1992_Motorola_Rectifier_Device_Data 1992 Motorola Rectifier Device Data
User Manual: 1992_Motorola_Rectifier_Device_Data
Open the PDF directly: View PDF
.
Page Count: 402
| Download | |
| Open PDF In Browser | View PDF |
Index and Cross Reference . .
Selector Guide
II
Data Sheets •
Tape and Reell •
Packaging Specifications
Surface Mount Information
TO-220 Leadform Information
Package Outline Dimensions
and Footprints
II
II
II
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
MOTOROLA
RECTIFIER DEVICE DATA
This book presents technical data for Motorola's broad line of rectifiers. Complete
specifications are provided in the form of data sheets and accompanying selection guides provide
a quick comparison of characteristics to simplify the task of choosing the best device for a circuit.
The information in this book has been carefully checked and is believed to be accurate;
however, no responsibility is assumed for inaccuracies.
Motorola reserves the right to make changes without further notice to any products herein.
Motorola makes no warranty, representation or guarantee regarding the suitability of its products
for any particular purpose, nor does Motorola assume any liability arising out of the application
or use of any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. 'Typical" parameters can and do vary in different
applications. All operating parameters, including "Typicals" must be validated for each customer
application by customer's technical experts. Motorola does not convey any license under its
patent rights nor the rights of others. Motorola products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the Motorola
product could create a situation where personal injury or death may occur. Should Buyer
purchase or use Motorola products for any such unintended or unauthorized application, Buyer
shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding
the design or manufacture of the part. Motorola and ® are registered trademarks of Motorola,
Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
1st Edition
©MOTOROLA INC., 1992
"All Rights Reserved"
Printed in U.S.A.
iii
MOTOROLA DEVICE CLASSIFICATIONS
In an effort to provide up-to-date information to the customer regarding the status of any given device, Motorola has
classified all devices into three categories: Preferred devices, Current products and Not Recommended for New
Design products.
A Preferred type is a device which is recommended as a first choice for future use. These devices are "preferred" by
virtue of their performance, price, functionality, or combination of attributes which offer the overall "besf' value to the
customer. This category contains both advanced and mature devices which will remain available for the foreseeable
future.
"Preferred devices" are identified in the Selector Guide Section and
the Data Sheet Section.
Device types identified as "currenf' may not be a first choice for new designs, but will continue to be available because
of the popularity and/or standardization or volume usage in current production designs. These products can be
acceptable for new designs but the preferred types are considered better alternatives for long term usage.
Any device that has not been identified as a "preferred device" is a "current" device.
Products designated as "Not Recommended for New Design" may become obsolete as dictated by poor market
acceptance, or a technology or package that is reaching the end of its life cycle. Devices in this category have an
uncertain future and do not represent a good selection for new device designs or long term usage.
"Not Recommended for New Design" devices are identified as such within the
appropriate table in the Selector Guide Section of this data book.
Designer's, POWERTAP, SCANSWITCH, MEGAHERTZ, Surmetic and SWITCHMODE are trademarks of Motorola Inc.
Thermal Clad is a trademark of the Bergquist Company.
iv
Index and Cross Reference . .
i
1-1
INDEX AND CROSS REFERENCE
HI
The following table represents an index and cross-reference guide for all rectifier devices which are either manufactured directly
by Motorola orforwhich Motorola manufactures a suitable equivalent. Where the Motorola part number differs from the industry part
number, the Motorola device is a "form, fit and function" replacement for the industry type number - however, subtle differences in
characteristics and/or specifications may exist. Where multiple replacernent parts appear for a given industry part number, the page
number represents the first replacement device listed.
Industry
Pari Number
Motorola
Nearest
Replacement
Motorola
Similar
Replacement
Page
Number
Industry
Pari Number
Motorola
Nearest
Replacement
Motorola
Similar
Replacement
Page
Number
lN1183
lN1183A
lN1184
lN1184A
lN1185
lN1185A
lN1186
lN1183A
lN1183A
lN1184A
lN1184A
lN1186A
lN1185A
lN1186A
3-2
3-2
3-2
3-2
3-2
3-2
3-2
lN3880
lN3881
lN3882
lN3883
lN3889
lN3890
lN3891
lN3880
lN3881
lN3882
1N3883
lN3889
lN3890
lN3891
3-7
3-7
3-7
3-7
3-12
3-12
3-12
lN1186A
lN1187
lN1187A
lN1188
lN1188A
lN1189
lN1169A
lN1186A
lN1188A
lN1187A
lN1188A
lN1188A
lN1190A
lN1190A
3-2
3-2
3-2
3-2
3-2
3-2
3-2
lN3892
lN3893
lN3899
lN3900
lN3901
lN3902
lN3903
1N3892
1N3893
lN3899
lN3900
lN3901
lN3902
lN3903
3-12
3-12
3-17
3-17
3-17
3-17
3-17
lN1190
lN1190A
lN1199A
lN1200A
lN1201A
lN1202A
lN1203A
lN1190A
lN1190A
lN1199A
lN1200A
lN1202A
lN1202A
lN1204A
3-2
3-2
3-4
3-4
3-4
3-4
3-4
lN3909
lN3910
lN3911
lN3912
lN3913
lN3957
lN3957GP
lN3909
lN3910
lN3911
lN3912
lN3913
3-22
3-22
3-22
3-22
3-22
3-27
3-27
lN1204A
lN1205A
lN1206A
lN2069,A
lN2070,A
lN2071,A
lN3208
lN1204A
lN1206A
lN1206A
lN4003
lN4004
lN4005
lN3208
3-4
3-4
3-4
3-27
3-27
3-27
3-6
lN4001
lN4001GP
lN4002
lN4002GP
lN4003
lN4003GP
lN4004
lN4001
lN3209
lN3210
lN3211
lN3212
lN3611
lN3611GP
lN3612
lN3209
lN3210
lN3211
lN3212
3-6
3-6
3-6
3-6
3-27
3-27
3-27
lN4004GP
lN4005
lN4005GP
lN4006
lN4006GP
lN4007
lN4007GP
lN4003
lN4003
lN4004
lN3612GP
lN3613
lN3613GP
lN3614
lN3614GP
lN3670A
lN3671A
MA1128
MA1128
3-27
3-27
3-27
3-27
3-27
3-218
3-218
lN3672A
lN3673A
lN3879
MA1130
MA1130
lN3879
3-218
3-218
3-7
lN4004
lN4005
lN4005
lN4006
lN4006
1-2
lN4007
lN4007
lN4001
lN4002
lN4002
lN4003
lN4003
lN4004
lN4004
3-27
3-27
3-27
3-27
3-27
3-27
3-27
lN4007
3-27
3-27
3-27
3-27
3-27
3-27
3-27
lN4245
lN4245GP
lN4246
lN4246GP
lN4247
lN4247GP
lN4248
lN4003
lN4003
lN4004
lN4004
lN4005
lN4005
lN4006
3-27
3-27
3-27
3-27
3-27
3-27
3-27
lN4248GP
lN4249
lN4249GP
lN4006
lN4007
lN4007
3-27
3-27
3-27
1N4005
lN4005
lN4006
lN4006
lN4007
INDEX AND CROSS REFERENCE (Continued)
Industry
Part Number
lN4933
lN4933GP
lN4934
lN4934GP
lN4935
lN4935GP
lN4936
Motorola
Nearest
Replacement
Motorola
Similar
Replacement
Industry
Part Number
Motorola
Nearest
Replacement
Motorola
Similar
Replacement
Page
Number
3-32
3-32
3-32
3-32
3-32
3-32
3-32
lN5812
lN5813
lN5814
lN5815
lN5816
lN5817
lN5818
lN5817
lN5818
3-285
3-285
3-285
3-285
3-285
3-40
3-40
lN4937
lN4935
lN4935
lN4936
lN4936
3-32
3-32
3-32
3-32
3-32
3-32
3-32
lN5819
lN5820
lN5821
1N5822
lN6095
lN6096
lN6097
lN5819
lN5820
lN5821
lN5822
lN6095
lN6096
lN6097
3-40
3-45
3-45
3-45
3-67
3-67
3-71
lN4944GP
lN4945
lN4946
lN4946GP
lN5185
lN5185GP
lN5186
1N4936
1N4937
lN4937
lN4937
MR850
MR850
MR851
3-32
3-32
3-32
3-32
3-209
3-209
3-209
lN6098
lN6304
lN6305
lN6306
lN6391
lN6392
10CTF10
lN6098
MUR7005
MUR7010
MUR7015
MBR3545
MBR6545
MURB10
3-71
3-305
3-305
3-305
3-121
3-143
3-263
lN5186GP
lN5187
lN5187GP
lN5188
lN5188GP
lN5189
lN5189GP
MR851
MR852
MR852
MR854
MR854
MR856
MR856
3-209
3-209
3-209
3-209
3-209
3-209
3-209
10CTF20
10CTF30
10CTF40
1DOll
10012
10T0030
10T0035
MUR820
MURil30
MURB40
lN4934
lN4935
MBR1035
MBR1035
3-263
3-263
3-263
3-32
3-32
3-90
3-90
MR856
MR856
3-209
3-209
3-38
3-38
3-38
3-38
3-38
lOT0040
10T0045
110003
110004
110005
110006
110009
MBR1045
MBR1045
lN5818
lN5819
MBR150
MBR160
MBR190
3-90
3-90
3-40
3-40
3-75
3-75
3-78
110010
12CT0030
12CT0035
12CT0040
12CT0045
12Fl0
12Fl00
MBR1100
MR850
MR851
MR852
MR854
MR856
3-38
3-38
3-209
3-209
3-209
3-209
3-209
MBR1535CT
MBR1535CT
MBR1545CT
MBR1545CT
MRl121
MR1130
3-78
3-96
3-96
3-96
3-96
3-218
3-218
lN5420
lN5614
lN5615
lN5615GP
lN5616
lN5617
lN5617GP
MR856
lN4003
lN4935
lN4935
lN4004
lN4936
lN4936
3-209
3-27
3-32
3-32
3-27
3-32
3-32
12F20
12F40
12F60
12FBO
12F110SXX
12Fl20SXX
12FL40SXX
MRl122
MRl124
MR1126
MRl128
lN3890
lN3891
lN3893
3-218
3-218
3-218
3-218
3-12
3-12
3-12
lN5618
lN5619
lN5619GP
1N5620
lN5802
lN5803
lN5804
lN4005
lN4937
lN4937
lN4006
MUR405
MUR410
MUR410
3-27
3-32
3-32
3-27
3-253
3-253
3-253
12FL60SXX
15CT0035
15CT0045
16Fl0
16Fl00
16F20
16F40
MR1376
lN5805
lN5806
lN5807
lN580B
lN5809
lN5810
lN5811
MUR415
MIJR415
MUR405
MUR410
MUR410
MUR415
MUR415
3-253
3-253
3-253
3-253
3-253
3-253
3-253
16F60
16F80
6A05
6Al
6Al0
6A2
6A4
MR2006
MR2008
lN4936GP
lN4937
lN4937GP
lN4942
lN4942GP
lN4943
lN4944
lN5190
lN5190GP
1N5400
lN5401
lN5402
1N5403
1N5404
111:5405
lN5406
lN5415
lN5416
lN5417
lN5418
lN5419
lN4933
Page
Number
lN4933
1N4934
lN4934
lN4935
lN4935
lN4936
lN4936
lN4937
lN5400
lN5401
lN5402
lN5404
lN5404
lN5406
lN5406
1-3
MUR2505
MUR2510
MUR2510
MUR2515
MUR2515
MBR1535CT
MBR1545CT
MR2001
MR2010
MR2002
MR2004
MR750
MR751
MR760
MR752
MR754
3-12
3-96
3-96
3-221
3-221
3-221
3-221
3-221
3-221
3-196
3-196
3-196
3-196
3-196
I
II
INDEX AND CROSS REFERENCE (Continued)
Industry
Part Number
6A6
6A8
6Fl0
6Fl00
6F20
6F40
6F60
•
6F80
6FL10SXX
6Fl20SXX
6FL40SXX
6FL60SXX
20CT0030
20CT0035
20CT0040
20CT0045
20F0020
20F0030
20F0035
20F0040
20F0045
210003
210004
21 F0030
21 F0035
21 F0040
21F0045
28CP0030
28CP0040
30CT0030
30CT0035
30CT0040
30CT0045
300L1
30012
310003
310004
310005
310006
310009
310010
40COOO20
40COO030
40COO035
40COO040
40COO045
40Dl
4002
4004
4006
4008
40HF10
40HF20
40HF30
40HF40
40HF5
40HF50
40HF60
40HFL10SXX
40HFl20SXX
50H0020
50H0030
50H0035
Motorola
Nearest
Replacement
Motorola
Similar
Replacement
MR756
MR758
Page
Number
Industry
Part Number
Motorola
Nearest
Replacement
Motorola
Similar
Replacement
Page
Number
3-196
3-196
3-218
3-218
3-218
3-218
3-218
50H0040
50H0045
50S0030
50S0040
51 H0045
52H0030
52H0035
3-218
3-7
3-7
3-7
3-7
3-103
3-103
52H0040
52H0045
55HOO15
55H0020
55HOO25
55H0030
60COO020
MBR6045
MBR6045
MBR3035CT
3-135
3-135
3-147
3-147
3-147
3-147
3-113
MBR2045CT
MBR2045CT
3-103
3-103
3-121
3-121
3-121
3-121
3-121
60COO030
60COO035
60COOO40
60COO045
75H0030
75H0035
75H0040
MBR3035CT
MBR3035CT
MBR3045CT
MBR3045CT
MBR8035
MBR8035
MBR8045
3-113
3-113
3-113
3-113
3-149
3-149
3-149
lN5821
lN5822
3-45
3-45
3-121
3-121
3-121
3-121
3-117
75H0045
85H0030
85H0035
85H0040
85H0045
200CN0020
200CN0030
MBR8045
MBR8035
MBR8035
MBR8045
MBR8045
MBR30035CT
MBR30035CT
3-149
3-149
3-149
3-149
3-149
3-162
3-162
MBR3045PT
3-117
3-109
3-109
3-109
3-109
3-209
3-209
200CN0035
200CN0040
200CN0045
201CN0020
201CN0030
201CN0035
201CN0040
MBR30035CT
MBR30045CT
MBR30045CT
MBR20035CT
MBR20035CT
MBR20035CT
MBR20045CT
3-162
3-162
3-162
3-157
3-157
3-157
3-157
lN5821
lN5822
MBR350
MBR360
MBR390
MBR3100
3-45
3-45
3-81
3-81
3-85
3-85
3-113
201CN0045
A114A
A114B
Al14C
Al140
Al14E
A114F
MBR20045CT
3-113
3-113
3-113
3-113
3-196
3-196
3-196
MRl121
MR1130
MRl122
MRl124
MRl126
MR1128
lN3880
lN3881
1N3883
MR1366
MBR2035CT
MBR2035CT
MBR3535
MBR3535
MBR3535
MBR3545
MBR3545
MBR3535
MBR3535
MBR3545
MBR3545
MBR3035PT
MBR2535CT
MBR2535CT
MBR2545CT
MBR2545CT
MR851
MR852
MBR3035CT
MBR3035CT
MBR3035CT
MBR3045CT
MBR3045CT
MR751
MR752
MR754
MR756
MR758
lN1184A
lNl186A
lN1187A
lNl188A
lNl183A
lN1190A
lNl190A
MUR5010
MUR5020
MBR6035
MBR6035
MBR6035
MBR6045
MBR6045
lN5824
lN5825
MBR6035
MBR6035
MBR6035
MBR7535
MBR7535
MBR7535
MBR7535
3-135
3-135
3-49
3-49
3-135
3-135
3-135
lN4934
lN4935
lN4936
lN4936
lN4937
lN4933
3-157
3-32
3-32
3-32
3-32
3-32
3-32
A114M
A115A
Al15B
Al15C
Al150
Al15E
Al15F
lN4937
MR851
MR852
MR854
MR854
MR856
MR850
3-32
3-209
3-209
3-209
3-209
3-209
3-209
3-196
3-196
3-2
3-2
3-2
3-2
3-2
Al15M
A14A
A14C
A140
A14E
A14F
A14M
MR856
lN4002
lN4004
lN4004
lN4005
lN4001
lN4005
3-209
3-27
3-27
3-27
3-27
3-27
3-27
3-2
3-2
3-299
3-299
3-135
3-135
3-135
A14N
A14P
AR25A
AR25B
AR250
AR25G
AR25J
lN4006
lN4007
MR2500
MR2501
MR2502
MR2504
MR2506
3-27
3-27
3-235
3-235
3-235
3-235
3-235
1-4
INDEX AND CROSS REFERENCE (Continued)
Industry
Pari Number
Motorola
Nearest
Replacement
Motorola
Similar
Replacement
Page
Number
Industry
Pari Number
Motorola
Nearest
Replacement
AR25K
AR25M
ARS25A
ARS25B
ARS25D
ARS25G
ARS25J
MR250B
MR251 0
MR2500
MR2501
MR2502
MR2504
MR2506
3-235
3-235
3-235
3-235
3-235
3-235
3-235
BYV27-50
BYV28-100
BYV28-150
BYV2B-50
BYV29-300
BYV29-400
BYV29-500
ARS25K
ARS25M
BY229-200
BY229-400
BY229-600
BYP21-100
BYP21-150
MR250B
MR2510
MURB10
MURB15
3-235
3-235
3-263
3-263
3-263
3-263
3-263
BYV33-35
BYV33-40
BYV33-45
BYV39-35
BYV39-40
BYV39-45
BYV43-35
BYP21-200
BYP21-50
BYP22-100
BYP22-150
BYP22-200
BYP22-50
BYQ28-100
MUR820
MUR805
MUR3010PT
MUR3015PT
MUR3020PT
MUR3005PT
MUR1610CT
3-263
3-263
3-2B7
3-2B7
3-287
3-2B7
3-277
BYV43-40
BYV43-45
BYW29-100
BYW29-150
BYW29-200
BYW29-50
BYW29-50
BYQ28-150
BYQ28-200
BYQ2B-50
BYR29-600
BYS76
BYS80
BYS92-40
MUR1615CT
MUR1620CT
MUR1605CT
BYW31-100
BYW31-150
BYW31-200
BYW31-50
BYW77-100
BYW77-150
BYW77-50
MUR2510
MUR2515
MUR2520
MUR2505
MBR20045CT
3-277
3-277
3-277
3-263
3-147
3-113
3-157
BYS92-45
BYS92-50
BYS93-40
BYS93-45
BYS93-50
BYS95-40
BYS95-45
MBR20045CT
MBR20050CT
MBR30045CT
MBR30045CT
MBR30050CT
MBR12045CT
MBR12045CT
3-157
3-157
3-162
3-162
3-162
3-153
3-153
BYW7B-l00
BYW7B-150
BYW7B-50
BYWBO-l00
BYW80-150
BYWBO-200
BYWBO-50
MUR7010
MUR7015
MUR7005
MUR810
MURB15
MURB20
MURB05
BYS95-50
BYS97-40
BYS97-45
BYS97-50
BYS98-40
BYS98-45
BYS9B-50
MBR12050CT
MBR20045CT
MBR20045CT
MBR20050CT
MBR12045CT
MBR12045CT
MBR1535CT
3-153
3-157
3-157
3-157
3-153
3-153
3-96
BYW92-100
BYW92-150
BYW92-200
BYW92-50
BYW93-100
BYW93-150
BYW93-200
BYT28-300
BYT28-400
BYT2B-500
BYT79-300
BYT79-400
BYT79-SOO
BYV1B-35
MUR1630CT
MURl640CT
MURl650CT
MUR1530
MUR1540
MUR1550
MBR1535CT
3-277
3-277
3-277
3-272
3-272
3-272
3-96
BYW93-50
BYX42-300
BYX42-600
CPT12035
CPT12045
CPT12050
CPT20035
MBR1545CT
3-96
3-90
3-90
3-54
3-54
3-121
3-121
3-149
3-149
3-244
3-244
3-244
3-244
3-244
BYV1B-45
BYV19-35
BYV19-45
BYV20-30
BYV20-45
BYV22-35
BYV22-45
BYV23-35
BYV23-45
BYV26A
BYV26B
BYV26C
BYV27-100
BYV27-150
MUR820
MUR840
MURB60
MURB60
MBR7545
MBR3045CT
MBR1035
MBR1045
lN5B27
lN5B28
MBR3535
MBR3545
MBR8035
MBR8045
MUR120
MUR140
MUR160
MURll0
MURl15
1-5
Motorola
SImilar
Replacement
Page
Number
MUR105
MUR410
MUR415
MBR2035CT
MUR1530
MUR1540
MUR1550
3-244
3-253
3-253
3-103
3-272
3-272
3-272
MBR2535CT
3-103
3-103
3-103
3-9B
3-9B
3-98
3-103
MBR2035CT
MBR2045CT
MBR2045CT
MBR1635
MBR1645
MBR1645
MBR2545CT
MBR2545CT
MURB10
MURB15
MURB20
MUR805
MURB05
MUR2510
MUR2515
MUR2505
3-103
3-109
3-263
3-263
3-263
3-263
3-263
3-2B5
3-2B5
3-285
3-285
3-2B5
3-2B5
3-2B5
3-305
3-305
3-305
3-263
3-263
3-263
3-263
MUR5010
MUR5015
MUR5020
MUR5005
MUR7010
MUR7015
MUR7020
3-299
3-299
3-299
3-299
3-305
3-305
3-305
MUR7005
MR1123
MRl126
MBR12035CT
MBR12045CT
MBR12050CT
MBR20035CT
3-305
3-21B
3-21B
3-153
3-153
3-153
3-157
CPT20045
CPT20050
CPT20120
CPT20125
CPT30035
CPT30045
CPT30050
MBR20045CT
MBR20050CT
MBR20020CTl
MBR20025CTl
MBR30035CT
MBR30045CT
MBR30050CT
3-157
3-157
3-155
3-155
3-162
3-162
3-162
EGP10A
EGP10B
EGP10C
EGP10D
EGP20A
EGP20B
EGP20C
MUR105
MURll0
MUR115
MUR120
3-244
3-244
3-244
3-244
3-253
3-253
3-253
MUR405
MUR410
MUR415
..
INDEX AND CROSS REFERENCE (Continued)
Industry
Part Number
EGP20D
EGP30A
EGP30B
EGP30C
EGP30D
EGP50A
EGP50B
Motorota
Nearest
Replacement
Motorola
Similar
Replacement
MUR420
MUR405
MUR410
MUR415
MUR420
MUR405
MUR410
Page
Number
Industry
Part Number
Motorola
Nearest
Replacement
Motorola
Similar
Replacement
Page
Number
3-253
3-253
3-253
3-253
3-253
3-253
3-253
FE8A
FE8B
FE8C
FE8D
FE8F
FE8G
FEP16AT
MUR805
MUR810
MUR815
MUR820
MUR830
MUR840
MUR1605CT
3-263
3-263
3-263
3-263
3-263
3-263
3-277
FEP16BT
FEP16CT
FEP16DT
FEP16FT
FEP16GT
FEP16HT
FEP16JT
MUR1610CT
MUR1615CT
MUR16Z0CT
MUR1640CT
MUR1640CT
MUR1660CT
MUR1660CT
3-277
3-277
3-277
3-277
3-277
3-277
3-277
EGP50C
EGP50D
ERASl
ERB35
ERB44
ERB91
ERC24
MUR415
MUR420
MUR120
lN4935-7
MUR120
lN4936-7
3-253
3-253
3-40
3-244
3-32
3-244
3-32
ERC38
ERC62
ERC80
ERC90
ERC91
ERD24,74
ERD75
MUR140-160
MBR1045
MBR745
MUR820
MUR420
lN3889-93
1N3899-3901
3-244
3-90
3-88
3-263
3-253
3-12
3-17
FES16AT
FES16BT
FES16CT
FES16DT
FES16FT
FES16GT
FES16HT
MUR1505
MUR1510
MUR1515
MUR1520
MUR1540
MUR1540
MUR1560
3-272
3-272
3-272
3-272
3-272
3-272
3-272
MBR6045
3-113
3-54
3-17
3-22
3-63
3-22
3-135
FESl6JT
FES8AT
FES8BT
FES8CT
FES8DT
FES8FT
FES8GT
MUR1560
MUR805
MUR810
MUR815
MUR820
MUR840
MUR840
3-272
3-263
3-263
3-263
3-263
3-263
3-263
FES8HT
FES6JT
FR061
FR061L
FR062
FR062L
FR063
MUR860
MUR860
lN4933
MUR3020PT
3-263
3-88
3-263
3-263
3-90
3-272
3-287
3-263
3-263
3-32
3-32
3-32
3-32
3-32
3-287
3-113
3-277
3-277
3-277
3-277
3-277
FR063L
FR064
FR065
FR065L
FR065L
FR10l
FR102
lN4935
MUR1605CT
MUR1610CT
MUR1615CT
MUR1620CT
MUR1630CT
FE16G
FE1A
FE1B
FE1C
FElD
FE2A
FE2B
MURl640CT
MUR105
MURll0
MURl15
MUR120
MUR405
MUR410
3-277
3-244
3-244
3-244
3-244
3-253
3-253
FR103
FR104
FR105
FR251
FR252
FR253
FR254
lN4935
lN4936
lN4937
FE2C
FE2D
FE3A
FE3B
FE3C
FE3D
FE5A
MUR415
MUR420
MUR405
MUR410
MUR415
MUR420
MUR405
3-253
3-253
3-253
3-253
3-253
3-253
3-253
FR255
FR301
FR302
FR303
FR304
FR305
FR601
FE5B
FE5C
FE5D
FE6A
FE6B
FE6C
FE6D
MUR410
MUR415
MUR420
MUR405
MUR410
MUR415
MUR420
3-253
3-253
3-253
3-253
3-253
3-253
3-253
FR602
FR603
FR604
FR605
FRM3205CC
FRM3210CC
FRM3215CC
ERD80
ERD81
ERE24,74
ERE75
ERE81
ERG24,74
ERG81,A
ESAB33
ESAB82
ESAB92
ESAC33
ESAC82
ESAC92
ESAC93
ESAD33
ESAD81
FE16A
FE16B
FE16C
FE16D
FE16F
lN5819
MBR3045CT
lN5828
1N3899-3903
lN3909-11
lN5834
lN3909-13
MUR820
MBR745
MUR820
MUR820
MBR1045
MUR1520
MUR3040PT
MBR3045CT
1-6
lN4933
lN4934
lN4934
lN4935
lN4936
lN4937
lN4936
lN4937
lN4933
lN4934
MR850
MR851
MR852
MR854
MR856
MR850
MR851
MR852
MR854
MR856
MR820
MR821
MR822
MR824
MR826
MUR3005PT
MUR3010PT
MUR3015PT
3-32
3-32
3-32
3-32
3-32
3-32
3-32
3-32
3-32
3-32
3-209
3-209
3-209
3-209
3-209
3-209
3-209
3-209
3-209
3-209
3-200
3-200
3-200
3-200
3-200
3-287 "
3-287
3-287
INDEX AND CROSS REFERENCE (Continued)
Industry
Part Number
Motorola
Nearest
Replacement
Motorola
Similar
Replacement
Page
Number
Industry
Part Number
Motorola
Nearest
Replacement
Motorola
Similar
Replacement
Page
Number
FRM3220CC
FRP1605CC
FRP1610CC
FRP1615CC
FRP1620CC
FRP805
FRP810
MUR3020PT
MUR1605CT
MUR1610CT
MUR1615CT
MUR1620CT
MUR805
MUR810
3-287
3-277
3-277
3-277
3-277
3-263
3-263
GI1303
GI1304
GI1401
GI1402
GI1403
GI1404
GI2401
MUR805
MUR810
MUR815
MUR820
MUR1605CT
3-253
3-253
3-263
3-263
3-263
3-263
3-277
FRP815
FRP820
FST1240
FST1245
FST1540
FST1545
FST20035
MUR815
MUR820
MBR1545CT
MBR1545CT
MBR1545CT
MBR1545CT
3-263
3-263
3-96
3-96
3-96
3-96
3-157
GI2402
GI2403
GI2404
GI2500
GI2501
GI2502
GI2504
MUR1610CT
MUR1615CT
MUR1620CT
MR2500
MR2501
MR2502
MR2504
3-277
3-277
3-277
3-235
3-235
3-235
3-235
3-157
3-157
3-157
3-103
3-103
3-107
3-162
GI2506
GI2508
GI2510
GI5823
GI5824
GI5825
GP10A
MR2506
MR2508
MR2510
3-235
3-235
3-235
3-49
3-49
3-49
3-27
MBR12035CT
MBR12045CT
3-162
3-162
3-162
3-109
3-109
3-153
3-153
GP10B
GP100
GP10G
GP10J
GP10K
GP10M
GP80A
MUR805
3-27
3-27
3-27
3-27
3-27
3-27
3-263
FST6045
FST6050
GER4001
GER4002
GER4003
GER40D4
GER4005
MBR12045CT
MBR12050CT
lN4001
lN4002
lN4003
lN4004
lN4005
3-153
3-153
3-27
3-27
3-27
3-27
3-27
GP80B
GP800
GP80G
GP80J
HER10l
HER102
HER103
MUR810
MUR820
MUR840
MUR860
MUR105
MURll0
MUR120
3-263
3-263
3-263
3-263
3-244
3-244
3-244
GER4006
GER4007
GI750
GI751
GI752
GI754
GI756
lN4006
lN4007
MR750
MR751
MFl752
MR754
MR756
3-27
3-27
3-196
3-196
3-196
3-196
3-196
HER104
HER105
HER151
HER152
HER153
HER154
HER155
MUR130
MUR140
GI758
GI820
GI821
GI822
GI824
GI826
GI850
MR758
MR820
MR821
MR822
MR824
MR826
3-196
3-200
3-200
3-200
3-200
3-200
3-209
HER301
HER302
HER303
HER304
HER305
HER801
HER802
MUR405
MUR410
MUR420
MUR430
MUR440
MUR805
MUR810
3-253
3-253
3-253
3-253
3-253
3-263
3-263
MUR105
MUR110
MURl15
3-209
3-209
3-209
3-209
3-244
3--244
3-244
HER803
HER804
HER805
IR03899,R
IR03900,R
IR03901,R
IR03902,R
MUR820
MUR830
MUR840
lN3899,R
lN3900,R
lN3901,R
lN3902,R
3-263
3-263
3-263
3-17
3-17
3-17
3-17
MUR120
MUR405
MUR410
MUR415
MUR420
MUR405
MUR410
3-244
3-253
3-253
3-253
3-253
3-253
3-253
IR03903,R
IR03909,R
IR03910,R
IR03911,R
IRD3912,R
IRD3913,R
P600A
lN3903,R
lN3909,R
lN3910,R
lN3911,R
lN3912,R
lN3913,R
3-17
3-22
3-22
3-22
3-22
3-22
3-196
FST20040
FST20045
FST20050
FST2040
FST2045
FST2050
FST30035
FST30040
FST30045
FST30050
FST3040
FST3045
FST6035
FST6040
GI851
GI852
GI854
GI856
Gll00l
GI1002
Gll003
Gll004
GI1101
GI1102
Glll03
GI1104
GI1301
G11302
MBR20035CT
MBR20045CT
MBR20045CT
MBR20050CT
MBR2045CT
MBR2045CT
MBR2060CT
MBR30035CT
MBR30045CT
MBR30045CT
MBR30050CT
MBR2545CT
MBR2545CT
MR850
MR851
MR852
MR854
MR856
1-7
MUR415
MUR420
lN5823
lN5824
lN5825
lN4001
lN4002
lN4003
lN4004
lN4005
lN4006
lN4007
MUR105
MUR110
MUR120
MUR130
MUR140
MR750
3-244
3-244
3-244
3-244
3-244
3-244
3-244
•
INDEX AND CROSS REFERENCE (Continued)
Industry
Pall Number
P600B
P600D
P600G
P600J
P600K
A711
A711A
•
Motorola
Nearest
Replacement
Motorola
Similar
Replacement
MA751
MA752
MA754
MA756
MA758
Page
Number
Industry
Pall Number
Motorola
Nearest
Replacement
Motorola
Similar
Replacement
Page
Number
3-196
3-196
3-196
3-196
3-196
3-243
3-243
RGP30A
RGP30B
RGP30D
RGP30G
RGP30J
RGP80A
RGP80B
MUR805
MUR610
3-209
3-209
3-209
3-209
3-209
3-263
3-263
3-339
3-339
3-339
3-235
3-235 I
3-235 I
3-235
RGP60D
RGP60G
AGP60J
RL061
AL062
RL063
RL064
MUR820
MUR640
MUA660
lN4001
lN4002
lN4003
lN4004
3-263
3-263
3-263
3-27
3-27
3-27
3-27
RL065
RL066
RL067
AL251
AL252
RL253
RL254
1N4005
lN4006
lN4007
lN4933
lN4934
3-235
3-235
3-235
3-235
3-235
3-32
3-32
3-27
3-27
3-27
3-36
3-38
3-38
3-38
RG1D
RG1G
RG1J
RG2A
RG2B
RG2D
RG2G
lN4935
lN4936
lN4937
MR850
MR851
MR852
MR854
3-32
3-32
3-32
3-209
3-209
3-209
3-209
RL255
RL256
AL257
AP300A
AP300B
RP300D
AP300G
MR850
MA851
MR852
MR654
3-36
3-38
3-38
3-209
3-209
3-209
3-209
RG2J
RG3A
RG3B
RG3D
RG3G
RG3J
RG4A
MR856
MR850
MR851
MR852
MR854
MR856
MR850
3-209
3-209
3-209
3-209
3-209
3-209
3-209
RP300J
AUD810
AUD815
RUD620
RUA610
RUA815
AUR820
MR656
MUR1610CT
MUA1615CT
MUA1620CT
MUA810
MUA815
MUA820
3-209
3-277
3-277
3-277
3-263
3-263
3-263
RG4B
RG4D
RG4G
RG4J
RGM30A
RGM30B
RGM30D
MR851
MR852
MA854
MA856
MUR3005PT
MUR3010PT
MUR3020PT
3-209
3-209
3-209
3-209
3-287
3-287
3-287
RURD1610
RURD1615
AUAD1620
S00601DF
S00602DF
S00603DF
S00604DF
1N3660
lN3861
lN3882
lN3663
RGM30G
RGP10A
RGP10B
RGP10D
RGP10G
RGP10J
RGP15A
MUR3040PT
lN4933
lN4934
lN4935
lN4936
lN4937
MR850
3-287
3-32
3-32
3-32
3-32
3-32
3-209
S006AADF
S01201DF
S01202DF
S01203DF
S01204DF
S012AADF
S20100
lN3879
lN3890
lN3891
lN3892
lN3693
lN3669
MR2010
RGP15B
AGP15D
AGP15G
RGPl5J
RGP20A
RGP20B
RGP20D
MR851
MR852
MR854
MR856
MR850
MR851
MR852
3-209
3-209
3-209
3-209
3-209
3-209
3-209
S2040
S20410
S20420
S20440
S20460
S2060
S2080
MR2004
RGP20G
RGP20J
RGP25A
RGP25B
RGP25D
RGP25G
RGP25J
MR854
MR856
MR850
MR851
MR852
MR854
MR856
3-209
3-209
3-209
3-209
3-209
3-209
3-209
S21100
S2140
S2160
S2180
S30410
830420
830440
A711X
A712X
R714X
RA2505
RA251
AA251 0
RA252
RA253
RA254
RA255
RA256
RA258
RG1A
RG1B
MA4422CT
MA4422CTA
R711XPT
R712XPT
R714XPT
MR2500
MR2501
MR2510
MR2502
MR2504
MR2504
MR2506
MA2506
MR2508
1-8
MR6S0
MR651
MR652
MR654
MR856
lN5400
lN5401
1N5402
lN5404
lN5406
lN5406
lN5406
MUR3010PT
MUR3015PT
MUR3020PT
3-7
3-12
3-12
3-12
3-12
3-12
MRl121
MRl122
MRl124
MR1126
MA2006
MR2006
MR2010
MR2004
MA2006
MA2008
lNl184A
lNl186A
1N1186A
3-287
3-287
3-287
3-7
3-7
3-7
3-7
3-221
3-218
3-218
3-218
3-218
3-221
3-221
3-221
3-221
3-221
3-221
3-2
3-2
3-2
INDEX AND CROSS REFERENCE (Continued)
Industry
Part Number
Motorola
Nearest
Replacement
S30460
S3410
S3420
S3440
S3460
SB1020
SB1035
lN1190A
SB1040
SB1045
SB120
SB130
SB140
SB150
SB160
MBR1045
MBR1045
SB1620
SBI630
SBI640
SB1645
SB3020
SB3030
SB3040
SB3045
SB320
SB330
SB340
SB350
S8360
SB520
Motorola
Similar
Replacement
lN1184A
lN1186A
lN1188A
lN1190A
MBR1035
MBR1035
lN5817
lN5818
lN581~
MBR15u
MBRI60
MBRI535CT
MBRI535CT
MBR1545CT
MBR1545CT
MBR3035CT
MBR3035CT
MBR3045CT
MBR3045CT
MBR320
MBR330
MBR340
MBR350
MBR360
lN5823
lN5824
lN5825
MBR735
MBR735
MBR745
MBR745
Page
Number
Industry
Part Number
Motorola
Nearest
Replacement
Motorola
Similar
Replacement
Page
Number
3-2
3-2
3-2
3-2
3-2
3-90
3-90
SBS1020T
SBS1030T
SBS1035T
SBS1040T
SBS1045T
SBS1620T
SBSI630T
MBR1035
MBR1035
MBRI035
MBR1045
MBR1045
MBR1635
MBR1635
3-90
3-90
3-90
3-90
3-90
3-98
3-98
3-90
3-90
3-40
3-40
3-40
3-75
3-75
SBSI635T
SBS1640T
SBS1645T
SBS520T
SBS530T
SBS535T
SBS540T
MBR1635
MBRI645
MBR1645
MBR735
MBR735
MBR735
MBR745
3-98
3-98
3-98
3-88
3-88
3-88
3-88
3-96
3-96
3-96
3-96
3-113
3-113
3-113
SBS545T
SBS820T
SBS830T
SBS835T
SBS840T
SBS845T
SBS850T
MBR745
3-88
3-88
3-88
3-88
3-88
3-88
3-94
3-113
3-81
3-81
3-81
3-81
3-81
3-49
SBS860T
SBT3035
SBT3040
SBT3045
S0241
S041
S041
S041
S051
SES5001
SESSOO2
SES5003
SES5301
SES5302
MBR735
MBR735
MBR735
MBR745
MBR745
MBR1060
MBR1060
MBR3035CT
MBR3045CT
MBR3045CT
S0241
S041
S041
3-94
3-113
3-113
3-113
3-113
3-67
3-67
SB530
SB540
SB820
SB830
SB840
SB845
SB850
MBR1060
3-49
3-49
3-88
3-88
3-88
3-88
3-94
SB860
SBP1020T
SBP1030T
SBP1035T
SBP1040T
SBP1045T
SBP1620T
MBR1060
MBRI535CT
MBR1535CT
MBR1535CT
MBR1545CT
MBRI545CT
MBR1535CT
3-94
3-96
3-96
3-96
3-96
3-96
3-96
SES5303
SES5401
SES5401C
SES5402
SES5402C
SES5403
SES5403C
MUR805
MUR1605CT
MUR810
MUR1610CT
MUR815
MUR1615CT
3-253
3-263
3-277
3-263
3-277
3-263
3-277
SBP1630T
SBP1635T
SBP1640T
SBP1645T
SBR1040
SBR1045
SBR1050
MBRI535CT
MBRI535CT
MBRI545CT
MBR1545CT
MBR1045
MBR1045
MBR1060
3-96
3-96
3-96
3-96
3-90
3-90
3-94
SESS404
SESS404C
SES5501
SES5502
SES5503
SES5504
SES5701
MUR820
MUR1620CT
MUR1505
MUR1510
MUR1515
MUR1520
MUR2505
3-263
3-277
3-272
3-272
3-272
3-272
3-285
SBR1640
SBR1645
SBR2520
SBR2530
SBR3035
SBR3045
SBR3540
MBRI645
MBRI645
3-98
3-98
3-63
3-63
3-121
3-121
3-116
SES5702
SES5703
SES5801
SES5802
SES5803
SI231
SI232
MUR2510
MUR2515
MUR5005
MUR5010
MUR5015
3-285
3-285
3-299
3-299
3-299
3-113
3-113
SBR3545
SBR6025
SBR8035
SBR8040
SBR8040
SBR8045
SBR8045
MBR3545
3-121
3-135
3-149
3-149
3-149
3-149
3-149
SI31
SI32
SI71
SR1002
SRI003
SR1004
SR1005
lN5832
lN5833
MBR3535
MBR3545
MBR3545
MBR6045
MBR8035
MBR8045
MBR8045
MBR8045
MBR8045
1-9
S041
S051
MUR105
MUR110
MUR115
MUR405
MUR410
MUR415
MBR3045CT
MBR3045CT
MBR3535
MBR3545
MBR7545
MBR1035
MBR1035
MBRI045
MBR1060
3-67
3-71
3-244
3-244
3-244
3-253
3-253
3-121
3-116
3-147
3-90
3-90
3-90
3-94
II
I
INDEX AND CROSS REFERENCE (Continued)
Industry
Part Number
SR1006
SR102
SR103
SR104
SR105
SR106
SR1602
II
SR1603
SR1604
SR302
SR303
SA304
SA305
SA306
Motorola
Nearest
Replacement
MBR1060
MBRI50
MBR150
MBR150
MBR150
MBR160
MBR1535CT
MBR1535CT
MBR1545CT
MBR320
MBA330
MBA340
MBR350
MBA360
SA802
SR803
SA804
SAP100A
SRP100B
SRP100D
SRP100G
SAP100J
SAP300A
SRP300B
SAP300D
SAP300G
SAP300J
SAP600A
SAP600B
SAP600D
SRP600G
SRP600J
TG24
TG26
TG284
TG286
TG288
TG4
TG6
TG84
TG86
UES100l
Motorola
Similar
Replacement
MBA735
MBR735
MBR745
lN4933
lN4934
lN4935
lN4936
lN4937
MA850
MA851
MA852
MA854
MA856
MA820
MR821
MR822
MA824
MA826
MUR440
MUR460
MUR1640CT
MUA1660CT
MUR1660CT
MUR140
MUR160
MUR840
MUR860
Page
Number
Industry
Part Number
Motorola
Nearest
Replacement
Motorola
Similar
Replacement
Page
Number
3-94
3-75
3-75
3-75
3-75
3-75
3-96
UES1503
UES1504
UES2401
UES2402
UES2403
UES2404
UES2601
3-96
3-96
3-81
3-81
3-81
3-81
3-81
UES2602
UES2603
UES2604
UES2605
UES2606
UES701
UES702
MUR2505
MUR2510
3-287
3-287
3-287
3-287
3-287
3-285
3-285
3-88
3-88
3-88
3-32
3-32
3-32
3-32
UES703
UES704
UES705
UES706
UES801
UES802
UES803
MUR2515
MUR2520
MUR2520
MUR2520
MUR7005
MUR7010
MUR7015
3-285
3-285
3-285
3-285
3-305
3-305
3-305
3-32
3-209
3-209
3-209
3-209
3-209
3-200
UES804
UES805
UES806
UF4001
UF4002
UF4003
UF4004
MUR5020
MUR5020
MUR5020
MUR105
MUR110
MUR120
3-299
3-299
3-299
3-244
3-244
3-244
3-244
3-200
3-200
3-200
3-200
3-253
3-253
3-277
UF5400
UF5401
UF5402
UF5403
UF5404
USD1120
USD1130
MUR405
MUR410
MUR420
MUR430
MUR440
MBR150
MBR150
USD1140
USD320C
USD335C
USD345C
USD520
USD535
USD545
MBR150
MBR8035
MBR8035
MBR8045
3-75
3-113
3-113
3-113
3-149
3-149
3-149
MUR1515
MUR1520
MUR1605CT
MUR1610CT
MUR1615CT
MUR1620CT
MUR3005PT
MUR3010PT
MUR3015PT
MUR3020PT
MUR3030PT
MUR3040PT
MUR140
3-272
3-272
3-277
3-277
3-277
3-277
3-287
3-253
3-253
3-253
3-253
3-253
3-75
3-75
MUA105
3-277
3-277
3-244
3-244
3-263
3-263
3-244
UES1002
UES1003
UESll0l
UESll02
UESll03
UESll04
UESll05
MURll0
MUR115
MUR105
MURll0
MUR115
MUR120
MUR130
3-244
3-244
3-244
3-244
3-244
3-244
3-244
USD550
USD620
USD620C
USD635
USD635C
USD640
USD640C
MBR8045
MBR735
MBR1535CT
MBR735
MBR1535CT
MBR745
MBR1545CT
3-149
3-88
3-96
3-88
3-96
3-88
3-96
UESll06
UES1301
UES1302
UES1303
UES1304
UES1305
UES1306
MUR140
MUR405
MUR410
MUR415
MUR420
MUR430
MUR440
3-244
3-253
3-253
3-253
3-253
3-253
3-253
USD645
USD645C
USD720
USD720C
USD735
USD735C
USD740
MBR745
MBR1545CT
MBR1035
MBR1535CT
MBR1035
MBR1535CT
MBR1045
3-88
3-96
3-90
3-96
3-90
3-96
3-90
3-263
3-263
3-263
3-263
3-263
3-272
3-272
USD740C
USD745
USD745C
USD820
USD835
USD840
USD845
MBR1545CT
MBR1045
MBR1545CT
MBR1635
MBR1635
MBR1645
MBR1645
3-96
3-90
3-96
3-98
3-98
3-98
3-98
UES1401
UES1402
UES1403
UES1404
UES1420
UES1501
UES1502
MUR805
MUR810
MUR815
MUR820
MUR860
MUR1505
MUR1510
1-10
MBR3035CT
MBR3035CT
MBR3045CT
INDEX AND CROSS REFERENCE (Continued)
Industry
Part Number
USD920
USD935
USD940
USD945
UT234
UT235
UT236
Motorola
Nearest
Replacement
Motorola
Similar
Replacement
MBR1635
MBR1635
MBR1645
MBR1645
Page
Number
Industry
Part Number
Motorola
Nearest
Replacement
Motorola
Similar
Replacement
Page
Number
lN4003
lN4004
lN4002
3-96
3-96
3-98
3-96
3-27
3-27
3-27
UTR62
UTX105
UTXI1 0
UTX115
UTX120
UTX125
UTX205
lN4937
lN4933
lN4934
lN4935
lN4935
lN4935
lN4933
3-32
3-32
3-32
3-32
3-32
3-32
3-32
UT237
UT238
UT242
UT244
UT245
UT247
UT249
lN4005
lN4005
lN4003
lN4004
lN4005
lN4005
lN4002
3-27
3-27
3-27
3-27
3-27
3-27
3-27
UTX21 0
UTX215
UTX220
UTX225
UTX3105
UTX3110
UTX3115
lN4934
lN4935
1N4935
1N4935
MR850
MR851
MR852
3-32
3-32
3-32
3-32
3-209
3-209
3-209
UT251
UT252
UT254
UT255
UT257
UT258
UT347
lN4002
lN4003
lN4004
lN4005
lN4005
lN4006
lN4007
3-27
3-27
3-27
3-27
3-27
3-27
3-27
UTX3120
UTX4105
UTX4110
UTX4115
UTX4120
V322
V324
MR852
MR850
MR851
MR852
MR852
lN5402
lN5404
3-209
3-209
3-209
3-209
3-209
3-38
3-38
UT361
UT362
UT363
UT364
UTROI
UTR02
UTR10
lN4006
lN4006
iN4007
iN4007
lN4933
lN4933
lN4934
3-27
3-27
3-27
3-27
3-32
3-32
3-32
V326
V330X
V331X
V332X
V334X
V336X
V342
lN5406
MR850
MR851
MR852
MR854
MR856
lN5402
3-38
3-209
3-209
3-209
3-209
3-209
3-38
UTRII
UTR12
UTR20
UTR21
UTR22
UTR2305
UTR2310
lN4934
lN4934
lN4935
lN4935
lN4935
MR850
MR651
3-32
3-32
3-32
3-32
3-32
3-209
3-209
V344
V346
V350X
V351X
V352X
V354X
V356X
lN5404
lN5406
MR850
MR851
MR852
MR854
MR856
3-38
3-38
3-209
3-209
3-209
3-209
3-209
UTR2320
UTR2340
UTR2350
UTR2360
UTR30
UTR31
UTR32
MR852
MR854
MR856
MR656
lN4936
lN4936
lN4936
3-209
3-209
3-209
3-209
3-32
3-32
3-32
VHE1401
VHE1402
VHE1403
VHE1404
VHE205
VHE210
VHE215
UTR3305
UTR3305
UTR331 0
UTR3320
UTR3340
UTR3350
UTR3360
MR850
MR650
MR851
MR852
MR854
MR856
MR856
3-209
3-209
3-209
3-209
3-209
3-209
3-209
VHE220
VHE2401
VHE2402
VHE2403
VHE2404
VHE605
VHE610
MUR120
UTR40
UTR41
UTR42
UTR4305
UTR4310
UTR4320
UTR4340
lN4936
lN4936
lN4936
MR850
MR851
MR852
MR850
3-32
3-32
3-32
3-209
3-209
3-209
3-209
VHE615
VHE620
VHE701
VHE702
VHE703
VHE704
VHE801
MUR415
MUR420
MUR7005
3-253
3-253
3-285
3-285
3-285
3-285
3-305
UTR4350
UTR4360
UTR50
UTR51
UTR52
UTR60
UTR61
MR856
MR856
lN4937
lN4937
lN4937
lN4937
lN4937
3-209
3-209
3-32
3-32
3-32
3-32
3-32
VHE802
VHE803
VHE804
VSK1020
VSK1035
VSK1045
VSK12
MUR7010
MUR7015
MUR7020
MBR1035
MBR1035
MBR1045
MBR1535CT
3-305
3-305
3-305
3-90
3-90
3-90
3-96
1-11
MUR805
MUR810
MUR815
MUR820
MUR105
MURll0
MUR115
MUR1605CT
MUR1610CT
MUR1615CT
MUR1620CT
MUR405
MUR410
MUR2505
MUR2510
MUR2515
MUR2520
3-263
3-263
3-263
3-263
3-244
3-244
3-244
3-244
3-277
3-277
3-277
3-277
3-253
3-253
II
,
INDEX AND CROSS REFERENCE (Continued)
Industry
Part Number
VSK120
VSK13
VSKl30
VSK14
VSK140
VSK1520
VSKl530
II
Motorola
Nearest
Replacement
Motorola
Similar
Replacement
Page
Number
Industry
Part Number
Motorola
Nearest
Replacement
Motorola
Similar
Replacement
Page
Number
lN5829
lN5830
3-40
3-96
3-40
3-96
3-40
3-58
3-58
VSK3030T
VSKS040S
VSKS040T
VSKS2
VSKS20
VSKS30
VSKS40
MBR3035CT
MBR3545
MBR3045CT
MBR3545
MBR320
MBR330
MBR340
3-113
3-116
3-113
3-116
3-81
3-81
3-81
VSK1540
VSK2004
VSK2020
VSK2035
VSK2045
VSK2420
VSK2435
lN5831
MBR20050CT
MBR2035CT
MBR2035CT
MBR2045CT
MBR2535CT
MBR2535CT
3-58
3-157
3-103
3-103
3-103
3-109
3-109
VSK4020
VSK4030
VSK4040
VSK41
VSK51
VSK62
VSK63
lN5S32
lN5833
lN5834
S041
S051
MBR735
MBR735
3-63
3-63
3-63
3-67
3-71
3-88
3-88
VSK2445
VSKS020S
VSKS020T
VSK3030S
MBR2545CT
MBR3535
MBR3035CT
MBR3535
3-109
3-121
3-113
3-121
VSK64
VSK920
VSK935
VSK945
MBR745
lN5817
MBR1535CT
lN5818
MBR1545CT
lN5819
1-12
MBRl535CT
MBRl535CT
MBRl545CT
3-88
3-96
3-96
3-96
Selector Guide
Continuing investment in research and development for discrete
products has led to a rectifier manufacturing facility that matches the
precision and versatility of the most advanced integrated circuits. As
a result, Motorola's silicon rectifiers span all applications categories
with quality levels capable of passing the most stringent
environmental tests - including those for automotive under-hood
applications.
Contents
Page
Application Specific Rectifiers .............. 2-2
Schottky (High Speed, Low Voltage) ........ 2-3
Product Highlights:
Ultrafast Recovery ........................ 2-8
• Application specific rectifiers - SCANSWITCH'" devices for high
resolution monitors, MEGAHEfITZT" series rectifiers for high
frequency switching power supplies and automotive transient
suppressors.
• Schottky rectifiers for low voltage (15 to 200 volts), high current (to
600 amps) requirements in switching power supplies.
• Fast and Ultrafast rectifiers with reverse recovery times as low as
25 ns to complement the Schottky devices for higher voltage
requirements in high frequency applications.
• A full line of low-cost, general-purpose rectifiers with forward
currents from 1 to 50 amps and breakdown voltages from 50 to
1000volts.
• A wide variety of package options to match virtually any potential
requirement.
Fast Recovery ........................... 2-12
General Purpose .......................... 2-14
Automotive Transient Suppressors ......... 2-16
2-1
II
Application Specific Rectifiers
The focus for Rectifier Products continues to be on Schottky
and Ultrafast technologies, with process and packaging
improvements to achieve greater efficiency in high frequency
switching power supplies, high current mainframe supplies,
and high resolution monitors. Our new product thrust is
intended to be more "application specific" than in the past,
Table 1 -
while continuing to strive for broad market acceptance.
MEGAHERTZ Series - This group of Schottky and Ultrafast rectifiers are designed to provide improved efficiency in
very high frequency switching power supplies with low VF
(0.41 volts), high voltage (to 200 volts) Schottkys and faster
Ultrafast (trr = 28 nsec.).
MEGAHERTZ
Maximum
Device
II
MBR2030CTL
MBR2535CTL
MBR20200CT
MURHB40CT
MURHB60CT
10
(Amps)
VRRM
(Valls)
VF@ Raled
10 and Temp.
(Valls)
20
25
20
8
8
30
35
200
400
600
0.48
0.41
0.9
1.7
2.0
IR @ Raled
VRRM/25°C
(mAmps)
Irr
(Nanosecond)
5
20
1
0.01
0.01
(5)
(5)
(5)
28
28
(5) Schottky barner deVice.
SCANSWITCH Series - This group of Fast and Ultrafast
rectifiers are designed for improved performance in very high
resolution monitors and work stations where forward recovery .
Table 2 -
time (tfr) and high voltage (1200-1500 volts) are primary
considerations.
SCANSWITCH
Maximum
Device
MUR5150E
MR10120E
MUR10120E
MR10150E
MUR10150E
10
(Amps)
VRRM
(Valls)
Ifr
(Nanosecond)
Irr
(Nanosecond)
VRFM(6)
(Vails)
5
10
10
10
10
1500
1200
1200
1500
1500
225
175
175
175
175
175
1000
175
1000
175
20
14
14
16
16
(6) vRFM = Maximum TranSient Overshoot Voltage.
Automotive transient suppressors are designed for protection against over-voltage conditions in the auto electrical
system including the "LOAD DUMP" phenomenon that occurs
when the battery open circuits while the car is running.
Table 3 - Automotive Transient Suppressors
Device
MR2535L
(7) Time constant
10
(Amps)
VRRM
(Volts)
V(BR)
(Volts)
IRSM(7)
(Amps)
T
eC)
35
20
24-32
110
175
=lams, Duty Cycle ~ 1%, TC =25°C.
Devices listed in bold, italic are Motorola preferred devices.
2-2
Schottky Rectifiers
with higher TJ ratings can have significantly lower leakage
currents, but higher forward-voltage specifications. These
parameter tradeoffs should be considered when selecting
devices for applications that can be satisfied by more than one
device type number.
All devices are connected cathode-to-case or cathode-toheatsink, where applicable. Reverse polarity may be available
on some devices upon special request. Contact your Motorola
representative for more information.
SWITCHMODE'" Schottky power rectifiers with the high
speed and low forward voltage drop characteristic of
Schottky's metal/silicon junctions are produced with
ruggedness and temperature performance comparable to
silicon-junction rectifiers. Ideal for use in low-voltage,
high-frequency power supplies, and as very fast clamping
diodes, these devices feature switching times less than 10 ns,
and are offered in current ranges from 1 to 600 amperes, and
reverse voltages to 200 volts.
In some current ranges, devices are available with junction
temperature specifications of 125°C, 150°C, 175°C. Devices
Table 4 - Schottky Rectifiers
10, AVERAGE RECTIFIED FORWARD CURRENT (Amperes)(l)
1
59-04
Plastic
Cathode =
Polarity Band
VRRM
(Volts)
20
25
30
3
403A-03
5MB
Cathode =
Notch
403-03
SMC
Cathode =
Notch
267-03
Plastic
Cathode =
Polarity Band
369A-11
DPAK
Style 3
5
6
60-01
Metal
Style 1
369A-11
DPAK
Style 3
:to
/ • I •• r•
1N5817
1N5820
MBR320
MBRD320
lN5823
MBRD620CT
lN5818
lN5821
MBR330
MBRD330
lN5824
MBRD630CT
1N5822
MBR340
MBRD340
1N5825
MBRD640CT
35
40
1N5819
MBRS140T3
MBRS340T3
45
50
MBR150
MBR350
MBRD350
MBRD650CT
60
MBR160
MBR360
MBRD360
MBRD660CT
70
MBR170
MBR370
80
MBR1S0
MBR3S0
90
MBR190
100
MBR1100
MBRS1100T3
IFSM
(Amperes)
25
40
80
SO
80
75
500
75
MaxVF@
IFM=IO
0.6(2)
TL = 25°C
0.6(2)
TC=25°C
0.525(2)
TL = 25°C
0.74(2)
TL = 25°C
0.525(2)
TL = 25°C
0.45
TC= 125°C
0.3S(2)
TC = 25°C
0.85
TC = 125°C
TJ (Max)OC
125
125
125
150
125
150
125
150
MBR390
MBR3100
(1) 10 IS total deVIce output current.
(2) Values are for 40 volt units, lower voltage parts exhibit lower VF.
Devices listed in bold, italic are Motorola preferred devices.
2-3
II
SCHOTTKY RECTIFIERS (continued)
There are many other standard features in Motorola
Schottky rectifiers that give added performance and reliability.
2. MOLYBDENUM DISCS on both sides of the die minimize
fatigue from power cycling in all metal products. The plastiC
TO-220 devices have a special solder formulation for the
same purpose.
1. GUARDRINGS are included in all Schottky die for reverse
voltage stress protection from high rates of dv/dt to virtually
eliminate the need for snubber networks. The guardring also
operates like a zener and avalanches when subjected to voltage transients.
3. QUALITY CONTROL monitors all critical fabrication operationsand performs selected stress tests to assure constant
processes.
Table 4 - Schottky Rectifiers (continued)
10. AVERAGE RECTIFIED FORWARD CURRENT (Amperes)(1)
7.5
10
221B-02
(TO-220AC)
Style 1
II
VRRM
(Volts)
15
15
221A-06
(TO-220AB)
Style 6
56-03
(DO-203AA)
Style 2
25
56-03
(DO-203AA)
Style 2
fA
MBR2015CTL
1N5826
30
1N5827
MBR735
MBR1035
MBR1535CT
MBR745
MBR1045
MBR1545CT
1N5829
MBR2030CTL
MBR1635
MBR2035CT
MBR2535CTL
MBR1645
MBR2045CT
1N5828
40
45
20
221A-06
(TO-220AB)
Style 6
! 1 fA ! 1
20
35
16
221B-02
(TO·220AC)
Style 1
1N5830
1N6095
1N5831
1N6096
5041
50
60
MBR1060
MBR2060CT
70
MBR1070
MBR2070CT
80
MBR10S0
MBR2080CT
90
MBR1090
MBR2090CT
100
MBR10100
MBR20100CT
MBR20200CT
200
IFSM
(Amperes)
150
150
150
500
150
150
SOO
400
MaxVF@
IFM=IO
0.57
TC = 125'C
0.57
TC = 125'C
0.72
TC=125'C
0.5
TC = 125'C
0.57
TC= 125'C
0.72(2)
TC= 125'C
0.4S(2)
TC = 25'C
0.86 @ 7S.5A
TC = 70'C
TJ (Max)OC
150
150
150
150
150
150
125
150
(1) 10 IS total deVice output current.
(2) Values are for 40 volt unfts, lower voltage parts exhibit lower VF.
Devices listed in bold, italic are Motorola preferred devices.
2-4
Table 4 - Schottky Rectifiers (continued)
10, AVERAGE RECTIFIED FORWARD CURRENT (Amperes)(l)
25
2210-02
ISOLATED
TO-220
Style 3
30
11-03
(TO-204AA)
Style 4
221A-06
(TO-220AB)
Style 6
340E-Ol
(TO-21B)
Style 1
, ~7I
~
:to
VRRM
(Volts)
15
20
3400-01
(TO-21BAC)
Style 2
340F-03
(TO-247)
Style 2
35
40
56-03
(DO-203AA)
Style 2
257-01
(DO-203AB)
Style 2
) ) fA
MBR3020CT
MBR3520
~
lN5832
25
30
35
lN5833
MBRF2535CT
MBR3035CT
MBR2535CT
MBRF2545CT
MBR3045CT MBR2545CT
5D241
MBR3035PT
MBR3035WT
MBR3535
MBR3045
MBR3045PT
MBR3045WT
MBR3545
40
45
1N5834
50
60
70
80
90
100
IFSM
(Amperes)
150
400
300
300
400
350
600
BOO
MaxVF@
IFM=IO
0.62 @ 12.5A
TC=125'C
0.72
TC = 125'C
0.73
TC= 125'C
0.62
TC = 100'C
0.72
TC= 125'C
0.72
TC = 125'C
0.55
TC = 25'C
0.59
TC = 25'C
TJ (Max) 'C
150
150
150
150
150
150
150
125
(1) 10 IS total deVice oulput current.
Devices listed in bold, italic are Motorola prelerred devices.
2-5
II
SCHOTTKY RECTIFIERS (continued)
Table 4 - Schottky Rectifiers (continued)
10. AVERAGE RECTIFIED FORWARD CURRENT (Amperes)(1)
50
•
257-01
(DO-203AB)
Slyle 2
VRRM
(Volts)
~
15
60
75
80
257-01
(DO-203AB)
Slyle2
I
~
MBR6015L
20
MBR6020L
25
30
65
340E-01
(TO-218)
Slyle 1
MBR5025L
MBR6025L
1N6097
MBR6030L
35
40
1N6098
45
5051
MBR6035
MBR6535
MBR7535
MBR8035
MBR6045
MBR6545
MBR7545
MBR8045 .
50
60
70
80
90
100
IFSM
(Amperes)
800
500
800
1000
800
1000
1000
MaxVF@
IFM=IO
0.86@ 157 A
Tc = 70°C
0.65(2)
Tc=150°c
0.6(2)
Tc = 125°C
0.38
Tc = 150°C
0.62
Tc= 150°C
0.6(2)
Tc= 125°C
0.59
Tc = 150°C
TJ (Max)OC
125
150
150
150
175
150
175
(1) 10 IS total deVIce output current.
(2) Values are for 40 volt units, lower voltage parts exhib~ lower VF .
Devices listed in bold, italic are Motorola preferred devices.
2-6
Table 4 - Schottky Rectifiers (continued)
10. AVERAGE RECTIFIED FORWARD CURRENT (Amperes)(l)
120
200
300
600
357C-03
POWERTApT.
Cathode = I\f.ounting Plate
Anode = Terminal
:to
VRRM
(Volts)
,
15
MBR20015CTL
20
MBR20020CTL
25
MBR20025CTL
30
35
II
MBR20030CTL
MBR12035CT
MBR20035CT
MBR30035CT
MBR60035CTL
45
MBR12045CT
MBR20045CT
MBR30045CT
50
MBR12050CT
MBR20050CT
MBR30050CT
60
MBR12060CT
MBR20060CT
MBR30060CT
IFSM
(Amperes)
800
1500
2500
4000
MaxVF@
IFM=IO
0.62
TC= 175°C
0.48
TC= 150°C
0.64
TC= 125°C
0.50
TC= 100°C
TJ (Max)OC
175
175
175
150
40
70
80
90
100
(Ilia IS lotal deVice oulpul current.
Devices listed in bold, italic are Motorola preferred devices.
2-7
Ultrafast Recovery Rectifiers
increase from 20 kHz to 250 kHz and beyond. Additional
package styles and operating current levels are planned.
All devices are connected cathode-to-case or cathode-toheatsink, except where noted. Contact your Motorola representative for more information.
The Ultrafast Recovery Rectifiers, with reverse times of 25
to 100 nanoseconds, are expanding the SWITCHMODE
rectifier family. They complement the broad array of Schottky
devices for use in the higher voltage outputs and internal
circuitry of switching power supplies as operating frequencies
Table 5 - Ultrafast Recovery Rectifiers
10, AVERAGE RECTIFIED FORWARD CURRENT (Amperes)(1)
1
59-04
Plastic
Cathode
Polarity Band
=
•
VRRM
(Volts)
50
100
4
3
403A-03
5MB
Cathode
Notch
=
403-03
SMC
Cathode
Notch
=
369A-ll
DPAK
Style 3
6
267-03
Plastic
Cathode
Polarity Band
=
369A-ll
DPAK
Style 3
8
221A-06
(TO-220AB)
221B-02
(TO-220AC)
Style 1
/ • • • I •:r 1:r !
MUR105
MURD305
MUR405
MURD605CT
MUR605CT
MUR805
MURll0
MURD310
MUR410
MURD61 OCT
MUR61 OCT
MUR810
MURD315
MUR415
MURD615CT
MUR615CT
MUR815
MURD320
MUR420
MURD620CT
MUR620CT
150
MURl15
200
MUR120
300
MUR130
MUR430
MUR830
400
MUR140
MUR440
MUR840
500
MUR150
MUR450
MURB50
600
MUR160
700
MUR170E
MURS120T3
MURS160T3
MURS320T3
MURS360T3
MUR820
MUR460
MUR860
MUR470E
MUR870E
MURB80E
800
MUR180E
MUR480E
900
MUR190E
MUR490E
MUR890E
1000
MURll00E
MUR4100E
MUR8100E
IFSM
(Amperes)
35
40
75
75
125
63
75
100
Irr
25/50(75
25/50
25/50
35
25/50(75
35
35
35/60/100
175
175
175
175
175
175
175
175
nsec
TJ (Max)OC
(1) 10 is total device output current.
Devices listed in bold, italic are Motorola preferred devices.
2-8
Table 5 - Ultrafast Recovery Rectifiers (continued)
10, AVERAGE RECTIFIED FORWARD CURRENT (Amperes)(l)
VRRM
(Volls)
8
15
16
25
221A-06
(TO-220AB)
221B-02
(TO-220AC)
Style 1
221A-06
(TO-220AB)
56-03
(DO-203AA)
Style 2
30
340E-Ol
(TO-218)
Style 1
3400-01
(TO-218AC)
Style 2
/ ! ::r/::r fA I l::r •
Style
6
Style
7
50
MUR1505
MUR1605CT
MUR1605CTR
MUR2505
R710XPT
MUR3005PT
100
MUR1510
MUR1610CT
MUR1610CTR
MUR2510
R711XPT
MUR3010PT
150
MUR1515
MUR1615CT
MUR1615CTR
MUR2515
200
MUR1520
MUR1620CT
MUR1620CTR
MUR2520
300
MUR1530
MUR1630CT
MUR3030
MUR3040
400
MURH840CT
MUR3015PT
MUR3020
R712XPT
MUR3020PT
MUR3030PT
MUR1540
MUR1640CT
MUR1550
MUR1650CT
MUR3050PT
MURH860CT
MUR1560
MUR1660CT
MUR3060PT
IFSM
(Amperes)
100
200
200
100
500
300
150
400
Irr
nsec
28
35/60
35
35
50
100
100
35
TJ (Max)"C
175
175
175
175
175
175
150
175
500
600
R714XPT
MUR3040PT
700
800
900
1000
(1) 10 IS total deVice output current.
Devices listed in bold, italic are Motorola preferred devices.
2-9
ULTRAFAST RECOVERY RECTIFIERS (continued)
Table 5 -
Ultrafast Recovery Rectifiers (continued)
10. AVERAGE RECTIFIED FORWARD CURRENT (Amperes)(1)
II
VRRM
(Volts)
30
50
60
70
340F-Ol
(TO-247)
257-01
(DO-203AB)
Style 2
340E-Ol
(TO-218)
Style 1
257-01
(DO-203AB)
Style 2
l::r
~
I
~
50
MUR5005
MUR7005
100
MUR5010
MUR7010
150
MUR5015
200
MUR3020WT
MUR5020·
MUR7020
MUR6030
300
400
MUR7015
MUR6020
MUR6040
MUR3040WT
·500
600
MUR3060WT
700
BOO
900
1000
IFSM
(Amperes)
350
600
600
1000
trr
60
50
100
50
175
175
175
175
nee
TJ (Max)OC
(1) 10 IS total deVice output current
Devices listed in bold, italic are Motorola preferred devices.
2-10
Table 5 - Ultrafast Recovery Rectifiers (continued)
10, AVERAGE RECTIFIED FORWARD
CURRENT (Amperes)(1)
100
200
357C-03
POWERTAP
Cathode Mounting Plate
Anode Terminal
,
=
VRRM
(Volts)
•
=
50
100
150
200
MUR10020CT
MUR20020CT
300
400
MUR20040CT
500
600
700
800
900
1000
IFSM
(Amperes)
400
800
trr
nee
50
50
TJ (Max) °C
175
175
(1) 10 IS total device output current.
Devices listed in bold, italic are Motorola preferred devices.
2-11
Fast Recovery Rectifiers
Fast Recovery Rectifiers are available for designs that require a power rectifier with maximum switching times ranging
from 200 ns to 750 ns. These devices are offered in current
ranges of 1 to 30 amperes and in voltages to 600 volts.
Table 6 -
All devices are connected cathode-to-case or cathode-toheatsink, where applicable. Reverse polarity may be available
on some devices upon special request. Contact your Motorola
representative for more information.
Fast Recovery Rectifiers
10, AVERAGE RECTIFIED FORWARD CURRENT (Amperes)(1)
1
59-03
Plastic
Cathode =
Polarity Band
II
VRRM
(Volts)
/
3
60-01
Metal
Style 1
MR830
100
lN4934(3)
200
5
6
194-04
Plastic
Style 1
245A-02
(DO-203AA)
Metal
Style 2
/ t P
f
lN4933(3)
50
267-03
Plastic
Cathode =
Polarity Band
MR850
MR820
lN3879
MR831
MR851
MR821
lN3880
lN4935(3)
MR832
MR852
MR822
lN388l
400
lN4936(3)
MR834
MR854
MR824
lN3883
600
lN4937(3)
MR836
MR856
MR826
MR1366
IFSM
(Amps)
30
100
100
300
150
TA @ Rated 10
rC)
75
90(8)
55(8)
100
100
TC@Ratedlo
(OC)
TJ(Max)
°C
150
150
175
175
150
trr
0.2
0.2
0.2
0.2
0.2
(~s)
(1) 10 IS total deVice output.
(3) Package Size: 0.120' max diameter by 0.260" max length.
(8) Must be derated for reverse power dissipation. See data sheet.
Devices listed in bold, italic are Motorola preferred devices.
2-12
Table 6 -
Fast Recovery Rectifiers (continued)
10. AVERAGE RECTIFIED FORWARD CURRENT (Amperes){1)
VRRM
(VailS)
50
12
20
24
30
245A-02
(DO-203AA)
Metal
Style 2
42A-01
(DO-203AB)
Metal
Style 2
339-02
Plastid4)
Style 1
42A-01
(DO-203AB)
Metal
Style 2
P
1
9
*
9
1N3BB9
1N3B99
MR2400F
1N3909
100
1N3B90
1N3900
MR2401F
1N3910
200
1N3891
1N3901
MR2402F
1N3911
400
1N3B93
1N3903
MR2404F
1N3913
600
MR1376
MR1386
MR2406F
MR1396
IFSM
(Amps)
200
250
300
300
TC @RaledlO
(0C)
100
100
125
100
TJ (Max)
150
150
175
150
0.2
0.2
0.2
0.2
TA@RalediO
(OC)
°C
Irr
(IlS)
(1) '0 IS tota' device output.
(4) Meets mountin9 configuration of TO-220 outline.
Devices listed in bold, italic are Motorola preferred devices.
* Not recommended for new designs.
2-13
•
General-Purpose Rectifiers
Motorola offers a wide variety of low-cost devices, packaged to meet diverse mounting requirements. Avalanche
capability is available in the axial lead 1.5, 3.0 and 6.0 amp
packages, shown below, to provide protection from transients.
All devices are connected cathode-to-case or cathode-toheatsink, where applicable. Reverse polarity may be available
on some devices upon special request. Contact your Motorola
representative for more information.
Table 7 - General-Purpose Rectifiers
la, AVERAGE RECTIFIED FORWARD CURRENT (Amperes)(l)
1
59-03
(00-41)
Plastic
Cathode =
i
Band
II
VRRM
(Volts)
6
3
60-01
Metal
Style 1
f
267-03
Plastic
Cathode =
Polarity Band
194-04
Plastic
Style 1
12
20
245A-02
(DO-203AA)
Metal
Style 2
24
339-02
Plastic(4)
Style 1
, f P 1.
1N4001 (3)
lN4719
lN5400
MR750
MR1120
lN1199,A,B
MR2000
MR2400
100
lN4002(3)
lN4720
lN5401
MR751
MR1121
lN1200,A,B
MR2001
MR2401
200
lN4003(3)
lN4721
lN5402
MR752
MR1122
lN1202,A,B
MR2002
MR2402
400
1N4004(3)
1N4722
1N5404
MR754
MR1124
1N1204,A,B
MR2004
MR2404
600
lN4005(3)
lN4723
1N5406
MR756
MRl126
lNI206,A,B
MR2006
MR2406
800
lN4006(3)
lN4724
MR758
MR1128
MR2008
1000
1N4007(3)
1N4725
MR760
MR1130
MR2010
IFSM
(Amps)
30
300
200
400
300(9)
400
400
TA@RatediO
eC)
75
75
TL = 105
60
150
150
125
190
175
175
50
Tc@RatedlO
('C)
TJ(Max)
'c
175
175
175
(1) 10 IS total deVice output.
(3) Package Size: 0.120' max diameter by 0.260' max length.
(4) Meets mounting configurations of TO·220 outline.
(9)IFSM is for MR1120 series. lN1199 = 100.·A =240.·B =250.
Devices listed in bold, italic are Motorola preferred devices.
* Not recommended for new designs.
2-14
175
Table 7 - General-Purpose Rectifiers (continued)
10. AVERAGE RECTIFIED FORWARD CURRENT (Amperes)(1)
25
30
40
193-04
Plastic(10)
Cathode =
Polarity Band
1-07
(TO-204AA)
Metal
Styles Band 9
42A·01
(DO-203AB)
Metal
Style 1
~
VRRM
(Volts)
:to~ :to
~
lNllB3A
50
MR2500
100
MR2501
200
MR2502
lNl1B6A
400
MR2504
lN11BBA
600
MR2506
1N1190A
800
MR2508
1000
MR2510
IFSM
(Amps)
400
MR4422CT
400
MR4422CTR
400
lNl184A
BOO
TA @ Rated 10
(OC)
Tc@Ratedlo
eC)
150
TJ(Max)
°c
175
150
150
(1) 10 IS total deVice output.
(10) Request data sheet for mounting information.
Devices listed in bold, italic are Motorola preferred devices.
150
190
II
Automotive Transient Supressors
Automotive Transient Suppressors are designed for protection against over-voltage conditions in the auto electrical system
including the "LOAD DUMP" phenomenon that occurs when the battery open circuits while the car is running.
AUTOMOTIVE TRANSIENT SUPPRESSOR
194-01
/
CASE 194-01
MR2535L
II
VRRM (Volts)
20
10 (Amp)
35
V(BR) (Volts)
24-32
IRSM"
(Amp)
62
TC@RaledIO
rC)
150
T
rC)
175
2-16
Data Sheets
II
lNl183A
MOTOROLA
-
I
thru
SEMICONDUCTOR
TECHNICAL DATA
lNl190A
lNl190A Is a
Motorola Preferred Devic.
MEDIUM-CURRENT RECTIFIERS
4O-AMP
RECTIFIERS
· .. for applications requiring low forward voltage drop and
rugged construction.
SILICON
DIFFUSED·JUNCTION
• High Surge Handling Ability
• Rugged Construction
• Reverse Polarity Available; Eliminates Need for Insulating
Hardware in Many Cases
CASE 42A-ol
D0-203AB
METAL
• Hermetically Sealed
II
'MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Symbol
lNII83A
lNllB4A
lN1186A
lN1186A
lN1190A
Unit
VRRM
VRWM
VR
50
100
200
400
600
Volts
10
40
40
40
40
40
Amp
IFSM
800
800
800
800
800
Amp
Average Half-Wave Rectified Forward Current
With Resistive Load (0. TA ~ 150°C
Peak One Cycle Surge Current
(60 Hz and 150°C Case Temperature)
Operating Junction Temperature
Storage Temperature
TJ
-65 to +200
°C
Tstg
-65 to +200
°C
'ELECTRICAL CHARACTERISTICS (All Types) at 25°C Case Temperature
Characteristic
MECHANICAL CHARACTERISTICS
Symbol
Value
Unit
Maximum Forward Voltage at 100 Amp
DC Forward Current
VF
1.1
Voils
Maximum Reverse Current at Rated DC
Reverse Voltage
IR
5.0
mAde
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
"Indicates JEDEC registered data.
3-2
CASE: Welded, hermetically sealed construction
RNISH: All external surfaces corrosion-resistant
and the terminal lead is readily solderable
WEIGHT: 25 grams (approx.)
POLARITY: Cathode connected to case (reverse
polarity available denoled by Suffix R,
i.e.: lNl183RA
MOUNTING POSmON: Any
MOUNTING TORQUE: 25 in-Ib max
lNl199
MOTOROLA
-
SEMICONDUCTOR
thru
TECHNICAL DATA
lN1206
•
lN12041••
Motorola Preferred Device
MEDIUM-CURRENT
SILICON RECTIFIERS
MEDIUM-CURRENT SILICON RECTIFIERS
50-600 VOLTS
12 AMPERES
Silicon rectifiers for medium-current applications requiring:
DIFFUSED JUNCTION
•
High Current Surge 240 Amperes @ TJ = 190°C
•
Peak Performance at Elevated Temperature 12 Amperes@ TC = 150°C
·MAXIMUM RATINGS
Characteristic
Symbol
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blockang Voltage
VRRM
VRWM
VR
Average Rectified Forward Current
(Smgle phase, resistive load.
10
60 Hz. TC
IN
IN
IN
IN
IN
1199
1200
1202
1204
1206
Unit
Volts
50
100
200
400
600
Amp
12
= 150°C)
Non-Repetitive Peak Surge Current
(Surge applied at rated load
conditions. half wave,
Amp
IFSM
- 2 4 0 Ifor 1 cycle)-
sangle phase. 60 Hz)
Operating Junction
Temperature Range
TJ
°c
-65to+190 -
·THERMAL CHARACTERISTICS
Characteristic
Thermal ReSistance, Junctton to Case
·ELECTRICAL CHARACTERISTICS
Chafacteristic and Conditions
Maximum Instantaneous Forward Voltage
(IF
=40 A. TC =25°C)
Maximum Instantaneous Reverse Current
(Rated voltage. TC = 150°C)
CASE 24SA-02
D0-203AA
METAL
Symbol
Max
Unit
vF
18
Volts
'R
10
mA
·Indicates JEDEC registered data
3-3
MECHANICAL CHARACTERISTICS
CASE: Welded, hermetically sealed construction
FINISH: All external surfaces are corrosionresistant and the terminal lead is readily
solderable
POLARtTY: Cathode to case (reverse polarity
units are available and denoted by an "R" suffix,
i.e.,INI202R)
MOUNTING POSITION. Any
MOUNTING TORQUE: 15 in-Ib max
MAXIMUM TERMINAL TEMPERATURE FOR
SOLDERING PURPOSES: 275°C for 10
seconds at 3 kg tension.
WEIGHT: 6 grams (approx.)
•
INl199A
MOTOROLA
-
SEMICONDUCTOR
thru
TECHNICAL DATA
IN1206A
lN1204A I. a
Motorola Preferred Device
MEDIUM-CURRENT SILICON RECTIFIERS
MEDIUM-CURRENT
SILICON RECTIFIERS
Silicon rectifiers for medium-current applications requiring:
•
High Current Surge 240 Amperes @ TJ = 200°C
•
Peak Performance at Elevated Temperature 12 Amperes@ TC = IS0°C
50-600 VOLTS
12 AMPERES
DIFFUSED JUNCTION
"MAXIMUM RATINGS
•
Characteristic
Symbol
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
Non·Repetltive Peak Reverse
Voltage IHalfwave. single
phase. 60 Hz peak)
VRSM
Average Rectified Forward Current
ISingle phase. resistive load.
60 Hz. TC = 150°C)
10
Non-Repetitive Peak Surge Current
IFSM
IN
IN
IN
IN
Unit
Volts
50
100
200
400
600
100
200
350
600
BOO
Volts
Amp
12
ISurge applied at rated load
conditions. half wave,
single phase. 60 Hz)
Operating and Storage Junction
Temperature Range
IN
1199A 1200A 1202A 1204A '206A
r--- 240 Ilor 1 cycle)_
TJ. T stg
Amp
°C
-65 to +200
"THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
"ELECTRICAL CHARACTERISTICS
Characteristic and Conditions
Maximum Instantaneous Forward Voltage
liF = 40 A. TC = 25°C)
Maximum Average Reverse Current at
Rated Conditions
lNl199A
lN1200A
lN1202A
lN1204A
lN1206A
Symbol
Max
Unit
VF
1.35
Volts
mA
IRa
3.0
25
20
1.5
1.0
'Indicates JEDEC registered data.
3-4
CASE 245A-02
DD-203AA
METAL
MECHANICAL CHARACTERISTICS
CASE: Welded, hermetically sealed construction
FINISH: All external surfaces are corrosionresistant and the terminal lead is readily
solderable
POLARITY: Cathode to case (reverse polarity
units are available and denoted by an "R" suffix,
i.e.,INI202RA)
MOUNTING POSITION: Any
MOUNTING TORQUE: 15 in-Ib max
MAXIMUM TERMINAL TEMPERATURE FOR
SOLDERING PURPOSES: 275°C for 10
seconds at 3 kg tension.
WEIGHT: 6 grams (approx.)
•
lNl199B
MOTOROLA
-
SEMICONDUCTOR
thru
TECHNICAL DATA
lN1206B
•
lNI204B 18 a
Motorola Preferred Devfce
MEDIUM·CURRENT SILICON RECTIFIERS
MEDIUM·CURRENT
SILICON RECTIFIERS
Compact. highly efficient silicon rectifiers for medium-current
applications requiring:
•
High Current Surge 250 Amperes @ TJ = 200°C
60-600 VOLTS
12 AMPERES
• Peak Performance at Elevated Temperature 12 Amperes @ TC = 150°C
DIFFUSED JUNCTION
"MAXIMUM RATINGS
Characteristic
Symbol
Peak RepetitIVe Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
Non·Repelltlve Peak Reverse
VRSM
Voltage IHalfwave. single
phase. 60 Hz peak)
Average Reculled Forward Current
(Single phase. resistIVe load.
60 Hz. TC = 150°C)
10
Non-Repetitive Peak Surge Current
IFSM
IN
IN
IN
IN
IN
"998 1200B 12028 12048 1208a
Unit
50
100
200
400
600
100
200
350
600
800
Volts
Amp
12
ISurge applied at rated load
MECHANICAL CHARACTERISTICS
Single phase. 60 Hz)
Operatmg and Storage Junction
Temperature Range
TJ. Tstg
-65to+200-
°c
·THERMAL CHARACTERISTICS
Characteristic
Thermal ReSistance, Junction to Case
"ELECTRICAL CHARACTERISTICS
Symbol
Max
Unit
vF
1.2
Volts
IR
10
mA
IRO
0.9
mA
DC Forward Voltage
(IF = 12 A. TC = 25°C)
VF
1.t
Volts
Reverse Recovery Time (lFM = 40 A.
dl/dt = 25 A/ ~s to IFM = O.
tp ;;> 4 0 ~s. 60 pulses/second. 25°CI
trr
5.0
~s
Characteristic and Conditions
MaXimum Instantaneous Forward Voltage
(IF = 40 A. TC = 25°C)
MaXimum Reverse Current
IRated dc voltage. TC = 150°C)
MaXimum Average Reverse Current at
CASE 245A-G2
DO-203AA
METAL
Amp
f----250 Ifor 1 c y c l e ) -
conditIOns. half wave.
II
Volts
Rated Conditions
·Ind,cates JEDEC registered data
3·5
CASE: Welded. hermetically sealed construction
FINISH: All external surfaces are corrosionresistant and the terminal lead Is readily
solderable
POLARITY: Cathode to case (reverse polarity
unils are available and denoted by an "AU suffix,
l.e.• 1N1202RB)
MOUNTING POSITION: Any
MOUNTING TORQUE: 15 In-Ib max
MAXIMUM TERMINAL TEMPERATURE FOR
SOLDERING PURPOSES: 275·C for 10
seconds at 3 kg tension.
WEIGHT: 6 grams (approx.)
lN3208
MOTOROLA
-
SEMICONDUCTOR
lN3212
15-AMP
MEDIUM-CURRENT RECTIFIERS
RECTIFIERS
· .. for applications requiring low forward voltage drop and
rugged construction.
•
•
thru
TECHNICAL DATA
SILICON
OIFFUSED-JUNCTION
High Surge Handling Ability
• Rugged Construction
• Reverse Polarity Available; Eliminates Need for Insulating
Hardware in Many Cases
• Hermetically Sealed
II
CASE 42A-Gl
00-203AB
METAL
'MAXIMUM RATINGS
Symbol
lN320B
1N320BR
lN3209
1N3209R
lN3210
1N3210R
DC Blocking Voltage
VR
50
100
200
300
400
Volts
RMS Reverse Voltage
VRIRMS)
35
70
140
210
280·
Volts
10
15
15
15
15
15
Amp
260
250
250
250
250
Amp
Rltlng
Average Half-Wave Rectified Forward Current
With Resistive Load (u TC ~ 150'C
Peak One Cycle Surge Current
(60 Hz and 25°C Case Temperature)
IFSM
Operating Junction Temperature
..
TJ
Storage Temperature
Tstg
-65 to +175
-65 to +175
'ELECTRICAL CHARACTERISTICS (All Types) at 25°C Case Temperature
Characteristic
-
Maximum Forward Voltage at 40 Amp
Value
Unit
VF
15
Volts
IR
1.0
mAde
Reverse Voltage
THERMAL CHARACTERISTICS
Characteristic
Thermal ReSistance. Junction to Case
*Indlcates JEOEC registered data.
3-6
.
Unit
°C
°C
MECHANICAL CHARACTERISTICS
Symbol
DC Forward Current
Maximum Reverse Current at Rated DC
1N3211
1 N3212
1 N321 1 R lN3212R
CASE: Welded, hermetically sealed construction
FINISH: All external surfaces corrosion-resistant
and the terminal lead is readily solderable
WEIGHT: 25 grams (approx.)
POLARITY: Cathode connected to case (reverse
polarity available denoted by Suffix R, i.e.:
lN3212R)
MOUNTING POSITION: Any
MOUNTING TORQUE: 25 in-Ib max
MOTOROLA
-
IN3879 thl1l IN3883
MR1366
SEMICONDUCTOR
TECHNICAL DATA
I
1N3881 and MR1366 are
Desig'ners
Data Sheet
Motorola Preferred Devices
FAST RECOVERY
POWER RECTIFIERS
STUD MOUNTED
FAST RECOVERY POWER RECTIFIERS
... designed for special applications such as dc power supplies, inverters,
converters, ultrasonic systems, choppers, low R F interference, sonar power
supplies and free wheeling diodes. A complete line of fast recovery rectifiers
having typical recovery time of 150 nanoseconds providing high efficiency
at frequencies to 250 kHz.
50-600 VOLTS
6 AMPERES
CASE 245A-02
DO-203AA
METAL
Designer's Data for "Worst Case" Conditions
The Designers
Data sheets permit the design of most circuits entirely from the
information presented. Limit curves - representing boundaries on device character-
istics - are given to facilitate "worst case" design.
MECHANICAL CHARACTERISTICS
CASE: Welded, hermetically sealed
FINISH: All external surfaces corrosion
resistant and readily solderable
POLARITY: Cathode to Ca.e
'MAXIMUM RATINGS
Rati",
Svmbol
Peak RepetitIve Reverse Voltage
lN3880 1N3881 1N3B82 lN38&3 MR136
100
200
VRSM
75
150
VR(RMS)
35
70
DC Blocking Voltage
Unit
Volts
50
VRWM
300
400
600
250
350
450
140
210
280
650
420
VR
Non-Repetitive Peak Reverse Voltage
RMS Reverse Voltage
lN3B79
VARM
Working Peak Reverse Voltagll
Average Rectified Forward Current
tSlnglephase. reSistive load.
TC·1OOoC)
'0
Non-Repetitive Peak Surge Current
burge applied at rated load
contmuousl
IFSM
Operating Junction Temperature Range
Storage Temperature Range
..
..
...
TJ
T sts
•
6.0
.
...
150
lonecvclel
-65 to +150
-65 to +175
Volts
Volts
Am..
Amps
°c
°c
THERMAL CHARACTERISTICS
CharxhlristlC
Thermal Resistance. Junction to case
Symbol
R8JC
Motorola guarantees the listed value. although parts having higher values of thermal resistance will meet the current rating_
Thermal resistance is not required bV the JEOEC registration.
'ELECTRICAL CHARACTERISTICS
Characteristic
Instantaneous Forward Voltage
UF'" 19 Amp. TJ = l50"C)
Symbol
Min
Forward Voltage
(IF" 6.0 Amp. TC· 25°C)
V,
R....erse Current (rated dc voltage) TC = 25 C
TC = 100°C
'R
Tvo
M..
1.2
1.5
1.0
1.4
10
O.S
15
1.0
oA
mA
TVp
M..
Unit
150
200
200
400
Unit
Volts
"
Volts
REVERSE RECOVERY CHARACTERISTICS
Characteristic
Reverse Recoverv Time
-UFM" 1.0 Amp to VR = 30 Vdc, Figure 161
UFM" 36 Amp, dildl • 25 A/jJs. Figure 171
Revern RacoverV Current
-UF" 1.0 Amp to VR· 30 Vdc, filJolre 161
Symbol
t"
Min
Amp
IRMjRECI
2.0
·Indicates JEDEC Registered Data for 1 N3879 Seri ...
3-7
WEIGHT: 5.6 Grams (approximately!
MOUNTING TORQUE: 15 in-lb. max.
II
1N3879 thru 1N3883, MR1366
FIGURE 1 - FORWARD VOLTAGE
FIGURE 2 - MAXIMUM SURGE CAPABILITY
iDO
200
90
vV
100
,
II
I I
Prior to surge, theretUher
I I
is operated such that TJ = 150 aC;
VR RM may be applied between
eilch cycle of surge
i"-
"i'
~
Tp 250C
N-.u
)0
50
.
/
30
I
ii:
::;
/
ill . . . .
~'1500C- -
L
/
r"b
1\
0
V
11111
0
1 20
o
f
10
f\
~ICYCLE
0-
1/
20
f\
0-
1.0
3.0
illU
50 ).0 10
20
30
NUMBER OF CYCLES AHO Hz
50
)0 100
0
II
~
5. 0
I
~
z
~
~
!:
.if
NOTE 1
1/'
3. 0
J=[Jl
PPk
Ppk
'p_
2. 0
TIME
J---.- t ,-----I
J
I
OUTY CYCLE, 0 ~ Ipl!)
PEAK POWER, Ppk, IS peak of an
equivalent square power pulse
To delermlnema.lumum JUllctlOn temperature 01 tile diode In d given SituatIOn,
the tollowmg pmcedure IS rec.ommended
!
0
The temperature 01 the ease should be measured
uSltlg
on Ihe case at the :i!mpeUlure reference pomt lsee Note
a thermocouple pia ted
J)
The thermal mass
connected to Ihe case IS normally large enough so that ,twill not slgnlflcanlly
)
respond 10 heat surges generated mlhedlodeasaresult 01 puisedoperal IIInonce
steadystalecondlllIlnsareachleved USlnglhe measured value of TC, theluncllon
lemperalure may bedetermtned by
TJ: TC f TJC
where TJC ISlhe mCfease In luncllDn lemperatufe above Ihe caSll lemperalure
It may be delermnmlby
t, TJC:: Ppk ·ROJC tD t (1- D) . rltl + Ipl f r(lp} r{tlll
where
rlt} : normalized value of translentlhermalresistancealllme.l,irom FI gure
3,le
r(11 +lpl:normahudvalueoftranSlenllhermalreslstanceattlme!I*!p
05
0.3
o2
0.4
11
16
10
24
18
0.8
VF,INSTANTANEOUS FORWARD VOLTAGE (VOLTS)
31
FIGURE 3 - THERMAL RESPONSE
0
5
+-
-
3
2
.1
5
3
( EE NOTE II
0.0 2
0.0 I
0.001 0.002
IIIII I
0.005
0.01
002
0.05
0I
0.2
0.5
1.0
2.0
I,TIME(ms)
3-8
50
10
20
50
100
200
500
1000 2000
5000 10,000
1N3879 thru 1 N3883, MR1366
SINE WAVE INPUT
SQUARE WAVE INPUT
FIGURE 4 - FORWARO POWER OISSIPATION
FIGURE 5 - FORWARD POWER DISSIPATION
8.0
LO~OS
CAPAdTIVE
~ 7. o -IIPKI' 20
~
o
'IAVI
~
cU)' 6.
:!~
10 ~
~~ 5.0 - - 5 . 0 7 /
0~z
~~ 40
~~
>~
3. 0
:;
2.0
1.0
,
I
/
/ //
k'/ '/
8.0
or- CAPJITIVE L~ADS
/
RES,S},VE.,NDUCT,VE
LOAD
o
[7/
1.0 - 5.0
0
10
~
0
2.0
3.0
4.0
50
6.0
70
'FIAVI. AVERAGE FORWARO CURRENT IAMPI
:/~
1.0
80
FIGURE 6 - CURRENT DERATING
(i:'
8. Or-
"
~
70 f-
15
~
a~
'"~
~
I-
30 H
~>
2.0 t -
'";;
1.0 H
CAPACITIVE LOAO
'IPKI • to
-
o
80
90
100
110
120
TC. CASE TEMPERATURE JOCI
~ 50
'"~
10
130
po,
r=
r-
=>
~ ~ 20
............
~~
~~
~ o'-
6.0
"
140
3.0 f-
"
g
~
"""
~ ['{'
;.."........... ~,
CAPACITIVE
LOADS
'IPKI
IIAVI· 1.O- 5.0
4.0 H
:;'
------
1--_:~o----- ---,0 - -
~ ~'"
I--- ~ ~
~~
o' -
o
150
80
90
130
100
110
110
TC. CASE TEMPERATURE lOCI
140
'"
150
FIGURE 9 - NORMALIZED REVERSE CURRENT
FIGURE 8 - TYPICAL REVERSE CURRENT
10 1
104
~
4.0
1.0
3.0
5.0
6.0
7.0
'FIAVI. AVERAGE FORWARD CURRENT IAMPI
r-
7.0
~
........ ~'IAVI
4.oH
:;'
/
V
8.0 0 -
'5."
/ RESISTIVE ~OAD
5.Ott-
/'
FIGURE 7 - CURRENT DERATING
0:
6 of-
---A~
de
/~ ~
0
/,
o
o
// / /
cl_ .I / '//
L'~ 'I'
'q----- / /
IIPKI_ 1
Ol---I(AVI
I
h 'I"
~o
l'"
f/~
II
==
103
VR -IOOV
./
V
I-
15
~
./
1
1;;
w
7.0 t::=::=
5.0
r-I---- U~
~tfr '~r
--
~TJ'250C
f=:= l~
3.0 I----
V
2.0
1.0
C>
Ii:
0.3
~ 0.2
0.1
1.0
II
.........
~
--
z:
~
. / Vir' 1.1 V
Ia
.... I--'"
......-
.....
50
w
u
/
>
0.7
0.5
~
TJ' 25 0 C
30
.........
20
10
2.0
5.0
10
20
IF. FORWARD CURRENT lAMP)
50
100
1.0
2.0
5.0
10
20
VR. REVERSE VOLTAGE IVOLTS)
100
50
TYPICAL RECOVERED STORED CHARGE DATA
(Sel Not. 2)
FIGURE 12 - T J • 25°C
1.0
20
$
w
..'"
3
40 A
05
w
,'vi'
Max
Unit
Volts
1.2
1.5
1.0
1.4
10
0.5
25
3.0
.A
mA
Min
Ty>
MIX
Unit
-
150
200
200
400
-
-
2.0
Volts
'REVERSE RECOVERY CHARACTERISTICS
Charactarlstlc
Symbol
'rr
Reverse Recovery Time
(IF - 1.0 Amp to VR" 30 Vdc, Figure 161
IfFM. 36 Amp.dlfd.- 25 AI.., FI~ .. 17I
Rever. Recovery Current
IRMIRECI
ifF. 1.0 Amp 10 VR - 30 Vdc, Figuro161
n.
-'ndicates JEOEC Registered Data for 1N3889 Series.
3-12
Amp
MECHANICAL CHARACTERISTICS
CASE: Welded, hermetically sealed
FINISH: All external surfaces corrosion
resistant and readily solderable
POLARITY: Cathode to Case
WEIGHT: 5.6 grams (approximately)
MOUNTING TORQUE: 15 in-Ib max
•
1N3889 thru 1N3893, MR1376
FIGURE 1 - FORWARD VOLTAGE
FIGURE 2 - MAXIMUM SURGE CAPABILITY
300
20 0
TJ=
250 ';.- ,/"
I'
100
0
!/ / '
0
1/,
TJ=
100 ...........
0
--
0
........
I-"
0
0
I'
0
/'
I , "
........
0
150 0 C
0-
I"'-
r\
{\
r\
0 - 1------1-1 CYCLE
0
0
1.0
J
II II
2.0
3.0
5.0
10
20
30
NUMBER OF CYCLES AT 60 Hz
II
0
~riorl~ surg'•• I~' :eclif\" I
i:soperaled such that TJ:: 150 oC;
VRRM may be applied between
each cycle of surge.
"
0
,uIY
0
I
50
100
NOTE 1
0
FLIT
PPk
0
I
II
0
Ppk
tp._
I
DUTY CYCLE, 0 "to/Ii
PEAK POWER. Ppk. IS peak 01 an
equlValenl square power pulse
TIME
1----11----1
To determine mallimum ,unctlOn temperature of the diode In a given SItuatIOn,
the follOWing pracedur& IS recommended.
2.0
The temperature of the case should be measured uSing it thermocouple placed
on the case at the :amperature reference pomt (see Note 3) The thermal mass
connetted to the ease IS normallv large enough 10 that ,tWill not significantly
respond to heat surgesgeneratad mthedlodeasa rllwlt 01 pulsed operat IOn once
1.0
steady·stale cOlllhtlDnsareachleved. USlIlg the measured valueof Te. the functIOn
lemperalulemaybedelermlnedbV'
TJ=TC+l·TJC
where TJC IS the mtflase m luntllon temperature abo~e the case temperature.
ItmBY be delermim!d by.
0. TJC= Ppk 'ROJC [0 ./1·0) . r(l1.tp) +r(lp)-r(1J11
where
t(tl = normahzed value of tranSIent thermal resistance at time. t.fro mFigure
3. I.e
r II) • Ipl " normaliud ~alue of transianl thermal rasistante al time tl + tp
o.7
o. 5
0.3
0.4
O.B
1.2
1.6
2.0
2.4
2.B
VF.INSTANTANEOUS FORWARO VOLTAGE (VOLTS!
3.2
FIGURE 3 - THERMAL RESPONSE
1.0
~ o. 5
.... :::;
~~ 0.3
"''''
~g
0.2
.... w
~
W U
::::i o.1
~~
It ~0.05
-:5:;J,
,,;:~0.03
~O.02
I-
0.0 1
0.001 0.002
0.005
0.D1
0.02
0.05
0.1
0.2
0.5
1.0
2.0
5.0
I.TIMElms!
3-13
10
20
50
100
100
SOD
1000 2000
5000 10.000
•
1N3889 thru 1 N3893, MR1376
SQUARE WAVE INPUT
SINE WAVE INPUT
FIGURE 4 - FORWARO POWER DISSIPATION
FIGURE 5 - FORWARD POWER DISSIPATION
0
20
cf- clPAciTIVJ Lolos
r-
_ ,IIPKI' 20
IIAVI
2
V
-j
~
1.10
5.0
/
V
~
/
'/
X / /. V-
L
f--
II
/
0
/ /
~~
0
o .... ~
~
...
~
14
"'<
12 IH
~
F
6.0 1=
~
f-
0:
~
,.<"""ii ~
r--..
r-
14
.......
80
90
100
110
120
130
TC. CASE TEMPERATURE (OCI
t-I-I(AVI
../'"
10
0
-.....; ~
H
I- CAPACITIVE LOADS'
1-1- I(PKI. 2.0.S.0 -
0
~
140
de
.........
0
-'"'
2.0 H
"
" "' "\.
...............
'"> "'
!'"
-
20
==
0
~_10-
I-
o~
o
.~
/
FIGURE 7 - CURRENT DERATING
......... .........
8.0
4.0
./
/
4-
l"-
F
B 10 Ic
/
II
l.:::;j ~
2.0
14
12
S.O
8.0
10
4.0
IFIAVI. AVERAGE FORWARD CURRENT IAMPI
FIGURE 6 - CURRENT DERATING
~
I
2.0·5.0_
INDUCTIVE
LOAD
-f--
~ :::--
2.0
I
2
~~
0""- .".
J
IIAVI.~
-TO.
RESISTIVE~ _
J / ~ ,;-
0
clpAciTlvJ LOJDS
I!P!I. 20
Sr- I--
20/
I
0-1
po..
:><;;;"
./'"
--
~,
~'"
"\.
"\.
--i
""
0,-1
150
FIGURE 8 - TYPICAL REVERSE CURRENT
80
90
,
~"\.
100
110
120
130
TC. CASE TEMPERATURE lOCI
.........
~\.
",
140
150
FIGURE 9 - NORMALIZED REVERSE CURRENT
101
-
VR -100 V
0
~
./
I
2
500
VR. REVERSE VOLTAGE IVOLTSI
600
10' 3
20
700
3-14
V-
,/
30 40
50
SO 70 80 90 100 110 120 130 140 150 160
TJ.JUNCTION TEMPERATURE (OCI
1N3889 thru 1N3893, MR1376
TYPICAL DYNAMIC CHARACTERISTICS
FIGURE 11 - JUNCTION CAPACITANCE
FIGURE 10 - FORWARD RECOVERY TIME
100
I0
I
j
1.o
5.01
~
3.
ffi
2.0
I---
Or---
>
c
t::a:
"W~tl'
~TJ = 25'C
I
-...
lIf,
II
~
1.0
~
o.3
o.2 . - -
5g;
;j 20
.....- ......
O. I
1.0
.............
30
;3
~ O. 5
*
........ .......
z
«
VIr = 1.1 V
O. 1
50
w
u
./
c
a:
TJ = 25'C
I0
2.0
5.0
10
20
50
100
1.0
2.0
IF, FORWARD CURRENT (AMP)
5.0
10
20
50
100
VR, REVERSE VOLTAGE (VOLTS)
II
TYPICAL RECOVERED STORED CHARGE DATA
FIGURE 12 - T J
a
(Sea Nota 21
25°C
1.0
1.0
IFM = 20 A
40 A
."
3
LU
0.5
'"a:«
3.
w
~ 0.2
~ ~V
c
t;; D. I
~
~ 0.05
~~
g 0.02
0.0
" i
~ ""'I--'
/""
I~
1.0
2.0
IDA
=
40 A
g
~
t;
O. 1
~w
O. I
~_
00 5
>
5.0 A
\
O.5
./ ./
do/dt
0: ~
50
001 .
1.0
100
10
'"a:~
~
3
w
V
/. v: """'v
.....-
c
w
a:
I--"
~>
~
~ K-'
r;;
IDA
'" 0.02
1.0
5.oA
~V
~ -:::-1-""
1.0
5.0
1\0 A
10
100
(AMP/~s)
IFM=4L
I. 0
«
5 o. 5
V
<.>
~ 0.05
5.0
1.0
IF~= 10lA
1.0
~ 0.2
1.0 A
di/dt,
FIGURE 14 - T J = 1000 C
3.
w
-......., I--'f-'
~~
IAMP/~s)
1.0
f-'
./
5.0 A
~
10
10
./V ./
lOA
1.0
5.0
'FJ=101
1.0
~
I'v' \.
L L V'v
5
~
FIGURE 13 - T J = 75°C
10
di/dt, (AMP/~s)
D.O 5
1.0 A
~
~r
1.0
I
5.0
10
di/dt
3-15
10A
10 A
0.02
1.0
100
~V
0 Y P<
o. I
. TJC IS the increase in junction temperature above the tase temperature.
Itmav bedetermmed by:
t::. TJC =Ppk 'ROJC [0" 0 -0) . rill +lpl+rltpl -rttll1
where
rill = normahzed value of tranSient thermal resistanceal time. t.from Figure
o.7
o.5
0.4
0.8
1.2
1.6
2.0
2.4
2.B
3.2
3.6
3,18.
4.0
r (11 + IpJ • normalized value of transient thermal resistanct at time t1. tp
YF, 'NSTANTANEOUS FORWARD VOLTAGE (VOLTSI
FIGURE 3 - THERMAL RESPONSE
1.0
--
5
2
~
I
5
3~
(See Note 1)
....
2
0.0 I
0.1
0.2
0.5
1.0
2.0
5.0
10
20
50
t TIME (1M)
3-18
100
200
500
1000
2000
SOOO
10,000
1N3899 thru 1 N3903, MR1386
SINE WAVE INPUT
SQUARE WAVE INPUT
FIGURE 5 - FORWARD POWER DISSIPATION
FIGURE 4 - FORWARD POWER DISSIPATION
32
/
I
r---.IIPKI = 20
IIAVI
10
/
J
I
/
V
5.0
!/
2
V
/
.!.
-
/
0
/ ' /"
V /
/
0
/'
0
/"
~~
1:9'
o
16
4.0
"
I""
H
~
I-
B
~
5·r
R
12
t-
~
~
IIPKI=20
w 8.0 I-- f- -IIAVI
'"ffi
H
'--
r0
"
-
,....., I
o
'i
...........
I -
J
i
80
90
I
I
100
B
110
~
''''
""-' 0..
120
~
w
,
~~
~
130
140
150
~
""""- ,
I-i
f-
16
I-
2.0+5?'
I
10
IIPKI =;0
IIAVI
12 - ,
8.0
'"ffi
~
,
f-
~
,,~
-........:
-CA~ACITIVEI LOADS
;:e 4.0 H
~
;;:
~
""-.. "'-
10-
-
-
I-
-
f- -CAP1CITIVE
II
' \ . de
'\.
\
.........
...........
"0-. \
r---,." :\.\
~
~OAOS
H
0 L.-
o
90
80
100
,,
~~
4.0
110
120
130
140
ISO
TC. CASE TEMPERATURE lOCI
TC. CASE TEMPERATURE lOCI
FIGURE 9 - NORMALIZED REVERSE CURRENT
FIGURE B - TVPICAL REVERSE CURRENT
10 I
104
FT. .
,,~
r-- 112!
E
;101
!==1= VR = 100 V
f= 1=
*
/'
0
~
ioc
10 2
10 1
20
16
FIGURE 7 - CURRENT DERATING
RESISTIVE·INDUCTIVE
LOAD
-
"
12
8.0
20 r-
l-
~ 16 t-
de
IFIAVI. AVERAGE FORWARD CURRENT IAMPI
FIGURE 6 - CURRENT DERATING
20
./
Iltl-2.~
~ Ii""'"
20
IFIAVI. AVERAGE FORWARD CURRENT IAMPI
D:'
17
1/
V 0 ~ C-/~ ~ :;....-'\
2!Q./~ ~
0
12
B.O
4.0
""7
7
/" t>.::: V
/
0
~
o/
/
5.0...,
0
/ l/.: ~
0
LOAD~
CAP!CITIVJ
I
IIPK) = 20
IIAVI
10
./
I
2
V
i== !=
,nO
100
400
200
300
500
VR. REVERSE VOLTAGE IVOLTSI
600
10- 3
20
700
3-19
30
40
50
60 70 80 90 100 110 120 130 140 150 160
TJ. JUNCTION TEMPERATURE lOCI
1N3899 thru 1N3903, MR1386
TYPICAL DYNAMIC CHARACTERISTICS
FIGURE 11 - JUNCTION CAPACITANCE
FIGURE 10 - FORWARO RECOVERY TIME
0
7.oI
:i 5. oI
r-- U~
! 3.Of---- ~tlr Ufr
1===
200
'- TJ= 25'C
0.
~
01---
2.0
V-Vlr= 1.1 V
~
~
~
1.0
~
O.7
O.5
~
O.3
1.0
...... ......
•
2.0
"'"
I'"'-
TJ=25'C
0
:§ 0.2~
o.1
-
0
0
50
5.0
10
20
IF. FORWARD CURRENT lAMP)
20
1.0
100
2.0
5.0
20
10
50
100
VR. REVERSE VOLTAGE IVOLTS)
TYPICAL RECOVERED STORED CHARGE DATA
(Seo Noto 21
FIGURE 12 - T J = 25°C
FIGURE 13 - T J = 75°C
1.0
""
.;;
0.
~
""
G
II
IFM = 20A
o. 5
40 A
~
ffi
O.2
'"t;;
o. 1
Q
2.0
./
ffi
'"~ 0.05
~
~~
~O.O
:~
/
5.0
5
0,5
~
.,
~_> O. 1
~_ 005
'"'" 002
~
lOA
\.
5.0 AI
LOr
10
doldt IAMPI.,)
20
IFM = 20 A
40 A
~ ~V
~ iP"~
Y
2.0
10
"'~
\.
V/
0.0
1.0
3.
50
100
-" 1/
/'
1.0
::7V
v~ 5< ~L.--
0.2
I--
10 A
50A
0
LOA
~ :;...- ......
5.0
20
20
10
50
100
di/dt. IAMPI",)
STORED CHARGE DATA
FIGURE 15 - T J = 150°C
FIGURE 14 - T J = 100°C
2.0
3
IF~ = 20lA
1.0
0.
5 o.5
~
~
>
5
/. /.
o. 2
'"
~
0~
0.0 2
1.0
·~A
~~
2.0
5.0
10
20
./
/'
O. 2
~
:21./
~ f?- ><
Q
"'ffi o. 1
>
lOA
~ 0.0 5
/
o. 5
~
,/
~ k"
o. 1
IFM =JA
0
"'~
8
'"
3
40 A
~
~
0
~
5.0 ~
'"'"
I
50
100
0.05
1.0 A
/~~
0.0 2
1.0
I
~ t:'"
2.0
5.0
10
di/dtIAMP/",)
3-20
'10 A
10 A
20
50
100
1 N3899 thru 1 N3903, MR1386
FIGURE 16 -
JEDEC REVERSE RECOVERY CIRCUIT
RI
LI
RI : 50 Ohms
R2: 250 Ohms
01: lN4723
02' IN4001
03: lN4933
SCRI: MCR729·10
d!idt ADJUST
TI
T2
]:)
120 V·AC
60 Hz
CI:0.5to50~F
C2 ~ 4000~F
L1 : 1.0 - 27 ~H
T1 = Variac Adjusts I(PKI and dl/dt
T2: 1:1
T3= 1:1 (to triggcrcircuitl
II
1:1
CI
03
C2
+
I(PKI ADJUST
OU.T.
02
R2
01
CURRENT
VIEWING
RESISTOR
NOTE 2
Reverse recovery time is the period which elapses from the
di/dt
time that the current. thru a previously forward biased rectifier
diode, passes thru zero going negatively until the reverse current
recovers to a point which is less than 10% peak. reverse current.
Reverse recovery time is a direct function of the forward
current prior to the application of reverse voltage.
For any given rectifier, recovery time is very circuit dependent. Typical and maximum recovery time of all Motorola fast
recovery power rectifiers are rated under a fixed set of conditions
using IF = 1.0 A, VA = 30 V. In order to cover all circuit
conditions, curves are given for typical recovered stored charge
versus commutation di/dt for various levels of forward current
IRM(RECI+----'...
From stored charge curves versus di/dt, recovery time h rr )
and peak reverse recovery current tlRM(REC)) can be closely
approximated using the following formulas:
and for junction temperatures of 25°C, 75°C, 1000C, and
1500C.
To use these curves, it is necessary to know the forward
current level just before commutation, the circuit commutation
di/dt, and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery
rectifiers is shown.
0 11/2
trr = 1.41 x [ _R_
di/dt
.
IRMIREC) = 1.41 x [OR x di/dt] 112
3-21
II
IN3909 thl1l IN3913
MR1396
•
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL DATA
lN3911 and MR1396 are
Motorola Preferred Devices
Designers Data Sheet
FAST RECOVERY
POWER RECTIFIERS
STUD MOUNTED
FAST RECOVERY POWER RECTIFIERS
... designed for special applications such as dc power supplies, inverters,
converters, ultrasonic systems, choppers, low RF interference, sonar power
supplies and free wheeling diodes. A complete line of fast recovery rectifiers
having typical recovery time of 150 nanoseconds providing high efficiency
at frequencies to 250 kHz.
•
50-600 VOLTS
30 AMPERES
Designer's Data for "Worst Case" Conditions
The Designers Data sheets permit the design of most circuits entirely from the
information presented. Limit curves - representing boundaries on device characteristics . - are given to facilitate "worst case" design.
MECHANICAL CHARACTERISTICS
CASE: Welded, hermetically sealed
"MAXIMUM RATINGS
Symbol
Rating
1N3909
P"ak Repetitive Reverse Voltage
Working Peak Raverse Voltage
DC Blocking Voltage
Non-Repetitive Peak Reverse
Voltage
RMS Reverse Voltage
1N3910 1N391'
1N3913 MR139S
Unit
Volts
Average Rectified Forward
50
100
200
300
400
600
75
150
250
350
450
650
35
70
140
210
280
420
Volts
30
'FSM
Current (surge applied at rated
load conditions)
Op8f'atingJunction Temperature
Range
Storage Temperature Range
Amp
- - - - - - - 300 - - - - - - -
TJ
-65 to +150
Tstg
-65 to +176
THERMAL CHARACTERISTICS
Characteristic
Tharmal Resistance, Junction to Case
"ELECTRICAL CHARACTERISTICS
Characteristic
Instantaneovs Forward Voltage
(iF "'93 Amp, TJ - tsoOC)
Forward Voltage
!IF - 30 Amp, TC" 2SoC)
Rever.. Current (rated de voltagel TC - 25u C
TC - l00"C
Symbol
Min
YF
-
VF
'R
-
TV.
1.2
M••
Unit
1.5
Volts
1.1
1.4
Volts
10
0.5
25
1.0
.A
mA
Typ
Max
Unit
150
200
1.5
200
"REVERSE RECOVERY CHARACTERISTICS
a.aracterlstic
Reverse Recovery Time
(IF - 1.0 Amp to VR - 30 Vdc, Figure 18)
IIFM .. 36 Amp, dl/dt .. 25 A/lJs, Figure 17)
Reverse Recovery Current
!IF '" 1.0 Amp to VA - 30 Vdc, Figure 161
Symbal
t"
'AMIREC)
Min
-Indlce'" JEDEC Reei.tared Data for 1N3909Sarles.
3-22
400
2.0
FINISH: All external surfaces corrosion
resistant and readily solderable
POLARITY: Cathode to Case
Volts
Amps
10
Current ISingle phase,
resistive load. TC = 1000CI
Non-Repetitive Peak Surge
1N3912
Amp
WEIGHT: 17 Grams (Approximately)
MOUNTING TORQUE: 25 in·lb. max.
1 N3909 thru 1 N3913, MR1396
FIGURE 1 - FORWARO VOL TAGE
50a
TJ·25'C
V
30a
Y
f-'"
/
FIGURE 2 - MAXIMUM SURGE CAPABILITY
100
V
90
~ri:rll:sUrge,I'he :"':1"; I I
I"""--
/' . /
./ 150'C
20a
1/
rN.i
V
III"'
/V
10 a
r\
)--
a
11111
10
I
IIIII
a
2.0
1.0
3.0
5.0
7.0
10
20
30
50
70 100
NUMBER OF CYCLES AT 60 Hz
II
a
....
f\
r\
1---..-i- 1 CYCLE
Of--
a
a
is o!leraled such that TJ :: 150 DC;
VRAM may be applied between
each Cycle of Surge.
r--
NOTE 1
FLIT
a
PPk
a
I--II~
a
TIME
The temperature of the case should be measured uSing a thermocouple placed
on the case al the temperalUre 'eferenu poml fsee Note 3). The thermal mass
connected to the case IS normally large enough so thaI II Will not significantly
respond to heat surges generated mthedlodeasa rasult of pulsed opera tmnonell
steady·statecondltionsareachleved. Usmg the measured valueol TC. the lunctlon
temperature may be determmed by
TJ"TC+ .TJC
where :. TJC IS the tncrease In junctlDn temperature abolle the case temperature
It may be determmed bV:
6 TJC"Ppk 'ROJC 10 + (1 ~O) . rill +tfll +rltpl-rlq)l
where
rlt) = normalized value ottransl8ntthermalr!Slstaneeattime.t.from Frgure
3.I.e ..
r II) .,. Ipl = normahzed value of Iransltnt thermal reSlSlan~ altlme * Ip
2.a
1.a
O.7
a
DUTY CYCLE, 0 = fp/tJ
PEAK POWER. Ppk, JS peak of an
equivalent square power pulse.
To delermlile maxImum juncllon temperature of the dIOde In a given situatIOn,
the tollowing procedure IS recommended.
3. a
o. 5
Ppk
tp
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0
t,
VF, INSTANTANEOUS FORWARO VOLTAGE (VOLTS)
FIGURE 3 - THERMAL RESPONSE
.......
'"
ffi~ffi
1.a
0.5
~~ d. 3
~~
20
~~
wu
.....
---
O. 2
j..--}O. 1
:>2
(SEE NOTE 1)
~~
~~O.O5
.. w 3 _____
~a::O.O
-E
0.0 2
0.0 1
0.1
0.2
0.5
1.0
2.0
5.0
10
20
I, TIME
3-23
50
1m.)
100
200
500
1000
2000
5000
10,000
•
I
1 N3909 thru 1 N3913, MR1396
SQUARE WAVE INPUT
SINE WAVE INPUT
FIGURE 4 - FORWARD POWER DISSIPATION
FIGURE 5 - FORWARD POWER DISSIPATION
50
50
CAPACITIVE LOADS
I tPKI·' _
10
'tAV)
'10
r----r-----
V
',-/
/
5.0
~
//
//
10
0
2.0
o
8.0
4.0
0
16
20
28
14
o ~
4.0
o
32
H
:;
~
...
~
'"
13
!,
I"
14
5.0
~
«
~
~
w
co
10
16 i==
~
...........
~OAO
~"" ~
............... r-..,
8.0
:>
«
if:
y
0
90
100
110
32
...~
~
24
~
==;
~
"
140
TC, CASE TEMPERATURE (OC)
15
«
;;
4
.I
........
2.0~5.0
10
20
8. 0
~ o
o
80
32
28
24
90
' " de
"-
100
'"
f.....""" "'f....."'" \.
~
110
120
130
TC, CASE TEMPERATURE (OC)
~
140
'"
150
FIGURE 9 - NORMALIZED REVERSE CURRENT
FIGURE 8 - TYPICAL REVERSE CURRENT
10 FTJ,'
'tPK) •
'(AV)
f--
-
w
co
~
~~
130
20
'-- ~
CAPACITIVE
f--f----LOADS,
~
16
~
1
=
::;
~
~
"
16
-
~
,--"-' ~
120
0::
13
.........
I(PK). 20 -.......... 1'-..... ........
'tAV)
CAPACITIVE LOAOS
«
>
«
Rd,STIVE
12
/"
de
FIGURE 7 - CURRENT DERATING
FIGURE 6 - CURRENT DERATING
31
./
-:7
IF(AV), AVERAGE FORWARD CURRENT (AMP)
IF(AV), AVERAGE FORWARO CURRENT tAMP)
0::
8.0
7
'7
./~
~
/ 1/
V/ /
/ V/. ~
~V
RESISTlVE·INDUCTIVE LOAO
12
/
/
J
7
17
i7
II
5.0
0
i"""
7
/
'tAV)
V........: ~
/
•
V
/'
,/'
~~
P
./
/
/ /
o
/
~bAPACIT!VE LOAbs
o ~'.'tPK) '2~
~
'0 1
=
"~
VR' 100 V
./1"
0
F=E,nl
,or.
~~
2
10 1
F F
;,-
1
V
~OC
lO- 3
W
100
100
400
200
300
500
VR. REVERSE VOLTAGE (VOLTS)
600
70
3-24
~
•
50
W m ~ ~ ~ 110 lW
TJ, JUNCTION TEMPERATURE to C)
1~
1. 1501W
1 N3909 thru 1 N3913, MR1396
TYPICAL DYNAMIC CHARACTERISTICS
FIGURE 11 - JUNCTION CAPACITANCE
FIGURE 10 - FORWARD RECOVERY TIME
100
10
70
]. 50
w
!
E
I
"lli-
II - - -
~tfr
3.0 I - - -
~ r= TJ' 25°C
!1r
~
V'
2. 0
:ii
10
07
~
O. 5
50
ti
«
"'r-..
30
~
2~
0
;j
..- ..-
03
,; 0
I0
10
O. I
1.0
20
5.0
10
.......... 1-...
z
«
Vfr" 1.1 V
~
TJ" l5 0 e
w
u
,/
>
~
--
50
20
100
20
50
10
50
20
100
VR. REVERSE VOLTAGE IVOl TS)
If. fORWARO CURRENT lAMP)
TYPICAL RECOVERED STORED CHARGE DATA
= 25°C
FIGURE 12 - T J
(SEE NOTE 2)
1.0
-.
".3
l--'fM
20A
40 A
5
w
~
g
2
"
""'
!;;
~ ~ V-
O. I
'"
~
10
'""'
~
"
5
"'~
10 A
~;;:::;
~
1[./Y
10
'-' \
"" ......
50
>
-
0:t>V'"'-
I~--
lOA
"" U 112
5U
20
[11 ilt (AMP
~
20
~
,/
-
~k
00 2
10
"'
~
V
"w
"'w
i,.-
~ uo
" UU
=r·-~-Ar:i=
- - \ . . 50A
10A'--t-
l£e :;;..20
50
10
20
IfM
U-·
100
= 150°C
0
L,/
4d A
5
/
"w
/ ' VV'
1% V
50
~
g
51----
T
20
FIGURE 15 - T J
5
I
10
U
if~ . 20lA
40 A
2
5U
dl/dl. (AMP',LIs)
FIGURE 14 - T J = 100°C
0
1.0 A
~ ::::;. ......
IU
100
50 A
J.!~I
0
V V
/
--
21----·
~ U U5 f----
'-,UA--r
10
/v
~{I
~
50 A
I :
20
-J 2 0 1
40 A
~
0.0
FIGURE 13 - TJ = 75°C
0
50
I
~.
dlldt, lAMP/psI
3-25
lOA
5
c
100
/
.--< !v'hlY P<
/
2
2
IU
1)0 A
-
lOA
//.
~ J:?'
20
I--
50
20
50
100
..
1N3909 thru 1N3913, MR1396
FIGURE 16 -
JEDEC REVERSE RECOVERY CIRCUIT
Rl
Rl =SO Ohm.
RZ =ZSO Ohm.
01 = lN4723
02 = lN4001
03= lN4933
SGRI = MGR729·10
Gl =0.5loS0pF
C2 .4DDDpF
L1
dildl ADJUST
T1
T2
~ II
Cl
12DVAC
60 Hz
1:1
'IPKI ADJUST
D.U.T
02
L1=1.D-27~H
Tl = Vanac Adjusts I(PK) and dildt
T2 = 1:1
T3 = 1;1 (to trigger circuit)
01
CURRENT
VIEWING
RESISTOR
•
NOTE 3
Reverse recovery time is the period which elapses from the
time that the current. thru a previously forward biased rectifier
diode, passesthru zero going negatively until the reverse current
recovers to a point which is less than 10% peak reverse current.
Reverse reoovery time is a direct function of the forward
current prior to the application of reverse voltage.
For any given rectifier. recovery time is very circuit dependent. Typical and maximum recovery time of all Motorola fast
recovery power rectifiers are rated under a fixed set of conditions
using IF = 1.0 A. VR = 30 V. In order to cover all circuit
conditions, curves are given for typical recovered stored charge
versus oommutation di/dt for various levels of forward current
and for junction temperatures of 2s"C, 75°C, l00"C, and
1500c.
di/dt
'RM(RECI+---'IL
From stored charge curves versus di/dt, recovery time h rr )
and peak reverse recovery current URM(REC)) can be closely
approximated using the following formulas:
To use these curves, it is necessary to know the forward
current level just before commutation, the circuit commutation
dildt, and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery
rectifiers is shown.
Q
~ 1/2
t rr =I.41 x [ _R_
di/dt
IRM(RECI
3-26
= 1.41
x [QR' di/dt] 112
MOTOROLA
SEMiCONDUCTOR . . . . . . . . . . . . . . . . . . . . . . . .. .
TECHNICAL DATA
1N4001
thru
1N4007
Axial-Lead
Standard Recovery Rectifiers
1N4004 and 1N4007 are Motorola
Preferred Devices
This data sheet provides information on subminiature size, axial lead mounted rectifiers for
general-purpose low-power applications.
LEAD MOUNTED
RECTIFIERS
50-1000 VOLTS
DIFFUSED JUNCTION
Mechanical Characteristics
Case: Void free, Transfer Molded
Maximum Lead Temperature For Soldering Purposes: 350c C, 3/8" from
case for 10 seconds at 5 Ibs. tension
Finish: All external surfaces are corrosion-resistant, leads are readily solderable
Polarity: Cathode indicated by color band
Weight: 0.33 Grams (approximately)
CASE 59-03
00-41
MAXIMUM RATINGS
Symbol
lN4001
lN4002
lN4003
lN4004
1N400S
1N4006
1N4007
Unit
"Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
50
100
200
400
600
BOO
1000
Volts
'Non-Repetitive Peak Reverse Voltage
(hallwave, single phase, 60 Hz)
VRSM
60
120
240
480
720
1000
1200
Volts
VR(RMS)
35
70
140
2BO
420
560
700
Volts
Rating
"RMS Reverse Voltage
"Average Rectified Forward Current
(single phase, resistive load,
60 Hz, see Figure B, TA = 75C C)
10
1.0
Amp
"Non-Repetitive Peak Surge Current
(surge applied at rate~ load
conditions, see Figure 2)
IFSM
30 (for 1 cycle)
Amp
Operating and Storage Junction
Temperature Range
TJ
Tstg
-65to +125
-65 to +150
cC
*Indlcates JEDEC Registered Data
Preferred devices are Motorola recommended choices for future use and best overall value.
3-27
•
1 N4001 thru 1 N4007
ELECTRICAL CHARACTERISTICS'
Rating
Symbol
Typ
Max
Unit
vF
0.93
1.1
Volts
VF(AV)
-
O.B
Volts
0.05
1.0
10
50
Maximum Instantaneous Forward Voltage Drop
(iF =1.0 Amp, TJ =25°C) Figure 1
Maximum Full-Cycle Average Forward Voltage Drop
(10 = 1.0 Amp, TL =75'C, 1 inch leads)
Maximum Reverse Current (rated dc voltage)
(TJ =25'C)
(TJ = 100'C)
Maximum Full-Cycle Average Reverse Current
(10 = 1.0 Amp, TL = 75'C, 1 inch leads)
•
is:"
::;
:$.
!z
w
a:
a:
ac
a:
~
50
20 TJ = 25'C
10
5.0
2.0 TYPICAL
1.0
0.5
is:"
~
~a:
a
UJ
~
0.2
a
~
~
in
;:5
0.1
0.05
0.02
0.01
0.005
~
0.002
:E
rn
UJ
z
~
~
0.8
1.2
1.6
2.0
2.4
-
IR(AV)
~
~
I'A
IR
2.8
3.2
3.6
I'A
100
70
--
50
30
20
r-r--
f\
1-.
..L
/
-r-.
f\
f\
SURGE APPUED AT NO
LOAD CONDITIONS
TJ = 25'C
-
--
-:-
J+......I..1 CYCLE
10 f- VRRM APPUED AFTER SURGE
Of- - - - TYPICAL FAIWRES
7.
t= --- DESIGN UMITS
~ 5.01.0
4.0
30
2.0
3.0
5.0 7.0
10
20
30
50
70
VJ', INSTANTANEOUS FORWARD VOLTAGE (VOLTS)
NUMBER OF CYCLES
Figure 1. Forward Voltage
Figure 2, Non-Repetitive Surge Capability
~
'>
§.
!z
w
U
u::
u..
w
a
'-'
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
-0.5
-1.0
-1.5
I
TYPICAL RANGE
....
-2.0
-2.5
0.001
0.005 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20
iJ', INSTANTANEOUS FORWARD CURRENT (AMP)
50
Figure 3_ Forward Voltage Temperature Coefficient
3-28
100
1 N4001 thru 1 N4007
~
~
100
70
!50
=~k
F'
r-
~ ~ 30 f=
~~
-;J~
0'"
~
f3
OUTYCYCLE.O:lpl,
TIME PEAK POWER, Ppk is peak of an
equivalent square power pulse
--l
tl
01' ReJL It1 + I~ + ReJL(lpl- ReJL(ltl I
6TJL - Ppk IReJLH' 0 + (1
r-
10 t=
~:li 5.0 ~
;;;ffi
..:. i!= 3.0
--
ReJL(II: value of Iransient Ihermal resislance at time I, i.e.:
ReJL(I,+I~ : value of ReJL(11 attime', + Ip
ReJL(lpl = value of ReJL(11 altime 1,+lp
ReJL(I~: value of ReJL(11 al end of pulse widlh Ip
ReJL(I,1 = value of ReJL(11 attime I,
......
2.0
..+-r
1.0
...l-n'1111
5.0
3.0
7.0
I I
10
20
I
30
I 11111
50 70
--
L: 1"
I-'"
20 f-- where &TJL = increase in junction temperature above the lead temperature.
E 57.0 f=f::
:i
p
f--
L: 1/2"
L: 1/32"
I
100
200 300
t, TIME (ms)
2000
500 700 1000
3000
5000 7000 10k
20k
30k
Figure 4. Thermal Response
The temperature of the lead should be measured using a thermocouple placed on the lead as close as possible to the tie point.
The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges
generated in the diodes as a result of pulsed operation once steady-state conditio"ns are achieved. Using the measured value
of TL, the junction temperature may be determined by:
TJ = TL + LlTJL.
CURRENT DERATING DATA
80
100%
c:
,....-
10
,....-
o
o
V
/
/
V
LE
70%
z
f-"""
y
80%
C!)
~
:"I'"
90%
§
c:
w
c 50%
c: 40%
,., TYPICAL
1\
,
\
60%
w
tu
::E
30%
if
20%
~
\
\
10%
1/8
1/4
\
0%
O°C
H/8 H/4
3/8
1/2 5/8
3/4 7/8
L, LEAD LENGTH (INCHES)
20°C
Figure 5. Steady-State Thermal Resistance
40°C
60°C
80°C
100°C
LEAD TEMPERATURE (OC)
Figure 6. Parametri(; Derating Curve
NOTE 1
Data shown for thermal resistance Junction-Io-amblent (ROJA) for the mountings
shown IS to be used as typical gUideline values for preliminary engmeerlng or in
case the tie point temperature cannot be measured.
TYPICAL VALUES FOR RaJA IN STILL AIR
rL--j
r-L1
n
MOUNTING METHOD 1
1
2
.
,-"
Jl:~~-~~~
TERMINAL STRIP
VIIIIn/~/H)l4'
PC. BOARD
MOUNTING
METHOD
125°C
MOUNTING METHOD 2
LEAD LENGTH, L (IN.)
1
1/32
3/8
75
85
-
I
I
55
I
3-29
I
I
72
I
85
RaJA
°C/W
°C/W
..
1N4001 thru 1N4007
TYPICAL DYNAMIC CHARACTERISTICS
20
2.0
-~ t
~
w
:::;;
;::
~
1.0 -'Ir
..........
L.-
~
vlr=2.0V
TJ = 25°C
w
~ 0.7
~
a:
12
~
0.3
0.2
0.1
~
7.0
~
5.0
w
~
u
w
a:
a 0.5
a:
10
--
0.2
- I II
l..---"""'"
~
If-"""
i--- I-
0.3
u
w
a:
",
lN4006/7
w
(J)
..... ~
a:
w
>
w
a:
~~01/5
0.5 0.7 1.0
2.0 3.0
If; FORWARD CURRENT (AMP)
30
w
20
z
~
u
10
.s
u
lN4006/7
lN400115........ ,
.........
3.0
TJ = 25°C
........
i'
0.2
0.3
0.5 0.7 1.0
2.0 3.0
IRIIf; DRIVE CURRENT RATIO
5.0 7.0 10
Figure 8. Reverse Recovery Time
--
TJ=25°C
r-
3.0
2.0
0.2
j... 'rr
J'-....
2.0
C3 5.0
1.0
0.1
UL?J
t-.... 0.1 CIW/IN. Typically and 128"CIWIIN MaxImum
ROJ = 18~CIWTypicany and 30a CIW Maximum
The maximum lead temperature may be calculated as follows:
TL=150o-~TJL
Use of the above model permits function 10 lead thermal reslstancll for any
~TJL
mounting configuration 10 be found. For a given total lead length, lowest values
occur when one Side at the rectlfu!f IS brought as close as possIble to the hl'al
Sink Terms In tht: model slgmfy.
can be calculated as shown
In
NOTE 1 or.t may be approxLmated as follows:
6TJl'" AWL· PF; PF may be formulated for sine-wave operation from FLgure 3.
Figure 7. Thermal Circuit Model
(For Heat Conduction Through The Leads)
II
TYPICAL DYNAMIC CHARACTERISTICS
o. 5
~
w
0.3
30
r--V~r=1.L
r--
'"t=
u.
~
..
.
~ O. 2
w
o
It
~
0.07
........
0.05
0.1
z
0
i=
<.>
z
=25 0 C
r--......
10
7.0
;;
,..,
0.2
TJ
'-'
a:
~
r--... :--
U
/
a:
-.;.;;
I-
... V
>
2w
!
.......
Z
/
o. 1
20
w
'-'
TJ=25 0 C
;j 5.0
0.5
1.0
2.0
5.0
10
3.0
1.0
2.0
5.0
10
20
50
VR. REVERSE VOLTAGE (VOLTO'
IF. FORWARD CURRENT (AMP)
Figure 9. Typical Junction Capacitance
Figure 8. Forward Recovery Time
3-35
11lfl
1N4933 thru 1N4937
TYPICAL RECOVERED STORED CHARGED DATA
.,...
1.0
3
w
0.5
.3
1.0
V ""-1--'
g'"'"
O. 5
V-
~
w
~
'"
«
13
~ 0.2
~~
o
t;; O. 1
~
~
,
0.05
§
/.~
g'" 0.02
0.0
~ i""" ~
1~ V
1.0
2.0
=IFM'20A'=f- - - C - ' t-
2.0
~W
O. 1
>
5.0A
1.0 A _. I
10
~
O. 2
/. V
0 5x v
~ V ....
lOA
8
~ 00 5
5.0A
.r.
N/
Cl
I
5.0
V
a:
lOA
\
'FM"201
20
50
100
2.0
5.0
",/dt lAMP/psi
Figure 10. TJ
•
=25°C
IF~ ~ 20lA
.3 1.0
w
~
0.5
~
0
~ 0.2
~
>
0.02
1.0
..../....-
~ k '" :.-- .....
O. 1
8
~ 0.05
.r.
o
10
",/dt, (AMP/psi
Figure 11. TJ
2.0
5
LOA
I.&e ::;:::, .......
00 2
10
lOA
5.0A
~V
1\0 A
l.&e y"""
2.U
5.0
-i
10
",/dt, (AMP/psi
Figure 12. TJ
3-36
20
=100°C
50
100
20
=75°C
50
100
1N4933 thru 1N4937
RECOVERY TIME
.,
115Vac 10k
60Hz
2W
HZ
3U!!
5UW
25W
NON INDUCTIVE
NOTE 3
UNIT
UNDER TEST
CONSTANT
VQlTAGESUPPlY
RIPPLE 3 I1lVnm MAX
J!l
lOW
NON INDUCTIVE
30 Vdc
CONSTANT VOL TAGE
Reverse recovery time IS the period which elapses from the
time that the current, thru a previously forward biased rectifier
diode, passes thru zero gOlOg negatively until the reverse current
recovers to a point which IS less than 10"", peak reverse current.
Reverse recovery time IS a direct function of the forward
current prior 10 the application of reverse voltage.
For any given rectifier, recovery time IS very CITCUIt depend.
ent. TYPical and maximum recovery time of all Motorola fast
recovery power rectifiers are rated under a fixed set of conditions
usmg 'F = 1.0 A, VR = 30 V. In order to cover all CircUit
conditions, curves are given for tYPical recovered stored charge
versus commutation dt/dt for vattous levels of forward current
and for JunctIOn temperatures of 25°C, 7SoC, 100o C, and
1So"C,
To use these curves, It IS necessary to know the forward
current level Just before commutation, the circuit commutation
dl/dt, and the operating Junction temperature. The reverse recovery test current waveform for all Motorola fast recovery
rectifiers is shown .
1 U Adc FROM
.,
C,
1 $IF
o
SUPPlYO-,-·_ _+-___4 _ _ _ _~,:::30::.0::.V....._ __<>
ZUlli ,', HMAX,
DC In 2 kHI
MINIMIZE ALL LEAD LENGTHS
A
TEKTRONIX 54SA. K PLUG IN
PRE AMP. P6000 PROBE OR eGUIVALENT
AI - ADJUSTED FOR I 4!2 8ETWEEN
POINT 2 Of RELAY ANO RECTIFIER
RZ
TEN 1 W, 10 H. 1 ,CARBON CORE
IN PARALLEL
TA - 25 +lgoc FOR RECTIFIER
INDUCTANCE,38pH
Figure 13. Reverse Recovery Circuit
.
,
L1
d! iii ADJUST
T1
CI
1201JVC
1121
60 Hz
I(PKI ADJUST
11
OUT
From stored charge curves versus dt/dt, recovery time !t rr ,
and peak reverse recovery current (/RMIRECII can be closely
approximated uSing the follOWing formulas:
01
RI = 50 Ohms
RZ "250 Ohms
D1 = lN4723
02 = lN4DOl
D3 -1N4934
01
t r , -"
SeRI "MCR729 10
Cl =0510 50iJF
C2
4000JjF
ll" 1 0 - 21!JH
CURRENT
VIEWING
RESISTOR
TI Vdll~L AdlUSh '(PKI ,IUd Ihl!H
12" 1 1
13
1.1
'RMIREC)
(til lngger tlltL!!I)
Figure 14. JEDEC Reverse Recovery Circuit
1(I3~~~
~
~102
~
a:
a:
~
~
1.
TJ=150 DC
•
101
TJ = 100DC
•
'.=
TJ-75 DC
a:
~~
'---1--
~
~I~~~~~~~~~~!J.~~~~~
:.i
- -_===
TJ = 25 DC
: c....:._ -- --'---=
~-:-
WI ~_ _':_---'---J'---..l---'--_:::-__::=_-..J
o
100
200
300
400
500
600
VR. REVERSE VOLTAGE (VOLTS)
Figure 15. Typical Reverse Leakage
3-37
700
a ]
1.41 x [ - ~
~ 1 41
112
di/dt
x [OR x
dl/d~ 112
II
MOTOROLA
SEMiCONDUCTOR . . . . . . . . . . . . . . . . . . . . . . . ....
TECHNICAL DATA
1N5400
thru
1N5408
Axial-Lead
Standard Recovery Rectifiers
1N5404 and 1N5406 are Motorola
Preferred Devices
Lead mounted standard recovery rectifiers are designed for use in power supplies and
other applications having need of a device with the following features:
•
•
•
•
•
High Current to Small Size
High Surge Current Capability
Low Forward Voltage Drop
Void-Free Economical Plastic Package
Available in Volume Quantities
STANDARD
RECOVERY RECTIFIERS
50-1000 VOLTS
3.0 AMPERE
Mechanical Characteristics
II
Case: Void free, Transfer Molded
Finish: Extemal Leads are Plated, Leads are readily Solderable
Polarity: Indicated by Cathode Band
Weight: 1.1 Grams (Approximately)
Maximum Lead Temperature for Soldering Purposes: 240°C, 1/8" from
case for 10 s at 5.0 lb. tension
MAXIMUM RATINGS
Symbol
1N5400
1N5401
1N5402
1N5404
1N5406
1N5407
1N5408
Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Rating
VRRM
VRWM
VR
50
100
200
400
600
800
1000
Volts
Non-repetitive Peak Reverse Voltage
VRSM
100
200
300
525
800
1000
1200
Volts
Average Rectified Forward Current
(Single Phase Resistive Load,
1/2" Leads, TL = 105°C)
10
3.0
Amp
Non-repetitive Peak Surge Current
(Surge Applied at Rated Load Conditions)
IFSM
200 (one cycle)
Amp
Operating and Storage Junction
Temperature Range
TJ
Tstg
- 65 to +125
- 65 to +150
°C
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
(PC Board Mount, 112" Leads)
Symbol
Typ
Unit
RaJA
53
°CIW
ELECTRICAL CHARACTERISTICS
Characteristic
"Instantaneous Forward Voltage (1)
(iF 9.4 Amp)
=
Average Reverse Current (1)
DC Reverse Current (Rated dc Voltage, TL
Symbol
Min
Typ
Max
Unit
vF
-
-
1.2
Volts
-
-
500
500
IIA
IR(AV)
IR
=80°C)
-
-
•JEDEC Registered Data.
(1) Measured in a single phase hallwave circuit such as shown in Figure 6.25 of EIA RS·2B2, November 1963. Operated at rated load conditions Tl = 80°C,IO = 3.0 A, Vr = VRWM'
Preferred deVices are Motorola recommended choices lor future use and best overall value.
3-38
1N5400 thru 1N5408
-
I- TJ - 25'C
30
20
f=
10
7.0
5.0
3.0
Ii.
=
TYPICAL
400
fi)
::;;
$
!z
w
200
I:t:
I:t:
JVVL
::::J
U
W
C!l
I:t:
::::J
100
90
80
Li':i
a..
70
::!!; 60
~ 50
INSTANTANEOUS FORWARD VOLTAGE (VOLTS)
"
~
Figure 1. Forward Voltage
I"
I'...
40
1.0
3.2
HICYCLE
2.0
3.0
5.0 7.0 10
20
NUMBER OF CYCLES
TYPICAL VALUES FOR RaJA IN STILL AIR
1/8
1
1
50
2
58
I
I
1/'
51
59
3
1
1
112
I
61
53
63
'CIW
'CIW
MOUNTING METHOD 2
Vector Push-In Terminals T-28
MOUNTING METHOD 3
p.e. Board with
1-1/2" x 1-1/2" Copper Surface
~
~
r'-i r-'l
l~'
100%
ik"'~
~~g:
"
90%
i'\.
~ 80%
u
~
a:
55
RaJA
'CIW
28
MOUNTING METHOD 1
z
31'
1
1
1
P,C. Board Where Available
Copper Surface area IS small.
C!l
70%
1\
\
60%
w 50%
0
,
1\
a:
w 40%
\
t;:;
::;; 30%
"Values given are for the 1N5818. Power is slightly lower for the
1N5817 because of its lower forward voltage. and higher for the
lN5819.
20
II
""
"
"" """ """"
""" """
"-
~
cr:
Step 1. Find VR(equiv). Read F = 0.65 from Table 1.
Step 4. Find TA(max) from equation (3).
TA(max) = 109 - (80) (0.5) = 69°C.
15
r-:::: t- r:::- ..... ::-::::::::.... /40 30
i'- r-.... ... ~ :-x /
~
",,,,,", l'...""-. ~
:::>
= 10. Input Voltage = 10 V(rms). RaJA =
I(FM)
@ I(AV) = 10 and IF(AV) = 0.5 A.
r-...""-
-
~~
!;;:
EXAMPLE: Find TA(max) for lN5818 operated in a 12-voltdc supply using a bridge circuit with capacitive filter such that IOC = 0.4 A
@ VR =9.2 V and RaJA =80"CIW.
Step 3. Find PF(AV) from Figure 4. "Read PF(AV) = 0.5 W
~"
.......
Figure 1. Maximum Reference Temperature
1N5817
(2).
TR = TJ(max) - RaJAPR(AV)
Substituting equation (2) into equation (1) yields:
3.0
2.0
"'-'
" " ""-""
60
Figures 1. 2. and 3 permit easier use of equation (1) by taking reverse power dissipation and thermal runaway into consideration. The
figures solve for a reference temperature as determined by equation
(IF(AV) = 0.5 A).I(FM)/I(AV)
80°CIW.
/'
80
cr:
fucr:
')f.-...
)-
w
c..
::.
~
w
v 30-'-
~ 23
>-~~ ~' r-.....' r-......
/'~
/'
~
85
~' t'-.
r-.....' I'-.. r--..
r-.....' r-...' ~ r"..
~,
r-.. . ~
"'"
~ t..... ~
.$
~~
754.0
5.0
7.0
10
15
20
VR. De REVERSE VOLTAGE (VOLTS)
40
30
Figure 3. Maximum Reference Temperature
1N5819
Table 1. Values for Factor F
Circuit
Load
Half Wave
Resistive
Full Wave, Bridge
Capacitive'
Resistive
Capacitive
Full Wave, Center Tapped'
Resistive
Sine Wave
0.5
1.3
0.5
0.65
1.0
1.3
Square Wave
0.75
1.5
0.75
0.75
1.5
1.5
~Note that VR(PK) '" 2 0 Vm{PK)
t Use line to center tap voltage for Vm
3-41
t
Capacitive
1N5817 thru 1N5819
~
(.)
.....
w
..,.
80
f?
70
Cl
'"
PEAK POWER. Ppk. IS peak of an
TIME
equivalent square power pulse
~~~re'" Ppk· R9JL {O + (1 - OJ- ~tl + Ipl"" r1lp)- rjttl}
ATJL " the Incrsase In Junction temperature above the lead temperature
r(tl "normalIZed value of transient thermal resIStance at time, 1. from Figure 6. I e.'
T(II '*" tpl "normalized value of transient thermal resistance at time. I, + lp.
0.2
0.5
1.0
2.0
5.0
10
20
50
100
200
500
1.0k
2.0k
5.0k
I, TIME (ms)
Figure 6. Thermal Response
NOTE 2 - MOUNTING DATA
Data shown for thermal resislance junclion-Io-ambient (RaJA) for
Ihe mountings shown is to be used as typical guideline values for preliminary engineering, or in case the tie point temperature cannot be
measured.
Mounllng Method 1
P.C. Board wilh
1-112" x 1-1/2"
copper surface.
Mounting Method 3
P.C. Board with
1-1/2" x 1-1/2"
copper surface.
TYPICAL VALUES FOR RaJA IN STILL AIR
Mounting
Method
1
2
3
Lead Length, L (in)
1/8
1/4
1/2
3/4
52
67
65
80
72
87
85
100
50
RaJA
°C/W
°C/W
°C/W
Mounting Method 2
dt:E!ti
L
~
VECTOR PIN MOUNTING
3-42
BOARD GROUND
PLANE
10k
1N5817 thru 1N5819
NOTE 3 - THERMAL CIRCUIT MODEL
(For heat conduction through the leads)
RSS(K}
TA(K}
Use of the above model permits junction to lead thermal resistance
for any mounting configuration to be found. For a given total lead
length, lowest values occur when one side olthe rectifier is brought as
close as possible to the heatsink. Terms in the model signify:
=-
(Subscripts A and K refer to anode and cathode sides, respectively.)
Values for thermal resistance components are:
RSL = 1OO'ClWlin typically and 120'CIWlin maximum
RSJ = 36'CIW typically and 46'C/W maximum.
TA = Ambient Temperature
TC = Case Temperature
TJ = Junction Temperature
TL = Lead Temperature
RsS = Thermal Resistance, Heatsink to Ambient
RSL = Thermal Resistance, Lead to Heatsink
RSJ = Thermal Resistance, Junction to Case
Po = Power Dissipation
125
I
r-....
! 115 r---..
v
V
~
20
10
!
5.0 =TC=100'C
w 105
Cl
a::
:::J
en 95
/
2.0
~
1.0
-
:l! 85
en
.!:-
-
.........
Rated Load Conditions
25'C
2.0
3.0
5.0 7.0 10
20
NUMBER OF CYCLES
30
40
70 100
Figure 8. Maximum Non-Repetitive Surge Current
0.5
I
I
30
20 - TJ = 125'C
I I
0.3
I
0.2
II
w
a::
0.07
0.1
I--
r- Surge Applied at
75
1.0
0.7
0.03
II
I I I
'""-ex:w
/'
3.0
I
1 Cycle
r--.. ,.....,
f = 60 Hz
::::J
<.)
H
\
--I
. . . . 1'--
r-- r- TL = 70'C
w
a::
a::
,
7.0
a:-
>z
I
J\.J"L
a:-
I
0.2
~
,-
.
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 1.1
0.05
0.03
vF, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)
,~
25'C
-
o
4.0
8.0
-
.... -
......
0.1
-
- -- -- - --
~ :::100'C
;-::: ~;
-
;....-.: ~-
12
16
20
lN5817 ~
-----lN5818
lN5819
24
=
=
28
32
VR, REVERSE VOLTAGE (VOLTS)
Figure 7. Typical Forward Voltage
Figure 9. Typical Reverse Current
3-43
36
40
1N5817 thru 1N5819
NOTE 4 - HIGH FREQUENCY OPERATION
Since current flow in a Schottky rectifier is the result of majority carrier
conduction, it is notsubjectlo junction diode forward and reverse recoverytransients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consistingof an ideal diode in parallel with a variable capacitance. (See Figure 10.)
Rectification efficiency measurements show that operation will be
satisfactory up to several megahertz. For example, relative waveform
rectification efficiency is approximately 70 percent at 2.0 MHz, e.g., the
ratio of dc power to RMS power in the load is 0.28 at this frequency,
whereas perfect rectification would yield 0.406 for sine wave inputs.
However, in contrast to ordinary junction diodes, the loss in waveform
efficiency is not indicative of power loss: it is simply a result of reverse
current flow through the diode capacitance, which lowers the dc output
voltage.
-
200
i ' ...... l?
LL 100
,g,
w 70
lN5817
,
0
z
;:::
(3
lN5818
50
I
lN5819
~
«
0
I
30
.......
,
........
........
r-....
TJ = 2~oC
f=1.0MHz
<5
20
10
0.4 0.6 0.81.0
2.0
4.0 6.0 8.0 10
VR, REVERSE VOLTAGE (VOLTS)
Figure 10, Typical Capacitance
II
3-44
'"
1"'20
40
lN5820
lNS821
lNS822
MOTOROLA
_ SEMICONDUCTOR
TECHNICAL DATA
•
lN5822Is a
Motorola Preferred Device
Designers Data Sheet
AXIAL LEAD RECTIFIERS
· .. employing the Schottky Barrier principle in a large area metal·to·silicon
power diode. State-of-the·art geometry features epitaxial construction wi ch
oxide passivation and metal overlap contact. Ideally suited for use as rectifiers
in low-voltage, high-frequency inverters, free wheeling diodes, and polarity
protection diodes.
Low Stored Charge, Majority
Extremely Low vF
Carrier Conduction
Low Power Loss/High Efficiency
SCHOTTKY BARRIER
RECTIFIERS
3.0 AMPERES
20, 30,40 VOL TS
•
•
•
Designer's Data for Worst-Case Conditions
The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves-representing boundaries on device characteristics-are given
to facilitate worst-case design.
II
"MAXIMUM RATINGS
Rating
Symbol
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Non-Repetitive Peak Reverse Voltage
RMS Reverse Voltage
Average Rectified Forward Current (2)
VRRM
VRWM
VR
VRSM
VR(RMS)
10
VR(equiv) .. 0.2 VRlde), TL • 95°C
(ROJA • 2SoC/W, P.C. Board
lN5B20
20
lN5B21
30
lN5822
40
Unit
24
14
36
21
3.0
48
28
V
V
A
.
.
Transfer molded plastiC
corrosion-resistant and the terminal
90
TA
85
80
°c
leads are readily solderable
POLARITY . . . . . . . . Cathode indicated by
Rated VRlde), PF(AV)' 0
ROJA • 2SoC/W
polarity band
Non-Repetitive Peak Surge Current
ISurge applied at rated load conditions, half wave, single phase 60 Hz,
IFSM
~80
(for one cyclel ______
A
Operating and Storage Junction
Temperature Range (Reverse
Voltage applied)
TJ, Tstg
Peak Operating Junction Temperature
(Forward Current Applied)
TJ(pk)
~
-65to+125
.
~
.
150
C
DC
"THERMAL CHARACTERISTICS (Note 2)
Characteristic
Thermal Aesistance, Junction to Ambient
*ELECTRICAL CHARACTERISTICS ITL • 25°C unless otherwise noted) (2)
Characteristic
Symbol
lN5821
lN5822
lN5820
Maximum Instantaneous
vF
Unit
V
Forward Voltage (1)
liF • 1.0 Amp)
(iF' 3.0 Amp)
(iF' 9.4 Amp)
MOUNTING POSITIONS . . . . . . . . . . Any
SOLDERING . . . . . . 2200 C 1/16" from cas.
for ten seconds
TL' 75°C)
de Voltage (1)
TL • 25°C
TL • 100°C
MECHANICAL CHARACTERISTICS
CASE. . . . . . . ..
FINISH . . . . . . . . . . . . AIl external surfaces
Mounting, see Note 2)
Ambient Temperature
Maximum Instantaneous
Reverse Current @ Rated
I
V
0.370
0.475
0.850
0.380
0.500
0.900
0.390
0.525
0.950
rnA
;R
2.0
20
2.0
20
2.0
20
(11 Pulse Test: Pulse Width = 300 JJS, Duty Cycle z: 2.0%.
(21 Lead Temperature reference is cathode lead 1/32" from case.
*Indicates JEDEC Registered Data for 1 N5820·22.
3-45
1 N5820 thru 1 N5822
NOTE 1 - DETERMINING MAXIMUM RATINGS
slope in the vicinity of 11So C. The data of Figures 1,2, and 3 is
Reverse power dissipation and the possibility of thermal
based upon dc conditions. For use in common rectifier circuits,
runaway must be considered when operating this rectifier at
Table 1 indicates suggested factors for an equivalent dc voltage
reverse voltages above 0.1 VRWM' Proper derating may be accomto use for conservative design, that is:
plished by use of equation (11.
TAlmax) =TJ(max) -ReJAPF(AV) -ReJAPR(AV)
where T A(max)
T J(max)
(4)
VR(equiv) = V(FM) X F
The factor F is derived by considering the properties of the various
rectifier circuits and the reverse characteristics of Schottky diodes.
(1)
= Maximum allowable ambient temperature
= Maximum allowable junction temperature
(125°C or the temperature at which thermal
runaway occurs, whichever is lowest)
EXAMPLE: Find TA(max) for 1 N5821 operated in a 12·volt
dc supply using a bridge circuit with capacitive filter such that
IOC = 2.0 A (IF(AV) = 1.0 A). I(FM)Ii(AV) = 10,Input Voltage
= 10 V(rms), ReJA = 40 0 CIW.
Step 1. Find VR(equiv)' Read F = 0.65 from Table I,
:. VR (equiv) = (1.41 )(10)(0.65) = 9.2 V.
Step 2. Find TR from Figure 2. Read TR = 108°C
@VR = 9.2 V and ReJA = 40 0 CIW.
Step 3. Find PF(AV) from Figure 6. ""Read PF(AV) = 0.85 W
PF{AV) = Average forward power dissipation
PR(AVJ = Average reverse power dissipation
R6JA
=Junction-to-ambient thermal
resistance
Figures 1,2, and 3 permit easier use of equation (1) by taking
reverse power dissipation and thermal runaway into consideration.
The figures solve for a reference temperature as determined by
equation (2).
(2)
TR = TJ(max) - ReJAPR(AV)
Substituting equation (2) into equation (1) yields:
TA(~ax) = TR - ReJAPF(AV)
II
@
II(FM) = 10 and IF(AV) = 1.0 A.
(AV)
Step 4. Find TA(max) from equation (3l.
TA(max) = 108 - (0.85)(40) = 74°C.
(3)
Inspection of equations (2) and 13) reveals that TR is the
ambient temperature at which thermal runaway occurs or where
T J = 125 0 C, when forward power is zero. The transition from one
boundary condition to the other is evident on the curves of
Figures 1, 2, and 3 as a difference in the rate of change of the
* ·Values given are for the 1 NS821. Power is slightly lower for the
1N5820 because of its lower forward voltage, and higher for the
1 N5822. Variations will be similar for the MBR-prefix devices,
using PF(AV) from Figure 7.
TABLE 1 - VALUES FOR FACTOR F
Full Wava,
Circuit
Load
Sine Wave
Resistive
0.5
,I
Capacitive*
Resistive
1.3
0.5
Square Wave
0.75
I
1.5
0.75
*Note that VRIPK)
FIGURE 1 -
11:1:
ROJA (OCIW) .. 10 ~
>-
50 V 'x
40~
15
I',
Xi'
~
2B
~""-
,"""
~
,
~
'" """"
:-...,:r--- -.......'<
......
~I"'
5
I'
/
RnJA (OCIW) , 10
5
50
...........
5
2B
75
4.0
7.0
1.5
11
MAXIMUM REFERENCE TEMPERATURE
1N5821
ill>w
u
~
'"
/20
RliJA (OCIWI ' IQ
~ ./ j'-..r-- .~
so/ I>< r.....X
~
~"':,
5
>-
4.0
7.0
5.0
FIGURE 4 -
"-..
~
"
B
~,
10
15
20
VR. REVERSE VOLTAGE (VOLTS)
!\.. .......
""",- ~
.......
"
15
20
0
-
5
. roO
1,\
5.0
--
0
40
..........
V
......
............
liB
MAXIMUM
TYPICAL - - -
~
_.
,./
°v
V
~
....--V
~
_.... ~
.-
......
........ '
--
......
-----
.-
...
80th Leads til Heat Sink,_
Equal Lr91h
21B
31B
41B
SIB
L. LEAO LENGTH (INCHES)
3-46
30
,--.or
------
I
5
"'-
30
,
STEADY-STATE THERMAL RESISTANCE
0
" " ''"" "
'\..
""""-
.......... ~
''''''- "'- I'
"'- "b-,.
10
0
10
........ .........
........
VR. REVERSE VOLTAGE (VOLTS)
5
~
""'-
28/
.............;::s...,
,--........
,
K"
40/
5
I 53.0
15,10+
10
B.O
K--';::: ~
I"
. . . . . . . . r--.: :---,i'-r-- . . . . . . . . . . . . . .
~
I\..
5.0
1.3
L
§
'">-
15
t.-.~ ~
40
Capacitive
20
>...""" :""" "- ,
"''.("-I'
L<.. 'f'.. """,,-
1.5
~
5 r-::::::-=:::::~t---
~ 10 5
"""
5.0
;::;:::c--: r::=::tt" ::-.... .......
5
12
5
0.75
w
7.0
10
15
10
VR. REVERSE VOLTAGE (VOLTSI
FIGURE 3 - MAXIMUM REFERENCE TEMPERATURE
1N5B22
4.0
3.0
1.0
::>
"""
~"' "
~ , ""","
","""
i'
5
2.0
,I
Resistive
0.65
FIGURE 2 -
---;:-:-
5
75
J
12.
F::: t:=:::"r-- 1"--'"< ~ /B.O
r--- .......... ~ --- r--- 1'--..'-...... ~
......
5-
,
2.0 VinIPK). fUse line to center tap voltage for Vin.
20
-... ..::::: ;;::::::
5
I Capacitive
MAXIMUM REFERENCE TEMPERATURE
1N582D
12 ~
Full Wav.,
Center Tapped*t
Bridge
HalfWavs
61B
,
7IB
1.0
1 N5820 thru 1 N5822
FIGURE S - THERMAL RESPONSE
1.0
~Ppk
Ppk
DUTY CYCLE· Iplll
O. 5r- ~
PEAK POWER. Ppk. IS peak of an
3t=- r--t1--j
TIME equivalent square power pulse.
...JO O.
..:w
~ ~ O. 2r- ATJL" Ppk. ROJL \D + 11- DI' '(11 + Ipl + '('pl- ,11111
I-where.
d TJl '" the increase In junction temperature above the
o. 1 ~
~Ieadtemperature.
ffi~
~ ,It) :: normalized value of transient thermal resistance
0.05r at time, I. i.e,"
«..:
3 f- *1 + tp) = normalized value of
",...,.
w..:
--
_....
""
::!5
0.0
neeted to the tte point IS normally large enough
so that it will not signrflcanrlY respond 10 heat
surges generated in the diode as a result of pulsed
operation once steady-state conditions are achieved.
Using the measured value of Tl, the junction lem·
peralure mav be dlltermlned by
r--tran~lentthermalresi'ta*
.. a: 0.02f-al Ilmell
+tp,~
J-rT11111
0.0 1
0.2
0.5
I
1.0
2.0
10
5.0
20
50
FIGURE 6 - FORWARD POWER DISSIPATION
1NSB20-22
200
111111
500
1.0k
t ~L ~TJLI
+
20k
I
-
=
=
=
-
I 1I11
5.0k
10 k
20 k
NOTE 3 - APPROXIMATE THERMAL CIRCUIT MODEL
0
in
S
~
z
o
0
D
SlOe Wave
0
~
t:i
c
w
D_
«
"
~(F1'!11
I
0
(AVI
~>
..:
:;
..:
= " tReslstlve load)
./ Z
"'>' ~~ ~
I--
Loads
II
lie
./ '/./
. I .1
Capacilive
~ O. 7
~ O. 5
f
100
I, TIME (ms)
=
I 111111
The temperature of the lead should be measured
uSing a thermocouple placed on the lead as close as
possLble to the tie point The thermal masseOR·
~~
;~
LEAD LENGTH" 114"
V/ ~ ~ square~ave
\5.0
10
20-
./
3
2
./
TJ,125'C
I I
v.-
'l: ~/"
01
0.1
0.5 0.7 10
20
30
02 0.3
IF(AVI, AVERAGE FORWARD CURRENT (AMPI
50
70
10
Use of the above model permIts junction to lead thermal
resistance for any mounting confIguration to be found. For a given
total lead length, lowest values occur when one side of the rectifier
IS brought as close as possible to the heat srnk. Terms in the model
Signify:
TA '" Ambient Temperature
TC == Case Temperature
TL = Lead Temperature
TJ = Junction Temperature
Res = Thermal Resistance, Heat Sink to Ambient
Re L ::: Thermal Resistance, Lead to Heat Sink
ROJ = Thermal Resistance, Junction to Case
Po = Total Power Diss~palion = PF + PR
PF '"' Forward Power Dissipation
PR = Reverse Power Dissipation
(SubSCripts (AI and (KI refer to anode and cathode sides, respec·
tively.) Values for thermal resistance components are:
Ra L= 42 0 C/W/in tYPically and 4So C/W/in maximum
R(JJ = 100 C/W typically and 160 C/W maximum
The maximum lead temperature may be found as follows:
TL' TJ(maxl - ATJL
where .6.TJL
tl.....
Data shown for thermal resistance Junction-to-ambient (ROJA)
for the mountings shown is to be used as typical guideline values
for preliminary engineering, or in case the tie point temperature
cannot be measured.
I
Lead Length, L Iml
1/8
50
2
3
58
1/.
51
59
1/.
53
61
28
3/.
55
63
!--l-l
~I
Mounting Method 2
Vector Push In
Terminals T 28
TYPICAL VALUES FOR ROJA IN STILL AIR
I
ROJL' Po
Mounting Method 1
p.e. Board where
avarlable copper surface
IS small.
NOTE 2 - MOUNTING OATA
Mounting
Method
-=
ROJA
°C/W
~
°crw
°CIW
3-47
Mounting Method 3
P .C. Board With
with 2-1/2" X 2·1/2"
copper surface
~ c-",
JIIc;r:
Board Ground p;ane
1 N5820 thru 1 N5822
FIGURE 8 - TYPICAL FORWARD VOLTAGE
50
II
30
/
20
f- f-TJ -
loooe
V
0:::-'"
t-,..
V
:--
~
0
h . 15°C
Or-160Hz
0
//
0
0
\
If
0
/
'I
0
S'''j
20
10
rI'-r-
r\ A
~~lcVcle
10
\
.............
r\
-- r
:1
Iff
r-
0
:--:--17/
0
•
FIGURE 9 - MAXIMUM NON·REPETITIVE SURGE CURRENT
100
A1'1 ";Rh~1 trad
5.0
30
1.0
eid"}",
10
20
30
50
10 100
NUMBER OF CYCLES
:::::::
25 0 e
FIGURE 10 - TYPICAL REVERSE CURRENT
1
o. 5
o. 3
o. 2
I
I
I
: ..
I
I
-- -- C- t--.
I
I
I
w
'"'"w
~
00 1
0.0 50
.f'.
V
U 100
Since current flow 10 a Schottky rectifier IS the result of
majOrity carrier conduction, it IS not slJbJect to Junction diode
forward and reverse recovery transients due to mmorlty carner
Injection and stored charge. Satisfactory Circuit analysIs work
,,"
I'N5Bf2::!'
70
0.5
may be performed by using a model consistillg of an Ideal diode
in parallel with a variable capaCItance. (See Figure 11.1
07
1.0
20
3.0
5.0 70
10
20
30
VR, REVERSE VOLTAGE (VOLTSI
3-48
lN5823, lN5824
lN5825
MBR5825,H,Hl
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL DATA
•
lN5825Is a
Molorola Preferred Device
Designers Data Sheet
SCHOTTKY BARRIER
RECTIFIERS
HOT CARRIER POWER RECTIFIERS
· .. employing the Schottky Barrier principle in a large area metalto-silicon power diode. State-of-the-art geometry features epitaxial
construction with oxide passivation and metal overlap contact.
Idealty suited for use as rectifiers in low-voltage. high-frequency
inverters. free-wheeling diodes. and polarity-protection diodes .
0 Extremely Low vF
•
•
•
Low Stored Charge. Majority
Carrier Conduction
Low Power Lossl High Efficiency
5 AMPERE
20.30.40 VOLTS
"H" & "HI" Version Available
Similar to TX
Processing
Designer's Data for IIWorst Case" Conditions
The DeSigners Data sheets permit the design of most circuits entirely from
the information presented. Limit curves - representing boundaries on
device characteristics - are given to facilitate "worst case" deSign.
'MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Symbol
1 N5823
1N5824
1N5825
MBR5825H. HI
Unit
VRRM
VRWM
VR
20
30
40
Volts
Non-Repetitive Peak Reverse Voltage
VRsM
24
36
48
Volts
RMs Reverse Voltage
VR(RMs)
14
2t
28
Volts
Average Rectified Forward Current
10
..
VRlequiv)";;; 0.2 VR (dc). TC ~ 75°C
VR(equiv)";;; 0.2 VR (de). TL ~ 80 0 C
ReJA ~ 25°C/W. P.C. Board
Mounting. See Note 3)
Ambient Temperature
15
5.0
..
°C
TA
Rated VR (de). PF(AV) ~ 0
ReJA ~ 25°C/W
65
Non-Repetitive l Peak Surge Current
(Surge applied at rated load conditions,
halfwave. Single phase 60 Hz)
IFsM
Operating and Storage Junction Temperature Range
TJ. Tstg
(Reverse Voltage applied)
Peak Operating Junction Temperature
Amp
TJ(pk)
..
.
60
55
•
500 (for 1 cycle)
.
.
-65 to +125
t50
I
(Forward Current Applied)
Amp
°c
°c
'THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Case
Max
Unit
3.0
°C/W
'ELECTRICAL CHARACTERISTICS ITC = 25°C unless otherwise noted)
Symbol
Characteristic
MaXImum Instantaneous Forward Voltage (1)
lN5824
lN5825
MBR5825H. HI
0.330
0.360
0.470
Maximum Instantaneous Reverse Current
@ rated de Voltage
0.340
0.370
0.490
0.350
0.380
0.520
rnA
iR
10
100
TC = 25°C
TC ~ 1000 C
= 2.0%
Unit
Volts
vF
(IF = 3.0 Amp)
(iF = 5.0 Amp)
(iF ~ 15.7 Amp)
(1) Pulse Test: Pulse W,dth ~ 300 p.s. Duty Cycle
1N5823
10
125
'Indlcales JEDEC RegIstered Data for 1 N5823-1 N5825
3-49
10
150
II
1 N5823, 1 N5824, 1 N5825, MBR5825H, H1
NOTE 1: DETERMINING MAXIMUM RATINGS
3 as a difference In the rate of change of the slope In the vicinity
of 1150 C. The data of Figures 1, 2 and 3 IS based upon dc conditions. For use," common rectifier CircUits, Table I indicates suggested factors for an equivalent dc voltage to use for conservative
deSign; i.e.:
Reverse power dissipation and the POSSibility of thermal runaway
must be considered when operating this rectifier at reverse voltages
above 0.1 V RWM. Proper derating may be accomplished by use
of equation (1):
TA(max) = T J(maxl - ROJA PF(AV) - ROJA PR(AV)
III
where
T Afmax) = MaXimum allowable ambient temperature
VR(equiv) = VIN(PK) x F
(4)
The Factor F IS derived by consld;ning the propertIes of the varIOus
rectifier circuits and the reverse characteristics of Schottky diodes.
T J(max) = Maximumallowable junction temperature
(12SoCor the temperature at which ther~
mal runaway occurs, whichever is lowest),
PFIAV)
Example: Find TA(max) for lN5825 operated in a 12-Volt de
supply using a bridge circuit with capacitive filter such that IDe =
10 A (IF(AV) = 5 A). I(PK)iI(AV) = 10. Input Voltage = 10
V(rms). ROJA = 100 CIW.
Average forward power dissipation
=
PA(AV) = Average reverse power diSSipation
RaJA = Junction-to-ambient thermal reSistance
Figures 1, 2 and 3 permIt easier use of equation (1) by takmg
reverse power dissipation and thermal runaway Into consideration.
The figures solve for a reference temperature as determined by
equation (2):
TR oTJ(max) - ROJAPR(AVI
(2)
Step 1:
Find VR(equiv). Read F 0.65 from Table I :.
VR(eqUlv) = (1.41)110)(0.65) = 9.2 V
Step 2:
Find TR from Figure 3. Read TR = 113°C @ VR =
9.2 V & ROJA = 100 C/W.
Find PF(AV) trom Figure 4. ··Read PF(AV) = 5.5 W
Step 3:
Substituting equation (2) into equation (11 Yields:
II
TA(maxl" TR - R9JA PFIAV)
(3)
Inspection of equations (21 and (31 reveals that TR is the ambient
temperatureatwhich thermal runaway occurs or where TJ = 125°C,
when forward power is zero. The transition from one boundary
condition to the other is evident on the curves of Figures 1. 2 and
Step 4.
0
@IIPK)=10 & IFrAVI = 5 A
I(AV)
Find TA(max) from equation (3). T A(max)
(5.5) = 5SoC.
=
113-(10)
··Value given are for the 1 N5825. Power is slightly lower for the
other units because of their lower forward voltage.
TABLE I - VALUES FOR FACTOR F
Half Wave
Circuit
Load
Resistive
I
Capacitive *
Resistive
I
Capacitive
Resistive
I
Sine Wave
Square Wave
0.5
0.75
I
1.3
1.5
0.5
I
0.65
1.0
I
0.75
1.5
I
0.75
FIGURE 1 - MAXIMUM REFERENCE TEMPERATURE - lN5823
125
70
!L"'-. /5~ 40
r-; :--~ 115
~-.E'30
~~
:-;
'"~
:---..
.
_
95
~
I:
::::--
...... .....
......
"-
....... .......
.....
.....
0
r--
...... r-.
...... :-.....
~
ROJA (oGIWI 70
60 I'.L
50
40
30
~ 65
'V'"
K"
FIGURE 2 - MAXIMUM REFERENCE TEMPERATURE - lN5824
/'
./
~'"
25 20
-)15 10"
3.0
i
I
.........
1""'-.-"""":
" ,""-"
, ", "
..x...
"
",
'"''
....... ""
,/'-/'....
'-...<'r'-.
I
55
~X
I'.. ........
""
...............
15.'-...
4.0
5.0
7.0
10
VR. REVERSE VOLTAGE (VOLTS)
20
VR. REVERSE VOL TAGE (VOLTSI
FIGURE 3 - MAXIMUM REFERENCE TEMPERATURE
lN5825 AND MBR5825H Hl
125
:::::-:: ~
r-;~~
t-
'" ......
......
:--...........
................
i'.
R.JA (OCIW) = 70
60
50
_jO
I
7.0
j7.0,tt
5.0,4.0 3.0
"
r-....
""
I'<
........ ........ ........
........ "r"o...
~........... r-..........
1:>...."'
..........."'V< ~.
I
..A..
/'
25
l'\.
."'\
....... "'""'\ ""'\
~,
~O
5.0
FIGURE 4 - FORWARD POWER DISSIPATION
......... r--..:---. ~
;::-..;; t:--.: r-- ~
;:-...
r-; tr-,.......
55
4.0
1.3
1.5
r-.. i"-.. ......... ..................
r-..
......... ,-......;
r-..r-..
/' X'V r--..
2.0
I
j-:-;:--
..... ......
'"...... -......; .......
......
105 [""'-...;
I
Capacitive
t Use line to center tap voltage for Vin.
·Note that VR(PK)"'2 Vin(PK)
w
Full Wave.
Center Tapped *t
Full Wave. Bridge
~ ~ ~ I'\.
.~ ~ !X
~
t'-<"
"
_, J/"".~ ~ l"20 15 10'"
~
.:--.:
10
15
20
VR. REVERSE VOLTAGE (VOLTS)
....... ~
."' l""'\
LI'\.
t...: l""'\
30
5.0 7.0
IF(AV). AVERAGE FORWARD CURRENT
40
3,50
10
20
1 N5823, 1 N5824, 1 N5825, MBR5825H, H1
THERMAL CHARACTERISTICS
FIGURE 5 - THERMAL RESPONSE
1.0
W
u
z
"'~"
[ii
0.7
0.5
0.3
ZOJC(.) , ROJC • r(l)
~i5 0.2
"",W
"'~
~i
0.1
IIi
I, _
IHm.~~-
DUTY CYCLE. D, 1,/11
JLr[P'k
PEAK POWER, Ppk. IS peak 01 an
~ :5 0.01
p"TIME
equlvalenl square power pulse
1 - 1 1 -1
~ ~ 0.05
AT JC '" Ppk . R.·ue /0 .. (1 - Dl· r(11 + tpl + r(lp!-r(1111
z
003 H+t-tif-+-f--+++H+t-l--1-I---+-1-f-+-H-+t-+- where
~
0-
~
0.02 ~+m~+=t=+++t!:ttt=l=~:::t=l=t+ttt!:=t: A TJC
~ the Increase 10 lunCtion temperature above the case temperature
rll) .:: normalrled value 01 tranSient thermal resistance at lime, I, from Figure 5, i.e.:
r(11 .. Ipl = normaliled value of tranSIent thermal resistance at t,me, 11" tp
I-
0.01
0.5
1.0
2.0
10
5.0
20
100
2DO
I, TIME (m,)
50
500
FLIT
PEAKPDWER.Ppk Ispeak.)tan
TYPICAL VALUES FOR ROJA IN STILL AIR
I'QUlvalent\Quarepowl'1 pulse
TlM[
LEAD LENGTH, L (IN)
To detl'rmmemall'mum )Unctlon temperature (lIthe diode U1 3 given 511ualloll,
IhefoUowrngprocl'dulI!lsll!tOmrnended
The lemprralUn.·ol Ihl.' C.1Se should be 111l!
'"
~
"'"
300
r-..
200
~'"
..........
~
I'--...
..... 1'-
100
1.0
!I
10
~
100"C
1/
...'"
!> 20
...'"
w
l/
30
PrrOf to surge, the rectifier IS operated such
0:
I-"
V V
/
0:
B
1000
f'
5.0
20
10
20
50
100
NUMBER OF CYCLES
~
~
'"53z
...z
..
30
~
2.0
t;
I
FIGURE 9 - TYPICAL REVERSE CURRENT
I
200
:1
100
".siii...
,,:
10
' - - 100"C
.......
20
10
w
5.0
~
--
50
~
B
07
;,...-
~ 2.0
'"
:5
0.3
o
l1
10
04
08
10
12
02
06
VF.INSTANTANEOUS FORWARO VOL TAGE (VOL TS)
14
-
.....
f--- 25"C , /
as
01
- -- --
~ 75"C
'"w
05
02
TJ·125"C
o
40
80
....
-
-
-
-- -
lN5823 - 20 V
lN5B24 - 30 V
-lN5825 - 4U V
MBR5825H, HI - 40 V
12
16
20
24
28
VR, REVERSE VOLTAGE (VOL TS)
32
36
40
FIGURE 10 - CAPACITANCE
2500
2000
1500
r--t--..
f::: ~t---
~
~
....
w
'-'
z
~
'-'
U
NOTE 4 - HIGH FREQUENCY OPERATION
......
~
1000
....
TJ= 25"C
,
IN5823
700
stored charge. Satisfactory cirCUit analysis work may be performed
by using a model consisting of an ideal diode in parallel with a
variable capacitance. (See Figure 10),
Rectification efficiency measurements show that operation will
be satisfactory up to several megahertz. For example. relative
waveform rectIficatIon efficiency IS approximately 70 per cent at
2.0 MHz, e.g., the ratio of dc power to RMS power In the load IS
0.28 at thiS frequency, whereas perfect rectification would Yield
0.406 for slOe wave inputs. However. In contrast to ordinary
junction diodes, the loss to waveform efficiency IS not indicative of
power loss: it is simply a result of reverse current flow through the
diode capacitance, which lowers the dc output voltage.
I-
lN5824
500
IN5823 - 20 V
400
IN5824 -- 40
30 V
V
IN5825
300
250
0.040.06 0.1
Since current flow in a Schottky rectifier is the result of majority
carner conduction. it is not subject to junction diode forward and
reverse recovery transients due to minority carner mjection and
-rrrtrrni
MIB~5m11HlI4fV
0.2
IN5825
;:-..
r"~
I I IIIII
0.4 0.6 1.0
2.0
4.0 6.0
VR. REVERSE VOLTAGE (VOLTS)
10
20
40
3-52
1 N5823, 1 N5824, 1 N5825, MBR5825H, H1
NOTE 5 - HI·REL PROGRAM OPTIONS
PRODUCTION PROCESS,
1. Raw Material
2. Factory Processing
r-
INSPECTION LOT FORMATION
AFTER FINAL ASSEMBLY
OPERATION ISEALlNG)
The 1 N5825 is also available wilh two levels of exIra lest in g
similar 10 "TX" screening and including Group A and B inspectio n
programs. Both the MBR5825H and MBR5825H1 go throug h
1
100% screening consisting of high temperature storage. temper
sture cycling, constant acceleration and hermetic seal testin g
prior to a sample being submitted to Group A and B inspection
After completion of Group B inspection. the MBR5825H is avail
able without additional screening. MBR5825H 1 devices ar e
100% PROCESS CONDITIONING
1. High Temperature Storage
further processed through a high temperature reverse bia s
(HTRB) and forward burn·in. Consult factory for details
2. Temperature Cvcling
3. Constant Acceleration
4. Hermetic Seal (Fine and Gross)
1
•
l
MBR5B25H HOLDING AREA,
100% Group A Test
I
PREPARATION
FOR
DELIVERY
•
•
INSPECTION TESTS
100% POWER CONDITIONING
1. Electrical Test
2. HTRB (160 Hrs Min)
3. Electrical Test (PDA = 10)
4. OC Forward Burn·ln (24 Hrs MinI
5.'ElectricaJ Test (PDA:::: 10)
TO VERIFY LTPD:
Group A
Group B
f4-
(Sample Tests)
I
~
1
REVIEW OF
GROUPS A & B DATA
FOR ACCEPT OR REJECT
Accept
Data
I
j
Accept
Data
•
Ho~~7~~2!~~A' I
100% Group A Test
MECHANICAL CHARACTERISTICS
CASE: Welded. hermetically sealed construction.
FINISH: All external surfaces corrosion-resistant and the terminal leads are readily solderable.
WEIGHT: 2.4 grams (approximately).
POLARITY: Cathode to case.
MOUNTING POSITONS: Any
3-53
I
II
I
I
PREPARATION
FOR
DELIVERY
I
1NS826
MOTOROLA
-
lN5827
lN5828
SEMICONDUCTOR
TECHNICAL DATA
1N5828isa
Motorola Preferred Device
DC!-'tig'ner!'Ol Data Sheet
HOT CARRIER POWER RECTIFIER
. employing the Schottky Barner principle in a large area metal-ta-silicon power
diode, State of the art geometry features epitaxial construction with oXide passivation and metal overlap contact. Ideally sUited for use as rectifiers in low-voltage,
high-frequency Inverters, free wheeling diodes, and polarity protection diodes.
•
Extremelv Low vF
•
low Power Loss/High Efficiency
•
Low Stored Charge, Majonty
•
High Surge Capacity
SCHOTTKY
BARRIER
RECTIFIERS
15 AMPERE
20,30,40 VOLTS
Carrier Conduction
Designer's Data for "Worst Case" Conditions
The Designers
Data sheets permit the design of most circuits entirely from
the Information presented.
Limit curves -
representing boundaries on device char-
acteristics - are given to facititate "worst case" design.
II
"MAXIMUM RATINGS
Rating
Symbol
lN5826
lN5827
lN5828
Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
20
30
40
Volts
Non-Repetitive Peak Reverse Vol tage
VRSM
24
36
48
Volts
Average Rectified Forward Current
VRlequiv) ';;0.2 VRldc). TC = 85 0 C
Ambient Temperature
Rated VRldc). PFIAV)
ROJA =5.0 0 C/W
•
10
95
TA
=
..
15
90
85
Amp
uc
O.
Non-Repetitive Peak Surge Current
IFSM
(surge applied at rated load conditions,
halfwave. single phase. 60 Hz)
500 Ifor 1 cycle) _
_
Operating and Storage Junction
Temperature Range (Reverse
voltage applied)
TJ.Tstg _____ -65 to +125 _ _
Peak Operating Junction Temperature
IForward Current Applied)
TJlpk)
..
150_
Amp
DC
DC
"THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
"ELECTRICAL CHARACTERISTICS ITC = 250 C unless otherwise noted.)
Characteristic
Symbol
Maximum Instantaneous Forward
Voltage II)
(iF = 8.0 Amp)
(iF = 15 Amp)
(iF = 47.1 Amp)
vF
Maximum Instantaneous Reverse
Current @ rated de Voltage II)
TC = 10o"C
iR
lN5826
lN5827
lN5828
Unit
Volts
0.380
0.440
0.670
0.400
0.470
0.770
0.420
0.500
0.870
10
75
10
75
10
75
mA
*Indlcates JEDEC Registered Data.
11) Pulse Test: Pulse Width = 300l's. Duty Cycle = 2.0%.
3-54
MECHANICAL CHARACTERISTICS
CASE: Welded. hermetically sealed
FINISH: All external surfaces corrosion
resistant and terminal leads are
readily solderable
POLARITY: Cathode to Case
MOUNTING POSITION: Any
MOUNTING TORQUE: 15 in-Ib max
•
1 N5826 thru 1 N5828
NOTE 1: DETERMINING MAXIMUM RATINGS
Reverse power dissipation and the possibil ity of thermal runavvay
must be considered when operating this rectifier at reverse voltages
above 0.2 VRWM. Proper derating may be accomplished by use
of equation 11):
TAlmax) = TJlmax) -R9JA PFIAV) - R9JA PRIAV)
11)
where
T A(max)
= Maximum
allowable ambient temperature
TJlmax) = Maximumallowablajunction tamperaturel1250C
or the temperature at which thermal runavvBY
a difference in the rata of changa of the slope in the vicinitY
design; i.a.:
VRlequiv) ~ VinIPK) x F
(4)
The Factor F is derived by considering the properties of the various
rectifier circuits and the reverse characteristics of Schottky diodes.
Example:
occurs, whichever is lowest!.
Find T Almax) for 1N5828 oporated in a 12·Volt dc
supply using
a bridge c;rcu it with capacitive filter such that IDC ...
10 A IIFIAV) = 5 A). IIPK)/IIAV) = 20. Input Voltage = 10
Vlrms). R9JA = 5 0 C/W.
PF IA V) = Average forward power dissipation
PR(AV)
3 as
of 116°C. The data of Figure. 1. 2 and 3 i. basad upon dc condi·
tions. For use in common rectifier circuits, Table I indicates suggested factors for an equivalent dc voltage to use for conservative
= Average reverse power dissipation
ROJA = Junction-to-ambient thermal resistance
Figures 1, 2 and 3 permit easier use of equation' 1) by taking
reverse power dissipation and thermal runaway into consideration.
The figures solve for a reference temperature as determined by
equation (2):
(2)
TR =TJlmax) -R9JA PRIAV)
Step 1:
Find VRlequiv)' Read F = 0.65 from Table I :.
VRlequiv) = 11.41)(10)10.65) = 9.18 V
Find TR from Figure 3. Read TR = 121°C @ VR = 9.18
& R9JA = 5 0 CIW
Find PFIAV) from Figure 4.·'Reed PFIAV) = 10 W
IIPK)
@IIAV,20& IFIAV) = 5 A
Step 2:
Step 3:
Substituting equation (2) into equation (1) vields:
TAlma.) = TR - R9JA PFIAV)
(3)
Inspection of equations (2) and (3) reveals that TR is the ambient
temperature at which thermal runaway occurs or where TJ = 125°C,
when forward power is zero. The transition from one boundary
condition to the other is evident on the curves of Figures 1, 2 and
Step 4:
*.
Find TAlma.) from equation (3). TAlmax) = 121-151110)
= 71°C
Value given are for the 1N5828. Power is slightly lower for the
other units because of their lower forward voltage.
TABLE I - VALUES FOR FACTOR F
Circuit
Load
Resistive
Sine Wave
Square Wave
0.5
0.75
I Capacitive·
I
I
1.3
1.5
Resistive
0.5
0.75
I Capacitive
L
I
-
r--.
co
~
~ 105
I"-
t-....
...ill
i'"
...
r--
~X:'O
~ 115 f-
........
........
""- .......
'"r.....
""0..
~
~ 105
,
f""'..
w
"
""
95
"'
85
3.0
4.0
5.0
"'"
1'--.""- ~
" .,J'\. ,,'\.
10
15
"
...
20
115
~-
~
105
"zw
95
--
r-. r- r.:::: r--
"
i"
"'-
w
i'-
I"'"
w
~
w
co
...'"
"""""- 1~
30
ROJA (OelWl = 50' " "
75
4.0
5.0
7.0
,
~
ROJA (OCIW) = 50'
5.0
7.0
""'-.10
I'
I'
4.0
'"
,"", ~
""'-.15\
"
20"30""
'\..
10
.""
"'
10
,""
15
15
'\ '\. I\.
~
""'-
20
FIGURE 4 - FORWARD POWER DISSIPATION
.>:. C\
~" !'.....'
1~ "- "\ "\
"""'-.
."\1 '\. t\. 1\ \
"-
co
"'"
........
.I~ti
~~
i'- i'-.~ ~ r--.,.. . . . . .
i"'--
.........
85
!
K'X7.O-
r-.;r-- ::::--........""""""'< ~5.0
VR, REVERSE VOLTAGE (VOLTS)
FIGURE 3 - MAXIMUM REFERENCE TEMPERATURE - lN5828
125
1.5
><..3.5
G
:>
1.3
1.5
i'-
30
\..
40
VR. REVERSE VOLTAGE (VOLTS)
iF{AV). AVERAGE FORWARO CURRENT (AMP)
• No external heat sink.
3-55
II
I
Capacitive
--
95
75
3.0
VR. REVERSE VOLTAGE (VOLTS)
~
:--
w
":'\.
\"'-"'1'-.. "- '\..
7.0
~
~ ..........
.......
..... r--,
ill...
'" i
'"
"-~
3D"-
t',.
ROJA IOCIWI = 50'
75
2.0
3.5-h-
"'" ""'~
.......
1.0
1.5
I
I
I
FIGURE 2 - MAXIMUM REFERENCE TEMPERATURE -1N5827
115
1.5
3.5
r- ~1.5
.....;;: ::--: ...... ~...c.o
I ' ...... ........ ........
.........
0.65
0.75
-
r.::::: t- ~ t--
115
Resistive
*tUse line to center tap voltage for Vin.
'Note that VR IPK) "" 2 Vin(PK)
FIGURE 1 - MAXIMUM REFERENCE TEMPERATURE - 1N5826
115
g
Full Wave,
Center Tapped * t
Full Wave. Bridge
Half Wave
30
1N5826 thru 1N5828
FIGURE 6 - MAXIMUM SURGE CAPABILITY
FIGURE 5 - TYPICAL FORWARO VOLTAGE
-,- ....
200
100
70
50
..
1/
1000C
lO
I
~ 20
~
....
~
a
500
>
lOO
1= 60 Hz
~
r---.. r--.
w
'-'
V
."..
....- i-"'"
!l0.I~~~~
0.07EI
0.05 25
45
65
B5
105
'"
"'w
~
'"
20
c - 100De
....-
10 ~ 75 De
20
10
-
25 De
-
--
- - -' -- ....- .;,-
v
- --
05
02
125
Te. CASE TEMPERATURE (DC)
--
I-"
50
w 5.0
./
w
TJ· moe
100
,/
o
40
B0
12
16
20
24
2B
VR. REVERSE VOLTAGE (VOLTS)
IN5B26 20 V
IN5B27 - 30 V
IN5B2B 40 V
32
36
40
FIGURE 11- CAPACITANCE
2500 rTrn""",=::r,...--'TT'TTTTr-r--,--rT"T"'TTTTT-r-,--r,
NOTE 2 - HIGH FREQUENCY OPERATION
2000 F"!'",,4:I::::-+-i......
-=I'-.I:++-Hf+-+--f-H-i-i-H1+--+--+--H
f::: . . .
Since current flow in a Schottky rectifier IS the result of majority
carrier conduction, it IS not subject to junction diode forward and
1500 H+HHt--t--.:p~2'I-.ctttl"'......
cl-+-t+t+tttt-+--t--H
reverse recovery transients due to minority carrier injection and
~
~ rtmt:J:i:J:n:ntlE::....=!~'~~~INt5BE2i6
:j1=t~
j:
i"
stored charge. Satisfactory circuit analysis work may be performed
by using a model consisting of an ideal diode in parallel with a
1000
variable capacitance. (See Figure 11).
Rectification efficiency measurements show that operation will
be satisfactory up to several megahertz. For example, relative
waveform rectification efficiency IS approximately 70 per cent at
2.0 MHz, e.g., the ratio of de power to RMS power In the load is
0.28 at this frequency. whereas perfect rectification would yield
0.406 for sine wave inputs. However, in contrast to ordinary
junction diodes, the loss In waveform efficiency IS not indicative of
power loss; It IS simply a result of reverse current flow through the
diode capacitance, which lowers the dc output voltage.
~ 700~++Ht~~~+-~++Ht~~~~~~~-+-+~-i
~
H++Ht---iH'-+-I+++ttt-t-1 N5827 -Plld'lId+P'<+-+--H
u
500H++Ht---iHr-+-I+++ttt---i~---irt-i-~~~~--i-1
H+++H---+-+-+-+H+Itt--i-1--++l--hi'l+I-'~~c--t--i
\N1W, ,~
~~~ t~1~~:::~1::::::~11~~:::1~~~:::~1~11JIL~U~:::~1~~
400
0.040.06 0 I
0.2
0.4 0.6 1.0
20
4.0 6.0
VR. REVERSE VOLTAGE (VOLTS)
10
20
40
3-57
II
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL
DATA
------------1N5829
1N5830
1N5831
MBR5831H,
H1
Designer's Data Sheet
Switchmode Power Rectifiers
... employing the Schottky Barrier principle in a large area metal-to-silicon power
diode. State of the art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage,
high-frequency inverters, free wheeling diodes, and polarity protection diodes.
IN583llsa
- Extremely Low vF
- Low Power Loss/High
- Low Stored Charge, Majority
Efficiency
- High Surge Capacity
Carrier Conduction
- High Reliability Processing Similar to JAN,JTX Processing Available (See Note 3)
Motorola Preferred Device
25 AMPERE
20, 30, 40 VOLTS
MAXIMUM RATINGS
II
Rating
Symbol
*1N5829
*1N5830
*1N5831
MBR5831H,H1
Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
20
30
40
Volts
Nonrepetitive Peak Reverse Voltage VRSM
24
36
48
Average Rectified Forward Current
VR(equiv) .. 0.2 VR(dc),
TC = 85'C
10
Ambient Temperature
Rated VR(dc). PF(AV) = O.
R/IJA = 3.5'C/W
TA
Peak Operating Junction
Temperature
(Foward Current Applied)
90
80
85
'C
IFSM
800 (for 1 cycle)
Amps
TJ. Tstg
-65 to + 125
'C
TJ(pk)
150
'C
Nonrepetitive Peak Surge Current
(surge applied at rated load
conditions. halfwave. single
phase. 60 Hz)
Operating and Storage Junction
Temperature Range
(Reverse voltage applied)
Volts
Amps
25
MECHANICAL
CHARACTERISTICS
CASE: Welded. hermetically
sealed
RNISH: All external surfaces
corrosion resistant and
terminal leads are readily
solderable.
POLARITY: Cathode to Case
MOUNTING POSmON: Any
MOUNTING TORQUE:
15 in-Ib max
THERMAL CHARACTERISTICS
Max
Characteristic
1.75
Thermal Resistance. Junction to Case
ELECTRICAL CHARACTERISTICS (TC = 25'C unless otherwise noted)
Characteristic
Maximum Instantaneous Forward Voltage(1)
(iF = 10 Amps)
(iF = 25 Amps)
(iF = 78.5 Amps)
Symbol
*1N5829
*1N5830
*1N5831
MBR5831H.H1
0.360
0.440
0.720
0.370
0.460
0.770
0.380
0.480
0.820
20
150
20
150
20
150
Voits
vF
Maximum Instantaneous Reverse Current (W Rated de
Voltage(1) (TC = 100'C)
Unit
mA
·Indicates JEDEC Registered Data.
(I) Pulse Test: Pulse Width = 300 p.S. Duty Cycle = 2%.
Deslgne,'s Data for ··Worst case" Conditions - The Designer's Data Sheet permits the design of most circuits entirely from the information presented.
Limit curves - representing boundaries on device characteristics - are given to facilitate "worst case" design.
3-58
1N5829, 1 N5830, 1 N5831 , MBR5831 H, H1
NOTE 1: DETERMINING MAXIMUM RATINGS
Reverse power dissipation and the possibility of thermal
runaway must be considered when operating this rectifier at reverse voltages above 0.2 VRWM. Proper derating
may be accomplished by use of equation (1):
The data of Figures 1, 2 and 3 is based upon dc conditions.
For use in common rectifier circuits, Table 1 indicates
suggested factors for an equivalent dc voltage to use for
conservative design; i.e.:
TA(max) = TJ(max) - ROJA PF(AV) - ROJA PR(AV) (1)
where
Maximum allowable ambient
TA(max)
temperature
Maximum allowable junction
TJ(max)
temperature (125°C or the temperature
at which thermal runaway occurs,
whichever is lowest).
Average forward power dissipation
PF(AV)
Average reverse power dissipation
PR(AV)
Junction-to-ambient thermal resistance
RruC
Figures 1, 2 and 3 permit easier use of equation (1) by
taking reverse power dissipation and thermal runaway
into consideration. The figures solve for a reference temperature as determined by equation (2):
= Vin(PK) x F
VR(equiv)
(4)
The Factor F is derived by considering the properties of
the various rectifier circuits and the reverse characteristics of Schottky diodes.
Example: Find TA(max) for lN5831 operated in a 12-Volt
dc supply using a bridge circuit with capacitive filter such
that IOC = 16 A (IF(AV) = 8 A), I(PK)/I(AV) = 20, Input
Voltage = 10 V(rms), ROJA = 5°CIW.
Step 1: Find VR(equiv). Read F = 0.65 from Table 1
VR(equiv) = (1.41)(10)(0.65) = 9.18 V
Step 2: Find TR from Figure 3. Read TR = 113°C @ VR
= 9.18 & RruA = 5°CIW
Step 3: Find PF(AV) from Figure 4.** Read PF(AV) = 12.8
TR = TJ(max) - ROJA PR(AV)
(2)
Substituting equation (2) into equation 91) yields:
W @.!iE.!Q. = 20 & IF(AV) = 8 A
I(AV)
Step 4: Find TA(max) from equation (3). TA(max) = 113(5) (12.8) = 49°C
TA(max) = TR - RruA PF(AV)
(3)
Inspection of equations (2) and (3) reveals that TR is the
ambient temperature at which thermal runaway occurs
or where TJ = 125°C, when forward power is zero. The
transition from one boundary condition to the other is
evident on the curves of Figures 1, 2 and 3 as a difference
in the rate of change of the slope in the vicinity of 115°C.
**Value given are for the 1N5828. Power is slightly lower
for the other units because of their lower forward
voltage.
Table 1. Values for Factor F
Resistive
Capacitivet
Resistive
Capacitive
Resistive
Sine Wave
0.5
1.3
0.5
0.65
1
1.3
Square Wave
0.75
1.5
0.75
0.75
1.5
1.5
tNote that VR(PK) = 2 Vin(PK)
125
5t:-
-
r-. r-:: ~ t--..
75
2
..........
'"
-- S;:,. .
~ :--.
E
w
I-
.~
~
r---.....
105
,71"\.. "\.. I"\..
~ r......... ['\..,
"~
r..... I"\..~ 10 I'\.. "'- r....."........
"\..
r-..
I=!
.......
I' ~ I"\..
:-.......
5
I'-......
125
115
..........
5
~
.......
.......
R8JA ("CJWI
= sottt "-
r.....
Capacitive
ttUse line to center tape voltage for Vin.
a:
............ r---.....
........
5
Full Wave
Center Tappedtt
Full Wave, Bridge
HalfWava
Circuit
Load
"-
..........
,:-x.:
.........
,).75-
5.........
=>
"- ,5~ "- "\..
20'
3D1'\.
"-"
,
I""
I"\.."-""
10
~
~
"-
"-"20
85
..........
..........
.........
.........
~
~
~
.................... r--................
I'-...~ ~2.5'
"-
""
"\.
1.75
."\..
3.S'\.. '\. !\.
5"\..
, i'-. ),7 '\..
I"-
I'-.
3
VR, REVERSE VOLTAGE (VOLTS)
..........
R8JA (OCIW) = 50ttt"\..
75
15
i'-...
r.........
It
a:
Ii:
I"'--...
..........
95
15
a:
I-
r::::- .........: r--:: ::: .....
........ ...... 1'-..., .............
""
i\.
'"
i\.
\..\..
'\ '\
r..... }: I"\..
~" '\. '\. '\.
3O~0
10
'\. '\..
15
20
VR. REVERSE VOLTAGE (VOLTS)
30
Figure 2. Maximum Reference Temperature -1N5830
Figure 1. Maximum Reference Temperature -1N5829
tttNO EXTERNAL HEAT SINK
3-59
II
1N5829, 1N5830, 1N5831 , MBR5831 H, H1
125
;::::- r-.. r""" ::::::
5b--. f""., r-..
5['--..,
"-
..........
.........
r-..
"-
r-.....
5 ..........
r-.....
.........
........
'"
"
.......
I'
75
-
rr-
"
'
~.5""""
r.......~
1'-.1.75
..... 1'-. ......
......... ;S
...........
I'-...... 10,""
''"" "'"'"
'" '"
"
~5"",
~30 20..........."'"
"-
r\.. "-
"- "-
'\
Figure 3. Maximum Reference Temperature -
30
II
1N5831
25°C
TC
100
£
:;;
S
!Z
~
§
30
I
/
TJ = 125°C
16
r-....
I I
I--
24
28
20
-r-.
............
w
~
.. 300
r-..
r--
~
PRIOR TO SURGE, THE RECTIFIER IS OPERATED SUCH
~ 200 I - - - THATTJ = l00"C; VRRM MAY BE APPLIED
BETWEEN EACH CYCLE OF SURGE
f - 60Hz
I
~
i
IIIII
lop 1
ill
~ 10
fil
z
r-
k-"
....... 1-"
12
g; 500
I
/1
/ ' de
V
V.
............
ffi
a
V V
'(I'
/
'" 20
~
S 700
h
u
;:!:
£
:;;
./
50
....../
./
1000
V
100°C
70
./
SQUARE
WAVE
Figure 4. Forward Power Dissipation
VI-'""
V
1/
/
Y
V V
/' /
/
IFIAV), AVERAGE FORWARD CURRENT lAMP)
/"
I-'""
/
o
o
40
_
7
Y;A
/
/
1/ V V. ~
A"-: l?-:.: ;:;:::::: I---"'"
r"\
"
300
200
10
I
1/ /
f'.. "r\. I".. "'\
7
10
15
20
VR, REVERSE VOLTAGE IVOLTS)
IIINO EXTERNAL HEAT SINK.
SINE WAVE
5 RESISnVE I~A~
I
II
...... "-
........... 7 51 ' "
_RBJA
IOCiW) = 50ttt "4
'I'-... .............
......
==t
SINE WAVE
CAPACITIVE
LOADS
I-- __ IIPK) = 20
I-- -IIAV)
I--
t-:::::- ......
/
5
10
50
20
I
100
NUMBER OF CYCLES
Figure 6. Maximum Surge Capability
7
.!?
£
28
~
24
g§
a
20
51
16
!Z
I
if2
w
'"ffi
0.7
0.5
0.3
o
0.2
0.4
0.6
0.8
1
1.2
1.4
vF, INSTANTANEOUS FORWARD VOLTAGE IVOLTS)
12
...........
~
.......
~
-
r--.......
- I--
'"
~
.....r\.
de, CONTINUOUS
IMAX loe = 39.3 A)
SINE WAVE,
RESISTIVE LOAD
"- K
I::<
i""--.. --.::::
r-....
~ .'§.
'"':>.
......"
Figure 7. Current Darating
3-60
./'
SQUARE
WAVE·
.'\.
\.
,
'"
B) - - SINE WAVE
/ ' ~ .........
.\
)-~
CAPACITIVE ~ = 20 10'" 5
~ ~\
)
~ 4
LOADS IIAV)
~
if:
o CURVES APPLY WHEN REVERSE POWER IS NEGLIGIBLE
85
95
105
115
125
75
TC, CASE TEMPERATURE 1°C)
Figure 5. Typical Forward Voltage
I
'\
"
1 N5829, 1 N5830, 1 N5831 , MBR5831 H, H1
1
0.70
0.50
ct. ~ 0.30
~~
.....
i!= ~ 0.20
~ ~O.10
~ ~ 0.07
~ ~ 0.05
Ppk' ROJC [0 + 11 - 01· 'Itt + tpl + 'Upl - rltlll
A TJC
where
A TJC = THE INCREASE IN JUNCTION TEMPERATURE ABOVE THE CASE TEMPERATURE
rltl = NORMALIZED VALUE OF TRANSIENT THERMAL RESISTANCE AT TIME. T. FROM FIGURE 8. I.E.:
rltl + tpl = NORMALIZED VALUE OF TRANSIENT THERMAL RESISTANCE AT TIME. tt + tp.
ill 0.03
0.02
0.01
0.05
= R6JC' 'ItI
DUTY CYCLE. 0 = tpltl
PEAK POWER. Ppk. IS PEAK OF AN
EOUIVALENT SOUARE POWER PULSE.
tp~Pk
I-- tl---1
TIME
..........
1-0
~
Z6JCltl
........-
O.t
10
0.5
0.2
20
200
100
50
500
2k
1k
5k
t. TIME Imsl
Figure S. Thermal Response
5
~
a!
~
a:
o
z
500
./
I-VR - VRWM
i5
",
3
2
1
u
V'
0.30
0.20
100'C
50 ~
I-
~ 0.70
~ 0.50
i3
~
cr:
V'
65
85
TC. CASE TEMPERATURE I'CI
105
125
--
o
t2
8000
6000
4000
16
20
24
lN5829 20 V
lN5830 30 V=
- - lN5831
40 V
28
32
36
40
VR. REVERSE VOLTAGE IVOLTSI
Fig-ure 9. Normalized Reverse Current
Figure 10. Typical Reverse Current
......
"......
........
........
~ 3000
- 25'C
r--
r--t-t:--- r--"
~
u
~ ~:
r--f::::/It'-
w
"
~
r-..
i'-..
i'-.. .........
I--~""""""
~,~
'" 85
>-
"" ""
,"
""
""- "-
,"
r-....~
1.5
r-.....
r-....
r-...
40~ 30' 2ti'....""4.0
5.0
7.0
10
VR. REVERSE VOLTAGE (VOLTS!
ROJA (OC/W! •
75
2.0
3.0
"
~
'5.0'
'"
10
-
t--
~
r-....
......
"
ROJA(Cj!.
7h
4.0
5.0
r--
"""
I"
"""
"-
f' "
t'-
7.0
-No external heat sink.
~
"-
"-
"" '"
"-
85
5.0
i'"{0
"-
5.0
" 3 0 " 2~5
7.0
10
15
20
VR. REVERSE VOLTAGE (VOLTS!
~
30
FIGURE 4 - FORWARD POWER DISSIPATION
0
~.SINkwAVJ
J
2f
0
/
Z
/
RESIST;VE LOAD
.Jl-
/
0
SI~EWAJE_
/
f--1O
0
"-
30
2.0
'\
r-....
ROJA (OC/W) • 40"-
4.0
Nos
r-...""- "- "-
"-
1.0
/
5.0
!/
.I
/
/
./ ~ V
V......... ~ E:/- ........
/
AQUARE
WAVE
V
V V V
V
/ /. V
-""
/
bL
V
TJ ~
Vdt-
moc
~~
'\, '\
10
15
20
VR. REVERSE VOLTAGE (VOLTS)
"''"""- "'",,,,,-"'" "
""'1'-......'" "'" "
", ""-"- "-""- '"-" ~
"
',,-
I(PK! •
I(AV!
3.0
~~~r--..
30
I"-
,
.........
CAPACITIVE LOAO
"
""-
1.3
1.5
I
r---r-.......-"""':::::: ~
........ r-.!.O
I"-... ",r-.
........... ..........
0
"- i',. 1"-1~1.5
"
"""
'"""- ~I'\r'\
" ~r;;'{·o
r--..............
""
'" I'."'"
5
'"
r-..
.........
........... l'-.
Capacitive
.......
75
3.0
20
r--....-"::::::: 1::---...- r-......
..........
95
>-
FIGURE 3 - MAXIMUM REFERENCE TEMPERATURE - 1N5834
12 5
..... r--. l""- I'--I'--. I'-- I"'"--
I
I
r-:: ..:::- r-;::: t---:. r-.....
'-
w
"\.10
~
""- 15
1.0
1.5
{2)Use line to center tap voltage for Vin.
........
'-
Resistive
0.65
0.75
FIGURE 2 - MAXIMUM REFERENCE TEMPERATURE -1N5833
125
, ""'"" , ,"- ,,,,,- "'~
"",
"""""
'"
"",
........
r-...... ........
"-
95
'-.... :-- r-....
r- ....... -..:
Capacitive
I
111 Note that VRIPK) ""2 VinlPKI
FIGURE 1 - MAXIMUM REFERENCE TEMPERATURE -lN5832
12 5
~
5::-::
~11
I
I
0.5
0.75
1.5
I
Full Wav.,
Center Tapped (1).(2)
Full Wave, Bridge
0
40
B.O
16
24
32
IF(AV!. AVERAGE FORWARQ CURRENT (AMP!
3-64
40
1 N5832 thru 1 N5834
FIGURE 5 - TYPICAL FORWARD VOLTAGE
FIGURE 6 - MAXIMUM SURGE CAPABILITY
300
,.- 10-
200
./
100
Tr 25'C
V
V
100'C
0
--
.."
1000
~
500
~
'"'"
-I
~
I---.
r--.
Prior to surge, the rectifier is operated suc
that TJ = lODDe; VRRM may be applied
between each cvcle of surge
200
~
/,
0
.........
w
> 300
«
if
I
r-.
i'l
«
0
r--...
....
0
0
.........
700
5
rrm
100
1.0
2.0
I
5.0
I
20
10
NUMBER OF CYCLES
50
100
0
FIGURE 7 - CURRENT DERATING
0
..
~
~ 32r---t---t---~~~~+---~~.t
l
.~
2.0
@~~~r--'--r-~~~~~~-r-.
i'l
~ 24r---+---+---+-~~~+-~~~4--;~
~
1.0
~
~
0.7
0.5
0.3
16~-=~~---1---+~~~~--~~~~~--~
ffi
SINE WAVE. II(PKI
'-+-~".._.p""'~A--l
CAPACITIVE \ 1=20 10 -5.0LOADS
(AVI
--t---jL--jI---f-~N~
CU~VES Ai>PLY W~EN REVERSE POWER IS NEGLIGIBLE
>
«
B.O
_~
o
-
0.4
0.2
O.B
0.6
1.0
1.2
1.4
~k5--~--~B~5--~--t.95'-~~~1t.05~~~711~5~~~~
TC. CASE TEMPERATURE ('CI
'F.INSTANTANEOUS FORWARO VOLTAGE (VOLTSI
FIGURE 8 - THERMAL RESPONSE
W
U
z
«
t:;
iii
0:_
~c
«W
~~
w~
"',.
1.0
O. 7
0.5
0.3
0.2
1-1-
D. I
-
-
_r-
J1:JL
..,
tp
1--11
:: ~ 0.07
~~
0.05
~
0.03
u;
~
.
DUTY CYCLE. 0 = tpltl
TIME
PEAK POWER, Ppk. is peak of an
equivalent square power pulse .
"TJC = Ppk . ROJC 10 + (I - 01· ,(tp tpl + ,(tp) - ,(till
where
t::. TJC =the increase in junction temperature above the case temperature
r(t) = normalized value of transient thermal resistance at time, t, from Figure 8, i.e..
t(tt + tp) '" normalized value of transient thermal resistance at time, lJ + tp.
0.02
-r
IIIII
0.01
0.1
io}citi ~ ROJ~. ,(\1
Pk
0.2
0.5
1.0
2.0
5.0
10
20
50
t.TIME(msl
3-65
100
I
200
I I
"500 "I"
2.0k
1.0k
I5.0k
" I
10k
•
1 N5832 thru 1 N5834
FIGURE 9 - NORMALIZED REVERSE CURRENT
FIGURE 10 - TYPICAL REVERSE CURRENT
5.0
fa
500
/
3.0 I-VR" VRWM
N
V
~ 2.0
~
::>
0.5
ffi
O. 2
~
IC
Ii
•
O. 1
0.07
0.05
25
~
".
~
0
.0
r--
.0
o. S
45
65
85
TC. CASE TEMPERATURE (OC)
105
125
-
--
Or-- tz5!>e
~ 5.0
....... i""""
o
25 0 e
---:;;;
,
.... ""
4.0
8.0
t-
-
-- --- - r--
'-=1-- ...--' .
.... ~
-~ ~~~
1---
....: r'-' r-- ..
'-.
' - - . lN5832: 20V
lN5833 - 30 V
------INS834-40V
12
16
20
24
28
VR. REVERSE VOLTAGE (VOLTSI
32
36
=
~
=
40
FIGURE 11- CAPACITANCE
6000
4000
ffi
r-"'"
BOOO
~3000
.
a
~ 0.3
0
./
-
- - --
t-
1 100 100 e
§ 50 1==
./
IC
~ 1.0
~ 0.1
TJ = 1250 e
200
TJ =25°C
c-,
f""
"""
,......
~
~
w
<..>
~200 0
~'500
!7'
:::~ 1000
BOO
Since current flow in II Schottky rectifier i. the r.sult of majority
carrier conduction, it is not subject to junction diode forward and
reverse recovery transients due to minority carrier injection and
stored charge. Satisfactory circuit analysis work may be performed
by using a model consisting of an ideal diode in parallel with a
.
variable capacitance. (See Figure 11).
Rectification efficiency measurements show that operation will
r--..
~
..
NOTE 2: HIGH FREQUENCY OPERATION
t-
"
lN5tal
600
1~832
r--. 1/
be satisfactory up to several megahertz. For example. relative
waveform rectification efficiency is approximately 70 per cent at
lN5834
I I II I
400
0.040.06 0.1
0.2
0.4 0.6 1.0
2.0
4.0 6.0
VR. REVERSE VOLTAGE (VOLTS)
MECHANICAL CHARACTERISTICS
CASE: Welded. hermetically sealed
FINISH: All external surfaces corrosion
resistant and terminal lead is
readily solderable.
POLARITY: Cathode to Case
MOUNTING POSmON: Any
MOUNTING TORQUE: 25 in-Ib max
SOLDER HEAT: See Note 3
10
20
40
2.0 MHz. e.g •• the ratio of dc power to RMS power in the load is
0.28 at this frequency. whereas perfect rectification would yield
0.406 for sine wave inputs. However. in contrast to ordinary
junction diodes, the 1055 in waveform efficiency is not indicative of
power loss; it is simply a result of reverse current flow through the
diode capacitance, which lowers the dc output voltage.
NOTE 3: SOLDER HEAT
The excellent heat transfer property of the heavy duty copper
anode terminal which transmits heat away from the die requires
that caution be used when attaching wires. Motorola suggests 8
heat sink be clamped between the eyelet and the body during any
soldering operation.
3-66
lN609S
lN6096
5041
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL DATA
•
1N6096 and SD41 are
Motorola Preferred Devices
SCHOTTKY BARRIER
RECTIFIERS
SWITCHMODE POWER RECTIFIERS
25 and 30 AMPERES
30 to 45 VOLTS
· .. using the Schottky Barrier principle with a platinum barrier metal.
These state-of-the-art devices have the following features:
• Guardring for Stress Protection
• Low Forward Voltage
• 150'C Operating Junction Temperature Capability
• Guaranteed Reverse Avalanche
• Mounting Torque: 15 in-Ib max
CASE 56-03
D0-203AA
METAL
MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current
Symbol
VRRM
VRWM
VR
30
1N6096*
S041
Unit
40
45
35
Volts
45
10
25
TC = 70°C
25
TC = 70°C
TC
105
105
-
°c
IFSM
400
400
600
Amp
IRRM
2.0
2.0
2.0
Amps
(Rated VR)
Case Temperature
1N6095*
30
TC = 105°C
Amps
(Rated VR)
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions
halfwave, single phase, 60 Hz)
Peak Repetitive Reverse Surge Current
(2.0 "s, 1.0 kHz) See Figure 1O. (1)
TJ, Tstg
-65 to + 125
-65 to + 125
-55 to + 150°C
°C
Peak Operating Junction Temperature
(Forward Current Applied)
TJ(pk)
150
150
150
°c
Voltage Rate of Change
(Rated VR)
dv/dt
-
-
700
V/"s
Symbol
1N6095'
1N6096'
S041
Operating and Storage Junction Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Maximum Thermal Resistance. Junction to Case
ELECTRICAL CHARACTERISTICS
Characteristic
Maximum Instantaneous Forward Vqltage (2)
(iF = 30 Amp, TC =125°C)
(iF = 78.5 Amp, TC = 70°C)
vF
Maximum Instantaneous Reverse Current (2)
-
-
0.55
0.86
0.86
-
iR
250
250
125
@VR = 35V
mA
Ct
6000
VR= 1.0 V
6000
VR =1.0V
2000
VR = 5.0V
pF
(Rated dc Voltage, TC = 125°C)
Capacitance
Unit
Volts
(100 kHz;;' f;;' 1.0 MHz)
·Indicates JEDEC Registered Data.
(1) Not JEDEC requirement. but a Motorola product capability.
(2) Pulse Test: Pulse Width:: 300 pS. Duty Cycle ~ 2.0%
3-67
..
I
1N6095,1N6096,SD41
FIGURE 2 -
RGURE 1 - TYPICAL FORWARD VOLTAGE
v
200
I
100
E
15
30
f-- f-- TJ = 150°C
20
I
/
>-
125°C
/
10
10
'"
II
5.0
10
~
1
.!i=
01
I
25°C
.:.-r-=
25°C
0.01
/
o
I
10
20
600
50
I
1\
in
~ 400 '\
5-
z
c(
2.0
.~
g§
..
!
u
~
> 200
0.7
'";;'i
'"
100
0-
0.3
'" "
lNB095/6
1.0
""-
.............
....... I'--
--
:l; 80
~
o
0.2
0.4
O.B
0.8
1.0
1.2
60
1.0
1.4
I I
1-'- .1
I I I
TJ = 125°C. VRRM may be
applied between each
I\, ~
>-
15
0.2
40
30
FIGURE 3 - MAXIMUM SURGE CAPABILITY
/
z
;!: 3.0
'"
-
75°C
'"
~
/ V
VR. REVERSE VOLTAGE (VOLTS)
'"=>
5l
>0;
-r--
100°C
'"c( 7.0
;:
'"
~
-
~ 150o~
'"
13
/
15
g§
=>
c
100
~
/
5-
u
TJ
/V
II
50
::;;
1000
>-
70
in
0-
TYPICAL REVERSE CURRENT
2.0
3.0
5.0 7.0
10
20
30
r--50
70 100
NUMBER OF CYCLES AT 60 Hz
VF. INSTANTANEOUS FORWARO VOLTAGE IVOlTS)
FIGURE 4 - CAPACITANCE
HIGH FREQUENCY OPERATION
3000
Since current flow in a Schottky rectifier is the result of majority
carrier conduction, it is not subject to junction diode forward and
reverse recovery transients due to minority carrier injection and
stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel
with a variable capacitance. (See Figure 4.)
Rectification efficiency measurements show that operation will
be satisfactory up 10 several megahertz. For example, relative
waveform rectification efficiency is approximately 70 per cent at
2.0 MHz. e.g .• the ratio of de power to RMS power in the load is
0.28 at this frequency. whereas perfect rectification would yield
0.406 for sine wave inputs. However. in contrast to ordinary
junction diodes. the loss in waveform efficieny is not indicative of
power loss; it is simply a result of reverse currentflow through the
diode capacitance. which lowers the de output voltage.
2000
...........
~
,~
~
~
:--
1000
~ :~~
~ 700
u 600
'" "
500
400
300
.05
3-68
0.1
0.2
0.5
1.0
2.0
5.0
VR. REVERSE VOLTAGE (VOLTS)
10
20
"
50
1N6095, 1N6096, 5041
FIGURE 6 - 1 N6095/6 CURRENT DERATING
FIGURE 5 - SD41 CURRENT DERATING
f
in 40
40
~
~ 30r---~---r---+--~--~~~·+
I-
a:
a:
~
~
and Square Wave
i3
c
a:
~ 20r---+---+---4---4---~~~~\+---+---+--~
~
w
:it
= ". (Resistive load)
i'E 301----\------l-----+
a:
=>
u
c
a:
'"""ffi
Rated Reverse Voltage
!1E
5-
20 j:::=t:=-l,.;:~..b-~
w
'"ffi 10~-+--~--t=~~~~~~~
10
:it
'>
1
F""
80
100
120
160
140
100
80
120
160
140
TC. CASE TEMPERATURE (OC)
TC. CASE TEMPERATURE (OC)
II
FIGURE 7 - FORWARD POWER DISSIPATION
25r----r---.,---.----.----r----r---.,---,
f----- (CapaClt.ve load)
20
Ipk
IAv
I
= ~O -:. 10 / 5
/
/
/ / /
Sine Wave and
Square Wave
V/
V
de
15 f----+------jf---/--j,.r/£-/-/..,.v~~V-7""-=+----+------I
10
1------+----j,;~y'%~V/"'_7IF__/__+-+___+____l
~[,0-
"/
1__--1-/"7'/
/'7-4/V~
/~:"--'-+--I-TJ = 125°C - -
~
:it
~
~
5.0 1---~--#W~'/>-4/..t!~:..--.I---+--+--+--+-~
,00
10
20
30
40
IF(AV). AVERAGE FORWARD CURRENT (AMPS)
FIGURE B - THERMAL RESPONSE
1. 0
o. 7
5
.--
3
2
1
~ 0.0 7
~
00 5
I-
00 3
:z::
as
...,
I I
TJ = 150 0 C/
0
II
/
0
75°C
~
en
a:
V
0
-
100°C
>-
1.0
~
a:
/
~
0.1
-
25°C
1/
/
25°C
0.01
o
10
20
30
VR, REVERSE VOLTAGE (VOLTS)
40
50
7. 0
II
5. 0
3. 0
2. 0
I
FIGURE 3 - TYPICAL SURGE CAPABILITY
I
1000
I
in
Q.
700
::;;
~
>- 500
~
a:
1. 0
O. 5
...,
w
'"a:::::>
'"'"
O. 3
~
::::>
O. 7
O. 20
"-
"'-
"'- .......
300
~
Rated load
f = 60
r---r-..
HZ
I'-- r---.
200
1"'-_
~
0.2
0.4
0.6
O.B
1.0
1.2
vF, INSTANTANEOUS FORWARD VOLTAGE (VOlTS)
100
14
10
20
3.0
5.0 7.0
10
20
30
50
70 100
NUMBER OF CYCLES
FIGURE 4 - CAPACITANCE
NOTE 1
HIGH FREQUENCY OPERATION
reverse recovery transients due to minority carrier injection and
stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel
with a variable capacitance. (See Figure 4.)
Rectification efficiency measurements show that operation will
be satisfactory up to several megahertz. For example, relative
waveform rectification efficiency is approximately 70 per cent at
2.0 MHz, e.g .. the ratio of dc power to RMS power in the load is
0.28 at this frequency, whereas perfect rectification would yield
0.406 for sine wave inputs. However, in contrast to ordinary
IIII
5000
Since current flow in a Schottky rectifier is the result of majority
carrier conduction, it is not subject to junction diode forward and
~ 3000
...,
~
. ~ 2000
"
I
................
....... i'-- :-....
Typ
;-...,.,.1"-
<5
"'- r-.... -.......
u
1000
-.......
700
of power loss; it is simply a result of reverse current flow through
the diode capacitance, which lowers the dc output voltage.
.05
1.0
2.0
3.0
5.0 7.0
10
VR, REVERSE VOLTAGE (VOLTS)
3-72
I
Ma.
~
junction diodes, the loss in waveform efficiency is not indicative
I
l,riO'~HZ;;' i;;. :'0 M~Z -+-
20
~
......
30
......
50
1N6097, 1N6098, 5051
FIGURE 5 - CURRENT DERATING
(SD51)
FIGURE 6 - CURRENT DERATING
(1 N6097/1 N6098)
>--
~ 60~---4-----+----4--0::
B
Q
0::
~
401---I---+-o;;:-f"'<;:---+---+~~
~
....
C>
g
~
~
(Capacitive load)
iF
160
050
70
TC. CASE TEMPERATURE (OCI
FIGURE 7 - POWER DISSIPATION
I---
0
0
,
40
130
II
60
Ppk
"
1--11----1
T'ME
DUTY CYCLE, D '" tplll
PEAK POWER. Ppk.IS pl!ak. of an
equivall!ntsquarl!Powtrpulse.
I
To determine maximum Junction temperature of the diode In a given
situation, the following procedure is recommended:
The temperature of the case should be measured uSing a thermocouple
placed on the case. The thermal mass connected to the case IS normally large
enough so thai it will not significantly respond to heat surges generated In
the diode as a result of pulsed operation once stead v-state conditions are
achieved. Using the measured value of T C. the lunction tempera lure may be
TJ =T C + ~ TJC
where .l TC IS the Increase in Junction temperature above the case
temperature. It may be determined by:
determined by:
TJ; 125°C
20
90
TC. CASE TEMPERATURE (OCI
RJL
/ /
/ de50% Duty Cycle
V/
'.!!.k ;20_ / / /
IAV
J / / ./ V
lO_
5 / ) '/L' ' /
'n' / / "" :Pk ; ,,(Resistive loadlAV
//. 0
~V
~
= 20. 10. 5 +---......,f----'~2Sik"""':---_I
NOTE 2
(Capacitive loadl
0
AV
Pk
Square Wave
0
~
..\ TJC= Ppk-R8JCI0+ (1- OI-r(1, +tpl + rltpl- r(t,11 where
rlt! = normalized value of transient thermal resistance at time, t, from
Figure 8. i.e.:
rlt, + tpl = normahzed value of transient thermal resIstance at time t1 + tp'
80
IF(AVI' AVERAGE FORWARO CURRENT (AMPS)
FIGURE 8 - THERMAL RESPONSE
g 1.0
~
~
O. 5
C>
....~
~ O. 2
~
~
fo"'"
...... ~
R8JC(tl = R8JC + r(t)
INote 21
O. I
~
c<
~
i=
0.0 5
>-z
~ 0.0 2.",....
"...... f-""
z
c<
e: 0.0 I
.-:
0.01
'"
0.02
0.05
0.1
0.2
0.5
1.0
2.0
t. TIME (ms)
3-73
5.0
10
20
50
100
200
500
1000
1N6097,1N6098,SD51
FIGURE 9 - SCHOTTKY RECTIFIER
Copper Lead
Barrier Metal
~~~~~~~~!§~r--VIEW A-A
Copper Base
Moly Disk
Guardring
II
Oxide Passivation
Motorola builds quality and reliability into its Schottky Rectifiers.
First is the chip. which has an interface metal between the
platinum-barrier metal and nickel-gold ohmic-contact metal to
eliminate any possible interaction with the barrier. The indicated
guardring prevents dv/dt problems. so snubbers are not mandatory. The guardring elsa operates like a zener to absorb OVllrvoltage transients.
Second is the package. There are molybdenum disks which
closely match the thermal coefficient of expansion of silicon on
each side of the chip. The top copper lead has a stress relief
VIEW A-A
feature which protects the die during assembly. These two
features give the unit the capability of passing stringent thermal
fatigue tests for 5.000 cycles. The top copper./ead provides a low
resistance to current and therefore does not contribute to device
heating; a heat sink should be used when attaching wires.
Third is the redundant electrical testing. The device is tested
before assembly in "sandwich" form. with the chip between the
moly disks. It is tested again after assembly. As part of the final
electrical test. devices are 100% tested for dv/dt at 1.600 VII'S
and reverse avalanche.
FIGURE 10 - TEST CIRCUIT FOR dv/dt
AND REVERSE SURGE CURRENT
VCC
12Vdc
MECHANICAL CHARACTERISTICS
CASE: Welded, hermetically sealed
RNISH: All external surfaces corrosion
resistant and terminal lead is readily
n~2V
-l
--I
100
~
I--
solderable.
POLARITY: Cathode to Case
MOUN11NG POSmON: Any
MOUNnNG TORQUE: 25 in-Ib max
SOLDER HEAT: The excellent heat trans-
2N2222
2.0 Its
1.0kHz
Current
Amplitude
Adjust
0-10 Amps
fer property of the heavy duty copper
anode t~!lrminal which transmits heat
away from the die requires that caution
be used when attaching wires. Motorola
suggests a heat sink be clamped between
the eyelet and the body during any soldering operation.
lOOn
Carbon
3-74
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL DATA
MBR150
MBR160
Axial Lead Rectifiers
MBR1601.a
Motorola Preferred Device
· .. employing the Schottky Barrier principle in a large area metal-to-silicon power diode.
State-of-the-art geometry features epitaxial construction with oxide passivation and
metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency
inverters, free wheeling diodes, and polarity protection diodes.
•
•
•
•
SCHOTTKY BARRIER
RECTIFIERS
1 AMPERE
50,60 VOLTS
Low Reverse Current
Low Stored Charge, Majority Carrier Conduction
Low Power Loss/High Efficiency
Highly Stable Oxide Passivated Junction
Mechanical Characteristics:
Case: Void free, transfer molded
Finish: All external surfaces corrosion-resistant and the terminal leads are readily
solderable
Polarity: Cathode indicated by polarity band
. Mounting Positions: Any
Soldering: 220·C 1/16" from case for ten seconds
/
~-
II
PLASTIC
MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
RMS Reverse Voltage
Average Rectified Forward Current (2)
(VR(equiv) .. 0.2 VR(dc), TL = 90·C, ReJA
see Note 3. TA = 55·C)
Symbol
MBR150
MBR160
Unit
VRRM
VRWM
VR
50
60
Volts
VR(RMS)
35
42
Volts
10
1
Amp
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions, half-wave.
single phase. 60 Hz. TL = 70·C)
IFSM
25 (for one cycle)
Amps
Operating and Storage Junction Temperature Range
(Reverse Voltage applied)
TJ. Tstg
-65 to +150
·C
TJ(pk)
150
·C
= aO·CIW, P.C.
Board Mounting,
Peak Operating Junction Temperature
(Forward Current applied)
THERMAL CHARACTERISTICS (Notes 3 and 4)
Characteristic
Max
Thermal Resistance, Junction to Ambient
80
ELECTRICAL CHARACTERISTICS (TL = 25·C unless otherwise noted) (2)
Characteristic
Symbol
Maximum Instantaneous Forward Voltage (1)
(iF = 0.1 A)
(iF = 1 A)
(iF = 3 A)
vF
Maximum Instantaneous Reverse Current
ITL = 25·C)
(TL = 100·C)
iR
(C"
Max
Unit
Volt
0.550
0.750
1.000
Rated dc Voltage (1)
mA
0.5
5
111 Pulse Test: Pulse Width = 3001'5. Duty Cycle" 2%.
(2) Lead Temperature reference is cathode lead 1132" from case.
3-75
MBR150, MBR160
10
5
0
7
5
12S'C-
--
TJ - 150"7 -
/100'C
V /
/
/
/
i
0.7
ao
0.5
~
f2
~
iil
z
/
1
j
/
V
V
/25'C I-- I--
100'C=:
O. 2
7S'C=
o. 1
~ 0.05
/ /
~
/
/
1
0.5
0.02
.!f. 0.01
0.005
j
2S'S=::=
0.002
0.00 1
o
20
30
40
so
VR. REVERSE VOLTAGE (VOLTSI
10
I
I
I
0.3
II II
~
~
70
*The curves shown are typical for the highest voltage device in the voltage
grouping. Typical reverse current for lower voltage selections can be
estimated from these same curves if VR is sufficientlv below rated VR.
I//
0.2
60
Figure 2. Typical Reverse Current*
II 1/
;5
II
lSO'C
TJ
'~QUAR1-
0.1
.!f.
WAVE~
0.07
//
0.05
/. Vdc
1T
f-!eK ~0-10,
f-IAV
0.03
0.02
1
h
,JtIA ~
o
0.2
0.4
0.6
0.8
1
1.2
VF.INSTANTANEOUS VOLTAGE IVOLTSI
1.4
1.6
"
\
\, ~ V
);: ~
y~ ~
~P
1
2
4
IFIAVI. AVERAGE FORWARD CURRENT IAMPSI
Figure 3. Forward Power Dissipation
Figure 1. Typical Forward Voltage
THERMAL CHARACTERISTICS
i5
1
~a:
O. 7
O.S
~ o.3
I
_
a:
o.
2
i---"
O. 1
;;;' 0.07
~ 0.05
:I:
:: 0.03 -
~
0.02
~
0.0 1
0.1
-
Z8JLIII
= Z8JL' ,III
~k
p
1--11-+1
~1
DUTY CYCLE. 0 =
PEAK POWER. P k. I PEAK OF AN
TIME EQUIVALENT Sd'UARE POWER PULSE.
aTJL Ppk'R8JLlD + II - 01,,111 + Ipl + '1Ipi - 'ltlll
WHERE
a TJL = THE INCREASE IN JUNCTION TEMPERATURE ABOVE THE LEAD TEMPERATURE
,It) = NORMALIZED VALUE OF TRANSIENT THERMAL RESISTANCE AT TIME. I. FROM FIGURE 4. i.e.:
,111 + Ipl = NORMALIZED VALUE OF TRANSIENT THERMAL RESISTANCE AT TIME. 11 + Ip.
z
~
-;-
0.2
O.S
10
20
SO
I. TIME Imol
100
Figure 4. Thermal Response
3-76
200
SOO
lk
2k
Sk
10 k
MBR150, MBR160
~ 0
LEADS ~O HEAT ~INK,
~ Or--r-BOT~ EOUAL
tENGTH
~
z
o
~
=l
ri
z
r;;
/'"
60
MAXIMUM
50
40
/
iii
'"
V
./'"
V
V
TJ ~ 25'C
f ~ 1 MHz
V
0
0
0
0
0
~PICAL
V
~ 30
;;t
~
./
0
in
~
200
.-/
.,./1-""
0
118
'
\
\
\
0
V.:,....- ./'"
20
10
1
0
1/4
318
112
5,8
L, LEAD LENGTH IINCHESI
3,4
20
o
78
10
Figure 5, Steady-State Thermal Resistance
1/4
1/2
3/4
52
65
72
85
'CIW
67
80
87
100
'CIW
~
~
~
m
00
90
100
VR, REVERSE VOLTAGE IVDLTS)
~
~
Mounting Method 2
I
50
............. r-~
~
~
R8JA
2
3
w
Mounting Method 1
P.C. Board with
1-112" x 1-112"
copper surface.
Lead Length, L (in)
1/8
............
Figure 6, Typical Capacitance
NOTE 3 - MOUNTING DATA:
Data shown for thermal resistance junction-to-ambient (ReJA)
for the mounting shown is to be used as a typical guideline
values for preliminary engineering or in case the tie point temperature cannot be measured.
Typical Values for R8JA in Still Air
Mounting
Method
'"
Mounting Method 3
P.C. Board with
1-112" x 1-1/2"
copper surface.
L ~ 3J8"
~JII~
BOARD GROUND
PLANE
-
'CIW
VECTOR PIN MOUNTING
NOTE 4 - THERMAL CIRCUIT MODEL:
(For heat conduction through the leads)
ROSIAI
ROSIKI
TAlK)
-=-
(Subscripts A and K refer to anode and cathode sides, respectively.) Values for thermal resistance components are:
ReL ~ 10D'CIWlin typically and 120'CIWlin maximum.
ReJ ~ 36'CIW typically and 46'CIW maximum.
NOTE 5 - HIGH FREQUENCY OPERATION:
Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier
injection and stored charge. Satisfactory circuit analysis work
may be performed by using a model consisting of an ideal diode
in parallel with a variable capacitance. (See Figure 6.)
Rectification efficiency measurements show that operation
will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximatley 70 percent at 2 MHz, e.g., the ratio of dc power to RMS power in the
load is 0.28 at this frequency, whereas perfect rectification would
yield 0.406 for sine wave inputs. However, in contrast to ordinary
junction diodes, the loss in waveform efficiency is not indicative
of power loss: it is simply a result of reverse current flow through
the diode capacitance, which lowers the de output voltage.
Use of the above model permits junction to lead thermal resistance for any mounting configuration to be found. For a given
total lead length, lowest values occur when one side of the rectifier is brought as close as possible to the heat sink, Terms in
the model signify:
TA ~ Ambient Temperature TC ~ Case Temperature
TL ~ Lead Temperature
TJ ~ Junction Temperature
Res ~ Thermal Resistance, Heat Sink to Ambient
ReL ~ Thermal Resistance, Lead to Heat Sink
ReJ ~ Thermal Resistance, Junction to Case
Po ~ Power Dissipation
3-77
a
MOTOROLA
... SEMICONDUCTOR . . . . . . . . . . . . . . . . . . . . . . . . . ..
TECHNICAL DATA
MBR170
MBR180
MBR190
MBR1100
Axial Lead Rectifiers
· .. employing the Schottky Barrier principle in a large area metal-to-silicon power diode.
State-of-the-art geometry features epitaxial construction with oxide passivation and
metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency
inverters, free wheeling diodes, and polarity protection diodes.
MBR1100ls a
Motorola Preferred Device
• Low Reverse Current
• Low Stored Charge, Majority Carrier Conduction
• Low Power Loss/High Efficiency
• Highly Stable Oxide Passivated Junction
• Guard-Ring for Stress Protection
• Low Forward Voltage
• 150'C Operating Junction Temperature
• High Surge Capacity
Mechanical Characteristics:
II
SCHOTTKY BARRIER
RECTIFIERS
1 AMPERE
70,80,90,100 VOLTS
/
Case: Void free, transfer molded
Finish: All external surfaces corrosion-resistant and the terminal leads are readily
solderable
Polarity: Cathode indicated by polarity band
Mounting Positions: Any
Soldering: 220'C 1/16" from case for ten seconds
CASE 59-04
PLASTIC
MAXIMUM RATINGS
Rating
Symbol
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
Average Rectified Forward Current
(VR(equiv) .. 0.2 VR(dc), R8JA = SO'CfW, P.C. Board Mounting,
see Note 1, TA = 120'C)
Nonrepetitive Peak Surge. Current
(Surge applied at rated load conditions, half-wave, single phase, 60 Hz)
Operating and Storage Junction Temperature Range
Voltage Rate of Change (Rated VR)
MBR170 MBR180 MBR190 MBR1100
70
80
90
100
Unit
Volts
10
1
Amp
IFSM
50
Amps
TJ, Tstg
-6510 +150
'C
dv/dt
10
V/ns
THERMAL CHARACTERISTICS (See Note 2)
Characteristic
Max
Thermal Resistance, Junction to Ambient
See Note 1
ELECTRICAL CHARACTERISTICS (Tl = 25'C unless otherwise noted)
Symbol
Characteristic
Maximum Instantaneous Forward Voltage'
(iF = 1 A, Tl = 25'C)
(iF = 1 A, Tl = 100'C)
Maximum Instantaneous Reverse Current
(Tl = 25'C)
(Tl = 100'C)
(a
Max
Unit
Volt
VF
0.79
0.69
Rated dc Voltage'
mA
iR
0.5
5
'Pulse Test: Pulse Width = 300 ps, Duty Cycle'" 2.0%.
3·78
MBR170, MBR180, MBR190, MBR1100
~
20
~
10
~
5
~
1
~
0.5
a:
:::>
u
o
a:
a:
--.
150°C
100'C
25°C
TJ
/
r-...
/
/
//
lK
400
200o- T J = 150°C
10
40
125°S~ 20
100°C
g§ 10
./
1
4
ffi
2
1
w
V>
:::>
I
@ 0.2
I
G;
~ 0.4
0.2
O. 1
I
z
~ 0.1
;;j
a
0.05
0.04
0.02
0.01 0
;;!;
.!? 0.02
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
vF. INSTANTANEOUS VOLTAGE IVOLTS)
10
Figure 1. Typical Forward Voltage
-
20
I-"
-
r--
- ~
...30
40
50
60
70
VR. REVERSE VOLTAGE IVOLTS)
80
90
100
Figure 2. Typical Reverse Current*
*The curves shown are typical far the highest voltage device in the voltage
grouping. Typical reverse current for lower voltage selections can be
estimated from these same curves if VR is sufficiently below rated VR.
-
1--.."'-
/'
. . . . r-...'"
"- r0
SQUARE WAVE / '
....... ~c
SQUARE WAVE "-
/ ~c
V .,.,..,.,.
~
~~
"\
20
40
,
60
80
100 120 140
TA. AMBIENT TEMPERATURE 1°C)
1
~
b:::;::::: ~
160
1
180
/
/'"
'/
2
Figure 4. Power Dissipation
150
w
zu
5
~
U
100
90
80
70
60
50
40
\
\
" "I\..
TJ = 25°C
trEST = 1 MHz
..........
.............
30
..............
-
t--
20
15
3
4
IFIAV). AVERAGE FORWARD CURRENT lAMPS)
Figure 3. Current Derating
(Mounting method 3 per note 1.)
~
V
10
W
~
40
50
60
M
VR. REVERSE VOLTAGE IVOLTS)
Figure 5. Typical Capacitance
3-79
80
80
~
,/
./
_
-
II
MBR170, MBR180, MBR190, MBR1100
NOTE 1 - MOUNTING DATA:
Data shown for thermal resistance junction-to-ambient (R/lJA)
for the mountings shown is to be used as typical guideline values
for preliminary engineering or in case the tie point temperature
cannot be measured.
Lead Length, L lin)
Mounting
Method
1/8
1/4
1/2
1
52
65
72
85
0c/w
2
67
80
87
100
°CIW
3
50
:~
•
~
~
Mounting Method 2
~
L
TAlK)
-=-
Use of the above model permits junction to lead thermal resistance for any mounting configuration to be found. For a given
total lead length, lowest values occur when one side of the rectifier is brought as close as possible to the heat sink. Terms in
the model signify:
TA = Ambient Temperature TC = Case Temperature
TL = Lead Temperature
TJ = Junction Temperature
Res = Thermal Resistance, Heat Sink to Ambient
ReL = Thermal Resistance, Lead to Heat Sink
ReJ = Thermal Resistance, Junction to Case
Po = Power Dissipation
°CIW
= 31ll"
~JII~
BOARD GROUND
PLANE
ReS(K)
R9JA
Mounting Method 3
P.C. Board with
1-1/2" x 1-1/2"
copper surface.
Mounting Method 1
P.C. Board with
1-1/2" x 1-1/2"
copper surface.
~
ReSIA)
-=- TA(A)
Typical Values for R9JA in Still Air
3/4
NOTE 2 - THERMAL CIRCUIT MODEL:
(For heat conduction through the leads)
(Subscripts A and K refer to anode and cathode sides, respectively.) Values for thermal resistance components are:
ReL = 100°ClWlin typically and 120°ClWlin maximum.
R8J = 36°CIW typically and 46°CIW maximum.
-
NOTE 3 - HIGH FREQUENCY OPERATION:
Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward
and reverse recovery transients due to minority carrier injection
and stored charge. Satisfactory circuit analysis work may be
performed by using a model consisting of an ideal diode in
parallel with a variable capacitance. (See Figure 5.)
Rectification efficiency measurements show that operation
will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 percent at 2.0 MHz, e.g., the ratio of de power to RMS power in the
load is 0.28 at this frequency, whereas perfect rectification would
yield 0.406 for sine wave inputs. However, in contrast to ordinary
junction diodes, the loss in waveform efficiency is not indicative
of power loss: it is simply a result of reverse current flow through
the diode capacitance, which lowers the de output voltage.
VECTOR PIN MOUNTING
3-80
•
MBR320 MBR340
MBR330 MBR350
MBR360
MOTOROLA
SEMICONDUCTOR
TECHNICAL DATA
•
MBR340 and MBR360 are
Motorola Preferred Devices
SCHOTTKY BARRIER
RECTIFIERS
AXIAL LEAD RECTIFIERS
3.0 AMPERES
20,30,40,50,60 VOLTS
· .. employing the Schottky Barrier principle in a large area metal-to-silicon
power diode. State-of-the-art geometry features epitaxial construction with
oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, free wheeling diodes, and
polarity protection diodes.
• Extremely Low vF
• Low Power Loss/High Efficiency
• Highly Stable Oxide Passivated Junction
II
• Low Stored Charge, Majority
Carrier Conduction
CASE 267-03
PLASTIC
MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current
TA = S5"C
(R8JA = 2S"CIW, P.C. Board Mounting,
see Note 3)
Nonrepetitive Peak Surge Current (2)
(Surge applied at rated load conditions, half wave,
single phase SO Hz, TL = 75"C)
Operating and Storage Junction
Temperature Range (Reverse Voltage applied)
Peak Operating Junction Temperature
(Forward Current Applied)
Symbol
MBR320
MBR330
MBR340
MBR350
MBR360
Unit
VRRM
VRWM
VR
20
30
40
50
SO
V
10
3.0
A
IFSM
SO
A
TJ. Tstg
-S5 to 150"C
"C
TJ(pk)
150
"C
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient, (see Note 3. Mounting Method 3)
ELECTRICAL CHARACTERISTICS (TL = 25"C unless otherwise noted )(2)
Characteristic
Symbol
Maximum Instantaneous
Forward Voltage (1)
(iF = 1.0 Amp)
(iF = 3.0 Amp)
(iF = 9.4 Amp)
vF
Maximum Instantaneous
Reverse Current (a Rated
de Voltage (1)
TL = 25"C
TL = 100"C
iR
11) Pulse Test: Pulse Width
=
MBR320
I
MBR330
I
MBR340
MBR350
I
MBR360
Unit
V
0.500
O.SOO
0.S50
O.SOO
0.740
1.0S0
mA
0.60
20
300 p..s, Duty Cycle -:" 2.0%.
(2) Lead Temperature reference is cathode lead 1/32" from case.
3-81
MBR320, MBR330, MBR340, MBR350, MBR360
MBR320. 330 AND 340
FIGURE 2 - TYPICAL REVERSE CURRENT'
FIGURE 1 - TYPICAL FORWARD VOLTAGE
·20
/ V V
/ 'jV
10
7.0
/
/ 1//
II /
I
t
I
I
TJ - 150'C
1.0
/25;C
1t'00'C
1000
75'C
100
1
2 'C
-
1
10
20
30
40
VR REVERSE VOLTAGE (VOLTSI
'The curves shown are typical for the highest voltage
device in the voltage grouping. Typical reverse current
for lower voltage selections can be estimated from
these same curves if VR is sufficiently below rated VR.
II
~
'-'"
l00'C
.....
.;..;..
0.7
~ O. 5
II
0.4
U
0.2
w
O. 1
ffi 0.04
~ 0.02
J!. 0.01
0.004
0.002
0.00 10
I
2.0
~
u
1
/
/1 /
3.0
lSO'C
1
~:~ ,!Z 1.0
/
5.0
Ii
100
40
20
10
I I
~
~ O. 3
I I I
~ O. 2
FIGURE 3 - CURRENT DERATING
(MOUNTING METHOD #3 PER NOTE 3)
I I II
z
;5
10
I I
en
;;::;
.!:? O. 1
~
~ 8.0
0.07
!Z
0.05
!3
6.0
u
0.03
'"~
!l;!
c
" " '" i'...
~ 4.0
w
'"«ffi
0.02
I
0.0 1
LI
~
~
U
U
U
U
MUM
Squar0
Wave
2.0
~
....
U
W
40
vF. INSTANTANEOUS VOLTAGE (VOLTS)
Resistive Load
!EK =
(Capactive Load)-IAV
I~ \. 5.0
Square
Wavy
~
~
~
""
V /'
\
~200
~
"-
~
~
TJ = 150'C
~'~
u80
t.oi~"/
1.0
2.0
3.0
4.0
IF (AVI, AVERAGE FORWARD CURRENT (AMPS)
= 25'C
\
1
t--f--20
TJ
300\
V' . /
' / /'
JV~ '/
'\
'\.
50
50
~
W ~
TA. AMBIENT TEMPERATURE ('C)
500
400
dC/
/
"
dc
'\J
FIGURE 5 - TYPICAL CAPACITANCE
FIGURE 4 - POWER DISSIPATION
2.5
'"
"
70
50
50
5.0
3-82
o
"-
i'-.
10
20
30
VR REVERSE VOLTAGE (VOLTS)
100
40
50
MBR320, MBR330, MBR340, MBR350, MBR360
MBR350 AND 360
FIGURE 7 - TYPICAL REVERSE CURRENT'
FIGURE 6 - TYPICAL FORWARD VOLTAGE
0
TJ
~ ioo·c~ ~5JC_
IV
0
V~ I--
0
10
5. 0
./
2.0
1.0
0.50
~
,g
7, 0
.....
1// /
ac
~
~
~
a:
s-
'II
VI
1.0
7S'C=
0.20
0.1 0
a:
'" 0.05
:::>
I)V
2. 0
loo·C-
u
rl
3.0
~
~
!z
~
~
I
5,0
lS0·C
'The curves shown are typical for the highest voltage
device in the voltage grouping. Typical reverse current
for lower voltage selections can be estimated from
these same curves if VR is sufficiently below rated VR.
2S·C=
0.02
0.01
0.005
0.00 2
0
20
30
40
50
VR. REVERSE VOLTAGE IVOLTS)
10
so
60
0.7
a:
f2 0.5
FIGURE 8 - CURRENT DERATING AMBIENT
(MOUNTING METHOD #3 PER NOTE 3)
U)
:::>
@
:l
~
0.3
5.0
I
I
;;; 0.2
.!?
o. 1
"-
U>
!iE
.....
z 4.0
~
:::>
u
c
3.0
ii:2
2.0
a:
0.07
~
0.05
'\.
0.02
o
:\.dc
1.2
1.4
\
:\.
TJ
~
if'
0.4
0.6
O.B
1.0
vF.INSTANTANEOUS VOLTAGE IVOLTS)
0.2
\
\
'"
'-'
10
'"
'"
~
'"
12
'"=>~
z
....
/
25°C
'"
0.001
0.2
0.6
0.8
0.4
1.0
iF. INSTANTANEOUS FORWARD VOLTAGE (VOLTS)
1.2
o
10
FIGURE 3 - CURRENT DERATING, CASE
~
~
6.0
'"i3
'" 5.0
i12
~
'"
;;:ffi
"'" " "- ,",
180° Square
3.0
e;;~ 7.0
5
ROJC = 3.0 0 C/W
....
40
50
II
"wa~
f'....
o
110
- - ROJA = 16°C/W
.......
=> 5.0
.........
120
130
TC. CASE TEMPERATURE (OC)
",
4.0
12
3.0
~
'"
--
125°C
.--"
S
'"«
;;:
ex:
~
en
I/l '/
I
III
5l 2.0
:2
~
:2
1.0
.~
I
II
3.0
;!;
::>
5l
z
;!;
I
0.4
0.6
0.8
1.0
1.2
VF. INSTANTANEOUS VOLTAGE (VOLTS)
10
0.1
~
0.2
0.4
0.6
0.8
1.0
1.2
vF. INSTANTANEOUS VOLTAGE (VOLTS)
~
I-
ffi 100
ex:
ex:
100°C
1\
::>
.~
.
1.0
u
w
75°C
0.1
2.:;s.
Jt. 0.01
>
-
70
"
.....
50
::
.....
""~
"~
t-.......
30
o
20
10
20
30
VR. REVERSE VOLTAGE (VOLTS)
40
1.0
50
3-91
-
-I-
~
0.001
1.4
~
::;;
ex:
~
ex:
III
FIGURE 4 - MAXIMUM SURGE CAPABILITY
125°C
::>
en
I
I
200
~ TJ -150°C
I-
u
w
I
I
III
1.4
FIGURE 3 - MAXIMUM REVERSE CURRENT
,-
I' /
1/11
'/
0.7
0.2
100
I
/
1.0
0.3
II
0.2
2.0
0.5
I
0.1
3.0
z
en
I
0.2
rll
«
I-
0.7
0.3
III.
5.0
~
.!:f-
0.5
..-g
hV
10
ffi 7.0
I
en
~
/'
/25°C
>--
::>
en
'/
/'
/
VI V
in
~
/,
:;';-OooC . /
~
ffi 7.0
'"~
Jr
20
/
I-
'"'"
«
;;:
/
30
/V';5 0 C
~
'"'"a
/.:
50
/, VI
in
"::;;
'l
70
....- . /
2.0
3.0
5.0 7.0 10
20 30
NUMBER OF CYCLES AT 60 Hz
50
70 100
MBR1035, MBR1045
FIGURE 6 - CURRENT DERATING. R6JA = 16° C/W
FIGURE 5 - CURRENT DERATING. INFINITE HEATSINK
....
in
:;;
20
Rated Voltage Applied
5.
"
I-
a;
0:
0:
15
=>
U
C
0:
c[
IpK
;;: 10 r--.
0:
(Capacitive loadl IAV
~
~
"K
"=5
c[
'"
10
ill 5.0
~
20
~
120
\ . Square Wave
I
~
(!J
~
10
I----t-.......::-=''I-<;~-I-'.....d_/<-__if--+--t_-_l
~
8.0
j;:;;:::::::F:::::::::j:;;~"i,~:;t-"""JR"'--T--I-1
iii~
~ ~c
130
140
TC. CASE TEMPERATURE (OCI
I----t---+---I-~~......~~~.t-->."t_-_l
4.0
~ 2.0
~
150
160
10
9.0
in
....
:;;
Square Wave ~
1// #V
h '/L, ~
/// ~
2.0
5.
I-
a;
o lR
2.0
o
5.0
160
.1
4.0
=>
c
co:
........
c[
~~
1.0
~
~
4.0
6.0
8.0
10
12
14
IF(AVI' AVERAGE FORWARD CURRENT (AMPSI
16
L
-~ ~ ~
c[
:>
I
='II' IR"
eSlstlve loadl1 _
""" """"- 1'-../ s~uare
1'--.." ~
2.0
'"ffi
I
.1
I
IIpK
~ t--..
~
=150°C- I---
_I
I
" AV
3.0
c[
~
!.
Rated Voltage Applred. R6JA =60 0 C/W
..... 1'-.
0:
U
~~
1.0
140
80
100
60
120
TA. AMBIENT TEMPERATURE (OCi
co:
~
TJ
40
20
FIGURE 8 - CURRENT DERATING. FREE AIR
~
~
B
~ 6.0 F==9==f=;;;;;:!::=-~~st---""t
4.0
3.0
~
I----t----"'''''"~-I--+
~
~
~
12
c
I
I~
Sine ~ave
8.0
Resistive lDad V/ /
7.0 rIpK
(Capacitive loadl I
=5 ~
'.I /
6.0 rAV/
'20 10
V/'/
5.0
is
15
FIGURE 7 - FORWARD POWER DISSIPATION
-
i
en
....
~
~
o
110
II
I
R"ldl
'II' ( eSlstlve oa
~~
~
~
I
IIpK 0
AV I
;!
16r---,---,----,---.----r---,---,---,
Rated Voltage Applied
14f---t---+---t---j---1f---+--t---j
(Capec~ive
o
o
IpK
loadl
20
I
AV
/
=20.
"-
wa!e -
-
"c
•. ~ ~
10. 5
""""IIIiI
40
60
100
120
80
TA. AMBIENT TEMPERATURE (OCI
"\
\.
140
160
FIGURE 9 - THERMAL RESPONSE
~ 1.0
~
:;;
0:
Q
~
~
u
z
c[
I-
0.7
0.5
I.---
0.3
0.2
'"
13
co:
.....- V
0.1
0.07
:;: 0.05
i
I-
g
Ip
0.1
TIME
Duty Cycte. 0 ='p/'l
Peak Power, Ppk. is peak ofan
eqUivalent squart power pulse.
l>TJl =Ppk . RBJliO + 11 - 01' rltl + Ipl .rltpl - rltl))
where .1. TJl = the mcrease 1M Junction temperature above the lead temperature
r(t) = normalized value of transient thermal resistance at time, t,
for example, r(t, + tp) = normalized value of transient
thermal resistance It time, t1 + tp.
,..,.. ,..,..
~ 0.0~.01
_
1---.. --1
k-"""
15
0.03
~ 0.02
J=LJLPk
.....
10
1.0
t. TIME
3-92
(m'l
100
1000
MBR1035, MBR1045
FIGURE 10 - CAPACITANCE
HIGH FREQUENCY OPERATION
1500
Since current flow in a Schottky rectifier is the result of majority
carrier conduction. it is not subject to junction diode forward and
reverse recovery transients due to minority carrier injection and
stored charge. Satisfactory circuit analysis work may be per~
formed by using a model consisting of an ideal diode in parallel
with a variable capacitance. (See Figure 10.)
Rectification efficiency measurements show that operation will
be satisfactory up to several megahertz. For example. relative
waveform rectification efficiency is approximately 70 per cent at
2.0 MHz. e.g .. the ratio of dc power to RMS power in the load is
0.28 at this frequency. whereas perfect rectification would yield
0.406 for sine wave inputs. However. in contrast to ordinary
junction diodes. the loss in waveform efficieny is not indicative of
power loss; it is simply a result of reverse current flow through the
diode capacitance. which lowers the dc output Voltage.
1000
~
~
700
r-....
w
z
500
'"u
~
'"u
u
!=
~:--
Tvpical
300
~
200
~,
150
0.05 0.1
0.2
0.5
1.0
2.0
5.0
VR. REVERSE VOLTAGE (VOLTS)
Schottky Chip FIGURE 11 -
Maximum
......
U
10
20
50
View A-A
SCHOTTKY RECTIFIER
Schottky Chip (See View A-A)
Aluminum Contact Metal
Platinum Barrier Metal
/
Oxide
"\
&(paSsivation
Anode
Guardring
~--'---------'
Motorola builds quality and reliability into its Schottky
Rectifiers.
First is the chip. which has an interface metal between the
barrier metal and aluminum~contact metal to eliminate any
possible interaction between the two. The indicated guardring
prevents dvldt problems. so snubbers are not mandatory. The
guardring also operates like a zener to absorb over-voltage
transients.
Second is the package. The Schottky chip is bonded to the
copper heat sink using a specially formulated solder. This gives
the unit the capability of passing 10.000 operating thermalfatigue cycles having a .lTJ of 100 0 C. The epoxy molding
compound is rated per UL 94. VO @ 1 IS". Wire bonds are 100%
tested in assembly as they are made.
Third is the electrical testing. which includes 100% dvldt at
1600 V//lS and reverse avalanche as part of device
characterization.
FIGURE 12 - TEST CIRCUIT FOR dv/dt AND
REVERSE SURGE CURRENT
r~Vl2.0k!l
VCC
s-f2V
--I
12Vdc
1 i'~''
100
0
"'
I-- 2.0 /lS
1.0kHz
Current
Amplitude
Adjust
0-10 Amps
1.0 Carbon
lN5S17
3-93
II
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL DATA
MBR1060
MBR1070
MBR1080
MBR1090
MBR10100
Switchmode
Power Rectifiers
· .. using the Schottky Barrier principle with a platinum barrier metal. These state-of-theart devices have the following features:
Q
•
•
•
•
•
•
•
Guard-Ring for Stress Protection
Low Forward Voltage
150·C Operating Junction Temperature
Guaranteed Reverse Avalanche
Epoxy Meets UL94, VO at 1/8"
Low Power Loss/High Efficiency
High Surge Capacity
Low Stored Charge Majority Carrier Conduction
MBR1060 and MBR10l00 are
Motorola Preferred Devices
SCHOTTKY BARRIER
RECTIFIERS
10 AMPERES
60-100 VOLTS
II
l.,~
TO·220AC
PLASTIC
MAXIMUM RATINGS
Symbol
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
= 133"C
MBR
1060
1070
1060
1090
10100
60
70
80
90
100
Unit
Volts
IF(AV)
10
Amps
IFRM
20
Amps
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz)
IFSM
150
Amps
Peak Repetitive Reverse Surge Current (2 !,s, 1 kHz)
IRRM
0.5
Amp
TJ
-65 to +150
"C
Storage Temperature
Tstg
-65 to +175
"C
Voltage Rate of Change (Rated VR)
dvldt
1000
VI!'s
Average Rectified Forward Current (Rated VR) TC
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz) TC
= 133"C
Operating Junction Temperature
THERMAL CHARACTERISTICS
Maximum Thermal Resistance - Junction to Case
- Junction to Ambient
2
60
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)
(iF = 10 Amp, TC = 12S"C)
(iF = 10 Amp, TC = 2S"C)
(iF = 20 Amp, TC = 125"C)
(iF = 20 Amp, TC = 25°C)
vF
Maximum Instantaneous Reverse Current (1)
(Rated de Voltage, TC = 125°C)
(Rated de Voltage, TC = 25°C)
iR
(11 Pul.e Test: Pulse Width
Volts
0.7
0.8
0.85
0.95
mA
150
0.15
= 300 1'•• Duty Cycle'" 2%.
3-94
MBR1060, MBR1070, MBR1080, MBR1090, MBR1 01 00
~50
~
~ 20
a::
a::
a
10
V
10
r
#
150'C
./
'"
:::J
@
~
!Z
II I
175'C
'N /
'/
1
/
l-
i
~
u
u
u
125'C
1= ~TJ
l00'C
1== ~TJ
25'C
w
a::
~
0.1
a:
.!#
0,01
o
t== F'=TJ
-
~ 20
a::
'"~
75°C
~
7,0
~ 5.0
-
TJ = 150°C
V
10
g
!z
~
/ V/
ffi
z 2,0
75°C
a
25°C
~ 0,01
25°C
0,00 1
0,2
0.4
0,6
0,8
1,0
iF, INSTANTANEOUS FORWARD VOLTAGE IVOLTSI
1.2
10
::!. 14
>-
12
a
10
........... ~
8,0
....
to
6,0
~
Rated Voltage Applied
'" "r--..
" i'..
a::
'"~
50
II
'" 4,0
ffi
>
a
~e
a::
'"'" ""
'"
~
120
130
TC. CASE TEMPERATURE lOCI
i
140
'"
-- -
"'~"
~ I~O.:qUare WaVj\
--~
40
IResistive Loadl
IpK = 7f
IAV
A
B,O
~
co
A'
~ 6,0
!#'
.........
././
V
_ lBOoC
Square
Wave
. / de -
./
./
III'"
.# V
~ 4.0
.,..../." ' /
2.0
~
~ 0 l.."ooIII"
0
2.0
4.0
6.0
B,O
10
12
14
16
IFIAVI' AVERAGE FORWARD CURRENT IAMPSI
3-97
f. __
'"
~
-~
100
120
60
80
TA, AMBIENT TEMPERATURE lOCi
FIGURE 5 - POWER DISSIPATION
12
ROJA = 60 0 C/W
INo Heat Sinkl f----
~
~ t'-....,.
-- -- -\- ---
20
14
a:
~
8,0
150
~ 10
!'"'"
"" r---...r---......
--
;;;
~_
"-
- - ROJA = 16°C/W
10
~ 6.0
z
~
de
12
co
'"~
i'..
110
::!.
z>-
I'l!
a::
"-
'";ff; 2,0
'"
E='
~ 14
"i'-,.
I'-..
Rated Voltage Applied
in
ROJC = 3,ooC/W
1800 Square Wave
100
40
16
a::
co
2d
30
VR, REVERSE VOLTAGE IVOlTSl
FIGURE 4 - CURRENT DERATING. AMBIENT
16
~
-
r;:;
J /
FIGURE 3 - CURRENT DERATING. CASE
in
"::;;
--
100°C
1.0
l!l 0, 1
ffi
/
~
~
125°C
;;;
/
~ 3.0
:;; 1.0
~ 0.7
,!f, 0,5
V..-
~~
"
10
..-
V/
100
16
20
~
140
160
MOTOROLA
-
•
MBR1635
MBR1645
SEMICONDUCTOR
TECHNICAL DATA
MBRt645 is.
Motorola Preferred Device
SCHOTTKY BARRIER
RECTIFIERS
SWITCHMODE POWER RECTIFIERS
... using the Schottky Barrier principle with a platinum barrier metal.
These state-of-the-art devices have the following features:
16 AMPERES
35 and 45 VOLTS
• Guardring for Stress Protection
• Low Forward Voltage
•
150°C Operating Junction Temperature
• Guaranteed Reverse Avalanche
II
CASE 221 B-02
TO-220AC
PLASTIC
MAXIMUM RATINGS
Rating
Svmbol
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
MBR1535
MBR1545
Unit
Volts
VRRM
VRWM
VR
35
45
Average Rectified Forward Current (Rated VR)
TC; 125°C
IF(AV)
16
16
Amps
Peak Repetitive Forward Current
IFRM
32
32
Amps
IFSM
150
150
Amps
IRRM
1.0
10
Amps
DC
DC Blocking Voltage
(Rated VR, Square Wave, 20 kHz) TC; 125°C
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave,
single phase, 60 Hz)
Peak Repetitive Reverse Surge Current
(2.0
~s,
1.0 kHz)
Operating Junction Temperature
Storage Temperature
Voltage Rate of Change (Rated VR)
TJ
-55 to +150
-55 to +150
Tstg
-65 to +175
-65 to +175
DC
dv/dt
1000
1000
Vips
THERMAL CHARACTERISTICS
Maximum Thermal Resistance. Junction to Case
1.5
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)
Volts
vF
(iF; 16 Amp, TC; 125 D C)
(iF; 16 Amp, TC; 25 DC)
Maximum Instantaneous Reverse Current(l)
IRated dc Voltage, TC; 125DC)
0.57
0.63
0.57
0.63
40
0.2
40
0.2
mA
iR
(Rated de Voltage, TC; 25°C)
(1) Pulse Test: Pulse Width = 300 p.S. Duty Cycle ~ 2.0%
3-98
MBR1635, MBR1645
FIGURE 2 - TYPICAL REVERSE CURRENT
FIGURE 1 - TYPICAL FORWARD VOLTAGE
flOO
::;; 70
::. 50
!z
~
=>
u
c
....--:
30
20
....C/'"
;..--
TJ = 125°C
~~
100°C
I"Y": ~
25°Cyi
~
~
~
~
/[/
3.0
~
.!? 1.0
o
0.004
0.002
0.2
0.4
0.6
0.8
VF, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)
1.0
FIGURE 3 - CURRENT DERATING. CASE
in
~
14
c
12
'"3:-
'\
"
Rated Voltage Applied
ROJC = 1.5°C/W
4.0
110
::.
I\. de
'\
Wav~
8.0
6.0
o
in 16
16
'"
=>
u
--
25°C
f----
~
j2.0 --- -..
4.0
160
20
40
14
12
~
z
~
!!,
'"c
10
'"
~
8.0
!!l
w
to
~
60
80
100
120
TA, AMBIENT TEMPERATURE (OC)
co
"- 6.0
"-
1
=
=
"-
-- ..
Square Wave...........
\
Ap~lied
--"--- '"
de
FIGURE 5 - FORWARD POWER DISSIPATION
co
50
ROJA 16°C/W
- - (With TO·220 Heat Sink)
___ ROJA 60 oC/W
(No Heat Sink)
--- -- "-
in 16
S
40
FIGURE 4 - CURRENT DERATING. AMBIENT
20
~ 18
::.
>-
75°C
0.04
0.02
00 1
II
I
I
/I I
~ 2.0
1.0
'"
7.0
~ 5.0
-
-
100°C
~ 0.4
'" 0.2
$0. I
~
z
4.0
1320
IY"/
~ 10
200
100
~ 40 '-TJ= 150°C
g 20
!z 10 ' - , . - f--'25°C
140
160
II
I
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL DATA
MBR2015CTL
MBR2030CTL
SWITCHMODE
Dual Schottky
Power Rectifiers
MBR2030CTL is a
Motorola Preferred Device
· .. employing the Schottky Barrier principle in a large area metal-to-silicon power diode.
State-of-the-art geometry features epitaxial construction with oxide passivation and
metal overlay contact. Ideally suited for use as rectifiers in very low-voltage, highfrequency switching power supplies, free wheeling diodes and polarity protection
diodes.
•
•
•
•
•
•
•
•
II
SCHOTTKY BARRIER
RECTIFIERS
20 AMPERES
15 and 30 VOLTS
Highly Stable Oxide Passivated Junction
Very Low Forward Voltage Drop (0.4 Max «I 10 A, TC = 150'C)
Matched Dual Die Construction (10 A per Leg or 20 A per Package)
High Junction Temperature Capability
High dvldt Capability
Excellent Ability to Withstand Reverse Avalanche Energy Transients
Guardring for Stress Protection
Epoxy Meets UL94, VO at 1/8"
CASE 221A·06
TO·220AB
MAXIMUM RATINGS (Per Leg)
Symbol
MBR2015CTL
MBR2030CTL
Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
15
30
Volts
Average Rectified Forward Current
IF(AV}
10
Amps
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz)
IFSM
150
Amps
Peak Repetitive Reverse Surge Current (2.0
IRRM
1.0
Amp
TJ
-65 to + 150
Storage Temperature
Tstg
-65 to + 175
'c
'c
Voltage Rate of Change (Rated VR)
dvidt
10000
Vi!'-s
Rating
!,-S,
1.0 kHz)
Operating Junction Temperature
THERMAL CHARACTERISTICS (Per Leg)
Thermal Resistance, Junction to Case
2.0
ELECTRICAL CHARACTERISTICS (Per Leg)
--
Maximum Instantaneous Forward Voltage (1)
(iF = 10 Amp, TC = 25'C)
(iF = 10 Amp, TC = 150'C)
(iF = 20 Amp, TC = 25'C)
(iF = 20 Amp, TC = 150'C)
vF
Maximum Instantaneous Reverse Current 11}
(Rated DC Voltage, TC = 25'C)
(Rated DC Voltage, TC = 100'C)
(Rated DC Voltage, TC = 125'C)
iR
(1) Pulse Test: Pulse Width
= 5.0 ms. Duty Cycle
Volts
0.52
0.40
0.58
0.48
mA
5.0
40
75
"- 10%.
SWITCHMODE is a trademark of Motorola Inc.
3-100
MBR2015CTL, MBR2030CTL
10a
/W
/iJ
a
/;
a
150"C
100
'"
/
a
'lrJ = 25'C
'~
a
-
40
20
10
Figure 2. Typical Reverse Current (Per Legl
I
I
I
I
1
16
VOLTA~E APPLI~D_
RATio
RHJC = 1°C W
O. 5
\
'\
"de
O. 3
11
\
I
I
0.2
0.4
0.6
0.8
1
vF, INSTANTANEOUS VOLTAGE (VOLTS)
1.2
1.4
Figure 1. Typical Forward Voltage (Per Legl
a
'\
\
9
8
7
\
......
, f\ \
dc'
5
\
\
4
3
\
60
80
100
\
140
150
TC, CASE TEMPERATURE rC)
120
160
=I,oo<>c_
~# ~dC
10 ~ ~
~~
\
"-
\
40
130
TJ
\'
20
120
SINE WAVE
IpK
SQUARE WAVE
IAV = / /
\
1
o
\
Figure 3. Current Derating, Case
\
~
2
'\
RATED VOLTAGE APPLIED
--RHJA = 16"CW
---RHJA = 60°CW
(NO HEATSINK)
i\dc
SQUARE WAVE
6
a
\
SQUARE\
WAlE
O. 2
a
35
I
2
O.
30
\
...\
140
~~
160
180
200
TA, AMBIENT TEMPERATURE ("C)
4
6
10
11
IF(AVG}, AVERAGE FORWARD CURRENT lAMPS}
Figure 4. Current Derating, Ambient
Figure 5. Forward Power Dissipation
3-101
14
16
II
MBR2015CTL, MBR2030CTL
HIGH FREQUENCY OPERATION
Since current flow in a Schottky rectifier is the result
of majority carrier conduction, it is not subject to junction
diode forward and reverse recovery transients due to
minority carrier injection and stored charge. Satisfactory
circuit analysis work may be performed by using a model
consisting of an ideal diode in parallel with a variable
capacitance. (See Figure 6.1
Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For
example, relative waveform rectification efficiency is
approximately 70 percent at 2.0 MHz, e.g., the ratio of dc
power to RMS power in the load is 0.28 at this frequency,
whereas perfect rectification would yield 0.406 for sine
wave inputs. However, in contrast to ordinary junction
diodes, the loss in waveform efficiency is not indicative
of power loss; it is simply a result of reverse current flow
through the diode capacitance, which lowers the dc output voltage .
10K
5000
25"C-r-TJ
f 1 MHz-r--
_ 3000
--
E. 2000
~
z
1
1000
U
500
300
200
100
0.5
2
10
VR, REVERSE VOLTAGE (VOLTS I
Figure 6. Typical Capacitance
•
• 150 V, 10 mAde
2k!l
VCC
Slf4--
12 V
12 Vde
r
100
2N2222
2/J-s
1 kHz
CURRENT
AMPLITUDE
ADJUST
0-10 AMPS
100
CARBON
1 CARBON
lN5817
Figure 7. Test Circuit for dv/dt and Reverse
Surge Current
3-102
20
30
50
MBR2035CT
MBR2045CT
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL DATA
•
MBR2D45CT Is a
Motorola Preferred Device
SCHOTIKY BARRIER
RECTIFIERS
20 AMPERES
SWITCHMODE POWER RECTIFIERS
35 and 45 VOLTS
... using the Schottky Barrier principle with a platinum barrier metal.
These state-of-the-art devices have the following features:
•
Guardring for Stress Protection
•
Low Forward Voltage
•
150°C Operating Junction Temperature
•
Guaranteed Reverse Avalanche
•
Epoxy Meets UL94, VO at 1/8"
•
CASE 221A·06
TO·220AB
PLASTIC
MAXIMUM RATINGS
Symbol
MBR2035CT
MBR2045CT
Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Rating
VRRM
VRWM
VR
35
45
Volts
Average Rectified Forward Current (Rated VR)
TC= 135°C
IF(AV)
20
20
Amps
Peak Repetitive Forward Current Per Diode Leg
(Rated VR, Square Wave, 20 kHz) TC = 135°C
IFRM
20
20
Amps
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave.
single phase, 60 Hz)
IFSM
150
150
Amps
Peak Repetitive Reverse Surge Current
(2.0 ~s, 1.0 kHz) See Figure 11
IRRM
1.0
1.0
Amps
Operating Junction Temperature
Storage Temperature
T
Tstg
-65 to +150
-65 to +175
-65 to +150
-65 to +175
°c
°c
dv/dt
1000
1000
V/~s
0.57
0.72
0.84
0.57
0.72
0.84
15
0.1
15
0.1
Voltage Rate of Cha nge (Rated VR)
THERMAL CHARACTERISTICS
Maximum Thermal Resistance. Junction to Case
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)
(iF = 10 Amp, TC = 125°C)
(iF = 20 Amp, TC = 125°C)
(iF = 20 Amp, TC = 25°C)
vF
Maximum Instantaneous Reverse Current (1)
(Rated de Voltage, TC = 125°C)
(Rated de Voltage, TC = 25°C)
iR
(1) Pulse Test: Pulse Width:::: 300 lAS, Dutv Cycle ~ 2.0%
3-103
Volts
mA
--
I
MBR2035CT, MBR2045CT
FIGURE 2 -TYPICAL FORWARD VOLTAGE
FIGURE 1 -MAXIMUM FORWARD VOLTAGE
100
100
70
/
50
/
TJ = 150°C
~
I
10
Jr
VI V
30
20
/
10
>-
70
B
50
>-
70
B
50
'/
~
;;:
30
'"
::2
~
I II
5:: 20
;::
'"
'"~
I
/25 0 C
f-
05
7'1
~ 30
'"=>
01
I
III
I
III
I
02
14
== =TJ - 150°C
10
125°C
5-
100°C
i
~
>-
~
75°C
100
:>
70
~
50
u
'"
'"u=>
08
FIGURE 4 - MAXIMUM SURGE CAPABILITY
FIGURE 3 - MAXIMUM REVERSE CURRENT
«
06
0.4
'F. INSTANTANEOUS VOlTAGE (VOlTS)
100
>-
--
'7
r/ /
~
iii I
II
;;;; 1 0
>f07
ffiCt;
/
/.
;jV
in
~
7
/"
~OOCy 1/
~
~
•
TJ=150OC
I.VI
~
1/
50
VI /~5OC
20
:2
70
./
./
/
30
y
'/100 0 C,....... V
~
1--1-
20
10
20
30
40
1.0
50
2.0
3.0
5.0 7.0
10
20
NUMBER OF CYCLES AT 60 Hz
VR. REVERSE VOLTAGE (VOLTS)
3-104
30
5'0
70 100
MBR2035CT, MBR2045CT
FIGURE 5 - CURRENT DERATING. INFINITE HEATSINK
...
;;;
:;
~
....
as
0:
0:
:::>
u
32~--~---r---.r---~---.---.----r---~
"
30
25
""l~.~
Q
'"~
20 -
(CapaCilive load)
0:
~
IpK
I
15
AV
"=5
10
20
5.0
o
120
110
130
ffi
I
I
IpK
I
= " (ReSistive load)
AV I
0:
0:
:::>
u
Q
24r----+--~~~--+_--~r_
20~--~~~~r-4-~~~--+----+----r_--~
0:
I
'"~
:\. Square Wave
~ X\
~
10
<.0
ffi
>
'";;:
~
'"
'"~ 28~---+----+----+----4----;----~----~---1
5-
Rated Voltage Applied
35
0:
~
FIGURE 6 - CURRENT DERATING. ROJA = 16° C/W
40
~
~
<.0
'"ffi
:\'
8.0
~
~ 4.0
~
140
f---+----l----+--...~;__.~~~_+~...r_--~
~
150
160
20
40
TC. CASE TEMPERATURE (OCi
s
~
20
~
18
>=
~
in
~
FIGURE 7 - FORWARD POWER DISSIPATION
5111e
16
14
-
~ave
I~
~
ffi
4.0
I
6.0
~=+~-d----l-~~~
:
4.0
~~*::::+~=-i~~t-----I7x..~
~
TJ=150°C- f - - -
'"
ffi
I
~
2.0 1----1----+----f_
...- Loed)
(C~~
...........
;;:
;
8.0
16
12
20
24
•
Raled Voltage Applied. RaJA =6O"C/W
8.0 f---+---jP" ___+----+----I-----+---+--
.
~
~
0
160
~
B
V
.d ~
0
5.
V/ /
~
/'
11/ § "/
h '//- V
/// ~
;;:
~
:2
Square wave:::
ij/
'20 10 AV /
140
FIGURE 8 - CURRENT DERATING. FREE AIR
Resistive load
ICapaCilive load) jIpK , 5
100
120
60
80
TA. AMBIENT TEMPERATURE (OCI
28
32
20
If(AVI' AVERAGE fORWARO CURRENT lAMPS)
IpK
IAV =20 •
40
80
60
100
120
140
160
TA, AMBIENT TEMPERATURE (OCI
FIGURE 9 - THERMAL RESPONSE
g
::::;
'"
;;;.
'"
u
'"'"
....
:2
0:
~
'"
i1i
'"
~
10
07
0.5
.--
03
0.2
./"
0.1
......
---
Pk
TIME
Duty Cycle, D = Ip/ll
Peak Power, Ppk.IS peak of an
equlvah!nt square power pulse
«"
i!'
"TJl ~ Ppk . R'JlIO '(I - 01 .
+ 'pI + 'flpl - 'filII
where aTJl = the mcrease In Juncllon lemperatureabove the lead temperature
r(1) = normailled value of lranSlent thermal resistance at time, t,
for example, rll, + tp) = normalized value of transient
thermal reSIstance at lime, t 1 + tp.
./"
~ 0.03
~ 0.02
-
f--Il--l
~ 0.07
ffi 0.05
'"eo
J1:j1
'P
I--
,.. I--"
~ 0,010.01
0.1
10
1.0
t. TIME Ims)
3-105
100
1000
MBR2035CT, MBR2045CT
FIGURE 10 - CAPACITANCE
HIGH FREQUENCY OPERATION
1500
Since current flow in a Schottky rectifier is the result of majority
carrier conduction. it IS not subject to junction diode forward and
reverse recovery transients due to minority carrier injection and
1000
stored charge. Satisfactory circuit analysis work may be per-
~
formed by using a model consisting of an ideal diode in parallel
..
....
~
u
z
ti
waveform rectification efficiency is approximately 70 per cent at
"
500
300
~
"l"
200
150
005 01
1"-"
02
05
10
20
50
VR. REVERSE VOLTAGE (VOLTS)
FIGURE 11 - TEST CIRCUIT FOR dv/dt AND
REVERSE SURGE CURRENT
+150V.l0mAdc
2.0 kll
VCC
---I
12 Vdc
140~F
100
I-- 2.0 ~s
1.0kHz
Current
Amphtude
Adjust
0-10Amps
i':t-
Tvplcal
u
Junction diodes. the loss In waveform efficleny IS not Indicative of
power loss; It IS sImply a result of reverse current flow through the
diode capacitance. which lowers the de output voltage
fl2V
MaXimum
u
20 MHz. e.g .. the ratio of dc power to RMS power in the load is
028 at thIs frequency. whereas perfect rectIfication would yield
0.406 for sine wave rnputs. However, in contrast to ordinary
..
700
~
with a varrable capacitance. (See Figure 10.)
Rectification efficiency measurements show that operation will
be satisfactory up to several megahertz. For example. relative
100
Carbon
1.0 Carbon
lN5817
3-106
10
20
50
MOTOROLA
-
SEMICONDUCTOR - - - - - - - - - - - - -
TECHNICAL DATA
Switchmode
Power Rectifiers
· .. using the Schottky Barrier principle with a platinum barrier metal. These state-of-theart devices have the following features:
•
•
•
•
•
•
•
•
•
20 Amps Total (10 Amps Per Diode Leg)
Guard-Ring for Stress Protection
Low Forward Voltage
150°C Operating Junction Temperature
Guaranteed Reverse Avalanche
Epoxy Meets UL94, VO at 1/8"
Low Power LosslHigh Efficiency
High Surge Capacity
Low Stored Charge Majority Carrier Conduction
MBR2060CT
MBR2070CT
MBR2080CT
MBR2090CT
MBR20100CT
MBR2060CT and MBR20100CT
are Motorola Preferred Devices
SCHOTTKY BARRIER
RECTIFIERS
20 AMPERES
60-100 VOLTS
II
I
CASE 221A-06
TO-220AB
PLASTIC
MAXIMUM RATINGS PER DIODE LEG
Rating
Symbol
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
=
MBR
2060CT 2070CT 2080CT 2090CT 20100CT
60
70
80
90
100
Unit
Volts
IFIAV)
10
Amps
IFRM
20
Amps
Nonrepetitive Peak Surge Current
ISurge applied at rated load conditions halfwave, single phase, 60 Hz)
IFSM
150
Amps
Peak Repetitive Reverse Surge Current (2 ILS, 1 kHz)
IRRM
0.5
Amp
TJ
-65 to + 150
Storage Temperature
Tstg
-65 to + 175
'c
'c
Voltage Rate of Change (Rated VR)
dv/dt
1000
ViILS
2
60
°CIW
Average Rectified Forward Current IRated VR) TC
Peak Repetitive Forward Current
IRated VR, Square Wave, 20 kHzl TC
=
133'C
133"C
Operating Junction Temperature
THERMAL CHARACTERISTICS
Maximum Thermal Resistance -
Junction to Case
Junction to Ambient
ELECTRICAL CHARACTERISTICS PER DIODE LEG
Maximum Instantaneous Forward Voltage (1)
(iF = 10 Amp, TC = 125°C)
(iF = 10 Amp, TC = 25°C)
(iF = 20 Amp, TC = 125°C)
(iF = 20 Amp, TC = 25°C)
vF
Maximum Instantaneous Reverse Current (1)
(Rated dc Voltage, TC = 125'C)
(Rated dc Voltage, TC = 25°C)
iR
III Pulse Test: Pulse Width
=
Volts
0.75
0.85
0.85
0.95
rnA
150
0.15
300 p.s. Duty Cycl." 2%.
3-107
MBR2060CT, MBR2070CT, MBR2080CT, MBR2090CT, MBR20100CT
Yl
50
~
a
a:
175'C,
10
.... v
./Y /
c
~
~
'"
2
ht'l00'C=
O~ ~TJ
125'C
f= i=TJ
100'C
F=
/J /
//
z
~
1
z
'"
";L
0.5
25'C- t - -
TJ
3
~
.-
150'C
1
5
~
1= ~TJ
150"C,
~ 20
/
/
'/
1
J
0.01 § §TJ
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7 0.8
VF.INSTANTANEOUS VOLTAGE (VOLTS)
0.9
8
6
•
"- '\.
"-sa"\. "-
"-
4
2
0
WAVE""
8
6
2
0
110
~de
18
~
16
14
~
12
u
~
10
~
8
~
ROJC = 2'CIW
'\
'\.
'\
~
"120
iC
!z
I'\.
4
20
RATEb VOLT~GE_
APPLIED
'\
~
i? 4
"-
130
140
TC. CASE TEMPERATURE ('C)
2
150
o
o
160
6
0
"
SO.WAV~
20
40
IPKIIAV
de
-- --"" "- r"-. ,
-1""'de
60
80
100 120 140
TA. AM81ENT TEMPERATURE ('C)
= 20
= 5, , /
./
PI,
IPKIIAV
IPKIIAV
I'.
-- ~
= 25'C
4
2
""
= 10
/r'Y ~
~ ./
~V
"> //., V
V
Y V .......,.&: ~ V
/': ~ :,....- ~
de
0. ~ V
I' SO. WAVE
~~
~I-- P'"
160
Figure 4. Current Derating. Ambient
0
TA
120
RATEb VOL'fAGE AP~LlE~+-- - - - (HEATSINK) ROJA = 16'CIW
(NO HEATSINK) R8JA = 60 'CIW
""'-
Figure 3. Current Derating. Case
8
40
60
80
100
VR. REVERSE VOLTAGE (VOLTS)
Figure 2. Typical Reverse Current Per Diode
Figure 1. Typical Forward Voltage Per Diode
0
25'C
20
6
8
10
12
14
AVERAGE CURRENT (AMPS)
16
18
Figure 5. Average Power Dissipation and
Average Current
3-108
20
180
200
MOTOROLA
•
MBR2535CT
MBR2545CT
• SEMICONDUCTOR
TECHNICAL DATA
MBR2545CT Is a
Motorola Preferred Device
SCHOTTKY BARRIER
RECTIFIERS
SWITCHMODE POWER RECTIFIERS
... using the Schottky Barrier principle with a platinum barrier metal.
These state-of-the-art devices have the following features:
•
Guardring for Stress Protection
•
Low Forward Voltage
•
150°C Operating Junction Temperature
•
Guaranteed Reverse Avalanche
30 AMPERES
35 and 45 VOLTS
II
TO-220AB
PLASTIC
MAXIMUM RATINGS
Symbol
MBR2535CT
MBR2545CT
Unit
VRRM
VRWM
VR
35
45
Volts
IF(AV)
30
30
Amps
IFRM
30
30
Amps
Nonrepetitive Peak Surge Current per Diode Leg
(Surge applied at rated load conditions hallwave,
single phase, 6C1 Hz)
IFSM
150
150
Amps
Peak Repetitive Reverse Surge Current
IRRM
10
10
Amps
TJ
Tstg
-65 to + 150
-65 to +175
-65 to+ 150
-65 to +175
DC
DC
dv/dt
1000
1000
V/~s
ROJC
1.5
1.5
DC/W
0.73
0.82
073
0.82
40
02
40
0.2
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current (Rated VR)
TC= 130 DC
Peak RepetitIve Forward Current Per DIOde Leg
(Rated VR, Square Wave, 20 kHz) TC = 130 DC
(2 0
~s,
1.0 kHz)
Operating Junction Temperature
Storage Temperature
Voltage Rate at Change (Rated VR)
THERMAL CHARACTERISTICS PER DIODE LEG
MaXimum Thermal ReSistance. Junction to Case
ELECTRICAL CHARACTERISTICS PER DIODE LEG
Maximum Instantaneous Forward Voltage (11
Maximum Instantaneous Reverse Current (1)
'R
(Rated de Voltage, TC = 125 DC)
(Rated de Voltage, TC = 25 DC)
(1, Pulse Test Pulse WIdth
Volts
vF
(iF = 30 Amp, TC = 125°C)
(iF = 30 Amp, TC = 25°C)
=300 j..tS. Duty Cycle ~ 2.0%
3-109
mA
MBR2535CT, MBR2545CT
FIGURE 1 - TYPICAL FORWARD VOLTAGE
FIGURE 2 - TYPICAL REVERSE CURRENT
~
70
~ 50
~
-
!;;
TJ= 125°C,
,/'
100°C
25~C"><"
20
~
.......-: ~
~~
0-
'l
~
S
z
L
II
L
//
z
2.0
;;::
1.0
.$
/
~ 3.0
o
I
1
/I
I
0004
0002
02
0.4
O~
08
VF. INSTANTANEOUS FORWARO VOLTAGE (VOLTS)
75°C
--f---
1.0
-
a
in
ac
~
~
~
..
'"ffi
;;C
'"
24
20
16
12
80
_
Voltag. Applied
ROJC =1.5°C/W
-I
-'- 4 0
}
o
~ated
110
>--
i
\
I'\.
\
\
20
~
16
::;:
~
1\
130
140
TC. CASE TEMPERATURE (OC)
12
~ 8.0
de
.......
.........
Square Wa~
.......
50
r-- r-_ :de- -
'-..
$4.0 r-- 1--
150
--
Square Wav';'"' .....
o
20
40
8.0
12
16
20
24
28
32
IF. AVERAGE FORWARD CURRENT (AMPS)
3-110
"
-- "--- ~
'"
a
Rated VR Apphed
.1
ROJA = 16°C/W
- - (With TO-220 Heat Sink)
___ RaJA = 60 0 C/W
(No Heat Sink)
.........
'-..
"'".. "'-
~ ....
60
80
100
120
TA. AMBIENT TEMPERATURE (OC)
FIGURE 5 - FORWARD POWER DISSIPATION
4.0
40
l
........
24
=>
u
c
a:
.
.'"
'\ \
\ \
1
120
~
\
Square Wave"
j-.
20
30
VR. REVERSE VOLT AGE IVOLTSI
32
"f---h.
::;;
28
~e
~
10
_.- -
FIGURE 4 - CURRENT DERATING. AMBIENT
"-
i
-
25°C
FIGURE 3 - CURRENT DERATING. CASE
28
,--
100°C
004
002
001
32
!'"
150°C
~ i--125°C
04
02
01
~
'" 7.0
5.0
~
a
40
20
10
a:
'"
::;:
t;
a::
lD
a:
a:
s.'l
~ 10
40 f-TJ
20
.§.
~ 30
=>
u
c
-
200
100
in 100
36
40
~
140
160
MOTOROLA
SEMICONDUCTOR------------TECHNICAL DATA
Switch mode
Power Rectifiers
MBR2535CTL
Motorola Preferred Device
· .. employing the Schottky Barrier principle in a large metal-to-silicon power diode.
State-ol-the-art geometry leatures epitaxial construction with oxide passivation and metal
overlay contact. Ideally suited lor use in low voltage, high frequency switching power supplies,
free wheeling diodes, and polarity protection diodes.
•
•
•
•
•
SCHOTTKY BARRIER
RECTIFIERS
25 AMPERES
30 and 35 VOLTS
Very Low Forward Voltage (0.55 V Maximum @ 25 Amps)
Matched Dual Die Construction (12.5 A per Leg or 25 A per Package)
Guardring lor Stress Protection
Highly Stable Oxide Passivated Junction (125°C Operating Junction Temperature)
Epoxy Meets UL94, VO at 1/8"
I
CASE 221A-06
(TO-220AC)
MAXIMUM RATINGS (PER LEG)
Symbol
Value
Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
35
30
30
Volts
Average Rectified Forward Current (Rated VR) TC = 110"C
IF(AV)
12.5
Amps
Peak Repetitive Forward Current, Per Leg
(Rated VR, Square Wave, 20 kHz) TC = 95°C
IFRM
25
Amps
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions, hallwave, single phase, 60 Hz)
IFSM
150
Amps
Peak Repetitive Reverse Surge Current (2.0 !ls, 1.0 kHz)
IRRM
1.0
Amp
TJ
-65 to +125
°C
Storage Temperature
Tstg
-65 to +150
°C
Voltage Rate of Change (Rated VR)
dv/dt
10,000
V/!ls
Waval
20
mJ
Rating
Operating Junction Temperature
Controlled Avalanche Energy
THERMAL CHARACTERISTICS
Thermal Resistance - Junction to Case
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)
(IF = 25 Amps, TJ =25"C)
(IF = 12.5 Amps, TJ =25°C)
(IF = 12.5 Amps, TJ = 125"C)
vF
Maximum Instantaneous Reverse Current (1)
(Rated dc Voltage, TJ = 25°C)
(Rated dc Voltage, TJ = 125°C)
iR
Volts
0.55
0.47
0.41
rnA
5.0
500
(1) Pulse Test: Pulse WIdth = 300 fls, Duty Cycle $2 0%.
3-111
II
MBR2535CTl
50
/'
/
20
a:-
:;
5.
/I
/
TJ=125°C /
~
,.
1000
10
1
TJ = 25°C
Z
I
W
en
::>
0
5
I
I
1/ I
o
TJ = 25°C
I
2
z
~
en
15
20
25
30
35
Figure 2. Typical Reverse Current, Per Leg
I
~
10
VR. REVERSE VOLTAGE (VOLTS)
I
w
II
0.1
I
~
!2
~
TJ = 100°C
I-
a:
a:
::>
u
0
a:
-
TJ = 125°C
'/
.!f
TJ = 125°C
0.5
I
0.2
0.1
SINE WAVE
(RESISTIVE LOADy
I
o
W
I
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
10
~
vI'> INSTANTANEOUS VOLTAGE (VOLTS)
Figure 1. Typical Forward Voltage, Per Leg
5
~V
,.....
10
15
LL
V
/sQUARE
WAVE
/'
~ / ' ~e
./
20
25
30
35
40
IF(AV). AVERAGE FORWARD CURRENT (AMPS)
Figure 3. Forward Power Dissipation, Per Leg
32
20
~
::;
(RATED Vr APPUED)
RaJC = 2.0°CIW
RaJA = 16°CIW
18
-
5. 16
i".....
""" ."SQUA~
!z
~
~
~
a:
!2
w
"'- ~
105
115
TC. CASE TEMPERATURE (0C)
'"
.........................
~ 10
de
~
~~
95
14
aa: 12
SQU~ ~
..........
8
WAVE
6
~
i'-
w
"
125
iii:
~
,g:
Figure 4. Current Derating
~
0
0
25
r"...
50
75
100
TA. AMBIENTTEMPERATURE (OC)
Figure 5. Current Derating Ambient, Per Leg
3-112
125
-
MBR3020CT
MBR3035CT
MBR3045CT
5D241
MOTOROLA
SEMICONDUCTOR
TECHNICAL DATA
•
s
MBR3045CT and 0241 are
Motorola Preferred DevIces
SWITCHMODE POWER RECTIFIERS
SCHOTTKY BARRIER
RECTIFIERS
· .. using the Schottky Barrier principle with a platinum barrier metal.
These state-of-the-art devices have the following features:
30 AMPERES
20 to 45 VOLTS
•
•
•
•
•
Dual Diode Construction
Guardring for Stress Protection
Low Forward Voltage
1500 C Operating Junction Temperature
~
Guaranteed Reverse Avalanche
:r
CASE 11-03
TO-204AA
METAL
MAXIMUM RATINGS
Rating
Symbol
MBR3020CT
MBR3035CT
MBR3045CT
S0241
Unit
VRRM
VRWM
VR
20
35
45
45
VailS
10
30
15
30
15
30
15
30
15
Amps
Peak Repetitive Forward Current. Per Diode
(Raled VR. Square Wave. 20 kHz)
IFRM
30
30
30
30
Amps
Nonrepelilive Peak Surge Currenl
(Surge applied al raled load condilions
hallwave. single phase. 60 Hz)
IFSM
400
400
400
400
Amps
Peak Repetitive Reverse Current. Per Diode
IRRM
2.0
2.0
2.0
2.0
Amps
Peak Repelilive Reverse Vollage
Working Peak Reverse Voltage
DC Blocking Vollage
Average Rectified Forward Current
(Raled VRI TC = 105°C
Per Device
Per Diode
(2.0I's. 1.0 kHz) See Figure 8
Operating Junction Temperature
TJ
-65to+ 150
-6510 + 150
-6510 + 150
-6510 +150
°c
Tslg
-6510+175
-6510 +175
-6510 +175
-6510 +175
°c
Peak Surge Junclion Temperalure
(Forward Currenl Applied)
TJ(pk)
175
175
175
175
°C
Voltage Rale of Change (Raled VR)
dvldl
1000
1000
1000
1000
VII's
-
0.47
0.60
Slorage Temperalure
THERMAL CHARACTERISTICS PER OIOpE
Maximum Thermal Resistance. Junction to Case
ELECTRICAL CHARACTERISTICS PER DIODE
Maximum Insta nta neous Forwa rd Voltage (1)
(iF= 10 Amp. TC= 125°C)
(iF = 20 Amp. TC = t 25°C)
(iF = 30 Amp. TC = 125°C)
(iF = 30 Amp. TC = 25°C)
vF
Maximum Instantaneous Reverse Currenl(l)
(Rated dc Voltage. TC = 125°C)
(Rated dc Voltage. TC = 25°C)
iR
Capacitance
C,
(1) Pulse Test: Pulse Width
Volts
-
-
0.60
0.72
0.76
0.60
0.72
0.76
0.60
0.72
0.76
60
1.0
60
1.0
60
1.0
100
VR = 35 V
2000
2000
2000
2000
mA
=300 "'s, Duty Cycle :e;;: 2.0%
3-113
pF
II
MBR3020CT, MBR3035CT, MBR3045CT, 50241
FIGURE 1 -
FIGURE 2 -
TYPICAL FORWARD VOLTAGE
TYPICAL REVERSE CURRENT
100
70
50
20
0.1
10
40
50
J
3.0
/
I
2.0
S
FIGURE 3 - MAXIMUM SURGE CAPABILITY
25°C
500
in
":;
S. 300
1.0
;0;
1"- i',
!5
.!f. 0.7
0:
~ 200
TJ ; 125°C. VRRM may
be applied between each
~
,~
u
0.5
w
".
~
0.3
,..~
0.2
O. 1
-
20
30
VR. REVERSE VOLTAGE (VOLTS)
~"
~
:;;
~
.$
I II
5.0
Q
;
f--
'"
ffi
0.0 1
U
II
f-"
I
f5
~
-
75°C
25 c C
~
~
10
w
~
10
- -
100°C
a
VI
... 7.0
~
~
a:
V
125°C
10
...
/V
TJ; 150°C;
:::I
TJ; 150°C
«
.§.
1/ V
30
~
100
/
cvcle of surge
...........
100
;;'i
"• 70
o
~
I
0.2
0.4
0.6
0.8
1.0
1.2
vF. INSTANTANEOUS FORWARD VOLTAGE IVOLTS)
50
1.0
1.4
FIGURE 4 - CURRENT DERATING
2.0
3.0
5.0 7.0 10
20
30
NUMBER OF CYCLES AT 60 Hz
50 70 100
FIGURE 5 - FORWARD POWER DISSIPATION
.
in
f!-;
" "\ K\
'"
I - - (Capacitive Load) :PK ;
tv
'"
CJ
~ 30
l
1
isa:
. / Square Wave
~ 20
CJ
Q
a:
de
~ 10
~
2{ 1/.~ ~ ~
1
I
I
100
120
TC. CASE TEMPERATURE (OC)
I
.
.
.
"-
~ ~\
80
Sine Wave -+---1
Resistive Load
"u;
..... ~'< \
..,..
~
(Resistive Load)
AV;
"
1= 40
I
IT
.......
w
'"
~
140
160
~
,;
~
"-
3-114
10
20
30
IFIAV). AVERAGE FORWARD CURRENT (AMPSI
40
MBR3020CT, MBR3035CT, MBR3045CT, 50241
FIGURE 6 - THERMAL RESPONSE PER DIODE LEG
ffi
~
1.0
0.7
:;
~
;!;.
0.5
_io"
0.3
0.2
0.1
TJl =Ppk' ReJllD + 11- 01' '111 +Ipl +,(Ipl- ,(tllJ
where ..lTJl = the mcrease in junction temperature above the lead temperature
r It) =normalized value of transient thermal resistance at time, t,
tor example, rlt, + tp) = normalized value of transient
thermal resistance at time, t 1 + tp.
.,,"../
10
1.0
0.1
100
1000
I. TIME (ms)
FIGURE 7 - CAPACITANCE
HIGH FREQUENCY OPERATION
Since current flowin a Schottky rectifier is the result of majority
carrier conduction. it is not subject to junction diode forward and
reverse recovery transients due to minority carrier injection and
stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel
with a variable capacitance. (See Figure 7.J
Rectification efficiency measurements show that operation will
be satisfactory up to several megahertz. For example, relative
waveform rectification efficiency is approximately 70 per cent at
2.0 MHz, e.g., the ratio of de power to RMS power in the load is
0.28 at this frequency, whereas perfect rectification would yield
0.406 for sine wave inputs. However, in contrast to ordinary
junction diodes. the loss in waveform efficieny is not indicative of
power loss; it is simply a result of reverse current flow through the
diode capacitance, which lowers the de output voltage.
II
3000
2000
r:.....
I
I'---
Q.
W
U
g..:z 1000
900
.....: 800
700
u
u
600
500
400
300
.05
f'."
"\
!'\
0.1
0.2
0.5
1.0
2.0
5.0
VR, REVERSE VOLTAGE (VOLTSJ
FIGURE 8 - TEST CIRCUIT FOR REPETITIVE
REVERSE CURRENT
+150V, 10 mAde
2.0kll
Vcc
n
--I
2V
100
12Vdc
2N2222
I-- 2.01's
1.0 kHz
Current
Amplitude
Adjust
0-10 Amps
100 II
Carbon
3-115
1
4 .O I'F
10
20
50
MBR3020CT, MBR3035CT, MBR3045CT, 50241
FIGURE 9 -
SCHOTTKY RECTIFIER
Aluminum
Lead
Guard
Ring
Moly Disk
Glass Seal
Steel Base (Cathode)
...- - - Copper Core Steel Pi ns
View A-A
II
Motorola bUilds qualify and reliability into its Schottky Rectifiers.
First is the chip. which has an mterface metal between the
platinum-barrier metal and nickel-gold ohmic-contact metal to
eliminate any possible Interaction with the barrier. The Indicated
guardring preventsdv/dt problems. so snubbers are not required.
The guardnng also operates /Ike a zener to absorb over-voltage
provides stress relief. These two features gIve the unit the capability of passing stringent thermal fatigue tests for 5,000
cycles. Copper-core steel pinS match the expansIOn coeff,Cient of
the glass and are long enough (0.440 In. min.) to reach through a
heat sink to a printed circuit board.
Third is the redundant electrical testmg. The deVice IS tested
before assembly in "sandwich" form, with the chip between the
moly disks. It IS tested again after assembly. As part of the fmal
electrical test, deVices are 100% tested for dv 'dt at 1,600 V' MS
and reverse avalanche.
transients.
Second IS the package. There are molybdenum disks which
closely match the thermal coefficient of expa nsian of silicon on
each side of the chip. The pm-la-chip aluminum leadwlre
MECHANICAL CHARACTERISTICS
CASE: Welded, hermetically sealed.
FINISH: All external surfaces corrosion resistant and terminal lead is readily solderable.
POLARITY: Cathode to Case.
MOUNTING POSITION: Any.
3-116
MOTOROLA
-
MBR3035PT
MBR3045PT
SEMICONDUCTOR
TECHNICAL DATA
•
MBR3045PT Is a
Motorola Preferred Device
SCHOTTKY BARRIER
RECTIFIERS
SWITCHMODE POWER RECTIFIERS
· .. using the Schottky Barrier principle with a platinum barrier metal.
These state-of-the-art devices have the following features:
30 AMPERES
35 to 45 VOLTS
• Dual Diode Construction - Terminals 1 and 3 May Be Connected
For Parallel Operation At Full Rating
• Guardring For Stress Protection
•
Low Forward Voltage
•
150°C Operating Junction Temperature
• Guaranteed Reverse Avalanche
CASE 3400-01
TO-218AC
RATINGS
Symbol
Maximum
VRRM
VRWM
VR
35
45
Average Rectified Forward Current Per Device
Per Diode
(Rated VR) TC = 105°C
IF(AVI
30
t5
Amps
Peak Repetitive Forward Current. Per Diode
(Rated VR. Square Wave. 20 kHz)
IFRM
30
Amps
Nonrepetitive Peak Surge Current
(Surge Applied at rated load conditions
halfwave. single phase. 60 Hz)
IFSM
200
Amps
Peak Repetitive Reverse Current, Per Diode
(2.0 J.ls. 1.0 kHz) See Figure 6
IRRM
2.0
Amps
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
MBR3035PT
MBR3045PT
Unit
Volts
TJ
-65 to +150
°c
Tsta
-65 to +175
°c
Peak Surge Junction Temperature
(Forward Current Applied)
TJ(pk)
175
°c
Voltage Rate of Change (Rated VR)
dv/dt
1000
V/J.lS
Operating Junction Temperature
Storage Temperature
THERMAL CHARACTERISTICS PER
Thermal Resistance. Junction to Case
Thermal Resistance, Junction to Ambient
ELECTRICAL CHARACTERISTICS PER
Instantaneous Forward Voltage (1)
(IF = 20 Amp. TC = 125°C)
(iF = 30 Amp. TC = 125°C)
(IF = 30 Amp. TC = 25°C)
vF
Instantaneous Reverse Current (1)
(Rated de Voltage. TC = 125°C)
(Rated de Voltage. TC = 25°C)
iR
(1) Pulse Test Pulse Width:: 300 fJS. Duty Cycle
Volts
0.60
0.72
0.76
mA
100
1.0
<...
20%
3-117
II
MBR3035PT, MBR3045PT
FIGURE 2 - TYPICAL REVERSE CURRENT
FIGURE 1 - TYPICAL FORWARD VOLTAGE
Vi
100
~
SO
30
20
a..
100
r-
1/
10
5.0
3.0 TJ = 150°C,
2.0
:::;:;P'
125°C
L---
loooe
_r-
75°C
SoC
10
1
0.5
0.3
0.2
=
25°C
DO 1
O. 1
0.2
0.4
06
08
1.0
1.2
vf, INSTANTANEOUS FORWARD VOLTAGE IVOLTS)
1.4
10
II
IpK
I
~
-
1T
(ReSIstive load)
AV/
I
~
~
a
/Square Wave
'"
~ 10~---+--~~~-4~~~~£-+-~~----4---~
~
c
~ ~'
'"
i 50~--~~~J£~~~~~----+----+----~--~
de
1'7'- ~ ~
-
.
IPK'!
ICapa"t,Ye Load) 1= 20, 10, 5
tV
I
I
I
80
100
120
TC. CASE TEMPERATURE 1°C)
~
'"
ffi
::c
~
I
140
160
S
2000
-.....
~ :~~
~ 700
u 600
500
400
300
.05
0.1
0.2
Vee
0.5
1.0
2,0
5.0
VR, REVERSE VOLTAGE (VOLTS)
40
FIGURE 6 - TEST CIRCUIT FOR REPETITIVE
REVERSE CURRENT
....
'"
1000
10
20
3D
IfIAV), AVERAGE fORWARD CURRENT lAMPS)
~
FIGURE 5 - CAPACITANCE
3000
50
SlOe WIve -+----1
Resistive load
c
I
40
20
z
"r-... K
......... '\ \
.""- >< \
~
20
3D
VR, REVERSE VOLTAGE IVOLTS)
FIGURE 4 - FORWARD POWER DISSIPATION
PER LEG
FIGURE 3 - CURRENT DERATING PER LEG
~
-
1== f:::=TJ = 150°C
//
n
--I
2V
lOa
f.- 20.,
12Vde
1
4o
10kHz
'" "
10
20
Current
Amplitude
AdJust
Q-l0Amps
~
1 OCarbon
50
3-118
lN5817
.'
-
MOTOROLA
SEMICONDUCTOR
TECHNICAL DATA
MBR3035WT
MBR3045WT
Switchmode
Power Rectifiers
MBR3045WT Is a
Motorola Preferred Device
· .. using the Schottky Barrier principle with a platinum barrier metal. These state-of-theart devices have the following features:
• Dual Diode Construction - Terminals 1 and 3 May Be Connected For Parallel
Operation At Full Rating
SCHOTTKY BARRIER
RECTIFIERS
30 AMPERES
35-45 VOLTS
• Guardring For Stress Protection
• Low Forward Voltage
• 150°C Operating Junction Temperature
• Guaranteed Reverse Avalanche
• Popular TO-247 Package
TO·247AC
MAXIMUM RATINGS
Symbol
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current
(Rated VRI TC = 105°C
MBR
3035WT 3045WT
VRRM
VRWM
VR
Per Device
Per Diode
35
45
Unit
Volts
IF(AV)
30
15
Amps
Peak Repetitive Forward Current. Per Diode
(Rated VR. Square Wave. 20 kHz)
IFRM
30
Amps
Nonrepetitive Peak Surge Current
(Surge Applied at rated load conditions
halfwave. single phase. 60 Hz)
IFSM
200
Amps
Peak Repetitive Reverse Current. Per Diode
(2.0 p.s. 1.0 kHz) See Figure 6
IRRM
2.0
Amps
Operating Junction Temperature
TJ
-65to +150
°c
Tstg
-65 to + 175
°c
Peak Surge Junction Temperature
(Forward Current Applied)
TJ(pk)
175
°c
Voltage Rate of Change (Rated VR)
dv/dt
10
Vlns
Storage Temperature
THERMAL CHARACTERISTICS (Per Diode)
Thermal Resistance - Junction to Case
- Junction to Ambient
1.4
40
ELECTRICAL CHARACTERISTICS (Per Diode)
Instantaneous Forward Voltage (1)
(iF = 20 Amp. TC = 125°C)
(iF = 30 Amp. TC = 125°C)
(iF = 30 Amp. TC = 25°C)
vF
Instantaneous Reverse Current (1)
(Rated de Voltage. TC = 125°C)
(Rated de Voltage. TC = 25°C)
iR
111 Pulse Test: Pulse W,dth
Volts
0.6
0.72
0.76
rnA
100
1.0
= 300 I's. Duty Cycle" 2.0%.
Switchmode is a trademark of Motorola Inc.
3-119
II
MBR3035WT, MBR3045WT
~
100
~
!Z
50
30
20
iii
a
100
./ ./
!il
;;:
S
V
10
t-
l!iO"C
125'C
10
ii'i
r:c
~
TJ
f2
r:c
100'C
U
75'C
~
150'C"
25'C
~
w
i-"""
--
- -
.....-
~
en
r:c
a:;
zz~
0.5
0.3
~
~
-
r:c 0.1
Ji;
0.2
.!:? 0.1
o
0.2
0.4
O.B
0.8
1
1.2
VF. INSTANTANEOUS FORWARD VOLTAGE (VOLTSI
~
5
ztw
1.4
20
30
VR. REVERSE VOLTAGE (VOLTSI
40
50
10
20
30
IF(AVI. AVERAGE FORWARD CURRENT (AMPSI
40
Figure 2. Typical Reverse Current
:PK ;
AV /
15
7r
"I\.."\ X\
./ SOUARE WAVE
.........
~ 10
f2
(RESISTIVE LOADI
I
I
."< \
r:c
.........
w
.,.... N- ~\
~
r:c
w
::;:
~
if'
10
20
:;
r:c
r:c
~
u
c
r:c
....-
25'C
0.01
Figure 1. Typical Forward Voltage
II
i-"""
== ==TJ
-
o
(CAPACITIVE LOADI :PK ; ; : 10:7'
Jl
60
I
80
jV
I
de
~
~
.......
~
I
100
120
TC. CASE TEMPERATURE ('CI
160
140
Figure 3. Current Derating (Per Legl
Figure 4. Forward Power Dissipation (Per Legl
3000
2000
..............
VCC 12 Vde
.....
~
"'-
w
U
z
1000
900
800
700
«
u
t5 600
500
~
n2V
--t I--
2JLs
1kHz
CURRENT
AMPLITUDE
ADJUST
CARBON
0--10AMPS =
I'..
"-
400
'1\
300
0.05
100
0.1
0.2
0.5
1
2
5
10
VR. REVERSE VOLTAGE (VOLTSI
20
50
Figure 5. CaDacitance
r'imM'
an
t'"' i'"
~N6277
':'
1CARBON
lN5817
Figure 6. Test Circuit For Repetitive Reverse Current
3-120
MBR3520
MBR3535
MBR3545, H, H1
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL DATA
•
MBR35451sa
Motorola Preferred Device
SCHOTTKY BARRIER
RECTIFIERS
SWITCHMODE POWER RECTIFIERS
35 AMPERES
20 to 45 VOLTS
· .. using a platinum barrier metal in a large area metal-to-silicon
power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited
for use as rectifiers in low-voltage, high-frequency inverters, freewheeling diodes, and polarity-protection diodes.
• Guardring for dv/dt Stress Protection
• Guaranteed Reverse Surge Current/Avalanche
• 150'C Operating Junction Temperature
• Mounling Torque: 15 in-Ib max
CASE 56-03
DO-203AA
METAL
11
MAXIMUM RATINGS
Rating
Peak RepetitIve Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Peak Repetitive Forward Current
~
~s,
MBR3545, H. H1*
Unit
35
45
Volts
IRRM
•
•
•
IFSM
•
TJ
•
IF(AVj
, 10"C)
Peak Repetitive Reverse Surge Current
(2.0
MBR3535
20
, 'O"C)
Average Rectified Forward Current
~
MBR3520
VRRM
VRWM
VR
IFRM
(Rated VR, Square Wave, 20 kHz, TC
(Rated VR, TC
Symbol
1.0 kHz) See Figure 8
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions
•
70
2.0
•
.
600
.
35
Amps
Amps
Amps
Amps
hallwave, single phase, 60 Hz)
Operating Junction Temperature
Tstg
Storage Temperature
Voltage Rate of Change
(Rated VR)
dv/dt
•
.
65to+ 150
•
•
..
65to+175
1000
°c
°c
V/~s
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction-to-Case
Typ
Max
1.3
1.5
Typ
Max
ELECTRICAL CHARACTERISTICS PER DIODE
Characteristic
Symbol
Instantaneous Forward Voltage (1 )
(iF' 35 Amp, TC' 125°C)
(iF' 35 Amp, TC' 25°C)
(iF' 70 Amp, TC' 125°C)
vF
Instantaneous Reverse Current (1)
iR
(Rated Voltage, TC' 125°C)
(Rated Voltage, TC' 25°C)
Capacitance (VR' 1.0 Vdc, 100 kHz> I> 1.0 MHz, TC' 25°C)
Ct
*H and Hl devices include extra testing. See Figure 10.
(1) Pulse Test: Pulse Width = 300
DUIV Cycle = 2.0%
"'S.
3-121
Unit
Volts
0.49
0.55
0.60
0.55
0.63
0.69
60
0.1
100
0.3
3000
3700
rnA
pF
MBR3520, MBR3535,MBR3545, H, H1
FIGURE 2 - MAXIMUM REVERSE CURRENT
FIGURE 1 -MAXIMUM FORWARD VOLTAGE
200
V
j
I
t= TJ = 150°C
100
TJ = 150°C
20
100°C
10
=>
75°C
u
)
~
'"
0:
~
JJ
1.0
.$ 0.1
I
J
10
0.01 0
25°C
10
II
II
~ 50
=>
I
FIGURE 3 - MAXIMUM SURGE CAPABILITY
I
I
3.0
600
...::;;
;;;
20
400
~
....
if
15
a:
~
~
~
o
0.2
0.4
0.6
0.8
1.0
1.2
vF. INSTANTANEOUS FORWARD VOLTAGE (VOLTS)
1.4
=>
,~
CI
0
ICapacitive Load)
~
'"~
;;;;
3.0
5.0 7.0 10
20
NUMBER OF CYCLES
30
50
70 100
Jc
) ~ ~\
0:
~
2.0
~'\~. = ,,= Square Wave
,,~ ' \ : ,~V -(Resistive Load)
0
u
~
80
60
1.0
VR @ Rated Voltage
....~
a:
100
FIGURE 5 - POWER DISSIPATION
FIGURE 4 - CURRENT DERATING
40
Rated Load
1= 60 Hz
r\
I" 't-..
'"
...'":i;
0.3
15
a:
200
~
=>
05
...
\
=>
'-'
0.7
0.2
1\
a:
1.0
;;;
::;;
50
7.0
0:
'"ffi
""""....
""....""
~
'"
40
20
30
VR. REVERSE VOLTAGE (VOLTS)
CI
""~
=
25°C
II II
15
0:
0:
-
125°C
a:
II II
30
=>
15
0:
1/
;;;
u
<"
.§.
II
50
0:
/
....
70
!:li
~
....
I--I---
V
II
100
1000
~I/V"
~ ~\
IAV = 20. 10. 5
"'" ~"
~
0
j
0
60
80
100
120
Te. CASE TEMPERATURE (OCI
~
"
140
160
10
20
30
IF(AV). AVERAGE FORWARD CURRENT (AMPS)
3-122
40
MBR3520, MBR3535, MBR3545, H, H1
FIGURE 6 - THERMAL RESPONSE
~
1. 0
'"o~
o.7
O. 5
~
~
ZOJC(I) = ROC' 'It)
o. 3
,.u o. 2
i3!
~
....... ~
en
ill
a:
~
.1
'"~
on
,.
'"e:
-
0.0 3
0.0 2
0.0 II-""
0.01
1I l J
Pk
Ip
~ 0.0 7
ffi 0.0 5
I-
JLj1
f-""
-
-
11
-
TIME
Duty Cycle, 0 = tplTI
Peak Powe" Ppk, is peak of an
equivalent square power pulse.
L'>TJC = Ppk' ROJC [0 + 11 0) . '(II + tp) + ,(Ip) - ,(II)]
where
L\ TJC = the increase in junction temperature above the case temperature
rjt) = normalized value of transient thermal resistance at time. 1. from Figure 6. i.e.:
rill + tp) = normalized value of transient thermal resistance at time. 11 + tpo
i.---~
0.1
1.0
10
100
1000
t, TIME (ms)
FIGURE 7 - CAPACITANCE
HIGH FREQUENCY OPERATION
Since current flow in a Schottky rectifier is the result of majority
carrier conduction, it is not subject to junction diode forward and
reverse recovery transients due to minority carrier injection and
stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel
with a variable capacitance. (See Figure 7.)
Rectification efficiency measurements show that operation will
be satisfactory up to several megahertz. For example, relative
waveform rectification efficiency is approximately 70 per cent at
2.0 MHz, e.g., the ratio of de power to RMS power in the load is
0.28 at this frequency, whereas perfect rectification would Yield
0.406 for sine wave inputs. However. in contrast to ordinary
junction diodes, the loss in waveform efficiency is not indicative
of power loss; it is simply a result of reverse current flow through
the diode capacitance, which lowers the de output voltage.
IIII
5000
b., ~ax
........., .......
~ 3000
TY;" t"--
~
u
~ 2000
13
;:.':
I"1000
:--........ ........
~
1.0
FIGURE 8 - TEST CIRCUIT FOR dv/dt
ANa REVERSE SURGE CURRENT
n
--1
--l
~2V
L:
I--
12Vdc
100
2N2222
2.0,"s
1.0kHz
Current
Amplitude
Adjust
0-10 Amps
........
700
.05
n
100
Carbon
3-123
I
Lo M~Z-I-
, I'r-.
ct
u
U
2.0
3.0
5.0 7.0
10
VR, REVERSE VOLTAGE (VOLTS)
VCC
I I
)IJO)JHZ;;;');;;'
20
r-...
30
...... r-..
50
MBR3520, MBR3535, MBR3545, H, H1
FIGURE 9 - SCHOTTKY RECTIFIER
Copper Lead
Barrier Metal
Steel
,.l:i~~~~~~~-1---- Oxide Passivation
VIEW A-A
Copper Base
Moly Disk
Guardring
II
Motorola builds quality and reliability into its SChottky Rectifiers.
First is the chip, which has an interface metal between the
platinum-barrier metal and nickel-gold ohmic-contact metal to
eliminate any possible interaction with the barrier. The indicated
guardring prevents dvldt problems, so snubbers are not mandatory. The guardring also operates like a zener to absorb overvoltage transients.
Second is the package. There are molybdenum disks which
closely match the thermal coefficient of expansion of silicon on
each side of the chip. The top copper lead is also stress-reliefed
to prevent damage during assembly. These two features give the
PROOUCTION PROCESS:
1. Raw Material
2. Factory Processing
-
unit the capability of passing powered thermal fatigue tests for
5,000 cycles. The top copper lead provides a low resistance to
current and therefore does not contribute to device heating; a
heat sink should be used when attaching wires.
Third is the redundant electrical testing. The device is tested
before assembly in "sandwich" form, with the chip between the
moly disks. It is tested again after assembly. As part of the final
electrical test, devices are 100% tested for dvldt at 1,600 VII'S
and reverse avalanche. Devices are also 100% reverse scope
tested for trace anomalies.
FIGURE 10- HI-REL PROGRAM OPTIONS
INSPECTION LOT FORMATION
AFTER FINAL ASSEMBLY
OPE.RATION ISEALlNG)
1.
2.
3.
4.
•
High Temperature Storage
Temperature Cycling
Constant Acceleration
Hermetic Seal (Fine and Gross)
'00% Group A Test
•
INSPECTION TESTS
TO VERIFY LTPO:
Group A
j-.
1.
2.
3.
4.
5.
Group B
I
ature cycling, constant acceleration and hermetic seal testing
prior to a sample being submitted to Group A and B inspection.
After completion of Group B inspection, the MBR3545H is available without additional screening. MBR3545H1 devices are
further processed through a high temperature reverse bias
(HTRBI and forward burn-in. Consult factory for details.
I
_f
l
PREPARATION
FOR
DELIVERY
The MBR3545 is also available with two levels of extra testing
similar to "TX" screening and includ;~g Group Aand B inspection
programs. Both the MBR3545H and MBR3545H1 go through
100% screening consisting of high temperature storage, temper-
100% PROCESS CONOITIONING
MBR3545H HOLDING AREA:
(Sample Tests)
I
VIEW A-A
~
•
REVIEW OF
GROUPS A & B DATA
FOR ACCEPT OR REJECT
Accept
Data
I
~
•
100% POWER CONDITIONING
Electrical Test
HTRB (160 Hr. M;n)
Electrical Test (PDA "" 10)
DC Forward Burn·ln (24 Hrs Min)
Electrical Test (PDA "" 10)
•
Ho~~7~~4!~~A: I
100% Group A TestJ
Accept
Data
3-124
I
I
PREPARATION
FOR
DELIVERY
MOTOROLA
SEMICONDUCTOR------------TECHNICAL DATA
SWITCH MODE
Power Rectifier
MBR4045PT
The SWITCHMODE power rectifier employs the use of the Schottky Barrier principle with
a Platinum barrier metal. This state-of-the-art device has the following features:
• Dual Diode Construction - Terminals 1 and 3 may be connected for Parallel
Operation at Full Rating
• 45 Volt Blocking Voltage
• Low Forward Voltage Drop
• Guardring for Stress Protection and High dv/dt Capability (> 10 V/ns)
• Guaranteed Reverse Avalanche
• 150°C Operating Junction Temperature
SCHOTTKY BARRIER
RECTIFIER
40 AMPERES
45 VOLTS
CASE 340D-Ol
T0-218 Atlas
MAXIMUM RATINGS, PER LEG
Symbol
Max
Unit
VRRM
VRWM
VR
45
Volt
IF(AV)
20
40
Amp
Peak Repetitive Forward Current, Per Diode
(Rated VR, Square Wave, 20 kHz) @ TC 90'C
IFRM
40
Amp
Non-repetitive Peak Surge Current
(Surge applied at rated load conditions hallwave, single phase, 60 Hz)
IFSM
400
Amp
Peak Repetitive Reverse Current (2.0 fls, 1.0 kHz)
IRRM
2.0
Amp
TJ
-65 to +150
°c
Tsta
-65 to +175
'c
TJ(pk)
175
'C
dv/dt
10,000
V/flS
RaJC
1.4
'CIW
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current (Rated VR)
@ TC
125°C
=
Total Device
=
Operating Junction Temperature
Storage Temperature
Peak Surge Junction Temperature (Forward Current Applied)
Voltage Rate of Change
THERMAL CHARACTERISTICS, PER LEG
I Thermal Resistance, Junction to Case
ELECTRICAL CHARACTERISTICS, PER LEG
Instantaneous Forward Voltage (1)
(iF 20 Amps, TC 25'C)
(iF 20 Amps, TC 125'C)
(iF 40 Amps, T C 25'C)
(iF 40 Amps, TC 125'C)
vF
Instantaneous Reverse Current (1)
(Rated DC Voltage, TC 25°C)
(Rated DC Voltage, TC 100°C)
iR
=
=
=
=
=
=
=
=
Volts
0.70
0.60
0.80
0.75
=
=
rnA
1.0
50
(1) Pulse Test: Pulse WIdth::: 300 /ls, Duty Cycle S2.0%.
3-125
II
MBR4045PT
100
~
..... ~
/'
~
Te=150oe
v
ia
'7/
300
a:
400
500
IE
600
700
0.1
0.01 0
800
--
10
vf, INSTANTANEOUS FORWARD VOLTAGE (mV)
Figure 1. Typical Forward Voltage
II
i
~
a
~
w
o
a:
r-I'--
~
20
15
w
10
i1E
5
~
i:i:'
10
VR. REVERSE VOLTAGE (VOLTS)
40
50
25
i
~
cS
1
20
30
VR. REVERSE VOLTAGE (VOLTS)
30
l~"
SQUAREW~~
~
o
100
Te = 25°e
Figure 2. Typical Reverse Current
10000
~
G 1000
I
Te= 1000 e
i
,
/ /
h.
Te=~oooe/ Te=25°e
200
I
10
§.
/
/
Te = lsooe
<"
iiii"'"
100
Figure 3. Typical Capacitance Per Leg
~R=45V)~
110
De
~
1\\
120
130
140
Te. eASE TEMPERATURE (0C)
150
Figure 4. Current Derating Per Leg
3-126
160
MOTOROLA
SEMiCONDUCTOR . . . . . . . . . . . . . . . . . . . . . . . ....
TECHNICAL DATA
SWITCH MODE
Schottky Power Rectifier
MBR4045WT
Motorola Preferred Device
The SWITCHMODE power rectifier employs the use of the Schottky Barrier principle with
a Platinum barrier metal. This state-of-the-art device has the following features:
• Dual Diode Construction Operation at Full Rating
Terminals 1 and 3 may be connected for Parallel
SCHOTTKY BARRIER
RECTIFIER
40 AMPERES
45 VOLTS
• 45 Volt Blocking Voltage
• Low Forward Voltage Drop
• Guardring for Stress Protection and High dv/dt Capability (> 10 V/ns)
• Guaranteed Reverse Avalanche
• 150°C Operating Junction Temperature
CASE 340F-03
TO-247
MAXIMUM RATINGS, PER LEG
Symbol
Max
Unit
VRRM
VRWM
VR
45
Volt
IF(AV)
20
40
Amp
Peak Repetitive Forward Current, Per Diode
(Rated VR, Square Wave, 20 kHz) @ TC = 90°C
IFRM
40
Amp
Non-repetitive Peak Surge Current
(Surge applied at rated load conditions hallwave, single phase, 60 Hz)
IFSM
400
Amp
Peak Repetitive Reverse Current (2.0 j.ls, 1.0 kHz)
IRRM
2.0
Amp
TJ
-65 to +150
°c
Tsta
-65 to +175
°C
TJ(pk)
175
°C
dv/dt
10,000
Vlj.ls
RSJC
1.4
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current (Rated VR)
@TC=125°C
Total Device
Operating Junction Temperature
Storage Temperature
Peak Surge Junction Temperature (Forward Current Applied)
Voltage Rate of Change
THERMAL CHARACTERISTICS, PER LEG
I Thermal Resistance, Junction to Case
ELECTRICAL CHARACTERISTICS, PER LEG
Instantaneous Forward Voltage (1)
(iF = 20 Amps, TC = 25°C)
(iF = 20 Amps, TC = 125°C)
(iF = 40 Amps, TC = 25°C)
(iF = 40 Amps, TC = 125°C)
vF
Instantaneous Reverse Current (1)
(Rated DC Voltage, TC = 25°C)
(Rated DC Voltage, TC = 100°C)
iR
Volts
0.70
0.60
0.80
0.75
mA
1.0
50
(1) Pulse Test: Pulse Width = 300 ~S, Duty Cycle ~ 2.0%.
Preferred deVices are Motorola recommended choices for future use and best overall value.
3-127
II
MBR4045WT
100
/.
/
a:
J
~
~!E
h.
J TC=~OOOC/
TC= 100°C
G
;
/
300
400
500
600
700
vr; INSTANTANEOUS FORWARD VOLTAGE (mV)
0.01 0
800
Figure 1. Typical Forward Voltage
I
,I
0.1
TC = 25°C
-
TC=25°C
200
II
II
10
~
~
/. ~
1= TC=~50°C
TC= 150°C
<
§.
......:: .....
10
I
20
30
VR. REVERSE VOLTAGE (VOLTS)
40
50
Figure 2. Typical Reverse Current
10000
en
30
ffi
25
i
a:
a
c
~
-~
20
i'.."
15
SQUAREW~'~
~
w
~
10
~R=45V)~
w
~
100
~
;r
1
10
VR. REVERSE VOLTAGE (VOLTS)
100
Figure 3. Typical Capacitance Per Leg
5
110
DC
I\.
~'\
120
130
140
TC. CASE TEMPERATURE (OC)
150
Figure 4. Current Derating Per Leg
3-128
160
MOTOROLA
SEMICONDUCTOR------------_
TECHNICAL DATA
SWITCHMODE
Power Rectifier
MBR5025L
Motorola Preferred Device
The SWITCHMODE power rectifier employs the use of the Schottky Barrier principle with
a Platinum barrier metal. This state-of-the-art device has the following features:
SCHOTTKY BARRIER
RECTIFIER
LOWVF
50 AMPERES
25 VOLTS
•
•
•
•
•
Very Low Forward Voltage Drop (Max 0.58 V @ 100°C)
Guardring for Stress Protection and High dv/dt Capability (10 V/ns)
Guaranteed Reverse Avalanche
150°C Operating Junction Temperature
SpeCially Designed for SWITCHMODE Power Supplies with Operating
Frequency up to 300 kHz
• High Quality TO-218 ATLAS Single Plastic Package
CASE 340E-Ol
SINGLE TO-218 Atlas
MAXIMUM RATINGS
Rating
Symbol
Max
Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
25
Volts
Average Rectified Forward Current (Rated VR)
TC 125°C
IF(AV)
50
Amps
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz) TC
IFRM
150
Amps
Non-repetitive Peak Surge Current
(Surge applied at rated load conditions hallwave, single phase, 60 Hz)
IFSM
300
Amps
Peak Repetitive Reverse Current (2.0 I1S, 1.0 kHz)
IRRM
2.0
Amps
TJ
-65 to +150
°C
Tstg
-65 to +175
°c
=
=90°C
Operating Junction Temperature
Storage Temperature
Peak Surge Junction Temperature (Forward Current Applied)
Voltage Rate of Change
TJ(Dkl
175
°C
dv/dt
10,000
ViI1S
ROJC
0.75
°CIW
THERMAL CHARACTERISTICS
I Thermal Resistance, Junction to Case
ELECTRICAL CHARACTERISTICS
Instantaneous Forward Voltage (1)
(iF 50 Amps, TC 25°C)
(iF 50 Amps, TC 100°C)
(iF 30 Amps, TC 25°C)
vF
Instantaneous Reverse Current (1)
(Rated DC Voltage, TC 25°C)
(Rated DC Voltage, TC 100°C)
iR
=
=
=
=
=
=
Volts
0.62
0.58
0.54
=
=
rnA
0.5
60
(1) Pulse Test: PulseWtdth = 300 !ls, Duty Cycles2.0%.
Preferred deVIces are Motorola recommended choices for future use and best overall value.
3-129
II
MBR5025L
1000
~
V
/r/
/
iii
a::
!E-
I
0.6
Figure 1. Typical Forward Voltage
-
25°C
0.1
0.01 0
""""DC
'"
.......
10
20
30
VR. REVERSE VOLTAGE (VOLTS)
.......
"
100°C
40
Figure 2. Typical Reverse Current
~
120
TJ = 150°C
w
en
a::
w
0.2
0.3
0.4
0.5
vf; INSTANTANEOUS FORWARD VOLTAGE (VOLTS)
II
10
to
I
V
a::
a::
::>
TJ=l~l ~1ooocl=] 'r/ 25°C
'f
100
zw
1/
/
<.s
I-
~ ........
""C
"~
"-
'\
130
140
TC. CASE TEMPERATURE (OC)
150
160
Figure 3. Current Derating, Case
40
80
120
TA. AMBIENTTEMPERATURE (0G)
Figure 4. Current Derating, Ambient
3-130
160
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL DATA
Switchmode
Power Rectifiers
· .• using a platinum barrier metal in a large area metal-to-silicon power diode. State-ofthe-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high frequency inverters,
free-wheeling diodes, and polarity-protection diodes.
o Guaranteed Reverse Avalanche
• Guardring for dv/dt Stress Protection
• 175°C Operating Junction Temperature
• Extremely Low Forward Voltage
MBR6015L'
MBR6020L
MBR6025L
MBR6030L
MBR6030L Is a
Motorola Preferred Device
SCHOTTKY RECTIFIERS
60 AMPERES
15 TO 30 VOLTS
t&ou,~~
DO-203AB
METAL
MAXIMUM RATINGS
Symbol
Value
Unit
VRRM
VRWM
VR
15
20
25
30
Volts
IFRM
150
Amps
10
60
Amps
Peak Repetitive Reverse Surge Current
(2 p.s, 1 kHz) See Figure 7
IRRM
2
Amps
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz)
IFSM
1000
Amps
Rating
MBR6015L
MBR6020L
MBR6025L
MBR6030L
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz) TC = 90'C
Average Rectified Forward Current
(Rated VR) TC = 120'C
TJ
-65 to +150
Storage Temperature Range
Tstg
-65 to +175
'c
'c
Voltage Rate of Change (Rated VR)
dv/dt
1000
V//J.s
Operating Junction Temperature
THERMAL CHARACTERISTICS
Maximum Thermal Resistance, Junction to Case
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)
(iF = 30 Amps, TC = 25'C)
(iF = 60 Amps, TC = 25'C)
(iF = 30 Amps, TC = 150'C)
(iF = 60 Amps, TC = 150'C)
vF
Maximum Instantaneous Reverse Current (1)
(Rated Voltage, TC = 25'C)
(Rated Voltage, TC = 125'C)
iR
Capacitance
(VR = 1 Vdc, 100 kHz'" f '" 1 MHz)
Ct
J1) Puis. Te8l: Puis. Width .. 300 /41. Duty Cycl...
Volts
0.42
0.48
0.30
0.38
mA
50
280
2%.
3-131
6000
pF
II
I
MBR6015L, MBR6020L, MBR6025L, MBR6030L
200
1000
Ii?
I. VI
100
100
«
..s
I
TJ = 15O'C __
125:C~
lOO'C -...L
a:
a:
~
u
w
I
IJ/ / /
V
II if
IIJ
!
!I
r--
TJ..:}5'C=
~ 10
I
/I
/I
15O':C~
125'C=
100'C§
1
.!!:
o. 1
25'C
0.01
m
o
I
•
I
I :II U
~
~
Figure 2. Typical Reverse Current*
/
*The curves shown are typical for the highest voltage device in
the voltage grouping. Typical reverse current for lower voltage
selections can be estimated from these same curves if VR is sufficiently below rated VR.
I /,
1
~
VR, REVERSE VOLTAGE (VOLTS)
I '/
20,000
U
U
U
U
~
M
I
U
vF, INSTANTANEOUS VOLTAGE (VOLTS)
10,000
~
;;:; 7,000
Figure 1. Typical Forward Voltage
!E
~
~u
loJkHz';' f ~ llMHz
.....
.........
5,000
r-....
........
3,000
"
~
"'-Lt--
;--..... I'-....
TYP
2,000
I'- ........ ........
........ r--.
1,000
0.5 0.7
1
2 3
7 10
20
VR, REVERSE VOLTAGE (VOLTS)
30
Figure 3. Capacitance
NOTE 1
HIGH FREQUENCY OPERATION
Since current flow in a Schottky rectifier is the result
of majority carrier conduction, it is not subject to junction
diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model
consisting of an ideal diode in parallel with a variable
capacitance. (See Figure 4.)
Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For
example, relative waveform rectification efficiency is approximately 70 percent at 2 MHz, e.g., the ratio of dc
power to RMS power in the load is 0.28 at this frequency,
whereas perfect rectification would yield 0.406 for sine
wave inputs. However, in contrast to ordinary junction
diodes, the loss in waveform efficiency is not indicative
of power loss; it is simply a result of reverse current flow
through the diode capacitance, which lowers the dc output voltage.
3-132
+15OV, 10mAdC~
2kO
VCC
4 ILF
12Vdc
12 TI>---'VI10",0_-{ 2N2222
-I
+
~
lOUT
f--2ILS
1 kHz
CURRENT
AMPLITUDE
ADJUST
Q-l0AMPS
1000
CARBON
1 CARBON
lN5B17
-=
Figure 4. Test Circuit for dv/dt
and Reverse Surge Current
-=
50
MBR6015L, MBR6020L, MBR6025L, MBR6030L
_
100
~
90
15
80
g§
70
~
VR
ac
60
~
50 f-- '---Ipllve
a:
a:
~
4D
~
~
""I-'
..'\.
RATED VOLTAGE
\
~
~
80
100
120
Tc, CASE TEMPERATURE lOCI
160
"/ ~
SINE WAVE
25
~ 15
\
140
SQUARE WAVE __
~ 20 r--r- Je.
IAV
w
" 0..\ ,\
40
15
a:
~de
'\ ~\
45
~ 35
ill 30
X~QUAREAND
\SINE WAVE
1\
20
10
0
60
g
'\.
5
10
30
20
~
~
50
~
~
o
~ 20
i'
v:
10
10
VV
/5
......
v.: /'"
~ ,.;'
..... de
,.;'
. / )o'~ ~ ~
~~~~
~ 5
P"
l..,.oIIII
~
~ 0
o 5 m ~ w ~ ~
~
40
~
W
~
80
~
M
IFIAV), AVERAGE FORWARD CURRENT
Figure 5, Forward Current Derating
Figure 6. Power Dissipation
NOTE 2
FtJL
Pk
Ppk
DUTY CYCLE, D ~ tpftl
PEAK POWER, Ppk, IS PEAK OF AN
EQUIVALENT SQUARE POWER PULSE.
tp_
TIME
1-----tl---1
To determine maximum junction temperature of the
diode in a given situation. the following procedure is
recommended:
The temperature of the case should be measured using
a thermocouple placed on the case. The thermal mass
connected to the case is normally large enough so that
it will not significantly respond to heat surges generated
aw
--
N
;;!
:;;
a:
0
in the diode as a result of pulsed operation once steadystate conditions are achieved. Using the measured value
of TC. the junction temperature may be determined by:
TJ = TC + ~TJC
where ~TC is the increase in junction temperature
above the case temperature. It may be determined by:
':\TJC = Ppk'RIJJC[O+(1-0)'r(t1 +tp)+r(t p)-r(t1)]
where
r(t) = normalized value of transient thermal resistance
at time. t. from Figure 7. i.e.:
r(tl - t p ) = normalized value of transient thermal resistance at time t1 +tp '
-
-
0.5
~
w
u
z 0.2
;:!:
......
...... ......
R6JClti ~ Rruc + rlt)
!!l
V>
~
INOTE 2)
0.1
:;;/,
:;;
a:
w
0.05
~
lZ
l*
0.02
g 0.01
~
,.....,...
.......
0.01
0.02
0.05
0.1
0.2
0.5
10
t, TIME (ms)
Figure 7. Thermal Response
3-133
20
50
100
200
500
1000
II
MBR6015L, MBR6020L, MBR6025L, MBR6030L
BARRIER METAL
,.t.'==~~~+---OXIDE PASSIVATION
VIEWA·A
MOLY DISK
VIEWA·A
•
Motorola builds quality and reliability into its Schottky
Rectifiers.
First is the chip, which has an interface metal between
the platinum-barrier metal and nickel-gold ohmic-contact
metal to eliminate any possible interaction with the barrier. The indicated guardring prevents dv/dt problems, so
snubbers are not mandatory. The guardring also operates
like a zener to absorb overvoltage transients.
Second is the package. There are molybdenum disks
which closely match the thermal coefficient of expansion
of silicon on each side of the chip. The top copper lead
has a stress relief feature which protects the die during
assembly. These two features give the unit the capability
of passing stringent thermal fatique tests for 5,000 cycles.
The top copper lead provides a low resistance to current
and therefore does not contribute to device heating; a
heat sink should be used when attaching wires .
Third is the redundant electrical testing. The device is
tested before assembly in "sandwich" form, with the chip
between the moly disks. It is tested again after assembly.
As part of the final electrical test, devices are 100% tested
for dv/dt at 1,600 V/p.s and reverse avalanche.
Figure 8. Schottky Rectifier
MECHANICAL CHARACTERISTICS
CASE: Welded, hermetically sealed
FINISH: All external surfaces corrosion resistant and
terminal lead is readily solderable
POLARITY: Cathode-to·Case
MOUNTING POSITION: Any
MOUNTING TORQUE: 25 in-Ib max
SOLDER HEAT: The excellent heat transfer property of
the heavy duty copper anode terminal which transmits
heat away from the die requires that caution be used
when attaching wires. Motorola suggests a heat sink
be clamped between the eyelet and the body during
any soldering operation.
3·134
MOTOROLA
MBR6035
MBR6045, H, H1
• SEMICONDUCTOR
TECHNICAL DATA
-
MBR&045 is a
Motorola Preferred Device
SCHOTTKY RECTIFIERS
SWITCHMODE POWER RECTIFIERS
60 AMPERES
36 AND 45 VOLTS
· .. using a platinum barrier metal in a large area metal-to-silicon
power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited
for use as rectifiers in low-voltage. high-frequency inverters. freewheeling diodes. and polarity-protection diodes.
•
Guaranteed Reverse Avalanche
•
Guardring for dv/dt Stress Protection
•
150°C Operating Junction Temperature
•
Low Forward Voltage
II
CASE 257-01
DO-203AB
METAL
MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Peak Repetitive Forward Current
Symbol
VRRM
VRWM
VR
IFRM
(Rated VR. Square Wave. 20 kHz) TC = 100°C
Average Rectified Forward Current
10
(Rated VR) TC = 100°C
Peak Repetitive Reverse Surge Current
IRRM.
(2.0 "s. 1.0 kHz) See Figure 7
Nonrepetitive Peak Surge Current
IFSM
(Surge applied at rated load conditions
MBR6035
MBR6035B
MBR6045. H. H1'
MBR8045B
Unit
35
45
Volts
•
•
•
•
•
120
•
•
60
2.0
•
800
halfwave. single phase. 60 Hz)
Operating Junction Temperature
TJ
Storage Temperature
Tstg
Voltage Rate of Change
(Rated VR)
dvldt
•
.
-65 to + 150
•
•
.•
65 to +175
1000
Amps
Amps
Amps
Amps
°c
°c
V/"s
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance.
Junctionato~Case
Typ
Max
0.85
1.0
Typ
Max
ELECTRICAL CHARACTERISTICS
Characteristic
Symbol
Instantaneous Forward Voltage (1)
(iF = 60 Amp. TC = 25°C)
(iF = 60 Amp. TC = 125°C)
(iF= 120 Amp. TC= 125°q
vF
Instantaneous Reverse Current (1)
(Rated Voltage. TC = 25°C)
(Rated Voltage. TC = 125°C)
iR
Capacitance
(VR = 1.0Vdc. 100 kHz';; 1.0 MHz)
Ct
·H and H1 devices Include eMlra lesting.
(11 Pulse rest: Pulse Width =300 ~s. DUly Cycle =2.0%
3-135
Unit
Volts
0.65
0.57
0.70
0.70
0.60
0.76
0.1
55
0.3
100
3000
3700
mA
pF
MBR6035, MBR6045, H, H1
FIGURE 1 - TYPICAL FORWARD VOLTAGE
200
J
V /V
10 0
/"
FIGURE 2 - TYPICAL REVERSE CURRENT
1000
V
r-- r-- Tr
100
;;;
150°C
-
125°C
§.
0
....
15
0
a
lOooC
10
~
J /
~
'"ffi
a::
/
0
TJ=150 0 C/
0
:/
10
-
II:
/
.!i=
0.1
25°C
h5°C
0.01
I /
0
75°C
o
10
-
r--
40
20
30
VR. REVERSE VOLTAGE (VOLTS)
50
0
II
0
I
0
FIGURE 3 - MAXIMU.M SURGE CAPABILITY
I
0
1000
il
in
0.. 700
:;;
:;.
....
15
II:
500
II:
...
:::>
1. 0
~ 300
II:
O. 7
:::>
" i"",-
"'"
.......
~r-..
i'-- :---.
'"
O. 5
'" 200
:;l
O. 3
:i
~
:----r-.
0..
100
10
O. 2
o
Rated Load
f = 60 HZ
0.2
0.4
0.6
O.B
1.0
1.2
1.4
2.0
30
5.0 70
10
20
30
50
70 100
NUMBER OF CYCLES
YF. INSTANTANEOUS FORWARD VOLTAGE (VOLTS)
FIGURE 4 - CAPACITANCE
NOTE 1
~ 3000
III I I
11 riol ~HZ ;. L" 10 M~z - -
I
5000
HIGH FREQUENCY OPERATION
Since current flow in a Schottky rectifier is the result of majority
carrier conduction, it is not subject to junction diode forward and
reverse recovery transients due to minority carrier injection and
stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel
with a variable capacitance. (See Figure 4.)
Rectification efficiency measurements show that operation will
be satisfactory up to several megahertz. For example. relative
waveform rectification efficiency is approximately 70 per cent at
2.0 MHz. e.g .. the ratio of de power to RMS power in the load is
0.28 at this frequency. whereas perfect rectification would yield
0.406 for sine wave inputs. However. in contrast to ordinary
junction diodes. the loss in waveform efficiency is not indicative
of power loss; it is simply a result of reverse current flow through
the diode capacitance. which lowers the de output voltage.
I'--,
I.
Max
""'TY~".......
~
u
~ 2000
u
<1:
......... 'I"-
C3
............
u
1000
.......
.......
700
.05
1.0
2.0
3.0
5.0 7.0
10
VR. REVERSE VOLTAGE (VOLTS)
3-136
20
30
.......
r-50
MBR6035, MBR6045, H, H1
FIGURE 5 - FORWARD CURRENT DERATING
FIGURE 6 - POWER DISSIPATION
0
VR
0
@
50
Rated Voltage
40
0
""
0
0
0
0
~c
"-
Ipk
ylAV
f"'....'-...
I
oI-- (Capacitive Load) .!P!
I =20.10
.5
I
I
100
90
110
120
130
10_
30
,
10
150
140
ILL L /L
LL L /"
5 / ) '/L
IAV
//. ~
~V
~
~
TJ
20
160
Square Wave
50% Duty Cycle
de
"/
'/YV/ i"--. Ipk
20
~~
I
AV1
!e!< =20--=
r--- r-'IAV
L
_
(Resistive Load)
0 ~"
Im~
I
0
80
= 11" Square Wave
L
/ 1/
(Capacitive load)
= 11" (Resistive Load)-
=125°C
60
40
80
IF(AV). AVERAGE FORWARO CURRENT (AMPS)
TC. CASE TEMPERATURE (0C)
FIGURE 7 - TEST CIRCUIT FOR dv/dt
AND REVERSE SURGE CURRENT
NOTE 2
J=U1
+ 150 V. 10 mAde
Ppk
PPk
"
\----.,--\
TIME
2.0 kll
DUTY CYCLE. 0 " Ip/l1
PEAK POWER. Ppk, IS peak 01 an
To determme maximum Junction temperature of the diode In a given
Situation, the follOWing procedure 15 recommended:
The temperature of the case should be measured uSing a thermocouple
I I ~2V 100
.-l c:
--l I-- 2.01's
placed on the case. The thermal mass connected to the case IS normally large
enough so that
it will not significantly respond to heat surges generated In
the diode as a result of pulsed operatIon once steady-state conditions are
achieved. USing the measured value of TC. the Junction temperature may be
determmed by.
12Vdc
VCC
equivalent square power pulse.
TJ=TC+.l. TJC
2N2222
1.0kHz
where .l T C IS the increase In junction temperature above the case
temperature. It may be determined by:
Current
Amplitude
Adj us!
0-10 Amps
.l TJC =:: Ppk-R8JCIO + (1- Ol-rlt, + tpl+ rHpJ -rlt,)! where
rlt) =:: normahzed value of tranSient thermal resistance at trme, t, from
Frgure 8. r.e.:
rlt1 + tpl '" normalized value of transrent thermal resistance at trme '1 + 'p'
100 II
Carbon
FIGURE 8 - THERMAL RESPONSE
~
~
~
1. 0
5
0
~
w
'-'
z
~
~
O. 2
IReJc(t) = ReJC + r(t)
(Note 2)
~ O. 1
0:
~
c(
~
00 5
i$i
0.02~
::r:
....
....
z
zc(
:= 00 1
~
-.:-
0.01
.--0.02
0.05
0.1
0.2
0.5
1.0
2.0
t. TIME (ms)
3-137
5.0
10
20
50
100
200
500
1000
•
I
MBR603S, MBR604S, H, H1
FIGURE 9 - SCHOTTKY RECTIFIER
Copper Lead
Barrier Metal
r-f.~~~~~~~~J~--- Oxide Passivation
VIEW A-A
Copper Base
Moly Disk
Guardring
•
Motorola builds quality and reliability into its Schottky Rectifiers.
First is the chip, which has an interface metal between the
platinum-barrier metal and nickel-gold ohmic-contact metal to
eliminate any possible interaction with the barrier. The indicated
guardring prevents dv/dt problems, so snubbers are not mandatory. The guardring also operates like a zener to absorb over-
VIEW A-A
feature which protects the die during assembly. These two
features give the unit the capability of passing stringent thermal
fatigue tests for 5,000 cycles. The top copper lead provides a low
resistance to current and therefore does not contribute to device
heating; a heat sink should be used when attaching wires.
Third is the redundant electrical testing. The device is tested
before assembly in "sandwich" form, with the chip between the
moly disks. It is tested again after assembly. As part of the final
electrical test, devices are 100% tested for dv/dt at 1,600 V I J.lS
and reverse avalanche.
voltage transients.
Second is the package. There are molybdenum disks which
closely match the thermal coefficient of expansion of silicon on
each side of the chip. The top copper lead has a stress relief
HI-REL PROGRAM OPTIONS
The MBR6045 is also available with two levels of extra testing
similarto "TX" screening and including Group A and B inspection
programs. Both the MBR6045H and MBR6045H1 go through
100% screening consisting of high temperature storage, temperature cycling, constant acceleration and hermetic seal testing
prior to a sample being submitted to Group A and B inspection.
After completion of Group B inspection, the MBR6045H is
available without additional screening. MBR6045H1 devices are
further processed through a high temperature reverse bias
(HTRBI and forward burn-in. Consult factory for details.
MECHANICAL CHARACTaUSnc5
CASE: Welded. hermeticallv sealed
FINISH: All external surfaces corrosion resistant and termina' lead is readily solderabl•.
POLARITY: Cathode-to-Cilse
MOUN11NG POSITION: Any
MOUNTING TORQUE: 25
in~b
max
SOLDER HEAT: The excellent heat transfer
property of the heavy duty copper anode ter-
minal which transmits heat away from the die
requires that caution be used when attaching
wires. Motorola suggests a heat sink be
clamped between eyelet and the body during
any soldering operation.
3-138
MOTOROLA
SEMICONDUCTOR------------TECHNICAL DATA
SWITCHMODE
Power Rectifier
MBR604SPT
The SWITCHMODE power rectifier employs the use of the Schottky Barrier principle with
a Platinum barrier metal. This state-of-the-art device has the following features:
• Dual Diode Construction - Terminals 1 and 3 may be connected for Parallel
Operation at Full Rating
• 45 Volt Blocking Voltage
• Low Forward Voltage Drop
• Guardring for Stress Protection and High dv/dt Capability (> 10Ylns)
• Guaranteed Reverse Avalanche
• 150°C Operating Junction Temperature
SCHOTIKY BARRIER
RECTIFIER
60 AMPERES
45 VOLTS
CASE 3400-01
TO-21B Atlas
MAXIMUM RATINGS, PER LEG
Rating
Symbol
Max
Unit
VRRM
VRWM
VR
45
Volt
IF(AV)
30
60
Amp
Peak Repetitive Forward Current, Per Diode
(Rated VR, Square Wave, 20 kHz) @ TC = 90°C
IFRM
60
Amp
Non-repetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz)
IFSM
500
Amp
Peak Repetitive Reverse Current (2.0 j.ls, 1.0 kHz)
IRRM
2.0
Amp
TJ
-65 to +150
°c
Tstg
-65 to +175
'C
TJIDkl
175
°c
dv/dt
10,000
Vlj.ls
Rruc
1.0
°CIW
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current (Rated VR)
@TC=125'C
Total Device
Operating Junction Temperature
Storage Temperature
Peak Surge Junction Temperature (Forward Current Applied)
Voltage Rate of Change
THERMAL CHARACTERISTICS, PER LEG
I Thermal Resistance, Junction to Case
ELECTRICAL CHARACTERISTICS, PER LEG
Instantaneous Forward Voltage (1)
(iF = 30 Amps, TC = 25°C)
(iF = 30 Amps, TC = 125'C)
(iF; 60 Amps, TC = 25'C)
vF
Instantaneous Reverse Current (1)
(Rated DC Voltage, TC = 25'C)
(Rated DC Voltage, TC = 100°C)
iR
Volts
0.62
0.55
0.75
rnA
1.0
50
(1) Pulse Test: Pulse Width = 300 IlS, Duty Cycle S2.0%.
3-139
•
I
MBR6045PT
1000
I
100
a:
a:
10
~
~
!z
w
:::>
d
Te= 150'e
/'lV/
TC= 100'C
<.>
w
'"a:w
>
w
a:
IE
1:2'
1
/
:.--
0.1
150'e
TC = 25'C
0.01 0
10
20
30
40
50
.!f.
1100
/
I
i
1-j00icjTC 25'C
/200
300
400
500
600
700
VR, REVERSE VOLTAGE (VOLTS)
vf; INSTANTANEOUS FORWARD VOLTAGE (mV)
Figure 1. typical Reverse Current
Figure 2. Typical Forward Voltage
•
3-140
800
MOTOROLA
SEMICONDUCTOR------------TECHNICAL DATA
r
I
SWITCHMODE
Power Rectifier
MBR6045WT
The SWITCH MODE power rectifier employs the use of the Schottky Barrier principle with
a Platinum barrier metal. This state-of-the-art device has the following features:
• Dual Diode Construction - Terminals 1 and 3 may be connected for Parallel
Operation at Full Rating
• 45 Volt Blocking Voltage
• Low Forward Voltage Drop
• Guardring for Stress Protection and High dv/dt Capability (> 10 V/ns)
• Guaranteed Reverse Avalanche
• 150°C Operating Junction Temperature
SCHOTTKY BARRIER
RECTIFIER
60 AMPERES
45 VOLTS
CASE 340F-03
TO-247
MAXIMUM RATINGS, PER LEG
Rating
Symbol
Max
Unit
VRRM
VRWM
VR
45
Volt
IF(AV)
30
60
Amp
Peak Repetitive Forward Current, Per Diode
(Rated VR, Square Wave, 20 kHz) @ TC 90°C
IFRM
60
Amp
Non-repetitive Peak Surge Current
(Surge applied at rated load conditions hallwave, single phase, 60 Hz)
IFSM
500
Amp
IRRM
2.0
Amp
TJ
-65 to +150
°C
Tsta
-65 to +175
°C
TJ(pk)
175
°C
dvldt
10,000
V/~s
RSJC
1.0
°CIW
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current (Rated VR)
@ TC
125°C
=
Total Device
=
Peak Repetitive Reverse Current (2.0
~s,
1.0 kHz)
Operating Junction Temperature
Storage Temperature
Peak Surge Junction Temperature (Forward Current Applied)
Voltage Rate 01 Change
THERMAL CHARACTERISTICS, PER LEG
I Thermal ReSistance, Junction to Case
ELECTRICAL CHARACTERISTICS , PER LEG
Instantaneous Forward Voltage (1)
(iF =30 Amps, TC =25°C)
(iF = 30 Amps, TC =125°C)
(iF =60 Amps, TC =25°C)
vF
Instantaneous Reverse Current (1)
(Rated DC Voltage, T C =25°C)
(Rated DC Voltage, T C = 100°C)
iR
Volts
0.62
0.55
0.75
mA
1.0
50
(1) Pulse Test Pulse Width = 300 J.ls, Duty Cycle:; 2.0%.
3-141
..
MBR6045WT
:c-
.s.
1000
~
~
lOD
l~
ffi
!z
w
II:
II:
=>
TC = 150°C
a
TCf 100°9
~
w
'"
II: ~
f2
[
II:
W
.."",
. # 7"
~
10
'0
// "//
I
10
'"
Of
jlj
'0
W
Z
II:
J!.
100
0.1
TC = 25°C
0.01 0
10
------
20
30
40
VR. REVERSE VOLTAGE (VOLTS)
~IL
;$
Z
150°C
;$
~
50
.!f.
1100
'-
flOOicfc
/200
300
,250C
400
500
600
700
vf', INSTANTANEOUS FORWARD VOLTAGE (mV)
Figure 1. Typical Reverse Current
Figure 2. Typical Forward Voltage
II
3-142
800
MOTOROLA
MBR6535
MBR6545
• SEMICONDUCTOR
TECHNICAL DATA
•
MBR65451sa
Molorola Preferred Device
SWITCHMODE POWER RECTIFIERS
HIGH TEMPERATURE
SCHOTTKY RECTIFIERS
· .. using a platinum barrier metal in a large area metal-to-silicon
power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited
for use as rectifiers in low-voltage. high frequency inverters,
free-wheeling diodes, and polarity-protection diodes.
65 AMPERES
35 and 45 VOLTS
• Guaranteed Reverse Avalanche
• Guardring for dV/dt Stress Protection
• 175°C Operating Junction Temperature
• Low Forward Voltage
CASE 257-01
DO-203AB
METAL
MAXIMUM RATINGS
Rating
Symbol
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
MBR6535
MBR6545
Unit
Volts
VRRM
VRWM
VR
35
45
IFRM
130
130
Amps
10
65
65
Amps
Peak Repetitive Reverse Surge Current
(2.0 !,s, 1.0 kHz) See Figure 7
IRRM
2.0
2.0
Amps
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave.
single phase, 60 Hz)
IFSM
BOO
BOO
Amps
TJ, Tstg
-65 to +175
-65 to +175
ac
dv/dt
1000
1000
V/!'s
0.7B
0.62
0.73
0.7B
0.62
0.73
0.07
125
0.07
125
3700
3700
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz) TC = 120a C
Average Rectified Forward Current
(Rated VR) TC = 120a C
Operating Junction Temperature and
Storage Temperature
Voltage Rate of Cha nge
(Rated VR)
THERMAL CHARACTERISTICS
Maximum Thermal Resistance. Junction to Case
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)
(iF 65 Amp, TC 25 a C)
(iF 65 Amp, TC 150a C)
(if 130 Amp, TC 1500C)
vF
Maximum Instantaneous Reverse Current(l)
(Rated Voltage, TC 25 a C)
(Rated Voltage, TC 150a C)
iR
Capacita nee
(VR 1.0 Vdc, 100 kHz";; f,,;; 1.0 MHz)
Ct
=
=
=
=
=
=
=
=
=
(1) Pulse Test: Pulse Width = 300 IJ.S. Dutv Cycle:S;;; 2.0%
3-143
Volts
mA
pF
..
MBR6535, MBR6545
FIGURE 2 - TYPICAL REVERSE CURRENT
FIGURE 1 - TYPICAL FORWARD VOLTAGE
200
111' V
TJ
100
~ 1500~ / }00~c/
25°C
70
I
II
//
~
a:
::>
•
10
'"
;!;
.~
'"ffi
'"
'"
;:
/
/ /
30
=!. 20
'"'ca:
r--
I
I II
50
c;;o..
:;;
100
40
20
10
4:
.§. 4.0
!2 2.0
1.0
~
a:
13 0.4
0.2
'"IE o1
3.0
I
2.0
I
1.0
1
FIGURE 3 - MAXIMUM SURGE CAPABILITY
I
V
1000
"-
~
:;;-
~
"-
L
/
V
LL L
~
~ =5.0
IAV
/~
1 Vd L
/h ~
'"
~
~ ~ f".,
20
:>
'"
15
~ I'.
~
30 _ICapacitive Loadsl
0;
~ r-....
........
SQ!lare Wave
~
"-
~ =Tr
IAV
0
Square Wave, Sine Wave
~
10
~ 30
'"ffi
IResistive Loadl
~
z 40
dc
60
~
'"
13
'"
u;- 50
.....
!;;:
L;c
./
~
//
,/'
..&~
~
10
180
TC, CASE TEMPERATURE lOCI
20
30
40
50
60
70
80
IFIAVI' AVERAGE FORWARD CURRENT IAMPSI
FIGURE 7 - TEST CIRCUIT FOR dv/dt
AND REVERSE SURGE CURRENT
NOTE2
+150V,IOmAdc
2.0 kll
DUTY CYCLE, [] ~ Iplll
PEAK POWER. Ppk.. IS peak of an
equivalent square power pulse
Vcc 12 Vdc
To determine ma)umum JunctIon temperature of the dIode In a given
Situation, the follOWing procedure IS recommended'
The temperature of the case should be measured uSing a thermocouple
placed on the case The thE"rmal mass connected 10 the case IS normally large
enough so thai II will not slgmflcantly respond to heat surges generated In
the diode as a result of pulsed Operation once steady state condillons are
achieved USing the measured value of T C. the Junction temperature may be
determmed by
s t 2 V 100
-.l
TJ",TC ... j,TJC
where .l TC IS the Increase In lunciion tempera lure above the case
temperature It may be determined by
I--
2N2222
2.0 p'S
1.0 kHz
Current
.lTJC = Ppk-Rf/JCID .. (1 OI-r(I, ... tpl" rltpl rll,/I where
rlU normalized value of transient thermal reSlslance al time, t, from
Figure 8, I.e
rll, ~ tpl . normalized value of tranSlenllhermal reslslance all,me 11 + Ip
Amplitude
Adjust
0-10 Amps
0
loon
Carbon
FIGURE 8 - THERMAL RESPONSE
~
:::;
0
~
~ 05
0
~
.... -'
~
u
z
;!
o. 2
'"~
I
~
00 5
'"
;;t
;=
1Z
i;5 0.0 2 .......
z
~
t= 0.0 I
-
0.01
f-"'"
R8JClti = R8JC + rltl
INot.21
V"'""
0.02
0.05
0.1
0.2
0.5
1.0
2.0
t, TIMElmsl
3-145
5.0
10
2Q
50
100
200
500
1000
II
MBR6535, MBR6545
FIGURE 9 - SCHOTTKY RECTIFIER
Copper Lead
VIEW A-A
Copper Base
Guardnng
•
Motorola bUilds quality and reliability into Its Schottky RectifIers.
First IS the chip. which has an Interface metal between the
platinum-barrier metal and nickel-gold ohmic-contact metal to
eliminate any possible interaction with the barrier. The indicated
guardnng prevents dv/dt problems, so snubbers are not mandatory. The guardring also operates like a zener to absorb overvoltage tranSients.
Second is the package. There are molybdenum disks which
closely match the thermal coefficient of expansion of silicon on
each side of the chIp. The top copper lead has a stress relief
VIEW A-A
feature which protects the die dUring assembly. These two
features give the Unit the capability of passing stringent thermal
fatigue tests for 5,000 cycles. The top copper lead provides a low
resistance to current and therefore does nOl contribute to device
heating: a heat sink should be used when attaching wires.
Third is the redundant electrical testing. The deVice is tested
before assembly in "sandwich" form, with the chip between the
moly disks. It IS tested again after assembly. As part of the final
electrical test, devices are 100% tested for dvldt at 1,600 VII'S
and reverse avalanche.
MECHANICAL CHARACTERISTICS
CASE: Welded, hermetically sealed
FINISH: All external surfaces corrosion resistant and terminal'
lead is readily solderable,
POLARITY: Cathode-to-Case
MOUNTING POSITION: Any
MOUNTING TORQUE: 25 in-Ib max
SOLDER HEAT: The excellent heat transfer property of the heavy
duty copper anode terminal which transmits heat away from the
die requires that caution be used when attaching wires, Motorola
suggests a heat sink be clamped between the eyelet and the
body. during any soldering operation,
3·146
MBR7535
MBR7545
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL DATA
•
MBR7545Is a
Motorola Preferred Device
SCHOTIKY BARRIER
RECTIFIERS
SWITCHMODE POWER RECTIFIERS
... employing the Schottky Barrier principle in a large area metalto-silicon power diode. State-of-the-art geometry features epitaxial
construction with oxide passivation and metal overlap contact.
Ideally suited for use as rectifiers in low-voltage. high-frequency
inverters. free-wheeling diodes. and polarity-protection diodes.
Ii Extremely Low vF
•
Low Stored Charge. Majority
Carrier Conduction
•
Low Power Loss/
High Efficiency
•
High Surge Capacity
75 AMPERES
35 AND 45 VOLTS
MECHANICAL CHARACTERISTICS
CASE: Welded. hermetically sealed
FINISH: All external surfaces corrosionresistant and terminal lead is
readily solderable.
POLARITY: Cathode to Case
MOUNTING POSITIONS: Any
MOUNTING TORQUE: 25 in-Ib max
II
CASE 257-01
DO-203AB
METAL
I
MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
. Symbol
VRRM
VRWM
VR
Peak Repetitive Forward Current
(Rated VR. Square Wave, 20 kHz)
MBR7545
Unit
35
45
Volts
IFRM
150
TC=BO'C
Amp
10
75
TC = BO'C
Amp
IFSM
1000
Amp
TJ' Tstg
-65 to +150
'c
TJ(pk)
175
'C
dv/dt
1000
V/IlS
Average Rectified Forward Current
(Rated VR)
Non-repetitive Peak Surge Current
(Surge applied at rated load conditions,
halfwave. single phase. 60 Hz)
Operating and Storage Junction Temperature Range
MBR7535
Peak Operating Junction Temperature
(Forward Current Applied)
Voltage Rate of Change
(Rated VR)
THERMAL CHARACTERISTICS
Rating
Thermal ReSistance. Junction to Case
ELECTRICAL CHARACTERISTICS (TC = 25'C unless otherwise noted)
Rating
Symbol
Maximum Instantaneous Forward Voltage (1)
(iF =60 Amp. TC =125'C)
(iF =220 Amp. TC =125'C)
vF
Maximum Instantaneous Reverse Current (1)
(Rated dc Voltage, TC =125'C)
iR
Capacitance
(VR =5.0 Vdc. 100 kHz 5 f 51.0 MHz)
Ct
MBR7535
I
MBR7545
Unit
Voits
0.60
O.BO
(1) Pulse Test: Pulse Width = 300 Ils. Duty Cycle = 2.0%.
3-147
150
I
4000
250
mA
pF
MBR7535, MBR7545
FIGURE 1 - TYPICAL FORWARO VOLTAGE
500
I
300
te
~J
150 fl C
V/
100
25'''C
V
"5
5
z
«
1;;
~
!i-
50
30
10
o
04
02
DB
06
10
14
11
'F.INSTANTANEOUS FORWARD VOLT AGE IVOl TS)
FIGURE 2 - CURR'ENT DERATING
FIGURE 3 - TYPICAL REVERSE OPERATION
1000
if 160
~
"\ "\
>z
~ l20
'"'"
'"
'"
~
I"\. I"\.
c
VR
~
RATED
80
~
VR
~
~0
r\ r\
'\ '\
'"G
'r\ 'r\
_
I-10kHz
SjUAREtAVE
80
ERAI'0N
100
120
\ \
140
-1
o _Ioooe
-
75°C
'"ffi
1.0
'"Ji;
O. 1 = 250e
~
r\ r\
r
-
c-- 1150e
>-
~
160
Te. CASE TEMPERATURE (OC)
3-148
-
100:::TJ~1500e
O.D I
o
,....-
10
-
20
30
VR. REVERSE VOLTAGE (VOLTS)
40
50
MBR8035
MBR8045
MOTOROLA
• SEMICONDUCTOR
TECHNICAL DATA
•
MBRB045 I••
Motorola Preferred Device
SCHOTTKY RECTIFIERS
80 AMPERES
35 and 45 VOLTS
SWITCHMODE POWER RECTIFIERS
using a platinum barrier metal in a large area metal-to-silicon
power diode. State-of-the-art geometry features epitaxial construction with oxide passivation a nd metal overlap contact. Ideally suited
for use as rectifiers in low-voltage, high frequency inverters, freewheeling diodes, and polarity-protection diodes.
• Guaranteed Reverse Avalanche
• Guardring for dv/dt Stress Protection
• 175°C Operating Junction Temperature
• Low Forward Voltage
II
CASE 257-01
DO·203AB
METAL
MAXIMUM RATINGS
Symbol
Rating
Peak RepetItive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
MBR8035
MBR8045
Unit
Volts
VRRM
VRWM
VR
35
45
IFRM
160
160
Am;;;--
10
80
80
Amps
Peak Repetitive Reverse Surge Current
(2.0 ~s, 1.0 kHz) See F,gure 7
IRRM
2.0
2.0
Amps
Nonrepetltlve Peak Surge Current
(Surge applied at fated load conditions halfwave.
Single phase, 60 Hz)
IFSM
1000
1000
Amps
TJ, Tstg
-65 to +175
-65 to +175
°c
dv/dt
1000
1000
V/~s
0.80
0.80
0.72
0.59
0.67
0.72
0.59
0.67
1.0
150
1.0
150
5000
5000
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz) TC
~
120°C
Average Rectified Forward Current
(Rated VR) TC ~ 120°C
Operating Junction Temperature and
Storage Temperature
Voltage Rate of Change (Rated VR)
THERMAL CHARACTERISTICS
Maximum Thermal Resistance, Junction to Case
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)
(iF ~ 80 Amp, TC ~ 25°C)
(iF ~ 80 Amp, TC ~ 150°C)
(iF ~ 160 Amp, TC ~ 150°C)
vF
Maximum Instantaneous Reverse Current (1)
(Rated Voltage, TC ~ 25°C)
(Rated Voltage, TC ~ 150°C)
iR
Capacitance
(VR ~ 1.0 Vdc, 100 kHz"
Ct
(1) Pulse Test: Pulse WIdth
==
f,.
1.0 MHz)
300 p.s. Dutv Cvc1e ~ 2.0%
3-149
Volts
mA
pF
MBR8035, MBR8045
FIGURE 2 - TYPICAL REVERSE CURRENT
FIGURE 1 - TYPICAL FORWARD VOLTAGE
200
/ V /
/
/
100
70
I
j
30
j
::.
t-
'"~
10
TJ = 150°C
-
10
«
.§.
100°C
1.0
ffi
a:
/
I I
'"
:::>
0.1
'-'
V /
-
~
'"ffi
II
/ /
il/ /
'"
'-'
100
i:;
0.01
'"
.!F
0.001
25°C
o
30
20
VR. REVERSE VOLTAGE (VOLTS)
10
'"
i'il
'"
'"""
~
0.7
0.5
700
300
..........
Ralted \oad
]! 200
I
........
...........
-:-
1= 60 Hz
0.3
0.2
100
o
0.1
0.2
0.3
0.4
0.5
O.S 0.7
0.8
vf. INSTANTANEOUS VOLTAGE (VOLTS)
0.9
1.0
1.0
2.0
3.0
20
5.0 7.0 10
NUMBER Of CYCLES
30
50
70 100
FIGURE 4 - CAPACITANCE
NOTE 1
7000
HIGH FREQUENCY OPERATION
Since current flow In a Schottky rectifier is the result of majority
carrier conduction, it is not subject to junction diode forward and
reverse recovery transients due to minority carrier injection and
stored charge. Satisfactory circuit analysis work may be per-
formed by uSing a model consisting 01 an ideal diode
with a variable capacitance. (See Figure 4.)
In
parallel
Rectification efficiency measurements show that operation will
be satisfactory up to several megahertz. For example, relative
waveform rectification efficiency is approximately 70 per cent at
2.0 MHz. e.g .. the ratio of dc power to RMS power In the load is
0.28 at this frequency. whereas perfect rectification would yield
0.406 for sine wave inputs. However. in contrast to ordinary
junction diodes, the IOS5 In waveform efficiency is not indicative
5000
~
.......
~ 3000
~
~ t'--...
~x
~ -"":::t'-
2000
t"-
5
/
@
z
;:!:
z
;:!:
100"V25'C/
/,
so
!
I
/
1
~
.~
0
200
100
w
100"C75'C-
fIJ'C~
:~
25'~=
~
0.5
0.2
o
0.5
0.1
0.2
0.3
0.4
vF. INSTANTANEOUS FORWARD VOLTAGE IVOLTS)
lSO'C
TJ
~
5
10
15
20
25
30
vR.INSTANTANEOUS REVERSE VOLTAGE IVOLTS)
35
*The curves shown are typical for the highest voltage device in the
voltage grouping. Typical reverse current for lower voltage selections
can be estimated from these same curves if VR is sufficiently below
Figure 1. Typical Forward Voltage
rated vR.
Figure 2. Typical Instantaneous Reverse
Current, Per Leg*
II
i
100
~
en
~
60
3!
fIJ
~
30
~
100
\
\
20
~ 10
if:
o
60
\ D.C.
1\
\
1\
\
\
\
\
\
RATED VOLTAGE
APPLIED. 50% DUTY
CYCLE
0
140
160
Figure 3. Forward Current Derating, Per Leg
~
~ 7000
z
;:!:
""
i'...
........
3000
2000
1
V./
i"-
",
D.C.
/./
~
V./
40
60
en 100 W ~ 160
IFIAV). AVERAGE FORWARD CURRENT lAMPS)
CURRENT
AMPLITUDE
ADJUST
0-10 AMPS
~ 5000
5
20
~
./
./
./ V'./
VCC
12 Vdc
II " f .. 11 MH~
1~0Ik~zl~
I'--
~
. / V'/
Figure 4. Power Dissipation Per Leg
20 k
10 k
o ,.,.
o
10
100
120
TC. CASE TEMPERATURE I'C)
TJ = 1SO'C
saLARE WAVE I
o ' - RATED VOLTAGE
f- APPLIED. RESISTIVE
' - LOAD. 50% DUTY
CYCLE
0
1\
SOUA EWA E
40
./
0
TJ = lf1J'C
\
70
fS2!
12
\
90
~_~
loon
CARBON
.......
5 7 10
20
30
VR. REVERSE VOLTAGE IVOLTS)
fIJ
70
100
Figure 6. Test Circuit For Repetitive
Reverse Current
Figure 5. Typical Capacitance, Per Leg
3-156
len
200
•
MBR2003SCT
MBR2004SCT
MBR200S0CT
MBR20060CT
MOTOROLA
SEMICONDUCTOR
TECHNICAL DATA
-
SCHOTTKY BARRIER
RECTIFIERS
200 AMPERES
35 to 60 VOLTS
SWITCHMODE POWER RECTIFIERS
· .. using the Schottky Barrier principle with a platinum barrier
metal. These state-of-the-art devices have the following features:
• Dual Diode Construction Current Output
May Be Paralleled For Higher
• Guardri~g For Stress Protection
• Low Forward Voltage
• 175'C Operating Junction Temperature
CASE 357C-03
POWERTAP
• Guaranteed Reverse Avalanche
Terminal Penetration:
Terminal Torque:
Mounting TorqueOutside Holes:"
0.280 mx
25-40 in-Ib max
30-40 in-Ib max
'Center Hole Must be
TorquedFi~
MAXIMUM RATINGS
Rating
Symbol
Max
Unit
VRRM
VRWM
VR
35
45
50
60
Volts
Average Rectified Forward Current Per Device
Per Leg
(Rated VR) TC = 140'C
IF(AVI
200
100
Amps
Peak Repetitive Forward Current, Per Leg
(Rated VR, Square Wave, 20 kHz), TC = 140'C
IFRM
200
Amps
Nonrepetitive Peak Surge Current Per Leg
(Surge applied at rated load conditions
halfwave, single phase, 60 Hz)
IFSM
1500
Amps
Peak Repetitive Reverse Current, Per Leg
(2.0 ps, 1.0 kHz) See Figure 6
IRRM
2.0
Amps
TJ,Tstg
-65 to +175
'c
dvldt
1000
Vips
R8JC
0.5
'CIW
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
MBR20035CT
MBR20045CT
MBR20050CT
MBR20060CT
Operating Junction and Storage Temperature
Voltage Rate of Change (Rated VR)
THERMAL CHARACTERISTICS PER LEG
I Thermal Resistance, Junction to Case
ELECTRICAL CHARACTERISTICS PER LEG
Instantaneous Forward Voltage (1)
(iF = 200 Amp, TJ = 175'C)
(iF = 200 Amp, TJ = 125'C)
(iF = 100 Amp, TJ = 125'C)
(iF = 100 Amp, TJ = 25'C)
vF
Instantaneous Reverse Current (1)
(Rated dc Voltage, TJ = 125'C)
(Rated dc Voltage, TJ = 25'C)
iR
(1)
Pul.e Test: Pul.e W,dth
Volts
0.650
0.825
0.710
o.aOO
mA
50
0.5
= 300 p.O, Duty Cycle" 2.0%.
3-157
8-10 in-Ib max
II
MBR20035CT, MBR20045CT, MBR20050CT, MBR20060CT
FIGURE 1 - TYPICAL FORWARD VOLTAGE. PER LEG
ie
20 0
~
;
40
//
0
~
0
a:
.
.
0
:::0
0
~
3.0
.!:?
2·°0
~
S
~
z
4. O~ f-l00°C
TJ = 175°C
2.0
1.0
/
/
//
0.4
~
125°C
~
O. 2
O. 1
0.04
~ 0.02
7.0
5.0
i!
f-- TJ = 150°C
20
10
70
i:l
~
II
100
"
I
100
FIGURE 2 - TYPICAL REVERSE CURRENT. PER LEG
II J
0.2
0.4
0.6
0.8
VF. INSTANTANEOUS FORWARD VOLTAGE (VOLTS)
~
0.0 I
f--25°C
0.004r-0.002
0.00 10
10
I
1.0
20
30
VR. REVERSE VOLTAGE (VOLTS)
40
50
FIGURE 4 - POWER DISSIPATION • PER LEG
FIGURE 3 - FORWARD CURRENT DERATING. PER LEG
140
i
Rated Vo~age Applied
'\. Square Wave. 50% Duty Cycle
'\.
120
"-
100
'\.
"-
80
'\
'\.
'"
60
Ret!d vJtagelAPPlled
-
Square Wave. Resistive load
..,...1/'
50% DUly Cycle
'\.
"-
'\.
0
./.
'\.
TJ= 125~ ~
'\.
~
'\.
TJ = 125°C::l, I-- 1500C:\'- f- 1750C' \ :
'\
100
-
140
160
~~
20
180
TC. CASE TEMPERATURE (OC)
175°C
40
60
80
100
120
IF(AV). AVERAGE FORWARD CURRENT (AMPS)
FIGURE 6 - TEST CIRCUIT FOR REPETITIVE
REVERSE CURRENT
FIGURE 6 - CAPACITANCE. PER LEG
20.000
I:?
~~
'\
120
~
~~
\..
'\.
40
20
~
I
t--
I I
100 kHz .. , .. 1.0 MHz
Vee 12Vdc
10.000
!7.0D
..........
t:::
:
~
n
0
:::15.000
3.000
.........
r--...M••
NI""
Typ
2.000
1.000
0.5 0.7
.......
--I
T
100
40.,
10kHz
"-.. r-..
r--.
1.0
2V
j . - 20 ••
2.0 3.0
5.0 7.0 10
VR. REVERSE VOLTAGE (VOLTS)
20
.......
Curren1
Amphtude
AdJust
0-10 Amps
r--.
r-- .....
30
Carbon
1
50
oCarbon
lN6817
3-158
140
MOTOROLA
SEMiCONDUCTOR . . . . . . . . . . . . . . . . . . . . . . . ....
TECHNICAL DATA
MEGAHERTZ™ Series
SWITCHMODE ™ Power
MBR20200CT
Motorola Preferred Device
Dual Schottky Rectifier
· .. using Schottky Barrier technology with a platinum barrier metal. This state-of-the-art device is
designed for use in high frequency switching power supplies and converters with up to 48 volt
outputs. They block up to 200 volts and offer improved Schottky performance at frequencies from
250 kHz to 5.0 MHz.
•
•
•
•
SCHOTTKY BARRIER
RECTIFIER
20 AMPERES
200 VOLTS
200 Volt Blocking Voltage
Low Forward Voltage Drop
Guardring for Stress Protection and High dv/dt Capability (10,000 V/l1s)
Dual Diode Construction - Terminals 1 and 3 Must be Connected for Parallel Operation at
Full Rating
I
CASE 221 A-06
(TO-220)
MAXIMUM RATINGS (PER LEG)
Rating
Symbol
Value
Unit
VRRM
VRWM
VR
200
Volls
IF(AV)
10
20
Amps
Peak Repetitive Forward Current, Per Leg
(Rated VR, Square Wave, 20 kHz) TC 90°C
IFRM
20
Amps
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions hallwave, single phase, 60 Hz)
IFSM
150
Amps
Peak Repetitive Reverse Surge Current (2.0 ~s, 1.0 kHz)
IRRM
1.0
Amp
TJ
-eSto+1S0
°c
Storage Temperature
Tstg
-eS to +17S
°C
Voltage Rate 01 Change (Rated VR)
dv/dt
10,000
V/~s
VF
0.9
0.8
1.0
0.9
Volts
IR
1.0
SO
mA
SOO
pF
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current
(Rated VR) TC 125°C
Per Leg
Per Package
=
=
Operating Junction Temperature
THERMAL CHARACTERISTICS (PER LEG)
Thermal Resistance -
Junction to Case
ELECTRICAL CHARACTERISTICS (PER LEG)
Maximum Instantaneous Forward Voltage (1)
(IF = 10 Amps,
(IF = 10 Amps,
(IF = 20 Amps,
(IF = 20 Amps,
TC = 2S0C)
TC = 12S°C)
T C = 2S°C)
TC = 12S°C)
Maximum Instantaneous Reverse Current (1)
(Rated dc Voltage, TC = 2S°C)
(Rated dc Voltage, TC = 12S°C)
DYNAMIC CHARACTERISTICS (PER LEG)
I
Capacitance (VR = -S.O V, TC = 2SoC, Frequency = 1.0 MHz)
(1) Pulse Test: Pulse Width = 300 )1s, Duty Cycle S2.0%.
3-159
MBR20200CT
100
10,000
70
TJ = 150°C
~
1,000
50
L 11'/ /
TJ = 150°C--t ~/.
TJ ='125°C
/
TJ = IOD°C
LL 'L V
'LL 1
TJ=125 0
C:h V II
1
1
5- o.1
1
1
14- 1-1- TJ = 100°C - r -
I
r
V I 1/
I
II
1
0.01
/ 11/ f t- T~=25°C
2
0.2
/I I II
I
/
1/
I--"""
TJ = 25°C
I - t--
o
20
40
60
80 100 120 140 160
VR, REVERSE CURRENT (VOLTS)
180
200
Figure 2. Typical Reverse Current (Per Leg)
~4O
[
0.4
0.6
0.8
VI'> INSTANTANEOUS VOLTAGE (VOLTS)
SQI\A~
WAVE
TJ = 125°C
36
~ 32
~
Figure 1. Typical Forward Voltage (Per Leg) .
~
c
Y
28
/
24
k"2
IAV -
I ~:
/
/
~ 12
~
~
/
8
1/
./
VV
./
Vde
V
.,./ ' ~
~ ~V
./~ ~ I-"'"
~ 4
,EO
Vl/
./
~~
o
5
10
15
20
25
30
35
IF(AV), AVERAGE FORWARD CURRENT (AMPS)
Figure 3. Forward Power Dissipation
RATED VOLTAGE
RaJC= 2°C/W
Ci)
a..
-
~
16
i3
c
12
a:
a:
I" ~
SQUARE" ~ de
WAVE
~
a:
~
....
.... ~
.... ~
150
........ .......
SQUARE I"'- ~ r-....
f2
8 WAVE
4
~
~
de
a!
;;cffi
w
110
120
130
140
TC, CASE TEMPERATURE (OC)
RaJA = WC/W
RATED VOLTAGE -
i
~~
100
20
E"
160
Figure 4. Current Derating. Case
........
F:::: t-............
~
r-:::~
0
0
25
50
75
100
125
TA, AMBIENTTEMPERATURE (0C)
""
150
Figure 5. Current Derating. Ambient
3-160
175
MBR20200CT
500
400
1,,\
=25"C
1'\
"
~
~ 300
u
z
;:;
t5
if:
c3
TJ
200
'\
I\..
"r--.
c.5
,
l"- I"'--.
100
o
1
5
10
20
50
VR. REVERSE VOLTAGE (VOLTS)
Figure 6. Typical Capacitance (Per Leg)
3-161
70
100
II
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL DATA
MBR30035CT
MBR30045CT
MBR30050CT
MBR30060CT
POWERTAP
SWITCH MODE Power Rectifiers
· .. using the Schottky Barrier principle with a platinum barrier metal. These state-of-theart devices have the following features:
•
•
•
•
•
II
Terminal Penetration:
Terminal Torque:
Mounting TorqueOutside Holes:"
30--40 in-Ib max
'Center Hole Must be
Torqued Fi~
8-10 in-Ib max
MBR30045CT and MBR30060CT are
Motorola Preferred Devices
Dual Diode Construction - May Be Paralleled For Higher Current Output
Guardring For Stress Protection
Low Forward Voltage
175'C Operating Junction Temperature
Guaranteed Reverse Avalanche
SCHOTTKY BARRIER
RECTIFIERS
300 AMPERES
35 TO 60 VOLTS
0.280 max
25-40 in-Ib max
1~
~--~
POWERTAP
CASE 357C-Q3
MAXIMUM RATINGS
Rating
Symbol
Max
Unit
VRRM
VRWM
VR
35
45
50
60
Volts
Average Rectified Forward Current Per Device
Per Leg
(Rated VR) TC = 140'C
IF(AV)
300
150
Amps
Peak Repetitive Forward Current. Peg Leg
(Rated VR, Square Wave, 20 kHz), TC = 140'C
IFRM
300
Amps
Nonrepetitive Peak Surge Current Per Leg
(Surge applied at rated load conditions
halfwave, single phase, 60 Hz)
IFSM
2500
Amps
Peak Repetitive Reverse Current, Per Leg
(2 p.S, 1 kHz) See Figure 6
IRRM
2
Amps
TJ, Tstg
-65to +175
'c
dv/dt
1000
V/p.S
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
MBR30035CT
MBR30045CT
MBR30050CT
MBR30060CT
Operating Junction and Storage Temperature
Voltage Rate of Change (Rated VR)
THERMAL CHARACTERISTICS PER LEG
Thermal Resistance, Junction to Case
ELECTRICAL CHARACTERISTICS PER LEG
Instantaneous Forward Voltage (1)
(iF = 150 Amps, TC = 175'C)
(iF = 150 Amps, TC = 125'C)
(iF = 150 Amps, TC = 25'C)
(iF = 300 Amps, TC = 125'C)
(iF = 300 Amps, TC = 25'C)
vF
Instantaneous Reverse Current (1)
(Rated de Voltage, TC = 125'C)
(Rated de Voltage, TC = 25'C)
iR
Volts
0.57
0.64
0.74
0.78
0.82
mA
75
0.8
(1) Pulse Test: Pulse Width = 300 "s. Duty Cycle" 2%.
3-162
MBR30035CT, MBR30045CT, MBR30050CT, MBR30060CT
/
/
0
0
V
/
-
:g
!z
g§
/
a
/
0
g;
V I
0
I
TJ - 175°C /
0
7
5
0.2
~
I
1/125°C /25°C
L
3
S
_.
0.4
- -
1000
/
1/
0.6
400
200
100
40
20
10
125°C
TJ
I-C"'
150°C-=
4
2
1
0.4
0.2
O. 1
0.04
0.02
0.0 1
VF.INSTANTANEOUS FORWARD VOLTAGE IVOLTS)
-
25°C
o
0.8
"
175°C
10
20
30
VR. REVERSE VOLTAGE IVOLTS)
40
50
Figure 2. Typical Reverse Current (Per Leg)-
Figure ,. Typical Forward Voltage (Per Leg)
*The curves shown are typical for the highest voltage device in the voltage
grouping. Typical reverse current for lower voltage selections can be
estimated from these same curves if VR is sufficiently below rated YR.
160
~
~ 140
>-
z
gj
0
\
120
:\
~ 80
12w
~,
60
A~PlIJD
RAffD VOLTAGE
I
w 40
SQUARE WAVE. 50% DUTY CYCLE
~
I
I I
I
I
I
~ 20
j!:'
150"C
TJ = 125°C\
0
60
40
!!!
CI
175°C,\
1\
\
~
u;
\
\
a 100
!i!
z
a
:\
1\
80
100
120
140
TC. CASE TEMPERATURE 1°C)
\
~OLTAG~
RATED
APPlIE6
SQUARE WAVE. RESISTIVE LOAD
50% DUTY CYCLE
\
160
CI
~
0
'"~
'"
12
0
tll
~
180
Tj-=.125°C/ V175"C
#
Figure 3. Current Derating (Per Leg)
~
V
./
../
~ oo
20
~
;F
/'
/'
/' V
0
'"
\
\
80
40
60
80
100
120
140
160
IFlAV). AVERAGE FORWARD CURRENT lAMPS)
Figure 4. Power Dissipation (Per Leg)
+150V'10mAdC~
20.000
2kO
4 "F
:-.
10.000
+~
........ ......
0
lDUT
~
~AX
100 kHz .. k
2.000
1.000
0.5
1 MHz
TYP r::::: ~
I
0.7
I
20
10
VR. REVERSE VOLTAGE IVOLTS)
30
r-50
Figure 5. Capacitance (Per Leg)
1kHz
CURRENT
AMPUTUDE
ADJUST
D-l0AMPS
1 CARBON
lN5B17
Figure 6. Test Circuit For Repetitive Reverse Current
3-163
II
MOTOROLA
SEMICONDUCTOR------------TECHNICAL DATA
Product Preview
MBR60035CTL
POWERTApTM Package
Motorola Preferred Device
SWITCHMODETM Power Rectifier
Employs the use of Schottky Barrier technology with a platinum barrier metal.
These state-of-the-art devices offer the following features:
•
•
•
•
•
•
II
LOWVF
SCHOTTKY BARRIER
RECTIFIER
600 AMPERES
35 VOLTS
Dual Diode Construction - May be Paralleled for Higher Current Output
Guardring for Stress Protection
Low Forward Voltage Drop
Guaranteed Reverse Avalanche Energy Capability
150c C Operating Junction Temperature
Improved Mechanical Ratings
CASE 357C-03
POWERTAP
MAXIMUM RATINGS (PER LEG)
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage (TC
=100'C)
Symbol
Max
Unit
VRRM
VRWM
40
Volts
VR
35
Volts
IF(AV)
600
300
Amps
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions hallwave, single phase, 60 Hz)
IFSM
4000
Amps
Peak Repetitive Reverse Current
(2.0 Ils, 1.0 kHz) See Figure 6
IRRM
2.0
Amps
TJ, Tstg
-55to+150
cC
dv/dt
10000
V/IlS
WAVAL
40
mJ
Average Rectified Forward Current
(Rated VR) TC 100'C
Per Device
Per Leg
=
Operating Junction and Storage Temperature
Voltage Rate of Change (Rated VR)
Controlled Avalanche Energy
(Maximum)
THERMAL CHARACTERISTICS (PER LEG)
0.4
Thermal Resistance - Junction to Case
ELECTRIt;AL CHARACTERISTICS (PER LEG)
Maximum Instantaneous Forward Voltage (1)
(iF 300 Amps, T C 25cC)
(iF 300 Amps, TC 100cC)
vF
Maximum Instantaneous Reverse Current (1)
(Rated de Voltage, TC 25'C)
(Rated dc Voltage, TC 100C C)
iR
=
=
=
=
Volts
0.57
0.50
=
=
mA
10
250
(1) Pulse Test. Pulse Width = 300 ~s, Duty Cycle S 2%.
POWERTAP and SWITCHMODE are trademarks of Motorola, Inc.
This document contains mformation on a product under development. Motorola reserves the right to change or discontinue this product without notice.
Preferred devices are Motorola recommended choices for future use and best overall value.
3-164
MBR60035CTL
~
1
I
!z
~
a:
!z
II 'f-
::l
g 200
~
100
::l
50
li:l
z
III
//
~ 20
en
z
-. 10
.!=-
/
0.1
50'C
S
=
25'C
z~
~
~
lIfo,c ~5'C
0
100'C
li:l
z
/
~
1000
500
w 200
~ 100
~ 50
a: 20
~
10
-TJ=50'C
/,
~
:r
en
li!
~
300
~
.~
0.2
0.3
0.4
0.5
O.B
vf. INSTANTANEOUS VOLTAGE (VOLTS)
0.5
0.2
00
10
15
20
25
30
35
vR, INSTANTANEOUS REVERSE VOLTAGE (VOLTS)
Figure 1. Typical Forward Voltage
(PER LEG)
Figure 2. Typical Instantaneous Reverse Current
(PER LEG)
en
~
en
300
Q.
~
\i\
\\
I
I-
~ 250
a:
a:
::l
u
@ 200
Q
~
en
1\ \
\\
~
SQUARE
a:
:r 150
c
,~
1\\
100
~
~
ir
00
BO
I
~
iii:
80
100
120
TC, CASE TEMPERATURE ('C)
70
BO
50
40
30
20
10
~
F
140
-
SQUARE WAVE
RATED VOLTAGE
APPLIED, RESISTANCE
LOAD, 50% DUTY CYCLE
90
80
~
a:
i:r
.Y
\\
w
~
~
a:
D.C.
140
130
120
110
100
II
- -
TJ=100'CZ
....
,/
~
./
./"
/:
./
./
V
'"
/
100
150
200
250
300
iF(AV), AVERAGE FORWARD CURRENT (AMPS)
Figure 3. Forward Current Derating
(PER LEG)
Figure 4, Power Dissipation
(PER LEG)
7K
!L 5K
.s
n
I'"
.....
w
u
z
~
4K
C3 3K
u 10
0
a:
.....-~
10
r~
~
a:
!(
./
-
85'C
0
w
z
z~
0.5
-
125'C 65'C 25'C
~
(;)
RA~EDVOLiAGEAP~LlED _
""'- "-
120
125
130
135
140
145
150
TC. CASE TEMPERATURE (0C)
Figure 4. Current Derating, Case
Figure 3. Typical Forward Power Dissipation
3-169
155
160
II
MOTOROLA
SEMiCONDUCTOR . . . . . . . . . . . . . . . . . . . . . . . ....
TECHNICAL DATA
Designer'sTM Data Sheet
SWITCHMODETM Power Rectifier
MBRB2060CT
Motorola Preferred Device
D2PAK Surface Mount Power Package
Employs the use of the Schottky Barrier principle with a platinum barrier metal.
These state-of-the-art devices have the following features:
•
•
•
•
•
•
•
•
•
..
SCHOTTKY BARRIER
RECTIFIER
20 AMPERES
60 VOLTS
Package Designed for Power Surface Mount Applications
Center-Tap Configuration
Guardring for Stress Protection
Low Forward Voltage
150°C Operating Junction Temperature
Epoxy Meets UL94, Vo at 1/8"
Guaranteed Reverse Avalanche
Short Heat Sink Tab Manufactured - Not Sheared!
Similar in Size to Industry Standard TO-220 Package
•
CASE 4188-01
MAXIMUM RATINGS, PER LEG
Rating
Symbol
Value
Unit
VRRM
VRWM
VR
60
Volts
IF(AV)
10
20
Amps
IFRM
20
Amps
Non-repetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz)
IFSM
150
Amps
Peak Repetitive Reverse Surge Current (2.0 !lS, 1.0 kHz)
IRRM
0.5
Amp
Tsta
-65 to +175
°C
TJ
-65 to +150
'c
dv/dt
1000
V1!ls
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current
(Rated VR) TC 110'C
=
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz), TC
Total Device
=100'C
Storage Temperature
Operating Junction Temperature
Voltage Rate of Change (Rated VR)
THeRMAL CHARACTERISTICS, PER LEG
Thermal Resistance - Junction to Case
- Junction to Ambient (2)
ELECTRICAL CHARACTERISTICS, PER lEG
Maximum Instantaneous Forward Voltage (1)
(iF 20 Amps, TJ 125'C)
(iF 20 Amps, TJ 25'C)
vF
Maximum Instantaneous Reverse Current (1)
(Rated dc Voltage, T J 125°C)
(Rated de Voltage, TJ 25'C)
(1) Pulse Test. Pulse Width -= 300 IlS, Duty Cycle s 2%
iR
=
=
=
=
Volts
0.85
0.95
=
=
mA
150
0.15
(2) See Page 3 for mounting conditions
SWITCHMODE and Designer's are trademarks of Motorola Inc.
Preferred devices are Motorola recommended choices for future use and best overall value.
Designer's Data for "Worst Case" Conditions - The Designer's Data Sheet permits the design of most circuits entirely from the Information presented. limit culVes devtce characteristics - are given to facilitate ~worst case" design.
3-170
representing boundaries on
MBRB2060CT
in
c..
50
ill
20
~
a~c
10
~
5
I==l= TJ = 150'C
150'C,
I
"- IV
175'C"
P,
<,10
#
/
100'C I
I
a:
Iff
!r
f
If
TJ=25'C
f/
/J /
~
'/
~ TJ = 125'C
-f-
aw
15
/
// /
z~
r--
.§.
!z
~ 0.1
1/
ci:
)
;:3
en
0.01
~ 0.5
.!f.
0
~
u
u
U
U
M
M
~
V" INSTANTANEOUS VOLTAGE (VOLTS)
~~§
U
Figure 1. Typical Forward Voltage Per Diode
20
RATED VOLTAGE
tPUEDI
-
S. 28
!z
~
@ 20
~
16
w
12
\
l'\.
~ 4
u:-
o
80
~
~
ffi
~
[\.
100
110
120
130
140
TC. CASE TEMPERATURE I'C)
'\
150
IpKiIAV = 5 ::
160
Figure 3. Typical Current Derating, Case,
Per Leg
10
./
~V
'-- IpKiIAV = 20 "
8
6
V
v~ ~ ./'
/. VA ~..... V 'SQUARE
WAVE
~ / ....... iI"""........ ""-
>-
~~ ~
~
~
2
i~
o
o
~
~~
~ ./
Ipf(IIAV= 10
a: 12
'\
90
120
PI
S
14
~
'\ \
~C
SQUAR~\
WAVE
~
I
I
TJ=125'C
in 16
Rruc= 2'C/W
o
~
~
w
18 -
24
::::>
40
60
80
100
VR. REVERSE VOLTAGE (VOLTS)
Figure 2. Typical Reverse Current Per Diode
~ 32
::;;
TJ = 25'C
20
V
6
10
12
14
AVERAGE CURRENT (AMPS)
DC
16
18
Figure 4. Average Power Dissipation and
Average Current
3-171
20
II
MOTOROLA
SEMICONDUCTOR------------TECHNICAL DATA
Designer'sTM Data Sheet
SWITCHMODETM Power Rectifier
OR'ing Function Diode
D2PAK Surface Mount Power Package
The D2PAK Power Rectifier employs the Schottky Barrier principle in a large
metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with
oxide passivation and metal overlay contact. Ideally suited for use in low voltage, high
frequency switching power supplies, free wheeling diodes, and polarity protection diodes.
These state-of-the-art devices have the following features:
•
•
•
•
•
•
•
•
•
MBRB2515L
Motorola Preferred Device
SCHOTTKY BARRIER
RECTIFIER
25 AMPERES
15 VOLTS
Guardring for Stress Protection
low Forward Voltage
1000 Operating Junction Temperature
Epoxy Meets Ul94, VO at 1/B"
Guaranteed Reverse Avalanche
Short Heat Sink Tab Manufactured - Not Sheared!
Similar in Size to the Industry Standard TO-220 Package
Available in Tape and Reel. Add a T4 Suffix to Part Number to
order the 24 mm, 13 inch/BOO Unit Reel.
e
A
CASE 4188-01
02PAK
MAXIMUM RATINGS
Symbol
Value
Unit
VRRM
VRWM
VR
15
Volts
IF(AV)
25
Amps
IFRM
30
Amps
Nonrepetitive Peak Surge Current
(Surge applied ,at rated load conditions hallwave, single phase, 60 Hz)
IFSM
150
Amps
Storage Temperature
Tstg
-65 to +150
°C
TJ
100
"C
dvldt
1000
V/!IS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current (Rated VR) TC
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz), TC
=90"C
=100°C
Operating Junction Temperature
Voltage Rate of Change (Rated VR)
THERMAL CHARACTERISTICS
Thermal Resistance - Junction to Case
- Junction to Ambient (1)
1.0
50
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (2)
(iF = 19 Amps, TJ = 70"C)
(iF = 25 Amps, TJ = 70°C)
(iF = 25 Amps, TJ = 25"C)
vF
Maximum Instantaneous Reverse Current (2)
(Rated dc Voltage, TJ = 70"C)
(Rated dc Voltage, TJ = 25"C)
iR
Volts
0.2B
0.42
0.45
mA
200
15
(1) When mounted usmg minimum recommended pad size on FR·4 board.
(2) Pulse Test: Pulse Width = 300 }.Is, Duty Cycle s 2%.
Designer's Data for "Worst case" Conditions - The Designer's Data Sheet permits the design of most circuits entirely from the informatIOn presented. SOA Umitcurves - representing boundaries
on device characteristIcs - are given to facihtate Mworst case" deSign.
DesIgner's and SWITCHMODE are trademarks of Motorola Inc.
Thermal Clad IS a trademark of the BergqUIst Company
Preferred deVices are Motorola recommended choices for future use and best overall value.
3-172
MBRB2515L
u;- 50
Il:;;
:;;. 30
I- 20
z
70'C......
W
II:
II:
10
::>
7
u
5
c
II:
3
~ 2
II:
.k""
«
.§.
TJ = 25'C
I-
zw
II:
II:
::>
u
w
;2
~[jjW
w
z 0.5
;f 0.3
z
;f 0.2
70'C
-25'C
0.2
0.1
II:
fi: 0.02
en
~
--
~
w
1
::>
0 0.7
.!f.
-
C!:J
0
u.
en
1000
400
200 f-- TJ = 100'C
100
40
20
10
0.1
0.1
0.2
0.3
0.4
vF, INSTANTANEOUS VOLTAGE (VOLTS)
0.01 0
0.5
Figure 1. Typical Forward Voltage
6
8
10
12
14
VR, REVERSE VOLTAGE (VOLTS)
16
18
20
Figure 2. Typical Reverse Leakage Current
en
~
~ 40
z
o
Ie
TJ = 70'C
:::;;
~ 35
ill
I
15
f-25
@ 20
~ 15
II:
f2
~
w
10
~ 0
~ 0
il:"
Il-
/
30
IpK = 10
IAV
1
';.
1
5
L
35
!z
l:\!
II:
30
U
25
::>
c
V/
/ V V
L LV V
1.L. ~
v:.V
:::.-...-
/SaUARE
40
:;;.
~
20
~
12
15
SaUARE
WAVE
~
10
II:
Voc
L
II:
W
I-"""
W
'\.DC
"-.\
"'\ ~
~
40
Figure 3. Typical Forward Power Dissipation
~
0
60
65
70
75
80
85
90
TC, CASE TEMPERATURE (0C)
Figure 4. Current Derating, Case
3-173
,
'\
~
~
10
15
20
25
30
35
IF(AV), AVERAGE FORWARD CURRENT (AMPS)
II
I
I
I
RATED VOLTAGE APPUED
ReJC= I'C/W
95
100
MOTOROLA
SEMICONDUCTOR------------TECHNICAL DATA
Designer'sTM Data Sheet
SWITCHMODETM Power Rectifier
MBRB2535CTL
D2PAK Surface Mount Power Package
Motorola Preferred Device
The 02PAK Power Rectifier employs the Schottky Barrier principle in a large
metal-to-silicon power diode. State-of-the-art geometry features epitaxial
construction with oxide passivation and metal overlay contact. Ideally suited for
use in low voltage, high frequency switching power supplies, free wheeling
diodes, and polarity protection diodes. These state-of-the-art devices have the
following features:
II
•
•
•
•
•
•
•
•
•
SCHOTTKY BARRIER
RECTIFIER
25 AMPERES
35 VOLTS
Center-Tap Configuration
Guardring for Stress Protection
Low Forward Voltage
125°C Operating Junction Temperature
Epoxy Meets UL94, VO at 1/B"
Guaranteed Reverse Avalanche
Short Heat Sink Tab Manufactured - Not Sheared!
Similar in Size to the Industry Standard TO-220 Package
Available in Tape and Reel. Add a T4 Suffix to Part Number to
order the 24 mm, 13 inch/BOO Unit Reel.
,."
A
CASE 418B-01
02PAK
MAXIMUM RATINGS, PER LEG
Symbol
Value
Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
40
35
35
Volts
Average Rectified Forward Current
(Rated VR) TC 110°C
IF(AV)
12.5
Amps
IFRM
25
Amps
Non-repetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz)
IFSM
150
Amps
Peak Repetitive Reverse Surge Current (2.0 Ils, 1.0 kHz)
IRRM
1.0
Amp
Tst~
-65 to +150
°C
TJ
-65 to +125
°C
dv/dt
10,000
V/IlS
Rating
=
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz), TC
=90°C
Storage Temperature
Operating Junction Temperature
Voltage Rate of Change (Rated VR)
THERMAL CHARACTERISTICS, PER LEG
Thermal Resistance - Junction to Case
- Junction to Ambient (1)
2.0
50
ELECTRICAL CHARACTERISTICS, PER LEG
Maximum Instantaneous Forward Voltage (2)
Maximum Instantaneous Reverse Current (2)
=25 Amps, TJ =25°C)
=12.5 Amps, T J =125°C)
=12.5 Amps, TJ =25°C)
(Rated dc Voltage, TJ =125°C)
(Rated de Voltage, TJ =25°C)
(iF
(iF
(iF
vF
0.55
0.41
0.47
Volts
iR
500
10
mA
(1) When mounted uSing minimum recommended pad size on FR-4 board.
(2) Pulse Test: Pulse Width:: 300 J.lS, Duty Cycle :5 2%.
Designer's Data lor "Worst Case" Conditions - The DeSigner's Data Sheet permits the design of most circuits entirely from the information presented. SOA limit curves - representing boundaries on
device characteristics - are given to facilitate ''worst case~ design
DeSigner's and SWITCHMOOE are trademarks of Motorola Inc.
Thermal Clad IS a trademark of the BergqUist Company
Preferred deVIceS are Motorola recommended choices for future use and best overall value.
3-174
MBRB2535CTL
1000
TJ=~~
1
zw 100
I-
0
./
~
~
0
0
I
=>
w
<.>
10
;2
U'-'i
-
w
en
a:
w
iri
a:
0.1
ri;
I
TJ =25"C
10
15
20
25
VR, REVERSE VOLTAGE (VOLTS)
5
I
30
35
Figure 2. Typical Reverse Current, Per Leg
I
iii'
/ I
1
-
C!)
TJ = 25°C
I
2
./
I
I
I
I
TJ = 100"C
a:
a:
I""
V
TJ = 125°C /
5
-'
!iii
1!E. 40
z
o
•
TJ = 125°C
~ 35
o. 5
~
I
I
o. 1
~
1 11
0.2
o
IE
1/
I
1
0.1
30
c
a: 25
SINE WAVE
(RESISTIVE LOAD) / .
20
1'l"
~ 15
~. /
a:
0.2
0.3 0.4 0.5
0.6 0.7
0.8
vF, INSTANTANEOUS VOLTAGE (VOLTS)
0.9
f2w
10
~
5
10
i1l:
~
Figure 1. Typical Forward Voltage, Per Leg
i:L
~
0
h
V
/sQUARE
WAVE
./
. / ~DC
ke V
I-""
10
15
20
25
30
35
IF(AV). AVERAGE FORWARD CURRENT (AMPS)
0
t.)
o
0
LL
w
SQUARE"
WAVE
16
12
12
w
12
~
~
~
~
LL
~
a:
8
8
12
16
20
24
28
32
If', AVERAGE FORWARD CURRENT (AMPS)
36
40
Figure 3. Typical Forward Power Dissipation
~C
20
i
~w
...~
~
24
16
a:
i
1'-
r4
.lr 0
110
RATED VOLTAGE APPUED
Re./C • 1.5'CfW
\
I"\
1\
\
1"- \
\
120
130
140
TC, CASE TEMPERATURE ('C)
Figure 4. Current Derating, Case
3-177
\
\
150
MOTOROLA
SEMiCONDUCTOR . . . . . . . . . . . . . . . . . . . . . . . .. .
TECHNICAL DATA
Designer'sTM Data Sheet
SWITCHMODETM Power Rectifier
MBRB20100CT
Motorola Preferred Devtce
D2PAK Surface Mount Power Package
The D2PAK Power Rectifier employs the use of the Schottky Barrier principle with a platinum
barrier metal. These state-of-the-art devices have the following features:
•
•
•
•
•
•
•
•
•
II
SCHOTTKY BARRIER
RECTIFIER
Package Designed for Power Surface Mount Applications
Center-Tap Configuration
Guardring for Stress Protection
Low Forward Voltage
150°C Operating Junction Temperature
Epoxy Meets UL94, Vo at 1/8"
Guaranteed Reverse Avalanche
Short Heat Sink Tab Manufactured - Not Sheared I
Similar in Size to Industry Standard TO-220 Package
20 AMPERES
100 VOLTS
•
CASE 4188-01
MAXIMUM RATINGS, PER LEG
Rating
Symbol
Value
Unit
VRRM
VRWM
VR
100
Volts
IF(AV)
10
20
Amps
IFRM
20
Amps
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions hallwave, single phase, 60 Hz)
IFSM
150
Amps
Peak Repetitive Reverse Surge Current (2.0 I's, 1.0 kHz)
IRRM
0.5
Amp
Tstg
-65 to +175
°C
TJ
-65 to +150
°C
dv/dt
1000
VII's
vF
0.75
0.B5
0.B5
0.95
Volts
iR
150
0.15
mA
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current
(Rated VR) TC 110°C
=
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz), TC
Total Device
=100°C
Storage Temperature
Operating Junction Temperature
Voltage Rate of Change (Rated VR)
THERMAL CHARACTERISTICS, PER LEG
Thermal Resistance - Junction to Case
- Junction to Ambient (2)
ELECTRICAL CHARACTERISTICS, PER LEG
Maximum Instantaneous Forward Voltage (1)
(iF = 10 Amp,
(iF = 10 Amp,
(iF = 20 Amp,
(iF = 20 Amp,
TC = 125°C)
TC = 25°C)
TC = 125°C)
TC = 25°C)
Maximum Instantaneous Reverse Current (1)
(Rated dc Voltage, TJ = 125°C)
(Rated dc Voltage, T J = 25°C)
(1) Pulse Test: Pulse Width = 300 ~s, Outy Cycle $2%
(2) See Page 3 fOT mounting conditions
SWITCHMODE and DeSigner's are trademarks of Motorola Inc.
Thermal Clad is a trademark of the Bergquist Company
Preferred devices are Motorola recommended choices for future use and best overall value.
Designer's Data for "Worst Case" Conditions - The Designer's Data Sheet permits the design of most circuhs entirely from the informatiOn presented. limit curves - representing boundaries on
device characterishcs - are given to faCIlitate "worst case" design.
3-178
MBRB20100CT
TYPICAL ELECTRICAL CHARACTERISTICS
~
~
~
a:
a:
B
50
=1= TJ = 150°C
150°C "-
20
~
I
175°C "-
10
§
'"a:
ifZ
r/
/J /
(J)
=>
53
z
1// /
V
j5
z
/
"r
1.
/
10
!z
=
100°C
IL
L
:/L
-
-
~
/
~
0.1
a:
I
j5
0.01
o
~
U
M
U
U
M
U
~
Figure 1. Typical Forward Voltage Per Diode
Figure 2. Typical Reverse Current Per Diode
fE
24
ReJC= 2°CNI
a:
i
16
5?
12
~w
'"
\
i'\.DC
SaUAR~,\
WAVE
\
~
~
18
iPPUED,
~ 20
4
o
80
90
"
00
16~_4--_+--~--+-~--_+--_+
~
14 ~_4--_+
a:
12~_4--_+--~--+-~-.~~~~~-.~_4
~
~
w
~w
"- \
10
8~_4--_+--~~~~~~~~--+_
~
'\.
100
110
120
130
140
TC. CASE TEMPERATURE (0C)
120
wr--.---.--,---.--.---.----------r--.
RAT~D VOLT~GE -
28
20
TJ = 25°C
40
60
80
100
VR. REVERSE VOLTAGE (VOLTS)
w
=>
~~
o
M
vI" INSTANTANEOUS VOLTAGE (VOLTS)
~ 32
~
!z
TJ = 125°C
==
Tr25°C
~
.!f. 0.5
~~
-I-
150
160
Figure 3. Typical Current Derating, Case,
Per Leg
6
8
10
12
14
AVERAGE CURRENT (AMPS)
16
18
Figure 4. Average Power Dissipation and
Average Current
3-179
20
II
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL
DATA
-----------MBRD320
MBRD330
MBRD340
MBRD350
MBRD360
SWITCH MODE Power Rectifiers
DPAK Surface Mount Package
· .. designed for use as output rectifiers, free wheeling, protection and steering diodes in
switching power supplies, inverters and other inductive switching circuits. These stateof-the-art devices have the following features:
•
•
•
•
•
MBRD320, MBRD340 and MBRD360 ar.
Motorola Preferred Devices
Extremely Fast Switching
Extremely Low Forward Drop
Platinum Barrier with Avalanche Guardrings
Guaranteed Reverse Avalanche
SCHOTTKY BARRIER
RECTIFIERS
3 AMPERES
20 TO 60 VOLTS
Mechanical Characteristics
• Case: Epoxy, Molded
• Finish: All External Surface Corrosion Resistance and Terminal Leads are Readily
Solderable
• Lead Formed for Surface Mount
• Available in 16 mm Tape and Reel or Plastic Rails
• Compact Size
• Lead and Mounting Surface Temperature for Soldering
.... 1
Purposes 260'C Max. for 10 Seconds
.
.,..
ATHODE
_
ANODE
CATHODE".
ANODE 'V
CASE 3S9A-ll
PLASTIC
MAXIMUM RATINGS
Symbol
Rating
MBRD
320
330
340
350
360
20
30
40
50
60
Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
Average Rectified Forward Current (TC = + 125'C, Rated VR)
IF(AV)
3
Amps
Peak Repetitive Forward Current. TC = + 125'C
(Rated VR, Square Wave, 20 kHz)
IFRM
6
Amps
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions hallwave. single phase, 60 Hz)
IFSM
75
Amps
Peak Repetitive Reverse Surge Current (2 p.s. 1 kHz)
IRRM
1
Amp
TJ
-65 to +150
'C
Storage Temperature
T.tg
-65 to +175
'C
Voltage Rate of Change (Rated VR)
dv/dt
1000
V/p.s
Operating Junction Temperature
Volts
THERMAL CHARACTERISTICS
Maximum Thermal Resistance. Junction to Case
6
Maximum Thermal Resistance. Junction to Ambient (1)
80
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (2)
iF = 3 Amps. TC = +25'C
iF = 3 Amps, TC = +125'C
iF = 6 Amps, TC = +25'C
iF = 6 Amps. TC = + 125'C
vF
Maximum Instantaneous Reverse Current (2)
(Rated dc Voltage. TC = + 25'C)
(Rated de Voltage, TC = + 125'C)
iR
Volts
0.6
0.45
0.7
0.625
mA
0.2
20
t1) Rating applies when surface mounted on the minimum pad size recommended.
= 300 p.o. Duty Cycle .. 2%.
(2) Pulse Test: Pulse Width
3-180
MBRD320, MBRD330, MBRD340, MBRD350, MBRD360
TYPICAL CHARACTERISTICS
10a
100
~
.s...
i:'i
a:
a
~
~
~~
0
":.
E'
'(//.
// V/
'rO°C ..... f.# Ilf I'-TJ = 25°C
rl I II
'1-1 h
I-"
125°C
100°C
WC
2~oC
,.....
--
I""""
so
20
30
40
50
VR. REVERSE VOLTAGE (VOLTS)
10
70
*The curves shown are typical forthe highest voltage device in the voltage
grouping. Typical reverse current for lower voltage selections can be
estimated from these curves if VR is sufficient below rated vR.
W'/v
125°C
TJ - 150°C
0.004
0.002
0.001a
/7. ' /
1
40
2a
1a
4
2
1
4
~:2
o. 1
0.04
0.02
0.01
Figure 2. Typical Reverse Current
0
9
r--75°C
SINE
WAy
TJ = 150°C
8
7
S
I I I
5
I
V
I~
/ / /
4
1/
3
'l'
/
/10
IpK/lAV = 20
A
/
W
~
/ fA
1/5
de V
V
\V
SQUARE
WAVE-
V
V~ . /
//
~ ~~
O. 1
0.1
0.2
0.3
0.4
0.5 O.S
0.7
0.8
0.9
vF.INSTANTANEOUS VOLTAGE (VOLTS)
~~ ~2 3 4 5 S 7 8
1.1
Figure 3. Average Power Dissipation
Figure 1. Typical Forward Voltage
SIN~\\
5
WAVE
OR
SQUARE
WAVE
f'\
1
a
80
RATED VOLTAGE APPLIED
Ie
R8JC = SOCIW
!Z
I"\
\
100
110
120
"
130
~
a:
~
I\de
\
\
............
3
"
w
~
~
1. 5
150
160
i'...
.......
---.r-- t--, ,
1
....
TJ = 150°C .... t--,
0
....
'
~ O. 5
if:
............
2 TJ = 125°C
a:
~
R8JA = 8O"C1W
SURFACE MOUNTED ON MIN.PAD SIZE RECOMMENDED
TJ =1 1500C
ao 2.5
a:
140
4
~ 3. 5
TJ = 150°C
\
90
10
IF(AV). AVERAGE FORWARD CURRENT (AMPS)
20
40
SO
....
---de
- - - SQUARE WAVEt'--,
......
....
r"
" ""
80
'" '"
100
OR
SINE WAVE
VR = 25V
'\
120
TA. AMBIENT TEMPERATURE 1°C)
TC. CASE TEMPERATURE (OC)
Figure 5. Current Derating. Ambient
Figure 4. Current Derating. Case
3-181
-
[\.
140
160
..
MBRD320, MBRD330, MBRD340, MBRD350, MBRD360
lK
700
500
! ~:
~
'\
r-...
TJ = 25°C
f':
!:: 100
~
c.J
r- r-
70
50
30
20
10
o
10
20
30
40
50
YR. REVERSE VOLTAGE (VOLTS)
Figure 6. Typical Capacitance
•
3-182
60
70
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL DATA
MBRD620CT
MBRD630CT
MBRD640CT
MBRD650CT
MBRD660CT
SWITCH MODE Power Rectifiers
DPAK Surface Mount Package
• .• in switching power supplies, inverters and as free wheeling diodes, these state·ofthe-art devices have the following features:
• Extremely Fast Switching
• Extremely Low Forward Drop
• Platinum Barrier with Avalanche Guardrings
• Guaranteed Reverse Avalanche
Mechanical Characteristics
• Case: Epoxy, Molded
• Finish: All External Surface Corrosion Resistance and Terminal Leads are Readily
Solderable
• Lead Formed for Surface Mount
• Available in 16 mm Tape and Reel or Plastic Rails
• Compact Size
• Lead and Mounting Surface Temperature for Soldering
Purposes 260'C Max. for 10 Seconds
MBRD620CT, MBRD640CT and MBRD660CT are
Motorola Preferred Devices
SCHOTTKY BARRIER
RECTIFIERS
6 AMPERES
20 TO 60 VOLTS
CATHODE
_
ANODE
CATHODE
ANODEC
CASE 369A-11
PLASTIC
MAXIMUM RATINGS
Rating
MBRD
Symbol
&ZOeT 630CT 640CT 650CT 660CT
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
Average Rectified Forward Current
TC = 130'C (Rated VR)
Per Diode
Per Device
20
30
40
50
60
Unit
Volts
IF(AV)
3
6
Amps
Peak Repetitive Forward Current. TC = 130'C
(Rated VR, Square Wave. 20 kHz) Per Diode
IFRM
6
Amps
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave. single phase. 60 Hz)
IFSM
75
Amps
Peak Repetitive Reverse Surge Current (2 p.s. 1 kHz)
IRRM
1
Amp
Operating Junction Temperature
TJ
Storage Temperature
Tstg
dv/dt
Voltage Rate of Change (Rated VR)
65 to +150
'C
-65 to +175
'c
1000
V/p,S
THERMAL CHARACTERISTICS PER DIODE
Maximum Thermal Resistance. Junction to Case
6
Maximum Thermal Resistance. Junction to Ambient (I)
80
ELECTRICAL CHARACTERISTICS PER DIODE
Maximum Instantaneous Forward Voltage (2)
iF = 3 Amps. TC = 25'C
iF = 3 Amps, TC = 125'C
iF = 6 Amps. TC = 25'C
iF = 6 Amps. TC = 125'C
vF
Maximum Instantaneous Reverse Current (2)
(Rated dc Voltage, TC = 25'C)
(Rated dc Voltage. TC = I 25'C)
iR
Volts
0.7
0.65
0.9
0.85
mA
0.1
15
..
(1) Rating applies when surface mounted on the minimum pad size recommended .
(21 Puis. Tesl: Pulse Width = 300 p.S. Duty Cycl. '" 2%.
3-183
II
,
MBRD620CT, MBRD630CT, MBRD640CT, MBRD650CT, MBRD660CT
TYPICAL CHARACTERISTICS
100
100
70
1
50
!z
TJ - 15O"C
10
125·C
I
30
w
75·C
~
~ o. 1
Ii:
,I!!J ~
".
0.01
o
~A
I#: '9'
•
A~
Ih 1/
121"C~ I
150"C .... JI II
0.3
.... 75~
9
!
8
7
6
5
4
w
~
0.2
:i<
~
,F
O. 1
o
0.2
~INE-
0.4
0.6
0.8
1.2
VF. INSTANTANEOUS VOLTAGE (VOLTS)
1.4
I
/.
'/
/
I
1/ / / "./
/ h
/ / V~ V . /
/ / h ~ ,.....
2
o
80
90
100
./
..-;Ic f . . -
TJ = 150·C-
~~
~~ ~
I
I
2
3
TJ
~ 3.5
....Z
~
TJ = 150·C
110
120
TC. CASE TEMPERATURE ("C)
/
ie
S-cr
\.\
\. I\,
r\\150
130
140
/
4
5
6
7
10
Figure 3. Average Power Dissipation, Per Leg
ac
SINf'~ \.de
WAVE
OR
SQUARE
WAlE
/
/
~
V ~QUARE
/. V WA'!7
V/
IFIAV}. AVERAGE FORWARD CURRENT lAMPS}
VOL~AGE APpLED_
I" I'\.
/
II
I
I
Figure 1. Typical Forward Voltage, Per Leg
RAtED
R8JC =
WAVE/"
5
'~
1
10 -lpKnAV = 20
0..
~
-TC = 25·C
/",
I
70
_ 14
en
1= 13
~1 2
!.i
0.5
60
30
40
50
VR. REVERSE VOLTAGE (VOLTS)
Figure 2. Typical Reverse Current,* Per Leg
t5
0.7
20
10
*The curves shown aretypical for the highest voltage device in the voltage
grouping. Typical reverse current for lower voltage selections can be
estimated from these curves if VR is sufficient below rated VR.
W
'III
1
~
0.001
A W
§
25·C
~
12
w
~
--..........
1.5
VR
= 25V
VR
= l,ov
lo.5
Figure 4. Current Derating, Case, Per Leg
"-..
~--r""'- ........
~
160
SURFACE MOUNTED ON
MINIMUM PAD SIZE
RECOMMENDED
3
2.5
o
o
-"'-
........
.....
....
de
- - - - SQUARE WAVE
OR
SINE WAVE
........
'~
~,
40
"'\
. . . r' ...
1'........
20
R~JA = ~·C,W
I
= .150·C
'
...
60
80
100
120
TA. AMBIENT TEMPERATURE I·C)
\
140
Figure S. Current Derating, Ambient, Per Leg
3-184
160
MBRD620CT, MBRD630CT, MBRD640CT, MBRD650CT, MBRD660CT
K
,"'-
~
w
u
z
~
~ 100
r-.",
i"--,
TJ
= 25'C
<5
c.J
10
o
10
20
30
40
50
60
80
VR. REVERSE VOLTAGE (VOLTS)
Figure 6. Typical Capacitance, Per Leg
I
3-185
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL DATA
MBRF2535CT
MBRF2545CT
SWITCHMODE
Dual Schottky Power Rectifiers
MBRF2545CT Is a
Motorola Preferred Device
•
•
•
•
•
•
•
low Forward Voltage Drop
Guardring for Stress Protection
150°C Operating Junction Temperature
High dv/dt Capability
Electrically Isolated, No Insulating Hardware Required
Electrically Similar to the Popular MBR2535CT and MBR2545CT
SCHOTTKY BARRIER
RECTIFIERS
25 AMPERES
35 and 45 VOLTS
CASE 2210-02
(ISOLATED TO-220)
MAXIMUM RATINGS (PER LEGI
Symbol
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
Average Rectified Forward Current (Rated VR) Per Leg, TC = 125'C
MBR2535CT MBR2545CT
35
45
Unit
Volts
IF(AV)
12.5
Amps
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz) TC = 125'C
IFRM
25
Amps
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions, halfwave, single phase, 60 Hz)
IFSM
150
Amps
Peak Repetitive Reverse Surge Current (2.0 Ils, 1.0 kHz I
IRRM
1.0
Amp
TJ
-65 to +150
'c
Storage Temperature
Tstg
-65 to + 175
·C
Voltage Rate of Change (Rated VR)
dv/dt
10000
V/p.s
Isolation Voltage
Vins
1500
Volts
Operating Junction Temperature
THERMAL CHARACTERISTICS (PER LEGI
Thermal Resistance -
Junction to Case
3.5
ELECTRICAL CHARACTERISTICS (PER LEG I
Maximum Instantaneous Forward Voltage (11
(IF = 12.5 Amps, TC = ·25'CI
(IF = 12.5 Amps, TC = 125'C)
vF
Maximum Instantaneous Reverse Current (11
(Rated dc Voltage, TJ = 25°CI
(Rated de Voltage, TJ = 125'CI
iR
Volts
0.7
0.62
rnA
0.2
40
(11 Pulse Test. Pulse Width ~ 300 p.s, Duty Cycle' 2.0%.
Switch mode is a trademark of Motorola Inc.
3-186
MBRF2535CT, MBRF2545CT
- -
100
100
0
0
<
/
ex:
=>
u
W
85°C
w
u
10
'"
1.0
w
25°C
;2
US
....
w
0.5
(J)
w
u:.
0.1 0
>
W
I I
II:
0.2
0.3
0.4
0.5
vf; INSTANTANEOUS VOLTAGE (VOLTS)
0.6
0.001 0
0.7
Figure 1. Typical Forward Voltage
I
25°C
0.01
ci:
1/
0.1
-
TJ = 100°C
0.1
II:
0.2
==
-
9
12
15
18
21
VR, REVERSE VOLTAGE (VOLTS)
24
27
Figure 2. Typical Reverse Leakage Current
I
en
~
I
RATED VOLTAGE APPLIED _
RSJC = 12°CIW
TJ = 100°C
-
~
TJ = 100°C --+-----1I--+---+-----1-----l
z
0
~
(J)
""
"-
SQUAR0
WAVE
60
70
80
90
15
II:
~
~
"
100
c..
w
~DC
~
110
'"w~
4
3
2
~
~
120
[
130
&-
00
5
TC, CASE TEMPERATURE (0G)
IF(AV), AVERAGE FORWARD CURRENT (AMPS)
Figure 3. Current Derating (Case)
Figure 4. Power Dissipation
400
I
u:-
.s
w
u
200
150
""
<5
I
250
8:
u
I
300
z
;!!:
U
I
NOTE: lYPICAL CAPACITANCE _
ATOV = 290 pF
350
100
50
\
\.
r---.....
8
12
16
20
24
VR, REVERSE VOLTAGE (VOLTS)
Figure 5. Typical Capacitance
3-189
11
I
en
5
30
28
32
7
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL DATA
MBRS140T3
Surface Mount
Schottky Power Rectifier
Motorola Preferred Device
· .. employing the Schottky Barrier principle in a large area metal-to-silicon power diode.
State-of-the-art geometry features epitaxial construction with oxide passivation and
metal overlay contact. Ideally suited for low voltage, high frequency rectification, or as
free wheeling and polarity protection diodes in surface mount applications where compact size and weight are critical to the system.
•
•
•
•
•
•
•
Small Compact Surface Mountable Package with J-Bend Leads
Rectangular Package for Automated Handling
Packaged in 12 mm Pocket Tape and Reel
Highly Stable Oxide Passivated Junction
Very Low Forward Voltage Drop (0.55 Volts Max (u 1.0 A, TJ = 25'C)
Excellent Ability to Withstand Reverse Avalanche Energy Transients
Guardring for Stress Protection
SCHOTTKY BARRIER
RECTIFIERS
1.0 AMPERE
40 VOLTS
MECHANICAL CHARACTERISTICS
•
CASE: Transfer Molded Plastic Package
LEAD FINISH: Plated Leads, Readily Solderable in Surface Mount Applications
POLARITY IDENTIFICATION: Notch in Plastic Body Indicates Cathode Lead
DEVICE MARKING: MBRS140T3 .......... B14
CASE 403A-03
MAXIMUM RATINGS
Symbol
Value
Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
40
Volts
Average Rectified Forward Current
IF(AV)
1 @Tl=115'C
Amps
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions hallwave. single phase. 60 Hz)
IFSM
40
Amps
TJ
-65 to +125
'C
Rating
Operating Junction Temperature
THERMAL CHARACTERISTICS
Thermal Resistance (Tl = 25'C)
Junction to lead
12
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)
(iF = 1.0 A. TJ = 25'C)
vF
Maximum Instantaneous Reverse Current (1)
(Rated de Voltage. TJ = 25°C)
(Rated de Voltage. TJ = 100'C)
iR
0.6
mA
1.0
10
(1) Pulse Test: Pulse Width = 300 ~s. Duty Cycl. S 2.0%.
3-190
Volts
MBRS140T3
,----
-
'---~r-
1
~
o.7
~
O. 5
s
/ I
a:
~
@
3
O. 2
~ o. 1
0.0
I
I TC=25°C
I
I
25°C
W
W
H
D
~
~
'The curves shown are typical for the highest voltage device in the voltage grouping. Typical
reverse current for lower voltage selections can
be estimated from these same curves if applied
VR is sufficientlv below rated YR.
U
M
U
U
V
U
M
1.1
VF.INSTANTANEOUS FORWARD VOLTAGE (VOLTSi
Figure 1. Typical forward Voltage
200
180
NOTE TYPICAL CAPACITANCE AT
OV ~ 160pF
160
~ 140
~
;z
120
~ 10
o\
~ ~--'"
-
u'
0
f'....
r--
0
0
12
16
20
24
28
VR. REVERSE VOLTAGE (VOLTSi
32
36
40
Figure 3. Typical Capacitance
10
~
::E
S
.L
RATEb VOLThGE AplpLiED
R/lJC '- 12 CW
TJ
125 C
t-
15
TJ
SOUAREWAV~
125 C
0
~/
~
::>
'-'
5...6
3
aa:
~
-...... .................. r--...
12
2 CAPACITANCE LOAD 10
r--.........: ~C
~
'"ffi""
SQUARE WAVE
~
~
if:
r--::::--"~
1
~
~
o
30
40
~
Figure 2. Typical Reverse Current*
I
U
u
VR. REVERSE VOLTAGE (VOLTSi
I
211
~
75°C
o
~ 0.0 7
0.03
100°C
- 0.05
0.03
0.02
0.0 1
;:!:
.!f. 0.05
125°C
u
5
3
2
1
t-
15
a:
I I
a:
::>
~ O.3
12
~
Te= 100°C
100
50
30
20
0
50
60
70
80
90
100
TC. CASE TEMPERATURE ( Ci
110
roo..
120
130
Figure 4. Current Derating (Case)
f--,IPK
20/
IAV /,~
W V
~~ V
~~ ,/
L
~V
V
~
1
2
3
4
IF(AVi. AVERAGE FORWARD CURRENT (AM PSi
Figure 5. Power Dissipation
3-191
/
D.5-'
~
II
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL DATA
MBRS340T3
Surface Mount
Schottky Power Rectifier
Motorola Preferred Device
· .. employing the Schottky Barrier principle in a large area metal-to-silicon power diode.
State-of-the-art geometry features epitaxial construction with oxide passivation and
metal overlay contact. Ideally suited for low voltage, high frequency rectification, or as
free wheeling and polarity protection diodes, in surface mount applications where compact size and weight are critical to the system.
•
o
•
•
•
•
•
Small Compact Surface Mountable Package with J-Bend Leads
Rectangular Package for Automated Handling
Packaged in 16 mm Pocket Tape and Reel
Highly Stable Oxide Passivated Junction
Very Low Forward Voltage Drop (0.5 Volts Max (/ 3.0 A, TJ = 25°C)
Excellent Ability to Withstand Reverse Avalanche Energy Transients
Guardring for Stress Protection
SCHOTTKY BARRIER
. RECTIFIERS
3.0 AMPERES
40 VOLTS
MECHANICAL CHARACTERISTICS
II
CASE: Transfer Molded Plastic Package
LEAD FINISH: Plated Leads, Readily Solderable in Surface Mount Applications
POLARITY IDENTIFICATION: Notch in Plastic Body Indicates Cathode Lead
DEVICE MARKING: MBRS340T3 .......... B34
CASE 403-03
MAXIMUM RATINGS
Symbol
Value
Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Rating
VRRM
VRWM
VR
40
VoHs
Average Rectified Forward Current
IF(AV)
3.0 @ TL = 100°C
4.0 @ TL = 90°C
Amps
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz)
IFSM
80
Amps
TJ
-65 to +125
°C
Operating Junction Temperature
THERMAL CHARACTERISTICS
Thermal Resistance -
Junction to Lead
11
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)
(iF 3.0 A, TJ 25°C)
vF
Maximum Instantaneous Reverse Current (1)
(Rated de Voltage, TJ 25°C)
(Rated dc Voltage, TJ 100°C)
iR
=
=
=
=
0.525
rnA
2.0
20
(1) Pulse Test: Pulse W,dth = 300 ~s, Duty Cycle S 2.0%.
3-192
Volts
MBRS340T3
-
100
50
II
TC=l00°C
\ I
YJ
a::
....~z
20 TJ
'/
~
a:
::0
u
w
V>
a:
~ 0.7
~
IL
~ 0.5
5!=== 100·C
1l'
i
a:
TC = 25°C
::0
a:
11===:= 75·C
O. 5
O. 2
~ O.
12
0.0
~
5l
0.3
~;!:
0.2
125·C
;;;: 10
.s....
~F=F25.C~
0.02
0.0 1
0
I
n
U
ffi
W M W
VR. REVERSE VOLTAGE IVOLTS)
I
V>
~
~
•
Figure 2. Typical Reverse Current
o. 1
0.07
0.05
o
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
vF.INSTANTANEOUS VOLTAGE IVOLTS)
•
1.2 1.3 1.4
Figure 1. Typical Forward Voltage
5/
10
V
/
ICAPACITIVE LOAD)
Y
V
/
/SQUARE
W"Z
/
./'
/ V ./
1fK=20/
' / /' V
IAV
/.V/ . / V
0- . / . /V
DC
~ ~V
1~
1
IFIAV). AVERAGE FORWARD CURRENT lAMPS)
Figure 3. Power Dissipation
i~
10
500
a:
a:
::0
u
-
C
~
12
........
w
r---...
i"'---
o
40
50
60
TJ
'"
\
~
~ 200
u
U
."-.
\..
70
80
90
100 110
TC. CASE TEMPERATURE I"C)
,,~
120
"
100
'-..\
130
o
o
140
Figure 4. Current Derating (Case)
12
16
20
24
28
VR. REVERSE VOLTAGE IVOLTS)
Figure 5. Typical Capacitance
3-193
= 25·C
\
~
~C
WAVE
:it
~1
400
~ 300
SQUAR~
~
.f?
RATEb VOLT~GE A~PLlED
RHJC = 10SC W
TJ = 125"C
TYPICAL CAPACITANCE AT 0 V = 480 pF
32
36
40
MOTOROLA
SEMiCONDUCTOR . . . . . . . . . . . . . . . . . . . . . . . ....
TECHNICAL DATA
Designer'sTM Data Sheet
Schottky Power Rectifier
MBRS1100T3
Motorola Preferred DevIce
Surface Mount Power Package
Schottky Power Rectifiers employ the use of the Schottky Barrier principle in a large area
metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide
passivation and metal overlay contact. Ideally suited for low voltage, high frequency rectification,
or as free wheeling and polarity protection diodes, in surface mount applications where compact
size and weight are critical to the system. These state-of-the-art devices have the following
features:
•
•
•
•
•
•
•
II
Small Compact Surface Mountable Package with J-Bend Leads
Rectangular Package for Automated Handling
Packaged in 12 mm Pocket Tape and Reel
Highly Stable Oxide Passivated Junction
High Blocking Voltage - 100 Volts
150°C Operating Junction Temperature
Guardring for Stress Protection
SCHOTTKY BARRIER
RECTIFIER
1.0 AMPERE
100 VOLTS
•
CASE 403A-03
Mechanical Characteristics
Case: Transfer Molded Plastic Package
Lead Finish: Plated leads, Readily Solderable in Surface Mount Applications
Polarity Identification: Notch in Plastic Body Indicates Cathode Lead
Device Marking: MBRS1100T3 ....... B1C
MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current
TL
TL
Non-repetitive Peak Surge Current
(Surge applied at rated load conditions hallwave, single phase, 60 Hz)
Operating Junction Temperature
Voltage Rate of Change
=120°C
=100°C
Symbol
Value
Unit
VRRM
VRWM
VR
100
Volts
IF(AV)
1.0
2.0
Amps
IFSM
50
Amps
TJ
-65 to +150
°C
dv/dt
10
V/ns
THERMAL CHARACTERISTICS
22
Thermal Resistance - Junction to Lead
(TL = 25°C)
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)
(iF 1.0 A, TJ 25°C)
vF
Maximum Instantaneous Reverse Current (1)
(Rated de Voltage, TJ 25°C)
(Rated de Voltage, TJ 100°C)
iR
=
=
=
=
0.75
Volts
mA
0.5
5.0
(1) Pulse Test: Pulse W,dth = 300 ",S, Duty Cycle :5 2%
Preferred devices are Motorola recommended choices for future use and best overall value.
Designer's Data for "Worst Case" Condhlons - The DeSigner's Data Sheet permits the design of most circuits entirely from the information presented Limit cU/ves - representIng boundaries on
device characteristics - are given to facilitate "worst case" design.
3-194
MBRS1100T3
TYPICAL ELECTRICAL CHARACTERISTICS
--
«
~ == TJ = 150"C
..=,
I-
z
w
a:
a:
::>
u
w
a:
IV
I-- -
1K
400
200
~
100 1= TJ= 150"C
40 r-- - 125"C_
~
20
10 I
100"C
,
100"C
L
25"C
I I
en
~
'"
I
lM
a:
0.02 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1
1.1 1.2 1.3 1.4
i3i
2.0
15
ffi
~
w
~W
en
4.0
~
!z
3.5
~/
WAV~
~
1.6
1.2
~
o
a@
2.5
~
a:
2.0
f2
1.5
40
50
60
70
80
1.0
1.5
2.0
2.5
3.0
3.5
r-...,DC
WAVE
"'\
~
"'.,
'\ ~
40
20
60
80
100
120
IF(AV), AVERAGE FORWARD CURRENT (AMPS)
fL, LEAD TEMPERATURE ('C)
Figure 3. Power Dissipation
Figure 4. Current Derating, Lead
!L
.s
w
z
u
~
U
if
'"
<5
u
280
260
240
220
200
180
160
140
120
100
80
60
40
20
I
I 1111111
I I
I I
NOTE: TYPICAL CAPACITANCE
ATOV=270pF
r-...,
"
.........
"
l"'-
o
0.1
0.2
0.5
1
10
20
VR, REVERSE VOLTAGE (VOLTS)
Figure 5. Typical Capacitance
3-195
100
II
"SQUAR~ ~
o
o
4.0
90
RATED VR APPUED
ReJL = 22"CIW
TJ = 100"C
1.0
ir
0.5
30
~
~ 0.5
~:;.-'"
0
3.0
~
ffi
'/
~ '/"
$:" 0.4
~
a:
SQUARE
:$.
&-
V/
//V
~
20
Figure 2. Typical Reverse Current
"-
0.8
~
10
Figure 1. Typical Forward Voltage
TJ = 100"C
2.4
o
VR, REVERSE VOLTAGE (VOLTS)
~ 2.8
~
0.4
0.2
0.1
0.04
0.02
0.01
vf; INSTANTANEOUS VOLTAGE (VOLTS)
3.2
~
--
=
a:
u:
---- >-- ----
i'50
100
I'
140
160
•
MR750
MR751 MR752
MR754 MR756
MR758 MR760
MOTOROLA
SEMICONDUCTOR
TECHNICAL DATA
MR754 and MR7SO are
Designers Data Sheet
Motorola Preferred Devices
HIGH CURRENT
LEAD MOUNTED
SILICON RECTIFIERS
50-1000 VOLTS
DIFFUSED JUNCTION
HIGH CURRENT LEAD MOUNTED RECTIFIERS
• Current Capacity Comparable To Chassis Mounted Rectifiers
• Very High Surge Capacity
• Insulated Case
Designer's Data for "Worst Case" Conditions
The Designers Data sheets permit the design of most circuits entirely from
the information presented. Limit curves - representing boundaries on
device characteristics - are given to facilitate "worst case" design.
II
'MAXIMUM RATINGS
Symbol
MR750
MR75!
MR752
MR754
MR756
MR758
MR760
Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
50
100
200
400
600
SOO
1000
Volts
Non-Repetitive Peak Reverse Voltage
(hallwave, single phase, 60 Hz peak)
VRSM
60
120
240
480
720
960
1200
Volts
35
70
140
280
420
560
700
Volts
Characteristic
RMS Reverse Voltage
VR(RMS)
Average Rectified Forward Current
(single phase, resistive load, 60 Hz)
See Figures 5 and 6
Non-Repetitive Peak Surge Current
(surge applied at rated load
conditions)
Operating and Storage Junction
Temperature Range
22 (TL = 60'C, liS' Lead Lengths)
6_0 ITA = 60'C, P.C. Board mounting)
10
IFSM
400 (for 1 cycle)
~
TJ. Tstg
6510 +175
ELECTRICAL CHARACTERISTICS
Symbol
Max
Unit
Maximum Instantaneous Forward Voltage
Drop (iF ~ 100 Amp, TJ = 25'C)
vF
1.25
Volts
Maximum Forward Voltage Drop
(IF = 6.0 Amp, TA = 25'C, 31S' leads)
VF
0.90
Volts
IR
25
1.0
p.A
mA
Characteristic and Conditions
Maximum Reverse Current TJ
(rated de voltage)
TJ
= 25'C
= 100'C
MECHANICAL CHARACTERISTICS
CASE: Transfer Molded Plastic
MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 350°C 3/8'
from case for 10 seconds at 5.0 Ibs. tension
FINISH: All external surfaces are corrosion-resistant, leads are readily solderable
POLARITY: Indicated by diode symbol
WEIGHT: 2.5 Grams (approx.)
3-196
Amp
•
Amp
'C
•
MR750, MR751, MR752, MR754, MR756, MR758, MR760
-
FIGURE 2 - MAXIMUM SURGE CAPABILITY
FIGURE 1 - FORWARD VOLTAGE
700
50o t--TJ = 25°C
L
/
200
100
r-- -TYPICAL
/
/
,/
-
V
./
300
600
..........
~
~ 400
il'i
............... 4'04"Ii~
a
.............
N
~ 300
f"""MAXIMUM
./
~ 200
/
]llIf
............
~1>
r-...
rillE
u.
-'
""
:r
'"
0
i"'-
~;--- rr-... T~
i"'-r--.",
w
VRRM MAY BE APPLIED BETWEEN
EACH CYCLE OF SURGE. THE TJ
NOTED IS Ti PRIOR TOtURGE
25°C
-..........,...
--
""
~ 100
0
~
III
I
80
60
1.0
I
2.0
5.0
II
I
25°C
10
,.....
r-...... '"
20
100
50
NUMBER OF CYCLES AT 60 Hz
I
II
FIGURE 3 - FORWARD VOLTAGE
TEMPERATURE COEFFICIENT
0
+0.5
/
<.>
~
I-
il'i
1.0
i3
~
........
1,.-
-1.5
./
:--
0.3
0.2
0.6
,.,...
TYPICAL RANGE
-1.0
8
0.5
~
-
g -0.5
-2.0
O.B
1.0
1.2
1.4
1.6
1.B
2.0
2.2
2.4
2.6
0.2
vF, INSTANTANEOUS FORWARO VOLTAGE (VOLTS)
0.5
1.0
2.0
5.0
10
20
50
100
200
IF, INSTANTANEOUS FORWARD CURRENT (AMP)
FIGURE 4 - TYPICAL TRANSIENT THERMAL RESISTANCE
10~,---~.;L=-~t-~::;'iI!lm.II.~112"
~~ r
I -!ze:~5.0
3/B"::
L_
W
"" <.>
~~
~~
'
' - - HEATSINK
1/4':-
w
~
3.0
:; ~ 2.0
80th leads to heat sink. with lengths as shown. Variations in
~
ROJllt) below 2.0 setonds are independent of lead connections
I----l--l-+-l--l-+-+-l-l-++.........
-:;;_
= 20
iii
ROLK
~ ~T~J-4
__
~
X
____T_CLK_____TLLK____
~
Use of the above model permits junctIon to lead thermal resistance for any
mounting configuration to be found. Lowest values occur when one Side of the
rectifier is brought as close as possible to the heat sink as shown below. Terms in
the model signify:
Ii
IFlavg}. AVERAGE FORWARD CURRENT lAMP}
FIGURE 8 - STEADY STATE THERMAL RESISTANCE
AOS '" Thermal Resistance,HeatSink to Ambient
T A = Ambient Temperature
Tl "lead Temperature
ROL'" Thermal Resistance. Lead to Heat Sink
TC " Case Temperature
ROJ '= Thermal ReSIstance. Junction to Case
T J '" Junction Temperature
PF = Power Dissipation
(Subscripts A and K refer to anode and cathode sides respectively.)
Values for thermal resistance components are:
ROL" 400 CIW/IN. Typically and 440 C/WIIN Maximum
AOJ = 2 0 C/W TYPIcally and 4 0 C/W Maximum
Since ROJ is so low. measurements of the case temperature, TC. will be approx·
imately equal to junction temperature in practical lead mounted applications.
When used as a 60 Hz rectifier, the slow thermal response holds T J(PK) close to
TJ(AVGI. Therefore maximum lead temperature may be found from. TL '"
1750-ROJl PF. PF may be found from Figure 7.
The recommended method of mountmg to a P .C. board is shown on the sketch.
where ROJA is approximately 250 C/W for a 1·1/2" x '·1/2" copper surface area.
Valuesof 400 C/W are typical for mounting to terminal strips or P.C. boards where
available surface area is small.
...
~
-
L. LEAD LENGTH (INCHES)
3-198
]Ig:
---------=
Board ground plane
Recommended mounting for half wave circuit
MR750, MR751 , MR752, MR754, MR756, MR758, MR760
TYPICAL DYNAMIC CHARACTERISTICS
FIGURE 10 - REVERSE RECOVERY TIME
FIGURE 9 - RECTIFICATION EFFICIENCY
r-
100
30
"""'-
20
~
70
~
~
'\
~
50
i
TJ = 175'C
r-
I c- rvv -30
I
I'-..
r\. TJ = 25'C
\
1.0
\
3.0
ffi
15
!ll
5.0
20
~ 3.0
1\
J
2.0
30
50
-
I,
70 100
0.2
0.1
0.7
r--
>=
~ 100
l;l
0.3
=
\
I I II I
2.0
::E
\
CURRENT INPUT WAVEFORM
1 1
~
\
"- ruu ---
20
~
..........
..........
2.0
vfr=2V
I I
3.0
5.0
r- -
7.0
10
iF. FORWARD PULSE CURRENT lAMP)
,,2RL
4
alsine) = - - . 100% = - . 100% = 40.6%
V2m
1T2
(2)
4RL
For a square wave input of
amplitude Vm • the efficiency
factor becomes:
The rectification efficiency factor a shown in Figure 9 was
calculated using the formula:
V'olde)
Plde)
RL
V2olde)
(J=--=---'100%=
·100% III
Plrms) V2olrms)
V2olae) + V2olde)
RL
For a sine wave input Vm sin (wd to the diode, assumed lossless,
the maximum theoretical efficiency factor becomes:
3-199
2RL
(Jisquare)
= V2m . 100% = 50%
(3)
RL
(A full wave circuit has twice these efficiencies)
As the frequency of the input signal is increased, the reverse recovery time of the diode (Figure 10) becomes significant. resulting
in an increasing ac voltage component across R L which is opposite
in polarity to the forward current, thereby reducing the value of
the efficiency factor 0, as shown on Figure 9.
It should be emphasized that Figure 9 shows waveform efficiency only; it does not provide a measure of diode losses. Data was
obtained by measuring the ac component of Va with a true rms ae
voltmeter and the de component with a de voltmeter. The data was
used in Equation 1 to obtain points for Figure 9.
MR820
MR821 MR822
MR824 MR826
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL DATA
MRB22 and MR826 are
Motorola Preferred Devices
Desig'ne.·s Data Sheet
FAST RECOVERY
POWER RECTIFIERS
SUBMINIATURE SIZE, AXIAL LEAD MOUNTED
FAST RECOVERY POWER RECTIFIERS
50·600 VOLTS
5.0 AMPERES
designed for special applications such as dc power supplies,
inverters, converters, ultrasonic systems, choppers, low RF interfer·
ence and free wheeling diodes. A complete line of fast recovery
rectifiers having typical recovery time of 150 nanoseconds providing
high efficiency at frequencies to 250 kHz.
Designer's Data for ''Worst Case" Conditions
•
The Designers Data sheets permit the design of most circuits entirely from the information presented. limit curv"ts - representing boundaries on device characteristics - are given to facilitate "worst case" design.
MAXIMUM RATINGS
Rating
Symbol
MR820
MR821
MR822
MR824
MR826
Peak Repetitive Reverse Voltage
VRRM
VRWM
VR
50
100
200
400
600
VRSM
75
150
250
450
650
Volts
VRIRMS)
35
70
140
280
420
Volts
Working Peak Reverse Voltage
DC Blocking Volt. .
Non-Repetitive Peak Reverse
Vol_
RMS Reverse Voltage
.
.
.
10
IFSM
Current
(Surge applied at fated load
condltionsl
Operating and Storage Junction
Temperature Range (2)
CASE 194-04
Volts
0
6.0
.
300
.
-65 to +175
=550C1(1)
Non-Repetitive Peak Surge
I
MECHANICAL CHARACTERISTICS
Average Rectified Forward
Current
(Single phase, resistive load.
TA
Unit
TJ.Tstg
Amp
Amp
°c
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
(Recommended Printed Circuit Board
Mounting, See Note 6 J
Symbol
Ma.
R6JA
25
Unit
ELECTRICAL CHARACTERISTICS
Characteristic
Symbol
Instantaneous Forward Voltage
(iF 15.7 Amp. TJ' 15o"C)
vF
Forward Voltage
IIF' 6.0 Amp. TJ
VF
=
=25°C)
Maximum Reverse Current, (rated dc voltage) TJ = 25°C
TJ -100"C
IR
Unit
Min
TV.
Ma.
-
0.75
1.05
-
0.9
1.1
5.0
0.4
1.0
,.A
mA
Min
TYl'
Ma.
Unit
-
160
150
200
300
-
-
2.0
-
Volts
Volts
25
REVERSE RECOVERY CHARACTERISTICS
CharM:twistic
Symbol
Reverse Recovery Time
(IF .. 1.0 Amp 10 VR = 30 Vdc, Figure 25)
IIFM" 15 Amp. di/dt = 25 A/p.s. Figure 26)
'rr
Reverse Recovery Current
(IF" 1.0Amp to VR '" 30 Vdc, Figure 25)
IRMIREC)
ns
(1. Must ba darated for rever.. power dillipatlon. See Nota 3
(2) Derate •• shown in Figure 1.
3-200
Amp
CASE: Transfer Molded Plastic
FIN ISH: External Surfaces are Cor·
rosion Resistant
POLARITY: Indicated by Diode
Symbol
WEIGHT: 2.5 Grams (Approximately)
MAXIMUM LEAD TEMPERATURE
FOR SOLDERING PURPOSES:
3500 C, 3/S" from case for 10 s
at 5.0 lb. tension.
•
MR820, MR821, MR822, MR824, MR826
MAXIMUM CURRENT AND TEMPERATURE RATINGS
FIGURE 1 - MAXIMUM ALLOWABLE JUNCTION
TEMPERATURE
180
~
. . . . r--..I'-
160
~
w
'"
~
I--..
~
::::--........
...............
........
.......'"
'-l
~
I-
~ 12 0
z
200
"
When current ratings are computed from T J{max) and
reverse power dissipation is also included, ratings vary
with reverse voltage as shown on Figures 2 thru 5 .
.........
40'CIW
100
additional information on derating for reverse power
dissipation.
>-... ..........
30'CIW'
80
sidered. The data of Figure 1 is based upon worst case
reverse power and should be used to derate T J(maxt
from its maximum value of 175°C. See Note 3 for
, '"
><: :::--.~ -' --.:::::
2S'CIW'
100
0
60
over approximately 85°C, reverse power dissipation
and the possibility of thermal runaway must be con-
"---
10'CIW
...........
t;
~
When operating this rectifier at junction temperatures
i"-~~ ~
................ --.......::: ................. ~ 20'1';;;
~ '............... ......... I::'-- ........
140
;::!
NOTE 1
MAXIMUM JUNCTION TEMPERATURE DERATING
ROJA = S.O'CIW
400
300
SOO
•
YR. PEAK REVERSE VOLTAGE IVOLTSI
RESISTIVE LOAD RATINGS
PRINTED CIRCUIT BOARD MOUNTING - SEE NOTE 6
FIGURE 3 - SQUARE WAVE INPUT
FIGURE 2 - SINE WAVE INPUT
a
ii: 7.0
0 .......
~
0 ........
0
.......,
r-.::
~
'"40~V
"'
-
2.0
>
'"S 1.0 t -
r-.;:
.......
'"
~ 0
20
I--..
""
-....z,-
60 V
40
I'..
""- "-
200 V
60
~
'"~
~
OV
........ t-...
KI rI
I-
vR=10VIPKI
r--..
IF
~
-
80
f"..
~
~
100 V
w
co
-.;z
"'
"'r'\. " "- "" "
100
140
':>"
"
160
TA. AMBIENT TEMPERATURE I'CI
4.0 f"..
ROJA = 2S'CIW-
........
I--..
f"..
3.0
~
/'
200 V
~
'"
'"
~
~
If
'<;
60
BO
100
120
, ,I" ::--; I~VI~KI
r--.. :::--..
,.
ii:
2.0
1.0
i'- )-
20
400 V'
600 V
40
.........
"'I.{
" "'
.........
~ :-.....
f'.
r-......
60
80
~
100 V
100
120
r-.... I'-,.
"
140
I.........
~
2.0
~~
)<.
1.0 200,V
:>
l"
160
180
TA. AMBIENT TEMPERATURE I'CI
t-- ,
, :--- f'.
, ,
~ 3.0
f'. ?'
........
"'200~<
"-j >")
0
'"~
50 V
r--.. ~
t'-.
160
lBO
ROJA = 40'CiW
~ 4.0 ,
V!=
.......
140
5.0
I-
-.....: t:--
100 V
.;
1.0
40
50 V
::--.
FIGURE 5 - SQUARE WAVE INPUT
ROJA = 40·C/w
l""-
co
ffi:;(
........
~
4.0
~
c 3.0
~
I'..
TA. AMBIENT TEMPERATURE I'CI
~
~
,
VR= 10V(PKI
r.....
'"
FIGURE 4 - SINE WAVE INPUT
5.0
I--...
........ !:'-
"'...... "' "'
II- 440ri~ ~
sdfv "'
a
"
20
180
'"
r--..
~ 2.0
>
r-.;:
120
I I
6.0
........'
::::) 5.0
....... t-..
~
w
co
ffi
ROJA = 2S'CIW
~
0
~
......,
-t
20
I'-
"./1>~
~
sov
I'- 'L'
~
.......
y
600 V
40
VR -10 V IPK)
60
100 V
j'-, ~
l/
~
~
"
I'- I'
80
100
r-....
'I........
120
........
"'
140
TA. AMBIENT TEMPERATURE I'CI
3-201
r-....
r.......
"'
160
180
MR820, MR821 , MR822, MR824, MR826
MAXIMUM CURRENT RATINGS
NOTE 2
Current derating data is based upon the thermal raspon,e data of Figure 29 and the forward power dissipation data of Figures 19 and 20. Since reverse power dissipation is not considered in Figures 6 thru 11. additional derating for reverse voltage and for junction to ambient thermal resistance must be applied. See Note 3,
SQUARE WAVE INPUT
SINE WAVE INPUT
FIGURE 6 - EFFECT OF LEAD LENGTHS,
RESISTIVE LOAD
I...
ill
0
I6
'"'"
~'/8"
~
~
... 8.O~
~
~
4.0
:>
•
~
I/~"
2r--
0
75
-
B5
"
r--- ..:::::::- ~
lOS
115
125
135
145
~ 4.0
155
165
175
~
5/8"
" """-
ffi
"........ ~
~
....... 1--...
r---..
r-
3/8"
'"
............
~
1/4"
o
~ 8.0
............
85
95
FIGURE B - 1/S" LEAD LENGTH, VARIOUS LOADS
...'"
=.
~V)
I(PK)
ill 16
r--....
:ii
a
~
12
:r...
8.0
r--
~
I'--- ~ ./
l.J.
5
..I.
........... 10 ( CAPACITIVELOADS
.L <......::: ~
~~
to
<
::l
>
< 4.0
--......;
BOTH LEADS TO HEAT SINK
:>
i...
ffi
~
r--
~
85
95
IDS
115
125
135
145
""
16
IDS
w
155
~ 4.0
165
75
85
.......
.......
r-....
'" 5.0
..
a
...
'"
;-1-
-...;
.......
2.o ROJA =400 C\f'-'
S
-r--I(PK) 5.?.....
1.0 c--r-i(AV) I~ .....
~
0
20
;;:::::
B 5.0
~~
~
...... ~
/'
I I \ 2r
40
60
80
100
120
165
115
2 (RlsISTlJEIINDJCTIVE 1& LARGE CAPACITIVE LOADS)
LIGHT CAPACITIVE LOADS
<0
C«.: ~ i'--.de
.......:::: ~ ~
........
~~
~
115
125
135
145
ISS
"
165
~
--
~
3.o
ffi
>
:--- ~
2.
-.....; ~
K .......
::::- :--
IBO
20
40
'<. I-':
60
::-.
....... ~
r:::: ~ ~
T
I
\
2.0-5'1 i(PK)
10. _
I(AV)
/20
I--...t"<'-..
r-- 0 ::--
O~~de
If o
de
.......
I--I(PK) 2.0-5.0
10'
S
1.0 I--I(AVr
.
20
«
0
"""",z
~ or- -...; ::'" ~
I ' :c..;;:
~ 3.
.......
155
FIGURE 11 - PRINTED CIRCUIT BOARD MOUNTING,
VARIOUS LOADS
ROJA = 250 C/W
::--
i(PK)
I(AV)
/
. . . . :'< K
........
95
~ 7.0
~
145
TL, LEAD TEMPERATURE (DC)
;: 7.0
ill
135
0
FIGURE 10 - PRINTED CIRCUIT BOARD MOUNTING,
VARIOUS LOADS
6.0
125
80TH LEADS TO HEAT SINK
~
175
r....... """-..
...........
TL, LEAD TEMPERATURE (DC)
~
...
115
- --
8.0
ffi
~
"'>
r--....
t-...
'"
~
.............
.........
12
~
:r
r'-.
75
20
:ii
13
~01
I----
~ --......; ~
--=:::: ~
FIGURE 9 - 11B" LEAD LENGTH, VARIOUS LOADS
(RESISTIVE/INDUCTIVE LOADS)
--r--r-- :> --..
~ I--...
.............
--......; .............. ..........
0
75
...........
TL, LEAD TEMPERATURE (DC)
20
5
--
r----
r-- r-
TL. LEAD TEMPERATURE (DC)
0:
IBOTH ~EADS +D HEA~SINK ~~T:H~~~GTHS _
L'11"
--- -
12
~
f'-,.
--.. r-.
~~E:~~T~~~!~~~f:~~~~~~) _
~
16
..,
g
r---- t--,
20
:ii
:0
I'--...
~
~
95
...ffi~
RESISTIVE·INDUCTIVE
LOAOS
BOTH LEADS TO HEAT
SINK WITH LENGTHS AS SHOWN
....... "'-...
'"'"
:0
U
FIGURE 7 - iOFFECT OF LEAD LENGTHS,
RESISTIVE LOAD
'S: I:S:
IIiIIlilI ;::,....
V
~
I'OiO:
Vso
I"IlI!!i
i""'::
I"iiO'!
100
120
TA, AMBIENT TEMPERATURE (DC)
TA, AMBIENTTEMPERATURE (DC)
3-202
~IIII..
140
.....
160
180
MR820, MR821, MR822, MR824, MR826
REVERSE POWER DISSIPATION AND CURRENT
lent when Vp IS the line to line voltaga acroslthe rectifiers. For
capacitive loads, It is recommended that the dc case on Figura 13
be used, regardless of Input waveform, for bridge circuits. For
capacltlYely loaded full wave center·tapped cllcuits, the 20: 1
data of Fiqure 12 should be used for sine wave Inputs and ttle
capacitive load data of Flgunl' 13 should be used tor SQuare wave
Inpull regardless of 'lpkIJllavl' For these two cases, Vp IS the
voltage across one leg of Ihe transformer.
EXAMPLE:
NOTE 3
DERATING FOR ReVeRSE POWER DISSIPATION
In this rectifier, power loss dUBio reversa current IS generally not
negligible. For rehable circuit design, the malumum junction
temperature mull be limited 10 eithet 17SoC or the temperature
which results In thermal runaway. Proper derating may be accomplished by use of equation 1 or equation 2.
Equation 1
T A = Tt - 1175 - T Jlmall)' - PR ROJA
Where'
T1 .. Maximum Allowable AlT'blent Temperature
neglecting reverse power dlUlpatlon (from Figures
lOOt 111
Find MaJClmum AmbIent Temperature for IAV = 2 A, capaCitive
Load of IpK"AV = 20, Input Voltage = 120 V Irmsl Sme Wave,
ROJA = 250 C/W, Half Wave CirCUit.
Solution 1:
T Jlmaxl " Malumum Allowable Junction Tempera·
ture to prevent thermal runaway or 17SoC. which
ever IS lower. ISee Figure 11.
Step 1: Find Vp; Vp " .f2 Vm = 169 V, VRlpkl .. 338 V
Step~: Find TJlmad from Figure 1. Read TJlmaJCI • 11geC.
Step 3: FmdPRlmaJCI from FIgure 12. Read PR = 770mW@1400C
Step 4: Find IR normalized from Figure 14. Read IRlnorml = 0.4
Step 5. Correct PR to TJlmaJC)' PR .. IRlnorml JC PR IFlgure 121
PR .. 0.4 JC 710" 310 mW.
Step 6: Find PF from FIgure 19. Read PF = 2.4 W.
PR = Reverse Power Dlilipation 'From Figure 12
or 13, adjusted for TJlmaJCI as shown below)
Rf/JA = Thermal ResIstance, JunctIon to AmbIent.
When thermal resIstance, junction to' ambIent, IS over 200 C/W.
the effect of thermal response IS negligible. Satlsfactorv derating
mav be found by uSing'
EquatIon 2
Step 7' Compute TA from TA = TJlmaJCI' (PR + PFI RtJJA
TA = 119· (0.31-!- 2.411251
TA" 51 0 C
T A = T J(maJC) - (PR -!- PFI R/IJA
PF '" Forward Power DISSipatiOn (See FIgures 19 & 201
Other terms defined above.
SolutIon 2:
Steps 1 thru 5 .life as above.
Step 6' Find TA = T, from FIgure 10. RudTA" 1150 C.
Step7 ComputeTA fromTA IoT,·1175 'ITJlmaxll ,PR R8JA
TA = 115·1175 ·1191· (0.311 (251
TA" 5l o C
The reverse power gIven on FIgures 12 and 13 IS calculated for
T J = 150 0 C. When T J IS lower, PR Will decrease, ItS value can be
found by multiplying PR by the normalized reverse current from
Figure 14 at the temperature of Interest.
The reverse po~V<'r data IS calculated for half wave rectificatIon
CllcullS For full wave rectification uSing eIther a brrdge or a
center·tapped transformer, the data for resistIve loads IS equlva·
FIGURE 13 - SQUARE WAVE INPUT DISSIPATION
FIGURE 12 - SINE WAVE INPUT DISSIPATION
200o
a:
~
70
~_50
'"
°1=t
0f-2~
~~
20
JIIIT:]--'-, ,=
=
1O
WE
"'''
~;; 300
"'0
V
0
V V
"'<;;
~a 100
5000
./V
CAPACITIVE
100 o~;IIPK)05.0
IIAV)
t-" RESISTIVE LOADS_
,'"
70
50
30
20
~,
--_. ==
Vp
TJ~140?~t
MAXIMUM
300 Or--
~
200
100
300
400
500
600
CAPACITIVE
200Of-- r-LOAOS
W
~~1000
~; 700
~~ 500
"
""
~~ 300
.7'
",0.
~c
5
~
.....
R~SISTI.VE LPAD~-r-
k'"
de-
200
r
¥
o
100
200
300
500
400
SOD
700
FIGURE 15 - TYPICAL REVERSE CURRENT
FIGURE 14 - NORMALIZED REVERSE CURRENT
10 1
10 5
~
N
TJ o I75·C
1/
./
~ 11J0
~VR
i:i
'"
"'"~lo- 2
< 104
150·C
I-
125·C
.=,
400 V
./
;:10- 1
./
~
10 3
100·C
~
75·C
W
~
~ 10 2
50·C
~
>
/
~1O- 3
'"
_ __ J
Vp. PEAK APPLlEO VOLTAGE IVOLTS)
Vp. PEAK APPLIED VOLTAGE IVOLTS)
~
J!!ttJ.---;1,
MAXIMUM
TYPICAL
70
·50
700
_
Tr 14 C
f'/
100
-- r;.,;...
:.;;..
1/
[', V ~
~
TyrlCAL
o
..
At limes, a discrepancy between methods Will occur because
thermal response IS factored Into Solution 2.
!E
10 I
25·C
)./
100
10- 4
100
200
300
400
500
VR. REVERSE VOLTAGE IVOLTS)
TJ. JUNCTION TEMPERATURE I.C)
3-203
600
700
MR820, MR821 , MR822, MR824, MR826
STATIC CHARACTERISTICS
FIGURE 17 - MAXIMUM SURGE CAPABILITY
FIGURE 16 - FORWARD VOLTAGE
20 0
.~
-Maximum
---Typical
10 0
./
~/
V V-
r-----
.........
/
V
0
TJ
~
=150 ci V Ii
II
/ II
'/
0
I
r--~"'"
~C
REPETITIVE
f....
0
/
II
I
........
r-.. r-...... r--- ..... 1--
of--
II
0
0
0
5°C
10
.......... I--.TJ=25~C
r-..
./
1/ .Y
0
VRRM MAY BE APPLIED "1
BETWEEN EACH CYCLE OF
SURGE. THE TJ NOTED IS
TJ priOR
SURGE .
o .......... r-..t-....,....f1NON.REPETITIVE
0"""'-.
I'"-0 ..........
0
..
40
40
2.0
'.0
3.0
5.0 7.0
~
I
20
'0
30
50 70 100
NUMBER OF CYCLES AT 60 Hz
0
0
I.
II
0
I
~
0
!1
FIGURE 1B - FORWARD VOLTAGE TEMPERATURE
COEFFICIENT
I
+2.5
+2.0
+1.5
I /
~+1.0
Ii
/'
.0
/
I
.s... +0.5
z
w
U
0
.7
~-O.5
.5
8-1.0
~
y
1...-
I..-
-2.0
-2. 5
0.3 0.5
18
14
1.6
0.8
1.0
12
'F. INSTANTANEOUS FORWARO VOL TAGE (VOL TSI
0.6
04
v
--
-1.5
1/
:,
o.
TYP~AL RANGe;
1.0
2.0 3.0 5.0
'0
20 30
50
100
200 300
iF. INSTANTANEOUS FORWARD CURRENT lAMP)
MAXIMUM FORWARD POWER DISSIPATION
FIGURE 20 - SQUARE WAVE INPUT
FIGURE 19 - SINE WAVE INPUT
--,-i-n-
0
..
IIPK~ir·~
-
0
0
IIAV)
0
./
20"~ ~
-~
0
~
0
7
5
o.3
o.2
10
.
...
TJ 01:< 150 DC-
t- -
.-
~
0.2
..
0.3
,=
- f::::
Jr-- t-.
51-- t-=.
1.0
2.0
3.0
5.0 7.0
10
-
.:
o. 3
o.2
20
~
TJ ~ 1500 C
II'
I-- 1-1/
0.2
IFIAV). AVERAGE FORWARD CURRENT lAMP)
1M
-=- I--'~-~-
0
I
0.5 OJ
2.0105.0
-
0
ot--.
--
.. t- .
I"""
IIPK) =20
IIAV)
_-:+10
'--- .. F
.-
f-t-
..,.
0
0
0
=
-
' / :.t"
~
1
-_.
-- --
'7
.--.
0
7
I
II
0
.z;
V
0.3
0.5 OJ
1.0
2.0
3.0
5.0 7.0
IFIAV). AVERAGE FORWARD CURRENT lAMP)
3-204
10
20
MR820, MR821 , MR822, MR824, MR826
TYPICAL RECOVERED STORED CHARGE DATA
(Sea Noto4)
FIGURE 21 - TJ = 25°C
FIGURE 22 - T J = 75°C
1.0
2.0
."
.3
~
~
'"
i3
ffi
.3
0.5
~i--'
lOA
0.2
5.0A~
a:
"t; o. I
:za:
~
~
0.0
I~
1.0
0.5
"to
0.2
1.0 A
"
5.0
V
10
20
50
100
002
10
~V
5.0
5 o.5
~
:z
ffi
50
100
20
.3
10
w
'"a:
~
20
FIGURE 24 - TJ = 150°C
II
1. 0
10
dl/dl, (AMP/JoIsl
FIGURE 23 - TJ = 100°C
....=:
10--"
'LOA
~ ~I-""
20
~
V
5.01
~r;;..-
dl/dl tAMP/psI
2. 0
V V
lOA
~ 0.1
~ 0.05
.:
V
2.0
IFM' 20 A
>
r-..
~ p .....
'"
i3
:za:
~
~ 0,05
"~
~O.02
1.0
w
'"a:
IFM' 20 A
~
5
IFM' 20 A
I
lOA
~
"- v: V ......
o. 2
~k
I
J...-i--'
>
5.0 A
3
~ 00 5
" 0.0 2
1.0
I/.t;.'
5.0
10
20
~>
I
~~
~
o
50
0.02
1.0
100
~
1/
Ir
00 5
.:
I
~V
2.0
02
L
L~ IL
5.0~
~
~_
lOA
.:
IFM' 20 A
lOA.., LY'
0.5
~ f""
5.0
2.0
di/d •. (AMPI.,'
10
20
50
d,/d. (AMP/."
NOTE 4
Reverse recovery time is the period which elapses from the
time that the current, thru a previouslV forward biased rectifier
diode, passes thru zero going negatively until the reverse current
recovers to a point which is less than 10% peak reverse current.
Reverse recovery time is a direct function of the forward
current prior to the application of reverse Yoltage.
For any given rectifier. recovery time is very cirCUit depend·
di/dt
ent. Typical and maximum recovery time of all Motorola fast
recovery power rectifiers are rated under a fixed set of conditions
using IF ;;! 1.0 A. VR = 30 V. In order to cover all cirCUit
conditions. curves are given for typical recovered stored charge
versus commutation di/dt for various levels of forward current
and for junction temperatures of 25°C, 75°C, l000C, and
IRM(RECI+----'IL
From stored charge curves versus di/dt, recovery time It rr )
and peak reverse recovery current (iRM(REC)) cen be closely
approximated using the following formulas:
15o"C.
To use these curves, it is necessary to know the forward
current leve' just before commutation, the circuit commutation
di/dt. and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery
rectifiers is shown.
3-205
0
~
1/2
trr
= 1.41
x [ ---.!L
dildt
IRMIREC)
= 1.41
x [OR x dildt] 112
100
II
MR820, MR821 , MR822, MR824, MR826
DYNAMIC CHARACTERISTICS
RGURE 25 - JEDEC REVERSE RECOVERY CIRCUIT
Rl
11
dud! ADJUST
Rl • 50 Ohm.
T1
R2' 250 Ohm.
01 = lN4723
02 -IN4001
03 = lN4933
120VAC
60 Hz
SCRI = MCR729·10
Cl-0.StD SO,.F
C2 ~ 4000,.F
11 =1.0 -21,.H
T1 = Variac Adjusts 'IPK) and dVdt
T2
~ II
1:1
Cl
03
ItPK) ADJUST
C2 +
0.u.T.
02
R2
T2=1:1
T3 = 1:1 (to trigger circuit)
01
II
CURRENT
VIEWING
RESISTOR
FIGURE 27 - JUNCllON CAPACITANCE
FIGURE 26 - FORWARD RECOVERY TIME
10
=
-
7.0
~ 5.0===
...
~
3.0
~
>
2.0
~
1.0
!
o.S
=
vlli- ===
\-!fr
-
100
-TJ=25DC
Vir = 1.1 V
VIr
I
TJ=2SDC
0
........ ......
V
r""-r--.
0
'"~ o.1
0
~
D.3
2 __
~ O.
..... i-'"'"
O. 1
1.0
-
0
2.0
5.0
10
20
50
100
IF. FORWARD CURRENT tAMP)
10
1.0
2.0
5.0
10
20
VR. REVERSE VOLTAGE tVOLTS)
3-206
50
100
MR820, MR821, MR822, MR824, MR826
THERMAL CHARACTERISTICS
FIGURE 28 - THERMAL RESPONSE
1.0
:i o.71-~ .... O. 5r-we
I-",w
:: ~ o.31-~~ o. 2
=
-- ~
HEAT SINK ------"
"""
1
L-1/4"
zc
0
w
en
a:
2
w
>
w 101
a:
2
10-2
.$
2
.$
10-3
5
TJ. ,125'
-
2
100)'
75'
50'
2
100
o
20
60
80 100 120 140 160
TJ. JUNCTION TEMPERATURE ('C)
40
180
200
25'
0
200
300
500
VR. REVERSE VOLTAGE (VOLTS)
100
Figure 1. Normalized Reverse Current
Figure 2. Typical Reverse Current
STATIC CHARACTERISTICS
i
150
200
I- 100 =====- TJ=25'C
ifi 70
~
50
30
~ 20
iL
a
i
lYPICAL
!!z
ilL- ~MAXIMUM
I
10
g;l 3.0
~
i3
~
I
u:.
~
a:
80
~
60
~
L
2.0
1.0
0.7
0.5
0.3
0.2 0
.......... ......
100
~
40
~
30
~
20
I
0.4
0.8
1.2
1.6
2.0
2.4
vf; INSTANTANEOUS FORWARD VOLTAGE (VOLTS)
2.8
Figure 3. Forward Voltage
15
1.0
JRR~ MAyl BE Ap~U~DI
:---.....
TJ = 25'C
::>
f2 ~:~
~
70o
600
2.0
3.0
.......
............
5.0 7.0 10
20 30
NUMBER OF CYCLES AT 60 Hz
50 70 100
Figure 4. Maximum Non-Repetitive
Surge Capability
3-210
I
BETWEEN EACH CYCLE
OF SURGE. TJ NOTED IS
Joo... TJ PRIOR TO SURGE
MR850, MR851, MR852, MR854, MR856
STATIC
CHARACTERISTICS
TYPICAL RECOVERED
STORED CHARGE DATA
(See Note 1)
(continued)
C3'
st
§
~
4.0
3.5
3.0
2. 5
2.0
1.5
D. 5
8
0
-0. 5
~
II
3w
.
0.5
'"'"
:>::
1.0
w
C3
1.0
./
TYPICAL RANGE ....
il
Ii
'
-
i-I. 0
-1. 5
-2.0
-2. 5 - ·
-3. 0
0.5
0.2
.......-::
V
V
IFM~20A
ffi'-'
0.2
'"t;'"
0.1
'"~
0.01
10
20
50
100
200
r-..
~~
... _--
5.0
~
/
~ 0.05
f-""
'" 0.02
g
2.0
...... ~
./
5.0A~
~
~
1.0
10 A
~ 'P' ~
~
1.0
'1.0 A
V
1.0
5.0
10
dl/dl
iF. INSTANTANEOUS FORWARO CURRENT lAMP)
50
100
= 25°C
Figure 6. TJ
Figure 5. Forward Voltage Temperature
Coefficient
20
IAMP/~s)
II
1.0
NOTE 1
-u
3w
Reverse recovery time is the period which elapses from the time that
the current, thru a previously forward biased rectifier diode, passes thru
zero going negatively until the reverse current recovers to a point which
is less than 10% peak reverse current.
Reverse recovery time is a direct function of the forward current prior
to the application of reverse voltage.
For any given rectifier, recovery time is very circuit dependent. Typical
and maximum recovery time of all Motorola fast recovery power rectifiers
is rated under a fixed set of conditions using IF = 1.0 A, VR = 30 V.ln order
to cover all circuit conditions, curves are given for typical recovered
stored charge versus commutation di/dt for various levels of forward
current and for junction temperatures of 25°C, 75°C, and 100°C.
To use these curves, it is necessary to know the forward current level
just before commutation, the circuit commutation dildt, and the operating
junction temperature. The reverse recovery test current waveform for all
Motorola fast recovery rectifiers is shown.
I
1.0
~
5
IFM~10A
0.5
V
~
'"~
0.2
~_
O. 1
'"
~
0.05
>
'"'"
~:/
V
i.e: r::::;. .....
2.0
~
1,..-0 ....
50~
1&'/
0.02
10
~V
lOA
-LOA
50
10
dl/dt.
20
50
100
(AMP/~s)
= 75°C
Figure 7. T J
di/dt
1.0
II
-u
3- 1.0
w
'"
'"~
IRMIREC)+-----'...
IFM~
0.5
~
'"~
From stored charge curves versus dildt, recovery time (lrr) and peak
reverse recovery currenl (IRM(REC» can be closely approximaled using
the following formulas:
OR
Irr = 1.41 x [ di/dl
0.2
~
.......
1/
"" <
Vi,.-'
~
~
>
20A
10' A
0.1
/.:
'"'-'~ 0.05
]1/2
'"'" 0.01
IRM(REC) = 1.41 x [OR x di/dll 1/2
1.0
LOt
~V
~ VI'
1.0
10
5.0
di/dt.
20
IAMP/~s)
Figure S. TJ
3-211
~
5.0 A
= 1DDoe
50
100
MR850, MR851, MR852, MR854, MR856
DYNAMIC CHARACTERISTICS
MINIMIZE ALL LEAO LENGTHS
30n
115 Vat 10 k
60Hz
sow
ZW
A - TEKTRONIX 545A. K PLUG IN
PRE·AMP. P6000 PROBE OR EQUIVALENT
NON·INDUCTIVE
UNIT
UNDER TEST
.-----fOJA
1.0 Ade FROM
CONSTANT
VOLTAGE SUPPLY
RZ
Hl
lOW
NON.INOUCTIVE
30 Vde
CONSTANT VOLTAGE
SUPPLYO-,+_ _
+-___
RI - AOJUSTEO FOR 1.4!l BETWEEN
POINT 2 OF RELAY AND RECTIFIER
INDUCTANCE ~ 38.H
n.
R2 - TEN·I W. 10
1% CARBON CORE
IN PARALLEL
RIPPLE'" 3 mVrms MAX
TA' 25
CI
1.0pF
--t~----..3;;:0.:..0.:..V.....- _ o
~Igoc FOR
RECTIFIER
Zout" Ph SlMAX.
DC to 2 kHz
Figure 9. Reverse Recovery Circuit
II
RI
RI = 50 O~ms
R2 = 250 O~m'
01 = IN4723
02 = IN4001
03 =IN4934
SCRI = MCR729·10
CI=0.5to50.F
C2 ~ 4000 vF
LI=1.0-27vH
LI
dildl ADJUST
TI
Izoi:)vc ,TZ,
1,1
CI
03
60 Hz
CZ
I(PK) AOJUST
+
OUT.
T1 = Vanac AdjUsts I(PK) and dlfdt
T2 = 1:1
T3= 1:1 (to trigger circuit)
OZ
RZ
01
CURRENT
VIEWING
RESISTOR
Figure 10. JEDEC Reverse Recovery Circuit
D.5
~
~
;::
>ffi
>
o
-
100
_.fJ' zsJc
[L
VIr' 1.1 V
So 70
o. 3
D_2
/'
./
l:il
a:
a:
D. 1
(§ 30
11...-"""
0.05
0.1
§z
~
0.3
0.5 0.7
1.0
2.0
r-r-.
~
20
...,
t.)
VIr
-I
0.2
.......... r-
z
tlr-J---j
0.0
50
u
It
v~
~
i-
~
V
V
o
~
TJ = 25°C
w
t.)
z
1 1 1 1 13.0
5.0 1.0
10
)F. FORWARD CURRENT lAMP)
10
1.0
2.0
3.0
5.0 7.0 10
20 30
VR. REVERSE VOLTAGE (VOLTS)
Figure 12. Junction Capacitance
Figure 11. Forward Recovery Time
3-212
50 70 100
MR8S0, MR8S1, MR8S2, MR8S4, MR8S6
DYNAMIC CHARACTERISTICS (continued)
1.0
II II I III I
II II I I I I
....
«
:;
-
'"we
:w
... !::!
.......
2«
w:;
U;'"
2e
«Z
... w
w'"
>2
"'-
t;~
ttw'"fB
'2
0.5
LEAD LENGTH
=1/4"
~
0.2
:;
~
z
~
....
a:
w Q 20
0.05
~~
",=>
""
0.02
a:"> 10
V
0.01
2
51
100
2 3 5 1
101
2 3 51
102
2 3
5 1
10 3
2 3
\
~
a:
-'
«
1/
0.03
SINGLE LEAD TO HEAT SINK
INSIGNIFICANT HEAT FLOW
THROUGH OTHER LEAD
w
40
u
z
j:!:
en "1i.i c 30
w
1/
0.3
0.1
50
i--"
~ .....
..."
-- --
~-
~
.... "
o
o
5 1
104
","
"
\y, ....
..."
"
1/4
1/8
,,"
3/8
..
-~
,,'"
- ...-
....
BOTH LEADS TO HEAT
SINK, EQUAL LENGTH r--I
I
I
1/2
5/8
3/4
7/8
L, LEAD LENGTH (INCHES)
I, TIME (ms)
Figure 13. Thermal Response
Figure 14. Steady-State Thermal Resistance
NOTE 2
To determine maximum junction temperature of the diode 10 a given situation, the
following procedure is recommended:
where ret) = normalized value of transient thennal resistance at time t from
Figure 13, i.e.:
The temperature of the lead should be measured using a thermocouple placed on
r(t1 + tpl = nonnalized value of transient thennal resistance at time t1 + tp.
the lead as close as possible to the tie POint. The thermal mass connected to the tie
pOint is normally large enough so that it will not significantly respond to heat surges
generated in the diode asa result of pulsed operation once steady-state conditions are
achieved. Using the measured value of TL. the junction temperature may be
determined by:
TJ=TL +6.TJL
I
. r:-l Ppk n Ppk
-:J Ip L-.J L
where h.TJL is the increase in junction temperature above the lead temperature. It may
be determined by:
1---11-1
DUTY CYCLE = Ip/ll
PEAK POWER, Ppk, is peak of o.
equivalent square power pulse.
TIME
.1.TJL = Ppk. ROJL [0 + (1- D). r(11 + tp) + r(tp)-r(t1)]
NOTE 3
NOTE 4
Use of the above model permits junction to lead thermal resistance for any mounting
configuration to be found. For a given total lead length, lowest values occur when one
Side of the rectifier is brought as close as possible to the heat sink. Terms in the model
signIfy:
Data shown for thermal resistance junctlon-to-ambient (RaJA) for the mountings
shown is to be used as typical guidelme values for preliminary engineering or in case
the tie point temperature cannot be measured.
TA = Ambient Temperature
TL Lead Temperature
TC = Case Temperature
TJ = Junction Temperature
=
TYPICAL VALUES FOR RaJA IN STILL AIR
Res = Thermal Resistance, Heat Sink to Ambient
ROJL = Thermal ReSistance, Lead to Heat Sink
ROJ = Thermal Resistance, Junction to Case
Po = Total Power Dissipation = PF + PR
PF = Forward Power Dissipation
PR = Reverse Power Dissipation
(Subscnpts A and K refer to anode and cathode sides respectively.) Values forthermal
resistance components are:
LEAD LENGTH. L (IN)
MOUNTING
METHOD
1/8
1
50
2
58
I
I
I
1/4
51
59
3
I
I
I
112
53
61
I
I
I
3/4
RaJA
55
'C/W
63
'C/W
'C/W
28
ReL = 46cCIW/IN. Typically and 48°CIWIIN Maximum.
RaJ = lQcCM/ Typically and 16cc/w Maximum.
The maximum lead temperature may be found as follows:
MOUNTING METHOD 1
PC Boat'd Where Available Copp.,.
Surf."••r .........II.
TL = TJ(max) -"TJL
where
MOUNTING METHOD 3
p.e.
Soard with
_1I2 ...
~
: JIIy:
,_1I2 .. CO" .. S"'••"
L"1f2"
h.TJL can be approximated as follows:
ATJL = ReJL • PO; Po is the sum of forward and reverse power diSSipation.
THERMAL CIRCUIT MODEL
IFor Heat Conduction Through the leads)
MOUNTING METHOD Z
Vector Pin Mounting
Board GroundPI.ne
Ve"tor Push In Term,n.l, T.28
3-213
II
MR850, MR851, MR852, MR854, MR856
100%
a:
~
'""
90%
80%
1\
~ 70%
Cl
z 60%
~
w
50%
::E
~
30%
~
20%
\
,
c
a: 40%
<
,
\
10%
1\
20°C
40°C
60°C
80°C
1OO°C
125°C
LEAD TEMPERATURE (0C)
Figure 15. Parametric Derating Curve
II
3-214
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL DATA
SCANSWITCH ™
MR10120E
Power Rectifier For High and Very High
Resolution Monitors
Motorola Pref.rred Device
This state-of-the-art Power Rectifier is specifically designed for use as a Damper Diode
in horizontal deflection circuits for high and very high resolution monitors. In these
applications, the outstanding performance of the MR10120E is fully realized when paired
with either the MW16206 or MJF16206 monitor specific, 1200 volt bipolar power
transistor.
•
•
•
•
SCANSWITCH
POWER RECTIFIER
10 AMPERES
1200 VOLTS
1200 Volt Blocking Voltage
20 mJ Avalanche Energy (Guaranteed)
12 Volt (Typical) Peak Transient Overshoot Voltage
135 ns (Typical) Forward Recovery Time
CASE 221B-02
TO-220AC
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
1200
Volts
Average Rectified Forward Current
(Rated VR) TC = 125'C
IF(AV)
10
Amps
IFRM
20
Amps
IFSM
100
Amps
TJ
-65to +125
·C
WAVAL
20
mJ
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz), TC
=
125'C
Non-repetitive Peak Surge Current
(Surge applied at rated load conditions, halfwave, single phase, 60 Hz)
Operating Junction Temperature
Controlled Avalanche Energy
THERMAL CHARACTERISTICS
Thermal Resistance -
Junction to Case
2.0
ELECTRICAL CHARACTERISTICS
Characteristic
Symbol
Maximum Instantaneous Forward Voltage (1)
(iF = 6.5 Amps, TJ = 125'C)
(iF = 6.5 Amps, TJ = 25'C)
vF
Maximum Instantaneous Reverse Current (1)
(Rated dc Voltage, TJ = 25'C)
(Rated dc Voltage, TJ = 125'C)
iR
Maximum Reverse Recovery Time
(IF = 1.0 Amps, di/dt = 50 Amps/p.s)
Maximum Forward Recovery Time
(IF = 6.5 Amps, di/dt = 12 Ampslp.s)
(As Measured on a Deflection Circuit)
Peak Transient Overshoot Voltage
(1) Pulse Test: Pulse WIdth
= 300 /LS, Duty Cycle'" 2.0%.
SCANSWITCH is a trademark of Motorola Inc.
3-215
Typ
Max
Unit
Volts
0.9
1.0
1.3
1.5
5.0
50
50
500
trr
0.75
1.0
p.s
tfr
135
175
ns
VRFM
12
14
Volts
p.A
II
I
MR10120E
100
-
so
Ai! ¢P'
~~
# /'
20
1
J 'l
0.1
200
I
'I
Figure 2. Typical Reverse Current
I
II I
12S'C
~
r[OO'C/ 2S'C
II
~ 14
1
RATED VR APPLIED
I-
~ 12
0.7
a:
a
O.S
f2
w
~
ffi
I
II
O. 1
0.4
...........
~
/
0.2
10
~
/I
/I
~
~
I
0.6
0.8
1
1.2
~
10
9
~
a:
a:
I
I
--
ac
-
a:
r-- SQUAR~
WAVE
~
f2
w
~
~
F
"""
"
100
=:.~: de
~
ROJ~ = 16!C W I
IWITH TO·220 HEATSINK)
ROJA = 60'CW
INO HEATSINK) . -
SQLAR/:
WAVE
r--
®
M
6
"- ~
..... ~- ~
~
100
1~
1®
TC. CASE TEMPERATURE ("C)
~
130
TJ
8
:::
~1 r-- SQUARE::::
WAVE
o
o
110
120
TC. CASE TEMPERATURE ('C)
Figure 3. Current Derating (Case)
,de
~
~
~
o
Figure 1. Typical Forward Voltage
5
"-':
~
90
1.4
~
"~e
SQUARE'
WAVE
4
vF. INSTANTANEOUS VOLTAGE (VOLTS)
::E
2SoC-
1.2K
400
600
800
1K
VR. REVERSE VOLTAGE (VOLTS)
II /
Ij
-
--
0.01
I
/,
12S'C100'(;-
2/
0
1~
Figure 4. Current Derating Ambient
L
:#
~
~
V
4
6
8
W
U
IF(AV). AVERAGE FORWARD CURRENT lAMPS)
Figure 5. Forward Power Dissipation
3-216
=1 12S'C
U
16
MOTOROLA
SEMICONDUCTOR------------TECHNICAL DATA
Advance Information
SCANSWITCHTM
MR10150E
Motorola Preferred Device
Power Rectifier for use as a Damper Diode in
High and Very High Resolution Monitors
SCANSWITCH
RECTIFIERS
10 AMPERES
1500 VOLTS
The MR1 0150E is a state-of-the-art Power Rectifier specifically designed for use as a
damper diode in horizontal deflection circuits for high and very high resolution monitors. In
these applications, the outstanding performance of the MR10150E is fully realized when
paired with either the MJW16212 or MJF16212 monitor specific, 1500 V bipolar power
transistor.
•
•
•
•
•
1500 V Blocking Voltage
20 mJ Avalanche Energy Guaranteed
Peak Transient Overshoot Voltage Specified, 14 Volt (typical)
Forward Recovery Time Specified, 175 ns (typical)
Epoxy Meets UL94, Vo at 1/8"
CASE 2218-02
TO-220AC
MAXIMUM RATINGS
Symbol
Value
Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
1500
Volts
Average Rectified Forward Current, (Rated VR), TC = 125°C
IF(AV)
10
Amps
Peak Repetitive Forward Current, Per Leg
(Rated VR, Square Wave, 20 kHz), TC = 125°C
IFRM
20
Amps
Non-repetitive Peak Surge Current
(Surge applied al rated load conditions halfwave, single phase, 60 Hz)
IFSM
100
Amps
Operating Junction and Storage Temperature
TJ, TsJg
-65 to +125
°C
Controlled Avalanche Energy
WAVAL
20
mJ
ROJC
2.0
°C/W
Rating
THERMAL CHARACTERISTICS
I Thermal Resistance -
Junction to Case
ELECTRICAL CHARACTERISTICS
Symbol
Rating
Maximum Instantaneous Forward Voltage (1)
(iF 6.5 Amps, TJ 125°Cl
(iF 6.5 Amps, TJ 25°C)
vF
Maximum Instantaneous Reverse Current (1)
(Rated dc Voltage, T J 125°C)
(Rated dc Voltage, TJ 25°C)
iR
Maximum Reverse Recovery Time
(IF 1.0 Amp, di/dt 50 Amps/l1S)
Maximum Forward Recovery Time
(IF 6.5 Amp, di/dt 12 Amps/l1Sl
=
=
=
=
=
=
=
=
=
=
Peak Transient Overshoot Voltage
(1) Pulse Test: Pulse Width = 300 J.1s, Duty Cycle S2%.
Preferred devices are Motorola recommended chOices for future use and best overall value.
This document contains Information on a new product. Specifications and information herein are subject to change without notice.
3-217
Typ
Max
Unit
Volts
1.1
1.3
1.6
1.8
750
25
1000
100
trr
0.5
1.0
I1S
tfr
135
175
ns
VRFM
14
16
Volts
IlA
II
MRl120
thm
MRl126
MRl128 MRl130
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL DATA
•
MR1124 and MR1130 are
Motorola Preferred Devices
MEDIUM-CURRENT
SILICON RECTIFIERS
50-1000 VOLTS
12 AMPERES·
MEDIUM-CURRENT SILICON RECTIFIER
Medium-current silicon rectifiers feature high surge current
capacity. and low forward voltage drop.
N
~ASE
245A-02
MAXIMUM RATINGS
Symbol
MR
1120
MR
1121
MR
1122
MR
1123
MR
1124
MR
1126
MR
1126
MR
1128
MR
1130
Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
50
100
200
300
400
500
600
800
1000
Volts
Non-Repetitive Peak Reverse Voltage
(one half-wave. single phase.
60 cycle peak)
VRSM
100
200
300
400
500
600
720
100
1200
Volts
VR(RMS}
35
70
140
210
280
350
420
560
700
Volts
Rating
II
RMS Reverse Voltage
Average Rectified Forward Current
(single phase. resistive load. 60 Hz.
TC = 150°C)
10
Peak Repetitive Forward Current
(TC = 150°C)
IFRM
Non-Repetitive Peak Surge Current
(superimposed on rated current at
rated voltage. TC = 150°C}
IFSM
12t Rating Inon-repetitive.
1 ms
ffi
z
+0. 5
5.0
;!
~ 3. 0
t;
~ 2.0
0
G
~,...
l/'l
-0. 5
TYPICAL RANGE,
~
1.0
u
$ -1.0
7
-'
-1.5
~
0.3
0.2
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
0.2
0.5
0
"ldC
~
I
32
• .......
B
~
24
~
~
w
16
-
~AC,ITIVE ~OADS
~
o
125
~
~ b-...
...... ~
135
140
145
150
155
TJ. 1750C
/'
-
24
)- CAJACITIVE LOADS
IIAVI/
ffi
.
,;
165
170
f
175
TC. CASE TEMPERATURE IOC)
t-/
200
0
1/
o
'-SIN~WAV~_
~o ~ ?"
~~
RESISTIVE
LOAD
.-
~
4.0
8.0
12
16
20
24
28
32
'FIAV). AVERAGE FORWARD CURRENT lAMP)
3-222
~-
~--< /'
:~x: '-SQUARE WAVE
~~
"..
=:: 8.0
~
160
'illM = 20
16 I - -
'"
f""..
130
32
'"w
~ i'...
20
~ 8.0
g
illi5
..........
10
40
S
.......... ~
..........
-
~
I
.ISINEWAVE RESISTIVE LOAD)
i'...
5.0
'"w~
if
IIFMI' _
lliWf-2IS0UAREWAVEII
'IFMI _ ...... I'-....
IfAi1I - 2.0
1.0
2.0
5.0
10
20
50
100
IF.INSTANTANEOUS FORWARD CURRENT lAMP)
FIGURE 5 - FORWARD POWER DISSIPATION
FIGURE 4 - CURRENT DERATING
,.
J..-"
-2. 0
vF.INSTANTANEOUS FORWARD VOLTAGE IVOLTSI
0::
--
""""I"<
:3
0.5
......
36
40
MR2000 Series
FIGURE 6 - THERMAL RESPONSE
~
1.0
::i O. 7
! o.5
t..--
o
;: 0.3
w
~ 0.2
j;.-'""
~
ffi
j....--
O. I
~o.o7
o.a5
iw
ROJC(tI' ROJC. ,It)
(NOTE II
....
~o.o 3 ..........
Eo.o2
u;
~o.o I
.... 1.0
~
2.0
5.0
3.0
7.0
10
20
30
50
70
100
200
300
500 700
FUL
Pk
1---"
--I
TIME
DUTY CYCLE, 0 "Ip/ll
PEAK POWER, Ppk, IS peak of an
equivalent square power pulse
300
-~
i= O. 5:::
>
"
I-Ifr-l
ffi
>
..........
.,..,...... ....
I--
I'..
0
--ALL DEVICES
- - - ALL DEVICES EXCEPT MR2000
0
~
0.2
~
~IO. I l - 1.0
I-
r--....
...-
]
0
t'
.......
1.0
2.0
5.0
10
20
VR, REVERSE VOLTAGE (VOLTS)
50
100
11 I
TJ = 25 0 C
...........
~
i= 7.0
~
~
3.
0
~ 2.0
+-2'r
7.0
1.0
0.1
10
3-223
.....
5.0
~
~
5.0
2.0
3.0
IF, FORWARD CURRENT (AMP)
0.5
0.2
0
,.... Uf,= 1.0 V
-
f'...
0
50
0.1
0.3
..'"il1 V
I
I""-..
FIGURE 9 - REVERSE RECOVERY TIME
TJ,250 C
O. 7 - uF
II
TJ =250 C
I"-
FIGURE 8 - FORWARD RECOVERY TIME
I. 0
§
5.0k 7.0k 10k
I
t--
Ppk
To determine mallimum IlinCllon temperature of the dIOde In a given situation, the follOWing
procedure IS recommended.
The tempe'ature of the case should be measured uSing a Ihermocoupleplaced on the case at
the temperature reference pOint (see the outline draWing on page 11 The thermal mass connected
to the case IS normally large enough so thalli Will not Significantly respond to healsurgu
generated m the diodeasa result of pulsed opL!f81lOn oncesleadv state condillonsare achIeved
USl1IlI the lIU!,ullred value of T C. the JunctIOn temperature may be determined by
TJ"TC+ .... TJC
where t::.. TJC 15 the Increase In IURetton temperature above the tase temperature II may be
determtnedby.
~TJC=Ppk. R(IJC ID +/1-D) • r!1l +tp)+rltp) - dll)!
where
r(tI "normalized value of transient thermal resistance at tlme,t, trom FigureS, I.e.,
rhl +tp)=normahzedvalueoftraRSlentthermalreslstanceatltme1l+tp
'"
3.0k
500
1
P
w
2.0k
FIGURE 7 - CAPACITANCE
NOTE 1
]
1.0k
I,TIME(ms)
IF
IplOA
I I
0~UjO'25IR
i'..
r-... .......
~~
5.0 A"
~
......... 1"--1'-l'
I r"l II
0.2 0.3
0.5 0.7 1.0
2.0
5.0
IRIIF, RATID OF REVERSE TO FORWARD CURRENT
7.0
10
MR2000 Series
RECTIFICATION EFFICIENCY NOTE
FIGURE 10 - RECTIFICATION WAVEFORM EFFICIENCY
60
~
~
CURRENT INPUT WAVEFORM
20 I-
iii
;:;
f-
,; 10
Tl·~5.~
r-- ~~
t
itw
I I I
...
40
JV'vJ1.f1----
FIGURE 11 - SINGLE·PHASE HALF·WAVE RECTIFIER CIRCUIT
1\
1\
The rectification efficiency factor
calculated using the formula:
a shown in Figure 10 was
V201dc)
RL
V201dC)
Pdc
a = P rm • =V20Irm.) • 100% = V201ac) + V201dc) • 100%
8.0
2.0
3.0
5.0. 7.0
10
20
t, FREQUENCY 1kHz)
3D
50
70
(1)
RL
100
For a sine wave input Vm sin (wd to the diode, assume lossless,
the maximum theoretical efficiency factor becomes:
V2m
•
,,2RL
4
alsine) = V2m • 100% =-;;2
•
100% = 40.6%
(2)
4RL
For a square wave input of amplitude V m • the efficiency factor
becomes:
V2m
2RL
alsquare) = V2m • 100% = 50%
(3)
RL
(A full wave circuit has twice these efficiencies)
As the frequency of the input signal is increased, the reverse
recovery time of the diode (Figure 9) becomes significant, result~
ing in an increasing Be voltage component across R L which is
opposite in polarity to the forward current, thereby reducing the
value of the efficiency factor a. as shown on F igu re 10.
It should be emphasized that Figure 10 shows waveform
efficiency only; it does not provide a measure of diode losses.
Data was obtained by measuring the at component of Va with a
true rms ac voltmeter and the de component with a de voltmeter.
The data was used in Equation 1 to obtain point. for Figure 10.
3-224
-
-
MR2400
MOTOROLA
SEMICONDUCTOR
thm
TECHNICAL DATA
MR2406
MR24D4 and MR2406 are
Motorola Preferred Devices
MEDIUM-CURRENT
SILICON RECTIFIERS
TAB-MOUNTED MEDIUM-CURRENT
SILICON RECTIFIERS
50-600 VOLTS
24 AMPERES
... compact, highly efficient silicon rectifiers for medium current
applications requiring:
• High Current Surge - 400 Amperes @ TJ = 175°C
• Peak Performance @ Elevated Temperature - 24 Amperes @
TC= 150°C
• Low Cost
• Same Mounting as a TO-220AB
CASE 339-02
PLASTIC
II
MAXIMUM RATINGS
Symbol
Rating
MR2400
MR2401
MR2402
MR2404
MR2406
VRRM
VRWM
VR
50
100
200
400
600
Nonrepetltive Peak Reverse Voltage
VRSM
60
120
240
480
720
(hall wave, single phase, 60 Hz peak)
Average Rectified Forward Current
IFSM
.
.
400 (lor 1 cycle)
TJ, Tstg
.
65 to +175
10
(Single phase, resistive load, 60 Hz, TC = 150·C)
Nonrepetitive Peak Surge Current
(surge applied @ rated load conditions,
hall wave, single phase, 60 Hz)
Operating and Storage Junction
Unit
Volts
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Volts
-
24
..
Amp
Amp
·C
Temperature Range
THERMAL CHARACTERISTICS
Symbol
Max
Unit
Thermal Resistance, Junction to Case
R8JC
0.8
°C/W
Thermal Resistance, Junction to Air PC Board Mount, Perpendicular to Surface
R8JA
55
°C/W
Characteristic
ELECTRICAL CHARACTERISTICS
Symbol
Max
Unit
Maximum Instantaneous Forward Voltage (iF = 75.4 Amp, TC = 25°C)
vF
1.18
Volts
Maximum Reverse Current (rated dc voltage)
TC= 25°C
TC= 100°C
IR
25
1.0
/loA
mA
Characteristics and Conditions
MECHANICAL CHARACTERISTICS
CASE: Plastic encapsulated, metal tabs.
FINISH: All external surfaces are corrosion resistant and the leads are readily solderable.
POLARITY: Cathode to tab with hole; Reverse polarity available by adding "R" Suffix. MR2402R.
MOUNTING TORQUE: 8in-lb max
MAXIMUM TEMPERATURE FOR SOLDERING PURPOSES: 3500C, 3/8' from case lor 10 seconds.
WEIGHT: 3.6 Grams (Approximately).
3-225
MR2400 thru MR2406
-
FIGURE 1 - FORWARD VOLTAGE
700
500 I--TJ= 250 C
./
200
,
70
ii:
50
30
I
20
I I
il'i
•
:::!
13
300
1"1"'-
-.......
w
~
............... .......
I
.. r-f'lJ\
'".
~
~
:t:
25 0 C
r-.......1"
I-,,,,,,~
~ 100
~
80
60
1.0
10
5.0
2.0
1/
o
..........
TJ = 175 0 C
~ 200
III
:E
~
~
13
VRRM MAY BE APPLIED BETWEEN
EACH CYCLE OF SURGE. THE TJ
NOTED IS TJ PRIOR TO SURGE
f = 60 Hz
..........
............... r--.
z
/
J
laO
'"~ 400
/ V
I - - f-TYPICAL
............
ii:
MAXIMUM
V
/
--
,-
/
300
FIGURE 2 - NONREPETITIVE SURGE CURRENT
600
100
50
20
NUMBER OF CYCLES
I
0:
~ 10
0:
FIGURE 3 - FORWARD VOLTAGE TEMPERATURE
COEFFICIENT
o
~ 7. 0
:::>
+{l.5
~ 5.0
z
~
z
~ 3. 0
z
a
~ 2.0
~
5
TYPICAL RANGE,
1.0
,-I-"""
....... I-"'"
1\
0
O. 7
_po.;
0.5
I"'"
-1.5
r-
0.3
0.2
0.6
I I
-2. 0
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
0.5
0.2
FIGURE 4 - CURRENT DERATING
~
I"--..
.........
Or-.
J'-....
t---...
0-
0
0
125
130
J"...
J"... /' 1'~
r---..
""""" ,..., ........ ~ F>< 20
--
135
r-..
"':>< ~
r-. Y
140
i
CAPACITIVE
LOADS
SINE WAVE
CAPACITIVE
LOADS
"-
155
160
I
10
20
50
100
200
7
" I"-
165
~5 L
V
h
""
/ 1/ V./ V" V"SQUARE_ rWAVE
Vj / ~ V
J
~V
/
~
~AVE
SINE
__
RESISTIVE LOAD
L ~ ".
0
170 175
~ .L
de
~ .L
V
L
,FM ) = 20 t--l0
I(AV)
L lL
-~ ::::::::::: ~
5.0
// ~ r
~......... ~ ~
150
t-:
t--
~~
145
2.0
FIGURE 5 - FORWARD POWER DISSIPATION
~ = 7T (SINE WAVE RESISTIVE LOAO)
K
1.0
iF. INSTANTANEOUS FORWARD CURRENT lAMP)
vF.INSTANTANEOUS FORWARD VOLTAGE IVOLTS)
~
l.-'
tJI"
10
20
30
40
IF(AV). AVERAGE FORWARD CURRENT (AMP)
TC. CASE TEMPERATURE (oC)
3-226
50
MR2400 thru MR2406
FIGURE 6 - THERMAL RESPONSE
§N
1.0
~ O. 7
~ O. 5
o
......
~ 0.3
...zw
O. 2
~
O. 1
~
b:::::::
ROJC{t) , ROJC • r{t)
NOTE 1
;;! 0.0 7
ffi
0.0 5
:J:
...... 0.03
ffi
<;;
/'
0.02
~
:= 0.0 1 V'
~
0.05 0.07
0.1
0.3
0.2
0.5
0.7
1.0
2.0
3.0
5.0
t. TIME {msl
7.0
10
20
30
50
10
100
200
300
500
NOTE 1
nr- nr-L
P
pk
P DUTY CYCLE. 0; tp/tl
pk PEAK POWER. Ppk. is peak of an
~quivalent square power pulse.
.J""tp~
1--11---1
Time
diode in a given situation. the following procedure is
recommended.
Thetemperature ofthe case should be measureed using a thermocouple placed on the case at the temperature
reference point. The thermal mass connected to the case
is normally large enough so that it will not significantly
t--.
50
0.1
/lTJC; Ppk.R9JC [0 + (1 - O).r(11 + t p ) + r(t p ) - r(tl)1
where
r(t) ; normalized value of transient thermal resistance
at time. t. from Figure 3. i.e.:
r(tl + t p ) ; normalized value oftransientthermal resistance at time tl + tp.
2.0
I-TJ,25 DC
~
I-tlr-l
~
w
>
/""
~ O. 3
a:
c
a:
~ O. 2
V
~
~
w
~ Vlr'I.0V
"fr
::Ii
V"
ffi
1.0
2.0
5.0
10
20
VR. REVERSE VOLTAGE (VOLTS)
ffi
1:;
a:
2.0 V
7.0
100
TJ,25DC
r-..... i'-
IF
1'....
7.0
o
f-- IplOA
r-.
"r.......
a:
2.0
3.0
5.0
IF. FORWARD CURRENT (AMP)
50
t'-...
3.0
5.oA
2.0
3-227
1.0
0.1
J-trr
........
II
b-.
~ i' r-.
~U
......
.;;
10
1~q-0'25IR
.......
~ >-..
w
!--
1.0
0
B
5.0
w
/
~~
o. 1 l - - -
0.5
0.2
;:
/""
~
~
FIGURE 9 - REVE RSE RECOVERY TIME
FIGURE 8 - FORWARD RECOVERY TIME
~ O. 5
>a:
--ALL DEVICES
- - - ALL DEVICES EXCEPT MR2400
0
where /lTJC is the increase in junction temperature
above the case temperature. It may be determined by:
w
"
~ 200
...- 100
2~DC
r--...
<
5
...~
of pulsed operation once steady-state conditions are
achieved. Using the measured value of TC. the junction
temperature may be determined by:
TJ;TC+/lTJC
~ O. 7I-VI~
TJ'
....
300
respond to heat surges generated in the diode as a result
1.0
II
FIGURE 7 - CAPACITANCE
500
--=ro-d'etermine maximum junction temperature of the
0.2
0.5 0.7 1.0 2.0
0.3
3.0
5.0 7.0
IRnF. RATIO OF REVERSE TO FORWARD CURRENT
10
MR2400 thru MR2406
RECTIFICATION EFFICIENCY NOTE
FIGURE 10 - RECTIFICATION WAVEFORM EFFICIENCY
60
- .
- '"
40
0:
0
..,....
~
~ 20
TJ = 2SOC
~
'\
iii
u
:tw
The rectification efficiency factor
10
B.O
6.0
1.0
e 100%
=
J\I'vI ~-;-; II
2.0
3.0
5.0 7.0 10
20
f. FREQUENCY 1kHz)
30
shown
In
Figure 10 was
1\
CURRENT INPUT WAVEFORM
b"
(J
calculated using the formula:
50
70
100
V20ldcl
--
V20lacl + V20ldcl
el00%
III
For a -sine wave input V m sin Iwt) to the diode, assume loss less,
the maximum theoretical efficiency factor becomes:
v2m
II
;2RL
°lsinel
=
-2- e 100%
V m
.4
=
2
e 100%
40.6%
121
1f
For a square wave input of amplitude V m • the efficiency factor
becomes:
V2m
2RL
0lsquarel =-2- el00%'" 50%
Vm
131
RL
(A full wave cirCUit has twice these efficiencies)
As the frequency of the input signal is increased, the reverse
recovery time of the diode (Figure 9) becomes significant, result-
ing in an increasing ae voltage component across R L which is
opposite in polarity to the forward current, thereby reducing the
value of the efficiency factor a, as shown on Figure 10.
It should be emphasized that Figure 10 shows waveform
efficiency only; it does not provide a measure of diode losses.
Data was obtained by measuring the ac component of Vo with a
true rms ac voltmeter and the dc component with a de volt"",eter.
The data was used in Equation 1 to obtain points for Figure 10.
3-228
MR2400F
MOTOROLA
-
SEMICONDUCTOR
•
thru
TECHNICAL DATA
MR2406F
MR2402F and MR2406F are
Motorola Preferred Devices
FAST RECOVERY
POWER RECTIFIERS
TAB-MOUNTED FAST RECOVERY
POWER RECTIFIERS
50-600 VOLTS
24 AMPERES
· .. designed for special applications such as dc power supplies,
inverters, converters, ultrasonic systems, choppers, low RF interference, sonar power supplies and free wheeling diodes. A complete
line of fast recovery rectifiers having typical recovery time of 150
nanoseconds providing high efficiency at frequencies to 250 kHz.
~~
• Same Mounting as a TO-220AB
• Cost Effective in Low Current Applications
r~
• Lead or Chassis Mounted
• High Surge Current Capability
II
MAXIMUM RATINGS
Symbol
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Nonrepetitive Peak Reverse Voltage
RMS Reverse Voltage
MR2400F MR2401F MR2402F MR2404F MR2406F
50
100
200
VRSM
75
150
250
450
650
VR(RMS)
35
70
140
280
420
10
.
IFSM
•
Average Rectified Forward Current
400
600
..
24
.
...
(Single phase, resistive load, TC; 125°C)
Nonrepetitive Peak Surge Current
(surge applied @ rated load conditions)
Operating Junction Temperature Range
TJ
Storage Temperalure Range
Tstg
Unit
Volts
VRRM
VRWM
VR
300 (for 1 cycle)
..
-65 to +150
-6510+175
Volts
Volts
Amp
Amp
°c
°c
THERMAL CHARACTERISTICS
Characteristic
Symbol
Max
Unit
Thermal Resistance. Junction to Case
R9JC
0.8
°C/W
Thermal Resistance, Junclion to Air, PC Board Mounl; Perpendicular to Surface
R9JA
55
°C/W
ELECTRICAL CHARACTERISTICS
Symbol
Min
Typ
Max
Unit
Instantaneous Forward Voltage (IF; 75 Amp, TJ ; 150°C)
Characteristic
vF
-
1.15
1.29
Volts
Forward Voltage (iF; 24 Amp, TC = 25°q
VF
-
1.00
1.15
Volls
Reverse Current (rated dc voltage) TC = 25°C
TC= 100°C
TC=150oC
IR
-
-
10
0.5
7.0
25
1.0
10
p.A
mA
mA
Min
Typ
Max
Unit
-
150
200
200
300
-
-
4.0
REVERSE RECOVERY CHARACTERISTICS
Characteristic
Symbol
Reverse Recover Time - Soft Recovery
(IFI= 1.0 Amp to VR = 30 Vdc, Figura 19)
(lFM = 36 Amp, di/dt = 25 AIl's, Figure 20)
Irr
Reverse Recovery Current
(IF = 1.0 Amp to VR = 30 Vdc, Figure 19)
IRM(REC)
3-229
ns
Amp
MR2400F thru MR2406F
FIGURE 2 - MAXIMUM SURGE CAPABILITY
FIGURE 1 - MAXIMUM FORWARD VOLTAGE
100
300
"'- ......
90
200
./ ~
100
70
/
TJ = 150 Cj
50
L
::Ii!
~
IS
II:
II:
=>
0
/
20
/
Q
~
'"...=>
Q
•
r-....
?
V
10
II
TJ = 25°C
-
/'\
r--
/
o
1.0
/
n
/ /
0.7
::;
I
I
I
0.6
30
50 70100
nL
P
"pk
P DUTY CYCLE. 0 = tpltl
"pk PEAK POWER. Ppk. is peak of an
equivalent square power pulse.
Time
To determine maximum junction temperature of the
diode in a given situation, the following procedure is
recommended.
The temperature of the case should be measureed using a thermocouple placed on the case at the temperature
reference point. The thermal mass connected to the case
is normally large enough so that it will not significantly
respond to heat surges generated in the diode as a result
of pulsed operation once steady-state conditions are
achieved. Using the measured value of TC. the junction
temperature may be determined by:
TJ=TC+·HJC
l
1.0
~
3.0 5.0 7.010
20
NUMBER OF CYCLES AT 60 Hz
I---tl--1
II
il
2.0
0.3
0.4
2.0
NOTE 1
I
I
:;. 3.0
I'-U
II
10
1tp~
S
z
..........
f'\
/'\
I----l-l CYCLE
7.0
~ 5.0
II
H-l
Z
0.5
r--..
/
V
30
U
I
7
II
Prior to surge. the rectilier
is operated such that TJ = 150°C;
VRRM mav be applied between
each evcl. of surge
0.8
1.0
1.2
1.4
vF. INSTANTANEOUS VOLTAGE (VOLTS)
where .1TJC is the increase in junction temperature
above the case temperature. It may be determined by:
1.B
1.6
.:l. TJC = Ppk. R8JC [0 + (I - 0).r(t1 + t p) + r(t p ) - r(tl)]
where
r(t) = normalized value oftransientthermal resistance
at time. t. from Figure 3. i.e.:
r(1l +tp) = normalized value oftransientthermal resistance at time tl + tp.
FIGURE 3 - THERMAL RESPONSE. CHASSIS MOUNTED
1.0
O. 7
~ o. 5
o
.
~ 0.3
z
~
~
0.2
I--
O. 1
R(JJC(t) ~ ROJC • ,(t)
NOTE 1
~0.Q7
ffi 0.05
'".... 0.03
~
in
/'
0.02
z
:=" 0.01
~
0.05 0.07
0.1
0.2
0.3
0.5
0.7
1.0
2.0
3.0
5.0
I. TIME (ms)
3-230
7.0
10
20
30
50
70
100
200
300
500
MR2400F thru MR2406F
CHASSIS MOUNT RATING DATA
Square Wave Input
Sine Wave Input
FIGURE 4 - FORWARD POWER DISSIPATION
FIGURE 5 - FORWARD POWER DISSIPATION
in
540
~
:
30
'"~
25
OS
I-~
~
~I'--.... .......
20 ~t-....
-7/
20
~ 15
~
/
~ 10
;C 0
8.0
12
16
20
24
28
IFIAV). AVERAGE FORWARD CURRENT lAMP)
32
~
0
4.0
40
~ 35~--+_--~--~----+_--~--~----+_--~
.........
~ 35
!'-...
:!.
30~~~~~--~----+_~~~~~~---+_--~
~ 30
a:
a:
:::J
u 25~~d-~~~~---~+_--~--
13
25
~
!Ii!
~
20
~
'"
If_--+_--__j
120
125
130
135
140
TC. CASE TEMPERATURE laC)
32
II
CAPAJITIVE LOiDS
I(PK) = 5.0
IIAV)
110
~
~
V
20
~~
~
145
150
110
115
120
,
~
S? 0
115
I--
V~ b?"
", V
~
!Ii!
~
Vi.
FIGURE 7 - CURRENT DERATING
FIGURE 6 - CURRENT DERATING
~
w
/
1'7' :/ ~
17/ ~
~~
"-
40r---,----.---.----~--_.--_,----~--~
!Z
~
r-.......
~~
w
ffi'" S.O
/ [7
I-I(AV) = 5.0 ~;......
10
"<>
4.0
/
CAPlCITIVE L6ADS
'"
<> 35
i=
125
130
135
140
TC. CASE TEMPERATURE (OCI
145
150
PRINTED CIRCUIT BOARD RATING DATA
'"~ 4.0
z
~
i:j
c;
3.0
FIGURE 9 - CURRENT DERATING
FIGURE 8 - FORWARD POWER DISSIPATION
4.0
~--,-----.-------'r---~--_.--_'-----'----'
SINE AND S~UARE WAVE
CAPACITIVE LOAD
--~--~+-~~£-:7"I
~=20_dr--~--~~~~74~~
I(AV)
I---f----+ 10 _t-----I7~._&~.-r_7'_"+--__j
5
~ 2.0 I---+----r'=-:::..k:-,L~,.£,>"'F.,.,.~I_--+_---I
"-
I
~
1.0 f----+---....,jS~...,..I"'----+_--_+----r_--+_---
w
'"
~ O~~~__~____~__~__~____~__~___
4.0
1.0
2.0
3.0
IF(AV). AVERAGE FORWARD CURRENT (AMP)
...~ 0
3-231
W
~
00
00
100
lW
TA. AMBIENT TEMPERATURE (OC)
140
160
MR2400F thru MR2406F
TYPICAL DYNAMIC CHARACTERISTICS
FIGURE 11 - JUNCTION CAPACITANCE
FIGURE 10- FORWARD RECOVERY TIME
200
10
7.01
U~
~ 5.oI
I----
w
~
E
\-llr
3.01----
I
TJ = 25 0 C
...
Ufr
~
~
z
V
>
<>
~
1I
2.0
'"
c
'"
i
1.0
O.7
O. 5
~
O.3
~
o.2~
i!:
u
VIr = 1.1 V
:
70
z
<>
50
~
t;
--
O. 1
z
~
f-'"
...........
Ii! 6.0
~ 5.0
0:
............ ............ ~....... Mr,...20
u
"""
..........
C>
~ 4.0
'"~
100
VR, REVERSE VOLTAGE (VOLTS)
1"--....--""""': ~
3.0
~ 2.0
;;-
R6JA = 14°C/W
~1.0
I
I
40
60
~~
~~
......
~
"""'Ii
o
o
20
Figure 14 shows the current carrying capability of a
device mounted on a printed circuit board with a typical
TO-220 type heatsink having a sink-to-air thermal resistance of 12°C/W. Allowing another 2°C/W for R6JC plus
R6CS (case-to-sink) puts the total at 14°C/W as indicated.
The unit and heatsink were mounted perpendicular to the
printed circuit b,!ard for this data.
I(AV)
80
100
120
~
140
160
TA. AMBIENTTEMPERATURE (OC)
3-232
MR2400F thru MR2406F
TYPICAL RECOVERED STORED CHARGE DATA
(See Note 3)
FIGURE 15 - TJ = 25°C
FIGURE 16 - TJ = 75°C
1.0
2.0
IFM~20A
3-
.
w
to
40 A
O. 5
«
G
..'"
..
§
..
~
""
IV
.L.
o.2
.L.
~
~ 0.05
0.0
~
'"t;
~_>
IDA
~
",!?
:~
1.0
~ P"
~
2.0
....
50
40 A
o. 5
/'1/
/: "/ 1/ i-'
2
0.5< V- 1--'1--'
r-.....
o. I
lOA
§
50A
.. 00 5
\OA
'"'"
I
10
IJ201
1. 0
~
5
yV'
~ ~ V-
t;; O. I
~O.O
w
v
20
50
100
5.0 A
~
002
10
LOA
20
5.0
dl/dl (AMP/lAs)
w
..
'"
~
1
G
V
L v::
v
~ 0.0 5
'"'" 0.02
1.0
~~
20
50
20
~
.1
>
'"'"
I'D A
10
/
O. 2
§
..
50A
~ ~I-""
100
•
Vl.-
5
~
w
~IOA
2
IFM~4JA
0
~
~ ~ vI--'
>
50
~
V
t;
3w
«
~
2
V
40 A
~
5 o.5
20
FIGURE 18 - TJ = 150°C
0
IF~ ~ 20lA
.3 1. 0
10
dildl. IAMPI•• )
FIGURE 17 - TJ = 100°C
0
I
,eJ3 ~I-""
50
100
/
/'
A V
l-"
j><
~ .y ~OA
lOA
0.0 5
LOA
/h
0.02
1.0
~~
2.0
5.0
10
20
50
dildIIAMPI••)
dlld •. IAMPI••)
NOTE 3
Reverse recovery time is the period which elapses from the
time that the current, thru a previously forward biased rectifier
diode, passes thru zer090;ng negatively until the reverse current
recovers to a point which is less than 10% peak reverse current.
di/dt
Reverse recovery time is a direct function of the forward
current prior to the application of reverse voltage.
For any given rectifier, recovery time is very circuit dependent. Typical and maximum recovery time of all Motorola fast
recovery power rectifiers are rated under a fixed set of conditions
using IF = 1.0 A. VR = 30 V. In order to cover all c"cuit
conditions, curves are given for typical recovered stored charge
versus commutation di/dt for various levels of forward current
and for junction temperatures of 250 C. 750 C. 100"C. and
15o"C.
To use these curves, it is necessary to know the forward
current level just before commutation, the circuit commutation
di/dt. and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery
recti'i.,s is shown.
'AMIAEC)+--........_ -
From stored charge curves versus dildt, recovery time (lrr)
and peak reverse recovery current II RMIRECII can be closely
approximated using the following formulas:
3-233
0 11/2
[
trr= 1.41 x di/:d
IRMIRECI = 1.41 x [OR x di/dt] 112
100
MR2400F thru MR2406F
FIGURE 19 - JEDEC REVERSE RECOVERY CIRCUIT
RI
LI
dildt ADJUST
T1
~ II
T2
CI
03
120 Va,
60 Hz
I (PKI ADJUST
out
1:1
R2
RI • 50 Ohms
R2' 250 Ohms
01'IN4723
02 'IN4001
03' IN4933
SCRI·MCR729·10
01
CURRENT
VIEWING
RESISTOR
CI·0.5to50~F
C2 ~ 400o.F
•
L1 • 1.0 - 27 ~H
T1 • Va"a, Adjusts I(PKI and dl/dt
T2'1:1
T3 = 1:1 (ta trigger circuli)
FIGURE 20 -
REVERSE RECOVERY CHARACTERISTIC
~
Time
SOFT RECOVERY
MECHANICAL CHARACTERISTICS
CASE: Plastic Encapsulated. Metal Tabs.
FINISH: All external surfaces are corrosion resistant and are readily solderable.
POLARITY: Cathode to Tab with hole; Reverse polarity available by adding "R" Suffix. MR2402FR.
WEIGHT: 3.6 Grams (Approximately).
MOUNTING TORQUE: 8 in-Ibs max.
MAXIMUM TEMPERATURE FOR SOLDERING PURPOSES: 360·C. 3/8" from case for 10 seconds.
3-234
MR2500
Series
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL DATA
•
MR2504 and MR2510 are
Motorola Preferred Devices
MEDIUM-CURRENT SILICON RECTIFIERS
MEDIUM-CURRENT
· .. compact, highly efficient silicon rectifiers for medium·current
applications requiring:
•
High Current Surge - 400 Amperes @ T J = 175°C
•
Peak Performance
TC= 150°C
•
•
Low Cost
Compact, Molded Package - ·For Optimum Efficiency in a Small
Case Configuration
@
SILICON RECTIFIERS
50 - 1000 VOL TS
25 AMPERES
DIFFUSED JUNCTION
Elevated Temperature - 25 Amperes @
• Available Wilh a Single Lead Attached
MECHANICAL CHARACTERISTICS
CASE: Transfer Molded Plastic
FINISH: All External Surfaces are Corrosion Resistant and the Contact Areas Readily
Solderable.
POLARITY: Indicated bV dot on Cathode Side
MOUNTING POSITIONS: AnV
MAXIMUM TEMPERATURE FOR SOLDERING PURPOSES: 25o"C
WEIGHT: 1.8 Grams (Approximatelv)
MAXIMUM RATINGS
Characteristic
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
MR MR MR
Svmbol 2500 2501 2502
MR
25~
MR MR MR
2501 25011 2510 Unit
Volts
VRRM
VRWM
VR
50
100
200
400
600
800
1000
Non-Repetitive Peak Reverse
VoJtage (halfwave, single phase,
60 Hz peak)
VRSM
60
120
240
480
720
960
1200 Volts
Average Rectified Forward Curren
10
•
DC Blocking Voltage
(Single phase, resistive load,
IFSM
.
TJ,Tstg
...
60 Hz, TC = 150°C)
Non-Repetitive Peak Surge
Current (surge applled@rated
load conditions, half wave,
single phase, 60 Hz)
Operat 109 and Storage Ju nction
Temperature Range
•
Amp
400 (for 1 cyclel
•
Amp
-65 to +175
•
°c
25
THERMAL CHARACTERISTICS
Character istic
Thermal ReSistance, Junction to Case
(Single Side Cooled)
ELECTRICAL'CHARACTERISTICS
Characteristics and Conditions
Maximum Instantaneous Forward Voltage
(iF = 78.5 Amp, T" = 25°C)
Maximum Reverse Current (rated de voltage)
TC = 25°C
TC = 100°C
Symbol
vF
Max
1.18
Unit
Volts
~A
IR
100
500
3-235
•
I
MR2500 Series
--
FIGURE 2 - NON·REPETITIVE SURGE CURRENT
FIGURE 1- FORWARD VOLTAGE
700
500 -TJ=25 0C
./
/'
300
/
200
-
-TYPICAL
1/ V
J
100
V
600
V
z
MAXIMUM
a
~
0::
'">-
:;
/
•
20
i'"
10
"
......
~
~
I
............
.............. ......
I
l-lcvcte~
25 0 C
.....
:-.....
tOO
80
60
1.0
2.0
10
5.0
/I
I
Q
I
..............
TJ = 1750C
r-f\.J\
~
~
J
~
a
..............
300
~ 200
'"'"~
30
VRRM MAY BE APPLIED BETWEEN
EACH CYCLE OF SURGE. THE TJ
NOTED IS TJ PRIOR TO SURGE
f = 60 Hz
~
w
70
50
............
~
~ 400
r-
20
100
50
NUMBER OF CYCLES
FIGURE 3 - FORWARD VOLTAGE TEMPERATURE
COEFFICIENT
~
~ 7. 0
=>
~ 5.0
z
+0.5
~
:i
In
z
3. 0
iii
~ 2.0
3>
I--'l
5 -0.5
ffi
U
1.0
O. 7
~ -1.0
0.5
8
-
·1.5
0.3
0.2
0.6
O.B
1.0
1.2
1.4
1.6
I.B
2.0
2.2
2.4
-2.0
0.2
2.6
0.5
vF.INSTANTANEOUS FORWARD VOLTAGE (VOLTS)
FIGURE 4 - CURRENT DERATING
i
~
i""-..IJ ::~~: = _(SINE WAVE RESISTIVE LOAO)_
i- 40 1-"""'<:Ir---f
........
Ii"'.. j)~lCAP~CITIV~
.....M--",..A~~20
LOADS -+-+--1
a 30~~r--T~~~~~r-~~+--r--1--+--1
....................
r-.,. 7'A
I ......
50
de
Q
i~ 201-----
N ~
"""
-r--tt
. . . . . . ~~
~
-~
;::
10
j
0
125
-.
135
140
145
150
155
160
TC. CASE TEMPERATURE IOC)
~
30
165
170
...~
'"...
20
;::
10
~
It
175
3-236
200
f-:
IFM)
IIAV)
/
=2~ -j ~5
/
/ //
h
'/
,.,
/'
./
de
I / V/ r SDUARE_ r-WAVE
/ / ~V
V
/ I/, ~ i'-.. SINE ~AVE _ _
RESISTIVE LOAD
1// ~ V
/~ ~
ffi
"'~~
130
/
50
SINEWAVE
40 CAPAC)TIVE
LOADS
w
\.
_P'<
FIGURE 5 - FORWARD POWER DISSIPATION
'"
r---.::~~
-~~~r--
.....- ,.,...
"...
1.0
2.0
5.0
10
20
50
100
iF. INSTANTANEOUS FORWARD CURRENT (AMP)
i5
~
V
-
TYPICAL RANGE,
~
0~
o
"'"
10
20
30
40
IFIAV). AVERAGE FORWARD CURRENT lAMP)
50
MR2500 Series
FIGURE 6 - THERMAL RESPONSE
~
1.0
O. 7
O. 5
~
II:
C>
~ 0.3
~ 0.2
~
I--
~ o. 1
ROJCIt) = ROJC. rlt)
NOTE 1
~
0.07
~ 0.05
:z:
0.03
*
t-
!;;
./
0.02
z
~
=
III
O. 5
~
O.3
>
C>
f-TJ=250C
~
I-tlr..J PI,
./'
.......
C>
II:
~
=
~
2.0
O.
...... V
V
--
j
..t...-t-"
w
Vf,"1.0V
~
0.1 - - 1.0
~
_i'"""
--
2.0
3.0
5.0
IF. FORWARD CURRENT IAMPI
0
'"
ffi
1.0
>
~
II:
5.0
$
3.0
~
2. 0
II:
2.0V
7.0
50
.......
100
TJ = 25°C
::---.. :-.....
IF
I'-...
0~Ur°'25IR
;:
/
O. 2
5.0
10
20
1.0
2.0
YR. REVERSE VOLTAGE IVOLTS)
FIGURE 9 - REVERSE RECOVERY TIME
FIGURE 8 - FORWARO RECOVERY TIME
1.0
0.5
0.2
-
IF -IDA
1.0
0.1
10
3-237
...... :-.....
"':>c ~
5.0 A
$
0.2
I-t"
........
I'
......
"
II
r-.....
r-.. r-....
.1.;11
I"
0.3
0.5 0.7 1.0 2.0
3.0
5.0 7.0
IRIIF, RATIO OF REVERSE TO FORWARO CURRENT
10
MR2500 Series
FIGURE 10 - RECTIFICATION WAVEFORM EFFICIENCY
60
-
40
- '"
TJ = 25°C
,
~
0:
...co
'"
:t
~ 20
1\
"\
ill
u
§
CURRENT INPUT WAVEFORM
.;
10
B.O
6.0
1.0
JV'vI ~-~-~ II
2.0
3.0
5.0 7.0
10
20
30
50
70
100
f, FREQUENCY (kHzl
II
RECTIFICATION EFFICIENCY NOTE
FIGURE 11 - SINGLE·PHASE HALF·WAVE RECTIFIER CIRCUIT
The rectification efficiency factor a shown in Figure 10 was
calculated using the formula:
For a square wave input of amplitude V m • the efficiency factor
becomes:
V2m
V20(dcl
Pdc
0=
RL
.,00%
Prms = V20(rmsl
=
v20ldcl
.,00%
V20 (acl + V2 0 (dcl
2RL
O(squarel = V2m • 100% = 50%
III
RL
RL
(A full wave circuit has twice these efficienciesl
As the frequency of the input signal is increased, the reverse
recovery time of the diode (Figure 9) becomes significant, resulting 10 an increasing ae voltage component across R L which is
For a sine wave input Vm sin (wt~ to the diode, assume lossless,
the maximum theoretical efficiency factor becomes:
opposite in polarity to the forward current, thereby reducing the
value of the efficiency factor 0, as shown on Figure 10.
It should be emphasized that Figure 10 shows waveform
efficiency only; it does not provide a measure of diode losses.
Data was obtained by measuring the ac component of Va with a
true rms ac voltmeter and the dc component with a dc voltmeter.
The data was used in Equation 1 to obtain points for Figure 10.
V2m
n 2RL
O(sinel
= V2m
4
• 100% =-;;2
(31
•
100%
=40.6%
121
4RL
3-238
MR2500 Series
ASSEMBLY AND SOLDERING INFORMATION
Exceeding these recommended maximums can result in
electrical degradation of the device.
There are two basic areas of consideration for successful
implementation of button rectifiers:
1. Mounting and Handling
2. Soldering
each should be carefully examined before attempting a
finished assembly or mounting operation.
SOLDERING
The button rectifier is basically a semiconductor chip
bonded between two nickel·plated copper heat sinks with
an encapsulating material of thermal·setting silicone. The
exposed metal areas are also tin piated to enhance
solderability .
In the soldering process it is important that the tem·
perature not exceed 2500 C if device damage is to be
avoided. Various solder alloys can be used for this operation but two types are recommended for best results:
1. 96.5% tin, 3.5% silver; Melting point is 221 0 C (this
particular eutetic is used by Motorola for its button
rectifier assemblies).
2. 63% tin, 37% lead; Melting point 1830 C (eutetic).
Solder is available as preforms or paste. The paste
contains both the metal and flux and can be dispensed
rapidly. The solder preform requires the application of a
flux to assure good wetting of the solder. The type of
flux used depends upon the degree of cleaning to be
accomplished and is a function of the metals involved.
These fluxes range from a mild rosin to a strong acid; e.g.,
Nickel plating oxides are best removed by an acid base
flux while an activated rosin flux may be sufficient
for tin plated parts.
Since the button is relatively light·weight, there is a
tendency for it to float when the solder becomes liquid.
To prevent bad joints and misalignment it is suggested
that a weighting or spring loaded fixture be employed. It
is also important that severe thermal shock (either heating
or cooling) be avoided as it may lead to damage of the die
or encapsulant of the part.
MOUNTING AND HANDLING
The button rectifier lends itself to a multitude of
assembly arrangements but one key consideration must
always be included:
One Side of the Connections to
the Button Must Be Flexible I
Strain Relief Terminal
4:
for Button Aectlfler
This stress relief to the button
should also be chosen for maximum contact area to afford the
best heat transfer - but not at
the expense of flexibility. For an
annealed copper terminal a thick·
ness of 0.015" is suggested.
,-.;
Copper
Terminai
Button
__ r~::'t
Sink
Materiall
The base heat sink may be of various materials whose
shape and size are a function of the individual application
and the heat transfer requirements.
Common
Materials
Advantages and Disadvantages
Steel
Low Cost; relatively low heat conductivity
Copper
High Cost; high heat conductivity
Aluminum Medium Cost; medium heat conductivity
Relatively expensive to plate and not all
platers can process aluminum.
Handling of the button during assembly must be
relatively gentle to minimize sharp impact shocks and
avoid nicking of the plastic. Improperly designed automatic
handling equipment is the worst source of unnecessary
shocks. Techniques for vacuum handling and spring load·
ing should be investigated.
The mechanical stress limits for the button diode are
as follows:
Compression 32 Ibs.
142.3 Newton
Tension
321bs.
142.3 Newton
Torsion
6·inch Ibs. 0.68 Newton-meters
Shear
551bs.
244.7 Newton
Button holding fixtures for use during soldering may be
of various materials. Stainless steel has a longer use life
while black anodized aluminum is less expensive and will
limit heat reflection and enhance absorption. The assembly
volume will influence the choice of materials. Fixture
dimension tolerances for locating the button must allow
for expansion during soldering as well as allowing for
button clearance.
HEATING TECHNIQUES
The following four heating methods have their ad·
vantages and disadvantages depending on volume of
buttons to be soldered.
1. Belt Furnaces readily handle large or small volumes
and are adaptable to establishment of "on·line"
assembly since a variable belt speed sets the run
rate. Individual furnace zone controls make excellent
temperature control possible.
MECHANICAL STRESS
I
Compression
~
)j;;"
2. Flame Soldering involves the directing of natural
gas flame jets at the base of a heatsink as the heatsink is indexed to various loading-heating-coolingunloading positions. This is the most economical
labor method of soldering large volumes. Flame
soldering offers good temperature control but requires sophisticated temperature monitoring systems
such as infrared.
Shear
3-239
II
I
MR2500 Series
ASSEMBLY AND SOLDERING INFORMATION (continuedl
1. Peeling or plating separation is generally seen when
a button is broken away for solder inspection. If
heatsink or terminal base metal is present the
plating is poor and must be corrected.
2. Thin plating allows the solder to penetrate through
to the base metal and can give a poor connection.
A suggested minimum plating thickness is 300
microinches.
3. Contaminated soldering surfaces may out-gas and
cause non·wetting resulting in voids in the solder
connection. The exact cause is not always readily
apparent and can be because of:
(a) improper plating
(b) mishandling of parts
(c) improper andlor excessive storage time
3. Ovens are good for batch soldering and are production limited. There are handling problems because
of slow cooling. Response time is load dependent,
being a function of the watt rating of the oven and
the mass of parts. Large ovens may not give an
acceptable temperature gradient. Capital cost is low
compared to belt. furnaces and flame soldering.
•
4. Hot Plates are good for soldering small quantities of
prototype devices. Temperature control is fair with
overshoot common because of the exposed heating
surface. Solder flow and positioning can be cor·
rected during soldering since the assembly is exposed.
Investment cost is very low.
Regardless of the heating method used, a soldering
'profile giving the time·temperature relationship of the
particular method must be determined to assure proper
soldering. Profiling must be performed on a scheduled
basis to minimize poor soldering. The time· temperature
relationship will change depending on the heating meth·
od used.
SOLDER PROCESS EVALUATION
Characteristics to look for when setting up the soldering process:
I Overtemperature is indicated by anyone or all three
of the following observations.
1. Remelting of the solder inside the button rectifier
shows the temperature has exceeded 2B50 C and is
noted by "islands" of shiny solder and solder
dewetting when a unit is broken apart.
2. Cracked die inside the button may be observed by a
moving reverse oscilloscope trace when pressure is
applied to the unit.
3. Cracked plastic may be caused by thermal shock as
well as overtemperature so cooling rate should
also be checked.
II Cold soldering gives a grainy appearance and solder
build·up without a smooth continuous solder fillet. The
temperature must be adjusted until the proper solder
fillet is obtained within the maximum temperature
limits.
III Incomplete solder fillets result from insufficient solder
or parts not making proper contact.
IV Tilted buttons can cause a void in the solder between
the heatsink and button rectifier which will result in
poor heat transfer during operation. An eight degree
tilt is a suggested maximum value.
V Plating problems require a knowledge of plating
operations for complete understanding of observed
deficiencies.
SOLDER PROCESS MONITORING
Continuous monitoring of the soldering process must
be established to minimize potential problems. All parts
used in the soldering operation should be sampled on a lot
by lot basis by assembly of a controlled sample. Evaluate
the control sample by break·apart tests to view the solder
connections, by physical strength tests and by di mensional
characteristics for part mating.
A shear test is a suggested way of testing the solder
bond strength.
POST SOLDERING OPERATION CONSIDERATIONS
After soldering, the completed assembly must be un·
loaded, washed and inspected.
Unloading must be done carefully to avoid unnecessary
stress. Assembly fixtures should be cooled to room
temperature so solder profiles are not affected.
Washing is mandatory if an acid flux is used because
of its ionic and corrosive nature. Wash the assemblies
in agitated hot water and detergent for three to five
minutes. After washing; rinse, blow off excessive water
and bake 30 minutes at 1500 C to remove trapped
moisture.
Inspection should be both electrical and physical. Any
rejects can be reworked as required.
SUMMARY
The Button Rectifier is an excellent building block for
specialized applications. The prime example of its use is
the output bridge of the automative alternator where
millions are used each year. Although the material pre·
sented here is not all inclusive, primary considerations for
use are presented. For further information, contact the
nearest Motorola Sales Office or franchised distributor.
3-240
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL DATA
MR2535L
Advance Information
Overvoltage
Transient Suppressors
Motorola Preferred Device
· .. designed for applications requiring a low voltage rectifier with reverse avalanche
characteristics for use as reverse power transient suppressors. Developed to suppress
transients in the automotive system, these devices operate in the forward mode as standard rectifiers or reverse mode as power avalanche rectifier and will protect electronic
equipment from overvoltage conditions.
•
•
•
•
•
MEDIUM CURRENT
OVERVOLTAGE
TRANSIENT
SUPPRESSORS
Avalanche Voltage 24 to 32 Volts
High Power Capability
Economical
Increased Capacity by Parallel Operation
Replaces MR2520U2525L
•
MECHANICAL CHARACTERISTICS:
CASE: Transfer Molded Plastic
MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 350'C 3/S" from case
for 10 seconds at 5 Ibs. tension
ANISH: All external surfaces are corrosion-resistant, leads are readily solderable
POLARITY: Indicated by diode symbol or cathode band
WEIGHT: 2.5 Grams (approx.)
CASE 194-04
MR2535L
MAXIMUM RATINGS
Rating
DC Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Repetitive Peak Reverse Surge Current
(Time Constant = 10 ms, Duty Cycle S 1%, TC = 25'C) (See Figure 1)
Average Rectified Forward Current
(Single Phase, Resistive Load, 60 Hz, T C = 150'C)
Non·Repetitive Peak Surge Current
Surge Supplied at Rated Load Conditions
Hallwave, Single Phase
Operating and Storage Junction Temperature Range
Symbol
Value
Unit
VRRM
VRWM
VR
20
Volts
IRSM
62
Amps
10
35
Amps
IFSM
400
Amps
TJ, Tstg
-65 to +175
'C
Symbol
Max
Unit
Re.JL
7.5
10
13
'C/W
Re.JC
O.S"
'C/W
THERMAL CHARACTERISTICS
Lead
Length
Characteristic
Thermal Resistance, Junction to Lead @ Both Leads to Heat Sink,
Equal Length
1/4"
3/8"
112"
Thermal Resistance Junction to Case
"Typical
This document contains information on a new product. Specifications and information herein are subject to change without notice.
3-241
I
MR2535L
ELECTRICAL CHARACTERISTICS
Symbol
Min
Max
Unit
Instantaneous Forward Voltage (1)
(iF = 100 Amps. TC = 25"<:)
Characteristic
vF
-
1.1
Volts
Reverse Current
(VR = 20 Vdc. TC = 25·C)
IR
-
200
nAdc
Breakdown Voltage (1)
(lR = 100 mAde. TC = 25·C)
V(BR)
24
32
Volts
Breakdown Voltage (1) MR2535L only
(lR = 90 Amp. TC = 150·C. PW = 80 /15)
V(BR)
-
40
Volts
Breakdown Voltage Temperature Coefficient
V(BR)TC
Forward Voltage Temperature Coefficient @ IF = 10 mA
VFTC
111 Pulse Test: Pulse Width" 300 .... Duty Cycle" 2%.
* Typical.
•
IRRMIEXP)~
IRRMIEXP)
2
__
I
I
I
:
10
20
30
40
(TIME IN ms)
I
50
60
Figure 1. Surge Current Characteristics
3-242
-
0.096-
%t'C
2-
mvrc
MOTOROLA
SEMiCONDUCTOR . . . . . . . . . . . . . . . . . . . . . . . .. .
TECHNICAL DATA
MR4422CT
MR4422CTR
Advance Information
Complementary Medium
Current Silicon Rectifiers
Motorola Preferred Devices
For Linear Power Supply Applications
· .. using monolithic silicon technology for perfect matching of diodes
in center tap configuration. These state-of-the-art devices have the
following features:
•
•
•
•
•
Low Forward Voltage Drop
Soft Reverse Recovery for Low Noise
High Surge Current Capability
150°C Operating Junction Temperature
Direct Replacement for Varo R711 and R711A
POWER RECTIFIERS
30 AMPERES
100 VOLTS
~
MR4422CT
--c::
~
CASE 1-07
(TO-204AA)
METAL
MR4422CTR
II
MAXIMUM RATINGS (PER LEG)
Rating
Symbol
Max
Unit
VRRM
VRWM
VR
100
Volls
IF(AV)
15
30
Amps
Peak Repetitive Forward Current, Per Diode Leg
(Rated VR, Square Wave, 20 kHz) TC 125°C
IFRM
30
Amps
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions hallwave, single phase, 60 Hz)
IFSM
400
Amps
IRRM
2.0
Amps
TJ
-65 to +150
°C
Tstg
-65 to +175
°C
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current
(Rated VR) TC 125°CPer Device
Per Leg
=
=
Peak Repetitive Reverse Surge Current (2.0
~s,
1.0 kHz)
Operating Junction Temperature
Storage Temperature
THERMAL CHARACTERISTICS (PER LEG)
Thermal Resistance -
Junction to Case
ELECTRICAL CHARACTERISTICS (PER LEG)
Maximum Instantaneous Forward Voltage (1)
(IF = 15 Amps, TC =25°C)
(IF = 10 Amps, TC = 125°C)
vF
Maximum Instantaneous Reverse Current (1)
(Rated de Voltage, TC = 25°C)
(Rated de Voltage, TC = 125°C)
iR
Volts
1.2
1.1
mA
1.0
250
(1) Pulse Test: Pulse Width = 300 J.lS. Duly Cycle s 2.0%.
This document contains mformation on a new product. Specifications and Information herein are subject to change without notice.
3-243
MUR105
MURll0
MUR115
MUR120
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL DATA
•
•
MUR130
MURI40
MUR150
MUR160
MUR120, MUR140 and MURl60 are
Motorola Preferred Devices
ULTRAFAST
RECTIFIERS
SWITCHMODE POWER RECTIFIERS
· .• designed for use in switching power supplies, inverters and
as free wheeling diodes, these state-of-the-art devices have the
following features:
1.0 AMPERE
50-600 VOLTS
• Ultrafast 25, 50 and 75 Nanosecond Recovery limes
• 175'C Operating Junction Temperature
• Low Forward Voltage
• Low Leakage Current
•
• High Temperature Glass Passivated Junction
• Reverse Voltage to 600 Volts
CASE 59-04
PLASTIC
MAXIMUM RATINGS
MUR
Rating
Symbol
105
110
115
50
100
150
120
130
140
300
400
150
160
Unit
600
Volts
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
Average Rectified Forward Current
(Square Wave Mounting Method #3 Per Note 1)
IF(AV)
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions, hallwave,
single phase, 60 Hz)
IFSM
35
Amps
TJ, Tstg
-65 to +175
'c
Operating Junction Temperature and
Storage Temperature
200
1.0 @TA= 130'C
500
1.0 @ TA = 120'C
Amps
THERMAL CHARACTERISTICS
Maximum Thermal Resistance, Junction to Ambient
See Note 1
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)'
(iF= 1.0 Amp, TJ = 150'C)
(iF = 1.0 Amp, TJ = 25'C)
vF
Maximum Instantaneous Reverse Current (1)
(Rated dc Voltage, TJ = 150'C)
(Rated dc Voltage, T J = 25'C)
iR
Maximum Reverse Recovery lime
(IF = 1.0 Amp, dildt = 50 Amp/~s)
(IF = 0.5 Amp, iR = 1.0 Amp, IREC = 0.25 A)
trr
Maximum Forward Recovery lime
(IF = 1.0 A, dildt = 100 AI~, IREC to 1.0 V)
tfr
(1) Pulse Test: Pulse Width = 300 ~s, Duty Cycle ';2.0%
3-244
Volts
0.710
0.875
1.05
1.25
50
2.0
150
5.0
35
25
75
50
25
50
I1A
ns
ns
•
MUR105 Series
MUR105, 110 AND 115
FIGURE 2 - TYPICAL REVERSE CURRENT*
FIGURE 1 - TYPICAL FORWARD VOLTAGE
10
7.0
/
5.0
I
I
TJ = 175'~
2.0
/
~
~
0.8
0.4
0.2
~ 0.08
~ 0.04
a: 0.02
50.008
0.004
0.002
0.00 I
~f1 Hoo;C
j. 1---25'C
~ 0.7
!Z
I
0.5
g§
/
a
I
~
~
25'C= ~
l-
o
~
/
~ 0.2
~
80 ~ m ~
VR, REVERSE VOLTAGE (VOLTS)
40
~
~
m
II
FIGURE 3 - CURRENT DERATING
(MOUNTING METHOD #3 PER NOTE 1)
III
ie
/ '/
o.1
~
/
'The curves shown are typical for the highest voltage
trvi,;'~~h:;:g:er:~~~9C:~~~'~e::~~:~
thue same curves if VR is sufficiently below rated VR-
I III
0.3
i
175'C-
l00'C= 1==
a
II IV
1.0
TJ
~:~
1
/I!I
3.0
~
80
40
20
8.0
/
5.0
~
!Z
4.0
g§
0.07
Rated VR
R9JA = 50'00
::::l
.!?
U
0.05
[i! 3.0
II I I
0.03
o
~
I
0.02
0.0 1
0.3
0.4
'~dc
2.0
~
Square' ~
~8ve
'it
II I
I ~l
0.5
........ ~
~
a:
I
~
~
0.6 0.7
0.8
0.9
1.0
1.1
vF, INSTANTANEOUS VOLTAGE (VOLTS)
S
1.2
o
1.3
50
I
17J,C
./
/'
~
/'
w
/'
~
V
V
V
/'" . / :..,....- 1-""- I-"
1--1-""
~~~
~ 1.0
~
0
I~K
o
200
0
4D
I
=
20-
~
i
~
de_
-
./
0
\..
................
:-.........
oJ 10
V
2.5
9. 0
8.0
7.0
6.0
5. 0
o
10
r--..
20
3D
VR, REVERSE VOLTAGE (VOLTS)
3-245
= 2S'C
"\.
i
1&L
./" Y
0.5
1.0
1.5
2.0
IF(AV), AVERAGE FORWARO CURRENT (AMPS)
TJ
0\
../I
/'
3. 0
Ii2 2.0
E
I
100
150
TA, AMBIENT TEMPERATURE
FIGURE 5 - TYPICAL CAPACITANCE
(Capacitive Load) I
AV
!f
~
'"
o
FIGURE 4 - POWER DISSIPATION
is 4.o r- T} =
~
jf:
_ 5.0
~
~
1.0
40
50
MUR105 Series
MUR120. 130. 140. 150. 160
FIGURE 7 - TYPICAL REVERSE CURRENT'
FIGURE 6 - TYPICAL FORWARD VOLTAGE
10
400
200
100
40
20
IThe curves shown are typical r the highest voltage
10 device
in Ihe voltage grouping. Typicalreverl8current
!Z 4.0 fot lower voltage selections can be estimated trom
these
same curves if VR is sufficientlv below raled V .
::! 2.0
II:
::>
1.0
<..>
en
0.4
II:
:::; 0.2
0.1
II:
~ 0.04
r0.02
0.008
0.004
o
100
200
300
400
SOO
VR. REVERSE VOLTAGE (VOLTS I
7.0
/
5.0
TJ = moc/ /
2.0
0.7
0.5
t-
~
::>
c
II
II:
//f
I
f f
0.2
S
:z
.!f-
0.1
i
!Z
a ~
'" 3.0
I
~ 2.0
iiii: 1.0
iL
0.03
f if
0.02
I
0.01
0.3
LJ
O.S
j
I
0.9
1.1
1.3
1.S
1.7 1.9
vF INSTANTANEOUS VOLTAGE (VOLTS)
2.1
o
1.3
TJ = 17SoC
!;i'
10
2.ot--(Capaeitive Load} ~
/'
V V ./
Ay~ V !.--::::: V
= 20
~
~'J<.ra
~/
."...-
de
~ 0
"
100
150
TA. AMBIENT TEMPERATURE
250
200
t.J
l."...III ~
o
0.5
1.0
1.5
2.0
IF(AV}. AVERAGE FORWARD CURRENT (AMPS)
TJ = 251c
\
"-
"-
5 4.0
./. ~ % ~
.&. ~ P
iii: 1.0
~
10
9.0
~ 8.0
;;; 7.0
~ 6.0
~ 5.0
~or---;;-
3.0
II:
~
50
FIGURE 10 - TYPICAL CAPACITANCE
o
~
wr ~" ~
Squa'....
e
20
~
~
--........
............ .........de
l? 0
0.7
S.0
:z 4.0
~
...........
..........
~
FIGURE 9 - POWER DISSIPATION
c
Rated VR
RBJA = 5O"CIW
4.0
::!
O.OS
~
800
S.O
0.07
-
600
FIGURE 8 - CURRENT DERATING
(MOUNTING METHOD #3 PER NOne 11
I
::>
~
;;:;
2S0( , -
V
I /
en
~
100"1:=
-
I
0.3
~
-
--
~
I 1//
<..>
~
1- -lory:
/ :-- -2SOC
1.0
:z
1
/ II
3.0
5
/
/
.A
TJ 175"C_
3.0
2.0
1.5
3-246
o
to
"'
. . . . r---....
...... I-....
20
30
VR. REVERSE VOLTAGE (VOLTSI
-
r--
40
-
50
MUR105 Series
RGURE 12 - TYPICAL REVERSE CURRENT-
FIGURE" - TYPICAL FORWARD VOLTAGE
10
SOO
400
200
- SO
1//
/
/
140
!Z
// /
TJ = 17S"C,h
~
20
8.0
4.0
~ 2.0
~ 0.40
u
c
I II
/I , ~
f.I "'
/ /
//
...;... TJ
I
:::>
::~2.0
~
0.80
-
:g 0.40
25'C
100,1:=
'The c:urves shown are typical for the highesl voltage
1:j~~rth~=g:ef=:~g~~:':m:~=
~ 0.20
these same CUNes if VR is sufficiently below rated VR.
_ 0.08
.!!F 0.04
0.02
0.008
0.004
100'C
175'C=
.....0
100
25'C-'
i..--t'"""
200
300
500
400
VR. REVERSE VOLTAGE VOLTS
60
800
0.7
~~
1/
0.5
'"
:::>
I
fi! 0.3
~
I
0
II I
II I I
II
0.2
~
FIGURE 8 - CURRENT DERAnNG
(MOUNnNG METHOD #3 PER NOTE 1)
I II I
~
.~
0.1
RatedVR
RflJA = 28'C/W
0
0
0.07
III
0.02
0.3
I I
0.5
Squ...... ~
~.ve
0
0.7
0.9 1.1 1.3
1.5 1.7
1.9
VF.INSTANTANEOUS VOLTAGE (VOLTSI
2.1
I"..
50
2.3
~
40
~ 121--+--+--1--~--1-~--+--+~-7q-.)'~
30
~
1--l--+-+-+--i--~5.0-l------J
~£...-+"t:...--l
1--l--+-+-+--i--t--l_.Squ.re W.V~
~ 101-_+-+-+--~_+--h~~~/~~~d~c~
m
v
B.O
--)'-j.,~/4/«:-..j".'_4---+-__l
6.0
4.0
!:l:
~2.0
E
IC.p.citive
~ 10
u B.O
7.0
6.0
5.0
~
4.0
~
~
M
W
U
250
9.0
10
IFIAVI. AVERAGE FORWARD CURRENT
3-255
.'
"'-
~
VA:...--'
~
200
\.
~
/ ..... V / / '
01.,1rP'
o w w
1\
~ 20
LO.dl~.=
. ..:2;.0~t/~:~~-:/~tv-:."'_/:..t;~_-_+I--_-_-":-_-_-l...,
IAVT /
' / 1/
.a
100
150
TAo AMBIENT TEMPERATURE ('CI
FIGURE 10 - TYPICAL CAPACITANCE
FIGURE 9 - POWER DISSIPAnON
is
~
0
14r-~--'---r-~--'-~~-r--'---r-~
~
f'-.. ~
I I
0.03
~
2
I"---,
Or--
0.05
o
TJ = 25'C
"'"
10
.........
r--.
20
30
VR. REVERSE VOLTAGE (VOLTSI
40
50
..
MUR405 Series
NOTE 1 - AMBIENT MOUNTING DATA
MECHANICAL CHARACTERISTICS
Case: Transfer Molded Plastic
Finish: External Leads are Plated. Leads are
readily Solderable
Polarity: Indicated by Cathode Band
Weight: 1.1 Grams (Approximately!
Maximum Lead Temperature for Soldering
Purposes:
300'C. 1/8' from case for 10 s
Date shown for thermal resistance junction-toambient (R8JA! for tha mountings shown is to be used
as typical guideline values for preliminary engineering
or in cesethe tie pointtemperature cannot be measured.
TYPICAL VALUES FOR R8JA IN STILL AIR
LEAD LENGTH. L (IN!
MOUNTING
METHOD
1
~
r---a-
•
R8JA
1/8
1/4
1/2
314
UNITS
50
58
51
59
53
61
55
63
'c/w
'c/w
'c/w
2B
MOUNTING METHOD 1
P.C. Board Where Available Copper
Surface area is small.
MOUNTING METHOD 2
Vector Push-In Terminals T-2B
MOUNTING METHOD 3
P.C. Board with
1-1/2" x 1-1/2' Copper Surface
~L=1/2'
~Jlq:
Board Ground Plane
3-256
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL DATA
MUR470E
MUR480E
MUR490E
MUR4100E
Switch mode Power Rectifiers
Ultrafast liE" Series
w/High Reverse Energy Capability
MUR4100E is a
Motorola Preferred Device
· .. designed for use in switching power supplies, inverters and as free wheeling diodes,
these state-of-the-art devices have the following features:
•
•
•
•
o
•
•
•
ULTRAFAST
RECTIFIERS
4.0 AMPERES
700-1000 VOLTS
20 mJ Avalanche Energy Guaranteed
Excellent Protection Against Voltage Transients in Switching Inductive Load Circuits
Ultrafast 75 Nanosecond Recovery Time
175°C Operating Junction Temperature
Low Forward Voltage
Low Leakage Current
High Temperature Glass Passivated Junction
Reverse Voltage to 1000 Volts
II
MAXIMUM RATINGS
MUR
Rating
Symbol
470
480
490
4100
Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
700
BOO
900
1000
Volts
Average Rectified Forward Current (Square Wave)
(Mounting Method #3 Per Note 1)
IF(AV)
4.0 (a TA
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz)
IFSM
70
Amps
TJ, Tstg
-65 to + 175
'C
Operating Junction Temperature and Storage Temperature
=
35°C
Amps
THERMAL CHARACTERISTICS
Maximum Thermal Resistance, Junction to Case
See Note 1
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)
(IF = 3.0 Amps, TJ = 150'C)
(IF = 3.0 Amps, TJ = 25'C)
(IF = 4.0 Amps, TJ = 25'C)
vF
Maximum Instantaneous Reverse Current (1)
(Rated dc Voltage, TJ = 100'C)
(Rated dc Voltage, TJ = 25'C)
iR
Maximum Reverse Recovery Time
(IF = 1.0 Amp. di/dt = 50 Amp/J.LS)
(IF = 0.5 Amp. iR = 1.0 Amp. IREC
trr
Volts
1.53
1.75
1.B5
p.A
900
25
ns
100
75
= 0.25 Amp)
Maximum Forward Recovery Time
(IF = 1.0 Amp. di/dt = 100 Amp/J.LS. Recovery to 1.0 V)
tfr
75
ns
Controlled Avalanche Energy (See Test Circuit in Figure 6)
WAVAL
20
mJ
111 Pulse Test: Pulse Width
=
300 PS. Duty Cycle" 2.0%.
3-257
MUR470E, MUR480E, MUR490E, MUR4100E
ELECTRICAL CHARACTERISTICS
20
// .A
TJ = 175'C
10
~ 7- 100'C
I
1~
I
/ /
/ /
4
2
II
100
a::
~
II
0.7
~a::
I
II
0.5
fil 0.3
300 400 500 600 700
VR. REVERSE VOLTAGE IVOLTSj
=
SOD
900
1000
Figure 2. Typical Reverse Current*
I
//
z:
0.2
Rated VR
R8JA = 2S'C/W
I II I
Ii;
.:;
.!f
I I
0.1
!-0.07
!--
.......
.........
...........
0.05
0.03
0.02
IThe curves shown are tvpical for the highest voltage
device in the voltage grouping. Typical reverse current
for lower voltage selections can be estimated from these
same curves if VR is sufficiently below rated VR.
I I
en
:::>
~
25'C
I I
Ii'!
:i
200
175'C
100'C
-
1
~ 0.4
~
0.2
W
a:: 0.1
ci;0.04
- 0.02
O.OOS
0.004
0.002
0.001 0
/ /
1'a::5
10
~
u
//
~
!z
:::>
/ /
Ie
TJ
100
I
I I
1000
400
200
25'C
o
0.2
0.4
1
1.S
50
70
60
50
= 175'C
/
/ V ./""
10
= 20
IAV./"""'-:::: . /
......-: i j ~
...& ~ :::::::- r-
::..---
V
100
150
TA. AMBIENT TEMPERATURE
\
v.~
c;~
~,e
./' "'de
10
9
S
7
o
2
3
IFIAVj. AVERAGE FORWARD CURRENT
Figure 4. Power Dissipation
TJ
= 25'C
10
--
I--
20
30
VR. REVERSE VOLTAGE (VOLTSj
Figure 5. Typical Capacitance
3-258
11
\
""~ . . . . 1'-....
/'"
l.,....III IP""
250
200
1\
5
Load
....... ~
Figure 3. Current Derating
(Mounting Method #3 Per Note
10
t - - (Capacitive) IpK
:--.....
~
O.S
1.0
1.2
1.4
1.6
vF. INSTANTANEOUS VOLTAGE (VOLTSj
0.6
Figure 1. Typical Forward Voltage
TJ
'----de
Squ;;;e-...
W,ve
-r.40
50
MUR470E, MUR480E, MUR490E, MUR4100E
BVOUT
r---~----------4DVO
10
MERCURY
SWITCH
S1
Figure 6. Test Circuit
Figure 7. Current-Voltage Waveforms
The unclamped inductive switching circuit shown in
Figure 6 was used to demonstrate the controlled avalanche capability of the new "E" series Ultrafast rectifiers.
A mercury switch was used instead of an electronic
switch to simulate a noisy environment when the switch
was being opened.
When S1 is closed at to the current in the inductor IL
ramps up linearly; and energy is stored in the coil. At t1
the switch is opened and the voltage across the diode
under test begins to rise rapidly, due to dildt effects, when
this induced voltage reaches the breakdown voltage of
the diode, it is clamped at BVDUT and the diode begins
to conduct the full load current which now starts to decay
linearly through the diode, and goes to zero at t2'
By solving the loop equation at the point in time when
S1 is opened; and calculating the energy that is transferred to the diode it can be shown that the total energy
transferred is equal to the energy stored in the inductor
plus a finite amount of energy from the VDD power supply while the diode is in breakdown (from t1 to t2) minus
any losses due to finite component resistances. Assuming the component resistive elements are small Equation
(1) approximates the total energy transferred to the
diode. It can be seen from this equation that if the VDD
voltage is low compared to the breakdown voltage of the
device, the amount of energy contributed by the supply
during breakdown is small and the total energy can be
assumed to be nearly equal to the energy stored in the
coil during the time when S1 was closed, Equation (2).
The oscilloscope picture in Figure 8, shows the information obtained for the MUR8100E (similar die construction as the MUR4100E Series) in this test circuit conducting a peak current of one ampere at a breakdown
voltage of 1300 volts, and using Equation (2) the energy
absorbed by the MUR8100E is approximately 20 mjoules.
Although it is not recommended to design for this
condition, the new "E" series provides added protection against those unforeseen transient viruses that can
produce unexplained random failures in unfriendly
environments.
EQUATION (1):
W
CHANNEL 2:
- .! U 2
(
BVDUT
)
AVAL - 2 LPK BVDUT -. VDD
IL
0.5 AMPS/OIV.
EQUATION (2):
WAVAL =
1
CHANNEL 1:
2
2" U LPK
VOUT
500 VOLTSIDIV.
TIME BASE:
20/LslOIV.
Figure S. Current-Voltage Waveforms
3-259
II
MUR470E, MUR480E, MUR490E, MUR4100E
Note 1 -
Ambient Mounting Data
MECHANICAL CHARACTERISTICS
Case: Transfer Molded Plastic
Finish: External Leads are Plated, Leads are
readily Solderable
Polarity: Indicated by Cathode Band
Weight: 1.1 Grams (Approximately)
Maximum Lead Temperature for Soldering
Purposes:
300·C, 1/8" from case for 10 seconds
Data shown for thermal resistance junction-toambient (R6JA) for the mountings shown is to be used
as typical guideline values for preliminary engineering
or in case the tie point temperature cannot be measured.
TYPICAL VALUES FOR R6JA IN STILL AIR
LEAD LENGTH, L (IN)
MOUNTING
METHOD
1
~
r-a
R6JA
1/8
1/4
1/2
3/4
UNITS
50
58
51
59
53
61
55
63
·crw
28
·CIW
·CIW
MOUNTING METHOD 1
II
P.C. Board Where Available Copper
Surface area is small.
MOUNTING METHOD 2
Vector Push-In Terminals T-28
MOUNTING METHOD 3
P.C. Board with
1-1/2" x 1-1/2" Copper Surface
t.kL=
1/2"
~Jq:
Board Ground Plane
3-260
MUR60SCT
MUR610CT
MUR61SCT
MUR620CT
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL DATA
•
MUR620CTls a
Motorola Preferred Device
ULTRAFAST
RECTIFIERS
6 AMPERES
50-200 VOLTS
SWITCHMODE POWER RECTIFIERS
· .. designed for use in switching power supplies, inverters and
as free wheeling diodes, these state-of-the-art devices have the
following features:
• Ultrafast 35 Nanosecond Recovery Time
• 175·C Operating Junction Temperature
• Popular TO-220 Package
CASE 221 A-IlS
TO-220AB
PLASTIC
MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current
130·C
(Rated VR) TC
Per Diode
Total Device
Symbol
MUR605CT
MURS10CT
MURS15CT
MUR620CT
Unit
VRRM
VRWM
VR
50
100
150
200
Volts
IF(AV)
3.0
6.0
Amps
Peak Repetitive Forward Current Per Diode leg
(Rated VR, Square Wave, 20 kHz) TC = 130·C
IFRM
S.O
Amps
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave,
single phase, SO Hz)
IFSM
Operating Junction Temperature and
Storage Temperature
Amps
75
TJ, Tstg
·C
-65 to +175
THERMAL CHARACTERISTICS PER DIODE LEG
Rating
Thermal Resistance, Junction to Case
Typical
Maximum
5.0-6.0
7.0
0.80
0.94
0.895
0.975
2.0-10
0.01-3.0
250
5.0
20-30
35
ELECTRICAL CHARACTERISTICS PER DIODE LEG
Instantaneous Forward Voltage (1)
(iF = 3.0 Amp, TC = 150·C)
(iF = 3.0 Amp, TC = 25·C)
vF
Instantaneous Reverse Current (1)
(Rated dc Voltage, TC = 150·C)
(Rated dc Voltage, TC = 25"C)
iR
Reverse Recovery Time
(IF = 1.0 Amp, dildt = 50 Amp/l£S)
trr
111 Pul •• T.st: Puis. Width = 300
p.O,
Volts
pA
Duty Cycl. " 2.0%.
3-261
ns
•
MUR605CT, MUR610CT, MUR615CT, MUR620
FIGURE 1 - TYPICAL FORWARD VOLTAGE
FIGURE 2 - TYPICAL REVERSE CURRENT
~ 10
~ 7.0
!Z 5.0
~
~
1.0
~
OJ
0.5
z
I
~ 0.3
t;
I
TJ - 175"C 1//
0.2
I
~
.!f. 0.1
0.2
/
/
1.0
~ 0.4
/
a
!il
_
w
II
:$
!Z
g§
0.004
0.002
150"C+ 1-1
l00"C
I
0.4
0.6
0.8
1.0
vF. INSTANTANEOUS FORWARO VOLTAGE IVOLTSI
1.2
~
!1i
5.0
~ 4.0
f2
ttl 3.0
Square Wave
:e
6.0
!Z
ii§
5.0
~
~
f2 3.0
"~
~
~
~1.0
120
25"C
.-
40
140
TC. CASE TEMPERATURE I"CI
w
,
160
-r
I
~
~
"
~
2.0 _SquareWaie
5.0
i
4.0
~
I
20
180
40
3.0
/
//
is
V/
ffi 2.0
~
~1.0
«
E
0
~
1/1.0
- ...... -... ...... ..." '"
I
/'
/" de
'/ /"/
'/
~V
/
2.0
3.0
4.0
5.0
6.0
IFIAVI. AVG FORWARD CURRENT IAMPSI
""
7.0
8.0
~
... ...
60
80
~
m ~
TAo AMBIENT TEMPERATURE I"CI
V
3-262
"""
'\
/
Square Wave/,
~
200
+-RI/JA = l6"CIWwith
a Iypicel TO·22O heat sink "-de
--RI/JA = 6O"CIW
Ifree air. no heat sinkl
~1.0
6.0
~
180
'\
'\.
-- ........ ·_rde . . . . .
$
~ :::
~
160
Square Wave ~
T
FIGURE 5 - POWER DISSIPATION
z
"7
SO
80 100 120 140
VR. REVERSE VOLTAGE IVOLTSI
Ii! 4.0
~
100
:$
a
~ 2.0
o
-
FIGURE 4 - TOTAL DEVICE CURRENT DERATING. AMBIENT
de
~
20
~ 7.0
Rated VR Applied
~
100"C
I--
0.001 0
7.0
6.0
0.2
0.1
G:; 0.04
a:. 0.02
!E'O.ot
I
FIGURE 3 _ TOTAL DEVICE CURRENT DERATING. CASE
:e
i.-'
~
/25"C
ie 8.0
150"<:
I-
/
/
175"<:
TJ
to
1 2.04.0
/
1// 1/ V
O
f2
fa
/
3.0
r'
u
100
40
20
~
~~
~
~
~
MUR80S
MUR810
MUR8lS
MUR820
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL DATA
•
•
MUR830
MUR840
MUR8S0
MUR860
•
MUR820, MUR840 and MUR860
are Motorola Preferred Devices
SWITCH MODE
POWER RECTIFIERS
ULTRAFAST
RECTIFIERS
• •• designed for use in switching power supplies, inverters and
as free wheeling diodes, these state-of-the-art devices have the
following features:
8 AMPERES
50-600 VOLTS
• Ultrafast 25, 50 and 75 Nanosecond Recovery Time
• 175'C Operating Junction Temperature
• Popular TO·220 Package
• Epoxy meets UL94, Vo @ 1/8"
• Low Forward Voltage
• Low Leakage Current
• High Temperature Glass Passivated Junction
• Reverse Voltage to 600 Volts
CASE 2218-02
TO-220AC
PLASTIC
MAXIMUM RATINGS
MUR
Rating
Symbol
805
810
815
820
830
840
850
860
Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
50
100
150
200
300
400
500
600
Volts
Average Rectified Forward Current
Total Device, (Rated VR)' T C = 150'C
IF(AV)
8.0
Amps
IFM
16
Amps
IFSM
100
Amps
TJ. Tstg
-65 to +175
'C
Peak Repetitive Forward Current
(Rated VR, Square Wave. 20 kHz).
TC = 150'C
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions hallwave.
single phase. 60 Hz)
Operating Junction Temperature and
Storage Temperature
THERMAL CHARACTERISTICS
Maximum Thermal Resistance. Junction to Case
2.0
3.0
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)
(iF B.O Amp, T C 150'C)
(iF 8.0 Amp. T C 25'C)
vF
Maximum Instantaneous Reverse Current (1)
(Rated dc Voltage, TJ 150'C)
(Rated dc Voltage, T J 25'C)
iR
Maximum Reverse Recovery Time
(IF 1.0 Amp, dildt 50 Amp/"s)
(IF 0.5 Amp, iR 1.0 Amp, IREC
trr
=
=
=
=
=
=
=
=
=
=
Volts
0.895
0.975
1.00
1.30
1.20
1.50
250
5.0
500
10
500
10
"A
ns
35
25
=0.25 Amp)
(1) Pulse Test: Pulse Width = 300 "s, Duty Cycle ,,2.0%
3-263
60
50
•
I
MUR805 Series
MUR805, 810 AND 815
FIGURE 2 - TYPICAL REVERSE CURRENT-
FIGURE 1 - TYPICAL FORWARD VOLTAGE
100
'The curves shown are typical (or the highest voltage
70
device in the voltage grouping. Typical reverse current
V/ r/
20
~
i
/
!z
~
a
v
~
7 II
I
10
~
a::
.Ii:-
7.0
a::
:::>
u
5.0
~
3.0
I
/
c
•
1:
/ /V
30
~
Ii!
en
:::>
5l
2.0
.!l-
TJ=0 17S'C
1.0
I
0.1
i
!z
~
I
40
90
8.0
""
7.0
0.8
1.0
12
~
10 I - - ......
1.2
B
c 80
a:
~
~
f--- _SquareWa~
6.0
I
150
140
....
f--f---
-
40
.........
80
100
~
7.0
~
to
ffi~
~
~
140
180
7
Square Wave
6.0
~
180 200
,/'
~
~
./
o 1.0
~
2.0
3.0
4.0
5.0
6.0
1.0
8.0
IFIAV!. AVERAGE FORWARD CURRENT lAMPS!
TA. AMBIENT TEMPfRATURE IOC!
3·264
7
/ ..... V
2.0
0
V ./
V Vdc
V
3.0
~ 1.0
~
160
"
.,-
~ 4.0
120
170
V
~
........ 1'..
60
~
~
TJ= 175'C
8.0
ill 5.0
~
1'-.'~
"
160
c
-- --- -- -- - ""
-- ....
I
I
20
9.0
c
........
Square Wave
~
10
~z
In
!!!
de
I--
."""'-"
1>=
in
........
-
~
FIGURE 5 - POWER DISSIPATION
=
RtiJA =16°C/v.:
---/VIJA =60 o C/W
(N. Heat Sinkl . -
~
........ ........
~
TCo CASE TEMPERATURE I'C!
I
..........
,,"\
"-.,
~ 20
.... 10
~
0.6
rn
~e
~ 3.0
14
12
~
Square Wave
FIGURE 4 - CURRENT DERATING. AMBIENT
~
~
Rated VR Applied
vF. INSTANTANEOUS VOLTAGE IVOLTS!
...:E'"
50
~
10
~ 4.0
Ii!
/ /
I
/ II I
0.4
~
6.0
~ 5.0
I
0.2
o
..... ./
~
25'C
a
II
0.2
~
lOO'C
FIGURE 3 - CURRENT DERATING. CASE
rT
/
-
VR. REVERSE VOLTAGE IVOLTS!
/
0.3
20
10
4.0
2.0
1.0
0.4
0.2
0.1
0.02
0.01
/'OO"C / 2S'C
0.7
0.5
40 ~ ==TJ 175'C
0.04
/
/
I II II
I
I I I
~
~
;!;
for lower voltage selections can be estimated from =
these seme curves if VR is sufficiently below rated VR.
1.01(
4DO
50
9.0
10
MUR805 Series
MUR820, 830 AND 840
FIGURE 6 - TYPICAL FORWARD VOLTAGE
FIGURE 7 - TYPICAL REVERSE CURRENT'
100
'The curves shown are typical for the highest voltage
device in the voltage grouping. Typical reverse current
for lower voltage selections can be estimated from
these curves if VR is sufficiently below rated VR.
70
1.0K
50
./
30
20
Ie
::E
10
!Z
gj
7.0
:::>
5.0
1./
V
V 1/
/ 'V
V
/
2.0
/ /
z
~
;;:;
.~
25°C
1.0
/
Tr175"C:
lWe':"=""':
20
10
4.0
2.0
1.0
.!E- 0.4
0.2
0.1
0.04
0.02
0.01
l00"C._
~
a:
1
TJ = 175°C/
en
@
z
;5
/'00°C /
/
~ 3.0
a:
Ii!
:::>
I
~
~
V
/
II
J
i5
w
5
u
c
a:
200
100
a~
/'
/
/
~O
'1
;::
o
~
50
I
~
...
0.4
0.6
""-
~ 7.0
fil
.........
f2
4.D
~
3.0
10
~
c
1.2
1.4
1.6
~
140
150
160
TC. CASE TEMPERATURE ("C)
iIi!
~~
4.0
!i
~
z
0
~
en
::;:: ::::::- de
"l"--.
~c
I==" ':::'.,--
2.0 t - - r-- Square
~
f--- f-- Wave
J>:
o
o
~
~
10
9.0
-
~
""'"""-" r-...."""-
-- -- -- --...
~~
"",-"
~
50
~
~
m ~
TA. AMBIENT TEMPERATURE (OC)
~
-...;;::
~
~
"
180
8.0
7.0
;F
W
~
/
Square
Wavy
5.0
/
4.0
./
3.0
'/
/
/' .-;;;
/'
'/
.......:: V
~~
u
~
~
~
~
~
U
IF(AV). AVERAGE FORWARD CURRENT (AMPSI
3·265
./
./ ~
2.0
1.0
7
7
/
TJ= 175°C
en 6.0
l5
a:
["'-.....
I'--.
170
FIGURE 10 - POWER DISSIPATION
in
R8JA = 16'CW ---- R8JA=6O"CIW(No Heat Sink) -
~
_ Square
6.0 I-Wave
•
~
J>:
I
8.0
~
Square Wave
FIGURE 9 - CURRENT DERATING, AMBIENT
a:
:::>
u
~
"""-"1'0..
~ 10
14
12
i'-.'-
~ 20
1.0
~
Rated VR Applied
VF.INSTANTANEOUS VOLTAGE (VOLTS)
~
~
Nt
~ 5.0
0.8
~
9.0
z
/ V
/ / /
0.1
~
10
/
II
0.2
~
FIGURE 8 - CURRENT DERATING, CASE
/
/
a 6.0
I
0.3
Ie
~
VR. REVERSE VOLTAGE (VOLTS)
I
0.5
I---
--
;:: 8.0
0.7
25"C
".
~
~
w
MUR805 Series
MUR850 AND 860
FIGURE 12 - TYPICAL REVERSE CURRENT·
FIGURE" - TYPICAL FORWARD VOLTAGE
100
~ 1= "The curves shown are typical for the highest vohage ~
0
50
TJ=15O"C
30
t7
VV
20
l00"C:; ~ V
V
/ /
0
./
f--- f- device in the voltage grouping. Typical reverse current f--1.0K ~ 1= for lower voltage selections can be estimated from F=
400 ~ these same curves if VR is ,sufficiently below rated VR. ~
l5
V
l:!
a:
::>
u
w
/
u
60
'"a:~
50
a:
40
...a:w
30
~
10
f2
~
;C
0.8
1.2
1.0
1.4
1.8
1.6
~
~
'"
if2
~
I
9.0
8.0
7.0
6.0
r--
5.0
'"'" i"..
""h.
r-.....
Square
Wive
4.0
de
3.0
r-- -"'7~:--~ 2.0 t---r-Squ;;;~ 1.0 t---rif:
o
o
wr
20
20
~
~
~~
150
m w
w
14
13
T
'2
Squ~re
"
180
~
.l!"
W
~
3·266
7
7'
dc -
/'
./ ./
./
/
5.0
./
;;.'
.......,.... / ......
0 ~
o
U
W M
TJ=175'C
~
M
M
g
IFIAV!. AVERAGE FORWARD CURRENT lAMPS!
TA. AMBtENT TEMPERATURE I'C!
./
/'
./
,/
;C 3.0
~ 2.0
_ 1.0
~
~
1/
Wava7
~ 4.0
~
~
170
160
10
u; 9.0
~ 8.0
a: 7.0
~ 6.0
-- """.. ....
~
~
"'\
140
1;:
"'- ,
"
-- """ "~
~
~
if:
~
"'-
::::.
""
""'-"-
FIGURE 15 - POWER DISSIPATION
J.
I
R/IJA = 16"CIW_
____ R/lJA=6Il"CIW
INa Heat Sink! -
F:::.;;
,,,
TC. CASE TEMPERATURE I'C!
I
""",de
Rated VR Apph.d
Square Wave
FIGURE 14 - CURRENT DERATING. AMBIENT
I
~
500
i'-..dC
"'-
vF INSTANTANEOUS VOLTAGE IVOLTS!
10
300
400
VR. REVERSE VOLTAGE (VOLTS!
,
70
l:!
a:
2
O.1
ie
~
0.7
I
25'C
J.-
FIGURE 13 - CURRENT DERATING. CASE
.~
o. 5
~
10
/
/ /
-
c:;;;;-
I
/ II
~
l00"C
0.2
0.1
0.04
0.02
0.01
100
/
/
/ I
0
II
/
-
TJ lSO'C
20
10
4.0
2.0
1.0
.sf: 0.4
0
0
=
1... 200
100
z
40
I
M
e-M
W
MUR805 Series
FIGURE 16 - THERMAL RESPONSE
8
~
lo
:;;
~
O. 5
0
D
0.5
i5
~
z
10.1
~ 0.2
in
l - f-
~ O. 1
;;/.
v
~
t::: v
Z/iJC(t) = r(t) R/iJC
R/iJC = 1.5 'CW Max
D curves applv for power
pulse train shown
-~11-1
read time at T,
t2~
I---
P(pk)
tJUl
0.05
I-""
!z
~ 0.02 .........
g~ 0.01
cg
~
-f::::. r;-
0.01
:;;
i
.-
......
0.01
V
Single Pulse
Duty Cycle, D = 'ln2' TJ(pk) - TC = P(pk) Z/iJC(t)
I I III
11111
0.02
0.05
0.1
0.2
0.5
2.0
I. TIME Im,l
1.0
FIGURE 17 loOK
300
10
-
1--
1.0
--
-r-.
5.0
10
I
III II
50
20
100
200
500
lK
TYPICAL CAPACITANCE
- - - - - MUR820 thru MUR860
MUR805 thru MUR815
MUR870 thru MUR8100
TJ=25'C
-
-
'''f-....
10
VR. REVERSE VOLTAGE (VOLTS)
3-267
100
II
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL DATA
MUR870E
MUR880E
MUR890E
MUR8100E
Switch mode Power Rectifiers
Ultrafast "E" Series
w/High Reverse Energy Capability
MUR81DOE 18 a
Motorola Preferred Device
· .. designed for use in switching power supplies, inverters and as free wheeling diodes,
these state-of-the-art devices have the following features:
•
•
•
•
•
•
•
•
•
•
ULTRAFAST
RECTIFIERS
8.0 AMPERES
700-1000 VOLTS
20 mjoules Avalanche Energy Guaranteed
Excellent Protection Against Voltage Transients in Switching Inductive Load Circuits
Ultrafast 75 Nanosecond Recovery Time
175e C Operating Junction Temperature
Popular TO-220 Package
Epoxy Meets UL94, Vo @ 1/8"
Low Forward Voltage
Low Leakage Current
II1I...I
High Temperature Glass Passivated Junction
0....,
0
Reverse Voltage to 1000 Volts
II
CASE 2218-02
T0-220AC
MAXIMUM RATINGS
MUR
Rating
Peak" Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current Total Device, (Rated VR), TC
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz), TC
= 150·C
= 150·C
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz)
Operating Junction Temperature and Storage Temperature
Symbol
870
880
890
8100
Unit
VRRM
VRWM
VR
700
BOO
900
1000
Volts
IF(AV)
B.O
Amps
IFM
16
Amps
IFSM
100
Amps
TJ, Tstg
-65 to +175
·C
THERMAL CHARACTERISTICS
Maximum Thermal Resistance, Junction to Case
2.0
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)
(iF = 8.0 Amp, TC = 150·C)
(iF = B.O Amp, TC = 25eC)
vF
Maximum Instantaneous Reverse Current (1)
(Rated dc Voltage, TC = 100·C)
(Rated dc Voltage, TC = 25·C)
iR
Maximum Reverse Recovery Time
(IF = 1.0 Amp, di/dt = 50 Amp/!'s)
(IF = 0.5 Amp, iR = 1.0 Amp, IREC
trr
Volts
1.5
1.B
pA
500
25
ns
100
75
= 0.25 Amp)
Controlled Avalanche Energy
(See Test Circuit in Figure 6)
WAVAL
111 Pulse Test: Pulse W,dth = 300 "s, Duty Cycle'" 2.0%.
SWITCHMODE is a trademark of Motorola Inc.
3-268
20
mJ
MUR870E, MUR880E
100
r- 'The curves shown are typical for the highest voltage
~ device in the voltage grouping. Typical reverse current
lK '= for lower voltage selections can be estimated from
400 ~ these same curves if VR is sufficiently below rated YR.
0
50
1/V
20
V
/
10
/
)
/ Jv
/
/
~
a:
u
TJ = 175'C
V 100'C V
II
II
w
0.4
O. 2
....- 4c
0.04
0.02
0.01
/
o
200
25'C/
v
V
I'..
15
a:
/
II
/
a:
u
:::>
o
II
Rated VR
Applied
"-
f'.- f'\ dc
"
Square.......
Wave
~
a:
""'- "'-
II!
"""
~
/
0.6
lK
10
~ 9
~
w
0.4
800
600
400
VR. REVERSE VOLTAGE (VOLTS)
Figure 2. Typical Reverse Current*
II /
I
L..--"
.Ji: 0.1
J
I
0.2
-
1/
1
ffi
a:;
}
0.3
100'C
II
J /
I
1/
-
150'C
~
t--
17
/
)
I--'
10
:::>
/
I
TJ - 175'C
~
1!z
/
a:
0.1
I
200
100
30
:it
0.8
1.0
1.2
1.4
vF. INSTANTANEOUS VOLTAGE (VOLTS)
1.6
~1
1.8
if:
o
150
140
Figure 1. Typical Forward Voltage
160
TC. CASE TEMPERATURE ('C)
~
"'\
180
170
Figure 3. Current Derating, Case
10
9
k(JJA!
8
...........
r-....
.......
4
f==
-- --
de
I--
2
Square
1J- Ware
20
- - - R(JJA = SO'CIW(No Heat Sink) -
dc
7
61-- ............
Square ..........
5 ' - - Wave
I--
" ".........
13
12
~ 11
!;;: 10
~
u
w
/ /
II
150·~
TJ
50
20
10
5.0
~
a:
VV I
20
j
TYPICAL REVERSE CURRENT'
~
160
~
180 200
3-273
0
~~-L
o
____L-__-L__~~__-L__~____-L__~
2.0
14
4.0
80
10
12
60
IFIAV). AVERAGE FORWARD CURRENT lAMPS)
16
II
MUR1505 thru MUR1560
MUR1520. 1530. 1540
FIGURE 6 - TYPICAL FORWARD VOLTAGE
FIGURE 7 - TYPICAL REVERSE CURRENT'
100
100
50
TJ
30
l00"C
= l5O'C
~~
VV /
20
/ 1/ /
. 0
/ /
I
0.3
0.2
0.1
0.2
II
0.4
I
I
12
G
10
~
Rottd Voltage Applied
~2.0
0.6
0.8
1.0
1.2
vF. INSTANTANEOUS VOLTAGE IVOLTS)
1.4
1.6
JF
12
........
"l
a - ... "" I""'--."'" K
~
r-.J'"
"" "
III
de
/
~ 2.0
~
j!:
RIAJA
= 5O'CIW
~ 10r---~--_+----~--~~~~~~--~--~
f--
'.0
~ aOr---~--~~~~~~--_+----~--~--~
!4.0I---.. . .
y7f,.,-£::A!=:..-___I--+_-_I_-+-__I
~
~
""""'" ....
w
16r---r---.---,---~---r---r~~---,
Ii
I--
~
~
0 As obtained in free air. no heat sink
o ~ ~ 50 ~ m
180
~~ 14r---r---r---r---r---~~~
~ 6.0
de
180
170
TC. CASE TEMPERATURE lOCI
~ 12
f--
5?
Square Wav.
150
,
~
FIGURE 10 - POWER DISSIPATION
-
I
-
,,\.
0
140
RIAJA = 16'CIW
as obtained from
a small TO·220
Heat Sink
de
~'\.
"\
'" 4.0
~
I
4.0
"
5!
~ 6.0
~
ffi
450 500
squorew...~
0
I
8.0 Square Wave
~
I"
1.
FIGURE 9 - CURRENT DERATING. AMBIENT
!Z 10
"'"'" r--..'"
~ 14
14
~
~
150 200 250 300 350
VR. REVERSE VOLTAGE (VOLTS)
~ 16
I
I I
100
50
FIGURE 8 - CURRENT DERATING, CASE
I
I II
=
rated VR.
I
II
I25'C
*The curves shown are typical for the highest voltage device in the
voltage grouping. Typical reverse current for 'ower voltage selections
can be estimated from these same curves if VR is sufficiently below
/ / /
'/
I
/ /
II
~
il:ili
'/
II
rJ~~
0.2
0.1
0.05
n,
:I I J
10
~
50
20
10
5.0
2.0
1.0
0.5
~
'C
S
~
~
~
~
2.01--~iI'S~4--+-___I~-+_-_I_-+-__I
E O~~~~~~~~~~~~~~~~
o
4.0
6.0
8.0
10
12
14
16
IFIAY). AVERAGE FORWARD CURRENT (AMPSI
TA. AMBIENT TEMPERATURE I'C)
3-274
MUR1505 thru MUR1560
MUR1550. 1560
FIGURE 11 - TYPICAL FORWARD VOLTAGE
FIGURE 12 - TYPICAL REVERSE CURRENT'
200
100
100
50
1
....
TJ :.'~'C
30
ffi
V t/ V,fC
20
g§
::::I
u
V V L..4"c
'/ V '/
10
, ,
I
llj
~
5
,
~
~
TJ
§
&ii
15O"C
l00'C
25'C
~
~
~
~
~
~
~
~
~
~
VR, REVERSE VOLTAGE (VOLTS)
/
I
50
20
10
5.0
2.0
1.0
0.5
0.2
0.1
0.05
0.02
*The curves shown are typical for the highest voltage device in the
I
voltage grouping. Typical reverse current for lower voltage selections
can be estimated from thasa lame curves if VR is sufficiently below
// /
ralad VR.
FIGURE 13 - CURRENT DERAnNG. CASE
// /
16
1'4
!z
a
II!
I I
II ,/
0.3
0.2
0.2
8.0
i2
8.0
'"
1.0
1.2
1A
1.8
vF,lNSTANTANEOUS VOLTAGE (VOLTS)
}
t'--.""-l\.
~
Riled Voltage Applied
~2.0
0.8
~
SquareWa~....... I\.
4.0
0.6
0.4
i
........
1
I
I
II I
10
Q
/
I I
0.1
I
12
.........
~
0
1~
150
lro
170
Teo CASE TEMPERATURE I'C)
FIGURE 15 - POWER DISSIPATION
FIGURE 14 - CURRENT DERAnNG. AMBIENT
10
ie
~
~ 9.0
~ 8.0 --+..
Square Wave
17.0
~
~
~
3.0
RSJf! s lrim .'Obtain!, _
d"
" "-I'.
'<'
6.0
frvm I amln ro.m
HeltSink
" ,'-'"
-
-
I'..:
5.0
Ii! 4.0
l!!
de
~
--
~
2> t-.
~ 2.0
ReJA=N
~1.0 AI obtained in free lir, no hili sink.......::: ::::-.... ~
.If. 0
~~
Square WINe
o
~
~
ro
_
,~
~
~
~
~
~
~
TAo AMBIENT TEMPERATURE re)
3-275
'\
180
•
MUR1505 thru MUR1560
a
~
~~
FIGURE 16 - THERMAL RESPONSE
1.0
0
O.S
0.5
~
~
~
~
~
0.11
0.2
gj
~ f-"
o. 1
-
- ...--
~
fat;
0.01
--::::
.p(pt)
~ 0.05
!Z
lJ;!
0.02 ~
z
......
V
~
~ 001
~ . 0.01
I I
O.OS
Duty Cycle. 0 = 11'12
TJlpkl- TC" P/pk,Z9JCII)
putse Ir'In shown
rNdllmealTI
II III
0.1
0.2
II
1.0
O.S
rfllRWC
o
~;,:j
si~~le louise
=
RtuC = 1.S"CrNMax
turves.pply for power
111111
0.02
z8JCltl
tIUl
2.0
t, TIME Imsl
S.O
I I
III I
so
20
10
FIGURE 17 - TYPICAL CAPACITANCE
lK
500
~200
~
100
~
:: SO
u
- --
TJ
2SoC
r-
r-
<3
20
10
1.0
2.0
S.O
10
20
VR, REVERSE VOLTAGE IVOLTSI
3-276
SO
100
100
200
500
lK
MURl605CT
MUR1610CT
MUR1615CT
MUR1620CT
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL DATA
MURl630CT
MUR1640CT
MUR1650CT
MUR1660CT
•
_mod_
IIIUR162OCT,IIIUR184OCT III1d IIIUR1680CT
_1II0t0r01.
ULTRAFAST
RECTIFIERS
SWITCHMODE POWER RECTIFIERS
8 AMPERES
• .. designed for use in switching power supplies, inverters and
as free wheeling diodes, these state-of-the-art devices have the
following features:
50-600 VOLTS
• Ultrafast 35 and 60 Nanosecond Recovery Times
• 175'C Operating Junction Temperature
• Popular TO-220 Package
• Epoxy meets UL94, Vo @ Yo"
• High Temperature Glass Passivated Junction
II
• High Voltage Capability to 600 Volts
• Low Leakage Specified @ 150'C Case Temperature
• Current Derating @ Both Case and Ambient Temperatures
I
CASE 221A-06
To-Z20AB
PLASTIC
MAXIMUM RATINGS
MUR
Rating
Symbol 16D5CT 1610CT 1615CT 1620CT 1630CT 1640CT 1650CT 1660CT Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current
Total Device, (Rated VR), TC = 150'C
VRRM
VRWM
VR
Per Leg
Total Device
Peak Repetitive Forward Current
Per Diode Leg
(Rated VR. Square Wave. 20 kHz). TC = 150'C
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions hallwave.
single phase. 60 Hz)
Operating Junction Temperature and
Storage Temperature
50
100
150
200
300
500
400
600
Volts
IF(AV)
8.0
16
Amps
IFM
16
Amps
IFSM
100
Amps
TJ. Tstg
-65 to + 175
'C
THERMAL CHARACTERISTICS. PER DIODE LEG
Maximum Thermal Resistance. Junction to Case
3.0
'CIW
2.0
ELECTRICAL CHARACTERISTICS PER DIODE LEG
Maximum Instantaneous Forward Voltage (11
liF=8.0Amp. TC=l50'C)
liF=8.0 Amp. TC=25'C)
VF
Maximum Instantaneous Reverse Current 111
(Rated de Voltage. TC= 150'C)
(Rated de Voltage. TC=25'C)
iR
Maximum Reverse Recovery Time
(IF= 1.0 Amp. di/dt=50 Amp/l"')
(IF = 0.5 Amp. iR = 1.0 Amp. IREC = 0.25 Amp)
trr
Volts
0.895
0.975
1.00
1.30
1.20
1.50
250
5.0
500
10
500
10
pA.
ns
35
25
(1)Pulse Test: Pulse Width =300 ,.... Duty Cycle "'2.0%
3-277
60
50
MUR1605CT thru MUR1660CT
MUR1605CT, 1610CT AND 1615CT
FIGURE 2 - TYPICAL REVERSE CURRENT, PER LEG'
FIGURE 1 - TYPICAL FORWARD VOLTAGE, PER LEG
100
'The curves shown are typical for the highest voltage
device in the voltage grouping. Typical reverse current
for lower voltage selections can be estimated from
th~same curves HVR is sutrrcienfly below rated VR.
70
50
10
~
7.0
:$
..
..
a:
::>
u
5.0
if2
3.0
2
2.0
en
z~
~
3!;
a:
a:
::>
u
/ V
w
en
a:
I / /
~
a:
J!:
I
I
I
I
I
I I :/
I
I J
'"~
I!l
I
ffi
OA
0.2
0.6
14
::E
:$ 12
....z
......
~
~
a:
..... "
10 I - - ""'
::>
u
0.8
1.0
1.2
.. 8.0
ie
i....
-
to
4.0
~ 2.0
-
..........
5.0
-
Squara Way; - -
o
20
40
~
~
~
~
Rated VR Applied
"'"
~e
r-....".
""- "'-.
"'"
"- r-...."'-.
Square Wave
140
-
; 9.0
:; 8.0
'"~
7.0
~
6.0
'"
a:
5.0
...!;i!
.......
~
~
~
~
60
80 100 120 140
TPo, AMBIENT TEMPERATURE 1°C)
....
~
~
~
150
160
TC CASE TEMPERATURE 1°C)
170
"
180
~ 10
." "-
-- -- ---de
50
50 ~ ~
VR. REVERSE VOLTAGE IVOLTS)
3.0
j
~
...
I
]; 0
.1
I
......... ..........
f--- Square W~ ..........
6.0
40
FIGURE 5 - POWER DISSIPATION, PER LEG
R8JA; IsoC/W- , - ---RBJA; SooC/WINo H.a..ink) - I--
~
~
2.0
..... 1.0
I
r---
o
7.0
FIGURE 4 - CURRENT DERAnNG, AMBIENT, PER LEG
ii;
-
./
........
25'C
6.0
VF,INSTANTANEOUS VOLTAGE IVOLTS)
...
I-""
~ 4.0
II 1 /
I I
:
I
I
I
0.2
0.1
Il5
I
0.3
./
l00'C
~~ 9.0
8.0
0.7
I
Tr175'C _
10
z
0.5
==
FIGURE 3 - CURRENT DERAnNG CASE, PER LEG
I
/'00'C / 25'C
TJ=175'C /
1.0
.~
~
V/ /
20
i!
::E
1
"/V
30
1.0K
400
200
100
40
20
10
4.0
2.0
1.0
0.4
0.2
0.1
0.04
0.02
0.01
~
160 180 200
,/
TJ = 175'C
Square Wave
V
V V
2.0
V ./
/'
/ ' de
,/>V
4.0
3.0
/'
~
~~
~ 1.0
,/1"'"
0
o 1.0 2.0 3.0 4.0 5.0 S.O 7.0 B.O
'FIAV). AVERAGE FORWARD CURRENT lAMPS)
E
3-278
9.0
10
MUR1605CT thru MUR1660CT
MUR1620CT, 1630CT AND 1640CT
FIGURE 6 - TYPICAL FORWARD VOLTAGE. PER LEG
FIGURE 7 - TYPICAL REVERSE CURRENT. PER LEG'
100
'The curves shown are typical for the highest voltage
device in the voltage grouping. Typical reverse current
for lower voltage selections can be estimeted from
these curves if VR is sufficiently below rated VR.
70
loOK
400
50
....
30
20
/
~
S
10
:;;
I-
V
V
!i;:
/
/
1 ~~~
./
. / ,,/
./
/
I
II
3.0
/
TJ-175'j
:::>
. 2.0
I
1000e
/
~
1.0
.!f-
/
0.3
1/
/ I
0.1
0.4
V
~
~
8.0
7.0
~~
6.0
6
5.0
"'"
ffi
u
c
~
f2
w
~
ffi
/
~
1.0
1.2
1.4
J!;
1.6
~•
~
.;;;:
Square Wave
1.0
140
t50
160
TC, CASE TEMPERATURE
1"--..
r-- -~ ...........
....... ,......."
6. Of--- - Wave
r--.... I'..
r--.. t-...
-d~
4.
0
w
~
50
m m
5.0
l(
4.0
w
'"~
~
'it
Ioo~
~
f--~
m
~
~
TA, AMBIENT TEMPERATURE I'C)
TJ
170
1°C)
= m'c
/
Square
Wavy
6.0
IX:
~
- -- --- -50
7.0
~
Rated VR Applied
vF, INSTANTANEOUS VOLTAGE IVOLTS)
~
~
~
9.0
o
::t
0.6
~
FIGURE 8 - CURRENT DERATING. CASE:PER LEG
I /
0.2
m
10
/
I
50
VR. REVERSE VOLTAGE (VOLTS)
z
I
-"'.
o
25'C
0.7
0.5
-
.......
.......
0.04
0.02
O.Ot
/
/ II
z
~
u
c
a:
TJ m'c
150'C-
40
~ 4.0
/
!/
a~
=
M
W
MUR1605CT thru MUR1660CT
MUR1650CT AND 1660CT
FIGURE 12 - TYPICAL REVERSE CURRENT, PER LEG-
FIGURE 11 - TYPICAL FORWARD VOLTAGE, PER LEG
100
~ 1= 'The curves shown are typical lor the highest voltage
f-- I- device in the voltage grouping. Typical reverse current
0
1.0K
so
TJ= 15O'C
30
VV
20
II
i~
7.0
a
5.0
l00"C;; ~ V
/
.~
/
~
a
/
~
_
Tr15O'C
l00"C
-
/
/ II
V
I
200
100
~
~_.
'"is
0:
0.6
.
~
'"~
0.8
"-de
""- ,,,-
6.0
'" ""'-
5.0
1.2
1.0
1.4
1.8
1.6
~
~
1?
'\ ~
Square Wave
3.0
1.0
140
150
!Z
.0
9
8.0
~
7.0
a
6. 0
a:
I:
"i--.
Square
Or-- -Wre
0
~
~
3.0
2.Ot---
~ 1.ot---t-wr
jf:
0
20
~
I
Square
Wave/,
I............
l'..
""'" -...
m w
,7
~
"- f'.,.
00
00
~
TA. AMBIENT TEMPERATURE (OC)
~
~
W
~.
~
3-280
/" /"
/
/
V
/"
~c-
17
/'
/
V
........-.:V
~V"
0~
o
~
/
5
.........
F-:: ::: ... l~
180
T
!i
"- ..........
"""
~~q1a;:: -- -de
"
FIGURE 15 - POWER DISSIPATION, PER LEG
14
13
~
12
is 11
~ 10
en 9. 0
B. 0
a:: 7.0
6.0
w
5.0
~ 4.0
~ 3.0
~ 2.0
- 1.0
I
=
---- ROJA = 60°CIW
(No Heat Sink)
,..........
170
u;
ROJ~ l~oCiW
I
~c
160
~
TC. CASE TEMPERATURE (DC)
FIGURE 14 - CURRENT DERATING, AMBIENT, PER LEG
i
"'S
2.0
vF. INSTANTANEOUS VOLTAGE (VOLTS)
10
000
Rated VR Applied
8.0
~ 4.0
o.2
0.4
soo
400
~ 9.0
I
/ /
II /
,v II
- ---
FIGURE 13 - CURRENT DERATING, CASE, PER LEG
II
I
o.3
-
25'C
300
~ 7.0
I II
==
-
10
I
I
r==
-
VR. REVERSE VOLTAGE (VOLTS)
I
O.7
O.5
;..-
0,01
/
/ /
1.0
0.2
0.1
0.04
0.02
/
J
/
2.0
O.
~
20
10
4.0
I2.0
1.0
~
25°C
~
~
!Z
V
/
1/
/
~
~
;;:;
V
/
1:
.$ 0.4
Ii1
~
a: 3.0
2
~
V
/ /
0
~
P~
I=lor lower voltage selections can be estimated Irom=
F== 1=
these same curves il VR is sufficiently below rated VR.
1.0
V"
TJ = 175°C f - -
2.0
3.0 4.0
5.0 6.0 7.0
8.0
IF(AV). AVERAGE FORWARD CURRENT (AMPS)
9.0
10
MUR1605CT thru MUR1660CT
,.a:~
0
;;;
FIGURE 16 - THERMAL RESPONSE
0
O.5
tl
:z
~ O.2
'"
~
O. 1
ZWCUI"IIURruc
DCUNes app1v lor power
pulSelr,Mst!own
!§§~~~!I
readllmealT,
FIGURE 17 - TYPICAL CAPACITANCE. PER LEG
1.0K
--- MUR1620CT thru 166OCT
MURI60SCT lhru 161 SCT
300
~
w
j;;!100
-
1--
I
-
13
TJ=25'C
1"'-_
-
c.i 30
10
1.0
10
VR. REVERSE VOLTAGE (VOLTS)
3-281
100
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL DATA
MUR1605CTR
MUR1610CTR
MUR1615CTR
MUR1620CTR
Switchmode
Dual Ultrafast Power Rectifiers
· .. designed for use in negative switching power supplies, inverters and as free wheeling diodes. Also, used in conjunction with common cathode dual Ultrafast Rectifiers,
makes a single phase full-wave bridge. These state-of-the-art devices have the following
features:
•
•
•
•
•
•
•
•
MUR1620CTR 18 •
Motorol8 Preferred Devleo
ULTRAFAST RECTIFIERS
16 AMPERES
50-200 VOLTS
Common Anode Dual Rectifier (8.0 A per Leg or 16 A per Package)
Ultrafast 35 Nanosecond Reverse Recovery Times
Exhibits Soft Recovery Characteristics
High Temperature Glass Passivated Junction
Low Leakage Specified (i, 150°C Case Temperature
Current Derating (i, Both Case and Ambient Temperatures
Epoxy Meets Ul94, Vo (i, 1/8"
Complement to MUR1605CT Series of Common Cathode Devices
II
CASE 221A-06
TO-22DAB
MAXIMUM RATINGS (Per Leg)
MUR
Symbol
1605CTR
1610CTR
1615CTR
1620CTR
Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
50
100
150
200
Volts
Average Rectified Forward Current, (Rated VR), TC ~ 160'C
Per Leg
Per Total Device
IF(AV)
Rating
Peak Repetitive Surge Current, Per Diode
(Rated VR, Square Wave, 20 kHz), TC ~ 140'C
IFM
16
Amps
IFSM
100
Amps
TJ, Tstg
--65 to +175
'c
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave,
single phase, 60 Hz)
Operating Junction Temperature and Storage Temperature
Amps
8.0
16
THERMAL CHARACTERISTICS (Per Leg)
Thermal Resistance -
Junction to Case
2.0
ELECTRICAL CHARACTERISTICS (Per Leg)
Maximum Instantaneous Forward Voltage (1)
(iF ~ 8.0 Amp, TC ~ 25'C)
(iF ~ 8.0 Amp, TC ~ 150'C)
vF
Maximum Instantaneous Reverse Current (1)
(Rated dc Voltage, TC ~ 25'CI
(Rated dc Voltage, TC ~ 150'CI
iR
Maximum Reverse Recovery Time
(IF ~ 1.0 Amp, di/dt ~ 50 Amp/Jl.s)
(IF ~ 0.5 Amp, dildt ~ 100 Amp/Jl.sl
trr
Volts
1.2
1.1
Jl.A
5.0
500
ns
85
35
111 Pulse Test: Pulse W,dth -- 5.0 ms, Duty Cycle' 10%.
Switch mode is a trademark of Motorola Inc.
3-282
MUR160SCTR, MUR1610CTR, MUR161SCTR, MUR1620CTR
100
70
50
TJ = 17~c.p
20
I~
~
10
~/
!$
/
~
iQ
50
20
10
W/
~
:::l
u
~
III
u
rH -
'"~a:
/,
a:
12
:::l
~
z:
z:
""
""
F
'The curves shown are typical for the highest ==
~
0.2
0.1
g§ 0.5
a:w~ 0.05
a: 0.03
H50"C
11OO"C
il=iiSUiffiiC!iein~tiIY!bie~IO~Wir~a~te!diV~R~'iiiilili=
.£i: 0.02
III' I
(' I
I
V>
~110'C
I
~ reverse current for lower voltage selections can. ~
E
be estimated from these same curves if VR is
V '/
IJ
a:
:::l
= 175'C
~ voltage device in the voltage grouping. Typical;:::
f-
iE
a:
~=
1=='
~ 100~~
~
30
::;;
S-
ij)100011111~1~_
!:i 500
~ 200
0,01
0
20
40
60
80 100 120 140
VR, REVERSE VOLTAGE IVOLTS)
160
180
200
Figure 2. Typical Reverse Current* (Per Leg)
1/25'C
V>
~
.~
~
0.7
16
~ 14
0.5
I
~
a:
12
a
10
RATED VR APPLIED
ROJC = 2'CW
a:
0.3
" r0.
'"
~
a:
0.2
"
12
w
~
~
0.1
o
0.4
0.2
0.6
O.B
1.2
1.4
WAVE
~
~
Figure 1. Typical Forward Voltage (Per Leg)
I
~
'\
~ 0
140
VF, INSTANTANEOUS VOLTAGE IVOLTSI
t\.DC
SQUARE~
150
160
170
TC, CASE TEMPERATURE I'C)
180
Figure 3. Current Derating, Case (Per Leg)
V
TJ = 175'C
-
/
ROJA = 16'CW
""-. r-...DC
..........
/
SQUARE
WAVE/V /
1"--..." I'....
SQUA~ i'...
WAVE
~~
50
75
100
125
V'
V ........V DC
~
25
V
/
/
~
"
150
TA, AMBIENT TEMPERATURE I'CI
~~
175
200
Figure 4. Current Derating, Ambient (Per Leg)
~
~~
14
10
12
IFIAV), AVERAGE FORWARD CURRENT lAMPS)
Figure 5. Power Dissipation (Per Leg)
3-283
16
MUR1605CTR, MUR1610CTR, MUR1615CTR, MUR1620CTR
o
~
1
-
;:;
tj
::;;
ffi 0.05
i=
iii
0.02
~ 0.01
~
~
~
f-
0.1
<[
IZ
~~
AI.
z
>! 0.2
u
1
U)
=>
fa
z
z
1
0.05
0.02
1SO
,
200
250
300
350
...........
SQUARE WAV~"
I
I
1/ :1
O.3
O. 2
O. 1
0.2
~
I
0.4
650
,,"" ,
I
il I
600
"\
/
I I
550
..........
~~
I
500
Figure 12. Typical Reverse Current*
i;
I
450
-The curves shown are typical for the highest voltage device in the
voltage grouping. Tvpical reverse current for lower voltage selections
can be estimated from these same curves if VR is sufficiently below
rated VR.
~
O. 5
400
VR. REVERSE VOLTAGE (VOLTSI
I
If
U)
.!?
25°C
~ O. 2
.Jt. O. I
a:
/ / II
/ / /
I
~
I
I
<>
I
150·C
100·C
m
0.5
a:
Ac
0-
Il
TJ
50
20
50
RATED VOLTAGE APPLIED
~
'\.
1.6
0.6
0.8
1
1.2
1.4
VF.INSTANTANEOUS VOLTAGE (VOLTSI
150
160
170
180
TC. CASE TEMPERATURE (·CI
Figure 11. Typical Forward Voltage
Figure 13. Current Derating. Case
'" ""de
~
SQUAREWAV'E"<
~
Rrul =
~
"'"f'.-."-
FROM A SMALL TO·220
HEAT SINK
'" '"
WCW
t--.
~
50
50
12
z
...en
!i
10
...~
~
r-:::
~
14
0
~
m
w
C!>
«
" ~~
~
RruA =
AS OBTAINED IN FREE AIR. NO HEAT SINK
~
~~
a:
i'-,."'
SQUARE WAVE?> I---
_ 16
lJCW A~ OBTAiNED
ffi
~
~
E
f=::::: ~
~
~
~
~
16
TAo AMBIENT TEMPERATURE (·CI
Figure 15. Power Dissipation
Figure 14. Current Derating. Ambient
3-290
MUR3005PT thru MUR3060PT
a
~
~
;;;
1
0
o. 5
0.5
w
u
~ o. 2
~
;;;.
0.11
i.-- r-'
o. 1
......
~ ~ ......
~5
V
~
I...,..... ::::-
:;;
tJUl
-rl-j
ffi 0.05
i=
!Z
",.....
~ 0.02~
~
1=.0.01
~ 0.01
0.02
V
---
"S:NGL~ PULSE
DUTY
II II
0.05
0.1
0.2
Z8JC(11 = r!11 R8JC
R8JC = 1.5 'CIW MAX
oCURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READTIMEATTl
, P(pkl
~
0.01
0.5
CYCL~~ 0 = 11/12 IIII
10
2
I, TIME {msl
TJ(pkl - TC = P(pkl Z8JC(11
II II
20
50
Figure 16. Thermal Response
lK
500
t--~200
-
.
r- J-..
~ 100
g
~
25"C
r- r-
w
<'i
TJ
50
20
10
1
5
10
20
VR. REVERSE VOLTAGE (VOLTSI
50
Figure 17. Typical Capacitance (Per Leg)
3-291
100
100
200
500
lK
MOTOROLA
... SEMICONDUCTOR . . . . . . . . . . . . . . . . . . . . . . . . . .•
TECHNICAL DATA
MUR3020
MUR3030
MUR3040
SWITCHMODE
Power Rectifiers
MUR3020 and MUR3040
· .. designed for use in switching power supplies, inverters and as free wheeling diodes,
these state-of-the-art devices have the following features:
•
•
•
o
•
•
Ultrafast 100 Nanosecond Recovery Time
175°C Operating Junction Temperature
State-of-the-Art Single TO-218 Atlas Package
High Voltage Capability to 400 Volts
Low Forward Voltage Drop
High Temperature Glass Passivated Junction
are Motorola Preferred Devices
ULTRAFAST RECTIFIERS
30 AMPERES
200-400 VOLTS
O--I.~II-I- 0
II
MAXIMUM RATINGS
Symbol
Max
Unit
VRRM
VRWM
VR
200
300
400
Volts
Average Rectified Forward Current
TC = 70"C
IFIAV)
3D
Amps
Peak Repetitive Forward Current
(Rated VR Square Wave 20 kHz) TC = 15O"C
IFRM
3D
Amps
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions
halfwave, single phase, 60 Hz)
IFSM
300
Amps
TJ, Tstg
-65to +175
·C
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Operating Junction Temperature and
Storage Temperature
MUR3020
MUR3030
MUR3D40
THERMAL CHARACTERISTICS
Thermal Resistance, Junction to Case
ELECTRICAL CHARACTERISTICS
Instantaneous Forward Voltage
(IF = 3D Amp, TC = 10D"C)
(IF = 3D Amp, TC = 25"C)
vF
Instantaneous Reverse Current
(Rated de Voltage, TC = lOD"C)
(Rated de Voltage, TC = 25"C)
iR
Reverse Recovery Time
(IF = 1.0 Amp dlldt = 15 Amplp.S
trr
Volts
1.4
1.5
SWITCHMODE is • trademark of Motorola, Inc.
3-292
6.0
35
mA
pA
100
ns
MUR3020, MUR3030, MUR3040
TYPICAL ELECTRICAL CHARACTERISTICS,
100
~
,----
;:;;
~
I-
100"C
I
./ / . /
25"C
t---
1.5
VV
10
a::
a::
u
1000
===
150"C
/'
I----
iii
0-
l00"C
;:;;
=
w
a:
a:
::>
'-"
w
/
/ / /I
20
tn
a:
I
II
/
1/
I
I
I
0.2
-
0.05
0.02
0.01
I
I
/
if
:;
:$.
~
I
12
~
10
V"
180
200
1.4
" ,"-
de
~'\.
~"
~'\.
~
RA DVO[ AGE AP UED
~
1.6
I
'"
:ii:
0.6
0.8
1
1.2
INSTANTANEOUS VOLTAGE (VOLTS)
II
.......
SQUARE WAV
~w
I
0.4
"-
14
i1C
I / II
0.2
60
80 100 120 140 160
VR. REVERSE VOLTAGE (VOLTS)
16
a:
a:
a:
I I
40
::>
I I
0.2
0.1
II
I I
20
Figure 2. Typical Reverse Current (Per Leg)"
I
0.3
o
is sufficiently below rated VR-
/ ;/
I
0.1
II
I
0.5
2 'G- -
.......
*The curves shown are typical for the highest voltage device In the voltage grouping. Typical
reverse current for lower voltage selections can be estimated from these same curves If VA
I I
/
100'C I - -
0.5
~a:
c:r
TJ = 150'G ==
~
iI'
150
Figure 1. Typical Forward Voltage (Per Leg)
160
170
TC. CASE TEMPERATURE ('G)
~
180
Figure 3. Current Derating. Case (Per Leg)
,
I
r-- r"J
r-- I""'--...
.......
SQU REW !IE
I
u;-
I
!;2
I
R~A = 1~'C/W ~S OB+AINED1 -
"
......
"""C
'/
USING A SMALL FINNED
HEAT SINK.
1-0-.
r--
-
~
14
Q
12
en
10
~
-
~
c
a:
.......
"'."
-
~
...:::-.
~"w
2
Ml
a:
/ '/ J
'j /
0.5
a:: 0.2
a: 0.1
a:
- 0.05
I
1
I
I
if
I
a:~
a:
I
r
0.3
a~
i!(
I
I
I I
O.10.2
II I
0.4
100
0.6
150 200 ~ 300 350 400
VR. REVERSE VOLTAGE (VOLTS)
,
16
~
:$.
I I
o. 2
50
450
500
Figure 7. Typical Reverse Current (Per Leg)"
I
5
/
-The curves shown are typical for the highest voltage device In the voHage grouping. Typical
reverse current for lower voltage selections can be estimated from these same curves It VA
Is sufficiently below rated VR-
I I -'
I
,-
100°
; 25°(; .===:
t)
0.02
0.01 0
J J
..
1 ~oC
TJ = 150°C
0.8
1.2
1.4
1.6
VI'- INSTANTANEOUS VOLTAGE (VOLTS)
~
~
14
.......
12
,"i'..'\ de
~
" "\..
10
SQUAREWAV
8
'\
~\.
'\
4
RA ED VOL AGEAP UED
Figure 6. Typical Forward Voltage (Per Leg)
150
,
~
180
160
170
TC. CASE TEMPERATURE (0C)
Figure 8. Current Derating, Case (Per Leg)
I
~ ~e
..........
":-.....
:;uu ~RE:W,\vE:
R~A = l~oCJW As OBTAINED 1 -
-1 USING
A SMALL FINNED
~
HEAT SINK.
z
(RESISTIVE-INDUCTIVE LOAD) I PK = 11
AV
r-~~-I-7""I
(CAPACITIVE LOAD) I PK =5
de
AV
-!----,;<++--I---7"f-----l
a
12
~
10r---+----r---+~~~~r-~~---+--~
10
is
I~
.........
"'''
-
14
~
-
" '" "r-...
16r-----------------~------.-~.----,
~
~
"C
e
~
...... ~
SQUAREW VE-r-- ~
~
::""-0
~
ReJ~ =4O°CIW ..?-'"
I""'::: ~.~
AS OBTAINED IN FREE AIR
.......
WITH NO HEAT SINK.
20
40
60
80 100 120 140 160
TA. AMBIENT TEMPERATURE (0C)
......
180
4r---~~~~~~__Ir_--t---~__-r--~
:i(
~
200
Ll:'
Q.
2
4
6
8
10
12
14
IF(AV). AVERAGE FORWARD CURRENT (AMPS)
Figure 9. Current Derating, Ambient (Per Leg)
Figure 10. Power DIssipation (Per Leg)
3-296
16
MUR3060WT, MUR3040WT, MUR3020WT
MUR3060WT
200
100
50
100
<"
::1.
50
>=
zw
TJ=I~Of -
30
,/
.,r , /
20
/
~
/
/
100°C
c:
c:
t/ 4c
V
TJ = 150°C
20
10
:J
<.)
W
en
c:
w
~c
i'c:i:i
!i-
0.5
-
0.2
0.1
0.05
0.02
150
/
I
/
I
1i)
0.3
~
!z
O. 1
0.2
I II
0.4
14
~
12
G
10
c:
...........
450
500
550
600
650
•
..........
~
SQUA EWAV
'"
c:
~
I
I
I I
0.2
400
16
D..
!I
II I
350
Figure 12. typical Reverse Current (Per Leg)"
I
I I
300
-The curves shown are typical for the highest voltage device in the voltage grouping. Typical
reverse current for lower voltage selections can be estimated from these same culVes if VR
is suffICiently below rated VA-
I
0.5
250
VR. REVERSE VOLTAGE (VOLTS)
I II II
// /
I
200
/
25°C
f2
~
I
I
w
1.4
1.6
~
;r
" ~"
"-
"-l\.
6
4
~
RAT D VOLT. GE APpliED
;;C
0.6
0.8
1
1.2
vf, INSTANTANEOUS VOLTAGE (VOLTS)
Ne
~
o
140
Figure 11. Typical Forward Voltage (Per Leg)
150
180
170
TC. CASE TEMPERATURE (0C)
"
180
Figure 13. Current Derating, Case (Per Leg)
~ 10
::E
$.
~
r-...
I--r--..
~
c:
a
~
7
6
~
~
-de
w
~
/J FROM A SMALL TO·220
.........
SQUAREW~
'<
HEAT SINK.
2
~
:;.
-
de
14
z
N i"",,-
I'.. ~
"-.'
16
0
12
en
C
10
~
1i.i
c:
w
~
~
SQUARE WAVE:--r-,.....t>-~
RaJA = 6DoCrw'?/
-~,
~
~
AS OBTAINED IN FREE AIR
~
WITH
NO
HEAT
SINK.
~
~
;r 0
o 20 40 60 80 100 120 140 160 180
TA. AMBIENT TEMPERATURE (OC)
~
1i)
R~A = 16LCrw ~S OBTAINED I
de
D..
LOAD)
W
~W
"-
;;C
[
200
"-
D..
4
6
8
10
12
14
IF(AV). AVERAGE FORWARD CURRENT (AMPS)
Figure 15. Power Dissipation (Per Leg)
Figure 14. Current Derating, Ambient (Per Leg)
3-297
16
MUR3060WT, MUR3040WT, MUR3020WT
!
0=0.5
~ 0.5
~~
0.2
ill
a:
0.1
.....
'"1Ii! 0.05
a:i
!l1
~
~
0.02
I-'"
]..
p(Pk)lJ1SL
: 0.05
.1
w
F
t-
-- - -~ I-
0.\
~
......
0.01
0.01
........
0.02
~tJG
~~~
LSE
I 1
0.1
0.05
0.2
0.5
DUTY CYCLE, 0 = 11/12
J Il 10
2
ZruC(I) = r(l) ROJC
Rruc = 1.5°CfW MAX
o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME ATT 1
TJ(pk) - TC = P(pk) ZruC(I)
20
50
I, TIME (ms)
Figure 16. Thermal Response
lK
•
500
~
w
u
z
200
;;:
100
if
50
J = 25°
-r--
~
-I"-
<3
<3
d'
20
2
5
10
20
VR, REVERSE VOLTAGE (VOLTS)
50
Figure 17. Typical Capacitance (Per Leg)
3-298
100
II II
100
200
I
500
lK
MURSOOS
MURS010
MUR5015
MUR5020
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL DATA
•
MURS020 I••
•
•
Motorola Preferred Devlco
ULTRAFAST
RECTIFIERS
50 AMPERES
50 to 200 VOLTS
SWITCH MODE POWER RECTIFIERS
· .. designed for use in switching power supplies. inverters and as
free wheeling diodes. these state-of-the-art devices have the following features:
A~
• Ultrafast 50 Nanosecond Recovery Time
• Low Forward Voltage Drop
•
Hermetically Sealed Metal DO-203AB Package
Do-203AB
METAL
MECHANICAL CHARACTERISTICS
CASE: Welded. hermetically sealed
FINISH: All external surface corrosion
resistant and terminal leads are
readilv solderable
POLARITY: Cathode to Case
MOUNTING POSmONS: Any
MOUNTING TORQUE: 25 in-Ib max
MAXIMUM RATINGS
Rating
Symbol
Peak Repelltlve Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
NonrepetltlVe Peak Reverse
MUR
Unit
5005
5010
5015
5020
VRRM
VRWM
VR
50
100
150
200
Volts
VRSM
55
110
165
220
Volts
Voltage
IF(AV)
50
Amps
Nonrepetltlve Peak Surge
Forward Current (half cycle,
60 Hz. Sinusoidal Waveform)
IFSM
600
Amps
Operating Junction and Storage
Temperature
TJ. Tstg
-55 to +175
°c
Average Forward Current
TC: 125°C
THERMAL CHARACTERISTICS
Rating
Thermal Resistance, Junctton to Case
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage Drop
MaXimum Reverse Current @ DC Voltage
1.15
0.95
1.10
IR
(TJ = 25°C)
ITJ = 125°CI
MaXimum Reverse Recovery Time
Volts
vF
(iF: 50 Amp. TJ : 25°CI
(IF = 50 Amp. TJ = 125°CI
(IF = 100 Amp. TJ : 125°CI
trr
~A
10
10
mA
50
ns
(IF = 1.0 Amp. dl/dt = 50 Amp/~s. VR = 30 V.
TJ = 25°CI
3-299
•
MUR5005, MUR5010, MUR5015, MUR5020
FIGURE 1 - TYPICAL FORWARD VOLTAGE
FIGURE 2 - TYPICAL REVERSE CURRENT"
1000
500
300
ZOO
100
.3 50
100
TJ = 150°C
/
/
j
/
II
~
...5
10
~
0:
'-'
I
c
0:
I
Z5°C
20
~
/
I
'"
::>
S
z
I
/I
;:
z
;:
1.0
40
60
80
100
lZ0 140
VR. REVERSE VOLTAGE IVOLTS)
160
180
ZOO
"The curves shown are typical for the hIghest voltage device In the
voltage grouping. TYPical reverse current for lower voltage selections
can be estimated from these same curves If VR IS sufficiently below
rated VR.
I
II
~
0:
II
/
I
::>
'"
3E
100°C
10
~ 5.0
~ 3.0
~ 2.0
1.0
S- 0.5
0.3
O.Z
O. I
/
II
TJ = 150°C
Ia ~~
/25 0 C
/
~
cr
;;25°C
FIGURE 3 - CURRENT DERATING. CASE
70
I
.!f
.........
.......
I
II
Square
II
II
I
I
Wave
I.!.
I
,II
04
02
I
100
FIGURE 4 - POWER DISSIPATION
S
~ 60
z
50
Capacitive
Load
I
10
20/,
0:
...~
'"
~
~
~
I
30
I
I
I
I
I
I
20
/.
:....-: V
:.-'~ V
~~
10
~=5.0
...... .......
....... ......
170
180
300
~200
z
5 100
de
f
5
",
TJ = 175°C
-
70
50
TJ = 25°C
30
I
ZO
J
.JtI! ~
130
140
150
160
TC. CASE TEMPERATURE 1°C)
~
.......
.....
120
FIGURE 5 - TYPICAL CAPACITANCE
IAV
V
~
1000
700
500
ReslSllve
l. !..
Load - Square Wa~
51
is 40
0-
'\
1.2
06
0.8
1.0
vF. INSTANTANEOUS VOLTAGE IVOLTS)
i:i
.
Rated Voltage Applied
in 70
if
de
.......
I
10
10
20
30
40
IFIAV). AVERAGE FORWARD CURRENT lAMPS)
50
20
10
30
50 70 100
ZOO 300
VR. REVERSE VOLTAGE IVOLTS)
500 700 1000
FIGURE 6 - THERMAL RESPONSE
ffi
1.0
:l
-
~ 0.5
~ 0.3
~
l:1
O.Z
~
..,.-
Single Puis.
~ O.1 /
ZoJClt) = rlt) R6JC
~
ffi 0.05
:z:
:: 0.03
z
~ 0.02
~
'": 0.01
~
0.01
002
005
01
0.2
0.5
1.0
2.0
t. TlMElms)
3-300
5.0
10
20
50
100
200
500
100~
MOTOROLA
SEMiCONDUCTOR . . . . . . . . . . . . . . . . . . . . . . . .. .
TECHNICAL DATA
Designer'sTM Data Sheet
SCANSWITCHTM Power Rectifier
MUR5150E
Molorola Preferred Device
For Use As A Damper Diode
In High and Very High Resolution Monitors
SCANSWITCH
RECTIFIER
5.0 AMPERES
1500 VOLTS
The MUR5150E is a state-of-the-art Ultrafast Power Rectifier specifically designed for use as
a damper diode in horizontal deflection circuits for high and very high resolution monitors. In
these applications, the outstanding performance of the MUR5150E is fully realized when paired
with the appropriate 1500V SCANSWITCH Bipolar Power Transistor.
•
•
•
•
•
1500 V Blocking Voltage
20 mjoules Avalanche Energy Guaranteed
Peak Transient Overshoot Voltage Specified, 17 Volts (typical)
Forward Recovery Time Specified, 175 ns (typical)
Epoxy Meets UL94, Vo at 1/8"
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VRRM
VRWM
VR
1500
Volts
IF(AV)
5.0
Amps
IFRM
10
Amps
IFSM
100
Amps
Operating Junction and Storage Temperature
TJ, Tstg_
-65 to +125
°C
Controlled Avalanche Energy
WAVAL
20
mJ
Peak Repetilive Reverse Vollage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current, (Rated VR), TC
Peak Repetitive Forward Current, Per Leg
(Rated VR, Square Wave, 20 kHz), TC
=100°C
=100°C
Non-Repetitive Peak Surge Current
(Surge applied at rated load conditions hallwave, single phase, 60 Hz)
THERMAL CHARACTERISTICS
Thermal Resistance - Junction to Case
2.0
ELECTRICAL CHARACTERISTICS
Rating
Symbol
Maximum Instantaneous Forward Voltage (1)
(iF = 2.0 Amps, TJ =25°C)
(iF = 5.0 Amps, TJ =25°C)
vF
Maximum Instantaneous Reverse Current (1)
(Rated dc Voltage, TJ = 125°C)
(Rated dc Voltage, TJ =25°C)
iR
Typ
Max
1.7
2.0
2.0
2.4
100
10
500
50
Units
Volts
liA
Maximum Reverse Recovery Time (IF = 1.0 Amps, di/dt =50 Amps/lis)
trr
130
175
Maximum Forward Recovery Time (IF =6.5 Amps, di/dt = 12 Amps/lis)
tfr
175
225
ns
VRFM
17
20
Volts
Peak Transient Overshoot Voltage
(1) Pulse Test: Pulse Width
ns
=300 Ils, Duty Cycle :0:;; 2%
SCANSWITCH IS a trademark of Motorola Inc.
Preferred devices are Motorola recommended choices for future use and best overall value
Designer's Data for "Worst Case" Conditions - The DeSigner's Data Sheet permits the design of most circUits entirely from the Information presented. Limit curves - representing boundaries on
deVice charactenstlcs -
are given to facilitate "worst case" deSign.
3-301
II
MUR5150E
TYPICAL ELECTRICAL CHARACTERISTICS
~
~ 100
l;;
w
g§
20
G
c
10
.....: "
~
'"
TJ = 125°C ~ ~85°C./
II:
~
::::>
~
~
0.5
z
~
z
TJ=125°C
~
~
/
1.0
10
u
w
II:
f2
w
"
~
0.1
II:
w
[rj
~u.. 0.10.II
6
"
BO°C
-==
25°C
3.0
0.001 0
3.4
Figure 1. Typical Forward Voltage
II
ii)
~
TJ = 125°C
17.5
~
15
V
o
"'c-;;; 12.5
~
10
w
7.5
~w
~
;. 2.5
tile
:$.
"0..
(RATEb
RWC = .o°cm
ffi~
6.0
G
c
5.0
~
4.0
w
3.0
II:
f2
~W
~V
2
"'" "'- ","",
t'-...de
SQUARE
WAVE " "
2.0
~
4
5
B5
6
90
95
IF(AV). AVG FORWARD CURRENT (AMPS)
Figure 3. Forward Power Dissipation
250
225
u:-
200
.s
175
~
150
w
u
U
1E
125
;:§ 100
>- 75
u
50
25
~ "-
I
~1.0
~
i:L
3
300
'0
.s.
OV=240pF
100kHz,;;t,;; 1.0MHz
270
w
15
@ 150
II:
w
'"
II:
........
W
[rj
.......
120
90
II:
60
ir
II:
1'---
1
10
VR. REVERSE VOLTAGE (VOLTS)
Figure 5. Typical Capacitance
H
120
125
200
160~
VRfO
::;; 240
;:::
di/dt= l00N~s
... ~_ ~
210 r~~_
~
w
.--..
50N~s
180
to-.
"-
100
10.5
110
115
TC. CASE TEMPERATURE (OC)
Figure 4. Current Derating Case
'ri-~ldlL C~plCliA~C~ ~+ I
\
1.5K
V~AP~UED)
::;;
:$. 7.0
/de
/ /
/.V
0.9K
1.2K
0.6K
VR. REVERSE VOLTAGE (VOLTS)
~ B.O
/
V /"
SQUARE / "
WAVE
II:
0.3K
Figure 2. Typical Reverse Leakage Current
20
~
L--"'"
II:
1.4
I.B
2.2
2.6
vf, INSTANTANEOUS VOLTAGE (VOLTS)
1.0
=
......
0.01
II:
,/
/
0.2
-
100
w
II:
II:
25°C
5
fil
1000
«::L
50
>-
30
--
-,.....-
i-"'"'"
I -r-s;;N~S
-
--I--100N~s
- 1 60 ~
."=" ~1 40
........ .......
---
1.5
2
2.5
3 3.5
4
If, FORWARD CURRENT (AMPS)
100
",.
w
100
BO
60
20
50
STORED RECOVERY CHARGE
- - - REVERSE RECOVERY TIME
Figure 6. Typical Reverse Switching Characteristics
3-302
:2
u
120 ~
40
4.5
II:
15u
M!
~
~
II:
II:
o
MOTOROLA
- SEMICONDUCTOR
TECHNICAL DATA
MUR6020
MUR6030
MUR6040
SWITCHMODE
Power Rectifiers
MUR60ZO and MUR6040 are
Motorola Preferred Devices
· .. designed for use in switching power supplies, inverters and as free wheeling diodes,
these state-of-the-art devices have the following features:
•
•
•
•
o
•
Ultrafast 100 Nanosecond Recovery Time
175'C Operating Junction Temperature
State-of-the-Art Single TO-218 Atlas Package
High Voltage Capability to 400 Volts
Low Forward Voltage Drop
High Temperature Glass Passivated Junction
ULTRAFAST RECTIFIERS
60 AMPERES
200-400 VOLTS
0--'."'-1- 0
II
MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
MUR6020
MUR6030
MUR6040
Average Rectified Forward Current
TC = 70°C
Peak Repetitive Forward Current
(Rated VR Square Wave 20 kHz) TC
=
Max
Unit
VRRM
VRWM
VR
200
300
400
Volts
'F(AV)
60
Amps
IFRM
60
Amps
IFSM
600
Amps
TJ, Tstg
-65to +175
°c
150'C
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions
halfwave, single phase, 60 Hz)
Operating Junction Temperature and
Storage Temperature
Symbol
THERMAL CHARACTERISTICS
Thermal Resistance, Junction to Case
ELECTRICAL CHARACTERISTICS
Instantaneous Forward Voltage
(IF = 60 Amp, TC = 100'C)
(IF = 60 Amp. TC = 25'C)
VF
Instantaneous Reverse Current
(Rated dc Voltage, TC = 100°C)
(Rated dc Voltage, TC = 25'C)
'R
Reverse Recovery Time
(IF = 1.0 Amp dlldt = 15 Amp/I'S
trr
Volts
1.4
1.5
SWITCH MODE i. a trademark of Motorola. Inc.
3-303
10
60
mA
p.A
100
ns
MUR6020, MUR6030, MUR6040
TYPICAL ELECTRICAL CHARACTERISTICS
100
l00'C
1000
==
u;
15O'C
a..
'/
:;;
S
10
I-
/
./
~
V25'C
~
Z
w
a:
a:
::>
u
c
a:
==
-
a:
12
~
I
I
II I
0.1
0.1
0.3
1.1
1.3
0.9
VF. INSTANTANEOUS FORWARD VOLTAGE IV)
0.5
l00'C
0.7
25'C~
./'"
w
en
a:
~ 0.1
E:
a:
1.5
0.Q1
50
150
100
200
250
350
300
400
VR. REVERSE VOLTAGE IVOLTS)
Figure 2. Typical Reverse Current
Figure 1. Typical Forward Voltage
•
===
-I-
10
a:
a:
I I
~
1
100
ffi
a
/
150'C=
TJ
-
80
lL 70
:;;
S 60
!z
I"'"
~5O
a:
1340
c
~ 30
12
t-l'...
"""
20
~ 10
o
120
140
I'-- ~
i'-- I'-..
de
~
~
160
i'--- t'.....de
r'::::::::
o
175
TC' CASE TEMPERATURE I'C)
IN FREE AIR
WITH NO HEATSINK
o
20
40
60
80
100
120
'""'"
140
160
180
TA. AMBIENT TEMPERATURE I'C)
Figure 4. Current Derating. Ambient
Figure 3. Current Derating. Case
3-304
200
MOTOROLA
-
SEMICONDUCTOR - - - - - - - - - - - - - -
TECHNICAL DATA
MUR7005
MUR7010
MUR7015
MUR7020
Switchmode
Power Rectifiers
· .. designed for use in switching power supplies, inverters and as free wheeling diodes,
these state-of-the-art devices have the following features:
MUR7020 Is.
Motorola Preferred Device
• Ultrafast 50 Nanosecond Recovery Time
• Low Forward Voltage Drop
• Hermetically Sealed Metal 00-203AB (00-5) Package
Mechanical Characteristics
Case: Welded. hermetically sealed
Finish: All external surface corrosion resistant and terminal leads are readily solderable
Polarity: Cathode to Case
Mounting Positions: Any
Mounting Torque: 25 in-Ib max
•
.,
ULTRAFAST
RECTIFIERS
70 AMPERES
50 TO 200 VOLTS
~~,~
•
DO·203AB
MAXIMUM RATINGS
Rating
Symbol
MUR
7005
7010
7015
7020
150
200
165
220
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
50
100
Nonrepetitive Peak Reverse Voltage
VRSM
55
110
Average Forward Current
TC = 125"C
Nonrepetitive Peak Surge
Forward Current (half cycle.
60 Hz, Sinusoidal Waveform)
Operating Junction and Storage Temperature
Unit
Volts
Volts
IF(AV)
70
Amps
IFSM
1000
Amps
TJ, Tstg
-55 to +175
"C
THERMAL CHARACTERISTICS
All Devices
,Iatlng
O.S
Thermal Resistance, Junction to Case
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage Drop
(iF = 70 Amps, TJ = 25"C)
(iF = 70 Amps, TJ = 150'C)
vF
Maximum Reverse Current @ DC Voltage
(TJ = 25"C)
(TJ = 150"C)
IR
Maximum Reverse Recovery Time
(IF = 1 Amp, dildt = SO Ampslp,s,
VR = 30 V, TJ = 25"C)
trr
Volts
0.975
0.840
25
30
ns
60
(IF = O.S Amp, iR = 1 Amp,
IREC = 0.25 A, VR = 30 V, TJ = 25"C)
50
3-305
,.A
mA
II
MUR7005, MUR7010, MUR7015, MUR7020
100
70
2000
1000
SOD
300
_ 200
100
/
/
50
/
III I
VI II
I I I
30
20
TJ
~ 10
::=;;
/
a
$:
$
I
I
I
'"'"
I I
I
~
•
fi'l
z
40
80
80 ~ W ~
VR. REVERSE VOLTAGE IVOLTS)
'"
I
II
I
I
0.1
0.2
/
I
I
0.4
0.6
0.8
vF. INSTANTANEOUS VOLTAGE IVOLTS)
1.2
90
1000
~80
~
~ 70
700
600
500
400
..".-
..".-
~ 10
o
~
....
10
k:: ::::.- i-"'"
120
APPLIED
de
~
'"
~
~
130
140
150
160
TC. CASE TEMPERATURE lOCI
,
170
180
1 ---- -~
r--
300
..".- de
i:5 200
l..---' --:... ..".-
30
~20
0
l..---' V . /
SQUAREWA~ V
140
E
..".-
SINE WAVE
OR
60
50
100
RAT~D VOLT1GE_
Figure 3. Current Derating. Case
100
~
'"
jAVE
~90
~
~~
SQUARE
AND
SINE
Figure 1. Typical Forward Voltage
c
["-.
I
0.2
~
selections can be estimated from these same curves if VR is suf-
~0.7
0.3
W
ficiently below rated VR.
z
0.5
~
80
I
/ /
:!'
z
:!'
25°C
1
0.5
0.3
0.2 0
*The curves shown are typical for the highest voltage device in
the voltage grouping. Typical reverse current for lower voltage
/
II
u
TJ
c.i
TJ
= 175°C
Th 20 ~ 30 ~ 40 ~ 50 ~ 50
IFIAV). AVERAGE FORWARD CURRENT lAMPS)
100
~
ro
10
20
30
40 50
VR. REVERSE VOLTAGE (VOLTS)
50 70 80 90 100
Figure 5. Typical Capacitance
Figure 4. Average Power Dissipation
3-306
MUR7005, MUR7010, MUR7015, MUR7020
~_
0.7
0.5
~
0.3
~
j3
'"~
~
~
.......
V
0.1
0.07
0.05
i!!....
0.03
~
0.Q1
~ 0.02
~
t-
......,1.....
0.2
0.01
SINGLE PULSE
,It) R8JC
Z8JClti
V
0.02 0.03
0.05
0.1
0.2
0.3
0.5
2
3
10
20
30
50
100
200 300
500
1000
t. T!MElm.I
Figure 6. Thermal Response
II
3-307
MUR1000SCT
MUR1OO1OCT
MUR1OO1SCT
MUR1OO2OCT
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL DATA
MUR10020CT I••
Motorola Preferred Oavlce
Advance Information
ULTRAFAST
SWITCHMODE POWER RECTIFIERS
ULTRAFAST
RECTIFIERS
· •. designed for use in switching power supplies, inverters, and
as free wheeling diodes. These state-of-the-art devices have the
following features:
100 AMPERES
50 TO 200 VOLTS
• Dual Diode Construction
• Low Leakage Current
• Low Forward Voltage
• 175°C Operating Junction Temperature
• Labor Saving POWERTAP Package
•
-- -------
MAXIMUM RATINGS
MUR
Symbol 1000SCT 10010CT l0015CT l0020CT Unit
Rating
Peak Repetitive Reverse
Voltage
Working Peak Reverse
Voltage
DC Blocking Voltage
50
100
150
200
VRRM
VRWM
VR
Average Rectified Forward
Current, (Rated VR),
TC = 140°C
Per Device
Per Leg
IF(AV)
Peak Repetitive Forward
Current, Per Leg, (Rated VR,
Square Wave, 20 kHz),
TC = 1400C
IFRM
100
Amps
Nonrepetitive Peak Surge
Current Per Leg
(Surge applied at rated
load conditions
hallwave, single
phase, 60 Hz)
IFSM
400
Amps
TJ,Tstg
-65 to +175
°c
Operating Junction and
Storage Temperature
CASE 357c-G3
Volts
Amps
100
50
THERMAL CHARACTERISTICS PER LEG
Rating
Thermal Resistance, Junction to Case
ELECTRICAL CHARACTERISTICS PER LEG
Instantaneous Forward Voltage (1)
(iF = 50 Amp, TC = 25°C)
vF
Instantaneous Reverse Current (1)
(Rated dc Voltage, TC = 125OC)
(Rated dc Voltage, TC = 25°C)
iR
Maximum Reverse Recovery Time
(IF = 1.0 Amps, di/dt = 50 Ampsi!",)
(1) Puis. Test: Puis. Width = 300 p.O, Duty Cycle" 2.0%.
trr
1.10
Volts
pA
250
25
50
This document contams information on a new product, Specifications and information herein
are sub,ect to change without notice.
3-308
ns
Terminal Penetration:
Terminal Torque:
Mounting Torque Outside Holes:"
0.280 max
25-40 in-Ib max
30-40 in-Ib max
"Center Hole Must be
Torqued Fir~
8-10 in-Ib max
•
MUR1000SCT, MUR10010CT, MUR1001SCT, MUR10020CT
FIGURE 1 - FORWARD VOLTAGE
FIGURE 2 - TYPICAL REVERSE CURRENT'
tOK
SK
3K
_ 2K
'1 lK
lK
700
500
;:: 500
300
V- I
II V I
J
~
..
..~
I-
~100
:::>
u
Q
70
II
I
50
'"
:::>
fil
30
I
z
~
~
'"
i!!i
.!?
20
I I
I
12S'C ~
2S'C r---
o
60
80
tOO 120 140 160 180 200
VR. REVERSE VOLTAGE (VOLTS)
'The curves shown are typical for the highest voltage device in the voltage
grouping. Typical reverse current for lower voltage selections can be
estimated from these same curves. if VR is sufficienlly below rated VR.
II
~
;;;;:
lS0'C r---
100
~ 50
~ 30
~ 20
.!t 10
S.O
3.0
2.0
1.0
u
I
200
ie
175'C
TJ
il'i 300
~ 200
/
II
20
40
FIGURE 3 - CURRENT DERATING (PER LEGI
TJ = 175'C/ 1/12S'C 2S'C
II
10
7.0
S.O
I
II
1\
I I
3.0
1/1/
2.0
1.0
I
I I
o
I
TJ =
0.4
0.6
0.8
1.0
VF.INSTANTANEOUS VOLTAGE IVOLTS)
1.2
z
Q
~
~
..
~
..~
~ 30 I-- Rated Voltage Applied
Resistive Load
Q
~
t!I
;:;
~
~
~
10
~
/
w
\
100
120
140
TC. CASE TEMPERATURE ('C)
1\
160
180
700
300
/ 1/
E: 200
~
1/ V
z
g 100
f
70
~ SO
~
TJ =2SoC
30
I
20
30
40
50
00
IFIAV). AVERAGE FORWARD CURRENT lAMPS)
1'\ 175'C~
SOD
~V
ro
lSO'C
FIGURE 5 - CAPACITANCE (PER LEGI
I/. V
20 I-- TJ 1= lJS'C
12S'~\
~
1000
Square
Wa'Y j
40
80
00
V /
IL' ~ DC
~
~
1\
1.4
FIGURE 4 - POWER DISSIPATION (PER LEGI
~50
\
~
\
Duty Cycle
I
J J
0.2
Rated Vohage Applied
I-- Square Wave. SO%
~
70
3-309
i
1
10
to
20
30
50 70 100
200 300
VR. REVERSE VOLTAGE IVOLTS)
500 700 1000
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL DATA
SCANSWITCH ™
MUR10120E
Power Rectifier For High and Very High
Resolution Monitors
Motorola Pref8mtd Device
This state-of-the-art power rectifier is specifically designed for use as a damper diode
in horizontal deflection circuits for high and very high resolution monitors. In these
applications, the outstanding performance of the MUR10120E is fully realized when
paired with either the MJH16206 or MJF16206 monitor specific, 1200 volt bipolar power
transistor.
•
•
•
•
•
SCANSWITCH
RECTIFIER
10 AMPERES
1200 VOLTS
1200 Volt Blocking Voltage
20 mJ Avalanche Energy (Guaranteed)
12 Volt (Typical) Peak Transient Overshoot Voltage
135 ns (Typical) Forward Recovery Time
CASE 2218-02
(To-220AC)
MAXIMUM RATINGS
Symbol
Value
Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
1200
Volts
Average Rectified Forward Current
(Rated VR) TC = 125°C
IF(AV)
10
Amps
Peak Repetitive Forward Current, Per Leg
(Rated VR, Square Wave, 20 kHz) TC = 125°C
IFRM
20
Amps
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions, halfwave, single phase, 60 Hz)
IFSM
100
Amps
TJ
-65 to + 125
°c
WAVAL
20
mJ
Rating
Operating Junction Temperature
Controlled Avalanche Energy
THERMAL CHARACTERISTICS
Thermal Resistance -
Junction to Case
2.0
ELECTRICAL CHARACTERISTICS
Characteristic
Symbol
Maximum Instantaneous Forward Voltage (1)
(IF = 6.5 Amps, TJ = 125°C)
(IF = 6.5 Amps, TJ = 25°C)
vF
Maximum Instantaneous Reverse Current (1)
(Rated de Voltage, T J = 25°C)
(Rated de Voltage, T J = 125°C)
iR
Maximum Reverse Recovery Time
(IF = 1.0 A, di/dt = 50 Ampslp.s)
Maximum Forward Recovery Time
IF = 6.5 Amps, di/dt = 12 Ampslp.s (As Measured on a Deflection Circuit)
Peak Transient Overshoot Voltage
(1) Pulse Test: Pulse WIdth = 300 I's. Duty Cycle" 2.0%.
SCANSWITCH is a trademark of Motorola Inc.
3-310
Typ
Max
Unit
Volts
1.7
1.9
2.0
2.2
25
750
100
1000
trr
150
175
ns
tfr
135
175
ns
VRFM
12
14
Volts
p.A
MUR10120E
1000
100
70
j
100
125"C
~
>-
-
~ 10
a:
a:
=>
u
w
20
~ V/,
lore
125"~
/.
/ If
V
ii;
'/
...!--""
85"C
l--
a:
~ ,.h5"e
..... 25"C
.!f. 0.1
85"C
I
I.
/
'"
ffi
./
100"C
0.Q1
200
400
600
800
lK
1.2K
VR. REVERSE VOLTAGE IVOLTS)
/
/
Figure 2. Typical Reverse Current
/ I; /
VI' J
h~
1
/
II
0
9
RATED VR APPLIED
8
0.7
I
I!J
0.5
7
~
"~
5
"
4
0.2
~c
SQUARE WAVE" ~
3
~~
2
~
1
0.8
0.6
1.2
1.4
1.7
1.6
1.8
0
100
105
VF.INSTANTANEOUS VOLTAGE IVOLTS)
Figure 1, Typical Forward Voltage
"
125
5
9
ROJA
8
7
""
"""
6
5
1
o
120
Figure 3. Current Derating, Case
0
o
110
115
TC. CASE TEMPERATURE I"C)
15
30
= 16°CW
TJ = 125"C
2
~
9
""" ~ ~
"""
""" "'"
SQUARE WAVy
......-:: ~c
6
L..--:;:: V
~
~
45
60
75
90
105
TA, AMBIENT TEMPERATURE I"C)
"
120
.:;
135
150
....-:::
v----
~
2345678
IFIAV). AVERAGE FORWARD CURRENT lAMPS)
Figure 5. Power Dissipation
Figure 4. Current Derating, Ambient
3-311
/'"
10
MUR10120E
500
LI
TJ = 25°C
TYPICAL CAPACITANCE
ATOV = 500pF
400
~
~ 300
........
~
~ 200
r--
.........
...........
r---
U
r-
100
~
50
o
1
r-
10
VR. REVERSE VOLTAGE (VOLTS}
Figure 6. Typical Capacitance
I
3-312
-~
-
100
MOTOROLA
SEMiCONDUCTOR . . . . . . . . . . . . . . . . . . . . . . . . . ..
TECHNICAL DATA
Designer'sTM Data Sheet
SCANSWITCHTM
Power Rectifier
MUR10150E
Motorola Preferred Device
For Use As A Damper Diode In High
And Very High Resolution Monitors
SCANSWITCH
RECTIFIERS
10 AMPERES
1500 VOLTS
The MUR10150E is a state-of-the-art Power Rectifier specifically designed for use as a
damper diode in horizontal deflection circuits for high and very high resolution monitors. In
these applications, the outstanding performance of the MUR10150E is fully realized when
paired with either the MJW16212 or MJF16212 monitor specific, 1500 V bipolar power
transistor.
•
•
•
•
•
1500 V Blocking Voltage
20 mJ Avalanche Energy Guaranteed
Peak Transient Overshoot Voltage Specified, 14 Volt (typical)
Forward Recovery Time Specified, 135 ns (typical)
Epoxy Meets UL94, Vo at 1/8"
CASE 2218-02
TO-220AC
MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current, (Rated VR), T C
=125°C
Symbol
Value
Unit
VRRM
VRWM
VR
1500
Volts
IF(AV)
10
Amps
Peak Repetitive Forward Current, Per Leg
(Rated VR, Square Wave, 20 kHz), TC 125°C
IFRM
20
Amps
Non-repetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz)
IFSM
100
Amps
Operating Junction and Storage Temperature
TJ, Tsta
-65 to +125
°C
Controlled Avalanche Energy
WAVAL
20
mJ
RWC
2.0
°C/W
=
THERMAL CHARACTERISTICS
I Thermal Resistance -
Junction to Case
ELECTRICAL CHARACTERISTICS
Rating
Symbol
Maximum Instantaneous Forward Voltage (1)
(IF 6.5 Amps, T J 125°C)
(iF 6.5 Amps, T J 25°C)
vF
Maximum Instantaneous Reverse Current (1)
(Rated de Voltage, T J 125°C)
(Rated de Voltage, TJ 25°C)
iR
Maximum Reverse Recovery Time
(IF 1.0 Amp, di/dt 50 Amps/jls)
Maximum Forward Recovery Time
(IF 6.5 Amp, di/dt 12 Amps/jls)
=
=
=
=
=
=
=
=
=
=
Peak Transient Overshoot Voltage
(1) Pulse Test. Pulse Width
Typ
Max
Unit
Volts
1.7
1.9
2.2
2.4
750
25
1000
100
trr
150
175
ns
tfr
135
175
ns
VRFM
14
16
Volts
jlA
=300 lIS, Duty CycleS20/o.
Preferred devices are Motorola recommended choices for future use and best overall value.
Designer's Data for "Worst Case" Conditions - The Designer's Data Sheet permits the design of most CircUits entirely from the mformation presented. Limit curves - representing boundaries on
device charactenstics - are given to facIlitate "worst case" design.
3-313
11
MUR10150E
1000
--
100
<.a.
10
:z
w
a:
a:
20
a:
w
(lj
a:
Ji.
0.01
/
TJ=125°C /
0.1
Y
/
0.001
1/
o
600
900
1.2K
Figure 2. Typical Reverse Current
u;-
S
~ 40
~
0.2
0.1
0.4
L
1
i3c
I
0.8
SI EWAVE
(RESISTIVE LO~
25
a.. 20
~
1 1/ J
I V
0.6
30
ffi
~
io
1
1.2
1.4
1.6
vf, INSTANTANEOUS VOLTAGE (VOLTS)
Figure 1. Typical Forward Voltage
1.8
15
::; 10
Cl
~
~
A
5
~•
e;;
~V
,
e
/ /de
V
t!I P
0
5
0
.e:
SQU~y
WAVE
TJ = 125°C
if 35
I I
Ij
1.5K
VR. REVERSE VOLTAGE (VOLTS)
I
I
.....
"""-25°C
300
V J 25°C
II
0.5
....
,{,°c/
/ /
II
.,.,.
100°C
-
en
./
/V / /
/
-
:::>
0
w
I' V
I
f-- ~ TJ = 125 C
D
I-
10
15
IF(AV). AVERAGE FORWARD CURRENT (AMPS)
Figure 3. Forward Power Dissipation
(RATEb VR APPUED)
RruC = 2.0°C/W
''-'
"'SQ~
~
WAVE
de
~
~
95
105
115
TC. CASE TEMPERATURE (OC)
Figure 4. Current Derating Case
3-314
,
~
125
20
MUR10150E
500
400
~JIJ1L
CAPlclTlNCE
OV=430pF
r--......
IT
f'.r---I'
r-....
f'.
'" '" r-.
t--....
100
0
0.1
0.5
0.2
~
2
5
10
VR. REVERSE VOLTAGE (VOLTS)
i"- l"- t50
20
II
100
Figure 5. Typical Capacitance
300
I
270 t-
!:l!
240
210
i=
V~=30J
L
...... V
§?i 180 I - W
a:
120
I-
90
.i'
dVdl l= 50 AIl's
.... I--'""'""
150
i W
V
./
,. V'
.,.i-"""'"
~
V
~
~
,
lK
I
900
VR=30V
::
ffi
~
~
/
./ ~
di/dl = 100 AIl'S...,.....
600
...
f-""'"
V
/ 'V
~ 400
c
./ V
~ 300
o
t; 200
60
30
~
/ / VsoAil's
8 500
V- 100 AIl's
!-'-
f-""
V
W
/.V
O~ 100
o
o
4
5
6
7
9
10
0
o
3
4
5
6
7
9
If; FORWARD CURRENT (AMPS)
If; FORWARD CURRENT (AMPS)
Figure 6. Typical Reverse Recovery Time
Figure 7. Typical Stored Recovery Charge
3-315
10
•
MUR2000SCT
MUR20010CT
MUR20015CT
MUR20020CT
MOTOROLA
SEMICONDUCTOR
TECHNICAL DATA
D(c~!-;ig;ll(, .'!-;
Data Shept
MUR20020CT Is •
Motorola Preferred Device
ULTRAFAST
SWITCHMODE POWER RECTIFIERS
ULTRAFAST
RECTIFIERS
· .. designed for use in switching power supplies, inverters, and
as free wheeling diodes. These state-of-the-art devices have the
following features:
200 AMPERES
50 TO 200 VOLTS
• Dual Diode Construction
• Low Leakage Current
• Low Forward Voltage
• 175°C Operating Junction Temperature
• Labor Saving POWERTAP Package
II
MAXIMUM RATINGS
MUR
Symbol 20005CT 2001 OCT 20015CT 20020CT Unit
Rating
Peak Repetitive Reverse
Voltage
Working Peak Reverse
Voltage
DC Blocking Voltage
50
100
150
200
Volts
VRRM
CASE 357c'()3
POWERTAP
VRWM
VR
Average Rectified Forward
Current, (Rated VR),
TC = 95'C
Per Device
Per Leg
IF(AV)
Peak Repetitive Forward
Current, Per Leg, (Rated VR,
Square Wave, 20 kHz),
TC = 95'C
IFRM
Nonrepetitive Peak Surge
Current Per Leg
(Surge applied at rated
load conditions
hallwave, single
phase, 60 Hz)
IFSM
800
Amps
TJ,Tstg
-65 to + 175
·C
Operating Junction and
Storage Temperature
Amps
200
100
200
Amps
THERMAL CHARACTERISTICS PER LEG
Rating
Thermal Resistance, Junction to Case
ELECTRICAL CHARACTERISTICS PER LEG
Instantaneous Forward Voltage (1)
(iF = 100 Amp, TC = 25'C)
vF
Instantaneous Reverse Current (1)
(Rated dc Voltage, TC = 125'C)
(Rated dc Voltage, TC = 25°C)
iR
Maximum Reverse Recovery Time
(IF = 1.0 Amps, dildt = 50 Amps/!'s)
trr
(1)
Puis. T.st: Pul •• Width
1.25
Volts
p.A
500
50
50
ns
= 300 lOS, Duty Cycle'" 2.0%.
Designe,'s Data for "Worst Case" Conditions
The Designers Data sheets' permit the design of most circuits entirely from the
information presented, Limit curves - representing boundaries on deVIce character·
Istics - are given to facilitate "worst case" deSign.
3-316
0.280 max
25-40 in-Ib max
Terminal Penetration:
Terminal Torque:
Mounting TorqueOutside Holes:'
30-40 in·lb max
'Center Hole Must be
Torqued Fir~
8-10 in-Ib max
•
MUR20005CT, MUR20010CT, MUR20015CT, MUR20020CT
FIGURE 2 - TYPICAL REVERSE CURRENT-
FIGURE 1 - TYPICAL FORWARD VOLTAGE (PER LEG)
lK
500
1000
700
1
500
300
TJ
200
~
VI
~ 100
~
a:
70
ac
50
a:
a:
~
=>
'"
@
~
;<;
.~
V
J
V 125"CjJI /25"C I -
/
20
25"~
2.0
Ji: 1.0
O. 5
/
o
/
V
20
40
60
80 100 120 140
VR, REVERSE VOLTAGE (VOLTS)
160
180
200
*The curves shown are typical for the highest voltage device in the
voltage grouping. Typical reverse current for lower voltage selections
can be estimated from these curves, if VR is sufficiently below rated
VR·
FIGURE 3 - CURRENT DERATING (PER LEG)
II
0
1/1/ /
10
7~
O. 2
O. 1
I /
I
II
V
/ /
/
30
150"C=
~
/
~
a:
= 175"'1
175"C =
TJ
200
100
~ 0
g§ 20
~1 0
~ 5. 0
0
I
7.0
I
5.0
I
I
I II
I I
o
II
0.2
0
Wave
Rated Voltage Applied
0 - 50% Duty Cycle
TJ 1= 1~5"C I
0
0.4
I
0.6
I
I
0.8
1.0
1.2
1.4
I
de
'"
I
-
I
2.0
Squar~ ~
II
II
3.0
1.0
I
I
0
"""
1"-.'\
~
~
I
1 I
I
50
80
VF, INSTANTANEOUS VOLTAGE (VOLTS)
100
120
140
TC, CASE TEMPERATURE ("C)
1"-
160
~
150
RGURE 5 - CAPACITANCE (PER LEG)
FIGURE 4 - POWER DISSIPATION (PER LEG)
1000
s~uare
0
700
Wavy
0
0
10
/' V
/ ' / " .......:.....-:: V
f - - -lpK/IAV = 20,.,
//~V
F""
~ ~
0
O~
~ p-
w
~500
./
5.0
V
V
/
.......
5
TJ = 25"C
u 200
fll(1·gM~
TJ = 175"C-
50
50
m
50
IFlAV), AVERAGE FORWARD euRRENT (AMPS)
50
~
r-...I'-..
~
~ 300
I
~
j;1~ 0
,./
I
~
r-..
w
!/de
I
~
100
o
2.0 3.0
111m
5.0
10
20 30
50
100
200'
VR, REVERSE VOLTAGE (VOLTS)
3-317
500
lK
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL DATA
MUR20030CT
MUR20040CT
Ultrafast
SWITCH MODE Power Rectifiers
II
MUR20040CT I. a
· .. designed for use in switching power supplies, inverters, and as freewheeling diodes.
These state-of-the-art devices have the following features:
Motorola _red Device
•
•
•
•
•
ULTRAFAST
RECTIFIERS
200 AMPERES
300 and 400 VOLTS
Dual Diode Construction - May Be Paralleled For Higher Current Output
Low Leakage Current
Low Forward Voltage
175°C Operating Junction Temperature
Labor Saving POWERTAP Package
Mounting Specifications
Terminal Penetration:
0.280 max
Terminal Torque:
25-40 in-Ib max
Mounting TorqueOutside Holes:'
30-40 in-Ib max
'Center Hole Must be
Torqued First:
8-10 in-Ib max
CASE 357C-03
POWERTAP
MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Currenl, (Rated VR), TC
Per Device
Per Leg
= 95"C
Symbol
MUR20030CT
MUR20040CT
Unit
VRRM
VRWM
VR
300
400
Volts
Amps
IF(AV)
200
100
Peak Repetitive Forward Current, Per Leg,
(Raled VR, Square Wave. 20 kHz). TC = 95°C
IFRM
200.
Amps
Nonrepetitive Peak Surge Current Per Leg
(Surge applied at rated load conditions halfwave,
single phase, 60 Hz)
IFSM
800
Amps
Operating Junction and Storage Temperature
TJ, Tstg
-65 to
+ 175
"C
THERMAL CHARACTERISTICS PER LEG
Rating
Max
Thermal Resistance, Junction to Case
0.75
ELECTRICAL CHARACTERISTICS PER LEG
Instantaneous Forward Voltage (1)
(iF = 100 Amp, TC = 25"C)
(iF = 100 Amp, TC = 125°C)
vF
Instantaneous Reverse Current (1)
(Rated de Voltage, TC = 125"C)
(Rated de Voltage, TC = 25"C)
iR
Maximum Reverse Recovery Time
(IF = 1 Amp, di/dt = 50 Ampslp.s)
Irr
(1) Pulse Test: Pulse Width
= 300 p.s, Duty Cycle"
Volls
1.35
1.25
p.A
500
50
2%.
3-318
75
ns
MUR20030CT, MUR20040CT
~
:;;
:$.
!Z
lS0
l!§
ac
~
5?
~
@
f--125'C
~
~
.... 10
0.2
~
2SoC
/
a:
/
b(.
/
0.4
a:
aw
a:
'"
01== ~17SoC
~
~
/: V/
~ 100
1#
/
/
0.6
200
VR. REVERSE VOLTAGE (VOLTS)
2.2
0.8
1
1.2
1.4
1.6
1.8
vF. INSTANTANEOUS VOLTAGE (VOLTS)
Figure 2. Typical Reverse Current
Figure 1. Typical Forward Voltage
0
0
I
I
0
DC
SciUA~ I"-... "- ~
WAVE
0
I"
5
IpK/lAV = 5
0
I~
80
100
120
140
TC. CASE TEMPERATURE (OC)
160
IPK/IAV = 101/
~ ~P'"
15
~.
180
.. ~
o
o
10
20
30
40
50
60
70
AVERAGE CURRENT (AMPS)
1000
700
SOO
~400
...... 1--..
~
t::: 300
§u
!'-...
200
100
o
80
90
Figure 4. Average Power Dissipation and
Average Current
Figure 3. Current Derating (Per Leg)
~
,E,
-!,100
~
<'S
u
50
r-..
30
0
10
o
W
W
30
~
50
50
M
50
VR. REVERSE VOLTAGE (VOLTS!
Figure 6. Typical Capacitance
II
3-322
00
~
•
MOTOROLA
SEMICONDUCTOR
TECHNICAL DATA
SWITCHMODE Power Rectifiers
DPAK Surface Mount Package
• •. designed for use in switching power supplies, inverters and as free wheeling diodes,
these state-of-the-art devices have the following features:
• Ultrafast 35 Nanosecond Recovery Time
• Low Forward Voltage Drop
• Low Leakage
Mechanical Characteristics
• Case: Epoxy, Molded
• Finish: All External Surface Corrosion Resistance and Terminal Leads are Readily
Solderable
• Lead Formed for Surface Mount
• Available in 16 mm Tape and Reel or Plastic Rails
• Compact Size
• Dual Rectifier Single Chip Construction
• Lead Temperature for Soldering Purpose: 260°C for 10 Seconds
MURD605CT
MURD61 OCT
MURD615CT
MURD620CT
MURD620CT 10 •
Motorola PrelornKI Device
ULTRAFAST
RECTIFIERS
6 AMPERES
50 TO 200 VOLTS
II
MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Voltage
(TC = 145°C, Rated VR)
VRRM
VRWM
VR
Per Diode
Per Device
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz, TC = 145°C)
MURD
Symbol
IFIAV)
605CT
610CT
615CT
620CT
50
100
150
200
Unit
Volts
Amps
3
6
IF
6
Amps
IFSM
63
Amps
Per Diode
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions, halfwave, 60 Hz)
Operating Junction and Storage Temperature
TJ, Tstg
-65 to
+ 175
°c
THERMAL CHARACTERISTICS PER DIODE
9
Thermal Resistance, Junction to Case
Junction to Ambient (1)
80
ELECTRICAL CHARACTERISTICS PER DIODE
Maximum Instantaneous Forward Voltage Drop (2)
iF = 3 Amps, TC = 25°C
iF = 3 Amps, TC = 125°C
iF = 6 Amps, TC = 25°C
iF = 6 Amps, TC = 125"<:
vF
Maximum Instantaneous Reverse Current (2)
(TJ = 25°C, Rated dc Voltage)
(TJ = 125°C, Rated dc Voltage)
iR
Maximum Reverse Recovery Time
(IF = 1 Amp, dildt = 50 AmpslILs, VR = 30 V, TJ = 25°C)
(IF = 0.5 Amp, iR = 1 Amp, 'REC • 0.25 A, VR = 30 V, TJ
trr
=
/LA
5
250
= 25°C)
(1) Rating applies when surface mounted on the minimum pad size recommended.
(2) Pulse Test: Pulse Width
Volts
1
0.95
1.2
1.1
300l's, Duty Cycle" 2%.
3-323
ns
35
25
MURD605CT, MURD610CT, MURD615CT, MURD620CT
100
100
70
10
!Z
~
SO
-
1
20
0.1
a:
/~ /
II
,
"/
25"c_
........
./
0.00 1
o
20
40
60
80
100 120 140
VR, REVERSE VOLTAGE (VOLTS)
Figure 2. Typical Leakage Current* (Per Leg)
4
5/ SINE---.
2
J
J....
0.3
,
'j
II
o
0.2
2
0.4
0.6
O.S
1
vF, INSTANTANEOUS VOLTAGE (VOLTS)
Figure 1. Typical Forward Voltage (Per Leg)
~
"'-
""
""'-
SINE WAVE'--OR
SQUARE WAVE
RATED VOL~AGE AP~UED
~
R8JC = WClW
TJ = 17S'C-
!Z
110
120
r---
1
i
c
de
~
~
"~
130
140
1S0
160
TC, CASE TEMPERATURE ('C)
~:;;:
"
V
,de
/.
' / ./'
V/
TJ = 175'C I - -
....
~~ II"'"
2
4
6
8
IF(AV), AVERAGE FORWARD CURRENT (AMPS)
10
RATED VOLTAGEIAPPLIEb
RaJA
~
180
= SO'CIW
SUR~ACE MIOUNTEb ON
2.5
t - - ...............
I
MIN. PAD SIZE RECrMMEiDED
,.......
~~
1.5
0
o
20
40
60
TJ
de
r--.:::::: t-....
SINEWAVE
OR
SQUARE WAVE
1
~ O.S
170
/'
/'/ / '
/
~ 3.S
0
~
WAVE?
Figure 3. Average Power Dissipation (Per Leg)
"~
1
/
~QUARE
/
./
'/
/
/
./ u-;,
/
/ / V~
O~
1.4
1.2
/
/
/
/
/
4
= 25'C
I
I
6
l00'C
~TJ
O. 1
,
8
......
jV WA~
10,
01--- IpllAV = 20,
lSO'C ....
200
grouping. Typical reverse current for lower voltage selections can be
IJ
I
II! / /
175'C ....
180
estimated from these curves if VR is sufficient below rated VR'
/
0.5
160
*The curves shown are typical forthe highest voltage device in the voltage
/ I
1
-
l00'C
~
0.01
/II I
•
lSO'C
a
30
17S'C
TJ
«_E
.......
~
~
= 17S'C
'-180
80
100 120 140 160
TA, AMBIENT TEMPERATURE (OC)
Figure 5. Current Derating. Ambient (Per Leg)
Figure 4. Current Derating. Case (Per Leg)
3-324
200
MURD605CT, MURD610CT, MURD615CT, MURD620CT
100
0
0
o\
TJ = 25·C
o \
0
7
\
3
2
1
10
20
30
40
50
60
70
VR. REVERSE VOLTAGE (VOLTS)
80
90
100
Figure 6. Typical Capacitance (Per Leg)
•
3-325
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL DATA
Switch mode
Power Rectifiers
MURH840CT
Motorol. Pretemtc:l Device
· .• designed for use in switching power supplies, inverters and as free wheeling diodes,
these state-of-the-art devices have the following features:
•
•
•
e
•
•
•
•
II
Ultrafast 28 Nanosecond Recovery Times
175°C Operating Junction Temperature
Popular TO-220 Package
Epoxy Meets UL94, Vo t?t 1/8"
High Temperature Glass Passivated Junction
High Voltage Capability to 400 Volts
Low Leakage Specified (a. 150°C Case Temperature
Current Derating (U' Both Case and Ambient Temperatures
ULTRAFAST RECTIFIER
8.0 AMPERES
400 VOLTS
CASE 221 A-06
TQ-220AB
MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current
Total Device, (Rated VR), TC = 120°C
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz), TC
Per Leg
Total Device
Per Diode Leg
= 120°C
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz)
Symbol
Value
Unit
VRRM
VRWM
VR
400
Volts
IF(AV)
4.0
8.0
Amps
IFM
16
Amps
IFSM
100
Amps
Controlled Avalanche Energy
WAVAL
20
mJ
Operating Junction Temperature and Storage Temperature
TJ, Tstg
-65 to + 175
°c
THERMAL CHARACTERISTICS, PER DIODE LEG
Maximum Thermal Resistance, Junction to Case
ELECTRICAL CHARACTERISTICS. PER DIODE LEG
Maximum Instantaneous Forward Voltage (1)
(IF = 4.0 Amps, TC = 150°C)
(IF = 4.0 Amps, TC = 25°C)
vF
Maximum Instantaneous Reverse Current (1)
(Rated de Voltage, TC = 150°C)
(Rated de Voltage, TC = 25°C)
iR
Maximum Reverse Recovery Time
(IF = 1.0 Amp, dildt = 50 Amps/ILs)
trr
Volts
1.9
2.2
/LA
500
10
(1) Pulse Test: Pulse WIdth = 300 p.s, Duty Cycle'" 2.0%.
Switchmode is a trademark of Motorola Inc.
3-326
28
ns
MURH840CT
1000
500
200
150'C
r--
100"C
F=
1 100
50
;::: 50
~
~
/
20
150V
V
25 'C
~ Vioo~
a
20
10
ffi
5
g§
~
L
~
25'C F=
2
~
1
0.5
0.2
/
/
/'
0.1 0
V
50
100
150
J J /
I II v
/ /
/ /
o. 2
O. 1
0.4
I----- .....
/ /
II
0.8
1.2
1.4
1.6
18
2.2
sauAIiE'WAVE
~
"
i'-
a:
~
2
20
"
WAVE
~
'l:
1f
120
130
140
150
40
60
80
100
120
~
"
140
160
180
200
Figure 3. Forward Current Derating. Ambient. Per Leg
1000~!mlllellm!~II'~11
~1001l_11
........
...'"ffi
110
"
........ .:-...
TA. AMBIENT TEMPERATURE ('C)
tl
........ ~C
SQUA~ ........
C
o
"'"
i'...
"""
2.4
RATED VR APPLIED
.........
a
~c
1
10
"in
en
......
r--...
2
Figure 1. Typical Forward Voltage
z
'"
3
vF. INSTANTANEOUS VOLTAGE (VOLTS)
~~
II
~
5
/
0.6
400
6
// /
II /
350
7
I
I
300
/
I
5
250
Figure 2. Typical Reverse Current. Per Leg
II
/
1
200
VR. REVERSE VOLTAGE (VOLTS)
;z
I
"
160
<3
~
~
170
10
. . . . . .
l~~~wwW-~~~~~~~~~~~~
180
TC. CASE TEMPERATURE ("C)
0.01
0.1
1
10
VR. REVERSE VOLTAGE (VOLTS)
Figure 4. Current Derating. Case. Per Leg
Figure 5. Typical Capacitance. Per Leg
3-327
100
MURH840CT
S
~
z
o
20
/
18
SQUARE WAVE/
16
/
15
ffi
;;::
~
./ / '
8
~
6
~
4
~ 2
~
/'
./ ./
10
./ :/'
UJ
ffi
VDC
/
~ 14
gj 12
/
~V
/. V
./
10
IF(AV), AVERAGE FORWARD CURRENT (AMPS)
Figure 6, Forward Power Dissipation, Per Leg
II
3-328
MOTOROLA
SEMiCONDUCTOR . . . . . . . . . . . . . . . . . . . . . . . .. .
TECHNICAL DATA
Designer'sTM Data Sheet
SWITCHMODETM
Power Rectifiers
MURH860CT
Motorola Preferred Device
· .. designed for use in switching power supplies, inverters and as free wheeling diodes, these
state-of-the-art devices have the following features:
•
•
•
•
•
•
•
•
Ultrafast 35 Nanosecond Recovery Times
175°C Operating Junction Temperature
Popular TO-220 Package
Epoxy Meets UL94, Vo @ 1/8"
High Temperature Glass Passivated Junction
High Voltage Capability to 600 Volts
Low Leakage Specified @ 150°C Case Temperature
Current Derating @ Both Case and Ambient Temperatures
ULTRAFAST RECTIFIER
8.0 AMPERES
600 VOLTS
CASE 221A-06
TO-220AB
MAXIMUM RATINGS, PER LEG
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current
Total Device, (Rated VR), TC 120°C
=
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz), TC
Symbol
Value
Unit
VRRM
VRWM
VR
600
Volts
IF(AV)
4.0
8.0
Amps
IFM
16
Amps
IFSM
100
Amps
TJ, Tstg
-65 to +175
·C
Total Device
=120°C
Non·repetitive Peak Surge Current
(Surge applied at rated load conditions hallwave, single phase, 60 Hz)
Operating Junction Temperature and Storage Temperature
THERMAL CHARACTERISTICS, PER LEG
Maximum Thermal Resistance, Junction to Case
3.0
ELECTRICAL CHARACTERISTICS, PER LEG
Maximum Instantaneous Forward Voltage (1)
(iF =4.0 Amps, TC = 150°C)
(iF =4.0 Amps, TC = 25°C)
vF
Maximum Instantaneous Reverse Current (1)
(Rated dc Voltage, TC = 150°C)
(Rated dc Voltage, TC =25°C)
iR
Maximum Reverse Recovery TIme
(IF = 1.0 Amp, di/dt =50 Amps/~s)
trr
Volts
2.5
2.8
~A
500
10
35
ns
(1) Pulse Test: Pulse Width = 300 !ls, Duty Cycle s2.0%.
SWITCHMODE is a trademark of Motorola Inc.
Preferred devices are Motorola recommended choices for future use and best overall value.
Designer's Data for "Worst Case" Conditions - The Designer's Data Sheet permits the design of most circuits entirely from the information presented. Umi! curves - representing boundaries on
device characteristics - are given to facilitate "worst case" design.
3-329
•
MURH860CT
./
--
.,.,.......
TJ=lS0OC~
.7
2SoC
100
1
!Z
i
so
20
1~
w
L
!
./ ./
/ L
O.S
a:. O.OS
I
Jf 0.02
Ii
I
O.S
1
1.S
2
2.S
3
3.S
4
vF. INSTANTANEOUS VOLTAGE (VOLTS)
0.01 0
4.S
•
~
TJ = lS0°C
28
V
en 24
a:
w 20
i5
~
0..
w
~w
'i:
~
"-
a..
SQUARE
WAVE
16
--
./
12
,/
4
o
i-"'" ....
1
~
;'
....... .......
/'f'
/'
.... V
./
V
/
9
~
a:
8
32
::;;
;:::
~
28
24
w
20
frl
a:
16
en
a:
12
~
w
~
a:
8
.§:
4
Trr
f2
w
DC
~
........
--...--- .--
".'
""
........
~
3
~
2
1'-0..
SQUARE
4
" "-
~
" ~....
~
I\.
if' 0
40
7
DC
I......... '\
~1
60
80
100
120
140
TC. CASE TEMPERATURE (0C)
160
180
Figure 4. Typical Current Derating, Case, Per Leg
32
6
28 ~
u
10
w
UJ
a:
w
UJ
:::>
TJ = 150°C
~ 200
0.8
1
1.2 1.4 1.6 1.8
2
vf, INSTANTANEOUS VOLTAGE (VOLTS)
2.2
2.4
•
~
z
Q
10
I I
8
;:
~
~
6
~w
4
........ ...... ........
........
I
I'.. DC
.........
SQUAR~
WAVE
~~
iz~
120
1~
10011l1li11
U
~
1'-...'1'1...
~
110
1~
150
150
TC. CASE TEMPERATURE (OC)
11.1
~
r'\.
170
10 • • • • •
1~~~~~U-~~~~~~~~~~~
180
0.01
0.1
1
10
VR. REVERSE VOLTAGE (VOLTS)
Figure 4. Typical Capacitance, Per Leg
Figure 3. Current Derating, Case
f! 20
~ 18 -
~
I
I
TJ= 175°C
16
/
/
VDC
V V
/ V
/' /"
12
~
10
~ 8
w
~ 6
~ 4
~ 2
A
SQUARE WAVE /
~ 14
~
400
~
~
o
150 200 250 300 350
VR. REVERSE VOLTAGE (VOLTS)
1 0 0 0 _. . . .
~
III
.!E-
I
RATED VR APPUED
R9JC= 3°Ctw
,
100
=
Figure 2. Typical Reverse Current, Per Leg
Figure 1. Typical Forward Voltage
g
50
==
/
./
..& V
Eo ~
Y"
:'/"
P'"
2
3
4
5
6
7
8
9
IF(AV). AVERAGE FORWARD CURRENT (AMPS)
Figure 5. Forward Power Dissipation, Per Leg
3-332
10
100
MOTOROLA
- SEMICONDUCTOR
TECHNICAL DATA
Surface Mount
Ultrafast Power Rectifiers
MURS120T3
MURS160T3
Ideally suited for high voltage. high frequency rectification. or as free wheeling and
protection diodes in surface mount applications where compact size and weight are critical to the system.
•
•
•
•
•
Motorola Preferred Devices
Small Compact Surface Mountable Package with J-Bend Leads
Rectangular Package for Automated Handling
Packaged in 12 mm Pocket Tape and Reel
High Temperature Glass Passivated Junction
Low Forward Voltage Drop (0.71 to 1.05 Volts Max (il 1.0 A. TJ = 150°C)
ULTRAFAST RECTIFIERS
1.0 AMPERE
200-600 VOLTS
MECHANICAL CHARACTERISTICS
•
CASE: Transfer Molded Plastic Package
LEAD FINISH: Plated Leads. Readily Solderable in Surface Mount Applications
POLARITY IDENTIFICATION: Notch in Plastic Body Indicates Cathode Lead
DEVICE MARKING: MURS120T3 .......... U1D MURS160T3 .......... U1J
CASE 403A-03
MAXIMUM RATINGS
MURS
Rating
Symbol
120T3
160T3
Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
200
600
Volts
Average Rectified Forward Current
IF(AV)
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions hallwave,
single phase, 60 Hz)
'FSM
Operating Junction Temperature
1.0 @TL
2.0 @TL
= 155°C 1.0 @ TL = 150°C
= 145°C 2.0 @ TL = 125°C
40
35
-65 to +175
TJ
Amps
Amps
°C
THERMAL CHARACTERISTICS
Thermal Resistance - Junction to Lead
(TL = 25°C)
13
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)
(iF = 1.0 A, TJ = 25°C)
(iF = 1.0A, TJ = 150°C)
vF
Maximum Instantaneous Reverse Current (1)
(Rated de Voltage, TJ = 25°C)
(Rated de Voltage, TJ = 150°C)
IR
Maximum Reverse Recovery Time
(iF = 1.0 A, di/dt = 50 A/p,s)
(iF = 0.5 A, iR = 1.0 A, 'R to 0.25 A)
trr
Maximum Forward Recovery Time
(iF = 1.0 A, di/dt = 100 A/p,s, Rec. to 1.0 V)
tfr
(1) Pulse Test: Pulse Width
= 300 !J,s, Duty Cycle'" 2.0%
3-333
Volts
0.875
0.71
1.25
1.05
2.0
50
5.0
150
35
25
75
50
25
50
p,A
ns
ns
II
MURS120T3, MURS160T3
10
I
5
/
if
3
TC = 175'C
-j
2
~
::;;;
'il
L
~
~
::>
u
~
~
ex:
'"
0.08
0.04
0.02
ci:
- 0.008
0.004
0.002
100"C
~
h5'C
II
I
I
40
---
./
/'
TJ
25'C
k-""'"
60
80
100
120 140
VR. REVERSE VQLTAGE IVOLTS)
I
160
180
200
Figure 2. Typical Reverse Current*
"/
'The curves shown are typical for the highest voltage device in the voltage grouping. Typical
reverse current for lower voltage selections can
be estimated from these same curves if applied
VR is sufficiently below rated VR.
II
LII /
;;; o.1
100°C
..-
///
0.3
'" o. 2
@
.~
- -
0.8
0.4
0,2
20
@
TJ
r-
~
a:i
0.7
I
175°C
....
~
'" o. 5
13
TJ
«
/
rIJ
/ /
1
/
80
40
20
0.07
I I II
5
I
0
0.03
I
0.02
0.0 1
0.3
0
I
0.0 5
III
0.5
~
0
~
20
U
15
~
I JI
0.4
~
5
0.6
0.7
0.8
0.9
1.1
1.2
1.3
VF. INSTANTANEOUS VOLTAGE IVOLTSI
NO~E:
TYP:CAL - - , CAPACITANCE AT
OV = 45pF
-
5
\
10
"-
........
Figure 1. Typical Forward Voltage
o
o
10
-
20
30
40
50
60
70
VR. REVERSE VOLTAGE IVOLTS)
80
90
100
Figure 3. Typical Capacitance
VOLT~GE A~PLlED
mc
TJ
RATE6
R/lJC " 13 CW
TJ • 175'C
SQUARE WAVE
-(CAPACITANCE LOADI :PK
AV
r-.. ::-----.
r-...::: :--....
SQUARE'WAVE
80
100
~
/
~
120
140
TC. CASE TEMPERATURE I CI
20
1/
::,.......- ........-::: ~
~~
'""
160
/
./
/ ' . . . .V
./'
-::;:::--
5
~
10
V )...
L---:::
Voc'
i-""
:;...-
,..-
~
180
Figure 4. Current Derating. Case
0.5
1
1.5
2
IFIAV). AVERAGE FORWARD CURRENT (AMPS I
Figure 5. Power Dissipation
3-334
2.5
MURS120T3, MURS160T3
10
400
200
100
/
/
5
TC
3
= 175°C/
~
!Z
10
~
4
~
0.2
$. 0.1
0.04
0.02
0.008
0.004
:5
>- O.
7
~
::0
U
I
O. 5
cc
I I
~
cc O. 3
0.4
I 1//
1
40
~ ~
100°C
25°C
/
«
3- 20
/J
II 'I
2
:E
/
/
--
....I
TJ
II
.... 0.07
25
0.05
0.03
0.02
I I
II
J
20
~
I
w
u
L
z
0.3
0.5
;t
«
u
0.7
15
\
~
u
I I
0.01
NO~:
TypICAL I - CAPACITANCE AT
I-OV = 24pF
I I
0.9
1.1
1.3
1.5
1.7
1.9
2.1
2.3
\
10
\
U
i'...
vF. INSTANTANEOUS VOLTAGE (VOLTS)
...........
Figure 6. Typical Forward Voltage
o
o
-
12
16
20
24
28
VR. REVERSE VOLTAGE (VOLTS)
32
36
40
Figure 8. Typical Capacitance
(CAPACITANCE LOAD)
RATE6 VOLT~GE A~PLlED
RHJC = 13°CW
TJ = 175'>C
--40
I!'.K
IAV
TJ
~
175 C
L
lq/
/
1/
.......
---
/ /
~
SQUARE-- ~
WAVE
~
BO
120
TC. CASE TEMPERATURE I'C)
'"
160
V
/
SQUARE WAVE/.
/
/
/
...........
II
/
~ 20/
V
/
/ ' DC
/'
./
/" /""
/ V / / . ,,/'"
/ v-:: ~ V
/~ ~ P
~~
0.5
1
1.5
IFIAV). AVERAGE FORWARD CURRENT (AMPS)
200
Figure 10. Power Dissipation
Figure 9. Current Derating. Case
3-335
2.5
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL DATA
MURS320T3
MURS360T3
Surface Mount
Ultrafast Power Rectifiers
Motorola _DeYI...
· .. employing state-of-the·art epitaxial construction with oxide passivation and metal
overlay contact. Ideally suited for high voltage, high frequency rectification, or as free
wheeling and protection diodes, in surface mount applications where compact size and
weight are critical to the system.
•
•
•
•
•
ULTRAFAST RECTIAERS
3.0 AMPERES
200-600 VOLTS
Small Compact Surface Mountable Package with J-Bend Leads
Rectangular Package for Automated Handling
Packaged in 16 mm Pocket Tape and Reel
Highly Stable Oxide Passivated Junction
Low Forward Voltage Drop (0.71 to 1.05 Volts Max (/ 3.0 A, T J = 150°C)
MECHANICAL CHARACTERISTICS
II
CASE: Transfer Molded Plastic Package
LEAD FINISH: Plated Leads, Readily Solderable in Surface Mount Applications
POLARITY IDENTIFICATION: Notch in Plastic Body Indicates Cathode Lead
DEVICE MARKING: MURS320T3.......... U3D MURS360T3 .......... U3J
CASE 403·03
MAXIMUM RATINGS
MURS'
Rating
Symbol
320T3
360T3
Unit
Peak RepetHive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
200
600
Volts
Average Rectified Forward Current
IF(AV)
3.0 @ TL = 140°C
4.0 @ TL = 130°C
3.0 @ TL = 130°C
4.0 @TL = 115°C
Amps
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions hallwave,
single phase, 60 Hz)
IFSM
75
Amps
TJ
-65 to +175
·C
Operating Junction Temperature
THERMAL CHARACTERISTICS
Thermal Resistance -
Junction to Lead
11
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)
(iF = 3.0 A, TJ = 25°C)
(iF = 4.0 A, TJ = 25°C)
(iF = 3.0 A, TJ = 150°C)
vF
Maximum Instantaneous Reverse Current (1)
(Rated de Voltage, TJ = 25°C)
(Rated de Voltage, TJ = 150°C)
iR
Maximum Reverse Recovery Time
(IF = 1.0 A, di/dt = 50 A/p.S)
(IF = 0.5 A, iR = 1.0 A, IREC to 0.25 A)
trr
Maximum Forward Recovery Time
. (IF = 1.0 A, di/dt = 100 A/,..s, Recovery to 1.0 V)
tfr
(1) Pulse TeSI: Pulse Width
= 300 p.S, Duty Cycle'" 2.0%
3-336
Volts
0.875
0.89
0.71
1.25
1.28
1.05
5.0
15
10
250
35
25
75
50
25
50
p.A
ns
ns
MURS320T3, MURS360T3
80
I
II I /
/ i/
...:::;;
in
l II
~
0-
/
15
a:
a:
:::>
u
ca:
TJ = 175'C_
~
a:
~ 0.7
en
I
r
~
a
1--25'C
I
I
~
I
I
Z
~
Z
~
en
II
0.3
;;:;
.!f. 0.2
0.1
0.2
0.3
0.4
....
2
o.8
~
100'C
~
-
25'C
W
I I
I I
175'C
L
o.4
D. 2
~ 0.08
ll! 0.04
.!!: 0.02
0.00 8
0.004
0.002-
:::>
cw 0.5
TJ
~
100lc
I
40
20
8
4
40
M
00 ~ rn ~
VR, REVERSE VOLTAGE IVOLTS)
~
~
~
Figure 2. Typical Reverse Current*
I
-The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse
current for lower voltage selections can be estimated from these same curves If VR IS suffICiently below
ratedVR·
/ I I
0.5 0.6
0.7
0.8 0.9
1
vF, INSTANTANEOUS VOLTAGE IVOLTS)
1.1
1.2
Figure 1. Typical Forward Voltage
LO~D)
I&PAClfIVE
IpK = 20
IAV
5
10
V
V
/
V
V A.
V L
~
/ . / .;- I-' b::::::: 1::1'
5
.L L :.,...-- .....-::: P
~ v:: ~
1
SQUARE_
WAVE
r-
"I"""'""
1
2
3
4
IFIAV), AVERAGE FORWARD CURRENT lAMPS)
Figure 3. Power Dissipation
0
200
9
RATEb VOLT~GE AJPLlED
R/lJC = 11'CIW
TJ = 175'C
8
7
6
~
5
4
1
0
90
i'-.
-........: NC
SQUARE"
WAVE
3
2
100
110
TYPICAL CAPACITANCE AT 0 V = 135 pF
100
~ 00
w
U
z
;5 M
t--...
"""
\
\.
u
~ 40
«
u
U
t-...
~
"
120 130 140 150 160
TC, CASE TEMPERATURE I"C)
170
.........
30
20
180
190
Figure 4. Current Derating (Casel
10
o
w
W
-~
40
50
M
m
VR, REVERSE VOLTAGE IVOLTS)
Figure 5. Typical Capacitance
3-337
00
90
~
..
MURS320T3, MURS360T3
I
/
TJ = 1750C
Ie
.; IL -,
I
/
~
ffi
a:
a:
a
Ii! 0.7
~
0.2
.!f.
0.1
II
I""'
l000C=
-I""'
0.8
0.4
i:f1 0.2
": 0.08
/I
~
0.02
0.008
0.004
I
o
2S-c-
...--
- -
0.04
If I
1/ I I
II
~
~
/
I
I
~ 0.3
40
20
!z
~
~
J I J
~
z
1
l00"C
175°C=
TJ
80
25°C
.!iF
I
!2 0.5
tn
~
/ e..-
-
400
200
I
/
If /
200
300
400
500
VR. REVERSE VOLTAGE VOLTS
100
800
600
Figure 7. Typical Reverse Current*
4The curves shown are typical forthe highest vohage device in Ihp voltage grouping. Typical reverse
current for lower voltage selections can be eslimated from these same curves if VR is sufficiently
belowratedVR·
0.07
0.05
I I
I II
0.03
0.02
0.3
I II I
0.5
0.7
0.9
1.1
1.3
1.5 1.7
1.9
VF.INSTANTANEOUS VOLTAGE (VOLTSI
2.1
-"/
SQUARE
WAVE
2.3
(CAPACInVE LOADSI
-
-!fK _ 20
-
'';1'
_IAV
Figure 6. Typical Forward Voltage
...
-
/.
~~
/~
V/ DC
5~ V
1J.- L ......
~~
~
1
2
3
4
IF(AVI. AVERAGE FORWARD CURRENT (AMPSI
Figure 8. Power Dissipation
100
80
TYPICAL CAPACITANCE AT 0 V = 75 pF
-.......... 01--..
I'"""' ::::---..
SOUARE
~AVE
70
o\
\
~
~
""""""""'
1
o
~:...
80
90
100 110 120 130 140
TC. CASE TEMPERATURE (OCI
150
0
'\
............
I'..
160
170
Figure 9. Current Derating ICase)
W
40
80
VR. REVERSE VOLTAGE (VOLTSI
Figure 10. Typical Capacitance
3-338
80
100
MOTOROLA
-
SEMICONDUCTOR
TECHNICAL DATA
R710XPT R712XPT
R711XPT R714XPT
R712XPTI••
Motorola Preferred Device
SWITCHMODE POWER RECTIFIERS
ULTRAFAST RECOVERY
RECTIFIERS
· .. designed for special applications such as dc power supplies,
inverters, converters. ultrasonic systems, choppers, low RF interference, sonar power supplies and free wheeling diodes. A complete
line of fast recovery rectifiers having typical recovery time of 150
nanoseconds providing high efficiency at frequencies to 50 kHz.
•
30 AMPERES
60 to 400 VOLTS
Dual Diode Construction
• 150aC Operating Junction Temperature
CASE 3400-01
To-218AC
MAXIMUM RATINGS
Rating
Peak Repetitl~e Reverse Voltage
Working Peak Reverse Voltage
OC Blocking Voltage
Average Rectified Forward Current
(Rated VRI TC ; 100°C
R710XPT
R711XPT
R712XPT
R714XPT
Per Device
Per Diode
Peak Repetitive Forward Current. Per Diode
Symbol
Maximum
Unit
VRRM
VRWM
VR
50
100
200
400
Volts
10
30
15
Amps
IFRM
50
Amps
IFSM
150
Amps
TJ. Tstg
-65 to +150
°c
(1 Second at 60 Hz. TC; 100°C I
Nonrepetitive Peak Surge Current Per Diode
(Surge applied at rated load conditions
halfwave, single phase, 60 Hz)
Operating Junction and Storage Temperature
THERMAL CHARACTERISTICS PER DIODE
Symbol
Maximum
Unit
Thermal Resistance, Junction to Case
ROJC
1.5
°C/W
Thermal Resistance, Junction to Ambient
R(JJA
40
°C/W
Characteristic
ELECTRICAL CHARACTERISTICS PER DIODE
Characteristic
Instantaneous Forward Voltage (1)
Symbol
Maximum
Unit
vF
130
Volts
(IF = 15 Amp, TC; 25°CI
Instantaneous Reverse Current (1)
(Rated de Voltage, TC = 100°C)
(Rated de Voltage, TC = 25°CI
---
Reverse Recoverv Time
10
0015
- - -f------100
trr
~~~,,~-,e_ ~V.!!. = 30 Vd:!. __ ------ - - (1 J Pulse Test Pulse WIdth -. 300
/-IS,
Duty Cycle'
mA
'R
~-----
20%
3-339
--ns
---
•
R710XP~R711XP~R712XPT,R714XPT
FIGURE 1 - TYPICAL FORWARD VOLTAGE
FIGURE 2 - TYPICAL REVERSE CURRENT
~IOOO
~
i
'"
13
i
Ii:
~
..
FTJ'ISOO~~~
50
~
30
20
TJ = 150°C . /
~./'
5.0
~
3.0
2.0
r?
./':
10
7.0
5
~
104
,t"-±!2S 0 C
./
./
./
75°C
125°C
/
1
1 /25°C
1//
L
.!? 1.0
If
0.4
0.6
f= =50°C
F
IF
~
0.8
J
ploooe
1.0
100
o
1.4
1.2
~
:: 2S oe
400
300
500
VR. REVERSE VOLTAGE IVOLTSI
100
200
'F.INSTANTANEOUS FORWARD VOLTAGE (VOLTS)
700
600
FIGURE 4 - TYPICAL CAPACITANCE
FIGURE 3 - CURRENT DERATING - TOTAL UNIT
~
II
40
500
I kI
IP
AV
~
i
~
f---
z
'"
5:
Squa:. Wa.e
..
\
./
~ N" \
"" "~
CI
20
~
...
~
liD
$o
I'\.
I
I
80
I
AV
I
I
100
120
TC. CASE TEMPERATURE 1°C)
de
~
50
FIGURE 5 - POWER DISSIPATION - TOTAL UNIT
100
.
30
II II
I I I I
Prior to surg., thl rlCtrh.,.
..... 1"-
50
70 100
.....
~ 70
~ 50
ill 40 r--
'"
"";=
w
or-
;:j 3
>
10
40
3·340
1.0
I
III'
/\
/\
~leYCLE
0
o
I
"N.L
~ 20
'"
""~'"
I
I
is oplrlttd such th.t TJ ., IsoaC;
VRRM m.y be .pplied bltWlln
_h eyel. of ILIrge
~60
35
..........
20 30
5.0 7.0 10
VR. REVERSE VOLTAGE (VOLTSI
..........
0
;;;80
30
10
15
20
25
30
IFIAV). AVERAGE FORWARD CURRENT lAMPS)
........
FIGURE 6 - MAXIMUM SURGE CAPABILITY
CI
""S
""
~
2.0
10
40r---,----r----r---,----r---,r---,---,
~ 20
...
'r-..
........
160
140
'"
~
'"
~
.............
200
70
z
ill
is
r---..r-.,
100
c
;:::
:
300
'"
u
c-ICtp.e~i•• LD.d) :Pk =2{10. ~.( ...........:: ~....... \c\
60
i
I
I
"- 1\
30
i3
i
I
=" (Resisti•• Load)
2.0
3.0
~
A
IIIII
IIIII
5.0 7.0
10
20
NUMBER OF CYCLES AT BO Hz
30
1' ....
50
70 100
Tape and Reell •
Packaging Specifications
4-1
,
Tape and Reell
Packaging Specifications
In Brief ...
Embossed Tape and Reel is used to facilitate automatic pick and place equipment feed requirements. The tape is used as
the shipping container for various products and requires a minimum of handling. The antistatic/conductive tape provides a secure
cavity for the product when sealed with the "peel-back" cover tape.
•
•
•
•
Reel Size (13")
Used for Automatic Pick and Place Feed Systems
Minimizes Product Handling
EIA481A
• 5MB in 12 mm Tape
• OPAK, SMC in 16 mm Tape
• 02PAK in 24 mm Tape
Use the standard device title and add the required suffix as listed in the option table on the following page. Note that the
individual reels have a finite number of devices depending on the type of product contained in the tape. Also note the minimum
lot size is one full reel for each line item, and orders are required to be in increments of the single reel quantity.
5MB
SMC
OPAK
02PAK
12mm
16mm
16mm
24mm
-
DIRECTION
OF FEED
II
EMBOSSED TAPE AND REEL ORDERING INFORMATION
Package
Tape Width
(mm)
Reel Size
(Inch)
Devices Per Reel
and Minimum
Order Quantity
Device
Suffix
T4
DPAK
16
13
2,500
D2PAK
24
13
800
T4
MLL-34
8
7
2,000
Tl
5MB
12
13
2,500
T3
5MC
16
13
2,500
T3
SO-8, OPTO 50-8
12
7
500
Rl
50-14
16
7
500
Rl
SO-16
16
7
500
Rl
SOT-23
8
7
3,000
Tl
50T-143
8
7
3,000
Tl
50T-223
12
7
1,000
Tl
4-2
EMBOSSED TAPE AND REEL DATA FOR DISCRETES
CARRIER TAPE SPECIFICATIONS
10 PITCHES
CUMULATIVE
TOLERANCE ON
TAPE
±0.2mm
'~tr
~
01
FOA COMPONENTS
2.0mmx 1.2mm
FOA MACHINE AEFEAENCE
ONLY
INCWDING DRAFT AND AADII
CONCENTAIC AAOUND BO
ANDLAAGEA
USEA DIAECTION OF FEED
*TOPCOVEA
TAPE THICKNESS (Id
0.10mm
AMIN
(.004'1 MAX.
TAPE AND COMPONENTS
SHALL PASS AAOUND RADIUS 'A"
WITHOUT DAMAGE
10'
\""-!
\
MAXIMUM COMPONENT AOTATION
EMBOSSMENT
I
TYPICAL
COMPONENT CAVITY
CENTEA UNE
I
~
~
t~3t~
lmm
TYPICAL
COMPONENT
CENTEA UNE
(.039'1 MAX
250 mm
(9.843'1
CAMBER (TOP VIEW)
ALLOWABLE CAMBER TO BE 1 mmll00 mm NONACCUMULATIVE OVER 250 mm
DIMENSIONS
Tape
Size
Bl Ma.
D
Dl
E
F
K
P
Po
P2
RMin
TMa.
WMax
Smm
4.55mm
(.179'1
1.5+0.1 mm
1.0 Min
1.75±0.1 mm
(.OS9±.004'1
3.5±0.05mm
(.138 ±.DOn
2.4mmMax
4.0±O.1 mm
(.157± .004'1
4.0±0.1 mm
(.157±.OO4'1
2.0±0.1 mm
(.079±.OO2',
25mm
0.6mm
(.024'1
8.3mm
(.327'1
12mm
8.2mm
(.323'1
5.5±0.05mm
(.217±.OO2'1
6.4mm Max
(.252'1
4.0±0.1 mm
(.157±.OO4'1
S.O±O.1 mm
(.315±.004'1
-0.0
(.059+.004"
1.5mmMin
-0.0)
(.OSO')
~
(.094'1
~
30mm
(1.18'1
12±.30mm
(.470±.O12'1
ISmm
12.1 mm
(.478'1
7.5±0.10mm
(.295±.004'1
7.9mm Max
(.311"
4.0±0.1 mm
(.157±.004'1
S.O±O.l mm
(.315±.OO4'1
12.0±0.1 mm
(.472±.004'1
16.3mm
(.642'1
24mm
20.1 mm
(.791'1
11.5±O.1 mm
(.453±.004'1
11.9mm Max
(.468'1
lS.0±.Ol mm
(.63±.OO4'1
24.3mm
(.957'1
Metnc dimenSions govern - English are 10 parentheses for reference only.
NOTE 1: AO. BO' and KO are determined by component size. The clearance between the components and the cavity must be within .05 mm min. to .50 mm max .•
the component cannot rotate more than 10" within the determined caVity.
4-3
II
I
EMBOSSED TAPE AND REEL DATA FOR DISCRETES
Reel Dimensions
Metric Dimensions Govern - English are in parentheses for reference only
f
50 mm MIN
{1.969'1
i
a
Size
A Max
Bmm
330mm
(12.992")
B.4 mm + 1.5 mm, -0.0
(.33" + .059", -0.00)
14.4 mm
(.56")
12mm
330mm
(12.992")
12.4 mm + 2.0 mm, -0.0
(.49" + .079", -0.00)
18.4 mm
{.721
16mm
360mm
{14.1731
16.4 mm + 2.0 mm, -0.0
(.646" + .078", -0.00)
22.4mm
(.882")
24mm
360mm
{14.1731
24.4 mm + 2.0 mm, -0.0
(.961" + .070", -0.00)
30.4mm
(1.197")
G
4-4
TMax
LEAD TAPE PACKAGING STANDARDS FOR AXIAL-LEAD COMPONENTS
Product
Category
Case Type
Case 59·03
00·41 Glass &
00-41 Surmetic 30
Case 59-04
500WattTVS
Device
Title
Suffix
MPQ
Quantity
Per Reel
(Item 3.3.7)
Component
Spacing
A Dimension
Tape
Spacing
BDimenslon
Reel
Dimension
C
Reel
Dimension
D(Max)
Max Off
Alignment
E
RL
6000
0.2 +/- 0.015
2.062 +/- 0.059
3
14
0.047
RL
5000
0.2+/-0.02
2.062 +/- 0.059
3
14
0.047
RL
800
0.4 +/-0.02
1.875 +/- 0.059
3
14
0.047
Rectifier
Rectifier
Case 194-04
110AmpTVS
(Automotive)
Case 267-02
Rectifier
RL
1500
0.4 +/-0.02
2.062 +/- 0.059
3
14
0.047
Case 299-02
00-35 Glass
RL
5000
0.2 +/-0.02
2.062 +/- 0.059
3
14
0.047
Rectifier
Table 1. Packaging Details (all dimensions in inches)
Kraft Paper
Item 3.1.1
Max Off
Align;ent
Container
L
lIem 3.3.5
Both Sides-
Tape, White
lIem3.2
(Anode)
Figure 1. Reel Packing
, I:]
• ...
0.250
lIem3.3.2
i+-- 0.031
lIem3.3.5
02 I-I--
Figure 2. Component Spacing
Optional Design
1.188
~
'9-i
lIem3.4
~
C
Figure 3. Reel Dimensions
4-5
I
•
4-6
Surface Mount Information
5-1
I
Information For Using Surface Mount Packages
MINIMUM RECOMMENDED FOOTPRINTS FOR SURFACE MOUNTED APPLICATIONS
Surface mount board layout is a critical portion of the total
design. The footprint for the semiconductor packages must be
the correct size to insure proper solder connection interface
I-
between the board and the package. With the correct pad
geometry, the packages will self align when subjected to a
solder reflow process.
0.089
2.261
' - - 0.171
I
2.743
L
I" 0.085 "I
I..
2.159
QJ!Q
..
I
('n;:5)
2.794
5MB
SMC
0.74
0.165
I
1
II
0.118
r-4Y91~0.100t3.0
0.190 _
---..l
I
IO
0
L
J::-D D
4.343
..
-18.79
I~
1
t
2.54D~
_
1
r-I
L--.J
1
0.420 - t - 10.66
TO.243
D~2
I
r--
0.065
1.651
----t----~
r-I-'L--.J -.-L
I 0.14 I
0.330---1
8.38
~
3.56
0.07
1.78
r-
DPAK
POWER DISSIPATION FOR A SURFACE MOUNT DEVICE
the equation for an ambient temperature TA of 2SoC, one can
calculate the power dissipation of the device. For example:
.02PAK
The power dissipation for a surface mount device is a
function of the input pad size. These can vary from the
minimum pad size for soldering to a pad size given for
maximum power dissipation. Power dissipation for a surface
mount device is determined by TJ(max), the maximum rated
junction temperature of the die, RaJA, the thermal resistance
from the device junction to ambient, and the operating
temperature, TA- Using the values provided on the data sheet,
Po can be calculated as follows:
Po = 1S0°C - 2SoC = 2.S watts
SO°CIW
The SO°ClWforthe 02PAK package assumes the use olthe
recommended footprint on FR-4 glass epoxy printed circuit
board to achieve a power dissipation of 2.S watts. Another
alternative is to use a ceramic substrate or an aluminum core
board such as Thermal Clad™. By using an aluminum core
board material such as Thermal Clad, the power dissipation
can be doubled using the same footprint.
TJ(max)-TA
PO= --R~
The values for the equation are found in the maximum
ratings table on the data sheet. Substituting these values into
5-2
GENERAL SOLDERING PRECAUTIONS
The melting temperature of solder is higher than the rated
temperature of the device. When the entire device is heated
to a high temperature, failure to complete soldering within a
short time could result in device failure. Therefore, the
following items should always be observed in order to
minimize the thermal stress to which the devices are
subjected.
• Always preheat the device.
• The delta temperature between the preheat and soldering
should be 100°C or less:
• When preheating and soldering, the temperature of the
leads and the case must not exceed the maximum
temperature ratings as shown on the data sheet. When
using infrared heating with the reflow soldering method,
the difference shall be a maximum of 10°C.
• The soldering temperature and time shall not exceed
260°C for more than 5 seconds.
• When shifting from preheating to soldering, the maximum
temperature gradient shall be 5°C or less.
• After soldering has been completed, the device should be
allowed to cool naturally for at least three minutes.
Gradual cooling should be used as the use of forced
cooling will increase the temperature gradient and result
in latent failure due to mechanical stress.
• Mechanical stress or shock should not be applied during
cooling
• Soldering a device without preheating can cause excessive
thermal shock and stress which can result in damage to the
device.
• Due to shadowing and the inability to set the wave height to
incorporate other surface mount components, the D2PAK is
not recommended for wave soldering.
II
I
5-3
RECOMMENDED PROFILE FOR REFLOW SOLDERING
For any given circuit board, there will be a group of control
settings that will give the desired heat pattern. The operator
must set temperatures for several heating zones, and a figure
for belt speed. Taken together, these control settings make up
a heating "profile" for that particular circuit board. On machines controlled by a computer, the computer remembers
these profiles from one operating session to the next. Figure 1
shows a typical heating profile for use when soldering a surface mount device to a printed circuit board. This profile will
vary among soldering systems but it is a good starting pOint.
Factors that can affect the profile include the type of soldering
system in use, density and types of components on the board,
type of solder used, and the type of board or substrate material
being used. This profile shows temperature versus time. The
STEP 1
PREHEAT
ZONE 1
'RAMP"
STEP 2
STEP 3
VENT
HEATING
'SOAK" ZONES2&5
'RAMP"
line on the graph shows the actual temperature that might be
experienced on the surface of a test board at or near a central
solder joint. The two profiles are based on a high density and a
low density board. The Vitronics SMD31 0 convection/infrared
reflow soldering system was used to generate this profile. The
type of solder used was 62136/2 Tin Lead Silver with a melting
pOint between 177 -189°C. When this type of furnace is used
for solder reflow work, the circuit boards and solder joints tend
to heat first. The components on the board are then heated by
conduction. The circuit board, because it has a large surface
area, absorbs the thermal energy more efficiently, then distributes this energy to the components. Because of this effect, the
main body of a component may be up to 30 degrees cooler
than the adjacent solder joints.
STEP 4
HEATING
ZONES3&6
'SOAK"
STEP 5
HEATING
ZONES 4 & 7
'SPIKE"
STEP 6
VENT
I
2050 TO 219°C
PEAKAT
SOLDER JOINT
;:0-.....
H
•
SOLDER IS UQUID FOR
40 TO 80 SECONDS
(DEPENDING ON
MASS OF ASSEMBLy)
I
TIME (3 TO 7 MINUTES TOTAL) - - - - - - - - - . . TMAX
Figure 1. Typical Solder Heating Profile
5-4
STEP 7
COOUNG
TO-220 leadform Information
6-1
II
•
•
•
•
•
Leadform options require assignment of a special part number before ordering.
Contact your local Motorola representative for special part number and pricing.
10,000 piece minimum quantity orders are required.
Leadform orders are non-cancellable after processing.
Leadforms apply to both Motorola Case 221 A-04 and 221 A-06 except as noted.
LEADFORMAS
LEADFORM BC
LEADFORMAC
-
~--t--.-----r-J.J
~
o
;:!
IL
I I I
~:. --i-J::j:..2O REF.
.736
.J
±.010
I
L
I
.!.
L
J
I
.620
±.O15
e3T~I
.125±.010
.950 MIN.
n~
·t
-Ll
±·r
~
I"''''~
~
UNDERSIDE
AI
s
I
L
OF LEAD
U~~£l~=-~
Tl .095
BOnOM
OF
I I
±.01D
.020
±.OlD
I
r--
A ----.:
I
O.04ORAD
I
~ iP-1f5~
I ~
~±O~'j02
.265
.380
MOUNTING
SURFACE -
240
I
T
L
-~
I !
±·O.015 --(
!-.soo±.Ola..,
HEATSINK
II
~-Q+ -I
'L
MOUNTING
SURFACE
I 22IA-04 I 0.220 Min. I 0.325 Min.I
I 221A-D6 I 0.190 Min. I 0.290 Min. I
wM.
-I
~~
-
I -
T
---L.
j-
O.02ORAOJ
lYP.
MOUNTING
I L .0.586
lYP. """"I . - 0.616
~
SURFACE
600
~5
LEADFORMAF
LEADFORMAK
.140
±.010
I CASE I
A
I
I 22IA-04 I 0.325 Min. I
I 221A-D6 I 0.290 Min. I
UNDERSIDE
O F n .000±.0ID
n U~ ~ ~
ICASEIAlsl
.0.020
LEADFORM BL
.500
et
+
I 221A-06IO.880Min·1 0.84OM".1
hS~
I - .652
r ±.01S
'
LEADFORMBA
I 221A-041 0.950 Min.1 o.880Min·1
.250
'0.010
TT095
•.010
MOUNTING
SURFACE
LEADFORMAN
+
I CASE I
652
I
MOUNTING SURFACE
LEADFORMAD
.250
-I.:::'!!~ ±.015 1
OFLEAD"---~~
UNDERSIDE
~ ~ D.loolYP.
I---- 0.750=\1
===<:::::.... MAX.
0.100
TYP.
.930
1.030
1.00 MIN.
!I :fc·025R+
I--
- -....- _ . "
.015-+1
MAX
-II-- .015
~-=T ~- I~~rJ
j~
ijf, l
.;90
'.010...IlL
,.15OMIN
~
.100 REF
.06R
200 REF
6-2
REF
.032REF
t
IO~.660
1J
••02
--'r-1:
I
.557
(REF.)
MOUNTING
SURFACE
--.l
.D5DREF.~I~'~ ~-IC.-T~
I
.100 REF. '.005
.200 REF.
·W
.040 MIN .
LEAD
Primary TO-220 Leadform Dimensions (continued)
LEADFORMBS
LEADFORMBR
LEADFORMAU
~~L
-<;)-
I
0.820 0.080 REF.
±o.olS
L
±O.015
LEADFORMBU
LEADFORMBV
~±OoO:S
LEADFORMBD
rr==r-I
cJJ ~
---ll-- 0.102 ± O.OOS
1--0.680±0.OOS-
io rr 1
.735
±.OtO
100
0..
~ .~~~
I
.223
±.010
LEADFORMDW
~
0-J
o
--0-IT ---
-~-
0.620 REF.
0.780
±O.015
.800±.O50
~DS
LEADFORMAJ
LEADFORMBG
I
~E
A
221A·04
0360 ~ 0.010
221A-fl8
Lead Not Tmnmed
0.300 Min.
.765
I
.100REF
+01
R~lf·~REF·±r ~
I
6-3
II
6-4
Package Outline Dimensions
and Footprints
7-1
II
,
Package Outline Dimensions
and Footprints
L~~~
te
T
--Ii--
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M.1982.
2. CONTROLLING DIMENSION: INCH.
3. ALL RULES AND NOTES ASSOCIATED WITH
REFERENCED TO·204M OUTLINE SHALL APPLY.
4. 001·05 AND ·06 OBSOLETE. NEW STANDARD
[W~~~~G
D2PL
STYLE 8:
PIN 1. CAlliODE t1
2. CATHDDEII2
CASE: ANODE
K
Itlo.13(O.005)®ITI Q®I v®1
STYLE 9:
PIN 1. ANODE.l
2. ANODEII2
CASE: CATHODE
OOH)7.
DIM
A
B
C
D
E
G
H
K
L
N
Q
U
V
MILLIMETERS
MIN
MAX
39.37 REF
26.67
6.35
8.51
0.97
1.09
1.40
1,77
10.92BSC
5.46BSC
11.18 12.19
laS9BSC
21.08
3.84
4.19
30.15BSC
3.33
4.17
INCHES
MIN
MAX
1.550 REF
1.050
0.250 0.335
0.038 0.043
0.055 0.070
O.430BSC
0.215BSC
0.440 0.480
0.665BSC
0.830
0.151 0.165
1.187BSC
0.131 0.188
CASE1-D7
f
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M.I982.
2. CONTROWNG DIMENSION: INCH.
W
SEATING
PLANE
-
-
STYLE 4:
PIN 1. ANODE,l
2. ANODE.2
CASE: CATHODE
6.35
0.99
~~
3.84
II
CASE 11-03
7-2
-
-
0.250
0.039
-'1.431
0.151
PACKAGE OUTLINE DIMENSIONS AND FOOTPRINTS (continued)
NOTES:
1. CHAMFER OR UNOERCUT ON ONE OR BOTH
ENDS OF HEXAGONAL BASE IS OPTIONAL
2. ANGULAR ORIENTATION AND CONTOUR OF
TERMINAL ONE IS OPTIONAL
3. THREADS ARE PLATED.
4. DIMENSIONING AND TOLERANCING PER
T7~~
A
1
~
R
4B~
F
L;J D.G-
~
S~~
eg
=
t.HT==
r-
SEATING PLANE
-
ANSI Y14.5, 1982.
STYLE\:
TERM. 1. CATHODE
2. ANODE
TERMINAL 1
~
DIM
A
B
C
D
E
F
J
K
L
;1/4-211
t UNF-2A
P
Q
TERMINAL 2
R
S
MILUMETERS
MIN
MAX
20.07
16.94 17.45
11.43
9.53
2.92
5.08
203
10.72 11.51
19.05 25.40
3.96
5.59
6.32
3.56
4.45
16.94
2.26
INCHES
MIN
0.669
0.115
0.422
0.750
0.156
0.220
0.140
MAX
0.790
0.687
0.450
0.375
0.200
0.080
0.453
1.00
0.249
0.175
0.667
0.089
CASE 42A-01
NOTES:
1. ALL RULES AND NOTES ASSOCIATED WITH
REFERENCED 004 OUTUNE SHALL APPLY.
2. DIMENSIONING AND TOLERANCING PER ANSI
VI4.5M,19B2.
STYLE 2:
TERM. I. ANODE
2. CATHODE
I'
]
}
Il~ 1
1
I T-r,u.
~IJ.32UNF-2AA-
c
3. CONTROLUNG DIMENSION: INCH.
4. 056·01,·02 OBSOLETE, NEW STANDARD 056-03.
DIM
A
B
C
D
E
F
J
K
P
SEATING
PLANE
*
Q
R
MIUUMETERS
MIN
MAX
12.82
10.77 11.09
10,28
635
1.53
1.91
4.44
10.72 1150
15.24 20.32
4.14
4.80
1.53
2.41
6.74 10.76
INCHES
MAX
MIN
0.505
0.424 0.437
0.405
0.250
0.060
0.075 0.175
0.422 0.453
0.600 0.800
0.163 0.189
0.060 0.095
0.265 0.424
CASE 56-03
NOTES:
1. ALL RULES AND NOTES ASSOCIATED WITH
JEDEC 00·41 OUTUNE SHALL APPLY.
2. POLARITY DENOTED BY CATHODE BAND.
3. lEAD DIAMETER NOT CONTROLLED WITHIN oF"
DIMENSION.
DIM
A
B
D
F
K
CASE 59-03
7-3
MIUUMETERS
MIN
MAX
4.07
5.20
2.04
2.71
0.71
0.86
1.27
27.94
INCHES
MIN
MAX
0.160 0.205
0.080 0.107
0,028
0.034
0050
1.100
II
I
PACKAGE OUTLINE DIMENSIONS AND FOOTPRINTS (continued)
-l)I-B
[
NOTES:
1. All RULES ANO NOTEs ASSOCIATED WrYH JEDEC
D0-41 OUTUNE SHAll APPLY.
2. POLARITY DENOTED BY CATHODE BAND.
3. LEAD DIAMETER NOT CONTROLLED WITHIN'F"
DIMENSION.
1---0
K
~
9
DIM
A
B
D
K
K
MILLIMETERS
MIN
MAX
5.97
6.60
2.79
3.05
0.76
0.86
27.94
INCHES
MIN
MAX
0.235 0.260
0.110 0120
0.030 0034
1.1(10
--.1
CASE 59-04
}.[
r
STYLE 1:
PIN 1. CATHODE
2. ANODE
1
K
L
t
C
L
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M,1982.
2. COI"fTROWNG DIMENSION: INCH.
DIM
A
B
C
D
K
MILLIMETERS
MIN
MAX
11.43
889
7.62
1.17
142
24.90
INCHES
MIN
MAX
0.450
0.350
0300
0046 0.056
0.980
DIM
A
B
D
F
M
MILUMETERS
MIN
MAX
8.43
8.69
4.45
4.19
5.54
5.64
5.94
6.25
50 NOM
INCHES
MIN
MAX
0.332 0.342
0.165 0.175
0.218 0.222
0.234 0.246
5° NOM
2
-11-0
CASE 60-01
•
@j
r-:-,
"§
I
~ t
F
=t *
CASE 193-04
7-4
PACKAGE OUTLINE DIMENSIONS AND FOOTPRINTS (continued)
NOTE:
1. CATHODE SYMBOL ON PKG.
DIM
A
B
0
K
MILUMETERS
MIN
MAX
8.43
8.69
5.94
625
1.27
1.35
25.15 25.65
INCHES
MAX
0342
0246
MIN
0.332
0234
O.OSO
0.990
0.053
1.010
CASE 194-04
UB~
_C
F
QJ~l
t i
H
f
_123-1
%~ ~
V_
~ ~~~~G
-H
T
J
Y14.5M, 1982.
2. CONTROLUNG DIMENSION: INCH.
3. DIM Z DEFINES A ZONE WHERE ALL BODY AND
LEAD IRREGULARITIES ARE ALLOWED.
S
LW
U
NOTES:
I. DIMENSIONING AND TOLERANCING PER ANSI
STYLE 6:
PIN I.
2.
3.
4.
l,
ANODE
CATHODE
ANODE
CATHODE
DIM
A
B
C
D
F
G
H
J
K
L
N
Q
R
S
y.~
1.4-0
T
U
V
N_
MILUMETERS
MIN
MAX
14.48 15.75
9.66 10.28
4.07
4.62
0.66
0.64
3.61
3.73
2.42
2.66
3.93
2.80
0.48
0.64
12.70 14.27
1.15
1.52
4.83
5.33
2.54
3.04
2.04
2.79
1.15
1.39
a97 6.47
1.27
0.00
1.15
2.04
INCHES
MIN
MAX
0.570 0.620
0.380 0.405
0.160 0.190
0.025 0.035
0.142 0.147
0.095 0.105
0.110 0.155
0.018 0.025
0.500 0.562
0.045 0.050
0.190 0.210
0.100 0.120
0.080 0.110
0.045 0.055
0.235 0.255
0.000 0.050
0.045
0.080
CASE 221 A-06
STYLE 1:
PIN I.
2.
3.
4.
CATHODE
NfA
ANODE
CATHODE
TIt
TSECTA-A
J
NOTES:
I. DIMENSIONING AND TOLERANCING PER ANSI
Y14~, 1982.
2. CONmOLUNG DIMENSION: INCH.
3. 221B.ol OBSOLETE, NEW STANDARD 221B·02.
DIM
15.11
15.75
B
C
H
J
9.65
4.06
0.64
3.81
4.83
2.79
0.46
10.29
4.82
0.89
3.73
5.33
3.30
0.64
K
12.70
14.27
L
1.14
2.54
2.04
1.14
5.97
0:76
1.27
3.04
2.79
1.39
.48
1.27
o
F
G
Q
R
-U
CASE 221 B-02
7-5
MILUMETERS
IIlN
MAX
A
INCHES
MIN
MAX
0.620
0.380 0.405
0.160 0.190
0.025 0.035
0.142 0.147
0.190 0.210
0.110 0.130
0.018 0.025
0.500 0.562
0.045 0.050
0.100 0.120
0.080 0.110
0.045 0.055
0.235 0.2,.
0.030 0.050
0.595
•
I
PACKAGE OUTLINE DIMENSIONS AND FOOTPRINTS (continued)
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Vl'.5M. 1982.
2. CONTROLUNG DIMENSION: INCH.
3. 2210·01 OBSOLETE, NEW STANDARD 2210·02.
STYLE 3:
PIN 1. ANODE
2. CATHODE
3. ANODE
DIM
A
a
C
D
F
G
H
J
G
K
N
L
L
N
Q
D 3PL
-"
Itlo.25(D.D1D)®1 B®lvl
MILUMETERS
MIN
MAX
15.78 15S7
10.01 10.21
4.60
4.60
0.67
0.88
3.08
3.27
2.54aSC
3.13
3.27
0.46
0.64
12.70 14.27
1.14
1.52
5.08BSC
3.21
3.40
2.72
2.81
2.44
2.64
6.78
6.58
INCHES
MIN
MAX
0.621 0.629
0.394 0.402
0.181 0.189
0.028 0.034
0.121 0.129
O.I00BSC
0.123 0.129
0.018 0.025
0.500 0.562
0.045 0.060
0.200BSC
0.126 0.34
0.107 0.111
0.09
0.04
0.259 0.267
CASE 221 D-02
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.SM,1982.
STYLE 2:
PIN 1. ANODE
2. CATHODE
2. CONTROLLING DIMENSION: INCH.
3. 20.25(0.010) ® ITI A® I B®I
l±l SEATING PLANE
A
B
C
E
F
G
H
N
Q
R
U
V
W
MILUMETERS
MIN
MAX
87.63 92.20
17.78 20.57
15.63 16.26
3.05
3.30
11.30
'1,05
34.60 35.05
0.68
0.16
1/4-2OUNC-2B
7.23
6.66
80.01 H:)li
15.24 16.00
6.39
9.52
4.32
4.82
INCHES
MIN
MAX
3.450 3.635
0.700 0.610
0.615 0.640
0.120 0.130
0.435 0.445
1.370 1.360
0.007 0.030
1/4-20 NC·2B
0.270 0.265
3.150."0
0.600 0.630
0.330 0.375
0.170 0.190
CASE 357C-03
0.165
I
0.190
-
I
O.IIB
r-4T9f~0.100t3.0
2.54
I--- -
D
1
Ot~:3 f
- - 1 1 - - - - - - TO.243
D~r
DPAK
FOOTPRINT
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
VI4.5M,I982.
2. CONTROWNG DIMENSION: INCH.
3. 389A'()1 THRU ·03 OBSOLETE.
4. 369A.()4THRU .100BSOLETE, NEW STANDARD
36911-11.
STYLE 3:
PIN 1. ANODE
CATHODE
ANODE
CATHODE
DIM
A
B
C
D
E
F
G
H
J
K
L
R
S
U
V
Z
CASE 369A-11
7-9
MILU
MIN
5.97
6.35
2.19
0.69
0.84
0.84
4.58BSC
0.87
1.01
0.46
0.58
2.89
2.60
2.29BSC
4.45
5.46
0.51
1.27
0.51
0.77
1.27
3.51
~
~
~
~
~
~
0.18~
0.034 0.040
0.018 0.023
0.102 0.114
0.090BSC
0.175 0.215
0.050
0.020
0.020
0.030 0.050
0.138
•
I
•
PACKAGE OUTLINE DIMENSIONS AND FOOTPRINTS (continued)
I---
I
0.171
4.343
-----i
I
TO 0
3.810
L
I-
.QJ1Q
2.794
-I
NOTES:
1. D1MENS10N1NG AND TOLERANC1NG PER ANSl
Y14.5M.1982.
2. CONTROLL1NG D1MENS10N: lNCH.
3. 0 DIMENSION SHALL BE MEASURED WITHm
D1MENS1DN P.
4. 403'()1 AND '()2 OBSOLETE, NEW STANDARD
403.()3.
SMC
FOOTPRINT
D1M
A
B
C
0
H
J
K
P
S
M1WMETERS
M1N
MAX
7.11
6.60
5.59
6.10
1.90
2.41
2.92
3.07
0,051 0.152
0,30
0,15
0,76
1,27
0.51 REF
8,13
7.75
lNCHES
M1N
MAX
0.260 0.280
0.220 0.240
0.075 0.095
0.115 0.121
0.0020 0.0060
0.006 0.012
0.030 0,050
0.020 REF
0.305 0,320
CASE 403-03
I-
0.089
2.261
TaO
2.743
L
I- 0.085 -I
2.159
o
Cn:")
NOTES:
1. D1MENS10N1NG AND TOLERANC1NG PER ANSl
Y14.5M,1982.
2. CDNTROWNG D1MENS10N: lNCH,
3. 0 D1MENS10N SHALL BE MEASURED WJTH1N
D1MENS10N P.
4. 403A'()l AND'()2 OBSOLETE, NEW STANDARD
5MB
FOOTPRINT
403A.()3.
D1M
A
B
C
M1WMETERS
M1N
MAX
4.06
4.57
3,30
1.90
3.81
2.41
1.96
0,051
2.11
0.152
0.15
o~o
0.76
1.27
0,51 REF
5.21
5~9
--'
~
~
~
- - -
---
H
C
t
CASE 403A-03
7-10
lNCHES
M1N
MAX
0.160 0.180
0.130 0.150
0.075 0.095
o.on 0.083
0.0020 0.0060
0.006 0.012
0,030 0.050
0,020 REF
0.205 0220
0.74
18.79
I"
I
L
1
D -.L
___
D=r
0.065
1.651
0.420
10.66
-
0.07
Us
~0.330~
8.38
~
0.14
3.56
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
YI4.5M.1982.
2. COI>ITROLUNG DIMENSION: INCH.
~ (,::e5)
02PAK
DIM
FOOTPRINT
r-
B
-1ft
A
B
C
D
E
l~~E
-,c
G
H
J
K
S
"'~
rn-W r wS~~~ ~G~'L
V
MILUMETERS
MIN
MAX
8.64
9.65
9.65 10.29
4.06
4.83
0.S1
0.89
1.14
1.40
2.54BSC
2.03
2.79
0.64
0.46
2.29
~79
14.60 1588
1.14
1.40
INCHES
MIN
MAX
0.340 0.380
0.380 0.405
0.180 0.190
0.020 0.035
0.045 0.055
O.l00BSC
0.080 0.110
0.018 0.025
0.090 0.110
0575
0.625
0.045
0.055
D f-I
hj
K
t
03PL
1+10.13(0.005)
-ITI~-tJ
®
CASE
4188-01
•
7-11
II
7-12
a
Index and Cross Reference
II
II
II
II
Selector Guide
Data Sheets
Tape and Reell
Packaging Specifications
Surface Mount Information
II
II
TO-220 Leadform Information
Package Outline Dimensions
and Footprints
IPHX33042R-O Printed in U.S.A. 11/92 COURIER CO. 62718 20,000 RECT YAABAA
DL151/D
111111111111111111111111111111111111111111111
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No XMP Toolkit : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19 Create Date : 2017:07:10 18:05:20-08:00 Modify Date : 2017:07:10 18:23:36-07:00 Metadata Date : 2017:07:10 18:23:36-07:00 Producer : Adobe Acrobat 9.0 Paper Capture Plug-in Format : application/pdf Document ID : uuid:956fdb89-d922-c549-9ad8-36f567555cf2 Instance ID : uuid:0aefaa27-3ffb-7249-a74b-5a9ca6f8d87d Page Layout : SinglePage Page Mode : UseNone Page Count : 402EXIF Metadata provided by EXIF.tools