1992_Hitachi_LCD_Controller_Driver_LSI_Data_Book 1992 Hitachi LCD Controller Driver LSI Data Book

User Manual: 1992_Hitachi_LCD_Controller_Driver_LSI_Data_Book

Open the PDF directly: View PDF PDF.
Page Count: 1026

Download1992_Hitachi_LCD_Controller_Driver_LSI_Data_Book 1992 Hitachi LCD Controller Driver LSI Data Book
Open PDF In BrowserView PDF
LCD CONTROLLERIDRIVER LSI
DATA BOOK

HITACHI®

M24T013

When using this document, keep the following in mind:

1. This document may, wholly or panially, be subject to change without
notice.
2. All rights are reserved: No one is permitted to reproduce or duplicate, in
any fonn, the'whole or part of this document without Hitachi's permission.
3. Hitachi will not be held responsible for any damage to the user that may
result from accidents or any other reasons during operation of the user's
unit according to this documenL
4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims
or other problems that may result from applications based on the examples
described herein.
S. No license is granted by implication or otherwise under any patents or
other rights of any third party or Hitachi, Ltd.
6. MEDICAL APPLlCATIONS: Hitachi's products are not authorized for
use in MEDICAL APPLlCAnONS without the written consent of the
appropriate officer of Hitachi's sales company. Such use includes, but is
not limited to, use in life support systems. Buyers of Hitachi's products are
requested to notify the relevant Hitachi sales offices when planning to use
the products in MEDICAL APPLlCAnONS.

MUch 1992

C>Copyright 1992, Hitachi America, LId.

Printed in U.S.A.

INDEX
LCD Controller/Driver LSI Data Book
General Information I

General Information II

DATA SHEETS

General Type LCD Driver

Character Display LCD Controller/Driver

Graphic Display LCD Controller/Driver

Segment Type LCD Controller Driver
Special Application Driver
New Product Information
HITACHI

CONTENTS
LCD CONTROLLERIDRIVER LSI DATA BOOK

I SECTION 1

I General Information I

• GENERAL INFORMATION ....................................................................................................................................................

7

• Quick Reference Guide ..... ... ...... ..... ...... ....... ... ....... ....... .... ...... ..... ..... ....... ... ....... ........ ....... ... ........ ...... .... .... ....... ... ..... ..........

9

• Type Number Order ............................................................................................................................................................

12

• Selection Guide. ........... ... ......... ....... ........ ..... ........................... .......... ..... .......... .......... ..... ........ ........... ......... .... ....... .......... ...

13

• Differences Between Products ............................................................................................................................................

16

I General Information II

SECTION 2

• TCP (Tape Carrier Package) ................. ..... ... ...... .... .... ... .... ... ......... .... ..... ........ .... ..... ..... ... ..... ... ........... ....... ........ ... ....... ... ....

24

• Package Information............................................................................................................................................................

44

• Reliability and Quality Assurance.......................................................................................................................................

49

• Reliability Test Data of LCD Drivers .................................................................................................................................

56

• Flat Plastic Package (QFP) Mounting Methods ..................................................................................................................

60

• Liquid Crystal Driving Methods .........................................................................................................................................

63

SECTION 3

I General Type LCD Driver

• DATA SHl:E:rs.........................................................................................................................................................................

75

HD44 IOOH

LCD Driver with 40-Chimnel Outputs.......................................................................

77

HD66 IOOF

LCD Driver with 80-Channel Outputs.......................................................................

87

SECTION 4

I Character Display LCD Controller/Display

HD43I 60AH

Controller with Built-in Character Generator ............................................................ 100

HD44780. HD44780A (LCD-II) Dot Matrix Liquid Crystal Display Controller & Driver ........................................... 114
HD66780 (LCD-IIA)

Dot Matrix Liquid Crystal Display Controller & Driver ........................................... 167

'--SE_C_T_I_O_N_S----li Graphic Display LCD Controller/Driver
HD44I 02CH

Dot Matrix Liquid Crystal Graphic Display Column Driver..................................... 216

HD44103CH

Dot Matrix Liquid Crystal Graphic Display Common Driver................................... 239

HD44105H

Dot Matrix Liquid Crystal Graphic Display Common Driver ................................... 247

HD6II00A

LCD Driver with 80-Channel Output ........................................................................ 256

HD61102

Dot Matrix Liquid Crystal Graphic Display Column Driver..................................... 268

HD61103A

Dot Matrix Liquid Crystal Graphic Display Common Driver ................................... 296

HD6II04. HD61104A

Dot Matrix Liquid Crystal Graphic Display Column Driver..................................... 320

HD61105. HD61105A

Dot Matrix Liquid Crystal Graphic Display Common Driver ................................... 332

CONTENTS (Continued)
L-S_E_C_T_IO_N_5----11 (Continued)
HD6 I 200

LCD Driver with 80-Channel Output ...........................................................•............ 350

HD6 I 202

Dot Matrix Liquid Crystal Graphic Display Column Driver ...·.................................. 363

HD61203.

Dot Matrix Liquid Crystal Graphic Display Common Driver................................... 394

HD61830

LCTC (LCD Timing Controller) ............................................................................... 418

HD61830B

LCTC (LCD Timing Controller) ............................................................................... 443

HD63645F/HD64645F

LCD Timing Controller (LCTC) ............................................................................... 466

HD64646FS

LCD Timing Controller (LCTC) ............................................................................... 506

HD66J06F

LCD Driver for High Voltage .................................................................................... 516

HD66J07T

LCD Driver for High Voltage ..................................................................................... 531

HD66J08T

Ram-Provided 165-Channel LCD Driver for Liquid Crystal Dot Matrix Graphics .. 551

HD66840F

LCD Video Interface Controller (LVIC) ................................................................... 604

HD6684IF

LCD Video Interface Controller II (LVIC-II) ........................................................... 652

HD66850F

Color LCD Interface Engine (CLINE) ...................................................................... 708

SECTION 6

I Segment Type LCD Controller/Driver

HD6 I 602/HD61 603

Segment Type LCD Driver .............................................................. :......................... 778

HD6 1604/HD6 I 605

Segment Type LCD Driver ........................................................................................ 807

SECTION 7

I Special Application Drivers

HD66300T

Horizontal Driver for TFT -Type LCD Color TV ...................... :............................... 833

HD663 I OT

TFT-Type LCD Driver for VDT ................................................................................ 894

SECTION 8

New Product Information

HD66 I lOT

Column Driver ........................................................................................................... 916

HD66204

Dot Matrix Liquid Crystal Graphic Display Column Driver
with 80-Channel Outputs ............................................................ :.,............................
Dot Matrix Liquid Crystal Grapnic Display Column Driver
with 80-Channel·Outputs ...........................................................................................
Micro-TAB 80-Channel Column Driver in Micro-TCP ............................................
Dot Matrix Liquid Crystal Display Controller and Driver ........................................

HD66205
HD66214T/HD662l4TL
HD66702LCD-lI/E20

931
945
959
975

• HITACHI SALES OFFICES .................................................................................................................................................... 1024

LCD CONTROLLERIDRIVER LSI DATA BOOK

Section One

General Information I
• Quick Reference Guide
• 1YPe Number Order
• Selection Guide
• Difference Between Products

HITACHI

Quick Reference Guide
Type

Column Driver

Type Number

HD44100H HD418100F HD81tOOA H081200
5
5
5
5

Power supply for
internal circuits (V)
Power supply for
LCD Drive Circuit (V)

11

Power
DiSSIpation (mW)
Operating
Temperature (C)

HD81104
5

HD81104A HD88108F HD418107T
5
5
5

6

17

17

26

28

37

37

5

5

5

10

10

15

25

-20 to +75" -20 to +75't -20 to +75't -20 to +75 -2010+75 -2010+75 -2010+75 -2010+75

ROM (bit)

Memory

RAM (bit)
LCD Driver

Common

'20

Column

40 (20)

80

80

160

80

80

80

80

80

160

2.5

2.5

3.5

3.5

6

8

Instruction Set
Operation
Frequency (MHz)

0.4

Duty

Static-l 132 Static-l 116 Static-l/1oo 1/32-11128 1/64-1/2001/64-1/2401/100-1/4801/100-1/480

Package

FP-60

FP-l00

FP-l00

FP-l00

FP~I00

FP-l00

FP-l00

192pin

rcp

TFP-l00

Column Driver (TFT)

Type

Column Driver (RAM)

Type Number
Power supply for
internal circuits (V)
Power supply for
LCD Drive Circuit (VI
Power
Dissipation (mW)
Operating
Temperature rC)

HD441D2CH
5

HD81102
5

HD81202
5

HD88108T
5

HD86300T
5

HD88310T
5

11

15.5

17

15

15

23

5

5

5

5

160

100

-20 to +75

-20 to +75

-20 to +75

-20 to +75

-20 to +75

-20 to +75. 2
(-20 to +65)

200xB

512xS

512xS

165x65
160

,64
7
0.4

64
7
0.4

0-65
100-165
7
4

120

50
6
0.2S

4.S

12/15

1/S.1/12.
1/16.1/24.
1/32

Stetic-l/64

1/4S.1/64.
1/96.1/12S

FP-SO

FP-l00

FP-l00

1/32.1/34.
1/36.1/4S.
1/50.1/64.
1/66
20Spin TCP

156pin TCP

236pin TCP

ROM (bit)
RAM (bit)

Memory

LCD Driver

Common
Column
Instruction Set
Operation
Frequency (MHz)
Duty

Package

* 1 -40 to +85'C (Special request). Please contact Hitachi agents.
*2 -20 to +75'C in 12 MHz Version, -20 to +65'C in 15 MHz Version.
* 3 Under development

HITACHI
Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300

9

Quick Reference Guide
Type

Sagnwn,t Display

Type Number
Power supply for
internal circuits (V)
Power supply for
LCD Drive Circuit (V)
Power
Dissipation (mW)
Operating
Temperature rC)
Memory
ROM (bit)
RAM (bit)

3 to 5

HD61603
3 to 5

HD61604
3 to 5

HD61605
3 to 5

5

5

5

5

0.5

0.5

0.5

0.5

-20 to +75. 1

-20 to +75. 1

-20 to +75. 1

-20 to +75. 1

204

64

204

64

4
51

64

51

64

Instruction Set

4

4

4

4

Operation
Frequency (MHz)

0.52

0.52

0.52

0.52

Duty

Static. 1/2.
1/3.1/4
FP-80.
FP-80A
TFP-80· 2

Static

Static.ll2.
1/3.1/4
FP-80

Static

LCD Driver

Common
Column

Package

HD61602

4

FP-80

* 1 -40 to +85°C (Special request).
* 2 Under development

FP-80

Please contact Hitachi agents.

Type

Common Driver

Type Number
Power supply for
internal circuits (V)
Power supply for
LCD Drive Circuit (V)
Power
Dissipation (mW)
Operating
Temperature ( °C)
ROM (bit)
Memory
RAM (bit)

HD44103CH HD44105H HD61103A HD61203
5
5
5
5

HD61105
5

HD61105A
5

11

11

17

17

26

28

4.4

4.4

5

5

5

5

LCD Driver

20

Common

-20 to +75 -20 to +75 -20 to +75 -20 to +75 -20 to +75 -20 to +75

32

64

64

80

80

2.5

2.5

0.1

0.1

Column
Instruction Set
Operation
Frequency (MHz)
Duty

Package

1/8.1/12. 1/8.1/12. Static-l/10.
1/16.1/24.1/32.1/48 1/64
1/32
FP-60
FP-60
FP-l00

1/32-1/1281/64-1/2001/64-1/240

FP-l00

FP-l00

FP-l00
TFP-l00

* 1 -40 to +85°C (Special request). Please contact Hitachi agents.
* 2 Under development
HITACHI
10

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

Quick Reference Guide
GI'IIPhIc Dt.pIay

a-.ctar Dllplay

Type

Type NUIIIbM'
Power supply for
internal circuita (V)
Power supply for
LCD Drive Circuit (V)
Power
Dissipation (mW)
Operating
Temperature ('C)
ROM (bit)
Memory
RAM (bit)
LCD Driver

HD44780
HD43180AH (LCD-It)

HD88780
(LCD-itA)

HD81830

5

5

5

5

HD83846F
HD8484IF HD88840F
HD84848FS HD68841F HD888IIO
HD81830B LCTC
LYIC
CLINE
5
5
5
5

11

5

2

2

30

50

10

250

500

-20 to +75 -2010 +75" -2010 +75

-20 to +75 -2010 +75" -20 to +75 "':20 to +75 -20 to +75

6420

7360

80x8

7200
80x8,
64x8

12000
80x8,
64x8

Common

16

16

Column

40

40

Instruction Set

50

7360
9762

11
6
0.25/0.375 0.25

11

12

12

15

16/24

63

0.25

1.1

2.4

10

30

32

Duty

1/8,1/12,
1/16

1/8,1/11,
1/16

1/8,1/11,
1/16

Static
1/128

Static
1/128

Static
1/512

Static
1/1024

1/480

Package

FP-54

FP-80,
FP-80A
TFP-80,2

FP-80A
FP-80B

FP-60

FP-60

FP-80,
FP-80B

FP-l00A

FP-136

Operation
Frequency (MHz)

* 1 -40 to +85'C (Special request). Please contact Hitachi agents.
*2 Under development

HITACHI
HitachLAmerica, Ltd.' Hitachi Plaza ·2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300

11

Type Number Order
Type

Function

HD43160AH

LCD Controller

HD44100H

LCD Driver with 40 Channel Output

HD44102CH

LCD Column Driver with 50 Channel Output

216

HD44103CH

LCD Common Driver with 20 Channel Output

239

HD44105H

LCD Common Driver with 32 Channel Output

247

HD44780 LCD-II

LCD Controller/Driver

114

HD6110A

LCD Column Driver with 80 Channel Output

256

HD61102

LCD Column Driver with 64 Channel Output

268

HD61103A

LCD Common Driver with 64 Channel Output

296

HD61104

LCD Column Driver with 80 Channel Output

320

Reference Page
100
77

HD61104A

LCD Column Driver with 80 Channel Output

320

HD61105

LCD Common Driver with 80 Channel Output

332

HD61105A

LCD Common Driver with 80 Channel Output

332

HD61200

LCD Column Driver with 80 Channel Output

350

HD61202

LCD Column Driver with 64 Channel Output

363

HD61203

LCD Common Driver with 64 Channel Output

394

HD61602

Segment Display Type LCD Driver

778

HD61603

Segment Display Type LCD Driver

778

HD61604

Segment Display Type LCD Driver

807

HD61605

Segment Display Type LCD Driver

807

HD61830 LCTC

LCD Timing Controller

413

HD61830B LCTC

LCD Timing Controller

443

HD63645F LCTC

LCD Timing Controller

466

HD64645F LCTC

LCD Timing Controller

466

HD64646FS LCTC

LCD Timing Controller

506

HD66100F

LCD Driver with 80 Channel Output

HD66106F

LCD Column/Common Driver with 80 Channel Output

516

HD66107T

LCD Column/Common Driver with 160 Channel Output

531

HD66108T

Graphic LCD Controller/Driver

551

HD66110T

Column Driver

916

HD66204

LCD Column Driver with 80 Channel Output

931

87

HD66205

LCD Common Driver with 80 Channel Output

945

HD66214T

Micro-TAB 80-Channel Column Driver

959

HD66214TL

Micro-TAB SO-Channel Column Driver

959

HD66300T

TFT Alalog Column Driver

833

HD66310T

TFT Digital Column Driver

894

HD66702 LCD-II

Dot Matrix Liquid Crystal Display Controller and Driver

975

HD66780 LCD-IIA

LCD Controller/Driver

167

HD66840F LVIC

LCD Video Interface Controller

604

HD66841F LVIC-II

LCD Video Interface Controller

652

HD66850F CLINE

Color LCD Interface Engine

708

HITACHI
12

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

HD66108T

Driver Output
160

I

I

::I:

I.

I

~

CD

~.

Controll~r/Dri;';]

HD61604
HD61602
HD44780
H
(LCD-II)
1
1
HD66780
(LCD-II A)

!:;
~

•

::I:
I

~
2:

3!

·
I

fJ)

(ij"

;) ~

? d
a ~

I

1/480
1/200
Duty 1/240

1/128
1/64
1/100

I

I

1/32

1/16

1

! ~ ::I
~

eo.

HD61202
1

I

[~mn

Driver

(Built in RAM)

HD44102H

20

'"o
:3

I

HD61102

40

&l

i

80

HD61603+
HD61605

HD44103CH

HD44105CH

_

I
1/8

I

Static

I

I

I

1/8

1/16

1/32

1/64

I
1/128
1/100

1/200
1/480
Duty 1/240

G)

HD44100H

c
6:
CD

~.

liS

::I

I HD61103A

§;

§
':t.

~

<0

~
.£!
U1

!

c.>

:3
......
c.>

I HD61203
HD66205/

60

I
I HD66100F
I

HD61105

HD611~,,0~5A:.!I~=====I--t

1-

80

HD66106F

1
IHD61100A

HD61200

HD611041
HD66204/HD61104A 1

1
HD66106F

1
HD66107T

Common Driver
160
Driver Output

-I.
=

32

c:>

5D

en
CD

o

20

~40

•

I

[Col~mn Driv';-j

I

HD66107T

Selection Guide
Hitachi LCD Driver System
s-

Rar-Type

.... (mul

Figure

TFT

(800x3) x 520
dots

Full Color
System

LIneup
HD66310T(Drain)
HD61105(Gate)
HD66205(Gata)

ApplIcatIon
Personal Computer
Terminal Workatation
Navigation System

STN
Full Color
System

(720x 3) x 480
dots

HD66850F(Controller) Personal ComHD66107T
puter
(Column, Common)
Terminal
Work-station

Color
LCD-TV
System

720 x 480 dots

HD66300T(Drain)
HD61105(Gate)
HD66205(Gate)

LCD-TV
Portable Video

Video to
LCD
converter

720x512 dots

Personal Computer, Terminal,
OHP

Display
System
for CRT
Compatible

640 x 400 dots

Graphic
Display
System

Character
80X16
Graphic
480x 128 dots

HD66840F, HD66841F
HD66106F(Driver)
HD661 07T(Driver),
HD61104(Column)/
61105(Common)
HD66204(Column)/
66205(Common)
HD63645F/64645F/
64646FS(Oontroller)
HD61104(Column)/
61105(Common)
HD66204(Column)/
66205(Common)
HD66106F(Driver)
HD611 OOA(Column),
HD61830B(Controiler)
HD61200(Column)
HD61103A(Common),
HD61203(Common)

Graphic
Display
System
(Bitmap)

480 x 128 dots

HD44102CH(CoIumn)/
61102(Column)
HD44103CH(Common)
HD61202(CoIumn)
HD44105H(Common)/
61103A(Common)
HD61203(Common)
HD66108T
(Column/Common)
HD44780(LCD- II )
(Controller/Driver)
HD66780(LCD-1I A)
(Controller/Driver)
HD44100H(CoIumn)
HD66100F(Columnt

Laptop Computer,
Handy Wordprocassor, Toy

HD61602
(Controller/Driver)
HD61604
(Controller/Driver)
HD61603
(Controller/Driver)
HD61606
(Controller/Driver)

ECR, MeeeurementSystem,
Telephone
Industrial MeaIUramentSystem

Character
Display
System

Sagment
Display
System

8-l

HD44'ao

I~

I

HDO,I02,H08''''

lCofttI'OIIIr.lDriver1

40 Charae-

7O"VO

~

I ters
x2 Columns

80 Charac-

HD86100F1
HD44100H

ters

ICoIuINnDri¥lrl

xl Column

~
u

25 Digits
xl Column

Personal Computer, Wordprocessor, Terminal

laptop Computer,
Facsimile, Telex,
Copy machine

Electrical Typewriter, Multifunction Telephona,
Handy Terminal

HITACHI
14

Hitachi America, Ltd. - Hitachi Plaza - 2000 Sierra Point Pkwy. -Brisbane, CA 94005-1819- (415) 589-8300

Selection Guide
Application
Character and Graphic Display
1 character=7 X 8 dot (15 X 7 dot
Character
Line

8

16

I

+ cursor)
20

24

I

32

40

I

I

Over 80

1
HD66100F
2
3
HD44100H
4
6 to 8

r

12 to 15

HD61200 (Column) + HD61203 (Common)

16 to 25

HD61104 (Column) + HD61105 (Common)
HD66204 (Column) + HD66205 (Common)
HD66106F, HD66107T

26 to 50

Graphic Display
Horizontal
Vertical

48

I

96

I

120

I

180

I

240

I

480

Over 640

16
32

HD61202 (Column) + HD61203 (Common)

48
64
128
400

HD61104 (Column) + HD61105 (Common)
HD66204 (Column) + HD66205 (Common)
HD66106F, HD66107T

Over 400
Note: Applications on this page are only examples, and this combination of devices is not the best.

HITACHI
Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300

15

Differences Between Products
1. HD66100F and HD44100H

3 to 6
Static to 1/16
100 pin plastic QFP

HD44100H
20x2
4.5 to 11
Static to 1/32
60 pin plastic QFP

HD61100A

HD61200

80

80
1/32 to 1/128

HD66100F
80

LCD drive circuits
Power supply for internal logic (V)
Display duty
Package

2. HD61100A and HD61200
LCD drive circuits

common
column

static to 1/128
o to 17

Display duty
Power supply for LCD drive circuits (V)
Power supply limits of LCD driver
circuit voltage

8 to 17
shown in figures below

Vee to VEE
(no limit)

Resistance between terminal Y and terminal
V (one of V1L, V1R, V2L, V2R, V3L, V3R, V4L,
and V4R) when load current flows through
one of the terminals Y1 to Y80 is specified

under the following conditions:
Vee-VEE=17V
V1L=V1R, V3L=V3R=Vee-2/7 (Vee-VEE)
V2L=V2R, V4L=V4R=VEE+2/7 (Vee-VEE)
Ro~

Vll.V1R

0

V3L,V3R

0

~

V4L,V4R

0

~

V2L,V2R

,..

A

'V

~

-

-

_ Terminal Y
(Y, to Yool

AN

,..

V/"

Figure 1 Resistance between Y ard V Terminals
The following is a description of the range of
power supply voltage for liquid crystal display drives. Apply positive voltage to V1L =
V1R and V3L = V3R and negative voltage to

V2L=V2R and V4L=V4R within the t:.~ range. This range allows stable impedance on
driver output (RON). Notice the t:. V depends
on power supply voltage Vec-VEE.

.,-------,=:=-"'-"'-"'-'""."'- ~ie(Vl L=Vl R)
i'V

The Range of P!>Wer Supply
Voltage for Liquid Crystal
Display Drive

--- V3 (V3L=V3R)

5.5

~

>

V4 (V4L=V4R)
V2 (V2L=V2R)

.'V
Correlation between "Driver
Output Waveform and Power
supply Voltages for Liquid
Crystal Display Drive

------J'\

V4L,V4R

Figure 4 Resistance between Y and V Terminals
The follOwing is a description of the range of
power supply voltage for liquid crystal display drives. Apply positive voltage to V1L=
V1R and V3L=V3R and negative voltage to

V2L=V2R and V4L=V4R within the IlV ran-

ge. This range allows stable impedance on
driver output (RON). Notice that IlV depends
on power supply voltage Vee-VEE.
The Range of Power Supply
Voltage for Uquid Crystal
Display Drive

Vee
Vl (Vl L=Vl R)
V3 (V3L=V3R)

5.0

~

>
.V

Figure 5 Power Supply Voltage Range

HITACHI
18

Hitachi America, Ltd.· Hitachi

Plaz~·

2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

Differences Between Products
6. HD61103A and ·HD61203
HD61103A

HD61203

Recommended voltage between
Vee and VEE (V)

4.5to17

8 to 17

Power supply limits of LCD drive
circuits voltage

Vee to VEE (no limit)

shown in figures below

Output terminal

shown in following figure 4

shown in following figure 5

Resistance between terminal Y and terminal
V (one of V1L, V1R, V2L, V2R, V5L, V5R, V6L
and V6R) when load current flows through
one of the terminals Xl to X64. This value is
specified under the following conditions:

V1L,V1R

0

V6L,V6R

0

V5L,V5R

0

Vee-VEE=17V
V1L=V1R, V6L=V6R=Vee-l/7 (Vee-VEE)
V2L=V2R, V5L=V5R=VEE+l/7 (Vee-VEE)

Terminal V
(V, to VS4 )

V2L,V2R

Figure 6 Resistance between Y and V Terminals
Here is a description of the range of power
supply voltage for liquid crystal display drive.
Apply postive voltage to V1L=V1R and V6L=
V6R and negative voltage to V2L = V2R and

V5L=V5R within the ilV range.
This range allows stable impedance on driver
output (RON). Notice that ilV depends on
power supply voltage Vee-VEE.
The Range of Power Supply
Voltage for Liquid Crystal
Display Drive

3.5----------------

Vee
V1 (V1L,=V1R)
V6 (V6L=V6R)

~

>

2------

teS: 1, Mark snail be
on pohirog ._n.
2. Dirnen.;Of1a1toIer&rlcesIre ±O.1 mm
unless otM1W1" noted
3. The figure below thows • erotII-HCliollollt
view of Ihl! outer lead booding ••e6

~

C_''''f
Adhe5iYe~1

Film

O.IJ±O.OS

Figure 11 Hitachi Standard TCP 8 - HD66300TOO -

HITACHI
36

Hitachi America, Ltd. - Hitachi Plaza - 2000 Sierra Point Pkwy. -Brisbane, CA 94005-1819 - (415) 589-8300

TCP

1

i

I

I1

IrIIaII:t.'1iIIeranoII . . SO'l ............. iIIcIIcIIId.
2. TMIMdCl'Oll ...... aI . . . . . cone.d ...... iI~ ..........

Figure 12 Hitachi Standard TCP 9 - HD66310TOO -

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

37

TCP

2.2 Product Delivery Specifications
Specifications for product delivery to customers is described below.
2.2.1 Tape Joint (Including Lead Tape Joint)
TCP tape is cut into strips for aging and other purposes, after which they are again joined together.
Joint specifications are given below (figure 13).

o

[~

0 [] 0

User

[] 0 0 0 0 0

/user!

pattern

pattern

[

:::J 0 0 [] [] [~ 0 0 0 0 0 0

Joint tapes

=g<

. I I. 3.35,6.0 or 12.2 mm
Note:

Units: mm

Joint tape is affixed to both top and bottom surfaces of the joint. The
joint must not be twisted or subjected to a large stresses.

Figure 13 Tape Joint
2.2.2 Mark
Hitachi control code, made up of three or six digits, is marked on potting resin as shown in figure
14. The HD66108TOO is marked on top of the solder resist.

('..--------------- . . . . ------------.. .1
!
Die center

!,,,

:

i',,----- -----------

V

Molding area

i

---------------_#,'

Figure 14 Mark Pattern

"
38

HITACHI

Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819' (415) 589-8300

TCP
2.2.3 Packing

Antistatic sheet
Reel

Figure 15 Packing

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

39

TCP
(1) Delivery
A reel wound with carrier tape is sealed in an opaque antistatic sheet with N2 and packed into a
carton before delivery.
(2) Thpe
I.

Carrier tape:

40m

II.

Lead tape:

2+0/-1 m added to both ends of the carrier tape

III. Conductive tape:

40m

IV. Separator:

40m

V.

Tape is wound with its pattern surface on the inside.

Note: The length of I, III, and IV may vary slightly depending on the number of products
contained on the tape.
(3) Request for Recovery of Packing Material
Please return the separator, lead tape, and reel to us after using the TCP product.
Detailed return procedures will be advised by our Sales Department.

HITACHI
40

Hitachi America, Ltd. e Hitachi Plaza e 2000 Sierra Point pkwy.. e Brisbane, CA 94005-1819 e (415) 589-8300

TCP
(3) Reel

3

'"
d

.. .

0-

+1

~ -en
ui

'"

4
~
37
3

LJ[
e- f - - - f -

Dc

Note: The shaft hole of the reel is slightly greater than the specified shaft size.

mm
Unit:
Material: Styrole

Figure 16 Reel Dimensions
Note: LSls dtermined defective during classification, assembly, or other processes are punched
out.

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

41

TCP
2.2.4 Storage Conditions

(1) When storing in the original packing
Store in nOmlal atmospheric conditions, and use within 6 months of delivery.
(2) Storage after opening
Storage in a nitrogen atmosphere with a dew point of -30°C or below is recommended.
2.2.5 Usage Notes for TCP Products

(1) Prevention of Static Damage
In addition to nOmlal static preventive measures for IC circuits, observe the following precautions
for TCP products.
• Since TCP products have a film layer on their base, they acquire a static charge easily. In
handling TCP products exert extra caution in the installation of ion blowers and grounding so
that the fIlm does not become charged.
• At the same time as handling the circuits in a manner such that static electricity is not applied to
the package leads, carry out static electricity damage prevention measures in the equipment,
especially in the parts of the tape guide which contact the lead pins.
(2) Lead Outer Coating
The lead spacing of TCP products is signifIcantly narrower than that of other products and
shorting problems are more easily caused by conductive foreign elements such as stray solder or
machinings. We recommend an outer coating of resin over the leads as a preventive measure.
AlSo, to enable TCP products to be mounted at a high density, a conductive foil is bonded to the
fllm, and wiring and leads are fOmled by precision manufacturing techniques. Therefore, it is
possible that contamination of the foil with, for example, solder flux, may result in corrosion and
broken connections. Thus, special care should be taken to avoid wiring and lead contamination
when mounting TCP products by soldering or other methods.
(3) Mechanical and Electrical Handling
To reduce thickness, the back surface of the chip is exposed in TCP products. To prevent chip
cracking or static damage, mount TCP products in a manner which results in no mechanical or
electrical contact with the back surface of the chip:
Since the wiring and leads on the TCP tape is fabricated from extremely thin copper foil, its
mechanical strength is reduced. Mounting techniques and structures which apply strong external
forces to the copper foil should be avoided.
Also, to assure electrical characteristics, avoid direct exposure to sunlight.

HITACHI
42

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

TCP
(4) Unpacking
• The copper foil is plated. To assure good solderability, use the products as soon after unpacking
as possible.
• Since TCP products use polyimide as their base film, the film expands when it absorbs
moisture. Although the packaging is moisture proof, TCP products should be used as soon after
opening as possible.
(5) Other Items
• We recommend the use of the sprocket holes in the stamped product parts in positioning TCP
products during individual punching.
• Since lead tape has a poor ability to withstand heat, and shrinks when heated, do not apply high
temperatures to the lead tape.
• Bending TCP products can introduce cracks in the solder resist. Care should be taken to avoid
bending when handling TCP products.
• When stacking TCP product boxes (the original packaging) for storage, do not stack more than
10 high.
• Do not apply large mechanical shocks to TCP product packaging.

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

43

Package Information
Package Information
The Hitachi LCD driver devices use plastic
flat packages to reduce the size of the

equipment in which they are incorporated
and provide higher density mounting by utilizing the fe~tures of thin liQl.lid crystal display
elements.

Package Dimensions .
Scala: 3/2

FP-54

25.6tO.4

~

00
+1

,..0

'"

",;

..;

+1

~

",;

Code

1. 70tO.30

FP-54

EIAJ
JEDEC

HD43160AH
Applicable LSI

FP-60

25.6tO.4

Code

1. 70tO.30

Applicable LSI

FP-60

EIAJ
JEDEC

HD44100H, HD44103CH, HD44105H
HD61830, HD61830B

./

HITACHI
44

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300

Package Information
FP-80

~~"" ...ttInOnnnnnnn~

.,

o

-

0 lif

o

1. 70tO.30

Code

FP-80

EIAJ

JEOEC

H061602, H061603, HD61604, HD61605
HD44780, HD66780, HD63645F, HD64645F
HD44102CH

Applicable LSI

17 2tO 3
014.0

FP-80A
60

411

61

40

80

21

'".,

~I

0

""~
1
0.30tO.05

20

II *10.13IM

o.
N_
00
+1

"

'"
a
~ ~

1.60

c-i '"
Code

0.80

FP-80A

EIAJ

JEOEC

HD66780, HD44780, HD61602
Applicable LSI

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

45

Package Information

24 .S+O
- .4
20.0

FP-80B

65 funnnnn""""n""""""""n"n""!1

L
~

0

::!:

~

25

SO

0;35to.!~1.'0.!51191

24

o.
o.

...

~l~o .ftInnnnDnnnnbbDDDb~
+1

1.20tO.

20 II

Code

FP-80B

EIAJ

JEDEC

,HD64646FS. HD66780
Applicable LSI

FP-100

o.
o·

co

.

... ..;2•

+I

0

IN

2

Applicable LSI

~~
~""""".:tr

ii

.

1. 70tO.30

Code

FP -100

EIAJ

JEDEC

HD61100A. HD61102. HD61103A. HD61104. HD66204
HD61105. HD66205. HD61200. HD61202. HD61203
HD66100F

HITACHI
46

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300

Package Information

.-.

24 8+0 4
20.0

FP-100A

511

80

50

81
1

0

~

•

~

31

lOO=.,.

0.30tO.I~ II .10.131~1

30

o.

N00

+I

...
0

IN

."

~

..;

""~l
J6nlmlnmDBmmn~
:;;

+1

~

0-1~

o

~

~

1.20tO.20

0

II

Code

FP-l00A

EIAJ
JEDEC

HD66106F. HD66840F. HD66841F

Applicable LSI

.-.

FP-100B

16 0+0 3
014.0
75

51
50

76

~

1

26

100

~

25
0.20.10.101191

~L~1.00

.•
0-5

o

0.50

Code
EIAJ
JEDEC

FP-l00B

HD66100F

Applicable LSI

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA94005-1819· (415) 589-8300
.~~--~---

--~----

47

Package Information
15.6
014.0

TFP-100

75

51

76

50

~l

"!

:!;

100

26

~
0.20

25
:.10.10If!lll

0.50

t

.

"
""

-~

5

0

-

"" =.
E""
,~ o."11:"

0.30

0

0-5"

>y

Code
EIAJ
JEDEC

HD61104TF, HD61105TF

Applicable LSI

FP-136

-

TFP-100

---

.- .
028.0
69

102
103

68

1

~

35

136
1 0.35tO.10

111.10.151~1

34 o.

1.60

~l~ AnnnononnnnbDOUObDononnnnnnnnnnnooh.!{

o

+1

Code
EIAJ
JEDEC

0.80

Applicable LSI

FP-136

HD66850F

HITACHI
48

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

Reliability and Quality Assurance
1. Views on Quality and Reliability
Hitachi's basic quality aims are to meet individual user's purchase purpose and quality
required. and to be at a satisfactory quality
level considering general marketability.
Quality required by users is specifically clear
if the contract specification is provided. If not.
quality required is not always definite. In
both cases. Hitachi tries to assure reliability
so that semiconductor devices delivered can
perform their function in actual operating
circumstances. To realize this quality in the
manufacturing process. the key points should
be to establish a quality control system in the
process and to enhance the quality ethic.
In addition. quality required by users of
semiconductor devices is going toward
higher levels as performance of electronic
system in the market is increasing and
expanding in size and application fields. To
cover the situation. Hitachi is performing the
following:
1. Building in reliability in design at the stage
of new product development.
2. Buliding in quality at the sources of the
manufacturing process.
3. Executing stricter inspection and reliability confirmation of final products.
4. Making quality levels higher with field
data feedback.
5. Cooperating with research laboratories for
higher quality and reliability.
With the views and methods mentioned
above. utmost efforts are made to meet users'
requirements.

2. Reliabillty Design of Semiconductor
Devices
2.1 Reliability Targets
The reliability target is the important factor
in manufacture and sales as well as performance and price. It is not practical to rate
reliability targets with failure rates under
certain common test conditions. The reliability target is determined corresponding to the
character of equipment taking design. manufacture. inner process quality control.
screening and test method. etc. into consideration. and considering the operating circumstances of equipment the semiconductor
device is used in. reliability target of the
system. derating applied in design. operating
condition. maintenance. etc.

2.2 Reliability Design
To achieve the reliability required based on
reliability targets. timely study and execution

of design standardization. device design (including process design. structure design).
design review. reliability test are essential.

2.2.1 Design Standardization
Establishment of design rules. and standardization of parts. material and process are
necessary. To establish design rules. critical
quality and reliability items are always studied at circuit design. device design. layout
design. etc. Therefore. as long as standardized process. material. etc. are used. reliability
risk is extremely small even in newly developed devices. except in cases where special
functions are needed.

2.2.2 Device Design
It is important in device design to consider
the total balance of process design. structure
design. circuit and layout design. Especially
when new processes and new materials are
employed. careful technical study is executed
prior to device development.

2.2.3 Reliability Evaluation by Test Site
Test site is sometimes called test pattern. It is
a useful method for design and process reliability evaluation of les and LSls which have
complicated functions.
Purposes of test site are:
· Making fundamental failure mode clear
· Analysis of relation between failure mode
and manufacturing process condition
· Search for failure mechanism analysis
· Establishment of QC point in manufacturing
Evaluation by test site is effective because:
· Common fundamental failure mode and
failure machanism in devices can be
evaluated.
· Factors dominating failure mode can be
picked uP. and comparison can be made
with processes that have been experienced
in field.
· Relation between failure causes and manufacturing factors can be analyzed.
· Easy to run tests.
· Etc.

2.3 Design Review
Design review is an organized method to
confirm that a design satisfies the required
performance (including users') and that
design work follows the specified methods.
and whether or not improved technical items
accumulated in test data of individual major

HITACHI
Hitachi Amer:i~. Ltd. • Hitachi PI~z~·JQQ.Q. Sierra P~ir1t Pkwy.......I3risbane. CA.~005-18!~~. (i1~5) 589-830L __!~

Reliability and Quality Assurance
fields and field data are effectively built in. In
addition, from the standpoint of enhancement of the competitive power of products,
the major purpose of the design review is to
ensure quality and reliability of the products.
In Hitachi, design reviews are performed
from the planning stage for new products
and even for design changed products. Items
discussed and determined at design review
are as follows:
1. Description of the products based on
specified design documents.
2. From the standpoint of the specialties of
individual participants, design documents
are studied, and if unclear matter is found,
calculation, experiments, investigation,
etc. will be carried out.
3. Determine contents of reliability and
methods, etc. based on design documents
and drawings.
4. Check process ability of manufacturing
line to acl1ieve design 99al.
5. Discussion about preparation for production.
6. Planning and execution of subprograms
for design changes proposed by individual
specialists, and for tests, experiments and
calculation to confirm the design changes.
7. Reference of past failure experiences with
similar devices, confirmation of methods to
prevent them, and planning and execution
of test programs for confirmation of them.
These studies and decisions are made
using check lists made individually de-·
pending on the objects.

3. Quality Assurance System of Semiconductor Devices
3.1 Activity of Quality.Assurance
General views of overall quality assurance in
Hitachi are:
1. Problems in an individual process should
be solved in the process. Therefore, at final
product stage, the potential failure factors
have been already removed.
2. Feedback of information should be used to
ensure lIatisfactory level of process capability.
3. To assure required reliability as a result of
the items mentioned above is the purpose
of quality assurance.
The following discusses device design, quality approval at mass production, inner process quality control, product inspection and
reliability tests.
.

3.2 Quality Approval

production stage of device deSign and the
mass production stage based on reliability
design as described in section 2.
Hitachi's views on quality approval are:
1. A third party must perfOriq approval
objectively from the standpoint of customers.
2. Fully consider past failure experiences and
information from the field.
3. Approval is needed for design change or
work change.
4. Intensive approval is executed on parts
material and process.
.
5. Study process capability and variation
factor, and set up control points at mass
production stage.
Considering the views mentioned above,
figure 1 shows how quality approval is performed.

3.3 Quality and RellabUlty Control at
Mass Production
For quality assurance of products in mass
production, quality control execution is
divided organically by function between
manufacturing department and quality
assurance department, and other related
departments. The total function flow ,is
shown in figure 2. The main points are described below.

3.3.1 Quality Control of Parts and Mate·
rial
As the performance and the reliability of
semiconductor devices improve, the importance of quality control of material and parts
(crystal, lead frame, fine wire for wire bonding, package) to build products, and materials
needed in manufacturing process (mask pattern and chemicals) increases. Besides quality
approval on parts and materials stated in
section 3.2, the incoming inspection is also
key in quality control of parts and materials.
The incoming inspection is performed based
on an incoming inspection specification, following purchase specification and drawings,
and sampling inspection is· executed based
mainly on MIL-STD-105D.
The other activities of quality assurance are
as follows:
,1. Outside vendor technical information
meeting
2. Approval on outside vendors, and guid.
ance of outside vendors
3. Physical chemical analysis and test
The typical check points of parts and materials are shown. in table 1.

To ensure required quality and reliability,
.quality approval is carried· out at the trial

HITACHI
50

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

Reliability and Quality Assurance
3.3.2 Inner Process Quality Control

manufacturing process is tightly executed:
Strict check on each process and each lot,
100% inspection to remove failure factor
caused by manufacturing variation, and
necessary screening, such as high temperature aging and temperature cycling.
Contents of inner process quality control
are:
· Condition control on individual equipment and workers, and sampling check
of semifinal products.
· Proposal and carrying-out of work
improvement
• Education of workers
• Maintenance and improvement of yield
• Detection of quality problems, and execution of countermeasures
· Transmission of information about quality

Inner process quality control performs a very
important function in quality assurance of a
semiconductor devices. The follOwing is a
description of control of semifinal products,
final products, manufacturing facilities,
measuring equipments, circumstances and
submaterials. The quality control in the
manufacturing process is shown in figure 3
corresponding to the manufacturing process.
1. Quality Control of Semifinal Products and
Final Production Products
Potential failure factors of semiconductor
devices should be removed in manufacturing process. To achieve this, check
points are setup in each process, and
products that have potential failure factors
are not transferred to the next process. For
high reliability semiconductor devices,
especially manufacturing line is carefully
selected, and the quality control in the

Step

I

I
I

Target
Specification

,

2. Quality Control of Manufacturing Facilities
and Measuring Equipment
Equipment for manufacturing semicon-

Contents

Purpose

Design Review

J

Design
Trial
Production

Materials, Parts
Approval

Characteristics Approval

~

Characteristics of Material
and Parts
Appearance
Dimension
Heat Resistance
Mechanical
Electrical
Others

f--

Electrical Characteristics
Function
Voltage
Current
Temperature
Others
Appearance, Dimension

1

Confirmation of Target
Spec. (Mainly Electrical
Characteristics)

11

Confirmation of Quality
and Reliability in Design

Confirmation of
Characteristics and
Reliability of Materials
and Parts

.

I

Quality Approval (1)

Reliability Test
Life Test
Thermal Stress
Moisture Resistance
Mechanical Stress
Others

I

Quality Approval (2)

Reliability Test
Process Check (same as
Quality Approval (1) )

I

Mass Production

Confirmation of Quality
and Reliability in Mass
Production

I
Figure 1 Quality Approval Flowchart

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589~8300

51

Reliability and Quality Assurance
ductor devices have been developing
extraordinarily, with required high performance devices and production inprovements. They are important factors to
determine quality and reliability. In Hitachi, automation of manufacturing equipment is promoted to improve manufacturing variation, and controls maintain proper
operation and function of high performance equipment. Maintenance inspection for quality control is performed daily
based on related specifications, and also
periodical inspections. At the inspection,
inspection points listed in the specification
are checked one by one to avoid any omissions. During adjustment and maintenance of measuring equipment, mainte-

Process

nance number and specifications are
checked one by one to maintain and
improve quality.
3. Quality Control of Manufacturing Circumstances and Submaterials
Quality and reliability of semiconductor
devices is greatly affected by manufacturing process. Therefore, manufacturing circumstances (temperature, humidity, dust)
and the control of submaterials (gas, pure
water) used in manufacturing process are
intensively controlled. Dust control is described in more detail below.
Dust control is essential to realize higher
integration and higher reliability of
devices. In Hitachi, maintenance and

Quality Control

Material,
Parts

Inspection on Material and
Parts for Semiconductor
Devices

Method

Lot Sampling,
Confirmation of
Quality Level

Manufacturing Equipment,
Environment. Submaterial.
Worker Control

Inner Process Quality
Control

100% Inspection of
Appearance and Electrical
Characteristics
Products

Sampling Inspection of
Appearance and Electrical
Characteristics

I
I

I
I

IL _____ _

Reliability Test

r-----------------,

:
I
I

Quality Information
I
Claim
:
Field Experience
I
General Quality
I
~ __ ~!.~~a.!!~n________ J

Feedback of
Information

Figure 2 Flowchart of Quality Control in Manufacturing Process

HITACHI
52

Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819' (415) 589-8300

Reliability and Quality Assurance
improvement of cleanness and manufacturing site cleanness are executed paying
close attention to buildings, facilities, airconditioning systems, packaging materials, clothes, work, etc., and periodical
inspection for floating dust in room, falling
dust, and floor dust.

3.3.3 Final Product Inspection and Rellability Assurance
1. Final Product Inspection
Lot inspection is done by quality assurance department for products that were
judged to be 100% good in tests, which is

the final process in the manufacturing
department. Though 100% good products
is expected, sampling inspection is
executed to prevent inclusion of failed
products by mistake, etc. The inspection is
executed not only to confirm that the
products meet users' requirements, but to
consider potential trouble factors. Lot
inspection is executed based on MIL-STD105D.
1. Reliability Assurance Tests
To assure reliability of semiconductor
devices, periodical reliability tests and.
reliability tests on individual manufacturing lots required by user are performed.

Table 1 Quality Control Check Points of Material and Parts
(Example)
Material, Parts
Wafer

Mask

Fine wire for wire bonding

Frame

Ceramic package

Plastic

Important Control Items
Appearance
Dimension
Sheet resistance
Defect density
Crystal axis
Appearance
Dimension
Registration
Gradation
Appearance
Dimension
Purity
Elongation ratio
Appearance
Dimension
Processing accuracy
Plating
Mounting characteristics
Appearance
Dimension
Leak resistance
Plating
Mounting characteristics
Electrical characteristics
Mechanical strength
Composition

Electrical characteristics
Thermal characteristics
Molding performance
Mounting characteristics

Points to Check
Damage and contamination on surface
Flatness
Resistance
Defect numbers

Defect numbers, scratch
Dimension level
Uniformity of gradation
Contamination, scratch, bend, twist
Purity level
Mechanical strength
Contamination, scratch
Dimension level
Bondability, solderability
Heat resistance
Contamination, scratch
Dimension level
Airtightness
Bondability, solderability
Heat resistance
Mechanical strength
Characteristics of plastic material

Molding performance
Mounting characteristics

HITACHI
Hitachi America, Ltd.· Hitachi Plaza • 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

53

Reliability and Quality Assurance

Control point

Process

Purpose of control

Y Purchase of material

.-------'
f-Wafer _ _

Characteristics. Appearance

Scratch. removal of crystal
defect wafer

(

Surface oxidation

[

Inspection of surface
oxidation

(

Photo resist

[~

Inspection of photo resist

Assurance of resistance

Oxidation
Appearance, Thickness of
oxide film

Pinhole. Scratch

Dimension, Appearance

Dimension level

Diffusion depth, Sheet
resistance

Diffusion status

Gate width

Control of basic parameters
(VrH, etc.) cleanness of surface
Prior check of VrH
Breakdown voltage check

Photo
resist

pac level check
(

Diffusion

[

Inspection of diffusion

Check of photo resist

Diffusion

pac level check
(

Evaporation

Characteristics of oxide
film. Breakdown voltage

Evaporation

Thickness of vapor film,

Scratch, Contamination

Assurance of standard
thickness

Prevention of cracks,
Quality assurance of scribe

~

r

Inspection of evaporation

[

Wafer inspection

Wafer

Thickness, VrH characteristics

[

Inspection of chip
electrical characteristics

Chip

Electrical characteristics

POC level check

(

Chip scribe

[

Inspection of c~ip
appearance

Appearance of chip

POC lot judgement

t-Frame ____
(

Assembling

Assembling

Appearance after wire
bonding
Pull strength, Compression
width. Shear strength

pac level check
[

Appearance after chip
bonding

Quality check of chip
Bonding
Quality check of wire
Bonding
Prevention of open and
short

Appearance after assembling

Inspection after .assembling
POC lot judgement

'-Package_
(

Sealing

pac level check

Sealing

Appearance after sealing
Outline, Dimension

Marking

Marking strength

Guarantee of appearance
and dimension

Final electrical inspection
Failure analysis

Analysis of failures. Failure
mode. Mechanism

Feedback of analysis information

Appearance inspection
Sampling inspection of
products
)

Receiving
Shipment

Figure 3 Example of Inner Process Quality Control

HITACHI
54

Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300

Reliability and Quality Assurance

(Failures, Information)
Sales Dept.
Sales Engineering Dept.

r------------------- - - - - - - - - - -- - --- -----------,
I

I
I

Failure Analysis

Quality Assurance Dept.

I
I

I
I

II

Countermeasure,
Execution of
Countermeasure

I
I

I
I

:I
I

I
I
I

Report

I

I

I
I

I
I

I
:

I

I
I

I
Quality Assurance Dept.

Follow-up and Confirm-

:

ation of Countermeasure
I
I
Execution
I
I
Report
IL ________________________________________________
JI

Sales Engineering Dept.
Reply

Customer

Figure 4 Process Flowchart of Field Failure

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

55

Reliability Test Data of LCD Drivers
1. Introduction

based on test data and failure analysis
results.

The use of liquid crystal displays with microcomputer application systems has been
increasing, because of their low power consumption, freedom in display pattern design,
and thin shape. Low power consumption and
high density packaging have been achieved
through the use of the CMOS process and the
flat plastic packages, respectively.
This chapter describes reliability and quality
assurance data for Hitachi LCD driver LSIs

2. Chip and Package Structure
The Hitachi LCD driver LSI family uses low
power CMOS technology and flat plastic
package. The Si-gate process is used for high
reliability and high density. Chip structure
and basic circuit are shown in figure 1, and
package structure is shown in figure 2.

Gate

Si02 Source

Drain

FET2

Figure 2 Package Structure
P-channel
EMOS

N-channel
EMOS

Figure 1 Chip Structure and Basic
Circuit

HITACHI
56

Hitachi America, Ltd.' Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

Reliability Test Data of LCD Drivers
3. Reliability Test Results
The test results of LCD driver LSI family are
shown in Tables 1, 2, and 3.

Table 1 Test Result 1, Higb Temperature Operation
(Ta=125°C, Vcc=5.5V)
Device

Sample Size

Component Hour

Failure

HD44100H
HD44102H
HD44103H
HD44780
HD66100F
HD61100A
HD61102
HD61103A
HD61200
HD61202
HD61203
HD61104
HD61105
HD61830
HD61830B
HD63645
HD64645
HD61602
HD61603
HD61604
HD61605
HD66840

40
40
40
90
45
80
50
50
40
50
40
45
45
40
40
32
32
38
32
32
32
45

40,000
40,000
40,000
90,000
45,000
80,000
50,000
50,000
40,000
50,000
40,000
45,000
45,000
40,000
40,000
32,000
32,000
38,000
32,000
32,000
32,000
45,000

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Table 2 Test Result 2
Teat Item

Teat Condition

Sample
Size

Component
Hour

High temp, storage
Low temp, storage
Steady state humidity

Ta=150'C, 1000 h
Ta=-55'C, 1000 h
65'C, 95% RH, 1000 h

180
140
860

180,000
140,000
860,000

Steady state humidity, biased

85'C, 90% RH, 1000 h

165

170,000

Pressure cooker

121'C, 2 atm.l00 h

200

20,000

Failure
0
0
1*
2*
0

Note: ·Aluminum corrosion

HI1ACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

57

Reliability Test Data of LCD Drivers
Table 3 Test Results 3
Test Items

Test Condition

Sample Size

Failure

Thermal shock

o to

108

o

678

o

283

o
o
o

Temperature cycling
Soldering heat
Resistance to VPS
Solderability

100'C
10 cycles
-55'C to 1 50'C
10 cycles
260'C, ~O seconds
21 5'C, 30 seconds
230'C, 5 seconds

4. Quality Data from Field Use
Field failure rate is estimated in advance
through production process evaluation and
reliability tests. Past field data on similar
devices provides the basis for this estimation.
Quality information from the users is indispensable to the improvement of product

88
140

quality. Therefore, field data on products
delivered to the users is followed up carefully.
On the basis of information furnished by the
user, failure analysis is conducted and the
results are quickly fed back to the design and
production divisions.
Failure analysis results on MOS LS1s returned
to Hitachi is shown in figure 3.

Damaged by
excessive
voltage
and/or

Figure 3 Failure Analysis Result

HITACHI
58

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

Reliability Test Data of LCD Drivers
5. Precautions
6.1 Storage
It is preferable to store semiconductor
devices in the following ways to prevent
deterioration in their electrical characteristics, solderability, and appearance, or breakage.
~
1. Store in an ambient temperature of 5 to 30'
C, and in a relative humidity of 40 to 60%.
2. Store in a clean air environment, free from
dust and reactive gas.
3. Store in a container that does not induce
static electricity.
4. Store without any physical load.
5. If semiconductor devices are stored for a
long time, store them in unfabricated form.
If their lead wires wires are formed
beforehand, bent parts may corrode during storage.
6. If the chips are unsealed, store them in a
cool, dry, dark, and dustless place.
Assemble them within 5 days after
unpacking. Storage in nitrogen gas is
desirable. They can be stored for 20 days
or less in dry nitrogen gas with a dew
point at -30'C or lower. Unpackaged
devices must not be stored for over 3
months.
7. Take care not to allow condensation during storage due to rapid temperature
changes.

5.2 Transportation
As with storage methods, general precautions for other electronic component parts are
applicable to the transportation of semiconductors, semiconductor-incorporating units .
and other similar systems. In addition, the
following considerations must be taken, too:
1. Use container!! or jigs whCh will not induce
static electricity as the result of vibration
during transportation. It is desirable to use
an electrically conductive container or
aluminium foil.
2. Prevent device breakage from clothes-in-

duced static electricity.
3. When transporting the printed circuit
boards on which semiconductor devices
are mounted, suitable preventive measures against static electricity induction
must be taken; for example, voltage builtup is prevented by shorting terminal circuit. When a conveyor belt is used, preven;t
the conveyor belt from being electricRl!y
charged by applying some surface t~at­
ment.
4. When transporting semiconductor devices
or printed circuit boards, Diinimize
mechanical vibration and shoc}f.

5.3 Handling for Measurement
Avoid static electricity, noise, and surge
voltage when measuring semiconductor
devices are measured. Jt is possible to prevent breakage by shorting their terminal
circuits to equalize electrical potential during
transportation. However, when the devices
are to be measured or mounted, their terminals are left open providing the possibility
that they may be accidentally touched by a
worker, measuring instrument, work bench,
soldering iron, conveyor belt, etc. The device
will fail if it touChes something that leaks
current or has a static charge. Take care not
to allow curve tracers, synchroscopes, pulse
generators, D.C. stabilizing power supply
units, etc. to leak current through their terminals or housings.
Especially, while testing the devices, take
care not to apply surge voltage from the
tester, to attach a clamping circuit to the
tester, or not to apply any abnormal voltage
through a bad contact from a current source.
During measurement, avoid miswiring and
short-circuiting. When inspecting a printed
circuit board, make sure that there is no soldering bridge or foreign matter before turning on the power switch.
Since these precautions depend upon the
types of semiconductor devices, contact
Hitachi for further details.

HITACHI
Hitachi America, Ltd.· Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

59

Flat Plastic Package (QFP) Mounting Methods
Surface Mounting Package Handling Precautions
1. Package temperature distribution
The most common method used for mounting
a surface mounting device is int:rared reflow.
Since the package is made of a black epoxy
resin, the portion of the package directly
exposed to the infrared heat source will
absorb heat faster and thus rise in temperature more quickly than other parts of the
package unless precautions are taken. As
shown in the example in figure 1, the surface
directly facing the infrared heat source is 20·
to 30·C higher than the leads being soldered
and 40· to 50·C higher than the bottom of the
package. If soldering is performed under
these conditions, package cracks may occur.
To avoid this type of problem, it is recommended that an aluminum infrared heat
shield be placed over the resin surface of the
package. By using a 2-mm thick aluminum
heat shield, the top and bottom surfaces of
the resin can be held to 175·C when the peak
temperature of the leads is 240·C.

2. Package moisture absorption
The epoxy resin used in plastic packages will
absorb moisture if stored in a high-humidity
environment. If this moisture absorption
becomes excessive, there will be sudden
vaporization during soldering, causing the
interface of the resin and lead frame to
spread apart. In extreme cases, package
cracks will occur. Therefore, especially for
thin packages, it is important that moistureproof storage be used.
To remove any moisture absorbed during
transportation, storage, or handling, it is
recommended that the package be baked at
125·C for 16 to 24 hours before soldering.

3. Heating and cooling
One method of soldering electrical parts is
the solder dip method, but compared to the
reflow method, the rate of heat transmission
is an order of magnitude higher. When this

method is used with plastic items, there is
thermal shock resulting in package cracks
and a deterioration of moisture-resistant
characteristics. Thus, it is recommended that
the solder dip method not be used.
Even with the reflow method, an excessive
rate of heating or cooling is undesirable. A
rate in temperature change of less than 4·C/
sec is recommended.

4. Package contaminants
It is recommended that a resin-based flux be
used during soldering. Acid-based fluxes
have a tendency of leaving an acid residue
which adversely affects product reliability.
Thus, acid-based fluxes should not be used.
With resin-based fluxes as well, if a residue is
left behind, the leads and other package
parts will begin to corrode. Thus, the flux
must be thoroughly washed away. If cleansing solvents used to wash away the flux are
left on the package for an extended period of
time, package markings may fade, so care
must be taken.
The precautions mentioned above are general points to be observed for reflow. However, specific reflow conditions will depend
on such factors as the package shape, printed
circuit board type, reflow method, and device
type. For reference purposes, an example of
reflow conditions for a OFP infrared reflow
furnace is given in figure 2. The values given
in the figure refer to the temperature of the
package resin, but the leads must also be
limited to a maximum of 260·C for 10 seconds
or less.
Of the reflow methods, infrared reflow is the
most common. In addition, ~here is also the
paper phase reflow method. The recommended conditions for a paper phase reflow
furnace are given in figure 3.
For details on surface mounting small thin
packages, please consult the separate manual available on mounting. If there are any
additional questions, please contact Hitachi,
Ltd.

HITACHI
60

Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300

Flat Plastic Package (OFF) Mounting Methods
30 sec. max.

(Resin)

300

250

~

i~

Infrared rays

215"C

"'-......r------1

l&SUrfaee)

~_L~
~ T2 T,

150-190"C

~,...,...,,~-{
1"'60see I

(Solder)

200

1-5"C/see
time _ _

150

100

Figure 3 Example Vapor-phase Reflow
Conditions
time (sec)

Figure 1 Temperature Profile During
Infrared Heat Soldering
(Example)

~

~

I

140-160"C

"-

~/.-----~
"'60see
1-4"C/see.

I

I

E

~~__________1_-_5_"_C/_s_ee_______________

time-

Figure 2 Recommende.d Reflow
Conditions for OFP

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

61

Flat Plastic Package (OFP) Mounting Methods
Soldering iron method

Reflow method
(Spare solder)

Reflow method
(Solder paste)

Board

Board
Solder

Board
Solder paste

Spare
solder

L-_-,_ _'"

parts
Soldering
-260·C
(1 0 seconds)

Preheating
1ooto 150·C
(20 seconds)
Preheating
100to 150·C
(20 seconds)
Reflow
235·C
(10 seconds)
Reflow
235·C
(10 seconds)

(Resin coating)

¢
Figure 4 Recommended Paper Phase Reftow Conditions

HITACHI
62

Hitachi America,Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

Liquid Crystal Driving Methods
1. Static Driving Method

Driving a liquid crystal at direct current triggers an electrode reaction inside the liquid
cell, degrading display quality rapidly. The
liquid crystal must be driven by alternating
current. The AC driving method includes the
static driving method and the multiplex driving method, each of which has features for
different applications. Hitachi has developed
different LCD driver devices corresponding to
the static driving method and the multiplex
driving method. The following sections
describe the features of each driving method,'
the driving waveforms, and how to apply
bias.

Figure 1 shows the driving waveforms of the
static driving method and an example in
which "4" is displayed by the segment
method. The static driving method is the
most basic method by which good display
quality can be obtained. However, it is not
suitable for liquid displays with many segments because one liquid crystal driver circuit is required per segment.
The static driving method uses the frame
frequency (lit!) of several tens to several
hundreds Hz.

Uquid Crystal Display
and Terminal Connection

Voo

COMo

Voo

,,,

,

Voo

SEG n + 1
r--

d d+
III W

N

-

I--

r-

r--

r--

+

dW

W

III

III

n=O. 1........... 5
(n=O. 1......... ·.7)

OV

COMo-SEG n + 1
Selected waveform

- - ..-, - ,

'--

-

'-

-

-V3

1 frame
tf

COMo-SEG n + 1
Non-selected waveform - - - - - - - - - - - - - - -

~igure

1

OV

Example of Static Drive Waveforms (Example of HD61602/HD61603)

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589"8300

63

Liquid Crystal Driving Methods
2. Multiplex Driving Method
The multiplex driving method is effective in

reducing the number of driver circuits, the
number of connections between the circuit
and the display cell, and the cost when driving many display picture elements. Figure 2
shows a comparision of the static drive with
the multiplex drive (1/3 duty cycle) in an 8dight numeric display. The number of liquid
crystal driver circuits required is 65 for the
former and 27 for the latter. The multiplex

drive reduces the number of driver circuits.
However, greater multiplexing reduces the
driving voltage tolerance. Thus, there are
limits to the extent of multiplexing.
.
There are two types of multiplex drive
waveforms: A type and B type. A type, shown
in figure 3, is used for alternation in 1 frame. B
type is used for alternation in between 2
frames (figure 4). B type has better display
quality than A type in high multiplex drive.

c~moo J·-f.!~1J)b)I. ~:.··J.y~1

Static driving
method

••••

i~~rl~

~~:

l··t·TmJ'Il··F'Fn··

J

le

ld lc 10.P 2d 2c20.P

Multiplex driving
method
(1/3 duty cycle)

52

S35. S5

Example of Comparision of Static Drive with Multiplex Drive

common~

common~
\'
l
Segment

Common-segment

lflJ1J1J1JlJUl
hnnhnnn
iU j UU L
U

U

,,
: 1 frame

Figure 3

8d 8c 80.P

.,--~---

S,

Figure 2

8e

Segment :

I

Common-segment

,

,,

"

: 1 frame:

'!

A Type Waveforms
(1/3 duty cycle, 1/3 bias)

I

Figure 4

B Type Waveforms
(1/3 duty cycle, 1/3 bias)

HITACHI
64

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

Liquid Crystal Driving Methods
2.1. 1/2 Bias, 1/2 Duty Drive

pIe of the connection to display '4' on a liquid
crystal display of 7-segment type, and the
output waveforms.

In the 1/2 duty drive method, 1 driver circuit
drives 2 segments. Figure 5 shows an exam-

Liquid Crystal Display
and Terminal Connection
COMo

II

Veo
V,
V2

COM,

Veo
V,
COM,

V2

COMo

Veo
SEGn

SEGn+,
N

+

c3
UJ

III

+

c3
UJ

III

V2

Voo

M

+

c3
UJ

V2

III

n=0.1 ......... ·.11

V2
V,
COMo-SEGn----~--_+~--~~~~_+----+__

(Selected waveform)

OV
-V,
-V2

V,

+,

COMo-SEGn
(Non-selected waveform)

Figure 5

OV
V,

Example of Waveforms in 1/2 Duty Cycle Drive (B type) (Example of
HD61602)

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

65

Liquid Crystal Driving Methods
2.2 1/3 Bias, 1/3 Duty Cycle Drive
In the 1/3 duty cycle drive, 3 segments are
driven by 1 segment output driver. Figure 6

Liquid Crystal Display
and Terminal Connection

shows an example of the connection to display '4' on a liquid crystal display of 7-segment type, and the output waveforms.

COMo

:
:
:
LJill-hnf
,

,I
I .
,

. - - - C O M2

COM,

'

'

:

I

,

:

,

:

:

-----COM,

I

'

'

V,
V2

!

V3

:

Voo

I

V,

I

--1II...._-COM o

V3
Voo

COM 2

V2
V3
Voo

V,

SEG n

V2
V3
I

I

,

!

:

:

:

:

V3

'

'

,

Voo

SEGn
+ , l If u i l l' r u : Voo
,
V,
,,
V2
I
,
SEG n + 2

d
w

II)

+

d
w

II)

V,
V2

N

+

d
w

V3

II)

n=O, 1, ......... , 16

V3
V2
V,
---;----;---~r----OV

COMo-SEG n + 2
(Selected waveform)

-V,
-V2
-V3

,

=J

COMo-SEG n
(Non-selected waveform)

,,

I-I--~F ~~,

~:- -....-.i-t:
1 frame

Figure 6

Example of Waveforms in 1/3 Duty Cycle Drive (B type) (Example of
HD61602)

HITACHI
66

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

Liquid Crystal Driving Methods
2.3 1/3 Bias, 1/4 Duty Cycle Drive
In the 1/4 duty cucle drive, 4 segments are
driven by 1 segment output driver. Figure 7

shows an example of the connection to display '4' on a liquid crystal display of 7-se9ment type, and the output waveforms.

COMo
Liquid Crystal Display
and Terminal Connection

I

I

,

til

-{5dl.

CDM 3

I

,

i

: ~~D

: .

:

COM'ifl--hnJ:

:

COM 2

,

I

.!

I

V2
V3

i

COM2i-Jlhn-l

,

,

COM,

I

I

I

:

:

I

V3

COMo

+,

SEGn

SEGn
V3

n=0.1.·········.24

V2

V,
COM3-SEGn----r---+---~--~---r--OV

I

I
I

I
I

COMo-SEG n
(Non-selected waveform)

I

h riWnq t _;~

~ U·

V,

,

I

,

,

I

,

: 1 frame!
~

:
Figure 7

I

:

:

Example of Waveforms In 1/4 Duty Cycle Drive (B type) (Example of
HD61602)

HITACHI
Hitachi America, Ltd. - Hitachi Plaza - 2000 Sierra Point Pkwy. - Brisbane, CA 94005-1819- (415) 589-8300

67

Liquid Crystal Driving Methods
2.41/4 Blas,/ 1/8 Duty Cycle Drive

VCC

v,
COM, V2(Va)

V4

Uquid Crystal Display

V5

1112131

4

III IIII I ____ II j II f
1

COM,
COM2
COMa

••••

0-

-a.ooa-a.ooa-

COM4~
CaMs
COMe

~O::

Vec

COM,

--DIIDOa-

;;;;r

1

hl

~I--~r----------~I----,--

"~I III II II I u__ II i
V5

-a.ooa-

1...............181112

I

1

~c -+1-r---------~-r~I....,.---.-

sm,

"~I !II
V5

----) B-1

I
,

I
I

VCC

V,
SEG 2 V2(Va)
V4

V5

illlllll--Jlm
,

,

I

V, =VcC-%VLCD
V2(Va) =VcC-l1!VLCD
V4 =VCC-%VLCD
Vs = Vcc - VLCD

COM,-SEG,
(Selected waveform)

VLCD

1

----r'-++------------ -=~=i~ F-F---t-++---------------,-.- - -

%VLCD -~~~_r,-~._--~~_+~,-

Li'

-VLCD

.1

-t--'------------ll--'--1

-->:--------_._-....,:------

... Example of LCD II.
V2 is same voltage as Va.

-'1-------_·_---'--_·-

'No~:~; -::-:-i1-1--.1--,.1-I-lI-_-___·-,-If~!jff
-l1!VLCD

!:
:

. Figure 8

~.----1 frame

'

Example of Waveforms In 1/8 Duty Cycle Drive (A type) (Example of LCD·
II)

HITACHI
68

Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point ~kwy. • Brisbane, CA 94005-1819. (415) 589-8300

Liquid Crystal Driving Methods
2.5 1/5 Bias, 1/8 Duty Cycle Drive

1

~

2-<
3-<

Common

4
5

6
7

}-

I

8

1/8 duty.
1/5 bias

41
~~______________~r-l~____
1

i

Segment

Common 1
Common 2

_---'n

~

Segment 1

-~II~------~II

~

----I"I

L J l_ _

Segment 2

Common 1

Common 2

Segment 1

Between segment 1
and common 1
(Display off)

Between segment 1
and common 2
(Display on)

Figure 9

Example of Waveforms in 1/8 Duty Cycle Drive (A type) (Example of
HD44100H)

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

69

Liquid Crystal Driving Methods
2.6 1/5 Bias, 1/16 Duty Cycle Drive

I 1I 2 I 3 I 4

I1I

1~------116

Uquid Crystal Display

COM,rl-+-+-III=11=+--+---'-I---r-IIn=··
COM,

••••

0-

Vs

--aa.o---DIIOOa-

~~~: B---DIIOOa-

I

~c-~---,~---__________-+'____

COM3~
COM4
COM 5

,

1
1

COM2~

COM2

f

~~ --t-t--TI,---t---tIH-t--1I---+-+-+-111+--+-1
~ -+,--~~------------~,--~~
1

COMs

:

I

,

~C-r',------------------~I~----

COMg

COM,o--...aooaCOM"

--DOCJOa-

COM'2~

SEG'~~~'II
~ !II
~ -+I~~--------------~!-L~.~
1

I

COM'3--DD11DO-

~C-T'~~~-r,-~~-----4'-r~'-

~:::COM'6

-r9999-

"EG,

~ =--+-+-+-t-IIII=-t-t-+'-t--lIll===i=I--+____ .--=~!
III
I

,I
1

I
,

I
I
v, = Vcc -

J,iiVLCO
V2=VCC-%VLCO

--

COM,-SEG,
(Selected waveform) - J,iiVLCo

1

I
I

I

L-.I

V3=VCC-%VLCO
V4=VCC-%VLCO
Vs=VCC-VLCO

I
I

I

1

VLCO -+__________________~I------

~------------------~:-----

%VLCO -r'----~------------~'----,_

(--:M~, =:: =~! II_~~:'
=_1::
.........

[=_'=_-=_1=_'

=_'

:-+-i

1:. . .

=---&'

1

i
1
=$'~====~~~~====~'~====

-VLCO·

1-

1 frame

.,

Figure 10 Example of Waveforms in 1/16 Duty Cycle Drive (A type) (Example of LCDII)

HITACHI
70

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300

Liquid Crystal Driving Methods
2.7 1/5 Bias, 1/32 Duty Cycle Drive

V2

V5
V3

,,
,,

V6
V,

L

V4
COM,

,,

._-

I

:
,,

:

._-t=r--

I

~ ItI ~ Lg
V2
Vs
SEG,

:

:

!

i

m1

~::j

._.=r=

V6
:
'
~ -4--------~,-----------

'

~6!
~,=+VLCD

II

-+'--------+---------,,
,
,,

:

._-

,

COM, to SEG,
- YsVLCD
(Non-selected waveform)

it

__

I
I,
,
,,

I
L

:

---,

-

L

-V~D-+----~--~---------­

VLCD - - t - - - - - - - -......, - - - - - - - - - -

COM, toSEGa
(Selected waveform)

- YsVLCD--irl------~L..------ - r--

-VLCD --!.......------"!":--------'........-

,

1 frame

Figure 11

-1

Example of Waveforms in 1/32 Duty Cycle Drive (Example of HD44102CH,
HD44103CH)

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

71

Liquid Crystal Driving Methods
3. Power Supply Circuit for
Crystal Drive

Liquid

Table 1 shows the relationship between the
number of driving biases and display duty
cycle ratios.

3.1 Resistive Dividing
Driving ~ias is generally generated by a
resistive divider (figure 12).
The resistance value settings are determined

Table 1

by considering operating margin and power
consumption. Since the liquid crystal display
load is capacitive, the drive waveform itself is
distorted due to charge/discharge current
when the liquid crystal display drive
waveform is applied. To reduce distortion, ·the
resistance value should be decreased but this
increases the power consumption because of
the increase of the current through the dividing resistors. Since larger liquid crystal display panels have larger capac~tance,the
resistance value must be decreased proportionally.

Relationship between the Number of Display Duty Cycle Ratio and the
Number of Driving Biases

Display
duty ratio
Number of
driving biases

Static

1/2

2

344
(1/2 bias) (1/3 bias)

1/3 1/4 1/7 1/8 1/11 1/12 1/14 1/16 1/24 1/32 1/64
5
5
(1/4 bias)

5

5

Vec

Vee

V,

V,

R

~

6

-,-

R

V2

R

VlCD

VlCD

V3

R

R

V.

V.

R

R
V5

V5

V.
...< VR
-5V

~-'-

.../VR
-5V

1/4 Bias (1/8, 1/11 duty cycle)

Figure 12

6

R

R

V3

6

Vec (+5V)

Vee ( +5 V)

V2

6
6
(1/5 bias)

1/5 Bias (1/16 duty cycle)

Example of Driving Voltage Supply

HITACHI
72

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

Liquid Crystal Driving Methods
It is efficient to connect a capacitor to the
resistors in parallel as shown in figure 13 in
order to improve charge/discharge distortion.
However, the effect is limited. Even if it is
attempted to reduce the power consumption
with a large resistor and improve waveform
distortion with a large capacitor, a level shift
occurs and the operating margin is not improved.
Since the liquid crystal display load is in a
matrix configuration, the path of the charge/
discharge. current through the load is com-

plicated. Moreover, it varies depending on
display condition. Thus, a value of resistance
cannot be simply determined from the load
capacitance of liquid crystal display. It must
be experimentally determined according to
the demand for the power consumption of
the equipment in which the liquid crystal
display is incorporated.
Generally, R is 1 kn to 10 ItO, and VR is 5kO to
50 kn. No capacitor is required. A capacitor of
0.1 uF is usually used if necessary.

V,cc (+5V)

Vcc

R

J,

V,

Common non-selected high level
C

R
V2

Segment non-selected high level
C
Segment non-selected low level
C

R

j

R

1

V3

v..
R

v&

Common/segment selected high level
C

t

Common non-selected low level
C
Common/segment selected low level

VR/. V
-5V

For contrast adiustment

Large C and R cause
a level shift.

Figure 13

Example of Capacitor ConnectIon for Improvement of Liquid Crystal
Display Drive Waveform Distortion (1/6 bias) (Example of LCD-II)

HITACHI
Hitachi America, Ltd. - Hitachi Plaza· 2000 Sierra Point Pkwy. - Brisbane, CA 94005-1819- (415) 589-8300

73

Liquid Crystal Driving Methods
3.2 Drive by Operational Amplifier
In graphic displays, the size of the liquid

crystal becomes larger and the display duty
ratio becomes smaller, so the stability of liquid crystal drive level is more important than
in small display system.
Since the liquid crystal for graphic displays is
large and has many picture elements, the
load capacitance becomes large. The high
impedance of the power supply for liquid
crystal drive produces distortion in the drive
waveforms, and degcades disiplay quality.
For this reason, the liquid crystal drive level
impedance should be reduced with operational amplifiers. Figure 14 shows an example
of an operational amplifier configuration.
No load current flows through the dividing
resistors because of the high input impedance of the operational amplifiers. A high resistance of R = 10 kO and VR = 50 kO can be
used.

3.3 Generation of Liquid Crystal Drive
Levels in LSI

drive level may be incorporated in the LSI,
such as one for a portable calculatof with
liquid crystal display.
HD61602, HD61603 for small display systems
has a built-in power suply circuit for liquid
crystal drive levels.

3.4 Precaution on Power Supply Circuits
The LCD driver LSI has two types of power
supplies: the one for logical circuits and the
other for the liquid crystal display drive circuit. The power supply system is complicated
because of several liquid crystal drive levels.
For this reason, in the power supply design,
take care not to deviate from the voltage
range assured in the maximum rating at the
rise of power supply and from the potential
sequence of each power supply. If the input
terminal level is indefinite, through current
flows and the power consumption increases
because of the use of CMOS process in the
LCD driver.
Simultaneously, the potential sequence of
each power supply becomes wrong, which
may cause latch-Up.

The power supply circuit for liquid crystal

( +5V)Vcc

Common/segment selected ~igh level

...v

R

R
R
R
R
VR

--t:-

Segment non-selected high level

--{>-

Segment non-selected low level

~
r-..

rcontr~t

adjustment

-i>Figure 14

Common non-selected high level

Common selected low level
Common/segment selected low level
For liquid crystal drive logic circuits
Operational amplifier voltage follower

Drive by Operational Amplifier (l/5 bias)

HITACHI
74

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

LCD CONTROLLERlDRNER LSI DATA BOOK

I DATA SHEETS I
Section Three

General1)rpe
LCD Driver

HITACHI
~--

... _-

__._---_.. _-

--- .

-.---~~

HD44100H-----------(LCD Driver with 40-Channel Outputs)
Pln Arrangement

Description
The HD44100H has two sets of 20-bit bidirectional shift registers, 20 data latch flipfiops
and 20 liquid crystal display driver circuits. It
receives serial display data from a display
control LSI, converts it into parallel data and
supplies liquid crystal display waveforms to
the liquid crystal.
The HD44100H is a highly general liquid
crystal display driver which can drive a static
drive liquid crystal and a dynamic drive liquid
crystal, and can be applied as a common
driver or segment driver.

~

.. .

~

»»>

v.
v,
v.
v,
v,
v,
FCS
SHL,
SHLI
M

NC
DR,
DL,
DR,
DL,
GND
CL,
CL,

y,
y,
Yl1 1

Y,

y,
y,
y,

Features

VEE

y.,23

•
•
•

•
•

•
•

Liquid crystal display driver with serial/
parallel conversion function
Serial transfer facilitates board design
Capable of interfacing to liquid crystal
display controllers: HD43160AH, LCTC
(HD61830), LCD II (HD44780),
LCDm{HD44790).
40 internal liquid crystal display drivers
Internal serial/parallel conversion circuits:
-20-bit shift registerx 2
-20-bit shift latchx 2
Display bias: Static to 1/5
Power supply:
-Intemallogic: + 5 V
-Liquid crystal display driver circuit:

~ lQ

~

.;';';>.;~

•

'" •

PO'" __

>- >- >-»

>-

(Top View)

-5V

•

•
•

Separation of internal logic from liquid
crystal display driver circuit increases
applicable controllers and liquid crystal
types
CMOS process
60-pin flat plastic package

HITACHI
Hitachi America, Ltd. - Hitachi Plaza - 2000 Sierra Point Pkwy. - Brisbane, CA 94005-1819- (415) 589-8300

77

HD44100H
Block Diagram

v,

r-----------------1
I

V1. V2

I
LCD Drivers .

V3. V4

f~

Latch signal
CL1

I Shift

2Q-bit latch

DL1
CL2

---

DL2

FCS

~tching circuit
--,

20-bit bidirectional shift register

..!.~

.J...Data

,

DR1
Data

I

DR2
SHL2

Shift

~
LCD Drivers

I

SHL1

I direction

2Q-bit latch

tl[)-,. . SWitch:~9 circuit

V1. V2
V5.V6

Data

I
I

20-bit bidirectional shift register

-~.

M

direction

ii"

Data
·Slgna
~nl

I

I

I

t----~-----------i

V40

Absolute Mulmum Ratings
Item
Supply

Logie

Vee·'

Value
- 0.3 to + 7.0

V

voltage

LCD drivers

VEE U

Vee - 13.5 to Vee +·0.3

V

Symbol

Unit

Input voltage

Vr,·'

- 0.3 to Vee + 0.3

V

Input voltage

Vr:!*3

Vee + 0.3 to VEE - 0.3

V

Operating temperature

Topr

- 20 to + 75

Tstg

- 55 to + 125

'C
'C

Storage temperature

Notes:

*1

All voltage values are referred to GND.
2 Connect a protection resistor of 220 n ± 5 % to VEE power supply in series.
*3 Applies to VItO Ve.
.

*

HITACHI
78

Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589~8300

HD44100H
Electrical Characteristics
(Vee

=6 V

± 10 %, VIIB

=-

6V

± 10 %, GND

= 0 V, T. = Typ Max

ltam

Symbol Applicable Terminal.

Input voltage

VIH

CL1, CL2, DL1, DL2,
DR1, DR2, M, SHL 1,

0.7 Vee

Vee

Vil

SHL2, FCS

0

0.3 Vee V

DL1, DL2, DR1, DR2

Vee - 0.4-

Output voltage VOH

Min

20 to

+ 75°C)

Unit T88t Condition
V

V

IOH = - 0.4 mA

0.4

V

1.1

V

1.5

V

Vi-Vi voltage
descending

VOl

Input leakage
current

ill

CL1, CL2, DL 1, DL2,
DR1, DR2, M, SHL 1,
SHL2, FCS, NC

- 5.0

5.0

JJA

= + 0.4 mA
=0.1 rnA for one of Vi
ION =0.05 rnA for each Vi
\l;n = 0 to Vee

Vi leakage
current

IVl

*3

- 10.0

10.0

JJA

\l;n

= Vee to VEE

Power supply
current

lee

*2

1.0

mA

feL2

10

JJA

fell

= 400 kHz
= 1 kHz

VOL

Notes: *1

*1

V02

lEe
Vi-Vj (Vi

IOl
ION

= 1 to 6, j = 1 to 40) equivalent circuit

Vi~
III
R2
'-v-'
Power

8witch

'-v-'
Data

switch

y'
J

R1
R2

= 1 kO max.
= 10kOmax.

Input/output current is excluded; when input is at the intermediate level with CMOS,
excessive current flows through the input circuit to the power supply. To avoid this, input
level must be fixed at high or low.
Output V1 to V40 open.

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

79

HD44100H
Timing Characteristics
(Vee

= 5 V ± 10 %, VEE = -

5V

± 10 %, GND = 0 V, T. = - 20 to + 75°C)

Applicable Terminals

fCl

CL2

Clock

high level

tcwH

CL1, CL2

800

ns

width

Low level

tCWl

CL2

800

ns

Data set-up time

tsu

DL1, DL2, DR1, DR2,
FLM

300

ns

Clock set-up time

tSl

CL1, CL2

500

ns

(CL2-CL1 )

Clock set-up time

tlS

CL1, CL2

500

ns

(CL1-CL2)

Data delay time

tpd

DL1, DL2, DR1, DR2

500

ns

Cl = 15 pF

Clock rise/fall time let

CL1, CL2

200

ns

Data hold time

DL1, DL2, DR1, DR2,
FLM

Item

tOH

Min

Typ Mex

Symbol

Data shift
frequency

400

300

Unit

Teat Condition

kHz

ns

\~----tCWL----l

CL2

t ct
1---------tDH

Data in
(oLI. oL2. oRl, _---1
DR2) _ _-'

---+-----001

I o - - - - - t SL-------H

Io------t~---~

Data out
(oLI, DL2. oRI. oR2)

-----'

CLI
~-----tcWH------~

FLM

VIH
VIL

Figure 1 Timing Waveform

HITACHI
80

Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300

HD44100H
Terminal Function
Table 1 Functional Description of Terminals
Signal
Name

Number
of Linea

Input/
Connected to

Function

Vee

power supply

Power supply for logical circuit

GND

Power supply

OV

VEE

Power supply

Power supply for liquid crystal display drive

Output

YI-Y20

20

Output

Liquid crystal

Liquid crystal driver oulput (Channell)

Y21-Y40

20

Output

Liquid crystal

Liquid crystal driveJAlutput (Channel 2)

VI, V2

2

Input

Power supply

Power supply for"liquid crystal display drive (Select level)

V3, V4

2

Input

Power supply

Power supply for liquid crystal display drive (Non-select
level for channell)

V5, V6

2

Input

Power supply

Power supply for liquid crystal display drive (Non-select
level for channel 2)

Input

Vee or GND

Selection of the shift direction of channel 1 shift register

SHL1

SHL2

Input

Vee or GND

SHLl

DLl

Vee

Out

DRl
In

GND

In

Out

Selection of the shift direction of channel 2 shift register
SHL2

DL2

Vee

Out

DR2
In

GND

In

Out

DL1,DR12

Input/
output

Controller
or HD44100H

Data input/output of channel 1 shift register

DL2,DR2 2

Input/
output

Controller
or HD44100H

Data input/output of channel 2 shift register

M

Input

Controller

Alternated signal for liquid crystal driver output

CL1

Input

Controller

Latch signal for channel 1 (~)
1
Used for channel 2 when FCS is GND

CL2

Input

Controller

Shift signal for channel 1 (~)
1
Used for channel 2 when FCS is GND

FCS

Input

Vee or GND

Mode select signal of channel 2. FCS signal exchanges the
latch signal and the shift signal of channel 2 and inverts M
for channel 2. Thus, this signal exchanges the function of
channel 2.

*

*

Channel 2
FCS Level

Latch signal

Shift signal

M Polarity Function

Vee

CL2

---.r

CL1

---.1

M

For common drive

GND

CL1

~

CL2

~

M

For segment drive

Don't connect any wires to this terminal.

NC

Notes:

*1

-1 and ~ indicate the latches at rise and fall

times, respectively.

*2 The output level relationship between channel 1 and channel 2 based on the FCS signal
level is as follows:

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

81

HD44100H
Output Level
FCB

Data

M

Vee

(Select)

0

(1 )

0
(Non-select)

Channel 1 (Y1-Y 20)

Channel 2 (YZ1-Y40)

V,

V2

V2

V,

1

V3

Va

0

V4

V5

1

V,

V,

GND

(Select)

0

V2

V2

(0)

0

1

V3

V5

(Non-select)

0

V4

Va

1 and 0 indicate high and low levels. respectively.

Applications
Segment Driver
When the HD44100H is used as a segment
driver, FCS is set to GND to transfer display
data with the timing shown in figure 2. In this

7

(FLM)

case, both channel 1 and channel 2 shift data
at the fall of CL2 and latch it at the fall of CLI.
Va and Vs, V4 and V6 of the liquid crystal
display driver power supply are short-circuited, respectively.

81234567812

____~r_l~____________~____~r_l~___

M
CL1
Output of
latch
(Y,-Y40)

------------- ....---

M
CL1

________~rl~___
Lf1SLfl..JlS"-----Lf1SLfl..JlS"
Shift

CL2

DL1/DR1 ~-----~
DL2/DR2~-----~

Figure 2

Segment Data Waveforms (A Type Waveforms, 1/8 Duty Cycle)

HITACHI
82

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

HD44100H
display data with the timing shown in figure
3.
In this case, channel 2 shifts data at the rise of
CLl and latches it at the rise of CL2. Channel
1 shifts and latches as shown in figure 2.

Common Driver
In this case, channel 1 is used as a segment
driver and channel 2 as common driver.
When channel 2 of HD44l00H is used as
common driver, FCS is set to Vcc to transfer

8

r.=.r:.'
2
. II

DL2/DR2(FLM~ . : r

3

4

5

6

7

8

1

2

11L.._ __

: Shift'+j-----------'

CL 1

Y21
(Y~)
Y22
(Y3S)

I jJ__ ~ I
I I I
Non-select
/F
r-lL.._________
~~

r

I
I

i

to
Y28

:

(Y33)

:

Select
~
Non-select
L ---L
Select
--------11
Non-select
Select

n

Select

------n

Select

SelectL..---

Enlarged view \
\

DL2/DR2(FLM) ' M

CL1
CL2

Figure 3

Common Data Waveforms (A Type Waveforms of Channel 2, 1/8 Duty
Cycle)

HITACHI
Hitachi America, Ltd. 0 Hitachi Plaza 0 2000 Sierra Point Pkwy. 0 Brisbane, CA 94005-1819 0 (415) 589-8300

83

HD44100H
Both Channel 1 and Channel 2 Used as
Common Drivers (FCS = GND)

the fall of CL2 and latched at the fall of CL1.
The frequency of CLl becomes the frame
frequency of the liquid crystal display driver.
The signal applied terminal M must have
twice the frequency of CLl and be synchronized at the fall of CLl. The power supply for
liquid crystal display driver is used by shortcircuiting Vl, V4 and V6, and V2, V3, and V5
respectively.
One of the liquid crystal display driver output
terminals can be used for a common output.
In this case, FCS is set to GND and data is
transferred so that 0 can be always latched in
the latch corresponding to the liquid crystal
display driver output terminal used as the
common output. If the latch signal corresponding to the segment output is 1, the
segments of LCD light. They also light for
common side = 1, and segment side O.

When both of channel 1 and channel 2 of
HD44100H are used common drivers, FCS is
set to GND and the signals (CL1, CL2, FLM)
from the controller are connected as shown in
figure 4.
In this case, connection of the liquid crystal
display driver power supply is different from
that of segment driver, so refer to figure 4.
•
Vl, V2: Select level of segment and common
•
V3, V4: Non-select level of segment
•
V5, V6: Non-select level of common

Static Drive
When the HD44l00H is used in the. static
drive method (figure 5), data is transferred at

-

Cll


V3 ----------+t-+--,

I

II

HD44100H
Segment
driver

!

Y1 -Y40

HD44l00H
Segment
driver

>~:>'->-5';:

>~:>'->-5';:

1 I I I I

1 I I I L

~] ~ ~61----------~-------+------~-~------

~ g'C

II>

Figure 4

Connection When Both Channels Are Common Drivers

HITACHI
84

Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300

HD44100H

First
Second
Tenth
figure figure - - - - - - - - - - - - - - - - - - - - - - - - - - - - - figure

n

n

9
I... 0

COM signal

CMOS

I~e

~

l ~ inverter

r=

D

00-

FCS
SHL,
SHL2
.:i
U

DR,

HD44100H

DL2
DR2
VEE

2

~

U

....

N

M

»»

I I

CL,

..,-- 40 -r-SEG4,-SE Gao

40 ---r-SEG,-SEG40

Y,-Y40

DL,

~

fu
I--

~

FCS
SHL,
SHL2

-"

.

>'" >

dd~

I

I

CL2

Y,-Y40

DR,

HD44100H

DR2

DL,

DL2
VEE
_

tJ
I--

N

»

M'ltlOU)

»»

I

M
Vcc
GND

Figure 5

Static Drive Connection

Timing Chart of Input Waveforms

1

2

3

78

79

80

CL2~""" ~
D

XSEG8<)(SEG7~SEG78 .•.•••.• ~

(Shift Clock)

(Display Data)

~l:onO:off

CL, _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _~ (Latch Clock)

Notes:
1. Input square waves of 50% duty cycle (about
30-500 Hz) to M. The frequency depends
on the specifications of LCD panels.
2. The drive waveforms corresponding to the
new displayed data are output at the fall of
CL 1 . Therefore, when the alternating signal
M and CL 1 do not fall synchronously, DC
elements are produced on the LCD drive
waveforms. These DC elements may shorten
the life span of the LCD, if the displayed data
frequently changes (e.g. display of hours,
minutes, and seconds of a clock). To avoid

this, have CL 1 fall synchronously with the
one edge of M.
3. In this example, the CMOS inverter is used as
a COM signal driver in consideration of the
large display area. (The load capacitance on
COM is large because it is common to all the
displayed segments.)
Usually, one of the H 0441 OOH outputs can
be used as a COM signal. The displayed data
corresponding to the terminal should be 0 in
that case.

HITACHI
Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300

85

HD44100H

39

CO~ ,

40

CL2~________~
LCD

/').
V,

I

V2 -V40

SHL',2
HD44100H

I1r

D~-----~
\.

y

Data transformed
to V2 to V40

)

\

Data 0 corresponding to
V, (COM signal)

IL

CL,

HITACHI
86

Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005~1819· (415) 589-8300

HD66100F-----(LCD Driver with SO-Channel Outputs)
The HD66100 description segment driver
with 80 LCD drive circuits is the improved
version of the no longer current HD44100H
LCD driver with 40 circuits.
It is composed of a shift register, an 80-bit
latch circuit, and 80 LCD drive circuits. Its
interface is compatible with the HD44100H.
It reduces the number of LSI's and lowers the
cost of an LCD module.

Pin Arrangement
;;;f;I~~:!l:l!P;~IIt~.~;:I~:~':5l
»
»»»»»»»»»

,~. i ~ i ~ • • ~ ; • • • • • • • " " :;;.,

~

,

~

~
~

~
~

~
~

~

•

•
•

•
•
•

.
...

,

...
.
•

LCD driver with serial/parallel converting
function
Interface compatible with the HD44100H;
connectable with HD43160AH, HD61830,
HD61830B, LCD-U (HD44780), LCD-Ul
(HD44790)
Internal output circuits for LCD drive: 80
Internal serial/parallel converting circuits:
-80-bit bidirectional shift register
-80-bit latch circuit
Power supply
-Internal logic circuit: + 5 V ± 10%
-LCD drive circuit: 3.0 V to 6.0 V
CMOS process
100-pin plastic OFP (FP-l00)

v"

~

~

R.

~

~

~

~
~

n

~

n

~

"

~

:t= ~:

~: ~~

Features
•

.JlJLJlJLJL

v,.

~

g

..

~

Yl1

14

171=

Y 16

F 16

v"

••
1141 1=

Vv....

Y16F='8

~::F::

~
Yll

~
~

~
~
~
~

~
~
~

V,

:~~:

g

....
..
.

•

~

81

Y70

.,

~

...

20

M

..

..

v

30

~

~
~
~
~

"

~

51

Yeo

~
~

;;;f;I::I;Jj:!l:S:::;IlIl!:i;*~:I!f;!;:':S

..JUL

~»»~d~~dog~~~~~~~~

(FP-80A)
(Top View)

Comparison with HD44100H
Table 1 shows the main differences between
HD66100 and HD44100H.

Table 1

Comparison of HD66100 and
HD44100H
HD861 00

LCD Drive Outputs 80 x 1 Channel
Supply Voltage
3 to 6 V
for LCD Drive
Circuits
. Multiplexing
Static to 1/16
Duty Ratio
duty
Package
100-pin flat
plastic package

HD44100H

20 x 2 channels
4.5 to 11 V

static to 1/32
duty
60-pin flat
plastic package

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819' (415) 589-8300

87

HD66100F
Pin Description
Vee. GND. VEE: Vcc supplies power to the
internal logic circuit. GND is the logic and
drive ground. VEE supplies power to the LCD
drive circuit.
V1. Vz. V3. and V4: VI to V4 supply power for
driving an LCD (figure 2).

CL1: HD66100 latches data at the negative
edge of CLl.
CL2: HD66100 receives shift data at the negative edge of CL2.

01: Inputs data to the shift register.
DO: Output data from the shift register.
SHL: Selects a shift direction of serial data.
When the serial data is input in order of Dl, D2,
... , 079, DBO, the relation between the data and
the output Y is shown in table 3.
YI-Yeo: Each Y outputs one of the four voltage
levels-VI, Vz, V3, or V4-according to the combination of M and display data (figure 2).

M: Changes LCD drive outputs to AC.

NC: Do not connect any wire to these terminals.

Table 2 Pin Function

Table 3

SymbolPin No.

Vee

GNO
Vee

Pin Name

46
36
31

Relation Between SHL and
Data Output

I/O

Vee

SHL

V1

Vz

V3 ••••••

V79

Ground

High

01

02

03 ......

079 080

Low

080

079

078 .....

02

Veo

Vee

32
33
V2
34
V3
35
V4
CL1
37
40
CL2
44
M
01
41
DO
42
SHL
39
Y1-Yao 1-30,51-100
NC
38.43.45.47-50
V1

V1

01

V2
V3
V4

Clock 1
Clock 2
M

Date In
Date Out
Shift Left
Y1-Yao

I
I
0
I
0

No Connection

M~

I

0

0
y output I"
level
V,

.. I... V3 ..I... v ..I.. V ..I
2

4

When used as a common driver

Figure 1 Selection of LCD Drive Output

==::
~
.

-----V4
-----V2

V,. V2 : Selected level
V3 , V4 :

Non-selected level

Figure 2 Power Supply for Driving an LCD

HITACHI
88

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

HD66100F
Block Functions
LCD Drive Circuits

Bidirectional Shift Reigster

Select one of four levels of voltage V 1, V2, V3,
and V4 for driving a LCD and transfer it to the
output terminals according to the combination of M and the data in the latch circuit.

Shifts the serial data at the fall of CL2 and
transfers the output of each bit of the register
to the latch circuit. When SHL = GND, the
data input from DI shifts from bit 1 to bit 80 in
order of entry. On the other hand, when SHL
= Vee, the data shifts from bit 80 to bit-l. In
both cases, the data of the last bit of the
register is latched to be output from DO at
the rise of CL2.

Latch Circuit
Latches the data input from the bidirectional
shift register at the fall of CLl and transfer its
outputs to the ,LCD drive circuits.

SHL=GND

LCD drive outputs
Yl Y2

Y79 Y80

Latch circuit

Shift register

----I

DI

DO----------------------~

SHL=Vcc

LCD drive outputs

YI Y2

CLI---o-f

Y79 Y80

Latch circuit

CL2---~~r-----~S~h~ift~r=eg=i.~te~r----r~
DI---~------------------~
DO

Figure 3 Relation between SHL and the Shift Direction

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

89

HD66100F

. . . .. ... . . . . . .. .
LCD drive outputs

Yl Y2

'1'1

M
(alter nating signal)

LCD drive circuit

Y79 Y~O

1"1'"

. . . . . . ... . . . . .. .

1'1'1

. .. . . .. .. . . .. . ..1"1"J

DI
(in put data)

. . . .. . . . . . . . . . . .1"1"1

~1.:i'I'1

V~, v~,

V4

LCDd rive circuit)

Level shifter

'1'J

C Ll
(J. tch clock)

VI,

(power supply for

Latch circuit

Bidirectional shift register

~J

1"1"1::'

.~

-

-

1"

r--

Vee

I--GND

I-- VEE

DO
(output data)

j

...l

I

'T
C L2
( shift clock)

SHL
(selects
a shift direction)

Figure 4

Block Diagram

HITACHI
90

Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-.1819· (415) 589-8300

HD66100F
Primary Operations
Shifting Data
The input data DI shifts at the fall of CL2 and
the data delayed 80 bits by the shift register
is output from the DO terminal. The output of
DO changes synchronously with the rise of
CL2. This operation is completely unaffected
by the latch clock CL1.

Latching Data
The data of the shift register is latched at the

negative edge of the latch clock CL1. Thus,
the outputs Y1-Yao change synchronously
with the fall of CL1.

Switching Data Shift Direction
When the shift direction switching signal
SHL is connected with GND, the data 080,
immediately before the negative edge of CL1,
is output from the output terminal Y1. When
SHL is connected with Vcc, it is output from
Yeo.

Shift dock eL2

Input data

Output data

DI

DO

Figure 5 Timing of Receiving and Outputting Data

Shift clock eL2

Latch clock

.~ ............~

____rL

eLl

--'[

Outputs VI" Y80

Figure 6 Timing of Latching Data

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

91

HD66100F

SHL=GND

JULrL. . . . . . . . . . . . .SLfUl..-

Shift clock

CL2

Input data

OJ

~
Dl
02

Latch clock

CLI

- - - -.........................~

YI
Outputs

to
Y80

.........................
..........................

~

-----.: ::

.••...•. ..•••.•.....•.•..•.•.•.•.•••••.

- - - - -.........................

D19

080

-----'~
---~V-O;-

- -_____......................... _ _ _ _.....A...:.:...-

SHL=Vcc
YI
Outputs

to
Y80

-----

..................................................

----~

-----:::::::::::::::::::::::::----~

Figure 7 SHL and Waveforms of Data Shift

HITACHI
92

Hitachi America, Ltd. - Hitachi Plaza - 2000 Sierra Point Pkwy. - Brisbane, CA 94005-1819- (415) 589-8300

HD66100F
Absolute Maximum Ratings
Item
Supply
Voltage

Logic Circuits

Symbol

Ratings

Unit

Note

Vee

-0.3 to +7.0

V

*1

-0.3 to +7.0

V

LCD Drive Circuits Vee-VEE
Input Voltage (1)

V,.,

-0.3 to Vee + 0.3

V

*1

Input Voltage (2)

Vr2

Vee + 0.3 to ~E - 0.3

V

*2

Operation Temperature

Topr

+20 to +75

'C

Storage Temperature

Tstg

-55 to +125

'C

*1 A

reference point is GND (= 0 VI
*2 Applies to V, -V4.
Note: If used beyond the absolute maximum ratings, LSls may be permanently destroyed. It is best to
use them at the electrical characteristics for normal operations. If they are not used at these
conditions, it may affect the reliability. of the device.

HITACHI
Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

93

HD66100F
Electrical Characteristics
DC Characteristics
(Vee = 5 V ± 10%, Vee-VEE=3.0 to 6.0 V, GND
Item

Symbol

Terminals Min.

Input. High Voltage

VIH

CL1, Cl2

Input low Voltage

Typ.

0.8 x Vce-

Vil

M, 01, SHl 0

Output High Voltage

VOH

DO

Output low Voltage

VOL

On Resistance
Vi-Vj

RON'

-20 to +75'C)

Max.

Unit

Vcc

V

Input leakage Current III

Test condition

Noes

0.2 x VceV

= -0.4 mA
= +0.4 mA
ION = 0.1 mA to

V

10H

0.4

V

10l

11

kO

V,-V4

30

kO

ION = 0.05 mA to
each Y terminal

CL1, Cl2, -5.0
M, 01, SHl
-5.0
V,-V4

5.0

~A

\l;n

5.0

~A

Output Y,-Yso open
Vin = Vce to VEE

Vcc-0.4 -

Y,-Yso

RON2

C

= 0 V, T. =

one Y terminal

= 0 V to Vce

Vi leakage Current

Ivl

Current Dissipation

IGND

2.0

mA

fCL2

lEE

0.1

mA

fCLl

= 1.0 MHz
= 2.5 kHz

*1

*1 Input/output currents are excluded; when an input is at the intermediate level in CMOS, excessive
current flows from the power supply through the input circuit.
To avoid this, VIH and Vil must be fixed at Vce and GND level respectively.

AC Characteristics
(Vee = 5 V ± 10%, Vee-VEE = 3.0 to 6.0 V, GND = 0 V, T. = -20 to +75'C)
Item

Symbol

Terminals

Data Shift Frequency

fCl

Cl2

Clock High level Width

Min.

Typ.

Max.

Unit

Note

MHz

tCWH

Cll,CL2

450

ns

Clock low level Width

tCWl

Cl2

450

ns

Data Set-Up Time

fsu

01

100

ns

200

ns

*1

Clock Set-Up Time (2)

tsl
tLS

Cl2
CL1

200

*2

Output Delay Time

ns
ns

Clock Set-Up Time (1)

tpd

DO

Data Hold Time

tOH

01

Clock Rise/Fall Time

fcr

CL1 ,Cl2

250
100

*3

ns
50

ns

* 1 Set-up time from the fall

of CL2 to that of CL 1 .
* 2 Set-up time from the fall CL 1 to that of CL2.
*3 Test terminal

CL (Load capacitance on outputs) = 30pF
(I ncluding jig capacitance)

HITACHI
94

Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300

HD66100F

tCWL

CL2

'DR

DI

.S!

DO

CLl
tCWH

Figure 8 Timing Chart of HD66100F

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

95

HD66100F
Typical Applications
Connection with the. LCD Controller HD44780

COMlCOMl6
SEGl-

SEG.o
0

..............

~
{
40

01

SHL

I~

y, y..

DO

f0-

HD66100F

II "

eLl
M

Ol

SHL

I~

DOf-----

YI-¥SO

HD66100F

R

ad:2~~~>:>~>

aa2~~~;»»
CL2

.....-.......

LCD

I

1111

I

R

-------

Vee

HD44780

R

R

y,
y.
y,
V.
y.

eND

.w-

~
GND

R

ItContrast
'--- -v

Figure 9 Example of Connection (1/16 duty cycle, 1/5 bias)

...............

COMl-~
COMS
SEGl-

{

SEG.O
0

.0
01

SHL

CLl
Cl..2

I~

oof-:-

y, y..

DI

SHL

HD66100F

I~

00_---

YI-¥IO

HD66100F

aa2~~~»»

aa:E~~~»»

! III

1111

I

M
Vee

y,
y.

HD44780

..............

LCD

I

R
R

-------

I

y,

v.
y.

eND

.Ir

Iri~;o
R

ntrast

-v
For LcOPS;fve]

GND

--~.;:>

aa::a~~~>==>:>

III

III

Vee

R

v,
v.
V.

H00790

vee:

J

II
J;-e
GND

R
R

( wer

-v

t'r LCD'PJ':rve)
8

Figure 11 Example of Connectlon (1/3 duty cycle, 1/3 bias)
Static DrIve

First
figure

COM signal

4~

~~.~S.r

Secoud
fiture.

n
n C

I"

D

,.--

•

•

••

Tenth
fipre

n
C

{~
DI

Y,-Y..

SHL

HD66100F

SEGl- SEGBO

DO

:::l~::S~~:=»»
uu
::;; ,,:So

I

CLI
CL2
M

Vee

GND

Figure 12 Example of Connection (SO-segment display)

HITACHI
Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

97

HD66100F
• Timing Chert of Input Waveform.

78

79

80

Shift clock CL2

Inpuldala

DI

Latch clock CLl

~

••••••••

~

------------------~

Figure 13 Timing Chart of Input Waveforms
Notes:
1. Input square waves of 50% duty cycle (about
30-500Hz) to M. The frequency depends on
the specifications of LCD panels.
2. The drive waveforms corresponding to the
new displayed data are output at the fall of
CL 1 . Therefore, when the alternating signal M
and CL1 do not fall synchronol!Sly, DC elements are produced on the LCD drive
waveforms. These DC elements may shorten
the life span of the LCD, if the displayed data
frequently changes (e.g. display of hours,

minutes, and seconds of a clock). To avoid
this, make CL 1 fall synchronously with the
one edge of M.
3. In this example, the CMOS inverter is used as
a COM signal driver in consideration of the
large display area. (The load capacitance on
COM is large because it is common to all the
displayed segments.)
Usually, one of the HD66100F outputs can
be used as a COM signal. The displayed data
corresponding to the terminal should be 0 in
that cilse.

Figure 14 Example of Connection

---'LrU ........ ~
'"

CU

DI

CLI

x=x= ....

80

~

------~-----~

Figure 16 Timing Chart (wben Ylls used as a COM signal)

HITACHI
98

Hitachi America, Ltd.· Hitachi Plaza .2000SierraPoint,Pkwy.• Brisbane, CA 94005-1819 ,. (415) 589-8300

LCD CONTROLLERIDRIVER LSI DATA BOOK

Section Four

Character Display
LCD Controller/Display

HITACHI
-

--

-

----------

_.-----_ ..-

-

-

---~~-----------

II

HD43160AH - - - - - - For Maintenance Only
(Controller with Built in
Character Generator)
Display Controller and Character
Generator for Dot Matrix Liquid
Crystal Display System

•

The HD43160AH receives character data
written in ASC II code or JIS code from a
microcomputer and stores them in its RAM
which has 80 words capacity.

Number Of Characters

The HD43160AH converts these data into a
serial character pattern, then transfers them
to LCD drivers.

•

160 characters in internal character generator (ROM)
(Max 256 characters in external ROM)

4, 8, 16, 24, 32, 40, 64, or 80 characters in 1
or 2 lines

Font
•

5 x 7

+

Cursor or 5 x 11

+ Cursor

It also generates other control signals for the
LCD. The HD44100H LCD driver can be combined with this controller.

Oth~r Function Controlled By
Micr;ocomputer

Display Characters Types

•
•
•

•

Alphanumeric characters: A-Z, a-z,
&, etc.
Japanese characters (katakana)

@,

#, %,

•

•

Display clear
Cursor onloff
Cursor position preset (character position)
Cursor return

Block Diagram\
eso

eNO
eNl

eSl
eS2
eS3

eURS

ROMS

RSO

M

~----~-------+--FlM

R/W

ell

counter

ROM

DBO

o

to

DB6
DB7

RST -

Busy Flag

TEST-

AbsolutEl Maximum Ratings
Item

Symbol

Supply voltage
Input voltage
Operating temperature
Storage temperature

Vee

Value

, -0.3 to +7.0

Topr

Tstg

-0.3 to Vee + 0.3
-20 to +75
-55 to +125

Unit

V
V

'c
'c

HITACHI
100

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

HD43160AH
Electrical Characteristics (Vee
Item

Symbol

I~ut

VIH

(

voltage
l compatible)

Vil

Input voltage

VIHC
VllC

Output voltall:'
(TTL compatl Ie)

VOH

typ

Terminal No.
min
CSO-CS3, E, R/W, 2.0
DBO-DB7, RSO
0
OSC1, TEST, RST, FNTS, 0.7 Vcc
CURS, DlN, ROMS,
CNO-CN2, 0,-05 0

FlM, M, D, Cl1, Cl2, Vcc-l.0
XO-X7, YO-Y3

Input leak current

III

All inputs

Output leak current

!Lo

DB7

V

-

-5

V

-10

= -0.205 mA
= 1.6 mA
hoad = ±0.4 mA

V

IOH

V

IOl

V
1.0

V

5

pA

10

pA

fcp,

130

192

250

kHz

RI = 200 kO ±2%, 5
x 7 + Cursor

fcP2

200

288

375

kHz

RI = 130kO ±2%, 5
x 11 + Cursor

10

20

pA

10

mW

frequency

CSO-CS3, RSO, RNI, 2
·DBO-DB7

Input pull up current Ipl

*

Vcc

0.4

VOlC

Power dissipation

Unit T8IIt condition
V

0.3 Vcc V

VOHC

Oscillation

max
Vcc
0.8

2.4

DB7

VOL

Output voltage

= 5 V ± 5%, GND = 0 V, Ta = -20 to+75°C)

Pr

*

Yin

= OV

Ta = 25'C, fcp =
400 kHz
(external clock)

Input/output current is excluded. When an input is at the intermediate level in CMOS, excessive
current flows through the input circuit to the power supply. To avoid this, input level must be fixed
at high or low, CSO-CS3, ASO, A/W, OBO-OB7.

Pin Arrangement
Pin
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

'-eup.

ose

Input

Output

GND (-)
X4
X3
X2
X1
XO
N.C.
N.C.
N.C.
CURS
FNTS
DlN
CNO
CN1
CN2
Cl2
CL1
M

Pin
No.
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

'-eup.

ose

Input

OSC1
OSC2
RST
TEST
E
Vcc(+)
R/W
RSO
CSO
CSl
CS2
CS3
DBO
DBl
DB2

Output
0
FIM
t/>A

Pin
No.
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Powweup.

ose

Input

Output

DB3
DB4
DB5
DB6
DB7
ROMS
05
04
03

DB7

02
01
Y3
Y2
Yl
YO
X7
X6
X5

HITACHI
Hitachi America, Ltd. - Hitachi Plaza - 2000 Sierra Point Pkwy. - Brisbane, CA 94005·1819- (415) 589-8300

101

(

HD43160AH
Pin Function
Pin

,name
Vee
GND
CNO
CN1
CN2

N~of

tarminala

Connected to

2

Power supply

Function
+ 5 V ± 10% Power supply
OV

3

GND or Vee

Total displayed character number select
No. 4
8
16 24 32 40 64
CNO GND Vcc GND Vcc GND Vcc GND
CN1 GND GND Vee Vee GND GND Vec
CN2 GND GND GND GND Vee Vee Vee

CURS

GND or Vee

DlN

GND or Vee

FNTS

GND or Vee

RST
TEST
E

Vee
GND
MPU

R/W

MPU

CSO
CS1
CS2
CS3
RSO

4

DBO
to
DB7

8

0
Cl2
Cl1

I/O

80
Vee
Vce
Vee

Cursor select
Vee: 5 dots • • • • •
GND: 1 dot
Display line number select
Vee: 2 lines
GND: 1 line
Font select
Vee: 5 x 11 + Cursor
GND: 5 x 7 + Cursor

•

Only for test. Normally Vee.
Only for test. Normally GND.
Strobe signal
Write mode: The HD43160AH latches the data on DBODB7 at the falling edge of this signal
Read mode: Busy/Ready signal is active on DB7 while this
signal is high
(low: Ready, High: Busy)
Read/Write signal
l: HD43160AH gets the data from MPU
H: MPU gets the Busy/Ready signal from HD43160AH
Chip select
When all of CSO-CS3 are 'H', HD43160AH is selected.

MPU

MPU

MPU

I
I/O
(DB7)

HD44100H
HD44100H
HD44100H

0
0
0

Register select
HD43160AH has 2 registers. One is for character code and
another is for instruction code. Each register latches the data
on DBO-DB7 at the falling edge of E, when CSO-CS3 are
high and R/W is low.
High: Character code register is selected
low: Instruction code register is selected
Data bus
Inputs for character code and instruction code from MPU
Output for Busy/Ready flag (DB7)
Serial dot data of characters for LCD drivers
Dot data shift signal for LCD drivers
Dot data latch signal for LCD drivers

HITACHI
102

Hitachi America,ltd.· Hitachi Plaza· 2000 Sierra Point PkWy.· Brisbane, CA 94005-1819· (415) 589-8300

HD43160AH
Pin
name
M
FLM
XO
to
X7

Number of

tarminala

Connected to

I/O

1
1

HD44100H
HD44100H
ROM

0
0
0

8

Function
Alternate signal for LCD drivers
Signal for common plates scanning
Character code outputs for external character generator (for
ext ROM)
X7: MSB
ex: character 'A'
XO: LSB
T= High
'0'- Low
Character row code for external character generator
IMSBI

o

YO
Y1
Y2
Y3

4

ROM

0

11010101010

5 x 7

+

Cursor

.""

I LSB I
1

5 x 11

+

Cursor

Y~Y2YIYlt

• A"

010305
02 04

t/JA

ROM

01
to
05
ROMS

5

OSC1
OSC2

2

NC

3

o 0 1
o 1 0
0 0 1 1
1 0
o 1 0 1
o 1 1
o 1 1 1
1 0 0 0
1001
1 0 1
1 0 1 1

"j"

0

Clock signal for external character generator (dynamic ROM
etc.) if necessary
Dot data inputs from external character generator
1 (High): On
o (Low): Off
Select internal or external ROM
High: External ROM
Low: Internal ROM

(I)
(0)

Oscillator

ROM

GND or Vce

5 x 7 + Cursor: Rf = 200 kO (typ)
5 x 11 + Cursor: Rf = 130 kO (typ)

Don't connect any signal to these terminals

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

103

HD43160AH
Character Dot Patterns
5X7
The bottom lines of the English small characters "g, i, p, q, y," are on the cursor line (Figure
1).

Only the English small character "g, j, p, q, y,"
are displayed as below. The others are the
same as for 5 x 7 (Figure 2).,

Cursor 5 dots: •••••
ldot:

5 X 11

•

The cursor is displayed on the 8th or 12th line.

.
, .,:. ,
# $ l.:-:

Character code lower 4 bits (hexadecimal)
9
A
4
5
6
7
8

:+: + , - • .'
..
'
;a .."
a= ... .., l::;a • ,
• ...,.• - • .•.~1 1 ......
.;) 4 ._1 f.:, I· c· _. •
-@RB I:: [) EF 6 HI ...T~.'••• L tl1 ~~ I)
.
I."I .....
7 [ ¥ ] ."..
S F' Q Fe: c T IJ 1...1IJ.I
-'
•
•
...
0

2

1

2

I

II

•

3

•
•••

B

C

0

E

•• ••
I.

••

•

••

3

F

.)

I_I

~

764
E

'0

--

''0

I .."
I··'

5

;S

..

·3 1::1 1:- c.~ t-:-· f· -I;' ~"I 1 ..1 ~•• 1 1'1 t1 I-I
Iii
- ·1I· -a. ..;.. +~
.•
••••
.....
t) 1:;1 .:. t. I..~ 1.1.1 •••• I...J z • I .1 • •
8Iii
r
::;t
~A
·1·
J ••• • • 7
r::t ::t: ::at t.a .::L :I I !.I
a

.f!
~6

r·

.. 7

'0

.t:
(J

-

.,- :r

,

..,
-'I
=
..
:::t :tl =t= ..- • :J - ..... ~ ':.J
.~
- ..ya. ::it •.1 1·1 t: -, ..•••.. ;t;.:. -:,•
.. =f- III•• T ~. +
•
a
••1
-I1
o -..
•••• =e 1-' .1 3 • •• III l.·· DIJ
-

B-

C

Y ·1··

-

"

.p]

- ..,

Figure 1

-

.1

5 X 7 Characters

•

9 .JP I~ !:I
Figure 2

Special 5 X 11 Characters

HITACHI
104

Hitachi America, Ltd. - Hitachi Plaza - 2000 Sierra Point Pkwy. -Brisbane, CA 94005-1819 - (415) 589-8300

HD43160AH
Application
Setting Up
1.
2.
3.
4.

These terminals should be connected to Vee
or GND according to the LCD display system.
RST and TEST should be connected to Vee
and GND respectively.

Total character number: CNO-CN2
Cursor pattern: CURS
Display line number: DLN
Font: FNTS

Interface to the Controller
1. Example 1 Interface to HD6800
In this example (Figure 3), the addresses of
HD43160AH in the address area of the
HD6800 microcomputer are:
#'E"''''
(R/W=O)
Instruction code register
Character code register
#'F"'''' ""
(R/W=O)
#'E*"'·' or #'F"'''' (R/W=l)
Busy flag
"': don't care
#": hexadecimal

HD 8800 (MPU)

AB15

eS3

AB14
AB13
VMA

eS2
eS1

AB12

RSO

R/W
,,2

R/W

eso

E

DBO

DBO

DB1

DB1

DB2

DB2

DB3

DB3

DB4

DB4

DB5

DB5

DB6

DB6

DB7

DB7

Figure 3

HD43180AH

HD6800 Interface

HITACHI
Hitachi America, Ltd. - Hitachi Plaza. 2000 Sierra Point Pkwy. - Brisbane, CA 94005-1819- (415) 589-8300

105

HD43160AH
2. Example of display program

Read Busy flag
from 1* 'E''''
or # 'F*n,
Check Busy or Ready

Y: Busy

Figure 4

Display Program Example

3. Time length of Busy
write Inst. or Charact. code

E

-~I.....--------"'---

Busy
(Internal)

-t=Tb~Y
Operation start

__~~-'-d
operation en

T busy
min

Max

400

410

Display clear

--r,;;;-

Other function

--r,;;;-

10

Unit

--r,;;;-

s

20

--r,;;;-

Figure 5
HD43160AH begins the operation from the
rising edge of E (Figure 5).
Instruction code register and character code

s

Busy timing
register latch the data on DBO-DB7 at the
falling edge ()f E.

HITACHI
106

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

HD43160AH
4. Timing chart

Write sequence

Read sequence

(MPU ....HD43160AH)

(MPU .... HD43160AH)

,

tevc

I-

I

PWEL

,-

E

to

eS3
RSO

R/W

-I-

tcvc

PWEH

I

-

L
: [

ItDDWI

"

E

tH

-1'"1--1-

I,.....-_.....;,...._ _-----.....!.,
II

J

eso
to

eS3
. RSO

I

I

J

~----Jr-

t

Read

l,,--_Wri_te

I

DBO
to
DB7

.. I

-I

1~1,,...----...,,
I _ tAS

eso

I

____ =:ct.
Inst.

Figure 6

DB7

~
~

I

HDf$800 Interface Timing

5. Timing characteristics
Item
Cycle time of E
Pulse width of E

Symbol

Min

tcyc

1.0
0.45
0.45
140

High level

FWEH

Low level

FWEL

Set up time of CS

Write

tAS

Data delay time

Write

toow

Read

toOR

Hold time

tH

Typ

Max

pS

25

pS
pS

ns

225
300
10

Unit

ns
ns
ns

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

107

HD43160~H
6. EXample 2 Interlace to 8085A (Intel)

51
101M

RD
WR
A15
A14
A13
A12
8085A

R/W
CS3
E

-r
-

CS2
CS1
CSO
RSO

--L»- 0

(MPU)

ALE

...

,...~

...

a

ClK
ClR

ClK ----b"
READY
ADO

r

HD43160AH

Q

Q~D

°1

ClK

1

DBO

to

to

DB7

AD7

Figure 7

BOB5A Interface

7. Timing chart

.,
ClK

~

I

j

I

I

~

101M. S1

A12 A15
,--

ALE

-

\

,

READY

I

1 "-

r\

\
T1

T2

Figure B
Pulse widths of RD and WR signals of the
8085A are 400 ns min, while the pulse width
of the E signal of the HD43160AH is 450 ns

TWAIT

T4

BOB5A Timing
min (Figure 8).
Therefore, in this example, RD and WR signal
pulse widths are widened by the TWAlT cycle.

HITACHI
108

Hitachi America, Ltd. - Hitachi Plaza - 2000 Sierra Point Pkwy. - Brisbane, CA 94005-1819- (415) 589-8300

HD43160AH
Display Commands
Display Control Instructions

Operation: The cursor moves to the Nth
(nth, mth) digit.
N ;;;; the total character number
n, m ;;;; 1/2 total character
number
ex 1: 1 line
Set the cursor at digit 55. The
code is 10110110.
ex 2: 2 lines
Set the cursor at digit 35 of
upper or lower line.
The code is 10100010 (upper).
11100010 (lower).

These instructions should be written into the
instruction register of HD43160AH by the
microcomputer. (RSO = Low, R/W = Low)
1. Display clear

Code:

MSB

LSB

I0 I0 I0 I0 I0 I0 I0

11

I

Operation: The screen is cleared and the
cursor returns to the 1st digit.

Display Character Command

2. Cursor return

MSB
Code:

LSB

I0 I0 I0 I0 I0 I0

11

I0 I

Operation: The cursor returns to the 1st
digit and the characters being
displayed do not change.

When the character code is written into the
character register of HD43160AH, the character with thiscode appears where the cursor
wasdisplayed and the cursor moves to the
next digit. (RSO = High, R/W = Low)
LSB

MSB

code:
3. Cursor on/off

I

(Character code)
ex. 1

LSB

MSB

Code:

0

0

0

0

0

1

0

0

On)

0

0

0

0

0

1

0

1

Off)

before

I ABCD

after

I ABCDE

'---~~----'

Read Busy Flag
Operation: The cursor appears (on) or disappears (off).
4. Set cursor position
MSB
Code: 1 line

LSB
(N - 1)

1

2 lines upper 1 0 (n lower 1

When CSO-CS3 = High, R/W = High and E
= High (RSO = 'don't care'), the Busy/Ready
signal appears on DB7.
DB 7 High: Busy
Low: Ready

binar~

l)binar~

1 m -1)

bina~

N, n, m: digit number

Table 1

Time Length of Busy (oscillation frequency = 200 kHz)

Display clear
Other operations

Min

Max

2.0
50

2.05
100

Unit
ms

"s

(depends on the operating frequency)

HITACHI
Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Poi~t Pkwy.· Brisbane, CA 94005-1819 ·~415) 589-8300

109

a

HD43160AH
Interface to External ROM
1. Example

LSB XO
X1
Character
code

X2

X3
X4
X5
HD43160AH
X6
>~SBX7
LSB VO
Row
V1
code
V2
MSBV3
;A
01
02
03
04
05
ROMS

Address
External
ROM

ROMS

1: Ext.
0: Int.

------

*;A is used as the

*

precharge signal for
dynamic ROM if necessary.

j-

Interface to External ROM

Figure 9
2. Row code

Row code
01020304 05 V3

V2

V1

VO

0
0

0
0

0
0

0
0
0
0
0
0

0
0

0
1
0
1
0
1
0

Row code
0102030405

V3 V2 V1 VO
0

0

0

0

0
0
0
0
0

0
0
0

0

1
0

0
0

0

0
0

0

0
0

0
0

(Cursor)

1
0
0

0
0

,

0
0

5x11 + Cursor

5x7+Cursor

Figure 10

Row Code

HITACHI
110

Hitachi America, Ltd. - Hitachi Plaza - 2000 Sierra Point Pkwy. - Brisbane, CA 94005-1819-(415) 589-8300

HD43160AH
3. Timing chart

CL2
r-:--1

1_1_1
1 fep

I

(

XO-X7
YO-Y3

I
1 •

,

"I
2

q,A

To;;-

r
1Effective data

01-05

ROMS

.1

I-

MAX~
fep

Figure 11

Display Timing

Interface to LCD Drivers

I

1. Example

HD44100H

FlM
HD43160AH

D
Cll ~-----------4---4--~--------------~--4---~­
CL2~--------------~--r-----------------~--r--

M~------------------~------------------~~

Figure 12

Interface to HD44100H

HITACHI
Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

111

HD43160AH
2. Waveforms (5 x 7

+ Cursor 1 line)
2

8

3

4

5

6

7

8

2

FLM
CLl

M
Enlargod

.

tEnla~~
FLM

--_......

CLl ~______________________

L

__--InL-__

M

CL2.
D

One row of a character
One row of 80 characters (400 dots)

Figure 13

Tlmlng

HITACHI
112

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

HD43160AH
Dot Matrix Liquid Crystal Display
System

Figure 14. Typical Application 5 X 7

+ Cursor, 2

Lines, 40 Characters

HITACHI
Hitachi America, Ltd.' Hitachi Plaza' 2000 Sier~a Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300

113

HD44780,HD44780A--(LCD-II) .
(Dot Matrix Liquid Crystal Display
.Controller & Driver)
Pin Arrangement

Description
The LCD-II (HD447S0, HD447S0A) dot matrix
liquid crystal display controller 8t driver LSI
displays alphanumerics, kana characters, and
symbols. It drives a dot matrix liquid crystal
display under 4-bit or S-bit microcomputer or
microprocessor control. All the functions
required for dot matrix liquid crystal display
drive are internally provided on one chip. The
USer can complete dot matrix liquid crystal
display systems with low chip count by using
the LCD-II (HD447S0, HD447S0A).
If an HD44100H driver LSI is connected to the
HD447S0, up to SO characters can be displayed.
The LCD-II is produced by the CMOS process.
Therefore, the combination of the LCD-II with
a CMOS microcontroller or microprocessor
can complete a portable battery-driver
device with low power dissipation.

I

SEG.. ,
SEG" •
SEG...

.. SEG..
.. SEG..
COM"
61 COMls

SECI' ..

COM"

SEG" •
SEG ..
SECt.

COM"
COM ..
COMu
·COM ..
COM.
50 COM.
.. COM.
.. COM,
COM.
COM.
COM.
• COM.
"COM •.
DB,
.. DB.
.. DB,
... DB4
DB.

7

SECls.
SEG" ,
SEGI3
SEG"
SEGu,
SEGlo II
SEG.
SEG.
SEG. M
SEG, I
SEG...
SEG. '
SEG...
SEG. ft
SEG. D
GND
OSC ...

• oBt

Feautures

(FP-SO)
(Top View)

•
•
•
•

•
•
•

•

5 x 7 and 5 x 10 dot matrix liquid crystal
display controller driver
Capable of interfacing to 4-bit or S-bit
MPU
Display data RAM: SO x S bits
(SO characters, max.)
Character generator ROM:
--Character font 5 x 7 dots: 160 characters
--Character font 5 x 10 dots: 32 characters
Character generator RAM
--Character font 5 x 7 dots: S characters
--Character font 5 x 10 dots: 4 characters
Both display data and character generator RAMs can be read from the MPU
Intemalliquid crystal display driver:
-16 common signal drivers
-40 segment signal drivers (Can be
externally extended to 360 segments
by liquid crystal display driver
HD44100H)
.
Duty factor (selected by program):
-l/S duty: 1 line of 5 x 7 dots + cursor
-1/11 duty: 1 line of 5, x 10 dots + cursor

SEG20

, a~I!j::~:eIt~I:t:::21.fij:.'II2D • •

COM,.

:~~~:

!

:

g:~:

SEG17
SEGI.

..
I
,

•
..

COM.!
COM'2
COMn

$EGIS

SEG,.
SEG'3
SEG'2
SEG,.

IS
Sol

13
12

•
10

"

S::c:: ::
SeG.
SEG7
SEGe
SEGs

8£0.

:

13

..

I.

47

Iii
UI

:
~

..

~

SEGal- "

::~~:.

,q

;; R ~

~

=I

~

I

=K •

AR X• R

~

KI

COM10
COM,
COM,
COM7

g::
COM.
COMa
COM2

COM,
08,
OS,

= g::
r

(FP-SOA)
(Top View)

HITACHI
114

Hitachi Ameri~a, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

HD44780, HD44780A (LCD-II)
•

•
•

-1/16 duty: 2 line of 5 x 7 dots + cursor
Wide range of instruction functions:
Display clear, Cursor home, Display on/
off, Cursor on/off, .
Display character blink, Cursor shift,
Display shift
Internal automatic reset circuit at power
on (Internal reset circuit)
Internal oscillation circuit
(with external resistor or ceramic filter)

(External clock operation possible)
•

CMOS process

•

Logic power supply:
A single +5 V (excluding power for
liquid crystal display drive)
Operation temperature range:
-20 to +75'C (Device for -40 to +85'C
available upon request)
SO-pin plastic QFP (FP-SO, FP-SOA)
SO-pin thin plastic OFP (TFP-SO: under
development)

•
•

lIIIaldmwn Number of Display Characters
No. of

Dhlplay
Lin.

Duty
Factor

1-line
display

1/S
1/11
duty
cycle
1/16
duty
cycle

2-line
display

Extension

LCD-II

Not
provided
Porovided

1

No. of Dlepley
C....ct.s

HD44100H

S characters x 1 line
9
(S characters/each)

SO characters x 1 line
S characters x 2 lines

Not
provided
Provided

4
(S characters x 2 lines/each)

40 characters x 2 lines

Ordering Information
~Typa~~N~o~.

________________~O~PM~~~~tio~n~F~~~~~~~~v~______~~~c~~~~___________________

HD447S0SA*·H
HD447S0SA*·FH
HD44780SA**TF

1.0 MHz

HD44780SA· * FA

1.5 MHz

----------------------

SO-Pin plastic OFP (FP-SO)
SO-Pin plastic OFP (FP-SOA)
80-pin thin plastic QFP (TFP-80:
under development)
SO-Pin plastic OFP (FP-80)

Note: * * = ROM Code No.

HITACHI
Hitachi America, Ltd. - Hitachi Plaza - 2000 Sierra Point Pkwy. - Brisbane, CA 94005-1819- (415) 589-8300

115

II

HD44780, HD44780A (LCD-II)
Block Diagram (LCD-II Interior)
II>

i
o

~

(,)

en

I

I

c5

~

8

.~

o

"

.:t

.:t

11
0

0

~t5

-.

(,)(,)

en en

00

en ~
a:

a: w

"

III

...
III

III

III

0
I
0

'"

0
I

0

0

HITACHI
116

Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

HD44780, HD44780A (LCD-II)
Electrical Characteristics
Absolute Maximum Ratings
Item

Power Supply Voltage (1)
Power Supply Voltage (2)
Input Voltage
Operating Temperature
Storage Temperature

Symbol
Vee
V1 to V5
Topr

Tstg

Limit

Unit

Note

-0.3 to +7.0

V
V
V

3

Vee-13.5 to Vee+0.3
-0.3 to Vee+0.3
-20 to +75
-55 to +125

·C
'C

Note 1: If LSI's are used above absolute maximum ratings. they may be permanently destroyed. Using
them within electrical characteristic limits is strongly recommended for normal operation. Use
beyond these conditions will cause malfunction and poor reliability.
Note 2: All voltage values are referenced to GND = 0 V.
Note 3: Applies to V1 to V5. Must maintain Vee ii: V1 ii: V2 ii: V3 iii: V4 ii: V5
(high <-+ low)

II

HITACHI
Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300

117

HD44780, HD44780A (LCD.;.n)
Eleetrical Characteristics
(Vee = 6 V ± 10%, T.= -20 to +7S·C)
@=Vcc- V&
@=Vcc- v,
@E: 1.6V
@:iiO.26x@

The conditions of Vt, V6 voltages are for
proper operation of the LSI and not for the
LCD output level The LCD drive voltage
condition for the LCD output level is specified
in "LCD voltage Vr.co".
HD44780

ltam
Input High Voltage (1)
Input Low Voltage (1)
OutPut High Voltage (1)
(TIL)

VILI

LImit
Min
2.2
-0.3

VOHI

2.4

Symbol
V.Hl

Typ

Output Low Voltage (11 VOLI
(TIL)
Output High Voltage (2) VOH2
(CMOS)

Max
Vee
0.6

0.4
0.9Vee

Unit
V
V

Teet ConditIon

V

-loH .. 0.205 rnA

(3)

V

IOL = 1.2 rnA

(3)

V

-loH .. 0.04 mA

(4)

Note
(2)
(2)

Output Low Voltage (2) VOL2
(CMOS)

0.1 Vee

V

LoL = 0.04 mA

(4)

Driver Voltage Descend- VeoM
ing (COM)

2.9

V

Id=0.05 mA

(10)

Driver Voltage Descend- VSEG
ing (SEG)

3.8

V

Id=0.05 mA

(10)
(5)

Input Leakage Current

-1

1

pA

V.n = 0 to Vee

125

250

pA

Power Supply Current (1 ) ICCI

0.55

0.8

mA

Power Supply Current (2) lee2

0.35

0.6

mA

Vee=5V
Ceramic filter
oscillation
Vee = 5 V. fose =
250 kHz
Rf oscillation
External clock
operation
Vee" 5 V. fose ..
fcp = 270 kHz

Pull-Up MOS Current

IlL
-tp

50

(6)

(6)
(11 )

~~.~.~~~..VtHl
. VtLl

V 1Hl

l\'IHl

~

PWEH

E

te,-

lv.L1

V 1Ll

VtHl
V 1Ll

VtLl -

I-tOOR
VOHl
V OLl

1

C- tEl

::;

valid Data

VOHl
V OLl

tcvcE

Figure 2

Bus Read Operation Sequence
(Reading out data from LCD-II to MPU)

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300
- - _ . _ ' ..

_.

" - ' - ' - - ' .•....

_.

123

HD44780, HD44780A (LCD-II)
Interface Signal with Driver LSI H044100H

Figure 3

Sending Data to Driver LSI HD44100H

HITACHI
124

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

HD44780, HD44780A (LCD-II)
Bus Timing Characteristics (Vee = 5.0 V ± 10%, GND = 0 V, T. = -20 to +75'C)
HD44780
Write Operation (Writing data from MPU to LCD-II)

Enable Cycle Time
Enable Pulse Width

leveE

Umlt
Min
1000

PWEH

450

Symbol

Item
High
level

Enable Rise/Fall Time

Max

25

tEr, tEl

ns

Teat Condition
Fig. 1
Fig. 1

ns

Fig. 1

Unit
ns

tAs

140

ns

Fig. 1

Address Hold TIme

tAH

Fig. 1

tosw

Data Hold Time

tH

10
195
10

ns

Data Set-up Time

Address Set-up Time

RS, R/W
E

ns

Fig. 1

ns

Fig. 1

Unit
ns

Teat Condition
Fig. 2
Fig. 2

ns

Fig. 2

ns

Fig. 2

Read Operation (Reading data from LCD-II to MPU)

Item

Symbol

Enable Cycle Time

leveE

Enable Pulse Width

High
level

Enable Rise/Fall Time

PWEH

Umlt
Min
1000
450

140

Address Hold TIme

tAH

10

Data Delay Time

tOOR

Data Hold Time

tOHR

RS, R/W
E

ns

25

tEr, tEl
tAS

Address Set-up Time

Max

320
20

ns

Fig. 2

ns

Fig. 2

ns

Fig. 2

Unit
ns

Teat Condition
Fig. 1
Fig. 1

HD44780A
Write Operation (Writing data from MPU to LCD-II)

Item

Symbol

Enable Cycle Time

leveE

Enable Pulse Width

High
level

PWEH

Limit
Min
666
300

Max

ns

ns

Fig. 1

tAS

60. 1
100. 2

ns
ns

Fig. 1

Address Hold Time

tAH

Fig. 1

tosw

ns

Fig. 1

Data Hold TIme

tH

10
100
10

ns

Data Set-up Time

ns

Fig. 1

Enable Rise/Fall Time
Address Set-up Time

25

tEr, tEl
RS,R/W
E

HITACHI
Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

125

HD44 780,HD44 780A (LCD-U)
Read Operation (Reading data from LCD-n to MPU)
ltam

Symbol

Enable Cycle Time

tcyc E

Enable Pulse Width

High
level

Enable Rise/Fall Time
Address Set-up Time

PWEH

Umlt
Min

25

tEr. let
RS.R/W
E

Max

666
300

60'"
100"2
10

lAs

Address Hold Time

tAH

Data Delay Time

tOOR

Data Hold Time

tOHR

Unit
ns

Ta.t Condition
Fig. 2

ns

Fig. 2

ns

Fig. 2

ns

190
20.

Fig. 2

ns

Fig. 2

ns

Fig. 2

ns

Fig. 2

Unit

* 1. a-bit interface mode
*2. 4-bit interface mode

Notes:

Interface Signal with HD44100H Timing Characteristics
(Vee
6.0 V :!: 10%, GND
0 V, T.
-20 to +75"C)

=

=

=

HD44780
Umit

",

ltam

Symbol

Min

Clock Pulse Width

High
level

tcwH

800

ns

Ta.t CondItIon
Fig. 3

Clock Pulse Width

Low
level

tcwL

800

ns

Fig. 3

tcsu
tsu

500
300
300
-1000 1000

ns

Fig. 3

ns

Fig. 3

ns

Fig. 3

ns

Fig. 3

Clock Set-up Time
Data Set-up Time
Data Hold Time

tOH

M Delay Time

tOM

Max

HITACHI
126

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

HD44780, HD44780A (LCD-II)
HD44780A
Umit
Symbol

Min

Clock Pulse Width

High
level

tcwH

800

Unit
ns

Test Condition
Fig. 3

Clock Pulse Width

Low
level

tcwL

800

ns

Fig. 3

Clock Set-up Time

tcsu

Fig. 3

tsu

ns

Fig. 3

Data Hold Time

tOH

ns

Fig. 3

M Delay Time

tOM

500
300
300
-1000 1000

ns

Data Set-up Time

ns

Fig. 3

Item

Max

Notes:
Loading Circuit (TTL load): DBa to DB,

Test Point

0 -_ _......1--...

C

5.0V

HD44780A

5.0V

HD44780

Test Point - _......--toII-....

R

C

C=130pF
R= 11 kO
All Diodes: 152074(8)

R

C=50pF
R=20kO
All Diodes: 152074(8)

a

Loading Circuit (CMOS Load): Cll. C12. D. M

Test Point 0 - - - - - ,

±'OPF

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300.

127

HD44780, HD44780A (LCD-II)
Power Supply Conditions Using Internal Reset Circuit
LCD-II
Item
Power Supply Rise Time

Symbol

Power Supply OFF Time

tOFF

Limit
Min
0.1

tree

Max
10

Unit
ms

Taat Condition

ms

Since the internal reset circuit will not operate normally unless the preceding conditions
are met, initialize by instruction. (Refer to
"Initializing by Instruction")

Vcc - - - - - "
tOFF·

tOFF;'; 1 ms ......----Ool

O.lms;';trcc ;';10ms
(Note)

tOFF stipulates the time of power off for momentary power supply
dip or when power supply cycles on and off.

Figure 4

Intemal Power Supply Reset

HITACHI
128

Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300

HD44780, HD44780A (LCD-ll)
Terminal Function
Table 1 FunctIonal Description of Terminals
SignIIl

No. of Input!

Connected

Name
RS

U-

Output

to

Input

MPU

Input

MPU

Input
Input/
Output

MPU
MPU

Input!
Output

MPU

CL,

Output

HD44100H

CL2
M

Output

HD44100H

Output

HD44100H

0

Output

HD44100H

Output

Uquid
crystal
display

Output

Uquid
crystal
display
Power
supply
Power
supply

R/W

E
DB4-DB,

4

DBa-DB3

4

SEG,-SEG40 40

5
Vee. GND

2

Function
Signal to select registers.
0: Instruction register
(for write)
Busy flag: address counter
(for read)
1: Data register (for read and write)
Signal to select read (R) and write (W).
0: Write
1: Read
Operation start signal for data read/write.
Higher order 4 bidirectional three-state data bus lines.
Used for data transfer between the MPU and the LCDII. DB, can be used as a BUSY flag.
. Lower order 4 bidirectional three-state data bus lines.
Used for data transfer between the MPU and the LCDII. These four are not used during 4-bit operation.
Clock to latch serial data 0 sent to the driver LSI
HD44100H.
Clock to shift serial data D.
Switch signal to convert liquid crystal drive waveform
toAC.
Sends character pattem data corresponding to each
common signal serially.
0: Non selection
1 : Selection
Common signals that are not used are changed to nonselection waveforms. That is. COMg-COM,6 are nonselection waveforms at 1/8 duty factor. and COM'2COM'6 are non-selection waveforms at 1/11 duty
factor.
Segment signal.

Power supply for liquid crystal display drive.
Vee: +5 V. GND: 0 V."
Terminals connected to resistor or ceramic filter for
internal clock osillation.
For external clock operation. the clock is input to
OSC,.

OSC,.OSC2 2

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300
---~

.---.~--~

......-.-

.. - -

...

_-

-.-~.-----

129

HD44780, HD44780A (LCD-II)
Function Of Each Block
from the MPU. Register selector (RS) signals
make their selection from these two registers.

Register
The HD44780 has two 8-bit registers, an
instruction register (IR) , and a data register
(DR).
The IR stores instruction codes such as display clear and cursor shift, and address
information for display data RAM (DD RAM)
and character generator RAM (CG RAM). The
IR can be written from the MPU but not read
by the MPU.
The DR temporarily stores data to be written
into the DD RAM or the CG RAM and data to
be read out from DD RAM or CG RAM. Data
written into the DR from the MPUis automatically written into the DD RAM or the CG
RAM by internal operation. The DR is also
used for data storage when reading data is
read from the DD RAM or the CG RAM. When
address information is written into the IR,
data is read into the DR from the DD RAM or
the CG RAM by internal operation. Data
transfer to the MPU is then completed by the
MPU reading DR. After the MPU reads the DR,
data in the DD RAM or CG RAM at the next
address is sent to the DR for the next read

Table 2

R/W Operation

0

0

o

When the busy flag is 1, the HD44780 is in the
internal operation mode, and the next
instruction will not be accepted. As table 2
shows, the busy flag is output to DB7 when RS
= 0 and R/W = 1. The next instruction must
be written after ensuring that the busy flag is
O.
Address counter (AC)
The address counter (AC) assigns addresses
to DD and CG RAMs. When an instruction,for
address is'written in IR, the address information is sent from IR to AC. Selection of either
DD or CG RAM is also determined concurrently by the instruction.
After writing into (or reading from) DD or CG
RAM display data, AC is automatically incrementedby +1 (or decremented by -1). AC
contents are output to DBo - DBs when RS = 0
and R/W = 1, as shown in table 2.

Register Selection

RS

0

Busy flag (BF)

IR write as internal operation (Display
clear, etc.)
Read busy flag (DB7) and address
counter (DBo-DBs)
DR write as internal operation (DR to DO
or CG RAM)
DR read as internal operation (DO or CG
RAM to DR)

HITACHI
130

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy,· Brisbane, CA 94005-1819· (415) 589-8300

HD44780, HD44780A (LCD-II)
Display data RAM (DD RAM)

eral data RAM. Relations between DD RAM
addresses and positions on the liquid crystal
display are shown below.
The DD RAM address (ADD) is set in the
address counter (AC) and is represented in
hexadecimal.

The display data RAM (DD RAM) stores display data represented in 8-bit character
codes. Its capacity is 80 x 8 bits, or 80 characters. The display data RAM (DD RAM) that
is not used for display can be used as a gen-

+ Upper Order

Lower Order
Bits

Bits

\.- Hexa
decimal

Hexadecimal

oJ L..

..

oJ

DO RAM address 4E

(Example)

1-Line Display (N = 0)
1. When there are fower than 80 display
characters, the display begins at the head
position. For example, 8 characters using
1 HD44780 are displayed as:
(digit)

2

3

4

5

79

l-line

80

+ Display
Position

+ DO RAM
Address

(digit)

2

3

4

5

6

7

+

8

l-lina

Display
Position
DO RAM
Address

When the display shift operation is performed, the DD RAM address moves as:
(Left

Shift
Display)

101 102 103 104 105 06·1 07 08
1

1

1

(Right

Shift
Display)

HITACHI
Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

131

HD44780. HD4478QA (LCD-U)
2. 16-character dispJay using an HD447S0
and an HD44100H is as shown below:
(digit)

2

3

4

5

6

7

S

9

10 11 12 13 14 15 16

Hine

+ Display
Position
+ DO RAM
Address

L--

HD447S0 Display

---lL-.

HD44100H Display

---J

When the display shift operation is performed, the DD RAM address moves as:

~~

lo~ 10210310410510610710sI0910AloeiocioDIOEIOFl 10 1

Display)

'J

(Right

~~~~ay)

14F I 001 01 1021031041051061 0710sI0910Aloe 10ciODIOE I

3. The relation between display position
and DD· RAM address when the number
of display digits is increased. through the
use of one HD447S0 and two or more
HD44100H's can be considered an exten-

(digit)

sion of 2.
Since the increase can be S digits for each
additional HD44100H, up to So, digits can
be displayed by externally connecting 9
HD44100H's.

1234567 S 91011121314151617181920

73 74 75 76 77 78 79 80

1-line

.. DO RAM
Address

L

HD447S0
Display

2-Une Display (N
(digit)

Display
.. Position

-.J L HD44100H (1) ...JL HD44100H .JL HD44100H (9) .....J
Display

, (2) - (S)
Display

Display

= 1)
234

5

39

1-line

40

I:: I:: I

2-line

+ Display
Position
+ DO RAM
Address

HITACHI
132

Hitachi America, Ltd,· Hitachi Plaza· 2000 Sierra Point Pkwy,· Brisbane, CA 94005-1819· (415) 589-8300

HD44780, HD44780A (LCD-II)
1.

When the nwnber of display characters is
less than 40 x 2 lines, the 2 lines are
displayed from the head. Note that the
first line end address and the second line
(digit)

start address are not consecutive. For
example, when an HD44780 is used, 8
characters x 2 lines are displayed as:

2

3

4

5

6

7

8

+-

Display
Position

+-

DO RAM
Address

1-line

00

01

02

03

04

05

06

07

2-line

40

41

42

43

44

45

46

47

When display shift is performed, the DD
RAM address moves as:
(Left
Shift
Display)

(Right
Shift
Display)

2.

01

02

03

04

05

06

07

08

41

42

43

44

45

46

47

48

27

00

01

02

03

04

05

06

67

40

41

42

43

44

45

46

16 characters x 2 lines are displayed
when an HD44780 and an HD44100H are
used.
10 11 12 13 14 15 16

+-

Display
Position

1-line

00 01 02 03 04 05 06 07 08 09 OA OB OC 00 OE OF

+-

DO RAM
Address

2-line

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 40 4E 4F

(digit)

2

L--

3

4

5

6

HD44780 Display

7

8

9

---.JI....-

HD44100H Display

~

When display shift is performed, the DD
RAM address moves as follows:
(Left
Shift
Display)

01 02 03 04 05 06 07 08 09 OA OB OC 00 OE OF 10

(Right
Shift
Display)

27 00 01 02 03 04 05 06 07 08 09 OA OB OC 00 OE

41 42 43 44 45 46 47 48 49 4A 4B 4C 40 4E 4F 50

67 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 40 4E

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

133

HD44780; HD44780A (LCD-II)
3. The .. relation betweeI). display position
and DD RAM address when the number
of display digits is increased by using one
HD44780 and two or more HD44100H's,
can be considered an extension of 2.
(digit)

Since the increase can be 8 digits X 2
lines for each additional HD44100H, up to
40 digits 2 lines can be displayed by connecting 4 HD44780's extemally.

123456 7891011121314151617181920

I-line 0001 0203 04 05 06 07 0809 DAOB ocloo OE OF 1011 1213

---------

2-line 4041 4243 4445 4647 4849 4A4B 4C4D 4E 4F 50 5152 53

-------_.

L HD44780 --.lL HD44100H(I) ..JL HD44100H i
Display

Display

(2), (3)
Display

33 34 35 36 37 38 39 40 .. Display
position
2021 2223 2425 2627 .. DO RAM
address
6061 6263 64 65 6667 (Hexadecimal)
HD44100H(4)
Display

-.J

Character Generator ROM (CG ROM)

Character Generator RAM (CG RAM)

The character generator ROM generates 5 x
7 dot or 5 x 10 dot character patterns from 8bit character codes. It can generate 160 5 x 7
dot character patterns and 32 5 x 10 dot
character patterns. Table 3 shows the relation between character codes and character
patterns in -the Hitachi standard
HD44780AOO. User defined character patterns are also available by mask-programmed
ROM.

In the character generator RAM, the user can

rewrite character patterns by program. With
5 x 7 dOts, 8 character patterns can be
written and with 5 x 10 dots, 4 characters
can be written.
Write the character codes in the left column
of table 3 to display character patterns stored
inCGRAM.
Table 4 shows the relation between CG RAM
addresses and data and display patterns.
As table 4 shows, an area that is not used for
display can be' used as a general data RAM.

HITACHI
134

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 5,89-8300

HD44780, HD44780A (LCD-II)
Table 3

Correspondence between Character Codes and Character Pattern
(Hitachi Standard HD44780AOO)

Note: The user can specify any pattern for character-generator RAM.

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300

135

HD44780, HD44780A (LCD-II)
Table 4

Relatlonbetween CG RAM Addresses and Character Codes (DD RAM) and
Character Pattems (CG RAM Data)

For 5 x 7 dot character patterns

0 0
0 1
0
1
0 0
0 1
1 0

o

'0
10
10
0 1,0
11
I1
,1

,

0 0
0 1
0
1 1
0 0
0
0

Character

Pattern
Example (1)
Cursor

+- Position

Character

Pattern
Example (2)

:1
10 0 0
10 0
1 1 1,;
0 0
1
I1 0
0
11
,1

*No effect

Notes: 1. Character code bits 0-2 correspond to CG RAM address bits 3-5 (3 bits: 8 types).
2. CG RAM address bits 0-2 designate character pattern line position. The 8th line is the cursor
position and display is formed by logical OR with the cursor.
Maintain the 8th line data, corresponding to the cursor display position, in the 0 state for
cursor display. When the 8th line data is 1 , bit 1 lights up regardless of cursor presence.
3. Character pattern row positions correspond to CG RAM data bits 0-4, as shown in the figure
(bit 4 being at the left end).
Since CG RAM data bits 5-7 are not used for display, they can be used for the general data
RAM.
4. As shown in table 3, CG RAM character patterns are selected when character code bits 47 are all O. However, since character code bit 3 has no effect, the "R" display in the
character pattern example is selected by character code "00" (hexadecimal) or "08" (hexadecimal).
5. 1 for CG RAM data corresponds to display selection and 0 to non-selection.

HITACHI
136

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

HD44780, HD44780A (LCD-il)
For 5 x 10 dot character patterns
haracter Codes

(DO RAM Detal
7 6 6 432 1 0
Higher
Order
Bits

Lower
Order
Bits

'0
:0
:0
:0
:0
0 O!O
:0
10
I
I 1
:1
I1
....
I 1
:1
:1
11
:1

0 0 0
0 0
0
0
0 1 1
0 0
0 1
0
1 1
0 0 0
0 0
01 0
0 1 1
0 0
0 1
0
1 1

--- ------ ---

0 0 0

••
Character
Pattern
Example

0 0 0
0 0 0

·..:.....
• _~_!JO ~_~_~_~

Cursor

+ Position

I
I
I
I

••

I

.1 •

••

••••

0~:!:::::::;:::~~1;:::::::::;:::"r
___ L~.P_LQ.
• • ·1
1 1I 1 0

11 0 1 1

:1

0 0

:1

0 1

1
11

0
1 1

I

.--.-.,.-.-.-.-.

:
I

:
• • • ,• • • • •

.No Effect

Notes: 1. Character code bits 1, 2 correspond to CG RAM address bits 4, 5 (2 bits: 4 types).
2. CG RAM address bits 0-3 designate character pattem line position. The 11th line is the
cursor position and display is formed by logical OR with the cursor.
Maintain the 11 th line data corresponding to the cursor display position in the 0 state for
cursor display. When the 11th line data is 1, bit 1 lights up regardless of cursor presence.
Since the 12th-16th lines are not used for display, they can be used for general data RAM.
3. Character pattem row positions are the same as 5 x 7 dot character pattern positions.
4. CG RAM character patterns are selected when character code bits 4-7 are all O. However,
since character code bit 0 and 3 have no effect, .p- display in the character pattern example
is selected by character codes ·00·, ·01-, ·OS- and ·09· (hexadecimal).
5. 1 for CG RAM data corresponds to display selection and 0 to non-selection.

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415)589-8300

137

HD44780, HD44780A(LCD-II)
TUning Generation Circuit

serially through a 40·bit shift register and
latched when all needed data has arrived.
The .latched data controls the driver for
generating drive waveform outputs. The
serial data can be sent to HD44100Hs, externally connected in cascade, used for' display
digit number extension.
.
Serial data send always starts at the display
data·character pattern corresponding to the
last address of the display data RAM (DD

The timing generation circuit generates timing signals to operate intemal circuits such as
DD RAM, CG ROM, and CG RAM. RAM read
timing needed for display and internal operation timing by MPU access are separately
generated so they do not interfere with each
other. Therefore, when writing data to the
DD RAM, for example, there will be no undesirable influence, such as flickering, in
areas other than the display area. This circuit
also generates timing signals to operate the
externally connected driver LSI HD44100H.

RAM).

Since serial data is latched when the display
data character pattern corresponding to the
starting address enters the internal shift register, the HD447S0 drives the head display.
The rest displays, corresponding to latter
addresses, are added with each additional
HD44100H.

Liquid Crystal Display Driver' Circuit
The liquid crystal display driver circuit consists of 16 common signal drivers and 40
segment signal drivers. When character font
and number of lines are selected by a program, the required common signal drivers
automatically output drive waveforms, the
other common' signal drivers continue to
output non-selection waveforms.
The segment signal driver has essentially the
same configuration as the driver LSI
HD44100H. Character pattern data is sent

Cursor/Blink Control Circuit
The cursor/blink control circuit generates the
cursor or blink. The cursor or the blink appear
in the digit at the display data RAM (DD
RAM) address set in the address counter
(AC).

When the address counter is (OShe, the cursor
pOsition is:

AC6 AC5 AC4 AC3 AC2 AC1 ACO
AC

0

0

0

000

In a I-line display
(digit)

2

I

3

4

5

6

7

8

111 11H H
00

01

02

03

04

00

r I 1(
9

10

11

1..

OA

Display

.. Position

.. DO RAM
Address
(Hexadecimal)

the cursor position

In a 2-line display
Display

(digit)

lin/
2nd linl
l
1st

2

3

4

5

6

7

8

9

10

11

00

01

02

03

04

05

06

07

~

09

OA

40

41

42

43

44

45

46

47{ 48

49

4A

/

.. Position

)
~

.. DO RAM
Address
(Hexadecimal)

the cursor position

Note:

The cursor or blink appears when the address counter (AC) selects the character generator RAM
(CG RAM). But the cursor and blink are meaningless.
The cursor or blink is displayed in the meaningless position when AC is a CG RAM address.

HITACHI
138

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, GA 94005-1819· (415) 589-8300

HD44780, HD44780A (LCD-II)
Interfacing To MPU
In the HD44780, data can be sent in either 2
4-bit operations or 1 8-bit operations so it can
interface to both 4- and 8-bit MPUs.
1.

When interface data is 4-bits long, data is
transferred using only 4 buslines: DB4-DB
7. DBo-DB3 are not used. Data transfer
between the HD44780 and the MPU
completes when 4-bit data is transferred
twice. Data of the higher order 4 bits
(contents of D~-DB 7 when interface data
is 8 bits long) is transferred first, then the

lower order 4 bits (contents of DBo-DB3
when interface data is 8 bits long) is
transferred.
Check the busy flag after 4-bit data has
been transferred twice (one instruction).
Two 4-bit operations will then transfer
the busy flag and address counter data.
2.

When interface data is 8 bits long, data is
transferred using the 8 data buslines
DBo-DB7.

Rs-------------------~I
R/W-------'

E

DB6~@~R6.@.

DB5~m~R.@.
DB4~@~DR4.Q.!!9.

I

I
Instruction (lR)
Write

Busy Flag (BF) and
Address Counter (AC)
Read

Data Register (DR)
Read

Figure 54-Bit Data Transfer Example

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

139

HD44780, HD44780A (LCD-U)
Reset Function
InIt1aU&IDg by Internal Reset CIrcuit

4.

The HD44780 automatically initializes (resets) when power is turned on using the
internal reset circuit. The following instructions are executed during initialization. The
busy flag (BF) is kept in busy state until
initialization ends (SF = 1). The busy state is
10 ms after Vee rises to 4.5 V.
1. Display clear
2. FunCtion set:
DL = 1: 8 bit long interface data
N = 0: 1-line disPlay
F = 0: 5 x 7 dot character font
3. Display' on/off control:
D = 0: Display off
C = 0: Cursor off
B == 0: Blink off

Entry mode set:
lID = 1: +1 (increment)
S = 0: No shift

Note:

When conditions in "Power Supply
Conditions Using Internal Reset Circuit"
are not met, the internal reset circuit will
not operate normally and initialization
will not be performed. In this case
initialize by MPU according to "Initializing by Instruction".

initializing by InstructioD
If the power supply conditions for correctly

operating the internal reset circuit are not
met, initialization by instruction is required.
Use the procedure in figures 6 and 7 for
initialization.

HITACHI
140

Hitachi America, Ltd.· Hitachi Plaza. 2000 Sierra Point PkWy.· Brisbane, CA 94005-1819· (415) 589-8300

HD44780, HD44780A (LCD-II)
1:

Wait more than 15 ms
after Vee rises to 4.5 V

[I

RS R/W DB) DBa DBs DB, DB3 DB2 OBI DBo

o

0

0

0

1

1

*

*

*

*

*

*

*

SF cannot be checked before this instruction.
Function set (Interface is 8 bits long.)

Wait more than 4.1 ms

[
1

*

SF cannot be checked before this instruction.
Function set (Interface is 8 bits long.)

Wait for more than 100ps

RS R/W DB) DBa OBI DB, DB3 DB2 OBI DBo

o

0

001

1

*

*

*

*

SF cannot be checked before this instruction.
[ L - - - -_ _- - - - - - - J
Function set (Interface is 8 bits long.)

SF can be checked after the following instructions. When SF is not checked. the waiting
time between instructions is longer than the
execution instruction time. (See table 5)

RS R/W DB) DBa OBI DB, DB3 DB2 OBI DBo

000011NF**

o
o

0

0

0

0

0

0

0

0

0

0

000
0

0

0000000

0

1

liDS

Function Set (Interface is 8 bits long.
Specifiy the number of display lines and
character font.)
The number of display lines and character font
cannot be changed afterwards.
Display off
Display clear

Initialization ends

Entry mode set

Figure 6 8-Bit Interface

HITACHI
Hitachi America, Ltd .• Hitachi
Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300
-.-.-.---.,,-:._---_......
..,,--"-- '",--::-:---

-"~~--------"'--.

--------~.~.--~~,,,..-.--,~=--

141
~-------

HD44780, HD44780A (LCD-II)
2:

Wait more than 15 ms
after Vee rises to 4. 5 V

[

SF cannot be checked before this instruction.
Function set (Interface is 8 bits long.)

[

SF cannot be checked before this instruction.
Function set (Interface is 8 bits long.)

[

SF cannot be checked before this instruction.
Function set (Interface is 8 bits length.)

RS R/W DB7 DBs DB; DB.

o

0

0

0

1

0

0

0

0

1 0

0

N F
0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

* 0*

0

0

0
1

I/O S

SF can be checked after the following instructions. When SF is not checked, the waiting
time between instructions is longer than the
execution instruction time. (See table 5)
Function Set (Set interface to be 4 bits long.)
Interface is 8 bits length.
Function Set (Interface is 4 bits long. Specify
the number of display lines and character font.)
The number of display lines and character font
cannot be changed afterwards.
Display off
Display clear
Entry Mode Set

Initialization ends

Figure 7 4·Bit Interface

HITACHI
142

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

HD44780, HD44780A (LCD-II)
Instructions
Outline

3. Perform data transfer with internal RAM
4. Others
In normal use, category 3 instructions are
used most frequently. However, automatic
incrementing by +1 (or decrementing by -1)
of HD44780 internal RAM addresses after
each data write lessens the MPU program
load. The display shift especially can perform
concurrently with display data write, enabling the user to develop systems in minimum time with maximum programing efficiency. Foran explanation of the shift function in its relation to display, see table 7.
When an instruction is executing during
internal operation, no insruction other than
the busy flag/address read instruction will be
executed.
Because the busy flag is set to 1 while an
instruction is being executed, check to make
sure it is 1 before sending an instruction from
the MPU.

Only two HD44780 registers, the instruction
register (IR) and the data register (DR) can be
directly controlled by the MPU. Prior to
internal operation start, control information is
temporarily stored in these registers, to allow
interface from HD44780 internal operation to
various types of MPUs that operate in different speeds or to allow interface to peripheral
control les. HD44780 internal operation is.
determined by signals sent from the MPU.
These signals include register selection signals (RS), read/write signals (R/W) and data
bus signals (OBo-DB7), and are here called
instructions. Table 5 shows the instructions
and their execution time. Details are explained in subsequent sections.
Instructions are of 4 types, those that,
1. Designate HD44780 functions such as
display format, data length, etc.
2. Give internal RAM addresses

Notes: 1. Make sure the H044780 is not in the busy state (BF = 0) before sending the instruction
from the MPU to the H044780. If the instruction is sent without checking the busy flag, the
time between first and next instructions is much longer than the instruction time. See table
5 for a list of each instruction execution time.
2. After execution of a CG RAM/DO RAM data write or read instruction, the RAM address
counter is increased or decreased by 1 . The RAM address counter is updated after the busy
flag turns off. In figure 7 boo is the time elapsed after the busy flag turns off until the address
counter is updated.

Busy signa'
(OB 7 pin)

B~N~4
~,-----------------------

Address counter ---A---+j'----'V,
(DBa to OB 6 pins)

:J\.

--------~----~
14

-I

A+l

~--------------

tAOO depends on the operation frequency
tAOO = 1.5/(fcp or fosd seconds

Figure 8

Address Counter Update

HITACHI
Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

143

HD44780, HD44780A (LCD-II)
Table 5 Instructions
Execution Time

(mexl

Code
Instruction

Clear
Display
Return
Home

Iwhen fcp or
RS R/W DB7 DBe OBI DB4 DB3 DB2 DB, ORo Description
foac is 250 kHzl
Clears entire display and sets DO
0
0
0
0
1
1.64 ms
0
0
0
0
0
RAM address 0 in address counter.
Sets DO RAM address 0 In address
counter. Also returns display being
0
0
0
0
0
0
0
0
1
1.64 ms
shifted to original position. DO
RAM contents remain unchanged.
Sets cursor move direction and
specifies shift of display. These
0
0
0
1 I/O S
0
0
0
0
40"s
operations are performed during
data write and read.
Sets ON/OFF of entire display (0).
0
1
0
C
B cursor ON/OFF (C). and blink of
0
0
0
0
0
40"s
cursor position character (B).
Moves cursor and shifts display
0
1 SIC R/L
without changing DO RAM con0
0
0
0
40"s
tents.
Sets interface data length (DL).
0
1 DL N
number of display lines (L) and
0
0
F
0
40"s
character font (F).
Sets CG RAM address. CG RAM
0
1
ACG
data is sent and received after this
0
0
40"s
setting.
Sets DO RAM address. DO RAM
1
data is sent and recevied after this
ADD
0
0
40"s
setting.
Reads Busy flag (BF) indicating
internal operation is being perfor0
1 BF
AC
O"s
med and reads address counter
contents.
Writes data into DO RAM or CG
40"s
Write Data
RAM.
1
0
tADD = 6 "s (Note 2)

*

Entry
Mode Set
Display
On/Off
Control
Cursor or
Display
Shift
Function
Set
Set CG RAM
Address
Set DO RAM
Address
Read
Busy Flag
& Address
Write Data
to CG or
DO RAM
Read Data
from CG or
DO RAM

* *
* *

1
I/O =
I/O =
S =
SIC =
S/C=
R/L =
R/L =
DL =
N =
F =
BF =
BF =

1
1:
0:
1:
1:
0:
1:
0
1
1
1
1
0

Reads data from DO RAM or CG
RAM.

Read Data
Increment
Decrement
Accompanies display shift
Display shift
Cursor move
Shift to the right
Shift to the left
8 bits, DL= 0: 4 bits
2 lines, N= 0: 1 line
5x10 dots, F= 0: 5x7 dots
Internally operating
Can accept instruction

DO RAM: Display data RAM
CG RAM: Character generator
RAM
ACG: CG RAM address
ADD: DO RAM address:
Corresponds to cursor address
AC: Adresscounter used for both
DO and CG RAM address.

40"s
tADD = 6 "s (Note 2)
Execution time
changes when
frequency changes
Example:
When fcp or fosc
is 270 kHz:
250
401'$ x 270 = 371's

* No effect

HITACHI
144

Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

HD44780, HD44780A (LCD-II)
Description of Details
1.

Clear Display
RS R/W OB7

Writes space code 20 (hexadecimal)
(character pattem for character code 20
must be blank pattem) into all DD RAM
addresses. Sets DD RAM address 0 in
address counter. Returns display to its
original.status if it was shifted. In other
2.

words, the display disappears and the
cursor or blink go to the left edge of the
display (the first line if 2 lines are displayed). Set liD = 1 (increment mode) in
entry mode. S of entry mode doesn't
change.

Return Home
RS R/W OB 7 - - - - - - - - - _ O B o

o

Code

o

Sets the DD RAM address 0 in address
counter. Returns display to its original
status if it was shifted DD RAM contents
do not change.

o

o

* Don't care

The cursor or blink go to the left edge of
the display (the first line if 2 lines are
displayed).

3. Entry Mode Set
RS R/W OB 7

------------

1/0: Increments (liD = 1) or decrements
(liD = 0) the DD RAM address by 1
when a character code is written
into or read from the DD RAM.
The cursor or blink moves to the

right when incremented'by 1 and to
the left when decremented by 1.
The same applies to writing and
reading of CO RAM.

S:

OBo

Shifts the entire display either to
the right or to the left when S is 1; to
the left when liD = 1 and to the
right when liD = O.
Thus it looks as if the cursor stands
still and the display moves. The
display does not shift when reading
from the DD RAM when writing
into or reading out from the CO
RAM causes a shift when S = O.

HITACHI
Hitachi America, Ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005·1819 • (415) 589-8300

145

HD44780, HD44780A (LCD-II)
4.

Display On/Off Control
_

RS R/W DB7
Code

D:

C:

00000

0

I

The display is on when D = 1 and off
when D = O. When off due to D = 0,
display data remains in the DD
RAM. It can be displayed instantly
by setting D = 1.
The cursor is displayed when C = 1
and is not displayed when C = O.
Even if the cursor disappears, the
function of I/D, etc. does not change
during display data write. The cursor is displayed using 5 dots in the
8th line when the 5 x 7 dot character font is selected and 5 dots in the
11th line when the 5 x 10 dot char-

1

B:

I I

5 x 10 dot character font

Cursor Display Example

Figure 9

C

IB

acter font is selected (Figure 9).
The character indicated by the cursor blinks when B = 1 (Figure 9).
The blink is displayed by switching
between all blank dots and display
characters at 409.6 roB intervals
when fep or fosc = 250 kHz. The
cursor and the blink can be set to
display simultaneously. (The blink
frequency changes according to
the reciprocal of fcp or fose. 406.9 x
250
270
379.2 roB when fcp = 270
kHz.)

=

Cursor_

5 x 7 dot character font

D

DBo

-

Alternating display

Blink Display Example

Cursor and Blink

HITACHI
146

Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300

HD44780, HD44780A (LCD-TI)
5.

Cursor or Display Shift
RS R/W DB7 - - - - - - - - - - - DBo
Code

o

0

0

0

0

Shifts cursor position or display to the
right or left without writing or reading
display data (Table 6). This function is
used to correct or search for the display.
In a 2-line display, the cursor moves to the
2nd line when it passes the 40th digit of
the 1st line. Notice that the 1st and 2nd
line displays will shift at the same time.
6.

* Don't care

When the displayed data is shifted
repeatedly each line only moves horizontally. The 2nd line display does not shift
into the 1st line postion.
Address counter (AC) contents do not
change if the only action performed is
display shift.

Function Set
RS R/W DB7 - - - -________ DBo
Code

DL:

*Don't care

Sets interface data length, Data is
sent or received in 8 bit lengths
(Dl3?-DBo) when DL = 1 and in 4 bit
lengths (Dl3?-DBd when DL = O.

N:
F:

When the 4 bit length is selected,
data must be sent or received twice.
Sets number of display lines,
Sets character font.

Note: Perform the function at the head of the program before executing any instructions
(except "Busy flag/address read"). From this point. the function set instruction
cannot be executed unless the interface data length is changed.

Table 6
SIC

R/L

o

0

Shift Func:tlon
Shifts the cursor position to the left.
(AC is decremented by one.)
Shifts the cursor position to the right.
(AC is incremented by one,)
Shifts the entire displey to the left. The
cursor follows the display shift.
Shifts the entire display to the right.
The cursor follows the display shift.

o
o

Table 7
N

F

o
o

o

Func:tlon Set

*

No. of
DI8pIay Un..

2

Character

Duty

Font
5 x 7 dots

Factor
1/8

5 x 10dots
5x7dots

1/11
1/16

Cannot display 2 lines with 5 x 10 dot character font

* Don't care
HITACHI
Hitachi America, Ltd,· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300
-~--~---'----' .-----~ ,-'70""W""'~"'" BusY~/I&.
Instruction
Write

I

Busy Flag
Check

I

Busy Flag
Check

I

Busy Flag
Check

I

Instruction
Write

Figure 10 Example of Busy Flag Cbeck Timing Sequence

A,5

HD68BOO

A'4
A,3
A,
Ao
R/W
VMA

'1>2
DB o -DB 7

~
8

cS 2
PA2
CS,
CSo
PAl
RS,
RSo
PAo
R/W
HD68B21
E
PB o -PB 7
0 0 -0 7

RS

COM,COM'6

R/W
E
8

2!}

HD44780

40
SEG,- --+SEG40

Connected
to Uquid
Crystal
Display

DBo -DB 7

HD68BOO: 8 bit CPU

Figure 11

Example of Interface to HD68BOO Using PIA (HD68B21)

HITACHI
150

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

HD44780, HD44780A (LCD-U)
Connecting directly to the 8-bit MPU bus
line

VMA
~2

~

I

-I

A'5
H06800

COM,COM'6

E

,

16

H044780

Ao
R/W

RS
R/W

00- 0 7

080-0B 7

8

Figure 12

Connected
to LCD.

SEG,SEG 40

40

8-Blt MPU Interface

Example of interfacing to the HD6805

Ao- A7
H06B05

8

OBo-OB7

E
RS
R/W

Co
C,
Cz

COM,COM'6

16

H044780

SEG,SEG40

40

Connected
to LCD.

Figure 13 HD6806 Interface
Example of interfacing to the HD6301

RS
R/W
E

PM
P35
P3S

COM,COM,s

16

Connected
to LCD.

HD44780
H06301

P,o-P H

OBo-OB7

8

SEG,
SEG40

40

Figure 14 HD6301 Interface

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

151

HD44780, HD44780A (LCD-II)
2.

bits). In the latter case, the timing
sequence becomes somewhat complex.
(See figure 15)
Figure 15 shows an example of interface
to the HMCS43C.
Note that 2 cycles are needed for the
busy flag check as well as the data transfer. 4-bit operation is selected by program.

Interface to 4-bit MPU
The HD44780 can be connected to a 4-bit
MPU through the 4-bit MPU I/O port. If
the I/O port has enough bits, data can be
transferred in 8-bit lengths, but if there
are insufficient bits, the transfer is made
in two operations of 4 bits each (with
designation of interface data length for 4

AS

____---1/

A/W

\1...._-----

E

Internal

Internal Operation
No

DB7

~Busy\~BUSY~
Instruction
Write
Note:

I

Busy Flag
Check

I

Busy Flag
Check

I

Instruction
Write

IA7, IA3: Instruction 7th bit, 3rd bit
AC3: Address Counter 3rd bit

Figure 15

An Example of 4-Bit Data Transfer Timing Sequence

HMCS43C

0 15

AS

0 14

A/W

0 13

E
4

A1O- A13

COM1COM 16

~

HD44780

DB4- DB7

SEG1SEG 40

~

1

Connected
to Uquid
Crystal
Display

HMCS43C: Hitachi 4-bit single-chip microcontroller

Figure 16

Example of Interface to the HMCS43C

HITACHI
152

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

HD44780, HD44780A (LCD-II)
Interface to Liquid Crystal Display
1.

Character Font and Number of Lines
The HD44780 can perform. 2 types of
display, 6 x 7 dots and 6 x 10 dots character font, with a cursor on each.
Up to 2 lines are displayed with 6 x 7 dots
and 1 line with 6 x 10 dots. Therefore,
three types of common signals are available (Table 8).

Number of lines and font types can be
selected by program.
(See to Table 6, Instructions)
2.

Connection to HD44780 and Liquid Crystal Display
Figure 17 shows connection examples.

Table 8 Common Signals
Number of
Li_

C. .racter Font
6 x 7 dots + Cursor
6 x 10 dots + Cursor
6 x 7 dots + Cursor

2

COM' _ _ _

Number of
Convnon Signals

Duty

8
11
16

1/8
1/11
1/16

Factor

~J1J

COMa
HD44780

S~G, ~~~~~

______________________ _

SEG~,I---------------------------------------J
(a)

Uquid Crystal
Display Panel
(8 characters
. xl line)

Example of a 5x7 dot, 8 character x 1 line Display (1/4 Bias, 1/8 Duty Cycle)

SEG,

~

_____________________ _

SEG~r_------------------------------------~
(b)

UquidCrystal
Display Panel
(8 characters
xl line).

Example of a 5x 10 dot, 8 character x 1 line Display (1/4 Bias, 1/8 Duty Cycle)

Figure 17 . Llquld .Crystal Display end Connections to HD44780

HITACHI
Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane,CA 94005-1819· (415) 589-8300

153

HD44780, HD44780A (LCD-II)
Since 5 SEG signal lines can display one
digit, one HD44780 can display up to 8
digits for 1-line display and 16 digits for 2line display.
In Figure 15 examples (a) and (b), there
are unused common signal terminals,
which always output non-selection

waveforms. When the liquid crystal display panel has unused extra scanning
lines, avoid undesirable influences due to
crosstalk in the floating state by connecting the extra scanning lines to these
common signal terminals (Figure 18).

COM,

CaMs
COMg

COM,6
HD44780

SEG,

----------------------

Liq uid Crystal
Di splay Panel
(8 characters
x 2 lines)

SEG40
(c)

Example of 5x7 dot, 8 characterx2 lines Display (1/5 Bias, 1/16 Duty Cycle)

Figure 17 Liquid Crystal Display and Connections to HD44780 (cont)

11_ __

COM,

caMs
COMg
HD44780

i-J

SEG'IiII

SEG40r-------------------------------------~

5x7 dot, 8 character x 1 line Display (1/4 Bias, 1/8 Duty Cycle)

Figure 18

Using COMe to Avoid Crosstalk on Unneeded Scanning Line

HITACHI
154

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

HD44780, HD44780A (LCD-II)
3.

Connection of Changed Matrix Layout

layout. Display characteristics and the
number of liquid crystal display characters depend on the number of common
signals (or duty factor). Note that the
display data RAM (DD RAM) addresses
for 8 characters x 2 lines and 16 characters x 1 line are the same as shown in
figure 15.

In the preceding examples, the number of
lines matched the number of scanning
lines. The display types figure 17 are
made possible by changing the matrix
layout in the liquid crystal display panel.
In either case, the only change is the

5 x 7 dot, 16 character x 1 line Display
(1/5 Bias, 1/16 Duty Cycl!')

SEG,
SEG 20

-- -

--

---

--

COM,
COMs
HD44780

SEG 2 ,
SEG 40

5 x 7 dot, 4 character x 2 line Display
(1/4 Bias, 1/8 Duty Cycle)

Figure 19

Changed Matrix Layout ·Dlsplays

HITACHI
Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300

155

HD44780, HD44780A (LCD-II)
Power SUpply for Liquid Crystal Display
Drive

must be changed according to dUty factor.
Table 9 shows the relation ..

Various voltage levels must be applied to
HD44780 terminals Vt to Vs to obtain liquid
crystal display drive waveforms. The voltages

VLCD gives the peak values for liquid crystal
display drive waveforms. Resistance dividing
provides each voltage as shown in figure 20.

Table 9. Duty Factor and Power Supply
for Liquid Crystal Display
Drive
~ Duty Factor

Po_~

Supply

VI

1/8, 1/11

1/16

1/4

1/5

Vcc-1/4 VLCD

Vcc -1 /5 VLCD

V2

Vcc -1 /2 VLCD

Vcc - 2/5 VLCD

V3

Vcc-1/2 VLCD

Vcc-3/5 VLCD

V4

Vcc-3/4 VLCD

Vcc-4/5 VLCD

V5

VCC-VLCD

VCC-VLCD

Vcd+5V)

Vcd+5V)
vcc

Vcc

R

R

VI

VI

R

V2

V2
V LCD

V3

V3

R

v4

V4
R
V5

Vs

R
R

R

VR

VR

-5V
1/4 Bias
(l/B. 1/11 Duty Cycle)

Figure 20

VLCD

R

-5V
1/5 Bias
(1/16 Duty Cycle)

Drive Voltage Supply Example

HITACHI
156

Hitachi America, Ltd.· Hitachi Plaza "2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

HD44780, HD44780A (LCD-II)
Relation between OscUlation Frequency
and Liquid Crystal Display Frame Frequency
The examples in figure 21 of liquid crystal
display frame frequency apply only when

1.

oscillation frequency is 250 kHz (1 clock = 4
ps).

1/8 Duty Cycle
~400CIOCks

I

COM,

1

I

2 1 3 /

4

/------1

8

11

2 /

~~e --'--rl-ilr--......:....-~--'---.!....---!.~-.--+----'!...---V2 (Va)

V4
Vs

--t:-+[-++I
I++-1I -----l]H-1_- + - - + - I
/.

1 frame

'1

1 frame = 4 (/ls) x 400 x 8 = 12800 (/ls) = 12.8 (m9)
1
= 12.8(ms)
= 78.1 (Hz)

Frame frequency

2.

1/11 Duty Cycle
~4oo clocks

COM,

Vee
V,
V2 (Va)
V4
V6

m
I

2

II I

1 3 1

1

4

I1I

,.

I1

1------111

2 1

III
.,

1 frame

1 frame = 4 (/ls) x 400 x 11 = 17600 (/l9) = 17.6(ms)
1
Frame frequency = 17.6 (ms) = 56.8 (Hz)

3.

1/16 DUty Cycle

r.- 200 clocks

COM,

Vee
V,
V2
Va
V4
V6

r:J1

II

I

I·

2 1 3

1 4

1------1 16 1 1

II II I
1 frame

II

I

.,

2 1

I

1 frame = 4 (/ts) x 200 x 16 = 12800 (.us) = 12.8(ms)
1
Frame frequency = 12.8 (ms) 78.1 (Hz)

Figure 21 Frame Frequency

HITACHI
Hitachi America, Ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

157

HD44780, HD44780A (LCD-II)
Connection with Driver LSI HD44100H
You can increase the number of display digits
by externally connecting an HD44100H liquid
crystal display driver LSI to the HD44780.
When connected to the HD44780, the
HD44100H is used as segment signal driver.
The HD44100H can be connected to the
HD44780 directly since it supplies CLI, CL2, M,
and D signals and power for liquid crystal
display drive. Figure 22 shows a connection
example.

Caution: Connection of voltage supply terminals VI through Ve for liquid crystal display
drive is complicated.
Up to 9 HD44100H units can be connected for
1-line display (duty factor 1/8 or 1/11) and up
to 4 units for the 2-line display (duty factor 1/
16). RAM size limits the HD44780 to a maximum of 80 character display digits. The connection method in figure 22 remains unchanged for both 1-1ine and 2-line display or 5
x 7 and 5 x 10 dot character fonts.

HITACHI
158

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

HD44780, HD44780A (LCD-II)

:z:

8

II
1\

n
i .
:z:

a::

a

~ri
00

~e

V4
V3
V2

~,

v~~

I

~

I
!

GND
Vcc

;;

M

.:i
a

I

1II.:i..J CL•
~~~ Cl1f...-

III

I

I
I

:z:

Qj

8
~
a

c

'"

D.

>

-a

:z:

I)

.!Il

a

I
"

C"

::J

1.. n. a::

a

~a

:z:

I

~

1\

I
I

I
I

I
I

I

I I II
I I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

Ve

Vs
V4

GND

Vee
M
1II.:i..J Cl2
~~~ Cl1 f...-

III

n
. .3'£
~e

a::

a

a a

,,

.:i
a

V4S

v
v3
v~

~,
,
,
- ,
;;

'I;t

I

I

~

I

:z:

15

I

I

vV';
EE

,

8

a

a a

I

.:i
a

.~

-' a::

~

;;

:!i

I

I

i

~

\

U
:!2

I

I

G~O

Vee
M
1II.:i..J Cl2
~~~Cl1

-

III

y-

L._:"
~

-.,CD

- ..

:!i:!i

00
UU
I

I

i
i
00
u~

Figure 22

0

"'"
~
I!:I

a

w

.:i..J:!i

uu

ua~~~

::$'i§

III
I

!ilr-.

::a

C£
w

:z:

III

Example of Connecting H044100H to HD44780

HITACHI
Hitachi America, Ltd. ol-\itachi Plaza ° 2000 Sierra Point Pkwy. ° Brisbane, CA 94005-1819 0(415) 589-8300

159

HD44780, HD44780A (LCD-II)
Instruction and Display Correspondence
1.

8-bit operation, 8-digit x 1-line display
(using internal reset)
Table 10 shows an example of 8-bit x 1line display in 8-bit operation. The
HD44780 functions must be set by funtion
set instruction prior to display. Since the
display data RAM can store data for 80
characters, as explained before, the RAM
can be used for displays like a lighting
board when combined with display shift
operation.
Since the display shift operation changes
display position only and DD RAM contents remain unchanged, display data
entered first can be output when the
retum home operation is performed.

2.

operation. Since nothing is connected to
DBo-DB3, a rewrite is then required.
However, since one operation is completed in two accesses of 4-bit operation,
a rewrite is needed as a function (see
table 11). Thus, DB4-DB7 of the function set
is written twice.

4-bit operation, 8-digit x 1-line display
(using internal reset)
The program must set functions prior to
4-bit operation. Table 11 shows an example. When power is turned on, 8-bit
operation is automatically selected and
the first write is performed as an 8-bit

3.

8-bit operation, 8-digit x 2-line display
For 2-line display, the cursor automatically moves from the first to the second
line after the 40th digit of the 1st line has
been written. Thus, if there are only 8
characters in the first line, the DD RAM
address must· again be set after the 8th
character is completed. (See table 12).
Note that the first and second lines of the
display shift are performed. In the example, the display shift is performed when
the cursor is on the second line. However,
if the shift operation is performed when
the cursor is on the first line, both the first
and second lines move together. When
you repeat the shift, the display of the
second line will not move to the first line,
the same display will only move within
each line many times.

Note: When using the internal reset, the conditions in "Power Supply Condition Using Internal
Reset Circuit" must be satisfied. If not, the HD44780 must be initialized by insruction. (See
"Initializing by Instruction")

HITACHI
160

Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300

HD44780, HD44780A (LCD-II)
Table 10 8-Bit Operation, 8-Digit I-Line Display Example
(Using Internal Reset)
No. lnatruetion

Operation

Diaplay

1

Power supply on (HD44780 is initialized by
the internal reset circuit)

2

Function Set
RS R/W DB70
0 0
1
0

1

-

DBa

0

0

* *

1

1

1

1

Initialized. No display appears.
Sets to 8-bit operation and selects 1line display lines and character font.
(Number of display lines and character
fonts cannot be changed after this.)
Turns on display and cursor. Entire
display is in space mode because of
initialization.
Sets mode to increment the address
by one and to shift the cursor to the
right at the time of write to the DD/CG
RAM.
Display is not shifted.
Write "H". The DO RAM has already
been selected by initialization when
the power is turned on.
The cursor is incremented by one and
shifted to the right.

3

Display On/Off Control
0
0
0
0
0
0

1

1

1

0

1

I

4

Entry Mode Set
0
0
0
0

0

1

1

0

1

1

5

Write Data to CG RAM/DO RAM
1
1 0
0
0
0
1
0

0

0

IH

1

6

Write Data to CG RAM/DO RAM
1 0
1 0
0
0
1
0

0

1

1

HI

I' Writes "I".

0

1

1

HITACHI

1

1

1

1

HITACHI

0

0

0

1

0

.

7
Write Data to CG
1
1
0
0
Entry Mode Set
9
0
0
0
0
Write Data to CG
10
1 0
0
0
Write Data to CG
11
1 0
0
1
8

0

RAM/DO RAM
0
0
1 0
0
1
0
0
RAM/DO RAM
1 0
0
0
RAM/DO RAM
1
1
0
0

IITACHI

=

ITACHIM

12

I
I
1

Writes "I".
Sets mode for display shift at the time
of write.
Writes "Space" .
Writes "M".

.

HITACHI
Hitachi America, Ltd .• Hitachi PI~a· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300

161

HD44780, HD44780A (LCD-II)
No. Instruction
Write Data to CG
13
1 0
0
1
Cursor or Display
14
0
0
0
0
Cursor or Display
15
0
0
0
0
Write Data to CG
16
1
1 0
0
Cursor or Display
17
0
0
0
0
Cursor or Display
18
0
0
0
0
Write Data to CG
19
1 0
0
1

RAM/DO RAM
1
1
0
0
Shift
1 0
0
0
Shift
0
1 0
0
RAM/DO RAM
0
0 0
0
Shift
0
1
1
1
Shift
1 0
0
1
RAM/DO RAM
0
0
1
1

0

0

1

1

1

Operation

I MICROKO_I

Writes "0".

I MICROKO

* *
* *
1

Display

I MICROKO
IICROCO

1

Shifts only the cursor position to the
left.
Shifts only the cursor position to the
I left.
Writes "C" (correction).
I The display moves to the left.
Shifts the display and cursor position
to the right.
Shifts the display and cursor position
to the right.

I

1

I
I MICROCO I
IICROCOM= I

Writes "M".

0

I HITACHI

Returns both display and cursor to the
original position (Address 0).

I MICROCO

* *
* *

20

21

Return Home
0
0
0
0

0

0

0

I

Table 11 4-Bit Operation, a-Digit I-Line Display Example
(Using Intemal Reset)
No. Instruction
Diaplay
Power supply on (HD44780 is initialized by
1
I
the internal reset circuit)

Operation

I

2

Function Set
RS R/W DB7 I"...J DB4
0
0
0
1 0
0

I

3

Function Set
0
0
0
0
0
0
0

I

I

Display On/Off Control
0
0
0
0
0
0
0
1
1
1 0

I

I

Entry Mode Set
0
0
0
0
0
1

1=

I

IH

I

4

5

6

0

1

0

* *

0

0
0

0
1

0

0

Write Data to CG RAM/DO RAM
1 0
1 0
0
0
1
1 0
0 0
0

I

Initialized. No display appears.
Sets to 4-bit operation.
In this casEi, operation is handled as 8
bits by initialization, and only this
instruction completes with one write.
Sets 4-bit operation and selects 1-line
display and 5 x 7 dot character font.
4-bit operation starts from this point
on and resetting is needed.
(Number of display lines and character
fonts cannot be changed hereafter.)
Turns on display and cursor. Entire
display is in space mode because of
initialization.
Se~'rnode to increment the address
by one and to shift the cursor to the
right, at the time of write, to the 00/
CG RAM. Display is not shifted.
Writes "H".
The cursor is incremented by one and
shifts to the right.

Hereafter, control is the same as S-bit operation.

HITACHI
162

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane~ CA 94005-1819· (415) 589-83pO

HD44780, HD44780A (LCD-II)
Table 12 S-Bit Operation, S-Diglt X 2-Line Display Example
(Using Intemal Reset)
No. Instruction

Operation

Display

1

Power supply on (HD44780 is intialized by the
internal reset circuit)

2

Function Set
RS R,tWDB71
0
0
0
0

DBo

I

I
I

I

1

1

0

* *

3

Display On/Off Control
0
0
0
0
0
0

1

1

1

0

I

I

4

Entry Mode Set
0
0
0
0

0

1

'1

0

I

I

Write Data to CG RAM/DO RAM
1 0
1 0
0
0
1 0

0

0

IH

I

5

0

0

Sets to 8-bit operation and selects 2line display and 5 x 7 dot character
font,
Turns on display and cursor, All display is in space mode because of
initialization,
Sets mode to increment the address
by one and to shift the cursor to the
right, at the time of write, to the 00/
CG RAM, Display is not shifted,
Writes "H", The DO RAM has already
been selected by initialization when
the power is turned on.
The cursor is incremented by one and
shifted to the right.

·

,.

··

6

Initalized, No display appears,

·

·

IHITACHI

7

Write Data to CG RAM/DO RAM
1 0
1 0
0
1 0, 0

0

1

8

Set DO RAM Address
1
1 0
0
0
0

0

0

9

Write Data to CG RAM/DO RAM
1 0
1 0
1
1
0
0

0

1

11

Write Data to CG RAM/DO RAM
1
1
0
1 0
1
0
0

1

1

, MICROCO

,
,

12

Entry Mode Set
0
0
0
0

1

1

, HITACHI
, MICROCO

J,

Sets mode for display shift at the time
of write,

13

Write Data to CG RAM/DO RAM
1
1 0
1
1 0
0
0

,

1

'ITACHI
'ICROCOM

Writes MM", Display is shifted to the
right,
The first and second lines' shift operate at the same time,

0

0

IHITACHI

I
I

I ~ITACHI

Writes "I",
Sets RAM address so that the cursor is
positioned at the head of the 2nd line.
Writes "M",

I

10

0

0

0

1

I HITACHI

0

·
··
·

14

15

Return Home
0
0
0
0

0

0

0

0

1

0

J

,

, HITACHI
'MICROCOM'

Writes "0",

Returns both display and cursor to the
original position (Address 0),

HITACHI
Hitachi America, Ltd,. Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

163

II

HD44780, HD44780A (LCD-II)
Modifying Character Patterns
1.

Character Pattern Development Procedure

Hitachi

@

®
>.;.:N.:..O_

Back to
start

@

Flgure 23 Character Pattern Development Procedure

HITACHI
164

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

HD44780, HD44780A (Le'D-II)
firmed that character patterns are correctly written, Hitachi starts mass production of the LSI.

The numbers in figure 17 correspond to the
following operations:
a,
b.

c,

Determine the correspondence between
character codes and character patterns.

2.

Progranuning Character Patterns
This section explains the correspondence

Create a listing indicating the correspondence between EPROM addresses
and data.

between addresses and data used to
program character patterns in EPROM.
The LCD-II character generator ROM can
generate 160 5 x 7-dot character patterns
and 32 5 x 10-dot character patterns for a
total of 192 different character patterns.

Program character patterns in the
EPROM.

d. Send the EPROM to Hitachi.
a.
e.

f.

Hitachi performs computer processing
with the EPROM to create a character
pattern listing and sends it to the user.

5 x 7-dot Character Pattern
For a 5 X 7-dot character pattern, EPROM
address data and character pattern correspond with each other as shown below.
Table 13 is an example of the correspondence between EPROM address data and
character pattern (5 X 7 dots).

If there is no problem in the character

pattern listing, Hitachi creates a trial LSI
and sends samples to the user. The user
evaluates the samples. When it is con-

Table 13 Example of Correspondence between EPROM Address Data and Character
Pattem (5 X 7 dots)
EPROMadel....

Character code

I

Data

Une position

(1) EPROM addresses Ato to A3 correspond to a character code.
(2) EPROM addresses A2 to Ao specify a
line position of character pattern.
(3) EPROM data 04 to 00 correspond to
character pattern data.

(4) A lit display position (black) corresponds to 1.
(5) Fill line 8 (cursor position) of character pattern with O.
(6) EPROM data Os to 07 are not used.

HITACHI
Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

165

HD44780, HD44780A (LCD-II)
b.

5

X

10-dot Character Pattern

(2) EPROM data in CG RAM area
Ignored by the character generator
ROM for display operation so it can be
o or 1.
(3) EPROM data used when the user
does not use any LCD-II character
pattern
Handled in one of the two ways explained below. Select one of the two
ways according to the user application.
(a) When unused character patterns
are not programed
If an unused character code is
written in the LCD-II DD RAM, all
dots are lit. No programming for a
character pattern is equivalent to
all bits lit. (This is because EPROM
is filled with 1 when the EPROM is
erased.)
(b) Program 0 for unused character
patterns
Nothing is displayed even if unused character codes are written
in LCD-II DD RAM. (This is equivalent to space).

For a 5xl0-dotcharacterpattern,EPROM
address data and character pattern correspond with each other as shown in
table 14.
(1) EPROM addresses AlO to A3 correspond to a character code. Set As and
A9 of character pattern line 9 and
later lines to O.
(2) EPROM addresses A2 to Ao specify a
line position of character pattern.
(3) EPROM data 04 to 00 correspond to
character pattern data.
(4) A lit display position (black) corresponds to 1.
(5) Fill line 11 (cursor position) of character pattern with O.
(6) EPROM data 05 to 0, are not used.
c.

Handling Unused Character Patterns
(1) EPROM data outside the character
pattern area
Ignored by the character generator
ROM for display operation so it can be
o or 1.

Table 14 Example of Correspondence between EPROM Address Data and Character
Pattern (5 X 10 dots)
EPROM addresa

AIO As As A7 As A5

~

Data

A3 A2 Al Ao 04 03 02
0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0
0
~~ ~~.

---.-- .------. ---.---- -.. --

------------._--

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Character code

0

0

J

Fill line 11 (cursor position)
with O.

0

Line position

HITACHI
166

Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300

H D66780 (LCD- I I A ) - - (Dot Matrix Liquid Crystal Display
Controller and Driver)
Description

Features
5 x 7 and 5 x 10 dot matrix liquid crystal
display controller driver
Can interface to 4-bit or S-bit MPU
Display data RAM: SO x S bits (SO characters, max)
Character generator ROM: 12000 bits;
Character font 5 x 10 dots: 240 characters
Character generator RAM: 64 x S bits;
Character font 5 x S dots: S characters or
character font 5 x 11 dots: 4 characters
Both display data and character generator RAMs can be read from the MPU
Internal liquid crystal display driver
-16 common signal drivers
-40 segment signal drivers (Can be
externally extended to 360 segments by
liquid crystal display driver HD44100H or
HD66100F)
Duty factor selection (selectable by program)
-l/S duty: 1 line of 5 x 7 dots + cursor
-1/11 duty: 1 line of 5 x 10 dots + cursor
-1/16 duty: 2 lines of 5 x 7 dots + cursor
Maximum number of display characters
as shown in table 1
Wide range of instruction functions: Display clear, cursor home, display on/off,
cursor on/off, display character blink,
cursor shift, display shift
Internal automatic reset circuit at power
on (internal reset circuit)
Internal oscillation circuit
- External resistor or ceramic filter
- External clock operation possible
CMOS process
Single +5 V logic power supply (excluding power for liquid crystal display drive)
Operation temperature range: -20'C to
+75'C (-40'C to +S5'C device available
upon request)
SO-pin plastiC flat package (FP-SOB, FPSOA)
Low power consumption

The LCD-IIA (HD667S0) a dot matrix liquid
crystal display controller and driver LSI displays alphanumerics, kana characters, and
symbols. It drives a dot matrix liquid crystal
display under 4-bit or S-bit microcontroller or
microprocessor control. All the functions
required for driving a dot matrix liquid crystal
display are internally provided on one chip.
Designers can complete dot matrix liquid
crystal display systems with low chipcount
by using the LCD-IIA (HD667S0). If a driver
LSI (HD44100H or HD66100F) is connected to
the HD667S0, up to SO characters can be
displayed.
The LCD-IIA is produced by the CMOS process. Therefore, the combination of the LCDIIA with a CMOS microcontroller or microprocessor can complete a portable batterydriven device with low power dissipation.

Ordering Information
Type No.
Package
HD66780FS 80-pin plastic QFP (FP-80B)
HD66780FH 80-pin plastic QFP (FP-80A)

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

167

I

".da~~c~~w~mm~
~~~

(FP-80)

~

ceoo

(FP-80A)
(Top-View)

Pin Description
No. of
Lines
1

Signal
RS
R/W
E

1

DB7-DBo

8

I/O

Connected to

Input
Input
Input
I/O

MPU
MPU
MPU
MPU

Function
Selects register
Selects read or write
Starts data read or write
Bidirectional data bus

Cl,

Output

Driver lSI

Serial data latch clock

Cl2
M
0

Output

Driver lSI

Serial data shift clock

Driver lSI
Driver lSI
LCD

LCD waveform AC switch signal
Character pattern data
Common signals

COM,-COM'6

16

Output
Output
Output

SEG,-SEG40

40

Output

LCD

Segment signals

V,-Vs

5

Power supply

LCD drive voltages

Vcc,GND

2
2

Power supply

OSC,-OSC2

+ 5 V and ground
System clock

HITACHI
168

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

HD66780 (LCD - II A)
Pin Function
RS (Register Select)

D (Serial Data)

RS selects the register that the MPU is accessing. RS = 0 selects the instruction register
for MPU writes, and the busy flag and address
counter for reads. RS = 1 selects the data
register for MPU reads and writes.

The LCD-IIA outputs serial character pattern
data corresponding to the common signals to
the HD44100H or HD66100F driver LSIs on D.

R/W (Read/Write)

COMI-COMI6 are the LCD common lines.
Common signals that are not used are deselected. At 1/8 duty factor COMg-COMI6 are
not used, so they output non-selected
waveforms. At 1/11 duty factor COMI2-COMI6
are not used, so they output non-selected
waveforms.

R/W selects whether the MPU will read from
(R/W = 1) or write to (R/W = 0) the LCD-IIA.

E (Enable)

COMt-COMt6 (Common)

The MPU sets the E input high to signal the
start of the read/write operation.

SEGt-SEG40 (Segment)

DB.,..DBo (Data Bus)

SEGI-SEG40 are the LCD segment lines.

The bidirectional, three-state data bus, DBoDB7, transfers data between the MPU and the
LCD-IIA. DB7 can be used as the busy flag.
The lower-order four lines, DBo-DB4, are not
used in four-bit interface operation.

Vt-Va (LCD Voltages)
The LCD-IIA requires the Vl-VS voltages to
output LCD-driving waveforms.

Vee. GND (Power Supply. Ground)
CLt. CLz (Clock 1. Clock 2)
The CLI output signals the HD44100H or
HD66100F driver LSI to latch the serial data
sent on line D. The CLz output signals it to
shift the data.

M (Master AC Signal)
The HD44100H or HD66100F driver LSIs use
the M output to convert the LCD drive
waveform to AC.

Vcc is the LCD-IIA's logic power supply. GND
is the power supply ground.

OSCt. OSCz (Oscillator 1. OscUlator 2)
OSCI and OSC2 are the connections for
LCD-IIA system clock. The LCD-IIA can
its internal oscillator if OSCI and OSCz
connected to a resistor or ceramic filter.
external clock can be input to OSCI.

the
use
are
An

Table 1 Number of Display Characters
No. of
Diaplay Duty
Lin..
factor

l-line
display

2-line
display

1/8,

d/uty11
1/16
duty

Extension

Not
provided
Provided
Not
provided
Provided

HD44100H

HD66100F

9 pes.
(8 characters/ pc. )

5 pes.
(16 characters/pc.)

No. of Display
Characters
8 characters x 1 line
80 characters x 1 line
8 characters x 2 lines

4 pes. (8 characters
x 2 lines/pc.)

2 pcs.(16 characters x 2 lines/pc.)

40 characters x 2 lines

HITACHI
Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300

169

I

HD66780 (LCD - II A)
H066780 Block Diagram

...

'"

III

III

C

b.

III

C

I

•

"it

j jill
ID

....

C")

N

~

III

w a:

C

C

II)

a:

UU

C

~ :g ~ ~

IIII

"it

I/O Buffer

.-

> > > > >

,....

Character
Generator
RAM
(CG RAM)

512 bits

Character
Generator
ROM
(CG ROM)

III

co

Display Data
RAM
(DO RAM)

SOxs bits

12000 bits

L-~o====~r~~~~~~~~~JC!';§CD
"it

Cursor Blink
Control CirCuit

C

.~·S

Ee
t=u

Driver

C

HITACHI
170

Hitachi America,

Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

HD66780 (LCD - II A)
Block Function
Registers
The HD66780 has two 8-bit registers, an
instruction register (IR) and a data register
(DR).
The IR stores instruction codes such as display clear and cursor shift, and address
information for display data RAM (DD RAM)
and character generator RAM (CG RAM). The
IR can be written from the MPU but not read
by the MPU.
The DR temporarily stores data to be written
into the DD RAM or the CG RAM and data to
be read out from DD RAM or CG RAM. Data
written into the DR from the MPU is automatically written into the DD RAM or the CG
RAM internally. The MPU also uses the DR for
data storage when reading data from the DD
RAM or the CG RAM. When the MPU writes
address information into the IR, the LCD-IIA
sends data to the DR from the DD RAM or the
CG RAM by internal operation. Data transfer
to the MPU is then completed by the MPU
reading DR. After the MPU reads the DR, the
LCD-IIA sends data in the DD RAM or CG
RAM at the next address to the DR for the
next read from the MPU. Register selector
(RS) signals select these two registers (table
2).

Busy Flag (BF)
When the busy flag is 1, the HD66780 is in the
internal operation mode, and instructions will
not be accepted. As table 2 shows, the busy
flag is output to DB 7 when RS = 0 and R/W
= 1. The next instruction must be written
after confirming that the busy flag is O.

to DD and CG RAM. When an instruction -for
address is written in IR, the address information is sent from IR to AC. Selection of either
DD or CG RAM is also determined concurrently by the instruction.
After writing into (or reading from) DD or CG
RAM display data, AC is automatically incremented by 1 (or decremented by 1). AC
contents are output to DBc-DBs when RS = 0
and R/W = 1, as shown in table 2.

Display Data RAM (DD RAM)
The display data RAM (DO RAM) stores display data represented in 8-bit character
codes. Its capacity is 80 x 8 bits, or 80 characters. The display data RAM (OD RAM) that
is not used for display can be used as general
data RAM. Relations between DD RAM addresses and positions on the liquid crystal
display are shown in figure 1.
The DO RAM adress (ADD) is set in the address
counter (AC) and is represented in hexadecimal.
When there are fewer then 80 display characters, the display begins at the head positon.
For example, 8 characters using an HD66780
are displayed as shown in figure 2.
When the display shift operation is performed, the DD RAM address moves as shown in
figure 3.
A 16-character display using an HD66780 and
an HD44100H is shown in figure 4.

Address Counter (AC)

The relation between display position and OD
RAM address when the number of display
digits is increased through the use of one
HD66780 and two or more HD44100Hs can be
considered an extension of figure 4.

The address counter (AC) assigns addresses

Since the increase can be 8 digits for each

Table 2 Register Selection
RS

R/W

o

o

o

Operation

IR write as internal operation (Display clear, etc)
Read busy flag (DB7) and address counter (DBo-DB6)

o

DR write as internal operation (DR to DO or CG RAM)
DR read as internal operation (DO or CG RAM to DR)

HITACHI
Hitachi America, Ltd.· Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

171

I

HD66780 (LCD- II A)
Higher Order
+-Bits

AC

Lower Order --+
Bits

IAC61AC51AC41AC31AC21AC11ACoI

L

.---.!

Hexa- ~
decimal
Hexadecimal

Example : DO RAM address

4E
10 1

111010111

" - - 4 ---.../\'---- E --~I
1-line Display (N=O)
(Digit)
1
2

Hne

3

4

79 80

5

Display
+-Position
4E I 4F I+-00 RAM
.
.
. Address
(Hexadecimal)

I

I 00 I 01 I 02 I 03 104 1

Figure 1 DD RAM Address
(Digit)

2

1-line

3

4

5

6

7

8

I 00 I 01 I 02 I 03 I 04 I 05 I 06 I 07 I

Display

=~~~e~~
(Hexadecimal)

Figure 2 Eight-Character Display Example

kL~~
Display)

I 01 I 02 I 03 I 04 I 05 I 06 I 07 I 08 I

Figure 3 Display shift

(Digit)
1-line

2

3

4

5

6

7

a

g 10 11 12 13 14 15 16

~

Display

~~~::

I 00 I 01 I 02 103 104 105 106 107 1oal 09 1OA I 08 I OC I OD I OE I OF I
" - - - HD667aO Display ~ HD441 OOH Display - - f ' (Hexadecimal)

(Left
Shift
Display)

101 1021031041051061071 oal 09 1OA I 08 I OC I OD I OE I OF 110 I

(Right
Shift
Display)

14F I 00 I 01 I 02 103 104 105 106 107 1 Os I 09 1OA 1 08 I OC 1 OD 1 OE

1

Figure 4 Sixteen-Character Display Example

HITACHI
172

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

HD66780 (LCD - II A)
fewer than 40 x 2 lines, the 2 lines from the
head are displayed. Note that the first line
end address and the second line start address
are not consecutive. For example, when an
HD66780 is used, 8 characters x 2 lines are
displayed as shown in figure 6.

additional HD44100H, up to 80 digits can be
displayed by externally connecting 9
HD44100Hs.
The same holds when HD66100Fs are used as
display drivers. Consisting of 80 outputs, one
HD66100F can display 16 digits (figure 5).

When display shift is performed, the DD RAM
address moves as shown in figure 7.

When the number of display characters is

(Digit)

1

2

3

4

5

6

7 8

Display

9 1011 121314151617 18 192021222324

l-line

Address
(Hexadecimal)

~

__________________

A

~A

HD661OOFIII
Display

I

HD66100F12H41
HD66100FISI
Display
Display
The last 40 outputs of the HD66100F(S)

are not ueed,

Figure 5 Extended Display

I

2-line Display (N = 1)
(Digit)

2

1-line
2-line

3

4

39

5

3 04
1 1 °422 1 °4 314
°400 1 °4 1
41

40

1 26 ! 271

..............................

Display

=:;~i~~~

~~~:.~~:.:~~:.~~~:.~~~:.~~~~~~..~..~..~..~..~..~..~..~.. ~.. ~...~..~..~..~.~~~~~:~6~6~:~6~7: f~:::~:cimal)

1
:.

(Digit)

2

3

4

5

6

7

1-line

00

01

02

03

04

05

06

2-line

40

41

42

43

44

45

46

8

Display
-POSition
07 -DO RAM
Address
(Hexadecimal)
47

Figure 6 Two-Line by Eight-Character Display Example

(Left
Shift
Display)

(Right
Shift
Display)

01

02

03

04

05

06

07

08

41

42

43

44

45

46

47

48

27

00

01

02

03

04

05

06

67

40

41

42

43

44

45

46

Figure 7 Two-Line Display Shift

HITACHI
Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300

173

HD66780 (LCD - II A)
16 characters x 2 lines are displayed as in
figure 8 when an HD66780 and an HD44100H
are used.

(Note: In a 5 x 7 dot + cursor display, only
the upper part, that is, 5 x 7 dots of 5 x 10
dots, is displayed.)

The relation between display position and DD
RAM address when the number of display
digits is increased by using one HD66780 and
two or more HD44100Hs, can be considered
an extension of figure 9.

Table 3 shows the relation between character codes and character patterns in the Hitachi standard HD66780AOO. User-defined
character patterns are also available by
mask-programmed ROM.

Since the increase can be 8 digits x 2 lines for
each additional HD44100H, up to 40 digits x
2 lines can be displayed by connecting 4
HD66780s (or 2 HD66100Fs) externally.

Character Generator RAM (CG RAM)
With the character generator RAM, the user
can rewrite character patterns by program.
With 5 x 7 dots, 8 character patterns can be
written and with 5 x 10 dots 4 patterns can
be written.

Character Generator ROM (CG ROM)
The character generator ROM generates 5 x
7 dot or 5 x 10 dot character patterns from 8bit character codes. A CG ROM has 240 types
of 5 x 10 dot character patterns built-in.

(Digit)

Write the character codes in the left columns
of table 3 to display character patterns stored
in CGRAM.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1-line

00

01

02

03

04

05

06

07

08

09

OA

OB

OC

00

OE

2-line

40

41

42

43

44

45

46

47

48

49

4A

4B

4C

40

4E

16

Display
-Position
OF -DO RAM
Address
4F
(Hexadecimal)

\~--- HD66780 Display ----'I\~---HD441 OOH Display _ _ _...II
(Left
Shift

01

02

03

04

05

06

07

08

09

OA

OB

OC

00

OE

OF

10

Display)

41

42

43

44

45

46

47

48

49

4A

4B

4C

40

4E

4F

50

(Right

27

00

01

02

03

04

05

06

07

08

09

OA

OB

OC

00

OE

67

40

41

42

43

44

45

46

47

48

49

4A

4B

4C

40

4E

Shift

Display)

Figure 8 Two-Line by Sixteen-Character Display Example
(Digit)
l-line

1

2

3

4

5

6

7

8

33 34 35 36 37 38 39 40

9 1011121314151617181920

00 01 0203 04 05 06 07 0809 OA 08 OC 00 OE OF 1011 1213

..........

Display

Position
2021 2223 2425 2627

~DD

RAM

address
2-line

4041 4243 4445 4647 4849 4A 48 4C 40 4E 4F 5051 52 53

L

HD667780

-L

Display

HD441 OOHII I

--L

Display

HD441 OOHI21131
Display

6061 6263 6465 6667

~ HD441 OOHI41 ~
Display

HD66100FIII ~ HD66100FI21

\
........_ -

Display

(Hexadecimal)

Display

/
----'

Figure 9 Two-Line Extended Display Example

HITACHI
174

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

HD66780 (LCD - II A)
Table 3

Correspondence between Character Codes and Character Pattern
(Hitachi Standard HD66780AOO)

,~ 0000 00011001010011

x x x xOOOl

-

x x x xOOll

.5.

(4)

x x x xOl0l

-

-

xxxxOll0

(5)

(7)

(8)

-

xxxxl000

(1)
-

xxxxl001

(2)

-

x x x xl0l0

(3)

I--xxxxl0ll

x x x xll00

xxxxll01

x x x x 1110

(4)

-

-

:1:1: ::::;

·......-.-,..:-

-

.....

•-!

.. !
i..:!

I

I ••:.

:

(5)

(6)

(7)

(8)

.

8i-....

.=:::-.... ·i.....!

.... : :
·....
: : ....:
!- ...... : .: .:::=. i.:J
·.:.:..
·:::=.
··...:: .. ..:: ...ar: ::........... ..::I::· I::: i::::.:.: :•••::
.... ...:: J...••;

i :

••••5 -5-:

I •••:

.1 •••

~: to::: [ io:: -::

..1--

::
..:
••••• !i·:·i
..... .....
-! ..1
: =
::

..... ......
•

x x X x 1111

C: ::::; c· ............

(6)

-

xxxxOlll

·;-...

(3)

-

x x x xOl00

..... .... ...
E.:.! ·:::5 ·......:

-5

(2)

x x x xOO10

0100 0101 0110101 11 10001001 1010 1011 1100 1101 11101111

I

r··i

.....

...... ·..... ·I·..5
.... ·... I···
..... i···;
...:···5 ·:::i
-•••1
.
.:.:- ,:::: ·5···'
.......
..... ...... ...
-i···
... ..... .·....
··1·· 5 ·:···Ii .i ...=
... .....
5 r· i .. II.. ....
...
...
.
...
·
:::1· ::1·· ...1. ..... ·=.....:
.....
-I··:
.......: ..
.: .: .....••• .....••••....:1
. ........
..... .....
..:..
I a.

II

.:.-

5

..

..:

I •••••

........... .1.:-.e )

: I .. !
! i.:

-.,..... ....1 i ! t.··
·-1··
.....: :.:
...
:.
: .
...! .·~:I· i::: .
I •••:
..:
..:

•••••

..

I .. ::••1

·1···

:::::

.-.....
-.'....: ::;:: i) ..!... .....

.1•••

::-

I ••

-i

a•

. :i

...: r··1...

•••••

.
···:1 .... ..
......!. .....
....: :i:.. ......
··i·· .... ...
I

::i
•••1

...

n:

t:

Ii:

•••, I:!

....I ..:

I.

I ••

f i

..:.... I

Note: • The user can specify any pattern for character-generator ROM.

HITACHI
Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300

175

HD66780 (LCD - II A)
As table 4 shows, an area that is not used for
display can be used as general data RAM.

Table 4 shows the relation between CG RAM
addresses and data and display patterns.

Table 4

Relation between CG RAM Address and Character Codes (DD RAM) and
Character Patterns (CG RAM Data)

For 5 x 7 -dot character patterns

Charac:terCodea
COD RAM Datal
6 5 4 3 2 1

7

Higher
---Order
Bits

0

0 0

CGRAM
Add.....
5 4 3 2 1 0

Lower
Order
Bits

0

*

Character Patterns
(CG RAM Datal
7 6 5 4 3 2 1 0
Higher

Lower
Order
Bits

0 0

0
0
0
0

0 0
0 1
1 0
1

Character
Pattern
Example (I)

1

1 0 0
1 0 1
1 1 0
1 1 1

0

0 0

0

*

0

0

1

o

0 1

o

*

1

*
*

1

0 0 0
0 0 1

o

0 0

0

*

1

1 1

Cursor
---Position

0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1

o
o

*

*

I

Notes:

Character
Pattern
Example (2)

*

*

0
1

*No effect
(Don't care)

1 0
1

Lower

1

*

*

1. Character code bits 0-2 correspond to CG RAM address bits 3-5 (3 bits: 8 characters).
2. CG RAM address bits 0-2 designate character pattern line position. The 8th line is the
cursor position and display is performed by logical OR with the cursor.
Maintain the 8th line data, corresponding to the cursor display position, in the 0 state for
cursor display. When the 8th line data is 1, bit 1 lights up regardless of cursor presence.
3. Character pattern row positions correspond to CG RAM data bits 0-4, as shown in the
figure (bit 4 being at the left end).
Since CG RAM data bits 5-7 are not used for display, they can be used for the general data

RAM.
4. As shown in table 3 and 4, CG RAM character patterns are selected when character code
bits 4-7 are all O. However, since character code bit 3 is ineffective, the R display in the
character pattern example, is selected by character code 00 (hexadecimal) or 08 (hexadecimal).
5. 1 for CG RAM data corresponds to selection for display and 0 for non-selection.

HITACHI
176

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

HD66780 (LCD - II A)
Table 4

Relation between CG RAM Address and Character Codes (DD RAM) and
Character Patterns (CG RAM Data) (Cont)

For 5 x 10 -dot character patterns
Character Cod..
IDD RAM Data)

6 5 4 3 2 1 0
Higher
Lower
---Order
Order --+
Bits
Bits
0 0 0 0 * 0 0 *
7

---------------.--------------------- ---------

CGRAM
Add.....

Character Patterns
ICG RAM Data)

7 6 5 4 3 2 1 0
2 1 0
Higher
Lower
Lower
Order ~
Order
Order
Bits
Bits
Bits
0 0 0
* * * 0 0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
0 0 0
0 0 1
1 0 1 0
* * *
--------------------------- --------- ------------------------------"-----.
1011
********

5 4 3
Higher
Order
Bits
0 0 0
0
0
0
0
0
0
0
1
1

11 11 00 01
1 1 1 0
111 1
0000
000 1

*

111001
101 0

o

1

1

100
1 0 1
1 1 0

1 1 1
Notes:

!

Character
Pattern
Example

Cursor
<-Position

t

* * * * * * * *
***

* * *
* * * * * * * *

1

1

* * * * * * * *

*No effect
(Don't care)

1. Character code bits 1, 2 correspond to CG RAM address bits 4, 5 (2 bits: 4 characters).
2. CG RAM address bits 0-3 designate character pattern line position. The 11th line is the
cursor position and display is performed by logical OR with cursor.
Maintain the 11 th line data corresponding to the cursor display position in the 0 state for
cursor display. When the 11th line data is 1, bit 1 lights up regardless of cursor presence.
Since the 12nd-16th lines are not used for display, they can be used for the general data
RAM.
3. Character pattern row positions are the same as 5 x 7 dot character pattern positions.
4. CG RAM character patterns are selected when character code bits 4-7 are all O. However,
since character code bit 0 and 3 are ineffective, P display in the character pattern example
is selected by character code 00, 01, 08 and 09 (hexadecimal).
5. 1 for CG RAM data corresponds to selection for display and 0 for non-selection.

HITACHI
Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819· (415) 589-8300

177

HD66780 (LCD -'- II A)
Timlng generation Circuit
The timing generation circuit generates timing signals to operate internal circuits such as
DD RAM, CG ROM, and CG RAM. RAM read
timing needed for display and internal operation timing by MPU access are separately
generated so that they may not interfere
with each other. Therefore, when writing
data to the DD RAM for example, there will
be no undesirable influence, such as flickering, in areas other than the display area. This
circuit also generates timing signals to operate the externally connected drivers
(HD44100H or HD66100F).

Liquid Crystal Display Driver Circuit
The liquid crystal display driver circuit consists of 16 common signal drivers and 40
segment signal drivers. When the character
font and number of lines are selected by a
program, the required common signal drivers
automatically output drive waveforms. The
other common signal drivers continue to
output non-selection waveforms.
The segment signal driver has essentially the
same configuration as the driver LSI
HD44100H. Character pattern data is sent
serially through a 40-bit shift register and

latched when all needed data has arrived.
The latched data controls the driver for
generating drive waveform outputs.
The serial data can be sent to HD44100H or
HD66100Fs, externally connected in cascade,
to display an extended number of characters.
The LCD-IrA always starts sending serial
data at the display data character pattern
corresponding to the last address of the display data RAM (DD RAM).
Since serial data is latched when the display
data character pattern, corresponding to the
starting address, enters the internal shift
register, the HD66780 drives the head of the
display. The rest of the display, corresponding
to later addresses, are added with each additional HD44100H or HD66100F.

Cursor/Blink Control Circuit
The cursor/blink control circuit generates the
cursor or blinking. The cursor or blinking
appear in the digit residing at the display
data RAM (DD RAM) address set in the
address counter (AC).
When the address counter is (08)16, the cursor
position is as shown in figure 10.

HITACHI
178

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589·8300

HD66780 (LCD -: II A)
AC6 AC5 AC4 AC3 AC2 AC1

o

ACO

o

o

In a 1-line display
(Digit)

2

3

4

5

6

7

8

9

1 00 1 01 1021031041051061071

T

10

11

1 09 1 OA 1

Cursor Position

Display
+-Position
DO RAM
+-Address
(Hexadecimal)

In a 2-line display
(Digit)

2

3

4

5

6

7

8

9

10

11

~

09

OA

1st line

00

01

02

03

04

05

06

07

2nd line

40

41

42

43

44

45

46

47

1/48 49 4A

Display
+-Position
DO RAM
+-Address
(Hexadecimal)

I

Cursor Position

Note: The cursor or blink appears when the address counter lAC) selects the character generator RA
ICG RAM). But the cursor and blink are meaningless.
The cursor or blink is displayed in the meaningless position when AC is the CG RAM address.

Figure 10 Cursor or Blink

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

179

HD66780 (LCD - II A)
MPU Interface
The HD66780 can send data in either two 4bit operations or one 8-bit operation so it can
interface to both 4-and 8-bit MPU's.

transferred first, then the lower order 4 bits
(contents of DBo-DB3 when interface data is
8 bits long) is transferred.

When interface data is 4 bits long, data is
transferred using only 4 bus lines: DB4 - DB7.
DBo- DB3 are not used. Data transfer between
the HD66780 and the MPU completes when
4-bit data is transferred twice.

Check the busy flag after 4-bit data has been
transferred twice (one instruction). Two 4-bit
operations will then transfer the busy flag
and address counter data (figure 11).

Data of the higher order 4 bits (contents of
DB4 - DB7 when interface data is 8 bits long) is

When the interface is 8 bits long, data is
transferred using the 8 data bus lines DBoDB7.

Reset Function
Initializing by Internal Reset Circuit
The HD66780 automatically initializes (resets) when power is turned on using the
internal reset circuit. The following instructions are executed at initialization. The busy
flag (BF) is kept in busy state until initialization ends(BF = 1). The busy state lasts 10 ms
after Vcc rises to 4.5 V.
1. Display clear
2. Function set
a. DL = 1: 8-bit long interface data
b. N = 0: i-line display
c. F = 0: 5x7-dot character font

3. Display on/off control
a. D = 0: Display off
b. C = 0: Cursor off
c. B = 0: Blink off
4. Entry mode set
a. l/D = 1: + l(increment)
b. S = 0: No shift

Note: When power supply conditions in the
electrical characteristics are not met using
internal reset circuit, the internal reset circuit
will not operate normally and initialization
will not be performed. In this case initialize
by MPU according to initializing by instruction.

RS ____________________________

~/

R/W _ _ _ _ _~/
E

IR3

DB,
DBe
DB5

IRl

DB4

SF

AC3

AC6

AC2

DR2

AC5

AC4

Instruction (I R)
Write

DR6

ACO

Busy Flag (BF) and
Address Counter (AC)
Read

Data Register (DR)
Read

Figure 11 4-Bits Data Transfer Example

HITACHI
180

Hitachi America, Ltd.· Hitachi Plaza" 2000Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

HD66780 (LCD- II A)
InstructioDS
Only two HD66780 registers, the instruction
register (IR) and the data register (DR) can be
directly controlled by the MPU. Prior to
internal operation start, control information is
temporarily stored in these registers, to allow
interface from HD66780 internal operation to
various types of MPU's which operate at
different speeds or to allow interface to
peripheral control Ie's. HD66780 internal
operation is determined by signals sent from
the MPU. These signals include register
selection signals (RS), read/write signals
(R/W), anti. data bus signals (DBo-DB7), and
are here called instructions. Table 5 shows
the instructions and their execution time.
Details are explained in subsequent sections.

used most frequently. However, automatic
incrementing by 1 (or decrementing by 1) of
HD66780 internal RAM addresses after each
data write lessens the MPU program load.
The display shift especially can be performed
concurrently with display data write, enabling the designer to develop systems in
minimum time with maximum programing
efficiency. For an explanation of the shift
function in its relation to display, see table 7.
During internal operation, no instruction
other than the busy flag/address read
instruction will be executed. Because the
busy flag is set to 1 while an instruction is
being executed, check to make sure it is on 0
before sending an instruction from the MPU.

Instructions are of 4 types, those that:
1. Designate HD66780 functions such as
display format, data length, etc
2. Give internal RAM addresses
3. Perform data transfer with internal RAM
4. Others

In normal use., category 3 instructions are

Note: Make sure the HD66780 is not in the
busy state (BF = 0) before sending the
instruction from the MPU to the HD66780. If
the instruction is sent without checking the
busy flag, the time between first and next
instructions is much longer than the instruction execution time. See table 5 for a list of
each instruction's execution time.

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819 °1415) 589-8300

181

"~-'---~-'-

----

HD66780 (LCD- II A)
Table 5 Instructions
Execution Time
Code

(fcp

J,NJ:t 250

kHz)

Ina1rUetion
Clear
Display

o

0

0

0

0

0

0

0

Return
Home

o

0

0

0

0

0

0

0

Entry
Mode Set

o

0

0

0

0

0

0

Display
On/Off
Control
Cursor or
Display
Shift
Function
Set

o

0

0

0

0

0

0

o o o o

0

o o o

Set CG RAM 0
Address

o o

Set DO RAM 0
Address

o

Read
Busy Flag
& Address
Write Data
to CG or
DO RAM
Read Data
from CG or
DO RAM
Notes: 1.

o

1

*

I/O S

0

SIC R/L

OL N·

F

C

B

* *

* *

ACG

ADD

BF

0

0

AC

Write Data

Clears entire display and sets DO
RAM address 0 in address
counter
Sets DO RAM address 0 in
address counter. Also returns
display being shifted to original
position. DO RAM contents
remain unchanged
Sets cursor move direction and
specifies shift of display.
These operations are performed
during data write and read
Sets entire display on/off (D),
cursor on/off (C), and blink of
cursor pOSition character (B)
Moves cursor and shifts display
without changing DO RAM
contents
Sets interface data length (DL),
number of display lines (N) and
character font (F)
Sets CG RAM address. CG RAM
data is sent. and received after
this setting.
Set DO RAM address. DO RAM
data is sent and received after
this setti ng.
Reads Busy flag (BF) indicating
internal operation is being performed and reads address
counter contents
Writes data into DO RAM or CG
RAM

Read Data

I/O
I/O
S
SIC
SIC
R/L
R/L
DL
N
F

Reads data from DO RAM or CG
RAM

= 1: Increment
= 0: Decrement
= 1: Accompanies display shift
= 1: Display shift
= 0: Cursor move
= 1: Shift to the right
= 0: Shift to the left
= 1: 8 bits, DL = 0: 4 bits
= 1: 2 lines, N = 0: 1 line
=1:5x10dots,F=0:5x7dots

1.64 ms

1.64 ms

40 /is

40/is

40/iS

40/is

40/iS

40/is

o /is
46 /is

46 /is

BF
= 1: Internally operating
BF
= 0: Can accept instruction
DO RAM: Display data RAM
CG RAM: Character generator RAM
AcG: CG RAM address
ADD : DO RAM address
Corresponds to cursor
address
AC : Address counter used
for both DO and CG RAM

*

2.
No effect (Don't care)
3. Execution time changes when freguency changes.
Example: When fcp or fosc is 270 kHz:
250
40 /is x 270 = 37 /is

HITACHI
182

Hitachi Americ~a, ltd.• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

HD66780 (LCD - II A)
Clear Display

1 when a character code is written into or
read from the DD RAM. The cursor or blink
moves to the right when incremented by 1
and to the left when decremented by 1. The
same applies to writing and reading of CG
RAM.

Clear display (figure 12) writes space code 20
(hexadecimal)(character pattern for character code 20 must be blank pattern) into all DD
RAM addresses. Sets DD RAM address 0 in
address counter. Returns display to its original status if it is shifted. In other words, the
display disappears and the cursor or blink
goes to the left edge of the display (the first
line if 2 lines are displayed). Sets l/D = 1
(increment mode) of entry mode. S of entry
mode does not change.

S: Shifts the entire display either to the right
or to the left when S is 1; to the left when l/D
= 1 and to the right when l/D = O. Thus it
looks as if the cursor stands still and the
display moves. The display does not shift
when reading from the DD RAM. Writing into
or reading out of the CG RAM does not shift
the display. When S = 0, the display does not
shift.

RetumHome
Return home (figure 13) sets the DD RAM
address 0 in address counter. Returns display
to its original status if it was shifted. DD RAM
contents do not change. The cursor or blink
go to the left of the display (the first line if 2
lines are displayed).

Display On/Off Control.
D: The display is on when D = 1 and off when
D = 0 (figure 15). When off 'due to D = 0,
display data remains in the DD RAM. It can be
displayed immediately by setting D = 1.

En~ModeSet

I/D: l/D (figure 14) increments (l/D

C: The cursor is displayed when C = 1 and is
not displayed when C = O. Even if the cursor
disappears, the function of lID, etc does not

= 1) or

decrements (l/D = 0) the DD RAM address by

RS
Code

1

0

DBo

R/W DB7
1

0

1

0

1

0

0

0

0

0

0

1

1

1

Figure 12 Clear Display Instruction
RS
Code

1

0

R/W DB7
1

0

·1

0

DBo
1

0

0

0

0

0

*

1

* Don't care

Figure 13 Return Home Instruction
RS
Code

I

0

R/W OB7
1

0

1

Figure 14
RS

0

OBo
I

0

En~

0

0

0

11/0

1

S

1

Mode Set Instruction

R/W DB7

OBo

cOdelolololo

0

0

Figure 16 Display On/Off Control Instruction

HITACHI
Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300
.-

..

~-

..•..

-.---.~---

183

HD66780 (LCD - II A)
change during display data write. The cursor
is displayed using 5 dots in the 8th line when
the 5 x 7-dot is selected and 5 dots in the
11th line when the 5 x 10-dot character font is
selected (figure 16).
B: The character indicated by the cursor
blinks when B = 1. The blink is displayed by
switching between all blank dots and display
characters at 409.6 ms intervals when fcp or
fosc = 250 kHz (figure 15). The cursor and the
blink can be set to. display simultaneously.
(The blink time changes according to the
reciprocal of fcp or fosc. For example, 409.6 x

~~g

= 379.2 ms when fcp = 270 kHz.)

writing or reading display data. This function
is used to correct or search the display. In a 2line display, the cursor moves to the 2nd line
when it passes the 40th digit of the 1st line.
Notice that the 1st and 2nd line displays will
shift at the same time. When. the displayed
data is shifted repeatedly each line only
moves horizontally. The 2nd line display does
not shift into the 1st line postion.
Table 6 shows how SIC and R/L control
shifting.
Address counter (AC) contents do not change
if the only action performed is shift display.

Function Set

Cursor or Display Shift
Cursor or display shift (figure 17) shifts cursor
position or display to the right or left without

DL: DL (figure 18) sets interface data length.
Data is sent or received in 8-bit length (DB7DBa) when DL = 1 and in 4-bit lengths (DBT

Table 6 Cursor or Display Shift Control
SIC

R/L

o

o

Function
Shifts the cursor position to the left
(AC is decremented by one)
Shifts the cursor position to the right
(AC is incremented by one)
Shifts the entire display to the left. The cursor follows the display shift
Shifts the entire display to the right. The cursor follows the display shift

o
o

Ii

I-

--Cursor

arm

_

......
5 x 7 -dot character

5 x 1O-dot character

font

Alternating display

font

Cursor Display Example

Blink Display Example

Figure 16 Cursor and Blink Display
RS
Code

o

R/W DB7

o

o

DBa

o

o

ISIC IRill * I * I * Don't care

Figure 17 Corsor or Display Shift Instruction

HITACHI
184

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

HD66780 (LCD - II A)
DB4) when DL = O.
When the 4-bit length is selected, data must
be sent or received twice.

from the MPU for the CG RAM.

N: N sets number of display lines.

Set DO RAM address (figure 20) sets the DO
RAM address binary AAAAAAA into the
address counter. Data is then written or read
from the MPU for the DO RAM.

Set DD RAM Address

F: F sets character font. See table 7.
Note: Perform the function set at the head of
the program before executing any. instructions (except "Busy flag/address read"). From
this point, the function set instruction cannot
be executed unless the interface data length
is changed.

However, when N = 0 (l-line display),
AAAAAAA is 00-4F (hexadecimal), when N
= 1 (2-line' display), AAAAAAA is 00-27
(hexadecimal) for the first line, and 40-67
(hexadecimal) for the second line.

Set CO RAM Address

Read Busy Flag and Address

Set CG RAM address (figure 19) sets the CG
. RAM address binary AAAAAA into the
address counter. Data is then written or read

Read busy flag and address (figure 21) reads
the busy flag (BF) that indicates the system is
now internally operating on a previously

Table 7 Function Set N and F
No. of
Dleplay Lines Character Font
1
5x7 dots
1
5x10dots
2
5x7 dots

NF
00
01
1

*

Note:

Duty

Factor
1/8
1/11
1/16

* Don't care
RS

Code

Remarks

Cannot display 2 lines with 5 x 1O-dot character font

R/W DB7

DBo

I DL I N

I0 I0 I0 I0

F

* I * I * (Don't care)

Figure 18 Function Set Instruction
RS

cOdelO

DBo

R/W DB7
0

0
Higher
-Order Bits

Lower
Order Bits

Figure 19 Set CO RAM Address Instruction
RS

R/W DB7

DBo

Higher
-Order Bits

Lower
Order Bits

Figure 20 Set DD RAM Address Instruction

HITACHI
Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra ,POint Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

185

HD66780 (LCD - II A)
received instruction. BF = 1 indicates that
internal operation is in progress. The next
instruction will not be accepted until BF is set
to O. Check the BF status before the next
write operation (figure 22).

tion of CG RAM or DD RAM address setting.
After writing, the LCD-ITA automatically
increments or decrements the address by 1,
according to entry mode.

Read Data from CG or DD RAM
At the same time, the value of the address
counter expressed in binary (AAAAAAA) is
read out. The address counter is used by both
CG oEUld DD RAM addresses, and its value is
determined by the previous instruction.
Address contents are the same as in set CG
RAM address and set DD RAM address.

Write Data to CG or DD RAM
Write data to CG or DD RAM (figure 23)
writes binary 8-bit data DDDDDDDD to the
CG or the DD RAM.
Whether the CG or DD RAM is to be written
into is determined by the previous specifica-

RS

Read data from CG or DD RAM (figure 24)
reads binary 8-bit data DDDDDDDD from the
CGorDDRAM.
The previous designation determines
whether the CG or DD RAM is to be read.
Before entering the read instruction, you
must execute either the CG RAM or DD RAM
address set instruction. If you do not the first
read data will be invalidated. When serially
executing read instructions, the next address
data is normally read from the second read.
The address set instruction need not be
executed just before the read instruction
when shifting the cursor by cursor shift

R/W OB?

OBo

Code ,----[0-,--1---,-IB_F-'.-I_A

~A~A--"--A--,--A-L-A--,--IA--,I
Lower
Order Bits

Higher
-Order Bits

Figure 21 Read Busy Flag and Address Instruction
RS

R/W

___-J!

\~----

E
Internal

Internal Operation

No
DB7 ~B-U-S""'y~r7T.""T1I'"B-us"i?/i7:>"707~Tm77\BUS~
Instruction
Write

I

Busy Flag
Check

I

Busy Flag
Check

I

Busy Flag
Check

I

Instruction
Write

Figure 22 Example of Busy Flag Check Timing Sequence
RS
Code

OBo

R/W OB7

I0 I0 I0

0

0

0

0

0

I0 I

Lower
Order Bits

<- Higher

Order Bits

Figure 23 Write Data to CG or DD RAM Instruction

HITACHI
186

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

HD66780 (LCD- II A)
instruction (when reading out of DD RAM).
The cursor shift instruction operation is the
same as that of the DD RAM's address set
instruction.
After a read, the entry mode automatically
increases or decreases the address by 1.
However, display is not shifted no matter
what the entry mode is.

Note: The address counter (AC) is automatically incremented or decremented by 1 after
write instructions to either CG RAM or DD
RAM. RAM data selected by the AC cannot
then be read out even if read instructions are
executed. The conditions for correct data
read out are: execute either the address set
instruction or cursor shift instruction (only
with DD RAM), then just before reading out,
execute the read instruction from the second
time the read instruction is sent.

How to Use the H066780
Interface to 8-Bit MPU
When Connecting to 8-Bit MPU Through
PIA: Figure 25 is an example of using a PIA or
I/O port (for a microcontroller) as an interface
device. Input and output of the device is TTL
compatible.
In the example, PBa to PB? are connected to
the data buses DBa to DB? and P Aa to P A2 are
connected to E, R/W and RS respectively.

I

Connecting Directly to the 8-Bit MPU Bus:
Figure 26 shows the LCD-IIA connected
directly to an HD6800.
Example of Interfacing to the HD6805: Figure 27 shows the LCD-IIA connected directly
to an HD6805.

R!W DB7

RS
Code

Pay attention to the timing relation between
E and other signals when reading or writing
data and using PIA as an interface.

I

1

DBa

I DID I

D

D

D

D

D

I D I

Lower
Order Bits

<- Higher

Order Bits

Figure 24 Read Data from CG or DD RAM Instruction

HD68BOO

A'5
A'4
A'3
A,
Ao
R!W
VMA



Q..

!.!!!
0

Iu
:2

:>

CT

::J
><
·c
1;;

II

I

I

0:

o

0

~
0
q.

1\

J:

8

;q.

I

0
J:

;;::

I
I
I

I
I

I
I

I

I

I

I

I
I

I
I

I
I
I
I
I

I
I
I
I
I

I

I

I
I

I
I

I

I

I

I

Va
V5
V4
V3
V2
v,
VEE
GND
Vee
M

(/) .::; .:1 ell

.::;

U J: J: el, I - u-(/)(/)

0

III

:E

0

.. n
. -

0

II
1\
I;

-10:

0:

00

0
~

J:
0
0

>
0
q.

;q.

I

0
J:

;;::

~

.().

0

I
I
I

.::;
0

Va
V5
V4
V3
V2
v,
VEE
GND
Vee
M

(/) .::; .:1 ell

u J: J: el,
U-(/)(/)

----'

III

f\r-

§
CD
~

0
q.

:E:E

.--..

(!I

00

uu

(/)

I I

ii
00

~

.::; .:1 :E

0

u u

w

"0
>"z
(!I

»>
0

CIO

I

"0

CD
CD

c5
w
(/)

J:

u~

Figure 36 Example of Connecting HD44100H to HD66780

HITACHI
194

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819. (415) 589-8300

HD66780 (LCD - II A)
0

II

C

~
0IX)

\

V4

u..

~3

8

V~
VEE
GND

iii
CD

I

C
::t:

-;:

Vee
M

-I

::t:

C

III

I

I

I
I

C~

ClI I---

I

I

I

I

I

I

I

I
I

I
I

I

I
I
I

I

I

I

I

I
I

!

l.
~

Q.

.Ie
C

I

U

:2
~

g
i

I

I

I

I

I

I

I
I

I

I
I

I

I
I
I

I

0

V
~

c

0IX)

~4

.; u..
8
.I C

V~

VI
VEE

CD
CD

-;:

GND

Vee
M

::t:

-I

::t:

C

C~

ClI

III

I--

I

>C

:E
15
c

a

0

C

V
~

/").

0IX)

-;:

~2

V~
GND

Vee

::t:

M

-I

C

::t:

C~

ClI

~

:E:E

CI

UU

III

ii
00

<5
w

~

c

..s.:J:E ~i»>
uu
CI

w

00

~

III

I

CD
.-

.--.

V3

CD

~
I\r

~

V4

.; u..
8
I iiic

I

I I

CD
CD

C
::t:

III

u~

i,...

Figure 37 Example of Connectlng HD66100F to HD66780

HITACHI
-----------

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300
195
- - - - - - - - - - - - - - --------------------- - - - - - - - - - - - - - - - -

~-------------

---~-~--

HD66780 (LCD- II A)
Instruction and Display Correspondence
8-blt Operation, 8-digit x l-line Display
(UsJng Internal Reset): Table 10 shows an
example of an 8-bit x 1-line display in 8-bit
operation. The HD66780 functions must be
set by the function set instruction prior to
display. Since the display data RAM can store
data for 80 characters, as explained before,
the RAM can be used for advertising displays
when combined with display shift operation.
Since the display shift operation changes
display position only and DD RAM contents
remain unchanged, display data entered first
can be output when the return home operation is performed.
4-blt .Operation, 8-dlgit x l-line Display
(Using Internal Reset): The program must set
functions prior to 4-bit operation. Table 11
shows an example. When power is turned on,
8-bit operation is automatically selected and
the LCD-IIA attempts to perform the first
write as an 8-bit operation. Since nothing is
connected to DBo-D~, a rewrite is then
required. However, since one operation is
completed in two 4-bit accesses, a rewrite is
needed to set the functions (see table 11 step

moves from the first to the second line after
the 40th digit of the first line has been written. Thus, if there are only 8 characters in the
first line, the DD RAM address must be set
after the eighth character is completed (see
table 12). Note that the first and second lines
of the display are shifted.
In the example, the display is shifted when
the cursor is on the second line. However, if
the shift operation is performed when the
cursor is on the first line, both the first and
second lines move together. When you repeat
the shift, the display of the second line will
not move to the first line, the same display
will only move within each line many times.
Note: When using the internal reset, the
conditions in "Power Supply Condition Using
Internal Reset Circuit" must be satisfied. If
not, the HD66780 must be initialized by
instruction. (See "Initializing by Instruction")
Initializing by Instruction

Thus, DB4-DB7 of the function set is written
twice.

If the power supply conditions for correctly
operating the internal reset circuit are not
met, the LCD-ITA must be Initialized by
instruction.
When interface is 8 bits long, use the initialization procedure in figure 38.

8-blt Operation, 8-digit x 2-lIne Display:
For a 2-line display, the cursor automatically

When interface is 4 bits long, use the initialization procedure in figure 39.

3).

HITACHI
196

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300

HD66780 (LCD - II A)
Table 10

a-Bit Operation, a-Character
Reset)

x

1-Line Display Example (Using Internal

Step

No.

2

InlltrUction
Power Supply On (HD66780 is
initialized by the internal reset circuit)
Function Set
RS R;WDB 7'
DBo

o

3

0 0 0

0

Entry Mode Set

1 0

Write Data to CG RAM/DO RAM

100

6

Sets to 8-bit operation and selects 1line display and one of the three character fonts. (Number of display lines
and character font cannot be changed
after this.)
Turns on display and cursor. Entire
display is on space mode because of
initialization.
Sets mode to increment the address by
one and to shift the cursor to the right
at the time of write to the DD/CG
RAM. Display is not shifted.
Writes "H". The DO RAM has already
been selected by initialization when the
power is turned on.
The cursor is incremented by one and
shifted to the right.
Writes "I".

Display On/Off Control

0 0 0 0 0 0 001
5

Operation
Initialized. No display appears.

00* *

0000001
4

Display

1 001

000

Write Data to CG RAM/DO RAM

100

1 001

0

0

7

8

Write Data to CG RAM/DO RAM

100
9

1 001

0

0

Entry Mode Set

000

0

0

0

IHITACHI

0

10

Write Data to CG RAM/DO RAM

11

Write Data to CG RAM/DO RAM

1000100000
100 1

001

IHITACHI

1 0

II TACH I
iTACHI

M

Writes "I".
Sets mode for display shift at the time
of write.
Writes space.
Writes "M".

12
13

Write Data to CG RAM/DO RAM

100100111
14

Cursor or Display Shift

00000100**
15

Cursor or Display Shift

00000100**
16

Write Data to CG RAM/DO RAM

17

Cursor or Display Shift

100

1 000

0000011
18

Cursor or Display Shift

0000010
19

0

1

* *
**

Write Data to CG RAM/DO RAM

100

1 001

1 0

MICROKO
MICROKO
MICROKO
ICROCO
MICROCO
MICROCO
ICROCOM

Writes "0".
Shifts only the cursor position to the
left.
Shifts only the cursor position to the
left.
Writes "C" (correction).
The display moves to the left.
Shifts the display and cursor position to
the right.
Shifts only the cursor position to the
right.
Writes "M".

20
21

Return Home

0000000010

IHITACHI

Returns both display and cursor to the
original position (address 0).

HITACHI
Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

197

HD66780 (LCD- II A)
Table 11

4-Bit Operation, a-Character
Reset)

x I-Line Display Example (Using Intemal

Step

No.

2

o

3

4

o
o

0

o

0
0

0
0

o
o

o

*

*

0
0

0
1

0
1

0
1

0
0

0
1

0
1

0
0

Entry Mode Set

0
0

0
0

Write Data to CG RAM/DD RAM

1
1

0
0

0
1

1
0

0
0

Oparation
Initialized. No display appears.

Sets to 4-bit operation.
In this case, operation is handled as 8
bits by initialization, and only this
instruction completes with one write.
Sets to 4-bit operation and selects 1line display and one of the three character fonts. 4-bit operation starts from
this point on and resetting is needed.
(Number of display lines and character
font cannot be changed after this.)
Turns on display and cursor. Entire
display is in space mode because of
initiaUzation.
Sets mode to increment the address by
one and to shift the cursor to the right,
at the time of write, to the DO/CG
RAM. Display is not shifted.
Writes "H". The DD RAM has already
been selected by initialization when the
power is turned on. The cursor is incremented by one and shifted to the
right.

Display On/Off Control

0
0
6

0

Function Set

0
0
5

Display

Instruction
Power Supply On (HD66780 is
initialized by the internal reset circuit)
Function Set
RS R/W DB7

0
0

After this, control is the same as 8-bit operation.

HITACHI
198'

Hitachi America, Ltd. -Hitachi Plaza - 2000 Sierra Point Pkwy. - Brisbane, CA 94005-1819 - (415) 589-8300

HD66780 (LCD - II A)
Table 12

8-Blt Operation, 8-Character X 2-Llne Display Example (Using Internal
Reset)

Step

No,·

lnatruction

1

Power Supply On (HD66780 is
intialized by the internal reset circuit)

2

Function Set
RS ~DB 7'
0 0 0 0
0
Display On/Off Control
0 0 0 0 0 0 1

3

4

5

Dieplay

Entry Mode Set
0 0 0 0 0

0

0

Sets to 8-bit operation and selects 2line display and one of the three character fonts.

DBo

* *
0

1

0

Write Data to CG RAM/DO RAM
1 0 0 1 0 0 1 0 0 0
IH

6
7

8

9
10
11

12

13

14
15

Write Data to CG RAM/DO RAM
1 0 0 1 0 0 1 0 0
Set DO RAM Address
0 0 1 1 0 0 0

0

0

IHITACHI

0

Write Data to CG RAM/DO RAM
1 0 0 1 0 0 1 1 0

Entry Mode Set
0 0 0 0 0

0

0

HITACHI
MICROCO
HITACHI
MICROCO

1

Write Data to CG RAM/DO RAM
1 0 0 1 0 0 1 1 0

Return Home
0 0 0

0

0

0

0

0

IHITACHI

I~ITACHI

Write Data to CG RAM/DO RAM
1 0 0 1 0 0 1 1. 1

1

ITAC H I
ICROCOM

0

Operation
Initialized. No display appears.

HITACHI
MICROCOM

Turns on display and cursor. All display
is in space mode because of initialization.
Sets mode to increment the address by
one and to shift the cursor to the right,
at the time of write, to the DD/CG
RAM. Display is not shifted.
Writes "W. The DO RAM has. already
been selected by initialization when the
power is turned on.
The cursor is incremented by one and
shifted to the right.
Writes "I".

Sets RAM address so that the cursor
may be positioned at the head of the
2nd line.
Writes "M".

Writes "0".

Sets mode for display shift at the time
of write.
Writes HM". Display is shifted to the
left.
The first and second lines' shift is
operated at the same time.
Returns both display and cursor to the
original position (address 0).

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

199

HD66780 (LCD - II A)

(

Power on

Wait more than 15 ms
after Vcc rises to 4.5 V

RS R/W DB7 DBe DBs DB4 DB3 DB2 DB, DBc

I BF cannot be checked before this instruction

0

Function set (Interface is 8 bits long)

0

0

0

1

1

*

*

*

*

Wait more than 4.1 ms

RS R/W DB7 DBe DB5 DB4 DB3 DB2 DB, DBc

0

0

0

0

1

1

*

*

*

*

I BF cannot be checked before this instruction
Function set (Interface is 8 bits long)

Wait more than 100 ps

RS R/W DB7 DBe DBs DB4 DB3 DB2 DB, DBc
0
0
0
1
1

0

*

*

*

*

IBF cannot be checked before this instruction
Function set (Interface is 8 bits long)
BF can be checked after the following instructions.
When BF is not checked, the waiting time between
instructions is longer than the execution instruction
time (see table 5).

RS R/W DB7 DBe DBs DB4 DB3 DB2 DB, DBc
0
0
0
1
1
F
N
0

* *

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

I/D

S

!

Initialization ends

0

Function set (Interface is 8 bits long.
Specifiy the number of display lines and character font.)
The number of display lines and character font cannot
be changed afterwards.
Display off
Display Clear
Entry Mode Set

Figure 38 Initialization by Instruction, Eight-Bit Interface

HITACHI
200

Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819' (415) 589-8300

HD66780 (LCD - II A)

(

Power on,

I

Wait more than 15 ms
after V cc rises to 4.5 V

I

1
RS R/W DB7 DBe DB5 DB4

I SF

0

Function set (Interface is 8 bits long)

0

0

0

1

1

I

I

Wait more than 4.1 ms

I

I SF ,cannot be checked before this instruction

RS R/W DB7 DBe DB5 DB4

0

0

0

0

cannot be checked before this instruction

1

1

1

Function set (Interface is 8 bits long)

I

Wait more than 100 J.ls

I
RS R/W DB7 DBe 'DB5 DB4

I SF cannot be checked before this instruction

0

Function set (Interface is 8 bits length)

0

0

0

1

1

II

I
RS R/W DB7 DBe DB5 DB4

0

0

0
0
0
0

0
0
0
0

0
0
0
0

0

0

1

0

0

0
F

0

0

N

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0

0

I/O

S

~

*

Initialization ends

*

SF can be checked after the following instructions.
When SF is not checked, the waiting time between
instructions is longer than the execution instruction
time (see table 5).
Function set (Set interface to be 4 bits long.)
Interface is 8 bits long.
Function set (Interface is 4 bits long. Specify the number of display lines and character font.)
The number of display lines and character font cannot
be changed afterwards.
Display off
Display Clear
Entry Mode Set

Figure 39 Initialization by Instruction, Four-Bit Interface

HITACHI
Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300

201

HD66780 (LCD- II A)
LCD-II and LCD-IIA
Table 13 shows the differences between the
LCD-II and LCA-IIA.
There are two types of multiplex waveforms
for LCD driving: A and B. A type, shown in

figure 40, is used for alternation in 1 frame,
and B type, shown in figure 41, for alternation
in 2 frames. B type has better display quality
in highly multiplexed drive.

Table 13 Functions Comparison between LCD-II and LCD-IIA
Item
Display RAM
(Maximum number of
display characters)
* Character generator ROM
(Kinds of characters)

Character generator RAM
(Number of characters)
LCD driving terminals
(Maximum number of
display characters/
unit)
Character font
(with a cursor)
Multiplexing duty ratio
* LCD driving voltage
1/4 bias
1/5 bias
* LCD driving waveform
*Bus timing
Instruction codes
Power-on reset circuit
Oscillator
(Frequency)
Interface
Package
Pin arrangement
Note:

LCD-II (HD44780)
80 bytes (80 characters)

LCD-IIA (HD66780)
Same as LCD-II

7200 bits
192 characters
5 x 7: 160 characters
5 x 10: 32 characters
64 bytes
(8 characters)
16 COMs
40 SEGs
(16 characters)

12000 bits
240 characters
5 x 10: 240 characters

Note

Same as LCD-II
Same as LCD-II

5x8 dots
5x11 dots
1/8.1/11.1/16
3.0 to 11 (v)

Same as LCD-II

4.6 to 11 (v)

3.0 to Vee (v)

A waveform
1. 1.5 MHz
11 instructions
Yes
Ceramic filter. Rf.
external clock
(250 kHz)
HD44100H
FP-80. FP-80A
Refer to p.98

B waveform
2 MHz
Same as LCD-II
Same as LCD-II
Same as LCD-II

3.0 to Vee (V)

Vec to V5 (V)
See figures 40.41

HD44100H or HD66100F
Same as LCD-II
Same as LCD-II

* indicates the modified items on LCD-IIA.

HITACHI
202

Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300

HD66780 (LCD - II A)

Common

I

,
I

Segmentl!-- - - - I

Common-segment

,,
""'1.0----,....----: 1 frame
1 frame
I

I

1

Figure 40 A-Type Waveforms (1/3 Duty Factor, 1/3 Bias)

Common

Segment

Common-segment

f1rv1rn-r1'
I
,
,

I
I
I

lrUlrlIUUUl
,

I

,

I

n
n n n
n n n
rUULfUUU[
,

,

1
1

I.

.,

.1

1 frame ,

Figure 41 B-Type Waveforms (1/3 Duty Factor, 1/3 Bias)

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

203

HD66780 (LCD- II A)
Character Pattern Development
Procedure
The numbers in the above figure correspond
to the following operations:
1. Determime the correspondence between
character codes and character patterns.
2. Create a listing indicating the correspondence between EPROM addresses and
data.
3. Program character patterns in the
EPROM.
4. Send the EPROM to Hitachi.

5. Hitachi performs computer processing
with the EPROM to create a character
pattern listing and sends it to the user.
6. If there is no problem in the character
pattern listing, Hitachi creates trial LSIs
and sends samples to the user. The user
evaluates the samples. When it is confirmed that character patterns are correctly writte.n, mass production of LSI is
started.

Hitachi

CD

Back to
start

®

Figure 42 Character Pattern Development Procedure

HITACHI
204

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

HD66780 (LCD - II A)
Character Pattern Program Method
The relationship between the EPROM
address and character pattern is shown in
table 14.

In order to evaluate ROM patterns, we recommend to use our LCD controller HD61830.
We also supply LCD control board (CB1026R).

Table 14 Character Data in EPROM
Data

EPROMAcklreea

(right sile up)

All

(LSB)

AID As

As

A7

As

0

0

A6

0

A4,

A3

A2

AI

Ao

0

0

0

0

0

0

0

0

0

0

0

00

01

02

03

04

06

06 07

0

0

0

0

0

0

0

a

0

0
000

o

0

o

0

o
o

0

o
o

Character code
Notes: 1.
2.
3.
4.

Line code

EPROM Data 06-07 are invalid
Data uOu must be programed at 11th line (cursor position).
Data at 12-1 6th line are invalid
Data at 00 locate at the left side of screen. (The, relation between the bit number and position
is reversed, compared with H044780. )
.

HITACHI
Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane,CA 94005-1819 • (415) 589-8300

205

HD66780 (LCD - II A)
Handling Unused Character Patterns

a. When unused character patterns are
not programed

1. EPROM data outside the character pattern area

If an unused character code is written
in the LCD-II DO RAM, all dots are lit.

Ignored by the character generator ROM
for display operation so it can be 0 or 1.

No programming for a character pattern is equivalent to all bits lit. (This is
because the EPROM is filled with 1
when the EPROM is erased.)

2. EPROM data in CG RAM area
Ignored by the character generator ROM
for display operation so it can be 0 or 1.

b. Program 0 for unused character patterns

3. EPROM data used when the user does not
use any LCD-II character pattern

Nothing is displayed even if unused
character codes are written in LCD-II
DO RAM. (It is equivalent to space.)

Handled in one of the two ways explained
below. Select one of two ways according
to the user application.

Absolute Maximum Ratings
Item

Symbol

RatIng

power Supply Voltage

Vee

-0.3 to +7.0

V

Input Voltage

VT

-0.3 to Vee + 0.3

V

Operating Temperatura

Topr

-20 to +75

"C

Storage Temperature

Tstg

-55 to +125

·c

Unit

Notes: 1.lf LSls are used above the absolute maximum ratings, they may be permanently destroyed.
USing them within electrical characteristic limits is strongly recommended for normal operation. Use beyond these conditions will cause malfunction and poor reliability.
2.AII voltage values are referred to GND = 0 V.
3. Applies to V1 to V5. The relation: Vee~V1 ~V3~V4~V5~GND must be maintained.
(high
to
low)

HITACHI
206

Hitachi America, Ltd. - Hitachi Plaza - 2000 Sierra Point Pkwy. - Brisbane, CA 94005-1819- (415) 589-8300

HD66780 (LCD - II A)
Electrical Characteristics
DC Electrical Characteristics (Vee
Item
Input High Voltage (1)

Input Low Voltage (1)

=5V

Symbol Min
VIH'

Input High Voltage (2)

VIL1
VIH2

Input Low Voltage (2)

VIL2

Output High Voltage (1 )(TTL)

VOH'

± 10%, Ta
Typ

2.3

Max
Vee
0.6

Vee -1.0 -

Vee
1.0

2.4
0.4

= -20 to
Unit
V

(12)

V

-loH = 0.205 mA

(3)

V

10L

= 1.6 mA

(3)

V

-loH = 0.04 mA

(4)

10L = 0.04 mA
±Id = 0.05 mA
to each COM Pin
±Id = 0.05 mA
to each SEG Pin
Vin = 0 to Vee

(4)

Output Low Voltage (2)(CMOS)

VOL2

Driver On Resistance (COM)

ReoM

O.1Vee V
20
kCl

Driver On Resistance (SEG)

RSEG

30

kCl

125

250

,..A

0.55

0.8

mA

0.35

0.6

mA

-1

-Ip

50

Power Supply Current (1)

Power Supply Current (2)

lce2

(12)

V

VOH2

Pull up MOS Current

(2)

V

VOL1

Input Leakage Current

Note
(2)

Output High Voltage (2)(CMOS)

-

Test Condition

V

Output Low Voltage (1 )(TTL)

O.9Vee

+75 ·C)

,..A

Vee = 5 V
Ceramic filter oscillation
Vee = 5 V,
fose = 250 kHz
Rf oscillation,
External clock operation
Vee = 5 V,
fose = fcp = 270 kHz

(10)
(10)
(5)
(6)

(6)
(11 )

.~~~~~.~~.~~?~~_.~::>J
IIIII!I/!

~

Ie Ii!

;!

1! t:! ;: gJJBllOJm!L

Each bit data of display RAM corresponds to on/off
state of each dot of a liquid crystal display to provide
more flexible than character display.
The HD441 02CH is produced by the CMOS process.
Therefore, the combination of HD441 02CH with a
CMOS microcontrollercan complete portable batterydriven unit ntilizing the liquid crystal display's low
power dissipation.
The combination of HD44102CH with the row
(common) driver HD44103CH facilitates dot matrix
liquid crystal graphic display system configuration.

HITACHI
216

Hitachi America, Ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300

HD44102CH
Features
•
•
•

•
•
•

•

•
•
•
•

Dot matrix liquid crystal graphic display
column driver incorporating display RAM
Interfaces with 4-bit or 8-bit MPU
RAM data directly displayed by internal display
RAM
RAM bit data 1: On
RAM bit data 0: Off
Display RAM capacity: 50 x 8 x 4 (1600 bits)
Internal liquid crystal display driver circuit
(segment output): 50 segment signal drivers
Duty factor (can be controlled by external input
waveform)
- Selectable duty factors: 1/8, 1/12, 1/16,
1/24, 1/32
Wide range of instruction functions
- Display Data Read/Write, Display On/Off,
Set Address, Set Display
- Start Page, Set Up/Down, Read Status
Low power dissipation
Power supplies: Vee 5 V ± \0%, VEE 0 to -5 V
CMOS process
80-pin flat plastic package

HITACHI
Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

217

HD44102CH
Block Diagram

>~
~

>~
~

f
'(3

::Iii

~

!!!.

~
'(3

~

!!!.

0

I

'(3

.c

ilr

I:!

!
0

~

i

0

3

i0

,
i;

0

ii
co

...xx

~
N

):

HITACHI
218

Hitachi America, Ltd,' Hitachi Plaza' 2000 Sierra Point Pkwy,' Brisbane, CA 94005-1819' (415) 589-8300

HD44102CH
Absolute Maximum Ratings
Item

Symbol

Value

Unit

Note

-0.3 to +7.0

V

1

VEE

Vep-13.5 to Vep + 0.3

V

Vu
VT2

-0.3 to Vep + 0.3

V

1,2

VEE -0.3 to Vep + 0.3

V

3

Operating temperature

Tep!

-20 to +75

·C

Storage temperature

TBIg

-55 to +125

·C

Supply voltage (1)

Vep

Supply voltage (2)
Input voltage (1)
Input voltage (2)

Notes: 1. Referenced to GND = O.
2. Applied to input terminals (except V1, V2, V3, and V4), and I/O common terminals.
3. Applied to terminals V1. V2. V3, and V4.

Electrical Characteristics
(Vee

= +5 V ±10%, GND = 0 V. VEE =0 to -5.5 V. Ta =-20 to 75 °C) (Note4)

Item

Symbol

Min

Input high voltage (CMOS)

VIHC

0.7xVep

-

Vile
VIIff

-

V
Vee
0.3 x Vee V

5

0
2.0

Vee
+0.8

6

0

-

V

V

6

Output high voltage

VILT
VOH

V

IOH=-250~A

7

Output low voltage

VOL

- +0.4

V

IOL" +1.6 mA

7

Vi-Xj ON resistance

RON

-

7.5

kn

VEE =-5 V ± 10%,

1

~A

VIN .. Vep to GND

8

2

~
kHz

VIN = Vep to VEE
,1, ,2 frequency

9

~

felk = 200 kHz frame .. 11

Input low voltage (CMOS)
Input high voltage (TTL)
Input low voltage (TTL)

Typ Max

+3.5

Unit Test condition

Note
5

Load current 100 ~A
Input leakage current (1)

IILl

-1

Input leakage current (2)

111.2

-2

Operating frequency

feLK

25

Dissipation current (1)

lepl

-

- 100
280

10

65 Hz during display
Dissipation current (2)

lep2

-

500

~

Access cycle 1 MHz

12

at access

HITACHI
Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300

219

HD44102CH
Notes: 4.
5.
6.
7.
8.

Specified within this range unless otherwise noted.
Applied to M, FRM, CL, BS, RST,cjl1, cjl2.
Applied to CS1 to CS3, E, 0/1, RIW and DBO to DB7.
Applied to DBa to DB7.
Applied to input terminals, M, FRM,CL, BS, RST, cjl1, cjl2, CS1 to CS3, E, 0/1 and RIW,
and· 1/0 common terminals DBa to DB7 at high impedance.
9. Applied to V1, V2, V3, and V4.
10. cjl1 and cjl2 AC characteristics.
Symbol

Min

Typ

Max

Unit

Duty factor

Duty

20

25

%

Fall time

~
t,

30
100
100

Rise time
Phase difference time

t12

Phase difference time

~1

0.8
0.8

ns

J.lS
I1s

40

Tl + Th

il

ns

J.lS

l

O.7Vec
cjl1 O.5Vec
O.3Vec

.

112

1I t ,

cjl2

felK " -11i
T

O.7Vec
O.5Vee
O.3Vec

O.5Vec

1+ h

DuTY= TT11i xI00(%)
1+ h

t,

It

11. Measured by Vee terminal at no output load, at 1/32 dury factor, and frame frequency.
of 65 Hz, in checker pattern display. Access from the CPU is stopped.
12. Measured by Vec terminal at no output load, 1/32 duty factor and frame frequency of
65 Hz.

HITACHI
220

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

HD44102CH
Interface AC Characteristics
Typ

Item

Symbol

Min

Ecycle time

'eye

1000

E high level width

PWEH

E low level width

PWEL

E rise time
E fall time

\
\

Address setup time

Max

Unit

Note

ns

13,14

450

ns

13,14

450

ns

13,14

25

ns

13,14

25

ns

13,14

tAS

140

ns

13,14

Address hold time

tAH

10

ns

13,14

Data setup time

tosw

200

ns

13

ns

14,15

Data delay time

tOOR

Data hold time at write

tOHW

10

ns

13

tDHR

20

ns

14

Data hold time at read

320

Notes:

13. At CPU write

14. At CPU read

+----~~====~
E

E

R/W

R/W

CS1-CS:!

CS1-GS3

011

011

OBo-DB7

OBo-OB7

15. DBO to DB7 load circuits

:rrl
1

Test Point

Cr

R

RL .. 2.4 kn
RL
02

03
04

R

=11 kn

C

=130 pF (including jig capacitance)

Diodes 0 1 to 0 4 are all 182074 

HITACHI
Hitachi America, Ltd. - Hitachi Plaza - 2000 Sierra Point Pkwy. - Brisbane, CA 94005-1819- (415) 589-8300

221

HD44102CH
Notes: 16. Display off at initial power up.
.
The HD441 02CH can be placed in the display off state by setting terminal RST to low
at initial power up.
No instruction other than the Read Status can be accepted while the RST is at the low
level.
Symbol

Min

Reset time

..

1.0

Rise time

t,

Typ

Max

Unit

200

ns

Pin Description .
Pin
Name

Pin
Number

110

Function

Y1- Y50

50

o

liquid crystal display drive output.
Relationship among output level, M and display data (0):

CS1-CS33

r

M

J

0

.fT1..Lf11.Lf

Output
t.evel

I_ VI +vs+ V2+ V4~1

o

Chip select

CS1

CS2

CS3 State

L
L
L
L
H
H
H
H

L
L
H
H·
L
L
H
H

L
H
L
H
[
H
L
H

Non-selected
Non-selected
Non-selected
Selected readlwrite enable
Selected write enable onl~
Selected write enable onl~
Selected write enable on~
Selected readlwrite enable

Enable

E

At write (RIW - Low): Data of OBO to OB7 is latched at the fall of E.
At read (RIW • High): Data appears at DBO to DB7 while E is at high
level.

HITACHI
222

Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

HD44102CH
Pin Name

Pin
Number

1/0

Function

RIW

ReadlWrite
RIW = High: Data appears at DBO to DB7 and can be read
by the CPU when E = high and CS2, CS3 = high.
RIW = Low: DBO to DB7 can accept input when CS2, CS3 = high or
CS1 =high.

011

Data/Instruction
011 = High: Indicates that the data of DBO to DB7 is display data.
011 = Low:
Indicates that the data of DBO to DB7 is display control
data.

DBO-DB7

8

I/O

Data bus, three-state I/O common terminal
E

RfW

H

H
L

CS3

State of DBO to DB7

H

H

Output state

H

H

High impedance

CS1 CS2

Input state,

H

L
Others

High impedance

M

Signal to convert liquid crystal display drive output to AC.

CL

Display synchronous signal
At the rise of CL signal, the liquid crystal display drive signal
corresponding to display data appears.

FRM

Display synchronous signal (frame signal)
This signal presets the 5-bit display line counter and
synchronizes a common signal with the frame timing when
the FRM signal becomes high.

$1,$2

2

2-phaseclock signal for internal operation
The $1 and $ 2 clocks are used to perform the operations
(input/output of display data and execution of instructions)
other than display.

RST

Reset signal
The display disappears and Y address counter is set in the up
counter state by setting the RST Signal to low level. After
releasing reset, the display off state and up mode is held until
the state is changed by the instruction.

BS

Bus select signal
BS =Low:
DBO to DB7 operate for 8-bit length.
BS =High: DB4 to DB7 are valid for 4-bit length only.
8-bit data is accessed twice in the high and low order.

V1, V2,
V3, V4

4

Power supply for liquid crystal display drive
V1 and V2: Selection voltage
V3 and V4: Non-selection voltage

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300

223

HD44102CH
, Pin Name

Pin
Number
3

110

Function
Power supply
Vco-GND:
Power supply for intemallogic
Vco-Vee:

Power supply for liquid crystal display drive circuit logic

Function of Each Block
Interface Logic
The HD441 02CH can use the data bus in 4-bit or 8-bit
word length to enable intetface to a4-bit or 8-bit CPU.
1.

The data bus uses the high order 4 bits (DB4 to
DB7). First, the high order 4 bits (DB4 to DB7
in 8-bit data length) are transferred and then the
low order 4 bits (DBO to DB3 in 8-bit data
length).

=

4 bit mode (BS High)
8-bit data is transferred twice for every 4 bits
through the data bus when the BS signal is high.

-Jrr-,. . . _____---'r~

Busy Flag _ _ _ _ _ _

011

------------------~------~

RIW

E

OBe

Busy flag
check
(Status
read)

Address
high order
write

Address
low order
write

Busy flag

check

Data high
order write

Data low
order write

(Stetus
read)

Figure 1 4-Bit Mode Timing

Note:

Execute instructions other than status read in 4-bit length each. The busy flag is set at the
fall ofthe second E signal. The status read is executed once. After the execution ofthe status
read, the first 4 bits are considered the high order 4 bits. Therefore, if the busy flag is checked after the transfer of the high order 4 bits, retransfer data from the higher order bits. No
busy check is required in the transfer between the high and low order bits.

HITACHI
224

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

HD44102CH
2.
8-bit mode (BS = Low)
If the BS signal is low, the 8 data bus lines (DBO to
DB7) are used for data transfer.
DB7: MSB (Most significant bit)
DBO: LSB (Least significant bit)
For AC timing, refer to note 12 to note 15 of"Electrical
Characteristics".
Input Register
8-bit data is written into this register by the CPU. The
instruction and display data are distinguished by the
8-bit data and D/I signal and then a given operation is
performed. Data is received at the fall of the E signal
when the CS is in the select state and R/W is in write
state.
Output Register
The output register holds the data read from the
display data RAM. After display data is read, the
display data at the address now indicated is set in this
output register. After that, the address is increased or
decreased by 1. Therefore, when an address is set, the
correct data doesn't appear at the read of the first
display data. The data at a specified address appears
at the second read of data (figure 2).

x, Y Address Counter
The X, Y address counter holds an address forreadingl
writing display data RAM. An address is set in it by
the instruction. The Y address register is composed of .
a 50-bit up/down counter. The address is increased or
decreased by 1 by the read/write operation of display
data. The up/down mode can be determined by the
instruction or RST signal. The Y address register
counts by looping the values of0 to 49. The X address
register has no count function.
Display On/Off Flip/Flop
This f1ip/flop is set to on/off state by the instruction or
RST signal. In the off state, the latch of display data
RAM output is held reset and the display data output
is set to O. Therefore, display disappears. In the on
state, the display data appears according to the data in
the RAM and is displayed. The display data in the
RAM is independent of the display on/off.
UplDown FIip/Flop
This flip/flop determines the .count mode of the Y
address counter. In the up mode, the Y address
register is increased by 1. 0 fQllows 49. In the down
mode, the register is decreased by 1. 0 is followed by
49.

011 _ _ _ _ _ _ _ _ _ _--'

R!W
E
Address _ _ _ _ _ _ _...J.._ _ _-.:;N=--_ _......J._ _-..!N!.:±~1!...._._ _L_..!N!.:±~2=_~_

Output

Data at address N

register
Busy
OBO- OB7 1 check

Write
1 Busy
1address N check

Read data 1 Busy
check

1(dummy)

I Data at address N ±1

IRead data 1 Busy 'I Data read
check
address
at
address N
N±1

Figure 2 Data Output

HITACHI
Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

225

HD44102CH
Display Page Register

Z Address Counter

The display page register holds the 2-bit data that
indicates a display start page. This value is preset to
the high order 2 bits of the Z address counter by the
FRM signal. This value indicates the value of the
display RAM page displayed at the top of the screen.

The Z address counter is a 5-bit counter that counts up
at the fall of CL signal and generates an address for
outputting the display data synchronized with the
common signal. 0 is preset to the low order 3 bits and
a display start page to the high order 2 bits by the FRM
signal.

Busy Flag
Latch
After an instruction other than status read is accepted,
the busy flag is set during its effective period, and
reset when the instruction is not effective (figure 3).
The value can be read out on DB7 by the status read
instruction.
The HD441 02CH cannot accept any other instructions
than the status read in the busy state. Make sure the
busy flag is reset before issuing an instruction.

The display data from the display data RAM is
latched at the rise of CL signal.

Liquid Crystal Driver Circuit
Each of 50 driver circuits is a multiplex circuit
composed of 4 CMOS switches. The combination of
display data from latchs and the M signal causes one
of the 4 liquid crystal driver levels, VI, V2, V3 and
V4 to be output.

---'n. . .______

E __
Busy

-----f~TBUSY~
J...<1i
<.1F~ = BUSY = F~
F~

is

~1. ~2

frequency (half of HD441 03CH oscillation frequency)

Figure 3 Busy Flag

HITACHI
226

Hitachi America, Ltd. - Hitachi Plaza -2000 Sierra Point Pkwy. - Brisbane, CA 94005-1819· (415) 589-8300

HD44102CH
Display RAM

(Yaddress)

Figure 4 Relationship between Data in RAM and Display
(Display start page 0, 1/32 duty)

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

227

HD44102CH
Display Control Instructions
ReadlWrite Display Data
MSB

RIW 011

Set XlY Address

DB

DB

MSB

LSB

LSB

RIW 011

7 6 5 4 3 2 1 0

(Display data)

0

0

0 0

Read (CPU +- HD44102CH)

0

o~

0 1 Binary numbers of Q-49

(Display data)

0

0

0

0

7 6 5 4 3 2 1 0

0

Write (CPU

~HD44102CH)

0
'---,--i

X address
(page)

Sends or receives data to or from the address of the
display RAM specified in advance. However, a
dummy read may be required for reading display data.
Refer to the description of the output register in
Function of Each Block.

Yaddress

o 1 ....

DB

LSB

RIW 011

7 6 5 4 3 2 1 0

0

0

0 0 1 1

0

0

0

o

0

o

1

Display on

1 1 1 0 0 0

Display off

Turns the display on/off. RAM data is not affected.

48 49

L
00 M
L
01 M
10 L
M
11 L
M

Display On/OtT
MSB

Yaddress
(address)

Page 0
Page 1
Page 2
Page 3
Display Data RAM

Display Start Page
MSB

DB

LSB

RIW 011

7 6 5 4 3 2 1 0

0

0

o0

0

0

o

0

0

1 0 1 1 1 1 1 0

0

0

1 1 1 1 1 1 1 0
-,......

1 1 1 1 0
Refer to figure 5 (a)

1 1 1 1 1 1 0

Refer to figure 5 (b)
Refer to figure 5 (e)
Display start page

......

Refer to figure 5 (d)

HITACHI
228

Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300

HD44102CH
Specifies the RAM page displayed at the top of the
screen. Display is as shown in figure 4. When the
display duty factor is more than'I/32 (For example, 1/

24, 1/16), display begins at a page specified by the
display start page only by the number of lines.

Start page .. page 0
(a)

A

Page 0

A
N

N

B

Page 1

B

C

Page 2

C

0

Page 3

0

Displayed up to
here when display
duty is 11N.

(N-B. 12. 16.24.32)

Display Data RAM

Uquid Crystal Screen

Start page .. page 1
(b)

A

Page 0

B

B

Page 1

C

C

Page 2

0

0

Page 3

A

N

Display Data RAM

Uquid Crystal Screen

Start page .. page 2

(e)

A

Page 0

B

Page 1

C

Page 2

0

Page 3
Display Data RAM

~~

C
N

0
A
B

Liquid Crystal Screen

Start page .. page 3

(d)

A

Page 0

B

Page 1

C

Page 2

0

Page 3
Display Data RAM

r

~~

0
N

A
B

C
Liquid Crystal Screen

Figure 5 Display Start Page

HITACHI
Hitachi America. Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane. CA 94005-1819 • (415) 589-8300

229

HD44102CH
Up/DownSet
MSB
RIW 011

DB

LSB

7 6 5 4 3 2 1 0
1 Up mode

0

0

0 0

0

0

0 011101 0 Down mode

0

Sets Y address register in the up/down counter

mode.

Status Read
MSB

DB

LSB

RlWO/176543210

o

B UOROOOO
U P F E
S I F S
Y 0 I E

OOT

~

N

-'--_--+.

L . I_ _ _ _

Goes to 1 when RST is in the reset state
(Busy also goes to 1).
Goes to 0 when RST is in the operating state.
Goes to 1 in the display off state.
Goes to 0 on the display on state.
Goes to 1 when address counter is in the up mode.
Goes to oWhen address cOunter Is In the dOwn
mode.
.
Goes to 1 while all other instructions are being
executed.
.
While 1, none of the other instructions are
accepted.

HITACHI
230

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

HD44102CH
Connection Between LCD Drivers (Example of 1/32 Duty Factor)

h I

CR R C

Xl h -

i To liquid

! crystal display
Xso
SHL
MIS
FS
OSl
OS2
OS3

HD44103CH
(Master)

f-!--

To liquid crystal display

~Vcc

r---

GNO

r---------------.r
Yl

Yso

FRM

I

FRM
M
OL DR 4>1 «1>2 CL

M

I

HD44102CH
No.1

CL

~II

4>1
4>2

OJ" OJ" OJ"

OL OR «1>1 «1>2 FRM M
CL
Xl

Ope"

To liquid crystal display

....-

r---------------.r

i To liquid

! crystal display

HD44103CH
(Slave)

X12
SHL
MIS
FS
OSl
OS2
OS:!

f-!--

Vee

Yl
L....,.

Yso

FRM

GNO
M
CL

HD44102CH
No.2

4>1

CR R C

I ~"O~"

«1>2

Vee

Figure 6 1/32 Duty Factor Connection Example

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

231

HD44102CH
Interface to CPU·
I. Example of connection to HD6800
In the decoder given in this example, the addresses of
HD44102CH in the address space of HD6800 are:
Read/write of display data: $'FFFF
Write of display instruction: $'FFFE'
$'FFFE'
Read of status:

Tbus, the HD441 02CH can be controlled by reading!
writing data at these addresses.

oecoder
At5
to
At
VMA

II

.s;- CSt

r--"\

r---'

Vee .....

Ao

011

RIW

HD6800

RIW

HD44102CH

,2
Do
to
07

CS2
CS3

E

I

I

OBo

to
OB7

£VCC

RES

b.

RST

FIgUre 7 Example of Connection to HD6800 Series

HITACHI
232

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819. (415) 589-8300

HD44102CH
2. Example of connection to H06801
• The H0680 I is setto mode 5. PI O-Pl4 are used as
output ports, and P30-P37 are used as the data bus.
• The 74LSl54 is a4-to-l6 decoder that decodes 4
bits ofPIO-Pl3 to select the chips.
• Therefore, the HD44102CH can be controlled by
selecting the chips through PI O-Pl3 and specifying
the 0/1 signal through Pl4 in advance, and later

conducting memory read or write for external
memory space $0100 to $OIFF of H06801. The
lOS signal is output to SCI, and the R/W signal is
output to SC2.
• For further details on H06800 and H06801, refer
to their manuals.

74LS154
P10
P11
P12
P13
(lOS) SC1

Yo
A
Y1 r.B
I
C
Y;s
D
G1G2

.

r!-

I

.s;- CS1
~

-

f J.
R/W

(R/W) SC2

HD6801

D/I

P14
E
P30
P31

(Data Bus)

!

P37

CS2
CS3

HD44102CH
No.1

E

;
I

!

DBo
DB1
Dk7

Figure 8 Example of Connection to HD6801

HITACHI
Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

233

HD44102CH
Connection to Liquid Crystal Display

r-:::C
Xl
0..:-

S

G)

~T-gj
~:::a:

L..-o-

l

X2

;

1
2

i,
I

~ xm~

!

:::c

Liquid crystal display panel

i 20
Xl

~g?X2
TIII
l
~Ci5

32 x 150 dots

21
,22

'!

O-XI2Lk.
:::c
'32

l-----------l

1------------1

. 1------------1

Y 1 ________ Y50

Y 1 ________ Y50

Y 1 ________ Y50

HD44102CH
No.1

HD44102CH
No.2

HD44102CH
No.3

Figure 9 Example of Connection to 1132 Duty Factor, I·Screen Display

Xl
r- :::c
0..:-

.-S!l(/) X2I
C5 e XIS
:::c

r- ...,.111

-

X16

1
2

i

Liquid crystal display panel
16 x 100 dots

15
16

1------------1

1------------1

Y 1 ________ Y50

Y 1 ________ Y50

HD44102CH
No.1

HD44102CH
No.2

Figure 10 Example of Connection to 1/16 Duty Factor, l-Screen Display

HITACHI
234

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

HD44102CH

HD44102CH
No.6
Vl",-""""V50

1------------1

HD44102CH
-........................... HD44102CH
No.7
No. 10
Vl ...-........V.,

C

·e

'i5

1=

u;

f
I--

...

'"

(J)

g>
II..

x"' .... I--

--

CD

C>

:3"

I

x

ii

i8~

~·5... I--

OO:::J

I

>
>'"

I

C\I

.,...

.e...

:!l!
·0

c5

>-

0!601

1

(.)

II:
(.)

II:

L
I

I

I

I

>~~
8C w
>~~

II

..J

C

HITACHI
240

Hitachi America, ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

HD44103CH
Absolute Maximum Ratings
Item

Symbol

Rated Value

Unit

Note

Supply voltage (1)

Vee

-0.3 to +7.0

V

Supply voltage (2)

Vee -13.5 to Vee + 0.3

V

Terminal voltage (1)

Vee
VT1

-0.3 to Vee + 0.3

V

1.2

Terminal voltage (2)

VT2

Vee -0.3 to Vee + 0.3

V

3

Operating temperature

Topr

-20 to +75

Storage temperature

Tstg

-55 to +125

°C
°C

Notes: 1.
2.
3.
4.

4

Referenced to GND = O.
Applied to input terminals (except V1, V2, V5. and VS) and 1/0 common terminals.
Applied to terminals V1. V2. V5. and VS.
Connect a protection resistor of 220 n ± 5% to VEE power supply in series.

Electrical Characteristics
(Vee

= +5 V ±10%, GND = 0 V, VEE = 0 to -5.5 V, Ta = -20 to +75 °C) (NoteS)

Item

Symbol Min

Input high voltage

V,H

Input low voltage
Output high voltage

V,L
VOH

Output low voltage

VOL

0.4

Vi· Xj on resistance

RON

500

J.lA

V,N " Vee to GND

TypMax

-

Note
6

Vee
0.3 x Vee V

0
Vee -0.4

Unit Test condition
V

0.7 x Vee

6
IOH =-400J.lA

7

V

IOL =+400 J,1A

7

Q

Vee =-5 ± 10%,

V

Load current ±150 J.lA
Input leakage current (1)

I'Ll

-1
-2

Input leakage current (2)

111.2

Shift frequency

f8FT

Oscillation frequency

fose

2
50

300

430 560

8

VIti = Vrs. to VEE
kHz In slave mode

9

kHz R, =68 k.Q ± 2%

11

J.lA

10

C,= 10 pF±5%
External clock. operating

f""

50

External clock duty

Duty

45

External clock rise time

t...,

560

kHz

55

%

12

50

ns

12
12

frequency
50

External clock fall time

t,."

50

ns

Dissipation power (master)

PWl
Pw2

4.4

mW CR oscillation", 430 kHz 13

1.1

mW Frame frequency -70 Hz14

Dissipation power (slave)

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819' (415) 589-8300

241

HD44103CH
Notes: 5.
S.
7.
8.

Specified within this range unless otherwise noted.
Applied to CR. FS. OS1 to OS3. M. SHL. MIS. CL. DR. and OL.
Applied to DL. DR. M. FRM. CL. ~1 and ~2.
Applied to input terminals CR. FS. OS 1 to OS3. SHL and M/S. and I/O common terminals
.DL. DR. M. and CL at high impedance.
9. Applied to V1. V2. V5. and VS.
10. Shift operation timing

CL

Min

0.7Vcc
0.3Vec

DLJDR

0.7Vec
0.3Vec

t,

Typ

Max

Unit

tsu

5

~

tH

5

~

t,

100

ns

~

100

ns

t,

11. Relationship between oscillation frequency and RIC,

CR:~.
~

The values of R, and C, are typical values.
The oscillation frequency varies with the mounting
condition. Adjust oscillation frequency to the
required value.

~

~ec=Sv
'~
Ta =.+2S·C

"'

SOO
400
300

fose 200

......... "'-..
.......

"--

Cf= 6pF

Cf-1 OpF

(kHz) 100

so

100

150 (kG)

HITACHI
242

Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300

HD44103CH
12.

Th--l.....DUTY-

t IqI

Th + T.

tlcp

open=[
Open
R
Extemal Clock _

CR

13. Measured by Vco terminal at output non-load of f\ - 68 kn ± 2% and C, = 1OpF ± 5%, 11
32 duty factor in the master mode. Input terminals must be fixed at VcC or GND while
measuring.
14. Measured by Vco terminal at output non-load, 1/32 duty factor, frame frequency of 70 Hz
in the slave mode. Input terminals must be fixed at Vco or GND while measuring.

Pin Description
Pin Name

Pin
Number

I/O

Function

X1-X20

20

0

Liquid crystal display driver output.
RelationShi~ amjna o~ut Irel, ~' an}data (0) in shift register:

D~

CR,R,C

M

3

Oscillator

I/O

R,

C,

fAlCR--

Signal for converting liquid crystal display driver signal into AC.
Master: Output terminal
Slave: Input terminal

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

243

HD44103CH
Pin Name

Pin
Number

1/0

Function

CL

1/0

Shift register shift CiOCK.
Master: Output terminal
Slave: Input terminal

FRM

o

Frame signal, Display synchronous signal.

DS1-DS3

Display duty ratio select.

3

Display
Duty Ratio

1/24

1112

1/16

1/8

DS1

L

H L H

L

H L H
L H H

L

DS2

L

L H H

DS3

L

L

H

H H H

FS
FS

SHL

1132

L

L

Frequency select.
The relationship between the frame frequency fFRM and the
oscillation frequency fosc is as follows:

FS

DL,DR

X

2

I/O

=High:
= Low:

fosc
fosc

=6144 X fFPM

= 3072 X fFRM

(1)
(2)

Example (1)

When FS = high, adjust Rf and Cfso that the
oscillation frequency is approx.
430 kHz if the frame frequency is 70 Hz.

Example (2)

When FS = low, adjust Rf and Cf so that the
oscillation is approx. 215 kHz, in order to obtain the
same display waveforms as example 1. When
compared with example 1, the power dissipation is
reduced because of operation at lower frequency.
However, the operating clocks $1 and $2 supplied to
the column driver have lower frequencies. Therefore,
the access time of the column driver HD44102CH
becomes longer.

Data I/O terminals of bidirectional shift register.
Shift direction select of bidirectional shift register.

SHL

Shift Direction

H

DL~DR

L

DL +- DR

HITACHI
244

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415)589-8300

HD44103CH
Pin Name

Pin
Number

I/O

Function
Master/slave select.

MIS

MIS = High: Master mode
The oscillator and timing generation circuit supply display
timing signals to the display system. Each of I/O common
terminals, DL, DR, M, and CL is placed in the output state.
M/S = Low: Slave mode
The timing generation circuit stops operating. The oscillator is
not required. Connect terminal CR to Vcc.
Open terminals C and R. One (determined by SHL) of DL and
DR, and terminals M and CI are placed in the input state.
Connect M, CL and one of DL and DR of the master to the
respective terminals.
Connect FD, DS1, DS2, and DS3 to Vcc'
When display duty ratio is 1/8, 1/12, or 1/16, one HD44103CH is
required. Use it in the master mode.
When display duty ratio is 1/24 or 1/32, two HD44103CHs are
required. Use the one in the master mode to drive common signals 1
to 20, and the other in the slave mode to drive common signals 21 to
24 (32).
cp1,cp2

2

0

Operating clock output terminals for HD441 02CH.
The frequencies of cp1 and cp2 become half of oscillation frequency.

V1, V2,
V5,V6

4

Vee
GND
VEe

3

Liquid crystal display driver level power supply.
V1 and V2: Selected level
V5 and V6: Non-selected level
Power supply.
Vcc-GND:Power supply for internal logic
Vcc-Vee: Power supply for driver circuit logiC

HITACHI
Hitachi America, Ltd. • Hitachi Plaza. 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300

245

HD44103CH
Block Functions

Bidirectional Shift Register

Oscillator

20-bit bidirectional shift register. The shift direction
is determined by SHL. The data input from DL or DR
performs a shift operation at the rise of shift clock CL.

The oscillator is a CR oscillator attached to an
oscillation resistor Rf ans osckIlation capacity Cf.
The oscillation frequency varies with the values of Rf
and Cf and the mounting conditions. Referto Electrical
Characteristics (Note 10) to make proper adjustment.
Timing Genaration Circuit
The timing generation circuit divides the signals from
the oscillator and generates display timing signals (M,
CL, and FRM) and operating clock (~I and ~2) for
HD44102CH according to the display duty ratio set
by DS I to DS3. In the slave mode, this block stops
operating. It is meaningless to set FS, DS1 to DS3.
However, connect them to Vcc to prevent floating
current.

Liquid Crystal Display Driver Circuit
Each of 20 driver circuits is a multiplex circuit
composed of four CMOS switches. The combination
of the data from the shift register with M signal allows
one of the four liquid crystal display driver levels V I,
V2, V5, and V6 to be transferred to the outputterminals.

Applications
Refer to the applications of the HD441 02CH.

HITACHI
246

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

HD44105H-----------(Dot Matrix Liquid Crystal Graphic
Display Common Driver)
Features

Description
The HD4410SH is a common signal driver for
l.CD dot matrix graphic display systems. It
generates the timing signals required for display
with its internal oscillator and supplies them to the
column driver (HD44102H) to control display, also
automatically scanning the common signals of the
liquid crystal according to the display duty cycle.
It can select 7 types of display duty cycle 118, 1/12,
1/16, 1/24,1/32, 1/48, and 1/64. It provides 32
driver output lines and the impedance is low (1 len
max) enough to drive a large screen.

Dot matrix graphic display common driver
including the timing generation circuit
Internal oscillator (Oscillation frequency is
selectable by attaching an oscillation resistor
and an oscillation capacitor)
Generates display timing signals
32-bit bidirectional shift register for generating
common signals
32 liquid crystal driver circuits with low
impedance
Selectable display duty ratio: 1/8, 1/12, 1/16,
1/24, 1/32, 1/48, 1/64
Low power dissipation
Power supplies:
V cc =+5 V ± 10%
VEE =0 to-5.5 V
CMOS process
6O-pin flat plastic package

Absolute Maximum Rating (Ta =25°C)
Item

Symbol

Ratings

Unit

Supply voltage (1)

Vee

..,0.3 to +7.0

V

Supply voltage (2)

VEE

Vee -13.5 to Vee +0.3

V

Terminal voltage (1)

Vn

-0.3 to Vee +0.3

V

1,2

Terminal voltage (2)

VT2

VEE -0.3 to Vee +0.3

V

3

Operating temperature

Topr

-20 to +75

Storage temperature

Tstg

-55 to +125

·C
·C

Notes: 1.
2.
3.

Note

Referred to GND • 0 V.
Applied to input terminals (except for V1, V2, V5, and V6) and 110 common terminals.
Applied to terminals V1, V2, V5, and V6. Connect a protection resistor of 47 n ± 10% to each
terminal in series.

HITACHI
Hitachi America; Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

247

HD44105H
Pin Arrangement

~ ~

N
....0 )(
.... )(....

)(

'It
.... )(
.... )(
.... )(....cg. )(
".... )(....CD
(I)

II)

)(

X19
X7
X6

X20
X21

X5

X22

X4

X23

X3
X2
X1

X24
X25
X26

DL

X27
X28
X29

FS2
DS1

X30
X31

DS2
DS3
0

X32
V6
V5

R
OR
STB

V2
V1
VEE

...J

:J:

en

~

....

N

....

::IE

ff

0

~

(.)

Z

::IE

~

...J

a: (.)
Z

(.) 0

(Top View)

Note:

NCs show unused terminals.
Don't connect any lines to
them in using this LSI.

HITACHI
248

Hitachi America, Ltd.· Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

-=

'0

~

::J:
;::;:
A>

...o

n

=-

>

~

3a>

~

a

::!.

n

V1V2V5V6

1»
!:;

x;

·

?-

::J:

ff
=-3!
~

·
8

I

Vee
GND

VEE

N

CD'

iii l:

~~
a n
"l:
~-

·

aI
::!.
en
C'
A>
:::I

".
I

I

DL

-

I

f

Log'

1

r-

2

-

Bidirectional shift
register

30

31

32

_. Log'

DR

SHL

-

Oscillator

Timing generation circuit
~

$I>

C')

>

....
~

I

liquid crystal display
driver circuits

-

0

en

-

-

32 output terminals

X2 ----

B-

M
CL

FRM

<0

R.R~

0

~

<0

STB

At

.~.

Cf

C
MIS

FS1 FS2

DS2
DS1 DS3

,1,2

•

~

::z:

~
(J1

0

~
~

....

::z:

co

<0

clo
c,,)

.....
o(J"I

o·
N

<0

II

HD44105H
Electrical Characteristics
(V CC = +5 V ± 10%, GND

(Note 4)

=0 V, VEE =0 to -5.5 V, Ta =-20 to +75°C)

Item

Symbol Min

Input high voltage

VIH

Typ

0.7 x Vee

Input low voltage
»

VOH

Output high voltage

5

0.3xVee V

5

Vee -

=.

3

~
~-

a

t:

!=l-

·
~

:J:

•

DS3
FSl
FS2

~

<=>
<=>
<=>
en

~m
SHI.

CD-

-.

""tJ
0

a
""tJ

~
n

:x::

f---j-I
I
I
I
I
I
I
I

I
I
I
I

~

8
.-

I
I
I
I

~

:x::

f

COM1

I

X32

~

F

R
CL M Ms1 J2

Vee

(470)

:::l_

en

D>
::::J
~

~V3

C")

»

CO

~V6

<=>
<=>

--w,....V1

""'=>"
UI

COM32
SEG1 ------- SEG50 --------------------- SEG201·----- SEG250

M
FRM R D R D
81
I I S B
82EWITO

~V4

c::r

t

I
I

1

f
V<4

Cl

~V5

CD

=
c

32 Ie 250 Dots
1132 Duty Cycle

I

Y1 --------- Y50
V1
HD44102CH
(1)
~

~V2

J:

ig

1

MIS

J:

·-

~

w

DS2

G~

D>

8·

I
I
I

V5

Vee- Vee
Vcc- DSl

Dr
N

1
R
X1

V1
VI

aJriS-.-i.. ~

=.

""tJ

iiJ

1 I'
C CR

~

Vee

~D

cO:
~ B S0S2
D

73as

,

i

Y1 --------- Y50
V1
HD44102CH
VI
(5)
va

V4
Vee

Va

-Cl
..--- M
FRM R D R D
D
81
I I S B ~ B S0S2
r82EWITO
73as

If

=
~

'-'2
cC:

V1

VI
113
V4

.~
Va!

=2...

=
""'"
=>
N

n

=

~

~
~

(20 n)

CO

:!:::

~
U1

CD

%
(.0)

0
0

I

VEE

{

To CUP

AIW
011
RBT
D~

,

DB7

CS1

•

CS5

~

~
~

o

en

~

U1
U1

::r:

HD61100A----~­

(LCD Driver with SO-Channel Output)
Features

Description

Liquid crystal display driver with serial/parallel
conversion function
Intemalliquid crystal display driver: 80 drivers
Display duty cycle
Any duty cycle is selectable according to
combination of transfer clock and latch clock
Data transfer rate: 2.5 MHz max.
Power supply
Vee: +5 V ± 10% (Internal logic)
VEE: 0 to -1.5 V (Liquid crystal display
driver circuit)
Liquid crystal driving level: 17.0 V max.
CMOS process
loo-pin flat plastic package (FP-l00)

The HD61100A is a driver LSI for liquid crystal
display systems. It receives serial display data from
a display control LSI, HD61830, etc., and generates
liquid crystal driving signals.
It has liquid crystal driving outputs which

correspond to internal 80-bit flip/flops. Both static
drive and dynamic drive are possible according to
the combination of transfer clock frequency and
latch clock frequency.

Absolute Maximum Ratings
Item

Symbol

Value

Unit

Note

Supply voltage (1)

Vee

-0.3to +7.0

V

2

Supply voltage (2)

VEE

Vee - 19.0 to Vee + 0.3

V

Terminal voltage (1)

Vn

- 0.3 to Vee + 0.3

V

2,3

Terminal voltage (2)

VT2

VEE - 0.3 to Vee + 0.3

V

4

Operating temperature

Topr

-20to+75

·C

Storage temperature

Tstg

-55to+125

·C

Notes:

1.

2.
3.
4.

LSls may be permanently destroyed if used beyond the absolute maximum ratings. In ordinary
operation, it is desirable to use them within the limits of electrical characteristics, because
using it beyond these conditions may cause malfunction and poor reliability.
All voltage values are referred to GND - 0 V.
Applies to input terminals, FCS, SHL, CL1, CL2, DL, DR, E, and M.
Applies to Vll, Vl R, V2l, V2R, V3l, VaR, V4l and V4R. Must maintain:

Vee ~ Vll- V1R ~ V3l- V3R ~ V4l" V4R ~ V2l- V2R ~ VEE.

Connect a protection resistor of 15 n

± 10% to each terminals in series.

HITACHI
256

Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300

HD61100A
Pin Arrangement

Y5l
Y52
Y53
Y54

YSS
Y56
Y57
Y58
Y59
Y60
Y6l
Y62
Y63
Y64
Y65

Y66
Y67
Y68
Y69

Y70
Y7l
Y72
Y73

Y74
Y75
Y76
Y77

Y78
Y79
Y80

(Top view)

HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

257

HD61100A
Electrical Characteristics
DC Characteristics
(V cc = 5 V ± 10%, GND = 0 V, VEE = 0 to -11.5 V, Ta = -20 to +7S°C)
Item

Symbol

Min

Max

Unit Test Condition Note

Input high voltage

VIH

0.7xVcc

Vcc

V

Input low voltage

VIL

0

0.3xVcc

V

Vcc-o.4

Typ

1

Output high voltage

VOH

V

1ai--400~

2

Output low voltage

Va..

0.4

V

1a..-+400~

2

Driver resistance

Ret.!

7.5

kG

VEE--10V,
Load current-

3

+1

~

VIN- Oto Vcc

+2

~

VIN - VEE to Vcc

!GND

1.0

rnA

5

lEE

0.1

rnA

5

100~

Input leakage current

hL1

.,.1

Input leakage current

hL2

-2

Dissipation current (1)
. Dissipation current (2)
Notes: 1.
2.
3.
4.
5.

4

Applies to CL1, CL2, FCS, SHL, E, M, DL, and DR.
Applies to DL, DR, and CAR.
Applies to Y1-Y80.
Applies to V1L, V1R, V2L, V2R, V31. V3R, V4L, and V4R.
Specified when display data is transferred under following conditions:
CL2 frequency fCP2 • 2.5 MHz (data transfer rate)
CL1 frequency fCP1 • 4.48 kHz (data latch frequency)
M frequency fM - 30 Hz (frame frequencyl2)
Specified when VIH - Vcc, VIL • GND and no load on outputs.
!GND: currents between Vcc and GND.
lEE: currents between Vcc and VEE.

HITACHI
258

Hitachi America,ltd." Hitachi Plaza· 2000 Sierra Point flkwy.· Brisbane, CA 94005-1819· (415) 589-8300

HD61100A
AC Characteristics
(V cc = 5 V ± 10%. GND = 0 V, VEE = 0 to -11.5 V, Ta = -20 to +75°C)
Typ

Max

Symbol Min

Clock cycle time

tevc

400

ns

Clock high level width

tCWH

150

ns

Clock low level width

tcW\.

150

ns

Clock setup time

tSCl

100

ns

Clock hold time

tHCl

100

ns

Clock riselfall time

tCt

Clock phase different time

tCl

100

ns

Data setup time

tosu

80

ns

Data hold time

ns

30

ns

tOH

100'

Esetuptime

tESU

200

Output delay time

tOCAR

300

ns

M phase difference time

tcM

300

ns

Note:

1.

Test Condition Note

Unit

Item

ns

The following load circuits are connected for specification:
test point

0

}30 PF
CL1-----"""l
CL2

DL(DR)

HITACHI
Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819' (415) 589-8300

259

1::1

I\)

01

o

6f
(')

=-

V1L v2L V3L V4L

~
CD

Y80

Y1 Y2

V1RV2RV3RV4R

U~uid ~rystal display

M

it

::J:
;:;:

driver CIrcUit

~

=-

-0

.

~

CL1

I\)

-,

3:

o

8
(J)



5"

~:

II

~;

:~
;

,HI., HI..
:1

'

1

2

l

1

So_

>t

1

GND
VCC

VEE

rL
1

20

C")

»

~

E

II

~

~

<0

~
~
U1

ex>

~ o FCS eo Test input ,.---, I I I I I : " I t I -CAR I ~ L------------------------COntrol circuit S en I» o o ~ ~. ~ ~ '"....o ::J: ~ ~ » HD61100A Block Function Liquid Crystal Display Driver Circuit Selector The combination of the data from the latch circuit 2 and M signal causes one of the 4 liquid crystal driver levels, VI, V2, V3 I'...d V4 to be output The selector decodes output signals from the counter and generates latch clock.l to +20. Wher the LSI is not active, +1 to .20 are not generated, so the data at latch circuit 1 is stored even if input data (DL, DR) changes. 80·bit Latch Circuit 2 The data from latch circuit 1 is latched at the fall of CLI and output to liquid crystal display driver circuit SIP Seria1/ParaIlel conversion circuit which converts 1bit data into 4-bit data. When SID.. is "L" level, data from DL is converted into 4-bit data and transferred to the latch circuit I. In this case, don't connect any lines to terminal DR which is in the output status. When SID.. is "H" level, input data from terminal DR without connecting any lines to terminal DL. 80·bit Latch Circuit 1 Control Circuit Controls operation: When E-F/F (enable F/F) indicates "1", Stp conversion is started by inputting "L" level to E. After 8O-bit data has been all converted, CAR output turns into "L" level and E-F/F is reset to "0", and consequently the conversion stops. E-F/F is RS flip-flop circuit which gives priority to SET over RESET and is set at "H" level of CLI. Counter consists of 7 bits, and the output signals of upper 5 bits are transferred to the selector. CAR signal turns into "H" level at the rise of CLI and the number of bit which can be Stp-converted increases by connecting CAR terminal with E terminal of the next HD61100A. The 4-bit data is latched at +1 to +20 and output to latch circuit 2. When SID.. is "L" level, the data from DL are latched one in order of 1-.2-+3 ... -+ 80 of each latch. When SID.. is "H" level, they are latched in a reverse order (80-+79-+78 ... -+1). HITACHI Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300 261 HD61100A Terminal Functions Description Terminal Name Number of ,Terminals Vee GND VEE 1 1 1 8 Vll-V4L V1R-V4R 1/0 Connected to Power supply Power supply Functions Vet; - GND: Power supply for intemallogic Vet; - VeE: Power supply for LCD drive circuit Power supply for liquid crystal drive. V1L (V1R), V2l (V2R): Selection level V3l (V3R), V4L (V4R): Non-selection level Power supplies connected with V1L and V1R (V2l & V2R, V3l & V3R, V4L & V4R) should have the same voltages. Y1-Y80 80 0 LCD Liquid crystal driver outputs. Selects one of the 4 levels, V1, V2, V3, and V4. Relation among output level, M and display data (D) is as follows: 01 D~ M Controller Switch signal to convert liquid crystal drive waveform into AC. CL1 Controller Latch clock of display data (fall edge trigger). Liquid crystal driver signals corresponding to the display data are output synchronized with the fall of CL1. CL2 Controller Shift clock of display data (D). Falling edge trigger. DL,DR 2 110 Controller Input of serial display data (D). (D) Liquid Crystal Driver Output Liquid Crystal Display 1 (High) Selection level On o(Low) Non-selection level Off VO status of DL and DR terminals depends on SHL input level. SHL DL High 0 Low DR 0 HITACHI 262 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61100A Terminal Functions Description (cont) Terminal Name Number of Terminals 110 SHL Connected to Functions Vee or GND Selects a shift direction of serial data. When the serial data (D) is input in order of 01 -+ ... -+ 080, the relations between the data (D) and output Yare as follows. SHL Y1 Y2 Y3 Y80 Low 01 D2 D3 080 High 080 079 078 01 When SHL is low, data is input from the terminal DL. No lines should be connected to the terminal DR, as it is in the output state. When SHL is high, the relation between DL and DR reverses. o FCS GNDorthe terminal OAR" of the HD61100A Controls the SIP conversion. The operation stops when E is high, and the SIP conversion starts when E is low. Input terminalE of the HD61100A Used for cascade connection with the HD611 OOA to increase the number of bits which can be SIP converted. GND Input terminal for test. Connect to GND. Operation of the HD61100A The following describes an LCD panel with 64 x 240 dots on which characters are displayed with 1/64 duty cycle dynamic drive. Figure 1 is an example of liquid crystal display and connection to HD61100A's. Figure 2 is a time chart of HD61100A I/O signals. HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 263 5 HD61100A COM 1 COM2 COM3 - 1, 1 1, 2 2, 1 2, 2 3, 1 3, 2 I I I ------I I I 1, 80 1, 81 1, 82 2, 80 2, 81 2, 82 3, 80 I I I I I I I I I I I I ------------ 1, 160 1, 240 1, 161 2, 2, 160 161 -------- :-2, -------- 3,240 240 --------i--- i--- I I I I I I I I I I I I I I I I I I LCD-PANEL (64 x 240 Dots) COM63 -- COM64 I I I 63, I I I - 63, 1 2 64, 1 64, 2 I I I I I I I I I I I I 63, 80 64, 80 64, 81 64, 82 ----Y1 Y2 Y80 :;j ~ -J a:1~ Iwcnu..::Eooooo ill - M CL1 ..... CL2 DATE 64, 160 I I I --------- -63, 240 --------- -64, 240 ----- ----- HD61100A (No.1) :f ~ ---------- I I I ! w a.. 0 Y1 Y80 Y2 Y1 HD61100A (No.2) :f ~ :;j ~ -J a: I~ Iwcnu..::EOOooo 11 ! w a.. 0 Y80 HD61100A (No.3) -J ~ .- ~ a:la: 1W~u..::E~OiSo(§ 11 !! ww 00 a.. a.. Cascade three HD611 OOAs. Input data to the terminal DL of No.1, No 2, and No.3. Connect Eof No.1 to GND. Don't connect any lines to CAR of No.3. Connect common signal terminals (COM1-cQM64) to X1-X64 of common driver HD61103A. (m,n) in LCD panel is the address corresponding to each dot. Figure 1 LCD driver with 64 x 140 dots HITACHI 264 Hitachi America, Ltd. 0 Hitachi Plaza 0 2000 Sierra Point Pkwy. 0 Brisbane, CA 94005-1819 0 (415) 589-8300 i ::r: ;::;: M CL1 s:» C'> ~ » - · ::r: s= C'> ~ ~ 3! cICi" s:» · I: en :: '0\ ...=' &l :I -0 - ~. i ::;;0 - [ :I 0- s:» ~ n » ..,. 0 CD 0 '!:. ~ CD ~ ~ ~ 01 00 CD do w 0 0 Y1-Y80 N iil 50 !I I I ri- III I I I I nr.-- I C II I I I I I =l r+- I I I I '" I\J · II I Timing chart of horizontal direction I I I : _________________________________________________________ J I I ..r1 ~ ""I 0 0 0 ~ I CAR(No. 1)...J I E(No. 2) I CAR(No. 2)...J : E(No. 3) I CAR(No.3)J I !:::;: !"- ii;- I L.fu1.nrt---.IlJ1.11.JLI1Ju---.Il.I111..fUl.h---JUUUUl..fl.. .?' ':" I CL2 I I ~ DL::l!;OO;OO;OC·---~---~---~ 3 ~ n· ~. I --J Ji ... = = ~ 000) i" M~ CL1 CL2 Dl ""I I I x::=: --- ::=::x 1 Frame I M~ I Y1(No.1) ~ Y2(No.1) ~ I I I _____________________________ _ I I, I I I t:: x Timing chart of vertical direction : j----- I CL1 lIUU\h. I * ~ I (") =- ~ IL..- --- --11 n - --- -.rtnruU1JUU1 --- .1lUU1J1JUUU1- -- J1IUU1IUUt ----- _-----~-----~--- ~~-- ~-----1mI: I ;" IIQ D:I .fUUL ---- -.JUUU1.fU1IL I Y1-Y80 ~ ~ : ------ 60,1 61.1 62,1 63.1 64,1 ------ 60. 61.2 62.2 $3. 64,2 I I I I I ------~ ------~ :x:x:x:x:x:x:x: Y80(No.1)~ Y80(No.3)~ I r I 1~ ~ ~ I I Timing chart for the example of connection in figure 1. DL input (m, n) is the data that corresponds to each address (m, n) of LCD panel. Timing chart of liquid crystal display driver output ::r:: t::I en ..... ..... o o » I\J 0> 01 II HD61100A Application Examples An Example 01 128 x 240 Dot Liquid Crystal Display (1/64 Duty Cycle) / r - - - - - - - - 240 dots Yl-YBO HD61100A No.1 5!U) ... ~ IWU)~:E5 J,J,J, DATE (1) M clea:~ Yl-Yeo Yl-Y80 HD61100A No.2 HD61100A No.3 .... fj ... ~ a:1~ ,wiu.:E5 cleo ' ,J,,J, f "- 1 5! U) ... IWU)~:E5 ' ,1,,1, ~ I a:1~ cleo 1 Cll CL2 DATE (2) fff IW 5! fj :E U) u. ! d d cl25l~0 ! ,f8f IW ~ ~ :E d ~ cllSl~ ff IW 5! fj :E U) U. d ~ cllSl~0 HD61100A No.4 HD61100A No.5 HD61100A No.6 yeo-Yl YBO-Yl Y80-Yl Figure 3 128 x 240 Dot Liquid Crystal Display The liquid crystal panel (figure 3) is divided into upper and lower parts. These two parts are driven separately. HD6l100As No. 1 to No.3 drive the upper half. Serial data, which are input from the DATA(l) terminal, appear at YI -+ Yz -+ -- Yso terminal of No.1, then at YI -+ Y2 -+ -- Yso of No.2 and then at YI -+ Yz -+ -- Yso of No.3 in the order ip which they were input (in the case of SHL =low). HD61100As No.4 to No.6 drive the lower half. Serial data, which are input from the DATA(2) terminal, appear at Yso -+ Y79 -+ -- YI of No.4, then at Y80 -+ Y79 -+ -- YI of No. 5 and then Yso -+ Y79 -+ -- YI of No. 6 in the order in which they were input (in the case of SHL =high). As shown in this example, PC board for display divided into upper and lower half can be easily designed by using SHL terminal effectively. HITACHI 266 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61100A Example of 64 x 150 Dot Liquid Crystal Display (1164 Duty Cycle, SHL = Low) 150 dots Liquid crystal display panel Y1 I I _ _ _ _ Y80 64 dots I Y1 ______ Y70 HD61100A No.1 HD61100A No.2 Figure 4 64 x 150 Dot Liquid Crystal Display 4-bit parallel process is used in this LSI to lessen the power dissipation. Thus, the sum of the dots in horizontal direction should be multiple of 4. If not, as this example (figure 4), consideration is needed for input signals (figure 5). CL1 DATE -Ili....-___________----InL-_---.;_ J00(! ""'1-------Eff8CtIVe data--------t·I~~~myr Figure 5 Input Dots, 150 Horizontal Dots As the sum of dots in lateral direction is ISO, 2 more dummy data bits are transferred (152 =4 x 38). Dummy data, which is output from Y71 and Y72 of No.2, can be either 0 or 1 because these terminals do not connect with the liquid crystal display panel. HITACHI Hitachi America, Ltd. - Hitachi Plaza - 2000 Sierra Point Pkwy. - Brisbane, CA 94005-1819- (415) 589-8300 ------------------------------------ -- 267 HD61102~----------(Dot Matrix Liquid Crystal Graphic Display Column Driver) Features Descri ption HD61102 is a column (segment) driver for dot matrix liquid crystal graphic display systems. It stores the display data transferred from a 8-bit micro-controller in internal display RAM and generates dot matrix liquid crystal driving signals. Each data bit of display RAM corresponds to the on/off state of a dot of the liquid crystal display. As it is internally equipped with 64 output drivers for display, it is available for liquid crystal graphic displays with many dots. The HD61102, which is produced by the CMOS process, can complete a portable battery drive equipment in combination with a CMOS microcontroller, utilizing the liquid crystal display's low power dissipation. Moreover it can facilitate dot matrix liquid crystal graphic display system configuration in combination with the row (common) driver HD61103A. Dot matrix liquid crystal graphic display column driver incorporating display RAM RAM data direct display by internal display RAM RAM bit data I: On RAM bit data 0: Off Internal display RAM address counter: Preset, increment Display RAM capacity: 512 bytes (4096 bits) 8-bitparallelinterface Internal liquid crystal display driver circuit: 64 Display duty: Combination of frame control signal and data latch synchronization signal make it possible to select static or optional duty cycle Wide range of instruction function: Display Data ReadIWrite, Display On/Off, Set Address, Set Display Start Line, Read Status Lower power dissipation: during display 2mW max Power supply: Vee: +5 V ± 10% VEE: 0 V 10-10 V Liquid crystal display driving level: 15.5 V max CMOS process lOO-pin flat plastic package (FP-lOO) HITACHI 268 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61102 Pin Arrangement ADC M vee V4R V3R V2R V1R VEE2 Y64 Y63 Y62 Y61 Y60 Y59 Y58 Y57 Y56 Y55 Y54 Y53 Y52 Y51 Y50 Y49 Y48 Y47 Y46 Y45 Y44 Y43 (Top view) HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 269 HD61102 Absolute Maximum Ratings Item Symboi Value Unit Note Supply voltage Vee -0.3to +7.0 V 2 VEE Vcc -16.5to Vee + 0.3 V 3 Terminal voltage (1) VTl VEE - 0.3 to Vee + 0.3 V 4 Terminal voltage (2) VT2 -{).3to Vcc+ 0.3 V 2,5 Operating temperature Topr -20 to +75 °C Storage temperature Tstg ~5to+125 °C Notes: 1. 2. 3. 4. LSls may be destroyed if they are used beyond the absolute maximum ratings. In ordinary operation, it is desirable to use them within the recommended operating conditions. Use beyond these conditions may cause malfunction and poor reliability. All voltage values are referenced to GND - 0 V. Apply the same supply voltage to VEEl and VEE2. Applies to V1L, V2L, V3L, V4L, V1R, V2R, V3R, and V4R. Maintain Vcc~V1L- V1R~V3L- V3R~V4L- V4R~V2L- V2R~VEE 5. Applies to M, FRM,CL, RST, ADC, +1, +2, CS1, CS2, CS3, E, ANI, Oil, ADC, and DBO-DB7. HITACHI 270 Hitachi America, Ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300 HD61102 Electrical Characteristics (GND = 0 V, Vee = 4.5 to 5.5 V, VEE = 0 to -lOV, Ta = -20 to +75°C) Limit Item Symbol Min Input high voltage VIHC VIHT Input low voltage VILC Output high voltage Output low voltage Va.. Input leakage current IlL -1.0 +1.0 High impedance off input current ITSL -5.0 Liquid crystal supply leakage current ILSL -2.0 Driver on resistance Ra.! Dissipation current Notes: 1. 2. 3. 4. 5. 6. 7. 8. Typ Max Unit 0.7 xVcc Vcc V 2.0 VCC V 0 0.3xVcc V V1LT 0 0.8 V Va-t 2.4 V Test Condition Note 2 2 IOH =-205 J.LA 3 V IOL-1.6mA 3 4 +5.0 J.LA J.LA Vin .. GND-Vcc Vin .. GND-Vcc 5 +2.0 J.LA Vin .. VEE-Vee 6 7.5 Kn VCC- VEE=15V ±ILOAD =0.1 mA 7 ICC(1) 100 8 500 J.LA J.LA During display Icc(2) During Access access cycle .. 1 MHz 8 0.4 Applies to M, FRM, CL, RST, ADC, fj)1, and fj)2. Applies to CS1, CS2, CS3, E, ANI, OIl, and DBO-DB7. Applies to DBa-DB7. Applies to terminals except for DBa-DB7. Applies to DBa-DB7 at high impedance. Applies to V1 L-V4L and V1 R-V4R. Applies to Y1-Y64. Specified when liquid crystal display is in 1/64 duty. feu<" 250 kHz (fj)1 and fj)2 frequency) Operation frequency: Frame frequency: fM" 70 Hz (FRM frequency) Specified in the state of Output terminal: Not loaded Input level: VIH .. Vee (V) VIL-GND(V) Measured at Vee terminal H.TACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 271 HD61102 Interface AC Characteristics MPU Interface (GND = 0 V, Vee = 4.5 to 5.5 V, VEE = 0 to -10 V, Ta = -20 to +75°C) Item Symbol Min Unit Note Ecycletime tcvc 1000 ns 1,2 E high level width PWEH 450 ns 1,2 E low level width PWEL 450 ns 1,2 E rise time tr 25 ns 1,2 E fall time tf 25 ns 1,2 Address setup time tAS 140 ns 1,2 Address hold time tAH 10 ns 1,2 Data setup time tosw toOR 200 ns Data delay time Data hold time (Write) toHw 10 ns Data hold time (Read) toHR 20 ns Typ Max 320 ns 2,3 2 Notes: 1. tCYC E PWEH PWEL . t, tAH tr RtW CS1-CS3 011 2.0 V 2.0 V O.SV tosw DBO-DB7 2.0 V O.SV Figure 1 CPU Write Timing HITACHI 272 Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300 HD61102 2. ~----------tc~y£c==========~ v----- PWEL---~---PWEH ---<>-110 E RIW 0.8V CS1-CS3 2.0 V D/I 0.8 V DBO-DB7 0.4V Figure 2 3. CPU 'Read Timing DBO-DB7: load circuit RL-2.4kO D1 Test point RL R -11kO C =130 pF (including jig capacitance) °1 R D2 D3 D4 Diodes D1 to D4 are alllS2074 ®. HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 273 HD61102 Clock Timing (GND V, Vee = .. =4.5 to 5.5 V, VEE = 0 to -IOV, Ta = -20 to +7S°C) Limit Max Unit Te.t Condition 20 ~s Fig. 3 625 ns Fig. 3 tWl+2 625 ns fig. 3 Item Symbol Min +1, t2 cycle time tcyc 2.5 +1 low level width tWl+1 +2 low level width Typ +1 high level width tWJi+1 1875 ns Fig. 3 +2 high level width tWH+2 1875 ns Fig. 3 +1-+2 phase difference 1012 625 ns Fig. 3 +2.....1 phase difference t021 625 ns Fig. 3 +1, ~ rise time tr 150 ns Fig. 3 +1, +2 fall time tf 150 ns Fig. 3 81 tWl.81 t012 t021 82 tWH82 Figure 3 External Clock Waveform HITACHI 274 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61102 Display Control Timing (GND = 0 V, Vee = 4.5 to 5.5 V, VEE =0 to -IOV, Ta = -20 to +7S0C) Limit Item Symbol Min FRM delay time toFRM Mdelaytime tOM -2 -2 CL low level width tWlCL CL high level width tWHCL CL Max Unit +2 ILS Fig. 4 +2 ILS FIQ.4 35 ILs FIQ.4 35 ILs FIQ.4 Typ Teat Condition O. 7Vcc \~---I" FRM M Figure 4 Display Control Signal Waveform HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 275 HD61102 Block Diagram a: a: a: .... a: C\lC')'It -1-1-1-1 .... C\lC')'It »» »» -------------- L.......-..t .... 1C\l1 C') I M L~uid ~ry~al display driver circuit ~ .... 1C\l1C')1 ~ fal;1;l- C\I'1/,t- Display date latch eo eo eo 'It eo r- ...CD < a: III III ~ "'0 :E i 01 ~ I!! "'0 "2 >X ::l 8 :t. eo III III I!! ~ ~ .!12 0 \be - L ~ 1: ... 1\1 CD UiUi N >"0 '--- ~~c .- 1\1 CD 0= co co ----- ---- ----- ------ 01 CL FRM $ c ::l 8 GND - VEE1 - VEE2 - I-- ... .:1: 'E ADC .--- :r ---------- - -jttt iQ f..._z 00 T Instruction register ~ 8 ~ CD , Input register Output register all cot .51 110 buffer 1 1 1 1______ - - - - - C') f--- - co- --- ~ flag i : """-- ______1 ~ - ~ - HITACHI 276 Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819' (415) 589-8300 HD61102 Terminal Functions Connected Terminal Number of Functions Terminals 1/0 to Name 2 Vee. GND Power supply Power supply for intemallogic. Recommended voltage is GND-aV Vee.-+ 5V ±10% VEE1 VEE2 2 Power supply 8 Power supply Power supply for liquid crystal display drive circuit. Recommended power supply voltage is Vee. -15 to GND. Connect the same power supply to VEE1 and VEE2' VEE1 and VEE2 are not connected to each other in the LSI. V1L. V2L, V3L, V4L, V1R V2R V3R V4R Power supply for liquid crystal display drive. Apply the voltage specified for the liquid crystals within the limit of VEE through Vee.. VIL (V1 R). V2L (V2R): V3L (V3R), V4L (V4R): Selection level Non-selection level Power supplies connected with V1 L and V1 R (V2L & V2R, V3L & V3R. V4L & V4R) should have the same voltages. 3 MPU Chip selection. Data can be input or output when the terminals are in the following conditions: E 1 MPU Terminal name CSl CS2 CS3 Condition L L H Enable At write(RIW - low): At read(RIW • high): MPU Data of DBa to DB7 is latched at the fall of E. Data appears at DBa to DB7 while E is high. ReadlWrite. RIW .. High: Data appears at DBO to DB7 and can be read by the CPU when E • high, CS1. CS2 • low and CS3 • high. RIW.Low: DBa to DB7 accepted at fall of E when OSl, ~-low and CS3 - high. 011 MPU Data/Instruction. 011 • High: 011. Low: VcoG-lD Indicates that the data of DBa to DB7 is display data. Indicates that the data of DBa to DB7 is display control data Address control signal determine the relation between Y address of display RAM and terminals from which the data is output. ADC - High: Y1-$O, Y64-$63 ADC - Low: Y64-$O, Y1~63 HITACHI Hitachi America,Ltd:· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane. CA 94005-1819. (415) 589-8300 --- ~---------.--.--.----- ..---.------- 277 HD61102 Terminal Functions (cont) Terminal Number of Connected Name Terminals 110 to Functions DBO-OB7 8 M 110 MPU I HD61103A Data bus, three-state 110 common terminal. Switch signal to convert liquid crystal drive waveform into AC. FRM HD61103A Display synchronous signal (frame signal). Presets the 6-bit display line counter and synchronizes a common signal with the frame timing when the FRM signal becomes high. a.. HD61103A Synchronous signal to latch display data. The rising edge of the CL signal increments the display output address counter and latches the display data. HD61103A 2-phase clock signal for internal operation. The ,1 and ,2 clocks are used to perform operations (110 of display data and execution of instructions) other than display. Y1-Y64 64 o Liquid crystal display Liquid crystal display column (segment) drive output. These pins output light on level when 1 is in the display RAM, and light off level when 0 is in it. Relation among output level, M, and display data (D) is as follows: M---l1 Or o JTl..QJTl...Q.J CPU or external CR The following registers can be initialized by setting the RST signal to low level: 1. On/off register set to 0 (display off) 2. Display start line register set to line 0 (displays from line 0) After releasing reset, this condition can be changed only by instruction. o NC Note: 2 Open Output terminal for test. Normally, don't connect any lines to this terminal. Open Unused terminals. Don't connect any lines to these terminals. 1 corresponds to high level in positive logic. HITACHI 278 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61102 Function of Each Block Interface Control 1. I/O butter Data is transferred through 8 data buses (DBO-OB7). OB7: MSB (most significant bit) OBO: LSB (least significant bit) Oata can neither be input nor output unless CST to CS3 are in the active mode. Therefore, when CST to CS3 are not in active mode it is useless to switch the signals of input terminals except RST and ADC, that is namely, the internal state is maintained and no instruction excutes. Besides, pay attention to and AOC which operate irrespectively by CST to CS3. m 2. Register Both input register and output register are provided to interface to MPU whose the speed is different from that of internal operation. The selection of these registers depend on the combination of R/W and 0/1 signals. a. Input Register The input register is used to store data temporarily before writing it into display data RAM. The data from MPU is written into input register, then into display data RAM automatically by internal operation. Table 1 DII R/W When CST to CS3 are in the active mode and 0/1 and R/W select the input register as shown in table 1, data is latched at the fall of E signal. b. Output Register The output register is used to store data temporarily that is read from display data RAM. To read out the data from the output register, CST to CS3 should be in the active mode and both 0/1 and R/W should be 1. The read display data ins1ruction outputs data stored in the output register while E is high. Then, at the fall of E, the display data at the indicated address is latched into the output register and the address is increased by 1. The c::ontents in the output register is rewritten with READ instruction, while is held with address set inS1ruction, etc. Therefore, the data of the specified address cannot be output with the read display data instruction right after the address is set, but can be output at the second read of data. That is to say, one dummy read is necessary. Figure 5 shows the CPU read timing. Register Selection Operation Reads data out of output register as internal operation (display data RAM -+ output register). o o o Writes data into input register as internal operation (input register -+ display data RAM). Busy check. Read of status data. o Instruction. HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300 279 HD61102 + C\I Z III III + "tJ z iCD III o.. III as! ..... 1ij"tJ + ! ciz i 1ij ~1 :J.c ~ a:lc.l C III 1ij1ll + Z z ill'l! CD1ij:g III III a::"tJII'IZ !"tJ i 1ij ~~ til 1ij ~-6 c >: E itllE CD 1ij :J a::"tJ:2. Z ~~ :J.c a:lc.l III CD ~ -E'l::J ~iz >-t$ III CD :J.c a:I c.l ,.... C§ ~ W III III ! "tJ o.. -CD :J_ o...!a ~ 05~ ... Figure 5 a:I ~ a:I C CPU Read Timing Busy Flag Busy flag =1 indicates that HD61102 is operating and no instructions except status read can be accepted (figure 6). The value of the busy flag is read out on DB7 by the Status Read instruction. Make sure that the busy flag is reset (0) before issuing an instruction. HITACHI 280 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61102 1 E I I Busy flag ~ TBusy -I 11f ClK ~ T Busy ~31 f elK f ClK is "1, ,,2 frequency Figure 6 Busy Flag Display On/Orr Flip/Flop X, Y Address Counter The display On/off flip/flop selects one of two states, on state and off state of segments YI to Y64. In on state, the display data corresponding to that in RAM is output to the segments. On the other hand, the display data at all segments disappear in off state independent of the data in RAM. It is controlled by the display on/off instruction. RST signal = 0 sets the segments in off state. The status of the flip/flop is output to DB5 by the status read instruction. The display On/off instruction does not influence data in RAM. To control display data latch by this flip/flop, CI signal (display synchronous signal) should be input correctly. A 9-bit counter that designates addresses of internal display data RAM. X address counter (upper 3 bits) and Y address counter (lower 6 bits) should be set by the respective instructions. 2. Y address counter An address is set by instruction and it is increased by I automatically by display data R/W operations. The Y address counter loops the values of 0 to 63 to count. Display Start Line Register Display Data RAM The register specifies a line in RAM that corresponds to the top line of the LCD panel, when displaying contents in display data RAM on the LCD panel. It is used for scrolling the screen. Dot data for display is stored in this RAM. I-bit data of this RAM corresponds to light on (data = I) and light off (data = 0) of I dot in the display panel. The correspondence between Y addresses of RAM and segment PINs can be reversed by ADC signal. 6-bit display start line information is written into this register by the display start line set instruction, with high level of FRM signal signalling the start of the display, the information in this register is transferred to the Z address counter, which controls the display address, and the Z address counter is 1. X address counter Ordinary register with no count functions. An . address is set by instruction. As the ADC signal controls the Y address counter, a reverse of the signal during the operation causes malfunction and destruction of the contents of register and data of RAM. Therefore, always connect ADC pin to Vee or GND when using. preset Figure 7 shows the relations between Y address of RAM and segment pins in the cases of ADC = 1 and ADC = 0 (display start line = 0, 1/64 duty cycle). HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819' (415) 589-8300 281 HD61,102 --COM1 --COM2 --COM3 --COM4 --COM5 --COM6 --COM7 -l-W-t-"'--- COMS -+-W-t--- COM9 LCD display pattem :r:OJ--- COM62 -l-W-t--- COM63 .J...,.l.,.JW-- COM64 (HD61103A X1) (HD61103A X2) (HD61103A X3) (HD61103AX4) (HD61103A X5) (HD61103A X6) (HD61103A X7) (HD61103A XS) (HD61103A X9) (HD61103A X62) (HD61103A X63) (HD61103A X64) ---I HD611 02 Pin Name I Line 0 Line 1 Line 2 DBO(LSB) -1!.IJ!.l.!~.t-tI---- DB1 UQ.WU---tin---- DB2 --~!..j.l.~W-iii"1--- DB3 -lLl.2+!-t-Ll1ii11--- DB4 ..:CU.Q..UW1-H-H-Hr-:--- DB5 -CU.Q..U;W1-H-H-H-h-- DB6 -CU.Q..U;!.JQ..Hiiii-ti'- DB7(MSB) Display RAM data X.7 .- ....... rr o 1 o 0 o 0 Line 62 ----- 1 1 1 1 1 0 Line 63 --~-- o 0 o 0 o 0 r-- I I I I I I o ---I 1 2 3 4 5 RAM Y Address ADC • 1 (Connected to VCC ) Figure 7· Relation between RAM Data and Display HITACHI 282 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61102 ----------------------------------------- LCD display pattern ..... I Y1 UneO Une 1 Une2 000 000 100 010 001 0 0 0 0 000 0 x. o o Display RAM data o ...... o ..-,- o o 0 1 0 Une 62 ----- 1 1 1 1 1 0 Une 63 ----0 0 0 o o o I I I I I I o 1 2 345 COM62 COM63 COM64 (HD61103AX62) (HD61103AX63) (HD61103AX64) ,...e:. J X .. 7 (HD61103A X1) (HD61103A X2) (HD61103A X3) (HD61103A X4) (HD61103A X5) (HD61103A X6) (HD61103A X7) (HD61103A X8) (HD61103A X9) ---.,- ..... COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 ---- r-- ........ o ~HD61102 Pin Name _1..--1---' I DBO(LSB) DB1 DB2 DB3 DB4 DB5 DB6 DB7(MS8) 1 1 1 1 1 1 1 0 0 I I I I I I I I I I I I ----=~ 616263 RAM Y Address ADC - 1 (Connected to GND) Figure 7 Relation between RAM Data and Display (cont) HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 . 283 HD61102 Z Address Counter Liquid Crystal Display Driver Circuit outputting the display data synchronized with the common signal. This counter consists of 6 bits and counts up at the fall of the CL signal. At FRM high, the contents of the display start line register are preset in the Z counter. signal causes one of the 4 liquid crystal driver levels, VI, V2, V3, and V4 to be output The combination of latched display data wId lvl Reset The system can be initialized by setting RST terminal to low when turning power on. I . Display off Display Data Latch 2. The display data latch stores the display data temporarily that is output from display data RAM to the liquid crystal driving circuit Data is latched at the rise of the CL signal. The display on/off instruction controls the data in this latch and does not influence data in display data RAM. Table 2 Item While RS'i' is low level, no instruction except status read can be accepted. Therefore, carry out other instructions after making sure that DB4 = 0 (clear RESET) and DB7 = 0 (ready) by status read instruction. The conditions of the power supply at initial power up are as in table 2. Power Supply Initial Conditions Symbol Reset time Set display start line register line 0 Min Typ Max 1.0 Unit ~s Rise time 200 ns Do not fail to set the system again because RESET during operation may destroy the data in all the registers except on/off register and in RAM. Vee HITACHI 284 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61102 Display Control Instructions Outline Table 3 shows the instructions. Read/write (J{IW) signal, data/instruction (0/1) signal and data bus signals (DBO to DB7) are also called instructions because the internal operation depends on the signals from MPU. These explanations are detailed in the following pages. Generally, there are the following three kinds of instructions. 1. Instruction to set addresses in the internal RAM 2. Instruction to transfer data from/to the internal RAM 3. Other instructions In general use, the second type of instruction are used most frequently. Since Y address of the internal RAM is increased by 1 automatically after writing (reading) data, the program can be shortened. During the execution of an instruction, the system cannot accept instructions other than the status read instruction. Send instructions from MPU after making sure that the busy flag is 0, which is the proof that an instruction is not being excuted. HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 285 N 8en CI) 0) :J: ~ ~ ~ 2: o Code ):0 3 Instructions CD .::3. ~ R/W DII Display on/off ~ • :J: , iii' n 2: til DB7 DB6 DBS DB4 DB3 DB2 DB1 DBD Functions 1/0 Display start line iSDlav start line (0-63) Controls display on/off. RAM data and internal status are not affected. 1: on, 0: off. Specifies the RAM line displayed at the top of the screen. Set page (X address) 0 Sets the page (X address) of RAM in the page (X N Set Y address o Sets the Y address in .the Y address counter. en a;. Status read • 8<=> - address) register. Reads the status. ::: :I RESET ~i 1: Reset 0: Normal ONtOFF 1: Display off 0: Display on • Busy 1: Executing internal oPeration 0: Ready .., ::;n ~ 3: CD ::!. en go .::::s Write display data o Write data 51> (") ):0 CD .j>. <=> <=> ~ --• CI) CD ~ :!:: ~ c.n CI) % Co> <=> <=> Note: 1. Busy time varies with the frequency (fCU<> of +1, and +2. (1/ fCLK s TBUSY S 3/ fcLK> Writes data DBO (LSB) to DB7 (USB) on the data bus into display RAM. ~ Ii" CM ia 0' I: HD61102 Detailed Explanation 1. Display on/off D/I Code DBO DB7 - - - - - - -........ o D - Iow-order bit - high-order bit The display data appears when D is 1 and disappears when D is O. Though the data is not on the screen when D = 0, it remains in the display data RAM. Therefore, you can make it appear by changing D = 0 into D=l. 2. Display start line D/I Code o DB7 - o - ....... A high-order bit A low-order bit - Z address AAAAAA (binary) of the display data RAM is set in the display start line register and displayed at the top of the screen. Figure 7 shows examples of display (1/64 duty cycle) when the start line = 0-3. When the display duty cycle is 1/64 or more (ex. 1/32, 1/24 etc.), the data of total line number of LCD screen, from the line specified by display start line insttuctioo, is displayed. HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 287 HD61102 COM1 COM2 .COM3 COM4 COMS COMa COM7 COMS COM9 COM1 COM2 COMa COM4 COMS COM6 COM7 COMS COM9 COM60 COM61 COM62 COM63 COM64 Start line. 0 COM1 COM2 COM3 COM4 COMS COM6 COM7 COMS COM9 Start line - 1 COM1 COM2 COW COM4 COMS COM6 COM7 COMS COM9 Start line. 3 Start line. 2 Figure 7 Relation Between Start Line and Display HITACHI 288 Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300 HD61102 3. Set page (X address) RIW 011 OB7 ------- .......... OBO o A .- high-order bit A Iow-order bit - X address AAA (binary) of the display data RAM is set in the X address register. After that, writing or reading to or from MPU is executed in this specified page until the next page is set. See figure 8. 4. Set Y address Code RIW 011 OB7 0 0 0 I ------- ........... A A OBO A .- high-order bit A A low-order bit - Y address AAAAAA (binary) of the display data RAM is set in the Y address counter. After that, Yaddress counter is increased by 1 every time the data is written or read to or from MPU. Yaddress o 1 2 ---------------------------- 61 62 63 OBO Page 0 OB7 ~~------------------------~ OBO Page 1 OB7 1x.o 1 X-1 ~~~~==~~--------~ ,...., ~ OBO OB7 OBO Page 6 Page 7 OB7 Figure 8 1 1 X.6 X.7 Address Configuration 01 Display Data RAM HITACHI Hitachi America, ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 289 HD61102 5. Status Read PlW Code I ON/OFF: RESET: 6. OB7 0 IBusy I I - Busy: O/! '0 I g~~ IRESETI high-order bit DBO 0 I 0 I 0 I 0 low-order bit - When Busy is 1, the LSI is executing internal operations. No instructions are accepted while Busy is 1, so you should make sure that Busy is 0 before writing the next instruction. Shows the liquid crystal display conditions: on condition or off condition. When ON/OFF is 1, the display is in off condition. When ON/OFF is 0, the display is in on condition. RESET = 1 shows that the system is being initialized. In this condition, no instructions except status read can be accepted. RESET = 0 shows that initializing has finished and the system is in the usual operation condition. Write Display Data RtN 011 CodeI·1 - DB7 ............ DBO 10101010101010 high-order bit ° low-order bit - Writes 8-bit data DDDDDDDD (binary) into the display data RAM. Then Y address is increased by 1 automatically. 7. Read Display Data RtN Code 011 I - DB7 ............ DBO 101010101010101 high-order bit ° low-order bit - Reads out 8-bit data DDDDDDDD (binary) from the display data RAM. Then Y address is increased by 1 automatically. One dummy read is necessary right after the address setting. For details, refer to the explanation of oulput register in "FUNCTION OF EACH BLOCK". HITACHI 290 Hitachi America, Ltd.· Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 -------------------------------------------HD61102 Use of HD61102 Interface with HD61l03A (1164 duty cycle) 1-------..... COM1 Vee>----tVee V1 V1L,V1R V6 V6L, V6R V5 V5L, V5R V2 V2L, V2R VEE VEE .----1GND Vee LCD panel ) ) - X1 ~ I------------..... COMM~ w L -__~~~----~cn~--~ XM HD61103A SHL DS1 DS2 TH CL1 FS MIS FCS STS DL DR Y1"'-"""'" Y64 M CL2 FRM ,,1 ,,2 Power supply circuit -----------------1 +5 V (Vee) R V1 Open Open 1 1 1 1 1 1 1 Vee M CL FRM ,,1 ,,2 HD61102 ADC Vee V1L,V1R V2L,V2R V3L,V3R V4L,V4R VEE1, VEE2 GN Vee V1 V2 V3 V4 VEE RST I 1 1 .1 I 1 1 R3V2 VEE I I I I I I I I Extemal CR \ I 0 CPU : R3=1Sn 1 1 -10V I I I HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 291 HD61102 ,,1 ~-------".r-- ,,2 ~-----~ ------------------ \\ Input I FRM M I ! H X1 I I I --I-t, I I I ! ! 'I -+-t-I I I I I I COM --------- \ ~-----~-----_R_f1L CL I I I V5! II I I I !I I :I I I I I I I I I I I I I I ! H ------4-1 I I I I I r I -----=r-t;11 1 frame i i -, I I I I I !I :I I 11 iI I I II I ------+-t I I frame I I I t-I I I I I I I I I I _____ ~ I V6 _____ II I 11 X2 I I I I I I I I TTl I I I I I I I I I I V1 I I .m ~ ! i~~I~~'------- I I I V1 I ~~I~V~5~--------~ IV6 1 X64 I ~ I - - --- ::::f'I !=f I I I ! V6 I ! H I I I I I I I V1 I!~ Y1 SEG ~ -! III II II II I I V1 II ------t-H lin ! I il~ II II I I I JJ11-+------rrw-+-1 V1 I Y64 i I I I I I I 41 I• I I I I . I I. 1 I Selected I" '1· I I I I 1 1 I. I V3 I I I V , I • • Non-selected YL __ ~ I II jJJll V1 • V4 ----- I t I ! . I I I I The waveforms of Y1 to Y64 outputs vary with the display .date. In this example, the top line of the panel lights up and other dots do not. Figure 9 LCD Driver Timing Chart (1164 duty cycle) HITACHI 292 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61102' Interface with CPU 1. Example of connection with 8D6800 Decoder A15 ~ "-./ A1 -L I VMA AO I - ,r;- ~ CS2 CS3 Vcc 011 ANI HD6800 ANI ,,2 DO I 07 E I I I HD61102 DBO I DB7 fVCC RES Figure 10 ~ RST Example of Connection with 8D6800 Series In this decoder (figure 10), addresses ofHD61102 in the address area ofHD6800 are: Read/write of the display data $FFFF Write of display inslruction $FFFE Read out of status $FFFE Therefore, you can control HD61102 by readinglwriting the data at these addresses. HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 293 HD61102 2. Example or connection with HD'80l 74LS154 P10 P11 P12 P13 (lOS) SC1 (RIW) SC2 A YO B v.I1 ~ I I C I Y15 r.!... 0 G1 G2 I CS1 -* - ~ Vcc- CS3 t '" RIW P14 011 H061102 No.1 H06801 E E P30 P31 (Date bus) I I I I I P37 Figure 11 OBO OB1 I I I OB7. Example 01 Connection with HD'80l Set HD6801 to mocle 5. PI0 to P14 are used as the output port and P30 to P37 as the data bus (table 11). • 74LS 154 4-to-16 decoder generates chip select signal to make specified HD61102 active after • • decoding 4 bits of PI0 to P13. Therefore, after enabling the operation by PI0 to P13 and specifying DII signal by P14, read/write from/to the exterruil memory area ($0100 to $OIFE) to control HD61102. In this case, lOS signal is output from SCI and RIW signal from SC2. For details of HD6800 and HD6801, refer to their manuals. HITACHI 294 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61102 Example of Application HD61102 No.9 Y1--Y64 HD61102 No. 10 Y1--Y64 HD61102 No. 16 Y1--Y64 l-------l l-------l 1------- COM1 COM2 COM3 i I I < X1 r-S'iX2"'1ijX3- r"'as I I II ~~ X64t---==~ l COMS4 ..... :r: < 1 LCD Panel 128 x 480 dots X1 COMSS C') __ X2 r-_~CO~MS~6. ~! X3 t - _....:;... CDoMS"-I, ~~ l X64- :r: COM128 1-------1 1-------1 1-------1 Y1--Y64 HD61102 No.1 Y1--Y64 HD61102 No.2 Y1--Y64 HD61102 No.8 Figure 12 Note: Application Example In this example (figure 12). two HD611 03As output the equivalent waveforms. So. stand-alone operation is possible. In this case. connect COM1 and COM65 to X1. COM2 and COM66 to X2 •...• and COM64 and COM128 to X64. However. for the large screen display. it is better to drive in 2 rows as in this example to guarantee the display quality. HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 295 HD61103A-----------(Dot Matrix Liquid Crystal Graphic Display Common Driver) Descri ption Features The HD61103A is a common signal driver for dot matrix liquid crystal graphic display systems. It generates the timing signals (switch signal to convert LCD waveform to AC, frame synchronous signal) and supplies them to the column driver to control display. It provides 64 driver output lines and the impedance is low enough to drive a large Dot matrix liquid crystal graphic display common driver with low impedance Low impedance: 1.5 leO max Intemalliquid crystal display driver circuit: 64 circuits Internal dynamic display timing generator circuit Selectable display duty ratio factor 1/48, 1/64, 1/96, 1/128 • . Can be used as a column driver ttansferring data serially Low power dissipation: During display: 5 mW Power supplies: Vee: +5 V ± 10% VEE: 0 to -11.5 V LCD driver level: 17.0 V max CMOS process l00-pin flat plastic package (FP-l00) screen. As the HD61103A is produced by a CMOS process, it is fit for use in portable battery drive equipments utilizing the liquid crystal display's low power consumption. The user can easily construct a dot matrix liquid crystal graphic display system by combining the HD61103A and the column (segment) driver HD61102. Absolute Maximum Ratings Item Symbol Limit Unit Note Power supply voltage (1) Vee -0.3 to +7.0 V 2 Power supply voltage (2) VEE Vee-19.O to Vee + 0.3 V 5 Terminal voltage (1) Vn -0.3 to Vee + 0.3 V 2,3 Terminal voltage (2) VT2 VEE - 0.3 to Vee + 0.3 V 4,5 Operating temperature Topr -20 to +75 Storage temperature Tstg -55 to 125 °C °C Notes: 1. 2. 3. 4. 5. H lSls are used beyond absolute maximum ratings, they may be permanently destroyed. We strongly recommend you to use the lSI within electrical characteristic limits for normal operation, because use beyond these conditions will cause malfunction and poor reliability. Based on GND .. 0 V. Applies to input terminals (except V1l, V1 R,. V2l, V2R, V5l, V5R, V6l, and V6R) and 110 common terminals at high impedance. Applies to V1l, V1 R, V2l, V2R, V5l, V5R, V6l, and V6R. Apply the same value of voltages to V1l and V1 R, V2l and V2R, V5l and V5R, V6l and V6R, VEE (23 pin) and VEE (58 pin) respectively. Maintain Vee ~ V1l = V1 R ~ V6l .. V6R ~ V5l = V5R ~ V2l .. V2R ~ VEE HITACHI 296 Hitachi America, Ltd.· Hitachi. Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 HD61103A Pin Arrangement X22 X21 X20 X19 X18 X17 X16 X15 X14 X13 X12 X11 X10 X9 X8 X7 X6 X5 X4 X3 X2 X1 VEE V6l V5l V2l V1l Vee Dl FS (Top view) HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300 297 HD61103A Electrical Characteristics DC Characteristics (Vee:: +5 V ± 10%, GND :: 0 V, VEE:: Oto -11.5 V, Ta =-20 to +7S0C) Specifications Test Item Symbol Min Input high voltage VIH 0.7 x VCC Vee V Input low voltage VIL GND 0.3 x Vee V Output high voltage Va-! Vee- O.4 V 1ai-~·4mA 2 Output low voltage Va. +0.4 V 1o!-+O.4mA 2 Vi-Xj on resistance RoN 1.5 kn Vee-VEE -10V Load current ±1501lA 3 Input leakage current 1111 -1.0 +1.0 Vin - OtoVee 4 Typ Max Unit Test Conditions Note 1 Input leakage current IIL2 -2.0 +2.0 IlA IlA Vin - VEE to Vee 5 Operating frequency fopr1 50 600 kHz In master mode External clock operation 6 Operating frequency fopr2 50 1500 kHz In slave mode Shift register 7 Oscillation frequency fosc 315 585 kHz Cf-20pF±5% Rf-47kCH2% 8, 13 Dissipation current (1) IGG1 1.0 mA In master mode 11128 duty cycle Cf-20pF Rf-47kn 9, 10 Dissipation current (2) IGG2 200 IlA In slave mode 1/128 duty cycle 9,11 Dissipation current lEE 100 IlA In master mode 1/128 duty cycle 9, 12 Notes: 1. 2. 3. 450 Applies to input terminals FS, 081, 082, CR, S'I1.f. SHL, MIS, FCS, CL1, and TH and 110 common terminals DL, M, DR and CL2 in the input state. Applies to output terminals, +1, ~, and FRM and I/O eommon terminals DL, M, DR, and CL2 in the output status. Resistance value between terminal X (one of X1 to X64) and terminal V (one of V1 L, V1 R, V2L, V2R, V5L, V5R, V6L, and V6R) when load current is applied to each terminal X. Equivalent circuit between terminal X and terminal V. HITACHI 298 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra, Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61103A ""L, ""R RON ~L'~R -----0 \tL,\tR ----~o VsL,VsR -----0 +---0 Terminal X (Xl-X64) t Connect one of the lines 4. 5. 6. m. Applies to input terminals FS, OSl, OS2, CR, SHl, MIS, FCS, CL1, and TH,lIOcommon terminals OL, M, DR and CL2 in the input status and NC terminals. Applies to V1L, V1R, V2L, V2R, V5L, V5R, V61, and V6R. Don't connect any lines to Xl to X64. External clock is as follows. TH TH Duty cycle. TH + TL x 1000/0 External clock waveform Min Typ Max Unit 45 50 55 0/0 trcp 50 ns tfcp 50 ns b:!:t eye trcp External tfcp i"]~~ CR R 7. 8. C Applies to the shift register in the slave mode. For details, refer to AC Characteristics. Connect oscillation resistor (Rt) and oscillation capacitance (Cf) as shown in this figure. Oscillation frequency (fose) is twice as much as the frequency (f.) at.l or +2. "1, ,,2 Cf.20pF Rf-47kC fosc.2 xfs 9. No lines are connected to output terminals and current flowing through the input circuit is excluded. This value is specified at VIH • Vee and VIl- GNO. 10. This value is specified for current flowing through GNO in the following conditions: Internal oscillation circuit is used. Each terminal of OSl, OS2, FS, SHl, MIS, STB, and FCS Is connected to Vee and each of CLl and TH to GNO. Oscillator is set as described in note 8. 11. This value Is specified for current flowing through GNO under the following conditions: Each terminals of OS1, OS2, FS, SHL, STB, FCS and CR is connected to Vee, CL1, TH, and MIS to GNO and the terminals CL2, M, and OL are respectively connected to terminals CL2, M, and OL of the HD611 03A under the conditions described in note 10. HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 299 HD61103A 12. This value is specified for current flowing through VEE under the condition described in note 10. Don't connect any lines to term ina! V. 13. This figure shows a typical relation among oscillation frequency, Rf and Ct. Oscillation frequency may vary with the mounting conditions. f I I I I I I 600 --r--------~---I I 400 -------- --------f---- I J 200 o Cf -20pF I I I I I I I I I I I I 50 100 --------~-------I I Rf (kn) HITACHI 300 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61103A AC Characteristics (Vee = +5 V ± 10%, GND = 0 V, VEE = 0 to -11.5 V, Ta = -20 to +75°C) 1. Slave Mode (MIS = GND) CL2 (FCS.GND) (Shift clock) tr tr CL2 (FCS. Vcc) (Shift clock) 0.7Vee DL (SHL • Vee) DR (SHL • GND) Input data DR (SHL • Vee) DL (SHL • GND) Output data 0.7Vee 0.3Vee Item Symbol CL2 low level width (FCS • GND) tWlCl21 450 ns Typ Max Unit CL2 high level width (FCS • GND) tWHCL2l 150 ns CL2 low level width (FCS ., Vee) tWlCl2H 150 ns CL2 high level width (FCS • Vee) tWHCl2H 450 ns Data setup time tos 100 ns Data hold time tOH 100 Data delay time too Data hold time tOHW Note ns 200 ns ns 10 CL2 rise time tr 30 ns CL2falltime tf 30 ns Note: 1. The following load circuit-ls oonnected for specification. Output O~----------~ Terminal 1 ;J; 30 pF (Includes jig capacitance) HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589~8300 301 HD61103A 2. Master Mode (MIS CL2 = Vee. FCS = Vee. Ct =20 pF. Rt =47 kn) O.7Vcc DL (SHL - Vcc) DR (SHL • GND) DR(SHL.~) DL (SHL - GND) tOFRM ~~~_~:IrtOFRM FRM M O.7Vcc O.3Vcc 111 ,,2 HITACHI 302 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61103A Item Symbol Min Typ Max Unit Data delay time too 20 40 5 FRM delay time tOFRM -2 +2 Ils M delay time Cl2 low level width Cl2 high level width tOM +2 Ils tWLCL2 tWHCL2 -2 35 35 cp1 low level width tWl+l 700 Ils ns cp2 low level width tWl+2 700 ns cp1 high level width tWH+l 2100 ns cp2 high level width tWH+2 2100 ns cp1-cp2 phase difference t012 700 ns cp2- cp1 phase difference t021 700 ns cp1, cp2 rise time tr 150 ns cp1, cp2 fall time If 150 ns Data setup time los Data. hold time tOH Note Ils Ils Ils Ils HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 303 = 8en 2 ~ •. ::E: ;::+ V2L V6L V1L V5L X1 l!: a: l> X2 ---- 64 output terminal ~---- ~ V2R V6R V1R V5R X62 X63 X64 I\) ~ 3 CD ~. Vee ... GN ~ • ::E: - ~ -- Liquid crystal display driver circuits """'- VEE "=. "'tJ r ~ • § en CD CL lH il l: ~~ :;;0 r--- o r-- 1~ • ~ ~ !" ~ 1 Logic: Bidirectional shift register 2 .... 62 Logic ri- T ~~ FCS .. ~ ...... STB OsCIllator ~ r-- Timing generation circuit g- ~ co • ~ ~ ~ ; UI o. DR ~I- SH ~ 63 64 RtCf RIQ~ C MIS FS OS10S2 81 82 M CL2 FRM ~ ~ o eN » HD61103A Block Functions Oscillator The CR oscillator generates display timing signals and operating clocks for the HD6ll02. It is required when the HD6ll03A is used with the HD6ll02. An oscillation resistor Rf and an oscillation capacitor Cf are attached as shown in figure 1 and terminal STU" is cormected to the high level. When using an external clock, input the clock into terminal CR and don't cormect any lines to terminal R and C. CR f Rf Figure 1 I External Open clock Cf Oscillator Connection with HD61102 The oscillator is not required when the HD61103A is used with the HD61830. Connect terminal CR to the high level and don't connect any lines to terminals R and C (figure 2). I S ciI Open Vee Open CR Figure 2 Oscillator Connection with HD61830 Timing Generator Circuit The timing generator circuit generates display timing and operating clock for the HD6ll02. This circuit is required when the HD61l03A is used with the HD6l102. Connect terminal MIS to high level (master mode). It is not necessary when the display timing signal is supplied from other circuits, for example, from HD6l830. In this case connect the terminals PS, DSl, and DS2 to high level and MIS to low level (slave mode). Bidirectional Shift Register A 64-bit bidirectional shift register. The data is shifted from DL to DR when SHL is at high level and from DR to DL when SHL is at low level. In this case, CL2 is used as shift clock. The lowest order bit of the bidirectional shift register, which is on the DL side, corresponds to Xl and the highest order bit on the DR side corresponds to X64. HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 305 HD61103A Liquid Crystal Display Driver Circuit The combination of the data from the shift register with the M signal allows one of the four liquid crystal display driver levels VI, V2, V5 and V6 to be transferred to the output terminals (table I). Table 1 Output Levels Data from the Shift Register M Output Level V2 o o V6 o o V1 V5 HITACHI 306 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61103A HD61103A Terminal Functions Terminal Name Number of Terminal. 110 Connected to Function Voc 1 1 2 Power supply Vcc;- GND: Power supply for internal logic. Power Liquid crystal display driver level power supply. V1 L (V1 R), V2L (V2R): Selected level V5L (V5R), V6L (V6R): Non-selected level GNO VEE V1L, V2L, VSL, V6L, V1R, V2R, V5R, V6R 8 Vcc; - VEE: power supply for driver circuit logic. supply Voltages of the lavel power supplies connected to V1 L and V1 R should be the same. (This applies to the combination of V2L & V2R, VSL & V5R and V6L & V6R respectively) MIS VeeorGND Selects master/slave. MIS • Vcc;: Master mode When the HD61103A is used with the HD61102, timing generation circuit operates to supply display timing signals and operation clock to the HD611 02. Each of ItO common terminals Dl, DR, CL2, and M is in the output state. MIS. GND: Slave mode The timing operation circuit stops operating. The HD61103A is used in this mode when combined with the HD61830. Even if combined with the HD611 02, this mode is used when display timing signals (M, data, CL2, etc.) are supplied by another HD61103A in the master mode. Terminals M and CL2 are in the input state. When SHL is Vee, DL is in the input state and DR is in the output state. When SHL is GND, DL is in the output state and DR is in the input state. FCS Vee or GND Selects shift clock phase. FCS • Vee: Shift register operates at the rising edge of CL2. Select this condition when HD61103A is used with HD61102 or when MA of the HD61830 connects to CL2 in combination with the HD61830. FCS • GND: Shift register operates at the fall of CL2. Select this condition when CL1 of HD61830 connects to CL2 in combination with the HD61830. HITACHI Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300 307 HD61103A HD61103A Terminal Functions (cont) Terminal Name Number of Terminals 1/ 0 FS DS1,DS2 2 Connectod to Function Vee or GND Selects frequency. When the frame frequency is 70 Hz, the oscillation frequency should be: fose • 430 kHz at FCS - Vee fose - 215 kHz at FCS - GND This terminal is active only in the master mode. Connect it to Vee in the slave mode. VeeorGND Selects display duty factor. Display Duty Factor 1/48 1/64 DS1 GND DS2 GND 1196 1/128 GND Vee Vee Vee GND Vee These terminals are valid only in the master mode. Connect them to Vee in the slave mode. STB Vee or GND 1H OL1 Input terminal for testing. Connect STS to Vee. Connect TH and OL1 to GND. OR,R,O 3 Oscillator. In the master mode, use these terminals as shown below. Usage of these terminals in the master mode: Internal oscillation External clock In the slave mode, stop the oscillator as shown below: Open Vee I I IR 2 o HD61102 OR Open I oI Operating clock output terminals for the HD611 02. Master mode: Connect these terminals to terminals .1 and 4>2 of the HD611 02 respectively. Slave mode: Don't connect any lines to these· terminals. HITACHI 308 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61103A HD61103A Terminal Functions (cont) Terminal Name Number of Terminals 1/0 FRM 0 Connected to Function Frame signal. HD61102 Master mode: Connect this terminal to terminal FRM of the HD611 02. Slave mode: M 1/0 Don' connect any lines to this terminal. Signal to convert LCD driver signal into AC. MBof HD618300r Master mode: Output terminal MofHD61102 Connect this terminal to terminal M of the HD61102. Slave mode: Input terminal. Connect this terminal to terminal MB ofthe HD61830. CL.2 110 CL10rMA of HD61830 orCLof HD61102 Shift clock. Master mode: Output terminal Connect this terminal to terminal CL of the HD61102. Slave mode: Input terminal Connect this terminal to terminal CL 1 or MA of the HD61830. DL,DR 2 110 OpenorFLM ofHD61830 Data ItO terminals of bidirectional shift register. DL corresponds to X1's side and DR to X64's side. Master mode: Output common scanning signal. Don' connect any lines to these terminals normally. Slave mode: Connect terminal FLM of the HD61830 to DL (when SHL. Vee) or DR (when SHL.GND) GND Vee MIS t-C SHL 5 Vee GND Output Input Output Out~ut Out~ut In~ut SHL Vee GND DL Output [R Out~ut Open Not used. Don' connect any lines to this terminal. VeeorGND Selects shift direction of bidirectional shift register. SHL Shift Direction Common Scanning Direction Va; DL-+DR X1-+X64 GND DL+-DR X1 +- X64 HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 309 II HD61103A HD61103A Terminal Functions (cont) Tsrm!na! Name Number of Terminals 1/ 0 Xl·X64 64 0 COiiii&eiid to Function Liquid crystal Liquid crystal display driver output. display Output one of the four liquid crystal display driver levels Vl, V2, V5, and V6 with the combination of the dat from the shift register and M signal. r ~....;o~.... Data~ g~~ut 14 V2.14 V6 .1.Vl.I.V5 _I Data 1: Selected level 0: Non-selected level When SHL is Vee, Xl corresponds to COMl and X64 corresponds to COM64. When SHL is GND, X64 corresponds to COMl and Xl corresponds to COM64. HITACHI 310 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005·1819· (415) 589·8300 H: vee }Fixed L: GND ::I: ~ §" en 2: ::t: .... en en .... C\I "-" means "open". .1 .2 FRM M CL2 SHL DL H fromFLM of HD61830 ::!. ~ fromMB from CL1 of of HD61830 HD61830 LLLLHHHHH-- Ji! g<=>• B fromMB fromMA of of HD61830 HD61830 LLLHHHHHH-- L H L W- :!: ~~ ;0 ii C L L L H fromMB from MA of of HD61830 HD61830 H H H H H -- · tD ::!. '"~ o HLLHH }D LL or LH H Rf Cf RfCf ~ ~ 'i: ~ co LL E • ~ ~ HLLHH or LH ... ~ F to~ COM1-COM64 10.2 lOFRM 10M toCL H of of of of of HD61102 HD61102 HD61102 HD61102 HD61102 L . from FLM COM64-COM1 of HD61830 from FLM 10 DUDR ofHD61103A COM1-C0M64 of HD61830 No.2 10 DLJDR of from FLM HD61103A of COM64-COM1 No.2 HD61830 from DUDRof COM65-COM128 HD61103A No.1 a "CI ~ I'D n S- o II II ft cII ..• ~ "CI "CI n ~ e 1:1 from DLJDR of HD61103A COM128-C0M65 No.1 COM1-COM64 COM64-COM1 10 DLJDR 10.1 to.210 FRM 10M 10 CLofo H of HD61103A COM1-C0M64 H Rf Cf of of of of HD61102 No.2 Cf HD61102 HD61102 HD61102 HD61102 to CL2 of to DLJDR HD61103AHD61103A L ofHD61103A COM64-COM1 No.2 Rf C11 !g H L ~~ X1-X64 ~ fD ft2: Sl DR ~ .. >•-. .-•. I-' I-' 0 m a: 1 ~t-c3flu..~~t;qa:o A 10 0- Cf: OscIllation capacitor CD ~ • ::I: =~ Rf: Oscillation resister L L L H H H H H H -- from DLJDR COM1-COM64 from M from CL2 H of HD61103A of of ____~N~0~.~1_____________________ HD61103A HD61103A from DLJDR No.1 No.1 L ofHD61103A COM64-COM1 No.1 :r: o en ~ ~ o w > HD61103A Outline of HD61103A System Configuration 1. Use with HD61830 a. When display duty ratio of LCD is more than 1/64 H061830EbH No.1 COM 1 LCD I a..:CO=M~64.;:;..._--,. One H061103A drives common signals. Refer to Connection list A One H0611 03A drives common signals for upper and lower panels. Refer to Connection list A Two H0611 03As drive upper and lower panel separately to ensure the quality of display. No. 1 and No.2 operate in parallel. For both of No. 1 and No.2. refer to Connection list A H061830 Upper Lower H061830 --t-----. LCD Upper Lower b. When display duty ratio of LCD is from 1/65 to 1/128 LCD Two H061103As connected serially drive common signals. Refer to Connection list B for No.1. Refer to Connection list C for No.2. Two H06l1 03As connected serially drive upper and lower panels in parallel. Refer to Connection list B for No. 1. Refer to Connection list C for No.2. Two sets of H061103As connected serially drive upper and lower panels in parallel to ensure the quality of display. Refer to Connection list B for No. 1 and 3. Refer to Connection list C for No.2 and 4. LCD LCD HITACHI 312 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61103A 2. Use with HD61102 (1164 duty ratio) COM1 COM64 H061102 LCD LCD COM1 Upper COM64 COM1 Lower H061102,,-,C...0,,,,,M:.;.;:64;..:..._--, Upper Lower One H0611 03A drives common signals and supplies timing signals to the H061102s. Refer to Connection list 0 One H061103A drives upper and lower panels and supplies timing signals to the H0611 02s. Refer to Connection list 0 Two H061103As drive upper and lower panels in parallel to ensure the quality of display. No. 1 supplies timing signals to No.2 and the H061102s. Refer to Connection list E for No.1 Refer to Connection list F for No.2 I HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 313 HD61103A Connection Example 1 Use with HD6i i02 (RAM type segment driver). a. 1/64 duty ratio (See Connection List D) Cf Rf +5 V (V e) Rt - R Vee F\~ Vt VtL, VtR C;;::l R3 V6 V6L, V6R ... R1 R3V5 R3V2 COM64 M CL FRM ,,1 ,,2 M CL FRM ,,1 ,,2 a 1ii ~ ~ V5L, V5R S .,... V2L,V2R 0 J: co VEE (-::reontrast GNo J, X64 (Xt) ...J .!Il VEE -10V OV ~ ...J LCD panel en ~F!V4 I, ) ) J: ~R3 Rt COMt ) ' - - CR Rt t:i;t1R3 ---V3 R2 Xt (X64) r-- C Open- oL Open- DR Vee Ho6tt02 a: a: a: a: >~~~ ,.j ,.j ,.j ,.j 0 ~ v~Jvl~ ~~ L SHL I--OS1 I DS2 i - ....., TH ' Cll FS I- ~C)~ - - MIS FCS STB ....., i ....., ....., Ii- R3 -150 ~ Figure 1 Example 1 Note: 1. The values of R1 and R2 vary with the LCD panel used. When bias factor is 1/9, the values of R1 and R2 should satisfy Rt t 4Rt + R2-9 For example, HITACHI 314 w >~~~~C)~ Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300 HD61103A a 1 C? e. cc ..J I j 8c ! ~ "'0 CD 18 .c Q. I ..Ja: ce. N III I I CDI EI l!1 -I I .... 1 I I 1 I - -----~ ---.-..;...... (,) ....III Figure 2 Example 1 Waveform (RAM type, 1/64 duty cycle) HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.· Blisbane, CA 94005-1819· (415) 589-8300 ~~~~~--"-"---"------ ".- 315 HD61103A Connection Example 2 Use with HD61830 (Display controller). a. 1/64 duty ratio (See Connection list A) Open Vee Open C CR R X1 (X64) Vee Vee X64 (X1) c: .2 ~c: c: ) ) ) V1 V1L, V1R V6 V6L, V6R E ~ w COM1 ~ LCD panel COM64 R ..J ::J: fJ) 1ii .!!! V5 V2 8 II) II) V5L, V5R c( V2L, V2R g C\I a; c M CL2 DL(DR) DR(DL) VEe VEE GND GND Open Open Open FRM ,,1 ,,2 Open HD61830 (Display Controller) Vee ::J: fJ) MB CL1 FLM SHL DS1 DS2 TH CL1 FS MIS FCS STB Figure 3 Example 2 (1164 duty ratio) HITACHI 316 Hitachi America, Ltd:· Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 HD61103A 1~ ~ ;1; .~.----------r-=-----------~!l)~ ----- . ------- ---------- ------------ ...j ... - - - - - - - - - - - -...CQ~--I ..... ~~ > -------- ! §: '"'---------~/ O£8l90H wOJ:I Figure 4 Example 2 Waveform (1/64 duty ratio) HITACHI Hitachi America, Ltd. - Hitachi Plaza - 2000 Sierra Point Pkwy. - Brisbane, CA 94005-1819- (415) 589-8~00 317 HD61103A b. 1/100 duty ratio (See Connection list B, C) Vee Opi" torn ;'Vee - - - - - - - - . - t Vee ~ V6 a: 50 SHLI-fOS1 "-IOS2 "-ITHI- ~L~R ...---'"T""I-H V6L. V6R ....--t+-I-HV5L. V5R r--_H-I-HV2L. V2R ---~ VEE r-+-H-I-HGNO V5------.I ;_ .; • MlSI- ~ FCSI-- ~ CI) STB I-~ 1i eD ....!II X1 1----, o ci ~ (X64 V 2 - - - -...... J:Z e-:J 00 ::Ed~~ VEE-----+ GNO'-----44 r--H-+++t-It---I--i ~ fro MB- ~ LCD COM64 Panel { J { J r- COM100 X36.1--_...J1 (X29 SHL...J~ OS1OS2...J TH- 1 . ~ Open- C Vee- CR Open- R ~ ) - L-f----tVEE I------IGNO ~ ~ ....-----<--t COM65 X1 (X64 ...Ja: Vee 0 0 V1L. V1R V6L. V6R V5L.V5R '----IV2L. V2R ~COM1 1--_ _.... oe.e. FLM - ) &~~f- ::E~C[:::r MA- CL1 "FS"-I- ...J~ 'i /ee g... ~ CL1- FS-fMIS"FCS"-I1...-_ _ _....;:;..;.;:;.,1 STBI-I- eD '" C\I .!II Oo~ J: Z ~ Vee Figure 5 Example 2 (1/100 duty ratio) HITACHI . 318 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61103A -j N~------1-£ ~ ~ > - -----.,.... , ----- - &I) > > -------- &I) ------- > --- ------ -- ------- ------- --------- ~ I I I I I I I I I -------~-.., --------'--.., --------r--.... GI E ! 1 ~ -------- 4( CD --~ ..J ..... , CO 2 2 ..J LL. OE8~9aH 4( c"""""" x;Z -- ----- ;z-If!. ~ xx ...... 2 .... ,CJ:~ ~ ·oN VEO~~9aH ~ ~ > ------- ------- .... , • ..J J: en ~i CDG) X~ ---- ~s. .... ~ ·ON VEO~~9aH Figure 6 Example 2 (1/100 duty ratio) HITACHI HJtachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 319 / HD61104,HD61104A--(Dot Matrix Liquid Crystal Graphic Display Column' Driver) Description Ordering Information HD61l04, HD61104A is a column (segment) driver for large-area dot matrix liquid crystal graphic display systems. Type No. Level (V) Package HD61104 +10to+26 100 pin plastic LCD Driving _ _ _ _ _ _ _ _ _aFP (FP-100) Features Display duty cycle: 1/64--1/200 Intemalliquid crystal display driver: 80 drivers 4-bit bus, bidirectional shift data transfer Cascade connection with enable format Data transfer rate: 3.5 MHz Power supply for logic circuit 5 V ±10% Power supply for LCD drive circuits : 10 to 26 V (HD6l104) 10 to 28 V (HD61104A) Standby function CMOS process loo-pin flat plastic package HD61104A +10 to +28V HD61104lF +10 to +28V 100 pin plastic TaFP (lFP-100) Absolute Maximum Ratings Item Supply voltage (1) Symbol Value Unit Note 2 Vee -0.3 to +7.0 V HD61104 VEE Vee - 28.0 to Vee + 0.3 V HD61104A VEE Vee - 28.5 to Vc;c + 0.3 Terminal voltage (1) Vn -0.3 to Vee + 0.3 V 2,3 Terminal voltage (2) VT2 VEE - 0.3 to Vee + 0.3 V 4 Operating temperature . Top!' -20 to +75 °C Storage temperature Talg . -65to+125 °C Supply voltage (2) Notes: 1• 2. 3. 4. LSls may be permanently destroyed if used beyond the absolute maximum ratings. In ordinary operation, it Is desirable to use them within the limits of electrical characteristics, because using them beyond these conditions may cause maHunc1lon and poor reliability. All voltage values are referenced to GND • 0 V. Applies to input terminals, SHL, CL 1, CL2, 00-03,1:. and M. Applies to V10 V2. Va. and V4. Must maintain Vee ~ V1 ~ Va~ V4~ V2~ VEE Connect a protection resister of 15 n ± 1O"A. to each terminal In series.' HITACHI 320 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point PkWy.• Brisbane, CA94005-1819. (415) 589-8300 HD61104, HD61104A Pin Arrangement (Top View) (FP-100fTFP-100) HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300 321 W N N '== :I:. ill:' en ..... ..... Q n :::I: Sf n V1 V2 V3 V4 :!. Y1 Y2 C ...0 Y80 0 ~ D) » ~ 3CD ; :J. n Jl> S en ..... ~ ..... :::I: s= 0 M n :!. ~ ~ ~ '"• I CL1 VCC GNO VEE N 0 0 0 en ~- J: Do ~. ~. 01 ~ iil ~ ;; ~ J: ~ ·- OJ CD ~. SHL c:r CL2 -''"D (") » :::J <0 0 """ 0 'i: ~ · <0 ~ ~ en 0:> <0 do w 0 0 E CAR Control circuit > HD61104, HD61104A Electrical Characteristics DC Characteristics (Vee = 5 V ± 10%, GND = 0 V, Vee - VEE = 10 to 26 V (HD61104), Vee - VEE = 10 to 28 V (HD61104A), Ta -20 to +75°C) = Max Unit 0.7 x Vee Vee V 0 0.3 x Vee V Typ Te.t Condition Note 1oH--400~ 2 kn VEE - -1 OV.Load current -100 ~ 5 ~ VIN-OtoVee 25 ~ VIN - VEE to Vee rnA rnA Item Symbol Min Input high voltage VIH Input low voltage Vil Output high voltage V(Ji Vee- 0.4 Output low voltage Va.. 0.4 V Driver on resistance Po! 7.5 Input leakage current IlL 1 -1 Input leakage current 11L2 -25 V Dissipation current (1) IGND 2.0 Dissipation current (2) lEE 0.2 Notes: 1. 2. 3. 4. 5. 6. 1ST 100 4 HD61104 4 HD61104A 0.4 Dissipation current (3) 3 ~ 4 5 Applies to CL1. Cl2. SHL. E. M. and Do-Ca. Applies to CAR. Applies to VI. V2• V3. and V4. Specified when display data is transferred under following conditions: Cl2 frequency fcp2 • 2.5 MHz (data transfer rate) CL1 frequency fcp1. 14.0 kHz (data latch frequency) fM • 35 Hz (frame frequencyl2) M frequency Display duty ratio 11200 Specified when VIH • Vee. VIl- GND and no load on outputs. IGND: currents between Vee and GND lEE: currents between Vee and VEE Currents between Vee and GND at standby (E input. high). Resistance between terminal V (one of V1 to V80) and terminal V (one of VI. V2. V3. and V4) when load current flows through one of the terminals V1 to V80. This value is specified under the following conditions: HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 323 HD61104, HD61104A \bc- VEE- 26 V V1 • V3- Vcc-2110 (Vee- VEE) V2 • V4- VeE+ 2110 (Vce- VEE) RON V1L. V1R 0 VJL.VJR 0 V4L. V4R 0 +---0 Terminal Y (Y1-Y80) 'O---">JV''v----t V2L. 'l2R The following is a description of the range of power supply voltage for liquid crystal display drives. Apply positive voltage to Viand V3. and negative voltage to V2 and V4. within the flV range. This range allows stable impedance on driver output (RoN). Notice that fl V depends on power supply voltage Vcc -VEE. ---,..-_______ Vec -------- V1 IN ---- Va ~ 5.5 a ----------A ------------ V4 -------------- ~E 10 26 "cC-'VEE (V) Correlation between Power Supply Voltage VCC- VEE and JjJ Correlation between Driver Output Waveform and Power Supply Voltages for Liquid Crystal Display Drive HITACHI 324 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61104, HD61104A Terminal Configuration Input Tennlnal Applicable Tennlnals : CL1. SHL, E. M Vr;c ~+---PMOS ~ NMOS Input Tennlnal (controUed by Enable signal) Applicable Tennlnals : CL2. Do-Da Vr;c Vr;c CL2 "':': Enable OUtput Tennlnal Applicable Terminal : CAR Vee PMOS NMOS r- Output Tennlnal Applicable Terminals: Y1-Y80 .J:'""" PMOS PMOS V1 V3 Vee .J:'""" NMOS :1:- NMOS V4 V2 VEE HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra POint Pkwy.· Brisbane. CA94005"1819· (415) 589-8300 \ 325 HD61104, HD61104A AC . Characteristics (V cc 5 V ± 10%, GND = =0 V, Ta =·20 to ±7SOC) Typ 111 ax Item Symbol IIln Unit Clock cycle time tcve 285 ns Clock high level width tcwH ns Clock low level width tcwL 110 110 ns Clock setup time tSCl 80 ns Clock hold time lHcL 80 ns Clock riselfall time Data setup time tcr tosu 80 ns 80 75 ns Data hold time tOH Esetuptime tESU Output delay time tOCAR M phase difference time !eM CL1 cycle time tcL1 Note: 1. 30 ns ns 180 300 tcvc x10 Note ns ns ns The following load circuit is connected for specification: HITACHI 326 H.itachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61104, HD61104A Test point 0-0- - - - , tCL1 CL1 ------'1" CL2 CL1 CL2 M HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 327 HD61104, HD61104A Terminal Number of Connected Terminals 1/0 to Name Functions Y1-Y80 80 o Power supply Vee- GND: Power supply for internal logic Vee-VEE: Power supply for LCD drive circuit Power supply Power supply for liquid crystal drive. V10 V2: selection level V3 • V4: non-selection level LCD Liquid crystal driver outputs. Selects one of the 4 levels. V1• V2 • V3• and V4• Relation among output level. M. and display data (D) is as follows: M~ D~ M Controller CL1 Controller Switch signal to convert liquid crystal drive waveform into AC. Latch clock of display data (falling edge triggered). Synchronized with the fall of CL 1. liquid crystal driver signals corresponding to the display data are output. Cl2 Controller Shift clock of display data (D). Failing edge triggered. 4 Controller Input of 4-bit display data (D) o Liquid Crystal Driver Output Liquid Crystal Display 1 (High level) Selection level On o Non-selection level Off (Low level) Truth table (Positive logic) SHL Input data and latch circuit 1 o ~ ~2 ~6~ 10 -- ~74 ~78 Do ~4~8 ~ 12 -- ~ 76 ~80 HITACHI 328 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61104, HD61104A Connected Terminal Number of Name Terminals 1/0 to Functions Truth table (Positive logic) (cont) Input data and latch circuit 1 SHL Da -+80 -+76 -+72 --- -+ 8-+4 02 -+ 79 -+ 75-+ 71 --- -+ 7 -+ 3 0 1 -+78 -+ 74 -+ 70 - -+ 6-+2 Do -+n -+73 -+69 --- -+ 5 -+ 1 When SHL - 0, the data that is input to 03 is ex: latched to each bit of the latch circuit 1 in order of 1 -+ 5 -+ 9 --- -+n. SHL Vcc or GNO I: GNOorthe Enable input. terminal CAR The operation stops at high level, and is enabled at low of the level. Selects a shift direction of display data. H061104 CAR NO 0 3 Enable output. Input terminal E of Used for cascade connection. the H061104 Unused. No wire should be connected. HITACHI , Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 329 HD61104, HD61104A Typical Application Figure 1 is an LCD panei with 200 x 640 dots on which characters are dispiayed with 1/200 duty cycle dynamic drive. COM1 COM2 COM3 -- 1, 1 1, 2 1, 80 1, 81 82 2, 1 2, 2 2, 80 2, 81 2, 82 3, 1 3, 3 I I I ---I I I ---- I I I I ~ ------ I I I I I I ~ ~ ------ I- I I I I I 640 -------- -2, 640 f--- -------- 3, r-- -------- ~ I I I f--- 2, ------ 3, 80 I I 1, 1, 1, I I I I II I I I I LCD Panel (200 x 640 Dots) COM199 COM200 - - I I I I I I 199, 199, 1 2 200, 200, 1 2 I ---- I I I ---- I I I I I I I I 199, 80 200, 200, 200, 80 81 82 ----Y2 Y1 Y80 d') ~ 11 ------ r-200, I I I-- f--~ I-- I I -------- f--199, -------- ,640 200, 640 160 Y2 Y1 ----Y80 HD61104 (No.2) IF ~ I :i5000 ~ .- ------ I I I ----- HD61104 (No.1) :r IWI/) I I I ~ :r IWI/) d') ~ I :i5000 ~ .- 1 IF HD61104 (No.8) 0<'1 ----- ~ :r IWI/) L_____ ~ 1 ------------- M J.. 1_ CL CL2 Y80 Y1 -~ I :i5ocP If~ i 0 ----- DATA Figure 1 200 x 640 Dot LCD Panel Example Cascade eight HD6l104s. Input data to the DcrD3 tenninals of Nos. 1-8. Connect E of No.1 to GND. Connect no lines to CAR of No.8. Connect common signal tenninals (COMI-COM200) to the common driver HD61105. (m,n) of LCD panel is the address corresponding to each dot. Figure 2 shows timing. HITACHI 330 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra POint Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 :x: i i i M~ J J s= n 2: I 3CD :::!. 1" ?- • :x: s: n 2: -0 ;;;- '!!J o'Q' N .. '"• c: "t N 0 0 0 N en iil :I ~ a -0 n -0 0 . [ ':'" tD I < CS' "t Ii! ~ I» '"cr "C '" :::J (") :t- eo .". 0 0 ~ ~ .! .. :::!. !" ! ~ $3 I» Ii! ;" CAR (No.2) CAR (No.3) CAR (No.4) CAR (No.5) CAR (No.6) CAR (No. 7) CAR(No.S) Y1-Yeo I I I ! :I I II -I' -I -I -I -l j ! Ii I .J1..1U1..f1.11 ..n.n.r1{Ul- .J1..1U1..f1.11 .J1..1U1..f1.11 .nn.nnn.. ..n.n.r1{Ul- -IE (No 21 ___riL_ ..J U U (No.3) ! 'i E(No. 5) E (No.6) , : i i E (No. 7) ~ I I I I , I I 1.'2, 637- 1 *. 14 640 4 '1 JU1IUIhnn ' I I I I tI I 2,'3, 837- 1 640 .. ''l - - --------- - , n .I111IU1.f1AA -------- .nn.nnj1.nn I ( I I , I I 3,'4. 837- 1&40 .. I c~j· YCY4(No.1)~ ,1, 2. 11-1- 4 Yo-Ys (No.1) ~ ! J: : 8 L II t"""- I' '! i rr- I' Fr--=F I" ,~ E (No.8) ::8 Horizontal time chart :- _______________________________________________________________________ :tn:r ,I, I 4 1-1 U i' (NO.4) , : 1- Y1-YSO i :x::x::x±x:: :x::x::x±x:: :x::x::x±x:: xx:x±x: :x::x::x±x:: xx::x::b:: :x::x::x±x:: :x::x::x±x:: 1,77-4!p 1,157-1 60 1,237-l!40 1,397-100 1,477-160 1,557-1j6O 1,637-640 'I ' , , , I .E I! ! Ii I~: I~: ~r E Ii ~ 0- CL~ ~ rl' . CL2 ~.I111IU1.f1AA Do-Da f 1,317~20 C AR (No 1) 1,1-4 !:::; I ! I I ! t i l I I I J I II ..n.n.r1{Ul- Do-Da ±x: n ~. I II Ii, CL2 i.fu1.. CL1 :t- ! -----..----- I I I I ~ I I 198.,IQQ, 637- 1- n 'j .nnnntum I I I I tI I lQQ,'200, It: _ _ _ _ I.. .JUUU'lL J. ~ Vertical time chart 200" JJj637- 637- 1- ------------ ===e:======:::x=======t== 840 4 6«) 4 840 _ _.. ·t~-~ 200, = ::x::::x:::x::: 1- 4 =x::::x::::xx::x::XCl::xCJ~m2.1~1oICCJ::xCJ::xCJ::xCJ::xc::x:::::J( ~. 8 ::x::::x:::x::: Uquid ~ta1 dnve output time :r: tl 0) ~ ~ o eo Yn-Yeo(No.1)~ ~ ~ Yn-Yeo(No.4)~. ~ ::x::::x:::x::: :r: Yn-Yeo(No.8)~ ~ ::x::::x:::x::: 0) C11 00 % w 0 0 w ~ 17~--l,,- ~ i3~7~17- : 1, 2. j6i!7-"1- :&40 640 ~ ::x::::x:::x::: ~ 80 ~.:. 200, 837640 chart ~ tl ~ ~ o ~ » HD61105,HD61105A~-(Dot Matrix Liquid Crystal Graphic Display Common Driver) Description Pin Arrangement The HD61105, HD61105A is a common signal driver for dot matrix liquid crystal graphic display systems. It provides 80 driver output lines and the impedance is low enough to drive a large screen. As the HD61105, HD61105A is produced in a CMOS process, it is fit for use in portable battery drive equipments utilizing the liquid crystal display's low power consumption. JJ:JJJJJJJJJJJJJJJJJ I ...x...... ....... x,. ...... •• I I x. Xu ,~ Xu x.. x.. Xu x.. x.. x.. x.. x.. x.. x.. • x•• x.. x" x" x•• x" x" x•• I 1 x" x.. XI. II Features x" Xu x,. • x, X. x, • • • • • • • 1 Xu x" x" x" x" x" x" x" x" x" " x•• X, .. Dot matrix liquld crystal graphic display common driver with low impedance Internal liquid crystal display driver circuit: 80 circuits Display duty ratio factor: 1/64-1/200 Internal BO-bit shift register Power supply for logic circuit: 5 ± 10% Power supply for LCD drive circuits: -10 to 26 V (HD61105) -10 to 28 V (HD61105A) CMOS process 100-pin plastic QFP (FP-100) x, X. x. x. x, x.. x.. x.. 71 Xu ,. x.. ~~.~.~~.~~.-~,~,~.~.~.~~~.r' i~~~a~iG~~3~8~~~>~~~ FP-1 00/TFP-1 00 (TopViewl Ordering Information Type No; LCD Driving Level (V) HD61106 10 to 26 HD61106A 10 to 28 HD61106TF 10 to 28 Package 100 pin plastic QFP (FP-100) 100 pin plastic T-OFP (TFP-100) HITACHI 332 Hitachi America. Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819. (415) 589-8300 HD61105, HD61105A Block Diagram 80 output terminals Vee GNO __ Uquid crystal L:J~L:~ ~di~SP~la~Y~d~n~·v~er~C~ir~Cu~it~-1::t:J::F======~~____f.- M VEE Bidirectional shift register 01--11----1 t--;--oo SHL~------~-------+~--------------------------------------~ CL-II---I FCS--t----t Absolute mazimum ratings Item Symbol Value Supply voltage (1) Vee VEE HD61105 Supply voltage (2) HD61105A Unit Note - 0.3 to + 7.0 V 2 Vee - 28.0 to Vee + 0.3 V 5 Vee - 28.5 to Vee + 0.3 Terminal voltage (1) Vn - 0.3 to Vee +0.3 V 2. 3 Terminal voltage (2) Vr2 VEE - 0.3 to Vee +0.3 V 4. 5 Operating temperature Topr - 20 to + 75 ·C Storage temperature Tstg - 55 to + 125 ·C Notes: 1. LSls may be permanently destroyed if used beyond the absolute maximum ratings. In ordinary operation. it is desirable to use them within the limits of electrical characteristics. because using them beyond these conditions may cause malfunction and poor reliability. 2. All voltage values are referred to GND = 0 V. 3. Applies to input terminals except Vl. V2. Vs. and Va. 4. Applies to V" V2. V5. and Ve. 5. Vee ~ Vl ~ Va ~ Vs ~ V2 ~ VEE must be maintained. HITACHI Hitachi America, Ltd.· Hitachi PI.aza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 333 HD61105, HD61105A Electrical Characteristics DC Cbaracteristlc8 (Vee = 5 V ± 10%, GND = 0 V, Vee - Va = 10 to 26 V (H061105), Vee - Va = 10 to 28 V (HD61105A), T. 20 to + 75'C) =- Specifications Teatltam Symbol Min Input high voltage VIH Input low voltage Typ Max Unit 0.7 x Vee Vee V VIL GND 0.3 x Vee V Output high voltage VOH Vee - 0.4 Output low voltage VOL 0.4 V Vi-Xj on resistance RON 2.0 kG V Teat Condition Note = - 0.4mA 10L = 0.4mA Vee - VEE = 10V 2 IOH 2 5 Load current ± 150 pA Input leakage current hLl - 1.0 1.0 pA VIN = 0 to Vee Input leakage current hL2 - 25 25 pA VIN Clock frequency fCl 100 kHz Transfer clock CL Dissipation current (1) IGGl 200 pA at 1/200 duty cycle operation 6 Dissipation current (2) lEE 100 pA at 1/200 duty cycle operation 7 Notes: = VEE to Vcc 3 4 1. Applies to input terminals FCS. SHL. 01. M. and CL. 2. 3. 4. 5. Applies to output terminal of ~O. Applies to the terminals NC. and the input terminals FCS. SHL. 01. M. and CL. Applies to Vl. V2. V6. and Va. No wire should be connected to Xl-Xao. Resistance value between terminal X (one of Xl to Xso) and terminal V (one of Vl. V2. Vs. and Va) when load current is applied to one of terminals Xl to Xso. This value is specified under the following conditions: Vec -VEE =26V v1• Ve=Vec- 1/ 10 (Vee-VEE) V2 • V5=VEE +1/10 (Vee-VEE) ~_=-==_-o:~ The following is a description of the range of power supply voltage for liquid crystal display drives. Apply positive voltage to VI and Va. and negative voltage to V2 and V6. within Terminal X (Xl-X80) the .0. V range. This range allows stable impedance on ,driver output (RoN). Notiee that .0. V depends on power supply voltage Vee-VEE. HITACHI 334 Hitachi America, Ltd.· Hitachi Plaza- 2000 Sierra Point Pkwy.· Brisbane. CA 94005~1819· (415) 589-8300 HD61105, HD61105A __ ~ _________________ Vcc n-------- I AV v, ~----. Va 4.5 ---------------------------- u:----------- ~ .~----------VI 2 ------- ----- V5 VEE Correlation between Driver Output Waveform and Power Supply Voltages for Liquid Crystal Display Drive Correlation between Power Supply Voltage Vee-VEE and l:;. V 6. The currents flowing through the GND terminal. Specified when display data is transferred under following conditions: CL frequency fCL = 14kHz (data transfer rate) M frequency fM == 35 Hz (frame frequency/2) 1/200 Display duty ratio VIH Vec. VIL GND No load on outputs 7. The currents flowing through the VEE terminal in the conditions of note 6. No line should be connected to the V terminal. = = HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 335 HD61105~ HD61105A AC Characterlstlcs (Vee = 6 V ± 10%, GND = 0 V, T. = - 20 to + 76'C) CL (FCS=GNO) (shift clock) CL (FCS= Vcd (shift clock) tOH 01 input data too O. 7Vcc DO output data O. 3Vcc tOHW Item Symbol Min Clock low level width (FCS = GND) twLl 5.0 pS twHl 125 ns twL2 125 ns twH2 5.0 pS Data setup time tos 100 ns Data hold time tOH 100 ns Output delay time too Output hold time toHW Clock rise time t,- 30 ns Clock fall time tf 30 ns = GND) Clock low level width (FCS = Vee) Clock high level width (FCS = Vee! Clock high level width (FCS Note: Typ Max 3.0 100 Unit Note ps ns 1. The following load circuits are connected for specification: * Output terminal .....- - - , 30pF (including jig capacitance) HITACHI 336 Hitachi America; Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005"1819· (415) 589-8300 HD61105, HD61105A Terminal Configuration Input Terminal Applicable Terminals: Dr, CL, SHL, FCS, M Vee PMOS NMOS Output Terminal Applicable Terminal: DO Vee PMOS o--------t NMOS ~ r Output Terminal Applicable Terminals: Xl-XSO ..c PMOS PMOS V, Ve Vee ...r::- NMOS NMOS Vs V2 HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 337 HD61105, HD61105A Block Diagram V, V2 V5 Va 80 output terminals --------------Vee 1 GN 0 2 3 Uquid crystal display driver circuit I-78 79 80 VEE ---------------Level shifter ---------------~ _~rrt' oI SH L 2 3 tnifirectlonal shift register SR .--- 78 Logic ---------------- ,Logic FCS '--- HITACHI 338 M ~ ~ 79 80 T t CL l7J . shifter Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 o HD61105, HD61105A Block Functions Bidirectional Shift Register Liquid Crystal Display Driver Circuit This is a 80-bit bidirectional register. The data from the Dl terminal is shifted by the shift clock CL. The output terminal DO outputs the last shifted data. In case of serial cascade connection, terminal DO functions as the data input to the next LSI. Terminal SHL selects the data shift direction (table i), and the terminal FCS selects the shift clock phase (table 2). The combination of the data from the shift register with M signal allows one of the four liquid crystal display driver levels Vi, V2, V5, and V6 to be transferred to the output terminals (table 3). Table 1 SHL Truth Table (Positive logic) SHL Data Shift Direction DI --> SR1 o DI --> SR80 --> SR2 --> --> SR79 SR3 ........................... SR79 --> SR78 --> ........................ SR2 SR80 --> DO SR1 --> DO --> Table 2 FCS Truth Table FCS Shift Clock Phase o Shifted at the falling edge of Cl Shifted at the rising edge of Cl Table 3 M Truth Table (Positive logic) Data from tha Shift Ragister M output leval o o V5 o v, o Ve HITACHI Hitachi America, Ltd.· Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 339 HD61105, HD61105A HD61105 Terminal Functions Tarmir.al Number'vf Nama Terminals ConnllCteci to Functions Power supply Vee - GND: Power supply for internal logic Vee - VEE: Power supply for LCD drive circuit Liquid crystal drive level power supply Power supply for liquid crystal drive V" V2: selection level Vs, Va: non-selection level FCS Vee or GND Selects shift clock phase. FCS = Vee Shift register operates at the rise of CL FCS = GND Shift register operates at the fall of CL M Controller Signal to convert LCD driver signal into AC CL Controller Shift clock FCS = Vee Shift register operates at the rise of CL FCS = GND Shift register operates at the fall of CL DI Controller or terminal DO of HD6ll05 Shift register data input In case of cascade connection, the terminal DI is connected to the terminal DO of the preceding LSI. Open or terminal DI of HD6ll05 Shift register data output In case of cascade connection, the terminal DO is connected to the terminal DI of the next LSI. Vee or GND Selects shift direction of bidirectional shift register. I/O Vee GND VEE 4 a DO SHl X,-Xso 80 a Liquid crystal display SHl Shift Direction Common Scannin{, Direction Vee DI-+ SRl -+ SR2 -+ SR80 X, -+ Xso GND DI-+ SR80 -+ SR79 -+ SRl Xso -+ X, liquid crystal display driver output Outputs one of the four liquid crystal display driver levels V" V2, V5, and Va with the combination of the data from the shift register and M signal. M~ Data ~ Output level Data 1 : Selection level Data 0: Non-selection level When SHl is Vee, X, corresponds to COMl and Xso corresponds to COM80. When SHL is GND, Xso corresponds to COMl and X, corresponds to COM80. NC 7 Open Unused. No line should be connected. HITACHI 340 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61105, HD61105A Outline of HD61105 System Configuration When display duty ratio of LCD is 1/80 LCD Controller COM1 80 COM80 Controller LCD 80 COM1 Upper COM80 80 -----------------COM1 Lower COM80 When display duty ratio of LCD is 1/100 Controller HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 341 HD61105, HD61105A When display duty ratio of LCD is 1/160 Controller - . LCD HD61105 (1 ) I I 80 HD61105 I 80 (2) I I • I COM1 COM160 When display duty ratio of LCD is 1/160 Controller LCD 80 COM1 Upper 80 COM160 ----------------- 80 COM1 Lower 80 COM160 HIt"ACHI 342 Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415)589-8300 HD61105, HD61105A When display duty ratio of LCD is 1/200 Controller LCD 1---'8r--0----<~ COM1 80 40 COM200 Controller LCD 80 COM1 80 Upper 40 COM200 40 ------------------ COM1 80 Lower 80 COM200 HITACHI Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819' (415) 589-8300 343 HD61105, HD61105A Example of Connection 1/200 duty ratio Vee +5V Rl Rl > ~ tl R3 v,j R3 V6 +'" ~'" R3 V3 -A,/\, v R2 R3 '" Rl >Rl + Vee V1 V6 Vs V2 Vee GNO ,- M CL ,.... V4 r- -"v v R3 ~ 10 -co 0 Vee c :I: 01 LCD Xeo SHL ~ W COMl I I I I I I I I I FCSr} V5 J>.A R3 COM SO V2 Vee V1 V6 Vee r1c'- V5 IIGNO OV I I I I I I I I I ;= 0 r- OO . ../\, -20V X1 V2 Vee GNO M CL X1 N ci 10 0 :I: r- OO R3 = 150 IIIII~ Open Vee V1 VB Vs V2 Vee GNO M CL 01 Xeo COM160 Vee c ~ 01 I I I I I I I I I I 1 I ~ -co COMSl I I I I SHL FCS W I1 COM161 ,.- I I I COM200 X1 I I I ,M X40 0 ~1 - Xeo :I: SHL ~ I I I 10 0 Vee co c DO W FCSrJr MController CL 01 Note: 1. The values of R1 and R2 vary with the LCD panel used. When bias factor is 1/15, the values of R1 and R2 should satisfy R1 4R1+R2 1 15 For example, R1 = 3 KO, R2 = 33 KO Figure 1 Example of Connection (SHL = Vee. FCS = GND) HITACHI 344 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 HD61105, HD61105A ~~~ r! 'I'll I , ,, I 'i~ I ,IEI'::. I., I II f ,f F F ,~~ " , '" I I I I I I I ,, I: I 1 , I' ~~ ~ I " ~~ ~~' 'I 1 1 II I1 I1 1 1 1 I I1 I' , , I I "' I , I' ~ r' "I I I, 'i~ I~ 'I, " ~~~ ~ ~ ~ ~ ~ ~ ,~~ ~ :1')1 I ~~ I .,1 EI .. I .::1 ' I I " , : I I : , I I I , II I :i~ I 1 II I I r;1 - ,'-_ _ _--.J/ , , _:!! Xo ;1 c;:; gOO 8 xo----x~ !L ·ON) ;1 N . 0 co co -:!! "':!! 2~ Xo xo ____ x~ ;:: CD !:!.!:!. ~ ,'-_ _- - - - - - - . J / 90~~9aH Figure 2 ~",I ~",I ~I .. I ;1;1 5 "':!! II I 1 1 d I I1 I ::~: : J 1~: f.l : ,= . ~ " , I ~ ~ N I ,,~ ~ ~ 4' , I I 8 I "~ ~~~ :I II ;I I 1 !:!.!:!. () 90~ ~9aH ::>:>' co:;j "'-8 ",ox:!! x:!! ~N 0 0 o _____ x~ ,'--_ _ _ _ _ _ - ____/ , (z ·ON) ~ ~ ... _ !:!.!:!. () - / (£ ·ON) 90~ ~9aH Waveform Ezample HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819. (415) 589-8300 345 HD61105, HD61105A +5V~T---r-------~~cc~~__----~·lvcc R3 V, V6 Vs V2 VEE V, V" R1 R3 .1\1' R1 R3 R2 R3 -AIV' R1 R3 V6 GNO ,.-.. M ,.- CL 01 r-- 00 V3 - V4 x, ;::: 0 LCO ~ III ~ 0 J: ,, , L. COM1 0 ;0 SO ~ --.l. FCS -;J,. I I I I SHL Vs I I I Upper I I R1 R3 V2 "vv- Vee V, V6 Vs V2 VEE VEE -12 V h~,,- f-f-- GNO f-- M f-- CL L. 01 r-- 00 GNO OV COMSO COMS1 X, I I N 0 ~ III 0 ;0 0 J: I X20 COM 100 X2' COM1 I I I I I --------------- I I I I I I XSO SHL I COM60 COM61 ~~r Lower I I FCS~ I I I I I I R3 Vee V, V6 Vs f-- V2 I- VEE = 15Q f-- GNO f-- M f-- CL L., 01 Open 00 X, r--- r- COM100 I I I M 0 ~ III ~ ;0 0 I I X40 X4' I I I I Xeo J: SHL Vee l-J FCS'1 M Controller CL 01 Note: Figure 3 1. The values of R1 and R2 vary with the LCD panel used. When bias factor is 1/11, the values of R1 and R2 should satisfy R1 1 . 4R1+R2 11 For example, R1 = 3 KO, R2 = 21 KO Example of Connection 1 (SHL = Vee. FCS = GND) HITACHI 346 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61105, HD61105A Figure 4 Waveform Example HITACHI 1-litachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 . - _ •... .... ~- ... - .. - _.... _ .. --~.--- 347 HD61105, HD61105A +5V 0 , , Vee R3 ~ - Vl Va V5 V2 Vl R3 ~-A/'. V' R2$ R3 ~-A. vV' Rl R3 .,--A/''\r Rl' R3 V3 VEE GNO M CL ,. r- - V4 01 00 - rr I I I I I I I I I I I I ~ ci ~ '"~ a; 0 :r I I s:,~ -- FCS V5 V2 V' -12V xBO .. Vee :::J.~JV'vV' R3 V, a Rl > Rl. , VEE Contrast GNO Vee Vl Va V5 V2 VEE GNO M CL ----- 01 00 I I 0 :r OV I I COM 100 Xao COM1 -------------- I I I I I '" ~ Upper X al ~ a; I I I I I I I I I I I I COM SO COMSl XBOI N ci LCO COMl I I I I I I Xl Lower COM60 COM61 Vee SHL~ FCS I I I I I T17 I I I Vee Vl V6 V5 --ti. V2 R3 ........-- = 150 Open ---- XBO f - - r- COM100 I I I I M ci VEE GNO M CL ~ 01 00 :r I X4l X40 I '"~ a; 0 I I I ;~~' FCS T17 Mr--Controller CL ' - - - 01 Note: 1. The values of R1 and R2 vary with the LCD panel used. When bias factor is 1/11, the values of R1 and R2 should satisfy R1 1 4R1 +R2 11 For example, R1 = 3 KO, R2 = 21 KO Figure 5 Example of Connection 2 (SHL = GND, FCS = Vee) HITACHI 348 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61105, HD61105A " E £ I I I I I I I I I I I I I ~~~ 1~~ ~ ~~L 1~ ~ ~t I I , '~~ ~ ~ , " ", "" I , 1('1')1. '!~ I • IMI I I I t I • I I I I I I I I I I f ' , I I I t • I I I I I I I I I I I: : I I I I I I: I I I I I I I I I I , I '!~ I I I • I I I I I I I : I I I I I I I I : ~I:~I ~",I~-:f!' ~I~ I :> ;5' § ;5' 0 ~ d ,'-----...-;/ JallOJluo:> N (J'1 ~ ~ 0> ::J: s= I:j 0 V1L V2 L V3L V4 L ~ » Y1 Y2 Y80 ;" V1RV2RV3RV4R ~ 3 CD a ::I. n p> ~ Li~uid ~stal display M dnver circuit ::J: s= n ~ -0 . Ii> N ", CL1 =E -, "" 0 0 0 en ~. iil Vcc GND VEE :I ~ a n -0 0 -0 ~ 3;; • CD ::I. (/) cr ", :::> II :~ ,H!., ~~: : ; :1 1 ~~ 1 H 2 1.2 I » .,.. CD E 0 0 'i:. ~ CD ~ ~ (J'1 00 'f' 00 c.> 0 0 I rl2' I 20 >( _CD (") I s.-, 1 . __.I " FCS - Test input I I I I I ... ------------------------ Control circuit -CAR a: t1 en ..... ~ o o HD61200 Block Function Liquid Crystal Display Driver Circuit Selector The combination of the data from the latch circuit 2 and M signal causes one of the 4 liquid crystal driver levels, VI, V2, V3, and V4 to be output. The selector decodes output signals from the counter and generates latch clock, 1 to ,20. When the LSI is not active, ,1~20 are not generated, so the data at latch circuit 1 is stored even if input data (DL, DR) changes. 80-bit Latch Circuit 2 The data from latch circuit 1 is latched at the fall of CL1 and output to liquid crystal display driver circuit. SIP Serial/parallel conversion circuit which converts 1bit data into 4-bit data. When SHL is low level, data from DL is converted into 4-bit data and transferred to the latch circuit 1. In this case, don't connect any lines to terminal DR. When SHL is high level, input data from terminal DR without connecting any lines to terminal DL. 80-bit Latch Circuit 1 The 4-bit data is latched at ,1-+20 and output to latch circuit 2. When SHL is low level, the data from DL are latched in order of 1-+2-+3 ... -+80 of each latch. When SHL is high level, they are latched in a reverse order (80-+79-+78 ... -+1). Control Circuit Controls operation: When E-F/F (enable F/F) indicates 1, SIP conversion is started by inputting low level to E. After 80-bit data has been all converted, CAR output turns into low level and EF/F is reset to 0, and consequently the conversion stops. E-F/F is RS flip-flop circuit which gives priority to SET over RESET and is set at high level of CLI. The counter consists of 7 bits, and the output signals upper 5 bits are transferred to the selector. CAR signal turns into high level at the rise of CLl. The number of bits that can be S/P-converted can be increased by connecting CAR terminal with E terminal of the next HD61200. HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 357 HD61200 Terminal Functions Description Terminal Name Terminals I/O Connected to Functions 1 1 1 Power supply Vee - GND: Power supply for intemallogic 8 Power supply Power supply for liquid crystal drive. Vee - VEE: Power supply for LCD drive circuit V1l (V1R). V2l (V2 R): Selection level V3l (V3R), V4L (V4R): Non-selection level Power supplies connected with V1L and V1 R (V2l & V2R, V3l & V3R, V4L & V4R) should have the same voltages. Y1-Y80 80 o LCD liquid crystal driver outputs. Selects one of the 4 levels, V1, V2 V3, and V4. Relation among output level, M, and display data (D) is as follows: M J 0/ D~ ~~Jtut M Controller 1:'1.1:'3.1:'~IY~ Switch signal to convert liquid crystal drive waveform into AC. CL1 Controller Synchronous signal (a counter is reset at high level). Latch clock of display data (falling edge triggered). Synchronized with the fall of CL1. liquid crystal driver signals corresponding to the display data are output. Cl2 Controller Shift clock of display data (D). Falling edge triggered. DL,DR SHL 2 Controller Vee or GND Input of serial display data (D). (D) liquid Crystal Driver Output 1 (High level) Selection level On o (low level) Non-selection level Off liquid Crystal Display Selects the shift direction of serial data. When the serial data (D) is input in order of 01-+ ... -+080, the relations between the data (D) and output Yare as follows: SHL Y1 Y2 Y3 Y80 low 01 D2 D3 080 High 080 079 078 01 HITACHI 358 Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 HD61200 Terminal Functions Description (cont) Terminal Number of Name Terminals 1/0 Connected to Functions SHL Vccor GND I When SHL is low, data is input from the DL terminal. No lines should be connected to the DR terminal. (cont) When SHL is high, the relation between DL and DR reverses. CAR FCS o GND or the Controls the SIP conversion. t~~inal CAR ~cis~200 The operation stops on high level, and the SIP conversion starts on low level. Input terminal Used for cascade connection with the HD61200 to increase the number of bits that can be SIP converted. HD61200 E of the GND Input terminal for test. Connect to GND. . Operation of the HD61200 The following describes an LCD panel with 64 x 240 dots on which characters are displayed with 1/64 duty cycle dynamic drive. Figure 1 is an example of liquid crystal display and connection to HD61200s. Figure 2 is a time chart ofHD61200 I/O signals. HITACHI Hitachi America, Ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 359 HD61200 COM 1 COM2 COM3 - -- 1, 1 1, 2 2, 1 2, 2 3, 1 3, 2 - I I I I I I 1, 80 1, 81 1, 82 1, 160 1, 161 2, 80 2, 81 2, 82 2, 160 2, 161 ---- 3, 80 ---- I I I I I I I I I I I I ----- I 1, 240 :--- ----- 2, 240 :--3, 240 ~ I I I I I I I I I I I I I I I I I I I I LCD Panel (64 x 240 Dots) COM63 COM64 - - I I I 63, 1 64, 1 I I I 63, 2 64, 2 I I I I I I I I I I I I 64, 64, 80 81 Y80 HD61200 (No.1) :i~...Ja:I~ M ------- 64, 160 Y1 64, 240 ----- Y2 Y80 Y1 HD61200 (No.2) ~~ 240 ~ :i ~...J a:1~ Y80 HD61200 (No.3) ~~ :i~...Ja:I~ 1 11 W 1 11 W 11 0 0 00 IWCJ)U.::::iOOooo 111 63, ----- Y2 ~~ ~ - 64, 82 ----Y1 - 63, 80 - I I I IWCJ)U.::::iOOooo a. IWCJ)U.::::iOOooo a. ww a. a. CL 1 - Cl2 " DATE " Figure 1 LCD Driver with 64 x 240 Dots Cascade three HD61200s. Input data to the DL tenninal of No. I, No.2, and No.3. Connect E of No. 1 to GND. Don't connect any lines to CAR of No.3. Connect common signal tenninals (COMI-COM64) to XI-X64 of common driver HD61203. (m, n) of LCD panel is the address corresponding to each dot HITACHI 360 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 ::J: s= ""2: §" M CL1 Cl2 L..t ~ n' ~ - ::J: ""2: I'!!j -0 ;q. . ii> N = ... I» 0 0 0 I . Y1-Y80 0 a -0 :::t IJ::J :::!. (f) 0" I» ~ !" C") » <0 ~ 0 0 'i:. ~ <0 ~ ~ (TO co

c::> ~ ii" s· CL 1 C12 .s1 ~ I WIII/IMM--- ~ -----lIIIU1It I ----- ~ --- ~ --- ~ -'----~ ~ I * I ' - - - - - - - - - 1 Frame III ...."'I ~. r =r M Cl1 x::::= --- I (JQ C":l "---- --- .fUUl-----.IWUl/UU1 -----.I\JlIlIlMM --- DL_----- ~ Y1-Y80 I I I 4 i I I I I I I ---v Timing chart for vertical direction -------:.1------ _----------------------------Jr Y1(No.1) ~ Y2(No.1) ~ Y80(No.1)~ Y80(No.3) ~ : ~ I • 60,1 61.1 62.1 83,1 ".1 60,2 61. 1. ~ . 63. 64.2 ::x:x:x:::::x=x ------ ::x:x:x:::::x=x ::x:x:x:::::x=x ::x:x:x:::::x=x I I ______ I I Timing chart for example of connection in figure 1. DL input (m. n) is the data that corresponds to each address (m. n) of LCD panel. w ~ II I I I I Timing chart for liquid crystal display driver output 8m ~ ~ o o HD61200 Application Example /r--------- Yl-Y80 HD61200 No. 1 ..J l1 - III: N ,wiaLL.2dddlS~ ,J,.,J,.,J,. t DATE (1) M 240 dots "- Yl-Y80 Y1-Y80 HD61200 No.2 HD61200 No.3 l1 ..J..J - N 11:< III: IW Ch LL. 2 0 0 is C 0 I,J,.,J,. ,w~~2dadlSl~ ..J :E: ,J,.,J,. I I J Cll Cl2 DATE (2) 0 1'9 1'l12 0 IW ..J iaLL. ~ ..J ! 11:111: doCC~ HD61200 No.4 Y80-Y1 981' 1 l12 0 :i ~ is 11:111: ChLL. 0 c~ IW ~ 0 0 91' l12 :i ~ is 11:111: ChLL. 00 c~ IW ~ HD61200 No.5 Y80-Y1 HD61200 No.6 Y80-Y1 j Figure 3 Example of 128 x 240 Dot Liquid Crystal Display (1/64 duty cycle) The liquid crystal panel is divided into upper and lower parts. These two parts are driven separately. HD61200s No.1 to No.3 drive the upper half. Serial data, which are input from the DATA (1) terminal, appear at Y 1 -+ Y2 -+ -- Y80 terminal of No. I, then at Y 1 -+ Y2 -+ -- Y80 of No.2 and then at Y 1-+ Y2 -+ -- Y80 of No.3 in the order in which they were input (in the case of SHL = low). HD61200s No.4 to No. 6 drive the lower half. Serial data, which are input from DATA (2) terminal, appear at Y80 -+ Y79 -+ -- Y 1 of No.4, then at Y80 -+ Y79 -+ -- Y 1 of No. 5 and then Y80 -+ Y79 -+ -- Y 1 of No. 6 in the order in which they were input (in the case of SHL = high). As shown in this example, a PC board for a display divided into upper and lower half can be easily designed by using the SHL terminal effectively. HITACHI 362 Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, cA 94005-1819' (415) 589-8300 HD61202------------(Dot Matrix Liquid Crystal Graphic Display Column Driver) Description Features HD61202 is a column (segment) driver for dot matrix liquid crystal graphic display systems. It stores the display data transferred from a 8-bit micro controller in the internal display RAM and generates dot matrix liquid crystal driving signals. Each bit data of display RAM corresponds to the on/off state of a dot of a liquid crystal display to provide more flexible than character display. As it is internally equipped with 64 output drivers for display, it is available for liquid crystal graphic display with many dots. The HD61202, which is produced in the CMOS process, can complete portable battery drive equipment in combination with a CMOS microcontroller, utilizing the liquid crystal display's low power dissipation. Moreover it can facilitate dot matrix liquid crystal graphic display system configuration in combination with the row (common) driver HD61203. Dot matrix liquid crystal graphic display column driver incorporating display RAM RAM data direct display by internal display RAM RAM bit data 1: On RAM bit data 1: Off Internal display RAM address counter preset, increment Display RAM capacity: 512 bytes (4096 bits) 8-bit parallel interface Intemalliquid crystal display driver circuit 64 Display duty cycle: Drives liquid crystal panels with 1/32-1/64 duty cycle multiplexing Wide range of instruction function: Display Data Read/Write, Display On/Off, Set Address, Set Display Start Line, Read Status Lower power dissipation: during display 2 mW max Power supply: Vee: 5 V ± 10% Liquid crystal display driving voltage: 8 V to 17.0 V CMOS process loo-pin flat plastic package (FP-loo) I HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300 363 HD61202· Absolute Maximum Ratings Note item Symbol Value Unit Supply voltage Vee -0.3 to +7.0 V 2 VEEl VEE2 Vee -19.0 to Vee + 0.3 V 3 VTl VEE - 0.3 to Vee + 0.3 V 4 2,5 Terminal voltage (1) Terminla voltage (2) VT2 -0.3 to Vee + 0.3 V Operating temperature Topr -20 to +75 °C Storage temperature Tstg -55 to +125 °C Notes: 1. 2. 3. 4. 5. lSls may be destroyed if they are used beyond the absolute maximum ratings. In ordinary operation, it is desirable to use them within the recommended operation conditions. Using them beyond these conditions may cause malfunction and poor reliability. All voltage values are referenced to GND ,. 0 V. Apply the same supply voltage to VEE1 and VEE2. Applies to V1 l, V2l, VSl, V4l, V1 R, V2R, V3R, and V4R. Maintain Vee~V1l- V1R~V3l .. V3R~V4l- V4R~V2l- V2R~ VEE Applies to M, FRM, Cl, RST, ADC, ,1, ,2, CS1, CS2. CS3, E, RI'N, Oil, and DBa-DB7. HITACHI 364 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61202 Pin Arrangement ADe M vee V4R V3R V2R V1R VEE2 Y64 Y63 Y62 Y61 Y60 Y59 Y58 Y57 Y56 Y55 Y54 Y53 Y52 Y51 Y50 Y49 Y48 Y47 Y46 Y45 Y44 Y43 (Top view) HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 365 HD61202 Electrical Characteristics = '(GND O,V, Vee +75°C) =4.5 to 5•.5 V, Vee - VEE =8 to 17.0 V, Ts.:: -20 to Limit Item Symbol Min Input high voltage VIHC VIHT Vile Input low voltage Max Unit 0.7 x Vee Vee V 1 2.0 Vee V 2 0 0.3 x Vee V 0.8 V 2 V Typ V/lT 0 Output high voltage VQi 2.4 Output low voltage Va. Input leakage current IlL -1.0 +1.0 Three-state (off) input current !rSL -5.0 +5.0 Liquid crystal supply leakage current ItSL -2.0 +2.0 Driver on resistance ~ 7.5 Dissipation current Icc (1) Icc (2) 500 Notes: 1. 2. 3. 4. 5. 6. 7. 8. 0.4 100 Test Condition Note V lett - -205 "" lot. .1.6 mA 3 "" Vin - GND-Vee Vin • GND-Voc: 4 5 Vin. VEE -Vee 6 kn Vee-VEE-15 V ±ILOAO - 0.1 mA 8 """" During display 7 During aoc:ess access cycle - 1 MHz 7 "" "" 3 Applies to M, FRM, Cl, RST, .1, and ~. Applies to CS1, CS2, CS3, E, RIW, DII, and D80-087. Applies to D80-087. Applies to terminals except for D80-087. Applies to D80-087 at high impedance. Applies to V1 l-V4L and V1 R-V4R. Specified when liquid crystal display is in 1/64 duty cycle mode. Operation frequency fCLl( - 250 kHz (.1 and ~ frequency) Frame frequency fM - 70 Hz (FRM frequency) Specified in the state of Output terminal: not loaded Input level: Vii - Vee (V) . VIL·- GND (V) Measured at Vee terminal Resistance between terminal Yand terminal V (one of V11, V1 R, V2l, V2R, V3l, V3R, V41, and V4R) when load current flows through one of the terminals Y1 to Y64. This value is specified under the following condition: HITACHI 366 Hitachi America, ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61202 \be- VEE- 15.5 V V1l - V1R. V3l - V3R- Vee- 217 (Vee- VEE) ~l - V2R • V4L - V4~ Vee + 218 (Vec - VEE) RON --------<0 -----0 --------<0 t---o ~--JVV'\r-----+ Terminal Y (Y1-Y64) The following is a description of the range of power supply voltage for liquid crystal display drive. Apply positive voltage to VIL =VIR and V3L =V3R and negative voltage to V2L =V2R and V4L =V4R within the ~V range. This range allows stable impedance on driver output (RON). Notice that ~V depends on power supply voltage Vee - VEE' .....,r---------Vee -------- V1 (V1 l • V1 R) flV Range of Power Supply Voltage for liquid Crystal Display Drive ---- V3 (Val· V3R ) ~5.0 ~ ~ 3· ---------- ------------ V4 (V4l - V4R) ------.------- V2 (V2l • V2R) VEE (V) Correlation between Driver Output Waveform and Power Supply V'?ltages for Liquid Crystal Display Drive Correlation between Power Supply Voltage Vee- VEE and flV HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane,CA 94005-1819· (415) 589-8300 367 HD61202 Terminal Configuration Input Terminal Applicable terminals : M, FRM, Cl, RST, ~ 1, ~ 2, CS1, CS2, CS3, E, RIW, OIl, AOC Vee PMOS NMOS InputlOutput Terminal Applicable terminals: OBa-OB7 Vee ,------- ---1 I :--Enable :I PMOS I fr-I Data I : I ' -_ _ _ _ _ _--':NMOS I I : I I L _________ ! (Output circuit) [three state)) Output Terminal ..c- Applicable Terminals: Y1-Y64 PMOS V1l,V1R Vee ..c- PMOS V3l, V3R Vee ..c- NMOS V4l, V4R VEE ..c- NMOS V2l,V2R VEE HITACHI 368 Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 HD61202 Interface AC Characteristics MPU Interface (GND =0 V. Vee = 4.5 to 5.5 V. Ta = -20 to +75°C) Item Symbol Min Unit Note E cycle time tCYC 1000 ns 1.2 E high level width PWEH 450 ns 1.2 E low level width PWEL 450 ns 1.2 E rise time tr 25 ns 1,2 25 E fall time tf Address setup time tAS Max Typ ns 1,2 140 ns 1,2 Address hold time tAH 10 ns 1,2 Data setup time tosw 200 ns 1 Data delay time· tooR ns 2,3 Data hold time (Write) tOHw 10 ns 1 Data hold time (Read) tDHR 20 ns 2 320 Notes: 1. tCYC E PWEH PWEL tl tAH tr RIW 2.0V CS1-CS3 2.0V DII 0.8V tosw DBo-DB7 2.0V 0.8 V Figure 1 CPU Write Timing HlTACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 369 HD61202 Notes: 2. ~----------tc~~~========~ \1+---- PWEl--~---PWEH- E RIW 0.8 V CS1-CS3 2.0 V 011 0.8 V OBO-DB7 0.4 V Figure 2 3. CPU Read Timing OBO-DB7: load circuit RL .. 2.4kn Test point 01 A .. 11 kn RL C .. 130 pF (including jig capacitance) 1 C A Diodes 01-04 are all 1S2074 02 03 04 ®. HITACHI 370 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61202 Clock Timing (GND =0 V, Vee = 4.5 to =-20 to +75°C) 5.5 V, Ta Limit Max Unit Test Condition 20 I1s Fig. 3 625 ns Fig. 3 twt+2 625 ns Fig. 3 Item Symbol Min +1, t2 cycle time tcyc 2.5 +1 low level width tWL+1 ~ low level width Typ tWJ-t+1 1875 ns Fig. 3 +2 high level width tWJ-t+2 1875 ns Fig. 3 .1--+2 phase difference .1 high level width t012 625 ns Fig. 3 t2-+1 phase difference t021 625 ns Fig. 3 .1, +2 rise time tr 150 ns Fig. 3 .1, t2 fall time tf 150 ns Fig. 3 91 92 tWHa2 Figure 3 External Clock Waveform HITACHI Hitachi America, Ltd.· Hitachi PI~za· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 371 HD61202 . Display Control Timing (GND = OV, Vee = 4.5 to 5.5 V. Ta = -20 to +75 °C) Limit Max Unit Te.t Condition -2 +2 J's Fig. 4 toM -2 +2 Fig. 4 CL low level width tWLCL 35 J1S J's CL high level width tWHCL 35 J's Fig. 4 Item Symbol Min FRM delay time toFRM Mdelaytime CL Typ Fig. 4 O. 7Vce " ..- - - . . I I O.3VeC FRM M Figure 4 Display Control Signal Waveform HITACHI 372 Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 HD61202 Block Diagram ...J...J...J...J .... »» a: .... a: a: a: »» .... NC') >->->- -------------- NC')~ '---f .... 1NI C') I Li~uid ~rys~al (2; display dnver CircUit M ~ N Display date latch .... INIC')I NC')~ CD f31(2;1-f31~t- ~ CD r--- ... $ ::3 8 ~::3 III "0 11 "0 .J:l CD }' 0 ~ en ! "0 11 0 N - L en VEE2,- f-- til til ~ i- >X 8 .t: 1ii III ~ l!! Vee,- f-GND - f-VEE1 - f-- ... ::::i: « a: c ADC r--- 00 00 --- ----- ------ 1----1 1 Instruction 1 1 register _I el C I1 Input 1 register 1 1111 tl $1 ~ t:: ... - liiU; ,--- III Q) }'.~ g.Q) tII-- c= Co :r T ---------Output register .E. • i 1/0 buffer 1 1____________ 1 C') ~- - -~00 ~ flag oo~ oot >. -!:a fo.f.- c .- C , 8 8 CL FRM : I------.,..-----.J ...... RST ~ ,,1 ~ ,,2 HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 373 HD61202 Terminal Functions Terminal Number of Connected Function. Name Terminal. 1/0 to t'. Vcc GND 2 Power supply Power\ supply for internal logic. Recommended voRage is: GND.OV Vcc· 5V ±10% VEE1 VEE2 2 Power supply Power supply for liquid crystal display drive circuit. Recommended power supply voltage is Vcc - VEE. 8 to 17.0 V. Connect the same power supply to VEE1 and VEE2. VEE1 and VEE2 are not connected each other in the LSI. V1L, V1R V2L. V2R )l3L. V3R V4L. V4R 8 Power supply Power supply for liquid crystal display drive. Apply the voRage specified depending on liquid crystals within the limit of VEE through Vee. V1L (V1R). V2L (V2R): Selection level V3L (V3R). V4L (V4R): Non-selection level Power supplies connected with V1 L and V1 R (V2L & V2R. V3L & V3R. V4L & V4R) should have the same voltages. 3 MPU Chip selection. Data can be input or output when the terminals are in the following conditions: Terminal Name CS3 Condition E MPU L Enable. At. wrlte(RIW • Low): At. read(RIW • High): MPU 011 LfJU L H Data of DBO to DB7 is latched at the fall of E. Data appears at DBO to DB7 while E is at high level. Readlwrlte. RIW - High: Data appears at DBO to DB7 and can be read by the CPU. When E • high. 051. CS2 • low and CS3 high. RIW • Low: DBO to DB7 can accept at fall of E when 051. CS2 • low and CS3 • high. Data/instruction. 011 • High: Indicates that the data of DBO to DB7 is display data. 011 • Low: Indicates that the data of DBO to DB7 is display control data. HITACHI 374 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61202 Terminal Functions (cont) Terminal Number of Connected Name Terminals 1/0 to Functions MX:, VccJGND Address control signal to determine the relation between Y address of display RAM and terminals from which the data is output. ACe. High: ACe. Low: DB1-DB7 8 M Y1: $0, Y64: $63 Y64: $0, Y1: $63 1/0 MPU Data bus, three-state 110 common terminal. I HD61203 Switch signal to convert liquid crystal drive waveform into AC. HD61203 Display synchronous signal (frame signal). FfIM Presets the 6-bit display line counter and synchronizes the common signal with the frame timing when the FRM signal becomes high. CL 2 • 1,.2 HD61203 Synchronous signal to latch display data. The rising CL signal increments the display output address counter and latches the display data• HD61203 2-phase clock signal for internal operation. The.1 and.2 clocks are used to preform operations (ItO of display data and execution of instructions) other than display. Y1-Y64 64 0 Liquid crystal display Liquid crystal display column (segment) drive output. These pins outputs light on level when 1 is in the display RAM, and light off level when 0 is it. Relation among output level, M, and display data (D) is as follows; M 0 Output level RST CPU or extemalCR J 0 I ~ IY~ly3·IY~IY11 The following registers can be initialized by setting the RST signal to low level. 1. On/off register 0 set (display off) 2. Display start line register line 0 set (displays from line 0) After releasing reset, this condition can be changed only by instruction. t-c Note: 3 Open Unused terminals. Don't connect any lines to these terminals. 1 corresponds to high level in positive logic. HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane,CA 94005-1819 • (415) 589-8300 ---_._------ ------ --- 375 HD61202 Function of Each Block Interface Control 1. I/O buffer Data is transferred through 8 data bus lines (DBaOB7). OB7: m MSB (Most signifICant bit) OBO: LSB (Least significant bit) Oata can neither be input nor oulput unless m to CS3 are in the active mode. Therefore, when m to CS3 are not in active mode it is useless to switch the signals of input terminals except RST and ADC; that is namely, the internal state is maintained and no instruction excutes. Besides, pay attention to RST and AOC which operate to CS3. irrespectively of m 2. b. Output register The output register is used to store data temporarily that is read from display data RAM. To read out the data from output register, to CS3 should be in the active mode and both 0/1 and RIW should be 1. With the read display data instruction, data stored in the output register is output while E is high level. Then, at the fall of E, the display data at the indicated address is latched into the output register and the address is increased by 1. The contents in the output register are rewritten by the read display data instruction, but are held by address set instruction, etc. Register Both input register and output register are provided to interface to an MPU whose speed is different from that of internal operation. The selection of these registers depend on the combination of RIW and 0/1 signals (table I). Therefore, the data of the specified address cannot be output with the read display data instruction right after the address is set, but can be output at the second read of data. That is to say, one dummy read is necessary. Figure 5 shows the CPU read timing. a. Input register The input register is used to store data temporarily before writing it into display data RAM. The data from MPU is written into the input register, then into display data RAM automatically by internal operation. When m to CS3 are in the active mode and Oil and R/W select the input register as shown in table I, data is latched at the fall of the E signal. Table 1 DII Register SeledioD R/W Operation Reads data out of output register as internal operation (display data RAM -+ output register) o o o Writes data into input register as internal operation (input register -+ display data RAM) Busy check. Read of status data. o Instruction HITACHI 376 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 :::J: s= n 2: » 3CD ~. n }>' !::; P- o :::J: Sf n 2: 011 "0 ~ "I:l tiQ" ""<=><=><=> fD 0 c: ... VI en ~. ;;3 J: a 0~ "0 0 "0 ~ ':< 0 ~ en' C" '" :::l ~ ~ C"'l ." «= ~ fD ------------------~ RIW E AddressOutput register I\) Q, ~ iii" S" !IQ DBO-DB? N N+1 Data at address N I I Busy check Write address N Busy check Read data (dummy) I Busy check Read data at address N N+2 Data at address N + 1 Busy check I Data read address N+1 C") » <0 <=> ""'" <=> '!;. ~ <0 ~ ~ t11 00 <0 0, W <=> <=> W --oJ --oJ ::r: t:I 0') ~ I:\) oI:\) HD61202 Busy Flag Busy flag = 1 indicates that HD61202 is operating and no instructions except status read instruction can be accepted. The value of the busy flag is read E _ _..... out on DB7 by the status read instruction. Make sure that the busy flag is reset (0) before issuing instructions. f BUSy _ _ _ _.....1 I-- flag 1lfCLK ~T TBusy Busy ~3IfCLK fCLK is 91. 92 frequency Figure 6 Display On/Ofr Flip/Flop The display on/off flip/flop selects one of two states, on state and off state of segments YI to Y64. In on state, the display data corresponding to that in RAM is output to the segments. On the other hand, the display data at all segments disappear in off state independent of the data in RAM. It is controlled by display on/off instruction. RST signal = 0 sets the segments in off state. The status of the flip/flop is output to DB5 by status read instruction. Display on/off instruction does not influence data in RAM. To control display data latch by this flip/flop, CL signal (display synchronous signal) should be input correctly. . Display Start Line Register The display start line register specifies the line in RAM which corresponds to the top line of LCD panel, when displaying contents in display data RAM on the LCD panel. It is used for scrolling of the screen. 6-bit display start line information is written into this register by the display start line set instruction. When high level of the FRM signal starts the display, the information in this register is Busy Flag transferred to the Z address counter, which controls the display address, presetting the Z address counter. x, Y Address Counter A 9-bit counter which designates addresses of the internal display data RAM. X address counter (upper 3 bits) and Y address counter (lower 6 bits) should be set to each address by the respective instructions. 1. X address counter Ordinary register with no count functions. An address is set by instruction. 2. Y address counter An address is set by instruction and is increased by 1 automatically by R/W operations of display data. The Y address counter loops the values of 0 to 63 to count. Display Data RAM Stores dot data for display. I-bit data of this RAM corresponds to light on (data = 1) and light off (data = 0) of I dot in the display panel. The correspondence between Y addresses of RAM and segment pins can be reversed by ADC signal. HITACHI 378 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 HD61202 As the ADC signal controls the Y address COWlter, reversing of the signal during the operation causes malfunction and destruction of the contents of register and data of RAM. Tberefore, never fail to connect ADC pin to Vcc (]I' GND when using. Figure'7 shows the relations between Y address of RAM and segment pins in the cases of ADC = 1 and ADC = 0 (display start line = 0, 1/64 duty cycle). HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300· 379 HD61202 --COM1 --COM2 --COM3 --COM4 --COM5 LCD display pattern (HD61203 (HD61203 (HD6l203 (HD61203 (HD61203 (HD61203 (HD61203 (HD61203 (HD61203 ~-COM6 _____ ~- COM7 ~~,=-~~:~,=-~~:=====±±t~== ~~~ .......... _-- 'I I COM62 C0M63 COM64 (HD61203 X62) (HD61203 X63) (HD61203 X64) yy 2 3 Y64 Line Line 01 ----.-UftiTrirn-I7t~.­ Line 2 __ .___ I..r."~~~~t-- o o 0 0 1 0 0 1 1 0 0 1 o 1 0 1 X. o0 1 0 0 000 o0 0 o0 0 o Display RAM data 1 1 1 0 0 I .....-1HD61202 Pin Name DBO(LSB) DBl DB2 DB3 DB4 DB5 DB6 DB7(MSB) I I I I X.7 L .... rJ 01 0 0 0 Line 62 ----- 1 1 1 1 1 0 Line 63 ----- o 0 o 0 o 0 X1) X2) X3) X4) X5) X6) X7) X8) X9) I I I I I I I I I' o I I I I I I o 1 2 3 4 5 616263 RAM Y Address ADC • 1 (Connected to Vee> Figure 7 Relation between RAM Data and Display HITACHI 380 Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 HD61202 ~---~ ...- ..- - - - - . - - -..- . - . - - - . - - - . - - - - -..... - . . .- -~ ---COM1 ---COM2 ---COMa --COM4 ---COMS ---COM6 ---COM7 LCD display pattern (HD61203 (HD61203 (HD61203 (HD61203 (HD61203 (HD61203 (HD61203 (HD61203 (HD61203 I-~=±=ti=tjt=~~~=tj=}=====COM8 COM9 X1) X2) X3) X4) XS) X6) X7) X8) X9) '-----'---..,..- ,..-'- yyyy 63 Line 0 ----- o 1 1 Line 1 ----- 1 0 0 Line 2 ----0 0 0 0 X.O 1 1 0 0 Display 0 0 RAM date 0 0 0 0 0 o Y3 v.! 1 0 0 0 1 0 0 0 1 1 0 0 1 o1 0 1 0 o 1 1 0 0 0 1 0 0 0 1 o0 0 0 o0 0 0 9 o 0 1 0 1 0 1 0 0 0 0 0 0 0 0 '-- X=1 ....... -11 ~HD61202 Pin Namel DBO(LSB) DB1 DB2 DB3 DB4 DBS DB6 DB7(M SB) __ I---'-- I I I I I I I I I I I I r-- 010 o 0 0 Line 62 ----- 1 1 1 1 1 0 Line 63 ----- o 0 o 0 o 0 I I I I I I o (HD61203 X62) (HD61203 X63) (HD61203 X64) y 1 1 0 0 0 1 0 0 0 0 COM62 COM63 COM64 1 2 3 4 S o o 0 o 0 616263 ~ RAM Y Address ADC = 0 (Connected to GND) Figure 7 Relation between RAM Data and Display (cont) HITACHI Hitachi America, Ltd.· Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 381 HD61202 Z Address Counter Reset The Z address counter generates addresses for outputting the display data synchronized with the common signal. This counter consists of 6 bits and counts up at the fall of the CL signal. At the high level of FRM, the contents of the display start line register is preset at the Z counter. The system can be initialized by setting RST terminal at low level when turning power on. Display Data Latch The display data latch stores the display data temporarily that is output from display data RAM to the liquid crystal driving circuit. Data is latched at the rise of the CL signal. The display· on/off instruction controls the data in this latch and does not influence data in display data RAM. I. Display off 2. Set display start line register line O. While RST is low level, no instruction except status read can be accepted. Therefore, execute other instructions after making sure that DB4 = 0 (clear RESET) and DB7 0 (Ready) by status read instruction. The conditions of power supply at initial power up are shown in table 1. = Liquid Crystal Display Driver Circuit The combination of latched display data and M signal causes one of the 4 liquid crystal driver levels, VI, V2, V3, and V4 to be output. Table 1 Item Power Supply Initial Conditions Symbol Reset time Min Typ Max 1.0 Unit J.1S Rise time 200 ns Do not fail to set the system again because RESET during operation may destroy the data in all the registers except on/off register and in RAM. Vee HITACHI 382 Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 HD61202 Display Control Instructions Outline Table 2 shows the instructions. Read/write (R/W) signal, data/instruction (DII) signal, and data bus signals (DBO to DB7) are also called instructions because the internal operation depends on the signals from the MPU. These explanations are detailed in the following pages. Generally, there are following three kinds of instructions: 1. Instruction to set addresses in the internal RAM 2. Instruction to transfer data from/to the internal RAM 3. Other instructions In general use, the second type of instruction is used most frequently. Since Y address of the internal RAM is increased by 1 automatically after writing (reading) data, the program can be shortened. During the execution of an instruction, the system cannot accept instructions other than status read instruction. Send instructions from MPU after making sure that the busy flag is 0, which is proof that an instruction is not being excuted. HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 383 Co> S en Table 2 InstructioDs Q> .". ~ ::z: s= N 2: N o n l> Code 3 CD :::!. n po !:; Instructions R/W DII DB7 DB6 DBS DB4 DB3 DB2 DB1 DBO Functions !"- Display on/off o 0 0 ~ Display start line o 0 ~ '" Set page (X address) 0 0 Set address o 0 0 Yaddress (0-63) 0 Busy 0 ON! • ::z: 2: · 0 1/0 Display start line (0-63) Specifies the RAM line displayed at the top of the screen. Page (Goo7) 0 Sets the page (X address) of RAM at the page (X address) register. N 0 0 0 en a;. ~ :I Status read Reset 0 OFF ~ a-c n -c 0 • - Controls display onloff. RAM data and internal status are not affected. 1: on. 0: off. Sets the Y address in the Y address counter. 0 0 o Reads the status. RESET ~ :I ON.OFF tD Busy ii" cr '" :::! !D (") Write display data o Write data l> co .". 0 0 ~ ~ co • ~ ..2:! 01 Q> % Co> ·0 0 Note: 1. Busy time varies with the frequency (fClK) of +1. and +2, (lIfCLK s; TBUSY S; MCW 1: Reset 0: Normal 1: Display off 0: Display on 1: Internal operation 0: Ready Writes data DBO (lSB) to DB7 (MSB) on the data bus into display RAM. HD61202 Detailed Explanation Display onloff ANI Code D/I DB7 - - - - - - - - ........... DBO o D - low-order bit - high-order bit The display data appears when 0 is 1 and disappears when 0 is O. Though the data is not on the screen with 0 = 0, it remains in the display data RAM. Therefore, you can make it appear by changing 0 = 0 into 0=1. Display start line Code RIW D/I o o 4- DB7 ........... high-order bit low-order bit - Z address AAAAAA (binary) of the display data RAM is set in the display start line register and displayed the top of the screen. Figure 8 shows examples of display (1/64 duty cycle) when the start line = 0-3. When the display duty cycle is 1/64 or more (ex. 1/32, 1/24 etc.), the data of total line number of LCO screen, from the line specified by display start line instruction, is displayed. at HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 385 HD61202 COM1 COM2 COM3 COM4 COMS COM6 COM7 COM8 COM9 COM1 .COM2 COM3 COM4 COMS COM6 COM7 COM8 COM9 COM60 COM61 COM62 COM63--I. COM64 Start line - 0 COM1 COM2 COM3 COM4 COMS COM6 COM7 COM8 COM9 Start line - 1 COM1 COM2 COM3 COM4 COMS COM6 COM7 COM8 COM9 COM60--I. COM61 COM62 COM63 COM64 Start line - 3 Start line - 2 Figure 8 Relation Between Start Line and Display HITACHI 386 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61202 Set page (X address) Code ANI D/I 0 0 I - ------------~~ DB7 DBO o A A Iow-order bit - high-order bit X address AAA (binary) of the display data ~ is set in the X address register. Mter that, writing or reading to or from MPU is executed in this specified page until the next page is set. See figure 9. Set Y address Code ANI D/I DB7 0 0 0 I - ------------~" A A DBO A A high-order bit A low-order bit - Y address AAAAAA (binary) of the display data RAM is set in the Y address counter. After that, Y address counter is increased by 1 every time the data is written or read to or from MPU. o1 Yaddress 2 ------------------- 61 62 63 DBO Page 0 1x.o Page 1 1 DB7 DBO DB7 X.1 r~~====~~--------~ ,..,DBO Page 6 DB7 DBO Page 7 DB7 Figure 9 ----- }x., 1 X.7 Address Configuration of Display Data RAM HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 387 HD61202 Status Read RIW - 011 OB7 ------.............. high-order bit OBO Iow-order bit - Busy: When Busy is I, the LSI is executing internal operations. No instructions are accepted while Busy is I, SO you should make sure that Busy is 0 before writing the next instruction. ON/OFF: Shows the liquid crystal display conditions: on condition or off condition. When ON/OFF is I, the display is in off condition. When ON/OFF is 0, the display is in on condition. RESET: RESET = 1 shows that the system is being initialized. In this condition, no instructions except status read can be accepted. RESET =0 shows. that initializing has finished and the system is in the usual operation condition. Write Display Data 011 087 ....... 080 Codelol 101010101010100 RIW - high-order bit Iow-order bit - Writes 8-bit data DDDDDDDD (binary) irito the display data RAM. Then Y address is increased by 1 automatically. Read Display Data RIW Code - 011 087 ...... 080 1 101010101010101 ° high-order bit Iow-order bit - Reads out 8-bit data DDDDDDDD (binary) from the display data RAM. Then Y address is increased by 1 automatically. One dummy read is necessary right after the address setting. For details, refer to the explanation of output register in "FUNCTION OF EACH BLOCK". HITACHI 388 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 .' ' HD61202 Use of HD61202 Interface with HD6U03 (1'64 duty cyde) VCC COM1 X1 Vee V1l, V1R V61, V6R V5l, V5R V2l,V2R VEE GND Vee V1 V6 V5 V2 VEE ) lCDPanel 54 x 54 dots i'! COM54 .... X54 fa fa C/) C/) HD61203 SHL DS1 DS2 TH Cl1 FS MIS FCS S'ii Dl DR ~ Open Open Y1 ~Y54 M CL2 FRM til 1 t112 M Cl FRM til 1 82 Vee V1l, V1R V2L, V2R V3l, V3R V4l,V4R HD61202 VEElo V EE2 ----------, Power supply circuit +5V Vee) Vee ADC RST GND I R3V1 R1 R1 HITACHI Hitachi America, Ltd.• Hitachi Plaza· 2000 Sierra Point Pkwy, 0Brisbane,CA 94005-1819 0(415) 589-8300 - - - - - _ .. __ . .-_.. -- ...... _.. ~--. --'-~--'-' .~---~ ._._- 389 HD61202 81 -----u---u--u----------"s-- 82 ~-----~ -----------:...----------- , '\ \ Input CL FRM M ~-----~-----~ -Wl ! ! ------4-n ! ! ------W1'! I '. I I -----""TT9. I 11 frame 1....,.--+-+-t 1 frame I I -----:::f!:I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I· I I I I I I I I I I I I X1 X2 , ( ) I 1+WT II II I I COM I IIIV6 I I1 I V2 I I IIIv61 ~ TTl I I V1 I I II I I I I 1 V6 F------ I I ! I, I I I V6 I I I I I I I I I V1 ! !! I I ~I ~ ~IV1 X64 V5 ----- , I I II II II _____ j'"l1V2 I IIv6 I I r1 -----TTl I !! ! IV1, I V5 1 II~ I I I I I I I rr-uL -----~! i I I I I I I I I I I I V1 Y1 Y64 V1 ~-----+H ! ! YL---Ufl ii~" I I I I I I I I linllV1 I I I I I I YL__ I , III SEG I I I I I I IV1 1 V3 41 I I I I V2 !! Selected I· "I· I I Non-selected " I ! I I I ! The waveforms of Y1 to Y64 outputs vary with the display date. In this example, the top line of the panel lights up and other dots do not. Figure 10 LCD Driver Timing Chart (1/64 duty cycle) HITACHI 390 Hitachi America, Ltd." Hitachi Plaza" 2000 Sierra Point Pkwy." Brisbane, CA 94005-1819" (415) 589-8300 HD61202 Interface with CPU 1. Example or connection with 8D6800 Decoder A15 I A1 VMA AO r-r ~ .- mCS2 I L - J VCC - 011 ANI H06800 ANI HD61202 1/J2 DO I 07 CS3 E I I I 080 I OB7 fVCC RES Figure 11 t Jm Example or Connection with 8D6800 Series In this decoder, addresses of HD61202 in the address area of HD6800 are: Read/write of the dispJay data $FFFF write of dispJay inslrUction $FFFE $FFFE Read out of status Therefore, you can conbOl HD61202 by reading/writing the data at these addresses. HITACHI Hitachi America, Ltd.· Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 --~- ._. ------ 391 HD61202 1. Example or connection with HD6801 74L8154 P10 P11 P12 P13 (108)(8C1) (RIW) (8C2) YO Y1 I I A B I . I I C82 Vcc- C83 I C I ..!.. Y15 D G1 G2 , .- em RIW P14 D/I HD61202 No.1 HD6801 E E P30 P31 (Date bus) DBO DB1 I I I l I I I I P37 DB7 Set HD6801 to mode 5. PIO to P14 are used as the output port and P30 to P37 as the data bus. 74LSI54 4-to-16 decoder generates chip select signal to make specified HD61202 active after decoding 4 bits of PIO to P13. Therefore, after enabling the operation by PI0 to P13 and specifying DII signal by P14, read/write from/to the external memory area ($0100 to $OIFE) to control HD61202. In this case, lOS signal is output from SCI and R/W signal from SC2. For details of HD6800 and HD6801. refer to their manuals. . HITACHI 392 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415} 589-8300 HD61202 Example of Application HD61202 No.9 V1--V64 !------- HD61202 No. 10 V1--V64 ----------- !------- HD61202 No. 16 V1--V32 ! ------- COM1 OOM2 COM3 i X1 r- 8-cX2 rN CD X3 r-- t- ~2 -. I L- :::r:~X" 1 8 ...... X1 X2 ~1 X3 I I I I I I I I C0M64 LCD Panel 128 )( 480 dots C0M65 COM66 C0M67 co (I) I o~ :::r: X64 r- , COM128 Note: 1-------1 1-------1 V1--V64 HD61202 NO.1 V1--V64 HD61202 No.2 1-------1 ----------- V1--V32 HD61202 No.8 In this example. two HD61203s output the equivalent waveforms. So. stand-alone operation is possible. In this case. connect COM1 and COM65 to X1. COM2 and COM66 to X2 •..•• and COM64 and COM128 to X64. However. for the large screen display. it is better to drive in 2 rows as in this example to guarantee the display quality. HITACHI Hitachi America. Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 393 HD61203--------~--(Dot Matrix Liquid Crystal Graphic Display Common Driver; Description Features The HD61203 is a common signal driver for dot matrix liquid crystal graphic display systems. It generates the timing signals (switch signal to convert LCD waveform to AC, frame synchronous signal) and supplies them to the column driver to contrcil display. It provides 64 driver output lines and the impedance is low enough to drive a large screen. As the HD61203 is produced by a CMOS process, it is fit for use in portable battery-driven equipment utilizing the liquid crystal display's low power consumption. The user can easily construct a dot matrix liquid crystal graphic display system by combining the HD61203 and the column (segment) driver HD61202. Dot matrix liquid crystal graphic display common driver with low impedance Low impedance: 1.5 ill max Internal liquid crystal display driver circuit: 64 circuits Internal dynamic display timing generator circuit Display duty cycle When used with the column driver HD61202: 1/48, 1/64, 1/96, 1/128 When used with the column driver HD61200: Selectable out of 1/32 to 1/128 Low power dissipation: During display: 5 mW Power supplies: Vee: 5 V ± 10% Power supply voltage for liquid crystal display drive: 8 V to 17 V CMOS process loo-pin flat plastic package (FP-loo) Absolute Maximum Ratings Item Symbol Limit Unit Note Power supply voltage (1) Vee -0.3 to +7.0 V 2 Power supply voltage (2) VEE Vee -19.0 to Vee + 0.3 V 5 Terminal voltage (1) Vn - 0.3 to Vee + 0.3 V 2,3 4,5 Terminal voltage (2) VT2 VEE - 0.3 to Vee + 0.3 V Operating temperature Topr -20 to +75 'C Storage temperature Tstg -55 to +125 'C Notes: 1. 2. 3. 4. 5. If LSls are used beyond absolute maximum ratings, they may be permanently destroyed. We strongly recommend you to use the lSI within electrical characteristic limits for normal operation, because use beyond these conditions will cause malfunction and poor reliability. Based on GND .. OV. Applies to input terminals (except V1l, Vi R, V2l, V2R, V5L, V5R, VSl, and VSR) and 110 terminals at high impedance. Applies to Vi L, Vi R, V2L, V2R, V5L, VSR, V6l, and V6R. Apply the same value of voltages to V1l and Vi R, V2l and V2R, VSl and VSR, V6l and VSR, VEE (23 pin) and VEE (58 pin) respectively. Maintain Vee ~ Vi L .. Vi R ~ VSl- VSR ~ VSl = VSR ~ V2l .. V2R ~ VEE HITACHI 394 Hitachi America:Ud.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61203 Pin Arrangement X22 X21 X43 X44 ~O X~ X19 X18 X17 X16 X15 X14 X13 X12 X11 X10 X9 X8 X7 X6 X5 X4 X3 X2 X1 X46 X47 X48 X49 X50 X51 X52 X53 X54 X55 X56 X57 X58 X59 X60 X61 X62 X63 X64 VEE VEE V6L V5L V2L V1L V6R V5R V2R V1R Vee DL TH Cl2 FS CU (Top view) HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 395 HD61203 Electrical Characteristics DC Characteristics (Vee = 5 V ± 10%, GND = 0 V, Vee - VEE = 8.0 to 17.0 V, Ta = -20 to +75°C) Specifications Test Item Symbol Min Max Unit Input high voltage VIH 0.7xVcc Vee V Input low voltage VIL GND 0.3 x Vee V Output high voltage VOH Vee -O.4 Output low voltage VOL Vi-Xj on resistance ~ Input leakage current IlL 1 -1.0 Typ Test Conditions Note V IOH --0.4 mA 2 0.4 V IOL= 0.4 mA 2 1.5 kn Vee - VEE = 17V Load current ±150 J.IA 13 1.0 Vin= Oto Vee 3 Input leakage current IIL2 -2.0 2.0 J.IA J.IA Vin - VEE to Vee 4 Operating frequency foprl 50 SOO kHz In master mode external clock operation 5 Operating frequency fopr2 0.5 1500 kHz In slave mode shift register S Oscillation frequency fosc 315 585 kHz Cf .. 20pF±5% Rf-47kn±2% 7, 12 Dissipation current (1 ) IGGl 1.0 rnA In master mode 1/128 duty cycle Cf-20pF Rf=47kn 8,9 Dissipation current (2) IGG2 200 J.IA In slave mode 1/128 duty cycle 8, 10 Dissipation current lEE 100 J.IA In master mode 1/128 duty cycle 8, 11 Notes: 1. 2. 3. 4. 5. 450 Applies to input terminals FS, DS1, DS2, CR, SHL, MIS, and FCS and 110 terminals DL, M, DR, and CL2 in the input state. Applies to output terminals, "1, "2, and FRM and 110 common terminals DL, M, DR, and CL2in the output state. Applies to input terminals FS, DS1, DS2, CR, SHL, MIS, FCS, CU, and TH. I/O terminals DL, M, DR, and CL2 in the input state and NC terminals. Applies to V1 L, V1 R, V2L, V2R, V5L, V5R, VSL, and VSR. Don't connect any lines to X1 to XS4. External clock is as follows. sm, HITACHI 396 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61203 TH Tl TH Outy Cycle. TH tTl External clock waveform Min Typ Max Unit 45 50 55 % trcp 50 ns tfcp 50 ns DU~ ~e trcp External tfcp R C - , "]CR""r~ 6. 7. x 100% Applies to the shift register in the slave mode. For details, refer to AC Characteristics. Connect oscillation resister (Rf) and oscillation capacitance (Cf) as shown in this figure. . Oscillation frequency (fose) is twice as much as the frequency (flJ) at 1J1 or 1J2. 1J1, 1J2 Cf.20pF Rf - 47 kCl fosc .2 X flJ No lines are connected to output terminals and current flowing through the input circuit is excluded. This value is specified at VIH '" Vee and Vil - GNO. 9. This value is specified for current flowing through GNO in the following conditions: Internal oscillation circuit is used. Each terminal of OS1, OS2, FS, SHL, MIS, STB, and FCS is connected to Vee and each of CL1 and TH to GNO. Oscillator is set as described in note 7. 10. This value is specified for current flowing through GNO under the following conditions: Each terminals of OS1, OS2, FS, SHL, STB, FCS, and CR is connected to Vee, CL1, TH, and MIS to GNO and the terminals CL2, M, and OL are respectively connected to terminals CL2, M, and OL of the H061203 under the condition described in note 9. 11. This value is specified for current flowing through VEE under the condition described in note 9. Don' connect any lines to terminal V. 12. This figure shows a typical relation among oscillation frequency, Rf and Cf. Oscillation frequency may vary with the mounting conditions. 8. I I I I j I I I 600 --~--------~---I I 400 -------- --------t---- I Cf '" 20 pF I I I I I I 200 --------~-------I I I o I I I I I 50 100 Rf (ke) HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 397 HD61203 13. Resistance between terminal X and terminal V (one of V1 L. V1 R, V2L, V2P., VSL, VSR, V6L. and V6R) when load current flows through one of the terminals X1 to X64. This value is specifi~ under the foRowing conditions: Vcc - VEE - 17 V V1l - ~R' V6l- V6R - Vee -1n (Vee- VEE) V2l - V2R ' VSl- VSR- VEE +1n (Vee- VEE) V1L, ViR 0 V6L, \tR 0 \5L,\SR 0 '---0 ,"o--J\N\,-----+ Terminal X (X1 to X64) ~L,\2R The following is a description of the range of power supply voltage for liquid crystal display drive. Apply positive voltage to VIL =VIR and V6L =V6R and negative voltage to V2L =V2R and V5L =VSR within the l!V range. This range allows stable impedance on driver output (RON). Notice that l!V depends on power supply voltage Vcc -VEE. ---,r---------Vee -------- V1 (V1 L - V1 R ) ---- V6 (V6L - V6R ) Range of Power Supply Voltage for Liquid Crystal Display Drive 2 --------------------- VS (VsL - VSR ) -------------- V2 ("2L • V2R ) VEE 8 Vee - VEE (V) 17 Correlation between Power Supply Voltage Vee- VEE and AV Correlation between Driver Output Waveform and Power Supply Voltages for Liquid Crystal Display Drive HITACHI· 398 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point P~.• Brisbane,CA 94005-1819· (415) 589-8300 HD61203 Terminal Configuration Input Terminal Applicable Terminals: CR, MIS, SHl, FCS, DS1, DS2, FS Vee Applicable Terminals: DL. DR, CL2, M VOTerminai r'lee Input circuit) PMOS NMOS Vee r------ ---r---:I PMOS Enable Jt-: I : : I I II : : Output circuit (tristate) I L..-_ _ _ _ _ _--I,'NMOS Data L ________ -1 Output Terminal Applicable Terminals: 81, 82, FRM PMOS NMOS Output Terminal V1l,V1R Applicable Terminals: X1 toX64 Vee ..c- PMOS VSl, VSR Vee ..c- NMOS NMOS V5l, V5R V2l, V2R VEE HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 399 HD61203 AC Characteristics (Vee = 5 V ± 10%, GND = 0 V, Ta ::: -20 to +7S0C) In the slave mode (MIS = GND) CL2 (FCS ",GND) (Shift clock) CL2 (FCS '" Vcc) (Shift clock) DL (SHL '" Vcc) DR (SHL '" GND) Input data DR (SHL '" Vee) DL (SHL '" GND) Output data Item Symbol Min CL2 low level width (FCS..GND) tWLCL2L 450 ns CL2 high level width (FCS-GND) tWLCL2H 150 ns CL2low level width (FCS.Vcc) tWHCl21 150 ns CL2 high level width (FCS.Vcc) tWHCL2H 450 ns Data setup time tos 100 ns Data hold time tOH 100 ns Data delay time too Output data hold time tOHW CL2 rise time tr 30 ns CL2 fall time tf 30 ns Notes: 1. Typ Max 200 Unit Note ns ns 10 The following load circuit is connected for specification: Output 0 Terminal l J 30 pF (Includes jig capacitance) HITACHI 400 Hitachi America, Ltd.· Hitachi Plaza· 2000~ierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61203 2. In the master mode (MIS. Vex;. FCS. Vex;. Cf. 20 pF. Rf. 47 kn) CL2 tOH tOH 0.7Vex; DL (SHL - Vex;) DR (SHL • GND) I 0.3Vee too DR (SHL. Vee) DL (SHL • GND) tOFRM -~~:.....-=~-r--tDFRM FRM M 0.7Vex; O.3Vee HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 SierraPoint Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 401 HD61203 Data setup time tos 20 Unit J.l.s . Data hold time toH 40 J.l.s Item Symbol Min Typ Max Data delay time too 5 FRM delay time toFRM -2 2 M delay time tOM -2 2 tWCL2l 35 J.l.s au low level width au high level width J.l.S J.l.s J.l.s tWCL2H 35 J.l.s ,,1 low level width tW81L 700 ns ,,2 low level width tW82L 700 ns ,,1 high level width tW81H 2100 ns ,,2 high level width tW82H 2100 ns ,,1-e2 phase difference t012 700 ns ,,2-e1 phase difference t021 700 ns "1, ,,2 rise time tr 150 ns "1, ,,2 fall time tf 150 ns HITACHI 402 Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-830Q = ~ ::r: iif C"> V2L V6l V1l V5l X1 2: ?3 X2 ---- •~•. t:::I V2R V6R 64 output terminal 5 . V1R V5R ----- X62 X63 X64 . a CD ~. !» !::; Vee • GND I-I-- VEE f- <:> "" <:> CL1 I-- en TH I-- !"- ::r: iif C"> =- Liquid crystal display driver circuits '--- 2: "'0 ~ · <:> CD· iii :I ~~ :;;0 .--DL ~~ ~ • aI :::1. U> 0- 1 t--- Logic 2 r--- Bic;lirectional shift register 62 63 64 logic I- DR i'4t- .- :r s» ::::J 5" n » ~ <:> <:> ~ ~ · <0 ~ ~ C11 co % SHl STB .~ Oscillator _ RIQ~ f-- Timing generation circuit FCS 8- M CL2 FRM ...... C Rf Cf MIS FS DS1 DS2 G1 G2 ::r: t1 ~ 0) .,. o ~ <:> t..) w ~ II HD61203 Block Functions Oscillator The CR oscillator generates display timing signals and operating clocks for the HD61202. It is required when the HD61203 is used with the HD61202. An oscillation resister Rf and an oscillation capacitor Cf are attached as shown in figure 1 and terminal STB is connected to the high leveL When using an external clock, input the clock into terminal CR and don't connect any lines to terminals R and C. CR f Rf Figure 1 I External Open clock Cf Oscillator Connection with 8D61202 The oscillator is not required when the HD61203 is used with the HD61830. Then, connect terminal CR to the high level and don't connect any lines to tenninals R and C (figure 2). CR Figure 2 I J Open Vee ciI Open Oscillator Connection with 8D61830 Timing Generator Circuit The timing generator circuit generates display timing and operating clock for the HD61202. This circuit is required when the HD61203 is used with the HD61202. Connect tenninal MIS to high level (master mode). It is not necessary when the display timing signal is supplied from other circuits, for example, from HD61830. In this case connect the tenninals Fs, DSl, and DS2 to high level and MIS to low level (slave mode). Bidirectional Shilt Register A 64-bit bidirectional shift register. The data is shifted from DL to DR when SHL is at high level and from DR to DL when SHL is at low level. In this case, CL2 is used as shift clock. The lowest order bit of the bi~tional shift register, which is on the DL side, corresponds to Xl and the highest order bit on the DR side corresponds to X64. HITACHI 404 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61203 Liquid Crystal Display Driver Circuit The combination of the data from the shift register with the M signal allows one of the four liquid crystal display driver levels VI, V2, V5 and V6 to be transferred to the output terminals (table 1). Table 1 Data from the Shift Register Output Levels M Output level V2 o o V6 o V1 o V5 HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 405 HD61203 HD61203 Terminal Functions Terminal Number of 1/0 Connected Function Name Terminals to Vcc;-GND: Power supply for interoallogic. Vee 1 Power GND supply 1 Vcc-Vee:Power supply for driver circuit logic. Vee 2 V1L, V2l V5L, V6l V1R.V2R V5R.V6R 8 Power liquid crystal display driver level power supply. supply V1 l (V1 R). V2l (V2R): Selected level V5l (V5R). V6l (V6R): Non-selected level Voltages of the level power supplies connected to V1 l and V1 R should be the same: (This applies to the combination of V2l & V2R. V5l & V5R and V6l & V6R respectively) Vee or GND Selects master/slave. MIS. Vee: Master mode When the HD61203 is used with the HD61202. timing generation circuit operates to supply display timing signals and operation clock to the HD61202. Each of I/O common terminals Dl. DR. CL2. and M is in the output state. MIS - GND: Slave mode The timing operation circuit stops operating. The HD61203 is used in this mode when combined with the H061830. Even if combined with the HD61202. this mode is used when display timing signals (M. data. CL2. etc.) are supplied by another HD61203 in the master mode. Terminals M and CL2 are in the input state. When SHl is Vee. Dl is in the input state and DR is in the output state. When SHl is GND. Dl is in the output state and DR is in the input state. FCS Vee or GND Selects shift clock phase. FCS - Vee: Shift register operates at the rising edge of CL2. Select this condition when H061203 is used With H061202 or when MA of the HD61830 connects to CL2 in .combination with the HD61830. FCS • GND: Shift register operates at the fall of CL2. Select this condition when Cl1 of HD61830 connects to CL2 in combination with the HD61830. FS VeeorGND Selects frequency. When the frame frequency is 70 Hz. the oscillation frequency should be: fose - 430 kHz at FCS - Vee fose - 215 kHz at FCS • GND This terminal is active only in the master mode. Connect it to Vee in the slave mode. HITACHI 406 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61203 HD61203 Terminal Functions (cont) Terminal Name Number of 1/0 Connected to Function Terminals DS1,DS2 2 VeeorGND Selects display duty factor Display Duty Factor 1/96 1/128 GND Vee Vee Vee GND Vee 1/48 1/64 DS1 GND DS2 GND These terminals are valid only in the mastEIr mode. Connect them to Vee in the slave mode. STB lH CL1 1 1 Vee or GND Input terminal for testing. Connect to STB Vee. Connect TH and CL1 to GND. CR,R,C 3 Oscillator. 1 In the master mode, use these terminals as shown below: Internal oscillation Rf External clock Cf ~~ R CR C Open II I R External Clock Open I CR I ci In the slave mode, stop the oscillator as shown below: Open I IR 1IJ1,IIJ2 2 o HD61202 Vee I CR Open I CI Operating clock output terminals for the HD61202. Master mode: Connect these terminals to terminals 1IJ1 and 1IJ2 of the HD61202 respectively. Slave mode: o HD61202 Don' connect any lines to these terminals. Frame signal. Master mode: Connect this terminal to terminal FRM of the HD61202. Slave mode:· Don' connect any lines to this terminal. M I/O MBof HD61830 orMof HD61202 Signal to convert LCD driver signal into AC. Master mode: Output terminal. Connect this terminal to terminal M of the HD61202. Slave mode: Input terminal. Connect this terminal to terminal MB of the HD61830. HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 407 HD61203 HD61203 Terminal Functions (cont) Terminal Number of 110 Connected Name Terminals to Function Cl2 110 Shift clock Cl1 or MAof HD618300r CLof HD61202 Master mode: Output terminal Connect this terminal to terminal CL of the HD61202. Slave mode: 2 DL,DR 1/0 Open or FLM of HD61830 Input terminal Connect this terminal to terminal CL1 or MA of the HD61830. Data 110 terminals of bidirectional shift register. DL corresponds to X1 's side and DR to X64's side. Master mode: Output common scanning signal. Don't connect any lines to these terminals normally. Slave mode: Connect terminal FLM of the HD61830 to DL (when SHL .. Vcc) or DR (when SHL .. GND) MIS GND GND SHL NC 5 Open Vee GND DL Output Output Input Output DR Output Output Output Input Not used. Don't connect any lines to this terminal. SHL Vee or GND X1-X64 64 o Liquid crystal display Selects shift direction of bidirectional shift register. SHL Shift Direction Common Scanning Direction Vee DL~DR X1 GND DL .... DR X1 .... X64 ~X64 Liquid crystal ." ." t') ~ Q from DUDR of HD61203 COM128-COM65 No.1 COM64-COM1 toM toCLof to t1 to +2 to FRM L L RfRf HD61202 o of of of HLLHH H Cf HD61202 HD61202 HD61202 HD61202 to CL20f LO~ Cf HD61203 HD61203 H to DUDR of HD61203 COM1-COM64 No.2 L toDUDR of HD61203 No.2 COM64-COM1 from M fromCL2 of of HD61203 HD61203 No.1 No.1 H from DUDR of HD61203 No.1 COM1-COM64 » -.... Q COMGS-COM128 L C") ~ a ." COM64-COM1 COM1-COM64 L L Rf Rf toFRM toM toCL to +1 to +2 or H of of of of of Cf Cf HD61202 HD61202 HD61202 HD61202 HD61202 L H = 1:1 fD H H L L H H = ~ n from FLM of HD61830 H X1-X64 <":l fromFLM of HD61830 L en::> from MB from MA of of HD61830 HD61830 :I ~ C" from MB fromMA of of HD61830 HD61830 l: '" ~ ~ :;0 ! LLLHHHHHH-- DL L n '" ~ = ....'=' Rf: Oscillation resister Cf: Oscillation capacitor to ~ 0 0 c.n , ~ ~ to E • ~ ~ c.n co to 0, w 0 0 F L L L H H H H H H -- ~ 0 to II L ::r:: d 0") from DUDR of HD61203 COM64-COM1 No.1 .... ~ 0 W HD61203 Outline of HD61203 System Configuration 1. Use with HD61830 a. When display duty ratio of LCD is 1/64 HD61830~ No 1 • COM1 LCD I -.;:CO=M~64 ___--,. One HD61203 drives common signals. Refer to Connection list A. One HD61203 drives common signals for upper and lower panels. Refer to Connection list A. Two HD61203s drive upper and lower panels separately to ensure the quality of display. No. 1 and No.2 operate in parallel. For both of No. 1 and No.2, refer to Connection list A. HD61830 Upper Lower HD61830 Upper Lower b. When display duty ratio of LCD is from 1/65 to 1/128 Two HD61203s connected serially drive common signals. ' Refer to Connection list B for No.1. Refer to Connection list C for No.2. Two HD61203s connected serially drive upper and lower panels in parallel. Refer to Connection list B for No.1. Refer to Connection list C for NO.2. Two sets of HD61203s connected serially drive upper and lower panels in parallel to ensure the quality Qf display. Refer to Connection list Bfor No.1 and 3. Refer to Connection list C for No.2 and 4. HITACHI 410 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005~1819· (415) 589-8300 HD61203 2. Use with HD61202 (1164 duty ratio) COM1 COM64 LCD One HD61203 drives common signals and supplies timing signals to the HD61202s. Refer to Connection list D. One HD61203 drives upper and lower panels and supplies timing signals to the HD61202s. Refer to Connection list D. HD61202 Upper Lower Upper Lower Two HD61203s drive upper and lower panels in parallel to ensure the quality of display. No. 1 supplies timing signals to No.2 and the HD61202s. Refer to Connection list E for No.1. Refer to Connection list F for No.2. HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 411 HD61203 " Connection Example 1 Use with HD61202 (RAM type segment driver) a. 1/64 duty ratio (See Connection List D) Ct Rt C X1 (XS4) CR ) R VCC R3V1 V1L,V1R R3VS VSL,VSR +5V (VCC) COM1 ) ) XS4 (X1) COMS4 M CL2 FRM 81 82 M CL FRM 81 82 LCD panel ~ • ..J J: CJ) 'lii .!!l S C\I R3V2 VEE -10V OV VEE GND Open Open VCC «i V2L, V2R DL DR Cl J: HDS1202 SHL DS1 DS2 TH CL1 FS MIS FCS STB V1 V3V4V2 o~ w o w >Cl> R3 ",15 n Figure 1 Example 1 Note: The values of R1 and R2 vary with the LCD panel used. When bias factor is 119, the values of R1 and R2 should satisfy R1 1 4R1 + R2-9 For example, R1 - 3 kn, R2 -15 kn HITACHI 412 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61203 I I GIl EI e!1 -I ..... 1 I I I I - ~ ----- ~ -.......~.... ....:x:• CJ) 1ii o Figure 2 Example 1 Waveform (RAM Type, 1/64 Duty Cycle) HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 413 HD61203' Connection Example 2 Use with HD6183G (Dispiay conlroller) a. 1/64 duty ratio (See Connection List A) X1 (X64) Open - C CR Vee Open - R V,..,.. COM1 ) ) ) Vee V1 - V1L. V1R ~ X64 (X1) LCD panel COM64 6 - V6L. V6R ~ J: I CJ) I c .!II M CL2 DL(DR) C\I DR(DL) -Open 16 c 8 5 - V5L. V5R V V2 - V2L.V2R -a CD ! MB CL1 FLM c SHL DS1 DS2 TH CL1 FS MIS FCS STB ND- GND Open - FRM Open - 81 Open - 82 (Display Controller) VCC J: E E - VEE HD61830 - f- - ~ l Figure 3 Example 2 (1/64 Duty Ratio) HITACHI 414 Hitachi America. Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.'; Brisbane, CA 94005-1819· (415) 589-8300 HD61203 _______..a....._..,.. N ___________ ~ -----...--..;......1 N ------- ---------- ------------.~~-~ ..... > ~~ t3 -------- x~ ~ ...... ,~------~/ oe8~90H wOJJ Figure 4 Example 2 Waveform (1/64 Duty Ratio) HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 415 HD61203 b. 1/100 duty ratio (See Connection List B, C) Vee OPT / V e e - - - - - - - - . - I V e e cc V1 V1L,V1R 1r----++--I-I V6L,V6R V6 _ _----I ...--_H-HV5L, V5R r--_H-I-HV2L, V2R ....-1-4-1-1-1-1 VEE .-I-~I-I-IGND V5------I t'fen 5 <.> f.I Vee SHLt-rDS1 t-IDS2 -ITH- V2----...J VEE - - - - - - - 1 GNDI------I.... l...--. L...-_ _- . j :E~oc::J FLMIMAr-MB"-- <.>e.e. ...JCC eOM1 LCD COM64 Panel ...-----1 eOM65 X1 (X64 W ~ ( I ( I r- eOM100 Vee 0 0 V1L, V1R X36.1-_----I1 '-- V6L, V6R (X29 ' - - V5L, V5R '----IV2L, V2R SHLt-L-I----IVEE ~ DS1 r-...J '-----IGND 'i' N DS2t-~ ...J THt!!t :I: C/J eL1 tOpen- e ~ 10 FSt-tCD (\I .!!l Vee- eR 0 0 - MIStOpen- R :I: Z ...... FeSt-rSTBt-rI.- I Figure 5 Vee Example 2 (11100 Duty Ratio) HITACHI 416 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61203 9 ~N -----1£ ~ ~ 1 - -----.,.... ~ ----- - > ------- --- ~ -----~ ~ ------ -- ------- ------- --------- --------'---, _______ ------::;;..1 CD j _a ...IN ,~ :::E It ~I' O£8~90H Figure 6 ----- x~~ ~d xi ~ ..... ,C:X:Z ~ ·ON £O~~90H 1" x~i ---~ ~ com (,)N x~ I' ·ON £O~~90H Example 2 Waveform (1/100 Duty Ratio) HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra POint Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 417 HD61830------------- LeTe (LCD Timing Controller) Pin Arrangement Description The HD61830 is a dot matrix liquid crystal graphic display controller LSI that stores the display data sent from an 8-bit microcontroller in the external RAM to generate dot matrix liquid crystal driving signals. It has a graphic mode in which l-bit data in the external RAM corresponds to the on/off state of 1 dot on liquid crystal display and a c~ar­ acter mode in which characters are displayed by storing character codes in the external RAM and developing them into the dot patterns with the internal character generator ROM. Both modes can be provided for various applications. The HD61830 is produced by the CMOS process. Thus, combined with a CMOS microcontroller it can complete a liquid crystal qisplay device with low power dissipation. Features • • • • • • • • • • • • • .. III) CD""IIO CD UUiUUU 54 MAIO MAn MAI2 MAIS MAl. MAIS A CPO D 2· DI CL 2 AD 0 AD I 43 RD 2 ....", .. -Cto .... :!l:!l:!l:!l~n~ UUii CD . . . ", .. (Top View) Dot matrix liquid crystal graphic display controller Display control capacity -Graphic mode: 512k dots (216 bytes) -Character mode: 4096 characters (21 2 characters) Internal character generator ROM: 7360 bits -160 types of 5 x 7 dot characters -32 types of 5 x 11 dot characters Total 192 characters -Can be extended to 256 characters (4k bytes max.) by external ROM Interfaces to 8-bit MPU Display duty cycle (Can be selected by a program) -Static to 1/128 duty cycle Various instruction functions -Scroll, Cursor on/off/blink, Character blink, Bit manipulation Display method: Selectable A or B types Internal oscillator (with external resistor and capacitor) Operating frequency: 1.1 MHz Low power dissipation , Power supply: Single + 5 V ± 10% CMOS process Package: 60-pin plastic OFP (FP-60) HITACHI 418. Hitachi America, Ltd.· Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 td 8pr x Sf n =-» 52 SYNC CLI MA M B FLM ~... 3 CD 5" WE p> C x• Sf n =- OBO- OB7 i• ~s ~ N R/W en RES m· iii 1: "U a "U ~ • -r cs ) 0 0 .0 0 ~ ;!; 8 I.~ MO 8 ~ I r;-;::::: 8 Ita out···~ f6 hl' II;~~} ---. '--- D M~ control register IMCR} ;1..§s ~ .. Busyi .flag » Character ... --: I h I rrLl J ~-eiij 1: c 8·~' - - _.., -~.6>~ I!!::. § I Hgenerator 8 (") ~ V 01 isCT I» B ____o-, g:J ~ R~ r--- !'L ROM (CGROM) M07 8X1ernal : ROM I L.---T-----J i I ____ -'-_.JI signal aenerator ROo -R0 7 Control signal i 01 (BF) 0 0 en ~-+---D2 .!. ~ c.o • ~ .2! en CD % Co) 0 0 CL2 CPO *When extended external ROM is used. MAo-MA" are applied to RAM. MA12 -MA'5 are applied to extended external ROM. 6en ~ (X) .... ~ c.o W o HD61830 Block Functions Registers Refresh Address Counters (RAC1/RAC2) The HD61830 has the five types of registers: instruction register (IR), data input register (DIR), data dutput register (DOR), dot registers (DR), and mode control register (MCR). The refresh address counters, RACl and RAC2, control the addresses of external RAM, character generator ROM (CGROM), and extended external ROM. The RACl is used for the upper half of the screen and the RAC2 for the lower half. In the graphic mode, 16-bit data is output and used as the address signal of external RAM. In the character mode, the high order 4 bits (MA12 - MA15) are ignored. The 4 bits of line address counter are output instead and used as the address of extended ROM. The IR is a 4-bit register that stores the instruction codes for specifying MCR, DR, a start address register, a. cursor address register, and so on. The loWer order 4 bits DBO to DB3 of data buses are written in it. The DIR is an 8-bit register used to temporarily store the data written into the external RAM, DR, MCR, and so on. . The DOR is an 8-bit register used to temporarily store the data read from the external RAM. Cursor address information is written into the cursor address counter (CAC) through the DIR. When the memory read instruction is set in the IR (latched at the falling edge of E signal), the data of external RAM is read to DOR by an internal operation. The data is transferred to the MPU by reading the DOR with the next instruction (the contents of DOR are output to the data bus when E is at the high level). Character Generator ROM The character generator ROM has 7360 bits in total and stores 192 types of character data. A character code (8 bits) from the external RAM and a line code (4 bits) from the line address counter are applied to its address signals, and it outputs 5-bit dot data. The character font is 5 x 7 (160 characters) or 5 x 11 (32 characters). The use of extended ROM allows 8 x 16 (256 characters max.) to be used. Cursor Address Counter The DR are registers used to store dot information such as character pitches and the number of vertical dots, and so on. The information sent from the MPU is written into the DR via the DIR. The MCR is a 6-bit register used to store the data which specifies states of display such as display on/off and cursor on/off/blink. The information sent from the MPU is written in it via the DIR. The cursor address counter is a 16-bit counter that can be preset by instruction. It holds an address when the data of external RAM is read or written (when display dot data or a character code is read or written). The value of the cursor address counter is automatically increased by 1 after the display data is read or written and after the set/clear bit instruction is executed. Cursor Signal Generator Busy flag (BF) The busy flag = 1 indicates the HD61830 is performing an internal operation. Instructions cannot be accepted. As shown in Control Instruction, read busy flag, the busy flag is output on DB7 under the conditions of RS = 1, R/W = 1, and E = 1. Make sure the busy flag is 0 before writing the next instruction. Dot Counters (DC) The dot counters are counters that generate liquid crystal display timing according to the contents of DR. The cursor can be displayed by instruction in character mode. The cursor is automatically generated on the display specified by the cursor address and cursor position; Parallel/Serial Conversion The parallel data sent from the external RAM, character generator ROM, or extended ROM is converted into serial data by two parallel! serial conversion circuits and transferred to the liquid crystal driver circuits for upper screen and lower screen simultaneously. HITACHI 420 Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 HD61830 Terminal Functions Name Function DBO-DB7 Data bus: Three-state I/O common terminal Data is transferred to MPU through DBO to DB7 Chip select: Selectli'd state with CS = 0 R/W Read/Write: R/W = 1: MPU .... HD61830 R/W = 0: MPU -+ HD61830 RS Register select: RS = 1: Instruction register RS = 0: Data register E Enable: Data is written at the fall of E Data can be read while E is 1 CR. R.C CR oscillator MAO-MA15 External RAM address output In character mode. the line code for external CG is output through MA 12 to MA 15 (0: Character 1st line. F: Character 16th line) MDO-MD7 Display data bus: Three-state I/O common terminal RDO-RD7 ROM data input: Dot data from external character generator is input Reset: Reset = 0 results in display off. slave mode and Hp = 6 Write enable: Write signal for external RAM Cl2 Display data shift clock for LCD drivers Cll Display data latch signal for LCD drivers FlM Frame signal for display synchronization MA Signal for converting liq~id crystal driving sign!!1 into AC. A type MB Signal for converting liquid crystal driving signal into" AC. B type 01.02 Display data serial output 01: For upper half of screen 02: For lower half of screen CPO Clock signal for HD61830 in slave mode Synchronous !lignal for parallel operation Three-state I/O common terminal (with pull-up MOS) Master: Synchronous signal is output Slave: Synchr()nous signal is input HITACHI .. Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 421 HD61830 Absolute Maximum Ratings Item Symbol Value Unit Note Supply voltage Vee - 0.3 to + 0.7 V 1,2 Terminal voltage Vr - 0.3 to Vee + 0.3 V 1.2 Operating temperature Topr - 20 to + 75 ·c Storage temperature Tstg - 55 to + 125 ·c . Notes: 1. All voltages are referenced to GND = 0 V. 2. If LSls are used beyond absolute maximum ratings, they may be perr,nanently destroyed. We strongly recommend that you use the LSls within electrical characteristic limits for normal operation, because use beyond these conditions will cause malfunction and poor reliability. HITACHI 422 Hitachi America, Ltd. - Hitachi Plaza -2000 Sierra Point Pkwy. - Brisbane, CA 94005-1819 - (415) 589-8300 HD61830 Electrical Characteristics (Vee =5V ± 5 %, GND =0 V, T. = - 20 to +75·C) Item Symbol Min Input high voltage (TIL) VIH Input low voltage (TIL) Typ Max Unit Test Condition Note 2.2 Vee V VIL 0 0.8 V 2 Input high voltage VIHR 3.0 Vee V 3 Input high voltage (CMOS) VIHe 0.7 Vee Vee V 4 Input low voltage (CMOS) VILe 0 0.3 Vee V 4 Output high voltage (TIL) VOH 2.4 Vee V -loH = 0.6 mA 5 Output low voltage (TIL) VOL a 0.4 V IOL = 1.6 mA 5 Output high voltage (CMOS) VOHe Vee - 0.4 Vee V -loH = 0.6 mA 6 Output low voltage (CMOS) VOLe a 0.4 V IOL ';' 0.6 mA 6 Input leakage current liN - 5 5 ",A VIN = a-Vee 7 Three-state leakage current hSL - 10 10 ",A VOUT = O-Vce 8 Power dissipation (1) Pw1 10 15 mW CR oscillation fosc = 500 kHz 9 Power dissipation (2) Pw2 20 30 mW . External clock fcp = 1 MHz 9 Internal clock operation ----_.-.-.------------.-._---------------------------------------------------------------------------------------.------------------------------------_. Clock oscillation frequency fosc 400 500 External clock operation -------------------------------.----------------.-------------------------_.------- 600 kHz Cf =15 pF ± 5% 10 Rf = 39 kO ± 2% --------------- --------------------------------------------------_. External clock operating frequency fcp 100 500 1100 kHz 11 External clock duty Duty 47.5 50 52.5 % 11 External clock rise time t,cp 0.05 ",s 11 External clock fall time tfcp 0.05 ",s 11 Pull-up current IpL 20 ",A 2 10 VIN = GND 12 Note: The I/O terminals have the following configuration: HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 423 HD61830 Input Terminal Output Terminal Applicabie terminai: es, E, RS, R/W, RES, CR (Without pull-up MOS) Appiicabie terminal: CL1, CL2, MA, MB, FLM, CPO, D1, D2, WE, OE, CE, MAO-MA15 Vee r1e Vee s ~~NM~ Applicable terminal: RDO-RD7 (With pull-up MOS) Vee Vee HITACHI 424 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 HD61830 I/O Common Terminal Applicable terminal: DBO-DB7, SYNC (with pull-up MOS), MDO-MD7 (without pull-up MOS) Vee Vee H r----- ---1)t-i Vee (Pull-up MOS) Enable :PMOS I (Input circuit) Data I : ~--------------~I I I L ________ J (Output circuit) (Three state) Notes: 1. 2. 3. 4. 5. 6. 7. 8. 9. ~ied to input terminals and I/O common terminals, except terminals SYNC, CR, and RES. Applied to input terminals and I/O common terminals, except terminals SYNC and CR. Applied to terminal RES. Applied to terminals SYNC and CR. Applied to terminals OBO-OB7, WE, MAO-MA15, and MOO-M07. Applied to terminals SYNC, CPO, FLM, CL1, CL2, 01,02, MA, and MB. Applied to input terminals. Applied to I/O common terminals. However, the current which flows into the output drive MOS is excluded. The current which flows into the input and output circuits is excluded. When the input of CMOS is in the intermediate level, current flows through the input circuit, resulting in the increase of power supply current. To avoid this, input must be fixed at high or low. The relationship between the operating frequency and the power dissipation is given below. ~ 50 .s cl /' 40 max /' /' 30 L typ ...... V ~ /" ~ /' ~ 20 10 0 ~ ,/~ .,?/ 250 500 750 1000 1250 1500 fosdkHz) HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 425 HD61830 1O. Applied to the operation of the internal oscillator when oscillation resistor Rf and oscillation capacity Cf are used. Cf= 15pF± 5% R,=39kQ±2% (when fosc= 500kHz typ) .-------1 R C '----4---1 CR The relationship among oscillation frequency, Rf and Cf is given below. Ta=25'C Vcc=5V fosc (kHz) 800 \ \ \ 600 \ '\. "---" ....... 400 ............. ........ r- 200 o 40 60 80 --100 120 C,= 10pF C, = 15pF 140 160 180 R,(kQ) 11. Applied to external clock operation. Open R Open C CR 0. 7Vcc 0. 5Vcc 0. 3Vcc 12. Applied to SYNC, 080-087, and ROO-R07. HITACHI 426 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61830 Timing Characteristics MPU Interface Typ Item Symbol Min Enable cycle time tCYC 1.0 ps High level twEH 0.45 ps Low level twEL 0.45 ps Enable pulse width Max Unit Enable rise time tE, 25 ns Enable fall time tEf 25 ns Setup time tAS 140 ns Data setup time tosw 225 ns Data delay time 225 tOOR (Note) ns Data hold time tH 10 ns Address hold time tAH 10 ns Data hold time tOH 20 ns Note: The following load circuit is connected for specification: Vee Test point R RL=2.4kO R =11kO C "" 130pF Diodes 0, to 0 4 : 1S2074HD61830) DBo-DB7 (MPU-HD61830) HITACHI 428 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1&19· (415) 589-8300 HD61830 External RAM and ROM Interface Item Symbol SYNC delay time toSY SYNC pulse width High level Typ Max Unit 200 ns twSY 900 ns tccpo 900 ns High level twCPOH 450 ns Low level twCPOL 450 ns CPO cycle time CPO pulse width Min MAO to MA 15 refresh delay time \ tOMAR 200 ns MAO to MA 1 5 write address delay time tOMAW 200 ns MOO to M07 write data delay time tOMOW 200 ns MOO to M07, ROO to R07 setup time tSMO 900 ns Memory address setup time tSMAW 250 ns Memory data setup time tSMDW 250 ns WE delay time tOWE WE pulse width (low level) twwE Notes: 200 450 ns ns 1. No load is applied to all the output terminals. 2. "*" indicates the delay time of RAM and ROM. HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 429 HD61830 LCD Driver Interface Item Symbol Min Clock pulse width (high level) twCLl 450 Clock delay time tOCL2 Clock cycle time twCL2 900 ns High level twCH 450 ns Low level twCL 450 ns Clock pulse width Typ Max Unit ns 200 ns MA. MB delay time tMO 300 ns FLM delay time tOF 300 ns Data delay time too 200 ns Data setup time tso 250 ns Note: No load is applied to all the output terminals (MA. MB. FLM. 01. and 02). CL1 CL2 MA. MB FLM D1 tOD-f--j4-- D2 HITACHI 430 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61830 Display Control Instructions Display is controlled by writing data into the instruction register and 13 data registers. The RS signal distinguishes the instruction register from the data registers. a-bit data is written into the instruction register with RS = 1, and the data register code is specified. After that, the a-bit data is written in the data register and the specified instruction is executed with RS = O. Register During the execution of the instruction, no new instruction can be accepted. Since the busy flag is set during this, read the busy flag and make sure it is 0 before writing the next instruction. 1. Mode control Code $"00" (hexadecimal) written into the instruction register specifies the mode control register. R/W RS DB7 DB6 DB5 DB4 DB3 DB2 DB1 DBO Instruction reg. 0 1 0 0 0 0 0 0 0 0 Mode control reg. 0 0 0 0 Cursor/blink DB5 DB4 DB3 DB2 DB1 DBO I/O I/O 0 0 0 0 Mode data CG Cursor off (!) 0 1 Cursor on 1 0 Cursor off, character blink 1 1 Cursor blink 0 0 0 1 Cursor on 1 0 Cursor off, character blink 1 1 Cursor blink 0 0 1 u Graphic/character display Character display (Character mode) fti E $ .E Cursor off (!) 1 0 u fti E S Graphic mode ~ :t:: 0 "c: 0 > ! 1: Disp la y on 0: Display off HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 431 HD61830 2. Set character pitch Vp indicates the number of vertical dots per character. Tne space between the verticallydisplayed characters is included in the determination. This value is meaningful only during character display (in the character mode) and becomes invalid in the graphic mode. Hp indicates the number of horizontal dots per character in display, including the space between horizontally-displayed characters. In the graphic mode, the Hp indicates the number of bits of i-byte display data to be displayed. There are three Hp values (table 1). R/W RS DB7 DB6 DB5 DB4 DB3 DB2 DB1 DBO Instruction reg. 0 1 0 0 0 0 0 0 0 1 Character pitch reg. 0 0 Register Table 1 Hp 6 7 8 (Vp - 1) binary 0 (Hp - 1) binary Hp Values DB2 DB1 DBO o Horizontal character pitch 6 o 7 8 HITACHI 432 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61830 3. Set number of characters HN indicates the number of horizontal characters in the character mode or the number of horizontal bytes in the graphic mode. If the total sum of horizontal dots on the screen is taken as n, Register n = Hp x HN HN can be set to an even number from 2 to 128 (decimal). R/W RS DB7 DB6 DB5 DB4 DB3 DB2 DBl DBO Instruction reg. .0 1 0 0 0 0 0 0 1 0 Number-of-characters reg. 0 0 0 4. Set number of time divisions (inverse of display duty ratio) Nx indicates the number of time divisions in Register R/W Instruction reg. 0 N umber-of-time-divisions reg. 0 RS DB6 DB5 DB4 DB3 DB2 DBl DBO 1 0 0 0 0 0 0 1 1 0 0 Cp indicates the position in a character where the cursor is displayed in the character mode. For example, in 5 x 7 dot font, the cursor is displayed under a character by specifying Cp = 8 (decimal). The cursor horizontal length is equal to the horizontal character pitch Hp. A value of 1 to 16 (decimal) R/W RS Instruction reg. 0 , Cursor position reg. 0 0 (Nx - ') binary can be set to Cpo If a smaller value than the vertical character pitch Vp is set (Cp :;; Vp), and a character overlaps with the cursor, the cursor has higher priority of display (at cursor display on). If Cp is greater than Vp, no cursor is displayed. The cursor horizontal length is equal to Hp. DB7 DB6 DB5 DB4 DB3 0 0 0 0 0 0 0 0 0 6. Set display start low order address Cause display start addresses to be written in the display start address registers. The display start address indicates a RAM address at which the data displayed at the top left end on the screen is stored. In the graphic mode, Register multiplex display. l/Nx is the display duty ratio. A value of 1 to 128 (decimal) can be set to Nx. DB7 5. Set cursor position Register (HN -1) binary DB2 , (Cp - ') DB' DBO 0 0 binary the start address is composed of high/lOW order 16 bits.. In the character display, it is composed of the lower 4 bits of high order address (DB3 - DBa) and 8 bits of low order address. The upper 4 bits of high order address are ignored. R/W RS DB7 DB6 DB5 DB4 DB3 DB2 DBl DBO Instruction reg. 0 1 0 0 0 0 1 0 0 0 Display start address reg. (low order byte) 0 0 (Start low order address) binary HITACHI Hitacni America, Ltd.· Hitacni Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819. (415) 589-8300 433 HD61830 Set display start high order address I",negist6i . I "I\AI n/yv I nil'" n~ Instruction reg. 0 , Display start address reg. (high order byte) 0 0 I "'n""t LID I 0 I I LI 0 0 I I LIDO 0 I LID..... I 0 I I LID.;) , I I LID" 0 I I LJD I 0 I I ueu , (Start high order address) binary 7. Set cursor address (low order) (RAM write low order address) Cause cursor addresses to be written in the cursor address counters. The cursor address indicates and address for sending or receiving display data and character codes to or from the RAM. That is, data at the address specified by the cursor address are read/written. In the character mode, the cursor is displayed at the character specified by the cursor address. address (8 bits) and the high-order address (8 bits). Satisfy the following requirements setting the cursor address (table 2). The cursor address counter is a lS-bit upcounter with set and reset functions. When bit N changes from 1 to 0, bit N + 1 is inclemented by 1. When setting the low order address, the LSB (bit 1) of the. high order address is inclemented by 1 if the MSB (bit 8) of the low order address changes from 1 to O. Therefore, set both the low order address and the high order address as shown in the table 2. A cursor address consists of the low-order Register R/W RS Instruction reg. 0 , Cursor address counter (low order byte) 0 0 DB7 DBS DBS DB4 0 0 0 0 DB3 , DB2 0 , DBO DB' DBO DB' 0 (Cursor low order address) binary Set cursor address (high order) (RAM write high order address) Register R/W RS Instruction reg. 0 , Cursor address counter (high order byte) 0 0 DB7 DB6 DBS DB4 0 0 0 0 DB3 , DB2 0 , , (Cursor high order address) binary Table 2 Cursor Address Setting Condition Requirement When you want to rewrite (set) both the low order address and the high order address. Set the low order address and then set the high order address. When you want to rewrite only the low order address. Don't fail to set the high order address again after setting the low order address. When you want to rewrite only the high order address. Set the high order address. You don't have to set the low order address again. HITACHI 434 Hitachi America, Ltd.· Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 HD61830 8. Write display data After the code $"OC" is written into the instruction register with RS = 1, 8-bit data with RS = 0 should be written into the data register. This data is transferred to the RAM specified by the cursor address as display data or character code. The cursor address is increased by 1 after this operation. R/W RS DB7 DBS DB5 DB4 DB3 DB2 DBl DBO Instruction reg. 0 1 0 0 0 0 1 1 0 0 RAM 0 0 Register MSB (pattern data, character code) LSB 9. Read display data Data can be read from the RAM with RS = 0 after writing code $"OD" into the instruction register. Figure 1 shows the read procedure. This instruction outputs the contents of data output register on the data bus (DBO to DB7) Register and then transfers RAM data specified by the cursor address .to the data output register, also increasing the cursor address by 1. After setting the cursor address, correct data is not output at the first read but at the second one. Thus, make one dummy read when reading data after setting the cursor address. R/W RS DB7 DBS DB5 DB4 DB3 DB2 DBl DBO Instruction reg. 0 1 0 0 0 0 1 1 0 1 RAM 1 0 CS~~ MBS (pattern data, character code) LSB __________________________________________ E DB B_ Curaor Curaor B_ check addraaa high check. set ordor ordor mod. add.... add.... Busy Cursor ~k add.... low lOt mode Cursor write Oata Dummy Busy N read check add.... read data mode read Busy N + 1 check add.... data read write Cursor address . N N+l N+2 IN+3 Data output register Figure 1 Read Procedure HITACHI Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy: • Brisbane, CA 94005-1819 • (415) 589-8300 435 HD61830 10. Clear bit . The clear/set bit instruction sets 1 Olt m a byte of display data RAM to 0 or 1, respectively. The position of the bit in a byte is specified by NB and RAM address is specified by cursor address. After the execution of the instruction, the cursor address is automatically increased by 1. NB is a value from 1 to 8. NB = 1 and NB = 8 indicates LSB and MSB, respectively. R/W RS DB7 DB6 DB5 DB4 DB3 DB2 DBl DBO Instruction reg. 0 1 0 0 0 0 1 1 1 0 Bit clear reg. 0 0 0 0 0 0 0 R/W RS DB7 DB6 DB5 DB4 DB3 DB2 DBl DBO Instruction reg. 0 1 0 0 0 0 1 1 1 1 Bit set reg. 0 0 0 0 0 0 0 Register (NB - 1) binary Set bit Register 11. Read busy flag When the read mode is set with RS = 1, the busy flag is output to DB7. The busy flag is set to 1 during the execution of any of the other instructions. After the execution, it is set to O. The next instruction can be accepted. No instruction can be acceped when busy flag = 1. Before executing an instruction or writing data, perform a busy flag check to make sure Register R/W RS DB7 Busy flag 1 1 I/O (NB - 1) binary the busy flag is O. When data is written in the register (RS = 1), no busy flag changes. Thus, no busy flag check is required just after the write operation into the instruction register with RS = 1. The busy flag can be read without specifying any instruction register. DB6 I DB5 I DB4 I DB3 I DB2 I DBl lOBO HITACHI 436 Hitachi America, Ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 HD61830 t---------HN (digit)--------! Symbol Nama Meaning Value H~ Horizontal character pitch Horizontal character pitch 6 to 8 dots HN Number of horizontal characters Number of horizountal characters per line (number 2 to 128 digits of digits) in the character mode or number of bytes (an even number) per line in the graphic mode. Vp Vertical character pitch Vertical character pitch 1 to 16 dots Cp Cursor position Line number on which the cursor can be. displayed 1 to 16 lines Nx Number of time divisions Inverse of display duty ratio 1 to 128 lines Note: If the number of vertical dots on the screen is m, and the number of horizontal dots is n, 1/m = 1/Nx = display duty ratio n = Hp x HN, m/Vp = Number of display lines Cp :ii Vp Figure 2 Display Variables HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 437 .". c..> ex> Display Mode Display Data from MPU Character display Character code (8 bits) :J: s: =-> n b7 be bs b4 b 3 b2 b, bo 3 ,, .,, ,, ,,, ,, , , , , , ,, , I I CD ::l. n P' a I I :J: s= Start address n =- -c ;;; ....c :I: Liquid Crystal Display Panel RAM I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I -= 1ft '0 .. C A B f C CD 0111010101 0 10 11 ~ 011101010101 110 N , , I I I D> I N I I I I , .,, • I 0 0 0 I I I t I I I I I I I ,, , , , I . I I I I I I I I I I I I I I I .. I I I I I I Hp : 6, 7, or 8 dots en iii' ;a :I ~ ~ a -c 0 ~ :I -c 0 . Graphic Display pattern (8 bits) bo CP ::l. b 7 b 6 b s b 4 b 3 b 2 b, bo en 0- I I D> ~ 51> (") > 'R 0 0 'i;. ~ <0 ~ ~ 01 ex> <0 Co c..> 0 0 Start address -- , I ,, I I ., , ,, ,, , ,, , , ,, , . ., ,, ,, ,,, , I I I 1 I I I I I I I I I I I I I I I I I , Hp b7 1 I I 8 dots 8 dots I 011101110111 0 11 111111111J11111 , , , , , , I I I I , I I I I , I i I I I I I I I I I I . I I I I ~ I I I I I I , I I I I I Hp : 8 dots tJ m ~ 00 c.u o HD61830 Internal Character Generator Patterns and Character Codes HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane,CA 94005-1819· (415) 589-8300 439 .". .". 0 ~ 'tS :J: n - Sf n I» ~ H061830 H06800 ~ CD J" A12 A'3 A'4 A,s VMA Do !:: !=>- • :J: s= n ~ -0 I» · 07 N 0 0 0 t/>2 en R/W CD· ~ iil t~ CS S I J: en Open: cr I» ::::I :0 Vcc - 01 FlM MB Cll Cl2 02 MA SYNC CPO RES C") » <0 .". 0 0 R ':!;. ~ <0 ~ ~ U1 00 cp 00 c.> 0 0 +5V GNO -5V WE Ao I OE RAM(2) HM6116 AlQ ::s t!- r 0 f-r- ...~ ... f CS T .... CD Ilo !' Ao- A 2 A ..., R07 ·- ~ t M0 7 ROo CD L r-..- C Do I 07 I.zJ -v. I R/W J: :::I. OE~ I a 0~ .f L...." WE Ao RAM(1) I HM6116 AlQ _ CS MA'4 MA'5 j---. MOo OB7 E -0 0 -0 I MA" MA'2 OBo I 6r N WE MAo I-I MAIO RS Ao :::I. n ::. 0 ROM HN462716 e. CE ~Fi f-- Open CR l,~C1 "9 ; A 3 -AlQ Y C'l 01 FlM MB Cll Cl2 02 +5V GNO -5V ,Vo p C'l ::r LCD Module lM 200 ~ I» ... n ...CD I'Ij 0 ... ::s CO X CO :r:0 en ~ (X) w 0 HD61830 Application 2 (Graphic Mode) 1----------·------81 NI I - ... ... I r-C> C> :; :; -.. I I I I I, , I I I I I I :J: :J: I - 0 0 iI :2 ....I :J: :J: g I I I I I I I I I I I I I I I I I I I I I 0 I (J I I oJ I I I :J: :J: g C> C> f-o ...:; t- :J:o :; ...0 II- :J: '-r-- '--r- I ~ .e I >- ~ I--- :;: ~!.C il u "> I-r- ~H· ~ ~ .f g:.a HOOltt OH I, r-- ~r-- r f L---- I---- ~-------- t - - - - - -- t- I -IH~ ~:2 0 Z u~ ~ a:i ~N d 00 I~ :2 e I ~ 8 ... . « :2:2 co 1: III • ... o _ ~~ ~ C) 0 :2 I 0 0 :2 «a:: :2 .~ ~ co ~ 5" LO C ~ 5" LO I w ~ C/l 0 :2 u ~ 0 I wa:: I~~I~ 0 III 0 8 :8:;) OD.. :r::2 HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 441 HD61830 Configuration Examples Graphic Mode Liquid crystal display module Character Mode (1) (Internal Character Generator) Liquid crystal display module Character Mode (2) (External Character Generator) liquid crystai display module Parallel Operation Liquid crystal Liquid crystal display module (1) display module (2) Driving both of two module by same common signal HITACHI 442 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61830B-----------LCTC (LCD liming Controller) Pin Arrangement Description The HD61830B is a dot matrix liquid crystal graphic display controller LSI that stores the display data sent from an 8-bit microcontroller in the external RAM to generate dot matrix liquid crystal driving signals. It has a graphic mode in which 1-bit data in the external RAM' corresponds to the on/off state of 1 dot on liquid crystal display and a character mode in which characters are displayed by storing character codes in the external RAM and developing them into the dot patterns with the internal character generator ROM. Both modes can be provided for various applications. The HD61830B is produced by the CMOS process. Thus, combined with a CMOS microcontroller it can complete a liquid crystal display device with lower power dissipation. ... N N N N N (Top View) (FP-60) Features • • • • • • • • • • • • Dot matrix liquid crystal graphic display controller Display control capacity -Graphic mode: 512k dots (216 bytes) -Character mode: 4096 characters (212 characters) Internal character generator ROM: 7360 bits -160 types of 5 x 7 dot characters -32 types of 5 x 11 dot characters Total 192 characters -Can be extended to 256 characters (4k bytes max.) by external ROM Interfaces to 8-bit MPU Display duty cycle (Can be selected by a program) Static to 1/128 duty cycle Various instruction functions -Scroll, Cursor on/off/blink, Character blink, Bit manipulation Display method: Selectable A or B types Operating frequency: 2.4 MHz Low power dissipation Power supply: Single +5 V ± 10% CMOS process Package: 60-pin plastic OFP (FP-60) HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 443 .... ........ b:I g :r:mt1 ...tj oW II;" ::c s= SYNC Cl, MA MB FlM (') 2: ID » 'a 3CD :::!. B Fl !:; !"'- ::c ;::;: '"2: (') DB o - DB 7 iSS -0 ~ • N 0 0 0 RS R/W RES II I RAM 8 II IIi ,._J~~:=MD7 I 1 *' I J1 ~ i _. Extended I L -f external ! 6 , i L ROM I iil :I I CD' Mode a 0~ ~ g-m c: c: -0 .- ~ :I control register I I --r---~ en I -1-----...1 RDo-RD7 (MCR) 00l U'(ij 2;' • D, c;;' er '" ::I 5" 1---+--~D2 C") » .... '!:. 0 0 ~ Cl2 CR ::: ~ 0"1 00 do w 0 0 ~ Q) CE *When extended external ROM is used, MAo -MA I1 are applied to RAM, MA'2-MA'5 are applied to extended external ROM. OJ HD61830B Block Functions Registers Refresh Address Counters (RAC1/RAC2) The HD61830B has the five types of registers: instruction register (IR), data input register (DIR), data output register (DaR), dot regis- ; ters (DR), and mode control register (MCR). The refresh address counters RAC1 and RAC2 control the addresses of external RAM, character generator ROM (CGROM), and extended external ROM The RAC1 is used for upper half of the screen and the RAC2 for the lower half. In the graphic mode, 16-bit data is output and used as the address signal of external RAM. In the character mode, the high order 4 bits (MA12-MA15) are ignored. The 4 bits of line address counter iU'e output instead and used as the addresS' of extended ROM. The IR is a 4-bit register that stores the instruction codes for specifying MCR, DR, a start address register, a cursor address register, and so on. The lower order 4 bits DBO to DB3 of data buses are written in it. The DIR is an 8-bit register used to temporarily store the data written into the external RAM, DR, MCR, and so on. The DaR is an 8-bit register used to temporarily store the data read from the external RAM. Cursor address information is written into the cursor address counter (CAC) through the DIR. When the memory read instruction is set in the IR (latched at the falling edge of E segnal), the data of external RAM is read to DaR by an internal operation. The data is transferred to the MPU by reading the DaR with the next instruction (the contents of DaR are output to the data bus when E is at the High level). The DR are registers used to store dot information such as character pitches and the number of vertical dots and so on. The information sent from the MPU is written into the DR via the DIR. The MCR is a 6-bit register used to store the data which specifies states of display such as display on/off and cursor on/off/blink. The information sent from the MPU is written in it via the DIR. The busy flag = 1 indicates the HD61830B is performing an internal operation. Instructions cannot be accepted. As shown in Control Instruction, read busy flag, the busy flag is output on DB7 under the conditions of RS = 1, R/W = 1, and E = 1. Make sure the busy flag is 0 before writing the next instruction. Coun~ers The character generator ROM has 7360 bits in total and stores 192 types of character data. A character code (8 bits) from the external RAM and a line code (4 bits) from the line address counter are applied to its address signals, and it outputs 5-bit dot data. The charater font is 5 x 7 (16() characters) or 5 x 11 (32 characters). The use of extended ROM allows 8 x 16 (256 characters max.) to be used. Cursor Address Counter The cursor address counter is a 16-bit counter that can be preset by instruction. It holds an address when the data of external RAM is read or written (when display dot data or a character code is read or written). The value of the cursor address counter is automatically increased by 1 after the display data is read or written and after the set/clear bit instruction is executed. Cursor Signal Generator Busy Flag (BF) Dot Character Generator ROM (DC) The dot counters are counters that generate liquid crystal display timing according to the contents of DR. The cursor can be displayed by instruction in character mode. 'I'he cursor is automatically generated on the display specified by the cursor address and cursor position. Parallel/SerialConversion . The parallel data sent from the external RAM, character generator ROM, or extended ROM is converted into serial data by two parallel/ serial conversion circuits and tranSferred to the liquid crystal driver circuits for upper screen and lower screen simultaneously. HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 .------.-.... .•.. ...-. -.-.~- .~,., 445 HD61830B Terminal Functions Name Function DBO-DB7 Data bus: Three-state I/O common terminal Data is transferred to MPU through DBO to DB7. Chip select: Selected state with CS = 0 R/W Read/Write: R/W = 1: MPU +- HD61830B R/W = 0: MPU .,.. HD61830B RS Register select: RS = 1: Instruction register RS = 0: Data register E Enable: Data is written at the fall of E Data can be read while E is 1 CR External clock input Reset: RES = 0 results in display off, slave mode and Hp = 6 MAO-MA15 External RAM address output In character mode, the I,me code for external CG is output through MA12 to MA15 (0: Character 1st line, F: Character 16th line) MDO-MD7 Display data bus: Three-state I/O common terminal RDO-RD7 ROM data input: Dot data from external character generator is input Write enable: Write signal for external RAM Cl2 Display data shift clock for LCD drivers CL1 Display data latch signal for LCD drivers FlM Frame signal for display synchronization MA Signal for converting liquid crystal driving signal into AC, A type MB Signal for converting liquid crystal driving signal into AC, B type 01,02 Display data serial output 01: For upper half of screen 02: For lower half of screen Synchronous signal for parallel operation Three-state I/O common terminal (with pull-up MOS) Master: Synchronous signal is output Slave: Synchronous signal is input Chip enable CE = 0: Chip enables make external RAM in active Output enable OE = 1: Output enable informs external RAM that HD61830B requires data bus NC Unused terminal. Don·t connect any wires to this terminal HITACHI 446 Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819' (415) 589-8300 HD61830B Absolute Maximum Ratings Item Symbol Value Unit Note Supply voltage Vee - 0.3 to + 0.7 V 1,2 Terminal voltage Vr - 0.3 to Vee + 0.3 V 1, 2 Operating temperature Topr- - 20 to + 75 'C Storage temperature Tstg - 55 to + 125 'C Notes: 1. All voltage is referred to GNO = 0 V. 2. If LSls are used beyond absolute maximum ratings, they may be permanently destroyed. We strongly recommend that you use the LSls within electrical characteristic limits for normal operation, because use beyond these conditions will cause malfunction and poor reliability. Electrical Characteristics ltam Symbol Min Input high voltage (TTL) VIH Input low voltage (TTL) Unit 2.2 Vee V VIL o 0.8 V 2 Input high voltage VIHR 3.0 Vee V 3 .Input high voltage (CMOS) VI He 0.7 Vee Vee V 4 Input low voltage (CMOS) VILe o 0.3 Vee V 4 Output high voltage (TTL) VOH 2.4 Vee V - 10H Output low voltage (TTL) VOL o 0.4 V 10L Output high voltage (CMOS) VOHe Vee - 0.4 Vee V - 10H Output low voltage (CMOS) VOLe o 0.4 V 101 = 0.6 mA 6 Input leakage current hN -5 5 JlA VIN = O-Vee 7 Three-state leakage current ITSL - 10 10 JlA VOUT Pull-up current IPL 2 20 JlA Vin Power dissipation Pw 50 mW External clock fop = 2.4 MHz 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 10 Test Condition Note Max Notes: Typ = 0.6 mA = 1.6 mA = 0.6 mA = O-Vee = GNO 5 5 -6 I 8 9 10 ~ied to input terminals and I/O common terminals, except terminals SYNC, CR, and RES. Applied to input terminals and I/O cOmmon terminals, except terminals SYNC and CR. Applied to terminal RES. Applied to terminals SYNC and C~ _ _ Applied to terminals OBO-OB7, WE, MAO-MA15, OE, CE, and MOO-M07. Applied to terminals SYNC, FLM, CL1, CL2, 01, 02, MA, and MB. Applied to input terminals. Applied to I/O common terminals. However, the current which flows into the output drive MOS is excluded. Applied to SYNC, OBO-OB7, and ROO-R07. The current which flows into the input and output circuits is excluded. When the input of CMOS is in the intermediate level, current flows through the input circuit, resulting in the increase of power supply current. To avoid this, input must be fixed at high or low. HITACHI Hitachi America, Ltd. ·~itachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819. (415) 589-8300 447 HD61830B Input Terminal Applicable terminal: CS, E, RS, R/W, RES, CR (Without pull-up MOS) Applicable terminal: RDO-RD7 (With pull-up MOS) Vee Vee Vee Output Terminal Applicable terminal: CL1, CL2, MA, MB, FLM, 01, D2, WE, OE, CE, MAO-MA1S . Vec r1C Y~NM~ I/O Common Terminal Applicable terminal: DBO-DB7, SYNC, MDOMD7 (MDO - MD7 have no pull-up MOS) Vee H (Pull-up MOS) Vee PMOS t----i NMOS r----- Vee ---j--Enable :PMOS I If-I. : . I (Input circuit) ~--------------~I I L ________ Data I I I JI (Output circuit) (Three state) HITACHI 448 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61830B Clock Operation Item Symbol Min External clock operating frequency fcp 100 External clock duty Duty 47.5 External clock rise time Typ Max Unit 2400 kHz 52.5 % t rcp 25.0 ns External clock fall time tfcp 25.0 ns SYNC output hold time tHSYO SYNC output delay time toSY SYNC input hold time tHSYI SYNC input set-up time tSSY Notes: 50 30 210 10 180 Note ns 2,3 ns 2, 3 ns 2 ns 2 1. Applied to external clock input terminal. lj 0. 7Vcc 0. 5Vcc 0. 3Vcc lj Duty cycle = ~ x 100% 'h+'1 2. Applied to SYNC terminal. CR I SYNC (Output: at master mode) ~__t~sS~y__-+t~H~SYI~__t~SS~Y__~ 0. 3Vcc (Input: at slave mode) 3. Testing load circuit. 1 Test 0 - - - - - . point IC L CL = 30pF (C L includes iig capacitance) HITACHI Hitachi America, Ltd.' Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 449 HD61830B MPU Interface Item Symbol Min Enable cycle time tCYC 1.0 ps High level twEH 0.45 ps Low level twEL 0.45 ps Enable pulse width Typ Max Unit Enable rise time tEr 25 ns Enable fall time tEt 25 ns Setup time tAS 140 ns Data setup time tosw 225 ns Data delay time tOOR Data hold time tOHW 10 ns Address hold time tAH 10 ns Data hold time tOH 20 ns Note: 225 ns (Note) The following load circuit is connected for specification: eye tWEH tWEL 2.2V E t~ CS, R/W, RS => / \ O.BV / tEf- I--tEr r-- tAH ~ 2.2V O.BV ~ tOHW ~ ~ DBo-DB7 (MPU~HD61B30B) 2.2V O.BV tOOR J DBo-DB7 (MPU~HD61B30B) 2.4V O.4V }~ ~ K Vee D1 Test point RL D2 R D3 D4 RL=2.4kQ R = 11 kQ C = 130 pF (C includes iig capacitance) Diodes D1 to D4: 1S2074@ HITACHI 450 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300 HD61830B External RAM and ROM Interface Max Unit Note 300 ns 1,2,3 ns 1, 2, 3 ns 1,2,3 ns 1,2, 3 ns 1, 3 ns 1, 3 ns 1, 3 ns 1, 3 ns 1, 3 150 ns 1, 3 tZMOF 10 ns 1, 3 MD output high impedance time (2) tZMOR 50 ns 1, 3 RD data set-up time tSRo 50 ns 2 RD data hold time tHRO 40 ns 2 MD data set-up time tSMO 50 ns 2 M D data hold time tHMO 40 ns 2 Item Symbol MAO - MA 15 delay time tOMA MAO-MA15 hold time tHMA CE delay time tOCE CE hold time tHCE DE delay time tOOE DE hold time tHOE MD output delay time tOMO MD output hold time tHMOW WE delay time towe WE clock pules width twwe MD output high impedance time (1) Notes: 1. RAM Typ Min 40 300 40 300 40 150 10 150 write timing T1 T2 T3 T1 CR ....______________~~~_r~--r_~IO.6V tOMA tHMA 2.4V O.6V tOOE tHOE 2.4V O.6V MDo-MD7 _____________(~H~ig~h_i_m~p_ed_a_n_ce~)________~~~ (Output) ~=~i-Jr T1: Memory data refresh timing for upper screen T2: Memory data refresh timing for lower screen T3: Memory read/write timing HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 451 HD61830B Notes: 2. ROM/RAM read timing T, T, CR I ('2) I ('2) ~~--~~------~-------- 0.6V-+--------------------~~--------_*----------+r-------tOMA tHMA Address for upper screen 2.2V 0.8V MD o -MD 7 (Input) Data for the upper screen tSRO 2.2V lower .screen 0.8V *1 This figure shows the timing for Hp = 8. . .. For Hp = 7, time shown by Hb becomes zero. For Hp = 6, time shown by Ha and Hb H become zero. Therefore, the number of clock pulses during T1 become 4, 3, or 2 in the case of Hp = 8, Hp = 7, or Hp = 6 respectively. . 2 The waveform for instructions with memory read is shown with a dash line. In other cases, the Waveform shown with a solid line is generated. 3 When an instruction with RAM read/write is excuted, the value of cursor address is output. In other cases, invalid data is output. 4 When an instruction with RAM read is excuted, HD61830B latches the data at this timing. In other cases, this data is invalid. R * * * R 3. Test load circuit Vee Test point R RL =2.4kO R =J1 kQ C '7'50 pF (C includes jig capacitance) Diodes 0, to 0 4 : 1S2074® HITACHI 452 Hitachi America, ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61830B LCD Driver Interface Unit Note 416 ns 1, 3 tWCH 150 ns 1,3 Clock pulse width (Low level) tWCL 150 ns 1, 3 Data delay time too ns 1, 3 Data hold time tOH 100 ns 1,3 Clock phase difference (1) tCL1 100 ns 1, 3 Clock phase. difference (2) tCL2 100 ns 1,3 Clock phase difference (3) tCL3 100 ns 1, 3 MA, MB delay time tOM -200 ns 1, 3 FLM set-up time tSF 400 ns 2, 3 FLM hold time tHF 1000 ns 2, 3 MA set-up time tSMA 400 ns 2, 3 MA hold time tHMA 1000 ns 2, 3 Item Symbol Min Clock cycle time tWCL2 Clock pulse width (High level) Typ Max 50 200 HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 453 HD61830B Notes: 1. tWCl2 tWCH -.I II' tWCL I \; 0.7Vcc 0.3Vcc \ tCLl to.7VCC 0.3Vcc Cl, tWCH tDH too ) I' tCL3 tCl2 0.7Vcc 0.3Vcc tOM ). MA,MB 0.7Vcc 0.3Vcc 2. 0.7Vcc I\- 0.3Vcc Cl, I tSF FlM ) tHF 0.7Vcc 0.3Vcc \ tSMA tHMA I to.7Vcc "1 0. 3VCC MA 3. Test load circuit Test point 0-----, ~ ;J; Cl Cl = 100 F (C L includes ii 9 ) p capacitance HITACHI 454 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61830B Display Control Instructions Display is controlled by writing data into the instruction register and 13 data registers. The RS signal distinguishes the instruction register from the data registers. 8-bit data is written into the instruction register with RS = 1, and the data register code is specified. After that, the 8-bit data is written in the data register and the specified instruction is exe.cuted with RS = O. During the execution of the instruction, no new instruction can be accepted. Since the busy flag is set during this, read the busy flag and make sure it is 0 before writing the next instruction. 1. Mode control Code $"00" (hexadecimal) written into the instruction register specifies the mode control register. R/W RS DB7 DB6 DB5 DB4 DB3 DB2 DBl DBO Instruction reg. 0 1 0 0 0 0 0 0 0 0 Mode control reg. 0 0 0 0 Cursor/blink Register DB5 DB4 DB3 DB2 DBl DBO I/O I/O 0 0 0 0 Mode data CG Cursor off (!) 0 1 Cursor on 1 0 Cursor off, Character blink 1 1 Cursor blink 0 0 0 1 Cursor on 1 0 Cursor off, character blink 1 1 Cursor blink 0 0 Graphic/character display Character display (Character mode) u (ij E j!l ..s: 1 Cursor off (!) u... u... 0 "- z 0 > -a Ci'" 1 0 ... ~ .,~ .,~ ~ !l., ~ (!) .c. 0 iii .:.I. 5 iii u ~ .S :::l I (ij E j!l ~ / I Graphic mode U "0 :E ------- u ..; c: Q.-o "- (!)E LU Q) ~ 0 >i 1: Master mode 0: Slave mode -+ 1: Display ON 0: Display OFF HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 455 HD61830B 2. Set character pitch Vp indicates the number of vertical dots per character. The space het\'V'een the vsr+..ically.. displayed characters is considered for determination. This value is meaningful only during character display (in the character mode) and becomes invalid in the graphic mode. Hp indicates the number of horizontal dots per character in display, including the space between horizontally-displayed characters. In the graphic mode, the Hp indicates the number of bits of 1-byte display data to be displayed. There are three Hp values (Table 1). R/W RS DB7 DB6 DB5 DB4 DB3 DB2 DB1 DBO Instruction reg. 0 1 0 0 0 0 0 0 0 1 Character pitch reg. 0 0 Register (Vp - 1) binary IHp - 1) binary 0 3. Set number of characters HN indicates the number of horizontal characters in the character mode or the number of horizontal bytes in the graphic mode. If the total sum of horizontal dots on the screen is taken as n, n = Hp x HN HN can be set to an even number from 2 to 128 (decimal). R/W RS DB7 DB6 DB5 DB4 DB3 DB2 DB1 DBO Instruction reg. 0 1 0 0 0 0 0 0 1 0 Number-of-characters reg. 0 0 0 Register Table 1 . Hp 6 7 8 (HN -1) binary Hp Values DB2 DB1 DBO o Horizontal character pitch 6 o 7 8 HITACHI 456 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD6183QB 4. Set number of time divisions (inverse of display duty ratio) ratio. Nx indicates the number of time divisions in multiplex display. l/Nx is the display duty A value of 1 to 128 (decimal) can be set to Nx. R/W RS DB7 DB6 DB5 DB4 DB3 DB2 DB1 DBO Instrl,lction reg. 0 1 0 0 0 0 0 0 1 1 Number-of-time shares reg. 0 0 0 Register 5. Set cursor position Cp' indicates the position in a character where the cursor is displayed in the character mode. For example, in 5 x 7 dot font, the cursor is displayed under a character by specifying Cp = 8 (decimal). The cursor horizontal length is equal to the horizontal character pitch Hp. A value of 1 to 16 (decimal) Register (Nx - 1) binary can be set to Cpo If a smaller value than the vertical character pitch Vp is set (Cp ~ Vp), and a character overlaps with the cursor, the cursor has higher priority of display (at cursor display on). If Cp is greater than Vp, no cursor is displayed. The cursor horizontal length is equal to Hp. R/W RS DB7 DB6 DB5 DB4 DB3 DB2 DB1 DBO Instruction reg. 0 1 0 0 0 0 0 1 0 0 Cursor position reg. 0 0 0 0 0 0 6. Set display start low order addres Cause display start addresses to be written in the display start address registers. The display start address indicates a RAM address at which the data displayed at the top left end on the screen is stored. In the graphic mode, Register (C p - 1) binary the start address is composed of high/low order 16 bits. In the character display, it is composed of the lower 4 bits of high order address (DB3-DBo) and 8 bits of low order address. The upper 4 bits of high order address are ignored. R/W RS DB7 DB6 DB5 DB4 DB3 DB2 DB1 DBO Instruction reg. 0 1 0 0 0 0 1 0 0 0 Display start address reg. (low order byte) 0 0 (Start low order address) binary Set display start high order address Register R/W RS DB7 DB6 DB5 DB4 DB3 DB2 DB1 DBO Instruction reg. 0 1 0 0 0 0 1 0 0 1 Display start address reg. (high order byte) 0 0 (Start high order address) binary HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 457 HD61830B 7. Set cursor address (low order) (RAM write low order address) Cause cursor addresses to be vvritteu iil the cursor address counters. The cursor address indicates an address for sending or receiving display data and character codes to or from the RAM. That is, data at the address specified by the cursor address are read/written. In the character mode, the cursor is displayed at the character specified by the cursor address. address (8 bits) and the high-order address (8 bits). Satisfy the following requirements when setting the cursor address Crable 2). The cursor address counter is a 16-bit upcounter with set and reset functions. When bit N changes from 1 to 0, bit N + 1 is incremented by 1. When setting the low order address, the LSB (bit 1) of the high order address is added by 1 if the MSB (bit 8) of the low order address changes from 1 to O. Therefore, set both the low order address and the high order address as shown in table 2. A cursor address consists of the low-order Register Instruction reg. Cursor address counter (low order byte) R/W RS DB7 DB6 0 1 0 0 0 DB5 DB4 DB3 DB2 DB1 DBO 0 0 1 0 1 0 (Cursor low order address) binary 0 Set cursor address (high order) (RAM write high order address) Register R/W RS DB7 DB6 DB5 DB4 DB3 DB2 DB1 DBO Instruction reg. 0 1 0 0 0 0 1 0 1 1 Cursor address counter (high order byte) 0 0 (Cursor high order address) binary Table 2· Cursor Address Setting Condition Requirement When you want to rewrite (set) both the low order address and the high order address. Set the low order address and then set the high order address. When you want to rewrite only the low order address. Don't fail to set the high order address again after setting the low order address. When you want to rewrite only the high order address. Set the high order address. You don't have to set the low order address again. HITACHI 458 Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 HD61830B 8. Write display data After the code $"OC" is written into the instruction register with RS = 1, 8 bit data with RS = 0 should be written into the data Register register. This data is transferred to the RAM specified by the cursor address as display data or character code. The cursor address is increased by 1 after this operation. R/W RS DB7 DB6 DB5 DB4 DB3 DB2 DBl DBa Instruction reg. a 1 a a 0 a 1 1 a 0 RAM 0 a MSB (pattern data, character code) LSB 9. Read display data Data can be read from the RAM with RS = 0 after writing code $"OC" into the instruction register. Figure 1 shows the read procedure. R/W RS DB7 DB6 DB5 DB4 DB3 DB2 DBl DBa Instruction reg. 0 1 a 0 0 a 1 1 a 1 RAM 1 0 Register MBS (pattern data, character code) LSB This instruction outputs the contents of data output register on the data bus (DBO to DB?) and then transfers RAM data specified by the cursor address to the data output register, also increasing the cursor address by 1. After CS-'~ setting the cursor address, correct data is not output at the first read but at the second one. Thus, make one dummy read when reading data after setting the cursor address. _________________________________________ E ---II__-.JIl. . . _-----'1LJ R/W RS DB Busy Busy Cursor Cursor check check address low order set address mode Cursor address Cursor address set mode Cursor Busy high check order address Data Dummy read read mode Busy N Busy check address check data read N+ 1 address data read write write N+l N I Data output register N address Figure 1 N+2 IN+3 datal ~a~a1 address IN + 2 ... Read Procedure HITACHI Hitachi America, Ltd. • Hitachi Plaza ·2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589c8300 459 HD61830B 10. Clear bit The clear/set bit instruction sets 1 bit in a byte of display data RoA.M to 0 or 1, respectively. The position of the bit in a byte is specified by NB and RAM address is specified by cursor a'ddress. After the execution of the instruction, the cursor address is automatically i..creased by 1. NB is a vai.ue from 1 io 8. NB = 1 and NB = 8 indicates LSB and MSB, respectively. R/W RS DB7 DB6 DB5 DB4 DB3 DB2 DB1 DBO Instruction reg. 0 1 0 0 0 0 1 1 1 0 Bit clear reg. 0 0 0 0 0 0 0 R/W RS DB7 DB6 DB5 DB4 DB3 DB2 Instruction reg. 0 1 0 0 0 0 1 1 Bit set reg. 0 0 0 0 0 0 0 Register INa - 1) binary Set bit Register 11. Read busy flag When the read mode is set with RS = 1, the busy flag is output to DB7. The busy flag is set to 1 during the execution of any of the other instructions. After the execution, it is set to O. The next instruction can be accepted. No instruction can be accepted when busy flag = 1. Before executing an instruction or writing data, perform a busy flag check to make Register R/W RS DB7 Busy flag 1 1 I/O 'DB1 1 DBO 1 INa - 1) binary sure the busy flag is o. When data is written in the register (RS = 1), busy flag doesn't change. Thus, no busy flag check is required just after the write operation into the instruction register with RS = 1. The busy flag can be read without specifying· any instruction register. DB6 lDB5 I DB4 I DB3 I DB2 I DB1 I DBO * HITACHI 460 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61830B x z 8888·· .000 00 00 00 .000.000 0 ••• 0000 00000000 --'--"""00 0000 ~--------------HN--------------~ (digit) Symbol Name Meaning Value 6 to 8 dots Hp Horizontal character fitch Horizontal character pitch HN Number of horizontal characters Number of horizontal characters per line (number of 2 to 1 28 digits digits) in the character mode or number of bytes per (an even numline in the graphic mode ber) Vp Vertical character pitch Vertical character pitch 1 to 16 dots Cp Cursor position Line number on which the cursor can be displayed 1 to 16 lines Nx Number of time divisions Inverse of dispqay duty ratio 1 to 128 lines Note: if the number of vertical dots on the screen is m, and the number of horizontal dots is n, 1/m = l/Nx = display duty ratio n = Hp x HN, m/Vp = Number of display lines Cp ;;; Vp Figure 2 Display Variables HITACHI Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 461 """ ~ from MPU Character display Character code (8 bits) Display Panel RAM :r: ~ =-l> .a 8 tJ Liquid Crystal Display Data Dieplay Mode l := Ii: ~. $l ~ :r: Start / address =-J;! .&j • o g N en ~. :::t Dl _ ~il :;; 0 .i ~ . Graphic ~ Display pattern (8 bits) IX! b 7 bo bs b4 b3 b2 b , bo ~. en , :if ::::J ii' r I I I I 50 ~ r i! ~ .!. !:2 co ~ ~ &: i ~ 00 W 8.CD ~ 3 CD Sf n m i bo b 71 8 dots I 8 dots Start address r I I I r. Hp , Hp: 8 dots HD61830B Internal Character Generator Patterns and Character Codes ~ bits igher Lower 0010001101000101011001111010101111001101 11101111 ··..i···..... 4 bits x x x xOOOl -, fWw. ..., : i.... ....: ••••; : a.- __ ••••mu ; __ ••• : . 1-; . ~L-~~~~-uuu ~ ii.···.:···.:···.: X X X x0010 •••• ~ x x x x0011 xxxxOl00 i···: S·::- 1···1 I·· xxxXl000 X X X x 1001 ~ ••••• = ••: -:::5 : II···· I···· •••:.•••• •••• •••• .i.!. ..::- -I-a- le:.·.1 i:::i .::1.·.. :1::: • .::••••• ·...·.... ... :: :: ·. 1:::- : : : i.L_::__ -1 . .:... I... • .i. ..1.·.. . :: i...· ... ....... .. . . . .I •••. ...... .... ........... ...... ......: I.••...i. ..•.. I. I ····1 E.: I :.. ··i·· :.: •-1·· ••-1 i .:1:' •••;- : .wI .1. .....: W ••: ••• 'I··.il *:1· ••• 1 I r--'"--L__L...JUU__~-L~~. .~-H.......~L-~. .LL...L__'-'~~: ••• w· I ••• : .i I ···i-i-Lo.:.:...I..1..__uu",iiLj ..: •••• 1.::_ i i-· II. J...:..·_·... .1 •••• : -:••: • ••••: a.' .1 II •••••• ::.. ••• •• • 1•• •••• : •• •••••: w· : p":::'LL::...o.::...L..i..__~-=·"'o.:·:......t_"':·__~"'·'L··--L~':::""~::...a::..J.."''''''UU''''i..j ~ :. .. ::::1 :. I I i•..•i. ••••• •••: i.··. ...• .. : I •••••: ••• ::::1 .:. I I •• .t •• i ·1· __I __ ·.1.· .:. ~~~~-J~ II II • .: • • . .1.:. ····1 :.... i I. I .: I I : 81'.' .•.•.::: • ·1. •••:. ••••• ····5 •• : •••: :I •• ·11····. "1 ..... . ····1 : '11':·· •••••• .: .. .:. : i i·:·i ..:.. ::••:: •••••• • .·· ·t =., .11 :.... ·1. ••• ••••• :.: •••• • .. .·.... .... .:: ..!:.-.. •••1 . ... .:. ".:!.. :: .1···· : : ••• __-L__~~L-~..u~~L-~'ULLAUaLWUmuLUL-JU~__~ • ••:.. •••• • ~-D~~~~~~-WLU~ . . ..... .I i. I··: ··:1· I .1... • •: ••:.. ~~~U-~~~~~~~~~~~~-L~~~ ~ • •1 __~~~WU-L~__~-L~-L~-L~L-~-L~ XXXX10llr--=I__~·LI__WL~W-~LJ~~~~.......~~~o.:·:"'·-L-H~wl.....uli..j XXXXll00 ... a:::: :.: I--'LL~~L...J'-'aL~....L...l~UL~...............L-L--'"--L...L__~·....'-I ~ X X X X1010 __ __~. .uuUUaL~L-~~UL~~~____L-~-L~~UL__~i··· II • X X X xOlll .1 •••••1 i···· : ·-1 : :.i x x x x 01 0 1 r=-''_'... ' u...::...o.:i:..J...>i..•..··ILJ_=....::..L:i:..::..:L..I..L:..::.... xxxx0110 .wi:! ::1:. :: ~~~~~ I .- : ....... ·1···1 -s· X X X X1101 ~__-L__~..JIL-..I~AU.........1_·...JI.IL-LI__J...OJ.... ILJ-L-...JLJ~__I~IIIL'_·~ .,:•• XXXX1110 ..... il •••I••• ~~-L~~~ X X X x 1111 ....• ••••• ..- i•••••i •••• ••• __ •• __ . •••: • • • • •::••••: ~~~ ••••: ••:.. • • • ..... ·1:·· ••• i· :1:·_ _ r·i •• I.. _. :. . .. . ~.w~ __ ~-L~ ~ ••••• 1·1 1-__-L...JI.~_=....::~....~_IJIIIII'-1.L__-'-_·...•...I-L......_••-L---JL..J____-I I •••: HITACHI Hitachi America. Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 463 HD61830B Application (Character Mode, External CG, Character Font 8x 8) H06303 H061830B ~ Al I Al5 Do I 07 FDDecoder E cs LM u... Ao RAM(2) OE RAM(1) Dot,...... I I:IM6116 I jv MAo I f----' MAIO A IO cf7 OE , CE MAll d MAl2 I MA 15 MOo I M0 7 Ao-A3 A4 -A 11 ROo Dr ROM OE I 07 HN482732A CE R0 7 01 FlM 'MB Cl1 Cl2 O2 MA -Open 1 OE Do ~ "---v' I HM6116 A IO d/. . . . CS ~- CS OBo I OB 7 E R/W ~WE ~ WE" RS -H- R/W ~ Open_ SYNC Vcc- iiE§" External- CR clock Pi LtS I +5V GNO -5V 01 FlM MB Cl1 Cl2 02 +5V GNO lCO Module lM-200 Vo5V Application (Graphic Mode) ~---------------- H06303 MPU OB oDB7 CS E RSR/W RES - 0-1 Cl 1 , Cl2 MB, FlM M~MA 15 DE MOoM0 7 16K bits H0611oo~ i ! I WE RAM a '- r0611004---~------ - I 02 H061830B Controller -T lCO --2-r.0; 'I l- I, CMOS GNO I Voo (5V) I VEE (-5V) .1- l' IH0611oo1------------ H061100A! a ISUDDV -V V for 1 I~ower ~?S~~;'rn~~ I • r L ________ ---- - HITACHI 464 Hitachi America, Ltd,· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819" (415) 589-8300 HD61830B Example of Configuration Graphic Mode Liquid crystal display module Character Mode (1) (Internal Character Generator) Liquid crystal display module MAo-MA" Character Mode (2) (External Character Generator) Liquid crystal display module Parallel Operation (Master) I.=~I-----,r..f=:::==~--~ Liquid crystal Liquid crystal (2) display module ( 1) display module Driving both of two module by same common signal HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA94005"1819· (415) 589-8300465 HD63645F/HD64645F-LCD Timing Controller (LCTC) Pin Arrangement Description The HD63645F /HD64645F LCTC is a control LSI for large size dot matrix liquid crystal displays. The LCTC is software compatible with the HD6845 CRTC, since its programming method of internal registers and memory addresses is based on the CRTC. A display system can be easily converted from a CRT to an LCD. ~g~ ~ MD2 ~g~ ~ F. MD5 • MD6 ~ MD7 ..- The LCTC offers a variety of functions and performance features such as vertical and horizontal scrolling, and various types of character attribute functions such as reverse video, blinking, nondisplay (white or black), and an OR function for simple superimposition of character and graphic displays. The LCTC also provides DRAM refresh address output. MOB [! MD9 ITci MD10[l] MD11r;; MD12@ MD13ill MD14!)i MD15'" V ee 1 LD3 '" LD2 LD1 r,; LOO ~ IE m t~~ ~ A compact LCD system with a large screen can be configured by connecting the LCTC with the HD61104 (column driver) and the HD61105 (common driver) by utilizing 4-bit x 2 data outputs. Power dissipation has been lowered by adopting the CMOS process. lU1 2. .. " " .. .. RAO RA1 RA2 RA3 RA4 .. GND1 "G~ " AT " 'LS " DIS" .. WIDE " ON/W " MODE 'I-'ODB7 BLE 49 DBs ., DB6 D 46 DB4 DB3 ., DB2 ... DB, ..., OBo " RiWiRoI .1 E(WR) ) is for HD64645F Features • • • • • • • • • • Software compatible with the HD6845 CRTC Programmable screen size: -Up to 1024 dots (height) -Up to 4096 dots (width) High-speed data transfer: -Up to 20 Mbits/s in character mode -Up to 40 Mbits/s in graphic mode Selectable single or dual screen configuration Programmable multiplexing duty ratio: static to 1/512 duty cycle Programmable character font: -1-32 dots (height) -8 dots (width) Versatile character attributes: reverse video, blinking, nondisplay (white), nondisplay (black) OR function: superunposing characters and graphics display Cursor with programmable height, blink rate, display position, and on/off switch Vertical smooth scrolling and horizontal scrolling by the character • • • • • • • • Versatile display modes programmable by mode register or external pins: display on/off, graphic or character, normal or wide, attributes,' and blink enable Refresh address output for dynamic RAM 4- or 8-bit parallel data transfer between LCTC and LCD driver Recommended LCD driver: HD61104 (column) and HD61105 (common), HD66204 (column) and HD66205 (common), HD66106, HD66107T (common/column) CPU interface: 68 family (HD63645F), 80 family (HD64645F) CMOS process Single +5 V ±10% 80-pin plastic QFP (FP-80) HITACHI 466 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819. (415) 589-8300 HD63645F /HD64645F Ordering Information Type No. Bus Timing Bus Interface Package HD63645 2MHz 68 System 80-pin Plastic QFP (FP-80) HD64645 4MHz 80 System 80-pin Plastic QFP (FP-80) HD64646 4MHz 80 System 80-pin Plastic QFP (FP-80B) Note: See HD64646 data sheet in this data book. Pin Description Symbol Pin Number Nama Vee 1 , Vee2 17,32 Vee GND1, GND2 37,59 Ground LUO-LU3 22-25 LCD Up Panel Data 0-3 LDO-LD3 18-21 LCD Down Panel Data 0-3 CL1 28 Clock One CL2 29 Clocl< Two o o o o FLM 27 First Line Marker o M 26 M MAO-MA15 65-80 Memory Address 0-1 5 RAO-RA4 60-64 Raster Address 0-.4 o o o MDO-MD7 1-8 Memory Data 0-7 MD8-MD15 9-16 Memory Data 8-1 5 DBa-DB7 43-50 Data Bus 0-7 CS 39 Chip Select E 41 Enable (HD63645 Only) R/W 42 Read/Write (HD63645 Only) WR 41 Write (HD64645 Only) RD 42 Read (HD64645 Only) RS 40 Register Select RES 38 Reset DCLK 33 o Clock MCLK 34 M Clock DISPTMG. 35 Display Timing CUDISP 36 Cursor Display sKO 30 Skew 0 SK1 31 Skew 1 ON/OFF 53 On/Off BLE 51 Blink Enable AT 57 Attribute G/C 58 Graphic/Character WIDE 54 Wide LS 56 Large Screen D/S 55 Dual/Single MODE 52 Mode I/O I/O o o o HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 467 HD63645F /HD64645F Pin Functions Power Supply (Veel, Vcc2, GND) Power Supply Pin (+5 V): Connect Vee l and Vcc 2 with +5 V power supply circuit. Ground Pin (0 V): Connect GNDl and GND2 with OV. LCD Interface LCD Up Panel Data (LUO-LU3), LCD Down Panel Data (LDO-LD3): LUO-LU3 and LDO-LD3 output LCD data as shown in table 1. Chip Select (CS): CS selects a chip. Low level enables MPU read/write of the LCTC internal registers. Enable (E): E receives an enable clock. (HD63645F only). Read/Write (R/W): R/W enables MPU read of the LCTC internal registers when R/W is high, and MPU write when low (HD63634F only). Write (WR): WR receives MPU write signal (HD64645F only). Clock One (CLI): CLl supplies timing clocks for display data latch. Read (RD): RD receives MPU read signal (HD64645F only). Clock Two (CL2): CL2 supplies timing clock for display data shift. Register Select (RS): RS selects registers. (Refer to table 5.) First Line Marker (FLM): FLM supplies first line marker. Reset (RES): RES performs external reset of the LCTC. Low level of RES stops and zero~ clears the LCTC internal counter. No register contents are affected. M (M): M converts liquid crystal drive output to AC. Timing Signal Memory Interface Memory Address (MAO-MAI5): MAOMA15 supply the display memory address. Raster Address (RAO-RA4): supply the raster address. RAO-RA4 Memory Data (MDO-MD7): MDO-MD7 receive the character dot data and bitmapped data. Memory Data (MD8-MDI5): MD8-MD15 receive attribute code data and bit-mapped data. M Clock (MCLK): MCLK indicates memory cycle; DCLK is divided by four. Display Timing (DISPTMG): DISPTMG high indicates that the LCTC is reading display data. Cursor Display (CUDISP): CUDISP supplies cursor display timing; connect with MD12 in character mode. Skew 0 (SKO)/Skew I (SKI): SKO and SKl control skew timing. Refer to table 2. MPU Interface Data Bus (DBO-DB7): DBO-DB7 send/ receive data as a three-state I/O common bus. Table I D Clock (DCLK): DCLK inputs the system clock. Mode Select The mode select pins ON/OFF, BLE, AT, G/C, LCD Up Panel Data and LCD Down Panel Data Single Screen a-Bit Data Pin name 4-Bit Data LUO-LU3 LDO-LD3 Data output Disconnected Data output Data output Dual Screen Data output for upper screen Data output for lower screen HITACHI 468 Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 HD63645F /HD64645F and WIDE are ORed with the mode register (R22) to determine the mode. normal and wide display mode (high = wide display, low = normal display). On/Off (ON/OFF): ON/OFF switches dis- Large Screen (LS): LS controls a large screen. LS high provides a data transfer rate of 40 Mbits/s for a graphic display. Also used to specify a-bit LCD interface mode. For more details, refer to table 10. play on and off (High = display on) . Blink Enable (BLE): BLE high level enables attribute code "blinking" (MD13) and provides normal/blank blinking of specified characters for 32 frames each. attribute functions. Dual/Single (D/S): D/S switches between single and dual screen display (dual screen display when high). Graphic/Character (G/C): G/G switches between graphic and character display mode (graphic display when high). Mode (MODE): MODE controls easy mode. Attribute (AT): AT controls character Wide (WIDE): WIDE switches between Table 2 Skew Signals SKO SK1 Skew Function o o No skew 1-character time skew 2-character time skew Prohibited combination 1 o 1 o 1 MODE high sets duty ratio, maximum number of rasters, cursor start/end rasters, etc. (Refer to table 9.) HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 469 HD63645F /HD64645F Function Overview LCD and CRT Display Systems Main Features of HD63645F IHD64645F Figure 1 shows a system using both LCD and CRT displays. Main features of the LCTC are: High-resolution liquid crystal display screen control (up to 720 X 512 dots) Software compatible with HD6845 (CRTC) Built-in character attribute control circuit . Table 3 shows how the LCTC can be used. Table 3 Functions, Application, and Configuration Claeeification Item Description Functions Screen Format • Programmable horizontal scanning cycle by the character clock period • Programmable multiplexing duty ratio from static up to 1/512 • Programmable number of vertical displayed characters per character row • Programmable number of rasters per character row (number of vertical dots within a character row + space· between character rows) Cursor Control • Programmable cursor display position, corresponding to RAM address • Programmable cursor height by setting display start/end rasters • Programmable blink rate, 1/32 or 1/64 frame rate Memory Rewriting • Time for rewriting memory set either by specifying number of ____________________________________ ~?!!~_~~~!_~~~!_~~~~~~_~_?~_~X_~~I~_~!~~!_~~~I!~!~~_~_~_~~___________ _ Memory Addressing • 16-bit memory address output, up to 64 kbytes x 2 memory accessible' • DRAM refresh address output Paging and Scrolling • Paging by updating start address • Horizontal scrolling by the character, by setting horizontal virtual screen width • Vertical smooth scrolling by updating display start raster ----------------------------------------------.-----------------------.-----.------.-----------------------.---.---------_._--Character Attributes • Reverse video, blinking, nondisplay (white or black), display ON/ OFF OR Function • Enables superimposing display of character screen and graphic screen LCTC Configuration • Single 5 V power supply .1/0 TIL compatible except RES, MODE, SKO, SK1 • Bus connectable with HMCS 6800 family (HD63645) • Bus connectable with 80 family (HD64645) .CMOS process .Internal logic fully static .80-pin flat plastic package Application Configuration HITACHI 470 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300 HD63645F jHD64645F Uquid crystal display CRT (monochrome) LCD display signals MPU 6301 Figure 1 LCD and CRT Displays HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 471 HD63645F /HD64645F Internal Block Diagram s: J.\:f UL~ . "'" Ii:) C1 IJIV\.,in, . u.J.a~.I.a..u .L V.L ---- ... .L,U::; .L.I'-'.1. v. CL2 M Gte AT ~ ;f,l~ RAo-RA4~==~======~============~ MODE LE CUDISP SKO SKl ) is for HD64645 (80 types bus interface) Flgure2 LCTC Block Diagram HITACHI 472 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD63645F /HD64645F ~ystem Block Configuration Examples Figure 3 is a block diagram of a character / graphic display system. Figure 5 shows two examples using LCD drivers. HD63645/HD64645 MPU Bus (WR) (RD) E.R/W DBO-DB7 II) .c iii c:: 01 'iii G/C AT LS MAO-MA15 D/S WIDE MODE ON/OFF MCLK BLE DISPTMG CS.RS ::l II) ::l .c ~ 'g ~ II) ::l .c B II> 2 1·--- Display On/off Blink enable C Reset CUDISP LUO-3 LDO-LD3 CL2r---AJ ~L1 f----"II L.::=-=~=:::jRAO-MD4 Figure 3 LCD Module FLM Character/Graphic Display System Example HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 473 HD63645F IHD64645F Interface to MPU RS P10-P17 I 11 Decoder t---< SC2 (R/W) CS R/W HD63645F LCTC HD6301 MPU E E Pao -P a7 DBo-DB7 RES RES RESET Note: HD6301 is set in mode 5. P1 0-P17 are used as output ports, and P30-P37 as data buses. SC2 outputs R/W here. Interface between H06301 and HD63645F Ao-A'5 10E - I ~ ~ RO HD641BO MPU II Decoder RS • ::J WR 0 0 -0 7 CS RD HD64645F LCTC WR DBo-DB7 RES RES RESET Note: In 80 family MPUs, I/O space is separate from memory space in software. Thus the LCTC, a part of I/O, needs the ORed signals of the interface signals and 10E. So 10E and RD, and 10E and WR should be ORed to satisfy tAS, the timing of CS, RD, and WR. Interface between H064180 and HD64645F Figure 4 Interface to MPU HITACHI 474 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD63645F /HD64645F I Dual screen I LUOLU3 FLMI-----I 400 x 640 dots CL1~_---1 CL2~_--r M LCTC I Single screen I LUOLU3 CL1r.-.-~ CL2r.-._ _--' M LCD panel 200 x 640 dots 1/200 duty ratio LCTC Figure 5 LCD Driver Examples HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 475 HD63645F /HD64645F Registers -nune'l snows me reQlSter mapping. Table b describes their function. Table 6 shows the Table 4 differences between CRTC and LCTC registers. Registers Mapping Ad*RegiIter Reg. Ci RS 432 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DatIl Bit RegiIter Name 110. - ----0 ----- AR 1 00000 RO 1 00001 Rl 1 01001 R9 1 01010 RIO o1 0 1 1 Rl1 o1 1 00 R12 o11 0 1 R13 01 11 0 R14 o1 1 1 1 R15 1 00 1 0 RIB 1 00 1 1 R19 1 0 1 0 0 R20 1 0 1 0 1 R21 1 0 1 1 0 R~2 Program Unit SymboIR/W Invalid Address Register Horizontal Total Characters Character3 Nht Horizontal Displayed Char. S Character Nhd Maximum Raster Address Raster Nr Cursor Start Raster Ncs Raster4 Cursor End Raster Raster Nee Start Address (H) Memory Address Start Address (L) Memory Address Cursor Address (H) Memory Address Cursor Address (L) Memory Address Horizontal Virtuel Screen WidthCharacter Nir Multiplexing Duty Ratio (H) Raster3 Ndh Multiplexing Duty Ratio (L) Raster3 Ndl Display Start Raster Raster Nsr Mode Register -NoteS 7 8 & 4 3 2 0 W W W W W W R/W R/W R/W R/W W W W W W Notes: 1. . . . . : Invalid data bits 2. R/W indicates whether write aCcess or read access is enabled to/from each register. W: Only write accessible R/W: Both read and write accessible 3. The ·value to be specified minus 1· should be programmed in these registers: RO. R1 and R20. 4. Data bits 5 and 6 of cursor start register control the cursor status as shown below. (For more details. refer to page 27). B o o 1 1 P Cursor BUnk Mod. 0 1 0 1 Cursor on; without blinking Cursor off Blinking once every 32 frames Blinking once every 64 frames 5. The OR of mode pin status and mode register data determines the mode. 6. Registers R2-R8. R16. and R17 a~ not assigned for the LCTC. Programming to these registers will be ignored. HITACHI 476 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD63645F /HD64645F Table 5 Internal Register Description Reg. No. Raglater Name Size(Bita) Description AR Address Register 5 Specifies the internal control registers (RO. R1. R9-R15. R18-R22) address to be accessed RO Horizontal Total Characters 8 Specifies the horizontal scanning period R1 Horizontal Displayed Characters 8 Specifies the number of displayed characters per character row R9 Maximum Raster Address 5 Specifies the number of rasters per character row. including the space between character rows R10 Cursor Start Raster 5+2 Specifies the cursor start raster address and its blink mode R11 Cursor End Raster 5 Specifies the cursor end raster address R12 R13 Start Address (H) Start Address (L) 16 Specify the display start address R14 R15 Cursor Address (H) Cursor Address (L) 16 Specify the cursor display address R18 Horizontal Virtual Screen Width 8 Specifies the length of one row in memory space for horizontal scrolling R19 R20 Multiplexing Duty Ratio (H) Multiplexing Duty Ratio (L) 9 Specify the number of rasters for one screen R21 Display Start Raster 5 Specifies the display start raster within a character row for smooth scrolling R22 Mode Register 5 Controls the display mode Note: For more details of registers. refer to Ulnternal Registers u • HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 477 HD63645F /HD64645F Table 6 ...""". Internal Register Comparison between LCTC and CRTC No. LCTC HD63645/HD64645 Comparison CRTC HD6645 AR Address Register Equivalent to CRTC Address Register RO Horizontal Total Characters Rl Horizontal Displayed Characters Horizontal Total Characters Horizontal Displayed Characters R2 Particular to CRTC ; Horizontal Sync Position R3- unnecessary for LCTC Sync Width R4 Vertical Total Characters R5 -R6 Vertical Total Adjust R7 Vertical Sync Position Vertical Displayed Characters Interlace and Skew RS Equivalent to CRTC Maximum Raster Address R9 Maximum Raster Address Rl0 Cursor Start Raster Rl1 Cursor End Raster Cursor End Raster R12 Start Address (H) Start Address (H) Cursor Start Raster R13 Start Address (L) Start Address (L) R14 Cursor Address (H) Cursor (H) R15 Cursor Address (L) Cursor (L) R16 Particular to CRTC ; Light Pen (H) R17 unnecessary for LCTC Light Pen (L) R1B Horizontal Virtual Screen Width R19 Multiplexing Duty Ratio (H) R20 Multiplexing Duty Ratio (L) R2l Display Start Raster R22 Mode Register Additional registers for LCTC HITACHI 478 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD63645F /HD64645F Functional Description Programmable Screen Format Figure 6 illustrates the relation between LCD display screen and registers. Figure 7 shows a timing chart of signals output from the LCTC in mode 5 as an example. t - - - - - - - - - - H o r i z o n t a l Total Chara~rs(RO)----------_I (R21) Start Raster Horizontal Displayed Chars. (Rl) - - - - -... ~=~~-~ Stert Address (R12) CPU Memory Write Time Display Period ----'---'----'"' Display Stert Raster Address (R21) Figure 6 Relation between Display Scteen and Registers HITACHI Hitachi America, Ltd.· Hitachi Plaza· 20QO Sierra Point Pkwy.· Brisbane, CA 94005-1819'; (415) 589-8300 479 HD63645F /HD64645F lTu-u-u-u-U-L____J-U-U-U-U-U-U-U-L.J-U-U-U-LJ-U-U-U-U-U-U- MCLK DISPTMG J CUDISP Jl C (Timing latCh) MAO-MA15 0 1 2 ~ 3 4 5 ~~~~FH2IJ..~'f2f2f2fJJ:i RAO-RA4 ____________________________ FLM _ _ _ _ _ _ _ _ _ _ _ _....., - ~~L;:l~ - , ' - -_ _ _ _ __ M ____________________________ ___________ ~x~ ___________ ~x~ CL1 eL2 ---.l11UlflJ1J1 ____ JlfUlIUlI1JlL...-.---_ _ _-----Iflf LUO ______~~~~~~~~_-_'_____________XX LUl LU2 ____ ~:~~~~~t ________________YJ ______~~~~JQOOJll~2__--------~----------~XX -----vvvvvw \fV LU3 _ _ _---'~ ____ ~2...3_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _~M LDO -----'~~~~~JJJJJJj,_ _ _ ___''IJ LDl _'IJ'ffJJJJJJJJl:~~~JJJJJJj, YJ LD2 _~~~~~JJJJJJj, 'IJ LD3 __'IJJ'fJJJJJJJfJ ::~~JJJJJJj, YJ Figure 7 LCTC Timing Chart (In Mode 5: Single Screen, 4·Blt Transfer, Normal Character Display) HITACHI 480 Hitachi America, Ltd. - Hitachi Plaza- 2000 Sierra Point Pkwy. - Brisbane, CA 94005-1819 - (415) 589-8300 HD63645/HD64645 HD63645F /HD64645F Cursor Control Cursor height Cursor blink mode The following cursor functions (figure 8) can be controlled by programming specific registers. A cursor can be displayed only in character mode. Also, CUDISP pin must be connected to MD12 pin to display a cursor. Cursor display position Cursor Start Raster Cursor Height Cursor End Raster Figure 8 Cursor Display HITACHI Hitachi America, Ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300 481 HD63645F /HD64645F Graphic Mode 1: Graphic mode 1 directly Character Mode and Graphic Mode displays data stored in a graphic memory ThA T.r.Tr. Q;l1!'!'nrh:z 'turn tunl::u::.! nf niC!!,1~~7 modes; character mode and graphic mode. Graphic mode 2 is provided to utilize software for a system u,sing the CRTC (HD6845). The display mode is controlled by an OR between the mode select pins (D/S, G/C, LS, WIDE, AT) and mode register (R22). Character Mode: Character mode displays characters by using CG-ROM. The display data supplied from memory is accessed in 8bit units. A variety of character attribute functions are provided, such. as reverse video, blinking, nondisplay (white or black) ,by storing the attribute data in attribute RAM (ARAM). hnf'f'..o.'r T'ho. -- - - - - - " ---- ~;C!'I"'\lo~J' ---- ..- - - - " 1"'10+0 C!'I'I_""H.o.~ ------- - ~JI>r--- f''''I'''\YW''O ......,,0...-_ -- - - - - - - - - - - - - - ory is accessed in 16-bit units. Character attribute functions or wide mode are not provided. Figure 10 illustrates the relation between graphic display screen and memory contents. Graphic Mode 2: Graphic mode 2 utilizes software for a system using the CRTC (HD6845). The display data supplied from memory is accessed in 16-bit units. Character attribute functions or wide mode are not provided. The same memory addresses are output repeatedly the number of times specified by maximum raster register (R9). The raster address is output in the same way as in character mode. Figure 9 illustrates the relation between character display screen and memory contents. VRAM (Char. code) Blinking + ~8-bit Start 7 address ... 1st 1st Row Row I 2nd Row 2nd Row \ code) _8-bit 41 08 Reverse Video 42 20 Blinking 43 00 ,. \ ARAM (Attr. ,,, 44 00 45 00 46 00 ,, ,, ,I I I I I Figure 9 Relation between Character Screen and Memory Contents HITACHI 482 Hitachi America, Ltd.· Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD63645F /HD64645F Horizontal Virtual Screen Width direction by the character, by setting the horizontal virtual screen width and updating the start address. This function is enabled by programming the horizontal virtual screen width register (R18). Horizontal virtual screen width can be specified by the character in addition to the number of horizontal displayed characters (figure 11). Figure 12 shows an example. The display screen can be scrolled in any MM M 1st Une 2nd Une 0 7 VRAM I I I I I I I I I I I I I I I I I I I I I I I I I I I I I . VRAM DO ARAM 015 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ,8-bit ... ... 8-dit I I I, I I I I , I I I I I I I I I I I I I I I I I I I I I I I I ,, I I I I I I I I I I I I I I I I I I I I I I I I I I 1'1 / 1st Lin \ ( 2n Line \ FF 55 33 I I I I I I I I 00 AA I I I CC I I I I I I I Display Screen I I I I I I I I I I I I I Figure 10 ARAM Relation between Graphic Screen and Memory Contents i<---HOnzorltal virtual Figure 11 screen width(R18)--..j Horizontal Virtual Screen Width HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 483 · HD63645F /HD64645F fl18 Example: R18 (Horizontal Virtual Screen Width) 10 R1 (Horizontal Displayed Charactars) - 6 = 5 6 7 8 9 Displayed Area u Performing horizontal scroll by updating the start address 0U14 o 10 11 2 3 12 13 9 New LeT Figure 12 Ezample of Horizontal ScroD by Setting Horizontal Virtual Screen Width HITACHI 484 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD63645F /HD64645F Smooth Scroll Wide Display Vertical smooth scrolling (figure 13) is performed by updating the display start raster, as specified by the start raster register (R21). This function is offered only in character mode. The character to be displayed can be doubled in width, by supplying the same data twice (figure 14). This function is offered only in character mode, and controlled either by bit 2 of the mode register (R22) or by the WIDE pin. 1 Raster 0 Address 1 2 2 3 4 5 3 4 5 6 7 6 7 Display start raster address (R21) = 0 Figure 13 (R21) = 1 (R21) = 2 Example of Smooth Scroll by Setting Display Start Raster Address I 122334455667788 WIDE = low WIDE Figure 14 = High Example of Wide Display HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589--8300 485 / HD63645F /HD64645F Attribute Functions - The attribute functions are offered only in character mode, and controlled either by bit 0 ot me moae re91ster \H:'::':j or tne AT pm. AS shown in figure 15, a character attribute can be specified by placing the character code on MDO-MD7, and the attribute code on MDllMD15. MDS-MD10 are invalid. --- A vanety 01 cnaracter attrwute lUnCtlons such as reverse video, blinking, nondisplay (white) or nondisplay (black) can be implemented by storing the attribute data in ARAM (attribute RAM). Figure 15 shows a display example using each attribute function. 2. White 1. Black D 3. Blinking 4. Cursor 5. Reverse Video m Figure 15 Display Example Using Attribute Functions MD Input 15 14 13 12 11 10-S 7-0 Function Nondisplay (black) Nondisplay (white) Blinking Cursor Reverse video. *** Character Code ': Invalid Figure 16 Attribute Code HITACHI 486 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD63645F /HD64645F OR Function -Superimposing Characters and Graphics this data as 1 byte. The OR function (figure 17) generates the OR of the data entered into MDO-MD7 (e.g. character data) and the data into MD8-MD15 (e.g. graphic data) in the LCTC and transfers This function is offered only- in character mode, and controlled by bit 0 of the mode register (R22) or by the AT pin. Any attribute functions are disabled when using the OR function. Graphic data (Character data) Character data (Graphic data) I MD15 MD14 - - - r - - - - - - MD9 - - - - - - MOl; 'MD7 - - -/- - - MD6 - - - - - - - MD1 - - - - - - MDO - - I -/- - - - - - - ~ - - - - - Y""- - a-bit data ..... - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6 7 - - - - - - - - _I Figure 17 _ OR Function HITACHI Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 487 HD63645F /HD64645F DRAM Refresh Address Output Function rTI'l-_ Tn"",... ___ "' ___ ... _ ... \..._ ... .-.3...1 __ ....... & __ T"\'DA'I. • .......- -_ ... - -_ ..Z"........ ......- --_.. __..... _- -- .... --,,refresh while CLl is high, as shown in figure 18. The 16 refresh addresses per scanned line are output 16 times, from $OO-$FF. zontal character display period, the access is retarded to the next cycle by inserting a latch ... _ _ ..... . - ............ 9 ... ...:I...:I ....... "1'!t ...... , .. +_'1,+ ~_A h"of.f,o.r 'I"Y"I,oTn_ ~-;Y-~~tP~t. -Th~ -~k;;-f~~~~~ --r;t~ds the CUDISP, DISPTMG, CL2 outputs, and MD inputs in the LCTC to match phase with the display data signal. Skew Function The LCTC can specify the skew (delay) for CUDISP, DISPTMG, CL2 outputs and MD inputs. If buffer memory and character generator By utilizing this function, a low-speed memory can be used as a buffer RAM or a character generator ROM. This function is controlled by pins SKO and SKl as shown in table 7. ROM cannot be accessed within one hori- Table 7 Skew Function SKO SK1 Skew Function o o No skew 1 character time skew 2 character time skew Inhibited combination o 1 o 1 1 DISPTMG L CL1 MCLK MAO-MA7 Display Memory Address .1 ~ Figure 18 DRAM Refresh Address .I~ ~:~~~ Address DRAM Refresh Address Output HITACHI 488 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD63645F /HD64645F Easy Mode Automatic Correction of Down Panel Raster Address This mode utilizes software for systems using the CRTC (HD6845). By setting MODE pin to high, the display mode and screen format are fixed as shown in table 8. With this mode, software for a CRT screen can be utilized in a systeII!- using the LCTC, without changing the BIOS. Table 8 When the LCTC mode is set for character display and dual screen, memory addresses (MA) and raster addresses (RA) are output in such a way as to keep continuity of a display spread over the two panels. Therefore users can use the LCTC without considering the multiplexing duty ratio (the number of vertical dots of a screen) or the character font. (See figure 19.) Fixed Values in Easy Mode Reg. No. Register Name Fixed Value (decimel) R9 R10 R11 R18 R19 R20 R21 R22 Maximum raster address Cursor start raster Cursor end raster Horizontal virtual screen width Multiplexing duty ratio (H) Multiplexing duty ratio (l) Display start raster Mode register 7 6 7 Same value as (R1) 99 (in dual screen mode) 199 (in single screen mode) o o Up panel -~---AB8------ Characters are continuous in spite of the break of a screen. Down par:Iel Figure 19 Example of the Display in the Character Mode HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 489 HD63645F /HD64645F ~stem Setting Configuration and Mode LCD System Configuration Hardware Configuration and Mode Setting The screen configuration, single or dual, must ! be specified when using the LCD system (figure 20). Using the single screen configuration, you can construct an LCD system with lower cost than a dual screen system, since the required number of column drivers is smaller and the manufacturing process for mounting them is simpler. However, there are some limitations, such as duty ratio, breakdown voltage of a driver, and display quality of the liquid crystal, in single screen configuration. Thus, a dual screen configuration may be more suitable to an application. The LCTC also offers an 8-bit LCD data transfer function to support an LCD screen with a smaller interval of signal input terminals. For a general size LCD screen, such as 640 x 200 single, or 640 x 400 dual, the usual 4-bit LCD data transfer is satisfactory. The LCTC supports the following hardware configurations: Single or dual screen configuration 4-or 8-bit LCD data transfer and the following screen format: Character, graphic 1, or graphic 2 display Normal or wide display (only in character mode) OR or attribute display (only in character mode) Also, the LCTC supports up to 40 Mbits/s of large screeen mode (mode 13) for large screen display. This mode is provided only in graphic 1 mode. Table 9 shows the mode selection method according to hardware configuration and screen format. Table 10 shows how they are specified. 4 Column Driver (Upper panel) ... ~ ·c o LCD Upper Panel c o E 4or8 o~a--~~/~i:____~C~o~lu~m~n~o~n~'v~e~r____J ~ Single screen Dual screen Figure 20 Hardware Configuration According to Screen Format HITACHI 490 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD63645F /HD64645F Table 9 Mode Selection Hardwara Configuration Screen Format Maximum Screen LCD Data Transfer Configuration Screen Size Character/ Normal/ Graphic Wide 4-bit Single Normal Character Normal Attribute/ OR AT data transfer speed (Mbps) Mode No. 20 5 10 6 OR Wide AT OR Dual Normal Graphic 1 20 7 Graphic 2 20 8 Character Normal AT 20 OR Wide AT 10 2 OR 8-bit Single Graphic 1 20 3 Graphic 2 20 4 Large Graphic 1 Normal Character Normal AT 40 13 20 9 10 10 OR Wide AT OR Note: Graphic 1 20 11 Graphic 2 20 12 Maximum data transfer speed indicates amount of the data read out of a memory. Thus, the data transfer speed sent to the LCD driver in wide function is 20 Mbps. HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 491 HD63645F /HD64645F Mode List Table 10 Mode List Pin Name No. ModeN..... 1 Dual-screen character 2 Dual-screen wida character 3 4 6 Dual-screen graphic 1 Dual-screen graphic 2 Single-screen character 6 Single-screen wide character 7 Single-screen graphic 1 Single-screen graphic 2 8-bit character 8 9 10 8-bit wide character 11 8-bit graphic 1 12 8-bit graphic 2 13 Large screen DIS GIC LS WIDE AT 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0, 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 ao-. Canfg. a...:tar Graphic/ Data TI'IIIIIfar Dual screen Character 4-bit x2 WIde DiIpIIy AtIIibute Normal OR Wide OR AT AT 1 0 0 1 0 Graphic Single screen Character 4-bit Normal OR Wide OR AT AT Graphic Single screen Character 8-bit Normal OR Wide OR AT AT 1 0 Graphic Dual screen 4-bit x2 The LCTC display mode is determined by pins DIS (pin 55), G/C (pin 58), LS (pin 56), WIDE (pin 54), and AT (pin 57). As for G/C, WIDE, and AT, the OR is taken between data bits 0,2, and 3 ofthe mode register (R22). The display mode can be controlled by either one of the extemal pins or the data bits of R22. Note: The above 5 pins have 32 status combinations (high and low) . Any combinations other than the above are prohibited, because they may cause malfunctions. If you set an prohibited combination, set the right combination again. HITACHI 492 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005~1819· (415) 589-8300 HD63645F /HD64645F Internal Registers The fDD63645F/fDD64645F has one address register and fourteen data registers. In order to select one out of fourteen data registers, the address of the data register to be selected must be written into the address register. The MPU can transfer data to/from the data register corresponding to the written address. To be software compatible with the CRTC (HD6845), registers R2-R8, R16, and R17, which are not necessary for an LCD are defined as invalid for the LCTC. Address Register (AR) AR register (figure 21) specifies one out of 14 data registers. Address data is Written· into the address register when RS is low. If no register corresponding to a specified address exists, the address data is invalid. Horizontal Total Characters Register (RO) RO register (figure 22) specifies a horizontal scanning period. The total number of horizontal characters less 1 must be programmed into this 8-bit register in character units. Nht indicates the horiZontal scanning period including the period when the CPU occupies memory (total number of horiZontal characters minus the number of horizontal displayed characters). Its units are, then, converted from time into the number of characters. This value should be specified according to the specification of the LCD system to be used. Data Bit - Character ::iii Nht +1 m 2 4 Horizontal Displayed Characters Register (Rl) R1 register (figure 23) specifies the number of characters displayed per row. The horiZontal character pitches are 8 bits for normal character display and 16 dots for wide character display and graphic display. Nhd must be less than the total numbel of horizontal characters. . Maldmwn Raster Address Register (R9) R9 register (figure 24) specifies the number of rasters per row in characters mode, consisting of 5 bits. The programmable range isO (1 raster/row) to 31 (32 rasters/row). Cursor Start Raster Register (RIO) R10 register (figure 25) specifies the cursor start raster address and its blink mode. Refer to table 11. Data Bit I Program Unit R/W 716151413121110 W Nhd (Displayed charactars) Figure 23 Program Unit R/W 716151413121110 Nht (Total characters - 1) + ~ 5,9 1,6,7,8,10,11,12,13 2,3,4 Address Register Data Bit Figure 22 Nhd Mode No. Program Unit R/W 716151413121110 -1-1 -I Register address Figure 21 Note the following restrictions Horizontal Total Characters Register 716151413121110 Nr -1-1-1 Figure 24 W Horizontal Displayed Characters Register Data Bit W Charactar Program Unit R/W Raster W Maldmum Raster Address Register HITACHI Hitachi America, Ltd. - Hitachi Plaza - 2000 Sierra Point Pkwy. - Brisbane, CA 94005-1819- (415) 589-8300 493 HD63645F /HD64645F < ..... > Horizontal Virtual Screen Width Regis- 32- or 64-frame R18 register (figure 29) specifies the memory width to determine the start address of the next row. By using this register, memory width can be specified larger than the number of horizontal displayed characters. Updating the display start address facilitates scrolling in any direction within a memory space. tAr (RiA) Cursor End Raster Register (Rll) Rll register (figure 26) specifies the cursor end raster address. Start Address Register (H/L)(RI2/RI3) R12/R13 register (figure 27) specifies a buffer memory read start address. Updating this register facilitates paging and scrolling. R14/ R15 register can be read and written to/from the MPU. Cursor Address Register (H/L) (RI4/RI5) R14/R15 register (figure 28) specifies a cursor display address. Cusor display requires setting R10 and Rll, and CUDISP should be connected with MD12 (in character mode). This register can be read from and written to the MPU. The start address of the next row is that of the previous row plus Nir. If a larger memory width than display width is unnecessary, Nir should be set equal to the number of horizontal displayed characters. Multiplexing Duty Ratio Register (H/L) (RI9/R20) R19/R20 register (figure 30) specifies the number of vertical dots of the display screen. The programmed value differs according to the LCD screen configuration. In single screen configuration: (Programmed value) = (Number of vertical dots)- 1. Table 11 Cursor Blink Mode B P Cursor blink mode o o 1 1 0 1 0 1 Data Bit Cursor on; without blinking Cursor off Blinking once every 32 frames ,Blinking once every 64 frames 7 1 6 1 5 1 4 1 3J 2J 1J 0 Memory address (H) (R12) Memory address (L) (R13) Figure 27 Data Bit Figure 25 R/W Start Address Register Data Bit Raster W 7 Memory address(L) (R15) Figure 28 Program Unit R/W Program Unit R/W I 6 I 5 I 4 I 3\ 211 J 0 Memory address (H) (R14) Cursor Start Raster Register Data Bit Memory address Program Unit R/W 716151413121'10 -I B 1 P 1Ncs (Raster address) Program Unit R/W Memory address R/W Cursor Address Register 716151413121110 -I - 1-I Nee (Raster address) Figure 26 Raster W Cursor End Raster Register HITACHI 494 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 HD63645F /HD64645F In dual screen configuration: should be equal or less than the maximum raster address. Updating this register allows smooth scrolling in character mode. (Programmed value) = (Number of vertical dots) _ 1. 2 Mode Register (R22) Display Start Raster Register (R21) R21 register (figure 31) specifies the start raster of the character row displayed on the top of the screen. The programmed value Program Unit R!W Data Bit 71 6 I 5 I 4 I 3 I 2 I 1 I 0 Nir (No. of chars. of virtual width) Figure 29 Character Figure 31 W Raster Display Start Raster Register Data Bit Program Unit R!W 716151413121110 -1 -1-l-1-1- h~JNdh' Program Unit R!W Data Bit 716151413121110 - I- I- I Raster address W Horizontal Virtual Screen Width Register Data Bit The Or of the data bits of R22 (figure 32) register and the external tenninals of the same name determines a particular mode. (figure 33) Program Unit R!W 7 Raster w W Ndl (Number of rasters - 1) (R20) * : Number of rasters Figure 30 Multiplexing Register Duty Figure 32 Mode Register Ratio II HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 495 HD63645F /HD64645F 6 6 ~ I) I AT (data bit 0) BLE (data bit 1) WIDE (data bit 2) G/C (data bit 3) ON/OFF (data bit 4) Mode Register (R22) Notes: 1. ON/Im' G/C (Pin 53) (Pin 58) BLE (Pin 51) = 2. BlE (valid only when G/e is low (character mode)) BlE = High: Blinking enable on the character specified by attribute RAM BlE = low: No blinking 3. WIDE (valid only when G/e is low (cheracter mode)) WIDE = High: Wide display enabled WIDE = low: Normal display = G/C High: Graphic 1 display (when AT G/C = low: Character display 5. AT (Pin 57) AT (valid only when G/e is low (cheracter mode» AT High : Attribute functions enabled, OR function disabled. AT = low: OR function enabled, attribute functions disabled. 4. G/e Figure 33 WIDE (Pin 54) = low) or Graphic 2 display (when AT = High) ON/OFF ON/OFF = High: Display on state ON/OFF = Low: Display off state Correspondence between Mode Register and External Pins HITACHI 496 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD63645F IHD64645F Restrlct10ns on Programming Intemal Registers Note when programming that the values you can write into the internal registers are restricted as shown in Table 12. Table12 Restrictions on Writing Values into the Internal Registers Function Restrictions Display Format 1 < Nhd < Nht Nhd + 16 m *1 Register + RO, Rl 1 ::iii 256 ::iii Nht + 1 (No. of vertical dots) x (no. of horizontal dots) x (frame frequency;fFRM) ::iii (data transfer speed; V) {i} * 2 x (Nd + Cursor Control 1) x Nhd x { 186} Rl,R19,R20 * 3 fFRM ::iii V Nhd::iii Nir Rl, R18 o ::iii Nd ::iii 511 o ::iii Ncs ::iii Nee Rl0, Rll R19, R20 Nee:li Nr Rl0, R9 Smooth Scroll Nsr ::iii Nr R21, R9 Memory Width Set O::iii Nir ::iii255 R18 Notes' *1 m varies according to the modes. See the following table. Mode No. 5,9 1,6,7,8,10,11,12,13 2,3,4 *2 *3 m 2 4 Set 1 when an LCD screen is a single screen, and set 2 when dual. Modes are classified as shown in the following table. Mode No. Val. . 5,6,7,8,9,10,11,12 1,2,3,4,13. 2 Set 8 when a character is constructed with 8 dots, and set 16 when with 16 dots. Modes . are classified as shown in the following table. Mode No. 1,5,9 2,3,4,6,7,8,10,11,12,13 8 16 HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 497 HD63645F /HD64645F Reset 2. RES pin determines the internal state of LSI 3. Fixed at high level: MT.l"!J( counters and the like. This pin does not affect register contents nor does it basically control output terminals. Reset is defined as follows (Figure 34): • • • • At reset: the time when RES goes low During reset: the period while RES remains low After reset: the period on and after the RES transition from low to high Make sure to hold the reset signal low for at least 1 Jls RES pin should be pulled high by users during operation. Preserve states before reset or fixed at low level according to the timing when the reset signal is input: DISPTMG, CUDISP, MAO-MA15 4. Fixed at high or low according to mode: CL2 5. Unaffected: DBa-DB? Reset State of Registers RES pin does not affect register contents. Therefore, registers can be read or written even during a reset state; their contents will be preserved regardless of reset until they are rewritten to. Notes for HD63645F /HD64645F Reset State of Pins 1. RES pin does not basically control output pins, and operates regardless of other input pins. 1. Preserve states before reset: LUO-LU3, LDO-LD3, FLM,CL1, RAO-RA4 2. The HD63645/HD64645 are CMOS LSls, and it should be noted that input pins must not be left disconnected, etc. At power-on, the state of internal registers becomes undefined. The LSI operation is undefined until all internal registers have been programmed. )r-V Vee - O.5V ~ __________________J During reset After reset At reset Figure 34 Reset Definition HITACHI 498 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD63645F /HD64645F Absolute Maximum Ratings Item Symbol Value Supply voltage Vee -0.3 to +7.0V Terminal voltage Vin -0.3 to Vee +0.3 V Operating temperature Topr -20"C to +75·C Storage temperature Totg - 55·C to + 125·C Note 2 Notes: 1. Permanent LSI damage may occur if maximum ratings are exceeded. Normal operation should be under recommended operating conditions (Vee = 5.0V ±10%, GND = OV, Ta = - 20·C to + 75·C). If these conditions are exceeded, it could afhct reliability of LSI. 2. With respect to ground (GND = 0 V) Electrical Characteristics DC Characteristics (Vee otherwise noted) = 5.0V ±10%, GND = OV, T. = -20·C to + 75·C, unless Teat Item Input high voltage Input low voltage Output high voltage Output low voltage Input leakage current Symbol Min RES, SK1 MODE, SKO,VIH Typ Max Unit Vee-0.5 Vee+0.3 V DCLK, ON/O'FF 2.2 Vee+0.3 V All others 2.0 Vee+0.3 V All others -0.3 O.s V TTL interface 1 VOH -C-M-O-S-in-t-erf-a-e-e""'"1-- 2.4 All inputs except DBo-DB7 Three state (off-state) DBo-DB7 leakage current ITSL Current dissipation 2 Ice V V Vee-O.S 0.4 TTL interface VOL -C-=-M"""""O-=-S-in-t-erf-:a-c-e-- Condition V O.S V -2.5 +2.5 pA -10 +10 pA 10 mA Notes: 1. TTL Interface; MAO-MA15, RAO-RA4, OISPTMG, CUOISP, 080-087, MCLK .C-MOS Interface; LUO-LU3, LDO-LD3, CL 1, CL2, M, FLM 2. Input/output current is excluded. When input is at the intermediate level with CMOS, excessive current flows through the input circuit to power supply. Input level must be fixed at high or low to avoid this condition. 3. If the capacitive loads of LUO-LU3 and LDO-LD3 exceed the rating, noise over 0,8 V may be produced on CUOISP, DISPTMG, MCLK, FLM and M. In case the loads of LUO-LU3 and LDO-LD3 are larger than the ratings, supply signals to the LCD module through buffers. HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 499 HD63645F /HD64645F AC Characteristics :::~;; : .... i.V& '&a\;. \niJo~oor:f:5 - - 06 ramuy) Typ Item Symbol Min Unit Figure Enable cycle time tCYCE 500 ns 35 Enable pulse width (high) PwEH 220 ns Enable pulse width (low) PWEL 220 Enable rise time tEr Enable fall time tEl es. es. Max ns 25 ns 25 ns tAS 70 ns tAH 10 ns DBo-DB7 setup time tos 60 ns DBo-DB7 hold time tOHW 10 RS. R/W setup time RS. R/W hold time DBo-DB7 output delay time tOOR DBo-DB7 output hold time tOHR t-------tCyCE ns 150 20 ns ns -------+1 tEl E 2.0V l"'-- O.8V CS RS R/W DBo-DB7 (input) DBo-DB7 (output) Figure 35 CPU Interface (HD63645) HITACHI 500 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD63645F /HD64645F CPU Interface (HD64645 - 80 family) Item Symbol Min Unit Figura RD high level width tWROH 190 ns 36 tWROl 190 ns RD low level width Typ Max WR high level width tWWRH 190 ns WR low level width tWWRl 190 ns CS, RS setup time tAS ns CS, RS hold time tAH 0 0 DBo-DB7 setup time tosw 100 ns DBo-DB7 hold time tOHW 0 ns DBo-'oB7 output delay time tOOR DBo-DB7 output hold time 150 2.0V \ o.sv? RS tOHR - rr1\ ~ tAS twROL 2.0V ns 20 1/ CS ns ns \ ... ...; I- -J ...... tAS ~ tAH ~ f- 1\ tWROH O.SV J \ tWWRH J B7 - tWWRl 1/ J \ 2.0V - .. -- tOOR 2.4V I O.SV \ tOHR , If Output O.4V r-.. Figure 36 I tosw 1/ >-- ~ O.SV..lr-.. - tOHW \ Input I CPU Interface (HD64645) HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 501 HD63645F /HD64645F AC Characteristics (Cont) • • _______ --------- I y_~ __ Z ___ - -..._- - - - - Item Symbol Min Unit Figure DCLK cycle time tCYCO 100 ns 37 DCLK high level width twOH 30 ns DCLK low level width twOL 30 ns DCLK rise time tOr 20 DCLK fall time to! 20 ns MCLK delay time tOMO 60 ns MCLK riSe time tMr 30 ns MCLK fall time tM! 30 ns MAO-MA 1 5 delay time tMAO 150 MAO-MA 15 hold time tMAH RAO-RA4 delay time tRAO RAO-RA4 hold time tRAH DISPTMG delay time tOTo DISPTMG hold time tOTH CUDISP delay time tcoo CUDISP hold time tCOH Typ Max 10 ns ns ns 150 10 ns ns 150 10 ns ns 150 10 ns ns CL 1 delay time tCL10 CL 1 hold time tCL1H CL 1 rise time tCL1r 50 ns CL1 fall time tcL1f 50 ns MDO-MD15 setup time tMoS 30 ns MDO-MD15 hold time tMOH 15 ns 150 10 ns ns HITACHI 502 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD63645F /HD64645F tCYCD DCLK MCLK CUDISP CL1 MDO-MD15 (input) Figure 37 Memory Interface HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 503 HD63645F /HD64645F AC Characteristics (Cont) ._- .. . "''''&.1 .L""""'.La"CI Symbol Min Display data setup time tlDS Display data hold time tLDH CL2 high level width Item Unit Figure 50 ns 38 100 ns Typ Max twCL2H 100 ns CL2 low level width twCL2L 100 ns FLM setup time tFS 500 ns FLM hold time tFH 300 ns CL1 rise time tellr 50 ns CL1 fall time tCL1f 50 ns CL2 rise time tCL2r 50 ns tCL2f 50 ns CL2 fall time Note: At fCL2 = 3 MHz ; LUo-LU3 LOo-L03 '/ vcc- o .SV ,\ O.SV _tLOS_ tLOH Vcc- o .sv CL2 o.sv ~ 1\ twCL2H twCL2l tCL2f tCl2r \ Cl1 ... O.SV tFS 4- tFH tcUf tcUr .., FLM vec- o .SV t vee-o.SV ~ O.SV Figure 38 , LCD Interface HITACHI 504 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005·1819· (415) 589-8300 HD63645F /HD64645F AC Characteristics TTL Load Terminal RL OBo-OB7 2.4kO MAO-MA15, RAO-RA4, OISPTMG, CUOISP 2.4kO MClK 2.4 kO 11 kO 30 pF R C Remarks 11 kO 130pF tr, tf: Not specified 11kO 40pF tr, tf: Specified All diodes: 1S2074(\3) Capacitive Load Terminal C Remarks Cl2 150pF tr, tf: Specified CL1 200pF lUO-lU3, lOO-l03, M 150pF FlM 50pF 1-. 0---- tr, tf: Not specified c r Refer to user's manual (No. 68-1-160) and application note (No. ADE-502-003) for detail of this product. HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 505 HD64646FS-----LCD Timing Controller (LCTC) Pin Arrangement Description The HDEi4646F LCTC is a modified version of the HD64645F LCTC with different LCD interface timing. O_NM.q-\l) ~< ~~~~~~~««« ~~ i ~ The HD64646F is a control LSI for large size dot matrix liquid crystal displays. The LCTC is software compatible with the HD6845 CRTC, since its programming method of internal registers and memory addresses is based on the CRTC. A display system can be easily converted from a CRT to an LCD. MOO MD1 ~~~~~~~~~~~~~ /:::,:e ~ ~ ~ $!'II~ R , ~ ~ '$ ~ ~g~ ~ f.j =~~ ~ RA3 tl: ffi G/C" MD4 , MD5 [I MD6 r, MD7 MD8 r; MD9 c!!! ~ RA4 ~GND1 ~ AT ~LS f.i~~E MD10~ ~gg~ The LCTC offers a variety of functions and performance features such as vertical and horizontal scrolling, and various types of character attribute functions such as reverse video, blinking, nondisplay (white or black), and an OR function for simple superimposition of character and graphic displays. The LCTC also provides DRAM refresh address output. A compact LCD system with a large screen can be configured by connecting the LCTC with the HD61104 (column driver) and the HD61105 (common driver) by utilizing 4-bit x 2 data outputs. Power dissipation has been lowered by adopting the CMOS process. rD~ ~ LD2 LD1 LDO Features • • • • • • • • Software 'compatible with the HD6845 CRTC Programmable screen size: -Up to 1024 dots (height) -Up to 4096 dots (width) High-speed data transfer: -Up to 20 Mbits/s in character mode -Up to 40 Mbits/s in graphic mode Selectable single or dual screen configuration Programmable multiplexing duty ratio: static to 1/512 duty cycle Programmable character font: -1-32 dots (height) -8 dots (width) Versatile character attributes: reverse video, blinking, nondisplay (white), nondisplay (black) OR function: superimposing characters and graphics display Cursor with programmable height, blink rate, display position, and on/off switch • • • • • • • 50 DB? -49 DBe ... DBs ., OB4 ~ .. DBJ .5 DB2 .·08, " ~ LU3 2i LU2 23 LU1 2-4 • • " ON/OFF " MODE 51 BLE MD13:E MD14:!! MD15~ • :a .. RAO I 430Bo .2 AD 4'WR Vertical smooth scrolli1lg and horizontal scrolling by the character Versatile display modes programmable by mode register or external pins: display on/off, graphic or character, normal or wide, attributes, and blink enable Refresh address output for dynamic RAM 4- or 8-bit parallel data transfer between LCTC and LCD driver Recommended LCD driver: HD61104 (column) and HD61105 (common), HD66204 (column) and HD66205 (common), HD66106 (column/common) CPU interface: 80farnily CMOS process Single +5 V ±10% 80-pin plastic OFP (FP-80B) Ordering Information Type No. Bus Tmlng Bus Interface Package HD63645F 2 MHz 68 System FP-80 4 MHz 80 System FP-80 HD64646FS 4 MHz 80 System FP-80B HD64645F HITACHI 506 Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819' (415) 589-8300 HD64646FS Differences Between HD64645F and HD64646FS Figure 1 and figure 2 show the relation between display data transfer period, when display data shift clock CL2 changes, and display data latch clock CL1. Figure 1 shows the case without skew function and figure 2 shows the case with skew function. In figure 1, high period between CL2 and CLl of HD64645F overlap. HD64646FS has no overlap like HD64645F, and except for this overlap. HD64646FS is the same as HD64645F functionally. Also for the skew function, phase relation between CLl and CL2 changes. As figure 2 shows, data transfer period and CLl high period of HD64646FS never overlap with the skew function. MCLK ________________ ______________ DISPTMG ~~ CL1 (HD64645) ---' CL1 (HD64646) _____________. . r. I ~~ ~r-- 5S MCLK x 16 MCLK x 11 ~~------4»~----------------CL2 n nnnn nnn (fcL2 = 2fMcLK).J U U U U U U U 1'--------~5J--------------- Notes: f McLK = Output frequency of MCLK fCL2 = Output frequency of CL2 Figure 1 Differences between HD64645F and HD64646FS (no skew) HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 507 HD64646FS ~______________~ij________________~r-- DISPTMG Cll (HD64645F) r--------------------------~~~--------------~ ~ MClK x 16 Cll _________________________.....I~5 (HD64646FS) ! MClK x 11 1 character skew MClK DISPTMG Cll (HD64645F) ~ __________ __________________ ~~~ ~r-- -.Ir---~~--~--------------~~--------------~ MClK x 16 -.J' Cll (HD64646FS) _______________________ ~ MClK x 11 Cl2 (fcL2 = f MCLK) 2 character skew Figure 2 Differences between HD64645F and HD64646FS (skew) HITACHI 508 Hitachi America, Ltd." Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD64646FS Absolute Maximum Ratings Item Symbol Supply voltage Vee Value -0.3 to +7.0V Terminal voltage Yin -0.3 to Vee +0.3 V Operating temperature Top. -20'C to +75'C Storage temperature Tstg -55'C to +125'C Note 2 2 Notes: 1. Permanent LSI damage may occur if maximum ratings are exceeded. Normal operation should be under recommended operating conditions (Vee = 5.0V ± 10%, GND = 0 V, Ta = -20'C to +75'C). If these conditions are exceeded, it could affect reliability of LSI. 2. With respect to ground (GND =.0 V) Electrical Characteristics DC Characteristics (Vee = S.OV ±10%, GND=OV, T. = -20'C to +7S'C, unless otherwise noted) Item Input high voltage Symbol Min RES, MODE, SKO, SK1 VIH DCLK, ON/OFF All others Input low voltage All others VIL Output high voltage TIL Interface 1 VOH Output low voltage CMOS Interface 1 TIL Interface Typ Max Vee-0.5 Vee+0.3 Unit V 2.2 Vee+0.3 V 2.0 Vee+ 0 .3 V -0.3 0.8 V 2.4 V ioH=-400 ",A Vee-0.8 V ioH= -400 ",A VOL CMOS Interface 0.4 V ioL= 1.6 rnA 0.8 V ioL=400 ",A Input leakage current All inputs except DBo-DB7 IlL -2.5 +2.5 ",A Three state (off-state) leakage current DBo-DB7 ITsL -10 +10 ",A 10 rnA Current dissipation 2 Test Condition Icc Notes: 1. TIL Interface: MAO-MA15, RAO-RA4, DISPTMG, CUDISf>, DBO-DB7, MCLK CMOS Interface: LUO-LU3, LDO-LD3, CL1, CL2, M, FLM 2. Input/output current is excluded. When input is at the intermediate level with CMOS, excessive current flows through the input circuit to power supply. Input level must be fixed at high or low to avoid this condition. 3. If the capacitive loads of LUO-LU3 and LDO-LD3 exceed the rating, noise over 0.8 V may be produced on CUDISP, DISPTMG, MCLK, FLM and M. In case the loads of LUO-LU3 and LDO-LD3 are larger than the ratings, supply signals to the LCD module through buffers. HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819. (415) 589-8300 509 HD6.4646FS AC Characteristics ~'PT' Tn~~~~~~ Item Symbol RD high level width twAOH Min 190 RD low level width Typ Max Unit ns twAOL 190 ns WR high level width twwAH 190 ns WR low level width twwAL 190 ns es, es, RS setup time tAS tAH 0 0 ns RS hold time tosw 100 ns tOHW 0 ns DBo-DB7 setup time DBo-DB7 hold time DBo-DB7 output delay time tooA DBo-DB7 output hold time tOHA CS 2.0V RS 0. 8v i 150 -\ r- ~ J ~ fAs ns ns 20 ~ f- ns ~ r--\ ;... - - J tAS tAH twROL ..: 2.0V twROH \ 0.8V twwRL tWWRH - J B7 Figure 3 I 2.0V - 0.8V .. tOOR 2.4Vj \ If --, Output 0.4V1\ Figure 3 ~ J tOHR ) tosw V ~ 0.8 V"'" - tOHW Input ) CPU Interface HITACHI 510 Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 HD64646FS AC Characteristics (Cont} Memory Interface Item DCLK cycle time Symbol Min Unit Figure ns 4 ns tCYCO 100 DCLK high level width twOH 30 DCLK low level width twOL 30 DCLK rise time tOr Typ Max ns 20 ns ns DCLK fall time tOf 20 MCLK delay time tOMO 60 ns MCLK rise time tMr 30 ns MCLK fall time tMf 30 ns MAO-MA 15 delay time tMAO MAO-MA 15 hold time tMAH RAO-RA4 delay time tRAO RAO-RA4 hold time tRAH DLSPTMG delay time tOTO DISPTMG hold time tOTH CUDISP delay time tcoo CUDISP hold time tCOH 150 ns ns 10 150 10 ns ns 150 10 ns ns 150 10 ns ns CL 1 delay time tCL10 CL 1 hold time tCL1H CL 1 rise time teL1r 50 ns CL1 fall time teLIf 50 ns MDO-MD15 setup time tMOS 30 ns MDO-MD15 hold time tMOH 15 ns 150 10 ns ns I HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 511 HD64646FS tCYCD DCLK MCLK CLl MDO-MD15 (input) Figure 4 Memory Interface HITACHI 512 Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 HD64646FS AC Characteristics (Cont) LCD Interface 1 (at fCL2 = 3 MHz) Item Typ Symbol Min FLM stetup time tFs 500 FLM hold time tFH 300 M delay time tOM CL 1 high level width tCL1H 300 ns Clock setup time tSCL 500 ns Clock hold time tHCL 100 ns Phase difference 1 tp01 100 ns Phase difference 2 tp02 500 ns CL2 high level width tCL2H 100 ns CL2 low level width tCL2L 100 Max Unit Figure ns 5 ns 200 ns ns CL2 rise time tCL2r CL2 fall time tCL2f Display data setup time tLDS 80 ns Display data hold time tLDH 100 ns Display data delay time tLOO LCD Interface 2 (at Item fCL2 ns 50 ns 30 ns =5 MHz) Symbol Min FLM setup time tFs 500 FLM hold time tFH 500 M delay time tOM CL 1 high level width 50 Typ Max Unit Figure ns Figure 5 ns 200 ns tCL1H 300 ns Clock setup time tSCL 500 ns Clock hold time tHCL 100 ns Phase difference 1 tp01 70 ns Phase difference 2 tp02 500 ns CL2 high level width tcL2H 50 ns tCL2L 50 ns CL2 low level width CL2 rise time tcL2r 50 ns CL2 fall time tCL2f 50 ns Display data setup time tLDS 30 ns Display data hold time tLDH 30 ns Display data delay time tLDO 30 ns HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 513 HD64646FS L~~,~~~~~;~'8V FlM CLl __--J/ M ____________________ _ Vcc~ O.8V _ _ _ _ _ _ _ _ _ _ __ tDM)( Vcc-O.8V _________ .~O~.8~V~ tCL1H---.t Cll 1+If----tSCL--~ i4----tpD2----+I CL2 lUO-lU4------~ ~--~~~ r-------------~~~~~ r------~ r---- LDO-lD4 ____J 1"----"1 Figure 5 LCD Interface HITACHI 514 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD64646FS AC Characteristics TTL Load R Terminal RL DBo-DB, 2.4kO MAO-MA15, RAO-RA4, DISPTMG, CUDISP 2.4kO MCLK 2.4kO 11 kO 30pF C Remarks 11 kO 130pF tr, 11kO 40pF ~: Not specified tr, tf: Specified All diodes: 1S2074® Capacitive Load Terminal C Remarks CL2 150pF tr, tf: Specified CLl 200pF LUO-LU3, LDO-LD3, M 150pF FLM 50pF o tr, tf: Not specified 1 :r HITACHI Hitachi America, Ltd.· Hitachi Plaz'l· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 515 HD66106F----------~ (LCD Driver for High Voltage) Pin Arrangement Description The HD66106F LCD driver has a high duty ratio and many outputs for driving a large capacity dot matrix LCD panel. Y30 It includes 80 LCD drive circuits and can drive at up to 1/480 duty cycle. For example, only 14 drivers are enough to drive an LCD panel of 640 x 480 dots. It also easily interfaces with various LCD control· lers because of its internal automatic chip enable signal generator. gg;~ s.~ ~;;~~ ;;~~ ~:nQ ~~ ~~~;;Q 1...... 80 2 Using this LSI sharply lowers the cost of an LCD system. Features Column and row driver 80 LCD drive circuits Multiplexing duty ratios: 1/100 to 1/480 4-bit parallel data transfer Internal automatic chip enable signal generator Internal standby function Recommended LCD controller LSIs: HD63645F and HD64645F (LCTC) Power supply: +5 V ± 10% for the internal logic, and 14.0 V to 37.0 V for LCD drive circuits Operation frequency: 6.0 MHz (max.) CMOS process 1~O-pin flat plastic package (FP-lOO) y. y, y, y, y. y, y, YI <0 r-.. co 0"> 0 .... N M ..,. I.l';> <0 t--- co 0'> 0 51 MMC'<:I MMM ~..,...,...,. ..,...,...,...,....,. "<:I'll') 30...... N M ..,. an MMM (Top view) HITACHI 516 Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 HD66106F Pin Description Power supply Control signals Vec, GND: Vcc supplies power to the internal logic circuit. GND is the logic and drive ground. CLl: The LSI latches data at the negative edge of CLl when the LSI is used as a column driver. Fix to GND when the LSI is used as a row driver. VLcn : VLCO supplies power to the LCD drive cir· cuit. CL2: The LSI latches display data at the negative edge of CL2 when the LSI is used as a column driver, and shifts line select data at the negative edge when it is used as a row driver. VI, V2, Va, and V4: Vj·V4 supply power for driving LCD (figure 1). M: M changes LCD drive outputs to AC. 0 0 -0 3 : 0 0 .03 input display data for the column driver (table 2). Table 1 Pin Function Symbol Pin No. Pin Name Vee 49 Vee GNO 37 Ground V LCD 31,36 V LCD VI 32 LCD voltage 1 V, 33 V, LCD voltage 2 V. LCD voltage 3 V. 34 V. 35 V. LCD voltage 4 CLl 38 Clock 1 CL2 40 Clock 2 M 42 M 0 0 .0. 46·43 Data 0 to data 3 SHL 39 Shift left E 47 Enable CAR 48 Carry CHl 41 Channell YI·Y. o 30·1,100·51 orive outputs 1-80 NC 50 No connection o a Table 2 Relation between Display Data and LCD State ~----~~----~--~-.v' ~ I/O ----va ------+v. ----------v, Display Data LCD Outputs LCD 1 (= high level) Selected level On o (= Nonselected level Off low level) V I , V,: Selected level V., V.: Nonselected level Figure 1 Power Supply for Driving LCD HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 517 HD66106F SBL: SHL controls the shift direction of display data and line select data (figure 2, table 3). LSI is used as a column driver (CHI = Vcd. CAR outputs scan data when the TST i~ " ...1'1 ". " "0"! driver (CHI = GND). When HD66106Fs are con· nected in cascade, CAR connects with E of the next LSI. E: E inputs the enable signal when the LSI is used as a column driver (CHI = Vcd. The LSI is dis· abled when E is high and enabled when low. E in· puts scan data when the LSI is used as a row driver (CHI = GND). When HD66106Fs are connected in cascade, E connects with CAR of the preceding LSI. CHI: CHI selects the driver function. The chip drives columns when CHI = Vee, and rows when CHI =GND. CAR: CAR outputs the enable signal when the Y I .y80: Each Y outputs one of the four voltage levels-VI, V2 , V 3 , or V4 -according to the com· bination of M and display data (figure 3). NC: NC is not used. Do not connect any wire. Table 3 Relation between SHL and Scan Direction of Selected Line (When LSI is Used 88 a Row Driver) SHL Shift Oireetion of Shift Register E GND -+1 E -+2 .... 80 .... 79 Scan Oireetion of Selected Line -+ 3 •••••••••••••••-+ 80 VI -78.··············....·1 Yeo .... V,. .... Va ........................ VI .... V. F o .... V. • ••••••••••••••••••• -+ V.·o 00 . __ ---~ DI D2 D3 When SHL - Vee When SHL = GND Figure 2 Relation between SHL and Data Output (When LSI is Used 88 a Column Driver) -I- v, D D Y output level I v, I v. I v. I. v. I Y output level I. v. I v, + v. '1 When Used as a Row Driver When Used as a Column Driver Figure 3 Selection of LCD Drive Output Level HITACHI 518 Hitachi America, Ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005·1819 • (415) 589·8300 HD66106F Internal Block Diagram LCD Drive Circuits Latch Circuit 1 The HD66106F (figure 4) begins latching data when tion. It latches 4 bits of data simultaneously at the fall of CL2 and stops automatically (= standby state) when it has latched 80 bits. Latch circuit I is composed of twenty 4-bit parallel data latches. It latches the display data 0 0 -0 3 at the fall of CL2 when the LSI is used as a column driver. The signals sent from the selector determine which 4-bit latch should latch the data. Latch Circuit 2 Selector When the LSI is used as a column driver, latch circuit 2 functions as an 80-bit latch circuit. It latches the data sent from latch circuit 1 at the fall of CLl and transfers its outputs to the LCD drive circuits. The selector is composed of a 5-bit up and down counter and a decoder. When the LSI is used as a column driver, it generates the latch signal to be sent to latch circuit 1, incrementing the counter at the negative edge of CL2. E goes low, which enables the data latching opera· When the LSI is used as a row driver, this circuit functions as an 80-bit bidirectional shift register. The data sent from the E pin shifts at the fall of CL2. When SHL = VCC, the data shifts from bit 1 to bit 80 in order of entry. When SHL = GND, the data shifts from bit 80 to bit I. ~L.l - CHI SHL I~ It The controller operates when the LSI is used as a column driver. It stops data latching when twenty pulses of CL2 have been input (= power-down function) and automatically generates the chip enable signal anhouncing the start of data latching into the next LSI. t" t t t t t II IJ I M Controller 1123H r Logic. ~G~2~1 CL2 I......- Logic CLl 1,2,3,4 ,", ,'1 ..5~ D,- D. Logic =0- ~~ II - - 771 7811 LCD drive circuits 79 80 1'1 t-- YLCD t-- Vee I-- GND Logic 80-bit latch circuit and bidirectional shift register (Latch circuit 2) 771781791~ I-- (j 771 1791 Latch circuit 1 (4·bit x 20) 78 80 1'1' "t,> II Selector I Controller Figure 4 Block Diagram . . HITACHI HitachiAmerica, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 519 HD66106F Functional Description "ArL __ .T __ jI UU""" ..,~U GiS _ Data out!,utR ch:,"!p' :ot thp. f:oll nf f'T 1 T "t~h~-:! data d l is transferred to the output pin YI and d lo to Y 80 when SHL = GND. Conversely, d so is transferred to Y I and d l to Y 80 when SHL = Vee. The output level is selected out of V I-V4 according to the combination of display data and the alternating signal M (figure 5). • a. ,""UIUUIU U£IVC£ The HD66106F begins latching data when E goes low, which enables the data latching operation. It latches 4 bits of data simultaneously at the fall of CL2 and stops automatically (= standby state) when it has latched 80 bits. CL2 3 2 D. ~ d. X d, X D. ~ d. X d, X 0, ~ d, X d. X D. ~ d. X d. X E J 19 20 _____"X d" X daD X -----"'1. d" X d" X d" X d" X d" X d" X _____ -X -----) n CLI When SHL =GND __________________~----------~X~--d.-v.. ______________________________~X~--da.-- When SHL = VCIC Y. __________________________ v.. __~____'_____________________X ~x daD d. Figure 5 Column Driver Timing Chart HITACHI 520 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415)589-8300 HD66106F When Used as a Row Driver The HD66106F shifts the line scan data sent from the pin E in order at the fall of CL2. When SHL = Vee. data is shifted from Yl to Y80 and Y80 to Yl when SHL = GND. In both cases, the data delayed for 80 bits by the shift register is output from the CAR pin to be- come the line scan data for the next LSI (figure 6). Hitachi America. Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane. CA 94005-1819· (415) 589-8300 521 HD66106F near GND (figure 7). Each voltage must be within tN. tN determines the range within which RON, i.ll1p~UilllCe or uriver's OUtput, IS stable. Note that AV depends on power supply voltage VLCO-GND LCD Power Supply Thi~ ~r.t1nn p.ynh,inv thA ro!Jnl'rA nf' ... - -.- - ---p- -- f t " .......... r-"-- ,,,, .. _ _ 1.., ""'-rr"J voltage for driving LCD. V~ and V3 voltages should be near VLCD , and V2 and V4 should be (figure 8). n-----~-- ~:-'" I av I L------ vs LC_-_-_-~~~~~~~~~:: - - - ' - - - - - - - - - GND Figure 7 Driver's Output Waveform and Each Level of Voltage Range of power supply voltage E 6.2 > <..... 160 40 CL2 CLl " Horizontal retrace period .. f xxxxx ~ n CAR(LSI8)-.J Latches LSI 8 dataIL_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _---.J ~ - ::I -.J Latches LSI 9 data 1 ~-------------------------------~ CAR(LSII0)-.1 Latches LSI 10 data I~_ _ _ _ _ _ _ _ _ _ _ _ _ ___I CAR(LSlll)J Latches LSI 11 data I'--_ _ _ _ _ _ _ _ _ _ _ _.......l ~ ~ !" III ~ ~.... .". g ~ Latches LSI 7 data 11..._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _.....1 .. t:; ~ ~ .... .... CAR(LSI12)J Latches LSI 12 data 1...'_ _ _ _ _ _ _ _ _ _---1 ______ . -- y,-y8~;========== ===;;================X~ ~ co ~ ~ ~ (11 ex> co do c..> o o ~ CAR(LSI13)J g. ::n0'Cl <1> [go So o <1> ~ ~. :::J .-J i[ 5' CAR(LSI 7)~ ~ .... <1> Line ~ ~ ~ ~ 0 -. $>l ti g 5. g » ""0 :::: ..... g ~ $" OQ Latches LSI 13 data 1....____---' ~ a. = <1> J _ <1> S m m ~ o m '"%j HD66106F 00 ~ :> ~ ;:J u I~ :2i ~ :> :> ~ :)i ~ '-----v-----' '-----v-----' :;: :;:; :> ~ I~(J N ~ :> ~ :;:: Figure 11 Timing Waveform for Row Drivers (LSI 1·LSI 5) HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 525 HD66106F Absolute Maximum Ratings Supply Voltage Item Symbol Rating Unit Logic circuits Vee -0.3 to +7.0 V LCD drive circuits V LCD -0.3 to +38 V Notes I nput voltage (Logic) -0.3 to Vcc + 0.3 V 1,2 I nput voltage (LCD drive) -0.3 to VLCD + 0.3 V 1,3 °c °c Operation temperature Topr -20 to +75 Storage temperature T stg -55 to +125 Notes: 1. 2. 3. 4. Reference point is GND (= 0 V). Applies to the input pins for logic circuits. Applies to the input pins for LCD drive circuits. Using an LSI beyond its maximum rating may result in its permanent destruction. LSls should usually be used under electrical characteristics for normal operations. Exceeding any of these limits may adversely affect reliability. HITACHI 526 Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 HD66106F Electrical Characteristics DC Characteristics (VCC =S V ± 10 %, VLCD =14 V to 37 V, Ta =_20°C to 7SoC unless otherwise noted) Item Symbol Input high voltage V IH Pin Input low voltage VI!. 00-03. E. CHl Output high voltage VOH CAR Output low voltage VOL Vi·Yj on resistance Min Typ CL 1. CL2. M. SHL. 0.8 x Vee 0 Max Unit Vcc V Tast Condition NotH 0.2 x VCC V VCC - 0.40.4 V IOH = -0.4 mA V IOl = 0.4 mA 4 Y1-YaO. V1-V 4 3.0 kO ION = 100 JlA CL1.CL2.M.SHL. -5.0 5.0 IJ,A VIN = VCC to GNO 50.0 p.A VIN = VLCD to GNO 3.0 mA fCL2 - 6 MHz. (2) ILCD1 0.5 mA fCL1 = 28 kHz (3) 1ST 0.2 mA At the standby state fCL2 = 6 MHz. fCL1 = 28 kHz (4) ICC2 0.2 mA fCl1 = 28 kHz. 1 (5) ILCD2 0.1 mA fm = 35 Hz 3 RON Input leakage current(l) IIL1 00-03. E. CHl Input leakage current (2) IIL2 V1-V 4 -50.0 Current consumption (1) ICCl 2 Notes: 1. Input and output current is excluded. When the input is at the intermediate level in CMOS. excessive current flows from the power supply through the input circuit. VIH and VIL must be fixed at VCC and GNO respectively to avoid it. 2. Applies when the LSI is used as a column drivar. 3. Applies when the LSi is used as a row driver. 4. Indicates the resistance between Y pin and V pin (one of V 1. V2. V3. and V 4) when it supplies load current to one of Y1-YaO pins. Conditions: VLCD - GNO = 37 V Vl. V3 = VLCD - 2/20 (VLCD - GNO) V2. V4 = GNO + 2/20 (VLCD - GNO) ~ v,------>->>>>>>- '---r--' '---r--' 1st data 2nd data F O 01 02 03 ----dL----D Fm-dL----D '---r--' Last data Last data '---r--' '---r--' 2nd data 1st data 01 02 03 When SHL~GNO When SHL~Vcc Figure 2 Relation between SHL and Da.ta Output HITACHI 532 Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 HD66107T CAR outputs scan data when the LSI is used as a row driver (CH1=GND). When HD66107Ts are connected in cascade, CAR connects with E of the next LSI. BS: BS selects the number of input data bits. When BS = Vcc, the chip latches S-bits data. When BS = GND, the chip latches 4-bits data via Do to D3. Fix D4 through D, to GND. . CRt: CHI selects the driver function. The chip TEST: Used for testing. Fixed to GND, other devices are columns when CHI = Vcc, and cQmmons when CHI = GND. wise. LCD Drive Interface CR2: CH2 selects the number of output data bits. The number of output data bits is 160 when CH2 = GND, and SO when CH2 = Vcc. Table 3 SHL Vee GND Yl-Yl60: Each Y outputs one of the four voltage levels-Vl, Vz, V3, V4-according to the combination of M and display data (figure 3). Relation between SHLand Scan DIrection of Selected Line (When LSI Is Used as Common Driver) Scan DIrectIOn Of Selected Line V1.... V2.... V3.... V4------....V160 V160 .... V159 .... V15S .... V157------....Vl Shift DIrection of Shift Register E.... 1.... 2.... 3.... 4 - - - - - - .... 160 E.... 160.... 1 59- 1 58- 157 - - - - - - .... 1 o Y output level o I.. v, .. I" V3 ·1" V2 ·1 .. V4 ..I I I I I Y output level"V2 ·"V3·"V1·"V4· I When used as a common driver When used as a column driver Figure 3 Selection of LCD Driver Output Level HITACHI Hitachi America, Ltd.· Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA94005-1819· (415) 589-8300 533 3) is latched at the falling edge of CL2. Other operations are performed in the same way as described in "Column Driving (i)". See figure 5 . ~ _________ CL2 E\ 1 2 .Jl5LJL ________ 3 39 40 41 i~~~~~~~~~~~~~====------ D3~ _________ ~ ____________ __~________~r-\~__ Cll CAR--------------- \~ __-.lr- SHl= GND yl __________________________________________________~~ \----- ~ Y160 SHl = Vee YI __________________________________________________~~ \ YISO --------------------------------------------------......I~ Figure 5 Column Driver Timing Chart (2) HITACHI ... Hitachi America, ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 --.-.-~---.-.---- 537 HD66107T Column Driving (3) Yl through Y40 and Y121 through Y160 remain uncnangea . . CH2 = Vee (SO-bit data output mode) .• BS = Vee (S-bit data latch mode) When CH2 is high (Vee), the HD66107T can be used as an SO-bit column driver. In this case, Y41 through Y120 are enabled, the states of CL2 ~ When SHL = GND, data dl is output to pin Y41 and dao is output to Y120. Conversely, when SHL = Vee, data d60 is output to Y41 and dl is output to Y120. See figure 6. _________ S1SLJL ______ _ E ~~_1_____2______3 ___ 9 10 11 \~~~~~~~~~~~~~====--- D7~ _________ ~ _________ _____________-Inl.....__ Cll -...Jr- CA1f - - - - - - - - - \I..-_ _ SHL = GND y41 ______________________________________________________--J~ \ y120 ____________________ ~______~----------------------__--J~· SHL = Vee y41 __ ~----------------------------------------~----------J~ \ y120 _________________________________________________________ ~ Figure 6 Column Driver Timing Chart (3) HITACHI 538 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane,'CA 94005-1819· (415) 589-8300 HD66107T Column Driving (4) • CH2 = Vcc (SO-bit data output mode) • BS = GND (4-bit data latch mode) CL2 When CH2 = Vee and BS = GND, 4-bit parallel data is latched, while SO-bit data is output. The output of latched data is performed in described in "Column Driving (3)". See figure 7. JULJL_________ SUlJL 1 2 19 3 E\'-_____ 20 21 ---------------------- .i~~~~~~~~~~~~~~~~=------ D3~ _________ ~ ____________ CL1 ______________________________________-Jr-\~ ____ CAR~ \\-_ _ _--11 SHL=GND y41 __________________________________________________~~ y,l--...,.-----------------~ SHL=Vcc ~1 __________________________________________________ ~~ Y120 __________________________________________________ --'~ \ II Figure 7 Column Driver Timing Chart (4) HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819. (415) 589-8300 539 HD66107T When SHL___= Vee, l60-bit data is shifted from v .... _ " 'I... _ _ _ _ _ _ _ _ Common Driving (1) '1 ____ "l. ....... . CH2 = GND (tSO-bit data output mode) The H066t07T shifts line scan data input through E at the falling edge of CL2. ""QUI ..........g ... QQ.Q ..,. .. - _ 9 .......0 ...... t.,lI.I..&..L.I - .. _ . (next stage) SHL=Vcc 3 2 4 158 159 160 1 CL2 E V, n n V2 ~ V,eo IL CAR SHL=GND (next stage) 2 3 CL2 V,eo V'69 158 4 159 160 1 ------ E ------ n n V, L CAR Figure 8 Common Driver Timing Chart (1) HITACHI 540 • """"'''U, UCI.&.d Itt shifted from Y160 to Y1. In both cases the HD66t07T outputs the data delayed for 160 bits by the shift register through CAR, becoming line scan data for the next IC driver. See figure 8. Hitachi America, Ltd. - Hitachi Plaza -2000 Sierra Point Pkwy. - Brisbane, CA 94005-1819 - (415) 589-8300 HD66107T Common Driving (2) . CH2 = Vcc (SO-bit data output mode) When CH2 is high, the HD66107T can be used as an SO-bit row driver. In this case, Y41 to Y120 are enabled, while the other bits remain unchanged. Line scan data input through E is shifted at the falling edge of CL2. When SHL = Vcc, data is shifted from Y41 to Y120. Conversely, when SHL = GND, data is shifted from Yl20 to Y41. In both cases the HD66107T outputs the data delayed for SO bits by the shift register through CAR, becoming line scan data for the next LSI. See figure 9. (next stage) SHL=Vcc 4 3 2 78 79 80 1 CL2 E Y41 n n Y 42 ) Y 120 IL CAR SHL=GND (next stage) 2 3 78 4 79 80 1 CL2 E Y 120 Y 119 ------ n n Y 41 IL CAR Figure 9 Common Driver Timing Chart (2) HITACHI Hitachi America, Ltd. - Hitachi Plaza - 2000 Sierra Point Pkwy. -Brisbane, CA 94005-1819 - (415) 589-8300 541 HD66107T LCD Power Supply This SAction Ay!",l!:linC! 'tho !'~~!;--=- -::~ should be near GND (figure 10). Each voltage must be within /:;. V. /:;. V determines the range -..;;!:~~. . V-y~~v~'" nON, i.ll.lptniance or arlvers output, is stable. Note that /:;. V depends on power supply voltage VLCD-GND (figure 11). . .:::: ~-=9 supply voltage for driving LCD. VI and V3 voltages should be near VLDC, and V2 and V4 n-------- ~:" I L------ V3 !J.V !J.V --, r ------------v. , LJ _______________ V 2 GND Figure 10 Driver's Output Waveform and Each Level of Voltage Range of power supply voltage 6.2 > > ... 2.3 - - - - - - - - - - - 14 37 Figure 11 Power Supply Voltage VLcD-GND and /:;.V HITACHI 542 Hitachi America, Ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589·8300 al~:1 s= n ='- l> I ~ III 3 o· ~ttt 1" s=n FLM ='- ""0 CLl . ;;r N CL2 '" N C> C> C> M 0 0 -07 :I a 0~ ""0 +37 V t">- 0 ""0 ,.,. .- ~ J: c:;;: :t Rl ~~ ~ R2 Rl ::J Rl tn· .'"'" ~ Rl 0" l ~ Ph l> .j>. ~ (£:) ~ ~ CJ"I co 'f' co w C> C> CJ"I .j>. W n ,if ~ - ",-< 0 +5V o -a...... :r: ::1. ~ com 1 com 2 ml HD66107T O.e. <0 ..... -. ,",0::S SHL. TEST. CH2 CH1, BS HD66107T E ICI7) CAR V LCO Vee ~ 1 >;» GND ..-N?' dd:E & I I 11II C> C> T. 000- CD EP ~ »»od:2 & C") (£:) III V, V, ~ :c ;;J ~ 'tI ~ ~:§~~ml~~ ~ !:: !'l- en ro' CD '" ..... -Ill ::s~ :c V"~ Notes 1. R1 and R2 are specified depending on the type of LCD panel. When using an LCD panel with 1/20 bias, R1/(4R1 + R2) must be 1/20, i.e., R1 = 3kQ and R2 = 4BkQ. Notes 2. When designing a board, place capacitors close to each LSI in order to stabilize power supply. It is recommended to use two O.l#F capacitors per LSI; one is connected between Vce and GND, and the other between VLCD and GND. Figure 12 Application Example s 0') 0') ..... o-...] t-3 HD66107T Waveform Ezamples ,.._, •• __ n_I_I __ ----- -------. o "'I 1 1 ...J U .... o 2 -;: 1 o· o 1 -;: FigUre13 ColUmn Driver Timing Chart (1) HITACHI 544 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 HD66107T Common Driving CD 0 ~ ., E !! u. en ~ co ~ § I I I I § ~ u ::;; I I I I I I I I I I I I I I I I I .. -> ;; >' >.. >N ;; >'" > I Ia:5 N § I I I I I I I ;; >' :> ;;: -> Figure 14 Common Driver Timing Chart HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 545 HD66107T Absolute Maximum Rating Svmbol Ratina Unit Vcc VLCD -0.3- +7.0 V -0.5-+38 V Input voltage (1) Vn -0.3- Vcc+0.3 V 1, 2 Input voltage (2) VT2 V 1, 3 Operation temperature Topr -0.3-VLCD+0.3 -20-+75 'C Storage temperature T.'9 -55-+125 'C Item Power supply voltage Logic circuit LCD drive circuit Notes: 1. 2. 3. 4. NotA Reference point is GND (= OV). Applies to input pins for logic circuit. Applies to input pins for LCD drive circuits. If the LSI is used beyond absolute maximum ratings, it may be permanently damaged. It should always be used within the above electrical characteristics to prevent malfunction or degradation of the LSI's reliability. HITACHI 546 Hitachi America, Ltd.· Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 HD66107T Electrical Characteristics DC Characteristics (Vcc Item Input high voltage =S V ± 10%, VLCD = 14 to 37 V, Ta = -20 to 7S0C) Output high voltage Symbol Pins Min. CL1, CL2, M 0.8 x Vcc SHL, as, CH2, TEST, 00-07, 0 Vil E, CH1 CAR Vcc-0.4 VOH Output low voltage VOL Vi - Vj on resistance RON Input leak current (1 ) IILl Input leak current (2) hl2 Input low voltage Power dissipation (1) Power dissipation (2) Power dissipation (3) VIH Y1-Y160, V1-V4 -5.0 CL1, CL2, M SHL, as, CH2, TEST, 00-07, E, CH1 V1-V4 -100 Max. Vcc Unit V V 10H=-0.4 mA 0.4 V 10L =0.4 mA 3.0 kO 10N= 150 pA 5.0 pA VIN=Vcc-GNO 100 pA VIN=VLCO-GNO Icc, 5.0 mA fcL2=8 MHz IlCO' 1ST 2.0 mA tCLl =28 kHz 2 0.5 mA In standby mode: fcl2=8 MHz, tCLl =28 kHz 1 2 tfel' =28 kHz tm=35 Hz 3 Power dissipation (4) ICC2 1.0 mA IlC02 0.5 mA 2. 3. Nota 0.2 x Vcc V Power dissipation (5) Notes:1. Condition 1 Input and output current is excluded. When an input is at the intermediate level is CMOS, excessive current flows from the power supply though the input circuit. To avoid it, VIH and \til must be fixed to Vcc and GND respectively. Applies to column driving. Applies to row driving. HITACHI Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 547 HD66107T AC Characteristics (Vee = 5 V ± 10%, VLCD = 14 to 37 V,I Ta = -20 to 75'C) ,.._'1 ________ •• _ " . . . . . . . . . . . . . . . & V ••• y Item Symbol Pin name Min. Clock cycle time teye CL2 125 Clock high-level width Max. Unit tcwH CL2 30 ns Clock low-level width tCWL CL2 30 ns Clock setup time tSCL CL2 200 ns tHCL tct CL2 200 ns CL1, CL2 tosu 00-07 30 Clock hold time Clock rising/falling time Data setup time Note ns 30 ns ns Data hold time tOH 00-07 30 ns E setup time tESU E 25 ns Output delay time tOCAR CAR 70 ns M phase difference tCM M, CL1 300 ns Notes: 1. Specified when connecting the load circuit shown in figure 15. Test point Or-----, ISO" Figure 15 Test Circuit HITACHI· 548 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66107T I~"-"'"'v:t_L__.,. -__ CL1 _ _ _ _ _ _ _ CL2 -----", tCWH tCt tCt 00-7 CL1 CL2 CAR ______________ ~-J M Figure 16 Controller Interface of Column Driver HITACHI Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005 c1819 • (415) 589-8300 549 HD66107T Common Driving MAY, Symbol Pin nama Min, Clock low-level width twL1 CL2 5 ps Clock high-level width twHl CL2 60 ns Data setup time tos tOH 100 30 ns Data hold time E E Data output delay time too CAR Data output hold time tOHw CAR Clock rising/falling time tet CL2 Item I'ni. III ...... ns 3 pS 30 ns 30 ns CL2 Input data CAR Output data ---+--_--/ Figure 17 Controller Interface of Common Driver HITACHI 550 Hitachi America, Ltd.· Hitachi Plaza ·2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66108T-----(RAM-Provided 165-Channel LCD Driver for Liquid-Crystal Dot Matrix Graphics) Description The HD66 108T under control of an 8-bit MPU can drive a dot matrix graphic LCD (liquid-crystal display) employing bit-mapped display with support of an 8-bit MPU. Use of the HD66 108T enables a simple LCD system to be configured with only a small number of chips, since it has all the functions required for driving the display. The HD66108T also enables highly-flexible display selection due to the bit-mapped method, in which one bit of data in a display RAM turns one dot of an LCD panel on or off. A single HD66108T can display a maximum of 100 x 65 dots by using its on-chip 165 x 65-bit RAM. Also, by using several HD66108T's, a display can be further expanded. The HD66 108T employs the CMOS process and TAB package. Thus, if used together with an MPU, it can provide the means for a battery-driven pocketsize graphic display device utilizing the low current consumption of LCDs. • Seven types of multiplexing duty ratios can be selected: 1/32, 1/34, 1/36, 1/48, 1/50, 1/64, 1/66 Notes: The maximum number of row outputs is 65. • Built-in bit-mapped display RAM: 10 kbits (165 x 65 bits) • The word length of display data can be selected according to the character font: 8-bit or 6-bit • A standby operation is available • The display can be extended through a multi-chip operation • A built-in CR oscillator • An 80-system CPU interface: cI> = 4 MHz • Power supply voltage for operation: 2.7 V to 6.0 V • LCD driving voltage: 6.0 V to 15.0 V • Low current consumption: 400 ~A max (at fose = 500 kHz, fose is external clock frequency) • Package: 208-pin TCP (Tape-Carrier Package) Features • Four types of LCD driving circuit configurations can be selected: Configuration Type No. of Column No. of Row Outputs Outputs Column outputs only 165 0 Row outputs from the left and right sides 100 65 (from left: 32, from right: 33) Row outputs from the right side 1 100 65 Row outputs from the right side 2 132 33 HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 551 HD66108T Chip terminals .. ~------------------------------------------~ ~49 159 93 Xl15 208 24 X164 I I o I Note: The above view is seen from the grinded surface of the chip. not TCP. HITACHI 552 Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 HD66108T Pin Description Classification Power Supply CPU Interface No. of Pins 8,9,35,36 12 - 14 1,43 2, 7 37,42 4,5 6,39,38 3,40,41 23 Symbol 1/0 No. of Pins Voo 1- Voo4 GND1-GND3 Vee 1, Vee2 4 V6L, V1L, V1R, V6R, V4, V3, VMH1-VMH3, VML1-VML3 12 3 2 CS 25 26 24 27-34 WR RD RS DBO-DB7 1/0 1 8 LCD Driving Output 44-208 XO-X164 0 165 LCD Interface 21 FLM I/O 20 CL1 1/0 22 M 1/0 10 11 OSC1 OSC2 I 0 19 CO 0 18 MIS 17 RESET 15,16 TESn, TEST2 Control Signals 2 Function Connect these pins to V00. Ground these pins. These pins supply power to the LCD driving circuits and should usually be set to the V6 level. Apply an LCD driving voltage V1 to V6 to these pins. Input a chip select signal via this pin. A CPU can access the HD66108Ts internal registers only while the CS signal is low. Input a write enable signal via this pin. Input a read enable signal via this pin. Input a register select signal via this pin. Data is transferred between the HD66108T and a CPU via these pins. These pins output LCD driving signals. The XO-X31 and X100-X164 pins are column Irow common pins and output row driving signals when so programmed. X32X99 pins are column pins. This pin outputs a first line marker when the HD66108T is a master chip and inputs the signal when the chie is a slave chip. This pin outputs latch clock pulses of display data when the chip is a master chip and inputs clock CL1 pulses when the chip is a slave chip. This pin outputs or inputs an M signal, which converts LCD driving outputs to AC; it outputs the signal when the HD66108T is a master chip and inputs the signal when the chip is a slave chip. Input system clock pulses via this pin. This pin outputs clock pulses generated by the internal CR oscillator. This pin outputs the same clock pulses as the system clock pulses, the OSC1 pin of a slave chip. Connect with the OSC1 ~in of a slave chi~. This pin specifies masterlslave. Set this pin low when the HD66108T is a master chip and set high when the chip is a slave chip; must not be changed after power-on. Input a reset signal via this pin. Setting this Qin low initializes the HD66108T. These pins input a test signal and should usually be set low. HITACHI Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300 --- ---~---- 553 I HD66108T Internal Block Diagram VMl1 VMH1 Vee1 V6l V4 V3 V1 Vee1 Xo X31X32 X99X100 X164 VMH3 VML3 V6 R Vcc4 V1 VMH2 VHL2 Vcc2 Data latch circuit 2 165 x 65·bit display memory Y decoder 3 Vcc2·Vcc3 - - - - [ > GND1·GND3 -----.7), M" CL1 .. FLM .. MS RESET ... .. . CO OSC2 OSC1 TEST1 TEST2 .. CS WRRD RS DB7·DBO HITACHI 554 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005·1819· (415) 589·8300 HD66108T Register List ~ Reg. No. Reg. Register Read,f-_..,--_--r-_-.-_-r=-----,_ _,-_..,--_---j CS RS 2 1 0 Symbol Name Wrl Invalid 0 0 - - - AR 0 1 0 0 o DRAM Display Memory 0 1 0 0 1 XAR 0 1 0 1 o YAR Address 0 1 1 FCR Control 0 1 1 0 o Mode 0 1 1 0 1 CSR C select o 1 1 1 0 - Invalid 8 clocks max None 1.5 clocks max YAD Y address 1 01111- DO X address 0 MDR time - None 1.5 clocks max DUTY DWS None None None Invalid Notes: 1. Shaded bits are invalid. Writing 1 or 0 to invalid bits does not affect LSI operation. Reading these bits returns O. 2. DRAM is not actually a register but can be handled as one. 3. Setting the WLS bit of control register to 1 invalidates D7 and D6 bits ofthe display memory register. 4. DRAM must not be written to or read from until a time period of tell has elapsed rewriting the DUTY bit of FCR or the FFS bit of MDR. tCLl can be obtained from the following equation; in general, a time period of 1rns or greater is sufficient if the frame frequency is 60-90 Hz. tCL1 = Ni.fc~~kHZ) (ms) --- Equation 1 D2 (duty correction value 2) : 192 (duty = 1/32, 1/34, or 1/36) 128 (duty = 1/48 or 1/50) 96 (duty = 1/64 or 1/66) Ni (frequency-division ratio specified by the mode register's FFS bits) 2, 1, 1/2, 1/3, 1/4, 1/6, or 1/8 Refer to "6. Clock and Frame Frequency." fClK : Input clock frequency (kHz) HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300 555 I HD66108T System Description The HD6610RT p~n ~CC~!!~ ~ ~~~~~~~ :;~ ~5 :;~! of 165 channels to row outputs for LCD driving . It also incorporates a timing generator and display memory, which are necessary to drive an LCD. If connected to an MPU and supplied with LCD driving voltage, one HD66I08T chip can be used to configure an LCD system with a 100 x 65 dot panel (figure 1). In this case, clock pulses should be supplied by the internal CR oscillator or the MPU. CLi, rLM, ana M enables the display size to be expanded. In this case, LCD expansion signal pins output corresponding signals when pin MIS is set low for master mode and conversely input corresponding signals when pin MIS is set high for slave mode; LCD expansion signal pins of both master chip and slave chips must be mutually connected. Figure 2 shows a basic system configuration using two HD66108T chips. !].;i.l.l6 ~C::) ~A..,uu~ivlI ~igllai.s 100 x 65-dot LCD 100-column output MPU HD66108T LCD driving power supply Figure 1 Basic System Configuration (1) HITACHI 556 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66108T [ 265 x 65-dot LCD MPU Figure 2 Basic System Configuration (2) HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300 557 HD66108T Functional Description 1. Display Size Programming A variety of display sizes can be programmed by changing the system configuration and internal register settings. (1) System Configuration Using 1 HD66108T Chip When the 65-row-output mode is selected by internal register settings, a maximum of 100 dots in the X direction can be displayed (figure 3 (a». Display size in the Y direction can be selected from 32 , 34, 36, 48, 50, 64 , and 65 dots according to display duty setting. Note that Y direction settings does not affect those in the X direction (100 dots). When the 33-row-output mode is selected by internal register settings, a maximum of 132 dots in the X direction can be displayed (figure 3 (b». sizes and the control register's (FCR) ROS and DUTY bits. ROS and DUTY bit settings determine the function of X pins. For more details, refer to .. 4.1 Row Output Pin Selection." (2) System Configuration Using 1 HD66108T Chip and 1 HD61203 Chip as Row Driver A maximum of 64 dots in the Y direction and 165 dots in the X direction can be displayed. 48 or 64 dots in the Y direction can be selected by HD61203 pin settings (figure 3 (c». (3) System Configuration Using 2 or more HD66108T Chips X direction size can be expanded by 165 dots per chip. Figure 3 (d) shows a 265 x 65-dot display. Y direction size can be expanded up to 130 dots with 2 chips; a 100 x 130-dot display provided by 2 chips is shown in figure 3 (e). Table 1 shows the relationship between display Table 1 Relationship between Display Size and Register Settings (No. of Dots) ROS Bit Setting (Xo-X164 Pin Function) Duty Bit Setting (Multiplexing Duty Ratio) 1132 1/34 1/36 1/48 1/50 1164 1/66 165-column-output Specified by a row driver 55-row-output from the right side X: 100 Y: 32 X: 100 Y:34 X: 100 Y:36 X: 100 Y:48 X: 100 Y: 50 X: 100 Y: 64 X: 100 Y:55 65-row-output from the left and right sides X: 100 Y: 32 X: 100 Y:34 X: 100 Y: 36 X: 100 Y:48 X:100 Y:50 X: 100 Y: 64 X: 100 Y:65 33-row-output from the right side X: 132 Y:32 X: 132 Y:33 X: 132 Y: 33 X: 132 Y:33 X: 132 Y:33 X: 132 Y: 33 X: 132 Y:33 HITACHI 558 Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 HD66108T ~X: 100dots-?! ~rr---X: 132 dots----?l~ T Y: 65 ~ I J33 ~ ____________~ 1do~ ________----'. .J.. do~ (b) Configuration Using 1 HD66108T Chip (2) (33-Row Output from the Right Side) (a) Configuration Using 1 HD66108T Chip (1) (65-Row Output from the Right Side) IE-~- - - - X : 165 do~ ---~~ T Y: 64 L-________________________ ~1 oo~ (e) Configuration Using 1 HD66108T Chip and 1 HD61203 as Row Driver (165-Column Output) IE-~-----------------X: 265 do~ -----------------il~ : I Area displayed by ~_____e_h_iP_1_______·________~! ___ Area displayed by T Y: 65 m __iP_2________~ldo~ (d) Configuration Using 2 HD66108T Chips (1) IE--- X: 100 dots ~ Area displayed by chip 1 I '-------' I ______________ Y: 130 dO~ Area displayed by chip 2 (e) Configuration Using 2 HD66108T Chips (2) Figure 3 Relationship between System Configurations and Display Sizes HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005~1819· (415) 589-8300 559 HD66108T 2. Display Memory Construction and Word Length Setting the right side, and is X32 in the 65-row-output mode from the left and right sides. The HD66108T has a bit-mapped display memory of 165 x 65 bits. As shown in figure 4, data from the MPU is stored in the display memory, with the MSB (most significant bit) on the left and the LSB (least significant bit) on the right. Each display area contains the number of dots shown in table 1, beginning from each start address. The sections on the LCD panel corresponding to the display memory bits in which 1 's are written will be displayed as on (black). Display area size of the internal RAM is determined by control register (FCR) settings (refer to table 1). The start address in the Y direction for the display area is always YO, independent of the register setting. In contrast, the start address in the X direction is XO in the modes for 165-column-output, 65 -rowoutput from the right side, and 33-row-output from For more detail, refer to .. 4.2 Row Output Data Setting, .. figures 15 to 19. In the display memory, one X address is assigned to each word of 8 or 6 bits long in X direction. (Either 8 or 6 bits can be selected as word length of display data.) Similarly, one Y address is assigned to each row in Y direction. Accordingly, X address 20 in the case of 8-bit word and X address 27· in the case of 6-bit word have 5 and 3 bits of display data, respectively. Nevertheless, data is also stored here with the MSB on the left (figure 5). HITACHI 560 Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 HD66108T Disp'layon I COM1 ~~~~~~~_ CO~2r+~~-r~-r~ 165 x 65 -dot LCD COM65~:~.~.~.~.~.~.~.------------------~ ; ~ 1 ~ ~ i 1 . ···· ...... ...... .. .. .. .. .. . .... XOX1 X2X3X4X5X6X7 YO Xl64 1101110101110111 087 080 (MSS;·················· (LSB) 165x65-bit display memory YM~ ____________________________ ~ Figure 4 Relationship between Memory Construction and Display ($00) 0 0($00) 1($01) ($01) 1 ($02) 2 11111111 8 bit ......................... ..................... X address ($13) ($14) 19 20 ($12) 18 11111 ....................... I I I ...................... 62($3E) 63($3F) Yaddress ..................... ..................... (a) Address Assig ment When 1 Word is 8 Bits Long I I I ($00) ($01) ($02) ($03) 0 1 2 3 ................. I I X address ($18) ($19) ($1 A)($1 B) 24 25 26 27 ..................... -. 1($01) 1""11 6bit 0($00) .................... I 1"1 .................. 62~~) I I I I I ................. ...................... I I II · · .. .. 63($3F) Yaddress . .. I I I I (b) Address Assignment When 1 Word is 6 Bits Long Figure 5 Display Memory Addresses HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 561 HD66108T 3. Display Data Write (4) ..A..: (1) Access Figure 6 shows the relationship between the address register (AR) and internal registers and display memory in the HD661 08T. Display memory shall be referred to as a data register since it can be handled as other registers. To access a data register, the register address assigned to the desired register must be written into the address register's Register No.bits. The MPU will access only that register until the register address is updated. (2) (3) Busy Check A busy time period appears after display memory read/write or X or Y address register write, since post-access processing is performed synchronously with internal clock pulses. Updating data in registers other than the address register is disabled during this time. Subsequent data must be input after confirming ready mode by reading the address register. The busy time period is a maximum of 8 clock pulses after display memory read/ write and a maximum of 1.5 clock pulses after X or Y address register write (figure 7). Limitations on Access :;!;~-.-. .-;:;.~;., ~6~&-~ ~, i.;l";;; ";i~"~i1)' UICIIJUCY must not be rewritten until a time period of tCLl or longer has elapsed after rewriting the control register's DUTY bits orthe mode register's FFS bits. However, display memory and registers other than the control register and mode register can be accessed even during this time period. tCLl can be obtained from the following equation. If using an LSI with a frame frequency of 60 Hz or greater, a time period of 1 ms should be sufficient. t = CLI D2 Ni.fCLK (kHz) (ms) ... Equation 1 D2 ( duty correction value 2 ) : 192 (duty = 1/32, 1/34, or 1/36) 128 (duty = 1/48 or 1/50 ) 96 (duty = 1/64 or 1/66 ) Ni ( frequency-division ratio specified by the mode register's FFS bits) 2, I, 1/2, 1/3, 1/4, 1/6, or 1/8 fCLK : Input clock frequency (kHz) Dummy Read When reading out display data, the data which is read out immediately after setting the X and Y addresses is invalid. Valid data can be read out after one dummy read, which is performed after setting the X and Y addresses desired (figure 8). HITACHI 562 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66108T Registers accessible with pin RS .. 0 Address register o 2 Bit Register No. Registers accessible with pin RS .. 1 Data re isters Figure 6 Relationship between Address Register and Register No. I HD66108T : I I esc: I I I I BUSY FLAG --II !-I------ i-!_ _ I I : Ready : ~;.. Busy 8 clock pluses max : Ready ~; . . i 1-------- I Intemal : operation Ii-I---':':---1 Operates intemally • --------'---------:--------..:..-..j.j .......-~----...:....,__--..~'*i ---------------CPU : : WR ~i~---------------------_4-------------- Ur: u RS DB7 u u u iI n n~~n~__~n~~________ Figure 7 Relationship between Clock Pulses and Busy Time ( Updating Display Data ) HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 ------- .. ~- 563 ..--.- ..~~~~~ c.n .,.. 8 C> 0) 0) ::I: ..... s= o n 2: 00 l=- ~ 3 CD :::l. n !" !::; ?- CS ::I:. ~ 2: ""1:J ;;;- Iri &l • i') 0 0 t:I a;.~. ~ ~. ;g :-I ~ ;s. ~ WR a: II DB ~ - ~51 (Accessed register) ~ Output data .. tD ::::!. en (") r::r l ::::I _CD cii" '" (") l=- .,..eo 0 0 '!:. ~ eo ~ ~ c.n co % w 0 0 ULJ ULJ U RD ~ J: EI .-+ ~--,r- RS CO ~ I~--------------------------------- XandY addresses ---------« (lIm.-) X. (lIm.Yn) X (Xm+l.Yn) X (Xm<2,Vn) X HD66108T Rewriting DUTY or FFS bits Accessing other registers Rewriting display memory Figure 9 Rewriting Display Memory after Rewriting Registers 3.2 X and Y Address Counter Auto-Incrementing Function As described in "2. Display Memory Construction and Word Length Setting, " the HD66108T display memory has X and Y addresses. Internal X address counter and Y address counter both employ an autoincrementing function. After display data is read or written, the X or Y address is incremented according to the address increment direction selected by internal register. Although X addresses up to 20 are valid when 8 bits make up' one word ( up to 27 when 6 bits make up one word ), the X address counter can count up to 31 since it is a 5-bit free counter. Similarly, although Y addresses up to 64 are valid, the Y address counter can count up to 127. Consequently, X or Y address must be re-set at an appropriate point as shown in figure 10. HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 565 HD66108T X address counted • o + + 2 1 L l Set address Write display data Valid addresses + 20--1 Re-set X address + 21 Dummy readlwrite Invalid addresses 31 V ~------------------~ (1) Example of X Address Counter Increment (Word Length: 8 bits) Y address counted ~ + 1 Set address Write display data + 2 Valid display area + 31--1 + 32 Re-set Y address Dummy readlwrite I I I I I I I Invalid display area I I I I I + ~ 127 I~------------------~ (2) Example of Y Address Counter Increment (Multiplexing duty ratio: 1132) Figure 10 X/'l Address Counter Increment HITACHI 566 Hitachi America, Ltd. - Hitachi Plaza - 2000 Sierra Point Pkwy. - Brisbane, CA 94005-1819- (415) 589-8300 HD66108T 4. Selection for LCD Driving Circuit Configuration 4.1 Row Output Pin Selection The HD 661 08T can assign a maximum of 65 pins for row outputs among the 165 pins named XO-Xl64. The XO-X 164 pins can be classified into four blocks labeled A, B, C, and D (figure 11 (a)). Blocks A, C, and D consist of row/column common pins and block B consists of column pins only. The output function of the LCD driving pins and the combination of blocks can be selected by internal registers. Figure 11 shows an example of 165-column-output mode. This configuration is useful when using more than 1 HD66108T chip or using the HD66108T as a slave chip of the HD61203. Figure 12 shows an example of 65-row-output mode from the right side. Blocks A and B are used for column output and blocks C andD (X100-Xl64 pins) for row output. This configuration offersan easy way of connecting row output lines in the case of using one or more HD66108T chips. Figure 13 shows an example of 65-row-output mode from the left and right sides. 32 pins of XO-X31 and 33 pins ofX132-Xl64 are used for row output here. This configuration offers an easy way of connecting row output lines in the case of using only one HD66108T chip. Figure 14 shows an example of 33-row-output mode from the right side. Block D, i.e., X 132-Xl64 pins, is used for row outputs. This configuration provides a means for assigning many pins to column outputs when 1/32 or 1/34 multiplexing duty ratio is desired. In all modes, it is row data and multiplexing duty ratio that determine which pins are actually used among the pins assigned to row output. Y values shown in table 1 indicate the numbers of pins that are actually used. Pins not used must be left disconnected. I HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 567 HD66108T X132------------ X164 ~ ------------------. ~9 X100------------ X131 XO ------------ X31 t i + 4 Column driver Column driver Column driver Column driver Block A BlockB BlockC Block D (a) LCD Driving Circuit Configuration r - - - - - - - --. I I I I I I, , ___ I \ I I I Row driver \ : " I I I I I r - -"" I LCD I V L ________ _I HD66108T (b) System Configuration Figure 11 165-Column-Output Mode HITACHI 568 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66108T f ------------ ~ X3. -----------------_. X132------------ Xl64 ~ Xl00 ------------ X131 i + Column driver Column driver Row driver Row driver Block A Block B BlockC Block 0 (a) LCD Driving Circuit Configuration LCD HD66108T (b) System Configuration Figure 12 65.Row·Output Mode from the Right Side HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300569 I HD66108T ~------------------.~ • XI32- - - -- - --- - - -XUI" Xl00 ------------ X131 XO ------------ X31 • +1 Rowdrive~ Column driver Column driver Row driver Block A BlockB BlockC Block 0 (a) LCD Driving Circuit Configuration LCD HD66108T (b) System Configuration Figure 13 65-Row-Output Mode from the Left and Right Sides HITACHI 570 Hitachi America, Ltd. o Hitichi Plaza 0 2000 Sierra Point Pkwy. 0 Brisbane, CA 94005-1819 0 (415) 589-8300 HD66108T r- - - - - - 1 ~------------------.~ x31 ro------------ X132-------- ----X164 X13i Column driver Column driver Column driver Row driver Block A Block B BlockC Block 0 (a) LCD Driving Circuit Configuration LCD HD66108T (b) System Configuration I Figure 14 33-Row-Output-Mode from the Right Side HITACHI. Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300 571 HD66108T 4.2 Row Output Data Setting and protected areas. If certain LCD driving output pins are assigned to row output, data must be written to display memory for row output. The specific area to which this data must be written depends on the row-output mode and the procedure of writing row data to the display memory (0 or 1 to which bits?) depends on which X pin drives which line of the LCD. Row data area is determined by the control register's (FCR) ROS and DUTY bits and is identical to the protected area, which will be described below. (165-column-output mode has no protected area, thus requiring no row data to be written (figure 15).) Procedure of writing row data to the display memory is as follows. First, 1 must be written to the bit at the intersection between line Yj and line (column) Xi (column). Line Yj is filled with data to be displayed on the first line of the LCD and line Xi is connected to pin Xn, which drives the first line of the .LCD. Following this, Os must be written to the remaining bits on line Yj in the row data area. This rule applies to subsequent lines on the LCD. Figure 16 shows the relationship between row data and display. Here the mode is 65-row output from the right side. Display data on YO is displayed on the first line of the LCD and data on Y64 is displayed on the 65th line of the LCD. IfXI64 is connected to the first line of the LCD and Xl 00 is connected to the 65th line of the LCD, Is must be written to the bits on the diagonal line between coordinates (XI64, YO) and (Xl00, Y64) and Os to the remaining bits. Row data protect function must be turned off before writing row data and be turned on after writing row data. Turning on the row data protect function disables read/write of display memory area corresponding to the row output pins, i.e., prevents row data from being destroyed. In figure 16, display memory area corresponding to pins Xl00 to XI64 is protected. Figures 17 to 19 show examples of row data settings. Some multiplexing duty ratios result in invalid display areas. Although an invalid display area can be read from or written to, it will not be displayed. Table 2 shows the relationship between FCR settings Table 2 Relationship between FCR Settings and Protected Areas Control Register (FCR) ROS LCD Driving Signal Output Pins Connected to PON 4 3 Mode 0 0 165-column 0 65-row (R) Protected Area of Display Memory Figures No area protected 15 X100-X164 16,19 0 65-row (LlR) XO-X31 and X132-X164 17 1 33-row (R) X132-X164 18 65-row (R) : 65-row-output mode from the right side 65-row (LlR) : 65-row-output mode from the left and right sides 33-row (R) : 33-row-output mode from the right side HITACHI 572 Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA94005-1819· (415) 589-8300 HD66108T Control register ROS bit = 00 DUTY bit = 101 LCD dnving voltages: VMH1 = V3, VML 1 = V4, VMH2 = V3, VML2 = V4, VMH3 = V3, VML3 = V4 X31~•• XO Column driver : , Block A (32 bits) Column driver : , Xl64 • ••X99 Xl00••• Block B (68 bits) ,, , , Column driver Block C (32 bits) ,, , ,,, ,, Column driver Block 0 (33 bits) ,, 4 bits + 3 bytes + 4 bits + 3 bytes + X address: : , , 4 bits : 4 bytes : 8 bytes + 4 bits 5 bits 11 I 17 I 18 I 19 I 20 4 I I ......;0~1~1'-.L1-=2...L.1~3-I1-.-:!...L_____.L-!.!...JL...!i:.....L-:.:::.....L....!.:!.-1-..!:!....l-r-J.....!.!....J....!!:....J.~...L.T_.J 8 bits/1 word 1 1:2 I 13 I 14 I 15 I I , 5 words + 2 bits : 4 bits + 10 words + 4 bits ,, 2 bits + 5 words , 5 words + 3 bits , 6 bitsJ1 wordiI--::-0'1-'1:-01-:2:-110::,-~-..,.----,-:-;;-~~:;:;-r-:-;:-..-::-r:;;::-r-:::-iI-;;;;-.-:;::-r;;-:-r~r;;::-r';;:;"1 3 "'1-4;-01"-;:'51 I 15 I 161 17118 119 I 20 I 211 22 1 231 24 I 25 I 281 '271 6 I t6 , , , 165 x 64-dot LCD --------------------------H-+_+_ --------------------------H-+__ 1 Yl 0 0 0 -------------------------Y21-:-H 1 HlH....,o:+--------- ------------------t-:-+--:+--:H~ Y31-1:+::1 1 -'0*- - - - - - - - - - - - - - - - - - - - - - - - 0 1-::10r-:i -I-:-t-::I-::I-::lf-::-l Y41-1:+",0MOf-:ll""0'+-- ------ -------------- ----hhl-:::l--=lh:-! H-+-+-+-+--------------------------r--;H-+-I--I Display data Valid display area I+-!-+--!--!--!-----!-~J Y62 Y63 I-=-HI-:-li-:-l-,:+Y64'--_ _ _ _ _ _....::.:.:..==:==c..::::=-_ _ _ _ _ _--' Invalid display area Figure 15 Relationship between Row Data and Display (165-Column Output, 1/64 Multiplexing Duty Ratio) HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819' (415) 589-8300 573 HD66108T Control register ROS bit =01 DUTY bit = 110 LCD driving voltages: VMH1 = V3, VML 1 =V4, VMH2 = V2, VML2 = V5, VMH3 =V2, VML3 =V5 xo•.• Column driver X address , : , : ..)(131 X13a •• 2<99 X100 .•. •••X31X3a •• Row driver Column driver Row driver , ;--8 bYles + 4 bits : 4 bits + 3 bytes + ' 4 bits : 4 b~tes : ' 5 words + 2 bits : 4 bits + 10 words + 4 bits 2 bits + 5 words : 8 bitsJ1 word 1-1"""0:--11--';'1':::;"'1=::-2-'-1"""3=-11--:4-01-::_::::: 6 bitsl1 word 1-10"""1-1"-"'1-:2-r1-:3-'-1"-4'1..i.'5:-T1-'6:-T"1-::::::== ..1<164 Row data pro ad blocks ' I 11 I 1~ I 13 1 14 I 15 I 1:6 I 17 I 18 : ---i 4 bits+ 3 bytes+ : 5b i t s : 19 I 20 5 words + 3 bits ! 115 11~ 117118 119 I 20 I 21122 123 I 24 I 251 261'271 100 x 65·dot LCD --------------------+-+-+-+- i-"-1-'-i1-"1r-11-"+ - - - - - - - - - - - - - - - - - - - - +'-+'-+'-+-"-+-"-1-"-11-"-11-"+ I-'-I-"-II-""HI-"+ - - - - - - - - - - - - - - - - - - - - +'-¥-+"-+-'-I-"-I-"-II-"-II-"+ I-'-I-'-iI-"1HI-"+ ____________________ +''-1-,,-1+1,+><+,,,+,,+,,+,,+ I-'-I-"-II-"-ir-l-"+ ____________________ +''-1-,,-0+,o"-+><+,,,+,,+,,+,,+ 1-Y..lI..j-.lI..j-J..J-lI+ ____________________ +'4l04.l!-f-!!+"-l-"-lfJ4..l4Display , f,..!.f,.l4',"-+"-+'''--1 memory : Row data: Display data Y62 H-+-I--i-+====== ========= =====+-HH-+-i--i-++ Y63 ~f-!-'Mf-!-l~ ----- - - - - - - - -- - - ---- -r-+'-+=-+-i-'-r-Hr+ Accessible area Area protected with PON =1 Figure 16 Relationship between Row Data and Display (65·Row Output from the Right Side, 1/66 Multiplexing Duty Ratio) HITACHI 574 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66108T Control register ROS bit = 10 DUTY bit = 110 LCD driving voltages: VMH1 =V2, VML 1 =V5, VMH2 =V3, VML2 =V4, VMH3 =V2, VML3 =V5 : X address! : I Row driver Column driver Block A (32 bits) Row data Block B (68 bits) I 8 bitS/l word ..l$99 X100 •••X31X32••• XO••• 0 protected blocks 4 bytes I 1 I 2 I 3 I 11 4 bits + 10 words + 4 bits , I :::::::: 6bitsll word 10 11 12 13 14 15 16 X1!l.~. Column driver Row driver Block C (32 bits) Block D (33 bits) : I !-Row data --!: : 4 bits + 3 bytes + : protected blocks 8 bytes + 4 bits I:::::::: 4 5 words + 2 bits : i .)5131 115 ' 4 bits 13 I 14 I 1~ I ! 4 bits + 3 bytes + 5 bits : 17 I 18 I 19 I 20 I 1~ I 15 2 bits + 5 words : I,,; I 5 words + 3 bits : i 117118 119 120121122 123 124 125 126 1:17 1 :, 100 x 65-dot LCD :I XO rtiti: I X1 YO Y1 o 1 - Row data 'I . Y2 10- '0 --- Y82 1 0 0 0 --10- '0 --10- "0 --10 "0 - I- I I I I I I 0 1 0 0 I I Y63 m = = = 10 10 Y64 o 0 Lo_Lo ,~ I X133 X164 X1631 I o 11 11 10 101 1111 11 10 10 o 101 __ ~~ 1010 1010 1 10 10 1 101 ================11 10 10 11 0 0101 ___ 0 0 I . I Y3 Y4 X127 I X129 I X131 IX31 IX33IX35 I ________ I I I I I I I I I I I I I I I I I I I I Display data I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 0 0 1 0 ---------------- 1 0 0 0 0 0 0 --- lo're 1 0 0 1 0 ---------------- 1 0 0 0 0 0 0 --- 'a "0 0 0 1 0 0 ---------------- 0 0 0 0 1 o 0 ---10'1 1 0 0 0 1 ---------------- 0 0 1 0 0 o 0 --- f-;- fo --- .......... ---------------: Row data : 011 Jo 1 10 ---------------- 01010 11 11 011 ===AA 1 10 10 011 ---------------- 010 11 10 I 0 110 ______________________________ ________ ~/,~ Area protected with PON 1 = I I J/,~ Accessible area ~/ Area protected with PON 1 = Figure 17 Relationship between Row Data and Display (65-Row Output from the Left and Right Sides, 1/66 Multiplexing Duty Ratio) HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 575 HD66108T I. . (:D' Control register ROS bit = 11 DUTY bit = 001 LCD driving voltages: VMH 1 =V3, VML 1 =V4, VMH 2 = V3, VML.2 = V4, VMH 3 =V2, VML 3 = V5 xo.• ••.X31 X32•.. Column driver Column driver : Block A (32 bits) : X address ! , : i 4 bytes : : •..X131 Xl32 ... ... X99 Xl00... •.. Xl64 Column driver Block B (68 bits) : Block C (32 bits) : Block 0 (33 bits) : 8 bytes + 4 bits ! . ! -Row data· -! ' 4 b!ts + 3 bytes +, protected block' 8 bits/1 word -':o:-r-I-1"--'-1-=-2""1-::"3-11--:-4"'1r-:::::::: 1 11 1 1-1 4 bits + 3 bytes+ 5bils ~ 1 : 4 bits 1~ 1 13 1 14 1 15 1 1:6 1 17 1 18 1 19 1 : 5 words + 2 bits : 4 bits + 10 words + 4 bits: 2 bits + 5 words : 5 words + 3 bits : 6bits/1word\ 0111213141'5161 :::::::: 11511(1117118119120121\221231241251261271 132 x 33-dot LCD -----------------------------i-i-i--t- r YO I I fll 0 1 1 0 0 Yl 1 Y2 1 1 1 1 0 o C 1 0 ,, ,, ,, ,, ,, ,,,,, Y29 0 0 1 0 0 Y31 Y32 0 1 0 1 0 1 0 0 0 1 0 o ( 0 0 Y33 Y34 ,, , ,, ,, ------------------------------------------------------- 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 ,, ,, ,, ,, ,, ,, ,, Row data2.~~ , : , , ,,,,, , ---------------------------- 0 0 0 0 1 0 0 1 ----- -0-1---------------------------- 0 0 0 1 1 0 1 0 ----- _2..~ Display data I ---------------------------------------------------------------------------------- Y63 Y64 ,~ I I 0 0 1 ------ o~o .. _---- -f--r- 1 0 0 1 0 0 0 0 -----------------~---------- I I ------ .!E..~ o0 0 oora ----- :--1,, , , , ,, , , ------,---I,, ", I I I I , I ----------------------------, , I I , , __________________________________ _J/, Accessible area I I I I I display area I 0 0 1 0 0 1 0 0 0 0 0 0.0 0 0 0 I Invalid display data I I , , , I ----------------------------, L I I Xl62 Xl64 IX11S31 x1rl X11291 X,31 I X1133 1 I : :::::::8f / ± r- Area protected with PON .. 1 Figure 18 Relationship between Row Data and Display (33·Row Output from the Right Side, 1/34 Multiplexing Duty Ratio) HITACHI 576 Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819' (415) 589-8300 HD66108T Control register ROS bit = 01 DUTY bit = 011 LCD driving voltages: VMH 1 V3, VML 1 = V4, VMH 2 - V2, VML 2 = V5, VMH 3 - V2, VML 3 - V5 0= XO... 48-row driver used ...X31 X32... ... X99 Xl00... H + I Column driver I Block A (32 bits) : ! X address 4 bytes : 1 I Column driver Block B (68 bits) 8 bytes+ 4 bits 8 bitsl1 word I-O....,...I-l-rI-2~-3-+1-4--r1-======== 10111213141 ' 51&1 t I Row driver : Block C (32 bits) : Block 0 (33 bits) : : 4 bits + 3 bytes + : 4 bits + 3 bytes + : 1 4 bits 15bits 1 I 11 I 1;2 I 13 I 14 I 15 I 1& I 17 I 18 I 19 I ========' 1 Row driver •..XI64 !-- Row data prdtected biocks --! 1 5 words + 2 bits :4 bits + 10 words + 4 bits : 6 bits/1 word ...XI31 XI32... + 2 bits + 5 words : ~ I 5 words+ 3 bits : 11511~117118119120121122123124126126IZrI 1 : 100 x 48-dot LCD : 1 1 -------------------t-i--t-i- VO VI Y2 )(95 I )(971 ><,99 I ~1 I X3 I I 0 1 1 Xll&I X118 1 XI62 XI64 I XI831 T --- 00 00 00 00 ------ ~~.!... --- 0 0 0 0 ----- ~r!2.. r!~.E. 1 1 1 1 1 1 1 1 1 1 1--- 1 Row data 1 1 1 1 1 1 1 Display data 1 1 1 1 1 Valid 1 1 'Valid row data 1 display area 1 1 1 1 1 1 1 1 1 1 1 1 ---_ .. --- 0 0 0 1 0 0 1 0 0 ------------------- 0 0 0 0 1 0 0 --- 0 0 1 0 ----- "oro """f0 1 0 1 0 ------------------- 0 0 0 1 1 0 ~~ --- 0 1 0 0 ----- o 0 00 1 0 0 0 1 ------------------- 0 0 1 0 il 0 ------- - f - -------------------f------------------------1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1- Invalid 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1 1 1 0 ------------------------------------- 1 1 1 0 0 0 1 0 0 1 0 0 .1 1 1 0 0 0 I Y45 Y48 Y47 V48 Y49 1 1 1 1 1 ye3 V64 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1-------------------1 1 1 1 1 1 1---I 1 1 1 1 1 1 1---I 1 1 1 1 1 1 1-------------------1 I 1 __JI' __________________________ ,~ Accessible area + '- - :m display area --_ ... - I ~ Area protected with PON = 1 Note: Pins X1 00-X116 are left disconnected here. Figure 19 Relationship between Row Data and Display (65·Row Output from the Right Side, 1/48 Multiplexing Duty Ratio) HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 577 HD66108T 4.3 LCD Driving Voltage Setting There are 6 levelS of tCD driving voltages ranging from VI to V6; VI is the highest and V6 is the lowest. As shown in figure 20, column output wavefonn is made up of a combination of VI, V3, V4, and V6 while row outputwavefonn is made up of VI, V2, V5, and V6. This means that VI and V6 are common to both wavefonns while mid-voltages are different. To accommodate this situation, each block of the HD66108T is provided with,power supply pins for mid-voltages as shown in figure 21~ Each pair of VIR and VIL and V6R and V6L are internally connected and must be applied the same level of voltage. Block B is fixed for column output and must be applied V3 and V4 as mid-voltages. The other blocks must be applied different levels of voltages according to the function of their LCD driving output pins; if the LCD driving output pins are set for row O\1tput, VMHn and VMLn must be applied V2 and V5, respectively, while they must be applied V3 and V4, respectively, if the pins are set for column output (n =1 to 3). Table 3 Relationship between FCR settings and LCD Driving Voltages Control Register (FCR) LCD Driving Voltage Pins R0S4 ROS3 Mode VIRNll 0 0 0 0 V3 V4 VMH1 VMl1 VMH2 165-column V1 V3 V4 V3 V4 V3 VML2 VMH3 VML3 V6RN6l V4 V3 V4 V6 65-row (R) V1 V3 V4 V3 V4 V2 V5 V2 V5 V6 65-row (UR) V1 V3 V4 V2 V5 V3 V4 V2 V5 V6 33-row(R) V1 V3 V4 V3 V4 V3 V4 V2 V5 V6 65-row (R) : 65-row-output mode from the right side 65-row (UR) : 65-row-output mode from the left arid right sides 33-row (R) : 33-row-output mode from the right side 578 HITACHI , Hitachi America, Ltd. 0 Hitachi Plaza 0 2000 Sierra Point Pkwy." Brisbane, GA 94005-1'819 0 (415) 589-8300 HD66108T I ,2,3,4: :2:3:4: ------------- '--' --' ..:=".::"::"--, =r- + j ====T ~ '!: :: : : ~-~~-~~~---COM1 V2 V3 =:! : W-~ V5 va =CI=====~ I I I ,-:-T I I I I I , I -rT~~=~=I I I I I ~-~~-~+~----~ V32 COM2 V I I ~-----r--:-:_ii---I I ==: --- ~~--------- :t,: ::t,! = = = = ~ .l- ..l '::::::':.:::.: ,: ,: W V5 ~~---- W ~~----~~-~T~-----, I I I I I I ~ ~ V1 V2 SEG1 V3 V4 - - - -, - ,- , ~~---, :-: i~ nnnnnn~~ ~~~ I I I I .!.... -..!. _ _ _ _ w-~~-~~~----~ --: _ ~ I I I I I I 13 F= •••••••••••• ___ _ ~~--------- + -+ - - - - - - - - w-~~-~+~----~~-~+~--------I : : : : ............. ] --: - :- T -: - - - -1 SEG2 V4 ---I. _: _ _ _ _ _ : : : : ............ ___ _ va - -+ --: - r-- + -r - - - - -+ I t _ -- , ••• ••••••••• I I ~-~~-~~~----~~-~~~--------- V3 ~ ~ ~ w-~~-~~~----~~-~+~--------- w-~~-~~~----~~-~~~--------- -4 -:- ~ +- -+ -- ---+ -:-1::: ±:::i- - -- --- --VLCD =~~=~~~====~ i=~±~=-==-- __ ~m~oo SEG2-COM1 = = := ::::= ::::j: = = = = : : : : -: = ~ ± ~ = = = = =~ ~ ~== == ~ =:=t= ±::±= === - = --119VLCD (Non J ............ _ '- -'- ....J. ..:::::: •.:=.•.::.. _ = = =-119VLCD ~ = i ~~~ ~tg ~ = : : : : =: = := ::::= ::::j: = = = = : : : : =, = ~ ± ~ = = = = = = = = =-7/9VLCD -~~-~~~----~~-~+~---------~~ = selected _ ::::t -+ I I ±:::i====:±~=i=:±::±===== ....1-......I. _ _ _ _ .....1.._,_L,..-....L.........&. _ _ _ _ _ ==1: ±::±=====I:~=t=±::±===== =~ ±~====~~=~±~===== SEG1-COM2- _,_ '- -'-....J. '::::::::::':.: - - ' _ ..... -'- ...... - -=~ :_t=±::±====~ (W~ J =~~=~±~====~ from --~-:-~±~----~ : -'-I I , - - - - : , , j< 1frame >: ~~ _~--'_'--'-....J. _ _ _ _ ~ =VLCD ~ 119VLCD ±~ ···········-====~-119VLCD ±~========= ±~========= ±, ~,=========-VLCD Figure 20 LCD Driving Voltage Waveforms HITACHI Hitachi America, Ltd.· Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane,CA 94005·1819· (415) 589-8300 579 HD66108T LCD driving output pins xo ----- X31 Block A 1L V6L MH1 X32- - - - - X99 X100- - - - - X131 X132- - - - - X164 BlockB Block C Block 0 ML1 ML2 MH3 ML3 6R 1R LCD driving power supply pins Figure 21 Relationship between Blocks and LCD Driving Voltages 5. Multiplexing Duty Ratio and LCD Driving Waveform Settings A multiplexing duty ratio and LCD driving wavefonn can be selected via internal registers. A multiplexing duty ratio of 1/32, 1/34, 1/36, 1/48, 1/ 50, 1/64, or 1/66 can be selected according to the LCD panel used. However, since there are only 65 rowoutput pins, only 65 lines will be displayed even if 1/ 66 multiplexing duty ratio is selected. There are three types of LCD driving wavefonns, as shown in figure 22: A-type wavefonn, B-type wavefonn, and C-type wavefonn. The A-type wavefonn is called per-half-line inversion. Here, the wavefonns of M signal and CL 1 signal are the same and alternate every LCD line. The B-type wavefonn is called per-frame inversion; in this case, the M signal inverts its polarity every frame so as to alternate every two LCD frames. This is the most common type. The C-type wavefonn is called per-n-line inversion and inverts its polarity every n lines (n can be set as needed within 1 to 31 via the internal registers). The C-type wavefonn combines the advantages of the Aand B-types of wavefonns. However, some lines will not be alternated depending on the multiplexing duty ratio and n. To avoid this, another C-type wavefonn is available which is generated from the EOR of the Ctype wavefonn M signal mentioned above and the Btype wavefonn M signal. Since the relationship between n and display quality usually depends on the LCD panel, n must be detennined by observing actual display results. The B-type wavefonn should be used if the LCD panel specifies no particular type of wavefonn. However, in some cases, the C-type wavefonn may create a better display. HITACHI 580 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66108T I ----------r (I) E ~ ,.... ---~ ___ .:'t C') ---C\i ~ It) I I I I I I E(I) .2.5_ (I) I ' r:: E .... .2(1)- r:: (0 (0.::.. .... (/) U r:: -- -- « I I I xc E .... o ~E§ :>- .... (I)~(I) 0.(1» >,0.. .5 I I I :::lE >:t:: 0 :i=.c: f!? (0 (0.- L I I I ~ (I)~(I) :::J_ -10 0..(1» >.0...5 cr. II Or:: w_ I m r:: 0 -(1)- ~r::r:: =0 :i= c'!?! (0 (I)~(I) -0.(1» >.0.. :::lE .5 I 0 0 r:: 0 U r:: :::J_ -10 cr. II w_ Or:: Figure 22 LCD Driving Waveforms (Row Output with a 1/32 Multiplexing Duty Ratio) HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415)589-8300 581 HD66108T 6. Clock and Frame Frequency 7. Display Offfune,tion An input clock with a 200-kHz to 4-MHz frequency can be used for the HD66108T. Note that raising clock frequency increases current consumption although it reduces busy time and enables high-speed operations. An optimum system clock frequency should thus be selected within 200 kHz to 4 MHz. The HD661 08Thas a display offfunction which tums off display by rewriting the contents of the intemal register. This prevents random display at power-on until display memory is initialized. The clock frequency driving the LCD panel (= frame frequency) is usually 70 Hz to 90 Hz. Accordingly, the HD66108T is so designed that the frequencydivision ratio of the input clock can be selected. The HD66108T generates around 80-Hz LCD frame frequency if the frequency-division ratio is 1. The frequency-division ratio can be obtained from the following equation. The HD66108T has a standby function provinding low-power dissipation. Writing a 1 to bit 6 of the address register starts up the standby function. Ni= ~ x 8. Standby Function The LCD driving voltages, ranking from VI to V6, must be set to Vcc to prevent DC voltage from beging applied to an LCD panel during standby state. The HD661 08T operates as follows in standby mode. x D1 500 fCLK 80 : Frequency-division ratio : Frame frequency required for the LCD panel (Hz) fCLK : Input clock frequency (kHz) Dl : Duty correction value 1 D1 =1 when multiplexing duty ratio is 1/32, 1/48 or 1/64 Dl = 32/34 when multiplexing duty ratio is 1/34 Dl =32/36 when multiplexing duty ratio is 1/36 D1 =48/50 when multiplexing duty ratio is 1/50 Dl = 64/66 when multiplexing duty ratio is 1/66 Ni fF The frequency-division ratio nearest the value obtained from the above equation must be selected; selectable frequency-division ratios by intemal registers are 2. 1, 1/2, 1/3, 1/4, 1/6, and 1/8. (1) (2) Stops oscillation and external clock input Resets all registers to O's except the STBY bit Here, note that the display memory will not preserve data if the standby function is tumed on; the display mempry as well as registers must be set again after the standby function is terminated. Table 4 shows the standby status of pins and table 5 shows the status of registers after standby function termination. Writing a 0 to bit 6 ofthe address register terminates the standby. function. Writing values into the DISP and Register No. bits at this time is ignored; these bits need to be set after the standby function has been completely terminated. Figure 23 shows the flow for start-up and termination of the standby function and related operations. Table 4 Standby Status of Pins Pin Status High ·OSC2 CO Low CL1 Low (master chip) or high-impedance (slave chip) FLM Low (master Chip) or high-impedance (slave chip) M Low (master chip) or high-impedance (slave chip) Xn (column output pins) V4 Xn' (row output pins} V5 HITACHI 582 Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005~1819· (415) 589-8300 HD66108T Table 5 Register Status after Standby Function Termination Register Name Status after Standby Function Termination Address register Reset to a's except for the STBY bit X address register Reset to a's Y address register Reset to a's Control register Reset to a's Mode register Reset to a's C select register Reset to a's Display memory Data not preserved Start-up Set the LCD driving voltages to Vcc level j .(. Set the STBY bit to 1 (turn on the standby function) .(. I *1 Wait until external clock pulses stabilize .(. Termination Set the STBY bit to a (turn off the standby function) .(. ( Supply the LCD driving voltages ) .(. ( Set registers again ) .(. ( Wait for a time period of tCL 1 or longer ( Set the display memory again + ) *2 ) .(. ( Set the DISP bit to 1 (turn on LCD) ) Notes: 1. Not necessary in the case of using internal oscillation 2. Refer to equation 1 (section 3.1). Figure 23 Start-Up and Termination of Standby Function and Related Operations HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 583 HD66108T 9. Multi.Chip Operation (5) The following bits for slave chips must always be set: INC, WLS, PON, and ROS (control register) FFS (mode register) It is not necessary to set the control register's DUTY bits, the mode register's DWS bits, or the C select register. Forotherregisters' settings, refer to table 6. All chips must be set to LCD off in order to tum off the display. The standby function of slave chips must be started up first while that of the master chip must be terminated first. Using multiple HD66108T chips (= multi-chip operation) provides the means for extending the number of disply dots. Note the following items when using the multi-chip operation. (I) (2) (3) (4) The master chip and the slave chips must be determined; the MIS pin of the master chip must be set low and the MIS pin of the slave chips must be set high. All the HD66108T chips will be slave chips if HD61203 or its equivalent is used as a row driver. The master chip supplies the FLM, CL I, and M signals to the slave chips via the corresponding pins, which synchronizes the slave chips with the master chip. Since a master chip outputs synchronization signals, all data registers must be set. (6) (7) Figure 24 to 26 show the connections of the synchronization signals for different system configurations and table 6 lists the differences between master mode and slave mode. Row output LCD t-- Column output Column output HD66108T Slave mode HD66108T Master mode M M t:>scl FLM Cll t - OSCl FLM Cll f I I Clock Note: Clock pulses for the slave chip can be supplied from the master chip CO pin. Figure 24 Configuration Using 2 HD66108T Chips (1) HITACHI 584 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66108T Row output LCD ~ Column output Column output I- HD66108T Master mode HD66108T Slave mode M M OSC1 FLM iosC1 FLM CL1 t I I >-- CL1 1 Clock Note: Clock pulses for the slave chip can be supplied from the master chip CO pin. Figure 2S Configuration Using 2 HD66108T Chips (2) HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 585 HD66108T LCD Row output Column output HD61203 Row driver HD66108T Slave mode M CR M OSC1 FLM FRM CL2 t I I CL1 1 Clock No~e: 1. The slave chip can oscillate CR clock pulses. In this case, the clock pulses must be supplied to the HD61203 from the HD66108T's CO pin. 2. The HD61203's control pins must be set in accordance with the type of RAMs. Figure 26 Configuration Using 1 HD66108T Chip with Another Row Driver (HD61203) HITACHI 586 Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 HD66108T Table 6 Comparison between Master and Slave Mode Item Pin: Master Mode Slave Mode Must be set high MIS Must be set low OSC1,OSC2 Oscillation is possible Oscillation is possible CO =OSC1 =OCS1 FLM, CL1, M Register: Output signals Input signals AR Valid Valid XAR Valid Valid YAR Valid Valid FCR Valid Valid except for the DUTY bits MDR Valid Valid except for the DWS bits CSR Valid (only if the DWS bits are set for the C-tye waveform) Invalid Notes Valid Needs to be set - Invaid: Need not be set HITACHI Hitacoi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 587 HD66108T Internal Registers All H066108T's registers can be read from and written into. However, the BUSY FLAG 'and invalid bits cannot be written to and reading invalid bits or registers returns O's. 1. Address Register (AR) (Accessed with RS = 0) BUSY FLAG bit, STBY bit, and DISP bit. Register No. bits select one of the data registers according to the register number written. The BUSY FLAG bit indicates the internal operation state if read. The STBY bit activates the standby function. The DISP bit turns the display on or off. This register is selected when RS pin is O. This register (figure 27) contains Register No. bits, Bits 04 and 03 are invalid. D7 D6 D5 BUSY FLAG STBY DISP (1) D4 D3 D2 D1 DO Register No. STBY - 1: Standby function on - 0: Normal (standby function off) • When standby function is on, all registers are reset to O's (2) DlSP -1: LCD on - 0: LCD off (3) Register No. Bit 2 1 0 Register 0 1 2 3 4 0 0 0 0 1 1 Display memory X address register Y address register Control register Mode register C select register 5 (4) - No. 0 0 1 1 0 0 0 1 0 1 0 1 BUSY FLAG (Can be read only) - 1: Busy state - 0: Ready state Figure 27 Address Register HITACHI 588 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66108T 2. Display Memory (DRAM) (Accessed with RS =1, register number =(000)2) This register (figure 29) contains 3 invalid bits (07 to 05) and 5 valid bits (04 to 00). It sets X addresses and confirms X addresses after writing or reading to or from the display memory. Although display memory (figure 28) is not a register, it can be handled as one. 8- or 6-bit data can be selected by the control register WLS bit according to the character font in use. If 6-bit data is selected, 07 and 06 bits are invalid. 4. Y Address Register (Y AR) (Accessed with RS = 1, register number =(010)2) This register (figure 30) contains I invalid bit (07) and 7 valid bits (06 to 00). It sets Y addresses and confirms Y addresses after writing or reading to or from the display memory. 3. X Address Register (XAR) (Accessed with RS = 1, register number = (001)2) 07 06 05 04 03 01 02 DO a-Bit Data * 6-Bit Data * Reading bits marked with· return Os and writing them is invalid. Figure 28 Display Memory 07 06 05 04 03 02 01 DO XAO XAO: 0 to 20 ($OO to $14) when display data is 8 bits long and 0 to 27 ($OO to $1 B) when display data is 6 bits long. A maximum of $1 F is programmable. Figure 29 X Address Register 07 [ 06 05 04 [ 03 02 01 DO YAO YAO: 0 to 128 ($OO to $7F) Figure 30 Y Address Register HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 589 HD66108T 5. Control Register (FCR) (Accessed with RS 1, register number =(011)2) = This register (figure 31). containing eight bits. has a variety offunctions such as specifying the method for accessing RAM. detennining RAM valid area. and selecting the function of the LCD driving signal output pins. It must be initialized as soon as possible 07 06 05 04 03 02 01 (1) INC (Address increment direction select) - 1: X address is.incremented - 0: Y address is incremented (2) WLS (Word length (of display data) select) - 1: 6-bit word - 0: 8-bit word (3) PON (Row data protect on) - 1: Protect function on - 0: Pretect function off afterpower-on since itdetennines the overall operation of the HD66108T. The PON bit may have to be re-set afterwards. If the DUTY bits are rewritten after initialization at power-on (if values other than the initial values are desired). the display memory will not preserve data; the display memory must be set again after a time period of tCLI or longer. For deterniining tCLI' refer to equation I (section 3.1). DO (4) ROS (Row output (function of LCD driving output pins) select) Bit (5) No. 43 Contents o 1 2 00 01 10 165 column outputs 65 row outputs from the right side 3 11 65 row outputs from the left and right sides 33 row outputs from the right side DUTY (Multiplexing duty ratio) Bit No. 0 1 2 3 4 5 6 7 2 0 0 0 0 1 0 Multiplexing Duty Ratio 0 0 1/32 0 1 1/34 1 0 1/36 1 1 1/48 1 0 0 1/50 1 0 1 1/64 1 1 0 1/66 1 1 1 Testing mode Figure 31 Control Register HITACHI 590 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66108T 6. Mode Register (MDR) (Accessed with RS =1, register number =(100)2) the FFS bits are rewritten after initialization at poweron (if values other than the initial values are desired), the display memory will not preserve data; the display memory must be set again after a time period of to-lor longer. For determining teLl' refer to equation 1 (section 3.1). This register (figure 32), containing 3 invalid bits (D7 to DS) and S valid bits (D4 to DO), selects a system clock and type of LCD driving waveform. It must also be initialized after power-on since it determines overall HD661 08T operation like the FCR register.· If 07 06 05 04 01 00 OWS FFS (Frame frequency select) Bit - (2) 02 FFS I (1 ) 03 Frequency- No. 4 3 2 Division Ratio 0 1 2 3 4 5 6 7 0 0 0 () 1 1 1 1 0 0 1 1 () () 1 1 0 1 0 1 0 1 0 1 1 1/2 1/3 1/4 1/6 1/8 2 OWS (LCO driving waveform select) No. 0 1 2 3 Bit 1 0 0 0 0 1 1 0 1 1 Driving Waveform A-type waveform B-type waveform C-type waveform Figure 32 Mode Register HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 591 HD66108T 7. C Select Register (CSR) (Accessed with RS= 1, register numbe.- (101)2)· = This register (figure 33) contains 2 invalid bits (07 07 06 05 04 03 02 01 andD6) and 5 valid bits (05 to DO). It controls C-type waveforms and is activated only whenMDR register's OWS bits are set for this type of wavefonn. DO (1) EOR (B-type waveform M signal ® no. of counting lines onIoff) - 1: EOR function on - 0: EOR function off (2) CLN (No. of counting lines in C-type waveform) 1 to 31 should be set in these bits; 0 must not be set. Figure 33 C Select Register HITACHI 592 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300 HD66108T Reset Function The RESET pin starts the HD66108T after poweron. A RESET signal must be input via this pin for at least 20 fls to prevent system failure due to excessive current created after power-on. Figure 34 shows the reset definition. or register bits except for the address register's STBY bit and the X and Y address registers, which are reset to O's by the signal. Table 8 shows the reset status of registers. (3) (1) Reset Status of Pins (2) Status after Reset Table 7 shows the reset status of output pins. The pins return to normal operation after reset. The display memory does not preserve data which has been written to it before reset; it must be set again after reset. Reset Status of Registers A RESET signal terminates the standby mode. The RESET signal has no effect on registers Table 7 Reset Status of Pins Pin Status OSC2 Outputs clock pulses or oscillates CO Outputs clock pulses CL1 Low (master chip) or high-impedance (slave chip) FLM Low (master chip) or high-impedance (slave chip) M Low (master chip) or high-impedance (slave chip) Xn(column output pins) V4 Xn' (Row output pins) V5 Table 8 Reset Status of Registers Register Status Address register Pre-reset status with the STBY bit reset to 0 X address register Reset to O's Y address register Reset to O's Control register Pre-reset status Mode register Pre-reset status C select register Pre-reset status Display memory Preserves no pre-reset data RESET /~ At reset 0.15 x Vee During reset (Reset status) / 0.15 x Vee After reset Figure 34 Reset Definition HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 593 HD66108T Precautionary Notes When Using the HD66108T (I) (2) (3) (4) (5) Install a O.l-~F bypass capacitor as close to the LSI as possible to reduce power supply impedance (V cc-GND and Vcc-VEE)' Do not leave input pins open since the HD66I08T is a CMOS LSI; refer to "Pin Functions" on how to deal with each pin. When using the internal oscillation clock, attach an oscillation resistor as close to the LSI as possible to reduce coupling capacitance. Make sure to input the reset signal at poweron so that internal units operate as specified. Maintain the LCD driving power at Vccduring standby state so that DC is not applied to an LCD, in which Xn pins are fixed at V4 or V5 level. (2) (3) Programming Restrictions (I) address is not incremented until 0.5-clock time has passed. If an X or Y address is read during this time period, non-updated data will be read. (The addresses are incremented even in this case.) In addition, the address increment direction should not be changed during this time since it will cause malfunctions. Although the maximum output rows is 33 when 33-row-output mode from the right side is specified, any multiplexing duty ratio can be specified. Therefore, row output data sufficient to fill the specified duty must be input in the Y direction. Figure 35 shows how to set row data in the case of 1/34 multiplexing duty ratio. In this case, Os must be set in Y33 since data for the 34th row (Y33) are not output. Do not set the C select register's CLN bits to 0 for the M signal of C-type waveform. After busy time is terminated, an X or Y X132 X131 X133 X164 X163 r1- YO 0 0 __________ Y1 Y2 Y3 0 0 __________ ~ ~ ~ 0 0 __________ ~ ~ 0 0 __________ ~..Q. 1 1 1 I 1 1 +-1--11 -+1 __________ \-::-1-,:- Y30 Y31 Y32 Y33 Display data area o o 0 0 0 ----------COO ----------COO 1 1 0 o 0 ---------- roo_ - - - - - - - - - - 1--- All O's Row data area Figure 35 How to Set Row Data for 33·Row Output from the Right Side HITACHI 594 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 HD66108T Absolute Maximum Ratings Item Symbol Ratings Unit Power Supply Voltage (1) Vee 1 to V ee 3 -0.3 to +7.0 V Power Supply Voltage (2) Vee - VEE -0.3 to +16.5 V Input Voltage V ln -0.3 to Operating Temperature Top -20 to + 75 Storage Temperature TBto -20 to +85 vee + 0.3 V °e ·e Notes: 1. Permanent LSI damage may occur if the maximum ratings are exceeded. Normal operation should be under recommended operating conditions (Vee = 2.7 to 6.0 V, GND = 0 V, Ta = -20 to + 7S0C). If these conditions are exceeded, LSI malfunctions could occur. 2. Power supply voltages are referenced to GND = 0 V. Power supply voltage (2) indicates the difference between Vee and VEE. HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 595 HD66108T Electrical Characteristics DC Characteristics (1) (Vee =5V±20%,GND = 0 V, VCC - VEE = 6.0 to 15 V, Ta =-20 to+75°C, unless otherwise noted) Item Symbol Min Input High Voltage Input Low Voltage Output High VOltage OSC1 V..1 0.8xVcc MIS. CL1. FLM. M. TEST1. TEST2 V~ 0.7 x Vcc Typ Max Unit - Vcc +0.3 V Vcc +0.3 V - Teet Conditions Notea Vcc .. 5V±10% 5 V Vcc .. 5V±10% 6 V -1011 ,"0.1 mA V -1011. 0.2 mA FiESE'F V..s O.85xVcc - Vcc +0.3 V The other inputs V..4 2.0 Vcc +0.3 V OSC1 V..1 -0.3 0.2 x Vcc V MIS. CL1. FLM. M. TEST1. TEST2 V..2 -0.3 0.3 x Vcc V RESET Va.3 -0.3 0.15xVcc V 0.8 The other inputs V..4 -0.3 CO. CL1. FLM. M VOH1 0.9xVcc DB7-D80 V~ 2.4 - 7 Vcc ·5V±10% Output Low Voltage CO. CL1. FLM. M V0I.1 0.1 xVcc V DB7-DBO V0I.2 0.4 V 101.-0.1 mA 101.=1.6 mA 8 Vcc ·5V±10% Input Leakage Current All except OB7-080. CL1. FLM.M TrI-8tate OB7-0BO. CL1. FLM. Leakage Current M I... -2.5 2.5 pA VIn-OtoVcc I. -10 10 pA VIn-OtoVcc -10 10 pA Vin-Vee to Vcc V Pins Leakage . Current V1. V3, V4, V6, VMHn,VMLn I... Current Consumption During display Icc1 400 pA External clock foac .. 500 kHz 1c02 1.0 mA Internal oscillation Rf.91 kQ During star\d:)y data 188 10 pA ON Resistance Xo-X164 between Vi and Xj f\w 10 kg V Pins Voltage Range IN 35 % Oscillating Frequency foac 585 kHz 315 450 1.2 ±ILO-SOpA Vcc - VI£ -10 V 3 4 Rf.91 kQ Notes: 1. When voltage applied to input pins is fixed to Vcc or to GNO and output pins have no load capacity. 2. When the LSI is not exposed to light and Ta. 0 to 4QOC wI\h the STBY bit - 1. If using external clock pulses. input pins must be fixed high or low. Exposing the LSI to light increases current consumptton. 3. ILO indicates \he current supplied to one measured pin. 4. AV - 0.35 x (Vcc - V1£). For levels V1. V2. and the voltage empioyed should fall between the Vcc and the IN and for levels V4. V5. and V6. the voltage employed should fall between the VI£ and the AV (figure 36). 5. V..3 (min). 0.7 x Vcc when used under conditions o\herthan Vcc .5v±10%. 6. V..3 (max) = 0.15 x Vcc when used underoonditions other \han VccOO 5 V±10%. 7. V~ (min) .; 0.9 x VCC HOII .. 0.1 mAl when usld under concIItIons other \han Vcc .. 5 V ±10%. 8. V01.2 (max) .. 0.1 x Vcc (101. .. 0.1 mAl when used under condI1ions other than Vcc • 5 V ±10'1'0. va. HITACHI 596 Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane. CA 94005-1819 • (415) 589-8300 HD66108T DC Characteristics (2) (Vee unless otherwise noted) =2.7 to 4.0 V, GND =0 V, Vcc - VEE =6.0 to 15 V, Ta =-20 to +75°C, Item Symbol Min Typ Max Unit Input High RESET VIH 1 0.85 x Vee - Vee + 0.3 V Voltage The other inputs VIH2 0.7 x Vee Vee + 0.3 V Input Low Voltage MIS, OSC1, CL1, FLM, TEST1, TEST2, M VI. 1 -0.3 0.3 x Vee V The other inputs V..2 -0.3 0.15 x Vee V Output High Voltage Vol 1 0.9 x Vee Output Low Voltage Vol1 Input Leakage Current All except OB7-0BO, CU, FLM, M Teat Conditions V -IOH - 5O I1A 0.1 x Vee V IOL =50 I1A Inl -2.5 2.5 pA V.. = Oto Vee Tri-State OB7-0BO,CL1,FLM, Leakage Current M ITSl -10 10 pA V.. = Oto Vee V Pins Leakage Current V1, V3, V4, V6, VMHn, VMLn IYl -10 10 pA V.. - VEE to Vee Current Consumption During display lee 1 260 pA External clock 'ose = 500 kHz' lee 2 700 pA Internal oscillation R'=75kn During standby state ISB 10 pA ON Resistance Xo-X164 between Vi and Xj RON 10 kG V Pins Voltage Range /lV 35 0/0 Oscillating Frequency 'osc 585 kHz 315 450 Notes 1,2 ±lw=50pA Vee -VEE -10V 3 4 Rf=75kn Notes: 1. When voltage applied to input pins is fixed to Vee or to GNO and output pins have no load capacity. Exposing the LSI to light increases current consumption. 2. When the LSI is not exposed to light and Ta =0 to 40°C with the STBY bit = 1. If using external clock pulses, input pins must be fixed high or low. 3. 110 indicates the current supplied to one measured pin. 4. /lV = 0.35 x (Vee - VEE)' For levels V1, V2, and V3, the voltage employed should 'all between the Vee and the /lV and for levels V4, V5, and V6, the voltage empioyed should 'all between the VEE and the /lV (figure 36) HITACHI Hitachi Ameri~a, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 597 II HD66108T Vcc----------------------~ tN V1, V2, V3 Levels tN V4, V5, va Levels Ve ----------------------~ Figure 36 Driver Output Waveform and Voltage Levels HITACHI 598 Hitachi America, ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66108T AC Characteristics (1) (Vee = 4.5 to 6.0 V, GND = 0 V, Ta = -20 to +75°C, unless otherwise noted) 1. CPU Bus Timing (figure 37) Item Symbol Min RD High-Level Pulse Width tWRH 190 RD Low-Level Pulse Width Max Unit ns tWRL 190 ns WR High-Level Pulse Width tWWH 190 ns WR Low-Level Pulse Width tWWL 190 ns WR-RD High-Level Pulse Width twwRH t AS 190 ns CS, RS Setup Time 0 ns CS, RS Hold Time tAH 0 ns Write Data Setup Time tosw 100 ns Write Data Hold Time tOHW 0 ns Read Data Output Delay Time tOOR Read Data Hold Time tOHR 20 External Clock Cycle Time External Clock High-Level Pulse Width tCYC t WCH 0.1 J.lS External Clock Low-Level Pulse Width t WCL 0.1 J.lS External Clock Rise and Fall time tr, If 150 0.25 5.0 20 ns Note ns Note J.lS ns Note: Measured by test circuit 1 (figure 39). 2. LCD Interface Timing (figure 38) Item MIS =0 MIS = 1 Notes: 1. 2. 3. 4. 5. Max Notes Symbol Min 1,4,5 Low-Level Pulse Width IwcH1 tWCL 1 35 35 1,4,5 FLM Delay Time tOFL 1 -2.0 +2.0 4,5 FLM Hold Time tHFL 1 -2.0 +2.0 4,5 M Output Delay Time tOM01 -2.0 +2.0 4,5 CL1 High-Level Pulse Width IwOH2 35 4,5 CL1 Low-Level Pulse Width IwOL2 11 x love 2,4,5 FLM Delay Time tOFL2 -2.0 1.5 x love 3,4,5 FLM Hold Time tHFL2 -2.0 +2.0 4,5 CL1 High-Level Pulse Width CL1 -2.0 4,5 M Delay Time +2.0 tOM I When Rose is 91 kn (Vcc = 4.0 to 6 V) or 75 kn (Vco = 2.0 to 4.0 V) and bits FFS are set for 1. When bits FFS are set for 1 or 2. The value is 19 x tcve in other cases. When bitgs FFS are set for 1 or 2. The value is 8.5 x love in other cases. Measured by test circuit 2 (figure 39). Units are IlS. HITACHI Hitachi America, Ltd .• 'Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819" (415) 589-8300 599 ---- - --- HD66108T AC Characteristics (2) (Vee =2.7 to 4.5 V, GND =0 V, Ta =-20 to +75°C, unless otherwise noted) 1. CPU Bus Timing (figure 37) Item Symbol Min RD High-Level Pulse Width tWRH 1.0 J,lS RD Low-Level Pulse Width tWRL 1.0 J,ls WR High-Level Pulse Width J,lS Max Unit tWWH 1.0 WR Low-Level Pulse Width twwL 1.0 J.lS WR-RD High-Level Pulse Width twwRH 1.0 J.lS CS, RS Setup Time J.lS tAS 0.5 CS, RS Hold Time tAH 0.1 J.lS Write Data Setup Time tosw 1.0 J,ls Write Data Hold Time tOHW 0 Read Data Output Delay Time tOOR Read Data Hold TIme tOHR J,lS 0.5 20 External Clock Cycle Time tCYC 1.6 External Clock High-Level Pulse Width tWCH 0.7 External Clock Low-Level Pulse Width t WCl 0.7 External Clock Rise and Fall time tr, tf 5.0 Note J.lS ns Note J.lS J.lS J.lS 0.1 J.lS Note: Measured by test circuit 2 (figure 39). 2. LCD Interface Timing (figure 38) Item MIS =0 MIS = 1 Min Max Notes CL1 High-Level Pulse Width iwCH 1 35 1,4,5 CL1 Low-Level Pulse Width tWCL 1 35 1,4,5 FLM Delay TIme tOFL 1 -2.0 +2.0 4,5 FLM Hold Time tHFL 1 -2.0 +2.0 4,5 M Output Delay Time tOM01 -2.0 +2.0 4,5 CL1 High-Level Pulse Width 35 4,5 CL1 Low-Level Pulse Width iwcH2 tweL2 11xteve 2,4,5 tOFL2 -2.0 1.5 x tevc 3,4,5 tHFL2 -2.0 +2.0 4,5 tOMI -2.0 +2.0 4,5 FLM Delay Time FLM Hold Time M Delay Time Notes: 1. 2. 3. 4. 5. Symbol When Rose is 91 kn (Vcc = 4.0 to 6 V) or 75 kn (Vee = 2.7 to 4.0 V) and bits FFS are set for 1. When bits FFS are set for 1 or 2. The value is 19 x lcvc in other cases. When bits FFS are set for 1 or 2. The value is 8.5 x lcve in other cases. Measured by test circuit 2 (figure 39). Units are J.lS. HITACHI 600 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66108T VI~j V CS RS 1L r- twwt. tAS ~ V1HV1L r -' '- ...., r- tAH ~ ....; tAS ~ i-=- - ftwwH twwRH V1H --' V1L r ...,1- / 080-7 L ~RL ~RH tosw t tAH toHW ~ V1H ...., - V1L - ...., "- to DR I-Votr; '- VOL , r ~ II toHR ~ -r ~'- Figure 37 CPU Bus Timing CL1 FLM I _ _ _ _ _ _-J -------------~~ M Figure 38 LCD Interface Timing HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 601 HD66108T 5.0V C All diodes are 152074 ® RL =2.4kn R = 11kn C= 130pF Test Circuit 1 Test Circuit 2 Figure 39 Load Circuits HITACHI 602 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66108T TCP Sketches and Mounting The following shows TCP sketches and TCP mounting on a printed circuit board. These drawings do not restrict TCP shape. Potting resin Solder resist r--------+---~-""7 Pattern-formed surface t (-4i~.~-f---rA' Tape base TCP Rough Sketch Wiring-pattem-plated P tt' . Pattern-formed surface w_~~" )-' I ,,"" t -- Tapebase (Chip back-grinded surface) ~"~"~' Tape base A-A' Cross-Sectional View I Chip back-grinded surface Solder I ! o:so Tape base Tape base ( i PC board Pattern-formed surface TCP Mounting on PC Board HITACHI HitachiAmerica, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 603 HD66840F---- For Maintenance Only For new designs please see data sheet for H 06684 tF LCD Video Interface Controller (LVIC) Description • The HD66840F LVIC interface controller converts the standard video signals R, G, B for CRT display into LCD data. It enables a CRT display system to be replaced by an LCD system without any changes. It also enables the software originally intended for CRT display to control the LCD. Pin Arrangement Since the LVIC can control TFT-type LCDs in addition to the current TN-type LCD, it can support color display as well as monochrome display. It can program screen size and can control a large-panel LCD of 720 dots x 512 dots (max). 100-pin plastic OFP (FP-l00A) lm;AOIXDOT Al/YLO A2/YLl A3/YL2 DO/FO • • • • • • • • • • • Converts video R, G, B signals for CRT display into LCD data: -Monochrome display data -8-level gray scale display data -8-color display data Can select LVIC control method: -Pin programming method -Internal register programming method (either with MPU or ROM) Can program screen size: -200, 350, 400, 480, 512, or 540 dots (lines) in height and 640, or 720 dots (80, or 90 characters) in width by pin programming method --4-1024 dots (lines) in height and 324048 dots (4-506 characters) in width by internal register programming method Can regene~ate the display timing signal from HSYNC and VSYNC Internal PLL circuit can generate the dot clock (external charge pump, low pass filter (LPF), and voltage-controlled oscillator (VCO) required) Can control both TN-type LCD and TFTtype LCD Maximum operating frequency: 25 MHz (dot clock for CRT display) LCD driver interface: 4-, 8-, or 12-bit (4 bits each for R, G, B) parallel data transfer Recommended LCD drivers: HD61104 (column) and HD61105 (common), HD66204 (column) and HD66205 (common), HD66106 and HD66107T (column/ common) CMOS 1.3 ,urn process Single power supply: +5 V ± 10 % 19 3 78 17 76 DOTE PMODl PMODO LDOTCK V cc 3 01/Fl DZ/F2 74 D3!F3 73 CL4 CL3 eL2 GND2 72 ell MAO Features 1 §g:m:;;:gg:;:;:~a;~g:::;;:ll~;:\:;::;:;;;8D 15 71 FLM MAl MA2 " 70 M 69 RD/LUO MA3 13 68 Rl/LUl '4 67 R2!LU2 MA4 MA5 MA6 MA7 MAS MA9 MAlO MAll MA12 GND3 MA13 MA14 10 15 66 R3/lU3 ,e " 65 64 GND6 GO/LOO 63 GliLDl ,8 6< G2!LD2 20 61 G3!LD3 21 60 n 59 80 B1 n 58 82 24 57 B3 19 25 56 MA15 26 Meso 55 B07 Bo6 17 54 53 BD5 BD4 52 BD3 51 BD2 MCSl 'M'WE Vcc2 2B 29 30 ;;; ~ ~ ;; ~ ~ :;; ~ ~ 'f ;; ~ ':j ~ '!i '!i ;; ~ ~ :;: II O-(~M.m.~~O-NM.~~~O_~ 00000000000000000000 ~~~~~~z~~~~~~~~~~mmz ~ ~ Ordering Information Dot clock Type No. (MHz) HD66840F 25 MHz Package 100-pin Plastic QFP (FP-100Al HITACHI 604 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66840F Pin Description Table 1 describes the pins. Table 1 Pin Description Symbol Pin Number Pin Name Vcc1-Vec3 96, 30, 76 Vee 1 , Vee 2, Vee 3 GND1-GND6 88,9,23, 37,50,65 Ground 1-6 R, G, 8 1 91,92,93 Red, green, blue serial data HSYNC 89 Horizontal synchronization VSYNC 90 Vertical synchronization DISPTMG2 95 Display timing DOTCLK 94 Dot clock I RO-R3 3 LUO-LU3 4 69-66 69-66 LCD red data 0-3 LCD up panel data 0-3 0 0 GO-G3 3 ,5 LDO-LD34 ,5 64-61 64-61 LCD green data 0-3 LCD down panel data 0-3 . 0 0 80-83 3 ,6 60-57 LCD blue data 0-3 0 CL1 72 LCD data line clock I/O CL2 73 LCD data shift clock CL3 7 74 Y-driver shift clock 1 0 0 0 CL4 7 75 V-driver shift clock 2 0 FLM 71 First line marker M 70 LCD driving signal alternation 0 0 LDOTCK 77 LCD dot clock I 27,28 Memory chip select 0, 1 0 MWE9 29 Memory write enable 0 MAO-MA159 10-22, 24-26 Memory address 0-1 5 0 RDO-RD79 31-36, 38-39 Memory red data 0-7 I/O GDO-GD79, 10 40-47 Memory green data 0-7 I/O 800-807 9 ,10 48,49 51-56 Memory blue data 0-7 I/O MCSO, MCS1 8 HITACHI Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819. (415) 589-8300 605 HD66840F Table 1 Pin Description (cont) Symbol PMODO, PMOD1 DOTE SPS DMO-DM3 Pin Number Pin Name 78, 79 Program mode 0, 1 80 Dot clock edge change 81 Synchronization polarity select 82-85 Display mode 0-3 CS (MPU programming)11 MSO (pin programming)" 98 98 Chip select Memory select 0 WR (MPU programming)",'2 MS1 (pin programming)" 99 99 Write Memory select 1 Read Address 0 X-dot RD (MPU programming)'2 AO (ROM programming) XDOT (pin programming) I/O I o I RS (MPU programming)" ADJ (pin programming)" 100 100 Register select Adjust 00-03 (MPU programming) 00-03 (ROM programming) FO-F3 (pin programming) 5-8 5-8 5-8 Data 0-3 Data 0-3 Fine adjust 0-3 A1-A3 (ROM programming)'3 VLO-VL2 (pin programming)'3 2-4 2-4 Address 1-3 V-line 0-2 RES'4 97 Reset CD 86 Charge down 0 CU 87 Charge up 0 I/O I I o I Notes: 1. When CRT display data is monochrome, G and B pins should be fixed low. 2. Fix high or low when regenerating the display timing signal internally. 3. For 8-color display modes. 4. For monochrome and 8-level gray scale display modes. 5. Leave disconnected in 4-bit/single screen data transfer modes. 6. Leave disconnected in monochrome and 8-level gray scale display modes. 7. Leave disconnected when controlling TN-type LCD. 8. Leave disconnected when using no buffer memories. 9. Leave disconnected when using no buffer memories. 10. In monochrome display modes, the LVIC writes the OR of R, G, B signals into R-plane RAMs. Thus, no RAMs are required for G and B planes in these modes. Pull up these pins with 20-kO resistance. If G and B plane RAMs are connected in monochrome display modes, the LVIC writes G and B signals into each RAM. However, it does not affect the display or the contents of R-plane RAM whether G- and B-plane RAMs are connected or not. 11. Fix high or low when controlling the LVIC by ROM programming method. 12. WR and RD must not be low at the same time. 13. Fix high or low when controlling the LVIC by MPU programming method. 14. Make sure to input RES signal after power-on. HITACHI 606 Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 HD66840F Power Supply Buffer Memory Interface Vccl-Vcc3: Connect Vccl-Vcc3 with +5 V. MCSO, MCS1: MCSO and MCSl output the buffer memory chip select signal. GNDI-GND6: Ground GNDl-GND6. CRT Display Interface MWE: MWE outputs the write enable signal of buffer memories. R, G, B: Input CRT display R, G, B signals on MAO-MAI5: MAO-MA15 output buffer R, G and B respectively. memory addresses. HSYNC: Input the CRT horizontal synchronization on HSYNC. RDO-RD7: RDO-RD7 transfer data between R data buffer memory and the LVIC. VSYNC: Input the CRT vertical synchronization on VSYNC. GDO-GD7: GDO-GD7 transfer data between DISPTMG: Input the display timing signal, which announces the horizontal or vertical display period, on DISPTMG. BDO-BD7: BDO-BD7 transfer data between B data buffer memory and the LVIC. G data buffer memory and the LVIC. Mode Setting DOTCLK: Input the dot clock for CRT display on DOTCLK. PMODO, PMODI: The PMODO-PMODl input signals select a programming method (table LCD Interface 6). RO-R3:' RO-R3 output R data for the LCD. DOTE: The DOTE input signal switches the LUO-LU3: LUO-LU3 output LCD up panel data. timing of the data latch. The LVIC latches R, G, B signal at the falling edge of DOTCLK when DOTE is high, and at the rising edge when low. GO-G3: GO-G3 output G data for the LCD. SPS: The SPS input signal selects the polarity LDO-LD3: LDO-LD3 output LCD down panel data. of VSYNC. (The polarity of HSYNC is fixed.) VSYNC is high active when SPS is high, and low active when low. BO-B3: BO-B3 output B data for the LCD. CLI: CLl outputs the line select clock for LCD DMO-DM3: The DMO-DM3 input signals select a display mode (table 8). data. CL2: CL2 outputs the shift clock for LCD data. MSO-MSI: The MSO-MSl input signals select the kind of buffer memories (table 2). XDOT: The XDOT input signal specifies the CL3: CL3 outputs the line select and shift clock when a Y-driver is set on one side of an LCD screen (see "LCD System Configuration"). CL4: CL40utputs the line select and shift clock when Y-drivers are set on both sides of an LCD screen (see "LCD System Configuration"). FLM: FLM outputs the first line marker for a Y-driver. M: The M output signal converts the LCD drive signal to AC. LDOTCK: LDOTCK outputs the LCD dot clock. number of horizontal displayed characters. The number is 90 when XDOT is high, and 80 when low. YLO-YL2: The YLO-YL2 input signals specify the number of vertical displayed lines (table 3). ADJ: The ADJ input signal determines whether FO-F3 pins adjust the number of vertical displayed lines or the display timing signal. FO-F3 pins adjust the display timing signal when ADJ is high, and adjust the number of vertical displayed lines when low. FO-F3: FO-F3 input data for adjusting th~ number of vertical displayed lines (table 4), or the display timing signal (see MFiI1e HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 607 I HD66840F DO·D3: 00-03 transfer internal register data between the MPU and LVrC. Adjustment of Display Timing Signal"). MPU Interface RES: RES inputs the external reset signal. CS: The MPU selects the LVrC when CS is low. WR: The MPU inputs the WR write signal to write data into internal registers of the LVIC. The MPU can write data when WR is low and cannot write data when high. RD: The MPU inputs the RD read signal to read data from internal registers of the LVIC. The MPU can read data when RO is low and cannot read data when high. RS: The MPU inputs the RS signal together with CS to select internal registers. The MPU selects data registers (RO-R15) when RS is high and CS is low, and selects the address register (AR) when RS is low and CS is low. Table 2 Memory Type and MS1, MBO Pins MS1 MSO Memory Type 0 0 0 1 0 No memory 8-kbytes memory 32-kbytes memory 64-kbytes memory ROM Interface AO-A3: AO-A3 output address 0 to address 3 to an external ROM. DO·D3: 00-03 input data from an external ROM to internal registers. PLL Circuit Interface CD: CD outputs the charge down signal to an external charge pump. CU: CU outputs the charge up signal to an external charge pump. Table 4 Fine Adjustment of Vertical Displayed Lines F3 F2 F1 FO Number Adjusted 0 0 0 0 0 0 0 0 0 1 0 ±O + 1 +2 0 + 14 + 15 Table 3 Number of Vertical Displayed Lines and YLO· YL2 Pins YL2 YL1 YLO Number of Vertical played Lines 0 0 0 0 0 0 0 1 0 1 0 1 0 350 400 480 512 540 Prohibited 1 0 0 of Dis· 200 HITACHI 608 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 Lines - I :x: s= n 2: ~ CD :::!. ~ ~ 2: · ~ o o t t I I HSYNC VSYNC OISPTMG -+-+-...... J ~~ en C" ; -'" ~ ~ o ~ ~ <0 • ~ ~ 8l <0 Write address counter l Timing clock r OOTCLK DOTE 1 CRT display/ 1 ' - - , R +--Ibuffermemorylc::::;G - f - - -..mterface B Vee GNO l I~ Ie;- ~~ Read counter (Horizontal. vertical counter) J-r rl IF IU ~~ f- 8 .-~ ~ IJ I - ~ ~ === ,1--76 ~ ~ ;g Read address counter 2 ~ • - - - - - - -- , : ~ li?: is T I 8. g. ¥- 1 .. -< I h ,..........._ - . . . , I I '" CD ~ r------------ ---, I I I I ~,........;,- 'f ~_.CI)O :l nga g. r--:--v0 _ I ~P" §. ~."... '1 I 0 _ _.m O ag~ ~ £t~ ~ i ~~ {r{l I I ~ __ ~_:_~ __ J MO-OM3 --+- reo (") r .... cc r i:' ~~: ~ .. IT "- '" '" a. '" co -,---,...> MODO. PMOOI ES . ------- -- ''''''I I ~ ~ V- ~. ~ CD Address multiplexer MCS.MWEI generator _ rr=== I ~;,~ r;::=::d I generator r1 r 3 ,..-..1-.=---"'0£...,•• 1 t 1 ::;0 ~~ :::J CD Write counter (Horizontal. vertical counter) H OISPTMG ~ ~ · rl generator -tt--- RO-R3/LUO-LU3 } GO-G3/LOO-L03 4 ) BO-B3 13 ~~ ROO-RD7 GOO-G07 BOO-B07 Meso MAO-MA 12 MCSI MAI3-MAI5 MWE ~ g :r:o en en ex> ~ o 0> ~ ~ II HD66840F Registers Table 5 lists the internal registers and figure 1 illustrates the bit assignment to the registers. Register List Table 5 CS RS AdcIras Register 2 1 0 3 Reg. No. Program Unit Register Name Read/ Write Invalid 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 W RO Control register 1 R/W R1 Control register 2 R/W R2 Vertical displayed lines register (middle-order)2 Line R/W R3 Vertical displayed lines register (low-order)2 Line R/W R4 Vertical displayed lines register (high-order)2 Line R/W CL3 period register (high-order)3 Char 'R/W R5 CL3 period register (low-order)3 Char R/W R6 Horizontal displayed characters register (highorder)4 Char R/W R7 Horizontal displayed characters register (low-order) Char R/W R8 CL3 pulse width register Char R/W R9 Fine adjust register6 Dot R/W 0 R10 PLL frequency-dividing ratio register (high-order)6 R11 PLL frequency-dividing ratio register (low-order)6 0 R12 Vertical backporch register R13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 Address register' AR 0 0 0 0 Notes: 1. 2. 3. 4. 5. 6. 7. R/W R/W Line R/W Vertical backporch register (low-order)2. 7 Line R/W R14 Horizontal backporch register (high-order)2. 7 Dot R/W R15 Horizontal backporch register (low-order)2. 7 Dot R/W (high-order)2. 7 If you attempt to read data from the register with RS = 0, the bus is driven to highimpedance state and the output data is indefinite. (The specified value - 1) should be written into these registers. Valid only in 8-color display modes with horizontal stripes. The most significant bit is invalid in dual screen configuration modes. Valid only when the display timing signal is supplied externally. Valid only when generating the dot clock. Valid only when generating the display timing signal internally. H.ITACHI 610 Hitachi America, Ltd. 0 Hitachi Plaza 02000 Sierra Point Pkwy. 0Brisbane, CA 94005-1819 0(415) 589-8300 HD66840F Register No. Control register 1 Control register 2 Note: ~ indicates invalid bits. Attempting to read data from these register bits returns indefinite output data. Figure 1 Register Bit Assignment HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300 "'-"'------"-~- --. --- _.------_. 611 ..-.-----_. HD66840F System Configuration Figure 2 is the block diagram of a system in which the LVIC is used outside of a personal computer. circuit, using HSYNC as a basic clock. The frequency of the dot clock is specified by the PLL frequency-dividing ratio register (RiO, Rll). The LVIC converts the R, G, B serial data sent from the personal computer into parallel data and writes them into the buffer memories once. It reads out the data in turn and outputs them to LCD drivers to drive an LCD. Here the latch clock of the serial data, namely the dot clock (DOTCLK) is generated by a PLL DOTCLK r-1 CU R, G, B serial data Personal computer The user may also configure a system without VCO and LPF if supplying the dot clock externally and may configure a system without the MPU if the LVIC is controlled by the pin programming method. ~;~. II MPU 11 CD ~ 1 HSYNC VSYNC 0.--1L-;----CD1 LVIC U Buffer memory r I Simultaneous LCD and CRT display is possible I VCO = Voltage-controlled oscillator LPF = Lowpass filter Figure 2 System Block Diagram (MPU Programming Method, Regenerates DOTCLK) HITACHI 612 Hitachi America, Ltd.· Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 HD66840F Functional Description Programming Method The user may select one of two methods to control the LVle functions: by pin programming method or by internal registers (internal register programming method). The internal register programming method can be divided into the MPU programming method and the ROM programming method. The MPU writes data into internal registers in the MPU programming method and ROM writes the data in the ROM programming method. Table 6 lists the relation between programming method and pins. Table 6 Pin Programming Method: LVle mode setting pins control functions in the pin programming method. Internal Register Programming Method: In the internal register programming method, an MPU or ROM writes data into internal registers to control functions. Figure 3 illustrates the connections of MPU or ROM and the LVle. Figure 3 (1) is an example of using a 4-bit microprocessor, but since the LVle's MPU bus is compatible with the 4-MHz 80family controller bus, it can also be connected directly with the bus of host MPU. Programming Method Selection Pins PMOD1 PMDDO Programming Method o o o Pin programming Internal register With MPU Programming With ROM ------- o Prohibited (Notel Note: This combination is for a test mode and disables display. 4-bit MPU BO B1 B2 B3 ROM .CS RS WR RO 00-03 AO-A3 /4 '" 00-03 4 '" 00-03 LVIC " 4 AO-A3 LVIC (1) Connection of MPU and LVIC Figure 3 . AO-A3 (2) Connection of ROM and LVIC Connection of MPU or ROM and LVle HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 613 HD66840F Screen Size Screen size can be programmed either by pins or internal registers. In the pin programming method, the user may select either 640 dots or 720 dots (80 characters or 90 characters) as the number of horizontal displayed characters with the XDOT pin, and 200, 350, 400, 480, 512, or 540 lines as the number of vertical displayed lines with YL2-YLO pins. The number of vertical displayed lines can be adjusted with ADJ and F3-FO pins within +0 to +15 lines. -, the user may select any even number from 32 dOt$ to 4048 dots (= 4 characters up to 506 characters) with the horizontal displayed characters register (R6, R7), and any even number from 4 lines up to 1028 lines with the vertical displayed lines register (R2, R3 and the high-order two bits of R4). However, odd number of lines can also be selected when screen configuration is single and a Y-driver (scan driver) is set on one side of an LCD screen. Figure 4 illustrates the relation between an LCD screen and pins and internal registers controlling screen size. In the internal register programming method, Number of horizontal displayed characters Pin:XDOT Register: Horizontal displayed characters register (R6. R71 T Number of vertical displayed lines Pin: YL2-YLO. ADJ. F3-FO Register: Vertical displayd lines register (R2. R3. highorder 2 bits of R41 1 LCD screen L -____________________________ Figure 4 ------~ Relation between LCD Screen and Pins and Internal Registers HITACHI 614 Hitachi America, Ltd.·,Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005,1819· (415) 589-8300 HD66840F Memory Selection Nvd: number of vertical displayed lines The user may select 8-, 32-, or 64-kbyte SRAMs as buffer memory for the LVIC. Since the LVIC has a chip selector for these memories, no external decoder is required. The user selects the memory with pins MSl and MSO or with data bits MSl and MSO of the control register 2 (Rl). Table 7 lists the kinds of memories and pin address assignments. Memory capacity required depends on screen size and can be obtained with the following expression: Memory capacity (bytes) = Nhd x Nvd Nhd: number of horizontal displayed characters Table 7 For example, a screen of 640 x 200 dots requires 16-kbyte memory capacity since 80 characters x 200 lines is 16 kbytes. (8 dots compose a character.) Therefore, each plane needs two HM6264s, which have 8-kbyte memory capacity, in 8-level gray scale display modes. Connect MCSO with one of the memories of each plane and MCSl with the other (figure 5 (a)). When the screen size is 640 x 400 dots, 32kbyte memory capacity is required (figure 5 (b)). Therefore, each plane needs a HM62256, which have 32-kbyte memory capacity. Connect MCSO with CS of the memories here. Memories and Pin Address Assignment Pins orBits MS1 MSO Memory 0 0 No memory' 8-kbytes 0 0 32-kbytes 64-kbytes Note: Address Output Pins Chip Select Pins Address Assignment MAO-MA12 MCSO $0000-$1 FFF McsT $2000-$3FFF MA13 $4000-$5FFF MA14 $6000-$7FFF MA15 $8000-$9FFF MCSO $00000-$07 FFF MCS1 $08000-$OFFFF MA15 $10000-$17FFF MCSO $OOOOO-$OFFFF MCS1 $10000-$1 FFFF MAO-MA14 MAO-MA15 1 . There are some limitations when the user uses no memory. Refer to "User Precautions." HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 615 HD66840F. Ex. 640x200dot Ex. 640 x 400 dot CSHM6264 B CS HM6264G MCSO-....-~~CS R HM6264 MCS1 -.....-1.~-.tccs~=~1 HM6264 (a) 16-kbytes Memory system Figure 6 (b) 32-kbyte& Memory system . Relation between Display Screen Memories HITACHI 616 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 l HD66840F Display Modes The LVIC supports 16 display modes, depending on the state of the DM3-DMO pins. The display mode consists of display color, type of LCD data output, how to set LCD drivers around an LCD screen, how to arrange color data (= type of stripes), and how to output M signal (= type of alternating signal). Table 8 lists display modes. Table 8 Modes List Mode No. 1 2 3' 4 5' 6 7 8 91 10 1 111 121 13 1 141 15 1 16 1 LCD Data Output Display Data SCI'Mn LCD Driver DM3 DM2 DM1 DMO Color TI'IIIISfer Config. X-Driver2 Monochrome 4-bits Dual One side 0 0 0 0 1 Single 0 0 0 0 0 0 1 1 8-bits 0 0 0 0 0 Pins 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 8-level 4-bits Dual gray scale Single 8-bits 8-color 12-bits (4 bits for R,G,B each) Notes: 1. 2. 3. 4. Stripe4 Alternating Per frame Vertical Per line Both sides One side Both sides One side Both sides One side Both sides 0 Setting Y-Drivr One side Both sides One side Both sides One side Both sides One side Both sides Horizontal For TFT-type LCD Data output driver Scan driver Refer to "Display Color, 8-Color Display· I HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 617 HD66840F Display Color The LVIC converts R, G, B, the color data for CRT display, into the monochrome, 8-level gray scale, or 8-color display data. 1\IIonochrome Display (1\IIode 1 to 1\IIode 5): In monochrome modes 1-5, the LVIC displays two colors, namely black (= display on) and white (= display off). As shown in table 9, the OR of CRT display R, G, B data determines the display color. 8-Level Gray Scale Display (1\IIode 6 to lIIIode 8): In 8-level gray scale modes 6-8, the LVIC thins out data on certain lines to display an 8-level gray scale according to CRT display Table 9 1 0 0 0 1 0 0 1 1 0 0 0 0 Table 10 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 0 0 CRT Display Color LCD Color On/Off On On On On On On On Off Black Black Black Black Black Black Black White Color LCD Contrast High Black Strong Low White Weak White Yellow Cyan Green Magenta Red Blue Black 8-Level Gray Scale Display CRT Display Data R G B 0 0 8-Color Display (1\IIode 9 to 1\IIode 16): In 8color modes 9-16, the LVIC displays 8 colors with red (R), green (G), and blue (B) filters on liquid crystal cells. The eight colors are the same as those provided by CRT display. As illustrated in figure 5, 8-color display has of two stripe modes: horizontal stripe mode and vertical stripe mode. In the former mode, the LVIC arranges R. G, B data horizontally, with horizontal filters. In the latter mode, the LVIC arranges R, G, B data vertically, with vertical filters. Three cells express a dot in' both modes. 1\IIonochrome Display CRT Display Data R G B 1 color (luminosity). Table 10 shows the relation between CRT display color (luminosity) and LCD color (contrast). 0 1 0 1 0 CRT Color White Yellow Cyan Green Magenta Red Blue Black HITACHI 618 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66840F X-driver 1 dot ~ ilUU f---r'-- I I >-~ ~ I :---- r I R filter B filter I I I I I G I B I I I I I HH.....-- -- - - - - ------ G filter I I I X-driver 1 dot R R II I I I I Horizontal Stripe Figure 6 G B LBfilter G filter R filter Vertical Stripe Stripe Modes in 8-Color Display HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 619 HD66840F • LCD System Configuration How to set LCD drivers around LCD screen: -X-driver: On one side or on both sides' - Y-driver: On one side or on both sides The LVIC supports the following system configurations for LCD: • Figure 7 illustrates these system configurations by mode. Types of LCD data output: -Data transfer: 4-bit, a-bit, or 12-bits (4 bits for R, G, Beach) -Screen configuration: Single or dual 4-bit Data 4-,8-, 12-bit .1 ">I - I- - ~CD lup ~an~1 1 1 1 - foo ~ > 1 LCD down panel I I X-driver .-- I--t-I-I-r 1-1- 1 Data LL L L ~I'1: Up panel X-driver I I LCD screen - .. '1: .. i' I >- 1 1 1 - f f t t _I Down panel X-driver Data 4-bit System Configuration for Modes 2,4,7,8,9, and 13 (4-, 8-, or 12-Bits Data Transfer, Single Screen, X-Driver and V-Driver on One Side Each) System Configuration for Mode 1 and Mode 6 (4Bits Data Transfer, Dual Screen, X-Driver and VDriver on One Side Each) (Note) 4-,8-, 12-bit Data 12-bit Data X driver f .~ ~ ~ Up X-driver - ---. ~ ~ '1: ">-I LCD screen '1: .l: -- LCD screen ">-I .2' I - ..... II: .1 Data Down X-driver 12-bit System Configuration for Modes 3,5, 10, and 14 (4-,8-, or 12-Bits Data Transfer, Single Screen, XDriver on One Side and V-Driver on Both Sides) Note: System Configuration for Mode 11 and Mode 15 (12-Bits Data Transfer, Single Screen, X-Driver on Both Sides and V-Driver on One Side) Although there are two X-drivers, the X-driver is considered to be set on one side, not on both sides, because the LCD up panel and down panel are each regarded as one screen. Figure 7 System Configurations by Mode HITACHI 620 Hitachi America, Ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300 HD66840F· Calculation of LDOTCK fF: FLM frequency LDOTCK frequency fL is calculated from the following expression: Here fL must hold the following relation, where fo is frequency of dot clock for CRT display (= DOTCLK). fL = (Nhd + 6) x 8 x Nvd x fp Nhd: number of horizontal characters displayed on LCD Nvd: number of virtical displayed lines on LCD fL fL < fo x 15/16 or = fo (The LDOTCK phase must be inverse of the DOTCLK phase in this case) 12 -b·t I Data Up X-driver f - • • .~ ~CD scr~en "t:I 1 >- .~ -~ "t:I 1 >- ~ .E "-- - .S!' IX: J Data r-- I Down X-driver 12-bit System Configuration for Mode 12 and Mode 16 (12-Bit Data Transfer, Single Screen, X-Driver and V-Driver on Both Sides Each) Notes: 1. 2. X-drivers on both sides: Data output wires run from up and down X-drivers alternately, which widens the interval between wires to twice that for an X-driver an one side (figure 8). V-drivers on both sides: Line select signal output wires run from right and left Vdrivers alternately, which widens the interval between wires to twice that for Vdriver on one side (figure 9). Figure 7 System Configurations by Mode (cont) Up X-driver ~_ _ _ Data output wires Signal output wires Data Down X-driver Figure 8 X-Drivers on Both Sides Figure 9 V-Drivers on Both Sides HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point PkWy.· Brisbane, CA 94005-1819· (415) 589-8300 621 HD66840F Display Timing Signal Generation CRT display data is classified in1;O display period data and retrace period data. Only display period data is necessary for LCD. Therefore, the LVIC needs a signal announcing whether the CRT display data transferred is for the display period or not. This signal is the display timing signal. The LVIC can generate the display timing signal from HSYNC and VSYNC. Figure 10 illustrates the relation between HSYNC, VSYNC, the display timing signal (DISPTMG), and display data. Y lines and X dots in the figure are specified by the vertical backporch register (R12, R13) and the horizontal backporch register (R14, R15) respectively. __ _________________________________________________ v~Cn ~ 1--1 Y tines (= Vertical backporch) HSYNC ~~----------~n. . ----------------'nL..-----_----x dots (= Horizontal backporCh) ---.IJ o-----____-tI... DISPTM-G-----1I... Display period (= No. of horizontal displayed characters) Retrace period ~!:~--.F---:-------~I.------~I.------~----------:~I.------~I.-::-.:--=.:--:: . Figure 10 Valid Invalid Valid Invalill Valid Relation between HSYNC. VSYNC. DISPTMG. and Di8play Data HITACHI 622 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66840F Dot Clock Generation The dot clock, which is a data latch clock, is not a standard video signal and does not appear from the CRT display plug. Thus it is necessary to generate the dot clock. The LVIC has a programmable counter .and a phase comparator which are parts of a PLL circuit, and ~ generate the dot clock from HSYNC if a charge pump, a lowpass filter (LPF), and a voltage-controlled oscillator (VCO) are externally attached. Figure 11 is a block diagram of a PLL circuit. A PLL (phase-locked loop) circuit is a feedback controller regenerating a clock whose frequency and phase are the same as those of a basic clock. The basic clock is HSYNC here. At power-on, VCO outputs to the programmable counter a signal whose frequency depends on the voltage at the time. The counter divides the frequency of the signal according to the value in the PLL frequencydividing ratio register (Rl0, Rl1) and outputs it to the phase comparator. This is the frequency-divided clock. The comparator compares the ed~ of the clock and HSYNC and outputs CU or CD signal to the charge pump and LPF according to the result. The comparator outputs CU when the frequency of the clock is lower than that of HSYNC or when the phase of the clock is behind that of HSYNC, while it outputs CD in the contrary case. The charge pump and LPF apply voltage to the VCO according to CU or CD signal. This operation is repeated until the phase and the frequency of the frequency-divided clock coincide with those of HSYNC, making it a stable dot clock. ! HSYNC co Inside LVIC ~ Phase comparator CD Charge pump LPF Frequencydivided clock Written value in PLL frequency-dividing ratio register (R10, R11) q Programmable counter VCO Timing clock generator DOTCLK Figure 11 PLL Circuit Block Diagram HITACHI Hitachi America, Ltd. 0Hitachi Plaza 02000 Sierra Point Pkwy. 0Brisbane, CA 94005-1819 0(415) 589-8300 623 HD66840F Doubled-In-Height Display Doubled-in-height display doubles characters and pictures in height as illustrated in figure 12. In TN-type LCD modes (= modes 1, 2, 4, 6, 7, and 8), CL3 frequency is twice as high as CLl frequency (figure 13). As a result, using CL3 in~tead of CLl as a shift clock (figure 14) enables two lines to be selected while an Xdriver (data output driver) is outputting the same data, realizing doubled-in height dis- , play. However, the following procedures are necessary in this display since multiplexing duty ratio becomes twice as great as the value specified as the number of vertical displayed lines. 1. Halve the frequency of the LCD dot clock (= LDOTCK) 2. Halve the number of vertical displayed lines This function is provided only for TN-type LCD. •• II I I I :.: Itt" .~ ~ •• •• •••••••• •••••••• •• •• •• •• • • •• •• •• •••••• I• I• I I..l .. r.-, . .• I I I :.J • Normal display Doubled-in-height display Figure 12 Doubled-In-Height Display Example HITACHI 624 Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 HD66840F r r. CL1 CL3 ~ X-driver output )l r r. / r r r )( }. \ V-driver \ Figure 13 Relation between CL1 aDd CL3 In Modes 1. 2. 4, 6. 7. aDd 8 4 (or 8) bits LUO-LU3. LoQ-Lo3 ---"""_'----.....- - - - - - - - - - - - - , CL1:============~~_r_~x~~riV~e~~(d~ats::ou~tP~u:t~dr~iw:~~)~-J C~ • 11 M ~ r--- CL3 FLM M LCD Panel Figure 14 ConnectloD for Doubled-In-Height Display HITACHI Hita~hi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 625 HD66840F Display Timing Slgnfll Fine Adlusment When the display timing signal is supplied externally, a phase .shift .might appear between CRT data and the display timing signal. This is because each signal has its own peculiar lag. The LVIC can adjust the display timing signal with the FO-F3 pins or the fine adjust register (R9) to correct this phase shift. Table 11 shows the relation between F3-FO pins, data bit 3 to data bit 0 of the fine adjust register, and fine adjustment. Concerning the polarity of the number of dots adjusted, indicates advancing the phase of the display timing signal and + iDdicates delaying it. F3 Table 11 Pin: R9 Bit: Note: pin or data bit 3 of R9 selects the polarity. The adjustment reference point is the display start position. Figure .15 shows examples of adjusting the display timing signal. Since the signal is two dots ahead of the display start position in case (1), (F3, F2, Fl, FO) or (data bits 3, 2, 1, 0 of R9) should be set to (1, 0, 1, 0) to delay the signal for two dots. Since the signal is two dots behind the display start position in case (2), they should be set to (0,0, 1, 0) to advance the signal for. two dots. When there is no need to adjust the signal, settings of either (0, 0, 0, 0) or (1, 0, 0, 0) will do. Pins, Data Bits of R9, and Fine Adlustment F3 3 0 F2 F1 1 2 0 0 0 0 1 1 0 0 1 0 0 FO 0 0 Number of Dots AdjU8t8d 0 - 1 0 1 0 -6 -7 0 + 1 0 +6 +7 When adjusting the display timing signal with pins, set ADJ pin to 1 . HITACHI 626 Hitachi America, Ltd. • Hitachi Plaza. 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 HD66840F I+-- .Displav start position I CRT data I --- two dots advanced DISPTMG before adjustment , Displav Timing Adjust (F3. F2. F1. FO.)/ (Data bits 3. 2. 1.0 of R9) . ;----------------1 =(1.0.1.0) OISPTMG after adjustment (1) Delaying DISPTMG \ . - - DisplaV start position I CRT data two dots delayed DISPTMG before adjustment Displav Timing Adjust (F3. F2. F1. FO)/ (Data bits 3. 2. 1.0 of R9) = (0.0.1.0) DISPTMG _"""""_ _ _ _ _ _ _ _ _ _ _ _--' after adjustment (2) Advancing DISPTMG Figure 16 Adjustment of Display TlmlDg SlgDal HITACHI Hitachi America, Lid .• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 627 HD66840F Internal Registers The LVIC has an address register (AR) and. sixteen data registers (RO-R15). In order to specify one of the sixteen data registers, write its register address into the address. register. The MPU transfers data to the data register corresponding to the written address. All the registers are valid only when the LVIC is controlled by the internal register progranuning method and are invalid (don't care) when by the pin programming method. Control Register 1 (RO) Control register 1 (figure 17) is composed of four bits, including two invalid bits. Each of two valid bits has its own function. Reading from and writing into invalid bits are possible. However, these operations do not affect the LSI function. • timing signal -DSP = 0: LVIC does not generate the display timing signal (If DCK = 1, the display timing signal is generated in spite that DSP = 0) Address Register (AR) The address register (figure 16) is composed of four bits and specifies one data register out of sixteen. This register is selected by the MPU when RS pin is low and specifies any data register with the register address written by the MPU. DSP Bit -DSP = 1: LVIC generates the display • DCK Bit -DCK = 1: LVIC generates the dot clock -DCK = 0: LVIC does not generate the dot clock AR Data Bit Value Figure 16 Address Register RO Data Bit Function Figure 17 ~ 1 DSP I D~KJ Control Register 1 HITACHI 628 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA94005-1819· (415) 589-8300 HD66840F Control Register 2 (RO) Control register 2 (figure 18) is composed of four bits and has three functions. • MC Bit -MC = 1: M signal alternates per line -MC = 0: M signal alternates per frame • DON Bit -DON = 1: Display on -DON = 0: Display off • MSl and MSO Bits -Select the memory type (table 12) Vert1c:al Displayed Lines Register (R2, R3, High-Order 2 Bits of R4), CL3 Period Register (Low-order 2 Bits of R4, R6) The vertical displayed lines register (figure 19) is composed of ten bits (R2 + R3 + high- Table 12 MS' 0 0 order two bits of R4) and specifies the number of vertical displayed lines. This register can specify both even and odd numbers in modes for a Y-driver on one side and single screen configuration, but even numbers only in the other modes. The value to be written into this register is (Nvd - 1), where Nvd = number of vertical displayed lines. The CL3 period register is composed of six bits (low-order two bits of R4 + RS) and specifies the period of CL3 in 8-color display modes with horizontal stripes. Thus this register is invalid in the other modes. CL3 is a clock for the LVIC to output R, G, B data separately to LCD drivers. The value to be written into this register is (Nhd + 6) X 1/3 1, where Nhd number of horizontal displayed characters. When (Nhd + 6) is not divisible by 3, the quotient should be rounded up or rounded down. = Memory Type and Mal, MSO Memory Type No memory 8-kbytes 32-kbytes 64-kbytes MSO 0 1 0 Data Bit Function Figure 18 . R4 Data Bit Value Control Register 2 R2 ;-\/ 31 2 1 3 R3 _\L 1 2 1 1 10131 2 Nvd - 1 (Unit: Lines) J 1 1° Vertical Displayed lines Register Flgure19 R4 R6 \/\/ \ 11013121110 (Nhd + 6) x 1/3 -1 (Unit: Characters) Cl3 Period Register Vertical Displayed Lines Register and CL3 Period Register HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 629 HD66840F Horizontal Displayed Characters Register (R6. R7) CL3 Pulse Width Register (RS) The CL3 period'register (figure 22) is composed of four bits and specifies the high-level pulse width of CL3. When controlling TFTtype LCDs, each gate of the LCD has to hold data from the time a Y-driver' outputs the line select and shift signal to the time an X-driver the outputs next display data. Data must be held while CL3 is high. However, even when the LVIC is not controlling TFT-type LCDs, CL3 appears with the high-level pulse width specified by this register. The horizontal displayed characters register (figure 20) is composed of eight bits (R6 + R7) and specifies the number of horizontal displayed characters. This register can specify even numbers only. The most significant bit of R6 is invalid in the modes for dual screen configuration. When writing into this, register, shift (Nhd - 1) in the low-order direction for one bit to cut off the least significant bit. Figure 20 shows how to write a value into the register when Nhd = 90. R6 R7 / \/ \ Data Bit Value Horizontal Displayed Characters Register Figure 20 R7 R6 I I \/ / Data Bit Value I 3 I 2 I I 0 I 0 I I I 0 0 31 2 11 1 \ 1 1 1°j 1°1 O j r t Cut off L-I 90 - 1 = 89 Figure 21 0 0 0 How to Write The Number of Horizontal Displayed Characters R8 I I / Data Bit Value \ I I I-- TN-type,LCD modes: Npw '-- TFT-type LCD modes: Npw - ,5 (Unit: Characters) ,Npw = number of horizontal characters while CL3 is high Figure 22 CL3 Pulse Width Register HITACHI 630 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66840F Fine Adjust Register (R9) Rl1) and specifies the PLL frequency-dividing ratio for generating a dot clock by a PLL circuit. The value to be written into this register is determined by the ratio of the frequency of HSYNC to that of the dot clock which the user wants. This register is invalid when the dot clock is supplied externally and is valid only when the LVIC is controlled by the internal register programming method and the DCK bit of control register 1 (RO) is 1. The written value in this register (NPLL) is obtained with the following expression: The fine adjust register (figure 23) is composed of four bits and adjusts the externally supplied display timing signal to synchronize its phase with that of LCD data. The value to be written into this register is determined by the interval between the positive edge of the display timing signal and the display start position. For more details, refer to "Display Timing Signal Fine Adjustment." This register is invalid when the display timing signal is generated internally. NPLL =Ncht x 8 - 731 Ncht: total number of characters for CRT Ncht can be obtained as follows from the specifications of a CRT monitor: Ncht = 1/8 x (DOTCLK frequency)/ (HSYNC frequency) PLLFrequency-Dlviding Ratio Register (R10, Rl1) The PLL frequency-dividing ratio register (figure 24) is composed of eight bits (R10 + R9 / 1 1 Data Bit Value \ 1 3 1 2 1 1 1 0 1 1 1 1 I....... Absolute value of Nda (Unit: Dots) . {O: + (Advance the display timing signal) Selects polarity ... . . 1: - (Delay the display timing signal) Nda = number of dots adjusted Figure 23 Fine Adjust Register R10 R11 V / 1 1 Data Bit Value \ 3121 1 1013121 1 101 J \ 3 0 0 0 1 1 1 2 1 0 Frequency-Dividing Ratio HSYNC : Dot Clock 0 0 0 3 0 0 0 0 0 0 0 0 1 0 1 0 1 : 731 1 : 732 1 : 733 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 : 984 1 : 985 1 : 986 2 1 0 0 0 0 0 0 0 1 1 1 1 1 1 Figure 24 PLL Frequency-Dividing Ratio Register HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 631 HD66840F Vertical Backporch Register (RI2, R13) Horizontal Backporch Register (RI4, R15) The vertical backporch register (figure 25) is composed of eight bits (R12 + R13) and specifies the vertical backporch. The vertical backporch is the number of lines between the positive edge of VSYNC and that of the display timing signal (DISPTMG). For more details, refer to "Display Timing Signal Generation." This register is invalid when the display timing signal is supplied externally and is valid only in a system which controls the LVIC by the internal register programming method and where the DSP bit of control register 1 (RO) is 1. (If the DCK bit of control register 1 (RO) is 1, DISPTMG will always be regenerated and the register is enabled even when DSP = 0.) The horizontal backporch register (figure 26) is composed of eight bits (R14 + R15) and specifies the horizontal backporch. The horizontal backporch is the number of characters between the positive edge of HSYNC and that of the display timing signal (DISPTMG). For more details, refer to "Display Timing Signal Generation". This register is invalid when the display timing signal is supplied externally and is valid only in a system which controls the LVIC by the internal register programming method and where the DSP bit of control register 1 (RO) is 1. (If the DCK bit of control register 1 (RO) is 1, DISPTMG will always be generated and this register is enabled even when DSP = 0.) R12 / I Data Bit I Value R13 \/ I I \ 0 I I I L Ncvbp - 1 (Unit: Lines) Ncvbp = number of lines between the positive edge ofVSYNC and that of DISPTMG Figure 25 Vertical Backporch Register R14 I l / R15 \/ Data Bit Value I I I \ 0 I I L Nchbp x 8 - 1 (Unit: Dots) Nchbp = number of characters between the positive edge of HSYNC and that of DISPTMG Figure 26 Horizontal Backporch Register HITACHI 632 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 HD66840F Reset RES pin resets and starts the LVIC. Make 'sure to hold the reset signal low for at least 1 pS after power-on. Reset is defined as shown in figure 27. Fixed low: MAO-MA12, RO-R3, GO-G3, BOB3, CS, CLl, CL3, FLM. AO-A3. CU 5. Fixed high or low depending on the memory in use (table 13): MA13-MA15, MCSO State of Pins During Reset State of Registers During Reset RES basically does not control output pins and operates regardless of the other input pins. Output pins can be classified into the following five groups depending on their reset state. RES pin does not affect register contents. Therefore, registers can be both read and written by the MPU even during reset. Registers keep the contents they had before reset until they are rewritten. 1. 2. Memory Clear Function 3. Keeps state before reset: CL2 Driven to high-impedance state (fixed low when using no memory): RDO-RD7, GDO-GD7, BDO-BD7 Fixed high: MWE, CL4, M, CD, MCSl Table 13 4. After reset, the LVIC writes 0 in the memory area specified by MSELO and MSELl (table 7) regardless of R, G. B data. Memory Type and State of Pins During Reset Kind of Memorlee MA13 MA14 MA15 No memory Low Low High MeSO High 8-kbyte memory High High High Low 32-kbyte memory Low Low High Low 64-kbyte memory Low Low Low Low ~-~ At:::: r During reset (Reset stete) Figure 27 t- After reset Reset Definition HITACHI Hitachi America, Ltd.· Hitachi Plaza • 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 633 HD66840F User Precautions 1. There are the following limitations when the user uses no memory (MSELO = 0, MSELl = 1). • • The display modes for dual screen configuration (= mode 1 and mode 6) are disabled. . The LVIC cannot support the LCD systems with Y-drivers on both sides. Even if the user selects the mode for a system with Y-drivers on both sides (= mode 3, 5, 10, 12, 14, or 16), the operation of the LVIC is exactly the same as that in the mode for the system with a Y-driver on one side (= mode 2, 4, 9, 11, 13, or 15). 2. The LVIC might operate irregularly until the internal registers have been written after reset in the system which controls the LVIC by internal register programmingme$od. 3. Memory clear function might not work normally at power-on or after reset if MSELO and MSELl are not properly set to the value corresponding to the memories in use. 4. Since the LVIC is a CMOS LSI, input pins must not be left disconnected. Refer to table 1 concerning how to deal with each pin. Leave CL4 terminal disconnected iIi this case. Programming The values written in internal registers have the limits listed in table 14. The symbols in the Table 14 Limit on Values Written in Registers Function Screen Configuration CL3 Control DISPTMG Regeneration Without Buffer Memory Notes: 1. 2. 3. 4. 5. 6. 7. B. table are defined as shown in table 15 and figure 27. Limit Notea Applicabl. RlI9iBt11r. ~4~~~N~v~d~~~(N~~~b~p~+~N~cv~S~p~)~-~1~~~1~0~24~~=-__~=-__ R2, R3, R4, R6, R7 4 ~ Nhd .:ii (Nchbp x 1In + Nchsp) - 1 ~ 506 1, 8 R2, R3, R4, R6, 2, 8 (Nhd + 6) x n x Nvd XfF ~ fo :ii 30 MHz 71~~~N~p~w~~~(~N~hd~+~6~)~X_1~/~2~-~1_____________3~____ R4,R5, R6, R7. ~ Npw.:ii Nhd 4 ~ Npw :a Npc - 1 5 :a Nchbp ~256 6 R12, R13, R14, ~ N~bp ~ 256 6 7 4 :ii Nhd ~ Nchsp - 4 R2, R3, R4, R6. 4.:ii Nvd .:ii Ncvsp - 4 7 R7 R8 R15 R7 Nhd ~ 256 in dual screen configuration (= mode 1 and mode 6) fF:FLM frequency·, fo: frequency of CRT dot clock, fL: frequency of LCD dot clock for LCD fL < fo x 15/1'6, OrfL = fo ·In modes 1, 2, 4, 6, 7, and B In modes 3, 5, 9, 10, 11, and 12 (Npw = (value in RB) '+ 5) In modes 13,14,15, and 16 (Npw = (value in RB) + 5) Value in R14, R15 ~ (Nchsp x n + Nchbp) - Nhd x n - 2 Value in R12, R13 :ii (Ncvsp + Ncvbp) - Nvd - 2 Nht = Nchsp + Nchbp x 1/n, Nd = Ncvbp + Ncvsp (Nht = Nhd + 6, Nd = Nvd when using buffer memory) n: Horizontal character pitch (the number of horizontal dots in one character). HITACHI 634 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589·8300 HD66840F Table 15 Symbol Symbol Definition DefInition Nchd Number of horizontal displayed characters on CRT display Nchsp Number of characters between the positive edge of DISPTMG and that of HSYNC (= Horizontal sync position) Nchbp Number of dots between the positive edge of HSYNC and that of DISPTMG (= horizontal backporch) . Ncvbp Number of lines between the negative edge (positive edge when VSYNC is high in active state) of VSYNCand the first positive edge of DISPTMG (= vertical backporch) Ncvsp Number of lines between the first positive edge of DISPTMG and the next negative edge of VSYNC (= vertical sync position) Ncvd Number of vertical displayed lines on CRT display Nhd Number of horizontal displayed characters (on LCD) Npc Number of characters during CL3 period (= CL3 pulse cycle) Npw Number of characters while CL3 is high (= CL3 pulse width) Nht Total number of horizontal characters Nvd Number of vertical displayed lines (on LCD) HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 635 HD66840F I I DOTCLK DISPTMG LJLJLJL------JLJ1---..fL _______ ~ I ~ I I I" 1 HSYNG .1 Nchd 1 I 1 I" + - - - - - - - - - N C h s P - - - - - - - - o - f I••---Nchbp---oooll 1 I I VSYNC DISPTMG I 1 I JUlJUlL.."I---.!..:- - --Ir--------tfU1Jlfl-----1 ot., Ncvsp I 0, Ncvbp I" I I I I CL2 Cl1 I :" .1 Ncvd : :LflJIl-----Jl~I--------------~~ , ,rl--------------------+I------~ ' r - l~----------------:" Nhd .: Cl1 - , __________________________________ Cl3 --, I~. n ~ ~ ___ ----------------~, I t.-- Npw-+J I I I rl : "''''~-----Npc----'---~ol I , I ,~,,,~--------------Nht------------~.II FlM Cl1 I~ ____________________________ ~r_l~ ___ -fLJUl---------------I ," I Nvd---------...;°l I I Figure 28 Symbol Definition HITACHI 636 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66840F Absolute Maximum Ratings Symbol Ratings Unit Power supply voltage Vee - 0.3 to + 7.0 V Input voltage Vin - 0.3 to Vee + 0.3 V Operating temperature Topr - 20 to + 75 'C Storage temperature Tstg - 55 to + 125 ·C Item Notes: 1. 2. Permanent LSI damage may occur if maximum ratings are exceeded. Normal operation should be under recommended operating conditions (Vee =5.0 V ± 10%, GNO = 0 V, Ta = -20'C to +75·C). If these conditions are exceeded, it could affect reliability of the LSI. All voltages are referenced to GNO = 0 V. Electrical Characteristics DC Characteristics 1 (Vee = 5.0 V ± 10 %, GND = 0 V, Ta = - 20'C to + 75'C, unless otherwise noted) Item Input high voltage RES Symbol Min Max VIH Vee - 0.5 2.0 2.2 0.7 Vee Vee Vee Vee Vee -0.3 -0.3 -0.3 0.8 0.6 0.3 Vee TTL interface' TTL interface 4 CMOS interface' Input low voltage TTL interface', RES "Il TTL interfaces CMOS interface' Output high voltage TTL interface2 VOH CMOS interface 2 Output low voltage TTL interface2 VOL V V 10H = - 200 pA 10H = -200 pA 0.4 0.8 V 10l = 1.6 rnA IOl = 200 pA Input leakage current All inputs except I/O common pins 3 III -2.5 2.5 pA Three state (off-state) leakage current I/O common pins3 iTSl -10.0 10.0 pA 250 rnA Current consumption Notes: 1. 2. 3. 4. 5. Icc Teat Conditions + 0.3 V + 0.3 + 0.3 + 0.3 2.4 Vee - 0.8 CMOS interface2 Unit fooTelK = 25 MHz Output pins left disconnected TTL interface inputs: R, G, B, HSYNC, VSYNC, OISPTMG, ROO-R07, GOO-G07, BOOB07, 00-03, AO!RO/XOOT, RS/AOJ, CS/MSO CMOS interface inputs: OMO-OM3, DOTE, PMOOO, PM001, A1/YLO-A2/YL2 TTL interface outputs: AO/RO/XOOT, A1/YLO-A3/YL2, 00-03, ROO-R07, GOO~G07, BOO-B07, MAO-MA 15, MCSO, MCS1, MWE CMOS interface outputs: CU, CD, RO!LUO-R3/LU3, GO/LOO-G3/L03, BO-B3, M, FLM, CL1, CL2, CL3, CL4 I/O common pins: AO/RO/XOOT, A1/YLO-A3/YL2, 00-03, ROO-R07, GOO-G07, BOOB07 Inputs except I/O common pins: HSYNC, VSYNC, PMOOO, PM001, RS/AOJ, CS/MSO, WR/MS1, RES, DOTE, OMO-OM3, LOOTCK, OOTCLK, R, G, B, OISPTMG TTL interface: WR/MS1, LOOTCK, OOTCLK TTL interface: WR/MS1 HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 637 I HD66840F DC Characteristics 2 (Vee = 5.0 V ± 5 %, GND = 0 V, Ta = - 20·C to + 75·C, unless otherwise noted) Item Svmbol Min Max Unit Input high voltage RES VIH TTL interface', RES CMOS interface' Vee - 0.5 Vee + 0.3 V 2.0 Vee + 0.3 0.7 Vee Vee + 0.3 Input low voltage TTL interface' CMOS interface' VIL -0.3 -0.3 Output high voltage TTL interface 2 CMOS interface 2 VOH 2.4 Vee - 0.8 Output low voltage TTL interface 2 CMOS interface 2 VOL Input leakage current All inputs except I/O common pins 3 IlL Three state (off-state) leakage current I/O common pins 3 ITSl Current consumption Notes: 1. 2. 3. 0.8 0.3 Vee Test Conditions V V IOH = - 200 pA IOH = - 200 pA 0.4 0.8 V IOL IOL -2.5 2.5 Il A -10.0 10.0 Il A 250 mA lee = 1.6 mA = 200 IlA fooTeLK = 30 MHz Output pins left disconnected TIL interface inputs: R, G, B, HSYNC, VSYNC, OISPTMG, OOTCLK, LOOTCK, ROO-R07, GOO-G07, BOO-B07, 00-03, AO/RO/XOOT, RS/AOJ, CS/MSO, WR/MS1 CMOS interface inputs: OMO-OM3, OOTE, PMOOO, PM001, Al/YLO-A2/YL2 TIL interface outputs: AO/RO/XOOT, A1/YLO-A3/YL2, 00-03, ROO-R07, GOO-G07, BOO-B07, MAO-MA15, MCSO, MCS1. MWECMOS interface outputs: CU, CO, RO/LUO-R3/LU3, GO/LOO-G3/L03, BO-B3, M, FLM, CL1, CL2, CL3, CL4 I/O common pins: AO/RO/XOOT, A1/YLO-A3/YL2, 00-03, ROO-R07, GOO-G07, BOOB07 Inputs except I/O common pins: HSYNC, VSYNC, PMOOO, PM001, RS/AOJ, CS/MSO, WR/MS1, RES, OOTE, OMO-OM3, LOOTCK, OOTCLK, R, G, B, OISPTMG HITACHI 638 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66840F Video Signal Interface Symbol Min Max Unit DOTCLK cycle time Item tCYCO 40 1000 ns Remark DOTCLK high-level pulse width twOH 20 ns DOTCLK low-level pulse width twOL 20 ns DOTCLK rise time tOrl 5 ns DOTCLK fall time tOIl 5 ns R, G, B, setup time tvos 10 ns R, G, B, hold time tvoH 10 ns DISPTMG setup time tOTS 10 ns DISPTMG hold time tOTH 10 ns HSYNC setup time tHSS 10 ns HSYNC hold time tHSH 10 ns Phase shift setup time tpos 2 tCYCO ns Phase shift hold time tpOH 2 tCYCO ns Input signal rise time tOr2 10 ns Exc;ept DOTCLK Input signal fall time tOl2 10 ns Except DOTCLK HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 639 HD66840F ,.... tOt. DOTCLK ~2.0V -- ;H: I"" O.8V tvos I tHSH tWDH ~ DOTC LK ~ tHSS tHSH IHSS Ir- '\... -(.OV O.8V 100 2.0V O.8V HSYNC f\- 1M tors tOTH DISPTMG .... K ...,1o!;;"2.0V O.8V HSYNC ~ 1.5V lVOH ~ ~~:~~ R. G. B ..,if tWDL tOTH lors ... Ji:"" =- \ / lPOH VSYNC 2 ov O.8V - - - - - - - - - - - - - \ ."\..........._ _ _ _ _ _ _ _ __ Figure 29 Video Signal Interface HITACHI 640 Hitachi America, Ltd. • Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819' (415) 589-8300 HD66840F Buffer Memory Interface Item Symbol· Min Read cycle time tRC 5 !eYCD - 50 ns RDO-RD7, GDO-GD7, BDO-BD7 data setup time tsMD 25 ns RDO-RD7, GDO-GD7, BDO-BD7 data hold time tHMD 0 ns Write cycle time twc 6 !eYCD - 50 ns Address setup time lAs !eYCD - 30 ns Address hoid time twR !eYCD - 30 ns Chip select time tew 4 tCYCD - 40 ns Write pulse width twp 4 tCYCD - 40 ns RDO-RD7, GDO-GD7, BDO-BD7 output setup time TSMDW 2 !eYCD - 25 ns RDO-RD7, GDO-GD7, BDO-BD7 output hold time tHMDW 0 ns Max Unit Note: tCYCD indicates DOTCLK cycle time (min 40 os, max 1000 os). I HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819. (415) 589-8300 641 HD66840F I- - ia: ....1:1 .a ~ ! ·c ~ 11 II -~§ I... i I N -0 m a: .. t III 0 C') 'Q ] '" II i - l1li -0 :B II: '"=< :E I ~ :E ~ ...: 0 C1 I 0 0 ~ ~ OO( :::0 C1 ...:,..t a: I III I OO:! IilfilHITACHI 642· Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 ::c s= <> :!: :l>- 3 '"<>::l. .?' !::; ?- T2 (= 5teyeD) ::c s= <> :!: OOTCLK " . r-', _J 6) r-,L_-'r '---' , r-, r-, '---' \"_-1 N '"r-> MAO-MA15 2.4V"O.SV,. ~ MCSO. MCSl (Read ) 2.4V O.sv . -J: MCSO. MCSl (Writ, ,) 0 0 0 T3 (=6teYeD) r-, L_J r-"'\ \._J r-, L_...1 \...._-' r , T, (= 5 eyeD) r-, \...._J '-- twe ,K en (ij' iil J: "a (') ~ 0 ,... " ~ I" twp ~AS 0" -''"C?" tWR tew '\ 2.4V O.SV ~ c;;' :::l ~ tAS MWE ~ tWR 2.4V O.SV :l>- co tSMDW ""'0 " ~ ~ co ROO-R07. GOO-G07 BOO-B07 (LVIC - Memory) ·~.4V O.SV ~ :x: ~ o en t11 00 co do Co) en ex) 0 0 a> ""'" Co) ,tHMDW ~ Figure 31 • Buffer Memory Interface (RAM Write Timing) o"%j HD66840F LCD Driver Interface (TN-Type LCD Driver) Item Symbol Min CL2 cycle time twCL2 166 ns CL2 high-level pulse width twCL2H 50 ns CL2 low-level pulse width twCL2L 50 ns CL2 rise time Max Unit tCL2r 30 ns CL2 fall time tCL2f 30 ns CL 1 high-level pulse width twCLlH CL 1 rise time tCLlr 30 ns CL1 fall time tcL1f 30 ns CL1 setup time tsCLl 500 ns CL1 hold time tHCL1 200 ns FLM hold time tHF 200 ns M output delay time tOM Data delay time too - 20 LDOTCK cycle time twLOOT 41 Note: All the values are measured at fCL2 =6 200 ns 300 ns 20 ns ns MHz. HITACHI 644 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005·1819· (415) 589-8300 HD66840F LCD Driver Interface (TFT-Type LCD Driver) Item Symbol Min CL2 cycle time (X drivers on one side) tTCL2S CL2 high-level width (X drivers on one side) Unit Remark 160 ns Figure 34, 35 tTCl2HS 30 ns CL2 low-level width (X drivers on one side) tTCl2LS 30 ns CL2 cycle time (X drivers on both side) tTCL20 320 ns CL2 high-level width (X drivers on both side) tTCL2HO 80 ns CL2 low-level width (X drivers on both side) tTCL2l0 80 ns CL2 rise time tel2r 30 ns CL2 fall time tCl2! 30 ns CL 1 high-level width tTCL1H CL1 rise time teL1r 30 ns CL1 fall time tell! 30 ns Data delay time tOOl -20 20 ns Data set up time tlOS 15 ns Data hold time tLDH 15 ns CL 1 setup time tTSCL1 500 ns CL1 hold time tTHCll 200 ns CL3 delay time tOCL3 50 Max ns 200 ns M delay time tOM FLM hold time tTFH 200 ns LDOTCK cycle time twlOOT 40 ns 300 ns I HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 645 e ~ '" twcuH tWCI2L en en :J: ~ CU 00 2: ~ ~ CD ,Jex .:;~~ __ \.., RO-R3. GO-G3, 80-83 ::l. ~ '1 ..... , '" .... , !:::; po. • tHCU tWCL1H :J: iii' n tsel1 2: "1J CLl ~ • !eLfr I\) 0 0 0 0. 7Vcc i>l :I 2. a "1J tHF FLM en Qi. "1J teltf ij -I I.. toM O.7 V cc 0.3 Vee M (') f• :I: Figure 32 !XI LCD Driver Interface (TH7Type LCD Driver Interface) ::l. en cr I» ::s !D n l> Cll ~ 0 ~ FLM ~ <0 • MIMCbit-O) ~ ~ ~ en 0> I I I 1 I I· I· I 1 1nl 1 1 I 1 1 1 I 1 I ~{I 1 1 I I 1 I I 1 ~~ n---, 11 --1 ~r--flL.---n-.-J .~ MIMC bit=l) cp 0> c.> 0 0 Figure 33 Clot, FUll and III (Reduced View of Figure 32) " ~ HD66840F X drivers on one side CL2 RO-R3 GO-G3 80-83 X drivers on both sides CL2 RO-R3 GO-G3 80-83 trsCL1 tTCL1 H tTHCl1 0.7 Vee 0.3 Vee CLl tellr tCL1f tDCL3 CL3 FLM M Figure 34 CL1 ______ LCD Driver Interface (TFT-type LCD Driver Interface) ~rlL I ____________________________________~rlL________ CL3 CL4 ~L_ _ _ _ _ _ _ _ _ _...J f.--'- j ~',. L divided from CL3 FUM ______________________~rl----------------------~~ M Figure 35 CLI, CL3, CL4, FLM, M (Reduced view of figure 34 in the horizontal stripe mode) HITACHI Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 647 HD66840F Register Programming, MPU Write Item Symbol Min RO high-level pulse width twROH 190 ns RO low-level pulse width twROL 190 ns WE high-level pulse width twwEH 190 ns WE low-level pulse width twwEL 190 ns CS, RS setup time !AS 0 ns CS, RS hold time tAH 0 ns ns ns 00-03 setup time tosw 100 00-03 hold time tOHW 0 00-03 output delay time to DR 00-03 output hold time tOHR ns 10 ns K: 8 o.sv lAs twtlDl J -' 2.0~J\ O.SV tAH I,t L tAS tAH tWWEH tWWEl tDD. 2.0V 1\ O.SV tDH. I tosw ~ 2.4V O.SV ~ tWRDH I 00-03 Unit 150 2.0~~ RS Max 2.0V O.SV Output Figure 36 tDHW Input lIIIPU Interface HITACHI 648 Hitachi America, Ltd. - Hitachi Plaza - 2000 Sierra· Point Pkwy. - Brisbane, CA 94005-1819- (415) 589-8300 HD66840F Register Programming, ROM Write Item Symbol Min A cycle time tcYCA 528 A rise time tAr 100 ns A fall time tAf 100 ns o ROM data setup time o ROM data hold time Note: tCYCA "" 16 Unit Max ns toswo 120 ns tOHWO 0 ns tCYCO tA~ tAf AO-A3 (LVIC-+ROM) 2.4V)< X toswo 00-03 (ROM-+LVIC) Valid Valid Figure 37 ~ 2.0V O.8V Valid tDHWO K ROM Interface HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 ------~---- .......... - 649 HD66840F PLL Interface Item Symbol Max Unit tUI 80 ns tUr 80 ns CD fall delay time tOI 80 ns CD rise delay time tOr 80 ns Max Unit CU fall delay time CU rise delay time Min Reset Input Item Symbol RES input pulse width tRES Min JiS DOTCLK HSYNC Figure 38 PLL Interface RES----------------------~·~ ~~.8-V---------------------Figure 39 Reset Input HITACHI 650 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD6684.0F Load Circuits TTL Load Pin Remarks R MAO-MA15, MWE, MCSO,MCS1, RDO-RD7, GDO-GD7, BDO-BD7 2.4 kO 11 kO 40 pF tr, tf: Not specified AO/RD/XDOT, A 1 /yLO-A3/YL2 2.4 kO 11 kO 40 pF tr, tf: Specified Capacitive Load Pin c Remarks CL1, CL2, CL3, CL4 40pF tr, tf: Specified RO-R3, GO-G3, BO-B3, FLM CU, CD, M 40pF tr, tf: Not specified 5.0V All diodes = 1S2074® 'M'L Load Circuit Figure 40 I 0----1..., .c r Figure 41 Capacitive Load Circuit Refer to application note (No. ACE-S02-011) for detail of this product. HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 651 HD66841 F-~----LCD Video Interface Controller II (LVIC-II) Description The HD66841F LCD video interface controller (LVIC-II) converts standard RGB video signals for CRT display into LCD data. It enables a CRT display system to be replaced by an LCD system without any changes. and it also enables software originally intended for CRT display to control an LCD. Since the LVIC-II can control TFT-type LCDs in addition to current 1N-type LCDs. it can support monochrome. 8-level gray-scale. and 8-color displays. Thanks to a gray-scale palette. any 8 levels can be selected from 13 gray-scale levels. depending on the LCD panel used. The LVIC-II also features a programmable screen size and can control a large-panel LCD of up to 720 x 512 dots. Features .' Conversion of RGB video signals used for CRT display into LCD data: - Monochrome display data - 8-level gray-scale data - 8-color display data • Selectable LVIC-II control method: - Pin programming method - Internal register programming method (either with MPU or ROM) • Programmable screen size: - 640 or 720 dots (80 or 90 characters) wide by 200. 3S0. 400. 480. S12. or S40 dots (lines) high. using the pin programming method - 32 to 4048 dots (4 to S06 characters) wide by 4 to 1024 dots (lines) high. using the internal register programming method • Double-height display capability • Generation of display timing signal (DISPTMG) from horizontal synchronization (HSYNC) and vertical synchronization (VSYNC) signals • Internal PLL circuit capable of generating a CRT display dot clock (DOTCLK) (external charge pump. low pass filter (LPF). and voltagecontrolled oscillator (VCO) required) • Control of both 1N-type LCDs and TFT-type LCDs • Gray-scale level selection from gray-scale palette • Maximum operating frequency: 30MHz (DOTCLK) • LCD driver interface: 4-. 8-. or 12-bit (4 bits each for R. G. and B) parallel data transfer • Recommended LCD drivers: HD61104 (column). HD6110S (row). HD61106 and HD66107T (column/row) • Direct interface with buffer memory (no external decoder required) • 1.3-J.U1l CMOS processing • Single power supply: +SV ± 10% • Package: l00-pin plastic QFP (FP-lOOA) HITACHI 652 Hitachi America, Ltd.· Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819. (415) 589-8300 HD66841F Pin Arrangement RD, AlJIXDOT A1NLO A2Nl1 DOTE PMOD1 PMOOO LDOTCK A31Vl2 DO/FO Voo3 CL4 D1IF1 D2IF2 CL3 D3JF3 Cl2 GND2 MAO MA1 MA2 Cl1 FlM M ROILUO R11lU1 R2ILU2 R3JLU3 MA3 MA4 MAS MAS MA7 MAS GND6 GOILOO G11lD1 G2JLD2 G3JLD3 MA9' MA10 MA11 MA12 GND3 MA13 MA14 MA1S eo B1 B2 B3 807 806 80S MC$O BD4 MCS1 MWE Vcc2 I 803 802 HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 653 HD66841F Pin Description The LVle-II's pins are listed in table 1 and their functions are described below. Table 1 Pin Description Classification Symbol Pin Number Power supply Vcc1-Vcc3 96,30,76 Pin Name 110 Note{s} Vcc1 to Vcc3 ~~~~----------------~~--~------------------------Ground 1 to Ground 6 GND1-GND6 88,9,23, 37,50,65 Video signal interface LCD interface Buffermemo~ interface Mode setting R,G,B 91,92,93 Red, green, and blue serial data HSYNC 89 Horizontal synchronization VSYNC 90 Vertical synchronization DISPTMG 95 Display timing DOTCLK 94 Dot clock Ro-R3 69-66 LCD red data 0-3 o 3 LUo-LU3 69-66 LCD upper panel data 0-3 0 4 2 LDo-LD3 64-61 LCD lower panel data 0-3 o 4,5 Bo-B3 60-57 LCD blue data 0-3 3,6 CL1 72 LCD data line select clock CL2 73 LCD data shift clock CL3 74 Y-driver shift clock 1 o o o o CL4 75 Y-driver shift clock 2 o 7 FLM 71 First line marker M 70 LCD driving signal alternation o o LDOTCK 77 LCD dot clock 7 _M=C==SO~,~M~C~S~1~__2~7~,~2~8________~M~e~m~0~~_c~h~ip~s~e~le~d~0~,~1_________0~__~8~___ -= MWE 29 Memo~ write enable 0 8 MAo-MA15 10-22, 24-26 Memo~ address 0-15 0 8 RDo-RD7 31-36,38, 39 Memo~ red data 0-7 VO 8 GDo-GD7 40-47 Memo~ green data 0-7 BDo-BD7 48, 49, 51-56 Memo~ blue data 0-7 VO VO 8, 9 PMODO, PMOD1 78, 79 Program mode 0, 1 DOTE 80 Dot clock edge change SPS DMo-DM3 81 Synchronization polarity seled 82-85 Display mode 0-3 MSO, MS1 98,99 Memo~ XDOT YLo-YL2 2-4 seled 0, 1 8, 9 10, 11 X-dot 10 Y-line0-2 10,12 HITACHI 654 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66841F Table 1 Pin Description(cont) Classification Symbol Pin Number Pin Name Mode setting ADJ 100 Adjust 10 Fo-F3 5-8 Fine adjust 0-3 10 CS 98 Chip select 10, 11 WR 99 Write 10,11,13 Read 10,13 Register select 10 MPU interface 1m RS 100 00-03 5-8 ·97 Oata0-3 110 ROM interface 00-03 5-8 Oata0-3 PLL interface ~ 86 Charge down o CU 87 Charge up o Notes: Note(s) 10 14 RES Ao-M 1-4, 100 Reset Address 0-4 I/O o 10 10 Fix G and B pins low if CRT display data is monochrome. Fix high or low if the display timing signal is generated Internally. For 8-oolor display modes. For monochrome or 8-level gray-scale display modes. Leave disconnected in 4-bitlsingle-screen data transfer modes. Leave disconnected in monochrome or 8~level gray-scale display modes. Leave disconnected in TN-type LCO modes. Leave disconnected if no buffer memory Is used. Pull up with a resistor of about 20 kn in monochrome display modes. The LVIC-lIwrites the OR of RGB signals into R-plane RAM, so no RAM is required for the G and B planes in these modes. (H G- or B-plane RAM Is connected in monochrome display modes, the LVIC-II writes G or B signals into each RAM. However, this does not affect the display or the contents of R-plane RAM.) 10. Multiplexed pins. 11. Fix high or low when using the ROM programming method. 12. Fix high or low when usi~he MPU programming method. 13. Do not set pins WR and RO low simultaneously. 14. A reset signal must be input after power-on. 1. 2. 3. 4. 5. 6. 7. 8. 9. HITACHI Hitachi America, Ltd. - Hita?hi Plaza - 2000 Sierra Point Pkwy.- Brisbane, CA 94005-1819 - (415) 589-8300 655 HD66841F Power Supply FLM: Outputs a first line marker for Y-drivers. Vccl-Vcc3: Must be connected to a +5V power supply. M: Outputs an alternation signal for converting LCD driving signals to AC. GNDl-GND6: Must be grounded. LDOTCK: Inputs LCD dot clock pulses. CRT Display Interface Burrer Memory Interface R, G, B: Input R, G, and B signals for CRT display. MCSO, MCSl: Output buffer memory chip select signals. HSYNC: Inputs the CRT horizontal synchronization signal. MWE: Outputs the buffer memory write enable signal. VSYNC: Inputs the CRT vertical synchronization signal. MAO-MAlS: Output buffer memory addresses. DISPTMG: Inputs the display timing signal which indicates the horizontal or vertical display period. DOTCLK: Inputs dot clock pulses used for CRT display. RDO-RD7: Transfer data between R-data buffer memory and the LVIC-II. GDO-GD7: Transfer data between G-data buffer memory and the LVIC-II. LCD Interface BDO-BD7: Transfer data between B-data buffer memory and the LVIC-II. RO-R3: Output LCD R data ModeSeUing LUO-LU3: Output LCD upper panel data. PMODO, PMODl: Select the. programming method for the LVIC-II (table 2). GO-G3: Output LCD G data. DOTE: Switches data latch timing. The LVIC-II latches RGB signals at the falling edge of OOTO..K pulses if the DOTE pin is set high, or at the rising edge if it is set low. LDO-LD3: Output LCD lower panel data. B0-83: Output LCD B data. CLI: Outputs line select clock pulses for LCD data. CL2: Outputs shift clock pulses for LCD data. . SPS: Selects the polarity of the VSYNC signal. (The HSYNC signal's polarity is fixed.) The VSYNC signal is active-high if SPS is set high, or . active-low if it is set low. CL3: Outputs line select and shift clock pulses for LCD data if Y-drivers are positioned on one side of the LCD screen. Refer to the LCD System Configuration section for details. DMO-DM3: Select the display mode (table 8). CL4: Outputs line select and shift clock pulses for LCD data if Y-drivers are positioned on both sides of the LCD screen. Refer to the LCD System Configuration section for details. XDOT: Specifies the number of characters displayed on the LCD screen in the horizontal direction (called the horizontal displayed characters). The number is 90 (720 dots) if XOOT is set high, or 80 (640 dots) if it is set low. MSO-MSI: Select the buffer memory type (table 3). HITACHI 656 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819. (415) 589-8300 HD66841F YLO-YL2: Specify the number of lines displayed on the LCD screen in the vertical direction (called the vertical displayed lines) (table 4). ADJ: Determines whether the FO-F3 pins adjust the display timing signal or the number of vertical displayed lines. They pins adjust the display timing signal if ADJ is set high, or the number of vertical displayed lines if it is set low. FO-F3: Adjust the number of vertical displayed lines (table 5) or the display timing signal. Refer to the Display Timing Signal Fine Adjustment section for details. RS: An MPU inputs the RS signal through this pin to select the LVIC's internal registers. An MPU can access data registers (RO-R15) while this signal is high and the CS signal is low, and can select the address register (AR) while both this signal and the CS signal are low. DO-D3: Transfer LVIC-II internal register data between an MPU and the LVIC-ll. RES: Externally resets the LVIC-II. ROM Interrace AO-A4: Output external ROM addresses. MPU Interface CS: An MPO inputs the CS signal through this pin to select the LVIC. An MPU can access the LVICII while this signal is low. WR: An MPU inputs the WR signal through this pin to write data into the LVIC-II's internal registers. An MPU can write data while this signal is low. DO-D3: Input external ROM data to the LVIC-II's internal registers. PLL Circuit Interrace CD: Outputs charge-down signals to an external charge pump. CU: Outputs charge-up signals to an external charge pump. RD: An MPU inputs the RD signal through this pin to read data from the LVIC-II's internal registers. An MPU can read data while this signal is low. HITACHI Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 657 HD66841F Table 2 Programming Method Selection PMOD1 PMODO Programming Method 0 0 Pin programming 0 Internal register programming 1 Inhibited (Note) 0 1 Table 4 Number of Vertical Displayed Lines MPU ROM Note: This combination is for test mode: it disables display. YL1 YLO 0 0 0 0 0 0 1 0 400 1 0 0 512 1 0 0 540 Inhibited MSO MemorY"FYpe 0 0 No memory 0 1 8-kbytes memory 0 32-kbytes memory 64-kbytes memory 200 350 0 480 Table 3 Memory Type Selection MS1 Number of Vertical Displayed Lines YL2 (Note) Note: 480 lines are displayed, but they are practically indistinguishable. Table 5 Fine Adjustment of Vertical Displayed Lines F3 F2 F1 FO Number of Adjusted Lines o o o 0 0 0 ±o 0 0 0 1 0 +2 o +14 1 +15 +1 HITACHI 658 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 = i I r! ~ == ~ CU :::L jJ .... E~nter, rI I g phase IComparator) == i• •tI SPS HSVNC I\:) g .1 DlSPTMG .1 generator VSYNC DISPTMG rn ~ c;;" J: - generator ;5 ~~ · ii- aJ ~ ~ ~ ~ .!.. ~ co • ~ ~ (TO !p ~ 0> (TO co t DOTClK DOTE R (horizontal, II") vertical counter eG: Y/ G B Vee H + Write address counter -p:. I GND 6' F> F> I Y r- F "1-~8 V RDo-RD7 GDO-GD7 BDo-BD7 IF ~ I I I, ~ ... MPUIROM 2 'f interface '= ,Lleis" ___ ..IL ___ ..II PMODO, PMOD1 1'lJ. limi sig:::3 genera1Dr Synchronizer F=F:> cw~tch I ::; I DMo-DM3 RES ~ ~ ~ LDOTCK .. Cl1-CL4 Ir rT) FLM [T7 M ~ Data ~tch ar- cuit cuit '"'--- '"'--- I I I : I 1..-------------.1 generator ~. IIL. Ei --.. 141~ rJ' LCD inter- lace RO-R3IL.UO-LU3 ~GO-G3ILDO-lD3 k~ T~ BO-B3 -... ~I- 13 'V.., 'V" MCSO MCS1 MA13-MA15 MWE 3 I ----- . -. --, ~~scaJe fij k Fbrr-- I ,~ 6 ~4 ',Displayl ' I'mode I n ' pallete I'decod- ' ,I regIS"" I LCD I aer I coooter Data I I ~ /I r----,,----., ~ f RS, CS, WR 8-1eve1 IMCS,MWE I generator Ie:::=II:'" }1 Read address Address multiplexer n 1 ~ 3 Read counter If) (horizontal, vertical counter I ~ CRT rI Write counter T,,"~~ ~" d 00-03 ~5 DOTCLI< ?t• -C CD t t CD ~ Ao-M MAo-MA12 ::x: o 0') 0') 0) ~ ~ "z:I HD66841F Registers The LVle-II's registers are listed in table 6 and the bit assignments within the registers are shown in figure 1. Table 6 Register List Reg. Address CS RS PS1 3 2 1 0 Reg. No. Register Name 0 AR Address register W RO Control register 1 RIW R1 Control register 2 RIW R2 Vertical displayed lines register (middle-order) lines Nvd RIW 4 R3 Vertical displayed lines register (low-order) lines Nvd RIW 4 R4 Vertical displayed lines register (high-order)! Cl3 period register (high-order) lines! Chars. Nvd! Npc RIW 4,5,6 R5 Cl3 period register (Iow-order) Chars. Npc RIW 4,5,6 R6 Horizontal displayed characters register (high-order) Chars. Nhd RIW 6 R7 Horizontal displayed characters register (Iow-order) Chars. Nhd RIW 6 RS Cl3 pulse width register Chars. Npw RIW 6 R9 Fine adjust register Nda RIW 7 NpLL RIW S NpLL RIW S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Program Unit Dots R10 Pll frequency-division ratio register (high-order) Specified Readl Value Symbol Wrlte2 Note(s) 3 R11 Pll frequency-division ratio register (/ow-order) R12 Vertical backporch register (high-order) lines Ncvbp RIW 4, 9 R13 Vertical backporch register (low-order) lines Ncvbp RIW 4,9 R14 Horizontal backporch register (high-order) Dots Nchbp RIW 4, 9 R15 Horizontal backporch register (low-order) Dots Nchbp RIW 4,9 HITACHI 660 Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 HD66841F Table 6 Register List (cont) Reg. CS RS PS1 3 2 1 Add~ess 1 0 0 0 0 0 0 0 1 0 0 0 0 Reg. No. Register Name P1 Black palette register 0 P2 Blue palette register 1 P3 Red palette register 0 0 0 0 P4 Magenta palette register 0 0 0 1 PS Green palette register 0 0 1 0 P6 Cyan palette register 0 0 0 0 0 0 0 0 0 1 P7 Yellow palette register P8 White palette register Program Specified Readl ,Unit Value Symbol Wrlte 2 Note(s) RIW RIW RIW RIW RIW RIW RIW RIW Reserved Reserved 0 Notes: 1. Corresponds to bit 2 of control register 1 (RO) 2. W indicates that the register can only be written to; RIW indicates that the register can both be read from and written to. 3. Attempting to read data from this register when RS • 0 drives the bus to high-impedance state; output data becomes undefined. 4. Write (the specified value - 1) into this register. 5. Valid only in 8-color display modes with horizontal stripes. 6. One character consists of eight horizontal dots. 7. Valid only if the display timing signal is supplied extemally. 8. Valid only if the dot clock signal is generated intemally. 9. Valid only if the display timing signal is generated intemally. HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 661 HD66841F Reg. PS1 3 2 1 0 ,1 I- I.~. 10 1o 11 1- o 0 0 0 o 11 10 0 0 0 1 o 11 !o o 0 1 0 o 11 :0 o 0 1 1 o 11 '0 o 1 o 0 o 11 '0 o 1 o 1 o 11 0 01 j 0 o 11 0 o 1 1 1 o 11 0 1 0 0 0 o 11 0 1 o 0 1 o 11 0 1 o 1 0 01 0 1 o 1 1 01 0 1 1 o 0 01 0 1 1 o .1 o 1 0 1 1 1 0 01 0 1 1 1 1 01 1 10 0 0 1 o 1 1 o 0 1 0 01 1 o 0 1 1 0 1 o 0 10 1 11 0 1 o 1 10 1 11 0 1 1 0 10 1 11 o 1 1 1 10 1 11 1 000 10 1 11 1 1 o 0 1 10 11 i i Ii Ii m RS 0 1 ---- - -- 1 Notes: 1. 2. 3. 4. 5. 1 1 1 1 Reg. No; 13 Data Bits 12 - 11 10 _2 AR RO OIZ PS OSP DCK R1 MC DON MS1 MSO R2 R3 R4 R5 R63 R7 RS R9 Rl0 Rl1 R12 £!1:3 R14 R15 P1 4 0 P24 0 P3 4 0 P44 0 P54 0 P64 1 P74 1 PS4 1 +- Address register +- Control register 1 +- Control register 2 +- Vertical displayed lines register +- CL3 period register +- Horizontal displayed characters register +- Cl3 pulse width register +- Fine adjust register +- PLL frequency-division ratio register +- Vertical backporch register +- Horizontal backporch register 10 10 11 11 11 :0 10 11 10 11 11 '0 10 10 11 10 11 10 '0 0 l1 '0 10 lQ.. _5 +- Black palette register +- Blue palette register +- Red palette register +- Magenta palette register +- Green palette register +- Cyan palette register +- Yellow palette.register +- White palette register +- Reserved registers - Corresponds to bit 2 of control register 1 (RO). Invalid bits. Attempting to read data from these bits returns undefined data. The most significant bit is invalid in dual-screen configuration modes. Bit values shown are default values at reset. Reserved bits. Any attempt to write data into the register is invalid, although it has no affect on LSI operations. Any attempt to read data from the register returns undefined data. Figure 1 Register Bit Assignment HITACHI 662 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane. CA 94005·1819· (415) 589-8300 HD66841F System Description cricuit from the horizontal synchronization signal (HSYNC). The DOTCLK signal frequency is specified by the PLL frequency-division ratio register (RlO, Rll). Figure 2 is a block diagram of a system in which the LVIC-IT is used outside a personal computer. The LYIC-II converts the RGB serial data sent from the personal computer into parallel data and temporarily writes it to the buffer memory. It then reads out the data in order and outputs it to LCD drivers to drive the LCD. In this case, the CRT display dot clock (DOTCLK), which is a latch clock for serial data, is generated by the PLL Dot CIOn The system can be configured without a YCO and LPF if the DOTCLK signal is supplied externally, and it can be configured without an MPU if the LVIC-II is controlled by the pin programming method. II vco LPF CU I I C D Personal computer RGB serial data -. HSYNC MPU ~ / LVIC-II VSYNC ~ 1-' memory I lh LCD t 7 Simultaneous display possible 1 G VCO: Voltage-controlled oscillator LPF: Low-pass filter Figure 2 System Block Diagram (with MPU programming method and DOTC~K generated internally) HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 663 HD66841F Functional Description Pin Programming Method: The LVIC-Irs modesetting pins control functions. Programming Method One of two methods of controlling LVIC-II functions can be selected by setting pins PMODO and PMODI. Control by pins is called the pin programming method and control by internal registers is called the internal register programming method. The internal register programming method can be further divided into the MPU programming method and the ROM programming method; an MPU is used to write data into internal registers in the MPU programming method and ROM is used to write data into internal registers in the ROM programming method. Internal Register Programming Method: An MPU or ROM is used to write data into the LYlCIrs internal registers to control functions. Figure 3 shows the connection of either an MPU or ROM to the LVIC-II. Although figure 3 (1) shows an example of the use of a 4-bit microprocessor, the LYlC-IT can alSo be connected directly to the host MPU bus since the LYlC-1I MPU bus is compatible with the 4-MHz bus of SO-series microcomputers. ROM 4·bitMPU BO B1 B2 B3 1\ RS WR RO , 7 , 1- 00-D3 00-D3 ..~ /10 ~5 AO-A4 LVle-1I LVIC-II (1) Connection of MPU to LVIC-II 4 ...H'4 ;k4 CS AO-A4 00-03 AO-A3 (2) Connection of ROM to LVIC-II Figure 3 Connection of MPU or ROM to LVIC-n HITACHI 664 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66841F Screen Size Screen size can be programmed either by pins or internal registers. In the pin programming method, either 640 dots or 720 dots (80 characters or 90 characters) can be selected with the XDOT pin as the number of horizontal displayed characters, and either 200, 350,400, 480, 512, or 540 lines can be selected with the YL2-YLO pins as the number of vertical displayed lines. The number of vertical displayed lines can be adjusted by from +0 to +15 lines with the ADI and F3-FO pins. In the internal register programming method, any even number of characters from 4 to 506 (from 32 to 4048 dots) can be selected with the horizontal displayed characters register (R6, R7), and any even number of lines from 4 to 1028 can be selected with the vertical displayed lines register (R2, R3, and the high-order two bits of R4). However, note that an odd number of lines can also be selected if the screen configuration is singlescreen and Y-drivers (scan drivers) are positioned on one side of the LCD screen. The relationship between the LCD screen and the pins and internal registers cO!ltrolling screen size is shown in figure 4. Number of horizontal displayed characters Pin: XDOT Register: Horizontal displayed characters register (R6, R7) T Number of vertical displayed LCD screen L...-_ _ _ _ _ _ _ _ _ _ _ _ _- - - ' lines Pins: YL2-YLO, ADJ, F3-FO Register: Vertical displayed lines register (R2, R3, high-order 2 bits of R4) 1 Figure 4 Relationship between LCD Screen and Pins and Internal Registers HITACHI Hitachi America, Ltd. - Hitachi Plaza- 2000 Sierra Point Pkwy. - Brisbane, CA 94005-1819 - (415) 589-8300 665 'HD66841F' Memory Selection 8-, 32-, or 64-kbytes SRAMs can be selected as buffer memory for the LVIC-II. Since the LVIC-ll has a chip select circuit for memory, no ,external decoder is. required. The memory type can be selected with the Ms 1 and MSO pins or the MS 1 and MSO bits of control register 2 (RI). Memory types and corresponding pin address assignments are listed in table 7. The memory capacity required depends on screen size and can be obtained from the following equation: ,Memory capacity (bytes) =Nhd x Nvd For example, a screen of 640 x 200 dots requires a 16-kbytes memory capacity since 80 characters x 200 lines is 16 kbytes. Consequently, each plane requires two HM6264s (8-kbytes memories) in 8level gray-scale display modes. The ~ pin must be connected to the ~ pin of one of the memory chips in each plane. and the ~ pin must be connected to the CS" pin of the remaining memory chip in each plane (figure S (a». . A screen of 640 x 400 dots requires a 32-kbytes (256-kbit) memory capacity, so each plane requires an HM622S6, which is a 32-kbytes memory. In this case, the MCSO pin must be connected to the pin of each memory chip. (figure 5 (b». a- Nhd: Number of horizontal displayed characters (where one character consists of 8 horizontal dots) Nvd: Number of vertical displayed lines Table 7 Memories and Pin Address Assignments Pins or Bits MS1 MSO 0 0 ' Address Address Pins Chip Select Pins 0 Memory No memory (Note) 1 8-kbyte MAo-MA12 ~ $OOO0-$1FFF MCS1 $2000-$3FFF MA13 $4000-$5FFF MA14 $6000-$7FFF MA15 $800o-$9FFF ~ $OOOOo-$07FFF ~ $08000-$0FFFF MA15 $10000-$17FFF ~ $OOOOo-$OFFFF MCS1 $10000-$1FFFF 0 32-kbyte 64-kbyte MAo-MA14 MAo-MA15 Assignment Note: There are some limitations if no memory is used. Refer to the User Notes section for details. HITACHI 666 Hitachi America, Ltd • Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66841F 640 x 200 dots / cs / f / 640 x 400 dots B CS G R CS Il- HM6264 cs ~ I- HM6264 (a) 16-kbytes Memory Configuration (b) 32-kbytes Memory Configuration Figure 5 Screen Size and Memory Configuration HITACHI Hitachi America, Ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 667 HD66841F Display Modes The LVIC-n supports 16 display modes, depending on the states of the DM3-DMO pins. The display mode controls display color, type of LCD data output, positions of LCD drivers for the LCD screen, arrangement of color data (type of stripes), and method of M signal output (type of alternation signal). Display modes are listed in table 8. Table 8 Display Mode List Mode Pins Display No. DM3 DM2 DM1 DMO Color 0 0 0 2 0 0 0 31 0 0 4 0 0 51 0 0 6 0 0 7 0 8 0 91 1 0 Monochrome Data Transfer Type 4-bit . Dual One side Alternation Every frame One side Single 0 Both sides 8-b1t One side 0 1 Both sides 8-level 4-bit grayscale Dual One side Single 0 8-bit 0 0 101 0 0 111 0 121 0 1 8-oo1or 12-b1t Single (4 bits each for R, G, and B) 141 0 Onseside Vertical Every line Both sides Both sides One side Both sides 0 One side 0 Both sides 'One side One side ~th 16 Dual 1. 2. 3. 4. One side 1 0 151 0 0 131 Notes: Screen LCD Driver Positions ConDg. Xodrlver! V-Driver! Stripe' One side Horizontal sides Vertical Every frame For TFT-type LCDs. Data output driver. Scan driver. Refer to the 8-coIor Display section. HITACHI 668 Hitachi America, Ltd.· Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66841F Display Color The LVIC-II converts the ROB color data nonnally used for CRT display into monochrome, 8-level gray-scale, or 8-color display data. Monochrome Display (Modes 1 to 5): The LVICII displays two colors: black (display on) and white (display oft). As shown in table 9, the CRT display ROB data is ORed to detennine display on/off. 8-Level Gray Scale Display (Modes 6 to 8): The LVIC-II thins out data on certain lines or dots to provide an 8-level gray-scale display based on CRT display color (luminosity). The relationship between CRT display color (luminosity) and LCD gray scale (contrast) is shown in table 10. This relationship corresponds to the default values in palette registers; the correspondence between color and gray scale can be changed by writing data into palette registers. 8-Color Display (Modes 9 to 16): The LVIC-II displays 8 colors through red (R), green (0), and blue (B) filters placed on liquid-crystal cells. The eight colors are the same as those provided by a CRT display. As shown in figure 6, 8-color display has two stripe modes: horizontal stripe mode in which the LVIC-II arranges ROB data horizontally for horizontal filters and vertical stripe mode in which it arranges ROB data vertically for vertical filters. Three cells express one dot in both modes. Table 9 Monochrome Display Table 10 8-Level Gray.Scaie Display CRT Display Data R G o o o o B CRT Color Luminosity LCD Gray Scale Contrast White High Black Strong Low White Weak o Yellow o Green Cyan o o o o o o Magenta Red Blue Black HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 669 HD66841F X·drivers 1 dot RR R GG G B BB -r--. r-- ~ l > 'I' ,, I : , , , , , , , , , , , , ,, , ,,, , I I X·drivers I 1dot RGB Rlilter G filter Bfilter R G B .. -r---~ ~ > . .. . . ...•....•........ R~ B··············· t!t LBlilter LGfilter RAter Vertical Strlpea Horizontal Strlpea Figure 6 Stripe Modes in a·Color Display HITACHI 670 Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 940Q5·1819· (415).589-8300 HD66841F LCD System Configuration The LVIC-II supports the following LCD system configurations: • 'JYpes of LCD data output: - Data transfer: 4-bit, 8-bit, or 12-bit (4 bits each for R, G, and B) - Screen configuration: Single or dual Data 4-bits r- Ii 4-,8-, 12-bits Data ~ ~ ~ ~ f- -lCDlu I System configurations for different modes are shown in figure 7, and configurations of X- and Ydrivers positioned on both sides of an LCD screen are shown in figure 8. I Upper panel X-driver J • LCD driver positions around LCD screen: - X-drivers: On one side or on both sides - Y-drivers: On one side or on both sides I I I an~ I Pljf X-driver r-.. Ii -{-T-l-t--{-- ~ f- -lCDI~~~ _ .. ~ > - ...... 1 1 1 'I 1 t t f f t LCDpanel - .. Lower panel X-drlver Data 4-bits System configuration for mode 1 and mode 6 (4-blt data transfer, dual acreen, X-drlver and Y-drlver each on one side) Note Data 4-, 8-, 12-b1ts X-driver Data r-- r- !I! ioJ - "C LCD panel 12-bits Upper X-driver r-- i ~ ~ System conflgureatlon for modes, 2, 4, 7, 8, 9, and 13 (4-, 8-, or 12-blt data transfer, single acreen, X-driver and Y-drlver each on one side) . ~ !I! ~ "C LCDP~eI - .. ~ 1: Q if "'- "'- Lower X-driver Data 12-bits System conflguraaton fo rmode. 3, 5, 10, and 14 (4-, 8-, or 12-blt data transfer, .Ingle acreen, X-driver on one side and Y-drlver on both sides) System conflgureatlon for mode 11 and mode 15 (12-blt data transfer, single acreen, X-edrlver on both sides and Y-drlver on one side) Note: Since the LCD upper panel and lower panel are each regarded as one screen, the X-drivers are considered to be positioned on one side, not on both sides. Figure 7 System Configurations by Mode HITACHI Hitachi America, Ltd.· Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 671 HD66841F Data 12-blt Upper X-driver r-- ~ l& .f; ~ .1 I LCD panel - Iii ~>- ... 1: i...J .21 a: '-- Data '-- Lower X-driver 12-blt I System configuration for mode 12 (12-bH data transfer, single screen, X-drlver and V-driver each on both sides) System configuration for mode 16 (12-blt data transfer, dual screen, X-drlver and V-drlver each on one slde)Not. Note: Since the LCD upper panel and lower panel are each regarded as one screen, the X-drivers are considered to be positioned on one side, not on both sides. Figure 7 System Configurations by Mode (cont) Upper X-driver - Data output lines ~r+ ~ ,...... >- f4- 2nd line 3rdllne 3 '--~ - 1st line ~ 4th line 5th line ~ / ~ >- i - / "-Signal output lines Lower X-driver (1) X-drivers set on both sides (2) V-drlvers set on both sides Data output lines run alternately from upper and lower X-drivers, increasing the pitch of the lines to twice that for X-drivers positioned on one side. Line select signal output lines run alternately from right and left Y-drivers, increasing the pitch of the lines to twice that for V-drivers positioned on one side. Figure 8 x- and V-Drivers Set OD Both Sides HITACHI 672 Hitachi America, Ltd.· Hitachi Plaza - 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819- (415) 589-8300 HD66841F LDOTCK Frequency Calculation Display Timing Signal Generation The frequency fL of the LCD dot clock (LOOTCK) can be obtained from the following equation: CRT display data is divided into display period data and rettace period data, so the LVIC-II needs a signal indicating whether the CRT display data that has just been transferred is display period data or noL This signal is called the display timing signal. fL= (Nhd+ 6)x8xNvdxfp Nbd: Number of horizontal displayed characters on LCD =(number of horizontal displayed dots on LCD) x 1/8 Nvd: Number of vertical displayed lines on LCD fp: Frame frequency (FLM frequency) The LVIC-IT can generate the display timing signal from the HSYNC and VSYNC signals. The relationships between HSYNC, VSYNC, the display timing signal (DISPTMG). and display data are shown in figure 9. Y lines and X dots in the figure are specified by the vertical backporch register (R12. R13) and the horizontal backporch register (R14. RI5), respectively. In this case, fL must satisfy the following relationships, where fD is the frequency of the dot clock for CRT display (OOTCLK): fL < fD x 15/16 or fL =fD (the phase of LOOTCK must be opposite to that of OOTCLK. in this case) n~ VSYNC HSYNC _____________________________ 1+----1 Y lines (. Vertical backporch) --II n n....___ ~ X dots (. Horizontal backporch) DISPTMG _ _ _~I I.. Display period I I ~..Retrace.1period II :::X,:::.:: (. No. of horizontal displayed characters) Display data _XX:X:X:::::::X, :::X,::::::::::X,.,4 ..,... ......4 Valid Invalid Valid ~ Invalid Valid Figure 9 Relationships between HSYNC, VSYNC, DISPTMG, and Display Data HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 ._------_.- - _..... _-_._- 673 HD66841F Dot Clock Generation The dot clock, which is a data latch clock, is not a standard video signal, so it is not usually output from the CRT display plug. Therefore, the LYICII must generate it. The LYIC-II has a programmable counter and a phase comparator which are parts of a phase-locked loop (PLL) circuit, and it can generate the dot clock from the HSYNC signal if a charge pump, a low-pass filter (LPF), and a voltage-controlled oscillator (yCO) are externally attached. A block diagram of the PLL circuit is shown in figure 10. A PLL circuit is a feedback controller that generates a clock whose frequency and phase are the same as those of a basic clock. The basic clock is the HSYNC signal in this case. At power-on, the YCO outputs to the programmable counter a signal whose frequency is determined by the voltage at that time. The counter divides the frequency of the signal according to the value in the PLL frequency-division ratio register (RIO, Rll), and outputs it to the phase comparator. This is the frequency-divided clock. The comparator compares the edges of the clock the HSYNC signal pulses and outputs the CU or CD signal to the charge pump and LPF according to the result. The comparator outputs the CU signal if the frequency of the clock is lower than that of the HSYNC signal or if the phase of the clock is behind that of the HSYNC signal; otherwise it outputs the CD signal. The charge pump and LPF~plL.8 voltage to the YCO according to the CU or CD signal. pul~and This operation is repeated until the phase and frequency of the frequency-divided clock match those of the HSYNC signal, making it a stable dot clock. ! HSYNC CU Phase comparator Inside LVIC CD Charge pump LPF Frequencydivided clock Value written in PLL frequency-division ratio register (R1 0, R11) Q Programmable counter VCO Timing clock generator DOTCLK Figure 10 PLL Circuit Block Diagram HITACHI 674 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 HD66841F Gray-Scale Palette The HD66841F thins out LCD data on certain dots or lines of an LCD panel every frame, changing integral voltages applied to Iiquid-crystal cells, to generate intermediate levels of luminosities. Consequently, the difference in depth between adjacent gray-scale shades may not be uniform in some cases since voltage-transmittance characteristics vary with different panels. To allow for this, the HD66841F is designed to generate 13 gray-scale levels and provide palette registers that assign desired levels to certain of the eight CRT display colors. The relationships between gray scales and corresponding effective applied voltages are shown in figure 11 (a). Each gray scale is displayed according to the characteristics of its effective applied voltage and the optical transmittance of the Using the palette registers to panel (figure 11 select any 8 out of 13 levels of applied voltages enables an optimal gray-scale display conforming to the characteristics of the LCD panel. The palette registers can also be used to provide 4-level grayscale display and reverse display. (b». Table 11 Default Values of Palette Registers Register No. P1 P2 P3 P4 P5 P6 P7 CRT Dls~lal Data R G B 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 P8 Register Name Black palette Default Value 0 0 0 0 Blue palette Red palette Magenta palette Green palette 0 0 0 0 1 0 0 0 1 0 1 0 Cyan palette Yellow palette 0 0 0 1 0 0 1 White palette 1 0 0 • • • r------- -----=-r__ • I I I I • 3 5 7 9 11 13 Transmittance (b) Gray-scale number (a) Figure 11 Relationships between Gray Scale, Transmittance, and Effective App6ed Voltage HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 675 HD66841F Pin Programming Method address $0010 (pS bit) before writing palette register values to addresses $0011-$0018. The paleue registers cannot be used in the pin programming method. MPU Programming Method To change the contents of palette registers in the MPU programming method. set bit 2 (the PS bit) of control register 1 (RO). to 1. Since data registers (R1-R1S) cannot be accessed while this bit is 1. set in to 0 before accessing the data registers again. However. note that control register I (RO) can be accessed regardless of the setting of the PS bit if $0 is set in the address register (AR). ROM Programming Method In the ROM programming method. the HD6684IF accesses ROM sequentially from address $()()()() to $00 IF. In this case, write 0 to bit 2 of address $()()()() (pS bit) before writing data register values to addresses $OOOI-$OOOF, and write I to bit 2 of / Gray scale 1 (1 dot) DIZ Function The HD66841F thins out data on certain lines or dots every frame to enable gray-scale display. If a checker-board pattern consisting of alternately arranged gray scales of different levels (figure 12) is displayed by a simple dot-basis gray-scale display control method, the display might sometimes seem to "flow" horizontally, depending on the gray"scale and LCD panel characteristics. The HD66841F automatically checks for such a checker-board section and changes the gray-scale display control method of dot-based data thinning to that of frame-based data thinning, to reduce display flow. Setting bit 3 (DIZ) of control register 1 (RO) to 1 enables this function. In frame-based data thinning, however, flickering might appear with some LCD panels; in that case, select the control method that generates the better display. Gray scale 2 (1 dot) Figure 12 Checker-Board Display. HITACHI 676 Hitachi America, ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 HD66841F Double-Height Display The LVIC-II provides double-height display which doubles the vertical size of characters and pictures (figure 13). 1. Halve the LCD dot clock (LOOTCK) frequency calculated from the number of vertical displayed lines of the LCD pane1. In the 1N-type LCD modes (display modes I, 2, 4, and 6-8), the CL3 signal period is half as long as the CLI signal period, as shown in figure 14. Consequently, using the CL3 signal instead of the CLI signal (figure 15) as a line shift clock enables two lines to be selected while X-drivers (data output drivers) are outputting identical data, thus realizing double-height display. However, it should be noted that this display requires the following procedure since the LVIC-II displays twice as many lines as specified by pins or internal registers: 2. Specify half the number of vertical displayed lines of the LCD panel as the number of vertical displayed lines. (For instance, if the number of vertical displayed lines of the LCD panel is 400, specify 200 with the YL2-YLO pins or the vertical displayed lines register.) ,,; I I r::':'I • • ~ This function is available only in the 1N-type LCD modes; it is disabled in the TFf-type LCD modes. ~ .•• .... ,., ~ •• •• •• •• •• •• ••••• ••••• ••• ••• ••• ••• •• •••••••••• • • Normal display Double-height display Figure 13 Double-Height Display Example HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 677 HD66841F CL1 --.r.,\ CL.3 ~ r I), X-driver / J output r r r- r- ) r) \. Y-driver (If connected as shown in figure 15) \' Figure 14 Relationship between CLl and CL3 in Modes 1,1,4, 6, 7, and 8 4 (or 8) bits LDO-LD3,LUO-LU3 , I CL1 ~ CL2 M CL3 FLM M - eI X-drive1'8 (Data output drivers) --. CD·c .~ "0 ~! LCD panel --. Figure 15 Connection for Double-Height Display HITACHI 678 Hitachi America, Ltd,. Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66841F Display Timing Signal Fine Adjustment If the display timing signal is supplied extemally, a phase shift between CRT data and the display timing signal may appear. This is because each signal has its own specific lag. The LVIC-ll can adjust the display timing signal according to pins FO-F3 or the fme adjust register (R9) to correct the phase shifL The relationships between pins F3-PO, data bits 3 to 0 of the fme adjust register, and the resultant fme adjustments are shown in table 12. The polarity of the number of dots adjusted is given by - (minus) indicating advancing the phase of the display timing signal or + (Plus) indicating delaying it. Pin F3 or data bit 3 of R9 selects the polarity. The adjustment reference point is the display start position. Examples of adjusting the display timing signal are shown in figure 16. Since the signal is two dots ahead of the display start position in case (1), F3. F2, Fl, and PO or data bits 3, 2, 1. and 0 of R9 should be set to (I, 0, 1,0) to delay the signal by two dots. Conversely, since the signal is two dots behind the display start position in case (2). they should be set to (0, 0, I, 0) to advance the signal by two dots. If there is no need to adjust the signal. a setting of either (0, 0, 0, 0) or (I, 0, 0, 0) will do. Table 12 Pius, Data Bits of R9, and Fine Adjustment Pin F3 R9Blt 3 0 F2 2 F1 FO 1 0 0 0 0 0 0 o o Number of Dots Adjusted 0 -1 o ~ 1 -7 0 0 0 0 1 +1 o +6 1 +7 I Note: To use pins to adjust the display timing signal. set the ADJ pin to 1. HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 679 HD66841F , :..... Display start position , I ___x_~x:= ~~x~~~~~x~~x CRT data :.. , ~ Two dots advanced I DISPTMG before adjustment ~ Display timing adjustment (F3, F2, F1, FO) or (Data bits 3, 2, 1, 0 of R9) • (1,0, 1,0) DISPTMG after adjustment ~------------------------ (1) Delaying DISPTMG I ,, : . - Display start position CRT data :::x X~__~X~__~~~I , , __~X~__~~~__~ .' , _________________________~T_WO~d.ots ___ de_l_ay_ed~~---------------DISPTMG . before adjustment Display timing adjustment (F3, F2, F1, FO) or / (Data bits 3, 2, 1, 0 of R9) • (0, 0,1,0) DlSPTMG after adjustment (2) Advancing DISPTMG Figure 16 Adjustment of Display Timing Signal HITACHI 680 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66841F Internal Registers Control register 1 (figure 18) is composed of four bits whose functions are described below. The HD66841F has an address register (AR), 16 data registers (RO-RI5), and 8 palette registers (PI-PS). Write the address of a register to be used into the address register (AR), but only after setting the PS bit of control register 1 (RO) to 0 for a data register or 1 for a palette register. The MPU transfers data to the register corresponding to the written address. • DIZ bit: Changes the method used to control the gray-scale display of a checker-board pattern. - DIZ = 0: Data thinned out on a dot basis every frame - DIZ = 1: Data thinned out on a frame basis every frame Registers are valid only in the internal register programming method, they are invalid (don't care) in the pin programming method. • PS bit: Specifies access to data registers (RO-RI5) or palette registers (PI-P8). In MPU programming mode: - PS = 0: Specifies access to data registers (RO-RI5) only. - PS = 1: Specifies access to palette registers (PI-P8) only. The 4-bit address register (figure 17) is used to select one of the 16 data registers or 8 palette registers. It can select any data register or palette register according to the register address written to it by the MPU. The addres register itself is selected if the RS signal is set low. Address Register (AR) , AR / Data bit 3 I I 2 1 I 0 Value '- Register address Figure 17 Address Register Control Register 1 (RO) , RO / Data bit Function 3 2 1 0 DIl PS DSP DCK Figure 18 Control Register 1 HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 681 HD66841F This register can be always accessed regardless of the PS bit setting, but it cannot be read after the PS bit is set to 1. Read it when PS is O. In ROM programming mode: Data for LVIC-II internal data registers can be written into $000 1 to $OOOF when bit 2 (the PS bit) of $0000 is set to O. Data to be set into palette registers can be written into $0011 to $0018 when the PS bit of $0010 is set to 1 (figure 19 (a». (ROM addresses AD-A4) • DSPbit - DSP = 1: The DISPTMG signal is generated internally. - DSP = 0: The DISPTMG signal is supplied externally. (However, note that if DCK is I, the DISPTMG signal is generated internally even if DSP is 0.) • DCKbit - DCK = 1: The OOTCLK signal is generated internally. - DCK = 0: The DOTCLK signal is supplied externally. $0000 Internal data registers iii PS b'it B3 Not used $0010 :tm :'S,,,, $0018 $0019 f- RO JPa~~ registers $001F Figure 19 PS Bit Functions in ROM Programming Method HITACHI 682 Hitachi America, Ltd,· Hitachi Plaza· 2000 Sierra Point Pkwy,· Brisbane, CA 94005-1819· (415) 589-8300 HD66841F Control Register 1 (Rl) Control register 2 (figure 20) is composed of four bits whose functions are described below. • MC bit: Specifies M signal alternation. - MC 1: The M signal alternates every line. - MC =0: The M signal alternates every frame. = • DON bit: Specifies whether the LCD is on or off. - DON = 1: LCD on - DON 0: LCD off = • MS I, MSO bits: Specify buffer memory type. - (MS1, MSO) (0, 0): No memory - (MS1, MSO) (0,1): 8-kbytes memory - (MSl, MSO) =(I, 0): 32-kbytes memory - (MS1, MSO) (1,1): 64-kbytesmemory = = = Vertical Displayed Lines Register (R1, R3, HighOrder 1 Bits of R4) The vertical displayed lines register (figure 21) is composed of ten bits (R2, R3, and the high-order two bits of R4). It specifies the number of lines displayed from top to bottom of the screen, called the number of vertical displayed lines. This register can specify both even and odd numbers in single screen modes with V-drivers positioned on one side, i.e., in display modes 2, 4, and 7-9, but can specify only even numbers in other modes. The value to be written into this register is Nvd - I, where Nvd is the number of vertical displayed lines. eL3 Period Register (Low-Order 2 Bits of R4, RS) The CL3 period register (figure 21), is composed of six bits (R5 and the low-order two bits of R4). It specifies the CL3 signal period in 8-color display modes with horizontal stripes (display modes 13-15), so it is invalid in other modes. CL3 is the clock signal used by the LVIC-ll to output RGB data separately to LCD drivers. The value to be written into this register is Npc - I, i.e., (Nhd + 6) x 1/3 - I, where Nhd is the number of horizontal displayed dots x 1/8. If (Nhd + 6) is not divisible by 3, round it off. R1 / Data bit Function \ 3 2 1 0 Me DON MS1 MSO ~---------F-~-~--1O--C-o-n-tto--I-R-e~-.-t-~-1-----~----------~ . -_____________ ______--, Data bit Value Npc-1 =(Nhd +6)x 1/3-1 Nvd-1 Ver1icaI displayed lines register (Unit: lines) CL3 period register (Unit: characters) Nvd: Number of vertical displayed lines Npc: CL3 period =(Nhd + 6) x 1/3 Nhd: Number of horizontal displayed characters (number of horizontal displayed dots x 1/8) Figure 11 Vertical Displayed Lines Register and CL3 Period Regist~ HITACHI . Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 .. _ - - - _.. --~--.------- 683 ~ HD66841F This register can specify even numbers only. In dual-screen modes (display modes I, 6, and 16), the most significant bit of this register is invalid. When writing into this register, shift (Nhd - 1) in the low-order direction for one bit to cut off the least significant bit Figure 23 shows how to write a value into the register when Nhd = 90. Horizontal Displayed Characters Register (R6, R7) The horizontal displayed characters register (figure 22) is composed of eight bits (R6, R7). It specifies the number of characters displayed on one horizontal line, called the number of horizontal displayed characters. AS R7 Data bit Value Nhd - 1 without its least signifiant bit (Unit: characters) Figure 22 Horizontal Displayed Characters Register RS R7 Data bit 3 2 1 0 Value 0 0 1 0 90-1 =89 \ \1 / .. o 3 2 1 0 1 1 0 0 ~I 10- - I Cut off I o o Figure 23 How to Write the Number of Horizontal Displayed Characters HITACHI 684 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66841F CL3 Pulse Width Register (R8) Fine Adjust Register (R9) The 4-bit CL3 pulse width register (figure 24) specifies the high-level pulse width of the CL3 signal. In 1Ff-type LCD modes, a data hold time is necessary and it is determined by the high-level pulse width of the CL3 signal. The CL3 signal is output with the high-level pulse width specified by this register even when the LVIC-II is not in a 1Fftype LCD mode. The 4-bit fine adjust register (figure 25) adjusts the externally supplied display timing signal (DISPTMG) to synchronize its phase with that of LCD data. The value to be written into this register depends on the interval between the rising edge of the DISPTMG signal and the display start position. For more details, refer to the Display Timing Signal Fine Adjustment section and table 12. This register is invalid if the DISPTMG signal is generated internally, that is, if either the DCK bit or the DSP bit of control register I (RO) is 1. RS / Data bit \ I2 I 1I0 3 (Unit: Characters) Value I - - In TN-type LCD modes: Npw ' - - In TFT-type LCD modes: Npw - 5 Npw: High-level pulse width ofthe CL3 signal (number of dots while the CL3 signal is high x 1/8) Figure 24 CL3 Pulse Width Resister R9 / Data bit 3 Function and Value 2 I 1I I \ 0 I L Absolute value of Nda (Unit: Dots) ' - - Polarit y selection { 0: - (advances the DISPTMG signal) 1: + (delays the DISPTMG signal) Nda: Number of dots adjusted Figure 2S Fine Adjust Register HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 685 HD66841F PLL Frequency-Division Ratio Register (RIO, Rll) The 8-bit PLL frequency-division ratio register (figure 26) specifies the PLL frequency-division ratio used for generating dot clock pulses by a PLL circuit. The PLL frequency-division ratio is the ratio of the DOTCLK signal's frequency to the horizontal synchronization signal's (HSYNC) frequency. The LYlC-I1 generates the DOTCLK signal according to this ratio. This register is invalid if the DOTCLK signal is supplied externally, i.e., it is valid only in the internal register programming method when the DCK bit of control register 1 (RO) is O. The value to be written into this register is NpLL 731, where NpLL is the PLL frequency-division ratio which can be obtained from the following equation: NpLL -731 = Ncht x n -731 Ncht: Total number of horizontal characters on CRT (Total number of horizontal dots on CRT x lin) n: Horizontal character pitch (number of horizontal dots making up a character) Ncht can be also obtained from the CRT monitor specifications as follows; Ncbt = lin x (DOTCLK frequency/HSYNC frequency) Vertical Backporch Register (R12, RI3) The 8-bit vertical backporch register (figure 27) specifies the vertical backporch which is the number of lines between the active edge of the vertical synchronization signal (VSYNC) and the rising edge of the display timing signal (DISPTMG), if the DISPTMG signal is generated internally. For details on the vertical backporch, refer to the Display Timing Signal Generation section and figure 9. This register is invalid if the DISPTMG signal is supplied externally. It is valid only in the internal register programming method when the DSP bit of control register 1 (RO) is 1. However, note that if the DCK bit of control register 1 (RO) is I, the DISPTMG signal will always be generated internally so this register is enabled even if the DSP bit of control register 1 (RO) is O. R11 R10 Data bit Value NPLL: PLL frequency-division ratio = DOTCLK frequency/HSYNC frequency Figure 26 PLL Frequency-Division Ratio Register R13 R12 Data bit Value Ncvbp-1 (Unit: Lines) Ncvbp: Vertical backporch = number of lines between the active edge of the VSYNC signal and the rising edge of the DISPTMG signal (the SPS pin must be set high if the VSYNC signal is active-high or low if it is active-low) Figure 27 Vertical 8ackporch Register HITACHI 686 Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 HD66841F Horizontal Backporch Register (R14, R15) The 8-bit horizontal backporch register (figure 28) specifies the horizontal backporch which is the number of dots between the rising edge of the HSYNC signal and that of the display timing signal (DISP1MG), if the DISP1MG signal is generated internally. For details on the horizontal backporch, refer to the Display Timing Signal Generation section and figure 9. This register is invalid if the DISPTMG signal is supplied externally. It is valid only in the internal register programming method when the DSP bit of control register 1 (RO) is 1. However, note that if the DCK bit of control register 1 (RO) is 1, the DISPTMG signal will always be generated internally so this register is enabled even if the DSP bit of control register 1 (RO) is O. R14 R15 ~ / Data bit Value Nchbp: 3 121 1 I0 I3 121 1 Nchbp-1 I0 \ (Unit: Dots) Horizontal backporch =number of dots between the rising edge of the HSYNC Signal Oust before the rising edge of the DISPTMG signal) and the rising edge of the DISPTMG signal Figure 28 Horizontal Backprocb Registers HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589·8300 687 HD66841F Palette Registers (PI-PS) The eight 4-bit palette registers (figure 29) each specify one of 13 gray-scale levels for one of the eight colors provided by RGB signals. Use ihese registers to enable an 8-level gray-scale display appropriate to the characteristics of the LCD panel. P1-P8 Grayscale Figure 29 Palette Registers HITACHI 688 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66841F Reset The RES signal resets and starts the LVIC-II. The reset signal must be held low for at least I J1S after power-on. Reset is dermed as shown in figure 30. State of Pins after Reset In principle, the RES signal does not control output signals and it operates regardless of other input signals. Output signals can be classified into the following five groups, depending on their reset states: • Retains pre-reset state: CL2, AO-A4 • Driven to high-impedance state (or fixed low if no memory is used): RDO-RD7, ODO-GD7, BDO-BD7 • Fixed high: MWE, CL4, M, CU, CD, MCSl, • Fixed low: MAO-MAl2, RO-R3, 00-03, BO-B3, CL3, FLM • Fixed high or low, depending on memory used (table 13): MAl3-MA15, MeSO State of Registers after Reset The RES signal does not affect data register contents, so the MPU can both read from and write to data registers, even after reset Registers will retain their pre-reset contents until they are rewritten. The palette registers, however, are usually set to their default values by a reset. For the default values, refer to the Gray-Scale Palette section and table 11. Memory Clear Function After a reset, the LVIC-II writes Os in the memory area specified by pins or register bits MSO and MSl (table 7). During reset (Reset state) 5 After reset '------~-~ Figure 30 Reset Def"mition Table 13 State of Pins after Reset and Memory Type Memory Type MA13 MA14 MA15 Meso No memory Low Low High High 8-kbytes memory High High High Low 32-kbytes memory Low Low High Low Low Low Low Low 64-kbytes memory HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 689 HD66841F User Notes 1. The following limitations are imposed if no memory is used (MSO = 0, MSI = 0): • Dual-screen display modes (modes 1,6, and 16) are disabled. • LCD systems with Y-drivers on both sides are disabled, even if a mode for a system with Ydrivers on both sides (mode 3, 5, 10, 12, or 14) is selected; the LVIC-II operates in exactly the same way as in the corresponding mode for a system with V-drivers on one side (mode 2, 4, 9, 11, or 13). The CL4 pin must be left disconnected in this case. 2. With the internal register programming method, the operation of the LVIC-II after a reset cannot be guaranteed until its internal registers have been written to. 3. The memory clear function might not work normally at power-on or after a reset if the MSO and MS 1 pins or bits are not set correctly to the value corresponding to the type of memory being used. 4. Since the LYlC-II is a CMOS LSI, input pins must not be left disconnected. Refer to the Pin Description and table 1 for details on pin handling. Programming Restrictions The values written into the LVIC-II's internal registers have the limits listed in table 14. The symbols used in table 14 are defined in table 15 and figure 31. HITACHI 690 Hitachi America', Ltd,. Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819· (415) 589-8300 HD66841F Table 14 Limits on Register Values Applicable Item Limits Screen configuration 4 S Nvd ~ (Ncvbp + Ncvsp) -1 S 1024 Notes Register. 4 S Nhd S (Nchbp x 1/n + Nchsp) -1 ~ 506 1,2 R2, R3, R4, R6, R7 (Nhd + 6) x n x Nvd x fFlM S f DOTClK S 1,3 R2, R3, R4, R6,R7 1 S Npw S (Nhd + 6)/2 - 1 4 1 S NpwS Nhd 5 R4, R5, R6, R7,RS 1 S Npw S Npc - 1 6 1 S Nchbp S 256 7 R12,R13 30MHz CL3signai control DISPTMG signal generation No memory 1 ~ Ncvbp ~ 256 7 R14,R15 4 ~ Nhd ~ Nchsp - 4 S R2, R3, R4, 4 ~ Nvd ~ Ncvsp-1 S R6,R7 Notes: 1. Lowercase n indicates the horiZontal character pitch which is the number of horizontal dots composing a character. 2. Nhd S 250 in the dual screen modes (display modes 1, 6, and 16). 3. fFlM is the FLM signal frequency and fOOTClK is the CRT display dot clock (DOTCLK) frequency. flOOTCK < fOOTClK x 15/16 or flooTCK - fOOTClK (flOOTCK is the LCD dot clock (LDOTCK) frequency) 4. In display modes 1, 2, 4, and 6-8 5. In display modes 3, 5, and 9-12 when Npw - (value in RS) + 5 6. In display modes 13-15 when Npw - (value in RS) + 5 7. (Value in R14 and R15) S (Nchsp x n + Nchbp) - Nhd x n - 2 (n - horizontal character pitch) (Value in R12 and R13), (Ncvsp + Ncvbp) - Nvd - 2 S. Nht - Nchsp + (Nchbp x 1/n), Nvd < Ncvbp + Ncvsp (Nht - (Nhd + 6) if buffer memory is used) (n - horizontal character pitch) HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 691 HD66841F Table 15 Symbol Definitions Symbol DeflnHlon Nchd Number of horizontal displayed characters on the CRT display (number of horizontal displayed dots on the CRT display x 1/8) Nchsp Number of characters between the rising edge of the DISPTMG signal and that of the HSYNC signal (number of dots between the rising edge of the DISPTMG signal and that of the HSYNC signal x 1/8) (- horizontal synchronization position) Nchbp Number of dots between the rising edge of the HSYNC signal and that of the DISPTMG signal (just after the rising edge of the HSYNC signal) (- horizontal backporch) Ncvbp Number of lines between the active edge of the VSYNC signal and the rising edge of the DISPTMG signal (just after the active edge of the V$YNC signal) (- vertical backporch) Ncvsp Number of lines between the rising edge of the DISPTMG signal and the active edge of the VSYNC signal (.. vertical synch position) Ncvd Number of vertical displayed lines on the CRT display Nhd Number of horizontal displayed characters on the LCD (number of horizontal displayed dots on the LCD x 1/8) Npc Number of characters during one CL3 signal period (number of dots during one CL3 signal period x 1/8) Npw Number of characters while the CL3 signal is high (number of dots while the CL3 signal is high x 1/8) Nht Number of characters during a CL 1 signal period (number of dots during a CL 1 signal period x 1/8) Nvd Number of vertical displayed lines on the LCD HITACHI 692 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300 HD66841F ------~---~---------~ DOTCLK DISPTMG - Nchd I HSYNC Nchsp Nchbo VSYNC DISPTMG Ncvs Ncvd r1JlSl ___ ___ n~_____---JnIL CL2 CL1 -t----------------t----~r-l~-----------4 CL1 Cl3 Nhd ~ I~------------------------~~ - I Npw I Npc Nht FLM CL1 I II~ ___ ~--------------------~ Nvd I I. I 4 (Note) ~ Note: For a dual screen, the Nvd period is doubled. Figure 31 Symbol Definitions HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 693 HD66841F Comparisons with HD66840F Mode number: Pin setting: Gray-Scale Generation Method The HD66840F shifts display data so that data on different lines will be thinned out in different frames, but the HD66841F shifts display data further so that data on different dots will be thinned out in different frames. This reduces deterioration of display contrast. Display Mode Mode 16 of the HD66840F (for 8-color display with horizontal stripes and X- and Y-drivers positioned on both sides of the LCD) has been modified into the following new mode in the HD6684 IF: 16 (DM3, DM2, DMl, DMO) = (1, 1, 1, 1) Display colors: 8 colors LCD data output: -12-bit-based data transfer - Dual screen configuration LCD driver settings: X-drivers and Y-drivers set on one side Stripes: Vertical Every frame Alternation mode: In this mode, the HD66841F outputs upper screen data and lower screen data alternately, as shown in figure 32. In this case, the CL2 frequency is one quarter of the LDOTCK frequency. Cl2 U X L X U X L X U X L >C U X L X U X L X U X L >C U X L X U X L X U X L >C U: Upper screen data L: Lower screen data Figure 32 Operation in New HD66841F Mode 16 Table 16 Gray-Scale Palette Numbers of registers HD66840F HD66841F 16 24 (palette registers have been added to the HD66840's registers) between CRT display colors Possible (any of 13 levels assignable to each and gray-scale levels of 8 colors) Selection of correspondence Impossible HITACHI 694 Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819' (415) 589-8300 HD66841F Absolute Maximum Ratings Item Symbol Ratings Un" Power supply voltage . Vee -0.3 to 7.0 V Input voltage Vln -0.3 to Vee + 0.3 V Operating temperature Topr -20 to +75 °C Storage temperature Tstg -55 to +125 °C Notes: 1. Permanent LSI damage may occur if maximum ratings are exceeded. Normal operation should be under recommended operating conditions (Vee. 5.0V ± 10%, GND • 0 V, Ta _ -20°C to +75°C). "these conditions are exceeded, LSI reliability may be affected. 2. All voltages are referenced to GND • 0 V. Electrical Characteristics DC Characteristics (Vee =5.0 V ± 10%, GND =0 V, Ta =_20°C to +75°C, unless otherwise noted) Item Symbol Min Max Unit VIH Vee -0.5 Vee + 0.3 V Test Conditions Note(s) Input high voltage -- RES pin TTL interface pins 2.0 Vee + 0.3 1 TTL interface pins 2.2 Vee + 0.3 4 CMOS interface pins 0.7 Vee Vee + 0.3 Input low voltage -0.3 O.S TTL interface pins TTL interface pins, RES pin -0.3 0.6 CMOS interface pins -0.3 0.3 Vee VIL V 5 Output high voltage TTL interface pins VOH CMOS interface pins V 2.4 Vee- O.S IOH • -200 JJA IoH - -200 J1A 2 Output low voltage TTL interface pins 0.4 VOL V IoL -1.6mA 2 IOL .. 200~A O.S CMOS interface pins Input leakage current All inputs expect IlL -2.5 2.5 ~A 3 ITSL -10.0 10.0 JJA 3 250 mW 1/0 common pins Three-state (off-state) leakage current 1/0 common pins Power dissipation Icc fOOTeLK .. 30 MHz, output pins left disconnected HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819· (415) 589-8300 695 -----,------- HD66841F Notes: 1. TIL interface inputs: R, G, B, HSYNC, VSYNC, DISPTMG, RDo-RD7, GDo-GD7, BDo-BD7, Do-D3, AOiRDlXDOT, RS/ADJlA4, CSlMSO CMOS Interface inputs: DMo-DM3, DOTE, PMODO, PMOD1, A11YL0-A31Y12. 2. TIL interface Inputs: AOJRDIXDOT, A1IYLo-A3IYL2, Do-D3, RDo-RD7, GDo-GD7, BDo-BD7, MAo-MA15, MOSO, MOS1, MWE, Rs/ADJ/A4 CMOS interface inputs: CU, CD, ROILUo-R3ILU3, GOILDo-G3!lD3, B0-B3, M, FLM, CL1, CL2, CL3,CL4 3. VO common pins: AOJRDIXDOT, A1IYLo-A3IYL2, Do-D3, RDo-RD7, GDo-GD7, BDo-BD7, RS/ADJ/A4 Inputs other than 00 common pins: HSYNC, VSYNC, PMODO, PMOD1, CSlMSO, WRlMS1, RES, DOTe, DMo-DM3, LDOTCK, DOTCLK, R, G, B, DISPTMG 4. m Interface inputs: WRlMS1, LDOTCK, DOTCLK 5. interface inputs: WRlMS1 m HITACHI 696 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66841F AC Characteristics (Vee =5.0 V ± 10%, GND =0 V, 18 =-20°C to +75°C) Video Signal Interface Item Symbol Min Max Unit Reference DOTCLK cycle time tevco 33 1000 ns Figure 33 DOTCLK high-level pulse width tWOH 16.5 tWOL 16.5 DOTCLK low-level pulse width OOTCLK rise time ns ns tor1 5 ns DOTCLK fall time tDl1 5 ns RGB setup time tvos 10 ns ns tVDH 10 DISPTMG setup time tOTS 10 ns DISPTMG hold time tOTH 10 ns HSYNC setup time RGB hold time tHSS 10 ns HSYNC hold time tHSH 10 ns Phase shift setup time tPDS 2tevco ns Phase shift hold time tPDH 2tCYCO ns Input signal rise time t0r2 10 ns too 10 ns Input signal fall time Figure 33 except for OOTCLK HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 697 HD66841F tWOl. tWOH DOTCLK R,G,B tHSS HSYNC DOTCLK DISPTMG HSYNC VSYNC Jl;t ~ \ I I \ \ r \ O.SV Figure 33 Video Signal Interface HITACHI 698 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66841F Burrer Memory Interface Hem Symbol Min Unit Reference tRC 5tcvco-5O ns Figures 34 and 35 RDo-RD7. GDO-GD7. BDo-BD7 data setup time tSMD 25 ns RDo-RD7. GDO-GD7. BDo-BD7 data hold time ltiMO 0 ns Read cycle time Write cycle time twc 6tcvco-5O ns Address setup time lMAs tcvco-30 ns Address hold time tWR tcvco- 3O ns Chip select time lew 4tcvco-4O ns Write pulse width twp 4tcvco-40 ns RDo-RD7.GDO-GD7.BDo-BD7 output setup time tSMDW 2tcvco- 25 ns RDo-RD7. GDO-GD7. BDo-BD7 output hold time ltiMDW 0 ns Note: tcvco is the DOTCLK cycle time (min 33 nSf max 1000 ns). Read 1 Read 2 Write Read 1 MAO-MA15 RIJO...RD7, G~D7 BDO-BD7 (Memory .... LVIC) Figure 34 Burrer Memory Interface (RAM read timing) HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-18.19· (415) 589-8300 699 HD66841F T1 (= 51o.co) 2 OOlOJ( ,.. .... - ,--/' I fIN'O-MI'.15 -- ,.. .... -- .... -- ,.. .... -- -"" ... - .... -- ...., , I I ,.. , , I I , I ,.. , I ,.. r.., tw:: I , -~K 2AV O.8V"" 2.4V O.8V Is... tMlS M:SO, M::S1 (Write) ,.. .... -- --- ""' tMlS ~ tON 2.4V O.8V ~ two "'"' 2.4V O.8V l~fWN.. tSM:!N ROO-RDl, GDO-GD~ r2.4V O.8V BIJO.-8D7 (LVIC-IH Memol}') ~ Figure 3S Buffer Memory Interrace (RAM write timing) LCD Driver Interrace TN-Type LCD Driver Item Symbol Min Cl2 cycle time tWCL2 Cl2 high-level pulse width Max Unit Reference 166 ns Figures 36 and 37 tWCL2H 50 ns Cl2 low-level pulse width tWCl2L 50 ns Cl2 rise time teL2r 30 ns Cl2 fall time teL2f 30 ns Cl1 high-level pulse width tWCL1H Cl1 rise time tellr 30 ns Cl1 fall time tell! 30 ns Cl1 setup time tSCll 500 ns Cl1 hold time tHCL1 200 ns FlM hold time tHF 200 ns M output delay time toM Data delay time too -20 lDOTCK cycle time tWLDOT 41 ns 200 300 ns 20 ns ns Note: All values are measured at fCl2 .. 6 MHz. HITACHI 700 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66841F TFT-Type LCD Driver Item Symbol Min CL2 cycle time (X-drivers on one side) trcl2s CL2 high-level pulse width (X-drivers on one side» Max Unit Reference 133 ns Figures 38 and 39 trCl2HS 30 ns CL2 low-level pulse width (X-drivers on one side) trCl2LS 30 ns CL2 cycle time (X-drivers on both sides) trcl20 266 ns Cl2 high-level pulse width (X-drivers on both sides) trCl2HO 80 ns CL2 low-level pulse width (X-drivers on both sides) trCl2LO 80 ns CL2 rise time teL2r 30 ns CL2 fall time teL2f 30 ns Cl1 high-level pulse width trCL1H Cl1 rise time teL1r 30 ns Cl1 fall time teL1! 30 ns Data delay time 20 ns 200 ns tOOl -20 Data setup time tLDS 15 ns Data hold time ttOH 15 ns Cl1 setup time trscL1 500 ns Cl1 hold time trHcLl 200 ns Cl3 delay time tocL3 50 ns Mdelaytime tOM FlM hold time trFH 200 ns tWLDOr 33 ns lDOTCK cycle time 300 ns HITACHI Hitachi America, ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 701 C12 ,,04t3, GO-G3 B0-B3 tWCLlH '-1 tacLI Cll O.7Vcc FLM M Figure 36 TN·Type LCD Driver Interface I I I I I I I I I ISS I I I I I I I I I ISS' , , , , , , , , CL1 ~--------~s~~----~s~------ FLM M (MC bit =0) M (Me bit =1) ss---J --u-uLS1J1s{L..S1.JlJlJU-U-U-U..J S~ Figure 37 CLl, FLM, and M (expanded detaO of figure 36) HITACHI 702 Hitachi America, Ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 HD66841F X-drivers on one side CL2 R0-R3 GO-G3 BO-B3 X-drivers on both sides tTCL2D CL2 R0-R3 GO-G3 BO-B3 CLl CL3 o. 7Vcc FlM M Figure 38 TYr·Type LCD Driver Interface Cll __~n~________________~n~____ Cl3 Cl4 -----, (CL3divided IL._ _ _ _ _ _..J by 2) J J L I..-tTfH ~----------~ FlM M Figure 39 CLl, CL3, CL4, FLM, and M in Horizontal Stripe Modes (expanded detail of figure 38) HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 703 II HD66841F Register Programming MPU Interface Item Symbol Min RD high-level pulse width tWROH RD low-level pulse width Max Unit Reference 190 ns Figure 40 tWRDL 190 ns WR high-level pulse width tWWRH 190 ns WR low-level pulse width twwRL 190 ns es, RS setup time es, RS hold time tAS 0 ns tAH 0 ns 00-03 setup time tosw 100 ns 00-03 hold time tOHw 0 ns 00-03 output delay time tOOR 00-03 output hold time tOHR CS ns 10 <-'~ ..,.. 2.0V ~ ~ o.sv RS ns 150 ~ tAS Wi tWRDL " -" .." J 2.0V,,~ o.sv ) tWWEH I tOOR .....- 00-03 2.4 V O.SV _11k. tWRDH ~ I ~ Wi WI twweL - 2.0 V o.sv '4- 1\ c "- Output - ~ toHR 2.0 V O.SV Input tOHW ~ Figure 40 MPU Interface HITACHI 704 Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 HD66841F ROM Interface Item Symbol Min A signal cycle time tcYCA 528 A signal rise time tAr 100 ns A signal fall time tAl 100 ns D signal ROM data setup time tOSWD 120 ns D signal ROM data hold time tOHWO 0 ns Note: Max Unit Reference ns Figure 41 tCYCA - 16 tCYCO (tCYCO: DOTCLK cycle time) - tCVCA AO-A4 (LVIC .... ROM) 2.4 V ")< tAr-tAl ~ toswo DO-D3 (ROM .... LVIC) ~ Valid )< Valid 2.0 V O.BV tllHWO Valid K Figure 41 ROM Interface PLL Interrace Max Unit Referenc2 tUI 80 ns Figure 42 CU rise delay time tUr 80 ns CD fall delay time tDf 80 ns CD rise delay time tOr 80 ns Max Unit Reference ~ Figure 43 Item Symbol CU fall delay time Min Reset Input Item Symbol Reset input pulse width tRES Min HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 705 HD66841F DOTCLK HSYNC Figure 42 PLL Interrace .r 1. tRES -- --X'----~~·8V Figure 43 Reset Input Load Circuits TTL Load Pins R c Remarks MAO-MA15, MWE, MCSO, MCS1, BDO-BD7, GDO-GD7, RDO-RD7 2.4kn 11 kn 40 pF tr, tf: Not specified AO/RDIXDOT, A 1IYLo-A3IYL2, A4/RS/ADJ 2.4kn 11 kn 40 pF tr, tf: Specified Pins c Remarks CL1, CL2 40pF tr, tf: Specified Ro-R3,GO-G3,BO-B3,FLM, M, CU, CD, CL3, CL4 40pF tr, tf: Not specified Capacitive Load HITACHI 706 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66841F All diodes - 1S20748 Figure 44 TIL Load Circuit ~c I Figure 45 Capacitive Load Circuit HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819. (415) 589-8300 707 HD66850F-----Color LCD Interface Engine (CLINE) Description Features The HD66850F CLINE interface controller converts multi-color video signals for CRT display into color or monochrome LCD data. • • This device enables an LCD system to replace a CRT display system without any changes to the original display system. It automatically adapts to display modes of the IBM-VGA (Video Graphics ArrayTM) system, facilitating the configuration of an LCD system. The CLINE can control1N-type (Twisted rematic) color and monochrome LCDs and can display a maximum of 4096 color levels or 16 gray levels. • • Note: Video Graphics Array is a trademark of International Business Machines Corporation, U.S.A. • • Various LCD panel sizes supported - 640 or 720 dots wide -- 32 to 512 lines high Programmable display size - 32 to 720 dots wide - 32 to 512 lines high Easy-to-see display -Centering - Stretching (display stretched to fill out the panel) Improved gradation display quality using the pulse width modulation method Desired gradation levels assignable to each display color through the use of internal gradation level palettes Changeable LCD frame frequency - Through the use of a multi-port RAM frame buffer - Within the range of 1/2 to 2 times of CRT display dot clock frequency High-speed operating frequency: 32 MHz (CRT display dot clock) Recommended LCD drivers: HD66106 and HD66107T (column and common drivers) Single power supply: +5 V I 36-pin flat plastic package (FP-136) HITACHI 708 Hitachi America, Ltd.· HitachiPlaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819' (415) 589-8300 HD66850F Pin Arrangement GND6 LOO LD2 LD1 LOO GND5 XCl1 YCl1 Cl2 FlM M SCLK DATAE DISPON VCC5 LMODE4 LMODE3 LMODE2 LMODE1 LMODEO GND4 HSIZE VSIZE VMODE MMODE1 MMODEO VCC4 PMODE1 PMODEO SYNC TEST1 TESTO GND3 MD15 Note: Pin No.9 is not used; must be fixed low. HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 709 II HD66850F Pin Description Symbol Pin No. Power supply Vcc 1 Vcc7 14,34,53,76, 88, 115, 124 All of these pins must be connected to a +5V supply GN01 GN08 GN01-GN07 16,46,70,82, 97,102,131,136 All of these pins must be grounded. DO - 07'1 (M) 116 - 123 MPUIROM or program interface Pin Name 110 'TYpe OataO-7 Function 110 Transfer data between internal registers and MPU -------------------------------------------------------------------------00-07'1 (R) 116-123 OataO-7 Input data to internal registers from external ROM DOTE (P) 130 Dot clock edge change Switches RGB data latch timing High: Data latched at the rising edge of OOTCLK pulses Low: Data latched at the falling edge of OOTCLK pulses ~D-------(M)130----------R;;d---------------i~p~~-;~;;d;~~~li~;r~~di~g---- data from internal registers -------------------------------------------------------------------------AS (R) 130 Address 5 0 Outputs external ROM address 5 SP (P) 129 Spread display select I Selects either of the following display size modes High: Double - width display Low: Normal display VVR-------(M)129---------vvri~----------------i;ptrt;~-;;i;;ig~-~f~;~;~~g----- ______________________________________________ A4 (R) 129 Address 4 AJ3 (P) 128 Adjust 3 0 _________ _ ~~_~~o_~~!~~~!~~!!~ Outputs external ROM address 4 Adjusts the display timing signal (table 1) -~--------(M)-128---------C-hip~~I~------~----i~p~t;-;~h~-;;I;.ct;~~~t~~~i;ct- the CLINE High: The CLINE not selected Low: The CLINE selected AJ2 (P) 127 Adjust 2 Adjusts the display timing signal (table 1) RS (M) 127 Register select Inputs a register select signal to select either CLINE data registers or index register High: Data registers Low: The index register --------------------------------------------------------------------------A2 (R) 127 Address 2 0 Outputs external ROM address 2 AJO, AJ1'2 (P) 125, 126 Adjust 0, 1 ______________________________________________ AO, A1*2 (R) 125, 126 Address 0.1 o Adjust the display timing signal ~~~-!t-- ___________________ _ Output external ROM addresses 0 and 1, respectively (M): For MPU programming method (R): For ROM programming method (P): For pin programming method 110: Input/Output HITACHI 710 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66850F Pin Description (cont.) Symbol CRT interface RO-R3'3 1-4 Red serial data 0 - 3 Input CRT display R data GO-G3"3 5-8 Green serial data 0 - 3 Input CRT display G data or monochrome data BO-B3'3 10-13 Blue serial data 0 - 3 Input CRT display B data: For monochrome display. B1 selects 16gray-scale display and BO indicates the type of CRT display data input. B1 • high: Prohibited B1.low: 16-level gray scale display BO - high: 64-color data input BO • low: 16-level gray scale data input DOTCLK 15 Dot clock Inputs the dot clock pulses for CRT display HSYNC 134 Horizontal synchronization Inputs the CRT horizontal synchronization signal VSYNC 133 Vertical synchronization Inputs the CRT vertical synchronization signal BLANK 135 Blanking Inputs a display timing siganl indicating horizontal or vertical display period. or a blank signal indicating the display period with border area period UD4UD7'4 111 -114 LCD upper panel data 4-7 0 Output LCD upper panel data or Rdata UDOUD3'4 107-110 LCD upper panel data 0-3 0 Output LCD upper panel data or Gdata LD4LD7'4 103 -106 LCD lower panel data 4-7 0 Output LCD lower panel data or Bdata LDOLD3'4 98-101 LCD lower panel data 0-3 0 Output LCD lower panel data or I data XCL1'4 96 X-driver latch clock 0 Outputs the LCD data latch clock pulses for X-drivers YCL1 95 Y-driver shift clock 0 Outputs the LCD data line shift clock pulses for Y-drivers Cl2 94 Y-driver shift clock 0 Outputs the LCD data line shift clock pulses for Y-drivers FLM 93 First line maker 0 Outputs the first line maker for Y-drivers LCD interface Pin No. Pin Name 1/0 Type Function 1/0: Input/Output HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 711 I HD66.850F Pin Description (cont.) 1\'Pa Symbol Pin Noo Pin Nama LCD interface M 92 M 110 Function 0 Outputs a signal for converting LCD SCLK 91 . Shift lock 0 DATAEo4 90 Dataenable 0 Indicates LCD data display period DISPON·4 89 Display on 0 Controls LCD onloff Buffer memory interfae. Mode control drive signals to AC Outputs clock pulse with a frequency identical to CL2 but without a retrace period LOOTCK 17 LCD dot clock I Inputs LCD dot clock pulses MDOMD15·S 54-69 Memory data 0 - 15 0 Output data to be written to buffer memory MSOMS15·s 18-33 Memory serial data 0-15 MAOMA7·s 38-45 Memory address 0-7 0 Output buffer memory addresses 0-7 MA8/ SOE1·s 37 Memory address 8/ serial output enable 1 0 Outputs buffer memory address 8 when 1-Mbit RAMs are used or outputs a serial data output enable signal when 256-kbit RAMs are used SOEO·s 36 Serial output enable 0 0 Output a serial data output enable signal for buffer memory WE·s 48 Writeenable 0 Outputs a write enable signal for buffer memory DTIOE·s 47 Data transfer/output enable 0 Outputs a data transfer signal or an output enable signal ~or buffer memory RASO, RASi·s 51,52 Row address strobe 0, row address strobe 1 0 Outputs a row address strobe signal for buffer memory CAS, CASL·S 49,50 Column address strobe 0 Outputs a column address strobe signal for buffer memory SC·s 35 Serial clock 0 Outputs serial read clock pulses for buffer memory PMODEO, PMODE1 74, 75 Program mode 0, program mode 1 Select a CLINE programming method (table 2) LMODEO- 83-87 LMODE4 LCD modeO-4 Select a display mode (table 7) MMODEO, MMODE1 77, 78 Memory mode 0, 1 Select a memory configuration (table 3) SYNC 73 Synchronization Select a basic clock for LCD High: OOTCLK Low: LOOTCK Input data read from buffer memory 00: InpUVOutput HITACHI 712 Hitachi America,ltd~. Hitachi Plaza· 2000 Sierra Point P.kwy.· Brisbane, CA 94005-1819. (415) 589-8300 HD66850F Pin Description (cont.) Type Symbol Pin No. Pin Name 110 Function Mode control (cont) VMODE 79 VGAmode I Specifies a CRT display system High: Non-VGA system Low: VGA system VSIZE 80 LCD vertical size Specifies the vertical size of the LCD panel High: 480 lines Low: 400 lines HSIZE 81 LCD horizontal size Specifies the horizontal size of the LCD panel High: 720 dots Low: 640 dots RES 132 Reset Inputs an external reset signal TESTO, TEST1 71, 72 Test 0,1 Used for tests; Must be grounded 110: InputlOutput Notes: 1. 2. 3. 4. 5. 6. Must be fixed low for pin programming method. Must be fixed low for MPU programming method. Must be fixed low when not used. Must be left disconnected when not used. Must be left disconnected when buffer memory is not used. Must be fixed low when buffer memory is not used. Table 1 Display Timing Signal Fine Adjustment Pin AJ3 AJ2 AJ1 AJO 0 0 0 0 0 0 0 0 0 Number of Dots Adjusted 0 1.1 -1 0 -2 0 0 0 0 0 0 0 1 0 +2 0 0 +4 +1 +3 0 +5 0 0 +6 Note: - (minus) indicates advancing the phase of the display timing signal, + (plus) indicates delaying the phase of the display timing signal. HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 713 HD66850F Table 2 Programming Method Selection Pin PMODE1 PMODEO Programming Method 0 0 Pin 0 1 Internal registers (MPU) 1 0 Internal registers (ROM) 1 Prohibited Table 3 Memory Configuration Selection Pin MMODE1 MMODEO Memory Configuration o o 0 1·Mbit RAM 1 256·kbit RAM 1 0 No memory No memory (when the CRT controller supports dual screen display) HITACHI 714 Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819· (415) 589·8300 HD66850F Block Diagram VMODE-+--------~~~-LL-~~-L~~~~~I LCD interface VSIZE HSIZE -+--' Line buffer memory (R, G, B) LMODE4LMODEO Gradation MSO-MS15 control Bus control Frame MDO-MD15 buffer memory control i .~ ~ (R, G, B) Stretch! Serial to parallel centering control ~ MAO-MA7 MASlSOE1 SOEO DTIOE WE SC RASO/RAS1 CASICASL converter MMODE 1/0 RES LDOTCK Gradation level Timing reducing circuit Internal register DOTCLK SYNC MPUIROM Interface PMODE11O D7-DO HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 7-15 ...,. ..... Table 4 Register List m ~ :J: s:<> 2: CS RS 3 » Index Reg 2 1 ii Reg. No. Register Name Program Units Readl Write 3 '" :::I. C> 6 5 * * * * 1 0 * * * * 1A3 IA2 IA1 lAO SP OISP ON AJ2 AJ1 AJO OH3 OH2 OH1 OHO a OV8 g. IR Index W 0 RO Control RIW STE R1 Input timing control Dot RIW DOTE AJ3 0 R2 Horizontal display size Character RIW 1 1 R3 Vertical c:isplay size (high-order) Line RIW 0 R4 Vertical c:isplay size (Iow-order) Line RIW OV7 OVS OV5 DV4 OV3 OV2 OV1 OVO (i' R5 Centering raster RIW CR7 CRS CR5 CR4 CR3 CR2 CR1 CRO ~ AS Centering character CC4 CC3 CC2 CC1 CCO BM BCI BCR BCG BCB 0 0 0 0 0 0 0 0 0 0 ~ · 0 0 0 N 0 0 0 en 0 0 0 0 0 CRE CCE :J: "'0 0 0 0 ~. iil :I ~~ 0 ~O 0 ~ • 0:1 0 0 0 0 0 0 0 0 0 0 ~ ~. CT '" 50 ::::> C') » - :I 0 1 0 0 0 0 0 0 Character OH5 OH4 RIW R7 Border color control AS Stretching control Line RIW SF3 SF2 SF1 5FO R9 Stretching index (high-order) Line RIW 5115 5114 5113 SI12 Sl11 SI10 519 Sl8 RIW 517 SIO R10 Stretching index (Iow-order) R11 0 ·Une (Raster) OHS RIW line Gradation level palette address R12 Gradation level palette data 515 SI4 SI3 SI2 SI1 W PS1 PSO PA3 PA2 PA1 PAD RIW PD5 PD4 P03 P02 P01 POD 51S <0 """ 0 0 '!: S' 0 ~ 0 · <0 ~ U1 0> <0 do c.> 0 0 Notes: ~ 0 0 ::T ~ 0 !:::;: '"<>_. '" 0 !" ;:;: ~. 2 0 0 P- 0 7 Data Bits 4 3 0 R13 Gradation c:isplay clock period (high-order) Dot RIW R14 Gradation c:isplay clock period (Iow-order) Dot RIW GCa GC7 GCS R15 Reserved 1. Bits marked with • cannot either read from or written to. 2. Bits marked with - are invalid and must be initialized to Os; they cannot be read. GC5 GC4 GC3 GC2 GC1 GCO c: '" 8 8 ~. 5' ~ .... .... ., ....t"'4 .... I'D (JQ fIl I'D fIl :r: 0 en en c.n (X) 0 ":ti HD66850F System Description Addition of an external frame buffer memory (dual-port RAM) allows the LCD frame frequency to be increased above that of a CRT. This enables easy-to-see gradation display and the control of LCDs having a dual screen configuration. Figure 1 shows an example of a VGA-compatible display system implemented with the CLINE. In this system, a color palette HD153119 (Hitachi), which is capable of digital output, is used with a VGA-compatible CRT controller. The CLINE receives digital color data and display sychronization signals from the color pallette and the CRT controller, respectively, and displays 4096color images on a color LCD, or 16-level gmyscale images on a monochrome LCD. With minor mOdification of the existing CRT display system, simultaneous LCD and CRT display is possible. CLINE operation may be controlled by internal registers through the 80-family MPU bus or an external ROM (as shown in the figure), or simply by pins. I MPU or ROM RO-R3 GO-G3 IPO-P! VGA compatible CRT controller Color palette HD153119 BO-B3 f-- ~ CLINE HSYNC,VSYNC DOTCLK, BLANK H LCD / B Frame buffer memory Analog data CRT Figure 1 System Block Diagram HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 717 HD66850F Functional Description Programming Methods To control CLINE functions, set the appropriate pins and/or internal registers according to the functions used. Controlling methods include pin and internal register programming methods. Internal register programming includes the MPU and ROM programming methods. Any of the three methods can be selected by the combined setting of pins PMODEO and PMODE I (table 2). The pin programming method uses pins to control CLINE functions, and the internal register programming method uses data written to the internal registers to control the functions. Address bus Data bus lOW lOR Figure 2 (a) shows a connection 'example of the CLINE and MPU buses for the MPU programming method. The CLINE bus, which is compatible with the 80-family microprocessor bus, can be directly connected to the host MPU bus. Figure 2 (b) shows a connection example of the CLINE and ROM for the ROM programming method. In this case, data is automatically loaded into internal registers from the external ROM attached for this purpose. Note that with the ROM programming method, the reset signal must be applied before rewriting the internal registers or gradation level palettes. II ==t~ I 1 ROM ~ I-- Decoder cs AD-AS 00-07 I , RS WR RO 00-07 HD66850F (a) Connection of MPU bus With CLINE AD-AS 00-07 HD66850F (b) Connection of ROM With CLINE Figure 2 Connection of MPU Bus or ROM with CLINE HITACHI 718 Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 HD66850F Automatic Adaptation to VGA Display Modes VGA CRT display system display size varies depending on the display mode. (VGA display sizes are: 320, 360, 640, or 720 dots wide and 350, 400, or 480 lines high.) The CLINE identifies the current display mode from VSYNC and HSYNC signal polarities and the display period length, and changes the display size automatically (tables 5 and 6). This function is enabled by setting the VMODE pin low. The CLINE, based on this function, automatically sets the necessary registers (RO, R2, R3, R4, R5, R6, R8, R9, and/or RIO) corresponding to the parameters of the display size, double-width display, gradation display clock, and stretching/centering display functions. (In MPU or ROM programming method, selection of vertical centering (bit 3 of RO) or stretching (bit 4 of RO) is not automatic.) Consequently, in VGA display modes, rewriting these registers is disabled. Note that display stretching and centering are unavailable when buffer memory is not used in the system, even in VGA display modes. In these cases, a display of different vertical size would be placed in the upper section of the LCD panel, resulting in a blank area in the lower section. Centering the display in a system without memory requires external circuits or BIOS tuning. When displaying an image 720 dots wide (9 dots x 80 characters) on an LCD panel 640 dots wide, the CLINE removes the ninth horizontal dot of each character to prevent losing the far-right portion of the image. TableS Automatic Vertical Display Size Settings for VGA Display Modes VSYNC HSYNC Display Size Border Rasters Displayed Rasters Negative Positive 350 lines 1-6 7-356 Positive Negative 400 lines 1-7 8-407 Negative Negative 480 lines 1-8 9-488 Table (; Automatic Horizontal Display Size Settings for VGA Display Modes BLANK Signal High Level Pulse Width Display Size Border Dots Displayed Dots 256-335 dots 320 dots (256-color) 1-5 6-325 336-359 dots 320 dots (16-color) 1-8 9-328 360-511 dots 360 dots 1-9 10-369 640-703 dots 640 dots 1-8 9-648 704-767 dots 720 dots 1-9 10-729 HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 719 HD66850F LCD Panel Size LCD panel size is specified by either pins or internal registers. For VGA modes, vertical panel size of 400 or 480 lines can be selected by the VSIZE pin and horizontal panel size of 640 or 720 lines by the HSlZEpin. For non-VGA modes, the panel size is also specified by the VSIZE and HSIZE pins in pin programming method. In internal register programming method, vertical display size is specified by the vertical display size register (R3 and R4), within the range of 2 to 512 lines. Here, note that the vertical display size specified by R3 and R4 is the CRT display vertical size. When this size differs from the LCD panel vertical size, centering or stretching function must be used. Refer to the following equations for calculating the number of centering rasters and the stretching ratio. For the defmition of the centering rasters, S{:e figure 23, Centering Rasters, " For centering LCD panel vertical size (line) = CRT display vertical size (line) + centering rasters (lines) x 2 " For stretching LCD panel vertical size (line) = CRT display vertical size (line) x stretching ratio Since LCD panel horizontal size is limited to 640 or 720 dots even in internal register programming method, centering function must be used as well so that the total number of horizontal dots including the CRT display area and border areas become 640 or 720. Refer to the following equation to calculate the number of centering characters. For the defmition of the border areas and centering characters, see figure 25, Centering Characters. LCD panel horizontal size (dot) = {number of horizontal display characters + (number of centering characters x 2)} x 8 Double-Width Display Some CRT display systems have a low-resolution display mode of 320 horizontal dots in addition to a high-resolution display mode of 640 horizontal dots. In this case, the CRT display system lowers the dot clock frequency to reduce one line of data to 320 dots. If such data is supplied to the LCD system of 640 horizontal dots as-is, the entire display will be placed on the left section of the panel with the right half blank. To accommodate this situation, the CLINE doubles the width of the low-resolution display. This function is enabled by the SPlWRlA4 pin in pin programming method or the SP bit (bit 1) of the control register (RO) in internal register programming method (table 7). In either method, for VGA display systems, the CLINE detects low-resolution display mode and automatically enables double-width display. Table 7 Double-Width Display Usage Programming Method CRT System Mode Setting Pin: SP VGA Automatic Non-VGA 0: Normal display 1: Double-width display Internal register: Control register bit 1 . (SP bit) VGA Automatic Non-VGA 0: Normal display 1: Double-width display HITACHI 720 Hitachi America, Ltd." Hitachi Plaza' 2000 Sierra Point Pkwy." Brisbane, CA 94005-1819" (415) 589-8300 HD66850F Stretching and Centering Display When the display size differs from the LCD panel size, data will be displayed on the upper-left section of the LCD panel with blank space to the right and/or below if no countermeasures are taken. To provide a user-friendly display, the CLINE can stretch a display to fill out the panel or center a display. Both stretching and centering functions are enabled by control register (RO) bits 2, 3, and 4. Stretching function is controlled by the stretching control register (R8) and the stretching index register (R9 and RIO) so as to double the vertical display size at most Figure 3 shows display examples using stretching/ centering functions. In these examples, a display of 640 dots x 350 lines is displayed on an LCD panel of 720 dots x 400 lines, using stretching/centering functions. Note that stretching and centering functions are available only in a system where buffer memory is used. This is because these functions are realized through adjustment of memory access. Similarly, stretching and centering functions are unavailable in non- VGA modes when the CLINE is controlled by the pin programming method. Simultaneous use of the vertical centering and stretching functions is also impossible. For VGA modes, in both internal register programming and pin programming methods, necessary parameters are automatically calculated from the relationship between display size and the LCD panel size and set in the appropriate registers. Consequently, there is no need to account for display size. In the internal register programming method, horizontal centering function is controlled by the centering character register (R6) within the range of 1 to 32 characters (8 to 256 dots), while vertical centering function is controlled by the centering raster register (R5) within the range of 1 to 256 lines. However, the vertical centering or stretching function can be selected in. the internal register programming method. (In pin programming method, the· stretching function is automatically selected.) Table 8 describes the use of the stretching and centering function. ...~ Vertical t--..;..;;:;~~-- --t-t-... centering lines 350 Horizontal centering Horizontal centering (a) Horizontal Centering and Vertical Centering (b) Horizontal Centering and Vertical Stretching Figure 3 Display Examples Using Stretching/Centering Functions HITACHI Hitachi America, Ltd.· Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 721 HD66850F Table 8 Stretching and Centering Function Usage Direction Programming Method Mode Display Arranging Function Vertical Pin VGA Stretching Automatic. Non-VGA None _'1 Internal register Horizontal Pin Internal register Notes: CRT System Setting VGA Stretching or centering Automatic '2 Non-VGA Stretching or centering Necessary VGA Centering Automatic Non-VGA None _'1 VGA Centering Automatic Non-VGA Centering Necessary 1. Display size must be LCD panel size. 2. Either stretching or centering function must be selected by the internal register. HITACHI 722 Hitachi America, Ltd:- Hitachi Plaza -2000 Sierra Point Pkwy. - Brisbane, CA 94005-1819 - (415) 589-8300 HD66850F Display Modes Display Mode Settings and LCD Module Configurations: The CLINE supports 20 display modes, depending on the settings of the LMODE4 to LMODEO pins. The display mode includes display color mode (color or monochrome), screen configuration (single or dual), gradation display method, and width of data transfer to LCD drivers. Table 9 lists the display modes and figures 4 (a) to 4 (g) show the corresponding LCD module configurations. Table 9 Display Modes and LCD Module Configurations Pln:LMODE 4 3 2 1 0 Display Color Mode (Gradation DIsplay Method) Screen Conflg. Data Width LCD Module Conflg. 0 0 0 0 0 Monochrome: black and white Single 4 Fig. 4 (a) 2 0 0 0 0 1 Dual 4 Fig. 4 (b) 3 0 0 0 0 Single 8 Fig. 4 (c) 4 0 0 0 1 Dual 8 Fig. 4 (d) 5 0 0 0 Single 4 Fig. 4 (a) 6 0 0 0 Dual 4 Fig. 4 (b) 7 0 0 1 0 Single 8 Fig. 4 (c) 8 0 0 1 Dual 8 Fig. 4 (d) 9 0 0 0 10 0 0 0 1 Mode . No. 11 0 0 12 0 0 13 1 0 0 Monochrome: 16 gray levels (Frame-based data thinning) Monochrome: 16 gray levels (112 pulse width modulation) Single 4 Fig. 4 (a) Dual 4 Fig. 4 (b) 0 Singale 8 Fig. 4 (c) 1 Dual 8 Fig. 4 (d) Single 2 Fig. 4 (e) Single 4 Fig. 4 (f) 0 0 0 0 14 0 0 1 0 15 0 0 1 8 colors Single 8 Fig. 4 (g) 16 0 0 0 Single 2 Fig. 4 (e) 17 0 0 4096 color levels (Frame-based data thinning) Single 4 Fig. 4 (f) 18 0 1 Single 8 Fig. 4 (g) Sing;le 4 Fig. 4 (f) Single 8 Fig. 4 (g) 19 0 0 20 0 1 Note: 16 colors 4096 color levels (112 pulse width modulation) Modes 15, 18, and 20 are interleaving structure modes. HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 723 HD66850F 4~ '---7'-v1 4 bits ~~______H_D6_6_1_06____~ HD66106 I. [m-mmto&mmnmJ LCD 4~L _ _ _ _ _~ ~_ _ _HD66106 (b) Dual screen, 4-bit data width (a) Single screen, 4-bit data width 8 bits ~I~ 8~ '---7'-v1 _____ H_D_6_61_o_7____~ HD66107 I. f------- ----to& -----------J LCD 8~L. _ _ _ _ _~ '---7'-v1 _ _ _HD66107 (d) Dual screen, 8-bit data width (c) Single screen, 8-bit data width 2 bits 4 bits ~§i ;~ Color drivers =========: ~ I . I Color drivers =========: ~ LCD . (e) Single screen, 2-bit data width, color drivers LCD (1) Single screen, 4-bit data width, color drivers 8 bits ~I HD66107 '--r----V1L.,--,..-.------I i RGBRGB , , , 1 1 1 : : : LCI 8~L._____H_D_6_6_10_7___ __J (g) Single screen, 8-bit data width, interleaving structure Figure 4 LCD Module Configurations by Display Modes HITACHI 724 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66850F Gradation Level Reduction: Although a CRT display system can represent infonnation for over 100,000 color levels, an LCD cannot handle so much information. The BO pin must be set to I; and the B1 pin to O. Unused display data input pins must be fIXed to O. See figure 5 (a). - Consequently, CRT color or gradation level information must be reduced in order for the CLINE to display it. Reduction methods vary depending on the input color or gradation level information, the LCD panel (color or monochrome), and other factors. Table 10 lists gradation level reduction for CLINE modes, where , "Input Bits" indicates au display color data and "Reduced Data" indicates input to the gradation level palettes. 16-level grayscale input and 16-level grayscale output (modes 5-12) Both BO and B1 pins must be set to O. Unused display data input pins must' be fIXed to O. See fIgure 5 (b). • When color LCD panel is used (LMODE4 = 1) - 64-color input and 16- or 8-color output (modes13-IS) Input Display Data Connection: Input display , data connection and pin settings depend on the CRT input mode (color or gradation level information) and the LCD panel used. Two-bit R, G, and B data must be input to the R2-R3, 02-03, and B2-B3 pins, respectively. Unused display data input pins must be fixed to 0). See figure 6 (a). • When monochrome LCD panel is used (LMODE4=O) - 4096-color input and 4096-color output (modes 16-20) . - 64-c0lor input and 16-level grayscale output (modes 5-12) Four-bit R, 0, and B data must be input to the ROo R3, 00-03, !lIld BO-B3 pins, respectively. If the input has more than 4096 colors, use the highorder four bits of each color. See figure 6 (b). Table 10 Gradation Level Reduction for CLINE Display Modes Input Mode Input Bits 2 1 0 LCD Panel Gradation Level Reduction (BHs) 4096 color levels 03 02 01 DO Color 12 -+ 12 2 16 colors R G B Color 6-+4 2 16 gray levels 03 02 01 DO Monochrome 6 .... 4 02 01 DO Monochrome 4-+4 G B 4096 colors 4 4 4 64 colors 2 2 64 colors 2 2 CLINE Display Mode Reduced Data 3 R 16 gray levels 4 16 gray levels 03 16 gray levels 4 Monochrome (black & white) AliOsorall1s Monochrome 4 .... 1 HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy;· Brisbane, CA 94005-1819· (415) 589-8300 -- - o -~~-~ ----- --- 725 HD66850F RO, R1 GO, G1 R2,R3 G2, G3 BO, B1 B2, B3 B1 BO o CLINE ~ 16-level grayscale LCD data (a) 64-c0lor input and 16-level grayscale output 16-level grayscale data =======01 Go-G3 CLINE o o ----~B1 ~ r----v 16-level grayscale LCD data -----+180 (b) 16-grayscale input and 16-level grayscale output Figure 5 Input Display Data Connection and Pin Settings when a Monochrome LCD Panel is Used HITACHI 726 Hitachi America,Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66850F RO,R1 GO,G1 BO,B1 ======~R2, R3 ======~G2, G3 ======~ B2, B3 CLINE F==> Color LCD data (a) 64-color input and 16- or 8-color output Ro-R3 ======~Ro-R3 Go-G3 Bo-B3 ======~Go- G3 ======~Bo- B3 CLINE F==> Color LCD data (b) 4096-color input and 4096-color output Figure 6 Input Display Data Connection and Pin Settings when a Color LCD Panel is Used HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 727 HD66850F LCD Data Output: The CLINE uses pins UD7-UDO and LD7-LDO for display data output. Output data from these pins depend on the display mode, as shown in table 11. However, data output timings are basically the same in all display modes. Display data output timing for modes 15 and 18 (8-bit color data transfer, bidirectional connection, without pulse width modulation) is shown in figure 7. Display data output timing for the LCD display modes with pulse width modulation is slightly different. This type of example is shown in figure 8. Figure 8 shows the display data output timing in mode 10 (1/2 pulse width modulation, 4-bit monochrome data transfer, and dual screen configuration). However, I,.CD lower panel data LD3-LDO are not shown in the figure. Tab.le 11 LCD Data Output Pins and Display Data by Display Modes Monochrome Modes 8-BIt! Single Screen 8-BIt! Dual Screen U07 07 U07 R3 R15 G10 B5 U06 06 U06 R2 B15 R9 G4 U05 05 U05 R1 R1 G14 B9 R3 U04 04 U04 RO RO R13 G8 B3 4-BltI Single Screen Pin 4-BltI Dual Screen 2·Blt 4-Blt Color Modes 8-Blt U03 03 U03 03 U03 G3 B13 R7 G2 U02 02 U02 02 U02 G2 G12 B7 R1 U01 01 U01 01 U01 G1 G1 R11 G6 B1 UOO DO UOO DO UOO GO GO B11 R5 GO L07 L07 B3 G15 B10 R4 L06 L06 B2 R14 G9 B4 L05 L05 B1 B1 B14 R8 G3 L04 L04 BO BO G13 B8 R2 L03 L03 L03 (13) R12 G7 B2 L02 L02 L02 (12) B12 R6 G1 L01 L01 L01 (11 ) (11 ) G11 B6 RO LOO LOO LOO (10) (10) R10 G5 BO Notes: 1. 2. 3. 4. The left bit corresponds to MSB. U and L indicate upper panel and lower panel data, respectively. Data in parentheses are for 16-color display. - indicates that the corresponding pins are not used; must be left disconnected. HITACHI 728 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66850F , 1st 2nd dot dot , 3rd 4th dot dot LCD screen ,,, ,, , _ _ _ _ _ _ _ _ _ _ ... .J. .... _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ... -'I .. _________ I..... ________ IL. ____ .. ______ .. _________ .. ___ I I ; YCL1 XCL1 I ; : I I ; : I ~ Jl Jl ~ CL2 U07 U06 UOS U04 U03 UD2 UD1 UDO LD7 L06 LOS L04 LD3 LD2 LD1 LDO ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ Figure 7 Display Data Output Timing in Display Modes Without Pulse Width Modulation (Modes IS and 18) HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 729 HD66850F In figure 8, data PO-O, P4-0, ... P636-0 make up the first set of data for one line to be output to LCD drivers via pin UD3. Likewise, data PO-l, P4-1, ... P636-1 make up the second set of data. The combination of the first and second sets of YCL1 11 XCL1 Jl data determines the display status as follows: (first data, second data) = (0, 0): display off; (I, 0): 1/2 pulse width modulation; and (I, 1): display on. For more details, refer to the Gradation Display Methods section. rL IL n CL2 ~ UD3 ~ X !]3§:!! ~ UD2 ~ X !]az-!! ~ UD1 ~ X !]38.:!! ~ UDO ~ X PIlaB:!! ~ r-LJlJL ~ -=:J. -=:J. -=:J. -=:J. !]3§:1 Pllaz-1 !]38.:1 Plla!1-1 Figure 8 Display Data Output Timing in Display Modes with Pulse Width Modulation (Mode 10) HITACHI 730 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66850F Gradation Display Methods The CLINE supports the frame-based data thinning method and pulse width modulation method for gradation display. Frame-Based Data Thinning Method: In the frame-based data thinning method, the CLINE thins out the display data in line or dot units in the specified frames. Pulse Width Modulation Method: In the pulse width modulation method, the CLINE combines 1/2 pulse width modulation and frame-based data thinning. In this case, data is output from X-drivers twice in one line-selection period (figure 9). Consequently, the X-driver latch clock must be YCL1 n ---J different from the Y-driver shift clock, and a conventional LCD module configuration cannot be used. Therefore, clock XCLI must be supplied to X-drivers and clock YCLI to Y-drivers (figure 10). The XCLI period is specified by the gradation display clock period register (R13 and R14) when no buffer memory is used in non-VGA modes and in the internal register programming method. (Pulse width modulation is unavailable when buffer memory is not used in non-VGA modes, pin programming method.) In the other cases, the register is automatically set, since the YCLI period is fixed (table 12). Linen n ~_----' Line n + 1 ' - - - - _ XCL1 X-driver input data Line n 1st data X-driver output data Figure 9 Driver Clock and Display Data Timing for Gradation Display with Ji2 Pulse Width Modulation HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 731 HD66850F ~------------------------- XCL1 X-drivers VCl1 LCD module Figure 10 x- and V-Driver Clock Connection for Pulse Width Modulation Method Table 12 XCLl Period Setting Memory Mode XCLPerlod Setting W~h-memory Half of VCl1 period for 1/2 pulse with modulation method Automatic Half of vel1 period for 112 pulse width modulation method Automatic (See note below) Conforms to gradation display clock register (R13, R14) settings Required (R13, R14) Without-memory VGA Non-VGA Internal register programming Pin programming Note: Total number of horizontal dots must be 400, 450, 800, or 900 for displaying 320, 360, 640, or 720 dots, respectively. HITACHI 732 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66850F Gradation Level Palettes Gradation display quality depends greatly on LCD panel characteristics. Consequently, uniform gradation display may be impossible for some panels. To accommodate this situation, the CLINE incorporates a set of gradation level palettes that can assign any gradation level to any CRT display color as desired. 16 levels are available for gradation display using the frame-based data thinning method and 31 levels using 1/2 pulse width modulation method. Appropriate levels can be selected for the LCD panel used. The R-, G-, and B-palettes are used for color level display modes, while only the R-palette is used for 16-level grayscale display modes. In pin programming and MPU programming methods, these palettes are automatically loaded after reset with appropriate data for frame-based data thinning modes and 1/2 pulse width modulation modes. The automatically set data cannot be rewritten in the pin programming method, but can be rewritten, any time after 100 J.1S have elapsed after reset, in MPU programming method. By contrast, in the ROM programming method, these palettes are not automatically set. Thus writing the necessary data to the palettes is always required. Table 13 shows the relationship between the values set in the palettes (through R12) and gradation levels. Values other than those shown here disable correct display. HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 733 HD66850F Table 13 Relationship between Gradation Levels and Palette (R12) Values (a) Frame-based data thinning modes (b) 1/2 pulse width modulation modes Gradation Level Palette Data (R12 Data Bits) 1 No. S 4 3 0 2 Gradatlon Level Gradation Level Palette Data (R12 Data Bits) No. S 4 3 2 1 0 Gradatlon Level 0 0 0 0 0 0 0.00 0 0 0 0 0 0 0.00 1 0 0 0 0 1 0.14 1 0 0 0 0 1 0.07 2 0 0 0 1 0 1 0 3 0 0 0 1 4 0 0 0 5 0 0 0 1 0.20 2 0 0 0 0.29 3 0 0 0 0.33 4 0 0 1 0 0 0.17 0.40 5 0 0 0 1 0.20 0 0.43 6 0 0 1 0 0.21 1 0.50 7 0 0 1 0.25 0 0.10 0.14 6 0 0 7 0 0 8 0 0 0 0 0.57 8 0 1 0 0 0 0.29 9 0 0 0 1 0.60 9 0 1 0 0 1 0.30 10 0 0 0 0.66 10 0 0 1 0 0.33 11 0 0 1 0.71 11 0 0 12 0 0 0 0.75 12 0 0 13 0 0 0.80 13 0 0 14 0 1 0 0.86 14 0 1 15 0 1 1.00 15 0 0.36 16 0 0 0 17 0 0 0 18 0 0 19 0 0 20 0 1 0 0.38 0.40 0 0.43 1 0.50 0 0.50 0.57 0 0.60 0.64 0 0 0.67 0.71 21 0 0 22 0 1 0 23 0 24 1 0 0 0 25 0 0 1 0.80 26 0 1 0 0.83 27 0 0 0 0.88 28 0.70 0.75 0.79 0.86 29 1 0 1 0.90 30 1 1 0 0.93 1 1.00 31 HITACHI 734 Hitachi America, Ltd.· Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66850F Display On/Off Control When the LCD drivers used have an LCD on/off control pin, display can be controlled with the CLINE DISPON signal. When the LCD drivers used do not have an LCD on/off control pin, the CLINE can turn off display by transferring all-O display data to the drivers. tion (single or dual), data transfer width (bit count), and gradation display methods. For example, the data transfer rate will be doubled for Itl pulse width gradation display. This is because data must be transferred two times during one lineselection period. The data transfer rate (fcu: CL2 frequency) is calculated from the following equation (fLooTCK = fDOTCLK for synchronous mode): Display will be turned on with the DISPON pin = 1, turns the display off while DISPON = O. The DISPON pin is equivalent to the DISPON bit (bit 0) of the control register. In the pin programming method, display is on except for four frames after reset. The four frame display-off time period prevents random display at power-on. In the MPU programming method, display is turned off at reset, but can be freely turned on or off after four frames after reset by rewriting the corresponding register bit. In the ROM programming method, a 1 must be written to the DISPON bit to turn on display. Like in other programming methods, display is off for four frames after reset. fCL2 - fLDOTCKX 1 -':::::"n':"':"":x;.:;m~- n: Number of panels composing one screen - 1 for modes 1,3,5,7,9, 11, 13-20 - 2 for modes 2, 4, 6, S, 10, 12 m: Number of bits transferred at one time - 2 for modes 13, 16 -4 for modes 1,2,5,6,9,10,14,15,17-20 - S for modes 3, 4, 7, 8, 11, 12 I: Constant for each gradation display - I for modes I-S, 13-IS -2formodes9-12,19,20 LDOTCK Frequency and Data Transfer Rate The LOOTCK frequency (fLDOTCIU for asynchronous mode is calculated from the following equation: fLDOTCK = (Nhd + 4S) x Nvd x fF Nhd: Number of dots contained in one horizontal line of the LCD panel Nvd: Number of horizontal lines from the LCD panel top to bottom fF: Frame frequency In this case, the following relationship must hold true: 1/2 X fOOTCLK < fLDOTCK < 2 X fOOTCLK fOOTCLK: Dot clock frequency The data transfer rate to LCD drivers depends on the mode in which the CLINE is used. Specifically, the rate depends on screen configura- HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 735 HD66850F Synchronous!Asynchronous Modes and Memory The CLINE has two timing modes: asynchronous and synchronous. In asynchronous mode, dot clock pulses for the CRT system (DOTCLK) are different from those for the LCD system (LDOTCK) in frequency to accommodate frame frequency conversion. This requires buffer memory as shown in figure 11 (a). In this mode, dual screen LCD panels can be used. In synchronous mode, dot clock pulses for the CRT system are identical to those for the LCD system, thus requiring no buffer memory in principle (synchronous without-memory mode (figure II (b». However, synchronous without-memory mode cannot support dual screen LCD panels. Table 14 summarizes these modes. ~ II Gradation processing ~ DOTCLK HD66850 HD66850 HD66850 c RT The CLINE has another mode in which dual screen LCD panels can be used and fewer memory devices are required. This is called "synchronous with-memory mode" (figure 11 (c». In this mode, the number of memory devices can be reduced to a half or a third that of asynchronous mode. This is because ROB data sent from the CRT system is processed for gradation display before being written into buffer memory. (In asynchronous mode, on the other hand, R, 0, and B data sent from the CRT system is separately written into the R-plane, O-plane, and B-plane memories, respectively.) T - Gradation processing I oOTCLK LDOTCK Memory (a) Asynchronous Mode H LC DOTCLK Memory (b) Synchronous WithoutMemory Mode (c) Synchronous With-Memory Mode Figure 11 Signal Flow for Synchronous!Asynchronous With-/without-Memory Modes HITACHI 736 Hitachi America, Ltd." Hitachi Plaza." 2000 Sierra Point Pkwy." Brisbane, CA 94005-1819" (415) 589-8300 o HD66850F The CLINE uses dual port RAMs for buffer memory. enabling high-speed display and independent use of an LCD dot clock and a CRT dot clock. The ClINE supports three types of memory configurations: 64k x 4 bits (256 k). 256 k x 4 bits (1 M). and 128 k x 8 bits (1 M). any of which can be selected with the MMODEO and MMODEI pins (table 3). The number of memory devices required depends on the LCD panel size and the display mode. However. it depends only on LCD panel vertical size and not on horizontal size since the CLINE uses memory as shown in figure 12. For example. one 256-kbit memory device is required for the panel having 256 or less lines and two for that having 257 to 512 lines. Table 15 lists the number of memory devices required for each mode. Table 14 Memory Mode Summary Asynchronous WlthMemory Mode Synchronous With· Memory Mode Synchronous Without Memory Mode Centering/stretching Possible Possible Impossible Max number of gray levels 16 16 16 Max number of color levels 16 4096 (frame-based data thinning) 4096 (pulse width modulation) Dual screen Possible Possible Impossible Max number of display lines 512 512 1024 Frame frequency conversion Possible Impossible Impossible r I Not used 256 l 64 k x 4 bit memory Figure 12 Display Sizes and Memory Area Used HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 737 HD66850F Table 15 Number or Memory Devices for Different Display modes Number of Memory Devices Required Asynchronous Synchronous Display Mode 64kx4 256kx4 128kx8 64kx4 256kx4 Monochrome Modes 1-4 2 1 1 2 1 16-level grayscale (frame-based) Modes 5-8 8 4 2 2 16-level grayscale (112 pulse width) Modes 9-12 8 4 2 4 2 8-color Mode 15 6 3 2 6 3 2 16-color Modes 13,14 8 4 2 8 4 2 6 3 2 4096-color-scale (frame-based) Modes 16-18 128kx8 Frame-based: Frame-based data thinning method 112 pulse width: 112 pulse width modulation method Note: With-memory mode does not support color level display using the pulse width modulation method. HITACHI 738 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415)589-8300 HD66850F Display Timing Signal Fine Adjustment When the display timing signal is supplied externally, a phase shift may appear between CRT data and the display timing signal, since each signal has its own peculiar lag. The CLINE can adjust the display timing signal with pins AJ3-AIO (in pin programming method) or with the input timing control register (Rl) (in internal register programming method) to compensate the phase shift (table 1). Figure 13 (a) shows an example of adjusting a display timing signal that is two dots ahead of the display start position. In this case, pins (AI3, AI2, AIl, AIO) or data bits (3, i, 1,0) ofRI must be set to (1, 0, I, 0) to delay the signal for two dots. Conversely, they must be set to (0,0, 1,0) to advance the signal for two dots for the case of figure 13 (b), where the display timing signal is two dots behind. When there is no need to adjust the signal, a setting of either (0, 0, 0, 0) or (I, 0, 0, 0) will work. It should be noted that the VGA CRT system applies the BLANK signal, which includes the border area period, as the display timing signal, and that the CLINE removes the border area period. Consequently, the border area period must be considered for adjusting the display timing signal. HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 739 HD66850F ~ Display start position CRT display data Display timing signal before adjustment Display timing signal after adjustment X / 2 dots ahead ~ Fine adjustment - (1, 0, 1,0) (a) Delaying Display Timing Signal Display start position ---.. CRT display data Display timing signal before adjustment Display timing signal after adjustment )C )( I 2 dots behind ~ Fine adjustment - (0, 0, 1,0) (8) Advancing Display Timing Signal Figure 13 Display Timing Signal Fine Adjustment HITACHI 740 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA94005-1819· (415) 589-8300 HD66850F Border Color Control In the internal register programming method, the CLINE can specify the color of a blank area that is left on a centered display (figure 14). Any of 16 colors or the color of the dot immediately before the valid display data can be specified by the border color control register (R7). However, the desired color can be specified only in asynchronous mode. In the pin programming method, the specified color is always the same color as the dot immediately before the valid display data. Vertical centering LCD panel Figure 14 Border Area and an LCD Panel I HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 741 HD66850F Internal Registers The CLINE has one index register (1R) and 15 data registers (RO-RI4). In the MPU programming method, the desired register address must be written in one cycle into the index register before writing or reading data to/from the register in the following cycle. By contrast, in the ROM programming'method, the index register is not used; the CLINE automatically reads data from the ROM, in which data has been written to the ROM addresses corresponding to the desired data registers, and writes it to the data register. Registers are valid only for the internal register programming method and are invalid (don't care) for the pin programming method. Since all data registers are reset to Os, they must be rewritten after reset. Register Access for MPU Programming Method First write the desired data register address into the index register with ~ = 0, RS = 0, and WR = 0, then write/read data to/from the register with ~ 0, RS 1, and WR or RD 0. Figure 15 shows the timing for writing data into an internal register. =° = = CS, RS , ' - -_ _--' ~------------------~--------~ Write (01)H to the index register. Write (02)H to the index register. Write data to R1 Write data to R2 Figure 15 Internal Register Write by MPU HITACHI 742 Hitachi America, Ltd. - Hitachi Plaza - 2000 Sierra POint Pkwy.- Brisbane, CA 94005-1819 - (415) 589-8300 = HD66850F ROM Data Setting for ROM Programming Method The desired data must have been previously written to the ROM addresses corresponding to the data register addresses; that is, to ROM addresses $OOOO-$OOOF. Data for the gradation level palettes must have been written to ROM addresses $OOI0-$003F. Consequently, data written for internal registers Rll and R12 are invalid. Figure 16 shows the ROM address map. $0000 $0001 $0002 Internal registers $0010 $0011 R-palettes $0020 $0021 G-palettes $0030 $0031 B-palettes $0040 Not used I $FFFF Figure 16 ROM Address Map HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 743 HD66850F Register Function Index Register (IR): The index register (figure 17), composed of four valid bits, selects one of the 15 data registers. The index register itself is selected by the MPU while the RS signal is low and selects a data register with the register address written. and STE bits are set to 1 at the same time, correct display will be disabled. • CCE bit - CCE = 1: Horizontal centering function enabled - CCE = 0: Horizontal entering function disabled • SPbit - SP 1: Double-width display - SP = 0: Normal display • DISPONbit - DISPON 1: Display on - DISPON = 0: Display off Control Register (RO): The control register (figure 18) is composed of five valid bits, each with a particular function. • STE bit - STE =1: Stretching function enabled - STE =0: Stretching function disabled • CRE bit - CRE = I: Vertical centering function enabled - CRE 0: Vertical centering function disabled = = = DISPON is always cleared at reset. In the MPU programming method, rewriting this bit can always be rewritten. However, display will be off for four frames after reset, regardless of the status of this bit Simultaneous use of stretching and vertical centering functions is impossible; if both the CRE IR / Data bit 7 6 5 4 Value - - - - 3 I - 2 I 1 I \ 0 Register address Figure 17 Index Register RO \ / Data bit 7 6 5 4 Function - - - SrE 3 2 CRE CCE 1 0 SP DISP ON Figure 18 Control Register HITACHI 744 Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 HD66850F Input Timing Control Register: The input timing control register (figure 19) has five valid bits, having two different functions. • • DOTE bit : Switches ROB data latch timing. - DOTE 1: Latches data at the rising edge of the dot clock pulses - DOTE 0: Latches data at the falling edge of the dot clock pulses = = AJ3-AJO bits: Adjust the externally supplied display timing signal to synchronize its phase with that of LCD data. Write the shift, represented in dots, between the display timing signal and the display start position to these bits. The absolute value of the number of dots to be shifted must be written to the AJ2-AJO bits and shift polarity to the AJ3 bit. If there is no need to adjust the display timing signal, these bits may be set to either (1, 0, 0, 0) or (0, 0,0,0). R1 \ / Data bit 7 6 5 4 3 2 1 0 Value - - - DOTE AJ3 AJ2 AJ1 AJO / / 3 2 1 0 0 0 0 0 0 0 1 -1 0 1 0 -2 0 0 0 0 0 0 1 +1 0 1 0 +2 0 1 1 +3 1 0 0 +4 1 0 1 +5 1 1 0 +6 1 Number of Dots Adjusted 0 Note: - (minus) and + (plus) in the Number of Dots Adjusted column indicate advancing and delaying the display timing signal, respectively. Figure 19 Input Timing Control Rc:gister HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 745 HD66850F Horizontal Display Size Register: The horizontal display size register (figure 20), composed of seven valid bits, specifies the horizontal display size in units of characters (eight dots). The value to write to this register is "number of characters displayed on one horizontal line - 1." A maximum of 90 characters (720 dots) can be specified. This register is set automatically in VGA mode. Vertical Display Size Register: The vertical display size register (figure 21), composed of nine valid bits, specifies the vertical display size in units of lines. The value to write to this register is "number of lines displayed from display screen top to bottom - I." A maximum of 512 lines can be specified. This register is set automatically in VGA mode. R2 \ / Data bit 7 - Value 6 5 4 3 2 1 0 DH6 DH5 DH4 DH3 DH2 DH1 DHO Figure 20 Horizontal Display Size Register R3 / \ I I •I I I I I I 7 Data bit Value 5 4 3 2 7 6 5 4 3 2 1 0 DV7 DV6 DV5 DV4 DV3 DV2 DV1 DVO \'-----~------'/ R4 Figure 21 Vertical Display Size Register HITACHI 746 Hitachi America, Ltd.' Hitachi Plaza 02000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 HD66850F Centering Raster Register: The centering raster register (figure 22), composed of eight bits, specifies the number of rasters for vertically centering the display within the range of 1 to 256. The value to write to this register is "number of rasters for centering - 1." As shown in figure 23, the number here indicates the number of rasters in either the upper border area or lower border area, not the total number. Since the LCD panel size is detennined by this number and the display size, the number of rasters must be correctly written if the display size differs from the LCD panel size. Incorrect setting disables correct display. This register is enabled the control register's CRE bit is 1. This register is set automatically in VGA mode. R5 \ / Data bit Value 7 6 5 4 3 2 1 0 . CR7 CR6 CR5 CR4 CR3 CR2 CRr CRO Figure 22 Centering Raster Register Border area (upper) Number of rasters (upper) Display Number of rasters (lower) Border area (lower) Figure 23 Centering Rasters I HITACHI Hitachi America, Ltd." Hitachi Plaza" 2000 Sierra Point Pkwy. "Brisbane, CA 94005-1819" (415) 589-8300 747 HD66850F or right border area, not the total number. Since the LCD panel size is determined by this number and the display size, the number of characters must be correctly written when the display size differs from the LCD panel size. Incorrect setting disables correct display. This register is enabled when the control register's CCE bit is 1. This register is set automatically in VGA mode. Centering Character Register: The centering character register (figure 24), composed of five valid bits, specifies the number of characters for horizontally centering the display within the range of 1 to 32. The value to write to this register is "number of characters for centering - 1." As shown in figure 25, the number here indicates the number of characters in either the left border area R6 \ / Data bit 7 6 5 Value - - - 4 CC4 3 2 1 0 CC3 CC2 CC1 cco Figure 24 Centering Character Register Number of characters (left) Border area (left) Border area (right) Figure 2S Centering Characters HITACHI 748 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66850F Border Color Control Register: The border color control register (figure 26), has five valid bite having two different functions. These functions are available only in with-memory mode. • • Stretching Control Register: The stretching control register (figure 27), composed of four valid bits, is used in combination with the stretching index register (R9 and RIO). It specifies the period for stretching in units of lines. The value to write to this register is "number of lines -1." This register is enabled when the control register's S1E bit is 1. This register is set automatically in VGA mode. BM bit: Specifies border control mode; reset to O. This bit must be 1 in asynchronous mode. - BM = 1: Displays the color specified by the BCI, BCR, BCG, and BCB bits in the border area (disabled in synchronous mode) - BCI, BCR, BCG, and BCB bits: Specify the color to be displayed on the border area. These bits are enabled when the BM bit is 1; reset to Os. BM = 0: Displays the color of the dot immediately before .the display period on the border area R7 \ / Data bit 7 6 5 4 3 Value - - - BM BCI 2 1 BCR BCG 0 BCB Figure 26 Border Color Control Register / RS \ IData blt Value Figure 27 Stretching Control Register HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 749 HD66850F be displayed twice. Although this register has 16 bits, only the bits within the period specified by R8 are enabled. For example, when R8 is set to four, only five bits of SIO to SI4 of this register are enabled (figure 29). This register is set automatically in VGA mode. Stretching Index Register: The stretching index register (figure 28), composed of 16 valid bits, is used in combination with the stretching control register (R8). It specifies the lines to be displayed twice among those specified by R8. The lines represented by the SI bits which are set to Is will R9 I \ Data bit , Value 7 6 5 4 3 2 1 0 SI15 SI14 SI13 SI12 Sill SilO SI9 SI8 7 6 5 4 3 2 1 0 SI7 SI6 SI5 SI4 SI3 SI2 Sil SIO Data bit Value \~----------------~/ Rl0 Figure 28 Stretching Index Register R9! Rl0} Stretching period (R8.4) SIO.O ____l,Ln!~ ___ _ ____Lln!~ __ _ S11.l ___ .,.I·l!'!!L __ _ _ ___Lln!~ __ _ SI2 .1 ____Lln!!L __ SI3 .0 Line C ---------____Li..!'!!L __ SI4.0 Line E SIO.O ____lJ.n!.E __ _ S11.l ___ J..!!'!~L __ ____L.!!1!Q __ _ ~ ====;~=== ____Lln!.E ___ _ ----------Figure 29 Stretching Display HITACHI 750 Hitachi America, Ltd.· Hitachi Plaza. 2000 SierraPoint Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 HD66850F Gradation Level Palette Address Register: The gradation level palette address register (figure 30) is composed of six valid bits with two different functions. • PA3-PAO bits: Specify the desired gradation level palette using the address written to these bits. After palette address specification, data is read from or written to the specified palette and the address is automatically incremented by 1. The address increment manner depends on PS 1 and PSO settings. • PS 1 and FSO bits: Specify a method of selecting the plane of the gradation level palettes (R, G, or B). - - (pSI, PSO) = (0, 0): Gradation level palette address is automatically incremented by 1 after reading/writing data from/to R, G, and B gradation level palettes in that order, through the gradation level palette data register (PS 1, PSO) = (0, 0): Every time the gradation level palette data register (R12) is read from or written to, either R-, G-, or Bpalette is automatically selected, in that order - (pS 1, PSO) = (0, 1): R-palette is selected -Other settings: Gradatiol'l level palette address is automatically incremented by 1 after reading/writing data from/to anyone gradation level palette, through the gradation level palette data register - (pS 1, PSO) = (1,0): G-palette is selected - (pS 1, PSO) = (1, 1): B-palette is selected R11 \ I Data bit 7 6 5 4 3 2 1 0 Value - - PS1 PSO PA3 PA2 PA1 PAO Figure 30 Gradation Level Palette Address Register HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 751 HD66850F Gradation Level Palette Data Register: The gradation level palette data register (figure 31), composed of six valid bits, contains data which is read from or written to the gradation level palette specified with the gradation level palette address register (RU). have elapsed after reset. Note that display is scattered dming palette read/write. In the MPU programming method, gradation level palettes are not directly read from, but are read from via this register. Consequently, any data that happens to be in this register at that time is read out in the first read cycle, and then data corresponding to the specified address is transferred to this register and read from this register in the following read cycle. The address is incremented (or R-, G-, and B-palettes are switched) at the same time. In other words, after addreSs setting, the first data read is incorrect, and the second data read is correct Consequently, one dummy read is required after setting a gradation level palette address. Figure 32 shows the timing for reading a gradation level palette. Gradation level palettes must be set according to the display mode used (16-level grayscale display or 4096-color-scale display); the R-palette must be used for 16-level grayscale display, and R-, G-, and B-palettes for 4096-color-scale display. PD5 bit must be 1 and PD4 bit must be 0 in framebased data thinning mode. PD4 bit must be 1 in 1/2 pulse width modulation mode. Show table 13. In the MPU programming method, the gradation level palettes must be read/written after 100 ms R12 \ / Data bit 7 6 5 4 3 2 1 0 Value - - PD5 PD4 PD3 PD2 PD1 PDO Figure 31 Gradation Level Palette Data Register (N+2) (N+ 1) 00-07 Address Gradation level palette data register • X N • X • X X N+1 X N+2 XN+3 )C (N) X (N+1) X (N+2) )C (N): Data for address N Figure 32 Gradation Level Palette Data Read HITACHI 752 Hitachi America, Ltd .•. Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 HD66850F Gradation Display Clock Period Register: The gradation display clock period register (figure 33), composed of nine valid bits, specifies the period of XCLl, the LCD data latch clock, when pulse width modulation method is used for gradation display. The value to write to this register is "specified number - l,~ in units of dots. Eight through 512 dots can be specifIed. Note that this register is invalid in with-memory mode. This register is set automatically in VGA mode. • GC8-GCO bits: Specify the number of dots for Tl; Tl is the period of XCLl for III pulse width gradation display. When the total number of dots for one period of the YCLI clock pulse cannot be divided by two for III pulse width gradation display, the remainder is added to T1 as Tl', where Tl' TL - T1 (flgUre 34). = R13 I Data bit Value \ 7 6 5 4 3 2 1 0 GC7 GC6 GCS GC4 GC3 GC2 GC1 GCO \~--------~------~I R14 Figure 33 Gradation Display Clock Period Register YCL1 J1~L..E=================_T_L_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-~r=L-+I ...J~E----...,.- T1' XCL1~ ---:j-*"E- - - - T1 ---:j--+t I'-----------'n<---_IL (112 pulse width) Figure 34 T.., Tl, and T' HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819. (415) 589-8300 753 -"--"-""" -""-" - - - - - - - - - - - - - - - - ---------"""--""-" " "-~~----"-"---"---"-"-""-- HD66850F Reset Description The RES signal resets and starts the CLINE. The RES signal must be supplied at each power-on. Reset is defined as shown in figure 35. • Pin: In principle, the RES signal does not control output signals and it operates regardless of other input signals. The reset states of input/output pins are described below. Registers: The contents of all internal registers are lost and cleared; the desired data must be rewritten after reset. • DO-D7: Not affected by reset. These pins output data even during the reset state when RD = 0, CS = 0, RS = 1, and WR = 1, in the MPU programming method. o.s AO-A5: Always output Os during the reset state in the ROM programming method. Otherwise, these pins serve as input pins. Palettes: Palettes are automatically loaded after reset with the appropriate data according to the display mode. When data different from the automatically set data is needed, the data must be overwritten 100 J.1S or more after reset. (100 J.1S is required for automatic data setting.) ~ '\: /Vo.s V ~----------------/ Reset state After reset Figure35 Reset Definition HITACHI 754 Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819' (415) 589-8300 HD66850F There are some restrictions and notices in the HD66850F. Please check the following content, and use it. Input Signal Timing HSYNC, VSYNC Asserted Width: The HSYNC and VSYNC input signals have the minimum asserted width to operate correctly, please keep the asserted width with the below value or more. HSYNC to VSYNC, HSYNC to BLANK Phase Shift: There are some restrictions between HSYNC and VSYNC, and HSYNC and BLANK. Don't input them within the restricted phase shift. Table 16 HSYNC, VSYNC Asserted Width Condition Item Symbol Minimum Dots All mode Asserted HSYNC a 12 dots or more Asserted VSYNC b 2 rasters or mode Table 17 VSYNC, BLANK Phase Shift Condition Item Symbol Available Dots All mode VSYNC c 3 dots or less, 16 dots or more BLANK d 1 dot or more Note: In VGA mode, the polarities of HSYNC and VSYNC depend on the display resolution on CRT, but we will explain them as the active-high input in this document. +ll+a HSYNC VSYNC J1,-----!n n fL ~b---+lL _ _--'1- . Figure 36 HSYNC, VSYNC Asserted Width HSYNC n... !--_ _ _ _ _ VSYNC BLANK Figure 37 VSYNC, BLANK Phase Shift HITACHI Hitachi America, Ltd. -Hitachi Plaza - 2000 Sierra Point Pkwy. - Brisbane, CA 94005-1819 - (415) 589-8300 755 HD66850F Total Horizontal Dots: HD66850F needs 48 dots for the horizontal retrace period. and the HSYNC period must be 688 dots or more when 640 dots display. 768 dots or more when 7'lJJ dots display. Horizontal Front Porch: There is a restriction about the horizontal front porch (from negated BLANK to asserted HSYNC) as the below in VGA mode. Please input them with the minimum value or more. Especially in 320 or 360 dots wide. period of the front porch is usually just 3 or 4 dots. Please delay HSYNC asserted timing. and hold the minimum value. Otherwise the first line on a panel will be incorrect. Table 18 Total Horizontal Dots Condition Symbol All mode e Minimum Dots 688 dots. (when 640 dots display) 768 dots. (when 720 dots display) Table 19 Horizontal Front Porch Dot Adjust Condition Symbol VGAmode f Horizontal 320 or 1 dot or more 3 dots or more 640 dots display Horizontal 360 or 720 dots display 1 dot or more 7 dots or more 5 dots or more Note: The BLANK 'High' width (g) must be 328 or 336 dots in 320 dots display, 376 dots in 360 dots display, 656 dots in 640 dots display, and 738 dots display in 720 dots display. ~I(--- e --~)I HSYNC Jl'--_____~ Figure 38 Total Horizontal Dots Figure 39 Horizontal Front Porch HITACHI 756 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66850F When it displays 720 dots wide (text mode) on 640 dots panel in VGA mode, HD66850F removes 1 dot from each 9 dots. It may not display correctly according to the combination of the dot ajust and the period from negated BLANK to asserted HSYNC (h in figure 4). In this case, please change the dot adjust, or delay asserted timing of HSYNC. This restriction causes trouble when the below equation is satisfied. When the total horizontal dot is 900 dots wide, and the period between negated BLANK to asserted HSYNC is 'h' dots, 4 x [(h - 2)/4 i] =9 x M + A (i: revaluation, M and A: integer) The 'A' which causes trouble depends on the dot ajust as below. Table 20 Display Period + Horizontal Front Porch Dot Adjust Condition Symbol -1 ±O +1 +2 +3 +4 +5 +6 NG ok ok ok ok NG ok ok ok 747 to 750 dots NG ok ok ok NG ok ok ok ok 751 to 754 dots ok ok ok ok NG ok ok ok NG 755 to 758 dots ok ok ok NG ok ok ok ok NG 759 to 762 dots ok ok ok NG ok ok ok NG ok 763 to 766 dots ok ok NG ok ok ok ok NG ok 743 to 764 dots ok NG ok ok ok ok NG ok 747 to 750 dots ok NG ok ok ok NG ok 751 to 754 dots NG ok ok ok ok NG ok 755 to 758 dots NG ok ok ok NG ok ok NG ok ok ok NG ok ok NG -2 Item Monochrome or 8/16 colors mode VGA mode h & with buffer memory mode, 720 dots display on 640 dots panel 64/512/4096 colors mode 743 to 746 dots 759 to 762 dots ok ok ok ok 763 to 766 dots ok ok ok NG ok ok ok ok ok ok ok ok ok NGte: The total horizontal dot must be 900 dots wide. Dot Adjust Parameter Item A Monochrome or 8/16 colors mode 64/51214096 colors mode -2 6 -1 ±O +1 +2 +3 +4 +5 +6 2 3 4 5 6 7 8 0 7 8 0 1 2 3 4 5 2 3 4 5 6 7 8 7 8 0 2 3 4 0 5 6 HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 757 I HD66850F Automatic Judgement of VGA Display Resolution: In VGA mode, HD66850 judges ~ current display resolution from the polarities of Table 21 VSYNC, and HSYNC, and the width of BLANK 'H' automatically. Please input these signals as below to judge the correct resolution. BLANK 'High' Level Width Condition Symbol VGAmode j VGA Mode No. Horizontal Resolution lii:ANR H Width 011 360 wide 378 dots 213,7 720 wide 738 dots 415 320 wide 336 dots 6, F, 10, 11, 12 640 wide 656 dots 13 (256 col) 320 wide 328 dots Table 22 Polarities of HSYNC and VSYNC Condition VGAmode VGA Mode No. Vertical Resolution HSYNC VSYNC F,10 350 raster high Positive Negative 011,213,415,6,7,13 400 raster high Negative Positive 11,12 480 raster high Negative Negative L Figure 40 BLANK High Level Width HITACHI 758 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 HD66850F Border Area: In VGA mode, there is border area around display area. When the border and display area is scanned, BLANK is 'high' level. HD66850 internally generates the display timing which indicates just the display area from BLANK input So, please input the BLANK with the horizontal border dot wide and vertical border high raster as below. Table 23 Number or Horizontal Border Dot Condition Symbol VGAModeNo. Resolution Border VGAmode k 0/1 360 9 dots 213,7 720 9 dots 4/5 320 8 dots 6, F, 10, 11, 12 640 8 dots 13 (256 col) 320 4 dots Table 24 Number or Vertical Border Raster Condition Symbol VGA Mode No. Resolution Border VGAmode m F,10 350 6 rasters 0/1,213,415,6,7,13 400 7 rasters 11,12 480 8 rasters Border Border .,k~isplaY-+l BLANK -.J L Figure 41 Number or Horizontal Border Dot HSYNC BLANK Figure 42 Number or Vertical Border Raster HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 759 HD66850F When 64 k x 4 bit (256 k) or 128 k x 8 (1M) bit memory is attached for buffer memory, please satisfy the below relationship about vertical display and border raster. Usually, the vertical 480 rasters mode (VGA mode 11, 12) has 6 or 7 border rasters, so this limitation will be no problem. ]+[ Vertical border ] S 512 [Vertical display raster raster after display raster Table 25 Vertical Display Raster + Vertical Border Raster After Display Condition Symbol Vertical Display Raster + Vertical Border Raster after Display VGA and with memory mode n 512 rasters or less VSYNC BLANK Figure 43 Vertical Display Raster HITACHI 760 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66850F Asynchronous~ode In asynchronous mode, the set data in the gradation palette is broken owing to the dot adjust during display. To avoid this problem, in MPU and ROM programming method, please write '1' to bit 4 (BM mode) of the border control register (R7), and all '0' to bit 3-0 (border color) of R7. The register R7 must be '10H'. In pin programming method, please adjust display timing with AJ3- AJO pins, and start to display just from left edge on an LCD panel without border dot, rise the BLANK input at same OOTCLK edge as change of the video data (RIG{B). In 8/16 colors mode, this restriction is no problem in any mode because HD66850F does not access the gradation palette. In 64/ 512/4096 colors mode, it does not support asynchronous mode. same edge for DOTCLK DOTCLK BLANK RlGIB Figure 44 Countermeasure in the Pin Programming ~ethod HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 761 HD66850F Frame Period In synchronous with-memory mode, DOTCLK and !tame period for CRT are same as one for LCD. When it displays on a full screen with stretching or centering function, HD66850F needs to extend the frame period for displaying on LCD. If this frame period for LCD were longer than one for CRT, HD66850F can not work correctly. HD66850F needs 48 dots period for the horizontal retrace, and number of the total horizontal dot for LCD is number of the horizontal display dot + 48 dots. This minimum frame period which is necessary to display on LCD is shown as below. ~imum frame = (~umber of horizontal + 48) penod for LCD display dot x Vertical panel size [dotsJ The frame period for CRT must be longer than the above minimum one for LCD. For example, when HD66850F stretchs CRT resolution with 640 x 350 dots to the LCD panel with 640 x 480 dots, the minimum frame period for LCD is (640 + 48) x 480 = 330, 240 dots. On the other hand, when number of the total horizontal dot for CRT is 800 dots wide, 330, 240/800 = 412.8 rasters, so HD66850F needs 413 or more rasters high as the total vertical raster for CRT. In asynchronous mode, HD66850F separates LCD clock (LOOTCK) from CRT clock (OOTCK), and the both frame period are different. So, this limitation is no problem. LCD Alternating Signal M When LCD alternating signal M is changed at same line in each frame, brightness of the line differs from one of another line. To avoid this problem, the signal M is ususally controlled to change at different line in each frame. But period of the signal M may synchronize with the frame period according to the total vertical mster. In this case, adjust period of the M, and don't synchronize them. Especially, it is easy to synchronize them in VGA 720 x 400 dots mode. For example, when it displays 720 x 400 dots in synchronous withmemory mode, usaually number of the total horizontal dot for CRT is 900 dots wide, and number of the total vertical raster is 448 rasters high, so the frame period for CRT is 900 x 448 = 403,200 [dotsJ. On the other hand, number of the total horizontal dot for LCD is 720 + 48 = 768 dots wide,and the frame period (403,200 dots) divided by a total horizontal dot for LCD (766 dots) is 512 which is interger. So, when line number of period of the M equals to the following divisor of 512: [1,3,5,7, 15,21,25,35,75,105, 175J (lines), period of the M synchronizes with the frame period, and a horizontal bright line is appeared when the M is changed. Vertical Centering Number of vertical centering line depends on 'the value in register (R5) + l' in non-VGA mode, or on the VSIZE pin and display resolution in VGA mode. But when '0' is written in the register (R5) and the vertical centering is enabled, HD66850F can not works correctly. Don't set '0' in the register (R5). And when number of vertical display raster is same as the vertical panel size (VSIZE), the, vertical centering enable bit (bit 3 in RO) must be cleared. Especially in VGA mode, please update the enable bit according to selected VGA display mode. When stretching function is selected, there is no restriction about setting '0' in the stretching registers (R8, R9, RIO). HITACHI 762 Hitachi America, Ltd.· HitaChi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 HD66850F Table 26 Notes on VGA Mode Usage by LCD Panel Size Horizontal Size (dot.) Vertical Size (line.) Nota. 640 • In VGA text modes (0/1, 213, 7), there is no space between characters. 720 • In VGA graphic modes (415, 6, F, 10, 11, 12, 13), horizontal cantering is necessary. (Display is automatically cantered horizontally in withmemory mode. See note below.) 400 • Data on line 401 through line 480 in VGA 640-by-480 graphic modes (11,12) are not displayed. • Vertical centering or stretching is necessary for VGA 640-by-350 graphic modes (F, 10). (Display is automatically stretched in with-memory mode. See note below.) 480 • Vertical centering or stretching is necessary for VGA text modes (0/1, 213, 7). (Display is automatically stretched in with-memory mode. See note below.) • Vertical cantering or stretching is necessary for VGA 640-by-200 or 320-by-200 graphic modes (415, 6, 13). (Display is automatically stretched in with-memory mode. See note below.) • Vertical centering or stretching is necessary for VGA 640-by-350 graphic modes (F, 10). (Display is automatically stretched in with-memory mod•• See note below.) Note: For without-memory mode, external circuits or BIOS tuning are required. I HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 763 HD66850F Table 27 Notes on Internal Register Settings Notes Non-VGA Register No_ Bits Register or Bit Function RO STE Stretching enable RO CRE Vertical centering enable 2 2 RO CCE Horizontal centering enable 3 4 RO SP Double-width display set 5 4 RO DISPON Display on 6 6 Rl DOTE Dot clock phase select 4 4 Rl AJ3-AJO Display timing adjust 4 4 VGA 1 R2 DH6-DHO Display horizontal size set 7 4 R3-R4 DV8-DVO Display vertical size set 8 4 Rs CR7-CRO Centering raster set 8 4 R6 CC4-CCO Centering character set 3 4 R7 BM Border control mode select 9 9 R7 BCI, BCR, BCG, BCB Border color select 10 10 R8 SF3-SFO Stretching period 8 4 11 11 7 12 R9-Rl0 SI1~IO Stretching index set Rll PS1-PSO Gradation display palette select Rll PA3-PAO Gradation display palette address set R12 PDS-PDO Gradation level palette data set GC8-GCO Gradation display clock period set Rl3-R14 Notes: Simultaneous use with vertical centering function is impossible. Simultaneous use with stretching function is impossible. Automatically set for a 640- or 320-dot-wide display on a 720-dot-wide LCD panel; cannot be rewritten. 4. Must be set after reset. 5. Automatically set for a middle-resolution display; cannot be rewritten. 6. Display will turn on four frames after reset. Display will not turn on during four frames after reset. 7. Automatically set a~rding to the horizontal panel size and number of displayed hOrizontal dots; cannot be rewritten. 8. Automatically set aCcording to the vertical panel size and polarity of HSYNC and VSYNC signals; cannot be rewritten. 9. Available only.in with-memory mode. 10. Available only in asynchronous with-memory mode. 11. In the MPU programming method, automatically set for 16-level display after reset; can be rewritten 100 ~ after reset. In ROM programming method, appropriate data must be written. 12. In with-memory mode, automatically set according to the horizontal panel size and number of displayed horizontal dots; cannot be rewritten. For without-memory mode, appropriate data must be written after reset. 1. 2. 3. HITACHI 764 Hitachi America, Ltd.· Hitaohl Plaza· 2000 Slerra~Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66850F Table 28 Limits on Register Values Register Function Applied to . LImits Horizontal display size control R2 4 s Nchd s (R2 + 1) s 90 (HSIZE. 1) 4S Nchd s (R2 + 1) s 80 (HSIZE. 0) Vertical display size control R3. R4 4S Ncvd S (R3. R4+ 1) S512 Vertical centering R3. R4. R5 2s(R5+1)S256 (AS + 1) x 2 + Ncvd • (R3. R4 + 1) Horizontal centering R2. R6 2S(R6+1)S32 (R6+ 1)x2 + Nchd. (R2+1) Gradation display clock period control R13. R14 (R13. R14 + 1). (Ncht x 8Vn (MMODE1 .1) n: 2 for 112 pulse width gradation display (R2 + 1) + 8 S Ncht (NMODE1 .0) Miscellaneous R2. R3. R4 112fOOTClK S {(R + 1) + 6} x 8 x (R3. R4 + 1) x fFlM S 2fOOTCLK (SYNC .0) Ncht: Total number of characters on a CRT horizontal line (total number of dots on a CRT horizontal line x 1/8) Number of characters displayed on a CRT horizontal line Nchd: (number of dots displayed on a CRT horizontal line x 1/8) Number of lines displayed from screen top to bottom on the CRT display Ncvd: f LDOTCK: LCD dot clock frequency fDOTCLK: CRT dot clock frequency Frame frequency fFLM: Absolute Maximum Ratings Item Symbol Ratings Unit Power supply voltage Vee -0.3 to 7.0 V Input voltage Vin -0.3 to Vee + 0.3 V Operating temperature T!1I!r -20 to +75 °C Storage temperature -55 to +125 °C Tali Notes: 1. Permanent LSI damage may occur if maximum ratings are exceeded. Normal operation should be under recommended operating conditions (Vee. 5.0 ± 10%. GND _ OV. Ta _ -20°C to +75°C. (H these conditions are exceeded. LSI reliability may be affeeled. 2. AU voltages are referenced to GND • 0 V. HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 765 HD66850F Electrical Characteristics DC Characteristics (Vee = 5.0 V ± 10%, GND = 0 V, Ta = -20 to +7SOC, unless otherwise specified) Hem Symbol Input highlevel voltage RES pin VIH OOTEIRO/AS, SPIWRlA4 Other input pins'1 Input low-level voltage Min TTL interface pins'2 Vee -0.5 V V Output Iowlevel voltage TTL interface pins'2 CMOS interface pins's 0.& 2.4 CMOS interface pins'S Three-state leakage current In. IrSL Current consumption lee Input leakage current V V IoH--200~ V IOH--200~ 0.4 V Ia... -1.6 mA 1oL-200~ Vc6-o.& Va... Test Condition V 2.0 VQi Unit 2.2 VII. Output highlevel voltage Max 0.& V -2.5 +2.5 ~ -10.0 10.0 ~ 100 mA Output pins open Notes: 1. Other input pins: DOTClK, HSYNC, VSYNC, BLANK, MSo-MS15, lDOTCK, 00-07, AJ3/cS/A3, AJ2IRS/A2, AJ1/A1, AJO/AO, R0-R3, Go-G3, B0-83, PMOOE1, PMOOEO, lMOOEO-lMOOE4, MMOOE1, MMOOEO, SYNC, VMOOE, VSIZE, HSIZE, TEST1, TESTO 2. TTL interface output pins: 00-07, DOTEIRO/AS, SPIWRlM, AJ3/CS/A3, AJ2IRS/A2, AJ1/A1, AJO/AO, MOo-M015, MAo-MA7, MA&ISOE1, SOEO, WE, OTIOE, RAS1, RASO, CAS, CASl, SC 3. CMOS interface output pins: UOO-U07, lOO-l07, XCl1, YCl1, CL2, FLM, M, SCLK, OISPON, OATAE HITACHI 766 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point PkwY.· Brisbane, CA 94005-1819· (415) 589-8300 HD66850F AC Characteristics (Vee =S.O V ± 10%, GND =0 V, Ta =-10 to +7SoC, unless otherwise specified) Video interface No. Item Symbol Min Max Unit Reference 62.5 ns Figure 45 1 DOTCLK cycle time TCYCD 31.2 2 DOTCLK low-level pulse width tWOL 15 3 DOTCLK high-level pulse width tWOH 15 4 DOTCLK rise time tor ns ns 5 ns 5 ns 5 DOTCLK fall time tor 6 Video data setup time tvos 10 ns 7 Video data hold time tVOH 10 ns 8 BLANK setup time tBLs 10 ns 9 BLANK hold time tBLH 10 .ns 10 BLANK low-level pulse width ~w 12 ~ 11 BLANK phase shift ~PD 2Tc ns 12 Phase shift setup time tPDS 2Tc ns 13 Phase shift hold time tPOH 2Tc ns Tc: DOTCLK cycle time HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 767 HD66850F DOTCLK Ro-R3 GO-G3 80-83 HSYNC VSYNC ~ -:1,/'o.SV ---I-E-'::®=--1 ~2~.O~V~---------------------~----~o~.S~V~ _______________________________ \'----- HSYNC VSYNC Figure 45 Video Interface HITACHI 768 Hitachi America, Ltd. - Hitachi Plaza -2000 Sierra Point Pkwy. - Brisbane, CA 94005-1819 - (415) 589-8300 HD66850F Memory interface Max No. Item Symbol Min 14 RAS cycle time tAC 12Tc-10 15 RAS low-level pulse width tRAS 5Tc 16 RAS high-level pulse width tRP 4Tc-40 17 CAS hold time tcSH 6Tc-50 ns 18 RAS, CAS delay time tReD 3Tc-40 ns 19 CAS low-level pulse width teAs1 3Tc-35 ns 20 CASL low-level pulse width tcAS2 2Tc-30 ns tcP1 1Tc-20 ns tcP2 tpc 2Tc-20 ns 4Tc-20 ns ns 128Tc-20 Unit Reference ns Figure 46 ns ns 21 CAS high-level pulse width 22 CASL high-level pulse width 23 CAS cycle time 24 RAS hold time tRSH 4Tc-40 25 Row address setup time tASR 2Tc-50 ns 26 Row address hold time tRAH 2Tc-30 ns 27 Column address setup time tASC 1Tc-30 ns 28 Column address hold time tcAH 2Tc-40 ns 29 WE setup time tws 2Tc-50 ns 30 WE hold time tWH 2Tc-40 ns 31 Memory data setup time ~ 1Tc-30 ns 32 Memory data hold time ~ 2Tc-35 ns 33 Data transfer DT/oE setup time tDTS 2Tc-50 ns 34 Data transfer DT/OE hold time tDTH 6Tc-50 ns 35 Phase shift between CAS and DTiOE tcDH 2Tc-40 ns 36 Phase shift between CAS and DT/oE torR 2Tc-50 ns 37 CAS setup time tcsR 2Tc-50 ns 38 CAS hold time tcHR 6Tc-50 ns 39 Phase shift between RAS and CAS tRPC 2Tc-50 ns 40 SC cycle time tsec 4TL -10 ns 41 SC high-level pulse width tsc 2TL -50 ns 42 SC low-level pulse width tscp 2TL -50 ns 43 Memory data read setup time tRDS 40 ns 44 Memory data read hold time tRDH 5 ns 45 Phase shift between SOE and SC lose 20 ns Figure 47 Figure 48 Figure 49 Tc: DOTCLK cycle time IL: LDOTCK cycle time (. Tc for synchronous mode) HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 _~ _ _ _ _ _ • _ _ _ _ _ _ ••• ___ 0_ _ _ _ _ _ _ _ ~ __ • _ _ .. " " . 0 . _ .. _ _ - ~ ____ ~_ .. _" 769 ... __ ._-_._- HD66850F @ J..§t ..... 2.4V RAS 1\0.8 V "l @ @ ([Ill CAS CASL 2.4V - ...., 1<-0.8 V f- It I(@) ) -K2.4V "l O.8V I\. - ®,® ~ ~~ ~ MAO-8)~ ~~ @'@ @ 0.8V .... 1\ ~~ --' -' ...., K <- 1\ ~~ ) MD0-15 r- 2.4 V ~ IL I\"' ~ ~ WE .'L @ ® ~ - K2.4V r- ) 0.8V t- ~ .... " K I"- Figure 46 Memory Interface (write) - 2.4V t-0.8 V - k' ~ rO.8V @ I~ ~ ..... 0.8V 8 ~ 0.8V _ IL 2.4 V Figure 47 Memory Interface (data transfer) HITACHI 770 Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300 HD66850F V / @ 2.4 V 0.8 V @ ~ 2.4 V / ~0.8V Figure 48 Memory Interface (refresh) sc ~ '\ 0.8 V @ f- 7 @) MSo-15 J- @ ~ 2.0 V .... 0.8V -' 2.4 V <-0.8 V r "} ~ ....1 @ ~ ) f- 2.0 V 0.8 V 9 ;C f+-+@ 2.4 V -' 0.8 V ..., SOEO-1 K Figure 49 Memory Interface (serial read) HITACHI Hitachi America, Ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819' (415) 589-8300 771 HD66850F LCD driver interface No. Item 46 CL2 cycle time Symbol Min tWCl2 2TL -10'1 Max Unit Reference ns Figure 50 4TL -10'2 8TL -10'3 16TL -10'4 47 CL2 high-level pulse width tWCL2H 1TL -40'l ns 2TL -40'2 4TL -40'3 8TL -40'4 48 CL2 low-level pulse width tWCl2L 1TL - 40'1 ns 2TL -40'1 4TL -40'2 8TL -40'4 49 CL1 high-level pulse width tWCL1h 150 50 LCD data delay time too 51 CL1 setup time tSCL1 200 52 CL1 hold tirne tHCL1 200 53 M output delay time tOM 54 FLM setup time tHF 100 55 LDOTCK cycle time leVCL 31.2 56 LDOTCK high-level pulse width tWLL 15 57 LDOTCK low-level pulse width tWLH 15 58 LDOTCK rise time tLr 5 ns 59 LDOTCK fall time tLf 5 ns ns 30 ns ns ns 100 ns ns 100 ns ns ns TL: LDOTCK cycle time (- Tc for synchronous mode) Notes: 1. 2. 3. 4. For display modes 9, 13, 16, 19, and 20 For display modes 1, 5, 10, 11, 14, 15, 17, and 18 For display modes 2,3,6, 7, and 12 For display modes 4, and 8 HITACHI 772 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66850F @ ~@ CL2 ) -~0.3 / Vee ~ ~ UDO-7 LDO-7 ....,It 0.7 Vee \ -; f" ~ )r- ) Ir- 0.7 Vee 0.3 Vee \ ,.; @'- - ® ~ ~ CL1 @jo.7vee 0.3 Vee E <9 ~.I 0.7 Vee FLM @ .1 1\ ~kee _ _ _ _ _ _ _-'-_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ E ~ ~ee M Figure SO LCD Driver Interface MPU interface No. Item Symbol Min 60 RD low-level pulse width tWROL 4Tc 61 RD high-level pulse width tWROH 4Tc ns 62 WR low-level pulse width tWWRL 4Tc ns 63 WR high-level pulse width tWWRH 4Tc ns 64 RD input inhibited time tRIH 4Tc ns 65 WR input inhibited time tWIH 4Tc ns 66 Address setup time tAS 0 ns 67 Address hold time tAH 0 ns 68 Data delay time tooR 69 Data output hold time tOHR 10 70 Data setup time tosw 0 ns 71 Data hold time tOHw 0 ns Max 100 Unit Reference ns Figure 51 I ns ns Tc: DOTCLK cycle time HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300 773 HD66850F RS CS DO _ 07 - - - - - - < 1 2.4 V 0.8V I}---(I 2.4 V 0.8 V Figure 51 MPU Interface HITACHI 774 Hitachi America, Ltd.- Hitachi Plaza - 2000 Sierra Point Pkwy. - Brisbane, CA 94005-1819. (415) 589-8300 HD66850F ROM interface No. Item Symbol Min 72 ROM address cycle time tcVCA 16Tc -20 73 ROM data setup time toswo 150 ns 74 ROM data hold time tOHWO 10 ns Max Unit Reference ns Figure 52 Tc: OOTClK cycle time AO-AS 00-07 Figure 52 ROM Interface RES timing No. Item 75 RES low-level pulse width Symbol . Min Max Unit Reference I1s Figure 53 ~_o@_~,.----. .• v - Figure 53 Reset Timing HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 775 HD66850F Load circuit Pins Reference , MAO - MA7, MA8ISOE1, OT/oE, WE, CAS, CASl, 2.4 kQ 11 kQ 40 pF Figure 54 40 pF Figure 55 RASO, RAS1, SOEO, MOO - M015, DO - 07, AO/AJO, A1/AJ1, A21RS/AJ2, A31CS/AJ3, A4IWRlSP, ASIROIDOTE DlSPON, OATAE, SCLK, M, FlM, CL2, VCl 1, XCl1, lOO - l07, UOO - U07 Rl C: 40pF R: 11 kn Rl: 2.4kn All diodes are 1S2074 (8) R Applicable pins: MAo-MA7, MAS/sOE1, OT/oE, WE, CAS, CASl, RASO, RAS1, SOEO, MOo-M015, 00-07, AO/AJO, A1/AJ1, A2/RS/AJ2, A31CS//lJ3, A4IWRlSP, ASIROIDOTE Figure 54 TTL Load Circuit o-----------.± ~~ Applicable pins: OISPON, OATAE, SClK, M, FlM, CL2, VCl1, XCl1, lOO - l07, UOO - U07 Figure 55 Capacitive Load Circuit HITACHI 776 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-181~· (415) 589-8300 LCD CONTROLLERlDRNER LSI DATA BOOK Section Six Segment TYPe LCD Controller/Driver , I HITACHI HD61602/HD61603--(Segment Type LCD Driver) Descripition Features The HD61602 and the HD61603 are liquid crystal display driver LSIs with a TTL and CMOS compatible interface. Each of the LSIs can be connected to various microprocessors such as the HMCS6S00 series. . • • The HD61602 incorporates the power supply circuit for the liquid crystal display driver. Using the software-controlled liquid crystal driving method, several types of liquid crystals can be connected according to the applications. The HD61603 is a liquid crystal display driver LSI only for static drive and has 64 segment outputs that can display S digits per chip. • Wide-range operating voltage -Operates ina wide range of supply voltage: 2.2 V to 5.5 V -Compatible with TTL interface at 4.5 V to 5.5 V Low current consumption -Can run from a battery power supply (100 pA max. at 5 V) -Standby input enables standby operation at lower current consumption (5 pA max. on 5 V) Internal power supply circuit for liquid crystal display driver (HD61602) -Internal power supply circuit for liquid crystal display driver facilitates the connection to a microprocessor system Versatile segment driving capacity Frame Fraq. (Hz) at t ... = 100 kHz Package 33 80-pin - . . , . - - - - . , . . - - - - - - - - - - " - - - - - - - " - - - - - - -__-----Plastic 65 QFP ~-----~--~----------~~--------~----------2-0-8-------- FP-80 -:-'-;':--':-'---'----=-=-':-----::--"---'-----::-::---::-":----:---:----=-:=----- (FP-80A) 223 TFP-SO 33 80-pin Plastic QFP (FP-80) Ordering Information Type No. HD61602R HD61602RH HD61602TF HD61603R Package SO-pin plastic QFP (FP-80) SO-pin plastic QFP (FP-80A) 80-pin thin plastic QFP (TFP-80)* 80-pin plastic QFP (FP-80) • Under development HITACHI 778 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61602/HD61603 Pin Arrangement (Top View) HD61602 HD61603 VDD 1= READY F= ~E L.. vvc r- ' ' a1!l!!I:l!I!!:!~J:!;::=?'llDll8 SEG" F= 001= "F= "1= "1= "1= "1= SEG" 031= SEG,. " ., ., 1= SEG,. ltr~ 5 58 • D,~ , 0, L.. • 0, r- • Do 1= ,. Vssl= " V, L.. " COM. ~ " SEG03 L.. " SEG., C " SEG., r " .. "1= " t=1= .. ,.t= ., ~~g: C:: SEG•• r- " SEG" SEG5. r- 21 SEG.. 22 SEG,. r- 23 SEG., 1= " .. = SEG 17 SEG,. SEG" SEG,o SEG21 SEG" SEG" SEG.. SEG,. SEG,. SEG" SEG,. :: == ~~g~~ '81= "F= C,. C "t= "F= "t= ~~~"~g;;;RR~~~~~=i1 .JUUUUUUUUL " SEG 31 SEG" SEG" SEG,. SEG,. SEG,. II II II II II (Top View) (FP-80) (FP-80) HD61602 ii~~~~~'~""~m$~~m~~~. Cl: 6Ot=: SEGIS WE ::r= ~~~:; ::1= ~~~:: R[ S8 0, Do SEG20 0, SEG21 D. Vss 0, 0, 0, 53 F" SEG22 &2 SEG23 60 SEG2S 49 SEG26 SEG2? SEG24 " Do VREFI VREf2 SEG2S SEG29 SEG30 SEG31 VC, VC, v, 43 ~~ ~~: I SEG32 :~F ~~~:: (FP-80A) (Top View) HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 779 HD61602/HD61603 Block Diagram HD61602 Common output (4 lines) Segment output (51)ines) HD61603 Common output it 00-03 Segment output (64 lin..) S8 Va Absolute Maximum Ratings Symbol Limit Unit VOO, V1, V2, V3 0.3 to + 7.0 V v,. 0.3 to Voo - 0.3 V Operating temperature Topr -20 to +75 ·C Storage temperature Tstg -55 to +125 ·C Item Power supply voltage Terminal voltage * * * Value referenced to Vss = 0 V. Note: If LSls are used above absolute maximum ratings, they may be permanently destroyed. Using them within electrical characteristics limits is strongly recommended for normal operation. Use beyond these conditions will cause malfunction and poor reliability. HITACHI 780 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61602/HD61603 Recommended Operating Conditions Limit Item Symbol Min Power supply voltage Voo Typ Max Unit 2.2 5.5 V V,. V2. V3 0 Voo V Terminal voltage * Vr 0 Voo V Operating temperature Topr -20 75 'C * Value referenced to Vss = 0 V. Electrical Characteristics DC Characteristics (1) (Vss = 0 V, VDD = 4.5 to 5.5 V, Ta = -20 to +75'C, unless otherwise noted) Symbol Min Item Limit Typ Max Unit - Voo V Test Condition Input high voltage OSC, VIH' Others VIH2 0.8Voo 2.0 Input low voltage OSC, VIU 0 V Voo 0.2Voo V Others VIL2 0 0.8 V JlA Vo = Voo Output leakage current Output low voltage Input leakage current *1 LCD driver voltage drop READY IOH 5 READY VOL 0.4 V IOL = 0.4 mA Input terminal hu -1.0 1.0 JlA VIN = O-Voo V, 11L2 -20 20 JlA V2. V3 11L3 -5.0 5.0 COMo-COM3 Vd' 0.3 JlA V SEGo-SEG50 Vd2 0.6 V ± Id = 3 JlA for each SEG. V3 = Voo-3 V 100 100 JlA During display· Rosc = 360 kO 100 5 JlA VTR 0.4 V At standby VREF2 = Voo-1 V. C,-C4 = 0.3JlF. RL = 3 MO Power supply current Internal driving voltage drop V,. V2. V3 ± Id = 3 JlA for each COM. V3 = Voo-3 V -------'~ * *1 Except the transfer operation of display data and bit data. Vl. V2: apply only to HD61602. HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 781 I • HD61602/HD61603 DC Characteristics (2) (Vss = 0 V, VDD = 2.2 to 3.S V, Ta = -20 to +75·C, unless otherwise noted) Item Symbol Min limit Typ Max Input high voltage VIH - Voo Input low voltage Output leakage current Output low voltage Input leakage current *1 LCD driver voltage drop * *1 Unit V Teat Condition READY IOH 0.1Voo V 5 "A VIN = Voo READY VOL 0.1Voo V IOl = 0.04 mA Input terminal hL! -1.0 1.0 JlA VIN = O-Voo VIN = 0-V3 Vil 0 V, hl2 -20 20 "A V2, V3 hl3 -5.0 5.0 COMo-COM3 Vd' 0.3 "A V SEGo-SEG5o Vd2 0.6 V Iss 50 "A Iss 5 VrR 0.4 "A V Power supply current Internal driving voltage drop 0.8Voo 0 V" V2, V3 . ±Id = 3 JlA for each COM, V3 = Voo-3 V ± Id = 3 JlA for each SEG, V3 = Voo-3 V During display· Rose = 330 kO At standby VREF2 = Voo -1 V, C,-C4 = 0.3 "F RL = 3 MO, Voo = 3-3.8 V Except the transfer operation of display data and bit data. V" V2: apply only to HD61602. HITACHI 782 Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 HD61602/HD61603 AC Characteristics (1) (Vss = 0 V. Voo = 4.5 to 5.5 V. Ta = Item -20 to+75'C. unless otherwise noted) Symbol Min Limit Typ Max Unit Test Condition Oscillation frequency OSC2 fosc 70 100 130 kHz Rosc=360 kO External clock frequency External clock duty OSC, fosc 70 100 130 kHz OSC, Duty 40 50 60 % ts 400 ns tH 10 ns twH 300 ns twl 400 ns twR 400 I/O signal timing ns 1.0 tOl Input signal rise time and fall time Jls tEN 400 top, 9.5 10.5 Clock toP2 2.5 3.5 Clock 25 ns Figure 5 ns t" tf For display data transfer For bit and mode data tra nsfer AC Characteristics (2) (Vss = 0 V. Voo = 2.2 to 3.8 V. Ta = Item -20 to+75'C. unless otherwise noted) Symbol Min Limit . Typ Max Unit Test Condition Oscillation frequency OSC2 fosc 70 100 130 kHz Rosc=330 kO External clock frequency External clock duty OSC, fosc 70 100 130 kHz OSC, 50 60 % Duty 40 I/O signal timing ts 1.5 JlS (Voo = 3.0-3.8 V) tH 1.0 Jls tWH 1.5 JlS twl 1.5 Input signal rise time and fall time Jls 2.0 tOl Jls twR 1.5 tEN 2.0 top, 9.5 10.5 Clock toP2 2.5 3.5 Clock 25 ns t" tf Figure 6 Jls I JlS For display data transfer For bit and mode data transfer HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 783 HD61602/HD61603 0 0 -0 7 >---------<1 Figure 1 . Write Timing (RE is fixed at high level, and SYNC at low level) Figure 2 Figure 3 Reset/Read Timing (CS and SYNC are fixed at low level) READY Timing (When the READY output is always available) HITACHI 784 Hitachi America, Ltd.· Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 HD61602/HD61603 "ADY f~ F=-:~~~~-~\~--W-it-hi-n-j~" _ 1 clock V1H SYNC V1H V1L \,.,._ _ _ _ _ _ _ _ _ __ Figure 4 SYNC Timing Voo Voo 47kQ 470kO 10kQ Measurement terminal Measurement terminal (READY) (READY) 30pF: 120kO o--~ 1S2074H Vss Figure 5 Bus Timing Load Circuit (LS-TTL Load) Figure 6 Bus Timing Load Circuit (CMOS Load) HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 785 HD61602/HD61603 Terminal Functions HD61602 Terminal Functions Terminal Name No. of Lines Input/Output Connected to Function Voo Power supply READY NMOS open drain output MCU While data is being set in the display data RAM and mode setting latch in the LSI after data transfer, low is output from the READY terminal to inhibit the next data input. There are two modes: one in which low is output only when both of CS and RE are low, and the other in which low is output regardless of CS and RE. Input MCU Chip select input. Data can be written only when this terminal is low. Input MCU Write enable input. Input data of DO to 07 is latched at the rising edge of WE. Input MCU Resets the input data byte counter. After both CS and RE are low, the first data is recognized as the 1st byte data. Input MCU High level input stops LSI operations. 1. Stops oscillation and clock input. 2. Stops LCD driver. 3. Stops writing data into display RAM. Input MCU Data input terminal for a-bit x 2-byte data. SB a Positive power supply. Power supply Vss Output Input 2 Output Negative power supply. External R Reference voltage output. Generates LCD driving voltage. External R Divides the reference voltage of VREFl with external R to determine LCD driving voltage. VREF2 .. Vl. External C Connection terminals for boosting C of LCD driving voltage generator. An external C is connected between VCl and VC2. 3 Output (Input) External C LCD driving voltage outputs. An external C is connected to each terminal. COMo-COM3 4 Output LCD LCD common (backplate) driving output. SEGo-SEG50 Output LCD LCD segment driving output. Input MCU Synchronous input for 2 or more chips applications. LCD driver timing circuit is reset by high input. LCD is off. Input Output External R Attach external R to these terminals for oscillation. An external clock (100 kHz) can be input to OSC 1 . 51 SYNC OSCl OSC2 2 Note: Logic polarity is positive. 1 = high = active. HITACHI 786 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61602/HD61603 HD61603 Terminal Functions Terminal Name No. of Lin.. Input/Output Connected to Function Voo Power supply READY NMOS open drain output MCU While data is being set in the display data RAM and mode setting latch in the LSI after data transfer, low is output from the READY terminal to inhibit the next data input. There are two modes: one in which low is output only when both of CS and RE are low, and the other in which low is output regardless of CS and RE. Input MCU Chip select input. Data can be written only when this terminal is low. Input MCU Write enable input. Input data of Do to 03 is latched at the rising edge of WE. . Input MCU Reset the input data byte counter. After both of CS and RE are low, the first data is recognized as the 1st byte data. Input MCU High level input stops the LSI operations. 1. Stops oscillation and clock input. 2. Stops LCD driver. 3. Stops writing data into display RAM. Input MCU Data input terminal from where 4-bit x 4 data are input. SB 00-03 4 Positive power supply. Vss Power supply V3 Input Power supply Power supply input for LCD drive. Voltage between Voo and V3 is used as driving voltage. COMo Output LCD LCD common (backplate) driving output. Output LCD LCD segment driving output. Input MCU Synchronous input for 2 or more chips applications. LCD driver timing circuit is reset by high input. LCD is off. Input Output External R Attach external R to these terminals for oscillation. An external clock (100kHz) can be input to OSC, . SEGo-SEG63 64 SYNC OSC, OSC2 2 Note: Logic polarity is positive. 1 Negative power supply. = high = active. HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819· (415) 589-8300 787 HD61602/HD61603 Display RAM· HD61602 Display RAM The HD61602 has an internal display RAM shown in figure 7. Display data is stored in the RAM, or is read· according to the LCD driving timing to display on the LCD. One bit of the RAM corresponds to 1 segment of the LCD. Note that some bits of the RAM cannot be displayed depending on LCD driving mode. Common address (COMo-COMa) I ~{L_ _~I -:: :---- Display RAM \. • . I 51 bits Segment address (SEG o-SEG 50) Figure 7 Display RAM HITACHI 788 Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy.- Brisbane, CA 94005-1819· (415) 589-8300 HD61602/HD61603 is reproduced on the LCD panel. Reading Data from Display RAM: A display RAM segment address corresponds to a segment output. The data at segment address SEGn is output to segment output SEGn terminal. When a 7-segment type LCD driver is connected, for example, the correspondence between the display RAM and the display pattern in each mode is as follows: A common address corresponds to the output timing of a common output and a segment output. The same common address data is simultaneously read. The data of display RAM 1. Static drive In the static drive, only the column of COMo of display RAM is output. COMl to COM3 are not displayed. LCD connection '" (!) c5w '" (!) w CJ) w CJ) 2. CJ) (!) W CJ) JJJc5 wwww CJ) CJ) SEG. SEG. SEG,. SEG" SEG,2 SEG" SEG,. SEG,. CJ) CJ) 1/2 duty cycle drive COMo and COM1 of display RAM are output in time sharing. The columns of COM2 and COM3 are not displayed. In the 1/2 duty cycle drive, the columns of LCD connection a Display RAM COM, a 9 c b e d DP SEG 5 SEGe SEG 7 COMo ... (!)"' (!) w CJ) 3. w CJ) ~ w CJ) G w CJ) SEG 4 1/3 duty cycle drive In the 1/3 duty cycle drive, the columns of COMo to COM2 are output in time sharing. No column of COMJ is displayed. SEGs SEG 9 "Y" cannot be rewritten by display data (input on an a-segment basis). Please use bit manipulation to tum on/off the display of "Y". HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 789 I HD61602/HD61603 LCD connection Display RAM COM3 4. / / ~/ / COM2 Y a b COM, f 9 c COMo e d DP SEG 3 SEG 4 SEG 5 SEG B 1/4 duty cycle drive In the 1/4 duty cycle drive, all the col- umns of COMo to COM3 are displayed. fl LCD connection a Display RAM ~------COM3 , /- b ----COM2 .~~~ --'---COM, d DP-r - - - ' ) - - - COMo N (,!) '" (,!) (/) (/) w COMa f a COM2 9 b COM, e c COMo d DP w HITACHI 790 Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 HD61602/HD61603 Writing Data into Display RAM: Data is written into the display RAM in the following five methods: 1. Bit manipulation Data is written into any bit of RAM on a bit basis. 2. Static display mode 8-bit data is written on a digit basis according to the 7-segment type LCD pattern of static drive. 3. 1/2 duty cycle display mode 8-bit data is written on a digit basis according to the 7-segment type LCD pattern of 1/2 duty cycle drive. 4. 1/3 duty cycle display mode 8-bit data is written on a digit basis according to the 7-segment type LCD pattern of 1/3 duty cycle drive. 5. 1/4 duty cycle display mode (2) (1) Static 8-bit data is written on a digit basis according to the 7-segment type LCD pattern of 1/4 duty cycle drive. The RAM area and the alocation of the segment data for 1-digit display depend on the driving methods as described in "Reading Data from Display RAM". 8-bit data is written on a digit basis corresponding to the above duty cycle driving methods. The digits are allocated as shown figure 8 (allocation of digits). As the data can be transferred on a digit basis from a microprocessor, transfer efficiency is improved by allocating the LCD pattern according to the allocation of each bit data of the digit in the data RAM. Figure 8 shows the digit address (displayed (3) 1/2 duty cycle display COM oCOM,COM 2 (4) 1/3 duty cycle display COM oCOM,COM 2 COM 3 COM oCOM,COM2COM 3 SEGo SEGo SEGo SEG, SEG, SEG, SEG2 SEG2 SEG2 SEG2 SEG3 SEG3 SEG3 SEG 3 .-~--./ SEGo AdO Ad1 SEG4 SEGs SEG5 SEGs SEG s SEGs SEGs SEG7 SEG a SEG7 SEG7 SEGa SEG8 SEGs SEGg SEGg SEGg SEGg SEG,o SEG,o SEG" SEG l1 SEGl1 SEG'2 SEG 12 SEG'3 I--+-i/ SEG'3 SEG4 Ad3 Ad4 SEG,o Ad5 SEGl1 SEG 12 Ad4 SEG'4 SEG'4 SEG'4 SEG,s SEG'5 SEG'5 Ad5 Ad6 Ad7 SEG.s AdS SEG 17 SEG 17 SEG'8 Ad3 SEG7 SEG'5 SEG'8 Ad2 SEG s Ad2 SEG'3 SEG. 4 SEG 17 Ad1 SEGs SEG'2 SEG'3 AdO SEG, SEG4 SEG4 Ad6 SEG'8 ~ SEG 50 Figure 8 Ad16 1/4 duty cycle display SEG 50 Ad24 Ad25 Allocation of Digit (HD61602) HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 791 HD61602/HD61603 as Adn) to specify the store address of the transferred 8-bit data on a digit basis. Figure 9 shows the correspondence between each segment in an Adn and the 8-bit input data. When data is transferred on a digit basis, 8bit display data and digit address should be specified as described above. In bit manipulation, anyone bit of display RAM can be written. When data is transferred on a bit basis, l-bit display data, a segment addr~ss (6 bits) and a common address (2 bits) should be specified. HD61603 Display RAM The HD61603 has an internal display RAM an shown in figure 10. Display data is stored in the RAM and output to the segment output terminal. However, when the digit address is Ad6 for static, Ad12 for 1/2 duty cycle, or Ad25 for 1/ 4 duty cycle, display RAM does not have enough bits for the data. Thus the extra bits of the input a-bit data are ignored. (1 ) (2) Static display 1/2 duty display 1/3 duty display COMo COM 1 COM2 COM o COM 1 COMo SEGs (3) Bit 7 SEG:!n Bit 7 6 Bit 7 6 SEGsn+1 6 SEG4n +1 5 4 SEG3n+l 5 4 3 SEGSn + 2 5 SEG4n+2 3 2 SEG3n+2 2 1 Bit SEGSn +3 4 SEG4n+3 1 Bit SEGSn+4 3 SEGSn+5 2 0 0 (4) 1/4 duty display SEGSn +6 SEGSn +7 Bit 0 SEG2n+1 Figure 9 Bit 7 6 5 4 3 2 1 Bit 0 Bit ASSignment in an Adn (HD61602) 1 bl (C~Mo){Ll::::::::=============D=is:PI:aY~RA==M::====::::::======::::~J ~~----------------------~ 64 bits Segment address (SEGo-SEG S3) Figure 10 Display RAM (HD61603) HITACHI 792 Hitachi America, Ltd.' Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61602/HD61603 Reading Data from Display RAM: Each bit of the display RAM corresponds to an LCD segment. The data at segment address SEGn is output to segment output SEGn terminal. Figure 11 shows an example of the correspondence between the display RAM bit and the display pattern when a 7-segment type LCD is connected. Writing Data into Display RAM: Data is written into the display RAM in the following two methods: 1. Bit manipulation Data is written into any bit of RAM on a 2. bit basis. Static display mode 8-bit data is written on a digit basis according to the 7-segment type LCD pattern of static' drive. The 8-bit data is written on a digit basis into the digit address (displayed as Adn) shown in figure 12. When data is transferred from a microprocessor, four 4-bit data are needed to specify the digit address and an 8-bit display data. Figure 13 shows the correspondence between each segment in an Adn and the transferred 8-bit data. LCD connection Display RAM SEGa SEGg SEG lO SEG 11 SEG 12 SEG 13 SEG 14 SEG 15 SEG 16 Figure 11 Example of Correspondence between Display RAM Bit and Display Pattern (HD61603) HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 793 HD61602/HD61603 In bit manipulation, anyone bit of display RAM can be written. When data is transfer- red on a bit basis, i-bit display data and a segment address (6 bits) should be specified. COMo SEGo SEG , SEG2 SEG3 AdO SEG4 SEGs SEG8 . SEG7 SEG s SEG g SEG '0 SEG I1 Ad1 SEG 12 SEG '3 SEG'4 SEG'5 SEG '8 SEG 17 SEG ,S COMo SEGan Bit 7 SEG4S SEG48 SEG Sn +1 6 SEG47 SEG 48 SEGsn +2 5 SEG Sn +3 4 SEG Sn +4 3 SEG Sn +5 2 SEG 49 SEG~ SEG S1 Ad6 SEG52 SEG 53 SEG 54 SEGss SEG5e SEG S7 SEGsn +e SEGSn +7 ·Bit 0 SEGsa SEG'9 Ad2 SEG59 Ad7 SEG 60 SEG20 SEGel SEG21 SEGe SEG22 SEG83 SEG23 SEG24 Figure 12 Allocation of Digits (HD61603) Figure 13 Bit Assignment in an Adn (HD61603) HITACHI 794 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61602jHD61603 OPERATING MODES HD61602 Operating Modes The HD61602 has the following operating modes: 1. LCD drive mode Determines the LCD driving method. a. Static drive mode LCD is driven statically. b. 1/2 duty cycle drive mode LCD is driven at 1/2 duty cycle and 1/ 2 bias. c. 1/3 duty cycle drive mode LCD is driven at 1/3 duty cycle and 1/ 3 bias. d. 1/4 duty cycle drive mode LCD is driven at 1/4 duty cycle and 1/ 3 bias. 2. Data display mode Determines how to write display data into the data RAM. a. Static display mode 8-bit data is written into the display RAM according to the digit in static a. READY is mode always available. drive. 1/2 duty cycle display mode 8-bit data is written into the display RAM according to the digit in 1/2 duty cycle drive. c. 1/3 duty cycle display mode 8-bit data is written into the display RAM according to the digit in 1/3 duty cycle drive. d. 1/4 duty cycle display mode 8-bit data is written into the display RAM according to the digit In 1/4 duty cycle drive. b. 3. READY output mode Determines the READY output timing. After a data set is transferred, the data is processed internally. The next data cannot be acknowledged during the processing period. The READY output reports the period to the MPU. The timing when the READY is output can be selected from the following two modes: ,"---- ________-.J/ tI WE~ :~ I READY Data transfer period b. '~----------------------------J11 I I - - -__..,I..._ - - - - - - - l n p u t i n h i b i t - - - - - -....... -!' I I period I I I I-- Next data I transfer READY is mode available by CS and RE. -----....,,/ ~ 1 :1 ).I I I \.1I READY-------------+I----------~, / '-...._----~ I AI \I I ~~--------~~ I '---Y ~--tl Data transfer --"'--+1...- - - - - - - - I n p u t i n h i b i t - - - - - -....... period 4. I period LCD OFF mode In this mode, the HD61602 stops driving LCD and turns it off. 5. I I 1 1 .1-- Next data transfer External driving voltage mode A mode for using external driving voltage (V1, V2, and V3). • HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 795 HD61602/HD61603 The above 5 modes are specified by mode setting data. The modes are independent of each other and can be used in any combina- tion. Bit manipulation is independent of data display mode and can be used regardless of it. HD61603 Operating Modes not be acknowledged during the processing period. The READY output reports the period to the MPU. The timing when READY is output can be selected from the following two modes: The HD61603 has the following modes: 1. READY output mode Determines the READY output timing. After a data set is transferred, the data is processed internally. The next data cana. READY is always available. ______---.J/ \l-r ~ READY - - - - - " " ' \ . . ~i-------------------------~11 I I Data transfer---.ootl....- - - - - - - - I n p u t i n h i b i t - - - - - -....~l period period I I I I I ' - -Next data transfer b. READY is mode available by CS and RE. cs "R"E I I READY Data transfer period I I I I -I" / I I ~I WE 2. ~ / " I I I I I I /f' I ~ Input inhibit period " / \r '---./1r I -, f'-/ , Ir r I r I-- Next data transfer LCD OFF mode In this mode, the HP61603 stops driving the LCD and turns it off. HITACHI 796 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61602/HD61603 INPUT DATA FORMATS HD61602 Input Data Formats Input data is composed of 8 bits X 2. Input them as 2-byte data after READY output changes from low to high or low pulse is entered into RE terminal. 1. 3. Mode setting data 1st byte Display data (Updates display on an 8segment basis) 7 1st byte 3 2 1 o 7 2nd byte I : 7 a. 6 4 3 2 1 0 6 5 4 3 2 1 0 5 4 3 Display mode bits: 00: Static display mode 01: 1/2 duty cycle display mode 10: 1/3 duty cycle display mode 11: 1/4 duty cycle display mode b. OFF ION bit: 1: LCD off (set to 1 when SYNC is entered.) 0: LCD on c. Drive mode bits: 00: Static drive 01: 1/2 duty cycle drive 10: 1/3 duty cycle drive 11: 1/4 duty cycle drive d. READY bit: 0: READY bus mode; READY outputs 0 only while CS and RE are O. (reset to 0 when SYNC is entered.) 1: READY port mode; READY outputs 0 regardless of CS and RE. e. External power supply bit: 0: Driving voltage is generated internally. 1: Driving voltage is supplied externally. (set to 1 when SYNC is entered.) :o I 2 Bit manipulation data (Updates display on a segment basis) 1st byte 7 5 a. Display address: Digit address Adn in accordance with display mode Display data: Pattern data that is written into the display RAM according to display mode and the address b. 2. 6 6 2nd byte Display address (Digit address Adn) 4 External power supply 5 4 3 2 1 0 2nd byte 7 6 5 432 o a. Display data: Data that is written into 1 bit of the specified display RAM b. COM address: Common address of display RAM c. SEG address: Segment address of display RAM 4. l-byte instruction 1st byte I I I I I I I I 7 1 6 x 5 x 4 x 3 x x 2 x 0 The first data (first byte) is ignored when bit 6 and bit 7 in the byte are 1. HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 797 I HD61602/HD61603 HD61603 Input Data Formats Input data is composed of 4 bits x· 4. Input them as four 4-bit data after READY output changes from low to high or· low pulse is entered into RE terminal. 1st byte I Display data (Updates display on an 8segment basis.) 1. Mode setting data 3. 2nd byte 1 : 0 3 2 x I 0 0 II x I~EADYI 3 2 x : x 1st byte 3 01 o 2 3 o 2 OFFION bit: 1: LCD off (set to 1 when SYNC is entered.) 0: LCD on b. READY bits: 0: READY bus mode; READY outputs 0 only while CS and RE are O. (reset to 0 when SYNC is entered.) 1: READY port mode; READY outputs 0 regardless of CS and RE. a. 3rd byte Bitl7 Display data 6 5 4 .3 2 0 a. Display address: Digit address Adn shown in figure 12. b. Display data: Pattem data that is written into the display RAM as shown in figure 13. 2. Bit manipulation data (Updates display on a segment basis.) 1at byte 2nd byte I 0: 3 I~!:ayl 2 1st byte l' >Ix >I r---r - - : 0 1~~~:'dr:1 3 l-byte instruction 4. x II x xr--I0 ""--'0 3 2 0 4th bytC\ a. 2 1 0 Display data: b. SEG address: Bit3 3 320 The first data (4 bits) is ignored when bit 3 and 2 in the data are 1. SEG address 0 1 .2 2 0 Data that is written into 1 bit of the specified display RAM. Segment address of display RAM (segment output). HITACHI 798 0 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005~1819· (415) 589-8300 HD61602/HD61603 How To Input Data How to Input HD61602 Data Input data is composed of a bits x 2. Take care that the data transfer is not interrupted, because the first a-bit data is distinguished from the second one by the sequence only. If data transfer is interrupted, or at power on, the following two methods can be used to reset the count of the number of bytes (count of the first and second bytes): 1. Set CS and RE inputs low (no display data changes). Input 2 or more "l-byte instruction" data in which bit 7 and 6 are 1 (display data may change). The data ~ut method via data input terminals (CS, WE, Do to D7) is similar to that of static RAM such as HM6116. An access of the LSI can be made through the same bus line as ROM and RAM. When output ports of a microprocessor are used for an access, refer to the timing specifications and figure 14. 2. Power on WE' *6 RE~~*4 ,.----,...----1----~ *5 * 1" '----',....".. .,-_.1 *3 '----',------..-."'--- READY .. ___ oJ *5 SYNC------------I~---------------J~ *5 *2 SB----------~~--------------------------------------Do-D7~~al~stDX(2~n!dIX::::::::::I~i~§t~X(25M~Xr:::::::]Xll~.tJI~2n~d]X::= Mode setting data Mode setti ng data Display data * 1: READY output is indefinite during 12 clocks after the oscillation start at power on (clock: OSC 2 clock). *2: High pulse should be applied to SYNC terminal when using two or more chips synchronously. *3: In the mode in which READY is always available, READY outP\lt is in definite while SYNC is high. 4: Reset the byte counter after power on. 5: READY output period is within 3.5 clocks in the mode setting operation and bit manipulation or within 10.5 clocks when the display data (8 bits) is updated. 6: Connect a pull-up resister if WE or RE may be floating. 7: It is not always necessary to follow this example. * * * * Figure 14 Example of Data Transfer Sequence HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 799 HD61602/HD61603 How to Input HD61603 Data Input data is composed of 4 bits x 4. Take care that data transfer is not interrupted, because the first 4-bit data to the fourth 4-bit data are distinguished from each other by the sequence only. If data transfer is interrupted, or at power on, the following two methods can be used to reset the count of the number of data (count of the first 4-bit data to the fourth 4-bit data): 1. 2. Set CS and RE low. Input 4 or more "i-byte instruction" data (4-bit data) in which bit 3 and 2 are 1 (display data may change). The data !!!E.ut method via data input terminals (CS, WE, DO to D3) is similar to that of static RAM such as HM6116. An access of the LSI can be made through the same bus line as ROM and RAM. When output ports of a microprocessor are used for an access, refer to the timing specifications and figure 15. Power on WE 1*6 RE~*4 READY L~:::7~~~:~~/------~'---1r----------~~ * 1 *5 *3 *5 *5 SYNC ________-(n~~------------~r\~·*~2~----------------------SB--------~~~---------------------------------------------- Do-D3~~~h~'AX=~~X~~~X~4~"AX________~X~1"~X~2~·X~'=riAX~4"~X~____~X~1·~,X~W=X~~~X~"~bXLMode setting data Mode setting data Display data * 1: READY output is indefinite during 12 clocks after the oscillation start at power on (clock: OSC 2 clock). *2: High pulse should be applied to SYNC terminal when using two or more chips synchronously. * 3: In the mode in which READY is always available, READY output is indefinite while SYNC is high. * 4: Reset the 4-bit data counter after power on. * 5: READY output period is within 3.5 clocks in the mode setting operation and bit manipulation or within 10.5 clocks when the display data (8 bits) is updated. * 6: Connect a pull-up resister if WE or RE may be floating. * 7: It is not always necessary to follow this example. Figure 15 Example of Data Transfer Sequence HITACHI 800 Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 HD61602/HD61603 Notes on READY Output Note that the READY output will be unsettled during 1.5 clocks (max) after in~tting the first 2-byte data for setting the mode after turning the power on. This is because the READY bit data of mode setting latches and the mode of READY pin (READY bus or port mode) are unsettled until the completion of mode setting. There are two kinds of the READY output waveforms depending of the modes: 1. READY bus mode (READY bit = 0) 2. READY port mode (READY bit = 1) However, if you input SYNC before mode setting, waveform will be determined; when you choose READY bus mode, (1) a in figure 16 will be output, and when you choose READY port mode, (2) a will be output. The figures can be applied both to HD61602 and HD61603. Power on t Do-D7~------------------------~~1~&;-' ~-;2~nd~~~~----------------- ~, READY output is unsettled. V/J1 Mode setting data (2-byte data) r1 .5 .clocks (max) Mode setting latch is unsettled. Mode setting data are latched. Power on + / a , ,\--------b , READY '- _ _ _ _ _ _ _ J Note: CS = low Power on (1) ~ READY Bus Mode 1.5 clocks (max) / READY \ Note: CS = low, RE (2) Figure 16 = high a ----"\ , \ , b --------T I 1 .5 clocks (max) READY Port Mode 3.5 clocks (max) READY Output According to Modes HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 801 HD61602/HD61603 Standby Operation Standby operation with low power consumption can be activated when pin SB is used. Normal operation of the LSI is activated when pin SB is low level, and the LSI goes into the standby state when pin SB is high level. The standby state of the LSI is as follows: 1. 2. LCD driver is stopped (LCD is off). Display data and operating mode are held. 3. 4. The operation is suspended while display c~nges (while READY is outputting low.) In this case, READY outputs high within 10.5 clocks or 3.5 clocks after release from the standby mode. Oscillation is stopped. When this mode is not used, connect pin SB to Vss. Multichip Operation every SYNC operation. When an LCD is driven with. two or more chips, the driving timing of the LCD must be synchronized. In this case, the chips are synchronized with each other by using SYNC input. If SYNC input is high, the LCD driver timing circuit is reset. Apply high pulse to the SYNC input after the operating mode is set. If a power on reset signal is applied to the SYNC pin, the LCD can be off-state when the power is turned on. A high pulse to the SYNC input changes the mode setting data. (The OFF ION bit is set and the READY bit is reset. See 3. Mode Setting Data in "Input Data Formats".) Transfer the mode setting data into the LSI after When SB input is used, after standby mode is released, a high pulse must be applied to the SYNC input, and mode setting data must be set again. When SYNC input is not used, connect pin SYNC to Vss. Restriction on Usage Minimize the noise by insetting a noise bypass capacitor (;;; 1 )IF) between Voo and Vss pins. (Insett one as near chip as possible.) Liquid Crystal, Disj)lay Drive Voltage Circuit (HD61602) What is LCD Voltage? HD61602 drives liquid crystal display using four levels of voltages (figure 17); Voo, Vl, V2, and V3 (Voo is the highest and V3 is the lowest). The voltage between Voo and V3 is called VLCD and it is necessary to apply the appropriate VLCO according to the liquid crystal display. V3 always needs to be supplied regardless of the display duty ratio since it supplies the voltage to the LCD drive circuit of HD61602. Voo Figure 17 LCD Output Waveform and Output Levels HITACHI 802 Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 HD61602/HD61603 When Internal Drive Power Supply is Used When the internal drive power supply is used, attach Cl-C4 for charge pump circuits and variable resistance Rl for deciding display drive voltage to HD61602 as shown in figure 18. Internal voltage is available by setting external voltage switching bits of mode setting data O. Figure 19 shows voltage characteristics between Voo and VREF1. Voltage is divided at R1, and then input into VREF2. Voltage between Voo and VREF2 is equivalent to a V in figure 19, and so VLCO can be changed by regulating the voltage. VREF2 is usually regulated by variable resistance, but when replacing Rl with two nonvariable resistances take VREFl between max and,min into consideration as shown in figure 19. Internal drive power supply is generated by using capacitance, and so large current cannot flow. When large liquid crystal display panel is used, examine the external drive power supply. Power _~__-t__-41 Voo 11 Vss I Regulator ---,L-_ _ _ _----' Voltage follower 19 VC 2 C2 C3 C4 20 V, 21 V2 22 V3 23-26 COM 77 SEGo 76 SEG, 75 SEG 2 LCD Charge pump circuit HD61602 R, = 1 MQ Variable C,=0.3I'F C2-C4=0.3I'F C5 =0.1 to 0.31'F C6 <;; 11'F Flgure 18 Example HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 803 ( HD61602/HD61603 When External Drive Power Sup- ply Is Used An external power supply can be used by setting extemal voltage switching bits of mode setting data to 1. When a large'liquid crystal display panel is used. in multichip designs. which heed accurate liquid crystal drive voltage. use the extemal power supply. See figure 20. Rs is connected in series between VDD R2 - and Vss. and by these resistance ratio each voltage of Il.V and VLCD is generated and then supplied to V1. V2. and V3. C2-C4 aresmoothing capacitors. When regulating brightness. change the resistance value by setting Rs variable resistance. Voo-Vss (V) 2 ~ 3 4 I 1= \ _' I I 5 6 : I i .~ I G 1.6 ------ ·---+--min ! i 1.7 ~ 1.9 ____ "\~n__ \ > 1.8 c 2 .O '= \ > 2.1 I i typ : ''. : ------!:"' ....~---max 2.2 2.3 Voltage Characteristics between VDD and Vraf1 Figuret9 Positive Pcsltive power supply Voo V.. power supply C. Vee V.. VAEF1 VREF1 VA... Ve, Ve2 V, V2 Va VREF2 R:I C. Positive power Vee V.. C. supply V"EF1 VREF2 Ve, Ve2 V, C2 R2 NC NC Ve, VC2 V, V2 V2 Va Va R. ee;;: 1 pF sa sa (1 ) Static Drive (2) 1/2 DLity Cycle Drive (3) 1/3 and 1/4 Duty Cycle Drive Note: 1. When standby mode is used, a transistor is required. 2. R2-R5 should be some kQ-some tens of kQ, and C2-C4 should be 0.1 pF-0.3pF. Figure 20 , 804 Example when External Drive Voltage is Used HITACHI . Hitachi America, Ltd.· Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005~1819· (415) 589-8300 HD61602/HD61603 Liquid Crystal Display Drive Voltage (HD61603) As shown in figure 21, apply LCD drive voltage from the external power supply. Osclllation Circuit When Internal Oscillation Circuit is Used When External Clock is Used When the internal oscillation circuit is used, attach an external resister Rose as shown in figure 22. (Insert Rose as near chip as possible, and make the OSCl side shorter.) When an external clock of 100 kHz with CMOS level is provided, pin OSCl can be used for the input pin. In this case, open pin OSC2. C6 Positive power --_--t----t supply R, -, I IT, SB I _.J Note: When standby mode is used, a transistor is required. Figure 21 Example of Drive Voltage Generator Rose Rose BOr OSC, 791 OSC 2 801 OSC, 79[ OSC 2 "- HD1~049UB etc. 801 OSC, ---~c I 79 OSC 2 Multichip operation Figure 22 Example of Oscillation Circuit HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 805 HD61602/HD61603 Applications + 5V -m HD~:' Au C Address bus D,Do R/W r::e:: ~ B A'5 E BA ~ A AI4 .!i.....r Data bus I Do 1 ~bJ 11f / +5V I~ I~ I~ ~>- Veo READY -,!, ~ .... I 0 0 -0, u OSC2 ~ V REfl (/) so Vss Vee I-- +5V Vss HDBBOS II I VAEF2 HD61602 " I +5V ~ CPU +5V -. Voo 1 f~rOY v.. V2 V3 ---- SEG50 ...., I "'~/ ~.~.'.-~-.= V1 V COMo V C2 COM3 SEGo I I >- VREF 1 - (I) VAEF2 _ r +5V v, HD61602 V V, " V" SEG 1 ~ _ ________ " SE G50 V3 -------- --------. -------- ----- .... - .. " ) Uquid Crystal Figure 23 5Vl11 A A, A, .. HD74LS138 ~ § A 0 C " rrD Address bus 0, Data bus Do 1 Do '~ r1-/ B +5V R/W Vee V.. ---.,. !f HDBBO9 CPU JT 1 I~ I~ I~ ~ Do-D, VOO BEADY SO Vss COM +5V Example (1) Ir= ~ .... u & ~~ +sv HD14U / rv.. M V, HD61603 ~ rf ~ SEGo - .......... SEG83 ------ ------- Figure 24 ~! I~ I~ It ~ --, Do-D, U> I ~M DY HD61603 V, SEGo -- - - - - - SEG", -------- 1 --------- ) Example (2) HITACHI 806 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61604/HD61605--(Segment Type LCD Driver) Description Features The HD61604 and the HD61605 are liquid crystal display driver LSIs with TTL and CMOS compatible interface. Each of the LSIs can be connected to various microprocessors such as the HMCS6800 series. • Low current consumption -Can drive from a battery power supply (100 JiA max on 5 V). -Standby input enables a standby oper· ation at lower current consumption (5 JiA max on 5 V). • Versatile segment drive capacity Several types of liquid crystal displays can be connected to the HD61604 according to the applications because of the softwarecontrolled liquid crystal dispay drive method. The HD61605 is a liquid crystal display driver LSI only for static drive and has 64 segment outputs that can display 8 digits per chip. Display Drive Method Segments Static 51 1/2 bias 1/2 duty cycle 102 1/3 bias 1/3 duty cycle 153 1/4 duty cycle 204 64 Static Type No. HD61604 HD61605 Frame Freq (Hz) Example of Use 8 segments x 6 digits + 3 marks 8 segments x 12 digits + 6 marks 9 segments x 17 digits 8 segments x 25 digits + 4 marks 8 segments x 8 digits at to.c=100 kHz 98 195 521 781 98 Pin Arrangement HD61604 HD61605 i~rer::.~:ertJ:!~~~!:$S$$ Voo L.. 64p. SEG" ' 3 "t: SEG'4 SEG" RE ~ • ~~g:'s r- READY 1= CSL.. WE'" 2 63 ,.. 4 611= SEG,s :p. 1= ,sp. SEG,. "1= SEG,o "1= SEG" 551= SEG" 641= SEG" "1= SEG,. 62p. SEG" S8,- ' 0, j: , 0, '- • d. [ • D.::: '0 v55 [ " o r 12 O~ 1= " D, 14 51 Do 16 49r- ~~~ = :: VC 1 == ,. V, = '0 V V' = COM 1 == SEG26 SEG" SEG .. 1= SEG~: V COM~ F 50 ... V R£Fl 21 47F= SEG 30 .. SEG" SEG" 44 22 43 23 24 .2 ., :!l~~:sreg;;;~::l~~:il:;:e:~~ II II II II II 1111 II II II II SEG 33 =' SEG,. = SEG" SEG,s (Top View) HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005·1819· (415) 589·8300 807 HD61604/HD61605 Block Diagram HD61604 LCD drive timing generator READY __~_--, Common output (4 lines) RAM write timing generator Parallel/serial converter Segment output (51 lines) Address de~er Operation mode LCD drive voltage Drive voltage selection Figure 1 HD61604 Block Diagram HD61605 LCD drive timing generator .cs.. ~ 0 0 -03 58 Common output RAM write timing generator Parallel/serial converter Segment output (64 lines) Address decoder Figure 2 HD61605 Block Diagram HITACHI 808 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61604/HD61605 Pin Functions Table 1 shows the HD61604 pin description.. Table 2 shows the HD61605 pin description. VDD: Positive power supply. Vss: Negative power supply. H061604 Pin Function H061605 Pin Function READY (Ready): During data setting in the display data RAM and mode setting latch in the LSI after data transfer, low is output to the READY pin to inhibit the next data input. There are two modes: one in which low is output only when both of CS and RE are low, and the other in which low is output regardless of CS and RE. CS (Chip Select): Chip select input. Data can be written only when this pin is low. WE (Write Enable): Write enable input. Input data of Do to D7 is latched at the positive edge of WE. RE (Reset): Resets the input data byte counter. After both of CS and RE are low, the first data is recognized as the 1st byte data. SB (Standby): High level input stops the LSI operations. 1. 2. 3. Stops oscillation and clock input. Stops LCD driver. Stops writing data into display RAM. READY (Ready): During data setting in the display data RAM and mode setting latch in the LSI after data transfer, low is output to the READY pin to inhibit the next data input. There are two modes: one in which low is output only when both of CS and RE are low, and the other in which low is output regardless of CS and RE. CS (Chip Select): Chip select input. Data can be written only when this pin is low. WE (Write Enable): Write enable input. Input data of Do to Da is latched at the positive edge of WE. RE (Reset): Resets the input data byte counter. After both of CS and RE are low, the first data is recognized as the first byte data. SB (Standby): High level input stops the LSI operations. 1. 2. 3. 00-07 (Data Bus): Data input pin from which a-bit x 2-byte data is input. SYNC (Synchronous): Synchronous input for 2 or more chip applications. LCD drive timing generator is reset by high input. LCD is off. COMo -COM 3 (Common): LCD common (backplate) drive output. SEGo -SEG60 (Segment): LCD segment drive output. Stops oscillation and clock input. Stops LCD driver. Stops writing data into display RAM. 00- 03: Data input pin from which 4-bit x 4byte data is input. SYNC (Synchronous): Synchronous input for 2 or more chips application. LCD drive timing generator is reset by high input. LCD is off. COMo (Common): LCD common (backplate) drive output. SEGo -SEGsa (Segment): LCD segment drive output. Vt, Vz, V3 (LCD Voltage): Power supply for LCD drive. OSC1, OSC2 (Oscillator): Attach external R to these pins for oscillation. An external clock (100 kHz) can be input from eSC1. OSC1, OSC2 (Oscillator): Attach external R to these pins for oscillation. An external clock (100 kHz) can be input from eSC1. V3 (LCD Voltage): Power supply input for LCD drive. Vet, Vcz: Do not connect any wire. VRBF1: Connect this pin to Vl pin. Voltage between voltage. VRD'z: Hold at Vss: Negative power supply. VDD level. VDD and Va is used as drive HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 809 HD61604/HD61605 VDD: Positive power supply. Table 1 Table 2 HD61604 Pin Description Do-D7 No.of Lines Input/Output NMOS open drain output Input Input Input 1 Input Input 8 SYNC 1 COMoCOM3 4 Input Output SEGoSEGso 51 Output LCD SEGo-SEG63 OSC1, OSC2 VI, V2, V3 OSC1, OSC2 3 Power supply External R 2 Input, output External R Vel, VC2 2 Output Pin Name READY CS WE RE S8 Connected to MCU Pin Name READY MCU MCU MCU MCU MCU CS WE RE S8 MCU LCD SYNC VREFI Input VI VREF2 Input Voo Voo Power supply Vss Power supply Do-£>:! HD61605 Pin Description No.of Lines Input/Output NMOS open drain output Input Input Input Input Input 4 Connected to MCU MCU MCU MCU MCU MCU Input Output MCU LCD 64 Output LCD 2 Input, output External R V3 Input Power supply Vss Power supply Voo Power supply COMo Note: Logic polarity is positive. 1 = high = active. Note: Logic polarity is positive. 1 = high = active. HITACHI 810 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61604/HD61605 Display RAM 8D61604 Display RAM The HD61604 has an internal display RAM shown in figure 3. Display data is stored in the RAM, or is read according to the LCD drive timing to display on the LCD. One bit of the RAM corresponds to 1 segment of LCD. Note that some bits of the RAM cannot be displayed depending on LCD drive modes. timings of a common output and a segment output. The same common address data is simultaneously read. The data of display RAM is reproduced on the LCD panel. The following shows the correspondence between the 7-segment type LCD connection and the display RAM in each mode. 1. Reading Data from HD61604 Display RAM Static Drive: In static drive, only the column of COMo of display RAM is output. COMl to COM:! are not displayed (figure 4). A display RAM segment address corresponds to a segment output. The data at segment address SEGn is output to segment output SEGn pin. 2. A common address corresponds to the output 1/2 Duty Cycle Drive: In the 1/2 duty cycle drive, the columns of COMo and COM 1 of display RAM are output in time sharing. The columns of COM2 and COM:! are not displayed (figure 5). Common address (COM o-COM 3 ) l~·~{L_~ " ,---- Display RAM ~~----------------------v.----------------------~j 51 bits Segment address (SEG o-SEG 50 ) Figure 3 Display RAM (8D61604) LCD connection Dis~lay RAM COM3 COM2 COM, COMo Figure 4 f e d c DP g b a Example of Correspondence between LCD Connection and Display RAM (Static Drive, 8D61604) HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 811 HD61604/HD61605 3. 1/3 Duty Cycle Drive: In the 1/3 dutv cycle drive, the columns of COMo to COM 2 are output in time sharing. No column of COM:! is displaved. "V" cannot be rewritten bV displav data (input on an 8-segment basis). Please use bit manipulation in turning on/off the displaV of "V" cvcle (figure 6). . 4. 1/4 Duty Cycle Drive: In the 1/4 dutV cy~le drive, all the columns of COMo to COM:! are displaved (figure 7). LCD connection a Display RAM COM, a 9 c COMo fed b DP . .. lil lil II) II) FigureS Example of Correspondence between LCD CODllection and Display RAM (1/2 Duty Cycle, 8D61604) LCD connection Display RAM COM3 Figure 6 V 1/ / COM 2 y a b COM, f 9 c COMo e d DP Example of Correspondence between LCD Connect1on and Display RAM (1/3 Duty Cycle, 8D61604) LCD connection a Figure 7 ,-------COMa Display RAM COM 3 f a COM2 9 b COM, e c COMo d DP Example of Correspondence between LCD Connection and Display RAM (1/4 Duty Cycle, 8D61604) HITACHI 812 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61604/HD61605 Writing Data into HD61604 Display RAM Data is written into the display RAM in the following five methods: 4. 1/3 Duty Cycle Display Mode: 8-bit data is written on a digit basis according to the 7-segment type LCD pattern of 1/3 duty cycle drive. 1. 5. 1/4 Duty Cycle Display Mode: 8-bit Bit Manipulation: Data is written into any bit of RAM on a bit basis. data is written on a digit basis according to the 7-segment type LCD pattern of 1/4 duty cycle drive. 2. Static Display Mode: 8-bit data is written on a digit basis according to the 7segment type LCD pattern of static drive. 3. 1/2 Duty Cycle Display Mode: 8-bit data is written on a digit basis according to the 7-segment type LCD pattern of 1/2 duty cycle drive. . (1) (2) 1/2 Duty Cycle Ststic The RAM area and the allocation of the segment data for i-digit display depend on the drive methods as described in the section of "Reading Data from Display RAM". 8-bit data is written on a digit basis corresponding to the above duty drive methods. The digits are allocated as shown in figure 8. (3) 1/3 Duty Cycle Display COMoCOM ,COM2 (4) 1/4 Duty Cycle Display Display COM oCOM,COM2 COM oCOM,COM2COM 3 SEGo SEGo SEGo SEG, SEG, SEG, SEG2 SEG2 SEGz SEG3 SEG3 SEG3 SEG4 SEG4 SEG4 SEGs SEG5 SEG5 SEGB SEGB SEG8 SEG7 SEGB SEG7 SEG7 SEGs SEG s SEG g SEG g SEGg SEG,o SEG,o SEG,o SEG" SEG" SEG" SEG'2 SEG'2 SEG'2 SEG'3 SEG'3 SEG'3 SEG'4 SEG'4 SEG'4 SEG'6 SEG'5 SEG'7 SEG 17 SEGo AdO /-+--+--i/ Ad1 1-+-+--1 Ad2 I-+--+---f Ad3 /-+--+--i/ SEG2 Ad1 SEG3 SEG4 Ad2 SEGs SEGs Ad3 SEG7 SEG8 Ad4 SEG g SEG,o Ad5 SEG" SEG'2 Ad4 1-+-+--1 Ad6 SEG'3 SEG'4 Ad7 SEG'5 Ad5 SEG'8 SEG'8 AdO SEG, 1-+-+--1 Ad6 SEG'B Ad8 SEG 17 SEG,s 1'1. SEG 60 L..-_...K...~ Figure 8 SEG 60 Ad16 Ad24 Ad25 Allocation of Digits (HD61604) HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 813 HD61604/HD61605 As the data can be transferred ona digit basis from a microprocessor, transfer efficiency is improved by allocating the LCD pattern according to the allocation of each bit data of the digit in the data RAM. However, when the digit address is Ad6 of static, Ad12 of 1/2 duty cycle, or Ad25 of 1/4 duty cycle, display RAM does not have enough bits for the data. Thus the extra bits of the input 8-bit data are ignored. Figure 8 shows the digit address (displayed as Adn) to specify the store address of the transferred 8-bit data on a digit basis. In bit manipulation, anyone bit of display RAM can be written. When data is transferred on a bit basis, I-bit display data, a segment address (6 bits)s and a common address (2 bits) should be specified. Figure 9 shows the correspondence between each segment in an Adn and the 8-bit input data. HD61606 Display RAM When data is transferred on a cUgit basis, 8bit display data and digit address should be , specified as described ab~ve. (1) Static Display (2) 1/2 Duty Display COMo SEG8 The HD61605 has an internal display RAM as shown in figure 10. Display data is stored in the RAM and output to the segment output pin. (3) COM o COM 1 Bit 7 SEG4n SEG8n+l SEG4n+2 SEG8n+2 SEG4n+3 SEG8n+3 7 6 SEG3n+l 5 4 3 SEG3n+2 2 1 Bit 6 SEGsn 5 4 3 2 1 Bit 0 0 1/4 Duty Display Bit 7 6 5 4 3 2 1 Bit SEG8n+7 SEG2n+l Figure 9 8it 8it 7 (4) 1 bit 1/3 Duty Display 0 Bit Assignment In an Adn (HD61604) {I I (COM~ t,::::::::::::::::::::::D:iS:P:I~~y:R:A:M::::::::::::::::::::::::~; 64 bits Segment address (SEGo-SEGnl Figure 10 Display RAM (8061606) HITACHI 814 Hitachi America, ltd. - Hitachi Plaza - 2000 Sierra Point Pkwy. -Brisbane, CA 94005-1819 - (415) 589-8:300 HD61604/HD61605 Reading Data from HD61605 Display RAM Each bit of the display RAM corresponds to an LCD segment. The data at segment address SEGn is output to segment output SEGn pin. Figure 11 shows the correspondence between the 7-segment .type LCD connection and the display RAM. Writing Data into HD61605 Display RAM Data is written into the display RAM in the following two methods: 1. Bit Manipulation: Data is written into any bit of RAM on a bit basis. 2. Static Display Mode: 8-bit data is written on a digit basis according to the 7segment type LCD pattern of static drive. The 8-bit data is written on a digit basis into the digit address (displayed as Adn) shown in figure 12. When data is transferred from a microprocessor, four 4-bit data are needed to specify the digit address and an 8-bit display data. Figure 13 shows the correspondence between each segment in an Adn and the transferred 8-bit data. In bit manipulation, anyone bit of display RAM can be written. When data is transferred on a bit basis, 1-bit display data and a segment address (6 bits) should be specified. LCD connection Display RAM Figure 11 Example of Correspondence between LCD Connection and Display RAM (HD61605) HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 815 HD61604/HD61605 COMo SEGo SEG , SEGz SEG3 AdO SEG4 SEGe SEG8. SEG7 SEGa SEG8 SEG '0 SEGl1 Ad1 SEG12 SEGan SEG45 SEG48 SEG47 SEG48 SEG48 SEG50 SEG51 Ad6 SEG&2 SEG 63 SEG'3 SEG54 SEG'4 SEG55 SEG'5 SEG 51 SEG'8 SEGI7 SEGe7 SEG , SEG51 SEG '8 Ad2 SEG&8 Ad7 SEGzo SEG80 COMo Bit 7 SEG8n +1 6 SEG8n+3 4 SEG 8n +4 3 SEG 8n +6 2 SEGZI SEG22 SEG23 SEG24 Figure 12 AllOcation of Digits (HD61605) Figure 13 Bit Assignment in an Adn (HD 61605) HITACHI 816 Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 HD61604/HD61605 Operating Modes HD61604 Operating Modes · 1/2 duty cycle display mode: a-bit data is written into the display RAM according to the digit in 1/2 duty cycle drive. The HD61604 has the following operating modes: ·1/3 duty cycle display mode: a-bit data is written into the display RAM according to the digit in 1/3 duty cycle ~rive. LCD Drive Mode: Determines the LCD 1. drive method. · 1/4 duty cycle display mode: a-bit data is written into the display RAM according to the digit in 1/4 duty cycle display drive. · Static drive mode: LCD is driven statically. · 1/2 duty cycle drive mode: LCD is driven with 1/2 duty cycle and 1/2 bias. READY Output Mode: Determines the 3. READY output timing. · 1/3 duty cycle drive mode: LCD is driven with 1/3 duty cycle and 1/3 bias. After a data set is transferred, the data is processed internally. The next data cannot be acknowledged during the processing period. The READY output reports the period to the MPU. The timing when READY is output can be selected from the following two modes: ·1/4 duty cycle drive mode: LCD is driven with 1/4 duty cycle and 1/3 bias. 2. Data Display Mode: Determines how to write display data into the data RAM. • Static display mode: a-bit data is written into the display RAM according to the digit in static drive. · READY is always available (figure 14). · READY is made available by CS and RE (figure 15). ------...,/ ''I-I- - I WE~ READY Data transfer :"--/ I "~ __________________________--J,II I 1 I I I I I - - - _• ..j'...._ - - - - - - - I n p u t i n h i b i t - - - - - -...... oo-!' ~ri~ ~ri~ I I f-- Next data transfer Figure 14 READY Output Timing (When It is Always Available) ,I cs ,I ). I ~ WE I RE I I READY Data transfer period I I I I "I- '\ I '\ 1 I I I I I, ~ I AI 1 "--.V. Input inhibit peri~ ,I ).. ,I '-./lI -I I I I I i I I I- Next data transfer Figure 15 READY Output Timing (When It is Made Available by CS and RE) HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 817 HD61604/HD61605 After a data set is tranSferred, the data is processed internally. The next data cannot be acknowledged during the processing period. The READY output reports the period to the MPU. The timing when READY is output can be selected from the following two modes: 4. LCD Off Mode: In this mode, the HD61604 stops driving the LCD and turns it off. The above 4 modes are ,specified by mode setting data. The modes are independent of each other and can be used in any combination. The bit manipulation is independent of data display mode and can be used regardless of it. • READY is always available (figure 16). • READY is made available by CS and RE (figure 17). HD6160& Operating lIIodes The HD61606 has the following operating modes: 1. 2: LCD Off lIIode: In this mode, the HD61606 stops driving the LCD and turns it off. READY Output Mode: Determines the READY output timing. \~I ------".--;/ /! READY - - - - -...., I ~I-------------~ I I I Data transfer--..,..... I ••- - - - - - - l n p u t i n h i b i t - - - - - - - o.. -.l1 period period I I 14- Next data transfer Figure 16 READY Output Timing (When It is Always Available) cs / ~I WE ~ READY Data transfer period I I I I I I -I- / \. II \ f\.-./ I \ I I I I -1 I '---...V Input inhibit period / ). I I '--./1I "I II I I I I I-- Next data transfer Figure 17 READY Output TIming (When It Is Made Available by CS and D.) HITACHI 818 Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300 HD61604/HD61605 Input Data Formats HD61604 Input Data Formats 3. Input data is composed of 8 bits X 2 bytes. Input them as 2-byte data after READY output changes from low to high or low pulse enters into RE pin. Mode Setting Data: 1st byte 7 1. x I 0 6 5 4 x x 5 4 1:~Dy~~e :model 3 2 1 0 Display Data: Updates display on an 82nd byte segment basis. x Display address (Digit address Adn) 765 4 3 o 2 • Display address: Digit address Adn in accordance with display mode · Display data: Pattern data written into the display RAM according to display mode and the address Bit Manipulation Data: Updates display on a segment basis. 1st byte I I 0 7 I~!:~YI x x x 5 4 3 2 6 ~~~ss I 1 0 2nd byte I I I x 7 S~G ad~ress : x 6 5 4 3 2 x 6 I I x 3 IOFF/oi Disp;ay . I bit mode bits 2 1 0 · Display mode bits: 00: Static display mode 01: 1/2 duty cycle display mode 10: 1/3 duty cycle display mode 11: 1/4 duty cycle display mode • OFF/ON bit: 1: LCD off (set to 1 when SYNC is entered) 0: LCD on · Drive mode bits: 00: Static drive 01: 1/2 duty cycle drive 10: 1/3 duty cycle drive 11: 1/4 duty cycle drive · READY bit: 0: READY bus mode: READY outputs 0 only while CS and RE are 0 (reset to o when SYNC is entered) 1: READY port mode: READY outputs o regardless of CS and RE 2nd byte I : I 7 43210 2. 0 Note: Input the same data to display mode bits and drive mode bits. 4. 0 • Display data: Data written into 1 bit of the specified display RAM · COM address: Common address of display RAM · SEG address: Segment address of display RAM 1-Byte Instruction: The first data (first byte) is ignored when the bit 6 and bit 7 in the data are 1. 1st byte 7 6 5 4 3 2 o HITACHI Hitachi America, ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 819 HD61604/HD61605 Mode Setting Data: 3. HD61605 Input Data Formats I1 : 0 3 2 Display Data: Updates display on an 8- 1. 3rd segment basis. I 1st byte I : 0 0 3 2 x x x 0 3 3rc! byte Display data 4 Bit 17 6 5 0 2 3 Display address (Digit address Adn) 0 2 Bit3 2 0 · Display address: Digit address Adn shown in figure 12. · Display data: Pattern data written into the display RAM as shown in figure 13. 4. Bit Manipulation Data: Updates display 2. on a segment basis. 1st byte I 03 : 2 x 1 0 II 3rc! byte I 0 0 byte x : x 3 I 0 x I~~DYI 3 2 x : x 0 4th byte byte < x : x : x 3 II II x ~~F/OJ 3 0 2 0 2 < 2 1~~~5a~d~1 0 I : I x > I 0 1 0 SEG address Bit3 3 2 2 1 0 0 · Display data: D~ta written into the 1 bit of the specified display RAM. · SEG address: Segment address of display RAM (segment output). HITACHI 820 0 bits) is ignored when the bit 3 and bit 2 in the data are 1. 320 2 0 I-Byte Instruction: The first data (4 4th byte x 3 I 1st byte 2nd I~:~·vl x byte . OFF/ON bit: 1: LCD off (It is set to 1 when SYNC is entered) 0: LCD on . READY bit: 0: READY bus mode: READY outputs 0 only while CS and RE are 0 (reset to 0 when SYNC is entered) 1: READY port mode: READY outputs 0 regardless of CS and RE Display data 1 0 2 3 2nd 1st byte Input data· is composed of 4 bits x 4 bytes. Input them as four 4-bit data after READY output changes from low to high or low pulse enters into RE pin. Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61604/HD61605 How to Input Data Bow to Input Data Into B061604 1. Input data is composed of 8 bits x 2 bytes. Take care that the data transfer is not inter- . rupted because the first 8-bit data is distinguished from the second one by the sequence only. When data transfer is interrupted, or at power on, the following two methods can be used to reset the count of the number of bytes (count of the first and second bytes): Set CS and RE to ldyv (no display data changes). 2. Input 2 or more 1-byte instruction data whose bit 7 and 6 are high (display data may change). The data input method via data input pins (CS, WE, Do to D,) is similar to that of static RAM such as HM6116. Access to the LSI can be made through the same bus line as ROM and RAM. When output ports of a microprocessor are used for access, refer to the timing specifications and figure 18. Power on ~ ~ I CS WE RE ., I , r- '*6 '*6 READY I ~*4 C::::,/ * 1 SYNC __________~n--------------~r--\~*-2---------------------11 58 . 1st 2nd 1st 2nd 1st 2nd 0 0 -07 ~~r~x~~x~--------~xr=;x~~x~------~X~~X~~x~-Mode setting data Mode setting data Display data * 1: READY output is indefinite during 12 clocks after the oscillation starts at power on (clock: OSC2 clock). * 2: High pulse should be applied to SYNC pin when using two or more chips simultaneously. *3: In the mode in which READY is always available, READY output is indefinite while high is being applied to SYNC. *4: Reset the byte counter after power on. * 5: READY output period is within 3.5 clocks in the mode setting operation and bit manipulation or within 10.5 clocks when the display data (8 bits) is updated. *6-: Connect a pull-up resistor if WE or RE is floating. *7: It is not always necessary to follow this example. Figure 18 Example of Data Transfer Sequence HITACHI Hitachi America, ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819. (415) 589-8300 821 HD61604/HD61605 How to Input Data into HD61605 1. Input data is composed of 4 bits x 4 bytes. Take care that the data transfer is not interrupted because the first 4-bit data to the fourth 4-bit data are distinguished from each other by the sequence only. 2. Set CS and RE to low (no display data changes.) Input 4 or more i-byte instruction data (4-bit data) whose bit 3 and 2 are high (display data may change). The data input method via data input pins (CS, WE Do to D3) is similar to that of static RAM such as HM6116. Access to the LSI can be made through the same bus line as ROM and RAM. When output ports of a microprocessor are used for access, refer to the timing specifications and figure 19. When data transfer is interrupted, or at power on, the following two methods can be used to reset the count of the number of data (count of the first 4-bit data to the fourth 4bit data): Power on ~r------~I'~~______-Jlr------'\~____-Jlr-----'\~____-JrWE '*6 RE ~~*~4--------------------------------------- R~Dy[:::~S~--------~~~::'T/--~--,~r--------.~ *1 SYNC *5 *3 *5 *5 ________~»~---------------Jr\~*~2~----------------------- 58 1st 2nd 3rd 4th 0 0 -0 3 ----<:::)-iJ---('-..&.X~X:lo...LX:lo...LX~ Mode setting data 1st 2nd 3rd 4th 1st 2nd 3rd 4th ____...t.X~-...t.X~X:lo...Lx.....,'£;X~__---I.X~X:lo...LX~X"",X~ Mode setting data Display data * 1: READY output is indefinite during 12 clocks after the oscillation starts at power on (clock: OSC2 clock). *2: High pulse should be applied to SYNC pin when using two or more chips simultaneously. *3: In the mode in which READY is always available, READY output is indefinite while high is being applied to SYNC. 4: Reset the 4-bit data counter after power on. *5: READY output period is within 3.5 clocks in the mode setting operation and bit manipulation or within 10.5 clocks when the display data (8 bits) is updated. *6: Connect a pull-up resistor if WE or RE is floating. 7: It is not always necessary to follow this example. * * Figure 19 Example of Data Transfer Sequence HITACHI 822 Hitachi America, Ltd. 0Hitachi Plaza 0,2000 Sierra Point Pkwy. 0 Brisbane, CA 94005-1819 0 (415) 589-8300 HD61604/HD61605 Notes on READY Output Note that the READY output will be. unsettled during 1.5 clocks (max) after inputting the first 2-byte data for setting the mode after turning the power on. This is because the READY bit data of mode setting latches and the mode of READY pin (READY bus or port mode) are unsettled untill the completion of mode setting. 1. READY bus mode (READY bit = 0) 2. READY port mode (READY bit = 1) However, if you input SYNC before mode setting, waveform will be determined; when you choose READY bus mode, (1) a in figure 20 will be output, and when you choose READY port mode, (2) a will be output. The figures can be applied both to HD61604 and HD61605. There are two kinds of the READY output waveforms depending on the modes. Power on ~ Do- D7 r---------------------__--< 1st 2nd ~,. READY output is unsettled. V//i Mode setting data (2-byte data) f 1.5 .clocks (max) Mode setting latch is unsettled. Mode setting data are latched. Power on t '---_-{I READYr-----------------------------~,-,- ---~----/~ '" _ _ _ _ _ _ _ J I \ ' - -_ _J Note; CS = low (1 ) READY Bus Mode 1.5 clocks (max) Power on ~ / / a READY ------~ \ \~ __b____\ Note; CS I = low, RE = high (2) / \ 1 .5 clocks (max) READY Port Mode 3.5 clocks (max) Figure 20 READY Output According to Modes HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 823 HD61604/HD61605 Standby Operation Standby operation with low power consumption can be activated when pin SB is used Nonnal operation of the LSI is activated when pin SB is low level, and the LSI goes into the standby state when pin SB is high level. The standby state of the LSI is as follows: 1. 2. LCD driver is stopped (LCD is off). Display data and operating mode are 3. 4. held. The operation is suspended while display changes (while READY is outputting low.) In this case, READY outputs high within 10.S clocks or 3.S clocks after release from the standby mode. Oscillation is stopped. When this mode is not used, connect pin SB to Vss. Multi Chip Operation When an LCD is driven with the two or more chips, the driving timing of LCD must be synchronized. In this case, the chips are synchronized with each other by using SYNC input. If SYNC input is high, the LCD driver timing circuit is reset. Apply high pulse to the SYNC input after the operating mode is set. A high pulse to the SYNC input changes the mode setting data. (The OFF ION bit is set and the READY bit is reset. See (3) Mode Setting Data in "Input Data Formats".) Transfer the mode setting data into the LSI after every SYNC operation. If a power on reset signal is applied to the SYNC pin, the LCD can be off-state when the power is turned on. When SYNC input is not used, connect pin SYNC to Vss. When SB input is used, after standby mode is released, high pulse must be applied to the SYNC input, and mode setting data must be set again. Restriction on Usage Minimize the noise by inserting a noise bypass capacitor (~ 1 pF) between VDD and Vss pins. (Insert one as near chip as possible.) Liquid Crystal Display Drive Voltage CirCUIt (HD61604) What is LCD Voltage? ce it supplies the voltage to the LCD drive circuit of HD61604. HD61604 drives liquid crystal display using four levels of voltages (figure 21); VDD, Vl, V2, and V3 (VDD is the highest and V3 is the lowest). The voltage between VDD and V3 is called VLCD and it is necessary to apply the appropriate VLCD according to the liquid crystal display. V3 always needs to be supplied regardless of the display duty ratio sin- Connecting R2 - RS in series between VDD and Vss (figure 22) generates fj. V or VLCD by using the resistance ratio to supply these voltage to pins Vl, V2, V3. C2-C4 are the smoothing capacitors. Connect a trimmer potentiometer for RS and change its resistance value to control the contrast. HITACHI 824 Hitachi America, Ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 HD61604/HD61605 Voo Figure 21 LCD Output Waveform and Output Levels (1/3 Duty Cycle, 1/3 Bias) Positive C. power supply R, C. VDD Vss Positive C. power supply Vee Vss Positive power supply Vee Vss C. VREF1 V REFl V REF2 V REF1 Ve, VC2 V, V, Ve, VC2 V, V3 V, V, Va V3 V REF2 VREF2 C, R, NC NC Ve, Ve, V, C s ;;;; 1 pF S8 (1 ) Static Drive (2) 1/2 Duty Cycle Drive (3) 1/3 and 1/4 Duty Cycle Drive Note: 1 When standby mode is used, a transistor is required. 2 R2-R5 should be some kCl-some tens of kCl, and C2-C4 should be 0.1 .uF-0.3 .uF. Figure 22 Example when External Drive Voltage is Used HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 825 HD61604/HD61605 Liquid Crystal Display Drive Voltage (HD61605) As shown in figure 23, apply LCD drive voltage from the external power supply. Oscillation Circuit When Internal Oscillation Circuit is Used When External Clock is Used When an external clock 6.£ 100 kHz V'lith CMOS level is provided, pin eSCl can be used for the input pin. In this case, open pin OSC2. When the internal oscillation circuit is used, attach an external resistor Rose as shown in figure 24. (Insert Rose as near ehip as possible, and make the OSCl side shorter.) Cs Positive power -----...~..-__4 supply SB Note: When standby mode is used, a transistor is required. Figure 23 Example of Drive Voltage Generator Rose Rose " v 801 OSC1 791 OSC2 801 OSC1 HD14049UB 79{ etc. OSC2 801 OSC1 79~IC OSC2 Multichip operation Figure 24 Example of Oscillation Circuit HITACHI 826 Hitachi America, Ltd.· Hitachi Plaza • 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61604/HD61605 Applications HD74LS138 ,..-- +5 :; V-m A A" A" A" B C Address bus .!i....t -::D = D,H-~D~.~W~bus----~Q~.----~-----+-r--~~r----------------------r-r--~~---------;, ~H-~~~--~----~----~-4I~~-------------------+4-~I~------~ . II +5V J-/I~I~I~~ i > en Voo ~~---fREADY Vee- +5V V"-;J,. HD6809 ~~ r ;;- +5 V- I ... 0, D,u DSC2 ~ V AEf1 r; I~ +5V I - v,,.! f i* V2 ~---SEG50 I I I i "'1~1~~D,-D,OSC'OSC2 vt / r--~Voo READY VAEF 2 HD61604 COMo V e1 I VC2COM3SEGo HD~D49UB V3:....~ ~: > en V REfl [ VAEF2 HDBI6D4 V V, V2 Cl t-;SV Va SEG,-- ________ SEG60V3 ...........-......--------HI+t+------'t----itl-----' CPU ) Uquid cryswl Figure 25 Example (1) - HD74LS138 5Vlll .. A, A, , Address bus 0, RiW ~ cf- Ve Vss fir [fD rL/ I I !f +5V I~ I~ I~ ~ Voo READY SB Vss +5V Ir= ~ .... I 0,-0, I /' /" 0, Ve, V" COM HDB809 CPU ~ -- G Data bus 0, BA :;: A B C A, ~ '" 0 N 0 0 : HD61605 V, +5V _~ I~ I~ I~ ~ HDI4D4p / r-: ~ SEGc------ SE<>.:, rf ~ Veo ~=s Ve, Ve, DY OO-D3 N ou ~~ '" HD61B05 V, SEGo -- - - - - - SEGel ------- -------- ... ------ --.------ ) Figure 26 Example (2) HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 827 HD61604/HD61605 Absolute Maximum Ratings Item Symbol Limit Unit -0.3 to + 7.0 v Pin voltage' -0.3 to Voo + 0.3 v Operating temperature -20 to + 75 Power supply voltage' Storage temperature -55 to + 125 = *Value referenced to Vss 0 V. Note: If LSls are used above absolute maximum ratings, they may be permanently destroyed. Using them within electrical characteristics limits is strongly recommended for normal operation. Use beyond these conditions will cause malfunction and poor reliability. Recommended Operating Conditions Limit Item Symbol Min Max Unit Voo 4.5 5.5 V 0 Voo V Pin voltage' 0 Voo V Operating temperature -20 +75 °c Power supply voltage' *Value referenced to Vss Typ =0 V. Electrical Characteristics DC Characteristics (Vss = 0 V, Voo = 4.5 V to 5.5 V, Ta = -20·C to +75·C, unless otherwise noted) Symbol Min Item Input high voltage Input low voltage Limit Typ Max Unit - VOD V V OSC1 VIH1 Others VIH2 2.0 VOD OSC1 VIL1 0 0.2VOD V 0 0.8Voo Test Condition Others VIL2 0.8 V Output leakage current READY IOH 5 pA Pull up the pin to VOO Output low voltage Input leakage current *1 READY VOL 0.4 V IOL=0.4 rnA Input pin IIL1 -1.0 1.0 pA LCD driver voltage drop V1 hL2 -20 20 pA V2, V3 hL3 -5.0 5.0 pA COMo-COM3 Vd1 0.3 V ± Id = 3 pA for each COM, V3=VOO to 3 V SEGo-SEG5o Vd2 0.6 V ± Id;'" 3 pA for each SEG, V3=VOO to 3 V 100 100 pA During display * Rosc=360 kO IDO 5 pA At standby Current consumption * 2 , Except the transfer operation of display data and bit data. '1 V1• V2 : applied only to HD61604. '2 Do not connect any wire to the output pins and connect the input pins to Voo or Vss. HITACHI 828 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD61604/HD61605 AC Characteristics (Vss = 0 V, Voo = 4.5 V to 5.5 V, Ta = -20·C to +75·C, unless otherwise noted) Limit Symbol Item Min TvP Malt Unit Test Condition Rose = 360 k{l Oscillation frequency OSC2 fosc 70 100 130 kHz External clock frequency OSC1 fosc 70 100 130 kHz External clock duty OSC1 Duty 40 50 60 ts 400 ns tH 10 ns tWH 300 ns tWl 400 ns tWA 400 ns 110 signal timing 1.0 tOl Input signal rise and fall time % Ils Figure 31 ns tEN 400 t OP1 9.5 10.5 Clock For display data transfer tOP2 2.5 3.5 Clock For bit and mode data transfer 25 ns tf'tf CS t-----twH-----t t----twL--_-I t----ts'--..-..j Figure 27 Write Timing (RE is fixed high and SYNC low) twR----t I tOL READY Figure 28 ResetlRead Timing (CS and SYNC are fixed low) HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 829 HD61604/HD61605 READY t - - - - - - - - - - t O P 1 , t O P 2 ' - - - - - - - -___ Figure 29 (READY Timing (When the READY Output is Always Available) READY~---~-~-~~~~-W-"";"jV~ ~ JV:'" - ~'_~H SYNC 1_CI_O_Ck_ _ _ _ _ _ _ __ __ Figure 30 SYNC Timing Voo 47kQ 10kQ Measurement pin (READY) 30 PF T 120 kQ , 1S2074H '--~--.4---t-vss Figure 31 Bus Timing Load Circuit (LS-TTL Load) HITACHI 830 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 LCD CONTROLLER/DRIVER LSI DATA BOOK Section Seven Special Application Drivers HITACHI HITACHI 832 Hitachi America, ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66300T-----------(Horizontal Driver for TFT -Type LCD Color TV) The HD66300T is a horizontal driver used for TFftype (Thin Film Transistor) LCD color TVs. Specifically, it drives the drain bus signals of a TFf-type LCD panel. Features TheHD6630OTreceivesasinput~~video2ignalsR, • G, B, and their inverted signals R, G and B. Internal sample and hold circuitry then samples and holds these signals before outputting them via voltage followers to drive a TFf-type LCD panel. • • • • The HD66300T can drive LCD panels from 480 x 240 pixels middle-resolution up to 720 x 480 pixels highresolution. It has 120 LCD drive outputs and enables designofa compact LCD TV due to TCP (Tape Carrier Package) technology. • • • • • • Available in TCP packaging only. Recommended for high volume applications only. LCD drive outputs: 120 Internal sample and hold circuits: 480 (4 circuits per output) Support of single-rate sequential drive mode and double-rate sequential drive mode Support of various types of color filter arrangements through an internal color sequence controller Vertical pixels: 240 (middle-resolution) or 480 (high-resolution) Horizontal pixels: 480 to 720 Support of monodirectional connection mode and interleaved connection mode through a bidirectional shift register Dynamic range: 15 Vpp Package: 156-pin TCP Power supply: +5 V and -15 V CMOS process Pin Arrangement Oc:nCO,....c.OLn~MN ..... ~:::::::::::::::::::::::::::: 0000000000 ••••••••••••••••••••••••••••••••••••••••••• ~O"ICO,....I.DL(')oo::t'MN.0000000000 ~~~~~~:!~~:: .....•.•••••••••••••••••.••.••••.••••....•• ~cnClOr-!,.QU")...,MN-I -- ............... ---......... I (Top View) Note: This does not apply to Tep dimensions. HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 833 HD66300T Pin Description Pin List Pin Name D1 - D120 HCK1, HCK2, Number of Pins Input/Output Connected to Functions (Refer to) 120 0 LCD panel 1. Controller 2. Controller or 3. 3 HCK3 DL, DR 2 110 next HD66300T FD Controller 4. RS GND 5. OE Controller 6. SHL Vee orGND 7. DIS Vee or GND 8. UF Vee or GND 9. MSF1, MSF2 2 VeeorGND 10. TEST1, TEST2 2 GND 11. Vx1, Vx2, Vx3, 6 Inverter 12. Power source 13. Vy1, Vy2, Vy3 VbO VbsS ' VbsH 2 Power source 14. . Vle 1, Vle2, Vle3, Vle 4 4 Power source 15. Vee 1, Vce2, Vce3 3 Power source 16. Power source 17. Power source 18. GND Vss 1, VBs 2, Vss3, Vss4 4 HITACHI 834 Hita"chi Am~rica, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbarie,CA 94005-1819· (415) 589-8300 HD66300T Pin Functions 1. 01 - 0120: These pins output LCD drive signals. 2. HCK1, HCK2,HCK3:These pins input three-phase clock pulses, which detennine the signal sampling timing for sample and hold circuits. 3. OL, DR: These pins input or output data into or from the internal bidirectional shift register. The state of pin SHL determines whether these pins input or output data. SHL DL DR Output Input Input Output 6. OE: This pin inputs the signal which controls the controller of the shift matrix circuit; it changes the selection of a sample and hold circuit and the shift matrix (combination of color data), at its rising edge. It also switches the bias current of the output buffer, as shown in the following table. OE Bias Current of Output Buffer High Large current (determined by VbsB) Low Small current (determined by VbsH) 7. SHL: This pin selects the shift direction of the shift register. 4. FD: This pin inputs the field determination Signal, which allows the sample and hold circuitry and the shift matrix circuit to operate synchronously with TV Signals, at its rising and falling edge. SHL Shift Direction High DL~ Low DL ~ DR DR 8. DIS: This pin selects the LCD drive mode. FD = high: First field DIS Mode High Double-rate sequential drive mode When a non-interlace signal is applied, it must be inverted every field. Low Single-rate sequential drive mode When an interlace signal is applied in double-rate sequential drive mode with per-line inversion (mode 1, 2, 3), the signal must be set high in both fields. The signal must be set low, however, in each field's horizontal retrace period. 9. LIF: This pin selects the inversion mode of LCD drive signals. FD =low: Second field 5. RS: This pin inputs a test signal and should be connected to pin GND. LlF Mode High Per-line inversion mode Low Per-field inversion mode fJ HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 835 HD66300T 10. MSFl, MSF2: These pins select the function of the shift matrix circuit; they should be set according to both the type of color filter arrangement on a TFr-type LCD panel and the drive mode. Filter Arrangement Drive Mode MSF1 MSF2 Diagonal mosaic Single-rate GND VccfGND pattern Double-rate GND VccfGND Vertical stripe Single-rate Vee Vee pattern Double-rate Vee Vee Unicolor triangular Single-rate Vee Vee pattern Double-rate Vee GND Bicolor triangular Single-rate Vee GND pattern Double-rate Vee GND Single-rate: Single-rate sequential drive mode Double-rate: Double-rate sequential drive mode 11. TESTl, TEST2: These pins input test signals and should be connected to pin GND. 15. V~cl, VLc;2, V L~' V LC4: +5 V LCD drive voltage is applied to these pins. 12. VXl, Vx2, Vx3, Vyl, Vy2, Vy3: Video signals are applied to these pins; in general, positive video signals are connected to pins Vxi and negative video signals to pins Vyi. 16. Vcc1, Vcc;2, Vc~, Vcc4: +5 V is applied to these pins for the logic and the analog units. 13. Vbo: Bias voltage is applied to this pin for the differential amplifier in the sample and hold circuitry. 14. VbaB' VbrM Bias voltage is applied to this pin for the two power sources of the output buffer. VbsB: The voltage for driving a capacitive load VbsH: The voltage for holding the output voltage 17. GND: 0 V is applied to this pin for the logic unit. 18. Vuu l, Vuu2:-15 Vis applied to these pins for the LCD drive unit. 19. Vuu3,Vuu4: -15 V is applied to these pins for the LCD drive unit. HITACHI 836 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 --e= -=t il ::I: s:n I» =. » ~~ !. =. i ~'~ 1 ~~1 3 <1> :::!. HCKZ n .?' controller. HCK3 SHL !::;: · ?- ::I: ;::;: n I RS .... '"=. · '" 0 0 0 ~ -0 0 a -0 ':< CD :::!. ~. ~ I~ ~ ~ ~~O :J-oV I D1 a cc Sample and hold circuit oaIection gate Sample and hold circuitry MSF1 MSF2 FD ::::1 OEU-r::!;:rr:fJ= '" OOR 9120 I: CT :0 ! ..L" *LF=m=FF~f=f~$F~======i*m=m~=tt~~l-~ I: ·'" - [ I er--tJ 0--8 N en CD· ~! Bid.rectJonal shift _ ~ -0 6l N ;;; I 0 n » co ~ 0 0 '!:. v... ~ co ~ .£! n Vb •• TEsn- r:;.;-, TEST2~ U1 LS:lewlshifter ():) % Co) 0 0 ():) Co) -.J 111 01 o 02 [ 03 0118 5"'"2 .n:. Output buffer (amp.) [ 0119 0120 ::x: t1 en en w o o " HD66300T Block Functions Shift Register: The shift register generates the sampling timing for video signals. It is driven by threephase clocks HCK1, HCK2, and HCK3, whose phases are different from each other by 120°; each clock determines the sam piing timing for one color signal so that three clocks support the three color signals R, G, and B. The shift direction of this register canbechanged. Level Shifter: The level shifter changes 5-V signals into 20-V signals. Sample and Hold Circuitry: In double-rate sequential drive mode, two sample and hold circuits are selected to sample video signals during one horizontal scanning period out of the four circuits attached to one LCD drive signal. One of the two selected circuits is read out in the first half of the following horizontal scanning period, and the other selected circuit is read out in the second half. While the two circuits are being read out, the other two circuits sample signals and are alternately read out in the same procedure mentioned above. In Single-rate sequential drive mode, one sample and hold circuit samples a signal during one horizontal scanning period, and is read out in the following horizontal scanning period. While it is being read out, one circuit out of the other three samples a signal. Shift Matrix Circuit: The shift matrix circuit, a color sequence controller, changes over the sampled video signal every horizontal scanning period. Output Buffer: The output buffer consists of a source follower circuit and can change the through-rate of an output signal by changing the external bias voltage. HITACHI 838 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66300T System Block Configuration Example Antenna Video input 0-----0 R,G, B R,G,B TFT-type color LCD panel 720 x 480 pixels HITACHI Hitaehi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 839 HD66300T Example of HD66300T Connection to LCD Panel '"a 0120 I-0119 I-- .--- - FD DE r---- HCK3 :-- HCK2 HCKI Vy3 M~ ~~ a '"a FD DE HCK3 HCK2 HCKI Vy3 Vy2 Vyl Vx3 Vx2 Vxl ~~ Q~ :z: E-oo (!l~~ '" "l/.:~ Cll\ m co ., '" I.,r\ "''-5 0201- 0120 0119 ~-(!) OJ / 5-a: " /r\ " _:. >. ;: ~ 8 ~8~ :x:::r ::r:: :t: II) >1 Synchronizing isolator ~ 0119 0120 . FD DE HCK3 HCK2 HCKI Vy3 Vy2 Vyl Vx3 Vx2 Vxl '" a ......... ill~ x ......... ~ HD6110S (No.3) 81--15 0 a ~~ ...J diJi:!: (f) ~ >~ >1.1'd~~ > S SS3 PLll ~ ~ ~ I a :z: )( >~ >! >~~ ! UJ 3 ......... % ~ ~ d~ ~ ~ Video input ;1; z : ~ Tuner ~ LLJ···UJ ..J 1--01 I-- 02 a 02 01 15 '"a M.., HD6110S • \ ~~~ / z :J :i ·········~I x ......... ~ ¥ : FDDEHCK3HCKZ HCKI Vy3 VyZ Vyl Vx3 Vx2 Vxl :(\a)-~ N UJ Q al: I-- 0119 I-- 0120 .,~f- "'z a I g~ M"'l :z: ..J I Sound I IF ..J a 0- Q~ Vyl Vx3 Vx2 Vxl - t;:~&l~ f- 0.'<1" 0. g~ Vy2 = - N ~_XCl) f- - - I-- 02 1--01 0 '. >. ...J (/) ~ d~ ~ ~ ;: ~ 1·1 ~ ~ > > > wooooc OI.L.---- "''' ,,""""-,1,.,1 Controller I Z ..... f'>JM ~~~~ I 1 Inverter +.,1 [Chroma r corrector Figure 1 Example of HD66300T Connection to LCD Panel HITACHI 840 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66300T --u-~.-or--''--U--''--U-~'-0I--~-..--cr--Lr_3-u-,34~ II I Video STH OE rLSl--D- II "0 a; FD Ii= e Dl-D120 i!: CL D Ga-l ----------~r;-1~--------------------------------~r----------­ G~-2 ______________~r;rJL__~ __~ __-__-___-__-_------------------~~---------- Ga-240 ----------------------------------------------~~~ Video STH ., ,, OE ., "0 a; FD Ii= "0 Dl-D120 ., CL c: 0 () til D Ga-l Ga:'2 Ga-240 Video III . HCK2 .f HCK3 ~r1I1~ ______________________ ------------::-=-=--o::!--'I! _________ h ~~----------- ~l ---------------------------------------------------~w~--~~ F -ur------ii :ei[STH HCKI .§ ~ ~ ____________________ Valid disploy:;;eriod ____~in~~~----~----- " ~~ 11[:::1 HCK2 .f HCK3 • HCK2 E.f HCK3 i ,' " ! 1[:::1 ~ ,, HCK1, HCK2, and HCK3 are three-phase clocks having a mutual phase difference of 120° . Due to a 1.5-pixel position shift between even number lines and odd number lines, a 1.5pixel phase shift must be generated between the clocks for even number lines and those for odd number lines when an LCD panel of unicolor triangular pattern is used. "" ~ ; 11[:::1 ~ HCK2 .f HCK3 Figure 2 Timing chart HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point PkWy.' Brisbane, CA 94005-1819' (415) 589-8300 841 HD66300T Functional Description One line of an LCD panel is driven every horizontal scanning period in this mode. Screen Size Number of horizontal pixels: - 120, 240, 360, 600, and 720 in monodirectional connection mode - 240, 480, and 720 in bidirectional connection mode Number of vertical pixels: - 240 in single-rate sequential drive mode - 480 in double-rate sequential drive mode Single-Rate Sequential Drive Mode and DoubleRate Sequential Drive Mode Single-Rate Sequential Drive Mode: A typical TV signal (Note) has 525 scanning lines, 480 of which are part of the valid display period. In interlace scanning mode, 480 scanning lines are equally divided into a first field and a second field. In single-rate sequential drive mode, a 240-pixel-high LCD panel is used. 240 scanning lines of the first and second fields of the TV signal are respectively assigned to the 240 lines of the LCD panel. Double-Rate Sequential Drive Mode: To obtain a high-resolution display, a 480-pixel-high LCD panel is used. If 480 scanning lines are respectively assigned to the 480 lines of the LCD panel, the LCD alternating frequency becomes 15 Hz, which causes flickering and degrades display quality. To avoid this problem, the following method is employed. In the first field, the first scanning line is assigned to the first and second lines of the LCD panel, the second scanning line is assigned to the third and fourth lines, and so on. In the second field, the first scanning line is assigned to the second and third lines, the second scanning line is assigned to the fourth and fifth lines, and so on. Two lines of an LCD panel are driven every horizontal scanning period in this mode. Note: Refer to the index for the further information ofNTSC TV system signals and LCD. HITACHI 842 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66300T Supportable Types of Color Filter Arrangements The order and timing for the HD66300T to output color signals depend on the color filter arrangement on a TFT-type LCD panel. The HD663OOI' can support TFT-type LCD panels having the following color filter arrangements by specifying the operation of the internal color sequence controller and by changing the external signals to be supplied. (a) Diagonal from top-left to bottom-right mosaic pattern (d) Unicolor triangular pattern (b) Diagonal from top-right to bottom-left mosaic pattern (e) Bicolor triangular pattern (c) Vertical stripe pattern Figure 3 Supportable Types of Color Filter Arrangements HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 843 HD66300T =low) Mode Setting Pins Per-Field InveJ:Sion (available with lJF Mode setting pins MSF1, MSF2, and DIS must be set according to both the type of color filter arrangement ontheTFI'-type LCD panel and thedrivemode(singlerate sequential drive mode or double-rate sequential drive mode). These pins activate the internal color sequence controller, which changes the sequence of color video signals corresponding to each sample and hold circuit and allows the LSI to output color data in the right order for the LCD panel being used. In a certain field, all LCD drive signals have one polarity and in the following field, they all have the inverted polarity. Per-Field Inversion and Per-Line Inversion Per-Line Inversion (available with UF =high) In a certain field, all LCD drive signals have positive polarity in odd number lines and negative polarity in even number lines, while in the following field, the situation is reversed, that is, negative polarity in odd number lines and positive polarity in even number lines. The inversion mode of LCD drive signals can be selected by pin L/F. Table 1 Mode Setting Pins, Filter Arrangement Drive Mode DIS MSFl MSF2 Referential Timing Charts Diagonal mosaic Single-rate GND GND Vee' GND MODES 15,,16, 18, and 19 pattern Double-rate Vee GND Vee' GND MODES 1, 2, 5, 6, 8, 9, 12, and 13 Vertical stripe Single-rate GND Vee Vee MODES 17 and 20 pattern Double-rate Vee Vee Vee MODES 3,7, 10, and 14 Unicolor triangular Single-rate GND Vee Vee MODES 17 and 20 pattern Double-rate Vee Vee GND MODES 4 and 11 Bicolor triangular Single-rate GND Vee GND MODE 17 pattern Double-rate Vee Vee GND MODES 4 and 11 Single-rate: Single-rate sequential drive mode Double-rate: Double-rate sequential drive mode HITACHI 844 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66300T Interface output pins, refer to the following example. Video Signals Connection In the case of Diagonal from top-left to bottom-right mosaic pattern. Video signals must be connected to pins Vxl, Vx2, Vx3, Vyl, Vy2, and Vy3; in principle, positive video signals R, G, and B signals must be input to pins Vxl, Vx2, and Vx3, and negative video signals R, G, and B to pins Vyl, Vy2, and Vy3. For actual connection between an LCD panel and the LCD drive signal This example describes the case in which an LCD panel having a diagonal from top-left to bottom-right mosaic pattern is driven in double-rate sequential drive mode and monodirectional connection mode. H066300T 101 0203 1st line 2nd line The Color Sequence for Each Output Pin 3rd line 4th line II I R B G R G R B G B G R B 03k+1 03k+2 03k+3 !r1 R B G R G R B G (k=O ~39) B G R B Color Sequence Output Pin 01 (=D3k+ 1) R~B~G~R~ 02 (=D3k+ 2) G~R~B~G~ 03 (=D3k + 3) B~G~R~B~ The Signal Sequence for Each Output Pin Output Pin Color Sequence 01 (=D3k + 1) Vx1 02 (=D3k+ 2) Vx2 ~ Vx1 ~ Vx3 ~ Vx2 ~ 03 (-D3k + 3) Vx3 ~. ~ Vx3 Vx2 ~ ~ Vx2 Vx1 ~ ~ Vx1 Vx3 ~ ~ (Refer to MODE 5) The Connection of Signals Signal Color Vx1 R Vx2 G Vx3 Vy1 8 R Vy2 G Vy3 8 fJ HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 845 HD66300T In the case of Diagonal from top-right to bottom-left mosaic pattern, Vertical stripe pattern The sameproc:edure for video signal connection applies to the case in which a TFr-type LCD panel having a diagonal from top-right to bottom-left mosaic pattern or a vertical stripe pattern is used, as well as to the cases where a panel of any pattern is used through the bidirectional connection mode. Triangular Pattern, Single-Rate Sequential Drive Mode The following procedures are required when a panel of unicolor or bicolor triangular pattern is used: 1. UnicolorTriangular Pattern, Single-Rate Sequential Drive Mode The clock phase must be changed every line because of the 1.S-pixel phase shift between even number lines and odd number lines. (Refer to the explanation of sampling clocks.) The connection of signals here is the same as that described above. 2. Bicolor Triangular Pattern, Single-Rate Sequential Drive Mode The clock phase must be changed every line because of the O.S-pixel phase shift between even number lines and odd number lines. (Refer to the explanation of sampling clocks.> The connection of video signals in the second field must be changed from that in the first field. See the following tables. The Color Sequence for Each Output Pin Output Pin 01 (,.03k + 1) 02 (",03k + 2) 03 (=03k + 3) Color Sequence R~ B~ R~ B~ G~ R~ G~ R~ B~ G~ B~ G~ The Signal Sequence for Each Output Pin Output Pin 01 (..03k+1) 02 (-03k + 2) 03 (-03k+ 3) 2nd 01 (.. 03k + 1) field 02 (.. 03k + 2) 03 (-03k+ 3) (Refer to Mode 17) Signal Sequence Vx1 ~Vy1 ~Vx1 ~Vy1 ~ Vx2 ~ Vy2 ~ Vx2 ~ Vy2 ~ Vx3 ~ Vy3 ~ Vx3 ~ Vy3 ~ Vy1 ~ Vx1 ~ Vy1 ~ Vx1 ~ Vy2 ~ Vx2 ~ Vy2 ~ Vx2 ~ Vy3 ~ Vx3 ~ Vy3 ~ Vx3 ~ 1st field The Connection of Signal In Each Field Per-Field Inversion Mode (UF low) 1st Field 2nd Field R B R G G B R B R G G B = Vx1 Vx2 Vx3 Vy1 Vy2 Vy3 Per-Line Inversion Mode (UF =hlgh) 1st Field 2nd Field R B R G G 8 B R R G G B HITACHI 846 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66300T Triangular Pattern, Double-Rate Sequential Drive Mode Changing the phase of the sampling clocks is sufficient when the panel is driven in single-rate sequential drive mode. However, when the panel is driven in double-rate sequential drive mode, the above counter- measure does not work, since the display data for two lines is sampled at one time here. Consequently, delaying the input video signal for a time period corresponding to the shift between pixels is required. HD66300T 1st line A shift in pixel pOSition exists between the lines. 2nd line 3rd line 4th line Figure 4 Video signal For the 2nd line i i Delay I ! I i Delayed video signal : For the 1st line iI I I I I I I I I I Sampling clocks --------~r-l~~r_---2 - -__________~~~_____ Figure 5 HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 847 HD66300T 1. Unicolor Triangular Pattern, Double-Rate Sequential Drive Mode The Color Sequence for Each Output Pin Output Pin Color Sequence 01 (.03k + 1) R -+ R -+ R -+ R -+ 02 (-03k+2) G -+G -+G -+ G -+ 03 (-03k + 3) B -+ B -+ B -+ B -+ The Signal Sequence for Each Output Pin (In Interlace mode) Output Pin Signal Sequence 1st 01 (-03k + 1) Vx1 -+ Vy1 -+ Vx1 -+ Vy1 -+ field 02 (-03k+ 2) Vx2 -+ Vy2 -+ Vx2 -+ Vy2 -+ 03 (-03k + 3) Vx3 -+ Vy3 -+ Vx3 -+ Vy3 -+ 2nd 01 (-03k + 1) Vy1 -+ Vx1 -+ Vy1 -+ Vx1 -+ field 02 (-03k+2) Vy2 -+ Vx2 -+ Vy2 -+ Vx2 -+ 03 (-03k+3) Vy3 -+ Vx3 -+ Vy3 -+ Vx3 -+ (Refer to MODE 4) The Signal Sequence for Each Output Pin (In non-Interlace mode) Output Pin Signal Sequence 1st 01 (.03k + 1) Vx1 -+ Vy1 -+ Vx1 -+ Vy1 -+ field 02 (.. 03k+ 2) Vx2 -+ Vy2 -+ Vx2 -+ Vy2 -+ 03 (.. 03k+ 3) Vx3 -+ Vy3 -+ Vx3 -+ Vy3 -+ 2nd 01 (=03k+ 1) Vx1 -+ Vy1 -+ Vx1 -+ Vy1 -+ field 02 (-03k + 2) Vx2 -+ Vy2 -+ Vx2 -+ Vy2 -+ 03 (-03k + 3) Vx3 -+ Vy3 -+ Vx3 -+ Vy3 -+ (Refer to MODE 11) HITACHI 848 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66300T 1. Unicolor Triangular Pattern, Double-Rate Sequential Drive Mode (Cont.) The Connection of Signals In Each Field In Interlace Mode Per-Field Inversion Per-Line Inversion Mode (L1F = low) Mode (L1F =hlgh) 1st Field 2nd Field 1st Field 2nd Field Vx1 Delayed R R Delayed R R Vx2 Delayed G G Delayed G G Vx3 Delayed B B Delayed B B Vy1 R Delayed R R Delayed R Vy2 G DelayedG G Delayed G Vy3 B Delayed B B DelayedB The Connection of Signals In Each Field In Non-Interlace Mode Per-Field Inversion Per-Line Inversion Mode (L1F = low) Mode (L1F =hlgh) 1st Field 2nd Field 1st Field 2nd,Fleld Vx1 Delayed R Delayed R Delayed R Delayed R Vx2 DelayedG DelayedG DelayedG DelayedG Vx3 Delayed B Delayed B Delayed B Delayed B Vy1 R R R R Vy2 G G G G Vy3 B B B B HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 849 HD66300T 2. Bicolor Triangular Pattern, Double-Rate Sequential Drive Mode The Color Sequence for Each Output Pin 1st line YY+""'-'r'- 2nd line 3rd line YY+hr'- 4th line Output Pin Color Sequence 01 (-03k+ 1) R~R~R~R~ D2 (-03k + 2) G~ 03 (-03k + 3) B~G~B~G~ R-4G~R~ The Signal Sequence for Each Output Pin (In Interlace mode) OUtput Pin Signal Sequence 1st 01 (=03k+ 1) Vx1 ~ Vy1 ~ Vx1 ~ Vy1 ~ field 02 (.. 03k+2) Vx2 ~ Vy2 ~. Vx2 ~ Vy2 ~ 03 (-03k + 3) Vx3 ~ Vy3 ~ Vx3 ~ Vy3, ~ 2nd 01 (..03k + 1) Vy1 ~ Vx1 ~ Vy1 ~ Vx1 ~ field 02 (..03k + 2) Vy2 ~ Vx2 ~ Vy2 ~ Vx2 ~ 03 (-03k + 3) Vy3 ~ Vx3 ~ Vy3 ~ Vx3 ~ (Refer to MODE 4) The Signal Sequence for Each OUtput Pin (In non-Interlace mode) OUtput Pin Signal Sequence 1st 01 (-03k+1) Vx1 ~ Vy1 ~ Vx1 ~ Vy1 ~ field 02 (-03k+ 2) Vx2 ~ Vy2 ~ Vx2 ~ Vy2 ~ 03 (-03k+3) Vx3 ~ Vy3 ~ Vx3 ~ Vy3 ~ 2nd 01 (-03k+1) Vx1 ~ Vy1 ~ Vx1 ~ Vy1 ~ field 02 (-03k + 2) Vx2 ~ Vy2 ~ Vx2 ~ Vy2 ~ 03 (-03k+ 3) Vx3 ~ Vy3 ~ Vx3 ~ Vy3 ~ (Refer to MODE 11) HITACHI 850 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 HD66300T 2. Sicolor Triangular Pattern, Double-Rate Sequential Drive Mode (Cont.) The Connection of Signals In Each Field In Interlace Mode Per-Field Inversion Per-Line Inversion Mode (UF = low) Mode (UF =hlgh) 1st Field 2nd Field 1st Field 2nd Field Vx1 Delayed R B Delayed R B Vx2 Delayed G R DelayedG R Vx3 Delayed B G Delayed 8 G Vy1 B DelayedR B DelayedR Vy2 R DelayedG R DelayedG Vy3 G Delayed B G Delayed 8 The Connection of Signals In Each Field In Non-Interlace Mode Per-Field Inversion Per-Line Inversion Mode (UF = low) Mode (UF =hlgh) 1st Field 2nd Field 1st Field 2nd Field Vx1 Delayed R Delayed R Delayed R Delayed R Vx2 DelayedG Delayed G DelayedG Delayed G Vx3 Delayed 8 Delayed 8 Delayed B Delayed B Vy1 B B 8 B Vy2 R R R R G G G Vy3 G HITACHI Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 851 HD66300T Connection to LCD Panels There are t\yO modes of connecting HD66300T chips to an LCD panel: In the former mode, the HD66300Ts are set on either the upper side or lower side of the panel, while in the latter mode, the HD66300Ts are set on both sides and the upper drivers and the lower drivers are alternately connected to each pixel-column. 1) monodirectional connection mode 2) interleaved connection mode DR DR I - - - - - I D L HD66300T HD66300T Figure 6 Monodhectional Connection Mode DR DRI-----iDL H066300T H066300T HD66300T HD66300T OL D L t - - - - - t DR SHL ~cc Figure 7 Vee Inte~leaved Connection Mode HITACHI 852 Hitachi America, Ltd. 0Hitachi Plaza 02000 Sierra Point Pkwy. 0 Brisbane, CA 94005-1819 0(415) 589-8300 HD66300T Internal Operation The HD66300T has four sample and hold circuits for each outputs as shown in the block diagram, and its internal bidirectional shift register controls which circuits to sample data. It has three-phase shift clocks with mutual phase difference of 120° to drive the shift register, which enables driving an LCD panel with mosaic pattern and triangular pattern. The operation of sample and hold circuits and sampling operation are described below followeii by the description of the relationship between three-phase shift clock phases and frequencies. After the above description, determination of bias voltage is described; bias voltage controls driving characteristics of a differential amplifier and output buffer of the sample and hold circuits. Finally, the OE and FD signals are described; they determine the operation of the sample and hold shift matrix circuit. Timing charts for each mode follow the description. Sample and Hold Circuitry Operation of Sample and Hold Circuitry The HD66300T has four sample and hold circuits A, B, C, and 0 per LCD drive signal output. Sample and hold circuit pair A and B is supplied with the same sampling clock pulses as circuit pair C and O. One of the signals output by these circuits is connected to an output driver. These sample and hold circuits repeat sampling and outputting of signals alternately to drive an TFf-type LCD panel. Video signals input Output driver Output Sampling clock 1 Sampling 0----1 clock 2 Figure 8 Sample and Hold Circuitry HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 ---- -------- 853 . . --=------~- .. .----~~~~~ HD66300T In single-rate sequential drive mode, sample and hold circuits A and D are alternately used; circuits Band C perform sampling operation, but are not used since they are not connected to the output driver. In single-rate sequential drive mode, one sample and hold circuit samples the signal during one horizontal scanning period, and outputs it as an LCD drive signal in the following horizontal scanning period. In double-rate sequential drive mode, all sample and ,. lH hold circuits A, B, C, and D are alternately used. In double-rate sequential drive mode, two sample and hold circuits sample two signals during one horizontal scanning period, and output one of them as an LCD drive signal in the first half of the following horizontal scanning period, and output the other signal in the second half. The following shows the timing charts of sampling and outputting operation. ·1 OE A Sample w:ta ~wfif#la SAMPLING B Not used c Not used SAMPLING ~ and hold circuits SAMPLING D OUTPUT ==X~ __ -,X,-___ A_ _~X,- D_ _ ___ D_ _ _ X::=: Figure 9 Sampling Timing charts of Single-Rate Sequential Drive Mode 1- lH --j OE SAMPLING A Sample and hold circuits B c D ~ SAMPLING W~fJa ~O§J.@~ SAMPLING ft11f11f~ SAMPLING SAMPLING SAMPLING OUTPUT Figure 10 Sampling Timing charts of Double-Rate Sequential Drive Mode HITACHI 854 Hitachi America, Ltd.· Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819' (415) 589-8300 HD66300T Sampling Operation register activates in tum the sample and hold circuits corresponding to each LCD drive signal output pin. The HD66300T has a bidirectional shift register composed of 120 bits and each bit of the shift register generates the sampling pulses to control the sampling operation of the four sample and hold circuits connected to each LCD drive signal output pin. When a bit of the shift register is 1, the corresponding sample and hold circuits are in the sampling state; when it is 0, the corresponding sample and hold circuits are in the hold state. Consequently, shifting a 1 into the shift 01 02 03 04 Figure 11 is a shift register sketch illustrating the relationship between the shift register and the shift clocks HCK1, HCK2, and HCK3. Note that the order of sampling pulse generation depends on the state of pin SHL. D1 corresponds to DL and 0120 to DR. Figure 12 is a timing chart of sampling pulses generated by the shift register. 0117 0118 0119 0120 Output pins Sample and hold circuitry OL DR shift register SHL HCK1 O---~--+-~-r~ HCK2 0 - - - - 1 - - - ' HCK3 0-------4----' Figure 11 Shift Register Sketch HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 855 HD66300T HCK2~ ~fLJL..J ILJU ~ L.fLJl-. HCKl HCK3 (o3~PUT)-----)~s-L-.SRl --)~~ SR2 _ _~~s-1- SR3 --))~ SRl18 ---.r-L))_____ SRl19 ~)~----­ SR120 ~))----- (IN~~T) n ))----(8) (IN~~T) SHL= High n ))---- SR2 ~~)--~S)--- SR3 ~)),---- SRl18 -------'S)~ SRl ---'))s-1- SR119 _ _ _ _ SR120 -----))~ (08~PUT)-----))s-L-.(b) SHL=Low Figure 12 Sampling Pulse Timing Chart HITACHI 856 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66300T Three-Phase Shift Clocks operation starts when 1 is input from pin DL or DR at a rising edge of the HCK1 clock pulse. Three-Phase Shift Clocks and Sample Start Signal Shift clocks HCK1, HCK2, and HCK3, which are operation clocks for the shift register, must be threephase clocks with 50-percent duty. The HCK2 clock must be generated 1200 after the HCK1 clock, and the HCK3 clock 2400 after the HCK1 clock. Sampling HCKl In monodirectional connection mode, all the HD66300T chips must be supplied with the same three-phase shift clock pulses. In interleaved connection mode, the frequency of the three-phase shift clocks must be halfofthat in monodirectional connectipn mode, and the phase shift between the upper drivers clocks and the lower drivers clocks must be one pixel. ~ ! HCK2 I I HCK3 -n I i DL/DR II (a) HCKl -1i I I I HCK2 For upper drivers In Monodirectional Connection Mode II I HCK3 '--___. . .1 II I I mI! I I DL/DR I I i HCKl HCK2 For lower drivers HCK3 DL/DR I Pixe~, L f I I I I I i n I The lower driver clock pulses follow the upper driver clock pulses by one pixel. (b) In Interleaved Connection Mode Figure 13 Three-Phase Shift Clocks and Sample Start Signal HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 857 HD66300T Some position shift exists between the pixels of even number lines and those of odd number lines for LCD panels having triangular patterns. This requires generating a phase shift between the three-phase clocks 1st line ""--=r--'?-T"---r- § I: 2nd line l .! r ~ ;"-:!--::!:>o--:::!>---'"- c; ~ u. '"' for even number lines and those for odd number lines. The required phase shift is 1.5 pixels for LCD panels having a unicolor triangular pattern, while it is 0.5 pixels for those having a bicolor triangular pattern. HCKl !,--, HCI<2 ~ r--l l..--.-..J I ,- L----.J HCK3: : DL/DR lTlL--------------: 1 .5-pixel delay 1..----...:;-:_ _-, 4th line m HCKl .0 E :> HCK2 I: I: ~ ~ gf o I: u..:.: HCK3 n DL/DR (a) ., HCKl ~ 1st line .0 2nd line I: "0 "0 E HCK2 :> ., 0", 01: ~ Unicolor Triangular Pattern HCK3 LL:.: 3rd line DL/DR I I I I JTl : O.5-pixel delay ~ 4th line .,"' I: HCKl .,1:'"' HCK2 o~ E :> HCK3 ~ i;1l u.1: DL/DR (b) ~ Bicalor Triangular Pattern Figure 14 HITACHI 858 Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 HD66300T How to Generate Three-Phase Shift Clocks Three-phase shift clocks can be generated by dividing the base clock, which is generated from a horizontal synchronizing clock, through the use of a frequency multiplier such as a PLL circuit. The number of horizontal pixels of the LCD panel and the valid display ratio determines the base clock frequency f. If the number of horizontal pixels is 480 and the valid display ratio is 95% in the NfSC system, the base clock frequency fis about 9.59 MHz according to the following equation. f .. (1lValid display period) x (no. of horizontal pixelslValid display ratio) .. 480/(52.7 fJ.sec x 0.95) .. 9.59 (MHz) The three-phase clocks can be generated by dividing f by 3 (in the monodirectional connection mode) or 6 (in the interleaved connection mode). Video signals , ,, I I I !Horizontal I retrace period !., , . ,:. Valid display period ! -I , Figure 15 Base Clock HITACHI Hitachi America, Ltd. - Hitachi Plaza - 2000 Sierra Point Pkwy. - Brisbane, CA 94005-1819- (415) 589-8300 859 HD66300T HCKl HCK2 HCKl For lower drivers HCK2 (a) In Monodirectional Connection Mode (b) In Interleaved Connection Mode ~ l HCK3 Figure 16 Three-Phase Shift Clocks HITACHI 860 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66300T Bias Voltage Voltages VbaB' VbsH' and Vbo control the drive capability of the output buffer and differential amplifier. ' Here the LSI must be used in the range of VbaB controls the drive current capability of the output buffer when OE is high (lVsB) and VbsH controls the leakage correction current of when OE is low (IVsH), Figure 17 and figure 18 show the relationship between IVsB and VbaB and the relationship between IVsH and VbsH ' respectively. VbsB and VbsH should be to an appropriate level for the electrical characteristics of the LCD panel used. The rise time (tODR) and the fall time (toDF) of the output buffer depend on the input level of VbsB' Figure 19 shows the relationship between toDR' tOOF and VbsB' Vbo controls the bias current of the differential amplifier (IVbo)' Figure 20 shows the relationship between the rise and fall times (tOOR' to~ of the output buffer and VboO Vbo should be adjusted to an appropriate level for the electrical characteristics of the LCD panel used. The increase of total current consumption is 120 times larger than that of IVbaB' IVbsH and IVbo' because figure 17, 18 and 21 each shows the case of one output and HD66300T has 120 outputs. Figure 17, 18, 19,20and21 are just for reference and do not guarantee the characteristics. I v••• (,.,A) IV••• (,.,A) 1,000 800 600 400 200 80 / 60 40 20 5 / 2 Vee-V... (V) 3 4 5 Vee -V••• (V) HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819' (415) 589-8300 861 HD66300T t DO , (ps) 10 t DOR (PS) V.. =Vrx-3V CL= 100pF V•• =Vcc -3V CL =100pF Vb •• (V) Vb •• (V) Figure 19 ~DR' ~DF VS Vba. tOoR tODF (Ps) 5 / (Ps) 5 Vbse=Vrx-3V CL=100pF Z ~ Z 3 Vb. (V) V••• =Vcc -3V CL =100pF 3 V•• (V) Figure 20 ~DR' ~DF VS Vbo HITACHI 862 Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 HD66300T IV.. C.uA) 50 40 30 20 10 1 2 3 4 5 Vee -Vb. (V) , OE tDOR 90%(Vin=Vee -3.5V) 01-0120 10%(Vin=V•• +1.5V) Figure 22 Definition of too.. and toop HITACHI Hitachi America, Ltd. 0Hitachi Plaza 02000 Sierra Point Pkwy. 0Brisbane, CA 94005-1819 0 (415) 589-8300 863 HD66300T OESignal OE - high: Drives with large current (300 ILA. typ) OE - low: Drives with small current (20 I1A. typ) The OE signal has the following functions: Clock for internal circuits: Controls the sample and hold circuitry and the controller of the shift matrix circuit, and switches the output signal at the OE signal rising edge. Switching of drive capability of the output buffer: Determines the current drive capability of the output buffer; This function allows the output buffer to operate with large current during the transition of an output signal, thus shortening its falling time. At the same time it allows the output buffer to operate with small current while an output signal is stable,lowering current consumption. The drive current is controlled by bias voltages VbsB (large current) and VbsH (small current). Output signal large current Small current ., Figure 23 Switching of Drive Capability of the Output Buffer HITACHI 864 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66300T FD Signal The FD signal is the field determination signal; a field is determined by the state of this signal at the rising edge of the OE signal. This signal synchronizes the internal controllers with TV signals. The order of outputting signals is determined at the fourth rising edge of the OE signal after the rising or falling edge of the FD signal in double-rate sequential drive mode, while it is determined at the third rising edge in single-rate sequential drive mode; hereinafter, as long as the FD signal is not changed, signals will be output in the determined order at most every 12 pulses of the OE signal in double-rate sequential drive mode, while at most every 6 pulses in single-rate sequential drive mode. The FD signal should usually be high in the first field and low in the second field. In some modes, however, it should be high in both fields, but low for at least onepulse time period of the OE signal during the horizontal scanning period. The order of outputting signals and the timing of inputting the FD signal vary depending on the mode. For more details, refer to the appropriate timing charts. Timing Charts for Each Mode Table 2 Reference timing charts for each mode Single (DIS =Low) Double (DIS = High) Interlace Filter Arrangement Mosaic Topleft to bottomright Per-Line Non-Interlace Per-Field Per-Line Per-Field Per-Line Per-Field MODE1S MODE 18 MODE 2 MODE 6 MODE 9 MODE 13 Monodi- MODE 16 MODE 19 MODE 1 MODES MODE 8 MODE 12 MODE 16 MODE 19 MODE 1 MODES MODE8 MODE 12 Monodi- MODE1S MODE 18 MODE 2 MODES MODE 9 MODE 13 Interleaved rectional Topright to bottomleft Interleaved rectional Vertical stripe MODE 17 MODE 20 MODE 3 MODE 7 MODE 10 MODE 14 Unicolor triangular MODE 17 MODE 20 MODE 4 MODE 4 MODE 11 MODE 11 Bicolor triangular MODE 17 MODE 17 MODE 4 MODE 4 MODE 11 MODE 11 Single: Single-rate sequential drive mode Double: Double-rate sequential drive mode Per-Une: Per-line inversion mode Per-Field: Per-fie1c\ inversion mode Interleaved: Interleaved connection mode Monodirectional: Monodirectional connection mode HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 865 HD66300T MODE 1 DIS Vee L/F Vee MSFI GND MSF2 Vee (Video I~~ DE ~ LJ-'u""'uurLrljLJ-'u'1__r'urLJ"'uLJLr'uurLJ1J'Lru')~_rLrJ-LJLJLfL_ FD ~r------------------~----------~S~\--------'L- Sample and hold circuits I SAMPLE lOUT I I SAMPLE lOUT I [' SAMPLE B ~ U SAM SAMPLE I SAMPLE IOUTI OUT SAMPLE E SAMPLE I SAMPLE I OUT IOUTI SAMPLE I I SAMPLE lOUT I OUT SAMPLE SAMPLE OUT IOUTI SAMPLE I I S~ OUT SAMPL IOUTI \ I OUT IOUTI \ I SAMPLE louT! lOUT I SAMPLE I I )~ I SAMPLE I lOUT I D3k+l ____~~-4~~__AV~,~I,~V~y3~~V'~Z~Vy~I~V~'3~~Vy~Z~V'~I"V~y3~V'~Z~~~I~V~'3~~~Z/~~~~V~'2~ D3k+2 ____~-u~~~..J,~V'J2"V~ylJ~'~3,~~,~~V~y37~V,~2"V~y~1~V~'3/~Vy~Z"V~'IJ~V~y3/~~,V~YJ1.,V~'371 VIC3 V'IZ D3k+3 Ga-l ______ ~IIL VIC! V 3 Vx2 Vyl Vlt3 Vyl VIII Vy3 Vx2 Vyl VIC3 VyZ Vx1 ________________________ -;~~ _____________ Ga-Z -----------------~IlL---~~~-------------------1%~-------------- Ga-480 ------------------------------~s~ Video 282 .. .-------,r-----,r-~~ 283 I DL/DR DE ---..Jr----------------------------------------~(~~----------,L-... FD I SAMPLE lOUT I Sample and [' B AM LE hold circuits ~ il '" "C C I SAMPLE/OUT I AMPLE OUT SAMPLE OUT I SAMPLE I lourl SAMPLE I I ~~ I SAMPLE lourl OUT SAMPLE SAMPLE OUT IOUTI SAMPLE I OUT SAMPLE OUT IOUTI SAMPLE I lOUT I \ I \ I SS I IOUTI SAMPLE lourl I SAMPLE I I 8 c1l D3k+l _L.l.....LJ........."'-.L>................"'-.L>...J Vyl Vx3 '12 VIC! VyJ x X YxZ XX XX D3k+Z D3k+3 Vy3 Vx2 Vyl Vx3 Vy2 Vxl Vy3 Vx2 Ga-l --------------~II~--------------------------------~S~\-------------------- Ga-Z -----------------------~r}~_.~._.. --------------------------~(~h-------------------- G~-480 ~\ II~----'---- HITACHI 866 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 HD66300T MODE 2 D/S Vee L/F Vee MSFI GND MSF2 GND Video DL/DR OE FD ~ Sample and hold circuits D3k+l r B ~ I SAMPLE loutl I SAMPLE I I SAMPLE IOUTI IOUTI SAMPLE I I SAMPLE IOUTI I SAMPLE I Vxl I SAMPLE IOUTI IOUTI SAMPLE I I SAMPLE IOUTI lOUT I SAMPLE I I S(-~T.IO"'"U"'TI"'-'----' I S~ I IOUTI SAMPlElOUTI ~\ I SAMPLE IOUTI SAMPLE I I ~~ I SAMPLE I lourl I SAMPLE lourl louT! SAMPLE I I SAMPLE IOUTI IOUTI SAMPLE I I lour! lOUT! V,2 Vx3 V,I Vx2 V,3 Vxl D3k+2 Vx2 V,3 D3k+3 Vx3 V,I Vx2 V,3 Vxl v,2 Vxl V'I'l. Vx3 V,I Vx2 n Ga-l ss n Ga-2 «II Ga-480 --------------------------------~·s~ Video 282 DL/DR OE FD :s! [ ~ "'"c j I SAMPLE Sample and B hold circuits ~ lOUT I I SAMPLE I I SAMPLE lOUT I lOUT I SAMPLE I SAMPLE lourl I SAMPLE I lourl SAMPLE I I SAMPLE lOUT I I I SAMPLE IOUTI IOUTI SAMPLE I lourl SAMPLE I x X D3k+l XX XX D3k+2 D3k+3 Ga-l --------------~n~--------------------~Si~S-------------­ Ga-2 ___________-Jn~..~._~--------------~~~i--------------- GA-480 ---------------------------------·~·s~ HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819' (415) 589-8300 867 HD66300T --------MODE 3 r DIS Vee L/F V" MSF1 Vee MSF2 Vee Video DL/DR S\ OE FD Sample and l B I SAMPLE 10UTI hold circuits ~ l2 '"" e u:: D3k+l I OUT SAMPLE SAMPLE 10UTI au SAMPLE I SAMPLE I I SAMPLE 10UTI OUT SAMPLE OUT SAMPLE 10UTI SAMPLE I I SAMPLE 10UTI OUT SAMPLE SAMPLE 10UTI SAMPLE I St-\"lo"'u;TTrl-,-----, ~ I 10UTI OUT SAMP E OUT \ I SAMPLE I duf! I 10UTI SAMPLE I I ~\ I SAMPLE I 10UTI OUT SAMPLE ~~~~~~~~~~~~cv.~~~~~~~~ V,1 Vyl V,1 Vyl V,1 Vyl Vyl V,1 Vyl V,1 V" Vyl Vyl Vd V,1 D3k+Z V,2 D3k+3 V,3 Vy3 V,3 Vy3 V,3 Vy3 VII.3 Vy3 Vx3 v 3 Vx3 Vy3 V,3 Vy3 V,3 V,2 Vy2 V,2 f, Ga-l S( n Ga-2 Ga-480 V,2 Vy2 (( J) --------------------------------~s~ Video DL/DR OE FD Sample and [' B hold circuits ~ J "l!0 I SAMPLE lOUT I I SAMPLE OUT lour! SAMPLE lourl SAMPLE OUT SAMPLE I SAMPLE I SAMPLE I I UT SAMPLE 10UTI SAMPLE SAMPLE lour! OUT SAMPLE OUT I lour! SAMPLE SAMPLE I ~~ lOUT I ~ I lOUT I OUT \ I SAMPLE 10UTI I I SS I SAMPLE I I u c1l D3k+l Vyl V,1 Vyl ~ X X V,1 D3k+Z VX2~ X X D3k+3 V,3 Ga-l Ga-Z Ga-480 ~ X X --------------~IIL----------------------s~s-------------------------Jr-l~._~_~------------~~r_--------- ----------------------------------~--s~ HITACHI 868 Hitachi America, Ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 HD66300T MODE 4 Dis Vee L/F VeclGND MSFI Vee MSF2 GND Video OL/OR OE FO [' I SAMPLE lOUT I SAMPLE Sample and B hold circuits ~ II ~ '"~ u: I SAMPLE I 03k+l Yxl 03k+2 _L>---<>--'-"'-.L>......./ Vxl OUT SAMPLE SAMPLE OUT SAMPLE C=I I SAMPLE IOUTI I SAMPLE lOUT I OUT SAMPLE Vyt lOUT I SAMPLE I Vxl V)'t Vxl Vyl I SAMPLE lOUT I au OUT SAMPLE SAMPLE OUT IOUTI SAMPLE I Vxl Vy1 Yxl SAM LOUT lOUT I SAMPLE I \ I SAMPlE IOUTI I )~ I SAMPLE I IOUTI Yyl Vxl yZ VxZ 11),2 VxZ Vft "xl IIf2 V.,.2 "-VY",Z,,,,,V'~Z "V",yZ""=,,,",-=,,,,,,,,, Vxl VyJ Vxl Vy3 Vxl V)'3 Vxl VyJ Vxl V 3 Vxl Vy3 VK3 Vy3 03k+3 Ga-l ______~!lL________________________~~~------------ Ga-2 -------______~r-lL____~~-------------------------(~h----------------- Ga-480 ------------------------------~·-·s~ Video 282 r---Lr---'S--~ 283 I OL/OR OE FO ---, [' ~ '""2 I SAMPLE, lOUT I I SAMPLE lourl Sample and B hold circuits ~ SAMPlE OUl SAMPLE SAMPlE OUT I SAMPLE I lourl SAMPLE I I SAMPLE IOUTI T SAMPlE SAMPlE OUT lOUT I SAMPLE I I SAMPLE OUT IOUTI SAMPLE I I u ,J! 03k+l Vyl V,I Vyl Vxl Vyt Vxl 03k+2 Vy2 Vxl Vy2 Vxl Vyt Vxl Vyt Vxl VyZ V,Z VyZ 03k+3 Vy3 Vxl Vy3 Vxl Vy3 Yxl Vy3 Vxl Vy3 Vxl Vy3 Yxl Vyl V,I Vyl IOUTI I louT! ) I SAMPLE lOUT I 0 Vyt Vxl ~ ~ OUT V,I S~ I SAMPLE I I ~ X X ~ X X vxz~ X X Ga-l ____________________~r!L_________________________~___~~------------------ Ga-2 ------------------------~I!~ .. ~----------------------------~~~------------------- Ga-480 ------------------------------~.,s~ HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819' (415) 589-8300 869 HD66300T MODE 5 r DIS Vee L/F GND MSFI GND MSF2 Vee Video DL/DR OE FD S\ I LrLJ'u,...,u,...,u'L.r.u,....,u,...,u'L.J1..Tu,...,uuUl..ru,...,u,...,u'LJ1wu,...,u'LSU1-lr-1L -.-J S\ I -~-r r-~I~Sr.AM~~~E'I~ou~t~I~Ir.~~M~P~LE~I~o~UT~1--Ir.s~Arr.MP~LE~lo~UT~I--rl~SAnMP~L~Er-lo~U~TIr-.--rl15r~rrlo~uT~I--.---, SAMPLE hokl circuits C :l! :l i!! Ii: I AM~E UT OUT SAMPLE SAMPLE SAMPLE I SAMPLE I 0 lOUT I ~MPLE I ~MPLE OUT OUT OU SAMPLE OUT lOUT I SAMPLE I SA PL \ I OUT lOUT I SAMPLE I \ I I ~~ louT! ~MPLE louT! I SAMPLE I lOUT I D3k+l --~~~~~~V'~,~V'~3£.V~'2'~V'~I·/.V~'3~C~r.~·~·~~r.~/.~~~~r.~~V'~2! D3k+2 --~~~~O-~V,~ZvV~,~I~V~'3~V,~2'/.V~"~V'~3V.V~'2~V.~IV.V~.3~fuV.~2UV~.~I·~~~~~~?J3 D3k+3 Ga-l Ga-2 ~'-'-.L>.--L>.--"'--' Vx3 V,,2 Vxl Vx3 VxZ ., '--" =" "'''' VI( 1 Vx3 VxZ --------~!I~-------------------------4%t-------------------------~r-l~----~~~-----------------------1~lr---------------- Ga-480 ------------------------------~··s~ Video 282 283 DL/DR OE ---, FD Sample and [ B hold circuits ~ :l! ~ OJ: "8 c1l D3k+l I SAMPLE lour! I SAMPLE I I SAMPLE IOUTI I OUr! SAM~E I I SAMPLE IOUTI I SAMPLE I lour! SAMPLE I I lour! SAMPLE SAM~E IOUTI IOUTI SAMPLE I Vyl Vy3 Vy2 Vyl Vy3 VyZ Vyl D3k+2 Vy2 Vyl D3k+3 Vy3 Vy2 Vy 1 Vy3 Vy3 I SAMPLE IOUTI Vy I lOUT I Vy !~ ~~ loutl I )~ I loun I SAMPLE IOUTI \\ I SAMPLE loun lour! SAMPLE I Vyl Vy3 Vy2 Vyl I I S~ I ~M~E1 I xX XX XX Ga-l --------------~r-lL---------------------4S~\------------­ Ga-2 ____________________--J~~ •.~.~------------------__--~q~,-------------- G~-480 __ ---------------------------------···~··s~ HITACHI 870 Hitachi America. Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane. CA 94005-1819· (415) 589-8300 HD66300T MODE 6 Dis Vee L/F GND MSFI GND MSFZ GND Video DL/DR OE FD Sample and hold circuits I SAMPLE IOUTI [' B SAMPLE ~ I SAMPLE IOUTI OUT SAMPLE SAMPLE OU I SAMPLE I I SAMPLE IOUTI OUT SAMPLE SAMPLE OUT lOUT I SAMPLE I I SAMPLE IOUTI OUT SAMPLE SAMPLE OUT lour! SAMPLE I I OUT SAMPLE OUT lOUT I SAMPLE I S~~Tlo"'U""T"'I-r----' ~ I IOUTI \1 SAMPLE IOUTI I ~~ I SAMPLE I lOUT I ~ '" ~ D3k+Z VxZ Vx3 D3k+3 Vx3 Ga-l Vx2 Vl!3 Vxl Vxl Vx2 D3k+l ________ x3 VI( 1 VxZ ~IIL Vx3 Vx 1 Vxl Vx2 x2 Vx3 Vx 1 Vx2 Vx3 Vx 1 Vx2 Vx3 __________________________ ~~------------ Ga-Z _____________~r_lL____~~~----------------------~%~---------------- Ga-480 -------------------------------·~-s~ Video DL/DR OE FD --, if r--r--,-~-rl~SA~M~P~LE~I~o~UT~I-TI's~AMWP"L.....L>.-L"---O--J>;.Y::';'I, ""Y';:,l 03k+Z Ga-l I SAMPLE 10UTI SAMPLE SAMPLE our I lourl 1 Yx 1 VIC 1 xl x2 Vx2 VxZ Vx2 x3 1t3 Vd Vd VIC3 Yx our SAMPLE \I PL SAMPLE I SAMPLE I DUTJ I )~ I SAMPLE I IOUTI xl Vx 1 VIC 1 Vx 1 'Ix 1 x2 Vx2 xl VxZ Yx2 x2 VIC] Vx3 Vd Val Vd ______~!lL_____________~~~----------______~rlL__-=~~------------------~%~r------------- . ----------------------------~s~ Video OL/OR _ _ _ _ _ _L-_...I-_-L_ _L-_...I-_---L_---l_ _..L--I,\---L_ _ _ _ __ OE li- ; :~P:rc~:---"!~5~~~~m~ ~PLE: ~PL£: \~ r S\ A : ] cBo FO I . I SAMPLE lourl : I SAMPLE lour I lour: 03k+Z Z Z Z Z Z Z Z Z Z X X XX X 03k+3 g g X g g g g 03k+l Ga-l G~-Z SAMPLE: SAMPLE oun SAMPLE ourl lour I SAMPLE I lour I SAMPLE I lourl -, I SAMPLE I I SAMPLE lourl lour: I lour: SAMPLE SAMPLE I ~~ lour I : our I I SS I I lourl I SAMPLE lourl I SAMPLE I I -~ -~ -~ n X Z X Z Z X SS n .... 'J; G~-480 SS n HITACHI 872 Hitachi America, Ltd.• Hitachi Plaia. 2000 Sierra Point Pkwy. it Brisbane, CA 94005-1819· (415) 589-8300 HD66300T MODE 8 D/S Vee L/F Vee MSFl GNO MSF2 Vee Video DL/DR OE FD ~ Sample and B hold circuits ~ D3k+l D3k+2 ISAMPLE lOUT I I SAMPLE IOUTI I SAMPLE IOUTI I SAMPLE lourl I S\ lourl ISAMPLE I lOUT I SAMPLE I lourl SAMPLE I lOUT I SAMPLE I lour I I)~ I IOUTI I I SAMPLE lour! I SAMPLE lourl I SAMPLE IOUTI I SAMPLE IOUTI S\ I SAMPLE IOUTI I SAMPLE I IOUTI SAMPLE I IOUTI SAMPLE I IOUTI SAMPLE I I S< I SAMPLE I IOUTI ~/~~,~~,v --~~~r-~~~~~C~/~.~~C~~~~C.~/~~~£.~,~~~~~l D3k+3 A~-~~~~'~ Ga-l ______~!I~--------------------------*~------------ Ga-2 ________~I1~__===_----------------~~------------ Ga-480 -----------------------------------~--S~ Video DL/DR VUlJUUUL OE FD I ---[: hofd circuits C il '"'" " D I SAMPLE lourl I SAMPLE IOUTI I SAMPLE I SAMPLE I lourl SAMPLE I lourl SAMPLE ~S I S~ I II IOUTI I SAMPLE IOUTI II I IOUTI SAMPLE I 11\ I SAMPLE lOUT I I SAMPLE lOUT I I SAMPLE lourl I SAMPLE lOUT I I SAMPLE I IOUTI SAMPLE I IOUTI SAMPLE I lOUT I SAMPLE I IOUTI lour I I IOUTI I SAMPLE IOUTI I SAMPLE I IOUTI 0 '* D3k+l Vyl D3k+2 Vy2 D3k+3 Vy3 Ga-l --______~I1L_________________________~\rl------------ Ga-2 ----------~rI~----~~------------------_1II\._------~---- Ga-480 ----------------------------------~-i~ HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 873 HD66300T MODE 9 Dis Vee L/F Vee MSFl GND MSF2 GND (Video OL/oR OE FD [ Sample and B hold .Circuits ~ I SAMPLE lour! I SAMPLE lour I I SAMPLE lourl I SAMPLE lourl I S~ I SAMPLE I lour! SAMPLE I lourl SAMPLE I lourl SAMPLE I lourl I S\ I SAMPLE lourl I SAMPLE IOUTI I SAMPLE !ourl ! SAMPLE lour! S~ I SAMPLE I lOUT I SAMPLE I lourl SAMPLE I IOUTI SAMPLE I I S< D3k+l louTI I lourl I SAMPLE !ourl I SAMPLE! IOUTI ~'~~'~~'~J~V~yl~~V~'2,~Vy~3"V~'~1 ~V~y2~~=, 03k+Z --tr~~r-~~~A.-.~A.~'~~~~~(~~,r.~~v.~V~Y~2f.V~'3~kV~Yl~V'~2~~~ 03k+3 ~D-~-L~~J,V~,37~V~yl/~V'~Z~Y~~~~J~~'~'~Jx~'~'~'J3.~V~yl~~~~ Ga-l ________~!lL------------------------_;~r----------- Ga-Z ----------~,,~--~==------------------~~)------------- G~-480 Video ------------------------------------------------------------~--~~ --Ir--~r_--OJ----Lr--_CS_----u---u --lJ ._--. . ---u-~~ DL/DR OE FD I Sample and l B hold circuits ~ :!2 Q) '"8" c: Jl D3k+l I SAMPLE lourl I SAMPLE IOUTI I SAMPLE lourl I SAMPLE IOUTI ! S\ I SAMPLE! lourl SAMPLE I lourl SAMPLE I lOUT I SAMPLE I IOUTI 11\ I SAMPLE IOUTI I SAMPl.E louTI I SAMPLE lourl I SAMPLE IOUTI II I SAMPLE I lourl SAMPLE I lour! SAMPLE I lourl SAMPLE I I S\ louTI I IOUTI I SAMPLE lourl I SAMPLE I IOUTI D3k+Z .D3k+3 Ga-l ________ Ga-l __________~rJL___~~--------------------~II\~----------- G~-480 ---------------------------------------------_-i~ ~"L ____________________________ ~\)I------------- HITACHI 874 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66300T MODE10 D/S Vee L/F Vee MSFI Vee MSF2 Vee Video DL/DR OE FD ~ Sample and B hold circuits ~ I SAMPLE lOUT I I SAMPLE I I I SAMPLE IOUTI lOUT I SAMPLE I I SAMPLE IOUTI I SAMPLE I I SAMPLE IOUTI lour! SAMPLE I I SAMPLE IOUTI IOUTI SAMPLE I I SAMPLE-loUTI lOUT I SAMPLE I I SAMPLE IOUTI IOUTI SAMPLE I lOUT I I ~\ I S\ I I SAMPLE IOUTI IOUTI SAMPLE I I lourl lOUT I S\ I SAMPLE IOUTI SS I SAMPLE I IOUTI D3k+l ~~~~~~~V~'I~VY~I~V'~I·/'V7Y~I~~~/.~~V'-~~~V'-~~-~~~ D3k+Z --~~~r-~-v.V~'2~~V~Y2~~~2V'-~~Z~~~~~~AV~~~~~~~~ Vx3 Vy3 D3k+3 Vx3 Vy3 VIIJ Vy3 Vx3 Vy3 Vx3 Vy3 Vx3 )'3 Vd Vy3 x3 Ga-l ______~!IL------------------------~~r----------­ Ga-Z ---------~!lL--~==------------------~~r----------------------- G~-480 ----------------------------------------------------------------~--S~ Video U -~ IJ S~ I DL/DR OE _·t FD I hold circuits ~ -g 8G (I) I SAMPLE IOUTI I SAMPLE I C I SAMPLE lourl 0 I SAMPLE I D3k+l D3k+Z D3k+3 I SAMPLE IOUTI IOUTI SAMPLE I --'''--''---LC''--'~J I SAMPLE lourl IOUTI SAMPLE I I SAMPLE lOUT I IOUTI SAMPLE I Vyl V.I Vyl Vy2 V,2 Vy2 I SAMPLE loun IOUTI SAMPLE I Vxl Vyl VitI Vyl VitI ,2 Vy2 I S\ lourl I ~\ I I SAMPLE lourl S\ I SAMPLE IOUTI S\ I SAMPLE I I SAMPLE IOUTI IOUTI SAMPLE I vyl ,2 Vy2 v,2 Vxl IOUTI IOUTI SAMPLE I yyl Vxl I IOUTI IOUTI Yyl y2 V,2 Vy2 V,2 ~y2 Vy3 Ga-l --------~rlL--------------------------_;l~!------------ Ga-Z ----______~r-lL____~~--------------------~!rl---------------------------- G~-480 ----------------------------------------------------4-i~ HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 875 HD66300T MODEll DIS Vee L/F Vee/GND MSFI Vee MSF2 GND (Video DL/DR OE FD [ Sample and B hold circu~. ~ ~;; I SAMPLE lOUT I I SAMPLE lOUT I I SAMPLE IOUTI I SAMPLE 10UTI I Sl-~T:lo"'u"'rlr-.----, I SAMPLE I IOUTI SAMPLE I IOUTI SAMPLE I lOUT I SAMPLE I 10UTI I S\ I 10UTI I SAMPLE 10UTI I SAMPLE lourl I SAMPLE 10UTI I SAMPLE 10UTI S\ I SAMPLE 10UTI I SAMPLE I IOUTI SAMPLE I 10UTI SAMPLE I IOUTI SAMPLE I I S~ I SAMPLE I 10UTI .~ u. D3k+l D3k+Z V,1 V,1 Vyl V,1 Vyl V,1 Vyl V,1 Vyl V,1 Vyl V,1 VyZ VIIZ Vy2 V,Z VyZ Vx2 VyZ V,Z VyZ V,Z V,Z ~o-~-L~O_J~~~/~~\~.~/~~\~~/~~\~~rwCJ\~~~~~~~ V,3 Vy3 D3k+3 V,3 n Ga-l II n Ga-Z Ga-480 Vyl ~~~-£~a_J~~~/~~~~/~~~~~~~~/~CY\~~~~~ S\ --------------------------------~--s~ Video DL/DR OE FD I Sample and l B hold circuits ~ !I .! "8c . (J) D3k+l D3k+Z I SAMPLE 10UTI I SAMPLE lourl I SAMPLE 10UTI I SAMPLE 10UTI I S\ I SAMPLE I lourl SAMPLE I 10UTI SAMPLE I 10UTI SAMPLE I 10UTI I S~ I SAMPLE 10UTI I SAMPLE lourl I SAMPLE 10UTI I SAMPLE lourl S~ I SAMPLE I 10UTI SAMPLE I lourl SAMPLE I 10UTI SAMPLE I I S~ Vx' Vyl Vxl yl VKl VxZ V'IZ Vxl y2 VxZ '11 Vxl 'I'll Vxl ,'11 Vxl \I'll Vxl '11 Vxl Vx2 \lyZ Vxl "'12 Vxl yZ VxZ "-=' =,n,,,J' D3k+3 10UTI I 10UTI I SAMPLE 10UTI I SAMPLE I 10UTI Ga-l --------~!I~----------------------------~Il~------------- Ga-Z ----------~nL-----~--------------------~IIr_------------- Ga-480 -------------------~-------------~-\~ HITACHI 876 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66300T MODEl2 DIS Vee L/F GNO GNO MSFI - MSF2 --- ----Vee Video DL/DR OE FD A Sample and 8 [ hold ci«uit. ~ ISAMPlE lOUT I I SAMPLE IOUTI I SAMPLE IOUTI I SAMPLE IOUTI I Sf-~"'IO"'U"'TIr-..,---., ISAMPLE I lOUT I SAMPLE I IOUTI SAMPLE I lOUT I SAMPLE I lOUT I I S\ I IOUTI I SAMPLE IOUTI I SAMPLE IOUTI I SAMPLE lOUT! I SAMPlE IOUTI S\ I SAMPLE IOUTI I SAMPLE I lour! SAMPLE I IOUTI SAMPLE I IOUTI SAMPLE I I S~ I SAMPLE I IOUTI Vxl D3k+l Vx3 VxZ Vxl Vx3 Vx2 Yxl D3k + 2 ~<::r"--v-';:"'<::r"-v.V;:::'2>.A.V::-;'Iv.:: V,""3v.7 Vx2 VJ(J Vx2 Vxl Vx3 Vx2 Vxl VII 1 Vx3 VxZ V)( 1 D3k+3 --'.~..a..-LC"---,,-,-.,,V:.:.:.;'3:r,,,V,,,,2,~V,,,,1",V=lC3 Ga-l ___--'n ~\ Ga-2 -------'" SS Ga-480 ---------------------·-------~---S~ VItZ Vxl Vx3 Vx2 Vxl Vlt3 Vx2 Video DL/DR OE FD ~~~~~~~~~~~~;=~~~~~S~~~~==~--Ar I IOUTI I IOUTI I IOUTI I IOUTI I S\ IOUTI SAMPLE Sample and [B hold circuits CD SAMPLE ISAMPlE I SAMPLE lOUT I SAMPLE I I I SAMPLE louT! I I SAMPLE I D3k+l Vyl D3k+3 V 3 Vy2 Vy3 I SAMPLE louTt IOUTI SAMPLE I Vy2 Vyl SAMPLE lour! SAMPLE ! I S~ I lOUT I SAMPlE I lOUT I SAMPLE lOUT! I SAMPLE loun IOUTI SAMPlE I I !oUTI SAMPLE I lOUT I ~~ I SAMPLE IOUTI I S\ I SAMPLE I IOUTI Vy3 Vy2 V 1 "'"'-"''''-"-,''-'-'A=:/"-,-,-,,,-,-Y,\::2::/,,,,,,,,, 2 "",-,,,,""-=r Vyl ",VY",3"V'-'-'=r Ga-l -----'n~--------------------------l!rl----------- Ga-2 ---------'!lL--~~-----------~--~IIIr_------------ Ga-480 -------------------------------------'l-\~ HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 877 HD66300T MODEll DiS Vee L/F GND MSFI GND MSF2 GND Video OL/DR OE FD ~.~~: hold circuits C 0 i '" ~ I SAMPLE 10uTi I SAMPLE lour! I SAMPLE lourl I SAMPLE lourl I· I S\ lour! I SAMPLE I 10uTi SAMPLE I lourl SAMPLE I lourl SAMPLE I lourl I S\ I lourl I SAMPLE lourl I SAMPLE lour! I SAMPLE lour! I SAMPLE lour! S~ I SAMPLE lourl I SAMPLE I lour! SAMPLE I lourl SAMPLE I lourl SAMPLE I I S~ I SAMPLE I lourl 03Hl ~~~-o~r-V"-VX~1j,V~x2~vx~~V~X~~~2V.V~XJ~~~lV.V~x2~Vx~~~~~~~~M D3k+2 ~~>T-o~r-~V~x~2j,V~xJ~Vx~1~x2~~~V~x~1~Vx~2V.V~x~3j,V~xlV"-~~~~~Av.~ D3k+3 ~0-~~~~,~VxJJ,~V~xl~~Vx~2AV~x7~~~1"V~xJ2~V~xJ"V~xJl~V~x2,=VXJJxV~Xl,~vxJ2.~V~x3~~~~1,~~~ Ga-l ------~,,~------------------------~~----------- Ga-2 --~----~!I~--~~----------------~~\--------------~--------~--- Gl-480 ------------------------------~--~~ Video DLIOR OE FD ---, Sample and [' B hold circuits ~ . !'" 1 D3Hl II D3H2 D3H3 ISAMPLE lour! I SAMPLE lourl I SAMPLE louT! I SAMPLE lour! I ~\ I SAMPLE I lour! SAMPLE I lour! SAMPLE I lourl SAMPLE I lourl I \< I SAMPLE lour! I SAMPLE 10UTI I SAMPLE 10UTI I SAMPLE lour! S~ I SAMPLE I louT! SAMPLE I louT! SAMPLE I 10UTI SAMPLE I I S\ V 1 V 2 Vy3 Vyl Vy2 V 3 V I --',",,-.£>...~-J->...J Vy2 VyJ Vyl Vyl y2 VyJ y2 VyJ louT! I lourl I SAMPLE 10Un I SAMPLE I lour! 2 Vy yl V Z VyJ yl vy2 Vy3 vyI Ga-l ________~r!L___________________________~"------------ G~-2 ----------~rlL----~~------------~----_1«I~----------------------- -- .. - ..... _.. --. ---- Gj-480 -------------------------------------------·----~·i~ HITACHI 878 Hitachi America, ltd.· Hitachi Plaza - 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819- (415) 589-8300 HD66300T -~---- MODE14 DIS Vee L/F GND MSFI Vee MSF2 Vee Video OL/OR DE FD A Sample and hold circuits 03k+l [ B ~ I SAMPLE lOUT I I SAMPLE 10UTI I SAMPLE 10UTI I SAMPLE lOUT I I ~~ I SAMPLE I 10UTI SAMPLE I 10UTI SAMPLE I 10UTI SAMPLE I 10UTI I ~\ I SAMPLE 10UTI I SAMPLE 10UTI I SAMPLE lOUT I I SAMPLE 10UTI II I SAMPLE I 10UTI SAMPLE I 10UTI SAMPLE I 10UTI SAMPLE I I ~~ -J.:>"-.£>..-C'-'~J"-V::;'l",-V::.:'l/,,-VlIl VxZ Vxl 03k+2 Yx2 lourl I 10UTI I SAMPLE 10UTI I SAMPLE I 10UTI Vx 1 Vx 1 VII 1 VII 1 Yx 1 VII 1 VI( 1 Vx 1 Yx 1 Vx 1 VII. 1 V.,2 Vx2 VxZ VxZ V·1.2 VxZ Vxl Yx2 VxZ YxZ YxZ D3k+3 ---"~...L>.-L.'---'<..LJ VIIl Vx3 Vxl Vlll Vxl Vxl Vxl Vxl Vx3 Vxl Yxl """'~::J"=''-'= Ga-l ______ Ga-2 ________~J1L__~==~--------------~~>-----------­ Ga-480 -----------------------4---S'~ ~IIL ________________________ ~\r\----------- Video OL/OR OE FO ~L~~~~~~~~~~~~~~~~~h~~==~-A r I 10UTI I 10UTI I 10UTI I 10UTI I S\ 10UTI SAMPLE Sample and [B SAMPLE I SAMPLE I hold circuits CD I 10UTI SAMPLE lourl I SAMPLE I 03k+l 03k+2 V}/1 ---,,<..L-L>--L>..-L>-J SAMPLE V}l1 V,2 V,2 SAMPLE I SAMPLE I SAMPLE louT! 10UTI V)l1 10UTI Vyl SAMPLE I SAMPLE I I 10UTI lourl SAMPLE I SAMPLE IOUTI SAMPLE V 1 V}l1 V 1 V)l1 V}l1 I I 10UTI 10UTI 11\ I SAMPLE IOUTI SAMPLE I ~~ I 10UTI SAMPLE IOUTI I S) I SAMPLE I 10UTI Yyl Vyl ",V,-"l/",--,/,,:L:../"-l.:~' ~~V~'2~~~~~'~ V 2 v,2 Ga-l ________ Ga-2 __~---~r-L----~~-------------~II\r_---------- ~IIL __________________________ ~!~I------ ____- - Ga-480 ___________________________________ --~--\~ HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 879 HD66300T MODElS GND DIS l/F Vee MSfl GND MSf2 Vee Video DL/OR DE FD ::PIe hold circuits i '" ~ ~MPLEI OUT ISAMPlE lOUT ISAMPLE! OUT I SAMPLE I OUT ISAMPLEI OUT ISAMPLEI B Not used C Not used r 0 I SAMPLE lOUT I SAMPLE lOUT I SAMPLE! OUT I SAMPLE lOUT I SAMPLE I (lUT I S~I(lUTI S~ I SAMPLE I M I ~ 03k+1 V,1 Vy2 V,J Vyl V,2 VyJ V,1 Vy2 V,J 03k+2 V,2 VyJ V,1 Vy2 V,J Vyl V,2 VyJ V,1 Vy2 ~ 03k+3 V,J Vyl V,2 VyJ V,I Vy2 VxJ V.I V,2 VJ ~ Ga-l __________~r__l~__________________________________r~~------------- Ga-2 ----__--------~r--l~--~__----------------------~'~A------------n - - _________ "" ___ " n ____ Ga~240 """""~ Video OL/OR DE ---, FO ~ I SAMPLE I OUT ISAMPLEI OUT ISAMPLEI OUT !sAMPLEI ~~P/. B l! o! hold J C Not used circuits '0 ." \\ I SAMPLE I OUT I Not used I I 03k+1 X X X 03k+2 X X X D3k+3 X X X I SAMPLE I OUT I SAMPLE I OUT ISAMPLE! OUT ISAMPLll OUT I SS lOUT I Ga-l ____________________~-Jr--l~----~----------------~~Ir------------- Ga-2 -"""-~___ C_________________ """ ___________ "_~~~ Ga~240 HITACHI 880 Hitachi America, ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 HD66300T MODEI6 DIS GND L/F Vee MSFI GND MSF2 GND Video DL/DR OE FD A $1 I SAMPlE! OUT ISAIII'lE lOUT I SAMPlE , OUT I SAMPLE! OUT I SAMPLE lOUT I SAMPLE I Sample OUT I Not used and [B hold C circuits D Not used ISAMPlE! OUT I SAMPLE' OUT (SAMPLE! OUT I SAMPLE ( OUT ( SAMPLE ( D3k+1 V,I D3k+Z v,3 D3k+3 Vy3. V,Z Vyl V.3 Vyl V,3 VyZ V,I V2 V,I v,3 V,Z out ( ~\ ( SAMPLE! OUT ( VZ V,I Vy3 V,Z VI ~ Vyl Vx3 VZ V,I V3 ~ Ga-l __________-Jr__IL________________________________~~~------------ Ga-Z --------------~r--I~--~.~~_.- ... __-._-.._-.-__-__------------------~~b----------------------n---... ___ . ______ ... Ga~Z40 n~ Video DL/DR OE --, FD [ I SAMPLE I OUT I SAMPLE , OUT ISAMPLEI OUT ISAMPLEI ~ndmple B ~ "20 '* hold circuits C 0 ( Not used ( D3k+1 X X X D3k+Z X X X D3k+3 X X X Ga-l Ga~Z I SAMPLE I OUT 1SA!!'lE1 OUT (SAMPLEI OUT ISAMPLE( OUT ( \\ lOUT I ------------------~r-I~------------------~~r---------- ----------------~~.h~~ __ Ga~Z40 \\ ISAMPLE lOUT I Not used .~_~~~--.-_--1---'--- ___ - __ - _ _- _ _ _ - _ _- _ _ _ - _ _- - - __ _ - _ _- _ _ _ - ___ -._ __ - HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 .- ..-.- .... ----------.--.-.--.-.--~- 881 HD66300T MODE17 DIS GND l/F Vee M~FI Vee MSF2 Vee --. Video DL/OR OE FD A I SAMPLE lOUT ISAMPLE lOUT ISAMPLE lOUT I SAMPLE I OUT I SAMPLE I OUT ISAMPLEI ~:pI. B Not used hold C. circuits 0 Not used [ D3k+l I SAMPLE I OUT I SAMPLE I OUT ISAMPLE! OUT I SAMPlE I OUT I SAMPLE I -"'~-L>.._..l>...---'''-..:.:V., . Vyl V., Vyl V., Vyl V,I Yyl V,I ouf I SS lOUT I S~ I SAMPLE I ouf I YI D3k+2 D3k+3 Ga-l _ _ _ _ _~r__l~____________________________~----~~------------- GaTZ --------~r--l~-~~~-----------l~h---------------h-------------------J,~ Ga-240 Video DL/DR OE FD Sample and . '" 1ell l! ~ I SAMPLE lOUT I SAMPLE I OUT ISAMPLE! OUT I SAMPLE , hold C circuits 0 Not used I SAMPLE , OUT I SAMPLE! OUT ,SAMPLE lOUT D3k+l X D3H2 X D3H3 X Ga-l Ga-2 Ga~Z40 \\ ISAMPLE lOUT I Not used B _ _ _ _ _ _ _ _---Ir--l !SAMPLE! OUT, s\ , OUT , S~ --.. -c=!h-________ ~---------m--------------~~ HITACHI 882 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66300T MODE18 DIS GND L/F GND MSFl GND MSF2 Vee Video DL/DR OE 0l-fLJLJ1 S\ FD A I SAMPLE lOUT ISAMPLE lOUT I SAMPLE! OUT I SAMPlE lOUT I SAMPlE lOUT I SAMPLE I Sample and [B Not used hold C Not used circuits 0 I SAMPLE! OUT I SAMPlEI OUT I SAMPlE! OUT I SAMPLE! OUT I SAMPLE lOUT D3k+l Vxl VxZ VII3 Vxl VxZ Vx3 Vxl Vx2 Vx3 I SS lOUT I S~ I SAMPLE! OUT I Vxl D3k+2 D3k+3 .Ga-l ____________~r__lL__________________________________~\,~~-------------- Ga-2 --------------~r--lL--~~------------------------~~r_------------ .. _.--~-J~ Ga:240 ________________________________-_--_--_--_--_--_--_--_--_ ~ Video I ~S DL/DR I OE FD Sample and hold . circuits ~ I SAMPLE I OUT I SAMPLE I OUT I SAMPLE I OUT ISAMPLEI \\ IsAlJPlE lOUT I Not used B C Not used 0 I SAMPlE I OUT I §l!MPlE lOUT ISAMPLE lOUT ISAMPlE I OUT I S~ I OUT I D3k+l X X X X X X ~ D3k+2 X X X X X X ~~ D3k+3 X X X X X X ~~ Ga-l ________________________~r__lL________________________~~~\-------------- Ga-2 __________________~~r-!~--------------~~._-----------------u---___________ u_ Ga:240 --S~ HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 883 HD66300T MODEl9 DIs GND L/F GND MSFI GND MSFZ GND Video OL/oR OE FO :~~Ple hold :s! r Not used C Not used circuits 0 o! ~ ISAMPLfIOUT ISAMPlE lOUT 'SAMPlE' OUT ISAMPlEI OUT 'SAMPlE' OUT 'SAMPlE I B , SAMPlE , OUT , SAMPlE , OUT , SAMPlE lOUT I SAMPlE lOUT I SAMPlE lOUT I 03k+1 Vlcl 03k+2 Vx3 03k+3 Ga-l V,l vxz V.l V.l Vlcl V,l v.z V,l v.z V,l . Yx3 v.z S~IOUT' S\ I SAMPlE I OUT , v.z V.l V.l v.z V.l P<= V.l V.l V'Z VXI Vlcl ~ ----------~r--l~----------------------------~----~~r------------­ Ga;2 __________~r__l~__~..~ ...~ ...~ ...-...-..-...-..-._.-._-_._-.__-..-...-..-.. ___-__-. ..-...~~~ ...-.. - - - - - - - Ga:240 Video OL/OR OE FO :s! o! I -~ 'SAMPlE' OUT 'SAMPlE' OUT I SAMPlE , OUT ISAMPlE' Not used I SAMPlE I OUT ISAItPLEI OUT 'SAMPlE' OUT 03k+1 X 03k+2 X 03k+3 Ga-l Ga~2 Ga~240 \\ 'SAMPlE' OUT , Not used and B hold C circuits D x X X X X X ______________________ 'SAMI'U' OUT' S~, OUT I >GiDGiDGiDGiDGI:X:YiDGDC::$::X:EX:~X=::X: ~r--l ~ .....C!_. __ ._~.---.-.--...-.... -....._. ___ ._~~ HITACHI 884 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66300T MODEZO Dis GND L/F GND MSFI Vee MSF2 Vee Video DL/DR OE. FO I SAMPlq OUT ISAMPlE lOUT ISAMPlE lOUT I SAMPlE lOUT I SAMPlE lOUT I SAMPlE I Sample [ : and hold C circuits 0 SS lOUT I Not used Not used S\ I SAMPLE lOUT I SAMPLE lOUT I SAMPlE lOUT I SAMPlE! OUT I SAMPlE lOUT I SAMPlE lOUT I I D3k+1 D3k+2 D3k+3 Ga-l __________~r__lL__________________________________,~~------~----- Ga-2 ------------~r-I~--_==------_- Ga~240 ___-__-__-__-__-_--------~~,r----------- ---------------------------------------------.--~ Video DL/DR OE FD . .., l! '" 15 '* -~ I SAMPlE I OUT I SAMPLE I OUT I SAMPlE I OUT ISAMPlEI \\ ISAMPLE lOUT I Not used and B hold C circuhs 0 Not used I SAMPLE I OUT ISAMPl~1 OUT ISAMPlE lOUT ISAMPLE lOUT I S~ I OUT I D3k+1 X X X X X X ~~ D3k+2 X X X X X X ~~ D3k+3 X X X X X X ~~ Ga-l Ga,2 ------~~I ' l - - - - - - - - - : : - - - - - ' · - - - - - - - - - - - - - - - - - - - - __ • Ga~240 ~S~ __ u ~ _________________ • __ HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 885 ~ __ HD66300T NTSC System TV Signals and LCD can be driven likewise by the second field. In this case, if one pixel of the LCD panel is considered, it is recognized that the pixel is driven by signals with opposite polarity every frame. This lowers the alternating frequency to 15 MHz, which is only half of the frame frequency. Driving LCD elements with signals of such low alternating frequency causes flickering and degrades display quality. To raise the alternating frequency to 30 MHz, a method can be employed in which LCD e1ements are driven once every field instead of once every frame. A TV screen display, which is updated 30 times pel second, is called a "frame" and is composed of 525 scanning lines. One frame contains two fields; scanning lines 1 to 262.5 scan the display in the first field, and scanning lines 262.5 to 525 scan the display in the second field to fi.11 the gaps which are left unscanned in the first field. This scanning mode is called an "inteJ;lace scan." The time period in which one scanning line scans the display is called a ''horizontal scanning period" and is about 63.S /.Ls. Within the horizontal scanning period, the time period that display operation is actually performed is called the "valid display period". The other period is called the "horizontal retrace period". Specifically, in the first field, the first and second lines of the LCD panel are driven respectively during the first half and second half of the complete horizontal scanning period. The same rule is repeated for the following lines. In the second field, on the other hand, the combination of two lines is different. The first line is driven during the second half of the horizontal scanning period, and then the second and third lines are driven respectively during the first and second half of the following horizontal scanning period. The same rule is repeated for the following lines. There are two modes fordisplayingaTV screen image on an LCD panel. In the first mode, each scanning line in the two fields is assigned to one line of the LCD panel; thus, each of the 240 lines of the panelaredriven by the positive signal in the first field and by the negative signal in the second field. Here, 3O-Hz alternating frequency is available, but the number of vertical pixels is limited to 240. Employing thj.s method enables the implementation of 480 vertical pixels. (Single-rate sequential drive mode) 3 Item Symbol Min Input high-level voltage Input low-level voltage VIH Vil 0.7 Vee GNO :::t: Output high-level voltage VOH Vee -O.4 n Output low-level voltage Val "U Input leakage current (1) IU1 -10 Input leakage current (2) IU2 -10 Output current (1 ) lOUT CI> :::::!. n "Fl ~ · s= 2: ii> 1>1 · ~ 0 0 0 Typ CD' ~ a 0~ Output current (2) ·- ~ ':'" c:J ~. Vee 0.3Vee C" '" -I OH =0.3 rnA IOl = 0.3 mA +10 IJA VI=OV,V ee 1 +10 -150 IJA 2 -10 IJA VI = Vaa' Vee Vee - Vaa = 20 V Apply Yin to Vxand Vy. +150 IJA = (Vee - VBB)12 Voo =Vee -3V +10 IJA VbsH=Vee-3V VbsB = Vee - 3 V 3.0 rnA fCk 30 rnA IJA liN IGNO 15 (") > 'f 0 ~ ~ Ok = Yin - 0.5 V OE= Vee 5 OE=GNO OK = Yin + 0.5 V = 2.5 MHz, Voo = Vee - 3 V OE = Vee OE=GNO 6 VbSH = Vee - 3 V, VbSB = Vee - 3 V OE = 33 kHz, OE duty = 7/32 'i. <0 4 FO = 30 Hz 0 ~ 3 V V IBB :l 5" Notes Yin :I Current consumption Test Conditions V :I "U 0 "U Unit V 0.4 en iil Max Bias voltage Vb Vcc -4.0 Dynamic range VOY VBB + 1.5 01 00 <0 do Co> Vee -3.0 Vee -3.5 V Voo = VbSH = VbsB, Cl = 100 pF, tOOR:S 6.3 IJs V Vee - VBB = 20 V, Ta = -10 to +60°C -0.5 V < Voll < +0.5 V 0 0 Voo = VbSH = VbsB = Vee - 3 V 00 00 <0 5,7,9 S en en w o o t-3 11 00 DC Characteristics (VLCO = Vcc=5 V ±10%,GND=OV, Vcc - VBB = 16 to 20 V, Ta =-20 to +75 °C) (Cont.) ::r: Hem Max Unit Test Conditions Notes 5,8,9 ~ ~ Offset voltage =l> Symbol Min VOff{L) -5-180 -5 + 180 mV VCC -V BB =20V VOff{H) +55-180 +55 + 180 mV fCk Typ Yin =-11 V Yin = -1 V Ta = -10 to + 60°C 3 ~ ~. = 2.5 MHz Voo = VbsH = VbSB ~ = Vcc -3 V ::r: s:n =""0 . Ii> N Notes: '" "" 0 0 0 en ~. iil :I a 0~ ""0 1. 2. 3. 4. 5. 6. 0 Mode setting: L/F =VCC' DIS =VCC' MSFI ""0 ~ ~ . co :::>. '" 0- '" ::l S1' (") l> CD """ 0 0 ~ 5' CD :::: ~ 01 00 'P 00 c..> 0 0 Applies to pins HCK1, HCK2, HCK3, DL, DR, FD, RS, OE, SHL, DIS, L/F, MSFl, MSF2, TESTl, TEST2, Vbo' VbsH' and VbsB· Applies to pins Vx1, Vx2, Vx3, Vy1, Vy2, and Vy3. Applies to pins HCK1, HCK2, HCK3, DL, DR, FD, RS, OE, SHL, DIS, L/F, MSFl, MSF2, TESTl, and TEST2. Applies to pins DL and DR. Applies to pins 01 - 0120. The shift register is constantly shifting one 1. 7. 8. 9. =GND, MSF2 =VCc (The other input pins must be Vcc or GND level.) The operations are the same as those when offset voltage is measured . Definition of "offset voltage" is shown figure 27. These characteristics are defined within the temperature which is shown in the test condition. S m m w o o .., HD66300T AC Characteristics(VLCD = VCC=5 V ± 10%, GND = OV, V CC - V BB = 16to 20 V, Ta = -20 to+75°C) Item Symbol Min Max Unit Three-phase clock period tCKCK 210 1000 ns Three-phase clock pulse width tCWH 100 ns 30 ns 20 ns Test Condition Notes tcwL Interval between three-phase tlr1 clock falling edge and rising edge tlr2 t lr3 Interval between three-phase trl 2 clock rising edge and falling edge 30 ns Clock rise and fall times tel DL, DR input setup time tsu 50 ns DL, DR input hold time tHLI 20 ns DL, DR output delay time tpd DL, DR output hold time t HLO 5 OE input period tcvco 30 80 J.l.s OE input high-level pulse width tOWH 3 15 J.l.s OE rise and fall times tor 30 ns 90 ns CL = 15 pF ns tol FD input setup time t FS 100 ns FD input hold time tFH 100 ns Note: 1. 2. Necessary for preventing the three-phase shift register from racing. trf must satisfy the DR and DL input hold time (~I) of the next horizontal driver. (trf + tHLo > t HLI) HITACHI Hitachi America, ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 891 HD66300T DE ~~~~"~-----;~'----~)-----1 ~ lOps _, I I : : : I I 1- 60",5 ." : '1 I I : I I I I "":•...--=:;;"'---~ 60",5 I •! _" -':---"::n---1;----JI nnn:: ____':":nnl ___ mnn ___ ! IVOff(H) Dout -11V Voff(L) n _______________________ n_ )~ ------------ --------------- Figure 27 Offset Voltage HCKl HCK2 HCK3 Figure 28 Three-Phase Clock Timing HITACHI 892 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66300T O.7Vcc O.3Vcc HCK1 HCK2 HCK3 O.7Vcc O. 3Vcc OL OR (OUTPUT) 1<-----11------------- OL OR (INPUT) tsu Figure 29 Input and Output Timing t., -- ~ tOWH O.7Vcc OE ~ O.3Vcc t,s t," Z~0.7Vcc FO '-'rO.3Vcc tODR r 90%(V,"=Vcc -3.5V) 01-0120 X 10%(Vin=V•• +1.5V) Figure 30 OE, FD Input Timing, Driver Output Timing HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 893 HD66310T-----(TFT -Type LCD Driver for VDT) Description The HD66310T is a drain bus driver for TFf-type (thin film transistor) LCDs. It receives 3-bit digital data for one dot, selects a level from eight voltage levels, and outputs the level to an LCD. The HD66310T can drive an LCD panel with an RGBW filter to display a maximum of 4096 colors. • • • Features • Full color display: a maximum of 4096 colors RGB color· filter: 512 colors, 8 gray scales RGBW color filter: 4096 colors, 8 gray scales High-speed operation Number of input data bits: 3 bits x 4 Maximum operation clock frequency: - 12 MHz (HD6631OT**12) - 15 MHz (HD6631OT**15) Maximum pixels: 480 x 640 dots 160 internal driver circuits Bidirectional shift Internal chip enable signal generator Stand-by function LCD driving voltage: 15 V to 23 V CMOS process Package: 203-pin TCP Available in TCP packaging only. Recommended for high volume applications only. Difference between HD66310T**12 and HD66310T**15 Item HD66310T**12 HD66310T**15 Maximum operating clock frequency 12 MHz 15 MHz Power supply for logic unit 5 V±10% 5V±5% Operating temperature -20 to +75°C -20 to +65°C HITACHI 894 Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819' (415) 589-8300 HD66310T Pin Arrangement Y2 Y4 Y6 Y8 Yl Y3 Y5 Y7 Yl54 Yl56 Yl58 Yl60 Y1S3 Yl55Yl57Yl59 ------------------ (Top view) 1 VOL 2 Vll 3 V2l 4 V3l 5 V4l 6 VSl 7 V6l 8 V7L 9 VCC1 10 VCC2 11 EIOl 12 RVS 13 DOO 14001 15002 16 D03 17 DMYO 18010 19011 20 012 21 013 22 DMVl 23 D20 24021 25 022 26 023 27 DMY2 28 CLl 29 CL2 30BS 31 SHl 32 EI02 33 TEST 34 GNO 35 36 37 38 39 40 41 42 43 VEE V7R V6R VSR V4R V3R V2R V1R VOR Note: This does not apply to TCP dimensions. Pin Description Pin List Pin Name Number of Pins Input/Output Functions (Refer to) Vcc 1, Vcc2 2 Power supply 1. GNO Power supply VEE Power supply VOL-V7L, VOR-V7R Power supply 2. CL1 Input 3. CL2 Input 4. Input 5. Input 6. Input 7. Input/output 8. 000, 010, 020, to 003,013,023 16 12 RVS SHL EI01, EI02 2 TEST, BS 2 Input 9. Y1-Y160 160 Output 10. OMYO-OMY2 3 11. HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 895 HD66310T Pin Functions 1. Vee1, Vee2, GND, VEE: These pins are used for the power supply. Vcc'-GND: Power supply of low voltage Vce-VEE: Power supply of high voltage 2. VOL-V7L, VOR-V7R: 8-level LCD driving voltage is applied to these pins. One of the eight levels is selected according to the value of the 3-bit input display data. The L and R pins of the same voltage level are connected in the driver. 3. eLl: Inputs clock pulses, which determine the output timing of the LCD driving voltage. The output changes at the CL 1 rising edge. 4. CL2: Inputs clock pulses, which determine the input timing of display data. The driver samples data at the CL2 falling edge. Table 1 Voltage Level Selection According to Display Data Value Display Data Voltage Level D2J D1J DOJ RVS=1 RVS=O 0 0 0 VO V7 0 0 1 V1 V6 0 0 V2 V5 0 1 V3 V4 0 0 V4 V3 0 1 V5 V2 0 V6 V1 1 V7 VO Vee 1-...,.-----, + GND VEE 1 - - - - - - - ' Figure 1 Power Supply for the Device HITACHI 896 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66310T 5. DOO-D03, DlO-DI3, DlO-D23: Input display data. See table 1 for the voltage level selection by the display data. 6. RVS': Determines if logical I/O display data is reversed. Display data is reversed when RW is low. or output. When the chip enable input signal is low, data input starts. When display data corresponding to 160 outputs are input, the chip enable output signal changes from high to low. 9. TEST, BS: Used for test purposes only. Connect to a low level for normal operation. 7. SHL: Selects the shift direction of display data. 10. YI-Y160: Output LCD driving signals. 8. EIOI, EI02: Inputs/outputs chip enable signals. The Sm.. signal selects which pin is for input 11. DMYO-DMY2: Reserved pins that should be. left open. Table 2 Input/Output Selection for EIOI and EI02 SHL EI01 EI02 GND Input Output Output Input Vee Output Direction SHL GND Vee i.0-2 DiO Di1 Di2 Di3 (12 bits) 1-0-2 DiO Di1 Di2 Di3 (12 bits) d03,d13,d23 d02, d12, d22 d01,d11,d21 dOO, d10, d20 5 Y1 Y2 Y3 Y4 d03,d13,d23 d02,d12,d22 d01,d11,d21 dOO,d10,d20 Y157 Y158 Y159 Y160 dOO,d10,d20 d01,d11,d21 d02,d12,d22 d03,d13,d23 Y1 Y2 5 dOO,d10,d20 d01,d11,d21 d02,d12,d22 d03,d13,d23 Y3 Y4 Y157 Y158 Y159 Y160 Figure 2 Display Data and Output Direction HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 897 HD66310T Internal Block Diagram Y156 V158 V160 Y157 V159 Y1 Y2Y3Y4V5 VOL, V1l V2l, V3l - - - - - - - - ' ' \ 1 V4l, V5l V6L, V7l -------v lCO driving circuit VCC1, VCC 2 - -•• GNO .. VEE ~ Test circuit VOR,V1R V2R,V3R V4R,V5R V6R,V7R TEST ----i.~I....:I_ ___11 1WS"-----, Cl1 BS Data reverse circuit 000, 010, 020 001,011,021 002, 012, 022 003,013,023 ---===il SHl CL2----., EI01 EI02 Latch address selector HITACHI 898 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589c8300 HD66310T Block Functions Latch Address Selector: Contains a 6-bit up/ down counter and a decoder, and sends the latch signals to latch circuit (1) at the CL2 falling edge. Latch Circuit (2): Consists of three planes of I60-bit latch circuit, which latches the data from latch circuit (1) at the timing determined by CLI, and holds the data for one line scanning period. Data Reverse Circuit: Reverses the input display 0, and does not reverse data data when RYS whenRYS = 1. Level Shifter: Raises the driving voltage of 5 Y to the appropriate LCD driving voltage. = Latch Circuit (1): Consists of three planes of 160-bit latch circuit. Each bit of 3-bit data is separately latched in its corresponding plane depending on its significance. Each plane is divided into forty 4-bit blocks, and all four bits are latched into the block at once, as specified by the latch signal from the address selector. In total, the 3-plane circuit latches 12 bits of data at one time. LCD Driving Circuit: Outputs an 8-level LCD driving voltage. This circuit receives 3-bit data for one dot from latch circuit (2) and selects one level from eight voltage levels. Test Circuit: Generates test signals. HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 899 HD66310T System Configuration A block configuration of the TFf-type color display system using the HD66310 is shown in figure . 3. The HD66310 receives 3-bit data for one pixel and selects one of the eight LCD driving voltage levels to send to the LCD. The LCD driving output circuit, which is produced by the CMOS structure, can use any LCD driving voltageS level from Vcc to V BE. When the LCD panel uses an RGB color filter (the Triad arrangement), 512 (8 3) colors can be displayed. When using an RGBW color ftlter (the Quad arrangement), 4096 (84) colors can be displayed. CPU Una synchronization signal, data sampling signal, 3 alternating signal Controller Dis 12 3 2 Frame synchronization signal, line synchronization Signal HD61105 No.1 TFT-type color LCD panel Triad arrangement 512 colors 640 x 480 pixels HD61105 No.6 12 Figure 3 TFT-'IYPe Multiple Color Display System HITACHI 900 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66310T Internal Operation 8-Level Output The HD66310 internal circuit unit for one data output is shown in fIgure 4. The circuit receives 3-bit data (DOj, Dlj, D2j) and selects one of eight voltage levels (VO--V7) to output to the LCD. The transfer gates of the output circuit are produced by the CMOS structure. Therefore, any voltage level between Vcc to VEE can be applied to lines VO to V7. The HD66310 has 160 of the above circuits. Operation Timing The HD66310 operation timing is shown in fIgure 5. When the SHL signal is at the GND level, data input is started by a low EIOI (data input enable) signal. At the CL2 falling edge, 12 bits of data, which are for four outputs (3 bits for gray scales x 4 outputs), are input together. When the data input corresponding to 160 outputs are completed, the HD66310 automatically enters the stand-by mode, and the EI02 signal changes to low. The LCD driving output changes at the CLl rising edge. The voltage level selected by data dl is output from pin Yl, and the level selected by dl60 is output from YI60. See table 1 for the voltage level selection by the input data. When the SHL signal is at the Vee level, data input is started by a low EI02 signal. When the data input for 160 outputs are completed, the EIOI signal changes to low. The voltage level selected by data dl is output from pin YI60, and the level selected by dl60 is output from YI. Vn P: P-MOS N: N-MOS CL1 CL2 .... RVS------~~------~+_------~r_ Display data (DOj) Display data (D1j) II Display data (D2j) Figure 4 LCD Driving Circuit HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 901 HD66310T ~ CL1 CL2 ~ ___ 1 234 ~ ~ 5 U ~ $ ~ ~ 000 to --::::v-:;;;v-: 003 (Lower bit) ~____. 000 ~ to 013 ~ 020 ~ to --::::v-:;;;v-: 023 (Upper bit) ~ SHL=GNO EIOl , ' - -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ EI02 Y1 to Y160 ------------------------------~~ ----------------------------------~~ SHL = Vee EI02 11-______________________ EI01 Y1 to Yl60 ------~--------------------------------------~ ------------------------------------~ Figure 5 Basic Operation Timing Chart HITACHI 902 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66310T the next HD66310. Figure 6 shows a connection example. Cascade Connection When the SHL signal is at the GND level. the HD66310 begins to input data when the EIOI signal goes low. When the data input is completed. the EI02 signal changes to low. By connecting the EI02 pin of the fIrst HD66310 to the EIOI pin of the next HD6631O. the low EI02 signal activates When the SHL signal is at the Vee level. the EI02 pin of the fIrst HD663I 0 is connected to GND. and the EIOI pin is connected to the next HD663IO EI02pin. DATA----~~~------------~------------~----­ CL2--------;--+-----------+~~--------~--+_--- SHL SHL Driver 1 EI01 EI01 EI02 EI01 Driver 3 EI02 ~\..._____________ CL2 ___ Jl.JlJlSLJl EI02 A } Driver 2 signals Driver 2 input enabled B Figure 6 Chip Enable Operation (SHL = GND) fJ HITACHI Hitachi America, Ltd.· Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 903 HD66310T LCD Driving Power Supply Circuitry Multiple-Level Driving Voltage Method AC voltage must be applied to the LCD, since DC voltage deteriorates the LCD. To display eight gray scales, 16 voltage levels, shown in figure 7, must be applied. Although the HD66310 has eight LCD driving voltage input levels, it can output 16 driving voltage levels using the level selector shown in figure 8, since the transfer gates of the output circuit are produced by the CMOS structure. External Power Supply Circuitry Figures 8 and 9 show the external power supply circuit when displaying 512 colors in the Triad arrangement, and figure 10 shows the circuit for displaying 64 .colors in the Triad arrangement. Table 3 shows the specifications of the LCD panel and the HD66310 pins for each power supply circuit. The circuit shown in figure 8 is the basic one used when displaying 512 colors in the Triad arrangement. However, the HD66310 can dispense with the level selector, as shown in figure 9, using the internal RVS" (output reverse) pin. See table 1 for detailed RVS functions. When displaying 64 colors in the Triad arrangement, the RVS pin functions as the alternating signal input pin, as shown in figure 10. Vee V1 V2 V3 V4 V5 V6 V7 va V9 V10 V11 V12 V13 V14 V15 V16 ----------------------------------------- VEE Figure 7 HD66310 Output Waveform HITACHI 904 Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 HD66310T Table 3 Color Display and Pin Specifications Display Data Output Level Panel Spec. DI2 DI1 DIO RVSpln Powe, Supply (Refe, to) Sx2 (AC) Quad: 4096 colors Triad: 512 colors 1/0 (upper bit) 1/0 1/0 (lower bit) 1 Fig.S Sx2 (AC) Quad: 4096 colors Triad: 512 colors 1/0 (upper bit) 1/0 1/0 Alternating signal Fig. 9 (lower bit) 4x2 (AC) Quad: 256 colors Triad: 64 colors 1 1/0 (upper bit) 1/0 (lower bit) Alternating signal Fig. 10 1: Vee level voltage 0: GND level voltage Alternating signal - - - - - . . . , Vee Vee ...-.1--.., VI V16 ,..V-7----, V2 V15 V6 V3 V14 V5 Level selector V4 V13 V5. V12 V6 VII V7 Vl0 V4 V3 V2 VI va, V9 VO 110 110 110 Vee Figure 8 External Power Supply Example 1 HITACHI Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA94005-1819 • (415) 589-8300 ,905 HD66310T VEE Figure 9 External Power Supply Example 2 Alternating signal Vee Vee Vl V2 V3 V4 V5 V6 V7 va V7 V6 V5 V4 V3 V2 Vl VO RVS Oi2 Oil OiO 1/0 1/0 VEE Figure 10 External Power Supply Example 3 HITACHI 906 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66310T Design for Timing 11. However, the power supply lines immediately reverses polarity after a transition of the RVS signal, as shown in figures 9 and 10. Therefore, the HD66310 outputs invalid data during the last CLl of a frame period. When using the RVS pins to simplify the power source, as shown in figures 9 and 10, it is recommended to add a vertical retrace period, (a scanning period in which no scan electrode is selected) at the end of a frame scanning period, as shown in figure 12, for the following two reasons. In the power supply circuits shown in figures 9 and 10, voltage temporarily becomes unstable just after the RVS transition, causing the LCD display to become jumbled. As shown in figure 4, the data reverse circuit is before the latch circuit (1). The LCD driving output is reversed one CLl period after a transition of the RVS signal, as shown in figure CL1 -1lL..___.....JnL-____rL ::x"____(+---_ RVS ------Jx~ LCD output Figure 11 m- and LCD Driving Signals Timing _--------Oneframeperiod-------_. rL Frame synchronization signal Jl Line synchronization signal (CL1) ~ Alternating signal .. ~oo~i~5ilectrodes ~ (j ~~~ X1 ./ . X2,' " X480 - - . . : - - - - -.....: - - , HD66310T __ _ :\ __ =~:=====--...: ::-_-~~T --------~----,~.- ---~ J_~fEiIi===ijii~. Y1-Y160 . , Figure 12 Vertical Retrace Period HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 907 > :g ~~ =: ~~ cc 0 CO ~::;:; ::z: ;:;: n 2: » V~ 3 CD 5" P' !:::: I ,-=====I+li::t:ttf:; T I I I II ""n" 1'" • ~ 11111111 ?- • ::z: g " Frame synchronlzallon signal Un••ynchRm~aIIon.ignai • Data felch signal Display data ( _ numbel) Display data (odd nurnbeI) ~ D> N 0 0 0 ~!l .~~ i~ LCD panel AhrnaIIng signal en ~ VI"" g~ 2: CD' ~~ ConIroIIer :I v. (l~C a i0 " ~ :E "8 · iii- Nu...,.,"' ......: 512 Color arrangemanl: Triad type Display capaciIy: 480 x 640 dots IC for OCIIIInIng: HD61105 Fl t I .Note~ ;V7 V4 c- u~ D> ::I !" -5cr ... ~'" fg- V5 a:J ~~ crQ.g ,-oGND '" (OY) n » 1g' ;. ~ 0 0 Ei" ~ Qq cc [ ~ ~ ~ tn co % ~: 1. An operational ampIIIer ohouId be III8IaIIad on "'"'" level 01 the pcIWa' suppIr 1M (VO-V7) 10 lower the in1Jedance. 2. Conden... should be III8IaIIad . - the ICs 10 IlablIIze the pcIWa' oupplywllage. T... D.1-1/f condensen ens reconmooldecllo be insIalIed on one IC: one ~ Vee and GiNO, and one ~ Vee and V... 3. ThIs system _12 HD66310T chIpe ancI12 HD61105 chIpe. Co> g Figure 13 Application System Connection Example Sf g- j 8 ag" ..... ..,o 0') 0') fA) ::J: ~ :2: » 3 C1> :::!. ~ c: · ?- · t'IOn--1l • F.rame synchronrza signal Line synchronization signal -tl r-l- One frame period Line 1 n Line 2 n Vertical Line 3 rL- •••••••• ~ Alternating signal ::J: X1 ~ :2: -0 ~ · o "" Scanning electrodes (H061105) X2 X3 ~ co· __ X~O ~ ~ ~ ~ :;0 ·- """ :I ~ ~ iiiil ____-+______ CD :::!. r r:::r ~ '" ______ ,~ A ~ One line period ~r----- (/.I ______ ., ~~~~~~~" H066310T Y1-Y160 ~ ~ ~ _____________ ::::I !" ~ co ~ o o Data fetch signal ~ ~ oOO I I I I I ITTl ITl I I I I I I I I I co ~ ~ n ~~~a?nchronizatio~ Display data 12 bit L _ __ ........ J1flIlJ1I1I1.IL DJTIl 11- I rrl { 001 1 I 1 I I I I I I I I I I I I I 1 I I I I S I I II I I I I II II ::r: t11 00 co ~ o 023111111111111111111111 DIIIIlT-ITTI o0> 0> W .,o ~ ~ co Figure 14 Timing Chart HD66310T Absolute Maximum Ratings Item Symbol Ratings Unit Notes Power supply for logic unit Vee -0.3 to +7.0 V 2 Power supply for LCO driving unit VEE Vee - 25 to Vee + 0.3 V Input voltage (1) Vn -0.3 to Vee + 0.3 V Input voltage (2) VT2 VEE - 0.3 to Vee + 0.3 V Operating temperature Topr -20 to +75 (H06631 OT**12) -20 to +65 (H06631 0T**15) °C Storage temperature Tstg -40 to +125 °C 2,3 Notes: 1. Exceeding the absolute maximum ratings could result in permanent damage to the LSI. The recommended operating conditions are within the electrical characteristic limits listed on the following pages. Exceeding these limits may cause malfunctions and affect reliability. 2. Values are in reference to GNO • 0 V. 3. Applies to input pins SHL, CL 1, CL2, BS, RVS, TEST, and 000-023. Also applies to input! output pins EI01 and EI02 when these pins function as input pins. HITACHI 910 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66310T Electrical Characteristics DC Characteristics (Vee +5 V ±10%, GND 0 V, Vee - VEE 15 to 23 V, T. -20 to +75°C in 12 MHz version) (Vee +5 V ±5%, GND 0 V, Vee - VEE 15 to 23 V, T. -20 to +65°C in 15 MHz version) = = = = Item Symbol LCD driving power supply voltage Vee - VEE = = Min. = = Typ. Max. Unit 23 V Test Conditions Notes Input .high·level voltage 0.8 x Vee Vee V 2 Input low-level voltage o 0.2 x Vee V 2 Output high-level voltage Vee- 0.4 0.4 Output low-level voltage V IOH - -0.4 mA 3 V IOL -0.4 mA 3 Input leakage current (1) -5.0 +5.0 V1N - Vee to GND 4 Input leakage current (2) -10 +10 VIN - Vee to GND 5 Input leakage current (3) -100 +100 V1N - Vee to VEE 6 2.5 kO Current consumption (1) 25 30 mA mA Data fetch 12 MHz Data fetch 15 MHz 8, 10 Current consumption (2) 2 mA mA Stand-by 12 MHz Stand-by 15 MHz 8, 10 mA mA 12MHz 15 MHz 9, 10 LCD driver on resistance Current consumption (3) RON 2.5 -lp3 3 3.7 Notes: 1. 2. 3. 4. 5. 6. 7. 8. Voltage between Vee and VEE. Applies to CL1, CL2, SHL, Dij, RVS, EI01 (input), EI02 (input), TEST, and BS. Applies to EI01 (output) and EI02 (output). Applies to CL1, CL2, SHL, RVS, Dij, TEST, and BS. Applies to EI01 (input) and EI02 (input). Applies to VOL to V7L and VOR to V7R. Applies to Y1 to Y160. Current between Vee and GND under the conditions of V 1H • Vee, V1L - 0 V, and no load on the output pins. 9. Current between Vee and VEE under the conditions of V 1H - Vee, V1L .. 0 V, and no load on the output pins. 10. fel2 and fell are 15 MHz, 37.5 kHz respectively in 15 MHz version. HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 911 HD66310T AC Characteristics (Vee +5 V ±10%, GND 0 V, Ta -20 to +75°C in 12 MHz version) (Vee +5 V ±5%, GND 0 V, Ta -20 to +65°C in 15 MHz version) = = = = = = Typ. Max. Unit Test Conditions Symbol Min. Clock period tcvc 83 (66) ns Clock high-level pulse width tcWH 30 (23) ns Clock low-level pulse width tcWL 30 (23) ns Clock rise time tR 10 (10) ns 2 Clock fall time tF 10 (10) ns 2 Clock setup time tsu 100 (100) ns 2 Clock hold time tH 100(100) ns 2 Item Notes Data setup time tosu 20 (10) ns 3 Data hold time tOH 30 (25) ns 3 Enable input setup time tESU 20 (10) ns 4 Enable output delay time tED CL 1 high-level pulse width tWH 100 (100) ns 5 RVS setup time tRsu 50 (50) ns 6 RVS hold time tRH 50 (50) ns 6 53 (46) ns See figure 16 for test load 4 Data in ( ) is the characteristics in 15 MHz version. Notes: 1. 2. 3. 4. 5. 6. Applies to Applies to Applies to Applies to Applies to Applies to CL2. CL1 and CL2. Dij and CL2. EI01, EI02, and CL2. CL1. RVS and CL2. HITACHI 912 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66310T Cl2 Dij CL1 CL2 Enable output Enable input LCD output Figure 15 Timing Chart Chip enable output :-:l 30 PF;;;: Figure 16 'fest Load HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 ~. .--~ 913 "~-""---.--- LCD CONTROLLER/DRIVER LSI DATA BOOK Section Eight New Product Information HITACHI HD66110T-------Column Driver Description Features The HD66110T, the column driver for a large liquid crystal display (LCD) panel, features as many as 160 LCD outputs powered by 160 internal LCD drive circuits, and a high duty cycle. This device can interface to various LCD controllers by using an internal automatic chip enable signal generator. Its strip shape enables a slim tape carrier package (TCP). • 186-pin TCP • CMOS fabrication process • High voltage - LCD drive: 28 - 40 V • High speed - Maximum clock speed: 12 MHz • 4- and 8-bit data bus interface • Display offfunction • Standby function • Various LCD controller interfaces - LCTC series: HD63645, HD64645, HD64646 - LYlC series: HD66840, HD66841 - CLINE: HD66850 Pin Arrangement .,.. N » 0'10 11)«) ........... ..................................................................................... » ..- C\I ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• !..................... 11)«) «)1I)~MC\I..-om~~«)II)~MC\I..-om~~«)II)~MC\I..­ ~~~~~~~~~~~~~~~~~«)«)«)«)«)«)«)«)«) .,...,...,...,...,...,...,...,...,...,...,...,...,...,...,...,...,...,.. .................. .,...,...,...,...,.. Note: This is just an example of TCP; other TCP shapes are also possible. HITACHI 916 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66110T Pin Description Symbol Pin No. Pin Name Input/Output Classification Vcc 175 Vcc Power supply GND 186 GND Power supply VLCD 164 VLCD V1 166 V1 Input Power supply V2 162 V2 Input Power supply V3 165 V3 Input Power supply Power supply V4 163 V4 Input Power supply CL1 179 Clock 1 Input Control signal CL2 178 Clock 2 Input Control signal M 180 M Input Control signal 0 0-07 167-174 Data o-data 7 Input Control signal SHL 183 Shift left Input Control signal EI/o1, EI/02 177,176 Enable 10 1, enable 102 Input/output Control signal DISP 181 Display off Input Control signal BS 184 Bus select Input Control signal TEST1, TEST2 182, 185 Test 1, test 2 Input Control signal Y1-Y 160 1-160 Y 1-Y160 Output LCD drive output HITACHI Hitachi America, Ltd. 0Hitachi Plaza 02000 Sierra Point Pkwy. 0 Brisbane,CA 94005-1819 0(415) 589-8300 917 ' HD66110T Pin Functions· Power Supply Vcc' VLCP' GND: Vcc - GND supplies power to the intemallogic circuits. VLCD - GND supplies power to the LCD drive circuits. See figure 1. VI, V2, V3, V4: Supply different levels of power to drive the LCD. VI and V2 are selected levels, and V3 and V4 are non-selected levels. Control Signals CLI: Inputs display data latch pulses for latch circuit 2. Latch circuit 2 latches display data input from latch circuit I, and outputs LCD drive signals corresponding to the latched data, both at the falling edge of each CLl p\llse. CL2: Inputs display data latch pulses for latch circuit 1. Latch circuit 1 latches display data input via Do-D7 at the falling edge of each 0.:2 pulse. M: Changes LCD drive outputs to AC. Do-D7: Input display data. High-vpltage level (Vcc level) of data corresponds to a selected level and turns an LCD pixel on, and low-voltage level (GND level) data corresponds to a non-selected level and turns an LCD pixel off. 1 T SHL: Shifts the destinations of display data output, and determines which chip enable pin .(EItOI or EIt02) is an input and which is an output. See figUre 2. EIIOI, EII02: If SHL is GND level, EltOI inputs the chip enable signal, and Elt02 outputs the signal. If SHL is Vcc level, EltOI outputs the chip enable signal, and Elt02 inputs the signal. The chip enable input pin of the first HD66110T must be grounded, and those of the other HD66110Ts must be connected to the chip enable output pin of the previous HD66110T. The chip enable output pin of the last HD66110T must be open. DISP: A low DISP sets LCD drive outputs y 1-Y 160 to V21evel. BS: Selects either the 4-bit or 8-bit display data bus interface. If BS is Vee level, the 8-bit bus is selected, and if BS is GND level, the 4-bit bus is selected. In 4-bit bus mode, data is latched via Do-D3; D4-l>] must be grounded. TEST I, TEST2: Used to test the LSI, and must be connected to Vee level. LCD Drive Output y 1-Y160: Each Y outputs one of the four voltage levels VI, V2, V3, or V4, depending on a combination of the M signal and display data levels. See figure 3. VLCD ....c- Vee I GND Figure I Power Supply for Logic and LCD Drive Circuits HITACHI 918 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66110T SHL = GNO, BS =GNC Y1 Y3 Y2 Y5 Y4 Y7 Y6 Y153 Y155 Y157 Y159 Y154 Y156 Y158 Y160 Y8 103102101 100103102101100 1 ..._ ......_ ..... 103102101 100103102101 100 '\. / EliOt: chip enable input 1st data " I / Last data ElI02: chip enable output SHL = Vcc, BS = GNC Y1 Y3 Y2 Y5 Y4 Y7 Y153 Y155 Y157 Y159 Y154 Y156 Y158 Y160 Y8 Y6 100 101 1021031001011021031 ..._ ......_ ..... 100 101 102103100101 102 103 1 / '\. EliOt: chip enable input Last data SHL " ElI02: chip enable output '/ 1st data =GNO, BS =Vce Y1 Y3 Y2 Y5 Y4 Y7 Y6 Y153 Y155 Y157 Y159 Y154 Y156 Y158 Y160 Y8 107 106 105 104 103 102 101 I 00 1 ..._ ......_ ..... 107 106 105 104 103 102 101 100 1 /. '\. 1st data '\. EliOt: chip enable output / Last data ElI02: chip enable input SHL =Vcc, BS =VC( Y1 Y3 Y2 Y5 Y4 Y7 Y6 Y153 Y155 Y157 Y159 Y154 Y156 Y158 Y160 Y8 1001011021031041051061071 ..._ ......_ ..... 100 101 1021031041051061071 / '\. Last data '\. EII01: chip enable output / 1st data ElI02: chip enable input Figure 2 Selection of Destinations of Display Data Output HITACHI Hitachi America, Ltd.· Hitachi Plaza ·2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 919 HD66110T o Y output leve 1 0 1 0 rV1 >rV3 tV2 >rV4 >1 Figure 3 Selection of LCD Drive Output Level HITACHI 920 Hitachi America, Ltd.• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005·1819· (415) 589·8300 HD66110T Block Functions . Latch Circuit 1 160-bit latch circuit 1 latches 4-bit or 8-bit parallel data input via the Do to D7 pins at the timing generated by the shift register. LCD Drive Circuit The 160-bit LCD drive circuit generates four voltage levels VI, V2, V3, and V4, for driving an LCD panel. One of the four levels is output to the corresponding Y pin, depending on a combination of the M signal and the data in the latch circuit 2. Shift Register The 40-bit shift register generates and outputs data latch signals for latch circuit 1 at the falling edge of each clock 2 (CL2) pulse. Level Shifter Data Shifter The level shifter changes 5-V signals into highvoltage signals for the LCD drive circuit. The data shifter shifts the destinations of display data output, when necessary. Latch Circuit 2 Test Circuit 160-bit latch circuit 2 latches data input from latch circuit I, and outputs the latched data to the level shifter, both at the falling edge of each clock 1 (CLl) pulse. The test circuit divides the external clock pulses and generates test signals (TEST! and TEST2). Block Diagram Y1-Y160 V1-V4 LCD drive circuit M------~ VLCD~ ~ GND~ Vee CL1 Latch circuit ~ DO-D7 SHL--------~----~~----~------~S~h~ift~ffi~g~is~te~r~----~~--~~--~--~ CL2-------------+----r--------------------+--~ TEST1 TEST2 HITACHI Hitachi America, ltd.' Hitachi Plaza • 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 921 HD66110T Comparison of the HD661l0T with the HD66107T Item HD66110T Common LCD drive circuits Not provided 160 Column LCD drive circuits 160 1600r 80 LCD drive voltage range 28 to 40 V 14to 37 V Speed 12MHz 8 MHz Clock hold time (tHcd definition From the falling edge of CL 1 to the rising edge of CL2 (figure 1) From the falling edge of CL 1 to the falling edge of Cl2 (figure 1) Test pin level at normal operation Vcc Provided GND Display off function TCP shape Can be thin Cannot be thin CL1 ~ i, ;: \- v v v==- mfih ~~~~ vcc~:~ : : : LCD panel cI 64Ck 480 dots; 1/480 duly 'Yd. : DIS ~ iii >, M eL eLl v. HD66110T I\- m :d ~~ V"'~ ~ : ~ .""" If;: : eL CL HD66110T I- V3 v ~h Q Vl r::=: """" DIS II Notes: 1. The resistances of R1 and R2 depend on the type of the LCD panel used. For example, for an LCD panel with a 1120 bias, R1 and R2 must be 3 kQ and 48 kQ, respectively. That is, R1/(4· R1 + R2) should be 1120. 2. To stabilize the power supply, place two O.1-I!F capacitors near each LCD driver: one between the Vee and GND pins, and the other between the VLCD and GND pins. 3. The load must be less than 30 pF between the EI/O~ and EI/01 conn~tions of HD66110Ts. HITACHI 926 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66110T Absolute Maximum Ratings Item Symbol Rating Unit Note Power supply voltage for logic circuits Vcc -0.3 to +7.0 V 1,5 Power supply voltage for LCD drive circuits VlCD -0.3 to +42 V 1,2,5 Input voltage 1 VT1 -0.3 to Vcc + 0.3 V 1,3 1,4 Input voltage 2 VT2 -0.3 to VlCD + 0.3 V Operating temperature To~r -20 to +75 °C Storage temperature TSIII -40 to +125 °C Notes: 1. The reference point is GND (0 V). 2. Indicates the voltage between GND and VlCD' 3. Applies to input pins for logic circuits, that is, control signal pins. 4. Applies to input pins for LCD drive level voltages, that is, V1-V4 pins. 5. If the LSI is used beyond its absolute maximum ratings, it may be permanently damaged. It should always be used within its electrical characteristics in order to prevent malfunctioning or degradation of reliability. Electrical Characteristics DC Characteristics (Vcc =5 V ± 10%, V LCD - =28 to 40 V, and Ta = -20 to +7SoC, unless GND otherwise noted.) Item Symbol Pins Input high voltage VIH Input low voltage VIL 1 Output high voltage Vcc-O.4 VOH 2 Output low voltage VOL 2 Vi-Yj on resistance RON 3 Input leakage current 1 11L1 Input leakage current 2 IIL2 4 Min. Condition Max. Unit 0.8 x VCC VCC V 0 0.2 x Vee V V IOH= -0.4 mA 0.4 V IOl = 0.4 mA 3.0 Note kn ION = 150 jJ.A -5.0 5.0 IlA VIN = Vee to GND -100 100 IlA VIN = VLCD to GND mA fCl2 = 12 MHz fCL1 = 28 kHz 2 Current consumption 1 Icc 5.0 Current consumption 2 ILCD 3.0 mA Same as above 2 Current consumption 3 1ST 0.7 mA Same as above 2,3 Pins and notes on next page. HITACHI Hitachi America, Ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300 927 HD66110T Pins: 1. CL1, CL2, M, SHL, BS, EI/o1, EI/02, V1 and V3 should be near VlCD level, and V2 and V4 should be near GNO level (figure 7). All voltage must be within flV. flV is the range within which RON, the LCO drive circuits' output impedance, is stable. Note that fl V depends on power supply voltage VlCD-GNO (figure 8). ""DlSP; TESTf, ~, 0 0-07 2. "EOO1,"EIi02 3. Y'-Y'60, V1-V4 4. V1-V4 Notes: 1. Indicates the resistance between one pin from Y'-Y'60 and another pin from V1-V4 when load current is applied to the Y pin; defined under the following conditions. GNO)} 2. Input and output current is excluded. When a CMOS input is floating, excess current flows from the power supply through the input circuit. To avoid this, V1H and V1L must be held to Vcc and GNO levels, respectively. GNO)} 3. Applies to standby mode. VlCO - GNO = 40 V = VlCD - {1/20(VlCD V2, V4 = VlCD + {1/20(VlCD V1, V3 ~----~==·~···~··~··~V1VLCD tJ.V •••• V3 tJ.V •••••••••••- V4 = ...=..= ...=..= ...~V~2GND ~--~~.= .. Figure 7 Relation between Driver Output Waveform and Level Voltages tJ.V (V) 6. 21···················,········7.1 4.0 I-·············~Wh 28 Level voltage rang« 40 VLCD-GND (V) Figure 8 Relation between VLCD - GND and tJ.V HITACHI 928 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, C~ 94005-1819· (415) 589-8300 HD66110T AC Cbaracteristics(Vcc = 5V± 10%, VLCD-GND = 28 to 40 V, and T. =-20 to +75°C, unless otherwise noted.) Item Symbol Pins Clock cycle time CL2 83 ns CL2 20 ns CL2 20 ns Clock high-level width 2 tcvc tcwH2 tcWl2 tcWH1 CL1 50 ns Clock setup time tSCL CL1, CL2 100 ns Clock hold time 100 Clock high-level width 1 Clock low-level width Min. tHCL CL1, CL2 Clock rise time tr CL1, CL2 Clock fall time tf CL1, CL2 tos toH tcM 0 0-07 , CL2 20 0 0-0 7, CL2 20 Data setup time Data hold time M phase difference time Note: M,CL1 Max. Unit ns 20 20 ns ns ns ns 300 ns The load must be less than 30 pF between the'EJ702 and E70i connections of HD6611 OTs. HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 929 HD66110T tr tCWH2 tf tCWL2 tCYC CL2 tOS tOH O.BVcc 00-07 0.2Vcc CWH1 CL1 CL2 O.BVcc M 0.2Vcc tCM Figure 9 LCD Controller Interface Timing HITACHI 930 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66204 (Dot Matrix Liquid Crystal Graphic Display Column Driver with 'SO-Channel Outputs) Description Features The HD66204F/HD66204FL/HD66204 TF/HD 66204TFL, the column driver for a large liquid crystal graphic display, features as many as 80 LCD outputs powered by 80 internal LCD drive circuits. This device latches 4-bit parallel data sent from an LCD controller, and generates LCD drive signals. In standby mode provided by its internal standby function, only one drive circuit operates, lowering power dissipation. The HD66204 has a complete line-up: the HD66204F, a standard device powered by 5 V ± 10%; the HD66204FL, a 2.7-5.5 V, low power dissipation device suitable for battery-driven portable equipment such as "notebook" personal computers and palm-top personal computers; and the HD66204TF and HD66204TFL, thin package devices powered by 5 V ± 10% and 2.7-5.5 V, respectively. • • • • • • Duty cycle: 1/64 to 1/240 High voltage - LCD drive: 10-28 V High clock speed - 8 MHz max under 5-V operation (HD66204F/HD66204TF) - 4 MHz max under 3-V operatioJ.l (HD66204FL/HD66204TFL) Display off function Internal automatic chip enable signal generator Various LCD controller interfaces - LCTC series: HD63645, HD64645, HD64646 - LVIC series: HD66840, HD66841 - CLINE: HD66850 Ordering Information Type No. Voltage Range Package HD66204F 5 V± 10% FP-100 (flat package) HD66204TF 5 V± 10% TFP-100 (thin flat package) HD66204FL 2.7-5.5 V FP-100 (fiat package) HD66204TFL 2.7-5.5 V TFP-100 (thin flat package) HITACHI Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 931 HD66204 Pin Arrangement Y51 Y52 Y53 Y54 Y55 Y30 Y29 Y28 Y27 Y26 Y25 Y24 Y23 Y22 Y21 Y20 Y19 Y18 Y17 Y16 Y56 Y57 Y58 Y59 Y60 Y61 Y62 Y63 Y64 Y65 Y66 Y15 Y67 Y14 Y68 Y69 Y13 Y12 Y11 Y70 Y71 Y10 Y72 Y73 Y9 Y8 Y74 Y7 Y6 Y75 Y76 Y77 Y78 Y79 Y80 Y5 Y4 Y3 Y2 Y1 Top view HITACHI 932 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66204 Pin Description Symbol Pin No. Pin Name Input/Output Classification Vee 40 Vee Power supply GNO 38 GNO Power supply VEE 35 VEE Vl 32 V1 Input Power supply V3 33 V3 Input Power supply V4 34 V4 Input Power supply CL1 37 Clock 1 Input Control signal CL2 49 Clock 2 Input Control signai M 36 M Input Control signal 0 0-0 3 48-45 Data O-data 3 Input Control signal SHL 41 Shift left Input Control signal Power supply E 31 Enable Input Control signal CAR 50 Carry Output Control signal OISPOFF 39 Display off Input Control signal Y1-Yeo 51-100, 1-30 Y1-Y80 Output LCD drive output NC 42,43,44 No connection HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 933 HD66204 Pin Functions Power Supply Vee, VEE' GND: Vec-GND supplies power to the internal logic circuits. Vcc-VEE supplies power to the LCD drive circuits. VI, V3, V4: Supply different levels of power to drive the LCD. VI and VEE are selected levels, and V3 and V4 are non-selected levels. See figure l. Do-D3: Input display data. High-voltage level of data corresponds to a selected level and turns an LCD pixel on, and low-voltage level data corresponds to a non-selected level and turns an LCD pixel off. SHL: Shifts the destinations of display data output. See figure 2. E: A low E enables the chip, and a high E disables the chip. CAR: Outputs the E signal to the next HD66204 if Control Signal HD66204s are connected in cascade. CLI: Inputs display data latch pulses for the line data latch circuit. The line data latch circuit latches display data input from the 4-bit latch circuit, and outputs LCD drive signals corresponding to the latched data, both at the falling edge of each CLl pulse. DISPOFF: A low DISP sets LCD drive outputs Y1-Y80 to VI level. CL2: Inputs display data latch pulses for the 4-bit latch circuit. The 4-bit latch circuit latches display data input via Do-D3 at the falling edge of each CL2pulse. LCD Drive Output Y1-YSO : Each Y outputs one of the four voltage levels VI, V3, V4, or VEE, depending on a combination of the M signal and display data levels. See figure 3. NC: Must be open. M: Changes LCD drive outputs to AC. V1 V3 V4 VEE Figure I Different Power Supply Voltage Levels for LCD Drive Circuits HITACHI 934 Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 HD66204 (,)"'"11) COl'com 0 >:>:>: >:>:>:>: ~ SHL :::::::::::~ . . . .,.", . .----........... ;;:;r = low (,)"'"11) COl'com 0 1'1' I ' 1'1' I ' I ' co >->->- >->->->- >- SHL = higt :::::::::::~ &!03 ......1-st--2-n-d-· •••••••••• Last Figure 2 Selection of Destinations of Display Data Output M~ lOr D~ Y output leve 1 ~E~rV:rvtrv:1 Figure 3 Selection of LCD Drive Output Level HITACHI Hitachi America. Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane. CA 94005-1819· (415) 589-8300 935 HD66204 Block Functions Level Shifter LCD Drive Circuit The level shifter changes 5-V signals into highvoltage signals for the LCD drive circuit. Controller: The controller generates the latch signal at the falling edge of each CL2 pulse for the 4-bit latch circuit. LCD Drive Circuit The 80-bit LCD drive circuit generates four voltage levels VI, V3, V4, and VEE, for driving an LCD panel. One of the four levels is output to the corresponding Y pin, depending on a combination of the M signal and the data in the line data latch circuit. 4-Bit Latch Circuit The 4-bit latch circuit latches 4-bit parallel data input via the Do to D3 pins at the timing generated by the control circuit. Line Data Latch Circuit The 80-bit line data latch circuit latches data input from the 4-bit latch circuit, and outputs the latched data to the level shifter, both at the falling edge of each clock 1 (eLl) pulse. Block Diagram Y1-Y8C DmpOFF --------~--~r--~----~~~~~~~~----~--I CL1----------~>~L--~~------------------~~--~ SHL------------~ CL2------------~ Controller -----------------------J E----------~>·L-----__ CAR~------------------------------------------------~ HITACHI 936 Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 HD66204 Comparison of the HD66204 with the HD61104 Item HD66204 HD61104 Clock speed 8.0 MHz max. 3.5 MHz max. Display off function Provided Not provided LCD drive voltage range 10-28 V 10-26 V Relation between SHL and LCD output destinations See figure 4 See figure 4 Relation between LCD output levels, M, and data See figure 5 See figure 5 LCD drive V pins V1,V3, V4 (V2 level is the same as VEE level) V1,V2,V3,V4 SHL = low SHL =low 2nd 1st SHL .. high HD61104 HD66204 Note the exact reverse relation for the two devices. Figure 4 Relation between SHL and LCD Output Destinations for the HD66204 and HD61104 M...Jr--:;-1-"L--.!OL.Jr M~r-~1~~__~o~.Jr D~ D~ HD66204 HD61104 Figure 5 Relation between LCD Output Levels, M, and Data for the HD66204 and HD61104 HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 \ 937 HD66204 Operation Timing i ~ I Line > I. I I CL2 Data 0 Data 3 ~ I 1 2 ._••_••_•. ~ 3 19 201 CAR (No.1) ~ I I I ,""""",.1 ~ _.._. :xxtx= =tx=x=x= .-.._. _. ---. J.J..fAi i i =tx=x=x= ._. . . _. =x=x:rx= . . _. =x=x±:x= Jt i i f1-I CL1 21 J i I HD66204 no. 1 latches dat I t- >1 i I • i ! CAR (No.2) CAR (No.3) CAR (No. n) ~ I ! ~i : >1 j .~ II • •1 HD66204 no. n i i ~~~ =:) I t- I • HD66204 no. 3 latches data I Y1-Y8C I >1 • HD66204 no. 2 ~~~ i rIi ,I r:::= I i I i HITACHI 938 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66204 Application Example _. CA. ...... }oegeoo ~I >: HDee204 DISl'OPF D0-D3 M Clf Cl. (0) V.I-----. V.=SrIl.7TEi~:;;:~~~~---, V3- \- Ie=:::CA. LCD panel 0' 640c 240 dolS; 11240 duty cycle - I GND Va! Notes: R1 Rt R2 Rt A1 -=--=- VEE 1. The resistances of R1 and R2 depend on the type of the LCD panel used. For example, for an LCD panel with a 1/15 bias, R1 and R2 must be 3 kil and 33 kil, respectively. That is, R1/(4· R1 + R2) should be 1/15. 2. To stabilize the power supply, place two O.1-J.1F capacitors near each LCD driver: one between the Vee and GND pins, and the other between the Vee and VEE pins. HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane. CA 94005-1819' (415) 589-8300 939 HD66204 Absolute Maximum Ratings Item Power supply voltage for logic circuits Symbol Rating Unit Vee -0.3 to +7.0 V Note Power supply voltage for LCD drive circuits Vee - 30.0 to Vee + 0.3 V Input voltage 1 -0.3 to Vee + 0.3 V 1,2 Input voltage 2 Vee - 0.3 to Vee + 0.3 V 1,3 Operating temperature -20 to +75 Storage temperature -55 to +125 Notes: 1. The reference point is GNO (0 V). 2. Applies to pins CL 1, CL2, M, SHL, E, 0 0-03 , OISPOFF. 3. Applies to pins V1, V3, and V4. 4. H the LSI is used beyond its absolute maximum ratings, it may be permanently damaged. It should always be used within its electrical characteristics in order to prevent malfunctioning or degradation of reliability. Electrical Characteristics DC Characteristics for the HD66204F/HD66204TF (Vee to 28 V, and Ta =-20 to +7SoC, unless otherwise noted.) Item Symbol Input high voltage VIH Pins Min. =S V ± 10%, GND =0 V, Vee - Typ. Max. Unit Condition 0.7x Vee V 0.3 x '¥ee V Input low voltage Vil 1 0 Output high voltage VOH 2 Vee- 0.4 Output low voltage- V IOH=-0.4 mA IOl 2 0.4 V RON 3 4.0 kn ION .. 100 j.LA Input leakage current 1 11L1 -1.0 1.0 j.LA VIN Input leakage current 2 IIl2 -25 Current consumption 1 IGND lEE Current consumption 3 1ST 150 Note =0.4 mA VOL Current consumption 2 =~O V Vi-Vj on resistance 4 VEE = Vee to GNO 25 j.LA VIN .. Vee to Vee 3.0 mA fel2 .. 8.0 MHz tel' =20 kHz Vee - VEE =28 V 500 j.LA Same as above 2 200 j.LA Same as above 2,3 2 Pins and notes on next page. HITACHI 940 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Paint Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 HD66204 DC Characteristics for the HD66204FLIHD66204TFL (Vee 10 to 28 V, and Ta -20 to +75°C, unless otherwise noted.) = Item Symbol Input high voltage Pins =2.7 to 5.5 V, GND =0 V, Vee - VEE = Min. Max. Unit V V1H 0.7 x Vcc Vcc Input low voltage VIL 0 0.3 x Vcc V Output high voltage VOH Output low voltage VOL Vi-Yj on resistance RoN Condition V IOH=-o.4 mA 2 0.4 V IOL·O.4mA 3 4.0 k.Q ION = 100 J.LA 2 Vcc- 0.4 Note Input leakage current 1 11L1 1 -1.0 1.0 IIL2 4 -25 25 J.LA J.LA V1N - Vcc to GND Input leakage current 2 Current consumption 1 IGND 1.0 mA fCL2 =4.0 MHz fCl1 - 16.8 kHz fM .. 35 Hz Vcc" 3.0 V Vce- VEE .. 28 V Checker-board pattern 2 Current consumption 2 lEE 500 2 1ST J.LA J.LA Same as above 50 Same as above 2,3 Current consumption 3 Pins: V1N = Vcc to VEE 1. CL 1, CL2, M, SHL, E, Do-D3' DISPOFF 2. CAR 3. Y1-YSO, V1, V3, V4 4. V1, V3, V4 Notes: 1. Indicates the resistance between one pin from Y1-YSO and another pin from V1, V3, V4, and VEE' when load current is applied to the Y pin; defined under the following conditions. Vcc-GND =28 V V1, V3 ... Vee - {211 O(Vcc - VEE)} V4 .. VEE + {211 O(Vee - VEE)} V1 and V3 should be near Vec level, and V4 should be near VEE level (figure 6). All voltage must be within tN. llV is the range within which RON, the LCD drive circuits' output impedance, is stable. Note that llV depends on power supply voltage Vee-VEE (figure 7). 2. Input and output current is excluded. When a CMOS input is floating, excess current flows from the power supply through the input circuit. To avoid this, V1H and V1L must be held to Vee and GND levels, respectively. 3. Applies to standby mode. HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 941 HD66204 Vee V1 IN •••••. V3 •••••••••••••• V4 IN -L--~~---------VEE Figure a ({elatiOJi between Driver Output Waveform and Level Voltages IN (V) 2.0 •••••••. Level voltage rang. 28 Vee-VEE (V) Figure 7 Relation between Vcc - VEE and t1V HITACHI 942 Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300 HD66204 AC Characteristics for the HD66204F/HD66204TF (Vee =S V ± 10%, GND +7So C, unless otherwise noted.) =0 V, and Ta =-20 to Max. Symbol Pins Min. Clock cycle time tevc CL2 125 ns Clock high-level width 1 teWH CL1. CL2 45 ns Clock low-level width tCWL CL2 45 ns Clock setup time tSCL CL1. CL2 80 ns Clock hold time tHcL CL1. CL2 80 Clock rise time tr CL1. CL2 Clock fall time Item tf CL1. CL2 Data setup time tos Do-D3. CL2 Dala hold lime IOH Enable (E) selup lime tEsu Carry (CAR) output delay time Unit ns Note 1 Note 1 ns ns 20 ns Do-D3. CL2 20 ns E.CL2 30 ns tCAR CAR. CL2 80 ns M phase difference time tCM M. CL2 300 ns CL 1 cycle time tcu CL1 AC Characteristics for the HD66204FL/HD66204TFL (Vee to +7SoC, unless otherwise noted.) =2.7 to S.SV, GND =0 V, and Ta =-20 Max. Symbol Pins Min. tcve CL2 250 ns Clock high-level width 1 Unit ICWH CL1. CL2 95 ns Clock low-level width teWL CL2 95 ns Clock setup time tSCL CL1. CL2 80 ns 80 Clock hold time tHCL CL1. CL2 Clock rise time tr CL1. CL2 Clock fall time· ns Nole 1 tf CL1. CL2 tos Do-D3. CL2 50 Data hold time tOH Do-D3. CL2 50 ns 65 ns ns Enable (E) selup time tEsu E. CL2 Carry (CAR) oulput delay lime teAR CAR. CL2 155 ns 300 ns ICM M. CL2 CL 1 cycle lime Icu CL1 Notes: Note Nole 1 ~ata setup time M phase difference time 2 ns Icvc x 50 Clock cycle time Item Note Icvc x 50 2 ns 1. t r• tf < (Icve - tewH - tewdl2 and t r• If ~ 50 ns 2. The load circuit shown in figure 8 is connected. HITACHI Hitachi America. Ltd:· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane. CA 94005-1819· (415) 589-8300 943 HD66204 Test poinl O~--..., ±30 pF Figure 8 Load Circuit tr tCWH tf tCYC tCWL CL2 tOS tDH 0.7Vcc 00-03 0.3Vcc tCWH tCL1 CL1 CL2 CAR E 14--......;~ M tCM 0.7Vcc 0.3Vcc Figure 9 LCD Controller Interface Timing HITACHI 944 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66205 (Dot Matrix Liquid Crystal Graphic Display Column Driver with 80-Channel Outputs) Description Features The HD66205F/HD66205FL/HD66205TF/HD 66205TFL/HD66205T/HD66205TL, the row LCD driver, features low output impedance and as many as 80 LCD outputs powered by 80 internal LCD drive circuits, and can drive a large liquid crystal graphic display. Because this device is fabricated by the CMOS process, it is suitable for batterydriven portable equipment, which fully utilizes the low power dissipation of liquid crystal elements. The HD66205 has a complete line-up: the HD66205F, a standard device powered by 5 V ± 10%; the HD66205FL, a 2.7-5.5 V, low power dissipation device; the HD66205TF and HD66205TFL, thin film package devices each powered by 5 V ± 10% and 2.7-5.5 V; and the HD66205T and HD66205TL, tape carrier package (TCP) devices powered by 5 V ± 10% and 2.7-5.5 . V, respectively. • • Duty cycle: 1/64 to 1/240 High voltage - LCD drive: 10-28 V • Display off function • Internal 80-bit shift register • Various LCD controller interfaces - LCTC series: HD63645, HD64645, HD64646 - LVIC series: HD66840, HD66841 - CLINE: HD66850 Ordering Information Type No. Voltage Range Package HD66205F 5 V± 10% Fp·100 (flat package) HD66205FL 2.7-5.5 V FP-100 (flat package) HD66205TF 5 V± 10% TFP-100 (thin flat package) HD66205TFL 2.7-5.5 V TFp·100 (thin flat package) HD66205T 5 V± 10% TCp·92 (tape carrier package) HD66205TL 2.7-5.5 V TCp·92 (tape carrier package) HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane. CA 94005·1819. (415) 589·8300 945 HD66205 Pin Arrangement X30 X29 X28 X27 X26 X25 X24 X23 X22 X21 X20 X19 X18 X17 X16 X15 X14 X13 X12 X11 X10 X9 X8 X7 X6 X5 X4 X3 X2 X1 X51 X52 X53 X54 X55 X56 X57 X58 X59 X60 X61 X62 X63 X64 X65 X66 X67 X68 X69 X70 X71 X72 X73 X74 X75 X76 X77 X78 X79 X80 000 WLO(O .... O ..JO cO 0 zoz w » > z Oz· > Z Z Top view HITACHI 946 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66205 Pin Description Classification Pin No. Vee 40 Vee Power supply GND 42 GND Power supply VEE V1 34 37 VEE V1 Input Power supply V5 35 V5 Input Power supply V6 VB Input Power supply CL 36 46 Clock Input Control signal M 44 M Input Control signal 01 48 32 Data in Input Control signal Data out Output Control signal SHL 41 Shift left Input Control signal DISPOFF 39 51-100, 1-30 Display off Input Control signal X1-X80 Output LCD drive output DO X1-Xao NC 31,33,38,43, 45,47,49,50 Pin Name Input/Output Symbol Power supply No connection HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 947 HD66205 Pin Functions DO: Outputs display data. DO of the last HD66205 must be open, and those of the other HD66205s must be connected to DI of the next HD66205. Power Supply Vee, VEE' GND: Vec-GND·suppUes power to the internal logic circuits. Vec-VEE supplies power to the LCD drive circuits. VI, V5, V6: Supply different levels of power to drive the LCD. VI and VEE are selected levels, and V5 and V6 are non-selected levels. See figure 1. Control Signal CL: Inputs data shift clock pulses for the shift register. At the falling edge of each CL pulse, the shift register shifts display data input via the DI pin. SHL: Selects the data shiftt direction for the shift register. See figure 2. DISPOFF: A low DISP sets LCD drive outputs X1-XSO to VI level. LCD Drive Output XI-XSO: Each X outputs one of the four voltage levels VI, V5, V6, or VEE' depending on a combination of the M signal and display data levels. See figure 3. Other NC: Must be open. M: Changes LCD drive outputs to AC. 01: Inputs display data. DI of the first HD66205 must be connected to an LCD controller, and those of the other HD66205s must be connected to DI of the previous HD66205. V1 V6 V5 VEE Figure I Different Power Supply Voltage Levels for LCD Drive Circuits HITACHI 948 Hitachi America, Ltd. -Hitachi Plaza - 2000 Sierra Po.int Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 HD66205 SHL level Common signa scan direction Data shift directior Low DI~SR1 High DI ~ SR2 ~SR80 ~ SR80~SR79~ X1 ~ X80 X80~X1 SR1 Figure 2 Selection of Display Data Shift Direction M--.J 1 0 I D~ X output leve rvrrvtrvE~rvtl Figure 3 Selection of LCD Drive Output Level HITACHI Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA'94005-1819· (415) 589-8300 949 HD66205 Block Functions Shift Register LCD Drive Circuit The 80-bit shift register shifts data input via the DI pin by one bit, and the one bit of shifted-out data is output from the DO pin. Both actions occur simultaneously at the falling edge of each shift clock (CL) pulse The 80-bit LCD drive circuit generates four voltage levels VI, V5, V6, and VEE, for driving an LCD panel. One of the four levels is output to the corresponding Y pin, depending on a combination of the M signal and the data in the shift register Level Shifter The level shifter changes 5-V signals into highvoltage signals for the LCD drive circuit. Block Diagram X1-X80 DISPOFF CL Shift register 01 SHL DO~----------------------------------------------~ HITACHI 950 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66205 Comparison of the HD6620S with the HD6110S Item HD66205 HD61105 Display off function Provided Not provided LCD drive voltage range 10-28 V 10-26 V Shift clock phase selection function Not provided Provided (FCS pin) Relation between SHL and LCD output destinations See figure 4 See figure 4 Relation between LCD output levels, M, and data See figure 5 See figure 5 LCD drive V pins Vl, V5, V6 (V2 level is the same as VEE level) Vl,V2,V5,V6 SHLlevel Data shift directior Low D1~SRl ~ ~SR80 High 01 ~ SR80~SR79~ SRl SR2 Common signa scan direction Xl ~ X80 X80~Xl HD66205 Common signa scan direction SHLlevel Data shift directior Low 01 ~ SR80~SR79~ SRl X80~Xl High DI~SRl Xl ~SR2 ~SR80 ~ X80 HD61105 Note the exact reverse relation for the two devices. Figure 4 Relation between SHL and LCD Output Destinations for the HD6620S and HD6110S M...J 1 0 r M-1 D~ X output leve ~V1 ..~V5 ..!yE~~V6"1 1 0 r D~ X output leve ~V2.~V6.I..V1"I.. V5.1 HD66205 HD61105 Figure 5 Relation between LCD Output Levels, M, and Data for the HD66205 and HD61105 HITACHI Hitachi America, ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 951 HD66205 Operation Timing Figure 6 shows the operation timing for the Application Example. ~~~ ~~~ ·· '. . ... . ~~ '~~~ ~~d?r d .. ~~. ~~.~ . .. .. ... . . .. . : C') : : : : . ~~~· · E ~ : : ·· .. ~~~ .. . .. : 11): .. .. . : . ;; ; ~il ~ ~> ~~ ;~ ~ ~ .f ~ ~ ~d4~>; ··· :::E .. ... . ~d~>l> ~i CD , . . . . . . . . . . .. .. . is d; N ~ /O""':::E:::E 0 . . ._--;::...--'. !!! ee ~§~ ~ ~ ,x(~) 8 ...... ·····0 ~::- x x / SOZ990H ... ... ... O~ N O~ ~ 0 0:::E ~..... 8 0 :; ,.~(Z) 0 ~ Q) ~ - x / 0 ~ C\I 0 0; ~ ~ "",:::E:::E 8_ 8 ·····8 -- - - ~ ~ SOZ990H ~ x / (&) SOZ990H Figure 6 Relation between SHL and LCD Output Destinations HITACHI 952 Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 HD66205 Application Example MgU. Mg63. Mg638 f~ ;: "". DI8POFr 0C>-D3 M HO..... CL2 CL. (e) "". f.,....du........ LCD panel of MCk 240 dotI; ~ ~~ M 0 ~, ;:: HD662Or$ (1) Ii \- iH .............. '-........ ............. ~ i X'-X8C i Voc lX'-X~r HO..... (') 00 _:: ~~ HOO.... CL2 elf ~~I-+I-Hf-H 1!~3~ Voc':"H.. ~.~ DC (3) R1 GNOVoc Notes: DI8PO"lImm 00-03 s0g3 leg2 leg1 Rt R2 R1 R1 VEE 1. The resistances of R1 and R2 depend on the type of the LCD panel used.. For example, for an LCD panel with a 1/15 bias, R1 and R2 must be 3 kil and 33 kil, respectively. That is, R1/(4'. R1 + R2) should be 1115. 2. To stabilize the power supply, place two O.l-~F capacitors near each LCD driver: one between the Vee and GND pins, and the other between the Vee and VEE pins. HITACHI Hitachi America, Ltd,· Hitachi Plaza· 2000 Sierra Point Pkwy,· Brisbane, CA 94005-1819· (415) 589-8300 953 HD66205. Absolute MaximumRat~ngs Item Symbol Rating Unit Power supply voltage for logic circuits Vee -0.3 to +7.0 V Note Power supply voltage for LCO drive circuits Vee - 30.0 to Vee + 0.3 V Input voltage 1 -0.3 to Vee + 0.3 V 1,2 Input voltage 2 VEE - 0.3 to Vee + 0.3 V 1,3 Operating temperature -20 to +75 °C -55 to +125 °C Storage temperature Notes: T s1g 4 1. The reference point is GNO (0 V). ~=-o-== 2. Applies to pins CL, M, SHL, 01, OISPOFF. 3. Applies to pins V1, V5, and VS. 4. -40 to + 125°C for TCP devices. 5. H the LSI is used beyond its absolute maximum ratings, it may be permanently damaged. It should always be used within its electrical characteristics in order to prevent malfunctioning or degradation of reliability. Electrical Characteristics DC Characteristics for the HD6620SF/HD6620STF/HD6620ST (Vee = 5 V ± 10%, GND = 0 V, Vee - VEE = 10 to 28 V, and Ta= -20 to + 7SoC, unless otherwise noted.) Item Symbol Input high voltage VIH Input low voltage Vil Output high voltage Pins Vee 0 0.3 x Vee V Vee- O.4 2 VOL 2 Vi-Vj on resistance RoN 3 Input leakage current 1 i ll1 Input leakage current 2 IIl2 Current consumption 2 lEE 4 V iOH =-0.4 mA 0.4 V IOl'" 0.4 mA JJ.A 2.0 kn ION = 100 -1.0 1.0 -25 25 100 JJ.A JJ.A JJ.A VIN = Vee to GNO 500 J.1A 150 Note V 0,7 x Vee VOH IGND Unit Condition 1 Output low voltage Current consumption 1 Typ. Max. Min. VIN = Vee to VEE fel = 20 kHz Vee -VEE =28V 2 Same as above 2 Pins and notes on next page. HITACHI 954 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66205 DC Characteristics for the HD66204FL/HD66204TFL/HD66204TL (Vee Vee - VEE = 10 to 28 V, and Ta = -20 to +75°C, unless otherwise noted.) Item Symbol Input high voltage VIH Input low voltage VIL Output high voltage VOH Output low voltage Max. Unit 0.7xVee Min. Vee V 1 0 0.3 x Vee V 2 Vee -O.4 Pins IOH .-0.4 mA IOL - 0.4 mA VOL 2 0.4 V RON 3 2.0 kn Input leakage current 1 11L1 -1.0 1.0 ~ -25 25 ~ ~ 11L2 Current consumption 1 IGND 100 Current consumption 2 lee 250 Pins: 4 Condition V Vi-Vj on resistance Input leakage current 2 =2.7 to 5.5 V, GND =0 V, Note VIN - Vee to GNO fel" 16.8 kHz f M .. 35 Hz Vee=3.0V Vee - Vee" 28 V 2 Same as above 2 1. CL, M, SHL, 01, OISPOFF 2.00 3. X,-Xao, V1, V5, V6 4. V1, V5, V6 Notes: 1. Indicates the resistance between one pin from X,-Xao and another pin from V1, V5, V6, and Vee, when load current is applied to the X pin; defined under the following conditions. Vee - Vee'" 28 V V1, V6 '" Vee - {1/10(Vee - Vee)} V5 .. Vee + {1/10(Vee - Vee)} V1 and V6 should be near Vee level, and V5 should be near Vee level (figure 7). All voltage must be within t.V. t.V is the range within which RON, the LCO drive circuits' output impedance, is stable. Note that t.V depends on power supply voltage Vee-Vee (figure 8). 2. Input and output current is excluded. When a CMOS input is floating, excess current flows from the power supply through the input circuit. To avoid this, VIH and VIL must be held to Vee and GNO levels, respectively. 3. Applies to standby mode. HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 955 HD66205 Vee V1 tN V6 •••••••••••••• V5 IN -i._--'-_'--_ _ _ _ _ VEE Figure 7 Relation between Driver Output Waveform and Level Voltages 2.8 ••••.•.•••..•••••••. IN (V) 1.0 •••••••• 10 Level voltage rangl 28 . Vee-VEE (V) Figure 8 Relation between Vee - VEE and AV HITACHI 956 Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66205 AC Characteristics for the HD66205FIHD6620STFIHD66205T (Vee Ta -20 to +75°C, unless otherwise noted.) = Hem Symbol Pins Clock cycle time =5 V ± 10%, GND =0 V, and Min. Max. Unit tcvc CL 10 ~s Clock high-level width 1 tcWH CL 50 ns Clock low-level width tcWL tr CL 1.0 Clock rise time Clock fall time CL tf CL Data setup time tos DI,CL 100 Data hold time 100 tOH DI,CL Data output delay time too DO,CL Data output hold time tOHW DO,CL ns '30 ns ns ns 100 = Item ~s 30 3.0 AC Characteristics for the HD6620SFLIHD6620STFLlHD6620STL (Vee and Ta -20 to +7SoC, unless otherwise noted.) ~s ns =2.7 to 5.5 V, GND =0 V, Max. Unit Symbol Pins Min. Clock cycle time tcvc CL 10 ~s Clock high-level width 1 tcwH CL 80 ns Clock low-level width tcwL CL 1.0 Clock rise time t, CL 30 ns Clock fall time tf CL 30 ns Data setup time tos DI,CL 100 Data hold time tOH DI,CL 100 Data output delay time too DO,CL 100 DO,CL tOHW 1. The load circuit ~hown in figure 9 is connected. test point Note ~s ns ns 7.0 Data output hold time Notes: Note ~s ns Ol----l-, ;J; 30 pF Figure 9 Load Circuit HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 957 HD66205 ~ Cl tCWl tCWH l..lI: tOO tOS ~ DI tCYC -K .... ~ O.7VCC-', O.3Vec "' .... ~ O.7Vcc O.3Vcc ~ \~ tOH :K tOHW . DO O.SVcc"l O.2Vcc'2 ~: Figure 10 LCD Controller Interface Timing HITACHI 958 Hitachi America, Ltd. o Hitachi Plaza 0 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819 0 (415) 589-8300 HD66214T/HD66214TL (Micro-TAB)(SO-Channel Column Driver in Micro-TCP) Description Features The HD66214TIHD662141L, the column driver for a large liquid crystal graphic display, features as many as 80 LCD outputs powered by 80 internal LCD drive cin:uits. This device latches 4bit parallel data sent from an LCD controller, and generates LCD drive signals. In standby mode provided by its internal standby function, only one drive circuit operates, lowering power dissipation. The HD66214, packaged in an 8-mm-wide microtape carrier package (micro-TCP), enables a compact LCD system with a narrower frame (peripheral areas for LCD drivers) -about half as large as that os an existing system. The HD66214 provides HD66214T, a standard device powered by5 V ± 10%, andHD662141L, a low power dissipation device powered by 2.7-5.5 V suitable for battery-driven portable equipment such as nOJebook personal computers and palm-top personal computers. • Duty cycle: 1/64 to 1/240 • High voltage - LCD drive: 10-28 V • High clock speed - 8 MHz max under 5-V operation (HD66214T) - 4 MHz max under 3-V operation (HD662441L) • Display off function • Internal automatic chip enable signal generator • Various LCD controller interfaces - LCTC series: HD63645, HD64645, HD64646 - LYlC series: HD6684O, HD66841 - CLINE: HD66850 • 98-pinTCP HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 959 HD66214T/HD66214TL (Micro-TAB) Pin Arrangement ~~ummY V~~1 E 2 DO 3 D1 4 98 97 96 02 5 03 6 CL2 7 CL1 8 M 9 DISPOFF CAR Vee SHL GNO VEE V4 V3 V1 Y1 Y2 Y3 10 11 12 13 14 15 16 17 18 21 20 19 Y78 Y79 Y80 1 Dummy J Top view HITACHI ·960 Hitachi America, Ltd. - Hitachi Plaza -2000 Sierra Point Pkwy. - Brisbane, CA 94005-1819 - (415) 589-8300 HD66214T/HD66214TL (Micro-TAB) Pin Description Symbol Pin No. Pin Name Vee Vee CL2 1,12 14 15 18 17 16 8 7 M GND VEE V1 V3 V4 Input/Output Classification Power supply GND Power supply VEE V1 V3 V4 Power supply Input Power supply Input Power supply Input Power supply Input Control signal Input Control signal 9 1 Clock 2 M Input Control signal 0 0-0 3 3-6 Data O-data 3 Input Control signal SHL 13 2 11 10 19-98 Shift left Input Control signal Enable Input Control signal Carry Output Control signal Display off Input Control signal Y1-Y80 Output LCD drive output Cl1 E CAR DISPOFF Y1-Yao Clock HITACHI Hitachi America,ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 961 HD66214T/HD66214TL (Micro-TAB) Pin Functions M: Changes LCD drive outputs to AC. Power Supply Do-D3: Input display data. High-voltage level of data corresponds to a selected level and turns an LCD pixel on, and low-voltage level data corresponds to a non-selected level and turns an LCD pixel off. Vee, VEE' GND: Vcc-GND supplies power to the internal logic circuits. Vee-VEE supplies power to the LCD drive circuits. VI, V3, V4: Supply different levels of power to drive the LCD. VI and VEE are selected levels, and V3 and V4 are non-selected levels. See figure i. SHL: Shifts the destinations of display data output See figure 2. E: A low E enables the chip, and a high E disables the chip. Control Signal CAR: Outputs theE signal to the next HD66214 if HD66214s are connected in cascade. CLI: Inputs display data latch pulses for the line data latch circuit.· The line data latch circuit latches display data input from the 4-bit latch circuit, and outputs LCD drive signals corresponding to the latched data, both at the falling edge of each CLl pulse. LCD Drive Output CL2: Inputs display data latch pulses f.or the 4-bit latch circuit. The 4-bit latch circuit latches display data input via Do-D3 at the falling edge of each CL2pulse. y 1-Y so: Each Y outputs one of the four voltage levels VI, V3, V4, or VEE, depending On a combination of the M signal and display data levels. See figure 3. DISPOFF: A low DISP sets LCD drive outputs y l-Y 80 to VI level. V1 V3 V4 VEE Figure I Different Power Supply Voltage Levels for LCD Drive Circuits HITACHI 962 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66214T/HD66214TL (Micro-TAB) C')VIt) SHL = low SHL = higt co ..... co 0) 0 >:>:>: >:>:>:>: ~ >~~)!:~~>:~ :::::::::::~ I-r-=--------------:;g[ Figure 2 Selection of Destinations of Display Data Output M~ 1 lor D~ Y output leve bE~rV:rvtrv:1 Figure 3 Selection of LCD Drive Output Level HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 963 HD66214T/HD66214TL (Micro-TAB) Block Functions Level Shifter Controller: The controller generates the latch signal at the falling edge of each CL2 pulse for the 4-bit latch circuit. The level shifter changes 5~V signals into highvoltage signals for the LCD drive circuit. 4-Bit Latch Circuit The 4-bit latch circuit latches 4-bit parallel data input via the DO to D3 pins at the timing generated by the control circuit. Line Data Latch Circuit LCD Drive Circuit . The 80-bit LCD drive circuit generates four voltage levels VI, V3, V4, and VEE, for driving an LCD panel. One of the four levels is output to . the corresponding Y pin, depending on a combination of L'te ~Y1 signal and the data in the line data latch circuit. The SO-bit line data latch circuit latches data input from the 4-bit latch circuit, and outputs the latched data to the level shifter, both at the falling edge of each clock I (CLI) pulse. Block Diagram Y1-Y8C DmpefF~----~--~r--~----~~~~~~----~--, > C SHL------------~ CL2------------~ Controller E CAR~----------------------------------------------~ HITA.CHI 964 Hitachi America, Ltd. -Hitachi Plaza- 2000 Sierra Point Pkwy. - Brisbane, CA 94005-1819 - (415) 589-8300 HD66214T/HD66214TL (Micro-TAB) Ordering Information lYpeNo. Voltage Range Outer Lead Pitch 1 Outer Lead Pitch 2 Device Length HD66214TA1 5 V± 10% 0.15 mm 0.80 mm 3 sprocket holes HD66214TA1L 2.7-6.5 V 0.15 mm 0.80 mm 3 sprocket holes HD66214TA2 5V± 10% 0.18 mm 0.80 mm 3 sprocket holes HD66214TA2L 2.7-6.5 V 0.18 mm 0.80 mm 3 sprocket holes HD66214TA3 5 V± 10% 0.20mm 0.80 mm 3 sprocket holes HD66214TA3L 2.7-6.5 V 0.20 mm 0.80 mm 3 sprocket holes HD66214TA4 5 V± 10% O.22mm 0.80mm 3 sprocket holes HD66214TA4L 2.7-6.5 V O.22mm 0.80 mm 3 sprocket holes HD66214TAS 5 V± 10% 0.25 mm 0.80mm 3 sprocket holes HD66214TASL 2.7-6.5 V 0.25 mm 0.80mm 3 sprocket holes HD66214TA6 5V± 10% 0.20 mm 0.45 mm 3 sprocket holes HD66214TA6L 2.7-6.5 V 0.20 mm 0.45 mm 3 sprocket holes HD66214TA7 5V± 10% 0.22 mm 0.45mm 3 sprocket holes HD66214TA7L 2.7-6.5 V 0.22 mm 0.45mm 3 sprocket holes HD66214TA8 5 V± 10% 0.25 mm 0.55mm 3 sprocket holes HD66214TA8L 2.7-6.5 V 0.25 mm 0.S5mm 3 sprocket holes Notes: 1. Outer lead pitch 1 is for LCD drive output pins, and outer lead pitch 2 for the other pins. 2. Device length includes test pad areas. 3. Spacing between two sprocket holes is 4.75 mm. 4. Tape film is Upirex (a trademark of Ube Industries, Ltd.). 5. 35-mm·wide tape is used. 6. Leads are plated with Sn. HITACHI Hitachi America, Ltd. - Hitachi Plaza -2000 Sierra Point Pkwy. - Brisbane, CA 94005"1819 - (415) 589-8300 965 HD66214T/HD66214TL (Micro-TAB) Comparison of the HD66214 with the HD61104 Item HD66214 HD61104 Clock speed 8.0 MHz max. 3.5 MHz max. Display off function Provided Not provided LCD drive voltage range 10-28 V 10-26 V Relation between SHL and LCD output destinations See figure 4 See figure 4 Relation between LCD output See figure 5 See figure 5 LCD drive V pins V1,V3, V4 (V2 level is the same as VEE level) V1, V2, V3, V4 Storage temperature -40 to 125°C -55 to 125°C Package TCP (tape carrier package) QFP (quad flat package) lavals, .,,1, and data SHL .. low SHL .. low 1st 2nd SHL Last = high 2nd Last SHL 1 st = high HD61104 HD66214 Note the exact reverse relation for the two devices. Figure 4 Relation between SHL and LCD Output Destinations for the HD66214 and HD61104 HITACHI 966 Hitachi America, Ltd.' Hitachi Plaza '2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 HD66214T/HD66214TL (Micro-TAB) M .....Jr---:.L--..J;0LJr M ......J1-:;--"'L--.QO~..Jr D~ D~ Y output leve ~E~~V4 .,l\,~V3 ., Y output leve ~V1 .,.l3 .,l2.,l4 ., HD61104 HD66214 Figure 5 Relation between LCD Output Levels, M, and Data for the HD66214 and HD61104 HITACHI Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 967 HD66214T IHD66214 TL (Micro-TAB) Operation Timing I .r I Line ~ I ---lruu1:- .._. __. ~ _. _. ~ I CL2 I 1 2 3 19 201 =r=x=x== -_. _._. --,,--v-hr-- ._. -=x=::xrx= =fx=x=x= -- =x=x:l:x= ---=x=x:l:x= i . Data 0 Dm. 3 k CAR (No.2) CAR (No.3) CAR (No. n) I -l1I CAR (No.1) ~ ' I --1 i i i I ~ : CL1 I 21 i i i I HD66214 no. 1 latches dal ;;oj -< -J. , ~I , !I i , HD66214 no. 3 latches data !I i' -< I Y1-Y8C ==:l I »I ~~~ I i i -<~I HD66214 no. n I r-- ~ HD66214 no. 2 latches data --;1' rt.. I I I r== I i I i HITACHI 968 Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 HD66214T/HD66214TL (Micro-TAB) Application Example - ... l- e... " ", "", ~ DIIIPOYF DO- HD6621. "" f- HD66214 (2) LCD panel of &t0l: 240 dolS; 1/240 duty cyde a. a.l (8) .!. >- Hl "'"t"DF CL a.l CA> ::: i ~ sag1 ~* NN eE 88 E1:1~ 888 ~'-X>r ~'-X>r \ ,-- Vee ~ ~\" HD68205 11) ~ ~\" DC •• HD60205 (3) HD&e214 el) Hl "'"t"DF Cl. CL 1 >- W:~+t~H V3 VIr- ;SrHL'--ijB~ ~~~~~~_=:!:lH ,;1:!! DC I R1 GND Vee Notes: A1 R2 R1 R1 VEe 1. The resistances of R1 and R2 depend on the type of the LCD panel used. For example, for an LCD panel with a 1/15 bias, R1 and R2 must be 3 kO and 33 kO, respectively. That is, R1/(4· R1 + R2) should be 1115. 2. To stabilize the power supply, place two O.1-I1F capacitors near each LCD driver: one between the Vee and GND pins, and the other between the Vee and VEE pins. HITACHI Hitachi America,ltd.· Hitachi Plaza· 2000 Sierra Point P~wy.• Brisbane, CA 94005-1819· (415) 589-8300 969 HD66214T/HD66214TL (Micro-TAB) Absolute Maximum Ratings Item Power supply voltage for logic circuits Symbol Rating Unit Vee -0.3 to +7.0 V Note Power supply voltage for LCD drive circuits VEE Vee - 30.0 to Vee + 0.3 V Input voltage 1 VT1 -0.3 to Vee + 0.3 V 1.2 Input voltage 2 1.3 VT2 VEE - 0.3 to Vee + 0.3 V Operating temperature Topr -20 to +75 °C Storage temperature Tsta -40 to +125 °C Notes: 1. The reference point is GNO (0 V). 2. Applies to pins CL 1. CL2. M. SHL. E. Do-Os. OISPOFF. 3. Applies to pins V1. V3. and V4. 4. If the LSI is used beyond its absolute maximum ratings, it may be permanently damaged. It should always be used within its electrical characteristics in order to prevent malfunctioning or degradation of reliability. Electrical Characteristics DC Characteristics for the HD66214T (Vee = 5 V ± 10%, GND = 0 V, Vee - VEE = 10 to 28 V, and Ta = -20 to +75°C, unless otherwise noted.) Typ. Max. Unit Condition Item Symbol Pins Min. Input high voltage V1H 0.7 x Vee Vee Input low voltage V1L 0 0.3 x Vee V Output high voltage VOH Output low voltage 2 Vee- O.4 Note V V IOH =-0.4 rnA VOL 2 0.4 V IOL= 0.4 rnA Vi-Vj on resistance RON 3 4.0 kn Input leakage current 1 11L1 -1.0 1.0 -25 25 I!A I!A 3.0 rnA = 100 I!A VIN = Vee to GNO V1N = Vee to VEE feL2 = 8.0 MHz feL1 = 20 kHz Vee - VEE =28 V 500 IlA Same as above 2 200 I!A Same as above 2,3 Input leakage current 2 IIL2 Current consumption 1 IGND Current consumption 2 lEE Current consumption 3 1ST 4 150 ION 2 Pins and notes on next page. HITACHI 970 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66214T/HD66214TL (Micro-TAB) DC Characteristics for the HD66214TL (Vee = 2.7 to 5.5 V, GND = 0 V, Vee - VEE = 10 to 28 V, and Ta = -20 to +75°C, unless otherwise noted.) Item Symbol Input high voltage VIH Pins Min. Max. 'Unlt 0.7xVee Vee V 0.3 x Vee V Input low voltage VIL 1 o Output high voltage VOH 2 Vee -O.4 Output low voltage VOL 2 0.4 Vi-Yj on resistance RoN 3 4.0 Input leakage current 1 Condition V IOH"-O.4 mA V IOL" 0.4 mA ~ VIN = Vee to GNO Note IIL1 1 -1.0 1.0 Input leakage current 2 1112 4 -25 25 Current consumption 1 IGND 1.0 mA feL2 = 4.0 MHz feL1 = 16.8 kHz fM =35 Hz Vee =3.0V Vee- VEE = 28 V Checker-board pattern 2 Current consumption 2 lEE 500 ~ Same as above 2 50 ~ Same as above 2, 3 Current consumption 31sT Pins: 1. CL 1, CL2, M, SHL, E, 0 0-03 , OISPOFF 2. CAR 3. Y1-Y80 , V1, V3, V4 4. V1, V3, V4 Notes: 1. Indicates the resistance between one pin from Y1-YSO and another pin from V1, V3, V4, and VEE, when load current is applied to the Y pin; defined under the foilowing conditions. Vcc-GNO V1, V3 =28 V =Vee - {2/1 O(Vee - VEE}} V4 .. VEE + {2110(Vee - VEE}} V1 and V3 should be near Vee level, and V4 should be near VEE level (figure 6). Ail voltage must be within t.V. t.V is the range within which RON, the LCD drive circuits' output impedance, is stable. Note that t.V depends on power supply voltage Vee-VEE (figure 7). 2. Input and output current is excluded. When a CMOS input is floating, excess current flows from the power supply through the input circuit. To avoid this, V1H and VIL must be held to Vee and GNO levels, respectively. 3. Applies to standby mode. HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300 971 HD66214TIHD66214 TL.(Micro-TAB) Vee •••••••••• V1 AV ••••• ' V3 •••••••••••••• V4 AV -Z.._-'--.l.._ _ _ _ _ VEE Figure 6 Relation between Driver Output Waveform and Level Voltages AV(V) 2.0 •••••••• Level voltage rangl 28 Vee-VEE (V) Figure 7 Relation between Vee - VEE and AV HITACHI 972 Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 HD66214 T IHD66214 TL (Micro-TAB) AC Characteristics for the HD66214T (Vee = 5 V ± 10%, GND = 0 V, and Ta = -20 to +75°C, unless otherwise noted.) Item Max. Symbol Pins Min. Clock cycle time tevc CL2 125 ns Clock high-level width 1 Unit teWH CL1, CL2 45 ns Clock low-level width teWl CL2 45 ns Clock setup time ns tscL CL1, CL2 80 Clock hold time lHcL CL1, CL2 80 Clock rise time tr CL1, CL2 Clock fall time tf CL1, CL2 Data setup time tos 0 0-03, CL2 Data hold time Note ns Note 1 ns Note 1 ns 20 ns tOH 0 0-03, CL2 20 ns Enable (E) setup time tEsu E, CL2 30 ns Carry (CAR) output delay time teAR CAR, CL2 80 ns. M phase difference time teM M,CL2 300 ns CL 1 cycle time teu CL1 2 ns tCYC x50 AC Characteristics for the HD66214TL (Vee = 2.7 to 5.5 V, GND = 0 V, and Ta = -20 to +75°C, unless otherwise noted.) Item Max. Symbol Pins Min. Clock cycle time tevc CL2 250 ns Clock high-level width 1 Unit teWH CL1, CL2 95 ns Clock low-level width tcwL CL2 95 ns Clock setup time tSCL CL1, CL2 80 ns Clock hold time tHCL CL1, CL2 120 Clock rise time tr CL1, CL2 - Clock fall time ns Note1 ns Note1 ns tf CL1, CL2 Data setup time tos 50 ns Data hold time 50 ns 65 ns tOH 00-03, CL2 0 0-03, CL2 Enable (E) setup time tESU E,CL2 Carry (CAR) output delay time teAR M phase difference time CAR, CL2 155 ns M,CL2 300 ns teM CL1 teu 1. tr, tf < (tcvc - tCWH - tcwdl2 and t r, tf S 50 ns CL 1 cycle time Notes: tCYC x 50 Note 1 2 ns 2. The load circuit shown in figure 8 is connected. HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 973 HD66214T/HD66214TL (Micro-TAB) Test poinl 01-------. i30 pF Figure 8 Load Circuit tr tCWH tf tCWL tCYC CL2 lOS tDH 0.7Vec 00-03 0.3Vec tCWH tCl1 CL1 Cl2 CAR O.aVee E tCM M 0.7Vec 0.3Vec Figure 9 LCD Controller Interface Timing HITACHI 974 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66702 LCD-II/E20----(Dot Matrix Liquid Crystal Display Controller and Driver) -PreliminaryDescription Features The LCD-II/E20 (HD66702) dot matrix liquid crystal display controller and driver LSI displays alphanumerics, kana characters, and symbols. It drives a dot matrix liquid crystal display under 4bit or 8-bit microprocessor control. Since all the functions required for dot matrix liquid crystal display drive are internally provided on one chip, a small system can be configured with this LSI. • A single LCD-II/E20 can display up to two lines, each of 20 characters. The addition of driver LSI HD44100s enables a maximum display of two lines, each of 40 characters. The LCD-II/E20 of 3-V power supply (whose development is under consideration) is suitable for any portable battery-driven apparatus requiring low power dissipation. • • • • • • • Ordering Information Operating Voltage lYpeNo. Package HCD66702 144-pin bare chip 4.5 to 5.5 V HCD66702L 144-pin bare chip 2.7 to 3.3 V • • • 5 x 7 and 5 x 10 dot matrix liquid crystal display controller and driver Internal display RAM of 80 x 8 bits (SO characters max.) Internal character generator ROM of 7200 bits: 160 character fonts of 5 X 7 dots 32 character fonts of 5 X 10 dots Internal character generator RAM of 64 x 8 bits: 8 character fonts of 5 X 7 dots 4 character fonts of 5 X 10 dots Internal liquid crystal display driver with 16 common signal drivers and 100 segment signal drivers Programmable duty cycles - 1/8 for 1 line of 5 X 7 dots + cursor - 1/11 for 1 line of 5 X 10 dots + cursor - 1/16 for 2 lines of 5 X 7 dots + cursor Maximum display characters Wide range of instruction functions: - Display clear, Cursor home, Display On/Off, Cursor On/Off, Display character blink, Cursor shift, Display shift Wide range of power supply (Vcd: 4.5 to 5.5 V (standard version), 2.7 to 3.3 V (low Vcc version) Internal automatic reset circuit after power on (provided by standard version only) Independent LCD drive voltage on the logic power supply (Vcc): 3.0 to 6.0 V Display lYpe Duty Cycle When not Extended When Extended with an HD44100H Maximum extension 1-line display 1/8 1/11 20 characters X 1 line 20 characters x 1 line 28 characters x 1 line 28 characters x 1 line 80 characters x 1 line 80 characters x 1 line 2-line display 1/16 20 characters x 2 lines 28 characters x 2 lines 40 characters x 2 lines HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 975 HD66702 LCD-II/E20 Block Diagram (LCD.II/E20 Interior) EXT OSC1 OSC2 . . . - - - - - - -. . . CL1 . . . - - - - - - -...... CL2 . . . - - - - - -. . . M o 7 Instruction COM1COM16 Display data RAM (DD RAM) 80 x 8 bits 8 8 11lO-bit 8hift register 8 7 8 Character generator RAM (CGRAM) 64 bytes SEG1SEG100 circuit 8 Character generator ROM (CGROM) 7200 bytes Cursor blink controHer Liquid crystal display drive voltage selector 100 V~--L----.--~-~--e--~~------------~ GND~ V1 V2 V3 V4 V5 HITACHI 976 Hitachi America, Ltd.· Hitachi Piaza· 2000 Sierra Poini Pkwy.· Brisbane, GA 94005-1819' (415) 589-8300 HD66702 LCD-IIIE20 LCD·DlE20 Pad Arrangement SEG34 II SEG33 II SEG32 II SEG31 II SEG30 II SEG29 SEG28 SEG27 SEG26 SEG25 SEG24 SEG23 SEG22 SEG21 SEG20 SEG19 SEG16 SEG17 SEG16 SEG15 SEG14 SEG13 SEG12 SEG11 SEG10 SEG9 SEGS SEG7 SEGS SEGS SEG4 SEG3 SEG2 SEG1 106 II SEG71 107 III SEG72 106 II SEG73 105 II SEG74 104 II SEG75 103 III SEG76 102 III SEG77 , 101 III SEG78 100 II SEG79 99 II SEGSO 98 III SEG81 97 III SEG82 96I11SEG83 95I1SEG84 94 II SEG85 93I111SEG86 92 III SEGa7 91 III SEG88 901IISEG89 69I11SEG90 88 III SEG91 87 III SEG92 86 III SEG93 85 III SEG94 64 III SEG95 83 II SEG96 82 II SEG97 81 II SEG98 80 II SEG99 79 II SEG100 7811 COM16 77 II COM15 76 III COM14 75 II COM13 74 III COM12 73 III COM11 1 2 3 4 5 III 6 II 7 II 8 II 9 1110 l1li11 1112 1113 1114 1115 1116 11117 l1li16 l1li19 1120 1121 1122 1123 1124 1125 1126 1127 1128 l1li29 l1li30 l1li31 l1li32 11133 11134 GND .35 (TopWlW) r1)peoode HD88702 0SC2 1136 * : Test pins; to be grounded. o ~ supply pins • Po_ supply pins (ground) B: Input pins &I: OUtput pins • Input/output pins HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589·8300 977 HD66702 LCD-IIIE20 LCD-II Family Comparison Item LCD-II (HD44780) LCD·IIIA (HD66780) LCD-II/E20 (HD66702) Power supply voltage 5V±10% 5V± 10% 5 V ± 10% for standard version; 3 V ± 10% for low Vet; version 1/4 bias 3.0 to 11 V 3.0 V to Vet; 3.0 to 6.0 V 1/5 bias Liqu id crystal drive voltage VLCD 4.6 to 11 V 3.0 V to Vet; 3.0 to 6.0 V Max display digits per chip 16 digits (8 digits x 2 lines) 16 digits (8 digits x 2 lines) 40 digits (20 digits x 2 lines) Display duty cycle 1/8,1/11 and 1/16 1/8,1/11 and 1/16 1/8,1/11 and 1/16 CGROM 7,200 bits 12,000 bits (160 character fonts of (240 character fonts of 5x 7 dots and 5x10dots) 32 character fonts of 5 x 10 dots) 7,200 bits (160 character fonts of 5x 7 dots and 32 character fonts of 5 x 10 dots) CGRAM 64 bytes 64 bytes 64 bytes DO RAM 80 bytes 80 bytes 80 bytes Segment signals 40 40 100 Common signals 16 16 16 Liquid crystal drive waveform A B B Ladder resistor for liquid crystal drive power supply External External External Clock source External resistor, external ceramic filter, or external clock External resistor, external ceramic filter, or external clock External resistor, or external clock Rf oscillation frequency (frame frequency) 270 kHz ± 30% (59 to 110 Hz for 1/8 and 1/16 duty cycles; 43 to 80 Hz for 1/11 duty cycle) 270 kHz±30% (59 to 110 Hz for 1/8 and 1116 duty cycles; 43 to 80 Hz for 1/11 duty cycle) 320 kHz ± 30% (69 to 128 Hz for 1/8 and 1/16 duty cycles; 50 to 93 Hz for 1/11 duty cycle) Rf resistance 91 kO±2% 83kO±2% 68 kO (T.B.D.) for standard version; 56 kO (T.B.D.) for low Vet; version Instructions Fully compatible within the LCD-II family CPU bus timing 1 MHz 2MHz 1 MHz Package OFP1420-80, OFP1414-80, and 80-pin bare chip OFP1420-80 and OFP1414-80 144-pin bare chip (no package) Note: Development of OFP2020-144 (144-pin quad flat package) is under consideration. HITACHI 978 Hitachi America, Ltd.· Hitachi Piaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66702 LCD-II/E20 Electrical Characteristics Absolute Maximum Ratings for Low Vee Version Item Symbol Unit Rating Power supply voltage (1) Vcc V -0.3 to +7.0 Note Power supply voltage (2) V1 to Vs V -0.3 to +7.0 Input voltage Vt V -0.3 to Vee + 0.3 Operating temperature Topr Tstg °C °C -20 to + 75 Storage temperature 3 4 -55 to + 125 Notes: 1. If LSls are used above absolute maximum ratings, they may be permanently destroyed. Using them within electrical characteristic limits is strongly recommended for normal operation. Use beyond these conditions will cause malfunction and poor reliability. 2. All voltage values are referenced to GND = 0 V. 3. Applies to VI to Vs; must maintain Vee ~ V1 ~ V2 ~ V3 ~ V4 ~ VS; see below. Vee V, I; ® 1 ®=Vee - Vs ®=Vee -v, ®;;; The conditions of V1 and Vs voltages are for proper operation of the LSI and not for the LCD output level. The LCD drive voltage condition for the LCD output level is specified in "LCD voltage VLCD." 1.5V ®~O.25X® 4. This temperature is for packaged devices; +7SoC is the guaranteed operating temperature for bare chip devices. DC Characteristics for Low Vee Version (Vee =3 V ± 10%, Ta =-20°C to +7soC*1) Item Symbol Unit Input high voltage (1 ) VIHI V Input low voltage (1) Test Conditions min. typo max. Note T.B.D. Vee 2 T.B.D. 2 VIL1 V -0.3 Input high voltage (2) (OSC1) VIH2 V T.B.D. Input low voltage (2) (OSC1) VIl2 V Output high voltage (1) (D80-0B7) VOH1 V Vcc 11 T.B.D. 11 -IOH = 0.1 rnA T.B.D. 3 Output low voltage (1) (DI3(rDB7) VOL1 V IOL= 0.1 rnA Output high VOltage (2) (except DBa-DB7) VOH2 V -IOH = 0.04 rnA Output low voltage (2) (except DBa-DB7) VOl2 V IOL = 0.04 rnA T.B.D. 4 Driver ON resistance (COM pin) RCOM kn ± Id = 0.05 rnA 20 9 30 9 T.B.D. 3 T.B.D. 4 (all COM pins) Driver ON resistance (SEG pin) kn RSEG ± Id = 0.05 mA (all SEG pins) Input/Output leakage current III ~ Yin =Oto Vee -1 Pull-up MOS current (RS, R/W) -Ip ~ Vcc =3 V T.B.D. T.B.D. T.B.D. Power supply current lee rnA Rf oscillation, extemal clock operation, Vee = 3 V fOSC = 320 kHz LCD voltage VLCD1 V Vee-VS 115 bias 3.0 6.0 12 VLCD2 V Vce-VS 1/4 bias 3.0 6.0 12 5 T.B.D. 6,10 Notes for DC Characteristics on pages 983 and 984. HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 979 m HD66702 LCD-IIIE20 AC C~aracteristics for Low Vee Version (Vee =3 V ± 10%, Ta =-20°C to +7soC*1) Clock Characteristics Item External clock operating frequency EX1ernal clock duty cycle External clock rise time External clock fall time Rf oscillation internal clock operating frequency Notes on pages 983 and 984 Symbol fep Duty trep trcp fOSC Unit kHz 0/0 Il s Il s kHz Test Conditions min. typo max. 125 410 45 50 55 0.2 0.2 230 320 410 AI =T.B.D. Note 7 7 7 7 8 Bus Timing Characteristics Write Operation Item Enable cycle time Enable pulse high level width Enable riselfall time Setup time for RS. RIW. E Address hold time Data setup time Data hold time Symbol tCYCE PWEH tEr. tEl tAS tAH tosw tH Unit ns ns ns ns ns ns ns Test Conditions Figure 1 Figure 1 Figure 1 Figure 1 Figure 1 Figure 1 Figure 1 min. 1000 450 Unit ns ns ns ns ns Test Conditions Figure 2 Figure 2 Figure 2 Figure 2 Figure 2 min. 1000 450 ns ns Figure 2 Figure 2 typo max. 25 40 10 195 10 Read Operation Item Enable cycle time Enable pulse high level width Enable riselfall time Setup time for RS. RIW. E Address hold time Data delay time Data hold time Symbol tCYCE PWEH tEr. tEl tAS tAH tOOR tOHR typo max. 25 40 10 320 20 Segment extension signal timing max. Test Conditions Item Symbol Unit min. typo 800 Clock pulse high level width ns Figure 3 tCWH Clock pulse low level width ns Figure 3 800 tCWL Figure 3 Clock setup time ns 500 tcsu Data setup time ns Figure 3 300 tsu ns Figure 3 300 Data hold time tOH -1000 1000 M delay time ns Figure 3 tOM Figure 3 100 Clock riselfall time ns tet Power supply conditions for using internal reset circuit Since the Internal reset circuit will not operate normally in the 3-V Vee LCD-11JE20. initialize the LSI by instruction. HITACHI sao Hiiachi America. Ltd.· Hitachi Piaza· 2000 Sierra Point Pkwy.· Brisbane, GA 94005-i8i9· (4i5i 589-8300 HD66702 LCD-IIIE20 Bus Timing Characteristics Absolute Maximum Ratings for Standard Vee Version Item Symbol Unit Rating Power supply voltage (1) Vee V -0.3 to +7.0 Power supply voltage (2) VI to Vs V -0.3 to +7.0 Input voltage Vt V -0.3 to Vee + 0.3 Operating temperature Topr Tstg °C °C -20 to + 75 Storage temperature Note 3 4 -55 to + 125 Notes: 1. If LSls are used above absolute maximum ratings, they may be permanently destroyed. Using them within electrical characteristic limits is strongly recommended for normal operation. Use beyond these conditions will cause malfunction and poor reliability. 2. All voltage values are referenced to GND = 0 V. 3. Applies to VI to Vs; must maintain Vee VI ~ V2 ~ V3 ~ V4 ~ VS; see below. Vee V, f + ®=Vee - V5 ®=Vee - V, The conditions of VI and Vs voltages are for proper operation of the LSI and not for the LCD output level. The LCD drive voltage condition for the LCD output level is specified in "LCD voltage VLCD." ®~ 1.5V ®~O.25x® 4. This temperature is for packaged devices; +7SoC is the guaranteed operating temperature for bare chip devices. DC Characteristics for Standard Version (Vee =5 V ± 10%, Ta =-20°C to +7soC*1) Item Symbol Unit Test Conditions min. typo max. Note Input high voltage (1) VIHt V 2.2 Vee 2 Input low voltage (1) VILt V -0.3 O.S 2 Input high voltage (2) (OSC1) VIH2 V Vee-1 Vee 11 Input low voltage (2) (OSC1) VIL2 V Output high voltage (1) (D80-0B7) VOHI V -IOH = 0.205 mA Output low voltage (1) (DBo-DB7) VOLI V IOL= 1.SmA Output high voltage (2) (except DBa-DB7) VOH2 V -IOH = 0.04 mA Output low voltage (2) (except DBa-DB7) VOL2 V IOL=0.04 mA 0.1 Vee 4 Driver ON resistance (COM pin) ROOM kn ± Id = 0.05 mA 20 9 30 9 1 5 1.0 2.4 11 3 0.4 3 4 0.9 Vee (all COM pins) Driver ON resistance (SEG pin) RSEG kn ± Id = 0.05 mA (all SEG pins) Input/Output leakage current III Pull-up MOS current (RS, R/W) -Ip I!A I!A Power supply current for RS, R/W Icc mA Yin = Oto Vee -1 Vee=5V T.B.D. At oscillation, external 125 T.B.D. T.B.D. S, 10 clock operation, Vee = 5 V fOSC = 320 kHz LCD voltage VLCDI V Vee - Vs 1/5 bias 3.0 S.O 12 VLCD2 V Vee - Vs 1/4 bias 3.0 S.O 12 Notes for DC Characteristics on pages 983 and 984. HITACHI Hitachi America, Ltd.' Hitachi Plaza· 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819· (415) 589-8300 981 II HD66702 LCD-IIIE20 AC Characteristics for Standard Version (Vee =5 V ± 10%, Ta =-20°C to +75°C*1) Clock Characteristics Item Symbol External clock operating frequency External clock duty cycle fcp Duty External clock rise time External clock fall time Rt oscillation internal clock operating frequency trcp trcp fose Un" kHz Test CondItIons mIn. typo max. Note % I1s I1s kHz Rf = T.B.D. 125 45 410 55 50 230 0.2 0.2 320 410 7 7 7 7 8 Notes on pages 983 and 984 Bus Timing Characteristics (see note on page 14 for load circuits) Write Operation Symbol Unit Test ConditIons min. Enable cycle time Enable pulse high level width teveE PWEH ns ns Figure 1 1000 Figure 1 450 Enable riselfall time tEr. tEl ns Setup time for RS. RIW. E Address hold time tAS ns ns Figure 1 Figure 1 40 Item Data setup time Data hold time tAH typo max. 25 Figure 1 10 195 tosw tH ns ns Figure 1 Figure 1 10 Read Operation Item Symbol Unit Test Conditions min. Enable cycle time Enable pulse high level width teveE PWEH ns ns Figure 2 1000 Figure 2 450 Enable riselfall time tEr. tEf ns Figure 2 Setup time for RS. RIW. E tAS ns Figure 2 40 Address hold time Data delay time Data hold time tAH tOOR tOHR ns ns ns Figure 2 Figure 2 Figure 2 10 Item Clock pulse high level width Symbol Unit tewH ns Test Conditions Figure 3 Clock pulse low level width tewL ns Figure 3 800 Clock setup time tesu tsu ns Figure 3 500 ns M delay time tOH tOM Figure 3 Figure 3 300 ns ns Clock riselfall time tct ns typo max. 25 320 20 Segment extension signal timing Data setup time Data hold time Figure 3 Figure 3 min. typo max. 800 300 -1000 1000 100 HITACHI 982 Hitachi America. Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane. CA 94005-1819· (415) 589-8300 HD66702 LCD-II/E20 Power supply conditions for using Internal reset circuit Item Symbol Unit Test Conditions min. Power supply rise time trCe ms Figure 4 0.1 Power supply off time tOFF ms Figure 4 1 Note: 1. The following are typo max. 10 va terminal configurations except for liquid crystal display output. • Input Terminal Applicable Terminals: E (MaS without pull up) • Applicable Terminals: RS, FVW (MaS with pull up) Vee Vee Vee PMOS PMOS NMOS NMOS • Output Terminal Applicable Terminals: Clt, Cl2, M, 0 Vee PMOS NMOS • 1/0 Terminal Applicable Terminals: DBO to DB7 Vee (Pull Up MOS) t-I PMOS Vee PMOS Vee' NMOS (Three State Output Circuit) Note: Note: Note: Note: Note: 2. 3. 4. 5. 6. Input terminals and I/O terminals. Excludes OSC1 terminals. 110 terminals. Output terminals. Current flowing through pull-up MOSs and output drive MOSs is excluded. Input/output current is excluded. When CMOS input is at an intermediate level, excessive current flows through the input circuit to the power supply. To avoid this, input level must be fixed at high or low. HITACHI Hitachi America, Ltd.· Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 983 HD66702 LCD-II/E20 Note: 7. External clock operation. OSC, Open OSC 2 Th TI Duty cycle = -=:-,-T-'-'.h=-" x 100% Th+Tl Note: 8. Internal oscillator operation using oscillation resistor Rf. R, cb Rr. 56 ill ± 2% (Vec = 3 V) Rr. 68 ill ± 2% (Vee = 5 V) SC '. osc2 Reference values (T.B.D.) Since oscillation frequency varies depending on OSC1 and·OSC2 terminal capacitance. wiring length for these terminals should be minimized. Note: 9. Applies to both VCOM and VSEG voltage drops. VCOM: From power suply terminal Vee. V1. V4. Vs to each common signal terminal (COM1 to COM1S) VSEG: From power suply terminal Vee. V2. V3. Vs to each segment signal terminal (SEGl to SEG40) Note: 10. Relation between operation frequency and current consumption is shown in this diagram (Vee = 5 V). 1.8 1.6 1.4 fee2 (mAl 1.2 1.0 0.4 0.2 ./ V --- max ./V 0.8 0.6 " V / V __ v--- ---- ::... ~ typ 0 100 200 300 400 500 fosc or fcp (kHz) Note: 11. Applied to OSCl terminal. Note: 12. The condition for COM pin voltage drop (VCOM) and SEG pin voltage drop (VSEG). HITACHI 984 Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Paint Pk\A.nJ.' Brisbane, CA 94005-1819· (415) 589 8300 0 HD66702 LCD-IIIE20 Timing Characteristics Write operation RS ). V IH , V IH , V IL1 VIL' tAH - tAS R/W \ V IL1 K (VIL' PW EH 1/ E V IL1 tosw I IeF V IH 1 V IH , V IL1 r- ~ ~ VIH') VIL' - (,V IL1 tH Vaild Data KV'H1 V IL1 tCVCE I Figure 1 Write Operation Read operation RS } <~ V IH1 VIH1 VIL1} V IL1 ~ tAs R/W V IH1 r\IH' ~ PW EH VI.~2. f4- IeF VIL' V IH1 E K VIL' tE," ,. ~ tOOR VOH~) V OL1 1/ V IL1 K V OH1 V OL1 I\: tcVCE Figure 2 Read Operation HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005,1819· (415) 589-8300 985 HD66702 LCD-IVE20 Interface signals with driver LSI HD44100H CLl C~ o M Figure 3 Extension Driver Interface Timing Power on sequence *2 2.7V14.5 V O.2V V e e - - - - -J O.lms;:;;; tree;;;; lOms toF.*l tOFF ;;; 1 ms 1+-----001 Figure 4 Power on Sequence Notes: 1. toff defines the time of power off for momentary power supply dip or when power supply is repeatedly turned on and off. 2.2.7 when Vee = 5 V, and 4.5 V when Vee = 3 V. 3. Since the internal reset circuit will not operate normally if the above conditions are not satisfied, initialize the LSI by instruction. Refer to "Initializing by Instruction." HITACHI 986 Hitachi America. ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, C,I!., 94005-1819· (415) 589-8300 HD66702 LCD-IIIE20 Note: Load Circuits Data bus DBo-DB7 VC0=5V Vcc=5V Vcc=3V 2.4 kG Test Test o-----...--_~1_4 point l D-D_ _ _- - , point Diodes: IS2074® 90pF T ""5F'" Segment extention signals l Test D_----, point 1 30PF -=- HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 987 HD66702 LCD-II/E20 Terminal Function Table 1 Functional Description of Tenninals Signal Name No. of Input/ Lines Output Connected to Function RS Input MPU Signal to select registers. 0: Instruction register (for write) Busy flag: address counter (for read) 1: Data register (for read and write) RIW Input MPU Signal to select read (R) and write (W). n. \A/.:+_ v ........ I"I:J 1: Read E Input MPU Operation start signal for data read/write. DB4-DB7 4 Input/Output MPU Higher order 4 bidirectional three-state data bus lines. Used for data transfer between the MPU and the LCD-II/E20. DB7 can be used as a BUSY flag. DBo-DB3 4 Input/Output MPU Lower order 4 bidirectional three-state data bus lines. Used for data transfer between the MPU and the LCD-llIE20. These four are not used during 4-bit operation. CL1 Output HD44100H Clock to latch serial data D sent to the driver LSI HD44100H. CL2 Output HD44100H Clock to shift serial data D. M Output HD44100H Switch signal to convert liquid crystal drive wav~form to AC. D Output HD44100H Sends character pattern data corresponding to each common signal serially. COM1-COM16 16 Output Liquid crystal display Common signals that are not used are changed to non-selection waveforms. That is, COMg-COM1O are non-selection waveforms at 1/8 duty factor, and COM12-COM16 are non-selection waveforms at 1/11 duty factor. SEG1-SEG100 100 Output V1-VS 5 Vee,GND 2 Liquid crystal display Segment signal. Power supply Power supply Power supply for liquid crystal display drive. Vee: +5 V, GND: 0 V. TEST Input Test pin; to be grounded. EXT Input Test pin; to be grounded. HITACHI 988 Hitachi America. Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589~83()() HD66702 LCD-II/E20 Function Of Each Block signals make their selection from these two registers. Register The HD66702 had two 8-bit registers, an instruction register (IR), and a data register (DR). The IR stores instruction codes such as display clear and cursor shift, and address information for display data RAM (DD RAM) and character generator RAM (CG RAM). The IR can be written from the MPU but not read by the MPU. The DR temporarily stores data to be written into the DD RAM or the CG RAM and data to be read out from DD RAM or CG RAM. Data written into the DR from the MPU is automatically written into the DD RAM or the CG RAM by . internal operation. The DR is also used for data storage when reading data is read from the DD RAM or the CG RAM. When address information is written into the IR, data is read into the DR from the DD RAM or the CG RAM by internal operation. Data transfer to the MPU is then completed by the MPU reading DR. After the MPU reads the DR, data in the DD RAM or CG RAM at the next address is sent to the DR for the next read from the MPU. Register selector (RS) Busy flag (BF) When the busy flag is I, the HD66702 is in the internal operation mode, and the next instruction will not be accepted. As table 2 shows, the busy flag is output to DB7 when RS = 0 and R/W = 1. The next instruction must be written after ensuring that the busy flag is O. Address counter (AC) The address counter (AC) assigns addresses to DD and CG RAMs. When an instruction for address is written in IR, the address information is sent from IR to AC. Selection of either DD or CG RAM is also determined concurrently by the instruction. Mter writing into (or reading from) DD or CG RAM display data, AC is automatically incremented by +1 (or decremented by -1). AC contents are output to DBo-DB6 when RS = 0 and R/W = I, as shown in table 2. Table 2 Register Selection RS RIW o o o Operation iR write as internal operation (Display clear, etc.) Read busy flag (OB7) and address counter (OBo-OB6) o DR write as internal operation (DR to DO or CG RAM) DR read as internal operation (DO or CG RAM to DR) HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589·8300 989 HD66702 LCD-IIIE20 Display data RAM (DD RAM) The display data RAM (DD RAM) stores display data represented in 8-bit character codes. Its capacity is 80 x 8 bits. or 80 characters. The display data RAM (DD RAM) that is not used for display can be used as a general data RAM. Relations between DD RAM addresses and positions on the liquid crystal display are shown below. . The DD RAM address (ADD) is set in the address counter (AC) and is represented in hexadecimal. Lower Order Bits + Upper Order Bits "- Hexa decimal (Example) -I ' - Hexadecimal ... -I DD RAM address 4E I-Line Display (N = 0) (digit) 234 79 5 l-line 80 + Display Position + DD RAM Address 1. When there are fewer than 80 display characters. the display begins at the head position. For example. 20 characters using an HD66702 are displayed as: L.-L~~~~~'--~~d-J-~-'--L~~~~~,--~~DDRAM address (hexadecimal) When the display shift operation is performed. the DD RAM address moves as: HITACHI nnn 2 A,e HD6800 E Ao R/W COM,COM,6 HD66702 RS R/W 0 0 -0 7 SEG,- OB o -OB 7 8 16 Connected to LCD. 100 SEG,oo' Figure 11 8·Bit MPU Interface Example of interfacing to the HD6805 Ao- A7 8 OB o -OB7 COM,COM,6 16 HD66702 H06805 E RS R/W Co C, C2 SEG,- 100 CO.nnected to LCD. SEG,oo Figure 12 HD680S Interface HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 1007 HD66702 LCD-IIIE20 Example of interfacing to the HD6301 RS R/W E P34 P35 P36 16 COM,COM'6 Connected to LCD. HD66702 HD6301 PlO - PH DBo-DB7 8 100 SEG,SEG,oo Figure 13 HD6301 Interface How To Use The HD66702 interface device. Input and output of the device is TIL compatible. Interface t~ MPU In the example, PBO to PB? are connected to the data buses DBO to DB? and PAO to PA2 are connected to E, R/W and RS respectively. 1. Interface to 8-Bit MPU When connecting to 8-bit MPU through PIA Pay attention to the timing relation between E and other signals when reading or writing data and using PIA as an interface. Figure 15 is an example of using a PIA or I/O port (for single chip microcomputer) as an RS R/W ___---J! ,'------ E Internal Internal Operation No DB7 ~rB-U-Sy"''W&d~'"'''''''f''7TB-u-~y'''W''''~''''''''~'''~''''' BUSY~d Instruction Write I Busy Flag Check I Busy Flag Check I Busy Flag Check I Instruction Write Figure 14 Example of Busy Flag Check Timing Sequence HITACHI 1008 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66702 LCD-WE20 A,5 A,4 A,3 A, Ao HD68BOO R/W VMA "'2 DBo-DB7 ==D8 CS2 PA2 CS, CSo PA, RS, RSo PAo R/W HD68B21 E PB o -PB 7 0 0 -0 7 RS COM,COM'6 R/W E } HD66702 SEG,SEG,oo 8 16 r+100 f-+- Connected to Uquid Crystal Display DBo-DB7 HD68BOO: 8 bit CPU Figure 15 Example of Interface to HD68BOO Using PIA (HD68B21) Figure 17 shows an example of interface to the HMCS43C. 2. Interface to 4-bit MPU The HD66702 can be connected to a 4-bit MPU through the 4-bit MPU I/O port. If the 110 port has enough bits, data can be transferred in 8-bit lengths, but if there are insufficient bits, the transfer is made in two operations of 4 bit each (with designation of interface data length for 4 bits). In the latter case, the timing sequence becomes somewhat complex (See fIgure 16). Note: that 2 cycles are needed for the busy flag check as well as the data trnsfer. 4-bit operation is selected by program. RS ____-If R/W \'------- E Internal Internal Oparation No DB7 ~Busv\~BUSV~ Instruction Write Note: I Busy Flag Check I I Busy Flag Check I Instruction Write IR7, IR3: Instruction 7th bit, 3rd bit AC3: Address Counter 3rd bit Figure 16 An Example of 4·Bit Data Transfer Timing Sequence HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 1009 HD66702 LCD-II1E20 HMCS43C 015 RS 0 14 R/W 0 13 E 4 COM1COM 16 HD66702 DB4- DB 7 Rl0- R13 16 f-+- SEG 1SEG100 100 r--- 1 Connected to Uquid Crystel Display HMCS43C: Hitachi 4-bit single-chip microcontroller Figure 17 Example of Interface to the HMCS43C Interface to Liquid Crystal Display 1 line with 5 x 10 dots. Therefore, three types of common signals are available (Table 10). 1. Character Font and Number of Lines ! Number of line and font types can be selected by program. (See Table 7, Instructions). • The HD66702 can perform 2 types of display, 5 x 7 dots and 5 x 10 dots character font, with a cursor on each. 2. Connection to HD67702 and Liquid Crystal Display Up to 2 lines are displayed with 5 x 7 dots and Figure 18 shows connection examples. Table 10 Common Signals Number of Line. 2 Number of Duty Faetor Character Font Common Signal. 5 x 7 dots + Cursor x 10 dots + Cursor 5 x 7 dots + Cursor 8 1/8 5 11 1/11 16 1/16 HITACHI 1010 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra PoinIPkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66702 LCD-II/E20 COM1COMa __~!!!!!!IJ HD66702 S~Gl ~~~~W ----------------------- Liquid Crystal Display Panel (20 characters x 1 line) SE·G 4ol - - - - - - - - - - - - - - - - - - - - ' (a) Example of a 5x7 dot, 8 character x 1 line Display (1/4 Bias, 1/8 Duty Cycle) C~Ml.1III11 COM"~ HD66702 SEG1~ SEG'oo!--------...,.----------......J Liquid Crystal Display Panel (20 characters x 1 line) (b) Example of 5 x 10 dot, 20 character x 1 line Display (1/4 Bias, 118 Duty Cycle) Figure 18 Liquid Crystal Display and Connections to HD66702 HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 1011 HD66702 LCD-II1E20 Since 5 SEG signal lines can display one digit, one HD66702 can display up to 20 digits for 1line display and 40 digits for 2-line display. In Figure 19 examples (a) and (b), there are unused common signal terminals, which always output non-selection waveforms. When the liquid crystal display panel has unused extra scanning lines, avoid undesirable influences due to crosstalk in the floating state by connecting the extra scanning lines to these common signal terminals (Figure 20). il!UTi mu COM,I COM8~--~-H+H~H+--------------------~r- COM9~~~ COM'6·~ HD66702 SEG, 1iIiI---------------------- Liquid Crystal Display Panel (20 characters x 2 lines) ~Gl00~--------------------------------~ (c) Example of 5 x 7 dot. 20 character x 2 lines Display (1/5 Bias, 1116 Duty Cycle) Figure 19 Liquid Crystal Display and Connections to HD66702 (Cont'd.) COM'~_= COM8~ COM. HD66702 ,-J SEG'I!II ~Gl00r---------------------------------~ 5 x 7 dot, 20 character x 1 line Display (1/4 Bias, 1/8 Duty Cycle) Figure 20 Using COM9 to Avoid Crosstalk on Unneeded Scanning Line HITACHI 1012 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 HD66702 LCD-IIIE20 3. Connection of Changed Matrix Layout the layout. Display characteristics and the number of liquid crystal display characters depend on the number of common signals (or duty factor). Note that the display data RAM (DD RAM) addresses for 10 characters x 2 lines and 40 characters x 1 line are the same as shown in Figure 19. In the preceding examples, the number of lines matched the number of scanning lines. The display types Figure 21 are made possible by changing the matrix layout in the liquid crystal display panel. In either case, the only change is COMal----~~#+--------~- ---------- SEG, HD66702j r=~~~~~~~~~~~~~~ ---------- SEG,oo~----------------~~--------------~ COM9~~~~~~~~~~~~~~~~~~~~~~~ Co"M'6 ~ ___________________________________---l 5 x 7 dot, 40 character x 1 line Display (115 Bias, 1/16 Duty Cyde) SEG, SEGso - COM, COMa HD66702 SEGs, -- - SEG,oo 5 x 7 dot, 4 character x 2 line Display (1/4 Bias, 1/8 Duty Cycle) Figure 21 Changed Matrix Layout Displays HITACHI Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819' (415) 589-8300 1013 HD66702 LCD-IIIE20 Power Supply for Liquid Crystal Display Drive must be changed according to duty factor. Table 11 shows the relation. Various voltage levels must be applied to HD66702 terminals V 1 to V S to obtain liquid crystal display drive waveforms. The voltages VLCO gives the peak values for liquid crystal display drive waveforms. Resistance dividing provides each voltage as shown in Figure 22. Table 11 Duty Factor and Power Supply for Liquid Crystal Display Drive Duty Factor 1/8, 1/11 1/16 1/4 1/5 VI Vcc -1/4 VLCO Vcc -1/5 VLCO V2 Vcc- 1/2 VLCO Vec - 2/5 VLCO V3 Vcc -l/2 VLCO Vee - 3/5 VLCO V4 Vcc- 3/4 VLCO Vec-4/5VLCO Vs Vcc - VLCO Vec:...VLCO Power SUpply Bias Ved+5V V3 Vee R V, V2 Ved+5V) .- Vee r- / R V2 V LeD V:j R V4 V4 ~VR Cycle) VLeD R VR -5V 1/4 Bias (1/8, 1/11 Duty R V5 I-/. R R R V5 R V, --5V 1/5 Bias (1/16 Duty Cycle) Figure 22 Drive Voltage Supply Example HITACHI 1014 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66702 LCD-II1E20 Relation between Oscillation Frequency and Liquid Crystal Display Frame Frequency The examples in Figure 23 or liquid crystal display frame frequency apply only when oscillation frequency is 320 kHz (1 clock pulse =3.125 ~). 1. 1/8 Duty Cycle ~400CIOCks COM, Vee V, V2 (V3 ) V4 VS 1 2 1 [ I' I I 3 I 4 1------1 [J [] I 11 8' 1[ 2 I, 2 I I 1frame '1 1 frame =3.125 ~) x 400 x 8 =10000 ~) == 10 (ms) Frame frequency = 1 = 100 (Hz) 10 (ms) 2. 1/11 Duty Cycle r:- 400 clocks COM, Vee V, V2 (V3 ) V4 Vs mI 2 1 3 1 4 1--- ___ 111 I 1 IIIII I ,. 1 I II I frame 1 frame =3.125 ~) x 400 x 11 = 13750~) =13.75 (ms) Frame frequency = 1 =72.7 (Hz) 13.75 (ms) 3. 1/16 Duty Cycle ~200cloeks I 1 I 2 1 3 1 4 1- ---- -116 1 1 2 I ~~~Irl~~~----~~~~---- COM, ~ ~ • IIIII 1 frame II I I 1 frame =3.125 ~) x 200 x 16 = 10000 ~) =10 (ms) Frame frequency = 1 =100 (Hz) 10 (ms) Figure 23 Frame Frequency HITACHI Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 1015 HD66702 LCD-II1E20 Connection with Driver LSI HD44100H You can increase the number of display digits by extemaIly connecting an HD44100H liquid crystal display driver LSI to the HD66702. When connected to the HD66702. the HD44100H is used as segment signal driver. The HD44100H can be connected to the HD66702 directly since it supplies CLI. CL2. M. and D signals and power for liquid crystal display drive. Figure 24 shows a connection example. COM,-COM,. ~ ICOM,-COM.I I • SEG,-8EG,. 100 Caution: Connection of voltage supply terminals VI through V6 for liquid crystal display drive is complicated. The EXT pin must be fixed low if the HD44100H is connected to the HD66702. Up to 8 HD44100H units can be connected for 1line display (duty factor 1/8 or 1/11) and up to 3 units for the 2-line display (duty factor 1/16). RAM size limits the HD66702 to a maximum of 80 character display digits. The connection method in figure 22 remains unchanged for both I-line and 2line display or 5 x 7 and 5 x 10 dot character fonts. Dot Matrix lJquid Crystal Display Panel ~ i-=- 40 '?-. ~...L-_ _.L.H-D..,44100H o 1----------lDl, V, ------- V40 DR2 _ ~~~, SHl2 Cl 40 40 DL., DR, P~~~[~~~~~< ~ 1--1 HD44100H .--+-_...,.,J.:H;.;,:D:..:.,44100H Dl, V, ----- V40 DR2i-------- _ ~~~, SHL., Cl Dl2 DR, b Dl, V, ------ V40 DR2 1= ~~t, I- SHL., PP~~~{~$$~$~ Dl2 DR, b p~~g~Rl~~~~ ~~: t--------f_I4+-1+++++++++--'----11--4+--11+!-+++-H++-~~~=--= d Mr_------_+---+~H+H+~--~--~~~~-----~ ~cr_------_+----~~H+~--~---+~~~-----~----~~ GNDr_------~-----+H_H+~--~----~_H~------4-----~ ~r---------------H-~~--------~~~--------~--4+~~ ~r_--------------H_~--------~_H-L~------------_4~~ ~r_--------------~-------------U----------------~ HD66702 Figure 24 Example of Connecting HD44100H to HD66702 HITACHI 1016 / Hitachi Am6iica, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 HD66702 LCD-II/E20 Instruction and Display Correspondence 1. 8-bit operation, 20-digit x I-line display (using internal reset) rewrite is needed as function (see table 13). Thus, DB4-DB7 of the function set is written twice. 3. 8-bit operation, 20-digit x 2-line display For 2-line display, the cursor automatically moves from the first to the second line after the 40th digit of the 1st line has been written. Thus, if there are only 20 characters in the first line, the DD RAM address must again be set after the 20th character is completed. (See table 14). Note that the first and second lines of the display shift are performed. In the example, the display shift is performed when the cursor is on the second line. However, if the shift operation is performed when the cursor is on the first line, both the first and the second lines move together. When you repeat the shift, the display of the second line will not move to the first line, the same display will only move within each line many times. Table 12 shows an example of 8-bit x I-line display in 8-bit operation. The HD66702 functions must be set by function set instruction prior to display. Since the display data RAM can store data for 80 characters, as explained before, the RAM can be used for displays like a lighting board when combined with display shift operation. Since the display shift operation changes display position only and DD RAM contents remain unchanged, display data entered first can be output when the return home operation is performed. 2. 4-bit operation, 20-digit x I-line display (using internal reset) The program must set functions prior to 4-bit operation. Table 13 shows an example. When power is turned on, 8-bit operation is automatically selected and the first write is performed as an 8-bit operation. Since nothing is connected to DBO-DB3, a rewrite is then required. However, since one operation is completed in two accesses of 4-bit operation, a Note: When using the internal reset, the conditions in "Power Supply Condition Using Internal Reset Circuit" must be satisfied. If not, the LCD-II/E20 must be initialized by instruction. (As the internal reset does not function correctly in the 3-V LCD-Il/E20, it must always be initialized by instruction.) See "Initializing by Instruction." HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 1017 HD66702 LCD-II/E20 Table 12 8·Bit Operation, 20·Digit I·Line Display Example (Using Internal Reset) Step No. Instruction Display Operation 1 Power Supply On (HD66780 is initialized 'by the internal reset circuit) Initialized, No display appears. 2 Function Set RS R/WDB 7 • 0 0 0 0 Sets to 8-bit operation and selects 1line display and one of the three character, fonts. (Number of display lines and character font cannot be changed after this. ) 3 4 5 DBo 0 0 * * Display On/Off Control 0 0 0 0 0 0 1 Entry Mode Set 0 0 0 0 0 0 0 0 0 1 1 Turris on display and cursor. Entire display !s on space mode because of initialization, L_ Sets mode to increment the address by one and to shift the cursor to the right at the time of write to the DD/CG RAM. Display is not shifted. Writes "H". The DO RAM has already been selected by initialization when the power is turned on, The cursor is incremented by one and shifted to the right. Writes "1". 0 Write Data to CG RAM/DO RAM 1 0 0 1 0 0 1 0 0 0 IH 6 Write Data to CG RAM/DO RAM 1 0 0 1 0 0 1 0 0 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Write Data to CG RAM/DO RAM 1 0 0 1 0 0 1 0 0 ~ntry Mode Set o 0 0 0 0 0 0 Write Data to CG RAM/DD RAM 1 0 0 0 1 0 0 0 0 Write Data to CG RAM/DO RAM 1 0 0 1 0 0 1 1 0 Write Data to CG 1 0 0 1 0 Cursor or Display 0 0 0 o 0 Cursor or Display 0 0 0 0 0 Write Data to CG 1 0 0 1 0 Cursor or Display 0 0 0 0 0 Cursor or Display 0 0 0 0 0 Write Data to CG 1 0 0 1 0 Return Home 0 0 0 0 0 HITACHI HITACHI 0 RAM/DD RAM 0 1 1 1 Shift 1 0 0 Shift 1 0 0 RAM/DO RAM 0 0 0 1 * * * * 0 0 Writes "0", Shifts only the cursor position to the left, IMICROKO Shifts only the cursor position to the left. IMICROCO IMICROCO ICROCOM 0 Writes "M". IMICROKO I I CROCO Shift 1 1 Shift 1 0 RAM/DO RAM 0 1 1 0 0 M:J IMICROKO * * * * Sets mode for display shift at the time of write. W rites space. ITACHI TACH I Writes ''I''. HITACHI Writes "C" (correction). The display moves to the left. Shifts the display and cursor position to the right. Shifts only the cursor pOSition to the right. Writes "M". Returns both display and cursor to the original position (addfess 0). HITACHI 1018 Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Poini Pkwy.· Brisbane, GA 94005-1819' (415) 589-8300 HD66702 LCD-II/E20 Table 13 4-Bit Operation, 20-Digit I-Line Display Example (Using Internal Reset) Step No. 1 2 3 4 5 6 Display Instruction Power Supply On (HD66780 is initialized by the internal reset circuit) Function Set • DB4 RS R/W DB7 0 0 0 0 0 Function Set 0 0 0 0 0 0 0 0 Display On/Off Control 0 0 0 0 1 1 0 0 Entry Mode Set 0 0 0 0 1 0 0 0 Sets to 4-bit operation. In this case, operation is handled as 8 bits by initialization, and only this instruction completes with one write. Sets to 4-bit operation and selects 1line display and one of the three character fonts. 4-bit operation starts from this point on and resetting is needed. (Number of display lines and character font cannot be changed after this.) Turns on display and cursor. Entire display is in space mode because of initialization. Sets mode to increment the address by one and to shift the cursor to the right, at the time of write, to the DD/CG RAM. Display is not shifted. Writes "H". The DD RAM has already been selected by initialization when the power is turned on. The cursor is incremented by one and shifted to the right. 0 * * 0 1 0 0 0 1 0 0 Operation Initialized. No display appears. Write Data to CG RAM/DD RAM 100 1 0 0 1 0 1 0 0 0 After this, control is the same as 8-bit operation. HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 1019 HD66702 LCD-II/E20 Table 14 8-Bit Operation, 20-Digit x 2-Line Display Example (Using Internal Reset) No. InBtnlction Display 1 Power supply on ( HD66702 is intialized by the internal reset circuit) 2 Function Set RS R;WD B7 1 0 0 0 0 3 , DBo 1 1 0 * * Display On/Off Control 0 0 0 0 0 0 1 1 1 0 , I I I Operation I Initalized. No display appears. I Sets to 8-bit operation and selects 2line display and 5 x 7 dot character font. I Turns on display and cursor. All displa:Y is in space mode because of initialization. , E_J Sets mode to increment the address by one and to shift the cursor to the right, at the time of write, to the DO/ CG RAM. Display is not shifted. Writes "H". The DO RAM has already been selected by initialization when the power is turned on. The cursor is incremented by one and shifted to the right. 4 Entry Mode Set 0 0 0 0 1 1 0 5 Write Data to CG RAM/DO RAM 1 1 1 0 0 0 0 0 0 0 Write Data to CG RAM/DO RAM 1 0 0 1 1 0 0 0 0 1 Set DO RAM Address 1 1 0 0 0 0 0 0 0 Write Data to CG RAM/DO RAM 1 1 1 0 0 0 0 1 0 1 Write Data to CG RAM/DO RAM 1 0 1 0 0 1 1 0 1 1 I HITACHI I MICROCO J 12 Entry Mode Set 0 0 0 0 1 1 I HITACHI I MICROCO I I 13 Write Data to CG RAM/DO RAM 1 1 0 1 0 0 1 0 J right. 0 1 IITACHI IICROCOM I The first and second lines' shift operate at the same time. Return Home 0 0 0 0 1 0 I HITACHI I I MICROCOM I Returns both display and cursor to the original position (Address 0). 0 0 0 IH I 6 7 8 9 0 IHITACHI Writes'T'. I IHITACHI I ~ACHI I Sets RAM address so that the cursor is positioned at the head of the 2nd line. Writes "M". 10 11 0 0 0 1 Writes "0". I Sets mode for display shift at the time of write. Writes "M". Display is shifted to the 14 15 0 0 0 0 HITACHI 1020 Hitachi Ameiica, Ltd.· Hitachi Piaza· 2000 Sierra PQini Pkwy.· Brisbane, CA 940U5-1819· (415) 589-8300 HD66702 LCD-IIIE20 Initializing by Instruction If the power supply conditions for correctly operating the internal reset circuit are not met, initialization by instruction is required. Use the procedure in Figures 25 and 26 for initialization. 1: ( Power on Wait more than 15 ms after Vee rises to 4.5 V I RS R/W DB, DB6 DBs DB4 DB3 DB2 DB, DBo 0 l 0 0 0 1 1 * * * * [ BF cannot be checked before this instruction. [ B F cannot be checked before this instruction. Function set (Interface is 8 bits long.) Wait more than 4.1 ms RS R/W DB, DB6 DBs DB4 DB3 DB2 DB, DBo 0 0 0 0 1 1 * * * * 1Wait for more than 100 jlS RS R/W DB, DB6 DBs DB4 DB3 DB2 DB, DBo 0 0 0 0 1 1 Function set (Interface is 8 bits long.) * * * * [ BF cannot be checked before this instruction. Function set (Interface is 8 bits long.) , BF can be checked after the follow.ing instructions. When BF is not checked, the waiting time between instructions is longer than the execution instruction time. (See table 7) RS R/W DB, DB6 DBs DB4 DB3 DB2 DB, DBo 0 0 0 0 1 1 N F 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 liD S l Initialization ends * 0* 1 Function Set (Interface is 8 bits long. Specifiy the number of display lines and character font.) The number of display lines and character font cannot be changed afterwards. Display off Display clear Entry mode set Note: As the internal reset does not function correctly in the 3-V LCD-lItE20, it must be initialized by instruction. Figure 25 8-Bit Interface HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 1021 HD66702 LCD-II/E20 ! 2: Wait more than 1 5 ms after Vee rises to 4.5 V B F cannot be checked before this instruction. [ Function set (Interface is B bits long.) [ BF cannot be checked before this instruction. Function set (Interface is B bits long.) [ B F cannot be checked before this instruction. Function set (Interface is 8 bits length.) RS R/W DB, DBs DB5 DB. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N 0 0 0 0 0 0 0 0 0 0 0 0 0 F 0 0 0 0 0 1 0 0 * 0* 0 0 0 0 0 I/O 0 0 0 S BF can be checked after the following instructions. When' BF is not checked, the waiting time between instructions is -longer than the execution instruction time - (See table 7) Function Set (Set interface to be 4 bits long.) Interface is B bits length_ Function Set (Interface is 4 bits long. Specify the number of display lines and character font.) The number of display lines and character font cannot be changed afterwards_ Display off Display clear Entry Mode Set Initialization ends Note: As the internal reset does not function correctly in the 3-V LCD-UtE20, it must be initialized by instruction. Figure 26 4.Bit Interface HITACHI "IInnl'\ IUL'" Hitachi America, Lid .• Hiiachi Piaza • 2000 Sierra Point Pkwy. • Bnsbane. CA 94005-1819 • (415) 589-8300 NOTES HITACHI Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300 1023 • Hitachi America, Ltd. SEMICONDUCTOR & I.C. DIVISION Hitachi Plaza 2000 Sierra Point Parkway Brisbane, CA 94005-1819 Telephone: 415-589-8300 Fax:415-583~4207 REGIONAL OFFICES NORTHEAST REGION SOUTHEAST REGION PACIFIC MOUNTAIN REGION Hitachi America, Ltd. 77 South Bedford Street Burlington, MA 01803 Telephone: 617-229-2150 Fax: 617-229-6554 Hitachi America, Ltd. 5511 Capital Center Drive, Suite 204 Raleigh, NC 27606 Telephone: 919-233-0800 Fax: 919-233-0508 Hitachi America, Ltd. 4600 S. Ulster Street, Suite 700 Denver, CO 80237 Telephone: 303-740-6644 Fax: 303-740-6609 NORTH CENTRAL REGION SOUTH CENTRAL REGION AUTOMOTIVE REGION Hitachi America, Ltd. 500 Park Boulevard, Suite 415 Itasca, IL 60143 Telephone: 708-773-4864 Fax: 708-773-9006 Hitachi America, Ltd. Two Lincoln Centre, Suite 865 5420 LBJ Freeway Dallas, TX 75240 Telephone: 214-991-4510 Fax: 214-991-6151 Hitachi America, Ltd. 330 Town Center Drive, Suite 311 Dearborn, MI48126 Telephone: 313-271-4410 Fax: 313-271-5707 SOUTHWEST REGION Hitachi America, Ltd. 325 Columbia Turnpike, Suite 203 Florham Park, NJ 07932 Telephone: 201-514-2100 Fax: 201-514-2020 NORTHWEST REGION Hitachi America, Ltd. 1900 McCarthy Boulevard, Suite 310 Milpitas, CA 95035 Telephone: 408-954-8100 Fax: 408-954-0499 Hitachi America, Ltd. 2030 Main Street, Suite 450 Irvine, CA 92714 Telephone: 714-553-8500 Fax: 714-553-8561 TELECOM REGION DISTRICT OFFICES CANADA MINNESOTA TEXAS Hitachi (Canadian) Ltd. 320 March Road, Suite 602 Kanata, Ontario, Canada K2K 2E3 Telephone: 613-591-1990 Fax: 613-591-1994 Hitachi America, Ltd. 3800 W. 80th Street, Suite 1050 Bloomington, MN 55431 Telephone: 612-896-3444 Fax: 612-896-3443 Hitachi America, Ltd. 10777 Westheimer, Suite 1040 Houston, TX 77042 Telephone: 713-974-0534 Fax: 713-974-0587 FLORIDA NEW YORK IBM ENGINEERING Hitachi America, Ltd. 4901 N.W. 17th Way, Suite 302 Fort Lauderdale, FL 33309 Telephone: 305-491-6154 Fax: 305-771-7217 Hitachi America, Ltd. 2f Old Main Street, Suite 104 Fishkill, NY 12524 Telephone: 914-897-3000 Fax: 914-897-3007 Hitachi America, Ltd. 9600 Great Hills Trail, Ste. 150W Austin, TX 77042 Telephone: 512-345-9983 Fax: 512-343-2759 MANUFACTURING FACILITY ENGINEERING FACILITY Hitachi Semiconductor (America) Inc. 6321 East Campus Circle Drive Irving, TX 75063-2712 Hitachi Micro Systems, Inc. 179 East Tasman Drive San Jose, CA 95134 Technical product or priCing questions can be answered by your nearest Hitachi office. You may order product literature either by calling your nearest Hitachi office or by calling 1-800-285-1601. 1024 HITACHI® ·.-


Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c043 52.372728, 2009/01/18-15:56:37
Create Date                     : 2013:10:24 18:54:11-08:00
Modify Date                     : 2013:10:24 20:12:46-07:00
Metadata Date                   : 2013:10:24 20:12:46-07:00
Producer                        : Adobe Acrobat 9.55 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:7b5566f8-33e4-8c45-b170-6099165b98be
Instance ID                     : uuid:26c7469b-80da-2845-9e7e-e7bea09f61d5
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 1026
EXIF Metadata provided by EXIF.tools

Navigation menu