1991_TI_MOS_Memory_Data_Book 1991 TI MOS Memory Data Book

User Manual: 1991_TI_MOS_Memory_Data_Book

Open the PDF directly: View PDF PDF.
Page Count: 1027

Download1991_TI_MOS_Memory_Data_Book 1991 TI MOS Memory Data Book
Open PDF In BrowserView PDF
•

TEXAS

INSTRUMENTS

MOSMemory
Commercial and Military Specifications

1991

MOSMemory
DafaBook

Commercial and Military
Specifications

'TEXAS
INSTRUMENTS

IMPORTANT NOTICE
Texas Instruments (TI) reserves the right to make changes to or to discontinue any
semiconductor product or service identified in this publication without notice. TI
advises its customers to obtain the latest version of the relevant information to
verify, before placing orders, that the information being relied upon is current.
TI warrants performance of its semiconductor products to current specifications
in accordance with TI's standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty.
Unless mandated by government requirements, specific testing of all parameters
of each device is not necessarily performed.
TI assumes no liability for TI applications assistance, customer product design,
software performance, or infringement of patents or services described herein.
Nor does TI warrant or represent that license, either express or implied, is granted
under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which
such semiconductor products or services might be or are used.
Texas Instruments products are not intended for use in life-support appliances,
devices, or systems. Use of a TI product in such applications without the written
consent of the appropriate TI officer is prohibited.

Copyright © 1991, Texas Instruments Incorporated

INTRODUCTION
The 1991 MOS Memory Data Book from Texas Instruments includes complete detailed
specifications on the expanding MOS Memory product line including Dynamic Random-Access
Memories (DRAMs), Single-In-Line Package DRAM Memory Modules (SIPs), Erasable
Programmable Read-Only Memories (EPROMs), One-Time Programmable Read-Only
Memories (OTP PROMs), Electrically Erasable Programmable Read-Only Memories (Flash
EEPROMs), and Application Specific Memories (ASMs). Also included are military specifications
for DRAMs, EPROMs, and ASMs, as well as specifications for the Datapath VLSI Memory
Management products.
The data book is divided into 14 chapters. Below you will find a brief description of each chapter.
Chapter 1. General Information - Includes an alphanumeric index for quickly finding device
numbers, a part number guide with ordering information, and an Ie Line-up chart for a quick
overview.
Chapter 2. Selection Guide - An easy-to-use reference guide that includes specific device
information. Page numbers are also shown for easy access to the detailed specifications.
Chapter 3. Alternate Source Directory - Lists alternate vendor part numbering examples in
addition to alternate sources for TI devices (based on published data).
Chapter 4. GlossaryfTiming Conventions/Data Sheet Structure - Defines terms and standards
used throughout the data book.
Chapters 5 - 10. Product specifications for over 100 devices can be found in these sections.
Chapter 11. Logic Symbols -Includes an explanation and examples of the IEEE standard.
Chapter 12. Quality and Reliability - Details selected processes and the philosophies of Texas
Instruments that are used to ensure high quality standards.
Chapter 13. Electrostatic Discharge Guidelines - Because all MOS Memory devices are ESDsensitive, handling guidelines are included.
Chapter 14. Mechanical Data - Detailed package drawings and specifications are shown in this
section.

Additional and/or updated information on these products is available from:
Texas Instruments
Customer Response Center
P.O. Box 809066
Dallas, Texas 75380-9066
1-800-232-3200
For ordering information or further assistance please contact your nearest Texas Instruments
Sales Office or Distributor as listed in the back of this book.

Table of Contents
CHAPTER 1.

GENERAL INFORMATION

Alphanumeric Index .......................................................... 1-1
Ordering.lnformation ......................................................... 1-2
DR~MNRAM/FMEM ..................................................... 1-2
DRAM Module ........................................................... 1-4
EPROM/OTP PROM/Flash EEPROM ...................................... 1-6
MOS Memory IC Line-up ..................................................... 1-7
Military IC Line-up ........................................................... 1-8

CHAPTER 2.

SELECTION GUIDE

DRAM .. ; .................................................................. 2-1
DRAM Module .............................................................. 2-4
EPROM/FLASH EEPROM .................................................... 2-6
OTP PROM ................................................................. 2-9
Application Specific Memories ................................................ 2-11

CHAPTER 3.

ALTERNATE SOURCE DIRECTORY

DRAM ...................................................................... 3-1
DRAM Module .............................................................. 3-4
EPROM/FLASH EEPROM/OTP PROM ........................................ 3-7
Application Specific Memories ................................................ 3-11

CHAPTER 4.

GLOSSARY/TIMING CONVENTIONS/DATA SHEET STRUCTURE

General Concept and Type of Memories ........................................ 4-1
Operating Conditions and Characteristics ....................................... 4-5
Timing Diagrams Conventions ................................................ 4-10
Basic Data Sheet Structure .................................................. 4-10

CHAPTER 5.
TMS44C256
TMS4C1024
TMS4C1025
TMS4C1027
TMS48C128
TMS48C138
TMS44100
TMS44101
TMS44400
TMS44410

DYNAMIC RAMS
1 048 576-bit
1 048 576-bit
1 048 576-bit
1 048 576-bit
1 048 576-bit
1 048 576-bit
4 194 304-bit
4 194 304-bit
4 194 304-bit
4 194 304-bit

(256K x 4) Enhanced Page Mode .......... 5-1
(1 024K x'1) Enhanced Page Mode ........ 5-23
(1 024K x 1) Nibble Mode ................ 5-23
(1 024K x 1) Static Column Decode Mode .. 5-23
(128K x 8) Enhanced Page Mode ......... 5-63
(128K x 8) Write-Per-Bit Operation ........ 5-63
(4096K x 1) Enhanced Page Mode ........ 5-87
(4096K x 1) Nibble Mode ............... 5-107
(1 024K x 4) Enhanced Page Mode ....... 5-125
(1 024K x 4) Write-Per-Bit Operation ...... 5-145

TMS416100
TMS416400
CHAPTER 6.

16 777 216-bit
16 777 216-bit

(16 384K x 1) Enhanced Page Mode ..... 5-165
(4096K x 4) Enhanced Page Mode ....... 5-187

DYNAMIC RAM MODULES

TM256GU9C
2359 296-bit
(256K x 9) Single-Sided .................. 6-1
TM024GAD8
8 388 608-bit
(1 024K x 8) Single-Sided ................. 6-7
TM124GU8A
8 388 608-bit
(1 024K x 8) Single-Sided ........... -. . . .. 6-13
TM256BBK32
8 388 608-bit
(256K x 32) Single-Sided ................ 6-21
TM024EAD9
9 437 184-bit
(1 024K x 9) Single-Sided ................ 6-31
TM124EAD9B
9 437 184-bit
(1 024K x 9) Single-Sided ................ 6-37
TM 124EAD9C
9 437 184-bit .
(1 024K x 9) Single-Sided ................ 6-37
TM256KBK36B
9 437 184-bit
(256K x 36) Single-Sided ................ 6-45
TM256KBK36C
9 437 184-bit
(256K x 36) Single-Sided ................ 6-55
TM512CBK32
16 777 216-bit
(512K x 32) Double-Sided ............... 6-21
TM512LBK36B 18874 368-bit
(512K x 36) Double-Sided ............... 6-45
TM512LBK36C 18 874 368-bit
(512K x 36) Double-Sided .. ' ............. 6-55
TM4100GBD8
33 554 432-bit
(4096K x 8) Single-Sided ................ 6-65
TM124BBK32
33554 432-bit
(1 024K x 32) Single-Sided ............... 6-73
TM4100EBD9
37748 736-bit
(4096K x 9) Single-Sided ................ 6-81
TM124MBK36A 37 748 736-bit
(1 024K x 36) Double-Sided .............. 6-89
TM124MBK36B 37748 736-bit
(1024K x 36) Single-Sided ............... 6-97
Memory Card Overview .................................................... 6-105
CHAPTER 7.

EPROM/OTP PROM/FLASH EEPROM

(16K x 8) CMOS EPROM ................. 7-1
131 072-bit
TMS27C128
131 072-bit
(16K x 8) CMOS OTP PROM ............. 7-1
TMS27PC128
TMS27C256
262144-bit
(32K x 8) CMOS EPROM ................ 7-15
TMS27PC256
262144-bit
(32K x 8) CMOS OTP PROM ............ 7-15
TMS29F256
262144-bit
(32K x 8) 5-V Flash EEPROM ............ 7-27
(32K x 8) 5-V Flash EEPROM ............ 7-27
TMS29F258
262144-bit
TMS29F259
262 144-bit
(32K x 8) 5-V Flash EEPROM ............ 7-27
TMS29F259 Package Addendum ............................................. 7-45
TMS87C257
262 144-bit
(32K x 8) CMOS Latched EPROM ....... . 7-47
(64K x 8) CMOS EPROM ............... . 7-57
TMS27C510
524 288-bit
(64K x 8) CMOS OTP PROM ........... . 7-57
TMS27PC510
524 288-bit
- TMS27C512
524 288-bit
(64K x 8) CMOS EPROM ............... . 7-69
(64K x 8) CMOS OTP PROM ...........,. 7-69
TMS27PC512
524288-bit
TMS29F512
524 288-bit
(64K x 8) 5-V Flash EEPROM ........... . 7-81
TMS29F512 Package Addendum
7-83
TMS27C010A
1 048 576-bit
(128K x 8) CMOS EPROM ............... 7-85
TMS27PC010A
1 048 576-bit
(128K x 8) CMOS OTP PROM ... '. . . . . . .. 7-85
TMS29F010
1 048 576-bit
(128K x 8) 5-V Flash EEPROM ........... 7-95
TMS29F010 Package Addendum ............................................ 7-117
TMS27C210A
1 048576-bit
(64K x 16) CMOS EPROM .............. 7-119

TMS27PC210A
TMS27C020
TMS27C040
TMS27PC040
TMS27C240
TMS27PC240

CHAPTER 8.

(64K x 16) CMOS OTP PROM ..........
(256K x 8) CMOS EPROM ..............
(512K x 8} CMOS EPROM ..............
(512K x 8) CMOS EPROM ..............
(256K x 16) CMOS EPROM
(256K x 16) CMOS OTP PROM
•••••••••

••

I

I

••

••••••

7-119
7-129
7-139
7-139
7-149
7-149

APPLICATION SPECIFIC MEMORIES

TMS29F816
TMS44C250
TMS44C251
TMS44C260
TMS48C121
TMS4C1050
TMS4C1060
TMS4C1070
TMS44460

CHAPTER 9.

1 048 576-bit
2 097 152-bit
4 194 304-bit
4 194 304-bit
4 194 304-bit
4 194 304-bit

16384-bit
1 048 576-bit
1 048 576-bit
1 048 576-bit
1 048 576-bit
1 048 576-bit
1 048 576-bit
1 048 576-bit
4 197 304-bit

(2K x 8) SCOPE Diary .................. 8-1
(256K x 4) Multipart Video RAM ........... 8-3
(256K x 4) Mulitport Video RAM .......... 8-31
(256K x 4) Parity DRAM ................. 8-73
(128K x 8) Multipart Video RAM .......... 8-91
(256K x 4) Field Memory ............... 8-125
(256K x 4) Field Memory ............... 8-125
(256K x 4) Field Memory ............... 8-141
(1024K x 4) Parity DRAM ............... 8-155
T

'"

MILITARY PRODUCTS

Military Introduction .......................................................... 9-1
DYNAMIC RAMS

. SMJ44C256
SMJ4C1024
SMJ44100
SMJ44400

1 048 576-bit
1 048 576-bit
4 197 304-bit
4 197 304-bit

(256K x 4) Enhanced Page Mode .......... 9-3
(1 024K x 1) Enhanced Page Mode ........ 9-23
(4096K x 1) Enhanced Page Mode ........ 9-41
(1 024K x 4) Enhanced Page Mode ........ 9-61

131 072-bit
262144-bit
524288-bit
1 048 576-bit
1 048 576-bit

(16K x 8) CMOS EPROM ................ 9-81
(32K x 8) CMOS EPROM ................ 9-91
(64K x 8) CMOS EPROM ............... 9-101
(128K x 8) CMOS EPROM .............. 9-113
(64K x 16) CMOS EPROM .............. 9-115

EPROMS

SMJ27C128
SMJ27C256
SMJ27C512
SMJ27C010
SMJ27C210

APPLICATION SPECIFIC MEMORIES

SMJ44C250
SMJ44C251
SMJ44C251A

CHAPTER 10.

1 048 576-bit
1 048 576-bit
1 048 576-bit

(256K x 4) Multipart Video RAM
(256K x 4) Multipart Video RAM
(256K x 4) Mulitport Video RAM

9-117
9-147
9-149

DATAPATH VLSI PRODUCTS

CACHE ADDRESS COMPARATORS/DATA RAMS

SN74ACT2140A
SN74ACT2150A
TMS2150A
SN74ACT2151
SN74ACT2153

4K x 18/8K x 18
512 x 8
512 x 8
1K x 11
1K x 11

10-1
10-3
10-5
10-7
10-7
iii

SN74ACT2152A
SN74ACT2154A
SN74ACT2155
SN74ACT2156
SN74ACT2157
SN74ACT2158
SN74ACT2159
SN74ACT2160
SN74ACT2163
SN74ACT2164
SN74BCT2160
SN74BCT2141
SN74BCT2163
SN74BCT2164
SN74BCT2166
SN74BCT2165

2K x 8
2Kx 8
2K x 8
16K x 4
2K x 16
8K x 9
8K x 9
8K x 4
16K x 5
16K x 5
8K x 4
8K x 18
16K x 5
16Kx5
16Kx5
8K x 4

· ....................................... 10-9
· ...................................... 10-9
· . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10-11
10-13
10-15
10-17
10-17
10-19
..................................... . 10-21
..................................... . 10-21
..................................... . 10-23
..................................... . 10-25
..................................... . 10-27
..................................... . 10-27
..................................... . 10-27
..................................... . 10-:29

DYNAMIC MEMORY SUPPORT PRODUCTS

TMS4500A
THCT4502B
SN7 4ACT4503
SN74ALS6300
SN74ALS6310A
SN74ALS6311A
SN74BCT2423A
SN74BCT2424A
SN74LS610
SN74LS612

Dynamic RAM Controller ............................. .
Dynamic RAM Controller ............................. .
Dynamic RAM Controller ............................. .
Input-Selectable Refresh Timer ....................... .
Static Column and Page Mode Access Detector ...... , .. .
Static Column and Page Mode Access Detector ......... .
16-bit Latched Multiplexer/Demultiplexer Bus Transceiver .
16-bit Latched Multiplexer/Demultiplexer Bus Transceiver .
Memory Mapper .................................... .
Memory Mapper .................................... .

10-31
10-33
10-35
10-37
10-39
10-39
10-41
10-41
10-43
10-43

ERROR DETECTION AND CORRECTION (EDAC) PRODUCTS

SN74ALS632B
SN74AS632
SN74AS632A
SN74AS6364
CHAPTER 11.

32-bit
32-bit
32-bit
64-bit

Parallel Circuit ..................................
Parallel Circuit .................................
Flow-Thru Circuit .... "...........................
Flow-Thru Circuit ...............................

10-45
10-45
10-47
10-49

LOGIC SYMBOLS

Explanation of IEEE/l EC Logic Symbols for Memories ........................... 11-1
CHAPTER 12.

QUALITY AND RELIABILITY

MOS Memory Products Division Quality and Reliability Information ................ 12-1
CHAPTER 13.

ELECTROSTATIC DISCHARGE GUIDELINES

Guidelines for Handling Electrostatic-Discharge Devices and Assemblies .......... 13-1
CHAPTER 14.

MECHANICAL DATA

MOS Memory Products MOS Memory Products iv

Commercial ......................................... 14-1
Military ........................................... 14-21

General Information

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _G_e_n_e_ra_I_I_n_fo_r_m_a_ti_o_n___----'

General Information

Alphanumeric Index
SMJ27C010 ............ 9-113
SMJ27C128 ............ 9-81
SMJ27C210 ............ 9-115
SMJ27C256 ............ 9-91
SMJ27C512 ............ 9-101
SMJ44100 ............. 9-41
SMJ44400 ............. 9-61
SMJ44C250 ............ 9-117
SMJ44C251 ............ 9-147
SMJ44C251A ........... 9-149
SMJ44C256 ............ 9-3
SMJ4C1024 ............ 9-23
SN74ACT2140A ........ 10-1
SN74ACT2150A ........ 10-3
SN74ACT2151 ......... 10-7
SN74ACT2152A ........ 10-9
SN74ACT2153 ......... 10-7
SN74ACT2154A ........ 10-9
SN74ACT2155 · ........ 10-11
SN74ACT2156 · ........ 10-13
SN74ACT2157 · ........ 10-15
SN74ACT2158 · ........ 10-17
SN74ACT2159 · ........ 10-17
SN74ACT2160 · ........ 10-19
SN74ACT2163 ......... 10-21
SN74ACT2164 ......... 10-21
SN74ACT4503 ......... 10-35
SN74ALS6300 .......... 10-37
SN7 4ALS631 OA ........ 10-39
SN74ALS6311A ........ 10-39
SN74ALS632B ......... 10-45
SN74AS6364 ..... , ..... 10-49
SN74AS632 ............ 10-45
SN74AS632A ........... 10-47
SN74BCT2141 ......... 10-25
SN74BCT2160 ......... 10-23

SN74BCT2163 ......... 10-27
SN74BCT2164 ......... 10-27
SN74BCT2165 ......... 10-29
SN74BCT2166 ......... 10-27
SN74BCT2423A ........ 10-41
SN74BCT2424A ........ 10-41
SN74LS610 ............ 10-43
SN74LS612 ............ 10-43
THCT 4502B ............ 10-33
TM024EAD9 ........... 6-31
TM024GAD8 ........... 6-7
TM124BBK32 .......... 6-73
TM124EAD9B .......... 6-37
TM 124EAD9C .......... 6-37
TM124GU8A ........... 6-13
TM124MBK36A ......... 6-89
TM124MBK36B ......... 6-97
TM256BBK32 .......... 6-21
TM256GU9C ........... 6-1
TM256KBK36B ......... 6-45
TM256KBK36C ......... 6-55
TM4100EBD9 .......... 6-81
TM4100GBD8 .......... 6-65
TM512CBK32 .......... 6-21
TM512LBK36B ......... 6-45
TM512LBK36C ......... 6-55
TMS2150A ............. 10-5
TMS27C010A .......... 7-85
TMS27C020 ............ 7-129
TMS27C040 ., .......... 7-139
TMS27C128 ............ 7-1
TMS27C210A .......... 7-119
TMS27C240 ............ 7-149
TMS27C256 ............ 7-15
TMS27C510 ............ 7-57
TMS27C512 ............ 7-69

TMS27PC010A . . . . ..
TMS27PC040 .......
TMS27PC128 .......
TMS27PC210A ......
TMS27PC240 .......
TMS27PC256 .......
TMS27PC510 .......
TMS27PC512 .......
TMS29F010 .........
TMS29F256 .........
TMS29F258 .........
TMS29F259 . . . . . . . ..
TMS29F512 .........
TMS29F816 .........
TMS416100 .........
TMS416400 .........
TMS44100 ..........
TMS44101 ..........
TMS44400 ..........
TMS44410 ..........
TMS44460 ..........
TMS44C250 . . . . . . . ..
TMS44C251 .........
TMS44C256 . . . . . . . ..
TMS44C260 .........
TMS4500A ..........
TMS48C121 .........
TMS48C128 .........
TMS48C138 . . . . . . . ..
TMS4C1024 .........
TMS4C1025 .........
TMS4C1027 .........
TMS4C1050 .........
TMS4C1060 .........
TMS4C1070 .........
TMS87C257 .........

7-85
7-139
7-1
7-119
7-149
7-15
7-57
7-69
7-95
7-27
7-27
7-27
7-81
8-1
5-165
5-187
5-87
5-107
5-125
5-145
8-155
8-3
8-31
5-1
8-73
10-31
8-91
5-63
5-63
5-23
5-23
5-23
8-125
8-125
8-141
7-47

TEXAS ~

INSlRUMENlS
POST OFFICE BOX 1443

•

HOUSTON. TEXAS 77001

1-1

General Information

DRAMNRAM/FMEM Ordering Information
Factory orders for 1 Meg DRAMs, VRAMs, and FMEMs described in this book should include an eight-part type
number as explained in the following example:
TMS
4
I
1. Prefix:
TMS
Commerical MOS
Military MOS
SMJ
2. Product Family: _ _ _ _ _ _ _ _ _ _ _ _ _ _..J
4

4

C

256

-10

DJ

DRAMNRAM/FMEM

3. Word Width:
1
Blank
Blank
4

xl
x 1 (256K and 1 Meg x 1 DRAM only)
x 4 (1 Meg FMEM only)
x4
x8
8
4. Technology: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _-1

Blank

C

NMOS
CMOS

---------------------------1

5. Density:
121
1 Meg Parity DRAM (,44C260)
1 Meg VRAM (,48C121)
260
1 Meg DRAM (,4Cl024)
128
1 Meg DRAM ('48C128)
1024
138
1 Meg DRAM (,48C138)
1 Meg DRAM ('4Cl025)
1025
1 Meg DRAM (,4Cl027)
1027
250
1 Meg VRAM (,44C250)
1 Meg FMEM (,4Cl050)
251
1 Meg VRAM (,44C251)
1050
1 Meg FMEM (,4Cl060)
251A 1 Meg VRAM (' 44C251 A)
1060
256
1 Meg DRAM ('44C256)
1 Meg FMEM ('4Cl070)
1070
6. Speed Designator: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _----J
DRAMsNRAMs
- 60
60 ns
-70
70 ns
- 80
80 ns
-10
100 ns
- 12
120 ns
- 15
150 ns
- 20
200 ns

FMEMs
- 30
25 ns
- 40
30 ns
- 60
50 ns

7. Package: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - '
Commercial (Plastic)
Military (Ceramic)
FQ
OJ
Small-Outline J-Lead (SOJ)
Small-Outline Leadless Chip Carrier (SOLCC)
FV
Leadless Chip Carrier (CLCC)
ON
Thin Small-Outline J-Lead (ThinSOJ)
HJ
DZ
Small-Outline J-Lead (SOJ)
Small-Outline J-Lead (SOJ)
. HK
Flatpack
SO
Zig-Zag In-Line (ZIP)
N
Dual-In-Line (DIP)
JD
Dual-In-Line (DIP)
8. Temperature Range: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _....J
Commerical
L
DoC to 70°C
Blank DOC to 70°C

Military
M

TEXAS

- 55°C to 125°C

l!1

INSlRUMENTS
1-2

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

General Information

DRAM Ordering Information
Factory orders for the 4 Meg and 16 Meg DRAMs described in this book should include an eight-part type number
as explained in the following example:
TMS
4
I
1. Prefix:
Commerical MOS
TMS
Military MOS
SMJ
2. Product Family: _ _ _ _ _ _ _ _ _ _ _ _ _ _....

4
3. Density: -

4

00

-80

OM

DRAM
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _....

4

4 Meg
16 Meg

16

4. Word Width:
x1
4
x4
5. Mode of Operation: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _--'
00
01
10
60

Enhanced Page Mode
Nibble Mode
Write-Per-Bit Operation
Parity

6. Speed Designator:
60 ns
- 60
- 70
70 ns
- 80
80 ns
-10
100 ns
-12
120 ns
- 15
150 ns
7. Package:
Commercial (Plastic)
OJ
Small-Outline J-lead (SOJ)
OM
Small-Outline J-lead (SOJ)
ON
Thin Small-Outline J-lead (ThinS OJ)
DZ
Small-Outline J-lead (SOJ)
SO
Zig-Zag In-Line (ZIP)

Military
HM
HJ
HR
JD

(Ceramic)
Small-Outline leadless Chip Carrier (SOlCC)
Small-Outline J-lead (SOJ)
Flatpack
Side-Brazed Dual-In-Line

--------------------------------1

8. Temperature Range:
Commercial
Blank O°C to 70°C

Military
M - 55°C to 125°C

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 1443

•

HOUSTON. TEXAS 77001

1-3

General Information

Standard DRAM Module Ordering Information
Factory orders for the standard DRAM Modules described in this book should include a seven-part type number as
explained in the following example:

TM
I

AD

. TEXAS -1.!1

INSTRUMENTS
1-4

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

9

-10

General Information

Differentiated DRAM Module Ordering Information
Factory orders for the mixed DRAM Modules described in this book should include an eight-part type number as
explained in the following example:
TM
1. Prefix: _ _ _ _ _ _ _ _ _ _ _ _ _......1
TM
2. Density:
256
512
124

256

K

BK

36

A

-10

Commerical TI MOS Module
256K
512K
1 Meg

3. Pinout Configuration: - - - - - - - - - - - - - - - - - '

B

K

C

L

E

M

G
4. Board Dimensions: _ _ _-'-_ _ _ _ _ _ _ _ _ _ _ _ _ _-...J
U
AD
BK

5. Word Width Output:
8
x8
9
x9
32
x 32
36
x 36
6. Devices Used:
Blank 8 - '44C256s ('256BBK32)
Blank 16 - '44C256s (,512CBK32)
Blank 8 - '44400s ('124BBK32)
A
2 - '44C256s ('124GU8A)
A
8 - '44400s + 4 - '4C1024s ('124MBK36A)
B
2 - '44400s + 1 - '4C1024 (,124EAD9B)
B
8 - '44C256s + 1 - '44C260 (,256KBK36B)
B
16 - '44C256s + 2 - '44C260s ('512LBK36B)
B
8 - '44400s + 1 - '44460 ('124MBK36B)
C
2 - '44C256s + 1 - '4C1024 ('256GU9C)
C
2 - '44400s + 1 - '44100 ('124EAD9C)
C
8 - '44C256s + 2 - '44C260s (,256KBK36C)
C
16 - '44C256s + 4 - '44C260s ('512LBK36C)
7. Speed Designator: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _--1
-6
-7
-8
- 100

60 ns
70 ns
80 ns
100 ns

- 60
-70
- 80
-10

60 ns
70 ns
80 ns
100 ns

8. Temperature Range:
Blank O°C to 70°C

TEXAS •
INSTRUMENTS
POST OFFICE BOX 1443

•

HOUSTON. TEXAS 77001

1-5

General Information

EPROM/OTP PROM/Flash EEPROM Ordering Information
Factory orders for EPROMs, OTPs, and Flash EEPROMs described in this book should include a nine-part type
number as explained in the following example:
TMS
1. Prefix: _ _ _ _ _ _ _ _ _ _ _ _ _--'1
TMS
SMJ

27

P

C

512

-10

FM

L

Commerical MOS
Military MOS

---------------1

2. Product Family:
27
EPROM/OTP
29
Flash EEPROM
87
Latched EPROM

3. Erasability: - - - - - - - - - - - - - - - - - -....
P
Non-erasable
Blank
Erasable
4. Technology: - - - - - - - - - - - - - - - - - - - - '
C
CMOS
F
CMOS Flash EEPROM
5. Density: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _--'

-1, -17, -170
80 ns
- 8, - 80
170 ns
100 ns
-10, -100
200 ns
- 2, - 20, - 200
Blank, - 20, - 200
120 ns
-12, - 120
250 ns
150 ns
- 1, - 15, - 150
300 ns
- 30, - 300
7. Package: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
OTPs (Plastic)
N
Dual-In-Line (DIP)
FM Chip Carrier

Flash EEPROMs
Ceramic Dual-In-Line (DIP)
N
Plastic Dual-In-Line (DIP)
FM Plastic Chip Carrier
8. Temperature Range: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _--'
Commerical
L
O°C to 70°C
E
- 40°C to 85°C
Q
- 40°C to '125°C
9. 168 Hour Burn-in Option:
Commerical
4
168 Hour Burn-in
Blank No Burn-in

EPROMs (Ceramic)
Dual-In-Line (DIP)

~

512
816
16K
512K
128
128K
010A 1 Meg
210A 1 Meg
256
256K
020
257
256K
2 Meg
040
258
256K
4 Meg
240
259
256K
4 Meg
512K
510
6. Speed Designator: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _.....J

J

J

Military
M

- 55°C to 125°C

Military
Blank

5004 Processing

TEXAS

lJ1

INSTRUMENTS
1-6

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

4

General Information

MOS Memory

Ie Line-up

DRAMs- CMOS

1024Kl1024K x 1 TMS4C1024 -TMS4C1025- TMS4C1027
256K x 4 1 TMS44C250 - TMS44C251 - TMSS44C256 - TMS44C260
(VRAM)
(VRAM)
(Parity)
TMS4C1 050- TMS4C1 060 . (Frame)
(Frame)
128K x 8 4096K

CMOS

256K

Modules
512K

TMS44100 4096K x 1 1024Kx 4 - TMS44400 -

1
L

TMS48C121t-TMS48C128t- TMS48C138t
(VRAM)

L

16 385K 1..:6 385K x 1 1024Kx4 DRAM -

TMS4C1070t
(Frame)

TMS44101
TMS44410 -

TMS44460t

TMS416100t
TMS416400t

TMS256GU9C
256K " 9 256K x 3 2 - TM256BBK32
256Kx 3 6 - TM256KBK36B

TM256KBK36C

512K x 3 2 - TM512BBK32
512Kx36- TM512LBK36B

TM512LBK36C

'024K1'024K"8 -

TM024GAD8- TM124GU8A

1024Kx9- TM024EAD9 - TM 124EAD9B -TM 124EAD9C
1024Kx 3 2 - TM124CBK32
1024Kx 3 6 - TM124MBK36A
4096K

EPROMs -

CMOS

1

TM124MBK36B

4096Kx 8 - TM4100GBD8
4096Kx 9 - TM4100EBD9

128K-- 16Kx8_ TMS27C128
TMS27C256 - TMS87C257

256K - - 32Kx8 -

(Latched)
512K - - 64Kx8 1024K

L

2048K _
4096K

T

128K x 8 - TMS27C010A
64Kx 1 6 - TMS27C210A
256K x 8 TMS27C020t
512K x 8 - TMS27C040t
256Kx 1 6 - TMS27C240t

OTP - - CMOS1'28K - - 16K x 8 PROMs
256K - - 32K x 8 512K - - 64K x 8 -

T
4096K T
1024K

Flash - - CMOS
EEPROM

TMS27PC510t

TMS27PC512

512K x 8 - TMS27PC040t
256Kx 1 6 - TMS27PC240t

256K _ _ 32K x 8 _
512K _ _ 64Kx8 _

1024K _

TMS27PC128
TMS27PC256

128K x 8 - TMS27PC010A
64Kx 1 6 - TMS27PC210A

16K _ _ 2K x 8 -

1

TMS27C51 ot - TMS27C512

128K x 8 _

TMS29F816
(JTAG)
TMS29F256 - TMS29F258 TMS29F512t

TMS29F259

TMS29F010t

t Product under development by TI

TEXAS •

INSTRUMENTS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

1-7

General Information

MOS Memory Military

Ie Line-up

DRAMs- CMOS 11024K T

1024Kx 1 256K x 1 -'-

SMJ4C1024 ,
SMJ44C256- SMJ44C250 t -SMJ44C251At- SMJ44C251t

4096K x 1 1024K x 4 -

SMJ44100t
SMJ44400t

128K 256K -

16K x 8 32K x 8 -

SMJ27C128
SMJ27C256

512K -

64K x 8 -

SMJ27C512

L

(VRAM)
4096K T

L

[
EPROMs -

CMOS -

1024K - , - 128K x 8 -

SMJ27C010 t

L 64K x 16 -

SMJ27C210t

.

t Product under development by TI

TEXAS

l!1

INSTRUMENTS
1-8

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

(VRAM)

(VRAM)

Selection Guide

Selection Guide

Selection Guide

DRAM
Density
1024K

Power
Supply
(V)

Max Power
Dissipation

Device
Number

1024Kx1

TMS4C1024-60*
TMS4C1024-70*
TMS4C1024-80
TMS4C 1024-10
TMS4C1024-12

100
120

SMJ4C1024-10
SMJ4C1024-12
SMJ4C1024-15
TMS4C1025-80
TMS4C1 025-1 0
TMS4C1025-12

100

413
358

120

303

TMS4C1027-80
TMS4C1027-10
TMS4C1027-12

80
100
120

5± 10%

TMS44C256-60*
TMS44C256-70*
TMS44C256-80
TMS44C256-10
TMS44C256-12

60
70
80
100
120

SMJ44C256-10
SMJ44C256-12
SMJ44C256-15

256K x 4

128K x 8

4096K

Max
Access
Time (ns)

Organization
(Words x Bits)

4096K x 1

Package t

Comments

Page

18,
20/26,
20/26,20

N,
OJ
ON, SO

CMOS
Enhanced
Page ~ode

5-23

20/26,

HJ,
FO,HK

Military
CMOS
Enhanced
Page Mode

9-23

20,20

11

18,
20/26,
20/26,20

N,
OJ
ON, SO

CMOS
Nibble
Mode

5-23

413
358
303

11

18,
20/26,
20/26,20

N,
OJ
ON, SO

CMOS
Static
Mode

5-23

5± 10%

523
440
413
358
303

11

20,
20/26,
20/26,20

N,
OJ
ON, SO

CMOS
Enhanced
Page Mode

5-1

100
120
150

5 ± 10%

385
330
303

17

20,
20/26,20

JO,
HJ, FO

Military
CMOS
Enhanced
Page Mode

9-3

TMS48C128-70
TMS48C128-80
TMS48C128-10

70
80
100

5:!: 10%

468
440
385

11

24/26

OJ

CMOS
Enhanced
Page Mode

5-63

TMS48C138-70
TMS48C138-80
TMS48C 138-10

70
80
100

5± 10%

468
440
385

11

24/26

OJ

CMOS
Enhanced
Page Mode
Write·perBit Operation

5-63

TMS441 00-60
TMS441 00-70
TMS44100-80
TMS441 00-1 0

60
70
80

5 ± 10%

550

11

20/26,
OJ,
20/26,20 OM, SO

CMOS
Enhanced
Page Mode

5-87

100

SMJ44100-80§
SMJ441 00-1 O§
SMJ44100-12§

80
100
120

5 ± 10%

468
440
385

22

18,20,
20,20

Military
CMOS
Enhanced
Page Mode

9-41

TMS44101-60
TMS44101-70
TMS44101-80
TMS44101-10

60
70
80

5 ± 10%

523
468
413
358

11

20/26,
OJ,
20/26,20 OM, SO

CMOS
Nibble
Mode

5-107

Active
(mW)

Standby
(mW)

Pins

5 ± 10%

253
440
413
358

11

100
120
150

5± 10%

385

17

80

5± 10%

60
70
80

303
330
303

495
440
385

100

JO, HM
HJ, HR

N
Plaastic Dual In-Line Package (DIP)
OJ
Plastic Small-Outline J-Lead (SOJ)
ON
Plastic Thin Small-Outline J-lead (ThinSoJ)
OM
Plastic Small-Outline J-lead (SOJ)
FO
Ceramic Small-Outline leadless Chip Carrier (Military) (SOlCC)
HJ
Ceramic Small-Outline leadless J-lead (Military) (SOlCC)
HK
Flatpack (Military)
HM
Plastic Small-Outline leadless Chip Carrier (Military) (SOlCC)
HR
Flatpack (Military)
JO
Ceramic Side-Brazed Dual In-Line Package (Military) (DIP)
SO
Plastic Zig-Zag In-Line Package (ZIP)
Available only in OJ package
Advance Information for product under development by TI

TEXAS •

INSTRUMENTS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

2-1

Selection Guide

DRAM (Concluded)
Density

4096K
(cont'd)

16385K

Max Power
Dissipation

Max
Access
Time (ns)

Power
Supply
(V)

Active
(mW)

Standby
(mW)

TMS44400-60
TMS44400-70
TMS44400-80
TMS44400-10

60
70
80
100

5 ± 10%

550
495
440
385

11

SMJ44400-80l
SMJ44400-10l
SMJ44400-12l

80
100
120

5 ± 10%

468
440
358

TMS4441 0-60
TMS4441 0-70
TMS4441 0-80
TMS44410-10

60
70
80
100

5

10%

16 385K x 1

TMS416100-60l
TMS416100-70l
TMS416100-80l
TMS416100-10l

60
70
80
100

4096K x 4

TMS416400-60l
TMS416400-70l
TMS416400-80l
TMS416400-10l

60
70
80
100

Organization
(Words x Bits)
1024K x 4

Device
Number

Package t Comments

Page

20/26,
20/26,20

OJ,
OM, SO

CMOS
Enhanced
Page Mode

5-125

22

20,20,
20,20

JO, HM
HJ, HR

Military
CMOS
Enhanced
Page Mode

9-61

523
468
413
358

11

20/26,
20/26,20

OJ,
OM,SO

CMOS
Enhanced
Page Mode
Write-perBit Operation

5-145

5 ± 10%

495
440
385
330

11

24/28

OZ

CMOS
Enhanced
Page Mode

5-165

5 ± 10%

495
440
385
330

11

24/28

OZ

CMOS
Enhanced
Page Mode

5-187

±

OJ
Plastic Small-Outline J-lead (SOJ)
OM
Plastic Small-Outline J-lead (SOJ)
OZ
Plastic Small-Outline J-lead (SOJ)
HJ
Ceramic Small-Outline leadless J-lead (Military) (SOlCC)
HM
Plastic Small-Outline leadless Chip Carrier (Military) (SOlCC)
HR
Flatpack (Military)
JO
Ceramic Side-Brazed Oualln-Line Package (Military) (OIP)
SO
Plastic Zig-Zag In-Line Package (ZIP)
Advance Information for product under development by TI

TEXAS

l!1

INSTRUMENlS
2-2

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

Pins

Selection Guide

DRAM Module

Density

Organization
(Words x Bits)

Device
Number

Max
Access
Time (ns)

Max Power
Dissipation

Power
Supply

(V)

Active
(mW)

Standby
(mW)

Pins

Package

Page

2304K

256K x 9

TM256GU9C-6
TM256GU9C-70
TM256GU9C-80
TM256GU9C-10

60
70
80
100

5
5
5
5

± 5%
± 10%
± 10%
± 10%

1496
1320
1238
1073

31
33
33
33

30

Single-Sided,
Socketable

6-1

8192K

1024K x 8

TM024GAD8-6
TM024GAD8-70
TM024GAD8-80
TM024GAD8-10

60
70
80
100

5
5
5
5

± 5%
± 100/;
± 10%
± 10%

3990
3520
3300
2860

84
88
88
88

30

Single-Sided,
Socketable

6-7

TM124GU8A-6
TM124GU8A-70
TM124GU8A-80
TM124GU8A-10

60
70
80
100

5±5%
5 ± 10%
5 ± 10%
5 ± 10%

998
935
825
715

21
22
22
22

30

Single-Sided,
Socketable

6-13

256K x 32

TM256BBK32-6
TM256BBK32-70
TM256BBK32-80
TM256BBK32-10

60
70
80
100

5±5%
5 ± 10%
5 ± 10%
5 ± 10%

3990
3520
3300
2860

84
88
88
88

72

Single-Sided,
Socketable

6-21

1024K x 9

TM024EAD9-6
TM024EAD9-70
TM024EAD9-80
TM024EAD9-10

60
70
80
100

5
5
5
5

±5%
± 10%
± 10%
± 10%

4489
3960
3713
3218

95
99
99
99

30

Single-Sided,
Socketable

6-31

TM 124EAD9B-6
TM 124EAD9B-70
TM124EAD9B-80
TM124EAD9B-10

60
70
80
100

5±5%
5 ± 10%
5 ± 10%
5 ± 10%

1496
1403
1238
1073

32
33
33
33

30

Single-Sided,
Socketable

6-37

TM124EAD9C-6
TM124EAD9C-70
TM 124 EAD9C-80
TM124EAD9C-10

60
70
80
100

5±5%
5 ± 10%
5 ± 10%
5 ± 10%

1496
1403
1238
1073

32
33
33
33

30

Single-Sided,
Socketable

6-37

TM256KBK36B-6
TM256KBK36B-70
TM256KBK36B-80
TM256KBK36B-10

60
70
80
100

5±5%
5 ± 10%
5 ± 10%
5 ± 10%

4489
3960
3713
3218

95
99
99
99

72

Single-Sided,
Socketable

6-45

TM256KBK36C-6.
TM256KBK36C-70
TM256KBK36C-80
TM256KBK36C-10

60
70
80
100

5±5%
5 ± 10%
5 ± 10%
5 ± 10%

4988
4400
4125
3575

105
110
110
110

72

Single-Sided,
Socketable

6-55

9216K

256K x 36

16384K

512Kx32

TM512CBK32-6
TM512CBK32-70
TM512CBK32-80
TM512CBK32-10

60
70
80
100

5±5%
5 ± 10%
5 ± 10%
5 ± 10%

4074
3608
3388
2948

168
176
176
176

72

Double-Sided,
Socketable

6-21

18432K

512Kx36

TM512LBK36B-6
TM512LBK36B-70
TM512LBK36B-80
TM512LBK36B-10

60
70
80
100

5
5
5
5

± 5%
± 10%
± 10%
± 10%

4583
4059
3812
3317

189
198
198
198

72

Double-Sided,
Socketable

6-45

TM512LBK36C-6
TM512LBK36C-70
TM512LBK36C·80
TM512LBK36C-10

60
70
80
100

5±5%
5 ± 10%
5 ± 10%
5 ± 10%

5093
4510
4235
3685

210
220
220
220

72

Double-Sided,
Socketable

6-55

,

TEXAS •

INSTRUMENTS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

2-3

Selection Guide

DRAM Module (Concluded)

DensIty

32768K

36864K

t

OrganIzation
(Words x Bits)

DevIce
Number

Power
Supply

Max
Access
TIme (ns)

M

Max Power
DIssIpation
ActIve
(mW)

Standby
(mW)

Package

Page

4096K x 8

TM4100GBD8-6
TM4100GBD8-70
TM4100GBD8-80
TM4100GBD8-10

60
70
80
100

5±5%
5± 10%
5 ± 10%
5 ± 10%

3990
3740
3300
2860

84
88
88
88

30

Single-Sided,
Socketable

6-65

1024K x 32

TM 124BBK32-6
TM124BBK32-70
TM124BBK32-80·
TM124BBK32-10

60
70
80
100

5±5%
5± 10%
5 ± 10%
5 ± 10%

3990
3740
3300
2860

84
88
88
88

72

Single-Sided,
Socketable

6-73

4096K x 9

TM4100EBD9-6
TM4100EBD9-70
TM4100EBD9-80
TM41 00EBD9-1 0

60
70
80
100

5±5%
5± 10%
5± 10%
5± 10%

4489
4208
3713
3218

95
99
99
99

30

Single-Sided,
Socketable

6-81

1024Kx 36

TM124MBK36A-6t
TM124MBK36A-7t
TM124MBK36A-8t

60
70
80

5±5%
5±5%
5±5%

5985
5250
4725

126
126
126

72

Double-Sided,
Socketable

6-89

TM124MBK36B-6t
TM124MBK36B-7t
TM124MBK36B-8t

60
70
80

5±5%
5±5%
5±5%

4489
4016
3544

95
95
95

72

Single-Sided,
Socketable

6-97

Advance Information for product under development by TI

TEXAS •

. INSlRUMENlS
2-4

PIns

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

Selection Guide

EPROM/Flash EEPROM

Density

128K

256K

Organization
(Words x Bits)

16K x 8

32K x 8

Max Power
Dissipation

Device
Number

Max
Access
Time (ns)

Power
Supply
(V)

TMS27C128-100
TMS27C128-120
TMS27C128-12
TMS27C12-1
TMS27C128-15
TMS27C128-2
TMS27C128-20
TMS27C128
TMS27C128-25

100
120
120
150
150
200
200
250
250

5±5'7'0
5±5'7'0
5 ± 10%
5±5%
5± 10%
5±5'7'0
5 ± 10%
5±5'7'0
5 ± 10%

158
158
165
158
165
158
165
158
165

1.4

28

J

CMOS

7-1

SMJ27C128-12
SMJ27C128-15
SMJ27C128-17
SMJ27C128-20
SMJ27C128-25
SMJ27C128-30

120
150
170
200
250
300

5 ± 10%

220

1.7

28

J

Military
CMOS

9-81

TMS27C256-120
TMS27C256-12
TMS27C256-150
TMS27C256-15
TMS27C256-1
TMS27C256-17
TMS27C256-2
TMS27C256-20
TMS27C256
TMS27C256-25

120
120
150
150
170
170
200
200
250
250

5±5'7'0
5 ± 10%
5±5'7'0
5 ± 10%
5±5'7'0
5± 10%
5±5'7'0
5± 10%
5±5'7'0
5± 10%

158
165
158
165
158
165
158
165
158
165

1.4

28

J

CMOS

7-15

SMJ27C256-15
SMJ27C256-17
SMJ27C256-20
SMJ27C256-25
SMJ27C256-30

150
170
200
250
300

5± 10%

220

1.7

28

J

Military
CMOS

9-91

TMS29F256-170
TMS29F256-200
TMS29F256-20
TMS29F256-250
TMS29F256-25
TMS29F256-300
TMS29F256-30

170
200
200
250
250
300
300

5±5'7'0
5±5'7'0
5± 10%
5±5'7'0
5 ± 10%
5±5'7'0
5± 10%

83

17

28,28,
32

J, N,
FM

CMOS 5-V
Flash
EEPROM;
EPROM
Pinout

7-27

TMS29F258-170
TMS29F258-200
TMS29F258-20
TMS29F258-250
TMS29F258-25
TMS29F258-300
TMS29F258-30

170
200
200
250
250
300
300

5±5'7'0
5±5'7'0
5± 10%
5±5'7'0
5 ± 10%
5±5'7'0
5 ± 10%

83

17

28,28,
32

J, N,
FM

CMOS 5-V
Flash
EEPROM;
EEPROM
Pinout

7-27

TMS29F259-170
TMS29F259-200
TMS29F259-20
TMS29F259-250
TMS29F259-25
TMS29F259-300
TMS29F259-30

170
200
200
250
250
300
300

5±5'7'0
5±5'7'0
5 ± 10%
5±5'7'0
5 ± 10%
5±5'7'0
5 ± 10%

83

17

28,28,
32

J, N,
FM

CMOS 5-V
Flash
EEPROM;
12-V Flash
Memory
Pinout

7-27

Active
(mW)

Pins

Standby
CMOS
(mW)

Package t Comments

Page

tJ

Ceramic Dual In-Line Package (DIP)
Plastic Dual In-Line Package (DIP)
FM Plastic Chip Carrier

N

TEXAS

-1!1

INSlRUMENTS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

2-5

Selection Guide

EPROM/Flash EEPROM

Density

Organization
(Words x Bits)

Max
Access
Time (ns)

Device
Number

Power
Supply
(V)

Max Power
Dissipation
Active
(mW)

Standby
CMOS
(mW)

Pins

Package t

Comments

Page

256K
(cont'd)

32K x 8
(cont'd)

TMS87C257-150
TMS87C257-1
TMS87C257-2
TMS87C257

150
170
200
250

5:!:5%

158

1.4

28

J

CMOS
Latched
EPROM

7-47

512K

64Kx8

TMS27C510-120l:
TMS27C510-12l:
TMS27C510-150l:
TMS27C510-15l:
TMS27C510-170l:
TMS27C510-17l:
TMS27C510-200l:
TMS27C510-20l:
TMS27C510-250l:
TMS27C510-25l:

120
120
150
150
170
170
200
200
250
250

5:!:5%
5± 10%
5:!:5%
5:!: 10%
5:!:5%
5 ± 10%
5:!:5%
5:!:10%
5:!:5%
5:!: 10%

158
165
158
165
158
165
158
165
158
165

1.4

32

J

CMOS;
1 Meg
EPROM
Compatible
Pinout

7-57

TMS27C512-100
TMS27C512-10
TMS27C512-120
TMS27C512-12
TMS27C510-150
TMS27C512-15
TMS27C512-2
TMS27C512-20
TMS27C512
TMS27C512-25

100
100
120
120
150
150
200
200
250
250

5±5%
5 ± 10%
5:!:5%
5:!: 10%
5±5%
5:!:10%
5:!:5%
5:!:10%
5:!:5%
5:!:10%

158
165
158
165
158
165
158
165
158
165

1.4

28

J

CMOS

7-69

SMJ27C512-20
SMJ27C512-25
SMJ27C512-30

200
250
300

5 ± 10%

263

1.8

28

J

Military
CMOS

9-101

TMS29F512-100l:
TMS29F512-120l:
TMS29F512-12l:
TMS29F512-150l:
TMS29F512-15l:
TMS29F512-200l:
TMS29F512-20l:

100
120
120
150
150
200
200

5:!:5%
5:!:5%
5± 10%
5:!:5%
5:!:10%
5:!:5%
5± 10%

79
79
83
79
83
79
83

5.5

32,32,
32

J, N,
FM

CMOS 5-V
Flash
EEPROM

7-81

TMS27C01 OA-1 00
TMS27C010A-120
TMS27C010A-12
TMS27C010A-150
TMS27C010A-15
TMS27C010A-200
TMS27C010A-20

100
120
120
150
150
200
200

5:!:5%
5:!:5%
5:!:10%
5:!:5%
5:!:10%
5:!:5%
5:!:10%

158
158
165
158
165
158
165

0.55

32

J

CMOS

7-85

SMJ27C010-17
SMJ27C010-20
SMJ27C010-25

170
200
250

5:!:10%

220

1.5

32

J

Military
CMOS

9-113

TMS29F010-100l:
TMS29F010-120l:
TMS29F010-12l:
TMS29F010-150l:
TMS29F010-15l:
TMS29F010-200l:
TMS29F010-20l:

100
120
120
150
150
200
200

5:!:5%
5:!:5%
5:!: 10%
5:!:5%
5:!:10%
5:!:5%
5:!: 10%

79
79
83
79
83
79
83

5.5

32,32,
32

J, N,
FM

CMOS 5-V
Flash
EEPROM

7-95

1024K

128K x 8

tJ

Ceramic Dual In-Line Package (DIP)
N
Plastic Dual In-Line Package (DIP)
FM Plastic Leaded Chip Carrier
l: Advance Information for product under development by TI

TEXAS •

INSlRUMENTS
2-6

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

Selection Guide

EPROM/Flash EEPROM (Concluded)

Density

1024K
(cont'd)

t

Organization
(Words x Bits)

64K x 16

Power
Supply
(V)

Max Power
Dissipation

Device
Number

Max
Access
Time (ns)

TMS27C210A-120:f:
TM S27C21 OA-12:f:
TMS27C210A-150:f:
TMS27C210A-15:f:
TMS27C210A-200:f:
TMS27C210A-20:f:
TMS27C210A-250:f:
TMS27C210A-25:f:

120
120
150
150
200
200
250
250

5±5%
5± 10%
5±5%
5 ± 10%
5±5%
5± 10%
5±5%
5 ± 10%

158
165
158
165
158
165
158
165

0.55

SMJ27C210A-17
SMJ27C210A-20
SMJ27C210A-25

170
200
250

5 ± 10%

220

Active
(mW)

Package t

Comments

Page

40

J

CMOS

7-119

1.5

32

J

Military
CMOS

9-115

Standby
CMOS
(mW)

Pins

2048K

256K x 8

TMS27C020-100:f:
TMS27C020-120:f:
TMS27C020-12:f:
TMS27C020-150:f:
TMS27C020-15:f:
TMS27C020-200:f:
TMS27C020-2o:f:
TMS27C020-250:f:
TMS27C020-25:f:

100
120
120
150
150
200
200
250
250

5±5%
5±5%
5 ± 10%
5±5%
5 ± 10%
5±5%
5± 10%
5±5%
5± 10%

158
158
165
158
165
158
165
158
165

0.55

32

J

CMOS

7-129

4096K

512K x 8

TMS27C040-8:f:
TMS27C040-80:f:
TMS27C040-100:f:
TMS27C040-10:f:
TMS27C040-120:f:
TMS27C040-12:1:
TMS27C040-150:l:
TMS27C040-15:1:

80
80
100
100
120
120
150
150

5±5%
5± 10%
5±5%
5± 10%·
5±5%
5± 10%
5±5%
5±10%

263
275
263
275
263
275
263
275

0.55

32

J

CMOS

7-139

256K x 16

TMS27C240-8:1:
TMS27C240-80:f:
TMS27C240-100:f:
TMS27C240-10:l:
TMS27C240-120:l:
TMS27C240-12:1:
TMS27C240-150:l:
TMS27C240-15:1:

80
80
100
100
120
120
150
150

5±5%
5± 10%
5±5%
5± 10%
5±5%
5± 10%
5±5%
5± 10%

263
275
263
275
263
275
263
275

0.55

40

J

CMOS

7-149

Ceramic Dual In-Line Package (DIP)

:I: Advance Information for product under development by TI

TEXAS ~

INSlRUMENTS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

2-7

Selection Guide

One-Time Programmable (OTP) PROM

Density

Organization
(Words x Bits)

Device
Number

Max Power
Dissipation

Power
Supply

Max
Access
Time (ns)

M

Active
(mW)

Standby
CMOS
(mW)

Pins

Package t Comments

Page

128K

16K x 8

TMS27PC128-1
TMS27PC128-15
TMS27PC128-2
TMS27PC128-20
TMS27PC128
TMS27PC128-25

150
150
200
200
250
250

5±5%
5 ± 10%
5±5%
5 ± 10%
5±5%
5± 10%

158
165
158
165
158
165

1.4

28,32

N, FM

CMOS

7-1

256K

32K x 8

TMS27PC256-150
TMS27PC256-15
TMS27PC256-1
TMS27PC256-17
TMS27PC256-2
TMS27PC256-20
TMS27PC256
TMS27PC256-25

150
150
170
170
200
200
250
250

5±5%
5 ± 10%
5±5%
5 ± 10%
5±5%
5 ± 10%
5±5%
5 ± 10%

158
165
158
165
158
165
158
165

1.4

28,32

N, FM

CMOS

7-15

512K

64K x 8

TMS27PC510-120t
TMS27PC51O-150 t
TMS27PC510-15t
TMS27PC510-170t
TMS27PC510-171:
TMS27PC510-200:t:
TMS27PC510-20t
TMS27PC510-250 t
TMS27PC510-25:t:

120
150
150
170
170
200
200
250
250

5±5%
5±5%
5 ± 10%
5±5%
5 ± 10%
5±5%
5± 10%
5±5%
5 ± 10%

158
158
165
158
165
158
165
158
165

1.4

32,32

N, FM

CMOS
1 Meg OTP
Compatible
Pinout

7-57

TMS27PC512-100
TMS27PC512-10
TMS27PC512-120
TMS27PC512-12
TMS27PC512-150
TMS27PC512-15
TMS27PC512-2
TMS27PC512-20
TMS27PC512
TMS27PC512-25

100
100
120
120
150
150
200
200
250
250

5±5%
5± 10%
5 ± 5% .
5± 10%
5±5%
5 ± 10%
5±5%
5± 10%
5±5%
5± 10%

158
165
158
165
158
165
158
165
158
165

1.4

28,32

N, FM

CMOS

7-69

1024K

128K x 8

TMS27PC01 OA-1 00
TMS27PC010A-120
TMS27PC010A-12
TMS27PC010A-150
TMS27PC010A-15
TMS27PC010A-200
TMS27PC010A-20

100
120
120
150
150
200
200

5±5%
5±5%
5± 10%
5±5%
5± 10%
5±5%
5 ± 10%

158
158
165
158
165
158
165

0.55

32

FM

CMOS

7-85

1024K
(cont'd)

64K x 16

TMS27PC210A-120:t:
TMS27PC210A-12t
TMS27PC210A-150t
TMS27PC210A-15 t
TMS27PC210A-200t
TMS27PC210A-20t
TMS27PC210A-250:t:
TMS27PC210A-25:1:

120
120
150
150
200
200
250
250

5±5%
5 ± 10%
5±5%
5± 10%
5 ± 5%
5 ± 10%
5±5%
5 ± 10%

158
165
158
165
158
165
158
165

0.55

44

FN

CMOS

7-119

N
Plastic Dual In-Line Package (DIP)
FM
Plastic Leaded Chip Carrier
FN
Plastic Leaded Chip Carrier
Advance Information for product under development by TI

TEXAS •

INSTRUMENTS
2-8

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

Selection Guide

One-Time Programmable (OTP) PROM (Concluded)

Density

4096K

Organization
(Words x Bits)

Max
Access
Time (ns)

Device
Number

Power
Supply
(V)

Max Power
Dissipation
Active
(mW)

Standby
CMOS
(mW)

Pins

Package t Comments

Page

512KxB

TMS27PC040-B+
TMS27PC040-BO+
TMS27PC040-100+
TMS27PC040-10+
TMS27PC040-120+
TMS27PC040-12+
TMS27PC040-150+
TMS27PC040-15+

BO
SO
100
100
120
120
150
150

5±5%
5± 10%
5±5%
5 ± 10%
5±5%
5 ± 10%
5±5%
5± 10%

263
275
263
275
263
275
263
275

0.55

32

FM

CMOS

7-139

256Kx16

TMS27PC240-S+
TMS27PC240-BO+
TMS27PC240-100+
TMS27PC240-10+
TMS27PC240-120+
TMS27PC240-12+
TMS27PC240-150+
TMS27PC240-15+

BO
BO
100
100
120
120
150
150

5±5%
5 ± 10%
5±5%
5 ± 10%
5±5%
5± 10%
5±5%
5 ± 10%

263
275
263
275
263
275
263
275

0.55

44

FN

CMOS

7-149

TEXAS

l.!1

t FM Plastic Leaded Chip Carrier
FN

Plastic Leaded Chip Carrier

+Advance Information for product under development by TI

INSlRUMENTS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

2-9

Selection Guide

Application Specific Memories (ASM)

Density

Organization
(Words x Bits)

Max
Access
Time (ns)

Device
Number

Power
Supply

Max Power
Dissipation
Pins

(V)

Active
(mW)

Standby
(mW)

Package t

Comments

Page

16K

2K x 8

TMS29F816 t

TBD

5 ± 10%

TBD

TBD

18

FM

SCOPE
Diary
Storage
Device

8-1

1024K

256K x 4

TMS44C250-1
TMS44C250-10
TMS44C250-12

100
100
120

5±5%
5 ± 10% .
5 ± 10%

578
605
523

184
193
193

28,28

DZ, SD

CMOS
Multipart
Video RAM

8-3

SMJ44C250-10t
SMJ44C250-1 ;
SMJ44C250-12t
SMJ44C250-2t

100
100
120
120

5 ± 10%
5±5%
5±10%
5±5%

635
635
550
550

90
90
83
83

28,28

HJ, JD

Military
CMOS
Multipart
Video RAM

9-117

TMS44C251-1
TMS44C251-10
TMS44C251-12

100
100
120

5±5%
5 ± 10%
5 ± 10%

578
605
523

184
193
193

28,28

DZ, SD

CMOS
Multipart
Video RAM

8-31

SMJ44C251-lOt
SMJ44C251-1t
SMJ44C251-12t
SMJ44C251-2t

100
100
120
120

5 ± 10%
5±5%
5 ± 10%
5±5%

TBD

TBD

28,28

HJ, JD

Military
CMOS
Multipart
Video RAM

9-147

SMJ44C251A-10t
S MJ44C251 A-1 t
SMJ44C251A-12t
SMJ44C251 A-2t

100
100
120
120

5± 10%
5±5%
5 ± 10%
5±5%

635
635
550
550

90
90
83
83

28,28

HJ, JD

Military
CMOS
Multipart
Video RAM

9-149

TMS44C260-60
TMS44C260-70
TMS44C260-80
TMS44C260-10

60
70
80
100

5± 10%

523
440
413
358

11

24/26

DJ

CMOS
Parity and
Enhanced
Page Mode

8-73

TMS4C1050-30
TMS4C1050-40
TMS4C1050-60

25
30
50

5± 10%

275
248
193

55

16,
20/26,20

N,
OJ, SO

CMOS
Field
Memory

8-125

TMS4C1060-30
TMS4C1060-40
TMS4C1060-60

25
30
50

5 ± 10%

275
248
193

55

16,
20/26,20

N,
DJ, SO

CMOS
Field
Memory

8-125

TMS4C1070-30t
TMS4C1070-40t
TMS4C1070-60;

25
30
50

5 ± 10%

275
248
193

55

18,
20/26,20

N,
OJ, SO

CMOS
Field
Memory

8-141

128K x 8

TMS48C121-80 t
TMS48C121-10t
TMS48C121-12t

80
100
120

5 ± 10%

660
523
468

193
193
165

40

OZ

CMOS
Mulitport
Video RAM

8-91

1024K x 4

TMS44460-60;
TMS44460-7ot
TMS44460-80;
TMS44460-10t

60
70
80
100

5 ± 10%

523
468
413
358

11

24/26

DJ

CMOS
Parity and
Enhanced
Page Mode

8-155

4096K

tN

Plastic Dual In-Line (DIP)
DJ Plastic Small-Outline J-Lead (SOJ)
DZ Plastic Small-Outline J-Lead (SOJ)
FM Plastic Leaded Chip Carrier
HJ Ceramic Small-Outline J-Lead (Military) (SOJ)
JD Ceramic Side-Brazed Dual In-Line Package (Military) (DIP)
SD Plastic Zig-Zag In-Line Package (ZIP)
; Advance Information for product under development by TI

TEXAS •

INSTRUMENTS
2-10

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

Alternate Source Directory

"~:;~~~~~~~~~I

,

..

~,~~~~~~~~
.........•.

~~___________________________A_lt_e_rn_a_t_e_s_o_u_r_Ce__D_ir_e_c_to_r_y______~

..a:~~~~~~~~~~~
. .~<~~~~~~~~~~

Alternate Source Directory

DRAM
VENDOR
ORGANIZATION

PART NUMBER
TI

256K x 4

ALTERNATE SOURCES
TMS44C256

TI

Enhanced Page Mode

AT&T

M441024

Fujitsu
Hitachi

HM514256/8

Hyundai
Micron
Mitsubishi
Motorola
NEC
NMB
OKI
Panasonic
Samsung
Sharp
Siemens
Toshiba
256K x 4
Military

TI
Micron

MB81C4256
HY51C4256
MT4C4256/MT4C4258
M5M44C256
MCM514256A
f.lPD424256
AAA1M104
MSM414256/MSM514256
MN41C4256
KM44C256
LH64256/270
HYB514256
TC514256
SMJ44C256
MT4C4256

Enhanced Page Mode
1 Meg x 1

TI

TMS4C1024

Enhanced Page Mode

Fujitsu

MB81C1000

Goldstar
Hitachi

GM71C1000

Hyundai
Micron
Mitsubishi
Mosaic
NEC
OKI
Panasonic
Toshiba
Vitelic
1 Meg x 1
Military

TI

HM511000
HY5iC1000
MT4C1024/5/6
M5M4C1000
MDM11000
f.lPD421 000
MSM41000
MN41C1000
TC511000
V56C100
SMJ4C1024

Micron

MT4C1024

Enhanced Page Mode

TEXAS •

INSTRUMENTS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

3-1

Alternate Source Directory

DRAM (Continued)
VENDOR
ORGANIZATION

I

1 Meg x 1
Nibble Mode

TI

1 Meg x 1
Static Column
Decode Mode

TI

1 Meg x 4
Enhanced Page Mode

t

PART NUMBER
TI

ALTERNATE SOURCES

Dense-Pac
Hitachi
Hyundai
Micron
Mitsubishi
Motorola
NEC
NMB
OKI
Samsung
Toshiba

JAPD421 002
AAA1M100
MSM41002
KM41C1002
HYB511002
TC511002

Fujitsu
Hitachi
Micron
Mitsubishi
Mosaic
Motorola
NEC
NMB
OKI
Panasonic
Samsung
Siemens
Toshiba

TMS44400
TMS44410 (write-per-bit)
MB814400
HM514400
MT4C4001 /003
M5M44400
MDM41000
MCMS14400
JAPD424400
AAA4M104
MSM514400
MN41C41000
KM44C1000
HYB514400
TC514400

TI
TI

Product under development by TI

TEXAS ~

POST OFFICE BOX 1443

TMS4C1027
MB81C1002
HM511002
MT4C1026
M5M4C1002
MCM511002

Fujitsu
Hitachi
Micron
Mitsubishi
Motorola
NEC
NMB
OKI
Samsung
Siemens
Toshiba

INSTRUMENTS
3-2

TMS4C1025
DPD1MM1K
HM511001
HY51C1001
MT4C1025
M5M4C1001
MCM511001
JADP421001
AAA1M200
MSM41001
KM41C1001
TC511001

•

HOUSTON, TEXAS 77001

Alternate Source Directory

DRAM (Concluded)
VENDOR
ORGANIZATION

PART NUMBER
TI

1 Meg x 4
Military
Enhanced Page Mode

TI

4 Meg x 1
Enhanced Page Mode

TI

4 Meg x 1

ALTERNATE SOURCES

SMJ44400t
Micron

Dense-Pac
Fujitsu
Hitachi
Micron
Mitsuibishi
Mosaic
Motorola
NEC
NMB
OKI
Panasonic
Samsung
Siemens
Toshiba
Micron
TI

Mitsubishi
NEC
OKI

4 Meg x 4
Enhanced Page Mode

TI

16 Meg x 1
Enhanced Page Mode

TI

TMS44100
DPD4MM1K
MB814100
HM514100
MT4C1004/5/6
M5M44100
MDM14000
MCM514100
mPD424100
AAA4M100
MSM514100
MN41C4000
KM41 C4000/44C1 000
HYB514100
TC514100
SMJ44100t

TI

Military
Enhanced Page Mode
4 Meg x 1
Nibble Mode

MT4001

MT4C1004
TMS44101
M5M44101
flPQ424101
MSM5144101

Hitachi

TMS416400t
HM511640

Hitachi

TMS416100t
HM511610

t Product under development by TI

TEXAS . .

INSlRUMENlS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

3-3

Alternate Source Directory

DRAM Modules
VENDOR
ORGANIZATION

256K x 9

PART NUMBER
TI

ALTERNATE SOURCES

TI

Fujitsu
Hitachi
Micron
OKI
1 Meg x 8

1 Meg x 8

1 Meg x 9

Dense-Pac
Fujitsu
Fujitsu
Hitachi
Micron
Mitsubishi
Motorola
NEC
OKI
Samsung
Toshiba

·TM024GAD8
DPD1MX8
M 885230/M 8855231
M885250
H856A181/H856C18
MT8C8024/25/26
MH1M08A
MCM81000
MC-421000A8
MSC2313A
KMM581000
THM81000

Dense-Pac
Fujitsu
Fujitsu
Hitachi
Micron
Mitsubishi
Motorola
NEC
OKI
Samsung
Toshiba

TM124GU8A
DPD1MX8
M 885230/M8855231
M885250
H856A181/H856C18
MT8C8024/25/26
MH1M08A
MCM81000
MC-421000A8
MSC2313A
KMM581000
THM81000

Dense-Pac
Fujitsu
Fujitsu
Hitachi
Micron
Mitsubishi
Motorola
Samsung
Siemens
Toshiba

TM024EAD9
DPD1MX9
M885235/M885237
M885265
H856A19/H856C19
MT8C9024/25/26
MH1M09A
MCM9L1000
KMM591000
HYM91 0005
THM91000

TI

TI

TI

TEXAS ~

INSlRUMENTS
3·4

POST OFFICE BOX 1443

TM256GU9
M885240
H8561003/H8561409
MT9259/MT8C9259
MSC2304YS9

•

HOUSTON, TEXAS 77001

Alternate Source Directory

DRAM Modules (Continued)
VENDOR
ORGANIZATION

1 Meg x 9

PART NUMBER
TI

ALTERNATE SOURCES

TI

Dense-Pac
Fujitsu
Fujitsu
Hitachi
Micron
Mitsubishi
Motorola
NEC
OKI
Samsung
Toshiba
1 Meg x 9

4 Meg x 8

4 Meg x 9

TI

TM124EAD9C
DPD1MX9
M B85235/M B85237
MB85265
HB56A 19/H856C19
MT8C9024/25/26
MH1M09A
MCM9L1000
MC-421000A9

Dense-Pac
Fujitsu
Fujitsu
Hitachi
Micron
Mitsubishi
Motorola
NEC
OKI
Samsung
Siemens
Toshiba

MSC2312
KMM591000
HYM910005
THM91000

Dense-Pac
Hitachi

TM4100GBD8
DPD4MX8
HB56A48A

TI

TI
Dense-Pac
Hitachi
NEC
OKI
Siemens

256K x 36

TM124EAD98
DPD1MX8
M B85230/M B855231
MB85250
HB56A181/HB56C18
MT8C8024/25/26
MH1M08A
MCM81000
MC-421000A9
MSC2312
KMM581000
THM81000

TI
TI
Hitachi
Micron
NEC
OKI
Samsung
Toshiba
Vitelic

TEXAS

TM4100EBD9
DPD4MX9
HB56A49A
MC-424100A9
MSC2340
HYM940005
TM256KBK36B
TM256KBK36C
HB56D25636
MT8C36256
MC-424256A36
MSC2320A
KMM36256
THM3625600A
VM55C104K36

-1!1

INSlRUMENlS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

3-5

Alternate Source Directory

DRAM Modules (Concluded)
VENDOR
ORGANIZATION

512K x 36

PART NUMBER
TI

ALTERNATE SOURCES

Toshiba
Vitelic

TM512LBK36B
TM512LBK36C
HB56D51236
MT8C36512
MC-424512A36
MSC2321A
KMM36512
THM365120AS
VM55C1042K36

Hitachi
NEC

TM124MBK36A
TM124MBK36B
HB56D136B
MC-421000A36

TI
TI

Hitachi
Micron
NEC
OKI
Samsung

1 Meg x 36

TI
TI

TEXAS ~

INSTRUMENTS
3-6

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

Alternate Source Directory

EPROMs/OTPs/Flash EEPROMs
VENDOR
ORGANIZATION

PART NUMBER
TI

16Kx 8
CMOS

ALTERNATE SOURCES
TMS27C128

TI
TI

TMS27PC128
AMD

AM27C128

Atmel
Cypress

AT27C128
CY7C251

Fujitsu
GI
Intel
Hitachi
Microchip
Mitsubishi
National
NEC
OKI
S-MOS
SEEO
Sharp
Toshiba
VLSI
VTI
Waferscale
16Kx 8
Military
CMOS

TI
AMD
Intel
Microchip
SEEO

MBM27C128/MBM27128
27C128
27C128
HN27128NHN4827128G
27HC256
M5L27128/M5M27C128
NMC27CP128
mPD27128
MSM27128/MSM27C128
SPM27129C
27128

LH57126/7/8
TMM27128
VT27C128
VT27C128
WS57C128F/VVS57C251
SMJ27C128
AM27128
MD27128A
27C128
27128

TEXAS •
INSTRUMENTS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

3-7

Alternate Source Directory

EPROMs/OTPs/Flash EEPROMs (Continued)
VENDOR
ORGANIZATION

32Kx 8
CMOS

PART NUMBER
TI

ALTERNATE SOURCES

TI
TI

AMD
Atmel
Catalyst
Cypress
Fujitsu
Hitachi
GI
Intel
Microchip
Mitsubishi
Motorola
National
NEC
OKI
Panatech
S-MOS
SEEO
SGS
Sharp
Signetics
Thomson
Toshiba
Waferscale
32K x. 8
Military
CMOS

TI

32K x8
Flash EEPROM

TI
TI
TI

AMD
Atmel
Intel
Microchip
SEEO
Signetics

AMD
Intel

TEXAS ~

INSTRUMENTS
3-8

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

TMS27C256
TMS27PC256
Am27C256/Am27256
AT27C256/AT27256
CAT27HC256
CY7C271/4/7/9
M BM27C256/M BM27256
HN27C256/HN27256
27C256/27256
27256/27C25?
27C256
M5M27C256/M5L27256
MCM67256/9
NMC27C256
mPD27256
MSM27C256/MSM27256
RD27C256
SPM27C256
27C256
M27256A
LH57254/5/6
27C256
TS27C256
TMM27256/TC57256/54256
WS57C256F
SMJ27C256
Am27256
AT27C256
MD27256/27C256
27C256
DM27256/27C256
27C256
TMS29F256 (5-V EEPROM)
TMS29F258 (5-V EEPROM)
TMS29F259 (5-V EEPROM)
Am28F256
28F256 (12-V EPROM)

Alternate Source Directory

EPROMs/OTPs/Flash EEPROMs (Continued)
VENDOR
ORGANIZATION
TI
64Kx 8
CMOS

ALTERNATE SOURCES

TI
TI

TMS27C512

TI
TI

TMS27C510t
TMS27PC510t

TMS27PC512

AMD
Atmel
Catalyst

Am27512/Am27C512
AT27C512
CAT27512

Cypress
Fujitsu

CY7C285/6/7/9
MBM27C512

GI
Hitachi
Intel
Mitsubishi

64Kx 8
Military

PART NUMBER

NEC
OKI
Panatech
Toshiba

mPD27C512
MSM27512

SMJ27C512
Am27512

Atmel

AT27C512

Microchip

TI
TI

TMS27C512
TMM27512/TC57512/54512

AMD
Intel

64K x 16
CMOS

M5L27512
NMC27C512

CMOS

TI

HN27512
27C512

National

TI

64Kx 8
Flash EEPROM

27C512

AMD
Intel
National

MD27512
27C512
TMS29F512t
Am28F512
28F512 (12-V EPROM)
NMC48F512
TMS27C210A
TMS27PC210A

AMD
Atmel
Catalyst
Fujitsu
Hitachi
Intel
Microchip
National
NEC

Am27C1024
AT27C1024
CAT27C210
MBM27C1024
HN27C1024
27C210
27HC1616
NMC27C1024
mPD27C1000

OKI
SGS
Toshiba

TC571 024

Waferscale

WS27C210

MSM271 024/MSM27C1 024
M27C1024

t Product under development by TI

TEXAS •

INSlRUMENTS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

3-9

Alternate Source Directory

EPROMs/OTPs/Flash EEPROMs (Concluded)
VENDOR
ORGANIZATION

TI

64K x 16
Military
CMOS

TI

128K x 8
CMOS

TI
TI

ALTERNATE SOURCES
Atmel

AMD
Atmel
Catalyst
Dense-Pac
Fujitsu
Hitachi
Intel
Mosaic
Mitsubishi
NEC
National
OKI
SGS
Sharp
Toshiba
Waferscale
128Kx 8
Military
CMOS

TI

128Kx 8
CMOS
Flash EEPROM

TI

256Kx 8
CMOS

TI

512Kx 8
CMOS

TI
TI

256K x 16
CMOS

AMD
Atmel

TMS27C010A
TMS27PC010A
Am27C010
AT27C010
CAT27010
DPV27C101
MBM27C1000/1
HN27C101/301
27C010
MLM8128
M5M27C100/1/2
J.lPD27C1000
NMC27C010/020
MCM271000
M27C1011
LH571 000/0001
TC571 000/TC541 00
WS27C010
SMJ27C010
Am27C010
AT27C010
TMS29F010t
Am28F010
CAT28F010
HN29C101
28F010 (12-V EPROM) .
28C010
48F010

AMD
Intel
Mitsubishi
National

TMS27C020t
Am27C020/2048
27C020
M5M27C201/2
NMC27020

AMD
Intel
Mitsubishi
National
Toshiba

TMS27C040t
TMS27PC040t
Am27C040
27C040
M5M27C402
NMC27040
TC57400

AMD
Hitachi

TMS27C240t
TMS27PC240t
Am27C04096
HN27C4096

TI
TI

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 1443

SMJ27C210
AT27C1024

AMD
Catalyst
Hitachi
Intel
SEEQ
Signetics

t Product under development by TI

3-10

PART NUMBER

•

HOUSTON, TEXAS 77001

Alternate Source Directory

Application Specific Memories
VENDOR
ORGANIZATION
256K x 4
Video RAM

TI

ALTERNATE SOURCES

TI
TI
. Fujitsu
Hitachi
NEC
Micron
Mitsubishi
OKI
Samsung
Toshiba

256K x 4
Military
Video RAM

TI

128K x 8
Video RAM

TI

TMS44C250
TMS44C251
MB81 C4251/MB81 C4253
HM534251/2/3
f.lPD42274
MT42C4256
M5M442256
MSM514251/MSM514252
KM42C4256
TC524256/TC524257
SMJ44C250t
SMJ44C251t

TI
TI
TI

256K x 4
Parity

PART NUMBER

Micron

SMJ44C251At
MT42C4256 883C

Micron

TMS44C260
MT4C1664

Hitachi
Micron
Mitsubishi
NEC
Toshiba

TMS48C121t
HM538121/2/3
MT42C8128
N5N482128
f.lPD424400
TC528126A

t Product under development by TI

TEXAS ~

INSlRUMENTS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

3-11

Alternate Source Directory

TEXAS •

INSTRUMENTS
3·12

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

Glossaryrriming Conventions/Data Sheet Structure

GlossaryfTiming Conventions/Data Sheet Structure

Glossary/Timing Conventions/Data Sheet Structure

GENERAL CONCEPTS AND TYPES OF MEMORIES
Address - Any given memory location in which data can be stored or from which it can be retrieved.
Automatic Chip-Select/Power Down - see Chip Enable Input.
Bit - Contraction of Binary digiT; i.e., a 1 or a O. In electrical terms, the value of a bit may be represented by the presence or absence of charge, voltage, or current.
Byte - A word of 8 bits (see Word).

C of C - Certification of Conformance.
CDIP - Ceramic Dual In-Line Package.
CERPAC - CERamic flat PACk (hermetic).
CMOS -A complementary MaS technology that uses transisitors with electron (N-channel) and hole (P-channel) conduction.
Chip Enable Input - A control inputto an integrated circuitthat, when active, permits operation of the integrated circuit
for input, internal transfer, manipulation, refreshing, and/or output of data and, when inactive, causes the integrated
circuit to be in a reduced-power standby mode.
Chip Select Input - Chip select inputs are gating inputs that control the input to and output from the memory. They
may be of two kinds:
1.

Synchronous - Clocked/latched with the memory clock. Affects the inputs and outputs for the duration
of that memory cycle.

2.

Asynchronous - Has direct asynchronous control of inputs and outputs. In the read mode, an asynchronous chip select functions like an output enable.

Column Address Strobe (CAS) - A clock used in dynamic RAMs to control the input of column addresses. It .can
be active high (CAS) or active low (CAS).
CPAK - Ceramic flatPAcK.
CSOJ - Ceramic Small-Outline J-Iead integrated circuit package.
CZIP - Ceramic Zig-zag In-line Package.
Data - Any information stored or retrieved from a memory device.
Die - Unpackaged semiconductor.
DIP - Dual In-line Package.
DESC - Defense Electronics Supply Center.
Dynamic (Read/Write) Memory (DRAM) - A read/write memory in which the cells require the repetitive application
of control signals in order to retain the stored data.
NOTES:
1. The words "read/write" may be omitted from the term when no misunderstanding will result.
2.

Such repetitive application of the control signals is normally called a refresh operation.

3.

A dynamic memory may use static addressing or sensing circuits.

4.

This definition applies whether the control signals are generated inside or outside the integrated circuit.

TEXAS ~

INSlRUMENlS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

4-1

Glossary/Timing Conventions/Data Sheet Structure

Electrically Erasable Programmable Read-Only Memory (EEPROM) - A nonvolatile memory that can be field-programmed like an OTP PROM or EPROM but that can be electrically erased by a combination of electrical signals
at its inputs.
EPIC - Enhanced Performance Implanted CMOS.
Erasable and Programmable Read-Only Memory (EPROM) - A field-programmable read-only memory that can
have the data content of each memory cell altered more than once.
Erase - Typically associated with EPROMs and EEPROMs. The procedure whereby programmed data is removed
and the device returns to its unprogrammed state.
ESD - Electrostatic Discharge.
Field Memory (FMEM) - A serial-access memory that performs high-speed, asynchronous read/write operations.
(Used mainly for fields of digital TVNTR that require higher speed operation, lower power consumption, and larger
capacity.)
Fit - Originally stood for Failures-In-Time. Currently means a failure rate of one failure in one billion hours.
FRAM - First-in first-out pseudo-static RAM or Field RAM.
Field-Programmable Read-Only Memory - See One-Time Programmable Read-Only Memory.
Fixed Memory-A common term for ROMs, EPROMs, EEPROMs, etc., containing data that is not normally changed.
A more precise term for EPROMs and EEPROMs is nonvolatile since their data may be easily changed.
Fully Static RAM -In a fully static RAM, the periphery as well as the memory array is fully static. The periphery is
thus always active and ready to respond to input changes without the need of clocks. There is no precharge required for static periphery.
GENERIC DATA - Group A, B, C, & D Quality Conformance Data.
JAN - Joint Army Navy. Specifically, a JM3851 0 qualified device.
JANB - Class B screened JAN device.
JANS - Class S screened JAN device.
JEDEC - Joint Electronic Device Engineering Council.
JTAG - Joint Testability Action Group.

K - When used in the context of specifying a given number of bits of information, 1K
64K = 64 x 1024 = 65 536 bits.

=21°= 1024 bits. Thus,

Large-Scale Integration (LSI) - The description of any IC technology that enables condensing more than 100 gates
onto a single chip.
.
LDCC - Ceramic Leaded Chip Carrier.
LCCC - Leadless Ceramic Chip Carrier.
Mask-Programmed Read-Only Memory - A read-only memory in which the data content of each cell is determined
during manufacture by the use of a mask, the data content thereafter being unalterable.
Memory - A medium capable of storing information that can be retrieved.
Memory Card - A pocket-size memory storage system.

TEXAS •

INSTRUMENTS
4-2

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

Glossary/Timing Conventions/Data Sheet Structure

Memory Cell- The smallest subdivision of a memory into which a unit of data has been or can be entered in which
it is or can be stored, and from which it can be retrieved.
Metal-Oxide Semiconductor (MOS) - The technology involving photolithographic layering of metal and oxide to produce a semiconductor device.
MIL-M-38S10 - A military controlling specification pertaining mainly to JAN qualified devices (microcircuits).
MIL-STD-883 - A military controlling specification containing detailed descriptions of the screening processes pertaining to Class B and Class S devices (microcircuits).
NMOS - A type of MOS technology in which the basic conduction mechanism is governed by electrons. (Short for
N-channel MOS.)
Nonvolatile Memory - A memory in which the data content is maintained whether the power supply is connected
or not.
OTP - One-Time Programmable.
One-Time Programmable (OTP) Read-Only Memory - A read-only memory that, after being manufactured, can
have the data content of each memory cell altered once. Also referred to as OTP.
Output Enable - A control input that, when true, permits data to appear at the memory output, and when false, causes
the output to assume a high-impedance state. (See also chip select.)
PDIP - Plastic Dual-ln-Iine Package.
PLCC - Plastic Leaded Chip Carrier.
PMOS - A type of MOS technology in which the basic conduction mechanism is governed by holes. (Short for
P-channel MOS.)
Parallel Access - A feature of a memory by which all the bits of a byte or word are entered simultaneously at several
inputs or retrieved simultaneously from several outputs.
Power Down - A mode of a memory during which the device is operating in a low-power or standby mode. Normally
read or write operations of the memory are not possible under this condition.
Program - Typically associated with EPROM and OTP memories, the procedure whereby logical Os (or 1s) are stored
into various desired locations in a previously erased device.
Program Enable - An input signal that, when true, puts a programmable memory device into the program mode.
Programmable Read-Only Memory (PROM) - See One-Time Programmable (OTP) Read-Only Memory.
Printed Wiring Board (PWB) - A substrate of epoxy glass, clad material, or other material upon which a pattern of
conductive traces is formed to interconnect the components that will be mounted upon it.
Read - A memory operation whereby data is output from a desired address location.
Read-Only Memory (ROM) - A memory in which the contents are not intended to be altered during normal operation.
NOTE: Unless otherwise qualified, the term "read-only memory" implies that the contents are determined by its
structure and are unalterable.
Read/Write Memory - A memory in which each cell may be selected by applying appropriate electrical input signals
and the stored data may be either (a) sensed at appropriate output terminals, or (b) changed in response to other
similar electrical input signals.
Row Address Strobe (RAS) - A clock used in dynamic RAMs to control the input of the row addresses. It can be
active high (RAS) or active low (RAS).

TEXAS •

INSlRUMENTS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

4-3

Glossary/Timing Conventions/Data Sheet Structure

SCD - Source Control Drawings.
Scaled-MOS (SMOS) - MOS technology under which the device is scaled down in size in three dimensions and in
operating voltages allowing improved performance.
Semi-Static (Quasi-Static, Pseudo-Static) RAM - In a semi-static RAM, the periphery is clock-activated (Le.,
dynamic). Thus the periphery is inactive until clocked, and only one memory cycle is permitted per clock. The peripheral circuitry must be allowed to reset after each active memory cycle for a minimum precharge time. No refresh
is required.
Serial Access - A feature of a memory by which all the bits are entered sequentially at a single input or retrieved
sequentially from a single output.
SIP - Single In-line Package.
Small Outline Integrated Circuit (SOIC) - A package in which an integrated circuit chip can be mounted to form
a surface-mounted component. It is made of a plastiC material that can withstand high temperatures and has leads
formed in a gull-wing shape along its two longer sides for connection to a PWB footprint.
SMD - Standard Military Drawing.
SOlCC - Small Outline Leadless ceramic Chip Carrier.
SOJ - Small Outline J-Iead package.
Static RAM (SRAM) - A read/write random-access device within which information is stored as latched voltage levels.
The memory cell is a static latch that retains data as long as power is applied to the memory array. No refresh is
required. The type of periphery circuitry sub-categorizes static RAMs.
ThlnSOJ - Thin Small-Outline J-Iead package.
ThlnSOP - Thin Small-Outline package.
Very-large-Scale Integration (VlSI) - The description of an IC technology that is much more complex than largescale integration (LSI) and involves a much higher equivalent gate count. At this time an exact definition including
a minimum gate count has not been standardized by JEDEC or the IEEE.
Video RAM (VRAM) - A dual-port dynamic random-access memory with a on-chip serial data register.
Volatile Memory - A memory in which the data content is .Iost when the power supply is disconnected.
Word - A series of one or more bits that occupy a given address location and then can be stored and retrieved in parallel.
Write -:- A memory operation whereby data is written into a desired address location.
Write Enable - A control signal that when true causes the memory to assume the write mode, and when false causes
it to assume the read mode.
ZIP - Zig-zag In-line Package.

TEXAS •
INSTRUMENTS
4-4

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

Glossary/Timing Conventions/Data Sheet Structure

OPERATING CONDITIONS AND CHARACTERISTICS (INCLUDING LEITER SYMBOLS)
Capacitance
The inherent capacitance on every pin, which can vary with various inputs and outputs.
Example symbology:
Cj

Input capacitance

Co

Output capacitance

Cj(O)

Input capacitance, data input

Current
High-level input current, IIH
The current into an input when a high-level voltage is applied to that input.

High-level output current, 10H
The current into* an output with input conditions applied that according to the product specification will establish
a high level at the output.

Low-level input current, IlL
The current into an input when a lOW-level voltage is applied to that input.

LOW-level output current, 10L
The current into* an output with input conditions applied that according to the product specification will establish
a low level at the output.

Off-state (high-impedance state) output current (of a three-state output,) 10Z
The current into* an output having three-state capability with input conditions applied that according to the product
specification will establish the high-impedance state at the output.

Short-circuit output current, los
The current into* an output when the output is short-circuited to ground (or other specified potential) with input
conditions applied to establish the output logic level farthest from ground potential (or other specified potential).

Supply current, 188, Icc, 100, Ipp
The current into, respectively, the VBB, Vee, Voo, Vpp supply terminals.
*Current out of a terminal is given as a negative value.

Operating Free-Air Temperature
The temperature

(TN

range over which the device will operate and meet the specified electrical characteristics.

Voltage
High-level input voltage, VIH
An input voltage within the more positive (less negative) of the two ranges of values used to represent the binary
variables.
NOTE:

A minimum is specified that is the least positive value of high-level input voltage for which operation
of the logic element within specification limits is guaranteed.

TEXAS

-IJ1

INSTRUMENTS
POST OFFICE BOX 1443

•

HOUSTON. TEXAS 77001

4-5

Glossary/Timing Conventions/Data Sheet Structure

High-level output voltage, VOH
The voltage at an output terminal with input conditions applied that according to the product specification will
establish a high level at the output.

Low-level Input voltage, VIL
An input voltage level within the less positive (more negative) of the two ranges of values used to represent the
binary variables.
NOTE:

A maximum is specified that is the most positive value of low-level input voltage for which operation
of the logic elment within specification limits is guaranteed.

Low-level output voltage, VOL
The voltage at an output terminal with input conditions applied that according to the product specification will
establish a low level at the output.

Supply voltages, Vee, Vee, Voo, Vpp
The voltages supplied to the corresponding voltage pins that are required for the device to function. From one
to four of these supplies may be necessary, along with ground VSS'

Time Intervals
New or revised data sheets in this book use letter symbols in accordance with standards recently adopted by
JEDEC, the IEEE, and the IEC. Two basic forms are used. The first form is usually used in this book when intervals
can easily be classified as access, cycle, disable, enable, hold, refresh, setup, transistion, or valid times and for
pulse durations. The second form can be used generally but in this book primarily for time intervals not easily classifiable. The second (unclassified) form will be described first. Since some manufacturers use this form for all time
intervals, symbols in the un-classified form are given with the examples for most of the classified time intervals.

Unclassified time Intervals
Generalized letter symbols can be used to identify almost any time interval without classifying it using traditional
or contrived definitions. Symbols for unclassified time intervals identify two signal events listed in from-to
sequence using the format:
tAB-CD
Subscripts A and C indicate the names of the signals for which changes of state or level or establishment of state
or level constitute signal events assumed to occur first and last, respectively, that is, at the beginning and end
of the time interval. E~ effort is made to keep the A and C subscript length down to one letter, if possible (e.g.,
R for RAS and C for CAS).
Subscripts Band 0 indicate the direction of the transitions and/or the final states or levels of the signals
represented by A and C, respectively. One or two of the following is used:
H

=high or transition to high

L = low or transition to low
V = a valid steady-state level
X

=unknown, changing, or "don't care" level

Z = high-impedance (off) state
The hyphen between the Band C subscripts is omitted when no confusion is likely to occur.
For examples of symbols of this type, see TMS44C256 (e.g., tRLCU'

TEXAS ."

INSTRUMENTS
4-6

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

Glossary/Timing Conventions/Data Sheet Structure

Classified time intervals (general comments, specific times follow)
Because of the information contained in the definitions, frequently the identification of one or both of the two signal
events that begin and end the intervals can be significantly shortened compared to the unclassified forms. For
example, it is not necessary to indicate in the symbol that an access time ends with valid data at the output. However, if both signals are named (e.g., in a hold time), the from-to sequence is maintained.

Access time
The time interval between the application of a specific input pulse and the availability of valid signals at an output.
Example symbology:
Classifed
ta(A)
ta(S), ta(CS)
Cycle time

Description
Access time from address
Access time from chIp select (low)

Unclassified
tAVQV
tSLQV

The time interval between the start and end of a cycle.
NOTE:

The cycle time is the actual time interval between two signal events and is determined by the system
in which the digital circuit operates. A minimum value is spe~ified that is the shortest interval that must
be allowed for the digital circuit to perform a specified function (e.g., read, write, etc.) correctly.

Example symbology:
Unclassified
Description
Read cycle time
tc(R), tc(rd)
tAVAV(R)
Write cycle time
tc(W)
tAVAV(W)
NOTE: R is usually used as the abbreviation for "read"; however, in the case of dynamic memories, "rd" is used
to permit R to stand for RAS.
Classifed

Disable time (of a three-state output)
The time interval between the specified reference points on the input and output voltage waveforms, with the
three-state output changing from either of the defined active levels (high or low) to a high-impedance (off) state.
Example symbology:
Classifed
tdis(S)
tdis(W)

Unclassified

Description

tSHQZ
tWLQZ

Output disable time after chip select (high)
Output disable time after write enable (low)

These symbols supersede the older forms tpvz or tpxz.

Enable time (of a three-state output)
The time interval between the specified reference points on the input and output voltage waveforms, with the
three-state output changing from a high-impedance (off) state to either of the defined active levels (high or low).
NOTE:

For memories these intervals are often classified as access times.

Example symbology:
Classifed

Unclassified

Description
Output enable time after chip select low

tSLQV
ten(SL)
These symbols supersede the older from tpzv.

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 1443

•

HOUSTON. TEXAS 77001

4-7

Glossary/Timing Conventions/Data Sheet Structure

Hold time
The time interval during which a signal is retained at a specified input terminal after an active transition occurs
at another specified input terminal.
NOTES: 1. The hold time is the actual time interval between two signal events and is determined by the system
in which the digital circuit operates. A minimum value is specified that is the shortest interval for which
correct operation of the digital circuit is guaranteed.

2. The hold time may have a negative value in which case the minimum limit defines the longest interval
(between the release of the signal and the active transition) for which correct operation of the digital
circuit is guaranteed.
Example symbology:
Classifed

Unclassified

th(D)
tWHDX
tRHWH
th(RHrd)
tCHWH
th(CHrd)
tCL-CAX
th(CLCA)
tRL-CAX
th(RLCA)
th(RA)
tRL-RAX
These last three symbols supersede the older forms:
NEW FORM

Description
Data hold time (after write high)
Read (write enable high) hold time after RAS high
Read (write enable high) hold time after CAS high
Column address hold time after CAS low
Column address hold time after RAS low
Row address hold time (after RAS low)

OLD FORM

th(CLCA)
th(AC)
th(RLCA)
th(ARL)
th(RA)
th(AR)
NOTE: The from-to sequence in the order of subscripts in the unclassified form is maintained in the classified
form. In the case of hold times, this causes the order to seem reversed from what would be suggested
by the terms.

Pulse duration (width)
The time interval between the specified reference points on the leading and trailing edges. of the pulse waveform.
Example symbology:
Classifed
tw(W)
tw(RL)
Refresh time interval

Description
Write pulse duration
Pulse duration, RAS low

Unclassified
tWLWH
tRLRH

The time interval between the beginnings of successive signals that are intended to restore the level in a dynamic
memory cell to its original level.
NOTE:

The refresh time interval is the actual time interval between two refresh operations and is determined
by the system in which the digital circuit operates. A maximum value is specified that is the longest
interval for which correct operation of the digital circuit is guaranteed.

Example symbology:
Classifed

Description
Refresh time interval

Unclassified

trf

TEXAS ~

INSTRUMENTS
4-8

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

Glossary/Timing Conventions/Data Sheet Structure

Setup time
The time interval between the application of a signal at a specified input terminal and a subsequent active
transition at another specified input terminal.
NOTES: 1. The setup time is the actual time interval between two signal events and is determined by the system
in which the digital circuit operates. A minimum value is specified that is the shortest interval for which
correct operation of the digital circuit is guaranteed.

2. The setup time may have a negative value in which case the minimum limit defines the longest interval (between the active transition and the application of the other signal) for which correct operation
of the digital circuit is guaranteed.
Example symbology:
Classifed

Description

Unclassified

tsu(D)

tDVWH

Data setup time (before write high)

tsu(CA)

tCAV-CL

Column address setup time (before CAS low)
Row address setup time (before RAS low)

tsu(RA)
tRAV-RL
Transition times (also called rise and fall times)

The time interval between two reference pOints (10% and 90% unless otherwise specified) on the same waveform
that is changing from the defined low level to the defined high level (rise time) or from the defined high level to
the defined low level (fall time).
Example symbology:
Classifed

Unclassified

Description
Transition time (general)

tt
tt(CH)
tr(C)
tf(C)
Valid time
(a)
(b)

tCHCH

Low-to-high transition time of CAS

tCHCH
tCLCL

CAS rise time
CAS fall time

General
The time interval during which a signal is (or should be) valid.
Output data-valid time
The time interval in which output data continues to be valid following a change of input conditions that could
cause the output data to change at the end of the interval.

Example symbology:
Classified
tv (A)

Unclassified

Description
Output data valid time after change of address

tAXQX

This supersedes the older form tpVX.

TEXAS ~

INSlRUMENTS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

4-9

Glossary/Timing Conventions/Data Sheet Structure

TIMING DIAGRAMS CONVENTIONS
Meaning
Timing Diagram Symbol

\\\\\
/11//

Input Forcing Functions

Output Response Functions

Must be steady high or low

Will be steady high or low

High-to-Iow changes permitted

Will be changing from high to low sometime
during designated intervals

Low-to-high changes permitted

Will be changing from low to high sometime
during designated intervals

Don't care

State unknown or changing

(Does not apply)

Centerline represents high-impedance
(off) state.

BASIC DATA SHEET STRUCTURE
The front page of the data sheet begins with a list of key features such as organization, interface, compatibility, operation (static or dynamic), access and cycle times, technology (N- or P-channel, silicon or metal oxide gate), and power.
In addition, the top view of the device is shown with the pinout provided. Next a general description of the device, system interface conSiderations, and elaboration on other device characteristics are presented. The next section is an
explanation of the device's operation which includes the function of each pin (Le., the relationship between each input
(output) and a given type of memory). The functions basically involve starting, achieving, and ending a given type of
memory cycle (e.g., programming or erasing EPROMs, or reading a memory location).
Augmenting the descriptive text there appears a logic symbol prepared in accordance with ANSI/IEEE Std 91-1984
and I EC Publication 617-12 and explained in Section 11 of t~is book. Following the symbol is usually a functional block
diagram, a flowchart of the basic internal structure of the device showing the signal paths for data, addresses, and
control Signals, as well as the internal architecture. Usually the next few pages contain the absolute maximum ratings
(e.g., voltage supplies, input voltage, and temperature) applicable over the operating free-air temperature range. If
the device is used outside of these values, it may be permanently destroyed or at least it would not function as intended. Next, typically, are the recommended operating conditions, (e.g., supply voltages, input voltages, and operating temperature). The memory device is guaranteed to work reliably and to meet all data sheet parameters when operated in accord with the recommended operating conditions and within the specified timing. If the device is operated
outside of these limits (minimum/maximum), it is no longer guaranteed to meet the data sheet parameters. Operation
beyond the absolute maximum ratings can result in catastrophic failures.
The next section provides a table of electrical characteristics over full ranges of recommended operating conditions
(e.g., input and output currents, output voltages, etc.). These are presented as minimum, typical, and maximum values. Typical values are representative of operation at an ambient temperature of T A = 25° C with all power supply
voltages at nominal value. Next, input and output capacitances are presented. Each pin has a capacitance (whether
an input, an output, or control pin). Minimum capacitances are not given, as the typical and maximum values are the
most crucial.

TEXAS ~

INSTRUMENTS
4-10

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

Glossary/Timing Conventions/Data Sheet Structure

The next few tables involve the device timing characteristics. The parameters are presented as minimum, typical (or
nominal), and maximum. The timing requirements over recommended ranges of supply voltage and operating free-air
temperature indicate the device control requirements such as hold times, setup times, and transition times. These
values are referenced to the relative positioning of signals on the timing diagrams, which follow. The switching characteristics over recommended supply voltage range are device performance characteristics inherent to device operation
once the inputs are applied. These parameters are guaranteed for the test conditions given. The interrelation,ship of
the timing requirements to the switching characteristics is illustrated in timing diagrams for each type of memory cycle
(e.g., read, write, program.)
At the end of a data sheet additional applications information may be provided such as how to use the device, graphs
of electrical characteristics, or other data on electrical characteristics.

TEXAS "JI

INSlRUMENTS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001'

4-11

Glossary/Timing Conventions/Data Sheet Structure

TEXAS

l!I

INSlRUMENTS
4-12

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

Dynamic RAMs

Dynamic RAMs

TMS44C256
262 144-WORD BY 4-BIT
DYNAMIC RANDOM-ACCESS MEMORY
SMGS256C -

DQ1
DQ2

• 262 144 x 4 Organization

TF

WRITE

AO
A1
A2
A3

CYCLE

VCC

• Performance Ranges:
ACCESS ACCESS ACCESS READ
TIME
TIME
TIME
OR

TMS44C256-60
TMS44C256-70
TMS44C256-80
TMS44C256-10
TMS44C256-12

DQ4
DQ3
CAS
G
A8
A7
A6
A5
A4

W

ta(CA)
(tCAN
(MAX)
30 ns
35 ns
40 ns
45 ns
55 ns

SD Package
(Top View)

VSS

RAS

• Single 5-V Supply (10% Tolerance)

ta(C)
(tCAC)
(MAX)
15 ns
18 ns
20 ns
25 ns
30 ns

REVISED NOVEMBER 1990

N Package
(Top View)

This data sheet is applicable to al/
TMS44C256s symbolized with Revision "0"
and subsequent revisions as described
on page 5-21.

ta(R)
(tRAC)
(MAX)
60 ns
70 ns
80 ns
100 ns
120 ns

JUNE 1986 -

(MIN)
110 ns
130 ns
150 ns
180 ns
220 ns

G
DQ3

CAS
DQ4
DQ1

VSS

DQ2
RAS
AO
A2

W
TF

A1
A3
A4
A6
A8

VCC

A5
A7

DJ and DN Packages t
(Top View)

DQ1
DQ2

• Enhanced Page Mode Operation with
CAS-Before-RAS Refresh

W
RAS

VSS

DQ4
DQ3
CAS

TF

OE

AO
A1
A2
A3

A8
A7
A6
A5
A4

• Long Refresh Period ...
512-Cycle Refresh in 8 ms (Max)
• 3-State Unlatched Output
• Low Power Dissipation
• Texas Instruments EPIC™ CMOS Process

VCC

tThe packages shown here are for pinout reference only.
The OJ package is actually 75% of the length of the N
package.

• All Inputs and Clocks Are TTL Compatible
• High-Reliability Plastic 20-Pin 300-Mil-Wide
DIP, 20/26 J-Lead Surface Mount (SOJ)
('44C256-60 and '44C256-70 Available in
SOJ Only), 20/26 J-Lead Thin Surface
Mount (ThinSOJ), or 20-Pin Zig-Zag In-Line
(ZIP) Packages

PIN NOMENCLATURE
AO-AS
CAS
DQ1-DQ4

G
• Operation of TI's Megabit CMOS DRAMs
Can Be Controlled by TI's SN74ALS6301
and SN74ALS6302 Dynamic RAM
Controllers

RAS
TF

W
VCC
VSS

Address Inputs
Column-Address Strobe
Data In/Data Out
Data-Output Enable
Row-Address Strobe
Test Function
Write Enable
5-V Supply
Ground

• Operating Free-Air Temperature
... O°C to 70°C

description
The TMS44C256 series are high-speed, 1 048 576-bit dynamic random access memories, organized as
262 144 words of four bits each. They employ state-of-the-art EPIC ™ (Enhanced Process Implanted CMOS)
technology for high performance, reliability, and low power at low cost.
EPIC is a trademark of Texas Instruments Incorporated
PRODUCTION DATA documents contain Information current
as of publication date. Products conform to specifications per
the terms of Texas Instruments standard warranty. Production
processing does not necessarily Include testing of all
parameters.

TEXAS

"J1

Copyright © 1990. Texas Instruments Incorporated

INSTRUMENTS
POST OFFICE BOX 1443

•

HOUSTON. TEXAS 77001

5-1

TMS44C256
262 144-WORD BY 4-81T
DYNAMIC RANDOM-ACCESS MEMORY

SMGS256C -

JUNE 1986 - REVISED NOVEMBER 1990

description (continued)
These devices feature maximum RAS access times of 60 ns, 70 ns, SO ns, 100 ns, and 120 ns. Maximum power
dissipation is as low as 305 mW operating and 11 mW standby on 120 ns devices.
The EPIC technology permits operation from a single 5-V supply, reducing system power supply and decoupling
requirements, and easing board layout. ICC peaks are 140 mA typical, and a - 1-V input voltage undershoot can
be tolerated, minimizing system noise considerations.
All inputs and outputs, including clocks, are compatible with Series 54/74 TIL. All addresses and data-in lines
are latched on-chip to simplify system design. Data out is unlatched to allow greater system flexibility.
The TMS44C256 is offered in a 20-pin dual-in-line (N suffix) package, a 20-pin zig-zag in-line (SO suffix) package,
a 20/26 J-Iead plastic surface mount SOJ (OJ suffix), and a 20/26 J-Iead thin plastic surface mount SOJ
(ON suffix). The TMS44C256-60 and TMS44C256-70 are available in the 20/26 J-Iead plastic surface mount SOJ
(OJ suffix) only. These packages are guaranteed for operation from O°C'to 7.0°C.

operation
enhanced page mode
Page-mode operation allows faster memory access by keeping the same row address while selecting random
column addresses. The time for row-address setup and hold and address multiplex is thus eliminated. The
maximum number of columns that may be accessed is determined by the maximum RAS low time and the CAS
page cycle time used. With minimum CAS page cycle time, all512 columns specified by column addresses AO
through AS can be accessed without intervening RAS cycles.
Unlike conventional page-mode DRAMs, the column-address buffers in this device are activated on the falling
edge of RAS. The buffers act as transparent or flow-through latches while CAS is high. The falling edge of CAS
latches the column addresses. This feature allows the TMS44C256 to operate at a higher data bandwidth than
conventional page-mode parts, since data retrieval begins as soon as column address is valid rather than when
CAS transitions low. This performance improvement is referred to as "enhanced page mode." Valid column
address may be presented immediately after th(RA) (row address hold time) has been satisfied, usually well in
advance of the falling edge of CAS. In this case, data is obtained after ta(C) max (access time from CAS low),
if ta(CA) max (access time from column address) has been satisfied. In the event that column addresses for the
next page cycle are valid at the time CAS goes high, access time for the next cycle is determined by the later
occurrence of ta(C) or ta(CP) (access time from rising edge of CAS).
'address (AO through AS)
Eighteen address bits are required to decode 1 of 262 144 storage cell locations. Nine row-address bits are set
up on pins AO through AS and latched onto the chip by the row-address strobe (RAS). Then nine column-address
bits are set up on pins AO through AS and latched onto the chip by the column-address strobe (CAS). All
addresses must be stable on or before the falling edges of RAS and CAS. RAS is similar to a chip enable in
- that it activates the sense amplifiers as well as the row decoder. CAS is used as a chip select activating the output
buffer, as well as latching the address bits into the column-address buffers.
write enable (W)
The read or write mode is selected through the write-enable (W) input. A logic high on the W input selects the
read mode and a logic low selects the write mode. The write-enable terminal can be driven from the standard
TIL circuits without a pull-up resistor. The data input is disabled when the read mode is selected. When W goes
low prior to CAS (early write), data out will remain in the high-impedance state for the entire cycle, permitting a
write operation with G grounded.

TEXAS •

INSlRUMENTS
5·2

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

TMS44C256
262 144-WORD BY 4-BIT
DYNAMIC RANDOM-ACCESS MEMORY
SMGS256C -

JUNE 1986 -

REVISED NOVEMBER 1990

data in (001-004)
Data is written during a write or read-modify-write cycle. Depending on the mode of operation, the falling edge
of CAS or W strobes data into the on-chip data latch. In an early write cycle, W is brought low prior to CAS and
the data is strobed in by CAS with setup and hold times referenced to this signal. In a delayed-write or
read-modify-write cycle, CAS will already be low, thus the data will be strobed in by Wwith setup and hold times
referenced to this signal. In a delayed-write or read-modify-write cycle, G must be high to bring the output buffers
to high-impedance prior to impressing data on the I/O lines.

data out (001-004)
The three-state output buffer provides direct TTL compatibility (no pull-up resistor required) with a fanout of two
Series 74 TTL loads. Data out is the same polarity as data in. The output is in the high-impedance (floating) state
until CAS and G are brought low. In a read cycle the output becomes valid after the access time interval ta(C)
that begins with the negative transition of CAS as long as ta(R) and t a(C.6) are satisfied. Th~output becomes valid
after the access time has elapsed and remains valid while CAS and G are low. CAS or G going high returns it
to a high-impedance state. This is accomplished by bringing G high prior to applying data, thus satisfying td(GHD)'

output enable

(G)

G controls the impedance of the output buffers. When G is high, the buffers will remain in the high-impedance
state. Bringing G low during a normal cycle will activate the output buffers putting them in the low-impedance
state. It is necessary for both RAS and CAS to be brought low for the output buffers to go into the low-impedance
state. Once in the low-impedance state, they will remain in the low-impedance state until either G or CAS is
brought high.

refresh
A refresh operation must be performed at least once every eight milliseconds to retain data. This can be achieved
by strobing each of the 512 rows (AD-AS). A normal read or write cycle will refresh all bits in each row that is
selected. A RAS-only operation can be used by holding CAS at the high (inactive) level, thus conserving power
as the output buffer remains in the high-impedance state. Externally generated addresses must be used for a
RAS-only refresh. Hidden refresh may be performed while maintaining valid data at the output pin. This is
accomplished by holding CAS at VIL after a read operation and cycling RAS after a specified precharge period,
similar to a RAS-only refresh cycle.

CAS-before-RAS refresh
CAS-before-RAS refresh is utilized by bringing CAS low earlier than RAS [see parametertd(CLRL)RJ and holding
it low after RAS falls [see parameter td(RLCH)RJ. For successive CAS-before-RAS refresh cycles, CAS can
remain low while cycling RAS. The external address is ignored and the refresh address is generated internally.
The external address is also ignored during the hidden refresh option.

power-up
To achieve proper device operation, an initial pause of 200 !!s followed by a minimum of eight initialization cycles
is required after power-up to the full VCC level.

test function pin
During normal device operation the TF pin must either be disconnected or biased at a voltage less than or equal
to VCC'

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

5-3

TMS44C256
262 144-WORD BY 4-BIT
DYNAMIC RANDOM-ACCESS MEMORY

SMGS256C -

JUNE 1986 -

REVISED NOVEMBER 1990

logic symbol t

AO
A1
A2
A3
A4
AS
A6
A7
A8

RAM 256Kx4
2009/2100

6
7

8
9
11
12
13
14
15

262143

4~

17~
Vi
G

31

16 -

r-.....

OQ2 2
18
OQ3
19
OQ4

20017/2108
C20[ROW]
G23/[REFRESH ROW]
24[PWR OWN]
t> C21/[COLUMN]
G24

t>

&

~ 23C22

23,210
G25

24,25EN

r

~

1 _
OQ1

0

A

1......
....
....
....

A,220
V26

A,Z26--

~

~

~

t This symbol is in accordance with ANSI/IEEE Std 91-1984 and lEG Publication 617-12.
Pin numbers shown are for the N package.

TEXAS . .

INSTRUMENTS
5-4

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

1MS44C256
262 144-WORD 8Y 4-811
DYNAMIC
RANDOM-ACCESS MEMORY
SMGS256C - JUNE 1986 - REVISED NOVEMBER 1990
functional block diagram

~

~

.
....

I

->
Row
Address
Buffers

"J

(9)

256K 1 Row·1
Array
Decode

~
..l
- ...

AD
A1
A2
A3
A4

r

:..
.

...

A5

A6
A7
AS

~

~

Timing and Control

I

256K
Array

'"

;,.

Sense Amplifiers
Column
Address
Buffers
(9)

M
-.I

Column Decode

=!:=
=!:=
=!:=
-..-

~

Data
In
Reg

~
.,

I/O
Buffers
4 of S
Selection

4

r--+~l

r+r+-

Data
Out
Reg

~
...

~

~

4

Sense Amplifiers
256K 1 Row
Array
Decode

I

256K
Array

001-0 04

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)t
Voltage range on any pin (see Note 1) ................................................. - 1 V to 7 V
Voltage range on Vee ............................................................... - 1 V to 7 V
Short circuit output current ................................................................ 50 mA
Power dissipation .......................................................................... 1 W
Operating free-air temperature range .................................................. Oae to 70 0 e
Storage temperature range ....................................................... - 65°e to 150 0 e
t Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and
functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of
this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltage values in this data sheet are with respect to VSS.

recommended operating conditions
MIN

NOM

MAX

4.5

5

5.5

UNIT
V

Vee

Supply voltage

VSS

Supply voltage

VIH

High-level input voltage

2.4

6.5

V

VIL

Low-level input voltage (see Note 2)

-1

0.8

V

V

0

°e
70
Operating free-air temperature
0
TA
..
..
..
NOTE 2: The algebraic convention, where the more negative (less positive) limit IS designated as minimUm, IS used In thiS data sheet for logic
voltage levels only.

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

5-5

TMS44C256
262 144-WORD BY 4-BIT
DYNAMIC RANDOM-ACCESS MEMORY

SMGS256C -

JUNE 1986 -

REVISED NOVEMBER 1990

electrical characteristics over full ranges of recommended operating conditions (unless otherwise
noted)
TMS44C256-60

TEST CONDITIONS

PARAMETER
VOH

High-level output voltage

10H =-5 mA

VOL

Low-level output voltage

10L = 4.2 mA

II

Input current (leakage)

10
ICC1

MIN

MAX

TMS44C256-70
MIN

MAX

2.4

2.4

UNIT
V

0.4

0.4

V

VI = 0 to 5.8 V, VCC = 5 V, All other pins = 0 V to VCC

± 10

±10

f1A

Output current (leakage)

Vo = 0 V to VCC, VCC = 5.5 V, CAS high

±10

±10

f1A

Read/write cycle current

tc(rdWl = minimum, VCC = 5.5 V

95

80

mA

2

2

mA

ICC2

Standby current

After 1 memory cycle, RAS and CAS high, VIH = 2.4 V

ICC3

Average refresh circuit
(RAS-only, or CSR)

tgl&W) = minimum, VCC = ~V, RAS cycling, CAS high
(RAS-only), RAS low, after CAS low (CSR)

90

80

mA

ICC4

Average page current

tc(P) = minimum, VCC = 5.5 V, RAS low, CAS cycling

70

60

mA

TMS44C256-10

TMS44C256-12

TMS44C256-80

TEST
CONDITIONS

PARAMETER
VOH

High-level output voltage

10H =-5 mA

VOL

Low-level output voltage

10L = 4.2 mA

II

Input current (leakage)

10
ICC1

MIN

MAX

MIN

MAX

2.4

2.4

MIN

MAX

2.4

UNIT
V

0.4

0.4

0.4

V

VI = 0 to 5.8 V, VCC = 5 V,
All other pins = 0 V to VCC

±10

± 10

±10

f1A

Output current (leakage)

Vo = OtoVCC,
VCC = 5.5 V, CAS high

±10

± 10

±10

f1A

Read/write cycle current

tc(rdWl = minimum, VCC = 5.5 V

75

65

55

mA

ICC2

Standby current

After 1 memory cycle,
RAS and CAS high, VIH = 2.4 V

2

2

2

mA

ICC3

Average refresh circuit
(RAS-only, or GSR)

!9.MW) = minimum, VCC = 5.5 V
RAS cycling, CAS high (RAS-only),
RAS low, after CAS low (GSR)

70

60

50

mA

ICC4

Average page current

50

45

35

mA

~ = minimum, VCG = 5.5 V,

RAS low, GAS cycling

capacitance over recommended ranges of supply voltage and operating free-air temperature,
f = 1 MHz (see Note 3)
PARAMETER

MIN

TYP

MAX

UNIT

Ci(A)

Input capacitance, address inputs

5

pF

Ci(RC)

Input capacitance, strobe inputs

5

pF

Ci(W)

Input capacitance, write-enable input

5

pF

Ci(G)

Input capacitance, output-enable input

5

pF

Co

Output capacitance

7

pF

NOTE 3: VCG equal to 5 V ± 0.5 V and the bias on pins under test is 0 V.

TEXAS

lJ1

INSTRUMENTS
5-6

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

TMS44C256
262 144-WORD BY 4-BIT
DYNAMIC RANDOM-ACCESS MEMORY
SMGS256C -

JUNE 1986 -

REVISED NOVEMBER 1990

switching characteristics over recommended ranges of supply voltage and operating free-air
temperature (see Figure 1)
ALT.
SYMBOL

PARAMETER

TMS44C256-60
MIN

MAX

TMS44C256-70
MIN

MAX

UNIT

ta(C)

Access time from CAS low

tCAC

15

18

ns

ta(CA)

Access time from column-address

tCM

30

35

ns

ta(R)

Access time from RAS low

tRAC

60

70

ns

ta(G)

Access time from Glow

tGAC

15

18

ns

ta(CP)

Access time from column precharge

tCAP

35

40

ns

td(CLZ)

CAS low to output in low Z

tCLl

0

tdis(CH)

Output disable time after CAS high (see Note 4)

tOFF

0

15

0

18

ns

tdis(G)

Output disable time after G high (see Note 4)

tGOFF

0

15

0

18

ns

ALT.
SYMBOL

PARAMETER

TMS44C256-80
MIN

MAX

TMS44C256-10
MIN

ns

0

MAX

TM544C256-12
MIN

MAX

UNIT

ta(C)

Access time from CAS low

tCAC

20

25

30

ta(CA)

Access time from column-address

tCM

40

45

55

ns

ta(R)

Access time from RAS low

tRAC

80

100

120

ns

ta(G)

Access time from Glow

tGAC

20

25

30

ns

ta(CP)

Access time from column precharge

tCAP

40

50

60

ns

td(CLZ)

CAS low to output in low Z

tCLl

0

tdis(CH)

Output disable time after CAS high (see Note 4)

tOFF

0

20

0

25

0

30

ns

tdis(G)

Output disable time after G high (see Note 4)

tGOFF

0

20

0

25

0

30

ns

ns

0

0

ns

NOTE 4: tdis(CH) and tdis(G) are specified when the output is no longer driven.

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

5-7

TMS44C256
262 144-WORD BY 4-BIT
DYNAMIC RANDOM-ACCESS MEMORY
SMGS256C - JUNE 1986 - REVISED NOVEMBER 1990
timing requirements over recommended ranges of suppiy voltage and operating free-air
temperature (continued)
ALT.
SYMBOL

PARAMETER

TMS44C256-60
MIN

MAX

TMS44C256-70
MIN

UNIT

MAX

tc(rd)

Read cycle time (see Note 6)

tRC

110

130

ns

tc(W)

Write cycle time

twc

110

130

ns

tc(rdW)

Read-write/read-modify-write cycle time

tRWC

155

181

ns

tc(P)

Page-mode read or write cycle time (see Note 7)

tpc

40

45

ns

tc(PM)

Page-mode read-modify-write cycle time

tpCM

85

96

ns

tw(CH)

Pulse duration, CAS high

tcp

10

10

tw(CL)

Pulse duration, CAS low (see Note 8)

tCAS

15

tw(RH)

Pulse duration, RAS high (precharge)

tRP

40

tw(RL)

Non-page-mode pulse duration, RAS low (see Note 9)

tRAS

60

10000
100000

10000

18

ns
10000

ns

70

10000

ns

70

100000

ns

ns

50

tw(RL)P

Page-mode pulse duration, RAS low (see Note 9)

tRASP

60

tw(WL)

Write pulse duration

twp

15

15

ns

tsu(CA)

Column-address setup time before CAS low

tASC

0

0

ns

tsu(RA)

Row-address setup time before RAS low

tASR

0

0

ns

tsu(D)

Data setup time before W low (see Note 10)

tDS

0

0

ns

tsu(rd)

Read setup time before CAS low

tRCS

0

0

ns

tsu(WCL)

W-Iow setup time before CAS low (see Note 11)

twcs

0

0

ns

tsu(WCH)

W-Iow setup time before CAS high

tCWL

15

18

ns

tsu(WRH)

W-Iow setup time before RAS high

tRWL

15

18

ns

th(C~

Column-address hold time after RAS low

tCAH

10

15

ns

th(RA)

Row-address hold time after RAS low

tRAH

10

10

ns

tAR

50

55

ns

Column-address hold time after RAS low (see Note 12)
th(RLCA)
Continued next page.
NOTES: 5.
6.
7.
8.

9.
1O.
11.
12.

Timing measurements in this table me reierenced to VIL max and VIH min.
All cycle times assume tt = 5 ns.
To guarantee tc(P) min, tsu(CA) should be greater than or equal to tw(CH)'
In a read-modify-write cycle, td(CLWL) and tsu(WCH) must be observed. (Depending on the user's transition times, this may require
additional CAS low time [tw(CL)))'
In a read-modify-write cycle, td(RLWL) and tsu(WRH) must be observed. (Depending on the user's transition times, this may require
additional RAS I~ time [tw(RL)))'
Later of CAS or W in write operations.
Early write operation only.
The minimum value is measured when td(RLCL) is set to td(RLCL) min as a reference.

TEXAS •
INSTRUMENTS
5-8

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

TMS44C256
262 144-WORD BY 4-BIT
DYNAMIC RANDOM-ACCESS MEMORY
SMGS256C -

JUNE 1986 -

REVISED NOVEMBER 1990

timing requirements over recommended ranges of supply voltage and operating free-air
temperature (continued)
ALT.
SYMBOL

PARAMETER

TMS44C256·80
MIN

MAX

TMS44C256·10
MIN

MAX

TMS44C256·12
MIN

UNIT

MAX
ns

tc(rd)

Read cycle time (see Note 6)

tRC

150

180

220

tc(W)

Write cycle time

twc

150

180

220

ns

tc(rdW)

Read-write/read-modify-write cycle time

tRWC

205

245

295

ns

tc(P)

Page-mode read or write cycle time (see Note 7)

tc(PM)

Page-mode read-modify-write cycle time

tpc

50

55

65

ns

tpCM

100

120

135

ns

10

tw(CH)

Pulse duration, CAS high

tcp

10

tw(CL)

Pulse duration, CAS low (see Note 8)

tCAS

20

tw(RH)

Pulse duration, RAS high (precharge)

tRP

60

tw(RL)

Non-page-mode pulse duration, RAS low
(see Note 9)

tRAS

80

10000

100

10000

120

10000

ns

tw(RL)P

Page-mode pulse duration, RAS low (see Note 9)

100000

100

100000

120

100000

ns

tw(WL)

Write pulse duration

tRASP
twp

80
15

15

20

ns

tsu(CA)

Column-address setup time before CAS low

tASC

0

0

0

ns

tsu(RA)

Row-address setup time before RAS low

tASR

0

0

0

ns

tsu(D)

Data setup time before W low (see Note 10)

tDS

0

0

0

ns

tsu(rd)

Read setup time before CAS low

tRCS

0

0

0

ns

tsu(WCL)

W-Iow setup time before CAS low (see Note 11)

twcs

0

0

0

ns

tsu(WCH)

W-Iow setup time before CAS high

tCWL

20

25

30

ns

tsu(WRH)

W-Iow setup time before RAS high

tRWL

20

25

30

ns

th(CA)

Column-address hold time after RAS low

tCAH

15

20

20

ns

th(RA)

Row-address hold time after RAS low

tRAH

12

15

15

ns

tAR

60

70

80

ns

Column-address hold time after RAS low
th(RLCA)
(see Note 12)
Continued next page.
NOTES: 5.
6.
7.
8.
9.
10.
11.
12.

10000

25

15
10000

30

ns
10000

90

70

ns
ns

Timing measurements in this table are referenced to VIL max and VIH min.
All cycle times assume tt = 5 ns.
,
To guarantee tc(P) min, tsu(CA) should be greater than or equal to tw(CH).
In a read-modify-write cycle, td(CLWL) and tsu(WCH) must be observed. (Depending on the user's transition times, this may require
additional CAS low time [tw(CL)j).
In a read-modify-write cycle, td(RLWL) and tsu(WRH) must be observed. (Depending on the user's transition times, this may require
additional RAS I~ time [tw(RL)j).
Later of CAS or W in write operations.
Early write operation only.
The minimum value is measured when td(RLCL) is set to td(RLCL) min as a reference.

TEXAS

l!1

INSTRUMENlS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

5-9

TMS44C256
262 144·WORD BY 4·BIT
DYNAMIC RANDOM·ACCESS MEMORY
SMGS256C - JUNE 1986 - REVISED NOVEMBER 1990
timing requirements over recommended ranges of supply voltage and operating free-air
temperature (continued)
TMS44C256·60
ALT.
SYMBOL
MIN
MAX

PARAMETER

TMS44C256·70
MIN

MAX

UNIT

th(D)

Data hold time after CAS low (see Note 10)

tDH

10

15

ns

th(RLD)

Data hold time after RAS low (see Note 12)

tDHR

50

55

ns

th(WLGL)

G hold time after W low

tGH

15

18

ns

th(CHrd)

Read hold time after CAS high (see Note 13)

tRCH

0

0

ns

th(RHrd)

Read hold time after RAS high (see Note 13)

tRRH

0

0

ns

th(CLW)

Write hold time after CAS low (see Note 11)

tWCH

15

15

ns

th(RLW)

Write hold time after RAS low (see Note 12)

tWCR

50

55

ns

td(RLCH)

Delay time, RAS low to CAS high

tCSH

60

70

ns

td(CHRL)

Delay time, CAS high to RAS low

tCRP

0

0

ns

td(CLRH)

Delay time, CAS low to RAS high

tRSH

15

18

ns

td(CLWL)

Delay time, CAS low to W low (see Note 14)

tCWD

40

46

ns

td(RLCL)

Delay time, RAS low to CAS low (see Note 15)

tRCD

20

45

20

52

ns

td(RLCA)

Delay time, RAS low to column·address (see Note 15)

tRAD

15

30

15

35

ns

td(CARH)

Delay time, column-address to RAS high

tRAL

30

35

ns

td(CACH)

Delay time, column-address to CAS high

tCAL

30

35

ns

td(RLWL)

Delay time, RAS low to W low (see Note 14)

tRWD

85

98

ns

td(CAWL)

Delay time, column-address to W low (see Note 14)

tAW 0

55

63

ns

td(GHD)

Delay time, G high before data at DO

tGDD

15

18

ns
ns

td(GLRH)

Delay time, G low to RAS high

tGSR

10

10

td(RLCH)R

Delay time, RAS low to CAS high (see Note 16)

tCHR

15

15

ns

td(CLRL)R

Delay time, CAS low RAS low (see Note 16)

tCSR

10

10

ns

td(RHCL)R

Delay time, RAS high CAS low (see Note 16)

tRPC

0

trf

Refresh time interval

tREF

Transition time
tt
Continued next page.
NOTES: 5.
10.
11.
12.
13.
14.
15.
16.

IT

Timing measurements in this table are referenced to VIL max and VIH min.
Later of CAS or Vii in write operations.
Early write operation only.
The minimum value is measured when td(RLCL) is set to td(RLCL) min as a reference.
Either th(RHrd) or th(CHrd) must be satisfied for a read cycle.
Read-modify-write operation only.
Maximum value specified only to guarantee access time.
CAS-before-RAS refresh only.

TEXAS . .

INSTRUMENTS
5·10

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

3

ns

0
8
50

3

8

ms

50

ns

TMS44C256
262 144-WORD BY 4-BIT
DYNAMIC RANDOM-ACCESS MEMORY
SMGS256C -

JUNE 1986 -

REVISED NOVEMBER 1990

timing requirements over recommended ranges of supply voltage and operating free-air
temperature (concluded)
ALT.
SYMBOL

PARAMETER

TMS44C256-80
MIN

MAX

TMS44C256-10
MIN

MAX

TMS44C256-12
MIN

MAX

UNIT

them

Data hold time after CAS low (see Note 10)

tDH

15

20

25

ns

th(RLD)

Data hold time after RAS low (see Note 12)

tDHR

60

70

85

ns
ns

th(WLGL)

G hold time after W low

tGH

20

25

30

th(CHrd)

Read hold time after CAS high (see Note 13)

tRCH

0

0

0

ns

th(RHrd}

Read hold time after RAS high (see Note 13)

tRRH

0

0

0

ns
ns

th(CLW)

Write hold time after CAS low (see Note 11)

tWCH

15

20

25

th(RLW)

Write hold time after RAS low (see Note 12)

tWCR

60

70

85

ns

td(RLCH)

Delay time, RAS low to CAS high

tCSH

80

100

120

ns
ns

td(CHRL)

Delay time, CAS high to RAS low

tCRP

0

0

0

td(CLRH)

Delay time, CAS low to RAS high

tRSH

20

25

30

ns

td(CLWL)

Delay time, CAS low to W low (see Note 14)

tCWD

50

60

70

ns

td(RLCL)

Delay time, RAS low to CAS low (see Note 15)

tRCD

22

60

25

75

25

90

ns

td(RLCA)

Delay time, RAS low to column-address
(see Note 15)

tRAD

17

40

20

55

20

65

ns

td(CARH)

Delay time, column-address to RAS high

tRAL

40

45

55

td(CACH)

Delay time, column-address to CAS high

tCAL

40

45

55

ns

td(RLWL)

Delay time, RAS low to W low (see Note 14)

tRWD

110

135

160

ns

td(CAWL)

Delay time, column-address to W low
(see Note 14)

tAWD

70

80

95

ns

ns

td(GHD)

Delay time, G high before data at DO

tGDD

20

25

30

ns

td(GLRH)

Delay time, G low to RAS high

tGSR

10

10

10

ns
ns

td(RLCH)R

Delay time, RAS low to CAS high (see Note 16)

tCHR

20

25

25

td(CLRL)R

Delay time, CAS low RAS low (see Note 16)

tCSR

10

10

10

ns

td(RHCL)R

Delay time, RAS high CAS low (see Note 16)

tRPC

0

0

0

ns

trf

Refresh time interval

tREF

tt

Transition time

NOTES: 5.
10.
11.
12.
13.
14.
15.
16.

tT

8
3

50

8
3

50

3

8

ms

50

ns

Timing measurements in this table are referenced to VIL max and VIH min.
Later of CAS or IN in write operations.
Early write operation only.
The minimum value is measured when td(RLCL) is set to td(RLCL) min as a reference.
Either th(RHrd) or th(CHrd) must be satisfied for a read cycle.
Read-modify-write operation only.
Maximum value specified only to guarantee access time.
CAS-before-RAS refresh only.

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 1443

•

HOUSTON. TEXAS 77001

5-11

TMS44C256
262 144-WORD BY 4-81T
DYNAMIC RANDOM-ACCESS MEMORY
SMGS256C-JUNE 1986 - REVISED NOVEMBER 1990
PARAMETER MEASUREMENT INFORMATION
1.31 V

R1 = B2B Q

RL=21BQ

Output Under Test

Output Under Test

CL=100pF

T

CL=100pF

(b) Alternate Load Circuit

(a) Load Circuit

Figure 1. Load Circuits for Timing Parameters

read cycle timing

NOTE 17:

Output may go from high·impedance to an invalid data state prior to the specified access time.

TEXAS •

INSlRUMENTS
5-12

POST OFFICE BOX 1443

•

HOUSTON. TEXAS 77001

R2 = 295 Q

TMS44C256
262 144-WORD BY 4-BIT
DYNAMIC RANDOM-ACCESS MEMORY
SMGS256C -

JUNE 1986 -

REVISED NOVEMBER 1990

early write cycle timing

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

5-13

TMS44C256
262 144-WORD BY 4-81T
DYNAMIC RANDOM-ACCESS MEMORY
SMGS256C - JUNE 1986 - REVISED NOVEMBER 1990
late write cycle timing

TEXAS ~

INSTRUMENTS
5-14

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

TMS44C256
262 144-WORD BY 4-BIT
DYNAMIC RANDOM-ACCESS MEMORY
SMGS256C -

JUNE 1986 -

REVISED NOVEMBER 1990

read-write/read-modify-write cycle timing
14

N

RAS

~I

tc(ROW)
tw(RL)

_-'-"IiI 14

~I

I I

--.I j+-

tt

14

,

tsu(RA)

-.l
I

,

I

~,

I... ,

I

0

I.
I I

t..o

""t+i -

th(RA)

I+-+t- ~su(CA)

.,J

td(RLCA)

~
AD-AS

I

N

I I

I,

.~~

:'4

~
,

"
t
'd(RLWL)
!+--f--tsU(rd) - - . I

I

~

I

I
I
,
,

I
I
,

001004

tsu(WCH)

ta(R)

1

I I

i "--

I

I
I

~I

14

~

1

Oau:

V'H
VIL

tsu(WRH)

tw(WL)

VIH
VIL

~----cJL._~,,~/'''~\I~\,"1'.\,''''1'\~\-:\~~~~~~~~VIH/VOH

0 t
1

VIL

~ tw(CH) - . !

N ~~~~~~~""""~§~cg~~e~~""'"

1

-

.::!
r.-

r.- ta(G) -.:--':
I

t1 IS (G)

I

~ th(WLGL)

11e4--"~ll-td(GHO)

GmHYE_)
NOTE 17:

I I
I ... I

,
,

}

td(CAWL)
~ I
~ td(CLWL) ---~ I
: ta(C)
\4
.1
-+I tOiIIT tsu(O)
~ ta(~A) - . I
I -.l ~ th(O)
I
I ,
td(CLZ) -.!
~ 1
I

Ie,,,,---

tw(RH)
vlH

1

I

(see Note 17)

~

I

I

~
I

I

~I

I:
'4
'

~I

~tt

I '

-----i-'_______-<
I

:+T

I ' - - - - - VIL

I

14
td(CHRL)

VIH

~

~Hh~~~,-_________

c~'umn

I...
...

IN

I
I

~.

tw(CL)

I ~ td(RLCL) --.I

I

Vi

:

~H*H~ :::

Output may go from high·impedance to an invalid data state prior to the specified access time.

TEXAS •
INSTRUMENTS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

5·15

TMS44C256
262 144-WORD BY 4-BIT
DYNAMIC RANDOM-ACCESS MEMORY

SMGS256C -

JUNE 1986 -

REVISED NOVEMBER 1990

enhanced page-mode read cycle timing

VIL

Column

AQ-AS

-+I I
~tsU(rd)~
I
-XXXXTi
j!
w '££i)'

:
I

I~

~~~~~Q4.:~~

I
I

td(RLCA)

Ith(RHrd)

I
j
I'Q<"X"YI

: ta(c):~
~I
f+--- ta(C~) --.J
ta(R)
I
~:
td(CLZ) ----j4-+I
I

001(see Note 17)
004 --------------------------~

f+--- th(C.Hrd)

1'\1/1
1
~

ta(CA) -.:
(see Note 19) I

I

VIL

~

I~

I
I

~ VIH
\QVIL

I~
tdls(CH)
ta(CP) - . ,
(see Note 19)
I
(see Note 1S)
-r-"----:IIi..

14--

.r--_..

~--------~X

VOH

>-----VOL

NOTES: 17. Output may go from high-impedance to an invalid data state prior to the specified access time.
18. A write cycle or read-modify-write cycle can be mixed with the read cycles as long as the write and read-modify-write timing
specifications are not violated.
19. Access time is ta(CP) or ta(CA) dependent.

TEXAS . .
INSTRUMENTS
5-16

POST OFFICE BOX 1443

•

HOUSTON. TEXAS 77001

TMS44C256
262 144-WORD BY 4-BIT
DYNAMIC RANDOM-ACCESS MEMORY
SMGS256C -

JUNE 1986 -

REVISED NOVEMBER 1990

enhanced page-mode write cycle timing
tw(RH)

-+I

141~~-----------tw(RL)P -----------~.I

I

I

~

I

I+-

I

VIH

:~
~.----------------------------1 i 1"-- VIL

RASN

I
:

:~

td(RLCH)
td(RLCL)
tw(CL)

I~

: I
I I
:1

-.I
I
I
I
I

'K\~

:

j+.tsu(RA)

I
I

:

I

tsu(CA)

i+-

-.I

*-- th(RA) ~!
I~

I

~

I

I

.1 I~
tc(P)
I ~ tw(CH) --.I

~

i

I I

I

I
I

I

I

.1

::

~ td(CLRH) ~

I

I
I

I

I

I

I .1

I I
.1 I
I

td(CARH)

I

I

I

I

.r-------'-"

Row

I

!I !I

I I
~ td(CACH) -+I I

I~

I

*- td(CHAL) ~

\"1!:

Y:

*- th(CA) ~

I

th(RLC )

.r---J...-----~

AO-AS

.1

,,'7'0~~'7'0~~7\7' VIH

Column

I
~ td(RLCA) ----+1
I~
th(RLW) --;---t----1~

I
tsu(WCH)

I

~

~

:

~tSU(WRH) ~

1

I
," /'''.f'- /,1

~~~~~~~~~~~~--T_~~~~~~~~~~~~~~~~~~~~~~VIL

I~I

'-1

I I

~

ll~

04-

tsu(D)

(see Note 21)

001·
004

th(D)

-.I

~ (see Note 21) I
~th(D\
.1

(see Note 2 1 ) :

1'4----..+-1 th(WLGL)

I

thl RLD)

I
I

->.(s=-:e:..::..e...:..:N:..::..ot.:..=e--=2'-'-'1)'--_~.:

Valid Data In

I
--..1 I+- td(GHD)

I

114.1----...If- th(WLGL)

--.!
I

I

I

~ td(GHD)

NOTES: 20. A read cycle or a read-modify-write cycle can be intermixed with the write cycles as long as the read and read-modify-write timing
specifications are not violated.
21. Referenced to CAS or 'ii, whichever occurs last.

TEXAS

-1!1

INSTRUMENTS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

5-17

TMS44C256
262 144-WORD BY 4-BIT
DYNAMIC RANDOM-ACCESS MEMORY

SMGS256C -

JUNE 1986 - REVISED NOVEMBER 1990

enhanced page-mode read-modify-write cycle timing
tw(RH) ~
~1~1-----------tw(RL)P -----------.;. I

I

RAS

~~I________________________________________~};r[\1 ~____

td(RLCL)

-+I-!I.~
I I~
I I
I
11
1

~

1f4~fl--I----tC(PM).1
I
tw(CL)
~1 I
I I

I tS~(CA)

~

I

I

1 I

1

-+l ~

I~

•:

.1

th(RA)

~

I

~ td(CAWL)

~

I

i

III
"\j
!x
I I-+.J
~
I
I
I I I I
ta(e) I I
tsu(rd) -+J I ~:
!~l
: ta(CA) :~ I
.1
~ tsu(D)
1111

J+--ta(R)
td(CLZ)

_I
I

~

I
I

I
I

VIL

td(CHRL)
VIH
VIL

VIH
VIL

:

'III

\;

I

I

~ ta(CP) -.J

...1

VIH

~VIL

141~-_-...I,--- th(WLGL)

II

:

I

I

I

I I

I

:

I

~ ~

I

I

VIH

I
-II~-~"
"'~f----:---t.~I- tsu(WRH)
L..

tsu(WCH)

~
_

'I

I

I

•

~

Column

!I I ;+ td(CLWL)~I
-.l
I
~ ~! 14~,--..t-1 t~(WL)

!.-td(RLWL) ~ I

J/-~-~

001004
Valid Out

~ ta(G)
I

I
G

tw(CH)

th(CA)

A~AB~: ~olumn ~

I
I

/

1 .

I~

I I

.1 I

I~ I

~

I
\.I~
I 't

1... 1

td(RLCA)

~td(CLRH) ~
j'
I
I

.1

_ _ ..I td(RLCH)
..·

~ ~tsu(RA)

Vi

~

I
I

I I

~

----.J

I
I

-ti-l ~

.:
tdls(G)

th(WLGL)

I

I~________~I

/

I
I

~:.-

td(GHD)

r l_ _ _ _ _ _-,~~~~~~

\~----J/

NOTES: 17. Output may go from high-impedance to an invalid data state prior to the specified access time.
22. A read orwrite cycle can be intermixed with read-modify-write cycles as long as the read and write timing specifications are not violated.

TEXAS ~

INSTRUMENlS
5-18

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

TMS44C256
262 144·WORD BY 4·BIT
DYNAMIC
RANDOM·ACCESS MEMORY
SMGS256C - JUNE 1986 - REVISED NOVEMBER 1990
RAS-only refresh timing
f4II- tw(RL) -.-l

N

RAS

td(CHRL) ---loII1"~~~1
:

~I

tc(rd)

:411

_ _ _ _ _ _ _ _ _ _ _ _...,:1

JI:

VIH

T\

VIL

~ tw(RH) ~

1

~ ~

:

tt

1411

~:

td(RHCL)R.
VIH
VIL

VIH
Row
VIL

TEXAS •
INSTRUMENTS
POST OFFICE BOX 1443

•

HOUSTON. TEXAS 77001

5·19

TMS44C256
262 144-WORD BY 4-81T
DYNAMIC RANDOM-ACCESS MEMORY

SMGS256C -

JUNE 1986 -

REVISED NOVEMBER 1990

hidden refresh cycle (enhanced page mode)

TEXAS

-1!1

INSTRUMENTS
5-20

POST OFFICE BOX 1443

•

HOUSTON. TEXAS 77001

TMS44C256
262 144-WORD BY 4-BIT
DYNAMIC RANDOM-ACCESS MEMORY
SMGS256C -

JUNE 1986 -

REVISED NOVEMBER 1990

automatic (CAS-before-RAS) refresh cycle timing
14
...- - - - - - - - - - tc (rd) ----------~.I

~ tw(RH)

RAS

-A

td(RHCL)R

~

-+l

td(CLRL)R
CAS

-+J

N
1.
4.1
.-

~ ~

I...

\l

..,

-

-

-

-

-

-

yr-----

tw(RL) - - - - - - - . ,
..
1

:

tt

114... - - - - td(RLCH)R - - - - . !
.. I

Y

OQ1- - - - - - - - - - - - - - - - H I - Z - - - - - - - - - - - - - - oQ4

device symbolization
-SS

--

TI

TMS44C256r

Package Cod e
N DIP
OJ =SOJ
SO =ZIP
ON =ThinSO J

=

F

0

P

XXX
-

LL

--

Wafer Fab Co de
Ole Revision Code
Assembly Si te Code
Month Code
Lot Traceabl lity Code
Speed (-60, -70 -80, -10, -12

TEXAS

"!1

INSTRUMENTS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

5-21

TMS44C256
262 144-WORD BY 4-BIT
DYNAMIC RANDOM-ACCESS MEMORY

SMGS256C -

JUNE 1986 - REVISED NOVEMBER 1990

TEXAS •

INSlRUMENTS
5-22

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

TMS4C1024, TMS4C1 025, TMS4C1 027
1 048 576·81T DYNAMIC RANDOM·ACCESS MEMORIES
SMGS024F - MAY 1986 - REVISED NOVEMBER 1990

This Data Sheet Is Applicable to All
TMS4C1024/5/7s Symbolized with Revision
"0" and Subsequent Revisions as Described
on Page 5-62.

A9

VSS

TF

AD
A1
A2
A3

• Performance Ranges:
ACCESS ACCESS ACCESS READ
TIME
TIME
TIME
OR
ta(R)
ta(c)
ta(CA) WRITE
(tRAC)
(tCAC)
(tcw CYCLE
(MIN)
(MAX)
(MAX)
(MAX)
30 ns
110 ns
15 ns
60 ns
35 ns
130 ns
18 ns
70 ns
40 ns
150 ns
80 ns
20 ns
100 ns
25 ns
180 ns
45 ns
220 ns
30 ns
55 ns
120 ns

D

CAS
A9
A8
A7
A6
A5
A4

RAS

• Single 5-V Supply (10% Tolerance)

0

0

W

• 1 048576 x 1 Organization

TMS4C1024-60
TMS4C1024-70
TMS4C102 -80
TMS4C102--10
TMS4C102=-12

SO Package
(Top View)

N Package
(Top View)

RAS
NC
AD
A2
VCC

A5
A7

CAS
VSS

W
TF

NC
A1
A3
A4
A6
A8

OJ and ON Packages t
(Top View)

• TMS4C1024 - Enhanced Page Mode
Operation for Faster Memory Access
- Higher Data Bandwidth than Conventional
Page-Mode Parts
- RandomSingle-Bit Access Within a Row
With a Column Address

D

VSS

W

·0

CAS
NC
A9

RAS
TF

NC

• TMS4C1 025 - 4-Bit Nibble Mode Operation
- Four Sequential Single-Bit Access Within
a Row By Toggling CAS

AD
A1
A2
A3

• TMS4C1027- Static Column Decode Mode
Operation
- Random Single-Bit Access Within a Row
With Only a Column Address Change

AS
A7
A6
A5
A4

VCC

• One of TI's CMOS Megabit DRAM Family,
IncludlngTMS44C256 - 256Kx 4
Enhanced Page Mode

tThe packages shown here are for pinout reference only.
The DJ package is actually 75% of the length of the N
package.

• CAS-Before-RAS Refresh

PiN NOMENCLATURE

• Long Refresh Period ... 512-Cycle Refresh
in 8 ms (Max)

AO-A9
CAS
D

• 3-State Unlatched Output

NC

• Low Power Dissipation

Q

• Texas Instruments EPIC ™ CMOS Process

RAS
TF

• All Inputs/Outputs and Clocks Are TIL
Compatible

W
VCC
VSS

• Operating Free-Air Temperature Range
... O°C to 70°C

Address Inputs
Column-Address Strobe
Data In
No Connection
Data Out
Row-Address Strobe
Test Function
Write Enable
5-V Supply
Ground

• Operations of Tl's Megabit CMOS DRAMs
Can Be Controlled by TI's SN74ALS6301
and SN74ALS6302 Dynamic RAM
Controllers

• High-Reliability Plastic 18-Pin 300-Mil-Wide
DIP, 20/26 J-Lead Surface Mount (SOJ), 20/26
Thin J-Lead Surface Mount (ThinSOJ) or
20-Pin Zig-Zag In-line (ZIP) Packages
EPIC is a trademark of Texas Instruments Incorporated.
PRODUCTION DATA documents contain Information
current IS of publlcallon date. Products conform to
specilicalions per the terms of Texas Instruments
standard warranty. Production processing does not
necessarily Include testing of all parameters.

TEXAS

-1!1

Copyright © 1990, Texas Instruments Incorporated

INSTRUMENTS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

5-23

TMS4C1024, TMS4C1025, TMS4C1027
1 048 576-81T DYNAMIC RANDOM-ACCESS MEMORIES
SMGS024F -

MAY 1986 -

REVISED NOVEMBER 1990

description
The TMS4C1024, TMS4C1025, and TMS4C1027 are high-speed, 1 048 576-bit dynamic random access
memories, organized as 1 048 576 words of one bit each. They employ state-of-the-art EPICTM (Enhanced
Process Implanted CMOS) technology for high performance, reliability, and low power at a low cost.
These devices feature maximum RAS access times of 60 ns, 70 ns, 80 ns, 100 ns, and 120 ns. Maximum power
dissipation is as low as 305 mW operating and 11 mW standby on 120 ns devices.
The EPIC technology permits operation from a single 5-V supply, reducing system power supply and decoupling
requirements, and easing board layout. Icc peaks are 140 mA typical, and a - 1-V input voltage undershoot
can be tolerated, minimizing system noise considerations.
All inputs and outputs, including clocks, are compatible with Series 74 TTL. All addresses and data-in lines are
latched on-chip to simplify system design. Data out is unlatched to allow greater system flexibility.
The TMS4C1 02_ are offered in an 18-pin plastic dual-in-line (N suffix) package, a 20/26 J-Iead plastic surface
mount SOJ (OJ suffix) package, a 20/26 J-Iead thin plastiC surface mount SOJ (ON suffix), and a 20-pin zig-zag
in-line (SO suffix) package. The TMS4C1024-60 and TMS4C1024-70 are available in the 20/26 J-Iead plastic
surface mount SOJ (OJ suffix) only. These packages are characterized for operation from O°C to 70°C.

operation
enhanced page mode (TMS4C1024)
Enhanced page-mode operation allows faster memory access by keeping the same row address while selecting
random column addresses. The time for row-address setup and hold and address multiplex is thus eliminated.
The maximum number of columns that may be accessed is determined by the maximum RAS low time and the
CAS page cycle time used. With minimum CAS page cycle time, all 1024 columns specified by column addresses
AO through A9 can be accessed without intervening RAS cycles.
.
Unlike conventional page-mode DRAMs, the column-address buffers in this device are activated on the falling
edge of RAS. The buffers act as transparent or flow-through latches while CAS is high. The falling edge of CAS
latches the column addresses. This feature allows the TMS4C1 024 to operate at a higher data bandwidth than
conventional page-mode parts, since data retrieval begins as soon as column address is valid rather than when
C~S transitions low. This performance improvement is referred to as "enhanced page mode". Valid column
address may be presented immediately after row address hold time has been satisfied, usually well in advance
of the falling edge of CAS. In this case, data is obtained after ta(C) max (access time from CAS low), if ta(CA)
max (access time from column address) has been satisfied. In the event that column addresses for the next page
cycle are valid at the time CAS goes high, access time for the next cycle is determined by the later occurrence
of ta(C) or ta(CP) (access time from rising edge of CAS).

TEXAS •
INSlRUMENTS
5-24

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

TMS4C1024, TMS4C1025, TMS4C1027
1 048 576-BIT DYNAMIC RANDOM-ACCESS MEMORIES
SMGS024F -

MAY 1986 -

REVISED NOVEMBER 1990

nibble mode (TMS4C1025)
Nibble-mode operation allows high-speed read, write, or read-write-modify-write access of 1 to 4 bits of data.
The first bit is accessed in the normal manner with read data coming out at ta(C) time as long as ta(R) and ta(CA)
are satisfied. The next sequential bits can be read or written by cycling CAS while RAS remains low. The first
bit is determined by the row and column addresses, which need to be supplied only for the first access. Row A9
and column A9 provide the two binary bits for initial selection, with row A9 being the least-significant address
and column A9 being the most significant. Thereafter, the falling edge of CAS will access the next bit of the circular
4-bit nibble in the following sequence.

(00)

---.

(01)

---.

( 1 0)

(11)

=1

Data written in a sequence of more than 4 consecutive cycles shall be capable of being read back without exiting
from the nibble mode. In a sequence of consecutive nibble-mode cycles the control of the high-impedance state
for the data out (Q) pin is determined by each individual cycle. This facilitates fully mixed nibble-mode cycles (e.g.,
read/write/read-modify-write/read etc.).

static column decode mode (TMS4C1027)
The static column decode mode of operation allows high-speed read, write, or read-modify-write by reducing the
number of required signal setup, hold, and transition timings. This is achieved by first addressing the row and
column in the normal manner, but after the first access, maintaining CAS low. Subsequently changing the column
address produces valid data at ta(CA)' The first bit is accessed in the normal manner with read coming out at ta(R)
time. Similarly, write or read-modify-write cycle times can be achieved with appropriate toggling of W. The
addresses are latched during the write operation, and remain latched unitl CAS or W no longer remains low.

address (AO through A9) (TMS4C1024, TMS4C1025)
Twenty address bits are required to decode 1 of 1 048 576 storage cell locations. Ten row-address bits are set
up on inputs AD through A9 and latched onto the chip by the row-address strobe (RAS). The ten column-address
bits are set up on pins AD through A9 and latched onto the chip by the column-address strobe (CAS). All
addresses must be stable on or before the falling edges of RAS and CAS. RAS is similar to a chip enable in that
it activates the sense amplifiers as well as the row decoder. CAS is used as a chip select activating the output
buffer, as well as latching the address bits onto the column-address buffer.

address (AO through A9) (TMS4C1027)
Twenty address bits are required to decode 1 of 1 048 576 storage cell locations. Ten row-address bits are set
up on pins AD through A9 and latched onto the chip by the row-address strobe (RAS). The ten column-address
bits are set up on pins AD through A9. Row addresses must be stable on or before the falling edges of RAS.
RAS is similar to a chip enable in that it activates the sense amplifiers as well as the row decoder. In a write cycle,
the later of CAS or W latches the column address bits.

write enable (W)
The read or write mode is selected through the write enable (W) input. A logic high on the W input selects the
read mode and a logic low selects the write mode. The write-enable terminal can be driven from the standard
TTL circuits without a pullup resistor. The data input is disabled when the read mode is selected. When W goes
low prior to CAS (early write), data out will remain in the high-impedance state for the entire cycle, permitting
common I/O operation.

TEXAS •
INSTRUMENTS
POST OFFICE BOX 1443

•

HOUSTON. TEXAS 77001

IX:

5-25

TMS4C1024, TMS4C1025, TMS4C1027
1 048 576-81T DYNAMIC RANDOM-ACCESS MEMORIES
SMGS024F -

MAY 1986 - REVISED NOVEMBER 1990

data in (0)
Data is written during a write or read-modify-write cycle. Depending on the mode of operation, the falling edge
of CAS or W strobes data into the on-chip data latch. In an early write cycle, W is brought low prior to CAS and
the data is strobed in by CAS with setup and hold times referenced to this signal. In a delayed-write or
read-modify-write cycle, CAS will already be low, thus the data will be strobed in by W with setup and hold times
referenced to this signal.
data out (0)
The three-state output buffer provides direct TTL compatibility (no pullup resistor required) with a fanout of two
Series 74 TTL loads. Data out is the same polarity as data in. The output is in the high-impedance (floating) state
until CAS is brought low. In a read cycle the output becomes valid after the access time interval ta(C) that begins
with the negative transition of CAS as long as ta(R) and ta(CA) are satisfied. The output becomes valid after the
access time has elapsed and remains valid while CAS is low; CAS going high returns it to a high-impedance
state. In a delayed-write or read-modify-write cycle, the output will follow the sequence for the read cycle.
refresh
A refresh operation must be performed at least once every eight milliseconds to retain data. This can be achieved
by strobing each of the 512 rows (AD-AS). A normal read or write cycle will refresh all bits in each row that is
selected. A RAS-only operation can be used by holding CAS at the high (inactive) level, thus conserving power
as the output buffer remains in the high-impedance state. Externally generated addresses must be used for a
RAS-only refresh. Hidden refresh may be performed while maintaining valid data at the output pin. This is
accomplished by holding CAS at VIL after a read operation and cycling RAS after a specified precharge period,
similar to a RAS-only refresh cycle.
CAS-before-RAS refresh
CAS-before-RAS refresh is utilized by bringing CAS low earlier than RAS [see parameter td(CLRL) R] and holding
it low after RAS falls [see parameter td(RLCH)R]' For successive CAS-before-RAS refresh cycles, CAS can
remain low while cycling RAS. The external address is ignored and the refresh address is generated internally.
The external address is also ignored during the hidden refresh cycles.
power-up
To achieve proper device operation, an initial pause of 200 f-ts followed by a minimum of eight initialization cycles
is required after full VCC level is achieved.
test function pin
During normal device operation the TF pin must either be disconnected or biased at a voltage less than or equal
to VCC'

TEXAS ~

INSTRUMENTS
5-26

POST OFFICE BOX 1443

•

HOUSTON. TEXAS 77001

TMS4C1024, TMS4C1025, TMS4C1027
1 048 576-BIT DYNAMIC RANDOM-ACCESS MEMORIES
SMGS024F -

MAY 1986 -

REVISED NOVEMBER 1990

logic symbol t
AO
A1
A2
A3
A4
A5
A6
A7
A8
A9

6

7
8
10
11
12

D

0

A 1 048575

13
14
15

20D19/21D9
C20[ROW]
G23/[REFRESH ROW]
24[PWR DWN]
C21[COL]
G24

3~

t>

F

>

16

Vi

RAM 1024K x 1
20D10/21DO '

5

2

1

1

&

r> 23C22

23210
A22D

24EN

A\l

17

Q

trhis symbol is in accordance with ANSI/IEEE Std 91-1984 and lEG Publication 617-12.
The pin numbers are for the 18-pin dual-in-line N package.

TEXAS

"'!1

INSTRUMENTS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

5-27

TMS4C1024, TMS4C1025, TMS4C1027
1 048 576-81T DYNAMIC RANDOM-ACCESS MEMORIES
SMGS024F -

MAY 1986 -

REVISED NOVEMBER 1990

functional block diagram

w

+

l~

...

Row
Address
Buffers
(10)
256K
Array

-.AO
A1

r

A2
A3

..

A4
A5

+

Timing and Control

I

~J

Row
Decode

+

I Array
256K

Sense Amplifiers

Column
Address
Buffers
(10)

Column Decode

-\
-I

~

A6
A7

.....-......-......-......-......-......-......-.-

...

~

Data
In
Reg .

~

o

r..-

Data
Out
Reg.

f-+

Q

1/0
Buffers
1 of 8
Selection

Sense Amplifiers

A8

256K
Array

A9

I

Row
Decode

I Array
256K

II
absolute maximum ratings overoperating free-air temperature range (unless otherwise noted)t
Voltage range on any pin (see Note 1) ................................................. - 1 V to 7 V
Voltage range on Vee ............................................................... - 1 V to 7 V
Short circuit output current ................................................................ 50 mA
Power dissipation .......................................................................... 1 W
Operating free-air temperature range .................................................. O°C to 70°C
Storage temperature range ....................................................... - 65°C to 150°C
t Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and
functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of
this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltage values in this data sheet are with respect to VSS.

recommended operating conditions
MIN

NOM

MAX

VCC

Supply voltage

4.5

5

5.5

VIH

High-level input voltage

2.4

6.5

V

VIL

Low-level input voltage (see Note 2)

-1

0.8

V

TA

Operating free-air temperature

0

70

DC

TEXAS

-IJ1

INSTRUMENTS
POST OFFICE BOX 1443

•

V

..
..IS designated as minimum,
IS used rn thiS data sheet for logic

..

NOTE 2: The algebraiC convention, where the more negative (less positive) Irmlt
voltage levels only.

5-28

UNIT

HOUSTON, TEXAS 77001

TMS4C1024, TMS4C1025, TMS4C1027
1 048 576-BIT DYNAMIC RANDOM-ACCESS MEMORIES
SMGS024F -

MAY 1986 -

REVISED NOVEMBER 1990

electrical characteristics over full ranges of recommended operating conditions (unless otherwise
noted)
TMS4C1024·60

TEST CONDITIONS

PARAMETER

MIN

VOH

High-level output voltage

10H =-5 mA

VOL

Low-level output voltage

10L = 4.2 mA

II

Input current (leakage)

VI = 0 to 6.5 V, VCC = 5.5 V,
All other pins = 0 to VCC

10

Output current (leakage)

Va = 0 to VCC, VCC = 5.5 V, CAS high

ICC1

Read or write cycle current

Minimum cycle, VCC = 5.5 V

ICC2

Standby current

After 1 memory cycle, RAS and CAS high,
VIH = 2.4 V

ICC3

Average refresh current
(RAS-only, or CSR)

Minimum cycle, VCC = 5.5 V
RAS cycling, CAS high (RAS-only),
RAS low, after CAS low (CSR)

ICC4

Average page current
(TMS4C1024)

TMS4C1024·80
TMS4C1025·80
TMS4C1027·80

TEST CONDITIONS

MIN
High-level output voltage

10H =-5 mA

VOL

Low-level output voltage

10L = 4.2 mA

II
10

MIN

MAX

2.4

UNIT
V
V

±10

±10

flA

±10

±10

flA

95

80

mA

2

2

mA

90

80

mA

70

60

mA

TMS4C1024·10
TMS4C1025·10
TMS4C1 027-10
MIN

MAX
0.4

0.4

= minimum, VCC = 5.5 V,
RAS low, CAS cycling

VOH

TMS4C1024·70

2.4

2.4

~

PARAMETER

MAX

MAX

TMS4C1024·12
TMS4C1025·12
TMS4C1027·12
MIN

MAX

2.4

2.4

UNIT

V

0.4

0.4

0.4

V

Input current (leakage)

VI = 0 to 6.5 V, VCC = 5.5 V,
All other pins = 0 V to VCC'

±10

±10

±10

IlA

Output current (leakage)

Va = OtoVCC,
VCC = 5.5 V, CAS high

±10

±10

±10

IlA

75

65

55

mA

2

2

2

mA

70

60

50

mA

50

45

35

mA

50

45

40

mA

50

45

35

mA

ICC1

Read or write cycle current

Minimum cycle, VCC = 5.5 V

ICC2

Standby current

After 1 memory cycle,
RAS and CAS high, VIH = 2.4 V

ICC3

Average refresh current
(RAS-only, or CSR)

Minimum cycle, VCC '" 5.5 V
RAS cycling, CAS high (RAS-only),
RAS low, after CAS low (CSR)

ICC4

Average page current
(TMS4C1024)

~ = minimum, VCC = 5.5 V,

ICC5

Average nibble current
(TMS4C1025)

~

ICC6

Average static column
decode current
(TMS4C1027)

RAS low, CAS cycling
= minimum, VCC = 5.5 V,
RAS low, CAS cycling for 4 cycles

~W)SC = minimum, VCC = 5.5 V,

RAS low, CAS cycling

TEXAS

-1!1

INSTRUMENTS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

5-29

TMS4C1024, TMS4C1025, TMS4C1027
1 048 576-81T DYNAMIC RANDOM-ACCESS MEMORIES
SMGS024F -

MAY 1986 -

REVISED NOVEMBER 1990

capacitance over recommended rang'es of supply voltage and operating free-air temperature,
f = 1 MHz (see Note 3)
PARAMETER

MIN

TYP

MAX

UNIT

Ci(A)

Input capacitance, address inputs

5

pF

Ci(D)

Input capacitance, data input

5

pF
pF

Ci(RC)

Input capacitance, strobe inputs

5

Ci(W)

Input capacitance, write-enable input

5

pF

Co

Output capacitance

7

pF

NOTE 3: VCC equal to 5 V ± 0.5 V and the bias on pins under test is 0 V.

switching characteristics over recommended ranges of supply voltage and operating free-air
temperature (see Figure 1)
ALT.

PARAMETER

SYMBOL

TMS4C1024-60
MIN

MAX

TMS4C1024-70
MIN

MAX

UNIT

talC)

Access time from CAS low t

tCAC

15

18

ta(CA)

Access time from column-address t

tCAA

30

35

ns

ta(R)

Access time from RAS low t

tRAC

60

70

ns

40

ns

18

ns

ta(CP)

Access time from column precharge (TMS4C1024 only)

tCAP

td(CLZ)

CAS low to output in low Z

tCLZ

0

tdis(CH}

Output disable time after CAS high (see Note 4)t

tOFF

0

TMS4C102_-80

ALT.

PARAMETER

SYMBOL

MIN

MAX

35

TMS4C102_-10
MIN

ns

0
15

MAX

0

TMS4C102_-12
MIN

ns

UNIT

MAX

talC)

Access time from CAS low t

tCAC

20

25

30

ns

ta(CA)

Access time from column-address t

tCAA

40

45

55

ns

ta(R)

Access time from RAS lowt

tRAC

80

100

120

ns

ta(CP)

Access time from column precharge
(TMS4C1024 only)

tCAP

60

ns

td(CLZ)

CAS low to output in low Z

tCLZ

ta(C)N

Access time CAS low (TMS4C1 025 only)

tNCAC

20

25

25

ns

ta(WHQ)

Access time from W high (TMS4C1027 only)

tWRA

20

30

35

ns

ta(WLQ)

Access time from W low (TMS4C1027 only)

tALW

th(CAQ)

Static column decode mode output hold time
after address change (TMS4C1 027 only)

tAOH
tWOH

0

tdis(CH)
tOFF
tParameters apply uniformly to TMS4C1 024, TMS4C1 025, TMS4C1 027.
NOTE 4: tdis(CH) is specified when the output is no longer driven .

0

th(WQ)

decode mode output hold time
after W low (TMS4C1 027 only)
Output disable time after CAS high (see Note 4)t

0

0
20

INSlRUMENTS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

0

ns

115
5

5

. TEXAS ~
5-30

0

95

75
5

Static~olumn

50

40
0

0
25

0

ns
ns
ns

30

ns

TMS4C1024
1 048 576-BIT DYNAMIC RANDOM-ACCESS MEMORIES
SMGS024F -

MAY 1986 -

REVISED NOVEMBER 1990

PARAMETER MEASUREMENT INFORMATION
1.31 V

~

OUlpul Under Tesl

VCC = 5V

RL" 21. g

~

CL=100pF

Output Under Test

T

CL=100pF

(b) Alternate Load Circuit

(a) Load Circuit

Figure 1. Load Circuits For Timing Parameters

timing requirements over recommended ranges of supply voltage and operating free-air
temperature
ALT.
SYMBOL

TMS4C1024-60
MIN

MAX

TMS4C1024-70
MIN

UNIT

MAX

tc(rd)

Read cycle time (see Note 6)

tRC

110

130

ns

tc(W)

Write cycle time

twc

110

130

ns

tRWC

130

153

ns

tpc

40

45

ns

tpCM

60

68

ns

tcp

10

10

ns

tc(rdW)

Read-write/read-modify-write cycle time

tc(P)

Page-mode read or write cycle time (see Note 7)

tc(PM)

Page-mode read-modify-write cycle time

tw(CH)

Pulse duration, CAS high

10000

18

tw(Cl)

Pulse duration, CAS low (see Note 8)

tCAS

15

tw(RH)

Pulse duration, RAS high (precharge)

tRP

40

10000

tw(RL)

Non-page-mode pulse duration, RAS low (see Note 9)

tRAS

60

10000

70

10000

ns
ns

tw(RL)P

Page-mode pulse duration, RAS low (see Note 9)

tRASP

60

100000

70

100000

ns

tw(WL)

Write pulse duration

twp

15

15

ns

tsu(CA)

Column-address setup time before CAS low

tASC

0

0

ns

tsu(RA)

Row-address setup time before RAS low

tASR

0

0

ns

tsu(D)

Data setup time (see Note 10)

tDS

0

0

ns

tsu(rd)

Read setup time before CAS low

tRCS

0

0

ns

tsu(WCL)

W-Iow setup time before CAS low (see Note 11)

twcs

0

0

ns

tsu(WCH)

W-Iow setup time before CAS high

tCWL

15

18

ns

tsu(WRH)

W-Iow setup time before RAS high

tRWL

15

18

ns

th(CA)

Column-address hold time after CAS low

tCAH

10

15

ns

th(RA)

Row-address hold time after RAS low

tRAH

10

10

ns

th(RLCA)

Column-address hold time after RAS low (see Note 12)

tAR

50

55

ns

th(D)

Data hold time (see Note 10)

tDH

10

15

ns

th(RLD)

Data hold time after RAS low (see Note 12)

tDHR

50

55

ns

ns

50

Continued next page.
NOTES: 5. Timing measurements are referenced to VIL max and VIH min.
6. All cycle times assume tt = 5 ns.
7. To guarantee tc(P) min, tsu(CA) should be greater than or equal to tw(CH).
8. In a read-modify-write cycle, td(CLWL) and tsu(WCH) must be observed.
9. In a read-modify-write cycle, td(RLWL) and tsu(WRH) must be observed.
10. Referenced to the later of CAS or W in write operations.
11. Early write operation only.
12. The minimum value is measured when td(RLCL) is set to td(RLCL) min as a reference.

TEXAS"

INSTRUMENTS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

5-31

TMS4C1024
1 048 576-BIT DYNAMIC RANDOM-ACCESS MEMORIES
SMGS024F -

MAY 1986 -

REVISED NOVEMBER 1990

timing requirements over recommended ranges of supply voltage and operating free-air
temperature (continued)
TMS4C1024-80

ALT.

MAX

TMS4C1024-10

TMS4C1024-12
MIN

MAX

UNIT

SYMBOL

MIN

tRC

150

180

220

ns

twc

150

180

220

ns

tRWC

175

210

255

ns

tpc

50

55

65

ns

tpCM

75

85

100

ns

MIN

MAX

tc(rd)

Read cycle time (see Note 6)

tc(W)

Write cycle time

tc(rdW)

Read-write/read-modify-write cycle time

tc(P)

Page-mode read or write cycle time (see Note 7)

tc(PM)

Page-mode read-modify-write cycle time

tw(CH)

Pulse duration, CAS high

tcp

10

tw(CL)

Pulse duration, CAS low (see Note 8)

tCAS

20

tw(RH)

Pulse duration, RAS high (precharge)

tRP

60

tw(RL)

Non-page-mode pulse duration, RAS low
(see Note 9)

tRAS

80

10000

100

10000

120

10000

ns

100000

100

100000

120

100000

ns

10
10000

25

15
10000

30

ns
10000

90

70

ns
ns

tw(RL)P

Page-mode pulse duration, RAS low (see Note 9)

tRASP

80

tw(WL)

Write pulse duration

twp

15

15

20

ns

tsu(CA)

Column-address setup time before CAS low

tASC

0

0

0

ns

tsu(RA)

Row-address setup time before RAS low

tASR

0

0

0

ns

tsu(D)

Data setup time (see Note 10)

tDS

0

0

0

ns

tsu(rd)

Read setup time before CAS low

tRCS

0

0

0

ns

tsu(WCL)

W-Iow setup time before CAS low (see Note 11)

twcs

0

0

0

ns

tsu(WCH)

W-Iow setup time before CAS high

tCWL

20

25

30

ns

tsu(WRH)

W-Iow setup time before RAS high

tRWL

20

25

30

ns

th(CA)

Column-address hold time after CAS low

tCAH

15

20

20

ns

th(RA)

Row-address hold time after RAS low

tRAH

12

15

15

ns

th(RLCA)

Column-address hold time after RAS low
(see Note 12)

tAR

60

70

80

ns

th(D)

Data hold time (see Note 10)

th(RLD)

Data hold time after RAS low (see Note 12)

tDH

15

20

25

ns

tDHR

60

70

85

ns

Conllnued next page.
NOTES: 5. Timing measurements are referenced to VIL max and VIH min.
6. All cycle times assume tt = 5 ns.
7. To guarantee tc(P) min, tsu(CA) should be greater than or equal to tw(CH).
8. In a read-modify-write cycle, td(CLWL) and tsu(WCH) must be observed.
9. In a read-modify-write CYC~(RI.,'tYL) and tsu(WRH) must be observed.
10. Referenced to the later of CAS or W in write operations.
11. Early write operation only.
12. The minimum value is measured when td(RLCL) is set to td(RLCL) min as a reference.

TEXAS ~

INSTRUMENTS
5-32

POST OFFICE BOX 1443

•

HOUSTON. TEXAS 77001

TMS4C1024
1 048 576-BIT DYNAMIC RANDOM-ACCESS MEMORIES
SMGS024F -

MAY 1986 -

REVISED NOVEMBER 1990

timing requirements over recommended ranges of supply voltage and operating free-air
temperature (continued)
ALT.

TMS4C1024-60

SYMBOL

MIN

MAX

TMS4C1024-70
MIN

UNIT

MAX

th(CHrd)

Read hold time after CAS high (see Note 15)

tRCH

0

0

ns

th(RHrd)

Read hold time after RAS high (see Note 15)

tRRH

0

0

ns

th(CLW)

Write hold time after CAS low (see Note 11)

tWCH

15

15

ns

th(RLW)

Write hold time after RAS low (see Note 12)

twCR

50

55

ns

td(RLCH)

Delay time, RAS low to CAS high

tCSH

60

70

ns

td(CHRL)

Delay time, CAS high to RAS low

tCRP

0

0

ns

td(CLRH)

Delay time, CAS low to RAS high

tRSH

15

18

ns

td(CLWL)

Delay time, CAS low to W low (see Note 13)

tCWD

15

td(RLCL)

Delay time, RAS low to CAS low (see Note 14)

tRCD

20

45

td(RLCA)

Delay time, RAS low to column address (see Note 14)

tRAD

15

30

td(CARH)

Delay time, column-address to RAS high

tRAL

30

35

ns

td(CACH)

Delay time, column-address to CAS high

tCAL

30

35

ns

td(RLWL)

Delay time, RAS low to W low (see Note 13)

tRWD

60

70

ns

td(CAWL)

Delay time, column-address to W low (see Note 13)

tAWD

30

35

ns

td(RLCH)R

Delay time, RAS low to CAS high (see Note 16)

tCHR

15

15

ns

18

ns

20

52

ns

15

35

ns

td(CLRL)R

Delay time, CAS low to RAS low (see Note 16)

tCSR

10

10

ns

td(RHCL)R

Delay time, RAS high to CAS low (see Note 16)

tRPC

0

0

ns

trf

Refresh time interval

tREF

tt

Transition time

tT

8
3

50

3

8

ms

50

ns

Continued next page.
NOTES: 5. Timing measurements are referenced to VIL max and VIH min.
11. Early write operation only.
12. The minimum value is measured when td(RLCL) is set to td(RLCL) min as a reference.
13. Read-modify-write operation only.
14. Maximum value specified only to guarantee access time.
15. Either th(RHrQ~.r th(CHrd) must be satisfied for a read cycle.
16. CAS-before-RAS refresh only.

TEXAS ~.
INSTRUMENTS
POST OFFICE BOX 1443

•

HOUSTON. TEXAS 77001

5-33

TMS4C1024
1 048 576-BIT DYNAMIC RANDOM-ACCESS MEMORIES
SMGS024F -

MAY 1986 - REVISED NOVEMBER 1990

timing requirements over recommended ranges of supply voltage and operating free-air
temperature (concluded)
ALT.

TMS4C1024·80

SYMBOL

MIN

MAX

TMS4C1024·10
MIN

MAX

TMS4C1024·12
MIN

UNIT

MAX

th(CHrd)

Read hold time after CAS high (see Note 15)

tRCH

0

0

0

ns

th(RHrd)

Read hold time after RAS high (see Note 15)

tRRH

0

0

0

ns

th(CLW)

Write hold time after CAS low (see Note 11)

tWCH

15

20

25

ns

th(RLW)

Write hold time after RAS low (see Note 12)

twCR

60

70

85

ns

td(RLCH)

Delay time, RAS low to CAS high

tCSH

80

100

120

ns

td(CHRL)

Delay time, CAS high to RAS low

tCRP

0

0

0

ns

td(CLRH)

Delay time, CAS low to RAS high

tRSH

20

25

30

ns

td(CLWL)

Delay time, CAS low to W low (see Note 13)

tCWD

20

25

30

td(RLCL)

Delay time, RAS low to CAS low (see Note 14)

tRCD

22

60

25

75

25

90

ns

tRAD

17

40

20

55

20

65

ns

td(RLCA)

Delay time, RAS low to column address
, (see Note 14)

ns

td(CARH)

Delay time, column·address to RAS high

tRAL

40

45

55

td(CACH)

Delay time, column-address to CAS high

tCAL

40

45

55

ns

td(RLWL)

Delay time, RAS low to W low (see Note 13)

tRWD

80

100

120

ns

td(CAWL)

Delay time, column-address to W low
(see Note 13)

tAWD

40

45

55

ns

td(RLCH)R

Delay time, RAS low to CAS high (see Note 16)

tCHR

20

25

25

ns

td(CLRL)R

Delay time, CAS low to RAS low (see Note 16)

tCSR

10

10

10

ns

td(RHCL)R

Delay time, RAS high to CAS low (see Note 16)

tRPC

0

trf

Refresh time interval

tt

Transition time

tREF

IT

0
8

3

50

NOTES: 5. Timing measurements are referenced to VIL max and VIH min.
11. Early write operation only.
12. The minimum value is measured when td(RLCL) is set to td(RLCL) min as a reference.
13. Read-modify-write operation only.
14. Maximum value specified only to guarantee access time.
15. Either th(RH~r th(CHrd) must be satisfied for a read cycle.
16. CAS-before-RAS refresh only.

TEXAS . .

INSTRUMENTS
5-34

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

0
8

3

ns

50

3

ns
8

ms

50

ns

1MS4C1025
1 048576-811 DYNAMIC RANDOM-ACCESS MEMORIES
SMGS024F -

MAY 1986 -

REVISED NOVEMBER 1990

timing requirements over recommended ranges of s'upply voltage and operating free-air
temperature
ALT.

TMS4C1025-80

SYMBOL

MIN

TMS4C1025-10

MAX

MIN

MAX

TMS4C1025-12
MIN

UNIT

MAX

tc(rd)

Read cycle time (see Note 6)

tRC

150

180

220

ns

tc(W)

Write cycle time

twc

150

180

220

ns

tRWC

175

210

255

ns

tNC

40

45

50

ns

tNRMW

65

75

80

ns

tc(rdW)

Read-write/read-modify-write cycle time

tc(N)

Nibble-mode read or write cycle time

tc(rdW)N

Nibble-mode read-modify-write
cycle time

tcp

10

tCAS

20

tw(CH)

Pulse duration, CAS high

tw(CL)

Pulse duration, CAS low (see Note 8)

tw(RH)

Pulse duration, RAS high (precharge)

tRP

60

25

10000

70
10000

100

ns

15

10
10000

25

10000

90

ns

tw(RL)

Pulse duration, RAS low (see Note 9)

tRAS

80

tw(WL)

Write pulse duration

twp

15

15

20

ns

tsu(CA)

Column-address setup time
before CAS low

tASC

0

0

0

ns

tsu(RA)

Row-address setup time before RAS low

tASR

0

0

0

ns

tsu(D)

Data setup time (see Note 10)

tDS

0

0

0

ns

10000

120

ns

10 000

ns

tsu(rd)

Read setup time before CAS low

tRCS

0

0

0

ns

tsu(WCL)

W-Iow setup time before CAS low
(see Note 11)

twcs

0

0

0

ns

tsu(WCH)

W-Iow setup time before CAS high

tCWL

20

25

25

ns

tsu(WRH)

W-Iow setup time before RAS high

tRWL

20

25

25

ns

th(CA)

Column-address hold time after CAS low

tCAH

15

20

20

ns

th(RA)

Row-address hold time after RAS low

tRAH

12

15

15

ns

th(RLCA)

Column-address hold time after
RAS low (see Note 12)

tAR

60

70

80

ns

th(D)

Data hold time (see Note 10)

tDH

15

20

25

ns

th(RLD)

Data hold time after RAS low
(see Note 12)

tDHR

60

70

85

ns

th(CHrd)

Read hold time after CAS high

tRCH

0

0

0

ns

Read hold time after RAS high
0
.0
tRRH
th(RHrd)
Continued next page.
NOTES: 5. Timing measurements are referenced to VIL max and VIH min.
6. All cycle times assume tt = 5 ns.
8. In a read-modify-write cycle, td(CLWL) and tsu(WCH) must be observed.
9. In a read-modify-write cyc~(RLWL) and tsu(WRH) must be observed.
10. Referenced to the later of CAS or W in write operations.
11 . Early write operation only.
12.The minimum value is measured when td(RLCL) is set to td(RLCL) min as a reference

10

ns

TEXAS •

INSlRUMENTS
POST OFFICE BOX 1443

•

HOUSTON. TEXAS 77001

5-35

TMS4C1025
1 048 576-81T DYNAMIC RANDOM-ACCESS MEMORIES
SMCiS024F -

MAY 1986 -

REVISED NOVEMBER 1990

timing requirements over recommended ranges of supply voltage and operating free-air
temperature (concluded)
ALT.

TMS4C1025-80

SYMBOL

MIN

TMS4C1025-10

MAX

MIN

MAX

TMS4C1025-12
MIN

MAX

UNIT

th(CLW)

Write hold time after CAS low
(see Note 11)

tWCH

15

20

25

ns

th(RLW)

Write hold time after RAS low
(see Notes 11 and 12)

tWCR

60

70

85

ns

td(RLCH)

Delay time, RAS low to CAS high

tCSH

80

100

120

ns

td(CHRL)

Delay time, CAS high to RAS low

tCRP

0

0

0

ns

td(CLRH)

Delay time, CAS low to RAS high

tRSH

20

25

25

ns

td(CLWL)

Delay time, CAS low to W low
(see Note 13)

tCWD

20

25

25

ns

td(RLCL)

Delay time, RAS low to CAS low
(see Note 14)

tRCD

22

60

25

75

25

90

ns

td(RLCA)

Delay time, RAS low to column-address
(see Note 14)

tRAD

17

40

20

55

20

65

ns

td(CARH)

Delay time, column-address to RAS high

tRAL

40

45

55

ns

td(CACH)

Delay time, column-address to CAS high

tCAL

40

45

55

ns

td(RLWL)

Delay time, RAS low to W low
(see Note 13)

tRWD

80

100

120

ns

td(CAWL)

Wlow (see Note 13)

tAWD

40

45

55

ns

td(RLCH)R

Delay time, RAS low to CAS high
(see Note 16)

tCHR

20

25

25

ns

td(CLRL)R

Delay time, CAS low to RAS low
(see Note 16)

tCSR

10

10

10

ns

0

Delay time, column-address to

td(RHCL)R

Delay time, RAS high to CAS low

tRPC

trf

Refresh time interval

tREF

tt

Transition time

0
8

tr

3

50

3

NOTES: 5. Timing measurements are referenced to VIL max and VIH min.
11. Early write operation only.
12. The minimum value is measured when td(RLCL) is set to td(RLCL) min as a reference.
13. read-modify-write operation only.
14. Maximum value specified only to guarantee access time.
16. CAS-before-RAS refresh only.

TEXAS ~

INSTRUMENTS
5-36

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

0
8
50

3

ns
8

ms

50

ns

TMS4C1027
1 048 576-BIT DYNAMIC RANDOM-ACCESS MEMORIES
SMGS024F -

MAY 1986 -

REVISED NOVEMBER 1990

timing requirements over recommended ranges of supply voltage and operating free-air
temperature
ALT.

TMS4C1027-80

SYMBOL

MIN

MAX

TMS4C1027-10
MIN

MAX

TMS4C1027-12
MIN

UNIT

MAX

tc(rd)

Read cycle time (see Note 6)

tRC

150

180

220

ns

tc(W)

Write cycle time

twc

150

180

220

ns

tc(rdW)

Read-write/read-modify-write cycle time

tRWC

175

210

255

ns

tc(rd)SC

Static column decode mode read cycle
time

tSCR

45

50

60

ns

tc(W)SC

Static column decode mode write cycle
time

tscw

45

50

60

ns

tc(rdW)SC

Static column decode mode
read-modify-write cycle time

tSCRMW

80

100

120

ns

tw(CH)

Pulse duration, CAS high

tcp

10

10

15

ns

tw(CL)

Pulse duration, CAS low (see Note 8)

tCAS

20

tw(RH)

Pulse duration, RAS high (precharge)

tRP

60

tw(RL)

Non-static column decode mode pulse
duration, RAS low (see Note 9)

tRAS

80

10 000

100

10 000

120

10000

ns

tw(RL)P

Static column decode mode pulse
duration, RAS low (see Note 9)

tRASP

80

100 000

100

100000

120

100000

ns

tw(WL)

Write pulse duration

twp

15

15

20

ns

tw(CA)

Static column decode mode
column-address pulse duration

tADP

40

45

55

ns

tw(WH)

Static column decode mode W high
pulse duration, inactive

tWI

10

10

15

ns

setup time before CAS,
W low (see Note 10)

tASC

0

0

0

ns

tsu(CAR)

Row-address setup time before RAS

tCAR

45

50

60

ns

tsu(RA)

Row-address setup time before RAS low

tASR

0

0

a

ns

tsu(D)

Data setup time

tDS

0

0

0

ns

tsu(rd)

Read setup time before CAS low

tRCS

a

0

a

ns

tsu(WCL)

W-Iow setup time before CAS low (see
Note 11)

twcs

0

0

a

ns

tsu(WCH)

W-Iow setup time before CAS high

tCWL

20

25

30

ns

25

30

ns

tsu(CA)

~olumn-address

10000

25

10 000

70

W-Iow setup time before RAS high
20
tsu(WRH)
tRWL
Continued next page.
NOTES: 5. Timing measurements are referenced to VIL max and VIH min.
6. All cycle times assume tt = 5 ns.
8. In a read-modify-write cycle, td(CLWL) and tsu(WCH) must be observed.
9. In a read-modify-write cycle, td(RLWL) and tsu(WRH) must be observed.
10. Referenced to the later of CAS or W in write operations.
11. Early write operation only.

30

10000

ns
ns

90

TEXAS •

INSlRUMENTS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

5-37

TMS4C1027
1 048 576-81T DYNAMIC RANDOM-ACCESS MEMORIES
SMGS024F -

MAY 1986 - REVISED NOVEMBER 1990

timing requirements over recommended ranges of supply voltage and operating free-air
temperature (continued)
TMS4C1O.27-8O.

ALT.
SYMBOL
tsu(WHCH)

Setup time, W high to CAS high for early
write, high impedance

th(CA)

MIN

TMS4C1 0.27-1 0.

Mrus

MIN

MAX

TMS4C1O.27-12
MIN

MAX

UNIT

twH

0.

0

0

ns

Wlow (see Note 10)

tCAH

15

20

20

ns

th(RA)

Row-address hold time after RAS low

tRAH

12

15

15

ns

th(RLCA)

Column-address hold time after RAS low
(see Note 18)

tAR

80

100

120

ns

th(D)

Data hold time (see Note 10)

tDH

15

20

25

ns

th(RLD)

Data hold time after RAS low
(see Note 17)

tDHR

60.

70

85

ns

th(CHrd)

Read hold time after CAS high
(see Note 18)

tRCH

0

0

0

ns

th(RHrd)

Read hold time after RAS high
(see Note 18)

tRRH

0

0

10

ns

th(CLW)

Write hold time after CAS low
(see Note 11)

tWCH

15

20

25

ns

th(RLW)

Write hold time after RAS low
(see Note 17)

twCR

60

70

85

ns

th(RHCA)

Column-address hold time after
RAS high

tAH

10

10

15

ns

th(WLCA2)

Static column decode mode second
column-address hold time after Wlow
(see Note 13)

tAHLW

75

95

115

ns

td(RLCH)

Delay time, RAS low to CAS high

tCSH

80.

100

120

ns

td(CHRL)

Delay time, CAS high to RAS low

tCRP

0

0

0

ns

20

25

3D

ns

Column-address hold time after CAS or

Delay time, CAS low to RAS high

td(CLRH)
tRSH
Continued next page.
NOTES: 5. Timing measurements are referenced to VIL max and VIH min.
1D. Referenced to the later of CAS or W in write operations.
11. Early write operation only.
13. Read-modify-write operation only.
17. The minimum value is measured when td(RLCA) is set to td(RLCA) min as a reference.
18. Either th(RHrd) or th(CHrd) must be satisfied for a read cycle.

TEXAS •
INSTRUMENTS
5-38

POST OFFICE BOX 1443

•

HOUSTON. TEXAS 77001

TMS4C1027
1 048 576-81T DYNAMIC RANDOM-ACCESS MEMORIES
SMGS024F -

MAY 1986 -

REVISED NOVEMBER 1990

timing requirements over recommended ranges of supply voltage and operating free-air
temperature (concluded)
ALT.
SYMBOL

TMS4C1027-80
MIN

TMS4C1027-10

MAX

MIN

MAX

TMS4C1027-12
MIN

UNIT

MAX

td(CLWL)

Delay time, CAS low to W low
(see Note 13)

tCWD

20

td(RLCL)

Delay time, RAS low to CAS low
(see Note 14)

tRCD

22

60

25

75

25

90

ns

td(RLCA)

Delay time, RAS low to column-address
(see Note 14)

tRAD

17

40

20

55

20

65

ns

td(WLCA)

Delay time, W low to column address
(see Note 14)

tlWAD

20

35

25

50

30

60

ns

td(CARH)

Delay time, column-address to RAS high

tRAL

40

45

55

ns

td(CACH)

Delay time, column-address to CAS high

tCAl

40

45

55

ns

td(RlWL)

Delay time, RAS low to W low
(see Note 13)

tRWD

80

100

120

ns

td(RLWL2)

Static column deco~ mode delay time,
RAS low to second W low

tRSW

80

100

120

ns

td(CAWl)

Delay time, column-address to W low
(see Note 13)

tAWD

40

45

55

ns

td(WQ)

Delay time, W high to output transition
from high impedance to active

tow

0

0

0

ns

td(RLCH)R

Delay time, RAS low to CAS high
(see Note 16)

tCHR

20

25

25

ns

td(CLRl)R

Delay time, CAS low to RAS
(see Note 16)

tCSR

10

10

10

ns

td(RHCl)R

Delay time, RAS high to CAS low
(see Note 16)

tRPC

0

0

0

ns

trf

Refresh time interval

tREF

tt

Transition time

I~w

25

8

tr

3

50

30

8
3

50

3

ns

8

ms

50

ns

NOTES: 5. TIming measurements are referenced to VIL max and VIH min.
13. Read-modify-write operation only.
14. Maximum value specified only to guarantee access time.
16. CAS-before-RAS refresh only.

TEXAS . .

INSTRUMENTS
POST OFFICE BOX 1443

-HOUSTON. TEXAS 77001

5-39

TMS4C1024, TMS4C1 025
1 048 576·81T DYNAMIC RANDOM·ACCESS MEMORIES
SMGS024F -

MAY 1986 - REVISED NOVEMBER 1990

read cycle timing
tc(rd)

N
'I11III

--~'1111111
"

tt --.:

tw(RL)

,

~
,

~.(

td(RLCAI
th(RA) ~

~

"

~ tsu(RA)
.

AO-A9

:

~:.

I

~

'I11III

~,

'I11III
'I11III

: th(RLCA)

1\,

,'--------

"

----.:
,

~td(CHRL) ~

,
td(RLCH)
L...o

,I11III

:i
,

~

!IIIIiI-- td(CLRH) ~ ~ tw(RH)
~td(RLCL) - . I
,~ ; I

,
, '
,

M

~

tw(CL)

,

tsu(CA)

,

I

,

,

td(CACH)
td(CARH)

i

.', ,,

flf-l--'--------~

¥~

I
---.! ,

-L-!---tw(CH)

loll,

}~----

---~

, .'

~

,

~ COlum~: ~~~'!""!"I"'!'f~~!"l"'I"'l"'t~~§§§»x~'--_ _ _ :::
,

,

J. t
....... su(rd)

--..!
~

~ th(CA)

,
~ th(RHrd)
, _I
~
~ th(CHrd)

,

,I',

VOH

a
VOL

NOTE 19:0utput may go from high-impedance to an invalid state prior to the specified access time.

TEXAS ."

INSTRUMENTS
5-40

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

1MS4C1027
1 048 576-811 DYNAMIC RANDOM-ACCESS MEMORIES
SMGS024F -

MAY 1986 -

REVISED NOVEMBER 1990

read cycle timing
,~

tC(rd)

X

----~, ~

-.,

~'

)fi

tw(RL)

11
tt

~ td(CLRH) ~

td(RLCL)

~

td(RLCH)
I ~
IlL..

~

I

th(RA)

~I'

~

~ ~
I I,

AO-A9

I

.i
1

14

~ tS,u(RA) ~
:. 1

1

~ RO~ ~

tw(CL)

td(RlCA~
1I

1 1 td(CACH)
td(CARH)
1 I th(RLCA)

vlL

: I
tw(RH)
I
~ ~ td(CHRL) ~
11 I I
111-1-1.1. 1------------~

!

f~ i i

~'----

11 I 1
tw(CH)
- . I 1 ~ ~ th(RHCA)

.,

1~ I '

1

::

-.l

:.-

1

Column

1 -.,

::

r--I '

w

I ~-------

I I

--.I ~

: \4--

~

k22x_ _ :::

1
~ th(RHrd)
tsu(rd) ~
th(CHrd) -,G----Dt
~~~~~~~----~---~-~I~---~~~~~~~~~~~~~ VIH

~ td(CLZ)

:

~t?(C) ~

~

I o e - - - - ta(CA)

a ----'-1- - HI-Z
1

(see Note 19)

~

.,
______
d_IS_(C_H_)_ _ _ _I

we
1

~..:....1,;0",~

"""""..:....1,;0",.......................................,;..........

VIL

t

Valid

)>------

VOH
VOL

.1

~

ta(R)
NOTE 19: Output may go from high-impedance to an invalid state prior to the specified access time.

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 1443

•

HOUSTON. TEXAS 77001

5-41

TMS4C1024, TMS4C1025
1 048 576-81T DYNAMIC RANDOM-ACCESS MEMORIES
SMGS024F -

MAY 1986 -

REVISED NOVEMBER 1990

early write cycle timing
~

RAS

-----!lNiIII!~I-------- tw(RL)

I~

r-

tt -.:

I
I

ioIIl~f--- t

td(RLCL)

I ~

-

CAS

~

~~

i :

~

I

I:

:

I+--t-

~

~

I~

___

td(CHRL)

---al~:

j,1..j.1_ _ _ _ _ _ _ _ _ __ _

I,

tw(CH)

td(CACH)
I

td(CARH)

I
I

I
I

RO~ ~ co'~m~~~~X~a:~$2X'------ :::
I~

td(RLCA)

I
I
I
I~
I

~

~

I~

~
I
I
I

~ ~

§§:~o;Xc~~~
I

~

I I
I I
I I
I

J:

I ~

~

Ii

I I

~ tsu(D) ~
th(RLD)
Valid Data

~

I

i ~

~~

I . I
I
~I

th(CA)
tsu(WCH)
tsu(WRH)

~I

th(RLW}

I I

o

~ 1OI I '~f:-1
~:

~su(CA)
~

I

th(RLCA)

:::

;:
d(CLRH) --~I "'i~I--- tw(RH) --~~I

tw(CL)

II
I

~ tsu(RA)

~'-___

jfi.i

td~RLCH)

II

th(RA)

W

tc(W) -----------~~:

th(CLW)

.

tsu(WCL)

tw(WL)

~

~~~~~~~~~~~~~~'1'r:"?

~~o:l~~~~
~
I

~I

I

VIH
VIL

~ th(D) ~

~:

~~~X*Xe:~

VIL
VOH

Q - - - - - - - - - - - - - - - HI-Z - - - - - - - - - - - - - - - - -

VOL

TEXAS . .
INSTRUMENTS
5-42

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

1MS4C1027
1 048576·811 DYNAMIC RANDOM·ACCESS MEMORIES
SMGS024F -

MAY 1986 -

REVISED NOVEMBER 1990

early write cycle timing

a

---------------HI·Z -----------------VOL

NOTE 10: Referenced to the later of CAS or Vi in the write operations.

TEXAS ~

INSTRUMENlS
POST OFFICE BOX 1443

•

HOUSTON. TEXAS 77001

5-43

TMS4C1024, TMS4C1025
1 048 576-81T DYNAMIC RANDOM-ACCESS MEMORIES
SMGS024F -

MAY 1986 -

REVISED NOVEMBER 1990

write cycle timing

Q

----------------------------~(~____N_o_tV_a_lId____·~)~----------------

TEXAS ~

INSTRUMENTS
5-44

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

VOH
VOL

TMS4C1027
1 048 576-81T DYNAMIC RANDOM-ACCESS MEMORIES
SMGS024F -

MAY 1986 -

REVISED NOVEMBER 1990

write cycle timing

VIH

VIH
VIL

Q

----------------------------~(_____No_t_V_al_ld____~J~-----------------

NOTE 10: Referenced to the later of CAS or W in the write operation.

VOL

.

TEXAS •

INSIRUMENTS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

5-45

TMS4C1024, TMS4C1025
1 048 576-81T DYNAMIC RANDOM·ACCESS MEMORIES
SMGS024F -

MAY 1986 -

REVISED NOVEMBER 1990

read-wrlte/read-modlfy-wrlte cycle timing

NOTE 19: Output may go from high-impedance to an invalid state prior to the specified access time.

TEXAS 'If

INSTRUMENTS
5-46

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

TMS4C1027
1 048 576-81T DYNAMIC RANDOM-ACCESS MEMORIES
SMGS024F - MAY 1986 - REVISED NOVEMBER 1990

read-write/read-modify-write cycle timing

NOTE 19: Output may go from high-impedance to an invalid state prior to the specified access time.

TEXAS ~

INSlRUMENTS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

5-47

TMS4C1024
1 048 576·81T DYNAMIC RANDOM·ACCESS MEMORIES
SMGS024F -

MAY 1986 - REVISED NOVEMBER 1990

enhanced page-mode read cycle timing
tw(RH)~

N
"....
, ....---td(RLCL)
, ,
~

, '..
, I""
,

,

tw(CL)

AO-A9

1'I

th(RA)

th(RLCA)

-.!

I

-.:

I

,

~

,I,

~

td(CHRLl
'
, I

""1

~

VIL

"

:

VIH

II
"

II

VIL

I I
, I
~ td(CACH) ~ I
, I
I
I , ,

th(CA)

~

I

td(CARH)

~ I

I

J'\7'.~~~'j':j~~'j' VIH

Column

-.:"

I'

~,

\\l
A
.-

I

~ tsu(rd) _Ir---I~~'

,

(see Note 20)
ta(CA)

1!4~f----

I

~

I

VIL

th(RHrd) I'I1II
!4-- th(CHrd) ~

I~'

~

~X>OQ¢f~~7-+'--------_+'--------~,----~I~~~~-----------+I----~I--------~~ VIH

Xi£!

I

I

I

I

:
I'"
a

~"

,~

t.-.L
"
• :1""
...' tsU(C~

I
II1II- td(RLCA)

,W

~

tc(P)

~I tw(CH)
,
1
14- td(CLRH)

7\\I}{
-!

I 1I
**", t~U(RA)
1

,

IN'''''
~ rIIII

, ,

,

~

h,' I . , .

- - - J...
~

td(RLCH),

II
',I
,

~

tw(RL)P

:.-ta(C)

td(CLZ)

~

"~f--- ta(CA):

~

W

~14-l-:- - - - ta(CP)

~I

,~

ta(R)

(see Note 20)

::
I
I

~

VIL

,

~~dIS(CH) ~
VOH

(see Note 19)

VOL
NOTES: 19. Output may go from high-impedance to an invalid state prior to the specified access time.
20.Access time is ta(CP) or ta(CA) dependent.
21.A write cycle or a read-modify-write cycle can be mixed with the read cycles as long as the write and read-modify-write timing
specifications are not violated.

TEXAS •

INSlRUMENlS
5-48

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

TMS4C1024
1 048 576-81T DYNAMIC RANDOM-ACCESS MEMORIES
SMGS024F -

,

MAY 1986 -

REVISED NOVEMBER 1990

enhanced page-mode write cycle timing
tw(RH)~

l<...
1li11 - - - - - - - - - - - - - tw(RL)P - - - - - - - - - - - - - - - - ' . 1

I

~

I

~

:~---- td(RLCH)

---l

..

I

14~--- td(RLCL)

:

'=

r-

tw(CL)

~

I

i

.1

I....

\l Y

~ tsu(CA)

th~RLCA)
jIIIII- th(RA) ~
I
I11III-:- tsu(RA)
:
I

:

.1
I11III-- td(CLRH)
~
I
~.--.!
~
I r~f-__.-t-tC(P) I
.1
td(CHRL)

I
I

I~

I
I
I
I

\

tw(CH')

~

I
I11III-- td(CACH) ~

~

th(CA,)

I

I

/,---"""""r- -

td(CARH)
I

I

VIH

VIL

-.I

~--------~~

I
~~~~~~~

AO-A9
VIL

VIH
D

Valid Data In
VIL

a ------------------------HI-Z - - - - - - - - - - - - - - - - - - - NOTES: 22.A read cycle or a read-modify-write cycle can be intermixed with write cycles as long as read and read-modify-write timing specifications
are not violated.
23. Referenced to CAS or W, whichever occurs last.

TEXAS •

INSlRUMENTS
POST OFFICE BOX 1443

•

HOUSTON. TEXAS 77001

5-49

TMS4C1024
1 048 576-81T DYNAMIC RANDOM-ACCESS MEMORIES
SMGS024F -

MAY 1986 -

REVISED NOVEMBER 1990

enhanced page-mode read-modify-write cycle timing
tw(RH) ~

0,

i
! __________________________7

14- - - - - - - - - - - tW (RL)P - - - - - - - - - -...
~r
~
\;~,

,~

,

.1

.1

td(RJ-CH)

I
I _,
tw(CH) I 14
~td(RLCL)~
I I
I
\. ~ tw(CL) ~ I"
: tsu(CA)
L..

~~JI
I
I

jth(RLfA)

l"1li

I~

~ ~

~
I
I I
I I
'I

I

:vvvL:r
;~

w

~

I

I

-----r :
'I~

I

'd!RLWL)

~

:

I

, I

,
,

~

~i

~

~th(D)

i tSU(D)tl~

xxx>Y~N~~
1_

I
~ta(C) ~
14--- ta(r.A) ~

I II

t

I

I

~

&1~~~a~~VIH
I
I

Valid

~~f~~W?g
::"L
~
,

1+ tdls(CH) -.I

IOIII~I---- ta(CP) ---1.~1

I

VIL

:

I
I

,

II
II

_
- - su(J'lRH) - . ,
1..01

I

-+'----..:.,
l'

.1

14
I

:

~:
I
Valid } ~

ta(R)
td(CLZ)
~ .,
(see Note 19)

~(o~~cHm:::

tWI\ML)
\"1

...,

: N,~
I , I

I

, ii
I II
( II

tsu(J'lCH)

hi

14

VIL

, II
, II

:

~ ~ td(CLWL)

I ,
~ td(CAWL) ~

A

i i
' I
'h(CA)

.1

If'i------ VIH

\\-

Column ~ Column

,

,

Q

I

I,
,

I+- td(CLRH) ~
I
td(CHRL) 14
II
I

I

i

~

I

~
o

:

I

I

~ tsu(rd) ~

I
I

.,

~ td(R~CA) I
th(RA)

~
AO-A9

}:

I

V,H

:"--- VIL

I,

I
I
.1
I

tc(PM)

I

~

,~

I

(see Note 19)

I
I
I

VOH

NOTES: 19.0utput may go from high-impedance to an invalid state prior to the speCified access time.
24. A read or write cycle can be intermixed with read-modify-write cycles as long as the read and write timing specifications are not violated.

TEXAS ~

INSlRUMENTS
5-50

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

TMS4C1025
1 048 576-81T DYNAMIC RANDOM-ACCESS MEMORIES
SMGS024F -

MAY 1986 -

REVISED NOVEMBER 1990

nibble-mode read cycle timing
tw(RH)~

~

tw(RL)

~,i~
i 1:11--------------------I!
1

I~

1
1

td(RLCH) - . I
I
I !1

,,..--+1----

'~

1

1

1
1
1

~I

1 1

--.I j4t:

~ ~h(R~)

VIH

1

i

I

I

1

:

::

I

I

1

I
I
I
I

I
1
I
1

1
1
1
1

VIL

~RX%'Xe~ :::

~ tsu(rd)

Vi

Y

I~
th(RLCA)
I 1 1

:ROW
~

~i

1'1~
i1

i
1

~

1

!~

1

~ td(CLRH) 1~ 1
teeN)
~
1

1

J4- td(RLCL) ~

~

-------~.iH.

~I ~l tp(RLCA)
I
1

1

1

1

I

~ta(C) ~

~ta(CA) ~

1
ta(R) I
td(CLZ) - ,

WN
'\tY

1
I

th(RHr.d)
th(CHrd)

1
1
1
ta(C)N!!III

I

~I

I

~

l-a

~ v
IH

I

~I

~tdiS(CH) ~
I

1

VIL

I

Valid Out

(see Note 19)

VOL

NOTE 19: Output may go from high-impedance to an invalid state prior to the specified access time,

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

5-51

TMS4C1025
1 048 576-81T DYNAMIC RANDOM-ACCESS MEMORIES
SMGS024F -

MAY 1986 -

REVISED NOVEMBER 1990

nibble-mode write cycle timing
tw(RH)~

RAS

~*I

I

I~
I

:
CAS

I
I
I
I

~

I
.1

AO-A9

W

X

td(RLCL) ~
td(RLGH)
I

'w(Cl) r

tsu(CA)

th~RLCf)
~

I

I
I
I

~

I

'.(CHRll

I
I
I
I

~

II
I

~ td(CACH)
th(CA) ~

th(RA)

~I

~

~I td~RLCA)

~th(RLD)

VIL

VIH
VIL

I
I

I
I
I

I
I

VIH
VIL

:

~~u~cr)~
-.I

VIH

I

:ROW ~: COlumn: ~
I

0

,

~ tw(CH)

I

I

I

11

I I~

-.I ~
I~:'-

~ td(CLRH) ~

I
~

- . I 14- tc(N)

N

I
I ~
~ tSU(RA)

~

I

.

~

~

tw(RL)

~~~~~~~§§S

~th(D)

VIH
VIL

~
VIH

Valid In

VIL
VOH

a

HI-Z
VOL

TEXAS ~

INSTRUMENTS
5-52

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

TMS4C1025
1 048 576-BIT DYNAMIC RANDOM-ACCESS MEMORIES
SMGS024F -

MAY 1986 -

REVISED NOVEMBER 1990

nibble-mode read-modify-write cycle timing

RAS.

--N

tw(RH)~

'w(RL)

I I
I ~
td(RLCL,

~

td(RLCH)

~

ioIIII

I

I I
~I
III

: I

~
I
I
I

I
~ td(CLRH) ~

~ tw(CH) ~ I
~ I

I :

I
I :

~ tsu(RA)
I.
I

i!

L

I!:
I
I
I
I
I

.., td(RLCA)
~ ~ tsu(CA)

~th(~~CA) ~

vlL

I
I
I
I
I

I
I
I
I
I

VIH
VIL

~V

'h(CA)

~C~lumn ~~*H*~v::
I~ "'"!

I

I

~t~u(rd)

I
I

I

I

td(CLWL)

~

~

104- t,d(CAWL) ~

I I I
~tsU(WRH) ~
.

tw(WL)

I

.

~
~ th~O)
~"'(RLWL)4
I
I
VI

II1II1
~
~I
"I
'~

-

.:

I
I

td(CHRL)
tw(CH)

N-tW(CL)--YX

~I ~
AO-A9

-----------~YL V,H

I :
I

tc(rdW)N

~

~ !!
I
I

I
I

I

'Ii! Y

\l

-.!I ~ tSU(O\r
I

I I

~ tsu(WCH) ~

m
:

&X4~og~~*02S :::

I

o

Valid
I

I

l~

Q

- - - HI-Z

*ita(CA) ~
ta(R)
~
(see Note 19)
;,---~

tdls(CH) ....,
(see Note 19)

>-...;....--...;....~X

I
td(CLZ)

~

14I

VOH

Valid Out
VOL

I

1+ ta(C) -.l
NOTE 19:0utput may go from high-impedance to an invalid state prior to the specified access time.

TEXAS

l!}

INSTRUMENTS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

5-53

TMS4C1027
1 048 576-81T DYNAMIC RANDOM-ACCESS MEMORIES
SMGS024F -

MAY 1986- REVISED NOVEMBER 1990

static column decode mode read timing with CAS cycling
RAS

tw(RH) ~

~

~

------------.~~

tw(RL)P

, "'-1_--------------------------......;1 I ,

tt~ ~
I

~~--- td(RLCH)

""~I----""~~ td(RLCL)

~

if

CAS:

I

I,

I

1oII'~f-l--'tti(RLCA)

I

th(RA)

I

tsu(RA)

I ,

~tw(CL)

~I
:

-.I

~

I

r---

td(CHRL)

14- tw(CH) ---.I

I
I I

N
I

II

I
I

~

th(CA)

~:

:

I :
I I I

~ tsu(CAR) ~ I

~ tc(rd)SC ~,

~--I.-"--_ _ _ _ _~I

,

:

'L.-A

:

~,

:~

~,

I I

' : , - '-+1...1.'_ __

'----A,

y-

1_

td(CLRH)

I11III I I

'

VIL

,

th(RHCA) ---.,
I I:,.-_ _ _--'-_"'--~

I

AO-A9

wW'

I
I

I~

Q

I

'-' --.l
....

Ii 4 - ta(C)
W-----!.~
I~

td(CLZ)

I ta(CA)
ta,(R)
I11III

~I

'Wi!

1

-pi

.-1
I

t.....,

~I

I

-.I ~

h(CAQ)

I~

~-"":"vO':'""aU~II~O:--

tdls(CH) --111011~--~~1
tdls(CH)
I
......_V_al_ld_O_U_t

(see Note 19)

(see Note 19)

NOTE 19: Output may go from high-impedance to an invalid state prior to the specified access time.

TEXAS

-1!1

INSTRUMENTS
5-54

',~

I,W

t

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

(see Note 19)

~>-

VIL

VOH
VOL

TMS4C1027
1 048 576-BIT DYNAMIC RANDOM-ACCESS MEMORIES
SMGS024F -

MAY 1986 -

REVISED NOVEMBER 1990

static column decode mode read cycle timing
tw(RH)

---.l

!+-

t-.~f------------tw(RL)P ------------~.I I

RAS

N..~
1-

tt~~
. I

CAS

I~

!!
I I

~

I

VIH

if'.~VIL

':

~

i

II

I I

td(RLCL)

I!~:!~!~--

,

II I

!+- th(RA)

!~!++-th(R~CA) ~
~ ~ t~U(RA)
I

*--tc(rd)SC

~

: :
,._ _ _ _

AO-A9

th(RHCA) ~

~tsU(CAR) ~

I

::

!+-

: :

I

Column

I
:

~ta(CA) ~

I

th(CAa)~

I

VOH

a------f\

VOL

(see Note 19)
NOTE 19: Output may go from high-impedance to an invalid state prior to the specified access time.

TEXAS •
INSTRUMENTS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

5-55

TMS4C1027
1 048 576-81T DYNAMIC RANDOM-ACCESS MEMORIES
SMGS024F -

MAY 1986 -

REVISED NOVEMBER 1990

static column decode mode early write cycle timing
~ tw(RH)

:~

"AS

N

-~ !'-tt
I=
I j+-- td(RLCH)

---.0"1

iI

14- tw(CL)
.'1 td(RLCL)

I tIIII
I

CAS

~j

i i 1.{
--., I4l- tSU(R~)

.1
-.I

i

Y
;

\:\

A~A9 ~
W

::

I I I
'I I
tsu(CA)
I4r t~(RLCA)
I I
I
td(RLWL2)

/

I I

~ ~ tsu(O)
I
I

~

i4- tc(W)SC

I'"
I
I 14-- th(CA) ~
I ,

~ I+-

~

\l

tw(WL)

~ th(O)

,

I

r-

i

tw(WH)

~

.:

l~

I

I~

~

i

"\'----J

~

COlumn:

I
I
~

14 I
::
I ;,-1-:"--II~\

I
jl

~,

~

1"- :::

~ I

tfl(CHRL)

~ tw(CH) -.:

-.! 1+ tsu(WHCH)
I
I
td(CARH)
I

I+-

j@

Column

~V~Ii-\1\:
I
I
I
I

/_

,

14- t.h(RA)
tsu(CA) -.!
I ~,
,I th(RLCA)
.'
I
III
l~th(CA)-.!
I

I~

r:
:

..J I

14,

td(CLRH)

I

~

I
I
~
I

~

tw(RL)P

14-

'--

I I

th(RHC~) ~ 14-

II~

I

I

COIU+: _
I I
.1 tsu(WCH)

I

..~ tsu(WRH)
,

\l

/

~--------

I

tIIII--+ th(RLO) ~
I

I

o

Q

----------------HI-Z ----------------

TEXAS •
INSTRUMENTS
5-56

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

VIH
VIL

:::

1MS4C1027
1 048576-811 DYNAMIC RANDOM-ACCESS MEMORIES
SMGS024F -

MAY 1986 -

REVISED NOVEMBER 1990

static column decode mode late write cycle timing
IIIII~I-------------

RAS

~l~_____________________________________________________
~

-

CAS

tw(RL)P - - - - - - - - - - - - . 1

--.I

f.-

td(RLCL)

I I

~ tsu(RA)

:1
I

tt

~th(RA)
th(RLCA)

---.!

Column

AO-A9
141---_ _11-

~ tc(W)sc

td(RLCA)

I~
I
tsu(CA) ~

LIN I

w(j

I

I I

~tSU(D)~

o

Q

I

§§§2§X

th(RLD)
Valid In

~ tsu(WRH) ~
I
I I
~ tw(WH) ~ I

\l

~

~--------~

I

~I I~

td(RLWL2) I

~~~~""

--t.!

~ th(CA)

I

~I tw(WL)

VIH
VIL

I

~I

Ict-- th(D) ~

Valid
~'--_ _
_ In
__

} @ ( v a l l d In

X{§»)
)

-----~(~_____________________I_nd_e_te_rm_i_na_t_e____________________~

TEXAS

VIH

-J

VIL

VOH
VOL

-III

INSlRUMENlS
POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

5-57

TMS4C1027
1 048 576-81T DYNAMIC RANDOM-ACCESS MEMORIES
SMGS024F -

MAY 1986 -

REVISED NOVEMBER 1990

static column decode mode read-modify-write cycle timing with CAS cycling
tw(RH)
tw(RL)P

liliiii

~!
RAS

!I

~

I rI

I

I I

---.I ~ tsu(RA)
I

~

I.

Y

N

I I

~I

1

I

I I

~

I

I

1

1

I

Iii
I

~I

tc(rdW)SC

-r.! ~td(CLWL)

I

tsu(rd)

~

I I

I'"

I
I

cOlumn:
---.I

1

~I

I

I
I

II
II
tsu,(D)I~ I
I
I
I I I
tsu(CA) ~
I
I
I I
~ th(D)

~

I

1

I

I
I
I

I

I
I

----.!

I

I·

liliiii

I
I

I

1

I
I

1

~

I

14- ta(C)

~

ta(R)
td(CLZ)

1

~I 1
1 1

1 141.--......-

~I

I
I.

1
:r-__

~

Q-----------()(
(see Note 19)

NOTE 19:

Output may go from high·impedance to an invalid data state prior to the specified access time.

TEXAS

-III

INSTRUMENTS
5·58

POST OFFICE BOX 1443

•

HOUSTON, TEXAS 77001

i

II
I

++--.JI
I
I

I

VIH

~

VIL

i

I

I I

I

I
I

I
I

I.

I

I

I

X

ill

I

ta(CA) --I4--~

~ ta(CA) --.l
~ta(WHQ)~

~I

1I

Valid In

1

~I

1,..-.,..1...1_ _-

I

J...w
~t I
I
I rJ '~I s4(WCI"O

th(WLCA~)

I D)
I :
1
~------~--~ ~~~Ir---~--~

D

VIL

cOlu~n:: ~ :::

1I

~td(W<;l)~
ta(WLQ)

~----I'--1i th(~

I

~ tsu(WCH)
I

I
I

~I

td(WLCA)

~~~~~~I-+--k:1 I~ tw(WL) ~
W

14- tsu(CAR)

I
I

VIH

I I

I I

th(RHCA) ~

Ith(CAQ)~

liliiii

1

·1
I.

'----{

td(CAWL)

-a..!rJ

~

\1
I
I
I

~

tw(CA)

1

~ td(RLCA) ---.I~I
~ th(CA)
I
~td(RLWL) I

V
I

~

Column

I I
I I

td(CHRL)
I

~:

th(RLCA)
th(RA)

A~A9 X :ROW ~::
I

td(CLRH)

*- tw(CH) ~

I
I I

I

I

Ii
I

~

td(RLCH)

~ td(RLCL) ~

I+I

I

Ilr-\
! !\.

X~

I~
r-tt

-+I
~I

I

1
I

1

I

~ tSU~RH)
'r"
·~I
I
I

1MS4C1027
1 048576-811 DYNAMIC RANDOM-ACCESS MEMORIES
SMGS024F -

MAY 1986 -

REVISED NOVEMBER 1990

static column decode mode with read-modify-write cycle timing

Column

AO-A9

1 tsu(rd) ~
1

:4

,

~
,
,

,

'4

o

td(RLf~)

'

~

II

I

h(CA)

td(CAWL)

th(CAQ)~

tc(rdW)SC

,.

:

I'"

.:

:4-twIWL)~

Valid In

1

,

v.lldln

I

;

~ta(C)

~taCNHQ)~

:

1

1

~ta(CA)~

~.{

,

1

:

!J

VIH

- - - - -...-~

VIL

~

VIH

I

~
~
,

,

~~~ ~ V~~~

TEXAS

VIL

I
~thCNQ)

I

.1

ta(R)

Q ____________

'

,'
1~

_

1

~II--!~~'

,

-----jt>j,

,

1 1

,

,

I,

I