
Page
·Replacement Replacement . Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
1N37938
1N3794
1N3794A
1N37948
1N3795
1N3795A
1N37958
1N3796
1N3796A
1N37968
1N59298
1N5930A
1N5930A
1N59308
1N5931 A
1N5931 A
1N59318
1N5932A
1N5932A
1N59328
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
1N3810
1N3810A
1N381 08
1N3811
1N3811A
1N38118
1N3812
1N3812A
1N3812B
1N3813
1N5946A
1N5946A
1N5946B
1N5947A
1N5947A
1N59478
1N5948A
1N5948A
1N59488
1N5949A
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-52
4-2-52
4-2-52
4-2-52
1N3797
1N3797A
1N37978
1N3798
1N379BA
1N37988
1N3799
1N3799A
1N37998
1N380
1N5933A
1N5933A
1N59338
1N5934A
1N5934A
1N59348
1N5935A
1N5935A
1N59358
1N5243A
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-31
1N3813A
1N38138
1N3814
1N3814A
1N38148
1N3815
1N3815A
1N38158
1N3816
1N3816A
1N5949A
1N59498
1N5950A
1N5950A
1N59508
1N5951A
1N5951A
1N59518
1N5952A
1N5952A
4-2-52
4,2-52
4-2-52
4-2-52
4-2-52
4-2-52
4-2-52
4-2-52
4-2-52
4-2-52
1N3800
1N3800A
1N38008
1N3801
1N3801 A
1N38018
1N3802
1N3802A
1N38028
1N3803
1N5936A
1N5936A
1N59368
1N5937A
1N5937A
1N59378
1N5938A
1N5938A
1N59388
1N5939A
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
1N38168
1N3817
1N3817A
1N38178
1N3818
1N3818A
1N38188
1N3819
1N3819A
1N38198
1N59528
1N5953A
1N5953A
1N59538
1N5954A
1N5954A
1N59548
1N5955A
1N5955A
1N59558
4-2-52
4-2-52
4-2-52
4-2-52
4-2-52
4-2-52
4-2-52
4-2-52
4-2-52
4-2-52
1N3803A
1N38038
1N3804
1N3804A
1N38048
1N3805
1N38P5A
1N38058
1N3806
1N3806A
1N5939A
1N59398
1N5940A
1N5940A
1N59408
1N5941A
1N5941A
1N59418
1N5942A
1N5942A
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
1N382
1N3820
1N3820A
1N38208
1N3821
1N3821A
1N3822
1N3822A
1N3823
1N3823A
1N5249A
1N5956A
1N5956A
1N59568
MZP4728
MZP4728A
MZP4729
MZP4729A
MZP4730
MZP4730A
4-2-31
4-2-52
4-2-52
4-2-52
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
1N38068
1N3807
1N3807A
1N38078
1N3808
1N380BA
1N38088
1N3809
1N3809A
1N38098
1N381
1N59428
1N5943A
1N5943A
1N59438
1N5944A
1N5944A
1N59448
1N5945A
1N5945A
1N59458
1N5246A
4-2'51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-31
1N3824
1N3824A
1N3825
1N3825A
1N3826
1N3826A
1N3827
1N3827A
1N3828
1N3828A
1N3829
MZP4731
MZP4731A
MZP4732
MZP4732A
MZP4733
MZP4733A
MZP4734
MZP4734A
MZP4735
MZP4735A
MZP4736
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
CF
=consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-14
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
1N3829A
1N383
1N3830
1N3830A
1N384
1N385
1N386
1N387
1N3951
1N4010
MZP4736A
1N5252A
MZP4737
MZP4737A
1N5255A
1N5258A
1N5260A
1N5261 A
1N5934B
1N821
4-2-56
4-2-31
4-2-56
4-2-56
4-2-31
4-2-31
4-2-31
4-2-31
4-2-51
4-3-10·
1N4029B
1N4030
1N4030A
1N4030B
1N4031
1N4031 A
1N4031B
1N4032
1N4032A
1N4032B
1N6282A
1N6283
1N6283
1N6283A
1N6284
1N6284
1N6284A
1N6285
1N6285
1N6285A
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
1N4016
1N4016A
1N4016B
1N4017
1N4017A
1N4017B
1N4018
1N4018A
1N4018B
1N4019
1N6269
1N6269
1N6269A
1N6270
1N6270
1N6270A
1N6271
1N6271
1N6271 A
1N6272
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
1N4033
1N4033A
1N4033B
1N4034
1N4034A
1N4034B
1N4035
1N4035A
1N4035B
1N4036
1N6286
1N6286
1N6286A
1N6287
1N6287
1N6287A
1N6288
1N6288
1N6288A
1N6289
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-44
1N401&A
1N4019B
1N4020
1N4020A
1N4020B
1N4021
1N4021A
1N4021B
1N4022
1N4022A
1N6272
1N6272A
1N6273
1N6273
1N6273A
1N6274
1N6274
1N6274A
1N6275
1N6275
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
1N4036A
1N4036B
1N4037
1N4037A
1N4037B
1N4038
1N4038A
1N4038B
1N4039
1N4039A
1N6289
1N6289A
1N6290
1N6290
1N6290A
1N6291
1N6291
1N6291 A
1N6292
1N6292
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
1N4022B
1N4023
1N4023A
1N4023B
1N4024
1N4024A
1N4024B
1N4025
1N4025A
1N4025B
1N6275A
1N6276
1N6276
1N6276A
1N6277
1N6277
1N6277A
1N6278
1N6278
1N6278A
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
1N4039B
1N4040
1N4040A
1N4040B
1N4041
1N4041A
1N4041B
1N4042
1N4042A
1N4042B
1N6292A
1N6293
1N6293
1N6293A
1N6294
1N6294
1N6294A
1N6295
1N6295
1N6295A
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
1N4026
1N4026A
1N4026B
1N4027
1N4027A
1N4027B
1N4028
1N4028A
1N4028B
1N4029
1N4029A
1N6279
1N6279
1N6279A
1N6280
1N6280
1N6280A
1N6281
1N6281
1N6281A
1N6282
1N6282
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
1N4095
lN4096
lN4097
1N4098
lN4099
1N4100
1N4101
lN4102
1N4103
1N4104
1N4105
1N5993B
3EZ91D5
3EZ100D5
3EZ150D5
MZ4099
MZ41 00
MZ41 01
MZ41 02
MZ41 03
MZ41 04
1N4698
4-2-33
4-2-53
4-2-53
4-2-53
4-2-37
4-2-37
4-2-37
4-2-37
4-2-37
4-2-37
4-2-30
CF
=consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-15
•
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Direct
Similar
Replacement -Replacement
Page
Number
1N4106
1N4107
1N4108
1N4109
1N4110
1N4111
1N4112
1N4113
1N4114
1N4115
1N4699
1N4700
1N4701
1N4702
1N4703
1N4704
1N4705
1N4706
1N4707
1N4708
4·2·30
4·2·30
4·2·30
4,2·30
4·2·30
4·2·30
4·2·30
4·2·30
4·2·30
4·2·30
1N4165
1N4165A
1N4165B
1N4166
1N4166A
1N4166B
1N4167
1N4167A
1N4167B
1N4168
1N4743
1N4743
1N4743A
1N4744
1N4744
1N4744A
1N4745
1N4745
1N4745A
1N4746
4·2·44
4·2·44
4·2·44
4·2·44
4·2·44
4·2·44
4·244
4·244
4-2·44
4·2·44
1N4116
1N4117
1N4118
1N4119
1N4120
1N4121
1N4122
1N4123
1N4124
1N4125
1N4709
1N4710
1N4711
1N4712
1N4713
1N4714
1N4715
1N4716
1N4717
1N5261B
4·2·30
H·30
4·2·30
4·2·30
4-2·30
4·2·30
4·2·30
4·2·30
4·2·30
4·2·31
1N4168A
1N4168B
1N4169
1N4169A
1N4169B
1N4170
1N4170A
1N4170B
1N4171
1N4171A
1N4746
1N4746A
1N4747
1N4747
1N4747A
1N4748
1N4748
1N4748A
1N4749
1N4749
4·2·44
4·2·44
4·2·44
4·2·44
4·2·44
4·2·44
4·2·44
4-2·44
4·2·44
4·2·44
1N4126
1N4127
1N4128
1N4129
1N4130
1N4131
1N4132
1N4133
1N4134
1N4135
1N5262B
1N5263B
1N5264B
1N5265B
1N5266B
1N5267B
1N5268B
1N5269B
1N5270B
1N5271B
4·2·31
4·2·31
4·2·31
4·2·31
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
1N4171B
1N4172
1N4172A
1N4172B
1N4173
1N4173A
1N4173B
1N4174
1N4174A
1N4174B
1N4749A
1N4750
1N4750
1N4750A
1N4751
1N4751
1N4751 A
1N4752
1N4752
1N4752A
4·2·44
4·2·44
4·2·44
4·2·44
4·2·44
4·2·44
4·2·44
4·2·44
4·2·44
4·2·44
1N4158
1N4158A
1N4158B
1N4159
1N4159A
1N4159B
1N4160
1N4160A
1N4160B
1N4161
1N4736
1N4736
1N4736A
1N4737
1N4737
1N4737A
1N4738
1N4738
1N4738A
1N4739
4·2·44
4·2·44
4·2·44
4·2·44
4·244
4·244
4·2·44
4·2·44
4·244
4·2·44
1N4175
1N4175A
1N4175B
1N4176
1N4176A
1N4176B
1N4177
1N4177A
1N4177B
1N4178
1N4753
1N4753
1N4753A
1N4754
1N4754
1N4754A
1N4755
1N4755
1N4755A
1N4756
4·2·44
4·2·44
4·2·44
4·244
4·2·44
4·2·44
H·44
4·2·44
4·2·44
4·2·44
1N4161A
1N4161B
1N4162
1N4162A
1N4162B
1N4163
1N4163A
1N4163B
1N4164
1N4164A
1N4164B
1N4739
1N4739A
1N4740
1N4740
1N4740A
1N4741
1N4741
1N4741 A
1N4742
1N4742
1N4742A
4·2·44
4·2·44
4·2·44
4·2·44
4·2·44
4·2·44
4·2·44
4·2·44
4·2·44
4·2·44
4·2·44
1N4178A
1N4178B
1N4179
1N4179A
1N4179B
1N4180
1N4180A
1N4180B
1N4181
1N4181A
1N4181B
1N4756
1N4756A
1N4757
1N4757
1N4757A
1N4758
1N4758
1N4758A
1N4759
1N4759
1N4759A
4·2·44
4-2·44
4·244
4·2·44
4·2·44
4·2·44
4·2·44
4·244
4-2·44
4·2·44
4·2·44
CF =consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-16
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
lN4182
lN4182A
lN41828
lN4183
lN4183A
lN41838
lN4184
lN4184A
lN41848
lN4185
lN4760
lN4760
lN4760A
lN4761
lN4761
lN4761A
lN4762
lN4762
lN4762A
lN4763
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
lN43278
lN4328
lN4328A
lN43288
lN4329
lN4329A
lN43298
lN4330
lN4330A
lN43308
lN4740A
lN4741
lN4741
1N4741 A
lN4742
lN4742
lN4742A
lN4743
lN4743
lN4743A
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
lN4185A
lN41858
lN4186
lN4186A
lN41868
lN4187
lN4187A
lN41878
lN4188
lN4188A
lN4763
lN4763A
lN4764
lN4764
lN4764A
lMll0ZS10
lMll0ZS10
lMll0ZS5
lM120ZS10
lM120ZS10
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
lN4331
1N4331 A
lN43318
lN4332
lN4332A
lN43328
lN4333
lN4333A
lN43338
lN4334
lN4744
lN4744
lN4744A
lN4745
lN4745
lN4745A
lN4746
lN4746
lN4746A
lN4747
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
lN41868
lN4189
lN4189A
lN41898
lN4190
lN4190A
lN41908
lN4191
lN4191A
lN41918
lM120ZS5
lM130ZS10
lM130ZS10
lM130ZSS
lM150ZS10
lM150ZS10
lM150ZS5
lM160ZS10
lM160ZS10
lM160ZS5
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
lN4334A
lN43348
lN4335
lN4335A
lN43358
lN4336
lN4336A
lN43368
lN4337
lN4337A
lN4747
lN4747A
lN4748
lN4748
lN4748A
lN4749
lN4749
lN4749A
lN4750
lN4750
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
lN4192
lN4192A
lN41928
lN4193
lN4193A
lN41938
lN4321
lN4323
lN4323A
lN43238
lM180ZS10
lM180ZS10
lM180ZSS
lM200ZS10
lM200ZS10
lM200ZS5
3EZ5105
lN4736
lN4736
lN4736A
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-53
4-2-44
4-2-44
4-2-44
lN43378
lN4338
lN4338A
lN43388
lN4339
lN4339A
lN43398
lN4340
lN4340A
lN43408
lN4750A
lN4751
lN4751
1N4751 A
lN4752
lN4752
lN4752A
lN4753
lN4753
lN4753A
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
lN4324
lN4324A
lN43248
lN4325
lN4325A
lN43258
lN4326
lN4326A
lN43268
lN4327
lN4327A
lN4737
lN4737
lN4737A
lN4738
lN4738
lN4738A
lN4739
lN4739
lN4739A
lN4740
lN4740
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
lN4341
1N4341 A
lN43418
lN4342
lN4342A
lN43428
lN4343
lN4343A
lN43438
lN4344
lN4344A
lN4754
lN4754
lN4754A
lN4755
lN4755
lN4755A
lN4756
lN4756
lN4756A
lN4757
lN4757
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
CF
=consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-17
•
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
1N43448
1N4345
1N4345A
1N43458
1N4346
1N4346A
1N43468
1N4347
1N4347A
1N43478
1N4757A
1N4758
1N4758
1N4758A
1N4759
1N4759
1N4759A
1N4760
1N4760
1N4760A
4-2-44
4'2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N4401
1N4402
1N4403
1N4404
1N4405
1N4406
1N4407
1N4408
1N4409
1N4410
1N4737
1N4738
1N4739
1N4740
1N4741
1N4742
1N4743
1N4744
1N4745
1N4746
4-2-44
4-2-44 .
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N4348
1N4348A
1N43488
1N4349
1N4349A
1N43498
1N4350
1N4350A
1N43508
1N4351
1N4761
1N4761
1N4761 A
1N4762
1N4762
1N4762A
1N4763
1N4763
1N4763A
1N4764
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N4411
1N4412
1N4413
1N4414
1N4415
1N4416
1N4417
1N4418
1N4419
1N4420
1N4747
1N4748
1N4749
1N4750
1N4751
1N4752
1N4753
1N4754
1N4755
1N4756
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N4351 A
1N43518
1N4352
1N4352A
1N43528
1N4353
1N4353A
1N43538
1N4354
1N4354A
1N4764
1N4764A
1M110ZS10
1M110ZS10
1M110ZSS
1M120ZS10
1M120ZS10
1M120ZS5
1M130ZS10
1M130ZS10
4-2-44
4-2-44
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
1N4421
1N4422
1N4423
1N4424
1N4425
1N4426
1N4427
1N4428
1N4429
1N4430
1N4757
1N4758
1N4759
1N4760
1N4761
1N4762
1N4763
1N4764
1M110ZS10
1M120ZS10
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-56
4-2-56
1N43548
1N4355
1N4355A
1N43558
1N4356
1N4356A
1N43568
1N4357
1N4357A
1N4357B
1M130ZSS
1M150ZS10
1M150ZS10
1M150ZS5
1M160ZS10
1M160ZS10
1M160ZS5
1M180ZS10
1M180ZS10
1M180ZS5
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
1N4431
1N4432
1N4433
1N4434
1N4435
1N4460
1N4461
1N4462
1N4463
1N4464
1M130ZS10
1M150ZS10
1M160ZS10
1M180ZS10
1M200ZS10
1N4735A
1N4736A
1N4737A
1N4738A
1N4739A
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2·44
4-2-44
4-2-44
4-2-44
4-2-44
1N4358
1N4358A
1N43588
1N4360
1N4370
1N4370A
1N4371
1N4371 A
1N4372
1N4372A
1N4400
1M200ZS10
1M200ZS10
1M200ZS5
1N52218
4-2-56
4-2-56
4-2-56
4-2-31
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-44
1N4465
1N4466
1N4467
1N4468
1N4469
1N4470
1N4471
1N4472
1N4473
1N4474
1N4475
1N4740A
1N4741A
1N4742A
1N4743A
1N4744A
1N4745A
1N4746A
1N4747A
1N4748A
1N4749A
1N4750A
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N4370
1N4370A
1N4371
1N4371 A
1N4372
1N4372A
1N4736
CF =consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-18
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
lN4476
lN4477
lN4478
lN4479
lN4480
lN4481
lN4482
lN4483
lN4484
lN4485
1N4751 A
lN4752A
lN4753A
lN4754A
lN4755A
lN4756A
lN4757A
lN4758A
lN4759A
lN4760A
4·2·44
4·2·44
4·2·44
4·2·44
4·2·44
4·2·44
4·2·44
4·2·44
4·2·44
4·2·44
lN4578A
lN4579
lN4579A
lN4580
lN4580A
lN4581
1N4581 A
lN4582
lN4582A
lN4583
lN4578A
lN4579
lN4579A
lN4580
lN4580A
lN4581
1N4581 A
lN4582
lN4582A
lN4583
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
lN4486
lN4487
lN4488
lN4489
lN4490
lN4491
lN4492
lN4493
lN4494
lN4495
lN4761A
lN4762A
lN4763A
lN4764A
lMll0ZS5
lM120ZS5
lM130ZS5
lM150ZS5
lM160ZS5
lM180ZS5
4·2·44
4·2·44
4·2-44
4·2·44
4·2·56
4·2·56
4·2·56
4·2·56
4·2·56
4-2·56
lN4583A
lN4584
lN4584A
lN4614
lN4615
lN4616
lN4617
lN4618
lN4619
lN4620
lN4583A
lN4584
lN4584A
CF
CF
CF
lN4496
lN4499
lN4503
lN4504
lN4565
lN4565A
lN4566
lN4566A
lN4567
lN4567A
lM200ZS5
lN4735A
3EZ33Dl0
3EZ2OOD10
lN4565
lN4565A
lN4566
lN4566A
lN4567
lN4567A
4·2·56
4·2·44
4·2·53
4·2·54
4·3·15
4·3·15
4·3·15
4-3·15
4·3·15
4·3·15
lN4568
lN4568A
lN4569
lN4569A
lN4570
lN4570A
lN4571
1N4571 A
lN4572
lN4572A
lN4568
lN4568A
lN4569
lN4569A
lN4570
lN4570A
lN4571
lN4571A
lN4572
lN4572A
lN4573
lN4573A
lN4574
lN4574A
lN4575
lN4575A
lN4576
lN4576A
lN4577
lN4577A
lN4578
lN4573
lN4573A
lN4574
lN4574A
lN4575
lN4575A
lN4576
lN4576A
lN4577
lN4577A
lN4578
MZ4614
MZ4615
MZ4616
MZ4617
MZ4618
MZ4619
MZ4620
4·2·37
4·2·37
4·2·37
4·2·37
4·2·37
4·2·37
4·2·37
lN4621
lN4622
lN4623
lN4624
lN4625
lN4626
lN4627
lN4628
lN4629
lN4630
MZ4621
MZ4622
MZ4623
MZ4624
MZ4625
MZ4626
MZ4627
lN4736A
lN4737A
lN4738A
4·2·37
4·2·37
4·2·37
4·2·37
4·2·37
4·2·37
4·2·37
4·2·44
4·2·44
4·2·44
4·3·15
4·3·15
4·3·15
4·3·15
4·3·15
4·3·15
4·3·15
4·3·15
4·3·15
4·3·15
lN4631
lN4632
lN4633
lN4634
lN4635
lN4636
lN4637
lN4638
lN4639
lN4640
lN4739A
lN4740A
1N4741 A
lN4742A
lN4743A
lN4744A
lN4745A
lN4746A
lN4747A
lN4748A
4·2·44
4·2·44
4·2·44
4·2·44
4·2·44
4·2·44
4·2·44
4·2·44
4·2·44
4·2-44
4·3·15
4·3·15
4·3·15
4·3·15
lN4641
lN4642
lN4643
lN4644
lN4645
lN4646
lN4647
lN4648
lN4649
lN465
lN4650
lN4749A
lN4750A
1N4751 A
lN4752A
lN4753A
lN4754A
lN4755A
lN4756A
lN4728A
lN5223A
lN4729A
4·2·44
4·2-44
4·2·44
4·2·44
4·2·44
4·2·44
4·2·44
4·2-44
4·2·44
4·2·31
4·2·44
CF
CF
CF
CF
CF
CF
CF
CF = consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-19
I
CROSS-REFERENCE (continued)
Industry
Part
Number
I
. Motorola
Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
1N4651
1N4652
1N4653
1N4654
1N4655
1N4656
1N4657
1N4658
1N4659
1N465A
1N4730A
1N4731 A
1N4732A
1N4733A
1N4734A
1N4735A
1N4736A
1N4737A
1N4738A
1N5223B
.4-2-44
4-2-44
4-2-44
4-2:44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-31
1N4684
1N4684C
1N4684D
1N4685
1N4685C
1N4685D
1N4686
1N4686C
1N4686D
1N4687
1N4684
1N4684C
1N4684D
1N4685
1N4685C
1N4685D
1N4686
1N4686C
1N4686D
1N4687
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
1N466
1N4660
1N4661
1N4662
1N4663
1N4664
1N4665
1N4666
1N4667
1N4668
1N5226A
1N4739A
1N4740A
1N4741 A
1N4742A
1N4743A
1N4744A
1N4745A
1N4746A
1N4747A
4-2-31
4-2:44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2,44
4-2-44
4-2-44
1N4687C
1N4687D
1N4688
1N4688C
1N4688D
1N4689
1N4689C
1N4689D
1N468A
1N469
1N4687C
1N4687D
1N4688
1N4688C
1N4688D
1N4689
1N4689C
1N4689D
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-31
4-2-31
1N4669
1N466A
1N467
1N4670
1N4671
1N4672
1N4673
1N4674
1N4675
1N4676
1N4748A
1N5226B
1N5228B
1N4749A
1N4750A
1N4751 A
1N4752A
1N4753A
1N4754A
1N4755A
4-2-44
4-2-31
4-2-31
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N4690
1N4690C
1N4690D
1N4691
1N4691C
1N4691D
1N4692
1N4692C
1N4692D
1N4693
1N4690
1N4690C
1N4690D
1N4691
1N4691C
1N4691D
1N4692
1N4692C
1N4692D
1N4693
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
1N4756A
1N4680
4-2-44
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-31
4-2-31
4-2-30
1N4693C
1N4693D
1N4694
1N4694C
1N4694D
1N4695
1N4695C
1N4695D
1N4696
1N4696C
1N4693C
1N4693D
1N4694
1N4694C
1N4694D
1N4695
1N4695C
1N4695D
1N4696
1N4696C
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
1N4680C
1N4680D
1N4681
1N4681C
1N4681 0
1N4682
1N4682C
1N4682D
1N4683
1N4683C
1N4683D
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
1N4696D
1N4697
1N4697C
1N4697D
1N4698
1N4698C
1N4698D
1N4699
1N4699C
1N4699D
1N469A
1N4696D
1N4697
1N4697C
1N4697D
1N4698
1N4698C
1N4698D
1N4699
1N4699C
1N4699D
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-31
1N4677
1N4678
1N4678C
1N4678D
1N4679
1N4679C
1N4679D
1N467A
1N468
1N4680
1N4680C
1N4680D
1N4681
1N4681C
1N4681 0
1N4682
1N4682C
1N4682D
1N4683
1N4683C
1N4683D
1N4678
1N4678C
1N4678D
1N4679
1N4679C
1N4679D
1N5228B
1N5230A
1N5230B
1N5232B
CF = consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-20
1N5232B
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Motorola
Direct
SImilar
Replacement Replacement
Industry
Part
Page
Number
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
1N470
1N4700
1N4700C
1N4700D
1N4701
1N4701C
1N4701D
1N4702
1N4702C
1N4702D
1N4700
1N4700C
1N4700D
1N4701
1N4701C
1N4701D
1N4702
1N4702C
1N4702D
4-2-31
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
1N4716C
1N4716D
1N4717
1N4717C
1N4717D
1N4728
1N4728A
1N4728C
1N4nSD
1N4729
1N4716C
1N4716D
1N4717
1N4717C
1N4717D
1N472B
1N472BA
1N472BC
1N4728D
1N4729
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N4703
1N4703C
1N4703D
1N4704
1N4704C
1N4704D
1N4705
1N4705C
1N4705D
1N4706
1N4703
1N4703C
1N4703D
1N4704
1N4704C
1N4704D
1N4705
1N4705C
1N4705D
1N4706
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
1N4729A
1N4729C
1N4729D
1N4730
1N4730A
1N4730C
1N47300
1N4731
1N4731 A
1N4731C
1N4729A
1N4729C
1N4729D
1N4730
1N4730A
1N4730C
1N4730D
1N4731
1N4731 A
1N4731C
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N4706C
1N4706D
1N4707
1N4707C
1N4707D
1N470B
1N470BC
1N470BD
1N4709
1N4709C
1N4706C
1N4706D
1N4707
1N4707C
1N4707D
1N470B
1N4708C
1N470BD
1N4709
1N4709C
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
1N4731D
1N4732
1N4732A
1N4732C
1N4732D
1N4733
1N4733A
1N4733C
1N4733D
1N4734
1N4731D
1N4732
1N4732A
1N4732C
1N4732D
1N4733
1N4733A
1N4733C
1N4733D
1N4734
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N4709D
1N470A
1N471 0
1N4710C
1N4710D
1N4711
1N4711C
1N4711D
1N4712
1N4712C
1N4709D
1N4710
1N4710C
1N4710D
1N4711
1N4711C
1N4711D
1N4712
1N4712C
4-2-30
4-2-31
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
1N4734A
1N4734C
1N4734D
1N4735
1N4735A
1N4735C
1N4735D
1N4736
1N4736A
1N4736C
1N4734A
1N4734C
1N4734D
1N4735
1N4735A
1N4735C
1N4735D
1N4736
1N4736A
1N4736C
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N4712D
1N4713
1N4713C
1N4713D
1N4714
1N4714C
1N4714D
1N4715
1N4715C
1N4715D
1N4716
1N4712D
1N4713
1N4713C
1N4713D
1N4714
1N4714C
1N4714D
1N4715
1N4715C
1N4715D
1N4716
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
1N4736D
1N4737
1N4737A
1N4737C
1N4737D
1N473B
1N4738A
1N4738C
1N4738D
1N4739
1N4739A
1N4736D
1N4737
1N4737A
1N4737C
1N4737D
1N473B
1N473BA
1N4738C
1N473BD
1N4739
1N4739A
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
CF
1N5235B
1N5235B
=consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENEI'l DIODES
2-21
•
CROSS-REFERENCE (continued)
Industry
Part
Num~r
I
Motorola
Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Direct
Similar
Page
Replacement Replacement . Number
1N4739C
1N4739D
1N4740
1N4740A
1N4740C
1N4740D
1N4741
1N4741 A
1N4741C
1N4741D
1N4739C
1N4739D
1N4740
1N4740A
1N4740C
1N4740D
1N4741
1N4741 A
1N4741C
1N4741D
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N4752A
1N.4752C
1N4752D
1N4753
1N4753A
1N4753C
1N4753D
1N4754
1N4754A
1N4754C
1N4752A
1N4752C
1N4752D
1N4753
1N4753A
1N4753C
1N4753D
1N4754
1N4754A
1N4754C
4-2-44
4-2-44
4-2-44
4-2"44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N4742
1N4742A
1N4742C
1N47420
1N4743
1N4743A
1N4743C
1N4743D
1N4744
1N4744A
1N4742
1N4742A
1N4742C
1N4742D
1N4743
1N4743A
1N4743C
1N4743D
1N4744
1N4744A
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N4754D
1N4755
1N4755A
1N4755C
1N4755D
1N4756
1N4756A
1N4756C
1N4756D
1N4757
1N4754D
1N4755
1N4755A
1N4755C
1N4755D
1N4756
1N4756A
1N4756C
1N4756D
1N4757
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N4744C
1N4744D
1N4745
1N4745A
1N4745C
1N4745D
1N4746
1N4746A
1N4746C
1N4746D
1N4744C
1N4744D
1N4745
1N4745A
1N4745C
1N4745D
1N4746
1N4746A
1N4746C
1N4746D
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2,44
4-2-44
4-2-44
1N4757A
1N4757C
1N4757D
1N4758
1N4758A
1N4758C
1N4758D
1N4759
1N4759A
1N4759C
1N4757A
1N4757C
1N4757D
1N4758
1N4758A
1N4758C
1N4758D
1N4759
1N4759A
1N4759C
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N4747
1N4747A
1N4747C
1N4747D
1N4748
1N4748A
1N4748C
1N4748D
1N4749
1N4749A
1N4747
1N4747A
1N4747C
1N4747D
1N4748
1N4748A
1N4748C
1N4748D
1N4749
1N4749A
4-2-44
·4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N4759D
1N4760
1N4760A
1N4760C
1N4760D
1N4761
1N4761 A
1N4761C
1N4761D
1N4762
1N4759D
1N4760
1N4760A
1N4760C
1N4760D
1N4761
1N4761A
1N4761C
1N4761D
1N4762
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N4749C
1N4749D
1N4750
1N4750A
1N4750C
1N4750D
1N4751
1N4751A
1N4751C
1N4751D
1N4752
1N4749C
1N4749D
1N4750
1N4750A
1N4750C
1N4750D
1N4751
1N4751A
1N4751C
1N4751D
1N4752
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N4762A
1N4762C
1N4762D
1N4763
1N4763A
1N4763C
1N4763D
1N4764
1N4764A
1N4764C
1N4764D
1N4762A
1N4762C
1N4762D
1N4763
1N4763A
1N4763C
1N4763D
1N4764
1N4764A
1N4764C
1N4764D
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
CF
4-2~44
=consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-22
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Motorola
Similar
Direct
Replacement Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Similar
Direct
Replacement Replacement
Page
Number
1N4831
1N4831 A
1N4831B
1N4832
1N4832A
1N4832B
1N4833
1N4833A
1N4833B
1N4834
1N4739
1N4739
1N4739A
1N4740
1N4740
1N4740A
1N4741
1N4741
1N4741 A
1N4742
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N4848
1N4848A
1N4848B
1N4849
1N4849A
1N4849B
1N4850
1N4850A
1N4850B
1N4851
1N4756
1N4756
1N4756A
1N4757
1N4757
1N4757A
1N4758
1N4758
1N4758A
1N4759
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N4834A
1N4834B
1N4835
1N4835A
1N4835B
1N4836
1N4836A
1N4836B
1N4837
1N4837A
1N4742
1N4742A
1N4743
1N4743
1N4743A
1N4744
1N4744
1N4744A
1N4745
1N4745
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N4851A
1N4851B
1N4852
1N4852A
1N4852B
1N4853
1N4853A
1N4853B
1N4854
1N4854A
1N4759
1N4759A
1N4760
1N4760
1N4760A
1N4761
1N4761
1N4761A
1N4762
1N4762
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N4837B
1N4838
1N4838A
1N4838B
1N4839
1N4839A
1N4839B
1N4840
1N4840A
1N4840B
1N4745A
1N4746
1N4746
1N4746A
1N4747
1N4747
1N4747A
1N4748
1N4748
1N4748A
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N4854B
1N4855
1N4855A
1N4855B
1N4856
1N4856A
1N4856B
1N4857
1N4857A
1N4857B
1N4762A
1N4763
1N4763
1N4763A
1N4764
1N4764
1N4764A
1M110ZS10
1M110ZS10
1M110ZS5
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-56
4-2-56
4-2-56
1N4841
1N4841 A
1N4841B
1N4842
1N4842A
1N4842B
1N4843
1N4843A
1N4843B
1N4844
1N4749
1N4749
1N4749A
1N4750
1N4750
1N4750A
1N4751
1N4751
1N4751 A
1N4752
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N4858
1N4858A
1N4858B
1N4859
1N4859A
1N4859B
1N4860
1N4860A
1N4860B
1N4881
1M120ZS10
1M120ZS10
1M120ZS5
1M130ZS10
1M130ZS10
1M130ZS5
1M150ZS10
1M150ZS10
1M150ZS5
3EZ39D5
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-53
1N4844A
1N4844B
1N4845
1N4845A
1N4845B
1N4846
1N4846A
1N4846B
1N4847
1N4847A
1N4847B
1N4752
1N4752A
1N4753
1N4753
1N4753A
1N4754
1N4754
1N4754A
1N4755
1N4755
1N4755A
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N4882
1N4883
1N4884
1N4889
1N4954
1N4955
1N4956
1N4957
1N4958
1N4959
1N4960
3EZ20D5
3EZ62D5
3EZ39D5
1N5372B
1N5342B
1N5343B
1N5344B
1N5346B
1N5347B
1N5348B
1N5349B
4-2-53
4-2-53
4-2-53
4-2-59
4-2-59
4-2-59
4-2-59
4-2-59
4-2-59
4-2-59
4-2-59
CF =consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-23
•
CROSS-REFERENCE (continued)
Industry
Part
Number
I
Motorola
:Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
1N4961
1N4962
1N4963
1N4964
1N4965
1N4966
1N4967
1N4968
1N4969
1N4970
1N5350B
1N5352B
1N5353B
1N5355B
1N5357B
1N5358B
1N5359B
1N5361B
1N5363B
1N5364B
4-2-59
4-2-59
4-2-59
4-2-59
4-2-59
4-2-59
4-2-59
4-2-59
4-2-59
4-2-59
1N5019
1N50l9A
1N5020
1N5020A
lN5021
1NS021 A
1N5022
1N5022A
lN5023
1N5023A
3EZ9.1Dl0
3EZ9.1D5
3EZ10D10
3EZ10D5
3EZ11D10
3EZ11D5
3EZ12D10
3EZ12D5
3EZ13D10
3EZ13D5
4-2-53
4-2-53
4-2-53
4-2-S3
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
1N4971
1N4972
1N4973
1N4974
lN4975
1N4976
lN4977
lN4978
1N4979
lN4980
1N5365B
1N5366B
1N5367B
1N5368B
lN5369B
1N5370B
lN5372B
lN5373B
1N5374B
lN5375B
4-2-59
4-2-59
4-2-59
4-2-59
4-2-59
4-2-59
4-2-59
4-2-59
4-2-59
4-2-59
1N5024
1NS024A
lN502S
lN502SA
lN5026
lN5026A
lN5027
1NS027A
1NS028
lN5028A
3EZ14D10
3EZ14D5
3EZ15D10
3EZ1SD5
3EZ16D10
3EZ16DS
3EZ17D10
3EZ17DS
3EZ18D10
3EZ18D5
4-2-53
4-2-S3
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
1N498l
1N4982
lN4983
lN4984
1N4985
1N4986
1N4987
lN4988
1N4989
1NS008
1N5377B
1NS378B
1NS379B
1N5380B
1N5381B
lN5383B
1NS384B
1NS386B
lN5388B
lN5333A
4-2-S9
4-2-S9
4-2-59
4-2-59
4-2-59
4-2-60
4-2-60
4-2-60
4-2-60
4-2-59
lN5029
lN5029A
1N5030
1NS030A
lN503l
lNS031A
1NS032
1NS032A
lN5033
1N5033A
3EZ19D10
3EZ19DS
3EZ20Dl0
3EZ20DS
3EZ22D10
3EZ22DS
3EZ24Dl0
3EZ24D5
3EZ24D5
3EZ24D5
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
lN5008A
1N5009
lN5009A
lNS010
lN50l0A
1N5011
lN50l1A
lN5012
1N50l2A
1N50l3
1N5333B
1N5334A
1NS334B
3EZ3.9D10
3EZ3.9D5
3EZ4.3D10
3EZ4.3D5
3EZ4.7D10
3EZ4.7D5
3EZ5.1D10
4-2-59
4-2-59
4-2-59
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
1N5034
lN5034A
1N5035
1N5035A
lN5036
1N5036A
lN5037
lN5037A
1N5038
lN5038A
3EZ27Dl0
3EZ27D5
3EZ30D10
3EZ30D5
3EZ33Dl0
3EZ33D5
3EZ36D10
3EZ36D5
3EZ39D10
3EZ39D5
4-2-53
4-2-53
4-2-54
4-2-S3
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
1NS013A
1N50l4
1NS014A
1NS015
1N501SA
lN5016
lN50l6A
1N5017
lN5017A
lN5018
1N50l8A
3EZ5.1D5
3EZ5.6Dl0
3EZ5.6D5
3EZ6.2Dl0
3EZ6.2D5
3EZ6.8Dl0
3EZ6.8D5
3EZ7.5Dl0
3EZ7.5DS
3EZ8.2D10
3EZ8.2DS
4-2-53
4-2-53
4-2-53
4-2-S3
4-2-53
4-2-S3
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
lN5039
1N5039A
lN5040
lN5040A
lN5041
1N504l A
1N5042
1NS042A
lN5043
1N5043A
1NS044
3EZ43D10
3EZ43D5
3EZ47D5
3EZ47D5
3EZ47D5
3EZ47D5
3EZ51D5
3EZS1D5
3EZS1D10
3EZ51D5
3EZS1D5
4-2-53
4-2-53
4-2-53
4-2-S3
4-2-53
4-2-53
4-2-S3
4-2-53
4-2-53
4-2-53
4-2-53
CF =consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-24
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Direct
Replacement
Motorola
Similar
Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Direct
Similar
Replace'Tlent Replacement
Page
Number
1N5044A
1N5045
1NS04SA
1NS046
1NS046A
1NS047
1NS047A
1NS048
1NS048A
1N5049
3EZ51D5
3EZ56D10
3EZ56DS
3EZ62D10
3EZ62DS
3EZ68D10
3EZ68DS
3EZ7SD10
3EZ7SD5
3EZ82D10
4-2-53
4-2-S3
4-2-S3
4-2-53
4-2-S3
4-2-S3
4-2-S3
4-2-S3
4-2-53
4-2-53
1NS099
1N5100
1N5101
1N5102
1N5103
1N5104
1N5105
1N5106
1N5107
1N5108
3EZ140DS
3EZ160DS
3EZ170D5
3EZ180D5
3EZ190D5
3EZ200D5
3EZ220D5
3EZ240DS
3EZ270DS
3EZ270D5
4-2-S3
4-2-S3
4-2-53
4-2-S3
4-2-S3
4-2-S4
4-2-54
4-2-S4
4-2-54
4-2-54
1N5049A
1N5050
1N50S0A
1N5051
1NSOS1A
1NS063
1NS064
1N506S
1NS066
1NS067
3EZ82D5
3EZ91D10
3EZ91D5
3EZ100D10
3EZ100D5
3EZ6.8DS
3EZ7.5DS
3EZ8.2DS
3EZ9.1DS
3EZ10D5
4-2-53
4-2-S3
4-2-S3
4-2-S3
4-2-S3
4-2-S3
4-2-S3
4-2-S3
4-2-S3
4-2-53
1N5109
1N5110
1N5111
1N5112
1NS113
1NS114
1NS11S
1NS116
1NS117
1N5118
3EZ270D5
3EZ300D5
3EZ330D5
3EZ330DS
3EZ330DS
3EZ360DS
3EZ400D5
3EZ400DS
3EZ400DS
1N5351B
4-2-S4
4-2-54
4-2-54
4-2-54
4-2-S4
4-2-S4
4-2-54
4-2-54
4-2-S4
4-2-59
1NS068
1N5069
1N5070
1N5071
1N5072
1N5073
1N5074
1N5075
1NS076
1N5077
3EZ11DS
3EZ13D5
3EZ14D5
3EZ15D5
3EZ16DS
3EZ18D5
3EZ22D5
3EZ24D5
3EZ27DS
3EZ30DS
4-2-S3
4-2-53
4-2-S3
4-2-S3
4-2-S3
4-2-53
4-2-53
4-2-S3
4-2-S3
4-2-53
1N5119
1N5120
1N5121
1N5122
1N5123
1NS124
1N512S
1N5126
1NS127
1NS128
1NS366B
1N5368B
1N5369B
1NS371B
1N5373B
1N537SB
1N5377B
1N5382B
1NS385B
1NS387B
4-2-59
4-2-S9
4-2-59
4-2-S9
4-2-S9
4-2-59
4-2-59
4-2-59
4-2-60
4-2-60
1N5078
1NS079
1N5080
1N5081
1N5082
1NS083
1N5084
1N5085
1N5086
1NS087
3EZ33D5
3EZ36D5
3EZ39D5
3EZ39D5
3EZ43D5
3EZ47D5
3EZ47D5
3EZ51D5
3EZ51D5
3EZ56D5
4-2-S3
4-2-53
4-2-S3
4-2-S3
4-2-S3
4-2-S3
4-2-53
4-2-53
4-2-S3
4-2-53
1NS221
1N5221A
1N5221B
1N5221C
1N5221D
1NS222
1N5222A
1N5222B
1N5222C
1NS222D
1N5221A
1N5221 A
1NS221B
1NS221C
1N5221D
1N5222A
1NS222A
1NS222B
1N5222C
1N5222D
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N5088
1N5089
1N5090
1N5091
1NS092
1NS093
1N5094
1N5095
1N5096
1N5097
1NS098
3EZ62D5
3EZ62D5
3EZ68D5
3EZ68D5
3EZ7SDS
3EZ82DS
3EZ82DS
3EZ91D5
3EZ110D5
3EZ120D5
3EZ130D5
4-2-53
4-2-53
4-2-53
4-2-S3
4-2-S3
4-2-S3
4-2-S3
4-2-53
4-2-S3
4-2-53
4-2-S3
1NS223
1NS223A
1N5223B
1N5223C
1NS223D
1NS224
1NS224A
1N5224B
1N5224C
1NS224D
1N5225
1NS223A
1N5223A
1N5223B
1N5223C
1N5223D
1NS224A
1N5224A
1NS224B
1NS224C
1N5224D
1N5225A
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
CF
=consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-25
CROSS-REFERENCE (continued)
Industry
Part
Number
I
Motorola
Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
1N5225A
1N5225B
1N5225C
1N5225D
1N5226
1N5226A
1N5226B
1N5226C
1N5226D
1N5227
1N5225A
1N5225B
1N5225C
1N5225D
1N5226A
1N5226A
1N5226B
1N5226C
1N5226D .
1N5227A
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N5235B
1N5235C
1N5235D
1N5236
1N5236A
1N5236B
1N5236C
1N5236D
1N5237
1N5237A
1N5235B
1N5235C
1N5235D
1N5236A
1N5236A
1N5236B.
1N5236C
1N5236D
1N5237A
1N5237A
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N5227A
1N5227B
1N5227C
1N5227D
1N5228
1N522BA
1N5228B
1N5228C
1N5228D
1N5229
1N5227A
1N5227B
1N5227C
1N5227D
1N5228A
1N522BA
1N5228B
1N5228C
1N5228D
1N5229A
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
H-31
4-2-31
4-2-31
4-2-31
4-2-31
1N5237B
1N5237C
1N5237D
1N5238
1N523BA
1N5238B
1N5238C
1N5238D
1N5239
1N5239A
1N5237B
1N5237C
1N5237D
1N5238A
1N5238A
1N5238B
1N5238C
1N5238D
1N5239A
1N5239A
4-2-31
4-2-31
4-2-31
4-2-31.
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N5229A
1N5229B
1N5229C
1N5229D
1N52.30
1N5230A
1N5230B
1N5230C
1N5230D
1N5231
1N5229A
1N5229B
1N5229C
1N5229D
1N5230A
1N5230A
1N5230B
1N5230C
1N5230D
1N5231A
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2~31
1N5239B
1N5239C
1N5239D
1N5240
1N5240A
1N5240B
1N5240C
1N5240D
1N5241
1N5241A
1N5239B
1N5239C
1N5239D
1N5240A
1N5240A
1N5240B
1N5240C
1N5240D
1N5241 A
1N5241 A
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N5231A
1N5231B
1N5231C
1N5231D
1N5232
1N5232A
1N5232B
1N5232C
1N5232D
1N5233
1N5231A
1N5231B
1N5231C
1N5231D
1N5232A
1N5232A
1N5232B
1N5232C
1N5232D
1N5233A
4-2-31
4-2-31
4-2-31.
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2:31
4-2-31
1N5241B
1N5241C
1N5241D
1N5242
1N5242A
1N5242B
1N5242C
1N5242D
1N5243
1N5243A
1N5241B
1N5241C
1N5241D
1N5242A
1N5242A
1N5242B
1N5242C
1N5242D
1N5243A
1N5243A
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N5233A
1N5233B
1N5233C
1N5233D
1N5234
1N5234A
1N5234B
1N5234C
1N5234D
1N5235
1N5235A
1N5233A
1N5233B
1N5233C
1N5233D
1N5234A
1N5234A
1N5234B
1N5234C
1N5234D
1N5235A
1N5235A
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N5243B
1N5243C
1N5243D
1N5244
1N5244A
1N5244B
1N5244C
1N5244D
1N5245
1N5245A
1N5245B
1N5243B
1N5243C
1N5243D
1N5244A
1N5244A
1N5244B
1N5244C
1N5244D
1N5245A
1N5245A
1N5245B
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
CF
=consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-26
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
1N5245C
1N5245D
1N5246
1N5246A
1N5246B
1N5246C
1N5246D
1N5247
1N5247A
1N5247B
1N5245C
1N5245D
1N5246A
1N5246A
1N5246B
1N5246C
1N5246D
1N5247A
1N5247A
1N5247B
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N5255D
1N5256
1N5256A
1N5256B
1N5256C
1N5256D
1N5257
1N5257A
1N5257B
1N5257C
1N5255D
1N5256A
1N5256A
1N5256B
1N5256C
1N5256D
1N5257A
1N5257A
1N5257B
1N5257C
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N5247C
1N5247D
1N5248
1N5248A
1N5248B
1N5248C
1N5248D
1N5249
1N5249A
1N5249B
1N5247C
1N5247D
1N5248A
1N5248A
1N5248B
1N5248C
1N5248D
1N5249A
1N5249A
1N5249B
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N5257D
1N5258
1N5258A
1N5258B
1N5258C
1N5258D
1N5259
1N5259A
1N5259B
1N5259C
1N5257D
1N5258A
1N5258A
1N5258B
1N5258C
1N5258D
1N5259A
1N5259A
1N5259B
1N5259C
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N5249C
1N5249D
1N5250
1N5250A
1N5250B
1N5250C
1N5250D
1N5251
1N5251A
1N5251B
1N5249C
1N5249D
1N5250A
1N5250A
1N5250B
1N5250C
1N5250D
1N5251 A
1N5251A
1N5251B
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N5259D
1N5260
1N5260A
1N5260B
1N5260C
1N5260D
1N5261
1N5261 A
1N5261B
1N5261C
1N5259D
1N5260A
1N5260A
1N5260B
1N5260C
1N5260D
1N5261A
1N5261A
1N52618
1N5261C
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N5251C
1N5251D
1N5252
1N5252A
1N5252B
1N5252C
1N5252D
1N5253
1N5253A
1N5253B
1N5251C
1N5251D
1N5252A
1N5252A
1N5252B
1N5252C
1N5252D
1N5253A
1N5253A
1N5253B
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N5261D
1N5262
1N5262A
1N5262B
1N5262C
1N5262D
1N5263
1N5263A
1N5263B
1N5263C
1N5261D
1N5262A
1N5262A
1N52628
1N5262C
1N5262D
1N5263A
1N5263A
1N52638
1N5263C
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N5253C
1N5253D
1N5254
1N5254A
1N5254B
1N5254C
1N5254D
1N5255
1N5255A
1N5255B
1N5255C
1N5253C
1N5253D
1N5254A
1N5254A
1N5254B
1N5254C
1N5254D
1N5255A
1N5255A
1N5255B
1N5255C
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N5263D
1N5264
1N5264A
1N5264B
1N5264C
1N5264D
1N5265
1N5265A
1N52658
1N5265C
1N5265D
1N5263D
1N5264A
1N5264A
1N52648
1N5264C
1N5264D
1N5265A
1N5265A
1N52658
1N5265C
1N5265D
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
CF =consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-27
CROSS-REFERENCE (continued)
Industry
Part
Number
I
'Motorola
" Motorola
Direct
Similar
Replacement Replacement
"
Industry
Part
Number
Page
Number
"
,:
Motorola
Motorola
Direct
Similar
Replacement Replacement
~.
Page
Number
1N5266
1N5266A
1N5266B
1N5266C
1N5266D
1N5267
1N5267A
1N5267B
1N5267C
1N5267D
1N5266A
1N5266A
1N5266B
1N5266C
1N5266D
1N5267A
1N5267A
1N5267B
1N5267C
1N5267D
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
1N5276A
1N5276B
1N5276C
1N5276D
1N5277
1N5277A
1N5277B
1N5277C
1N5277D
1N5278
1N5276A
1N5276B
1N5276C
1N5276D
1N5277A
1N5277A
1N5277B
1N5277C
1N5277D
1N5278A
4·2·32
4-2·32
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
1N526B
1N526BA
1N526BB
1N5268C
1N5268D
1N5269
1N5269A
1N5269B
1N5269C
1N5269D
1N526BA
1N526BA
1N5268B
1N5268C
1N5268D
1N5269A
1N5269A
1N5269B
1N5269C
1N5269D
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
1N527BA
1N527BB
1N5278C
1N5278D
1N5279
1N5279A
1N5279B
1N5279C
1N5279D
1N52BO
1N5278A
1N5278B
1N5278C
1N5278D
1N5279A
1N5279A
1N5279B
1N5279C
1N5279D
1N52BOA
4·2·32
4·2·32
4·2·32
4·2·32
4:2·32
4·2·32
4·2·32
4·2·32
4·2·32
4'2·32
1N5270
1N5270A
1N5270B
1N5270C
1N5270D
1N5271
1N5271 A
1N5271B
1N5271C
1N5271D
1N5270A
1N5270A
1N5270B
1N5270C
1N5270D
1N5271A
1N5271 A
1N5271B
1N5271C
1N5271D
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
1N5280A
1N52BOB
1N5280C
1N5280D
1N5281
1N5281A
1N5281B
1N52B1C
1N52B1D
1N5283
1N52BOA
1N52BOB
1N5280C
1N52BOD
1N5281A
1N52B1A
1N52B1B
1N5281C
1N5281D
1N5283
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
CF
1N5272
1N5272A
1N5272B
1N5272C
1N5272D
1N5273
1N5273A
1N5273B
1N5273C
1N5273D
1N5272A
1N5272A
1N5272B
1N5272C
1N5272D
1N5273A
1N5273A
1N5273B
1N5273C
1N5273D
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
4-2·32 '
4·2·32
4·2·32
4·2·32
4·2·32
1N52B4
1N52B5
1N52B6
1N5287
1N5288
1N5289
1N5290
1N5291
1N5292
1N5293
1N5284
1N52B5
1N5286
1N5287
1N52B8
1N52B9
1N5290
1N5291
1N5292
1N5293
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
1N5274
1N5274A
1N5274B
1N5274C
1N5274D
1N5275
1N5275A
1N5275B
1N5275C
1N5275D
1N5276
1N5274A
1N5274A
1N5274B
1N5274C
1N5274D
1N5275A
1N5275A
1N5275B
1N5275C
1N5275D
1N5276A
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
4·2·32
1N5294
1N5295
1N5296
1N5297
1N5298
1N5299
1N5300
1N5301
1N5302
1N5303
1N5304
1N5294
1N5295
1N5296
1N5297
1N5298
1N5299
1N5300
1N5301
1N5302
1N5303
1N5304
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF =consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-28
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
1N5305
1N5306
1N5307
1N5308
1N5309
1N5310
1N5311
1N5312
1N5313
1N5314
1N5305
1N5306
1N5307
1N5308
1N5309
1N5310
1N5311
1N5312
1N5313
1N5314
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
1N5341A
1N5341B
1N5341C
1N5341D
1N5342
1N5342A
1N5342B
1N5342C
1N5342D
1N5343
1N5341A
1N5341B
CF
CF
1N5342A
1N5342A
1N5342B
CF
CF
1N5343A
4-2-59
4-2-59
1N5333
1N5333A
1N5333B
1N5333C
1N5333D
1N5334
1N5334A
1N5334B
1N5334C
1N5334D
1N5333A
1N5333A
1N5333B
CF
CF
1N5334A
1N5334A
1N5334B
CF
CF
4-2-59
4-2-59
4-2-59
1N5343A
1N5343B
1N5343C
1N5343D
1N5344
1N5344A
1N5344B
1N5344C
1N5344D
1N5345
1N5343A
1N5343B
CF
CF
1N5344A
1N5344A
1N5344B
CF
CF
1N5345A
4-2-59
4-2-59
1N5335
1N5335A
1N5335B
1N5335C
1N5335D
1N5336
1N5336A
1N5336B
1N5336C
1N5336D
1N5335A
1N5335A
1N5335B
CF
CF
1N5336A
1N5336A
1N5336B
CF
CF
4-2-59
4-2-59
4-2-59
1N5345A
1N5345B
1N5345C
1N5345D
1N5346
1N5346A
1N5346B
1N5346C
1N5346D
1N5347
1N5345A
1N5345B
CF
CF
1N5346A
1N5346A
1N5346B
CF
CF
1N5347A
4-2-59
4-2-59
1N5337
1N5337A
1N5337B
1N5337C
1N5337D
1N5338
1N5338A
1N5338B
1N5338C
1N5338D
1N5337A
1N5337A
1N5337B
CF
CF
1N5338A
1N5338A
1N5338B
CF
CF
4-2-59
4-2-59
4-2-59
1N5347A
1N5347B
1N5347C
1N5347D
1N5348
1N5348A
1N5348B
1N5348C
1N5348D
1N5349
1N5347A
1N5347B
CF
CF
1N5348A
1N5348A
1N5348B
CF
CF
1N5349A
4-2-59
4-2-59
1N5339
1N5339A
1N5339B
1N5339C
1N5339D
1N5340
1N5340A
1N5340B
1N5340C
1N5340D
1N5341
1N5339A
1N5339A
1N5339B
CF
CF
1N5340A
1N5340A
1N5340B
CF
CF
1N5341 A
4-2-59
4-2-59
4-2-59
1N5349A
1N5349B
1N5349C
1N5349D
1N5350
1N5350A
1N5350B
1N5350C
1N5350D
1N5351
1N5351 A
1N5349A
1N5349B
CF
CF
1N5350A
1N5350A
1N5350B
CF
CF
1N5351A
1N5351A
4-2-59
4-2-59
CF
-
4-2-59
4-2-59
4-2-59
-
4-2-59
4-2-59
4-2-59
-
-
4-2-59
4-2-59
4-2-59
-
4-2-59
4-2-59
4-2-59
-
4-2-59
=consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-29
4-2-59
4-2-59
4-2-59
4-2-59
-
4-2-59
4-2-59
4-2-59
-
4-2-59
4-2-59
4-2-59
4-2-59
4-2-59
-
4-2-59
4-2-59
4-2-59
-
4-2-59
4-2-59
4-2-59
4-2-59
4-2-59
4-2-59
•
CROSS-REFERENCE (continued)
Industry
Part
Number
•
Motorola
Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
1N5351B
1N5351C
1N5351D
1N5352
1N5352A
1N5352B
1N5352C
1N5352D
1N5353
1N5353A
1N5351B
CF
CF
1N5352A
1N5352A
1N5352B
CF
CF
1N5353A
1N5353A
4-2-59
1N5353B
1N5353C
1N5353D
1N5354
1N5354A
1N5354B
1N5354C
1N5354D
1N5355
1N5355A
1N5353B
CF
CF
1N5354A
1N5354A
1N5354B
CF
CF
1N5355A
1N5355A
4-2-59
-
1N5355B
1N5355C
1N5355D
1N5356
1N5356A
1N5356B
1N5356C
1N5356D
1N5357
1N5357A
1N5355B
CF
CF
1N5356A
1N5356A
1N5356B
CF
CF
1N5357A
1N5357A
4-2-59
1N5357B
1N5357C
1N5357D
1N5358
1N5358A
1N5358B
1N5358C
1N5358D
1N5359
1N5359A
1N5357B
CF
CF
1N5358A
1N5358A
1N5358B
CF
CF
1N5359A
1N5359A
4-2-59
1N5359B
1N5359C
1N5359D
1N5360
1N5360A
1N5360B
1N5360C
1N5360D
1N5361
1N5361 A
1N5361B
1N5359B
CF
CF
1N5360A
1N5360A
1N5360B
CF
CF
1N5361A
1N5361A
1N5361B
-
4-2-59
4-2-59
4-2-59
4-2-59
4-2-59
4-2'59
4-2-59
4-2-59
-
-
4-2-59
4-2-59
4-2-59
4-2-59
4-2-59
4-2-59 '
4-2-59
-
4-2-59
4-2-59
4-2-59
-
,4-2-59
4-2-59
4-2-59
-
4-2-59
4-2-59
4-2-59
-
4-2-59
4-2-59
4-2-59 '
Motorola
Motorola
Direct
Similar
Replacement Replacement
1N5361C
1N5361D
1N5362
1N5362A
1N5362B
1N5362C
1N5362D
1N5363
1N5363A
1N5363B
CF
CF
1N5362A
1N5362A
1N5362B
CF
CF
1N5363A
1N5363A
1N5363B
1N5363C
1N5363D
1N5364
1N5364A
1N5364B
1N5364C
1N5364D
1N5365
1N5365A
1N5365B
CF
CF
1N5364A
1N5364A
1N5364B
CF
CF
1N5365A
1N5365A
1N5365B
1N5365C
1N5365D
1N5366
1N5366A
1N5366B
1N5366C
1N5366D
1N5367
1N5367A
1N5367B
CF
CF
1N5366A
1N5366A
1N5366B
CF
CF
1N5367A
1N5367A
1N5367B
1N5367C
1N5367D
1N5368
1N5368A
1N5368B
1N5368C
1N5368D
1N5369
1N5369A
1N5369B
CF
CF
1N5368A
1N5368A
1N5368B
CF
CF
1N5369A
1N5369A
1N5369B
1N5369C
1N5369D
1N5370
1N5370A
1N5370B
1N5370C
1N5370D
1N5371
1N5371 A
1N5371B
1N5371C
CF
CF
1N5370A
1N5370A
1N5370B
CF
CF
1N5371 A
1N5371A
1N5371B
CF
CF = consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER. DIODES
2-30
Page
Number
4-2-59
4-2-59
4-2-59
-
4-2-59
4-2-59
4-2-59
-
'
-4-2-59
4-2-59
4-2-59
4-2-59
4-2-59
4-2-59
4-2-59
4-2-59
4-2-59
-
4-2-59
4-2-59
4-2-59
4-2-59
4-2-59
4-2-59
-
4-2-59
4-2-59
4-2-59
-
4-2-59
4-2-59
4-2-59
-
4-2-59
4-2-59
4-2-59
-
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Direct
Replacement
1N5371D
1N5372
1N5372A
1N5372B
1N5372C
1N5372D
1N5373
1N5373A
1N5373B
1N5373C
CF
1N5372A
1N5372A
1N5372B
CF
CF
1N5373A
1N5373A
1N5373B
CF
1N5373D
1N5374
1N5374A
1N5374B
1N5374C
1N5374D
1N5375
1N5375A
1N5375B
1N5375C
CF
1N5374A
1N5374A
1N5374B
CF
CF
1N5375A
1N5375A
1N5375B
CF
1N5375D
1N5376
1N5376A
1N5376B
1N5376C
1N5376D
1N5377
1N5377A
1N5377B
1N5377C
CF
1N5376A
1N5376A
1N5376B
CF
CF
1N5377A
1N5377A
1N5377B
CF
1N5377D
1N5378
1N5378A
1N5378B
1N5378C
1N5378D
1N5379
1N5379A
1N5379B
1N5379C
CF
1N5378A
1N5378A
1N5378B
CF
CF
1N5379A
1N5379A
1N5379B
CF
1N5379D
1N5380
1N5380A
1N5380B
1N5380C
1N5380D
1N5381
1N5381A
1N5381B
1N5381C
1N5381D
CF
1N5380A
1N5380A
1N5380B
CF
CF
1N5381A
1N5381A
1N5381B
CF
CF
Motorola
Similar
Replacement
Industry
Part
Number
Page
Number
4-2-59
4-2-59
4-2-59
4-2-59
4-2-59
4-2-59
-
4-2-59
4-2-59
4-2-59
-
4-2-59
4-2-59
4-2-59
-
4-2-59
4-2-59
4-2-59
-
4-2-59
4-2-59
4-2-59
-
4-2-59
4-2-59
4-2-59
-
4-2-59
4-2-59
4-2-59
-
Motorola
Motorola
Direct
Similar
Replacement Replacement
1N5382
1N5382A
1N5382B
1N5382C
1N5382D
1N5383
1N5383A
1N5383B
1N5383C
1N5383D
1N5382A
1N5382A
1N5382B
CF
CF
1N5383A
1N5383A
1N5383B
CF
CF
4-2-59
4-2-59
4-2-59
1N5384
1N5384A
1N5384B
1N5384C
1N5384D
1N5385
1N5385A
1N5385B
1N5385C
1N5385D
1N5384A
1N5384A
1N5384B
CF
CF
1N5385A
1N5385A
1N5385B
CF
CF
4-2-60
4-2-60
4-2-60
1N5386
1N5386A
1N5386B
1N5386C
1N5386D
1N5387
1N5387A
1N5387B
1N5387C
1N5387D
1N5386A
1N5386A
1N5386B
CF
CF
1N5387A
1N5387A
1N5387B
CF
CF
4-2-60
4-2-60
4-2-60
1N5388
1N5388A
1N5388B
1N5388C
1N5388D
1N5518
1N5518A
1N5518B
1N5518C
1N5518D
1N5388A
1N5388A
1N5388B
CF
CF
4-2-60
4-2-60
4-2-60
-
1N5519
1N5519A
1N5519B
1N5519C
1N5519D
1N5520
1N5520A
1N5520B
1N5520C
1N5520D
1N5521
4-2,59
4-2-59
4-2-59
4-2-59
4-2-59
4-2-59
-
CF = consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-31
Page
Number
-
4-2-60
4-2-60
4-2-60
-
4-2-60
4-2-60
4-2-60
-
4-2-60
4-2-60
4-2-60
-
-
-
1N5226A
1N5226A
1N5226B
1N5226C
1N5226D
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N5227A
1N5227A
1N5227B
1N5227C
1N5227D
MZ5520B
MZ5520B
MZ5520B
CF
CF
MZ5521B
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-38
4-2-38
4-2-38
-
4-2-38
•
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Industry
,Part
Page
Number
1N5521 A
1N5521B
1N5521C
1N5521D
1N5522
1N5522A
1N5522B
1N5522C
1N5522D
1N5523
MZ5521B
MZ5521B
CF
CF
MZ5522B
MZ5522B
MZ5522B
CF
CF
MZ5523B
4-2-38
4-2-38
1N5523A
1N5523B
1N5523C
1N5523D
1N5524
1N5524A
1N5524B
1N5524C
1N5524D
1N5525
MZ5523B
MZ5523B
CF
CF
MZ5524B
MZ5524B
MZ5524B
CF
CF
MZ5525B
4-2-38
4-2-38
1N5525A
1N5525B
1N5525C
1N5525D
1N5526
1N5526A
1N5526B
1N5526C
1N5526D
1N5527
MZ5525B
MZ5525B
CF
CF
MZ5526B
MZ5526B
MZ5526B
CF
CF
MZ5527B
4-2-38
4-2-38
1N5527A
1N5527B
1N5527C
1N5527D
1N5528
1N5528A
1N5528B
1N5528C
1N5528D
1N5529
MZ5527B
MZ5527B
CF
CF
MZ5528B
MZ5528B
MZ5528B
CF
CF
MZ5529B
4-2-38
4-2-38
4-2-38
4-2-38
4-2-38
1N5529A
1N5529B
1N5529C
1N5529D
1N5530
1N5530A
1N5530B
1N5530C
1N5530D
1N5531
1N5531A
MZ5529B
MZ5529B
CF
CF
MZ5530B
MZ5530B
MZ5530B
CF
CF
1N4698
1N4698
4-2-38
4-2-38
Number
4-2-38
4-2-38
4-2-38
-
4-2-38
4-2-38
4-2-38
4-2-38
4-2-38
-
4-2:38
4-2-38
4-2-38
-
4-2-38
-
4-2-38
-
4-2-38
4-2-38
4-2-38
-
4-2-30
H-30
Motorola
Motorola
Direct
Similar
Replacement Replacement
1N5531B
1N5531C
1N5531D
1N5532
1N5532A
1N5532B
1N5532C
1N5532D
1N5533
1N5533A
1N4698
1N4698C
1N4698D·
1N4699
1N4699
1N4699
1N4699C
1N4699D
1N4700
1N4700
4-2-30
4-2-30
4-2'30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
1N5533B
1N5533C
1N5533D
1N5534
1N5534A
1N5534B
1N5534C
1N5534D
1N5535
1N5535A
1N4700
1N4700C
1N4700D
1N4701
1N4701
1N4701
1N4701C
1N4701D
1N4702
1N4702
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
1N5535B
1N5535C
1N5535D
1N5536
1N5536A
1N5536B
1N5536C
1N5536D
1N5537
1N5537A
1N4702
1N4702C
1N4702D
1N4703
1N4703
1N4703
1N4703C
1N4703D
1N4704
1N4704
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
1N5537B
1N5537C
1N5537D
1N5538
1N5538A
1N5538B
1N5538C
1N5538D
1N5539
1N5539A
1N4704
1N4704C
1N4704D
1N4705
1N4705
1N4705
1N4705C
1N4705D
1N4706
1N4706
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
1N5539B
1N5539C
1N5539D
1N5540
. 1N5540A
1N5540B
1N5540C
1N5540D
1N5541
1N5541 A
1N5541B
1N4706
1N4706C
1N4706D
1N4707
1N4707
1N4707
1N4707C
1N4707D
1N4708
1N4708
1N4708
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
CF = consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-32
Page
Number
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Direct
Replacement
Motorola
Similar
Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Similar
Direct
Replacement Replacement
Page
Number
1N5541C
1N5541D
1N5542
1N5542A
1N5542B
1N5542C
1N5542D
1N5543
1N5543A
1N5543B
1N4708C
1N4708D
1N4709
1N4709
1N4709
1N4709C
1N4709D
1N4710
1N471 0
1N471 0
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
1N5565B
1N5566
1N5566A
1N5566B
1N5567
1N5567A
1N5567B
1N5568
1N5568A
1N5568B
1N4742A
1N4743
1N4743
1N4743A
1N4744
1N4744
1N4744A
1N4745
1N4745
1N4745A
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N5543C
1N5543D
1N5544
1N5544A
1N5544B
1N5544C
1N5544D
1N5545
1N5545A
1N5545B
1N471OC
1N4710D
1N4712
1N4712
1N4712
1N4712C
1N4712D
1N4713
1N4713
1N4713
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
1N5569
1N5569A
1N5569B
1N5570
1N5570A
1N5570B
1N5571
1N5571 A
1N5571B
1N5572
1N4746
1N4746
1N4746A
1N4747
1N4747
1N4747A
1N4748
1N4748
1N4748A
1N4749
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N5545C
1N5545D
1N5546
1N5546A
1N5546B
1N5546C
1N5546D
1N5555
1N5556
1N5557
1N4713C
1N4713D
1N4714
1N4714
1N4714
1N4714C
1N4714D
1N6284A
1N6287A
1N6289A
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-1-43
4-1-43
4-1-44
1N5572A
1N5572B
1N5573
1N5573A
1N5573B
1N5574
1N5574A
1N5574B
1N5575
1N5575A
1N4749
1N4749A
1N4750
1N4750
1N4750A
1N4751
1N4751
1N4751A
1N4752
1N4752
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N5558
1N5559
1N5559A
1N5559B
1N5560
1N5560A
1N5560B
1N5561
1N5561A
1N5561B
1N6303A
1N4736
1N4736
1N4736A
1N4737
1N4737
1N4737A
1N4738
1N4738
1N4738A
4-1-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N5575B
1N5576
1N5576A
1N5576B
1N5577
1N5577A
1N5577B
1N5578
1N5578A
1N5578B
1N4752A
1N4753
1N4753
1N4753A
1N4754
1N4754
1N4754A
1N4755
1N4755
1N4755A
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N5562
1N5562A
1N5562B
1N5563
1N5563A
1N5563B
1N5564
1N5564A
1N5564B
1N5565
1N5565A
1N4739
1N4739
1N4739A
1N4740
1N4740
1N4740A
1N4741
1N4741
1N4741 A
1N4742
1N4742
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N5579
1N5579A
1N5579B
1N5580
1N5580A
1N5580B
1N5581
1N5581 A
1N5581B
1N5582
1N5582A
1N4756
1N4756
1N4756A
1N4757
1N4757
1N4757A
1N4758
1N4758
1N4758A
1N4759
1N4759
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
CF
=consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-33
CROSS-REFERENCE (continued)
Industry
Part
Number
I
1N5582B
1N5583
1N5583A
1N5583B
1N5584
1N5584A
1N5584B
1N5585
1N5585A
1N5585B
Motorola
Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
. Page
Number
1N4759A
1N4760
1N4760
1N4760A
1N4761
1N4761
1N4761 A
1N4762
1N4762
1N4762A
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
1N5634
1N5634A
1N5635
1N5635A
1N5636
1N5636A
1N5637
1N5637A
1N5638
1N5638A
1N6272
1N6272A
1N6273
1N6273A
1N6274
1N6274A
1N6275
1N6275A
1N6276
1N6276A
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
1N5586
1N5586A
1N5586B
1N5587
1N5587A
1N5587B
1N5588
1N5588A
1N5588B
1N5589
1N4763
1N4763
1N4763A
1N4764
1N4764
1N4764A
1M110ZS10
1M110ZS10
1M110ZS5
1M120ZS10
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-56
4-2-56
4-2-56
4-2-56
1N5639
1N5639A
1N5640
1N5640A
1N5641
1N5641 A
1N5642
1N5642A
1N5643
1N5643A
1N6277
1N6277A
1N6278
1N6278A
1N6279
1N6279A
1N6280
1N6280A
1N6281
1N6281 A
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
1N5589A
1N5589B
1N5590
1N5590A
1N5590B
1N5591
1N5591A
1N5591B
1N5592
1N5592A
1M120ZS10
1M120ZS5
1M130ZS10
1M130ZS10
1M130ZS5
1M150ZS10
1M150ZS10
1M150ZS5
1M160ZS10
1M160ZS10
4-2-56
4-2-56
4'2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
1N5644
1N5644A
1N5645
1N5645A
1N5646
1N5646A
1N5647
1N5647A
1N5648
1N5648A
1N6282
1N6282A
1N6283
1N6283A
1N6284
1N6284A
1N6285
1N6285A
1N6286
1N6286A
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
1N5592B
1N5593
1N5593A
1N5593B
1N5594
1N5594A
1N5594B
1N5610
1N5611
1N5612
1M160ZS5
1M180ZS10
1M180ZS10
1M180ZS5
1M200ZS10
1M200ZS10
1M200ZS5
1N6284A
1N6287A
1N6289A
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-1-43
4-1-43
4'1-44
1N5649
1N5649A
1N5650
1N5650A
1N5651
1N5651 A
1N5652
1N5652A
1N5653
1N5653A
1N6287
1N6287A
1N6288
1N6288A
1N6289
1N6289A
1N6290
1N6290A
1N6291
1N6291A
4-1-43
4-1-43
4-1-43
4-1-43
4-1-44
4-1-44
4-1-44
4-1'44·
4-1-44
4-1-44
1N5613
1N5629
1N5629A
1N5630
1N5630A
1N5631
1N5631A
1N5632
1N5632A
1N5633
1N5633A
1N6303A
1N6267
1N6267A
1N6268
1N6268A
1N6269
1N6269A
1N6270
1N6270A
1N6271
1N6271A
4-1-44
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
1N5654
1N5654A
1N5655
1N5655A
1N5656
1N5656A
1N5657
1N5657A
1N5658
1N5658A
1N5659
1N6292
1N6292A
1N6293
1N6293A
1N6294
1N6294A
1N6295
1N6295A
1N6296
1N6296A
1N6297
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
CF
'-
=consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-34
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Similar
Direct
Replacement Replacement
Page
Number
1N5659A
1N5660
1N5660A
1N5661
1N5661 A
1N5662
1N5662A
1N5663
1N5663A
1N5664
1N6297A
1N6298
1N6298A
1N6299
1N6299A
1N6300
1N6300A
1N6301
1N6301A
1N6302
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
1N5740D
1N5741B
1N5741C
1N5741D
1N5742B
1N5742C
1N5742D
1N5743B
1N5743C
1N5743D
1N6004D
1N6005B
1N6005C
1N6005D
1N6006B
1N6006C
1N6006D
1N6007B
1N6007C
1N6007D
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
1N5664A
1N5665
1N5665A
1N5728B
1N5728C
1N5728D
1N5729B
1N5729C
1N5729D
1N5730B
1N6302A
1N6303
1N6303A
1N5992B
1N5992C
1N5992D
1N5993B
1N5993C
1N5993D
1N5994B
4-1-44
4-1-44
4-1-44
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
1N5744B
1N5744C
1N5744D
1N5745B
1N5745C
1N5745D
1N5746B
1N5746C
1N5746D
1N5747B
1N6008B
1N6008C
1N6008D
1N6009B
1N6009C
1N6009D
1N6010B
1N6010C
1N6010D
1N6011B
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
1N5730C
1N5730D
1N5731B
1N5731C
1N5731 0
1N5732B
1N5732C
1N5732D
1N5733B
1N5733C
1N5994C
1N5994D
1N5995B
1N5995C
1N5995D
1N5996B
1N5996C
1N5996D
1N5997B
1N5997C
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
1N5747C
1N5747D
1N5748B
1N5748C
1N5748D
1N5749B
1N5749C
1N5749D
1N5750B
1N5750C
1N6011C
1N6011D
1N6012B
1N6012C
1N6012D
1N6013B
1N6013C
1N6013D
1N6014B
1N6014C
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
1N5733D
1N5734B
1N5734C
1N5734D
1N5735B
1N5735C
1N5735D
1N5736B
1N5736C
1N5736D
1N5997D
1N5998B
1N5998C
1N5998D
1N5999B
1N5999C
1N5999D
1N6000B
1N6000C
1N6000D
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
1N5750D
1N5751B
1N5751C
1N5751D
1N5752B
1N5752C
1N5752D
1N5753B
1N5753C
1N5753D
1N6014D
1N6015B
1N6015C
1N6015D
1N6016B
1N6016C
1N6016D
1N6017B
1N6017C
1N6017D
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4"2-33
4-2-33
4-2-33
1N5737B
1N5737C
1N5737D
1N5738B
1N5738C
1N5738D
1N5739B
1N5739C
1N5739D
1N5740B
1N5740C
1N6001B
1N6001C
1N6001D
1N6002B
1N6002C
1N6002D
1N6003B
1N6003C
1N6003D
1N6004B
1N6004C
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
1N5754B
1N5754C
1N5754D
1N5755B
1N5755C
1N5755D
1N5756B
1N5756C
1N5756D
1N5757B
1N5757C
1N6018B
1N6018C
1N6018D
1N6019B
1N6019C
1N6019D
1N6020B
1N6020C
1N6020D
1N6021B
1N6021C
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
CF
=consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-35
•
CROSS-REFERENCE (continued)
Industry
Part
Number
I
Motorola
Motorola
Direct
Similar
Replacement Replacement
\.
Industry
Part
Number
Page
Number
'''' ,',' , '..' ,: i
'~
,
Motorola
Motorola
Direct
Similar
Replacement Replacement
.:
~
Page
Number
1N5757D
1N5837
1N5837A
1N5837B
1N5838
1N5838A
1N5838B
1N5839
1N5839A
1N5839B
1N6021 0
1N5221A
1N5221A
1N5221B
1N5222A
1N5222A
1N5222B
1N5223A
1N5223A
1N5223B
4-2-33
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N5853B
1N5854
1N5854A
1N5854B
1N5855
1N5855A
1N5855B
1N5856
1N5856A
1N5856B
1N5237B
1N5238A
1N5238A
1N5238B
1N5239A
1N5239A
1N5239B
1N5240A
1N5240A
1N5240B
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N5840
1N5840A
1N5840B
1N5841
1N5841A
1N5841B
1N5842
1N5842A
1N5842B
1N5843
1N5224A
1N5224A
1N5224B
1N5225A
1N5225A
1N5225B
1N5226A
1N5226A
1N5226B
1N5227A
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N5857
1N5857A
1N5857B
1N5858
1N5858A
1N5858B
1N5859
1N5859A
1N5859B
1N5860
1N5241 A
1N5241 A
1N5241B
1N5242A
1N5242A
1N5242B
1N5243A
1N5243A
1N5243B
1N5244A
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N5843A
1N5843B
1N5844
1N5844A
1N5844B
1N5845
1N5845A
1N5845B
1N5846
1N5846A
1N5227A
1N5227B
1N5228A
1N5228A
1N5228B
1N5229A
1N5229A
1N5229B
1N5230A
1N5230A
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N5860A
1N5860B
1N5861
1N5861A
1N5861B
1N5862
1N5862A
1N5862B
1N5863
1N5863A
1N5244A
1N5244B
1N5245A
1N5245A
1N5245B
1N5246A
1N5246A
1N5246B
1N5247A
1N5247A
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N5846B
1N5847
1N5847A
1N5847B
1N5848
1N5848A
1N5848B
1N5849
1N5849A
1N5849B
1N5230B
1N5231 A
1N5231 A
1N5231B
1N5232A
1N5232A
1N5232B
1N5233A
1N5233A
1N5233B
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N5863B
1N5864
1N5864A
1N5864B
1N5865
1N5865A
1N5865B
1N5866
1N5866A
1N5866B
1N5247B
1N5248A
1N5248A
1N5248B
1N5249A
1N5249A
1N5249B
1N5250A
1N5250A
1N5250B
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N5850
1N5850A
1N5850B
1N5851
1N5851 A
1N5851B
1N5852
1N5852A
1N5852B
1N5853
1N5853A
1N5234A
1N5234A
1N5234B
1N5235A
1N5235A
1N5235B
1N5236A
1N5236A
1N5236B
1N5237A
1N5237A
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N5867
1N5867A
1N5867B
1N5868
1N5868A
1N5868B
1N5869
1N5869A
1N5869B
1N5870
1N5870A
1N5251A
1N5251 A
1N5251B
1N5252A
1N5252A
1N5252B
1N5253A
1N5253A
1N5253B
1N5254A
1N5254A
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
CF
=consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-36
",
;
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
1N5870B
1N5871
1N5871 A
1N5871B
1N5872
1N5872A
1N5872B
1N5873
1N5873A
1N5873B
1N5254B
1N5255A
1N5255A
1N5255B
1N5256A
1N5256A
1N5256B
1N5257A
1N5257A
1N5257B
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N5887B
1N5888
1N5888A
1N5888B
1N5889
1N5889A
1N5889B
1N5890
1N5890A
1N5890B
1N5271B
1N5272A
1N5272A
1N5272B
1N5273A
1N5273A
1N5273B
1N5274A
1N5274A
1N5274B
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
1N5874
1N5874A
1N5874B
1N5875
1N5875A
1N5875B
1N5876
1N5876A
1N5876B
1N5877
1N5258A
1N5258A
1N5258B
1N5259A
1N5259A
1N5259B
1N5260A
1N5260A
1N5260B
1N5261A
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N5891
1N5891A
1N5891B
1N5892
1N5892A
1N5892B
1N5893
1N5893A
1N5893B
1N5894
1N5275A
1N5275A
1N5275B
1N5276A
1N5276A
1N5276B
1N5277A
1N5277A
1N5277B
1N5278A
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
1N5877A
1N5877B
1N5878
1N5878A
1N5878B
1N5879
1N5879A
1N5879B
1N5880
1N5880A
1N5261A
1N5261B
1N5262A
1N5262A
1N5262B
1N5263A
1N5263A
1N5263B
1N5264A
1N5264A
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N5894A
1N5894B
1N5895
1N5895A
1N5895B
1N5896
1N5896A
1N5896B
1N5897
1N5897A
1N5278A
1N5278B
1N5279A
1N5279A
1N5279B
1N5280A
1N5280A
1N5280B
1N5281 A
1N5281A
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
1N5880B
1N5881
1N5881 A
1N5881B
1N5882
1N5882A
1N5882B
1N5883
1N5883A
1N5883B
1N5264B
1N5265A
1N5265A
1N5265B
1N5266A
1N5266A
1N5266B
1N5267A
1N5267A
1N5267B
4-2-31
4-2-31
4-2-31
4-2-31
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
1N5897B
1N5907
1N5908
1N5913
1N5913A
1N5913B
1N5914
1N5914A
1N5914B
1N5915
1N5281B
1N5908
1N5908
1N5913A
1N5913A
1N5913B
1N5914A
1N5914A
1N5914B
1N5915A
4-2-32
4-1-42
4-1-42
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
1N5884
1N5884A
1N5884B
1N5885
1N5885A
1N5885B
1N5886
1N5886A
1N5886B
1N5887
1N5887A
1N5268A
1N5268A
1N5268B
1N5269A
1N5269A
1N5269B
1N5270A
1N5270A
1N5270B
1N5271A
1N5271 A
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
1N5915A
1N5915B
1N5916
1N5916A
1N5916B
1N5917
1N5917A
1N5917B
1N5918
1N5918A
1N5918B
1N5915A
1N5915B
1N5916A
1N5916A
1N5916B
1N5917A
1N5917A
1N5917B
1N5918A
1N5918A
1N5918B
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
CF = consull factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-37
CROSS-REFERENCE (continued)
Industry
Motorola
Motorola I
, Part
Direct
'·Similar
Page
. Number·· Replacement Replacement Number
•
Industry
Part
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
4-2~51
1N5919
1N5919A
1N5919B
1N5920
1N5920A
1N5920B
1N5921
1N5921 A
1N5921B
1N5922
1N5919A
1N5919A
1N5919B
1N5920A
1N5920A
1N5920B
1N5921 A
1N5921A
1N5921B
1N5922A
4-2-51
4-2-51·
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
1N5936
1N5936A
1N5936B
1N5937
1N5937A
1N5937B
1N5938
1N5938A
1N5938B
1N5939
1N5936A·
1N5936A
1N59368
1N5937A
1N5937A
1N5937B
1N5938A
1N5938A
1N5938B
1N5939A
4-2-51
4-2-51
4-2-51
4:2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
1N5922A
1N5922B
1N5923
1N5923A
1N5923B
1N5924
1N5924A
1N5924B
1N5925
1N5925A
1N5922A
1N5922B
1N5923A
1N5923A
1N5923B
1N5924A
1N5924A
1N5924B
1N5925A
1N5925A
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
1N5939A
1N5939B
1N5940
1N5940A
1N5940B
1N5941
1N5941 A
1N5941B
1N5942
1N5942A
1N5939A
1N5939B
1N5940A
1N5940A
1N5940B
1N5941 A
1N5941A
1N5941B
1N5942A
1N5942A
4-2-51
4-2-51
4-2-51
4-2-51·
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
1N5925B
1N5926
1N5926A
1N5926B
1N5927'
1N5927A
1N5927B
1N5928
1N5928A
1N5928B
1N5925B
1N5926A
1N5926A
1N5926B
1N5927A
1N5927A
1N5927B
1N5928A
1N5928A
1N5928B
4'2-51
4-2-51
4-2-51 .
4-2-51
4-2-51
4-2-51'
4-2-51
4-2-51
4-2-51
4-2-51
1N5942B
1N5943
1N5943A
1N5943B
1N5944
1N5944A
1N5944B
1N5945
1N5945A
1N5945B
1N5942B
1N5943A
1N5943A
1N5943B
1N5944A
1N5944A
1N5944B
1N5945A
1N5945A
1N5945B
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
1N5929
1N5929A
1N5929B
1N5930
1N5930A
1N5930B
1N5931
1N5931A
1N5931B
1N5932
1N5929A
1N5929A
1N5929B
1N5930A
1N5930A
1N5930B
1N5931 A
1N5931 A
1N5931B
1N5932A
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51 .
4-2-51
1N5946
1N5946A
1N5946B
1N5947
1N5947A
1N5947B
1N5948
1N5948A
1N5948B
1N5949
1N5946A
1N5946A
1N5946B
1N5947A
1N5947A
1N5947B
1N5948A
1N5948A
1N5948B
1N5949A
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-52
4-2-52
4-2-52
4-2-52
1N5932A
1N5932B
1N5933
1N5933A
1N5933B
1N5934
1N5934A
1N5934B
1N5935
1N5935A
1N5935B
1N5932A
1N5932B
1N5933A
1N5933A
1N5933B
1N5934A
1N5934A
1N5934B
1N5935A
1N5935A
1N5935B
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
4-2-51
1N5949A
1N5949B
1N5950
1N5950A
1N5950B
1NS951
1N595l!A
1N5951B
1N5952
1N5952A
1N5952B
1N5949A
1N5949B
1N5950A
1N5950A
1N5950B
1N5951 A
1N5951 A
1N5951B
1N5952A
1N5952A
1N5952B
4-2-52
4-2-52·
4-2-52
4-2-52
4-2-52
4-2-52
4-2-52
4-2-52
4-2-52
4-2-52
4-2-52
CF = consult factory representative
TRANsrENT VOLCrAGE' SUPPRESSORS AND ZENER DIODES
2·38
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
1N5953
1N5953A
1N5953B
1N5954
1N5954A
1N5954B
1N5955
1N5955A
1N5955B
1N5956
1N5953A
1N5953A
1N5953B
1N5954A
1N5954A
1N5954B
1N5955A
1N5955A
1N5955B
1N5956A
4-2-52
4-2-52
4-2-52
4-2-52
4-2-52
4-2-52
4-2-52
4-2-52
4-2-52
4-2-52
1N5992D
1N5993
1N5993A
1N5993B
1N5993C
1N5993D
1N5994
1N5994A
1N5994B
1N5994C
1N5992D
1N5993A
1N5993A
1N5993B
1N5993C
1N5993D
1N5994A
1N5994A
1N5994B
1N5994C
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
1N5956A
1N5956B
1N5985
1N5985A
1N5985B
1N5985C
1N5985D
1N5986
1N5986A
1N5986B
1N5956A
1N5956B
1N5985A
1N5985A
1N5985B
1N598SC
1N5985D
1N5986A
1N5986A
1N5986B
4-2-52
4-2-52
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
1N5994D
1N5995
1N5995A
1N5995B
1N5995C
1N5995D
1N5996
1N5996A
1N5996B
1N5996C
1N5994D
1N5995A
1N5995A
1N5995B
1N5995C
1N5995D
1N5996A
1N5996A
1N5996B
1N5996C
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
1N5986C
1N5986D
1N5987
1N5987A
1N5987B
1N5987C
1N5987D
1N5988
1N5988A
1N5988B
1N5986C
1N5986D
1N5987A
1N5987A
1N5987B
1N5987C
1N5987D
1N5988A
1N5988A
1N5988B
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
1N5996D
1N5997
1N5997A
1N5997B
1N5997C
1N5997D
1N5998
1N5998A
1N5998B
1N5998C
1N5996D
1N5997A
1N5997A
1N5997B
1N5997C
1N5997D
1N5998A
1N5998A
1N5998B
1N5998C
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
1N5988C
1N5988D
1N5989
1N5989A
1N5989B
1N5989C
1N5989D
1N5990
1N5990A
1N5990B
1N5988C
1N5988D
1N5989A
1N5989A
1N5989B
1N5989C
1N5989D
1N5990A
1N5990A
1N5990B
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
1N5998D
1N5999
1N5999A
1N5999B
1N5999C
1N5999D
1N6000
1N6000A
1N6000B
1N6000C
1N5998D
1N5999A
1N5999A
1N5999B
1N5999C
1N5999D
1N6000A
1N6000A
1N6000B
1N6000C
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
1N5990C
1N5990D
1N5991
1N5991A
1N5991B
1N5991C
1N5991D
1N5992
1N5992A
1N5992B
1N5992C
1N5990C
1N5990D
1N5991 A
1N5991A
1N5991B
1N5991C
1N5991 0
1N5992A
1N5992A
1N5992B
1N5992C
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
1N6000D
1N6001
1N6001A
1N6001B
1N6001C
1N6001D
1N6002
1N6002A
1N6002B
1N6002C
1N6002D
1N6000D
1N6001A
1N6001A
1N6001B
1N6001C
1N6001D
1N6002A
1N6002A
1N6002B
1N6002C
1N6002D
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
CF = consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-39
I
CROSS-REFERENCE (continued)
Industry
Motorola
Motorola
. Part
Direct
Similar
Number . Repliicfmlent Replacement
I
Industry
Part
Number
Page
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
1N6003
1N6003A
1N6003B
1N6003C
1N6003O
1N6004
1N6004A
1N60048
1N6004C
1N6004O
1N6003A
1N6003A
1N60038
1N6003C
1N6003O
1N6004A
1N6004A
1N60048
1N6004C
1N6004O
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
·4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
1N6013A
1N60138
1N6013C
1N6013O
1N6014
1N6014A
1N60148
1N6014C
lN60140
1N6015
1N6013A
1N60138
1N6013C
1N6013D
1N6014A
lN6014A
1N6014B
lN6014C
1N6014O
1N6015A
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2'33
4-2-33
4-2-33
4-2-33
4-2-33
1N6005
1N6005A
1N60058
1N6005C
1N6005O
1N6006
1N6006A
1N60068
1N6006C
1N6006D
1N6005A
1N6005A
1N60058
1N6005C
1N6005O
1N6006A
1N6006A
1N60068
1N6006C
1N6006D
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
1N6015A
1N60158
lN6015C
1N6015O
1N6016
lN6016A
lN6016B
1N6016C
1N6016O
1N6017
1N6015A
1N60158
lN6015C
lN60150
1N6016A
1N6016A
lN60168
lN6016C
lN60160
lN6017A
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
1N6007
1N6007A
1N60078
1N6007C
1N6007D
1N6008
1N6008A
1N60088
1N6008C
1N6008O
1N6007A
1N6007A
1N60078
1N6007C
1N6007O
1N6008A
1N6008A
1N60088
1N6008C
1N6008O
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
1N6017A
1N60178
1N6017C
lN60170
lN6018
1N6018A
lN60188
1N6018C
lN60180
lN6019
lN6017A
lN60178
1N6017C
1N6017O
1N6018A
lN6018A
lN60188
lN6018C
1N6018O
1N6019A
4'2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
1N6009
1N6009A
1N60098
1N6009C
1N6009D
1N6010
1N6010A
1N60108
1N6010C
1N6010O
1N6009A
1N6009A
1N60098
1N6009C
1N6009D
1N6010A
1N6010A
1N601 08
1N6010C
1N601 00
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
1N6019A
1N60198
1N6019C
1N6019O
1N6020
1N6020A
1N602OB
1N6020C
1N6020O
lN6021
1N6019A
lN60198
lN6019C
1N6019O
1N6020A
1N6020A
lN60208
1N6020C
1N6020O
lN6021A
4-2-33
4-2-33
4-2-33
4-2:33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
1N6011
1N6011A
1N60118
1N6011C
1N6011D
1N6012
1N6012A
1N60128
1N6012C
1N6012D
1N6013
1N6011A
1N6011A
1N60118
1N6011C
1N6011D
1N6012A
1N6012A
1N60128
1N6012C
1N6012O
1N6013A
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
1N6021A
lN6021B
1N6021C
1N60210
1N6022
lN6022A
1N6022B
lN6022C
1N6022O
1N6023
lN6023A
1N6021A
1N60218
1N6021C
lN6021D
1N6022A
1N6022A
lN6022B
lN6022C
lN60220
1N6023A
1N6023A
4-2-33
4-2-33
4-2-33
·4-2-33
4-2:33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
CF
4~2-33
=consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-40
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Similar
Direct
Replacement Replacement
Page
Number
1NS023B
1NS023C
1N6023D
1N6024
1N6024A
1NS024B
1N6024C
1N6024D
1N6025
1N6025A
1NS023B
1NS023C
1NS023D
1N6024A
1N6024A
1N6024B
1N6024C
1N6024D
1N6025A
1N6025A
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
1N6046
1N6046A
1N6047
1N6047A
1N6048
1N6048A
1N6049
1N6049A
1N6050
1N6050A
1.5KE20C
1.5KE20CA
1.5KE22C
1.5KE22CA
1.5KE24C
1.5KE24CA
1.5KE27C
1.5KE27CA
1.5KE30C
1.5KE30CA
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
1N6025B
1NS025C
1N6025D
1N6026
1N6026A
1N6026B
1N6027
1N6027A
1NS027B
1N6028
1N6025B
1N6025C
1N6025D
1N5273A
1N5273A
1N5273B
1N5274A
1N5274A
1N5274B
1N5276A
4-2-33
4-2-33
4-2-33
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
1N6051
1N6051A
1N6052
1N6052A
1N6053
1N6053A
1N6054
1N6054A
1N6055
1N6055A
1.5KE33C
1.5KE33CA
1.5KE36C
1.5KE36CA
1.5KE39C
1.5KE39CA
1.5KE43C
1.5KE43CA
1.5KE47C
1.5KE47CA
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
1N6028A
1N6028B
1NS029
1N6029A
1N6029B
1N6030
1N6030A
1N6030B
1N6031
1N6031A
1N527SA
1N5276B
1N5277A
1N5277A
1N5277B
1N5279A
1N5279A
1N5279B
1N5281A
1N5281A
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
1N6056
1N6056A
1N6057
1N6057A
1NS058
1N6058A
1N6059
1N6059A
1N6060
1N6060A
1.5KE51C
1.5KE51CA
1.5KE56C
1.5KE56CA
1.5KE62C
1.5KE62CA
1.5KES8C
1.5KE68CA
1.5KE75C
1.5KE75CA
4-1-43
4-1-43
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
1N6031B
1N6036
1N603SA
1N6037
1N6037A
1N6038
1N6038A
1N6039
1N6039A
1N6040
1N5281B
1.5KE7.5C
1.5KE7.5CA
1.5KE8.2C
1.5KE8.2CA
1.5KE9.1C
1.5KE9.1CA
1.5KE10C
1.5KE10CA
1.5KE11C
4-2-32
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
1N6061
1N6061A
1N6062
1N6062A
1N6063
1N6063A
1N6064
1N6064A
1N6065
1N6065A
1.5KE82C
1.5KE82CA
1.5KE91C
1.5KE91CA
1.5KE100C
1.5KE100CA
1.5KE110C
1.5KE110CA
1.5KE120C
1.5KE120CA
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
1N6040A
1N6041
1N6041A
1N6042
1N6042A
1NS043
1N6043A
1N6044
1N6044A
1N6045
1N6045A
1.5KE11CA
1.5KE12C
1.5KE12CA
1.5KE13C
1.5KE13CA
1.5KE15C
1.5KE15CA
1.5KE16C
1.5KE16CA
1.5KE18C
1.5KE18CA
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
1N6066
1N6066A
1N6067
1N6067A
1N6068
1N60S8A
1N6069
1N6069A
1N6070
1N6070A
1N6071
1.5KE130C
1.5KE130CA
1.5KE150C
1.5KE150CA
1.5KE170C
1.5KE170CA
1.5KE180C
1.5KE180CA
1.5KE200CA
1.5KE200CA
1.5KE200C
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
CF = consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-41
CROSS-REFERENCE (continued)
Industry
. Part
Number
I
Motorola
Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
lN6071A
lN6072
lN6072A
lN6082
lN6083
lN6084
lN6085
lN6086
lN6087
lN6088
1.5KE200CA
1.5KE220C
1.5KE220CA
MZ5521B
MZ5522B
MZ5523B
MZ5524B
MZ5525B
MZ5526B
MZ5527B
4-1-44
4-1-44
4-1-44
4-2-38
4-2-38
4-2-38
4-2-38
4-2-38
4-2-38
4-2-38
1NS140A
lN6141A
1NS142A
lN6143A
1N6144A
1N6145A
1N6146A
1N6147A
1N6148A
1N6149A
1.5KE8.2CA
1.5KE9.1CA
1.5KE10CA
1.5KE11CA
1.5KE12CA
1.5KE13CA
1.5KE15CA
1.5KE16CA
1.5KE18CA
1.5KE20CA
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
lN6089
lN6090
lN6091
lN6102A
lN6103A
lN6104A
lN6105A
lNS10SA
lN6107A
lN610BA
MZ5528B
MZ5529B
MZ5530B
SA6.0CA
SA6.5CA
SA7.0CA
SA7.5CA
SAB.5CA
SA9.0CA
SA10CA
4-2-38
4-2-38
4-2-38
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
1N6150A
1N6151A
1N6152A
1N6153A
1N6154A
1N6155A
1N6156A
1N6157A
1N6158A
1N6159A
1.5KE22CA
1.5KE24CA
1.5KE27CA
1.5KE30CA
1.5KE33CA
1.5KE36CA
1.5KE39CA
1.5KE43CA
1.5KE47CA
1.5KE51CA
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
lNS109A
lN6110A
lN6111A
lN6112A
1N6113A
lN6114A
1N6115A
lN6116A
1N6117A
1N611BA
SAllCA
SA12CA
SA13CA
SA15CA
SA17CA
SA18CA
SA20CA
SA22CA
SA24CA
SA28CA
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
'4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
1N6160A
1N6161A
1N6162A
1N6163A
1N6164A
1N6165A
1N6166A
1N6167A
1N6168A
1N6169A
1.5KE56CA
1.5KE62CA
1.5KE68CA
1.5KE75CA
1.5KE82CA
1.5KE91CA
1.5KE100CA
1.5KE110CA
1.5KE120CA
1.5KE130CA
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
1N6119A
lN6120A
1N6121A
lN6122A
1N6123A
lN6124A
1N6125A
1N6126A
lN6127A
1N6128A
SA30CA
SA33CA
SA36CA
SA40CA
SA43CA
SA48CA
SA51CA
SA5BCA
SA64CA
SA70CA
4-1-26
4-1-26
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
1N6170A
1N6171A
1N6172A
1N6173A
1N6267
1N6267A
1N6268
1N6268A
1N6269
1N6269A
1.5KE150CA
1.5KE160CA
1.5KE180CA
1.5KE200CA
1N6267
1N6267A
1N6268
1N6268A
1N6269
1N6269A
4-1-44
4-1-44
4-1-44
4-1-44
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
1N6129A
1N6130A
lN6131A
1N6132A
lN6133A
lN6134A
1N6135A
1NS136A
1N6137A
1N6138A
1N6139A
SA75CA
SA85CA
SA90CA
SA100CA
SA110CA
SA120CA
SA130CA
SA150CA
SA170CA
1.5KES.8CA
1.5KE7.5CA
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
4-1-43
4-1-43
1N6270
1N6270A
1N6271
1N6271A
1N6272
1N6272A
1N6273
1N6273A
1NS274
1N6274A
1N6275
1N6270
1N6270A
1N6271
1N6271A
1N6272
1NS272A
1N6273
1N6273A
1N6274
1N6274A
1N6275
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-H3
CF
=consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-42
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Direct
Replacement
Motorola
Similar
Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
1N6373
1N6374
1N6375
1N6376
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-46
4-1-46
4-1-46
4-1-46
1N6360
1N6361
1N6362
1N6363
1N6364
1N6365
1N6366
1N6367
1N6368
1N6369
1N6377
1N6378
1N6379
1N6380
1N6381
1N6382
1N6383
1N6384
1N6385
1N6386
4-1-46
4-1-46
4-1-46
4-1-46
4-1-46
4-1-46
4-1-46
4-1-46
4-1-46
4-1-46
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-44
4-1-44
4-1-44
1N6370
1N6371
1N6372
1N6373
1N6374
1N6375
1N6376
1N6377
1N6378
1N6379
1N6387
1N6388
1N6389
1N6373
1N6374
1N6375
1N6376
1N6377
1N6378
1N6379
4-1-46
4-1-46
4-1-46
4-1-46
4-1-46
4-1-46
4-1-46
4-1-46
4-1-46
4-1-46
1N6290A
1N6291
1N6291A
1N6292
1N6292A
1N6293
1N6293A
1N6294
1N6294A
1N6295
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
1N6380
1N6381
1N6382
1N6383
1N6384
1N6385
1N6386
1N6387
1N6388
1N6389
1N6380
1N6381
1N6382
1N6383
1N6384
1N6385
1N6386
1N6387
1N6388
1N6389
4-1-46
4-1-46
4-1-46
4-1-46
4-1-46
4-1-46
4-1-46
4-1-46
4-1-46
4-1-46
1N6295A
1N6296
1N6296A
1N6297
1N6297A
1N6298
1N6298A
1N6299
1N6299A
1N6300
1N6300A
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
1N6402
1N6402A
1N6403
1N6403A
1N6404
1N6404A
1N6405
1N6405A
1N6406
1N6406A
1N6407
1N6275A
1N6276
1N6276A
1N6277
1N6277A
1N6278
1N6278A
1N6279
1N6279A
1N6280
1N6275A
1N6276
1N6276A
1N6277
1N6277A
1N6278
1N6278A
1N6279
1N6279A
1N6280
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
1N6301
1N6301A
1N6302
1N6302A
1N6303
1N6303A
1N6356
1N6357
1N6358
1N6359
1N6280A
1N6281
1N6281A
1N6282
1N6282A
1N6283
1N6283A
1N6284
1N6284A
1N6285
1N6280A
1N6281
1N6281A
1N6282
1N6282A
1N6283
1N6283A
1N6284
1N6284A
1N6285
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
1N6285A
1N6286
1N6286A
1N6287
1N6287A
1N6288
1N6288A
1N6289
1N6289A
1N6290
1N6285A
1N6286
1N6286A
1N6287
1N6287A
1N6288
1N6288A
1N6289
1N6289A
1N6290
1N6290A
1N6291
1N6291A
1N6292
1N6292A
1N6293
1N6293A
1N6294
1N6294A
1N6295
1N6295A
1N6296
1N6296A
1N6297
1N6297A
1N6298
1N6298A
1N6299
1N6299A
1N6300
1N6300A
1N6301
1N6301A
1N6302
1N6302A
1N6303
1N6303A
CF = consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-43
P6KE6.8A
P6KE6.8A
P6KE7.5A
P6KE7.5A
P6KE7.5A
P6KE7.5A
P6KE8.2A
P6KE8.2A
P6KE9.1A
P6KE9.1A
P6KE10A
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
I
CROSS-REFERENCE (continued)
Industry
Part
Number
I
Motorola
Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Similar
Direct
Replacement Replacement
Page
Number
1N6407A
1N6408
1N6408A
1N6409
1N6409A
1N6410
1N6410A
1N6411
1N6411A
1N6412
P6KE10A
P6KE10A
P6KE10A
P6KE11A
P6KE11A
P6KE12A
P6KE12A
P6KE13A
P6KE13A
P6KE15A
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
1N6433
1N6433A
1N6434
1N6434A
1N6435
1N6435A
1N6436
1N6436A
1N6437
1N6437A
P6KE68A
P6KE68A
P6KE75A
P6KE75A
P6KE75A
P6KE75A
P6KE82A
P6KE82A
P6KE91A
P6KE91A
4-1-34
4-1-34
4-1-34
4-1-34
4-1-34
4-1-34
4-1-34
4-1-34
4-1-34
4-1-34
1N6412A
1N6413
1N6413A
1N6414
1N6414A
1N6415
1N6415A
1N6416
1N6416A
1N6417
P6KE15A
P6KE15A
P6KE15A
P6KE18A
P6KE18A
P6KE18A
P6KE18A
P6KE20A
P6KE20A
P6KE20A
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
1N6438
1N6438A
1N6439
1N6439A
1N6440
1N6440A
1N6441
1N6441A
1N6442
1N6442A
P6KE91A
P6KE91A
P6KE100A
P6KE100A
P6KE110A
P6KE110A
P6KE120A
P6KE120A
P6KE130A
P6KE130A
4-1-34
4-1-34
4-1-34
4-1-34
4-1-34
4-1-34
4-1-34
4-1-34
4-1-34
4-1-34
1N6417A
1N6418
1N6418A
1N6419
1N6419A
1N6420
1N6420A
1N6421
1N6421A
1N6422
P6KE20A
P6KE22A
P6KE22A
P6KE24A
P6KE24A
P6KE27A
P6KE27A
P6KE30A
P6KE30A
P6KE33A
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
1N6443
1N6443A
1N6444
1N6444A
1N6445
1N6445A
1N6446
1N6446A
1N6447
1N6447A
P6KE150A
P6KE150A
P6KE160A
P6KE160A
P6KE180A
P6KE180A
P6KE200A
P6KE200A
P6KE200A
P6KE200A
4-1-34
4-1-34
4-1-34
4-1-34
4-1-34
4-1-34
4-1-34
4-1-34
4-1-34
4-1-34
1N6422A
1N6423
1N6423A
1N6424
1N6424A
1N6425
1N6425A
1N6426
1N6426A
1N6427
P6KE33A
P6KE33A
P6KE33A
P6KE36A
P6KE36A
P6KE39A
P6KE39A
P6KE43A
P6KE43A
P6KE47A
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
1N6448
1N6448A
1N6449
1N6449A
1N6450
1N6450A
1N6461
1N6462
1N6463
1N6464
1.5KE220A
1.5KE220A
1.5KE250A
1.5KE250A
1.5KE250A
1.5KE250A
SA5.0A
SA6.0A
SA12A
SA15A
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-44
4-1-26
4-1-26
4-1-26
4-1-26
1N6427A
1N6428
1N6428A
1N6429
1N6429A
1N6430
1N6430A
1N6431
1N6431 A
1N6432
1N6432A
P6KE47A
P6KE51A
P6KE51A
P6KE56A
P6KE56A
P6KE56A
P6KE56A
P6KE62A
P6KE62A
P6KE68A
P6KE68A
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4·1-33
4-1-33
4-1-33
4-1-33
4-1-34
4-1-34
1N6465
1N6466
1N6467
1N6468
1N6469
1N6470
1N6471
1N6472
1N6473
1N6474
1N6475
SA24A
SA30A
SA40A
SA51 A
1N6373
1N6268A
1N6384
1N6385
1N6282A
1N6284A
1N6287A
4-1-26
4-1-26
4-1-27
4-1-27
4-1-46
4-1-43
4-1-46
4-1-46
4-1-43
4-1-43
4-1-43
CF
=consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-44
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Direct
Replacement
Motorola
Similar
Replacement
Industry
Part
Number
Page
Number
1N6476
1N664
1N665
1N666
1N667
1N668
1N669
1N670
1N671
1N672
1N6290A
1N5237A
1N5242A
1N52458
1N5248A
1N5251A
1N5254A
1N52668
1N5271 A
1N5276A
4-1-44
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-32
4-2-32
4-2-32
1N735A
1N736A
1N737A
1N738A
1N739A
1N740A
1N741A
1N742A
1N743A
1N744A
1N674
1N675
1N702
1N702A
1N703
1N703A
1N704
1N704A
1N705
1N705A
1N5230A
1N52348
1N5986A
1N5986D
1N59898
1N5989C
1N59908
1N5990D
1N59928
1N5992D
4-2-31
4-2-31
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
1N745A
1N746
1N746A
1N746C
1N746D
1N747
1N747A
1N747C
1N747D
1N748
1N706
1N706A
1N707
1N707A
1N708A
1N709A
1N710A
1N711A
1N712A
1N713A
1N59948
1N5994D
1N59968
1N5996D
1N52328
1N52348
1N52358
1N52368
1N52378
1N52398
4-2-33
4-2-33
4-2-33
4-2-33
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N714A
1N715A
1N716A
1N717A
1N718A
1N719A
1N720A
1N721A
1N722A
1N723A
1N52408
1N52418
1N52428
1N52438
1N52458
1N52468
1N52488
1N52508
1N52518
1N52528
1N724A
1N725A
1N726A
1N727A
1N728A
1N729A
1N730A
1N731A
1N732A
1N733A
1N734A
1N52548
1N52568
1N52578
1N52588
1N52598
1N52608
1N52618
1N52628
1N52638
1N52658
1N52668
CF
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
1N52678
1N52688
1N52708
1N52718
1N52728
1N52738
1N52748
1N52768
1N52778
1N52798
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
4-2-32
1N52818
1N746
1N746A
1N746C
1N746D
1N747
1N747A
1N747C
1N747D
1N748
4-2-32
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
1N748A
1N748C
1N748D
1N749
1N749A
1N749C
1N749D
1N750
1N750A
1N750C
1N748A
1N748C
1N748D
1N749
1N749A
1N749C
1N749D
1N750
1N750A
1N750C
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
1N750D
1N751
1N751A
1N751C
1N751D
1N752
1N752A
1N752C
1N752D
1N753
1N750D
1N751
1N751A
1N751C
1N751D
1N752
1N752A
1N752C
1N752D
1N753
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-32
1N753A
1N753C
1N753D
1N754
1N754A
1N754C
1N754D
1N755
1N755A
1N755C
1N755D
1N753A
1N753C
1N753D
1N754
1N754A
1N754C
1N754D
1N755
1N755A
1N755C
1N755D
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
=consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-45
•
CROSS-REFERENCE (continued)
Industry
Part
Number
•
Motorola
Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Direct
Similar
,Replacement Replacement
Page
Number
lN756
lN756A
lN756C
lN756D
lN757
lN757A
lN757C
lN757D
lN758
lN758A
lN756
lN756A
lN756C
lN756D
lN757
lN757A
lN757C
lN757D
lN758
lN758A
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
lN958B
lN958C
lN958D
lN959
lN959A
lN959B
lN959C
lN959D
lN960
lN960A
lN958B
lN958C
lN958D
lN959A
lN959A
lN959B
lN959C
lN959D
lN960A
lN960A
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
lN758C
lN758D
lN759
lN759A
lN759C
lN759D
lN761
lN761A
lN762
lN762A
lN758C
lN758D
lN759
lN759A
lN759C
lN759D
lN5231B
lN5231B
lN5233B
lN5233C
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-31
4-2-31
4-2-31
4-2-31
lN960B
lN960C
lN960D
lN961
lN961A
lN961B
lN961C
lN961D
lN962
lN962A
lN960B
lN960C
lN960D
lN961A
lN961A
lN961B
lN961C
lN961D
lN962A
lN962A
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
lN763
lN763A
lN764
lN764A
lN765
lN765A
lN766
lN766A
lN767
lN767A
lN5235B
lN5235D
lN52398
lN5239B
lN6001B
lN6001B
lN6003B
lN6003B
lN60058
lN6005B
4-2-31
4-2-31
4-2-31
4-2-31
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
4-2-33
lN962B
lN962C
lN962D
lN963
lN963A
lN963B
lN963C
lN963D
lN964
lN964A
lN962B
lN962C
lN962D
lN963A
lN963A
lN963B
lN963C
lN963D
lN964A
lN964A
4-2:28
4-2-28
4-2-28
4-2-28
4-2-28'
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
lN768
lN768A
lN769
lN769A
lN821
lN821A
lN823
lN823A
lN825
lN825A
lN5249B
lN5249C
lN6009B
lN6009B
lN821
lN821A
lN823
lN823A
lN825
lN825A
4-2-31
4-2-31
4-2-33
4-2-33
4-3-10
4-3-10
4-3-10 '
4-3-10
4-3-10
4-3-10
lN964B
lN964C
lN964D
lN965
lN965A
lN965B
lN965C
lN965D
lN966
lN966A
lN964B
lN964C
lN964D
lN965A
lN965A
lN965B
lN965C
lN965D
lN966A
lN966A
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
lN827
lN827A
lN829
lN829A
lN957
lN957A
lN957B
lN957C
lN957D
lN958
lN958A
lN827
lN827A
lN829
lN829A
lN957A
lN957A
lN957B
lN957C
lN957D
lN958A
lN958A
4-3-10
4-3-10
4-3-10
4-3-10
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
lN966B
lN966C
lN966D
lN967
lN967A
lN967B
lN967C
lN967D
lN968
lN968A
lN968B
lN966B
lN966C
lN966D
lN967A
lN967A
lN967B
lN967C
lN967D
lN968A
lN968A
lN968B
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
4-2-28
CF =consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-46
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Direct
Replacement
Motorola
Similar
Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Similar
Direct
Replacement Replacement
Page
Number
1N968C
1N968D
1N969
1N969A
1N969B
1N969C
1N969D
1N970
1N970A
1N970B
1N968C
1N968D
1N969A
1N969A
1N969B
1N969C
1N969D
1N970A
1N970A
1N970B
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
1N978D
1N979
1N979A
1N979B
1N979C
1N979D
1N980
1N980A
1N980B
1N980C
1N978D
1N979A
1N979A
1N979B
1N979C
1N979D
1N980A
1N980A
1N980B
1N980C
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
1N970C
1N970D
1N971
1N971 A
1N971B
1N971C
1N971D
1N972
1N972A
1N972B
1N970C
1N970D
1N971A
1N971A
1N971B
1N971C
1N971D
1N972A
1N972A
1N972B
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
1N980D
1N981
1N981A
1N981B
1N981C
1N981D
1N982
1N982A
1N982B
1N982C
1N980D
1N981A
1N981A
1N981B
1N981C
1N981D
1N982A
1N982A
1N982B
1N982C
4·2·28
4·2·29
4·2·29
4·2·29
4·2·29
4·2·29
4·2·29
4·2·29
4·2·29
4·2·29
1N972C
1N972D
1N973
1N973A
1N973B
1N973C
1N973D
1N974
1N974A
1N974B
1N972C
1N972D
1N973A
1N973A
1N973B
1N973C
1N973D
1N974A
1N974A
1N974B
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
1N982D
1N983
1N983A
1N983B
1N983C
1N983D
1N984
1N984A
1N984B
1N984C
1N982D
1N983A
1N983A
1N983B
1N983C
1N983D
1N984A
1N984A
1N984B
1N984C
4·2·29
4·2·29
4·2·29
4·2·29
4·2·29
4·2·29
4·2·29
4·2·29
4·2·29
4·2·29
1N974C
1N974D
1N975
1N975A
1N975B
1N975C
1N975D
1N976
1N976A
1N976B
1N974C
1N974D
1N975A
1N975A
1N975B
1N975C
1N975D
1N976A
1N976A
1N976B
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
1N984D
1N985
1N985A
1N985B
1N985C
1N985D
1N986
1N986A
1N986B
1N986C
1N984D
1N985A
1N985A
1N985B
1N985C
1N985D
1N986A
1N986A
1N986B
1N986C
4·2·29
4·2·29
4·2·29
4·2·29
4·2·29
4·2·29
4·2·29
4·2·29
4·2·29
4·2·29
1N976C
1N976D
1N977
1N977A
1N977B
1N977C
1N977D
1N978
1N978A
1N978B
1N978C
1N976C
1N976D
1N977A
1N977A
1N977B
1N977C
1N977D
1N978A
1N978A
1N978B
1N978C
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
4·2·28
1N986D
1N987
1N987A
1N987B
1N987C
1N987D
1N988
1N988A
1N988B
1N988C
1N988D
1N986D
1N987A
1N987A
1N987B
1N987C
1N987D
1N988A
1N988A
1N988B
1N988C
1N988D
4·2·29
4·2·29
4·2·29
4·2·29
4·2·29
4·2·29
4·2·29
4·2·29
4·2·29
4·2·29
4·2·29
CF = consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-47
•
CROSS-REFERENCE (continued)
Industry
Part
Number
I
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
Industry
Part
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
lN989
lN989A
lN989B
lN989C
lN989D
lN990
lN990A
lN990B
lN990C
lN990D
lN989A
lN989A
lN989B
lN989C
lN989D
lN990A
lN990A
lN990B
lN990C
lN990D
4-2-29
4-2-29
4-2-29
4-2-29
4-2-29
4-2-29
4-2-29
4-2-29
4-2-29
4-2-29
15MB58AT3
ISMB5913BT3
ISMB5914BT3
ISMB5915BT3
ISMB5916BT3
ISMB5917BT3
ISMB5918BT3
ISMB5919BT3
15MB5920BT3
15MB5921 BT3
ISMB58AT3
ISMB5913BT3
ISMB5914BT3
ISMB5915BT3
ISMB5916BT3
ISMB5917BT3
ISMB5918BT3
ISMB5919BT3
15MB5920BT3
ISMB5921BT3
4-1-59
4-2-78
4-2-78
4-2-78
4-2-78
4-2-78
4-2-78
4-U8
4-2-78
4-2-78
lN991
lN991A
lN991B
lN991C
lN991 0
lN992
lN992A
lN992B
lN992C
. lN992D
lN991A
lN991A
lN991B
lN991C
1N991 0
lN992A
lN992A
lN992B
lN992C
lN992D
4-2,29
4-2-29
4-2·29
4-2-29
4-2-29
4-2·29
4-2-29
4-2-29
4-2-29
4·2·29
ISMB5922BT3
15MB5923BT3
15MB5924BT3
ISMB5925BT3
ISMB5926BT3
ISMB5927BT3
15MB5928BT3
ISMB5929BT3
ISMB5930BT3
ISMB5931BT3
ISMB5922BT3
ISMB5923BT3
ISMB5924BT3
ISMB5925BT3
ISMB5926BT3
15MB5927BT3
15MB5928BT3
15MB5929BT3
15MB5930BT3
ISMB5931BT3
4-2-78
4-2-78
4-2-78
4-2-78
4-2-78
4-2-78
4-2-78
4-2-79
4-2-79
4-2-79
ISMB100AT3
ISMB10AT3
ISMBll0AT3
ISMBllAT3
ISMB120AT3
ISMB12AT3
ISMB130AT3
ISMB13AT3
ISMB14AT3
ISMB150AT3
ISMB100AT3
ISMB10AT3
ISMBll0AT3
ISMBllAT3
ISMB120AT3
ISMB12AT3
ISMB130AT3
ISMB13AT3
ISMB14AT3
ISMB150AT3
4·1-59
4·1·59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
ISMB5932BT3
15MB5933BT3
15MB5934BT3
15MB5935BT3
15MB5936BT3
15MB5937BT3
15MB5938BT3
15MB5939BT3
15MB5940BT3
15MB5941BT3
15MB5932BT3
15MB5933BT3
15MB5934BT3
15MB5935BT3
15MB5936BT3
15MB5937BT3
15MB5938BT3
15MB5939BT3
15MB5940BT3
ISMB5941BT3
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
ISMB15AT3
ISMB160AT3
ISMB16AT3
ISMB170AT3
ISMB17AT3
ISMB18AT3
ISMB20AT3
ISMB22AT3
ISMB24AT3
ISMB26AT3
ISMB15AT3
ISMB160AT3
ISMB16AT3
ISMB170AT3
ISMB17AT3
ISMB18AT3
ISMB20AT3
ISMB22AT3
ISMB24AT3
ISMB26AT3
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
15MB5942BT3
15MB5943BT3
ISMB5944BT3
ISMB5945BT3
ISMB5946BT3
ISMB5947BT3
ISMB5948BT3
15MB5949BT3
ISMB5950BT3
ISMB5951BT3
15MB5942BT3
ISMB5943BT3
ISMB5944BT3
ISMB5945BT3
ISMB5946BT3
ISMB5947BT3
15MB5948BT3
15MB5949BT3
15MB5950BT3
ISMB5951BT3
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
ISMB28AT3
ISMB30AT3
ISMB33AT3
ISMB36AT3
ISMB40AT3
ISMB43AT3
ISMB45AT3
ISMB48AT3
ISMB5.0AT3
ISMB51AT3
ISMB54AT3
ISMB28AT3
ISMB30AT3
ISMB33AT3
ISMB36AT3
ISMB40AT3
ISMB43AT3
ISMB45AT3
ISMB48AT3
ISMB5.0AT3
ISMB51AT3
ISMB54AT3
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
15MB5952BT3
15MB5953BT3
15MB5954BT3
ISMB5955BT3
ISMB5956BT3
ISMB6.0AT3
ISMB6.5AT3
ISMB60AT3
ISMB64AT3
ISMB7.0AT3
ISMB7.5AT3
15MB5952BT3
ISMB5953BT3
ISMB5954BT3
ISMB5955BT3
15MB5956BT3
ISMB6.0AT3
ISMB6.5AT3
ISMB60AT3
ISMB64AT3
ISMB7.0AT3
ISMB7.5AT3
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
CF =consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2"48
CROSS-REFERENCE (continued)
Motorola
Similar
Replacement
-Industry
Part
Number
Industry
Part
Number
Motorola
Direct
Replacement
1SMB70AT3
1SMB75AT3
1SMB7BAT3
1SMBB.OAT3
1SMBB.5AT3
1SMBB5AT3
1SMB9.0AT3
1SMB90AT3
1SMC10AT3
1SMC11AT3
1SMB70AT3
1SMB75AT3
1SMB7BAT3
1SMBB.OAT3
1SMBB.5AT3
1SMBB5AT3
1SMB9.0AT3
1SMB90AT3
1SMC10AT3
1SMC11AT3
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-65
4-1-65
3EZ130D5
3EZ13D5
3EZ140D5
3EZ14D5
3EZ150D5
3EZ15D5
3EZ160D5
3EZ16D5
3EZ170D5
3EZ17D5
3EZ130D5
3EZ13D5
3EZ140D5
3EZ14D5
3EZ150D5
3EZ15D5
3EZ160D5
3EZ16D5
3EZ170D5
3EZ17D5
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
1SMC12AT3
1SMC13AT3
1SMC14AT3
1SMC15AT3
1SMC16AT3
1SMC17AT3
1SMC1BAT3
1SMC20AT3
1SMC22AT3
1SMC24AT3
1SMC12AT3
1SMC13AT3
1SMC14AT3
1SMC15AT3
1SMC16AT3
1SMC17AT3
1SMC1BAT3
1SMC20AT3
1SMC22AT3
1SMC24AT3
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
3EZ1BOD5
3EZ1BD5
3EZ190D5
3EZ19D5
3EZ200D5
3EZ20D5
3EZ220D5
3EZ22D5
3EZ240D5
3EZ24D5
3EZ1BOD5
3EZ1BD5
3EZ190D5
3EZ19D5
3EZ200D5
3EZ20D5
3EZ220D5
3EZ22D5
3EZ240D5
3EZ24D5
4-2-53
4-2-53
4-2-53
4-2-53
4-2-54
4-2-53
4-2-54
4-2-53
4-2-54
4-2-53
1SMC26AT3
1SMC2BAT3
1SMC30AT3
1SMC33AT3
1SMC36AT3
1SMC40AT3
1SMC43AT3
1SMC45AT3
1SMC4BAT3
1SMC5.0AT3
1SMC26AT3
1SMC2BAT3
1SMC30AT3
1SMC33AT3
1SMC36AT3
1SMC40AT3
1SMC43AT3
1SMC45AT3
1SMC4BAT3
1SMC5.0AT3
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
3EZ270D5
3EZ27D5
3EZ2BD5
3EZ3.9D5
3EZ300D5
3EZ30D5
3EZ330D5
3EZ33D5
3EZ360D5
3EZ36D5
3EZ270D5
3EZ27D5
3EZ2BD5
3EZ3.9D5
3EZ300D5
3EZ30D5
3EZ330D5
3EZ33D5
3EZ360D5
3EZ36D5
4-2-54
4-2-53
4-2-53
4-2-53
4-2-54
4-2-53
4-2-54
4-2-53
4-2-54
4-2-53
1SMC51AT3
1SMC54AT3
1SMC5BAT3
1SMC6.0AT3
1SMC6.5AT3
1SMC60AT3
1SMC64AT3
1SMC7.0AT3
1SMC7.5AT3
1SMC70AT3
1SMC51AT3
1SMC54AT3
1SMC5BAT3
1SMC6.0AT3
1SMC6.5AT3
1SMC60AT3
1SMC64AT3
1SMC7.0AT3
1SMC7.5AT3
1SMC70AT3
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
3EZ39D5
3EZ4.3D5
3EZ4.7D5
3EZ400D5
3EZ43D5
3EZ47D5
3EZ5.1D5
3EZ5.6D5
3EZ51D5
3EZ56D5
3EZ39D5
3EZ4.3D5
3EZ4.7D5
3EZ400D5
3EZ43D5
3EZ47D5
3EZ5.1D5
3EZ5.6D5
3EZ51D5
3EZ56D5
4-2-53
4-2-53
4-2-53
4-2-54
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
1SMC75AT3
1SMC7BAT3
1SMCB.OAT3
1SMCB.5AT3
1SMC9.0AT3
3EZ100D5
3EZ10D5
3EZ110D5
3EZ11D5
3EZ120D5
3EZ12D5
1SMC75AT3
1SMC7BAT3
1SMCB.OAT3
1SMCB.5AT3
1SMC9.0AT3
3EZ100D5
3EZ10D5
3EZ110D5
3EZ11D5
3EZ120D5
3EZ12D5
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
3EZ6.2D5
3EZ6.BD5
3EZ62D5
3EZ68D5
3EZ7.5D5
3EZ75D5
3EZB.2D5
3EZB2D5
3EZ9.1D5
3EZ91D5
BZV55C10
3EZ6.2D5
3EZ6.BD5
3EZ62D5
3EZ6BD5
3EZ7.5D5
3EZ75D5
3EZB.2D5
3EZB2D5
3EZ9.1D5
3EZ91D5
BZV55C10
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
4-2-53
4-2-73
Page
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
CF =consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-49
Page
Number
•
CROSS·REFERENCE (continued)
Industry
Part
Number
•
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
Industry
Part
NUlTlber
Motorola
' Motorola
Similar
Direct
Replacement Replacement
Page
Number
BZV55Cll
BZV55C12
BZV55C13
BZV55C15
BZV55C16
BZV55C18
BZV55C20
BZV55C22
BZV55C24
BZV55C27
BZV55Cll
BZV55C12
BZV55C13
BZV55C15
BZV55C16
BZV55C18
BZV55C20
BZV55C22
BZV55C24
BZV55C27
4-2-73
4-2-73
4-2-73
4'2-73
' 4-2-73
4-2-73
4-2-73
4-2-73
4-2-73
4-2-73
BZW04-15
BZW04-154
BZW04-154B
BZW04-15B
BZW04-17
BZW04-171
BZW04-171B
BZW04-17B
BZW04-19
BZW04-19B
SA16A
SA160A
SA160CA
SA16CA
SA17A
SA170A
SA170CA
SA17CA
SA20
SA20
4-1-26,
4-1-27
4-1-27
4-1-26
4-1-26
4-1-27
4-1-27
4-1-26
4-1-26
4-1-26
BZV55C2V4
BZV55C2V7
BZV55C30
BZV55C33
BZV55C36
BZV55C39
BZV55C3VO
BZV55C3V3
BZV55C3V6
BZV55C3V9
BZV55C2V4
BZV55C2V7
BZV55C30
BZV55C33
BZV55C36
BZV55C39
BZV55C3VO
BZV55C3V3
BZV55C3V6
BZV55C3V9
4-2-73
4-2-73
4-2-73
4-2-73
4-2-73
4-2,73
4-2-73
4-2-73
4-2-73
4-2-73
BZW04-20
BZW04-20B
BZW04-23
BZW04-23B
BZW04-26
BZW04-26B
BZW04-28
BZW04-28B
BZW04-31
BZW04-31B
SA22A
SA22CA
SA24A
SA24CA
SA26A
SA26CA
SA28A
SA28CA
SA33A
SA33CA
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
BZV55C43
BZV55C47
BZV55G4V3
BZV55C4V7
BZV55C51
BZV55C56
BZV55C5Vl
BZV55C5V6
BZV55C6V2
BZV55C6V8
BZV55C43
BZV55C47
BZV55C4V3
BZV55C4V7
BZV55C51
BZV55C56
BZV55C5Vl
BZV55C5V6
BZV55C6V2
BZV55C6V8
4-2-73
4-2-73
4-2-73
4-2-73
4-2-73
4-2-73
4-2-73
4-2-73
4-2'13
4-2-73
BZW04-33
BZW04-33B
BZW04-37
BZW04-37B
BZW04-40
BZW0440B
BZW04-44
BZW04-44B
BZW0448
BZW04-48B
SA33A
SA33CA
SA40A
SA40CA
SA40A
SA40CA
SA45A
SA45CA
SA48A
SA48CA
4-1-26
4-1-26
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
BZV55C7V5
BZV55C8V2
BZV55C9Vl
BZW04-10
BZW04-102
BZW04-102B
BZW04-10B
BZW04-11
BZW04-111
BZW04-111B
BZV55C7V5
BZV55C8V2
BZV55C9Vl
SA10A
SA100A
SMOOCA
SA10CA
SAllA
SAll0A
SA110CA
4-2-73
4-2-73
4-2-73
4-1-26
4.1-27
4-1-27
4-1-26
4-1-26
4-1-27
4-1-27
BZW04-53
BZW04-53B
BZW04-58
BZW04-58B
BZW04-5V8
BZW04-5V8B
BZW04-64
BZW04-64B
BZW04-6V4
BZW04-6V4B
SA54A
SA54CA
SA58A
SA58CA
SA6.0A
SA6.0CA
SA64A
SA64CA
SA6.5A
SA6.5CA
4-1-27
4-1-27
4-1-27
4-1-27
4-1-26
4-1-26
4-1-27
4-1-27
4-1-26
4-1-26
SAllCA
SA130A
SA130CA
SA13A
SA150A
SA150CA
SA13CA
SA14A
SA150A
SA150CA
SA14CA
4-1-26
4-1-27
4-1-27
4-1-26
4-1-27
4-1-27
4-1-26
4-1-26
4-1-27
4-1-27
4-1-26
BZW04-70
BZW04-70B
BZW04-78
BZW04-78B
BZW04-7V0
BZW04-7VOB
BZW04-7V8
BZW04-7V8B
BZW04-85
BZW04-B5B
BZW04-8V5
SA70A
'SA70CA
SA78A
SA78CA
SA7.0A
SA7.0CA
SA8.0A
SA8.0CA
SA85A
SAB5CA
SA8.5A
4-1-27
4-1-27
4-1-21
4-1-27
4-1-26
4-1-26
4-1-26
4-1-26
4-1-27
4-1-27
4-1-26
BZW04-11B
BZW04-128
BZW04-128B
BZW04-13
BZW04-136
BZW04-136B
BZW04-13B
BZW04-14
BZW04-145
BZW04-145B
BZW04-14B
CF =consult factory representative
TRANSIEN1WOLTAGE SUPPRESSORS AND ZENER DIODES
2.50
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
Industry
Part
Number
Motorola
Motorola
Similar
Direct
Replacement Replacement
Page
Number
BZW04-SV5B
BZW04-94
BZW04-94B
BZW04-9V4
BZW04-9V4B
BZW04Pl0
BZW04Pl02
BZW04Pl02B
BZW04Pl0B
BZW04Pll
SAS.5CA
SA100A
SA100CA
SA10A
SA10CA
SA10A
SA100A
SA100CA
SA10CA
SA11A
4-1-26
4-1-27
4-1-27
4-1-26
4-1-26
4-1-26
4-1-27
4-1-27
4-1-26
4-1-26
BZW04P4S
BZW04P4SB
BZW04P53
BZW04P53B
BZW04P5S
BZW04P5SB
BZW04P5VS
BZW04P5VSB
BZW04P64
BZW04P64B
SA4SA
SA4SCA
SA54A
SA54CA
SA5SA
SA5SCA
SA6.0A
SA6.0CA
SA64A
SA64CA
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
4-1-26
4-1-26
4-1-27
4-1-27
BZW04Pll1
BZW04Pll1B
BZW04Pl1B
BZW04P12S
BZW04P12SB
BZW04P13
BZW04P136
BZW04P136B
BZW04P13B
BZW04P14
SAll0A
SAll0CA
SAllCA
SA130A
SA130CA
SA13A
SA150A
SA150CA
SA13CA
SA14A
4-1-27
4-1-27
4-1-26
4-1-27
4-1-27
4-1-26
4-1-27
4-1-27
4-1-26
4-1-26
BZW04P6V4
BZW04P6V4B
BZW04P70
BZW04P70B
BZW04P7S
BZW04P7SB
BZW04P7VO
BZW04P7VOB
BZW04P7VS
BZW04P7VSB
SA6.5A
SA6.5CA
SA70A
SA70CA
SA7SA
SA7SCA
SA7.0A
SA7.0CA
SAS.OA
SAS.OCA
4-1-26
4-1-26
4-1-27
4-1-27
4-1-27
4-1-27
4-1-26
4-1-26
4-1-26
4-1-26
BZW04Pl45
BZW04P145B
BZW04P14B
BZW04P15
BZW04P154
BZW04P154B
BZW04P15B
BZW04P17
BZW04P171
BZW04P171B
SA150A
SA150CA
SA14CA
SA16A
SA160A
SA160CA
SA16CA
SA17A
SA170A
SA170CA
4-1-27
4-1-27
4-1-26
4-1-26
4-1-27
4-1-27
4-1-26
4-1-26
4-1-27
4-1-27
BZW04PS5
BZW04PS5B
BZW04PSV5
BZW04PSV5B
BZW04P94
BZW04P94B
BZW04P9V4
BZW04P9V4B
BZW06-10
BZW06-102
SAS5A
SAS5CA
SAS.5A
SAS.5CA
SA100A
SA100CA
SA10A
SA10CA
P6KE12A
P6KE120A
4-1-27
4-1-27
4-1-26
4-1-26
4-1-27
4-1-27
4-1-26
4-1-26
4-1-33
4-1-34
BZW04P17B
BZW04P19
BZW04P19B
BZW04P20
BZW04P20B
BZW04P23
BZW04P23B
BZW04P26
BZW04P26B
BZW04P2S
SA17CA
SA20A
SA20CA
SA22A
SA22CA
SA24A
SA24CA
SA26A
SA26CA
SA2SA
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
BZW06-102B
BZW06-10B
BZW06-11
BZW06-111
BZW06-111B
BZW06-11B
BZW06-12S
BZW06-12SB
BZW06-13
BZW06-136
P6KE120CA
P6KE12CA
P6KE13A
P6KE130A
P6KE130CA
P6KE13CA
P6KE150A
P6KE150CA
P6KE15A
P6KE160A
4-1-34
4-1-33
4-1-33
4-1-34
4-1-34
4-1-33
4-1-34
4-1-34
4-1-33
4-1-34
BZW04P2SB
BZW04P31
BZW04P31B
BZW04P33
BZW04P33B
BZW04P37
BZW04P37B
BZW04P40
BZW04P40B
BZW04P44
BZW04P44B
SA2SCA
SA33A
SA33CA
SA33A
SA33CA
SA40A
SA40CA
SA40A
SA40CA
SA45A
SA45CA
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
BZW06-136B
BZW06-13B
BZW06-14
BZW06-145
BZW06-145B
BZW06-14B
BZW06-15
BZW06-154
BZW06-154B
BZW06-15B
BZW06-17
P6KE160CA
P6KE15CA
P6KE16A
P6KE170A
P6KE170CA
P6KE16CA
P6KE1SA
P6KE1S0A
P6KE1S0CA
P6KE1SCA
P6KE20A
4'1-34
4-1-33
4-1-33
4-1-34
4-1-34
4-1-33
4-1-33
4-1-34
4-1-34
4-1-33
4-1-33
CF
=consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-51
CROSS-REFERENCE (continued)
Industry
Part
Number
I
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
Industry
Part
Number
Motorola
Motorola
Direct
Similar
Repl.acement Replacement
Page
Number
BZW06-171
BZW06-171B
BZW06-17B
BZW06-188
BZW06-188B
BZW06-19
BZW06-19B
BZW06-20
BZW06-20B
BZW06-213
P6KE200A
P6KE200CA
P6KE20CA
1.5KE220A
1.5KE220CA
P6KE22A
P6KE22CA
P6KE24A
P6KE24CA
1.5KE250A
. 4-1-34
4-1-.34
4-1-33
4-1-44
4-1-44
4-1-33
4-1-33
4-1-33
4-1-33
4-1-44
BZW06-94
BZW06-94B
BZW06-9V4
BZW06-9V4B
BZW06P10
BZW06P102
BZW06P102B
BZW06P10B
BZW06P11
BZW06P111
P6KE110A
P6KE110CA
P6KE11A
P6KE11CA
P6KE12A
P6KE120A
P6KE120CA
P6KE12CA
P6KE13A
P6KE130A
4-1-34
4-1-34
4-1-33
4-1-33
4-1-33
4-1-34
4-1-34
4-1-33
4-1-33
4-1-34
BZW06-213B
BZW06-23
BZW06-23B
BZW06-26
BZW06-26B
BZW06-28
BZW06-28B
BZW06-31
BZW06-31B
BZW06-33
1.5KE250CA
P6KE27A
P6KE27CA
P6KE30A
P6KE30CA
P6KE33A
P6KE33CA
P6KE36A
P6KE36CA
P6KE39A
4-1-44
4-1-33.
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
BZW06P111B
BZW06P11B
BZW06P128
BZW06P128B
BZW06P13
BZW06P136
BZW06P136B
BZW06P13B
BZW06P14
BZW06P145
P6KE130CA
P6KE13CA
P6KE150A
P6KE150CA
P6KE15A
P6KE160A
P6KE160CA
P6KE15CA
P6KE16A
P6KE170A
4-1-34
4-1-33
4-1-34
4-1-34
4-1-33
4-1-34 .
4-1-34
4-1-33
4-1-33
4-1-34
BZW06-33B
BZW06-37
BZW06-37B
BZW06-40
BZW06-40B
BZW06-44
BZW06-44B
BZW06-48
BZW06-48B
BZWOS-53
P6KE39CA
P6KE43A
P6KE43CA
P6KE47A
P6KE47CA
P6KE51A
P6KE51CA
P6KE56A
P6KE56CA
P6KE62A
4-1-33
4-1-33
4-1-33
4-1-33·
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
BZW06P145B
BZW06P14B
BZW06P15
BZW06P154
BZW06P154B
BZW06P15B
BZW06P17
BZW06P171
BZW06P171B
BZW06P17B
P6KE170CA
P6KE16CA
P6KE18A
P6KE180A
P6KE180CA
P6KE18CA
P6KE20A
P6KE200A
P6KE200CA
P6KE20CA
4-1-34
4-1-33
4-1-33
4-1-34
4-1-34
4-1-33
4-1-33
4-.1-34
4-1-34
4-1-33
BZW06-53B
BZW06-58
BZW06-58B
BZW06-5V8
BZW06-5V8B
BZW06-64
BZW06.64B
BZW06-6V4
BZW06-6V4B
BZW06-70
P6KE62CA
P6KE68A
P6KE68CA
P6KE6.8A
P6KE6.8CA
P6KE75A
P6KE75CA
P6KE7.5A
P6KE7.5CA
P6KE82A
4-1-33
4-1-34
4-1-34
4-1-33
4-1-33
4-1-34
4-1-34
4-1-33
4-1-33
4-1-34
BZW06P188
BZW06P188B
BZW06P19
BZW06P19B
BZW06P20
BZW06P20B
BZW06P213
BZW06P213B
BZW06P23
BZW06P23B
1.5KE220A
1.5KE220CA
P6KE22A
P6KE22CA
P6KE24A
P6KE24CA
1.5KE250A
1.5KE250CA
P6KE27A
P6KE27CA
4-1-44
4-1-44
4-1-33
4-1-33
4-1-33
4-1-33
4-1-44
4-1-44
4-1-33
4-1-33
BZW06-70B
BZW06-78
BZWQ6-78B
BZW06-7VO
BZW06-7VOB
BZW06-7V8
BZW06-7V8B
BZW06-85
BZW06-.85B
BZW06-8V5
BZW06-8V5B
P6KE82CA
P6KE91A
P6KE91CA
P6KE8.2A
P6KE8.2CA
P6KE9.1A
P6KE9.1CA
P6KE100A
P6KE100CA
P6KE10A
P6KE10CA
4-1-34
4-1-34
4-1-34
4-1-33
4-1-33
4-1-33
4-1-33
4-1-34
4-1-34
4-1-33
4-1-33
BZW06P26
BZW06P26B
BZW06P28
BZW06P28B
BZW06P31
BZW06P31B
BZW06P33
BZW06P33B
BZW06P37
BZW06P37B
BZW06P40
P6KE30A
P6KE30CA
P6KE33A
P6KE33CA
P6KE36A
P6KE36CA
P6KE39A
P6KE39CA
P6KE43A
P6KE43CA
P6KE47A
4,1'33
4-1-33
4+33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33 .
4-1-33
CF
= consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2·52
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
Industry
Part
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
BZW06P40B
BZW06P44
BZW06P44B
BZW06P48
BZW06P48B
BZW06P53
BZW06P53B
BZW06P58
BZW06P58B
BZW06P5V8
P6KE47CA
P6KE51A
P6KE51CA
P6KE56A
P6KE56CA
P6KE62A
P6KE62CA
P6KE68A
P6KE68CA
P6KE6.8A
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-34
4-1-34
4-1-33
BZX55C15
BZX55C16
BZX55C18
BZX55C20
BZX55C22
BZX55C24
BZX55C27
BZX55C2V4
BZX55C2V7
BZX55C30
BZX55C15
BZX55C16
BZX55C18
BZX55C20
BZX55C22
BZX55C24
BZX55C27
BZX55C2V4
BZX55C2V7
BZX55C30
4-2-34
4-2-34
4-2-34
4-2-34
4-2-34
4-2-34
4-2-34
4-2-34
4-2-34
4-2-34
BZW06P5V8B
BZW06P64
BZW06P64B
BZW06P6V4
BZW06P6V4B
BZW06P70
BZW06P70B
BZW06P78
BZW06P78B
BZW06P7VO
P6KE6.8CA
P6KE75A
P6KE75CA
P6KE7.5A
P6KE7.5CA
P6KE82A
P6KE82CA
P6KE91A
P6KE91CA
P6KE8.2A
4-1-33
4-1-34
4-1-34
4-1-33
4-1-33
4-1-34
4-1-34
4-1-34
4-1-34
4-1-33
BZX55C33
BZX55C36
BZX55C39
BZX55C3VO
BZX55C3V3
BZX55C3V6
BZX55C3V9
BZX55C43
BZX55C47
BZX55C4V3
BZX55C33
BZX55C36
BZX55C39
BZX55C3VO
BZX55C3V3
BZX55C3V6
BZX55C3V9
BZX55C43
BZX55C47
BZX55C4V3
4-2-34
4-2-34
4-2-34
4-2-34
4-2-34
4-2-34
4-2-34
4-2-34
4-2-34
4-2-34
BZW06P7VOB
BZW06P7V8
BZW06P7V8B
BZW06P85
BZW06P85B
BZW06P8V5
BZW06P8V5B
BZW06P94
BZW06P94B
BZW06P9V4
P6KE8.2CA
P6KE9.1A
P6KE9.1CA
P6KE100A
P6KE100CA
P6KE10A
P6KE10CA
P6KE110A
P6KE110CA
P6KE11A
4-1-33
4-1-33
4-1-33
4-1-34
4-1-34
4-1-33
4-1-33
4-1-34
4-1-34
4-1-33
BZX55C4V7
BZX55C51
BZX55C56
BZX55C5V1
BZX55C5V6
BZX55C62
BZX55C68
BZX55C6V2
BZX55C6V8
BZX55C75
BZX55C4V7
BZX55C51
BZX55C56
BZX55C5V1
BZX55C5V6
BZX55C62
BZX55C68
BZX55C6V2
BZX55C6V8
BZX55C75
4-2-34
4-2-34
4-2-34
4-2-34
4-2-34
4-2-34
4-2-34
4-2-34
4-2-34
4-2-34
BZW06P9V4B
BZW07-10
BZW07-10B
BZW07-110
BZW07-110B
BZW07-27
BZW07-27B
BZW07-43
BZW07-43B
BZW11-10
P6KE11CA
1N6276
1.5KE16C
1N6300
1.5KE160C
1N6264
1.5KE36C
1N6290
1.5KE62C
1N6276
4-1-33
4-1-43
4-1-43
4-1-44
4-1-44
4-1-43
4-1-43
4-1-44
4-1-44
4-1-43
BZX55C7V5
BZX55C82
BZX55C8V2
BZX55C91
BZX55C9V1
BZX79C10
BZX79C100
BZX79C11
BZX79C110
BZX79C12
BZX55C7V5
BZX55C82
BZX55C8V2
BZX55C91
BZX55C9V1
BZX79C10
BZX79C100
BZX79C11
BZX79C110
BZX79C12
4-2-34
4-2-34
4-2-34
4-2-34
4-2-34
4-2-35
4-2-35
4-2-35
4-2-35
4-2-35
BZW11-10B
BZW11-110
BZW11-110B
BZW11-27
BZW11-27B
BZW11-43
BZW11-43B
BZX55C10
BZX55C11
BZX55C12
BZX55C13
1.5KE16C
1N6300
1.5KE160C
1N6284
1.5KE36C
1N6290
1.5KE62C
4-1-43
4-1-44
4-1-44
4-1-43
4-1-43
4-1-44
4-1-44
4-2-34
4-2-34
4-2-34
4-2-34
BZX79C120
BZX79C13
BZX79C130
BZX79C15
BZX79C150
BZX79C16
BZX79C160
BZX79C18
BZX79C180
BZX79C20
BZX79C200
BZX79C120
BZX79C13
BZX79C130
BZX79C15
BZX79C150
BZX79C16
BZX79C160
BZX79C18
BZX79C180
BZX79C20
BZX79C200
4-2-35
4-2-35
4-2-35
4-2-35
4-2-35
4-2-35
4-2-35
4-2-35
4-2-35
4-2-35
4-2-35
BZX55C10
BZX55C11
BZX55C12
BZX55C13
CF = consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-53
I
CROSS-REFERENCE (continued)
Industry
Part
Number
I
Motorola
Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
.Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
BZ)(79C22
BZX79C24
BZX79C27
BZX79C2V4
BZX79C2V7
BZX79C30
BZX79C33
BZX79C36
BZX79C39
BZX79C3VO
BZX79C22
BZX79C24
BZX79C27
BZX79C2V4
BZX79C2V7
BZX79C30
BZX79C33
BZX79C36
BZX79C39
BZX79C3VO
4-2-35
4-2-35
4-2-35
4-2-35
4-2-35
4-2-35
4-2-35
4-2-35
4-2-35
4-2-35
BZXB3C5V1
BZXB3C5V6
BZXB3C6V2
BZXB3C6VB
BZXB3C7V5
BZXB3CBV2
BZXB3C9V1
BZXB4C10L
BZXB4C11L
BZXB4C12L
BZXB3C5V1
BZXB3C5V6
BZXB3C6V2
BZXB3C6VB
BZX83C7V5
BZXB3CBV2
BZXB3C9V1
BZXB4C10L
BZXB4C11L
BZXB4C12L
4-2-36
4-2-36
4-2-36
4-2-36
4-2-36
4-2-36
4-2-36
4-2-65
4-2-65
4-2-65
BZX79C3V3
BZX79C3V6
BZX79C3V9
BZX79C43
BZX79C47
BZX79C4V3
BZX79C4V7
BZX79C51
BZX79C56
BZX79C5V1
BZX79C3V3
BZX79C3V6
BZX79C3V9
BZX79C43
BZX79C47
BZX79C4V3
BZX79C4V7
BZX79C51
BZX79C56
BZX79C5V1
4-2-35
4-2-35
4-2-35
·4-2-35
4-2-35
4-2-35
4-2-35
4-2-35
4-2-35
4-2-35
BZXB4C13L
BZX84C15L
BZX84C16L
BZXB4C1BL
BZX84C20L
BZX84C22L
BZX84C24L
BZX84C27L
BZX84C2V4L
BZX84C2V7L
BZX84C13L
BZX84C15L
BZX84C16L
BZX84C1BL
BZX84C20L
BZXB4C22L
BZXB4C24L
BZXB4C27L
BZXB4C2V4L
BZX84C2V7L
4-2-65
4-2,65
4-2-65
4-2-65
4-2·65
4-2-65
4-2-65
4-2-65
4-2-65
4-2-65
BZX79C5V6
BZX79C62
BZX79C68
BZX79C6V2
BZX79C6V8
BZX79C75
BZX79C7V5
BZX79C82
BZX79C8V2
BZX79C91
BZX79C5V6
BZX79C62
BZX79C68
BZX79C6V2
BZX79C6V8
BZX79C75
BZX79C7V5
BZX79C82
BZX79C8V2
BZX79C91
4-2-35
4-2-35
4-2-35
4-2-35
4-2-35 '
4-2-35
4-2-35
4-2-35
H-35
4-2-35
BZXB4C30L
BZXB4C33L
BZXB4C36L
BZX84C39L
BZXB4C3VOL
BZX84C3V3L
BZXB4C3V6L
BZXB4C3V9L
BZX84C43L
BZX84C47L
BZXB4C30L
BZXB4C33L
BZXB4C36L
BZXB4C39L
BZXB4C3VOL
BZXB4C3V3L
BZXB4C3V6L
BZXB4C3V9L
BZX84C43L
BZX84C47L
4-2-65
4-2-65
4-2-65
4-2-65
4-2-65
4-2-65
4-2-65
4-2-65
4-2-65
4-2-65
BZX79C9V1
BZX83C10
BZX83C11
BZX83C12
BZX83C13
BZX83C15
BZX83C16
BZX83C18
BZX83C20
BZX83C22
BZX79C9V1
BZX83C10
BZX83C11
BZX83C12
BZX83C13
BZX83C15
BZX83C16
BZX83C18
BZX83C20
BZX83C22
4-2-35
4-2-36
4-2-36.
4-2-36
4-2-36
4-2-36
4-2-36
4-2-36
4-2-36
4-2-36
BZX84C4V3L
BZX84C4V7L
BZX84C51L
BZX84C56L
BZX84C5V1L
BZXB4C5V6L
BZXB4C62L
BZXB4C6BL
BZXB4C6V2L
BZXB4C6VBL
BZX84C4V3L
BZXB4C4V7L
BZXB4C51L
BZXB4C56L
BZXB4C5V1L
BZXB4C5V6L
BZXB4C62L
BZXB4C6BL
BZXB4C6V2L
BZXB4C6VBL
4-2-65
4-2-65
4-2-65
4-2-65
4-2-65
4-2-65
4-2-65
4-2-65
4-2-65
4-2-65
BZX83C24
BZX83C27
BZX83C2V7
BZX83C30
BZX83C33
BZX83C3VO
BZX83C3V3
BZJ(83C3V6
BZXB3C3V9
BZXB3C4V3
BZXB3C4V7
BZX83C24
BZX83C27
BZX83C2V7
BZX83C30
BZX83C33
BZX83C3VO
BZXB3C3V3
BZXB3C3V6
BZXB3C3V9
BZXB3C4V3
BZXB3C4V7
4-2-36
4-2-36
4-2-36
BZXB4C75L
BZX84C7V5L
BZX84C8V2L
BZX84C9V1L
BZX85C10
BZX85C100
BZXB5C11
BZXB5C12
BZXB5C13
BZX85C15
BZX85C16
BZXB4C75L
BZX84C7V5L
BZX84C8V2L
BZX84C9V1L
BZX85C10
BZX85C100
BZXB5C11
BZXB5C12
BZXB5C13
BZXB5C15
BZX85C16
4-2-65
4-2-65
4-2-65
4-2-65
4-2-45
4-2-45
4-2-45
.4-2-45
4-2-45
4-2-45
4-2-45
4-~36
4-2-36
4-2-36
4-2-36
4-2-36
4-2-36
4-2-36
4-2-36
CF =consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-54
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Direct
Replacement
Motorola
Similar
Replacement
Page
Number
Industry
Part
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
BZX85C18
BZX85C20
BZX85C22
BZX85C24
BZX85C27
BZX85C30
BZX85C33
BZX85C36
BZX85C39
BZXS5C3V3
BZX85C18
BZX85C20
BZX85C22
BZX85C24
BZX85C27
BZX85C30
BZX85C33
BZX85C36
BZXS5C39
BZXS5C3V3
4-2-45
4-2-45
4-2-45
4-2-45
4-2-45
4-2-45
4-2-45
4-2-45
4-2-45
4-2-45
BZY88C5V6
BZY88C6V2
BZV88C6VS
BZY88C7V5
BZV88C8V2
BZY88C9V1
DTZ1D
DTZ100
DTZ1DDA
DTZ10A
BZV88C5V6
BZY88C6V2
BZV88C6V8
BZY88C7V5
BZV88C8V2
BZY88C9V1
1.5KE10C
1.5KE100C
1.5KE100CA
1.5KE10CA
CF
CF
CF
CF
CF
CF
4-1-43
4-1-44
4-1-44
4-1-43
BZXS5C3V6
BZX85C3V9
BZXS5C43
BZX85C47
BZX85C4V3
BZX85C4V7
BZX85C51
BZX85C56
BZX85C5V1
BZX85C5V6
BZXS5C3V6
BZXS5C3V9
BZXS5C43
BZXS5C47
BZXS5C4V3
BZXS5C4V7
BZXS5C51
BZXS5C56
BZXS5C5V1
BZXS5C5V6
4-2-45
4-2-45
4-2-45
4-2-45
4-2-45
4-2-45
4-2-45
4-2-45
4-2-45
4-2-45
DTZ11
DTZ110
DTZ110A
DTZ11A
DTZ12
DTZ120
DTZ120A
DTZ12A
DTZ13
DTZ130
1.5KE11C
1.5KE110C
1.5KE11 DCA
1.5KE11CA
1.5KE12C
1.5KE120C
1.5KE120CA
1.5KE12CA
1.5KE13C
1.5KE13DC
4-1-43
4-1-44
4-1-44
4-1-43
4-1-43
4-1-44
4-1-44
4-1-43
4-1-43
4-1-44
BZX85C62
BZX85C68
BZX85C6V2
BZXS5C6VS
BZX85C75
BZX85C7V5
BZX85CS2
BZX85CSV2
BZX85C91
BZX85C9V1
BZXS5C62
BZXS5C6S
BZXS5C6V2
BZXS5C6VS
BZXS5C75
BZXS5C7V5
BZX85CS2
BZXS5CSV2
BZXS5C91
BZXS5C9V1
4-2-45
4-2-45
4-2-45
4-2-45
4-2-45
4-2-45
4-2-45
4-2-45
4-2-45
4-2-45
DTZ130A
DTZ13A
DTZ15
DTZ15D
DTZ15DA
DTZ15A
DTZ16
DTZ16D
DTZ160A
DTZ16A
1.5KE130CA
1.5KE13CA
1.5KE15C
1.5KE15oC
1.5KE15DCA
1.5KE15CA
1.5KE16C
1.5KE160C
1.5KE16DCA
1.5KE16CA
4-1-44
4-1-43
4-1-43
4-1-44
4-1-44
4-1-43
4-1-43
4-1-44
4-1-44
4-1-43
BZYSSC10
BZV88C11
BZV88C12
BZV88C13
BZY88C15
BZV88C16
BZYS8C18
BZV88C20
BZY88C22
BZV88C24
BZVS8C10
BZY88C11
BZV88C12
BZY88C13
BZV88C15
BZV88C16
BZV88C1S
BZV88C20
BZV88C22
BZV88C24
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
DTZ17D
DTZ170A
DTZ18
DTZ18D
DTZ18DA
DTZ18A
DTZ2D
DTZ200
DTZ200A
DTZ20A
1.5KE17DC
1.5KE17DCA
1.5KE18C
1.5KE18DC
1.5KE18DCA
1.5KE18CA
1.5KE20C
1.5KE200C
1.5KE200CA
1.5KE20CA
4-1-44
4-1-44
4-1-43
4-1-44
4-1-44
4-1-43
4-1-43
4-1-44
4-1-44
4-1-43
BZVSSC27
BZY88C2V7
BZV88C30
BZY88C33
BZV88C3VO
BZY88C3V3
BZV88C3V6
BZYS8C3V9
BZV88C4V3
BZV88C4V7
BZV88C5V1
BZV8SC27
BZY88C2V7
BZV88C30
BZY88C33
BZY88C3VO
BZY88C3V3
BZY88C3V6
BZY88C3V9
BZY88C4V3
BZY88C4V7
BZY88C5V1
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
DTZ22
DTZ220
DTZ220A
DTZ22A
DTZ24
DTZ24A
DTZ250
DTZ250A
DTZ27
DTZ27A
DTZ30
1.5KE22C
1.5KE220C
1.5KE22DCA
1.5KE22CA
1.5KE24C
1.5KE24CA
1.5KE250C
1.5KE25DCA
1.5KE27C
1.5KE27CA
1.5KE30C
4-1-43
4-1-44
4-1-44
4-1-43
4-1-43
4-1-43
4-1-44
4-1-44
4-1-43
4-1-43
4-1-43
CF
=consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-55
CROSS-REFERENCE (continued)
Industry
Part
Number,
I
Motorola
Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
DTZ30A
DTZ33
DTZ33A
DTZ36
DTZ36A
DTZ39
DTZ39A
DTZ43
DTZ43A
DTZ47
1,5KE30CA
1,5KE33C
1.5KE33CA
1,5KE36C
1.5KE36CA
1,5KE39C
1.5KE39CA
1,5KE43C
1.5KE43CA
1.5KE47C
4·1·43
4·1·43
.4·1·43
4·1·43
4·1·43
4·1·43
4·1·43
4·1·43
4·1·43
4·1·43
ICT·8
ICT·8C
ICTE·l0
ICTE·l0C
ICTE·12
ICTE·12C
ICTE·15
ICTE·15C
ICTE·18
ICTE·18C
DTZ47A
DTZ51
DTZ51 A
DTZ56
DTZ56A
DTZ62
DTZ62A
DTZ68
DTZ68A
DTZ6V8
1,5KE47CA
1.5KE51C
1,5KE51CA
1,5KE56C
1,5KE56CA
1,5KE62C
1,5KE62CA
1.5KE68C
1.5KE68CA
1.5KE6,8C
4·1·43
4·1·43
4·1·43
4·1·44
4·1·44
4·1·44
4·1·44
4·1·44
4·1·44
4·1·43
ICTE·22
ICTE·22C
ICTE·36
ICTE·36C
ICTE·45
ICTE·45C
ICTE·5
ICTE·8
ICTE·8C
LVA100A
DTZ6V8A
DTZ75
DTZ75A
DTZ7V5
DTZ7V5A
DTZ82
DTZ82A
DTZ8V2
DTZ8V2A
DTZ91
1.5KE6,8CA
1,5KE75C
1.5KE75CA
1.5KE7.5C
1.5KE7,5CA
1.5KE82C
1.5KE82CA
1.5KE8,2C
1.5KE8,2CA
1.5KE91C
4·1·43
4·1·44
4·1·44
4·1·43
4·1·43
4·1·44
4·1·44
4-1-43
4·1·43
4·1·44
DTZ91 A
DTZ9Vl
DTZ9V1A
GMp·5
GMP·5A
GMp·5B
ICT·l0
ICT·l0C
ICT·12
ICT·12C
1.5KE91CA
1.5KE9,lC
1.5KE9.1CA
lN6373
lN6373
lN6373
ICTE·l0
ICTE·l0C
ICTE·12
ICTE·12C
ICT·15
ICT·15C
ICT·18
ICT·18C
ICT·22
ICT·22C
ICT·36
ICT·36C
ICT·45
ICT-45C
ICT·5
ICTE·15
ICTE·15C
ICTE·18
ICTE·18C
ICTE·22
ICTE·22C
ICTE·36
ICTE·36C
ICTE·45
ICTE·45C
ICTE·5
Motorola
Motorola
Direct
Similar
Replacement Replacement
ICTE·8
ICTE"8C
ICTE·l0
ICTE·l0C
ICTE·12
ICTE·12C
ICTE·15
ICTE·15C
ICTE·18
ICTE·18C
ICTE·22
ICTE·22C
ICTE·36
ICTE·36C
ICTE·45
ICTE·45C
ICTE·5
ICTE·8
ICTE·8C
Page
Number
4·1-46
4·1-46
4·1·46
4·1·46
4·1·46
4·1-46
4·1·46
4·1·46
4·1·46
4·1·46
MZ5530B
4·1·46
4·1·46
.4·1·46
4·1·46
4·1·46
4·1-46
4·1·46
4·1·46
4·1·46
4·2·38
LVA3100A
LVA343A
LVA347A
LVA351A
LVA356A
LVA362A
LVA368A
LVA375A
LVA382A
LVA391A
MZ5530B
MZ5521B
MZ5522B
MZ5523B
MZ5524B
MZ5525B
MZ5526B
MZ5527B
MZ5528B
MZ5529B
4·2·38
4·2·38
4-2·38
4·2·38
4·2·38
4·2·38
4-2·38
4·2·38
4·2·38
4·2·38
4·1·44
4·1-43
4·1·43
4·1·46
4·1·46
4·1·46
4·1·46
4·1·46
4·1·46
4·1·46
LVA43A
LVA47A
LVA51 A
LVA56A
LVA62A
LVA68A
LVA75A
LVA82A
LVA91 A
MCL1300
MZ5521B
MZ5522B
MZ5523B
MZ5524B
MZ5525B
MZ5526B
MZ5527B
MZ5528B
MZ5529B
4·2·38
4-2·38
4·2·38
4·2·38
4·2·38
4·2·38
4·2·38
4·2·38
4·2·38
CF
4·1·46
4·1·46
4·1·46
4·1·46
4·1·46
4·1-46
4·1·46
4·1·46
4·1·46
4·1·46
4·1·46
MCL1301
MCL1302
MCL1303
MCL1304
MLL4099
MLL4100
MLL4101
MLL4102
MLL4103
MLL4104
MLL4105
MCL1300
MCL1301
MCL1302
MCL1303
MCL1304
CF = consult factory representative
TRANSIENT VOLTAGE SUPPRESSORSAND,ZENER DIODES
2-56
MLL4692
MLL4693
MLL4694
MLL4695
MLL4696
MLL4697
MLL4698
OF
CF
CF
CF
4·2·74
4·2·74
4·2·74
4·2·74
4·2·74
4·2·74
4·2·74
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Direct
Replacement
Motorola
Similar
Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Similar
Direct
Replacement Replacement
Page
Number
MLL4106
MLL4107
MLL4108
MLL4109
MLL4110
MLL4111
MLL4112
MLL4113
MLL4114
MLL4115
MLL4699
MLL4700
MLL4701
MLL4702
MLL4703
MLL4704
MLL4705
MLL4706
MLL4707
MLL4708
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
MLL4683
MLL4684
MLL4685
MLL4686
MLL4687
MLL4688
MLL4689
MLL4690
MLL4691
MLL4692
MLL4683
MLL4684
MLL4685
MLL4686
MLL4687
MLL4688
MLL4689
MLL4690
MLL4691
MLL4692
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
MLL4116
MLL4117
MLL4118
MLL4119
MLL4120
MLL4121
MLL4122
MLL4123
MLL4124
MLL4125
MLL4709
MLL4710
MLL4711
MLL4712
MLL4713
MLL4714
MLL4715
MLL4716
MLL4717
MMBZ5261BL
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-66
MLL4693
MLL4694
MLL4695
MLL4696
MLL4697
MLL4698
MLL4699
MLL4700
MLL4701
MLL4702
MLL4693
MLL4694
MLL4695
MLL4696
MLL4697
MLL4698
MLL4699
MLL4700
MLL4701
MLL4702
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
MLL4126
MLL4127
MLL4128
MLL4129
MLL4130
MLL4131
MLL4132
MLL4133
MLL4134
MLL4370A
MMBZ5262BL
MMBZ5263BL
MMBZ5264BL
MMBZ5265BL
MMBZ5266BL
MMBZ5267BL
MMBZ5268BL
MMBZ5269BL
MMBZ5270BL
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
4-2-75
MLL4703
MLL4704
MLL4705
MLL4706
MLL4707
MLL4708
MLL4709
MLL4710
MLL4711
MLL4712
MLL4703
MLL4704
MLL4705
MLL4706
MLL4707
MLL4708
MLL4709
MLL4710
MLL4711
MLL4712
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-75
4-2-75
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
MLL4713
MLL4714
MLL4715
MLL4716
MLL4717
MLL4728
MLL4728A
MLL4729
MLL4729A
MLL4730
MLL4713
MLL4714
MLL4715
MLL4716
MLL4717
15MB5913BT3
ISMB5913BT3
ISMB5914BT3
ISMB5914BT3
ISMB5915BT3
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-78
4-2-78
4-2-78
4-2-78
4-2-78
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
4-2-74
MLL4730A
MLL4731
MLL4731A
MLL4732
MLL4732A
MLL4733
MLL4733A
MLL4734
MLL4734A
MLL4735
MLL4735A
ISMB5915BT3
ISMB5916BT3
ISMB5916BT3
ISMB5917BT3
ISMB5917BT3
ISMB5918BT3
ISMB5918BT3
ISMB5919BT3
ISMB5919BT3
ISMB5920BT3
ISMB5920BT3
4-2-78
4-2-78
4-2-78
4-2-78
4-2-78
4-2-78
4-2-78
4-2-78
4-2-78
4-2-78
4-2-78
MLL4371A
MLL4372A
MLL4614
MLL4615
MLL4616
MLL4617
MLL4618
MLL4619
MLL4620
MLL4621
MLL4622
MLL4623
MLL4624
MLL4625
MLL4626
MLL4627
MLL4678
MLL4679
MLL4680
MLL4681
MLL4682
MLL5221B
MLL5223B
MLL5225B
MLL4678
MLL4679
MLL4680
MLL4681
MLL4682
MLL4683
MLL4684
MLL4685
MLL4686
MLL4687
MLL4688
MLL4689
MLL4690
MLL4691
MLL4678
MLL4679
MLL4680
MLL4681
MLL4682
CF = consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-57
I
CROSS-REFERENCE (continued)
Industry
Part
Number
I
Motorola
Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Direct
Similar
Page
Replacement Replacement , Number
MLL4736
MLL4736A
MLL4737
MLL4737A
MLL4738
MLL4738A
MLL4739
MLL4739A
MLL4740
MLL4740A
15MB5921BT3
15MB5921BT3
15MB5922BT3
15MB5922BT3
15MB5923BT3
15MB5923BT3
15MB5924BT3
15MB5924BT3
15MB5925BT3
15MB5925BT3
4-2-78,
4-2-78
4-2-78
4-2-78
4-2-78
4-2-78
4-2-78
4-2-78
4-2-78
4-2-78
MLL4761A
MLL4762
MLL4762A
MLL4763
MLL4763A
MLL4764
MLL4764A
MLL5221B
MLL5222B
MLL5223B
MLL5221B
MLL5222B
MLL5223B
MLL4741
MLL4741A
MLL4742
MLL4742A
MLL4743
MLL4743A
MLL4744
MLL4744A
MLL4745
MLL4745A
15MB5926BT3
15MB5926BT3
15MB5927BT3
15MB5927BT3
15MB5928BT3
15MB5928BT3
15MB5929BT3
15MB5929BT3
15MB5930BT3
15MB5930BT3
4-2-78
4-2-78
4-2-78
4-2-78
4-2-78
4-2-78
4-2-79
4-2-79
4-2-79
4-2-79
MLL5224B
MLL5225B
MLL5226B
MLL5227B
MLL5228B
MLL5229B
MLL5230B
MLL5231B
MLL5232B
MLL5233B
MLL5224B
MLL5225B
MLL5226B
MLL5227B
MLL5228B
MLL5229B
MLL5230B
MLL5231B
MLL5232B
MLL5233B
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
MLL4746
MLL4746A
MLL4747
MLL4747A
MLL4748
MLL4748A
MLL4749
MLL4749A
MLL47S0
MLL4750A
15MB5931BT3
15MB5931 BT3
15MB5932BT3
15MB5932BT3
15MB5933BT3
15MB5933BT3
15MB5934BT3
15MB5934BT3
15MB5935BT3
15MB5935BT3
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
MLL5234B
MLL5235B
MLL5236B
MLL5237B
MLL5238B
MLL5239B
MLL5240B
MLL5241B
MLL5242B
MLL5243B
MLL5234B
MLL5235B
MLL5236B
MLL5237B
MLL5238B
MLL5239B
MLL5240B
MLL5241B
MLL5242B
MLL5243B
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
MLL4751
MLL4751A
MLL4752
MLL4752A
MLL4753
MLL4753A
MLL4754
MLL4754A
MLL4755
MLL4755A
15MB5936BT3
15MB5936BT3
15MB5937BT3
15MB5937BT3
15MB5938BT3
15MB5938BT3
15MB5939BT3
15MB5939BT3
15MB5940BT3
15MB5940BT3
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
MLL5244B
MLL5245B
MLL5246B
MLL5247B
MLL5248B
MLL5249B
MLL5250B
MLL5251B
MLL5252B
MLL5253B
MLL5244B
MLL5245B
MLL5246B
MLL5247B
MLL5248B
MLL5249B
MLL5250B
MLL5251B
MLL5252B
MLL5253B
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
MLL4756
MLL4756A
MLL4757
MLL4757A
MLL4758
MLL4758A
MLL4759
MLL4759A
MLL4760
MLL4760A
MLL4761
15MB5941 BT3
15MB5941 BT3
15MB5942BT3
15MB5942BT3
15MB5943BT3
15MB5943BT3
15MB5944BT3
15MB5944BT3
15MB5945BT3
15MB5945BT3
15MB5946BT3
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
.4-2-79
MLL5254B
MLL5255B
MLL5256B
MLL5257B
MLL5258B
MLL5259B
MLL5260B
MLL5261B
MLL5262B
MLL5263B
MLL5264B
MLL5254B
MLL5255B
MLL5256B
MLL5257B
MLL5258B
MLL5259B
MLL5260B
MLL5261B
MLL5262B
MLL5263B
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-66
CF
15MB5946BT3
15MB5947BT3
15MB5947BT3
15MB5948BT3
15MB5948BT3
15MB5949BT3
15MB5949BT3
=consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-58
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-75
4-2-75
4~2-75
MMBZ5264BL
CROSS-REFERENCE (continued)
Industry
Part
Number
Industry
Part
Number
Motorola
Motorola
Similar
Direct
Replacement Replacement
Motorola
Similar
Replacement
Page
Number
MLL5265B
MLL5266B
MLL5267B
MLL5268B
MLL5269B
MLL5270B
MLL5913A,B
MLL5914A,B
MLL5915A,B
MLL5916A,B
MMBZ5265BL
MMBZ5266BL
MMBZ5267BL
MMBZ5268BL
MMBZ5269BL
MMBZ5270BL
1SMB5913BT3
1SMB5914BT3
15MB5915BT3
15MB5916BT3
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
4-2-78
4-2-78
4-2-78
4-2-78
MLL747A
MLL748A
MLL749A
MLL750A
MLL751A
MLL752A
MLL753A
MLL754A
MLL755A
MLL756A
MLL5227B
MLL5228B
MLL5229B
MLL5230B
MLL5231B
MLL5232B
MLL5234B
MLL5235B
MLL5236B
MLL5237B
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
MLL5917A,B
MLL5918A,B
MLL5919A,B
MLL5920A,B
MLL5921A,B
MLL5922A,B
MLL5923A,B
MLL5924A,B
MLL5925A,B
MLL5926A,B
15MB5917BT3
1SMB5918BT3
15MB5919BT3
1SMB5920BT3
15MB5921 BT3
15MB5922BT3
15MB5923BT3
1SMB5924BT3
15MB5925BT3
15MB5926BT3
4-2-78
4-2-78
4-2-78
4-2-78
4-2-78
4-2-78
4-2-78
4-2-78
4-2-78
4-2-78
MLL757A
MLL758A
MLL759A
MLL957B
MLL958B
MLL959B
MLL960B
MLL961B
MLL962B
MLL963B
MLL5239B
MLL5240B
MLL5242B
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
MLL5927A,B
MLL5928A,B
MLL5929A,B
MLL5930A,B
MLL5931A,B
MLL5932A,B
MLL5933A,B
MLL5934A,B
MLL5935A,B
MLL5936A,B
15MB5927BT3
15MB5928BT3
15MB5929BT3
15MB5930BT3
15MB5931BT3
15MB5932BT3
15MB5933BT3
15MB5934BT3
15MB5935BT3
15MB5936BT3
4-2-78
4-2-78
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
MLL964B
MLL965B
MLL966B
MLL967B
MLL968B
MLL969B
MLL970B
MLL971B
MLL972B
MLL973B
MLL5243B
MLL5245B
MLL5246B
MLL5248B
MLL5250B
MLL5251B
MLL5252B
MLL5254B
MLL5256B
MLL5257B
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
MLL5937A,B
MLL5938A,B
MLL5939A,B
MLL5940A,B
MLL5941A,B
MLL5942A,B
MLL5943A,B
MLL5944A,B
MLL5945A,B
MLL5946A,B
15MB5937BT3
15MB5938BT3
15MB5939BT3
15MB5940BT3
15MB5941 BT3
15MB5942BT3
15MB5943BT3
15MB5944BT3
15MB5945BT3
15MB5946BT3
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
MLL974B
MLL975B
MLL976B
MLL977B
MLL978B
MLL979B
MLL980B
MLL981B
MLL982B
MLL983B
MLL5258B
MLL5259B
MLL5260B
MLL5261B
MLL5262B
MLL5263B
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-75
4-2-66
4-2-66
4-2-66
4-2-66
MLL5947A,B
MLL5948A,B
MLL5949A,B
MLL5950A,B
MLL5951A,B
MLL5952A,B
MLL5953A,B
MLL5954A,B
MLL5955A,B
MLL5956A,B
MLL746A
15MB5947BT3
15MB5948BT3
15MB5949BT3
15MB5950BT3
1SMB5951BT3
15MB5952BT3
15MB5953BT3
15MB5954BT3
15MB5955BT3
15MB5956BT3
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-75
MLL984B
MMBZ15VDLT1
MMBZ5221BL
MMBZ5222BL
MMBZ5223BL
MMBZ5224BL
MMBZ5225BL
MMBZ5226BL
MMBZ5227BL
MMBZ5228BL
MMBZ5229BL
CF
Motorola
Direct
Replacement
MLL5226B
MLL5235B
MLL5236B
MLL5237B
MLL5239B
MLL5240B
MLL5241B
MLL5242B
MMBZ5265BL
MMBZ5266BL
MMBZ5267BL
MMBZ5268BL
MMBZ5270BL
MMBZ15VDLT1
MMBZ5221BL
MMBZ5222BL
MMBZ5223BL
MMBZ5224BL
MMBZ5225BL
MMBZ5226BL
MMBZ5227BL
MMBZ5228BL
MMBZ5229BL
=consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-59
Page
Number
4-2-66
4-1-52
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
CROSS-REFERENCE (continued)
"
Industry
Part
Number:
I
Motorola
Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
,
..
,{
,r
",,,,
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
MMBZ5230BL
MMBZ5231BL
MMBZ5232BL
MMBZ5233BL
MMBZ5234BL
MMBZ5235BL
MMBZ5236BL
MMBZ5237BL
MMBZ5238BL
MMBZ5239BL
MMBZ5230BL
MMBZ5231BL
MMBZ5232BL
MMBZ5233BL
MMBZ5234BL
MMBZ5235BL
MMBZ5236BL
MMBZ5237BL
MMBZ5238BL
MMBZ5239BL
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
MPT-36
MPT-36C
MPT-45
MPT-45C
MPH
MPT-8
MPT-8C
MPTE-10
MPTE-10C
MPTE-12
MPTE-10
MPTE-10C
MPTE-12
4-1-46
4-1-46
4-1-46
4-1-46
4-1-46
4-1-46
4-1-46
4,1-46
4-1-46
4-1-46
MMBZ5240BL
MMBZ5241BL
MMBZ5242BL
MMBZ5243BL
MMBZ5244BL
MMBZ5245BL
MMBZ5246BL
MMBZ5247BL
MMBZ5248BL
MMBZ5249BL
MMBZ5240BL
MMBZ5241BL
MMBZ5242BL
MMBZ5243BL
MMBZ5244BL
MMBZ5245BL
MMBZ5246BL
MMBZ5247BL
MMBZ5248BL
MMBZ5249BL
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
MPTE-12C
MPTE-15
MPTE-15C
MPTE-18
MPTE-18C
MPTE-22
MPTE-22C
MPTE-36
MPTE-36C
MPTE-45
MPTE-12C
MPTE-15
MPTE-15C
MPTE-18
MPTE-18C
MPTE-22
MPTE-22C
MPTE-36
MPTE-36C
MPTE-45
4-1-46
4-1-46
4-1-46
4-1-46
4-1-46
4-1-46
4-1-46
4-1-46
4-1-46
4-1-46
MMBZ5250BL
MMBZ5251BL
MMBZ5252BL
MMBZ5253BL
MMBZ5254BL
MMBZ5255BL
MMBZ5256BL
MMBZ5257BL
MMBZ5258BL
MMBZ5259BL
MMBZ5250BL
MMBZ5251BL
MMBZ5252BL
MMBZ5253BL
MMBZ5254BL
MMBZ5255BL
MMBZ5256BL
MMBZ5257BL
MMBZ5258BL
MMBZ5259BL
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
MPTE-45C
MPTE-5
MPTE-8
MPTE-8C
MR2535L
MZ1000-1
MZ1000-10
MZ1000-11
MZ1000-12
MZ1000-13
MPTE-45C
MPTE-5
MPTE-8
MPTE-8C
MR2535L
1N4728
1N4737
1N4738
1N4739
1N4740
4-1-46
4-1-46
4-1-46
4-1-46
4-1-48
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
MMBZ5260BL
MMBZ5261BL
MMBZ5262BL
MMBZ5263BL
MMBZ5264BL
MMBZ5265BL
MMBZ5266BL
MMBZ5267BL
MMBZ5268BL
MMBZ5269BL
MMBZ5260BL
MMBZ5261BL
MMBZ5262BL
MMBZ5263BL
MMBZ5264BL
MMBZ5265BL
MMBZ5266BL
MMBZ5267BL
MMBZ5268BL
MMBZ5269BL
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
4-2-66
MZ1000-14
MZ1000-15
MZ1000-16
MZ1000-17
MZ1000-18
MZ1000-19
MZ1000-2
MZ1000-20
MZ1000-21
MZ1000-22
1N4741
1N4742
1N4743
1N4744
1N4745
1N4746
1N4729
1N4747
1N4748
1N4749
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
MMBZ5270BL
MPT-10
MPT-10C
MPT-12
MPT-12C
MPT-15
MPT-15C
MPT-18
MPT-18C
MPT-22
MPT-22C
MMBZ5270BL
4-2-66
4-1-46
4-1-46
4-1-46
4-1-46
4-1-46
4-1-46
4-1-46
4-1-46
4-1-46
4-1-46
MZ1000-23
MZ1000-24
MZ1000-25
MZ1000-26
MZ1000-27
MZ1000-28
MZ1000-29
MZ1000-3
MZ1000-30
MZ1000-31
MZ1000-32
1N4750
1N4751
1N4752
1N4753
1N4754
1N4755
1N4756
1N4730
1N4757
1N4758
1N4759
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2·44
4-2-44
4-2-44
MPTE-10
MPTE-10C
MPTE-12
MPTI;-12C
MPTE-15
MPTE-15C
MPTE-18
MPTE,18C
MPTE-22
MPTE-22C
MPTE-36
MPTE-36C
MPTE-45
MPTE-45C
MPTE-5
MPTE-8
MPTE-8C
CF = consult factory representative
TRANSIE!,IIT VOLT~~E SUPPRESSORS AND ,zENER DIODES
2-60
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Numlaer
MZ1000-33
MZ1000-34
MZ1000-35
MZ1000-36
MZ1000-37
MZ1000-4
MZ1000-5
MZ1000-6
MZ1000-7
MZ1000-8
1N4760
1N4761
1N4762
1N4763
1N4764
1N4731
1N4732
1N4733
1N4734
1N4735
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
MZ4698
MZ4699
MZ4700
MZ4701
MZ4702
MZ4703
MZ4704
MZ4705
MZ4706
MZ4707
1N4698
1N4699
1N4700
1N4701
1N4702
1N4703
1N4704
1N4705
1N4706
1N4707
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
MZ1000-9
MZ4099
MZ41 00
MZ4101
MZ41 02
MZ41 03
MZ41 04
MZ4614
MZ4615
MZ4616
1N4736
MZ4099
MZ41 00
MZ4101
MZ41 02
MZ41 03
MZ41 04
MZ4614
MZ4615
MZ4616
4-2-44
4-2-37
4-2-37
4-2-37
4-2-37
4-2-37
4-2-37
4-2-37
4-2-37
4-2-37
MZ4708
MZ4709
MZ471 0
MZ4711
MZ4712
MZ4713
MZ4714
MZ4715
MZ4716
MZ4717
1N4708
1N4709
1N4710
1N4711
1N4712
1N4713
1N4714
1N4715
1N4716
1N4717
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
MZ4617
MZ4618
MZ4619
MZ4620
MZ4621
MZ4622
MZ4623
MZ4624
MZ4625
MZ4626
MZ4617
MZ4618
MZ4619
MZ4620
MZ4621
MZ4622
MZ4623
MZ4624
MZ4625
MZ4626
4-2-37
4-2-37
4-2-37
4-2-37
4-2-37
4-2-37
4-2-37
4-2-37
4-2-37
4-2-37
MZ500-1
MZ500-10
MZ500-11
MZ500-12
MZ500-13
MZ500-14
MZ500-15
MZ500-16
MZ500-17
MZ500-18
1N5221 A
1N5232A
1N5234A
1N5235A
1N5236A
1N5237A
1N5239A
1N5240A
1N5241 A
1N5242A
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
MZ4627
MZ4678
MZ4679
MZ4680
MZ4681
MZ4682
MZ4683
MZ4684
MZ4685
MZ4686
MZ4627
1N4678
1N4679
1N4680
1N4681
1N4682
1N4683
1N4684
1N4685
1N4686
4-2-37
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
MZ50Q-19
MZ500-2
MlSOO-20
MZ500-21
MlSOO-22
MZ500-23
MZ50Q-24
MZ50Q-25
MlSOO-26
MZ500-27
1N5243A
1N5223A
1N5245A
1N5246A
1N5248A
1N525OA
1N5251A
1N5252A
1N5254A
1N5256A
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
MZ4687
MZ4688
MZ4689
MZ4690
MZ4691
MZ4692
MZ4693
MZ4694
MZ4695
MZ4696
MZ4697
1N4687
1N4688
1N4689
1N4690
1N4691
1N4692
1N4693
1N4694
1N4695
1N4696
1N4697
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
4-2-30
MZ500-28
MZ500-29
MZ500-3
MZ500-30
MZ500-31
MZ500-32
MZ500-33
MZ500-34
MZ500-35
MZ500-36
MZ500-37
1N5257A
1N5258A
1N5225A
1N5259A
1N5260A
1N5261 A
1N5262A
1N5263A
1N5265A
1N5266A
1N5267A
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-32
4-2-32
CF =consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-61
CROSS-REFERENCE (continued)
Industry
Part
.Number·
I
l\4otorola
D.lrect
Rep~cement
MZ500-38
MZ500-39
MZ500-4
MZ500-40
MZ50()"5
MZ500-6
MZ500-7
MZ50Q-8
MZ500-9
MZ5520B
1N5268A
1N5270A
1N5226A
1N5271 A
1N5227A
1N5228A
1N5229A
1N5230A
1N5231A
MZ5520B
MZ5521B
MZ5522B
MZ55,23B
MZ5524B
MZ5525B
MZ5526B
MZ5527B
MZ552SB
MZ5529B
MZ5530B
MZ5521B
MZ5522B
MZ5523B
MZ5524B
MZ5525B
MZ5526B
MZ5527B
MZ5528B
MZ5529B
MZ5530B
"''''''''',~--,,-,I'' .-
Motorola
Similar
Replacement
~
"
,
Industry
Part
Number
Page
Number
,~
"
, ":
;
~.":" ..
Motorola
: Motorola
Direct
Similar
Page
Replacement Replacement 'Number
4-2-32
4-2-32
4-2-31
4-2-32
4-2-31
4-2-31
4-2-31
4,2-31
4-2-31
4-2-38
MZ623-19
MZ623-19A
MZ623-19B
MZ623-20
MZ623-20A
MZ623-20B
MZ623-21
MZ623-21A
MZ623-21B
MZ623-22
1N4750A
1N4750A
1N4750A
1N4751A
1N4751 A
1N4751 A
1N4752A
1N4752A
1N4752A
1N4753A
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-38
4-2-38
4-2-38
4-2-38
4-2-38
4-2-38
4-2-38
4-2-38
4-2-38.
4-2-38
MZ623-22A
MZ623-22B
MZ623-23
MZ623-23A
MZ623-23B
MZ623·24
MZ623-24A
MZ623-24B
MZ623-25
MZ623-25A
1N4753A
1N4753A
1N4754A
1N4754A
1N4754A
1N4755A
1N4755A
1N4755A
1N4756A
1N4756A
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
MZ5555
MZ5556
MZ5557
MZ5558
MZ623,10
MZ623-10A
MZ623-10B
MZ623-11
MZ623-11A
MZ623-11B
1N6284A
1N9287A
1N6289A
1N6303A
1N4744A
1N4744A
1N4744A
1N4745A
1N4745A
1N4745A
4-1-43
4-1-43
4-1-44
4-1-44 :
4'2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
MZ623·25B
MZ623-26
MZ623-26A
MZ623-26B
MZ623-27
MZ623-27A
MZ623-27B
MZ623-S
MZ623-6A
MZ623-6B
1N4756A
1N4756A
1N4756A
1N4756A
1N4757A
1N4757A
1N4757A
1N4741 A
1N4741A
1N4741A
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
MZ623-12
MZ623-12A
MZ623-12B
MZ623-13
MZ623-13A
MZ623-13B
MZ623·14
MZ623-14A
MZ623-14B
MZ623-15
1N4746A
1N4746A
1N4746A
1N4746A
111!4746A
1N4746A
1N4747A
1N4747A
1N4747A
1N4747A
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4,?c44
4-2-44
4-2-44.
4-2-44
4-2-44
MZ623-7
MZ623-7A
MZ623-7B
MZ623-8
MZ623-8A
MZ623-8B
MZ623-S
MZ623-SA
MZ623-SB
MZ70-100B
1N4742A
1N4742A
1N4742A
1N4743A
1N4743A
1N4743A
1N4744A
1N4744A
1N4744A
1N5271B
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-32
MZ623-15A
MZ623·15B
MZ623-16
MZ623-16A
MZ623-16B
MZ623-17
MZ623-17A
MZ623·17B
MZ623,·18 I
MZ623-18A
MZ623,18B
1N4747A
1N4747A
1N4748A
1N4748A
1N4748A
1N4749A
1N4749A
1N4749A
1N4749A
1N4749A
1N4749A
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
4-2-44
MZ70-10B
MZ70-110B
MZ70-11B
MZ70-120B
MZ70-12B
MZ70-130B
MZ70-13B
MZ70-140B
MZ70-14B
MZ70-150B
MZ70-15B
1N5240B
1N5272B
1N5241B
1N5273B
1N5242B
1N5274B
1N5243B
1N5275B
1N5244B
1N5276B
1N5245B
4:2-31
4-2-32
4-2-31 '
4-2-32
4-2-31
4'2-32
4-2-31
4-2-32
4-2-31
4-2-32
4-2-31
CF =consult factory representative
TRANSIENTNOLTAGE.SUPPRESSORSAND ZENER DIODES
?-62
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Similar
Direct
Replacement Replacement
Page
Number
MZ70-1608
MZ70-168
MZ70-1708
MZ70-178
MZ70-1808
MZ70-188
MZ70-1908
MZ70-198
MZ70-2.48
MZ70-2.58
1N52778
1N52468
1N52788
1N52478
1N52798
1N52488
1N52808
1N52498
1N52218
1N52228
4-2-32
4-2-31
4-2-32
4-2-31
4-2-32
4-2-31
4-2-32
4-2-31
4-2-31
4-2-31
MZ92-1108
MZ92-118
MZ92-1208
MZ92-128
MZ92-1308
MZ92-138
MZ92-1408
MZ92-148
MZ92-1508
MZ92-158
1N52728
1N52418
1N52738
1N52428
1N52748
1N52438
1N52758
1N52448
1N52768
1N52458
4-2-32
4-2-31
4-2-32
4-2-31
4-2-32
4-2-31
4-2-32
4-2-31
4-2-32
4-2-31
MZ70-2.78
MZ70-2.88
MZ70-2008
MZ70-208
MZ70-228
MZ70-248
MZ70-258
MZ70-278
MZ70-288
MZ70-3.38
1N52238
1N52248
1N52818
1N52508
1N52518
1N52528
1N52538
1N52548
1N52558
1N52268
4-2-31
4-2-31
4-2-32
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
MZ92-1608
MZ92-168
MZ92-1708
MZ92-178
MZ92-1808
MZ92-188
MZ92-1908
MZ92-198
MZ92-2.48
MZ92-2.58
1N5277B
1N52468
1N5278B
1N52478
1N52798
1N52488
1N52808
1N52498
1N52218
1N5222B
4-2-32
4-2-31
4-2-32
4-2-31
4-2-32
4-2-31
4-2-32
4-2-31
4-2-31
4-2-31
MZ70-3.68
MZ70-3.98
MZ70-308
MZ70-338
MZ70-368
MZ70-398
MZ70-38
MZ70-4.38
MZ70-4.78
MZ70-438
1N52278
1N52288
1N52568
1N52578
1N52588
1N52598
1N52258
1N52298
1N52308
1N52608
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
MZ92-2.78
MZ92-2.88
MZ92-2008
MZ92-208
MZ92-228
MZ92-248
MZ92-25B
MZ92-27B
MZ92-288
MZ92-3.38
1N5223B
1N5224B
1N52818
1N52508
1N52518
1N5252B
1N5253B
1N5254B
1N52558
1N52268
4-2-31
4-2-31
4-2-32
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
MZ70-478
MZ70-5.18
MZ70-5.68
MZ70-518
MZ70-568
MZ70-6.28
MZ70-6.88
MZ70-608
MZ70-628
MZ70-688
1N52618
1N52318
1N52328
1N52628
1N52638
1N52348
1N52358
1N52648
1N52658
1N52668
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-32
MZ92-3.68
MZ92-3.98
MZ92-308
MZ92-33B
MZ92-368
MZ92-398
MZ92-38
MZ92-4.38
MZ92-4.78
MZ92-438
1N52278
1N52288
1N52568
1N5257B
1N52588
1N52598
1N52258
1N52298
1N52308
1N52608
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31 '
4-2-31
MZ70-68
MZ70-7.58
MZ70-758
MZ70-8.28
MZ70-8.78
MZ70-828
MZ70-878
MZ70-9.18
MZ70-918
MZ92-1008
MZ92-108
1N52338
1N52368
1N52678
1N52378
1N52388
1N52688
1N52698
1N52398
1N52708
4-2-31
4-2-31
4-2-32
4-2-31
4-2-31
4-2-32
4-2-32
4-2-31
4-2-32
4-2-32
4-2-31
MZ92-478
MZ92-5.18
MZ92-5.68
MZ92-518
MZ92-56B
MZ92-6.28
MZ92-S.88
MZ92-608
MZ92-628
MZ92-688
MZ92-68
1N52618
1N52318
1N52328
1N52628
1N52638
1N5234B
1N52358
1N52648
1N52658
1N52668
1N52338
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-31
4-2-32
4-2-31
CF
1N52718
1N52408
=consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-63
CROSS-REFERENCE (continued)
Industry
. Moto~ola
$Imilar
Nu":,_ . RePlIICelllent Replacement
part
. MotofoIa
Dintct
MZ92-7.5B
MZ92-75B
MZ92-8.2B
MZS2-S.7B
lN5236B
lN5267B
lN5237B
lN5238B
lN5268B
lN5269B
lN5239B
lN5270B
MZDll
MIDHO
MZD12
MZDl20
MZD13
MZDl30
MZD15
MZD150
MZD16
MZDl60
MZ018
MZD189
MZD20
MZD20D
MZD22 .
MZDlO MZDl00
MZP4729A
MZP4730A
MZP4731A
MZP4732A
MZP4733A
MZP4734A
MZP4735A
MZP4736A
MZP4737A
MZP4738A
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
MZDll
MZDl10.
MZD12.·
MZD120
MZ013
MZDl30
MZD15 .
MZD150
MZD16
MZDl60.
4-2-55
4-2-55
4-2-55
4-2-55
4-2-55
4-2-55
4-2-55
4-2-55
4-2-55
4-2-55
MZP4739A
MZP4740A
MZP4741A
MZP4742A
MZP4743A
MZP4744A
MZP4745A
MZP4746A
MZP4747A
MZP4748A
MZP4739A
MZP4740A
MZP4741A
MZP4742A
MZP4743A
MZP4744A
MZP4745A
MZP4746A
MZP4747A
MZP4748A
4-2-56
4-2-56
4-2-56
4-2-56.
4-2'56
4-2-56
4-2-56
4-2-56
4-2·56
4-2-56
MZD18
MZD180
4-2-55
4-2-55
4-2-55
4-2-55
4-2-55
4:2-55
4-2-55
4-2-55
4-2-55
. 4-2-55
MZP4749A
MZP4750A
MZP4751A
MZP4752A
MZP4753A
MZP4754A
MZP4755A
MZP4756A
MZP4757A
MZP4758A
MZP4749A
MZP4750A
MZP4751A
MZP4752A
MZP4753A
MZP4754A
MZP4755A
MZP4756A
MZP4757A
MZP4758A
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-55
4-2.55
4-2-55
4-2-55
4-2-55
4-2-55
4-2-55
4-2-55
4-2-55
4-2-55
MZP4759A
MZP4760A
MZP4761A
MZP4762A
MZP4763A
MZP4764A
MZPY10
MZPY100
MZPY11
MZPY12
MZP4759A
MZP4760A
MZP4761A
MZP4762A
MZP4763A
MZP4764A
MZPY10
MZPY100
MZPY11
MZPY12
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-56
4-2-46
4-2-46
4-2-46
4-2-46
MZPY13
MZPY15
MZPY16
MZPY18
MZPY20
MZPY22
MZPY24
MZPY27
MZPY3.9
MZPY30
MZPY33
MZPY13
MZPY15
MZPY16
MZPY18
MZPY20
MZPY22
MZPY24
MZPY27
MZPY3.9
MZPY30
MZPY33
4-2-46
4-2-46
4-2-46
4-2-46
4-2-46
4-2-46
4-2-46
4-2-46
4-2·46
4-2-46 .
4-2-46
MZD20
MZD200
MZD22
MZ024
MZD3i
MZD36
MZD39
MZD4.3
MZD4.7
MZD43
MZD47
MZD5.1
MZD5.6
MZD51
MZD56
MZD3e
MlDB.2
MZD82
MZ09.1
MZD91
MlP4728A
Page
Number
MZP4729A
MZP4730A
MZP4731A
MZP4732A
MZP4733A
MZP4734A
MZP4735A
MZP4736A
MZP4737A
MZP4738A
MZD24
MZD27
MZD3.9
MZD30
MZD33
MZD6.2
MID6.8
MZD62
MZD68.
MZD7.5
MZD75
Number
Motorola
Motorola
Direct
.Slmliar
Replacement Replacement
4-2-31
4-2-32
4-2-31 .
4-2-31
4-2-32
4-2-32
4-2-31
4-2-32
4-2-55
4-2-55
MZ92.82B
MZ92-87B
MZ92-9.1B
MZ92-91B
MZD10
MZOl00
Industry
Part
Number
,Page
MZD27
MZD3.9
MZD30
MZD33
MZD4.3
MZD4.7
MZIJ43
MZD47
MZ05.1
MZD5.6
MZD51
MZD56
MZD6.2.
4-2-55
4-2-55
4-2-55
4-2-55
.4-2-55
4-2-55
4-2-55
4-2-55
. 4-2-55
4-2-55
4-2-56
MZDG.B
MZDG2
MZD68
MZD7.5
MZD75
MZDS.2
MZD82
MZ09.1
MZD91
MZP4728~
CF = coosuIt factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-(54
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Similar
Direct
Replacement Replacement
Page
Number
MZPY36
MZPY39
MZPY4.3
MZPY4.7
MZPY43
MZPY47
MZPY5.1
MZPY5.6
MZPY51
MZPY56
MZPY36
MZPY39
MZPY4.3
MZPY4.7
MZPY43
MZPY47
MZPY5.1
MZPY5.6
MZPY51
MZPY5S
4-2-46
4-2-46
4-2-46
4-2-46
4-2-46
4-2-46
4-2-46
4-2-46
4-2-46
4-2-4S
P5KE1SCA
P5KE20A
P5KE20CA
P5KE22A
P5KE22CA
P5KE24A
P5KE24CA
P5KE26A
P5KE26CA
P5KE2SA
PSKE22CA
PSKE24A
PSKE24CA
PSKE27A
P6KE27CA
PSKE30A
PSKE30CA
P6KE33A
PSKE33CA
P6KE33A
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
MZPYS.2
MZPYS.S
MZPYS2
MZPYSS
MZPY7.5
MZPY75
MZPYS.2
MZPYS2
MZPY9.1
MZPY91
MZPYS.2
MZPY6.S
MZPYS2
MZPY6S
MZPY7.5
MZPY75
MZPYS.2
MZPYS2
MZPY9.1
MZPY91
4-2-4S
4-2-4S
4-2-46
4-2-4S
4-2-4S
4-2-4S
4-2-4S
4-2-4S
4-2-46
4-2-4S
P5KE2SCA
P5KE30A
P5KE30CA
P5KE33A
P5KE33CA
P5KE3SA
P5KE36CA
P5KE40A
P5KE40CA
P5KE43A
PSKE33CA
PSKE3SA
PSKE3SCA
PSKE39A
PSKE39CA
PSKE43A
P6KE43CA
PSKE47A
PSKE47CA
PSKE51A
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
P5KE100A
P5KE100CA
P5KE10A
P5KE10CA
P5KE110A
P5KE110CA
P5KE11A
P5KE11CA
P5KE120A
P5KE120CA
P6KE120A
PSKE120CA
PSKE12A
PSKE12CA
PSKE130A
PSKE130CA
PSKE13A
PSKE13CA
PSKE150A
PSKE150CA
4-1-34
4-1-34
4-1-33
4-1-33
4-1-34
4-1-34
4-1-33
4-1-33
4-1-34
4-1-34
P5KE43CA
P5KE45A
P5KE45CA
P5KE4SA
P5KE48CA
P5KE5.0A
P5KE5.0CA
P5KE51A
P5KE51CA
P5KE54A
PSKE51CA
P6KE5SA
PSKE5SCA
PSKE5SA
PSKE56CA
PSKE6.8A
PSKES.8CA
PSKE62A
P6KE62CA
P6KES8A
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-34
P5KE12A
P5KE12CA
P5KE130A
P5KE130CA
P5KE13A
P5KE13CA
P5KE14A
P5KE14CA
P5KE150A
P5KE150CA
PSKE15A
P6KE15CA
PSKE160
PSKE160CA
PSKE15A
P6KE15CA
PSKE1SA
PSKE1SCA
PSKE1S0A
PSKE180CA
4-1-33
4-1-33
4-1-34
4-1-34
4-1-33
4-1-33
4-1-33
4-1-33
4-1-34
4-1-34
P5KE54CA
P5KE58A
P5KE58CA
P5KES.OA
P5KE6.0CA
P5KE6.5A
P5KE6.5CA
P5KE60A
P5KE60CA
P5KE64A
PSKES8CA
PSKE68A
PSKES8CA
PSKE7.5A
P6KE7.5CA
P6KE7.5A
P6KE7.5CA
P6KE75A
P6KE75CA
P6KE75A
4-1-34
4-1-34
4-1-34
4-1-33
4-1-33
4-1-33
4-1-33
4-1-34
4-1-34
4-1-34
P5KE15A
P5KE15CA
P5KE1S0A
P5KE1S0CA
P5KE1SA
P5KE1SCA
P5KE170A
P5KE170CA
P5KE17A
P5KE17CA
P5KE18A
P6KE1SA
PSKE18CA
P6KE200A
PSKE200CA
P6KE20A
PSKE20CA
P6KE200A
PSKE200CA
PSKE20A
PSKE20CA
PSKE22A
4-1-33
4-1-33
4-1-34
4-1-34
4-1-33
4-1-33
4-1-34
4-1-34
4-1-33
4-1-33
4-1-33
P5KE64CA
P5KE7.0A
P5KE7.0CA
P5KE7.5A
P5KE7.5CA
P5KE70A
P5KE70CA
P5KE75A
P5KE75CA
P5KE78A
P5KE78CA
P6KE75CA
P6KES.2A
PSKE8.2CA
P6KE9.1A
P6KE9.1CA
PSKE82A
P6KE82CA
PSKE91A
P6KE91CA
P6KE91A
PSKE91CA
4-1-34
4-1-33
4-1-33
4-1-33
4-1-33
4-1-34
4-1-34
4-1-34 .
4-1-34
4-1-34
4-1-34
CF = consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2~65
I
CROSS-REFERENCE (continued)
Industry
Part
Number
I
, Motorola
' Motorola
Direct
Similar
Replacement Replacement
P5KE8,OA
P5KE8.0CA
P5KE8,5A
P5KE8,5CA
P5KE85A
P5KE85CA
P5KE9.0A
P5KE9.0CA
P5KE90A
P5KE90CA
P6KE10
P6KE100
P6KE100A
P6KE100C
P6KE100CA
P6KE100CP
P6KE100P
P6KE10A
P6KE10C
P6KE10CA
P6KE10CP
P6KE10P
P6KE11
P6KE110
P6KE110A
P6KE110C
P6KE110CA
P6KE110CP
P6KE110P
P6KE11A
P6KE11C
P6KE11CA
P6KE11CP
P6KE11P
P6KE12
P6KE120
P6KE120A
P6KE120C
P6KE120CA
P6KE120CP
P6KE120P
P6KE12A
P6KE12C
P6KE12CA
P6KE12CP
P6KE12P
P6KE13
P6KE130
P6KE130A
P6KE130C
P6KE130CA
P6KE10A
P6KE10CA
P6KE10A
P6KE10CA
P6KE100A
P6KE100CA
P6KE11A
P6KE11CA
P6KE110A
P6KE110CA
P6KE10
P6KE100
P6KE100A
P6KE100C
P6KE100CA
P6KE100CA
P6KE100A
P6KE10A
P6KE10C
P6KE10CA
P6KE10CA
P6KE10A
P6KE11
P6KE110
P6KE110A
P6KE110C
P6KE110CA
P6KE110CA
P6KE110A
P6KE11A
P6KE11C
P6KE11CA
P6KE11CA
P6KE11A
P6KE12
P6KE120
P6KE120A
P6KE120C
P6KE120CA
P6KE120CA
P6KE120A
P6KEl2A
P6KE12C
P6KE12CA
P6KE12CA
P6KE12A
P6KE13
P6KE130
P6KE130A
P6KE130C
P6KE130CA
Industry
Part
Number
Page
Number
4-1-33
4-1-33
4-1-33
4-1-33
4-1-34
4-1-34
4-1-33
4-1-33
4-1-34
4-1-34
P6KE130CP
P6KE130P
P6KE13A
P6KE13C
P6KE13CA
P6KE13CP
P6KE13P
P6KE15
P6KE150
P6KE150A
4-1-33
4-1-34
4-1-34
4-1-34
4-1-34
4-1-34
4+34
4-1-33
4-1-33
4-1-33
P6KE150C
P6KE150CA
P6KE150CP
P6KE150P
P6KE15A
P6KE15C
P6KE15CA
P6KE15CP
P6KE15P
P6KE16
4-1-33
4-1-33
4-1-33
4-1-34
4-1-34
4-1-34
4-1-34
4-1-34
4-1-34
4-1-33
P6KE160
P6KE160A
P6KE160C
P6KE160CA
P6KE160CP
P6KE160P
P6KE16A
P6KE16C
P6KE16CA
P6KE16CP
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-34
4-1-34
4-1-34
4-1-34
4-1-34
P6KE16P
P6KE170
P6KE170A
P6KE170C
P6KE170CA
P6KE170CP
P6KE170P
P6KE18
P6KE180
P6KE180A
4-1-34
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-34
4-1-34
'4-1-34
4-1-34
P6KE180C
P6KE180CA
P6KE180CP
P6KE180P
P6KE18A
P6KE18C
P6KE18CA
P6KE18CP
P6KE18P
P6KE20
P6KE200
Motorola
Motorola
Direct
Similar
Replacement Replacement
P6KE130CA
P6KE130A
P6KE13A
P6KE13C
P6KE13CA
P6KE13CA
P6KE13A
P6KE15
P6KE150
P6KE150A
P6KE150C
P6KE150CA
P6KE150CA
P6KE150A
P6KE15A
P6KE15C
P6KE15CA
P6KE15CA
P6KE15A
P6KE16
P6KE160
P6KE160A
P6KE160C
P6KE160CA
P6KE160CA
P6KE160A
P6KE16A
P6KE16C
P6KE16CA
P6KE16CA
P6KE16A
PSKE170
P6KE170A
,P6KE170C
P6KE170CA
P6KE170CA
P6KE170A
P6KE18
P6KE180
P6KE180A
P6KE180C
P6KE180CA
P6KE180CA
P6KE180A
P6KE18A
P6KE180
P6KE18CA
P6KE18CA
P6KE18A
P6KE20,
P6KE200
CF = consult factory representative
TRAN$IENT VOLTAGE SUPPRESSORS AND ZENER OIODES
2-66
Page
Number
4-1-34
4-1-34
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-34
4-1-34
4-1-34
4-1-34
4-1-34
4-1-34
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-34
4-1-34
4-1,34
4-1-34
4-1-34
4-1-34
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-34
4-,1-34
4-1-34
4-1-34
4.1-34
4-1-34
4-1-33
4-1-34
4-1-34
4-1-34
4-1-34
4-1-34
4-1-34
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-34
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Direct
Replacement
P6KE200A
P6KE200C
P6KE200CA
P6KE200CP
P6KE200P
P6KE20A
P6KE20C
P6KE20CA
P6KE20CP
P6KE20P
P6KE200A
P6KE200C
P6KE200CA
P6KE22
P6KE220CP
P6KE220P
P6KE22A
P6KE22C
P6KE22CA
P6KE22CP
P6KE22P
P6KE24
P6KE24A
P6KE22
P6KE24C
P6KE24CA
P6KE24CP
P6KE24P
P6KE250CP
P6KE250P
P6KE27
P6KE27A
P6KE27C
P6KE27CA
P6KE27CP
P6KE27P
P6KE30
P6KE30A
P6KE30C
P6KE30CA
P6KE30CP
P6KE30P
P6KE33
P6KE33A
P6KE33C
P6KE33CA
P6KE33CP
P6KE33P
P6KE36
P6KE36A
P6KE36C
P6KE36CA
P6KE36CP
P6KE36P
P6KE39
Motorola
Similar
Replacement
P6KE200CA
P6KE200A
P6KE20A
P6KE20C
P6KE20CA
P6KE20CA
P6KE20A
1.5KE220CA
1.5KE220A
P6KE22A
P6KE22C
P6KE22CA
P6KE22CA
P6KE22A
P6KE24
P6KE24A
P6KE24C
P6KE24CA
P6KE24CA
P6KE24A
1.5KE250CA
1.5KE250A
P6KE27
P6KE27A
P6KE27C
P6KE27CA
P6KE27CA
P6KE27A
P6KE30
P6KE30A
P6KE30C
P6KE30CA
P6KE30CA
P6KE30A
P6KE33
P6KE33A
P6KE33C
P6KE33CA
P6KE33CA
P6KE33A
P6KE36
P6KE36A
P6KE36C
P6KE36CA
P6KE36CA
P6KE36A
P6KE39
Industry
Part
Number
Page
Number
Motorola
Motorola
Similar
Direct
Replacement Replacement
4-1-34
4-1-34
4-1-34
4-1-34
4-1-34
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
P6KE39A
P6KE39C
P6KE39CA
P6KE39CP
P6KE39P
P6KE43
P6KE43A
P6KE43C
P6KE43CA
P6KE43CP
4-1-33
4-1-44
4-1-44
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
P6KE43P
P6KE47
P6KE47A
P6KE47C
P6KE47CA
P6KE47CP
P6KE47P
P6KE51
P6KE51A
P6KE51C
4-1-33
4-1-33
4-1-33
4-1-33
4-1-44
4-1-44
4-1-33
4-1-33
4-1-33
4-1-33
P6KE51CA
P6KE51CP
P6KE51P
P6KE56
P6KE56A
P6KE56C
P6KE56CA
P6KE56CP
P6KE56P
P6KE6.8
P6KE51CA
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
P6KE6.8A
P6KE6.8C
P6KE6.8CA
P6KE62
P6KE62A
P6KE62C
P6KE62CA
P6KE62CP
P6KE62P
P6KE68
P6KE6.8A
P6KE6.8C
P6KE6.8CA
P6KE62
P6KE62A
P6KE62C
P6KE62CA
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
P6KE68A
P6KE68C
P6KE68CA
P6KE68CP
P6KE68P
P6KE6V8A
P6KE6V8CA
P6KE6V8CP
P6KE6V8P
P6KE7.5
P6KE7.5A
P6KE68A
P6KE68C
P6KE68CA
P6KE39A
P6KE39C
P6KE39CA
P6KE39CA
P6KE39A
P6KE43
P6KE43A
P6KE43C
P6KE43CA
P6KE43CA
P6KE43A
P6KE47
P6KE47A
P6KE47C
P6KE47CA
P6KE47CA
P6KE47A
P6KE51
P6KE51A
P6KE51C
P6KE51CA
P6KE51A
P6KE56
P6KE56A
P6KE56C
P6KE56CA
P6KE56CA
P6KE56A
P6KE6.8
P6KE62CA
P6KE62A
P6KE68
P6KE68CA
P6KE68A
P6KE6.8A
P6KE6.8CA
P6KE6.8CA
P6KE6.8A
P6KE7.5
P6KE7.5A
Page
Number
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-34
4-1-34
4-1-34
4-1-34
4-1-34
4-1-34
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
4-1-33
CF = consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-67
\
\
CROSS-REFERENCE (continued)
Industry
Part
Number
I
P6KE7.5C
P6KE7.5CA
P6KE75
P6KE75A
P6KE75C
P6KE75CA
P6KE75CP
P6KE75P
P6KE7V5A
P6KE7V5CA
P6KE7V5CP
P6KE7V5P
P6KE8.2
P6KE8.2A
P6KE8.2C
P6KE8.2CA
P6KE82
P6KE82A
P6KE82C
P6KE82CA
P6KE82CP
P6KE82P
P6KE8V2A
P6KE8V2CA
P6KE8V2CP
P6KE8V2P
P6KE9.1
P6KE9.1A
P6KE9.1C
P6KE9.1CA
4·1·33
4·1·33
4·1·34
4·1·34
4·1·34
4·1·34
4·1·34
4·1·34
4·1·33
4·1·33
P6SMB16AT3
P6SMBt70AT3
P6SMB180AT3
P6SMB18AT3
P6SMB200AT3
P6SMB20AT3
P6SMB22AT3
P6SMB24AT3
P6SMB27AT3
P6SMB30AT3
P6SMB16AT3
P6SMB170AT3
P6SMB180AT3
P6SMB18AT3
P6SMB200AT3
P6SMB20AT3
P6SMB22AT3
P6SMB24AT3
P6SMB27AT3
P6SMB30AT3
4·1·60
4·1·60
4·1·60
4·1·60
4·1·60
4·1·60
4·1·60
4·1·60
4·1·60
4·1·60
P6KE7.5CA
P6KE7.5A
4·1·33
4·1·33
4·1·33
4·1·33
4·1·33
4·1·33
4·1·34
4·1·34
4·1·34
4·1·34
P6SMB33AT3
P6SMB36AT3
P6SMB39AT3
P6SMB43AT3
P6SMB47AT3
P6SMB51AT3
P6SMB56AT3
P6SMB6.8AT3
P6SMB62AT3
P6SMB68AT3
P6SMB33AT3
P6SMB36AT3
P6SMB39AT3
P6SMB43AT3
P6SMB47AT3
P6SMB51AT3
P6SMB56AT3
P6SMB6.8AT3
P6SMB62AT3
P6SMB68AT3
4·1·60
4·1·60
4·1·60
4·1·60
4·1·60
4·1·60
4·1·60
4·1·60
4·1·60
4·1·60
P6KE82CA
P6KE82A
P6KE8.2A
P6KE8.2CA
P6KE8.2CA
P6KE8.2A
4·1·34
4·1·34
4·1·33
4·1·33
4·1·33
4·1·33
4·1·33
4·1·33
4·1·33
4·1·33
P6SMB7.5AT3
P6SMB75AT3
P6SMB8.2AT3
P6SMB82AT3
P6SMB9.1AT3
P6SMB91AT3
P7KE10
P7KE100
P7KE100C
P7KE10C
P6SMB7.5AT3
P6SMB75AT3
P6SMB8.2AT3
P6SMB82AT3
P6SMB9.1AT3
P6SMB91AT3
1N6275
1N6299
1.5KE150C
1.5KE15C
4·1·60
4·1·60
4·1·60
4·1·60
4·1·60
4·1·60
4-1-43
4·1·44
4·1·44
4·1·43
4·1·34
4·1·34
4·1·34
4·1·34
4·1·34
4·1·34
4·1·33
4·1·33
4·1·33
4·1·33
P7KE25
P7KE25C
P7KE43
P7KE43C
P7T·10
P7T·10B
P7T·110
P7T·110B
P7T·27
P7T·27B
1N6284
1.5KE36C
1N6289
1.5KE56C
1N6276
1.5KE16C
1N6299
1.5KE150C
1N6283
1.5KE33C
4·1-43
4·1·43
4·1·44
4·1-44
4·1·43
4·1·43
4·1·44
4,1·44
4·1·43
4·1·43
4·1·60
4·1·60
4·1·60
4·1·60
4·1·60
4·1·60
4·1·60
4·1·60
4·1·60
4·1·60
4·1·60
P7T·43
P7T·43B
PF8Z10
PF8Z100
PF8Z12
PF8Z120
PF8Z15
PF8Z150
PF8Z18
PF8Z180
PF8Z22
1N6290
1.5KE62C
1N6271
1N6295
1N6273
1N6297
1N6275
1N6299
1N6277
1N6302
1N6279
4·1·44
4·1·44
4·1·43
4·1·44 .
4·1·43
4·1·44
4·1·43
4·1·44
4·1·43
4·1·44
4·1·43
P6KE75CA
P6KE75A
P6KE7.5A
P6KE7.5CA
P6KE8.2
P6KE8.2A
P6KE8.2C
P6KE8.2CA
P6KE82
P6KE82A
P6KE82C
P6KE82CA
P6KE9.1
P6KE9.1A
P6KE9.1C
P6KE9.1CA
P6KE91
P6KE91A
P6KE91C
P6KE91CA
P6SMB100AT3
P6SMB10AT3
P6SMB110AT3
P6SMB11AT3
P6SMB120AT3
P6SMB12AT3
P6SMB130AT3
P6SMB13AT3
P6SMB150AT3
P6SMB15AT3
P6SMB160AT3
P6SMB100AT3
P6SMB10AT3
P6SMB110AT3
P6SMB11AT3
P6SMB120AT3
P6SMB12AT3
P6SMB130AT3
P6SMB13AT3
P6SMB150AT3
P6SMB15AT3
P6SMB160AT3
..
Page
Number
P6KE7.5C
P6KE7.5CA
P6KE75
P6KE75A
P6KE75C
P6KE75CA
P6KE91
P6KE91A
P6KE91C
P6KE91CA
P6KE91CP
P6KE91P
P6KE9V1A
P6KE9V1CA
P6KE9V1CP
P6KE9V1P
.,.".:...".-.
Industry
Part
Number
Motorola
Motorola
Similar
Direct
Replacement .Replacement
P6KE91CA
P6KE91A
P6KE9.1A
P6KE9.1CA
P6KE9.1CA
P6KE9.1A
Motorola
Motorola
Direct
Similar
Replacement Replacement
CF = consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2·68
Page
Number
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
PF8Z27
PF8Z33
PF8Z39
PF8Z47
PF8Z56
PF8Z62
PF8Z68
PF8Z6V8
PF8Z82
PF8Z8V2
1N6281
1N6283
1N6285
1N6287
1N6289
1N6290
1N6291
1N6267
1N6293
1N6269
4-1-43
4-1-43
4-1-43
4-1-43
4-1-44
4-1-44
4-1-44
4-1-43
4-1-44
4-1-43
PFZ250A
PFZ27
PFZ27A
PFZ30
PFZ30A
PFZ33
PFZ33A
PFZ36
PFZ36A
PFZ39
1.5KE250A
1N6281
1N6281 A
1N6282
1N6282A
1N6283
1N6283A
1N6284
1N6284A
1N6285
4-1-44
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
PFZ10
PFZ100
PFZ100A
PFZ10A
PFZ11
PFZ110
PFZ110A
PFZ11A
PFZ12
PFZ120
1N6271
1N6295
1N6295A
1N6271 A
1N6272
1N6296
1N6296A
1N6272A
1N6273
1N6297
4-1-43
4-1-44
4-1-44
4-1-43
4-1-43
4-1-44
4-1-44
4-1-43
4-1-43
4-1-44
PFZ39A
PFZ43
PFZ43A
PFZ47
PFZ47A
PFZ51
PFZ51 A
PFZ56
PFZ56A
PFZ62
1N6285A
1N6286
1N6286A
1N6287
1N6287A
1N6288
1N6288A
1N6289
1N6289A
1N6290
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-44
4-1-44
4-1-44
PFZ120A
PFZ12A
PFZ13
PFZ130
PFZ130A
PFZ13A
PFZ15
PFZ150
PFZ150A
PFZ15A
1N6297A
1N6273A
1N6274
1N6298
1N6298A
1N6274A
1N6275
1N6299
1N6299A
1N6275A
4-1-44
4-1-43
4-1-43
4-1-44
4-1-44
4-1-43
4-1-43
4-1-44
4-1-44
4-1-43
PFZ62A
PFZ68
PFZ68A
PFZ6V8
PFZ6V8A
PFZ75
PFZ75A
PFZ7V5
PFZ7V5A
PFZ82
1N6290A
1N6291
1N6291 A
1N6267
1N6267A
1N6292
1N6292A
1N6268
1N6268A
1N6293
4-1-44
4-1-44
4-1-44
4-1-43
4-1-43
4-1-44
4-1-44
4-1-43
4-1-43
4-1-44
PFZ16
PFZ160
PFZ160A
PFZ16A
PFZ170
PFZ170A
PFZ18
PFZ180
PFZ180A
PFZ18A
1N6276
1N6300
1N6300A
1N6276A
1N6301
1N6301A
1N6277
1N6302
1N6302A
1N6277A
4-1-43
4-1-44
4-1-44
4-1-43
4-1-44
4-1-44
4-1-43
4-1-44
4-1-44
4-1-43
PFZ82A
PFZ8V2
PFZ8V2A
PFZ91
PFZ91 A
PFZ9V1
PFZ9V1A
PFZD10
PFZD100
PFZD12
1N6293A
1N6269
1N6269A
1N6294
1N6294A
1N6270
1N6270A
1.5KE10C
1.5KE100C
1.5KE12C
4-1-44
4-1-43
4-1-43
4-1-44
4-1-44
4-1-43
4-1-43
4-1-43
4-1-44
4-1-43
PFZ20
PFZ200
PFZ200A
PFZ20A
PFZ22
PFZ220
PFZ220A
PFZ22A
PFZ24
PFZ24A
PFZ250
1N6278
1N6303
1N6303A
1N6278A
1N6279
1.5KE220
1.5KE220A
1N6279A
1N6280
1N6280A
1.5KE250
4-1-43
4-1-44
4-1-44
4-1-43
4-1-43
4-1-44
4-1-44
4-1-43
4-1-43
4-1-43
4-1-44
PFZD120
PFZD15
PFZD150
PFZD18
PFZD180
PFZD22
PFZD27
PFZD33
PFZD39
PFZD47
PFZD56
1.5KE120C
1.5KE15C
1.5KE150C
1.5KE18C
1.5KE180C
1.5KE22C
1.5KE27C
1.5KE33C
1.5KE39C
1.5KE47C
1.5KE56C
4-1-44
4-1-43
4-1-44
4-1-43
4-1-44
4-1-43
4-1-43
4-1-43
4-1-43
4-1-43
4-1-44
CF =consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DiODES
2-69
CROSS-REFERENCE (continued)
Industry
Part
Number
I
PFZD62
PFZD68
PFZD6V8
PFZDB2
PFZDBV2
PZD16
PZD160
PZD36
PZD62
SA10
Motorola
Motorola
Direct
Similar
Replacement Replacement
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
SA10
4-1-44
4-1-44
4-1-43 .
4-1-44
4-1-43
4-1-43
4-1-44
4-1-43
4-1-44
4-1-26
SA15C
SA15CA
SA16
SAl 60
SA160A
SA160C
SA160CA
SA16A
SA16C
SA16CA
SA15C
SA15CA
SA16
SA160
SA160A
SA160C
SA160CA
SA16A
SA16C
SA16CA
4-1-26
4-1-26
4-1-26
4-1-27
4-1-27
4-1-27
4-1-27
4-1-26
4-1-26
4-1-26
SAlOO
SA100A
SA100C
SA100CA
SA10A
SA10C
SA10CA
SA11
SA110
SA110A
SA100
SA100A
SA100C
SA100CA
SA10A
SA10C
SA10CA
SA11
SA110
SA110A
4-1-27
4-1-27
4-1-27
4-1-27
4-1-26
4-1-26
4-1-26
4-1-26
4-1-27
4-1-27
SA17
SA170
SA170A
SA170C
SA170CA
SA17A
SA17C
SA17CA
SA1B
SA1.8A
SA17
SA170
SA170A
SA170C
SA170CA
SA17A
SA17C
SA17CA
SA18
SA18A
4-1-26
4-1-27
4-1-27
4-1-27
4-1-27
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
SA110C
SA110CA
SA11A
SA11C
SA11CA
SA12
SA120
SA120A
SA120C
SA120CA
SA110C
SA110CA
SA11A
SA11C
SA11CA
SA12
SA120
SA120A
SA120C
SA120CA
4-1-27
4-1-27
4-1-26
4-1-26
4-1-26
4-1-26
4-1-27
4-1-27
4-1-27
4-1-27
SA18C
SA18CA
SA20
SA20A
SA20C
SA20CA
SA22
SA22A
SA22C
SA22CA
SA18C
SA18CA
SA20
SA20A
SA20C
SA20CA
SA22
SA22A
SA22C
SA22CA
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
SA12A
SA12C
SA12CA
SA13
SA130
SA130A
SA130C
SA130CA
SA13A
SA13C
SA12A
SA12C
SA12CA
SA13
SA130
SA130A
SA130C
SA130CA
SA13A
SA13C
4-1-26
4-1-26
4-1-26
4-1-26
4-1-27
4-1-27
4-1-27
4-1-27
4-1-26
4,1-26.
SA24
SA24A
SA24C
SA24CA
SA26
SA26A
SA26C
SA26CA
SA2B
SA2BA
SA24
SA24A
SA24C
SA24CA
SA26
SA26A
SA26C
SA26CA
SA2B
SA2BA
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
SA13CA
SA14
SA14A
SA14C
SA14CA
SA15
SA150
SA150A
SA150C
SA150CA
SA15A
SAl3CA
SA14
SA14A
SA14C
SA14CA
SA15
SA150
SA150A
SA150C
SA150CA
SAt5A
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-27
4-1-27
4-1-27
4-1-27
4-1-26
SA2BC
SA2BCA
SA30
SA30A
SA30C
SA30CA
SA33
SA33A
SA33C
SA33CA
SA36
SA2BC
SA2BCA
SA30
SA30A
SA30C
SA30CA
SA33
SA33A
SA33C
SA33CA
SA36
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-27
CF
1.5KE62C
1.5KE68C
1.5KE6.BC
1.5KEB2C
1.5KEB.2C
1.5KE16C
1.5KE160C
1.5KE36C
1.5KE62C
Industry
Part
..Number
Page
Number
=consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-70
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Similar
Direct
Replacement Replacement
Page
Number
SA36A
SA36C
SA36CA
SA40
SA40A
SA40C
SA40CA
SA43
SA43A
SA43C
SA36A
SA36C
SA36CA
SA40
SA40A
SA40C
SA40CA
SA43
SA43A
SA43C
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
SA7.0
SA7.0A
SA7.0C
SA7.0CA
SA7.5
SA7.SA
SA7.5C
SA7.SCA
SA70
SA70A
SA7.0
SA7.0A
SA7.0C
SA7.0CA
SA7.S
SA7.SA
SA7.SC
SA7.SCA
SA70
SA70A
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-27
4-1-27
SA43CA
SA4S
SA4SA
SA45C
SA4SCA
SA4B
SA4BA
SA4SC
SA4SCA
SAS.O
SA43CA
SA45
SA45A
SA4SC
SA4SCA
SA4B
SA4BA
SA4SC
SA4SCA
SAS.O
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
4-1-26
SA70C
SA70CA
SA7S
SA7SA
SA7SC
SA7SCA
SA7S
SA7SA
SA7SC
SA7BCA
SA70C
SA70CA
SA7S
SA75A
SA7SC
SA7SCA
SA7S
SA7SA
SA7SC
SA7BCA
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
SA5.0A
SA5.0C
SAS.OCA
SA51
SA51 A
SA51C
SA51CA
SAS4
SA54A
SAS4C
SA5.0A
SA51
SA51 A
SAS1C
SAS1CA
SA54
SA54A
SAS4C
4-1-26
CF
CF
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
SAB.O
SAB.OA
SAS.OC
SAB.OCA
SAB.5
SAB.SA
SAB.SC
SAB.SCA
SABS
SAB5A
SAB.O
SAB.OA
SAB.OC
SAB.OCA
SAB.5
SAB.SA
SAB.SC
SAB.SCA
SAS5
SABSA
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-27
4-1-27
SA54CA
SASS
SASSA
SA5SC
SASSCA
SA6.0
SA6.0A
SA6.0C
SA6.0CA
SA6.5
SA54CA
SASS
SA5SA
SA5SC
SASSCA
SA6.0
SA6.0A
SA6:0C
SA6.0CA
SA6.5
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
SAB5C
SABSCA
SA9.0
SA9.0A
SA9.0C
SA9.0CA
SA90
SA90A
SA90C
SA90CA
SAB5C
SABSCA
SA9.0
SA9.0A
SA9.0C
SA9.0CA
SA90
SA90A
SA90C
SA90CA
4-1-27
4-1-27
4-1-26
4-1-26
4-1-26
4-1-26
4-1-27
4-1-27
4-1-27
4-1-27
SA6.SA
SA6.5C
SA6.5CA
SA60
SA60A
SA60C
SA60CA
SA64
SA64A
SA64C
SA64CA
SA6.SA
SA6.5C
SA6.SCA
SA60
SA60A
SA60C
SA60CA
SA64
SA64A
SA64C
SA64CA
4-1-26
4-1-26
4-1-26
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
4-1-27
SAB10
SAB12
SAB15
SAB1B
SAB24
SAB2B
SABS.O
SBL10
SBL100
SBL100C
SBL10C
CF = consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-71
SA10A
SA12A
SA1SA
SA1SA
SA24A
SA2BA
SAS.OA
1N6276
1N6299
l.SKE1S0C
1.SKE16C
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-43
4-1-44
4-1-44
4-1-43
•
CROSS-REFERENCE (continued)
Industry
Part
Number
I
MotOrola
Motorola
Direct
Similar
Replacement Replacement
-'"
Industry
Part
Number
Page
Number
,\,
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
SBL25·
SBL25C
SBL43
SBL43C
SM15T10
SM15T10A
SM15T12
SM15T12A
SM15T15
SM15T15A
1N6284
1.5KE36C
1NS290
1.5KES2C
1.5SMC10AT3
1.5SMC10AT3
1.5SMC12AT3
1.5SMC12AT3
1.5SMC15AT3
1.5SMC15AT3
4·1·43
4-1·43
4-1·44
4-1-44
4-1·6S
4·1·66
4·1·SS
4·1·SS
4-1-SS
4·1·SS
SM4T27A
SM4T30
SM4T30A
SM4T33
SM4T33A
SM4T3S
SM4T3SA
SM4T39
SM4T39A
SM4T68
P6SMB27AT3
PSSMB30AT3
PSSMB30AT3
PSSMB33AT3
PSSMB33AT3
PSSMB3SAT3
PSSMB36AT3
P6SMB39AT3
PSSMB39AT3
PSSMBS8AT3
4·1'SO
4-1-S0
4·1·S0
4·1·S0
4·1·S0
4·1·60
4·1·60
4·1·60
4-1-60
4·1·60
SM15T18
SM15T18A
SM15T22
SM15T22A
SM15T24
SM15T24A
SM15T27
SM15T27A
SM15T30
SM15T30A
1.5SMC18AT3
1.5SMC18AT3
1.5SMC22AT3
1.5SMC22AT3
1.5SMC24AT3
1.5SMC24AT3
1.5SMC27AT3
1.5SMC27AT3
1.5SMC30AT3
1.5SMC30AT3
4·1·S6
4·1·SS
4·1·66
4·1·66
4·1·66
4·1·66
4·1·SS
4·1-6S
4·1·S6
4-1-66
SM4T68A
SM4T6V8
SM4T6V8A
SM4T7V5
SM4T7V5A
SMST10
SMST100
SM6T100A
SMST10A
SM6T12
P6SMBS8AT3
P6SMBS.8AT3
P6SMBS.8AT3
PSSMB7.5AT3
P6SMB7.5AT3
PSSMB10AT3
P6SMB100AT3
PSSMB100AT3
P6SMB10AT3
P6SMB12AT3
4·1·S0
4·1·60
4·1·60
4·1·60
4·1·60
4·1·60
4-1-60
4·1·60
4·1·60
4·1·60
SM15T33
SM15T33A
SM15T36
SM15T36A
SM15T39
SM15T39A
SM15TS8
SM15TS8A
SM15TSV8
SM15T6V8A
1.5SMC33AT3
1.5SMC33AT3
1.5SMC36AT3
1.5SMC36AT3
1.5SMC39AT3
1.5SMC39AT3
1.5SMCS8AT3
1.5SMC68AT3
1.5SMC6.8AT3
1.5SMCS.8AT3
4·1·66
4-1-S6
4·1·S6
4·1·6S
4-1-66
4·1·SS
4·1·66
4·1·SS
4·1·SS
4·1·6S
SMST12A
SMST15
SMST150
SM6T150A
SM6T15A
SMST18
SMST18A
SMST200
SMST200A
SMST22
P6SMB12AT3
PSSMB15AT3
P6SMB150AT3
P6SMB150AT3
P6SMB15AT3
P6SMB18AT3
PSSMB18AT3
PSSMB200AT3
PSSMB200AT3
P6SMB22AT3
4-1-60
4·1·60
4·1·60
4-1-60
4·1·60
4·1·S0
4·1·S0
4·1-60
4·1·S0
4·1·S0
SM15T7V5
SM15T7V5A
SM4T10
SM4T100
SM4T100A
SM4T10A
SM4T12
SM4T12A
SM4T15
SM4T150
1.5SMC7.5AT3
1.5SMC7.5AT3
P6SMB10AT3
P6SMB100AT3
PSSMB100AT3
PSSMB10AT3
P6SMB12AT3
P6SMB12AT3
PSSMBt5AT3
P6SMB150AT3
4·1·6S
4·1·SS
4·1·S0
4·1·60
4-1-S0
4·1·S0
4·1·60
4·1·60
4·1·S0
4·1·S0
SMST22A
SMST24
SMST24A
SM6T27
SM6T27A
SMST30
SMST30A
SM6T33
SM6T33A
SMST3S
PSSMB22AT3
P6SMB24AT3
PSSMB24AT3
PSSMB27AT3
P6SMB27AT3
PSSMB30AT3
PSSMB30AT3
P6SMB33AT3
P6SMB33AT3
PSSMB3SAT3
4·1·60
4·1·S0
4·1·S0
4·1·S0
4-1-S0
4-1·60
4·1·S0
4·1·S0
4·1·S0
4·1·S0
SM4T150A
SM4T15A
SM4T18
SM4T18A
SM4T200
SM4T200A
SM4T22
SM4T22A
SM4T24
SM4T24A
SM4T27
PSSMB150AT3
PSSMB15AT3
PSSMB18AT3
PSSMB18AT3
PSSMB200AT3
P6SMB200AT3
PSSMB22AT3
PSSMB22AT3
P6SMB24AT3
PSSMB24AT3
P6SMB27AT3
4·1·S0
4·1·S0
4·1·S0
4·1·60
4·1·S0
4·1·60
4-1-60
4·1·60
4·1·S0
4+60
4-1-S0
SMST3SA
SMST39
SMST39A
SMST68
SM6TS8A
SMSTSV8
SMST6V8A
SMST7V5
SM6T7V5A
5MBJ10
5MBJ100
P6SMB3SAT3
P6SMB39AT3
PSSMB39AT3
PSSMBS8AT3
PSSMBS8AT3
P6SMBS.8AT3
PSSMBS.8AT3
PSSMB7.5AT3
P6SMB7.5AT3
4·1·S0
4-1-S0
4·1·60
4·1-60
4·1·60
4·1 'SO
4·1·60
4·1·60
4-1-S0
4·1·59
4·1·59
CF
1SMB10AT3
1SMB100AT3
=consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-72
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
5MBJ100A
5MBJ10A
5MBJ11
5MBJ110
5MBJ110A
5MBJ11A
5MBJ12
5MBJ120
5MBJ120A
5MBJ12A
1SMB100AT3
1SMB10AT3
1SMB11AT3
1SMB110AT3
1SMB110AT3
1SMB11AT3
1SMB12AT3
1SMB120AT3
1SMB120AT3
1SMB12AT3
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
5MBJ45A
5MBJ48
5MBJ48A
5MBJ5.0
5MBJ5.0A
5MBJ51
5MBJ51A
5MBJ54
5MBJ54A
5MBJ58
1SMB45AT3
1SMB48AT3
1SMB48AT3
1SMB5.0AT3
1SMB5.0AT3
1SMB51AT3
1SMB51AT3
1SMB54AT3
1SMB54AT3
1SMB58AT3
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
5MBJ13
5MBJ130
5MBJ130A
5MBJ13A
5MBJ14
5MBJ14A
5MBJ15
5MBJ150
5MBJ150A
5MBJ15A
1SMB13AT3
1SMB130AT3
1SMB130AT3
1SMB13AT3
1SMB14AT3
1SMB14AT3
1SMB15AT3
1SMB150AT3
1SMB150AT3
1SMB15AT3
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
5MBJ58A
5MBJ6.0
5MBJ6.0A
5MBJ6.5
5MBJ6.5A
5MBJ60
5MBJ60A
5MBJ64
5MBJ64A
5MBJ7.0
1SMB58AT3
1SMB6.0AT3
1SMB6.0AT3
1SMB6.5AT3
1SMB6.5AT3
1SMB60AT3
1SMB60AT3
1SMB64AT3
1SMB64AT3
1SMB7.0AT3
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
5MBJ16
5MBJ160
5MBJ160A
5MBJ16A
5MBJ17
5MBJ170
5MBJ170A
5MBJ17A
5MBJ18
5MBJ18A
1SMB16AT3
1SMB160AT3
1SMB160AT3
1SMB16AT3
1SMB17AT3
1SMB170AT3
1SMB170AT3
1SMB17AT3
1SMB18AT3
1SMB18AT3
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
5MBJ7.0A
5MBJ7.5
5MBJ7.5A
5MBJ70
5MBJ70A
5MBJ75
5MBJ75A
5MBJ78
5MBJ78A
5MBJ8.0
1SMB7.0AT3
1SMB7.5AT3
1SMB7.5AT3
1SMB70AT3
1SMB70AT3
1SMB75AT3
1SMB75AT3
1SMB78AT3
1SMB78AT3
1SMB8.0AT3
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
5MBJ20
5MBJ20A
5MBJ22
5MBJ22A
5MBJ24
5MBJ24A
5MBJ26
5MBJ26A
5MBJ28
5MBJ28A
1SMB20AT3
1SMB20AT3
1SMB22AT3
1SMB22AT3
1SMB24AT3
1SMB24AT3
1SMB26AT3
1SMB26AT3
1SMB28AT3
1SMB28AT3
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
5MBJ8.0A
5MBJ8.5
5MBJ8.5A
5MBJ85
5MBJ85A
5MBJ9.0
5MBJ9.0A
5MBJ90
5MBJ90A
SMCJ10
1SMB8.0AT3
1SMB8.5AT3
1SMB8.5AT3
1SMB85AT3
1SMB85AT3
1SMB9.0AT3
1SMB9.0AT3
1SMB90AT3
1SMB90AT3
1SMC10AT3
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-65
5MBJ30
5MBJ30A
5MBJ33
5MBJ33A
5MBJ36
5MBJ36A
5MBJ40
5MBJ40A
5MBJ43
5MBJ43A
5MBJ45
1SMB30AT3
1SMB30AT3
1SMB33AT3
1SMB33AT3
1SMB36AT3
1SMB36AT3
1SMB40AT3
1SMB40AT3
1SMB43AT3
1SMB43AT3
1SMB45AT3
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
SMCJ10A
SMCJ11
SMCJ11A
SMCJ12
SMCJ12A
SMCJ13
SMCJ13A
SMCJ14
SMCJ14A
SMCJ15
SMCJ15A
1SMC10AT3
1SMC11AT3
1SMC11AT3
1SMC12AT3
1SMC12AT3
1SMC13AT3
1SMC13AT3
1SMC14AT3
1SMC14AT3
1SMC15AT3
1SMC15AT3
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
CF
=consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-73
I
CROSS-REFERENCE (continued)
Industry
Part
NU!l1ber
I
Motorola " ,Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
SMCJ16
SMCJ16A
SMCJ17
SMCJ17A
SMCJ18
SMCJ18A
SMCJ20
SMCJ20A
SMCJ22
SMCJ22A
1SMC16AT3
1SMC16AT3
1SMC17AT3
1SMC17AT3
1SMC18AT3
1SMC18AT3
1SMC20AT3
1SMC20AT3
1SMC22AT3
1SMC22AT3
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
SMCJ70A
SMCJ75
SMCJ75A
SMCJ78
SMCJ78A
SMCJ8.0
SMCJ8.0A
SMCJ8,5
SMCJ8.5A
SMCJ9.0
1SMC70AT3
1SMC75AT3
1SMC75AT3
1SMC78AT3
1SMC78AT3
1SMC8.0AT3
1SMC8.0AT3
1SMC8,5AT3
1SMC8.5AT3
1SMC9.0AT3
SMCJ24
SMCJ24A
SMCJ26
SMCJ26A
SMCJ28
SMCJ28A
SMCJ30
SMCJ30A
SMCJ33
SMCJ33A
1SMC24AT3
1SMC24AT3
1SMC26AT3
1SMC26AT3
1SMC28AT3
1SMC28AT3
1SMC30AT3
1SMC30AT3
1SMC33AT3
1SMC33AT3
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
SMCJ9.0A
SMMJ10
SMMJ10A
SMMJ11
SMMJ11A
SMMJ12
SMMJ12A
SMMJ13
SMMJ13A
SMMJ14
1SMC9,OAT3
SMCJ36
SMCJ36A
SMCJ40
SMCJ40A
SMCJ43
SMCJ43A
SMCJ45
SMCJ45A
SMCJ48
SMCJ48A
1SMC36AT3
1SMC36AT3
1SMC40AT3
1SMC40AT3
1SMC43AT3
1SMC43AT3
1SMC45AT3
1SMC45AT3
1SMC48AT3
1SMC48AT3
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
SMCJ5.0
SMCJ5.0A
SMCJ51
SMCJ51A
SMCJ54
SMCJ54A
SMCJ58
SMCJ58A
SMCJ6,O
SMCJ6,OA
1SMC5.0AT3
1SMC5.0AT3
1SMC51AT3
1SMC51AT3
1SMC54AT3
1SMC54AT3
1SMC58AT3
1SMC58AT3
1SMC6.0AT3
1SMC6.0AT3
SMCJ6.5
SMCJ6.5A
SMCJ60
SMCJ60A
SMCJ64
SMCJ64A
SMCJ7,O
SMCJ7,OA
SMCJ7,5
SMCJ7,5A
SMCJ70
1SMC6,5AT3
1SMC6.5AT3
1SMC60AT3
1SMC60AT3
1SMC64AT3
1SMC64AT3
1SMC7.0AT3
1SMC7.0AT3
1SMC7.5AT3
1SMC7.5AT3
1SMC70AT3
Page
Number
4-1-65
4-1-65
4-1'65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
1SMC10AT3
1SMC10AT3
1SMC11AT3
1SMC11AT3
1SMC12AT3
1SMC12AT3
1SMC13AT3
1SMC13AT3
1SMC14AT3
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
SMMJ14A
SMMJ15
SMMJ15A
SMMJ16
SMMJ16A
SMMJ17
SMMJ17A
SMMJ18
SMMJ18A
SMMJ20
1SMC14AT3
1SMC15AT3
1SMC15AT3
1SMC16AT3
1SMC16AT3
1SMC17AT3
1SMC17AT3
1SMC18AT3
1SMC18AT3
1SMC20AT3
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
SMMJ20A
SMMJ22
SMMJ22A
SMMJ24
SMMJ24A
SMMJ26
SMMJ26A
SMMJ28
SMMJ28A
SMMJ30
1SMC20AT3
1SMC22AT3
1SMC22AT3
1SMC24AT3
1SMC24AT3
1SMC26AT3
1SMC26AT3
1SMC28AT3
1SMC28AT3
1SMC30AT3
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65 '
4-1-65
4-1-65
4-1-65
4-1-65
SMMJ30A
SMMJ33
SMMJ33A
SMMJ36
SMMJ36A
SMMJ40
SMMJ40A
SMMJ43
SMMJ43A
SMMJ45
SMMJ45A
1SMC30AT3
1SMC33AT3
1SMC33AT3
1SMC36AT3
1SMC36AT3
1SMC40AT3
,1SMC40AT3
1SMC43AT3
1SMC43AT3
1SMC45AT3
1SMC45AT3
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
CF = consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-74
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Industry
Part
Number
Page
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
SMMJ48
SMMJ48A
SMMJ5.0
SMMJ5.0A
SMMJ51
SMMJ51A
SMMJ54
SMMJ54A
SMMJ58
SMMJ58A
1SMC48AT3
1SMC48AT3
1SMC5.0AT3
1SMC5.0AT3
1SMC51AT3
1SMC51AT3
1SMC54AT3
1SMC54AT3
1SMC58AT3
1SMC58AT3
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
SMSJ14A
SMSJ15
SMSJ150
SMSJ150A
SMSJ15A
SMSJ16
SMSJ160
SMSJ160A
SMSJ16A
SMSJ17
1SMB14AT3
1SMB15AT3
1SMB150AT3
1SMB150AT3
1SMB15AT3
1SMB16AT3
1SMB160AT3
1SMB160AT3
1SMB16AT3
1SMB17AT3
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
SMMJ6.0
SMMJ6.0A
SMMJ6.5
SMMJ6.5A
SMMJ60
SMMJ60A
SMMJ64
SMMJ64A
SMMJ7.0
SMMJ7.0A
1SMC6.0AT3
1SMC6.0AT3
1SMC6.5AT3
1SMC6.5AT3
1SMC60AT3
1SMC60AT3
1SMC64AT3
1SMC64AT3
1SMC7.0AT3
1SMC7.0AT3
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
SMSJ170
SMSJ170A
SMSJ17A
SMSJ18
SMSJ18A
SMSJ20
SMSJ20A
SMSJ22
SMSJ22A
SMSJ24
1SMB170AT3
1SMB170AT3
1SMB17AT3
1SMB18AT3
1SMB18AT3
1SMB20AT3
1SMB20AT3
1SMB22AT3
1SMB22AT3
1SMB24AT3
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
SMMJ7.5
SMMJ7.5A
SMMJ70
SMMJ70A
SMMJ75
SMMJ75A
SMMJ78
SMMJ78A
SMMJ8.0
SMMJ8.0A
1SMC7.5AT3
1SMC7.5AT3
1SMC70AT3
1SMC70AT3
1SMC75AT3
1SMC75AT3
1SMC78AT3
1SMC78AT3
1SMC8.0AT3
1SMC8.0AT3
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
4-1-65
SMSJ24A
SMSJ26
SMSJ26A
SMSJ28
SMSJ28A
SMSJ30
SMSJ30A
SMSJ33
SMSJ33A
SMSJ36
1SMB24AT3
1SMB26AT3
1SMB26AT3
1SMB28AT3
1SMB28AT3
1SMB30AT3
1SMB30AT3
1SMB33AT3
1SMB33AT3
1SMB36AT3
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
SMMJ8.5
SMMJ8.5A
SMMJ9.0
SMMJ9.0A
SMSJ10
SMSJ100
SMSJ100A
SMSJ10A
SMSJ11
SMSJ110
1SMC8.5AT3
1SMC8.5AT3
1SMC9.0AT3
1SMC9.0AT3
1SMB10AT3
1SMB100AT3
1SMB100AT3
1SMB10AT3
1SMB11AT3
1SMB110AT3
4-1-65
4-1-65
4-1-65
4-1-65
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
SMSJ36A
SMSJ40
SMSJ40A
SMSJ43
SMSJ43A
SMSJ45
SMSJ45A
SMSJ48
SMSJ48A
SMSJ5.0
1SMB36AT3
1SMB40AT3
1SMB40AT3
1SMB43AT3
1SMB43AT3
1SMB45AT3
1SMB45AT3
1SMB48AT3
1SMB48AT3
1SMB5.0AT3
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
SMSJ110A
SMSJ11A
SMSJ12
SMSJ120
SMSJ120A
SMSJ12A
SMSJ13
SMSJ130
SMSJ130A
SMSJ13A
SMSJ14
1SMB110AT3
1SMB11AT3
1SMB12AT3
1SMB120AT3
1SMB120AT3
1SMB12AT3
1SMB13AT3
1SMB130AT3
1SMB130AT3
1SMB13AT3
1SMB14AT3
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
SMSJ5.0A
SMSJ51
SMSJ51A
SMSJ54
SMSJ54A
SMSJ58
SMSJ58A
SMSJ6.O
SMSJ6.0A
SMSJ6.5
SMSJ6.5A
1SMB5.0AT3
1SMB51AT3
1SMB51AT3
1SMB54AT3
1SMB54AT3
1SMB58AT3
1SMB58AT3
1SMB6.0AT3
1SMB6.0AT3
1SMB6.5AT3
1SMB6.5AT3
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
CF =consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-75
CROSS-REFERENCE (continued)
Industry
Part
Nl,lmber
. Motorola
Motorola
Direct
Similar
Replacement Replacement
Page
Number
Industry
Part
Nu",ber
Motorola
Motorola
Direct
Similar
' Replacement Replacement
Page
Number
SMSJ60
SMSJ60A
SMSJ64
SMSJ64A
SMSJ7.0
SMSJ7.0A
SMSJ7.5
SMSJ7.5A
SMSJ70
SMSJ70A
1SMB60AT3
1SMB60AT3
1SMB64AT3
1SMB64AT3
1SMB7.0AT3
1SMB7.0AT3
1SMB7.5AT3
1SMB7.5AT3
1SMB70AT3
1SMB70AT3
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
SMZJ3802B
SMZJ3803A
SMZJ3803B
SMZJ3804A
SMZJ3804B
SMZJ3805A
SMZJ3805A
SMZJ3806A
SMZJ3806B
SMZJ3807A
1SMB5938BT3
1SMB5939BT3
1SMB5939BT3
15MB5940BT3
15MB5940BT3
15MB5941 BT3
15MB5941 BT3
1SMB5942BT3
15MB5942BT3
15MB5943BT3
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
SMSJ75
SMSJ75A
SMSJ78
SMSJ78A
SMSJ8.0
SMSJ8.0A
SMSJ8.5
SMSJ8.5A
SMSJ85
SMSJ85A
1SMB75AT3
1SMB75AT3
1SMB78AT3
1SMB78AT3
1SMB8.0AT3
1SMB8.0AT3
1SMB8.5AT3
1SMB8.5AT3
1SMB85AT3
1SMB85AT3
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
4-1-59
SMZJ3807B
SMZJ3808A
SMZJ3808B
SMZJ3809A
SMZJ3809B
SMZJ5347A,B
SMZJ5348A,B
SMZJ5349A,B
SMZJ5350A,B
SMZJ5351A,B
1SMB5943BT3
15MB5944BT3
15MB5944BT3
15MB5945BT3
1SMB5945BT3
P6SMB10AT3
P6SMB11AT3
P6SMB12AT3
P6SMB13AT3
P6SMB15AT3
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-1-60
4-1-60
4-1-60
4-1-60
4-1-60
SMSJ9.0
SMSJ9.0A
SMSJ90
SMSJ90A
SMZJ3789A
SMZJ3789B
SMZJ3790A
SMZJ3790B
SMZJ3791A
SMZJ3791B
1SMB9.0AT3
1SMB9.0AT3
1SMB90AT3
1SMB90AT3
15MB5925BT3
15MB5925BT3
15MB5926BT3
15MB5926BT3
15MB5927BT3
15MB5927BT3
4-1-59
4-1-59
4-1-59
4-1-59
4-2-78
4-2-78
4-2-78
4-2-78
4-2-78
4-2-78
SMZJ5352A,B
SMZJ5353A,B
SMZJ5354A,B
SMZJ5355A,B
SMZJ5356A,B
SMZJ5357A,B
SMZJ5358A,B
SMZJ5359A,B
SMZJ5360A,B
SMZJ5361A,B
P6SMB15AT3
P6SMB16AT3
P6SMB18AT3
P6SMB18AT3
P6SMB20AT3
P6SMB20AT3
P6SMB22AT3
P6SMB24AT3
P6SMB27AT3
P6SMB27AT3
4-1-60
4-1-60
4-1-60
4-1-60
4-1-60
4-1-60
4-1-60
4-1-60
4-1-60
4-1-60
SMZJ3792A
SMZJ3792B
SMZJ3793A
SMZJ3793B
SMZJ3794A
SMZJ3794B
SMZJ3795A
SMZJ3795B
SMZJ3796A
SMZJ3796B
15MB5928BT3
15MB5928BT3
15MB5929BT3
15MB5929BT3
15MB5930BT3
15MB5930BT3
1SMB5931BT3
1SMB5931BT3
15MB5932BT3
15MB5932BT3
4-2-78
4-2-78
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
SMZJ5362A,B
SMZJ5363A,B
SMZJ5364A,B
SMZJ5365A,B
SMZJ5366A,B
SMZJ5367A,B
SMZJ5368A,B
SMZJ5369A,B
SMZJ5370A,B
SMZJ5371A,B
P6SMB30AT3
P6SMB30AT3
P6SMB33AT3
P6SMB36AT3
P6SMB39AT3
P6SMB43AT3
P6SMB47AT3
P6SMB51AT3
P6SMB56AT3
P6SMB62AT3
4-1-60
4-1-60
4-1-60
4-1-60
4-1-60
4-1-60
4-1-60
4-1-60
4-1-60
4+60
SMZJ3797A
SMZJ3797B
SMZJ3798A
SMZJ3798B
SMZJ3799A
SMZJ3799B
SMZJ3800A
SMZJ3800B
SMZJ3801A
SMZJ3801B
SMZJ3802A
15MB5933BT3
15MB5933BT3
15MB5934BT3
15MB5934BT3
1SMB5935BT3
15MB5935BT3
15MB5936BT3
15MB5936BT3
15MB5937BT3
1SMB5937BT3
15MB5938BT3
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
4-2-79
SMZJ5372A,B
SMZJ5373A,B
SMZJ5374A,B
SOV10
SOV12
SOV15
SOV18
SOV24
SOV28
SOV5.0
TS;7
P6SMB62AT3
P6SMB68AT3
P6SMB75AT3
SA10A
SA12A
SA15A
SA18A
SA26A
SA28A
SA5.0A
1N5908
4-1-60
4+60
4-Ho
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1:26
4-1-26
4-1-42
CF =consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-76
CROSS-REFERENCE (continued)
Industry
Part
Number
Motorola
Motorola
Direct
Similar
Replacement Replacement
TVS305
TVS31 0
TVS312
TVS315
TVS318
TVS324
TVS328
TVS348
TVS360
TVS41 0
TVS505
SA5.0A
SA10A
SA12A
SA15A
SA18A
SA24A
SA28A
SA48A
SA60A
SA100A
SA5.0A
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-27
4-1-27
4-1-27
4-1-26
TVS51 0
TVS512
TVS515
TVS518
TVS524
TVS528
ZPD10
ZPD11
ZPD12
ZPD13
ZPD15
ZPD16
SA10A
SA12A
SA15A
SA18A
SA24A
SA28A
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-1-26
4-2-36
4-2-36
4-2-36
4-2-36
4-2-36
4-2-36
CF
ZPD10
ZPD11
ZPD12
ZPD13
ZPD15
ZPD16
Industry
Part
Number
Page
Number
Motorola
Motorola
Similar
Direct
Replacement Replacement
ZPD18
ZPD2.7
ZPD20
ZPD22
ZPD24
ZPD27
ZPD3.0
ZPD3.3
ZPD3.6
ZPD3.9
ZPD18
ZPD2.7
ZPD20
ZPD22
ZPD24
ZPD27
ZPD3.0
ZPD3.3
ZPD3.6
ZPD3.9
4-2-36
4-2-36
4-2-36
4-2-36
4-2-36
4-2-36
4-2-36
4-2-36
4-2-36
4-2-36
ZPD30
ZPD33
ZPD4.3
ZPD4.7
ZPD5.1
ZPD5.6
ZPD6.2
ZPD6.8
ZPD7.5
ZPD8.2
ZPD9.1
ZPD30
ZPD33
ZPD4.3
ZPD4.7
ZPD5.1
ZPD5.6
ZPD6.2
ZPD6.8
ZPD7.5
ZPD8.2
ZPD9.1
4-2-36
4-2-36
4-2-36
4-2-36
4-2-36
4-2-36
4-2-36
4-2-36
4-2-36
4-2-36
4-2-36
=consult factory representative
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-77
Page
Number
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
2-78
Preferred
Part Numbers Guide
This guide is the combined list of the Motorola preferred
device type numbers from each product category.
These are identified as preferred on their respective
Data Sheets in Section 4. They are designated as preferred based on sourcing from the die-voltage-package
combinations that have had or are expected to have
significant volume compared with others in the same
product category. The device type number may not be
high volume itself but being from a high volume product
line improves its odds of being supportable.
Where several device types have similar specifications,
for example, 1N5231 Band 1N751 A, and are selected
from the same die-voltage-package combination (5.1 V
- 0035) the better specified device (1 N5231 B) is
deemed to be the preferred device and recommended
for new designs. When a die-voltage-package combination does not have any device types designated as
preferred it is because its product line has relatively low
volume compared with other product lines in the same
wattage-package family.
Since usage levels can change, high volume applications should be discussed with a factory representative
before final selection.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
3-1
II
TVSlZENER PREFERRED PARTS LIST
DEVICE
TYPE
ZENER
BREAK·
DOWN
VOLTAGE
(VOLTS)
POWER
RATING
APPLICATION
MOUNTING TYPE
PACKAGE
OUTLINE
CASE
MATERIAL
PAGE #
TVS-BIOIR.
AXIAL THRU-HOLE
CASE 41
PLASTIC
4-1-43
1.5KE10CA
10
1.5 kW SURGE
1.5KEl2CA
12
1.5kWSURGE
TVS-BIOIR.
AXIAL THRU-HOLE
CASE 41
PLASTIC
4-143
AXIAL THRU-HOLE
CASE 41
PLASTIC
4-143
PLASTIC
4-1-43
1.5KE18CA
18
1.5 kW SURGE
TVS-BIOIR.
1.5KE36CA
36
1.5 kW SURGE'
TVS-BIOIR.
AXIAL THRU-HOLE
CASE 41
1.5SMC36AT3
36
1,5 kW SURGE
TVS-UNIOIR.
SURFACE MOUNTED
SMC
PLASTIC
4-1-66
1.5SMC56AT3
56
1.5kWSURGE
TVS-UNIOIR.
SURFACE MOUNTED
SMC
PLASTIC
4-1-66
1.5SMC62AT3
62
1.5 kW SURGE
TVS-UNIOIR.
SURFACE MOUNTED
SMC
PLASTIC
4-1-66
lN4689
5,1
500mWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-35
GLASS
4-2-30
lN4728A
3.3
lWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-41
GLASS
4·2-44
00-41
GLASS
4-2-44
lN4731A
4.3
lWOC
VOLTAGE REG.
AXIAL THRU-HOLE
lN4732A
4.7
lWOC
VOLTAGE REG,
AXIAL THRU-HOLE
0041
GLASS
4-2-44
lN4733A
5.1
lWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-41
GLASS
4-2-44
lN4734A
5.6
lWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00·41
GLASS
4-2-44
lN4735A
6,2
lWOC
VOLTAGE REG.
AXIAL THRU·HOLE
00-41
GLASS
4-2-44
lN4736A
6.8
lWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-41
GLASS
4-244
lN4738A
8,2
lWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-41
GLASS
4-2-44
lN4739A
9.1
lWOC
VOLTAGE REG.
AX,IAL THRU-HOLE
00-41
GLASS
4-2-44
lN4740A
10
lWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-41
GLASS
4-2-44
lN4741A
11
lWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-41
GLASS
4-2-44
lN4742A
12
lWOC
VOLTAGE REG.
AXIAL THRU-HOLE
0041
GLASS
4-2-44
lN4743A
13
lWOC
VOLTAGE REG,
AXIAL THRU-HOLE
00-41
GLASS
4-2-44
lN4744A
15
lWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-41
GLASS
4-2-44
lN4745A
16
lWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-41
GLASS
4-2-44
lN4746A
18
lWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-41
GLASS
4-244
lN4747A
20
lWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-41
GLASS
4-2-44
lN4749A
24
lWOC
VOLTAGE REG.
AXIAL THRU-HOLE
0041
GLASS
4-2-44
lN4750A
27
lWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-41
GLASS
4-2-44
1N4751 A
30
lWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-41
GLASS
4-2-44
lN5221B
2.4
500mWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-35
GLASS
4-2-31
lN5223B
2.7
500mWOC
VOLTAGE REG.
AXIAL THRU·HOLE
00-35
GLASS
4-2-31
lN5226B
3.3
500mWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-35
GLASS
4-2-31
, lN5228B
3.9
500mWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-35
GLASS
4-2-31
lN5229B
4.3
500mWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-35
GLASS
4-2-31
• MAXIMUM REVERSE STAND-OFF VOLTAGE
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
3-2
TVs/zENER PREFERRED PARTS LIST
DEVICE
TYPE
ZENER
BREAK·
DOWN
VOLTAGE
(VOLTS)
POWER
RATING
APPLICATION
MOUNTING TYPE
PACKAGE
OUTLINE
CASE
MATERIAL
PAGE #
1N5230B
4.7
500mWOC
VOLTAGE REG.
AXIAL THRU·HOLE
00·35
GLASS
4·2-31
1N5231B
5.1
500mWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-35
GLASS
4-2-31
1N5232B
5.6
500mWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-35
GLASS
4-2·31
1N5233B
6
500mWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-35
GLASS
4-2-31
1N5234B
6.2
500mWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-35
GLASS
4-2-31
1N5235B
6.8
500mWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00·35
GLASS
4-2-31
1N5236B
7.5
500mWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-35
GLASS
4-2-31
1N5237B
8.2
500mWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-35
GLASS
4-2-31
1N5239B
9.1
500mWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-35
GLASS
4-2-31
1N5240B
10
500mWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00·35
GLASS
4-2-31
1N5242B
12
500mWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-35
GLASS
4-2·31
1N5243B
13
500mWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-35
GLASS
4-2-31
1N5244B
14
500mWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-35
GLASS
4-2-31
1N5245B
15
500mWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00·35
GLASS
4-2-31
1N5246B
16
500mWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-35
GLASS
4-2-31
1N5248B
18
500mWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-35
GLASS
4-2-31
1N5250B
20
500mWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-35
GLASS
4-2-31
1N5252B
24
500mWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-35
GLASS
4-2-31
1N5254B
27
500mWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-35
GLASS
4-2-31
1N5256B
30
500mWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-35
GLASS
4-2-31
1N5257B
33
500mWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-35
GLASS
4-2-31
1N5258B
36
500mWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-35
GLASS
4-2-31
1N5333B
3.3
5WOC
VOLTAGE REG.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4-2-59
1N5338B
5.1
5WOC
VOLTAGE REG.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4-2-59
1N5339B
5.6
5WOC
VOLTAGE REG.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4-2·59
1N5342B
6.8
5WDC
VOLTAGE REG.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4-2-59
1N5343B
7.5
5WOC
VOLTAGE REG.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4-2-59
1N5344B
8.2
5WOC
VOLTAGE REG.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4-2-59
1N5347B
10
5WOC
VOLTAGE REG.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4-2-59
1N5349B
12
5WOC
VOLTAGE REG.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4-2-59
1N5350B
13
5WOC
VOLIAGE REG.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4-2-59
1N5352B
15
5WOC
VOLTAGE REG.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4-2-59
1N5353B
16
5WOC
VOLIAGE REG.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4-2-59
1N5355B
18
5WOC
VOLTAGE REG.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4-2-59
1N5357B
20
5WOC
VOLTAGE REG.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4-2-59
1N5359B
24
5WOC
VOLTAGE REG.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4-2-59
• MAXIMUM REVERSE STAND-OFF VOLTAGE
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
3-3
II
TVSlZENER PREFERRED PARTS LIST
ZENER
BREAK·
DOwN
POWER
RATING
APPLICATION
MOUNTING TYPE
PACKAGE
OUTLINE
CASE
MATERIAL
PAGE #
IN5360B
25
5WOC
VOLTAGE REG.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4-2-59
IN5361B
27
5WOC
VOLTAGE REG.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4-2-59
IN5363B
30
5WOC
VOLTAGE REG.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4-2-59
DEVICE
TYPE
I
. VOLTAGE
(VOLTS)
IN~364B
33
5WOC
VOLTAGE REG.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4-2-59
IN5365B
36
5WDC
VOLTAGE REG.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4-2-59
IN5366B
39
5WOC
VOLTAGE REG.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4-2-59
IN5368B
47
5WDC
VOLTAGE.REG.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4-2-59
IN5372B
62
5WDC
VOLTAGE REG.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4-2-59
lN5383B
150
5WDC
VOLTAGE REG.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4-2-60
lN5908
5'
1.5kWSURGE
TVS-UNIOIR.
AXIAL THRU-HOLE
CASE 41
PLASTIC
4-1-42
IN5918B
5.1
1.5WDC
VOLT.AGE REG.
AXIAL THRU-HOLE
00-41
PLASTIC
4-2-51
lN5920B
6.2
1.5WDC
VOLTAGE REG.
AXIAL THRU-HOLE
00-41
PLASTIC
4-2-51
lN5929B
15
1.5WOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-41
PLASTIC
4-2-51
lN5934B .
24
1.5WOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-41
PLASTIC
4-2-51
lN5936B
30
1.5WOC
VOLTAGE REG.
AXIAL THRU-HOLE
DO-41
PLASTIC
4-2-51
lN5941B
47
1.5WOC
VOLTAGE REG.
AXIAL THRU-HOLE
DO-41
PLASTIC
4-2-51
00-35
GLASS
4-2-33
lN5988B
3.3
500mWOC
VOLTAGE REG.
AXIAL THRU-HOLE
lN5993B
5.1
500mWOC
VOLTAGE REG.
AXIAL THRU-HOLE
00-35
GLASS
4-2-33
lN5994B
5.6
500mWDC
VOLTAGE REG.
AXIAL THRU-HOLE
00-35
GLASS
4-2-33
lN5998B
8.2
500mWDC
VOLTAGE REG.
AXIAL THRU-HOLE
00-35
GLASS
4-2-33
lN6007B
20
500mWDC
VOLTAGE REG.
AXIAL THRU-HOLE
00-35
GLASS
4-2-33
lN6267A
6.8
1.5 kW SURGE
TVS-UNIDIR.
AXIAL THRU-HOLE
CASE 41
PLASTIC
4-1-43
lN6280A
24
1.5 kW SURGE
TVS-UNIOIR.
. AXIAL THRU-HOLE
CASE 41
PLASTIC
4-1-43
lN6282A
30
1.5 kW SURGE
TVS-UNIOIR.
AXIAL THRU-HOLE
CASE 41
PLASTIC
4-1-43
lN6283A
33
1.5kWSURGE
TVS-UNIOIR.
AXIAL THRU-HOLE
CASE 41
PLASTIC
4-1-43
lN6284A
36
1.5kWSURGE
TVS-UNIDIR.
AXIAL THRU-HOLE
CASE 41
PLASTIC
4-1-43
lN6288A
51
1.5 kW SURGE
TVS-UNIDIR.
AXIAL THRU-HOLE
CASE 41
PLASTIC
4-1-43
lN6290A
62
1.5 kW SURGE
TVS-UNIDIR.
AXIAL THRU-HOLE
CASE 41
PLASTIC
4-1-44
lN6373
5'
1.5 kW SURGE
TVS-UNIDIR.
AXIAL THRU-HOLE
CASE 41
PLASTIC
4-1-46
lN6376
12'
1.5 kWSURGE
TVS-UNIOIR.
AXIAL THRU-HOLE
CASE 41
PLASTIC
4-1-46
lN6382
8'
1.5 kW SURGE
TVS-BIDIR.
AXIAL THRU-HOLE
CASE 41
PLASTIC
4-1-46
lN6385
15'
1.5 kW SURGE
TVS-BIOIR.
AXIAL THRU-HOLE
CASE 41
PLASTIC
4-1-46
lN821
6.2
400mWOC
VOLTAGE REF.
AXIAL THRU-HOLE
00-35
GLASS
4-3-10
VOLTAGE REF.
AXIAL THRU-HOLE
DO-35
GLASS
4-3-10
IN823
6.2
400mWDC
lN825
6.2
400mWDC
VOLTAGE REF.
AXIAL THRU-HOLE
00-35
GLASS
4-3-10
15MB5918BT3
5.1
1.5WOC
VOLTAGE REG.
SURFACE MOUNTED
5MB
PLASTIC
4-2-78
'MAXIMUM REVERSE STAND-OFF VOLTAGE
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
3·4
TVSIZENER PREFERRED PARTS LIST
DEVICE
TYPE
ZENER
BREAK·
DOWN
VOLTAGE
(VOLTS)
POWER
RATING
APPLICATION
MOUNTING TYPE
PACKAGE
OUTLINE
CASE
MATERIAL
PAGE #
4·2·78
15MB5920BT3
6.2
1.5WDC
VOLTAGE REG.
SURFACE MOUNTED
5MB
PLASTIC
15MB5925BT3
10
1.5WDC
VOLTAGE REG.
SURFACE MOUNTED
5MB
PLASTIC
4-2-78
15MB5927BT3
12
1.5WDC
VOLTAGE REG.
SURFACE MOUNTED
5MB
PLASTIC
4-2-78
15MB5929BT3
15
1.5WDC
VOLTAGE REG.
SURFACE MOUNTED
5MB
PLASTIC
4-2-78
1SMB5931BT3
18
1.5WDC
VOLTAGE REG.
SURFACE MTOUNTED
5MB
PLASTIC
4-2-78
15MB5934BT3
24
1.5WDC
VOLTAGE REG.
SURFACE MOUNTED
5MB
PLASTIC
4-2-78
15MB5936BT3
30
1.5WDC
VOLTAGE REG.
SURFACE MOUNTED
5MB
PLASTIC
4-2-78
BZX84C10L
10
225mWDC
VOLTAGE REG.
SURFACE MOUNTED
SOT-23
PLASTIC
4-2-65
BZX84C12L
12
225mWDC
VOLTAGE REG.
SURFACE MOUNTED
SOT-23
PLASTIC
4-2-65
BZX84C15L
15
225mWDC
VOLTAGE REG.
SURFACE MOUNTED
SOT-23
PLASTIC
4-2-65
BZX84C30L
30
225mWDC
VOLTAGE REG.
SURFACE MOUNTED
SOT-23
PLASTIC
4-2-65
BZX84C4V7L
4.7
225mWDC
VOLTAGE REG.
SURFACE MOUNTED
SOT-23
PLASTIC
4-2-65
BZX84C5V1L
5.1
225mWDC
VOLTAGE REG.
SURFACE MOUNTED
SOT-23
PLASTIC
4-2-65
BZX84C5V6L
5.6
225mWDC
VOLTAGE REG.
SURFACE MOUNTED
SOT-23
PLASTIC
4-2-65
BZX84C6V2L
6.2
225mWDC
VOLTAGE REG.
SURFACE MOUNTED
SOT-23
PLASTIC
·4-2-65
BZX84C6V8L
6.8
225mWDC
VOLTAGE REG.
SURFACE MOUNTED
SOT-23
PLASTIC
4-2-65
BZX84C8V2L
8.2
225mWDC
VOLTAGE REG.
SURFACE MOUNTED
SOT-23
PLASTIC
4-2-65
BZX84C9V1L
9.1
225mWDC
VOLTAGE REG.
SURFACE MOUNTED
SOT-23
PLASTIC
4-2-65
MLL5231B
5.1
500mWDC
VOLTAGE REG.
SURF. MT. LEADLESS
00-34
GLASS
4-2-75
MLL5233B
6
SOOmWDC
VOLTAGE REG.
SURF. MT. LEADLESS
DD-34
GLASS
4-2-75
MLL5244B
14
500mWDC
VOLTAGE REG.
SURF. MT. LEADLESS
00-34
GLASS
4-2-75
MLL5252B
24
500mWDC
VOLTAGE REG.
SURF. MT. LEADLESS
00-34
GLASS
4-2-75
MMBZ5226BL
3.3
225mWDC
VOLTAGE REG.
SURFACE MOUNTED
SOT-23
PLASTIC
4-2-66
MMBZ5229BL
4.3
225mWDC
VOLTAGE REG.
SURFACE MOUNTED
SOT-23
PLASTIC
4-2-66
MMBZ5230BL
4.7
225mWDC
VOLTAGE REG.
SURFACE MOUNTED
SOT-23
PLASTIC
4-2-66
MMBZ5231BL
5.1
225mWDC
VOLTAGE REG.
SURFACE MOUNTED
SOT-23
PLASTIC
4-2-66
MMBZ5232BL
5.6
225mWDC
VOLTAGE REG.
SURFACE MOUNTED
SOT-23
PLASTIC
4-2-66
MMBZ5234BL
6.2
225mWDC
VOLTAGE REG.
SURFACE MOUNTED
SOT-23
PLASTIC
4-2-66
MMBZ5235BL
6.8
225mWDC
VOLTAGE REG.
SURFACE MOUNTED
SOT-23
PLASTIC
4-2-66
MMBZ5236BL
7.5
225mWDC
VOLTAGE REG.
SURFACE MOUNTED
SOT-23
PLASTIC
4-2-66
MMBZ5237BL
8.2
225mWDC
VOLTAGE REG.
SURFACE MOUNTED
SOT-23
PLASTIC
4-2-66
SURFACE MOUNTED
SOT-23
PLASTIC
4-2-66
4-2-66
MMBZ5239BL
9.1
225mWDC
VOLTAGE REG.
MMBZ5240BL
10
225mWDC
VOLTAGE. REG.
SURFACE MOUNTED
SOT-23
PLASTIC
MMBZ5242BL
12
225mWDC
VOLTAGE REG.
SURFACE MOUNTED
SOT-23
PLASTIC
4-2-66
MMBZ5245BL
15
225mWDC
VOLTAGE REG.
SURFACE MOUNTED
SOT-23
PLASTIC
4-2-66
MMBZ5254BL
27
225mWDC
VOLTAGE REG.
SURFACE MOUNTED
SOT-23
PLASTIC
4-2-66
• MAXIMUM REVERSE STAND-OFF VOLTAGE
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
3·5
TVSlZENER PREFERRED PARTS LIST
DEVICE'
TYPE
I
ZENER
BREAK·
DOWN
VOLTAGE
(VOLTS)
POWER
RATING
APPLICATION
MOUNTING TYPE
PACKAGE
OUTLINE
CASE
MATERIAL
PAGE.
MMBZ5255BL
28
225mWDC
VOLTAGE REG.
SURFACE MOUNTED
SOT·23
PLASTIC
4·2:66
MR2535L
20'
110ASURGE
TV~NIDIR.
AXIAL THRU·HOLE
CASE 194-04
PLASTiC
4·1·48
MZP4733A
5.1
lWDC
VOLTAGE REG.
AXIAL THRU·HOLE
00·41
PLASTIC
4·2·56
MZP4735A
6.2
lWDC
VOLTAGE REG.
AXIAL THRU·HOLE
00·41
PLASTIC
4·2·56
MZP4744A
15
lWDC
VOLTAGE REG.
AXIAL THRU·HOLE
00-41
PLASTIC
4-2·56
MiP4745A
16
lWDC
VOLTAGE REG.
AXIAL THRU·HOLE
00·41
PLASTIC
4·2·56
MZP4746A
18
lWDC
VOLTAGE REG.
AXIAL THRU·HOLE
00·41
PLASTIC
4·2-56
MZP4749A
24
lWDC
VOLTAGE REG.
AXIAL THRU-HOLE
00-41
PLASTIC
4-2-56
MZP4751A
30
lWDC
VOLTAGE REG.
AXIAL THRU-HOLE
00-41
PLASTIC
4-2-56
P6KEllCA
11
600 WSURGE
TVS-BIDIR.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4-1-33
P6KE13A
13
600WSURGE
TVS-UNIDIR.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4-1-33
P6KE15A
15
600 WSURGE
TVS-UNIDIR.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4-1-33
P6KE2OCA
20
600WSURGE
TVS-BIDIR.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4-1-33
P6KE22CA
22
600WSURGE
TVS-BIDIR.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4-1-33
P6KE27A
27
600 WSURGE
TVS-UNIDIR.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4-1-33
P6KE27CA
27
600WSURGE
TVS-BIDIR.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4-1-33
P6KE30CA
30
600 WSURGE
TVS-BIDIR.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4-1-33
P6KE33A
33
600WSURGE
TVS-UNIDIR.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4+33
P6KE36A
36
600 WSURGE
TVS-UNIDIR.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4-1-33
P6KE6.SA
6.8
600 WSURGE
TV8-UNIDIR.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4-1-33
P6KE62A
62
600 WSURGE
TVS-UNIDIR.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4-1-33
P6KE7.5CA
7.5
600 WSURGE
TV8-BIDIR.
AXIAL THRU-HOLE
CASE 17
PLASTIC
4-1-33
13
600 WSURGE
TVS-UNIDIR.
SURFACE MOUNTED
5MB
PLASTIC
4-1-60
P6SMB15AT3
15
600WSURGE
' TVS-UNIDIR.
SURFACE MOUNTED
5MB
PLASTIC
4-1-60
P6SMB27AT3
27
600 WSURGE
TVS-UNIDIR.
SURFACE MOUNTED
5MB
PLASTIC
4-1-60
P6SMB30AT3
30
600WSURGE
TVS-UNIDIR.
SURFACE MOUNTED
5MB
PLASTIC
4-1-60
P6SMB33AT3
33
600 WSURGE
TVS-UNIDIR.
SURFACE MOUNTED
5MB
PLASTIC
4-1-60
P6SMB36AT3
36
600WSURGE
TVS-UNIDIR.
SURFACE MOUNTED
5MB
PLASTIC
4-1-60
P6SMB51AT3
51
600 WSURGE
TVS-UNIDIR.
SURFACE MOUNTED
5MB
PLASTIC
4-1-60
SURFACE MOUNTED
5MB
PLASTIC
4-1-60
P6SMB13AT3
P6SMB62AT3
62
600WSURGE
TVS-UNIDIR.
SAl2A
12'
500WSURGE
TVS-UNIDIR.
AXIAL THRU-HOLE
CASE 59-04
PLASTIC
4-1-26
SA12CA
12'
500WSURGE
TV8-BIDIR.
AXIAL THRU-HOLE
CASE 59-04
PLASTIC
4-1-26
SA13A
13'
500WSURGE
TV8-UNIDIR.
AXIAL THRU-HOLE
CASE 59-04
PLASTIC
4-1-26
SA13CA
13'
500WSURGE
TVS-BIDIR.
AXIAL THRU-HOLE
CASE 59-04
PLASTIC
4-1-26
SA15A
15'
500 WSURGE
TVS-UNIDIR.
AXIAL THRU-HOLE
CASE 59-04
PLASTIC
' 4-1-26
SA15CA
15'
500WSURGE
TV8-BIDIR.
AXIAL THRU-HOLE
CASE 59-04
PLASTIC
4-1-26
'MAXIMUM REVERSE STAND-OFF VOLTAGE
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
3-6
TVs/zENER PREFERRED PARTS LIST
DEVICE
TYPE
ZENER
BREAKDOWN
VOLTAGE
(VOLTS)
POWER
RATING
APPLICATION
MOUNTING TYPE
PACKAGE
OUTLINE
CASE
MATERIAL
PAGel
SA18CA
18'
SOOWSURGE
TVS-BIDIR.
AXIAL THRU·HOlE
CASES9-04
PLASTIC
4-1·26
SA24CA
24 '
SOOWSURGE
TVS·BIDIR.
AXIAL THRU·HOLE
CASES9-04
PLASTIC
4-1·26
SAS.OA
S'
SOOWSURGE
TV&-UNIDIR.
AXIAL THRU·HOLE
CASES9·04
PLASTIC
4-1·26
SA6.0A
6'
SOO WSURGE
TV&-UNIDIR.
AXIAL THRU·HOLE
CASES9-04
PLASTIC
4·1·26
SA6.SCA
6.S'
500WSURGE
TVS·BIDIR.
AXIAL THRU·HOLE
CASE 59-04
PLASTIC
4-1·26
, MAXIMUM REVERSE STAND-OFF VOLTAGE
•
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
3-7
II
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
3-8
NEW ARRANGEMENT/FEATURES
There are four important changes from previous editions
of this book.
DATA SHEET SEQUENCE
No longer strictly alphanumeric. Now data sheets are
grouped together by category based on application, construction, ratings, etc. Users can now compare devices
that are electrical selections from the same basic product. (A master alphanumeric listing is provided in the
Index in the front of the book.)
GENERAL DATA SHEETS
Device type series that are just electrical selections from
the same basic product are grouped together by category. Technical data and graphs applicable to all the device
type series within a category are combined into a General Data Sheet at the beginning of each category.
Following each General Data Sheet are the familiar
electrical parameters and limits table for each device
type series. Both the General Data Sheet and the electrical table must be considered together.
When a category contains only one device type series,
the general data remains within the one data sheet.
Selector Guides
and Data Sheets
PREFERRED DEVICE TYPES
For the first time, preferred device type numbers are
designated on the electrical tables. An arrow and bold
facing indicates the preferred part based on sourcing
from the die-voltage combinations that have had or are
expected to have significant volume compared to others
in the category. The device type number may not be high
volume itself but being from a high volume production
line improves its odds of being supportable. Sir:1ce usage
levels can change, high volume applications should be
discussed with a factory representative before final selection.
II
SECTION 4.1
TRANSIENT VOLTAGE SUPPRESSORS
SECTION 4.2
_
ZENER VOLTAGE REGULATOR DIODES. . . . .
I
MULTIPLE PACKAGE QUANTITIES (MPQ)
SECTION 4.3
_
ZENER VOLTAGE REFERENCE DIODES.....
I
In recent years, customers have been requiring full reel
and full box shipments for taped products. Elimination of
partial shipments benefits both the customer and the
supplier. Motorola has established MPQs on all transient
voltage suppressor and zener diode product categories
for taped products. All orders and releases must be in
whole number multiples of the MPQ set for each product
category. At the beginning of each category of data
sheets, the MPQ for the various tape options are listed.
Each Section Includes:
• Selector Guide
• Data Sheet Category Listing
• Alphanumeric Part Numbers Listing
• Data Sheets
NOTE:
Case outlines, footprints, and tape packaging information are
separately listed in Section 5, Packaging Information.
Note: MPQs for bulk packaged parts are now being defined.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1
•
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2
Section 4.1
Transient Voltage Suppressors
Section
Page
4.1.1
Selector Guide .................... 4-1-2
4.1.2
Data Sheet Category Listing ........ 4-1-17
4.1.3
Alphanumeric Part Number Listing ... 4-1-18
4.1.4
Data Sheets ...........••......... 4-1-24
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-1
•
-
Section 4.1.1 Selector Guide
Transient Voltage Suppressors
•
-
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-2
SELECTOR GUIDE
Transient Voltage Suppressors
General-Purpose
Transient Voltage Suppressors are designed for applications requiring protection of voltage sensitive electronic
devices in danger of destruction by high energy voltage
transients. Many of the zener voltage regulator diodes are in
fact used in circuits as transient voltage suppressors. The purpose of this section is to present the families of Motorola Zeners that are specified with the key transient voltage suppressor
parameters and limits, e.g., maximum clamping voltage at
maximum surge current rating and working peak reverse
(stand-off) voltage.
Selection sequence:
1. select the package type (axial or surface mount)
2. select the peak surge power expected for the application
3. select the working peak reverse stand-off voltage (or the
breakdown voltage)
4. select the maximum reverse clamping voltage
Consult the factory for special electrical selections if there is
no standard device type available to fit the application.
AXIAL LEADED FOR THRU-HOLE DESIGNS
500 WATTS @ 1 ms SURGE (FIGURE 1) -
PEAK POWER DISSIPATION* -
CASE 59-04
(See Section 4_1.4 for complete data)
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) VF = 3.5 V Max, IF = 35 A
Pulse (except bidirectional devices).
Working Peak
Reverse
Voltage
VRWM
(Volts)
5
5
6
6
6.5
6.5
7
7
7.5
7.5
8
8
8.5
8.5
9
9
10
10
11
11
12
12
13
13
14
14
15
15
16
16
17
17
Breakdown Voltage
VBR
(Volts)
Device"
SA5.0
SA5.0A
SA6.0
SA6.0A
SA6.5
SA6.5A
SA7.0
SA7.0A
SA7.5
SA7.5A
SA8.0
SAB.OA
SA8.5
SA8.5A
SA9.0
SA9.0A
SA10
SA10A
SAll
SAllA
SA12
SA12A
SA13
SA13A
SA14
SA14A
SA15
SA15A
SA16
SA16A
SA17
SA17A
Min
Max
@IT
Pulse
(mA)
6.4
6.4
6.67
6.67
7.22
7.22
7.78
7.78
8.33
8.33
8.89
8.89
9.44
9.44
10
10
11.1
11.1
12.2
12.2
13.3
13.3
14.4
14.4
15.6
15.6
16.7
16.7
17.8
17.8
18.9
18.9
7.3
7
8.15
7.37
8.82
7.98
9.51
8.6
10.2
9.21
10.9
9.83
11.5
10.4
12.2
11.1
13.6
12.3
14.9
13.5
16.3
14.7
17.6
15.9
19.1
17.2
20.4
18.5
21.8
19.7
23.1
20.9
10
10
10
10
10
10
10
10
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Maximum
Reverse
Leakage
@VRWM
IR !!rA)
600
600
600
600
400
400
150
150
50
50
25
25
5
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Maximum
Maximum
Reverse Surge Reverse Voltage
@IRSM
Current IRSM
(Clamping Voltage)
Figure 1
VRSM (Volts)
(Amps)
52
54.3
43.9
48,5
40.7
44.7
37.8
41.7
35
38.8
33.3
36.7
31.4
34.7
29.5
32.5
26.6
29.4
24.9
27.4
22.7
25.1
21
23.2
19.4
21.5
18.8
20.6
17.6
19.2
16.4
18.1
* Steady state power dISSipation = 3 watt max rating
.* For bidirectional types use C or CA suffix. Have cathode polarity band on each end. (consult factory for availability)
9.6
9.2
11.4
10.3
12.3
11.2
13.3
12
14.3
12.9
15
13.6
15.9
14.4
16.9
15.4
18.8
17
20.1
18.2
22
19.9
23.8
21.5
25.8
23.2
26.9
24.4
28.8
26
30.5
27.6
Cathode
=Polarity Band
'-~
IRSM
-2-
-,
,
o
1
2
3
4
5
lime-(ms)
Surge Current Characteristics
Figure 1
(continued)
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-3
I
•
SELECTOR GUIDE
AXIAL LEADED FOR THRU-HOLE DESIGNS (continued) (See Section 4.1.4 f~n complete data)
PEAK POWER DISSIPATION" - 500 WATTS @ 1 ms SURGE (FIGURE 1) - CASE 59-04 (continued)
=
ELECTRICAL CHARACTERISTICS (TA 25°C unless otherwise noted) VF
(except bidirectional devices).
Working Peak
Reverse
Voltage
•
Min
Max
@IT
Pulse
(mA)
IR(~)
18
18
20
20
SA18
SA18A
SA20
SA20A
20
20
22.2
22.2
24.4
22.1
27.1
24.5
1
1
1
1
1
1
1
1
15.5
17.2
13.9
15.4
32.2
29.2
35.B
32.4
22
22
24
24
SA22
SA22A
SA24
SA24A
24.4
24.4
26.7
26.7
29.8
26.9
32.6
29.5
1
1
1
1
1
1
1
1
12.7
14.1
11.6
12.8
39.4
35.5
43
38.9
26
26
28
2B
SA26
SA26A
SA28
SA28A
28.9
28.9
31.1
31.1
35.3
31.9
38
34.4
1
1
1
1
1
1
1
1
10.7
11.9
9.9
11
46.6
42.1
50
45.4
30
30
33
33
SA30
SA30A
SA33
SA33A
33.3
33.3
36.7
36.7
40.7
36.8
44.9
40.6
1
1
1
1
1
1
1
1
9.3
10.3
8.5
9.4
53.5
48.4
59
53.3
36
36
40
40
SA36
SA36A
SA40
SA40A
40
40
44.4
44.4
4B.9
44.2
54.3
49.1
1
1
1
1
1
1
1
1
7.B
8.6
7
7.8
64.3
58.1
71.4
64.5
43
43
45
45
SA43
SA43A
SA45
SA45A
47.B
47.8
50
50
5B.4
52.8
61.1
55.3
1
1
1
1
1
1
1
1
6.5
7.2
6.2
6.9
76.7
69.4
80.3
72.7
48
4B
51
51
SA48
SA48A
SA51
SA51 A
53.3
53.3
56.7
56.7
65.1
58.9
69.3
62.7
1
1
1
1
1
1
1
1
5.8
6.5
5.5
6.1
85.5
77.4
91.1
82.4
54
54
58
5B
SA54
SA54A
SA58
SA58A
60
60
64.4
64.4
73.3
66.3
7B.7
71.2
1
1
1
1
1
1
1
1
5.2
5.7
4.9
5.3
96.3
87.1
103
93.6
60
SA60
SA60A
SA64
SA64A
66.7
66.7
71.1
71.1
81.5
73.7
86.9
78.6
1
1
1
1
1
1
1
1
4.7
5.2
4.4
4.9
107
96.B
114
103
SA70
SA70A
SA75
SA75A
77.8
77.8
83.3
83.3
95.1
86
102
92.1
1
1
1
1
1
1
1
1
4
4.4
3.7
4.1
125
113
134
121
85
SA78
SA78A
SA85
SA85A
86.7
86.7
94.4
94.4
106
95.8
115
104
1
1
1
1
1
1
1
1
3.6
4
3.3
3.6
139
126
151
137
90
90
100
100
SA90
SA90A
SA100
SA100A
100
100
111
111
122
111
136
123
1
1
1
1
1
1
1
1
3.1
3.4
2.8
3.1
160
146
179
162
60
64
64
70
, 70
75
75
78
78
85
U
Maximum
Reverse
Leakage
@VRWM
Maximum
Reverse Surge
Current IRSM
Figure 1
(Amps)
VRWM
(Volts)
I
=3.5 V Max, IF =35 A Pulse
Breakdown Voltage
VBR
(Volts)
Device··
* Steady state power dissipation = 3 waH max rating
For bidirectional types use C or CA suffix. Have cathode polarity band on each end. (consult factory for availability)
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-4
Maximum
Reverse Voltage
@IRSM
(Clamping Voltage)
VRSM (Volts)
(continued)
SELECTOR GUIDE
AXIAL LEADED FOR THRU-HOLE DESIGNS (continued)
PEAK POWER DISSIPATION* - 500 WATTS @ 1 ms SURGE (FIGURE 1) See Section 4.1.4 for complete data)
CASE 59-04 (continued)
ELECTRICAL CHARACTERISTICS (TA ~ 25°C unless otherwise noted) VF ~ 3.5 V Max, IF ~ 35 A Pulse
(except bidirectional devices).
Maximum
Working Peak
Maximum
Breakdown Voltage
Reverse
Reverse
Reverse Surge
VBR
Leakage
Voltage
@IT
Current IRSM
(Volts)
@VRWM
Figure 1
Pulse
VRWM
Device"
Min
(Volts)
(Amps)
Max
(mA)
IR(~)
110
SAll0
122
149
1
1
2.6
2.8
110
SAll0A
122
135
1
1
120
SA120
133
163
1
1
2.3
120
SA120A
133
147
1
1
2.5
U
Maximum
Reverse Voltage
@IRSM
(Clamping Voltage)
VRSM (Volts)
196
177
214
193
130
130
150
150
SA130
SA130A
SA150
SA150A
144
144
167
167
176
159
204
185
1
1
1
1
1
1
1
1
2.2
2.4
1.9
2.1
231
209
268
243
160
160
170
170
SA160
SA160A
SA170
SA170A
178
178
189
189
218
197
231
209
1
1
1
1
1
1
1
1
1.7
1.9
1.6
1.8
287
259
304
275
* Steady state power dissipation = 3 watt max ratmg
For bidirectional types use C or CA suffix. Have cathode polarity band on each end. (consult factory for availability)
PEAK POWER DISSIPATION* - 600 WATTS @ 1 ms SURGE (FIGURE 1) (See Section 4.1.4 for complete data)
CASE 17-02
I
ELECTRICAL CHARACTERISTICS (TA ~ 25°C unless otherwise noted) VF ~ 3.5 V Max, IF ~ 50 A
Pulse (except bidirectional devices).
Breakdown
Voltage**
VBR
(Volts)
@IT
Pulse
Nom
(mA)
6.8
6.8
7.5
7.5
10
10
10
10
8.2
8.2
9.1
9.1
10
10
11
11
10
10
Device***t
P6KE6.8
P6KE6.8A
P6KE7.5
P6KE7.5A
P6KE8.2
P6KE8.2A
P6KE9.1
P6KE9.1A
P6KE10
P6KE10A
P6KEIl
P6KEliA
12
12
13
13
15
15
16
16
P6KE12
P6KE12A
P6KE13
P6KE13A
18
18
20
20
P6KE18
P6KE18A
P6KE20
P6KE20A
P6KE15
P6KE15A
P6KE16
P6KE16A
Working Peak
Reverse
Voltage
VRWM
(Volts)
Maximum
Reverse
Leakage
@VRWM
5.5
5.8
6.05
6.4
6.63
7.02
7.37
7.78
8.1
8.55
8.92
9.4
9.72
10.2
10.5
11.1
12.1
12.8
12.9
13.6
14.5
15.3
16.2
17.1
IR(~)
Maximum
Reverse Surge
Current IRSM
Figure 1
(Amps)
Maximum
Reverse Voltage
@IRSM
(Clamping Voltage)
VRSM (Volts)
1000
1000
500
500
56
57
51
53
200
200
50
50
10
10
48
50
44
45
40
41
37
38
10.8
10.5
11.7
11.3
12.5
12.1
13.8
13.4
15
14.5
16.2
15.6
5
5
5
5
5
5
5
5
5
5
5
5
5
5
t
=
17.3
16.7
19
18.2
35
36
32
33
27
28
26
27
21.2
23.5
22.5
23
24
21
22
26.5
25.2
29.1
27.7
Steady state power diSSipation = 5 watts max rating
** Breakdown voltage tolerance is ±10% for no suffix. and ±5% for A SuffiX
**. For bidirectional types use C or CA suffix. Have cathode polarity band on each end. (consult factory for availability)
CASE 17-02
PLASTIC
Cathode Polarity Band
IRSM~
22
IRSM
-2-
,
,
I
0123456
Time-(ms)
Surge Current Characteristics
Figure 1
(continued)
UL recognition for classification of protectors (QVGV2) under the UL standard for safety 4978 for entire series including C & CA suffixes.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-5
-,
SELECTOR GUIDE
AXIAL LEADED FOR THRU-HOLE DESIGNS (continued) (See Section 4.1.4 for complete data)
PEAK POWER DISSIPATION· -
600 WATTS @ 1 ms SURGE (FIGURE 1) - CASE 17-02 (continued)
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) VF = 3.5 V Max, IF = 50 A Pulse
(except bidirectional devices).
Breakdown
Voltage"
VBR
(Volts) .
I
•
Working Peak
Reverse
Voltage
VRWM
(Volts)
Maximum
Reverse
Leakage
@VRWM
IR (jlA)
Maximum
Reverse Surge
Current IRSM
Figure 1
(Amps)
Maximum
Reverse Voltage
@IRSM
(Clamping Voltage)
VRSM (Volts)
Nom
@IT
Pulse
(mA)
22
22
24
24
1
1
1
1
P6KE22
P6KE22A
P6KE24
P6KE24A
17.8
18.8
19.4
20.5
5
5
5
5
19
20
17
18
31.9
30.6
34.7
33.2
27
27
30
30
1
1
1
1
P6KE27
P6KE27A
P6KE30
P6KE30A
21.8
23.1
24.3
25.6
5
5
5
5
15
16
14
14.4
39.1
37.5
43.5
41.4
33
33
36
36
1
1
1
1
P6KE33
P6KE33A
P6KE36
P6KE36A
26.8
28.2
29.1
30.8
5
5
5
5
12.6
13.2
11.6
12
47.7
45.7
52
49.9
39
39
43
43
1
1
1
1
P6KE39
P6KE39A
P6KE43
P6KE43A
31.6
33.3
34.8
36.8
5
5
5
5
10.6
11.2
9.6
10.1
56.4
53.9
61.9
59.3
47
47
51
51
1
1
1
1
P6KE47
P6KE47A
P6KE51
P6KE51A
38.1
40.2
41.3
43.6
5
5
5
5
8.9
9.3
8.2
8.6
67.8
64.8
73.5
70.1
56
56
62
62
1
1
1
1
P6KE56
P6KE56A
P6KE62
P6KE62A
45.4
47.8
50.2
53
5
5
5
5
7.4
7.8
6.8
7.1
80.5
77
89
85
68
68
75
75
1
1
1
1
P6KE68
P6KE68A
P6KE75
P6KE75A
55.1
58.1
60.7
64.1
5
5
5
5
6.1
6.5
5.5
5.8
98
92
108
103
82
82
91
91
1
1
1
1
P6KE82
P6KE82A
P6KE91
P6KE91A
66.4
70.1
73.7
77.8
5
5
5
5
5.1
5.3
4.5
4.8
118
113
131
125
100
100
110
110
1
1
1
1
P6KE100
P6KE100A
P6KEll0
P6KE110A
81
85.5
89.2
94
5
5
5
5
4.2
4.4
3.8
4
144
137
158
152
120
120
130
130
1
1
1
1
P6KE120
P6KE120A
P6KE130
P6KE130A
97.2
102
105
111
5
5
5
5
3.5
3.6
3.2
3.3
173
165
187
179
Devlce***t
* Steady state power diSsipation =5 watts max rating
*. Breakdown voltage tolerance Is ±10% for no suffix and ±5% for A suffix
*** For bidirectional types use C or CA suffix. Have cathode polarity band on each end. (consult factory for availability)
t
UL recognition for classification of protectors (QVGV2) under the UL standard for safety 4978 for enUre series including C & CA suffixes.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-6
(continued)
SELECTOR GUIDE
AXIAL LEADED FOR THRU-HOLE DESIGNS (continued) (See Section 4.1.4 for complete data)
PEAK POWER DISSIPATION* -
600 WATTS @ 1 ms SURGE (FIGURE 1) -
CASE 17-02 (continued)
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) VF = 3.5 V Max, 'F = 50 A Pulse
(except bidirectional devices).
Breakdown
Voltage··
VBR
(Volts)
Working Peak
Reverse
Voltage
VRWM
(Volts)
Mexlmum
Reverse
Leakage
@VRWM
IR (1lA)
Maximum
Reverse Surge
Current IRSM
Figure 1
(Amps)
Maximum
Reverse Voltage
@IRSM
(Clamping Voltage)
VRSM (Volts)
Nom
@IT
Pulse
(mA)
150
150
160
160
1
1
1
1
P6KE150
P6KE150A
P6KE160
P6KE160A
121
128
130
136
5
5
5
5
2.8
2.9
2.6
2.7
215
207
230
219
170
170
180
180
1
1
1
1
P6KE170
P6KE170A
P6KE180
P6KE180A
138
145
146
154
5
5
5
5
2.5
2.6
2.3
2.4
244
234
258
246
200
200
1
1
P6KE200
P6KE200A
162
171
5
5
2.1
2.2
287
274
Device···t
• Steady state power dissipation = 5 watts max rating
.. Breakdown voHage tolerance is ±10% tor no suffix and ±5% for A suffix
*** For bidirectional types use C or CA suffix. Have cathode polarity band on each end. (consult factory for availability)
t
UL recognition for classification of protectors (QVGV2) under the UL standard for safety 4978 for entire series Including C & CA suffixes.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-7
II
SELECTOR GUIDE
AXIAL LEADED FOR THRU-HOLE DESIGNS (continued) (See Section 4.1.4 for complete data)
PEAK POWER DISSIPATION* '-1500 WATTS @1 ms SURGE (FIGURE 1) - CASE 41A-02
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) VF = 3.5 V Max, IF = 100 A Pulse)
(C suffix denotes standard back to back bidirectional versions. Test both polarities)
•
•
Maximum
Maximum Reverse
Reverse
Voltage
Surge
@IRSM
Current (Clamping
Figure 1
Voltage)
IRSM
VRSM
(Amps)
(Volts)
1~1 =1 A
gure 1
VC1
(Volts max)
8.5
9.4
15
15
7.6@3OA
7.1
11.3
11.4
8@60A
7.5
11.5
11.6
90
90
70
70
16.7
16.7
21.2
21.2
13.7
14.1
16.1
16.7
14.1
14.5
16.5
17.1
2
2
2
2
60
60
50
50
25
25
30
30
20.1
20.8
24.2
24.8
.20.6
21.4
25.2
25.5
1
1
1
1
2
2
2
2
40
40
23
23
37.5
37.5
65.2
65.2
29.8
30.8
50.6
50.6
32
32
54.3
54.3
1
1
2
2
19
19
78.9
78.9
63.3
63.3
70
70
J/EDEC"
Device
5
5
8
8
1N5908
1N6373
lN6374
lN6382
ICTE-5IMPTE-5
ICTE-81MPTE-8
ICTE-8CIMPTE-8C
6
6
9.4
9.4
1
1
1
1
300
25
25
120
160
100
100
10
10
12
12
lN6375
lN6383
lN6376
lN6384
ICTE-l0/MPTE-l0
ICTE-1 OC/MPTE-l OC
ICTE-121MPTE-12
ICTE-12CIMPTE-12C
11.7
11.7
14.1
14.1
1
1
1
1
2
2
2
2
15
15
18
18
lN63n
lN6385
lN6378
lN6386
ICTE-151MPTE-15
ICTE-15CIMPTE-15C
ICTE-181MPTE-18
ICTE-18CIMPTE-18C
17.6
17.6
21.2
21.2
1
1
1
1
22
22
36
36
lN6379
lN6387
lN6380
lN6388
ICTE-221MPTE-22
ICTE-22CIMPTE-22C
ICTE-361MPTE-36
ICTE-36CIMPTE-36C
25.9
25.9
42.4
42.4
45
45
lN6381
lN6389
ICTE-45IMPTE-45
ICTE-45C/MPTE-45C
52.9
52.9
Breakdown.
Voltage
Device**
Peak Pulse
Current@
Peak Pulse
Current@
Ipp2=10A
Figure 1
VC2
(Volts max)
Maximum
Reverse
Stand-Off·
Voltage
VRWM
(Volts)
VBR
Volts
Min
Clamping Voltage'"
Maximum
Reverse
Leakage
@IT
Pulse @VRWM
(mA)
IR (1lA)
300
.. Steady state power dissipation = 5 watts max rating.
""" 1N6382 thru 1N6389 and C suffix ICTE/MPTE device types are bidirectional. Have cathode polarity band on each encl. All other device types are unidirectional only.
(Consutt factory for availability).
*** Clamping voltage peak pulse currents for 1N5908 are 30 Amps and 60 Amps.
IRSM~
IRSM
-2-
-,
o
o
1
2
3
4
Time-(ms)
Surge Current Characteristics
Figure 1
cathode
=Polarity Band
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-8
SELECTOR GUIDE
AXIAL LEADED FOR THRU-HOLE DESIGNS (continued) (See Section 4.1.4 for complete data)
PEAK POWER DISSIPATION* -1500 WATTS @ 1 ms SURGE (FIGURE 1) - CASE 41A-02
ELECTRICAL CHARACTERISTICS (TA =25°C unless otherwise noted) VF =3.5 V Max,
IF =100 A Pulse
Maximum
Reverse
Surge
Current
Figure 1
IRSM
(Amps)
Maximum
Reverse
Voltage
@IRSM
(Clamping
Voltage)
VRSM
(Volts)
10.8
10.5
11.7
11.3
12.5
12.1
13.8
13.4
1.5KE6.8
1.5KE6.8A
1.5KE7.5
1.5KE7.5A
10
10
1
1
lN6267
lN6267A
lN6268
lN6268A
lN6269
lN6269A
lN6270
lN6270A
Working
Peak
Reverse
Voltage
VRWM
(Volts)
5.5
5.8
6.05
6.4
1.5KE8.2
1.5KE8.2A
1.5KE9.1
1.5KE9.1A
6.63
7.02
7.37
7.78
200
200
50
50
139
143
128
132
120
124
109
112
10
10
11
11
1
1
1
1
lN6271
1N6271 A
lN6272
lN6272A
1.5KE10
1.5KE10A
1.5KEll
1.5KEllA
8.1
8.55
8.92
9.4
10
10
5
5
100
103
93
96
15
14.5
16.2
15.6
12
12
13
13
1
1
1
1
lN6273
lN6273A
lN6274
lN6274A
1.5KE12
1.5KE12A
1.5KE13
1.5KE13A
9.72
10.2
10.5
11.1
5
5
5
5
87
90
79
82
17.3
16.7
19
18.2
15
15
16
16
1
1
1
1
lN6275
lN6275A
lN6276
lN6276A
1.5KE15
1.5KE15A
1.5KE16
1.5KE16A
12.1
12.8
12.9
13.6
5
5
5
5
68
71
64
67
22
21.2
23.5
22.5
18
18
20
20
1
1
1
1
lN6277
lN6277A
lN6278
lN6278A
1.5KE18
1.5KE18A
1.5KE20
1.5KE20A
14.5
15.3
16.2
17.1
5
5
5
5
56.5
59.5
51.5
54
26.5
25.2
29.1
27.7
22
22
24
24
1
1
1
1
lN6279
lN6279A
lN6280
lN6280A
1.5KE22
1.5KE22A
1.5KE24
1.5KE24A
17.8
18.8
19.4
20.5
5
5
5
5
47
49
43
45
31.9
30.6
34.7
33.2
27
27
30
30
1
1
1
1
lN6281
lN6281A
lN6282
lN6282A
1.5KE27
1.5KE27A
1.5KE30
1.5KE30A
21.8
23.1
24.3
25.6
5
5
5
5
38.5
40
34.5
36
39.1
37.5
43.5
41.4
33
33
36
36
1
1
1
1
lN6283
lN6283A
lN6284
lN6284A
1.5KE33
1.5KE33A
1.5KE36
1.5KE36A
26.8
28.2
29.1
30.8
5
5
5
5
31.5
33
29
30
47.7
45.7
52
49.9
39
39
43
43
1
1
1
1
lN6285
lN6285A
lN6286
lN6286A
1.5KE39
1.5KE39A
1.5KE43
1.5KE43A
31.6
33.3
34.8
36.8
5
5
5
5
26.5
28
24
25.3
56.4
53.9
61.9
59.3
47
47
51
51
1
1
1
1
lN6287
lN6287A
lN6288
lN6288A
1.5KE47
1.5KE47A
1.5KE51
1.5KE51A
38.1
40.2
41.3
43.6
5
5
5
5
22.2
23.2
20.4
21.4
67.8
64.8
73.5
70.1
Breakdown
Voltage"
VBR
Volts
6.8
6.8
7.5
7.5
@IT
Pulse
(mA)
10
10
10
10
8.2
8.2
9.1
9.1
~
JEDEC
Device
Device",t
Maximum
Reverse
Leakage
@VRWM
IR(llA)
1000
1000
500
500
* Steady state power diSSipatIOn = 5 watts max ratmg
** Breakdown voltage tolerance is ±1 0% for no suffix and ±5% for A suffix
(continued)
*** For bidirectional types use C or CA suffix on 1.SKE series only. Have cathode polarity band on each end. Consult factory for availability.
t (~~:~:f=~=S:~;':ohna~~~~~~:r~~~~·V2) under the UL standard for safety 4978 for 1.5KE6.B,A,C,CA thru 1.SKE250,A,C,CA.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-9
Cathode = Polarity Band
~~
.
IRSM
-2-
-.
o
1 2
3
4
,
I
5
6
Time-(ms)
Surge Current Characleristics
Figure 1
I
SELECTOR GUIDE
AXIAL LEADEO FORTHRU-HOLE DESIGNS (continued) (See Section 4.1.4 for complete data)
PEAK POWER DISSIPATION*""': 1500 WATTS @ 1 ms SURGE (FIGURE 1) - CASE 41A-02 (continued)
ELECTRICAL CHARACTERISTICS -
continued (TA =25°C unless otherwise noted) VF =3.5 V Max, IF =100 A Pulse
Breakdown
Voltage··
VBR
Volts
Nom
JEDEC
Device
Device..• t
Maximum
Reverse
Leakage
@VRWM,
IR (IJA)
1.5KE56
1.5KE56A
1.5KE62
1.5KE62A
45.4
47.8
50.2
53
5
5
5
5
18.6
19.5
16.9
17.7
BO.5
1
1
l'
75
75
1
1
1
1
lN6291
1N6291 A
lN6292
lN6292A
1.5KE68
1.5KE68A
1.5KE75
1.5KE75A
55.1
58.1
60.7
64.1
5
5
5
5
15.3
16.3
13.9
14.6
98
92
108
103
82
82
91
91
1
1
1
1
lN6293
lN6293A
lN6294
lN6294A
1.5KE82
1.5KE82A
1.5KE91
1.5KE91A
66.4
70.1
73.7
n.8
5
5
5
5
12.7
13.3
11.4
12
118
113
131
125
100
100
110
.. 110
1
1
1
1
lN6295
lN6295A
lN6296
lN6296A
1.5KEloo
1.5KE100A
1.5KE110
1.5KEll0A
81
85.5
89.2
94
5
5
5
5
10.4
11
9.5
9.9
144
137
158
152
120
120
130
130
1
1
1
1
lN6297
lN6297A
lN6298
lN6298A
1:5KE120
1.5KE120A
1.5KE130
1.5KE130A
97.2
102
105
111
5
5
5
5
8.7
9.1
8
8.4
173
165
187
179
150
150
160
160
1
1
1
1
lN6299
lN6299A
lN6300
lN6300A
1.5KE150
1:5KE150A
1.5KE160
1.5KEI60A
121
128
130
136
5
5
5
5
7
7.2
6.5
6.8
215
207
230
219
170
170
180
180
1
1
1
1
lN6301
1N6301 A
lN6302
lN6302A
1.5KE170
1.5KE170A
1.5KE180
1.5KEIBOA
138
145
146
154
5
5
5
5
6.2
6.4
5.8
6.1
244
234
258
246
200
200
220
220
250
250
1
1
1
1
1
1
lN6303
lN6303A
1.5KE200
1.5KE200A
1.5KE220
1.5KE220A
1.5KE250
1.5KE250A
162
171
175
185
202
214
5
5
5
5
5
5
5.2
5.5
4.3
4.6
5
5
287
274
344
328
360
344
68
66
1
• Steady state power dissipation = 5 watts max rating .
_. Breakdown voltage tolerance is ±1 0% for no suffix and ±5% for A suffix
.*.
t
Maximum
Reverse
Voltage
@IRSM
(Clamping
Voltage)
VRSM
(Volts)
lN6289
lN6289A
lN6290
lN6290A
56
56
62
62
•
@tr
Pulse
(mA)
Working
Peak
Reverse
Voltage
VRWM
(Volts)
Maximum
Reverse
Surge
Current
Figure 1
IRSM
(Amps)
For bidirectional types use C or CA suffix on 1.SKE series only. Have cathode polarity band on each end. Consult factory tor availability.
(1 N6267-6303A series do not have C or CA option).
UL recognition for classification of proteotors (QVGV2) undar the UL slandard for safety 4978 for 1.5KE6.8,A,C,CA thlll 1.5KE250,A,C,CA.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-10
n
89
65
SELECTOR GUIDE
TRANSIENT VOLTAGE SUPPRESSORS (continued)
GENERAL PURPOSE (continued)
Surface Mount Packages
PEAK POWER DISSIPATION - 40 WATTS @ 1 ms SURGE (FIGURE 1) - CASE 318-07
MMBZ15VDLT1* - SOT-23 BIPOLAR (for ESD protection)
(See Section 4.1.4 for complete data)
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
BIDIRECTIONAL (Circuit tied to pins 1 and 2)
Breakdown Voltage
VBRtt
(Volts)
t
t t
Min
I Nom I
Max
@IT
(mA)
14.3
I
15.8
1.0
15
I
Maximum Reverse
Working Peak Maximum Reverse Maximum Reverse
Voltage @ IRSMt
Surge Current
Reverse Voltage Leakage Current
(Clamping Voltage)
VRWM
IRWM
IRSMt
VRSM
(Volts)
(Amps)
(Volts)
IR(nA)
12.8
100
1.9
Maximum
Temperature
Coefficient
ofVBR
(mV/"C)
12
21.2
Surge current waveform per Figure 1.
VBR measured at pulse test current IT at an ambient temperature of 25°C.
* T1 suffix designates tape and reel of 3000 units.
I
Pinout: Terminal 1 Terminal 2 Terminal 3 -
Anode
Anode
Cathode
I~~
-,
IRSM
-2-
,
o
CASE 318-07, STYLE 9
TO-236AB
LOW PROFILE SOT-23
PLASTIC
1 2
3
4
, ,
5 6
lime-ems)
Surge Current Characteristics
Figure 1
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-11
SELECTOR GUIDE
SURFACE MOUNT PACKAGES (continued) (See Section 4.1.4 for complete data)
PEAK POWER DISSIPATION -
600 WATTS @ 1 ms SURGE (FIGURE 1) -
CASE 403A-03
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted).
I
•
Reverse
Stand-Off
Voltage
VR
Volts (1)
Breakdown
Voltage
VBR@IT
Peak
Maximum
Maximum
Pulse
Reverse
Clamping
Current
Leakage
Voltage (See Figure 1)
@VR
VC@lpp
Ipp
IR
Volts
Amps
I1A
Device (2)
Volts
Min
Pulse
mA
5
6
6.5
7
7.5
15MB5.0AT3
15MB6.0AT3
15MB6.5AT3
15MB7.0AT3
15MB7.5AT3
6.4
6.67
7.22
7.78
8.33
10
10
10
10
1
9.2
10.3
11.2
12
12.9
65.2
58.3
53.6
50
46.5
800
800
500
200
100
KE
KG
KK
KM
KP
8
8.5
9
10
11
15MB8.0AT3
15MB8.5AT3
15MB9.0AT3
15MB10AT3
15MBllAT3
8.89
9.44
10
11.1
12.2
1
1
1
1
1
13.6
14.4
15.4
17
18.2
44.1
41.7
39
35.3
33
50
10
5
5
5
KR
12
13
14
15
16
15MB12AT3
15MB13AT3
15MB14AT3
15MB15AT3
15MB16AT3
13.3
14.4
15.6
16.7
17.8
1
1
1
1
1
19.9
21.5
23.2
24.4
26
30.2
27.9
25.8
24
23.1
5
5
5
5
5
LE
LG
LK
LM
LP
17
18
20
22
24
15MB17AT3
15MB18AT3
15MB20AT3
15MB22AT3
15MB24AT3
18.9
20
22.2
24.4
26.7
1
1
1
1
1
27.6
29.2
32.4
35.5
38.9
21.7
20.5
18.5
16.9
15.4
5
5
5
5
5
LR
LT
LV
LX
LZ
26
28
30
33
36
15MB26AT3
15MB28AT3
15MB30AT3
15MB33AT3
15MB36AT3
28.9
31.1
33.3
36.7
40
1
1
1
1
1
42.1
45.4
48.4
53.3
58.1
14.2
13.2
12.4
11.3
10.3
5
5
5
5
5
ME
MG
MK
MM
MP
40
45
48
51
15MB40AT3
15MB43AT3
15MB45AT3
15MB48AT3
15MB51AT3
44.4
47.8
50
53.3
56.7
1
1
1
1
1
64.5
69.4
72.7
77.4
82.4
9.3
8.6
8.3
7.7
7.3
5
5
5
5
5
MR
MT
MV
MX
MZ
54
58
60
64
70
15MB54AT3
15MB58AT3
15MB60AT3
15MB64AT3
15MB70AT3
60
64.4
66.7
71.1
77.8
1
1
1
1
1
87.1
93.6
96.8
103
113
6.9
6.4
6.2
5.8
5.3
5
5
5
5
5
NE
NG
NK
NM
NP
75
78
85
90
100
15MB75AT3
15MB78AT3
15MB85AT3
15MB90AT3
15MB100AT3
83.3
86.7
94.4
100
111
1
1
1
1
1
121
126
137
146
162
4.9
4.7
4.4
4.1
3.7
5
5
5
5
5
NR
NT
NV
NX
NZ
110
120
130
150
160
170
15MBll0AT3
15MB120AT3
15MB130AT3
15MB150AT3
15MB160AT3
15MB170AT3
122
133
144
167
178
189
1
1
1
1
1
1
177
193
209
243
259
275
3.4
3.1
2.9
2.5
2.3
2.2
5
5
5
5
5
5
PE
PG
PK
PM
PP
PR
43
Device
Marking
•
5MB
CASE 403A-03
PLASTIC
Cathode Notch
KT
KV
=
KX
KZ
RECOMMENDED SOLDER PAD (FOOTPRINT)
Note 1. A transient suppressor IS normally selected according to the reverse -Stand Off vonage" (VR) which should be equal to or greater
than the DC or continuous peak operating voltage level.
Note 2. T3 suffix designates tape and reel of 2500 units.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-12
5MB
.~~
-,
'RSM
-2-
,
o
1 2
3
4
5
lime-(ms)
SUlge Current Chalacteristics
Figure 1
SELECTOR GUIDE
SURFACE MOUNT PACKAGES (continued) (See Section 4.1.4 for complete data)
PEAK POWER DISSIPATION -
600 WATTS @ 1 ms SURGE (FIGURE 1) - CASE 403A-D3
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) VF = 3.5 V Max,
IF = 50 A Pulse.
Maximum
Maximum
Reverse Reverse Voltage
Working
Breakdown
Maximum Surge
@IRSM
Peak
Voltage"
Reverse Current
(Clamping
Reverse
Leakage
VBR @ IT Pulse
Figure 1
Voltage)
Voltage
@VRWM
Device
Volts
IRSM
VRSM
VRWM
Marking
(Amps)
(Volts)
IRULA)
Volts
mA
Device*·
Nom
6.8
7.5
10
10
P6SMB6.8AT3
P6SMB7.5AT3
5.8
6.4
1000
500
57
53
10.5
11.3
6V8A
7V5A
8.2
9.1
10
1
P6SMB8.2AT3
P6SMB9.1AT3
7.02
7.78
200
50
50
45
12.1
13.4
8V2A
9V1A
10
11
1
1
P6SMB10AT3
P6SMB11AT3
8.55
9.4
10
5
41
38
14.5
15.6
10A
11A
12
13
1
1
P6SMB12AT3
P6SMB13AT3
10.2
11.1
5
5
36
33
16.7
18.2
12A
13A
15
16
1
1
P6SMB15AT3
P6SMB16AT3
12.8
13.6
5
5
28
27
21.2
22.5
15A
16A
18
20
1
1
P6SMB18AT3
P6SMB20AT3
15.3
17.1
5
5
24
22
25.2
27.7
18A
20A
22
24
1
1
P6SMB22AT3
P6SMB24AT3
18.8
20.5
5
5
20
18
30.6
33.2
22A
24A
27
30
1
1
P6SMB27AT3
P6SMB30AT3
23.1
25.6
5
5
16
14.4
37.5
41.4
27A
30A
33
36
1
1
P6SMB33AT3
P6SMB36AT3
28.2
30.8
5
5
13.2
12
45.7
49.9
33A
36A
39
43
1
1
P6SMB39AT3
P6SMB43AT3
33.3
36.8
5
5
11.2
10.1
53.9
59.3
39A
43A
47
51
1
1
P6SMB47AT3
P6SMB51AT3
40.2
43.6
5
5
9.3
8.6
64.8
70.1
47A
51A
56
62
1
1
P6SMB56AT3
P6SMB62AT3
47.8
53
5
5
7.8
7.1
77
85
56A
62A
68
75
1
1
P6SMB68AT3
P6SMB75AT3
58.1
64.1
5
5
6.5
5.8
92
103
68A
75A
82
91
1
1
P6SMB82AT3
P6SMB91AT3
70.1
77.8
5
5
5.3
4.8
113
125
82A
91A
100
110
1
1
P6SMB100AT3
P6SMB110AT3
85.5
94
5
5
4.4
4
137
152
100A
110A
120
130
1
1
P6SMB120AT3
P6SMB130AT3
102
111
5
5
3.6
3.3
165
179
120A
130A
150
160
1
1
P6SMB150AT3
P6SMB160AT3
128
136
5
5
2.9
2.7
207
219
150A
160A
170
180
1
1
P6SMB170AT3
P6SMB180AT3
145
154
5
5
2.6
2.4
234
246
170A
180A
200
1
P6SMB200AT3
171
5
2.2
274
200A
•
5MB
CASE 403A-03
PLASTIC
Cathode Notch
=
III
5MB
~~
,
IRSM
-2-
• Breakdown voltage tolerance is ±5% for A suffix.
** T3 suffix destgnates tape and reel of 2500 units.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-13
-,
o
1
2
3
4
5
lime-(ms)
Surge Current Characteristics
Figure 1
SELECTOR GUIDE
SURFACE MOUNT PACKAGES (continued) (See Section 4.1.4 for complete data)
PEAK POWER DISSIPATION -1500 WATTS@ 1 ms SURGE (FIGURE 1) -
CASE 403-03
ELECTRICAL CHARACTERISTICS (TA = 25~C unless otherwise noted)
I
Pllllk
Maximum
Maximum
Pulse
Reverse
Clamping
Current'
Leakage
Voltage, (See Figura 1)
@VR
Device
VC@lpl!
Ipp
IR
Marking
Volts
Amps ..
I!A
Device (2)
Volta
Min
Pulse
mA
5
6
6.5
7
7.5
1SMC5.0AT3
lSMC6.0AT3
lSMC6.5AT3
lSMC7.0AT3
lSMC7.5AT3
6.4
6.67
7.22
7.78
8.33
10
10
10
10
1
9.2
10.3
11.2
12
12.9
163
145.6
133.9
125
116.3
1000
1000
200
100
GOE
GOG
GOK
GOM
GOP
8
8.5
9
10
11
lSMC8.0AT3
lSMC8.5AT3
lSMC9.0AT3
lSMC10AT3
lSMCllAT3
8.89
9.44
10
11.1
12.2
1
1
1
1
1
13.6
14.4
15.4
17
18.2
110.3
104.2
97.4
88.2
82.4
50
20
10
5
5
GOR
GOT
GOV
GOX
GOZ
SMC
CASE 403-03
PLASTIC
Cathode = Notch
12
13
14
15
16
lSMC12AT3
lSMC13AT3
lSMC14AT3
lSMC15AT3
lSMC16AT3
13.3
14.4
15.6
16.7
17.8
1
1
1
1
1
19.9
21.5
23.2
24.4
26
75.3
69.7
64.7
61.5
57.7
5
5
5
5
5
GEE
GEG
GEK
GEM
GEP
RECOMMENDED SOLDER PAD (FOOTPRINT)
17
, 18
20
lSMC17AT3
lSMC18AT3
lSMC20AT3
lSMC22AT3
lSMC24AT3
18.9
20
22.2
24.4
26.7
1
1
1
1
1
27.6
29.2
32.4
35.5
38.9
53.3
51.4
46.3
42.2
38.6
5
5
5
5
5
GER
GET
GEV
GEX
GEZ
lSMC26AT3
lSMC28AT3
lSMC30AT3
lSMC33AT3
lSMC36AT3
28.9
31.1
33.3
36.7
40
1
1
1
1
1
42.1
45.4
48.4
53.3
58.1
35.6
33
31
28.1
25.8
5
5
5
5
5
GFE
GFG
GFK
GFM
GFP
48
51
lSMC40AT3
lSMC43AT3
lSMC45AT3
lSMC48AT3
lSMC51AT3
44.4
47.8
50
53.3
56.7
1
1
1
1
1
64.5
69.4
72.7
77.4
82.4
23.2
21.6
20.6
19.4
18.2
5
5
5
5
5
GFR
GFT
GFV
GFX
GFZ
54
58
60
64
70
lSMC54AT3
lSMC58AT3
lSMC60AT3
lSMC64AT3
lSMC70AT3
60
64.4
66.7
71.1
77.8
1
1
1
1
1
87.1
93.6
96.8
103
113
17.2
16
15.5
14.6
13.3
5
5
5
5
5
GGE
GGG
GGK
GGM
GGP
75
78
lSMC75AT3
lSMC78AT3
83.3
86.7
1
1
121
126
12.4
11.4
5
5
GGR
GGT
22
24
II
Breakdown
Voltage
Reverse
Stand-Off
Voltage
VR
Volta (1)
26
28
30
33
36
40
43
45
VBR@IT
500
•
SMC
Note 1. A transient suppressor is normally selected accordi~g to the reverse "Stand Off Vohage" (VR) which should be equal to or greater
than the DC or continuous peak operating voltage level.
Note 2. T3 suffix designates tape and reel of 2500 units.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-14
~"~
,
IRSM
-2-
-,
,
a
1 2
3
4
I
5 6
TIme-(ms)
Surge Current Characteristics
Figure 1
SELECTOR GUIDE
SURFACE MOUNT PACKAGES (continued) (See Section 4.1.4 for complete data)
PEAK POWER DISSIPATION -1500 WATTS @ 1 ms SURGE (FIGURE 1) -
CASE 403-03
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) VF = 3.5 V Max,
IF = 100A Pulse.
Breakdown
Voltage"
Maximum
Reverse
Maximum
Surge
Reverse
Current
Leakage
Figure 1
@VRWM
IRSM
(Amps)
IR (IJA)
Maximum
Reverse Voltage
@IRSM
(Clamping
Voltage)
VRSM
(Volts)
Device
Marking
Nom
mA
Device**
Working
Peak
Reverse
Voltage
VRWM
Volts
6.8
7.5
10
10
1.5SMC6.8AT3
1.5SMC7.5AT3
5.8
6.4
1000
500
143
132
10.5
11.3
6V8A
7V5A
8.2
9.1
10
1
1.5SMC8.2AT3
1.5SMC9.1AT3
7.02
7.78
200
50
124
112
12.1
13.4
8V2A
9V1A
10
11
1
1
1.5SMC10AT3
1.5SMCllAT3
8.55
9.4
10
5
103
96
14.5
15.6
lOA
llA
12
13
1
1
1.5SMC12AT3
1.5SMC13AT3
10.2
11.1
5
5
90
82
16.7
18.2
12A
13A
15
16
1
1
1.5SMC15AT3
1.5SMC16AT3
12.8
13.6
5
5
71
67
21.2
22.5
15A
16A
18
20
1
1
1.5SMC18AT3
1.5SMC20AT3
15.3
17.1
5
5
59.5
54
25.2
27.7
18A
20A
22
24
1
1
1.5SMC22AT3
1.5SMC24AT3
18.8
20.5
5
5
49
45
30.6
33.2
22A
24A
27
30
1
1
1.5SMC27AT3
1.5SMC30AT3
23.1
25.6
5
5
40
36
37.5
41.4
27A
30A
33
36
1
1
1.5SMC33AT3
1.5SMC36AT3
28.2
30.B
5
5
33
30
45.7
49.9
33A
36A
39
43
1
1
1.5SMC39AT3
1.5SMC43AT3
33.3
36.8
5
5
28
25.3
53.9
59.3
39A
43A
47
51
1
1
1.5SMC47AT3
1.5SMC51AT3
40.2
43.6
5
5
23.2
21.4
64.8
70.1
47A
51A
56
62
1
1
1.5SMC56AT3
1.5SMC62AT3
47.8
53
5
5
19.5
17.7
77
85
56A
62A
68
75
1
1
1.5SMC68AT3
1.5SMC75AT3
58.1
64.1
5
5
16.3
14.6
92
103
68A
75A
82
91
1
1
1.5SMC82AT3
1.5SMC91 AT3
70.1
77.8
5
5
13.3
12
113
125
82A
91A
VBR @ IT Pulse
Volts
•
SMC
CASE 403-03
PLASTIC
Cathode Notch
=
RECOMMENDED SOLDER PAD (FOOTPRINT) •
I~.171:1
~'D
•
D
SMC
'R~~
IRSM
-2-
-,
,
o
1
, ,
2
3
4
5 6
Time-(ms)
Surge Current Characteristics
.. Breakdown voltage tolerance is ±5% for A suffix.
** T3 suffix designates tape and reel of 2500 units.
Figure 1
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-15
SELECTOR GUIDE
TRANSIENT VOLTAGE SUPPRESSORS (continued)
Automotive Transient Suppressors (See Section 4.1.4 for complete data)
Automotive transient suppressors are designed for protection against over-voltage conditions in the auto electrical system including the "LOAD DUMP" phenomenon that occurs when the battery open circuits while the car is running.
AUTOMOTIVE TRANSIENT SUPPRESSOR
c.
VRRM (Volts)
I
CASE 194-04
CASE 194-04
MR2535L
20
10 (Amp)
35
V(BR) (Volts)
24-32
IRSM*
(Amp)
110
TC@RalediO
eC)
150
T
eC)
175
• Time constant = 10 ms, duty cycle:s; 1%, TC = 25°C.
Note: MR2535L Is considered part of the rectifier product portfolio.
•
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-16
Section 4.1.2 Data Sheet Category Listing
Transient Voltage Suppressors
Section
4.1.4.1
4.1.4.1.1
Data Sheets
AXIAL LEADED ........•..•..
500 Watt Peak Power .....•..
SA5.0 thru SA170A ..••...••
SOO Watt Peak Power ........
4.1.4.1.2
PSKES.8 thru PSKE200A ..••.
1500 Watt Peak Power ....••.
4.1.4.1.3
General Data -1500 Watt •..
1N5908 ...........••..•..
1NS2S7 thru 1NS303A,
1.5KES.8 thru 1.5KE250A ..
1NS373 thru 1NS389,
ICTE-5 thru ICTE-45C,
MPTE-5 thru MPTE-45C ...
4.1.4.1.4
Automotive 110 Amp .•...•.•
MR2535L ..•..•....••..•.•
Page
Section
4-1-24
4-1-24
4-1-25
4-1-31
4-1-32
4-1-37
4-1-38
4-1-42
4.1.4.2
4-1-43
4-1-4S
4-1-47
4-1-48
Data Sheets
SURFACE MOUNTED - SOT-23,
5MB and SMC PACKAGES .....
4.1.4.2.1
40 Watt Peak Power .........
MMBZ15VDLT1 .....•...•..
SOO Watt Peak Power ........
4.1.4.2.2
General Data - SOO Watt ....
1SMB5.0AT3 thru
1SMB170AT3 •............
PSSMBS.8AT3 thru
PSSMB200AT3 ..•..•.•.•..
1500 Watt Peak Power •......
4.1.4.2.3
General Data - 1500 Watt ••.
1SMC5.0AT3 thru
1SMC78AT3 .......•...•..
1.5SMCS.8AT3 thru
1.5SMC91AT3 ...•...•...•.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-17
Page
4-1-51
4-1-51
4-1-52
4-1-55
4-1-5S
4-1-59
4-1-S0
4-1-S1
4-1-62
4-1-S5
4-1-6S
II
-
Section 4.1.3 Alphanumeric Part
Number Listing
Transient Voltage Suppressors
II
III
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-18
ALPHANUMERIC INDEX - TRANSIENT VOLTAGE SUPPR~SSORS
DEVICE
PAGE
DEVICE
PAGE
DEVICE
PAGE
1N5908
4-1-42
1N6286A
4-1-43
1N6378
4-1-46
1N6267
4-1-43
1N6287
4-1-43
1N6379
4-1-46
1N6267A
4-1-43
1N6287A
4-1-43
1N6380
4-1-46
1N6268
4-1-43
1N6288
4-1-43
1N6381
4-1-46
1N6268A
4-1-43
1N6288A
4-1-43
1N6382
4-1-46
1N6269
4-1-43
1N6289
4-1-44
1N6383
4-1-46
1N6269A
4-1-43
1N6289A
4-1-44
1N6384
4-1-46
1N6270
4-1-43
1N6290
4-1-44
1N6385
4-1-46
1N6270A
4-1-43
1N6290A
4-1-44
1N6386
4-1-46
1N6271
4-1-43
1N6291
4-1-44
1N6387
4-1-46
1N6271A
4-1-43
1N6291 A
4-1-44
1N6388
4-1-46
1N6272
4-1-43
1N6292
4-1-44
1N6389
4-1-46
1N6272A
4-1-43
1N6292A
4-1-44
1SMB5.0AT3
4-1-59
1N6273
4-1-43
1N6293
4-1-44
1SMB6.0AT3
4-1-59
1N6273A
4-1-43
1N6293A
4-1-44
1SMB6.5AT3
4-1-59
1N6274
4-1-43
1N6294
4-1-44
1SMB7.0AT3
4-1-59
1N6274A
4-1-43
1N6294A
4-1-44
1SMB7.5AT3
4-1-59
1N6275
4-1-43
1N6295
4-1-44
1SMB8.0AT3
4-1-59
1N6275A
4-1-43
1N6295A
4-1-44
1SMB8.5AT3
4-1-59
1N6276
4-1-43
1N6296
4-1-44
1SMB9.0AT3
4-1-59
1N6276A
4-1-43
1N6296A
4-1-44
1SMB10AT3
4-1-59
1N6277
4-1-43
1N6297
4-1-44
1SMB11AT3
4-1-59
1N6277A
4-1-43
1N6297A
4-1-44
1SMB12AT3
4-1-59
1N6278
4-1-43
1N6298
4-1-44
1SMB13AT3
4-1-59
1N6278A
4-1-43
1N6298A
4-1-44
1SMB14AT3
4-1-59
1N6279
4-1-43
1N6299
4-1-44
1SMB15AT3
4-1-59
1N6279A
4-1-43
1N6299A
4-1-44
1SMB16AT3
4-1-59
1N6280
4-1-43
1N6300
4-1-44
1SMB17AT3
4-1-59
1N6280A
4-1-43
1N6300A
4-1-44
1SMB18AT3
4-1-59
1N6281
4-1-43
1N6301
4-1-44
1SMB20AT3
4-1-59
1N6281 A
4-1-43
1N6301A
4-1-44
1SMB22AT3
4-1-59
1N6282
4-1-43
1N6302
4-1-44
1SMB24AT3
4-1-59
1N6282A
4-1-43
1N6302A
4-1-44
1SMB26AT3
4-1-59
1N6283
4-1-43
1N6303
4-1-44
1SMB28AT3
4-1-59
1N6283A
4-1-43
1N6303A
4-1-44
1SMB30AT3
4-1-59
1N6284
4-1-43
1N6373
4-1-46
1SMB33AT3
4-1-59
1N6284A
4-1-43
1N6374
4-1-46
1SMB36AT3
4-1-59
1N6285
4-1-43
1N6375
4-1-46
1SMB40AT3
4-1-59
1N6285A
4-1-43
1N6376
4-1-46
1SMB43AT3
4-1-59
1N6286
4-1-43
1N6377
4-1-46
1SMB45AT3
4-1-59
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-19
II
•
ALPHANUMERIC INDEX (continued)
I
DEVICE
PAGE
DEVICE
PAGE
DEVICE
PAGE
1SMB4BAT3
4-1-.59
1SMC33AT3
4-1-65
1.5KE24A
4-1-43
1SMB51AT3
4-1-59
1SMC36AT3
4-1-65
1.5KE27
4-1-43
1SMB54AT3
4-1-59
1SMC40AT3
4-1-65
1.5KE27A
4-1-43
1SMB5BAT3
4-1-59
1SMC43AT3
4-1-65
1.5KE30
4-1-43
1SMB60AT3
4-1-59
1SMC45AT3
4-1-65
1.5KE30A
4-1-43
1SMB64AT3
4-1-59
1SMC4BAT3
4-1-65
1.5KE33
4-1-43
1SMB70AT3
4-1-59
1SMC51AT3
4-1-65
1.5KE33A
4-1-43
1SMB75AT3
4-1-59
1SMC54AT3
4-1-65
1.5KE36
4-1-43
1SMB7BAT3
4-1-59
1SMC5BAT3
4-1-65
1.5KE36A
4-1-43
1SMBB5AT3
4-1-59
1SMC60AT3
4-1-65
1.5KE39
4-1-43
1SMB90AT3
4-1-59
1SMC64AT3
4-1-65
1.5KE39A
4-1-43
1SMB100AT3
4-1-59
1SMC70AT3
4-1-65
1.5KE43
4-1-43
1SMB110AT3
4-1-59
1SMC75AT3
4-1-65
1.5KE43A
4-1-43
1SMB120AT3
4-1-59
1SMC7BAT3
4-1-65
1.5KE47
4-1-43
1SMB130AT3
4-1-59
1.5KE6.B
4-1-43
1.5KE47A
4-1-43
1SMB150AT3
4-1-59
1.5KE6.BA
4-1-43
1.5KE51
4-1-43
1SMB160AT3
4-1-59
1.5KE7.5
4-1-43
1.5KE51A
4-1-43
1SMB170AT3
4-1-59
1.5KE7.5A
4-1-43
1.5KE56
4-1-44
1SMC5.0AT3
4-1-65
1.5KEB.2
4-1-43
1.5KE56A
4-1-44
1SMC6.0AT3
4-1-65
1.5KEB.2A
4-1-43
1.5KE62
4-1-44
1SMC6.5AT3
4-1-65
1.5KE9.1
4-1-43
1.5KE62A
4-1-44
1SMC7.0AT3
4-1-65
1.5KE9.1A
4-1-43
1.5KE6B
4-1-44
1SMC7.5AT3
4-1-65
1.5KE10
4-1-43
1.5KE6BA
4-1-44
1SMCB.OAT3
4-1-65
1.5KE10A
4-1-43
1.5KE75
4-1-44
1SMCB.5AT3
4-1-65
1.5KE11
4-1-43
1.5KE75A
4-1-44
1SMC9.0AT3
4-1-65
1.5KE11A
4-1-43
1.5KEB2
4-1-44
1SMC10AT3
4-1-65
1.5KE12
4-1-43
1.5KEB2A
4-1-44
1SMC11AT3
4-1-65
1.5KE12A
4-1-43
1.5KE91
4-1-44
1SMC12AT3
4-1-65
1.5KE13
4-1-43
1.5KE91A
4-1-44
1SMC13AT3
4-1-65
1.5KE13A
4-1-43
1.5KE100
4-1-44
1SMC14AT3
4-1-65
1.5KE15
4-1-43
1.5KE100A
4-1-44
1SMC15AT3
4-1-65
1.5KE15A
4-1-43
1.5KE110
4-1-44
1SMC16AT3
4-1-65
1.5KE16
4-1-43
1.5KE110A
4-1-44
1SMC17AT3
4-1-65
1.5KE16A
4-1-43
1.5KE120
4-1-44
1SMC1BAT3
4-1-65
1.5KE1B
4-1-43
1.5KE120A
4-1-44
1SMC20AT3
4-1-65
1.5KE1BA
4-1-43
1.5KE130
4-1-44
1SMC22AT3
4-1-65
1.5KE20
4-1-43
1.5KE130A
4-1-44
1SMC24AT3
4-1-65
1.5KE20A
4-1-43
1.5KE150
4-1-44
1SMC26AT3
4-1-65
1.5KE22
4-1-43
1.5KE150A
4-1-44
1SMC2BAT3
4-1-65
1.5KE22A
4-1-43
1.5KE160
4-1-44
1SMC30AT3
4-1-65
1.5KE24
4-1-43
1.5KE160A
4-1-44
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-20
ALPHANUMERIC INDEX (continued)
DEVICE
PAGE
DEVICE
PAGE
DEVICE
PAGE
1.5KE170
4-1-44
ICTE-10
4-1-46
P6KE10
4-1-33
1.5KE170A
4-1-44
ICTE-10C
4-1-46
P6KE10A
4-1-33
1.5KE1S0
4-1-44
ICTE-12
4-1-46
P6KE11
4-1-33
1.5KE1S0A
4-1-44
ICTE-12C
4-1-46
P6KE11A
4-1-33
1.5KE200
4-1-44
ICTE-15
4-1-46
P6KE12
4-1-33
1.5KE200A
4-1-44
ICTE-15C
4-1-46
P6KE12A
4-1-33
1.5KE220
4-1-44
ICTE-1S
4-1-46
P6KE13
4-1-33
1.5KE220A
4-1-44
ICTE-1SC
4-1-46
P6KE13A
4-1-33
1.5KE250
4-1-44
ICTE-22
4-1-46
P6KE15
4-1-33
1.5KE250A
4-1-44
ICTE-22C
4-1-46
P6KE15A
4-1-33
1.5SMC6.SAT3
4-1-66
ICTE-36
4-1-46
P6KE16
4-1-33
1.5SMC7.5AT3
4-1-66
ICTE-36C
4-1-46
P6KE16A
4-1-33
1.5SMCS.2AT3
4-1-66
ICTE-45
4-1-46
P6KE1S
4-1-33
1.5SMC9.1AT3
4-1-66
ICTE-45C
4-1-46
P6KE1SA
4-1-33
1.5SMC10AT3
4-1-66
MMBZ15VDLT1
4-1-52
P6KE20
4-1-33
1.5SMC11 AT3
4-1-66
MPTE-5
4-1-46
P6KE20A
4-1-33
1.5SMC12AT3
4-1-66
MPTE-S
4-1-46
P6KE22
4-1-33
1.5SMC13AT3
4-1-66
MPTE-SC
4-1-46
P6KE22A
4-1-33
1.5SMC15AT3
4-1-66
MPTE-10
4-1-46
P6KE24
4-1-33
1.5SMC16AT3
4-1-66
MPTE-10C
4-1-46
P6KE24A
4-1-33
1.5SMC1SAT3
4-1-66
MPTE-12
4-1-46
P6KE27
4-1-33
1.5SMC20AT3
4-1-66
MPTE-12C
4-1-46
P6KE27A
4-1-33
1.5SMC22AT3
4-1-66
MPTE-15
4-1-46
P6KE30
4-1-33
1.5SMC24AT3
4-1-66
MPTE-15C
4-1-46
P6KE30A
4-1-33
1.5SMC27AT3
4-1-66
MPTE-1S
4-1-46
P6KE33
4-1-33
1.5SMC30AT3
4-1-66
MPTE-1SC
4-1-46
P6KE33A
4-1-33
1.5SMC33AT3
4-1-66
MPTE-22
4-1-46
P6KE36
4-1-33
1.5SMC36AT3
4-1-66
MPTE-22C
4-1-46
P6KE36A
4-1-33
1.5SMC39AT3
4-1-66
MPTE-36
4-1-46
P6KE39
4-1-33
1.5SMC43AT3
4-1-66
MPTE-36C
4-1-46
P6KE39A
4-1-33
1.5SMC47AT3
4-1-66
MPTE-45
4-1-46
P6KE43
4-1-33
1.5SMC51AT3
4-1-66
MPTE-45C
4-1-46
P6KE43A
4-1-33
1.5SMC56AT3
4-1-66
MR2535L
4-1-4S
P6KE47
4-1-33
1.5SMC62AT3
4-1-66
P6KE6.S
4-1-33
P6KE47A
4-1-33
1.5SMC6SAT3
4-1-66
P6KE6.SA
4-1-33
P6KE51
4-1-33
1.5SMC75AT3
4-1-66
P6KE7.5
4-1-33
P6KE51A
4-1-33
1.5SMCS2AT3
4-1-66
P6KE7.5A
4-1-33
P6KE56A
4-1-33
1.5SMC91AT3
4-1-66
P6KES.2
4-1-33
P6KE62
4-1-33
ICTE-5
4-1-46
P6KES.2A
4-1-33
P6KE62A
4-1-33
ICTE-S
4-1-46
P6KE9.1
4-1-33
P6KE6S
4-1-34
ICTE-SC
4-1-46
P6KE9.1A
4-1-33
P6KE6SA
4-1-34
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-21
I
•
~LP'''''ANUMERIC
I
.INDEX (contin~ed)
DEVICE..
PAGE,
DEVLCE
PAGE
P6KE75
4-1-34
P6SMB36AT3
4-1-60
P6KE75A
4-1-34
P6SMB39AT3
4-1-60
P6KE82
4-1-34
P6SMB43AT3
4-1-60
P6KE82A
4-1-34
P6SMB47AT3
4-1-60
SA14
4-1-26,
P6KE91
4-1-34
P6SMB51AT3
4-1-60
SA14A
4-1-26
P6KE91A
4-1-34
P6SMB56AT3
4-1-60
SA15
4-1-26
P6KE100
4-1-34
P6SMB62AT3
4-1-60
SA15A
4cl-26
DEVICE
PAGE
SA12A
4-1-26
SA13
4-1-26
SA13A
4-1-26 .
P6KE100A
4-1~34
P6SMB68AT3
4-'-60
SA16
4-1-26.
P6KEll0
4-1-34
P6SMB75AT3
4-1-60
SA16A
4-1-26
P6KE110A
4-1-34
P6SMB82AT3
4-1-60
SA17
4-1-26
P6KE120
4-1-34
P6SMB91AT3
4-1-60
SA17A
4-1-26
.
P6KE120A
4-1-34
P6SMB100AT3
4-1-60
SA18
f'6KE130
4-1-34
P6SMBl19AT3
4-1-60
SA18A
4-1-26
.' 4-1-26
P6KE130A
4-1-34
P6SMB120AT3
4-1-60
SA20
4-1-26
P6KE150
4-1-34
P6SMB130AT3
4-1-60
SA20A
4-1-26
P6KE150A
4-1-34
P6SMB150AT3
4-1-60
SA22
4-1-26
4-1-60
SA22A
4-H6
P6KE160
4-1-34 .
P6SMB160AT3
P6KE160A
4-1-34,
P6SMB17OAT3
4-1-60
SA24
4-1-26
P6KE170
4-1-34.
P6SMBl80AT3
4-1-60
SA24A
4-1-26
1'>6KE170A
4-1-34
P6SMB200AT3
4-1-60
SA26
4-1-26
P6KE180
4-1-34
SA5 ..0
4-1-26
SA26A
4-1-26
P6KEl80A
4-1,34
SA5.0A
4,1-26
SA28
4-1-26
4-1-26
P6KE200
4-1-34
SA6.0
4-1-26
SA28A
P6KE200A
4-1-34
SA6.0A
4-1-26
SA30
4-1-26
P6SMB6.8AT3
4-t-60
SA6.5
4-1-26
SA30A
4-1-26
1'>6SMB7.5AT3
4+60
SA6.5A
4-1-26
SA33
4-1-26
4-1-26
SA33A
4-1-26
P6SMB8.2AT3
4-1-6(}
SA7.0
P6SMB9.1AT3
4-1.•60
SA7.0A
4-1-26
SA36
4-1-27
p6SMB10AT3
4-1-60
SA7.5
4-1-26
SA36A
4-1-27
P6SMBllAT3
4-1-60
SA7.5A
4-1-26
SA40
4-1-2,7
4-1-26
SA40A
4-1-27
4-1-27
P6SMB12AT3
4-1-60
SA8.0
P6SMB13AT3
4-1-60
SA8.0A
4-1-26
SA43
P6SMB15AT3
4-1-60
SA8.5
4-1-26
SA43A
4-1-27
P6SMB16AT3
4-1-60
SA8.5A
4-1-26
SA45
4-1-27
P6SMB18AT3
4-1-6(}
SA9.0
4-1-26
SA45A
4-1-27
4-1-26
SA48
P6SMB20AT3
4-1-60
SA9.0A
4-1-27
. 4-1-27
P6SMB22AT3
4-1-60 .
SA10
4-1-26
SA48A
P6SMB24AT3
4-1-60
SA10A
4-1-26
SA51
4-1-27
P6SMB27AT3
4-1-60
SA11
4-1-26
SA51A
4-1-27
P6SMB30AT3
4-1-60
SA11A
4-1-26
SA54
4-1-27
P6SMB33AT3
4-1-60
SA12
4-1-26
SA54A
4-1-27
TRANSIENT VOLTAGE SUPPRE;SSORS AND ZENER DIODES
4-1-22
ALPHANUMERIC INDEX (continued)
D.EVICE
PAGE
DEVICE
PAGE
DEVICE
PAGE
SA58
4-1-27
SA78
4-1-27
SA120
4-1-27
SA58A
4-1-27
SA78A
4-1-27
SA120A
4-1-27
SA60
4-1-27
SA85
4-1-27
SA130
4-1-27
SA60A
4-1-27
SA85A
4-1-27
SA130A
4-1-27
SA64
4-1-27
SA90
4-1-27
SA150
4-1-27
SA64A
4-1-27
SA90A
4-1-27
SA150A
4-1-27
SA70
4-1-27
SA100
4-1-27
SA160
4-1-27
SA70A
4-1-27
SA100A
4-1-27
SA160A
4-1-27
SA75
4-1-27
SA110
4-1-27
SA170
4-1-27
SA75A
4-1-27
SA110A
4-1-27
SA170A
4-1-27
I
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-23
Section 4.1.4 Data Sheets
Transient Voltage Suppressors
Section 4.1 .4.1 Axial Leaded
•
SECTION 4.1.4.1.1
DATA SHEETS
I
Devices
SAS.O thru SA170A
Page No.
500 WATT PEAK POWER
I
MULTIPLE PACKAGE QUANTITY (MPQ)
REQUIREMENTS
Package Option
Type No. Suffix
Tape and Reel
4·1·25
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-24
RL
MOTOROLA
ISEMICONDUCTOR-_
_ _ _ _ _ _ _ _ _ __
TECHNICAL DATA
SA5.0
thru
SA170A
Zener Transient Voltage Suppressors
Unidirectional and Bidirectional
The SA5.0 series is designed to protect voltage sensitive components from high voltage,
high energy transients. They have excellent clamping capability, high surge capability, low
zener impedance and fast response time. The SA5.0 series is supplied in Motorola's exclusive, cost-effective, highly reliable Surmetic axial leaded package and is ideally-suited for
use in communication systems, numerical controls, process controls, medical equipment,
business machines, power supplies and many other industrial/consumer applications.
Specification Features:
•
•
•
•
•
Stand-off Zener Voltage Range - 5 to 170 V
Peak Power - 500 Watts @ 1 ms
Maximum Clamp Voltage @ Peak Pulse Current
Low Leakage < 1 IlA Above 8.5 Volts
Maximum Temperature Coefficient Specified
MOSORB
ZENER OVERVOLTAGE
TRANSIENT
SUPPRESSORS
5-170 VOLT
500 WATT PEAK POWER
3 WATT STEADY STATE
Mechanical Characteristics:
CASE: Void-free, transfer-molded, thermosetting plastiC
FINISH: All external surfaces are corrosion resistant and leads are readily solderable
POLARITY: Cathode indicated by polarity band. When operated in zener mode, will be
positive with respect to anode
MOUNTING POSITION: Any
MAXIMUM RATINGS
Rating
Peak Power Dissipation (1)
Symbol
Value
Unit
PPK
500
Watts
Po
3
Watts
30
mWrC
IFSM
70
Amps
TJ, TSlg
-5510+175
°c
@TL:S;25°C
Steady State Power Dissipation
@ TL :s; 75°C, Lead Length = 3/8"
Derated above TL = 75°C
Forward Surge Current (2)
@TA=25°C
Operating and Storage Temperature Range
Lead Temperature not less than 1/18'" from the case for 10 seconds: 230°C
NOTES: 1. Nonrepetltive current pulse per Figure 4 and derated above TA = 25°C per Figure 2.
2.112 sine wave (or equivalent square wave), PW = 8.3 ms, duty cycle = 4 pulses per minute maximum.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-25
II
SA5.0 thru SA170A
ELECTRICAL CHARACTERISTICS (TA
Device
Min
Max
@tr
(mA)
SA5.0
SA5.0A
SA6.0
SA6.0A
SA6.5
SA6.5A
SA7.0
SA7.0A
SA7.5
SA7.5A
SA8.0
SA8.0A
SA8.5
SA8.5A
SA9.0
SA9.0A
SA10
SA10A
SAil
SAI1A
SA12
SAI2A
SA13
SA13A
SA14
SA14A
SA15
SAlSA
6.4
6.4
6.67
6.67
7.22
7,22
7,78
7.78
8.33
8,33
8.89
8.89
9,44
9.44
10
10
11.1
11.1
12.2
12.2
13.3
13.3
14.4
14.4
15.6
15.6
16.7
16.7
17.8
17.8
18.9
18,9
7.3
7
8.15
7.37
8.82
7.98
9.51
8.6
10.2
9.21
10.9
9.83
11.5
10.4
12.2
11.1
13.6
12.3
14.9
13.5
16.3
14.7
17.6
15.9
19.1
17.2
20.4
18.5
21.8
19.7
23.1
20.9
24.4
22.1
27.1
24.5
29.8
26.9
32.6
29.5
35.3
31.9
38
34.4
40.7
36.8
44.9
40.6
10
10
10
10
10
10
10
10
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
5
5
6
6
6.5
6.5
7
7
7.5
7.5
8
8
8.5
8.5
9
9
10
10
11
11
12
12
13
13
14
14
15
15
16
16
17
17
18
18
20
20
22
22
24
24
26
26
28
28
30
30
33
33
VBRtt
(Volts)
~
~
I
•
~
~
~
=25°C unless otherwise noted) VF =3.5 V Max, IF' =35 A (except bidirectional devices).
Working Peak
Reverse
Voltage
VRWM"
(Volts)
Breakdown Voltage
SA16
SA16A
SA17
SA17A
SA18
SA18A
SA20
SA20A
SA22
SA22A
SA24
SA24A
SA26
SA26A
SA28
SA28A
SA30
SA30A
SA33
SA33A
20
20
22.2
22.2
24.4
24.4
26.7
26,7
28.9
28.9
31.1
31.1
33.3
33.3
36.7
36.7
Maximum
Reverse
Leakage
@VRWM
IR (1lA)
Maximum
Reverse
Surge
CurrentlRSM t
(Amps)
Maximum
Reverse Voltage
@IRSM
(Clamping Voltage)
VRSM (Volts)
Maximum
Voltage
Temperature
Variation
ofVBRmV/"C
' 600
600
600
600
400
400
150
150
52
54.3
43.9
48.5
40.7
44.7
37.8
41.7
35
38.8
33.3
36.7
31.4
34.7
29:5
32.5
26.6
29.4
24.9
27.4
22.7
25.1
21
23.2
9.6
9.2
11.4
'10.3
12.3
11.2
13.3
12
14.3
12.9
15
13.6
15.9
14.4
16.9
15.4
18.8
17
20.1
18.2
22
19.9
23.8
21.5
5
5
5
5
5
5
6
6
7
7
7
7
19.4
21.5
18,8
20.6
17.6
19.2
16.4
18.1
15.5
17.2
13.9
15.4
12.7
14.1
11.6
12,8
10,7
11,9
9,9
11
9.3
10,3
8.5
9.4
25.8
23.2
26.9
24.4
28.8
26
30.5
27.6
32.2
29.2
35.8
32.4
39.4
35,5
43
38.9
46.6
42.1
50
45.4
53.5
48.4
59
53.3
50
50
25
25
5
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
8
8
9
9
10
10
11
11
12
12
13
13
14
14
16
16
19
17
20
19
21
20
25
23
28
25
31
28
31
30
35
31
39
36
42
39
(continued)
~
Preferred part
FOR BIDIRECTIONAL APPLICATIONS
- USE C or CA SUFFIX
Preferred Bidirectional DevicesSA6.5CA
SA12CA
SA13CA
SA15CA
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-26
SA18CA
SA24CA
SA5.0 thru SA170A
ELECTRICAL CHARACTERISTICS -
@IT
(mA)
Working Peak
Reverse
Voltage
VRWM**
(Volts)
Maximum
Reverse
Leakage
@VRWM
IR (j1A)
Maximum
Reverse
Surge
Current IRSMt
(Amps)
Maximum
Reverse Voltage
@IRSM
(Clamping Voltage)
VRSM (Volts)
Maximum
Voltage
Temperature
Variation
ofVBRmVrC
Breakdown Voltage
VBRtt
(Volts)
continued (TA = 25°C unless otherwise noted) VF = 3.5 V Max, IF' = 35 A
(except bidirectional devices).
Device
Min
Max
SA36
SA36A
SA40
SA40A
40
40
44.4
44.4
48.9
44.2
54.3
49.1
1
1
1
1
36
36
40
40
1
1
1
1
7.8
8.6
7
7.8
64.3
58.1
71.4
64.5
46
41
51
46
SA43
SA43A
SA45
SA45A
47.8
47.8
50
50
58.4
52.8
61.1
55.3
1
1
1
1
43
43
45
45
1
1
1
1
6.5
7.2
6.2
6.9
76.7
69.4
80.3
72.7
55
50
58
52
SA48
SA48A
SA51
SA51 A
53.3
53.3
56.7
56.7
65.1
58.9
69.3
62.7
1
1
1
1
48
48
51
51
1
1
1
1
5.8
6.5
5.5
6.1
85.5
77.4
91.1
82.4
63
56
66
61
SA54
SA54A
SA58
SA58A
60
60
64.4
64.4
73.3
66.3
78.7
71.2
1
1
1
1
54
54
58
58
1
1
1
1
5.2
5.7
4.9
5.3
96.3
87.1
103
93.6
71
65
78
70
SA60
SA60A
SA64
SA64A
66.7
66.7
71.1
71.1
81.5
73.7
86.9
78.6
1
1
1
1
60
60
64
64
1
1
1
1
4.7
5.2
4.4
4.9
107
96.8
114
103
80
71
86
76
SA70
SA70A
SA75
SA75A
77.8
77.8
83.3
83.3
95.1
86
102
92.1
1
1
1
1
70
70
75
75
1
1
1
1
4
4.4
3.7
4.1
125
113
134
121
94
101
91
SA78
SA78A
SA85
SA85A
86.7
86.7
94.4
94.4
106
95.8
115
104
1
1
1
1
78
78
85
85
1
1
1
1
3.6
4
3.3
3.6
139
126
151
137
105
95
114
103
SA90
SA90A
SAl 00
SA100A
100
100
111
111
122
111
136
123
1
1
1
1
90
90
100
100
1
1
1
1
3.1
3.4
2.8
3.1
160
146
179
162
121
110
135
123
SAll0
SAll0A
SA120
SA120A
122
122
133
133
149
135
163
147
1
1
1
1
110
110
120
120
1
1
1
1
2.6
2.8
2.3
2.5
196
177
214
193
148
133
162
146
SA130
SA130A
SA150
SA150A
144
144
167
167
176
159
204
185
1
1
1
1
130
130
150
150
1
1
1
1
2.2
2.4
1.9
2.1
231
209
268
243
175
158
203
184
SA160
SA160A
SA170
SA170A
178
178
189
189
218
197
231
209
1
1
1
1
160
160
170
170
1
1
1
1
1.7
1.9
1.6
1.8
287
259
304
275
217
196
230
208
-
85
112 sine wave (or equIValent square wave), PW - 8.3 ms, duty cycle _ 4 pulses per minute maximum.
** MOSORS transient suppressors are normally selected according to the maximum reverse stand~off voltage (VRWM), which should be equal to or greater than the de or continuous peak
operating voltage level.
t
t t
Surge current waveform per Figure 4 and derate per Figure 2.
VSR measured at pulse test current IT at an ambient temperature of 25°C.
FOR BIDIRECTIONAL APPLICATIONS -
USE C or CA SUFFIX
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-27
SA5.0thru SA170A
100
NONREPETITivE PULSE
WAVEFORM SHOWN IN
FIGURE 4
I'-..
.....
........
.....
........
........
.....
........
0.1
0.11lS
1 ms
25
50
125
150
175
200
Figure 1. Pulse Rating Curve
Figure 2. Pulse Derating Curve
MEASURED@
ZERO BIAS
~ 1000
~
1
PULSE WIDTH (~IS DEFINED
AS THAT POINT HERE THE
PEAK CURRENT DECAYS TO 50%
I
I
I _ OFIRSM·
100 f{"F"" PEAKVALUE-IRSM t <10
r l- I1S
I
- tr
~
"-
w
~
<:5
I"
:> 50
if
..... II
::} 100
t-...
MEASURED@
STAND-OFF
VOLTAGE (VR)
1
HALF VALUE _IRSM
2
I........
'<
0.1
100
TA, AMBIENT TEMPERATURE (OC)
~
10
75
'P, PULSE WIDTH
4
.......
o
o
10ms
-tp-
10
100
o
o
1000
....... r-.....
1
-
VBR, BREAKDOWN VOLTAGE (VOLTS)
t, TIME (ms)
Figure 3_ Capacitance versus Breakdown Voltage
Figure 4. Pulse Waveform
en
~
5
I
~
g:j
C
4
3
3:
~
2
'\
<
til
~
1
,p
0
~
I
/,3/8"
\.
ffi
'w
I
&~
~
is
I
'\
o
'\
25
50
75
100 125 150 175 200
TL, LEAD TEMPERATURE (0C)
Figure 5. Steady State Power Derating
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-28
4
SA5.0 thru SA 170A
APPLICATION NOTES
RESPONSE TIME
In most applications, the transient suppressor device is
placed in parallel with the equipment or component to be protected. In this situation, there is a time delay associated with
the capacitance of the device and an overshoot condition associated with the inductance of the device and the inductance
of the connection method. The capacitance effect is of minor
importance in the parallel protection scheme because it only
produces a time delay in the transition from the operating voltage to the clamp voltage as shown in Figure 6.
The inductive effects in the device are due to actual turn-on
time (time required for the device to go from zero current to full
current) and lead inductance. This inductive effect produces
an overshoot in the voltage across the equipment or component being protected as shown in Figure 7. Minimizing this
overshoot is very important in the application, since the main
purpose for adding a transient suppressor is to clamp voltage
spikes. The SA5.0 series has very good response time, typically < 1 ns and negligible inductance. However, external inductive effects could produce unacceptable overshoot. Proper
circuit layout, minimum lead lengths and placing the suppres-
sor device as close as possible to the equipment or components to be protected will minimize this overshoot.
Some input impedance represented by Zin is essential to
prevent overstress of the protection device. This impedance
should be as high as possible, without restricting the circuit operation.
DUTY CYCLE DERATING
The data of Figure 1 applies for non-repetitive conditions
and at a lead temperature of 25°C. If the duty cycle increases,
the peak power must be reduced as indicated by the curves of
Figure 8. Average power must be derated as the lead or ambient temperature rises above 25°C. The average power derating curve normally given on data sheets may be normalized
and used for this purpose.
At first glance the derating curves of Figure 8 appear to be in
error as the 10 ms pulse has a higher derating factor than the
10 Ils pulse. However, when the derating factor for a given
pulse of Figure 8 is multiplied by the peak power value of Figure 1 for the same pulse, the results follow the expected trend.
TYPICAL PROTECTION CIRCUIT
Vci~n
________
~
I
~
______
•
~""~
Yin (TRANSIENT)
v
V
Vin---....Y
tD = TIME DELAY DUE TO CAPACITIVE EFFECT
L------------------------t
Figure 6.
Figure 7.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-29
SA5.0 thru SA 170A
0.7
0.5
a:
O
0.3
0.2
5
if:
0.1
;!;
0.07
C!l
~
w
..
~
......
"
......
0.05
",
c 0.03
0.02
PULSE WIDTH .
10ms
r-.
.....
1 ms
"
100 I1S
I
10 I1S
0.010.1
0.2
0.5
2
5
10
D, DUTY CYCLE (%)
20
50
100
Figure 8. Typical Derating Factor for Duty Cycle
I
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-30
SECTION 4.1.4 DATA SHEETS
TRANSIENT VOLTAGE SUPPRESSORS -
Section 4.1.4.1 Axial Leaded SECTION 4.1.4.1.2
continued
continued
I
600 WATT PEAK POWER
MULTIPLE PACKAGE QUANTITY (MPQ)
REQUIREMENTS
DATA SHEETS
Devices
Package Option
P6KE6.8 thru P6KE200A
Type No. Suffix
Tape and Reel
RL
4K
Tape and Ammo
TA
2K
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-31
MPQ(Unlts)
•
MOTOROLA
iSEMICONDUCTOR-----_ _ _ _ _ __
TECHNICAL DATA
P6KE6.8, A
Zener Transient Voltage Suppressors
Undirectional and Bidirectional
thru
P6KE200, A
The P6KE6.8 series is designed to protect voltage sensitive components from high
voltage, high energy transients. They have excellent clamping capability, high surge
capability, low zener impedance and fast response time. The P6KE6,8 series is supplied in
Motorola's exclusive, cost-effective, highly reliable Surmetic axial leaded package and is
ideally-suited for use in communication systems, numerical controls, process controls,
medical equipment, business machines, power supplies and many other industrial!
consumer applications.
Specification Features:
• Standard Zener Voltage Range - 6.8 to 200 V
• Peak Power - 600 Watts @ 1 ms
• Maximum Clamp Voltage @ Peak Pulse Current
• Low Leakage < 5 j.lA Above 10 V
• Maximum Temperature Coefficient Specified
• UL Recognition
Mechanical Characteristics:
CASE: Void-free, transfer-molded, thermosetting plastic
FINISH: All external surfaces are corrosion resistant and leads are readily solderable
POLARITY: Cathode indicated by polarity band. When operated in zener mode,
be
positive with respect to anode
MOUNTING POSITION: Any
ZENER OVERVOLTAGE
TRANSIENT
SUPPRESSORS
6.8-200 VOLT
600 WATT PEAK POWER
5 WATTS STEADY STATE
wil
I
a
PLASTIC
MAXIMUM RATINGS
Symbol
Value
Unit
Peak Power Dissipation (1)
@TLS25°C
Rating
PPK
600
Watts
Steady State Power Dissipation
@TL S 75°C, Lead Length = 3/8"
Derated above TL = 75°C
Po
5
Watts
50
mWI"C
IFSM
100
Amps
TJ, Tstg
-65to+175
°C
Forward Surge Current (2)
@TA=25°C
Operating and Storage Temperature Range
lead Temperature not less than 1116" from the case for 10 seconds: 23()OC
NOTES: 1. Nonrepetitlve current pulse per Figure 4 and derated above TA = 25°C per Figure 2.
2. 112 sine wave (or equivalent square wave), PW = 8.3 ms, duty cycle = 4 pulses per minute maximum.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-32
P6KE6.8, A thru P6KE200, A
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) VF = 3.5 V Max, IF"" = 50 A
(except bidirectional devices).
Breakdown Voltage"
Working Peak
Reverse
Voltage
VRWM
(Volts)
Maximum
Reverse
Leakage
@VRWM
IR (IlA)
Maximum
Reverse
Surge
Current IRSMt
Device
Min
Nom
Max
@IT
(mA)
(Amps)
Maximum
Reverse Voltage
@IRSM
(Clamping Voltage)
VRSM (Volts)
P6KE6.8
=> P6KE6.8A
P6KE7.5
P6KE7.5A
6.12
6.45
6.75
7.13
6.8
6.8
7.5
7.5
7.48
7.14
8.25
7.88
10
10
10
10
5.5
5.8
6.05
6.4
1000
1000
500
500
56
57
51
53
10.8
10.5
11.7
11.3
0.057
0.057
0.061
0.061
P6KE8.2
P6KE8.2A
P6KE9.1
P6KE9.1A
7.38
7.79
8.19
8.65
8.2
8.2
9.1
9.1
9.02
8.61
10
9.55
10
10
1
1
6.63
7.02
7.37
7.78
200
200
50
50
48
50
44
45
12.5
12.1
13.8
13.4
0.065
0.065
0.068
0.068
P6KE10
P6KE10A
P6KEll
P6KEllA
9
9.5
9.9
10.5
10
10
11
11
11
10.5
12.1
11.6
1
1
1
1
8.1
8.55
8.92
9.4
10
10
5
5
40
41
37
38
15
14.5
16.2
15.6
0.073
0.073
0.075
0.075
P6KE12
P6KE12A
P6KE13
=> P6KE13A
10.8
11.4
11.7
12.4
12
12
13
13
13.2
12.6
14.3
13.7
1
1
1
1
9.72
10.2
10.5
11.1
5
5
5
5
35
36
32
33
17.3
16.7
19
18.2
0.078
0.078
0.081
0.081
P6KE15
P6KE16
P6KE16A
13.5
14.3
14.4
15.2
15
15
16
16
16.5
15.8
17.6
16.8
1
1
1
1
12.1
12.8
12.9
13.6
5
5
5
5
27
28
26
27
22
21.2
23.5
22.5
0.084
0.084
0.086
0.086
P6KE18
P6KE18A
P6KE20
P6KE20A
16.2
17.1
18
19
18
18
20
20
19.8
18.9
22
21
1
1
1
1
14.5
15.3
16.2
17.1
5
5
5
5
23
24
21
22
26.5
25.2
29.1
27.7
0.088
0.088
0.09
0.09
P6KE22
P6KE22A
P6KE24
P6KE24A
19.8
20.9
21.6
22.8
22
22
24
24
24.2
23.1
26.4
25.2
1
1
1
1
17.8
18.8
19.4
20.5
5
5
5
5
19
20
17
18
31.9
30.6
34.7
33.2
0.092
0.092
0.094
0.094
P6KE27
24.3
25.7
27
28.5
27
27
30
30
29.7
28.4
33
31.5
1
1
1
1
21.8
23.1
24.3
25.6
5
5
5
5
15
16
14
14.4
39.1
37.5
43.5
41.4
0.096
0.096
0.097
0.097
33
33
36
36
36.3
34.7
39.6
37.8
1
1
1
1
26.8
28.2
29.1
30.8
5
5 .
=> P6KE36A
29.7
31.4
32.4
34.2
5
5
12.6
13.2
11.6
12
47.7
45.7
52
49.9
0.098
0.098
0.099
0.099
P6KE39
P6KE39A
P6KE43
P6KE43A
35.1
37.1
38.7
40.9
39
39
43
43
42.9
41
47.3
45.2
1
1
1
1
31.6
33.3
34.8
36.8
5
5
5
5
10.6
11.2
9.6
10.1
56.4
53.9
61.9
59.3
0.1
0.1
0.101
0.101
P6KE47
P6KE47A
P6KE51
P6KE51A
42.3
44.7
45.9
48.5
47
47
51
51
51.7
49.4
56.1
53.6
1
1
1
1
38.1
40.2
41.3
43.6
5
5
5
5
8.9
9.3
8.2
8.6
67.8
64.8
73.5
70.1
0.101
0.101
0.102
0.102
P6KE56
P6KE56A
P6KE62
=> P6KE62A
50.4
53.2
55.8
58.9
56
56
62
62
61.6
58.8
68.2
65.1
1
1
1
1
45.4
47.8
50.2
53
5
5
5
5
7.4
7.8
6.8
7.1
80.5
0.103
0.103
0.104
0.104
VBR
(Volts)
=> P6KE15A
=> P6KE27A
P6KE30
P6KE30A
P6KE33
=> P6KE33A
P6KE36
n
89
85
Maximum
Temperature
Coefficient
of VBR (%/"C)
(continued)
=> Preferred part
FOR BIDIRECTIONAL APPLICATIONS USE C or CA SUFFIX
Preferred Bidirectional DevicesP6KE7.5CA
P6KE11CA
P6KE20CA
P6KE22CA
P6KE27CA
P6KE30CA
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-33
I
•
P6KE6.8, A thru P6KE200, A
ELECTRICAL CHARACTERISTICS -
continued (TA = 25°C unless otherwise noted) VF = 3.5 V Max, IF" = 50 A
(except bidirectional devices).
Breakdown Voltage'
Working Peak
Reverse
Voltage
OIT
VRWM
(mA)
(Volts)
VBR
(Volts)
I
III
Maximum
Reverse
Leakage
OVRWM
IRWA)
Maximum
,Reverse
, Surge
Current IRSM t
(Amps)
Maximum
Reverse Voltage
OIRSM
(Clamping Voltage)
VRSM (Volts)
Maximum
Temperature
Coefficient
of VBR (%I"C)
Device
Min
Nom
Max
P6KE68
P6KE68A
P6KE75
P6KE75A
61.2
64.6
67.5
71.3
68
68
75
75
74.8
71.4
82.5
78.8
1
1
1
1
55.1
58.1
60.7
64.1
5
5
5
5
6.1
6.5
5.5
5.8
98
92
108
103
0.104
0.104
0.105
0.105
P6KE82
P6KE82A
P6KE91
P6KE91A
73.8
77.9
81.9
86.5
82
82
91
91
90.2
86.1 '
100
95.5
1
1
1
1
66.4
70.1
73.7
n.8
5
5
5
5
5.1
5.3
4.5
4.8
118
113
131
125
0.105
0.105
0.106
0.106
P6KE100
P6KE100A
P6KEll0
P6KE110A
90
95
99
105
100
100
110
110
110
105
121
116
1
1
1
1
81
85.5
89.2
94
5
5
5
5
4.2
4.4
3.8
4
144
137
158
152
0.106
0.106
0.107
0.107
P6KE12O
P6KE120A
P6KE130
P6KE130A
108
114
117
124
120
120
130
130
132
126
143
137
1
1
1
1
97.2
102
105
111
5
5
5
5
3.5
3.6
3.2
3.3
173
165
187
179
0.107
0.107
0.107
0.107
P6KE150
P6KE150A
P6KEI60
P6i-
a::
~
~
c..
lr
.i
c.>
u..[!J
0"
°1••••••
1
;;!; ~
100
::!:li3
SO
~~
60
~~
40
~
20
!;;:a::
a:: a::
wa::
c.. W
c..",
10 IlS
11lS
100 IlS
1 ms
10 ms
"
25
50
75
Ip, PULSE WIDTH
w
~
-
=
~
~
~
100
125
'"
150
175
200
1N6267, Al1.5KE6.8, A
thru
1N6303, Al1.5KE200, A
10,000
MEASURED@
ZERO BIAS
==
=
........
Figure 2. Pulse Derating Curve
1N6373, ICTE-5, MPTE-5,
thru
1N6389, ICTE-45, C, MPTE-45, C
~1000
.......
TA, AMBIENT TEMPERATURE (OC)
Figure 1. Pulse Rating Curve
10,000
......
"-
o
o
1~~~~~~~~~~~~~~~~~
0.11lS
"-
"
"
~1oo0
~ MEASURED@
~ STAND·OFF
MEASURED@·=
ZERO BIAS
-
II
V
w
c.>
i= VOLTAGE (VR)
z
~
U
~
MEASURED@
STAND·OFF
VOLTAGE (VR)
{3 100
100
c.5
......
c.5
10
1
10
10
100
1000
10
1
BV, BREAKDOWN VOLTAGE (VOLTS)
100
1000
BV, BREAKDOWN VOLTAGE (VOLTS)
Figure 3. Capacitance versus Breakdown Voltage
p- -
iil
~
~
~
Cl
~
lr
w
<
til
~
rP
~3/S"
5
I"
a::
4
3
=>
~
" '\
o
25
50
75
100
"'"'-I/'
...J
I\.
125
~
"\
"\
l
2
0
w
'\.
I
I
PULSE WIDTH (Ip) IS DEFINED
AS THAT POINT WHERE THE
PEAK CURRENT DECAYS TO 50%
100 ~. PEAK VALUE - IRSM _ OF IRSM.
"\
I
I
Ir ,,101lS
3/S" _
~
i8
I
- Ir
50
-Ip-
'"
150
175
o
o
200
Tlo LEAD TEMPERATURE (OC)
"'
I
I
I
II
HALF VALUE _ ...!l§!!
2
........
I
I
.......
r2
3
I, TIME (ms)
Figure 4. Steady State Power Derating
Figure 5. Pulse Waveform
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-39
4
-
GENERAL DATA -
1500 WATT PEAK POWER
1 N6373, ICTE-5, MPTE-5,
thru
1 N6389, ICTE-45, C, MPTE-45, C
1 N6303, Al1.5KE200, A
1000
SOD
!e 200
!iiJ
1N6267, Al1.5KE6.8, A
thru
1000
500
Vz(NOM) = 6.8 10 13 V ~
20 V.L.l..._
24V7 43V_
TL =25°C
Ip=101lS
en
Q.
!
100
w
a: 50
a:
~
w
20
200
a:
a:
::::>
'-'
a:
50
z
10
20
w
w
~ 10
~ 5
!P= IO IlS
100
IZ
::::>
Vz(NOMt= 6.8 10 13 V
: ?n
43V24 V r:::;;;;;o
75V
I" h- 25°C
N
7':.
180V
I
120V~
~
2
1
0.3
0.5 0.7
1
2
3
5
7
10
1
20 30
I'Nz, INSTANTANEOUS INCREASE IN VzABOVE Vz(NOM) (VOLTS)
0.3
0.5 0.7
1/ 1/
1
2
3
5
7
10
20 30
I1Vz, INSTANTANEOUS INCREASE IN Vz ABOVE Vz(NOM) (VOLTS)
Figure 6. Dynamic Impedance
0.7
0.5
0.3
a:
§
II
0.2
if
0.1
(!)
~
~
~
.....
"'
"
0.07
0.05
PULSE WIDTH
10ms
"
1 ms
I'
0.03
\.
0.02
III
.....
......
lOllS
0.01
0.1
0.2
0.5
1
2
5
10
D, DUTY CYCLE (%)
1~~1
20
50
100
Figure 7. Typical Derating Factor for Duty Cycle
APPLICATION NOTES
RESPONSE TIME
In most applications, the transient suppressor device is
placed in parallel with the equipment or component to be pro·
tected. In this situation, there is a time delay associated with
the capacitance of the device and an overshoot condition associated with the inductance of the device and the inductance
of the connection method. The capacitance effect is of minor
importance in the parallel protection scheme because it only
produces a time delay in the transition from the operating volt·
age to the clamp voltage as shown in Figure A.
The inductive effects in the device are due to actual turn·on
time (time required for the device to go from zero current to full
current) and lead inductance. This inductive effect produces
an overshoot in the voltage across the equipment or compo·
nent being protected as shown in Figure B. Minimizing this
overshoot is very important in the application, since the main
purpose for adding a transient suppressor is to clamp voltage
spikes. These devices have excellent response time, typically
in the picosecond range and negligible inductance. However,
external inductive effects could produce unacceptable over·
shoot. Proper circuit layout, minimum lead lengths and placing
the suppressor device as close as possible to the equipment or
components to be protected will minimize this overshoot.
Some input impedance represented by Zin is essential to
prevent overstress of the protection device. This impedance
should be as high as possible, without restricting the circuit operation.
DUTY CYCLE DERATING
The data of Figure 1 applies for non-repetitive conditions
and at a lead temperature of 25°C. If the duty cycle increases,
the peak power must be reduced as indicated by the curves of
Figure 7. Average power must be derated as the lead or ambi·
ent temperature rises above 25°C. The average power derat·
ing curve normally given on data sheets may be normalized
and used for this purpose.
Atfirst glance the derating curves of Figure 7 appear to be in
error as the 10 ms pulse has a higher derating factor than the
lOllS pulse. However, when the derating factor for a given
pulse of Figure 7 is multiplied by the peak power value of Fig·
ure 1 for the same pulse, the results follow the expected trend.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-40
GENERAL DATA -
1500 WATT PEAK POWER
TYPICAL PROTECTION CIRCUIT
v., (TRANSIENT)
v
v
Vin---....Y
-1~-to = TIME DELAY DUE TO CAPACITIVE EFFECT
~---------------------t
FigureS.
Figure 9.
I
•
UL RECOGNITION*
The entire series has Underwriters Laboratory Recognition
for the classification of protectors (QVGV2) under the UL standard for safety 497B. Many competitors only have one or two
devices recognized or have recognition in a non-protective
category. Some competitors have no recognition at all. With
the UL497B recognition, our parts successfully passed several tests including Strike Voltage Breakdown test, Endurance
Conditioning, Temperature test, Dielectric Voltage-Withstand
test, Discharge test and several more.
Whereas, some competitors have only passed a flammability test for the package material, we have been recognized for
much more to be included in their Protector category.
•Applies to 1.5KE6.8,A,C,CA thru 1.5KE250,A,C,CA
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-41
1N5908
'ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) VF = 3.5 V max, IF"" = 100 A
Breakdown Voltage
Device
Note'
=> 1N5908
VBRtt
(Volts)
Min
6
@\-r
(rnA)
,
Maximum
Reverse
Stand-Off
Voltage VRWM '"
(Volts)
Maximum
Reverse Leakage
@VRWM
5
300
IR{J!A)
Clamping Voltage
Maximum
Peak Pulse
Peak Pulse
Reverse Voltage
Current @
Current@
@ IRSMt= 120 A
(Clamping Voltage)
Ipplt =30A
Ipp2t =60A
VC1 (Volts max) VC2 (Volts max)
VRSM (Volta)
8.5
7.6
8
=> Preferred part
NOTE 1: The 1N5908 is JEDEC registered as a unidirectional device only (no bidirectional option) •
.. Indicates JEOEC registered data.
112 sine wave (or equivalent square wave), PW =8.3 ms, duty cycle = 4 pulses per minute maximum.
A transient suppressor is normally selected according to the maximum reverse stand-off voltage (VRWM), which should be equal to or greater than the de or continuous peak operating
voltage level.
t Surge current waveform per Figure 5 and derate per Figure 2 of the General Data - 1500 W at the beginning of this group.
u
*u
t
tv~ measured at pulse
test current IT at an amblent temperature of 26°C.
III
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-42
1N6267 thru 1N6303A,
1.5KE6.8 thru 1.5KE250A
'ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) VF# = 3.5 V Max, IF" = 100 A
Maximum
Reverse
Voltage
Maximum
@IRSM
(Clamping Temperature
Coefficient
Voltage
ofVBR
VRSM
(%FC)
(Volts)
JEDEC
Device
Device
Min
Nom
Max
@IT
(rnA)
Working
Peak
Reverse
Voltage
VRWM'"
(Volts)
IR (IIA)
Maximum
Reverse
Surge
Current
IRSMt
(Amps)
1N6267
=> 1N6267A
1N6268
1N6268A
1.5KE6.8
1.5KE6.8A
1.5KE7.5
1.5KE7.5A
6.12
6.45
6.75
7.13
6.8
6.8
7.5
7.5
7.48
7.14
8.25
7.88
10
10
10
10
5.5
5.8
6.05
6.4
1000
1000
500
500
139
143
128
132
10.8
10.5
11.7
11.3
0.057
0.057
0.061
0.061
1N6269
1N6269A
1N6270
1N6270A
1.5KE8.2
1.5KE8.2A
1.5KE9.1
1.5KE9.1A
7.38
7.79
8.19
8.65
8.2
8.2
9.1
9.1
9.02
8.61
10
9.55
10
10
1
1
6.63
7.02
7.37
7.78
200
200
50
50
120
124
109
112
12.5
12.1
13.8
13.4
0.065
0.065
0.068
0.068
1N6271
1N6271A
1N6272
1N6272A
1.5KE10
1.5KE10A
1.5KE11
1.5KE11A
9
9.5
9.9
10.5
10
10
11
11
11
10.5
12.1
11.6
1
1
1
1
8.1
8.55
8.92
9.4
10
10
5
5
100
103
93
96
15
14.5
16.2
15.6
0.073
0.073
0.075
0.075
1N6273
1N6273A
1N6274
1N6274A
1.5KE12
1.5KE12A
1.5KE13
1.5KE13A
10.8
11.4
11.7
12.4
12
12
13
13
13.2
12.6
14.3
13.7
1
1
1
1
9.72
10.2
10.5
11.1
5
5
5
5
87
90
79
82
17.3
16.7
19
18.2
0.078
0.078
0.081
0.081
1N6275
1N6275A
1N6276
1N6276A
1.5KE15
1.5KE15A
1.5KE16
1.5KE16A
13.5
14.3
14.4
15.2
15
15
16
16
16.5
15.8
17.6
16.8
1
1
1
1
12.1
12.8
12.9
13.6
5
5
5
5
68
71
67
22
21.2
23.5
22.5
0.084
0.084
0.086
0.086
1N6277
1N6277A
1N6278
1N6278A
1.5KE18
1.5KE18A
1.5KE20
1.5KE20A
16.2
17.1
18
19
18
18
20
20
19.8
18.9
22
21
1
1
1
1
14.5
15.3
16.2
17.1
5
5
5
5
56.5
59.5
51.5
54
26.5
25.2
29.1
27.7
0.088
0.088
0.09
0.09
1N6279
1N6279A
1N6280
=> 1N6280A
1.5KE22
1.5KE22A
1.5KE24
1.5KE24A
19.8
20.9
21.6
22.8
22
22
24
24
24.2
23.1
26.4
25.2
1
1
1
1
17.8
18.8
19.4
20.5
5
5
5
5
47
49
43
45
31.9
30.6
34.7
33.2
0.092
0.092
0.094
0.094
1N6281
1N6281 A
1N6282
=> 1N6282A
1.5KE27
1.5KE27A
1.5KE30
1.5KE30A
24.3
25.7
27
28.5
27
27
30
30
29.7
28.4
33
31.5
1
1
1
1
21.8
23.1
24.3
25.6
5·
5
5
5
38.5
40
34.5
36
39.1
37.5
43.5
41.4
0.096
0.096
0.097
0.097
1N6283
1N6283A
1N6284
=> 1N6284A
1.5KE33
1.5KE33A
1.5KE36
1.5KE36A
29.7
31.4
32.4
34.2
33
33
36
36
36.3
34.7
39.6
37.8
1
1
1
1
26.8
28.2
29.1
30.8
5
5
5
5
31.5
33
29
30
47.7
45.7
52
49.9
0.098
0.098
0.099
0.099
1N6285
1N6285A
1N6286
1N6286A
1.5KE39
1.5KE39A
1.5KE43
1.5KE43A
35.1
37.1
38.7
40.9
39
39
43
43
42.9
41
47.3
45.2
1
1
1
1
31.6
33.3
34.8
36.8
5
5
5
5
26.5
28
24
25.3
56.4
53.9
61.9
59.3
0.1
0.1
0.101
0.101
1N6287
1N6287A
1N6288
=> 1N6288A
1.5KE47
1.5KE47A
1.5KE51
1.5KE51A
42.3
44.7
45.9
48.5
47
47
51
51
51.7
49.4
56.1
53.6
1
1
1
1
38.1
40.2
41.3
43.6
5
5
5
5
22.2
23.2
20.4
21.4
67.8
64.8
73.5
70.1
0.101
0.101
0.102
0.102
Breakdown Voltage
VBRtt
Volts
Maximum
Reverse
Leakage
@VRWM
64
(continued)
=> Preferred part
FOR BIDIRECTIONAL APPLICATIONS
- USE C or CA SUFFIX ON 1.5KE SERIES
Preferred Bidirectional Devices 1.5KE10CA
1.5KE12CA
1.5KE18CA
1.5KE36CA
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-43
II
-
1N6267 thru 1N6303A,
1.5KE6.8 thru 1.5KE250A
"ELECTRICAL CHARACTERISTICS -
continued (TA = 25°C unless otherwise noted) VF# = 3.5 V Max, IF" = 100 A
Breakdown Voltage
VBRtt
Volts
JEDEC
Device
Device
Working
Peak
Reverse
Voltage
VRWM'"
(Volts)
Maximum
Reverse
Leakage
@VRWM
Min
Nom
Max
@IT
(mA)
50.4
53.2
55.8
61.6
58.8
68.2
65.1
1
1
1
1
45.4
47.8
50.2
5
5
5
lN6289
lN6289A
lN6290
=> 1N6290A
1.5KE56
1.5KE56A
1.5KE62
1.5KE62A
58.9
56
56
62
62
53
lN6291
1N6291 A
lN6292
lN6292A
1.5KE68
1.5KE68A
1.5KE75
1.5KE75A
61.2
64.6
67.5
71.3
68
68
75
75
74.8
71.4
82.5
78.8
1
1
1
1
55.1
58.1
60.7
64.1
lN6293
lN6293A
lN6294
lN6294A
1.5KE82
1.5KE82A
1.5KE91
1.5KE91A
73.8
77.9
81.9
86.5
82
82
91
91
90.2
86.1
100
95.5
1
1
1
1
lN6295
lN6295A
lN6296
lN6296A
1.5KE100
1.5KE100A
1.5KEll0
1.5KE110A
90
95
99
105
100
100
110
110
110
105
121
116
lN6297
lN6297A
lN6298
lN6298A
1.5KE120
1.5KE120A
1.5KE130
1.5KE130A
108
114
117
124
120
120
130
130
lN6299
lN6299A
1N6300
lN6300A
1.5KE150
1.5KE150A
1.5KE160
1.5KEl60A
135
143
144
152
lN6301
lN6301A
lN6302
lN6302A
1.5KE170
1.5KE170A
1.5KE180
1.5KE180A
lN6303
lN6303A
1.5KE200
1.5KE200A
1.5KE220
1.5KE220A
1.5KE250
1.5KE250A
•
-
IR{f1A)
Maximum
Reverse
Surge
Current
IRSMt
(Amps)
Maximum
Reverse
Voltage
Maximum
@IRSM
(Clamping Temperature
Coefficient
Voltage
ofVSR
VRSM
(%I"C)
(Volts)
80.5
77
89
5
18.6
19.5
16.9
17.7
85
0.103
0.103
0.104
0.104
5
5
5
5
15.3
16.3
13.9
14.6
98
92
108
103
0.104
0.104
0.105
0.105
66.4
70.1
73.7
77.8
5
5
5
5
12.7
13.3
11.4
12
118
113
131
125
0,105
0.105
0.106
0.106
1
1
1
1
81
85.5
89.2
94
5
5
5
5
10.4
11
9.5
9.9
144
137
158
152
0.106
0.106
0.107
0.107
132
126
143
137
1
1
1
1
97.2
102
105
111
5
5
5
5
8.7
9.1
8
8.4
173
165
187
179
0.107
0.107
0.107
0.107
150
150
160
160
165
158
176
168
1
1
1
1
121
128
130
136
5
5
5
5
7
7.2
6.5
6.8
215
207
230
219
0.108
0.108
0.108
0.108
153
162
162
171
170
170
180
180
187
179
198
189
1
1
1
1
138
145
146
154
5
5
5
5
6.2
6.4
5.8
6.1
244
234
258
246
0.108
0.108
0.108
0.108
180
190
198
209
225
237
200
200
220
220
250
250
220
210
242
231
275
263
1
1
1
1
1
1
162
171
175
185
202
214
5
5
5
5
5
5
5.2
5.5
4.3
4.6
5
5
287
274
344
328
360
344
0.108
0.108
0.109
0.109
0.109
0.109
=> Preferred part
~ Indicates JEDEC registered data.
··112 sine wave (or equivalent square wave). PW = 8.3 ms, duty cycle = 4 pulses per minute maximum .
••• A transient suppressor is normally selected according to the maximum reverse stand·off vohage (VRWM), which should be equal
voltage level.
Surge current waveform per Figure 5 and derate per Figure 2 of the General Data - 1500 W at the beginning of this group.
to or greater than the de or continuous peak operating
t
t t
VSR measured at pulse test currenllT at an ambient temperature of 25°C.
It VF applies to Non-C suffix devices only.
FOR BIDIRECTIONAL APPLICATIONS -
USE C or CA SUFFIX ON 1.SKE SERIES
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-44
1N6267 thru 1 N6303A,
1.5KE6.8 thru 1.5KE250A
CLIPPER BIDIRECTIONAL DEVICES
1. Clipper-bidirectional devices are available in the 1.5KEXX
series and are designated with a "C" or a "CA" suffix; for
example, 1 .5KE 18CA. Contact your nearest Motorola representative.
2. Clipper-bidirectional part numbers are tested in both directions to electrical parameters in preceeding table (except for
VF which does not apply).
3. The 1N6267 thru 1N6303 series are JEDEC registered
devices and the registration does not include 'C" and "CA"
suffixes. To order clipper-bidirectional devices one must add
C or CA to the 1.5KE device title.
II
•
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-45
1N6373 thru 1N6389,
ICTE-5 thru ICTE-45C,
MPTE-5 thru MPTE-45C
=
=
"ELECTRICAL CHARACTERISTICS (TA 25°C unless otherwise noted) V,,* 3.5 V Max, IF"
back to back bidirectional versions. Test both polarities)
Breakdownt t
Voltage
JEDEC
Device
Note 1
=> 1N6373
•
VBR
Volts
Min
@I,(mA)
Maximum
Reverse
Maximum
Voltage
Maximum
Maximum Reverse
Reverse
@IRSMt
ReVerse
Surge
(Clamping
Stand·Off
Leakage Currant
Voltage
Voltage)
@VRWM
IRSMt
VRWM***
VRSM
(Amps)
IR !ItA)
(Volts)
(Volts)
Clamping Voltage
PeakPulsa
Current@
Ipplt =1 A
VCl
(Volts max)
PeakPulsa
Current @
lpp2t=10A
VC2
(Volts max)
1N6374
=> 1N6382
ICTE-SIMPTE-5
ICTE-8/MPTE-8
ICTE-8C/MPTE-8C
6
9.4
9.4
1
1
1
5
8
8
300
25
25
160
100
100
9.4
15
15
7.1
11.3
11.4
7.5
11.5
11.6
1N6375
1N6383
=> 1N6376
1N6384
ICTE-10/MPTE-10
ICTE-10CIMPTE-10C
ICTE-121MPTE-12
ICTE·12CIMPTE-12C
11.7
11.7
14.1
14.1
1
1
1
1
10
10
12
12
2
2
2
2
90
90
70
70
16.7
16.7
21.2
21.2
13.7
14.1
16.1
16.7
14.1
14.5
16.5
17.1
1N6377
17.6
17.6
21.2
21.2
1
1
1
1
15
15
18
18
2
2
2
2
60
1N6378
1N6386
ICTE-1S1MPTE·15
ICTE-15CIMPTE-15C
ICTE-181MPTE-18
ICTE-18C/MPTE-18C
25
25
30
30
20.1
20.8
24.2
24.8
20.6
21.4
25.2
25.5
1N6379
1N6387
1N6380
1N6386
ICTE-22/MPTE-22
ICTE·22C/MPTE-22C
ICTE-381MPTE-36
ICTE-36C/MPTE-36C
25.9
25.9
42.4
42.4
1
1
1
1
22
22
36
36
2
2
2
2
23
23
37.5
37.5
65.2
65.2
29.8
30.8
50.6
50.6
32
32
54.3
54.3
1N6381
1N6389
ICTE-45/MPTE-45
ICTE-45C/MPTE-45C
52.9
52.9
1
1
45
45
19
19
78.9
78.9
63.3
63.3
70
70
=> 1N6385
I
Device
Nota 1
=100 A) (C suffix denotes standard
~
2
2
60
50
50
40
40
Preferred part
NOTE 1: C suffix denotes standard back·to-back bidirectional versions. Test both polarities. JEDEC device types 1N6382 thru 1N6369 are registered as back to back bidirectional versions and
do not require a C suffix. 1N8373 thru 1N6381 are registered as unidirectional devices only (no bklirectional option) .
• Indicates JEOEC registered data.
•• 112 sine wave (or equivalent square wave), PW = 8.3 ms, duty cycle = 4 pulses per minute maximum .
••• A transient suppressor is normally selected according to the maximum reverse stand·off voltage (V AWM ), which should be equal to or greater than the de or continuous peak operating
voltage level.
Surge current wavefonn per Figure 5 and derate per Figure 2 of the General Data - 1500 W at the beginning of this group.
t
tt
VBR measured at pulse test current IT al an ambient temperature of 25°C.
# VF applies to unidirectional devices only.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4·1·46
SECTION 4.1.4 DATA SHEETS
TRANSIENT VOLTAGE SUPPRESSORS -
Section 4.1.4.1 Axial Leaded SECTION 4.1.4.1.4
continued
AUTOMOTIVE 110 AMP REPETITIVE PEAK
DATA SHEETS
I
continued
Devices
PagaNo.
MR2535L
4-1-48
I
MULTIPLE PACKAGE QUANTITY (MPQ)
REQUIREMENTS
Package Option
Type No. Suffix
Tape and Real
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-47
RL
II
-
MOTOROLA
SEMiCONDUCTOR . . . . . . . . . . . . . . . . . . . . . . . .. .
TECHNICAL DATA
Advance Information
Overvoltage
Transient Suppressors
=}
· .. designed for applications requiring a low voltage rectifier with reverse avalanche characteristics for use as reverse power transient suppressors. Developed to suppress transients in the automotive system, these devices operate in the forward mode as standard
rectifiers or reverse mode as power avalanche rectifier and will protect electronic equipment from overvoltage conditions.
•
•
•
•
MR2535L
MEDIUM CURRENT
OVERVOLTAGE
TRANSIENT
SUPPRESSORS
Avalanche Voltage 24 to 32 Volts
High Power Capability
Economical
Increased Capacity by Parallel Operation
MECHANICAL CHARACTERISTICS:
CASE: Transfer Molded Plastic
I
MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 350°C 3/8" from case
for 10 seconds at 5 Ibs. tension
FINISH: All external surfaces are corrosion-resistant, leads are readily solderable
POLARITY: Indicated by diode symbol or cathode band
WEIGHT: 2.5 Grams (approx.)
CASE 194-04
MAXIMUM RATINGS
Rating
DC Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Repetitive Peak Reverse Surge-Current
(Time Constant = 10 ms, Duty Cycle :s; 1%, TC = 2S°C) (See Figure 1)
Average Rectified Forward Current
(Single Phase, Resistive Load, 60 Hz, TC = lS0°C)
Non-Repetitive Peak Surge Current
Surge Supplied at Rated Load Conditions
Hallwave, Single Phase
Operating and Storage Junction Temperature Range
Symbol
Value
Unit
VRRM
VRWM
VR
20
Volts
IRSM
110
Amps
10
35
Amps
IFSM
600
Amps
TJ, Tstg
--eS to +17S
°c
Symbol
Max
Unit
RaJL
7.S
10
13
°C/W
O.S·
°C/W
THERMAL CHARACTERISTICS
Lead
Length
Characteristic
Thermal Resistance, Junction to Lead
Equal Length
@
Both Leads to Heat Sink,
1/4"
3/S"
1/2"
Thermal Resistance Junction to Case
ROJC
"Typical
~ Preferred part
This document contains information on a new product. Specifications and information herein are subject to change without notice.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-48
MR2535L
ELECTRICAL CHARACTERISTICS
Characteristic
Symbol
Min
Max
Unit
1.1
Volts
Instantaneous Forward Voltage (1)
vF
Reverse Current
IR
-
200
nAdc
V(BR)
24
32
Volts
V(BR)
-
40
Volts
V(BR)TC
-
0.096'
%/OC
VFTC
-
2'
mVrC
(iF =100 Amps, TC =25°C)
=20 Vdc, TC =25°C)
Breakdown Voltage (1) (IR =100 mAde, TC =25°C)
(VR
Breakdown Voltage (1)
(IR 90 Amp, TC 150°C, PW
=
=
=80 liS)
Breakdown Voltage Temperature Coefficient
Forward Voltage Temperature Coefficient @ IF
=10 mA
(1) Pulse Test: Pulse Width :S 300 J.IS, Duty Cycle s; 2%.
"Typical
IRSM(EXP)~
IRSM(EXP)
2
_
I
10
20
30
I
I
I
40
50
60
(TIME IN ms)
Figure 1. Surge Current Characteristics
II
-
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-49
II
•
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-50
SECTION 4.1.4 DATA SHEETS
TRANSIENT VOLTAGE SUPPRESSORS -
continued
Section 4.1.4.2 Surface Mounted
SECTION 4.1.4.2.1
DATA SHEETS
I
Devices
Page No.
40 WATT PEAK POWER
I
MULTIPLE PACKAGE QUANTITY (MPQ)
REQUIREMENTS
r---------,-----------~----_,
4·1·52
Package Option
Type No. Suffix
Tape and Reel
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-51
T1
-
MOTOROLA
SEMICONDUCTOR
------------TECHNICAL DATA
15 Volt SOT-23 Bipolar Zener
For ESD Protection
Transient Voltage Suppressor
MMBZ15VDLT1
This monolithic silicon zener device is designed for applications requiring transient overvoltage protection capability. It is intended for use in voltage and ESD sensitive equipment
such as computers, business machines, communication systems, medical equipment and
other applications. The convenient SOT-23 package allows for easy handling and is ideal
for situations where space is at a premium.
I
•
SOT·23 BIPOLAR
ZENER OVERVOLTAGE
TRANSIENT SUPPRESSOR
15 VOLT
40 WATTS PEAK POWER
Specification Features:
• Dual Package Provides for Bidirectional or Separate Unidirectional
Configurations
• Economical SOT-23 Surface Mount Package
• Peak Power - 40 Watts @ 1 ms (Bidirectional)
• Maximum Clamping Voltage @ Peak Pulse Current
• Low Leakage < 100 nA
Mechanical Characteristics:
Case: Void free, transfer-molded, thermosetting plastiC
Finish: All external surfaces are corrosion resistant and leads are readily solderable
Packaging: Available in 8 mm embossed tape and reel (3000 devices per reel)
Pinout: Terminal 1 - Anode
Terminal 2 - Anode
Terminal 3 - Cathode
CASE 318-07, STYLE 9
TO-236AB
LOW PROFILE SOT-23
PLASTIC
MAXIMUM RATINGS (Tc = 25°C Unless Otherwise Noted.)
Symbol
Value
Unit
Peak Power Dissipation (1)
@TA,,;25°C
Rating
Ppk
40
Watts
Total Power Dissipation on FR-5 Board (2) @TA = 25°C
Derate above 25°C
Po
225
1.8
mW
mWrC
Total Power Dissipation on Alumina Substrate (3) @TA = 25°C
Derate above 25°C
Po
300
2.4
mW
mWrC
TJ, Tstg
-65 to +150
°C
Operating and Storage Temperature Range
(1) Nonrepetitive current pulse per Figure 5 and derate above TA '" 25°C per Figure 6.
(2) FR·5 = 1.0 x 0.75 x 0.62 in.
(3) Alumina =0.4 x 0.3 x 0.024 in., 99.5% alumina
THERMAL CHARACTERISTICS
Thermal Resistance - Junction to Ambient
556
Maximum Lead Temperature for Soldering Purposes (10 seconds max.)
230
,
ELECTRICAL CHARACTERISTICS (TA = 25°C Unless Otherwise Noted)
BIDIRECTIONAL (Circuit tied to pins 1 and 2)
Breakdown Voltage
Maximum
Maximum Reverse
Temperature
Working Peak
Maximum Reverse Maximum Reverse Voltage @ IRSM
VBRtt
Reverse Voltage Leakage Current
Surge Current (Clamping Voltage) Coefficient
(Volts)
@IT
ofVBR
IRSMt
VRWM
IRWM
VRSMt
(Volts)
(Amps)
mA
IR(nA)
(mVrC)
(Volts)
Min
Nom
Max
I
14.3
t
tt
I
I
15
I
15.8
1.0
12.8
100
1.9
Surge current wavefonn per Figure 5 and derate per Figure 6.
VBR measured at pulse test current IT at an ambient temperature of 25OC.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-52
21.2
12
MMBZ15VDLT1
17r-----------,-----------,-----------,
VBR@IT
1000
BIDIRECTIONAL
100
-
-
;;( 10
.s
..,.0,1
0,01
-40
1~~0-----------+2~5~---------+~85~--------+~125
+25
90
80
70
LL 60
.s
c5 50
+125
Figure 2. Typical Leakage Current
versus Temperature
Figure 1. TYpical VBR versus Temperature
100
+85
TEMPERATURE (DC)
TEMPERATURE (DC)
300 ....--_:----.---------r------,-----,-----,-----,
- ----
250 1---_+-~I----+-___j--+_-___j-__1
~
z200~---+~~+-~~--~4-----~---+----4
--....... UNIDIRECTIONAL
...............
40
...............
BIDIRECTION~
30
o
~
~ 1W~--_+----+_~~~'"4_----~--_+--__4
en
15
.........
ffi 1001---_+----++---+--~~'"---j----_+--_4
~
df
20
501---_+----+----+----1---~~--_+--_4
10
0 0!:---~2:::5----:!::---~75;----~10:-;:'0--~12;:;:5,...-~~--~175
12,8
1
BIAS (V)
T, TEMPERATURE (DC)
Figure 3. Typical CapaCitance versus Bias Voltage
-
I
~tr
100
~
~ PEAK VALUE - IRSM
r\
I
I
\.
w
PULSE WIDTH (1p) IS DEFINED
AS THAT POINT WHERE THE
PEAK CURRENT DECAYS TO 50%
OF IRSM,
I
I
:::>
...J
;5
\.
/
"- 1#
50
14= tp_
t-j
I
"
H~LF vlLUE _
a:
100
~
90
~
"\
~ '-' 80
Wo
~ ~ 70
tr!> 10 I1S
T
Figure 4. Steady State Power Derating Curve
~
"-
o?/!. ~60
"
~ ~50
IRSM
zz
2
~ ~ 40
a: a:
~
30
wa:
~ 020
a
.......
r-...
~
r--
t, TIME (ms)
-
4
""-I'\.
"\
:::>
"-
'"U'i
"-
25
50
75
100
I\...
"\
125
150
TA, AMBIENT TEMPERATURE (DC)
Figure 5. Pulse Waveform
Figure 6. Pulse Derating Curve
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-53
175
200
•
-
I
III
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-54
SECTION 4.1.4 DATA SHEETS
TRANSIENT VOLTAGE SUPPRESSORS -
Section 4.1.4.2 Surface Mounted SECTION 4.1.4.2.2
continued
continued
600 WATT PEAK POWER
MULTIPLE PACKAGE QUANTITY (MPQ)
REQUIREMENTS
DATA SHEETS
Devices
Page No.
General Data - 600 Watt
4·1·56
15MB5.0AT3 thru 15MB170AT3
4-1·59
P6SMB6.8AT3 thru P6SMB200AT3
4·1·60
Package Option
Type No. Suffix
Tape and Reel
T3(1)
NOTE 1. The "3 on the suffix designates reel sIze (13") and full reel quantity of 2.5K.
M
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-55
II
•
MOTOROLA
SEMICONDUCTOR--_
_ _ _ _ _ _ _ _ __
TECHNICAL DATA
GENERAL
DATA
GENERAL DATA APPLICABLE TO ALL SERIES IN
THIS GROUP
600 WATT
PEAK POWER
Zener Transient Voltage Suppressors
I
•
The 5MB series is designed to protect voltage sensitive components from high voltage,
high energy transients. They have excellent clamping capability, high surge capability, low
zener impedance and fast response time. The 5MB series is supplied in Motorola's
exclusive, cost-effective, highly reliable Surmetic package and is ideally suited for use in
communication systems, numerical controls, process controls, medical equipment, business machines, power supplies and many other industrial/consumer applications.
Specification Features:
• Standard Zener Breakdown Voltage Range - 6.8 to 200 V
• Stand-off Voltage Range - 5 to 170 V
• Peak Power - 600 Watts @ 1 ms
• Maximum Clamp Voltage @ Peak Pulse Current
• Low Leakage < 5 jlA Above 10 V
Mechanical Characteristics:
CASE: Void-free, transfer-molded, thermosetting plastic
FINISH: All external surfaces are corrosion resistant and leads are readily solderable
POLARITY: Cathode indicated by molded polarity notch. When operated in zener mode,
will be positive with respect to anode
MOUNTING POSITION: Any
LEADS: Modified L-Bend providing more contact area to bond pad
MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES: 230°C for 10 seconds
PLASTIC SURFACE MOUNT
ZENER OVERVOLTAGE
TRANSIENT
SUPPRESSORS
6.8-200 VOLT
600 WATT PEAK POWER
CASE 403A-OO
PLASTIC
MAXIMUM RATINGS
Symbol
Value
Unit
Peak Power Dissipation (1)
@TLS25°C
PPK
600
Watts
Forward Surge Current (2)
@TA=25°C
IFSM
100
Amps
TJ, Tstg
- 65 to +175
°C
Rating
Operating and Storage Temperature Range
NOTES: 1. Nonrepetitive current pulse per Figure 2 and derated above TA = 25°C per Agure 3.
2. 112 sine wave (or equivalent square wave), PW = 8.3 ms, duty cycle = 4 pulses per minute maximum.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-56
GENERAL DATA -
600 WATT PEAK POWER
100
---
NON REPETITIVE
PULSE WAVEFORM
SHOWN IN FIGURE 2
~
a:
100
10
w
s:0
#-
f-
PULSE WIDTH (tp) IS DEFINED
AS THAT POINT WHERE THE PEAK
CURRENT DECAYS TO 50%
OFIR!':M.
tr
~:
PEAK VALUE -IRSM - tr:;; 10 ~
"I'\.
"-
«
'"w
"-
I--0.1
0.1
I!s
100 I!s
1 ms
tp - -
I
~
.......
......
r-
0
10ms
~
"'""'-
50
,f
I
I
HALF VALUE _ IRSM
2
4
3
t, TIME (ms)
tp, PULSE WIDTH
Figure 1. Pulse Rating Curve
Figure 2. Pulse Waveform
TYPICAL PROTECTION CIRCUIT
0
ro
u.c-.I
0 II
~.s
~@
-
ZZ
100
w::J
0 0
wa:
en O
..Ja:
::Jw
80
"'0
40
"-~
20
~~
a: a:
"-s:
i1i"w
60
" """""
~
Vo-in
i'...
"-
0
0
25
50
75
-----4.....--------'~~
I'-.
100
125
'"
150
175
200
TA, AMBIENT TEMPERATURE (0C)
Figure 3. Pulse Derating Curve
APPLICATION NOTES
RESPONSE TIME
In most applications, the transient suppressor device is
placed in parallel with the equipment or component to be protected. In this situation, there is a time delay associated with
the capacitance of the device and an overshoot condition
associated with the inductance of the device and the inductance of the connection method. The capacitive effect is of minor importance in the parallel protection scheme because it
only produces a time delay in the transition from the operating
voltage to the clamp voltage as shown in Figure 4.
The inductive effects in the device are due to actual turn-on
time (time required forthe device to go from zero currentto full
current) and lead inductance. This inductive effect produces
an overshoot in the voltage across the equipment or component being protected as shown in Figure 5. Minimizing this
overshoot is very important in the application, since the main
purpose for adding a transient suppressor is to clamp voltage
spikes. The 5MB series have a very good response time, typically < 1 ns and negligible inductance. However, external inductive effects could produce unacceptable overshoot. Proper
circuit layout, minimum lead lengths and placing the suppres-
sor device as close as possible to the equipment or components to be protected will minimize this overshoot.
Some input impedance represented by Zin is essential to
prevent overstress of the protection device. This impedance
should be as high as possible, without restricting the circuit
operation.
DUTY CYCLE DERATING
The data of Figure 1 applies for non-repetitive conditions
and at a lead temperature of 25°C. If the duty cycle increases,
the peak power must be reduced as indicated by the curves of
Figure 6. Average power must be derated as the lead or ambient temperature rises above 25°C. The average power derating curve normally given on data sheets may be normalized
and used for this purpose.
At first glance the derating curves of Figure 6 appear to be in
error as the 10 ms pulse has a higher derating factor than the
10 ~ pulse. However, when the derating factor for a given
pulse of Figure 6 is multiplied by the peak power value of
Figure 1 for the same pulse, the results follow the expected
trend.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-57
II
-
GENERAL DATA - 600 WATT PEAK POWER
Vin (TRANSIENT)
v
v
Vin---'
-1~-
tD = TIME DELAY DUE TO CAPACITIVE EFFECT
~---------------------t
Figure 4.
Figure 5.
0.7
0.5
I
•
a:
~
(!l
0.3
0.2
......
r--
r-...
~
0.1
~w ~:~~
ro-
"-
c 0.03
0.02
0.2
0.5
1
I'-..
PULSE WIDTH
10ms
I ms
~
2
5
D. DUTY CYCLE (%)
t'-...
l00I1S
10 IlS
10
20
I
50
100
Figure 6. lYplcal Derating Factor for Duty Cycle
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-58
1SMB5.0AT3 thru 1SMB170AT3
ELECTRICAL CHARACTERISTICS (TA
=25°C unless otherwise noted).
Breakdown Voltage"
mA
Maximum
Clamping Voltage
VC@lpp
Volts
Peak
Pulse Current
(See Figure 2)
Ippt
Amps
Maximum
Reverse Leakage
@VR
IR
I'A
Device
Marking
6.40
6.67
7.22
7.78
10
10
10
10
9.2
10.3
11.2
12.0
65.2
58.3
53.6
50.0
800
800
500
200
KE
KG
KK
KM
7.5
8.0
8.5
9.0
8.33
8.89
9.44
10.0
1.0
1.0
1.0
1.0
12.9
13.6
14.4
15.4
46.5
44.1
41.7
39.0
100
50
10
5.0
KP
KR
KT
KV
ISMB10AT3
ISMBllAT3
ISMB12AT3
ISMB13AT3
10
11
12
13
11.1
12.2
13.3
14.4
1.0
1.0
1.0
1.0
17.0
18.2
19.9
21.5
35.3
33.0
30.2
27.9
5.0
5.0
5.0
5.0
KX
LE
LG
ISMB14AT3
ISMB15AT3
ISMB16AT3
ISMB17AT3
14
15
16
17
15.6
16.7
17.8
18.9
1.0
1.0
1.0
1.0
23.2
24.4
26.0
27.6
25.8
24.0
23.1
21.7
5.0
5.0
5.0
5.0
LK
LM
LP
LR
1SMB18AT3
ISMB20AT3
ISMB22AT3
1SMB24AT3
18
20
22
24
20.0
22.2
24.4
26.7
1.0
1.0
1.0
1.0
29.2
32.4
35.5
38.9
20.5
18.5
16.9
15.4
5.0
5.0
5.0
5.0
LT
LV
1SMB26AT3
1SMB28AT3
1SMB30AT3
1SMB33AT3
26
28
30
33
28.9
31.1
33.3
36.7
1.0
1.0
1.0
1.0
42.1
45.4
48.4
53.3
14.2
13.2
12.4
11.3
5.0
5.0
5.0
5.0
ME
MG
MK
MM
1SMB36AT3
1SMB40AT3
1SMB43AT3
1SMB45AT3
36
40
43
45
40.0
44.4
47.8
50.0
1.0
1.0
1.0
1.0
58.1
64.5
69.4
72.7
10.3
9.3
8.6
8.3
5.0
5.0
5.0
5.0
MP
MR
MT
MV
48
51
1.0
1.0
1.0
1.0
77.4
82.4
87.1
93.6
7.7
7.3
6.9
6.4
5.0
5.0
5.0
5.0
MX
MZ
NE
NG
Reverse
Stand-Off Voltage
VR
Volts (1)
Volts
Min
ISMB5.0AT3
ISMB6.0AT3
ISMB6.5AT3
ISMB7.0AT3
5.0
6.0
6.5
7.0
ISMB7.5AT3
ISMB8.0AT3
ISMB8.5AT3
ISMB9.0AT3
Devicett
1SMB48AT3
1SMB51AT3
1SMB54AT3
1SMB58AT3
VBR@IT
KZ
LX
LZ
58
53.3
56.7
60.0
64.4
1SMB60AT3
1SMB64AT3
1SMB70AT3
1SMB75AT3
60
64
70
75
66.7
71.1
77.8
83.3
1.0
1.0
1.0
1.0
96.8
103
113
121
6.2
5.8
5.3
4.9
5.0
5.0
5.0
5.0
NK
NM
NP
NR
1SMB78AT3
1SMB85AT3
1SMB90AT3
1SMB100AT3
78
85
90
100
86.7
94.4
100
111
1.0
1.0
1.0
1.0
126
137
146
162
4.7
4.4
4.1
3.7
5.0
5.0
5.0
5.0
NT
NV
NX
NZ
1SMB110AT3
ISMB120AT3
1SMB130AT3
1SMB150AT3
110
120
130
150
122
133
144
167
1.0
1.0
1.0
1.0
177
193
209
243
3.4
3.1
2.9
2.5
5.0
5.0
5.0
5.0
PE
PG
PK
PM
1SMB160AT3
1SMB170AT3
160
170
178
189
1.0
1.0
259
275
2.3
2.2
5.0
5.0
PP
PR
54
Note 1. A translsnt suppressor IS normally selected according to the reverse Stand Off Voltage (VR) which should be equal to or greater than the DC or continuous peak operating
voltage level.
* VBR measured at pulse test current 'T at an ambient temperaure of 25°C.
t Surge current waveform per Figure 2 and derate per Figure 3 of the General Data - 600 WaH at the beginning of this group.
t t T3 suffix designates tape and reel of 2500 units.
ABBREVIATIONS AND SYMBOLS
VR
Stand Off Voltage. Applied reverse voltage to assure a
non-conductive condition (See Note 1).
V(BR)min This is the minimum breakdown voltage the device will
exhibit and is used to assure that conduction does not
Vc
occur prior to this voltage level at 25°C.
Maximum Clamping Voltage. The maximum peak voltage appearing across the transient suppressor when
Ipp
Pp
IR
subjected to the peak pusle current in a one millisecond
time interval. The peak pulse voltages are the combination of voltage rise due to both the series resistance and
thenmal rise.
Peak Pulse Current - See Figure 2
Peak Pulse Power
Reverse Leakage
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-59
P6SMB6.8AT3 thru P6SMB200AT3
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) VF = 3.5 V Max, IF"" = 50 A for all types.
Min
Nom
Max
mA
Working
Peak
Reverse
Voltage
VRWM
Volts
P6SMB6.8AT3
P6SMB7.5AT3
P6SMB8.2AT3
P6SMB9.1AT3
6.45
7.13
7.79
8.65
6.8
7.5
8.2
9.1
7.14
7.88
8.61
9.55
10
10
10
1
5.8
6.4
7.02
7.78
1000
500
200
50
P6SMB10AT3
P6SMBllAT3
P6SMB12AT3
=> P6SMB13AT3
9.5
10.5
11.4
12.4
10
11
12
13
10.5
11.6
12.6
13.7
1
1
1
1
8.55
9.4
10.2
11.1
10
5
5
5
=> P6SMB15AT3
P6SMB16AT3
P6SMB18AT3
P6SMB20AT3
14.3
15.2
17.1
19
15
16
18
20
15.8
16.8
18.9
21
1
1
1
1
12.8
13.6
15.3
17.1
5
5
5
5
28
27
24
22
21.2
22.5
25.2
27.7
0.084
0.086
0.088
0.09
15A
16A
18A
20A
P6SMB22AT3
P6SMB24AT3
=> P6SMB27AT3
=> P6SMB30AT3
20.9
22.8
25.7
28.5
22
24
27
30
23.1
25.2
28.4
31.5
1
1
1
1
18.8
20.5
23.1
25.6
5
5
5
5
20
18
16
14.4
30.6
33.2
37.5
41.4
0.092
0.094
0.096
0.097
22A
24A
27A
30A
=> P6SMB33AT3
=> P6SMB36AT3
31.4
34.2
37.1
40.9
33
39
43
34.7
37.8
41
45.2
1
1
1
1
28.2
30.8
33.3
36.8
5
5
5
5
13.2
12
11.2
10.1
45.7
49.9
53.9
59.3
0.098
0.099
0.1
0.101
33A
36A
39A
43A
=> P6SMB62AT3
44.7
48.5
53.2
58.9
47
51
56
62
49.4
53.6
58.8
65.1
1
1
1
1
40.2
43.6
47.8
53
5
5
5
5
9.3
8.6
7.8
7.1
64.8
70.1
77
85
0.101
0.102
0.103
0.104
47A
51A
56A
62A
P6SMB68AT3
P6SMB75AT3
P6SMB82AT3
P6SMB91AT3
64.6
71.3
77.9
86.5
68
75
82
91
71.4
78.8
86.1
95.5
1
1
1
1
58.1
64.1
70.1
77.8
5
5
5
5
6.5
5.8
5.3
4.8
92
103
113
125
0.104
0.105
0.105
0.106
68A
75A
82A
91A
P6SMB100AT3
P6SMB110AT3
P6SMB120AT3
P6SMB130AT3
95
105
114
124
100
110
120
130
105
116
126
137
1
1
1
1
85.5
94
102
111
5
5
5
5
4.4
4
3.6
3.3
137
152
165
179
0.106
0.107
0.107
0.107
100A
110A
120A
130A
P6SMB150AT3
P6SMB160AT3
P6SMB170AT3
P6SMB180AT3
143
152
162
171
150
160
170
180
158
168
179
189
1
1
1
1
128
136
145
154
5
5
5
5
2.9
2.7
2.6
2.4
207
219
234
246
0.108
0.108
0.108
0.108
150A
160A
170A
180A
P6SMB200AT3
190
200
210
1
171
5
2.2
274
0.108
200A
Breakdown Voltage'
VBR@IT
Volts
Oevicett
I
•
P6SMB39AT3
P6SMB43AT3
P6SMB47AT3
=> P6SMB51AT3
P6SMB56AT3
36
Maximum
Reverse
Leakage
@VRWM
IR
Maximum
Reverse Voltage
@IRSM
(Clamping Voltage)
VRSM
Volts
Maximum
Temperature
Coefficient
ofVBR
!LA
Maximum
Reverse
Surge
Current
IRSMt
Amps
%f"C
Device
Merking
57
53
50
45
10.5
11.3
12.1
13.4
0.057
0.061
0.065
0.068
6V8A
7V5A
8V2A
9V1A
41
36
33
14.5
15.6
16.7
18.2
0.073
0.075
0.078
0.081
lOA
llA
12A
13A
38
=> Preferred part
.:~~Rsl~:~~:d(~~ ~~I~~e:~tc:uea":all:!:)~ =~b~e~~:::~~:;~I;S~~·PUlses per minute maximum.
t
tt
Surge current wavefonn per Figure 2 and derate per Figure 3 of the General Data - 600 Watt at the beginning of this group.
T3 suffix designates tape and reel of 2500 units.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-60
SECTION 4.1.4 DATA SHEETS
TRANSIENT VOLTAGE SUPPRESSORS -
Section 4.1.4.2 Surface Mounted SECTION 4.1.4.2.3
continued
1500 WATT PEAK POWER
MULTIPLE PACKAGE QUANTITY (MPQ)
REQUIREMENTS
DATA SHEETS
Devices
General Data -
continued
Page No.
Package Option
4-1-62
1500 Watt
1SMC5.0AT3 thru 1SMC78AT3
4-1-65
1.5SMC6.8AT3 thru 1.5SMC91 AT3
4-1-66
Type No_ Suffix
Tape and Reel
NOTE 1. The "3" on the suffix designates reel size (13'1 and full reel quantity of 2.5K.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-61
I
•
MOTOROLA
SEMiCONDUCTOR . . . . . . . . . . . . . . . . . . . . . . . .. .
TECHNICAL DATA
GENERAL
DATA
GENERAL DATA APPLICABLE TO ALL SERIES IN
THIS GROUP
1500 WATT
PEAK POWER
Zener Transient Voltage Suppressors
The SMC series is designed to protect voltage sensitive components from high voltage,
high energy transients. They have excellent clamping capability, high surge capability, low
zener impedance and fast response time. The SMC series is supplied in Motorola's
exclusive, cost-effective, highly reliable Surmetic package and is ideally suited for use in
communication systems, numerical controls, process controls, medical equipment, business machines, power supplies and many other industrial/consumer applications.
Specification Features:
•
•
•
•
•
•
•
PLASTIC SURFACE MOUNT
ZENER OVERVOLTAGE
TRANSIENT
SUPPRESSORS
6.8-91 VOLT
1500 WATT PEAK POWER
Standard Zener Breakdown Voltage Range - 6.8 to 91 V
Stand-off Voltage Range - 5 to 78 V
Peak Power - 1500 Watts @ 1 ms
Maximum Clamp Voltage @ Peak Pulse Current
Low Leakage < 5 I!A Above 10 V
Maximum Temperature Coefficient Specified
Available in Tape and Reel
Mechanical Characteristics:
I
II
CASE: Void-free, transfer-molded, thermosetting plastic
FINISH: All external surfaces are corrosion resistant and leads are readily solderable
POLARITY: Cathode indicated by molded polarity notch. When operated in zener mode,
will be positive with respect to anode
MOUNTING POSITION: Any
LEADS: Modified L-Bend providing more contact area to bond pads
CASE 403-03
PLASTIC
MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES: 230°C for 10 seconds
MAXIMUM RATINGS
Symbol
Value
Unit
Peak Power Dissipation (1)
@ TLS25°C
Rating
PPK
1500
Watts
Forward Surge Current (2)
@TA=25°C
IFSM
200
Amps
TJ, Tstg
-65to+175
°C
Operating and Storage Temperature Range
NOTES: 1. Nonrepetitive current pulse per Figure 2 and derated above TA = 25°C per Figure 3.
2.112 sine wave (or equivalent square wave), PW =8.3 RlS, duty cycle = 4 pulses per minute maximum.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-62
GENERAL DATA - 1500 WATT PEAK POWER
100 . .
--
NON REPETITIVE
PULSE WAVEFORM
-++~H+I!-~H-+++. SHOWN IN FIGURE 2
I
PULSE WIDTH (Ip) IS DEFINED
AS THAT POINT WHERE THE PEAK
CURRENT DECAYS TO 50%
OFIRSM·
.... Ir
I
100
~ PEAKVALUE-IRSr - lr :Sl01J.S
1
"'-
"' .--
50
I........
_ I p __
.......
1
1 ..........J..L.LJ.WI..u..J.J.W.IJ.L..L.L..L.L
1 ms
0.11LS
1 ILS
10 ILS
100 ILS
Ip, PULSE WIDTH
a
lams
a
2
I, TIME (ms)
00
Q.
50
200
100
w
50
()
20
10
a:
a:
::;J
a:
w
z
~
"25
~
IZ
"
75
100
125
W
N_
!:"'
"
150
-
4
175 200
Vz (NOM) = 6.8 TO 13 V~
TL = 25°C
Ip= IO IJ.S
500
,
..........
Figure 2. Pulse Waveform
1000
~
1
I
Figure 1. Pulse Rating Curve
"'-
1
HALF VALUE _ IRSM
2
. / 180V
5
2
1
0.3
LL
./
0.5 0.7 1
2
3
5
7 10
20
30
TA, AMBIENT TEMPERATURE (OC)
!J.VZ, INSTANTANEOUS INCREASE IN Vz ABOVE Vz (NOM) (VOLTS)
Figure 3. Pulse Derating Curve
Figure 4. Dynamic Impedance
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-63
II
-
GENERAL DATA -
1500 WATT PEAK POWER
APPLICATION NOTES
suppressor device as close as possible to the equipment or
components to be protected will minimize this overshoot.
Some input impedance represented by Zin is essential to
prevent overstress of the protection device. This impedance
should be as high as possible, without restricting the circuit
operation.
RESPONSE TIME
In most applications, the transient suppressor device is
placed in parallel with the equipment or component to be protected. In this situation, there.is a time delay associated with
the capacitance of the device and an overshoot condition
associated with the inductance of the device and the inductance of the connection method. The capacitive effect is of minor importance in the parallel protection scheme because it
only produces a time delay in the transition from the operating
voltage to the clamp voltage as shown in Figure 5.
The inductive effects in the device are due to actual turn-on
time (time required for the device to go from zero current to full
current) and lead inductance. This inductive effect produces
an overshoot in the voltage across the equipment or component being protected as shown in Figure 6. Minimizing this
overshoot is very important in the application, since the main
purpose for adding a transient suppressor is to clamp voltage
spikes. The SMC series have a very good response time, typically < 1 ns and negligible inductance. However, external
inductive effects could produce unacceptable overshoot.
Proper circuit layout, minimum lead lengths and placing the
DUTY CYCLE DERATING
The data of Figure 1 applies for non-repetitive conditions
and at a lead temperature of 25°C. If the duty cycle increases,
the peak power must be reduced as indicated by the curves of
Figure 7. Average power must be derated as the lead or ambient temperature rises above 25°C. The average power derating curve normally given on data sheets may be normalized
and used for this purpose.
At first glance the derating curves of Figure 7 appearto be in
error as the 10 ms pulse has a higher derating factor than the
10 IlS pulse. However, when the derating factor for a given
pulse of Figure 7 is multiplied by the peak power value of Figure 1 for the same pulse, the results follow the expected trend.
TYPICAL PROTECTION CIRCUIT
I
•
Vcin~
~
________
~ ~""~
______
Yin (TRANSIENT)
v
V
OVERSHOOT DUE TO
INDUCTIVE EFFECTS
~
Vin----
--1~-tD = TIME DELAY DUE TO CAPACITIVE EFFECT
t
FigureS.
FigureS.
1
0.7
0.5
I'..
0.3
'0"
.......
C!l
~
....
~
0.2
t;
if 0.1
PULSE WIDTH
10ms
,....
~
0.07
~ 0.05
w
c
1 ms
J-..;:
0.03
1'1
0.02
1'.
10
0.010.1
0.2
0.5
2
5
Ilfb
D, DUTY CYCLE ('!o)
100
i
20
I I
50
100
Figure 7. Typical Derating Factor for Duty Cycle
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-64
1SMC5.0AT3 thru 1SMC78AT3
ELECTRICAL CHARACTERISTICS (TA
=25°C unless otherwise noted).
Breakdown Voltage"
Reverse
Stand-Off Voltage
VR
Devicett
Volts (1)
Volts
Min
mA
Maximum
Clamping Voltage
VC@ Ipp
Volts
VBR@IT
Peak
Pulse Current
(See Figure 2)
Ippt
Amps
Maximum
Reverse Leakage
@VR
IR
I1A
Device
Marking
lSMC5.0AT3
lSMC6.0AT3
lSMC6.5AT3
lSMC7.0AT3
5.0
6.0
6.5
7.0
6.40
6.67
7.22
7.78
10
10
10
10
9.2
10.3
11.2
12.0
163.0
145.6
133.9
125.0
1000
1000
500
200
GOE
GOG
GOK
GOM
lSMC7.5AT3
lSMC8.0AT3
lSMC8.5AT3
lSMC9.0AT3
7.5
8.0
8.5
9.0
8.33
8.89
9.44
10.0
1.0
1.0
1.0
1.0
12.9
13.6
14.4
15.4
116.3
110.3
104.2
97.4
100
50
20
10
GOP
GOR
GOT
GOV
lSMC10AT3
lSMCllAT3
lSMC12AT3
lSMC13AT3
10
11
12
13
11.1
12.2
13.3
14.4
1.0
1.0
1.0
1.0
17.0
18.2
19.9
21.5
88.2
82.4
75.3
69.7
5.0
5.0
5.0
5.0
GOX
GOZ
GEE
GEG
lSMC14AT3
lSMC15AT3
lSMC16AT3
lSMC17AT3
14
15
16
17
15.6
16.7
17.8
18.9
1.0
1.0
1.0
1.0
23.2
24.4
26.0
27.6
64.7
61.5
57.7
53.3
5.0
5.0
5.0
5.0
GEK
GEM
GEP
GER
lSMC18AT3
lSMC20AT3
lSMC22AT3
lSMC24AT3
18
20
22
24
20.0
22.2
24.4
26.7
1.0
1.0
1.0
1.0
29.2
32.4
35.5
38.9
51.4
46.3
42.2
38.6
5.0
5.0
5.0
5.0
GET
GEV
GEX
GEZ
lSMC26AT3
lSMC28AT3
lSMC30AT3
lSMC33AT3
26
28
30
33
28.9
31.1
33.3
36.7
1.0
1.0
1.0
1.0
42.1
45.4
48.4
53.3
35.6
33.0
31.0
28.1
5.0
5.0
5.0
5.0
GFE
GFG
GFK
GFM
lSMC36AT3
lSMC40AT3
lSMC43AT3
lSMC45AT3
36
40
43
45
40.0
44.4
47.8
50.0
1.0
1.0
1.0
1.0
58.1
64.5
69.4
72.7
25.8
23.2
21.6
20.6
5.0
5.0
5.0
5.0
GFP
GFR
GFT
GFV
lSMC48AT3
lSMC51AT3
lSMC54AT3
lSMC58AT3
48
51
54
58
53.3
56.7
60.0
64.4
1.0
1.0
1.0
1.0
n.4
82.4
87.1
93.6
19.4
18.2
17.2
16.0
5.0
5.0
5.0
5.0
GFX
GFZ
GGE
GGG
lSMC60AT3
lSMC64AT3
lSMC70AT3
lSMC75AT3
60
64
70
75
66.7
71.1
77.8
83.3
1.0
1.0
1.0
1.0
96.8
103
113
121
15.5
14.6
13.3
12.4
5.0
5.0
5.0
5.0
GGK
GGM
GGP
GGR
lSMC78AT3
78
86.7
1.0
126
11.4
5.0
GGT
Note 1: A transient suppressor is normally selected according to the reverse "Stand Off Voltage" (VR) which should be equal to or greater than the DC or continuous peak operating
voltage level.
* VBR measured at pulse test current IT at an ambient temperaure of 25°C.
Surge current wavefonn per Figure 2 and derate per Figure 3 of the General Data T3 suffix designates tape and reel of 2500 units.
t
t t
1500 Watt at the beginning of this group.
ABBREVIATIONS AND SYMBOLS
Stand Off Voltage. Applied reverse voltage to assure a
VR
V(BR)min
Vc
non-conductive condition (See Note 1).
This is the minimum breakdown voltage the device will
exhibit and is used to assure that conduction does not
occur prior to this voltage level at 25°C.
Maximum Clamping Voltage. The maximum peak voltage appearing across the transient suppressor when
Ipp
Pp
IR
subjected to the peak pusle current in a one millisecond
time interval. The peak pulse series resistance and thermal rise.
Peak Pulse Current - See Figure 2
Peak Pulse Power
Reverse Leakage
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-65
II
•
1.5SMC6.8AT3 thru 1.5SMC91 AT3
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) VF = 3.5 V Max, IF""" 100 A for all types.
Devlcett
Min
Nom
Max
mA
Working
Peak
Reverse
Voltage
VRWM
Volts
1.5SMC6.8AT3
1.5SMC7.5AT3
1.5SMC8.2AT3
1.5SMC9.1AT3
6.45
7.13
7.79
8.65
6.8
7.5
8.2
9.1
7.14
7.88
8.61
9.55
10
10
10
1
5.8
6.4
7.02
7.78
1000
500
200
50
143
132
124
112
1.5SMC10AT3
1.5SMCllAT3
1.5SMC12AT3
1.5SMC13AT3
9.5
10.5
11.4
12.4
10
11
12
13
10.5
11.6
12.6
13.7
1
1
1
1
8.55
9.4
10.2
11.1
10
5
5
5
1.5SMC15AT3
1.5SMC16AT3
1.5SMC18AT3
1.5SMC20AT3
14.3
15.2
17.1
19
15
16
18
20
15.8
16.8
18.9
21
1
1
1
1
12.8
13.6
15.3
17.1
1.5SMC22AT3
1.5SMC24AT3
1.5SMC27AT3
1.5SMC30AT3
20.9
22.8
25.7
28.5
22
24
27
30
23.1
25.2
28.4
31.5
1
1
1
1
1.5SMC33AT3
=> 1.5SMC36AT3
1.5SMC39AT3
1.5SMC43AT3
31.4
34.2
37.1
40.9
33
39
43
34.7
37.8
41
45.2
1.5SMC47AT3
1.5SMC51AT3
=> 1.5SMC56AT3
=> 1.5SMC62AT3
44.7
48.5
53.2
58.9
47
51
56
62
1.5SMC68AT3
1.5SMC75AT3
1.5SMC82AT3
1.5SMC91AT3
64.6
71.3
77.9
86.5
68
75
82
91
Breakdown Voltage'
VBR@IT
Volts
I
II
36
Maximum
Reverse
Leakage
@VRWM
IR
IlA
Maximum
Reverse
Surge
Current
IRSMt
Amps
Maximum
Reverse Voltage
@IRSM
(Clamping Voltage)
Maximum
Temperature
Coefficient
ofVBR
%/"C
Device
Marking
10.5
11.3
12.1
13.4
0.057
0.061
0.065
0.068
6V8A
7V5A
8V2A
9V1A
103
96
90
82
14.5
15.6
16.7
18.2
0.073
0.075
0.078
0.081
lOA
llA
12A
13A
5
5
5
5
71
67
59.5
21.2
22.5
25.2
27.7
0.084
0.086
0.088
0.09
15A
16A
18A
20A
18.8
20.5
23.1
25.6
5
5
5
5
49
45
40
36
30.6
33.2
37.5
41.4
0.092
0.094
0.096
0.097
22A
24A
27A
30A
1
1
1
1
28.2
30.8
33.3
36.8
5
5
5
5
33
30
28
25.3
45.7
49.9
53.9
59.3
0.098
0.099
0.1
0.101
33A
36A
39A
43A
49.4
53.6
58.8
65.1
1
1
1
1
40.2
43.6
47.8
53
5
5
5
5
23.2
21.4
19.5
17.7
64.8
70.1
77
85
0.101
0.102
0.103
0.104
47A
51A
56A
62A
71.4
78.8
86.1
95.5
1
1
1
1
58.1
64.1
70.1
77.8
5
5
5
5
16.3
14.6
13.3
12
92
103
113
125
0.104
0.105
0.105
0.106
68A
75A
82A
91A
54
VRSM
Volts
=> Preferred part
• VSR measured at pulse test current IT at an ambient temperaure of 25°C.
* * 112 sine wave (or equivalent square wave), PW = B.3 ms, duty cycle = 4 pulses per minute maximum.
t Surge current waveform per Figure 2 and derate per Figure 3 of General Data - 1500 Watt at the beginning of this group.
t t T3 suffix designates tape and reel of 2500 units.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-1-66
II
Section 4.2
Zener Voltage Regulator Diodes
Section
Page
4.2.1
Selector Guide . . . . . . . . . . . . . . . . . .. 4-2-2
4.2.2
Data Sheet Category Listing ....... 4-2-11
4.2.3
Alphanumeric Part Number Listing .• 4-2-12
4.2.4
Data Sheets ..•..........•....... 4-2-21
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-1
•
Section 4.2.1 Selector Guide
Zener Voltage Regulator
Diodes
•
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-2
SELECTOR GUIDE
Zener Voltage Regulator Diodes
Axial Leaded for Thru-hole Designs (See Section 4.2.4 for complete data)
Nominal
500mW
Zener
Breakdown
Voltage
Cathode =
Polarity Band
Polarity Band
("Note 1)
("Note 2)
("Note 3)
500mW
LowL...1
500mW
500mW
Low Level
500mW
Clthode=
Cathode =
Cathode =Polarity Band
("Note 4)
("NoteS)
I
("Note 6)
I
Polarity Band
("Note 7)
("Note 8)
/-
Volts
("Note 9)
Cathode =Poiarity Band
("Note 10)
I
("Note 8)
Case 299~O2
DO·204AH
(DO·35)
1.8
2.0
2.2
2.4
2.5
2.7
2.8
3.0
3.3
3.6
3 .•
4.3
4.7
5.1
5.6
6.0
6.2
lN4370A
lN4678
lN4679
lN4660
lN4681
lN4371A
lN4682
lN5221B
lN5222B
lN5223B
lN4372A
lN746A
lN4683
lN4684
lN5224B
lN5225B
lN5226B
lN747A
1N748A
lN749A
lN750A
lN751A
lN752A
lN4685
lN4686
lN4687
lN4688
lN4689
lN4690
lN5227B
1N5228B
MZ4614
MZ4615
MZ4616
MZ4617
lN5985B
BZX55C2V4
BZX79C2V4
lN5986B
BZX55C2V7
BZX79C2V7
BZX83C2V7
MZ4618
ZPD2.7
lN5987B
lN5988B
BZX55C3VO
BZX55C3V3
BZX79C3VO
BZX79C3V3
BZX83C3VO
BZX83C3V3
MZ4619
MZ4620
ZPD3.0
ZPD3.3
lN5989B
lN5.90B
lN59918
lN5992B
lN5993B
lN5994B
BZX55C3V6
BZX55C3V9
BZX55C4V3
BZX55C4V7
BZX83C3V6
BZX83C3V9
BZX83C4V3
BZX83C4V7
BZX83C5Vl
BZX83C5V6
MZ4621
MZ4622
BZX55C5Vl
BZX55C5V6
BZX79C3V6
8ZX79C3V9
BZX79C4V3
BZX79C4V7
BZX79C5Vl
BZX79C5V6
MZ4623
MZ4624
MZ4625
MZ4626
MZ55208
MZ5521B
MZ5522B
MZ5523B
MZ5524B
ZPD3.6
ZPD3.9
ZPD4.3
ZPD4.7
ZPD5.1
ZPD5.6
lN753A
lN4691
lN5229B
lN5230B
lN5231B
lN5232B
lN5233B
lN5234B
lN5995B
BZX55C6V2
BZX79C6V2
BZX83C6V2
MZ4627
MZ5525B
ZPD6.2
6.8
lN754A
1N957B
lN4692
lN5235B
lN5996B
BZX55C6V8
BZX79C6V8
BZX83C6V8
MZ4099
MZ5526B
ZPD6.8
7.5
lN755A
lN958B
lN4693
lN5236B
lN5997B
BZX55C7V5
BZX79C7V5
BZX83C7V5
MZ41 00
MZ5527B
ZPD7.5
8.2
lN756A
1N959B
lN4694
1N5237B
1N5998B
BZX55C8V2
BZX79C8V2
BZX83C8V2
MZ41 01
MZ5528B
ZPD6.2
1N59998
BZX55C9V1
BZX79C9V1
BZX83C9V1
MZ4103
MZ5529B
ZPD9.1
BZX55C10
BZX79C10
BZX83C10
MZ4104
MZ5530B
ZPD10
8.7
1N4695
1N5238B
9.1
1N757A
1N960B
1N4696
1N5239B
10
1N758A
1N961B
1N4697
11
1N962B
1N4698
1N5241B
1N6001B
BZX55C11
BZX79C11
BZX83C11
ZPD11
12
1N759A
1N963B
1N4699
1N5242B
1N6002B
BZX55C12
BZX79C12
BZX83C12
ZPD12
lN964B
lN4700
lN4701
lN4702
lN4703
1N4704
1N4705
lN5243B
1N5244B
lN5245B
lN5246B
1N5247B
1N5248B
lN6003B
BZX55C13
BZX79C13
BZX83C13
ZPD13
lN6004B
lN6005B
BZX55C15
BZX55C16
BZX79C15
BZX79C16
BZX83C15
BZX83C16
ZPD15
ZPD16
1N6006B
BZX55C18
BZX79C18
BZX83C18
ZPD18
lN4706
1N4707
lN4708
1N4709
1N4710
lN4711
lN5249B
1N5250B
1N5251B
1N5252B
lN5253B
lN5254B
1NS007B
lN6008B
lN6009B
BZX55C20
BZX55C22
BZX55C24
BZX79C20
BZX79C22
BZX79C24
BZX83C20
BZX83C22
BZX83C24
ZPD20
ZPD22
ZPD24
lN6010B
BZX55C27
BZX79C27
BZX83C27
ZPD27
1N4712
lN4713
lN52558
lN5256B
1N4714
lN4715
lN4716
lN4717
lN5257B
lN5258B
1N5259B
lN5260B
lN6011B
lN6012B
lN6013B
1NS014B
lN6015B
BZX55C30
BZX55C33
BZX55C36
BZX55C39
BZX55C43
lNS016B
1NS017B
1NS018B
1NS0198
1N6020B
13
14
15
16
17
18
19
20
22
24
25
27
28
30
33
36
39
43
47
51
58
1N965B
lN966B
1N967B
1N968B
lN969B
1N970B
1N971B
lN972B
lN973B
lN974B
lN975B
lN976B
1N9778
lN978B
lN979B
60
62
68
lN980B
lN981B
1N5240B
lN5261B
1N5262B
lN5263B
1N5264B
1N52658
1N5266B
MZ41 02
1N6000B
BZX79C30
8ZX83C30
ZPD30
BZX83C33
ZPD33
BZX55C47
BZX55C51
BZX55C56
BZX79C33
BZX79C38
BZX79C39
BZX79C43
BZX79C47
BZX79C51
8ZX79C56
BZX55C62
8ZX55C6B
BZX79C62
BZX79C68
"S.. Notes - page 4-2-7
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-3
•
-
SELECTOR GUIDE
Axial Leaded for Thru-hole Designs (continued) (See Section 4.2.4 for complete data)
a_.
Nominal
IOOmW
Voliage
PolarIty Band
IOOmW
Low Level
Cathode =
PoIarilyBand
('Note 1)
('Note 2)
('Note 3)
Zenor
CatOOH=
IOOmW
Low Level
CatOOH=
PoIarIIyBand
IOOmW
CatOOH =Polarity Band
('Note 4)
Volts
I
('Note 5)
I
('Note 6)
I
('Note 7)
('Note 8)
rNote 9)
/-
Case 299-02
DO-204AH
(D0-35)
I
75
82
1fT
91
100
110
lN982B
lN983B
120
130
140
150
160
170
lN987B
lN986B
180
190
200
220
240
270
lN984B
lN985B
lN986B
lN969B
lN990B
lN991B
lN992B
lN5267B
lN5268B
lN5269B
lN5270B
lN5271B
lN5272B
lN6021B
lN6022B
BZX55C75
BZX55C82
BZX79C75
BZX79C82
lN6023B
lN6024B
lN6025B
BZX55C91
BZX79C91
BZX79Cl00
BZX79Cll0
lN5273B
lN5274B
lN5275B
lN5276B
lN5277B
lN5278B
BZX79C120
BZX79C130
lN5279B
lN5280B
lN5281B
BZX79C180
BZX79C150
BZX79Cl60
BZX79C200
300
330
360
400
'See Notes - page 4-2-7
•
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-4
500mW
CatOOH =Polarity Band
('Note 10)
I
('Note 8)
SELECTOR GUIDE
Axial Leaded for Thru-hole Designs (continued) (See Section 4.2.4 for complete data)
Nominal
lWatt
1.3Watt
1.5 Wan
3 Wan
5 Watt
CIIhocie =
ClIhocIe=
Cllhocle=
Cllhocle=
Cllhocle=
PoIerItyBend
Polarity Bond
PoIarilyBend
("Note 16)
("Note 17)
("Note 18)
zenor
_kdown
Voltage
("N0181)
PolerltyBend
("Note 11)
PoIarilyBend
("Note 12)
("Note 13)
("Note 14)
("Note 15)
Volta
Glass
Case 59-03
(DO-41)
Plastic
Surmetic 30
Case 59-03
(00-41)
Plastic
SUrmetic30
Case 59-03
(DO-41)
Glass
Case 59'()3
(DO-41)
Plastic
Surmetic40
Case 17·02
1.8
2.0
2.2
2.4
2.5
2.7
2.8
3.0
3.3
3.6
3.9
4.3
4.7
5.1
5.6
lN4728A
lN4729A
lN4730A
1N4731 A
lN4732A
MZP4728A
MZP4729A
MZP4730A
MZP4731A
MZP4732A
lN4733A
lN4734A
MZP4733A
MZP4734A
BZX85C3V3
BZX85C3V6
BZX85C3V9
BZX85C4V3
BZX85C4V7
BZX85C5Vl
BZX85C5V6
6.2
lN4735A
MZP4735A
BZX85CSV2
6.8
lN4736A
MZP4736A
BZX85C6V8
7.5
lN4737A
MZP4737A
BZX85C7V5
8.2
lN4738A
MZP4738A
9.1
lN4739A
10
11
lN5333B
MZD3.9
MZD4.3
MZD4.7
MZD5.1
MZD5.6
lN5913B
lN5914B
lN5915B
lN5916B
lN5917B
lN5918B
lN5919B
3EZ3.9D5
3EZ4.3D5
3EZ4.7D5
3EZS.1D5
3EZS.6D5
MZPYS.2
MZD6.2
lN5920B
3EZ6.2D5
lN5336B
lN5339B
lN5340B
lN5341B
MZPVS.8
MZDS.8
lN5921B
3EZ6.8D5
lN5342B
MZPY7.5
MZD7.5
lN5922B
3EZ7.5D5
lN5343B
BZX85C8V2
MZPY8.2
MZD8.2
lN5923B
3EZ6.2D5
lN5344B
MZP4739A
BZX85C9Vl
MZPY9.1
MZD9.1
lN5924B
3EZ9.1D5
lN5346B
lN4740A
MZP4740A
BZX85Cl0
MZPY10
MZD10
lN5925B
3EZ10D5
lN5347B
lN4741A
MZP4741A
BZX85Cll
MZPYll
MZDll
lN592SB
3EZllD5
lN5348B
12
lN4742A
MZP4742A
BZX85C12
MZPY12
MZD12
lN5927B
3EZ12D5
lN5349B
,.
13
lN4743A
MZP4743A
BZX85C13
MZPY13
MZD13
lN5928B
15
lN4744A
lN4745A
MZP4744A
MZP4745A
BZX85C15
BZX85C16
MZPY15
MZPY16
MZD15
16
17
18
MZD1S
lN5929B
lN5930B
lN4748A
MZP4748A
BZX85C18
MZPY18
MZD18
lN5931B
3EZ13D5
3EZ14D5
3EZ15D5
3EZ16D5
3EZ17D5
3EZ18D5
lN5350B
1N5351B
lN5352B
lN5353B
lN5354B
lN5355B
lN4747A
lN4748A
1N4749A
MZP4747A
MZP4748A
MZP4749A
BZX85C20
BZX85C22
BZX85C2.
MZPY20
MZPY22
MZPY24
MZD20
MZD22
MZD24
lN5932B
lN5933B
1NS9S4B
3EZ19D5
3EZ20D5
3EZ22D5
3EZ240S
27
lN4750A
MZP4750A
BZX85C27
MZPY27
MZD27
lN5935B
3EZ27D5
lN5356B
lN5357B
lN5358B
1N53598
lN5360B
lN5361B
28
30
33
36
39
.3
lN4751A
lN4752A
lN4753A
lN4754A
lN4755A
MZP4751A
MZP4752A
MZP4753A
MZP4754A
MZP4755A
BZX85C30
BZX85C33
BZX85C36
BZX85C39
BZX85C43
MZPY30
MZPY33
MZPY36
MZPY39
MZPY43
MZD30
MZD33
MZD36
MZD39
MZD43
lN5936B
lN5937B
lN5938B
lN5939B
lN5940B
3EZ28D5
3EZ30D5
3EZ33D5
3EZ36D5
3EZ39D5
3EZ43D5
lN5362B
lN5363B
lN5364B
lN5365B
lN5366B
1N5367B
lN4756A
lN4757A
lN4758A
MZP4756A
MZP4757A
MZP4758A
BZX85C47
BZX85C51
BZX85C56
MZPY47
MZPY51
MZPY56
MZD47
MZD51
MZD56
lN5941B
lN5942B
lN5943B
3EZ47D5
3EZS1D5
3EZ56D5
lN4759A
lN4760A
MZP4759A
MZP4760A
BZX85C62
BZX85C68
MZPY62
MZPY68
MZD62
MZD68
lN5944B
lN5945B
3EZ62D5
3EZS8D5
lN5368B
lN5369B
lN5370B
lN5371B
lN5372B
lN5373B
MZPY3.9
MZPV4.3
MZPY4.7
MZPY5.1
MZPY5.6
6.0
lN5345B
8.7
19
20
22
2.
25
47
51
66
60
62
68
lN5334B
lN5335B
lN5336B
lN5337B
·See Notes - page 4-2-7
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-5
II
•
SELECTOR GUIDE
Axial Leaded for Thru-hole Designs (continued) (See Section 4.2.4 for complete data)
1_
_lnal
1.3_
I.SWan
3_
sWan
Cllhada=
Cllhade=
Cllhade=
Cllhada=
Polarlly Band
PolarllyBand
PolarilyBand
('N01e 16)
('Note 17)
('Note 18)
Zener
Cllhade=
Breakdown
VOIIage
('N01e 1)
PoIarHyBand
('Note 11)
PolarllyBand
('Note 12)
('NolO 13)
('Note 14)
('NolO 15)
Vona
75
82
Glass
Plastic
Surrnetic30
Case 59-03
(00-41)
CaseS9.(J3
(00-41)
Glass
Case 59-03
Plastic
Surmetic 30
Case 59-03
(00-41)
(00-41)
Plastic
Sunnetic40
Case 17.(J2
lN4761A
lN4762A
MZP4761A
MZP4762A
BZX8SC7S
BZX85C92
MZPY7S
MZPY82
MZD7S
MZD82
1NS946B
lNS947B
3EZ7SDS
3EZ82DS
lN4763A
lN4764A
MZP4763A
MZP4764A
BZX85C91
BZX8SC100
MZPY91
MZPY100
MZD91
MZD100
1NS948B
1NS949B
3EZ91 OS
3EZ100DS
87
91
100
110
120
130
140
150
I
160
170
1NS374B
lN537SB
lN5376B
1NS3nB
lN5378B
lMllOZSS
MZDll0
1NS9S0B
3EZll ODS
lN5379B
lM120ZSS
lMI30ZSS
MZDI20
MZD130
lNS9S1B
1NS9S2B
lMI50ZSS
lMI60ZSS
MZD1S0
MZD160
1NS9S3B
1NS954B
3EZ120DS
3EZI30DS
3EZ14ODS
3EZI50DS
3EZI80DS
3EZ170DS
1NS360B
lNS381B
lN5382B
lN5383B
1NS384B
1NS38SB
3EZl80DS
3EZ190DS
3EZ200DS
3EZ220D6
3EZ240DS
3EZ270D5
1NS386B
1NS387B
1NS388B
180
190
lMI80ZSS
MZD180
1NS9SSB
200
lM200ZSS
MZD200
1NS956B
220
240
270
330
300
3EZ300D5
3EZ330D5
380
400
3EZ360DS
3EZ400D5
-See Notes -page 4-2-7
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-6
SELECTOR GUIDE
(See Section 4.2.4 for complete data)
NOTES - AXIAL LEADED CHART
1. Zener Voltage is the key parameter for each device type. It is specified at a Jiartlcular test
current applied at either thermal equilibrium (T.E.) or pulse tast condition. The voltage
tolerance for the device types listed is, in general ±5%; however, for some series, the
voltage tolerance varies from device type to device type over a range of (5 to 8.5)%.
Consult the complete data sheet to determine the exact test conditions and minimum!
maximum limits for the zener voltage. Consult Application Note AN924 regarding mea-
surement of Zener Voltage (pulse versus thermal equilibrium). Also see Section 7 article.
Power Ratings represent the capability of the case size listed as supplied by Motorola.
These ratings may be higher than the JEDEC registration andlor the same device types
9. MZ4614-27
MZ4099-41D4
1".250 ItA (T.E.).
1".250 ItA (T.E.).
Tolerance IS ±5%.
10. MZS52OB-21B
MZ5522B
MZ5523B
MZ5524B
MZS525B-30B
supplied by other manufacturers.
1".20 mA (T.E.).
I" • lOrnA (T.E.).
I". 5 mA(T.E.).
I" • 3 mA (T.E.).
I". 1 mA (T.E.).
Tolerance is ±5%.
Also has delta Vz parameter and limit.
V z TEST CONDITIONS AND TOLERANCES
11. lN4728A-64A
2. lN4370AilN746A Series
1".20 rnA (T.E.).
Izr
@
approximately 250 mW point (T.E.).
No suffix = ±10%.
No suffix = ±10%.
A suffix = ±5%.
A suffix
C suffix. i2%.
= ±2%.
o suffix = ±1%.
= ±5%.
C suffix
o suffix = ±1%.
1N957B Series
IZT @ approximately 125 mW point (T.E.).
12. MZP4728A-64A
lMl1OZSS-200ZSS
= ±10%.
B suffix = ±5%.
A suffix
Izr
@
approximately 250 mW point (T.E.).
MZP Series non suffix = ±10%.
C suffix = ±2%.
MZP series A suffix = ±5%.
o suffix =±1%.
1M Series 10 suffix
= ±10%.
1M Series 5 suffix = ±5%.
3.
1N4678 Series
No suffix
1".50 ItA (T.E.).
13. BZX85C3V3-Cl00
IZT varies from 185 mW to 300 mW point depending on type number (pulse).
= ±5%.
C suffix = ±2%.
C indicates ±(5 to 8.5)% depending on type number.
Replace C with B for ±2%.
o suffix = ±1%.
Also has delta Vz parameter and limit.
4.
lN5221B-42B
1N5243B-818
1".20 mA (T.E.).
Izr @ approximately 125 mW point (T.E.).
A suffix = ±10%.
B suffix
= ±5%.
14. MZPY3.9-8.2
MZPY9.1-15
MZPYI6-33
MZPY36-82
MZPY91-100
C suffix = ±2%.
o
5.
suffix
C suffix '" ±2%.
o suffix = ±1%.
I". SmA (T.E.).
Izr. 2 mA (T.E.).
Izr. 1 rnA (T.E.).
15. MZD3.9-8.2
MZD9.1-15
MZDI6-33
MZD36-/12
MZD91-200
A suffix = ±10%.
B suffix = ±5%.
C suffix = ±2%.
o suffix = ±1 %.
6. BZX55C2V4-C36
BZX55C39-CB2
BZX55C91
I".
No suffix tolerance is approximately ±(5 to 8.5)% depending on type number.
= ±1%.
lN5985B-6013B
lN6014B-23B
lN6024B-25B
I". 100 rnA (pulse).
I" • 50 rnA (pulse).
IZT = 25 rnA (pulse).
10 mA (pulse).
IZT = 5 rnA (pulse).
I". 100 mA (pulse).
Izr. 50 mA (pulse).
1".25 rnA (pulse).
Izr. 10 rnA (pulse).
1".5 mA (pulse).
Tolerance is ±(5 to 8.5)% depending on type number.
16.1N5913B-56B
I" • 5 mA (T.E.).
Izr· 2.5 mA (T.E.).
1".1 rnA (T.E.).
Izr
@
approximately 375 mW point (T.E.).
A suffix = ±10%.
C indicates ±(5 to 8.5)%, depending on type number.
B suffix = ±5%.
Replace C with B for ±2%.
17. 3EZ3.9D5-400DS
7.
BZX79C2V4-C24
BZX79C27-C91
BZX79C1OQ-C200
Izr
1".5 mA (pulse).
Izr. 2 mA (pulse).
Izr = 1 rnA (pulse).
@
approximately 750 mW point (pulse).
Suffix 10= ±10%.
Suffix 5 = ±5%.
C indicates ±(5 to 8.5)% depending on type number.
18. lN5333B-88B
Replace C with B for ±2%.
Izr varies from 0.9 to 1.5 W point depending on type number (pulse)
Replace C with A for ±1%.
A suffix
8. BZX83C2V7-C33
ZPD2.7-33
1".5 mA (pulso).
/zr. 5 rnA (pulse).
= ±10%.
=
B suffix ±5%.
Also has delta Vz parameter and limit.
Tolerance is ±(5 to 8.5)% depending on type number.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-7
•
SELECTOR GUIDE
Zener Voltage Regulator Diodes
Surface Mount Packages (See Section 4.2.4 for complete data)
_lnaI
225mW
SOOmW
loner
Brealulown
Vollaga
SurlaceMount
SurlaceMount
Loadless
SOT-23
("Nolel)
l
("N0Ie2)
("NoIe3)
MLL34
("Not. 4)
("Not. 5)
No Connection
Plastic
Cao.316-o7
TO-236AB
1.8
2_0
2_2
2.4
2.5
2_7
2_8
3_0
3_3
I
•
BZX84C2V4L
BZX84C2V7L
BZX84C3VOL
BZX84C3V3L
1.5_
Surface Mount
MLL34
5MB
("NoIe6)
("Not. 7)
Cathode = Polarity Band
MMBZ5221BL
MMBZ5222BL
MMBZ5223BL
MMBZ5224BL
MMBZ5225BL
MMBZ5226BL
BZV55C2V4
MLL4678
MLL4679
MLL4680
MLL4681
BZV55C2V7
MLL4682
BZV55C3VO
BZV55C3V3
MLL4683
MLL4684
BZV55C3V6
BZV55C3V9
BZV55C4V3
BZV55C4V7
BZV55C5Vl
BZV55C5V6
MLL4665
MLL4688
MLL4667
MLL4688
MLL4669
MLL4690
BZX84C3V6L
BZX84C3V9L
BZX84C4V3L
BZX84C4V7L
BZX84C5V1L
BZX84C5V6L
BZX84C8V2L
MMBZ5227BL
MMBZ5228BL
MMBZ5229BL
MMBZ5230BL
MMBZ5231BL
MMBZ5232BL
MMBZ5233BL
MMBZ5234BL
BZV55C8V2
6_8
BZX84C6V8L
MMBZ5235BL
BZV55C6V8
7_5
BZX84C7V5L
MMBZ5236BL
8_2
BZXB4CBV2L
MMBZ5237BL
•
Ca1hode = Notch
Glass
Plastic
ease 362-03
3_6
3_9
4_3
4_7
5_1
5_6
6_0
6_2
8_7
SOOmW
SuriacoMount
LaadI...
~
.Ca1hOdO
Anode
Volts
SOOmW
LowLml
Surlace Mount
Loadless
IILL34
Case403A-03
MLL5221B
MLL5222B
MLL5223B
MLL5224B
MLL5225B
MLL5226B
15MB5913BT3
ISMB5914BT3
ISMB5915BT3
ISMB5916BT3
15MB5917BT3
1S~B5918BT3
ISMB5919BT3
MLL4691
MLL5227B
MLL5228B
MLL5229B
MLL5230B
MLL5231B
MLL5232B
MLL5233B
MLL5234B
MLL4692
MLL5235B
15MB5921 BT3
BZV55C7V5
MLL4693
MLL5236B
ISMB5922BT3
BZV55CBV2
MLL4694
MLL5237B
15MB5923BT3
MMBZ5238BL
15MB5920BT3
MLL4695
MLL5238B
9_1
BZX84C9V1L
MMBZ5239BL
BZV55C9Vl
MLL4696
MLL5239B
15MB5924BT3
10
BZX84Cl0L
MMBZ5240BL
BZV55Cl0
MLL4697
MLL5240B
15MB5925BT3
11
BZX84ClIL
MMBZ5241BL
. BZV55Cli
MLL469B
MLL5241B
15MB5926BT3
12
BZX84C12L
MMBZ5242BL
BZV55C12
MLL4699
MLL5242B
15MB5927BT3
13
14
15
16
17
18
BZX84CI3L
MMBZ5243BL
MMBZ5244BL
MMBZ5245BL
MMBZ5246BL
MMBZ5247BL
MMBZ5246BL
BZV55C13
MLL4700
MLL4701
MLL4702
MLL4703
MLL4704
MLL4705
MLL5243B
MLL5244B
MLL5245B
MLL5246B
MLL5247B
MLL524BB
15MB5928BT3
BZV55C27
MLL4706
MLL4707
MLL470B
MLL4709
MLL4710
MLL4711
MLL5249B
MLL5250B
MLL5251B
MLL5252B
MLL5253B
MLL5254B
BZV55C30
BZV55C33
BZV55C36
BZV55C39
BZV55C43
MLL4712
MLL4713
MLL4714
MLL4715
MLL4716
MLL4717
MLL5255B
MLL5256B
MLLS257B
MLL525BB
MLL5259B
MLL5260B
19
20
22
24
25
27
29
30
33
36
39
43
BZX84CI5L
BZX84CI6L
BZX84CI8L
BZX84C27L
MMBZ5249BL
MMBZ5250BL
MMBZ5251BL
MMBZ5252BL
MMBZ5253BL
MMBZ5254BL
BZX84C30L
BZX84C33L
BZX84C36L
BZX84C39L
BZX84C43L
MMBZ5255BL
MMBZ5256BL
MMBZ5257BL
MMBZ5258BL
MMBZ5259BL
MMBZ5260BL
BZX84C20L
BZXB4C22L
BZX84C24L
BZV55C15
BZV55C16
BZV55C18
BZV55C20
BZV55C22
BZV55C24
"S•• Not•• - page 4-2-9
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-8
15MB5929BT3
15MB5930BT3
15MB5931 BT3
15MB5932BT3
15MB5933BT3
ISMB5934BT3
15MB5935BT3
15MB5936BT3
15MB5937BT3
15MB593BBT3
15MB5939BT3
15MB5940BT3
SELECTOR GUIDE
Surface Mount Packages (continued) (See Section 4.2.4 for complete data)
NominaJ
Zener
Breakdown
225mW
SOOmW
500mW
SOOmW
1.5_
Surface Mount
Surface Mount
Low Level
Surface Mount
Surface Mount
Lead,"s
Surface Mount
Leadl...
Leadless
VoHage
SOT-23
('Nolel)
I
('Note 2)
('Note 3)
MLL34
MLL34
MLL34
5MB
rNote 4)
('Note 5)
('Note 6)
('Note 7)
~
.cathOde
Anode
Volts
No Connection
Glass
Plastic
Case 318-07
TO-236AB
47
51
BZX84C47L
BZX84C5tL
56
BZX84C55L
60
62
68
BZX84C62L
BZX84C68L
75
82
87
91
BZX84C75L
MMBZ5261BL
MMBZ5262BL
MMBZ5263BL
MMBZ5264BL
MMBZ526SBL
MMBZ5266BL
Cathode = Polarity Band
BZV55C47
BZV55C51
BZV55C56
•
Plastic
Case 403A-03
Case 362-03
Cathode = Notch
MLL5261B
MLL5262B
MLL5263B
15MB5941 BT3
15MB5942BT3
15MB5943BT3
15MB5944BT3
15MB5945BT3
MMBZ5267BL
MMBZ5268BL
MMBZ5269BL
15MB5946BT~
15MB5947BT3
MMBZ5270BL
15MB5948BT3
15MB5949BT3
15MB5950BT3
ISMB5951BT3
100
110
120
130
150
160
15MB5952BT3
15MB5953BT3
ISMB5954BT3
170
180
15MB5955BT3
200
15MB5956BT3
*See Notes on thiS page.
NOTES - SURFACE MOUNT CHART
1. Zener Voltage Is the key parameter for e8ch device type. It is specified at a particular test
current applied at either thermal equilibrium (T E.) or pulse test condition. The voltage
tolerance for the device types listed IS, in general ±S%; however, for some series, the
vOltage tolerance varies from device type to device type over a range of ±(5 to 8.5)%.
Consult the complete data sheet to determine the exact test conditions and minimum!
maximum limits fOf the zener voltage.
4. BZV55C2V4-C24
BZV55C27-C55
Tolerance is ±(5 to 8.5)% depending on type number. Each device type also has other
Vz minImax limits at two other In pulse current values.
5. MLL4678 Series
Power Ratings represent the capability of the case size listed as supplied by Motorola.
These ratings may be higher than the same deVice types supplied by other manufacturers.
V, TEST CONDITIONS AND TOLERANCES
2. 8ZX84C2V4L-C24L
BZX84C27L-C75L
IZT = 50 ~A (T.E.).
No suffix = ±5%.
6. MLL52218-428
IZT = 20 mA (T.E.).
MLL52438-638
In @ approximately 125 mW pomt (T E.).
A suffix
Izr = 5 rnA (pulse).
IZT = 2 mA (pulse).
B suffix
Tolerance is ±(5 to 8.5)% depending on type number. Each deVice type also has other
Vz minimax limits at two other In pulse current values.
IZT = 5 mA (pulse).
IZT = 2 mA (pulse).
7.
=±10%.
= ±5%.
1SMB5913BT3 Series
In @ approximately 375 mW point (T.E.).
BT3 suffix = ±5%.
=
3. MMBZ5221BL-428L IZT 20 mA (pulse).
MMBZ5243BL-70BL In @ approximately 125 mW point (pulse).
BL suffix = ±5%.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-9
II
I
•
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-10
Section 4.2.2 Data Sheet Category Listing
Zener Voltage Regulator
Diodes
Section
4.2.4.1
4.2.4.1.1
Data Sheets
AXIAL LEADED ..............
500 mW 00-35 Glass .. . . . . .•
General Data - 500 mW
00-35 Glass ...........
1N746A thru 1N759A,
1N957B thru 1N992B,
1N4370A thru 1N4372A ..
1N4678thru 1N4717 ......•
1N5221 B thru 1N5281 B ....
1N5985B thru 1N6025B ....
BZX55C2V4 thru
BZX55C91 .............
BZX79C2V4 thru
BZX79C200 .. .. .. .. ....
BZX83C2V7 thru BZX83C33,
M-ZP02.7 thru M-ZP033 .
MZ4099 thru MZ41 04,
MZ4614 thru MZ4627 ....
MZ5520B thru MZ5530B ..•
1-1.3 Watt 00-41 Glass ......
4.2.4.1.2
General Data - 1-1.3 Watt
00-41 Glass ...........
1N4728A thru 1N4764A ....
BZX85C3V3 thru
BZX85C100 .•.•••.•. . ..
M-ZPY3.9 thru M-ZPY100 ..
4.2.4.1.3
1-3 Watt 00-41 Surmetic 30 .•
General Data - 1-3 Watt
00-41 Surmetic 30 .... "
1N5913B thru 1N5956B ....
3EZ3.905 thru 3EZ40005 ..
MZ03.9 thru MZ0200 •..• "
MZP4728A thru MZP4764A,
1M110ZS5 thru 1M200ZS5 .
4.2.4.1.4
5 Watt Surmetic 40 ..••...• "
1N5333B thru 1N5388B ....
Page
Section
4-2-21
4-2-21
4.2.4.2
4.2.4.2.1
4-2-22
4-2-28
4-2-30
4-2-31
4-2-33
4-2-34
4-2-35
4-2-36
4-2-37
4-2-38
4-2-39
Data Sheets
SURFACE MOUNTED ....•..•..
225 mW SOT-23 .•...•..••..
General Data - 225 mW
SOT-23 ...........•...••
BZX84C2V4L thru
BZX84C75L .............
MMBZ5221 BL thru
MMBZ5270BL ...........
4.2.4.2.2
500 mW Leadless
(00-34 Body Size) ..........
General Data - 500 mW
Leadless ..•...•..•...••
BZV55C2V4 thru
BZV55C56 .•...••.•••••.
MLL4678 thru MLL4717 •.•.
MLL5221 B thru MLL5263B .
4.2.4.2.3
1.5 Watt DC Power(SMB Flat Plastic with Modified
L-Bend Leads) ..•...••...•..
1SMB5913BT3 thru
15MB5956BT3 ...•.••..•.
4-2-40
4-2-44
4-2-45
4-2-46
4-2-47
4-2-48
4-2-51
4-2-53
4-2-55
4-2-56
4-2-57
4-2-58
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-11
Page
4-2-63
4-2-63
4-2-64
4-2-65
4-2-66
4-2-67
4-2-68
4-2-73
4-2-74
4-2-75
II
4-2-77
4-2-78
-
Section 4.2.3 Alphanumeric Part
Number Listing
Zener Voltage Regulator
Diodes
II
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-12
ALPHANUMERIC INDEX - VOLTAGE REGULATOR DIODES
DEVICE
PAGE
DEVICE
PAGE
DEVICE
PAGE
lMll0ZS5
4-2-56
lN975B
4-2-28
lN4696
4-2-30
lM120ZS5
4-2-56
lN976B
4-2-28
lN4697
4-2-30
lM130ZS5
4-2-56
lN977B
4-2-28
lN4698
4-2-30
lM150ZS5
4-2-56
lN978B
4-2-28
lN4699
4-2-30
lM160ZS5
4-2-56
lN979B
4-2-28
lN4700
4-2-30
lM180ZS5
4-2-56
4-2-28
4-2-30
lM200ZS5
4-2-56
lN980B
lN981B
lN4701
4-2-29
lN4702
4-2-30
lN746A
4-2-28
lN982B
4-2-29
lN4703
4-2-30
lN747A
4-2-28
lN983B
4-2-29
lN4704
4-2-30
lN748A
4-2-28
lN984B
4-2-29
lN4705
4-2-30
lN749A
4-2-28
lN985B
4-2-29
lN4706
4-2-30
lN750A
4-2-28
lN986B
4-2-29
lN4707
4-2-30
lN751A
4-2-28
lN987B
4-2-29
lN4708
4-2-30
lN752A
4-2-28
lN988B
4-2-29
lN4709
4-2-30
lN753A
4-2-28
lN989B
4-2-29
lN4710
4-2-30
lN754A
4-2-28
lN990B
4-2-29
1 N4711
4-2-30
lN755A
4-2-28
lN991B
4-2-29
lN4712
4-2-30
lN756A
4-2-28
lN992B
4-2-29
lN4713
4-2-30
lN757A
4-2-28
lN4370A
4-2-28
lN4714
4-2-30
lN758A
4-2-28
lN4371A
4-2-28
lN4715
4-2-30
lN759A
4-2-28
lN4372A
4-2-28
lN4716
4-2'30
lN957B
4-2-28
lN4678
4-2-30
lN4717
4-2-30
lN958B
4-2-28
lN4679
4-2-30
lN4728A
4-2-44
lN959B
4-2-28
lN4680
4-2-30
lN4729A
4-2-44
lN960B
4-2-28
1 N4681
4-2-30
lN4730A
4-2-44
lN961B
4-2-28
lN4682
4-2-30
lN4731A
4-2-44
lN962B
4-2-28
lN4683
4-2-30
lN4732A
4-2-44
lN963B
4-2-28
lN4684
4-2-30
lN4733A
4-2-44
lN964B
4-2-28
lN4685
4-2-30
lN4734A
4-2-44
lN965B
4-2-28
lN4686
4-2-30
lN4735A
4-2-44
lN966B
4-2-28
lN4687
4-2-30
lN4736A
4-2-44
lN967B
4-2-28
lN4688
4-2-30
lN4737A
4-2-44
lN968B
4-2-28
lN4689
4-2-30
lN4738A
4-2-44
lN969B
4-2-28
lN4690
4-2-30
lN4739A
4-2-44
lN970B
4-2-28
lN4691
4-2-30
lN4740A
4-2-44
lN971B
4-2-28
lN4692
4-2-30
1 N4741 A
4-2-44
lN972B
4-2-28
lN4693
4-2-30
lN4742A
4-2-44
lN973B
4-2-28
lN4694
4-2-30
lN4743A
4-2-44
lN974B
4-2-28
lN4695
4-2-30
lN4744A
4-2-44
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-13
II
ALPHANUMERIC INDEX (continued)
•
•
DEVICE
PAGE
DEVICE
PAGE
DEVICE
PAGE
1N4745A
4-2-44
1N5242B
4-2-31
1N5334B
4-2-59
1N4746A
4-2-44
1N5243B
4-2-31
1N5335B
4-2-59
1N4747A
4-2-44
1N5244B
4-2-31
1N5336B
4-2-59
1N4748A
4-2-44
1N5245B
4-2-31
1N5337B
4-2-59
1N4749A
4-2-44
1N5246B
4-2-31
1N5338B
4-2-59
1N4750A
4-2-44
1N5247B
4-2-31
1N5339B
4-2-59
1N4751A
4-2-44
1N5248B
4-2-31
1N5340B
4-2-59
1N4752A
4-2-44
1N5249B
4-2-31
1N5341B
4-2-59
1N4753A
4-2-44
1N5250B
4-2-31
1N5342B
4-2-59
1N4754A
4-2-44
1N5251B
4-2-31
1N5343B
4-2-59
1N4755A
4-2-44
1N5252B
4-2-31
1N5344B
4-2-59
1N4756A
4-2-44
1N5253B
4-2-31
1N5345B
4-2-59
1N4757A
4-2-44
1N5254B
4-2-31
1N5346B
4-2-59
1N4758A
4-2-44
1N5255B
4-2-31
1N5347B
4-2-59
1N4759A
4-2-44
1N5256B
4-2-31
1N5348B
4-2-59
1N4760A
4-2-44
1N5257B
4-2-31
1N5349B
4-2-59
1N4761 A
4-2-44
1N5258B
4-2-31
1N5350B
4-2-59
1N4762A
4-2-44
1N5259B
4-2-31
1N5351B
4-2-59
1N4763A
4-2-44
1N5260B
4-2-31
1N5352B
4-2-59
1N4764A
4-2-44
1N5261B
4-2-31
1N5353B
4-2-59
1N5221B
4-2-31
1N5262B
4-2.-31
1N5354B
4-2-59
1N5222B
4-2-31
1N5263B
4-2-31
1N5355B
4-2-59
1N5223B
4-2-31
1N5264B
4-2-31
1N5356B
4-2-59
1N5224B
4-2-31
1N5265B
4-2-31
1N5357B
4-2-59
1N5225B
4-2-31
1N5266B
4-2-32
1N5358B
4-2-59
1N5226B
4-2-31
1N5267B
4-2-32
1N5359B
4-2-59
1N5227B
4-2-31
1N5268B
4-2-32
1N5360B
4-2-59
1N5228B
4-2-31
1N5269B
4-2-32
1N5361B
4-2-59
1N5229B
4-2-31
1N5270B
4-2-32
1N5362B
4-2-59
1N5230B
4-2-31
1N5271B
4-2-32
1N5363B
4-2-59
1N5231B
4-2-31
1N5272B
4-2-32
1N5364B
4-2-59
1N5232B
4-2-31
1N5273B
4-2-32
1N5365B
4-2-59
1N5233B
4-2-31
1N5274B
4-2-32
1N5366B
4-2-59
1N5234B
4-2-31
1N5275B
4-2-32
1N5367B
4-2-59
1N5235B
4-2-31
1N5276B
4-2-32
1N5368B
4-2-59
1N5236B.
4-2-31
1N5277B
4-2-32
1N5369B
4-2-59
1N5237B
4-2-31
1N5278B
4-2-32
1N5370B
4-2-59
1N5238B
4-2-31
1N5279B
4-2-32
1N5371B
4-2-59
1N5239B
4-2-31
1N5280B
4-2-32
1N5372B
4-2-59
1N5373B
4-2-59
1N5374B
4-2-59
1N5240B
4-2-31
1N5281B
4-2-32
1N5241B
4-2-31
1N5333B
4-2-59
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-14
ALPHANUMERIC INDEX (continued)
DEVICE
PAGE
DEVICE
PAGE
DEVICE
PAGE
1N5375B
4-2-59
1N5940B
4-2-51
1N6009B
4-2-33
1N5376B
4-2-59
1N5941B
4-2-51
1N6010B
4-2-33
1N5377B
4-2-59
1N5942B
4-2-51
1N6011B
4-2-33
1N5378B
4-2-59
1N5943B
4-2-51
1N6012B
4-2-33
1N5379B
4-2-59
1N5944B
4-2-51
1N6013B
4-2-33
1N5380B
4-2-59
1N5945B
4-2-51
1N6014B
4-2-33
1N5381B
4-2-59
1N5946B
4-2-51
1N6015B
4-2-33
1N5382B
4-2-59
1N5947B
4-2-51
1N6016B
4-2-33
1N5383B
4-2-60
1N5948B
4-2-52
1N6017B
4-2-33
1N5384B
4-2-60
1N5949B
4-2-52
1N6018B
4-2-33
1N5385B
4-2-60
1N5950B
4-2-52
1N6019B
4-2-33
1N5386B
4-2-60
1N5951B
4-2-52
1N6020B
4-2-33
1N5387B
4-2-60
1N5952B
4-2-52
1N6021B
4-2-33
1N5388B
4-2-60
1N5953B
4-2-52
1N6022B
4-2-33
1N5913B
4-2-51
1N5954B
4-2-52
1N6023B
4-2-33
1N5914B
4-2-51
1N5955B
4-2-52
1N6024B
4-2-33
1N5915B
4-2-51
1N5956B
4-2-52
1N6025B
4-2-33
1N5916B
4-2-51
1N5985B
4-2-33
15MB5913BT3
4-2-78
1N5917B
4-2-51
1N5986B
4-2-33
15MB5914BT3
4-2-78
1N5918B
4-2-51
1N5987B
4-2-33
15MB5915BT3
4-2-78
1N5919B
4-2-51
1N5988B
4-2-33
1SMB5916BT3
4-2-78
1N5920B
4-2-51
1N5989B
4-2-33
15MB5917BT3
4-2-78
1N5921B
4-2-51
1N5990B
4-2-33
1SMB5918BT3
4-2-78
1N5922B
4-2-51
1N5991B
4-2-33
15MB5919BT3
4-2-78
1N5923B
4-2-51
1N5992B
4-2-33
15MB5920BT3
4-2-78
1N5924B
4-2-51
1N5993B
4-2-33
15MB5921 BT3
4-2-78
1N5925B
4-2-51
1N5994B
4-2-33
15MB5922BT3
4-2-78
1N5926B
4-2-51
1N5995B
4-2-33
15MB5923BT3
4-2-78
1N5927B
4-2-51
1N5996B
4-2-33
1SMB5924BT3
4-2-78
1N5928B
4-2-51
1N5997B
4-2-33
15MB5925BT3
4-2-78
1N5929B
4-2-51
1N5998B
4-2-33
15MB5926BT3
4-2-78
1N5930B
4-2-51
1N5999B
4-2-33
15MB5927BT3
4-2-78
1N5931B
4-2-51
1N6000B
4-2-33
15MB5928BT3
4-2-78
1N5932B
4-2-51
1N6001B
4-2-33
15MB5929BT3
4-2-79
1N5933B
4-2-51
1N6002B
4-2-33
15MB5930BT3
4-2-79
1N5934B
4-2-51
1N6003B
4-2-33
1SMB5931BT3
4-2-79
1N5935B
4-2-51
1N6004B
4-2-33
15MB5932BT3
4-2-79
1N5936B
4-2-51
1N6005B
4-2-33
15MB5933BT3
4-2-79
1N5937B
4-2-51
1N6006B
4-2-33
15MB5934BT3
4-2-79
1N5938B
4-2-51
1N6007B
4-2-33
15MB5935BT3
4-2-79
1N5939B
4-2-51
1N6008B
4-2-33
15MB5936BT3
4-2-79
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-15
II
III
ALPHANUMERIC INDEX (continued)
I
III
DEVICE
PAGE
DEVICE
PAGE
DEVICE
PAGE
1SME!5937BT3
4-2-79
3EZ22D5
4-2-53
BZV55C4V3
4-2-73
15MB5938BT3
4-2-79
3EZ24D5
4-2-53
BZV55C4V7
4-2-73
4-2-73
1SMB5939BT3
4-2-79
3EZ27D5
4-2-53
BZV55C5V1
1SMB5940BT3
4-2-79
3EZ28D5
4-2-53
BZV55C5V6
4-2-73
15MB5941 BT3
4-2-79
3EZ30D5
4-2-53
BZV55C6V2
4-2-73
1SMB5942BT3
4-2-79
3EZ33D5
4-2-53
BZV55C6V8
4-2-73
15MB5943BT3
4-2-79
3EZ36D5
4-2-53
BZV55C7V5
4-2-73
15MB5944BT3
4-2-79
3EZ39D5
4-2-53
BZV55C8V2
4-2-73
15MB5945BT3
4-2-79
3EZ43D5
4-2-53
BZV55C9V1
4-2-73
15MB5946BT3
4-2-79
3EZ47D5
4-2-53
BZV55C10
4-2-73
15MB5947BT3
4-2-79
3EZ51D5
4-2-53
BZV55C11
4-2-73
15MB5948BT3
4-2-79
3EZ56D5
4-2-53
BZV55C12
4-2-73
15MB5949BT3
4-2-79
3EZ62D5
4-2-53
BZV55C13
4-2-73
15MB5950BT3
4-2-79
3EZ68D5
4-2-53
BZV55C15
4-2-73
15MB5951 BT3
4-2-79
3EZ75D5
4-2-53
BZV55C16
4-2-73
15MB5952BT3
4-2-79
3EZ82D5
4-2-53
BZV55C18
4-2-73
15MB5953BT3
4-2-79
3EZ91D5
4-2-53
BZV55C20
4-2-73
1 5MB5954BT3
4-2-79
3EZ100D5
4-2-53
BZV55C22
4-2-73
15MB5955BT3
4-2-79
3EZ110D5
4-2-53
BZV55C24
4-2-73
15MB5956BT3
4-2-79
3EZ120D5
4-2-53
BZV55C27
4-2-73
3EZ3.9D5
4-2-53
3EZ130D5
4-2-53
BZV55C30
4-2-73
3EZ4.3D5
4-2-53
3EZ140D5
4-2-53
BZV55C33
4-2-73
3EZ4.7D5
4-2-53
3EZ150D5
4-2-53
BZV55C36
4-2-73
3EZ5.1D5
4-2-53
3EZ160D5
4-2-53
BZV55C39
4-2-73
3EZ5.6D5
4-2-53
3EZ170D5
4-2-53
BZV55C43
4-2-73
3EZ6.2D5
4-2-53
3EZ180D5
4-2-53
BZV55C47
4-2-73
3EZ6.8D5
4-2-53
3EZ190D5
4-2-53
BZV55C51
4-2-73
3EZ7.5D5
4-2-53
3EZ200D5
4-2-54
BZV55C56
4-2-73
3EZ8.2D5
4-2-53
3EZ220D5
4-2-54
BZX55C2V4
4-2-34
3EZ9.1D5
4-2-53
3EZ240D5
4-2-54
BZX55C2V7
4-2-34
3EZ10D5
4-2-53
3EZ270D5
4-2-54
BZX55C3VO
4-2-34
3EZ11D5
4-2-53
3EZ300D5
4-2-54
BZX55C3V3
4-2-34
3EZ12D5
4-2-53
3EZ330D5
4-2-54
BZX55C3V6
4-2-34
3EZ13D5
4-2-53
3EZ360D5
4-2-54
BZX55C3V9
4-2-34
3EZ14D5
4-2-53
3EZ400D5
4-2-54
BZX55C4V3
4-2-34
3EZ15D5
4-2-53
BZV55C2V4
4-2-73
BZX55C4V7
4-2-34
3EZ16D5
4-;:!-53
BZV55C2V7
4-2-73
BZX55C5V1
4-2-34
3EZ17D5
4-2-53
BZV55C3VO
4-2-73
BZX55C5V6
4-2-34
3EZ18D5
4-2-53
BZV55C3V3
4-2-73
BZX55C6V2
4-2-34
3EZ19D5
4-2-53
BZV55C3V6
4-2-73
BZX55C6V8
4-2-34
3EZ20D5
4-2-53
BZV55C3V9
4-2-7.3
BZX55C7V5
4-2-34
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-16
ALPHANUMERIC INDEX (continued)
DEVICE
PAGE
DEVICE
PAGE
DEVICE
PAGE
BZX55C8V2
4-2-34
BZX79C10
4-2-35
BZX83C6V2
4-2-36
BZX55C9V1
4-2-34
BZX79C11
4-2-35
BZX83C6V8
4-2-36
BZX55C10
4-2-34
BZX79C12
4-2-35
BZX83C7V5
4-2-36
BZX55C11
4-2-34
BZX79C13
4-2-35
BZX83C8V2
4-2-36
BZX55C12
4-2-34
BZX79C15
4-2-35
BZX83C9V1
4-2-36
BZX55C13
4-2-34
BZX79C16
4-2-35
BZX83C10
4-2-36
BZX55C15
4-2-34
BZX79C18
4-2-35
BZX83C11
4-2-36
BZX55C16
4-2-34
BZX79C20
4-2-35
BZX83C12
4-2-36
BZX55C18
4-2-34
BZX79C22
4-2-35
BZX83C13
4-2-36
BZX55C20
4-2-34
BZX79C24
4-2-35
BZX83C15
4-2-36
BZX55C22
4-2-34
BZX79C27
4-2-35
BZX83C16
4-2-36
BZX55C24
4-2-34
BZX79C30
4-2-35
BZX83C18
4-2-36
BZX55C27
4-2-34
BZX79C33
4-2-35
BZX83C20
4-2-36
BZX55C30
4-2-34
BZX79C36
4-2-35
BZX83C22
4-2-36
BZX55C33
4-2-34
BZX79C39
4-2-35
BZX83C24
4-2-36
BZX55C36
4-2-34
BZX79C43
4-2-35
BZX83C27
4-2-36
BZX55C39
4-2-34
BZX79C47
4-2-35
BZX83C30
4-2-36
BZX55C43
4-2-34
BZX79C51
4-2-35
BZX83C33
4-2-36
BZX55C47
4-2-34
BZX79C56
4-2-35
BZX84C2V4L
4-2-65
BZX55C51
4-2-34
BZX79C62
4-2-35
BZX84C2V7L
4-2-65
BZX55C56
4-2-34
BZX79C68
4-2-35
BZX84C3VOL
4-2-65
BZX55C62
4-2-34
BZX79C75
4-2-35
BZX84C3V3L
4-2-65
BZX55C68
4-2-34
BZX79C82
4-2-35
BZX84C3V6L
4-2-65
BZX55C75
4-2-34
BZX79C91
4-2-35
BZX84C3V9L
4-2-65
BZX55C82
4-2-34
BZX79C100
4-2-35
BZX84C4V3L
4-2-65
BZX55C91
4-2-34
BZX79C110
4-2-35
BZX84C4V7L
4-2-65
BZX79C2V4
4-2-35
BZX79C120
4-2-35
BZX84C5V1L
4-2-65
BZX79C2V7
4-2-35
BZX79C130
4-2-35
BZX84C5V6L
4-2-65
BZX79C3VO
4-2-35
BZX79C150
4-2-35
BZX84C6V2L
4-2-65
BZX79C3V3
4-2-35
BZX79C160
4-2-35
BZX84C6V8L
4-2-65
BZX79C3V6
4-2-35
BZX79C180
4-2-35
BZX84C7V5L
4-2-65
BZX79C3V9
4-2·35
BZX79C200
4-2-35
BZX84C8V2L
4-2-65
BZX79C4V3
4-2-35
BZX83C2V7
4-2-36
BZX84C9V1L
4-2-65
BZX79C4V7
4-2-35
BZX83C3VO
4-2-36
BZX84C10L
4-2-65
BZX79C5V1
4-2-35
BZX83C3V3
4-2-36
BZX84C11L
4-2-65
BZX79C5V6
4-2-35
BZX83C3V6
4-2-36
BZX84C12L
4-2-65
BZX79C6V2
4-2-35
BZX83C3V9
4-2-36
BZX84C13L
4-2-65
BZX79C6V8
4-2-35
BZX83C4V3
4-2-36
BZX84C15L
4-2-65
BZX79C7V5
4-2-35
BZX83C4V7
4-2-36
BZX84C16L
4-2-65
BZX79C8V2
4-2-35
BZX83C5V1
4-2-36
BZX84C18L
4-2-65
BZX79C9V1
4-2-35
BZX83C5V6
4-2-36
BZX84C20L
4-2-65
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-17
II
-
ALPHANUMERIC INDEX (continued)
•
III
DEVICE
PAGE
DEVICE
PAGE
DEVICE
PAGE
BZX84C22L
4-2-65
BZX85C43
4-2-45
MLL4709
4-2-74
BZX84C24L
4-2-65
BZX85C47
4-2-45
MLL4710
4-2-74
BZX84C27L
4-2-65
BZX85C51
4-2-45
MLL4711
4-2-74
BZX84C30L
4-2-65
BZX85C56
4-2-45
MLL4712
4-2-74
BZX84C33L
4-2-65
BZX85C62
4-2-45
MLL4713
4-2-74
BZX84C36L
4-2-65
BZX85C68
4-2-45
MLL4714
4-2-74
BZX84C39L
4-2-65
BZX85C75
4-2-45
MLL4715
4-2-74
BZX84C43L
4-2-65
BZX85C82
4-2-45
MLL4716
4-2-74
BZX84C47L
4-2-65
BZX85C91
4-2-45
MLL4717
4-2-74
BZX84C51L
4-2-65
BZX85C100
4-2-45
MLL5221B
4-2-75
BZX84C56L
4-2-65
MLL4678
4-2-74
MLL5222B
4-2-75
BZX84C62L
4-2-65
MLL4679
4-2-74
MLL5223B
4-2-75
BZX84C68L
4-2-65
MLL4680
4-2-74
MLL5224B
4-2-75
BZX84C75L
4-2-65
MLL4681
4-2-74
MLL5225B
4-2-75
BZX85C3V3
4-2-45
MLL4682
4-2-74
MLL5226B
4-2-75
BZX85C3V6
4-2-45
MLL4683
4-2-74
MLL5227B
4-2-75
BZX85C3V9
4-2-45
MLL4684
4-2q4
MLL5228B
4-2-75
BZX85C4V3
4-2-45
MLL4685
4-2-74
MLL5229B
4-2-75
BZX85C4V7
4-2-45
MLL4686
4-2-74
MLL5230B
4-2-75
BZX85C5V1
4-2-45
MLL4687
4-2-74
MLL5231B
4-2-75
BZX85C5V6
4-2-45
MLL4688
4-2-74
MLL5232B
4-2-75
BZX85C6V2
4-2-45
MLL4689
4-2-74
MLL5233B
4-2-75
BZX85C6V8
4-2-45
MLL4690
4-2-74
MLL5234B
4-2-75
BZX85C7V5
4-2-45
MLL4691
4-2-74
MLL5235B
4-2-75
BZX85C8V2
4-2-45
MLL4692
4-2-74
MLL5236B
4-2-75
BZX85C9V1
4-2-45
MLL4693
4-2-74
MLL5237B
4-2-75
BZX85C10
4-2-45
MLL4694
4-2-74
MLL5238B
4-2-75
BZX85C11
4-2-45
MLL4695
4-2-74
MLL5239B
4-2-75
BZX85C12
4-2-45
MLL4696
4-2-74
MLL5240B
4-2-75
BZX85C13
4-2-45
MLL4697
4-2-74
MLL5241B
4-2-75
BZX85C15
4-2-45
MLL4698
4-2-74
MLL5242B
4-2-75
BZX85C16
4-2-45
MLL4699
4-2-74
MLL5243B
4-2-75
BZX85C18
4-2-45
MLL4700
4-2-74
MLL5244B
4-2-75
BZX85C20
4-2-45
MLL4701
·4-2-74
MLL5245B
4-2-75
BZX85C22
4-2-45
MLL4702
4-2-74
MLL5246B
4-2-75
BZX85C24
4-2-45
MLL4703
4-2-74
MLL5247B
4-2-75
BZX85C27
4-2-45
MLL4704
4-2-74
MLL5248B
4-2-75
BZX85C30
4-2-45
MLL4705
4-2-74
MLL5249B
4-2-75
BZX85C33
4-2-45
MLL4706
4-2-74
MLL5250B
4-2-75
BZX85C36
4-2-45
MLL4707
4-2-74
MLL5251B
4-2-75
BZX85C39
4-2-45
MLL4708
4-2-74·
MLL5252B
4-2-75
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-18
ALPHANUMERIC INDEX (continued)
DEVICE
PAGE
DEVICE
PAGE
DEVICE
PAGE
MLL5254B
4-2-75
MMBZ5252BL
4-2-66
MZ5522B
4-2-38
MLL5255B
4-2-75
MMBZ5253BL
4-2-66
MZ5523B
4-2-38
MLL5256B
4-2-75
MMBZ5254BL
4-2-66
MZ5524B
4-2-38
MLL5257B
4-2-75
MMBZ5255BL
4-2-66
MZ5525B
4-2-38
MLL5258B
4-2-75
MMBZ5256BL
4-2-66
MZ5526B
4-2-38
MLL5259B
4-2-75
MMBZ5257BL
4-2-66
MZ5527B
4-2-38
MLL5260B
4-2-75
MMBZ5258BL
4-2-66
MZ5528B
4-2-38
MLL5261B
4-2-75
MMBZ5259BL
4-2-66
MZ5529B
4-2-38
MLL5262B
4-2-75
MMBZ5260BL
4-2-66
MZ5530B
4-2-38
MLL5263B
4-2-75
MMBZ5261BL
4-2-66
MZD3.9
4-2-55
MMBZ5221BL
4-2-66
MMBZ5262BL
4-2-66
MZD4.3
4-2-55
MMBZ5222BL
4-2-66
MMBZ5263BL
4-2-66
MZD4.7
4-2-55
MMBZ5223BL
4-2-66
MMBZ5264BL
4-2-66
MZD5.1
4-2-55
MMBZ5224BL
4-2-66
MMBZ5265BL
4-2-66
MZD5.6
4-2-55
MMBZ5225BL
4-2-66
MMBZ5266BL
4-2-66
MZD6.2
4-2-55
MMBZ5226BL
4-2-66
MMBZ5267BL
4-2-66
MZD6.8
4-2-55
MMBZ5227BL
4-2-66
MMBZ5268BL
4-2-66
MZD7.5
4-2-55
MMBZ5228BL
4-2-66
MMBZ5269BL
4-2-66
MZD8.2
4-2-55
MMBZ5229BL
4-2-66
MMBZ5270BL
4-2-66
MZD9.1
4-2-55
MMBZ5230BL
4-2-66
MZ4099
4-2-37
MZD10
4-2-55
MMBZ5231BL
4-2-66
MZ41 00
4-2-37
MZD11
4-2-55
MMBZ5232BL
4-2-66
MZ41 01
4-2-37
MZD12
4-2-55
MMBZ5233BL
4-2-66
MZ41 02
4-2-37
MZD13
4-2-55
MMBZ5234BL
4-2-66
MZ41 03
4-2-37
MZD15
4-2-55
MMBZ5235BL
4-2-66
MZ41 04
4-2-37
MZD16
4-2-55
MMBZ5236BL
4-2-66
MZ4614
4-2-37
MZD18
4-2-55
MMBZ5237BL
4-2-66
MZ4615
4-2-37
MZD20
4-2-55
MMBZ5238BL
4-2-66
MZ4616
4-2-37
MZD22
4-2-55
MMBZ5239BL
4-2-66
MZ4617
4-2-37
MZD24
4-2-55
MMBZ5240BL
4-2-66
MZ4618
4-2-37
MZD27
4-2-55
MMBZ5241BL
4-2-66
MZ4619
4-2-37
MZD30
4-2-55
MMBZ5242BL
4-2-66
MZ4620
4-2-37
MZD33
4-2-55
MMBZ5243BL
4-2-66
MZ4621
4-2-37
MZD36
4-2-55
MMBZ5244BL
4-2-66
MZ4622
4-2-37
MZD39
4-2-55
MMBZ5245BL
4-2-66
MZ4623
4-2-37
MZD43
4-2-55
MMBZ5246BL
4-2-66
MZ4624
4-2-37
MZD47
4-2-55
MMBZ5247BL
4-2-66
MZ4625
4-2-37
MZD51
4-2-55
MMBZ5248BL
4-2-66
MZ4626
4-2-37
MZD56
4-2-55
MMBZ5249BL
4-2-66
MZ4627
4-2-37
MZD62
4·2-55
MMBZ5250BL
4-2-66
MZ5520B
4-2-38
MZD68
4-2-55
MMBZ5251BL
4-2-66
MZ5521B
4-2-38
MZD75
4-2-55
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-19
II
ALPHANUMERIC INDEX (continued)
II
DEVICE
PAGE
DEVICE
PAGE
DEVICE
PAGE
MZD82
4-2-55
MZP4755A
4-2-56
MZPY47
4-2-46
MZD91
4-2-55
MZP4756A
4-2-56
MZPY51
4-2-46
MZD100
4-2-55
MZP4757A
4-256
MZPY56
4-2-46
MZD110
4-2-55
MZP4758A
4-2-56
MZPY62
4-2-46
MZD120
4-2-55
MZP4759A
4-2-56
MZPY68
4-2-46
MZD130
4-2-55
MZP4760A
4-2-56
MZPY75
4-2-46
MZD150
4-2-55
MZP4761A
4-2-56
MZPY82
4-2-46
MZD160
4-2-55
MZP4762A
4-2-56
MZPY91
4-2-46
MZD180
4-2-55
MZP4763A
4-2-56
MZPY100
4-2-46
MZD200
4-2-55
MZP4764A
4-2-56
ZPD2.7
4-2-36
MZP4728A
4-2-56
MZPY3.9
4-2-46
ZPD3.0
4-2-36
MZP4729A
4-2-56
MZPY4.3
4-2-46
ZPD3.3
4-2-36
MZP4730A
4-2-56
MZPY4.7
4-2-46
ZPD3.6
4-2-36
MZP4731A
4-2-56
MZPY5.1
4-2-46
ZPD3.9
4-2-36
MZP4732A
4-2-56
MZPY5.6
4-2-46
ZPD4.3
4-2-36
MZP4733A
4-2-56
MZPY6.2
4-2-46
ZPD4.7
4-2-36
MZP4734A
4-2-56
MZPY6.8
4-2-46
ZPD5.1
4-2-36
MZP4735A
4-2-56
MZPY7.5
4-2-46
ZPD5.6
4-2-36
MZP4736A
4-2-56
MZPY8.2
4-2-46
ZPD6.2
4-2-36
MZP4737A
4-2-56
MZPY9.1
4-2-46
ZPD6.8
4-2-36
MZP4738A
4-2"56
MZPY10
4-2.-46
ZPD7.5
4-2-36
MZP4739A
4-2-56
MZPY11
4-2-46
ZPD8.2
4-2-36
MZP4740A
4-2-56
MZPY12
4-2-46
ZPD9.1
4-2-36
MZP4741A
4-2-56
MZPY13
4-2-46
ZPD10
4-2-36
MZP4742A
4-2-56
MZPY15
4-2-46
ZPD11
4-2-36
MZP4743A
4-2-56
MZPY16
4-2-46
ZPD12
4-2-36
MZP4744A
4-2-56
MZPY18
4-2-46
ZPD13
·4-2-36
MZP4745A
4-2-56
MZPY20
4-2-46
ZPD15
4-2-36
MZP4746A
4-2-56
MZPY22
4-2-46
ZPD16
4-2-36
MZP4747A
4-2-56
MZPY24
4-2-46
ZPD18
4-2-36
MZP4748A
4-2"56
MZPY27
4-2-46
ZPD20
4-2-36
MZP4749A
4-2-56
MZPY30
4-2-46
ZPD22
4-2-36
MZP4750A
4-2-56
MZPY33
4-2-46·
ZPD24
4-2-36
MZP4751A
4-2-56
MZPY36
4-2-46
ZPD27
4-2-36
MZP4752A
4-2-56
MZPY39
4-2-46
ZPD30
4-2-36
MZP4753A
4-2-56
MZPY43
4-2-46
ZPD33
4-2-36
MZP4754A
4-2-56
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-20
Section 4.2.4 Data Sheets
Zener Voltage Regulator
Diodes
Section 4.2.4.1 Axial Leaded
SECTION 4.2.4.1.1
II
500 mW 00-35 GLASS
MULTIPLE PACKAGE QUANTITY (MPQ)
REQUIREMENTS
DATA SHEETS
Devices
Type No. Suffix
MPQ(Units)
4-2-22
Tape and Reel
RL, RL2(l)
5K
1N746A thru 1N759A,
1N957B thru 1 N992B,
1N4370A thru 1N4372A
4-2-28
Tape and Ammo
TA, TA2(l)
5K
Radial Tape and Reel
RR1, RR2(2)
3K
1N4678 thru 1N4717
4-2-30
Radial Tape and Ammo
RAl, RA2(2)
3K
General Data -
Page No.
500 mW 00-35 Glass
lN5221Bthru lN5281B
4-2-31
1N5985B thru 1N6025B
4-2-33
BZX55C2V4 thru BZX55C91
4-2-34
BZX79C2V4 thru BZX79C200
4-2-35
BZX83C2V7 thru BZX83C33,
M-ZP02.7 thru M-ZP033
4-2-36
MZ4099 thru MZ41 04,
MZ4614 thru MZ4627
4-2-37
MZ5520B thru MZ5530B
4-2-38
Package Option
NOTES: 1. The "2" suffix refers to 26 mm tape spacing.
2. The "1" suffix designates the cathode band is up and the cathode lead
comes off first.
The "2" suffix indicates the cathode band Is down and the anode lead
comes off first.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-21
-
MOTOROLA
iSEMICONDUCTOR
_ _ _ _ _ _ _ _ _ _ __
TECHNICAL DATA
GENERAL
DATA
500 mW 00-35 Glass
Zener Voltage Regulator Diodes
500mW
00-35 GLASS
GENERAL DATA APPLICABLE TO ALL SERIES IN
THIS GROUP
500 Milliwatt
Hermetically Sealed
Glass Silicon Zener Diodes
GLASS ZENER DIODES
500 MILLIWATTS
1.8-200 VOLTS
Specification Features:
•
•
•
•
Complete Voltage Range - 1.8 to 200 Volts
DO-204AH Package - Smaller than Conventional DO-204AA Package
Double Slug Type Construction
Metallurgically Bonded Construction
Mechanical Characteristics:
CASE 299-02
DO-2D4AH
GLASS
CASE: Double slug type, hermetically sealed glass
4
.
MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230°C, 1/16" from
case for 10 seconds
FINISH: All external surfaces are corrosion resistant with readily solderable leads
POLARITY: Cathode indicated by color band. When operated in zener mode, cathode
will be positive with respect to anode
MOUNTING POSITION: Any
MAXIMUM RATINGS (Motorola Devices)'
Rating
Symbol
DC Power Dissipation and TL :;; 75°C
Lead Length = 3/8"
Derate above TL = 75°C
Operating and Storage Temperature Range
_
TJ, Tstg
• Some part number senes have lower JEOEC registered ratings.
en
0.7
HEAT
~
06
~.
[S
~
'" i""'..
~8'~=
'" r-.....
~
~ 0.2
:::;
o
a..
........
............
0.1
0
-
~:r
0.5
~ 0.4
Ci
a:
IS! 0.3
~
Value
Unit
500
4
mW
mWFC
-65 to +200
°C
Po
i'..
.........
o
20
40
60
80
100
120
140
160
180 200
Tlo LEAD TEMPERATURE (OC)
Figure 1. Steady State Power Derating
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-22
GENERAL DATA - 500 mW 00-35 GLASS
NOTE 1. SPECIAL SELECTIONS t AVAILABLE INCLUDE:
Surge limitations are given in Figure 7. They are lower than
would be expected by considering only junction temperature,
as current crowding effects cause temperatures to be extremely high in small spots, resulting in device degradation
should the limits of Figure 7 be exceeded.
a. Nominal zener voltages between those shown.
b. Nominal voltages at non~standard test currents.
NOTE 2. TEMPERATURE COEFFICIENT (Ovz)
Test conditions for temperature coefficient are as follows:
Figure 48. Izr = 7.5 rnA, T, = 25°C,
Tz = 125°C
Figure 4b, 4c.lzr = Rated IZT (125 mWNz nom.)
T, = 25°C. T2 = 125°C
Device to be temperature stabIlized with current applied prior to reading breakdown voltage
at the specified ambient temperature.
~=
NOTE 3. ZENER VOLTAGE (Vz) MEASUREMENT
-I LI ILf--
Nominal zener voltage is measured with the device Junction in thermal equilibrium altha lead
-
temperature of 30°C ±l°C and 3/8" lead length. Part number series that are pulse tested
are so noted.
2.~0~
NOTE 4. ZENER IMPEDANCE (z,) DERIVATION
V
Zzr and ZzK are measured by dividing the Be voltage drop across the device by the ae current
applied. The specified limits are for Iz(8C) = 0.1 Iz(dc) with the ae frequency = 60 Hz.
L V"" ~
t For more Information on special selections contact your nearest Motorola representative.
APPLICATION NOTE -
t/'"
-
0.2
ZENER VOLTAGE
...,
....I
Since the actual voltage available from a given zener diode
is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order
to calculate its value. The following procedure is recommended:
Lead Temperature, TL, should be determined from:
"-
l\
\
200
<~
20
10
7
5
~«
2
w
\
100
70
50
a:
a:
=>
c.:>
....I
1
a: 0.7
0.5
TJ =TL + 8TJL·
8TJL is the increase in junction temperature above the lead
temperature and may be found from Figure 2 for de power:
8 TJL = aJLPO.
For worst-case design, using expected limits of Iz, limits of
Po and the extremes of TJ(8TJ) may be estimated. Changes in
voltage, Vz, can then be found from:
8V = avzTJ.
avz, the zener voltage temperature coeffiCient, is found from
Figures 4 and 5.
Under high power-pulse operation, the zener voltage will
vary with time and may also be affected significantly by the
zener resistance. For best regulation, keep current excursions
as low as possible.
1\
0.2
1\
0.1
0.07
0.05
~
0.02
" .....
0.01
0.007
0.005
0.002
0.001
t125°C
r-
3
4
5
+25°C -
6 7 8
9 10 11 12 13
VZ, NOMINAL ZENER VOLTAGE (VOLTS)
Figure 3. "TYpical Leakage Current
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-23
0.8
TYPICAL LEAKAGE CURRENT AT 80% OF NOMINAL
BREAKDOWN VOLTAGE
~
1000
700
500
w
0.6
~
2000
w
0.4
Figure 2. Typical Thermal Resistance
1000
7000
5000
IZ
"'"
I-- ~
62-200 V
L, LEAD LENGTH TO HEAT SINK (INCH)
'"
TL = aLAPO + TA.
aLA is the lead-to-ambient thermal resistance (OC/W) and Po is
the power diSSipation. The value for aLA will vary and depends
on the device mounting method. aLA is generally 30 to 40°CIW
for the various clips and tie pOints in common use and for
printed circuit board wiring.
The temperature of the lead can also be measured using a
thermocouple placed on the lead as close as possible to the tie
point. The thermal mass connected to the tie point is normally
large enough so that it will not significantly respond to heat
surges generated in the diode as a result of pulsed operation
once steady-state conditions are achieved. Using the measured value ofTL, the junction temperature may be determined
by:
V
14
15
II
GENERAL DATA -
500 mW 00-35 GLASS
TEMPERATURE COEFFICIENTS
(-55°C to +150°C temperature range; 90% of the units are In the ranges indicated.)
11 100
:> 70
.5. 50
,."..,.,.
V ~
I
/ ' V.......
./V
ffi
",
~ ~V
,....
.......-::: V
w
~
w
Vz@lzr
(NOTE 2) I
r"- ......... /
.....J-:::; ~
8 10
~
RANGE
.......:: .....
30
1:2
I:l:: 20
~
w
'":
' - --"
........: ..........-.
Vz@ Iz (NOTE 2)
RANGE
7
5
3
2
~
4
5
6
7
8
9
Vz. ZENER VOLTAGE (VOLTS)
10
11
12
'"
1
10
20
Figure 4a. Range for Units to 12 Volts
30
50
Vlo ZENER VOLTAGE (VOLTS)
70
100
Figure 4b. Range for Units 12 to 100 Volts
~2oo
:>
E
II
r--
~180
w
1:2
1:l::160
8
w
~140
~
...-
w
Q.
~12O
•
~1oo
~
~
120
-----
130
---- ---...- .....-- ~
150
160
170
~
---
180
0.01 rnA
1 rnA
NOTE: BELOW 3 VOLTS AND ABOVE 8 VOLTS
CHANGES IN ZENER CURRENT DO NOT
AFFECT TEMPERATURE COEFFICIENTS
200
~-4
3
4
-
~1oo
w
0
z
50
~
20
c5
5
~
i"""o
6
7
8
100
70
TA = 25°C
50
,..,..
oBIAS
30
Ii:"
S. 20
1 V BIAS
TA = 25°C
111111111
w
~
;5 10
(3
('§ 10
5
Figure 5. Effect of zener Current
OVBIAS
200
I
Vz. ZENER VOLTAGE (VOLTS)
Figure 4c. Range for Units 120 to 200 Volts
500
~
~V
VZ. ZENER VOLTAGE (VOLTS)
1000
...- ..""..
/': ~/
/ A
190
~
-"
~ Q"
20 rnA
--:- ...-
Vz@lzr
(NOTE 2) -
140
Vz@lz
TA = 25°C
50% OF
VzBIAS
rt
('§
7
5
c5
3
1 VOLT BIAS
'""'
50% OF Vz BIAS
2
1
1
1
2
10
20
Vz. ZENER VOLTAGE (VOLTS)
50
100
Figure 6a. Typical Capacitance 2.4-100 Volts
120
140
160
180
190
Vz. ZENER VOLTAGE (VOLTS)
200
220
Figure 6b. Typlc:al CapaCitance 120-200 Volts
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-24
GENERAL DATA - 500 mW 00-35 GLASS
100
70
50
U)
~
~ 30
a: 20
w
3:
-r-..
"'- ~CYCLE
.J..J I
r-. .....
r-- r-
,..
~ 10
~ 10% DUTY CYCLE
w
z
c-
c
rti'
Iz=1mA
I
20
1000
<§.
=1
5mA
50
c
a:
20
:::J
<..'>
L
L""" I-""'"
a:
a:
- 20mA ....
~
a:
~
1
10
20
30
50
70 100
VZ, ZENER VOLTAGE (VOLTS)
1
",z
.'
=
~
75°C
~
"
~
0.4
,
".,
0.5
0.6
:.-:
I.
100
"
-
./
III
V
150°C
u.
1,/
10
50
~-
200
zw 100
10
7
5
1
- - - - - MINIMUM
f-
'\
20
MAXIMUM
500
~~
-
10
Figure 8. Effect of Zener Current on
Zener Impedance
TJ = 25°C
iz(rms) - 0.1 Iz(dc)
I-60Hz
' - - ~I
;$i
<..'>
~
:--
2
Iz, ZENER CURRENT (mA)
Figure 7b. Maximum Surge Power DO-204AH
100-200 Volts
U)
TJ = 25°C
iz(rms) = 0.1 Iz(dc)
1=60Hz
Vz = 2.7 V
U)
"Y
0.7
,
25°C
I
I-" O0C
I
0.8
0.9
VF, FORWARD VOLTAGE (VOLTS)
Figure 9. Effect of Zener Voltage on Zener Impedance
Figure 10. Typical Forward Characteristics
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-25
1.1
GENERAL DATA -
20
10
1
!iwi !
500 mW 00-35 GLASS
/ 1/1I I
/~~ I
~I~//'/
/
I
I~ // /
I I
I
I
~A
I I
I
= 2501
I
a:
a:
::>
0
a:
w
z
W
N
~
0.1
0.01
3
1
4
6
7
I8
9
10
11
12
13
14
15
16
Vz, ZENER VOLTAGE (VOLTS)
Figure 11. Zener Voltage versus Zener Current - Vz = 1 thru 16 Volts
II
-
10
I
I I I I
<.§..
Tp 250
I
(
V
/
IZ
W
a:
a:
::>
0
a:
w
z
W
N
~
0.1
0.01
15
16
17
18
19
20
21
22
23
24
25
26
27
28
Vz, ZENER VOLTAGE (VOLTS)
Figure 12. Zener Voltage versus Zener Current - Vz = 15 thru 30 Volts
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-26
29
30
GENERAL DATA -
10
I
500 mW 00-35 GLASS
I
w
TA = 25°
1/ / /
I
( V/
I If;
I
I
I
0.1
0.01
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
Vz, ZENER VOLTAGE (VOLTS)
Figure 13. Zener Voltage versus Zener Current - Vz = 30 thru 105 Volts
II
10
;:V- /
1
I
!z
w
II:
II:
:::>
()
II:
w
~
V
r-/. p- / .......r-::: ~ ,-
V(
(
0.1
rI
-
~
,,
0.01
110
120
130
140
150
160
170
180
190
200
210
220
230
240
VZ, ZENER VOLTAGE (VOLTS)
Figure 14. Zener Voltage versus Zener Current - Vz = 110 thru 220 Volts
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-27
250
260
1N746A thru 1N759A, 1N957B thru 1N992B, 1N4370A thru 1N4372A
ELECTRICAL CHARACTERISTICS (TA
-
Maximum Raverse Leakage Currant
Number
(Note 1)
Nominal
Zener Voltaga
Vz @ \zr
(Note 2)
Volts
Test
Currant
Izr
mA
Maximum Zener Impedance
Zzr@lzr
(Note 3)
Ohms
lN4370A
1N4371 A
lN4372A
lN746A
lN747A
lN748A
2.4
2.7
3
3.3
3.6
3.9
20
20
20
20
20
20
30
lN749A
lN750A
1N751 A
lN752A
lN753A
lN754A
4.3
4.7
5.1
5.6
6.2
6.8
20
20
20
20
20
20
lN755A
lN756A
lN757A
lN758A
lN759A
7.5
8.2
9.1
10
12
20
20
20
20
20
Type
Number
(Note 1)
Nominal
Zenar Voltage
Vz
(Note 2)
Volts
Test
Current
Izr
mA
Zzr@ Izr
Ohms
ZZK@lzK
Ohms
IZK
mA
(Note 4)
mA
IAMaxlmum
lN957B
lN958B
lN959B
lN960B
lN961B
lN962B
6.8
7.5
8.2
9.1
10
11
18.5
16.5
15
14
12.5
11.5
4.5
5.5
6.5
7.5
8.5
9.5
700
700
700
700
700
700
1
0.5
0.5
0.5
0.25
0.25
47
42
35
32
28
150
75
50
25
10
5
5.2
5.7
6.2
6.9
7.6
8.4
1N963B
1N964B
1N965B
1N966B
lN967B
1N968B
12
13
15
16
18
20
10.5
9.5
8.5
7.8
7
6.2
11.5
13
16
17
21
25
700
700
700
700
750
750
0.25
0.25
0.25
0.25
0.25
0.25
26
24
21
19
17
15
5
5
5
5
5
5
9.1
9.9
11.4
12.2
13.7
15.2
lN969B
lN970B
1N971B
1N972B
1N973B
1N974B
22
24
27
29
33
36
5.6
5.2
4.6
4.2
3.8
3.4
41
49
58
70
750
750
750
1000
1000
1000
0.25
0.25
0.25
0.25
0.25
0.25
14
13
11
10
9.2
8.5
5
5
5
5
5
5
16.7
18.2
20.6
22.8
25.1
27.4
39
43
47
51
56
62
3.2
3
2.7
2.5
2.2
2
80
93
105
125
150
185
1000
1500
1500
1500
2000
2000
0.25
0.25
0.25
0.25
0.25
0.25
7.8
7
6.4
5.9
5.4
4.9
5
5
5
5
5
5
29.7
32.7
35.8
38.8
42.6
47.1
Type
II
=25°C, VF =1.5 V Max at 200 mA for all types)
Maximum
DC Zener Currant
IZM
(Note 4)
mA
lN975B
lN976B
1N9nB
1N978B
1N979B
1N980B
TA _150°C
IA @VA=l V
IlA
I!A
150
135
120
110
100
95
100
75
50
10
10
10
200
150
100
30
30
22
19
17
11
7
5
85
75
70
65
30
55
2
2
1
1
0.1
0.1
6
8
10
17
30
50
45
40
35
30
0.1
0.1
0.1
0.1
0.1
20
20
20
20
20
30
29
28
24
23
60
Maximum Zener Impedance
(Note 3)
30
=
TA 25°C
IA@VA=lV
30
30
20
20
20
20
Maximum Reverse Currant
Maximum
DC Zener Currant
IzM
33
38
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-28
I!A
Test Voltage Vdc
VA
1 N746A thru 1 N759A, 1 N957B thru 1 N992B, 1 N4370A thru 1 N4372A
Maximum Zener Impedance
(Note 3)
Type
Number
(Note 1)
Nominal
Zener Voltage
Vz
(Note 2)
Volts
Test
Current
Izr
mA
Zzr @ Izr
Ohms
ZZK @ IZK
Ohms
IZK
mA
Maximum
DC Zener Current
IZM
(Note 4)
mA
lN981B
1N982B
lN983B
lN984B
1N985B
1N986B
68
75
82
91
100
110
1.8
1.7
1.5
1.4
1.3
1.1
230
270
330
400
500
750
2000
2000
3000
3000
3000
4000
0.25
0.25
0.25
0.25
0.25
0.25
1N987B
1N988B
1N989B
1N990B
1N991B
1N992B
120
130
150
160
180
200
1
0.95
0.85
0.8
0.68
0.65
900
1100
1500
1700
2200
2500
4500
5000
6000
6500
7100
8000
0.25
0.25
0.25
0.25
0.25
0.25
Maximum Reverse Leakage Current
IRMaxlmum
j.lA
Test Voltage Vdc
VR
4.5
4.1
3.7
3.3
3
2.7
5
5
5
5
5
5
51.7
56
62.2
69.2
76
83.6
2.5
2.3
2
1.9
1.7
1.5
5
5
5
5
5
5
91.2
98.8
114
121.6
136.8
152
NOTE 1. TOLERANCE AND VOLTAGE DESIGNATION
NOTE 3. ZENER IMPEDANCE (Zz) DERIVATION
Tolerance Designation
ZZT and ZZK are measured by dividing the ae voltage drop across the device by the ae current
applied. The specified limits are for Iz(ac) = 0.1 Iz(dc) with the ae frequency =60 Hz.
The type numbers shown have tolerance designations as follows:
1N4370A series: ±SOlo units, C for ±2%, D for ±1%.
NOTE 4. MAXIMUM ZENER CURRENT RATINGS (Iz,,)
1N746A series:.±5% units, C for ±2%, D for ±1%.
Values shown are based on the JEDEC rating of 400 mW. Where the actual zener voltage
(Vz) Is known at the operating point, the maximum zener current may be Increased and is
limited by the derating curve.
1N957B series: ±SOlo units, C for ±2%, 0 for ±1 %.
NOTE 2. ZENER VOLTAGE (Vz) MEASUREMENT
Nominal zener vottaga is measured with the device junction in thermal equilibrium at the lead
temperature of
aooc ±l°C and 3/8"' lead length.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-29
•
-
1N4678 thru 1 N4717
Low level oxide passivated zener diodes for applications re-·
quirin.g extremely low operating currents, low leakage, and
sharp breakdown voltage.
=
• Zener Voltage Specified @ Izr 50 ~
• ··Maximum Delta Vz Given from 10 to 100 ~
ELECTRICAL CHARACTERISTICS (TA = 25°C, VF= 1.5 V Max a! IF= 100 mA for all types)
Zener Voltage
Nom (Note 1)
Min
Max
1.8
2
2.2
2.4
2.7
1.71
1.9
2.09
2.28
2.565
1.89
2.1
2.31
2.52
2.835
7.5
5
4
2
1
1
1
1
1
1
120
110
100
95
90
-Maximum
Voltage Change
I1VzVolts
(Note 4)
0.7
0.7
0.75
0.8
0.85
3
3.3
3.6
3.9
4.3
4.7
5.1
5.6
6.2
6.8
7.5
8.2
8.7
9.1
10
11
12
13
14
15
2.85
3.135
3.42
3.705
4.085
0.8
7.5
7.5
5
4
10
10
10
10
10
1
1.5
2
2
2
85
80
75
70
65
0.9
0.95
0.95
0.97
0.99
7.125
7.79
8.265
8.645
9.5
10.45
11.4
12.35
13.3
14.25
3.15
3.465
3.78
4.095
4.515
4.935
5.355
5.88
6.51
7.14
7.875
8.61
9.135
9.555
10.5
11.55
12.6
13.65
14.7
15.75
10
1
1
1
1
0.05
0.05
0.05
0.05
0.05
3
3
4
5
5.1
5.7
6.2
6.6
6.9
7.6
8.4
9.1
9.8
10.6
11.4
60
55
50
45
35
31.8
29
27.4
26.2
24.8
21.6
20.4
19
17.5
16.3
0.99
0.•97
0.96
0.95
0.9
0.75
0.5
0.1
0.08
0.1
0.11
0.12
0.13
0.14
0.15
lN4703
lN4704
lN4705
lN4706
lN4707
lN4708
lN4709
lN4710
lN4711
lN4712
16
17
18
19
20
15.2
16.15
17.1
18.05
19
16.8
17.85
18.9
19.95
21
0.05
0.05
0.05
0.05
0.01
12.1
12.9
13.6
14.4
15.2
15.4
14.5
13.2
12.5
11.9
0.16
0.17
0.18
0.19
0.2
22
24
25
27
28
20.9
22.8
23.75
25.65
26.6
23.1
25.2
26.25
28.35
29.4
0.01
0.01
0.01
0.01
0.01
16.7
18.2
19
20.4
21.2
10.8
9.9
9.5
8.8
8.5
0.22
0.24
0.25
0.27
0.28
lN4713
lN4714
lN4715
lN4716
lN4717
30
33
36
39
43
28.5
31.35
34.2
37.05
40.85
31.5
34.65
37.8
40.95
45.15
0.01
0.01
0.01
0.01
0.01
22.8
25
27.3
29.6
32.6
7.9
7.2
6.6
6.1
5.5
0.3
0.33
0.36
0.39
0.43
Vz
@
Type
Number
(Note 1)
lN4678
lN4679
lN4680
lN4681
lN4682
lN4683
lN4684
lN4685
lN4686
lN4687
lN4688
=> lN4689
lN4690
lN4691
lN4692
lN4693
lN4694
lN4695
lN4696
lN4697
lN4698
lN4699
lN4700
lN4701
lN4702
II
•
~
Maximum
Reverse Current
IZT = 50 !LA
Volts
4.465
4.845
5.32
5.89
6.46
IR!LA
Test
Voltage
VR Volts
Maximum
Zener Current
IZMmA
(Note 2)
(Note 3)
Preferred part
NOTE 1. TOLERANCE AND VOLTAGE DESIGNATION (Vzl
Reverse leakage currents are guaranteed and measured at VR as shown on the table.
The type numbers shown have a standard tolerance of ±5% on the nominal Zener voltage,
NOTE 4. MAXIMUM VOLTAGE CHANGE (tN,)
C for ±2%. 0 for ±1 %.
NOTE 2. MAXIMUM ZENER CURRENT RATINGS (I.,.)
Voltage change is equal to the difference between Vz at 100 JlA and Vz at 10 JlA.
NOTE 5. ZENER VOLTAGE (Vzl MEASUREMENT
Maximum Zener current ratings are based on maximum Zenervoltage of the individual units
and JEDEC 250 mW rating.
NOTE 3. REVERSE LEAKAGE CURRENT (I,,)
Nominal Zenervoltage is measured with the device junction in thermal eqUilibrium at the lead
temperature at 3Q°C ±l°C and 3/8'" lead length.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-30
1N5221 B thru 1N5281 B
ELECTRICAL CHARACTERISTICS (TA =25°C unless otherwise noted. Based on dc measurements at thermal equilibrium; lead
length =3/8"; thermal resistance of heat sink =3O°CIW) "F =1.1 Max @ IF =200 rnA for all types.
Nominal
Zener Voltage
Vz @ IZT
Volts
(Note 2)
Test
Current
IZT
mA
ZZT@ IZT
Ohms
ZZK @ IZK =0.25 mA
Ohms
~
VR
Volts
Max Zener Voltage
Temperature Coeff.
9vz (%I"C)
(Note 3)
lN5221B
lN5222B
lN5223B
lN5224B
lN5225B
2.4
2.5
2.7
2.8
3
20
20
20
20
20
30
30
30
30
29
1200
1250
1300
1400
1600
100
100
75
75
50
1
1
1
1
1
-(1.085
-{l.085
-{l.08
-{l.08
-{l.075
=>
=>
=>
lN5226B
lN5227B
lN5228B
lN5229B
lN5230B
3.3
3.6
3.9
4.3
4.7
20
20
20
20
20
28
24
23
22
19
1600
1700
1900
2000
1900
25
15
10
5
5
1
1
1
1
2
...(l.07
-{l.065
...(l.06
±0.055
±0.03
=>
=>
=>
=>
=>
lN5231B
lN5232B
lN5233B
lN5234B
lN5235B
5.1
5.6
6
6.2
6.8
20
20
20
20
20
17
11
7
7
5
1600
1600
1600
1000
750
5
5
5
5
3
2
3
3.5
4
5
±0.03
+0.038
+0.038
+0.045
+0.05
=>
=>
7.5
8.2
8.7
9.1
10
20
20
20
20
20
6
8
8
10
17
500
500
600
=>
=>
lN5236B
lN5237B
lN5238B
lN5239B
lN5240B
3
3
3
3
3
6
6.5
6.5
7
8
+0.058
+0.062
+0.065
+0.068
+0.075
lN5241B
lN5242B
lN5243B
lN5244B
lN5245B
11
12
13
14
15
20
20
9.5
9
8.5
22
30
13
15
16
600
=>
=>
=>
=>
2
1
0.5
0.1
0.1
8.4
9.1
9.9
10
11
+0.076
+0.077
+0.079
+0.082
+0.082
lN5246B
lN5247B
lN5248B
lN5249B
lN5250B
16
17
18
19
20
7.8
7.4
7
6.6
6.2
17
19
21
23
25
600
600
600
600
0.1
0.1
0.1
0.1
0.1
12
13
14
14
15
+0.083
+0.084
+0.085
+0.086
+0.086
lN5251B
lN5252B
lN5253B
lN5254B
lN5255B
22
24
25
27
28
5.6
5.2
5
4.6
4.5
29
33
35
41
44
600
600
600
600
600
0.1
0.1
0.1
0.1
0.1
17
18
19
21
21
+0.087
+0.088
+0.089
+0.09
+0.091
lN5256B
lN5257B
lN5258B
lN5259B
lN5260B
30
33
36
39
43
4.2
3.8
3.4
3.2
3
49
58
70
80
93
600
700
700
800
900
0.1
0.1
0.1
0.1
0.1
23
25
27
30
33
+0.091
+0.092
+0.093
+0.094
+0.095
lN5261B
lN5262B
lN5263B
lN5264B
lN5265B
47
51
56
60
62
2.7
2.5
2.2
2.1
2
105
125
150
170
185
1000
1100
1300
1400
1400
0.1
0.1
0.1
0.1
0.1
36
39
43
46
47
+0.095
+0.096
+0.096
+0.097
+0.097
JEDEC
1\tpeNo.
(Note 1)
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
Max Zener Impedance
600
600
600
600
600
600
600
Max Reverse
Leakage Current
IR
(continued
~
Preferred part
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-31
1N5221B thru 1 N5281 B
ELECTRICAL CHARACTERISTICS - continued (TA = 25°C unless otherwise noted. Based on dc measurements at thermal equilibrium; lead length = 3/8"; thermal resistance of heat sink. =30°CIW) VF = 1.1 Max @ IF = 200 rnA for all types.
Nominal
Zener Voltage
Vz@lzr
Volts
(Note 2)
Test
Current
Izr
mA
Zzr@ Izr
Ohms
ZZK @ IZK 0.25 mA
Ohms
!1A
VR
Volts
8vz (%/"C)
(Note 3)
lN5266B
lN5267B
lN5268B
lN5269B
lN5270B
68
75
82
87
91
1.8
1.7
1.5
1.4
1.4
230
270
330
370
400
1600
1700
2000
2200
2300
0.1
0.1
0.1
0.1
0.1
52
56
62
68
69
+0.097
+0.098
+0.098
+0.099
+0.099
lN5271B
lN5272B
lN5273B
lN5274B
lN5275B
100
110
120
130
140
1.3
1.1
1
0.95
0.9
500
750
900
1100
1300
2600
3000
4000
4500
4500
0.1
0.1
0.1
0.1
0.1
76
84
91
99
106
+0.11
+0.11
+0.11
+0.11
+0.11
lN5276B
lN5277B
lN5278B
lN5279B
lN5280B
lN5281B
150
160
170
180
190
200
0.85
0.8
0.74
0.68
0.66
0.65
1500
1700
1900
2200
2400
2500
5000
5500
5500
6000
6500
7000
0.1
0.1
0.1
0.1
0.1
0.1
114
122
129
137
144
152
+0.11
+0.11
+0.11
+0.11
+0.11
+0.11
JEDEC
Type No.
(Note 1)
Max Zener Impedance
=
NOTE 1. TOLERANCE
•
"C~
IR
Max Zener Voltage
TemPerature Ccieff.
NOTE 4. ZENER VOLTAGE (Vz) MEASUREMENT
The JEDEC type numbers shown Indicate a tolerance of ±5%. For tighter tolerance devices
use suffixes
Max Reverse
Leakage Current
Nominal zener voltage is measured with the device junction in thermal equilibrium at the lead
temperature of 30°C ±1°C and 3/8" lead length.
for.±2% and "0" for ±1 %.
NOTE 5. ZENER IMPEDANCE (Zzl DERIVATION
NOTE 2. SPECIAL SELECTIONS t AVAILABLE INCLUDE:
ZZT and ZZK are measured by dIviding the ac voltage drop across the device by the ac current
applied. The specifled limits are for Iz{ae) = 0.1 Iz(dc) with the ac frequency = 60 Hz.
1. Nominal zener voltages between those shown.
2. Nominal voltages at non~standard test currents.
NOTE 3. TEMPERATURE COEFFICIENT (e.zl
f For more infonnation on special selections contact your nearest Motorola representa-
Test conditions for temperature coeffjcient are as follows:
a. IZT :=: 7.5 rnA. T1
T,
tive.
=25°C,
= 125"<: (1 N5221B through
1N5242B).
b.IZT= Rated IZT' T1 = 25°C,
T, = 125"<: (lN5243B through 1N5281B).
Device to be temperature stabilized with current applied prior to reading breakdown voltage
at the specified ambient temperature.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-32
1 N5985B thru 1 N6025B
·ELECTRICAL CHARACTERISTICS (TL = 30°C unless otherwise noted.) (VF = 1.5 Volts Max @ IF = 100 mAdc loran types.)
Nominal
ZenerVoHage
Vz@ IZT
Volts
(Notes 2 & 5)
Test
Current
IZT
mA
VR
Volts
Max DC
Zener
Current
Izu
(Note 3)
lN5985B
lN598SB
lN5987B
1N5988B
lN5989B
2.4
2.7
3
3.3
3.S
100
75
50
25
15
1
1
1
1
1
208
185
lS7
152
139
lN5990B
lN5991B
lN5992B
1N5993B
1N5994B
2400
2500
2200
2050
1800
10
5
3
2
2
1
1
1.5
2
3
128
11S
106
98
89
10
8
7
7
10
1300
750
600
600
600
1
1
0.5
0.5
0.1
4
5.2
6
6.5
7
81
74
67
61
55
5
5
5
5
5
15
18
22
25
32
600
600
600
600
600
0.1
0.1
0.1
0.1
0.1
8
8.4
9.1
9.9
11
50
45
42
38
33
16
18
20
22
24
5
5
5
5
5
36
42
48
55
62
600
600
600
600
600
0.1
0.1
0.1
0.1
0.1
12
14
15
17
18
31
28
25
23
21
27
30
33
5
36
5
39
2
70
78
88
95
130
600
600
700
700
800
0.1
0.1
0.1
0.1
0.1
21
23
25
27
30
19
17
15
14
13
1NS015B
1N6016B
1N6017B
1NS018B
lN6019B
43
47
51
56
62
2
2
2
2
2
150
170
180
200
225
900
1000
1300
1400
1400
0.1
0.1
0.1
0.1
0.1
33
36
39
43
47
12
11
9.8
8.9
8
lN6020B
lNS021B
lN6022B
1NS023B
1NS024B
1NS025B
68
75
82
91
100
110
2
2
2
2
1
1
240
265
280
300
500
650
1600
1700
2000
2300
2S00
3000
0.1
0.1
0.1
0.1
0.1
0.1
52
56
62
69
76
7.4
6.7
6.1
5.5
84
4.5
Motorola
TYpe
Number
(Note 1)
=>
=>
=>
=>
=>
Max Zener Impedance (Note 4)
ZZT@IZT
Ohms
ZZK @ IZK=
OhmsO.25mA
5
5
5
5
5
100
100
95
90
1800
1900
2000
2200
2300
3.9
4.3
4.7
5.1
5.6
5
5
5
5
5
90
88
70
50
25
1N5995B
lN5996B
lN5997B
1N5998B
lN5999B
6.2
6.8
7.5
8.2
9.1
5
5
5
5
5
lN6000B
lN6001B
lN6002B
lN6003B
lN6004B
10
11
12
13
15
lN6005B
lN6006B
1N6007B
lN6008B
lN6009B
lN6010B
lN6011B
lN6012B
lN6013B
lN6014B
5
5
95
Max Reverse Leakage Current
IR
I1A
~
5
=> Preferred part
*Indicates JEDEC Registered Data
NOTE 1. TOLERANCE AND VOLTAGE DESIGNATION
NOTE 4.
Tolerance designation - Device tolerances of ±5% are indicated by a "B" suffix, ±2% by a
"C.. suffix, ±1 % by a "0" suffix.
Zzr and ZZK are measured by dividing the ac voltage drop across the device by the ae current
appHed. The specified limits are for Iz(ac) = 0.1 Iz(dc) with the Be frequency =1.0 kHz.
NOTE 2. SPECIAL SELECTIONS AVAILABLE INCLUDE:
NOTES.
(a) Nominal Zener voltages between those shown. Contact your nearest Motorola represen-
Nominal Zener Voltage (Vz) Is measured with the device junction in thermal equilibrium at
the lead temperature of aooc ±1°C and 3/8" lead length.
tative.
NOTE 3.
This data was calculated using nominal voltages. The maximum current handting capability
on a worst case basis is limited by the actual zener voltage at the operating point Bnd the
power derating CUNeo
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-33
BZX55C2V4 thru BZX55C91
ELECTRICAL CHARACTERISTICS (TL =30°C unless otherwise noted.) (VF =1.3 Volts Max, IF =100 mAdc for all types.)
Min
(Note 1)
Max
(Note 1)
BZX55C2V4
BZX55C2V7
BZX55C3VO
BZX55C3V3
BZX55C3V6
2.28
2.5
2.8
3.1
3.4
2.56
2.9
3.2
3.5
3.8
85
85
85
85
85
5
5
5
5
5
50
10
4
2
2
100
50
40
40
40
1
1
1
1
1
155
135
125
115
105
BZX55C3V9
BZX55C4V3
BZX55C4V7
BZX55C5Vl
BZX55C5V6
3.7
4
4.4
4.8
5.2
4.1
4.6
5
5.4
6
85
75
60
35
25
5
5
5
5
5
2
1
0.5
0.1
0.1
40
20
10
2
2
1
1
1
1
1
95
90
85
80
70
BZX55C6V2
BZX55C6V8
BZX55C7V5
BZX55C8V2
BZX55C9Vl
5.8
6.4
7
7.7
8.5
6.6
7.2
7.9
8.7
9.6
10
8
7
7
10
5
5
5
5
5
0.1
0.1
0.1
0.1
0.1
2
2
2
2
2
2
3
5
6
7
64
58
53
47
43
BZX55Cl0
BZX55Cll
BZX55C12
BZX55C13
BZX55C15
9.4
10.4
11.4
12.4
13.8
10.6
11.6
12.7
14.1
15.6
15
20
20
26
30
5
5
5
5
5
0.1
0.1
0.1
0.1
0.1
2
2
2
2
2
7.5
8.5
9
10
11
40
36
32
29
27
BZX55C16
BZX55C18
BZX55C20
BZX55C22
BZX55C24
15.3
16.8
18.8
20.8
22.8
17.1
19.1
21.1
23.3
25.6
40
50
55
55
80
5
5
5
5
5
0.1
0.1
0.1
0.1
0.1
2
2
2
2
2
12
14
15
17
18
24
21
20
18
16
BZX55C27
BZX55C30
BZX55C33
BZX55C36
BZX55C39
25.1
28
31
37
28.9
32
35
38
41
80
80
80
80
90
5
5
5
5
2.5
0.1
0.1
0.1
0.1
0.1
2
2
2
2
5
20
22
24
27
28
14
13
12
11
10
BZX55C43
BZX55C47
BZX55C51
BZX55C56
BZX55C62
40
44
48
52
58
46
50
54
60
66
90
110
125
135
150
2.5
2.5
2.5
2.5
2.5
0.1
0.1
0.1
0.1
0.1
5
5
10
10
10
32
35
38
42
47
9.2
8.5
7.8
7
6.4
BZX55C68
BZX55C75
BZX55C82
BZX55C91
64
70
77
85
72
80
87
96
160
170
200
250
2.5
2.5
2.5
1
0.1
0.1
0.1
0.1
10
10
10
10
51
56
62
69
5.9
5.3
4.8
4.3
Voa at loa
(V)
Motorola
Type
Number
II
-
Max Reverse
Leakage Current
IR at VR
Max Zener
ImPedance
(Notli 3)
Zoa@loa
(Ohms)
Max
34
(!lA)
loa
(rnA)
Tomb
2S'C
Max
T.mb
12S'C
Max
VR
(V)
IZM
(rnA)
(Note 2)
NOTE 1. TOLERANCE AND VOLTAGE DESIGNATION
NOTE 3.
Tolerance designation - The type numbers listed have zener voltage minimax limits as
Zzr and ZZte are measured by dividing the ae voltage drop across the device by the ac current
applied. The specified limtis are for Iz(8c) = 0.1 Iz(dc) with the ae frequency = 1.0 kHz.
shown. Device tolerance of±2% are indicated by a "en instead of a·'C". Zener voltage is measured with the device Junction in thermal equilibrium at the lead temperature of 30°C ±1°C
and 318" lead length.
NDTE2.
This data was calculated using nominal voltages. The maximum current handling capability
on a worst case basis is limited by the actual zener voltage at the operating point and the
power derating curve.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-34
BZX79C2V4 thru BZX79C200
·ELECTRICAL CHARACTERISTICS (TL = 30°C unless otherwise noted.) (VF = 1.5 Volts Max @ IF = 100 mAdc for all types.)
(Note 1)
Zener Voltage (Note 4)
Impedance (Ohm)
@IZT
f=1000Hz
Leakage Current
(IlA)
Temp. Coefficient
(Typical)
(mV/"C)
Capacitance
(Typical)
(pF)
VR=O,
f = 1.0 MHz
Min
Max
IZT =
(mA)
Max
(Note 3)
Max
@VR =
(Volt)
Min
Max
BZX79C2V4
BZX79C2V7
BZX79C3VO
BZX79C3V3
BZX79C3V6
2.2
2.5
2.8
3.1
3.4
2.6
2.9
3.2
3.5
3.8
5
5
5
5
5
100
100
95
95
90
100
75
50
25
15
1
1
1
1
1
-3.5
-3.5
-3.5
-3.5
-3.5
a
a
a
a
255
230
215
200
185
BZX79C3V9
BZX79C4V3
BZX79C4V7
BZX79C5Vl
BZX79C5V6
3.7
4
4.4
4.8
5.2
4.1
4.6
5
5.4
6
5
5
5
5
5
90
90
80
60
40
10
5
3
2
1
1
1
2
2
2
-3.5
--3.5
-3.5
-2.7
-2
+0.3
+1
+0.2
+1.2
+2.5
175
160
130
110
95
BZX79C6V2
BZX79C6V8
BZX79C7V5
BZX79C8V2
BZX79C9Vl
5.8
6.4
7
7.7
8.5
6.6
7.2
7.9
8.7
9.6
5
5
5
5
5
10
15
15
15
15
3
2
1
0.7
0.5
4
4
5
5
6
0.4
1.2
2.5
3.2
3.8
3.7
4.5
5.3
6.2
7
90
85
80
75
70
BZX79Cl0
BZX79Cll
BZX79C12
BZX79C13
BZX79C15
9.4
10.4
11.4
12.4
13.8
10.6
11.6
12.7
14.1
15.6
5
5
5
5
5
20
20
25
30
30
0.2
0.1
0.1
0.1
0.05
7
8
8
8
10.5
4.5
5.4
6
7
9.2
8
9
10
11
13
70
65
65
60
55
BZX79C16
BZX79C18
BZX79C20
BZX79C22
BZX79C24
15.3
16.8
18.8
20.8
22.8
17.1
19.1
21.2
23.3
25.6
5
5
5
5
5
40
45
55
55
70
0.05
0.05
0.05
0.05
0.05
11.2
12.6
14
15.4
16.8
10.4
12.9
14.4
16.4
18.4
14
16
18
20
22
52
47
36
34
33
BZX79C27
BZX79C30
BZX79C33
BZX79C36
BZX79C39
25.1
28
31
34
37
28.9
32
35
38
41
2
2
2
2
2
80
80
80
90
130
0.05
0.05
0.05
0.05
0.05
18.9
21
23.1
25.2
27.3
23.5
26
29
31
34
30
27
25
23
21
BZX79C43
BZX79C47
BZX79C5l
BZX79C56
BZX79C62
40
46
50
54
60
66
2
2
2
2
2
150
170
180
200
215
0.05
0.05
0.05
0.05
0.05
30.1
32.9
35.7
39.2
43.4
37
40
44
47
51
21
19
19
18
17
2
2
2
2
1
240
255
280
300
500
0.05
0.05
0.1
0.1
0.1
47.6
52.5
62
69
76
56
46
51
57
95
107
119
17
16.5
29
28
27
Device Type
(Note 2)
BZX79C68
BZX79C75
BZX79C82
BZX79C91
BZX79Cl00
44
48
52
58
64
0
94
72
79
87
96
106
BZX79Clla
BZX79C120
BZX79C130
BZX79C150
BZX79C160
104
114
124
138
153
116
127
141
156
171
1
1
1
1
1
650
800
950
1250
1400
0.1
0.1
0.1
0.1
0.1
84
91
99
114
122
63
69
75
87
93
131
144
158
185
200
26
24
23
21
20
BZX79C180
BZX79C200
168
188
191
212
1
1
1700
2000
0.1
0.1
137
152
105
120
228
255
18
17
70
77
85
NOTE 1. Zener voltage is measured under pulse conditions such that TJ is no more than 2"C
above TA•
60
NOTE 3. Zzr is measured by diViding the ae voltage drop across the device by the ae current
applied. The specified limits are for Iz(ac) = 0.1 Iz(dc) with the ac frequency
NOTE 2. TOLERANCE AND VOLTAGE DESIGNATION
Tolerance'deslgnation The type numbers listed have zener voltage minImax limits as
shown. Device tolerances of ±2% are indicated by a "B~ instead of a "C," and ±1% by "A."
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-35
= 1.0 kHz.
II
BZX83C2V7 thru BZX83C33, M-ZPD2.7 thru M-ZPD33
ELECTRICAL CHARACTERISTICS (at T A = 25°C)
Motorola ZPD and BZX83C series. Forward Voltage VF = 1 Volt Max at IF = 50 rnA.
Zener Voltage (Note 1)
at IZT = 5.0 mA
Impedance (0)
Max (Nota 2)
Nominal
Min
Max
at IZT
BZX83
ZPD
Typ. Temp.
Coeff.
atlZT
%peroC
BZX83
ZPD
BZXB3C2V7
BZXB3C3VO
BZXB3C3V3
BZXB3C3V6
BZXB3C3V9
ZPD2.7
ZPD3.0
ZPD3.3
ZPD3.6
ZPD3.9
2.7
3
3.3
3.6
3.9
2.5
2.8
3.1
3.4
3.7
2.9
3.2
3.5
3.8
4.1
B5
90
90
90
85
600
600
600
600
600
500
500
500
500
500
-0.09 ...-0.04
-0.09 ...-0.03
-0.08 ... -0.03
-o.OB ... -o.03
-0.07 ...-0.03
1
1
1
1
1
-
BZXB3C4V3
BZX83C4V7
BZX83C5Vl
BZXB3C5V6
BZXB3C6V2
ZPD4.3
ZPD4.7
ZPD5.1
ZPD5.6
ZPD6.2
4.3
4.7
5.1
5.6
6.2
4
4.4
4.8
5.2
5.B
4.6
5
5.4
6
6.6
BO
7B
60
600
600
550
450
500
500
480
400
1
1
10
200
-0.06 ...-0.01
-0.05 ... +0.02
-0.03 ...+0.04
-0.02 ...+0.06
-0.01 ... +0.07
BZX83C6VB
BZX83C7V5
BZXB3CBV2
BZXB3C9Vl
BZX83Cl0
ZPD6.8
ZPD7.5
ZPDB.2
ZPD9.1
ZPD10
6.8
7.5
8.2
9.1
10
6.4
7
7.7
B.5
9.4
7.2
7.9
B.7
9.6
10.6
B
7
7
10
15
150
50
50
50
70
BZXB3Cll
BZXB3C12
BZXB3C13
BZX83C15
BZX83C16
ZPDll
ZPD12
ZPD13
ZPD15
ZPD16
11
12
13
15
16
10.4
11.4
12.4
13.8
15.3
11.6
12.7
14.1
15.6
17.1
20
20
25
30
BZX83C18
BZX83C20
BZXB3C22
BZX83C24
BZXB3C27
BZXB3C30
BZX83C33
ZPD18
ZPD20
ZPD22
ZPD24
ZPD27
ZPD30
ZPD33
lB
20
22
24
27
30
33
16.B
lB.8
20.8
22.8
25.1
2B
31
19.1
21.2
23.3
25.6
28.9
32
50
55
55
BO
BO
BO
35
80
atlz=1 mA
Device Type
•
--
NOTE 1. Pulse test.
NOTE 2. f 1.0 kHz, I,(ac)
=
40
40
-
-
atlR
l00I1 A
6Ol1A
3Ol1A
20l1A
10l1A
O.B
1
2
511A
211A
100nA
100nA
l00nA
+0.02...+0.07
+0.03... +0.07
+0.04... +0.07
+0.05 ...+0.0B
+0.05...+0.08
3
5
6
7
7.5
100nA
100nA
100nA
100nA
100nA
70
90
110
110
170
+0.05 ...+0.09
+0.06 ...+0.09
+0.07...+0.09
+0.07...+0.09
+0.OB...+0.095
B.5
9
10
11
12
100nA
100nA
l00nA
100nA
100 nA
170
220
220
220
250
250
250
+0.08...+0.10
+0.OB...+0.l0
+0.OB... +0.l0
+0.OB...+O.l0
+0.OB...+0.l0
+0.OB ...+O.l0
+0.08...+0.10
14
15
17
lB
20
22
24
l00nA
l00nA
100nA
l00nA
l00nA
l00nA
100 nA
=0.1 I,(dc).
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-36
VRMin
V
-
MZ4099 thru MZ4104, MZ4614 thru MZ4627
... designed for 250 mW applications requiring low leakage.
low impedance. Same as 1N4099 through 1N41 04 and
1N4614 through 1N4627 except low noise test omitted.
• Voltage Range from 1.8 to 10 Volts
• Zener Impedance and Zener Voltage Specified for LowLevel Operation at Izr = 250 ~A
ELECTRICAL CHARACTERISTICS (TA =25°C unless otherwise specified. In =250 ~ and VF =1 V Max
@
IF =200 mA for all
types)
Type
Number
(Note 1)
Nominal
Zener Voltage
Vz
(Note 2)
(Volts)
Max Zener
Impedance
ZZT
(Note 3)
(Ohms)
Max
Reverse
Current
IR
(1lA)
MZ4614
MZ4615
MZ4616
MZ4617
MZ4618
1.8
2
2.2
2.4
2.7
1200
1250
1300
1400
1500
MZ4619
MZ4620
MZ4621
MZ4622
MZ4623
3
3.3
3.6
3.9
4.3
MZ4624
MZ4625
MZ4626
MZ4627
MZ4099
MZ41 00
MZ41 01
MZ41 02
MZ41 03
MZ41 04
@
Test
Voltage
VR
(Volts)
Max Zener Current
IZM
(Note 4)
(mA)
7.5
5
4
2
1
1
1
1
1
1
120
110
100
95
90
1600
1650
1700
1650
1600
0.8
7.5
7.5
5
4
1
1.5
2
2
2
4.7
5.1
5.6
6.2
6.8
1550
1500
1400
1200
200
10
10
10
10
10
3
3
4
5
5.2
60
55
50
45
7.5
8.2
6.7
9.1
10
200
200
200
200
200
10
1
1
1
1
5.7
6.3
6.7
7
7.6
31.8
29
27.4
26.2
24.8
(Note 5)
85
80
75
70
65
35
NOTE 1. TOLERANCE AND VOLTAGE DESIGNATION
NOTE 4. MAXIMUM ZENER CURRENT RATINGS (I...)
The type numbers shown have 8 standard tolerance of ±5% on the nominal zener voltage.
Maximum zener current ratings are based on maximum zener voltage of the individual units.
NOTE 2. ZENER VOLTAGE (Vzl MEASUREMENT
NOTE 5. REVERSE LEAKAGE CURRENT I.
Nominal Zener Voltage is measured with the deVIce junction in the thermal equilibrium with
Reverse leakage currents are guaranteed and are measured at VA as shown on the table.
ambient temperature of 25°C.
NOTE 6. SPECIAL SELECTORS AVAILABLE INCLUDE:
NOTE 3. ZENER IMPEDANCE 1Zzr) DERIVATION
The zener impedance is derived from the 60 cycle ae voltage, which results when an ae current having an rms value equal to 10% of the de zener current (Izr) is supenmposed on Izr.
a) Nominal Zener voltages between those shown.
b) Tighter voltage tolerances. Contact your nearest Motorola representative for more information.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-37
II
MZ5520B thru MZ5530B
Low Voltage Avalanche Passivated
Silicon Oxide Zener Regulator Diodes
· .. Same as 1N5520B through 1N5530B except low nbise test
spec ommilled.
• Low Maximum Regulation Factor
• Low Zener Impedance
• Low Leakage Current
ELECTRICAL CHARACTERISTICS (TA =25°C unless otherwise specilied. Based on dc measurements at thermal equilibrium;
VF =1.1 Max @ 'F =200 mA lor all types.)
VR-Volts
22
18
22
26
30
1
3
2
2
2
1
1.5
2
2.5
3.5
98
88
81
75
68
0.85
0.75
0.6
0.65
0.3
2.0
2.0
1.0
0.25
0.25
30
30
35
40
45
60
1
1
0.5
0.5
0.1
0.05
5
6.2
6.8
7.5
8.2
9.1
61
56
51
46
42
38
0.2
0.1
0.05
0.05
0.05
0.1
0.01
0.01
0.01
0.01
0.01
0.01
Test
Current
Izr
mAdc
Max Zener
Impedance
Zzr@ Izr
Ohms
(Note 3)
MZ5520B
MZ5521B
MZ5522B
MZ5523B
MZ5524B
3.9
4.3
4.7
5.1
5.6
20
20
10
5
3
MZ5525B
MZ5526B
MZ5527B
MZ5528B
MZ5529B
MZ5530B
6.2
6.8
7.5
8.2
9.1
10
1
1
1
1
1
1
Motorola
Type No.
(Note 1)
•
IR
/lAdc
(Note 4)
Maximum
DC Zener
Current
IZM
mAdc
(Note 5)
Nominal
Zener
Voltage
Vz@ Izr
Volts
(Note 2)
Max Reverse Leakage Current
NOTE 1. TOLERANCE AND VOLTAGE DESIGNATION
Regulation
Factor
!Nz
Volts
(Note 6)
Low
Vz
Current
IZL
mAdc
The maximum current shown is based on the maxim':Jm voltageof a±5% type unit, therefore.
It appl",s only to the ''B~ suffix device. The actuallZM for any device may not exceed the value
of 400 milliwatts divided by the actual Vz of the device.
The A8" suffix type numbers listed are ±5% tolerance of nominal Vz•
NOTE 2. ZENER VOLTAGE (Vz) MEASUREMENT
Nominal zener voltage is measured with the devK:e junction in thermal equilibrium with ambi-
NOTE 6. MAXIMUM REGULATION FACTOR (4Vz)
ent temperature of 25OC.
NOTE 3. ZENER IMPEDANCE (Zzl DERIVATION
aVz is the maximum difference between Vz at Izr and Vz at IZL measured with the device junction in thermal equilibrium.
The zener Impedance is derived from the 60 Hz ac vohage, which results when an ae current
NOTE 7. SPECIAL SELECTORS AVAILABLE INCLUDE:
having an nns value equal to 10% of the de zener current (Izr) is superimposed on lzr.
a) Nominal Zener voltages between those shown.
b) Tighter voltage tolerances. Contact your nearest Motorola representative for more information.
NOTE 4. REVERSE LEAKAGE CURRENT 10
Reverse leakage currents are guaranteed and are measured at VR as shown on the table.
NOTE 5. MAXIMUM REGULATOR CURRENT (Izu)
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-38
SECTION 4.2.4 DATA SHEETS
ZENER VOLTAGE REGULATOR DIODES -
Section 4.2.4.1 Axial Leaded SECTION 4.2.4.1.2
continued
continued
1-1.3 WATT 00-41 GLASS
MULTIPLE PACKAGE QUANTITY (MPQ)
REQUIREMENTS
DATA SHEETS
Devices
Page No.
Package Option
Type No. Suffix
MPQ(Unlts)
General Da18-1-1.3 Watt DO-41 Glass
4-2-40
Tape and Reel
RL, RL2(l)
6K
1N4728A thru 1N4764A
4-2-44
Tape and Ammo
TA, TA2(1)
4K
BZX85C3V3 thru BZX85C100
4-2-45
M-ZPY3.9 thru M-ZPY100
4-2-46
NOTE 1. The M2" suffix refers
to 26 mm tape spacing.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-39
MOTOROLA
SEMICONDUCTOR
_ _ _ _ _ _ _ _ _ _ __
TECHNICAL DATA
GENERAL
DATA
1-1.3 Watt 00-41 Glass
Zener Voltage Regulator Diodes
1-1.3 WATT
00-41 GLASS
GENERAL DATA APPLICABLE TO ALL SERIES IN
THIS GROUP
One Watt Hermetically Sealed Glass
Silicon Zener Diodes
1 WATT
ZENER REGULATOR
DIODES
3.3-100 VOLTS
Specification Features:
• Complete Voltage Range - 3.3 to 100 Volts
• 00-41 Package
• Double Slug Type Construction
• Metallurgically Bonded Construction
• Oxide Passivated Die
Mechanical Characteristics:
4
CASE: Double slug type, hermetically sealed glass
MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230·C, 1116" from
case for 10 seconds
FINISH: All extemal surfaces are corrosion resistant with readily solderable leads
POLARITY: Cathode indicated by color band. When operated in zener mode, cathode
will be positive with respect to anode
.
MOUNTING POSITION: Any
CASE 59-03
D0-41
GLASS
MAXIMUM RATINGS
Rating
DC Power Dissipation
Derate above 50°C
-
@
Symbol
Valua
Unit
Po
1
6.67
Walt
mW/"C
-65to +200
°C
TA =50°C
Operating and Storage Junction Temperature Range
TJ, Tstg
1.25
'"f'.. K#"
en
~
~
.?'
~ 0.75
~
0.5
~
0.25
"
L= LEAD LENGTH
TO HEAT SINK
'" ........."- .."-.
""
~
~
/
.......
~
I
L=l" L= liS"
L=31S"
..........
="....... ~
~~
~
rF
o
I'..
20
40
60
80
100
120
140 160
TL, LEAD TEMPERATURE (OC)
lS0
200
Figure 1. Power Temperature Derating Curve
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-40
GENERAL OATA-1-1.3 WATT 00-41 GLASS
a. Range for Units to 12 Volts
b. Range for Units to 12 to 100 Volts
6100
3- 70
6 +12
3-
s+10
~
<3
+8
u..
+6
u::
/""
l)-- ~
8~ +4
~
+2
0..
0
a:
w
~
........
. / V'
"-
./ /
-4
~
..J.::;:; ;;.-'"
u::
u.. 20
w
(;)
w
rf""
a:
!;;c
a:
Vz@lzr
w
..........::: V
10
7
5
.....-: :;.-'"I
-
RANGE
Vz@lzr
=1=
0..
:::;:
w
1-.
4
3
2
30
<3
::>
RANGE
-/
50
w
Z
0
........ --'
i'-2
CD
/"" ~
/""
/'
sI-
6
7
11
10
2
1
10
12
70
20
30
SO
Vz. ZENER VOLTAGE (VOLTS)
Vz. ZENER VOLTAGE (VOLTS)
100
Figure 2. Temperature Coefficients
(-55°C to +150°C temperature range; 90% of the units are in the ranges indicated.)
~
s
175
~
150
3-
~
z
~
~
~w
~
t--
125
100
75
i,..-"'""
~
0
0
~
~ 30
w
20
~
a..
w 10
&!
7
::>
en
~
w
a..
~
rP-
S
r---
+4
W~
+2
8w
a:
!;;c
a:
r---
o
0.3
0.4
0.5
0.6
0.7
0.8
-4
0.9
v. Vj \.
0.01 mA
~
1 mA
~ ~V
NOTE: BELOW 3 VOLTS AND ABOVE 8 VOLTS
CHANGES IN ZENER CURRENT DO NOT
EFFECT TEMPERATURE COEFFICIENTS
/'
I
5
4
3
7
Vz. ZENER VOLTAGE (VOLTS)
Figure 3. Typical Thermal Resistance
versus Lead Length
Figure 4. Effect of Zener Current
--
~TYCYCLE
..1...1
-
RECTANGULAR
WAVEFORM
TJ = 25°C PRIOR TO
INITIAL PULSE
11 V-l00 V NONREPETITIVE
r--~
r- ~
3.3 V-l0 V NONREPETITIVE
:......
.....
.... i:""'- ....
r-- 20% DUTY CYCLE
1
0.01
..... tI!!f?
L. LEAD LENGTH TO HEAT SINK (INCHES)
r= 10% DUTY CYCLE
3
2
.".
~~
r-....
~ -2
0.2
".
20mA
w
0.1
.......
Vz@lz
TA = 25°C
1
a..
100
70
50
a:
~
::>
CD
en
.......
/'
I:
;;;
-
r-
:-"'"
I I I III
I I I I II
0.02
0.05
0.1
0.2
O.S
This graph represents 90 percentile data points.
For worst case deSign characteristics. muhiply surge power by 213.
2
PW. PULSE WIDTH (ms)
10
20
50
Figure 5. Maximum Surge Power
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-41
--r-100
200
,:"1500
1000
GENERAL OATA-1-1.3 WATT 00-41 GLASS
C1i
1000
500
:::;
:t:
w
t.>
~w
a.
~
Q
z~
15
N
N
r......
~
Q. 200
""""'-I.
:::;
Q. 200
10
~ 70 ~ ~5mA
27V
fa
a.
50
Q
20 I - - f---2OmA
~
11~
6,h
5
\
N
N
0.1
0.2
0.5
1
2
10
Iz. ZENER CURRENT (mA)
20
50
~"
2
2
1
1
100
,~
•
•
TYPICAL LEAKAGE CURRENT
AT 80% OF NOMINAL
BREAKDOWN VOLTAGE
\\
,
1000
700
500
400
300
200
-
u:-
w
10
7
5
.....
z
a:
a:
:::>
t.>
w
2
w
1
0.7
-'
""'~
OVBIAS
1V BIAS,
50
:'"
i5
<:5
8:
20
(3
c.5
7 r-o;;;
~
10
8
4
r--....
50% OF BREAKDOWN BIAS
1
5
10
20
VZ. NOMINAL Vz (VOLTS)
2
50
100
Figure 9. Typical Capacitance versus Vz
CJ
~
II
~
I ...
100
~
100
70
50
20
70 100
I....
S
200
<.:;
50
Figure 7. Effect of Zener Voltage
on Zener Impedance
~
2000
1/
5 7 10
20 30
Vz. ZENER CURRENT (mAl
1
Figure 6. Effect of Zener Current
on Zener Impedance
10000
7000
5000
17
w
t.> 100
"'"
20
TJ = 25°C
_
iz(rms) = 0.1 Iz(dc) 1=60Hz
I--lz=1 mA
:t:
47V
"'"
100
50
1000
700
C1i 500
TJ = 25°C
iz(rms) = 0.1 Iz(OO)
1=60Hz
Vz = 2.7 V
ci: 0.5
\
0.2
\
0.1
0.07
0.05
"\
0.02
.... -
.005
_____ MINIMUM
SOO
MAXIMUM
.'
~ 100
~
\..
......
+25°C
~
.~
-
,,
SO
~ 20
10
=
~
75°C
"'JL(.
,
"./
f/,
~
./
I
./
150°C
0.002
0.001
17
I'
~200
:::>
t.>
"
0.01
~.007
+125°C
fOOO
'V
25°C
,
'- O°C
"
1
3
4
5
6
8
9
10
11
12
13
14
15
~.
0.4
"
0.5
I
0.6
0.7
0.8
0.9
Vz. NOMINAL ZENER VOLTAGE (VOLTS)
VF. FORWARD VOLTAGE (VOLTS)
Figure 8. Typical Leakage Current
Figure 10. Typical Forward Characteristics
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-42
1.1
GENERAL OATA-1-1.3 WATT 00-41 GLASS
APPLICATION NOTE
Since the actual voltage available from a given zener diode
is temperature dependent. it is necessary to determine junction temperature under any set of operating conditions in order
to calculate its value. The following procedure is recommended:
Lead Temperature. TL. should be determined from:
h =9LAPo + TA·
9LA is the lead-to-ambient thermal resistance (OCIW) and Po is
the power dissipation. The value for 9LA will vary and depends
on the device mounting method. 9LA is generally 30 to 40°CIW
for the various clips and tie points in common use and for
printed circuit board wiring.
The temperature of the lead can also be measured using a
thermocouple placed on the lead as close as possible to the tie
point. The thermal mass connected to the tie point is normally
large enough so that it will not significantly respond to heat
surges generated in the diode as a result of pulsed operation
once steady-state conditions are achieved. Using the measured value ofT L. the junction temperature may be determined
by:
TJ=h+aTJL·
aTJL is the increase in junction temperature above the lead
temperature and may be found as follows:
aTJL = 9JLPO·
9JL may be determined from Figure 3 for dc power conditions. For worst-case design. using expected limits of Iz. limits
of Po and the extremes of TJ(aTJ) may be estimated. Changes
in voltage. Vz. can then be found from:
aV = 9vzaTJ.
9vz. the zener voltage temperature coefficient. is found from
Figure 2.
Under high power-pulse operation. the zener voltage will
vary with time and may also be affected significantly by the
zener resistance. For best regulation. keep current excursions
as low as possible.
Surge limitations are given in Figure 5. They are lower than
would be expected by considering only junction temperature.
as current crowding effects cause temperatures to be extremely high in small spots. resulting in device degradation
should the limits of Figure 5 be exceeded.
I
III
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-43
1N4728A thru 1N4764A
"ELECTRICAL CHARACTERISTICS (TA =25°C unless otherwise noted) VF =1.2 V Max, IF =200 rnA for all types.
Nominal
Zener Voltage
Vz@lzr
Volts
(Notes 2 and 3)
Test
Current
Izr
mA
3.3
76
=}
lN4728A
lN4729A
lN4730A
1 N4731 A
lN4732A
3.6
3.9
4.3
4.7
=}
lN4733A
=}
lN4734A
lN4735A
lN4736A
lN4737A
5.1
5.6
6.2
6.8
7.5
lN4738A
lN4739A
lN4740A
1 N4741 A
lN4742A
8.2
9.1
10
11
12
lN4743A
lN4744A
lN4745A
lN4746A
lN4747A
JEDEC
Type No.
(Note 1)
=}
=}
=}
=}
=}
=}
=}
=}
=}
=}
=}
=}
I
•
=}
=}
lN4748A
=}
=}
=}
Maximum Zener Impedance (Note 4)
Leakage Current
Surge Current @
TA 25°C
i,-mA
(Note 5)
=
Zzr@ Izr
Ohms
ZZK@ IZK
Ohms
IZK
mA
IR
ItA Max
VR
Volts
10
10
9
9
8
400
400
400
400
500
1
1
1
1
1
100
100
50
10
10
1
69
64
58
53
49
7
550
45
41
37
34
5
2
3.5
4
600
700
700
700
1
1
1
1
0.5
10
10
10
10
10
2
3
4
5
890
810
730
660
605
31
28
25
23
21
4.5
5
7
8
9
700
700
700
700
700
0.5
0.5
0.25
0.25
0.25
10
10
10
5
5
6
7
7.6
8.4
9.1
550
500
454
414
380
13
19
700
700
700
750
750
5
17
10
14
16
20
22
0.25
15
16
18
20
0.25
0.25
0.25
0.25
5
5
5
5
9.9
11.4
12.2
13.7
15.2
344
304
285
250
225
11.5
10.5
9.5
8.5
7.5
23
25
35
45
750
750
750
1000
1000
0.25
0.25
0.25
0.25
0.25
5
5
5
5
5
16.7
18.2
20.6
22.8
25.1
205
190
170
150
135
7
6.5
6
5.5
5
50
60
70
80
95
1000
1000
1500
1500
1500
0.25
0.25
0.25
0.25
0.25
5
5
5
5
5
27.4
29.7
32.7
35.8
38.8
125
115
110
95
90
4.5
110
5
125
150
175
200
250
350
2000
2000
2000
2000
3000
3000
3000
0.25
4
3.7
3.3
3
2.8
2.5
0.25
0.25
0.25
0.25
0.25
0.25
5
5
5
5
5
5
42.6
47.1
51.7
56
62.2
69.2
76
80
70
65
60
55
50
45
15.5
14
12.5
22
24
27
30
lN4749A
lN4750A
1N4751A
lN4752A
33
1N4753A
36
lN4754A
1N4755A
lN4756A
lN4757A
39
43
47
51
lN4758A
lN4759A
lN4760A
1N4761 A
lN4762A
lN4763A
lN4764A
56
62
68
75
82
91
100
40
1
1
1
1
1
1380
1260
1190
1070
970
=* Preferred part
'Indicates JEDEC Registered Data.
NOTE 4. ZENER IMPEDANCE (Zzl DERIVATION
NOTE 1. TOLERANCE AND tYPE NUMBER DESIGNATION
The zener impedance is derived from the 60 cycle Be voltage, which results when an ac current having an rms value equal to 10% of the de zener current (Ill or IZKl is superimposed
The JEDEC type numbers listed have a standard tolerance on the nominal zener voltage of
on Izr or IlK'
±5%. C for ±2%, 0 for ±1 %.
NOTE 5. SURGE CURRENT (I,) NON·REPETITIVE
NOTE 2. SPECIALS AVAILABLE INCLUDE:
Nominal zener voltages between the voltages shown and tighter voltage tolerances.
Forcietailed information on price, availability, and delivery, contact your nearest Motorola representative.
The rating listed in the electrical characteristics table is maximum peak, non·repetitive, re·
verse surge current of 112 square wave or equivalent sine wave pulse of 1/120 second dura·
tion superimposed on the test current, Izr, per JEoEC registration; however, actual device
capability is as described in Figure 5 of the General Data - 0041 Glass.
NOTE 3. ZENER VOLTAGE (Vrl MEASUREMENT
Motorola guarantees the zener voltage when measured at 90 seconds while maintaining the
lead temperature (T at 30cC ± 1cC, 3/8" from the diode body.
u
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-44
BZX85C3V3 thru BZX85C100
ELECTRICAL CHARACTERISTICS (TA =25°C unless otherwise noted.) (VF =1.2 V Max, IF =200 mA lor all types.)
Zener Voltage
Vn:(V)
(Notes 2 and 3)
Type
Leakage
Current
Zener Impedance
Zz(ohms)
(Note 4)
VR(V)
IR
Max
Surge
Current
TA 25°C
1,(mA)
(Note 5)
1
1
1
1
1.5
60
30
5
3
3
1380
1260
1190
1070
970
1
1
1
1
0.5
2
2
3
4
4.5
1
1
1
1
1
890
810
730
660
605
200
200
200
300
350
0.5
0.5
0.5
0.5
0.5
5
6.5
7
7.7
8.4
1
1
0.5
0.5
0.5
550
500
454
414
380
10
15
15
20
24
400
500
500
500
600
0.5
0.5
0.5
0.5
0.5
9.1
10.5
11
12.5
14
0.5
0.5
0.5
0.5
0.5
344
304
285
250
225
10
10
8
8
8
25
25
30
30
35
600
600
750
1000
1000
0.5
0.5
0.25
0.25
0.25
15.5
17
19
21
23
0.5
0.5
0.5
0.5
0.5
205
190
170
150
135
50
54
8
6
6
4
4
40
45
50
90
115
1000
1000
1000
1500
1500
0.25
0.25
0.25
0.25
0.25
25
27
30
33
36
0.5
0.5
0.5
0.5
0.5
125
115
110
95
90
52
58
64
70
77
60
66
72
80
87
4
4
4
4
2.7
120
125
130
150
200
2000
2000
2000
2000
3000
0.25
0.25
0.25
0.25
0.25
39
43
47
51
56
0.5
0.5
0.5
0.5
0.5
80
70
65
60
55
85
96
96
106
2.7
2.7
250
350
3000
3000
0.25
0.25
62
68
0.5
0.5
50
45
Test
Current
(Note 1)
Vz
Min
Vz
Max
(rnA)
Max
at In:
BZX85C3V3
BZX85C3V6
BZX85C3V9
BZX85C4V3
BZX85C4V7
3.1
3.4
3.7
4
4.4
3.5
3.8
4.1
4.6
5
80
60
60
50
45
20
15
15
13
13
BZX85C5Vl
BZX85C5V6
BZX85C6V2
BZX85C6V8
BZX85C7V5
4.8
5.2
5.8
6.4
7
5.4
6
6.6
7.2
7.9
45
45
35
35
35
BZX85C8V2
BZX85C9Vl
BZX85Cl0
BZX85Cll
BZX85C12
7.7
8.5
9.4
10.4
11.4
8.7
9.6
10.6
11.6
12.7
BZX85C13
BZX85C15
BZX85C16
BZX85C18
BZX85C20
12.4
13.8
15.3
16.8
18.8
BZX85C22
BZX85C24
BZX85C27
BZX85C30
BZX85C33
In:
(fJA)
Max at Iz
(rnA)
400
500
500
500
600
1
1
1
1
1
10
7
4
3.5
3
500
400
300
300
200
25
25
25
20
20
5
5
7
8
9
14.1
15.6
17.1
19.1
21.2
20
15
15
15
10
20.8
22.8
25.1
28
31
23.3
25.6
28.9
32
35
BZX85C36
BZX85C39
BZX85C43
BZX85C47
BZX85C51
34
37
40
44
48
38
BZX85C56
BZX85C62
BZX85C68
BZX85C75
BZX85C82
BZX85C91
BZX85Cl00
41
46
NOTE 1. TOLERANCE AND TYPE NUMBER DESIGNATION
NOTE 4. ZENER IMPEDANCE (Zz) DERIVATION
The type numbers listed have zener voltage minimax limits as shown. Device tolerance of
±2% are Indtcated by a
=
The zener impedance is derived from the 1 kHz cycte Be voltage, which results when an ae
current haYing an rms value equal to 10% ofthedc zener current (In) or (lzIe) is superimposed
on Izr or IlK_
-e- instead of "C."
NOTE 2. SPECIALS AVAILABLE INCLUDE:
NOTE 5. SURGE CURRENT (I,) NON-REPETITIVE
Nominal zener voltages between the voltages shown and tighter voltage tolerances.
Fordetailed information on price, availability, and delivery, contact your nearest Motorola rep-
resentative.
The rating listed in the electrical characteristics table Is maximum peak, non-repetitive, reverse surge current ot 112 square wave or equivalent sine wave pulse of 1/120 second duration superimposed on the test current Izr. However, actual device capability Is as described
in Agure 5 of General Data 00-41 glass.
NOTE 3. ZENER VOLTAGE (V.) MEASUREMENT
Vz ls measured after the test current has been applied to 40 ± 10 msec., while maintaining
the lead temperature (TJ at 30°C ± 1°C, 318n from the diode body.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-45
M-ZPY3.9 thru M-ZPY100
ELECTRICAL CHARACTERISTICS (TA=25°C unless otherwise noted) VF =1.2 V Max, IF =200 rnA for all types.
I
Zener Voltage (V)
(Notes 2 and 3)
Zener Impedance
(Note 4)
f = 1 kHz (ohms)
Blocking
Volt Min (V)
Surge
Current
TA = 25°C
1,(mA)
(Note 5)
Type No.
(Note 1)
VzMln
VzMax
Test Current
Izr
(rnA)
Typ
Max
MZPY3.9
MZPY4.3
MZPY4.7
MZPY5.1
MZPY5.6
3.7
4
4.4
4.8
5.2
4.1
4.6
5
5.4
6
100
1,00
100
100
100
4
4
4
2
1
7
7
7
5
2
0.7
1.5
1190
1070
970
890
810
MZPY6.2
MZPY6.8
MZPY7.5
MZPY8.2
MZPY9.1
5.8
6.4
7
7.7
8.5
6.6
7.2
7.9
8.7
9.6
100
100
100
100
50
1
1
1
1
2
2
2
2
2
4
2
3
5
6
7
730
660
605
550
500
MZPY10
MZPY11
MZPY12
MZPY13
MZPY15
9.4
10.4
11.4
12.4
14.2
10.6
11.6
12.7
14.1
15.8
50
50
50
50
50
2
3
3
4
4
4
7
7
9
9
7.5
8.5
9
10
11
454
4;14
380
344
304
MZPY16
MZPY18
MZPY20
MZPY22
MZPY24
15.3
16.8
18.8
20.8
22.8
17.1
19.1
21.2
23.3
25.6
25
25
25
25
25
5
5
6
7
8
10
11
12
13
14
12
14
15
17
18
285
250
225
205
190
MZPY27
MZPY30
MZPY33
MZPY36
MZPY39
25.1
28
31
34
37
28.9
32
35
38
41
25
25
25
10
10
9
10
11
25
30
15
20
20
60
60
20
22.5
25
27
29
170
150
135
125
115
MZPY43
MZPY47
MZPY51
MZPY56
MZPY62
40
44
46
50
48
54
52
58
60
66
10
10
10
10
10
35
40
45
50
60
80
80
100
100
130
32
35
38
42
47
110
95
90
80
70
64
72
79
88
96
106
10
10
10
5
5
65
70
80
120
130
130
160
160
250
250
51
56
61
68
75
65
60
55
50
45
MZPY68
MZPY75
MZPY82
MZPY91
MZPY100
70
77
85
94
IR=11!A
-
NOTE 1. TOLERANCE AND TYPE NUMBER DESIGNATION
NOTE 4. ZENER IMPEDANCE (Zz) DERIVATION
The type numbers listed have zener voltage minimax limits as shown. Device tolerance of
The zener impedance is derived from the 1 kHz cycle ae voltage, which resuhs when an ae
current having an rms value equal to 10'% of the de zener current (IZT) of (1Z1() is superimposed
on Izr or iZK'
±2% are indicated by a ·C" and ±1 % by a "0" suffix.
NOTE 2. SPECIALS AVAILABLE INCLUDE:
Nominal zener voltages between the voltages shown and tighter voltage tolerances.
NOTE 5. SURGE CURRENT (I,) NON-REPETITIVE
For detailed information on price, availability, and delivery, contactYI=>ur nearest Motorola rep~
resentative.
The rating listed In the electrical characteristics table is maximum peak, non-repetitive, reverse surge current of 112 square wave or equivalent sine wave pulse of 1/120 second duration superimposed on the test current IZT' however, actual device capability is as described
in Figure 5 of General Data 00-41 glass.
NOTE 3. ZENER VOLTAGE (V,) MEASUREMENT
Vz is, measured after the test current has been applied to 40 ± 10 msec., while maintaining
the lead temperature (TJ at 3Q°C ± 1°C, 318" from the diode body.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-46
SECTION 4.2.4 DATA SHEETS
ZENER VOLTAGE REGULATOR DIODES -
Section 4.2.4.1 Axial Leaded SECTION 4.2.4.1.3
continued
continued
1-3 WATT 00-41 SURMETIC 30
MULTIPLE PACKAGE QUANTITY (MPQ)
REQUIREMENTS
DATA SHEETS
Devices
PagaNo.
Package Option
Type No. Suffix
MPQ(Unlts)
4-2-48
Tape and Reel
RL
6K
lN5913Bthru lN5956B
4-2-51
Tape and Ammo
TA
4K
General Data -
1-3 Watt DO-41 Surmetic 30
3EZ3.9D5 thru 3EZ400D5
4-2-53
MZD3.9 thru MZD200
4-2-55
MZP4728A thru MZP4764A,
lMll0ZS5 thru lM200ZS5
4-2-56
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-47
MOTOROLA
SEMICONDUCTOR
_ _ _ _ _ _ _ _ _ _ __
TECHNICAL DATA
GENERAL
DATA
1 to 3 Watt 00-41 Surmetic 30
Zener Voltage Regulator Diodes
1-3 WATT
00-41
SURMETIC 30
GENERAL DATA APPLICABLE TO ALL SERIES IN
THIS GROUP
1 to 3 Watt Surmetic 30
Silicon Zener Diodes
1 TO 3 WATT
ZENER REGULATOR
DIODES
3.3-400 VOLTS
· .. a complete series of 1 to 3 Watt Zener Diodes with limits and operating characteristics
that reflect the superior capabilities of silicon-oxide-passivated junctions. All this in an
axial-lead, transfer-molded plastic package offering protection in all common environmental conditions.
Specification Features:
• Surge Rating of 98 Watts @ 1 ms
• Maximum Limits Guaranteed On Up To Six Electrical Parameters
• Package No Larger Than the Conventional 1 Watt Package
Mechanical Characteristics:
CASE: Void-free, transfer-molded, thermosetting plastic
FINISH: All external surfaces are corrosion resistant and leads are readily solderable
POLARITY: Cathode indicated by color. band. When operated in zener mode, cathode
will be positive with respect to anode.
MOUNTING POSITION: Any
WEIGHT: 0.4 gram (approx)
a
CASE 59-03
DO-41
PLASTIC
MAXIMUM RATINGS
Rating
DC Power Dissipation
Lead Length =318
Derate above 75·C
@
DC Power Dissipation
Derate above 50·C
@
Symbol
Value
Unit
Po
3
Watts
24
mW/"C
1
6.67
Watt
mW/"C
-6510+200
·C
TL =75·C
N
TA =50·C
Po
Operating and Storage Junction Temperalure Range
TJ. Tstg
5
i'..
L=l~
~
'-
L=31S" ' -
r---...r-..,
r-
L=l N
i-
L = LEAD LENGTH
TO HEAT SINK -
I'\.
\
I\.
"""'- f'... \ I\.
:-..... i'o..
-... ........ i""-... '\
.......... r-. l'-.. [\..
........ ~
00
20
40
60
SO 100 120 140 160
h. LEAD TEMPERATURE (·C)
lS0
200
Figure 1. Power Temperature Derating Curve
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-48
GENERAL OATA-1-3 WATT 00-41 SURMETIC 30
30
20
LU
()
z
;:r;
I
D=0.5
en
~~10
=
;i E 7
~!i 5 LULU
I...J 3
0.2
t5 z
0.05
::~
0.1
2 f--
c;;Q
~
0.02
1
0.01
~
0.7
0.5 ~ D=n
ci?
0.3
~~
S=l
--
....
0.0001
0.0002
-
0.0005
0.001
TJ1SL
,... I"",0oIII
-
PPK-t~
~~
f-i-'
~,...
DUTY CYCLE, D =t1ft2
NOTE: BELOW 0.1 SECOND, THERMAL
RESPONSE CURVE IS APPLICABLE
TO ANY LEAD LENGTH (L) .
0.002
0.005
0.Q1
0.02
0.05
t, TIME (SECONDS)
0.1
0.2
f= SINGLE PULSE 6TJL = OJL (t)PPK
f= REPETITIVE PULSES 6TJL = OJL (t,D)PpK
0.5
2
5
10
Figure 2. Typical Thermal Response L, Lead Length = 3/8 Inch
1K
~
500
~ 300
w
~ 200
~
g:~
@J;:r;
RECTANGULAR
NON REPETITIVE
WAVEFORM
TJ = 25°C PRIOR
TO IN ITIAL PULSE
ii)
......... r...
~~
~5
0.2
0.1
:;2 ~ 0.05
0.02
~!!,! 0.01
ffi ~ 0.005
>w
~ g; 0.002
ri:~ 0.001
0.0005
0.0003 1
~ d
i!j;;
100
iil
'"
i:i'i
0..
'"
50
30
V/
!;(
./ ./'
a:
"/
/'
w
20
c..
~
4
~
200
8M!
",
./
"/
;:;:
RANGE
./
1000
@J
,,'..< ....-
/'
L: ./'
--
L
./
.t;;
/'
5
10
6
9
Vz, ZENER VOLTAGE@ In (VOLTS)
11
12
./
./
V
V
~
V V
1~0
20
50
100
200
400
Vz, ZENER VOLTAGE@ In (VOLTS)
Figure 5. Units To 12 Volts
1000
Figure 6. Units 10 To 400 Volts
ZENER VOLTAGE versus ZENER CURRENT
(Figures 7, 8 and 9)
100
I
•
1
50
30
20
ffi
10
~
3
i
100
50
30
20
10
_
I
1
!z
w
~
I
2
z
~
.!:9 0.5
0.3
0.2
0.1
3
ffi
2
I
5
a
I
I
~ 0.5
I
o
2
0.3
0.2
0.1
I
3
4
5
Vz, ZENER VOLTAGE (VOLTS)
8
10
o
10
20
Figure 7. Vz = 3.3 thru 10 Volts
90
100
Figure 8. Vz = 12 thru 82 Volts
~
~ 80
10
1
~
,
I'
I
I I
ffia:
I
I
a:
aa:
70
/
~
!G 60
[fl
V'
./
~50
:i
ffi
~
w
40
~ 30
w
~ 0.5
~
0.2
0.1
100
30
40
50
60
70
80
Vz, ZENER VOLTAGE (VOLTS)
~
20
t5
10
~
150
200
250
300
350
Vz, ZENER VOLTAGE (VOLTS)
400
=l
~
Figure 9. Vz = 100 thru 400 Volts
......
./
"
V
/M=
TL
V
0 0
PRIMARY PATH OF
CONDUCTION IS THROUGH
THE CATHODE LEAD
1/8
1/4
3/8
1/2
5/8
3/4
7/8
L, LEAD LENGTH TO HEAT SINK (INCH)
Figure 10. Typical Thermal Resistance
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-50
1N59138 thru 1N59568
"MAXIMUM RATINGS
Rating
DC Power Dissipation @ h
Symbol
Value
Unit
Po
1.5
12
Watts
mW/oC
=75°C, Lead Length =
318"
Derate above 75°C
"ELECTRICAL CHARACTERISTICS (T L =30°C unless otherwise noted. VF
VR
Volts
Maximum DC
Zener
Current
IZM
mAdc
100
75
25
5
5
1
1
1
1
1.5
454
416
384
348
319
1
1
1
1
0.5
5
5
5
5
5
2
3
4
5.2
6
294
267
241
220
200
400
500
500
550
550
0.5
0.5
0.25
0.25
0.25
5
5
5
1
1
6.5
7
8
8.4
9.1
182
164
150
136
125
7
9
10
12
14
550
600
600
650
650
0.25
0.25
0.25
0.25
0.25
1
1
1
1
1
9.9
11.4
12.2
13.7
15.2
115
100
93
83
75
17
15.6
13.9
12.5
11.4
17.5
19
23
26
33
650
700
700
750
800
0.25
0.25
0.25
0.25
0.25
1
1
1
1
1
16.7
18.2
20.6
22.8
25.1
68
62
55
50
45
38
47
51
10.4
9.6
8.7
8
7.3
45
53
67
70
850
900
950
1000
1100
0.25
0.25
0.25
0.25
0.25
1
1
1
1
1
27.4
29.7
32.7
35.8
38.8
41
38
34
31
29
56
62
68
75
82
6.7
6
5.5
5
4.6
86
100
120
140
160
1300
1500
1700
2000
2500
0.25
0.25
0.25
0.25
0.25
1
1
1
1
42.6
47.1
51.7
56
62.2
26
24
22
20
18
Number
(Note 1)
Nominal
Zener Voltage
Vz @ Izr
Volts
(Note 2 and 3)
Test
Current
Izr
mA
Zzr@ Izr
Ohms
ZZK
Ohms
lN5913B
lN5914B
lN5915B
lN5916B
lN5917B
3.3
3.6
3.9
4.3
4.7
113.6
104.2
96.1
87.2
79.8
10
9
7.5
6
5
=> lN5918B
lN5919B
=> lN5920B
lN5921B
lN5922B
5.1
5.6
6.2
6.8
7.5
73.5
66.9
60.5
55.1
50
lN5923B
lN5924B
lN5925B
lN5926B
lN5927B
8.2
9.1
10
11
12
lN5928B
=> lN5929B
lN5930B
lN5931B
lN5932B
lN5933B
Motorola
Type
=1.5 Volts Max @ IF =200 mAde for all types.)
Max. Zener Impedance (Note 4)
@
Max. Reverse
Leakage Current
IZK
mA
IR
(.lA
500
500
500
500
500
1
1
1
1
1
4
2
2
2.5
3
350
250
200
200
400
45.7
41.2
37.5
34.1
31.2
3.5
4
4.5
5.5
6.5
13
15
16
18
20
28.8
25
23.4
20.8
18.7
22
24
27
30
33
lN5938B
lN5939B
lN5940B
=> lN5941B
lN5942B
36
39
lN5943B
lN5944B
lN5945B
lN5946B
lN5947B
=> lN5934B
lN5935B
=> lN5936B
lN5937B
43
@
1
II
III
(continued)
~
Preferred part
*Indicates JEDEC Registered Data.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-51
1N5913B thru 1N5956B
·ELECTRICAL CHARACTERISTICS -
continued (h = 30'C unless otherwise noted. VF = 1.5 Volts Max
@
IF = 200 mAdc for all
types.)
Motorola
Type
Number
(Note 1)
Nominal
Zener Voltage
Vz @ Izr
Volts
(Note 2 and 3)
TeSt
Current
Izr
mA
Zzr@ Izr
Ohms
ZZK
Ohms
1N5948B
1N5949B
1N5950B
1N5951B
1N5952B
91
100
110
120
130
4.1
3.7
3.4
3.1
2.9
200
250
300
380
450
1N5953B
1N5954B
1N5955B
1N5956B
150
160
180
200.
2.5
2.3
2.1
1.9
600
700
900
1200
Max. Zener Impedance (Note 4)
@
VR
Volts
Maximum DC
Zener
Current
IZM
mAde
1
1
1
1
1
69.2
76
83.6
91.2
98.8
16
15
13
12
11
1
1
1
1
114
121.6
136.8
152
10
9
8
7
Max. Reverse
Leakage Current
IZK
mA
IR
IlA
3000
3100
4000
4500
5000
0.25
0.25
0.25
0.25
0.25
6000
6500
7000
8000
0.25
0.25
0.25
0.25
@
"Indteates JEOEC Registered Data.
NOTE 1. TOLERANCE AND VOLTAGE DESIGNATION
NOTE 3. ZENER VOLTAGE (Y.) MEASUREMENT
Tolerance designation - Device tolerances of ±5% are Indicated by a ''8'' suffix.
Motorola guarantees the zener voltage when meausred at 90 seconds while maintaining the
leed temperature (TJ at 30'0 ±1 'C. 318" tram lhe diode body.
NOTE 2. SPECIAL SELECTIONS AVAILAaLE INCLUDE:
NOTE 4. ZENER IMPEDANCE (Zzl DERIVATION
Nominal zener voltages between those shown and ±1% and ±2% tight voltage tolerances.
Consult factory.
The zener impedance is derived from the 60 cycle ac voltage, which results when an ae cur·
rent having an nns value equal to 10% of the de zener current (Izr or 100 is superimposed
on In or IlK'
I
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-52
3EZ3.9D5 thru 3EZ400D5
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) VF = 1.5 V Max, IF = 200 rnA for all types)
Nominal
Zener Voltage
Vz @ Izr
Volts
(Note 2)
Test
Current
Izr
mA
VR
Volts
Maximum
Zener
Current
IZM
mA
Surge
Current
@TA =25°C
1,-mA
(Note 4)
Zzr@ Izr
Ohms
ZZK@IZK
Ohms
IZK
mA
!1AMax
3EZ3.905
3EZ4.305
3EZ4.705
3EZ5.1D5
3.9
4.3
4.7
5.1
192
174
160
147
4.5
4.5
4
3.5
400
400
500
550
1
1
1
1
80
30
20
5
1
1
1
1
630
590
550
520
4.4
4.1
3.8
3.5
3EZ5.605
3EZ6.205
3EZ6.805
3EZ7.505
5.6
6.2
6.8
7.5
134
121
110
100
2.5
1.5
2
2
600
700
700
700
1
1
1
0.5
5
5
5
5
2
3
4
5
480
435
393
360
3.3
3.1
2.9
2.66
3EZ8.205
3EZ9.1D5
3EZ1005
3EZ11D5
8.2
9.1
10
11
91
82
75
68
2.3
2.5
3.5
4
700
700
700
700
0.5
0.5
0.25
0.25
5
3
3
1
6
7
7.6
8.4
330
297
270
245
2.44
2.2
2
1.82
3EZ1205
3EZ1305
3EZ1405
3EZ1505
12
13
14
15
63
58
53
50
4.5
4.5
5
5.5
700
700
700
700
0.25
0.25
0.25
0.25
1
0.5
0.5
0.5
9.1
9.9
10.6
11.4
225
208
193
180
1.66
1.54
1.43
1.33
3EZ1605
3EZ1705
3EZ1805
3EZ1905
16
17
18
19
47
44
42
40
5.5
6
6
7
700
750
750
750
0.25
0.25
0.25
0.25
0.5
0.5
0.5
0.5
12.2
13
13.7
14.4
169
159
150
142
1.25
1.18
1.11
1.05
3EZ2005
3EZ2205
3EZ2405
3EZ2705
20
22
24
27
37
34
31
28
7
8
9
10
750
750
750
750
0.25
0.25
0.25
0.25
0.5
0.5
0.5
0.5
15.2
16.7
18.2
20.6
135
123
112
100
1
0.91
0.83
0.74
3EZ2805
3EZ3005
3EZ3305
3EZ3605
28
30
33
36
27
25
23
21
12
16
20
22
750
1000
1000
1000
0.25
0.25
0.25
0.25
0.5
0.5
0.5
0.5
21
22.5
25.1
27.4
96
90
82
75
0.71
0.67
0.61
0.56
3EZ3905
3EZ4305
3EZ4705
3EZ51D5
39
47
51
19
17
16
15
28
33
38
45
1000
1500
1500
1500
0.25
0.25
0.25
0.25
0.5
0.5
0.5
0.5
29.7
32.7
35.6
38.8
69
63
57
53
0.51
0.45
0.42
0.39
3EZ5605
3EZ6205
3EZ6805
3EZ7505
56
62
68
75
13
12
11
10
50
55
70
85
2000
2000
2000
2000
0.25
0.25
0.25
0.25
0.5
0.5
0.5
0.5
42.6
47.1
51.7
56
48
44
40
36
0.36
0.32
0.29
0.27
3EZ8205
3EZ91D5
3EZ10005
3EZll 005
82
91
100
110
9.1
8.2
7.5
6.8
95
115
160
225
3000
3000
3000
4000
0.25
0.25
0.25
0.25
0.5
0.5
0.5
0.5
62.2
69.2
76
83.6
33
30
27
25
0.24
0.22
0.2
0.18
3EZ12005
3EZ13005
3EZ14005
3EZ15005
120
130
140
150
6.3
5.8
5.3
5
300
375
475
550
4500
5000
5000
6000
0.25
0.25
0.25
0.25
0.5
0.5
0.5
0.5
91.2
98.8
106.4
114
22
21
19
18
0.16
0.15
0.14
0.13
3EZ16005
3EZ17005
3EZ18005
3EZ19005
160
170
180
190
4.7
4.4
4.2
4
625
650
700
800
6500
7000
7000
8000
0.25
0.25
0.25
0.25
0.5
0.5
0.5
0.5
121.6
130.4
136.8
144.8
17
16
15
14
0.12
0.12
0.11
0.1
Motorola
Type No.
(Note 1)
43
Max Zener Impedance
(Note 3)
Leakage
Current
IR
@
(continued)
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-53
I
3EZ3.9D5 thru 3EZ400D5
ELECTRICAL CHARACTERISTICS -
continued (TA = 25°C unless otherwise noted) VF = 1.5 V Max, IF = 200 rnA for all types)
Nominal
Zener Voltage
Vz@IZT
Volts
(Note 2)
Test
Current
IZT
mA
ZZT@ IZT
Ohms
ZZK@lzK
Ohms
IZK
mA
3EZ200D5
3EZ220D5
3EZ240D5
3EZ270D5
200
220
240
270
3.7
3.4
3.1
2.8
875
1600
1700
1800
8000
9000
9000
9000
0.25
0.25
0.25
0.25
0.5
1
1
1
3EZ300D5
3EZ330D5
3EZ360D5
3EZ4ooD5
300
330
360
400
2.5
2.3
2.1
1.9
1900
2200
2700
3500
9000
9000
9000
9000
0.25
0.25
0.25
0.25
1
1
1
1
Motorola
Type No.
(Note 1)
Maximum
Zener
Current
IZM
mA
Surge
Current
@TA=25°C
i,-mA
(Note 4)
152
167
182
205
13
12
11
10
0.1
0.09
0.09
0.08
228
251
274
304
9
8
8
7
0.07
0.06
0.06
0.06
Leakage
Current
Max Zener Impedance
(Note 3)
@ VR
IR
Volts
IlAMax
NOTE 1. TOLERANCES
NOTE 4. SURGE CURRENT (I,) NON·REPETITIVE
Suffix 5 indicates 5% tolerance. Any other tolerance will be considered as a special device.
Motorola guarantees the zener vottage when measured at 40 ms ±10 rns 3/8.... from the diode
The rating listed In the electrical characteristics table is maximum peak, non-repetitive, reverse surge current of 112 square wave or equivalent sine wave pulse of 1/120 second duration superimposed on the test current, Izr, per JEDEC standards, however, actual device capability is as described in Figure 3 of General Data sheet for Surmetlc 3Os.
body. and an ambient temperature of 25°C (+8°C, _2°C)
NOTE 5. SPECIAL SELECTIONS AVAILABLE INCLUDE:
NOTE 2. ZENER VOLTAGE (V,) MEASUREMENT
NOTE 3. ZENER IMPEDANCE (Zzl DERIVATION
Nominal zener voltages between those shown. light voltage tolerances such as ±1% and
The zener impedance is derived from the 60 cycle ac vohage, which results when an ac CUfrent having an rms value equal to 10% of the de zener current (Izr or 12K) is superimposed
±2%. Consult factory.
on IzrorlzK.
I
•
TRANSIENT VOLTAGE SUPPR!,;SSORS AND ZENER DIODES
4·2·54
MZ03.9 thru MZ0200
ELECTRICAL CHARACTERISTICS (TA =25°C unless otherwise noted.) VF =1.5 V Max, IF =200 rnA for all types.
Test
Current
IZT
%rC
Surge Current
@TL=25°C
1,-mA
(Note 3)
1.5
-0.06
± 0.055
±0.03
±0.03
+0.038
1380
1260
1190
1070
970
1.5
2
2
3.5
3.5
+0.045
+0.05
+0.058
+0.062
+0.068
890
810
730
660
605
4
7
7
10
10
5
5
7
7
10
+0.075
+0.076
+0.077
+0.079
+0.082
550
500
454
414
380
6
6
6
6
7
15
15
15
15
15
10
10
10
12
12
+0.083
+0.085
+0.086
+0.087
+0.088
344
304
285
250
225
25
25
25
10
10
7
8
8
21
21
15
15
15
40
40
14
14
17
17
20
+0.09
+0.091
+0.092
+0.093
+0.094
205
190
170
150
135
46
50
54
60
66
10
10
10
10
10
24
24
25
25
25
45
45
60
60
80
20
24
24
28
28
+0.095
+0.095
+0.096
+0.096
+0.097
125
115
110
95
90
64
70
77
85
94
72
79
88
96
106
10
10
10
5
5
25
30
30
60
60
80
100
100
200
200
34
34
41
41
50
+0.097
+0.098
+0.098
+0.099
+0.11
80
70
65
60
55
MZDll0
MZD120
MZD130
MZD150
MZD160
104
114
124
138
153
116
127
141
156
171
5
5
5
5
5
80
80
110
110
150
250
250
300
300
350
50
60
60
75
75
+0.11
+0.11
+0.11
+0.11
+0.11
50
45
MZD180
MZD200
168
188
191
212
5
5
150
150
350
350
90
90
+0.11
+0.11
Zener Voltage
(Note 2)
Zener Impedance at IZT
f = 1000 Hz (Ohm)
Type No.
(Note 1)
Min
Max
rnA
Typ
Max
MZD3.9
MZD4.3
MZD4.7
MZD5.1
MZD5.6
3.7
4
4.4
4.8
5.2
4.1
4.6
5
5.4
6
100
100
100
100
100
3.8
3.8
3.8
2
1
7
7
7
5
2
MZD6.2
MZD6.8
MZD7.5
MZD8.2
MZD9.1
5.8
6.4
7
7.7
8.5
6.6
7.2
7.9
8.7
9.6
100
100
100
100
50
1
1
1
1
2
2
2
2
2
4
MZD10
MZDll
MZD12
MZD13
MZD15
9.4
10.4
11.4
12.4
13.8
10.6
11.6
12.7
14.1
15.8
50
50
50
50
50
2
4
4
5
5
MZD16
MZD18
MZD20
MZD22
MZD24
15.3
16.8
18.8
20.8
22.8
17.1
19.1
21.2
23.3
25.6
25
25
25
25
25
MZD27
MZD30
MZD33
MZD36
MZD39
25.1
28
31
34
37
28.9
32
35
38
41
MZD43
MZD47
MZD51
MZD56
MZD62
40
44
48
52
58
MZD68
MZD75
MZD82
MZD91
MZD100
NOTE 1. TOLERANCE AND TYPE NUMBER DESIGNATION
The type numbers listed have zener voltage minimax limits as shown.
-
-
-
-
-
Maximum peak, non-repetitive reverse surge current of half square wave or eqUivalent sine
wave pulse of 50 rns duration, superimposed on the test current (Izr).
milti~
seconds, while maintaining a lead temperautre (TL) of 3Q°C at a point of 10 mm from the diode
body.
-
NOTE 3. (I,) NON·REPETITIVE SURGE CURRENT
NOTE 2. ZENER VOLTAGE (V.) MEASUREMENT
The zener voltage Is measured after the lest current (IZT) has been applied for 40 ±10
Blocking Voltage
IR=11lA
Typical
Tc
NOTE 4. SPECIAL SELECTIONS AVAILABLE INCLUDE:
Nominal zener voltages between those show". llght voltage tolerances such as ±1% and
±2%. Consult factory.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-55
II
III
MZP4728A thru MZP4764A, 1M110ZS5 thru 1M200ZS5
ELECTRICAL CHARACTERISTICS (TA = 25°C unless othelWise noted) VF = 1.5 V Max, IF = 200 rnA for all types
Nominal
Zener Voltage
Vz@IZT
Volts
{Note 2)
Test
Current
IZT
mA
ZZT@ IZT
Ohms
ZZK @ IZK
Ohms
IzK
mA
~Max
VR
Volts
Surge
Current
@TA=25°C
1,-mA
(Note 4)
MZP4728A
MZP4729A
MZP4730A
MZP4731A
MZP4732A
3.3
3.6
3.9
4.3
4.7
76
69
64
58
53
10
10
9
9
8
400
400
400
400
500
1
1
1
1
1
100
100
50
10
10
1
1
1
1
1
1380
1260
1190
1070
970
=> MZP4733A
MZP4734A
=> MZP4735A
MZP4736A
MZP4737A
5.1
5.6
6.2
6.8
7.5
49
45
41
37
34
7
5
2
3.5
4
550
600
700
700
700
1
1
1
1
0.5
10
10
10
10
10
1
2
3
4
5
890
810
730
660
605
MZP4738A
MZP4739A
MZP4740A
MZP4741A
MZP4742A
8.2
9.1
10
11
12
31
28
25
23
21
4.5
5
7
8
9
700
700
700
700
700
0.5
0.5
0.25
0.25
0.25
10
10
10
5
5
6
7
7.6
8.4
9.1
550
500
454
414
380
MZP4743A
19
MZP4747A
13
15
16
18
20
15.5
14
12.5
10
14
16
20
22
700
700
700
750
750
0.25
0.25
0.25
0.25
0.25
5
5
5
5
5
9.9
11.4
12.2
13.7
15.2
344
304
285
250
225
MZP4748A
=> MZP4749A
MZP4750A
=> MZP4751A
MZP4752A
22
24
27
30
33
11.5
10.5
9.5
8.5
7.5
23
25
35
40
45
750
750
750
1000
1000
0.25
0.25
0.25
0.25
0.25
5
5
5
5
5
16.7
18.2
20.6
22.8
25.1
205
190
170
150
135
MZP4753A
MZP4754A
MZP4755A
MZP4756A
MZP4757A
36
39
43
47
51
7
6.5
6
5.5
5
50
60
70
80
95
1000
1000
1500
1500
1500
0.25
0.25
0.25
0.25
0.25
5
5
5
5
5
27.4
29.7
32.7
35.8
38.8
125
115
110
95
90
MZP4758A
MZP4759A
MZP4760A
MZP4761A
MZP4762A
56
62
68
75
82
4.5
4
3.7
3.3
3
110
125
150
175
200
2000
2000
2000
2000
3000
0.25
0.25
0.25
0.25
0.25
5
5
5
5
5
42.6
47.1
51.7
56
62.2
80
70
65
60
55
MZP4763A
MZP4764A
lMll0ZS5
lM120ZS5
lM130ZS5
91
100
110
120
130
2.8
2.5
2.3
2
1.9
250
350
450
550
700
3000
3000
4000
4500
5000
0.25
0.25
0.25
0.25
0.25
5
5
5
5
5
69.2
76
83.6
91.2
98.8
50
45
lM150ZS5
lM160ZS5
lM180ZS5
lM200ZS5
150
160
180
200
1.7
1.6
1.4
1.2
1000
1100
1200
1500
6000
6500
7000
8000
0.25
0.25
0.25
0.25
5
5
5
5
114
121.6
136.8
152
Motorola
Type No.
(Note 1)
=> MZP4744A
=> MZP4745A
=> MZP4746A
I
17
Max Zener Impedance
{Note 3)
Leakage
Current
IR
@
-
-
-
"* Preferred part
NOTE 1. TOLERANCE AND TYPE NUMBER DESIGNATION
The type numbers listed have a standard tolerance on the nominal zener v~ltage of ±50fa.
The tcHerance on the 1M type numbers is indicated by the digits following ZS in the part
number. "5" indicates a ±5% Vz tolerance.
NOTE 2. ZENER VOLTAGE (VzJ MEASUREMENT
Motorola guarantees the zener voltage when measured at 90 seconds white maintaining the
lead temperature
(Td
al 3Q°C ±1°C, 318" from the diode body.
NOTE 3. ZENER IMPEDANCE (Zzl DERIVATION
The zener impedance is derived from the 60 cycle Be voltage, which results when an ae
current having an nns value equal to 10% of the de zener current (llT or IZJd is superimposed
on Izr or IlK-
NOTE 4. SURGE CURRENT (I,) NON-REPETITIVE
The rating listed in the electrical characteristics table is maximum peak, non-repetitive,
reverse surge current of 1/2 square wave or equivalent sine wave pulse of 1/120 second
duration superimposed on the test current, IZT• however, actual device capability is as
described in Figure 3 of General Data - Surmetic 30.
NOTE 5. SPECIAL SELECTIONS AVAILABLE INCLUDE:
Nominal zener vottages between those shown. light voltage tolerances such as ±1 % and
±2%. Consult factory.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-56
SECTION 4.2.4 DATA SHEETS
ZENER VOLTAGE REGULATOR DIODES -
Section 4.2.4.1 Axial Leaded SECTION 4.2.4.1.4
Devices
continued
II
5 WATT SURMETIC 40
MULTIPLE PACKAGE QUANTITY (MPQ)
REQUIREMENTS
DATA SHEETS
I
continued
I
Page No.
4-2-58
I
Package Option
Type No. Suffix
RL
4K
Tape and Ammo
TA
2K
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-57
MPQ(Unlts)
Tape and Reel
MOTOROLA
SEMICONDUCTOR-----------TECHNICAL DATA
1N5333B
5 Watt Surmetic 40
Silicon Zener Diodes
thru
1N5388B
· .. a complete series of 5 Watt Zener Diodes with tight limits and better operating characteristics that reflect the superior capabilities of silicon-oxide-passivated junctions. All this in
an axial-lead, transfer-molded plastic package offering protection in all common environmental conditions.
5 WATT
ZENER REGULATOR
DIODES
3.3-200 VOLTS
Specification Features:
• Up to 180 Watt Surge Rating @ 8.3 ms
• Maximum Limits Guaranteed on Seven Electrical Parameters
Mechanical Characteristics:
CASE: Void-free, transfer-molded, thermosetting plastic
FINISH: All external surfaces are corrosion resistant and leads are readily solderable
POLARITY: Cathode indicated by color band. When operated in zener mode, cathode
will be positive with respect to anode
MOUNTING POSITION: Any
WEIGHT: 0.7 gram (approx)
I
•
CASE 17-02
PLASTIC
MAXIMUM RATINGS
Rating
DC Power Dissipation
Lead Length = 3/8"
Derate above 75°C
@
Symbol
Value
Unit
Po
5
Watts
40
mW/"C
-65to +200
°C
TL = 75°C
Operating and Storage Junction Temperature Range
"" "'
TJ, Tstg
~
~
.......
"'
..........
..........
'L=1/S"
"'-
i'....
L=3/8"
N
L=1" -
L = LEAD LENGTH
TO HEAT SINK (SEE FIGURE 5)
~
"
I" "-
r---..~
........ ,"-.
..... j"--....
o
c..
o
o
.......
.......
~
............::
20
40
60
SO
100
120
140
160
~
180
200
Tlo LEAD TEMPERATURE (OC)
Figure 1. Power Temperature Derating Curve
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-58
1N5333B thru 1N5388B
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted, VF = 1.2 Max @ IF = 1 A for all types)
Nominal
Max Reverse
Max
Max
Zener
Max Zener Impedance
Leakage Current
Test
Voltage
Surge
Voltage
Current
Regulation
Current
JEDEC
Vz@IZT
ZZT @ IZT ZZK@IZK=lmA
@
Type No.
i,.Amps
Volts
Ohms
Ohms
IZT
VR
I!.Vz• Volt
IR
mA
Volts
(Note 3)
(Note 1)
(Note 2)
(Note 2)
(Note 2)
(Note 4)
IJA
=> lN5333B
3.3
400
1
20
0.85
380
3
300
0.8
350
lN5334B
3.6
2.5
500
150
1
18.7
0.54
17.6
lN5335B
3.9
320
2
500
50
1
0.49
10
lN5336B
4.3
1
16.4
290
2
500
0.44
lN5337B
4.7
1
15.3
260
2
450
5
0.39
=> lN5338B
5.1
240
1.5
400
1
1
14.4
0.25
=> lN5339B
5.6
220
1
400
1
2
13.4
0.19
12.7
lN5340B
6
200
1
300
1
3
lN5341B
6.2
1
200
1
12.4
0.1
3
200
0.15
=> lN5342B
6.8
200
10
5.2
11.5
175
1
=> lN5343B
7.5
175
1.5
200
10
5.7
10.7
0.15
150
0.2
=> lN5344B
8.2
1.5
200
10
6.2
10
lN5345B
8.7
150
2
200
10
6.6
9.5
0.2
lN5346B
9.1
150
2
150
7.5
6.9
9.2
0.22
0.22
125
2
125
7.6
8.6
=> lN5347B
10
5
11
125
lN5348B
0.25
2.5
125
5
8.4
8
=> lN5349B
12
100
2.5
125
2
9.1
7.5
0.25
=> lN5350B
13
100
2.5
100
1
9.9
7
0.25
0.25
lN5351B
14
100
2.5
75
1
10.6
6.7
1
11.5
15
0.25
=> lN5352B
75
2.5
75
6.3
0.3
=> lN5353B
16
2.5
75
1
12.2
75
6
lN5354B
17
70
2.5
75
0.5
12.9
5.8
0.35
0.4
65
2.5
75
=> lN5355B
18
0.5
13.7
5.5
lN5356B
14.4
0.4
5.3
19
0.5
65
3
75
0.5
15.2
5.1
20
0.4
65
3
75
=> lN5357B
22
3.5
75
0.5
16.7
4.7
lN5358B
0.45
50
0.5
24
18.2
4.4
0.55
=> lN5359B
50
3.5
100
=> lN5360B
25
110
0.5
19
4.3
0.55
50
4
=> lN5361B
27
120
0.5
20.6
4.1
0.6
50
5
lN5362B
28
6
130
0.5
21.2
3.9
0.6
50
140
=> lN5363B
30
40
0.5
22.8
3.7
0.6
8
=> lN5364B
33
40
10
150
0.5
25.1
3.5
0.6
11
160
0.5
27.4
3.3
0.65
=> lN5365B
36
30
=> lN5366B
39
14
170
0.5
29.7
3.1
0.65
30
0.7
20
190
0.5
lN5367B
43
32.7
2.8
30
0.5
47
35.8
2.7
0.8
=> lN5368B
210
25
25
27
0.5
lN5369B
51
38.8
2.5
0.9
25
230
lN5370B
56
20
280
0.5
42.6
2.3
1
35
lN5371B
60
20
40
350
0.5
42.5
2.2
1.2
62
1.35
=> lN5372B
20
42
400
0.5
47.1
2.1
1.5
lN5373B
51.7
68
20
44
500
0.5
2
1.6
lN5374B
75
45
620
0.5
56
1.9
20
1.8
lN5375B
15
65
82
720
0.5
62.2
1.8
2
lN5376B
87
760
0.5
66
1.7
15
75
2.2
15
75
lN5377B
91
760
0.5
69.2
1.6
2.5
lN5378B
12
90
800
0.5
76
1.5
100
2.5
12
125
1000
0.5
83.6
1.4
lN5379B
110
2.5
lN5380B
120
91.2
1.3
170
1150
0.5
10
2.5
lN5381B
130
98.8
1.2
190
1250
0.5
10
2.5
lN5382B
140
1.2
106
8
230
1500
0.5
Maximum
Regulator
Current
IZM
mA
(NoteS)
1440
1320
1220
1100
1010
930
865
790
765
700
630
580
545
520
475
430
395
365
340
315
295
280
265
250
237
216
198
190
176
170
158
144
132
122
110
100
93
86
79
76
70
63
58
54.5
52.5
47.5
43
39.5
36.6
34
(continued)
=> Preferred part
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-59
•
III
1N5.3338 thru 1 N53888
ELECTRICAL CHARACTERISTICS - continued (TA = 25°C unless otherwise noted. VF = 1.2 Max @ IF = 1 A for all types)
Nominal
Zener
Voltage
Vz@lzr
Volts
(Note 2)
JEDEC
Type No.
(Note 1)
=> 1N5383B
1N5384B
lN5385B
lN5386B
lN5387B
lN5388B
Zzr @ Izr
Ohms
(Note 2)
ZZK@lzK=1mA
Ohms
(Note 2)
ItA
8
330
8
8
5
5
5
350
380
430
450
480
1500
1650
1750
1750
1850
1850
0.5
0.5
0.5
0.5
0.5
0.5
150
160
170
180
190
200
VR
Volts
Max
Surge
Current
I,. Amps
(Note 3)
Max
Voltage
Regulation
I!o.Vz• Volt
(Note 4)
Maximum
Regulator
Current
IZM
mA
(NoteS)
114
122
129
137
144
152
.1.1
1.1
1
1
0.9
0.9
3
3
3
4
5
5
31.6
29.4
28
26.4
25
23.6
Max Reverse
Leakage Current
Max Zener Impedance
Teat
Current
Izr
mA
@
IR
=* Preferred part
NOTE 1. TOLERANCE AND TYPE NUMBER DESIGNATION
NOTE 4. VOLTAGE REGULATION (AV,)
The JEDEC type numbers shown Indicate a tolerance 01 15%.
Testconditions for voltage regulation are as follows: Vz measurements are made at 10% and
then at 50% of the Iz max value listed in the electrical characteristics table. The test current
NOTE 2. ZENER VOLTAGE (V,) AND IMPEDANCE (Zzr & Zz.)
time duration for each Vz measurement is 40 ± 10 ms. (T" = 250(; +8, -2°C). Mounting contact located as specified In Note 2.
Test conditions for zener voltage and Impedance are as follows: Iz is applied 40 ± 10 rns prior
to reading. Mounting contacts are located 318'" to 1/'i!' from the inside edge of mounting clips
to the body 01 the diode. (TA
= 25°C +8. _2°C).
NOTE 3. SURGE CURRENT (I.)
I
NOTE 5. MAXIMUM REGULATOR CURRENT (1zM)
The maximum current shown is based on the maximum voltage of a 5% type unit, therefore,
It applies only to the B-suffix device. The actuallzu for any device may not exceed the value
Surge CUrTent Is specified as the maximum allowable peak, non-recurrent square-wBYe! current with a pulse width, PW. of 8.3 ms. The data given in Figure 6 may be used to find the
maximum surge current for a square wave of any pulse wk:tth between 1ms and 1000 ms by
of 5 watts divided by the actual Vz of the device. TL = 75°C at 3/8" maximum from the device
body.
plotting the applicable points on logarithmic paper. Examples of this, using the 3.3 V and
200 V zeners, are shown i", Ftgure 7. Mounting contact located as specified In ~ote 3. (T"
NOTE 6. SPECIALS AVAILABLE INCLUDE:
= 25°C +8, -2'C.)
±1 % and ±2%. Consult factory.
Nominal zener voltages between the voltages shown and tighter voltage tolerance such as
TEMPERATURE COEFFICIENTS
•
10
!z
w
~
uw
8
~
6
a:@
4
8w
-
~e
~g
::;:
w
~
~
""
./
./
-
./
.... ../
-2
./
........
........
--
~
300
OS
u::
200
(3
tb
1.
.>-
8w -~
a:@
~~
~ §.
.~
RANGE
./
4
.... r-
100
....
~
III
....
RANGE
50
30
20
II
10
5
5
6
8
Vz. ZENER VOLTAGE@ Izr (VOLTS)
9
10
Figure 2. Temperature Coefficient-Range
for Units 3 to 10 Volts
o
20
40
60 80 100 120 140 160 180 200 220
Vz. ZENER VOLTAGE@ Izr (VOLTS)
Figure 3. Temperature Coefficient-Range
for Units 10 to 220 Volts
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-60
1N5333B thru 1N5388B
w
'-'
z
~
!:!l
-
20
!l!~
....J'i'
10 D=0.5
"':::;:Q
a:",
5 D=0.2
Ww
;r....J
D=O.l
::f2
z·
D = 0.05
""-
wz
zlD=O.Ol
~~
1-::> 0.5
Ci5Q
..-=.'
Cl
0.2 "D=O
0.001
:.
,....J
a>
DUTY CYCLE, D = tl~
SINGLE PULSE <1 TJL = 6Jdt)PPK
REPETITIVE PULSES <1 TJL = 6JL(t, D)PPK
NOTE: BELOW 0.1 SECOND, THERMAL
RESPONSE CURVE IS APPLICABLE
TO ANY LEAD LENGTH (L).
0.005
0.01
0.05
0.1
0.5
t, TIME (SECONDS)
20
10
50
100
Figure 4. Typical Thermal Response
L, Lead Length = 3/8 Inch
~
40
,/
w
'-'
z
~
illa:
./
30
. / V"
/'
V"
V
!
r--..
~
a:
a:
::>
'-'
-
........
w
~
-
ffi
-
11.,0.4
PRIMARY PATH OF
CONDUCTION IS THROUGH THE CATHODE LEAD
0.2
~
0.1
0.4
0.6
0.8
L, LEAD LENGTH TO HEAT SINK (INCH)
11.
!
30
20
::>
::>
rn
'"w'"11.
"")
I III
-
I
I
---
...........
I
PW = 1000 ms'- ~
3
6
20
30 40
NOMINAL Vz (V)
8 10
60 80 100
200
T=25°C- -
IZ
::>
PLOnED FROM INFORMATION
GIVEN IN FIGURE?"
1
[I
10
100
PW, PULSE WIDTH (ms)
1/
z
UJ
~z=200V
0.1
IN
10
UJ
0.5
0.2
I,
100
W
a:
a:
'-'
a:
....
[I
~
III
111
1000
Figure 7. Peak Surge Current versus Pulse Width
(See Note 3)
0.1
I
I
I
/
J
'II,
1
I
I
"
/I
":
l""H-..
,
,
Tc = 25°C
<-
.s
--
w
a:
....
:.....
'SQUARE WAVE - PW=100ms'
1000
Vz=3.3 V
5
'-'
--
I II II
10
(!)
......
PW=8.3ms'=
Figure 6. Maximum Non-Repetitive Surge Current
versus Nominal Zener Voltage
(See Note 3)
I-
Z
w
a:
a:
"
r-..
Figure 5. Typical Thermal Resistance
ii)
PW= 1 ms'
10
!z
w
V
pdi
V
0.2
/'
40
~ 20
L
2
1/
4
5
7
8
VZ, ZENER VOLTAGE (VOLTS)
Figure 8. Zener Voltage versus Zener Current
Vz = 3.3 thru 10 Volts
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-61
10
1N5333B thru 1N5388B
1000
1 100
Izw
a:
a:
=>
<..>
!z
~
~ 10
10
<..>
a:
w
a:
w
zw
z
I!:.l
N..
1::'
N
0.1
10
20
30
40
50
60
70
0.1
80
80
100
Vz, ZENER VOLTAGE (VOLTS)
120
140
160
180
200
220
Vz, ZENER VOLTAGE (VOLTS)
Figure 9. Zener Voltage versus Zener Current
Vz = 11 thru 75 Volts
Figure 10. Zener Voltage versus Zener Current
Vz = 82 thru 200 Volts
APPLICATION NOTE
II
Since the actual voltage available from a given zener diode
is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order
to calculate its value. The following procedure is recommended:
LlV= 9vZLlTJ
Lead Temperature, TL, should be determined from:
9vz, the zener voltage temperature coefficient, is found from
Figures 2 and 3.
h=9LA PO+TA
9LA is the lead-to-ambient thermal resistance and Po is the
power dissipation.
•
For worst-case design, using expected limits of Iz, limits of
Po and the extremes ofTJ (LlTJ) may be estimated. Changes in
voltage, Vz, can then be found from:
Junction Temperature, TJ, may be found from:
TJ=TL+LlTJL
LlTJL is the increase in junction temperature above the lead
temperature and may be found from Figure 4 for a train of
power pulses or from Figure 5 for dc power.
LlTJL = 9JL Po
Under high power-pulse operation, the zener voltage will
vary with time and may also be affected significantly by the
zener resistance. For best regulation, keep current excursions
as low as possible.
Data of Figure 4 should not be used to compute surge capability. Surge limitations are given in Figure 6. They are lower
than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots resulting in device degradation
should the limits of Figure 6 be exceeded.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-62
SECTION 4.2.4 DATA SHEETS
ZENER VOLTAGE REGULATOR DIODES -
continued
Section 4.2.4.2 Surface Mounted
SECTION 4.2.4.2.1
II
225 mW SOT-23
MULTIPLE PACKAGE QUANTITY (MPQ)
REQUIREMENTS
DATA SHEETS
Devices
Page No.
Package Option
Type No. Suffix
MPQ(Units)
4-2-64
Tape and Reel
T1. T2(1)
3K
BZX84C2V4L thru BZX84C75L
4-2-65
Tape and Reel
T3. T4(1)
10K
MMBZ522t BL thru MMBZ5270BL
4-2-66
(None)
1K
General Data -
225 mW SOT-23
Bulk
NOTE 1. The numbers on the suffixes indicate the following:
1.
r
Reel. Cathode lead toward sprocket hole.
2. 7" Reel. Cathode lead away from sprocket hole.
3. 13" Reel. Cathode lead toward sprocket hole.
4. 13.... Reel. Cathode lead away from sprocket hole.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-63
•
MOTOROLA
SEMiCONDUCTOR . . . . . . . . . . . . . . . . . . . . . .. .
TECHNICAL DATA
GENERAL
DATA
225 mW SOT-23
Zener Voltage Regulator Diodes
225mW
SOT-23
GENERAL DATA APPLICABLE TO ALL SERIES IN
THIS GROUP
Zener Voltage
Regulator Diodes
o
3
cathode
:..
0
1
Anode
THERMAL CHARACTERISTICS
Characteristic
Total Device Dissipation FR-5 Board,'
Symbol
Max
Unit
Po
225
mW
1.8
mW/"C
RaJA
556
°crw
Po
300
mW
2.4
mW/oC
RaJA
417
°crw
TJ • Tstg
150
°C
TA = 25°C
Derate above 25°C
Thermal Resistance Junction to Ambient
Total Device Dissipation
I
Alumina Substrate,'- TA = 25°C
Derate above 25°C
Thermal Resistance Junction to Ambient
Junction and Storage Temeprature
'FR-5 = 1.0 x 0.75 x 0.62 In.
** Alumina =0.4 x 0.3 x 0.024 in. 99.5% alumina.
•
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-64
CASE 318-07, STYLE B
SOT-23 (TO-236AB)
PLASTIC
BZX84C2V4L thru BZX84C75L
ELECTRICAL CHARACTERISTICS (Pinout: 1-Anocle, 2-NC, 3-Cathode) (VF = 0.9 V Max
Zener Von.ge
v,,(VoIla)
O..,.,aSmA
(N_l)
MaxZener
Impedance
Zm
(Ohms)
Olm=
SmA
0.2
0.1
0.1
0.1
0.05
7
6
8
8
10.5
'.3
10.2
11.2
12.3
13.7
10.&
11.6
12.7
14
15.5
ISO
150
150
170
'.4
10.7
11.6
0.05
0.05
0.05
0.05
0.05
11.2
12.6
14
15.4
16.8
15.2
16.7
18.7
20.7
22.7
17
19
21.1
23.2
25.5
200
&.8
7.5
90
25
30
30
40
45
55
55
70
IIA
-
'.&
O..,.,=2mA
27
30
25.1
33
38
BZX84C43L
BZX64C47L
BZX84C51L
BZX84C56L
BZX84C62L
V15
V16
V17
V18
V19
BZX84C68L
BZX84C75L
V20
Y21
75
~
31
34
37
28.9
32
35
38
41
43
47
51
56
62
40
44
49
52
58
68
84
70
36
29
80
60
60
100
200
225
225
250
250
V"BeIow
o 1m = 0.1 mA
0"",=
O.5mA
(N_2)
18.9
21
23.1
25.2
27.3
25
27.8
30.8
33.8
38.7
28.9
35
38
41
325
130
0.05
0.05
0.05
0.05
0.05
46
50
54
50
66
ISO
170
160
200
215
0.05
0.05
0.05
0.05
0.05
30.1
32.9
35.7
39.2
43.4
39.7
43.7
47.6
51.5
57.4
46
SO
54
60
375
375
400
66
450
72
79
240
0.05
0.05
47.6
52.5
63.4
69.4
72
79
500
90
255
10.4
11.4
12.5
13.9
15.4
16.9
18.9
20.9
22.9
12.9
14.2
15.7
17.2
19.2
21.4
23.4
25.7
6
6
6
25
25
~.5
~.5
~.5
~.5
~.5
4SO
4SO
225
200
lm
Below
0..,.,=
2mA
80
80
60
480
400
~.5
lm
Zm
Vl0
Vl1
V12
V13
V14
105
100
85
85
80
20
20
8.8
Z5
5.&
8,4
7
7.7
&.5
BZX84C.27L
BZX84C30L
BZX64C33L
BZX84C38L
BZX64C39L
14.0
16.0
18.0
20.0
22.0
5.9
7.&
1.4
&.&
7.4
6
&.&
9.7
6
8.3
5.8
&,4
7
7.7
8.5
1.2
VZ1 Below
10.4
12.4
14.4
16.4
18.4
150
4
5
5
6
&.&
7.2
7.9
8.7
Z4
V8
V9
20
20
20
5.&
BZXMC8V2L
BZX84C8VIL
BZX84C7V5L
BZXMC8V2L
BZX84C9V1L
17.1
19.1
21.2
23.3
25.6
130
130
130
120
110
4
&
15.3
16.8
18.8
20.8
22.8
8.0
9.0
10.0
11.0
13.0
3
2
1
0.7
0.5
5.2
16
18
20
22
24
4.5
5.4
&.0
7.0
9.2
10
1&
15
15
15
5.8
Y7
10
10
10
15
20
30
30
15
15
10
Z2
V5
V6
185
155
140
135
130
4.7
5.1
5.4
5.9
&.3
Z3
BZX84C16L
BZX84C18L
BZX84C20L
BZX84C.22L
BZX84C24L
3.7
4.5
5.3
&.2
7.0
4.1
4.4
4.5
5
5.2
5
5.4
V3
V4
&
0.4
1.2
2.5
3.2
3.&
4.8
3.5
4
4.7
5.3
&
600
600
500
80
40
2.9
3.3
3.7
4.2
4.4
4.8
10.4
11.4
12.4
13.8
260
1
1
2
2
2
90
90
80
Y2
-2.5
0
0.2
1.2
2.5
3
3
3
2
1
4.1
4.6
VI
-3.5
-2.7
-2.0
SO
50
50
40
40
3.7
4
10.&
11.6
12.7
14.1
15..
4SO
4SO
4SO
4SO
4SO
3.2
3.6
3.9
4.2
4.5
3.9
4.3
4.7
5.1
1.4
0
0
0
0
0
2.6
3
3.3
3.6
3.9
Z16
W9
10
11
12
13
15
Me.
MIX
600
600
600
600
600
BZX84C3VSL
BZX64C4V3L
BZX84C4V7L
BZX84C5V1L
BZlC84C5VeL
Z9
Min
Min
2.1
2.4
2.7
2.9
3.3
100
100
95
95
CpF
~.5
Mo.
2.6
2.9
3.2
3.5
3.6
V.
0 Volts
d,.ldt
(mV/k)
OIzr,=5mA
Max
OV.=O
1=1 MHz
1.7
1.9
2.1
2.3
2.7
MI.
2.2
2.5
2.8
3.1
3.4
BZX84C101.
BZX84CllL
BZX84C12L
BZX84C13L
BZX84C15L
Zm
Min
Min
2.4
2.7
3
3.3
3.6
1.2
OIm=20mA
(_1)
1
1
1
1
1
Nom
ZII
Z12
Z13
Z14
Z15
9.1
Zm
SO
20
10
5
5
Merklng
Z8
rt
Z8
Current
Max Zenar
mpedance
(Ohms)
Olm=
20mA
BZX84C2V4L
BZX84C.2V7L
BZX84C3VOL
BZX84C3V3L
BZX64C3VSL
7.2
7.9
8.7
9.&
Leakage
@ IF = 10 rnA for all types)
MuZenar Z._VoHage
v,,(VoIl8)
mpedance
(Ohms)
Olm=
1 mA
l'fpe
Number
Z1
..
_Vollage
V,,(VoIla)
OIm=lmA
(N_l)
M. .
32
300
300
350
350
425
475
VaS.low
01m-l0mA
25.2
28.1
31.1
34.1
37.1
29.3
32.4
35.4
38.4
41.5
40.1
44.1
49.1
52.1
58.2
46.5
SO.5
54.6
60.8
67
84.2
70.3
73.2
60.2
Preferred part
NOTES: 1. Zener voltage is measured wi1h • pulse test current (I,) applied at an ambient temperature of 25'C.
2. The zener Impedance, 2m. for the 27 through 75 vah types is tested at 0.5 rnA rather than the test current of 0.1 rnA used for VZ2.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-65
aalow
Olm=
10mA
45
d,.ldt
(mV/k) Below
O..,.,=2mA
21.4
24,4
27.4
30.4
33.4
25.3
29.4
33.4
37.4
41.2
70
70
70
70
45
100
110
120
37.6
42.0
49.6
52.2
58.8
46.6
51.8
57.2
63.8
71.6
40
40
40
40
35
130
140
65.6
73.4
79.8
88.6
35
35
50
65
60
70
60
90
II
-
MMBZ5221 BL thru MMBZ5270BL
ELECTRICAL CHARACTERISTICS (Pinout: 1-Anode, 2-NC, 3-Cathode) (VF = 0.9 V Max
=>
=>
=>
=>
=>
=>
=>
=>
=>
II
•
=>
=>
Device
Marking
MMBZ5221BL
MMBZ5222BL
MMBZ5223BL
MMBZ5224BL
MMBZ5225BL
MMBZ5226BL
MMBZ5227BL
MMBZ5228BL
MMBZ5229BL
MMBZ5230BL
MMBZ5231 BL
MMBZ5232BL
MMBZ5233BL
MMBZ5234BL
MMBZ5235BL
MMBZ5236BL
MMBZ5237BL
MMBZ5238BL
MMBZ5239BL
MMBZ5240BL
18A
18B
18C
18D
18E
8A
8B
8C
80
8E
8F
8G
8H
8J
8K
8L
8M
8N
8P
8Q
MMBZ5241BL
MMBZ5261BL
MMBZ5262BL
MMBZ5263BL
MMBZ5264BL
MMBZ5265BL
8R
85
8T
8U
8V
8W
8X
8Y
8Z
81A
81B
81C
81D
81E
81F
81G
81H
81J
81K
18F
18G
81L
81M
81N
18H
MMBZ5266BL
MMBZ5267BL
MMBZ5268BL
MMBZ5269BL
MMBZ5270BL
81P
18J
18K
18L
810
=> MMBZ5242BL
MMBZ5243BL
MMBZ5244BL
=> MMBZ5245BL
MMBZ5246BL
MMBZ5247BL
MMBZ5248BL
MMBZ5249BL
MMBZ5250BL
MMBZ5251BL
MMBZ5252BL
MMBZ5253BL
=> MMBZ5254BL
=> MMBZ5255BL
MMBZ5256BL
MMBZ5257BL
MMBZ5258BL
MMBZ5259BL
MMBZ5260BL
Test
Current
IZT
mA
zener
Voltage
Vz(±5%)
Nominal
(Note 1)
ZZK
Iz =0.25mA
OM..
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
9.5
9
8.5
7.8
7.4
7
6.6
6.2
5.6
5.2
5
4.6
4.5
2.4
2.5
2.7
2.8
3
3.3
3.6
3.9
4.3
4.7
5.1
5.6
6
6.2
6.8
7.5
8.2
8.7
9.1
10
18
19
20
22
24
25
27
28
1200
1250
1300
1400
1600
1600
1700
1900
2000
1900
1600
1600
1600
1000
750
500
500
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
4.2
3.8
3.4
3.2
3
2.7
2.5
2.2
2.1
2
30
33
36
39
43
47
51
56
60
62
600
700
700
800
900
1000
1100
1300
1400
1400
1.8
1.7
1.5
1.4
1.4
68
75
82
87
91
1600
1700
2000
2200
2300
11
12
13
14
15
16
17
@
@ IF = 10 rnA for aillypes.)
ZZT
Iz = IZT
10% Mod
nMax
30
30
30
30
29
28
24
23
22
19
17
11
7
7
5
6
8
8
10
17
22
30
13
15
16
17
19
21
23
25
29
33
35
41
44
49
58
70
80
93
105
125
150
170
185
230
270
330
370
400
=> Preferred part
NOTE 1. Zener voltage is measured with a pulse test current (Izr) applied at an ambient temperature of 25°C.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-66
Max
IR
IlA
@
VR
V
100
100
75
75
50
25
15
10
5
5
1
1
1
1
1
1
1
1
1
2
5
5
5
5
3
2
3
3.5
4
5
6
6.5
6.5
7
8
8.4
9.1
9.9
10
11
12
13
14
14
15
17
18
19
21
21
3
3
3
3
3
2
1
0.5
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
23
25
27
30
33
36
39
43
46
47
52
56
62
68
69
SECTION 4.2.4 DATA SHEETS
ZENER VOLTAGE REGULATOR DIODES -
Section 4.2.4.2 Surface Mounted SECTION 4.2.4.2.2
continued
continued
I
500 mW LEAD LESS (00-34 BODY SIZE)
MULTIPLE PACKAGE QUANTITY (MPQ)
REQUIREMENTS
DATA SHEETS
Devices
Page No.
Package Option
Type No. Suffix
MPQ(Unlts)
General Data - 500 mW Leadless
4-2-68
Tape and Reel
T1,T2(1)
2K
BZV55C2V4 thru BZV55C56
4-2-73
Tape and Reel
T3, T4(1)
5K
MLL4678 thru MLL4717
4-2-74
MLL5221 B thru MLL5263B
4-2-75
NOTE 1. The numbers on the suffixes indicate the following:
1.
2.
r
r
Reel. Cathode lead toward sprocket hole.
Reel. Cathode lead away from sprocket hole.
3. 13H Reel. Cathode lead toward sprocket hole.
4. 13" Reel. Cathode lead away from sprocket hole.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-67
•
MOTOROLA
SEMiCONDUCTOR . . . . . . . . . . . . . . . . . . . . . . . ..
TECHNICAL DATA
GENERAL
DATA
500 m W Leadless 00-34 Glass
Zener Voltage Regulator Diodes
500mW
LEAOLESS
GENERAL DATA APPLICABLE TO ALL SERIES IN
THIS GROUP
00-34
500 mW Hermetically Sealed
Glass Silicon Zener Diodes
LEADLESS
GLASS ZENER DIODES
500 MILLIWATTS
1.8-56 VOLTS
Specification Features:
•
•
•
•
•
Complete Voltage Range - 1.8 to 56 Volts
Leadless Package for Surface Mount Technology
Double Slug Type Construction
Metallurgically Bonded Construction
Oxide Passivated Die
Mechanical Characteristics:
CASE: Double slug type, hermetically sealed glass
I
MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230°C,
for 10 seconds
FINISH: All external surfaces are corrosion resistant and readily solderable
POLARITY: Cathode indicated by color band. When operated in zener mode, cathode
will be positive with respect to anode
"
MOUNTING POSITION: Any
CASE'362-03
GLASS
MAXIMUM RATINGS
Rating
Symbdl
Value
Unit
PD
500
3.3
mW
mWFC
TJ, Ts\g
-65to +200
DC
TA:;; 50DC
Derate above TA = 50 DC
DC Power Dissipation
@
Operating and Storage Junction Temperature Range
STEADY STATE POWER DERATING
1.4
en
1.2
~
1
~
r,
is
~ 0.8
gj
Ei 0.6
...........:
0.4
..........
rE' 0.2
o
o
Po versus Tc -
1'\..-
/' Po versus TA
a:
~
'"
'"
........
I'\..
",
'\.
........
"
~
20
40
60
80
100
120
140
160
180
200
T, TEMPERATURE (DC)
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-68
GENERAL DATA -
500 mW LEADLESS 00-34
APPLICATION NOTE
Since the actual voltage available from a given zener diode
is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order
to calculate its value. The following procedure is recommended:
II.T JC is the increase in junction temperature above the case
temperature and may be found by using:
II.TJC = SJC Po
For worst-case deSign, using expected limits of Iz, limits of
Case Temperature, T c, should be determined from:
Po and the extremes ofTJ (II.TJ) may be estimated. Changes in
voltage, Vz, can then be found from:
TC=SCAPO+TA
SCA is the case-to-ambient thermal resistance (OC/W) and
Po is the power dissipation. The value for SCA will vary and
depends on the device mounting method. SCA is generally
200°C/W for the various clips and tie pOints in common use
and for printed circuit board wiring.
Svz, the zener voltage temperature coefficient, is found from
Figures 3 and 4.
The temperature of the case can also be measured using a
thermocouple placed at the case end as close as possible to
the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to
heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the
measured value of T c, the junction temperature may be determined by:
Under high power-pulse operation, the zener voltage will
vary with time and may also be affected significantly by the
zener resistance. For best regulation, keep current excursions
as low as possible.
Surge limitations are given in Figure 6. They are lower than
would be expected by conSidering only junction temperature,
as current crowding effects cause temperatures to be extremely high in small spots resulting in device degradation
should the limits of Figure 6 be exceeded.
TYPICAL CHARACTERISTICS
lOOK
40K
20K
<" 10K
.s 4K
!z 2K
~ lK
a: 400
5 200
w 100
~ 40
c(
20
~
10
=
=
TYPICAL LEAKAGE CURRENT
AT VR AS STATED FOR
5.0% UNITS (2.4 V-20 V)
::
a:
a:
10
0
5
3
2
:::J
w
(!)
:;2
" "
~ ~
1
0.4
0.2
0.1 0
~
!z
w
100
50
30
20
-
TJ=+125°s.,.,...
TYPICAL LEAKAGE CURRENT ;;;;;
AT VR AS STATED FOR
~
5.0% UNITS (20 V 91 V)
~
c(
w
-'
TJ = +125°C
25°C
4
6
8
10
12
14
16
Vz, NOMINAL ZENER VOLTAGE (VOLTS)
=~
18
~
.ri; 0.5
20
Figure 1. Typical Leakage Current
~ == 25°C
0.3
0.2
0.1
20
30
40
50
60
70
80
VZ, NOMINAL ZENER VOLTAGE (VOLTS)
Figure 2. Typical Leakage Current
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-69
90
II
500 mW LEADLESS 00-34
GENERAL DATA -
a. Range for Units to 12 Volts
b. Range for Units to 12 to 100 Volts
6+12
3>
s+10
~
(3
+8
V
u::
It
8w
II:
+6
~ ~V
+4
!;;: +2
II:
w
c..
~
i'
'-
-2
'" -4
~
' -~
2
/
./ '/
s
/"
!z
'/ / '
tt
~
~
Vz@lzr
~
::!!
~
4
7
8
VZ, ZENER VOLTAGE (VOLTS)
10
11
~~
~ :::;;.'
RANGE
Vz@lzr
7
=
5
3
1
10
12
.....
......-: ~
8 10
~
RANGE
.....:
.......:::: I-'"'"
30
20
w
/ ' ~....... ---(
::::>
6100
3> 70
50
20
30
50
Vz. ZENER VOLTAGE (VOLTS)
70
100
Figure 3. Temperature Coefficients
(-55°C to + 150°C temperature range; 90% of the units are in the ranges indicated.)
1000
r--
Vz@lz
TA = 25°C
I
20 rnA
~
.......
.?: / /
/ A "
,'l"
!;;'
-4
-'
...-
TA = 25°C
500
..... OVBIAS
~ 200
i::!:
50
(3
~
Cf. 20
<3
c5 10
I
3
50% OF
VzBIAS
5
2
1
1
7
~
~ 30
II:
W
;;::
""i"Ioo
~
.....
--
~'2'~YCLE
20
0
c..
w
C!l
II:
10
== 10% DUTY CYCLE
::::>
en
«
""w
-
c..
:j
1
0.01
10
5
.......
-- - r-..
2.4 V-l0 V NON REPETITIVE
r-..
r--. :::--.. r....
-
---
-,...~
0.1
0.2
100
RECTANGULAR
WAVEFORM
TJ = 25°C PRIOR TO
INITIAL PULSE
11 V-91 V NON REPETITIVE
I I I III
I I I III
0.05
50
Figure 5. Typical Capacitance
20% DUTY CYCLE
0.02
20
VZ, ZENER Vz (VOLTS)
Figure 4. Effect of Zener Current
100
70
50
1 VBIAS~
z
Vz, ZENER VOLTAGE (VOLTS)
fi)
,..
~
~ 100
0.01 rnA
1 rnA
NOTE: BELOW 3 VOLTS AND ABOVE 8 VOLTS
CHANGES IN ZENER CURRENT DO NOT
AFFECT TEMPERATURE COEFFICIENTS
~ ~'"
'"
~
......-
0.5
This graph represents 90 percentile data points.
For worst case design characteristics, multiply surge power by 2/3.
2
5
PW, PULSE WIDTH (rns)
10
20
50
Figure 6. Maximum Surge Power
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-70
100
200
1-.1-
500
1000
500 mW LEADLESS 00-34
GENERAL DATA -
en
::;;
1000
500
:I:
Q. 200
w
z 100
«
cw
50
(,)
g
20
«
z
10
::;;
..,..
en
soo
::;;
Q. 200
w
i-'
(,) 100
~ 70 I - - _SmA
w
SO
"~
........
(,)
~
6.2V
>c
20 I - - -20mA'"
10
~ ~
N
N
N
TJ = 2SoC
iz(rms) = 0.1 Iz(dc)
f=60Hz
I--Iz= 1 mA
:I:
27V
"~
"""'l
"' '"
1000
700
TJ = 25°C
iz(rms) - 0.1 Iz(dc)
f = 60 Hz
Vr 2.7 V
N
2
1
1
0.1
0.2
O.S
10
Iz, ZENER CURRENT (mA)
20
SO
S 7 10
20 30
VZ, ZENER CURRENT (mA)
1
100
Figure 7. Effect of Zener Current
on Zener Impedance
1000
-----
SOO
1 200
~
MINIMUM
MAXIMUM
.'
SO
~ 20
~
II:
1:2
10
u:::
.......
1
100
(,)
,
L
=
~ 7SoC
I.
~
"Y
~
:,..-: . /
'"
1S0°C
1
70 100
Figure 8. Effect of Zener Voltage
on Zener Impedance
II:
~
SO
"/ 19"
"/
I
25°C
,
!-" O°C
/
0.5
0.4
0.6
0.7
0.8
1.1
0.9
VF, FORWARD VOLTAGE (VOLTS)
Figure 9. Typical Forward Characteristics
20
10
«
.§.
IZ
/~0/ I
1/~ / '/
V/
,
/
I I
I
I
T~ = 2So~
I
I
I
II
W
II:
II:
=>
(,)
II:
W
Z
W
N
N
I III 1/
0.1
0.01
hVI /
1
I
10
11
Vz, ZENER VOLTAGE (VOLTS)
12
13
14
Figure 10. Zener Voltage versus Zener Current - Vz = 1 thru 16 Volts
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-71
1S
16
•
GENERAL DATA -500 mW LEADLESS 00-34
10
/
~
/
I I
I
1
I
(
I
TA=25°C
/
/
i
a:
a:
::J
<.)
a:
w
~ 0.1
N
0.01
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Vz, ZENER VOLTAGE (VOLTS)
Figure 11. Zener Voltage versus Zener Current - Vz
I
=15 thru 30 Volts
10
cc
1
.§..
/1 /
(
"
TA = J50 C
VI
/ /;
I
I
~a:
I
::J
<.)
a:
~
~
0.1
,,61
0.Q1
30
35
40
45. 50
55
60
65
70
75
80
85
90
95
VZ, ZENER VOLTAGE (VOLTS)
Figure 12. Zener Voltage versus Zener Current - Vz = 30 thru 105 Volts
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-72
100
105
BZV55C2V4 thru BZV55C56
ELECTRICAL CHARACTERISTICS (VF = 0.9 V Max @ IF = lOrnA lor all types)
Zener Voltage
VZ1 (Volts)
@lm =5mA
(Note I)
Min
Max
Min
Max
1
1
1
1
1
1.7
1.9
2.1
2.3
2.7
2.1
2.4
2.7
2.9
3.3
600
600
600
600
600
2.6
3
3.3
3.6
3.9
3.2
3.6
3.9
4.2
4.5
50
50
50
90
90
80
60
40
3
3
3
2
1
1
1
2
2
2
2.9
3.3
3.7
4.2
4.8
3.5
4
4.7
5.3
6
600
SOO
500
480
400
4.1
4.4
4.5
5
5.2
4.7
5.1
5.4
5.9
6.3
30
30
15
15
10
6.6
7.2
7.9
8.7
9.6
10
15
15
15
15
3
2
1
0.7
0.5
4
4
5
5
6
5.6
6.3
6.9
7.6
8.4
6.6
7.2
7.9
8.7
9.6
150
80
80
80
100
5.8
6.4
7
7.7
8.5
6.8
7.4
8
8.8
9.7
6
6
6
6
8
9.4
10.4
11.4
12.4
13.8
10.6
11.6
12.7
14.1
15.6
20
20
25
30
30
0.2
0.1
0.1
0.1
0.05
7
8
8
8
10.5
9.3
10.2
11.2
12.3
13.7
10.6
11.6
12.7
14
15.5
150
150
150
170
200
9.4
10.4
11.4
12.5
13.9
10.7
11.8
12.9
14.2
15.7
10
10
10
15
20
15.3
16.8
18.8
20.8
22.8
17.1
19.1
21.2
23.3
25.6
40
45
55
55
70
0.05
0.05
0.05
0.05
0.05
11.2
12.6
14
15.4
16.8
15.2
16.7
18.7
20.7
22.7
17
19
21.1
23.2
25.5
200
225
225
250
250
15.4
16.9
18.9
20.9
22.9
17.2
19.2
21.4
23.4
25.7
20
20
20
25
25
Max
BZV55C2V4
BZV55C2V7
BZV55C3VO
BZV55C3V3
BZV55C3V6
2.4
2.7
3
3.3
3.6
2.2
2.5
2.8
3.1
3.4
2.6
2.9
3.2
3.5
3.8
100
100
95
95
90
BZV55C3V9
BZV55C4V3
BZV55C4V7
BZV55C5Vl
BZV55C5VS
3.9
4.3
4.7
5.1
5.S
3.7
4
4.4
4.8
5.2
4.1
4.S
5
5.4
6
BZV55C6V2
BZV55CSV8
BZV55C7V5
BZV55C8V2
BZV55C9Vl
6.2
S.8
7.5
8.2
9.1
5.8
6.4
7
7.7
8.5
BZV55Cl0
BZV55Cl1
BZV55C12
BZV55C13
BZV55C15
10
11
12
13
15
BZV55C16
BZV55C18
BZV55C20
BZV55C22
BZV55C24
16
18
20
22
24
BZV55C43
BZV55C47
BZV55C51
BZV55C56
33
36
39
I.
!lA
@
Zzn
Below
Zm
Below
@Im =
2mA
Vz1 Beiow
@lm =2mA
27
30
@I ZT4
V,. Below
@1.,.=0.1 mA
Zzn
(Ohms)
@I.,.=
20mA
40
40
V.. Below
@1;m=10mA
Below
@I.,.=
10mA
28.9
32
35
38
41
80
80
90
130
0.05
0.05
0.05
0.05
0.05
18.9
21
23.1
25.2
27.3
25
27.8
30.8
33.8
36.7
28.9
32
35
38
41
300
300
325
350
350
25.2
28.1
31.1
34.1
37.1
29.3
32.4
35.4
38.4
4'1.5
45
50
55
60
70
40
44
48
52
46
50
54
60
150
170
180
200
0.05
0.05
0.05
0.05
30.1
32.9
35.7
39.2
39.7
43.7
47.6
51.5
46
50
54
60
375
375
400
425
40.1
44.1
48.1
52.1
46.5
50.5
54.6
60.8
80
90
100
110
47
51
56
80
NOTES: 1. Zener voltage is measured with a pulse test current (Iz) applied at an ambient temperature of 2S"C.
ZZT2.
for the 27 through 56 volt types is tested at 0.5 rnA rather than the test current of 0.1 rnA used for V'l2.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-73
II
Zzn
=
0.5mA
(Note 2)
Max Zener
Impedance
25.1
28
31
34
37
43
2. The zener impedance,
Zener Voltage
V.. (Volta)
@lzn =20mA
(Note 1)
50
20
10
5
5
Min
BZV55C27
BZV55C30
BZV55C33
BZV55C36
BZV55C39
Zener Voltage
V,. (Volts)
@lzn=lmA
(Note I)
V.
Volts
Nom
Type
Number
Max
Reverse
Leakage
Current
Max Zener
Impedance
Zzn
(Ohms)
@Izn=
1 mA
Max Zener
Impedance
Zm
(Ohms)
@Im =
5mA
-
MLL4678 thru MLL4717
Low level oxide passivated zener diodes for applications requiring extremely low operating currents, low leakage, and sharp breakdown voltage.
• Complete Voltage Range - 1.8 to 43 Volts
• Zener Voltage Specified @ Izr =50 !lA
• Leadless Package for Surface Mount Technology
• Maximum Delta Vz Given from 10 to 100 I1A
ELECTRICAL CHARACTERISTICS (TA = 25°C, VF = 0.9 V Max at IF = 10 mA for all types)
Zener Voltage
VZ@IZT=50IlA
Volts
Mexlmum
Reverse Current
IR IlA
Test
Voltage
VR Volts
Mexlmum
Maximum
Zener Current Voltage Change
IZMmA
l!..Vz Volts
(Note 2)
(Note 4)
Type
Number
(Note 1)
Nom (Note 5)
Min
Mex
MLL4678
MLL4679
MLL4680
MLL4681
MLL4682
1.8
2
2.2
2.4
2.7
1.71
1.9
2.09
2.28
2.565
1.89
2.1
2.31
2.52
2.835
7.5
5
4
2
1
1
1
1
1
1
120
110
100
95
90
0.7
0.7
0.75
0.8
0.85
MLL4683
MLL4684
MLL4685
MLL4686
MLL4687
3
3.3
3.6
3.9
4.3
2.85
3.135
3.42
3.705
4.085
3.15
3.465
3.78
4.095
4.515
0.8
7.5
7.5
5
4
1
1.5
2
2
2
85
80
75
70
65
0.9
0.95
0.95
0.97
0.99
MLL4688
MLL4689
MLL4690
MLL4691
MLL4692
4.7
5.1
5.6
6.2
6.8
4.465
4.845
5.32
5.89
6.46
4.935
5.355
5.88
6.51
7.14
10
10
10
10
10
3
3
4
5
5.1
60
55
50
45
35
0.99
0.97
0.96
0.95
0.9
MLL4693
MLL4694
MLL4695
MLL4696
MLL4697
7.5
8.2
8.7
9.1
10
7.125
7.79
8.265
8.645
9.5
7.875
8.61
9.135
9.555
10.5
10
1
1
1
1
5.7
6.2
6.6
6.9
7.6
31.8
29
27.4
26.2
24.8
0.75
0.5
0.1
0.08
0.1
MLL4698
MLL4699
MLL4700
MLL4701
MLL4702
11
12
13
14
15
10.45
11.4
12.35
13.3
14.25
11.55
12.6
13.65
14.7
15.75
0.05
0.05
0.05
0.05
0.05
8.4
9.1
9.8
10.6
11.4
21.6
20.4
19
17.5
16.3
0.11
0.12
0.13
0.14
0.15
MLL4703
MLL4704
MLL4705
MLL4706
MLL4707
16
17
18
19
20
15.2
16.15
17.1
18.05
19
16.8
17.85
18.9
19.95
21
0.05
0.05
0.05
0.05
0.01
12.1
12.9
13.6
14.4
15.2
15.4
14.5
13.2
12.5
11.9
0.16
0.17
0.18
0.19
0.2
MLL4708
MLL4709
MLL4710
MLL4711
MLL4712
22
24
25
27
28
20.9
22.8
23.75
25.65
26.6
23.1
25.2
26.25
28.35
29.4
0.01
0.01
0.01
0.01
0.01
16.7
18.2
19
20.4
21.2
10.8
9.9
9.5
8.8
8.5
0.22
0.24
0.25
0.27
0.28
30
28.5
31.35
34.2
37.05
40.85
31.5
34.65
37.8
40.95
45.15
0.01
0.01
0.01
0.01
0.01
22.8
25
27.3
29.6
32.6
7.9
7.2
6.6
6.1
5.5
0.3
0.33
0.36
0.39
0.43
MLL4713
MLL4714
MLL4715
MLL4716
MLL4717
33
36
39
43
(Note 3)
NOTE 1. TOLERANCE AND VOLTAGE DESIGNATION (Vz)
NOTE 4. MAXIMUM VOLTAGE CHANGE (AVz)
The type numbers shown have a standard tolerance of ±5% on the nominal zener vohage.
Voltage change is equal to the difference between Vz at 100 jJ.A and Vz at 10 J.lA.
NOTE 2. MAXIMUM ZENER CURRENT RATINGS (I".)
Maximum zener current ratings are based on maximum zener voltage of the individual
units.
NOTE 5. ZENER VOLTAGE (Vz) MEASUREMENT
Nominal zener voltage is measured wlth the deVIce junction in thermal equilibrium at the
case temperature of 30°C ±1°C.
NOTE 3. REVERSE LEAKAGE CURRENT (I.)
Reverse leakage currents are guaranteed and are measured at VR as shown on the table.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-74
MLL52218 thru MLL52638
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted. Based on de measurements at thermal equilibrium; case
temperature maintained at 30 ± 2°C. VF = 0.9 Max @ IF = 10 rnA for all types.)
Type No.
(Note 1)
Nominal
Zener Voltage
Vz @ Izr
Volts
(Note 2)
Test
Current
Izr
rnA
Zzr@ Izr
Ohms
ZZK @ IZK = 0.25 rnA
Ohms
~A
VR
Volts
9vz(%/°C)
(Note 3)
MLL5221B
MLl5222B
MLL5223B
MLL5224B
MLL5225B
2.4
2.5
2.7
2.8
3
20
20
20
20
20
30
30
30
30
29
1200
1250
1300
1400
1600
100
100
75
75
50
1
1
1
1
1
-0.085
-0.085
-0.08
-0.08
-0.075
MLL5226B
MLL5227B
MLL5228B
MLL5229B
MLL5230B
3.3
3.6
3.9
4.3
4.7
20
20
20
20
20
28
24
23
22
19
1600
1700
1900
2000
1900
25
15
10
5
5
1
1
1
1
2
-0.07
-0.065
-0.06
±0.055
±0.03
=> MLL5231B
MLL5232B
=> MLL5233B
MLL5234B
MLL5235B
5.1
5.6
6
6.2
6.8
20
20
20
20
20
17
11
7
7
5
1600
1600
1600
1000
750
5
5
5
5
3
2
3
3.5
4
5
±0.03
+0.038
+0.038
+0.045
+0.05
MLL5236B
MLL5237B
MLL5238B
MLl5239B
MLL5240B
7.5
8.2
8.7
9.1
10
20
20
20
20
20
6
8
8
10
17
500
500
600
600
600
3
3
3
3
3
6
6.5
6.5
7
8
+0.058
+0.062
+0.065
+0.068
+0.075
MLL5241B
MLL5242B
MLL5243B
=> MLL5244B
MLL5245B
11
12
13
14
15
20
20
9.5
8.5
22
30
13
15
16
600
600
600
600
600
2
1
0.5
0.1
0.1
8.4
9.1
9.9
10
11
+0.076
+0.077
+0.079
+0.082
+0.082
MLL5246B
MLL5247B
MLL5248B
MLL5249B
MLL5250B
16
17
18
19
20
7.8
7.4
7
6.6
6.2
17
19
21
23
25
600
600
600
600
600
0.1
0.1
0.1
0.1
0.1
12
13
14
14
15
+0.083
+0.084
+0.085
+0.086
+0.086
MLL5251B
MLL5253B
MLL5254B
MLL5255B
22
24
25
27
28
5.6
5.2
5
4.6
4.5
29
33
35
41
44
600
600
600
600
600
0.1
0.1
0.1
0.1
0.1
17
18
19
21
21
+0.087
+0.088
+0.089
+0.09
+0.091
MLL5256B
MLl5257B
MLL5258B
MLL5259B
MLL5260B
30
33
36
39
43
4.2
3.8
3.4
3.2
3
49
58
70
80
93
600
700
700
800
900
0.1
0.1
0.1
0.1
0.1
23
25
27
30
33
+0.091
+0.092
+0.093
+0.094
+0.095
MLL5261B
MLL5262B
MLL5263B
47
51
56
2.7
2.5
2.2
105
125
150
1000
1100
1300
0.1
0.1
0.1
36
39
43
+0.095
+0.096
+0.096
=> MLL5252B
9
Max Zener Impedance
Max Reverse
Leakage Current
IR
@
Max Zener Voltage
Temperature Coeff.
II
•
(continued)
0=>
Preferred part
(See Notes on the following page)
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-75
MLL5221 B thru MLL5263B
DevIce to be temperature stabilized with current applied prior to reading breakdown voltage
NOTE 1. TOLERANCE
at the specified ambient temperature.
Units shown Indicate a tolerance of ±S%.
NOTE 2. SPECIAL SELEcnONS AVAILABLE:
For information on special
~ectlons
contact your nearest Motorola representative.
NOTE 4. ZENER VOLTAGE (Vzl MEASUREMENT
Nominal zenervoltage Is measured with the device junction In thennal equilibrium atthecase
temperatura of 3QOC
NOTE 3. TEMPERATURE COEFFICIENT (8yzl
Test conditions for temperature coefficient are as follows:
a. Izr = 7.5 mA. T1 = 25"C,
±1°e.
NOTE 5. ZENER IMPEDANCE (Zzl DERIVATION
Zzr and z,. are measured by dividing the ac voltsge drop across the device by the ec current
applied. Tho speclfled limits are for Iz(sc) = 0.1 x Iz(dc) with the ec frequency = 1 kHz.
T. = '25"C (MLL5221B through MLL5242B).
b. Izr = Rated Izr. T1 = 25"C,
T•• , 25"C (MLL5243B through MLL5263B).
I
•
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-76
SECTION 4.2.4 DATA SHEETS
ZENER VOLTAGE REGULATOR DIODES -
Section 4.2.4.2 Surface Mounted SECTION 4.2.4.2.3
continued
continued
1.5 WATT DC POWER
MULTIPLE PACKAGE QUANTITY (MPQ)
REQUIREMENTS
DATA SHEETS
Devices
Package Option
15MB5913BT3 thru 15MB5956BT3
Tape and Reel
TYpe No. Suffix
T3(1)
NOTE 1. The "3" on the suffix designates reel size (13") and full reel quantity oI2.5K.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-77
II
-
MOTOROLA
SEMICONDUCTOR----------_TECHNICAL DATA
15MB5913BT3
thru
15MB5956BT3
1.5 Watt Plastic Surface Mount
Silicon Zener Diodes
· .. a completely new line of 1.5 Watt Zener Diodes offering the following advantages:
Specification Features:
•
•
•
•
A Complete Voltage Range - 3.3 to 200 Volts
Flat Handling Surface for Accurate Placement
Package Design for Top Side or Bottom Circuit Board Mounting
Available in Tape and Reel
PLASTIC SURFACE MOUNT
ZENER DIODES
1.5 WATTS
3.3-200 VOLTS
Mechanical Characteristics:
CASE: Void-free, transfer-molded plastic
MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES: 230°C for 10 seconds
FINISH: All external surfaces are corrosion resistant with readily solderable leads
POLARITY: Cathode indicated by molded polarity notch. When operated in zener mode,
cathode will be positive with respect to anode.
MOUNTING POSITION: Any
WEIGHT: Modified L-Bend providing more contact area to bond pad
CASE 403A-03
PLASTIC
I
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Po
1.5
15
Watts
mW/"C
-65to+175
°C
DC Power Dissipation @ TL =75°C, Measured at Zero Lead Length
Derate above 75°C
Operating and Storage Junction Temperature Range
•
TJ. T01g
ELECTRICAL CHARACTERISTICS (TL =30"C unless otherwise noted.) (VF =1.5 Volts Max @ IF =200 mAde for all types.)
=*
=*
=*
=*
Device'
ISMB5913BT3
ISMB5914BT3
ISMB5915BT3
ISMB5916BT3
15MB5917BT3
15MB5918BT3
ISMB5919BT3
15MB5920BT3
15MB5921BT3
15MB5922BT3
15MB5923BT3
15MB5924BT3
15MB5925BT3
15MB5926BT3
15MB5927BT3
ISMB5928BT3
Nominal
Zener Voltage
VZ@IZT
Volts
(Note 1)
3.3
3.6
3.9
4.3
4.7
5.1
5.6
6.2
6.8
7.5
8.2
9.1
10
11
12
13
Test
Current
IZT
mA
113.6
104.2
96.1
87.2
79.8
73.5
66.9
60.5
55.1
50
45.7
41.2
37.5
34.1
31.2
28.8
Max Zener Impedance (Note 2)
ZZT@IZT
Ohms
10
9
7.5
6
5
4
2
2
2.5
3
3.5
4
4.5
5.5
6.5
7
ZZK
Ohms
500
500
500
500
500
350
250
200
200
400
400
500
500
550
550
550
@
IZK
mA
1
1
1
1
1
1
1
1
1
0.5
0.5
0.5
0.25
0.25
0.25
0.25
Max Reverse
Leakage Current
IR
I!A
100
75
25
5
5
5
5
5
5
5
5
5
5
1
1
1
@
VR
Volts
1
1
1
1
1.5
2
3
4
5.2
6.8
6.5
7
8
8.4
9.1
9.9
Maximum DC
Zener
Current
IZM
mAde
454
416
384
348
319
294
267
241
220
200
182
164
150
136
125
115
Device
Marking
913B
914B
915B
916B
917B
918B
919B
920B
921B
922B
923B
924B
925B
926B
927B
928B
(continued)
=* Preferred part
"TOLERANCE AND VOLTAGE DESIGNATION
Tolerance designation - The type numbers lIsted indicate a tolerance of ±5%.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-78
15MB5913BT3 Series
ELECTRICAL CHARACTERISTICS types.)
continued (T L = 30
D
e unless otherwise noted.) (VF = 1.5 Volts Max @
Nominal
Zener Voltage
VZ@IZT
Volts
(Note 1)
Test
Current
IZT
mA
ZZT IIIZT
Ohms
ZZK
Ohms
15
16
18
20
25
23.4
20.8
18.7
9
10
12
14
=> 1SM859368T3
22
24
27
30
17
15.6
13.9
12.5
15MB5937BT3
15MB5938BT3
1SMB5939BT3
1SM859408T3
33
36
39
43
1SM859418T3
15MB59428T3
1SM859438T3
1SM85944BT3
Device
Marking
IZK
mA
IR
IlA
600
600
650
650
0.25
0.25
0.25
0.25
1
1
1
1
11.4
12.2
13.7
15.2
100
93
83
75
9298
930B
9318
932B
17.5
19
23
26
650
700
700
750
0.25
0.25
0.25
0.25
1
1
1
1
16.7
18.2
20.6
22.8
68
62
55
50
933B
9348
935B
9368
11.4
10.4
9.6
8.7
33
38
45
53
800
850
900
950
0.25
0.25
0.25
0.25
1
1
1
1
25.1
27.4
29.7
32.7
45
41
38
34
937B
938B
9398
9408
47
51
56
62
8
7.3
6.7
6
67
70
86
100
1000
1100
1300
1500
0.25
0.25
0.25
0.25
1
1
1
1
35.8
38.8
42.6
47.1
31
29
26
24
9418
9428
9438
9448
1SM85945BT3
15MB5946BT3
1SM85947BT3
1SM85948BT3
68
75
82
91
5.5
5
4.6
4.1
120
140
160
200
1700
2000
2500
3000
0.25
0.25
0.25
0.25
1
1
1
1
51.7
56
62.2
69.2
22
20
18
16
9458
9468
9478
9488
1SM859498T3
1SMB5950BT3
1SM859518T3
1SM859528T3
100
110
120
130
3.7
3.4
3.1
2.9
250
300
380
450
3100
4000
4500
5000
0.25
0.25
0.25
0.25
1
1
1
1
76
83.6
91.2
98.8
15
13
12
11
9498
9508
9518
9528
1SM859538T3
1SM859548T3
15MB59558T3
1SMB5956BT3
150
160
180
200
2.5
2.3
2.1
1.9
600
700
900
1200
6000
6500
7000
8000
0.25
0.25
0.25
0.25
1
1
1
1
114
121.6
136.8
152
10
9
8
7
9538
9548
955B
9568
Device<
=> 1SM859298T3
15MB5930BT3
=> 1SM859318T3
15MB5932BT3
15MB5933BT3
=> 1SM859348T3
15MB5935BT3
~
VR
Volts
Maximum DC
Zener
Current
IZM
mAdc
Max Reverse
Leakage Current
Max Zener Impedance (Note 2)
IF = 200 mAde for all
Preferred
@
II
part
*TOLERANCE AND VOLTAGE DESIGNATION
Tojerance designation - The type numbers listed indicate a tolerance ot ±5%.
fil 2.5
~
~
z
0
-
Vz@lzr
,..,...,
2
~
D-
~
c;;
1.5
i5
a:
CJ)
I'-.
w
~
;:;:J
~
:;;
V
.......
/'
r-...
..........
D-
:;;
:;;
.-"
...........
0.5
c5
D-
20
40
60
80
100
120
h, LEAD TEMPERATURE (DC)
"
140
Figure 1. Steady State Power Derating
,/
"
160
180
-4
2
V
4
./
V
L
6
8
Vz, ZENER VOLTAGE (VOLTS)
Figure 2. Zener Voltage -
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-79
10
To 12 Volts
12
15MB5913BT3 Series
_ 200
P
:>
.§.
f-
100
~
u..
70
w
,,/
Vz@lzr
z
W
~
TJ = 25°C
. iZlrms} = 0.1 IZldc}
200
1
Vz=1 50V
z
V
C§ 50
V
w
~
iil
SOO
w
<..> 100
w
w
a.
::;
1k
Q.
a<..> 50
a:
=>
v
./
30
f-
~
10
10
~
c
5
62V
~
22V
~
//
CD
20
12V
6.BV
1
20
30
50
70
100
Vz, ZENER VOLTAGE (VOLTS)
10
20
50
100
Iz, ZENER TEST CURRENT (rnA)
0.5
200
Figure 3. Zener Voltage -14 To 200 Volts
'.;
......
<..>
1000""
~
~ 30
~
O!;
20
<..>
10
~
I-- f-l -
~~ ~
3
2
soo
;
t-- I- IZldc} = 1rnA
Cii 100
~ 70
~ 50
200
Figure 4. Effect of Zener Current
200
•
•
I
,
10
::E
a.
I
91V
5
'I
7
/..
10mA
/.. V
20rnA
iZlms} = 0.1 IZldc}
Ii
II
10
20
30
Vz, ZENER VOLTAGE (VOLTS)
50
I f .J
70
100
Figure 5. Effect of Zener Voltage
NOTE 1. ZENER VOLTAGE IV,) MEASUREMENT
NOTE 2. ZENER IMPEDANCE (Z,) DERIVATION
Nominal zener voltage is measured with the device junction in thermal equilibrium with ambi-
Zzr and lzK are measured by divIding the ac voltage drop across the device by the Be current
applied. The specified limits are for 'z(ac) = 0.1 tzedc) with the Be frequency = 60 Hz.
ent temperature at 25°C.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-2-80
Section 4.3
Zener Voltage Reference Diodes
Section
Page
4.3.1
Selector Guide .................... 4-3-2
4.3.2
Data Sheet Category Listing ........ 4-3-5
4.3.3
Alphanumeric Part Number Listing ... 4-3-7
4.3.4
Data Sheets ...................... 4-3-9
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-3-1
•
-
Section 4.3.1 Selector Guide
Zener Voltage Reference
Diodes
•
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-3-2
SELECTOR GUIDE
Voltage Reference Diodes
Temperature Compensated
Reference Devices
For applications where output voltage must remain within
narrow limits during changes in input voltage, load resistance
and temperature. Motorola guarantees all reference devices
to fall within the specified maximum voltage variations, .1.Vz, at
the specifically indicated test temperatures and test current
(JEDEC Standard #5). Temperature coefficient is also specified but should be considered as a reference only - not a maximum rating.
Devices in this table are hermetically sealed structures.
(See Section 4.3.4 for complete data)
AVERAGE TEMPERATURE COEFFICIENT OVER THE OPERATING RANGE
0.01 %J'C
Test'"
0.005o/oI"C
0.OO2%J'C
0.001 %l'C
0.0005%1'C
V,
Volts
Test
Current
mAde
Temp
Points
Device
Type
6.2&
6.2&
7.5
7.5
A
A
lN821
lN821A
0.096
0.096
lN823
lN823A
0.048
0.048
lN825
lN825A
0.019
0.019
lN827
lN827A
0.009
0.009
lN829
lN829A
0.005
0.005
299-02
6.4
0.5
0.5
1
1
B
lN4565
lN4565A
lN4570
lN4570A
0.048
0.099
0.048
0.099
lN4566
lN4566A
lN4571
1N4571 A
0.024
0.050
0.024
0.050
lN4567
lN4567A
lN4572
lN4572A
0.010
0.020
0.010
0.020
lN4568
lN4568A
lN4573
lN4573A
0.005
0.010
0.005
0.010
lN4569
lN4569A
lN4574
lN4574A
0.002
0.005
0.002
0.005
DO-204AH
(DO-35)
A
B
A
t;.V,
Max
Volts
Device
Type
t;.V,
Max
Volts
Device
Type
t;.V,
Max
Volts
Device
Type
t;.V,
Max
Volts
Device
Type
t;.V,
Max
Volts
Case
Cathode
= Polartty
Band
•
&. Non-suffix -
Zzr = 15 ohms, "A" Suffix - Zzr = 10 ohms
*Test Temperature Points °C: A =-55, O. +25, +75, +100 B
=0, +25, +75
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
• 4-3-3
•
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-3-4
Section 4.3.2 Data Sheet Category Listing
Zener Voltage Reference
Diodes
Section
Data Sheets
Page
AXIAL LEADED ..............
6.2 Volt OTC 400 mW 00-35 ..
1N821 thru 1N829A .......
4.3.4.1.2
6.4 Volt OTC 400 mW 00-35 ..
1N4565 thru 1N4574A .....
4.3.4.1
4.3.4.1.1
4-3-9
4-3-9
4-3-10
4-3-13
4-3-14
•
III
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-3-5
II
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-3-6
Section 4.3.3 Alphanumeric Part
Number Listing
Zener Voltage Reference
Diodes
DISCRETE MILITARY OPERATION DATA
4-3-7
ALPHANUMERIC INDEX - ZENER VOLTAGE REFERENCE DIODES
DEVICE
PAGE
DEVICE
PAGE
DEVICE
PAGE
1N821
4-3-10
1N4565
4-3-15
1N4570
4-3-15
1N821A
4-3·10
1N4565A
4-3-15
1N4570A
4-3-15
1N823
4-3-10
1N4566
4-3-15
1N4571
4-3-15
1N823A
4-3-10
1N4566A
4-3-15
1N4571 A
4-3-15
1N825
4-3-10
1N4567
4.3-15
1N4572
4-3-15
1N825A
4-3-10
1N4567A
4-3-15
1N4572A
4-3-15
1N827
4-3-10
1N4568
4-3-15
1N4573
4-3-15
1N827A
4-3-10
1N4568A
4-3-15
1N4573A
4·3-15
1N829
4-3-10
1N4569
4-3-15
1N4574
4-3-15
1N829A
4-3-10
1N4569A
4-3-15
1N4574A
4-3-15
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-3-8
Section 4.3.4 Data Sheets
Zener Voltage Reference
Diodes
Section 4.3.4.1 Axial Leaded
SECTION 4.3.4.1.1
6.2 VOLT OTC 400 mW 00-35
DATA SHEETS
I
Devices
Page No.
I
4-3-10
MULTIPLE PACKAGE QUANTITY (MPQ)
REQUIREMENTS
Package Option
'tYpe No. Suffix
AL, AL2(1)
5K
Tape and Ammo
TA, TA2(1)
5K
NOTE: 1. The "2' suffix designates 26 mm tape spacing.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-3-9
MPQ(Unlts)
Tape and Aeel
MOTOROLA
SEMICONDUCTOR-----------TECHNICAL DATA
1N821,A 1N823,A
1N825,A 1N827,A
1N829,A
Temperature-Compensated
Zener Reference Diodes
Temperature-compensated zener reference diodes utilizing a single chip oxide passivated junction for long-term voltage stability. A rugged, glass-enclosed, hermetically
sealed structure.
TEMPERATURECOMPENSATED
SILICON ZENER
REFERENCE DIODES
6.2 V, 400 mW
Mechanical Characteristics:
CASE: Hermetically sealed, all-glass
DIMENSIONS: See outline drawing.
FINISH: All external surfaces are corrosion resistant and leads are readily solderable.
POLARITY: Cathode indicated by polarity band.
WEIGHT: 0.2 Gram (approx.)
MOUNTING POSITION: Any
Maximum Ratings
Junction Temperature: - 55 to + 175°C
Storage Temperature: - 65 to + 175°C
DC Power Dissipation: 400 mW @ T A = 50°C
I
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted. Vz =6.2 V ± 5%*
JEDEC
Type No.
@
Izr =7.5 rnA) (Note 5)
Maximum
Voltage Change
Ambient
Test Temperature
Temperature
Coefficient
For Reference Only
tNz(Volts)
(Note 1)
°C
±l°C
(Note 1)
Maximum
Dynamic Impedance
Zzr Ohms
(Nole 2)
- 55,0, +25, +75, +100
0.01
15
%1°C
~
lN821
0.096
~
lN823
0.048
0.005
~
lN825
0.019
0.002
lN827
0.009
0.001
lN829
0.005
0.0005
lN821A
0.096
0.01
1N823A
0.048
0.005
1N825A
0.019
0.002
1N827A
0.009
0.001
1N829A
0.005
0.0005
=> Preferred part
*llghter~tolerance
units available on special request.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-3-10
10
1N821 thru 1N829A
MAXIMUM VOLTAGE CHANGE versus AMBIENT TEMPERATURE
(with IZT
=7.5 mA ±O.01 mAl (See Note 3)
1N821 thru 1N829
25
I
lN821,AI
I
I
20
I
11N823,A
If
15
/'
;'
I I
I I
/
II
/
./
'I /
..... .....
10
} --\""
1/
~
~-~
..... r--....,-
-5
-10
-50
-15
-751----f---+-:O"--I----+----+--+-I
-20
-100L..-_-...L_...-l._--'::l===:l:.::::==±:===..!
-25
,\
\\
\ \
\ \
\ \
\
\
lN821,A\
-55
-55
lN825,A
/
I J
----
...... ......
"'"' "\ lN823,A
\
..........
"
.....
lN827,A
lN829,A
lN829,A
lN827 A
lN825,A
100
50
TA, AMBIENT TEMPERATURE (OC)
Figure 1a
Figure 1b
ZENER CURRENT versus MAXIMUM VOLTAGE CHANGE
(At Specified Temperatures)
(See Note 4)
MORE THAN 95% OF THE UNITS ARE IN THE RANGES INDICATED BY THE CURVES.
10.---,----,-----.---r-rr----,
91----+---4----+-~~_+--~
1
~
~
81----+-~-4----hr_-_+--~
7.5
§
1----+---4--~~--_+--~
ffi
61----+---4-~~-L--_+--~
u
a:
N
~
5r---+--~~~~~---+--~
~·~7~5--~~~~---~----~----~
t.Vz, MAXIMUM VOLTAGE CHANGE (mV)
t.Vz, MAXIMUM VOLTAGE CHANGE (mV)
(Referenced to Izr = 7.5 rnA)
(Referenced to Izr = 7.5 rnA)
Figure 2. 1N821 Series
Figure 3. 1N821A Series
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-3-11
1N821. thru 1 N829A
MAXIMUM ZENER IMPEDANCE versus ZENER CURRENT
(See Note 2)
MORE THAN 95% OF THE UNITS ARE IN THE RANGES INDICATED BY THE CURVES.
ii)1oo0
800
600
~ 1~gg
:x:
~ ~gg
~
20o ~"
w
a:
10
80
60
40
~
20
10
8
::E
2.400
Q..
;;!i
~
;;!i
w
~
O~
~
gg
ffi
"S~
6
4
2
1
200
100 ~
~
;;!i
...
~
~
100°C
::E
25°C c::
~
~
-55°C
6
8 10
20
40
~
::.....
100°C
~S:;
2
1
4
60 80100
in
6
8 10
r-.;;;
20
--
40
60 80100
Iz, ZENER CURRENT (rnA)
Iz, ZENER CURRENT (rnA)
Figure 5. 1N821A Series
Figure 4. 1N821 Series
•
25°C
4
,!:j
II
4
40
20
10
8
6
NOTE 3.
NOTE 1. VOLTAGE VARIATION (<1V,j AND TEMPERATURE COEFFICIENT
All reference diodes are characterized by the "box method. ~ This guarantees a maximum
voltage variation (AVz) over the specified temperature range, at the speCIfied test current
(In), verified by tests at Indicated temperature points within the range. VZ IS measured and
recorded at each temperature specified. The AVz between the highest and lowest values
must not exceed the maximum AVz given. This method of indicating voltage stability is now
used for JEDEC registration as well as tor military qualification. The former method ot indicating voltage stability - by means of temperature coefficient accurately reflects the voltage
deviation at the temperature extremes. but is not necessarily accurate within the temperature
range because reference diodes have a nonlinear temperature relationship. The temperature coefficient, therefore, is given only as a reference.
NOTE 2.
The dynamic zener impedance, lv, Is derived from the 60 Hz ae voltage drop whieh results
when an ac current with an nTIS value equal to 10% of the de zener current, Izr, Is superimposed on IZT• CUMS showing the variation of zener impedance with zener current for each
series are given in Figures 4 and 5.
These graphs can be used to determine the maximum voltage change of any device in the
series over any specific temperature range. For example, a temperature change from 0 to
+sooC will cause a voltage change no greater than +31 mV or - 31 mV for 1N821 or 1N821 A,
as illustrated by the dashed lines in Figure 1. The boundaries given are maximum values.
For greater resolution, an expanded view of the center area in Figure 1a is shown in Figure
lb.
NOTE 4.
The maximum voltage change, AVz, Figures 2 and 3 is due entirely to the Impedance of the
device. It both temperature and Izr are varied. then the total voltage change may be obtained
by graphically adding AVz In Figure 2 or 3 tothe AVz in Figure 1 for the device under eonsideration. If the device is to be operated at some stable current other than the specified test current, a new set of characteristics may be plotted by superimposing the data in Figure 2 or
3 on Figure 1. For a more detailed explanation see application note In later section.
NOTES.
Zener voltage limits at 25°C measured with the test current (lzr) applied with the device junction in thermal equilibrium al an' ambient temperature of 25°C.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-3-12
SECTION 4.3.4 DATA SHEETS
ZENER VOLTAGE REFERENCE DIODES -
Section 4.3.4.1 Axial Leaded SECTION 4.3.4.1.2
DATA SHEETS
continued
continued
6.4 VOLT OTC 400 mW 00-35
MULTIPLE PACKAGE QUANTITY (MPQ)
REQUIREMENTS
Devices
Package Option
Type No. Suffix
MPQ(Units)
1N4565 Ihru 1N4574A
Tape and Reel
RL, RL2(1)
5K
Tape and Ammo
TA, TA2(1)
5K
NOTE 1. The ''2" suffix designates 26 mm tape spacing.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-3-13
MOTOROLA
SEMICONDUCTOR-----------TECHNICAL DATA
1N4565,A
Low-Level Temperature-Compensated
Zener Reference Diodes
thru
1N4574,A
Highly reliable reference sources utilizing a single chip oxide passivated junction for
long-term voltage stability. Glass construction provides a rugged, hermetically sealed
structure.
REFERENCE DIODES
LOW LEVEL
TEMPERATURECOMPENSATED ZENER
6.4V 400mW
Specification Features:
• Low Power Drain Devices Specified @ 0.5 mA and 1 mA
• Maximum Voltage Change Specified over Test Temperature Range
• Temperature Compensation Guaranteed over Two Standard Operating Temperature
Ranges: 0 to 75°C
-55to 100°C
Mechanical Characteristics:
CASE: Hermetically sealed, all-glass.
DIMENSIONS: See outline drawing.
FINISH: All external surfaces are corrosion resistant and leads are readily solderable.
POLARITY: Cathode indicated by polarity band.
WEIGHT: 0.2 gram (approx.)
MOUNTING POSITION: Any
I
CASE 299-02
DO-204AH
GLASS
MAXIMUM RATINGS
Rating
DC Power Dissipation
Derate above 50'C
@
TA = 50°C
Junction and Storage Temperature Range
Symbol
Value
Unit
Po
400
3.2
mW
mW/oC
TJ , Tstg
-65to+175
'C
•
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES·
4-3-14
1N4565 thru 1N4574A
ELECTRICAL CHARACTERISTICS
6Vz (Note 1)
TYpe
Vz
@
Test Temperature
Volts
Max
°C
Temperature Coefficient
for Reference Only
%f'C
(Note 1)
Dynamic
Impedance
Ohms Max
(Note 2)
=6.4 Volts ±5% (IZT =0.5 mAl at TA =25°C (Note 3)
lN4565
lN4566
lN4567
lN456B
lN4569
0.048
0.024
0.010
0.005
0.002
0, +25,
+75
0.01
0.005
0.002
0.001
0.0005
200
lN4565A
lN4566A
lN4567A
lN4568A
lN4569A
0.099
0.050
0.020
0.010
0.005
-55,0,
+25, +75,
+100
0.01
0.005
0.002
0.001
0.0005
200
100
100
Vz
=6.4 Volts ±5% (IZT =1 mAl at TA =25°C (Note 3)
lN4570
lN4571
lN4572
lN4573
lN4574
0.048
0.024
0.010
0.005
0.002
0, +25,
+75
0.01
0.005
0.002
0.001
0.0005
lN4570A
lN4571A
lN4572A
lN4573A
lN4574A
0.099
0.050
0.020
0.010
0.005
-55,0,
+25, +75,
+100
0.01
0.005
0.002
0.001
0.0005
NOTE 1. VOLTAGE VARIATION (AV, lAND TEMPERATURE COEFFICIENT
All reference diodes are characterized by the -box method." This guarantees a maximum
voltage variation (.6.Vz) over the specified temperature range, at the specified test current
(In), verified by tests at indicated temperature points within the range. This method of indicating voltage stability IS now used for JEDEC registration as well as for military qualification.
The former method of indicating voltage stability - by means of temperature coefficientaccurately reflects the voltage deviation at the temperature extremes, but is not necessarily
accurate within the temperature range because reference diodes have a nonlinear temperature relationship. The temperature coefficient, therefore, is given only as a reference.
NOTE 2.
The dynamic zener impedance, Zn, is derived from the 60 Hz ac voltage drop which results
when an ac current With an rms value equal to 10% of the dc zener current, IZT is superimposed on Izr.
NOTE 3.
Zener voltage limits of 25°C measured with test current (In) applied with the device junction
in thermal equilibrium at an ambient temperature of 25°C.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4-3-15
•
I
•
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
4·3·16
Packaging
Information
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
5-1
TVSlZener Axial-Lead
Lead Tape Packaging Standards for Axial-Lead
Components
1.0
SCOPE
3.3.3 - A minimum 12 inch leader of tape shall be
provided before the first and last component on the reel.
This section covers packaging requirements for the following
axial-lead component's use in automatic testing and
assembly equipment: Motorola Case 17-02, Case 41A-02,
Case 51-02 (00-7), Case 59-03 (00-41), Case 59-04, Case
194-04 and Case 299-02 (00-35). Packaging, as covered
in this section, shall consist of axial-lead components
mounted by their leads on pressure sensitive tape, wound
onto a reel.
2.0
3.3.4 - 50 lb. Kraft paper is wound between layers of
components as far as necessary for component
protection.
3.3.5 - Components shall be centered between tapes
such that the difference between 01 and 02 does not
exceed 0.055.
3.3.6 - Staples shall not be used for spliCing. No more
than four layers of tape shall be used in any splice area
and no tape shall be offset from another by more than
0.031 inch noncumulative. Tape splices shall overlap
at least 6 inches for butt joints and at least 3 inches for
lap joints and shall not be weaker than unspliced tape.
PURPOSE
This section establishes Motorola standard practices for
lead-tape packaging of axial-lead components and meets the
requirements of EIA Standard RS-296-D "Lead-taping of
Components on Axial Lead Configuration for Automatic
Insertion," level 1.
3.0
3.3.7 - Quantity per reel shall be as indicated in Table
1. Orders for tape and reeled product will only be
processed and shipped in full reel increments.
Scheduled orders must be in releases of full reel
increments or multiples thereof.
REQUIREMENTS
3.1 Component leads
3.3.8 - A maximum of 0.25% of the components per reel
quantity may be missing without consecutive missing per
level 1 of RS-296-D.
3_1.1 - Component leads shall not be bent beyond
dimension E from their normal position. See Figure 2.
I
3.3.9 - The single face roll pad shall be placed around
the finished reel and taped securely. Each reel shall then
be placed in an appropriate container.
3.1.2 - The "C" dimension shall be governed by the
overall length of the reel packaged component. The
distance between flanges shall be 0.059 inch to 0.315
inch greater than the overall component length. See
Figures 2 and 3.
3.4 Marking
Minimum reel and carton marking shall consist of the
following (see Figure 3):
3.1.3 - Cumulative dimension "A" tolerance shall not
exceed 0.059 over 6 in consecutive components.
Motorola part number
Quantity
3.2 Orientation
Manufacturer's name
All polarized components must be oriented in one
direction. The cathode lead tape shall be blue and the
anode tape shall be white. See Figure 1.
Date codes (when applicable; see not9>3.3.1)
4.0
3.3 Reeling
Requirements differing from this Motorola standard shall be
negotiated with the factory.
3.3.1 - Components on any reel shall not represent more
than two date codes when date code identification is
required.
The packages indicated in the following table are suitable
for lead tape packaging. The table indicates the specific
devices (transient voltage suppressors and/or zeners) that
can be obtained from Motorola in reel packaging and
provides the appropriate packaging speCification.
3.3.2 - Component's leads shall be positioned
perpendicularly between pairs of 0.250 inch tape. See
Figure 2.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
5-2
Lead Tape Packaging Standards for Axial-Lead Components (continued)
Product
Category
Case Type
Device
Title
Suffix
MPQ
Quantity
Per Reel
(Item 3.3.7)
Component
Spacing
A Dimension
Tape
Spacing
BDlmension
Reel
Dimension
C
Reel
Dimension
D(Max)
Max Off
Alignment
E
Case 17-02
Surmetic 40 &
600WattTVS
(Mosorb)
RL
4000
0.2 +/- 0.015
2.062 +/- 0.059
3
14
0.047
Case 41A-02
1500 Watt TVS
(Mosorb)
RL4
1500
0.4 +/-0.02
2.062 +/- 0.059
3
14
0.047
Case 51-02
DO-7Glass
(For Reference only)
RL
3000
0.2 +/-0.02
2.062 +/- 0.059
3
14
0.047
Case 59-03
00-41 Glass &
00-41 Surmetic 30
RL
6000
0.2 +/- 0.015
2.062 +/- 0.059
3
14
0.047
Case 59-04
500WattTVS
(Mosorb)
RL
5000
0.2 +/-0.02
2.062 +/- 0.059
3
14
0.047
Case 194-04
110AmpTVS
(Automotive)
RL
800
0.4 +/-0.02
1.875 +/- 0.059
3
14
0.047
Case 299-02
DO-35 Glass
RL
5000
0.2 +/-0.02
2.062 +/- 0.059
3
14
0.047
Table 1. Packaging Details (all dimensions in inches)
Kraft Paper
Item 3.1.1
Max Off
Alig~entL
Container
Item 3.3.5 _
Both Sides
Tape. White
Item 3.2
(Anode)
Figure 1. Reel Packing
,
I
0.250
Item 3.3.2
_ 0 . 031
Item 3.3.5
D:J -02 f.-....
Figure 2. Component Spacing
Optional Design
1.188
.-
3.5 Dia.
~
Item 3.4
Figure 3. Reel Dimensions
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
5-3
TVSlZener Surface Mount
Embossed Tape and Reel
Embossed Tape and Reel is used to facilitate automatic pick and place equipment feed
requirements. The tape is used as the shipping container for various products and requires
a minimum of handling. The antistatic/conductive tape provides a secure cavity for the
'
product when sealed with the "peel-back" cover tape.
Tape and Reel
Data for
TVSlZener
Surface Mount
Devices
PACKAGES
• Used for Automatic Pick and Place Feed Systems
• Minimizes Product Handling
• EIA 481-1,8 mm and 12 mm Taping of Surface Mount Components for Automatic
Handling and EIA 481-2,16 mm and 24 mm Embossed Carrier Taping of Surface Mount
Components for Automatic Handling
MLL-34
SOT·23
5MB
SMC
• MLL-34, SOT-23 in 8 mm Tape
• 5MB in 12 mm Tape
• SMC in 16 mm Tape
Ordering Information
Use the standard device title and add the required suffix as listed in the option table below.
Note that the individual reels have a finite number of devices depending on the type of product
contained in the tape. Also note the minimum lot size is one full reel for each line item and
orders are required to be in increments of the single reel quantity.
SOT·23
Smm
5MB,
MLL-34
Smm
12mm
SMC
16mm
I
Package
Case Type
Tape Width
(mm)
Reel Size
(inch)
Devices Per Reel
and Minimum
Order Quantity
Device
Suffix
SOT-23
Case 318-07
8
B
7
13
3,000
10,000
T1
T3
MLL-34
Case 362-03
8
8
7
13
2,000
5,000
T1
T3
5MB
Case 403A-03
12
13
2,500
T3
SMC
Case 403-03
16
13
2,500
T3
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
5·4
CARRIER TAPE SPECIFICATIONS
10 PITCHES
CUMULATIVE
TOLERANCE ON
TAPE
FOR MACHINE REFERENCE
ONLY
INCLUDING DRAFT AND RADII
CONCENTRIC AROUND BO
01
FOR COMPONENTS
2.0 mm x 1.2 mm
AND LARGER
USER DIRECTION OF FEED
'TOP COVER
TAPE THICKNESS (tl)
0.10mm
(.004') MAX.
RMIN
TAPE AND COMPONENTS
SHALL PASS AROUND RADIUS 'R"
WITHOUT DAMAGE
EMBOSSED
CARRIER
EMBOSSMENT
TYPICAL
COMPONENT CAVITY
CENTER LINE
II
TAPE
1 mm
(.039") MAX
TYPICAL
COMPONENT
CENTER LINE
250 mm _ _ _~
(9.843,)
CAMBER (TOP VIEW)
ALLOWABLE CAMBER TO BE 1 mm/l00 mm NONACCUMULATIVE OVER 250 mm
DIMENSIONS Metric dimensions govern)
Tape
Size
MaxB1
8mm
4.55mm
D
1.5+0.1mm
D1
1.0mmmin
(.179")
-0.0
(.039")
E
F
MaxK
P
PO
P2
RMin
Maxi
WMax
1.75±O.1mm
3.5±O.05mm
2.4mm
4.0±0.1mm
4.0±0.1mm
2.0±0.05mm
25mm
0.6mm
8.3mm
(.079±.002")
(.98")
(.024")
(.327")
(.069±.OO4")
(.138±.002")
(.094")
(.157±.004")
(.157±.004")
(.059+.004"
-0.0)
12mm
B.2mm
1.5mmmin
(.323")
(.060")
~
5.5±O.05mm
6.4mm
'30mm
(.217±.OO2")
(.252")
(1.1B")
(.484")
2.0±0.lmm
30mm
I 16.3mm
(.079±.004")
(1.18")
(.842")
B.O±O.1mm
(.315±.004")
16mm
12.1mm
(.476")
7.5±0.10mm
7.9mm
(.295±.OO4")
(.311")
8.0±.01mm
(.315±.004")
r
Note 1. AO, Bu and I\U are deterrmned 01 component size.
e clearance Detween the com onents and the cavi must De wit In .05 mm min. to .50 mm
max. for 8 mm and 12 mm tape and within O. 5 mm min. to 0.9 mm max. for 16 mm tape. The comgonent cannot rotate ,:rore than 10 degrees within the determined
caVity.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
5-5
REEL CONFIGURATION
40 (1.575) MIN.
ACCESS HOLE AT
SLOT LOCATION
-1 r--
T (INCLUDES FLANGE DISTORTION AT OUTER EDGE)
H (MEASURED AT HUB)
D
(ARBOR HOLE DIA.)
L
I
A
f
------
F (HUB DIA.)
*
---II--
G (MEASURED AT HUB)
TAPE SLOT IN CORE FOR TAPE START
MIN. WIDTH 2.5 (.098), MIN. DEPTH 10 (.394)
, Optional Drive Spokes, Asterisked Dimensions Apply
Metric dimensions govern
I
REEL DIMENSIONS (Metric dimensions will govern)
Tape Size
A Max.
(Note 1)
B* Min.
D
E'Mln.
FMln.
G
HMax.
TMax
330
1.5
13.0 ± 0.20
20.2
50
8.4 + 1.5H).0
(.331 +.059/-0.0)
14.4
(.567)
7.9 (.311) Min
10.9 (.429) Max
(12.992)
(.059)
(.512 ± .008)
(.795)
(1.969)
8mm
12mm
16mm
12.4 +2.0/-0.0
18.4
11.9 (.469) Min
(.488 +.0781-0.0)
(.724)
15.4 (.607) Max
330
1.5
13.0 ± 0.20
20.2
50
16.4 +2.0/-0.0
22.4
15.9 (.626) Min
(12.992)
(.059)
(.512 ± 0.008)
(.795)
(1.969
(.646 +0.78/-0.0)
(.882)
19.4 (.764) Max
Note 1. For 7" reels. A Max. is 177 mm (6.968").
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
5-6
TAPE LEADER AND TRAILER DIMENSIONS
Carrier Tape
END
Cover Tape
START
Leader1)
(Note
390mm
(15.35) Min
Top Cover Tape
---1
Metric dimensions govern
NOTES
1. There shall be a leader of 230 mm (9.05) minimum which may consist of carrier and/or cover tape followed
by a minimum of 160 mm (6.30) of empty carrier tape sealed with cover tape.
2. There shall be a trailer of 160 mm (6.30) minimum of empty carrier tape sealed with cover tape. The entire carrier
tape must release from the reel hub as the last portion of the tape unwinds from the reel without damage to the
carrier tape and the remaining components in the cavities.
ELECTRICAL POLARIZATION
TWO TERMINATION DEVICES
1
0
I
0
I
0 [ )
[OJ [OJ [OJ [OJ)
+
+
+
+
User Direction 01 Feed
Top Cover Tape Removed
Metric dimensions govern
NOTES
1. All polarized components must be oriented in one direction. For components with two terminations the cathode
shall be adjacent to the sprocket hole side.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
5-7
OUTLINE DIMENSIONS
NOTE:
1. LEAD DIAMETER & FINISH NOT CONTROLLED
WITHIN DIM ·P.
DIM
A
B
D
rt--
F
K
MlWIIETERS
MIN
MAX
8.38 8.89
3.30 3.68
0.94 1.09
1.27
25.40 31.75
INCHES
MIN
0.330 0.350
0.130 0.145
0.037 0.043
0.050
1.000 1.250
L~
CASE 17-02
(Surmetic 40)
•
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M.19&2.
2. CONTROLLING DIMENSION: INCH.
3. LEAD FINISH AND DIAMETER UNCONTROLLED
IN DIM P.
DIM
A
B
D
K
P
IIILLIMETERS
MIN
MAX
9.52
9.14
4.83
5.21
1.07
0.97
25.40
1.27
INCHES
MIN
MAX
0.360 0.375
0.190 0.205
0.038 0.042
1.000
0.050
CASE 41A-D2
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
5-8
OUTLINE DIMENSIONS
-j t-B
@
NOTES:
1. ALL RULES AND NOTES ASSOCIATED WITH
JEDEC 00-41 OUTLINE SHALL APPLY.
2. POLARITY DENOTED BY CATHODE BAND.
3. LEAD DIAMETER NOT CONTROLLED WITHIN "F"
DIMENSION.
DIM
A
B
D
F
K
MILUIIETERS
MIl
MAX
4.07
2.04
0.71
5.20
2.71
0.86
1.27
INCHES
IlAX
MIN
0.160
0.080
0.028
0.205
0.107
0.034
0.050
1.100
27.84
CASE 59-03
(00-41)
II
NOTES:
1. ALL RULES AND NOTES ASSOCIATED WITH JEDEC
00-41 OUTLINE SHALL APPLY.
2. POLARITY DENOTED BY CATHODE BAND.
3. LEAD DIAMETER NOT CONTROLLED WITHIN "F"
DIMENSION.
DIM
A
B
D
K
IIILLlIIETERS
MIN
IIAX
5.97
2.79
0.76
27.84
660
3.05
0.86
INCHES
MAX
MIN
0.235
0.110
0.030
1.100
0.260
0.120
0.034
CASE 59-04
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
5-9
OUTLINE DIMENSIONS
DIM
A
B
D
K
MILLIMETERS
MIN
MAX
B.43
B.69
5.94
6.25
1.27
1.35
25.15 25.65
INCHES
MIN
IIAX
0.332 0.342
0.234 0.248
0.050 0.053
0.990 1.010
NOTE:
1. CATHODE SYMBOL ON PKG.
STYLE 1:
PIN 1. CATHODE
2. ANODE
CASE 194-04
NOTES:
1. PACKAGE CONTOUR OPTIONAL WITHIN AAND B
HEAT SLUGS, IF ANY, SHALL BE INCLUDED
WITHIN THIS CYLINDER, BUT NOT SUBJECT TO
THE MINIMUM LIMIT OF B.
2. LEAD DIAMETER NOT CONTROLLED IN ZONE F
TO ALLOW FOR FLASH, LEAD FINISH BUILDUP
AND MINOR IRREGULARITIES OTHER THAN
HEAT SLUGS.
3. POLARITY DENOTED BY CATHODE BAND.
4. DIMENSIONING AND TOLERANCING PER ANSI
YI4.5,1973.
I
DIM
A
B
D
F
K
MILLIMETERS
MIN
MAX
3.05
5.09
1.52
2.29
0.48
0.56
1.27
25.40 38.10
INCHES
MIN
MAX
0.120 0.200
0.060 0.090
O.G1B 0.022
0.050
1.000 1.500
All JEDEC dimensions and notes apply.
CASE 299-02
00-204AH
(00-35)
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
5-10
OUTLINE DIMENSIONS
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M.1982.
2. CONTROLLING DIMENSION: INCH.
3 MAXIMUM LEAD THICKNESS INCLUDES LEAD
FINISH THICKNESS. MINIMUM LEAD THICKNESS
IS THE MINIMUM THICKNESS OF BASE MATERIAl.
4. 318-03 OBSOLETE. NEW STANDARD 318.07.
DIll
A
B
C
D
G
H
J
K
L
S
V
MAX
..
~
1.20
0.89
0.37
1.78
0.013
0.085
0.45
089
2.10
0.45
3.04
1.40
1.11
0.50
2.04
0.100
0.177
0.50
102
2.50
0.60
_2_
(0.079)
INCHES
II1N
!lAX
0.1102 0.1197
0.0472 0.0551
0.0350 0.0440
0.0150 0.0200
0.0701 0.0807
0.0005 0.0040
0.0034 0.0070
O.OlBO 0.0238
00350 00401
0.0830 0.0984
0.0177 0.0236
0.95
(0.037)
SOT·23
Solder Pad
Geometry
STYLE 8:
PIN 1. ANODE
2. NO CONNECTION
3. CATHODE
STYLE 9:
PIN 1. ANODE
2. ANODE
3. CATHODE
mm
(inches)
CASE 318-07
TO·236AB
(SOT·23)
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M.1982.
2. CONTROLLING DIMENSION: INCH.
3. 382.01 OBSOLETE. NEW STANDARD 362.03.
DIM
A
B
R
U
MILLIMETERS
MIN
MAX
3.30
3.70
1.60
1.73
2.49
0.41
055
MLL34
Solder Pad
Geometry
INCHES
MIN
MAX
0.130 0.146
0.063 0.068
0.098
0016
0022
inches
CASE 362·03
(MLL34)
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
5-11
mm
OUTLINE DIMENSIONS
1°·171"1
OO~
.,,~~
:. ['
SMC
Solder Pad
Geometry
NOTES:
DIMENSIONIN
21. CY14
5M, 1982. G AND TOlERANCING PER A
. ONTROlLING
NSI
3. DDIMENSION SDIMENSION: INCH
DIMENSION P HAll BE MEASURED W
4. 4Q3A'()1 AND'
ITHIN
403A-03.
-02 OBSOlETE, NEW STANDARD
5MB
Solder Pad
Geometry
~
~-1
CASE 403A-03
(SMB)
TRANSIENT VOLTAGE SUPPRESSORS AND Z
I
5-12
ENER DIODES
This section contains information edited and
updated from the Technical Section of the
1980 edition of the Motorola Zener Diode
Manual.
PAGE
CHAPTER 1
ZENER DIODE THEORY ........... 6-1-1
CHAPTER 2
ZENER DIODE FABRICATION
TECHNIQUES .................... 6-2-1
CHAPTER 3
RELIABILITY ..................... 6-3-1
CHAPTER 4
ZENER DIODE
CHARACTERISTICS. . . . . . . . . . . . . .. 6-4-1
CHAPTER 5
TEMPERATURE COMPENSATED
ZENERS ........................ 6-5-1
CHAPTER 6
BASIC VOLTAGE REGULATION
USING ZENER DIODES ............ 6-6-1
Technical
Information
CHAPTER 7
ZENER PROTECTION CIRCUITS
AND TECHNIQUES
BASIC DESIGN CONSIDERATIONS .. 6-7-1
CHAPTER 8
ZENER VOLTAGE SENSING
CIRCUITS AND APPLICATIONS ...... 6-8-1
CHAPTER 9
MISCELLANEOUS APPLICATIONS
OF ZENER TYPE DEVICES ......... 6-9-1
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-1
II
I
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-2
CHAPTER 1:
ZENER DIODE THEORY
Introduction
The zener diode is a semiconductor device unique in its mode of operation and completely
unreplaceable by any other electronic device. Because of its unusual properties it fills a
long-standing need in electronic circuitry. It provides, among other useful functions, a
constant voltage reference or voltage control element available over a wide spectrum of
voltage and power levels.
The zener diode is unique among the semiconductor family of devices because its electrical properties are derived from a rectifying junction which operates in the reverse breakdown
region. In the sections that follow, the reverse biased rectifying junction, some of the terms
associated with it, and properties derived from it will be discussed fully.
The zener diode is fabricated from the element silicon. Special techniques are applied in
the fabrication of zener diodes to create the required properties.
This manual was prepared to acquaint the engineer, the equipment designer and manufacturer, and the experimenter with the fundamental principles, design characteristics, applications and advantages of this important semiconductor device.
Semiconductor Theory
The active portion of a zener diode is a semiconductor PN junction. PN junctions are
formed in various kinds of semiconductor devices by several techniques. Among these are
the widely used techniques known as alloying and diffusion which are utilized in fabricating
zener PN junctions to provide excellent control over zener breakdown voltage.
At the present time, zener diodes use silicon as the basic material in the formation of their
PN junction. Silicon is in Group IV of the periodic table (tetravalent) and is classed as a
"semiconductor" due to the fact that it is a poor conductor in a pure state. When controlled •
amounts of certain "impurities" are added to a semiconductor it becomes a better conductor
of electricity. Depending on the type of impurity added to the basic semiconductor, its
conductivity may take two different forms, called P- and N-type respectively.
N-type conductivity in a semiconductor is much like the conductivity due to the drift of
free electrons in a metal. In pure silicon at room temperature there are too few free electrons
to conduct current. However, there are ways of introducing free electrons into the crystal
lattice as we shall now see. Silicon is a tetravalent element, one with four valence electrons
in the outer shell; all are virtually locked into place by the covalent bonds of the crystal lattice
structure, as shown schematically in Figure 1-1 a. When controlled amounts of donor impurities (Group V elements) such as phosphorus are added, the pentavalent phosphorus atoms
entering the lattice structure provide extra electrons not required by the covalent bonds.
These impurities are called donor impurities since they "donate" a free electron to the lattice.
These donated electrons are free to drift from negative to positive across the crystal when
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-1-1
•
a field is applied, as shown in Figure 1-1 b. The "N" nomenclature for this kind of conductivity implies "negative" charge carriers.
(a.) Lattice Structures of
Pure Silicon
ELECTRONS ARE LOCKED IN
COVALENT BONDS
(b.) N-Type Silicon
LOCKED COVALENT BOND
ELECTRONS
FREE ELECTRON FROM
PHOSPHOROUS ATOM DRIFTS
TOWARD APPLIED POSITIVE
POLE.
APPLIED FIELD
II
(c.) P-Type Silicon
INCOMPLETED COVALENT
BOND
+----_.. APPLIED FIELD
THIS ELECTRON JUMPS INTO
HOLE LEFT BY BORON ATOM.
HOLE POSITION IS DISPLACED
TO RIGHT. THIS RESULTS IN
A DRIFT OF HOLES TOWARD
THE NEGATIVE POLE, GIVING
THEM THE CHARACTER OF
MOBILE POSITIVE CHARGES.
Figure 1-1. Semiconductor Structure
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6·1·2
In P-type conductivity, the charges that carry electric current across the crystal act as if
they were positive charges. We know that electricity is always carried by drifting electrons
in any material, and that there are no mobile positively charged carriers in a solid. Positive
charge carriers can exist in gases and liquids in the form of positive ions but not in solids.
The positive character of the current flow in the semiconductor crystal may be thought of
as the movement of vacancies (called holes) in the covalent lattice. These holes drift from
positive toward negative in an electric field, behaving as if they were positive carriers.
P-type conductivity in semicondG,,;:ors result from adding acceptor impurities (Group III
elements) such as boron to silicon to the semiconductor crystal. In this case, boron atoms,
with three valence electrons, enter the tetravalent silicon lattice. Since the covalent bonds
cannot be satisfied by only three electrons, each acceptor atom leaves a hole in the lattice
which is deficient by one electron. These holes readily accept electrons introduced by
external sources or created by radiation or heat, as shown in Figure l-lc. Hence the name
acceptor ion or acceptor impurity. When an external circuit is connected, electrons from the
current source "fill up" these holes from the negative end and jump from hole to hole across
the crystal or one may think of this process in a slightly different but equivalent way, that
is as the displacement of positive holes toward the negative terminal. It is this drift of the
positively charged holes which accounts for the term P-type conductivity.
When semiconductor regions ofN- and P-type conductivities are formed in a semiconductor crystal adjacent to each other, this structure is called a PN junction. Such a junction is
responsible for the action of both zener diodes and rectifier devices, and will be discussed
in the next section.
The Semiconductor Diode
In the forward-biased PN junction, Figure 1-2a, the P region is made more positive than
the N region by an external circuit. Under these conditions there is a very low resistance to
current flow in the circuit. This is because the holes in the positive P-type material are very
readily attracted across the junction interface toward the negative N-type side. Conversely,
electrons in the N-type are readily attracted by the positive polarity in the other. direction.
When a PN junction is reverse biased, the P-type side is made more negative than the
N-type side. (See Figure 1-2b.) At voltages below the breakdown of the junction, there is
very little current flow across the junction interface. At first thought one would expect no
reverse current under reverse bias conditions, but several effects are responsible for this
small current.
Under this condition the positive holes in the P-type semiconductor are repelled from the
junction interface by the positive polarity applied to the N side, and conversely, the electrons
in the N material are repelled from the interface by the negative polarity of the P side. This
creates a region extending from the junction interface into both P- and N-type materials
which is completely free of charge carriers, that is, the region is depleted of its charge
carriers. Hence, this region is usually called the depletion region.
Although the region is free of charge carriers, the P-side of the depletion region will have
an excess negative charge due to the presence of acceptor ions which are, of course, fixed
in the lattice; while the N-side of the depletion region has an excess positive charge due to
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-1-3
6
~
-
+1+_1+ + I:-=:::"';I = =
+ + + 'I :-=:::...; 1 = = =
+++ 1:-=:::"';1 ===
++ - - - - P++ ~ ==N
+++I~I===
+++1+-1===
+ + 1 LARGE 1 = = +
CURRENT
+--,II
(a.) Forward-Based PN
Junction
~
----
CHARGES FROM BOTH PAND N REGIONS
DRIFT ACROSS JUNCTION AT VERY LOW
APPLIED VOLTAGES,
-
I-
..
+-----APPLIED FIELD
I
I
N
P
1
1
+
-- + ++
- - - + 1 - -I -+++
r - - - - - - 1 VERY 1 + + + + I - - SMALL 1 - + + + f-- - - +
- - - - 1 CURRENT + + + +
- - - + 1+ _ 1 - + + +
-I
1+ ++
+
-
--
+I
I'
(b.) Reverse-Biased PN
Junction
AT APPLIED VOLTAGES BELOW THE CRITICAL
BREAKDOWN LEVEL ONLY A FEW CHARGES
DRIFT ACROSS THE INTERFACE.
I-
+-----SEVERAL VOLTS
APPLIED FIELD
Figure 1-2. Effects of Junction Bias
• •
the presence of donor ions. These opposing regions of charged ions create a strong electric
field across the PN junction responsible for the creation of reverse current.
The semiconductor regions are never perfect; there are always a few free electrons in P
material and few holes in N material. A more significant factor, however, is the fact that great
magnitudes of electron-hole pairs may be thermally generated at room temperatures in the
semiconductor. When these electron-hole pairs are created within the depletion region, then
the intense electric field mentioned in the above paragraph will cause a small current to flow.
This small current is called the reverse saturation current, and tends to maintain a relatively
constant value for a fixed temperature at all voltages. The reverse saturation current is
usually negligible compared with the current flow when the junction is forward biased.
Hence, we see that the PN junction, when not reverse biased beyond breakdown voltage, will
conduct heavily in only one direction. When this property is utilized in a circuit we are
employing the PN junction as a rectifier. Let us see how we can employ its reverse breakdown characteristics to an advantage.
As the reverse voltage is increased to a point called the voltage breakdown point and
beyond, current conduction across the junction interface increases rapidly. The break from
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-1-4
a low value of the reverse saturation current to heavy conductance is very sharp and well
defined in most PN junctions. It is called the zener knee. When reverse voltages greater than
the voltage breakdown point are applied to the PN junction, the voltage drop across the PN
junction remains essentially constant at the value of the breakdown voltage for a relatively
wide range of currents. This region beyond the voltage breakdown point is called the zener
control region.
Zener Control Region: Voltage Breakdown Mechanisms
Figure 1-3 depicts the extension of reverse biasing to the point where voltage breakdown
occurs. Although all PN junctions exhibit a voltage breakdown, it is important to know that
there are two distinct voltage breakdown mechanisms. One is called zener breakdown and
the other is called avalanche breakdown. In zener breakdown the value of breakdown
voltage decreases as the PN junction temperature increases; while in avalanche breakdown
the value of the breakdown voltage increases as the PN junction temperature increases.
Typical diode breakdown characteristics of each category are shown in Figure 1-4. The
factor determining which of the two breakdown mechanisms occurs is the relative concentrations of the impurities in the materials which comprise the junction. If two different
resistivity P-type materials are placed against two separate but equally doped low-resistivity
-
VREV
VSREAKDOWN
IREV
SLOPE
Figure 1-3. Reverse Characteristic Extended to Show Breakdown Effect
pieces ofN-type materials, the depletion region spread in the low resistivity P-type material
will be smaller than the depletion region spread in the high resistivity P-type material.
Moreover, in both situations little of the resultant depletion width lies in the N material if
its resistivity is low compared to the P-type material. In other words, the depletion region
always spreads principally into the material having the highest resistivity. Also, the electric
field (voltage per unit length) in the less resistive material is greater than the electric field
in the material of greater resistivity due to the presence of more ions/unit volume in the less
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-1-5
•
resistive material. A junction that results in a narrow depletion region will therefore develop
a high field intensity and breakdown by the zener mechanism. A junction that results in a
wider depletion region and, thus, a lower field intensity will break down by the avalanche
mechanism before a zener breakdown condition can be reached.
4
VREV (VOLTS)
2
3
VREV (VOLTS)
30
25
20
15
10
5
I
I
IREV
IREV
(A)
(B)
ZENER BREAKDOWN
OF A PN FUNCTION
AVALANCHE BREAKDOWN OF A PN FUNCTION
Figure 1-4. Typical Breakdown Diode Characteristics. Note Effects of
Temperature for Each Mechanism
6
The zener mechanism can be described qualitatively as follows: because the depletion
width is very small, the application of low reverse bias (5 volts or less) will cause a field
across the depletion region on the order of 3 x 105yfcm. A field of such high magnitude
exerts a large force on the valence electrons of a silicon atom, tending to separate them from
their respective nuclei. Actual rupture of the covalent bonds occurs when the field approaches 3 x 105Yfcm. Thus, electron-hole pairs are generated in large numbers and a
sudden increase of current is observed. Although we speak of a rupture of the atomic
structure, it should be understood that this generation of electron-hole pairs may be carried
on continuously as long as an external source supplies additional electrons. If a limiting
resistance in the circuit external to the diode junction does not prevent the current from
increasing to high values, the device may be destroyed due to overheating. The actual critical
value of field causing zener breakdown is believed to be approximately 3 x 105yfcm. On
most commercially available silicon diodes, the maximum value of voltage breakdown by
the zener mechanism is 8 volts. In order to fabricate devices with higher voltage breakdown
characteristics, materials with higher resistivity, and consequently, wider depletion regions
are required. These wide depletion regions hold the field strength down below the zener
breakdown value (3 x 105yfcm). Consequently, for devices with breakdown voltage lower
than 5 volts the zener mechanism predominates, between 5 and 8 volts both zener and an
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-1-6
avalanche mechanism are involved, while above 8 volts the avalanche mechanism alone
takes over.
The decrease of zener breakdown voltage as junction temperature increases can be explained in terms of the energies of the valence electrons. An increase of temperature increases the energies of the valence electrons. This weakens the bonds holding the electrons
and consequently, less applied voltage is necessary to pull the valence electrons from their
position around the nuclei. Thus, the breakdown voltage decreases as the temperature increases.
The dependence on temperature of the avalanche breakdown mechanism is quite different. Here the depletion region is of sufficient width that the carriers (electrons or holes) can
suffer collisions before traveling the region completely i.e., the depletion region is wider
than one mean-free path (the average distance a carrier can travel before combining with a
carrier of opposite conductivity). Therefore, when temperature is increased, the increased
lattice vibration shortens the distance a carrier travels before colliding and thus requires a
higher voltage to get it across the depletion region.
As established earlier, the applied reverse bias causes a small movement of intrinsic
electrons from the P material to the potentially positive N material and intrinsic holes from
the N material to the potentially negative P material (leakage current). As the applied voltage
becomes larger, these electrons and holes increasingly accelerate. There are also collisions
between these intrinsic particles and bound electrons as the intrinsic particles move through
the depletion region. If the applied voltage is such that the intrinsic electrons do not have high
velocity, then the collisions take some energy from the intrinsic particles, altering their
velocity. If the applied voltage is increased, collision with a valence electron will give
considerable energy to the electron and it will break free of its covalent bond. Thus, one
electron by collision, has created an electron-hole pair. These secondary particles will also
be accelerated and participate in collisions which generate new electron-hole pairs. This
phenomenon is called carrier multiplication. Electron-hole pairs are generated so quickly
and in such large numbers that there is an apparent avalanche or self-sustained multiplication
process (depicted graphically in Figure 1-5). The junction is said to be in breakdown and the
current is limited only by resistance external to the junction. Zener diodes above 7 to 8 volts
exhibit avalanche breakdown.
As junction temperature increases, the voltage breakdown point for the avalanche mechanism increases. This effect can be explained by considering the vibration displacement of
atoms in their lattice increases, and this increased displacement corresponds to an increase
in the probability that intrinsic particles in the depletion region will collide with the lattice
atoms. If the probability of an intrinsic particle-atom collision increases, then the probability
that a given intrinsic particle will obtain high momentum decreases, and it follows that the
low momentum intrinsic particles are less likely to ionize the lattice atoms. Naturally,
increased voltage increases the acceleration of the intrinsic particles, providing higher mean
momentum and more electron-hole pairs production. If the voltage is raised sufficiently, the
mean momentum becomes great enough to create electron-hole pairs and carrier multiplication results. Hence, for increasing temperature, the value of the avalanche breakdown voltage increases.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-1-7
6
LARGE CURRENT
-
REVERSE-BIASED
PN JUNCTION IN AVALANCHE
P +
N
++
+++
+++
+++
+++
+++
+++
+++
++
+
RS
WHEN THE APPLIED VOLTAGE IS
ABOVE THE BREAKDOWN POINT, A
FEW INJECTED ELECTRONS RECEIVE
ENOUGH ACCELERATION FROM THE
FIELD TO GENERATE NEW ELECTRONS
BY COLLISION. DURING THIS PROCESS
THE VOLTAGE DROP ACROSS THE
JUNCTION REMAINS CONSTANT.
RS ABSORBS EXCESS VOLTAGE.
CONSTANT VOLTAGE DROP
Figure 1-5. PN Junction in Avalanche Breakdown
15
I
FORWARD
I- CHARACTERISTIC
TYPICAL
/
.
10
I
•
ZZK ...........
I
~
IZK=5 rnA
Vz
ZZT
/
V
IR
~ ..... -
/
5
0
IZT
._- _. .- -
W
a.
420 rnA
::::iE
~
----r----
0.5 z
w
a:
a:
I-
:::>
u
w
IZM
~
-- f--30
--
REVERSE
CHARACTERISTIC
_. .- --- --1--
20
1.40A
10
VR(VOLTS)
o
0.5
1
VF(VOLTS)
Figure 1-6. Zener Diode Characteristics
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-1-8
rn
1.5
1.5
a:
w
>
w
a:
Volt-Ampere Characteristics
The zener volt-ampere characteristics for a typical 30 volt zener diode is illustrated in
Figure 1-6. It shows that the zener diode conducts current in both directions; the forward
current IF being a function of forward voltage VF. Note that IF is small until VF ::::: 0.65 V;
then IF increases very rapidly. For VF > 0.65 V IF is limited primarily by the circuit
resistance external to the diode.
The reverse current is a function of the reverse voltage VR but for most practical purposes
is zero until the reverse voltage approaches VZ, the PN junction breakdown voltage, at which
time the reverse current increases very rapidly. Since the reverse current is small for VR <
VZ, but great for VR > Vz each of the current regions is specified by a different symbol. For
the leakage current region, i.e. non-conducting region, between 0 volts and VZ, the reverse
current is denoted by the symbol IR; but for the zener control region, VR ~ VZ, the reverse
current is denoted by the symbol IZ. IR is usually specified at a reverse voltage VR ::::: 0.8
VZ.
The PN junction breakdown voltage, VZ, is usually called the zener voltage, regardless
whether the diode is of the zener or avalanche breakdown type. Commercial zener diodes
are available with zener voltages from about 1.8 V - 400 V. For most applications the zener
diode is operated well into the breakdown region (IZT to IZM). Most manufacturers give
an additional specification of IZK (= 5 rnA in Figure 1-6) to indicate a minimum operating
current to assure reasonable regulation.
This minimum current IZK varies in the various types of zener diodes and, consequently,
is given on the data sheets. The maximum zener current IZM should be considered the
maximum reverse current recommended by the manufacturer. Values of IZM are usually
given in the data sheets.
Between the limits of IZK and IZM, which are 5 rnA and 1400 rnA (1.4 Amps) in the
example of Figure 1-6, the voltage across the diode is essentially constant, and::::: VZ. This
plateau region has, however, a large positive slope such that the precise value of reverse
voltage will change slightly as a function of IZ. For any point on this plateau region one may
calculate an impedance using the incremental magnitudes of the voltage and current. This •
impedance is usually called the zener impedance ZZ, and is specified for most zener diodes.
Most manufacturers measure the maximum zener impedance at two test points on the plateau
region. The first is usually near the knee of the zener plateau, ZZK, and the latter point near
the midrange of the usable zener current excursion. Two such points are illustrated in Figure
1-6.
This section was intended to introduce the reader to a few of the major terms used with
zener diodes. A complete description of these terms may be found in chapter four. In chapter
four a full discussion of zener leakage, DC breakdown, zener impedance, temperature
coefficients and many other topics may be found.
•
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-1-9
•
•
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-1-10
CHAPTER 2: ZENER DIODE
FABRICATION TECHNIQUES
Introduction
A brief exposure to the techniques used in the fabrication of zener diodes can provide the
engineer with additional insight using zeners in their applications. That is, an understanding
of zener fabrication makes the capabilities and limitations of the zener diode more meaningful. This chapter discusses the basic steps in the fabrication of the zener from crystal growing
through final testing.
Zener Diode Wafer Fabrication
The major steps in the manufacture of zeners are provided in the process flow in Figure
2-1. It is important to point out that the manufacturing steps vary somewhat from manufacturer to manufacturer, and also vary with the type of zener diode produced. This is driven
by the type of package required as well as the electrical characteristics desired. For example,
alloy diffused devices provide excellent low voltage reference with low leakage characteristics but do not have the same surge carrying capability as diffused diodes. The manufacturing
process begins with the growing of high quality silicon crystals.
Crystals for Motorola zener diodes are grown using the Czochralski technique, a widely
used process which begins with ultra-pure polycrystalline silicon. The polycrystalline silicon is first melted in a nonreactive crucible held at a temperature just above the melting point.
A carefully controlled quantity of the desired dopant impurity, such as phosphorus or boron
is added. A high quality seed crystal of the desired crystalline orientation is then lowered into
the melt while rotating. A portion of this seed crystal is allowed to melt into the molten
silicon. The seed is then slowly pulled and continues to rotate as it is raised from the melt.
As the seed is raised, cooling takes place and material from the melt adheres to it, thus
forming a single crystal ingot. With this technique, ingots with diameters of several inches •
can be fabricated.
Once the single-crystal silicon ingot is grown, it is tested for doping concentration (resistivity), undesired impurity levels, and minority carrier lifetime. The ingot is then sliced into
thin, circular wafers. The wafers are then chemically etched to remove saw damage and
polished in a sequence of successively finer polishing grits until a mirror-like defect free
surface is obtained. The wafers are then cleaned and placed in vacuum sealed wafer carriers
to prevent any contamination from getting on them. At this point, the wafers are ready to
begin device fabrication.
Zener diodes can be manufactured using different processing techniques such as planar
processing or mesa etched processing. The majority of Motorola zener diodes are manufactured using the planar technique as shown in Figure 2-2.
The planar process begins by growing an ultra-clean protective silicon dioxide passivation
layer. The oxide is typically grown in the temperature range of 900 to 1200 degrees ce1cius.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-2-1
•
6
Once the protective layer of silicon dioxide has been formed, it must be selectively removed
from those areas into which dopant atoms will be introduced. This is done using photolithographic techniques.
First a light sensitive solution called photo resist is spun onto the wafer. The resist is then
dried and a photographic negative or mask is placed over the wafer. The resist is then exposed
to ultraviolet light causing the molecules in it to cross link or polymerize becoming very
rigid. Those areas of the wafer that are protected by opaque portions of the mask are not
exposed and are developed away. The oxide is then etched forming the exposed regions in
which the dopant will be introduced. The remaining resist is then removed and the wafers
carefully cleaned for the doping steps.
Dopant is then introduced onto the wafer surface using various techniques such as aluminum alloy for low voltage devices, ion-implantation, spin-on dopants, or chemical vapor
deposition. Once the dopant is deposited, the junctions are formed in a subsequent high
temperature (1100 to 1250 degrees celcius are typical) drive-in. The resultant junction
profile is determined by the background concentration of the starting substrate, the amount
of dopant placed at the surface, and amount of time and temperature used during the dopant
drive-in. This junction profile determines the electrical characteristics of the device. During
the drive-in cycle, additional passivation oxide is grown providing additional protection for
the devices.
After junction formation, the wafers are then processed through what is called a getter
process. The getter step utilizes high temperature and slight stress provided by a highly
doped phospho silicate glass layer introduced into the backside of the wafers. This causes any
contaminants in the area of the junction to diffuse away from the region. This serves to
improve the reverse leakage characteristic and the stability of the device. Following the
getter process, a second photo resist step opens the contact area in which the anode metallization is deposited.
Metal systems for Motorola's zener diodes are determined by the requirements of the
package. The metal systems are deposited in ultra-clean vacuum chambers utilizing
electron-beam evaporation techniques. Once the metal is deposited, photo resist processing
is utilized to form the desired patterns. The wafers are then lapped to their final thickness
and the cathode metallization deposited using the same e-beam process.
The quality of the wafers is closely monitored throughout the process by using statistical
process control techniques and careful microscopic inspections at critical steps. Special
wafer handling equipment is used throughout the manufacturing process to minimize contamination and to avoid damaging the wafers in any way. This further enhances the quality
and stability of the devices.
Upon completion of the fabrication steps, the wafers are electrically probed, inspected,
and packaged for shipment to the assembly operations. All Motorola zener diode product is
sawn using 100% saw-through techniques stringently developed to provide high quality
silicon die.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-2-2
SILICON CRYSTAL
GROWING
WAFER
PREPARATION
OXIDE
PASSIVATION
WAFER THINNING
ANODE
METALLIZATION
JUNCTION
FORMATION
CATHODE
METALLIZATION
WAFER
TESTING
WAFER DICING
TEST
LEAD
FINISH
ASSEMBLY
MARK
TEST
PACKAGE
SHIP
Figure 2-1. General Flow of the Zener Diode Process
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-2-3
II
SILICON DIOXIDE SELECTIVELY REMOVED
A
SILICON DIOXIDE GROWTH
L:::::::j ~ LI...----_~
(a)
(b)
DOPANT ATOMS DEPOSITED ONTO
THE EXPOSED SILICON
------, A
DOPANT ATOMS DIFFUSE INTO SILICON
BUT NOT APPRECIABLY INTO THE SILICON DIOXIDE
r-,
r------
/
LL---------J~
(c)
(d)
Figure 2-2. Basic Fabrication Steps in the Silicon Planar Process: a) oxide formation, b) selective oxide
removal, c) deposition of dopant atoms, d) junction formation by diffusion of dopant atoms.
Zener Diode Assembly
Surmetic 30, 40 and MOSORB
6
The plastic packages (Surmetic 30, 40 and MOSORBs) are assembled using oxygen free
high conductivity copper leads for efficient heat transfer from the die and allowing maximum power dissipation with a minimum of external heatsinking. Figure 2-3 shows typical
assembly. The leads are of nail head construction, soldered directly to the die, which further
enhances the heat dissipating capabilities of the package.
The Surmetic 30s, 40s and MOSORBs are basically assembled in the same manner; the
only difference being the MOSORBs are soldered together using a solder disc between the
lead and die whereas the Surmetic 30s and Surmetic 40s utilize pre-soldered leads.
Assembly is started on the Surmetic 30 and 40 by loading the leads into assembly boats
and pre-soldering the nail heads. After pre-soldering, one die is then placed into each cavity
of one assembly boat and another assembly boat is then mated to it. Since the MOSORBs
do not use pre-soldered leads, the leads are put into the assembly boat, a solder disc is plac~d
into each cavity and then a die is put in on top. A solder disc is put in on top of the die. Another
assembly boat containing only leads is mated to the boat containing the leads, die, and two
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-2-4
solder discs. The boats are passed through the assembly furnace; this operation requires only
one pass through the furnace.
After assembly, the leads on the Surmetic 30s, 40s and MOSORBs are plated with a
tin-lead alloy making them readily solderable and corrosion resistant.
Double Slug (00-35 and 00-41)
Double slugs receive their name from the dumet slugs, one attached to one end of each
lead. These slugs sandwich the pre-tinned die between them and are hermetically sealed to
the glass envelope or body during assembly. Figure 2-4 shows typical assembly.
The assembly begins with the copper clad steel leads being loaded into assembly "boats."
Every other boat load of leads has a glass body set over the slug. A pre-tinned die is placed
into each glass body and the other boat load of leads is mated to the boat holding the leads,
body and die. These mated boats are then placed into the assembly furnace where the total
mass is heated. Each glass body melts; and as the boat proceeds through the cooling portion
of the furnace chamber, the tin which has wetted to each slug solidifies forming a bond
between the die and both slugs. The glass hardens, attaching itself to the sides of the two slugs
forming the hermetic seal. The above illustrates how the diodes are completely assembled
using a single furnace pass minimizing assembly problems.
The encapsulated devices are then processed through lead finish. This consists of dipping
the leads in molten tin/lead solder alloy. The solder dipped leads produce an external finish
which is tarnish-resistant and very solderable.
OFHC COPPER LEAD,
SOLDER PLATED
PLASTIC
(THERMO SET)---t
ENCAPSULATED
LEAD, STEEL, CU CLAD
SOLDER DIPPED
NAILHEAD LEAD
~..........~
Sn Pb
SLUG DUMET
GLASS SLEEVE
:=;41-- PASSIVATED
ZENER DIE
NAILHEAD LEAD
OFHC COPPER LEA~
SOLDER PLATED
C3
Figure 2-3. Double-Slug Plastic
Zener Construction
Figure 2-4. Double Slug Glass
Zener Construction
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-2-5
II
Zener Diode Test, Mark and Packaging
Double Slug, Surmetic 30, 40 and MOSORB
After lead finish, all products are final tested, whether they are double slug or of Surmetic
construction, all are 100 percent final tested for zener voltage, leakage current, impedance
and forward voltage drop.
Process average testing is used which is based upon the averages of the previous lots for
a given voltage line and package type. Histograms are generated for the various parameters
as the units are being tested to ensure that the lot is testing well to the process average and
compared against other lots of the same voltage.
After testing, the units are marked as required by the specification. The markers are
equipped to polarity orient the devices as well as perform 100% redundant test prior to
packaging.
After marking, the units are packaged either in "bulk" form or taped and reeled or taped
and ammo packed to accommodate automatic insertion.
II
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-2-6
CHAPTER 3:
RELIABILITY
Introduction
Motorola's Quality System maintains "continuous product improvement" goals in all
phases of the operation. Statistical process control (SPC), quality control sampling, reliability audits and accelerated stress testing techniques monitor the quality and reliability of its
products. Management and engineering skills are continuously upgraded through training
programs. This maintains a unified focus on Six Sigma quality and reliability from the
inception of the product to final customer use.
Statistical Process Control
Motorola's Discrete Group is continually pursuing new ways to improve product quality.
Initial design improvement is one method that can be used to produce a superior product.
Equally important to outgoing product quality is the ability to produce product that consistently conforms to specification. Process variability is the basic enemy of semiconductor
manufacturing since it leads to product variability. Used in all phases of Motorola's product
manufacturing, STATISTICAL PROCESS CONTROL (SPC) replaces variability with predictability. The traditional philosophy in the semiconductor industry has been adherence to
the data sheet specification. Using SPC methods assures the product will meet specific
process requirements throughout the manufacturing cycle. The emphasis is on defect prevention, not detection. Predictability through SPC methods requires the manufacturing
culture to focus on constant and permanent improvements. Usually these improvements
cannot be bought with state-of-the-art equipment or automated factories. With quality in
design, process and material selection, coupled with manufacturing predictability, Motorola
can produce world class products.
The immediate effect of SPC manufacturing is predictability through process controls.
Product centered and distributed well within the product specification benefits Motorola
with fewer rejects, improved yields and lower cost. The direct benefit to Motorola's customers includes better incoming quality levels, less inspection time and ship-to-stock capability.
Circuit performance is often dependent on the cumulative effect of component variability.
Tightly controlled component distributions give the customer greater circuit predictability.
Many customers are also converting to just-in-time (JIT) delivery programs. These programs require improvements in cycle time and yield predictability achievable only through
SPC techniques. The benefit derived from SPC helps the manufacturer meet the customer's
expectations of higher quality and lower cost product.
Ultimately, Motorola will have Six Sigma capability on all products. This means parametric distributions will be centered within the specification limits with a product distribution
of plus or minus Six Sigma about mean. Six Sigma capability, shown graphically in
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-3-1
Figure 3-1, details the benefit in terms of yield and outgoing quality levels. This compares
a centered distribution versus a 1.5 sigma worst case distribution shift.
New product development at Motorola requires more robust design features that make
them less sensitive to minor variations in processing. These features make the implementation of SPC much easier.
A complete commitment to SPC is present throughout Motorola. All managers, engineers,
production operators, supervisors and maintenance personnel have received multiple training courses on SPC techniques. Manufacturing has identified 22 wafer processing and 8
assembly steps considered critical to the processing of zener products. Processes, controlled
by SPC methods, that have shown significant improvement are in the diffusion,
photolithography and metallization areas.
To better understand SPC principles, brief explanations have been provided. These cover
process capability, implementation and use.
-60" -50" -40" -30" -20" -10" 0
10" 20". 30" 40"
50" 60"
Standard Deviations From Mean
Distribution Centered
At ± 3 0" 2700 ppm defective
99.73% yield
Distribution Shifted ± 1.5
66810 ppm defective
93.32% yield
At ± 4 0" 63 ppm defective
99.9937% yield
6210 ppm defective
99.379% yield
At ± 5 0" 0.57 ppm defective
99.999943% yield
233 ppm defective
99.9767% yield
At ± 6 0" 0.002 ·ppm defective
99.9999998% yield
3.4 ppm defective
99.99966% yield
Figure 3-1. AOQL and Yield from a Normal
Distribution of Product With 60" Capability
6
PROCESS CAPABILITY
One goal of SPC is to ensure a process is CAPABLE. Process capability is the measurement of a process to produce products consistently to specification requirements. The purpose of a process capability study is to separate the inherent RANDOM VARIABILITY
from ASSIGNABLE CAUSES. Once completed, steps are taken to identify and eliminate
the most significant assignable causes. Random variability is generally present in the system
and does not fluctuate. Sometimes, these are considered basic limitations associated with the
machinery, materials, personnel skills or manufacturing methods. Assignable cause inconsistencies relate to time variations in yield, performance or reliability.
Traditionally, assignable causes appear to be random due to the lack of close examination
or analysis. Figure 3-2 shows the impact on predictability that assignable cause can have.
Figure 3-3 shows the difference between process control and process capability.
A process capability study involves taking periodic samples from the process under
controlled conditions. The performance characteristics of these samples are charted against
time. In time, assignable causes can be identified and engineered out. Careful documentation
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-3-2
of the process is key to accurate diagnosis and successful removal of the assignable causes.
Sometimes, the assignable causes will remain unclear requiring prolonged experimentation.
Elements which measure process variation control and capability are Cp and Cpk respectively. Cp is the specification width divided by the process width or Cp = (specification
width) / 60. Cpk is the absolute value of the closest specification value to the mean, minus
the mean, divided by half the process width or Cpk = I closest specification - X / 30.
? ?
S'ZE~
Process "under control" - all assignable causes are
removed and future distribution is predictable.
Figure 3-2. Impact of Assignable Causes on Process Predictable
In control and capable
(variation from random
variability reduced)
•
Out of control
(assignable causes present)
In control but not capable
(variation from random variability
excessive)
SIZE
Figure 3-3. Difference Between Process Control and Process Capability
At Motorola, for critical parameters, the process capability is acceptable with a Cpk = •
1.33. The desired process capability is a Cpk =2 and the ideal is a Cpk =5. Cpk, by definition,
shows where the current production process fits with relationship to the specification limits.
Off center distributions or excessive process variability will result in less than optimum
conditions.
SPC IMPLEMENTATION AND USE
The Discrete Group uses many parameters that show conformance to specification. Some
parameters are sensitive to process variations while others remain constant for a given
product line. Often, specific parameters are influenced when changes to other parameters
occur. It is both impractical and unnecessary to monitor all parameters using SPC methods.
Only critical parameters that are sensitive to process variability are chosen for SPC monitoring. The process steps affecting these critical parameters must be identified also. It is equally
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-3-3
important to find a measurement in these process steps that correlates with product performance. This is called a critical process parameter.
Once .the critical process parameters are selected, a sample plan must be determined. The
samples used for measurement are organized into RATIONAL SUBGROUPS of approximately 2 to 5 pieces. The subgroup size should be such that variation among the samples
within the subgroup remain small. All samples must come from the same source e.g., the
same mold press operator, etc.. Subgroup data should be collected at appropriate time
intervals to detect variations in the process. As the process begins to show improved stability,
the interval may be increased. The data collected must be carefully documented and maintained for later correlation. Examples of common documentation entries would include
operator, machine, time, settings, product type, etc ..
Once the plan is established, data collection may begin. The data collected will generate
X and R values that are plotted with respect to time. X refers tothe mean of the values within
a given subgroup, while R is the range or greatest value minus least value. When approximately 20 or more X and R values have been generated, the average of these values is
computed as follows:
X = (X + X2 + X3 + ... )lK
R = (RI + R2 + R3 + ... )/K
where K =the number of subgroups measured.
6
The values of X and R are used to create the process control chart. Control charts are the
primary SPC tool used to signal a problem. Shown in Figure 3-4, process control charts show
X and R values with respect to time and concerning reference to upper and lower control
limit values. Control limits are computed as follows:
R upper control limit =UCLR =D4 R
R lower control limit LCLR = D3 R
X upper control limit =UCLX =X + A2 R
X lower control limit = LCLX = X - A
Where D4, D3 and A2 are constants varying by sample size, with values for sample sizes
. from 2 to 10 shown in the following partial table:
n
2
3
4
5
6
7
8
9
10
D4
3.27
2.57
2.28
2.11
2.00
*
*
*
*
*
1.88
1.02
0.73
0.58
0.48
1.92
0.08
0.42
1.86
0.14
0.37
1.82
0.18
0.34
1.78
0.22
0.31
* For sample sizes below 7, the LCLR would technically be a negative number; in those
cases there is no lower control limit; this means that for a subgroup size 6, six "identical"
measurements would not be unreasonable.
Control charts are used to monitor the variability of critical process parameters. The R
chart shows basic problems with piece to piece variability related to the process. The X chart
can often identify changes in people, machines, methods, etc. The source of the variability
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-3-4
11111111
~
UCL = 152.8 '~
- = 150.4
150
LCL= 148.0
J J J J J J J
147
lUlJ.l
R=3.2
LCL_O
Figure 3-4. Example of Process Control Chart Showing Oven Temperature Data
can be difficult to find and may require experimental design techniques to identify assignable
causes.
Some general rules have been established to help determine when a process is OUT-OFCONTROL. Figure 3-5a shows a control chart subdivided into zones A, B, and C corresponding to 3 sigma, 2 sigma, and I sigma limits respectively. In Figure 3-5b through Figure
3-5e four of the tests that can be used to identify excessive variability and the presence of
assignable causes are shown. As familiarity with a given process increases, more subtle tests
may be employed successfully.
Once the variability is identified, the cause of the variability must be determined. Normally, only a few factors have a significant impact on the total variability of the process. The
importance of correctly identifying these factors is stressed in the following example. Suppose a process variability depends on the variance of five factors A, B, C, D and E. Each has •
a variance of 5,3,2, 1 and 0.4 respectively.
Since:
a tot =JaA2 + aB2 + aC2 + aD2 + aE2
J
a tot = 52 + 32 + 22 + 12 + (0.4)2
= 6.3
Now if only D is identified and eliminated then;
a tot
=J 52 + 32 + 22 + (0.4)2
=6.2
This results in less than 2% total variability improvement. IfB, C and D were eliminated,
then;
a tot =J 52 + (0.4)2
=5.02
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-3-5
•
This gives a considerably better improvement of 23 %. If only A is identified and reduced
from 5 to 2, then;
J
cr tot = 22+ 32 + 22 + 12 + (0.4)2
=4.3
Identifying and improving the variability from 5 to 2 gives us a total variability improvement of nearly 40%.
Most techniques may be employed to identify the primary assignable cause(s). Out-ofcontrol conditions may be correlated to documented process changes. The product may be
analyzed in detail using best versus worst part comparisons or Product Analysis Lab equipment. Multi-variance analysis can be used to determine the family of variation (positional,
critical or temporal). Lastly, experiments may be run to test theoretical or factorial analysis.
Whatever method is used, assignable causes must be identified and eliminated in the most
expeditious manner possible.
After assignable causes have been eliminated, new control limits are calculated to provide
a more challenging variability criteria for the process. As yields and variability improve, it
may become more difficult to detect improvements because they become much smaller.
When all assignable causes have been eliminated and the points remain within control limits
for 25 groups, the process is said to be in a state of control.
SUMMARY
Motorola is committed to the use of STATISTICAL PROCESS CONTROLS. These
principles, used throughout manufacturing, have already resulted in many significant improvements to the processes. Continued dedication to the SPC culture will allow Motorola
to reach the Six Sigma and zero defect capability goals. SPC will further enhance the
commitment to TOTAL CUSTOMER SATISFACTION .
•
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-3-6
---r------.r~---------UCL
-----------------------ucL
A
ZONE A (+ 3 SIGMA)
ZONE B (+ 2 SIGMA)
I____--'Z::.:O"'N:=E...::C'--'(-'--+-,--1-"-SI:=G,,,M::.:AL)
______
C
CENTERLINE
C
ZONE C (- 1 SIGMA)
B
- - - - - - - - - - - - - - - - --
ZONE B (- 2 SIGMA)
__- r________________--'A-'---- LCL
1----~Z=O~N=E~A~(--3~SI~G~M~A)~-----LCL
Figure 3-5a. Control Chart Zones
Figure 3-5b. One Point Outside Control
Limit Indicating Excessive Variability
1----------------------- UCL
_______ / \ / \ ______ A_
1--------------------- UCL
\JY\J
-- -- -- -- V
--~--
------c------\ ---; ~-"J----------- yc-
~
B
I__________________---'A-'--LCL
I-----------------------A LCL
Figure 3-5c. Two Out of Three Points in Zone
A or Beyond Indicating Excessive Variability
Figure 3-5d. Four Out of Five Points in Zone
B or Beyond Indicating Excessive Variability
1--------------------------- UCL
A
--------------- __ --A----~
'\
V
- - - - -
-
~C
- - - -
-
- - - - - - - - --
'C
B
I__________________________~A LCL
Figure 3-5e. Seven Out of Eight Points in Zone
C or Beyond Indicating Excessive Variability
II
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-3-7
Reliability Stress Tests
The following gives brief descriptions of the reliability tests commonly used in the
reliability monitoring program. Not all of the tests listed are performed on each product.
Other tests may be performed when appropriate. In addition some form of preconditioning
may be used in conjunction with the following tests.
AUTOCLAVE (aka, PRESSURE COOKER)
Autoclave is an environmental test which measures device resistance to moisture penetration and the resultant effects of galvanic corrosion. Autoclave is a highly accelerated and
destructive test.
Typical Test Conditions: TA =121°e, rh =100%, p =1 atmosphere (15 psig), t =24 to
96 hours
Common Failure Modes: Parametric shifts, high leakage and/or catastrophic
Common Failure Mechanisms: Die corrosion or contaminants such as foreign material
on or within the package materials. Poor package sealing
HIGH HUMIDITY HIGH TEMPERATURE BIAS (H3TB or H3TRB)
This is an environmental test designed to measure the moisture resistance of plastic
encapsulated devices. A bias is applied to create an electrolytic cell necessary to accelerate
corrosion of the die metallization. With time, this is a catastrophically destructive test.
Typical Test Conditions: TA =85°e to 95°e, rh =85% to 95%, Bias =80% to 100% of
Data Book max. rating, t = 96 to 1750 hours
Common Failure Modes: Parametric shifts, high leakage and/or catastrophic
Common Failure Mechanisms: Die corrosion or contaminants such as foreign material
on or within the package materials. Poor package sealing
Military Reference: MIL-STD-750, Method 1042
HIGH TEMPERATURE REVERSE BIAS (HTRB)
The purpose of this test is to align mobile ions by means of temperature and voltage stress
to form a high-current leakage path between two or more junctions.
Typical Test Conditions: TA =85°e to 150o e, Bias =80% to 100% of Data Book max.
rating, t = 120 to 1000 hours
Common Failure Modes: Parametric shifts in leakage
Common Failure Mechanisms: Ionic contamination on the surface or under the metallization of the die
Military Reference: MIL-STD-750, Method 1039
HIGH TEMPERATURE STORAGE LIFE (HTSL)
High temperature storage life testing is performed to accelerate failure mechanisms which
are thermally activated through the application of extreme temperatures.
Typical Test Conditions: T A =70 0 e to 200 o e, no bias, t =24 to 2500 hours
Common Failure Modes: Parametric shifts in leakage
Common Failure Mechanisms: Bulk die and diffusion defects
Military Reference: MIL-STD-750, Method 1032
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-3-8
INTERMITTENT OPERATING LIFE (IOL)
The purpose of this test is the same as SSOL in addition to checking the integrity of both
wire and die bonds by means of thermal stressing.
Typical Test Conditions: TA = 25°C, Pd = Data Book maximum rating, Ton =Toff =
~ of 50°C to 100°C, t =42 to 30000 cycles
Common Failure Modes: Parametric shifts and catastrophic
Common Failure Mechanisms: Foreign material, crack and bulk die defects, metallization, wire and die bond defects
Military Reference: MIL-STD-750, Method 1037
MECHANICAL SHOCK
This test is used to determine the ability of the device to withstand a sudden change in
mechanical stress due to abrupt changes in motion as seen in handling, transportation, or
actual use.
Typical Test Conditions: Acceleration = 1500 g's, Orientation =Xl, Yl, Y2 plane, t =
0.5 msec, Blows =5
Common Failure Modes: Open, short, excessive leakage, mechanical failure
Common Failure Mechanisms: Die and wire bonds, cracked die, package defects
Military Reference: MIL-STD-750, Method 2015
MOISTURE RESISTANCE
The purpose of this test is to evaluate the moisture resistance of components under
temperaturelhumidity conditions typical of tropical environments.
Typical Test Conditions: TA =-10°C to 65°C, rh =80% to 98%, t =24 hours/cycle, cycle
=10
Common Failure Modes: Parametric shifts in leakage and mechanical failure
Common Failure Mechanisms: Corrosion or contaminants on or within the package
materials. Poor package sealing
Military Reference: MIL-STD-750, Method 1021
SOLDERABILITY
The purpose of this test is to measure the ability of device leads/terminals to be soldered
after an extended period of storage (shelf life).
Typical Test Conditions: Steam aging = 8 hours, Flux =R, Solder =Sn60, Sn63
Common Failure Modes: Pin holes, dewetting, non-wetting
Common Failure Mechanisms: Poor plating, contaminated leads
Military Reference: MIL-STD-750, Method 2026
SOLDER HEAT
This test is used to measure the ability of a device to withstand the temperatures as may
be seen in wave soldering operations. Electrical testing is the endpoint criterion for this
stress.
Typical Test Conditions: Solder Temperature = 260°C, t = 10 seconds
Common Failure Modes: Parameter shifts, mechanical failure
Common Failure Mechanisms: Poor package design
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-3-9
Military Reference: MIL-STD-750, Method 2031
STEADY STATE OPERATING· LIFE (SSOL)
The purpose of this test is to evaluate the bulk stability of the die and to generate defects
resulting from manufacturing aberrations that are manifested as time and stress-dependent
failures.
Typical Test Conditions: TA = 25°e, PD = Data Book maximum rating, t = 16 to 1000
hours
Common Failure Modes: Parametric shifts and catastrophic
Common Failure Mechanisms: Foreign material, crack die, bulk die, metallization, wire
and die bond defects
Military Reference: MIL-STD-750, Method 1026
TEMPERATURE CYCLING (AIR TO AIR)
The purpose of this test is to evaluate the ability of the device to withstand both exposure
to extreme temperatures and transitions between temperature extremes. This testing will
also expose excessive thermal mismatch between materials.
Typical Test Conditions: TA = -65°e to 200 oe, cycle = 10 to 1000
Common Failure Modes: Parametric shifts and catastrophic
Common Failure Mechanisms: Wire bond, cracked or lifted die and package failure
Military Reference: MIL-STD-750, Method 1051
THERMAL SHOCK (LIQUID TO LIQUID)
The purpose of this test is to evaluate the ability of the device to withstand both exposure
to extreme temperatures and sudden transitions between temperature extremes. This testing
will also expose excessive thermal mismatch between materials.
Typical Test Conditions: TA =ooe to 100oe, cycles =10 to 1000
Common Failure Modes: Parametric shifts and catastrophic
Common Failure Mechanisms: Wire bond, cracked or lifted die and package failure
Military Reference: MIL-STD-750, Method 1056
• •
VARIABLE FREQUENCY VIBRATION
This test is used to examine the ability of the device to withstand deterioration due to
mechanical resonance.
Typical Test Conditions: Peak acceleration =20 g's, Frequency range =20 Hz to 20 kHz,
t =48 minutes.
Common Failure Modes: Open, short, excessive leakage, mechanical failure
Common Failure Mechanisms: Die and wire bonds, cracked die, package defects
Military Reference: MIL-STD-750, Method 2056
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-3-10
CHAPTER 4: ZENER DIODE
CHARACTERISTICS
Introduction
At first glance the zener diode is a simple device consisting of one P-N junction with
controlled breakdown voltage properties. However, when considerations are given to the
variations of temperature coefficient, zener impedance, thermal time response, and capacitance, all of which are a function of the breakdown voltage (from 1.8 to 400 V), a much more
.complicated picture arises. In addition to the voltage spectrum, a variety of power packages
are on the market with a variation of dice area inside the encapSUlation.
This chapter is devoted to sorting out the important considerations in a "typical" fashion.
For exact details, the data sheets must be consulted. However, much of the information
contained herein is supplemental to the data sheet curves and will broaden your understanding of zener diode behavior.
Specifically, the following main subjects will be detailed:
Basic DC Volt-Ampere Characteristics
Impedance versus Voltage and Current
Temperature Coefficient versus Voltage and Current
Power Derating
Mounting
Thermal Time Response - Effective Thermal Impedance
Surge Capabilities
Frequency Response - Capacitance and Switching Effects
Basic Zener Diode DC Volt-Ampere Characteristics
Reverse and forward volt-ampere curves are represented in Figure 4-1 for a typical zener
diode. The three areas - forward, leakage, and breakdown - will each be examined.
Forward DC Characteristics
The forward characteristics of a zener diode are essentially identical with an "ordinary"
rectifier and is shown in Figure 4-2. The volt-ampere curve follows the basic diode equation
ofIF =IReqVIKT where KT/q equals about 0.026 volts at room temperature and IR (reverse
leakage current) is dependent upon the doping levels of the P-N junction as well as the area.
The actual plot of VF versus IF deviates from the theoretical due to slightly "fixed" series
resistance of the lead wire, bonding contacts and some bulk effects in the silicon.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-4-1
I
!z
w
a:
11
FORWARD CHARACTERISTIC
a:
REVERSE VOLTAGE
.
f2
LEAKAGE REGION
I-
FORWARD VOLTAGE
Z
W
a:
BREAKDOWN
REGION
ji
w
a:
Figure 4-1. Typical Zener Diode DC V-I Characteristics (Not to Scale)
While the common form of the diode equation suggests that IR is constant, in fact IR is
itself strongly temperature dependent. The rapid increase in IR with increasing temperature
dominates the decrease contributed by the exponential term in the diode equation. As a
result, the forward current increases with increasing temperature. Figure 4-2 shows a forward characteristic temperature dependence for a. typical zener. These curves indicate that
for a constant current, an increase in temperature causes a decrease in forward voltage. The
voltage temperature coefficient values are typically in the range of -1.4 to -2 mV/°C.
Leakage DC Characteristics
6
..
When reverse voltage less than the breakdown is applied to a zener diode, the behavior
of current is similar to any back-biased silicon P-N junction. Ideally, the reverse current
. would reach a level at about one volt reverse voltage and remain constant until breakdown
is reached. There are both theoretical and practical reasons why the typical V-I curve will
have a definite slope to it as seen in Figure 4-3. Multiplication effects and charge generation
sites are present in a zener diode which dictate that. reverse current (even at low voltages)
will increase with voltage. In addition, surface charges are ever present across P-N junctions
which appear to be resistive in nature.
The leakage currents are generally less than one microampere at 150°C except with some
hrrge area devices. Quite often a leakage specification at 80% or so of breakdown voltage
is used to assure low reverse currents.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-4-2
1000
,
SOO
II
200
«
.s
I
J
100
I-
f
/
/
V
/
/
II
/
/
I
I
Z
w
a:
a:
SO
f
::::>
u
Cl
/
a:
20
0
10
~
a:
u...
u...
f
L
f
/
/
/
100°C 'I
TJ =1S0°0/
,
S
2
/
I
L
I
0.3
I
V
J
1
-SsoC '/
2soCf
L
O.S
0.4
L
,
/
J
I
0.6
0.7
/
0.8
0.9
VF, FORWARD VOLTAGE (VOLTS)
Figure 4-2. Typical Forward Characteristics of Zener Diodes
10000
«
.s
1000
I-
z
w
a:
a:
::::>
u
w
~
100
-
TJ -1S0°C
~
-
(!)
;;2
«
w
•
--'
w
en
a:
w
>
w
a:
10
--- -2SoC_
5.
~
-SsoC
0.1
o
~
6
12
16
VR, REVERSE VOLTAGE (VOLTS)
Figure 4-3. Typical Leakage Current versus Voltage
4
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-4-3
20
Voltage Breakdown
At some definite reverse voltage, depending on the doping levels (resistivity) of the P-N
junction, the current will begin to avalanche. This is the so-called "zener" or "breakdown"
area and is where the device is usually biased during use. A typical family of breakdown
curves showing the effect of temperature is illustrated in Figure 4-4.
1000
,
SOO
200
«
.§.
,
:
1
;
100
50
- -
I-
Z
w
a:
a:
=>
(.)
a:
20
10
w
z
5
N
2
1,....-
I
W
N
.'
I
....-
---
--
I
_
---. - T=TJ_
T=TA
~
-'
F
I
I
/
I
I
/
1/
I
I
0.5
0.2
0.1
25°C
T =_55°C
25
26
27
100°C
28
29
1,150°C
30
31
32
Vz, ZENER VOLTAGE (VOLTS)
Figure 4-4. Typical Zener Characteristic Variation with Temperature
I
•
Between the minimum currents shown in Figure 4-4 and the leakage currents, there is the
"knee" region. The avalanche mechanism may not occur simultaneously across the entire
area of the P-N junction, but first at one microscopic site, then at an increasing number of
sites as further voltage is applied. This action can be accounted for by the "microplasma
discharge" theory and correlates with several breakdown characteristics.
An exaggerated view of the knee region is shown in Figure 4-5. As can be seen, the
breakdown or avalanche .:.urrent does not increase suddenly, but consists of a series of
smoothly rising current versus voltage increments each with a sudden break point.
At the lowest point, the zener resistance (slope of the curve) would test high, but as current
continues to climb, the resistance decreases. It is as though each discharge site has high
resistance with each succeeding site being in parallel until the total resistance is very small.
In addition to the resistive effects, the micro plasmas may act as noise generators. The
exact process of manufacturing affects how high the noise will be, but in any event there will
be some noise at the knee, and it will diminish considerably as current is allowed to increase.
Since the zener impedance and the temperature coefficient are of prime importance when
using the zener diode as a reference device, the next two sections will expand on these points.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-4-4
!z
w
a::
a::
u
a::
w
z
::l
W
N
ZENER VOLTAGE
..
Figure 4-5. Exaggerated V-I Characteristics of the Knee Region
Zener Impedance
The slope of the Vz - IZ curve (in breakdown) is defined as zener impedance or resistance.
The measurement is generally done with a 60 Hz (on modem, computerized equipment this
test is being done at 1 kHz) current variation whose value is 10% in rms of the dc value of
the current. (That is, AIZ peak to peak =0.282 IZ.) This is really not a small signal measurement but is convenient to use and gives repeatable results'.
The zener impedance always decreases as current increases, although at very high currents
(usually beyond IZ max) the impedance will approach a constant. In contrast, the zener
impedance decreases very rapidly with increasing current in the knee region. Motorola
specifies most zener diode impedances at two points: IZT and IZK. The term IZT usually
is at the quarter power point, and IZK is an arbitrary low value in the knee region. Between
these two points a plot of impedance versus current on a log-log scale is close to a straight
line. Figure 4-6 shows a typical plot of Zz versus IZ for a 20 volt-500 mW zener. The worst
case impedance between IZT and IZK could be approximated by assuming a straight line
function on a log-log plot; however, at currents above IZT or below IZK a projection of this
line may give erroneous values.
The impedance variation with voltage is much more complex. First of all, zeners below
6 volts or so exhibit "field emission" breakdown converting to "avalanche" at higher currents. The two breakdowns behave somewhat differently with "field emission" associated
with high impedance and negative temperature coefficients and "avalanche" with lower
impedance and positive temperature coefficients.
A V-I plot of several low voltage 500 mW zener diodes is shown in Figure 4-7. It is seen
that at some given current (higher for the lower voltage types) there is a fairly sudden
decrease in the slope of 11V/111. Apparently, this current is the transition from one type of
breakdown to the other. Above 6 volts the curves would show a gradual decrease of 11V/ AI
rather than an abrupt change, as current is increased.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-4-5
I
•
1000
ZZK(MAX)
...........
en
:!!:
::c
Q.
w
r-..
....
....
r--..... ........
100
1'.....
--
()
z
«
0
w
a.
~
a:
w
zW
PPR )XIMATE MAXIM MLINE
..... ...
......
......
r. Z
r......
(~AX)
~i'1--
--
10
N
1
0.1
10
100
ZENER CURRENT (rnA)
Figure 4-6. Zener Impedance versus Zener Current
100
,,
/
,
l
I-
Z
I
w
a:
=>
IX
W
,,
I
W
N
/
0.1
I
/
/
I
0.01
I
1
I
/
I
V
I
1
/
I
/
/ 1/
2
I
I
/
L
L
/
3
I
,,
/
L
1
I
I
/
,,
/
1
1
/ II
/
I
I
Z
/
/
,
1
,,
/
/
()
L
,
/
IX
I
/
/
10
I
1
II
L
/
4
5
ZENER VOLTAGE (VOLTS)
I
L
V
6
/
7
Figure 4-7. Zener Current versus Zener Voltage (Low Voltage Region)
TRANSIENT VOLTAGE. SUPPRESSORS AND ZENER DIODES
6-4-6
8
Possibly the plots shown in Figure 4-8 of zener impedance versus voltage at several
constant IZ's more clearly points out this effect. It is obvious that zener diodes whose
breakdowns are about 7 volts will have remarkably low impedance.
However, this is not the whole picture. A zener diode figure of merit as a regulator could
be Zz/YZ. This would give some idea of what percentage change of voltage could be
expected for some given change in current. Of course, a low Zz/YZ is desirable. Generally
zener current must be decreased as voltage is increased to prevent excessive power dissipation; hence zener impedance will rise even higher and the "figure of merit" will become
higher as voltage increases. This is the case with IZT taken as the test point. However, ifIZK
is used as a comparison level in those devices which keep a constant IZK over a large range
of voltage, the "figure of merit" will exhibit a bowl-shaped curve - first decreasing and then
increasing as voltage is increased. Typical plots are shown in Figure 4-9. The conclusion can
be reached that for uses where wide swings of current may occur and the quiescent bias
current must be high, the lower voltage zener will provide best regulation, but for low power
applications, the best performance could be obtained between 50 and 100 volts.
200
V
/'
100
1/"
./
(j)
::!:
70
Q.
50
::r:
/'
w
u
z
«
0
30
a..
20
w
~
\
/
.,.- .........
~
>-
10
~
7
/
/
./
\J
/'
0
./
5
\ \
3
\
5
=
""'10mA
/'
./
/
3
I
......../20mA
........
\
I
TA=25°C
IZ ac) = 0.1 IZ(dc)
/'
I
\
I I
./lmA
\
"\
u
«
z
'\
I
/'
I-
7
10
20
30
50
VZ, ZENER VOLTAGE (VOLTS)
70
100
Figure 4-8. Dynamic Zener Impedance (Typical) versus Zener Voltage
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-4-7
200
100
-
400 rnW, ZZK(MAX) AT 0.25 rnA
w
"-
",Z versus
110
/
--1
1-
130
150
Vz (400 mW & 10 W Zeners)
Temperature Coefficient
6
.
Below three volts and above eight volts the zener voltage change due to temperature is
nearly a straight line function and is almost independent of current (disregarding self-heating
. effects). However, between three and eight volts the temperature coefficients are not a simple
affair. A typical plot of TC versus Vz is shown in Figure 4-10.
Any attempt to predict voltage changes as temperature changes would be very difficult
on a "typical" basis. (This, of course, is true to a lesser degree below three volts and above
eight volts since the curve shown is a typical one and slight deviations will exist with a
particular zener diode.) For example, a zener which is 5 volts at 25°C could be from 4.9 to
5.05 volts at 75°C depending on the current level. Whereas, a zener which is 9 volts at 25°C
would be close to 9.3 volts at 75°C for all useful current levels (disregarding impedance
effects).
As was mentioned, the situation is further complicated by the normal deviation of TC at
a given current. For example, for 7.5 rnA the normal spread of TC (expressed in %/0C) is
shown in Figure 4-11. This is based on limited samples and in no manner implies that all
Motorola zeners between 2 and 12 volts will exhibit this behavior. At other current levels
similar deviations would occur.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-4-8
7
/
6
Vz REFERENCE AT IZ =IZT & TA =25°C
5
~
3>
E-
/'
4
~
rn
z
I-
w
(3
3
u:::
LL
~
W
0
2
u
w
!;;:
II:
w
a.
::;;
w
-
t9
r--
10mA-j
I-
0
-2
-3
~
2
0.01 mA
VII rHr·
/ ~A
30mA-1
r
fl
IAI
VI f
II:
:::l
/
1mA
~ .L/
// J
V /,
1
~
3
4
5
6
7
8
9
10
11
12
VZ. ZENER VOLTAGE (VOLTS)
Figure 4·10. Temperature Coefficient versus Zener Voltage at 25°C Conditions Typical
Obviously, all of these factors make it very difficult to attempt any calculation of precise
voltage shift due to temperature. Except in devices with specified maximum T.e., no "worse
case" design is possible. Information concerning the Motorola temperature compensated or
reference diodes is given in Chapter 5.
Typical temperature characteristics for a broad range of voltages is illustrated in Figure
4-12. This. graphically shows the significant change in voltage for high voltage devices
(about a 20 volt increase for a lOO°C increase on a 200 volt device).
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-4-9
+0.08
./
+0.06
~
/~V
+0.04
~ +0.02
W
w
u
w
J
-0.02
w
w
IJ
III
!cc
cc
a..
:::E
MIN
~
0
0
cc
TYPICAL
IZT= 7.SmA
Z
::::J
~
MAX
II
I-
u::
u.
-
II/
r;>
(3
~
-0.04
h Ij
I-
-0.06
MIN~
TYPICAL
-0.08
MAX/
-0.10
o
I
2
4
6
8
ZENER VOLTAGE (VOLTS)
10
12
14
Figure 4-11. Temperature Coefficient Spread versus Zener Voltage
Power Derating and Mounting
The zener diode like any other semiconductor has a maximum junction temperature. This
limit is somewhat arbitrary and is set from a reliability viewpoint. Most semiconductors
exhibit an increasing failure rate as temperature increases. At some temperature, the solder
will melt or soften and the failure rate soars. The 175°C to 200°C junction temperature rating
is quite safe from solder failures and still has a very low failure rate.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-4-10
100
/'
10
1/
U
0
Lt')
",
C\J
"+
~
./
u
0
V
V
Lt')
C\J
~
N
>
<:]
J
II
0.1
NOTE: I:!V IS + ABOVE 5 VOLTS
- BELOW 4.3 VOLTS
BETWEEN 4.3 & 5 VOLTS
VARIES ABOUT ± 0.08 VOLTS
0.01
I
1
2
3
I
I I I II I
10
5
I
I
I
I
50
100
ZENER VOLTAGE (VOLTS)
200
1,000
Figure 4-12. Typical Temperature Characteristics
In order that power dissipated in the device will never cause the junction to rise beyond
17 soe or 2000 e (depending on the device), the relation between temperature rise and power
must be known. Of course, the thermal resistance (ReJA or ReJL) is the factor which relates
power and temperature in the well known "Thermal Ohm's Law" relation:
~T
=TJ -
~T
=TJ - TL =ReJLPZ
and
TA =ReJAPZ
(4-1) •
(4-2)
where
TJ
= Junction temperature
TA
=Ambient temperature
=Lead temperature
TL
ReJA =Thermal resistance junction to ambient
ReJL =Thermal resistance junction to lead
=Zener power dissipation
PZ
Obviously, if ambient or lead temperature is known and the appropriate thermal resistance
for a given device is known, the junction temperature could be precisely calculated by simply
measuring the zener dc current and voltage (PZ =IZVZ). This would be helpful to calculate
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-4-11
voltage change versus temperature. However, only maximum and typical values of thermal
resistance are given for a family of zener diodes. So only "worst case" or typical information
could be obtained as to voltage changes.
The relations of equations 4-1 and 4-2 are usually expressed as a graphical derating of
power versus the appropriate temperature. Maximum thermal resistance is used to generate
the slope of the curve. An example of a 400 milliwatt device derated to the ambient temperature and a 1 watt device derated to the lead temperature are shown in Figures 4-13 and 4-14.
500
'iii
~
s:
400
~
::J
...J
~
z
Q
~
a.:
CiS
en
is
a:
w
300
~~
...........
200
~
~
~
Q.
6
Q.
100
o
25
75
1.25
I
"' l'-..
~
~
z
~
:a
~
I
"-
0.75
,/'(
""-
I'"
I
L = LEAD LENGTH _
TO HEAT SINK
L= 1"
"' >"V
'<
0
~
a.:
CiS
en
is
a:
w
""~
100
125
150
175
TA. AMBIENT TEMPERATURE (0C)
Figure 4-13. 400 mW Power Temperature Derating Curve
50
'iii
I
"'-
/" L= 1/8"
t>( L = 3/8"
""~
"'
"
""
'" r-......""- ~
......
0.50
............
::l
:a
X
............
a:
w
w
z
/'1
162
N
-
161
160
,/
/
~i-'
0.01
0.1
1
TIME (SECONDS)
10
100
Figure 4-19. Zener Voltage (Typical) versus Time for Step Power Pulses
(500 mW Lead Mounted Devices)
Frequency and Pulse Characteristics
The zener diode may be used in applications which require a knowledge of the frequency
response of the device. Of main concern are the zener resistance (usually specified as
"impedance") and the junction capacitance. The capacitance curves shown in this section
are typical.
Zener Capacitance
Since zener diodes are basically PN junctions operated in the reverse direction, they
display a capacitance that decreases with increasing reverse voltage. This is so because the
effective width of the PN junction is increased by the removal of charges (holes and electrons) as reverse voltage is increased. This decrease in capacitance continues until the zener •
breakdown region is entered; very little further capacitance change takes place, owing to the
now fixed voltage across the junction. The value of this capacitance is a function of the
material resistivity, p, (amount of doping - which determines Vz nominal), the diameter,
D, of junction or dice size (determines amount of power dissipation), the voltage across the
junction V C, and some constant, K. This relationship can be expressed as:
cc=V~
After the junction enters the zener region, capacitance remains relatively fixed and the AC
resistance then decreases with increasing zener current.
TEST CIRCUIT CONSIDERATIONS: A capacitive bridge was used to measure junction
capacitance. In this method the zener is used as one leg of a bridge that is balanced for both
DC at a given reverse voltage and for AC (the test frequency I MHz). After balancing, the
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-4-17
•
variable capacitor used for balancing is removed and its value measured on a test instrument.
The value thus indicated is the zener capacitance at reverse voltage for which bridge balance
was obtained. Figure 4-20 shows capacitance test circuit.
0.1
DC
POWER
SUPPLY
HP
NO. 712A
6
-
~F
1 MHz
IV
Ii
1\
VDC
1k
1%
1k
1%
1k
1%
1k
1%?-
100n ~
C>AC
SIGNAL
GEN
TEK
NO. 190A
~
HI·GAIN
DIFFSCOPE
NULLIND
TEK
TYPED
,C1
"
10/50
pF
ZENER
X UNDER
TEST
BALREAD
T
o-.09~F
R=ZRR
S1
CAP
DECADE
100pF
STEPS
L\C1%
C2 ? (
10/150
pF
1
I
UC
METER
TEK
140
I
Figure 4-20. Capacitance Test Circuit
Figure 4-21 is a plot of junction capacitance for diffused zener diode units versus their
nominal operating voltage. Capacitance is the value obtained with reverse bias set at one-half
the nominal VZ. The plot of the voltage range from 6.8 V to 200 V, for three dice sizes, covers
most Motorola diffused-junction zeners. Consult specific data sheets for capacitance values.
Figures 4-22, 4-23, and 4-24 show plots of capacitance versus reverse voltage for units
of various voltage ratings in each of the three dice sizes. Junction capacitance decreases as
reverse voltage increases to the zener region. This change in capacitance can be expressed
as a ratio which follows a one-third law,and C I/C2 =(V 2fV 1) 1/3. This law holds only from
the zener voltage down to about 1 volt, where the curve begins to flatten out. Figure 4-25
shows this for a group of low wattage units.
·
I
•
.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-4-18
10,000
C\I
.........
N
I'
MEDIUM WATIAGE
>
@J
fii
1,000
0
C2
it
0
u
............ HIGH WATIAGE
'" ""
I"..
~
...........
w
~
C3
" ......
"~
U
Z
100
~
'I'
...............
"
Cf
E
ff
2
~f
"
"
"
-2
...... I-""
o
2
I FORWARDS
II
I
I
I
I
I
I
-!-'
ONE
FORWARD
-
I
I
!
II
I
/
",
"
-1
-3
/
t--L+---f--I TWO
Ti-I r - -
Ii
o
f---
•
i
I! :
I
I
I
j
I!
)
j
:
I
Ii
II
i
I
I
3
4
5
Ii
6
7
VOLTS
Figure 5-4.
I
i
8
9
10
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-5-5
11
12
13
Temperature Coefficient Stability
Figure 5-5 shows the voltage-temperature characteristics of the TC diode. It can be seen
that the voltage drops slightly with increasing temperature.
6.326
f-
-
f-
-
6.324
fii
!:i 6.322
0
G
w
6.320
~
:...J
6.318
(!:I
0
f-
~
fI-
>
6.316
-
~
.~
f-
6.314
-55
-10
25
62
6
5
4
3
2
1
o
- -1
-2
- -3
..........
100
-4
-
-5
-e
TEMPERATURE (0C)
Figure 5-5. Voltage versus Temperature, Typical for Motorola 1N827
Temperature-Compensated Zener Diode
6
This non-linearity of the voltage temperature characteristic leads to a definition of a
representative design parameter tlVZ. For each device type there is a specified maximum
change allowable. The voltage temperature stability measurement consists of voltage measurement at specified temperatures (for the 1N821 Series the temperatures are -55,0, +25,
+75, and + 100°C). The voltage readings at each of the temperatures is compared with
readings at the other temperatures and the largest voltage change between any of the specified temperatures determines the exact device type. For devices registered prior to complete
definition of the voltage temperature stability measurement, the allowable maximum voltage change over the temperature range is derived from the calculation converting %fOC to
m V over the temperature range. Under this standard definition, %/oC is merely a nomenclature and the meaningful allowable voltage deviation to be expected becomes the designed
parameter.
.
Current
Thus far, temperature-compensated zeners have been discussed mainly with regard to
temperature and voltage. However, the underlying assumption throughout the previous
discussion was that current remained constant.
There is a significant change in the temperature coefficient of a unit depending on how
much above or below the test current the device is operated.
A particular unit with a 0.01 %fOC temperature coefficient at 7.5 rnA over a temperature
range of -55°C to + 100°C could possibly have a 0.0005%/oC temperature coefficient at 11
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-5-6
mAo In fact, there is a particular current which can be detennined for each individual unit
that will give the lowest TC.
Manufacturing processes are designed so that the yields of low TC units are high at the
test specification for current. A unit with a high TC at the test current can have a low TC at
some other current. A look at the volt-ampere curves at different temperatures illustrates this
point clearly (see Figure 5-6).
-6
-5.9
I-
Z
w
-18
II:
II:
:::>
o
----'1-1--- ~---------
-IA
~ve---------
-Ie
----'I+H-
Figure 5-6. Voltage-Ampere Curves Showing Crossover at A
If the three curves intersect at A, then operation at IA results in the least amount of voltage
deviation due to temperature from the +25°C voltage. At IB and IC there are greater excursions (~VB and ~VC) from the +25°C voltage as temperature increases or decreases.
The Effects of Poor Current Regulation
If current shifts (randomly or as a function of temperature), then an area of operation can
be defined for the temperature-compensated zener.
Once again the curves are drawn, this time a shaded area is shown on the graph. The upper
and lower extremities denote the maximum current values generated by the current supply
while the voltage extremes at each current are shown by the left and right sides of the area,
shown in Figure 5-7.
The three volt-ampere curves do not usually cross over at exactly the same point. However, this does not take away from the argument that current regulation is probably the most
critical consideration when using temperature-compensated units.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-5-7
•
•
VOLTAGE (VOLTS)
-6
-5.9
25°C
-55
I-
z
w
II:
II:
::::l
U
.vi ~
I
r
~IMAX
MAX
Figure 5-7. Effects of Poorly Regulated Current
Zener Impedance and Current Regulation
II
Zener impedance is defined as the slope of the V-I curve at the test point corresponding
to the test current. It is measured by superimposing a small ac current on the dc test current
and then measuring the resulting ac voltage. This procedure is identical with that used for
regular zeners.
Impedance changes with temperature, but the variation is usually small and it can be
assumed that the amount of current regulation needed at +25°C will be the same for other
temperatures.
As an example, one might want to determine the amount of current regulation necessary
for the device described below when the maximum deviation in voltage due to current
variation is ±5 millivolts.
VZT= 6.32 V
IZT=7.5 rnA
ZZT = 15 Q @ +25°C
I!.V = I!.I,ZZT
0.005
= 1!.1·15
M = 0.005 = 0.33 rnA
15
Therefore, the current cannot vary more than 0.33 rnA.
The amount of current regulation necessary is:
0.33 x 100% = 4.5% regulation.
7.5
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-5-8
If the device of Figure 5-5 is considered to be the device used in the preceding discussion,
it becomes apparent that on the average more voltage variation is due to current fluctuation
than is due to temperature variation. Therefore, to obtain a truly stable reference source, the
device must be driven from a constant current source.
•
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-5-9
•
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-5-10
CHAPTER 6: BASIC VOLTAGE
REGULATION USING ZENER DIODES
Basic Concepts of Regulation
The purpose of any regulator circuit is to minimize output variations with respect to
variations in input, temperature, and load requirements. The most obvious use of a regulator
is in the design of a power supply, but any circuit that incorporates regulatory technique to
give a controlled output or function can be considered as a regulator. In general, to provide
a regulated output voltage, electronic circuitry will be used to pass an output voltage that is
significantly lower than the input voltage and block all voltage in excess of the desired
output. Allocations should also be made in the regulation circuitry to maintain this output
voltage for variation in load current demand.
There are some basic rules of thumb for the electrical requirements of the electronic
circuitry in order for it to provide regulation. Number one, the output impedance should be
kept as low as possible. Number two, a controlling reference needs to be established that is
relatively insensitive to the prevailing variables. In order to illustrate the importance of these
rules, an analysis of some simple regulator circuits will point out the validity of the statements. The circuit of Figure 6-1 can be considered a regulator. This circuit will serve to
illustrate the importance of a low output impedance.
The resistors RS and RR can be considered as the source and regulator impedances,
respectively.
The output of the circuit is:
VI
RRRL
(6-1)
Vo = VI X R
R
R+
L
+o----v~----~------------+_----------~+
RS
Vo
Figure 6-1. Shunt Resistance Regulator
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-6-1
•
For a given incremental change in VI, the changes in Va will be
(6-2)
Assuming RL fixed at some constant value, it is obvious from equation (6-2) that in order
to minimize changes in Va for variations in VI, the shunt resistor RR should be made as
small as possible with respect to the source resistor RS. Obviously, the better this relation
becomes, the larger VI is going to have to be for the same Va, and not until the ratio of RS
to RR reaches infinity will the output be held entirely constant for variation in VI. This, of
course, is an impossibility, but it does stress the fact that the regulation improves as the output
impedance becomes lower and lower. Where the output impedance of Figure 6-1 is given
by
(6-3)
It is apparent from this relation that as regulation is improving with RS increasing and RR
decreasing the output impedance RO is decreasing, and is approximately equal to RR as the
ratio is 10 times or greater. The regulation of this circuit can be greatly improved by inserting
a reference source of voltage in series with RR such as Figure 6-2.
+o---~~----~------------.------------o+
RS
Vo
I
Figure 6·2. Regulator with Battery Reference Source
The resistance RR represents the internal impedance of the battery. For this circuit, the
output is
V
Vo = VR + VI R
R
(6-4)
2+_s+1
RL RR
Then for incremental changes in the input VI, the changes in Va will be dependent on the
second term of equation (6-4), which again makes the regulation dependent on the ratio of
RS to RR. Where changes in the output voltage or the regulation of the circuit in Figure 6-1
were directly and solely dependent upon the input voltage and output impedance, the regulation of circuit 6-2 will have an output that varies about the reference source VR in accordance
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-6-2
with the magnitude of battery resistance RR and its fluctuations for changes in VI. Theoretically, if a perfect battery were used, that is, VR is constant and RR is zero, the circuit would
be a perfect regulator. In other words, in line with the basic rules of thumb the circuit exhibits
optimum regulation with an output impedance of zero, and a constant reference source.
For regulator application, a zener diode can be used instead of a battery with a number of
advantages. A battery's resistance and nominal voltage will change with age and load
demand; the Motorola zener diode characteristics remain unchanged when operating within
its specified limits. Any voltage value from a couple of volts to hundreds of volts is available
with zener diodes, where conventional batteries are limited in the nominal values available.
Also, the zener presents a definite size advantage, and is less expensive than a battery
because it is permanent and need not be regularly replaced. The basic zener diode shunt
regulator circuit is shown in Figure 6-3.
+
+
RS
r--
VI
--,
I
I
I
I
I Rz
I ZENER
I
I
I
I DIODE
I
I
I vz" <'
I
I _ _ _ _ .JI
L
RL
Vo
Figure 6-3. Basic Zener Diode Shunt Regulator
Depending upon the operating conditions of the device, a zener diode will exhibit some
relatively low zener impedance RZ and have a specified breakover voltage of Vz that is
essentially constant. These inherent characteristics make the zener diode suited for voltage
regulator applications.
Designing the Zener Shnnt RegnJator
For any given application of a zener diode shunt regulator, it will be required to know the
input voltage variations and output load requirements. The calculation of component values
will be directly dependent upon the circuit requirements. The input may be constant or have
maximum and minimum values depending upon the natural regulation or waveform of the
supply source. The output voltage will be determined by the designer'S choice ofVZ and the
circuit requirements. The actual value of Vz will be dependent upon the manufacturer's
tolerance and some small variation for different zener currents and operating temperatures.
For all practical purposes, the value of Vz as specified on the manufacturer's data sheet
can be used to approximate Vo in computating component values. The requirement for load
current will be known and will vary within some given range of IL(min) to IL(max).
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-6-3
•
The design objective of Figure 6-3 is to determine the proper values of the series resistance, RS, and zener power dissipation, PZ. A general solution for these values can be
developed as follows, when the following conditions are known:
VI (input voltage) from VI(min) to VI(max)
,Va (output voltage) from VZ(min) to VZ(max)
IL (load current) from IL(min) to IL(max)
The value of RS must be of such a value so that the zener current will not drop below a minimum value of IZ(min). This minimum zener current is mandatory to keep the device in the
breakover region in order to maintain the zener voltage reference. The minimum current can
be either chosen at some point beyond the knee or found on the manufacturer's data sheet
(IzK). The basic voltage loop equation for this circuit is:
VI =(IZ + IURS + Vz
(6-5)
The minimum zener current will occur when VI is minimum, Vz is maximum, and IL is
maximum, then solving for RS, we have:
RS
=_V.=.:I(>=rm='n~)_-_V....:Z~(=m=ax=)
(6-6)
IZ(min) + IL(max)
Having found RS, we can determine the maximum power dissipation PZ for the zener diode.
PZ(max) =IZ(max) VZ(max)
(6-7)
Where:
Iz(max) = VI(max) - VZ(min) - IL(min)
RS
•
(6-8)
Therefore:
PZ(max) = [
VI(maX) - VZ(min)
]
RS
- IL(min) VZ(max)
(6-9)
Once the basic regulator components values have been determined, adequate considerations will have to be given to the variation in Va. The changes in Va are a function of four
different factors; namely, changes in VI, IL, temperature, and the value of zener impedance,
RZ. These changes in Va can be expressed as:
llVO =
llVI
- RSRZ llIL + TCllTVZ
RS +RZ
.
1 +RS RS
-+RZ RL
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-6-4
(6-10)
The value of flVo as calculated with equation (6-10) will quite probably be slightly different
from the actual value when measured empirically. For all practical purposes though, this difference will be insignificant for regulator designs utilizing the conventional commercial line
of zener diodes.
Obviously to precisely predict flVo with a given zener diode, exact information would
be needed about the zener impedance and temperature coefficient throughout the variation
of zener current. The "worst case" change can only be approximated by using maximum
zener impedance and with typical temperature coefficient.
The basic zener shunt regulator can be modified to minimize the effects of each term in
the regulation equation (6-10). Taking one term at a time, it is apparent that the regulation
or changes in output fl Vo will be improved if the magnitude of fl VI is reduced. A practical
and widely used technique to reduce input variation is to cascade zener shunt regulators such
as shown in Figure 6-4.
+o-~~~--~----o
----.-~r---~~----_.--------~----_o+
Va
Figure 6-4. Cascaded Zener Shunt Regulators Reduce
I:NO by Reducing ~VI to the Succeeding Stages
This, in essence, is a regulator driven with a pre-regulator so that the over all regulation
is the product of both. The regulation or changes in output voltage is determined by:
(6-11)
Where:
flVZl = flVO' =
flVI
- RSIRZI flIL' + Tel flTVZl
RSI RSI RSI + RZI
1+-+RL' RZI
RL' =RS2 +
RLRZ2 and IL' =IL + IZ2
RL+RZ2
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-6-5
(6-12)
I
The changes in output with respect to changes in input for both stages assuming the
temperature and load are constant is
IlVO
IlVZl
IlVO =ReguIatIOn
' 0 f second stage
= --,
(6-13)
' 0 ff'Irst stage
=ReguIatIOn
(6-14)
IlVO
IlVO'
-IlVI
IlVO
IlVO
- =-
IlVO'
x -IlVO'
IlVI
IlVI
I
•
=Combined regulation
(6-15)
Obviously, this technique will vastly improve overall regulation where the input fluctuates over a relatively wide range. As an example, let's say the input varies by ±20% and the
regulation of each individual stage reduces the variation by a factor of 1120. This then gives
an overall output variation of ±20% x (1120)2 or ±O.05%.
The next two factors in equation (6-10) affecting regulation are changes in load current
and temperature excursions. In order to minimize changes for load current variation, the
output impedance RzRs/(RZ + RS) will have to be reduced. This can only be done by having
a lower zener impedance because the value ofRS is fixed by circuit requirements. There are
basically two ways that a lower zener impedance can be achieved. One, a higher wattage
device can be used which allows for an increase in zener current of which will reduce the
impedance. The other technique is to series lower voltage devices to obtain the desired
equivalent voltage, so that the sum of the impedance is less than that for a single high voltage
device. So to speak, this technique will kill two birds with one stone, as it can also be used
to minimize temperature induced variations of the regulator.
In most regulator applications, the single most detrimental factor affecting regulation is
that of variation in junction temperature. The junction temperature is a function of both the
ambient temperature and that of self heating. In order to illustrate how the overall temperature coefficient is improved with series lower voltage zener, a mathematical relationship can
be developed. Consider the diagram of Figure 6-5.
+
+
RS
'4~ Z1
,,~
Z2
"r"
zn
~
VI
RL
Vo
Figure 6-5. Series Zener Improve Dynamic Impedance and Temperature Coefficient
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-6-6
With the temperature coefficient TC defined as the % change per °C, the change in output
for a given temperature range will equal some overall TC x.1T x Total VZ. Such as
.1VO(.1T) =TC.1T (VZ1 + VZ2 + ... + VZN)
(6-16)
Obviously, the change in output will also be equal to the sum of the changes as attributed
from each zener.
(6-17)
Setting the two equations equal to each other and solving for the overall TC, we get
TC.1T(VZ1 + VZ2 + ... + VZN) =.1T(TC1 VZ1
+ TC2VZ2 + ... + TCNVZN)
(6-18)
VZ1 + TC2VZ2 + ... + TCNVZN
TC = TC1
--'----'----'----'--------'-VZ1 + VZ2 + ... + VZN
(6-19)
For equation (6-19) the overall temperature coefficient for any combination of series
zeners can be calculated. Say for instance several identical zeners in series replace a single
higher voltage zener. The new overall temperature coefficient will now be that of one of the
low voltage devices. This allows the designer to go to the manufacturer's data sheet and
select a combination of low TC zener diodes in place of the single higher TC devices.
Generally speaking, the technique of using multiple devices will also yield a lower dynamic
impedance. Advantages of this technique are best demonstrated by example. Consider a 5
watt diode with a nominal zener voltage of 10 volts exhibits approximately 0.055% change
in voltage per degree centrigrade, a 20 volt unit approximately 0.075%/oC, and a 100 volt
unit approximately 0.1 %/oC. In the case of the 100 volt diode, five 20 volt diodes could be
connected together to provide the correct voltage reference, but the overall temperature •
coefficient would remain that of the low voltage units, i.e. 0.075%/oC. It should also be noted
that the same series combination improves the overall zener impedance in addition to the
temperature coefficient. A 20 volt, 5 watt Motorola zener diode has a maximum zener
impedance of 3 ohms, compared to the 90 ohms impedance which is maximum for a 100 volt
unit. Although these impedances are measured at different current levels, the series impedance of five 20 volt zener diodes is still much lower than that of a single 100 volt zener diode
at the test current specified on the data sheet.
For the ultimate in zener shunt regulator performance, the aforementioned techniques can
be combined with the proper selection of devices to yield an overall improvement in regulation. For instance, a multiple string oflow voltage zener diodes can be used as a preregulator,
with a series combination of zero TC reference diodes in the final stage such as Figure 6-6.
The first stage will reduce the large variation in VI to some relatively low level, i.e . .1VZ.
This .1Vz is optimized by utilizing a series combination of zeners to reduce the overall TC
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-6-7
•
and!:J.VZ. Because of this small fluctuation of input to the second stage, and ifRL is constant,
the biasing current of the TC units can be maintained at their specified level. This will give
an output that is very precise and not significantly affected by changes in input voltage or
junction temperature.
+
+
RSl
RS2
';(Zl
~, TCl
~~
';( Z2
VI
RL
. . '"' Z3
Vo
" TC2
~~
"r'
4
Figure 6-6. Series Zeners Cascaded With Series Reference Diodes
for Improved Zener Shunt Regulation
The basic zener shunt regulator exhibits some inherent limitations to the designer. First
of all, the zener is limited to its particular power dissipating rating which may be less than
the required amount for a particular situation. The total magnitude of dissipation can be
increased to some degree by utilizing series or parallel units. Zeners in series present few
problems because individual voltages are additive and the devices all carry the same current
and the extent that this technique can be used is only restricted by the feasibility of circuit
parameters and cost. On the other hand, caution must be taken when attempting to parallel
zener diodes. If the devices are not closely matched so that they all break over at the same
voltage, the low voltage device will go into conduction first and ultimately carry all the
current. In order to avoid this situation, the diodes should be matched for equal current
sharing .
Extending Power and Current Range
• •
The most common practice for extending the power handling capabilities of a regulator
is to incorporate transistors in the design. This technique is discussed in detail in the following sections of this chapter. The second disadvantage to the basic zener shunt regulator is
that because the device does not have a gain function, a feedback system is not possible with
just the zener resistor combination. For very precise regulators, the design will normally be
an electronic circuit consisting of transistor devices for control, probably a closed loop
feedback system with a zener device as the basic referencing element.
The concept of regulation can be further extended and improved with the addition of
transistors as the power absorbing elements to the zener diodes establishing a reference.
There are three basic techniques used that combine zener diodes and transistors for voltage
regulation. The shunt transistor type shown in Figure 6-7 will extend the power handling
capabilities of the basic shunt regulator, and exhibit marked improvement in regulation.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-6-8
+
+
RS
IZ!
Z
VI
! Ie
--
IB
01
IL!
RL
Vo
RB
Figure 6-7. Basic Transistor Shunt Regulator
In this configuration the source resistance must be large enough to absorb the overvoltage
in the same manner as in the conventional zener shunt regulator. Most of the shunt regulating
current in this circuit will pass through the transistor reducing the current requirements of
the zener diode by essentially the dc current gain of the transistor hPE. Where the total
regulating shunt current is:
IS = IZ + Ie = IZ + IB hPE
where
IZ = IB + IRB and IB » IRB
therefore
(6-20)
The output voltage is the reference voltage Vz plus the forward junction drop from base
to emitter VBE of the transistor.
VO=VZ+VBE
(6-21)
The values of components and their operating condition is dictated by the specific input
and output requirements and the characteristics of the designer's chosen devices, as shown
in the following relations:
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-6-9
RS=
VI(min) - VO(max)
IZ(min) [l+hFE(min)] + IL(max)
RB
= VI(min) -
VZ(max)
IZ(min)
PDZ =IZ(max) VZ(max)
(6-22)
(6-23)
(6-24)
when
- VO(min)
IZ(max) = [ VI(max) Rs
hence
P
DZ = [
V I(max) - V O(min)
Rs
I
L(min)
IL(min)
]
(6-25)
] [ V Z(max) )
1 + hFE(min)
(6-26)
(6-27)
• •
Regulation with this circuit is derived in essentially the same manner as in the shunt zener
circuit, where the output impedance is low and the output voltage is a function of the
reference voltage. The regulation is improved with this configuration because the small
signal output impedance is reduced by the gain of Ql by lIhFE.
One other highly desirable feature of this type of regulator is that the output is somewhat
self compensating for temperature changes by the opposing changes in Vz and VBE for Vz
<:: 10 volts. With the zener having a positive 2 m VICC TC and the transistor base to emitter
being a negative 2 mV/oC TC, therefore, a change in one is cancelled by the change in the
other. Even though this circuit is a very effective regulator it is somewhat undesirable from
an efficiency standpoint. Because the magnitude of RS is required to be large, and it must
carry the entire input current, a large percentage of power is lost from input to output.
Emitter Follower Regulator
Another basic technique of transistor-zener regulation is that of the emitter follower type
shown in Figure 6-8.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-6-10
--Ie
RS
t
RB
IRB
t
Vo
IL
IZ
+
+
+
Figure 6-8. Emitter Follower Regulator
This circuit has the desirable feature of using a series transistor to absorb overvoltages
instead of a large fixed resistor, thereby giving a significant improvement in efficiency over
the shunt type regulator. The transistor must be capable of carrying the entire load current
and withstanding voltages equal to the input voltage minus the load voltage. This, of course,
imposes a much more stringent power handling requirement upon the transistor than was
required in the shunt regulator. The output voltage is a function of the zenerreference voltage
and the base to emitter drop of QI as expressed by the equation (6-28).
VO=VZ-VBE
(6-28)
The load current is approximately equal to the transistor collector current, such as shown
in equation (6-29).
IL(max) "" IC(max)
(6-29)
The designer must select a transistor that will meet the following basic requirements:
•
PD == (VI(max) - VO)IL(max)
IC(max) "" IL(max)
BVCES
~
(VI(max) - yO)
(6-30)
Depending upon the designer's choice of a transistor and the imposed circuit requirements, the operation conditions of the circuit are expressed by the following equations:
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-6-11
VZ=VO+VBE
= va + IL(max)/gFE(min)
@
RS = VI(min) - Vz - V CE(min)
IL(max)
@
IL(max)
(6-31)
IL(max)
Where VCE(min) is an arbitrary value of minimum collector to emitter voltage and gFE
is the transconductance.
This is sufficient to keep the transistor out of saturation, which is usually about 2 volts.
RB =
V CE(min) @ IL(max)
IL(max)/hFE(min) @ IL(max) + IZ(min)
IZ(max) =
6
VI(max)-VZ
RB + RZ
(6-32)
(6-33)
PDz = IZ(max)Vz
(6-34)
Actual PDQ = (VI(max) - Va) IL(max)
(6-35)
There are two primary factors that effect the regulation most in a circuit of this type. First
of all, the zener current may vary over a considerable range as the input changes from
minimum to maximum and this, of course, may have a significant effect on the value ofVZ
and therefore YO. Secondly, Vz and VBE will both be effected by temperature changes
which are additive on their effect of output voltage. This can be seen by altering equation
(6-28) to show changes in Va as dependent on temperature, see equation (6-36).
VO(~T)
= ~T[(+TC) VZ-(-TC) VBE]
(6-36)
The effects of these detrimental factors can be minimized by replacing the bleeder resistor
RB with a constant current source and the zener with a reference diode in series with a
forward biased diode (see Figure 6-9).
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-6-12
RS
CONSTANT
CURRENT
SOURCE
Vo
FORWARD
SIASDIODE
TCZENER
+o------------------------*--------------~--------o+
Figure 6-9. Improved Emitter Follower Regulator
The constant current source can be either a current limiter diode or a transistor source. The
current limiter diode is ideally suited for applications of this type, because it will supply the
same biasing current irregardless of collector to base voltage swing as long as it is within
the voltage limits of the device. This technique will overcome changes in Vz for changes
in IZ and temperature, but changes in VBE due to load current changes are still directly
reflected upon the output. This can be reduced somewhat by combining a transistor with the
zener for the shunt control element as illustrated in Figure 6-10.
RS
CONSTANT
CURRENT
SOURCE
IC2
Vo
RS
+o-----------------------~----~----+---------~~------_o+
Figure 6-10. Series Pass Regulator
This is the third basic technique used for transistor-zener regulators. This technique or at
least a variation of it, finds the widest use in practical applications. In this circuit the
transistor Ql is still the series control device operating as an emitter follower. The output
voltage is now established by the transistor Q2 base to emitter voltage and the zener voltage.
Because the zener is only supplying base drive to Q2, and it derives its bias from the output,
the zener current remains essential constant, which minimizes changes in Vz due to IZ
excursions. Also, it may be possible (VZ "" 10 V) to match the zener to the base-emitter
junction of Q2 for an output that is insensitive to temperature changes. The constant current
source looks like a very high load impedance to the collector of Q2 thus assuming a very high
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-6-13
voltage gain. There are three primary advantages gained with this configuration over the
basic emitter follower:
1. The increased voltage gain of the circuit with the addition of Q2 will improve regulation
for changes in both load and input.
2. The zener current excursions are reduced, thereby improving regulation.
3. For certain voltages the configuration allows good temperature compensation by
matching the temperature characteristics of the zener to the base-emitter junction of Q2.
The series pass regulator is superior to the other transistor regulators thus far discussed.
It has good efficiency, better stability and regulation, and is simple enough to be economically practical for a large percentage of applications.
Employing Feedback for Optimum Regulation
The regulators discussed thus far do not employ any feedback techniques for precise
control and compensation and, therefore, find limited use where an ultra precise regulator
is required. In the more sophisticated regulators some form of error detection is incorporated
and amplified through a feedback network to closely control the power elements as illustrated in the block diagram of Figure 6-11.
r--
REGULATING
POWER
ELEMENT
I
IN PUT
CONTROL
UNIT
AMPLIFIER
-
REFERENCE
AND
ERROR
DETECTION
LOAD
OUTPUT
Figure 6-11. Block Diagram of Regulator with Feedback
Regulating circuits of this type will vary in complexity and configuration from application
to application. This technique can best be illustrated with a couple of actual circuits of this
type. The feedback regulators will generally be some form of series pass regulator, for
optimum performance and efficiency. A practical circuit of this type that is extensively
.
utilized is shown in Figure 6-12.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-6-14
+
+
R2
R7
RX
Z1
04
RS
Os
Rg
V,
RL
Va
Figure 6-12. Series Pass Regulator with Error Detection and Feedback
Amplification Derived from a Differential Amplifier
In this circuit, the zener establishes a reference level for the differential amplifier composed of Q4 and Q5 which will set the base drive for the control transistor Q3 to regulate
the series high gain transistor combination of Q 1 and Q2. The differential amplifier samples
the output at the voltage dividing network of R8, R9, and RIO. This is compared to the
reference voltage provided by the zener Z 1. The difference, if any, is amplified and fed back
to the control elements. By adjusting the potentiometer, R9, the output level can be set to any
desired value within the range of the supply. (The output voltage is set by the relation Vo
= VZ[(RX + Ry)IRX].) By matching the transistor Q4 and Q5 for variations in VBE and gain
with temperature changes and incorporating a temperature compensated diode as the reference, the circuit will be ultra stable to temperature effects. The regulation and stability of
this circuit is very good, and for this reason is used in a large percentage of commercial power
supplies.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-6-15
+o---~~-.------~
K----------.----------~----~~----Q+
r-
-----,
REFERENCE
AMPLIFIER
R6
r--+--'"
1--1--""'-----< R7
Vo
_______ J
RS
R5
Figure 6-13. Series Pass Regulator with Temperature Compensated Reference Amplifier
6
Another variation of the feedback series pass regulator is shown in Figure 6-13. This
circuit incorporates a stable temperature compensated reference amplifier as the primary
control element.
This circuit also employs error detection and amplified feedback compensation. It is an
improved version over the basic series pass regulator shown in Figure 6-10. The series
element is composed of a Darlington high gain configuration formed by Q I and Q2 for an
improved regulation factor. The combined gain of the reference amplifier and Q3 is incorporated to control the series unit. This reduced the required collector current change of the
reference amplifier to control the regulator so that the bias current remains close to the
specified current for low temperature coefficient. Also the germanium diode DI will compensate for the base to emitter change in Q3 and keep the reference amplifier collector
biasing current fairly constant with temperature changes. Proper biasing of the zener and
transistor in the reference amplifier must be adhered to if the output voltage changes are to
be minimized.
Constant Current Sources for Regulator Applications
Several places throughout this chapter emphasize the need for maintaining a constant
current level in the various biasing circuits for optimum regulation. As was mentioned
previously in the discussion on the basic series pass regulator, the current limiter diode can
be effectively used for the purpose.
Aside from the current limiter diode a transistorized source can be used. A widely used
technique is shown incorporated in a basic series pass regulator in Figure 6-14.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-6-16
--,
r---
Vo
_ _ _ _ _ _ _ _ .J
CONSTANT
CURRENT
SOURCE
+o-----------~------------------_4--------4_------_4------__o+
Figure 6-14. Constant Current Source Incorporated
in a Basic Regulator Circuit
The circuit is used as a preregulated current source to supply the biasing current to the
transistor Q2. The constant current circuit is seldom used alone, but does find wide use in
conjunction with voltage regulators to supply biasing current to transistors or reference
diodes for stable operation. The Zener Z2 establishes a fixed voltage across RE and the base
to emitterofQ3. This gives an emitter current of IE = (VZ- VBE)IRE which will vary only
slightly for changes in input voltage and temperature.
Impedance Cancellation
One of the most common applications of zener diodes is in the general category of
reference voltage supplies. The function of the zener diode in such applications is to provide
a stable reference voltage during input voltage variations. This function is complicated by
the zener diode impedance, which effectively causes an incremental change in zener breakdown voltage with changing zener current.
Figure 6-15. Impedance Cancellation with An Uncompensated Zener
It is possible, however, by employing a bridge type circuit which includes the zener diode
and current regulating resistance in its branch legs, to effectively cancel the effect of the
zener impedance. Consider the circuit of Figure 6-15 as an example. This is the common
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-6-17
configuration for a zener diode voltage regUlating system. The zener impedance at 20 rnA
of a 1N4740 diode is typically 2 ohms. If the supply voltage now changes from 30 V to 40
V, the diode current determined by R1changes from 20 to 30 rnA; the average zener
impedance becomes 1.9 ohms; and the reference voltage shifts by 19 mV. This represents
a reference change of .19%, an amount far too large for an input change of 30% in most
reference supplies.
The effect of zener impedance change with current is relatively small for most input
changes and will be neglected for this analysis. Assuming constant zener impedance, the
zener voltage is approximated by
(6-37)
V'z = Vz + Z(I'Z - IZ)
where V'Z is the new zener voltage
Vz is the former zener voltage
I'Z is the new zener current
IZ is the new zener current flowing at Vz
RZ is the zener impedance
Then AVZ = ZAIZ
Let the input voltage VI in Figure 6-15 increase by an amount AVI
ThenM= AVI-AVZ
R1
(6-38)
AlsoM= AVZ
RZ
(6-39)
Solving AVIRZ - AVZRZ - AVZR1 = 0
AVZ = RZ
Or
AVI
R1+RZ
6
(6-40)
Equation 6-40 merely states that the change in reference voltage with input tends to zero
when the zener impedance tends also to zero, as expected.
The figure of merit equation can be applied to the circuits of Figure 6-16 and 6-17 to
explain impedance cancellation. The Change Factor equations for each leg and the reference
voltage VR are:
AVZ
RZ
CFyZ=- =
=RA
AVI
R1+RZ
(6-41)
AV2 = R3
-RB
CFV2= R2+R3 AVI
(6-42)
R2+R3
=RA-RB
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
(6-43)
~
'\
R2 ~
Rj ~
> Rj
~
VI'~VI
I'
VI'~VI
J
".4"-
VR
t-
Vz
R3 "1'
f
Figure 6-16. Standard Voltage
Regulation Circuit
Figure 6-17. Impedance Cancellation Bridge
Since the design is to minimize CFyR, RB can be set equal to RA. The Input Regulation
Factors are:
yVZ =
~VZ
~VI
(VI)
I
Vz = 1+Vz (RI )
(6-44)
VI RZ
yV2 =
~V2 (VI) = I
~VI
(6-45)
V2
(6-46)
It is seen that yVR can be minimized by setting RB =RA.
Note that it is not necessary to match R3 to RZ and R2 to RI. Thus R3 and R2 can be large
and hence dissipate low power. This discussion is assuming very light load currents.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-6-19
•
•
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-6-20
CHAPTER 7: ZENER PROTECTIVE
CIRCUITS AND TECHNIQUES
BASIC DESIGN CONSIDERATIONS
Introduction
The reliability of any system is a function of the ability of the equipment to operate
satisfactorily during moderate changes of environment, and to protect itself during otherwise
damaging catastrophic changes. The silicon zener diode offers a convenient, simple but
effective means of achieving this result. Its precise voltage sensitive breakdown characteristic provides an accurate limiting element in the protective circuit. The extremely high
switching speed possible with the zener phenomenon allows the circuit to react faster by
orders of magnitude that comparable mechanical and magnetic systems.
By shunting a component, circuit, or system with a zener diode, the applied voltage cannot
exceed that of the particular device's breakdown voltage. (See Figure 7-1.)
A device should be chosen so that its zener voltage is somewhat higher than the nominal
operating voltage but lower than the value of voltage that would be damaging if allowed to
pass. In order to adequately incorporate the zener diode for circuit protection, the designer
must consider several factors in addition to the required zener voltage. The first thing the
designer should know is just what transient characteristics can be anticipated, such as
magnitude, duration, and the rate of reoccurrence. For short duration transients, it is usually
possible to suppress the voltage spike and allow the zener to shunt the transient current away
from the load without a circuit shutdown. On the other hand, if the over-voltage condition
is for a long duration, the protective circuit may need to be complimented with a disconnect
element to protect the zener from damage created by excessive heating. In all cases, the end
circuit will have to be designed around the junction temperature limits of the device.
The following sections illustrate the most common zener protective circuits, and will
demonstrate the criteria to be followed for an adequate design.
Basic Protective Circuits For Supply Transients
The simple zener shunt protection circuit shown in Figure 7-1 is widely used for supply
voltage transient protection where the duration is relatively short. The circuit applies whether the load is an individual component or a complete circuit requiring protection. Whenever
the input exceeds the zener voltage, the device avalanches into conduction clamping the load
voltage to VZ. The total current the diode must carry is determined by the magnitude of the
input voltage transient and the total circuit impedance minus the load current. The worst case
occurs when load current is zero and may be expressed as follows:
IZ(max)
= Vl(max) -
Vz
RS
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-7-1
(7-1)
+
RS
A
I
POWER
SUPPLY
z-:; ~
LOAD
I
Figure 7-1. Basic Shunt Zener Transient Protection Circuit
The maximum power dissipated by the zener is
PZ(max)
Vz
=IZ(max) VZ(max) = Vl(max)RS
VZ(max)
(7-2)
Also, more than one device can be used, i.e., a series string, which will reduce the
percentage of total power to be dissipated per device by a factor equal to the number of
devices in series. The number of diodes required can be found from the following expression:
Number =
6
.
PZ(max)
(7-3)
PZ (allowable per device)
Any fraction of a zener must be taken as the next highest whole number. This design
discussion has been based upon the assumption that the transient is of a single shot, nonrecurrent type. For all practical purposes it can be considered non-recurrent if the "off
period" between transients is at least four times the thermal time constant of the device. If
the "off period" is shorter than this, then the design calculations must include a factor for the
duty cycle. This is discussed in detail in Chapter 4. In Chapter 4 there are also some typical
curves relating peak power, pulse duration and duty cycle that may be appropriate for some
designs.
Obviously, the factor that limits the feasibility of the basic zener shunt protective circuit
is the pulse durations "t". As the duration increases, the allowable peak power for a given
configuration decreases and will approach a steady state condition.
When the anticipated transients expected to prevail for a specific situation are of long
duration, a basic zener shunt becomes impractical, in such a case the circuit can be improved
by using a complementary disconnect element. The most common overload protective
element is without a doubt the standard fuse. The common fuse adequately protects circuit
components from over-voltage surges, but at the same time must be chosen to eliminate
"nuisance fusing" which results when the maximum current rating of the fuse is too close
to the normal operational current of the circuit.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-7-2
An Example Problem: Selecting A Fuse-Zener Combination
Consider the case illustrated in Figure 7-2. Here the load components are represented by
a parallel combination ofR and C, equivalent to many loads found in practice. The maximum
capacitor voltage rating is usually the circuit-voltage limiting factor due to the cost of high
voltage capacitors. Consequently, a protective circuit must be designed to prevent voltage
surges greater than 1.5 times normal working voltage of the capacitor. It is common, however, for the supply voltage to increase to 135% normal for long periods. Examination offuse
manufacturers' melting time-current curves shows the difficulty of trying to select a fuse
which will melt rapidly at overload (within one or two cycles of the supply frequency to
prevent capacitor damage), and will not melt when subjected to voltages close to overload
for prolonged periods.
I
RS
+
POWER
SUPPLY
~
Vs
::
FUSE
':4'"
i
I
I
I
I
I
I
I
I
I
I
1
II
t
c
R
r
L ____________ ...J
Figure 7-2. Overvoltage Protection with Zener Diodes and Fuses
By connecting a zener diode of correct voltage ratings across the load as shown, a fuse
large enough to withstand normal current increases for long periods may be chosen. The
sudden current increase when zener breakdown occurs melts the fuse rapidly and protects
the load from large surges. In Figure 7-3, fuse current was plotted against supply voltage to
illustrate the improvement in load protection obtained with zener-fuse combinations. Fuse
current "A" would be selected to limit current resulting from voltage surges above 112 V to
90 rnA, which would melt the fuse in 100 ms. It is a simple matter, however, to select a fuse
which melts in 30 ms at 200 rnA but is unaffected by 100 rnA currents. The zener connection
allows fuse current "B" to be selected, eliminating this design problem and providing a
faster, more reliable protective circuit. If the same fuse was used without the zener diode,
a supply voltage of 210 volts would be reached before the fuse would begin to protect the
load.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-7-3
II
•
220
200
1-----
r----
"B"
----- - - - - - r----
180
«
160
ZENER DIODE WITH,
RESISTIVE LOAD
E.
!z
w
II:
II:
140
:::l
(.)
W
en
:::l
u..
120
RESISTIVE
LOADO~
"A"
100 1 - - - - - f - - - - - - - - - - - - - - - f - - -
~~
80
~~
I NORMAL LOAD VOLTAGE
60 ~
60
70
I
80
90
100
----r
110
-----
ZENER BREAKDOWN,
VOLTAGE
I
I
120
130
14o
VS, SUPPLY VOLTAGE (VOLTS)
Figure 7-3. Fuse Current versus Supply Voltage
6
Selection of the correct power rating of zener diodes to be used for surge protection
depends upon the magnitude and duration of anticipated surges. Often in circuits employing
both fuses and zener diodes, the limiting surge duration will be the melting time of the fuse.
This, in turn, depends on the nature of the load protected and the length of time it will tolerate
an overload.
As a first solution to the example problem, consider a zener diode with a nominal breakdown voltage of 110 volts measured at a test current (lZT) of 110 rnA. Since the fuse requires
about 200 rnA to melt and 100 rnA are drawn through the load at this voltage, the load voltage
will never exceed the zener breakdown voltage on slowly rising inputs. Transients producing
currents of approximately 200 rnA but of shorter duration than 30 ms will simply be clipped
by zener action and diverted from the load. Transients of very high voltage will produce
larger currents and, hence, will melt the fuse more rapidly. In the limiting case where
transient power might eventually destroy the zener diode, the fuse always melts first because
of the slower thermal time constant inherent in the zener diode's larger geometry.
The curves in Figure 7-4 illustrate the change in zener voltage as a function of changing
current for a typical device type.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-7-4
LOG IZ/IZK
Figure 7-4. Change in Vz for Changes in IZ
If an actual curve for the device being used is not available, the zener voltage at a specific
current above or below the test current may be approximated by equation 7-4.
(7-4)
Where: V =Vz + ZZT (I-IZT)
Vz = zener voltage at test current IZT
ZZT = zener impedance at test current IZT
IZT =test current
V =zener voltage at current I
For a given design, the maximum zener voltage to expect for the higher zener current
should be determined to make sure the limits of the circuit are met. If the maximum limit
is excessive for the original device selection, the next lower voltage rating should be used.
The previous discussion on design consideration for protective circuits incorporating
fuses is applicable to any protective element that permanently disconnects the supply when
actuated. Rather than a fuse, a non-resetting magnetic circuit breaker could have been used,
and the same reasoning would have applied.
Load Current Surges
In many actual problems the designer must choose a protective circuit to perform still
another task. Not only must the equipment be protected from the voltage surges in the supply,
but the supply itself often requires protection from shorts or partial shorts in the load. A direct
short in the load is fairly easy to handle, as the drastic current change permits the use of fuses
with ratings high enough to avoid problems with supply surges. More common is the partial
short, as illustrated in Figure 7-5. If a short circuit occurs in the capacitive section of the load
(represented by C) the resulting fault current is limited by the resistive section (represented
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-7-5
6
by R) to a value which may not be great enough to melt the fuse. The fault current could be
sufficient, however, to damage the supply and other components in the load.
The problem is resolved by employing a zener diode to protect against supply surges as
described in the previous section, and by selecting a separate fuse to protect from load faults.
The load fuse in Figure 7 -5 is chosen close to the normal operating current. Abnormal supply
surges do not affect it and equipment operates reliably but with ample protection for the
supply against load changes.
R
SUPPLY
FUSE
r-----------------,
I
I
LOAD
FUSE
I
R
I
I
I
I
POWER
SUPPLY
C
II
I
I
I
L _________________ ~
LOAD
Figure 7-5. Supply and Load with Zener Diode; Fuse Circuitry
Zener Diodes and Reclosing Disconnect Elements
An interesting application of zener diodes as overvoltage protectors, which offers the
possibility of designing for both long and short duration surges, is shown in Figure 7-6.
R
•
RECLOSING
CIRCUIT
BREAKER
POWER
SUPPLY
LOAD
~ IZ
,,<""
"\
Figure 7-6. Zener Diode Reclosing Circuit Breaker Protective Circuit
In the event of a voltage overload exceeding a chosen zener voltage, a large current will
be drawn through the diode. The reclosing disconnect element opens after an interval determined by its time constant, and the supply is disconnected. After another interval, again
depending on the switch characteristics, the supply is reconnected and the voltage "sampled"
by the zener diode. This leads to an "on-off' action which continues until the supply voltage
drops below the predetermined limit. At no time can the load voltage or current exceed that
set by the zener. The chief advantage in this type of circuit is the elimination of fuse
replacement in similar fusing circuits, while providing essentially the same load protection.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-7-6
It is difficult to define a set design procedure in this case, because of the wide variety of
reclosing, magnetic and thermal circuit breakers available. Care should be taken to ensure
that the power dissipated in the zener diode during the conduction time of the disconnect
element does not exceed its rating. As an example, assume the disconnect element was a
thermal breaker switch. The waveforms for a typical over-voltage situation are shown in
Figure 7-7.
VOLTS
SURGE VOLTAGE
SUPPLY
VOITAGE~----
OVER VOLTAGE
----------------------~--------
NORMAL OPERATING VOLTAGE
TIME - BREAK TEMPERATURE
THERMAL
BREAKER
TEMPERATURE I - - - - - . . J
TIME - AMPS
ZENER
DIODE
CURRENT
r---
;--
;-
;-
TIME - °C
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - MAXIMUM TJ
ZENER
DIODE
JUNCTION
TEMPERATURE
TIME - -
Figure 7-7. (Typical) Voltage, Current and Temperature Waveforms
for a Thermal Breaker
It is apparent that the highest zener diode junction temperature is reached during the first
conduction period. At this time the thermal breaker is cold and requires the greatest time to
reach its break temperature. The breaker then cycles thermally between the make and break
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-7-7
temperatures. as long as the supply voltage is greater than the zener voltage, as shown in
Figure 7-7.
The zener diode current and junction temperature variation are shown in the last two
waveforms of Figure 7-7. Overvoltage durations longer than the trip time of the thermal
breaker do not affect the diode .as the supply is disconnected. An overvoltage of much higher
level simply causes the thermal breaker to open sooner. In effect, the zener diode rating must
be high enough to ensure that maximum junction temperature is not reached during the
longest interval that the thermal switch will be closed.
Manufacturers of thermally operated circuit breakers publish current-time curves for their
devices similar to that shown in Figure 7-8. By estimating the peak supply overvoltage and
determining the maximum overvoltage tolerated by the load, an estimation of peak zener
current can be made. The maximum breaker trip time may then be read from Figure 7-8.
(After the initial current surge, the duration of "of' time is determined entirely by the breaker
characteristics and will vary widely with manufacture.) The zener diode junction temperature rise during conduction may be calculated now from the thermal time constant of the
device and the heatsink used.
Because the reclosing circuit breaker is continually cycling on and off, the zener current
takes on the characteristics of a repetitive surge, as can be seen in Figure 7-7.
30
20
en
0
z
0
(.)
w
•
~
w
~
i=
a..
a:
I-
10
\
~
\
~
~
o
o
r----..
2
CURRENT (AMPS)
Figure 7-8. Trip Time versus Current for Thermai Breaker
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-7-8
3
Transistor Overvoltage Protection
In many electronic circuits employing transistors, high internal voltages can be developed
and, if applied to the transistors, will destroy them. This situation is quite common in
transistor circuits that are switching highly inductive loads. A prime example of this would
be in transistorized electronic ignition systems such as shown in Figures 7 -9a and 7 -9b.
The zener diode is an important component to assure solid state ignition system reliability.
There are two basic methods of using a zener diode to protect an ignition transistor. These
are shown in Figures 7 -9a and 7 -9b. In Figure 7 -9b the transistor is protected by a zener diode
connected between base and collector and in Figure 7 -9a, the zener is connected between
emitter and collector. In both cases the voltage level of the zener must be selected carefully
so that the voltage stress on the transistor is in a region where the safe operating area is
adequate for reliable circuit operation.
.-------+------4>--- +12V
.-------+---'VVIr--- +12 V
ln
10n
1/2W
10n
2N6031
2N5879
lN6295
560pF
lN5374B
5
ln
100W
200 V
PAPER
n
HV. TO
DIST.
.--_.H.V.TO
DIST.
MALLORY
COIL
28100
PRESTO-UTE
201
(A)
(B)
Figure 7-9. Transistor Ignition Systems with Zener
Overvoltage Surge Protection
Figure 7-10 illustrates "safe" and "unsafe" selection of a zener diode for collector-base
protection of a transistor in the ignition coil circuit. It can be seen that the safe operating area
of a transistor must be known if an adequate protective zener is to be selected.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-7-9
TYPICAL TRANSISTOR SAFE AREA LIMIT
10
9
\
8
7
6
IC
\
\
\
\
\
,\
\
5
4
\
\
V- LOAD LINE
~
3
~
2
o
o
10
20
30
\
~
I
"~
40
SAFE
'\.
"\t- UN~AFE
Ii
r
I"V"-...
SAFE
I
I
~1---- ---+---l--..L
60
50
70
80
100
90
COLLECTOR-BASE
ZENER CLAMP
Figure 7-10. Safe Zener Protection
•
a:
a:
:::J
u
a:
w
z
W
N
.~
~
C\I
/
V
7
/:
~
-.......
EMITIER
ZENER CLAMP
~
\
i\
\
TIME 10 J.1SIdiv
Figure 7-11. Zener Diode Current Pulse
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-7-10
120
I- COLLECTOR-
VCE
!z
w
............
110
\
The zener diode must be able to take the stress of peak pulse current necessary to clamp
the voltage rise across the transistor to a safe value. In a typical case, a 5 watt, 100 volt zener
transient suppressor diode is required to operate with an 80 ~s peak pulse current of
8 amperes when connected between the collector-emitter of the transistor. The waveform of
this pulse current approaches a sine wave in shape (Figure 7-11). The voltage rise across a
typical transient suppressor diode due to this current pulse is shown in Figure 7-12. This
voltage rise of approximately 8 volts indicates an effective zener impedance of approximately 1 ohm. However, a good share of this voltage rise is due to the temperature coefficient and
thermal time constant of the zener. The temperature rise of the zener diode junction is
indicated by the voltage difference between the rise and fall of the current pulse.
/
~
w
V
/
""" "'
\\
I(
cr:
cr:
=>
u
cr:
w
z
W
N
.~
I
~
o
/
/
/
I
I
!
,/
V
/
/
V
ZENER VOLTAGE 1 V/dlv
Figure 7-12. Voltage-Current Representation on 100 V Zener
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-7-11
•
1/
100V
In order to assure safe operation, the change in zener junction temperature for the peak
pulse conditions must be analyzed. In making the calculation, the method described in
Chapter 4 should be used, taking into account duty cycle, pulse duration, and pulse magnitude.
When the zener diode is connected between the collector and emitter of the transistor,
additional power dissipation will result from the clipping of the ringing voltage of the
ignition coil by the forward conduction of the zener diode. This power dissipation by .the
forward diode current will result in additional zener voltage rise. It is not uncommon to
observe a IS-volt rise above the zener device voltage rating due to temperature coefficient
and impedance under these pulse current conditions.
The zener diode should be connected as close as possible to the terminals of the transistor
the zener is intended to protect. This insures that induced voltage transients, caused by
current changes in long lead lengths, are clamped by the zener and do not appear across the
transistor.
I
Figure 7-13. DC-DC Converter with Surge Protecting Diodes
Another example of overvoltage protection of transistor operating in an inductive load
switch capacity is illustrated in Figure 7-13. The DC-DC converter circuit shows a connection from collector to emitter of two zener diodes as collector overvoltage protectors. Without some type of limiting device, large voltage spikes may appear at the collectors, due to
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-7-12
the switching transients produced with normal circuit operation. When this spike exceeds
the collector breakdown rating of the transistor, transistor life is considerably shortened. The
zener diodes shown are chosen with zener breakdowns slightly below transistor breakdown
voltage to provide the necessary clipping action. Since the spikes are normally of short
duration (0.5 to 5 !..ls) and duty cycle is low, normal chassis mounting provides adequate
heatsinking.
Meter Protection
The silicon zener diode can be employed to prevent overloading sensitive meter movements used in low range DC and AC voltmeters, without adversely affecting the meter
linearity. The zener diode has the advantage over thermal protective devices of instantaneous
action and, of course, will function repeatedly for an indefinite time (as compared to the reset
time necessary with thermal devices). While zener protection is presently available for
voltages as low as 2.4 volts, forward diode operation can be used for meter protection where
the voltage drop is much smaller. A typical protective circuit is illustrated in Figure 7-14.
Here the meter movement requires 100 !..lAmps for full scale deflection and has 940 ohms
resistance. For use in a voltmeter to measure 25 V, approximately 249 thousand ohms are
required in series.
The protection provided by the addition of an 18 volt zener is illustrated in Figure 7-15.
With an applied voltage of 25 volts, the 100 !..lAmps current in the circuit produces a drop
of 17.9 volts across the series resistance of 179 thousand ohms. A further increase in voltage
+
70K
1N4746
25V
(18 VOLT
ZENER DIODE)
Figure 7-14. Meter Protection with Zener Diode
causes the zener diode to conduct, and the overload current is shunted away from the meter.
Since Motorola zener diodes have zener voltages specified within 5 and 10%, a safe design
may always be made with little sacrifice in meter linearity by assuming the lowest breakdown voltage within the tolerance. The shunting effect on the meter of the reverse biased
diode is generally negligible below breakdown voltage (on the order of 0.5° full scale). For
very precise work, the ,zener diode breakdown voltage must be accurately known and the
design equations solved for the correct resistance values.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-7-13
II
200~----------~----------~------------~-----------'
150r-----------~----------~------------~----------~
1
!z
w
a:
~
c..>
100 - - - - - - - - -
- - - - - - - - - -,JiC------------+------------I
WITH PROTECTIVE CIRCUIT
a:
~
::;:
50r-----------~----------~------------+_----------~
O~----------~----------~------------~----------~
o
50
100
150
200
TOTAL CURRENT (IJA)
Figure 7-15. Meter Protection with Zener Diodes
•
Zener Diodes Used With SCRs For Circuit Protection
An interesting aspect of circuit protection incorporating the reliable zener diode is the
protective circuits shown in Figures 7-16 and 7-17.
In a system that is handling large amounts of power, it may become impractical to employ
standard zener shunt protection because of the large current it would be required to carry.
The SCR crowbar technique shown in Figure 7 -16 can be effectively used in these situations.
The zener diode is still the transient detection component, but it is only required to carry the
gate current for SCR turn on, and the SCR will carry the bulk: of the shunt current. Whenever
the incoming voltage exceeds the zener voltage, it avalanches, supplying gate drive to the
SCR which, when fired, causes a current demand that will trip the circuit breaker. The
resistors shown are for current limiting so that the SCR and zener ratings are not exceeded.
The circuit of Figure 7 -17 is designed to disconnect the supply in the event a specified load
current is exceeded. This is done by means of a series sense resistor and a compatible zener
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-7-14
CIRCUIT
BREAKER
~
0-0
RS
R1
ZENER
AC
R2
SCR
R3
RS
ZENER
Figure 7-16. SCR Crowbar Over-Voltage Protection Circuit for AC Circuit Operation
0--0
CIRCUIT
BREAKER
Figure 7-17. SCR Longterm Current Overload Protection
to tum the shunt SCR on. When the voltage across the series resistor, which is a function of
the load current, becomes sufficient to break over the zener, the SCR is fired, causing the •
circuit breaker to trip.
Zener Transient Suppressors
The transient suppressor is used as a shunt element in exactly the same manner as a
conventional zener. It offers the same advantages such as low insertion loss, immediate
recovery after operation, a clamping factor approaching unity, protection against fast rising
transients, and simple circuitry. The primary difference is that the transient suppressor
extends these advantages to higher power levels.
Even in the event of transients with power contents far in excess of the capacity of the
zeners, protection is still provided the load. When overloaded to failure, the zener will
approximate a short. The resulting heavy drain will aid in opening the fuse or circuit breaker
protecting the load against excess current. Thus, even if the suppressor is destroyed, it still
protects the load.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-7-15
•
The design of the suppressor-fuse combination for the required level of protection follows
the techniques for conventional zeners discussed earlier in this chapter.
Transient Suppression Characteristics
Zener diodes, being nearly ideal clippers (that is, they exhibit close to an infinite impedance below the clipping level and close to a short circuit above the clipping level), are often
used to suppress transients. In this type of application, it is important to know the power
capability of the zener for short pulse durations, since they are intolerant of excessive stress.
Some Motorola data sheets such as the ones for devices shown in Table 7-1 contain short
pulse surge capability. However, there are many data sheets that do not contain this data and
Figure 7-18 is presented here to supplement this information.
Table 7-1. Transient Suppressor Diodes
6
Series Numbers
Steady State Power
Package
Description
1N4728A
1W
00-41
Double Slug Glass
1N6267A
5W
Case 41A-02
Axial Lead Plastic
1N5333B
5W
Case 17-02
Surmetic 40
1N746A1957B/4370A
500mW
00-35
Double Slug Glass
1N5221B
500mW
00-35
Double Slug Glass
Some data sheets have surge information which differs slightly from the data shown in
Figure 7-18. A variety of reasons exist for this:
1. The surge data may be presented in terms of actual surge power instead of nominal
power.
2. Product improvements have occurred since the data sheet was published.
3. Large dice are used, or special tests are imposed on the product to guarantee higher ratings than those shown in Figure 7-18.
4. The specifications may be based on a JEDEC registration or part number of another
' manufacturer.
The data of Figure 7 -18 applies for non-repetitive conditions and at a lead temperature of
25°C. If the duty cycle increases, the peak: power must be reduced as indicated by the curves
of Figure 7-19. Average power must be derated as the lead or ambient temperature rises
above 25°C. The average power derating curve normally given on data sheets may be
normalized and used for this purpose.
When it is necessary to use a zener close to surge ratings, and a standard part having
guaranteed surge limits is not suitable, a special part number may be created having a surge
limit as part of the specification. Contact your nearest Motorola OEM sales office for
capability, price, delivery, and minimum order quantities.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-7-16
100
50
20
~
II:
10
r--
W
~
a.
5
-------------.------------+----~f------+--.
TO ALTERNATOR
FIELD COIL
1N4001
FIELD
SUPPRESSION
DIODE
30n
-THE VALUE OF RT DEPENDS ON THE SLOPE OF THE VOLTAGE REGULATION
VERSUS TEMPERATURE CURVE.
Figure 8-4. Complete Solid State Alternator Voltage Regulator
B+4---_.------------~----------_4~----------_.----_<
ALTERNATOR
OUTPUT
RS
R3
I
R1 >*-------+--1
RS
ALTERNATOR
FIELD
Figure 8-5. Alternator Regulator With Emitter Sensor
A schematic of a complete alternator voltage regulator is shown in Figure 8-4.
It is also possible to perform the alternator regulation function with the sensing element
in the emitter of the control transistor as shown in Figure 8-5.
In this configuration, the sensing circuit is composed of Z 1 and Q 1 with biasing components. It is similar to the sensing circuit shown in Figure 8-1 b. The potentiometer Rl adjusts
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-8-4
the conduction point of Q 1 establishing the proper charge level. When the battery has
reached the desired level, Q1 begins to conduct. This draws Q2 into conduction, and therefore shorts off Q3 which is supplying power to the alternator field. This type of regulator
offers greater sensitivity with an increase in cost.
Unijunction-Zener Sense Circuits
Unijunction transistor oscillator circuits can be made GO-NO GO voltage sensitive by
incorporating a zener diode clamp. The UJT operates on the criterion: under proper biasing
conditions the emitter-base one junction will breakover when the emitter voltage reaches a
specific value given by the equation:
Vp ="VBB + Vn
(8-1)
where:
vp =peak point emitter voltage
" =intrinsic stand-off ratio for the device
VBB =interbase voltage, from base two to base one
VD = emitter to base one diode forward junction drop.
Obviously, if we provide a voltage clamp in the circuit such that the conditions of equation
8-1 are met only with restriction on the input, the circuit becomes voltage sensitive. There
are two basic techniques used in clamping UJT relaxation oscillators. They are shown in
Figure 8-6 and Figure 8-7.
The circuit in Figure 8-6 is that of a clamped emitter type. As long as the input voltage
VIN is low enough so that Vp does not exceed the Zener voltage VZ, the circuit will generate
output pulses. At some given point, the required Vp for triggering will exceed VZ. Since V p
is clamped at VZ, the circuit will not oscillate. This, in essence, means the circuit is GO as
long as VIN is below a certain level, and NO GO above the critical clamp point.
+
RT
Vp ="VBB + Vo
VIN
C
VE
Z
VOUT
Figure 8-6. UJT Oscillator, GO - NO GO Output,
GO for Low VIN - NO GO for High VIN
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-8-5
II
+
RT
R1
vIN
RB2
...
.~
D1
Q;}UJT
;; .. CT
R2
Figure 8-7. UJT -
VE
NO GO Output, NO GO for Low VIN -
RB1
-:r
Z
Vo UT
GO for High VIN
The circuit of Figure 8-7, is a clamped base UJT oscillator. In this circuit VBB is clamped
at a voltage Vz and the emitter tied to a voltage dividing network by a diode Dl. When the
input voltage is low, the voltage drop across R2 is less than V p. The forward biased diode
holds the emitter below the trigger level. As the input increases, the R2 voltage drop approaches Vp. The diode Dl becomes reversed biased and, the UJT triggers. This phenomenon establishes the operating criterion that the circuit is NO GO at a low input and GO at
an input higher than the clamp voltage. Therefore, the circuit~ in Figures 8-6 and 8-7 are both
input voltage sensitive, but have opposite input requirements for a GO condition. To illustrate the usefulness of the clamped UJT relaxation oscillators, the following two sections
show them being used in practical applications.
Battery Voltage Sensitive SCRCharger
A clamped emitter unijunction sensing circuit of the type shown in Figure 8-6 makes a
6
.very good battery charger (illustrated in Figure 8-8). This circuit will not operate until the
battery to be charged is properly connected to the charger. The battery voltage controls the
. charger and will dictate its operation. When the battery is properly charged, the charger will
cease operation.
The battery charging current is obtained through the controlled rectifier. Triggering pulses
for the controlled rectifier are generated by unijunction transistor relaxation oscillator (Figure 8-9). This oscillator is activated when the battery voltage is low.
While operating, the oscillator will produce pulses in the pulse transformer connected
across the resistance, RGe (RGe represents the gate-to-cathode resistance of the controlled
rectifier), at a frequency determined by the resistance, capacitance, R.e. time delay circuit.
Since the base-to-base voltage on the unijunction transistor is derived from the charging
battery, it will increase as the battery charges. The increase in base-to-base voltage of the
unijunction transistor causes its peak point voltage (switching voltage) to increase. These
waveforms are sketched in Figure 8-9 (this voltage increase.will tend to change the pulse
repetition rate, but this is not important).
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-8-6
A
C
RECTIFIED A.C.
VOLTAGE FROM
CHARGER
V
12V
UJT
R1-3.9K,1/2W
R2-1K, POT.
R3- 5.1K,1/2W
SCR-MCR3818-3
UJT -2N2646
T1- PR1, 30T, no. 22
SEC, 45T, NO. 22
C1-·25~f
CORE: FERROX CUBE
Z1 -1 N753, 6.2 V
203F181-303
Figure 8-8.12 Volt Battery Charger Control
+
BATIERY
CHARGED
TIME
UJTPEAK
ZENER
VOLTAGE
VRGC
B2
B1
POINT VOLTAGE
-------------
SCR
CONDUCTS
+
C1
·IIE}c
TIME
SCR
NONCONDUCTING
TIME
Figure 8-9. UJT Relaxation Oscillator Operation
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-8-7
R2
II
+
VBAn.
I
When the peak point voltage (switching voltage) of the unijunction transistor exceeds the
breakdown voltage of the Zener diode, Z I, connected across the delay circuit capacitor, C 1,
the unijunction transistor ceases to oscillate. If the relaxation oscillator does not operate, the
controlled rectifier will not receive trigger pulses and will not conduct. This indicates that
the battery has attained its desired charge as set by R2.
The unijunction cannot oscillate unless a voltage somewhere between 3 volts and the
cutoff setting is present at the output terminals with polarity as indicated. Therefore, the SCR
cannot conduct under conditions of a short circuit, an open circuit, or a reverse polarity
connection to the battery.
Alternator Regulator for Permanent Magnet Field
In alternator circuits such as those of an outboard engine, the field may be composed of
a permanent magnet. This increases the problem of regulating the output by limiting the
control function to opening or shorting the output. Because of the high reactance source of
most alternators, opening the output circuit will generally stress the bridge rectifiers to a very
high voltage level. It is, therefore, apparent that the best control function would be shorting
the output of the alternator for regulation of the charge to the battery.
Figure 8-10 shows a permanent magnet alternator regulator designed to regulate a 15
ampere output. The two SCRs are connected on the ac side of the bridge, and short out the
alternator when triggered by the unijunction voltage sensitive triggering circuit. The sensing
circuit is of the type shown in Figure 8-7. The shorted output does not appreciably increase
the maximum output current level.
A single SCR could be designed into the dc side of the bridge. However, the rapid tum-off
requirement of this type of circuit at high alternator speeds makes this circuit impractical.
I
MCR
2304-2
ALT.
OUT
~II
2000
270
lN971B
2000
MDA2500
Tl
2N2646
~II
lN960B
27 0
II
T1
+
BATIERY
CORE: ARNOLD no. 4T5340 01 001
PRIMARY 125 TURNS AWG 36
SEC no. 1 125 TURNS AWG 36
SEC no. 2 125 TURNS AWG 36
TRIFILAR WOUND
Figure 8-10. Permanent Magnet Field Alternator Regulator
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-8-8
The unijunction circuit in Figure 8-10 will not oscillate until the input voltage level
reaches the voltage determined by the intrinsic standoff ratio. The adjustable voltage divider
will calibrate the circuit. The series diode in the voltage divider circuit will compensate for
the emitter-base-one diode temperature change, consequently, temperature compensation is
necessary only for the zener diode temperature changes.
Due to the delay in charging the unijunction capacitor, when the battery is disconnected
the alternator voltage will produce high stress voltage on all components before the SCRs
will be fired. The 1N971 B Zener was included in the circuit to provide a trigger pulse to the
SCRs as soon as the alternator output voltage level approaches 30 volts.
Zener-Resistor Voltage Sensing
A simple but useful sense circuit can be made from just a Zener diode and resistor such
as shown in Figure 8-11.
Whenever the applied signal exceeds the specific Zener voltage VZ, the difference appears across the dropping resistor R. This level dependent differential voltage can be used
for level detection, magnitude reduction, wave shaping, etc. An illustrative application of
the simple series Zener sensor is shown in Figure 8-12, where the resistor drop is monitored
with a voltmeter.
+o---------~M~~------~~--------__O
J~
Z
R
VOUT
BASE CIRCUIT
VOUT
VOUT
r-
r-
r-- ---r----
Vz --------'----------- +
'----------- +
(LEVEL DETECTION)
TYPICAL OUTPUTS
(MAGNITUDE REDUCTION)
Figure 8-11. Zener-Resistor Voltage Sensitive Circuit
VZ:020V
+o---------~------~------------~
z
VIN :0 24 V - 28 V
R
Figure 8-12. Improving Meter Resolution
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
,.'
6-8-9
VOLTMETER
10 V - FULL SCALE
II
If, for example, the input is variable from 24 to 28 volts, a 30 voltmeter would normally
be required. Unfortunately, a 4 volt range of values on a 30 volt scale utilizes only 13.3%
of the meter movement - greatly limiting the accuracy with which the meter can be read.
By employing a 20 volt zener, one can use a 10 voltmeter instead of the 30 volt unit, thereby
utilizing 40% of the meter movement instead of 13.3% with a corresponding increase in
accuracy and readability. For ultimate accuracy a 24 volt zener could be combined with a
5 voltmeter. This combination would have the disadvantage of providing little room for
voltage fluctuations, however.
In Figure 8-13, a number of sequentially higher-voltage Zener sense circuits are cascaded
to actuate transistor switches. As each goes into avalanche its respective switching transistor
is turned on, actuating the indicator light for that particular voltage level. This technique can
be expanded and modified to use the zener sensors to actuate some form of logic system.
INPUT
R3
Figure 8-13. Sequential Voltage Level Indicator
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-8-10
CHAPTER 9: MISCELLANEOUS
APPLICATIONS OF ZENER
TYPE DEVICES
Introduction
Many of the commonly used applications of zener diodes have been illustrated in some
depth in the preceding chapters. This chapter shows how a zener diode may be used in some
rarer applications such as voltage translators, to provide constant current, wave shaping,
frequency control and synchronized SCR triggers.
The circuits used in this chapter are not intended as finished designs since only a few
component values are given. The intent is to show some general broad ideas and not specific
designs aimed at a narrow use.
Frequency Regulation of a DC to AC Inverter
Zener diodes are often used in control circuits, usually to control the magnitude of the
output voltage or current. In this unusual application, however, the zener is used to control
the output frequency of a current feedback inverter. The circuit is shown in Figure 9-1.
T
A
NC
T2
NS
NS
'r-!
-N-2---$""'OAD
II
NC
Figure 9-1. Frequency Controlled Current Feedback Inverter
The transformer Tl functions as a current transformer providing base current IB =
(NCINB)Ic. Without the zener diode, the voltage across NB windings of the timing transformer Tl is clamped to VBE of the ON device, giving an inverter frequency of
f= VBE x 108
4BSIAINB
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
6-9-1
where BS1A1 is the flux capacity of T1 transformer core. The effect on output frequency
ofVBE variations due to changing load or temperature can be reduced by using a zener diode
in series with VBE as shown in Figure 9-1. For this circuit, the output frequency is given by
f= (VBE + Vz) x 108
4BS1A1NB
If VBE is small compared to the zener voltage VZ, good frequency accuracy is possible.
For ~xample, with Vz = 9.1 volts, a 40 Watt inverter using 2N3791 transistors (operating
from a 12 volt supply), exhibited frequency regulation of ±2% with ±25% load variation.
Care should be taken not to exceed V (BR)EBO of the non-conducting transistor, since the
reverse emitter-base voltage will be twice the introduced series voltage, plus VBE of the
conducting device.
Transformer T2 should not saturate at the lowest inverter frequency.
Inverter starting is facilitated by placing a resistor from point A to B 1 or a capacitor from
A to B2.
Simple Square Wave Generator
The zener diode is widely used in wave shaping circuits; one of its best known applications
is a simple square wave generator. In this application, the zener clips sinusoidal waves
producing a square wave such as shown in Figure 9-2a. In order to generate a wave with
reasonably vertical sides, the ac voltage must be considerably higher than the zener voltage.
Clipper diodes with opposing junctions built into the device are ideal for applications of
the type shown in Figure 9-2b.
ZENER
VOLTAGE
•
FORWARD
DROP
VOLTAGE
(a). Single Zener Diode Square Wave Generator
\
\
\
I
\ I
\ I
'"
I
I
I
I
\ oJI
ZENERZ1
VOLTAGE
R
A.C.INPUT
\
\
\
OUTPUT
ZENERZ2
VOLTAGE
(b). Opposed Zener Diodes Square Wave Generator
Figure 9-2. Zener Diode Square Wave Generator
TRANSIENT VOLTAGESUPPRESSORS AND ZENER DIODES
6-9-2
\
\
I
I
I
,j
CONTENTS
PAGE
AN784
TRANSIENT POWER CAPABILITY
OF ZENER DIODES ................ 7-2-1
AN843
A REVIEW OF TRANSIENTS
AND THEIR MEANS OF
SUPPRESSION ................... 7-3-1
ARTICLE
SOME STRAIGHT TALK ABOUT
MOSORBS TRANSIENT VOLTAGE
SUPPRESSORS .................. 7-4-1
AR45D
CHARACTERIZING OVERVOLTAGE
TRANSIENT SUPPRESSORS ........ 7-5-1
ARTICLE
MEASUREMENT OF ZENER
VOLTAGE TO THERMAL
EQUILIBRIUM WITH PULSED
TEST CIRCUIT .................... 7-6-1
Application Notes
and Articles
ARTICLE
DESIGN CONSIDERATIONS
AND PERFORMANCE OF MOTOROLA
TEMPERATURE-COMPENSATED
ZENER (REFERENCE) DIODES ...... 7-7-1
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-1
II
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-2
AN784
TRANSIENT POWER CAPABILITY
OF ZENER DIODES
Prepared by
Applications Engineering and
Jerry Wilhardt, Product Engineer -
REV. 1
Industrial and Hi-Rei Zener Diodes
INTRODUCTION
Because of the sensitivity of semiconductor components to voltage transients in excess of their ratings,
circuits are often designed to inhibit voltage surges in
order to protect equipment from catastrophic failure.
External voltage transients are imposed on power lines
as a result of lightning strikes, motors, solenoids, relays
or SCR switching circuits, which share the same ac
source with other equipment. Internal transients can be
generated within a piece of equipment by rectifier
reverse recovery transients, switching of loads or transformer primaries, fuse blowing, solenoids, etc. The
basic relation, v = L di/dt, describes most equipment
developed transients.
~
a:
100
50
~
20
10
W
a..
5
2
~
~
~
z
~
0.5
0.2
0.1
;z- 0.05
~
1N6267 SERIES
r-..
-+-..
5WATITYPES
1 T03WTYPES
PLASTIC 00·41
r- 250 mW TO 1 WTYPES
t=t
0.02
0.01
0.01
GLASS 00-35 & GLASS 0D-41
0.05 0.1
0.02
0.2
0.5
2
5
10
PULSE WIDTH (ms)
Figure 1. Peak Power Ratings of Zener Diodes
ZENER DIODE CHARACTERISTICS
Zener diodes, being nearly ideal clippers (that is, they
exhibit close to an infinite impedance below the clipping
level and close to a short circuit above the clipping level),
are often used to suppress transients. In this type of
application, it is important to know the power capability
of the zener for short pulse durations, since they are
intolerant of excessive stress.
Some Motorola data sheets such as the ones for
devices shown in Table 1 contain short pulse surge
capability. However, there are many data sheets that do
not contain this data and Figure 1 is presented here to
supplement this information.
Table 1. Transient Suppressor Diodes
Series
Numbers
Steady
State Power
Peckage
Description
1N4728
lW
00-41
Double Slug Glass
Axial Lead Plastic
lN6267
5W
Case 41A·02
lN5333A
5W
Case 17
Surmetic40
lN746/957
A14371
400mW
00·35
Double Slug Glass
lN5221A
500mW
00-35
Double Slug Glass
Some data sheets have surge information which differs slightly from the data shown in Figure 1. A variety
of reasons exist for this:
1. The surge data may be presented in terms of actual
surge power instead of nominal power.
Power is defined as VZ(NOM) x IZ(PK) where VZ(NOM) is the nominal
zener voltage measured at the low test current used for voltage classification.
2. Product improvements have occurred since the
data sheet was published.
3. Larger dice are used, or special tests are imposed
on the product to guarantee higher ratings than those
shown on Figure 1.
4. The specifications may be based on a JEDEC registration or part number of another manufacturer.
The data of Figure 1 applies for non-repetitive conditions and at a lead temperature of 25°C. If the duty cycle
increases, the peak power must be reduced as indicated
by the curves of Figure 2. Average power must be derated as the lead or ambient temperature rises above
25°C. The average power derating curve normally given
on data sheets may be normalized and used for this
purpose.
At first glance the derating curves of Figure 2 appear •
to be in error as the 10 ms pulse has a higher derating
factor than the 10 J.1s pulse. However, when the derating
factor for a given pulse of Figure 2 is multiplied by the
peak power value of Figure 1 for the same pulse, the
results follow the expected trend.
When it is necessary to use a zener close to surge
ratings, and a standard part having guaranteed surge
limits is not suitable, a special part number may be
created having a surge limit as part of the specification.
Contact your nearest Motorola OEM sales office for capability, price, delivery, and minimum order criteria.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-2-1
1
O. 7
O. 5
0.3
CIRCUIT CONSIDERATIONS
......
§ 0.2
~
~
r-..
~
PULSE WIDTH
10ms
l'
0.1
"
~ 0.07
w 0.05
o
0.03
f'I..
0.02
0.01
1 ms=
I'\.:
0.1
0.2
0.5
1
I'.. 100 115_
N
1'\.10 115
2
5
10
D, DUTY CYCLE ('!o)
I
20
50
100
Figure 2. Typical Derating Factor for Duty Cycle
10ms----l
Since the power shown on the curves is not the actual
transient power measured, but is the product of the peak
current measured and the nominal zener voltage measured at the current used for voltage classification, the
peak current can be calculated from:
P(PK)
VZ(NOM)
(1 )
The peak voltage at peak current can be calculated
from:
VZ(PK) = Fe x VZ(NOM)
(2)
where Fe is the clamping factor. The clamping factor is
approximately 1.20 for all zener diodes when operated
at their pulse power limits. For example, a 5 watt, 20 volt
zener can be expected to show a peak voltage of 24
volts regardless of whether it is handling 450 watts for
0.1 ms or 50 watts for 10 ms. This occurs because the
voltage is a function of junction temperature and IR drop.
Heating of the junction is more severe at the longer
pulse width, causing a higher voltage component due to
temperature which is roughly offset by the smaller IR
voltage component.
For modeling purposes, an approximation of the zen-
• ..,~-~:(::~~. Itv::;:~7'
r*..,
~~
MATHEMATICAL MODEL
IZ(PK) =
It is important that as much impedance as Circuit constraints allow be placed in series ,with the zener diode
and the components to be protected. The result will be
a lower clipping voltage and less zener stress. A capacitor in parallel with the zener is also effective in reducing
the stress imposed by very short duration transients.
To illustrate use of the data, a common application will
be analyzed. The transistor in Figure 3 drives a 50 mH
solenoid which requires 5 amperes of current. Without
some means of clamping the voltage from the inductor
when the transistor turns off, it could be destroyed.
(3)
PPK(NOM)NZ(NOM)
The value is approximate because 'both the clamping
factor and the actual resistance are a function oftemperature.
--I
~
I
l'
~
I-- 25
26VdC
50mH,5Q
.
_-b
--
Figure 3. Circuit Example
Used to select a zener diode having the proper voltage and power
capability to protect the transistor.
The means most often used to solve the problem is to
connect an ordinary rectifier diode across the coil; however, this technique may keep the current circulating
through the coil for too long a time. Faster switching is
achieved by allowing the voltage to rise to a level above
the supply before being clamped. The voltage rating of
the transistor is 60 V, indicating that approximately a 50
volt zener will be required.
The peak current will equal the on-state transistor
current (5 amperes) and will decay exponentially as
determined by the coil UR time constant (neglecting the
zener impedance). A rectangular pulse of width UR
(0.01 sec) and amplitude of IPK (5 A) contains the same
energy and may be used to select a zener diode. The
nominal zener power rating therefore must exceed (5 A
x 50) = 250 watts at 10 ms and a duty cycle of 0.01/2 =
0.5%. From Figure 2, the duty cycle factor is 0.62 making the single pulse power rating required equal to
250/0.62 = 403 watts. From Figure 1, one ofthe 1N6267
series zeners has the required capability. The 1N6287
is specified nominally at 47 volts and should prove satisfactory.
Although this series has specified maximum voltage
limits, equation 3 will be used to determine the maximum
zener voltage in order to demonstrate its use.
R = 47(1.20-1) _ ~ _
Z
500/47
- 10.64 - 0.9Q
At 5 amperes, the peak voltage will be 4.5 volts above
nominal or 51.5 volts total which is safely below the 60
volt transistor rating.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-2-2
A REVIEW OF TRANSIENTS AND
THEIR MEANS OF SUPPRESSION
AN843
REV. 1
Prepared by
Steve Cherniak
Applications Engineering
INTRODUCTION
di
.
generate a voltage equal to l dt . The energy (J) In the
One problem that most, if not all electronic equipment
designers must deal with, is transient overvoltages.
Transients in electrical circuits result from the sudden
release of previously stored energy. Some transients
may be voluntary and created in the circuit due to inductive switching, commutation voltage spikes, etc. and
may be easily suppressed since their energy content is
known and predictable. Other transients may be created
outside the circuit and then coupled into it. These can be
caused by lightning, substation problems, or other such
phenomena. These transients, unlike switching transients, are beyond the control of the circuit designer and
are more difficult to identify, measure and suppress.
Effective transient suppression requires that the impulse energy is dissipated in the added suppressor at a
low enough voltage so the capabilities of the circuit or
device will not be exceeded.
transient is equal to 1/2U2 and usually exists as a high
power impulse for a relatively short time (J = Pt).
If load 2 is shorted (Figure 1), devices parallel to it may
be destroyed. When the fuse opens and interrupts the
fault current, the slightly inductive power supply prodi
duces a transient voltage spike of V = l dt with an en-
=
ergy content of J 1/2U2. This transient might be beyond the voltage limitations of the rectifiers and/or load
1. Switching out a high current load will have a similar
effect.
TRANSFORMER PRIMARY
BEING ENERGIZED
If a transformer is energized at the peak of the line
voltage (Figure 2), this voltage step function can couple
to the stray capacitance and inductance of the secondary winding and generate an oscillating transient voltage whose oscillations depend on circuit inductance
and capacitance. This transient's peak voltage can be
up to twice the peak amplitude of the normal secondary
voltage.
In addition to the above phenomena the capacitively
coupled (CS) voltage spike has no direct relationship
with the turns ratio, so it is possible for the secondary
circuit to see the peak applied primary voltage.
REOCCURRING TRANSIENTS
Transients may be formed from energy stored in circuit inductance and capacitance when electrical conditions in the circuit are abruptly changed.
Switching induced transients are a good example of
this; the change in current
(~!)
in an inductor (l) will
FUSE
I
POWER
SUPPLY
LOAD
2
SHORT
ACROSS
LOAD 2
VAB
.J
Figure 1. Load Dump with Inductive Power Supply
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-3-1
•
+
Cs
-IE-
VUne ~---lh,..-,jL---\--/.
PEAK SHOULD
BE 30% LIGHTER
SWITCH
~JI(
LOAD
MAY HAVE STRAY
INDUCTANCE OR
CAPACITANCE
VAB I-_-'-I~_-+_..L.._
I
SWITCH I
VAB - CLOSED I
Figure 2. Situation Where Transformer Capacitance Causes a Transient
Transients produced by interrupting transformers
magnetizing current can be severe. These transients
can destroy a rectifier diode or filter capacitor if a low
impedance discharge path is not provided.
TRANSFORMER PRIMARY
BEING DE-ENERGIZED
If the transformer is driving a high impedance load,
transients of more than ten times normal voltage can be
created at the secondary when the primary circuit of the
transformer is opened during zero-voltage crossing of
the ac line. This is due to the interruption of the transformer magnetizing current which causes a rapid collapse of the magnetic flux in the core. This, in turn,
causes a high voltage transient to be coupled into the
transformer's secondary winding (Figure 3).
SWITCH "ARCING"
When a contact type switch opens and tries to interrupt current in an inductive circuit, the inductance tries
to keep current flowing by charging stray capacitances.
(See Figure 4.)
LINE
VOLTAGE
-IESWITCH
Ac~~II·
LINE 0
~
MAGNETIZING
CURRENT AND
FLUX
LOAD
II~
I
SECONDARY
VOLTAGE
I
I
I
~~SWITCH
OPENED
Figure 3. Typical Situation Showing Possible Transient When Interrupting
Transformer Magnetizing Current
II
r
LINE
VOLTAGE
I
TRANSIENT
SENSITIVE
LOAD
Figure 4. Transients Caused by Switch Opening
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-3-2
This can also happen when the switch contacts
bounce open after its initial closing. When the switch is
opened (or bounces open momentarily) the current that
the inductance wants to keep flowing will oscillate between the stray capacitance and the inductance. When
the voltage due to the oscillation rises at the contacts,
breakdown of the contact gap is possible, since the
switch opens (or bounces open) relatively slowly compared to the oscillation frequency, and the distance may
be small enough to permit "arcing." The arc will discontinue at the zero current point of the oscillation, but as
the oscillatory voltage builds up again and the contacts
move further apart, each arc will occur at a higher voltage until the contacts are far enough apart to interrupt
the current.
WAVESHAPES OF SURGE VOLTAGES
Indoor Waveshapes
Measurements in the field, laboratory, and theoretical
calculations indicate that the majority of surge voltages
in indoor lOW-VOltage power systems have an oscillatory
waveshape. This is because the voltage surge excites
the natural resonant frequency of the indoor wiring system. In addition to being typically oscillatory, the surges
can also have different amplitudes and waveshapes in
the various places of the wiring system. The resonant
frequency can range from about 5 kHz to over 500 kHz.
A 100 kHz frequency is a realistic value for a typical
surge voltage for most residential and light industrial ac
wire systems.
The waveshape shown in Figure 5 is known as an
"0.5 I!s-1 00 kHz ring wave." This waveshape is reasonably representative of indoor low-voltage (120 V 240 V) wiring system transients based on measurements conducted by several independent organizations. The waveshape is defined as rising from 10% to
90% of its final amplitude in O.S I!s, then decays while
oscillating at 100 kHz, each peak being 60% of the preceding one.
The fast rise portion of the waveform can induce the
effects associated with non-linear voltage distribution in
windings or cause dv/dt problems in semiconductors.
Shorter rise times can be found in transients but they are
-Vpk
0.9Vpkt = 10 J!S (I = 100 kHz)
I..
I
I
.-1
I
I
I
-
SO%OFVpk
Figure 5. 0.5 IJ.S 100 kHz Ring Wave
lengthened as they propagate into the wiring system or
reflected from wiring discontinuities.
The oscillating portion of the waveform produces voltage polarity reversal effects. Some semiconductors are
sensitive to polarity changes or can be damaged when
forced into or out of conduction (Le. reverse recovery of
rectifier devices). The sensitivity of some semiconductors to the timing and polarity of a surge is one of the
reasons for selecting this oscillatory waveform to represent actual conditions.
Outdoor Locations
Both oscillating and unidirectional transients have
been recorded in outdoor environments (service entrances and other places nearby). In these locations
substantial energy is still available in the transient, so
the waveform used to model transient conditions outside buildings must contain greater energy than one
used to model indoor transient surges.
Properly selected surge suppressors have a good
reputation of successful performance when chosen in
conjunction with the waveforms described in Figure 6.
The recommended waveshape of 1.2 x SO IJ.S (1.2I!s is
associated with the transients rise time and the SO I!S is
the time it takes for the voltage to drop to 1/2Vpk) for the
open circuit voltage and 8 x 20 I!s for the short circuit
current are as defined in IEEE standard 28-ANSI Standard C62.1 and can be considered a realistic representation of an outdoor transients waveshape.
•
v
0.9 Vpk
0.3 Vpk
11 x 1.S7= 1.2~
(a) Open-Circuit Voltage Waveform
(b) Discharge Current Waveform
Figure 6. Unidirectional Wave Shapes
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-3-3
The type of device under test determines which waveshape in Figure 6 is more appropriate. The voltage waveform is normally used for insulation voltage withstand
tests and the current waveform is usually used for discharge current tests.
AC POWER LINE TRANSIENTS
Transients on the ac power line range from just above
normal voltage to several kV. The rate of occurrence of
transients varies widely from one branch of a power
distribution system to the next, although lOW-level transients occur more often than high-level surges.
Data from surge counters and other sources is the
basis for the curves shown in Figure 7. This data was
taken from unprotected (no voltage limiting devices) circuits meaning that the transient voltage is limited only by
the sparkover distance of the wires in the distribution
system.
RANDOM TRANSIENTS
The source powering the circuit or system is frequently the cause of transient induced problems or failures.
These transients are difficult to deal with due to their
nature; they are totally random and it is difficult to define
their amplitude, duration and energy content. These
transients are generally caused by switching parallel
loads on the same branch of a power distribution system
and can also be caused by lightning.
20
10
9
8
7
6
5
P
E
A
K
4
3
S
HIGHEXPOS~
"
'" '"
~
R
G
E
.....
"
"'\ :\.
~
~....
MEDIUM EXPOSURE
"
1
L
T
A
G
0.9
0.8
0.7
E
0.6
'-
.....
~
"r-.,.
~
~
~
LOWEXPO~
v
I.....
.......
~
0.4
~
'" '"
'"'"
""f"...
(kV) 0.5
II
I\.
I'..
U
o
'\
0.3
~
o.2
o. 1
0.01
0.1
1
10
SURGES PER YEAR
100
Figure 7. Peak Surge Voltage versus Surges per Year*
*EIA paper, P587.1/F, May, 1979, Page 10
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-3-4
1000
The low exposure portion of the set of curves is data
collected from systems with little load-switching activity
that are located in areas of light lightning activity.
Medium exposure systems are in areas of frequent
lightning activity with a severe switching transient problem.
High exposure systems are rare systems supplied by
long overhead lines which supply installations that have
high sparkover clearances and may be subject to reflections at power line ends.
When using Figure 7 it is helpful to remember that
peak transient voltages will be limited to approximately
6 kV in indoor locations due to the spacing between
conductors using standard wiring practices.
subject the device undertestto sufficient stresses, while
an assumption of too Iowa surge impedance may subject it to an unrealistically large stress; there is a trade-off
between the size (cost) of the suppressor and the
amount of protection obtained.
In a building, the transient's source impedance increases with the distance from the electrical service
entrance, but open circuit voltages do not change very
much throughout the structure since the wiring does not
provide much attenuation. There are three categories of
service locations that can represent the majority of locations from the electrical service entrance to the most
remote wall outlet. These are listed below. Table 1 is
intended as an aid for the preliminary selection of surge
suppression devices, since it is very difficult to select a
specific value of source impedance.
TRANSIENT ENERGY LEVELS AND
SOURCE IMPEDANCE
Category I: Outlets and circuits a "long distance" from
electrical service entrance. Outlets more than 10 meters
from Category II or more than 20 meters from Category
III (wire gauge #14 - #10)
The energy contained in a transient will be divided
between the transient suppressor and the source impedance of the transient in a way that is determined by
the two impedances. With a spark-gap type suppressor,
the low impedance of the Arc after breakdown forces
most of the transient's energy to be dissipated elsewhere, e.g. in a current limiting resistor in series with the
spark-gap and/or in the transient's source impedance.
Voltage clamping suppressors (e.g. zeners, mov's, rectifiers operating in the breakdown region) on the other
hand absorb a large portion of the transient's surge energy. So it is necessary that a realistic assumption of the
transient's source impedance be made in order to be
able to select a device with an adequate surge capability.
The 100 kHz "Ring Wave" shown in Figure 5 is intended to represent a transient's waveshape across an
open circuit. The waveshape will change when a load is
connected and the amount of change will depend on the
transient's source impedance. The surge suppressor
must be able to withstand the current passed through it
from the surge source. An assumption of too high a
surge impedance (when testing the suppressor) will not
Category II: Major bus lines and circuits a "short distance" from electrical service entrance. Bus system in
industrial plants. Outlets for heavy duty appliances that
are "close" to the service entrance.
Distribution panel devices.
Commercial building lighting systems.
Category III. Electrical service entrance and outdoor locations.
Power line between pole and electrical service entrance.
Power line between distribution panel and meter.
Power line connection to additional near-by buildings.
Underground power lines leading to pumps, filters,
etc.
Categories I and II in Table 1 correspond to the extreme
range of the "medium exposure" curve in Figure 7. The
surge voltage is limited to approximately 6 kV due to the
sparkover spacing of indoor wiring.
Table 1. Surge Voltages and Currents Deemed to Represent the
Indoor Environment Depending Upon Location
Energy (Joules) DIssipated in a
Suppressor with a Clamping Voltage of3
Surge Voltage 1
Surge Current2
250 V
500 V
1000 V
I
0.511S 100 kHz
Ring Wave.
SkV
200 A
0.4
0.8
1.S
II
0.511S 100 kHz
Ring Wave
SkV
500 A
1
2
4
1.2 x 50!15
8x20l1s
SkV
3kA
20
40
80
Category
Waveform
III
10 kV or more
1.2 x 50!15
10 kA or more
8x20!15
Notes: 1. upen Ircult vOltage
2. Discharge current of the surge (not the short circuit current of the power system)
3. The energy a suppressor will dissipate varies in proportion with the suppressor's clamping voltage, which can be different with different
system voltages (assuming the same discharge current).
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-3-5
II
he discharge currents of Category II were obtained
from simulated lightning tests and field experience with
suppressor performance.
The surge currents in Category I are less than in Category II because ofthe increase in surge impedance due
to the fact that Category I is further away from the service entrance.
Category III can be compared to the "High Exposure"
situation in Figure 7. The limiting effect of sparkover is
not available here so the transient voltage can be quite
large.
LIGHTNING TRANSIENTS
There are several mechanisms in which lightning can
produce surge voltages on power distribution lines. One
ofthem is a direct lightning strike to a primary (before the
substation) circuit. When this high current, that is injected into the power line, flows through ground resistance and the surge impedance of the conductors, very
large transient voltages will be produced. If the lightning
misses the primary power line but hits a nearby object
the lightning discharge may also induce large voltage
transients on the line. When a primary circuit surge arrester operates and limits the primary voltage the rapid
dv/dt produced will effectively couple transients to the
secondary circuit through the capacitance of the transformer (substation) windings in addition to those
coupled into the secondary circuit by normal transformer action. If lightning struck the secondary circuit directly,
very high currents may be involved which would exceed
the capability of conventional surge suppressors. Lightning ground current flow resulting from nearby direct to
ground discharges can couple onto the common ground
impedance paths of the grounding networks also causing transients.
AUTOMOTIVE TRANSIENTS
Transients in the automotive environment can range
from the noise generated by the ignition system and the
various accessories (radio, power window, etc.) to the
potentially destructive high energy transients caused by
the charging (alternator/regulator) system. The automotive "Load Dump" can cause the most destructive transients; it is when the battery becomes disconnected
from the charging system during high charging rates.
This is not unlikely when one considers bad battery
connections due to corrosion or other wiring problems.
Other problems can exist such as steady state overvoltages caused by regulator failure or 24 V battery jump
starts. There is even the possibility of incorrect battery
connection (reverse polarity).
Capacitive and/or inductive coupling in wire harnesses as well as conductive coupling (common
ground) can transmit these transients to the inputs and
outputs of automotive electronics.
The Society of Automotive Engineers (SAE) documented a table describing automotive transients (see
Table 2) which is useful when trying to provide transient
protection.
Table 2. Typical Transients Encountered in the Automotive Environment
Energy Capability
Length of
Transient
Cause
Voltage Amplitude
~
Steady State
Failed Voltage Regulator
Possible Frequency
of Application
Infrequent
+18V
~
5 Minutes
Infrequent
Booster starts with 24 V battery
±24V
4.5-100ms
Load Dump - i.e., disconnection of battery during
high charging rates
,,10 J
Infrequent
";125V
<1J
";0.32s
II
Inductive Load Switching Transient
Often
-300 V to +80 V
<1J
";0.2 s
Alternator Field Decay
90ms
Ignition Pulse
Disconnected Battery
Each Turn·Off
-100 V to -40 V
< 0.5J
,,;75V
<1J
1 ms
Mutual Coupling in Harness
15 J1s
Ignition Pulse Normal
,,;500 Hz
Several Times in
vehicle life
Often
,,;200 V
< 0.001 J
3V
";1.5V
Accessory Noise
~20mV
Transceiver Feedback
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-3-6
";500 Hz
Continuous
50 Hz to 10 kHz
R.F.
Considerable variation has been observed while
gathering data on automobile transients. All automobiles have their electrical systems set up differently and
it is not the intent of this paper to suggest a protection
level that is required. There will always be a trade-off
between cost of the suppressor and the level of protection obtained. The concept of one master suppressor
placed on the main power lines is the most cost-effective
scheme possible since individual suppressors at the
various electronic devices will each have to suppress
the largest transientthat is likely to appear (Load Dump),
hence each individual suppressor would have to be the
same size as the one master suppressor since it is unlikely for several suppressors to share the transient discharge.
There will, of course, be instances where a need for
individual suppressors at the individual accessories will
be required, depending on the particular wiring system
or situation.
TRANSIENT SUPPRESSOR TYPES
Carbon Block Spark Gap
This is the oldest and most commonly used transient
suppressor in power distribution and telecommunication systems. The device consists of two carbon block
electrodes separated by an air gap, usually 3 to 4 mils
apart. One electrode is connected to the system ground
and the other to the signal cable conductor. When a
transient over-voltage appears, its energy is dissipated
in the arc that forms between the two electrodes, a resistor in series with the gap, and also in the transient's
source impedance, which depends on conductor length,
material and other parameters.
The carbon block gap is a fairly inexpensive suppressor but it has some serious problems. One is that it has
a relatively short service life and the other is that there
are large variations in its arcing voltage. This is the major
problem since a nominal 3 mil gap will arc anywhere
from 300 to 1000 volts. This arcing voltage variation
limits its use mainly to primary transient suppression
with more accurate suppressors to keep transient voltages below an acceptable level.
Gas Tubes
The gas tube is another common transient suppressor, especially in telecommunication systems. It is made
of two metallic conductors usually separated by 10 to 15
mils encapsulated in a glass envelope which is filled with
several gases at low pressure. Gas tubes have a higher
current carrying capability and longer life than carbon
block gaps. The possibility of seal leakage and the resultant of loss protection has limited the use of these devices.
Selenium Rectifiers
Selenium transient suppressors are selenium rectifiers used in the reverse breakdown mode to clamp volt-
age transients. Some of these devices have self-healing
properties which allows the device to survive energy
discharges greater than their maximum capability for a
limited number of surges. Selenium rectifiers do not
have the voltage clamping capability of zener diodes.
This is causing their usage to become more and more
limited.
METAL OXIDE VARISTORS (MOV'S)
An MOV is a non-linear resistor which is voltage dependent and has electrical characteristics similar to
back-to-back zener diodes. As its name implies it is
made up of metal oxides, mostly zinc oxide with other
oxides added to control electrical characteristics. MOV
characteristics are compared to back-to-back zeners in
Photos 2 through 7.
When constructing MOV's the metal oxides are sintered at high temperatures to produce a polycrystalline
structure of conductive zinc oxide separated by highly
resistive intergranular boundaries. These boundaries
are the source of the MOV's non-linear electrical behavior.
MOV electrical characteristics are mainly controlled
by the physical dimensions of the polycrystalline structure since conduction occurs between the zinc oxide
grains and the intergranular boundaries which are distributed throughout the bulk of the device.
The MOV polycrystalline body is usually formed into
the shape of a disc. The energy rating is determined by
the device's volume, voltage rating by its thickness, and
current handling capability by its area. Since the energy
dissipated in the device is spread throughout its entire
metal oxide volume, MOV's are well suited for single
shot high power transient suppression applications
where good clamping capability is not required.
The major disadvantages with using MOV's are that
they can only dissipate relatively small amounts of average power and are not suitable for many repetitive applications. Another drawback with MOV's is that their voltage clamping capability is not as good as zeners, and
is insuffiCient in many applications.
Perhaps the major difficulty with MOV's is that they
have a limited life time even when used below their
maximum ratings. For example, a particular MOV with
a peak current handling capability of 1000 A has a
time of about 1 surge at 1000 Apk, 100 surgjils at 100
Apk and approximately 1000 surges at 65 Apk.
life-II
TRANSIENT SUPPRESSION
USING ZENERS
Zener diodes exhibit a very high impedance below the
zener voltage (VZ) , and a very low impedance above
VZ. Because of these excellent clipping characteristics,
the zener diode is often used to suppress transients.
Zeners are intolerant of excessive stress so it is important to know the power handling capability for short
pulse durations.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-3-7
Most zeners handle less than their rated power during
normal applications and are designed to operate most
effectively at this low level. Zener transient suppressors
such as the Motorola 1N6267 Mosorbseries are designed to take large, short duration power pulses.
This is accomplished by enlarging the chip and the
effective junction area to withstand the high energy
surges. The package size is usually kept as small as
possible to provide space efficiency in the circuit layout,
and since the package does not differ greatly from other
standard zener packages, the steady state power dissipation does not differ greatly.
Some data sheets contain information .on short pulse
surge capability. When this information is not available
for Motorola devices, Figure 8 can be used. This data
applies for non-repetitive conditions with a lead temperature of 25°e.
It is necessary to determine the pulse width and peak
power of the transient being suppressed when using
Figure 8. This can be done by taking whateverwaveform
the transient is and approximating it with a rectangular
pulse with the same peak power. For example, an exponential discharge with a 1 ms time constant can be approximated by a rectangular pulse 1 ms wide that has
the same peak power as the transient. This would be a
better approximation than a rectangular pulse 10 ms
wide with a correspondingly lower amplitude. This is
because the heating effects of different pulse width
lengths affect the power handling capability, as can be
seen by Figure 8. This also represents a conservative
approach because the exponential discharge will contain = 1/2 the energy of a rectangular pulse with the
.
same pulse width and amplitude.
1
0.7
0.5
§
50
20
II:
~
10
5
2
!<
II:
~
~
1
0.5
:ii
~
~
0.2
0.1
~0.05
1 ms:
I'...
"
0.1
0.2
0.5
100 IlS
1'..11
20
50
100
Unless otherwise specified Fe is approximately 1.20
for zener diodes when operated at their pulse power
limits.
, For example, a 5 watt, 20 volt zener can be expected
to show a peak voltage of 24 volts regardless of whether
it is handling 450 watts for 0.1 ms or 50 watts for 10 ms.
(See Figure 8.)
This occurs because the zener voltage is a function
of both junction temperature and IR drop. Longer pulse
widths cause a greater junction temperature rise than
short ones; the increase in junction temperature slightly
increases the zener voltage. This increase in zener voltage due to heating is roughly offset by the fact that
longer pulse widths of identical energy content have
lower peak currents. This results in a lower IR drop
(zener voltage drop) keeping the clamping factor relatively constant with various pulse widths of identical energy content.
An approximation of zener impedance is also helpful
in the design of transient protection circuits. The value
of RZ(nom) (Eqtn 2) is approximate because both the
clamping factor and the actual resistance is a function
of temperature.
10
5
"
,lOllS
1
2
5
10
0, DUTY CYCLE (%)
Eqtn 1: VZ(pK) = Fe (VZ(nom))
~
-.
PULSE WIDTH
,....,
10ms
The peak zener voltage during the peak current ofthe
transient being suppressed can be related to the nominal zener voltage (Eqtn 1) by the clamping factor (Fe).
5WAn,TYPES
2
f'
Figure 9. Typical Derating Factor for Duty Cycle
1 T03WTYPES
PLASTIC 00-41
- 250mWTO 1 WTYPES ~
a. 0.02
~ GLASS 00-35 & GLASS 00-41
0.01
0.01 0.02
0.05 0.1
0.2
0.5
0.1
0.07
0.05
0.01
t-..
"r-..
0.02
1N6267 SERIES
Ii
,""
0.03
-
I
~
0.2
i1:
~
100
I
0.3
Eqtn 2: RZ(nom) =
PULSE WIDTH (ms)
Figure 8. Peak Power Ratings of Zener Diodes
When used in repetitive applications, the peak power
must be reduced as indicated by the curves of Figure 9.
Average power must be derated as the lead or ambient
temperature exceeds 25°e. The power derating curve
normally given on data sheets can be normalized and
used for this purpose.
VZ(nom) = Nominal Zener Voltage
PpK(nom) = Found from Figure 8 when device type and
pulse width are known. For example, from Figure 8 a
1N6267 zener suppressor has a PpK(nom) of 1.5 kWat
a pulse width of 1 ms.
As seen from equation 2, zeners with a larger PpK(nom)
capability will have a lower RZ(nom).
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-3-8
v2Z (nom) (Fe -1)
PpK(nom)
ZENER versus MOV TRADEOFFS
The clamping characteristics of Zeners and MOV's
are best compared by measuring their voltages under
transient conditions. Photos 1 through 9 are the result
of an experiment that was done to compare the clamping characteristics of a Zener (Motorola 1N6281 , approximately 1.5J capability) with those of an MOV (G.E.
V27ZA4, 4J capability); both are 27 V devices.
Photo 1 shows the pulse generator output voltage.
This generator synthesizes a transient pulse that is
characteristic of those that may appear in the real world.
Photos 2 and 3 are clamping voltages of the MOV and
Zener, respectively with a surge source impedance of
soon.
Photos 4 and 5 are the clamping voltages with a surge
source impedance of 50 n.
Photos 6 and 7 simulate a condition where the surge
source impedance is 5 n.
Photos 8 and 9 show a surge source impedance of
0.55 n, which is at the limits of the Zener suppressor's
capability.
PHOTO 1
Open Circuit Transient Pulse
Vert: 20 V/div
Horiz: 0.5 ms/div
Vpeak= 90 V
PHOTO 2
MOV(27V)
Vert: 10 V/div
Horiz: 0.5 ms/div
Transient Source Impedance: 500 n
Vpeak = 39.9 V
•
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-3-9
PHOTO 3
Zener (27 V)
Vert: 10 Vldiv
Horiz: 0.5 ms/div
Transient Source Impedance: 500 n
Vpeak= 27 V
PHOTO 4
MOV (27 V)
Vert: 10 V/div
Horiz: 0.5 ms/div
Transient Source Impedance: 50 n
Vpeak = 44.7 V
PHOTOS
Zener (27 V)
Vert: 10 V/div
Horiz: 0.5 ms/div
Transient Source Impedance: 50
Vpeak =27 V
•
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-3-10
n
PHOTO 6
MOV (27 V)
Vert: 10 V/div
Horiz: 0.5 ms/div
Transient Source Impedance: 5 n
Vpeak= 52 V
PHOTO 7
Zener (27 V)
Vert: 10 V/div
Horiz: 0.5 ms/div
Transient Source Impedance: 5
Vpeak= 28 V
n
PHOTOS
MOV(27V)
Vert: 10 V/div
Horiz: 0.5 ms/div
Transient Source Impedance: 0.55
Vpeak = 62.5 V
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-3-11
n
•
PHOTOg
Zener (27 V)
Vert: 10 V/div
Horiz: 0.5 ms/div
Transient Source Impedance: 0.55 Q
Vpeak: 30.2 V
.
Peak Power: Approx 2000 Wpeak
(The limit of this device's capability)
•
As can be seen by the photographs, the Zener suppressor has significantly better voltage clamping characteristics than the MOV even though that particular
Zener has less than one-fourth the energy capability of
the MOV it was compared with. However, the energy
rating can be misleading because it is based on the
clamp voltage times the surge current, and when using
an MOV, the high impedance results in a fairly high
clamp voltage. The major tradeoff with using a zener
type suppressor is its cost versus power handling capability, but since it would take an "oversized" MOV to
clamp voltages (suppress transients) as well as the zener, the MOV begins to lose its cost advantage.
If a transient should come along that exceeds the
capabilities of the particular Zener, or MOV, suppressor
that was chosen, the load will still be protected, since
they both fail short.
The theoretical reaction time for Zeners is in the picosecond range, but this is slowed down somewhat with
lead and package inductance. The 1N6267 Mosorb series of transient suppressors have a typical response
time of less than one nanosecond. For very fast rising
transients it is important to minimize external inductances (due to wiring, etc.) which will minimize overshoot.
Connecting Zeners in a back-to-back arrangement·
will enable bidirectional voltage clamping characteristics. (See Figure 10.)
If Zeners A and B are the same voltage, a transient of
either polarity will be clamped at approximately that voltage since one Zener will be in reverse bias mode while
the other will be in the forward bias mode. When clamping low voltage it may be necessary to consider the
forward drop of the forward biased Zener.
The typical protection circuit is shown in Figure 11 a.
In almost every application, the transient suppression
device is placed in parallel with the load, or component
to be protected. Since the main purpose of the circuit is
to clamp the voltage appearing across the load, the
suppressor should be placed as close to the load as
possible to minimize overshoot due to wiring (or any
inductive) effect. (See Figure 11b.)
Figure 10. Zener Arrangement for
Bidirectional Clamping
Figure 11a. Using Zener to Protect Load
Against Transients
_______ .~ ____ TRANSIENT
INPUT
PEAK VOLTAGE
ZENER
- - - - \ - - - DUE TO OVERSHOOT
VOLTAGE -1~~'---\
Figure 11 b. Overshoot Due to Inductive Effect
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-3-12
Zener capacitance prior to breakdown is quite small
(for example, the 1N6281 27 Volt Mosorb has a typical
capacitance of 800 pF). Capacitance this small is desirable in the off-state since it will not attenuate wide-band
signals.
When the Zener is in the breakdown mode of operation (e.g. when suppressing a transient) its effective
capacitance increases drastically from what it was in the
off-state. This makes the Zener ideal for parallel protection schemes since, during transient suppression, its
large effective capacitance will tend to hold the voltage
across the protected element constant; while in the offstate (normal conditions, no transient present), its low
off-state capacitance will not attenuate high frequency
signals.
Input impedance (Zin) always exists due to wiring and
transient source impedance, but Zin should be increased as much as possible with an external resistor,
if circuit constraints allow. This will minimize Zener
stress.
These transients may be generated by normal circuit
operations such as inductive switching circuits, energizing and deenergizing transformer primaries, etc. They
do not present much of a problem since their energy
content, duration and effect may easily be obtained and
dealt with.
Random transients found on power lines, or lightning
transients, present a greater threat to electronic components since there is no way to be sure when or how
severe they will be. General guidelines were discussed
to aid the circuit designer in deciding what size (capability and cost) suppressor to choose for a certain level of
protection. There will always be a tradeoff between suppressor price and protection obtained.
Several different suppression devices were discussed with emphasis on Zeners and MOV's, since
these are the most popular devices to use in most applications.
CONCLUSION
1) GE Transient Voltage Suppression Manual, 2nd
edition.
2) Motorola Zener Diode Manual.
The reliable use of semiconductor devices requires
that the circuit designer consider the possibility of transient overvoltages destroying these transient-sensitive
components.
REFERENCES
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-3-13
II
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-3-14
SOME STRAIGHT TALK ABOUT
Mosorbs™ TRANSIENT
VOLTAGE SUPPRESSORS
INTRODUCTION
MOVs, like Mosorbs, do have the pulse power capabilities for transient suppression. They are metal oxide
varistors (not semiconductors) that exhibit bidirectional
avalanche characteristics, similar to those of back-toback connected zeners. The main attributes of such
devices are low manufacturing cost, the ability to absorb
high energy surges (up to 600 joules) and symmetrical
bidirectional "breakdown" characteristics. Major disadvantages are: high clamping factor, an internal wear-out
mechanism and an absence of low-end voltage capability. These limitations restrict the use of MOVs primarily
to the protection of insensitive electronic components
against high energy transients in application above 20
volts, whereas, Mosorbs are best suited for precise protection of sensitive equipment even in the low voltage
range - the same range covered by conventional zener
diodes. The relative features of the two device types are
covered in Table 1 .
Distinction is sometimes made between devices
trademarked Mosorb (by Motorola Inc.), and standard
zener/avalanche diodes used for reference, low-level
regulation and low-level protection purposes. It must be
emphasized from the beginning that Mosorb devices
are, in fact, zener diodes. The basic semiconductor
technology and processing are identical. The primary
difference is in the applications for which they are designed. Mosorb devices are intended specifically for
transient protection purposes and are designed, therefore, with a large effective junction area that provides
high pulse power capability while minimizing the total
silicon use. Thus, Mosorb pulse power ratings begin at
500 watts - well in excess of low power conventional
zener diodes which in many cases do not even include
pulse power ratings among their specifications.
RELATIVE FEATURES OF MOVs and MOSORBS
Table 1.
MosorbJZener Transient Suppressor
MOV
• High clamping factor.
• Very good clamping close to the operating voltage.
• Symmetrically bidirectional.
• Standard parts perform like standard zeners. Symmetrical bidirectional devices available for many voltages.
• Energy capability per dollar usually higher than a silicon device.
However, if good clamping is required the energy capability would
have to be grossly overspecified resulting in higher cost.
• Good clamping characteristic could reduce overall system cost.
• Inherent wear out mechanism clamp voltage degrades after every
pulse, even when pulsed below rated value.
• No inherent wear out mechanism.
• Ideally suited for crude ac line protection.
• Ideally suited for precise DC protection.
• High single-pulse current cap&bility.
• Medium multiple-pulse current capability.
• Degrades with overstress.
• Fails short with overstress.
• Good high voltage capability.
• Limited high voltage capability unless series devices are used.
• Limited low voltage capability.
• Good low voltage capability.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-4-1
II
IMPORTANT SPECIFICATIONS FOR
MOSORB PROTECTIVE DEVICES
Typically, a Mosorb suppressor is used in parallel with
the components or circuits being protected (Figure 1),
in order to shunt the destructive energy spike, or surge,
around the more sensitive components. It does this by
avalanching at its "breakdown" level, ideally representing an infinite impedance at voltages below its rated
breakdown voltage, and essentially zero impedance at
voltages above this level.
In the more practical case, there are three voltage
specifications of significance, as shown in Figure 1a.
a) VRWM is the maximum reverse stand-off voltage
at which the Mosorb is cut off and its impedance
is at its highest value - that is, the current
through the device is essentially the leakage
current of a back-biased diode.
b) V(BR) is the breakdown voltage - a voltage at
which the device is entering the avalanche region, as indicated by a slight (specified) rise in
current beyond the leakage current.
c) VRSM is the maximum reverse voltage (clamping
voltage) which is defined and specified in conjunction with the maximum reverse surge current so as not to exceed the maximum peak
power rating at a pulse width (tp) of 1 ms (industry std time for measuring surge capability).
•
In practice, the Mosorb is selected so that its VRWM
is equal to or somewhat higher than the highest operating voltage required by the load (the circuits or components to be protected). Under normal conditions, the
Mosorb is inoperative and dissipates very little power.
When a transient occurs, the Mosorb converts to a very
low dynamic impedance and the voltage across the
Mosorb becomes the clamping voltage at some level
above V(SR). The actual clamping level will depend on
the surge current through the Mosorb. The maximum
reverse surge current (lRSM) is specified on the Mosorb
data sheets at 1 ms and for a logrithmically decaying
pulse waveform. The data sheet also contains curves to
determine the maximum surge current rating at other
time intervals .
Typically, Mosorb devices have a built-in safety
margin at the maximum rated surge current because the
clamp voltage, VRSM, is itself, guardbanded. Thus, the
parts will be operating below their maximum pulsepower (Ppk) rating even when operated at maximum
reverse surge current).
If the transients are random in nature (and in many
cases they are), determining the surge-current level can
be a problem. The circuit designer must make a reason-
able estimate of the proper device to be used, based on
his knowledge of the system and the possible transients
to be encountered. (e.g., transient voltage, source impedance and time, or transient energy and time are
some characteristics that must be estimated). Because
of the very low dynamic impedance of Mosorb devices
in the region between V(SR) and VRSM, the maximum
surge current is dependent on, and limited by the external circuitry.
In cases where this surge current is relatively low, a
conventional zener diode could be used in place of a
Mosorb or other dedicated protective device with some
possible savings in cost. The surge capabilities most of
Motorola's zener diode lines are discussed in Motorola's
Application Note AN784.
In the data sheets of some protective devices, the
parameter for response time is emphasized. Response
time on these data sheets is defined as the time required
for the voltage across the protective device to rise from
oto V(BR), and relates primarily to the effe::tive series
impedance associated with the device. Tlds effective
impedance is somewhat complex and changes drastically from the blocking mode to the avalanche mode. In
most applications (where the protective device shunts
the load) this response time parameter becomes virtually meaningless as indicated by the waveforms in Figures
1band 1c. If the response time as defined is very long,
it still would not affect the performance of the surge
suppressor.
However, if the series inductance becomes appreciable, it could result in "overshoot" as shown in Figure 1d
that would be detrimental to circuit protection. In Mosorb
devices, series inductance is negligible compared to the
inductive effects of the external circuitry (primarily lead
lengths). Hence, Mosorbs contribute little or nothing to
overshoot and, in essence, the parameter of response
time has very little significance. However, care must be
exercised in the design of the external circuitry to minimize overshoot.
SUMMARY
In selecting a protective device, it is importantto know
as much as possible about the transient conditions to be
encountered. The most important device parameters
are reverse working voltage (VRWM), surge current
(lRSM), and clamp voltage (VRSM). the product of
VRSM and IRSM yields the peak power dissipation,
which is one of the prime categories for device selection.
The selector guide, in this book, gives a broad overview of the Mosorb transient suppressors now available
from Motorola. For more detailed information, please
contact your Motorola sales representative or distributor.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-4-2
MOSORB
Figure 1.
V(BR)
VRWM
L-_ _ _-!-_-:-_--'-_ _ _ _ _ _ _
TIME
L -_ _-I--I-_ _ _ _ _ _ _ _ _ _ _
TIME
~~
!clamping. VERY SHORT
Figure 1a.
Figure 1b.
VOLTAGE
VRSM - - - - - V(BR)
VRWM!----"
L-_ _ _" -_ _-I-_ _ _ _ _ _ _ _
TIME
'----1--1----------- TIME
~
r---!clamping. WITH OVERSHOOT
!clamping. VERY LONG
Figure 1c.
Figure 1d.
Ip = PULSE WIDTH OF INCOMING TRANSIENT
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-4-3
TYPICAL MOSORB APPLICATIONS
DC Power Supplies
Input/Output Regulator Protection
IC
VOLTAGE
REGULATOR
+
-:l
-=:J
DC
POWER
SUPPLY
'.1 r
Vout
MOSORB
+
'.1 r
MOSORB
MOSORB
~
Inductive Switching Transistor Protection
Op Amp Protection
DC Motors -
Reduces EMI
Memory Protection
+~
DC
_ MOTOR
+5V
MOSORB
MOSORB
MOS
MEMORY
--8 V
1-.......- 0
MOSORB
MOSORB
Microprocessor Protection
VDD
~
~
VGG
ADDRESS BUS
I I I
I I I
I
RAM
'--
I I
DATA BUS
1/0
'---
".jr" "
•
II
ROM
J I
!Jl
r--
"t-'
CPU
II
CONTROL BUS
r" r
r"
LLJ
-'-
~
MOSORBS
Computer Interface Protection
KEYBOARD}
TERMINAL
PRINTER
ETC.
I/O
1
-;r -;
~
".j
(t
A
B FUNCTIONAL
C DECODER
D
1
I........- -......v.._----)
MOSORBS
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-4-4
RB
CLOCK
Ti
1
~
"~MOSO
MOSORB
Gnd
Gnd
AR450
CHARACTERIZING OVERVOLTAGE
TRANSIENT SUPPRESSORS
Prepared by
AI Pshaenich
Motorola Power Products Division
ra-:~
The use of overvoltage transient suppressors for protecting electronic equipment is prudent and economically justified. For relatively low cost, expensive circuits can
be safely protected by one or even several of the transient suppressors on the market today. Dictated by the
type and energy of the transient, these suppressors can
take on several forms.
For example, in the telecommunication field, where
lightning induced transients are a problem, such primary
suppressors as gas tubes are often used followed by
secondary, lower energy suppressors. In an industrial or
automotive environment, where transients are systematically generated by inductive switching, the transient
energy is more well-defined and thus adequately suppressed by relatively low energy suppressors. These
lower energy suppressors can be zener diodes, rectifiers with defined reverse voltage ratings, metal oxide
varistors (MOVs), thyristors, and trigger devices, among
others. Each device has its own niche: some offer better
clamping factors than others, some have tighter voltage
tolerances, some are higher voltage devices, others can
sustain more energy and still others, like the thyristor
family, have low on-voltages. The deSigner's problem is
selecting the best device for the application.
Thus, the intent of this article is twofold:
1
= VIN
1-=-
Sl
R2
1_
S 2 l . f V Z IZ
C
OUT 'l
I
-=-
~ IZ
-=-
t\
~~
--IIWI-
Figure 1a. Simplified Exponential Tester
Figure 1b. Simplified Rectangular Tester
Using PNP Switch
Figure 1. Basic Surge Current Testers
1. To describe the operation ofthe surge currenttest circuits used in characterizing lower energy transient
suppressors.
2. To define the attributes of the various suppressors,
allowing the circuit designer to make the cost/performance tradeoffs.
Surge suppressors are generally specified with exponentially decaying and/or rectangular current pulses.
The exponential surge more nearly simulates actual
surge current conditions - capacitor discharges, line
and switching transients, lightning induced transients,
etc., whereas rectangular surge currents are usually
easier to implement and control.
To generate an exponential rating, a charged capacitor is simply dumped into the device under test (OUT)
and the energy of each successive pulse increased until
the device ultimately fails. The simplified circuit of Figure
1a describes the circuit. By varying the size of the capacitor e, the limiting resistor R2, and the voltage to which
e is charged to, various peak currents and pulse widths
(defined to the 10% discharge pOint in this paper) can be
obtained. To automate this circuit, the series switches
S1 and S2 can be replaced with appropriately controlled
transistors or SeRs.
One method of easily implementing a rectangular
surge current pulse is shown in the simplified schematic
of Figure 1b. A PNP transistor switch connected to the
positive supply VEE applies power to the OUT. The current is obviously set by varying either VEE and/or RL. If
however, the transistor switch were replaced with a variable, constant current source, measurement procedures are simplified as how the limiting resistor need not
be selected for various current conditions.
As in most surge current evaluations, the OUT is ultimately subjected to destructive energy (current, voltage, pulse width), the failure points noted, and the derated points plotted to produce the energy limitation
curve. Of particular interest is the junction temperature
at which the OUTs are operated, be it near failure or at
the specified derated pOint. This measurement relates
to the overall reliability of the suppressor, I.e., can the
suppressor sustain one surge current pulse or a thousand, and will it be degraded when operated above the
specified maximum operating temperature?
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-5-1
The Rectangular Current Surge Suppressor Test .Circuit to be described addresses these questions by implementing and measuring the rectangular current capability of the suppressor and determining the device
junction temperature T J shortly after the end of the
surge current pulse. Knowing TJ, the energy to the OUT
can be limited just short of failure and thus a complete
surge curve generated with only one, or a few OUTs
(Figure 6). Second, with the junction temperature
known, a reliability factor can be determined for a practical application.
CIRCUIT OPERATION FOR THE
RECTANGULAR CURRENT TESTER
The Surge Suppressor Test Circuit block diagram is
shown in Figure 2 with the main blocks being the Constant Current Amplifier supplying IZ to the OUT (a zener
diode in this instance) during the power pulse and the
Diode Forward Current Switch supplying IF during the
temperature sensing time. These two pulses are applied
sequentially, first the much larger IZ, and then the very
small sense current IF. During the IF time, the forward
voltage VF of the diode is measured from which the
junction temperature of the zener diode can be determined. This is simply done by calibrating the forward
biased OUT with a specified low value of IF in a temperature chamber, one point at 25°C and a second point at
some elevated temperature. The result is the familiar
diode forward voltage versus temperature linear plot
with a slope of about -2 mVrC for typical diodes (Figure
7a). Comparing the plot with the test circuit measured
VF yields the OUT junction temperature for that particular pulse width and IZ (Figure 7b).
•
Figure 2. Surge Suppressor Test
Circuit Block Diagram
The System Clock, Pulse Generator, the several monostable multivibrators (25 Ils Blanking, Sample Pulse
and 300 J.LS Sense MVs) and Gate are fashioned from
three CMOS gate ICs. The remaining blocks are the
Sample and Hold (StH) circuit and twb detectors for
determining the status of failed OUTs, either shorted
devices or open.
Shown in Figures 3 and 4 respectively, are the complete circuit and significant waveforms. Clocking for the
system is derived from a CMOS, two inverters, astable
MV (gates 1A and 1B) whose output triggers the two
input NOR gate configured monostable MV (gates 1C
and 1D) to produce the Pulse Generator output pulse
(Figure 4b). Alternatively, a single pulse can be obtained
by setting switch S2 to the One Shot position and depressing the pushbutton Start switch S1. Contact
bounce is suppressed by the 100 ms MV (gates 4C and
D). Frequency of the astable MV, set by potentiometer
R1, can vary from about 200 Hz to 0.9 Hz and the pulse
width, controlled by R2 and the capacitor timing selector
switch S3, from about 300 J.LS to 1 .3 s.
The positive going Pulse Generator output feeds the
Constant Current Amplifier IZ and turns on, in order,
NPN transistor 01 , PNP transistor 03, NPN Darlington
04, PNP Power Darlington 06 and parallel connected
PNP Power Transistors 08 and 09. Transistor 04 is
configured as a constant current source whose current
is set by the variable base voltage potentiometer R3.
Thus, the voltage to the bases of 06, 08 and 09 are also
accordingly varied. Transistors 08 and 09 (MJ14003,
IC continuous of 60 A), also connected as constant current sources with theirO.1 Q emitter ballasting resistors,
consequently can produce a rectangular current pulse
from a minimum of about 0.5 A and still have adequate
gain for 1 ms pulses of 150A peak. Due to propagation
delays of this amplifier, the IZ current waveform is as
shown in Figure 41. Since 08 and 09 must be in the
linear region for constant current operation, these transistors are power dissipation limited at high currents to
the externally connected power supply V+ of 60 V. Thus
the maxiinum OUT voltage, taking into account the
clamping factor of the device, should be limited to about
50 V. At wider pulse widths and consequently lower
currents before the OUT fails, the V+ supply should be
proportionally reduced to minimize 08, 09 dissipation.
As an example, a 28 V surge suppressor operating at
100 ms pulse widths can be tested to destructive limits
with V+ of about 40 V. Although a zener diode is shown
as the OUT in the schematic, the test devices can be any
rectifier with defined reverse voltage, e.g., surge suppressors.
Immediately after the power pulse is applied to the
OUT, the negative going sense pulse from the 300 Ils MV
(Gate 2A, Figure 4e) turns on series connected PNP
transistor 010 and NPN transistor 011 of the Diode
Forward Current Switch IF. Sense current, set by current limiting resistor selector switch S4, thus flows up
from ground through the forward biased OUT, the limiting resistor, and 011 to the -15 V supply. The result, by
monitoring the cathode of the OUT, is a 300 Ils wide,
approximately -0.6 V pulse.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-5-2
+15V
100mSMV
CONTACT BOUNCE
-15V
1M
-I
r -.....- - - O +15 V
::D
»
z
en
iii
z
-I
47k
(§
~
~
+15V
m
en
c
,
--.J
Cf
Ul
"m
::D
"
en
en
en
'"
5.6k
01
2N3904
o::D
»
z
o
~"~
01~F*
2N5060
~1k
22k
1RED
U5B
(1i2) MC1458
N
m
Z
m
+15V
::D
o
oo
SHORTLEO#1
470
1W
OPEN LED
470
1W
47k
m
en
IF SWITCH 0.1 ~
:t
1N914
1k
~VF
-15V
OPEN DETECTOR
RESET SWS5
Figure 3. Surge Suppressors Surge Current Fixture
II
I p.w
~
~
S~300~S
O~O~S
S~~S
~
~
~
OUT
--07
+3V
For accurate measurements of this pulse amplitude,
sample and hold circuitry is employed. This consists of
unity gain buffer amp U6, series FET switch Q13 and
capacitor hold buffer amp U7. The sample pulse (Figure
4H) to the gate of the FET is delayed about 100 Ils (by
monostable MV G-2C and G-2D) to allow for switching
and thermal transients to settle down. This pulse is
derived from the negative going, trailing edge output
pulse of Gate 2D cutting off transistor Q18 for the RC
time constant in its base circuit. The result is an approximate 8 Ils wide sample pulse. Consequently, the DC
output voltage from hold amplifier U7 is a measure of the
DUT junction temperature.
Invariably, most DUTs will fail short. When the surge
suppressor tester is in the Free-run Mode, the power
pulse subsequent to the DUT shorting could excessively
stress the constant current drivers Q8 and Q9. To prevent this occurrence, the Short Detector circuit was implemented. This circuit consists of comparator USA, 2
input NOR gate configured 251ls monostable MV (G1 E
and G1 F), Gate Circuit G3A, 3B and 3C, and SCR Q16.
(4A)
CLOCK
G1B
(4B)
PULSEGEN
G1D
(4C)
PULSEGEN
G1C
(40)
2511S MV
G1E
The 251ls MV (Figure 4D) is required to blank outturn-on
switching transients to produce the waveform shown in
Figure 41. During the power pulse, USA is normally high
for a good DUT (Figure 4J). This waveform is NOR'd
with gate 3B (inverted waveform of Figure 41) to produce
a low level (0 V) gate 3C output (Figure 4K).
If, however, the DUT is shorted, U5A output switches
low resulting in a positive' pulse output from G3C. This
pulse triggers the SCR on, lighting the LED in its anode
circuit and turning on the PNP transistor Q2 across the
emitter-base of Q3, thus clamping off the IZ power
pulse. The circuit (Q16) can be reset by opening switch
S5.
By and large, this Short Detector circuit was found
adequate to protect transistors Q8 and Q9. However, for
some wide pulse widths, relatively high current conditions, the propagation delay through the Short Detector
was too great, resulting in excessive FBSOA (Forward
Bias Safe Operating Area) stress on Q8 and Q9. Consequently, a faster Short Detector #2 was implemented.
J
JI
l
L
I
I
-.SlI
n
I
(4E)
300l1S
SENSE MV
G2A
(4F)
IZ
(4G)
100 I1S SAMPLE
DELAY MV G2D
+15V
-14V
(4H) 811S
SAMPLE PULSE 08
•
(41)
GATE
G3C
GOOD
(4J)
(4K)
~~~~:RATOR USA J_S!!OB.T_
SHORT SCR
TRIGGERG3C
L . ! I_
_
_
_
_
_
_
_
_
_
_
_
_
_
...JI ____
_
L
I n1-1SHORT I_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _+'In!'---_ __
~
.;;;,GO:..;O~D--:
I GOOD
(4L)
(4M)
VF
-3000 I1F), the
power dissipated in the current limiting resistor R1 can
be substantial, thus necessitating the illustrated 20 W
rating. For longer charging times, switch S3 is closed,
doubling the timing capacitor and the astable MV on
time.
To discharge capacitor C1 and thereby generate the
exponential surge current, the SCR must be fired. This
trigger is generated by the positive going one second
pulse from gate 1A being integrated by the R2C2 network, and then shaped by gates 1C and 10. The net
result of about 100 I1s time delay from gate 10 ensures
noncoincident timing conditions. This pulse output is
then differentiated by C3-R3 with the positive going
leading edge turning on 03, 04 and finally the SCR with
about a 4 ms wide, 15 mA gate pulse. Consequently, the
OUT is subjected to a surge current pulse whose magnitude is dictated by the voltage on the capacitor C1 and
value of resistor RS, and also whose pulse width to the
10% point is 2.3 RSC1. For a fixed pulse width, the OUT
is then stressed with increasing charge (by increasing
V+) until failure occurs, usually a shorted device.
If the OUT is the SCR (or MOS SCR), the failed condition is obvious as the capacitor C1 will not be allowed to
charge for subsequent timing cycles. However, when
the OUT is the zener, rectifier, SIOAC or even an MOV,
and the SCR is an adequately rated switch, the circuit
will still discharge through the shorted OUT, but now the
SCR alone will be stressed by the surge current. A
shorted OUT can be detected by noting the voltage
across the device during testing.
One problem encountered when stressing SCRs with
high voltage is when the OUT fails short. The limiting
resistor R1, which is only rated for 20 W, would now
experience continuous power dissipation for the full On
time - as much as 123 W ([350 V12/1 K). To preventthis
occurrence, the PR1 Short Protection Circuit is incorporated. Since this is only a problem when high V+'s (> 100
V) are used, the circuit can be switched in or out by
means of switch S2. When activated, this circuit monitors the voltage on capacitor C1 some time after the
charging cycle begins. If the capacitor is charging, normal operation occurs. However, if the SCR OUT is
shorted, the absence of voltage on the capacitor is detected and the system is disabled.
The circuit consists of one CMOS IC with NAND gates
2A and 2B comprising a one second monostable time
delay MV and gates 2C and 20 forming a comparator
and NAND gate, respectively.
The negative going, trailing edge of gate 2A is differentiated by R4-C4, and amplified by 05 to form a positive, 10 ms wide pulse (delayed by 1 sec) to gate 20
input. If the capacitor C1 is shorted, gate 2C output is
high, allowing the now negative pulse from gate 20 to
turn on PNP transistor 06 and SCR 07. This latches the
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-5-5
7
C3
0.1
04
2N3906
~F
R3
10K
02
MJE5852
ZENER OUT
Rl
IBM
t8M
lN914
22M
CAP
DISCHARGE
SW
54
0.47 ~F
ON TIME
135
I
RECTIFIER OUT
2W
10
150K
2W
+15V
lN4005
o----l+--O
1
~?25S
0.47~F
RS
o----f4---<>
I
SIDAC OUT
el
o--f'i..J--o
SCR
OUT/SW
OUT SHORT
INDICATOR
~CR
=
+15V
OUT
RED
LED
"'"
lK
l/2W
0--_.......--.
SWSl
0.1
~F
lOOK
lN914
22K
C4
R4
0.1 ~F 47K
+15V
M~"No--4----L ~3906
+15V
68K
10K
lK
Figure 5. Exponential Surge Current Tester
•
input to the astable MV gate 1A low, disabling the timing
and consequently removing the power from R1. Resetting the tester for a new device is accomplished by depressing the pushbutton switch S1.
Exponential surge current curves, as well as rectangular, are generated by destructive testing of at least
several OUTs at various pulse widths and derating the
final curve by perhaps 20-30%. These tests were conducted at low duty cycles «2%). To ensure multicycle
operation, the OUTs are then tested for about 1000
surges at a derated point on the curve.
breakover voltage (104 V to 280 V) and the SCRs were
subjected to exponential surge currents derived from
voltages generally greater than 30 V. Also, since energy
capability is related to die size, this parameter is also
listed.
For several devices, both rectangular and exponential surge current pulses are listed. Other devices were
tested with only rectangular pulses (where the junction
temperature can be determined) and still others, whose
applications include crowbars, with exponential current
only.
TEST RESULTS
AVALANCHE RECTIFIER
In trying to make a comparison of the several different
technologies of transient suppressors, some common
denominator has to be chosen, otherwise, the amount
of testing and data reduction becomes unwieldy. For this
exercise, voltage was used, generally in the 20 V to 30
V range, although some of the more unique suppressors
(SIOACs, MOS SCRs, SCRs) were tested at their operating voltage. As an example, the SIOAC trigger families
of devices were tested with voltages greater than their
The Rectangular Surge Current Tester was originally
designed for characterizing rectifier surge suppressors
used in automotive applications. For this operation,
where temperatures under the hood can reach well over
125°C, it is important to know the device junction temperature at elevated ambient temperature. Figures 6
and 7 describe the results of such testing on a typical
suppressor, the 24 V-32 V MR2520L. It should be noted
that these axial lead suppressors, as well as all other
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-5-6
axial lead devices tested, were mounted between two
spring loaded clips spaced 1 inch apart.
As shown in Figure 6 of the actual current failure
points of the OUTs, at least four devices were tested at
the various pulse widths, tw (in this example from 0.5 ms
to 100 ms).
Also shown in Figure 6 is the curve derived with a
single OUT at an energy level just short of failure. This
measurement was obtained by maintaining a constant
rectifier forward voltage drop, VF (0.25 V) for all pulse
widths Ounction temperature, TJ of 230°C) by varying
the avalanche current. Thus, one device can be used,
non-destructively, to generate the complete rectangular
surge current curve.
It should also be pointed out that the definition for the
exponential tw in this article is the current discharge
point to the 10% value of the peak test current IZM.
Expressed in time constant 1:, this would be 2.3 RC.
Some data sheets describe tw to the 50% point of IZM
(0.69 1:) and others to 5 1:. To normalized these time
scales (abscissa of curves) simply change the scales
accordingly; i.e., IZM/2 pulse widths would be multiplied
by 2.3/0.69 = 3.33 for tw at 10% current pulses.
Figure 7a describes the actual temperature calibration curve (measured in a temperature chamber) of the
MR2520Land Figure 7b, the junction temperature ofthe
OUT at various 10 ms rectangular pulse current amplitudes. These temperatures are taken from the calibration curve (in actuality, an extremely linear curve) , knowing the rectifier forward voltage drop immediately (within
100 ~) after cessation of power. Note that the junction
temperature just prior to device failure is about 290°C.
~
MR2520L RECTIFIER
SURGE SUPPRESSOR,
RECTANGULAR PULSE
VZ=2BVTYP
T =25°C
-
5
:5. 100
~
UJ
a
UJ
(!)
......
50
a:
:::>
-f-
'"
~
0..
20 - f -
~
10
-
..............
x ACTUAL OUTS FAILURE P01~
El
ONE OUT WITH VF = 0.25 V
TJ=230°C
II 1111
5
10
20
50
tw, RECTANGULAR PULSE WIDTH (ms)
11111
0.5
~
O.B
UJ
~
Ij 0.6
r-.....
r-....
§2
~
~ 0.4
::2
u:.
>
r-....
r-.....
0.2
.......
f': ~
50
100
150
200
250
TJ, JUNCTION TEMPERATURE (OC)
300
350
Figure 7a. Temperature Calibration Curve
Of The MR2520L
RECTANGULAR
PULSE
tw=10ms
IF= lOrnA
Figure 7b. Measured
Forward Voltage
IZ
(A)
VF
(V)
TJ
(OC)
1
0.64
25
10
0.57
75
120
20
0.48
30
0.36
180
40
0.25
230
50
0.15
290
0.10
OUT
FAILED
55
Figure 7. Calculated Junction Temperature
Of The MR2520L Surge Suppressor
At Various Avalanche Currents
Illustrated in Figure 8 are the actual rectangular and
exponential surge current curves of the P6KE30 overvoltage transient suppressor, an axial lead, Case 17,
30 V zener diode characterized and specified for surge
currents. This device is specified for 600 W peak for a
1 ms exponential pulse measured at IZM/2. From the
exponential curve, it is apparent that the device is very
conservatively specified. Also, the relative magnitudes
of the two curves reflect the differences in the rms values
of the two respective pulses.
=
a:
a:
~
ZENER OVERVOLTAGE TRANSIENT
SUPPRESSOR
200
::;:
MR2520L AVALANCHE RECTIFIER
SURGE SUPPRESSOR
IF=10mA
iil
100
SIDAC
SIOACs are increasingly being used as overvoltage
transient suppressors, particularly in telephone applications. Being a high voltage bilateral trigger device with
relatively high current capabilities, they serve as a cost
Figure 6. Experimental Rectangular Surge
Current Capability Of The MR2520L Rectifier
Surge Suppressor
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-5-7
([78]2mil) MK1V270 SIDAC handled 170 A and 60 A,
respectively, as shown in Table 2.
100
P6KE30 OVERVOLTAGE
TRANSIENT SUPPRESSOR
VZ=30V
~ EXPONENTIAL:
PSPEC = 600 W pk
i'
@~
~
~
OVERALL RATINGS
b=
I-- f- RECTANGU
"
I~
10%
--..I1VIi1
0.1
0.5 1
"'"
5 10
50 100
IVI. PULSE WIDTH (ms)
500 1000
Figure 8. Surge Current Capability Of The P6KE30
Overvoltage Transient Suppressor As A Function
Of Exponential & Rectangular Pulse Widths
100
ii)
a..
::;;
5.
!z
w
a:
a:
50
SIDAC MKP9V24~
240 V
CASE 59·04
1-l-t-l+l-H'!!r---I--!-'H-I-H-It--+- 372 MILS
1"- ... 1'-00.
0
w
UJ
a: 50
~
--I i-
"-
T~ = 125Io~,I~~~ ~Y~LE ~ 11%1
Mr2~
200
IZ
W
I I II
I I
10
30
50
100
I I IIIIII
50 100
10
20
t, TIME CONSTANT (ms)
300
tw, PULSE WIDTH (ms)
Figure 11. Exponential Surge Current
Capability Of The MK1V SIDAC, Pulse
Width versus Peak Current
i
10000
c::
w
5000
ij)
s:0
"w
en
a:
w
>
w
c::
7000
3000
2000
ij)
MR2530L
Mr2~
I I I
MR2520L
r""'-I-
...J
6
200
~~
:2-
.......
.......
500 1000
300
UJ
><.'J
a:
z 100
UJ
UJ
~
TC = 25°C, DUTY CYCLE $ 1%
~
'f'
UJ
en
a:
w
>
UJ
I'r-.,. ......
...... r--r--., .....
""
Lli
~
~ SEE NOTE FOR TIME
700 ~ CONSTANT DEFINITION
I I I I IIIIII I
10
20
50
a:
:::i; 1000
"-
200
Figure 12A. Peak Current
TC = 25°C, DUTY CYCLE < 1%
"""-""w
en
a:
\;~
I
"-
::!;
en
"""
a:
s:
~
50
100
t, TIME CONSTANT (ms)
200
~~
JH-"
R2
30
W"
./
MR2525y~
20
500 1000
NOTE:t= RC
MR2s20L
II
10
20
SEE NOTE FOR TIME
CONSTANT DEFINITION
IIIII I I I I III
50
100 200
500 1000
t, TIME CONSTANT (ms)
Figure 12B. Peak Power
Figure 12C. Energy
Figure 12. Guaranteed Reverse Surge Design Limits for the
MR2525L & MR2530L Overload Transient Suppressors
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-5-9
I
Table 1. Measured Surge Current Capability of Transient Suppressors
Spec.
Device
Type
ntle
Part No.
Zener
Overvoltage
Transient
Suppressor
40
30
18
27 V
22 V
24-32 V
10KW
Peak
19&1
mil
150A
70
54
37
23
1.5W
3?2
mil
-
Metal
Oxide
Varistor
SOOW
Peak
-
PSKE10
24V
V39MA2A
Axial
Lead
28V
V33ZAl
Radial
Lead
2SV
(
31
=1.2
=1.3
4.0
41
S
2.5
5
2
3
1.3
30 = 1.4
23A
6
10
2.8
7
2.3
5
1.4
23 = 1.2
43A
14
14
5
10
4.5
5
2.5
32 = 1.3
5.5
13 = 1.2
33 = 1.1
3.2
so2
28
41
0.85
mil
1042
mil
I)
3mm
1.0 )
Joules
7mm
1S
I CO·
Joules
Exp. Rect. Exp. Rect. Exp. Rect.
5
30V
1500W
Peak
Rect.
12A
10V
1.5KE30
MOV--
Cont.
30V
1.5KE24
*
85A
EXp.
20V
41A'02
Norm.
Cost
Vl00ms
ls02
mil
PSKE30
MOSORB
~
2.5KW
Peak
lN5932A
17
Clamping
Factor
24-32 V
Volt
30V
00-41
lOOms
Ole
Size
lN5938A
1.5WZener
Diode
20ms
10ms
Power
(Energy)
Case
SurgeSupp., MR2520L
Avalanche Overvoltage
194-05
Rectifier
Transient
Suppressor MR2525L
Peak Current at Pulse Widths, Ipk (Amps)
lms
lS
24A
12
35A
10
4
45A
14
S
9A
5
0.7
80V
SOV
SA
0.7 A
1.0
35
4A
105V
SOV
35A
4A
1.4
9
35
30V
28 V
1.8
= 1.1
-·G.E.
Table 2. Measured Surge Current Of Thyristor Type Devices
Ipk@tw
Technology
SIDAC
SCR
Device
Voltage
Ratings
MKP9Vl30 Series
104 V-l35 V
MKP9V240 Series
220 V-280 V
MK1V135 Series
120 V-135 V
MK1V270 Series
220 V-280 V
MCRS8Series
MCR1000 Series
59-04
372 mil
2S7-01
25 V-400V
MCRS9Series
MOSSCR
CaBe
Ole
Size
TO-220
200V-600V
1 ma
Norm
Cost
10ma
Exponent.
Rectang.
Exponent.
Rectang.
*
0.87
40A
13A
lSA
8A
31 A
15A
20A
8A
7&1 mil
140A
80A
55A
30A
170A
SOA
90A
28A
922 mil
300 A
170A
1.2
ls02mil
700 A
400 A
1.9
250 A
170A
9.3
1.1
127 mil
x
183 mil
-Normalized to G.E. MOV
I
V39MA2A, QIy 1-99,1984 Price
Additionally, the published non-repetitive peak power
ratings of the various zener diode packages are illustrated in Figure 13. Figure 14 describes the typical derating factor for repetitive conditions of duty cycles up to
20%. Using these two empirically derived curves, the
designer can then determine the proper zener for the
repetitive peak current conditions.
At first glance the derating of curves of Figure 14
appear to be in error as the 10 ms pulse has a higher
derating factor than the 10 ~ pulse. However, when the
mathematics of multiplying the derating factor of Figure
14 by the peak power value of Figure 13 is performed,
the resultant respective power and current capability of
the device follows the expected trend. For example, for
a 5 W, 20 V zener operating at a 1.0% duty cycle, the
respective derating factors for 10 IlS and 10 ms pulses
are 0.08 and 0.47. The non-repetitive peak power capabilities for these two pulses (10 Ils and 10 ms) are about
1300 Wand 50 W respectively, resulting in repetitive
power and current capabilities of about 104 Wand 24 W
and consequently 5.2 A and 1.2 A.
MOV
All of the surge suppressors tested with the exception
of the MOV are semiconductors. The MOV is fabricated
from a ceramic (ZI)O), non-linear resistor. This device
has wide acceptance for a number of reasons, but for
many applications, particularly those requiring good
clamping factors, the MOV is found lacking; (clamping
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-5-10
-
a:
w
100
50
20
10
~
5
~
~
SOURCE IMPEDANCE RS = 500 Q
1N6267 SERlE
2
1
D..
...J
~
~
0.5
0.2
:i"O 0.1
z
~ 0.05
1-' 5 WAIT TYPE
1 TO 3 WTYPE
PLASTIC 00-4
D..
250mWT01WTYPE",
O.Ob.Ol 0.02
0.05
0.1
0.2
0.5
1
2
5
10
PULSE WIDTH (ms)
Figure 13. Peak Power Ratings of Zener Diodes
Power is defined as VZ(NOM) x IZ(PK) where VZ(NOM) is the nomin~1
zener voltage measured at the low test current used for voltage classl·
fication.
27VMOV
G.E. V27ZA4, 4 JOULES CAPABILITY
Figure 15A
0.7
0.5
a:
§
0.3
0.2
~
!:il
SOURCE IMPEDANCE RS = 500 Q
....
'"
1
0.0 0.1
PULSEWIDT
10ms
"'
0.1
~ 0.07
ffi 0.05
c
0.03
0.02
~
1 ms=
I'
I'.. 10011~_
I"
0.2
0.5
1
2
1\.10 I1S
5
10 20
I
50
100
D, DUTY CYCLE ('!o)
Figure 14. Typical Derating Factor for Duty Cycle
factor is defined as the ratio of Vz at the test current to
that at 1.0 mAl. This is photographically illustrated in
Figure 15 which compares a 27 V zener (1 N6281) with
a 27 V MOV (V27ZA4). The input waveform, through a
source impedance resistance to the DUTs, was an exponentially decaying voltage waveform of 90 V peak. Figures 15A and B compare the output waveforms (across
the DUTs) when the source impedance was 500 Q and
Figures 15C and D for a 50 Q condition. The zener
clamped at about 27 V for both impedances whereas the
MOV was about 40 V and 45 V respectively.
Surge current capabilities of a comparably powered
MOV were also determined, as shown in the curve of
Figure 16. Although the MOV, a V39MA2A, is specified
27 V ZENER DIODE
MOTOROLA 1N6281 , APPROX. 1.5 JOULES
Figure 158
as a 28 V continuous device (39 V ±1 0% at 1 mAl at the
pulse widths and currents tested, the resultant voltage
Vz across the MOV - 80 V at about 6 A - necessitated
a high voltage fixture. This was accomplished with a
circuit similar to that of Figure 1B.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-5-11
I
10
SOURCE IMPEDANCE RS = 50 n
..........
...........
[',;
,.......
= G.E. V39MA2A MOV
=
VDCM=28V
- VNOM=39V@1 rnA
-TA=25°C
0.1 1
5
10
30
50
100
tw, PULSE WIDTH (rns)
Figure 16. Rectangular Surge Current Capability
Of The V39MA2A MOV
But MOVs do have their own niche in the marketplace,
as described in Table 3, the Relative Features of MOVs
and MOSORBs.
27 V MOV
Figure 15C
SOURCE IMPEDANCE RS = 50 n
Table 3. Relative Features of MOVs
and MOSORBs
MOV
27 V ZENER DIODE
Figure 150
I
Figure 15. Clamping Characteristics of a
27 V Zener Diode and 27 V MOV
High Clamping Factor
Very good clamping close to
the operating voltage.
Symmetrically bidirectional
Standard parts perform like
standard zeners. Symmetrical
bidirectional devices available
for many voltages.
Energy capability per dollar
usually much greater than a
silicon device. However, if
good clamping is required a
higher energy device would be
needed, resulting in higher
cost.
Good clamping characteristics
could reduce overall cost.
Inherent wear out mechanism,
clamp voltage degrades aiter
every pulse, even when pulsed
below rated value.
No inherent wear out
mechanism.
Ideally suited for crude AC line
protection.
Ideally suited for precise DC
protection.
High single-pulse current
capability.
Medium multiple-pulse current
capability.
Degrades with overstress.
Fails short with overstress.
Good high voltage capability.
Limited high voltage capability
unless series devices are
used.
Limited low voltage capability.
Good low voltage capability.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-5-12
MOSORBlZener Transient
Suppressor
SUMMARY
REFERENCES
The surge current capabilities of low energy overvoltage transient suppressors have been demonstrated,
including cosUperformance comparison of rectifiers,
zeners, thyristor type suppressors, and MOVs. Both
rectangular and exponential testing have been performed with the described testers. Additionally, the
Rectangular Current Surge Tester has the capability of
measuring the diode junction temperature of zeners and
rectifiers at various power levels, thus establishing safe
operating limits.
1. Cherniak, S., A Review of Transients and Their
Means of Suppression, Motorola Application Note
AN843.
2. Wilhardt, J., Transient Power Capability of Zener
Diodes, Motorola Application Note AN784.
3. Pshanenich, A., Characterizing the SCR for Crowbar
Applications, Motorola Application Note AN879.
4. Pshaenich, A., The SIDAC, A New High Voltage Triggerthat Replaces Circuit Complexity and Cost, Motorola Engineering Bulletin EB-106.
5. General Electric, Transient Voltage Suppression
Manual, Second Edition.
II
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-5-13
I
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-5-14
MEASUREMENT OF ZENER VOLTAGE TO
THERMAL EQUILIBRIUM WITH PULSED
TEST CURRENT
Prepared by
Herb Saladin
Discrete Power Application Engineering
This paper discusses the zener voltage correlation problem which sometimes exists between the
manufacturer and the customer's incoming inspection. A method is shown to aid in the correlation of
zener voltage between thermal equilibrium and
pulse testing. A unique double pulsed sample and
hold test circuit is presented which improves the
accuracy of correlation. 1
Several zener voltages versus zener pulsed test
current curves are shown for four package styles.
An appendix is attached for incoming inspection
groups giving detailed information on tolerances
involved in correlation.
INTRODUCTION
For many years the major difficulty with zener diode
testing seemed to be correlation of tight tolerance voltage specifications where accuracy between different
test setups was the main problem. The industry standard and the EIA Registration system adopted thermal
equilibrium testing of zener diodes as the basic test
condition unless otherwise specified. Thermal equilibrium was chosen because it was the most common condition in the final circuit design and it was the condition that
the design engineers needed for their circuit design and
device selection. Thermal equilibrium testing was also
fairly simple to set-up for sample testing at incoming
inspection of standard tolerance zeners.
In recent years with the advent of economical computerized test systems many incoming inspection areas
have implemented computer testing of zener diodes
which has been generating a new wave of correlation
problems between customers imd suppliers of zener
diodes.
The computerized test system uses short duration
pulse test techniques for testing zener diodes which
does not directly match the industry standard thermal
equilibrium test specifications.
This paper was prepared in an attempt to clarify the
differences between thermal equilibrium and short duration pulse testing of zener diodes, to provide a test circuit
that allows evaluation at various pulse widths and a
suggested procedure for incoming inspection areas that
will allow meaningful correlation between thermal equilibrium and pulse testing.
In the measurement of zener voltage (VZ), the temperature coefficient effect combined with test current
heating can present a problem if one is attempting to
correlate Vz measurements made by another party (Final Test, Quality Assurance or Incoming Inspection).2
This paper is intended as an aid in determining Vz at
some test current (lZT) pulse width other than the pulse
width used by the manufacturer.
Thermal equilibrium (TE) is reached when diode junction temperature has stabilized and no further change
will occur in Vz if the IZT time is increased. 2 This absolute value can vary depending on the mounting method
and amount of heatsinking. Therefore, thermal equilibrium conditions have to be defined before meaningful
correlation can exist.
Normalized Vz curves are shown for four package
styles and for three to five voltage ratings per package.
Pulse widths from 1 ms up to 100 seconds were used to
arrive at or near thermal equilibrium for all packages
with a given method of mounting.
Mounting
There are five conditions that can affect the correlation of Vz measurements and are: 1) instrumentation,
2) T A, 3) IZT time, 4) PD and 5) mounting. The importance of the first four conditions is obvious but the last
one, mounting, can make the difference between good
and poor correlation. The mounting can have a very
important part in Vz correlation as it controls the amount
of heat and rate of heat removal from the diode by the
mass and material in contact with the diode package.
Two glass axial lead packages (DO-35 and 00-41),
curves (Figures 5 and 6) were measured with standard
Grayhill clips and a modified version of the Grayhill clips
to permit lead length adjustment.
Test Circuit
The test circuit (Figure 8) consists of standard CMOS
logic for pulse generation, inverting and delaying. The
logic drives three bipolar transistors for generation of the
power pulse for IZT. Vz is fed into an unique sample and
hold (S/H) circuit consisting of two high input impedance
operational amplifiers and a field effect transistor switch.
For greater accuracy in Vz measurements using a
single pulse test current, the FET switch is double
pulsed. Double pulsing the FET switch for charging the
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-6-1
StH capacitor increases accuracy of the charge on the
capacitor as the second pulse permits charging the capacitor closer to the final value of VZ.
The timing required for the two pulse system is shown
in waveform G-3C whereby the initial sample pulse is
delayed from time zero by a fixed 100 Ils to allow settling
time and the second pulse is variable in time to measure
the analog input at that particular pOint. The power pulse
(waveform G-2D) must also encompass the second
sample pulse.
To generate these waveforms, four time delay monostable multivibrators (MV) are required. Also, an astable MV, is required for free-running operation; single
pulsing is simply initiated by a push-button switch S 1. All
of the pulse generators are fashioned from two input,
CMOS NOR gates; thus thr,ee quad gate packages
(MC14001) are required. Gates 1A and 1B form a classical CMOS astable MV clock and the other gates (with
the exception of Gate 20) comprise the two input NOR
gate configured monostable MV's. The Pulse Width
variable delay output (Gate 1D) pOSitions the second
sample pulse and also triggers the 100 Ils Delay MV and
the 200 Ils Extended Power Pulse MV, The respective
positive going outputs from gates 3A and 2C are diode
NOR'ed to trigger the Sample Gate MV whose output
will consequently be the two sample pulses. These
pulses then turn on the PNP transistor 01 level translatOr and the following StH N-channel FET series switch
02. Op amps U4 and U5, configured as voltage followers, respectively provide the buffered low output impedance drive for the input and output of the StH. Finally, the
pulse extended Power Gate is derived by NORing (Gate
20) the Pulse Width Output (Gate 1D) with the 200 Ils
MV output (Gate 2C). This negative aging gate then
drives the Power Amplifier, which, in turn, powers the
D.U.T. The power amplifier configuration consists of
cascaded transistors 03-05, scaled for test currents up
to 2 A.
Push button switch (S4) is used to discharge the StH
capacitor. To adjust the zero control potentiometer,
ground the non-inverting input (Pin 3) of U4 and discharge the StH capacitor.
Testing
7
The voltage VCC, should be about 50 volts higher
than the D.U.T. and with RC selected to limit the IZT
pulse to a value making VZT IZT = 1t4 Po (max), thus
insuring a good current source. All testing was performed at a normal room temperature of 25°C. A single
pulse (manual) was used and at a low enough rate that
very little heat remained from the previous pulse.
The pulse width MV (1 C and 1D) controls the width of
the test pulse with a selector switch S3 (see Table 1 for
capacitor values). Fixed widths in steps of 1, 3 and 5
from 1 ms to 10 seconds in either a repetitive mode or
Single pulse is available. For pulse widths greater than
10 seconds, a stop watch was used with push button
switch (S1) and with the mode switch (S2) in the> 10
seconds position.
For all diodes with Vz greater than about 6 volts a
resistor voltage divider is used to maintain an input of
about 6 V to the first op amp (U4) so as not to overload
or saturate this device. The divider consists of R5 and
R6 with R6 being 10 kn and R5 is selected for about a
6 V input to U4. Precision resistors or accurate known
values are required for accurate voltage readout.
Table 1. S3 Switch
Position
1
2
3
4
5
6
7
8
9
10
11
12
13
"C(~F)
t(ms)
0.001
0.004
0.006
0.01
0.04
0.06
0.1
0.4
0.6
1.0
1.2
6.0
10
1
3
5
10
30
50
100
300
500
lK
3K
5K
10K
"Approximate Values
Using Curves
Normalized Vz versus IZT pulse width curves are
shown in Figure 1 through 6. The type of heatsink used
is shown or specified for each device package type.
Obviously, it is beyond the scope of this paper to show
curves for every voltage rating available for each package type. The object was to have a representative showing of voltages including when available, one diode with
a negative temperature coefficient (TC).
These curves are actually a plot of thermal response
versus time at one quarter of the rated power dissipation. With a given heatsink mounting, Vz can be calculated at some pulse width other than the pulse width
used to specify VZ.
For example, refer to Figure 5 which shows normalized Vz curves for the axial lead 00-35 glass package.
Three mounting methods are shown to show how the
mounting effects device heating and thus VZ. Curves
are shown for a 3.9 V diode (1N5228B) which has a
negative TC and a 12 V diode (1 N5242B) having.a posi"
tiveTC.
In Figure 5, the two curves generated using the Grayhill mountings are normalized to Vz at TE using the
Motorola fixture. There is very little difference in Vz at
pulse widths up to about 10 seconds and mounting only
causes a very small error in VZ. The maximum error
occurs at TE between mountings and can be excessive
if Vz is specified at TE and a customer measures Vz at
some narrow pulse width and does not use a correction
factor.
USing the curves of Figure 5, Vz can be calculated at
any pulse width based upon the value of Vz at TE which
is represented by 1 on the normalized Vz scale. If the
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-6-2
Pulse Width
1N52428 diode is specified at 12 V ± 1.0% at 90 seconds
which is at TE, Vz at 100 ms using either of the Grayhill
clips curves would be 0.984 of the Vz value at TE or 1
using the Motorola fixture curve. If the negative TC diode
isspecifiedat3.9V± 1.0%atTE (90 seconds), Vzat 100
ms would be 1.011 of Vz at TE (using Motorola fixture
curve) when using the Grayhill Clips curves.
In using the curves of Figure 5 and 6, it should be kept
in mind that Vz can be different at TE for the three
mountings because diode junction temperature can be
different for each mounting at TE which is represented
by 1 on the Vz normalized scale. Therefore, when the
correlation of Vz between parties is attempted, they
must use the same type of mounting or know what the
delta Vz is between the two mountings involved.
The Grayhill clips curves in Figure 6 are normalized
to the Motorola fixture at TE as in Figure 5. Figures 1
through 4 are normalized to Vz at TE for each diode and
would be used as Figures 5 and 6.
Measurement accuracy can be affected by test equipment, power dissipation of the D.U.T., ambienttemperature and accuracy of the voltage divider if used on the
input of the first op-amp (U4). The curves of Figures 1
through 6 are for an ambient temperature of 25°C, at
other ambients, 9VZ has to be considered and is shown
on the data sheet for the 1N5221 8 series of diodes. 9VZ
is expressed in mVioC and for the 1N52288 diode is
about-2 mVtoC and forthe 1N52428, about 1.6 mV/oC.
These values are multiplied by the difference in T A from
the 25°C value and either subtracted or added to the
calculated Vz depending upon whether the diode has a
negative or positive TC.
General Discussion
The TC of zener diodes can be either negative or
positive, depending upon die processing. Generally, devices with a breakdown voltage greater than about 5 V
have a positive TC and diodes under about 5 V have a
negative TC.
Conclusion
Curves showing Vz versus IZT pulse width can be
used to calculate Vz at a pulse width other than the one
used to specify VZ. A test circuit and method is presented to obtain Vz with a single pulse of test current to
generate Vz curves of interest.
References
(1) AI Pshaenich, "Double Pulsing StH Increases System Accuracy"; Electronics, June 16, 1983.
(2) Motorola Zener Diode Manual, Series A, 1980.
•
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-6-3
FIGURES 1 thru 8 - Conditions: Single Pulse. T A = 25°C. Vz IZT= 1/4 PD (Max) Each device normalized to Vz at TE.
AXIAL LEAP PACKAGES: MOUNTING STANDARD GRAYHILL CLIPS
1.06
6
UJ
~
::;
a:
0
1.04
1.02
~
(!)
§2
a:
w
z
w
w
~
v~~ll!~ll
...J
«
::;
a:
0
6.2V
0.98
0.96
N
:l:' 0.94
0.92 1
Vz = 3.9 V
w
IIIII
~
6.2V
§2
a:
w
z
7i11
4
1.02
(!)
::;;
12V
III
1.04
~
IIII
UJ
~
1.06
6
11111111
UJ
N
0.98
12V
0.96
:l:' 0.94
10
40 100
400 lK
4K 10K
0.92 1
40K lOOK
Pw. PULSE WIDTH (ms)
4
10
40 100
400 lK
4K 10K
40Kl00K
Pw. PULSE WIDTH (ms)
Figure 1. 00-35 (Glass) 500 mW Device
Figure 2. 00-41 (Glass) 1 WaH Device
6
1.06 rrr'ITl
I I"IT
III ~nrrllrTTTTTTT1-"-TlTrmrn-rTTITTTrT""""'TTTTIl
~
~
Zrr=3m·9;rV-t+-H1~~;;;j;±±iffiH-HlH-H1Htiitttttl
1.04 t+rVTi
a:
~
~
1.02 H-f-HKtHH+++tI1ftlHf-H-++ttHf-1+-ffit-lolll:+++t-1+ttll
w
(!)
~
§2
0.981:+~6,:;,V,#jj::J+#It!IIj~""ffij1rrrut:1:lillntittttl1j
~
ffi
0.961=
:l:' 0.94
0.92 ~1.L.J...W4..I.W-!l:l0~..I.4-f::0~10""0L..L..J4~00~1~K.L.J...L:J4K+J..l.!l:1!-:OK,.w....I.4+.OK~100K
I
~~{g3IJ~~~~~~~fir~fit~ttth~
po.
68 V ~ 150 V tttHt-t-t-Hftffl1l-t++t+tt1tHf-H-t+ltHI
IIII IIII
0.92~1.L...I-'-'4!-'-""'!':10~..I.4-f::0~10~0L..L..J4~00:-W:l~K.L...I-"!4K~1'!!:OK-;-'-'--':40+'K~1':!!!00K
Pw. PULSE WIDTH (ms)
PW. PULSE WIDTH (ms)
Figure 3. 00-41 (Plastic) 1.5 WaH Device
Figure 4. Case 17 (Plastic) 5 WaH Device
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-6-4
THREE MOUNTING METHODS: 00-35 AND 00-41
1.004
1.022
11111111111
1.018
1N5228B (V = 3.9 V)
1==
rrM
w
1.004
MOTOROLA
FIXTURE L = 112"
~
w
C)
~ 0.996
g
111111111
GRAYHILL CLIPS --:
STANDARD, L= 11/16~
a: 0.992
w
z
w
~ 0.988
""'MOUNTINGS:
""
111Nliidl'
GRAYHILL CLIPS
STANDARD, L = 11/16"
MODIFIED, L = 3/8" ~
1
VZ= 12V
0.996
MOTOROLA
FIXTURE
L = 1/2"
~
w
C)
!:i
§2
0.992
0.988
F
a:
w
1\
II IIIII
a:
~
l5
MOUNTINGS:
GRAYHILL CLIPS
MODIFIED, L = 3/8"
STANDARD,
L= 11/16"
0 1.008
!:I
~
I!:l
'"'
1.014
1.012
o
z 0.984
I!:l
i'
FI
~~
0.98
~ ::;-
0.976 1
4
10
40 100
400 1K
4K 10K
40K 100K
Pw, PULSE WIDTH (ms)
MODIFIED
L = 3/8"
Figure 6. 00-41 (Glass) 1 WaH Device
~
--
0.984
~
0.98
0.976
1N5242B (V = 12 V)
F=
0.972
0.968 1
MOUNTING FIXTURE
4
10
40 100
400 1K
4K 10K
Pw, PULSE WIDTH (ms)
40K 100K
Figure 5. 00-35 (Glass) 500 mW Device
y~
2.31
Figure 7. Standard Grayhill Clips
I
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-6-5
•
,
T1MING WAVEFORMS
+12V
STAATSW
Sl
P.W.
CONTROl
0+12V
...----~--------::~----~~----~' ...I....
0 00-----------0.1
I
SM
R3
+12V
>10 SEC
0.001
T2 - 0.6C:!iR2 + Rs!
R2 ~ lOOk
~F
C3
-2Rl
,
C4,
~
Ul
MODE
SELSW
S2A
Cl
o
iii
z
I"
PULSE
WIDTH
MV
~
IS'
c
--=:J~~IJS
-U- ,.....
-u- - ,.. ,
G-3C
Cil
!III
SEE
TABLE 1
!..
VCC~250V
CD
~
!:j
U3
3i4MCl4001
+12V
~
1k
+12V
U3
112 MCl4001
m
~
+12V
I
12k
Ul
EXTENDED POWER·PULSE MV
680k
c
CD
~
330k
SAMPLE GATE MV
"
m
, :0
......
't'
0)
~2001JS
G~l001JS
53
"?" ~15 I
'---ll--<> 13
MCl4001
lN914
-I
f
G~
1-"'1 2
CS'
1-"'1 3
Tl- 2.2R1Cl
S2B
t?2Al
______
G.2C
1
lOOk
-I
~L-
C2
lC
100
:~
C
r:T
'FOR OUT
CURRENTS:
+12V
Ul
iD
"1:1
c::
iii
S'
2OOmAS: 1zr S2
A
VCC S250V
~
:0
Ul
»
Z
o
0.001
0.001
N
m
Z
m
~F
~F
11:1
lN914
47k
47k
~
47k
'ii
!.
o
10k
27k
:0
o
5
+12V
~~r
c::
lN914
o
;:;:
m
Ul
lN914
+12V
lOOk
27k
4.7k
**Tek Current Probe
P6302IAM503
VIN
VO=
-12V
MPSA42
POWER AMPlIFER
VIN (10 k)
VIN
VIN= RS+l0k = K
K
APPENDIX A
Recommended Incoming Inspection Procedures
Zener Voltage Testing
Pulsed versus Thermal Equilibrium
This section is primarily for use of incoming inspection
groups. The subject covered is the measurement of
zener voltage (VZ) and the inherent difficulty of establishing correlation between supplier and buyer when
using pulsed test techniques. This difficulty, in part, is
due to the interpretation of the data taken from the variety of available testers and in some cases even from the
same model types. It is therefore, our intent to define
and reestablish a standardized method of measurement
to achieve correlation no matter what test techniques
are being used. This standardization will guarantee your
acceptance of good product while maintaining reliable
correlation.
DEFINITION OF TERMS
Temperature Coefficient (TC):
The temperature stability of zener voltages is sometimes expressed by means of the temperature coefficient (TC). This parameter is usually defined as the
percent voltage change across the device per degree
centigrade, or as a specific voltage change per degree
centigrade. Temperature changes during test are due to
the self heating effects caused by the dissipation of power in the zener junction. The Vz will change due to this
temperature change and will exhibit a positive or negative TC, depending on the zener voltage. Generally,
devices with a zener voltage below five volts will have
a negative TC and devices above five volts will exhibit
a positive TC.
Thermal Equilibrium (TE)
Thermal equilibrium (TE) is reached when the diode
junction temperature has stabilized and no further
change will occur. In thermal equilibrium, the heat generated at the junction is removed as rapidly as it is
created, hence, no further temperature changes.
MEASURING ZENER VOLTAGE
The zener voltage, being a temperature dependent
parameter, needs to be controlled for valid Vz correlation. Therefore, so that a common base of comparison
can be established, a reliable measure of Vz can only
occurwhen all possible variables are held constant. This
common base is achieved when the device under test
has had sufficient time to reach thermal equilibrium
(heatsinking is required to stabilize the lead or case
temperature to a specified value for stable junction temperatures). The device should also be powered from a
constant current source to limit changes of power dissipated and impedance.
All of the above leads us to an understanding of why
various pulse testers will give differing Vz readings;
these differences are, in part, due to the time duration
of test (pulse width), duty cycle when data logging, contact resistance, tolerance, temperature, etc. To resolve
all of this, one only needs a reference standard to compare their pulsed results against and then adjust their
limits to reflect those differences. It should be noted that
in a large percentage of applications the zener diode is
used in thermal equilibrium.
Motorola guarantees all of it's axial leaded zener
products (unless otherwise specified) to be within specification ninety (90) seconds after the application of power while holding the lead temperatures at 30 ± 1°C, 3/8
of an inch from the device body, any fixture that will meet
that criteria will correlate. 30°C was selected over the
normally specified 25°C because of its ease of maintenance (no environmental chambers required) in a normal room ambient. A few degrees variation should have
negligible effect in most cases. Hence, a moderate to
large heatsink in most room ambients should suffice.
Also, it is advisable to limit extraneous air movements
across the device under test as this could change thermal equilibrium enough to affect correlation.
SETTING PULSED TESTER LIMITS
Pulsed test techniques do not allow a sufficient time
for zener junctions to reach TE. Hence, the limits need
to be set at different values to reflect the Vz at lower
junction temperatures. Since there are many varieties of
test systems and possible heatsinks, the way to establish these limits is to actually measure both TE and
pulsed Vz on a serialized sample for correlation.
The following examples show typical delta changes in
pulsed versus TE readings. The actual values you use
for pulsed conditions will depend on your tester. Note,
that there are examples for both positive and negative
temperature coefficients. When setting the computer
limits for a positive TC device, the largest difference is
subtracted from the upper limit and the smallest difference is subtracted from the lower limit. In the negative
coefficient example the largest change is added to the
lower limit and the smallest change is added to the upper
limit.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-6-7
Motorola Zeners
• Thermal equilibrium specifications:
Vz at 10 mA, 9 V minimum, 11 V maximum:
(Positive TC)
TE
9.S3V
9.3SV
9.46 V
9.S6V
9.S0V
Pulsed
9.4SV
9.38 V
9.83 V
9.49 V
9.40 V
• Thermal equilibrium specifications:
Vz at10 mA, 2.7 V minimum, 3.3 V maximum:
(Negative TC)
Difference
TE
Pulsed
Difference
-{l.OB V
-{l.07V
-{l.08 V
-{l.07V
-{l.10 V
2.7BV
2.B4V
2.7BV
2.86 V
2.B2V
2.B3V
2.91 V
2.B4V
2.93 V
2.B7V
+O.OS V
+0.07 V
+o.OSV
+0.07 V
+0.05 V
Computer test limits:
Set Vz min. limit at 2.7 V + 0.07 V = 2.77 V
Set Vz max. limit at 3.3 V + 0.05 V = 3.35 V
Computer test limits:
Set Vz max. limit at 11 V - 0.10 V = 10.9 V
Set Vz min. limit at 9 V - 0.07 V = 8.93 V
I
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7·6·8
DESIGN CONSIDERATIONS AND
PERFORMANCE OF MOTOROLA
TEMPERATURE-COMPENSTATED ZENER
(REFERENCE) DIODES
Prepared by
Zener Diode Engineering
and
Ronald N. Raclno
Reliability and Quality Assurance
This application note defines Motorola temperature-compensated zener (reference) diodes, explains the device characteristics, describes electrical testing, and discusses the advanced concepts
of device reliability and quality assurance. It is a
valuable aid to those who contemplate designing
circuits requiring the use of these devices.
6.4
INTRODUCTION
5.8
6.2
6.2 - VOLT REFERENCE DIODE
(COMBINATION OF ZENER
AND FORWARD DICE)
6
ZENERDI~
Zener diodes fall into three general classifications:
Regulator diodes, reference diodes and transient voltage suppressors. Regulator diodes are normally
employed in power supplies where a nearly constant dc
output voltage is required despite relatively large
changes in input voltage or load resistance. Such devices are available with a wide range of voltage and
power ratings, making them suitable for a wide variety
of electronic equipments.
Regulator diodes, however, have one limitation: They
are temperature-sensitive. Therefore, in applications in
which the output voltage must remain within narrow limits during input-voltage, load-current, and temperature
changes, a temperature-compensated regulator diode,
called a reference diode, is required.
The reference diode is made possible by taking
advantage of the differing thermal characteristics of
forward- and reverse-biased silicon p-n junctions. A
forward-biased junction has a negative temperature coefficient of approximately 2 mV/oC, while reversebiased junctions have positive temperature coefficients
ranging from about 2 mV/oC at 5.5 V to 6 mV/oC at 10
V. Therefore it is possible, by judicious combination of
forward- and reverse-biased junctions, to fabricate a
device with a very low overall temperature coefficient
(Figure 1).
The principle of temperature compensation is further
illustrated in Figure 2, which shows the voltage-current
characteristics at two temperature points (25 and
100°C) for both a forward- and a reverse-biased junction. The diagram shows that, at the specified test current (IZT) , the absolute value of voltage change (~V) for
__V
..V
..
-
---
~
..............
r-...I--.
0.6
FORWARD·BIASED COMPENSATIN--;;;;;-"'"
0.4
0.2
0_75
-li0
-25
TEMPERAT~~E(OC)+50
+100
Figure 1. Temperature Compensation
of a 6.2 Volt Reference Diode (1 N821 Series)
the temperature change between 25 and 100°C is the
same for both junctions. Therefore, the total voltage
across the combination of these two junctions is also the
same atthese temperature points, since one ~V is negative and the other is positive. However, the rate of voltage change with temperature over the temperature
range defined by the!?e points is not necessarily the
same for both junctions, thus the temperature compensation may not be linear over the entire range.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-7-1
+75
II
Figure 2 also indicates that the voltage changes of the
two junctions are equal and opposite only at the specified test current. For any other value of current, the
temperature compensation may not be complete.
3). On the data sheets, the reference voltage is given as
a nominal voltage for each family of reference diodes.
The nominal voltages are normally specified to a tolerance of ±5%, but devices with tighter tolerances, such
as ±2% and ±1 %, are available on special order.
2. Voltage-Temperature Stability. The temperature
stability of zener voltage is sometimes expressed by
means of the temperature coefficient. This parameter is
usually defined as the percent voltage change across
the device per degree centigrade. This method of indicating voltage stability accurately reflects the voltage
deviation at the test temperature extremes but not necessarily at other pOints within the specified temperature
range. This fact is due to variations in the rate of voltage
change with temperature for the forward- and reversebiased dice of the reference diode. Therefore, the temperature coefficient is given in Motorola data sheets only
as a quick reference, for designers who are accustomed
to this method of specification.
A more meaningful way of defining temperature
stability is the "box method." This method, used by
Motorola, guarantees that the zener voltage will not vary
by more than a specified amount over a specified temperature range at the indicated test current, as verified
by tests at several temperatures within this range.
Some devices are accurately compensated over a
wide temperature range (-55°C to 100°C), others over
a narrower range (0 to 75°C). The wide-range devices
are, as a rule, more expensive. Therefore, it would be
economically wasteful for the designer to specify devices with a temperature range much wider than actually
required for the specific device application.
During actual production of reference diodes, it is difficultto predictthe compensation accuracy. In the interest
of maximum economy, it is common practice to test all
DIRECTION OF CURRENT FLOW
FORWARD·BIASED
P·N JUNCTION
REVERSE·BIASED
ZENER JUNCTION
Figure 2. Temperature Compensation of
P-N Junctions
IMPORTANT ELECTRICAL
CHARACTERISTICS OF REFERENCE
DIODES
The three most important characteristics of reference
diodes are 1) reference voltage, 2) voltage-temperature stability, and 3) voltage-time stability.
1. Reference Voltage. This characteristic is defined
as the voltage drop measured across the diode when
the specified test current passes through it in the zener
direction. It is also called the zener voltage (VZ, Figure
0.3
« 0.2
.s
-'=
0.1
I
VR(V)
~
-4
Ie- Vz
~-
-
/
V
-2
2
IZ
-- -- -- J_ --
4
6
8
VF(V)
10
12
-0.1
-0.2
«E
II:
-
-0.3
Figure 3. Typical Voltage -
Current Characteristic of Reference Diodes
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-7-2
14
16
devices coming off the production line, and to divide the
production lot into groups, each with a specified maximum !:NZ. Each group, then, is given a different device
type number.
On the data sheet 1, the voltage-temperature characteristics of the most widely used device types are illustrated in a graph similar to the one shown in Figure 4.
The particular production line represented in this figure
produces 6.2 volt devices, but the line yields five different device type numbers (1 N821 through 1N829), each
with a different temperature coefficient. The 1N829, for
example, has a maximum voltage change of less than
5 mV over a temperature range of -55 to +100°C, while
the 1N821 may have a voltage change of up to 96 mV
over the same temperature range.
1001-T-I-J==:::::::)==::::::j==~
751---l--+-'~-+--+---+---H
1N821 , a change in ambient temperature from 0 to 50°C
results in a voltage change of no more than about
±31 mV.
The reason that the device reference voltage may
change in either the negative or positive direction is that
after assembly, some of the devices within a lot may be
overcompensated while others may be undercompensated. In any deSign, the ''worst-case'' condition must be
considered. Therefore, in the above example, it can be
assumed that the maximum voltage change will not exceed 31 mV.
It should be understood, however, that the above calculations give the maximum possible voltage change for
the device type, and by no means the actual voltage
change for the individual unit.
3. Voltage-Time Stability. The voltage-time stability
of a reference diode is defined by the voltage change
during operating time at the standard test current (lZT)
and test temperature (TA). In general, the voltage stability of a reference diode is better than 100 ppm per 1000
hours of operation.
-50
-751----i---j--'\r-+---+--1----H
AVz. MAXIMUM VOLTAGE CHANGE (mV)
(Referenced to IZT = 7.5 rnA)
Figure 4. Temperature Dependence
of Zener Voltage (1 N821 Series)
lin the past. design data and characteristic curves on data sheets for
reference diodes have been somewhat limited: The devices have
been characterized principally at the recommended operating point.
Motorola has introduced a data sheet. providing device data previously not available. and showing limit curves that permit worst-case
circuit design without the need for associated tests required in conjunction with the conventional data sheets.
Graphs such as these permit the selection of the
lowest-cost device that meets a particular requirement.
They also permit the designer to determine the maximum voltage change of a particular reference diode for
a relatively small change in temperature. This is done by
drawing vertical lines from the desired temperature
points at the abscissa of the graph to intersect with each
the positive- and negative-going curves of the particular
device of interest. Horizontal lines are then drawn from
these intersects to the ordinate of the graph. The difference between the intersections of these horizontal lines
with the ordinate yields the maximum voltage change
over the temperature increment. For example, for the
Figure 5. Current Dependence of Zener
Voltage at Various Temperatures
(1 N821 Series)
THE EFFECT OF CURRENT VARIATION
ON ZENER VOLTAGE
The nominal zener voltage of a reference diode is •
specified at a particular value of current, called the zener
test current (lZT). All measurements of voltage change
with temperature are referenced to this test current. If
the operating current is varied, all these specifications
will change.
The effect of current variation on zener voltage, at
various temperatures, is graphically illustrated ·on the
1N821 data sheet as "Zener Current versus Maximum
Voltage Change." A typical example of such a graph is
shown for the 1N821 series in Figure 5. The voltage
change shown is due entirely to the impedance of the
device at the fixed temperature. It does not reflect the
change in reference voltage due to the change in tem-
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-7-3
=
perature since each curve is referenced to IZT 7.5 mA
at the indicated temperature. As shown, the greatest
voltage change occurs at the highest temperature represented in the diagram. (See "Dynamic Impedance"
under the next section).
Figure 5 shows that, at 25°C, a change in zener current from 4 to 10 mA causes a voltage shift of about
90 mY. Comparing this value with the voltage-change
example in Figure 4 (31 mY), it is apparentthat, in general, a greater voltage variation may be due to current
fluctuations than to temperature change. Therefore,
good current regulation of the source should be a major
consideration when using reference diodes in critical
applications.
It is not essential, however, that a reference diode be
operated at the specified test current. The new voltagetemperature characteristics for a change in current can
be obtained by superimposing the data of Figure 5 on
that of Figure 4. A new set of characteristics, at a test
current of 4 mA, is shown for the 1N823 in Figure 6,
together with the original characteristics at 7.5 mAo
+100
6'
~ +so
~
w
(;)
iD
a:
~
~
~
~
:;;
100
7' N
:IS
100°C
25°C
4
TEMPERATURE (0G)
6
8 10
20
40
60 80100
IZ, ZENER CURRENT (rnA)
Figure 6. Voltage Change with Temperature
for 1N823 at Two Different Current. Levels
I
Dynamic Impedance
~ 10O~
~r-.:
-so
The maximum dc power dissipation indicates the
power level which, if exceeded, may result in the destruction of the device. Norma"y a device will be operated near the specified test current for which the datasheet specifications are applicable. This test current is
usually much below the current level associated with the
maximum power dissipation.
W
-150
-200
Power Dissipation
~200 ~"
t ~
"---t--
t--
In addition to the three major characteristics discussed earlier, the following parameters and ratings of
reference diodes may be considered in some applications.
(j)1g&0
:;;600
§.400
I
I 7.5 rnA
I
, OTHER CHARACTERISTICS
Figure 7. Variation of Zener Impedance
With Current and Temperature (1 N821 Series)
From these characteristics, it is evident that the voltage change with temperature for the new curves is different from that for the original ones. It is also apparent
that if the test current varies between 7.5 and 4 mA, the.
voltage changes would lie along the dashed lines belonging to the given temperature points. This clearly
shows the need for a we"-regulated current source.
It should be noted, however, that even when a we"-regulated current supply is available, other factors might
influence the current flowing through a reference diode.
For example, to minimize the effects of temperaturesensitive passive elements in the load circuit on current
regulation, it is desirable that the load in para"el with the
reference diode have an impedance much higher than
the dynamic impedance of the reference diode.
The impedance of a reference diode is normally specified at the test current (lZT). It is determined by measuring the ac voltage drop across the device when a 60
Hz ac current with an rms value equal to 10% of the dc
zener current is superimposed on the zener current
(IZT). Figure 8 shows the block diagram of a circuit used
for testing zener impedance.
ELECTRICAL TESTING
A" devices are tested electrica"y as a last step in the
manufacturing process.
The subsequent final test procedures represent an
automated and accurate method of electrica"y classifying reference diodes. First, an electrical test is per-
TRANSIENT VOLTAGE SUPPRESSORS AND ;ZENER DIODES
7-7-4
DC POWER
SUPPLY
( 77;A)
~
1k
1\
600
READ
r----,
r----i
1~~
METER I
(A)
SET
E1
Rx= E1- E2
E2
SIGNAL
GENERATOR
~F
Il_
0.1
1k
IS
READO
r,'"' Rx=Zz
i
1
I T
I
I
Ir
100'PF
':'
L.
..Y
E2
SET
(8)
DUMMY
LOAD
( ~bA)
I
I
AC
VTVM
,... _ _ .J
-'
f
R2
1
(
4~bH)
DC
VTVM
( 47;A)
~
Figure 8. Block Diagram of Test Circuit for Measuring Dynamic Zener Impedance
formed on all devices to insure the correct voltagebreakdown and stability characteristics. Next, the
breakdown voltage and dynamic impedance are measured. Finally, the devices are placed in an automatic
data acquisition system that automatically cycles them
through the complete temperature range specified. The
actual voltage measurements at the various temperature points are retained in the system computer memory
until completion of the full temperature excursion. The
computer then calculates the changes in voltage for
each device at each test temperature and classifies all
units on test into the proper category. The system provides a printed readout for every device, including the
voltage changes to five digits during temperature cycling, and the corresponding EIA type number, as well as
the data referring to test conditions such as device position, lot number, and date.
DEVICE RELIABILITY AND QUALITY
ASSURANCE
Insuring a very low failure rate requires maximum
performance in all areas effecting device reliability: Device deSign, manufacturing processes, quality control,
and reliability testing. Motorola's basic reliability concept is based on the belief that reference diode reliability
is a complex yet controllable function of all these variables.
Under this ''total reliability" concept, Motorola can
mass-produce high-reliability reference diodes.
The reliability of a reference diode fundamentally depends upon the device deSign, regardless of the degree
of effort put into device screening and circuit designing.
Therefore, reliability measures must be incorporated at
the device design and process development stages to
establish a firm foundation for a comprehensive reliability program. The design is then evaluated by thorough
reliability testing, and the results are supplied to the
Design Engineering department. This closed-loop feedback procedure provides valuable information necessary to improve important design features such as electrical instability due to surface effects, mechanical
strength, and uniformly low thermal resistance between
the die and ambient environment.
Process Control
There are more than 2000 variables that must be kept
under control to fabricate a reliable reference diode. The
in-process quality control group controls most of these
variables. It places a strict controls on all aspects of
manufacturing from materials procurement to the finished product. Included in this broad spectrum of controls are:
• Materials Control. All materials purchased or fabricated in-plant are checked against rigid specifications.
A quality check on vendors' products is kept up to date
to insure that only materials of a proven quality level will
be purchased .
• In-Process Inspection and Control. Numerous
on-line inspection stations maintain a statistical process
control program on specific manufacturing processes.
If any of these processes are found to be out of control,
the discrepant material is diverted from the normal pro- •
duction flow and the cognizant design engineer notified.
Corrective action is initiated to remedy the cause of the
discrepancy.
Reliability Testing
The Reliability Engineering group evaluates all new
products and gives final conclusions and recommendations to the device design engineer. The Reliability Engineering group also performs independent testing of all
products and includes, as part of this testing program,
step-stress-to-failure testing to determine the maximum
capabilities of the product.
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-7-5
I
TRANSIENT VOLTAGE SUPPRESSORS AND ZENER DIODES
7-7-6
•
II
•II
Index of
Part Numbers
Cross Reference
Guide
Preferred
Part Numbers Guide
Selector Guides
and Data Sheets
II
II
Technical
Information
II
Application Notes
and Articles
•
Packaging
Information
1PHX281!J9B.,1 PRINTED IN USA 11192 GTE SUPPUER #14218 #20.000 ZENERS VAACAA
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No XMP Toolkit : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19 Create Date : 2017:06:19 16:14:21-08:00 Modify Date : 2017:06:19 16:31:45-07:00 Metadata Date : 2017:06:19 16:31:45-07:00 Producer : Adobe Acrobat 9.0 Paper Capture Plug-in Format : application/pdf Document ID : uuid:f48e5d6a-6000-e541-a3be-27be087412bf Instance ID : uuid:96578a29-0a31-3f43-a800-487231f1f9d4 Page Layout : SinglePage Page Mode : UseNone Page Count : 454EXIF Metadata provided by EXIF.tools