1992_Motorola_Rectifier_Device_Data 1992 Motorola Rectifier Device Data

User Manual: 1992_Motorola_Rectifier_Device_Data

Open the PDF directly: View PDF PDF.
Page Count: 402

Download1992_Motorola_Rectifier_Device_Data 1992 Motorola Rectifier Device Data
Open PDF In BrowserView PDF
Index and Cross Reference . .
Selector Guide

II

Data Sheets •
Tape and Reell •
Packaging Specifications
Surface Mount Information
TO-220 Leadform Information
Package Outline Dimensions
and Footprints

II

II
II

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

MOTOROLA

RECTIFIER DEVICE DATA
This book presents technical data for Motorola's broad line of rectifiers. Complete
specifications are provided in the form of data sheets and accompanying selection guides provide
a quick comparison of characteristics to simplify the task of choosing the best device for a circuit.
The information in this book has been carefully checked and is believed to be accurate;
however, no responsibility is assumed for inaccuracies.
Motorola reserves the right to make changes without further notice to any products herein.
Motorola makes no warranty, representation or guarantee regarding the suitability of its products
for any particular purpose, nor does Motorola assume any liability arising out of the application
or use of any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. 'Typical" parameters can and do vary in different
applications. All operating parameters, including "Typicals" must be validated for each customer
application by customer's technical experts. Motorola does not convey any license under its
patent rights nor the rights of others. Motorola products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the Motorola
product could create a situation where personal injury or death may occur. Should Buyer
purchase or use Motorola products for any such unintended or unauthorized application, Buyer
shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding
the design or manufacture of the part. Motorola and ® are registered trademarks of Motorola,
Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

1st Edition
©MOTOROLA INC., 1992
"All Rights Reserved"

Printed in U.S.A.

iii

MOTOROLA DEVICE CLASSIFICATIONS
In an effort to provide up-to-date information to the customer regarding the status of any given device, Motorola has
classified all devices into three categories: Preferred devices, Current products and Not Recommended for New
Design products.
A Preferred type is a device which is recommended as a first choice for future use. These devices are "preferred" by
virtue of their performance, price, functionality, or combination of attributes which offer the overall "besf' value to the
customer. This category contains both advanced and mature devices which will remain available for the foreseeable
future.
"Preferred devices" are identified in the Selector Guide Section and
the Data Sheet Section.
Device types identified as "currenf' may not be a first choice for new designs, but will continue to be available because
of the popularity and/or standardization or volume usage in current production designs. These products can be
acceptable for new designs but the preferred types are considered better alternatives for long term usage.
Any device that has not been identified as a "preferred device" is a "current" device.
Products designated as "Not Recommended for New Design" may become obsolete as dictated by poor market
acceptance, or a technology or package that is reaching the end of its life cycle. Devices in this category have an
uncertain future and do not represent a good selection for new device designs or long term usage.
"Not Recommended for New Design" devices are identified as such within the
appropriate table in the Selector Guide Section of this data book.

Designer's, POWERTAP, SCANSWITCH, MEGAHERTZ, Surmetic and SWITCHMODE are trademarks of Motorola Inc.
Thermal Clad is a trademark of the Bergquist Company.

iv

Index and Cross Reference . .
i

1-1

INDEX AND CROSS REFERENCE

HI

The following table represents an index and cross-reference guide for all rectifier devices which are either manufactured directly
by Motorola orforwhich Motorola manufactures a suitable equivalent. Where the Motorola part number differs from the industry part
number, the Motorola device is a "form, fit and function" replacement for the industry type number - however, subtle differences in
characteristics and/or specifications may exist. Where multiple replacernent parts appear for a given industry part number, the page
number represents the first replacement device listed.

Industry
Pari Number

Motorola
Nearest
Replacement

Motorola
Similar
Replacement

Page
Number

Industry
Pari Number

Motorola
Nearest
Replacement

Motorola
Similar
Replacement

Page
Number

lN1183
lN1183A
lN1184
lN1184A
lN1185
lN1185A
lN1186

lN1183A
lN1183A
lN1184A
lN1184A
lN1186A
lN1185A
lN1186A

3-2
3-2
3-2
3-2
3-2
3-2
3-2

lN3880
lN3881
lN3882
lN3883
lN3889
lN3890
lN3891

lN3880
lN3881
lN3882
1N3883
lN3889
lN3890
lN3891

3-7
3-7
3-7
3-7
3-12
3-12
3-12

lN1186A
lN1187
lN1187A
lN1188
lN1188A
lN1189
lN1169A

lN1186A
lN1188A
lN1187A
lN1188A
lN1188A
lN1190A
lN1190A

3-2
3-2
3-2
3-2
3-2
3-2
3-2

lN3892
lN3893
lN3899
lN3900
lN3901
lN3902
lN3903

1N3892
1N3893
lN3899
lN3900
lN3901
lN3902
lN3903

3-12
3-12
3-17
3-17
3-17
3-17
3-17

lN1190
lN1190A
lN1199A
lN1200A
lN1201A
lN1202A
lN1203A

lN1190A
lN1190A
lN1199A
lN1200A
lN1202A
lN1202A
lN1204A

3-2
3-2
3-4
3-4
3-4
3-4
3-4

lN3909
lN3910
lN3911
lN3912
lN3913
lN3957
lN3957GP

lN3909
lN3910
lN3911
lN3912
lN3913

3-22
3-22
3-22
3-22
3-22
3-27
3-27

lN1204A
lN1205A
lN1206A
lN2069,A
lN2070,A
lN2071,A
lN3208

lN1204A
lN1206A
lN1206A
lN4003
lN4004
lN4005
lN3208

3-4
3-4
3-4
3-27
3-27
3-27
3-6

lN4001
lN4001GP
lN4002
lN4002GP
lN4003
lN4003GP
lN4004

lN4001

lN3209
lN3210
lN3211
lN3212
lN3611
lN3611GP
lN3612

lN3209
lN3210
lN3211
lN3212

3-6
3-6
3-6
3-6
3-27
3-27
3-27

lN4004GP
lN4005
lN4005GP
lN4006
lN4006GP
lN4007
lN4007GP

lN4003
lN4003
lN4004

lN3612GP
lN3613
lN3613GP
lN3614
lN3614GP
lN3670A
lN3671A

MA1128
MA1128

3-27
3-27
3-27
3-27
3-27
3-218
3-218

lN3672A
lN3673A
lN3879

MA1130
MA1130
lN3879

3-218
3-218
3-7

lN4004
lN4005
lN4005
lN4006
lN4006

1-2

lN4007
lN4007
lN4001
lN4002
lN4002
lN4003
lN4003
lN4004
lN4004

3-27
3-27
3-27
3-27
3-27
3-27
3-27

lN4007

3-27
3-27
3-27
3-27
3-27
3-27
3-27

lN4245
lN4245GP
lN4246
lN4246GP
lN4247
lN4247GP
lN4248

lN4003
lN4003
lN4004
lN4004
lN4005
lN4005
lN4006

3-27
3-27
3-27
3-27
3-27
3-27
3-27

lN4248GP
lN4249
lN4249GP

lN4006
lN4007
lN4007

3-27
3-27
3-27

1N4005
lN4005
lN4006
lN4006
lN4007

INDEX AND CROSS REFERENCE (Continued)
Industry
Part Number

lN4933
lN4933GP
lN4934
lN4934GP
lN4935
lN4935GP
lN4936

Motorola
Nearest
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Motorola
Nearest
Replacement

Motorola
Similar
Replacement

Page
Number

3-32
3-32
3-32
3-32
3-32
3-32
3-32

lN5812
lN5813
lN5814
lN5815
lN5816
lN5817
lN5818

lN5817
lN5818

3-285
3-285
3-285
3-285
3-285
3-40
3-40

lN4937
lN4935
lN4935
lN4936
lN4936

3-32
3-32
3-32
3-32
3-32
3-32
3-32

lN5819
lN5820
lN5821
1N5822
lN6095
lN6096
lN6097

lN5819
lN5820
lN5821
lN5822
lN6095
lN6096
lN6097

3-40
3-45
3-45
3-45
3-67
3-67
3-71

lN4944GP
lN4945
lN4946
lN4946GP
lN5185
lN5185GP
lN5186

1N4936
1N4937
lN4937
lN4937
MR850
MR850
MR851

3-32
3-32
3-32
3-32
3-209
3-209
3-209

lN6098
lN6304
lN6305
lN6306
lN6391
lN6392
10CTF10

lN6098
MUR7005
MUR7010
MUR7015
MBR3545
MBR6545
MURB10

3-71
3-305
3-305
3-305
3-121
3-143
3-263

lN5186GP
lN5187
lN5187GP
lN5188
lN5188GP
lN5189
lN5189GP

MR851
MR852
MR852
MR854
MR854
MR856
MR856

3-209
3-209
3-209
3-209
3-209
3-209
3-209

10CTF20
10CTF30
10CTF40
1DOll
10012
10T0030
10T0035

MUR820
MURil30
MURB40
lN4934
lN4935
MBR1035
MBR1035

3-263
3-263
3-263
3-32
3-32
3-90
3-90

MR856
MR856

3-209
3-209
3-38
3-38
3-38
3-38
3-38

lOT0040
10T0045
110003
110004
110005
110006
110009

MBR1045
MBR1045
lN5818
lN5819
MBR150
MBR160
MBR190

3-90
3-90
3-40
3-40
3-75
3-75
3-78

110010
12CT0030
12CT0035
12CT0040
12CT0045
12Fl0
12Fl00

MBR1100

MR850
MR851
MR852
MR854
MR856

3-38
3-38
3-209
3-209
3-209
3-209
3-209

MBR1535CT
MBR1535CT
MBR1545CT
MBR1545CT
MRl121
MR1130

3-78
3-96
3-96
3-96
3-96
3-218
3-218

lN5420
lN5614
lN5615
lN5615GP
lN5616
lN5617
lN5617GP

MR856
lN4003
lN4935
lN4935
lN4004
lN4936
lN4936

3-209
3-27
3-32
3-32
3-27
3-32
3-32

12F20
12F40
12F60
12FBO
12F110SXX
12Fl20SXX
12FL40SXX

MRl122
MRl124
MR1126
MRl128
lN3890
lN3891
lN3893

3-218
3-218
3-218
3-218
3-12
3-12
3-12

lN5618
lN5619
lN5619GP
1N5620
lN5802
lN5803
lN5804

lN4005
lN4937
lN4937
lN4006
MUR405
MUR410
MUR410

3-27
3-32
3-32
3-27
3-253
3-253
3-253

12FL60SXX
15CT0035
15CT0045
16Fl0
16Fl00
16F20
16F40

MR1376

lN5805
lN5806
lN5807
lN580B
lN5809
lN5810
lN5811

MUR415
MIJR415
MUR405
MUR410
MUR410
MUR415
MUR415

3-253
3-253
3-253
3-253
3-253
3-253
3-253

16F60
16F80
6A05
6Al
6Al0
6A2
6A4

MR2006
MR2008

lN4936GP
lN4937
lN4937GP
lN4942
lN4942GP
lN4943
lN4944

lN5190
lN5190GP
1N5400
lN5401
lN5402
1N5403
1N5404
111:5405
lN5406
lN5415
lN5416
lN5417
lN5418
lN5419

lN4933

Page
Number

lN4933
1N4934
lN4934
lN4935
lN4935
lN4936
lN4936
lN4937

lN5400
lN5401
lN5402
lN5404
lN5404
lN5406
lN5406

1-3

MUR2505
MUR2510
MUR2510
MUR2515
MUR2515

MBR1535CT
MBR1545CT
MR2001
MR2010
MR2002
MR2004

MR750
MR751
MR760
MR752
MR754

3-12
3-96
3-96
3-221
3-221
3-221
3-221
3-221
3-221
3-196
3-196
3-196
3-196
3-196

I

II

INDEX AND CROSS REFERENCE (Continued)
Industry
Part Number
6A6
6A8
6Fl0
6Fl00
6F20
6F40
6F60

•

6F80
6FL10SXX
6Fl20SXX
6FL40SXX
6FL60SXX
20CT0030
20CT0035
20CT0040
20CT0045
20F0020
20F0030
20F0035
20F0040
20F0045
210003
210004
21 F0030
21 F0035
21 F0040
21F0045
28CP0030
28CP0040
30CT0030
30CT0035
30CT0040
30CT0045
300L1
30012
310003
310004
310005
310006
310009
310010
40COOO20
40COO030
40COO035
40COO040
40COO045
40Dl
4002
4004
4006
4008
40HF10
40HF20
40HF30
40HF40
40HF5
40HF50
40HF60
40HFL10SXX
40HFl20SXX
50H0020
50H0030
50H0035

Motorola
Nearest
Replacement

Motorola
Similar
Replacement
MR756
MR758

Page
Number

Industry
Part Number

Motorola
Nearest
Replacement

Motorola
Similar
Replacement

Page
Number

3-196
3-196
3-218
3-218
3-218
3-218
3-218

50H0040
50H0045
50S0030
50S0040
51 H0045
52H0030
52H0035

3-218
3-7
3-7
3-7
3-7
3-103
3-103

52H0040
52H0045
55HOO15
55H0020
55HOO25
55H0030
60COO020

MBR6045
MBR6045

MBR3035CT

3-135
3-135
3-147
3-147
3-147
3-147
3-113

MBR2045CT
MBR2045CT

3-103
3-103
3-121
3-121
3-121
3-121
3-121

60COO030
60COO035
60COOO40
60COO045
75H0030
75H0035
75H0040

MBR3035CT
MBR3035CT
MBR3045CT
MBR3045CT
MBR8035
MBR8035
MBR8045

3-113
3-113
3-113
3-113
3-149
3-149
3-149

lN5821
lN5822

3-45
3-45
3-121
3-121
3-121
3-121
3-117

75H0045
85H0030
85H0035
85H0040
85H0045
200CN0020
200CN0030

MBR8045
MBR8035
MBR8035
MBR8045
MBR8045
MBR30035CT
MBR30035CT

3-149
3-149
3-149
3-149
3-149
3-162
3-162

MBR3045PT

3-117
3-109
3-109
3-109
3-109
3-209
3-209

200CN0035
200CN0040
200CN0045
201CN0020
201CN0030
201CN0035
201CN0040

MBR30035CT
MBR30045CT
MBR30045CT
MBR20035CT
MBR20035CT
MBR20035CT
MBR20045CT

3-162
3-162
3-162
3-157
3-157
3-157
3-157

lN5821
lN5822
MBR350
MBR360
MBR390
MBR3100

3-45
3-45
3-81
3-81
3-85
3-85
3-113

201CN0045
A114A
A114B
Al14C
Al140
Al14E
A114F

MBR20045CT

3-113
3-113
3-113
3-113
3-196
3-196
3-196

MRl121
MR1130
MRl122
MRl124
MRl126
MR1128
lN3880
lN3881
1N3883
MR1366
MBR2035CT
MBR2035CT

MBR3535
MBR3535
MBR3535
MBR3545
MBR3545

MBR3535
MBR3535
MBR3545
MBR3545
MBR3035PT

MBR2535CT
MBR2535CT
MBR2545CT
MBR2545CT
MR851
MR852

MBR3035CT
MBR3035CT
MBR3035CT
MBR3045CT
MBR3045CT
MR751
MR752
MR754
MR756
MR758
lN1184A
lNl186A
lN1187A
lNl188A
lNl183A
lN1190A
lNl190A
MUR5010
MUR5020
MBR6035
MBR6035
MBR6035

MBR6045
MBR6045
lN5824
lN5825
MBR6035
MBR6035
MBR6035

MBR7535
MBR7535
MBR7535
MBR7535

3-135
3-135
3-49
3-49
3-135
3-135
3-135

lN4934
lN4935
lN4936
lN4936
lN4937
lN4933

3-157
3-32
3-32
3-32
3-32
3-32
3-32

A114M
A115A
Al15B
Al15C
Al150
Al15E
Al15F

lN4937
MR851
MR852
MR854
MR854
MR856
MR850

3-32
3-209
3-209
3-209
3-209
3-209
3-209

3-196
3-196
3-2
3-2
3-2
3-2
3-2

Al15M
A14A
A14C
A140
A14E
A14F
A14M

MR856
lN4002
lN4004
lN4004
lN4005
lN4001
lN4005

3-209
3-27
3-27
3-27
3-27
3-27
3-27

3-2
3-2
3-299
3-299
3-135
3-135
3-135

A14N
A14P
AR25A
AR25B
AR250
AR25G
AR25J

lN4006
lN4007
MR2500
MR2501
MR2502
MR2504
MR2506

3-27
3-27
3-235
3-235
3-235
3-235
3-235

1-4

INDEX AND CROSS REFERENCE (Continued)
Industry
Pari Number

Motorola
Nearest
Replacement

Motorola
Similar
Replacement

Page
Number

Industry
Pari Number

Motorola
Nearest
Replacement

AR25K
AR25M
ARS25A
ARS25B
ARS25D
ARS25G
ARS25J

MR250B
MR251 0
MR2500
MR2501
MR2502
MR2504
MR2506

3-235
3-235
3-235
3-235
3-235
3-235
3-235

BYV27-50
BYV28-100
BYV28-150
BYV2B-50
BYV29-300
BYV29-400
BYV29-500

ARS25K
ARS25M
BY229-200
BY229-400
BY229-600
BYP21-100
BYP21-150

MR250B
MR2510

MURB10
MURB15

3-235
3-235
3-263
3-263
3-263
3-263
3-263

BYV33-35
BYV33-40
BYV33-45
BYV39-35
BYV39-40
BYV39-45
BYV43-35

BYP21-200
BYP21-50
BYP22-100
BYP22-150
BYP22-200
BYP22-50
BYQ28-100

MUR820
MUR805
MUR3010PT
MUR3015PT
MUR3020PT
MUR3005PT
MUR1610CT

3-263
3-263
3-2B7
3-2B7
3-287
3-2B7
3-277

BYV43-40
BYV43-45
BYW29-100
BYW29-150
BYW29-200
BYW29-50
BYW29-50

BYQ28-150
BYQ28-200
BYQ2B-50
BYR29-600
BYS76
BYS80
BYS92-40

MUR1615CT
MUR1620CT
MUR1605CT

BYW31-100
BYW31-150
BYW31-200
BYW31-50
BYW77-100
BYW77-150
BYW77-50

MUR2510
MUR2515
MUR2520
MUR2505

MBR20045CT

3-277
3-277
3-277
3-263
3-147
3-113
3-157

BYS92-45
BYS92-50
BYS93-40
BYS93-45
BYS93-50
BYS95-40
BYS95-45

MBR20045CT
MBR20050CT
MBR30045CT
MBR30045CT
MBR30050CT
MBR12045CT
MBR12045CT

3-157
3-157
3-162
3-162
3-162
3-153
3-153

BYW7B-l00
BYW7B-150
BYW7B-50
BYWBO-l00
BYW80-150
BYWBO-200
BYWBO-50

MUR7010
MUR7015
MUR7005
MUR810
MURB15
MURB20
MURB05

BYS95-50
BYS97-40
BYS97-45
BYS97-50
BYS98-40
BYS98-45
BYS9B-50

MBR12050CT
MBR20045CT
MBR20045CT
MBR20050CT
MBR12045CT
MBR12045CT
MBR1535CT

3-153
3-157
3-157
3-157
3-153
3-153
3-96

BYW92-100
BYW92-150
BYW92-200
BYW92-50
BYW93-100
BYW93-150
BYW93-200

BYT28-300
BYT28-400
BYT2B-500
BYT79-300
BYT79-400
BYT79-SOO
BYV1B-35

MUR1630CT
MURl640CT
MURl650CT
MUR1530
MUR1540
MUR1550
MBR1535CT

3-277
3-277
3-277
3-272
3-272
3-272
3-96

BYW93-50
BYX42-300
BYX42-600
CPT12035
CPT12045
CPT12050
CPT20035

MBR1545CT

3-96
3-90
3-90
3-54
3-54
3-121
3-121
3-149
3-149
3-244
3-244
3-244
3-244
3-244

BYV1B-45
BYV19-35
BYV19-45
BYV20-30
BYV20-45
BYV22-35
BYV22-45
BYV23-35
BYV23-45
BYV26A
BYV26B
BYV26C
BYV27-100
BYV27-150

MUR820
MUR840
MURB60

MURB60
MBR7545
MBR3045CT

MBR1035
MBR1045
lN5B27
lN5B28
MBR3535
MBR3545
MBR8035
MBR8045
MUR120
MUR140
MUR160
MURll0
MURl15

1-5

Motorola
SImilar
Replacement

Page
Number

MUR105
MUR410
MUR415
MBR2035CT
MUR1530
MUR1540
MUR1550

3-244
3-253
3-253
3-103
3-272
3-272
3-272

MBR2535CT

3-103
3-103
3-103
3-9B
3-9B
3-98
3-103

MBR2035CT
MBR2045CT
MBR2045CT
MBR1635
MBR1645
MBR1645
MBR2545CT
MBR2545CT
MURB10
MURB15
MURB20
MUR805
MURB05

MUR2510
MUR2515
MUR2505

3-103
3-109
3-263
3-263
3-263
3-263
3-263
3-2B5
3-2B5
3-285
3-285
3-2B5
3-2B5
3-2B5
3-305
3-305
3-305
3-263
3-263
3-263
3-263

MUR5010
MUR5015
MUR5020
MUR5005
MUR7010
MUR7015
MUR7020

3-299
3-299
3-299
3-299
3-305
3-305
3-305

MUR7005
MR1123
MRl126
MBR12035CT
MBR12045CT
MBR12050CT
MBR20035CT

3-305
3-21B
3-21B
3-153
3-153
3-153
3-157

CPT20045
CPT20050
CPT20120
CPT20125
CPT30035
CPT30045
CPT30050

MBR20045CT
MBR20050CT
MBR20020CTl
MBR20025CTl
MBR30035CT
MBR30045CT
MBR30050CT

3-157
3-157
3-155
3-155
3-162
3-162
3-162

EGP10A
EGP10B
EGP10C
EGP10D
EGP20A
EGP20B
EGP20C

MUR105
MURll0
MUR115
MUR120

3-244
3-244
3-244
3-244
3-253
3-253
3-253

MUR405
MUR410
MUR415

..

INDEX AND CROSS REFERENCE (Continued)
Industry
Part Number
EGP20D
EGP30A
EGP30B
EGP30C
EGP30D
EGP50A
EGP50B

Motorota
Nearest
Replacement

Motorola
Similar
Replacement
MUR420

MUR405
MUR410
MUR415
MUR420
MUR405
MUR410

Page
Number

Industry
Part Number

Motorola
Nearest
Replacement

Motorola
Similar
Replacement

Page
Number

3-253
3-253
3-253
3-253
3-253
3-253
3-253

FE8A
FE8B
FE8C
FE8D
FE8F
FE8G
FEP16AT

MUR805
MUR810
MUR815
MUR820
MUR830
MUR840
MUR1605CT

3-263
3-263
3-263
3-263
3-263
3-263
3-277

FEP16BT
FEP16CT
FEP16DT
FEP16FT
FEP16GT
FEP16HT
FEP16JT

MUR1610CT
MUR1615CT
MUR16Z0CT
MUR1640CT
MUR1640CT
MUR1660CT
MUR1660CT

3-277
3-277
3-277
3-277
3-277
3-277
3-277

EGP50C
EGP50D
ERASl
ERB35
ERB44
ERB91
ERC24

MUR415
MUR420
MUR120
lN4935-7
MUR120
lN4936-7

3-253
3-253
3-40
3-244
3-32
3-244
3-32

ERC38
ERC62
ERC80
ERC90
ERC91
ERD24,74
ERD75

MUR140-160
MBR1045
MBR745
MUR820
MUR420
lN3889-93
1N3899-3901

3-244
3-90
3-88
3-263
3-253
3-12
3-17

FES16AT
FES16BT
FES16CT
FES16DT
FES16FT
FES16GT
FES16HT

MUR1505
MUR1510
MUR1515
MUR1520
MUR1540
MUR1540
MUR1560

3-272
3-272
3-272
3-272
3-272
3-272
3-272

MBR6045

3-113
3-54
3-17
3-22
3-63
3-22
3-135

FESl6JT
FES8AT
FES8BT
FES8CT
FES8DT
FES8FT
FES8GT

MUR1560
MUR805
MUR810
MUR815
MUR820
MUR840
MUR840

3-272
3-263
3-263
3-263
3-263
3-263
3-263

FES8HT
FES6JT
FR061
FR061L
FR062
FR062L
FR063

MUR860
MUR860
lN4933

MUR3020PT

3-263
3-88
3-263
3-263
3-90
3-272
3-287

3-263
3-263
3-32
3-32
3-32
3-32
3-32

3-287
3-113
3-277
3-277
3-277
3-277
3-277

FR063L
FR064
FR065
FR065L
FR065L
FR10l
FR102

lN4935

MUR1605CT
MUR1610CT
MUR1615CT
MUR1620CT
MUR1630CT

FE16G
FE1A
FE1B
FE1C
FElD
FE2A
FE2B

MURl640CT
MUR105
MURll0
MURl15
MUR120
MUR405
MUR410

3-277
3-244
3-244
3-244
3-244
3-253
3-253

FR103
FR104
FR105
FR251
FR252
FR253
FR254

lN4935
lN4936
lN4937

FE2C
FE2D
FE3A
FE3B
FE3C
FE3D
FE5A

MUR415
MUR420
MUR405
MUR410
MUR415
MUR420
MUR405

3-253
3-253
3-253
3-253
3-253
3-253
3-253

FR255
FR301
FR302
FR303
FR304
FR305
FR601

FE5B
FE5C
FE5D
FE6A
FE6B
FE6C
FE6D

MUR410
MUR415
MUR420
MUR405
MUR410
MUR415
MUR420

3-253
3-253
3-253
3-253
3-253
3-253
3-253

FR602
FR603
FR604
FR605
FRM3205CC
FRM3210CC
FRM3215CC

ERD80
ERD81
ERE24,74
ERE75
ERE81
ERG24,74
ERG81,A
ESAB33
ESAB82
ESAB92
ESAC33
ESAC82
ESAC92
ESAC93
ESAD33
ESAD81
FE16A
FE16B
FE16C
FE16D
FE16F

lN5819

MBR3045CT
lN5828
1N3899-3903
lN3909-11
lN5834
lN3909-13

MUR820
MBR745
MUR820
MUR820
MBR1045
MUR1520

MUR3040PT
MBR3045CT

1-6

lN4933
lN4934
lN4934
lN4935

lN4936
lN4937
lN4936
lN4937
lN4933
lN4934

MR850
MR851
MR852
MR854
MR856
MR850
MR851
MR852
MR854
MR856
MR820
MR821
MR822
MR824
MR826
MUR3005PT
MUR3010PT
MUR3015PT

3-32
3-32
3-32
3-32
3-32
3-32
3-32
3-32
3-32
3-32
3-209
3-209
3-209
3-209
3-209
3-209
3-209
3-209
3-209
3-209
3-200
3-200
3-200
3-200
3-200
3-287 "
3-287
3-287

INDEX AND CROSS REFERENCE (Continued)
Industry
Part Number

Motorola
Nearest
Replacement

Motorola
Similar
Replacement

Page
Number

Industry
Part Number

Motorola
Nearest
Replacement

Motorola
Similar
Replacement

Page
Number

FRM3220CC
FRP1605CC
FRP1610CC
FRP1615CC
FRP1620CC
FRP805
FRP810

MUR3020PT
MUR1605CT
MUR1610CT
MUR1615CT
MUR1620CT
MUR805
MUR810

3-287
3-277
3-277
3-277
3-277
3-263
3-263

GI1303
GI1304
GI1401
GI1402
GI1403
GI1404
GI2401

MUR805
MUR810
MUR815
MUR820
MUR1605CT

3-253
3-253
3-263
3-263
3-263
3-263
3-277

FRP815
FRP820
FST1240
FST1245
FST1540
FST1545
FST20035

MUR815
MUR820
MBR1545CT
MBR1545CT
MBR1545CT
MBR1545CT

3-263
3-263
3-96
3-96
3-96
3-96
3-157

GI2402
GI2403
GI2404
GI2500
GI2501
GI2502
GI2504

MUR1610CT
MUR1615CT
MUR1620CT
MR2500
MR2501
MR2502
MR2504

3-277
3-277
3-277
3-235
3-235
3-235
3-235

3-157
3-157
3-157
3-103
3-103
3-107
3-162

GI2506
GI2508
GI2510
GI5823
GI5824
GI5825
GP10A

MR2506
MR2508
MR2510

3-235
3-235
3-235
3-49
3-49
3-49
3-27

MBR12035CT
MBR12045CT

3-162
3-162
3-162
3-109
3-109
3-153
3-153

GP10B
GP100
GP10G
GP10J
GP10K
GP10M
GP80A

MUR805

3-27
3-27
3-27
3-27
3-27
3-27
3-263

FST6045
FST6050
GER4001
GER4002
GER4003
GER40D4
GER4005

MBR12045CT
MBR12050CT
lN4001
lN4002
lN4003
lN4004
lN4005

3-153
3-153
3-27
3-27
3-27
3-27
3-27

GP80B
GP800
GP80G
GP80J
HER10l
HER102
HER103

MUR810
MUR820
MUR840
MUR860
MUR105
MURll0
MUR120

3-263
3-263
3-263
3-263
3-244
3-244
3-244

GER4006
GER4007
GI750
GI751
GI752
GI754
GI756

lN4006
lN4007
MR750
MR751
MFl752
MR754
MR756

3-27
3-27
3-196
3-196
3-196
3-196
3-196

HER104
HER105
HER151
HER152
HER153
HER154
HER155

MUR130
MUR140

GI758
GI820
GI821
GI822
GI824
GI826
GI850

MR758
MR820
MR821
MR822
MR824
MR826

3-196
3-200
3-200
3-200
3-200
3-200
3-209

HER301
HER302
HER303
HER304
HER305
HER801
HER802

MUR405
MUR410
MUR420
MUR430
MUR440
MUR805
MUR810

3-253
3-253
3-253
3-253
3-253
3-263
3-263

MUR105
MUR110
MURl15

3-209
3-209
3-209
3-209
3-244
3--244
3-244

HER803
HER804
HER805
IR03899,R
IR03900,R
IR03901,R
IR03902,R

MUR820
MUR830
MUR840
lN3899,R
lN3900,R
lN3901,R
lN3902,R

3-263
3-263
3-263
3-17
3-17
3-17
3-17

MUR120
MUR405
MUR410
MUR415
MUR420
MUR405
MUR410

3-244
3-253
3-253
3-253
3-253
3-253
3-253

IR03903,R
IR03909,R
IR03910,R
IR03911,R
IRD3912,R
IRD3913,R
P600A

lN3903,R
lN3909,R
lN3910,R
lN3911,R
lN3912,R
lN3913,R

3-17
3-22
3-22
3-22
3-22
3-22
3-196

FST20040
FST20045
FST20050
FST2040
FST2045
FST2050
FST30035
FST30040
FST30045
FST30050
FST3040
FST3045
FST6035
FST6040

GI851
GI852
GI854
GI856
Gll00l
GI1002
Gll003
Gll004
GI1101
GI1102
Glll03
GI1104
GI1301
G11302

MBR20035CT
MBR20045CT
MBR20045CT
MBR20050CT
MBR2045CT
MBR2045CT
MBR2060CT
MBR30035CT
MBR30045CT
MBR30045CT
MBR30050CT
MBR2545CT
MBR2545CT

MR850
MR851
MR852
MR854
MR856

1-7

MUR415
MUR420

lN5823
lN5824
lN5825
lN4001
lN4002
lN4003
lN4004
lN4005
lN4006
lN4007

MUR105
MUR110
MUR120
MUR130
MUR140

MR750

3-244
3-244
3-244
3-244
3-244
3-244
3-244

•

INDEX AND CROSS REFERENCE (Continued)
Industry

Pall Number
P600B
P600D
P600G
P600J
P600K
A711
A711A

•

Motorola
Nearest
Replacement

Motorola
Similar
Replacement
MA751
MA752
MA754
MA756
MA758

Page
Number

Industry

Pall Number

Motorola
Nearest
Replacement

Motorola
Similar
Replacement

Page
Number

3-196
3-196
3-196
3-196
3-196
3-243
3-243

RGP30A
RGP30B
RGP30D
RGP30G
RGP30J
RGP80A
RGP80B

MUR805
MUR610

3-209
3-209
3-209
3-209
3-209
3-263
3-263

3-339
3-339
3-339
3-235
3-235 I
3-235 I
3-235

RGP60D
RGP60G
AGP60J
RL061
AL062
RL063
RL064

MUR820
MUR640
MUA660
lN4001
lN4002
lN4003
lN4004

3-263
3-263
3-263
3-27
3-27
3-27
3-27

RL065
RL066
RL067
AL251
AL252
RL253
RL254

1N4005
lN4006
lN4007

lN4933
lN4934

3-235
3-235
3-235
3-235
3-235
3-32
3-32

3-27
3-27
3-27
3-36
3-38
3-38
3-38

RG1D
RG1G
RG1J
RG2A
RG2B
RG2D
RG2G

lN4935
lN4936
lN4937
MR850
MR851
MR852
MR854

3-32
3-32
3-32
3-209
3-209
3-209
3-209

RL255
RL256
AL257
AP300A
AP300B
RP300D
AP300G

MR850
MA851
MR852
MR654

3-36
3-38
3-38
3-209
3-209
3-209
3-209

RG2J
RG3A
RG3B
RG3D
RG3G
RG3J
RG4A

MR856
MR850
MR851
MR852
MR854
MR856
MR850

3-209
3-209
3-209
3-209
3-209
3-209
3-209

RP300J
AUD810
AUD815
RUD620
RUA610
RUA815
AUR820

MR656
MUR1610CT
MUA1615CT
MUA1620CT
MUA810
MUA815
MUA820

3-209
3-277
3-277
3-277
3-263
3-263
3-263

RG4B
RG4D
RG4G
RG4J
RGM30A
RGM30B
RGM30D

MR851
MR852
MA854
MA856
MUR3005PT
MUR3010PT
MUR3020PT

3-209
3-209
3-209
3-209
3-287
3-287
3-287

RURD1610
RURD1615
AUAD1620
S00601DF
S00602DF
S00603DF
S00604DF

1N3660
lN3861
lN3882
lN3663

RGM30G
RGP10A
RGP10B
RGP10D
RGP10G
RGP10J
RGP15A

MUR3040PT
lN4933
lN4934
lN4935
lN4936
lN4937
MR850

3-287
3-32
3-32
3-32
3-32
3-32
3-209

S006AADF
S01201DF
S01202DF
S01203DF
S01204DF
S012AADF
S20100

lN3879
lN3890
lN3891
lN3892
lN3693
lN3669
MR2010

RGP15B
AGP15D
AGP15G
RGPl5J
RGP20A
RGP20B
RGP20D

MR851
MR852
MR854
MR856
MR850
MR851
MR852

3-209
3-209
3-209
3-209
3-209
3-209
3-209

S2040
S20410
S20420
S20440
S20460
S2060
S2080

MR2004

RGP20G
RGP20J
RGP25A
RGP25B
RGP25D
RGP25G
RGP25J

MR854
MR856
MR850
MR851
MR852
MR854
MR856

3-209
3-209
3-209
3-209
3-209
3-209
3-209

S21100
S2140
S2160
S2180
S30410
830420
830440

A711X
A712X
R714X
RA2505
RA251
AA251 0
RA252
RA253
RA254
RA255
RA256
RA258
RG1A
RG1B

MA4422CT
MA4422CTA
R711XPT
R712XPT
R714XPT
MR2500
MR2501
MR2510
MR2502
MR2504
MR2504
MR2506
MA2506
MR2508

1-8

MR6S0
MR651
MR652
MR654
MR856

lN5400
lN5401
1N5402
lN5404
lN5406
lN5406
lN5406

MUR3010PT
MUR3015PT
MUR3020PT

3-7
3-12
3-12
3-12
3-12
3-12

MRl121
MRl122
MRl124
MR1126
MA2006
MR2006
MR2010
MR2004
MA2006
MA2008
lNl184A
lNl186A
1N1186A

3-287
3-287
3-287
3-7
3-7
3-7
3-7

3-221
3-218
3-218
3-218
3-218
3-221
3-221
3-221
3-221
3-221
3-221
3-2
3-2
3-2

INDEX AND CROSS REFERENCE (Continued)
Industry
Part Number

Motorola
Nearest
Replacement

S30460
S3410
S3420
S3440
S3460
SB1020
SB1035

lN1190A

SB1040
SB1045
SB120
SB130
SB140
SB150
SB160

MBR1045
MBR1045

SB1620
SBI630
SBI640
SB1645
SB3020
SB3030
SB3040
SB3045
SB320
SB330
SB340
SB350
S8360
SB520

Motorola
Similar
Replacement
lN1184A
lN1186A
lN1188A
lN1190A

MBR1035
MBR1035

lN5817
lN5818
lN581~

MBR15u
MBRI60
MBRI535CT
MBRI535CT
MBR1545CT
MBR1545CT
MBR3035CT
MBR3035CT
MBR3045CT
MBR3045CT
MBR320
MBR330
MBR340
MBR350
MBR360
lN5823
lN5824
lN5825
MBR735
MBR735
MBR745
MBR745

Page
Number

Industry
Part Number

Motorola
Nearest
Replacement

Motorola
Similar
Replacement

Page
Number

3-2
3-2
3-2
3-2
3-2
3-90
3-90

SBS1020T
SBS1030T
SBS1035T
SBS1040T
SBS1045T
SBS1620T
SBSI630T

MBR1035
MBR1035
MBRI035
MBR1045
MBR1045
MBR1635
MBR1635

3-90
3-90
3-90
3-90
3-90
3-98
3-98

3-90
3-90
3-40
3-40
3-40
3-75
3-75

SBSI635T
SBS1640T
SBS1645T
SBS520T
SBS530T
SBS535T
SBS540T

MBR1635
MBRI645
MBR1645
MBR735
MBR735
MBR735
MBR745

3-98
3-98
3-98
3-88
3-88
3-88
3-88

3-96
3-96
3-96
3-96
3-113
3-113
3-113

SBS545T
SBS820T
SBS830T
SBS835T
SBS840T
SBS845T
SBS850T

MBR745

3-88
3-88
3-88
3-88
3-88
3-88
3-94

3-113
3-81
3-81
3-81
3-81
3-81
3-49

SBS860T
SBT3035
SBT3040
SBT3045
S0241
S041
S041
S041
S051
SES5001
SESSOO2
SES5003
SES5301
SES5302

MBR735
MBR735
MBR735
MBR745
MBR745
MBR1060
MBR1060
MBR3035CT
MBR3045CT
MBR3045CT
S0241
S041
S041

3-94
3-113
3-113
3-113
3-113
3-67
3-67

SB530
SB540
SB820
SB830
SB840
SB845
SB850

MBR1060

3-49
3-49
3-88
3-88
3-88
3-88
3-94

SB860
SBP1020T
SBP1030T
SBP1035T
SBP1040T
SBP1045T
SBP1620T

MBR1060
MBRI535CT
MBR1535CT
MBR1535CT
MBR1545CT
MBRI545CT
MBR1535CT

3-94
3-96
3-96
3-96
3-96
3-96
3-96

SES5303
SES5401
SES5401C
SES5402
SES5402C
SES5403
SES5403C

MUR805
MUR1605CT
MUR810
MUR1610CT
MUR815
MUR1615CT

3-253
3-263
3-277
3-263
3-277
3-263
3-277

SBP1630T
SBP1635T
SBP1640T
SBP1645T
SBR1040
SBR1045
SBR1050

MBRI535CT
MBRI535CT
MBRI545CT
MBR1545CT
MBR1045
MBR1045
MBR1060

3-96
3-96
3-96
3-96
3-90
3-90
3-94

SESS404
SESS404C
SES5501
SES5502
SES5503
SES5504
SES5701

MUR820
MUR1620CT
MUR1505
MUR1510
MUR1515
MUR1520
MUR2505

3-263
3-277
3-272
3-272
3-272
3-272
3-285

SBR1640
SBR1645
SBR2520
SBR2530
SBR3035
SBR3045
SBR3540

MBRI645
MBRI645

3-98
3-98
3-63
3-63
3-121
3-121
3-116

SES5702
SES5703
SES5801
SES5802
SES5803
SI231
SI232

MUR2510
MUR2515
MUR5005
MUR5010
MUR5015

3-285
3-285
3-299
3-299
3-299
3-113
3-113

SBR3545
SBR6025
SBR8035
SBR8040
SBR8040
SBR8045
SBR8045

MBR3545

3-121
3-135
3-149
3-149
3-149
3-149
3-149

SI31
SI32
SI71
SR1002
SRI003
SR1004
SR1005

lN5832
lN5833
MBR3535
MBR3545
MBR3545

MBR6045
MBR8035
MBR8045
MBR8045
MBR8045
MBR8045

1-9

S041
S051
MUR105
MUR110
MUR115
MUR405
MUR410
MUR415

MBR3045CT
MBR3045CT
MBR3535
MBR3545
MBR7545
MBR1035
MBR1035
MBRI045
MBR1060

3-67
3-71
3-244
3-244
3-244
3-253
3-253

3-121
3-116
3-147
3-90
3-90
3-90
3-94

II
I

INDEX AND CROSS REFERENCE (Continued)
Industry
Part Number
SR1006
SR102
SR103
SR104
SR105
SR106
SR1602

II

SR1603
SR1604
SR302
SR303
SA304
SA305
SA306

Motorola
Nearest
Replacement
MBR1060
MBRI50
MBR150
MBR150
MBR150
MBR160

MBR1535CT
MBR1535CT
MBR1545CT
MBR320
MBA330
MBA340
MBR350
MBA360

SA802
SR803
SA804
SAP100A
SRP100B
SRP100D
SRP100G
SAP100J
SAP300A
SRP300B
SAP300D
SAP300G
SAP300J
SAP600A
SAP600B
SAP600D
SRP600G
SRP600J
TG24
TG26
TG284
TG286
TG288
TG4
TG6
TG84
TG86
UES100l

Motorola
Similar
Replacement

MBA735
MBR735
MBR745
lN4933
lN4934
lN4935
lN4936
lN4937
MA850
MA851
MA852
MA854
MA856
MA820
MR821
MR822
MA824
MA826
MUR440
MUR460
MUR1640CT
MUA1660CT
MUR1660CT
MUR140
MUR160
MUR840
MUR860

Page
Number

Industry
Part Number

Motorola
Nearest
Replacement

Motorola
Similar
Replacement

Page
Number

3-94
3-75
3-75
3-75
3-75
3-75
3-96

UES1503
UES1504
UES2401
UES2402
UES2403
UES2404
UES2601

3-96
3-96
3-81
3-81
3-81
3-81
3-81

UES2602
UES2603
UES2604
UES2605
UES2606
UES701
UES702

MUR2505
MUR2510

3-287
3-287
3-287
3-287
3-287
3-285
3-285

3-88
3-88
3-88
3-32
3-32
3-32
3-32

UES703
UES704
UES705
UES706
UES801
UES802
UES803

MUR2515
MUR2520
MUR2520
MUR2520
MUR7005
MUR7010
MUR7015

3-285
3-285
3-285
3-285
3-305
3-305
3-305

3-32
3-209
3-209
3-209
3-209
3-209
3-200

UES804
UES805
UES806
UF4001
UF4002
UF4003
UF4004

MUR5020
MUR5020
MUR5020
MUR105
MUR110
MUR120

3-299
3-299
3-299
3-244
3-244
3-244
3-244

3-200
3-200
3-200
3-200
3-253
3-253
3-277

UF5400
UF5401
UF5402
UF5403
UF5404
USD1120
USD1130

MUR405
MUR410
MUR420
MUR430
MUR440
MBR150
MBR150

USD1140
USD320C
USD335C
USD345C
USD520
USD535
USD545

MBR150

MBR8035
MBR8035
MBR8045

3-75
3-113
3-113
3-113
3-149
3-149
3-149

MUR1515
MUR1520
MUR1605CT
MUR1610CT
MUR1615CT
MUR1620CT
MUR3005PT
MUR3010PT
MUR3015PT
MUR3020PT
MUR3030PT
MUR3040PT

MUR140

3-272
3-272
3-277
3-277
3-277
3-277
3-287

3-253
3-253
3-253
3-253
3-253
3-75
3-75

MUA105

3-277
3-277
3-244
3-244
3-263
3-263
3-244

UES1002
UES1003
UESll0l
UESll02
UESll03
UESll04
UESll05

MURll0
MUR115
MUR105
MURll0
MUR115
MUR120
MUR130

3-244
3-244
3-244
3-244
3-244
3-244
3-244

USD550
USD620
USD620C
USD635
USD635C
USD640
USD640C

MBR8045
MBR735
MBR1535CT
MBR735
MBR1535CT
MBR745
MBR1545CT

3-149
3-88
3-96
3-88
3-96
3-88
3-96

UESll06
UES1301
UES1302
UES1303
UES1304
UES1305
UES1306

MUR140
MUR405
MUR410
MUR415
MUR420
MUR430
MUR440

3-244
3-253
3-253
3-253
3-253
3-253
3-253

USD645
USD645C
USD720
USD720C
USD735
USD735C
USD740

MBR745
MBR1545CT
MBR1035
MBR1535CT
MBR1035
MBR1535CT
MBR1045

3-88
3-96
3-90
3-96
3-90
3-96
3-90

3-263
3-263
3-263
3-263
3-263
3-272
3-272

USD740C
USD745
USD745C
USD820
USD835
USD840
USD845

MBR1545CT
MBR1045
MBR1545CT
MBR1635
MBR1635
MBR1645
MBR1645

3-96
3-90
3-96
3-98
3-98
3-98
3-98

UES1401
UES1402
UES1403
UES1404
UES1420
UES1501
UES1502

MUR805
MUR810
MUR815
MUR820
MUR860
MUR1505
MUR1510

1-10

MBR3035CT
MBR3035CT
MBR3045CT

INDEX AND CROSS REFERENCE (Continued)
Industry
Part Number
USD920
USD935
USD940
USD945
UT234
UT235
UT236

Motorola
Nearest
Replacement

Motorola
Similar
Replacement

MBR1635
MBR1635
MBR1645
MBR1645

Page
Number

Industry
Part Number

Motorola
Nearest
Replacement

Motorola
Similar
Replacement

Page
Number

lN4003
lN4004
lN4002

3-96
3-96
3-98
3-96
3-27
3-27
3-27

UTR62
UTX105
UTXI1 0
UTX115
UTX120
UTX125
UTX205

lN4937
lN4933
lN4934
lN4935
lN4935
lN4935
lN4933

3-32
3-32
3-32
3-32
3-32
3-32
3-32

UT237
UT238
UT242
UT244
UT245
UT247
UT249

lN4005
lN4005
lN4003
lN4004
lN4005
lN4005
lN4002

3-27
3-27
3-27
3-27
3-27
3-27
3-27

UTX21 0
UTX215
UTX220
UTX225
UTX3105
UTX3110
UTX3115

lN4934
lN4935
1N4935
1N4935
MR850
MR851
MR852

3-32
3-32
3-32
3-32
3-209
3-209
3-209

UT251
UT252
UT254
UT255
UT257
UT258
UT347

lN4002
lN4003
lN4004
lN4005
lN4005
lN4006
lN4007

3-27
3-27
3-27
3-27
3-27
3-27
3-27

UTX3120
UTX4105
UTX4110
UTX4115
UTX4120
V322
V324

MR852
MR850
MR851
MR852
MR852
lN5402
lN5404

3-209
3-209
3-209
3-209
3-209
3-38
3-38

UT361
UT362
UT363
UT364
UTROI
UTR02
UTR10

lN4006
lN4006
iN4007
iN4007
lN4933
lN4933
lN4934

3-27
3-27
3-27
3-27
3-32
3-32
3-32

V326
V330X
V331X
V332X
V334X
V336X
V342

lN5406
MR850
MR851
MR852
MR854
MR856
lN5402

3-38
3-209
3-209
3-209
3-209
3-209
3-38

UTRII
UTR12
UTR20
UTR21
UTR22
UTR2305
UTR2310

lN4934
lN4934
lN4935
lN4935
lN4935
MR850
MR651

3-32
3-32
3-32
3-32
3-32
3-209
3-209

V344
V346
V350X
V351X
V352X
V354X
V356X

lN5404
lN5406
MR850
MR851
MR852
MR854
MR856

3-38
3-38
3-209
3-209
3-209
3-209
3-209

UTR2320
UTR2340
UTR2350
UTR2360
UTR30
UTR31
UTR32

MR852
MR854
MR856
MR656
lN4936
lN4936
lN4936

3-209
3-209
3-209
3-209
3-32
3-32
3-32

VHE1401
VHE1402
VHE1403
VHE1404
VHE205
VHE210
VHE215

UTR3305
UTR3305
UTR331 0
UTR3320
UTR3340
UTR3350
UTR3360

MR850
MR650
MR851
MR852
MR854
MR856
MR856

3-209
3-209
3-209
3-209
3-209
3-209
3-209

VHE220
VHE2401
VHE2402
VHE2403
VHE2404
VHE605
VHE610

MUR120

UTR40
UTR41
UTR42
UTR4305
UTR4310
UTR4320
UTR4340

lN4936
lN4936
lN4936
MR850
MR851
MR852
MR850

3-32
3-32
3-32
3-209
3-209
3-209
3-209

VHE615
VHE620
VHE701
VHE702
VHE703
VHE704
VHE801

MUR415
MUR420

MUR7005

3-253
3-253
3-285
3-285
3-285
3-285
3-305

UTR4350
UTR4360
UTR50
UTR51
UTR52
UTR60
UTR61

MR856
MR856
lN4937
lN4937
lN4937
lN4937
lN4937

3-209
3-209
3-32
3-32
3-32
3-32
3-32

VHE802
VHE803
VHE804
VSK1020
VSK1035
VSK1045
VSK12

MUR7010
MUR7015
MUR7020
MBR1035
MBR1035
MBR1045
MBR1535CT

3-305
3-305
3-305
3-90
3-90
3-90
3-96

1-11

MUR805
MUR810
MUR815
MUR820
MUR105
MURll0
MUR115

MUR1605CT
MUR1610CT
MUR1615CT
MUR1620CT
MUR405
MUR410

MUR2505
MUR2510
MUR2515
MUR2520

3-263
3-263
3-263
3-263
3-244
3-244
3-244
3-244
3-277
3-277
3-277
3-277
3-253
3-253

II
,

INDEX AND CROSS REFERENCE (Continued)
Industry
Part Number
VSK120
VSK13
VSKl30
VSK14
VSK140
VSK1520
VSKl530

II

Motorola
Nearest
Replacement

Motorola
Similar
Replacement

Page
Number

Industry
Part Number

Motorola
Nearest
Replacement

Motorola
Similar
Replacement

Page

Number

lN5829
lN5830

3-40
3-96
3-40
3-96
3-40
3-58
3-58

VSK3030T
VSKS040S
VSKS040T
VSKS2
VSKS20
VSKS30
VSKS40

MBR3035CT
MBR3545
MBR3045CT
MBR3545
MBR320
MBR330
MBR340

3-113
3-116
3-113
3-116
3-81
3-81
3-81

VSK1540
VSK2004
VSK2020
VSK2035
VSK2045
VSK2420
VSK2435

lN5831
MBR20050CT
MBR2035CT
MBR2035CT
MBR2045CT
MBR2535CT
MBR2535CT

3-58
3-157
3-103
3-103
3-103
3-109
3-109

VSK4020
VSK4030
VSK4040
VSK41
VSK51
VSK62
VSK63

lN5S32
lN5833
lN5834
S041
S051
MBR735
MBR735

3-63
3-63
3-63
3-67
3-71
3-88
3-88

VSK2445
VSKS020S
VSKS020T
VSK3030S

MBR2545CT
MBR3535
MBR3035CT
MBR3535

3-109
3-121
3-113
3-121

VSK64
VSK920
VSK935
VSK945

MBR745

lN5817
MBR1535CT
lN5818
MBR1545CT
lN5819

1-12

MBRl535CT
MBRl535CT
MBRl545CT

3-88
3-96
3-96
3-96

Selector Guide
Continuing investment in research and development for discrete
products has led to a rectifier manufacturing facility that matches the
precision and versatility of the most advanced integrated circuits. As
a result, Motorola's silicon rectifiers span all applications categories
with quality levels capable of passing the most stringent
environmental tests - including those for automotive under-hood
applications.

Contents
Page
Application Specific Rectifiers .............. 2-2
Schottky (High Speed, Low Voltage) ........ 2-3

Product Highlights:

Ultrafast Recovery ........................ 2-8

• Application specific rectifiers - SCANSWITCH'" devices for high
resolution monitors, MEGAHEfITZT" series rectifiers for high
frequency switching power supplies and automotive transient
suppressors.
• Schottky rectifiers for low voltage (15 to 200 volts), high current (to
600 amps) requirements in switching power supplies.
• Fast and Ultrafast rectifiers with reverse recovery times as low as
25 ns to complement the Schottky devices for higher voltage
requirements in high frequency applications.
• A full line of low-cost, general-purpose rectifiers with forward
currents from 1 to 50 amps and breakdown voltages from 50 to
1000volts.
• A wide variety of package options to match virtually any potential
requirement.

Fast Recovery ........................... 2-12
General Purpose .......................... 2-14
Automotive Transient Suppressors ......... 2-16

2-1

II

Application Specific Rectifiers
The focus for Rectifier Products continues to be on Schottky
and Ultrafast technologies, with process and packaging
improvements to achieve greater efficiency in high frequency
switching power supplies, high current mainframe supplies,
and high resolution monitors. Our new product thrust is
intended to be more "application specific" than in the past,
Table 1 -

while continuing to strive for broad market acceptance.
MEGAHERTZ Series - This group of Schottky and Ultrafast rectifiers are designed to provide improved efficiency in
very high frequency switching power supplies with low VF
(0.41 volts), high voltage (to 200 volts) Schottkys and faster
Ultrafast (trr = 28 nsec.).

MEGAHERTZ
Maximum

Device

II

MBR2030CTL
MBR2535CTL
MBR20200CT
MURHB40CT
MURHB60CT

10
(Amps)

VRRM
(Valls)

VF@ Raled
10 and Temp.
(Valls)

20
25
20
8
8

30
35
200
400
600

0.48
0.41
0.9
1.7
2.0

IR @ Raled
VRRM/25°C
(mAmps)

Irr
(Nanosecond)

5
20
1
0.01
0.01

(5)
(5)
(5)
28
28

(5) Schottky barner deVice.

SCANSWITCH Series - This group of Fast and Ultrafast
rectifiers are designed for improved performance in very high
resolution monitors and work stations where forward recovery .
Table 2 -

time (tfr) and high voltage (1200-1500 volts) are primary
considerations.

SCANSWITCH
Maximum

Device
MUR5150E
MR10120E
MUR10120E
MR10150E
MUR10150E

10
(Amps)

VRRM
(Valls)

Ifr
(Nanosecond)

Irr
(Nanosecond)

VRFM(6)
(Vails)

5
10
10
10
10

1500
1200
1200
1500
1500

225
175
175
175
175

175
1000
175
1000
175

20
14
14
16
16

(6) vRFM = Maximum TranSient Overshoot Voltage.

Automotive transient suppressors are designed for protection against over-voltage conditions in the auto electrical

system including the "LOAD DUMP" phenomenon that occurs
when the battery open circuits while the car is running.

Table 3 - Automotive Transient Suppressors
Device
MR2535L
(7) Time constant

10
(Amps)

VRRM
(Volts)

V(BR)
(Volts)

IRSM(7)
(Amps)

T
eC)

35

20

24-32

110

175

=lams, Duty Cycle ~ 1%, TC =25°C.

Devices listed in bold, italic are Motorola preferred devices.

2-2

Schottky Rectifiers
with higher TJ ratings can have significantly lower leakage
currents, but higher forward-voltage specifications. These
parameter tradeoffs should be considered when selecting
devices for applications that can be satisfied by more than one
device type number.
All devices are connected cathode-to-case or cathode-toheatsink, where applicable. Reverse polarity may be available
on some devices upon special request. Contact your Motorola
representative for more information.

SWITCHMODE'" Schottky power rectifiers with the high
speed and low forward voltage drop characteristic of
Schottky's metal/silicon junctions are produced with
ruggedness and temperature performance comparable to
silicon-junction rectifiers. Ideal for use in low-voltage,
high-frequency power supplies, and as very fast clamping
diodes, these devices feature switching times less than 10 ns,
and are offered in current ranges from 1 to 600 amperes, and
reverse voltages to 200 volts.
In some current ranges, devices are available with junction
temperature specifications of 125°C, 150°C, 175°C. Devices

Table 4 - Schottky Rectifiers
10, AVERAGE RECTIFIED FORWARD CURRENT (Amperes)(l)
1
59-04
Plastic
Cathode =
Polarity Band

VRRM
(Volts)
20
25
30

3
403A-03
5MB
Cathode =
Notch

403-03
SMC
Cathode =
Notch

267-03
Plastic
Cathode =
Polarity Band

369A-11
DPAK
Style 3

5

6

60-01
Metal
Style 1

369A-11
DPAK
Style 3

:to

/ • I •• r•
1N5817

1N5820

MBR320

MBRD320

lN5823

MBRD620CT

lN5818

lN5821

MBR330

MBRD330

lN5824

MBRD630CT

1N5822

MBR340

MBRD340

1N5825

MBRD640CT

35
40

1N5819

MBRS140T3

MBRS340T3

45
50

MBR150

MBR350

MBRD350

MBRD650CT

60

MBR160

MBR360

MBRD360

MBRD660CT

70

MBR170

MBR370

80

MBR1S0

MBR3S0

90

MBR190

100

MBR1100

MBRS1100T3

IFSM
(Amperes)

25

40

80

SO

80

75

500

75

MaxVF@
IFM=IO

0.6(2)
TL = 25°C

0.6(2)
TC=25°C

0.525(2)
TL = 25°C

0.74(2)
TL = 25°C

0.525(2)
TL = 25°C

0.45
TC= 125°C

0.3S(2)
TC = 25°C

0.85
TC = 125°C

TJ (Max)OC

125

125

125

150

125

150

125

150

MBR390
MBR3100

(1) 10 IS total deVIce output current.
(2) Values are for 40 volt units, lower voltage parts exhibit lower VF.

Devices listed in bold, italic are Motorola preferred devices.

2-3

II

SCHOTTKY RECTIFIERS (continued)
There are many other standard features in Motorola
Schottky rectifiers that give added performance and reliability.

2. MOLYBDENUM DISCS on both sides of the die minimize
fatigue from power cycling in all metal products. The plastiC
TO-220 devices have a special solder formulation for the
same purpose.

1. GUARDRINGS are included in all Schottky die for reverse
voltage stress protection from high rates of dv/dt to virtually
eliminate the need for snubber networks. The guardring also
operates like a zener and avalanches when subjected to voltage transients.

3. QUALITY CONTROL monitors all critical fabrication operationsand performs selected stress tests to assure constant
processes.

Table 4 - Schottky Rectifiers (continued)
10. AVERAGE RECTIFIED FORWARD CURRENT (Amperes)(1)
7.5

10

221B-02
(TO-220AC)
Style 1

II
VRRM
(Volts)
15

15
221A-06
(TO-220AB)
Style 6

56-03
(DO-203AA)
Style 2

25
56-03
(DO-203AA)
Style 2

fA

MBR2015CTL

1N5826

30

1N5827
MBR735

MBR1035

MBR1535CT

MBR745

MBR1045

MBR1545CT

1N5829

MBR2030CTL
MBR1635

MBR2035CT
MBR2535CTL

MBR1645

MBR2045CT

1N5828

40
45

20
221A-06
(TO-220AB)
Style 6

! 1 fA ! 1

20

35

16
221B-02
(TO·220AC)
Style 1

1N5830

1N6095

1N5831

1N6096
5041

50
60

MBR1060

MBR2060CT

70

MBR1070

MBR2070CT

80

MBR10S0

MBR2080CT

90

MBR1090

MBR2090CT

100

MBR10100

MBR20100CT
MBR20200CT

200
IFSM
(Amperes)

150

150

150

500

150

150

SOO

400

MaxVF@
IFM=IO

0.57
TC = 125'C

0.57
TC = 125'C

0.72
TC=125'C

0.5
TC = 125'C

0.57
TC= 125'C

0.72(2)
TC= 125'C

0.4S(2)
TC = 25'C

0.86 @ 7S.5A
TC = 70'C

TJ (Max)OC

150

150

150

150

150

150

125

150

(1) 10 IS total deVice output current.
(2) Values are for 40 volt unfts, lower voltage parts exhibit lower VF.

Devices listed in bold, italic are Motorola preferred devices.

2-4

Table 4 - Schottky Rectifiers (continued)
10, AVERAGE RECTIFIED FORWARD CURRENT (Amperes)(l)
25
2210-02
ISOLATED
TO-220
Style 3

30
11-03
(TO-204AA)
Style 4

221A-06
(TO-220AB)
Style 6

340E-Ol
(TO-21B)
Style 1

, ~7I
~
:to

VRRM
(Volts)
15
20

3400-01
(TO-21BAC)
Style 2

340F-03
(TO-247)
Style 2

35

40

56-03
(DO-203AA)
Style 2

257-01
(DO-203AB)
Style 2

) ) fA

MBR3020CT

MBR3520

~
lN5832

25
30
35

lN5833
MBRF2535CT

MBR3035CT

MBR2535CT

MBRF2545CT

MBR3045CT MBR2545CT
5D241

MBR3035PT

MBR3035WT

MBR3535

MBR3045

MBR3045PT

MBR3045WT

MBR3545

40
45

1N5834

50
60
70
80
90
100
IFSM
(Amperes)

150

400

300

300

400

350

600

BOO

MaxVF@
IFM=IO

0.62 @ 12.5A
TC=125'C

0.72
TC = 125'C

0.73
TC= 125'C

0.62
TC = 100'C

0.72
TC= 125'C

0.72
TC = 125'C

0.55
TC = 25'C

0.59
TC = 25'C

TJ (Max) 'C

150

150

150

150

150

150

150

125

(1) 10 IS total deVice oulput current.

Devices listed in bold, italic are Motorola prelerred devices.

2-5

II

SCHOTTKY RECTIFIERS (continued)

Table 4 - Schottky Rectifiers (continued)
10. AVERAGE RECTIFIED FORWARD CURRENT (Amperes)(1)
50

•

257-01
(DO-203AB)
Slyle 2

VRRM
(Volts)

~

15

60

75

80

257-01
(DO-203AB)
Slyle2

I

~
MBR6015L

20

MBR6020L

25

30

65

340E-01
(TO-218)
Slyle 1

MBR5025L

MBR6025L

1N6097

MBR6030L

35
40

1N6098

45

5051

MBR6035

MBR6535

MBR7535

MBR8035

MBR6045

MBR6545

MBR7545

MBR8045 .

50
60
70
80

90
100
IFSM
(Amperes)

800

500

800

1000

800

1000

1000

MaxVF@
IFM=IO

0.86@ 157 A
Tc = 70°C

0.65(2)
Tc=150°c

0.6(2)
Tc = 125°C

0.38
Tc = 150°C

0.62
Tc= 150°C

0.6(2)
Tc= 125°C

0.59
Tc = 150°C

TJ (Max)OC

125

150

150

150

175

150

175

(1) 10 IS total deVIce output current.
(2) Values are for 40 volt units, lower voltage parts exhib~ lower VF .

Devices listed in bold, italic are Motorola preferred devices.

2-6

Table 4 - Schottky Rectifiers (continued)
10. AVERAGE RECTIFIED FORWARD CURRENT (Amperes)(l)
120

200

300

600

357C-03
POWERTApT.
Cathode = I\f.ounting Plate
Anode = Terminal

:to
VRRM
(Volts)

,

15

MBR20015CTL

20

MBR20020CTL

25

MBR20025CTL

30
35

II

MBR20030CTL
MBR12035CT

MBR20035CT

MBR30035CT

MBR60035CTL

45

MBR12045CT

MBR20045CT

MBR30045CT

50

MBR12050CT

MBR20050CT

MBR30050CT

60

MBR12060CT

MBR20060CT

MBR30060CT

IFSM
(Amperes)

800

1500

2500

4000

MaxVF@
IFM=IO

0.62
TC= 175°C

0.48
TC= 150°C

0.64
TC= 125°C

0.50
TC= 100°C

TJ (Max)OC

175

175

175

150

40

70
80
90
100

(Ilia IS lotal deVice oulpul current.
Devices listed in bold, italic are Motorola preferred devices.

2-7

Ultrafast Recovery Rectifiers
increase from 20 kHz to 250 kHz and beyond. Additional
package styles and operating current levels are planned.
All devices are connected cathode-to-case or cathode-toheatsink, except where noted. Contact your Motorola representative for more information.

The Ultrafast Recovery Rectifiers, with reverse times of 25
to 100 nanoseconds, are expanding the SWITCHMODE
rectifier family. They complement the broad array of Schottky
devices for use in the higher voltage outputs and internal
circuitry of switching power supplies as operating frequencies

Table 5 - Ultrafast Recovery Rectifiers
10, AVERAGE RECTIFIED FORWARD CURRENT (Amperes)(1)
1
59-04
Plastic
Cathode
Polarity Band

=

•

VRRM
(Volts)
50
100

4

3
403A-03
5MB
Cathode
Notch

=

403-03
SMC
Cathode
Notch

=

369A-ll
DPAK
Style 3

6

267-03
Plastic
Cathode
Polarity Band

=

369A-ll
DPAK
Style 3

8
221A-06
(TO-220AB)

221B-02
(TO-220AC)
Style 1

/ • • • I •:r 1:r !
MUR105

MURD305

MUR405

MURD605CT

MUR605CT

MUR805

MURll0

MURD310

MUR410

MURD61 OCT

MUR61 OCT

MUR810

MURD315

MUR415

MURD615CT

MUR615CT

MUR815

MURD320

MUR420

MURD620CT

MUR620CT

150

MURl15

200

MUR120

300

MUR130

MUR430

MUR830

400

MUR140

MUR440

MUR840

500

MUR150

MUR450

MURB50

600

MUR160

700

MUR170E

MURS120T3

MURS160T3

MURS320T3

MURS360T3

MUR820

MUR460

MUR860

MUR470E

MUR870E
MURB80E

800

MUR180E

MUR480E

900

MUR190E

MUR490E

MUR890E

1000

MURll00E

MUR4100E

MUR8100E

IFSM
(Amperes)

35

40

75

75

125

63

75

100

Irr

25/50(75

25/50

25/50

35

25/50(75

35

35

35/60/100

175

175

175

175

175

175

175

175

nsec
TJ (Max)OC

(1) 10 is total device output current.
Devices listed in bold, italic are Motorola preferred devices.

2-8

Table 5 - Ultrafast Recovery Rectifiers (continued)
10, AVERAGE RECTIFIED FORWARD CURRENT (Amperes)(l)

VRRM
(Volls)

8

15

16

25

221A-06
(TO-220AB)

221B-02
(TO-220AC)
Style 1

221A-06
(TO-220AB)

56-03
(DO-203AA)
Style 2

30
340E-Ol
(TO-218)
Style 1

3400-01
(TO-218AC)
Style 2

/ ! ::r/::r fA I l::r •
Style
6

Style
7

50

MUR1505

MUR1605CT

MUR1605CTR

MUR2505

R710XPT

MUR3005PT

100

MUR1510

MUR1610CT

MUR1610CTR

MUR2510

R711XPT

MUR3010PT

150

MUR1515

MUR1615CT

MUR1615CTR

MUR2515

200

MUR1520

MUR1620CT

MUR1620CTR

MUR2520

300

MUR1530

MUR1630CT

MUR3030
MUR3040

400

MURH840CT

MUR3015PT
MUR3020

R712XPT

MUR3020PT
MUR3030PT

MUR1540

MUR1640CT

MUR1550

MUR1650CT

MUR3050PT

MURH860CT

MUR1560

MUR1660CT

MUR3060PT

IFSM
(Amperes)

100

200

200

100

500

300

150

400

Irr
nsec

28

35/60

35

35

50

100

100

35

TJ (Max)"C

175

175

175

175

175

175

150

175

500
600

R714XPT

MUR3040PT

700
800
900
1000

(1) 10 IS total deVice output current.

Devices listed in bold, italic are Motorola preferred devices.

2-9

ULTRAFAST RECOVERY RECTIFIERS (continued)

Table 5 -

Ultrafast Recovery Rectifiers (continued)
10. AVERAGE RECTIFIED FORWARD CURRENT (Amperes)(1)

II
VRRM
(Volts)

30

50

60

70

340F-Ol
(TO-247)

257-01
(DO-203AB)
Style 2

340E-Ol
(TO-218)
Style 1

257-01
(DO-203AB)
Style 2

l::r

~

I

~

50

MUR5005

MUR7005

100

MUR5010

MUR7010

150

MUR5015

200

MUR3020WT

MUR5020·

MUR7020

MUR6030

300
400

MUR7015

MUR6020

MUR6040

MUR3040WT

·500
600

MUR3060WT

700

BOO
900
1000
IFSM
(Amperes)

350

600

600

1000

trr

60

50

100

50

175

175

175

175

nee
TJ (Max)OC
(1) 10 IS total deVice output current

Devices listed in bold, italic are Motorola preferred devices.

2-10

Table 5 - Ultrafast Recovery Rectifiers (continued)
10, AVERAGE RECTIFIED FORWARD
CURRENT (Amperes)(1)
100

200

357C-03
POWERTAP
Cathode Mounting Plate
Anode Terminal

,

=

VRRM
(Volts)

•

=

50
100
150
200

MUR10020CT

MUR20020CT

300
400

MUR20040CT

500
600
700
800
900
1000
IFSM
(Amperes)

400

800

trr
nee

50

50

TJ (Max) °C

175

175

(1) 10 IS total device output current.

Devices listed in bold, italic are Motorola preferred devices.

2-11

Fast Recovery Rectifiers
Fast Recovery Rectifiers are available for designs that require a power rectifier with maximum switching times ranging
from 200 ns to 750 ns. These devices are offered in current
ranges of 1 to 30 amperes and in voltages to 600 volts.

Table 6 -

All devices are connected cathode-to-case or cathode-toheatsink, where applicable. Reverse polarity may be available
on some devices upon special request. Contact your Motorola
representative for more information.

Fast Recovery Rectifiers
10, AVERAGE RECTIFIED FORWARD CURRENT (Amperes)(1)

1
59-03
Plastic
Cathode =
Polarity Band

II

VRRM
(Volts)

/

3
60-01
Metal
Style 1

MR830

100

lN4934(3)

200

5

6

194-04
Plastic
Style 1

245A-02
(DO-203AA)
Metal
Style 2

/ t P

f

lN4933(3)

50

267-03
Plastic
Cathode =
Polarity Band

MR850

MR820

lN3879

MR831

MR851

MR821

lN3880

lN4935(3)

MR832

MR852

MR822

lN388l

400

lN4936(3)

MR834

MR854

MR824

lN3883

600

lN4937(3)

MR836

MR856

MR826

MR1366

IFSM
(Amps)

30

100

100

300

150

TA @ Rated 10
rC)

75

90(8)

55(8)
100

100

TC@Ratedlo
(OC)
TJ(Max)
°C

150

150

175

175

150

trr

0.2

0.2

0.2

0.2

0.2

(~s)

(1) 10 IS total deVice output.
(3) Package Size: 0.120' max diameter by 0.260" max length.
(8) Must be derated for reverse power dissipation. See data sheet.

Devices listed in bold, italic are Motorola preferred devices.

2-12

Table 6 -

Fast Recovery Rectifiers (continued)
10. AVERAGE RECTIFIED FORWARD CURRENT (Amperes){1)

VRRM
(VailS)
50

12

20

24

30

245A-02
(DO-203AA)
Metal
Style 2

42A-01
(DO-203AB)
Metal
Style 2

339-02
Plastid4)
Style 1

42A-01
(DO-203AB)
Metal
Style 2

P

1

9

*

9

1N3BB9

1N3B99

MR2400F

1N3909

100

1N3B90

1N3900

MR2401F

1N3910

200

1N3891

1N3901

MR2402F

1N3911

400

1N3B93

1N3903

MR2404F

1N3913

600

MR1376

MR1386

MR2406F

MR1396

IFSM
(Amps)

200

250

300

300

TC @RaledlO
(0C)

100

100

125

100

TJ (Max)

150

150

175

150

0.2

0.2

0.2

0.2

TA@RalediO

(OC)

°C
Irr
(IlS)
(1) '0 IS tota' device output.
(4) Meets mountin9 configuration of TO-220 outline.

Devices listed in bold, italic are Motorola preferred devices.

* Not recommended for new designs.

2-13

•

General-Purpose Rectifiers
Motorola offers a wide variety of low-cost devices, packaged to meet diverse mounting requirements. Avalanche
capability is available in the axial lead 1.5, 3.0 and 6.0 amp
packages, shown below, to provide protection from transients.

All devices are connected cathode-to-case or cathode-toheatsink, where applicable. Reverse polarity may be available
on some devices upon special request. Contact your Motorola
representative for more information.

Table 7 - General-Purpose Rectifiers
la, AVERAGE RECTIFIED FORWARD CURRENT (Amperes)(l)
1
59-03
(00-41)
Plastic
Cathode =

i

Band

II

VRRM
(Volts)

6

3
60-01
Metal
Style 1

f

267-03
Plastic
Cathode =
Polarity Band

194-04
Plastic
Style 1

12

20
245A-02
(DO-203AA)
Metal
Style 2

24
339-02
Plastic(4)
Style 1

, f P 1.

1N4001 (3)

lN4719

lN5400

MR750

MR1120
lN1199,A,B

MR2000

MR2400

100

lN4002(3)

lN4720

lN5401

MR751

MR1121
lN1200,A,B

MR2001

MR2401

200

lN4003(3)

lN4721

lN5402

MR752

MR1122
lN1202,A,B

MR2002

MR2402

400

1N4004(3)

1N4722

1N5404

MR754

MR1124
1N1204,A,B

MR2004

MR2404

600

lN4005(3)

lN4723

1N5406

MR756

MRl126
lNI206,A,B

MR2006

MR2406

800

lN4006(3)

lN4724

MR758

MR1128

MR2008

1000

1N4007(3)

1N4725

MR760

MR1130

MR2010

IFSM
(Amps)

30

300

200

400

300(9)

400

400

TA@RatediO
eC)

75

75

TL = 105

60
150

150

125

190

175

175

50

Tc@RatedlO
('C)
TJ(Max)
'c

175

175

175

(1) 10 IS total deVice output.
(3) Package Size: 0.120' max diameter by 0.260' max length.
(4) Meets mounting configurations of TO·220 outline.
(9)IFSM is for MR1120 series. lN1199 = 100.·A =240.·B =250.

Devices listed in bold, italic are Motorola preferred devices.

* Not recommended for new designs.

2-14

175

Table 7 - General-Purpose Rectifiers (continued)
10. AVERAGE RECTIFIED FORWARD CURRENT (Amperes)(1)
25

30

40

193-04
Plastic(10)
Cathode =
Polarity Band

1-07
(TO-204AA)
Metal
Styles Band 9

42A·01
(DO-203AB)
Metal
Style 1

~
VRRM
(Volts)

:to~ :to

~
lNllB3A

50

MR2500

100

MR2501

200

MR2502

lNl1B6A

400

MR2504

lN11BBA

600

MR2506

1N1190A

800

MR2508

1000

MR2510

IFSM
(Amps)

400

MR4422CT

400

MR4422CTR

400

lNl184A

BOO

TA @ Rated 10
(OC)
Tc@Ratedlo
eC)

150

TJ(Max)
°c

175

150
150

(1) 10 IS total deVice output.
(10) Request data sheet for mounting information.

Devices listed in bold, italic are Motorola preferred devices.

150

190

II

Automotive Transient Supressors
Automotive Transient Suppressors are designed for protection against over-voltage conditions in the auto electrical system
including the "LOAD DUMP" phenomenon that occurs when the battery open circuits while the car is running.
AUTOMOTIVE TRANSIENT SUPPRESSOR

194-01

/

CASE 194-01
MR2535L

II

VRRM (Volts)

20

10 (Amp)

35

V(BR) (Volts)

24-32

IRSM"
(Amp)

62

TC@RaledIO
rC)

150

T
rC)

175

2-16

Data Sheets

II

lNl183A

MOTOROLA

-

I

thru

SEMICONDUCTOR

TECHNICAL DATA

lNl190A
lNl190A Is a
Motorola Preferred Devic.

MEDIUM-CURRENT RECTIFIERS

4O-AMP
RECTIFIERS

· .. for applications requiring low forward voltage drop and
rugged construction.

SILICON
DIFFUSED·JUNCTION

• High Surge Handling Ability
• Rugged Construction
• Reverse Polarity Available; Eliminates Need for Insulating
Hardware in Many Cases
CASE 42A-ol
D0-203AB
METAL

• Hermetically Sealed

II

'MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage

Symbol

lNII83A

lNllB4A

lN1186A

lN1186A

lN1190A

Unit

VRRM
VRWM
VR

50

100

200

400

600

Volts

10

40

40

40

40

40

Amp

IFSM

800

800

800

800

800

Amp

Average Half-Wave Rectified Forward Current
With Resistive Load (0. TA ~ 150°C
Peak One Cycle Surge Current
(60 Hz and 150°C Case Temperature)
Operating Junction Temperature
Storage Temperature

TJ

-65 to +200

°C

Tstg

-65 to +200

°C

'ELECTRICAL CHARACTERISTICS (All Types) at 25°C Case Temperature
Characteristic

MECHANICAL CHARACTERISTICS

Symbol

Value

Unit

Maximum Forward Voltage at 100 Amp
DC Forward Current

VF

1.1

Voils

Maximum Reverse Current at Rated DC
Reverse Voltage

IR

5.0

mAde

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
"Indicates JEDEC registered data.

3-2

CASE: Welded, hermetically sealed construction
RNISH: All external surfaces corrosion-resistant
and the terminal lead is readily solderable
WEIGHT: 25 grams (approx.)
POLARITY: Cathode connected to case (reverse
polarity available denoled by Suffix R,
i.e.: lNl183RA
MOUNTING POSmON: Any
MOUNTING TORQUE: 25 in-Ib max

lNl199

MOTOROLA

-

SEMICONDUCTOR

thru

TECHNICAL DATA

lN1206

•

lN12041••
Motorola Preferred Device

MEDIUM-CURRENT
SILICON RECTIFIERS

MEDIUM-CURRENT SILICON RECTIFIERS

50-600 VOLTS
12 AMPERES

Silicon rectifiers for medium-current applications requiring:

DIFFUSED JUNCTION

•

High Current Surge 240 Amperes @ TJ = 190°C

•

Peak Performance at Elevated Temperature 12 Amperes@ TC = 150°C

·MAXIMUM RATINGS

Characteristic

Symbol

Peak Repetitive Reverse Voltage

Working Peak Reverse Voltage
DC Blockang Voltage

VRRM
VRWM
VR

Average Rectified Forward Current
(Smgle phase, resistive load.

10

60 Hz. TC

IN

IN

IN

IN

IN

1199

1200

1202

1204

1206

Unit
Volts

50

100

200

400

600
Amp

12

= 150°C)

Non-Repetitive Peak Surge Current
(Surge applied at rated load
conditions. half wave,

Amp

IFSM
- 2 4 0 Ifor 1 cycle)-

sangle phase. 60 Hz)
Operating Junction
Temperature Range

TJ

°c

-65to+190 -

·THERMAL CHARACTERISTICS
Characteristic
Thermal ReSistance, Junctton to Case

·ELECTRICAL CHARACTERISTICS

Chafacteristic and Conditions
Maximum Instantaneous Forward Voltage

(IF

=40 A. TC =25°C)

Maximum Instantaneous Reverse Current

(Rated voltage. TC = 150°C)

CASE 24SA-02
D0-203AA
METAL

Symbol

Max

Unit

vF

18

Volts

'R

10

mA

·Indicates JEDEC registered data

3-3

MECHANICAL CHARACTERISTICS
CASE: Welded, hermetically sealed construction
FINISH: All external surfaces are corrosionresistant and the terminal lead is readily
solderable
POLARtTY: Cathode to case (reverse polarity
units are available and denoted by an "R" suffix,
i.e.,INI202R)
MOUNTING POSITION. Any
MOUNTING TORQUE: 15 in-Ib max
MAXIMUM TERMINAL TEMPERATURE FOR
SOLDERING PURPOSES: 275°C for 10
seconds at 3 kg tension.
WEIGHT: 6 grams (approx.)

•

INl199A

MOTOROLA

-

SEMICONDUCTOR

thru

TECHNICAL DATA

IN1206A
lN1204A I. a
Motorola Preferred Device

MEDIUM-CURRENT SILICON RECTIFIERS

MEDIUM-CURRENT
SILICON RECTIFIERS

Silicon rectifiers for medium-current applications requiring:
•

High Current Surge 240 Amperes @ TJ = 200°C

•

Peak Performance at Elevated Temperature 12 Amperes@ TC = IS0°C

50-600 VOLTS
12 AMPERES

DIFFUSED JUNCTION

"MAXIMUM RATINGS

•

Characteristic

Symbol

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

Non·Repetltive Peak Reverse
Voltage IHalfwave. single
phase. 60 Hz peak)

VRSM

Average Rectified Forward Current
ISingle phase. resistive load.
60 Hz. TC = 150°C)

10

Non-Repetitive Peak Surge Current

IFSM

IN

IN

IN

IN

Unit
Volts

50

100

200

400

600

100

200

350

600

BOO

Volts

Amp
12

ISurge applied at rated load
conditions. half wave,
single phase. 60 Hz)
Operating and Storage Junction
Temperature Range

IN

1199A 1200A 1202A 1204A '206A

r--- 240 Ilor 1 cycle)_

TJ. T stg

Amp

°C

-65 to +200

"THERMAL CHARACTERISTICS

Characteristic
Thermal Resistance, Junction to Case

"ELECTRICAL CHARACTERISTICS
Characteristic and Conditions
Maximum Instantaneous Forward Voltage
liF = 40 A. TC = 25°C)

Maximum Average Reverse Current at
Rated Conditions
lNl199A
lN1200A
lN1202A
lN1204A
lN1206A

Symbol

Max

Unit

VF

1.35

Volts
mA

IRa
3.0
25
20
1.5
1.0

'Indicates JEDEC registered data.

3-4

CASE 245A-02
DD-203AA
METAL

MECHANICAL CHARACTERISTICS
CASE: Welded, hermetically sealed construction
FINISH: All external surfaces are corrosionresistant and the terminal lead is readily
solderable
POLARITY: Cathode to case (reverse polarity
units are available and denoted by an "R" suffix,
i.e.,INI202RA)
MOUNTING POSITION: Any
MOUNTING TORQUE: 15 in-Ib max
MAXIMUM TERMINAL TEMPERATURE FOR
SOLDERING PURPOSES: 275°C for 10
seconds at 3 kg tension.
WEIGHT: 6 grams (approx.)

•

lNl199B

MOTOROLA

-

SEMICONDUCTOR

thru

TECHNICAL DATA

lN1206B

•

lNI204B 18 a
Motorola Preferred Devfce

MEDIUM·CURRENT SILICON RECTIFIERS

MEDIUM·CURRENT
SILICON RECTIFIERS

Compact. highly efficient silicon rectifiers for medium-current
applications requiring:
•

High Current Surge 250 Amperes @ TJ = 200°C

60-600 VOLTS
12 AMPERES

• Peak Performance at Elevated Temperature 12 Amperes @ TC = 150°C

DIFFUSED JUNCTION

"MAXIMUM RATINGS
Characteristic

Symbol

Peak RepetitIVe Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

Non·Repelltlve Peak Reverse

VRSM

Voltage IHalfwave. single
phase. 60 Hz peak)
Average Reculled Forward Current
(Single phase. resistIVe load.
60 Hz. TC = 150°C)

10

Non-Repetitive Peak Surge Current

IFSM

IN

IN

IN

IN

IN

"998 1200B 12028 12048 1208a

Unit

50

100

200

400

600

100

200

350

600

800

Volts

Amp
12

ISurge applied at rated load

MECHANICAL CHARACTERISTICS

Single phase. 60 Hz)
Operatmg and Storage Junction
Temperature Range

TJ. Tstg

-65to+200-

°c

·THERMAL CHARACTERISTICS

Characteristic
Thermal ReSistance, Junction to Case

"ELECTRICAL CHARACTERISTICS
Symbol

Max

Unit

vF

1.2

Volts

IR

10

mA

IRO

0.9

mA

DC Forward Voltage
(IF = 12 A. TC = 25°C)

VF

1.t

Volts

Reverse Recovery Time (lFM = 40 A.
dl/dt = 25 A/ ~s to IFM = O.
tp ;;> 4 0 ~s. 60 pulses/second. 25°CI

trr

5.0

~s

Characteristic and Conditions
MaXimum Instantaneous Forward Voltage

(IF = 40 A. TC = 25°C)
MaXimum Reverse Current

IRated dc voltage. TC = 150°C)
MaXimum Average Reverse Current at

CASE 245A-G2
DO-203AA
METAL

Amp
f----250 Ifor 1 c y c l e ) -

conditIOns. half wave.

II

Volts

Rated Conditions

·Ind,cates JEDEC registered data

3·5

CASE: Welded. hermetically sealed construction
FINISH: All external surfaces are corrosionresistant and the terminal lead Is readily
solderable
POLARITY: Cathode to case (reverse polarity
unils are available and denoted by an "AU suffix,
l.e.• 1N1202RB)
MOUNTING POSITION: Any
MOUNTING TORQUE: 15 In-Ib max
MAXIMUM TERMINAL TEMPERATURE FOR
SOLDERING PURPOSES: 275·C for 10
seconds at 3 kg tension.
WEIGHT: 6 grams (approx.)

lN3208

MOTOROLA

-

SEMICONDUCTOR

lN3212
15-AMP

MEDIUM-CURRENT RECTIFIERS

RECTIFIERS

· .. for applications requiring low forward voltage drop and
rugged construction.
•

•

thru

TECHNICAL DATA

SILICON
OIFFUSED-JUNCTION

High Surge Handling Ability

• Rugged Construction
• Reverse Polarity Available; Eliminates Need for Insulating
Hardware in Many Cases
• Hermetically Sealed

II

CASE 42A-Gl
00-203AB
METAL

'MAXIMUM RATINGS
Symbol

lN320B
1N320BR

lN3209
1N3209R

lN3210
1N3210R

DC Blocking Voltage

VR

50

100

200

300

400

Volts

RMS Reverse Voltage

VRIRMS)

35

70

140

210

280·

Volts

10

15

15

15

15

15

Amp

260

250

250

250

250

Amp

Rltlng

Average Half-Wave Rectified Forward Current
With Resistive Load (u TC ~ 150'C
Peak One Cycle Surge Current
(60 Hz and 25°C Case Temperature)

IFSM

Operating Junction Temperature

..

TJ

Storage Temperature

Tstg

-65 to +175
-65 to +175

'ELECTRICAL CHARACTERISTICS (All Types) at 25°C Case Temperature
Characteristic

-

Maximum Forward Voltage at 40 Amp

Value

Unit

VF

15

Volts

IR

1.0

mAde

Reverse Voltage
THERMAL CHARACTERISTICS

Characteristic
Thermal ReSistance. Junction to Case

*Indlcates JEOEC registered data.

3-6

.

Unit

°C
°C

MECHANICAL CHARACTERISTICS

Symbol

DC Forward Current
Maximum Reverse Current at Rated DC

1N3211
1 N3212
1 N321 1 R lN3212R

CASE: Welded, hermetically sealed construction
FINISH: All external surfaces corrosion-resistant
and the terminal lead is readily solderable
WEIGHT: 25 grams (approx.)
POLARITY: Cathode connected to case (reverse
polarity available denoted by Suffix R, i.e.:
lN3212R)
MOUNTING POSITION: Any
MOUNTING TORQUE: 25 in-Ib max

MOTOROLA

-

IN3879 thl1l IN3883
MR1366

SEMICONDUCTOR

TECHNICAL DATA

I

1N3881 and MR1366 are

Desig'ners

Data Sheet

Motorola Preferred Devices

FAST RECOVERY
POWER RECTIFIERS

STUD MOUNTED
FAST RECOVERY POWER RECTIFIERS
... designed for special applications such as dc power supplies, inverters,
converters, ultrasonic systems, choppers, low R F interference, sonar power
supplies and free wheeling diodes. A complete line of fast recovery rectifiers
having typical recovery time of 150 nanoseconds providing high efficiency
at frequencies to 250 kHz.

50-600 VOLTS
6 AMPERES

CASE 245A-02
DO-203AA

METAL

Designer's Data for "Worst Case" Conditions

The Designers

Data sheets permit the design of most circuits entirely from the

information presented. Limit curves - representing boundaries on device character-

istics - are given to facilitate "worst case" design.

MECHANICAL CHARACTERISTICS
CASE: Welded, hermetically sealed
FINISH: All external surfaces corrosion
resistant and readily solderable

POLARITY: Cathode to Ca.e
'MAXIMUM RATINGS
Rati",

Svmbol

Peak RepetitIve Reverse Voltage

lN3880 1N3881 1N3B82 lN38&3 MR136
100

200

VRSM

75

150

VR(RMS)

35

70

DC Blocking Voltage

Unit

Volts
50

VRWM

300

400

600

250

350

450

140

210

280

650
420

VR

Non-Repetitive Peak Reverse Voltage
RMS Reverse Voltage

lN3B79

VARM

Working Peak Reverse Voltagll

Average Rectified Forward Current
tSlnglephase. reSistive load.
TC·1OOoC)

'0

Non-Repetitive Peak Surge Current
burge applied at rated load
contmuousl

IFSM

Operating Junction Temperature Range
Storage Temperature Range

..

..
...

TJ
T sts

•

6.0

.

...

150
lonecvclel
-65 to +150
-65 to +175

Volts
Volts
Am..

Amps

°c
°c

THERMAL CHARACTERISTICS
CharxhlristlC

Thermal Resistance. Junction to case

Symbol

R8JC

Motorola guarantees the listed value. although parts having higher values of thermal resistance will meet the current rating_
Thermal resistance is not required bV the JEOEC registration.

'ELECTRICAL CHARACTERISTICS
Characteristic
Instantaneous Forward Voltage
UF'" 19 Amp. TJ = l50"C)

Symbol

Min

Forward Voltage
(IF" 6.0 Amp. TC· 25°C)

V,

R....erse Current (rated dc voltage) TC = 25 C
TC = 100°C

'R

Tvo

M..

1.2

1.5

1.0

1.4

10
O.S

15
1.0

oA
mA

TVp

M..

Unit

150
200

200
400

Unit
Volts

"

Volts

REVERSE RECOVERY CHARACTERISTICS
Characteristic
Reverse Recoverv Time
-UFM" 1.0 Amp to VR = 30 Vdc, Figure 161
UFM" 36 Amp, dildl • 25 A/jJs. Figure 171
Revern RacoverV Current
-UF" 1.0 Amp to VR· 30 Vdc, filJolre 161

Symbol
t"

Min

Amp

IRMjRECI

2.0

·Indicates JEDEC Registered Data for 1 N3879 Seri ...

3-7

WEIGHT: 5.6 Grams (approximately!
MOUNTING TORQUE: 15 in-lb. max.

II

1N3879 thru 1N3883, MR1366

FIGURE 1 - FORWARD VOLTAGE

FIGURE 2 - MAXIMUM SURGE CAPABILITY
iDO

200

90

vV

100

,

II
I I
Prior to surge, theretUher
I I
is operated such that TJ = 150 aC;
VR RM may be applied between
eilch cycle of surge

i"-

"i'

~

Tp 250C

N-.u

)0

50

.

/

30

I

ii:

::;

/

ill . . . .

~'1500C- -

L

/

r"b

1\

0

V

11111

0

1 20

o

f

10

f\

~ICYCLE

0-

1/

20

f\

0-

1.0

3.0

illU

50 ).0 10
20
30
NUMBER OF CYCLES AHO Hz

50

)0 100

0

II

~

5. 0

I

~
z

~
~

!:

.if

NOTE 1

1/'

3. 0

J=[Jl
PPk

Ppk

'p_

2. 0

TIME

J---.- t ,-----I

J

I

OUTY CYCLE, 0 ~ Ipl!)
PEAK POWER, Ppk, IS peak of an
equivalent square power pulse

To delermlnema.lumum JUllctlOn temperature 01 tile diode In d given SituatIOn,
the tollowmg pmcedure IS rec.ommended

!

0

The temperature 01 the ease should be measured

uSltlg

on Ihe case at the :i!mpeUlure reference pomt lsee Note

a thermocouple pia ted
J)

The thermal mass

connected to Ihe case IS normally large enough so that ,twill not slgnlflcanlly

)

respond 10 heat surges generated mlhedlodeasaresult 01 puisedoperal IIInonce
steadystalecondlllIlnsareachleved USlnglhe measured value of TC, theluncllon
lemperalure may bedetermtned by
TJ: TC f TJC
where TJC ISlhe mCfease In luncllDn lemperatufe above Ihe caSll lemperalure
It may be delermnmlby
t, TJC:: Ppk ·ROJC tD t (1- D) . rltl + Ipl f r(lp} r{tlll
where
rlt} : normalized value of translentlhermalresistancealllme.l,irom FI gure
3,le
r(11 +lpl:normahudvalueoftranSlenllhermalreslstanceattlme!I*!p

05

0.3

o2
0.4

11
16
10
24
18
0.8
VF,INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

31

FIGURE 3 - THERMAL RESPONSE
0

5

+-

-

3
2
.1

5
3
( EE NOTE II

0.0 2

0.0 I
0.001 0.002

IIIII I
0.005

0.01

002

0.05

0I

0.2

0.5

1.0

2.0

I,TIME(ms)

3-8

50

10

20

50

100

200

500

1000 2000

5000 10,000

1N3879 thru 1 N3883, MR1366

SINE WAVE INPUT

SQUARE WAVE INPUT

FIGURE 4 - FORWARO POWER OISSIPATION

FIGURE 5 - FORWARD POWER DISSIPATION

8.0

LO~OS

CAPAdTIVE
~ 7. o -IIPKI' 20
~
o
'IAVI
~
cU)' 6.
:!~
10 ~
~~ 5.0 - - 5 . 0 7 /
0~z

~~ 40

~~
>~

3. 0

:;

2.0
1.0

,

I

/

/ //
k'/ '/

8.0

or- CAPJITIVE L~ADS

/
RES,S},VE.,NDUCT,VE
LOAD

o

[7/

1.0 - 5.0
0

10

~

0

2.0
3.0
4.0
50
6.0
70
'FIAVI. AVERAGE FORWARO CURRENT IAMPI

:/~
1.0

80

FIGURE 6 - CURRENT DERATING
(i:'

8. Or-

"
~

70 f-

15
~

a~
'"~

~

I-

30 H

~>

2.0 t -

'";;

1.0 H

CAPACITIVE LOAO
'IPKI • to

-

o

80

90
100
110
120
TC. CASE TEMPERATURE JOCI

~ 50

'"~

10

130

po,

r=
r-

=>

~ ~ 20
............
~~
~~

~ o'-

6.0



"

140

3.0 f-

"
g
~

"""

~ ['{'
;.."........... ~,

CAPACITIVE
LOADS
'IPKI
IIAVI· 1.O- 5.0

4.0 H

:;'

------

1--_:~o----- ---,0 - -

~ ~'"

I--- ~ ~
~~

o' -

o

150

80

90

130
100
110
110
TC. CASE TEMPERATURE lOCI

140

'"

150

FIGURE 9 - NORMALIZED REVERSE CURRENT

FIGURE 8 - TYPICAL REVERSE CURRENT
10 1

104

~

4.0
1.0
3.0
5.0
6.0
7.0
'FIAVI. AVERAGE FORWARD CURRENT IAMPI

r-

7.0

~

........ ~'IAVI

4.oH

:;'

/

V

8.0 0 -

'5."

/ RESISTIVE ~OAD

5.Ott-

/'

FIGURE 7 - CURRENT DERATING
0:

6 of-

---A~

de

/~ ~

0

/,

o
o

// / /

cl_ .I / '//
L'~ 'I'
'q----- / /

IIPKI_ 1
Ol---I(AVI
I

h 'I"

~o

l'"

f/~

II

==

103

VR -IOOV

./

V

I-

15
~

./
1

1;;
w

7.0 t::=::=
5.0

r-I---- U~
~tfr '~r

--

~TJ'250C
f=:= l~

3.0 I----

V

2.0
1.0

C>

Ii:

0.3

~ 0.2
0.1

1.0

II

.........

~

--

z:

~

. / Vir' 1.1 V

Ia

.... I--'"

......-

.....

50

w
u

/

>

0.7
0.5

~

TJ' 25 0 C

30

.........

20

10
2.0

5.0
10
20
IF. FORWARD CURRENT lAMP)

50

100

1.0

2.0

5.0
10
20
VR. REVERSE VOLTAGE IVOLTS)

100

50

TYPICAL RECOVERED STORED CHARGE DATA
(Sel Not. 2)

FIGURE 12 - T J • 25°C
1.0

20

$
w

..'"

3

40 A

05

w

,'vi'



Max

Unit
Volts

1.2

1.5

1.0

1.4

10
0.5

25
3.0

.A
mA

Min

Ty>

MIX

Unit

-

150
200

200
400

-

-

2.0

Volts

'REVERSE RECOVERY CHARACTERISTICS
Charactarlstlc

Symbol

'rr

Reverse Recovery Time
(IF - 1.0 Amp to VR" 30 Vdc, Figure 161
IfFM. 36 Amp.dlfd.- 25 AI.., FI~ .. 17I

Rever. Recovery Current

IRMIRECI

ifF. 1.0 Amp 10 VR - 30 Vdc, Figuro161

n.

-'ndicates JEOEC Registered Data for 1N3889 Series.

3-12

Amp

MECHANICAL CHARACTERISTICS
CASE: Welded, hermetically sealed
FINISH: All external surfaces corrosion
resistant and readily solderable
POLARITY: Cathode to Case
WEIGHT: 5.6 grams (approximately)
MOUNTING TORQUE: 15 in-Ib max

•

1N3889 thru 1N3893, MR1376

FIGURE 1 - FORWARD VOLTAGE

FIGURE 2 - MAXIMUM SURGE CAPABILITY

300
20 0

TJ=

250 ';.- ,/"

I'

100
0

!/ / '

0

1/,

TJ=

100 ...........
0

--

0

........

I-"

0

0

I'

0

/'

I , "

........

0

150 0 C

0-

I"'-

r\

{\

r\

0 - 1------1-1 CYCLE
0
0
1.0

J

II II
2.0

3.0

5.0
10
20
30
NUMBER OF CYCLES AT 60 Hz

II

0

~riorl~ surg'•• I~' :eclif\" I

i:soperaled such that TJ:: 150 oC;
VRRM may be applied between
each cycle of surge.

"

0

,uIY

0

I

50

100

NOTE 1

0

FLIT
PPk

0

I

II

0

Ppk

tp._

I

DUTY CYCLE, 0 "to/Ii
PEAK POWER. Ppk. IS peak 01 an
equlValenl square power pulse

TIME

1----11----1

To determine mallimum ,unctlOn temperature of the diode In a given SItuatIOn,
the follOWing pracedur& IS recommended.

2.0

The temperature of the case should be measured uSing it thermocouple placed
on the case at the :amperature reference pomt (see Note 3) The thermal mass
connetted to the ease IS normallv large enough 10 that ,tWill not significantly
respond to heat surgesgeneratad mthedlodeasa rllwlt 01 pulsed operat IOn once

1.0

steady·stale cOlllhtlDnsareachleved. USlIlg the measured valueof Te. the functIOn
lemperalulemaybedelermlnedbV'
TJ=TC+l·TJC
where TJC IS the mtflase m luntllon temperature abo~e the case temperature.
ItmBY be delermim!d by.
0. TJC= Ppk 'ROJC [0 ./1·0) . r(l1.tp) +r(lp)-r(1J11
where
t(tl = normahzed value of tranSIent thermal resistance at time. t.fro mFigure
3. I.e
r II) • Ipl " normaliud ~alue of transianl thermal rasistante al time tl + tp

o.7
o. 5
0.3
0.4

O.B
1.2
1.6
2.0
2.4
2.B
VF.INSTANTANEOUS FORWARO VOLTAGE (VOLTS!

3.2

FIGURE 3 - THERMAL RESPONSE
1.0

~ o. 5

.... :::;

~~ 0.3

"''''
~g

0.2

.... w

~

W U

::::i o.1

~~

It ~0.05
-:5:;J,

,,;:~0.03
~O.02
I-

0.0 1
0.001 0.002

0.005

0.D1

0.02

0.05

0.1

0.2

0.5

1.0

2.0
5.0
I.TIMElms!

3-13

10

20

50

100

100

SOD

1000 2000

5000 10.000

•

1N3889 thru 1 N3893, MR1376

SQUARE WAVE INPUT

SINE WAVE INPUT
FIGURE 4 - FORWARO POWER DISSIPATION

FIGURE 5 - FORWARD POWER DISSIPATION
0

20

cf- clPAciTIVJ Lolos

r-

_ ,IIPKI' 20
IIAVI

2

V

-j
~

1.10
5.0

/

V

~

/

'/

X / /. V-

L

f--

II

/

0

/ /

~~

0

o .... ~

~
...

~

14

"'<

12 IH

~

F
6.0 1=

~

f-

0:

~

,.<"""ii ~

r--..

r-

14

.......

80

90

100
110
120
130
TC. CASE TEMPERATURE (OCI

t-I-I(AVI

../'"
10

0

-.....; ~

H

I- CAPACITIVE LOADS'
1-1- I(PKI. 2.0.S.0 -

0

~

140

de

.........

0

-'"'

2.0 H

"

" "' "\.
...............
'"> "'

!'"

-

20

==

0

~_10-

I-

o~
o

.~

/

FIGURE 7 - CURRENT DERATING

......... .........

8.0

4.0

./

/

4-

l"-

F
B 10 Ic

/

II

l.:::;j ~

2.0

14

12
S.O
8.0
10
4.0
IFIAVI. AVERAGE FORWARD CURRENT IAMPI

FIGURE 6 - CURRENT DERATING
~

I

2.0·5.0_

INDUCTIVE
LOAD
-f--

~ :::--

2.0

I

2

~~

0""- .".

J

IIAVI.~
-TO.

RESISTIVE~ _

J / ~ ,;-

0

clpAciTlvJ LOJDS
I!P!I. 20

Sr- I--

20/

I

0-1

po..

:><;;;"

./'"

--

~,

~'"

"\.

"\.

--i

""

0,-1

150

FIGURE 8 - TYPICAL REVERSE CURRENT

80

90

,

~"\.

100
110
120
130
TC. CASE TEMPERATURE lOCI

.........

~\.

",

140

150

FIGURE 9 - NORMALIZED REVERSE CURRENT
101

-

VR -100 V

0

~
./

I

2

500
VR. REVERSE VOLTAGE IVOLTSI

600

10' 3
20

700

3-14

V-

,/

30 40

50

SO 70 80 90 100 110 120 130 140 150 160
TJ.JUNCTION TEMPERATURE (OCI

1N3889 thru 1N3893, MR1376

TYPICAL DYNAMIC CHARACTERISTICS
FIGURE 11 - JUNCTION CAPACITANCE

FIGURE 10 - FORWARD RECOVERY TIME
100

I0

I

j

1.o
5.01

~

3.

ffi

2.0

I---

Or---

>
c

t::a:

"W~tl'

~TJ = 25'C

I

-...

lIf,

II

~

1.0

~

o.3
o.2 . - -

5g;

;j 20

.....- ......

O. I

1.0

.............

30

;3

~ O. 5

*

........ .......

z

«

VIr = 1.1 V

O. 1

50

w
u

./

c
a:

TJ = 25'C

I0

2.0

5.0

10

20

50

100

1.0

2.0

IF, FORWARD CURRENT (AMP)

5.0

10

20

50

100

VR, REVERSE VOLTAGE (VOLTS)

II

TYPICAL RECOVERED STORED CHARGE DATA
FIGURE 12 - T J

a

(Sea Nota 21

25°C

1.0

1.0

IFM = 20 A
40 A

."

3

LU

0.5

'"a:«

3.
w

~ 0.2

~ ~V

c

t;; D. I

~

~ 0.05

~~

g 0.02
0.0

" i

~ ""'I--'
/""

I~
1.0
2.0

IDA

=

40 A

g
~
t;

O. 1

~w

O. I

~_

00 5

>

5.0 A

\

O.5

./ ./

do/dt

0: ~

50

001 .
1.0

100

10

'"a:~

~

3
w

V

/. v: """'v
.....-

c
w
a:

I--"

~>
~

~ K-'

r;;

IDA

'" 0.02
1.0

5.oA
~V

~ -:::-1-""
1.0
5.0

1\0 A
10

100

(AMP/~s)

IFM=4L

I. 0

«
5 o. 5

V

<.>

~ 0.05


5.0

1.0

IF~= 10lA

1.0

~ 0.2

1.0 A

di/dt,

FIGURE 14 - T J = 1000 C

3.
w

-......., I--'f-'

~~

IAMP/~s)

1.0

f-'

./

5.0 A
~

10

10

./V ./

lOA

1.0

5.0

'FJ=101

1.0

~

I'v' \.
L L V'v

5

~

FIGURE 13 - T J = 75°C

10

di/dt, (AMP/~s)

D.O 5

1.0 A

~

~r
1.0

I
5.0

10
di/dt

3-15

10A

10 A

0.02
1.0

100

~V

0 Y P<

o. I

. TJC IS the increase in junction temperature above the tase temperature.
Itmav bedetermmed by:
t::. TJC =Ppk 'ROJC [0" 0 -0) . rill +lpl+rltpl -rttll1
where
rill = normahzed value of tranSient thermal resistanceal time. t.from Figure

o.7
o.5
0.4

0.8

1.2

1.6

2.0

2.4

2.B

3.2

3.6

3,18.

4.0

r (11 + IpJ • normalized value of transient thermal resistanct at time t1. tp

YF, 'NSTANTANEOUS FORWARD VOLTAGE (VOLTSI

FIGURE 3 - THERMAL RESPONSE
1.0

--

5

2

~

I

5

3~

(See Note 1)

....

2

0.0 I
0.1

0.2

0.5

1.0

2.0

5.0

10

20

50

t TIME (1M)

3-18

100

200

500

1000

2000

SOOO

10,000

1N3899 thru 1 N3903, MR1386

SINE WAVE INPUT

SQUARE WAVE INPUT
FIGURE 5 - FORWARD POWER DISSIPATION

FIGURE 4 - FORWARD POWER DISSIPATION
32

/

I

r---.IIPKI = 20
IIAVI
10

/

J

I

/

V

5.0

!/
2

V

/

.!.

-

/

0

/ ' /"

V /

/

0

/'

0

/"

~~

1:9'

o

16

4.0

"

I""

H

~
I-

B
~

5·r

R
12

t-

~
~

IIPKI=20
w 8.0 I-- f- -IIAVI

'"ffi

H

'--

r0

"

-

,....., I

o

'i
...........
I -

J

i

80

90

I
I

100

B

110

~

''''
""-' 0..

120

~

w

,

~~
~
130

140

150

~

""""- ,

I-i
f-

16

I-

2.0+5?'
I
10
IIPKI =;0
IIAVI

12 - ,

8.0

'"ffi

~

,

f-

~

,,~

-........:

-CA~ACITIVEI LOADS

;:e 4.0 H

~

;;:

~

""-.. "'-

10-

-

-

I-

-

f- -CAP1CITIVE

II

' \ . de

'\.
\

.........

...........

"0-. \
r---,." :\.\

~

~OAOS

H
0 L.-

o

90

80

100

,,

~~

4.0

110

120

130

140

ISO

TC. CASE TEMPERATURE lOCI

TC. CASE TEMPERATURE lOCI

FIGURE 9 - NORMALIZED REVERSE CURRENT

FIGURE B - TVPICAL REVERSE CURRENT
10 I

104
FT. .

,,~

r-- 112!
E

;101

!==1= VR = 100 V

f= 1=

*

/'

0

~

ioc

10 2

10 1

20

16

FIGURE 7 - CURRENT DERATING

RESISTIVE·INDUCTIVE
LOAD
-

"

12

8.0

20 r-

l-

~ 16 t-

de

IFIAVI. AVERAGE FORWARD CURRENT IAMPI

FIGURE 6 - CURRENT DERATING
20

./

Iltl-2.~

~ Ii""'"

20

IFIAVI. AVERAGE FORWARD CURRENT IAMPI

D:'

17

1/

V 0 ~ C-/~ ~ :;....-'\
2!Q./~ ~

0
12

B.O

4.0

""7

7

/" t>.::: V

/

0

~

o/

/

5.0...,

0

/ l/.: ~

0

LOAD~

CAP!CITIVJ
I
IIPK) = 20
IIAVI
10

./

I

2

V

i== !=
,nO
100

400
200
300
500
VR. REVERSE VOLTAGE IVOLTSI

600

10- 3
20

700

3-19

30

40

50

60 70 80 90 100 110 120 130 140 150 160
TJ. JUNCTION TEMPERATURE lOCI

1N3899 thru 1N3903, MR1386

TYPICAL DYNAMIC CHARACTERISTICS
FIGURE 11 - JUNCTION CAPACITANCE

FIGURE 10 - FORWARO RECOVERY TIME
0
7.oI
:i 5. oI

r-- U~
! 3.Of---- ~tlr Ufr

1===

200
'- TJ= 25'C

0.

~

01---

2.0

V-Vlr= 1.1 V

~

~
~

1.0

~

O.7
O.5

~

O.3

1.0

...... ......

•

2.0

"'"

I'"'-

TJ=25'C

0

:§ 0.2~

o.1

-

0

0

50

5.0
10
20
IF. FORWARD CURRENT lAMP)

20
1.0

100

2.0

5.0

20

10

50

100

VR. REVERSE VOLTAGE IVOLTS)

TYPICAL RECOVERED STORED CHARGE DATA
(Seo Noto 21
FIGURE 12 - T J = 25°C

FIGURE 13 - T J = 75°C

1.0

""

.;;
0.

~

""
G

II

IFM = 20A

o. 5

40 A
~

ffi

O.2

'"t;;

o. 1

Q

2.0

./

ffi

'"~ 0.05

~

~~

~O.O

:~

/

5.0

5

0,5

~

.,

~_> O. 1
~_ 005
'"'" 002

~

lOA
\.

5.0 AI
LOr

10
doldt IAMPI.,)

20

IFM = 20 A
40 A

~ ~V
~ iP"~
Y

2.0

10

"'~

\.
V/

0.0

1.0

3.

50

100

-" 1/

/'

1.0

::7V

v~ 5< ~L.--

0.2

I--

10 A
50A

0

LOA

~ :;...- ......
5.0

20

20

10

50

100

di/dt. IAMPI",)

STORED CHARGE DATA
FIGURE 15 - T J = 150°C

FIGURE 14 - T J = 100°C

2.0

3

IF~ = 20lA

1.0

0.

5 o.5
~

~

>

5

/. /.

o. 2

'"

~

0~

0.0 2
1.0

·~A

~~
2.0

5.0

10

20

./

/'

O. 2

~

:21./

~ f?- ><

Q

"'ffi o. 1
>

lOA

~ 0.0 5

/

o. 5

~

,/

~ k"

o. 1

IFM =JA

0

"'~

8

'"

3

40 A

~

~

0

~

5.0 ~

'"'"

I
50

100

0.05

1.0 A

/~~

0.0 2
1.0

I

~ t:'"
2.0

5.0

10
di/dtIAMP/",)

3-20

'10 A

10 A

20

50

100

1 N3899 thru 1 N3903, MR1386

FIGURE 16 -

JEDEC REVERSE RECOVERY CIRCUIT
RI
LI

RI : 50 Ohms
R2: 250 Ohms
01: lN4723
02' IN4001
03: lN4933
SCRI: MCR729·10

d!idt ADJUST

TI
T2

]:)
120 V·AC
60 Hz

CI:0.5to50~F

C2 ~ 4000~F
L1 : 1.0 - 27 ~H
T1 = Variac Adjusts I(PKI and dl/dt
T2: 1:1
T3= 1:1 (to triggcrcircuitl

II

1:1

CI

03

C2

+

I(PKI ADJUST

OU.T.

02
R2

01
CURRENT
VIEWING
RESISTOR

NOTE 2
Reverse recovery time is the period which elapses from the

di/dt

time that the current. thru a previously forward biased rectifier
diode, passes thru zero going negatively until the reverse current

recovers to a point which is less than 10% peak. reverse current.
Reverse recovery time is a direct function of the forward
current prior to the application of reverse voltage.
For any given rectifier, recovery time is very circuit dependent. Typical and maximum recovery time of all Motorola fast
recovery power rectifiers are rated under a fixed set of conditions
using IF = 1.0 A, VA = 30 V. In order to cover all circuit
conditions, curves are given for typical recovered stored charge
versus commutation di/dt for various levels of forward current

IRM(RECI+----'...

From stored charge curves versus di/dt, recovery time h rr )
and peak reverse recovery current tlRM(REC)) can be closely
approximated using the following formulas:

and for junction temperatures of 25°C, 75°C, 1000C, and
1500C.
To use these curves, it is necessary to know the forward
current level just before commutation, the circuit commutation
di/dt, and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery
rectifiers is shown.

0 11/2
trr = 1.41 x [ _R_
di/dt
.
IRMIREC) = 1.41 x [OR x di/dt] 112

3-21

II

IN3909 thl1l IN3913
MR1396
•

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

lN3911 and MR1396 are
Motorola Preferred Devices

Designers Data Sheet

FAST RECOVERY
POWER RECTIFIERS

STUD MOUNTED
FAST RECOVERY POWER RECTIFIERS
... designed for special applications such as dc power supplies, inverters,
converters, ultrasonic systems, choppers, low RF interference, sonar power
supplies and free wheeling diodes. A complete line of fast recovery rectifiers
having typical recovery time of 150 nanoseconds providing high efficiency
at frequencies to 250 kHz.

•

50-600 VOLTS
30 AMPERES

Designer's Data for "Worst Case" Conditions
The Designers Data sheets permit the design of most circuits entirely from the
information presented. Limit curves - representing boundaries on device characteristics . - are given to facilitate "worst case" design.

MECHANICAL CHARACTERISTICS
CASE: Welded, hermetically sealed

"MAXIMUM RATINGS
Symbol

Rating

1N3909

P"ak Repetitive Reverse Voltage
Working Peak Raverse Voltage
DC Blocking Voltage
Non-Repetitive Peak Reverse
Voltage
RMS Reverse Voltage

1N3910 1N391'

1N3913 MR139S

Unit

Volts

Average Rectified Forward

50

100

200

300

400

600

75

150

250

350

450

650

35

70

140

210

280

420

Volts

30
'FSM

Current (surge applied at rated
load conditions)
Op8f'atingJunction Temperature
Range
Storage Temperature Range

Amp

- - - - - - - 300 - - - - - - -

TJ

-65 to +150

Tstg

-65 to +176

THERMAL CHARACTERISTICS
Characteristic
Tharmal Resistance, Junction to Case

"ELECTRICAL CHARACTERISTICS
Characteristic
Instantaneovs Forward Voltage
(iF "'93 Amp, TJ - tsoOC)
Forward Voltage
!IF - 30 Amp, TC" 2SoC)
Rever.. Current (rated de voltagel TC - 25u C
TC - l00"C

Symbol

Min

YF

-

VF

'R

-

TV.
1.2

M••

Unit

1.5

Volts

1.1

1.4

Volts

10
0.5

25
1.0

.A
mA

Typ

Max

Unit

150
200
1.5

200

"REVERSE RECOVERY CHARACTERISTICS
a.aracterlstic
Reverse Recovery Time
(IF - 1.0 Amp to VR - 30 Vdc, Figure 18)
IIFM .. 36 Amp, dl/dt .. 25 A/lJs, Figure 17)
Reverse Recovery Current
!IF '" 1.0 Amp to VA - 30 Vdc, Figure 161

Symbal
t"

'AMIREC)

Min

-Indlce'" JEDEC Reei.tared Data for 1N3909Sarles.

3-22

400

2.0

FINISH: All external surfaces corrosion
resistant and readily solderable
POLARITY: Cathode to Case

Volts

Amps

10

Current ISingle phase,
resistive load. TC = 1000CI
Non-Repetitive Peak Surge

1N3912

Amp

WEIGHT: 17 Grams (Approximately)
MOUNTING TORQUE: 25 in·lb. max.

1 N3909 thru 1 N3913, MR1396

FIGURE 1 - FORWARO VOL TAGE
50a

TJ·25'C

V

30a

Y

f-'"

/

FIGURE 2 - MAXIMUM SURGE CAPABILITY
100

V

90

~ri:rll:sUrge,I'he :"':1"; I I

I"""--

/' . /
./ 150'C

20a

1/

rN.i

V

III"'

/V

10 a

r\

)--

a

11111

10

I

IIIII

a

2.0

1.0

3.0

5.0

7.0

10

20

30

50

70 100

NUMBER OF CYCLES AT 60 Hz

II

a

....

f\

r\

1---..-i- 1 CYCLE

Of--

a

a

is o!leraled such that TJ :: 150 DC;
VRAM may be applied between
each Cycle of Surge.

r--

NOTE 1

FLIT

a

PPk

a

I--II~

a

TIME

The temperature of the case should be measured uSing a thermocouple placed
on the case al the temperalUre 'eferenu poml fsee Note 3). The thermal mass
connected to the case IS normally large enough so thaI II Will not significantly
respond to heat surges generated mthedlodeasa rasult of pulsed opera tmnonell
steady·statecondltionsareachleved. Usmg the measured valueol TC. the lunctlon
temperature may be determmed by
TJ"TC+ .TJC
where :. TJC IS the tncrease In junctlDn temperature abolle the case temperature
It may be determmed bV:
6 TJC"Ppk 'ROJC 10 + (1 ~O) . rill +tfll +rltpl-rlq)l
where
rlt) = normalized value ottransl8ntthermalr!Slstaneeattime.t.from Frgure
3.I.e ..
r II) .,. Ipl = normahzed value of Iransltnt thermal reSlSlan~ altlme * Ip

2.a

1.a

O.7

a

DUTY CYCLE, 0 = fp/tJ

PEAK POWER. Ppk, JS peak of an
equivalent square power pulse.

To delermlile maxImum juncllon temperature of the dIOde In a given situatIOn,
the tollowing procedure IS recommended.

3. a

o. 5

Ppk

tp

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

4.0

t,

VF, INSTANTANEOUS FORWARO VOLTAGE (VOLTS)

FIGURE 3 - THERMAL RESPONSE

.......

'"

ffi~ffi

1.a

0.5

~~ d. 3

~~

20

~~
wu

.....

---

O. 2

j..--}O. 1

:>2

(SEE NOTE 1)

~~

~~O.O5
.. w 3 _____
~a::O.O

-E

0.0 2
0.0 1
0.1

0.2

0.5

1.0

2.0

5.0

10

20
I, TIME

3-23

50

1m.)

100

200

500

1000

2000

5000

10,000

•

I

1 N3909 thru 1 N3913, MR1396

SQUARE WAVE INPUT

SINE WAVE INPUT
FIGURE 4 - FORWARD POWER DISSIPATION

FIGURE 5 - FORWARD POWER DISSIPATION

50

50
CAPACITIVE LOADS
I tPKI·' _
10
'tAV)
'10

r----r-----

V

',-/
/

5.0

~

//

//

10
0

2.0

o

8.0

4.0

0

16

20

28

14

o ~
4.0
o

32

H

:;
~

...
~

'"
13

!,

I"

14

5.0

~

«
~

~
w
co

10
16 i==

~

...........

~OAO

~"" ~

............... r-..,

8.0

:>
«
if:

y

0

90

100

110

32

...~
~

24

~

==;

~

"

140

TC, CASE TEMPERATURE (OC)

15

«
;;

4

.I

........

2.0~5.0
10
20

8. 0

~ o

o

80

32

28

24

90

' " de

"-

100

'"

f.....""" "'f....."'" \.
~

110

120

130

TC, CASE TEMPERATURE (OC)

~

140

'"

150

FIGURE 9 - NORMALIZED REVERSE CURRENT

FIGURE 8 - TYPICAL REVERSE CURRENT

10 FTJ,'

'tPK) •
'(AV)

f--

-

w

co
~

~~

130

20

'-- ~

CAPACITIVE

f--f----LOADS,

~

16

~

1

=

::;

~

~

"

16

-

~

,--"-' ~

120

0::

13

.........

I(PK). 20 -.......... 1'-..... ........
'tAV)
CAPACITIVE LOAOS

«
>
«

Rd,STIVE

12

/"
de

FIGURE 7 - CURRENT DERATING

FIGURE 6 - CURRENT DERATING
31

./

-:7

IF(AV), AVERAGE FORWARD CURRENT (AMP)

IF(AV), AVERAGE FORWARO CURRENT tAMP)

0::

8.0

7
'7

./~
~

/ 1/
V/ /
/ V/. ~
~V

RESISTlVE·INDUCTIVE LOAO

12

/

/

J

7

17

i7

II

5.0

0

i"""

7

/

'tAV)

V........: ~

/

•

V

/'

,/'

~~

P

./

/

/ /

o

/

~bAPACIT!VE LOAbs

o ~'.'tPK) '2~

~

'0 1

=

"~

VR' 100 V

./1"

0

F=E,nl

,or.

~~

2

10 1

F F

;,-

1

V

~OC

lO- 3
W

100
100

400
200
300
500
VR. REVERSE VOLTAGE (VOLTS)

600

70

3-24

~

•

50

W m ~ ~ ~ 110 lW
TJ, JUNCTION TEMPERATURE to C)

1~

1. 1501W

1 N3909 thru 1 N3913, MR1396

TYPICAL DYNAMIC CHARACTERISTICS
FIGURE 11 - JUNCTION CAPACITANCE

FIGURE 10 - FORWARD RECOVERY TIME
100

10
70

]. 50
w

!

E

I

"lli-

II - - -

~tfr

3.0 I - - -

~ r= TJ' 25°C

!1r

~

V'

2. 0

:ii

10
07

~

O. 5

50

ti

«

"'r-..
30

~

2~

0

;j

..- ..-

03
,; 0

I0
10

O. I
1.0

20

5.0

10

.......... 1-...

z

«

Vfr" 1.1 V

~

TJ" l5 0 e

w
u

,/

>

~

--

50

20

100

20

50

10

50

20

100

VR. REVERSE VOLTAGE IVOl TS)

If. fORWARO CURRENT lAMP)

TYPICAL RECOVERED STORED CHARGE DATA

= 25°C

FIGURE 12 - T J

(SEE NOTE 2)

1.0

-.

".3

l--'fM

20A

40 A

5

w

~

g
2

"

""'
!;;

~ ~ V-

O. I

'"

~

10

'""'
~
"

5

"'~

10 A
~;;:::;

~

1[./Y
10

'-' \

"" ......
50

>

-

0:t>V'"'-

I~--

lOA

"" U 112
5U

20

[11 ilt (AMP

~

20

~

,/

-

~k

00 2
10

"'

~

V

"w
"'w

i,.-

~ uo
" UU

=r·-~-Ar:i=

- - \ . . 50A
10A'--t-

l£e :;;..20

50

10

20

IfM

U-·

100

= 150°C
0

L,/

4d A

5

/

"w

/ ' VV'

1% V

50

~

g

51----

T

20

FIGURE 15 - T J

5

I

10

U

if~ . 20lA
40 A

2

5U

dl/dl. (AMP',LIs)

FIGURE 14 - T J = 100°C

0

1.0 A

~ ::::;. ......

IU

100

50 A

J.!~I

0

V V

/

--

21----·

~ U U5 f----

'-,UA--r
10

/v

~{I

~

50 A

I :

20

-J 2 0 1
40 A

~

0.0

FIGURE 13 - TJ = 75°C
0

50

I

~.

dlldt, lAMP/psI

3-25

lOA

5

c
100

/

.--< !v'hlY P<
/

2

2
IU

1)0 A

-

lOA

//.
~ J:?'
20

I--

50

20

50

100

..

1N3909 thru 1N3913, MR1396

FIGURE 16 -

JEDEC REVERSE RECOVERY CIRCUIT
Rl

Rl =SO Ohm.
RZ =ZSO Ohm.
01 = lN4723
02 = lN4001
03= lN4933
SGRI = MGR729·10
Gl =0.5loS0pF
C2 .4DDDpF

L1
dildl ADJUST

T1

T2

~ II

Cl

12DVAC
60 Hz

1:1

'IPKI ADJUST

D.U.T

02

L1=1.D-27~H

Tl = Vanac Adjusts I(PK) and dildt
T2 = 1:1
T3 = 1;1 (to trigger circuit)

01
CURRENT
VIEWING
RESISTOR

•

NOTE 3
Reverse recovery time is the period which elapses from the
time that the current. thru a previously forward biased rectifier
diode, passesthru zero going negatively until the reverse current
recovers to a point which is less than 10% peak reverse current.
Reverse reoovery time is a direct function of the forward
current prior to the application of reverse voltage.
For any given rectifier. recovery time is very circuit dependent. Typical and maximum recovery time of all Motorola fast
recovery power rectifiers are rated under a fixed set of conditions
using IF = 1.0 A. VR = 30 V. In order to cover all circuit

conditions, curves are given for typical recovered stored charge
versus oommutation di/dt for various levels of forward current
and for junction temperatures of 2s"C, 75°C, l00"C, and

1500c.

di/dt

'RM(RECI+---'IL

From stored charge curves versus di/dt, recovery time h rr )
and peak reverse recovery current URM(REC)) can be closely
approximated using the following formulas:

To use these curves, it is necessary to know the forward
current level just before commutation, the circuit commutation
dildt, and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery
rectifiers is shown.

Q

~ 1/2

t rr =I.41 x [ _R_

di/dt

IRM(RECI

3-26

= 1.41

x [QR' di/dt] 112

MOTOROLA

SEMiCONDUCTOR . . . . . . . . . . . . . . . . . . . . . . . .. .
TECHNICAL DATA

1N4001
thru
1N4007

Axial-Lead
Standard Recovery Rectifiers

1N4004 and 1N4007 are Motorola
Preferred Devices

This data sheet provides information on subminiature size, axial lead mounted rectifiers for
general-purpose low-power applications.

LEAD MOUNTED
RECTIFIERS
50-1000 VOLTS
DIFFUSED JUNCTION

Mechanical Characteristics
Case: Void free, Transfer Molded
Maximum Lead Temperature For Soldering Purposes: 350c C, 3/8" from
case for 10 seconds at 5 Ibs. tension
Finish: All external surfaces are corrosion-resistant, leads are readily solderable
Polarity: Cathode indicated by color band
Weight: 0.33 Grams (approximately)
CASE 59-03
00-41

MAXIMUM RATINGS
Symbol

lN4001

lN4002

lN4003

lN4004

1N400S

1N4006

1N4007

Unit

"Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

50

100

200

400

600

BOO

1000

Volts

'Non-Repetitive Peak Reverse Voltage
(hallwave, single phase, 60 Hz)

VRSM

60

120

240

480

720

1000

1200

Volts

VR(RMS)

35

70

140

2BO

420

560

700

Volts

Rating

"RMS Reverse Voltage
"Average Rectified Forward Current
(single phase, resistive load,
60 Hz, see Figure B, TA = 75C C)

10

1.0

Amp

"Non-Repetitive Peak Surge Current
(surge applied at rate~ load
conditions, see Figure 2)

IFSM

30 (for 1 cycle)

Amp

Operating and Storage Junction
Temperature Range

TJ
Tstg

-65to +125
-65 to +150

cC

*Indlcates JEDEC Registered Data
Preferred devices are Motorola recommended choices for future use and best overall value.

3-27

•

1 N4001 thru 1 N4007

ELECTRICAL CHARACTERISTICS'
Rating

Symbol

Typ

Max

Unit

vF

0.93

1.1

Volts

VF(AV)

-

O.B

Volts

0.05
1.0

10
50

Maximum Instantaneous Forward Voltage Drop
(iF =1.0 Amp, TJ =25°C) Figure 1
Maximum Full-Cycle Average Forward Voltage Drop
(10 = 1.0 Amp, TL =75'C, 1 inch leads)
Maximum Reverse Current (rated dc voltage)
(TJ =25'C)
(TJ = 100'C)
Maximum Full-Cycle Average Reverse Current
(10 = 1.0 Amp, TL = 75'C, 1 inch leads)

•

is:"

::;

:$.

!z
w
a:
a:

ac
a:

~

50
20 TJ = 25'C
10
5.0
2.0 TYPICAL
1.0
0.5

is:"

~

~a:

a
UJ

~

0.2

a
~
~

in

;:5

0.1
0.05
0.02
0.01
0.005

~

0.002

:E

rn

UJ

z

~
~
0.8

1.2

1.6

2.0

2.4

-

IR(AV)

~
~

I'A

IR

2.8

3.2

3.6

I'A

100
70

--

50
30
20

r-r--

f\

1-.

..L
/

-r-.
f\

f\

SURGE APPUED AT NO
LOAD CONDITIONS
TJ = 25'C

-

--

-:-

J+......I..1 CYCLE

10 f- VRRM APPUED AFTER SURGE
Of- - - - TYPICAL FAIWRES

7.

t= --- DESIGN UMITS

~ 5.01.0

4.0

30

2.0

3.0

5.0 7.0

10

20

30

50

70

VJ', INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

NUMBER OF CYCLES

Figure 1. Forward Voltage

Figure 2, Non-Repetitive Surge Capability

~
'>

§.

!z
w
U
u::
u..
w

a

'-'

4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
-0.5
-1.0
-1.5

I
TYPICAL RANGE

....

-2.0

-2.5
0.001

0.005 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20
iJ', INSTANTANEOUS FORWARD CURRENT (AMP)

50

Figure 3_ Forward Voltage Temperature Coefficient

3-28

100

1 N4001 thru 1 N4007

~

~

100
70
!50

=~k

F'
r-

~ ~ 30 f=
~~

-;J~
0'"

~

f3

OUTYCYCLE.O:lpl,
TIME PEAK POWER, Ppk is peak of an
equivalent square power pulse

--l

tl

01' ReJL It1 + I~ + ReJL(lpl- ReJL(ltl I

6TJL - Ppk IReJLH' 0 + (1

r-

10 t=

~:li 5.0 ~

;;;ffi
..:. i!= 3.0

--

ReJL(II: value of Iransient Ihermal resislance at time I, i.e.:
ReJL(I,+I~ : value of ReJL(11 attime', + Ip
ReJL(lpl = value of ReJL(11 altime 1,+lp
ReJL(I~: value of ReJL(11 al end of pulse widlh Ip
ReJL(I,1 = value of ReJL(11 attime I,

......

2.0

..+-r

1.0

...l-n'1111
5.0

3.0

7.0

I I

10

20

I

30

I 11111
50 70

--

L: 1"

I-'"

20 f-- where &TJL = increase in junction temperature above the lead temperature.

E 57.0 f=f::

:i

p

f--

L: 1/2"

L: 1/32"

I

100

200 300
t, TIME (ms)

2000

500 700 1000

3000

5000 7000 10k

20k

30k

Figure 4. Thermal Response
The temperature of the lead should be measured using a thermocouple placed on the lead as close as possible to the tie point.
The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges
generated in the diodes as a result of pulsed operation once steady-state conditio"ns are achieved. Using the measured value
of TL, the junction temperature may be determined by:
TJ = TL + LlTJL.

CURRENT DERATING DATA
80

100%

c:

,....-

10

,....-

o
o

V

/

/

V

LE

70%

z

f-"""

y

80%

C!)

~

:"I'"

90%

§

c:
w
c 50%
c: 40%

,., TYPICAL

1\

,

\

60%

w

tu

::E

30%

if

20%

~

\

\

10%
1/8

1/4

\

0%
O°C

H/8 H/4

3/8
1/2 5/8
3/4 7/8
L, LEAD LENGTH (INCHES)

20°C

Figure 5. Steady-State Thermal Resistance

40°C
60°C
80°C
100°C
LEAD TEMPERATURE (OC)

Figure 6. Parametri(; Derating Curve

NOTE 1

Data shown for thermal resistance Junction-Io-amblent (ROJA) for the mountings
shown IS to be used as typical gUideline values for preliminary engmeerlng or in
case the tie point temperature cannot be measured.

TYPICAL VALUES FOR RaJA IN STILL AIR

rL--j

r-L1

n

MOUNTING METHOD 1

1
2

.

,-"

Jl:~~-~~~
TERMINAL STRIP

VIIIIn/~/H)l4'
PC. BOARD
MOUNTING
METHOD

125°C

MOUNTING METHOD 2
LEAD LENGTH, L (IN.)
1
1/32
3/8
75
85
-

I
I

55

I

3-29

I
I

72

I

85

RaJA
°C/W
°C/W

..

1N4001 thru 1N4007

TYPICAL DYNAMIC CHARACTERISTICS
20

2.0

-~ t

~

w
:::;;

;::
~

1.0 -'Ir

..........
L.-

~

vlr=2.0V
TJ = 25°C

w

~ 0.7

~
a:

12

~

0.3
0.2
0.1

~

7.0

~

5.0

w
~

u
w

a:
a 0.5
a:

10

--

0.2

- I II

l..---"""'"
~

If-"""

i--- I-

0.3

u
w
a:

",

lN4006/7

w
(J)

..... ~

a:
w
>
w
a:

~~01/5

0.5 0.7 1.0
2.0 3.0
If; FORWARD CURRENT (AMP)

30

w

20

z
~
u

10

.s

u

lN4006/7

lN400115........ ,

.........

3.0

TJ = 25°C

........

i'
0.2

0.3

0.5 0.7 1.0
2.0 3.0
IRIIf; DRIVE CURRENT RATIO

5.0 7.0 10

Figure 8. Reverse Recovery Time

--

TJ=25°C

r-

3.0
2.0
0.2

j... 'rr

J'-....

2.0

C3 5.0

1.0
0.1

UL?J

t-.... 0.1 CIW/IN. Typically and 128"CIWIIN MaxImum

ROJ = 18~CIWTypicany and 30a CIW Maximum
The maximum lead temperature may be calculated as follows:
TL=150o-~TJL

Use of the above model permits function 10 lead thermal reslstancll for any

~TJL

mounting configuration 10 be found. For a given total lead length, lowest values
occur when one Side at the rectlfu!f IS brought as close as possIble to the hl'al
Sink Terms In tht: model slgmfy.

can be calculated as shown

In

NOTE 1 or.t may be approxLmated as follows:

6TJl'" AWL· PF; PF may be formulated for sine-wave operation from FLgure 3.

Figure 7. Thermal Circuit Model
(For Heat Conduction Through The Leads)

II

TYPICAL DYNAMIC CHARACTERISTICS

o. 5
~
w

0.3

30

r--V~r=1.L

r--

'"t=

u.

~

..
.

~ O. 2

w

o

It

~

0.07

........

0.05
0.1

z
0
i=
<.>
z

=25 0 C

r--......

10
7.0

;;

,..,
0.2

TJ

'-'

a:

~

r--... :--

U

/

a:

-.;.;;

I-

... V

>

2w

!

.......

Z

/

o. 1

20

w
'-'

TJ=25 0 C

;j 5.0

0.5

1.0

2.0

5.0

10

3.0
1.0

2.0

5.0

10

20

50

VR. REVERSE VOLTAGE (VOLTO'

IF. FORWARD CURRENT (AMP)

Figure 9. Typical Junction Capacitance

Figure 8. Forward Recovery Time

3-35

11lfl

1N4933 thru 1N4937

TYPICAL RECOVERED STORED CHARGED DATA

.,...

1.0
3

w

0.5

.3

1.0

V ""-1--'

g'"'"

O. 5

V-

~

w

~

'"

«

13

~ 0.2

~~

o

t;; O. 1

~
~

,

0.05

§

/.~

g'" 0.02
0.0

~ i""" ~

1~ V
1.0

2.0

=IFM'20A'=f- - - C - ' t-

2.0

~W

O. 1

>

5.0A
1.0 A _. I

10

~

O. 2

/. V

0 5x v

~ V ....
lOA

8

~ 00 5

5.0A

.r.

N/

Cl

I
5.0

V

a:

lOA
\

'FM"201

20

50

100

2.0

5.0

",/dt lAMP/psi

Figure 10. TJ

•

=25°C

IF~ ~ 20lA

.3 1.0
w

~

0.5

~

0

~ 0.2

~

>

0.02
1.0

..../....-

~ k '" :.-- .....

O. 1

8
~ 0.05
.r.
o

10
",/dt, (AMP/psi

Figure 11. TJ

2.0

5

LOA

I.&e ::;:::, .......

00 2
10

lOA
5.0A
~V

1\0 A

l.&e y"""
2.U

5.0

-i

10
",/dt, (AMP/psi

Figure 12. TJ

3-36

20

=100°C

50

100

20

=75°C

50

100

1N4933 thru 1N4937

RECOVERY TIME

.,

115Vac 10k
60Hz
2W

HZ

3U!!
5UW

25W

NON INDUCTIVE

NOTE 3

UNIT
UNDER TEST

CONSTANT
VQlTAGESUPPlY
RIPPLE 3 I1lVnm MAX

J!l

lOW
NON INDUCTIVE

30 Vdc
CONSTANT VOL TAGE

Reverse recovery time IS the period which elapses from the
time that the current, thru a previously forward biased rectifier
diode, passes thru zero gOlOg negatively until the reverse current
recovers to a point which IS less than 10"", peak reverse current.
Reverse recovery time IS a direct function of the forward
current prior 10 the application of reverse voltage.
For any given rectifier, recovery time IS very CITCUIt depend.
ent. TYPical and maximum recovery time of all Motorola fast
recovery power rectifiers are rated under a fixed set of conditions
usmg 'F = 1.0 A, VR = 30 V. In order to cover all CircUit
conditions, curves are given for tYPical recovered stored charge
versus commutation dt/dt for vattous levels of forward current
and for JunctIOn temperatures of 25°C, 7SoC, 100o C, and
1So"C,
To use these curves, It IS necessary to know the forward
current level Just before commutation, the circuit commutation
dl/dt, and the operating Junction temperature. The reverse recovery test current waveform for all Motorola fast recovery
rectifiers is shown .

1 U Adc FROM

.,

C,
1 $IF

o

SUPPlYO-,-·_ _+-___4 _ _ _ _~,:::30::.0::.V....._ __<>
ZUlli ,', HMAX,
DC In 2 kHI

MINIMIZE ALL LEAD LENGTHS
A

TEKTRONIX 54SA. K PLUG IN
PRE AMP. P6000 PROBE OR eGUIVALENT

AI - ADJUSTED FOR I 4!2 8ETWEEN
POINT 2 Of RELAY ANO RECTIFIER

RZ

TEN 1 W, 10 H. 1 ,CARBON CORE
IN PARALLEL

TA - 25 +lgoc FOR RECTIFIER

INDUCTANCE,38pH

Figure 13. Reverse Recovery Circuit

.
,

L1
d! iii ADJUST

T1

CI

1201JVC
1121
60 Hz

I(PKI ADJUST

11

OUT

From stored charge curves versus dt/dt, recovery time !t rr ,
and peak reverse recovery current (/RMIRECII can be closely
approximated uSing the follOWing formulas:

01

RI = 50 Ohms
RZ "250 Ohms

D1 = lN4723
02 = lN4DOl
D3 -1N4934

01

t r , -"

SeRI "MCR729 10

Cl =0510 50iJF

C2

4000JjF

ll" 1 0 - 21!JH

CURRENT
VIEWING
RESISTOR

TI Vdll~L AdlUSh '(PKI ,IUd Ihl!H
12" 1 1
13

1.1

'RMIREC)

(til lngger tlltL!!I)

Figure 14. JEDEC Reverse Recovery Circuit

1(I3~~~
~

~102
~

a:
a:

~
~

1.

TJ=150 DC

•
101

TJ = 100DC
•

'.=

TJ-75 DC

a:

~~

'---1--

~

~I~~~~~~~~~~!J.~~~~~
:.i
- -_===
TJ = 25 DC

: c....:._ -- --'---=

~-:-

WI ~_ _':_---'---J'---..l---'--_:::-__::=_-..J

o

100

200
300
400
500
600
VR. REVERSE VOLTAGE (VOLTS)

Figure 15. Typical Reverse Leakage

3-37

700

a ]

1.41 x [ - ~­

~ 1 41

112

di/dt

x [OR x

dl/d~ 112

II

MOTOROLA

SEMiCONDUCTOR . . . . . . . . . . . . . . . . . . . . . . . ....
TECHNICAL DATA

1N5400
thru
1N5408

Axial-Lead
Standard Recovery Rectifiers

1N5404 and 1N5406 are Motorola
Preferred Devices

Lead mounted standard recovery rectifiers are designed for use in power supplies and
other applications having need of a device with the following features:
•
•
•
•
•

High Current to Small Size
High Surge Current Capability
Low Forward Voltage Drop
Void-Free Economical Plastic Package
Available in Volume Quantities

STANDARD
RECOVERY RECTIFIERS
50-1000 VOLTS
3.0 AMPERE

Mechanical Characteristics

II

Case: Void free, Transfer Molded
Finish: Extemal Leads are Plated, Leads are readily Solderable
Polarity: Indicated by Cathode Band
Weight: 1.1 Grams (Approximately)
Maximum Lead Temperature for Soldering Purposes: 240°C, 1/8" from
case for 10 s at 5.0 lb. tension

MAXIMUM RATINGS
Symbol

1N5400

1N5401

1N5402

1N5404

1N5406

1N5407

1N5408

Unit

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

Rating

VRRM
VRWM
VR

50

100

200

400

600

800

1000

Volts

Non-repetitive Peak Reverse Voltage

VRSM

100

200

300

525

800

1000

1200

Volts

Average Rectified Forward Current
(Single Phase Resistive Load,
1/2" Leads, TL = 105°C)

10

3.0

Amp

Non-repetitive Peak Surge Current
(Surge Applied at Rated Load Conditions)

IFSM

200 (one cycle)

Amp

Operating and Storage Junction
Temperature Range

TJ
Tstg

- 65 to +125
- 65 to +150

°C

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
(PC Board Mount, 112" Leads)

Symbol

Typ

Unit

RaJA

53

°CIW

ELECTRICAL CHARACTERISTICS
Characteristic
"Instantaneous Forward Voltage (1)
(iF 9.4 Amp)

=

Average Reverse Current (1)
DC Reverse Current (Rated dc Voltage, TL

Symbol

Min

Typ

Max

Unit

vF

-

-

1.2

Volts

-

-

500
500

IIA

IR(AV)
IR

=80°C)

-

-

•JEDEC Registered Data.
(1) Measured in a single phase hallwave circuit such as shown in Figure 6.25 of EIA RS·2B2, November 1963. Operated at rated load conditions Tl = 80°C,IO = 3.0 A, Vr = VRWM'
Preferred deVices are Motorola recommended choices lor future use and best overall value.

3-38

1N5400 thru 1N5408

-

I- TJ - 25'C

30
20

f=

10
7.0
5.0
3.0

Ii.

=

TYPICAL

400
fi)

::;;

$

!z
w

200

I:t:
I:t:

JVVL

::::J

U

W

C!l
I:t:

::::J

100
90
80
Li':i
a..
70
::!!; 60
~ 50

 INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

"

~

Figure 1. Forward Voltage

I"

I'...

40
1.0

3.2

HICYCLE

2.0

3.0

5.0 7.0 10
20
NUMBER OF CYCLES

TYPICAL VALUES FOR RaJA IN STILL AIR
1/8

1

1

50

2

58

I
I

1/'
51
59

3

1
1

112

I

61

53

63

'CIW
'CIW

MOUNTING METHOD 2
Vector Push-In Terminals T-28

MOUNTING METHOD 3

p.e. Board with
1-1/2" x 1-1/2" Copper Surface

~
~

r'-i r-'l

l~'
100%

ik"'~
~~g:

"

90%

i'\.

~ 80%

u

~
a:

55

RaJA
'CIW

28

MOUNTING METHOD 1

z

31'

1
1
1

P,C. Board Where Available
Copper Surface area IS small.

C!l

70%

1\

\

60%

w 50%
0

,
1\

a:
w 40%

\

t;:;

::;; 30%


"Values given are for the 1N5818. Power is slightly lower for the
1N5817 because of its lower forward voltage. and higher for the
lN5819.

20

II
""
"
"" """ """"
""" """
"-

~

cr:

Step 1. Find VR(equiv). Read F = 0.65 from Table 1.

Step 4. Find TA(max) from equation (3).
TA(max) = 109 - (80) (0.5) = 69°C.

15

r-:::: t- r:::- ..... ::-::::::::.... /40 30
i'- r-.... ... ~ :-x /
~
",,,,,", l'...""-. ~

:::>

= 10. Input Voltage = 10 V(rms). RaJA =

I(FM)
@ I(AV) = 10 and IF(AV) = 0.5 A.

r-...""-

-

~~

!;;:

EXAMPLE: Find TA(max) for lN5818 operated in a 12-voltdc supply using a bridge circuit with capacitive filter such that IOC = 0.4 A

@ VR =9.2 V and RaJA =80"CIW.
Step 3. Find PF(AV) from Figure 4. "Read PF(AV) = 0.5 W

~"
.......

Figure 1. Maximum Reference Temperature
1N5817

(2).
TR = TJ(max) - RaJAPR(AV)
Substituting equation (2) into equation (1) yields:

3.0

2.0

"'-'

" " ""-""

60

Figures 1. 2. and 3 permit easier use of equation (1) by taking reverse power dissipation and thermal runaway into consideration. The
figures solve for a reference temperature as determined by equation

(IF(AV) = 0.5 A).I(FM)/I(AV)
80°CIW.

/'
80

cr:

fucr:

')f.-...

)-

w

c..

::.

~
w

v 30-'-

~ 23

>-~~ ~' r-.....' r-......
/'~
/'

~

85

~' t'-.
r-.....' I'-.. r--..
r-.....' r-...' ~ r"..
~,
r-.. . ~

"'"

~ t..... ~

.$

~~
754.0

5.0

7.0
10
15
20
VR. De REVERSE VOLTAGE (VOLTS)

40

30

Figure 3. Maximum Reference Temperature
1N5819
Table 1. Values for Factor F
Circuit
Load

Half Wave
Resistive

Full Wave, Bridge

Capacitive'

Resistive

Capacitive

Full Wave, Center Tapped'
Resistive

Sine Wave

0.5

1.3

0.5

0.65

1.0

1.3

Square Wave

0.75

1.5

0.75

0.75

1.5

1.5

~Note that VR(PK) '" 2 0 Vm{PK)

t Use line to center tap voltage for Vm

3-41

t

Capacitive

1N5817 thru 1N5819

~

(.)

.....
w
..,.

80

f?

70

Cl
'"
PEAK POWER. Ppk. IS peak of an

TIME

equivalent square power pulse

~~~re'" Ppk· R9JL {O + (1 - OJ- ~tl + Ipl"" r1lp)- rjttl}

ATJL " the Incrsase In Junction temperature above the lead temperature
r(tl "normalIZed value of transient thermal resIStance at time, 1. from Figure 6. I e.'
T(II '*" tpl "normalized value of transient thermal resistance at time. I, + lp.

0.2

0.5

1.0

2.0

5.0

10

20

50

100

200

500

1.0k

2.0k

5.0k

I, TIME (ms)

Figure 6. Thermal Response

NOTE 2 - MOUNTING DATA
Data shown for thermal resislance junclion-Io-ambient (RaJA) for
Ihe mountings shown is to be used as typical guideline values for preliminary engineering, or in case the tie point temperature cannot be
measured.

Mounllng Method 1
P.C. Board wilh
1-112" x 1-1/2"
copper surface.

Mounting Method 3
P.C. Board with
1-1/2" x 1-1/2"

copper surface.

TYPICAL VALUES FOR RaJA IN STILL AIR
Mounting
Method

1
2
3

Lead Length, L (in)
1/8

1/4

1/2

3/4

52
67

65
80

72
87

85
100

50

RaJA
°C/W
°C/W
°C/W

Mounting Method 2

dt:E!ti

L
~
VECTOR PIN MOUNTING

3-42

BOARD GROUND
PLANE

10k

1N5817 thru 1N5819

NOTE 3 - THERMAL CIRCUIT MODEL
(For heat conduction through the leads)
RSS(K}
TA(K}

Use of the above model permits junction to lead thermal resistance
for any mounting configuration to be found. For a given total lead
length, lowest values occur when one side olthe rectifier is brought as
close as possible to the heatsink. Terms in the model signify:

=-

(Subscripts A and K refer to anode and cathode sides, respectively.)
Values for thermal resistance components are:
RSL = 1OO'ClWlin typically and 120'CIWlin maximum
RSJ = 36'CIW typically and 46'C/W maximum.

TA = Ambient Temperature
TC = Case Temperature
TJ = Junction Temperature
TL = Lead Temperature
RsS = Thermal Resistance, Heatsink to Ambient
RSL = Thermal Resistance, Lead to Heatsink
RSJ = Thermal Resistance, Junction to Case
Po = Power Dissipation
125

I

r-....
! 115 r---..

v
V
~

20

10

!

5.0 =TC=100'C

w 105
Cl
a::
:::J
en 95

/

2.0

~

1.0

-

:l! 85
en

.!:-

-

.........

Rated Load Conditions

25'C

2.0

3.0

5.0 7.0 10
20
NUMBER OF CYCLES

30

40

70 100

Figure 8. Maximum Non-Repetitive Surge Current

0.5

I

I

30
20 - TJ = 125'C

I I

0.3

I

0.2

II


w
a::

0.07

0.1

I--

r- Surge Applied at

75
1.0

0.7

0.03

II

I I I

'""-ex:w

/'

3.0

I

1 Cycle

r--.. ,.....,

f = 60 Hz

::::J

<.)

H

\

--I

. . . . 1'--

r-- r- TL = 70'C

w
a::
a::

,

7.0

a:-

>z

I

J\.J"L

a:-

I

0.2

~

,-

.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 1.1

0.05
0.03

vF, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

,~

25'C

-

o

4.0

8.0

-

.... -

......

0.1

-

- -- -- - --

~ :::100'C

;-::: ~;

-

;....-.: ~-

12

16

20

lN5817 ~
-----lN5818
lN5819

24

=
=

28

32

VR, REVERSE VOLTAGE (VOLTS)

Figure 7. Typical Forward Voltage

Figure 9. Typical Reverse Current

3-43

36

40

1N5817 thru 1N5819

NOTE 4 - HIGH FREQUENCY OPERATION
Since current flow in a Schottky rectifier is the result of majority carrier
conduction, it is notsubjectlo junction diode forward and reverse recoverytransients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consistingof an ideal diode in parallel with a variable capacitance. (See Figure 10.)
Rectification efficiency measurements show that operation will be
satisfactory up to several megahertz. For example, relative waveform
rectification efficiency is approximately 70 percent at 2.0 MHz, e.g., the
ratio of dc power to RMS power in the load is 0.28 at this frequency,
whereas perfect rectification would yield 0.406 for sine wave inputs.
However, in contrast to ordinary junction diodes, the loss in waveform
efficiency is not indicative of power loss: it is simply a result of reverse
current flow through the diode capacitance, which lowers the dc output
voltage.

-

200

i ' ...... l?

LL 100
,g,
w 70

lN5817
,

0

z

;:::
(3

lN5818

50

I

lN5819

~

«
0

I

30

.......

,

........

........

r-....

TJ = 2~oC
f=1.0MHz

<5
20

10
0.4 0.6 0.81.0

2.0
4.0 6.0 8.0 10
VR, REVERSE VOLTAGE (VOLTS)

Figure 10, Typical Capacitance

II

3-44

'"

1"'20

40

lN5820
lNS821
lNS822

MOTOROLA

_ SEMICONDUCTOR
TECHNICAL DATA

•

lN5822Is a
Motorola Preferred Device

Designers Data Sheet
AXIAL LEAD RECTIFIERS
· .. employing the Schottky Barrier principle in a large area metal·to·silicon
power diode. State-of-the·art geometry features epitaxial construction wi ch
oxide passivation and metal overlap contact. Ideally suited for use as rectifiers
in low-voltage, high-frequency inverters, free wheeling diodes, and polarity
protection diodes.
Low Stored Charge, Majority
Extremely Low vF
Carrier Conduction
Low Power Loss/High Efficiency

SCHOTTKY BARRIER
RECTIFIERS
3.0 AMPERES
20, 30,40 VOL TS

•

•
•

Designer's Data for Worst-Case Conditions
The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves-representing boundaries on device characteristics-are given
to facilitate worst-case design.

II

"MAXIMUM RATINGS
Rating

Symbol

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Non-Repetitive Peak Reverse Voltage

RMS Reverse Voltage
Average Rectified Forward Current (2)

VRRM
VRWM
VR
VRSM
VR(RMS)
10

VR(equiv) .. 0.2 VRlde), TL • 95°C
(ROJA • 2SoC/W, P.C. Board

lN5B20
20

lN5B21
30

lN5822
40

Unit

24
14

36
21
3.0

48
28

V
V
A

.

.

Transfer molded plastiC

corrosion-resistant and the terminal

90

TA

85

80

°c

leads are readily solderable

POLARITY . . . . . . . . Cathode indicated by

Rated VRlde), PF(AV)' 0
ROJA • 2SoC/W

polarity band

Non-Repetitive Peak Surge Current
ISurge applied at rated load conditions, half wave, single phase 60 Hz,

IFSM

~80

(for one cyclel ______

A

Operating and Storage Junction
Temperature Range (Reverse
Voltage applied)

TJ, Tstg

Peak Operating Junction Temperature
(Forward Current Applied)

TJ(pk)

~

-65to+125

.

~

.

150

C

DC

"THERMAL CHARACTERISTICS (Note 2)
Characteristic
Thermal Aesistance, Junction to Ambient

*ELECTRICAL CHARACTERISTICS ITL • 25°C unless otherwise noted) (2)
Characteristic
Symbol
lN5821
lN5822
lN5820
Maximum Instantaneous
vF

Unit

V

Forward Voltage (1)

liF • 1.0 Amp)
(iF' 3.0 Amp)
(iF' 9.4 Amp)

MOUNTING POSITIONS . . . . . . . . . . Any
SOLDERING . . . . . . 2200 C 1/16" from cas.
for ten seconds

TL' 75°C)

de Voltage (1)
TL • 25°C
TL • 100°C

MECHANICAL CHARACTERISTICS
CASE. . . . . . . ..

FINISH . . . . . . . . . . . . AIl external surfaces

Mounting, see Note 2)
Ambient Temperature

Maximum Instantaneous
Reverse Current @ Rated

I

V

0.370
0.475
0.850

0.380
0.500
0.900

0.390
0.525
0.950
rnA

;R

2.0
20

2.0
20

2.0
20

(11 Pulse Test: Pulse Width = 300 JJS, Duty Cycle z: 2.0%.
(21 Lead Temperature reference is cathode lead 1/32" from case.
*Indicates JEDEC Registered Data for 1 N5820·22.

3-45

1 N5820 thru 1 N5822
NOTE 1 - DETERMINING MAXIMUM RATINGS
slope in the vicinity of 11So C. The data of Figures 1,2, and 3 is
Reverse power dissipation and the possibility of thermal
based upon dc conditions. For use in common rectifier circuits,
runaway must be considered when operating this rectifier at
Table 1 indicates suggested factors for an equivalent dc voltage
reverse voltages above 0.1 VRWM' Proper derating may be accomto use for conservative design, that is:
plished by use of equation (11.
TAlmax) =TJ(max) -ReJAPF(AV) -ReJAPR(AV)
where T A(max)
T J(max)

(4)
VR(equiv) = V(FM) X F
The factor F is derived by considering the properties of the various
rectifier circuits and the reverse characteristics of Schottky diodes.

(1)

= Maximum allowable ambient temperature
= Maximum allowable junction temperature
(125°C or the temperature at which thermal
runaway occurs, whichever is lowest)

EXAMPLE: Find TA(max) for 1 N5821 operated in a 12·volt
dc supply using a bridge circuit with capacitive filter such that
IOC = 2.0 A (IF(AV) = 1.0 A). I(FM)Ii(AV) = 10,Input Voltage
= 10 V(rms), ReJA = 40 0 CIW.
Step 1. Find VR(equiv)' Read F = 0.65 from Table I,
:. VR (equiv) = (1.41 )(10)(0.65) = 9.2 V.
Step 2. Find TR from Figure 2. Read TR = 108°C
@VR = 9.2 V and ReJA = 40 0 CIW.
Step 3. Find PF(AV) from Figure 6. ""Read PF(AV) = 0.85 W

PF{AV) = Average forward power dissipation
PR(AVJ = Average reverse power dissipation

R6JA

=Junction-to-ambient thermal

resistance

Figures 1,2, and 3 permit easier use of equation (1) by taking

reverse power dissipation and thermal runaway into consideration.
The figures solve for a reference temperature as determined by
equation (2).
(2)
TR = TJ(max) - ReJAPR(AV)
Substituting equation (2) into equation (1) yields:

TA(~ax) = TR - ReJAPF(AV)

II

@

II(FM) = 10 and IF(AV) = 1.0 A.
(AV)

Step 4. Find TA(max) from equation (3l.
TA(max) = 108 - (0.85)(40) = 74°C.

(3)

Inspection of equations (2) and 13) reveals that TR is the
ambient temperature at which thermal runaway occurs or where
T J = 125 0 C, when forward power is zero. The transition from one
boundary condition to the other is evident on the curves of
Figures 1, 2, and 3 as a difference in the rate of change of the

* ·Values given are for the 1 NS821. Power is slightly lower for the
1N5820 because of its lower forward voltage, and higher for the
1 N5822. Variations will be similar for the MBR-prefix devices,
using PF(AV) from Figure 7.

TABLE 1 - VALUES FOR FACTOR F
Full Wava,

Circuit
Load
Sine Wave

Resistive
0.5

,I

Capacitive*

Resistive

1.3

0.5

Square Wave

0.75

I

1.5

0.75

*Note that VRIPK)
FIGURE 1 -

11:1:

ROJA (OCIW) .. 10 ~

>-

50 V 'x

40~

15

I',

Xi'
~

2B

~""-

,"""

~

,

~

'" """"
:-...,:r--- -.......'<

......

~I"'

5

I'

/
RnJA (OCIW) , 10
5

50

...........

5
2B

75
4.0

7.0

1.5

11

MAXIMUM REFERENCE TEMPERATURE
1N5821

ill>w
u

~

'"

/20

RliJA (OCIWI ' IQ

~ ./ j'-..r-- .~
so/ I>< r.....X

~
~"':,

5

>-

4.0

7.0

5.0

FIGURE 4 -

"-..

~

"

B

~,

10
15
20
VR. REVERSE VOLTAGE (VOLTS)

!\.. .......

""",- ~

.......

"

15

20

0

-

5

. roO

1,\

5.0

--

0

40

..........
V
......
............

liB

MAXIMUM
TYPICAL - - -

~

_.

,./

°v

V
~

....--V

~
_.... ~
.-

......

........ '

--

......
-----

.-

...

80th Leads til Heat Sink,_

Equal Lr91h
21B

31B

41B

SIB

L. LEAO LENGTH (INCHES)

3-46

30

,--.or
------

I

5

"'-

30

,

STEADY-STATE THERMAL RESISTANCE

0

" " ''"" "
'\..

""""-

.......... ~

''''''- "'- I'
"'- "b-,.

10

0

10

........ .........

........

VR. REVERSE VOLTAGE (VOLTS)

5

~

""'-

28/

.............;::s...,

,--........

,

K"

40/
5

I 53.0

15,10+
10
B.O

K--';::: ~

I"

. . . . . . . . r--.: :---,i'-r-- . . . . . . . . . . . . . .

~

I\..

5.0

1.3

L

§

'">-

15

t.-.~ ~

40

Capacitive

20

>...""" :""" "- ,
"''.("-I'
L<.. 'f'.. """,,-

1.5

~
5 r-::::::-=:::::~t---

~ 10 5

"""

5.0

;::;:::c--: r::=::tt" ::-.... .......
5

12
5

0.75

w

7.0
10
15
10
VR. REVERSE VOLTAGE (VOLTSI
FIGURE 3 - MAXIMUM REFERENCE TEMPERATURE
1N5B22
4.0

3.0

1.0

::>

"""
~"' "
~ , ""","

","""
i'

5

2.0

,I

Resistive

0.65

FIGURE 2 -

---;:-:-

5

75

J
12.

F::: t:=:::"r-- 1"--'"< ~ /B.O
r--- .......... ~ --- r--- 1'--..'-...... ~
......

5-

,

2.0 VinIPK). fUse line to center tap voltage for Vin.

20

-... ..::::: ;;::::::

5

I Capacitive

MAXIMUM REFERENCE TEMPERATURE
1N582D

12 ~

Full Wav.,
Center Tapped*t

Bridge

HalfWavs

61B

,

7IB

1.0

1 N5820 thru 1 N5822

FIGURE S - THERMAL RESPONSE
1.0

~Ppk
Ppk
DUTY CYCLE· Iplll
O. 5r- ~
PEAK POWER. Ppk. IS peak of an
3t=- r--t1--j
TIME equivalent square power pulse.

...JO O.
..:w
~ ~ O. 2r- ATJL" Ppk. ROJL \D + 11- DI' '(11 + Ipl + '('pl- ,11111
I-where.
d TJl '" the increase In junction temperature above the
o. 1 ~
~Ieadtemperature.
ffi~
~ ,It) :: normalized value of transient thermal resistance
0.05r at time, I. i.e,"
«..:
3 f- *1 + tp) = normalized value of
",...,.

w..:

--

_....

""
::!5

0.0

neeted to the tte point IS normally large enough
so that it will not signrflcanrlY respond 10 heat
surges generated in the diode as a result of pulsed
operation once steady-state conditions are achieved.
Using the measured value of Tl, the junction lem·
peralure mav be dlltermlned by

r--tran~lentthermalresi'ta*

.. a: 0.02f-al Ilmell

+tp,~

J-rT11111

0.0 1
0.2

0.5

I

1.0

2.0

10

5.0

20

50

FIGURE 6 - FORWARD POWER DISSIPATION
1NSB20-22

200

111111
500

1.0k

t ~L ~TJLI
+

20k

I

-

=
=

=
-

I 1I11

5.0k

10 k

20 k

NOTE 3 - APPROXIMATE THERMAL CIRCUIT MODEL

0

in

S
~
z

o

0
D

SlOe Wave

0

~

t:i
c
w

D_

«

"

~(F1'!11

I

0

(AVI

~>

..:
:;
..:

= " tReslstlve load)

./ Z

"'>' ~~ ~

I--

Loads

II

lie

./ '/./

. I .1
Capacilive

~ O. 7
~ O. 5

f

100
I, TIME (ms)

=

I 111111
The temperature of the lead should be measured
uSing a thermocouple placed on the lead as close as
possLble to the tie point The thermal masseOR·

~~

;~

LEAD LENGTH" 114"

V/ ~ ~ square~ave

\5.0
10
20-

./

3
2

./

TJ,125'C
I I

v.-

'l: ~/"

01
0.1

0.5 0.7 10
20
30
02 0.3
IF(AVI, AVERAGE FORWARD CURRENT (AMPI

50

70

10

Use of the above model permIts junction to lead thermal
resistance for any mounting confIguration to be found. For a given
total lead length, lowest values occur when one side of the rectifier
IS brought as close as possible to the heat srnk. Terms in the model
Signify:
TA '" Ambient Temperature
TC == Case Temperature
TL = Lead Temperature
TJ = Junction Temperature
Res = Thermal Resistance, Heat Sink to Ambient
Re L ::: Thermal Resistance, Lead to Heat Sink
ROJ = Thermal Resistance, Junction to Case
Po = Total Power Diss~palion = PF + PR
PF '"' Forward Power Dissipation
PR = Reverse Power Dissipation
(SubSCripts (AI and (KI refer to anode and cathode sides, respec·
tively.) Values for thermal resistance components are:
Ra L= 42 0 C/W/in tYPically and 4So C/W/in maximum
R(JJ = 100 C/W typically and 160 C/W maximum
The maximum lead temperature may be found as follows:
TL' TJ(maxl - ATJL

where .6.TJL

tl.....

Data shown for thermal resistance Junction-to-ambient (ROJA)
for the mountings shown is to be used as typical guideline values
for preliminary engineering, or in case the tie point temperature
cannot be measured.

I

Lead Length, L Iml

1/8
50

2
3

58

1/.
51
59

1/.
53
61
28

3/.
55
63

!--l-l

~I
Mounting Method 2
Vector Push In
Terminals T 28

TYPICAL VALUES FOR ROJA IN STILL AIR

I

ROJL' Po

Mounting Method 1
p.e. Board where
avarlable copper surface
IS small.

NOTE 2 - MOUNTING OATA

Mounting
Method

-=

ROJA
°C/W

~

°crw
°CIW

3-47

Mounting Method 3
P .C. Board With
with 2-1/2" X 2·1/2"

copper surface

~ c-",

JIIc;r:

Board Ground p;ane

1 N5820 thru 1 N5822

FIGURE 8 - TYPICAL FORWARD VOLTAGE
50

II

30

/

20

f- f-TJ -

loooe

V

0:::-'"

t-,..

V

:--

~

0

h . 15°C
Or-160Hz
0

//

0

0

\

If

0

/

'I

0

S'''j
20

10

rI'-r-

r\ A

~~lcVcle

10

\

.............

r\

-- r

:1

Iff

r-

0

:--:--17/

0

•

FIGURE 9 - MAXIMUM NON·REPETITIVE SURGE CURRENT
100

A1'1 ";Rh~1 trad
5.0

30

1.0

eid"}",

10

20

30

50

10 100

NUMBER OF CYCLES

:::::::

25 0 e

FIGURE 10 - TYPICAL REVERSE CURRENT

1

o. 5

o. 3
o. 2

I

I

I

: ..

I

I

-- -- C- t--.

I

I

I

w

'"'"w
~

00 1

0.0 50

.f'.

V

U 100

Since current flow 10 a Schottky rectifier IS the result of
majOrity carrier conduction, it IS not slJbJect to Junction diode
forward and reverse recovery transients due to mmorlty carner
Injection and stored charge. Satisfactory Circuit analysIs work

,,"
I'N5Bf2::!'

70
0.5

may be performed by using a model consistillg of an Ideal diode
in parallel with a variable capaCItance. (See Figure 11.1

07

1.0

20

3.0

5.0 70

10

20

30

VR, REVERSE VOLTAGE (VOLTSI

3-48

lN5823, lN5824
lN5825
MBR5825,H,Hl

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

•

lN5825Is a
Molorola Preferred Device

Designers Data Sheet
SCHOTTKY BARRIER
RECTIFIERS

HOT CARRIER POWER RECTIFIERS
· .. employing the Schottky Barrier principle in a large area metalto-silicon power diode. State-of-the-art geometry features epitaxial
construction with oxide passivation and metal overlap contact.
Idealty suited for use as rectifiers in low-voltage. high-frequency
inverters. free-wheeling diodes. and polarity-protection diodes .

0 Extremely Low vF

•
•

•

Low Stored Charge. Majority
Carrier Conduction
Low Power Lossl High Efficiency

5 AMPERE
20.30.40 VOLTS

"H" & "HI" Version Available
Similar to TX
Processing

Designer's Data for IIWorst Case" Conditions
The DeSigners Data sheets permit the design of most circuits entirely from
the information presented. Limit curves - representing boundaries on
device characteristics - are given to facilitate "worst case" deSign.

'MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage

DC Blocking Voltage

Symbol

1 N5823

1N5824

1N5825
MBR5825H. HI

Unit

VRRM
VRWM
VR

20

30

40

Volts

Non-Repetitive Peak Reverse Voltage

VRsM

24

36

48

Volts

RMs Reverse Voltage

VR(RMs)

14

2t

28

Volts

Average Rectified Forward Current

10

..

VRlequiv)";;; 0.2 VR (dc). TC ~ 75°C
VR(equiv)";;; 0.2 VR (de). TL ~ 80 0 C
ReJA ~ 25°C/W. P.C. Board
Mounting. See Note 3)
Ambient Temperature

15
5.0

..

°C

TA

Rated VR (de). PF(AV) ~ 0
ReJA ~ 25°C/W

65

Non-Repetitive l Peak Surge Current
(Surge applied at rated load conditions,
halfwave. Single phase 60 Hz)

IFsM

Operating and Storage Junction Temperature Range

TJ. Tstg

(Reverse Voltage applied)
Peak Operating Junction Temperature

Amp

TJ(pk)

..
.

60

55

•

500 (for 1 cycle)

.
.

-65 to +125
t50

I

(Forward Current Applied)

Amp

°c
°c

'THERMAL CHARACTERISTICS

Characteristic
Thermal Resistance. Junction to Case

Max

Unit

3.0

°C/W

'ELECTRICAL CHARACTERISTICS ITC = 25°C unless otherwise noted)
Symbol

Characteristic
MaXImum Instantaneous Forward Voltage (1)

lN5824

lN5825
MBR5825H. HI

0.330
0.360
0.470

Maximum Instantaneous Reverse Current
@ rated de Voltage

0.340
0.370
0.490

0.350
0.380
0.520
rnA

iR
10
100

TC = 25°C
TC ~ 1000 C

= 2.0%

Unit

Volts

vF

(IF = 3.0 Amp)
(iF = 5.0 Amp)
(iF ~ 15.7 Amp)

(1) Pulse Test: Pulse W,dth ~ 300 p.s. Duty Cycle

1N5823

10
125

'Indlcales JEDEC RegIstered Data for 1 N5823-1 N5825

3-49

10
150

II

1 N5823, 1 N5824, 1 N5825, MBR5825H, H1

NOTE 1: DETERMINING MAXIMUM RATINGS
3 as a difference In the rate of change of the slope In the vicinity
of 1150 C. The data of Figures 1, 2 and 3 IS based upon dc conditions. For use," common rectifier CircUits, Table I indicates suggested factors for an equivalent dc voltage to use for conservative
deSign; i.e.:

Reverse power dissipation and the POSSibility of thermal runaway
must be considered when operating this rectifier at reverse voltages
above 0.1 V RWM. Proper derating may be accomplished by use
of equation (1):
TA(max) = T J(maxl - ROJA PF(AV) - ROJA PR(AV)
III
where
T Afmax) = MaXimum allowable ambient temperature

VR(equiv) = VIN(PK) x F
(4)
The Factor F IS derived by consld;ning the propertIes of the varIOus
rectifier circuits and the reverse characteristics of Schottky diodes.

T J(max) = Maximumallowable junction temperature
(12SoCor the temperature at which ther~
mal runaway occurs, whichever is lowest),
PFIAV)

Example: Find TA(max) for lN5825 operated in a 12-Volt de
supply using a bridge circuit with capacitive filter such that IDe =
10 A (IF(AV) = 5 A). I(PK)iI(AV) = 10. Input Voltage = 10
V(rms). ROJA = 100 CIW.

Average forward power dissipation

=

PA(AV) = Average reverse power diSSipation

RaJA = Junction-to-ambient thermal reSistance
Figures 1, 2 and 3 permIt easier use of equation (1) by takmg
reverse power dissipation and thermal runaway Into consideration.
The figures solve for a reference temperature as determined by
equation (2):
TR oTJ(max) - ROJAPR(AVI
(2)

Step 1:

Find VR(equiv). Read F 0.65 from Table I :.
VR(eqUlv) = (1.41)110)(0.65) = 9.2 V

Step 2:

Find TR from Figure 3. Read TR = 113°C @ VR =
9.2 V & ROJA = 100 C/W.
Find PF(AV) trom Figure 4. ··Read PF(AV) = 5.5 W

Step 3:

Substituting equation (2) into equation (11 Yields:

II

TA(maxl" TR - R9JA PFIAV)
(3)
Inspection of equations (21 and (31 reveals that TR is the ambient
temperatureatwhich thermal runaway occurs or where TJ = 125°C,
when forward power is zero. The transition from one boundary
condition to the other is evident on the curves of Figures 1. 2 and

Step 4.

0

@IIPK)=10 & IFrAVI = 5 A
I(AV)
Find TA(max) from equation (3). T A(max)
(5.5) = 5SoC.

=

113-(10)

··Value given are for the 1 N5825. Power is slightly lower for the
other units because of their lower forward voltage.

TABLE I - VALUES FOR FACTOR F
Half Wave

Circuit

Load

Resistive

I

Capacitive *

Resistive

I

Capacitive

Resistive

I

Sine Wave
Square Wave

0.5
0.75

I

1.3
1.5

0.5

I

0.65

1.0

I

0.75

1.5

I

0.75

FIGURE 1 - MAXIMUM REFERENCE TEMPERATURE - lN5823
125
70
!L"'-. /5~ 40
r-; :--~ 115
~-.E'30

~~
:-;

'"~

:---..

.
_

95

~

I:

::::--

...... .....

......

"-

....... .......

.....

.....

0

r--

...... r-.
...... :-.....

~

ROJA (oGIWI 70
60 I'.L
50
40
30

~ 65

'V'"

K"

FIGURE 2 - MAXIMUM REFERENCE TEMPERATURE - lN5824

/'

./
~'"
25 20
-)15 10"

3.0

i

I

.........

1""'-.-"""":

" ,""-"
, ", "
..x...
"
",
'"''
....... ""
,/'-/'....

'-...<'r'-.

I

55

~X

I'.. ........

""

...............

15.'-...

4.0
5.0
7.0
10
VR. REVERSE VOLTAGE (VOLTS)

20
VR. REVERSE VOL TAGE (VOLTSI

FIGURE 3 - MAXIMUM REFERENCE TEMPERATURE
lN5825 AND MBR5825H Hl
125

:::::-:: ~

r-;~~

t-

'" ......

......

:--...........

................

i'.

R.JA (OCIW) = 70
60
50

_jO
I

7.0

j7.0,tt
5.0,4.0 3.0

"

r-....

""

I'<
........ ........ ........

........ "r"o...

~........... r-..........
1:>...."'
..........."'V< ~.

I

..A..
/'

25

l'\.
."'\

....... "'""'\ ""'\

~,

~O
5.0

FIGURE 4 - FORWARD POWER DISSIPATION

......... r--..:---. ~

;::-..;; t:--.: r-- ~
;:-...
r-; tr-,.......

55
4.0

1.3
1.5

r-.. i"-.. ......... ..................
r-..
......... ,-......;
r-..r-..

/' X'V r--..

2.0

I

j-:-;:--

..... ......
'"...... -......; .......
......

105 [""'-...;

I

Capacitive

t Use line to center tap voltage for Vin.

·Note that VR(PK)"'2 Vin(PK)

w

Full Wave.
Center Tapped *t

Full Wave. Bridge

~ ~ ~ I'\.
.~ ~ !X
~

t'-<"

"

_, J/"".~ ~ l"20 15 10'"
~

.:--.:

10
15
20
VR. REVERSE VOLTAGE (VOLTS)

....... ~

."' l""'\
LI'\.
t...: l""'\

30

5.0 7.0
IF(AV). AVERAGE FORWARD CURRENT

40

3,50

10

20

1 N5823, 1 N5824, 1 N5825, MBR5825H, H1

THERMAL CHARACTERISTICS
FIGURE 5 - THERMAL RESPONSE
1.0
W

u

z

"'~"

[ii

0.7
0.5
0.3
ZOJC(.) , ROJC • r(l)

~i5 0.2
"",W

"'~

~i

0.1

IIi

I, _

IHm.~~-

DUTY CYCLE. D, 1,/11

JLr[P'k

PEAK POWER, Ppk. IS peak 01 an
~ :5 0.01
p"TIME
equlvalenl square power pulse
1 - 1 1 -1
~ ~ 0.05
AT JC '" Ppk . R.·ue /0 .. (1 - Dl· r(11 + tpl + r(lp!-r(1111
z
003 H+t-tif-+-f--+++H+t-l--1-I---+-1-f-+-H-+t-+- where
~
0-

~

0.02 ~+m~+=t=+++t!:ttt=l=~:::t=l=t+ttt!:=t: A TJC

~ the Increase 10 lunCtion temperature above the case temperature
rll) .:: normalrled value 01 tranSient thermal resistance at lime, I, from Figure 5, i.e.:
r(11 .. Ipl = normaliled value of tranSIent thermal resistance at t,me, 11" tp

I-

0.01
0.5

1.0

2.0

10

5.0

20

100
2DO
I, TIME (m,)

50

500

FLIT

PEAKPDWER.Ppk Ispeak.)tan

TYPICAL VALUES FOR ROJA IN STILL AIR

I'QUlvalent\Quarepowl'1 pulse

TlM[

LEAD LENGTH, L (IN)

To detl'rmmemall'mum )Unctlon temperature (lIthe diode U1 3 given 511ualloll,
IhefoUowrngprocl'dulI!lsll!tOmrnended
The lemprralUn.·ol Ihl.' C.1Se should be 111l!

'"
~
"'"

300

r-..

200

~'"

..........

~

I'--...
..... 1'-

100
1.0

!I

10

~

100"C

1/

...'"

!> 20

...'"
w

l/

30

PrrOf to surge, the rectifier IS operated such

0:

I-"
V V

/

0:

B

1000

f'

5.0

20

10

20

50

100

NUMBER OF CYCLES

~

~

'"53z
...z

..

30

~

2.0

t;

I

FIGURE 9 - TYPICAL REVERSE CURRENT

I

200

:1

100

".siii...

,,:
10

' - - 100"C

.......

20
10

w

5.0

~

--

50

~

B

07

;,...-

~ 2.0

'"
:5
0.3

o

l1

10

04
08
10
12
02
06
VF.INSTANTANEOUS FORWARO VOL TAGE (VOL TS)

14

-

.....
f--- 25"C , /

as
01

- -- --

~ 75"C

'"w

05

02

TJ·125"C

o

40

80

....

-

-

-

-- -

lN5823 - 20 V
lN5B24 - 30 V
-lN5825 - 4U V
MBR5825H, HI - 40 V

12
16
20
24
28
VR, REVERSE VOLTAGE (VOL TS)

32

36

40

FIGURE 10 - CAPACITANCE
2500
2000
1500

r--t--..

f::: ~t---

~
~

....

w
'-'

z

~

'-'
U

NOTE 4 - HIGH FREQUENCY OPERATION

......
~

1000

....

TJ= 25"C

,

IN5823
700

stored charge. Satisfactory cirCUit analysis work may be performed
by using a model consisting of an ideal diode in parallel with a
variable capacitance. (See Figure 10),
Rectification efficiency measurements show that operation will
be satisfactory up to several megahertz. For example. relative
waveform rectIficatIon efficiency IS approximately 70 per cent at
2.0 MHz, e.g., the ratio of dc power to RMS power In the load IS
0.28 at thiS frequency, whereas perfect rectification would Yield
0.406 for slOe wave inputs. However. In contrast to ordinary
junction diodes, the loss to waveform efficiency IS not indicative of
power loss: it is simply a result of reverse current flow through the
diode capacitance, which lowers the dc output voltage.

I-

lN5824

500
IN5823 - 20 V

400

IN5824 -- 40
30 V
V
IN5825
300
250
0.040.06 0.1

Since current flow in a Schottky rectifier is the result of majority
carner conduction. it is not subject to junction diode forward and
reverse recovery transients due to minority carner mjection and

-rrrtrrni

MIB~5m11HlI4fV
0.2

IN5825

;:-..

r"~

I I IIIII

0.4 0.6 1.0
2.0
4.0 6.0
VR. REVERSE VOLTAGE (VOLTS)

10

20

40

3-52

1 N5823, 1 N5824, 1 N5825, MBR5825H, H1

NOTE 5 - HI·REL PROGRAM OPTIONS
PRODUCTION PROCESS,
1. Raw Material
2. Factory Processing

r-

INSPECTION LOT FORMATION
AFTER FINAL ASSEMBLY
OPERATION ISEALlNG)

The 1 N5825 is also available wilh two levels of exIra lest in g
similar 10 "TX" screening and including Group A and B inspectio n
programs. Both the MBR5825H and MBR5825H1 go throug h

1

100% screening consisting of high temperature storage. temper
sture cycling, constant acceleration and hermetic seal testin g
prior to a sample being submitted to Group A and B inspection
After completion of Group B inspection. the MBR5825H is avail
able without additional screening. MBR5825H 1 devices ar e

100% PROCESS CONDITIONING
1. High Temperature Storage

further processed through a high temperature reverse bia s
(HTRB) and forward burn·in. Consult factory for details

2. Temperature Cvcling

3. Constant Acceleration
4. Hermetic Seal (Fine and Gross)

1

•
l

MBR5B25H HOLDING AREA,
100% Group A Test

I

PREPARATION
FOR
DELIVERY

•

•

INSPECTION TESTS

100% POWER CONDITIONING
1. Electrical Test
2. HTRB (160 Hrs Min)
3. Electrical Test (PDA = 10)
4. OC Forward Burn·ln (24 Hrs MinI
5.'ElectricaJ Test (PDA:::: 10)

TO VERIFY LTPD:
Group A
Group B

f4-

(Sample Tests)

I

~

1
REVIEW OF
GROUPS A & B DATA
FOR ACCEPT OR REJECT
Accept
Data

I

j

Accept
Data

•

Ho~~7~~2!~~A' I
100% Group A Test

MECHANICAL CHARACTERISTICS
CASE: Welded. hermetically sealed construction.
FINISH: All external surfaces corrosion-resistant and the terminal leads are readily solderable.

WEIGHT: 2.4 grams (approximately).
POLARITY: Cathode to case.
MOUNTING POSITONS: Any

3-53

I

II
I
I

PREPARATION

FOR
DELIVERY

I

1NS826

MOTOROLA

-

lN5827
lN5828

SEMICONDUCTOR

TECHNICAL DATA

1N5828isa
Motorola Preferred Device

DC!-'tig'ner!'Ol Data Sheet
HOT CARRIER POWER RECTIFIER
. employing the Schottky Barner principle in a large area metal-ta-silicon power

diode, State of the art geometry features epitaxial construction with oXide passivation and metal overlap contact. Ideally sUited for use as rectifiers in low-voltage,
high-frequency Inverters, free wheeling diodes, and polarity protection diodes.
•

Extremelv Low vF

•

low Power Loss/High Efficiency

•

Low Stored Charge, Majonty

•

High Surge Capacity

SCHOTTKY
BARRIER
RECTIFIERS
15 AMPERE

20,30,40 VOLTS

Carrier Conduction

Designer's Data for "Worst Case" Conditions
The Designers

Data sheets permit the design of most circuits entirely from

the Information presented.

Limit curves -

representing boundaries on device char-

acteristics - are given to facititate "worst case" design.

II

"MAXIMUM RATINGS

Rating

Symbol

lN5826

lN5827

lN5828

Unit

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

20

30

40

Volts

Non-Repetitive Peak Reverse Vol tage

VRSM

24

36

48

Volts

Average Rectified Forward Current
VRlequiv) ';;0.2 VRldc). TC = 85 0 C
Ambient Temperature
Rated VRldc). PFIAV)
ROJA =5.0 0 C/W

•

10

95

TA
=

..

15
90

85

Amp

uc

O.

Non-Repetitive Peak Surge Current
IFSM
(surge applied at rated load conditions,
halfwave. single phase. 60 Hz)

500 Ifor 1 cycle) _

_

Operating and Storage Junction
Temperature Range (Reverse
voltage applied)

TJ.Tstg _____ -65 to +125 _ _

Peak Operating Junction Temperature
IForward Current Applied)

TJlpk)

..

150_

Amp

DC

DC

"THERMAL CHARACTERISTICS

Characteristic
Thermal Resistance, Junction to Case
"ELECTRICAL CHARACTERISTICS ITC = 250 C unless otherwise noted.)

Characteristic

Symbol

Maximum Instantaneous Forward
Voltage II)
(iF = 8.0 Amp)
(iF = 15 Amp)
(iF = 47.1 Amp)

vF

Maximum Instantaneous Reverse
Current @ rated de Voltage II)
TC = 10o"C

iR

lN5826

lN5827

lN5828

Unit
Volts

0.380
0.440
0.670

0.400
0.470
0.770

0.420
0.500
0.870

10
75

10
75

10
75

mA

*Indlcates JEDEC Registered Data.
11) Pulse Test: Pulse Width = 300l's. Duty Cycle = 2.0%.

3-54

MECHANICAL CHARACTERISTICS
CASE: Welded. hermetically sealed
FINISH: All external surfaces corrosion
resistant and terminal leads are
readily solderable
POLARITY: Cathode to Case
MOUNTING POSITION: Any
MOUNTING TORQUE: 15 in-Ib max

•

1 N5826 thru 1 N5828

NOTE 1: DETERMINING MAXIMUM RATINGS

Reverse power dissipation and the possibil ity of thermal runavvay
must be considered when operating this rectifier at reverse voltages
above 0.2 VRWM. Proper derating may be accomplished by use
of equation 11):
TAlmax) = TJlmax) -R9JA PFIAV) - R9JA PRIAV)
11)
where
T A(max)

= Maximum

allowable ambient temperature

TJlmax) = Maximumallowablajunction tamperaturel1250C
or the temperature at which thermal runavvBY

a difference in the rata of changa of the slope in the vicinitY

design; i.a.:

VRlequiv) ~ VinIPK) x F
(4)
The Factor F is derived by considering the properties of the various
rectifier circuits and the reverse characteristics of Schottky diodes.
Example:

occurs, whichever is lowest!.

Find T Almax) for 1N5828 oporated in a 12·Volt dc

supply using

a bridge c;rcu it with capacitive filter such that IDC ...

10 A IIFIAV) = 5 A). IIPK)/IIAV) = 20. Input Voltage = 10
Vlrms). R9JA = 5 0 C/W.

PF IA V) = Average forward power dissipation

PR(AV)

3 as

of 116°C. The data of Figure. 1. 2 and 3 i. basad upon dc condi·
tions. For use in common rectifier circuits, Table I indicates suggested factors for an equivalent dc voltage to use for conservative

= Average reverse power dissipation

ROJA = Junction-to-ambient thermal resistance
Figures 1, 2 and 3 permit easier use of equation' 1) by taking
reverse power dissipation and thermal runaway into consideration.

The figures solve for a reference temperature as determined by
equation (2):
(2)
TR =TJlmax) -R9JA PRIAV)

Step 1:

Find VRlequiv)' Read F = 0.65 from Table I :.
VRlequiv) = 11.41)(10)10.65) = 9.18 V
Find TR from Figure 3. Read TR = 121°C @ VR = 9.18
& R9JA = 5 0 CIW
Find PFIAV) from Figure 4.·'Reed PFIAV) = 10 W
IIPK)
@IIAV,20& IFIAV) = 5 A

Step 2:
Step 3:

Substituting equation (2) into equation (1) vields:

TAlma.) = TR - R9JA PFIAV)
(3)
Inspection of equations (2) and (3) reveals that TR is the ambient
temperature at which thermal runaway occurs or where TJ = 125°C,
when forward power is zero. The transition from one boundary
condition to the other is evident on the curves of Figures 1, 2 and

Step 4:

*.

Find TAlma.) from equation (3). TAlmax) = 121-151110)
= 71°C

Value given are for the 1N5828. Power is slightly lower for the
other units because of their lower forward voltage.

TABLE I - VALUES FOR FACTOR F
Circuit
Load

Resistive

Sine Wave
Square Wave

0.5
0.75

I Capacitive·
I
I

1.3
1.5

Resistive
0.5
0.75

I Capacitive
L
I

-

r--.

co

~

~ 105

I"-

t-....

...ill

i'"
...

r--

~X:'O

~ 115 f-

........

........
""- .......

'"r.....

""0..

~
~ 105

,

f""'..

w

"

""

95

"'

85

3.0

4.0

5.0

"'"

1'--.""- ~

" .,J'\. ,,'\.
10

15

"

...

20

115

~-

~

105

"zw

95

--

r-. r- r.:::: r--

"

i"

"'-

w

i'-

I"'"

w
~
w

co

...'"

"""""- 1~
30

ROJA (OelWl = 50' " "

75
4.0

5.0

7.0

,

~

ROJA (OCIW) = 50'

5.0

7.0

""'-.10

I'
I'

4.0

'"

,"", ~
""'-.15\
"

20"30""

'\..
10

.""

"'

10

,""

15

15

'\ '\. I\.
~

""'-

20

FIGURE 4 - FORWARD POWER DISSIPATION

.>:. C\
~" !'.....'
1~ "- "\ "\
"""'-.
."\1 '\. t\. 1\ \

"-

co

"'"

........

.I~ti

~~

i'- i'-.~ ~ r--.,.. . . . . .

i"'--

.........

85

!
K'X7.O-

r-.;r-- ::::--........""""""'< ~5.0

VR, REVERSE VOLTAGE (VOLTS)

FIGURE 3 - MAXIMUM REFERENCE TEMPERATURE - lN5828
125
1.5
><..3.5
G
:>

1.3
1.5

i'-

30

\..
40

VR. REVERSE VOLTAGE (VOLTS)

iF{AV). AVERAGE FORWARO CURRENT (AMP)

• No external heat sink.

3-55

II
I

Capacitive

--

95

75
3.0

VR. REVERSE VOLTAGE (VOLTS)

~

:--

w

":'\.
\"'-"'1'-.. "- '\..

7.0

~

~ ..........
.......
..... r--,

ill...

'" i
'"

"-~

3D"-

t',.

ROJA IOCIWI = 50'

75
2.0

3.5-h-

"'" ""'~

.......

1.0
1.5

I
I
I

FIGURE 2 - MAXIMUM REFERENCE TEMPERATURE -1N5827
115
1.5
3.5

r- ~1.5

.....;;: ::--: ...... ~...c.o

I ' ...... ........ ........

.........

0.65
0.75

-

r.::::: t- ~ t--

115

Resistive

*tUse line to center tap voltage for Vin.

'Note that VR IPK) "" 2 Vin(PK)
FIGURE 1 - MAXIMUM REFERENCE TEMPERATURE - 1N5826
115

g

Full Wave,
Center Tapped * t

Full Wave. Bridge

Half Wave

30

1N5826 thru 1N5828

FIGURE 6 - MAXIMUM SURGE CAPABILITY

FIGURE 5 - TYPICAL FORWARO VOLTAGE

-,- ....

200
100
70
50

..

1/

1000C

lO

I

~ 20

~

....

~
a

500

>

lOO

1= 60 Hz

~

r---.. r--.

w



'-'

V
."..

....- i-"'"
!l0.I~~~~
0.07EI
0.05 25

45

65

B5

105

'"
"'w
~

'"

20

c - 100De
....-

10 ~ 75 De

20
10

-

25 De

-

--

- - -' -- ....- .;,-

v

- --

05
02

125

Te. CASE TEMPERATURE (DC)

--

I-"

50

w 5.0

./

w

TJ· moe

100

,/

o

40

B0

12
16
20
24
2B
VR. REVERSE VOLTAGE (VOLTS)

IN5B26 20 V
IN5B27 - 30 V
IN5B2B 40 V
32

36

40

FIGURE 11- CAPACITANCE

2500 rTrn""",=::r,...--'TT'TTTTr-r--,--rT"T"'TTTTT-r-,--r,
NOTE 2 - HIGH FREQUENCY OPERATION

2000 F"!'",,4:I::::-+-i......
-=I'-.I:++-Hf+-+--f-H-i-i-H1+--+--+--H

f::: . . .

Since current flow in a Schottky rectifier IS the result of majority
carrier conduction, it IS not subject to junction diode forward and

1500 H+HHt--t--.:p~2'I-.ctttl"'......
cl-+-t+t+tttt-+--t--H

reverse recovery transients due to minority carrier injection and

~

~ rtmt:J:i:J:n:ntlE::....=!~'~~~INt5BE2i6
:j1=t~
j:

i"

stored charge. Satisfactory circuit analysis work may be performed
by using a model consisting of an ideal diode in parallel with a

1000

variable capacitance. (See Figure 11).
Rectification efficiency measurements show that operation will
be satisfactory up to several megahertz. For example, relative
waveform rectification efficiency IS approximately 70 per cent at
2.0 MHz, e.g., the ratio of de power to RMS power In the load is
0.28 at this frequency. whereas perfect rectification would yield
0.406 for sine wave inputs. However, in contrast to ordinary
junction diodes, the loss In waveform efficiency IS not indicative of
power loss; It IS simply a result of reverse current flow through the
diode capacitance, which lowers the dc output voltage.

~ 700~++Ht~~~+-~++Ht~~~~~~~-+-+~-i
~

H++Ht---iH'-+-I+++ttt-t-1 N5827 -Plld'lId+P'<+-+--H

u

500H++Ht---iHr-+-I+++ttt---i~---irt-i-~~~~--i-1

H+++H---+-+-+-+H+Itt--i-1--++l--hi'l+I-'~~c--t--i
\N1W, ,~
~~~ t~1~~:::~1::::::~11~~:::1~~~:::~1~11JIL~U~:::~1~~

400

0.040.06 0 I

0.2

0.4 0.6 1.0
20
4.0 6.0
VR. REVERSE VOLTAGE (VOLTS)

10

20

40

3-57

II

MOTOROLA

-

SEMICONDUCTOR
TECHNICAL
DATA

------------1N5829
1N5830
1N5831
MBR5831H,
H1

Designer's Data Sheet

Switchmode Power Rectifiers
... employing the Schottky Barrier principle in a large area metal-to-silicon power
diode. State of the art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage,
high-frequency inverters, free wheeling diodes, and polarity protection diodes.

IN583llsa

- Extremely Low vF
- Low Power Loss/High
- Low Stored Charge, Majority
Efficiency
- High Surge Capacity
Carrier Conduction
- High Reliability Processing Similar to JAN,JTX Processing Available (See Note 3)

Motorola Preferred Device

25 AMPERE
20, 30, 40 VOLTS

MAXIMUM RATINGS

II

Rating

Symbol

*1N5829

*1N5830

*1N5831
MBR5831H,H1

Unit

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

20

30

40

Volts

Nonrepetitive Peak Reverse Voltage VRSM

24

36

48

Average Rectified Forward Current
VR(equiv) .. 0.2 VR(dc),
TC = 85'C

10

Ambient Temperature
Rated VR(dc). PF(AV) = O.
R/IJA = 3.5'C/W

TA

Peak Operating Junction
Temperature
(Foward Current Applied)

90

80

85

'C

IFSM

800 (for 1 cycle)

Amps

TJ. Tstg

-65 to + 125

'C

TJ(pk)

150

'C

Nonrepetitive Peak Surge Current
(surge applied at rated load
conditions. halfwave. single
phase. 60 Hz)
Operating and Storage Junction
Temperature Range
(Reverse voltage applied)

Volts
Amps

25

MECHANICAL
CHARACTERISTICS
CASE: Welded. hermetically
sealed
RNISH: All external surfaces
corrosion resistant and
terminal leads are readily
solderable.
POLARITY: Cathode to Case
MOUNTING POSmON: Any
MOUNTING TORQUE:
15 in-Ib max

THERMAL CHARACTERISTICS
Max

Characteristic

1.75

Thermal Resistance. Junction to Case

ELECTRICAL CHARACTERISTICS (TC = 25'C unless otherwise noted)
Characteristic
Maximum Instantaneous Forward Voltage(1)
(iF = 10 Amps)
(iF = 25 Amps)
(iF = 78.5 Amps)

Symbol

*1N5829

*1N5830

*1N5831
MBR5831H.H1

0.360
0.440
0.720

0.370
0.460
0.770

0.380
0.480
0.820

20
150

20
150

20
150

Voits

vF

Maximum Instantaneous Reverse Current (W Rated de
Voltage(1) (TC = 100'C)

Unit

mA

·Indicates JEDEC Registered Data.
(I) Pulse Test: Pulse Width = 300 p.S. Duty Cycle = 2%.
Deslgne,'s Data for ··Worst case" Conditions - The Designer's Data Sheet permits the design of most circuits entirely from the information presented.
Limit curves - representing boundaries on device characteristics - are given to facilitate "worst case" design.

3-58

1N5829, 1 N5830, 1 N5831 , MBR5831 H, H1

NOTE 1: DETERMINING MAXIMUM RATINGS
Reverse power dissipation and the possibility of thermal
runaway must be considered when operating this rectifier at reverse voltages above 0.2 VRWM. Proper derating
may be accomplished by use of equation (1):

The data of Figures 1, 2 and 3 is based upon dc conditions.
For use in common rectifier circuits, Table 1 indicates
suggested factors for an equivalent dc voltage to use for
conservative design; i.e.:

TA(max) = TJ(max) - ROJA PF(AV) - ROJA PR(AV) (1)
where
Maximum allowable ambient
TA(max)
temperature
Maximum allowable junction
TJ(max)
temperature (125°C or the temperature
at which thermal runaway occurs,
whichever is lowest).
Average forward power dissipation
PF(AV)
Average reverse power dissipation
PR(AV)
Junction-to-ambient thermal resistance
RruC
Figures 1, 2 and 3 permit easier use of equation (1) by
taking reverse power dissipation and thermal runaway
into consideration. The figures solve for a reference temperature as determined by equation (2):

= Vin(PK) x F

VR(equiv)

(4)

The Factor F is derived by considering the properties of
the various rectifier circuits and the reverse characteristics of Schottky diodes.

Example: Find TA(max) for lN5831 operated in a 12-Volt
dc supply using a bridge circuit with capacitive filter such
that IOC = 16 A (IF(AV) = 8 A), I(PK)/I(AV) = 20, Input
Voltage = 10 V(rms), ROJA = 5°CIW.
Step 1: Find VR(equiv). Read F = 0.65 from Table 1
VR(equiv) = (1.41)(10)(0.65) = 9.18 V
Step 2: Find TR from Figure 3. Read TR = 113°C @ VR
= 9.18 & RruA = 5°CIW
Step 3: Find PF(AV) from Figure 4.** Read PF(AV) = 12.8

TR = TJ(max) - ROJA PR(AV)
(2)
Substituting equation (2) into equation 91) yields:

W @.!iE.!Q. = 20 & IF(AV) = 8 A
I(AV)
Step 4: Find TA(max) from equation (3). TA(max) = 113(5) (12.8) = 49°C

TA(max) = TR - RruA PF(AV)
(3)
Inspection of equations (2) and (3) reveals that TR is the
ambient temperature at which thermal runaway occurs
or where TJ = 125°C, when forward power is zero. The
transition from one boundary condition to the other is
evident on the curves of Figures 1, 2 and 3 as a difference
in the rate of change of the slope in the vicinity of 115°C.

**Value given are for the 1N5828. Power is slightly lower
for the other units because of their lower forward
voltage.

Table 1. Values for Factor F

Resistive

Capacitivet

Resistive

Capacitive

Resistive

Sine Wave

0.5

1.3

0.5

0.65

1

1.3

Square Wave

0.75

1.5

0.75

0.75

1.5

1.5

tNote that VR(PK) = 2 Vin(PK)

125
5t:-

-

r-. r-:: ~ t--..

75
2

..........

'"

-- S;:,. .
~ :--.

E
w

I-

.~

~

r---.....
105

,71"\.. "\.. I"\..
~ r......... ['\..,
"~
r..... I"\..~ 10 I'\.. "'- r....."........
"\..
r-..

I=!

.......

I' ~ I"\..

:-.......

5

I'-......

125
115

..........

5

~

.......

.......

R8JA ("CJWI

= sottt "-

r.....

Capacitive

ttUse line to center tape voltage for Vin.

a:

............ r---.....
........

5

Full Wave
Center Tappedtt

Full Wave, Bridge

HalfWava

Circuit
Load

"-

..........

,:-x.:

.........

,).75-

5.........

=>

"- ,5~ "- "\..

20'

3D1'\.

"-"

,

I""
I"\.."-""

10

~

~

"-

"-"20

85

..........

..........

.........

.........

~
~

~
.................... r--................
I'-...~ ~2.5'

"-

""

"\.

1.75

."\..
3.S'\.. '\. !\.

5"\..

, i'-. ),7 '\..

I"-

I'-.
3

VR, REVERSE VOLTAGE (VOLTS)

..........

R8JA (OCIW) = 50ttt"\..

75

15

i'-...
r.........

It
a:

Ii:

I"'--...

..........

95
15
a:
I-

r::::- .........: r--:: ::: .....

........ ...... 1'-..., .............

""

i\.

'"

i\.

\..\..

'\ '\
r..... }: I"\..
~" '\. '\. '\.

3O~0
10

'\. '\..
15
20

VR. REVERSE VOLTAGE (VOLTS)

30

Figure 2. Maximum Reference Temperature -1N5830

Figure 1. Maximum Reference Temperature -1N5829
tttNO EXTERNAL HEAT SINK

3-59

II

1N5829, 1N5830, 1N5831 , MBR5831 H, H1
125

;::::- r-.. r""" ::::::

5b--. f""., r-..
5['--..,

"-

..........

.........

r-..
"-

r-.....

5 ..........

r-.....

.........
........

'"

"
.......

I'

75

-

rr-

"

'

~.5""""

r.......~

1'-.1.75

..... 1'-. ......
......... ;S

...........

I'-...... 10,""

''"" "'"'"
'" '"

"

~5"",

~30 20..........."'"

"-

r\.. "-

"- "-

'\

Figure 3. Maximum Reference Temperature -

30

II

1N5831

25°C

TC

100

£
:;;

S

!Z
~

§

30

I

/

TJ = 125°C

16

r-....

I I

I--

24

28

20

-r-.
............

w

~

.. 300

r-..

r--

~

PRIOR TO SURGE, THE RECTIFIER IS OPERATED SUCH
~ 200 I - - - THATTJ = l00"C; VRRM MAY BE APPLIED
BETWEEN EACH CYCLE OF SURGE
f - 60Hz
I

~

i

IIIII

lop 1

ill

~ 10
fil
z

r-

k-"

....... 1-"

12

g; 500

I

/1

/ ' de

V

V.

............

ffi
a

V V

'(I'

/

'" 20

~

S 700

h

u

;:!:

£
:;;

./

50

....../

./

1000

V

100°C

70

./

SQUARE
WAVE

Figure 4. Forward Power Dissipation

VI-'""

V

1/

/

Y

V V
/' /

/

IFIAV), AVERAGE FORWARD CURRENT lAMP)

/"

I-'""

/

o
o

40

_

7

Y;A

/

/

1/ V V. ~
A"-: l?-:.: ;:;:::::: I---"'"

r"\

"

300
200

10

I
1/ /

f'.. "r\. I".. "'\

7
10
15
20
VR, REVERSE VOLTAGE IVOLTS)

IIINO EXTERNAL HEAT SINK.

SINE WAVE
5 RESISnVE I~A~

I
II

...... "-

........... 7 51 ' "

_RBJA
IOCiW) = 50ttt "4

'I'-... .............

......

==t

SINE WAVE
CAPACITIVE
LOADS
I-- __ IIPK) = 20
I-- -IIAV)
I--

t-:::::- ......

/

5

10

50

20

I

100

NUMBER OF CYCLES

Figure 6. Maximum Surge Capability

7

.!?

£

28

~

24

g§

a

20

51

16

!Z

I

if2
w

'"ffi

0.7
0.5
0.3

o

0.2

0.4

0.6

0.8

1

1.2

1.4

vF, INSTANTANEOUS FORWARD VOLTAGE IVOLTS)

12

...........
~

.......

~

-

r--.......

- I--

'"
~

.....r\.

de, CONTINUOUS
IMAX loe = 39.3 A)
SINE WAVE,
RESISTIVE LOAD

"- K

I::<
i""--.. --.::::

r-....

~ .'§.

'"':>.

......"

Figure 7. Current Darating

3-60

./'

SQUARE
WAVE·

.'\.
\.

,
'"

B) - - SINE WAVE
/ ' ~ .........
.\
)-~
CAPACITIVE ~ = 20 10'" 5
~ ~\
)
~ 4
LOADS IIAV)
~
if:
o CURVES APPLY WHEN REVERSE POWER IS NEGLIGIBLE
85
95
105
115
125
75
TC, CASE TEMPERATURE 1°C)

Figure 5. Typical Forward Voltage

I

'\

"

1 N5829, 1 N5830, 1 N5831 , MBR5831 H, H1

1
0.70
0.50

ct. ~ 0.30
~~

.....

i!= ~ 0.20
~ ~O.10

~ ~ 0.07
~ ~ 0.05

Ppk' ROJC [0 + 11 - 01· 'Itt + tpl + 'Upl - rltlll
A TJC
where
A TJC = THE INCREASE IN JUNCTION TEMPERATURE ABOVE THE CASE TEMPERATURE
rltl = NORMALIZED VALUE OF TRANSIENT THERMAL RESISTANCE AT TIME. T. FROM FIGURE 8. I.E.:
rltl + tpl = NORMALIZED VALUE OF TRANSIENT THERMAL RESISTANCE AT TIME. tt + tp.

ill 0.03
0.02
0.01
0.05

= R6JC' 'ItI

DUTY CYCLE. 0 = tpltl
PEAK POWER. Ppk. IS PEAK OF AN
EOUIVALENT SOUARE POWER PULSE.

tp~Pk
I-- tl---1
TIME

..........

1-0

~

Z6JCltl

........-

O.t

10

0.5

0.2

20

200

100

50

500

2k

1k

5k

t. TIME Imsl

Figure S. Thermal Response

5
~

a!

~

a:

o
z

500

./

I-VR - VRWM

i5

",

3
2
1


u

V'

0.30
0.20

100'C
50 ~

I-

~ 0.70
~ 0.50

i3

~
cr:

V'

65
85
TC. CASE TEMPERATURE I'CI

105

125

--

o

t2

8000
6000
4000

16

20

24

lN5829 20 V
lN5830 30 V=
- - lN5831
40 V
28
32
36
40

VR. REVERSE VOLTAGE IVOLTSI

Fig-ure 9. Normalized Reverse Current

Figure 10. Typical Reverse Current

......

"......

........
........

~ 3000

- 25'C

r--

r--t-t:--- r--"

~

u

~ ~:

r--f::::/It'-

w

"

~

r-..

i'-..

i'-.. .........

I--~""""""
~,~

'" 85
>-

"" ""

,"
""

""- "-

,"

r-....~
1.5

r-.....

r-....

r-...

40~ 30' 2ti'....""4.0
5.0
7.0
10
VR. REVERSE VOLTAGE (VOLTS!

ROJA (OC/W! •

75
2.0

3.0

"

~

'5.0'

'"

10

-

t--

~
r-....

......

"

ROJA(Cj!.

7h
4.0

5.0

r--

"""

I"

"""

"-

f' "

t'-

7.0

-No external heat sink.

~

"-

"-

"" '"

"-

85

5.0

i'"{0

"-

5.0

" 3 0 " 2~5
7.0
10
15
20
VR. REVERSE VOLTAGE (VOLTS!

~

30

FIGURE 4 - FORWARD POWER DISSIPATION
0

~.SINkwAVJ

J

2f

0

/

Z

/

RESIST;VE LOAD

.Jl-

/

0

SI~EWAJE_

/

f--1O

0

"-

30

2.0

'\

r-....

ROJA (OC/W) • 40"-

4.0

Nos

r-...""- "- "-

"-

1.0

/

5.0

!/

.I

/

/
./ ~ V
V......... ~ E:/- ........

/

AQUARE
WAVE

V

V V V
V
/ /. V
-""

/

bL

V

TJ ~

Vdt-

moc

~~

'\, '\

10
15
20
VR. REVERSE VOLTAGE (VOLTS)

"''"""- "'",,,,,-"'" "
""'1'-......'" "'" "
", ""-"- "-""- '"-" ~
"
',,-

I(PK! •
I(AV!

3.0

~~~r--..
30

I"-

,

.........

CAPACITIVE LOAO

"

""-

1.3
1.5

I

r---r-.......-"""':::::: ~
........ r-.!.O
I"-... ",r-.

........... ..........

0

"- i',. 1"-1~1.5
"
"""
'"""- ~I'\r'\
" ~r;;'{·o

r--..............

""

'" I'."'"

5

'"

r-..

.........

........... l'-.

Capacitive

.......

75
3.0

20

r--....-"::::::: 1::---...- r-......
..........

95

>-

FIGURE 3 - MAXIMUM REFERENCE TEMPERATURE - 1N5834
12 5

..... r--. l""- I'--I'--. I'-- I"'"--

I
I

r-:: ..:::- r-;::: t---:. r-.....

'-

w

"\.10

~

""- 15

1.0
1.5

{2)Use line to center tap voltage for Vin.

........

'-

Resistive

0.65
0.75

FIGURE 2 - MAXIMUM REFERENCE TEMPERATURE -1N5833
125

, ""'"" , ,"- ,,,,,- "'~
"",
"""""
'"
"",
........

r-...... ........

"-

95

'-.... :-- r-....

r- ....... -..:

Capacitive

I

111 Note that VRIPK) ""2 VinlPKI
FIGURE 1 - MAXIMUM REFERENCE TEMPERATURE -lN5832
12 5

~
5::-::
~11

I
I

0.5
0.75

1.5

I

Full Wav.,
Center Tapped (1).(2)

Full Wave, Bridge

0
40

B.O

16

24

32

IF(AV!. AVERAGE FORWARQ CURRENT (AMP!

3-64

40

1 N5832 thru 1 N5834

FIGURE 5 - TYPICAL FORWARD VOLTAGE

FIGURE 6 - MAXIMUM SURGE CAPABILITY

300

,.- 10-

200

./

100

Tr 25'C

V
V
100'C

0

--

.."

1000

~

500

~
'"'"

-I

~

I---.

r--.

Prior to surge, the rectifier is operated suc
that TJ = lODDe; VRRM may be applied
between each cvcle of surge

200

~

/,

0

.........

w

> 300
«

if

I

r-.

i'l

«

0

r--...

....

0

0

.........

700

5

rrm

100
1.0

2.0

I

5.0

I

20
10
NUMBER OF CYCLES

50

100

0
FIGURE 7 - CURRENT DERATING

0

..
~

~ 32r---t---t---~~~~+---~~.t

l

.~

2.0

@~~~r--'--r-~~~~~~-r-.

i'l
~ 24r---+---+---+-~~~+-~~~4--;~

~

1.0

~

~

0.7
0.5
0.3

16~-=~~---1---+~~~~--~~~~~--~

ffi

SINE WAVE. II(PKI
'-+-~".._.p""'~A--l
CAPACITIVE \ 1=20 10 -5.0LOADS
(AVI
--t---jL--jI---f-~N~
CU~VES Ai>PLY W~EN REVERSE POWER IS NEGLIGIBLE

>
«
B.O

_~
o

-

0.4

0.2

O.B

0.6

1.0

1.2

1.4

~k5--~--~B~5--~--t.95'-~~~1t.05~~~711~5~~~~
TC. CASE TEMPERATURE ('CI

'F.INSTANTANEOUS FORWARO VOLTAGE (VOLTSI

FIGURE 8 - THERMAL RESPONSE
W
U

z

«
t:;

iii
0:_
~c

«W
~~
w~

"',.

1.0
O. 7
0.5
0.3
0.2

1-1-

D. I

-

-

_r-

J1:JL
..,

tp

1--11

:: ~ 0.07
~~

0.05

~

0.03

u;

~

.

DUTY CYCLE. 0 = tpltl

TIME

PEAK POWER, Ppk. is peak of an
equivalent square power pulse .

"TJC = Ppk . ROJC 10 + (I - 01· ,(tp tpl + ,(tp) - ,(till
where
t::. TJC =the increase in junction temperature above the case temperature
r(t) = normalized value of transient thermal resistance at time, t, from Figure 8, i.e..
t(tt + tp) '" normalized value of transient thermal resistance at time, lJ + tp.

0.02

-r

IIIII

0.01

0.1

io}citi ~ ROJ~. ,(\1

Pk

0.2

0.5

1.0

2.0

5.0

10

20
50
t.TIME(msl

3-65

100

I
200

I I
"500 "I"
2.0k
1.0k

I5.0k
" I

10k

•

1 N5832 thru 1 N5834

FIGURE 9 - NORMALIZED REVERSE CURRENT

FIGURE 10 - TYPICAL REVERSE CURRENT

5.0

fa

500

/

3.0 I-VR" VRWM

N

V

~ 2.0

~
::>

0.5

ffi

O. 2

~

IC

Ii

•

O. 1
0.07
0.05
25

~

".

~

0

.0

r--

.0

o. S
45

65
85
TC. CASE TEMPERATURE (OC)

105

125

-

--

Or-- tz5!>e

~ 5.0

....... i""""

o

25 0 e

---:;;;

,
.... ""

4.0

8.0

t-

-

-- --- - r--

'-=1-- ...--' .

.... ~

-~ ~~~
1---

....: r'-' r-- ..

'-.
' - - . lN5832: 20V
lN5833 - 30 V
------INS834-40V

12
16
20
24
28
VR. REVERSE VOLTAGE (VOLTSI

32

36

=
~

=
40

FIGURE 11- CAPACITANCE

6000
4000

ffi

r-"'"

BOOO

~3000

.

a

~ 0.3

0

./

-

- - --

t-

1 100 100 e
§ 50 1==

./

IC

~ 1.0
~ 0.1

TJ = 1250 e

200

TJ =25°C

c-,

f""
"""
,......
~

~

w

<..>

~200 0

~'500

!7'

:::~ 1000
BOO

Since current flow in II Schottky rectifier i. the r.sult of majority
carrier conduction, it is not subject to junction diode forward and
reverse recovery transients due to minority carrier injection and
stored charge. Satisfactory circuit analysis work may be performed
by using a model consisting of an ideal diode in parallel with a
.
variable capacitance. (See Figure 11).
Rectification efficiency measurements show that operation will

r--..
~

..

NOTE 2: HIGH FREQUENCY OPERATION

t-

"

lN5tal

600

1~832

r--. 1/

be satisfactory up to several megahertz. For example. relative
waveform rectification efficiency is approximately 70 per cent at

lN5834

I I II I

400
0.040.06 0.1

0.2

0.4 0.6 1.0

2.0

4.0 6.0

VR. REVERSE VOLTAGE (VOLTS)

MECHANICAL CHARACTERISTICS
CASE: Welded. hermetically sealed
FINISH: All external surfaces corrosion
resistant and terminal lead is
readily solderable.
POLARITY: Cathode to Case
MOUNTING POSmON: Any
MOUNTING TORQUE: 25 in-Ib max
SOLDER HEAT: See Note 3

10

20

40

2.0 MHz. e.g •• the ratio of dc power to RMS power in the load is
0.28 at this frequency. whereas perfect rectification would yield
0.406 for sine wave inputs. However. in contrast to ordinary
junction diodes, the 1055 in waveform efficiency is not indicative of
power loss; it is simply a result of reverse current flow through the
diode capacitance, which lowers the dc output voltage.

NOTE 3: SOLDER HEAT
The excellent heat transfer property of the heavy duty copper
anode terminal which transmits heat away from the die requires
that caution be used when attaching wires. Motorola suggests 8
heat sink be clamped between the eyelet and the body during any
soldering operation.

3-66

lN609S
lN6096
5041

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

•

1N6096 and SD41 are
Motorola Preferred Devices

SCHOTTKY BARRIER
RECTIFIERS

SWITCHMODE POWER RECTIFIERS

25 and 30 AMPERES
30 to 45 VOLTS

· .. using the Schottky Barrier principle with a platinum barrier metal.
These state-of-the-art devices have the following features:
• Guardring for Stress Protection
• Low Forward Voltage
• 150'C Operating Junction Temperature Capability
• Guaranteed Reverse Avalanche
• Mounting Torque: 15 in-Ib max

CASE 56-03
D0-203AA
METAL
MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage

DC Blocking Voltage
Average Rectified Forward Current

Symbol
VRRM
VRWM
VR

30

1N6096*

S041

Unit

40

45
35

Volts

45

10

25
TC = 70°C

25
TC = 70°C

TC

105

105

-

°c

IFSM

400

400

600

Amp

IRRM

2.0

2.0

2.0

Amps

(Rated VR)
Case Temperature

1N6095*

30
TC = 105°C

Amps

(Rated VR)
Nonrepetitive Peak Surge Current

(Surge applied at rated load conditions
halfwave, single phase, 60 Hz)
Peak Repetitive Reverse Surge Current

(2.0 "s, 1.0 kHz) See Figure 1O. (1)
TJ, Tstg

-65 to + 125

-65 to + 125

-55 to + 150°C

°C

Peak Operating Junction Temperature
(Forward Current Applied)

TJ(pk)

150

150

150

°c

Voltage Rate of Change
(Rated VR)

dv/dt

-

-

700

V/"s

Symbol

1N6095'

1N6096'

S041

Operating and Storage Junction Temperature Range

THERMAL CHARACTERISTICS

Characteristic
Maximum Thermal Resistance. Junction to Case

ELECTRICAL CHARACTERISTICS
Characteristic

Maximum Instantaneous Forward Vqltage (2)
(iF = 30 Amp, TC =125°C)
(iF = 78.5 Amp, TC = 70°C)

vF

Maximum Instantaneous Reverse Current (2)

-

-

0.55

0.86

0.86

-

iR

250

250

125
@VR = 35V

mA

Ct

6000
VR= 1.0 V

6000
VR =1.0V

2000
VR = 5.0V

pF

(Rated dc Voltage, TC = 125°C)
Capacitance

Unit
Volts

(100 kHz;;' f;;' 1.0 MHz)
·Indicates JEDEC Registered Data.
(1) Not JEDEC requirement. but a Motorola product capability.
(2) Pulse Test: Pulse Width:: 300 pS. Duty Cycle ~ 2.0%

3-67

..
I

1N6095,1N6096,SD41

FIGURE 2 -

RGURE 1 - TYPICAL FORWARD VOLTAGE

v

200

I

100

E
15

30

f-- f-- TJ = 150°C

20

I

/

>-

125°C

/

10

10

'"

II

5.0

10

~

1

.!i=

01

I

25°C

.:.-r-=

25°C
0.01

/

o

I

10

20

600

50

I

1\
in
~ 400 '\
5-

z

c(

2.0

.~

g§

..
!

u

~

> 200

0.7

'";;'i
'"

100

0-

0.3

'" "

lNB095/6



1.0

""-

.............

....... I'--

--

:l; 80

~

o

0.2

0.4

O.B

0.8

1.0

1.2

60
1.0

1.4

I I

1-'- .1
I I I
TJ = 125°C. VRRM may be
applied between each

I\, ~

>-

15

0.2

40

30

FIGURE 3 - MAXIMUM SURGE CAPABILITY

/

z

;!: 3.0

'"

-

75°C

'"
~

/ V

VR. REVERSE VOLTAGE (VOLTS)

'"=>
5l
>0;

-r--

100°C

'"c( 7.0
;:
'"
~

-

~ 150o~

'"
13

/

15

g§
=>
c

100

~

/

5-

u

TJ

/V

II

50

::;;

1000

>-

70

in
0-

TYPICAL REVERSE CURRENT

2.0

3.0

5.0 7.0

10

20

30

r--50

70 100

NUMBER OF CYCLES AT 60 Hz

VF. INSTANTANEOUS FORWARO VOLTAGE IVOlTS)

FIGURE 4 - CAPACITANCE

HIGH FREQUENCY OPERATION

3000

Since current flow in a Schottky rectifier is the result of majority
carrier conduction, it is not subject to junction diode forward and
reverse recovery transients due to minority carrier injection and
stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel
with a variable capacitance. (See Figure 4.)
Rectification efficiency measurements show that operation will
be satisfactory up 10 several megahertz. For example, relative
waveform rectification efficiency is approximately 70 per cent at
2.0 MHz. e.g .• the ratio of de power to RMS power in the load is
0.28 at this frequency. whereas perfect rectification would yield
0.406 for sine wave inputs. However. in contrast to ordinary
junction diodes. the loss in waveform efficieny is not indicative of
power loss; it is simply a result of reverse currentflow through the
diode capacitance. which lowers the de output voltage.

2000

...........

~

,~

~

~

:--

1000

~ :~~
~ 700
u 600

'" "

500
400
300
.05

3-68

0.1

0.2

0.5
1.0
2.0
5.0
VR. REVERSE VOLTAGE (VOLTS)

10

20

"

50

1N6095, 1N6096, 5041

FIGURE 6 - 1 N6095/6 CURRENT DERATING

FIGURE 5 - SD41 CURRENT DERATING

f

in 40

40

~
~ 30r---~---r---+--~--~~~·+

I-

a:
a:

~

~

and Square Wave

i3
c
a:

~ 20r---+---+---4---4---~~~~\+---+---+--~

~

w

:it

= ". (Resistive load)

i'E 301----\------l-----+

a:
=>
u
c
a:

'"""ffi

Rated Reverse Voltage

!1E

5-

20 j:::=t:=-l,.;:~..b-~

w

'"ffi 10~-+--~--t=~~~~~~~

10

:it

'>

1

F""
80

100

120

160

140

100

80

120

160

140

TC. CASE TEMPERATURE (OC)

TC. CASE TEMPERATURE (OC)

II

FIGURE 7 - FORWARD POWER DISSIPATION

25r----r---.,---.----.----r----r---.,---,

f----- (CapaClt.ve load)
20

Ipk

IAv

I

= ~O -:. 10 / 5

/

/

/ / /

Sine Wave and
Square Wave

V/
V

de

15 f----+------jf---/--j,.r/£-/-/..,.v~~V-7""-=+----+------I
10

1------+----j,;~y'%~V/"'_7IF__/__+-+___+____l
~[,0-

"/

1__--1-/"7'/
/'7-4/V~
/~:"--'-+--I-TJ = 125°C - -

~
:it
~

~

5.0 1---~--#W~'/>-4/..t!~:..--.I---+--+--+--+-~

,00

10

20

30

40

IF(AV). AVERAGE FORWARD CURRENT (AMPS)

FIGURE B - THERMAL RESPONSE

1. 0
o. 7

5

.--

3
2
1
~ 0.0 7

~

00 5

I-

00 3

:z::

as


...,

I I

TJ = 150 0 C/
0

II
/

0

75°C

~

en
a:

V

0

-

100°C

>-

1.0

~
a:

/

~

0.1

-

25°C

1/

/

25°C

0.01

o

10

20
30
VR, REVERSE VOLTAGE (VOLTS)

40

50

7. 0

II

5. 0
3. 0

2. 0

I

FIGURE 3 - TYPICAL SURGE CAPABILITY

I

1000

I

in
Q.
700
::;;

~

>- 500

~

a:

1. 0

O. 5

...,
w
'"a:::::>
'"'"

O. 3

~

::::>

O. 7

O. 20

"-

"'-

"'- .......

300

~

Rated load
f = 60

r---r-..

HZ

I'-- r---.

200

1"'-_

~

0.2
0.4
0.6
O.B
1.0
1.2
vF, INSTANTANEOUS FORWARD VOLTAGE (VOlTS)

100

14

10

20

3.0

5.0 7.0

10

20

30

50

70 100

NUMBER OF CYCLES

FIGURE 4 - CAPACITANCE

NOTE 1
HIGH FREQUENCY OPERATION

reverse recovery transients due to minority carrier injection and

stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel
with a variable capacitance. (See Figure 4.)
Rectification efficiency measurements show that operation will
be satisfactory up to several megahertz. For example, relative
waveform rectification efficiency is approximately 70 per cent at

2.0 MHz, e.g .. the ratio of dc power to RMS power in the load is
0.28 at this frequency, whereas perfect rectification would yield
0.406 for sine wave inputs. However, in contrast to ordinary

IIII

5000

Since current flow in a Schottky rectifier is the result of majority
carrier conduction, it is not subject to junction diode forward and
~ 3000

...,
~

. ~ 2000

"

I

................

....... i'-- :-....

Typ

;-...,.,.1"-

<5

"'- r-.... -.......

u

1000

-.......

700

of power loss; it is simply a result of reverse current flow through
the diode capacitance, which lowers the dc output voltage.

.05

1.0

2.0

3.0

5.0 7.0

10

VR, REVERSE VOLTAGE (VOLTS)

3-72

I

Ma.

~

junction diodes, the loss in waveform efficiency is not indicative

I

l,riO'~HZ;;' i;;. :'0 M~Z -+-

20

~

......

30

......
50

1N6097, 1N6098, 5051

FIGURE 5 - CURRENT DERATING
(SD51)

FIGURE 6 - CURRENT DERATING
(1 N6097/1 N6098)

>--

~ 60~---4-----+----4--0::
B
Q

0::

~

401---I---+-o;;:-f"'<;:---+---+~~

~
....
C>

g
~

~

(Capacitive load)

iF
160

050

70

TC. CASE TEMPERATURE (OCI

FIGURE 7 - POWER DISSIPATION

I---

0
0

,

40

130

II

60

Ppk

"
1--11----1

T'ME

DUTY CYCLE, D '" tplll
PEAK POWER. Ppk.IS pl!ak. of an
equivall!ntsquarl!Powtrpulse.

I

To determine maximum Junction temperature of the diode In a given
situation, the following procedure is recommended:
The temperature of the case should be measured uSing a thermocouple
placed on the case. The thermal mass connected to the case IS normally large
enough so thai it will not significantly respond to heat surges generated In
the diode as a result of pulsed operation once stead v-state conditions are
achieved. Using the measured value of T C. the lunction tempera lure may be

TJ =T C + ~ TJC
where .l TC IS the Increase in Junction temperature above the case
temperature. It may be determined by:

determined by:

TJ; 125°C

20

90
TC. CASE TEMPERATURE (OCI

RJL

/ /
/ de50% Duty Cycle
V/
'.!!.k ;20_ / / /
IAV
J / / ./ V
lO_
5 / ) '/L' ' /
'n' / / "" :Pk ; ,,(Resistive loadlAV
//. 0

~V
~

= 20. 10. 5 +---......,f----'~2Sik"""':---_I

NOTE 2

(Capacitive loadl

0

AV

Pk

Square Wave

0

~

..\ TJC= Ppk-R8JCI0+ (1- OI-r(1, +tpl + rltpl- r(t,11 where
rlt! = normalized value of transient thermal resistance at time, t, from
Figure 8. i.e.:
rlt, + tpl = normahzed value of transient thermal resIstance at time t1 + tp'

80

IF(AVI' AVERAGE FORWARO CURRENT (AMPS)

FIGURE 8 - THERMAL RESPONSE

g 1.0
~
~

O. 5

C>

....~

~ O. 2

~

~

fo"'"

...... ~
R8JC(tl = R8JC + r(t)
INote 21

O. I

~

c<

~
i=

0.0 5

>-z

~ 0.0 2.",....

"...... f-""

z

c<

e: 0.0 I
.-:
0.01
'"

0.02

0.05

0.1

0.2

0.5

1.0

2.0
t. TIME (ms)

3-73

5.0

10

20

50

100

200

500

1000

1N6097,1N6098,SD51
FIGURE 9 - SCHOTTKY RECTIFIER
Copper Lead

Barrier Metal

~~~~~~~~!§~r--VIEW A-A

Copper Base

Moly Disk
Guardring

II

Oxide Passivation

Motorola builds quality and reliability into its Schottky Rectifiers.
First is the chip. which has an interface metal between the
platinum-barrier metal and nickel-gold ohmic-contact metal to
eliminate any possible interaction with the barrier. The indicated
guardring prevents dv/dt problems. so snubbers are not mandatory. The guardring elsa operates like a zener to absorb OVllrvoltage transients.
Second is the package. There are molybdenum disks which
closely match the thermal coefficient of expansion of silicon on
each side of the chip. The top copper lead has a stress relief

VIEW A-A

feature which protects the die during assembly. These two
features give the unit the capability of passing stringent thermal
fatigue tests for 5.000 cycles. The top copper./ead provides a low
resistance to current and therefore does not contribute to device
heating; a heat sink should be used when attaching wires.
Third is the redundant electrical testing. The device is tested
before assembly in "sandwich" form. with the chip between the
moly disks. It is tested again after assembly. As part of the final
electrical test. devices are 100% tested for dv/dt at 1.600 VII'S
and reverse avalanche.

FIGURE 10 - TEST CIRCUIT FOR dv/dt
AND REVERSE SURGE CURRENT

VCC

12Vdc

MECHANICAL CHARACTERISTICS
CASE: Welded, hermetically sealed
RNISH: All external surfaces corrosion
resistant and terminal lead is readily

n~2V

-l
--I

100

~

I--

solderable.
POLARITY: Cathode to Case
MOUN11NG POSmON: Any
MOUNnNG TORQUE: 25 in-Ib max
SOLDER HEAT: The excellent heat trans-

2N2222
2.0 Its
1.0kHz
Current
Amplitude
Adjust
0-10 Amps

fer property of the heavy duty copper
anode t~!lrminal which transmits heat
away from the die requires that caution
be used when attaching wires. Motorola
suggests a heat sink be clamped between
the eyelet and the body during any soldering operation.

lOOn
Carbon

3-74

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

MBR150
MBR160

Axial Lead Rectifiers

MBR1601.a
Motorola Preferred Device

· .. employing the Schottky Barrier principle in a large area metal-to-silicon power diode.
State-of-the-art geometry features epitaxial construction with oxide passivation and
metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency
inverters, free wheeling diodes, and polarity protection diodes.
•
•
•
•

SCHOTTKY BARRIER
RECTIFIERS
1 AMPERE
50,60 VOLTS

Low Reverse Current
Low Stored Charge, Majority Carrier Conduction
Low Power Loss/High Efficiency
Highly Stable Oxide Passivated Junction

Mechanical Characteristics:
Case: Void free, transfer molded
Finish: All external surfaces corrosion-resistant and the terminal leads are readily
solderable
Polarity: Cathode indicated by polarity band
. Mounting Positions: Any
Soldering: 220·C 1/16" from case for ten seconds

/

~-

II

PLASTIC

MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
RMS Reverse Voltage
Average Rectified Forward Current (2)
(VR(equiv) .. 0.2 VR(dc), TL = 90·C, ReJA
see Note 3. TA = 55·C)

Symbol

MBR150

MBR160

Unit

VRRM
VRWM
VR

50

60

Volts

VR(RMS)

35

42

Volts

10

1

Amp

Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions, half-wave.
single phase. 60 Hz. TL = 70·C)

IFSM

25 (for one cycle)

Amps

Operating and Storage Junction Temperature Range
(Reverse Voltage applied)

TJ. Tstg

-65 to +150

·C

TJ(pk)

150

·C

= aO·CIW, P.C.

Board Mounting,

Peak Operating Junction Temperature
(Forward Current applied)
THERMAL CHARACTERISTICS (Notes 3 and 4)
Characteristic

Max

Thermal Resistance, Junction to Ambient

80

ELECTRICAL CHARACTERISTICS (TL = 25·C unless otherwise noted) (2)
Characteristic

Symbol

Maximum Instantaneous Forward Voltage (1)
(iF = 0.1 A)
(iF = 1 A)
(iF = 3 A)

vF

Maximum Instantaneous Reverse Current
ITL = 25·C)
(TL = 100·C)

iR

(C"

Max

Unit
Volt

0.550
0.750
1.000

Rated dc Voltage (1)

mA
0.5
5

111 Pulse Test: Pulse Width = 3001'5. Duty Cycle" 2%.
(2) Lead Temperature reference is cathode lead 1132" from case.

3-75

MBR150, MBR160

10
5

0
7
5

12S'C-

--

TJ - 150"7 -

/100'C

V /

/
/

/

i

0.7

ao

0.5

~

f2
~

iil
z

/

1

j

/

V

V

/25'C I-- I--

100'C=:

O. 2

7S'C=

o. 1
~ 0.05

/ /

~

/

/

1
0.5

0.02

.!f. 0.01
0.005

j

2S'S=::=

0.002
0.00 1

o

20
30
40
so
VR. REVERSE VOLTAGE (VOLTSI

10

I

I

I

0.3

II II

~

~

70

*The curves shown are typical for the highest voltage device in the voltage
grouping. Typical reverse current for lower voltage selections can be
estimated from these same curves if VR is sufficientlv below rated VR.

I//

0.2

60

Figure 2. Typical Reverse Current*

II 1/

;5

II

lSO'C

TJ

'~QUAR1-

0.1

.!f.

WAVE~

0.07

//

0.05

/. Vdc

1T

f-!eK ~0-10,
f-IAV

0.03
0.02

1

h

,JtIA ~

o

0.2

0.4

0.6
0.8
1
1.2
VF.INSTANTANEOUS VOLTAGE IVOLTSI

1.4

1.6

"

\

\, ~ V

);: ~

y~ ~

~P
1
2
4
IFIAVI. AVERAGE FORWARD CURRENT IAMPSI

Figure 3. Forward Power Dissipation

Figure 1. Typical Forward Voltage

THERMAL CHARACTERISTICS
i5

1

~a:

O. 7
O.S

~ o.3

I
_

a:

o.

2

i---"

O. 1

;;;' 0.07
~ 0.05
:I:
:: 0.03 -

~

0.02

~

0.0 1
0.1

-

Z8JLIII

= Z8JL' ,III

~k
p
1--11-+1

~1

DUTY CYCLE. 0 =
PEAK POWER. P k. I PEAK OF AN
TIME EQUIVALENT Sd'UARE POWER PULSE.

aTJL Ppk'R8JLlD + II - 01,,111 + Ipl + '1Ipi - 'ltlll
WHERE
a TJL = THE INCREASE IN JUNCTION TEMPERATURE ABOVE THE LEAD TEMPERATURE
,It) = NORMALIZED VALUE OF TRANSIENT THERMAL RESISTANCE AT TIME. I. FROM FIGURE 4. i.e.:
,111 + Ipl = NORMALIZED VALUE OF TRANSIENT THERMAL RESISTANCE AT TIME. 11 + Ip.

z

~

-;-

0.2

O.S

10

20
SO
I. TIME Imol

100

Figure 4. Thermal Response

3-76

200

SOO

lk

2k

Sk

10 k

MBR150, MBR160

~ 0
LEADS ~O HEAT ~INK,
~ Or--r-BOT~ EOUAL
tENGTH
~

z

o

~

=l

ri
z
r;;

/'"

60
MAXIMUM

50
40

/

iii

'"

V

./'"

V

V

TJ ~ 25'C
f ~ 1 MHz

V

0
0
0
0
0

~PICAL

V

~ 30
;;t

~

./

0

in

~

200

.-/
.,./1-""

0

118

'

\

\

\

0

V.:,....- ./'"
20
10

1

0

1/4

318
112
5,8
L, LEAD LENGTH IINCHESI

3,4

20

o

78

10

Figure 5, Steady-State Thermal Resistance

1/4

1/2

3/4

52

65

72

85

'CIW

67

80

87

100

'CIW

~

~

~

m

00

90

100

VR, REVERSE VOLTAGE IVDLTS)

~

~

Mounting Method 2

I

50

............. r-~

~
~

R8JA

2

3

w

Mounting Method 1
P.C. Board with
1-112" x 1-112"
copper surface.

Lead Length, L (in)
1/8

............

Figure 6, Typical Capacitance

NOTE 3 - MOUNTING DATA:
Data shown for thermal resistance junction-to-ambient (ReJA)
for the mounting shown is to be used as a typical guideline
values for preliminary engineering or in case the tie point temperature cannot be measured.
Typical Values for R8JA in Still Air
Mounting
Method

'"

Mounting Method 3
P.C. Board with
1-112" x 1-1/2"
copper surface.
L ~ 3J8"

~JII~
BOARD GROUND
PLANE

-

'CIW
VECTOR PIN MOUNTING

NOTE 4 - THERMAL CIRCUIT MODEL:
(For heat conduction through the leads)
ROSIAI

ROSIKI
TAlK)

-=-

(Subscripts A and K refer to anode and cathode sides, respectively.) Values for thermal resistance components are:
ReL ~ 10D'CIWlin typically and 120'CIWlin maximum.
ReJ ~ 36'CIW typically and 46'CIW maximum.
NOTE 5 - HIGH FREQUENCY OPERATION:
Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier
injection and stored charge. Satisfactory circuit analysis work
may be performed by using a model consisting of an ideal diode
in parallel with a variable capacitance. (See Figure 6.)
Rectification efficiency measurements show that operation
will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximatley 70 percent at 2 MHz, e.g., the ratio of dc power to RMS power in the
load is 0.28 at this frequency, whereas perfect rectification would
yield 0.406 for sine wave inputs. However, in contrast to ordinary
junction diodes, the loss in waveform efficiency is not indicative
of power loss: it is simply a result of reverse current flow through
the diode capacitance, which lowers the de output voltage.

Use of the above model permits junction to lead thermal resistance for any mounting configuration to be found. For a given

total lead length, lowest values occur when one side of the rectifier is brought as close as possible to the heat sink, Terms in
the model signify:
TA ~ Ambient Temperature TC ~ Case Temperature
TL ~ Lead Temperature
TJ ~ Junction Temperature
Res ~ Thermal Resistance, Heat Sink to Ambient
ReL ~ Thermal Resistance, Lead to Heat Sink
ReJ ~ Thermal Resistance, Junction to Case
Po ~ Power Dissipation

3-77

a

MOTOROLA

... SEMICONDUCTOR . . . . . . . . . . . . . . . . . . . . . . . . . ..
TECHNICAL DATA

MBR170
MBR180
MBR190
MBR1100

Axial Lead Rectifiers
· .. employing the Schottky Barrier principle in a large area metal-to-silicon power diode.
State-of-the-art geometry features epitaxial construction with oxide passivation and
metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency
inverters, free wheeling diodes, and polarity protection diodes.

MBR1100ls a
Motorola Preferred Device

• Low Reverse Current
• Low Stored Charge, Majority Carrier Conduction
• Low Power Loss/High Efficiency
• Highly Stable Oxide Passivated Junction
• Guard-Ring for Stress Protection
• Low Forward Voltage
• 150'C Operating Junction Temperature
• High Surge Capacity
Mechanical Characteristics:

II

SCHOTTKY BARRIER
RECTIFIERS
1 AMPERE
70,80,90,100 VOLTS

/

Case: Void free, transfer molded
Finish: All external surfaces corrosion-resistant and the terminal leads are readily
solderable
Polarity: Cathode indicated by polarity band
Mounting Positions: Any
Soldering: 220'C 1/16" from case for ten seconds

CASE 59-04
PLASTIC

MAXIMUM RATINGS
Rating

Symbol

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

Average Rectified Forward Current
(VR(equiv) .. 0.2 VR(dc), R8JA = SO'CfW, P.C. Board Mounting,
see Note 1, TA = 120'C)
Nonrepetitive Peak Surge. Current
(Surge applied at rated load conditions, half-wave, single phase, 60 Hz)
Operating and Storage Junction Temperature Range
Voltage Rate of Change (Rated VR)

MBR170 MBR180 MBR190 MBR1100
70

80

90

100

Unit
Volts

10

1

Amp

IFSM

50

Amps

TJ, Tstg

-6510 +150

'C

dv/dt

10

V/ns

THERMAL CHARACTERISTICS (See Note 2)
Characteristic

Max

Thermal Resistance, Junction to Ambient

See Note 1

ELECTRICAL CHARACTERISTICS (Tl = 25'C unless otherwise noted)
Symbol

Characteristic
Maximum Instantaneous Forward Voltage'
(iF = 1 A, Tl = 25'C)
(iF = 1 A, Tl = 100'C)
Maximum Instantaneous Reverse Current
(Tl = 25'C)
(Tl = 100'C)

(a

Max

Unit
Volt

VF
0.79
0.69
Rated dc Voltage'

mA

iR
0.5
5

'Pulse Test: Pulse Width = 300 ps, Duty Cycle'" 2.0%.

3·78

MBR170, MBR180, MBR190, MBR1100

~

20

~

10

~

5

~

1

~

0.5

a:
:::>
u
o
a:
a:

--.

150°C
100'C
25°C

TJ

/

r-...

/

/

//

lK
400
200o- T J = 150°C
10
40
125°S~ 20
100°C
g§ 10

./

1

4

ffi

2
1

w

V>

:::>

I

@ 0.2

I

G;
~ 0.4
0.2
O. 1

I

z

~ 0.1

;;j

a

0.05

0.04
0.02
0.01 0

;;!;

.!? 0.02

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
vF. INSTANTANEOUS VOLTAGE IVOLTS)

10

Figure 1. Typical Forward Voltage

-

20

I-"

-

r--

- ~

...30
40
50
60
70
VR. REVERSE VOLTAGE IVOLTS)

80

90

100

Figure 2. Typical Reverse Current*
*The curves shown are typical far the highest voltage device in the voltage
grouping. Typical reverse current for lower voltage selections can be
estimated from these same curves if VR is sufficiently below rated VR.

-

1--.."'-

/'

. . . . r-...'"

"- r0

SQUARE WAVE / '

....... ~c

SQUARE WAVE "-

/ ~c
V .,.,..,.,.

~

~~

"\
20

40

,

60
80
100 120 140
TA. AMBIENT TEMPERATURE 1°C)

1

~

b:::;::::: ~
160

1

180

/

/'"

'/

2

Figure 4. Power Dissipation

150

w

zu

5
~

U

100
90
80
70
60
50
40

\

\

" "I\..

TJ = 25°C
trEST = 1 MHz

..........
.............

30

..............

-

t--

20
15

3

4

IFIAV). AVERAGE FORWARD CURRENT lAMPS)

Figure 3. Current Derating
(Mounting method 3 per note 1.)

~

V

10

W

~

40
50
60
M
VR. REVERSE VOLTAGE IVOLTS)

Figure 5. Typical Capacitance

3-79

80

80

~

,/
./

_

-

II

MBR170, MBR180, MBR190, MBR1100

NOTE 1 - MOUNTING DATA:
Data shown for thermal resistance junction-to-ambient (R/lJA)
for the mountings shown is to be used as typical guideline values
for preliminary engineering or in case the tie point temperature
cannot be measured.
Lead Length, L lin)

Mounting
Method

1/8

1/4

1/2

1

52

65

72

85

0c/w

2

67

80

87

100

°CIW

3

50

:~

•

~

~
Mounting Method 2

~

L

TAlK)

-=-

Use of the above model permits junction to lead thermal resistance for any mounting configuration to be found. For a given
total lead length, lowest values occur when one side of the rectifier is brought as close as possible to the heat sink. Terms in
the model signify:
TA = Ambient Temperature TC = Case Temperature
TL = Lead Temperature
TJ = Junction Temperature
Res = Thermal Resistance, Heat Sink to Ambient
ReL = Thermal Resistance, Lead to Heat Sink
ReJ = Thermal Resistance, Junction to Case
Po = Power Dissipation

°CIW

= 31ll"

~JII~
BOARD GROUND
PLANE

ReS(K)

R9JA

Mounting Method 3
P.C. Board with
1-1/2" x 1-1/2"
copper surface.

Mounting Method 1
P.C. Board with
1-1/2" x 1-1/2"
copper surface.

~

ReSIA)

-=- TA(A)

Typical Values for R9JA in Still Air

3/4

NOTE 2 - THERMAL CIRCUIT MODEL:
(For heat conduction through the leads)

(Subscripts A and K refer to anode and cathode sides, respectively.) Values for thermal resistance components are:
ReL = 100°ClWlin typically and 120°ClWlin maximum.
R8J = 36°CIW typically and 46°CIW maximum.

-

NOTE 3 - HIGH FREQUENCY OPERATION:
Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward
and reverse recovery transients due to minority carrier injection
and stored charge. Satisfactory circuit analysis work may be
performed by using a model consisting of an ideal diode in
parallel with a variable capacitance. (See Figure 5.)
Rectification efficiency measurements show that operation
will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 percent at 2.0 MHz, e.g., the ratio of de power to RMS power in the
load is 0.28 at this frequency, whereas perfect rectification would
yield 0.406 for sine wave inputs. However, in contrast to ordinary
junction diodes, the loss in waveform efficiency is not indicative
of power loss: it is simply a result of reverse current flow through
the diode capacitance, which lowers the de output voltage.

VECTOR PIN MOUNTING

3-80

•

MBR320 MBR340
MBR330 MBR350
MBR360

MOTOROLA

SEMICONDUCTOR

TECHNICAL DATA

•

MBR340 and MBR360 are
Motorola Preferred Devices

SCHOTTKY BARRIER
RECTIFIERS

AXIAL LEAD RECTIFIERS

3.0 AMPERES
20,30,40,50,60 VOLTS

· .. employing the Schottky Barrier principle in a large area metal-to-silicon
power diode. State-of-the-art geometry features epitaxial construction with
oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, free wheeling diodes, and
polarity protection diodes.
• Extremely Low vF
• Low Power Loss/High Efficiency
• Highly Stable Oxide Passivated Junction

II

• Low Stored Charge, Majority
Carrier Conduction

CASE 267-03
PLASTIC

MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current
TA = S5"C
(R8JA = 2S"CIW, P.C. Board Mounting,
see Note 3)
Nonrepetitive Peak Surge Current (2)
(Surge applied at rated load conditions, half wave,
single phase SO Hz, TL = 75"C)
Operating and Storage Junction
Temperature Range (Reverse Voltage applied)
Peak Operating Junction Temperature
(Forward Current Applied)

Symbol

MBR320

MBR330

MBR340

MBR350

MBR360

Unit

VRRM
VRWM
VR

20

30

40

50

SO

V

10

3.0

A

IFSM

SO

A

TJ. Tstg

-S5 to 150"C

"C

TJ(pk)

150

"C

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient, (see Note 3. Mounting Method 3)

ELECTRICAL CHARACTERISTICS (TL = 25"C unless otherwise noted )(2)
Characteristic

Symbol

Maximum Instantaneous
Forward Voltage (1)
(iF = 1.0 Amp)
(iF = 3.0 Amp)
(iF = 9.4 Amp)

vF

Maximum Instantaneous
Reverse Current (a Rated
de Voltage (1)
TL = 25"C
TL = 100"C

iR

11) Pulse Test: Pulse Width

=

MBR320

I

MBR330

I

MBR340

MBR350

I

MBR360

Unit
V

0.500
O.SOO
0.S50

O.SOO
0.740
1.0S0
mA

0.60
20

300 p..s, Duty Cycle -:" 2.0%.

(2) Lead Temperature reference is cathode lead 1/32" from case.

3-81

MBR320, MBR330, MBR340, MBR350, MBR360

MBR320. 330 AND 340
FIGURE 2 - TYPICAL REVERSE CURRENT'

FIGURE 1 - TYPICAL FORWARD VOLTAGE
·20

/ V V

/ 'jV

10
7.0

/

/ 1//

II /

I

t

I

I

TJ - 150'C

1.0

/25;C
1t'00'C

1000

75'C
100
1

2 'C

-

1

10

20
30
40
VR REVERSE VOLTAGE (VOLTSI
'The curves shown are typical for the highest voltage
device in the voltage grouping. Typical reverse current
for lower voltage selections can be estimated from
these same curves if VR is sufficiently below rated VR.

II

~

'-'"

l00'C

.....

.;..;..

0.7

~ O. 5

II

0.4
U
0.2
w
O. 1
ffi 0.04
~ 0.02
J!. 0.01
0.004
0.002
0.00 10

I

2.0

~
u

1

/

/1 /

3.0

lSO'C

1
~:~ ,!Z 1.0

/

5.0

Ii

100
40
20
10

I I

~

~ O. 3

I I I

~ O. 2

FIGURE 3 - CURRENT DERATING
(MOUNTING METHOD #3 PER NOTE 3)

I I II

z

;5

10

I I

en

;;::;
.!:? O. 1

~

~ 8.0

0.07

!Z

0.05

!3
6.0
u

0.03

'"~

!l;!
c

" " '" i'...

~ 4.0
w

'"«ffi

0.02

I

0.0 1

LI
~

~

U

U

U

U

MUM

Squar0
Wave

2.0

~

....

U

W

40

vF. INSTANTANEOUS VOLTAGE (VOLTS)

Resistive Load

!EK =

(Capactive Load)-IAV

I~ \. 5.0

Square
Wavy

~

~

~

""

V /'

\

~200

~

"-

~
~

TJ = 150'C

~'~
u80

t.oi~"/

1.0
2.0
3.0
4.0
IF (AVI, AVERAGE FORWARD CURRENT (AMPS)

= 25'C

\

1

t--f--20

TJ

300\

V' . /

' / /'
JV~ '/

'\

'\.

50
50
~
W ~
TA. AMBIENT TEMPERATURE ('C)

500
400

dC/

/

"

dc

'\J

FIGURE 5 - TYPICAL CAPACITANCE

FIGURE 4 - POWER DISSIPATION
2.5

'"

"

70
50
50

5.0

3-82

o

"-

i'-.

10

20
30
VR REVERSE VOLTAGE (VOLTS)

100

40

50

MBR320, MBR330, MBR340, MBR350, MBR360

MBR350 AND 360
FIGURE 7 - TYPICAL REVERSE CURRENT'

FIGURE 6 - TYPICAL FORWARD VOLTAGE
0
TJ

~ ioo·c~ ~5JC_

IV

0

V~ I--

0
10
5. 0

./

2.0
1.0
0.50

~

,g

7, 0

.....

1// /

ac

~

~

~

a:

s-

'II

VI

1.0

7S'C=

0.20
0.1 0
a:
'" 0.05
:::>

I)V

2. 0

loo·C-

u

rl

3.0

~
~
!z
~

~

I

5,0

lS0·C

'The curves shown are typical for the highest voltage
device in the voltage grouping. Typical reverse current
for lower voltage selections can be estimated from
these same curves if VR is sufficiently below rated VR.
2S·C=

0.02
0.01
0.005
0.00 2
0

20
30
40
50
VR. REVERSE VOLTAGE IVOLTS)

10

so

60

0.7

a:

f2 0.5

FIGURE 8 - CURRENT DERATING AMBIENT
(MOUNTING METHOD #3 PER NOTE 3)

U)

:::>

@

:l

~

0.3

5.0

I
I

;;; 0.2
.!?

o. 1

"-

U>

!iE

.....
z 4.0

~

:::>
u

c

3.0

ii:2

2.0

a:

0.07

~

0.05

'\.

0.02

o

:\.dc

1.2

1.4

\
:\.

TJ

~

if'

0.4
0.6
O.B
1.0
vF.INSTANTANEOUS VOLTAGE IVOLTS)

0.2

\

\

'"
'-'
10

'"
'"
~

'"
12
'"=>~
z
....

/

25°C

'"

0.001
0.2

0.6
0.8
0.4
1.0
iF. INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

1.2

o

10

FIGURE 3 - CURRENT DERATING, CASE

~
~

6.0

'"i3

'" 5.0

i12
~

'"
;;:ffi

"'" " "- ,",
180° Square

3.0

e;;~ 7.0
5

ROJC = 3.0 0 C/W

....

40

50

II

"wa~

f'....

o
110

- - ROJA = 16°C/W

.......

=> 5.0

.........

120
130
TC. CASE TEMPERATURE (OC)

",

4.0

12

3.0

~

'"

--

125°C

.--"

S


'"«
;;:
ex:
~
en

I/l '/
I
III

5l 2.0

:2

~

:2

1.0

.~

I

II

3.0

;!;

::>

5l
z
;!;

I

0.4
0.6
0.8
1.0
1.2
VF. INSTANTANEOUS VOLTAGE (VOLTS)

10

0.1

~

0.2

0.4
0.6
0.8
1.0
1.2
vF. INSTANTANEOUS VOLTAGE (VOLTS)

~

I-

ffi 100

ex:
ex:

100°C

1\

::>

.~
.

1.0

u

w

75°C
0.1
2.:;s.

Jt. 0.01

>

-

70

"

.....

50

::

.....

""~

"~

t-.......

30

o

20
10

20
30
VR. REVERSE VOLTAGE (VOLTS)

40

1.0

50

3-91

-

-I-

~

0.001

1.4

~

::;;

ex:

~
ex:

III
FIGURE 4 - MAXIMUM SURGE CAPABILITY

125°C

::>

en

I

I

200

~ TJ -150°C

I-

u
w

I

I
III

1.4

FIGURE 3 - MAXIMUM REVERSE CURRENT

,-

I' /
1/11
'/

0.7

0.2

100

I

/

1.0

0.3

II
0.2

2.0

0.5

I

0.1

3.0

z

en

I

0.2

rll

«

I-

0.7

0.3

III.

5.0

~

.!:f-

0.5

..-g

hV

10

ffi 7.0

I

en

~

/'

/25°C

>--

::>

en

'/

/'

/

VI V

in

~

/,

:;';-OooC . /

~

ffi 7.0

'"~

Jr

20

/

I-

'"'"
«
;;:

/

30

/V';5 0 C

~

'"'"a

/.:

50

/, VI

in
"::;;

'l

70

....- . /

2.0

3.0

5.0 7.0 10
20 30
NUMBER OF CYCLES AT 60 Hz

50

70 100

MBR1035, MBR1045

FIGURE 6 - CURRENT DERATING. R6JA = 16° C/W

FIGURE 5 - CURRENT DERATING. INFINITE HEATSINK

....

in
:;;

20
Rated Voltage Applied

5.

"

I-

a;

0:
0:

15

=>

U

C

0:
c[

IpK
;;: 10 r--.
0:
(Capacitive loadl IAV
~
~

"K

"=5

c[

'"

10

ill 5.0
~

20

~

120

\ . Square Wave

I
~

(!J

~

10

I----t-.......::-=''I-<;~-I-'.....d_/<-__if--+--t_-_l

~

8.0

j;:;;:::::::F:::::::::j:;;~"i,~:;t-"""JR"'--T--I-1

iii~

~ ~c

130
140
TC. CASE TEMPERATURE (OCI

I----t---+---I-~~......~~~.t-->."t_-_l

4.0

~ 2.0
~

150

160

10

9.0

in
....
:;;

Square Wave ~

1// #V
h '/L, ~

/// ~

2.0

5.

I-

a;

o lR
2.0
o

5.0

160

.1

4.0

=>
c

co:

........

c[

~~

1.0

~

~

4.0
6.0
8.0
10
12
14
IF(AVI' AVERAGE FORWARD CURRENT (AMPSI

16

L

-~ ~ ~

c[

:>

I

='II' IR"
eSlstlve loadl1 _

""" """"- 1'-../ s~uare

1'--.." ~

2.0

'"ffi

I

.1

I

IIpK

~ t--..

~

=150°C- I---

_I

I
" AV

3.0

c[

~

!.

Rated Voltage Applred. R6JA =60 0 C/W

..... 1'-.

0:
U

~~

1.0

140

80
100
60
120
TA. AMBIENT TEMPERATURE (OCi

co:

~

TJ

40

20

FIGURE 8 - CURRENT DERATING. FREE AIR

~

~

B

~ 6.0 F==9==f=;;;;;:!::=-~~st---""t

4.0
3.0

~

I----t----"'''''"~-I--+­

~

~

~

12

c

I

I~
Sine ~ave
8.0
Resistive lDad V/ /
7.0 rIpK
(Capacitive loadl I
=5 ~
'.I /
6.0 rAV/
'20 10
V/'/
5.0

is

15

FIGURE 7 - FORWARD POWER DISSIPATION

-

i

en
....
~

~

o

110

II

I
R"ldl
'II' ( eSlstlve oa

~~

~

~

I
IIpK 0
AV I

;!

16r---,---,----,---.----r---,---,---,
Rated Voltage Applied
14f---t---+---t---j---1f---+--t---j

(Capec~ive

o

o

IpK

loadl

20

I

AV

/

=20.

"-

wa!e -

-

"c

•. ~ ~
10. 5
""""IIIiI

40
60
100
120
80
TA. AMBIENT TEMPERATURE (OCI

"\

\.
140

160

FIGURE 9 - THERMAL RESPONSE

~ 1.0

~

:;;
0:

Q

~
~

u

z

c[

I-

0.7
0.5

I.---

0.3
0.2

'"
13
co:

.....- V

0.1
0.07
:;: 0.05

i
I-

g

Ip

0.1

TIME

Duty Cycte. 0 ='p/'l
Peak Power, Ppk. is peak ofan
eqUivalent squart power pulse.

l>TJl =Ppk . RBJliO + 11 - 01' rltl + Ipl .rltpl - rltl))
where .1. TJl = the mcrease 1M Junction temperature above the lead temperature
r(t) = normalized value of transient thermal resistance at time, t,
for example, r(t, + tp) = normalized value of transient
thermal resistance It time, t1 + tp.

,..,.. ,..,..

~ 0.0~.01

_

1---.. --1

k-"""

15

0.03
~ 0.02

J=LJLPk

.....

10

1.0
t. TIME

3-92

(m'l

100

1000

MBR1035, MBR1045
FIGURE 10 - CAPACITANCE

HIGH FREQUENCY OPERATION

1500

Since current flow in a Schottky rectifier is the result of majority
carrier conduction. it is not subject to junction diode forward and
reverse recovery transients due to minority carrier injection and
stored charge. Satisfactory circuit analysis work may be per~
formed by using a model consisting of an ideal diode in parallel
with a variable capacitance. (See Figure 10.)
Rectification efficiency measurements show that operation will
be satisfactory up to several megahertz. For example. relative
waveform rectification efficiency is approximately 70 per cent at
2.0 MHz. e.g .. the ratio of dc power to RMS power in the load is
0.28 at this frequency. whereas perfect rectification would yield
0.406 for sine wave inputs. However. in contrast to ordinary
junction diodes. the loss in waveform efficieny is not indicative of
power loss; it is simply a result of reverse current flow through the
diode capacitance. which lowers the dc output Voltage.

1000
~
~

700

r-....

w

z

500

'"u
~
'"u
u

!=

~:--

Tvpical

300

~

200

~,

150
0.05 0.1

0.2

0.5
1.0
2.0
5.0
VR. REVERSE VOLTAGE (VOLTS)

Schottky Chip FIGURE 11 -

Maximum

......

U

10

20

50

View A-A

SCHOTTKY RECTIFIER

Schottky Chip (See View A-A)

Aluminum Contact Metal
Platinum Barrier Metal
/
Oxide
"\
&(paSsivation

Anode

Guardring

~--'---------'

Motorola builds quality and reliability into its Schottky
Rectifiers.
First is the chip. which has an interface metal between the
barrier metal and aluminum~contact metal to eliminate any
possible interaction between the two. The indicated guardring
prevents dvldt problems. so snubbers are not mandatory. The
guardring also operates like a zener to absorb over-voltage
transients.
Second is the package. The Schottky chip is bonded to the
copper heat sink using a specially formulated solder. This gives
the unit the capability of passing 10.000 operating thermalfatigue cycles having a .lTJ of 100 0 C. The epoxy molding
compound is rated per UL 94. VO @ 1 IS". Wire bonds are 100%
tested in assembly as they are made.
Third is the electrical testing. which includes 100% dvldt at
1600 V//lS and reverse avalanche as part of device
characterization.

FIGURE 12 - TEST CIRCUIT FOR dv/dt AND
REVERSE SURGE CURRENT

r~Vl2.0k!l

VCC

s-f2V

--I

12Vdc

1 i'~''

100

0

"'

I-- 2.0 /lS
1.0kHz
Current
Amplitude
Adjust
0-10 Amps

1.0 Carbon
lN5S17

3-93

II

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

MBR1060
MBR1070
MBR1080
MBR1090
MBR10100

Switchmode
Power Rectifiers
· .. using the Schottky Barrier principle with a platinum barrier metal. These state-of-theart devices have the following features:
Q

•
•
•
•
•
•
•

Guard-Ring for Stress Protection
Low Forward Voltage
150·C Operating Junction Temperature
Guaranteed Reverse Avalanche
Epoxy Meets UL94, VO at 1/8"
Low Power Loss/High Efficiency
High Surge Capacity
Low Stored Charge Majority Carrier Conduction

MBR1060 and MBR10l00 are

Motorola Preferred Devices

SCHOTTKY BARRIER
RECTIFIERS
10 AMPERES
60-100 VOLTS

II

l.,~
TO·220AC
PLASTIC

MAXIMUM RATINGS
Symbol

Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

= 133"C

MBR
1060

1070

1060

1090

10100

60

70

80

90

100

Unit
Volts

IF(AV)

10

Amps

IFRM

20

Amps

Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz)

IFSM

150

Amps

Peak Repetitive Reverse Surge Current (2 !,s, 1 kHz)

IRRM

0.5

Amp

TJ

-65 to +150

"C

Storage Temperature

Tstg

-65 to +175

"C

Voltage Rate of Change (Rated VR)

dvldt

1000

VI!'s

Average Rectified Forward Current (Rated VR) TC
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz) TC

= 133"C

Operating Junction Temperature

THERMAL CHARACTERISTICS
Maximum Thermal Resistance - Junction to Case
- Junction to Ambient

2
60

ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)
(iF = 10 Amp, TC = 12S"C)
(iF = 10 Amp, TC = 2S"C)
(iF = 20 Amp, TC = 125"C)
(iF = 20 Amp, TC = 25°C)

vF

Maximum Instantaneous Reverse Current (1)
(Rated de Voltage, TC = 125°C)
(Rated de Voltage, TC = 25°C)

iR

(11 Pul.e Test: Pulse Width

Volts
0.7
0.8
0.85
0.95
mA
150
0.15

= 300 1'•• Duty Cycle'" 2%.

3-94

MBR1060, MBR1070, MBR1080, MBR1090, MBR1 01 00

~50

~

~ 20
a::
a::

a

10

V

10

r

#

150'C

./

'"
:::J

@
~

!Z

II I

175'C

'N /

'/

1

/

l-

i

~

u

u

u

125'C

1= ~TJ

l00'C

1== ~TJ

25'C

w

a::

~

0.1

a:

.!#
0,01

o

t== F'=TJ

-

~ 20

a::

'"~

75°C

~

7,0
~ 5.0

-

TJ = 150°C

V

10

g
!z
~

/ V/

ffi

z 2,0

75°C

a

25°C

~ 0,01

25°C

0,00 1
0,2

0.4
0,6
0,8
1,0
iF, INSTANTANEOUS FORWARD VOLTAGE IVOLTSI

1.2

10

::!. 14
>-

12

a

10

........... ~

8,0

....
to

6,0

~

Rated Voltage Applied

'" "r--..

" i'..

a::

'"~

50

II

'" 4,0
ffi

>

a

~e

a::

'"'" ""
'"
~

120
130
TC. CASE TEMPERATURE lOCI

i

140

'"

-- -

"'~"

~ I~O.:qUare WaVj\

--~

40

IResistive Loadl
IpK = 7f
IAV

A

B,O

~

co

A'

~ 6,0

!#'

.........

././
V

_ lBOoC
Square
Wave

. / de -

./

./

III'"
.# V

~ 4.0

.,..../." ' /

2.0

~

~ 0 l.."ooIII"
0

2.0

4.0
6.0
B,O
10
12
14
16
IFIAVI' AVERAGE FORWARD CURRENT IAMPSI

3-97

f. __

'"

~
-~

100
120
60
80
TA, AMBIENT TEMPERATURE lOCi

FIGURE 5 - POWER DISSIPATION

12

ROJA = 60 0 C/W
INo Heat Sinkl f----

~
~ t'-....,.

-- -- -\- ---

20

14

a:

~

8,0

150

~ 10

!'"'"

"" r---...r---......
--

;;;

~_
"-

- - ROJA = 16°C/W

10

~ 6.0

z

~

de

12

co

'"~

i'..

110

::!.
z>-

I'l!
a::

"-

'";ff; 2,0
'"
E='

~ 14

"i'-,.

I'-..

Rated Voltage Applied

in

ROJC = 3,ooC/W

1800 Square Wave

100

40

16

a::
co

2d
30
VR, REVERSE VOLTAGE IVOlTSl

FIGURE 4 - CURRENT DERATING. AMBIENT

16

~

-

r;:;

J /

FIGURE 3 - CURRENT DERATING. CASE
in
"::;;

--

100°C

1.0

l!l 0, 1
ffi

/

~

~

125°C

;;;

/

~ 3.0

:;; 1.0
~ 0.7
,!f, 0,5

V..-

~~

"

10

..-

V/

100

16

20

~

140

160

MOTOROLA

-

•

MBR1635
MBR1645

SEMICONDUCTOR

TECHNICAL DATA

MBRt645 is.
Motorola Preferred Device

SCHOTTKY BARRIER
RECTIFIERS

SWITCHMODE POWER RECTIFIERS
... using the Schottky Barrier principle with a platinum barrier metal.
These state-of-the-art devices have the following features:

16 AMPERES
35 and 45 VOLTS

• Guardring for Stress Protection
• Low Forward Voltage
•

150°C Operating Junction Temperature

• Guaranteed Reverse Avalanche

II

CASE 221 B-02
TO-220AC
PLASTIC

MAXIMUM RATINGS
Rating

Svmbol

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage

MBR1535

MBR1545

Unit

Volts

VRRM
VRWM
VR

35

45

Average Rectified Forward Current (Rated VR)
TC; 125°C

IF(AV)

16

16

Amps

Peak Repetitive Forward Current

IFRM

32

32

Amps

IFSM

150

150

Amps

IRRM

1.0

10

Amps

DC

DC Blocking Voltage

(Rated VR, Square Wave, 20 kHz) TC; 125°C
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave,

single phase, 60 Hz)
Peak Repetitive Reverse Surge Current

(2.0

~s,

1.0 kHz)

Operating Junction Temperature
Storage Temperature

Voltage Rate of Change (Rated VR)

TJ

-55 to +150

-55 to +150

Tstg

-65 to +175

-65 to +175

DC

dv/dt

1000

1000

Vips

THERMAL CHARACTERISTICS
Maximum Thermal Resistance. Junction to Case

1.5

ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)

Volts

vF

(iF; 16 Amp, TC; 125 D C)
(iF; 16 Amp, TC; 25 DC)
Maximum Instantaneous Reverse Current(l)
IRated dc Voltage, TC; 125DC)

0.57
0.63

0.57
0.63

40
0.2

40
0.2

mA

iR

(Rated de Voltage, TC; 25°C)
(1) Pulse Test: Pulse Width = 300 p.S. Duty Cycle ~ 2.0%

3-98

MBR1635, MBR1645

FIGURE 2 - TYPICAL REVERSE CURRENT

FIGURE 1 - TYPICAL FORWARD VOLTAGE

flOO
::;; 70
::. 50

!z
~

=>

u

c

....--:

30
20

....C/'"

;..--

TJ = 125°C
~~
100°C
I"Y": ~
25°Cyi

~

~

~

~

/[/

3.0

~

.!? 1.0

o

0.004
0.002

0.2
0.4
0.6
0.8
VF, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

1.0

FIGURE 3 - CURRENT DERATING. CASE

in

~

14

c

12

'"3:-

'\

"

Rated Voltage Applied
ROJC = 1.5°C/W

4.0

110

::.

I\. de
'\

Wav~

8.0
6.0

o

in 16

16

'"
=>
u

--

25°C

f----

~

j2.0 --- -..
4.0

160

20

40

14
12

~
z

~

!!,

'"c

10

'"
~

8.0

!!l

w
to


 ~

60
80
100
120
TA, AMBIENT TEMPERATURE (OC)

co
"- 6.0

"-

1
=
=

"-

-- ..

Square Wave...........

\

Ap~lied

--"--- '"

de

FIGURE 5 - FORWARD POWER DISSIPATION

co

50

ROJA 16°C/W
- - (With TO·220 Heat Sink)
___ ROJA 60 oC/W
(No Heat Sink)

--- -- "-

in 16

S

40

FIGURE 4 - CURRENT DERATING. AMBIENT

20

~ 18

::.
>-

75°C

0.04
0.02
00 1

II
I
I
/I I

~ 2.0

1.0

'"

7.0
~ 5.0

-

-

100°C

~ 0.4
'" 0.2
$0. I

~
z

4.0

1320

IY"/

~ 10

200
100
~ 40 '-TJ= 150°C
g 20
!z 10 ' - , . - f--'25°C

140

160

II
I

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

MBR2015CTL
MBR2030CTL

SWITCHMODE
Dual Schottky
Power Rectifiers

MBR2030CTL is a
Motorola Preferred Device

· .. employing the Schottky Barrier principle in a large area metal-to-silicon power diode.
State-of-the-art geometry features epitaxial construction with oxide passivation and
metal overlay contact. Ideally suited for use as rectifiers in very low-voltage, highfrequency switching power supplies, free wheeling diodes and polarity protection
diodes.
•
•
•
•
•
•
•
•

II

SCHOTTKY BARRIER
RECTIFIERS
20 AMPERES
15 and 30 VOLTS

Highly Stable Oxide Passivated Junction
Very Low Forward Voltage Drop (0.4 Max «I 10 A, TC = 150'C)
Matched Dual Die Construction (10 A per Leg or 20 A per Package)
High Junction Temperature Capability
High dvldt Capability
Excellent Ability to Withstand Reverse Avalanche Energy Transients
Guardring for Stress Protection
Epoxy Meets UL94, VO at 1/8"
CASE 221A·06
TO·220AB

MAXIMUM RATINGS (Per Leg)
Symbol

MBR2015CTL

MBR2030CTL

Unit

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

15

30

Volts

Average Rectified Forward Current

IF(AV}

10

Amps

Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz)

IFSM

150

Amps

Peak Repetitive Reverse Surge Current (2.0

IRRM

1.0

Amp

TJ

-65 to + 150

Storage Temperature

Tstg

-65 to + 175

'c
'c

Voltage Rate of Change (Rated VR)

dvidt

10000

Vi!'-s

Rating

!,-S,

1.0 kHz)

Operating Junction Temperature

THERMAL CHARACTERISTICS (Per Leg)
Thermal Resistance, Junction to Case

2.0

ELECTRICAL CHARACTERISTICS (Per Leg)

--

Maximum Instantaneous Forward Voltage (1)
(iF = 10 Amp, TC = 25'C)
(iF = 10 Amp, TC = 150'C)
(iF = 20 Amp, TC = 25'C)
(iF = 20 Amp, TC = 150'C)

vF

Maximum Instantaneous Reverse Current 11}
(Rated DC Voltage, TC = 25'C)
(Rated DC Voltage, TC = 100'C)
(Rated DC Voltage, TC = 125'C)

iR

(1) Pulse Test: Pulse Width

= 5.0 ms. Duty Cycle

Volts
0.52
0.40
0.58
0.48
mA
5.0
40
75

"- 10%.

SWITCHMODE is a trademark of Motorola Inc.

3-100

MBR2015CTL, MBR2030CTL

10a

/W
/iJ

a

/;

a

150"C

100

'"

/

a



'lrJ = 25'C

'~

a

-

40
20
10

Figure 2. Typical Reverse Current (Per Legl

I
I

I

I

1

16

VOLTA~E APPLI~D_

RATio
RHJC = 1°C W

O. 5

\

'\
"de

O. 3

11

\

I

I

0.2

0.4
0.6
0.8
1
vF, INSTANTANEOUS VOLTAGE (VOLTS)

1.2

1.4

Figure 1. Typical Forward Voltage (Per Legl

a

'\

\

9
8

7

\

......

, f\ \

dc'

5

\

\

4
3

\
60

80

100

\

140
150
TC, CASE TEMPERATURE rC)

120

160

=I,oo<>c_

~# ~dC
10 ~ ~
~~

\

"-

\
40

130

TJ

\'
20

120

SINE WAVE
IpK
SQUARE WAVE
IAV = / /

\

1

o

\

Figure 3. Current Derating, Case

\

~

2

'\

RATED VOLTAGE APPLIED
--RHJA = 16"CW
---RHJA = 60°CW
(NO HEATSINK)

i\dc

SQUARE WAVE

6

a

\

SQUARE\
WAlE

O. 2

a

35

I

2

O.

30

\
...\
140

~~
160

180

200

TA, AMBIENT TEMPERATURE ("C)

4

6

10

11

IF(AVG}, AVERAGE FORWARD CURRENT lAMPS}

Figure 4. Current Derating, Ambient

Figure 5. Forward Power Dissipation

3-101

14

16

II

MBR2015CTL, MBR2030CTL

HIGH FREQUENCY OPERATION
Since current flow in a Schottky rectifier is the result
of majority carrier conduction, it is not subject to junction
diode forward and reverse recovery transients due to
minority carrier injection and stored charge. Satisfactory
circuit analysis work may be performed by using a model
consisting of an ideal diode in parallel with a variable
capacitance. (See Figure 6.1
Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For
example, relative waveform rectification efficiency is
approximately 70 percent at 2.0 MHz, e.g., the ratio of dc
power to RMS power in the load is 0.28 at this frequency,
whereas perfect rectification would yield 0.406 for sine
wave inputs. However, in contrast to ordinary junction
diodes, the loss in waveform efficiency is not indicative
of power loss; it is simply a result of reverse current flow
through the diode capacitance, which lowers the dc output voltage .

10K
5000

25"C-r-TJ
f 1 MHz-r--

_ 3000

--

E. 2000
~

z

1

1000

U

500

300
200
100
0.5

2

10

VR, REVERSE VOLTAGE (VOLTS I

Figure 6. Typical Capacitance

•

• 150 V, 10 mAde

2k!l
VCC

Slf4--

12 V

12 Vde

r

100
2N2222

2/J-s
1 kHz
CURRENT
AMPLITUDE
ADJUST
0-10 AMPS

100
CARBON

1 CARBON

lN5817

Figure 7. Test Circuit for dv/dt and Reverse
Surge Current

3-102

20

30

50

MBR2035CT
MBR2045CT

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

•

MBR2D45CT Is a
Motorola Preferred Device

SCHOTIKY BARRIER
RECTIFIERS
20 AMPERES

SWITCHMODE POWER RECTIFIERS

35 and 45 VOLTS

... using the Schottky Barrier principle with a platinum barrier metal.
These state-of-the-art devices have the following features:
•

Guardring for Stress Protection

•

Low Forward Voltage

•

150°C Operating Junction Temperature

•

Guaranteed Reverse Avalanche

•

Epoxy Meets UL94, VO at 1/8"

•

CASE 221A·06
TO·220AB
PLASTIC

MAXIMUM RATINGS
Symbol

MBR2035CT

MBR2045CT

Unit

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

Rating

VRRM
VRWM
VR

35

45

Volts

Average Rectified Forward Current (Rated VR)
TC= 135°C

IF(AV)

20

20

Amps

Peak Repetitive Forward Current Per Diode Leg
(Rated VR, Square Wave, 20 kHz) TC = 135°C

IFRM

20

20

Amps

Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave.
single phase, 60 Hz)

IFSM

150

150

Amps

Peak Repetitive Reverse Surge Current
(2.0 ~s, 1.0 kHz) See Figure 11

IRRM

1.0

1.0

Amps

Operating Junction Temperature
Storage Temperature

T
Tstg

-65 to +150
-65 to +175

-65 to +150
-65 to +175

°c
°c

dv/dt

1000

1000

V/~s

0.57
0.72
0.84

0.57
0.72
0.84

15
0.1

15
0.1

Voltage Rate of Cha nge (Rated VR)
THERMAL CHARACTERISTICS
Maximum Thermal Resistance. Junction to Case
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)
(iF = 10 Amp, TC = 125°C)
(iF = 20 Amp, TC = 125°C)
(iF = 20 Amp, TC = 25°C)

vF

Maximum Instantaneous Reverse Current (1)
(Rated de Voltage, TC = 125°C)
(Rated de Voltage, TC = 25°C)

iR

(1) Pulse Test: Pulse Width:::: 300 lAS, Dutv Cycle ~ 2.0%

3-103

Volts

mA

--

I

MBR2035CT, MBR2045CT

FIGURE 2 -TYPICAL FORWARD VOLTAGE

FIGURE 1 -MAXIMUM FORWARD VOLTAGE
100

100
70

/

50

/

TJ = 150°C

~

I

10

Jr
VI V

30
20

/
10

>-

70

B

50

>-

70

B

50

'/

~

;;:

30

'"
::2

~

I II



5:: 20

;::
'"

'"~

I
/25 0 C

f-

05

7'1

~ 30

'"=>

01

I

III

I
III
I

02

14

== =TJ - 150°C

10

125°C

5-

100°C

i

~

>-

~

75°C

100

:>

70

~

50


u

'"
'"u=>

08

FIGURE 4 - MAXIMUM SURGE CAPABILITY

FIGURE 3 - MAXIMUM REVERSE CURRENT

«

06

0.4

'F. INSTANTANEOUS VOlTAGE (VOlTS)

100

>-

--

'7

r/ /

~

iii I

II

;;;; 1 0
>f07

ffiCt;

/

/.

;jV

in

~

7
/"

~OOCy 1/

~

~

•

TJ=150OC

I.VI

~

1/

50

VI /~5OC

20

:2

70

./

./

/

30

y
'/100 0 C,....... V

~

1--1-

20
10

20

30

40

1.0

50

2.0

3.0

5.0 7.0

10

20

NUMBER OF CYCLES AT 60 Hz

VR. REVERSE VOLTAGE (VOLTS)

3-104

30

5'0

70 100

MBR2035CT, MBR2045CT

FIGURE 5 - CURRENT DERATING. INFINITE HEATSINK

...

;;;
:;

~

....

as

0:
0:

:::>

u

32~--~---r---.r---~---.---.----r---~

"

30
25

""l~.~

Q

'"~

20 -

(CapaCilive load)

0:
~

IpK

I

15

AV

"=5

10

20

5.0

o

120

110

130

ffi

I
I
IpK
I
= " (ReSistive load)
AV I

0:
0:

:::>

u
Q

24r----+--~~~--+_--~r_
20~--~~~~r-4-~~~--+----+----r_--~

0:

I

'"~

:\. Square Wave

~ X\
~

10

<.0

ffi
>
'";;:
~
'"

'"~ 28~---+----+----+----4----;----~----~---1
5-

Rated Voltage Applied

35

0:

~

FIGURE 6 - CURRENT DERATING. ROJA = 16° C/W

40

~
~

<.0

'"ffi

:\'

8.0
~
~ 4.0

~

140

f---+----l----+--...~;__.~~~_+~...r_--~

~

150

160

20

40

TC. CASE TEMPERATURE (OCi

s
~

20

~

18

>=

~
in
~

FIGURE 7 - FORWARD POWER DISSIPATION

5111e

16

14

-

~ave

I~

~

ffi

4.0

I

6.0

~=+~-d----l-~~~

:

4.0

~~*::::+~=-i~~t-----I7x..~

~

TJ=150°C- f - - -

'"
ffi

I

~

2.0 1----1----+----f_
...- Loed)
(C~~
...........

;;:

;

8.0

16

12

20

24

•

Raled Voltage Applied. RaJA =6O"C/W

8.0 f---+---jP" ___+----+----I-----+---+--

.
~

~
0

160

~

B

V

.d ~

0

5.

V/ /
~
/'

11/ § "/
h '//- V
/// ~

;;:

~

:2

Square wave:::

ij/

'20 10 AV /

140

FIGURE 8 - CURRENT DERATING. FREE AIR

Resistive load
ICapaCilive load) jIpK , 5

100
120
60
80
TA. AMBIENT TEMPERATURE (OCI

28

32

20

If(AVI' AVERAGE fORWARO CURRENT lAMPS)

IpK
IAV =20 •

40

80

60

100

120

140

160

TA, AMBIENT TEMPERATURE (OCI

FIGURE 9 - THERMAL RESPONSE

g
::::;

'"
;;;.
'"
u
'"'"
....

:2
0:

~

'"
i1i
'"
~

10
07
0.5

.--

03
0.2
./"

0.1

......

---

Pk

TIME

Duty Cycle, D = Ip/ll
Peak Power, Ppk.IS peak of an
equlvah!nt square power pulse

«"

i!'

"TJl ~ Ppk . R'JlIO '(I - 01 .
+ 'pI + 'flpl - 'filII
where aTJl = the mcrease In Juncllon lemperatureabove the lead temperature
r(1) = normailled value of lranSlent thermal resistance at time, t,
for example, rll, + tp) = normalized value of transient
thermal reSIstance at lime, t 1 + tp.

./"

~ 0.03

~ 0.02

-

f--Il--l

~ 0.07

ffi 0.05

'"eo

J1:j1

'P

I--

,.. I--"

~ 0,010.01

0.1

10

1.0
t. TIME Ims)

3-105

100

1000

MBR2035CT, MBR2045CT

FIGURE 10 - CAPACITANCE

HIGH FREQUENCY OPERATION

1500

Since current flow in a Schottky rectifier is the result of majority
carrier conduction. it IS not subject to junction diode forward and
reverse recovery transients due to minority carrier injection and

1000

stored charge. Satisfactory circuit analysis work may be per-

~

formed by using a model consisting of an ideal diode in parallel

..
....

~

u

z

ti

waveform rectification efficiency is approximately 70 per cent at

"

500

300

~

"l"

200
150
005 01

1"-"
02

05
10
20
50
VR. REVERSE VOLTAGE (VOLTS)

FIGURE 11 - TEST CIRCUIT FOR dv/dt AND
REVERSE SURGE CURRENT
+150V.l0mAdc
2.0 kll
VCC

---I

12 Vdc

140~F

100

I-- 2.0 ~s
1.0kHz
Current

Amphtude
Adjust
0-10Amps

i':t-

Tvplcal

u

Junction diodes. the loss In waveform efficleny IS not Indicative of
power loss; It IS sImply a result of reverse current flow through the
diode capacitance. which lowers the de output voltage

fl2V

MaXimum

u

20 MHz. e.g .. the ratio of dc power to RMS power in the load is
028 at thIs frequency. whereas perfect rectIfication would yield
0.406 for sine wave rnputs. However, in contrast to ordinary

..

700

~

with a varrable capacitance. (See Figure 10.)
Rectification efficiency measurements show that operation will
be satisfactory up to several megahertz. For example. relative

100
Carbon
1.0 Carbon
lN5817

3-106

10

20

50

MOTOROLA

-

SEMICONDUCTOR - - - - - - - - - - - - -

TECHNICAL DATA

Switchmode
Power Rectifiers
· .. using the Schottky Barrier principle with a platinum barrier metal. These state-of-theart devices have the following features:
•
•
•
•
•
•
•
•
•

20 Amps Total (10 Amps Per Diode Leg)
Guard-Ring for Stress Protection
Low Forward Voltage
150°C Operating Junction Temperature
Guaranteed Reverse Avalanche
Epoxy Meets UL94, VO at 1/8"
Low Power LosslHigh Efficiency
High Surge Capacity
Low Stored Charge Majority Carrier Conduction

MBR2060CT
MBR2070CT
MBR2080CT
MBR2090CT
MBR20100CT
MBR2060CT and MBR20100CT
are Motorola Preferred Devices

SCHOTTKY BARRIER
RECTIFIERS
20 AMPERES
60-100 VOLTS

II
I

CASE 221A-06
TO-220AB
PLASTIC
MAXIMUM RATINGS PER DIODE LEG
Rating

Symbol

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

=

MBR
2060CT 2070CT 2080CT 2090CT 20100CT
60

70

80

90

100

Unit
Volts

IFIAV)

10

Amps

IFRM

20

Amps

Nonrepetitive Peak Surge Current
ISurge applied at rated load conditions halfwave, single phase, 60 Hz)

IFSM

150

Amps

Peak Repetitive Reverse Surge Current (2 ILS, 1 kHz)

IRRM

0.5

Amp

TJ

-65 to + 150

Storage Temperature

Tstg

-65 to + 175

'c
'c

Voltage Rate of Change (Rated VR)

dv/dt

1000

ViILS

2
60

°CIW

Average Rectified Forward Current IRated VR) TC
Peak Repetitive Forward Current
IRated VR, Square Wave, 20 kHzl TC

=

133'C

133"C

Operating Junction Temperature

THERMAL CHARACTERISTICS
Maximum Thermal Resistance -

Junction to Case
Junction to Ambient

ELECTRICAL CHARACTERISTICS PER DIODE LEG
Maximum Instantaneous Forward Voltage (1)
(iF = 10 Amp, TC = 125°C)
(iF = 10 Amp, TC = 25°C)
(iF = 20 Amp, TC = 125°C)
(iF = 20 Amp, TC = 25°C)

vF

Maximum Instantaneous Reverse Current (1)
(Rated dc Voltage, TC = 125'C)
(Rated dc Voltage, TC = 25°C)

iR

III Pulse Test: Pulse Width

=

Volts
0.75
0.85
0.85
0.95
rnA
150
0.15

300 p.s. Duty Cycl." 2%.

3-107

MBR2060CT, MBR2070CT, MBR2080CT, MBR2090CT, MBR20100CT
Yl

50

~

a
a:

175'C,

10

.... v
./Y /

c

~
~

'"
2

ht'l00'C=

O~ ~TJ

125'C

f= i=TJ

100'C

F=

/J /

//

z

~

1

z
'"
";L

0.5

25'C- t - -

TJ

3

~

.-

150'C

1

5

~

1= ~TJ

150"C,

~ 20

/

/

'/

1

J
0.01 § §TJ

0

0.1

0.2
0.3
0.4
0.5
0.6
0.7 0.8
VF.INSTANTANEOUS VOLTAGE (VOLTS)

0.9

8
6

•

"- '\.
"-sa"\. "-

"-

4
2
0

WAVE""

8
6
2
0
110

~de

18

~

16
14

~

12

u
~

10

~

8

~

ROJC = 2'CIW

'\

'\.

'\

~

"120

iC
!z

I'\.

4

20

RATEb VOLT~GE_
APPLIED

'\

~

i? 4

"-

130
140
TC. CASE TEMPERATURE ('C)

2

150

o
o

160

6

0

"

SO.WAV~
20

40

IPKIIAV

de

-- --"" "- r"-. ,
-1""'de

60
80
100 120 140
TA. AM81ENT TEMPERATURE ('C)

= 20

= 5, , /

./

PI,
IPKIIAV

IPKIIAV

I'.

-- ~

= 25'C

4

2

""

= 10

/r'Y ~

~ ./
~V

"> //., V

V

Y V .......,.&: ~ V
/': ~ :,....- ~
de
0. ~ V

I' SO. WAVE

~~

~I-- P'"

160

Figure 4. Current Derating. Ambient

0
TA

120

RATEb VOL'fAGE AP~LlE~+-- - - - (HEATSINK) ROJA = 16'CIW
(NO HEATSINK) R8JA = 60 'CIW

""'-

Figure 3. Current Derating. Case

8

40
60
80
100
VR. REVERSE VOLTAGE (VOLTS)

Figure 2. Typical Reverse Current Per Diode

Figure 1. Typical Forward Voltage Per Diode
0

25'C

20

6
8
10
12
14
AVERAGE CURRENT (AMPS)

16

18

Figure 5. Average Power Dissipation and
Average Current

3-108

20

180

200

MOTOROLA

•

MBR2535CT
MBR2545CT

• SEMICONDUCTOR
TECHNICAL DATA

MBR2545CT Is a
Motorola Preferred Device

SCHOTTKY BARRIER
RECTIFIERS

SWITCHMODE POWER RECTIFIERS
... using the Schottky Barrier principle with a platinum barrier metal.
These state-of-the-art devices have the following features:
•

Guardring for Stress Protection

•

Low Forward Voltage

•

150°C Operating Junction Temperature

•

Guaranteed Reverse Avalanche

30 AMPERES
35 and 45 VOLTS

II

TO-220AB
PLASTIC

MAXIMUM RATINGS
Symbol

MBR2535CT

MBR2545CT

Unit

VRRM
VRWM
VR

35

45

Volts

IF(AV)

30

30

Amps

IFRM

30

30

Amps

Nonrepetitive Peak Surge Current per Diode Leg
(Surge applied at rated load conditions hallwave,
single phase, 6C1 Hz)

IFSM

150

150

Amps

Peak Repetitive Reverse Surge Current

IRRM

10

10

Amps

TJ
Tstg

-65 to + 150
-65 to +175

-65 to+ 150
-65 to +175

DC
DC

dv/dt

1000

1000

V/~s

ROJC

1.5

1.5

DC/W

0.73
0.82

073
0.82

40
02

40
0.2

Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage

DC Blocking Voltage
Average Rectified Forward Current (Rated VR)

TC= 130 DC
Peak RepetitIve Forward Current Per DIOde Leg

(Rated VR, Square Wave, 20 kHz) TC = 130 DC

(2 0

~s,

1.0 kHz)

Operating Junction Temperature
Storage Temperature

Voltage Rate at Change (Rated VR)
THERMAL CHARACTERISTICS PER DIODE LEG
MaXimum Thermal ReSistance. Junction to Case

ELECTRICAL CHARACTERISTICS PER DIODE LEG
Maximum Instantaneous Forward Voltage (11

Maximum Instantaneous Reverse Current (1)

'R

(Rated de Voltage, TC = 125 DC)
(Rated de Voltage, TC = 25 DC)
(1, Pulse Test Pulse WIdth

Volts

vF

(iF = 30 Amp, TC = 125°C)
(iF = 30 Amp, TC = 25°C)

=300 j..tS. Duty Cycle ~ 2.0%

3-109

mA

MBR2535CT, MBR2545CT

FIGURE 1 - TYPICAL FORWARD VOLTAGE

FIGURE 2 - TYPICAL REVERSE CURRENT

~

70

~ 50

~

-

!;;

TJ= 125°C,
,/'
100°C
25~C"><"

20

~

.......-: ~
~~

0-

'l

~

S
z

L

II

L

//

z

2.0

;;::
1.0

.$

/

~ 3.0

o

I

1

/I

I

0004
0002

02
0.4
O~
08
VF. INSTANTANEOUS FORWARO VOLTAGE (VOLTS)

75°C

--f---

1.0

-

a

in

ac
~
~

~

..

'"ffi
;;C

'"

24
20
16

12
80

_

Voltag. Applied
ROJC =1.5°C/W

-I

-'- 4 0

}

o

~ated

110

>--

i

\

I'\.

\

\

20

~

16

::;:
~

1\

130
140
TC. CASE TEMPERATURE (OC)

12

~ 8.0

de

.......

.........
Square Wa~

.......

50

r-- r-_ :de- -

'-..

$4.0 r-- 1--

150

--

Square Wav';'"' .....

o

20

40

8.0
12
16
20
24
28
32
IF. AVERAGE FORWARD CURRENT (AMPS)

3-110

"

-- "--- ~

'"

a

Rated VR Apphed
.1
ROJA = 16°C/W
- - (With TO-220 Heat Sink)
___ RaJA = 60 0 C/W
(No Heat Sink)

.........

'-..

"'".. "'-

~ ....

60
80
100
120
TA. AMBIENT TEMPERATURE (OC)

FIGURE 5 - FORWARD POWER DISSIPATION

4.0

40

l

........

24

=>
u
c
a:

.
.'"

'\ \
\ \

1

120

~

\

Square Wave"

j-.

20
30
VR. REVERSE VOLT AGE IVOLTSI

32

"f---h.
::;;
28

~e

~

10

_.- -

FIGURE 4 - CURRENT DERATING. AMBIENT

"-

i

-

25°C

FIGURE 3 - CURRENT DERATING. CASE

28

,--

100°C

004
002
001

32

!'"

150°C

~ i--125°C

04
02
01

~

'" 7.0
5.0

~

a

40
20
10

a:
'"

::;:

t;

a::

lD

a:
a:

s.'l

~ 10

40 f-TJ
20

.§.

~ 30

=>
u
c

-

200
100

in 100

36

40

~

140

160

MOTOROLA

SEMICONDUCTOR------------TECHNICAL DATA

Switch mode
Power Rectifiers

MBR2535CTL
Motorola Preferred Device

· .. employing the Schottky Barrier principle in a large metal-to-silicon power diode.
State-ol-the-art geometry leatures epitaxial construction with oxide passivation and metal
overlay contact. Ideally suited lor use in low voltage, high frequency switching power supplies,
free wheeling diodes, and polarity protection diodes.
•
•
•
•
•

SCHOTTKY BARRIER
RECTIFIERS
25 AMPERES
30 and 35 VOLTS

Very Low Forward Voltage (0.55 V Maximum @ 25 Amps)
Matched Dual Die Construction (12.5 A per Leg or 25 A per Package)
Guardring lor Stress Protection
Highly Stable Oxide Passivated Junction (125°C Operating Junction Temperature)
Epoxy Meets UL94, VO at 1/8"

I

CASE 221A-06
(TO-220AC)

MAXIMUM RATINGS (PER LEG)
Symbol

Value

Unit

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

35
30
30

Volts

Average Rectified Forward Current (Rated VR) TC = 110"C

IF(AV)

12.5

Amps

Peak Repetitive Forward Current, Per Leg
(Rated VR, Square Wave, 20 kHz) TC = 95°C

IFRM

25

Amps

Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions, hallwave, single phase, 60 Hz)

IFSM

150

Amps

Peak Repetitive Reverse Surge Current (2.0 !ls, 1.0 kHz)

IRRM

1.0

Amp

TJ

-65 to +125

°C

Storage Temperature

Tstg

-65 to +150

°C

Voltage Rate of Change (Rated VR)

dv/dt

10,000

V/!ls

Waval

20

mJ

Rating

Operating Junction Temperature

Controlled Avalanche Energy

THERMAL CHARACTERISTICS
Thermal Resistance - Junction to Case

ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)
(IF = 25 Amps, TJ =25"C)
(IF = 12.5 Amps, TJ =25°C)
(IF = 12.5 Amps, TJ = 125"C)

vF

Maximum Instantaneous Reverse Current (1)
(Rated dc Voltage, TJ = 25°C)
(Rated dc Voltage, TJ = 125°C)

iR

Volts
0.55
0.47
0.41
rnA
5.0
500

(1) Pulse Test: Pulse WIdth = 300 fls, Duty Cycle $2 0%.

3-111

II

MBR2535CTl

50

/'

/

20

a:-

:;

5.

/I
/

TJ=125°C /

~

,.

1000

10

1
TJ = 25°C

Z

I

W

en

::>
0

5

I

I

1/ I

o

TJ = 25°C

I

2

z
~
en

15

20

25

30

35

Figure 2. Typical Reverse Current, Per Leg

I

~

10

VR. REVERSE VOLTAGE (VOLTS)

I

w

II

0.1

I

~

!2

~

TJ = 100°C

I-

a:
a:
::>
u
0
a:

-

TJ = 125°C

'/

.!f

TJ = 125°C
0.5

I

0.2

0.1

SINE WAVE
(RESISTIVE LOADy

I

o

W

I
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10

~

vI'> INSTANTANEOUS VOLTAGE (VOLTS)
Figure 1. Typical Forward Voltage, Per Leg

5

~V
,.....

10

15

LL

V

/sQUARE
WAVE

/'

~ / ' ~e

./
20

25

30

35

40

IF(AV). AVERAGE FORWARD CURRENT (AMPS)

Figure 3. Forward Power Dissipation, Per Leg
32

20

~
::;

(RATED Vr APPUED)
RaJC = 2.0°CIW

RaJA = 16°CIW

18

-

5. 16

i".....

""" ."SQUA~

!z
~

~

~
a:

!2
w

"'- ~

105
115
TC. CASE TEMPERATURE (0C)

'"

.........................

~ 10

de

~

~~

95

14

aa: 12

SQU~ ~
..........

8

WAVE

6

~

i'-

w

"

125

iii:
~
,g:

Figure 4. Current Derating

~

0
0

25

r"...

50
75
100
TA. AMBIENTTEMPERATURE (OC)

Figure 5. Current Derating Ambient, Per Leg

3-112

125

-

MBR3020CT
MBR3035CT
MBR3045CT
5D241

MOTOROLA

SEMICONDUCTOR

TECHNICAL DATA

•

s

MBR3045CT and 0241 are

Motorola Preferred DevIces

SWITCHMODE POWER RECTIFIERS

SCHOTTKY BARRIER
RECTIFIERS

· .. using the Schottky Barrier principle with a platinum barrier metal.
These state-of-the-art devices have the following features:

30 AMPERES
20 to 45 VOLTS

•
•
•
•

•

Dual Diode Construction
Guardring for Stress Protection
Low Forward Voltage
1500 C Operating Junction Temperature

~

Guaranteed Reverse Avalanche

:r

CASE 11-03
TO-204AA
METAL

MAXIMUM RATINGS
Rating

Symbol

MBR3020CT

MBR3035CT

MBR3045CT

S0241

Unit

VRRM
VRWM
VR

20

35

45

45

VailS

10

30
15

30
15

30
15

30
15

Amps

Peak Repetitive Forward Current. Per Diode
(Raled VR. Square Wave. 20 kHz)

IFRM

30

30

30

30

Amps

Nonrepelilive Peak Surge Currenl
(Surge applied al raled load condilions
hallwave. single phase. 60 Hz)

IFSM

400

400

400

400

Amps

Peak Repetitive Reverse Current. Per Diode

IRRM

2.0

2.0

2.0

2.0

Amps

Peak Repelilive Reverse Vollage
Working Peak Reverse Voltage
DC Blocking Vollage
Average Rectified Forward Current
(Raled VRI TC = 105°C

Per Device

Per Diode

(2.0I's. 1.0 kHz) See Figure 8
Operating Junction Temperature

TJ

-65to+ 150

-6510 + 150

-6510 + 150

-6510 +150

°c

Tslg

-6510+175

-6510 +175

-6510 +175

-6510 +175

°c

Peak Surge Junclion Temperalure
(Forward Currenl Applied)

TJ(pk)

175

175

175

175

°C

Voltage Rale of Change (Raled VR)

dvldl

1000

1000

1000

1000

VII's

-

0.47
0.60

Slorage Temperalure

THERMAL CHARACTERISTICS PER OIOpE
Maximum Thermal Resistance. Junction to Case

ELECTRICAL CHARACTERISTICS PER DIODE
Maximum Insta nta neous Forwa rd Voltage (1)
(iF= 10 Amp. TC= 125°C)
(iF = 20 Amp. TC = t 25°C)
(iF = 30 Amp. TC = 125°C)
(iF = 30 Amp. TC = 25°C)

vF

Maximum Instantaneous Reverse Currenl(l)
(Rated dc Voltage. TC = 125°C)
(Rated dc Voltage. TC = 25°C)

iR

Capacitance

C,

(1) Pulse Test: Pulse Width

Volts

-

-

0.60
0.72
0.76

0.60
0.72
0.76

0.60
0.72
0.76

60
1.0

60
1.0

60
1.0

100
VR = 35 V

2000

2000

2000

2000

mA

=300 "'s, Duty Cycle :e;;: 2.0%

3-113

pF

II

MBR3020CT, MBR3035CT, MBR3045CT, 50241

FIGURE 1 -

FIGURE 2 -

TYPICAL FORWARD VOLTAGE

TYPICAL REVERSE CURRENT

100
70
50

20

0.1

10

40

50

J

3.0

/
I

2.0

S

FIGURE 3 - MAXIMUM SURGE CAPABILITY

25°C
500
in
":;
S. 300

1.0

;0;

1"- i',

!5

.!f. 0.7

0:

~ 200

TJ ; 125°C. VRRM may
be applied between each

~
,~

u

0.5

w

".

~

0.3

,..~

0.2

O. 1

-

20
30
VR. REVERSE VOLTAGE (VOLTS)

~"

~

:;;

~

.$

I II

5.0

Q

;

f--

'"
ffi

0.0 1

U

II

f-"

I

f5

~

-

75°C

25 c C

~

~

10

w

~

10

- -

100°C

a

VI

... 7.0
~

~
a:

V

125°C

10

...

/V

TJ; 150°C;

:::I

TJ; 150°C

«
.§.

1/ V

30

~

100

/

cvcle of surge

...........

100

;;'i
"• 70

o

~

I
0.2
0.4
0.6
0.8
1.0
1.2
vF. INSTANTANEOUS FORWARD VOLTAGE IVOLTS)

50
1.0

1.4

FIGURE 4 - CURRENT DERATING

2.0

3.0

5.0 7.0 10
20
30
NUMBER OF CYCLES AT 60 Hz

50 70 100

FIGURE 5 - FORWARD POWER DISSIPATION

.

in

f!-;
" "\ K\

'"

I - - (Capacitive Load) :PK ;

tv

'"
CJ

~ 30

l

1

isa:

. / Square Wave

~ 20

CJ
Q

a:

de

~ 10
~

2{ 1/.~ ~ ~

1

I

I

100
120
TC. CASE TEMPERATURE (OC)

I

.
.
.
"-

~ ~\

80

Sine Wave -+---1
Resistive Load

"u;

..... ~'< \

..,..

~

(Resistive Load)

AV;

"

1= 40

I
IT

.......

w

'"

~

140

160

~
,;

~

"-

3-114

10
20
30
IFIAV). AVERAGE FORWARD CURRENT (AMPSI

40

MBR3020CT, MBR3035CT, MBR3045CT, 50241

FIGURE 6 - THERMAL RESPONSE PER DIODE LEG

ffi
~

1.0
0.7

:;
~
;!;.

0.5

_io"

0.3
0.2
0.1
TJl =Ppk' ReJllD + 11- 01' '111 +Ipl +,(Ipl- ,(tllJ

where ..lTJl = the mcrease in junction temperature above the lead temperature
r It) =normalized value of transient thermal resistance at time, t,
tor example, rlt, + tp) = normalized value of transient
thermal resistance at time, t 1 + tp.

.,,"../

10

1.0

0.1

100

1000

I. TIME (ms)

FIGURE 7 - CAPACITANCE

HIGH FREQUENCY OPERATION
Since current flowin a Schottky rectifier is the result of majority
carrier conduction. it is not subject to junction diode forward and
reverse recovery transients due to minority carrier injection and
stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel
with a variable capacitance. (See Figure 7.J
Rectification efficiency measurements show that operation will
be satisfactory up to several megahertz. For example, relative
waveform rectification efficiency is approximately 70 per cent at
2.0 MHz, e.g., the ratio of de power to RMS power in the load is
0.28 at this frequency, whereas perfect rectification would yield
0.406 for sine wave inputs. However, in contrast to ordinary
junction diodes. the loss in waveform efficieny is not indicative of
power loss; it is simply a result of reverse current flow through the
diode capacitance, which lowers the de output voltage.

II

3000
2000

r:.....

I

I'---

Q.

W

U

g..:z 1000
900
.....: 800
700
u

u

600
500
400
300
.05

f'."
"\
!'\
0.1

0.2

0.5
1.0
2.0
5.0
VR, REVERSE VOLTAGE (VOLTSJ

FIGURE 8 - TEST CIRCUIT FOR REPETITIVE
REVERSE CURRENT
+150V, 10 mAde

2.0kll
Vcc

n
--I

2V

100

12Vdc

2N2222

I-- 2.01's
1.0 kHz
Current
Amplitude
Adjust
0-10 Amps

100 II
Carbon

3-115

1

4 .O I'F

10

20

50

MBR3020CT, MBR3035CT, MBR3045CT, 50241

FIGURE 9 -

SCHOTTKY RECTIFIER

Aluminum
Lead
Guard
Ring

Moly Disk
Glass Seal
Steel Base (Cathode)

...- - - Copper Core Steel Pi ns
View A-A

II

Motorola bUilds qualify and reliability into its Schottky Rectifiers.
First is the chip. which has an mterface metal between the
platinum-barrier metal and nickel-gold ohmic-contact metal to
eliminate any possible Interaction with the barrier. The Indicated
guardring preventsdv/dt problems. so snubbers are not required.
The guardnng also operates /Ike a zener to absorb over-voltage

provides stress relief. These two features gIve the unit the capability of passing stringent thermal fatigue tests for 5,000
cycles. Copper-core steel pinS match the expansIOn coeff,Cient of
the glass and are long enough (0.440 In. min.) to reach through a
heat sink to a printed circuit board.
Third is the redundant electrical testmg. The deVice IS tested
before assembly in "sandwich" form, with the chip between the
moly disks. It IS tested again after assembly. As part of the fmal
electrical test, deVices are 100% tested for dv 'dt at 1,600 V' MS
and reverse avalanche.

transients.

Second IS the package. There are molybdenum disks which
closely match the thermal coefficient of expa nsian of silicon on
each side of the chip. The pm-la-chip aluminum leadwlre

MECHANICAL CHARACTERISTICS
CASE: Welded, hermetically sealed.
FINISH: All external surfaces corrosion resistant and terminal lead is readily solderable.
POLARITY: Cathode to Case.
MOUNTING POSITION: Any.

3-116

MOTOROLA

-

MBR3035PT
MBR3045PT

SEMICONDUCTOR

TECHNICAL DATA

•

MBR3045PT Is a

Motorola Preferred Device

SCHOTTKY BARRIER
RECTIFIERS

SWITCHMODE POWER RECTIFIERS
· .. using the Schottky Barrier principle with a platinum barrier metal.
These state-of-the-art devices have the following features:

30 AMPERES
35 to 45 VOLTS

• Dual Diode Construction - Terminals 1 and 3 May Be Connected
For Parallel Operation At Full Rating
• Guardring For Stress Protection
•

Low Forward Voltage

•

150°C Operating Junction Temperature

• Guaranteed Reverse Avalanche

CASE 3400-01
TO-218AC

RATINGS
Symbol

Maximum

VRRM
VRWM
VR

35
45

Average Rectified Forward Current Per Device
Per Diode
(Rated VR) TC = 105°C

IF(AVI

30
t5

Amps

Peak Repetitive Forward Current. Per Diode
(Rated VR. Square Wave. 20 kHz)

IFRM

30

Amps

Nonrepetitive Peak Surge Current
(Surge Applied at rated load conditions
halfwave. single phase. 60 Hz)

IFSM

200

Amps

Peak Repetitive Reverse Current, Per Diode
(2.0 J.ls. 1.0 kHz) See Figure 6

IRRM

2.0

Amps

Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

MBR3035PT
MBR3045PT

Unit
Volts

TJ

-65 to +150

°c

Tsta

-65 to +175

°c

Peak Surge Junction Temperature
(Forward Current Applied)

TJ(pk)

175

°c

Voltage Rate of Change (Rated VR)

dv/dt

1000

V/J.lS

Operating Junction Temperature

Storage Temperature

THERMAL CHARACTERISTICS PER
Thermal Resistance. Junction to Case
Thermal Resistance, Junction to Ambient

ELECTRICAL CHARACTERISTICS PER
Instantaneous Forward Voltage (1)
(IF = 20 Amp. TC = 125°C)
(iF = 30 Amp. TC = 125°C)
(IF = 30 Amp. TC = 25°C)

vF

Instantaneous Reverse Current (1)
(Rated de Voltage. TC = 125°C)
(Rated de Voltage. TC = 25°C)

iR

(1) Pulse Test Pulse Width:: 300 fJS. Duty Cycle

Volts
0.60
0.72
0.76
mA

100
1.0
<...

20%

3-117

II

MBR3035PT, MBR3045PT

FIGURE 2 - TYPICAL REVERSE CURRENT

FIGURE 1 - TYPICAL FORWARD VOLTAGE
Vi

100

~

SO
30
20

a..

100

r-

1/

10
5.0
3.0 TJ = 150°C,
2.0

:::;:;P'

125°C

L---

loooe

_r-

75°C

SoC

10

1

0.5
0.3
0.2

=

25°C
DO 1

O. 1

0.2

0.4
06
08
1.0
1.2
vf, INSTANTANEOUS FORWARD VOLTAGE IVOLTS)

1.4

10

II

IpK

I

~
-

1T

(ReSIstive load)

AV/

I

~

~

a

/Square Wave

'"

~ 10~---+--~~~-4~~~~£-+-~~----4---~

~
c

~ ~'

'"

i 50~--~~~J£~~~~~----+----+----~--~

de

1'7'- ~ ~

-

.
IPK'!
ICapa"t,Ye Load) 1= 20, 10, 5

tV

I

I

I

80

100
120
TC. CASE TEMPERATURE 1°C)

~

'"
ffi
::c

~

I

140

160

S

2000

-.....

~ :~~

~ 700
u 600
500
400
300
.05

0.1

0.2

Vee

0.5
1.0
2,0
5.0
VR, REVERSE VOLTAGE (VOLTS)

40

FIGURE 6 - TEST CIRCUIT FOR REPETITIVE
REVERSE CURRENT

....

'"

1000

10
20
3D
IfIAV), AVERAGE fORWARD CURRENT lAMPS)

~

FIGURE 5 - CAPACITANCE
3000

50

SlOe WIve -+----1
Resistive load

c

I

40

20

z

"r-... K
......... '\ \
.""- >< \
~

20
3D
VR, REVERSE VOLTAGE IVOLTS)

FIGURE 4 - FORWARD POWER DISSIPATION
PER LEG

FIGURE 3 - CURRENT DERATING PER LEG

~

-

1== f:::=TJ = 150°C

//

n
--I

2V

lOa

f.- 20.,

12Vde

1

4o

10kHz

'" "
10

20

Current
Amplitude
AdJust
Q-l0Amps

~

1 OCarbon

50

3-118

lN5817

.'

-

MOTOROLA

SEMICONDUCTOR

TECHNICAL DATA

MBR3035WT
MBR3045WT

Switchmode
Power Rectifiers

MBR3045WT Is a
Motorola Preferred Device

· .. using the Schottky Barrier principle with a platinum barrier metal. These state-of-theart devices have the following features:
• Dual Diode Construction - Terminals 1 and 3 May Be Connected For Parallel
Operation At Full Rating

SCHOTTKY BARRIER
RECTIFIERS
30 AMPERES
35-45 VOLTS

• Guardring For Stress Protection
• Low Forward Voltage
• 150°C Operating Junction Temperature
• Guaranteed Reverse Avalanche
• Popular TO-247 Package

TO·247AC

MAXIMUM RATINGS
Symbol

Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current
(Rated VRI TC = 105°C

MBR
3035WT 3045WT

VRRM
VRWM
VR
Per Device
Per Diode

35

45

Unit
Volts

IF(AV)

30
15

Amps

Peak Repetitive Forward Current. Per Diode
(Rated VR. Square Wave. 20 kHz)

IFRM

30

Amps

Nonrepetitive Peak Surge Current
(Surge Applied at rated load conditions
halfwave. single phase. 60 Hz)

IFSM

200

Amps

Peak Repetitive Reverse Current. Per Diode
(2.0 p.s. 1.0 kHz) See Figure 6

IRRM

2.0

Amps

Operating Junction Temperature

TJ

-65to +150

°c

Tstg

-65 to + 175

°c

Peak Surge Junction Temperature
(Forward Current Applied)

TJ(pk)

175

°c

Voltage Rate of Change (Rated VR)

dv/dt

10

Vlns

Storage Temperature

THERMAL CHARACTERISTICS (Per Diode)
Thermal Resistance - Junction to Case
- Junction to Ambient

1.4
40

ELECTRICAL CHARACTERISTICS (Per Diode)
Instantaneous Forward Voltage (1)
(iF = 20 Amp. TC = 125°C)
(iF = 30 Amp. TC = 125°C)
(iF = 30 Amp. TC = 25°C)

vF

Instantaneous Reverse Current (1)
(Rated de Voltage. TC = 125°C)
(Rated de Voltage. TC = 25°C)

iR

111 Pulse Test: Pulse W,dth

Volts
0.6
0.72
0.76
rnA
100
1.0

= 300 I's. Duty Cycle" 2.0%.

Switchmode is a trademark of Motorola Inc.

3-119

II

MBR3035WT, MBR3045WT

~

100

~
!Z

50
30
20

iii

a

100
./ ./

!il

;;:
S

V

10

t-

l!iO"C
125'C

10

ii'i
r:c

~

TJ

f2

r:c

100'C

U

75'C

~

150'C"
25'C

~

w

i-"""

--

- -

.....-

~

en
r:c

a:;

zz~

0.5
0.3

~

~

-

r:c 0.1
Ji;

0.2

.!:? 0.1

o

0.2

0.4
O.B
0.8
1
1.2
VF. INSTANTANEOUS FORWARD VOLTAGE (VOLTSI

~
5
ztw

1.4

20
30
VR. REVERSE VOLTAGE (VOLTSI

40

50

10
20
30
IF(AVI. AVERAGE FORWARD CURRENT (AMPSI

40

Figure 2. Typical Reverse Current

:PK ;
AV /

15

7r

"I\.."\ X\

./ SOUARE WAVE

.........

~ 10
f2

(RESISTIVE LOADI
I
I

."< \

r:c

.........

w

.,.... N- ~\

~
r:c

w
::;:

~

if'

10

20

:;
r:c
r:c
~
u
c
r:c

....-

25'C

0.01

Figure 1. Typical Forward Voltage

II

i-"""

== ==TJ

-

o

(CAPACITIVE LOADI :PK ; ; : 10:7'
Jl

60

I

80

jV

I

de

~
~
.......

~

I

100
120
TC. CASE TEMPERATURE ('CI

160

140

Figure 3. Current Derating (Per Legl

Figure 4. Forward Power Dissipation (Per Legl

3000
2000

..............

VCC 12 Vde

.....

~

"'-

w

U

z

1000
900
800
700
«
u
t5 600
500

~

n2V

--t I--

2JLs

1kHz
CURRENT
AMPLITUDE
ADJUST
CARBON
0--10AMPS =

I'..

"-

400

'1\

300
0.05

100

0.1

0.2

0.5
1
2
5
10
VR. REVERSE VOLTAGE (VOLTSI

20

50

Figure 5. CaDacitance

r'imM'
an

t'"' i'"

~N6277

':'

1CARBON
lN5817

Figure 6. Test Circuit For Repetitive Reverse Current

3-120

MBR3520
MBR3535
MBR3545, H, H1

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

•

MBR35451sa
Motorola Preferred Device

SCHOTTKY BARRIER
RECTIFIERS

SWITCHMODE POWER RECTIFIERS

35 AMPERES
20 to 45 VOLTS

· .. using a platinum barrier metal in a large area metal-to-silicon
power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited
for use as rectifiers in low-voltage, high-frequency inverters, freewheeling diodes, and polarity-protection diodes.

• Guardring for dv/dt Stress Protection
• Guaranteed Reverse Surge Current/Avalanche
• 150'C Operating Junction Temperature
• Mounling Torque: 15 in-Ib max

CASE 56-03
DO-203AA
METAL

11

MAXIMUM RATINGS
Rating
Peak RepetitIve Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

Peak Repetitive Forward Current
~

~s,

MBR3545, H. H1*

Unit

35

45

Volts

IRRM

•
•
•

IFSM

•

TJ

•

IF(AVj

, 10"C)

Peak Repetitive Reverse Surge Current

(2.0

MBR3535

20

, 'O"C)

Average Rectified Forward Current
~

MBR3520

VRRM
VRWM
VR
IFRM

(Rated VR, Square Wave, 20 kHz, TC
(Rated VR, TC

Symbol

1.0 kHz) See Figure 8

Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions

•

70

2.0

•
.

600

.

35

Amps
Amps
Amps
Amps

hallwave, single phase, 60 Hz)
Operating Junction Temperature

Tstg

Storage Temperature

Voltage Rate of Change
(Rated VR)

dv/dt

•
.

65to+ 150

•
•

..

65to+175
1000

°c
°c
V/~s

THERMAL CHARACTERISTICS

Characteristic
Thermal Resistance. Junction-to-Case

Typ

Max

1.3

1.5

Typ

Max

ELECTRICAL CHARACTERISTICS PER DIODE

Characteristic

Symbol

Instantaneous Forward Voltage (1 )
(iF' 35 Amp, TC' 125°C)
(iF' 35 Amp, TC' 25°C)
(iF' 70 Amp, TC' 125°C)

vF

Instantaneous Reverse Current (1)

iR

(Rated Voltage, TC' 125°C)
(Rated Voltage, TC' 25°C)
Capacitance (VR' 1.0 Vdc, 100 kHz> I> 1.0 MHz, TC' 25°C)

Ct

*H and Hl devices include extra testing. See Figure 10.
(1) Pulse Test: Pulse Width = 300
DUIV Cycle = 2.0%

"'S.

3-121

Unit
Volts

0.49
0.55
0.60

0.55
0.63
0.69

60
0.1

100
0.3

3000

3700

rnA

pF

MBR3520, MBR3535,MBR3545, H, H1

FIGURE 2 - MAXIMUM REVERSE CURRENT

FIGURE 1 -MAXIMUM FORWARD VOLTAGE
200

V

j

I

t= TJ = 150°C

100

TJ = 150°C
20

100°C

10

=>

75°C

u

)

~

'"
0:

~

JJ

1.0

.$ 0.1

I

J

10

0.01 0

25°C

10

II

II

~ 50
=>

I

FIGURE 3 - MAXIMUM SURGE CAPABILITY

I
I

3.0

600

...::;;

;;;

20

400

~

....

if

15
a:
~

~

~

o

0.2
0.4
0.6
0.8
1.0
1.2
vF. INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

1.4

=>

,~

CI

0
ICapacitive Load)

~

'"~
;;;;

3.0

5.0 7.0 10
20
NUMBER OF CYCLES

30

50

70 100

Jc

) ~ ~\

0:

~

2.0

~'\~. = ,,= Square Wave
,,~ ' \ : ,~V -(Resistive Load)

0

u

~

80
60
1.0

VR @ Rated Voltage

....~
a:

100

FIGURE 5 - POWER DISSIPATION

FIGURE 4 - CURRENT DERATING

40

Rated Load
1= 60 Hz

r\
I" 't-..

'"

...'":i;

0.3

15
a:

200

~
=>

05

...

\

=>

'-'

0.7

0.2

1\

a:

1.0

;;;
::;;

50

7.0

0:

'"ffi
""""....
""....""
~
'"

40

20
30
VR. REVERSE VOLTAGE (VOLTS)

CI

""~

=

25°C

II II

15
0:
0:

-

125°C

a:

II II

30

=>

15
0:
1/

;;;

u

<"
.§.

II

50

0:

/

....

70

!:li
~
....

I--I---

V

II

100

1000

~I/V"
~ ~\
IAV = 20. 10. 5

"'" ~"
~

0

j
0
60

80

100

120

Te. CASE TEMPERATURE (OCI

~

"

140

160

10

20

30

IF(AV). AVERAGE FORWARD CURRENT (AMPS)

3-122

40

MBR3520, MBR3535, MBR3545, H, H1

FIGURE 6 - THERMAL RESPONSE

~

1. 0

'"o~

o.7
O. 5

~

~

ZOJC(I) = ROC' 'It)

o. 3

,.u o. 2
i3!
~

....... ~

en

ill
a:

~

.1

'"~
on
,.

'"e:

-

0.0 3
0.0 2
0.0 II-""
0.01

1I l J

Pk

Ip

~ 0.0 7
ffi 0.0 5
I-

JLj1

f-""

-

-

11

-

TIME

Duty Cycle, 0 = tplTI
Peak Powe" Ppk, is peak of an
equivalent square power pulse.

L'>TJC = Ppk' ROJC [0 + 11 0) . '(II + tp) + ,(Ip) - ,(II)]
where
L\ TJC = the increase in junction temperature above the case temperature
rjt) = normalized value of transient thermal resistance at time. 1. from Figure 6. i.e.:
rill + tp) = normalized value of transient thermal resistance at time. 11 + tpo

i.---~

0.1

1.0

10

100

1000

t, TIME (ms)

FIGURE 7 - CAPACITANCE

HIGH FREQUENCY OPERATION
Since current flow in a Schottky rectifier is the result of majority
carrier conduction, it is not subject to junction diode forward and
reverse recovery transients due to minority carrier injection and
stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel
with a variable capacitance. (See Figure 7.)
Rectification efficiency measurements show that operation will
be satisfactory up to several megahertz. For example, relative
waveform rectification efficiency is approximately 70 per cent at
2.0 MHz, e.g., the ratio of de power to RMS power in the load is
0.28 at this frequency, whereas perfect rectification would Yield
0.406 for sine wave inputs. However. in contrast to ordinary
junction diodes, the loss in waveform efficiency is not indicative
of power loss; it is simply a result of reverse current flow through
the diode capacitance, which lowers the de output voltage.

IIII

5000

b., ~ax
........., .......

~ 3000

TY;" t"--

~

u

~ 2000

13

;:.':

I"1000

:--........ ........

~

1.0

FIGURE 8 - TEST CIRCUIT FOR dv/dt
ANa REVERSE SURGE CURRENT

n

--1
--l

~2V

L:

I--

12Vdc

100
2N2222
2.0,"s
1.0kHz
Current
Amplitude
Adjust
0-10 Amps

........

700
.05

n

100
Carbon

3-123

I

Lo M~Z-I-

, I'r-.

ct
u
U

2.0

3.0

5.0 7.0

10

VR, REVERSE VOLTAGE (VOLTS)

VCC

I I

)IJO)JHZ;;;');;;'

20

r-...

30

...... r-..
50

MBR3520, MBR3535, MBR3545, H, H1

FIGURE 9 - SCHOTTKY RECTIFIER
Copper Lead

Barrier Metal

Steel

,.l:i~~~~~~~-1---- Oxide Passivation
VIEW A-A

Copper Base

Moly Disk
Guardring

II

Motorola builds quality and reliability into its SChottky Rectifiers.
First is the chip, which has an interface metal between the
platinum-barrier metal and nickel-gold ohmic-contact metal to
eliminate any possible interaction with the barrier. The indicated
guardring prevents dvldt problems, so snubbers are not mandatory. The guardring also operates like a zener to absorb overvoltage transients.
Second is the package. There are molybdenum disks which
closely match the thermal coefficient of expansion of silicon on
each side of the chip. The top copper lead is also stress-reliefed
to prevent damage during assembly. These two features give the

PROOUCTION PROCESS:
1. Raw Material

2. Factory Processing

-

unit the capability of passing powered thermal fatigue tests for
5,000 cycles. The top copper lead provides a low resistance to
current and therefore does not contribute to device heating; a
heat sink should be used when attaching wires.
Third is the redundant electrical testing. The device is tested
before assembly in "sandwich" form, with the chip between the
moly disks. It is tested again after assembly. As part of the final
electrical test, devices are 100% tested for dvldt at 1,600 VII'S
and reverse avalanche. Devices are also 100% reverse scope
tested for trace anomalies.

FIGURE 10- HI-REL PROGRAM OPTIONS
INSPECTION LOT FORMATION
AFTER FINAL ASSEMBLY
OPE.RATION ISEALlNG)

1.
2.
3.
4.

•

High Temperature Storage
Temperature Cycling
Constant Acceleration
Hermetic Seal (Fine and Gross)

'00% Group A Test

•

INSPECTION TESTS
TO VERIFY LTPO:
Group A

j-.

1.
2.
3.
4.
5.

Group B

I

ature cycling, constant acceleration and hermetic seal testing
prior to a sample being submitted to Group A and B inspection.
After completion of Group B inspection, the MBR3545H is available without additional screening. MBR3545H1 devices are
further processed through a high temperature reverse bias
(HTRBI and forward burn-in. Consult factory for details.

I

_f

l

PREPARATION
FOR
DELIVERY

The MBR3545 is also available with two levels of extra testing
similar to "TX" screening and includ;~g Group Aand B inspection
programs. Both the MBR3545H and MBR3545H1 go through
100% screening consisting of high temperature storage, temper-

100% PROCESS CONOITIONING

MBR3545H HOLDING AREA:

(Sample Tests)

I

VIEW A-A

~

•

REVIEW OF
GROUPS A & B DATA
FOR ACCEPT OR REJECT

Accept

Data

I

~

•

100% POWER CONDITIONING
Electrical Test
HTRB (160 Hr. M;n)
Electrical Test (PDA "" 10)
DC Forward Burn·ln (24 Hrs Min)
Electrical Test (PDA "" 10)

•

Ho~~7~~4!~~A: I
100% Group A TestJ

Accept
Data

3-124

I
I

PREPARATION
FOR
DELIVERY

MOTOROLA

SEMICONDUCTOR------------TECHNICAL DATA

SWITCH MODE
Power Rectifier

MBR4045PT

The SWITCHMODE power rectifier employs the use of the Schottky Barrier principle with
a Platinum barrier metal. This state-of-the-art device has the following features:
• Dual Diode Construction - Terminals 1 and 3 may be connected for Parallel
Operation at Full Rating
• 45 Volt Blocking Voltage
• Low Forward Voltage Drop
• Guardring for Stress Protection and High dv/dt Capability (> 10 V/ns)
• Guaranteed Reverse Avalanche
• 150°C Operating Junction Temperature

SCHOTTKY BARRIER
RECTIFIER
40 AMPERES
45 VOLTS

CASE 340D-Ol
T0-218 Atlas

MAXIMUM RATINGS, PER LEG
Symbol

Max

Unit

VRRM
VRWM
VR

45

Volt

IF(AV)

20
40

Amp

Peak Repetitive Forward Current, Per Diode
(Rated VR, Square Wave, 20 kHz) @ TC 90'C

IFRM

40

Amp

Non-repetitive Peak Surge Current
(Surge applied at rated load conditions hallwave, single phase, 60 Hz)

IFSM

400

Amp

Peak Repetitive Reverse Current (2.0 fls, 1.0 kHz)

IRRM

2.0

Amp

TJ

-65 to +150

°c

Tsta

-65 to +175

'c

TJ(pk)

175

'C

dv/dt

10,000

V/flS

RaJC

1.4

'CIW

Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current (Rated VR)
@ TC
125°C

=

Total Device

=

Operating Junction Temperature
Storage Temperature
Peak Surge Junction Temperature (Forward Current Applied)
Voltage Rate of Change

THERMAL CHARACTERISTICS, PER LEG

I Thermal Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS, PER LEG
Instantaneous Forward Voltage (1)
(iF 20 Amps, TC 25'C)
(iF 20 Amps, TC 125'C)
(iF 40 Amps, T C 25'C)
(iF 40 Amps, TC 125'C)

vF

Instantaneous Reverse Current (1)
(Rated DC Voltage, TC 25°C)
(Rated DC Voltage, TC 100°C)

iR

=
=
=
=

=
=
=
=

Volts
0.70
0.60
0.80
0.75

=
=

rnA
1.0
50

(1) Pulse Test: Pulse WIdth::: 300 /ls, Duty Cycle S2.0%.

3-125

II

MBR4045PT

100

~

..... ~
/'
~

Te=150oe

v

ia

'7/

300

a:

400

500

IE

600

700

0.1

0.01 0

800

--

10

vf, INSTANTANEOUS FORWARD VOLTAGE (mV)

Figure 1. Typical Forward Voltage

II

i
~
a

~

w

o
a:

r-I'--

~

20
15

w

10

i1E

5

~
i:i:'

10
VR. REVERSE VOLTAGE (VOLTS)

40

50

25

i

~

cS

1

20
30
VR. REVERSE VOLTAGE (VOLTS)

30

l~"

SQUAREW~~

~

o

100

Te = 25°e

Figure 2. Typical Reverse Current

10000

~
G 1000

I

Te= 1000 e

i

,

/ /
h.
Te=~oooe/ Te=25°e

200

I

10

§.

/
/

Te = lsooe

<"

iiii"'"

100

Figure 3. Typical Capacitance Per Leg

~R=45V)~

110

De

~

1\\

120
130
140
Te. eASE TEMPERATURE (0C)

150

Figure 4. Current Derating Per Leg

3-126

160

MOTOROLA

SEMiCONDUCTOR . . . . . . . . . . . . . . . . . . . . . . . ....
TECHNICAL DATA

SWITCH MODE
Schottky Power Rectifier

MBR4045WT
Motorola Preferred Device

The SWITCHMODE power rectifier employs the use of the Schottky Barrier principle with
a Platinum barrier metal. This state-of-the-art device has the following features:
• Dual Diode Construction Operation at Full Rating

Terminals 1 and 3 may be connected for Parallel

SCHOTTKY BARRIER
RECTIFIER
40 AMPERES
45 VOLTS

• 45 Volt Blocking Voltage
• Low Forward Voltage Drop
• Guardring for Stress Protection and High dv/dt Capability (> 10 V/ns)
• Guaranteed Reverse Avalanche
• 150°C Operating Junction Temperature

CASE 340F-03
TO-247

MAXIMUM RATINGS, PER LEG
Symbol

Max

Unit

VRRM
VRWM
VR

45

Volt

IF(AV)

20
40

Amp

Peak Repetitive Forward Current, Per Diode
(Rated VR, Square Wave, 20 kHz) @ TC = 90°C

IFRM

40

Amp

Non-repetitive Peak Surge Current
(Surge applied at rated load conditions hallwave, single phase, 60 Hz)

IFSM

400

Amp

Peak Repetitive Reverse Current (2.0 j.ls, 1.0 kHz)

IRRM

2.0

Amp

TJ

-65 to +150

°c

Tsta

-65 to +175

°C

TJ(pk)

175

°C

dv/dt

10,000

Vlj.ls

RSJC

1.4

Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current (Rated VR)
@TC=125°C

Total Device

Operating Junction Temperature
Storage Temperature
Peak Surge Junction Temperature (Forward Current Applied)
Voltage Rate of Change

THERMAL CHARACTERISTICS, PER LEG

I Thermal Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS, PER LEG
Instantaneous Forward Voltage (1)
(iF = 20 Amps, TC = 25°C)
(iF = 20 Amps, TC = 125°C)
(iF = 40 Amps, TC = 25°C)
(iF = 40 Amps, TC = 125°C)

vF

Instantaneous Reverse Current (1)
(Rated DC Voltage, TC = 25°C)
(Rated DC Voltage, TC = 100°C)

iR

Volts
0.70
0.60
0.80
0.75
mA
1.0
50

(1) Pulse Test: Pulse Width = 300 ~S, Duty Cycle ~ 2.0%.

Preferred deVices are Motorola recommended choices for future use and best overall value.

3-127

II

MBR4045WT

100

/.

/

a:

J

~

~!E

h.

J TC=~OOOC/

TC= 100°C

G

;

/

300
400
500
600
700
vr; INSTANTANEOUS FORWARD VOLTAGE (mV)

0.01 0

800

Figure 1. Typical Forward Voltage

I

,I

0.1

TC = 25°C

-

TC=25°C

200

II

II

10

~

~

/. ~

1= TC=~50°C

TC= 150°C

<
§.

......:: .....

10

I

20
30
VR. REVERSE VOLTAGE (VOLTS)

40

50

Figure 2. Typical Reverse Current

10000

en

30

ffi

25

i

a:

a
c

~

-~

20

i'.."

15

SQUAREW~'~

~
w

~

10

~R=45V)~

w

~
100

~
;r

1

10
VR. REVERSE VOLTAGE (VOLTS)

100

Figure 3. Typical Capacitance Per Leg

5

110

DC

I\.

~'\

120
130
140
TC. CASE TEMPERATURE (OC)

150

Figure 4. Current Derating Per Leg

3-128

160

MOTOROLA

SEMICONDUCTOR------------_
TECHNICAL DATA

SWITCHMODE
Power Rectifier

MBR5025L
Motorola Preferred Device

The SWITCHMODE power rectifier employs the use of the Schottky Barrier principle with
a Platinum barrier metal. This state-of-the-art device has the following features:
SCHOTTKY BARRIER
RECTIFIER
LOWVF
50 AMPERES
25 VOLTS

•
•
•
•
•

Very Low Forward Voltage Drop (Max 0.58 V @ 100°C)
Guardring for Stress Protection and High dv/dt Capability (10 V/ns)
Guaranteed Reverse Avalanche
150°C Operating Junction Temperature
SpeCially Designed for SWITCHMODE Power Supplies with Operating
Frequency up to 300 kHz
• High Quality TO-218 ATLAS Single Plastic Package

CASE 340E-Ol
SINGLE TO-218 Atlas

MAXIMUM RATINGS
Rating

Symbol

Max

Unit

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

25

Volts

Average Rectified Forward Current (Rated VR)
TC 125°C

IF(AV)

50

Amps

Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz) TC

IFRM

150

Amps

Non-repetitive Peak Surge Current
(Surge applied at rated load conditions hallwave, single phase, 60 Hz)

IFSM

300

Amps

Peak Repetitive Reverse Current (2.0 I1S, 1.0 kHz)

IRRM

2.0

Amps

TJ

-65 to +150

°C

Tstg

-65 to +175

°c

=

=90°C

Operating Junction Temperature
Storage Temperature
Peak Surge Junction Temperature (Forward Current Applied)

Voltage Rate of Change

TJ(Dkl

175

°C

dv/dt

10,000

ViI1S

ROJC

0.75

°CIW

THERMAL CHARACTERISTICS

I Thermal Resistance, Junction to Case
ELECTRICAL CHARACTERISTICS
Instantaneous Forward Voltage (1)
(iF 50 Amps, TC 25°C)
(iF 50 Amps, TC 100°C)
(iF 30 Amps, TC 25°C)

vF

Instantaneous Reverse Current (1)
(Rated DC Voltage, TC 25°C)
(Rated DC Voltage, TC 100°C)

iR

=
=
=

=
=
=

Volts
0.62
0.58
0.54

=
=

rnA
0.5
60

(1) Pulse Test: PulseWtdth = 300 !ls, Duty Cycles2.0%.

Preferred deVIces are Motorola recommended choices for future use and best overall value.

3-129

II

MBR5025L

1000

~

V

/r/

/

iii
a::
!E-

I

0.6

Figure 1. Typical Forward Voltage

-

25°C

0.1

0.01 0

""""DC

'"

.......

10
20
30
VR. REVERSE VOLTAGE (VOLTS)

.......

"

100°C

40

Figure 2. Typical Reverse Current

~

120

TJ = 150°C

w
en
a::
w

0.2
0.3
0.4
0.5
vf; INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

II

10

to

I

V

a::
a::

::>

TJ=l~l ~1ooocl=] 'r/ 25°C

'f

100

zw

1/

/

<.s
I-

~ ........

""C

"~
"-

'\

130
140
TC. CASE TEMPERATURE (OC)

150

160

Figure 3. Current Derating, Case

40
80
120
TA. AMBIENTTEMPERATURE (0G)

Figure 4. Current Derating, Ambient

3-130

160

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

Switchmode
Power Rectifiers
· .• using a platinum barrier metal in a large area metal-to-silicon power diode. State-ofthe-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high frequency inverters,
free-wheeling diodes, and polarity-protection diodes.
o Guaranteed Reverse Avalanche
• Guardring for dv/dt Stress Protection
• 175°C Operating Junction Temperature
• Extremely Low Forward Voltage

MBR6015L'
MBR6020L
MBR6025L
MBR6030L
MBR6030L Is a
Motorola Preferred Device

SCHOTTKY RECTIFIERS
60 AMPERES
15 TO 30 VOLTS

t&ou,~~
DO-203AB
METAL

MAXIMUM RATINGS
Symbol

Value

Unit

VRRM
VRWM
VR

15
20
25
30

Volts

IFRM

150

Amps

10

60

Amps

Peak Repetitive Reverse Surge Current
(2 p.s, 1 kHz) See Figure 7

IRRM

2

Amps

Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz)

IFSM

1000

Amps

Rating
MBR6015L
MBR6020L
MBR6025L
MBR6030L

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz) TC = 90'C
Average Rectified Forward Current
(Rated VR) TC = 120'C

TJ

-65 to +150

Storage Temperature Range

Tstg

-65 to +175

'c
'c

Voltage Rate of Change (Rated VR)

dv/dt

1000

V//J.s

Operating Junction Temperature

THERMAL CHARACTERISTICS
Maximum Thermal Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)
(iF = 30 Amps, TC = 25'C)
(iF = 60 Amps, TC = 25'C)
(iF = 30 Amps, TC = 150'C)
(iF = 60 Amps, TC = 150'C)

vF

Maximum Instantaneous Reverse Current (1)
(Rated Voltage, TC = 25'C)
(Rated Voltage, TC = 125'C)

iR

Capacitance
(VR = 1 Vdc, 100 kHz'" f '" 1 MHz)

Ct

J1) Puis. Te8l: Puis. Width .. 300 /41. Duty Cycl...

Volts
0.42
0.48
0.30
0.38
mA
50
280

2%.

3-131

6000

pF

II
I

MBR6015L, MBR6020L, MBR6025L, MBR6030L
200

1000

Ii?

I. VI

100

100

«
..s

I

TJ = 15O'C __
125:C~

lOO'C -...L

a:
a:
~
u
w

I

IJ/ / /

V

II if

IIJ

!

!I

r--

TJ..:}5'C=

~ 10

I

/I

/I

15O':C~

125'C=
100'C§

1

.!!:

o. 1

25'C

0.01

m

o

I

•

I

I :II U
~

~

Figure 2. Typical Reverse Current*

/

*The curves shown are typical for the highest voltage device in
the voltage grouping. Typical reverse current for lower voltage
selections can be estimated from these same curves if VR is sufficiently below rated VR.

I /,
1

~

VR, REVERSE VOLTAGE (VOLTS)

I '/

20,000

U

U

U

U

~

M

I

U

vF, INSTANTANEOUS VOLTAGE (VOLTS)

10,000
~
;;:; 7,000

Figure 1. Typical Forward Voltage

!E
~

~u

loJkHz';' f ~ llMHz

.....

.........

5,000

r-....
........

3,000

"

~

"'-Lt--

;--..... I'-....

TYP

2,000

I'- ........ ........
........ r--.

1,000
0.5 0.7

1

2 3
7 10
20
VR, REVERSE VOLTAGE (VOLTS)

30

Figure 3. Capacitance

NOTE 1
HIGH FREQUENCY OPERATION
Since current flow in a Schottky rectifier is the result
of majority carrier conduction, it is not subject to junction
diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model
consisting of an ideal diode in parallel with a variable
capacitance. (See Figure 4.)
Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For
example, relative waveform rectification efficiency is approximately 70 percent at 2 MHz, e.g., the ratio of dc
power to RMS power in the load is 0.28 at this frequency,
whereas perfect rectification would yield 0.406 for sine
wave inputs. However, in contrast to ordinary junction
diodes, the loss in waveform efficiency is not indicative
of power loss; it is simply a result of reverse current flow
through the diode capacitance, which lowers the dc output voltage.

3-132

+15OV, 10mAdC~
2kO

VCC

4 ILF

12Vdc
12 TI>---'VI10",0_-{ 2N2222

-I

+

~

lOUT

f--2ILS

1 kHz

CURRENT
AMPLITUDE
ADJUST
Q-l0AMPS

1000
CARBON
1 CARBON
lN5B17

-=
Figure 4. Test Circuit for dv/dt
and Reverse Surge Current

-=

50

MBR6015L, MBR6020L, MBR6025L, MBR6030L
_

100

~

90

15

80

g§

70

~

VR

ac

60

~

50 f-- '---Ipllve

a:
a:

~

4D

~
~

""I-'
..'\.

RATED VOLTAGE

\

~

~

80

100
120
Tc, CASE TEMPERATURE lOCI

160

"/ ~

SINE WAVE

25

~ 15

\

140

SQUARE WAVE __

~ 20 r--r- Je.
IAV

w

" 0..\ ,\

40

15
a:

~de

'\ ~\

45

~ 35
ill 30

X~QUAREAND
\SINE WAVE

1\

20

10
0
60

g

'\.

5
10

30
20

~

~

50

~
~
o

~ 20
i'

v:

10

10

VV

/5
......

v.: /'"

~ ,.;'

..... de

,.;'

. / )o'~ ~ ~

~~~~
~ 5
P"
l..,.oIIII
~
~ 0
o 5 m ~ w ~ ~

~

40

~

W

~

80

~

M

IFIAV), AVERAGE FORWARD CURRENT

Figure 5, Forward Current Derating

Figure 6. Power Dissipation

NOTE 2

FtJL
Pk

Ppk

DUTY CYCLE, D ~ tpftl
PEAK POWER, Ppk, IS PEAK OF AN
EQUIVALENT SQUARE POWER PULSE.

tp_

TIME

1-----tl---1

To determine maximum junction temperature of the
diode in a given situation. the following procedure is
recommended:
The temperature of the case should be measured using
a thermocouple placed on the case. The thermal mass
connected to the case is normally large enough so that
it will not significantly respond to heat surges generated

aw

--

N

;;!

:;;
a:
0

in the diode as a result of pulsed operation once steadystate conditions are achieved. Using the measured value
of TC. the junction temperature may be determined by:
TJ = TC + ~TJC
where ~TC is the increase in junction temperature
above the case temperature. It may be determined by:
':\TJC = Ppk'RIJJC[O+(1-0)'r(t1 +tp)+r(t p)-r(t1)]
where
r(t) = normalized value of transient thermal resistance
at time. t. from Figure 7. i.e.:
r(tl - t p ) = normalized value of transient thermal resistance at time t1 +tp '

-

-

0.5

~

w
u

z 0.2
;:!:

......

...... ......
R6JClti ~ Rruc + rlt)

!!l
V>

~

INOTE 2)

0.1

:;;/,

:;;
a:
w

0.05

~

lZ

l*

0.02

g 0.01

~

,.....,...

.......

0.01

0.02

0.05

0.1

0.2

0.5

10
t, TIME (ms)

Figure 7. Thermal Response

3-133

20

50

100

200

500

1000

II

MBR6015L, MBR6020L, MBR6025L, MBR6030L

BARRIER METAL

,.t.'==~~~+---OXIDE PASSIVATION
VIEWA·A

MOLY DISK

VIEWA·A

•

Motorola builds quality and reliability into its Schottky
Rectifiers.
First is the chip, which has an interface metal between
the platinum-barrier metal and nickel-gold ohmic-contact
metal to eliminate any possible interaction with the barrier. The indicated guardring prevents dv/dt problems, so
snubbers are not mandatory. The guardring also operates
like a zener to absorb overvoltage transients.
Second is the package. There are molybdenum disks
which closely match the thermal coefficient of expansion
of silicon on each side of the chip. The top copper lead

has a stress relief feature which protects the die during
assembly. These two features give the unit the capability
of passing stringent thermal fatique tests for 5,000 cycles.
The top copper lead provides a low resistance to current
and therefore does not contribute to device heating; a
heat sink should be used when attaching wires .
Third is the redundant electrical testing. The device is
tested before assembly in "sandwich" form, with the chip
between the moly disks. It is tested again after assembly.
As part of the final electrical test, devices are 100% tested
for dv/dt at 1,600 V/p.s and reverse avalanche.

Figure 8. Schottky Rectifier

MECHANICAL CHARACTERISTICS
CASE: Welded, hermetically sealed
FINISH: All external surfaces corrosion resistant and
terminal lead is readily solderable
POLARITY: Cathode-to·Case
MOUNTING POSITION: Any
MOUNTING TORQUE: 25 in-Ib max
SOLDER HEAT: The excellent heat transfer property of
the heavy duty copper anode terminal which transmits
heat away from the die requires that caution be used
when attaching wires. Motorola suggests a heat sink
be clamped between the eyelet and the body during
any soldering operation.

3·134

MOTOROLA

MBR6035
MBR6045, H, H1

• SEMICONDUCTOR
TECHNICAL DATA

-

MBR&045 is a
Motorola Preferred Device

SCHOTTKY RECTIFIERS

SWITCHMODE POWER RECTIFIERS

60 AMPERES
36 AND 45 VOLTS

· .. using a platinum barrier metal in a large area metal-to-silicon
power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited
for use as rectifiers in low-voltage. high-frequency inverters. freewheeling diodes. and polarity-protection diodes.

•

Guaranteed Reverse Avalanche

•

Guardring for dv/dt Stress Protection

•

150°C Operating Junction Temperature

•

Low Forward Voltage

II

CASE 257-01
DO-203AB
METAL

MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage

Working Peak Reverse Voltage
DC Blocking Voltage
Peak Repetitive Forward Current

Symbol
VRRM
VRWM
VR
IFRM

(Rated VR. Square Wave. 20 kHz) TC = 100°C
Average Rectified Forward Current

10

(Rated VR) TC = 100°C
Peak Repetitive Reverse Surge Current

IRRM.

(2.0 "s. 1.0 kHz) See Figure 7
Nonrepetitive Peak Surge Current

IFSM

(Surge applied at rated load conditions

MBR6035
MBR6035B

MBR6045. H. H1'
MBR8045B

Unit

35

45

Volts

•
•
•
•

•

120

•
•

60
2.0

•

800

halfwave. single phase. 60 Hz)
Operating Junction Temperature

TJ

Storage Temperature

Tstg

Voltage Rate of Change
(Rated VR)

dvldt

•

.

-65 to + 150

•
•

.•

65 to +175
1000

Amps
Amps
Amps
Amps

°c
°c

V/"s

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance.

Junctionato~Case

Typ

Max

0.85

1.0

Typ

Max

ELECTRICAL CHARACTERISTICS
Characteristic

Symbol

Instantaneous Forward Voltage (1)
(iF = 60 Amp. TC = 25°C)
(iF = 60 Amp. TC = 125°C)
(iF= 120 Amp. TC= 125°q

vF

Instantaneous Reverse Current (1)
(Rated Voltage. TC = 25°C)
(Rated Voltage. TC = 125°C)

iR

Capacitance
(VR = 1.0Vdc. 100 kHz';; 1.0 MHz)

Ct

·H and H1 devices Include eMlra lesting.

(11 Pulse rest: Pulse Width =300 ~s. DUly Cycle =2.0%

3-135

Unit
Volts

0.65
0.57
0.70

0.70
0.60
0.76

0.1
55

0.3
100

3000

3700

mA

pF

MBR6035, MBR6045, H, H1

FIGURE 1 - TYPICAL FORWARD VOLTAGE
200

J

V /V

10 0

/"

FIGURE 2 - TYPICAL REVERSE CURRENT
1000

V

r-- r-- Tr

100

;;;

150°C

-

125°C

§.

0

....
15

0

a

lOooC
10

~

J /

~

'"ffi
a::

/

0
TJ=150 0 C/
0

:/

10

-

II:

/

.!i=

0.1

25°C

h5°C
0.01

I /

0

75°C

o

10

-

r--

40

20
30
VR. REVERSE VOLTAGE (VOLTS)

50

0

II

0

I

0

FIGURE 3 - MAXIMU.M SURGE CAPABILITY

I

0

1000

il

in
0.. 700

:;;

:;.

....

15
II:

500

II:

...
:::>

1. 0

~ 300

II:

O. 7

:::>

" i"",-

"'"

.......

~r-..

i'-- :---.

'"

O. 5

'" 200
:;l

O. 3

:i
~

:----r-.

0..

100
10

O. 2

o

Rated Load
f = 60 HZ

0.2

0.4

0.6

O.B

1.0

1.2

1.4

2.0

30

5.0 70

10

20

30

50

70 100

NUMBER OF CYCLES

YF. INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

FIGURE 4 - CAPACITANCE

NOTE 1

~ 3000

III I I
11 riol ~HZ ;. L" 10 M~z - -

I

5000

HIGH FREQUENCY OPERATION
Since current flow in a Schottky rectifier is the result of majority
carrier conduction, it is not subject to junction diode forward and
reverse recovery transients due to minority carrier injection and
stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel
with a variable capacitance. (See Figure 4.)
Rectification efficiency measurements show that operation will
be satisfactory up to several megahertz. For example. relative
waveform rectification efficiency is approximately 70 per cent at
2.0 MHz. e.g .. the ratio of de power to RMS power in the load is
0.28 at this frequency. whereas perfect rectification would yield
0.406 for sine wave inputs. However. in contrast to ordinary
junction diodes. the loss in waveform efficiency is not indicative
of power loss; it is simply a result of reverse current flow through
the diode capacitance. which lowers the de output voltage.

I'--,

I.

Max

""'TY~".......

~

u

~ 2000

u

<1:

......... 'I"-

C3

............

u

1000

.......

.......

700
.05

1.0

2.0

3.0

5.0 7.0

10

VR. REVERSE VOLTAGE (VOLTS)

3-136

20

30

.......

r-50

MBR6035, MBR6045, H, H1

FIGURE 5 - FORWARD CURRENT DERATING

FIGURE 6 - POWER DISSIPATION

0
VR

0

@

50

Rated Voltage

40

0

""

0
0
0
0

~c
"-

Ipk
ylAV

f"'....'-...

I

oI-- (Capacitive Load) .!P!
I =20.10
.5
I

I
100

90

110

120

130

10_

30

,

10

150

140

ILL L /L
LL L /"

5 / ) '/L

IAV

//. ~

~V
~
~

TJ

20

160

Square Wave
50% Duty Cycle
de

"/

'/YV/ i"--. Ipk

20

~~

I

AV1

!e!< =20--=
r--- r-'IAV
L

_

(Resistive Load)

0 ~"
Im~
I

0
80

= 11" Square Wave

L

/ 1/

(Capacitive load)

= 11" (Resistive Load)-

=125°C

60

40

80

IF(AV). AVERAGE FORWARO CURRENT (AMPS)

TC. CASE TEMPERATURE (0C)

FIGURE 7 - TEST CIRCUIT FOR dv/dt
AND REVERSE SURGE CURRENT

NOTE 2

J=U1

+ 150 V. 10 mAde

Ppk

PPk

"

\----.,--\

TIME

2.0 kll

DUTY CYCLE. 0 " Ip/l1
PEAK POWER. Ppk, IS peak 01 an

To determme maximum Junction temperature of the diode In a given
Situation, the follOWing procedure 15 recommended:
The temperature of the case should be measured uSing a thermocouple

I I ~2V 100
.-l c:
--l I-- 2.01's

placed on the case. The thermal mass connected to the case IS normally large
enough so that

it will not significantly respond to heat surges generated In

the diode as a result of pulsed operatIon once steady-state conditions are
achieved. USing the measured value of TC. the Junction temperature may be
determmed by.

12Vdc

VCC

equivalent square power pulse.

TJ=TC+.l. TJC

2N2222

1.0kHz

where .l T C IS the increase In junction temperature above the case
temperature. It may be determined by:

Current
Amplitude
Adj us!
0-10 Amps

.l TJC =:: Ppk-R8JCIO + (1- Ol-rlt, + tpl+ rHpJ -rlt,)! where
rlt) =:: normahzed value of tranSient thermal resistance at trme, t, from
Frgure 8. r.e.:
rlt1 + tpl '" normalized value of transrent thermal resistance at trme '1 + 'p'

100 II
Carbon

FIGURE 8 - THERMAL RESPONSE

~
~
~

1. 0

5

0

~

w
'-'

z

~

~

O. 2

IReJc(t) = ReJC + r(t)
(Note 2)

~ O. 1

0:

~

c(

~

00 5

i$i

0.02~

::r:
....
....
z

zc(

:= 00 1
~

-.:-

0.01

.--0.02

0.05

0.1

0.2

0.5

1.0

2.0

t. TIME (ms)

3-137

5.0

10

20

50

100

200

500

1000

•

I

MBR603S, MBR604S, H, H1

FIGURE 9 - SCHOTTKY RECTIFIER
Copper Lead

Barrier Metal

r-f.~~~~~~~~J~--- Oxide Passivation
VIEW A-A

Copper Base

Moly Disk
Guardring

•

Motorola builds quality and reliability into its Schottky Rectifiers.
First is the chip, which has an interface metal between the
platinum-barrier metal and nickel-gold ohmic-contact metal to
eliminate any possible interaction with the barrier. The indicated
guardring prevents dv/dt problems, so snubbers are not mandatory. The guardring also operates like a zener to absorb over-

VIEW A-A

feature which protects the die during assembly. These two
features give the unit the capability of passing stringent thermal
fatigue tests for 5,000 cycles. The top copper lead provides a low
resistance to current and therefore does not contribute to device

heating; a heat sink should be used when attaching wires.
Third is the redundant electrical testing. The device is tested
before assembly in "sandwich" form, with the chip between the
moly disks. It is tested again after assembly. As part of the final
electrical test, devices are 100% tested for dv/dt at 1,600 V I J.lS
and reverse avalanche.

voltage transients.

Second is the package. There are molybdenum disks which
closely match the thermal coefficient of expansion of silicon on
each side of the chip. The top copper lead has a stress relief

HI-REL PROGRAM OPTIONS
The MBR6045 is also available with two levels of extra testing
similarto "TX" screening and including Group A and B inspection
programs. Both the MBR6045H and MBR6045H1 go through
100% screening consisting of high temperature storage, temperature cycling, constant acceleration and hermetic seal testing

prior to a sample being submitted to Group A and B inspection.
After completion of Group B inspection, the MBR6045H is
available without additional screening. MBR6045H1 devices are
further processed through a high temperature reverse bias
(HTRBI and forward burn-in. Consult factory for details.

MECHANICAL CHARACTaUSnc5
CASE: Welded. hermeticallv sealed

FINISH: All external surfaces corrosion resistant and termina' lead is readily solderabl•.

POLARITY: Cathode-to-Cilse

MOUN11NG POSITION: Any
MOUNTING TORQUE: 25

in~b

max

SOLDER HEAT: The excellent heat transfer

property of the heavy duty copper anode ter-

minal which transmits heat away from the die
requires that caution be used when attaching
wires. Motorola suggests a heat sink be
clamped between eyelet and the body during
any soldering operation.

3-138

MOTOROLA

SEMICONDUCTOR------------TECHNICAL DATA

SWITCHMODE
Power Rectifier

MBR604SPT

The SWITCHMODE power rectifier employs the use of the Schottky Barrier principle with
a Platinum barrier metal. This state-of-the-art device has the following features:
• Dual Diode Construction - Terminals 1 and 3 may be connected for Parallel
Operation at Full Rating
• 45 Volt Blocking Voltage
• Low Forward Voltage Drop
• Guardring for Stress Protection and High dv/dt Capability (> 10Ylns)
• Guaranteed Reverse Avalanche
• 150°C Operating Junction Temperature

SCHOTIKY BARRIER
RECTIFIER
60 AMPERES
45 VOLTS

CASE 3400-01
TO-21B Atlas

MAXIMUM RATINGS, PER LEG
Rating

Symbol

Max

Unit

VRRM
VRWM
VR

45

Volt

IF(AV)

30
60

Amp

Peak Repetitive Forward Current, Per Diode
(Rated VR, Square Wave, 20 kHz) @ TC = 90°C

IFRM

60

Amp

Non-repetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz)

IFSM

500

Amp

Peak Repetitive Reverse Current (2.0 j.ls, 1.0 kHz)

IRRM

2.0

Amp

TJ

-65 to +150

°c

Tstg

-65 to +175

'C

TJIDkl

175

°c

dv/dt

10,000

Vlj.ls

Rruc

1.0

°CIW

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current (Rated VR)
@TC=125'C

Total Device

Operating Junction Temperature
Storage Temperature
Peak Surge Junction Temperature (Forward Current Applied)
Voltage Rate of Change

THERMAL CHARACTERISTICS, PER LEG

I Thermal Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS, PER LEG
Instantaneous Forward Voltage (1)
(iF = 30 Amps, TC = 25°C)
(iF = 30 Amps, TC = 125'C)
(iF; 60 Amps, TC = 25'C)

vF

Instantaneous Reverse Current (1)
(Rated DC Voltage, TC = 25'C)
(Rated DC Voltage, TC = 100°C)

iR

Volts
0.62
0.55
0.75
rnA
1.0
50

(1) Pulse Test: Pulse Width = 300 IlS, Duty Cycle S2.0%.

3-139

•

I

MBR6045PT

1000

I

100

a:
a:

10

~

~

!z
w

:::>

d

Te= 150'e

/'lV/

TC= 100'C

<.>

w

'"a:w
>
w
a:

IE

1:2'

1

/

:.--

0.1

150'e
TC = 25'C

0.01 0

10

20

30

40

50

.!f.

1100

/

I

i

1-j00icjTC 25'C

/200

300

400

500

600

700

VR, REVERSE VOLTAGE (VOLTS)

vf; INSTANTANEOUS FORWARD VOLTAGE (mV)

Figure 1. typical Reverse Current

Figure 2. Typical Forward Voltage

•

3-140

800

MOTOROLA

SEMICONDUCTOR------------TECHNICAL DATA

r

I

SWITCHMODE
Power Rectifier

MBR6045WT

The SWITCH MODE power rectifier employs the use of the Schottky Barrier principle with
a Platinum barrier metal. This state-of-the-art device has the following features:
• Dual Diode Construction - Terminals 1 and 3 may be connected for Parallel
Operation at Full Rating
• 45 Volt Blocking Voltage
• Low Forward Voltage Drop
• Guardring for Stress Protection and High dv/dt Capability (> 10 V/ns)
• Guaranteed Reverse Avalanche
• 150°C Operating Junction Temperature

SCHOTTKY BARRIER
RECTIFIER
60 AMPERES
45 VOLTS

CASE 340F-03
TO-247

MAXIMUM RATINGS, PER LEG
Rating

Symbol

Max

Unit

VRRM
VRWM
VR

45

Volt

IF(AV)

30
60

Amp

Peak Repetitive Forward Current, Per Diode
(Rated VR, Square Wave, 20 kHz) @ TC 90°C

IFRM

60

Amp

Non-repetitive Peak Surge Current
(Surge applied at rated load conditions hallwave, single phase, 60 Hz)

IFSM

500

Amp

IRRM

2.0

Amp

TJ

-65 to +150

°C

Tsta

-65 to +175

°C

TJ(pk)

175

°C

dvldt

10,000

V/~s

RSJC

1.0

°CIW

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current (Rated VR)
@ TC
125°C

=

Total Device

=

Peak Repetitive Reverse Current (2.0

~s,

1.0 kHz)

Operating Junction Temperature
Storage Temperature
Peak Surge Junction Temperature (Forward Current Applied)
Voltage Rate 01 Change

THERMAL CHARACTERISTICS, PER LEG

I Thermal ReSistance, Junction to Case

ELECTRICAL CHARACTERISTICS , PER LEG
Instantaneous Forward Voltage (1)
(iF =30 Amps, TC =25°C)
(iF = 30 Amps, TC =125°C)
(iF =60 Amps, TC =25°C)

vF

Instantaneous Reverse Current (1)
(Rated DC Voltage, T C =25°C)
(Rated DC Voltage, T C = 100°C)

iR

Volts
0.62
0.55
0.75
mA
1.0
50

(1) Pulse Test Pulse Width = 300 J.ls, Duty Cycle:; 2.0%.

3-141

..

MBR6045WT

:c-

.s.

1000

~
~

lOD

l~

ffi

!z
w

II:
II:

=>

TC = 150°C

a

TCf 100°9

~

w

'"

II: ~

f2

[

II:
W

.."",

. # 7"

~

10

'0

// "//

I
10

'"

Of

jlj

'0
W
Z

II:

J!.

100

0.1
TC = 25°C
0.01 0

10

------

20
30
40
VR. REVERSE VOLTAGE (VOLTS)

~IL

;$
Z

150°C

;$

~

50

.!f.

1100

'-

flOOicfc

/200

300

,250C

400

500

600

700

vf', INSTANTANEOUS FORWARD VOLTAGE (mV)

Figure 1. Typical Reverse Current

Figure 2. Typical Forward Voltage

II

3-142

800

MOTOROLA

MBR6535
MBR6545

• SEMICONDUCTOR
TECHNICAL DATA

•

MBR65451sa
Molorola Preferred Device

SWITCHMODE POWER RECTIFIERS

HIGH TEMPERATURE
SCHOTTKY RECTIFIERS

· .. using a platinum barrier metal in a large area metal-to-silicon
power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited
for use as rectifiers in low-voltage. high frequency inverters,
free-wheeling diodes, and polarity-protection diodes.

65 AMPERES

35 and 45 VOLTS

• Guaranteed Reverse Avalanche
• Guardring for dV/dt Stress Protection

• 175°C Operating Junction Temperature
• Low Forward Voltage

CASE 257-01

DO-203AB

METAL

MAXIMUM RATINGS
Rating

Symbol

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

MBR6535

MBR6545

Unit
Volts

VRRM
VRWM
VR

35

45

IFRM

130

130

Amps

10

65

65

Amps

Peak Repetitive Reverse Surge Current
(2.0 !,s, 1.0 kHz) See Figure 7

IRRM

2.0

2.0

Amps

Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave.
single phase, 60 Hz)

IFSM

BOO

BOO

Amps

TJ, Tstg

-65 to +175

-65 to +175

ac

dv/dt

1000

1000

V/!'s

0.7B
0.62
0.73

0.7B
0.62
0.73

0.07
125

0.07
125

3700

3700

Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz) TC = 120a C
Average Rectified Forward Current
(Rated VR) TC = 120a C

Operating Junction Temperature and
Storage Temperature

Voltage Rate of Cha nge
(Rated VR)
THERMAL CHARACTERISTICS

Maximum Thermal Resistance. Junction to Case
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)
(iF 65 Amp, TC 25 a C)
(iF 65 Amp, TC 150a C)
(if 130 Amp, TC 1500C)

vF

Maximum Instantaneous Reverse Current(l)
(Rated Voltage, TC 25 a C)
(Rated Voltage, TC 150a C)

iR

Capacita nee
(VR 1.0 Vdc, 100 kHz";; f,,;; 1.0 MHz)

Ct

=
=
=

=
=
=

=
=

=

(1) Pulse Test: Pulse Width = 300 IJ.S. Dutv Cycle:S;;; 2.0%

3-143

Volts

mA

pF

..

MBR6535, MBR6545

FIGURE 2 - TYPICAL REVERSE CURRENT

FIGURE 1 - TYPICAL FORWARD VOLTAGE
200

111' V

TJ
100

~ 1500~ / }00~c/
25°C

70

I

II

//

~

a:

::>

•

10

'"

;!;
.~


'"ffi
'"
'"
;:

/

/ /

30

=!. 20

'"'ca:

r--

I

I II

50

c;;o..
:;;

100
40
20
10
4:
.§. 4.0
!2 2.0
1.0
~
a:
13 0.4
0.2
'"IE o1

3.0

I

2.0

I

1.0

1

FIGURE 3 - MAXIMUM SURGE CAPABILITY

I
V

1000



"-

~

:;;-

~

"-

L
/

V

LL L
~

~ =5.0
IAV

/~
1 Vd L
/h ~

'"

~

~ ~ f".,

20

:>

'"
15

~ I'.

~

30 _ICapacitive Loadsl

0;

~ r-....
........

SQ!lare Wave

~

"-

~ =Tr

IAV

0

Square Wave, Sine Wave

~

10

~ 30

'"ffi

IResistive Loadl

~
z 40

dc

60

~
'"
13
'"

u;- 50
.....
!;;:

L;c

./

~

//
,/'

..&~
~
10

180

TC, CASE TEMPERATURE lOCI

20

30

40

50

60

70

80

IFIAVI' AVERAGE FORWARD CURRENT IAMPSI

FIGURE 7 - TEST CIRCUIT FOR dv/dt
AND REVERSE SURGE CURRENT

NOTE2

+150V,IOmAdc
2.0 kll

DUTY CYCLE, [] ~ Iplll
PEAK POWER. Ppk.. IS peak of an
equivalent square power pulse

Vcc 12 Vdc

To determine ma)umum JunctIon temperature of the dIode In a given
Situation, the follOWing procedure IS recommended'
The temperature of the case should be measured uSing a thermocouple
placed on the case The thE"rmal mass connected 10 the case IS normally large
enough so thai II will not slgmflcantly respond to heat surges generated In
the diode as a result of pulsed Operation once steady state condillons are
achieved USing the measured value of T C. the Junction temperature may be
determmed by

s t 2 V 100

-.l

TJ",TC ... j,TJC
where .l TC IS the Increase In lunciion tempera lure above the case
temperature It may be determined by

I--

2N2222

2.0 p'S
1.0 kHz
Current

.lTJC = Ppk-Rf/JCID .. (1 OI-r(I, ... tpl" rltpl rll,/I where
rlU normalized value of transient thermal reSlslance al time, t, from
Figure 8, I.e
rll, ~ tpl . normalized value of tranSlenllhermal reslslance all,me 11 + Ip

Amplitude
Adjust
0-10 Amps

0

loon
Carbon

FIGURE 8 - THERMAL RESPONSE

~
:::;

0

~

~ 05

0

~

.... -'

~

u

z
;!

o. 2

'"~

I

~

00 5

'"
;;t
;=

1Z

i;5 0.0 2 .......
z
~
t= 0.0 I

-

0.01

f-"'"

R8JClti = R8JC + rltl
INot.21

V"'""
0.02

0.05

0.1

0.2

0.5

1.0

2.0

t, TIMElmsl

3-145

5.0

10

2Q

50

100

200

500

1000

II

MBR6535, MBR6545

FIGURE 9 - SCHOTTKY RECTIFIER
Copper Lead

VIEW A-A

Copper Base
Guardnng

•

Motorola bUilds quality and reliability into Its Schottky RectifIers.
First IS the chip. which has an Interface metal between the
platinum-barrier metal and nickel-gold ohmic-contact metal to
eliminate any possible interaction with the barrier. The indicated
guardnng prevents dv/dt problems, so snubbers are not mandatory. The guardring also operates like a zener to absorb overvoltage tranSients.
Second is the package. There are molybdenum disks which
closely match the thermal coefficient of expansion of silicon on
each side of the chIp. The top copper lead has a stress relief

VIEW A-A

feature which protects the die dUring assembly. These two
features give the Unit the capability of passing stringent thermal
fatigue tests for 5,000 cycles. The top copper lead provides a low
resistance to current and therefore does nOl contribute to device
heating: a heat sink should be used when attaching wires.
Third is the redundant electrical testing. The deVice is tested
before assembly in "sandwich" form, with the chip between the
moly disks. It IS tested again after assembly. As part of the final
electrical test, devices are 100% tested for dvldt at 1,600 VII'S
and reverse avalanche.

MECHANICAL CHARACTERISTICS
CASE: Welded, hermetically sealed
FINISH: All external surfaces corrosion resistant and terminal'
lead is readily solderable,
POLARITY: Cathode-to-Case
MOUNTING POSITION: Any
MOUNTING TORQUE: 25 in-Ib max
SOLDER HEAT: The excellent heat transfer property of the heavy
duty copper anode terminal which transmits heat away from the
die requires that caution be used when attaching wires, Motorola
suggests a heat sink be clamped between the eyelet and the
body. during any soldering operation,

3·146

MBR7535
MBR7545

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

•

MBR7545Is a
Motorola Preferred Device

SCHOTIKY BARRIER
RECTIFIERS

SWITCHMODE POWER RECTIFIERS
... employing the Schottky Barrier principle in a large area metalto-silicon power diode. State-of-the-art geometry features epitaxial
construction with oxide passivation and metal overlap contact.
Ideally suited for use as rectifiers in low-voltage. high-frequency
inverters. free-wheeling diodes. and polarity-protection diodes.
Ii Extremely Low vF
•

Low Stored Charge. Majority
Carrier Conduction

•

Low Power Loss/
High Efficiency

•

High Surge Capacity

75 AMPERES

35 AND 45 VOLTS

MECHANICAL CHARACTERISTICS
CASE: Welded. hermetically sealed
FINISH: All external surfaces corrosionresistant and terminal lead is
readily solderable.

POLARITY: Cathode to Case
MOUNTING POSITIONS: Any
MOUNTING TORQUE: 25 in-Ib max

II

CASE 257-01
DO-203AB
METAL

I

MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

. Symbol
VRRM
VRWM
VR

Peak Repetitive Forward Current
(Rated VR. Square Wave, 20 kHz)

MBR7545

Unit

35

45

Volts

IFRM

150
TC=BO'C

Amp

10

75
TC = BO'C

Amp

IFSM

1000

Amp

TJ' Tstg

-65 to +150

'c

TJ(pk)

175

'C

dv/dt

1000

V/IlS

Average Rectified Forward Current
(Rated VR)
Non-repetitive Peak Surge Current
(Surge applied at rated load conditions,
halfwave. single phase. 60 Hz)
Operating and Storage Junction Temperature Range

MBR7535

Peak Operating Junction Temperature
(Forward Current Applied)
Voltage Rate of Change
(Rated VR)
THERMAL CHARACTERISTICS
Rating
Thermal ReSistance. Junction to Case

ELECTRICAL CHARACTERISTICS (TC = 25'C unless otherwise noted)
Rating

Symbol

Maximum Instantaneous Forward Voltage (1)
(iF =60 Amp. TC =125'C)
(iF =220 Amp. TC =125'C)

vF

Maximum Instantaneous Reverse Current (1)
(Rated dc Voltage, TC =125'C)

iR

Capacitance
(VR =5.0 Vdc. 100 kHz 5 f 51.0 MHz)

Ct

MBR7535

I

MBR7545

Unit
Voits

0.60
O.BO

(1) Pulse Test: Pulse Width = 300 Ils. Duty Cycle = 2.0%.

3-147

150

I

4000

250

mA
pF

MBR7535, MBR7545

FIGURE 1 - TYPICAL FORWARO VOLTAGE
500

I

300

te

~J

150 fl C

V/

100

25'''C

V

"5

5

z
«
1;;
~

!i-

50
30

10

o

04

02

DB

06

10

14

11

'F.INSTANTANEOUS FORWARD VOLT AGE IVOl TS)

FIGURE 2 - CURR'ENT DERATING

FIGURE 3 - TYPICAL REVERSE OPERATION
1000

if 160

~

"\ "\

>z

~ l20

'"'"
'"
'"
~

I"\. I"\.

c

VR

~

RATED

80

~

VR

~

~0

r\ r\
'\ '\

'"G

'r\ 'r\
_

I-10kHz
SjUAREtAVE

80

ERAI'0N

100

120

\ \
140

-1

o _Ioooe
-

75°C

'"ffi

1.0

'"Ji;

O. 1 = 250e

~

r\ r\

r

-

c-- 1150e

>-

~

160

Te. CASE TEMPERATURE (OC)

3-148

-

100:::TJ~1500e

O.D I

o

,....-

10

-

20
30
VR. REVERSE VOLTAGE (VOLTS)

40

50

MBR8035
MBR8045

MOTOROLA

• SEMICONDUCTOR
TECHNICAL DATA

•

MBRB045 I••
Motorola Preferred Device

SCHOTTKY RECTIFIERS
80 AMPERES
35 and 45 VOLTS

SWITCHMODE POWER RECTIFIERS
using a platinum barrier metal in a large area metal-to-silicon
power diode. State-of-the-art geometry features epitaxial construction with oxide passivation a nd metal overlap contact. Ideally suited
for use as rectifiers in low-voltage, high frequency inverters, freewheeling diodes, and polarity-protection diodes.
• Guaranteed Reverse Avalanche
• Guardring for dv/dt Stress Protection
• 175°C Operating Junction Temperature
• Low Forward Voltage

II
CASE 257-01
DO·203AB

METAL

MAXIMUM RATINGS
Symbol

Rating
Peak RepetItive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

MBR8035

MBR8045

Unit
Volts

VRRM
VRWM
VR

35

45

IFRM

160

160

Am;;;--

10

80

80

Amps

Peak Repetitive Reverse Surge Current
(2.0 ~s, 1.0 kHz) See F,gure 7

IRRM

2.0

2.0

Amps

Nonrepetltlve Peak Surge Current
(Surge applied at fated load conditions halfwave.
Single phase, 60 Hz)

IFSM

1000

1000

Amps

TJ, Tstg

-65 to +175

-65 to +175

°c

dv/dt

1000

1000

V/~s

0.80

0.80

0.72
0.59
0.67

0.72
0.59
0.67

1.0
150

1.0
150

5000

5000

Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz) TC

~

120°C

Average Rectified Forward Current
(Rated VR) TC ~ 120°C

Operating Junction Temperature and

Storage Temperature
Voltage Rate of Change (Rated VR)
THERMAL CHARACTERISTICS
Maximum Thermal Resistance, Junction to Case
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)
(iF ~ 80 Amp, TC ~ 25°C)
(iF ~ 80 Amp, TC ~ 150°C)
(iF ~ 160 Amp, TC ~ 150°C)

vF

Maximum Instantaneous Reverse Current (1)
(Rated Voltage, TC ~ 25°C)
(Rated Voltage, TC ~ 150°C)

iR

Capacitance
(VR ~ 1.0 Vdc, 100 kHz"

Ct

(1) Pulse Test: Pulse WIdth

==

f,.

1.0 MHz)

300 p.s. Dutv Cvc1e ~ 2.0%

3-149

Volts

mA

pF

MBR8035, MBR8045

FIGURE 2 - TYPICAL REVERSE CURRENT

FIGURE 1 - TYPICAL FORWARD VOLTAGE
200

/ V /

/

/

100
70

I

j

30

j

::.
t-

'"~

10

TJ = 150°C

-

10

«
.§.

100°C
1.0

ffi
a:

/

I I

'"
:::>

0.1

'-'

V /

-

~

'"ffi

II
/ /
il/ /


'"
'-'

100

i:;

0.01

'"
.!F

0.001

25°C

o

30
20
VR. REVERSE VOLTAGE (VOLTS)

10


'"
i'il

'"
'"""
~

0.7
0.5

700

300

..........
Ralted \oad

]! 200

I

........

...........

-:-

1= 60 Hz

0.3
0.2

100

o

0.1

0.2

0.3
0.4
0.5
O.S 0.7
0.8
vf. INSTANTANEOUS VOLTAGE (VOLTS)

0.9

1.0

1.0

2.0

3.0

20
5.0 7.0 10
NUMBER Of CYCLES

30

50

70 100

FIGURE 4 - CAPACITANCE

NOTE 1

7000

HIGH FREQUENCY OPERATION
Since current flow In a Schottky rectifier is the result of majority
carrier conduction, it is not subject to junction diode forward and
reverse recovery transients due to minority carrier injection and
stored charge. Satisfactory circuit analysis work may be per-

formed by uSing a model consisting 01 an ideal diode
with a variable capacitance. (See Figure 4.)

In

parallel

Rectification efficiency measurements show that operation will
be satisfactory up to several megahertz. For example, relative
waveform rectification efficiency is approximately 70 per cent at

2.0 MHz. e.g .. the ratio of dc power to RMS power In the load is
0.28 at this frequency. whereas perfect rectification would yield
0.406 for sine wave inputs. However. in contrast to ordinary
junction diodes, the IOS5 In waveform efficiency is not indicative

5000

~

.......

~ 3000

~

~ t'--...

~x

~ -"":::t'-

2000

t"-

5

/

@

z
;:!:
z
;:!:

100"V25'C/

/,

so

!

I

/

1

~

.~

0

200
100

w

100"C75'C-

fIJ'C~

:~

25'~=

~

0.5
0.2

o

0.5

0.1
0.2
0.3
0.4
vF. INSTANTANEOUS FORWARD VOLTAGE IVOLTS)

lSO'C

TJ

~

5
10
15
20
25
30
vR.INSTANTANEOUS REVERSE VOLTAGE IVOLTS)

35

*The curves shown are typical for the highest voltage device in the
voltage grouping. Typical reverse current for lower voltage selections
can be estimated from these same curves if VR is sufficiently below

Figure 1. Typical Forward Voltage

rated vR.

Figure 2. Typical Instantaneous Reverse
Current, Per Leg*

II

i

100

~

en

~

60

3!

fIJ

~

30

~

100

\

\

20

~ 10
if:

o

60

\ D.C.

1\

\

1\
\
\
\
\

\

RATED VOLTAGE
APPLIED. 50% DUTY
CYCLE

0

140

160

Figure 3. Forward Current Derating, Per Leg

~

~ 7000

z
;:!:

""

i'...
........

3000

2000
1

V./

i"-

",

D.C.

/./

~

V./

40

60
en 100 W ~ 160
IFIAV). AVERAGE FORWARD CURRENT lAMPS)

CURRENT
AMPLITUDE
ADJUST
0-10 AMPS

~ 5000

5

20

~

./

./

./ V'./

VCC
12 Vdc

II " f .. 11 MH~
1~0Ik~zl~

I'--

~

. / V'/

Figure 4. Power Dissipation Per Leg

20 k

10 k

o ,.,.
o

10
100
120
TC. CASE TEMPERATURE I'C)

TJ = 1SO'C

saLARE WAVE I
o ' - RATED VOLTAGE
f- APPLIED. RESISTIVE
' - LOAD. 50% DUTY
CYCLE
0

1\
SOUA EWA E

40

./

0

TJ = lf1J'C

\

70

fS2!

12

\

90

~_~

loon
CARBON

.......

5 7 10
20
30
VR. REVERSE VOLTAGE IVOLTS)

fIJ

70

100

Figure 6. Test Circuit For Repetitive
Reverse Current

Figure 5. Typical Capacitance, Per Leg

3-156

len

200

•

MBR2003SCT
MBR2004SCT
MBR200S0CT
MBR20060CT

MOTOROLA

SEMICONDUCTOR

TECHNICAL DATA

-

SCHOTTKY BARRIER
RECTIFIERS
200 AMPERES
35 to 60 VOLTS

SWITCHMODE POWER RECTIFIERS
· .. using the Schottky Barrier principle with a platinum barrier
metal. These state-of-the-art devices have the following features:
• Dual Diode Construction Current Output

May Be Paralleled For Higher

• Guardri~g For Stress Protection
• Low Forward Voltage
• 175'C Operating Junction Temperature

CASE 357C-03
POWERTAP

• Guaranteed Reverse Avalanche

Terminal Penetration:
Terminal Torque:
Mounting TorqueOutside Holes:"

0.280 mx
25-40 in-Ib max
30-40 in-Ib max

'Center Hole Must be

TorquedFi~

MAXIMUM RATINGS
Rating

Symbol

Max

Unit

VRRM
VRWM
VR

35
45
50
60

Volts

Average Rectified Forward Current Per Device
Per Leg
(Rated VR) TC = 140'C

IF(AVI

200
100

Amps

Peak Repetitive Forward Current, Per Leg
(Rated VR, Square Wave, 20 kHz), TC = 140'C

IFRM

200

Amps

Nonrepetitive Peak Surge Current Per Leg
(Surge applied at rated load conditions
halfwave, single phase, 60 Hz)

IFSM

1500

Amps

Peak Repetitive Reverse Current, Per Leg
(2.0 ps, 1.0 kHz) See Figure 6

IRRM

2.0

Amps

TJ,Tstg

-65 to +175

'c

dvldt

1000

Vips

R8JC

0.5

'CIW

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

MBR20035CT
MBR20045CT
MBR20050CT
MBR20060CT

Operating Junction and Storage Temperature
Voltage Rate of Change (Rated VR)

THERMAL CHARACTERISTICS PER LEG

I Thermal Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS PER LEG
Instantaneous Forward Voltage (1)
(iF = 200 Amp, TJ = 175'C)
(iF = 200 Amp, TJ = 125'C)
(iF = 100 Amp, TJ = 125'C)
(iF = 100 Amp, TJ = 25'C)

vF

Instantaneous Reverse Current (1)
(Rated dc Voltage, TJ = 125'C)
(Rated dc Voltage, TJ = 25'C)

iR

(1)

Pul.e Test: Pul.e W,dth

Volts
0.650
0.825
0.710
o.aOO
mA
50
0.5

= 300 p.O, Duty Cycle" 2.0%.

3-157

8-10 in-Ib max

II

MBR20035CT, MBR20045CT, MBR20050CT, MBR20060CT

FIGURE 1 - TYPICAL FORWARD VOLTAGE. PER LEG

ie

20 0

~
;

40

//

0

~

0

a:

.
.

0

:::0

0

~

3.0

.!:?

2·°0

~

S

~
z

4. O~ f-l00°C

TJ = 175°C

2.0
1.0

/

/
//

0.4

~

125°C

~

O. 2
O. 1
0.04

~ 0.02

7.0
5.0

i!

f-- TJ = 150°C

20
10

70

i:l

~

II

100

"

I

100

FIGURE 2 - TYPICAL REVERSE CURRENT. PER LEG

II J
0.2
0.4
0.6
0.8
VF. INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

~

0.0 I
f--25°C
0.004r-0.002
0.00 10
10

I
1.0

20
30
VR. REVERSE VOLTAGE (VOLTS)

40

50

FIGURE 4 - POWER DISSIPATION • PER LEG

FIGURE 3 - FORWARD CURRENT DERATING. PER LEG
140

i

Rated Vo~age Applied
'\. Square Wave. 50% Duty Cycle

'\.

120

"-

100

'\.

"-

80

'\

'\.

'"

60

Ret!d vJtagelAPPlled

-

Square Wave. Resistive load

..,...1/'

50% DUly Cycle

'\.

"-

'\.

0
./.

'\.

TJ= 125~ ~

'\.

~

'\.
TJ = 125°C::l, I-- 1500C:\'- f- 1750C' \ :

'\
100

-

140

160

~~
20

180

TC. CASE TEMPERATURE (OC)

175°C

40
60
80
100
120
IF(AV). AVERAGE FORWARD CURRENT (AMPS)

FIGURE 6 - TEST CIRCUIT FOR REPETITIVE
REVERSE CURRENT

FIGURE 6 - CAPACITANCE. PER LEG
20.000

I:?

~~

'\

120

~

~~

\..
'\.

40
20

~

I

t--

I I
100 kHz .. , .. 1.0 MHz

Vee 12Vdc

10.000

!7.0D

..........

t:::

:

~

n

0

:::15.000
3.000

.........

r--...M••
NI""
Typ

2.000

1.000
0.5 0.7

.......

--I

T

100

40.,

10kHz

"-.. r-..

r--.

1.0

2V

j . - 20 ••

2.0 3.0
5.0 7.0 10
VR. REVERSE VOLTAGE (VOLTS)

20

.......

Curren1
Amphtude
AdJust
0-10 Amps

r--.
r-- .....

30

Carbon

1

50

oCarbon

lN6817

3-158

140

MOTOROLA

SEMiCONDUCTOR . . . . . . . . . . . . . . . . . . . . . . . ....
TECHNICAL DATA

MEGAHERTZ™ Series
SWITCHMODE ™ Power

MBR20200CT
Motorola Preferred Device

Dual Schottky Rectifier
· .. using Schottky Barrier technology with a platinum barrier metal. This state-of-the-art device is
designed for use in high frequency switching power supplies and converters with up to 48 volt
outputs. They block up to 200 volts and offer improved Schottky performance at frequencies from
250 kHz to 5.0 MHz.
•
•
•
•

SCHOTTKY BARRIER
RECTIFIER
20 AMPERES
200 VOLTS

200 Volt Blocking Voltage
Low Forward Voltage Drop
Guardring for Stress Protection and High dv/dt Capability (10,000 V/l1s)
Dual Diode Construction - Terminals 1 and 3 Must be Connected for Parallel Operation at
Full Rating

I

CASE 221 A-06
(TO-220)

MAXIMUM RATINGS (PER LEG)
Rating

Symbol

Value

Unit

VRRM
VRWM
VR

200

Volls

IF(AV)

10
20

Amps

Peak Repetitive Forward Current, Per Leg
(Rated VR, Square Wave, 20 kHz) TC 90°C

IFRM

20

Amps

Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions hallwave, single phase, 60 Hz)

IFSM

150

Amps

Peak Repetitive Reverse Surge Current (2.0 ~s, 1.0 kHz)

IRRM

1.0

Amp

TJ

-eSto+1S0

°c

Storage Temperature

Tstg

-eS to +17S

°C

Voltage Rate 01 Change (Rated VR)

dv/dt

10,000

V/~s

VF

0.9
0.8
1.0
0.9

Volts

IR

1.0
SO

mA

SOO

pF

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current
(Rated VR) TC 125°C

Per Leg
Per Package

=

=

Operating Junction Temperature

THERMAL CHARACTERISTICS (PER LEG)
Thermal Resistance -

Junction to Case

ELECTRICAL CHARACTERISTICS (PER LEG)
Maximum Instantaneous Forward Voltage (1)

(IF = 10 Amps,
(IF = 10 Amps,
(IF = 20 Amps,
(IF = 20 Amps,

TC = 2S0C)
TC = 12S°C)
T C = 2S°C)
TC = 12S°C)

Maximum Instantaneous Reverse Current (1)

(Rated dc Voltage, TC = 2S°C)
(Rated dc Voltage, TC = 12S°C)

DYNAMIC CHARACTERISTICS (PER LEG)

I

Capacitance (VR = -S.O V, TC = 2SoC, Frequency = 1.0 MHz)

(1) Pulse Test: Pulse Width = 300 )1s, Duty Cycle S2.0%.

3-159

MBR20200CT

100

10,000

70

TJ = 150°C

~

1,000

50

L 11'/ /
TJ = 150°C--t ~/.

TJ ='125°C

/
TJ = IOD°C

LL 'L V

'LL 1

TJ=125 0

C:h V II

1

1

5- o.1

1
1
14- 1-1- TJ = 100°C - r -

I

r

V I 1/

I

II

1

0.01

/ 11/ f t- T~=25°C

2

0.2

/I I II

I

/

1/

I--"""

TJ = 25°C

I - t--

o

20

40

60
80 100 120 140 160
VR, REVERSE CURRENT (VOLTS)

180

200

Figure 2. Typical Reverse Current (Per Leg)

~4O
[

0.4
0.6
0.8
VI'> INSTANTANEOUS VOLTAGE (VOLTS)

SQI\A~
WAVE

TJ = 125°C

36

~ 32

~

Figure 1. Typical Forward Voltage (Per Leg) .

~

c

Y

28

/

24

k"2
IAV -

I ~:

/

/

~ 12

~

~

/

8

1/
./

VV

./

Vde

V

.,./ ' ~

~ ~V

./~ ~ I-"'"

~ 4

,EO

Vl/
./

~~

o

5

10

15

20

25

30

35

IF(AV), AVERAGE FORWARD CURRENT (AMPS)

Figure 3. Forward Power Dissipation
RATED VOLTAGE
RaJC= 2°C/W

Ci)

a..

-

~

16

i3
c

12

a:
a:

I" ~

SQUARE" ~ de
WAVE
~

a:

~

....

.... ~
.... ~

150

........ .......
SQUARE I"'- ~ r-....

f2

8 WAVE
4

~

~

de

a!
;;cffi

w

110
120
130
140
TC, CASE TEMPERATURE (OC)

RaJA = WC/W
RATED VOLTAGE -

i

~~

100

20

E"
160

Figure 4. Current Derating. Case

........

F:::: t-............

~

r-:::~

0

0

25

50
75
100
125
TA, AMBIENTTEMPERATURE (0C)

""

150

Figure 5. Current Derating. Ambient

3-160

175

MBR20200CT

500

400

1,,\

=25"C

1'\

"

~

~ 300

u

z

;:;

t5

if:

c3

TJ

200

'\

I\..

"r--.

c.5

,
l"- I"'--.

100

o

1

5

10

20

50

VR. REVERSE VOLTAGE (VOLTS)

Figure 6. Typical Capacitance (Per Leg)

3-161

70

100

II

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

MBR30035CT
MBR30045CT
MBR30050CT
MBR30060CT

POWERTAP
SWITCH MODE Power Rectifiers
· .. using the Schottky Barrier principle with a platinum barrier metal. These state-of-theart devices have the following features:
•
•
•
•
•

II

Terminal Penetration:
Terminal Torque:
Mounting TorqueOutside Holes:"

30--40 in-Ib max

'Center Hole Must be
Torqued Fi~

8-10 in-Ib max

MBR30045CT and MBR30060CT are
Motorola Preferred Devices

Dual Diode Construction - May Be Paralleled For Higher Current Output
Guardring For Stress Protection
Low Forward Voltage
175'C Operating Junction Temperature
Guaranteed Reverse Avalanche

SCHOTTKY BARRIER
RECTIFIERS
300 AMPERES
35 TO 60 VOLTS

0.280 max
25-40 in-Ib max

1~

~--~

POWERTAP
CASE 357C-Q3

MAXIMUM RATINGS
Rating

Symbol

Max

Unit

VRRM
VRWM
VR

35
45
50
60

Volts

Average Rectified Forward Current Per Device
Per Leg
(Rated VR) TC = 140'C

IF(AV)

300
150

Amps

Peak Repetitive Forward Current. Peg Leg
(Rated VR, Square Wave, 20 kHz), TC = 140'C

IFRM

300

Amps

Nonrepetitive Peak Surge Current Per Leg
(Surge applied at rated load conditions
halfwave, single phase, 60 Hz)

IFSM

2500

Amps

Peak Repetitive Reverse Current, Per Leg
(2 p.S, 1 kHz) See Figure 6

IRRM

2

Amps

TJ, Tstg

-65to +175

'c

dv/dt

1000

V/p.S

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

MBR30035CT
MBR30045CT
MBR30050CT
MBR30060CT

Operating Junction and Storage Temperature
Voltage Rate of Change (Rated VR)

THERMAL CHARACTERISTICS PER LEG
Thermal Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS PER LEG
Instantaneous Forward Voltage (1)
(iF = 150 Amps, TC = 175'C)
(iF = 150 Amps, TC = 125'C)
(iF = 150 Amps, TC = 25'C)
(iF = 300 Amps, TC = 125'C)
(iF = 300 Amps, TC = 25'C)

vF

Instantaneous Reverse Current (1)
(Rated de Voltage, TC = 125'C)
(Rated de Voltage, TC = 25'C)

iR

Volts
0.57
0.64
0.74
0.78
0.82
mA
75
0.8

(1) Pulse Test: Pulse Width = 300 "s. Duty Cycle" 2%.

3-162

MBR30035CT, MBR30045CT, MBR30050CT, MBR30060CT

/

/

0
0

V

/

-

:g

!z

g§

/

a

/

0

g;

V I

0

I

TJ - 175°C /

0
7
5

0.2

~

I

1/125°C /25°C

L

3

S

_.
0.4

- -

1000

/

1/

0.6

400
200
100
40
20
10

125°C
TJ

I-C"'

150°C-=

4
2
1
0.4
0.2
O. 1

0.04
0.02
0.0 1

VF.INSTANTANEOUS FORWARD VOLTAGE IVOLTS)

-

25°C

o

0.8

"

175°C

10

20
30
VR. REVERSE VOLTAGE IVOLTS)

40

50

Figure 2. Typical Reverse Current (Per Leg)-

Figure ,. Typical Forward Voltage (Per Leg)

*The curves shown are typical for the highest voltage device in the voltage
grouping. Typical reverse current for lower voltage selections can be
estimated from these same curves if VR is sufficiently below rated YR.

160
~
~ 140
>-

z

gj

0

\

120

:\

~ 80

12w
~,

60

A~PlIJD

RAffD VOLTAGE
I
w 40
SQUARE WAVE. 50% DUTY CYCLE
~
I
I I
I
I
I
~ 20
j!:'

150"C

TJ = 125°C\

0

60

40

!!!
CI

175°C,\

1\

\

~
u;

\

\

a 100

!i!

z

a

:\
1\

80
100
120
140
TC. CASE TEMPERATURE 1°C)

\

~OLTAG~

RATED
APPlIE6
SQUARE WAVE. RESISTIVE LOAD
50% DUTY CYCLE

\
160

CI

~

0

'"~
'"
12

0

tll
~

180

Tj-=.125°C/ V175"C

#

Figure 3. Current Derating (Per Leg)

~

V

./

../
~ oo
20
~

;F

/'
/'

/' V

0

'"

\

\

80

40

60

80

100

120

140

160

IFlAV). AVERAGE FORWARD CURRENT lAMPS)

Figure 4. Power Dissipation (Per Leg)

+150V'10mAdC~

20.000

2kO
4 "F

:-.
10.000

+~
........ ......

0

lDUT

~

~AX

100 kHz .. k
2.000

1.000
0.5

1 MHz

TYP r::::: ~

I
0.7

I

20
10
VR. REVERSE VOLTAGE IVOLTS)

30

r-50

Figure 5. Capacitance (Per Leg)

1kHz
CURRENT
AMPUTUDE
ADJUST
D-l0AMPS

1 CARBON
lN5B17

Figure 6. Test Circuit For Repetitive Reverse Current

3-163

II

MOTOROLA

SEMICONDUCTOR------------TECHNICAL DATA

Product Preview

MBR60035CTL

POWERTApTM Package

Motorola Preferred Device

SWITCHMODETM Power Rectifier
Employs the use of Schottky Barrier technology with a platinum barrier metal.
These state-of-the-art devices offer the following features:
•
•
•
•
•
•

II

LOWVF
SCHOTTKY BARRIER
RECTIFIER
600 AMPERES
35 VOLTS

Dual Diode Construction - May be Paralleled for Higher Current Output
Guardring for Stress Protection
Low Forward Voltage Drop
Guaranteed Reverse Avalanche Energy Capability
150c C Operating Junction Temperature
Improved Mechanical Ratings

CASE 357C-03
POWERTAP

MAXIMUM RATINGS (PER LEG)
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage (TC

=100'C)

Symbol

Max

Unit

VRRM
VRWM

40

Volts

VR

35

Volts

IF(AV)

600
300

Amps

Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions hallwave, single phase, 60 Hz)

IFSM

4000

Amps

Peak Repetitive Reverse Current
(2.0 Ils, 1.0 kHz) See Figure 6

IRRM

2.0

Amps

TJ, Tstg

-55to+150

cC

dv/dt

10000

V/IlS

WAVAL

40

mJ

Average Rectified Forward Current
(Rated VR) TC 100'C

Per Device
Per Leg

=

Operating Junction and Storage Temperature
Voltage Rate of Change (Rated VR)
Controlled Avalanche Energy

(Maximum)

THERMAL CHARACTERISTICS (PER LEG)
0.4

Thermal Resistance - Junction to Case

ELECTRIt;AL CHARACTERISTICS (PER LEG)
Maximum Instantaneous Forward Voltage (1)
(iF 300 Amps, T C 25cC)
(iF 300 Amps, TC 100cC)

vF

Maximum Instantaneous Reverse Current (1)
(Rated de Voltage, TC 25'C)
(Rated dc Voltage, TC 100C C)

iR

=
=

=
=

Volts
0.57
0.50

=
=

mA
10
250

(1) Pulse Test. Pulse Width = 300 ~s, Duty Cycle S 2%.
POWERTAP and SWITCHMODE are trademarks of Motorola, Inc.
This document contains mformation on a product under development. Motorola reserves the right to change or discontinue this product without notice.

Preferred devices are Motorola recommended choices for future use and best overall value.

3-164

MBR60035CTL

~

1

I

!z
~

a:

!z

II 'f-

::l

g 200
~

100

::l

50

li:l
z

III
//

~ 20
en
z
-. 10
.!=-

/
0.1

50'C

S

=

25'C

z~

~

~

lIfo,c ~5'C
0

100'C

li:l
z

/

~

1000

500
w 200
~ 100
~ 50
a: 20
~
10

-TJ=50'C

/,

~

:r
en

li!
~

300

~

.~

0.2
0.3
0.4
0.5
O.B
vf. INSTANTANEOUS VOLTAGE (VOLTS)

0.5
0.2
00

10

15

20

25

30

35

vR, INSTANTANEOUS REVERSE VOLTAGE (VOLTS)

Figure 1. Typical Forward Voltage
(PER LEG)

Figure 2. Typical Instantaneous Reverse Current
(PER LEG)

en

~

en
300
Q.

~

\i\
\\

I

I-

~ 250
a:
a:
::l
u
@ 200

Q
~

en

1\ \

\\

~

SQUARE

a:

:r 150

c

,~

1\\

100

~

~
ir
00

BO

I

~

iii:

80

100
120
TC, CASE TEMPERATURE ('C)

70
BO
50
40
30
20
10

~
F

140

-

SQUARE WAVE
RATED VOLTAGE
APPLIED, RESISTANCE
LOAD, 50% DUTY CYCLE

90
80

~
a:
i:r

.Y
\\

w

~

~
a:

D.C.

140
130
120
110
100

II

- -

TJ=100'CZ

....

,/

~

./

./"
/:
./
./

V

'"

/
100

150

200

250

300

iF(AV), AVERAGE FORWARD CURRENT (AMPS)

Figure 3. Forward Current Derating
(PER LEG)

Figure 4, Power Dissipation
(PER LEG)

7K

!L 5K

.s

n

I'"

.....

w

u

z

~

4K

C3 3K


u 10
0
a:

.....-~

10

r~

~
a:
!(

./



-

85'C

0

w

z

z~

0.5

-

125'C 65'C 25'C

~


(;)

RA~EDVOLiAGEAP~LlED _

""'- "-

120

125

130

135
140
145
150
TC. CASE TEMPERATURE (0C)

Figure 4. Current Derating, Case

Figure 3. Typical Forward Power Dissipation

3-169

155

160

II

MOTOROLA

SEMiCONDUCTOR . . . . . . . . . . . . . . . . . . . . . . . ....
TECHNICAL DATA

Designer'sTM Data Sheet
SWITCHMODETM Power Rectifier

MBRB2060CT
Motorola Preferred Device

D2PAK Surface Mount Power Package
Employs the use of the Schottky Barrier principle with a platinum barrier metal.
These state-of-the-art devices have the following features:
•
•
•
•
•
•
•
•
•

..

SCHOTTKY BARRIER
RECTIFIER
20 AMPERES
60 VOLTS

Package Designed for Power Surface Mount Applications
Center-Tap Configuration
Guardring for Stress Protection
Low Forward Voltage
150°C Operating Junction Temperature
Epoxy Meets UL94, Vo at 1/8"
Guaranteed Reverse Avalanche
Short Heat Sink Tab Manufactured - Not Sheared!
Similar in Size to Industry Standard TO-220 Package

•

CASE 4188-01

MAXIMUM RATINGS, PER LEG

Rating

Symbol

Value

Unit

VRRM
VRWM
VR

60

Volts

IF(AV)

10
20

Amps

IFRM

20

Amps

Non-repetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz)

IFSM

150

Amps

Peak Repetitive Reverse Surge Current (2.0 !lS, 1.0 kHz)

IRRM

0.5

Amp

Tsta

-65 to +175

°C

TJ

-65 to +150

'c

dv/dt

1000

V1!ls

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current
(Rated VR) TC 110'C

=

Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz), TC

Total Device

=100'C

Storage Temperature
Operating Junction Temperature
Voltage Rate of Change (Rated VR)

THeRMAL CHARACTERISTICS, PER LEG
Thermal Resistance - Junction to Case
- Junction to Ambient (2)

ELECTRICAL CHARACTERISTICS, PER lEG
Maximum Instantaneous Forward Voltage (1)
(iF 20 Amps, TJ 125'C)
(iF 20 Amps, TJ 25'C)

vF

Maximum Instantaneous Reverse Current (1)
(Rated dc Voltage, T J 125°C)
(Rated de Voltage, TJ 25'C)
(1) Pulse Test. Pulse Width -= 300 IlS, Duty Cycle s 2%

iR

=
=

=
=

Volts
0.85
0.95

=
=

mA
150
0.15

(2) See Page 3 for mounting conditions
SWITCHMODE and Designer's are trademarks of Motorola Inc.
Preferred devices are Motorola recommended choices for future use and best overall value.
Designer's Data for "Worst Case" Conditions - The Designer's Data Sheet permits the design of most circuits entirely from the Information presented. limit culVes devtce characteristics - are given to facilitate ~worst case" design.

3-170

representing boundaries on

MBRB2060CT

in
c..

50

ill

20

~

a~c

10

~

5

I==l= TJ = 150'C

150'C,
I
"- IV
175'C"
P,

<,10

#

/
100'C I

I

a:

Iff

!r

f

If

TJ=25'C

f/

/J /

~

'/

~ TJ = 125'C
-f-

aw
15

/

// /

z~

r--

.§.

!z

~ 0.1

1/

ci:

)

;:3

en

0.01

~ 0.5

.!f.

0

~

u

u

U

U

M

M

~

V" INSTANTANEOUS VOLTAGE (VOLTS)

~~§

U

Figure 1. Typical Forward Voltage Per Diode

20
RATED VOLTAGE
tPUEDI
-

S. 28

!z
~

@ 20

~

16

w

12

\
l'\.

~ 4

u:-

o

80

~

~
ffi
~

[\.

100
110
120
130
140
TC. CASE TEMPERATURE I'C)

'\
150

IpKiIAV = 5 ::

160

Figure 3. Typical Current Derating, Case,
Per Leg

10

./

~V
'-- IpKiIAV = 20 "

8

6

V

v~ ~ ./'
/. VA ~..... V 'SQUARE
WAVE
~ / ....... iI"""........ ""-

>-

~~ ~
~
~
2
i~
o

o

~

~~
~ ./

Ipf(IIAV= 10

a: 12

'\

90

120

PI

S
14
~

'\ \
~C
SQUAR~\
WAVE

~

I
I
TJ=125'C

in 16

Rruc= 2'C/W

o

~
~
w

18 -

24

::::>

40
60
80
100
VR. REVERSE VOLTAGE (VOLTS)

Figure 2. Typical Reverse Current Per Diode

~ 32

::;;

TJ = 25'C

20

V

6
10
12
14
AVERAGE CURRENT (AMPS)

DC

16

18

Figure 4. Average Power Dissipation and
Average Current

3-171

20

II

MOTOROLA

SEMICONDUCTOR------------TECHNICAL DATA

Designer'sTM Data Sheet
SWITCHMODETM Power Rectifier
OR'ing Function Diode
D2PAK Surface Mount Power Package
The D2PAK Power Rectifier employs the Schottky Barrier principle in a large
metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with
oxide passivation and metal overlay contact. Ideally suited for use in low voltage, high
frequency switching power supplies, free wheeling diodes, and polarity protection diodes.
These state-of-the-art devices have the following features:

•

•
•
•
•
•
•
•
•

MBRB2515L
Motorola Preferred Device

SCHOTTKY BARRIER
RECTIFIER
25 AMPERES
15 VOLTS

Guardring for Stress Protection
low Forward Voltage
1000 Operating Junction Temperature
Epoxy Meets Ul94, VO at 1/B"
Guaranteed Reverse Avalanche
Short Heat Sink Tab Manufactured - Not Sheared!
Similar in Size to the Industry Standard TO-220 Package
Available in Tape and Reel. Add a T4 Suffix to Part Number to
order the 24 mm, 13 inch/BOO Unit Reel.

e

A
CASE 4188-01
02PAK

MAXIMUM RATINGS
Symbol

Value

Unit

VRRM
VRWM
VR

15

Volts

IF(AV)

25

Amps

IFRM

30

Amps

Nonrepetitive Peak Surge Current
(Surge applied ,at rated load conditions hallwave, single phase, 60 Hz)

IFSM

150

Amps

Storage Temperature

Tstg

-65 to +150

°C

TJ

100

"C

dvldt

1000

V/!IS

Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current (Rated VR) TC
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz), TC

=90"C

=100°C

Operating Junction Temperature
Voltage Rate of Change (Rated VR)

THERMAL CHARACTERISTICS
Thermal Resistance - Junction to Case
- Junction to Ambient (1)

1.0
50

ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (2)
(iF = 19 Amps, TJ = 70"C)
(iF = 25 Amps, TJ = 70°C)
(iF = 25 Amps, TJ = 25"C)

vF

Maximum Instantaneous Reverse Current (2)
(Rated dc Voltage, TJ = 70"C)
(Rated dc Voltage, TJ = 25"C)

iR

Volts
0.2B
0.42
0.45
mA
200
15

(1) When mounted usmg minimum recommended pad size on FR·4 board.
(2) Pulse Test: Pulse Width = 300 }.Is, Duty Cycle s 2%.
Designer's Data for "Worst case" Conditions - The Designer's Data Sheet permits the design of most circuits entirely from the informatIOn presented. SOA Umitcurves - representing boundaries
on device characteristIcs - are given to facihtate Mworst case" deSign.
DesIgner's and SWITCHMODE are trademarks of Motorola Inc.
Thermal Clad IS a trademark of the BergqUIst Company
Preferred deVices are Motorola recommended choices for future use and best overall value.

3-172

MBRB2515L

u;- 50
Il:;;
:;;. 30
I- 20
z

70'C......

W
II:
II:

10
::>
7
u
5
c
II:
3
~ 2
II:

.k""

«
.§.

TJ = 25'C

I-

zw

II:
II:

::>

u

w

;2

~[jjW

w
z 0.5
;f 0.3
z
;f 0.2

70'C

-25'C

0.2
0.1

II:

fi: 0.02

en
~

--

~
w

1

::>
0 0.7

.!f.

-

C!:J

0
u.

en

1000
400
200 f-- TJ = 100'C
100
40
20
10

0.1

0.1
0.2
0.3
0.4
vF, INSTANTANEOUS VOLTAGE (VOLTS)

0.01 0

0.5

Figure 1. Typical Forward Voltage

6
8
10
12
14
VR, REVERSE VOLTAGE (VOLTS)

16

18

20

Figure 2. Typical Reverse Leakage Current

en
~

~ 40

z
o

Ie

TJ = 70'C

:::;;

~ 35

ill

I
15

f-25

@ 20
~ 15

II:

f2

~

w

10

~ 0
~ 0
il:"

Il-

/

30
IpK = 10
IAV

1

';.
1

5

L

35

!z
l:\!
II:

30

U

25

::>

c

V/

/ V V

L LV V
1.L. ~
v:.V
:::.-...-

/SaUARE

40

:;;.

~

20

~

12

15

SaUARE
WAVE

~

10

II:

Voc

L

II:
W

I-"""

W

'\.DC

"-.\

"'\ ~

~

40

Figure 3. Typical Forward Power Dissipation

~

0
60

65

70

75
80
85
90
TC, CASE TEMPERATURE (0C)

Figure 4. Current Derating, Case

3-173

,

'\

~

~

10
15
20
25
30
35
IF(AV), AVERAGE FORWARD CURRENT (AMPS)

II

I
I
I
RATED VOLTAGE APPUED
ReJC= I'C/W

95

100

MOTOROLA

SEMICONDUCTOR------------TECHNICAL DATA

Designer'sTM Data Sheet
SWITCHMODETM Power Rectifier

MBRB2535CTL

D2PAK Surface Mount Power Package

Motorola Preferred Device

The 02PAK Power Rectifier employs the Schottky Barrier principle in a large
metal-to-silicon power diode. State-of-the-art geometry features epitaxial
construction with oxide passivation and metal overlay contact. Ideally suited for
use in low voltage, high frequency switching power supplies, free wheeling
diodes, and polarity protection diodes. These state-of-the-art devices have the
following features:

II

•
•
•
•
•
•
•
•
•

SCHOTTKY BARRIER
RECTIFIER
25 AMPERES
35 VOLTS

Center-Tap Configuration
Guardring for Stress Protection
Low Forward Voltage
125°C Operating Junction Temperature
Epoxy Meets UL94, VO at 1/B"
Guaranteed Reverse Avalanche
Short Heat Sink Tab Manufactured - Not Sheared!
Similar in Size to the Industry Standard TO-220 Package
Available in Tape and Reel. Add a T4 Suffix to Part Number to
order the 24 mm, 13 inch/BOO Unit Reel.

,."
A

CASE 418B-01
02PAK

MAXIMUM RATINGS, PER LEG
Symbol

Value

Unit

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

40
35
35

Volts

Average Rectified Forward Current
(Rated VR) TC 110°C

IF(AV)

12.5

Amps

IFRM

25

Amps

Non-repetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz)

IFSM

150

Amps

Peak Repetitive Reverse Surge Current (2.0 Ils, 1.0 kHz)

IRRM

1.0

Amp

Tst~

-65 to +150

°C

TJ

-65 to +125

°C

dv/dt

10,000

V/IlS

Rating

=

Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz), TC

=90°C

Storage Temperature
Operating Junction Temperature
Voltage Rate of Change (Rated VR)

THERMAL CHARACTERISTICS, PER LEG
Thermal Resistance - Junction to Case
- Junction to Ambient (1)

2.0
50

ELECTRICAL CHARACTERISTICS, PER LEG
Maximum Instantaneous Forward Voltage (2)

Maximum Instantaneous Reverse Current (2)

=25 Amps, TJ =25°C)
=12.5 Amps, T J =125°C)
=12.5 Amps, TJ =25°C)
(Rated dc Voltage, TJ =125°C)
(Rated de Voltage, TJ =25°C)

(iF
(iF
(iF

vF

0.55
0.41
0.47

Volts

iR

500
10

mA

(1) When mounted uSing minimum recommended pad size on FR-4 board.
(2) Pulse Test: Pulse Width:: 300 J.lS, Duty Cycle :5 2%.

Designer's Data lor "Worst Case" Conditions - The DeSigner's Data Sheet permits the design of most circuits entirely from the information presented. SOA limit curves - representing boundaries on
device characteristics - are given to facilitate ''worst case~ design
DeSigner's and SWITCHMOOE are trademarks of Motorola Inc.
Thermal Clad IS a trademark of the BergqUist Company

Preferred deVIceS are Motorola recommended choices for future use and best overall value.

3-174

MBRB2535CTL

1000

TJ=~~

1

zw 100

I-

0

./
~

~

0

0

I

=>
w

<.>

10

;2

U'-'i

-

w

en
a:
w

iri
a:

0.1

ri;

I

TJ =25"C

10
15
20
25
VR, REVERSE VOLTAGE (VOLTS)

5

I

30

35

Figure 2. Typical Reverse Current, Per Leg

I

iii'

/ I

1

-

C!)

TJ = 25°C

I

2

./

I
I

I

I

TJ = 100"C

a:
a:

I""
V

TJ = 125°C /

5

-'

!iii

1!E. 40
z
o

•

TJ = 125°C

~ 35

o. 5

~

I

I

o. 1

~

1 11

0.2

o

IE

1/

I

1

0.1

30

c
a: 25

SINE WAVE
(RESISTIVE LOAD) / .

20

1'l"

~ 15

~. /

a:

0.2
0.3 0.4 0.5
0.6 0.7
0.8
vF, INSTANTANEOUS VOLTAGE (VOLTS)

0.9

f2w

10

~

5

10

i1l:
~

Figure 1. Typical Forward Voltage, Per Leg

i:L

~

0

h

V

/sQUARE
WAVE

./

. / ~DC

ke V
I-""

10
15
20
25
30
35
IF(AV). AVERAGE FORWARD CURRENT (AMPS)

0


t.)

o

0

LL

w

SQUARE"
WAVE

16

12

12
w

12

~
~

~

~

LL

~

a:

8

8
12
16
20
24
28
32
If', AVERAGE FORWARD CURRENT (AMPS)

36

40

Figure 3. Typical Forward Power Dissipation

~C

20

i

~w

...~

~

24

16

a:

i

1'-

r4

.lr 0

110

RATED VOLTAGE APPUED
Re./C • 1.5'CfW

\

I"\

1\

\

1"- \
\

120
130
140
TC, CASE TEMPERATURE ('C)

Figure 4. Current Derating, Case

3-177

\

\
150

MOTOROLA

SEMiCONDUCTOR . . . . . . . . . . . . . . . . . . . . . . . .. .
TECHNICAL DATA

Designer'sTM Data Sheet
SWITCHMODETM Power Rectifier

MBRB20100CT
Motorola Preferred Devtce

D2PAK Surface Mount Power Package
The D2PAK Power Rectifier employs the use of the Schottky Barrier principle with a platinum
barrier metal. These state-of-the-art devices have the following features:
•
•
•
•
•
•
•
•
•

II

SCHOTTKY BARRIER
RECTIFIER

Package Designed for Power Surface Mount Applications
Center-Tap Configuration
Guardring for Stress Protection
Low Forward Voltage
150°C Operating Junction Temperature
Epoxy Meets UL94, Vo at 1/8"
Guaranteed Reverse Avalanche
Short Heat Sink Tab Manufactured - Not Sheared I
Similar in Size to Industry Standard TO-220 Package

20 AMPERES
100 VOLTS

•

CASE 4188-01

MAXIMUM RATINGS, PER LEG
Rating

Symbol

Value

Unit

VRRM
VRWM
VR

100

Volts

IF(AV)

10
20

Amps

IFRM

20

Amps

Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions hallwave, single phase, 60 Hz)

IFSM

150

Amps

Peak Repetitive Reverse Surge Current (2.0 I's, 1.0 kHz)

IRRM

0.5

Amp

Tstg

-65 to +175

°C

TJ

-65 to +150

°C

dv/dt

1000

VII's

vF

0.75
0.B5
0.B5
0.95

Volts

iR

150
0.15

mA

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current
(Rated VR) TC 110°C

=

Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz), TC

Total Device

=100°C

Storage Temperature
Operating Junction Temperature
Voltage Rate of Change (Rated VR)

THERMAL CHARACTERISTICS, PER LEG
Thermal Resistance - Junction to Case
- Junction to Ambient (2)

ELECTRICAL CHARACTERISTICS, PER LEG
Maximum Instantaneous Forward Voltage (1)

(iF = 10 Amp,
(iF = 10 Amp,
(iF = 20 Amp,
(iF = 20 Amp,

TC = 125°C)
TC = 25°C)
TC = 125°C)
TC = 25°C)

Maximum Instantaneous Reverse Current (1)

(Rated dc Voltage, TJ = 125°C)
(Rated dc Voltage, T J = 25°C)

(1) Pulse Test: Pulse Width = 300 ~s, Outy Cycle $2%
(2) See Page 3 fOT mounting conditions
SWITCHMODE and DeSigner's are trademarks of Motorola Inc.
Thermal Clad is a trademark of the Bergquist Company

Preferred devices are Motorola recommended choices for future use and best overall value.
Designer's Data for "Worst Case" Conditions - The Designer's Data Sheet permits the design of most circuhs entirely from the informatiOn presented. limit curves - representing boundaries on
device characterishcs - are given to faCIlitate "worst case" design.

3-178

MBRB20100CT

TYPICAL ELECTRICAL CHARACTERISTICS

~
~
~
a:
a:

B

50

=1= TJ = 150°C

150°C "-

20

~

I
175°C "-

10

§

'"a:

ifZ

r/

/J /

(J)

=>

53
z

1// /

V

j5

z

/

"r

1.

/

10

!z

=

100°C

IL

L

:/L

-

-

~

/

~

0.1

a:

I

j5

0.01

o

~

U

M

U

U

M

U

~

Figure 1. Typical Forward Voltage Per Diode

Figure 2. Typical Reverse Current Per Diode

fE

24
ReJC= 2°CNI

a:

i

16

5?

12

~w

'"

\
i'\.DC
SaUAR~,\
WAVE
\

~

~

18

iPPUED,

~ 20

4

o

80

90

"

00

16~_4--_+--~--+-~--_+--_+

~

14 ~_4--_+­

a:

12~_4--_+--~--+-~-.~~~~~-.~_4

~

~

w

~w

"- \

10
8~_4--_+--~~~~~~~~--+_

~

'\.

100
110
120
130
140
TC. CASE TEMPERATURE (0C)

120

wr--.---.--,---.--.---.----------r--.

RAT~D VOLT~GE -

28

20

TJ = 25°C
40
60
80
100
VR. REVERSE VOLTAGE (VOLTS)

w

=>

~~
o

M

vI" INSTANTANEOUS VOLTAGE (VOLTS)

~ 32

~
!z

TJ = 125°C

==

Tr25°C

~

.!f. 0.5

~~
-I-

150

160

Figure 3. Typical Current Derating, Case,
Per Leg

6
8
10
12
14
AVERAGE CURRENT (AMPS)

16

18

Figure 4. Average Power Dissipation and
Average Current

3-179

20

II

MOTOROLA

-

SEMICONDUCTOR
TECHNICAL
DATA

-----------MBRD320
MBRD330
MBRD340
MBRD350
MBRD360

SWITCH MODE Power Rectifiers
DPAK Surface Mount Package
· .. designed for use as output rectifiers, free wheeling, protection and steering diodes in
switching power supplies, inverters and other inductive switching circuits. These stateof-the-art devices have the following features:
•
•
•
•

•

MBRD320, MBRD340 and MBRD360 ar.
Motorola Preferred Devices

Extremely Fast Switching
Extremely Low Forward Drop
Platinum Barrier with Avalanche Guardrings
Guaranteed Reverse Avalanche

SCHOTTKY BARRIER
RECTIFIERS
3 AMPERES
20 TO 60 VOLTS

Mechanical Characteristics
• Case: Epoxy, Molded
• Finish: All External Surface Corrosion Resistance and Terminal Leads are Readily
Solderable
• Lead Formed for Surface Mount
• Available in 16 mm Tape and Reel or Plastic Rails
• Compact Size
• Lead and Mounting Surface Temperature for Soldering
.... 1
Purposes 260'C Max. for 10 Seconds
.
.,..

ATHODE
_
ANODE
CATHODE".
ANODE 'V
CASE 3S9A-ll
PLASTIC

MAXIMUM RATINGS
Symbol

Rating

MBRD
320

330

340

350

360

20

30

40

50

60

Unit

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

Average Rectified Forward Current (TC = + 125'C, Rated VR)

IF(AV)

3

Amps

Peak Repetitive Forward Current. TC = + 125'C
(Rated VR, Square Wave, 20 kHz)

IFRM

6

Amps

Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions hallwave. single phase, 60 Hz)

IFSM

75

Amps

Peak Repetitive Reverse Surge Current (2 p.s. 1 kHz)

IRRM

1

Amp

TJ

-65 to +150

'C

Storage Temperature

T.tg

-65 to +175

'C

Voltage Rate of Change (Rated VR)

dv/dt

1000

V/p.s

Operating Junction Temperature

Volts

THERMAL CHARACTERISTICS
Maximum Thermal Resistance. Junction to Case

6

Maximum Thermal Resistance. Junction to Ambient (1)

80

ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (2)
iF = 3 Amps. TC = +25'C
iF = 3 Amps, TC = +125'C
iF = 6 Amps, TC = +25'C
iF = 6 Amps. TC = + 125'C

vF

Maximum Instantaneous Reverse Current (2)
(Rated dc Voltage. TC = + 25'C)
(Rated de Voltage, TC = + 125'C)

iR

Volts
0.6
0.45
0.7
0.625
mA
0.2
20

t1) Rating applies when surface mounted on the minimum pad size recommended.
= 300 p.o. Duty Cycle .. 2%.

(2) Pulse Test: Pulse Width

3-180

MBRD320, MBRD330, MBRD340, MBRD350, MBRD360

TYPICAL CHARACTERISTICS

10a

100

~

.s...
i:'i
a:

a
~
~

~~

0

":.
E'

'(//.

// V/

'rO°C ..... f.# Ilf I'-TJ = 25°C
rl I II

'1-1 h

I-"

125°C
100°C
WC

2~oC

,.....

--

I""""

so

20
30
40
50
VR. REVERSE VOLTAGE (VOLTS)

10

70

*The curves shown are typical forthe highest voltage device in the voltage
grouping. Typical reverse current for lower voltage selections can be
estimated from these curves if VR is sufficient below rated vR.

W'/v

125°C

TJ - 150°C

0.004
0.002
0.001a

/7. ' /

1

40
2a
1a
4
2
1
4
~:2
o. 1
0.04
0.02
0.01

Figure 2. Typical Reverse Current
0
9

r--75°C

SINE
WAy

TJ = 150°C

8
7
S

I I I

5

I

V

I~

/ / /

4

1/

3

'l'

/

/10
IpK/lAV = 20

A

/

W

~

/ fA

1/5

de V

V

\V

SQUARE
WAVE-

V

V~ . /

//

~ ~~

O. 1
0.1

0.2

0.3

0.4
0.5 O.S
0.7
0.8
0.9
vF.INSTANTANEOUS VOLTAGE (VOLTS)

~~ ~2 3 4 5 S 7 8

1.1

Figure 3. Average Power Dissipation

Figure 1. Typical Forward Voltage

SIN~\\

5

WAVE
OR
SQUARE
WAVE

f'\

1

a
80

RATED VOLTAGE APPLIED

Ie

R8JC = SOCIW

!Z

I"\
\

100

110

120

"

130

~
a:

~

I\de
\
\

............

3

"

w

~
~

1. 5

150

160

i'...

.......

---.r-- t--, ,

1

....
TJ = 150°C .... t--,

0

....

'

~ O. 5
if:

............

2 TJ = 125°C

a:

~

R8JA = 8O"C1W
SURFACE MOUNTED ON MIN.PAD SIZE RECOMMENDED

TJ =1 1500C

ao 2.5
a:

140

4

~ 3. 5

TJ = 150°C

\

90

10

IF(AV). AVERAGE FORWARD CURRENT (AMPS)

20

40

SO

....

---de
- - - SQUARE WAVEt'--,

......

....

r"

" ""
80

'" '"

100

OR
SINE WAVE
VR = 25V

'\

120

TA. AMBIENT TEMPERATURE 1°C)

TC. CASE TEMPERATURE (OC)

Figure 5. Current Derating. Ambient

Figure 4. Current Derating. Case

3-181

-

[\.

140

160

..

MBRD320, MBRD330, MBRD340, MBRD350, MBRD360

lK
700
500

! ~:
~

'\

r-...

TJ = 25°C

f':

!:: 100

~

c.J

r- r-

70
50

30
20
10

o

10

20
30
40
50
YR. REVERSE VOLTAGE (VOLTS)
Figure 6. Typical Capacitance

•

3-182

60

70

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

MBRD620CT
MBRD630CT
MBRD640CT
MBRD650CT
MBRD660CT

SWITCH MODE Power Rectifiers
DPAK Surface Mount Package
• .• in switching power supplies, inverters and as free wheeling diodes, these state·ofthe-art devices have the following features:
• Extremely Fast Switching
• Extremely Low Forward Drop
• Platinum Barrier with Avalanche Guardrings
• Guaranteed Reverse Avalanche
Mechanical Characteristics
• Case: Epoxy, Molded
• Finish: All External Surface Corrosion Resistance and Terminal Leads are Readily
Solderable
• Lead Formed for Surface Mount
• Available in 16 mm Tape and Reel or Plastic Rails
• Compact Size
• Lead and Mounting Surface Temperature for Soldering
Purposes 260'C Max. for 10 Seconds

MBRD620CT, MBRD640CT and MBRD660CT are
Motorola Preferred Devices

SCHOTTKY BARRIER
RECTIFIERS
6 AMPERES
20 TO 60 VOLTS

CATHODE
_
ANODE
CATHODE
ANODEC
CASE 369A-11
PLASTIC

MAXIMUM RATINGS
Rating

MBRD

Symbol

&ZOeT 630CT 640CT 650CT 660CT
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

Average Rectified Forward Current
TC = 130'C (Rated VR)

Per Diode
Per Device

20

30

40

50

60

Unit
Volts

IF(AV)

3
6

Amps

Peak Repetitive Forward Current. TC = 130'C
(Rated VR, Square Wave. 20 kHz) Per Diode

IFRM

6

Amps

Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave. single phase. 60 Hz)

IFSM

75

Amps

Peak Repetitive Reverse Surge Current (2 p.s. 1 kHz)

IRRM

1

Amp

Operating Junction Temperature

TJ

Storage Temperature

Tstg
dv/dt

Voltage Rate of Change (Rated VR)

65 to +150

'C

-65 to +175

'c

1000

V/p,S

THERMAL CHARACTERISTICS PER DIODE
Maximum Thermal Resistance. Junction to Case

6

Maximum Thermal Resistance. Junction to Ambient (I)

80

ELECTRICAL CHARACTERISTICS PER DIODE
Maximum Instantaneous Forward Voltage (2)
iF = 3 Amps. TC = 25'C
iF = 3 Amps, TC = 125'C
iF = 6 Amps. TC = 25'C
iF = 6 Amps. TC = 125'C

vF

Maximum Instantaneous Reverse Current (2)
(Rated dc Voltage, TC = 25'C)
(Rated dc Voltage. TC = I 25'C)

iR

Volts
0.7
0.65
0.9
0.85
mA
0.1
15

..

(1) Rating applies when surface mounted on the minimum pad size recommended .
(21 Puis. Tesl: Pulse Width = 300 p.S. Duty Cycl. '" 2%.

3-183

II

,

MBRD620CT, MBRD630CT, MBRD640CT, MBRD650CT, MBRD660CT
TYPICAL CHARACTERISTICS
100

100
70

1

50

!z

TJ - 15O"C
10

125·C

I

30

w

75·C

~

~ o. 1
Ii:

,I!!J ~

".

0.01

o

~A

I#: '9'

•

A~

Ih 1/
121"C~ I
150"C .... JI II

0.3

.... 75~

9

!

8
7
6
5
4

w

~

0.2

:i<

~
,F

O. 1

o

0.2

~INE-

0.4
0.6
0.8
1.2
VF. INSTANTANEOUS VOLTAGE (VOLTS)

1.4

I

/.
'/
/
I
1/ / / "./
/ h
/ / V~ V . /
/ / h ~ ,.....

2

o

80

90

100

./

..-;Ic f . . -

TJ = 150·C-

~~

~~ ~

I

I

2

3

TJ

~ 3.5

....Z
~

TJ = 150·C

110
120
TC. CASE TEMPERATURE ("C)

/

ie

S-cr

\.\
\. I\,
r\\150
130
140

/

4

5

6

7

10

Figure 3. Average Power Dissipation, Per Leg

ac

SINf'~ \.de

WAVE
OR
SQUARE
WAlE

/

/

~

V ~QUARE
/. V WA'!7
V/

IFIAV}. AVERAGE FORWARD CURRENT lAMPS}

VOL~AGE APpLED_

I" I'\.

/

II

I

I

Figure 1. Typical Forward Voltage, Per Leg

RAtED
R8JC =

WAVE/"

5

'~

1
10 -lpKnAV = 20

0..

~

-TC = 25·C

/",
I

70

_ 14
en

1= 13
~1 2

!.i

0.5

60

30
40
50
VR. REVERSE VOLTAGE (VOLTS)

Figure 2. Typical Reverse Current,* Per Leg

t5

0.7

20

10

*The curves shown aretypical for the highest voltage device in the voltage
grouping. Typical reverse current for lower voltage selections can be
estimated from these curves if VR is sufficient below rated VR.

W

'III
1

~

0.001

A W

§

25·C

~

12
w
~

--..........

1.5

VR

= 25V

VR

= l,ov

lo.5

Figure 4. Current Derating, Case, Per Leg

"-..

~--r""'- ........

~

160

SURFACE MOUNTED ON
MINIMUM PAD SIZE
RECOMMENDED

3

2.5

o

o

-"'-

........
.....

....

de
- - - - SQUARE WAVE
OR
SINE WAVE

........

'~

~,

40

"'\

. . . r' ...
1'........

20

R~JA = ~·C,W

I

= .150·C

'

...

60
80
100
120
TA. AMBIENT TEMPERATURE I·C)

\

140

Figure S. Current Derating, Ambient, Per Leg

3-184

160

MBRD620CT, MBRD630CT, MBRD640CT, MBRD650CT, MBRD660CT

K

,"'-

~

w
u

z

~

~ 100

r-.",

i"--,

TJ

= 25'C

<5
c.J

10

o

10

20

30

40

50

60

80

VR. REVERSE VOLTAGE (VOLTS)

Figure 6. Typical Capacitance, Per Leg

I

3-185

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

MBRF2535CT
MBRF2545CT

SWITCHMODE
Dual Schottky Power Rectifiers

MBRF2545CT Is a
Motorola Preferred Device

•
•
•
•
•
•

•

low Forward Voltage Drop
Guardring for Stress Protection
150°C Operating Junction Temperature
High dv/dt Capability
Electrically Isolated, No Insulating Hardware Required
Electrically Similar to the Popular MBR2535CT and MBR2545CT

SCHOTTKY BARRIER
RECTIFIERS
25 AMPERES
35 and 45 VOLTS

CASE 2210-02
(ISOLATED TO-220)

MAXIMUM RATINGS (PER LEGI
Symbol

Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

Average Rectified Forward Current (Rated VR) Per Leg, TC = 125'C

MBR2535CT MBR2545CT
35

45

Unit
Volts

IF(AV)

12.5

Amps

Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz) TC = 125'C

IFRM

25

Amps

Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions, halfwave, single phase, 60 Hz)

IFSM

150

Amps

Peak Repetitive Reverse Surge Current (2.0 Ils, 1.0 kHz I

IRRM

1.0

Amp

TJ

-65 to +150

'c

Storage Temperature

Tstg

-65 to + 175

·C

Voltage Rate of Change (Rated VR)

dv/dt

10000

V/p.s

Isolation Voltage

Vins

1500

Volts

Operating Junction Temperature

THERMAL CHARACTERISTICS (PER LEGI
Thermal Resistance -

Junction to Case

3.5

ELECTRICAL CHARACTERISTICS (PER LEG I
Maximum Instantaneous Forward Voltage (11
(IF = 12.5 Amps, TC = ·25'CI
(IF = 12.5 Amps, TC = 125'C)

vF

Maximum Instantaneous Reverse Current (11
(Rated dc Voltage, TJ = 25°CI
(Rated de Voltage, TJ = 125'CI

iR

Volts
0.7
0.62
rnA
0.2
40

(11 Pulse Test. Pulse Width ~ 300 p.s, Duty Cycle' 2.0%.
Switch mode is a trademark of Motorola Inc.

3-186

MBRF2535CT, MBRF2545CT

- -

100

100
0
0

<

/

ex:
=>
u

W

85°C

w



u

10

'"

1.0

w

25°C

;2
US
....
w

0.5

(J)

w

u:.

0.1 0

>
W

I I

II:

0.2
0.3
0.4
0.5
vf; INSTANTANEOUS VOLTAGE (VOLTS)

0.6

0.001 0

0.7

Figure 1. Typical Forward Voltage

I

25°C

0.01

ci:

1/
0.1

-

TJ = 100°C

0.1

II:

0.2

==

-

9
12
15
18
21
VR, REVERSE VOLTAGE (VOLTS)

24

27

Figure 2. Typical Reverse Leakage Current

I

en
~

I

RATED VOLTAGE APPLIED _
RSJC = 12°CIW
TJ = 100°C
-

~

TJ = 100°C --+-----1I--+---+-----1-----l

z

0

~

(J)

""

"-

SQUAR0
WAVE

60

70

80

90

15
II:

~

~

"

100

c..
w

~DC

~

110

'"w~

4

3
2

~

~

120

[

130

&-

00

5

TC, CASE TEMPERATURE (0G)

IF(AV), AVERAGE FORWARD CURRENT (AMPS)

Figure 3. Current Derating (Case)

Figure 4. Power Dissipation

400

I

u:-

.s

w
u

200
150

""
<5

I

250

8:

u

I

300

z
;!!:

U

I

NOTE: lYPICAL CAPACITANCE _
ATOV = 290 pF

350

100
50

\

\.
r---.....
8

12

16

20

24

VR, REVERSE VOLTAGE (VOLTS)

Figure 5. Typical Capacitance

3-189

11
I

en

5

30

28

32

7

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

MBRS140T3

Surface Mount
Schottky Power Rectifier

Motorola Preferred Device

· .. employing the Schottky Barrier principle in a large area metal-to-silicon power diode.
State-of-the-art geometry features epitaxial construction with oxide passivation and
metal overlay contact. Ideally suited for low voltage, high frequency rectification, or as
free wheeling and polarity protection diodes in surface mount applications where compact size and weight are critical to the system.
•
•
•
•
•
•
•

Small Compact Surface Mountable Package with J-Bend Leads
Rectangular Package for Automated Handling
Packaged in 12 mm Pocket Tape and Reel
Highly Stable Oxide Passivated Junction
Very Low Forward Voltage Drop (0.55 Volts Max (u 1.0 A, TJ = 25'C)
Excellent Ability to Withstand Reverse Avalanche Energy Transients
Guardring for Stress Protection

SCHOTTKY BARRIER
RECTIFIERS
1.0 AMPERE
40 VOLTS

MECHANICAL CHARACTERISTICS

•

CASE: Transfer Molded Plastic Package
LEAD FINISH: Plated Leads, Readily Solderable in Surface Mount Applications
POLARITY IDENTIFICATION: Notch in Plastic Body Indicates Cathode Lead
DEVICE MARKING: MBRS140T3 .......... B14

CASE 403A-03

MAXIMUM RATINGS
Symbol

Value

Unit

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

40

Volts

Average Rectified Forward Current

IF(AV)

1 @Tl=115'C

Amps

Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions hallwave. single phase. 60 Hz)

IFSM

40

Amps

TJ

-65 to +125

'C

Rating

Operating Junction Temperature

THERMAL CHARACTERISTICS
Thermal Resistance (Tl = 25'C)

Junction to lead

12

ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)
(iF = 1.0 A. TJ = 25'C)

vF

Maximum Instantaneous Reverse Current (1)
(Rated de Voltage. TJ = 25°C)
(Rated de Voltage. TJ = 100'C)

iR

0.6

mA
1.0
10

(1) Pulse Test: Pulse Width = 300 ~s. Duty Cycl. S 2.0%.

3-190

Volts

MBRS140T3

,----

-

'---~r-

1

~

o.7

~

O. 5

s

/ I

a:

~

@

3
O. 2

~ o. 1

0.0

I

I TC=25°C

I

I

25°C

W

W

H

D

~

~

'The curves shown are typical for the highest voltage device in the voltage grouping. Typical
reverse current for lower voltage selections can
be estimated from these same curves if applied
VR is sufficientlv below rated YR.

U

M

U

U

V

U

M

1.1

VF.INSTANTANEOUS FORWARD VOLTAGE (VOLTSi

Figure 1. Typical forward Voltage

200
180
NOTE TYPICAL CAPACITANCE AT
OV ~ 160pF

160
~ 140
~

;z

120

~ 10

o\

~ ~--'"

-

u'

0

f'....

r--

0
0

12
16
20
24
28
VR. REVERSE VOLTAGE (VOLTSi

32

36

40

Figure 3. Typical Capacitance

10

~
::E
S

.L

RATEb VOLThGE AplpLiED
R/lJC '- 12 CW
TJ
125 C

t-

15

TJ

SOUAREWAV~

125 C

0

~/

~
::>
'-'

5...6

3

aa:

~

-...... .................. r--...

12

2 CAPACITANCE LOAD 10

r--.........: ~C

~

'"ffi""

SQUARE WAVE

~

~

if:

r--::::--"~

1

~
~

o
30

40

~

Figure 2. Typical Reverse Current*

I
U

u

VR. REVERSE VOLTAGE (VOLTSi

I

211
~

75°C

o

~ 0.0 7

0.03

100°C

- 0.05
0.03
0.02
0.0 1

;:!:

.!f. 0.05

125°C


u

5
3
2
1

t-

15
a:

I I

a:

::>

~ O.3

12

~

Te= 100°C

100
50
30
20
0

50

60
70
80
90
100
TC. CASE TEMPERATURE ( Ci

110

roo..

120

130

Figure 4. Current Derating (Case)

f--,IPK
20/
IAV /,~

W V

~~ V
~~ ,/

L

~V

V

~

1
2
3
4
IF(AVi. AVERAGE FORWARD CURRENT (AM PSi

Figure 5. Power Dissipation

3-191

/

D.5-'

~

II

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

MBRS340T3

Surface Mount
Schottky Power Rectifier

Motorola Preferred Device

· .. employing the Schottky Barrier principle in a large area metal-to-silicon power diode.
State-of-the-art geometry features epitaxial construction with oxide passivation and
metal overlay contact. Ideally suited for low voltage, high frequency rectification, or as
free wheeling and polarity protection diodes, in surface mount applications where compact size and weight are critical to the system.
•
o
•
•
•
•
•

Small Compact Surface Mountable Package with J-Bend Leads
Rectangular Package for Automated Handling
Packaged in 16 mm Pocket Tape and Reel
Highly Stable Oxide Passivated Junction
Very Low Forward Voltage Drop (0.5 Volts Max (/ 3.0 A, TJ = 25°C)
Excellent Ability to Withstand Reverse Avalanche Energy Transients
Guardring for Stress Protection

SCHOTTKY BARRIER
. RECTIFIERS
3.0 AMPERES
40 VOLTS

MECHANICAL CHARACTERISTICS

II

CASE: Transfer Molded Plastic Package
LEAD FINISH: Plated Leads, Readily Solderable in Surface Mount Applications
POLARITY IDENTIFICATION: Notch in Plastic Body Indicates Cathode Lead
DEVICE MARKING: MBRS340T3 .......... B34

CASE 403-03

MAXIMUM RATINGS
Symbol

Value

Unit

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

Rating

VRRM
VRWM
VR

40

VoHs

Average Rectified Forward Current

IF(AV)

3.0 @ TL = 100°C
4.0 @ TL = 90°C

Amps

Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz)

IFSM

80

Amps

TJ

-65 to +125

°C

Operating Junction Temperature

THERMAL CHARACTERISTICS
Thermal Resistance -

Junction to Lead

11

ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)
(iF 3.0 A, TJ 25°C)

vF

Maximum Instantaneous Reverse Current (1)
(Rated de Voltage, TJ 25°C)
(Rated dc Voltage, TJ 100°C)

iR

=

=

=
=

0.525

rnA
2.0
20

(1) Pulse Test: Pulse W,dth = 300 ~s, Duty Cycle S 2.0%.

3-192

Volts

MBRS340T3

-

100
50

II
TC=l00°C

\ I
YJ

a::

....~z

20 TJ

'/

~

a:

::0

u

w

V>

a:

~ 0.7

~

IL

~ 0.5

5!=== 100·C

1l'
i
a:

TC = 25°C

::0

a:

11===:= 75·C
O. 5

O. 2

~ O.

12

0.0

~

5l

0.3

~;!:

0.2

125·C

;;;: 10

.s....

~F=F25.C~

0.02
0.0 1
0

I

n

U
ffi
W M W
VR. REVERSE VOLTAGE IVOLTS)

I

V>

~

~

•

Figure 2. Typical Reverse Current

o. 1
0.07
0.05

o

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
vF.INSTANTANEOUS VOLTAGE IVOLTS)

•

1.2 1.3 1.4

Figure 1. Typical Forward Voltage

5/

10

V

/

ICAPACITIVE LOAD)

Y

V

/

/SQUARE

W"Z

/

./'

/ V ./
1fK=20/
' / /' V
IAV
/.V/ . / V
0- . / . /V

DC

~ ~V

1~

1
IFIAV). AVERAGE FORWARD CURRENT lAMPS)

Figure 3. Power Dissipation

i~

10

500

a:
a:
::0
u

-

C

~
12

........

w

r---...

i"'---

o

40

50

60

TJ

'"

\

~

~ 200
u
U

."-.
\..

70
80
90
100 110
TC. CASE TEMPERATURE I"C)

,,~

120

"

100

'-..\

130

o

o

140

Figure 4. Current Derating (Case)

12
16
20
24
28
VR. REVERSE VOLTAGE IVOLTS)

Figure 5. Typical Capacitance

3-193

= 25·C

\

~

~C

WAVE

:it
~1

400
~ 300

SQUAR~

~

.f?

RATEb VOLT~GE A~PLlED
RHJC = 10SC W
TJ = 125"C

TYPICAL CAPACITANCE AT 0 V = 480 pF

32

36

40

MOTOROLA

SEMiCONDUCTOR . . . . . . . . . . . . . . . . . . . . . . . ....
TECHNICAL DATA

Designer'sTM Data Sheet
Schottky Power Rectifier

MBRS1100T3
Motorola Preferred DevIce

Surface Mount Power Package
Schottky Power Rectifiers employ the use of the Schottky Barrier principle in a large area
metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide
passivation and metal overlay contact. Ideally suited for low voltage, high frequency rectification,
or as free wheeling and polarity protection diodes, in surface mount applications where compact
size and weight are critical to the system. These state-of-the-art devices have the following
features:
•
•
•
•
•
•
•

II

Small Compact Surface Mountable Package with J-Bend Leads
Rectangular Package for Automated Handling
Packaged in 12 mm Pocket Tape and Reel
Highly Stable Oxide Passivated Junction
High Blocking Voltage - 100 Volts
150°C Operating Junction Temperature
Guardring for Stress Protection

SCHOTTKY BARRIER
RECTIFIER
1.0 AMPERE
100 VOLTS

•

CASE 403A-03

Mechanical Characteristics
Case: Transfer Molded Plastic Package
Lead Finish: Plated leads, Readily Solderable in Surface Mount Applications
Polarity Identification: Notch in Plastic Body Indicates Cathode Lead
Device Marking: MBRS1100T3 ....... B1C

MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current

TL
TL

Non-repetitive Peak Surge Current
(Surge applied at rated load conditions hallwave, single phase, 60 Hz)
Operating Junction Temperature
Voltage Rate of Change

=120°C
=100°C

Symbol

Value

Unit

VRRM
VRWM
VR

100

Volts

IF(AV)

1.0
2.0

Amps

IFSM

50

Amps

TJ

-65 to +150

°C

dv/dt

10

V/ns

THERMAL CHARACTERISTICS
22

Thermal Resistance - Junction to Lead
(TL = 25°C)

ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)
(iF 1.0 A, TJ 25°C)

vF

Maximum Instantaneous Reverse Current (1)
(Rated de Voltage, TJ 25°C)
(Rated de Voltage, TJ 100°C)

iR

=

=

=
=

0.75

Volts
mA

0.5
5.0

(1) Pulse Test: Pulse W,dth = 300 ",S, Duty Cycle :5 2%

Preferred devices are Motorola recommended choices for future use and best overall value.
Designer's Data for "Worst Case" Condhlons - The DeSigner's Data Sheet permits the design of most circuits entirely from the information presented Limit cU/ves - representIng boundaries on
device characteristics - are given to facilitate "worst case" design.

3-194

MBRS1100T3

TYPICAL ELECTRICAL CHARACTERISTICS

--

«

~ == TJ = 150"C

..=,
I-

z
w
a:
a:
::>
u
w
a:

IV

I-- -

1K
400
200
~
100 1= TJ= 150"C
40 r-- - 125"C_
~
20
10 I
100"C

,

100"C

L

25"C

I I

en

~

'"

I

lM
a:

0.02 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

1.1 1.2 1.3 1.4

i3i

2.0

15

ffi

~
w
~W

en

4.0

~
!z

3.5

~/
WAV~
~

1.6
1.2

~

o

a@

2.5

~
a:

2.0

f2

1.5

40

50

60

70

80

1.0

1.5

2.0

2.5

3.0

3.5

r-...,DC

WAVE

"'\
~

"'.,

'\ ~

40

20

60

80

100

120

IF(AV), AVERAGE FORWARD CURRENT (AMPS)

fL, LEAD TEMPERATURE ('C)

Figure 3. Power Dissipation

Figure 4. Current Derating, Lead

!L

.s
w
z

u

~
U

if

'"
<5

u

280
260
240
220
200
180
160
140
120
100
80
60
40
20

I

I 1111111

I I

I I

NOTE: TYPICAL CAPACITANCE
ATOV=270pF

r-...,

"
.........

"
l"'-

o

0.1

0.2

0.5

1

10

20

VR, REVERSE VOLTAGE (VOLTS)

Figure 5. Typical Capacitance

3-195

100

II
"SQUAR~ ~

o
o

4.0

90

RATED VR APPUED
ReJL = 22"CIW
TJ = 100"C

1.0

ir

0.5

30

~
~ 0.5

~:;.-'"

0

3.0

~
ffi

'/

~ '/"

$:" 0.4

~

a:

SQUARE

:$.

&-

V/

//V

~

20

Figure 2. Typical Reverse Current

"-

0.8

~

10

Figure 1. Typical Forward Voltage

TJ = 100"C
2.4

o

VR, REVERSE VOLTAGE (VOLTS)

~ 2.8
~

0.4
0.2
0.1
0.04
0.02
0.01

vf; INSTANTANEOUS VOLTAGE (VOLTS)

3.2

~

--

=

a:

u:

---- >-- ----

i'50

100

I'

140

160

•

MR750
MR751 MR752
MR754 MR756
MR758 MR760

MOTOROLA

SEMICONDUCTOR

TECHNICAL DATA

MR754 and MR7SO are

Designers Data Sheet

Motorola Preferred Devices

HIGH CURRENT
LEAD MOUNTED
SILICON RECTIFIERS
50-1000 VOLTS
DIFFUSED JUNCTION

HIGH CURRENT LEAD MOUNTED RECTIFIERS
• Current Capacity Comparable To Chassis Mounted Rectifiers
• Very High Surge Capacity
• Insulated Case
Designer's Data for "Worst Case" Conditions
The Designers Data sheets permit the design of most circuits entirely from

the information presented. Limit curves - representing boundaries on
device characteristics - are given to facilitate "worst case" design.

II

'MAXIMUM RATINGS
Symbol

MR750

MR75!

MR752

MR754

MR756

MR758

MR760

Unit

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

50

100

200

400

600

SOO

1000

Volts

Non-Repetitive Peak Reverse Voltage
(hallwave, single phase, 60 Hz peak)

VRSM

60

120

240

480

720

960

1200

Volts

35

70

140

280

420

560

700

Volts

Characteristic

RMS Reverse Voltage

VR(RMS)

Average Rectified Forward Current
(single phase, resistive load, 60 Hz)
See Figures 5 and 6
Non-Repetitive Peak Surge Current
(surge applied at rated load
conditions)
Operating and Storage Junction
Temperature Range

22 (TL = 60'C, liS' Lead Lengths)
6_0 ITA = 60'C, P.C. Board mounting)

10

IFSM
400 (for 1 cycle)

~

TJ. Tstg

6510 +175

ELECTRICAL CHARACTERISTICS
Symbol

Max

Unit

Maximum Instantaneous Forward Voltage
Drop (iF ~ 100 Amp, TJ = 25'C)

vF

1.25

Volts

Maximum Forward Voltage Drop
(IF = 6.0 Amp, TA = 25'C, 31S' leads)

VF

0.90

Volts

IR

25
1.0

p.A
mA

Characteristic and Conditions

Maximum Reverse Current TJ
(rated de voltage)
TJ

= 25'C
= 100'C

MECHANICAL CHARACTERISTICS
CASE: Transfer Molded Plastic
MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 350°C 3/8'
from case for 10 seconds at 5.0 Ibs. tension
FINISH: All external surfaces are corrosion-resistant, leads are readily solderable
POLARITY: Indicated by diode symbol
WEIGHT: 2.5 Grams (approx.)

3-196

Amp

•

Amp

'C

•

MR750, MR751, MR752, MR754, MR756, MR758, MR760

-

FIGURE 2 - MAXIMUM SURGE CAPABILITY

FIGURE 1 - FORWARD VOLTAGE
700
50o t--TJ = 25°C

L
/

200

100

r-- -TYPICAL
/

/

,/

-

V

./

300

600

..........

~
~ 400
il'i

............... 4'04"Ii~

a

.............

N

~ 300

f"""MAXIMUM

./

~ 200

/

]llIf

............

~1>
r-...

rillE

u.
-'

""

:r

'"

0

i"'-

~;--- rr-... T~
i"'-r--.",

w

VRRM MAY BE APPLIED BETWEEN
EACH CYCLE OF SURGE. THE TJ
NOTED IS Ti PRIOR TOtURGE

25°C

-..........,...

--

""

~ 100

0

~

III

I

80
60
1.0

I

2.0

5.0

II

I
25°C

10

,.....
r-...... '"

20

100

50

NUMBER OF CYCLES AT 60 Hz

I

II

FIGURE 3 - FORWARD VOLTAGE
TEMPERATURE COEFFICIENT

0
+0.5

/

<.>

~
I-

il'i

1.0

i3

~

........

1,.-

-1.5

./

:--

0.3
0.2
0.6

,.,...

TYPICAL RANGE
-1.0

8

0.5

~

-

g -0.5

-2.0
O.B

1.0

1.2

1.4

1.6

1.B

2.0

2.2

2.4

2.6

0.2

vF, INSTANTANEOUS FORWARO VOLTAGE (VOLTS)

0.5

1.0

2.0

5.0

10

20

50

100

200

IF, INSTANTANEOUS FORWARD CURRENT (AMP)

FIGURE 4 - TYPICAL TRANSIENT THERMAL RESISTANCE

10~,---~.;L=-~t-~::;'iI!lm.II.~112"

~~ r
I -!ze:~5.0

3/B"::

L_

W

"" <.>

~~

~~

'

' - - HEATSINK

1/4':-

w

~

3.0
:; ~ 2.0

80th leads to heat sink. with lengths as shown. Variations in
~
ROJllt) below 2.0 setonds are independent of lead connections
I----l--l-+-l--l-+-+-l-l-++.........
-:;;_
= 20

iii

ROLK

~ ~T~J-4
__

~

X

____T_CLK_____TLLK____

~

Use of the above model permits junctIon to lead thermal resistance for any
mounting configuration to be found. Lowest values occur when one Side of the
rectifier is brought as close as possible to the heat sink as shown below. Terms in
the model signify:

Ii

IFlavg}. AVERAGE FORWARD CURRENT lAMP}

FIGURE 8 - STEADY STATE THERMAL RESISTANCE

AOS '" Thermal Resistance,HeatSink to Ambient
T A = Ambient Temperature
Tl "lead Temperature
ROL'" Thermal Resistance. Lead to Heat Sink
TC " Case Temperature
ROJ '= Thermal ReSIstance. Junction to Case
T J '" Junction Temperature
PF = Power Dissipation
(Subscripts A and K refer to anode and cathode sides respectively.)
Values for thermal resistance components are:
ROL" 400 CIW/IN. Typically and 440 C/WIIN Maximum
AOJ = 2 0 C/W TYPIcally and 4 0 C/W Maximum
Since ROJ is so low. measurements of the case temperature, TC. will be approx·
imately equal to junction temperature in practical lead mounted applications.
When used as a 60 Hz rectifier, the slow thermal response holds T J(PK) close to
TJ(AVGI. Therefore maximum lead temperature may be found from. TL '"
1750-ROJl PF. PF may be found from Figure 7.
The recommended method of mountmg to a P .C. board is shown on the sketch.
where ROJA is approximately 250 C/W for a 1·1/2" x '·1/2" copper surface area.
Valuesof 400 C/W are typical for mounting to terminal strips or P.C. boards where
available surface area is small.

...

~
-

L. LEAD LENGTH (INCHES)

3-198

]Ig:
---------=

Board ground plane
Recommended mounting for half wave circuit

MR750, MR751 , MR752, MR754, MR756, MR758, MR760

TYPICAL DYNAMIC CHARACTERISTICS
FIGURE 10 - REVERSE RECOVERY TIME

FIGURE 9 - RECTIFICATION EFFICIENCY

r-

100

30

"""'-

20
~

70

~

~

'\

~

50

i

TJ = 175'C

r-

I c- rvv -30

I

I'-..

r\. TJ = 25'C

\

1.0

\

3.0

ffi
15
!ll

5.0

20

~ 3.0

1\

J

2.0

30

50

-

I,

70 100

0.2

0.1

0.7

r--

>=

~ 100
l;l

0.3

=

\

I I II I

2.0

::E

\

CURRENT INPUT WAVEFORM

1 1

~

\

"- ruu ---

20

~

..........
..........

2.0

vfr=2V

I I
3.0

5.0

r- -

7.0

10

iF. FORWARD PULSE CURRENT lAMP)

,,2RL
4
alsine) = - - . 100% = - . 100% = 40.6%
V2m
1T2

(2)

4RL
For a square wave input of

amplitude Vm • the efficiency
factor becomes:
The rectification efficiency factor a shown in Figure 9 was
calculated using the formula:

V'olde)
Plde)
RL
V2olde)
(J=--=---'100%=
·100% III
Plrms) V2olrms)
V2olae) + V2olde)
RL

For a sine wave input Vm sin (wd to the diode, assumed lossless,
the maximum theoretical efficiency factor becomes:

3-199

2RL

(Jisquare)

= V2m . 100% = 50%

(3)

RL
(A full wave circuit has twice these efficiencies)
As the frequency of the input signal is increased, the reverse recovery time of the diode (Figure 10) becomes significant. resulting
in an increasing ac voltage component across R L which is opposite
in polarity to the forward current, thereby reducing the value of
the efficiency factor 0, as shown on Figure 9.
It should be emphasized that Figure 9 shows waveform efficiency only; it does not provide a measure of diode losses. Data was
obtained by measuring the ac component of Va with a true rms ae
voltmeter and the de component with a de voltmeter. The data was
used in Equation 1 to obtain points for Figure 9.

MR820
MR821 MR822
MR824 MR826

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

MRB22 and MR826 are

Motorola Preferred Devices

Desig'ne.·s Data Sheet
FAST RECOVERY
POWER RECTIFIERS

SUBMINIATURE SIZE, AXIAL LEAD MOUNTED
FAST RECOVERY POWER RECTIFIERS

50·600 VOLTS
5.0 AMPERES

designed for special applications such as dc power supplies,
inverters, converters, ultrasonic systems, choppers, low RF interfer·
ence and free wheeling diodes. A complete line of fast recovery
rectifiers having typical recovery time of 150 nanoseconds providing
high efficiency at frequencies to 250 kHz.

Designer's Data for ''Worst Case" Conditions

•

The Designers Data sheets permit the design of most circuits entirely from the information presented. limit curv"ts - representing boundaries on device characteristics - are given to facilitate "worst case" design.

MAXIMUM RATINGS
Rating

Symbol

MR820

MR821

MR822

MR824

MR826

Peak Repetitive Reverse Voltage

VRRM
VRWM
VR

50

100

200

400

600

VRSM

75

150

250

450

650

Volts

VRIRMS)

35

70

140

280

420

Volts

Working Peak Reverse Voltage
DC Blocking Volt. .
Non-Repetitive Peak Reverse
Vol_
RMS Reverse Voltage

.
.
.

10

IFSM

Current
(Surge applied at fated load
condltionsl
Operating and Storage Junction
Temperature Range (2)

CASE 194-04

Volts

0

6.0

.

300

.

-65 to +175

=550C1(1)

Non-Repetitive Peak Surge

I

MECHANICAL CHARACTERISTICS

Average Rectified Forward
Current
(Single phase, resistive load.
TA

Unit

TJ.Tstg

Amp

Amp

°c

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
(Recommended Printed Circuit Board
Mounting, See Note 6 J

Symbol

Ma.

R6JA

25

Unit

ELECTRICAL CHARACTERISTICS
Characteristic

Symbol

Instantaneous Forward Voltage
(iF 15.7 Amp. TJ' 15o"C)

vF

Forward Voltage
IIF' 6.0 Amp. TJ

VF

=

=25°C)

Maximum Reverse Current, (rated dc voltage) TJ = 25°C
TJ -100"C

IR

Unit

Min

TV.

Ma.

-

0.75

1.05

-

0.9

1.1

5.0
0.4

1.0

,.A
mA

Min

TYl'

Ma.

Unit

-

160
150

200
300

-

-

2.0

-

Volts
Volts

25

REVERSE RECOVERY CHARACTERISTICS
CharM:twistic

Symbol

Reverse Recovery Time
(IF .. 1.0 Amp 10 VR = 30 Vdc, Figure 25)
IIFM" 15 Amp. di/dt = 25 A/p.s. Figure 26)

'rr

Reverse Recovery Current
(IF" 1.0Amp to VR '" 30 Vdc, Figure 25)

IRMIREC)

ns

(1. Must ba darated for rever.. power dillipatlon. See Nota 3
(2) Derate •• shown in Figure 1.

3-200

Amp

CASE: Transfer Molded Plastic
FIN ISH: External Surfaces are Cor·
rosion Resistant
POLARITY: Indicated by Diode
Symbol
WEIGHT: 2.5 Grams (Approximately)
MAXIMUM LEAD TEMPERATURE
FOR SOLDERING PURPOSES:
3500 C, 3/S" from case for 10 s
at 5.0 lb. tension.

•

MR820, MR821, MR822, MR824, MR826

MAXIMUM CURRENT AND TEMPERATURE RATINGS
FIGURE 1 - MAXIMUM ALLOWABLE JUNCTION
TEMPERATURE

180

~

. . . . r--..I'-

160

~

w

'"

~

I--..
~
::::--........
...............

........

.......'"

'-l

~

I-

~ 12 0

z

200

"

When current ratings are computed from T J{max) and

reverse power dissipation is also included, ratings vary
with reverse voltage as shown on Figures 2 thru 5 .

.........

40'CIW
100

additional information on derating for reverse power

dissipation.

>-... ..........

30'CIW'

80

sidered. The data of Figure 1 is based upon worst case
reverse power and should be used to derate T J(maxt
from its maximum value of 175°C. See Note 3 for

, '"

><: :::--.~ -' --.:::::

2S'CIW'
100

0
60

over approximately 85°C, reverse power dissipation
and the possibility of thermal runaway must be con-

"---

10'CIW

...........

t;
~

When operating this rectifier at junction temperatures

i"-~~ ~
................ --.......::: ................. ~ 20'1';;;
~ '............... ......... I::'-- ........

140

;::!

NOTE 1
MAXIMUM JUNCTION TEMPERATURE DERATING

ROJA = S.O'CIW

400

300

SOO

•

YR. PEAK REVERSE VOLTAGE IVOLTSI

RESISTIVE LOAD RATINGS
PRINTED CIRCUIT BOARD MOUNTING - SEE NOTE 6
FIGURE 3 - SQUARE WAVE INPUT

FIGURE 2 - SINE WAVE INPUT

a

ii: 7.0

0 .......

~

0 ........
0

.......,

r-.::
~

'"40~V
"'

-

2.0

>

'"S 1.0 t -

r-.;:

.......

'"

~ 0
20

I--..

""

-....z,-

60 V

40

I'..

""- "-

200 V
60

~

'"~
~

OV

........ t-...

KI rI

I-

vR=10VIPKI

r--..
IF

~

-

80

f"..

~

~

100 V

w

co

-.;z

"'

"'r'\. " "- "" "

100

140

':>"

"

160

TA. AMBIENT TEMPERATURE I'CI

4.0 f"..

ROJA = 2S'CIW-

........

I--..

f"..

3.0

~

/'

200 V

~

'"
'"
~

~
If

'<;

60

BO

100

120

, ,I" ::--; I~VI~KI
r--.. :::--..

,.

ii:

2.0

1.0

i'- )-

20

400 V'

600 V
40

.........

"'I.{

" "'

.........

~ :-.....

f'.

r-......
60

80

~

100 V

100

120

r-.... I'-,.

"

140

I.........

~

2.0

~~

)<.
1.0 200,V

:>

l"

160

180

TA. AMBIENT TEMPERATURE I'CI

t-- ,

, :--- f'.
, ,

~ 3.0

f'. ?'

........

"'200~<
"-j >")

0

'"~
50 V

r--.. ~

t'-.

160

lBO

ROJA = 40'CiW

~ 4.0 ,

V!=

.......

140

5.0

I-

-.....: t:--

100 V

.;

1.0

40

50 V

::--.

FIGURE 5 - SQUARE WAVE INPUT

ROJA = 40·C/w

l""-

co

ffi:;(

........

~

4.0

~
c 3.0

~

I'..

TA. AMBIENT TEMPERATURE I'CI

~

~

,

VR= 10V(PKI

r.....

'"

FIGURE 4 - SINE WAVE INPUT

5.0

I--...
........ !:'-

"'...... "' "'
II- 440ri~ ~
sdfv "'
a
"
20

180

'"
r--..

~ 2.0

>

r-.;:

120

I I

6.0
........'

::::) 5.0

....... t-..

~

w

co

ffi

ROJA = 2S'CIW

~

0

~

......,

-t

20

I'-

"./1>~

~

sov

I'- 'L'
~

.......

y

600 V
40

VR -10 V IPK)

60

100 V

j'-, ~

l/

~

~

"

I'- I'

80

100

r-....

'I........

120

........

"'
140

TA. AMBIENT TEMPERATURE I'CI

3-201

r-....
r.......

"'

160

180

MR820, MR821 , MR822, MR824, MR826

MAXIMUM CURRENT RATINGS
NOTE 2
Current derating data is based upon the thermal raspon,e data of Figure 29 and the forward power dissipation data of Figures 19 and 20. Since reverse power dissipation is not considered in Figures 6 thru 11. additional derating for reverse voltage and for junction to ambient thermal resistance must be applied. See Note 3,

SQUARE WAVE INPUT

SINE WAVE INPUT
FIGURE 6 - EFFECT OF LEAD LENGTHS,
RESISTIVE LOAD

I...
ill

0

I6

'"'"

~'/8"

~

~
... 8.O~

~
~

4.0

:>

•

~

I/~"

2r--

0
75

-

B5

"
r--- ..:::::::- ~

lOS

115

125

135

145

~ 4.0

155

165

175

~

5/8"

" """-

ffi

"........ ~

~
....... 1--...

r---..
r-

3/8"

'"

............

~
1/4"

o
~ 8.0

............

85

95

FIGURE B - 1/S" LEAD LENGTH, VARIOUS LOADS

...'"

=.
~V)
I(PK)

ill 16

r--....

:ii

a
~

12

:r...

8.0

r--

~

I'--- ~ ./

l.J.

5
..I.
........... 10 ( CAPACITIVELOADS

.L <......::: ~
~~

to

<

::l
>

< 4.0

--......;

BOTH LEADS TO HEAT SINK

:>

i...

ffi

~

r--

~

85

95

IDS

115

125

135

145

""

16

IDS

w

155

~ 4.0

165

75

85

.......
.......
r-....

'" 5.0
..

a

...

'"

;-1-

-...;

.......

2.o ROJA =400 C\f'-'

S

-r--I(PK) 5.?.....
1.0 c--r-i(AV) I~ .....

~

0
20

;;:::::

B 5.0

~~

~

...... ~

/'

I I \ 2r
40

60

80

100

120

165

115

2 (RlsISTlJEIINDJCTIVE 1& LARGE CAPACITIVE LOADS)

LIGHT CAPACITIVE LOADS

<0

C«.: ~ i'--.de

.......:::: ~ ~
........

~~

~

115

125

135

145

ISS

"

165

~

--

~

3.o

ffi
>

:--- ~

2.

-.....; ~

K .......

::::- :--

IBO

20

40

'<. I-':

60

::-.

....... ~

r:::: ~ ~

T

I

\

2.0-5'1 i(PK)
10. _
I(AV)
/20

I--...t"<'-..
r-- 0 ::--

O~~de

If o

de

.......

I--I(PK) 2.0-5.0
10'
S
1.0 I--I(AVr
.
20
«

0
"""",z
~ or- -...; ::'" ~
I ' :c..;;:
~ 3.

.......

155

FIGURE 11 - PRINTED CIRCUIT BOARD MOUNTING,
VARIOUS LOADS

ROJA = 250 C/W

::--

i(PK)
I(AV)

/

. . . . :'< K
........

95

~ 7.0

~

145

TL, LEAD TEMPERATURE (DC)

;: 7.0

ill

135

0

FIGURE 10 - PRINTED CIRCUIT BOARD MOUNTING,
VARIOUS LOADS

6.0

125

80TH LEADS TO HEAT SINK

~

175

r....... """-..
...........

TL, LEAD TEMPERATURE (DC)

~
...

115

- --

8.0

ffi

~

"'>

r--....

t-...

'"
~

.............

.........

12

~

:r

r'-.
75

20

:ii
13

~01

I----

~ --......; ~
--=:::: ~

FIGURE 9 - 11B" LEAD LENGTH, VARIOUS LOADS

(RESISTIVE/INDUCTIVE LOADS)

--r--r-- :> --..
~ I--...

.............

--......; .............. ..........

0
75

...........

TL, LEAD TEMPERATURE (DC)

20

5

--

r----

r-- r-

TL. LEAD TEMPERATURE (DC)

0:

IBOTH ~EADS +D HEA~SINK ~~T:H~~~GTHS _

L'11"

--- -

12

~

f'-,.

--.. r-.

~~E:~~T~~~!~~~f:~~~~~~) _
~

16

..,

g

r---- t--,

20

:ii
:0

I'--...

~
~

95

...ffi~

RESISTIVE·INDUCTIVE
LOAOS
BOTH LEADS TO HEAT
SINK WITH LENGTHS AS SHOWN

....... "'-...

'"'"

:0

U

FIGURE 7 - iOFFECT OF LEAD LENGTHS,
RESISTIVE LOAD

'S: I:S:

IIiIIlilI ;::,....

V

~

I'OiO:

Vso

I"IlI!!i

i""'::

I"iiO'!
100

120

TA, AMBIENT TEMPERATURE (DC)

TA, AMBIENTTEMPERATURE (DC)

3-202

~IIII..

140

.....

160

180

MR820, MR821, MR822, MR824, MR826

REVERSE POWER DISSIPATION AND CURRENT
lent when Vp IS the line to line voltaga acroslthe rectifiers. For
capacitive loads, It is recommended that the dc case on Figura 13
be used, regardless of Input waveform, for bridge circuits. For
capacltlYely loaded full wave center·tapped cllcuits, the 20: 1
data of Fiqure 12 should be used for sine wave Inputs and ttle
capacitive load data of Flgunl' 13 should be used tor SQuare wave
Inpull regardless of 'lpkIJllavl' For these two cases, Vp IS the
voltage across one leg of Ihe transformer.
EXAMPLE:

NOTE 3
DERATING FOR ReVeRSE POWER DISSIPATION
In this rectifier, power loss dUBio reversa current IS generally not
negligible. For rehable circuit design, the malumum junction

temperature mull be limited 10 eithet 17SoC or the temperature
which results In thermal runaway. Proper derating may be accomplished by use of equation 1 or equation 2.
Equation 1

T A = Tt - 1175 - T Jlmall)' - PR ROJA

Where'

T1 .. Maximum Allowable AlT'blent Temperature
neglecting reverse power dlUlpatlon (from Figures
lOOt 111

Find MaJClmum AmbIent Temperature for IAV = 2 A, capaCitive
Load of IpK"AV = 20, Input Voltage = 120 V Irmsl Sme Wave,
ROJA = 250 C/W, Half Wave CirCUit.
Solution 1:

T Jlmaxl " Malumum Allowable Junction Tempera·
ture to prevent thermal runaway or 17SoC. which
ever IS lower. ISee Figure 11.

Step 1: Find Vp; Vp " .f2 Vm = 169 V, VRlpkl .. 338 V
Step~: Find TJlmad from Figure 1. Read TJlmaJCI • 11geC.
Step 3: FmdPRlmaJCI from FIgure 12. Read PR = 770mW@1400C
Step 4: Find IR normalized from Figure 14. Read IRlnorml = 0.4
Step 5. Correct PR to TJlmaJC)' PR .. IRlnorml JC PR IFlgure 121
PR .. 0.4 JC 710" 310 mW.
Step 6: Find PF from FIgure 19. Read PF = 2.4 W.

PR = Reverse Power Dlilipation 'From Figure 12
or 13, adjusted for TJlmaJCI as shown below)
Rf/JA = Thermal ResIstance, JunctIon to AmbIent.
When thermal resIstance, junction to' ambIent, IS over 200 C/W.
the effect of thermal response IS negligible. Satlsfactorv derating
mav be found by uSing'
EquatIon 2

Step 7' Compute TA from TA = TJlmaJCI' (PR + PFI RtJJA
TA = 119· (0.31-!- 2.411251
TA" 51 0 C

T A = T J(maJC) - (PR -!- PFI R/IJA
PF '" Forward Power DISSipatiOn (See FIgures 19 & 201
Other terms defined above.

SolutIon 2:
Steps 1 thru 5 .life as above.
Step 6' Find TA = T, from FIgure 10. RudTA" 1150 C.
Step7 ComputeTA fromTA IoT,·1175 'ITJlmaxll ,PR R8JA
TA = 115·1175 ·1191· (0.311 (251
TA" 5l o C

The reverse power gIven on FIgures 12 and 13 IS calculated for
T J = 150 0 C. When T J IS lower, PR Will decrease, ItS value can be
found by multiplying PR by the normalized reverse current from
Figure 14 at the temperature of Interest.
The reverse po~V<'r data IS calculated for half wave rectificatIon
CllcullS For full wave rectification uSing eIther a brrdge or a
center·tapped transformer, the data for resistIve loads IS equlva·

FIGURE 13 - SQUARE WAVE INPUT DISSIPATION

FIGURE 12 - SINE WAVE INPUT DISSIPATION
200o
a:

~

70

~_50

'"

°1=t
0f-2~

~~

20

JIIIT:]--'-, ,=
=

1O

WE
"'''
~;; 300
"'0

V

0

V V

"'<;;

~a 100

5000

./V

CAPACITIVE

100 o~;IIPK)05.0
IIAV)

t-" RESISTIVE LOADS_

,'"

70
50

30
20

~,
--_. ==

Vp

TJ~140?~t
MAXIMUM

300 Or--

~

200

100

300

400

500

600

CAPACITIVE

200Of-- r-LOAOS

W

~~1000
~; 700
~~ 500

"

""
~~ 300

.7'

",0.

~c
5
~

.....

R~SISTI.VE LPAD~-r-

k'"
de-

200

r

¥

o

100

200

300

500

400

SOD

700

FIGURE 15 - TYPICAL REVERSE CURRENT

FIGURE 14 - NORMALIZED REVERSE CURRENT
10 1

10 5

~
N

TJ o I75·C

1/
./

~ 11J0

~VR

i:i

'"
"'"~lo- 2

< 104

150·C

I-

125·C

.=,

400 V

./

;:10- 1

./

~

10 3

100·C

~

75·C

W

~

~ 10 2

50·C

~

>

/

~1O- 3

'"

_ __ J

Vp. PEAK APPLlEO VOLTAGE IVOLTS)

Vp. PEAK APPLIED VOLTAGE IVOLTS)

~

J!!ttJ.---;1,

MAXIMUM
TYPICAL

70
·50

700

_

Tr 14 C

f'/

100

-- r;.,;...
:.;;..

1/

[', V ~

~

TyrlCAL

o

..

At limes, a discrepancy between methods Will occur because
thermal response IS factored Into Solution 2.

!E

10 I

25·C

)./

100

10- 4

100

200

300

400

500

VR. REVERSE VOLTAGE IVOLTS)

TJ. JUNCTION TEMPERATURE I.C)

3-203

600

700

MR820, MR821 , MR822, MR824, MR826

STATIC CHARACTERISTICS

FIGURE 17 - MAXIMUM SURGE CAPABILITY

FIGURE 16 - FORWARD VOLTAGE

20 0

.~
-Maximum
---Typical

10 0

./

~/

V V-

r-----

.........

/

V

0

TJ

~

=150 ci V Ii

II

/ II

'/

0

I

r--~"'"
~C

REPETITIVE

f....

0

/

II

I

........

r-.. r-...... r--- ..... 1--

of--

II

0

0

0

5°C

10

.......... I--.TJ=25~C

r-..

./

1/ .Y

0

VRRM MAY BE APPLIED "1
BETWEEN EACH CYCLE OF
SURGE. THE TJ NOTED IS
TJ priOR
SURGE .

o .......... r-..t-....,....f1NON.REPETITIVE
0"""'-.
I'"-0 ..........

0

..

40

40
2.0

'.0

3.0

5.0 7.0

~
I

20

'0

30

50 70 100

NUMBER OF CYCLES AT 60 Hz

0
0

I.

II

0

I

~

0

!1

FIGURE 1B - FORWARD VOLTAGE TEMPERATURE
COEFFICIENT

I
+2.5

+2.0
+1.5

I /

~+1.0

Ii

/'

.0

/

I

.s... +0.5
z

w
U

0

.7

~-O.5

.5

8-1.0

~

y

1...-

I..-

-2.0
-2. 5
0.3 0.5

18

14
1.6
0.8
1.0
12
'F. INSTANTANEOUS FORWARO VOL TAGE (VOL TSI

0.6

04

v

--

-1.5

1/

:,

o.

TYP~AL RANGe;

1.0

2.0 3.0 5.0

'0

20 30

50

100

200 300

iF. INSTANTANEOUS FORWARD CURRENT lAMP)

MAXIMUM FORWARD POWER DISSIPATION
FIGURE 20 - SQUARE WAVE INPUT

FIGURE 19 - SINE WAVE INPUT

--,-i-n-

0

..
IIPK~ir·~
-

0
0

IIAV)
0

./

20"~ ~

-~

0

~

0
7
5

o.3
o.2

10

.

...

TJ 01:< 150 DC-

t- -

.-

~

0.2

..

0.3

,=
- f::::

Jr-- t-.
51-- t-=.

1.0

2.0

3.0

5.0 7.0

10

-

.:

o. 3
o.2

20

~

TJ ~ 1500 C

II'

I-- 1-1/

0.2

IFIAV). AVERAGE FORWARD CURRENT lAMP)

1M

-=- I--'~-~-

0

I
0.5 OJ

2.0105.0

-

0

ot--.

--

.. t- .

I"""

IIPK) =20
IIAV)
_-:+10

'--- .. F
.-

f-t-

..,.

0
0
0

=

-

' / :.t"

~

1

-_.
-- --

'7

.--.

0

7

I

II

0

.z;

V
0.3

0.5 OJ

1.0

2.0

3.0

5.0 7.0

IFIAV). AVERAGE FORWARD CURRENT lAMP)

3-204

10

20

MR820, MR821 , MR822, MR824, MR826

TYPICAL RECOVERED STORED CHARGE DATA
(Sea Noto4)

FIGURE 21 - TJ = 25°C

FIGURE 22 - T J = 75°C

1.0

2.0

."

.3
~

~

'"
i3
ffi

.3

0.5

~i--'

lOA

0.2

5.0A~

a:

"t; o. I

:za:

~

~

0.0

I~

1.0

0.5

"to

0.2

1.0 A

"
5.0

V

10

20

50

100

002
10

~V

5.0

5 o.5
~

:z

ffi

50

100

20
.3

10

w

'"a:

~

20

FIGURE 24 - TJ = 150°C

II

1. 0

10
dl/dl, (AMP/JoIsl

FIGURE 23 - TJ = 100°C

....=:

10--"

'LOA

~ ~I-""
20

~

V

5.01

~r;;..-

dl/dl tAMP/psI

2. 0

V V

lOA

~ 0.1
~ 0.05
.:

V

2.0

IFM' 20 A

>

r-..

~ p .....

'"
i3

:za:

~

~ 0,05

"~
~O.02

1.0

w

'"a:

IFM' 20 A

~

5

IFM' 20 A
I
lOA

~

"- v: V ......

o. 2

~k

I

J...-i--'

>

5.0 A

3

~ 00 5

" 0.0 2
1.0

I/.t;.'
5.0

10

20

~>

I

~~
~

o
50

0.02
1.0

100

~

1/

Ir

00 5

.:

I

~V
2.0

02

L

L~ IL

5.0~

~

~_

lOA

.:

IFM' 20 A
lOA.., LY'

0.5

~ f""
5.0

2.0

di/d •. (AMPI.,'

10

20

50

d,/d. (AMP/."

NOTE 4

Reverse recovery time is the period which elapses from the
time that the current, thru a previouslV forward biased rectifier
diode, passes thru zero going negatively until the reverse current
recovers to a point which is less than 10% peak reverse current.
Reverse recovery time is a direct function of the forward
current prior to the application of reverse Yoltage.
For any given rectifier. recovery time is very cirCUit depend·

di/dt

ent. Typical and maximum recovery time of all Motorola fast

recovery power rectifiers are rated under a fixed set of conditions
using IF ;;! 1.0 A. VR = 30 V. In order to cover all cirCUit
conditions. curves are given for typical recovered stored charge
versus commutation di/dt for various levels of forward current
and for junction temperatures of 25°C, 75°C, l000C, and

IRM(RECI+----'IL

From stored charge curves versus di/dt, recovery time It rr )
and peak reverse recovery current (iRM(REC)) cen be closely

approximated using the following formulas:

15o"C.

To use these curves, it is necessary to know the forward
current leve' just before commutation, the circuit commutation
di/dt. and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery
rectifiers is shown.

3-205

0

~

1/2

trr

= 1.41

x [ ---.!L
dildt

IRMIREC)

= 1.41

x [OR x dildt] 112

100

II

MR820, MR821 , MR822, MR824, MR826

DYNAMIC CHARACTERISTICS

RGURE 25 - JEDEC REVERSE RECOVERY CIRCUIT
Rl
11
dud! ADJUST

Rl • 50 Ohm.
T1
R2' 250 Ohm.
01 = lN4723
02 -IN4001
03 = lN4933
120VAC
60 Hz
SCRI = MCR729·10
Cl-0.StD SO,.F
C2 ~ 4000,.F
11 =1.0 -21,.H
T1 = Variac Adjusts 'IPK) and dVdt

T2

~ II

1:1

Cl

03

ItPK) ADJUST

C2 +

0.u.T.

02
R2

T2=1:1

T3 = 1:1 (to trigger circuit)

01

II

CURRENT
VIEWING
RESISTOR

FIGURE 27 - JUNCllON CAPACITANCE

FIGURE 26 - FORWARD RECOVERY TIME
10

=
-

7.0
~ 5.0===

...

~

3.0

~
>

2.0

~

1.0

!

o.S

=

vlli- ===
\-!fr

-

100
-TJ=25DC
Vir = 1.1 V

VIr

I

TJ=2SDC

0

........ ......

V

r""-r--.

0

'"~ o.1

0

~

D.3
2 __
~ O.

..... i-'"'"

O. 1
1.0

-

0

2.0

5.0

10

20

50

100

IF. FORWARD CURRENT tAMP)

10
1.0

2.0

5.0

10

20

VR. REVERSE VOLTAGE tVOLTS)

3-206

50

100

MR820, MR821, MR822, MR824, MR826

THERMAL CHARACTERISTICS
FIGURE 28 - THERMAL RESPONSE
1.0

:i o.71-~ .... O. 5r-we
I-",w
:: ~ o.31-~~ o. 2

=
-- ~
HEAT SINK ------"

"""

1

L-1/4"

zc


0

w

en

a:
2
w
>
w 101
a:

2

10-2

.$
2

.$

10-3
5

TJ. ,125'

-

2

100)'
75'

50'

2
100

o

20

60
80 100 120 140 160
TJ. JUNCTION TEMPERATURE ('C)

40

180

200

25'

0

200
300
500
VR. REVERSE VOLTAGE (VOLTS)

100

Figure 1. Normalized Reverse Current

Figure 2. Typical Reverse Current

STATIC CHARACTERISTICS

i

150

200
I- 100 =====- TJ=25'C
ifi 70
~
50
30
~ 20

iL

a

i

lYPICAL

!!z

ilL- ~MAXIMUM

I

10

g;l 3.0

~

i3
~

I

u:.

~
a:

80

~

60

~

L

2.0
1.0
0.7
0.5
0.3
0.2 0

.......... ......

100

~

40

~

30

~

20

I

0.4
0.8
1.2
1.6
2.0
2.4
vf; INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

2.8

Figure 3. Forward Voltage

15
1.0

JRR~ MAyl BE Ap~U~DI

:---.....
TJ = 25'C

::>

f2 ~:~

~

70o

600

2.0

3.0

.......

............

5.0 7.0 10
20 30
NUMBER OF CYCLES AT 60 Hz

50 70 100

Figure 4. Maximum Non-Repetitive
Surge Capability

3-210

I

BETWEEN EACH CYCLE
OF SURGE. TJ NOTED IS
Joo... TJ PRIOR TO SURGE

MR850, MR851, MR852, MR854, MR856

STATIC
CHARACTERISTICS

TYPICAL RECOVERED
STORED CHARGE DATA

(See Note 1)

(continued)

C3'

st

§
~

4.0
3.5
3.0
2. 5
2.0
1.5
D. 5

8

0
-0. 5

~

II
3w

.

0.5

'"'"
:>::

1.0

w
C3

1.0

./

TYPICAL RANGE ....

il
Ii
'

-

i-I. 0

-1. 5
-2.0
-2. 5 - ·
-3. 0
0.5
0.2

.......-::

V

V

IFM~20A

ffi'-'

0.2

'"t;'"

0.1

'"~

0.01

10

20

50

100

200

r-..

~~

... _--

5.0

~

/

~ 0.05

f-""

'" 0.02
g

2.0

...... ~

./

5.0A~

~

~

1.0

10 A

~ 'P' ~

~

1.0

'1.0 A

V

1.0

5.0

10
dl/dl

iF. INSTANTANEOUS FORWARO CURRENT lAMP)

50

100

= 25°C

Figure 6. TJ

Figure 5. Forward Voltage Temperature
Coefficient

20

IAMP/~s)

II

1.0

NOTE 1

-u

3w

Reverse recovery time is the period which elapses from the time that
the current, thru a previously forward biased rectifier diode, passes thru
zero going negatively until the reverse current recovers to a point which
is less than 10% peak reverse current.
Reverse recovery time is a direct function of the forward current prior
to the application of reverse voltage.
For any given rectifier, recovery time is very circuit dependent. Typical
and maximum recovery time of all Motorola fast recovery power rectifiers
is rated under a fixed set of conditions using IF = 1.0 A, VR = 30 V.ln order
to cover all circuit conditions, curves are given for typical recovered
stored charge versus commutation di/dt for various levels of forward
current and for junction temperatures of 25°C, 75°C, and 100°C.
To use these curves, it is necessary to know the forward current level
just before commutation, the circuit commutation dildt, and the operating
junction temperature. The reverse recovery test current waveform for all
Motorola fast recovery rectifiers is shown.

I

1.0

~

5

IFM~10A

0.5

V

~

'"~

0.2

~_

O. 1

'"
~

0.05

>

'"'"

~:/

V

i.e: r::::;. .....
2.0

~

1,..-0 ....

50~

1&'/

0.02
10

~V

lOA

-LOA

50

10
dl/dt.

20

50

100

(AMP/~s)

= 75°C

Figure 7. T J
di/dt

1.0

II

-u

3- 1.0
w

'"

'"~

IRMIREC)+-----'...

IFM~

0.5

~

'"~

From stored charge curves versus dildt, recovery time (lrr) and peak
reverse recovery currenl (IRM(REC» can be closely approximaled using
the following formulas:

OR
Irr = 1.41 x [ di/dl

0.2

~

.......

1/

"" <

Vi,.-'

~

~

>

20A

10' A

0.1

/.:

'"'-'~ 0.05

]1/2

'"'" 0.01

IRM(REC) = 1.41 x [OR x di/dll 1/2

1.0

LOt

~V

~ VI'
1.0

10

5.0
di/dt.

20

IAMP/~s)

Figure S. TJ

3-211

~
5.0 A

= 1DDoe

50

100

MR850, MR851, MR852, MR854, MR856

DYNAMIC CHARACTERISTICS

MINIMIZE ALL LEAO LENGTHS

30n

115 Vat 10 k
60Hz

sow

ZW

A - TEKTRONIX 545A. K PLUG IN
PRE·AMP. P6000 PROBE OR EQUIVALENT

NON·INDUCTIVE
UNIT
UNDER TEST

.-----fOJA

1.0 Ade FROM
CONSTANT
VOLTAGE SUPPLY

RZ
Hl
lOW
NON.INOUCTIVE

30 Vde
CONSTANT VOLTAGE
SUPPLYO-,+_ _

+-___

RI - AOJUSTEO FOR 1.4!l BETWEEN
POINT 2 OF RELAY AND RECTIFIER
INDUCTANCE ~ 38.H

n.

R2 - TEN·I W. 10
1% CARBON CORE
IN PARALLEL

RIPPLE'" 3 mVrms MAX
TA' 25

CI
1.0pF
--t~----..3;;:0.:..0.:..V.....- _ o

~Igoc FOR

RECTIFIER

Zout" Ph SlMAX.

DC to 2 kHz

Figure 9. Reverse Recovery Circuit

II

RI

RI = 50 O~ms
R2 = 250 O~m'
01 = IN4723
02 = IN4001
03 =IN4934
SCRI = MCR729·10
CI=0.5to50.F
C2 ~ 4000 vF
LI=1.0-27vH

LI
dildl ADJUST

TI

Izoi:)vc ,TZ,
1,1

CI

03

60 Hz

CZ

I(PK) AOJUST

+

OUT.

T1 = Vanac AdjUsts I(PK) and dlfdt
T2 = 1:1
T3= 1:1 (to trigger circuit)

OZ
RZ

01
CURRENT
VIEWING
RESISTOR

Figure 10. JEDEC Reverse Recovery Circuit

D.5

~
~

;::

>ffi
>
o

-

100

_.fJ' zsJc
[L

VIr' 1.1 V

So 70

o. 3
D_2

/'
./

l:il
a:
a:

D. 1

(§ 30

11...-"""

0.05
0.1

§z
~

0.3

0.5 0.7

1.0

2.0

r-r-.
~

20

...,

t.)

VIr

-I
0.2

.......... r-

z

tlr-J---j

0.0

50

u
It

v~

~

i-

~

V

V

o

~

TJ = 25°C

w

t.)

z

1 1 1 1 13.0

5.0 1.0

10

)F. FORWARD CURRENT lAMP)

10
1.0

2.0

3.0
5.0 7.0 10
20 30
VR. REVERSE VOLTAGE (VOLTS)

Figure 12. Junction Capacitance

Figure 11. Forward Recovery Time

3-212

50 70 100

MR8S0, MR8S1, MR8S2, MR8S4, MR8S6
DYNAMIC CHARACTERISTICS (continued)

1.0

II II I III I
II II I I I I

....
«

:;

-

'"we
:w

... !::!
.......
2«

w:;
U;'"
2e
«Z
... w
w'"
>2

"'-

t;~

ttw'"fB
'2

0.5

LEAD LENGTH

=1/4"

~

0.2

:;

~
z

~

....

a:
w Q 20

0.05

~~
",=>

""

0.02

a:"> 10

V

0.01
2

51
100

2 3 5 1
101

2 3 51
102

2 3

5 1
10 3

2 3

\

~

a:
-'
«

1/

0.03

SINGLE LEAD TO HEAT SINK
INSIGNIFICANT HEAT FLOW
THROUGH OTHER LEAD

w
40
u
z
j:!:
en "1i.i c 30
w

1/

0.3

0.1

50

i--"

~ .....

..."
-- --

~-

~

.... "

o
o

5 1
104

","

"

\y, ....

..."

"

1/4

1/8

,,"

3/8

..

-~

,,'"

- ...-

....

BOTH LEADS TO HEAT
SINK, EQUAL LENGTH r--I
I
I
1/2
5/8
3/4
7/8

L, LEAD LENGTH (INCHES)

I, TIME (ms)

Figure 13. Thermal Response

Figure 14. Steady-State Thermal Resistance
NOTE 2

To determine maximum junction temperature of the diode 10 a given situation, the
following procedure is recommended:

where ret) = normalized value of transient thennal resistance at time t from
Figure 13, i.e.:

The temperature of the lead should be measured using a thermocouple placed on

r(t1 + tpl = nonnalized value of transient thennal resistance at time t1 + tp.

the lead as close as possible to the tie POint. The thermal mass connected to the tie

pOint is normally large enough so that it will not significantly respond to heat surges
generated in the diode asa result of pulsed operation once steady-state conditions are
achieved. Using the measured value of TL. the junction temperature may be
determined by:
TJ=TL +6.TJL

I

. r:-l Ppk n Ppk
-:J Ip L-.J L

where h.TJL is the increase in junction temperature above the lead temperature. It may
be determined by:

1---11-1

DUTY CYCLE = Ip/ll

PEAK POWER, Ppk, is peak of o.
equivalent square power pulse.

TIME

.1.TJL = Ppk. ROJL [0 + (1- D). r(11 + tp) + r(tp)-r(t1)]

NOTE 3

NOTE 4

Use of the above model permits junction to lead thermal resistance for any mounting
configuration to be found. For a given total lead length, lowest values occur when one
Side of the rectifier is brought as close as possible to the heat sink. Terms in the model
signIfy:

Data shown for thermal resistance junctlon-to-ambient (RaJA) for the mountings
shown is to be used as typical guidelme values for preliminary engineering or in case
the tie point temperature cannot be measured.

TA = Ambient Temperature
TL Lead Temperature
TC = Case Temperature
TJ = Junction Temperature

=

TYPICAL VALUES FOR RaJA IN STILL AIR

Res = Thermal Resistance, Heat Sink to Ambient
ROJL = Thermal ReSistance, Lead to Heat Sink
ROJ = Thermal Resistance, Junction to Case
Po = Total Power Dissipation = PF + PR
PF = Forward Power Dissipation
PR = Reverse Power Dissipation

(Subscnpts A and K refer to anode and cathode sides respectively.) Values forthermal
resistance components are:

LEAD LENGTH. L (IN)

MOUNTING
METHOD

1/8

1

50

2

58

I
I
I

1/4

51
59

3

I
I
I

112
53
61

I
I
I

3/4

RaJA

55

'C/W

63

'C/W
'C/W

28

ReL = 46cCIW/IN. Typically and 48°CIWIIN Maximum.
RaJ = lQcCM/ Typically and 16cc/w Maximum.
The maximum lead temperature may be found as follows:

MOUNTING METHOD 1
PC Boat'd Where Available Copp.,.
Surf."••r .........II.

TL = TJ(max) -"TJL

where

MOUNTING METHOD 3

p.e.

Soard with

_1I2 ...

~
: JIIy:
,_1I2 .. CO" .. S"'••"

L"1f2"

h.TJL can be approximated as follows:

ATJL = ReJL • PO; Po is the sum of forward and reverse power diSSipation.

THERMAL CIRCUIT MODEL

IFor Heat Conduction Through the leads)

MOUNTING METHOD Z
Vector Pin Mounting

Board GroundPI.ne

Ve"tor Push In Term,n.l, T.28

3-213

II

MR850, MR851, MR852, MR854, MR856

100%

a:

~

'""

90%

80%

1\

~ 70%

Cl

z 60%

~
w

50%

::E

~

30%

~

20%

\

,

c
a: 40%

<

,

\

10%

1\
20°C

40°C

60°C

80°C

1OO°C

125°C

LEAD TEMPERATURE (0C)

Figure 15. Parametric Derating Curve

II

3-214

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

SCANSWITCH ™

MR10120E

Power Rectifier For High and Very High
Resolution Monitors

Motorola Pref.rred Device

This state-of-the-art Power Rectifier is specifically designed for use as a Damper Diode
in horizontal deflection circuits for high and very high resolution monitors. In these
applications, the outstanding performance of the MR10120E is fully realized when paired
with either the MW16206 or MJF16206 monitor specific, 1200 volt bipolar power
transistor.
•
•
•
•

SCANSWITCH
POWER RECTIFIER
10 AMPERES
1200 VOLTS

1200 Volt Blocking Voltage
20 mJ Avalanche Energy (Guaranteed)
12 Volt (Typical) Peak Transient Overshoot Voltage
135 ns (Typical) Forward Recovery Time

CASE 221B-02
TO-220AC

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

1200

Volts

Average Rectified Forward Current
(Rated VR) TC = 125'C

IF(AV)

10

Amps

IFRM

20

Amps

IFSM

100

Amps

TJ

-65to +125

·C

WAVAL

20

mJ

Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz), TC

=

125'C

Non-repetitive Peak Surge Current
(Surge applied at rated load conditions, halfwave, single phase, 60 Hz)
Operating Junction Temperature
Controlled Avalanche Energy

THERMAL CHARACTERISTICS
Thermal Resistance -

Junction to Case

2.0

ELECTRICAL CHARACTERISTICS
Characteristic

Symbol

Maximum Instantaneous Forward Voltage (1)
(iF = 6.5 Amps, TJ = 125'C)
(iF = 6.5 Amps, TJ = 25'C)

vF

Maximum Instantaneous Reverse Current (1)
(Rated dc Voltage, TJ = 25'C)
(Rated dc Voltage, TJ = 125'C)

iR

Maximum Reverse Recovery Time
(IF = 1.0 Amps, di/dt = 50 Amps/p.s)
Maximum Forward Recovery Time
(IF = 6.5 Amps, di/dt = 12 Ampslp.s)
(As Measured on a Deflection Circuit)
Peak Transient Overshoot Voltage
(1) Pulse Test: Pulse WIdth

= 300 /LS, Duty Cycle'" 2.0%.

SCANSWITCH is a trademark of Motorola Inc.

3-215

Typ

Max

Unit
Volts

0.9
1.0

1.3
1.5

5.0
50

50
500

trr

0.75

1.0

p.s

tfr

135

175

ns

VRFM

12

14

Volts

p.A

II

I

MR10120E

100

-

so
Ai! ¢P'

~~
# /'

20

1

J 'l

0.1

200

I

'I

Figure 2. Typical Reverse Current

I

II I
12S'C

~

r[OO'C/ 2S'C

II

~ 14

1

RATED VR APPLIED

I-

~ 12

0.7

a:

a

O.S

f2
w

~
ffi

I
II

O. 1
0.4

...........

~

/

0.2

10

~

/I

/I

~

~

I

0.6

0.8

1

1.2

~

10

9

~
a:

a:

I
I

--

ac

-

a:

r-- SQUAR~
WAVE

~

f2
w

~
~

F

"""

"

100

=:.~: de

~

ROJ~ = 16!C W I
IWITH TO·220 HEATSINK)
ROJA = 60'CW
INO HEATSINK) . -

SQLAR/:
WAVE

r--

®

M

6

"- ~
..... ~- ~

~
100
1~
1®
TC. CASE TEMPERATURE ("C)

~

130

TJ

8

:::
~1 r-- SQUARE::::
WAVE

o
o

110
120
TC. CASE TEMPERATURE ('C)

Figure 3. Current Derating (Case)

,de

~

~

~

o

Figure 1. Typical Forward Voltage

5

"-':

~

90

1.4

~
"~e
SQUARE'
WAVE

4

vF. INSTANTANEOUS VOLTAGE (VOLTS)

::E

2SoC-

1.2K

400
600
800
1K
VR. REVERSE VOLTAGE (VOLTS)

II /

Ij

-

--

0.01

I

/,

12S'C100'(;-

2/
0

1~

Figure 4. Current Derating Ambient

L

:#

~

~

V

4
6
8
W
U
IF(AV). AVERAGE FORWARD CURRENT lAMPS)

Figure 5. Forward Power Dissipation

3-216

=1 12S'C

U

16

MOTOROLA

SEMICONDUCTOR------------TECHNICAL DATA

Advance Information
SCANSWITCHTM

MR10150E
Motorola Preferred Device

Power Rectifier for use as a Damper Diode in
High and Very High Resolution Monitors
SCANSWITCH
RECTIFIERS
10 AMPERES
1500 VOLTS

The MR1 0150E is a state-of-the-art Power Rectifier specifically designed for use as a
damper diode in horizontal deflection circuits for high and very high resolution monitors. In
these applications, the outstanding performance of the MR10150E is fully realized when
paired with either the MJW16212 or MJF16212 monitor specific, 1500 V bipolar power
transistor.
•
•
•
•
•

1500 V Blocking Voltage
20 mJ Avalanche Energy Guaranteed
Peak Transient Overshoot Voltage Specified, 14 Volt (typical)
Forward Recovery Time Specified, 175 ns (typical)
Epoxy Meets UL94, Vo at 1/8"

CASE 2218-02
TO-220AC

MAXIMUM RATINGS
Symbol

Value

Unit

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

1500

Volts

Average Rectified Forward Current, (Rated VR), TC = 125°C

IF(AV)

10

Amps

Peak Repetitive Forward Current, Per Leg
(Rated VR, Square Wave, 20 kHz), TC = 125°C

IFRM

20

Amps

Non-repetitive Peak Surge Current
(Surge applied al rated load conditions halfwave, single phase, 60 Hz)

IFSM

100

Amps

Operating Junction and Storage Temperature

TJ, TsJg

-65 to +125

°C

Controlled Avalanche Energy

WAVAL

20

mJ

ROJC

2.0

°C/W

Rating

THERMAL CHARACTERISTICS

I Thermal Resistance -

Junction to Case

ELECTRICAL CHARACTERISTICS
Symbol

Rating
Maximum Instantaneous Forward Voltage (1)
(iF 6.5 Amps, TJ 125°Cl
(iF 6.5 Amps, TJ 25°C)

vF

Maximum Instantaneous Reverse Current (1)
(Rated dc Voltage, T J 125°C)
(Rated dc Voltage, TJ 25°C)

iR

Maximum Reverse Recovery Time
(IF 1.0 Amp, di/dt 50 Amps/l1S)
Maximum Forward Recovery Time
(IF 6.5 Amp, di/dt 12 Amps/l1Sl

=
=

=
=

=
=

=
=

=
=

Peak Transient Overshoot Voltage
(1) Pulse Test: Pulse Width = 300 J.1s, Duty Cycle S2%.

Preferred devices are Motorola recommended chOices for future use and best overall value.
This document contains Information on a new product. Specifications and information herein are subject to change without notice.

3-217

Typ

Max

Unit
Volts

1.1
1.3

1.6
1.8

750
25

1000
100

trr

0.5

1.0

I1S

tfr

135

175

ns

VRFM

14

16

Volts

IlA

II

MRl120
thm
MRl126
MRl128 MRl130

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

•

MR1124 and MR1130 are
Motorola Preferred Devices

MEDIUM-CURRENT
SILICON RECTIFIERS
50-1000 VOLTS
12 AMPERES·

MEDIUM-CURRENT SILICON RECTIFIER
Medium-current silicon rectifiers feature high surge current
capacity. and low forward voltage drop.

N

~ASE

245A-02

MAXIMUM RATINGS
Symbol

MR
1120

MR
1121

MR
1122

MR
1123

MR
1124

MR
1126

MR
1126

MR
1128

MR
1130

Unit

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

50

100

200

300

400

500

600

800

1000

Volts

Non-Repetitive Peak Reverse Voltage
(one half-wave. single phase.
60 cycle peak)

VRSM

100

200

300

400

500

600

720

100

1200

Volts

VR(RMS}

35

70

140

210

280

350

420

560

700

Volts

Rating

II

RMS Reverse Voltage
Average Rectified Forward Current
(single phase. resistive load. 60 Hz.
TC = 150°C)

10

Peak Repetitive Forward Current
(TC = 150°C)

IFRM

Non-Repetitive Peak Surge Current
(superimposed on rated current at
rated voltage. TC = 150°C}

IFSM

12t Rating Inon-repetitive.
1 ms 

ffi

z

+0. 5

5.0

;!
~ 3. 0
t;
~ 2.0

0
G

~,...

l/'l

-0. 5

TYPICAL RANGE,

~

1.0

u

$ -1.0

7

-'

-1.5

~

0.3
0.2
0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

0.2

0.5

0

"ldC

~

I

32

• .......

B
~

24

~

~
w

16

-

~AC,ITIVE ~OADS

~

o

125

~

~ b-...
...... ~

135

140

145

150

155

TJ. 1750C

/'

-

24

)- CAJACITIVE LOADS

IIAVI/

ffi

.

,;

165

170

f

175

TC. CASE TEMPERATURE IOC)

t-/

200

0

1/

o

'-SIN~WAV~_

~o ~ ?"
~~

RESISTIVE
LOAD
.-

~

4.0

8.0

12

16

20

24

28

32

'FIAV). AVERAGE FORWARD CURRENT lAMP)

3-222

~-

~--< /'
:~x: '-SQUARE WAVE

~~
"..

=:: 8.0

~
160

'illM = 20

16 I - -

'"

f""..
130

32

'"w

~ i'...

20

~ 8.0

g

illi5

..........

10

40

S

.......... ~
..........

-

~
I

.ISINEWAVE RESISTIVE LOAD)

i'...

5.0

'"w~

if

IIFMI' _
lliWf-2IS0UAREWAVEII

'IFMI _ ...... I'-....
IfAi1I - 2.0

1.0
2.0
5.0
10
20
50
100
IF.INSTANTANEOUS FORWARD CURRENT lAMP)

FIGURE 5 - FORWARD POWER DISSIPATION

FIGURE 4 - CURRENT DERATING

,.

J..-"

-2. 0

vF.INSTANTANEOUS FORWARD VOLTAGE IVOLTSI

0::

--

""""I"<

:3

0.5

......

36

40

MR2000 Series

FIGURE 6 - THERMAL RESPONSE

~

1.0
::i O. 7

! o.5

t..--

o

;: 0.3
w
~ 0.2

j;.-'""

~
ffi

j....--

O. I
~o.o7
o.a5

iw

ROJC(tI' ROJC. ,It)
(NOTE II

....

~o.o 3 ..........

Eo.o2

u;

~o.o I
.... 1.0
~

2.0

5.0

3.0

7.0

10

20

30

50

70

100

200

300

500 700

FUL
Pk

1---"

--I

TIME

DUTY CYCLE, 0 "Ip/ll
PEAK POWER, Ppk, IS peak of an
equivalent square power pulse

300

-~

i= O. 5:::
>

"

I-Ifr-l

ffi

>

..........

.,..,...... ....

I--

I'..

0

--ALL DEVICES
- - - ALL DEVICES EXCEPT MR2000

0

~

0.2

~

~IO. I l - 1.0

I-

r--....

...-

]

0

t'

.......

1.0
2.0
5.0
10
20
VR, REVERSE VOLTAGE (VOLTS)

50

100

11 I
TJ = 25 0 C

...........

~

i= 7.0

~

~

3.

0

~ 2.0

+-2'r
7.0

1.0
0.1

10

3-223

.....

5.0

~

~

5.0
2.0
3.0
IF, FORWARD CURRENT (AMP)

0.5

0.2

0

,.... Uf,= 1.0 V

-

f'...

0

50
0.1

0.3

..'"il1 V

I

I""-..

FIGURE 9 - REVERSE RECOVERY TIME

TJ,250 C

O. 7 - uF

II

TJ =250 C

I"-

FIGURE 8 - FORWARD RECOVERY TIME
I. 0

§

5.0k 7.0k 10k

I

t--

Ppk

To determine mallimum IlinCllon temperature of the dIOde In a given situation, the follOWing
procedure IS recommended.
The tempe'ature of the case should be measured uSing a Ihermocoupleplaced on the case at
the temperature reference pOint (see the outline draWing on page 11 The thermal mass connected
to the case IS normally large enough so thalli Will not Significantly respond to healsurgu
generated m the diodeasa result of pulsed opL!f81lOn oncesleadv state condillonsare achIeved
USl1IlI the lIU!,ullred value of T C. the JunctIOn temperature may be determined by
TJ"TC+ .... TJC
where t::.. TJC 15 the Increase In IURetton temperature above the tase temperature II may be
determtnedby.
~TJC=Ppk. R(IJC ID +/1-D) • r!1l +tp)+rltp) - dll)!
where
r(tI "normalized value of transient thermal resistance at tlme,t, trom FigureS, I.e.,
rhl +tp)=normahzedvalueoftraRSlentthermalreslstanceatltme1l+tp

'"

3.0k

500

1
P

w

2.0k

FIGURE 7 - CAPACITANCE

NOTE 1

]

1.0k

I,TIME(ms)

IF

IplOA
I I

0~UjO'25IR

i'..

r-... .......
~~
5.0 A"

~
......... 1"--1'-l'

I r"l II
0.2 0.3
0.5 0.7 1.0
2.0
5.0
IRIIF, RATID OF REVERSE TO FORWARD CURRENT

7.0

10

MR2000 Series

RECTIFICATION EFFICIENCY NOTE

FIGURE 10 - RECTIFICATION WAVEFORM EFFICIENCY
60

~
~

CURRENT INPUT WAVEFORM

20 I-

iii
;:;

f-

,; 10

Tl·~5.~

r-- ~~

t

itw

I I I

...

40

JV'vJ1.f1----

FIGURE 11 - SINGLE·PHASE HALF·WAVE RECTIFIER CIRCUIT

1\
1\

The rectification efficiency factor
calculated using the formula:

a shown in Figure 10 was

V201dc)

RL

V201dC)
Pdc
a = P rm • =V20Irm.) • 100% = V201ac) + V201dc) • 100%

8.0
2.0

3.0

5.0. 7.0

10
20
t, FREQUENCY 1kHz)

3D

50

70

(1)

RL

100

For a sine wave input Vm sin (wd to the diode, assume lossless,
the maximum theoretical efficiency factor becomes:

V2m

•

,,2RL
4
alsine) = V2m • 100% =-;;2

•

100% = 40.6%

(2)

4RL
For a square wave input of amplitude V m • the efficiency factor

becomes:

V2m
2RL
alsquare) = V2m • 100% = 50%

(3)

RL
(A full wave circuit has twice these efficiencies)

As the frequency of the input signal is increased, the reverse
recovery time of the diode (Figure 9) becomes significant, result~

ing in an increasing Be voltage component across R L which is
opposite in polarity to the forward current, thereby reducing the
value of the efficiency factor a. as shown on F igu re 10.

It should be emphasized that Figure 10 shows waveform
efficiency only; it does not provide a measure of diode losses.
Data was obtained by measuring the at component of Va with a
true rms ac voltmeter and the de component with a de voltmeter.

The data was used in Equation 1 to obtain point. for Figure 10.

3-224

-

-

MR2400

MOTOROLA

SEMICONDUCTOR

thm

TECHNICAL DATA

MR2406
MR24D4 and MR2406 are

Motorola Preferred Devices

MEDIUM-CURRENT
SILICON RECTIFIERS

TAB-MOUNTED MEDIUM-CURRENT
SILICON RECTIFIERS

50-600 VOLTS
24 AMPERES

... compact, highly efficient silicon rectifiers for medium current
applications requiring:
• High Current Surge - 400 Amperes @ TJ = 175°C
• Peak Performance @ Elevated Temperature - 24 Amperes @
TC= 150°C
• Low Cost
• Same Mounting as a TO-220AB

CASE 339-02
PLASTIC

II

MAXIMUM RATINGS
Symbol

Rating

MR2400

MR2401

MR2402

MR2404

MR2406

VRRM
VRWM
VR

50

100

200

400

600

Nonrepetltive Peak Reverse Voltage

VRSM

60

120

240

480

720

(hall wave, single phase, 60 Hz peak)
Average Rectified Forward Current

IFSM

.
.

400 (lor 1 cycle)

TJ, Tstg

.

65 to +175

10

(Single phase, resistive load, 60 Hz, TC = 150·C)
Nonrepetitive Peak Surge Current
(surge applied @ rated load conditions,
hall wave, single phase, 60 Hz)
Operating and Storage Junction

Unit
Volts

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

Volts

-

24

..

Amp
Amp

·C

Temperature Range

THERMAL CHARACTERISTICS
Symbol

Max

Unit

Thermal Resistance, Junction to Case

R8JC

0.8

°C/W

Thermal Resistance, Junction to Air PC Board Mount, Perpendicular to Surface

R8JA

55

°C/W

Characteristic

ELECTRICAL CHARACTERISTICS
Symbol

Max

Unit

Maximum Instantaneous Forward Voltage (iF = 75.4 Amp, TC = 25°C)

vF

1.18

Volts

Maximum Reverse Current (rated dc voltage)
TC= 25°C
TC= 100°C

IR
25
1.0

/loA
mA

Characteristics and Conditions

MECHANICAL CHARACTERISTICS
CASE: Plastic encapsulated, metal tabs.
FINISH: All external surfaces are corrosion resistant and the leads are readily solderable.
POLARITY: Cathode to tab with hole; Reverse polarity available by adding "R" Suffix. MR2402R.
MOUNTING TORQUE: 8in-lb max
MAXIMUM TEMPERATURE FOR SOLDERING PURPOSES: 3500C, 3/8' from case lor 10 seconds.
WEIGHT: 3.6 Grams (Approximately).

3-225

MR2400 thru MR2406

-

FIGURE 1 - FORWARD VOLTAGE
700
500 I--TJ= 250 C

./

200

,

70
ii:

50

30

I

20

I I

il'i

•

:::!
13

300

1"1"'-

-.......

w

~

............... .......

I

.. r-f'lJ\
'".
~
~

:t:

25 0 C

r-.......1"

I-,,,,,,~

~ 100

~

80
60

1.0

10

5.0

2.0

1/

o

..........

TJ = 175 0 C

~ 200

III

:E

~

~
13

VRRM MAY BE APPLIED BETWEEN
EACH CYCLE OF SURGE. THE TJ
NOTED IS TJ PRIOR TO SURGE
f = 60 Hz

..........

............... r--.

z

/

J

laO

'"~ 400

/ V

I - - f-TYPICAL

............

ii:

MAXIMUM

V

/

--

,-

/

300

FIGURE 2 - NONREPETITIVE SURGE CURRENT
600

100

50

20

NUMBER OF CYCLES

I

0:

~ 10

0:

FIGURE 3 - FORWARD VOLTAGE TEMPERATURE
COEFFICIENT

o

~ 7. 0

:::>

+{l.5

~ 5.0

z
~
z
~ 3. 0
z

a

~ 2.0

~

5
TYPICAL RANGE,

1.0

,-I-"""
....... I-"'"

1\

0

O. 7

_po.;

0.5

I"'"
-1.5

r-

0.3
0.2
0.6

I I

-2. 0

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

0.5

0.2

FIGURE 4 - CURRENT DERATING

~
I"--..

.........

Or-.

J'-....
t---...

0-

0
0
125

130

J"...

J"... /' 1'~
r---..
""""" ,..., ........ ~ F>< 20

--

135

r-..

"':>< ~

r-. Y

140

i

CAPACITIVE
LOADS

SINE WAVE
CAPACITIVE
LOADS

"-

155

160

I

10

20

50

100

200

7

" I"-

165

~5 L

V
h
""
/ 1/ V./ V" V"SQUARE_ rWAVE
Vj / ~ V

J

~V

/

~

~AVE

SINE
__
RESISTIVE LOAD

L ~ ".

0

170 175

~ .L
de
~ .L

V

L

,FM ) = 20 t--l0
I(AV)

L lL

-~ ::::::::::: ~

5.0

// ~ r

~......... ~ ~

150

t-:

t--

~~

145

2.0

FIGURE 5 - FORWARD POWER DISSIPATION

~ = 7T (SINE WAVE RESISTIVE LOAO)

K

1.0

iF. INSTANTANEOUS FORWARD CURRENT lAMP)

vF.INSTANTANEOUS FORWARD VOLTAGE IVOLTS)

~

l.-'

tJI"

10

20

30

40

IF(AV). AVERAGE FORWARD CURRENT (AMP)

TC. CASE TEMPERATURE (oC)

3-226

50

MR2400 thru MR2406

FIGURE 6 - THERMAL RESPONSE

§N

1.0
~ O. 7
~ O. 5
o

......

~ 0.3

...zw

O. 2

~

O. 1

~

b:::::::
ROJC{t) , ROJC • r{t)
NOTE 1

;;! 0.0 7

ffi

0.0 5

:J:

...... 0.03
ffi

<;;

/'

0.02

~
:= 0.0 1 V'

~

0.05 0.07

0.1

0.3

0.2

0.5

0.7

1.0

2.0

3.0
5.0
t. TIME {msl

7.0

10

20

30

50

10

100

200

300

500

NOTE 1

nr- nr-L
P
pk

P DUTY CYCLE. 0; tp/tl
pk PEAK POWER. Ppk. is peak of an
~quivalent square power pulse.

.J""tp~

1--11---1

Time

diode in a given situation. the following procedure is
recommended.
Thetemperature ofthe case should be measureed using a thermocouple placed on the case at the temperature
reference point. The thermal mass connected to the case
is normally large enough so that it will not significantly

t--.

50
0.1

/lTJC; Ppk.R9JC [0 + (1 - O).r(11 + t p ) + r(t p ) - r(tl)1
where
r(t) ; normalized value of transient thermal resistance
at time. t. from Figure 3. i.e.:
r(tl + t p ) ; normalized value oftransientthermal resistance at time tl + tp.

2.0

I-TJ,25 DC

~

I-tlr-l

~

w

>

/""

~ O. 3
a:

c

a:

~ O. 2

V

~

~

w

~ Vlr'I.0V

"fr

::Ii

V"

ffi

1.0
2.0
5.0
10
20
VR. REVERSE VOLTAGE (VOLTS)

ffi
1:;
a:

2.0 V

7.0

100

TJ,25DC

r-..... i'-

IF

1'....

7.0

o
f-- IplOA

r-.

"r.......

a:

2.0
3.0
5.0
IF. FORWARD CURRENT (AMP)

50

t'-...

3.0

5.oA

2.0

3-227

1.0
0.1

J-trr

........

II
b-.

~ i' r-.

~U

......

.;;
10

1~q-0'25IR

.......

~ >-..

w

!--

1.0

0

B
5.0
w

/

~~
o. 1 l - - -

0.5

0.2

;:

/""

~

~

FIGURE 9 - REVE RSE RECOVERY TIME

FIGURE 8 - FORWARD RECOVERY TIME

~ O. 5
>a:

--ALL DEVICES
- - - ALL DEVICES EXCEPT MR2400

0

where /lTJC is the increase in junction temperature
above the case temperature. It may be determined by:

w

"

~ 200

...- 100

2~DC

r--...

<

5
...~

of pulsed operation once steady-state conditions are
achieved. Using the measured value of TC. the junction
temperature may be determined by:
TJ;TC+/lTJC

~ O. 7I-VI~

TJ'

....

300

respond to heat surges generated in the diode as a result

1.0

II

FIGURE 7 - CAPACITANCE
500

--=ro-d'etermine maximum junction temperature of the

0.2

0.5 0.7 1.0 2.0
0.3
3.0
5.0 7.0
IRnF. RATIO OF REVERSE TO FORWARD CURRENT

10

MR2400 thru MR2406

RECTIFICATION EFFICIENCY NOTE

FIGURE 10 - RECTIFICATION WAVEFORM EFFICIENCY
60

- .

- '"

40
0:
0

..,....

~
~ 20

TJ = 2SOC

~

'\

iii
u

:tw

The rectification efficiency factor

10

B.O
6.0
1.0

e 100%

=

J\I'vI ~-;-; II
2.0

3.0

5.0 7.0 10
20
f. FREQUENCY 1kHz)

30

shown

In

Figure 10 was

1\

CURRENT INPUT WAVEFORM

b"

(J

calculated using the formula:

50

70

100

V20ldcl

--

V20lacl + V20ldcl

el00%

III

For a -sine wave input V m sin Iwt) to the diode, assume loss less,
the maximum theoretical efficiency factor becomes:

v2m

II

;2RL

°lsinel

=

-2- e 100%
V m

.4

=

2

e 100%

40.6%

121

1f

For a square wave input of amplitude V m • the efficiency factor

becomes:

V2m
2RL

0lsquarel =-2- el00%'" 50%
Vm

131

RL
(A full wave cirCUit has twice these efficiencies)
As the frequency of the input signal is increased, the reverse
recovery time of the diode (Figure 9) becomes significant, result-

ing in an increasing ae voltage component across R L which is
opposite in polarity to the forward current, thereby reducing the
value of the efficiency factor a, as shown on Figure 10.

It should be emphasized that Figure 10 shows waveform
efficiency only; it does not provide a measure of diode losses.
Data was obtained by measuring the ac component of Vo with a
true rms ac voltmeter and the dc component with a de volt"",eter.
The data was used in Equation 1 to obtain points for Figure 10.

3-228

MR2400F

MOTOROLA

-

SEMICONDUCTOR

•

thru

TECHNICAL DATA

MR2406F
MR2402F and MR2406F are

Motorola Preferred Devices

FAST RECOVERY
POWER RECTIFIERS

TAB-MOUNTED FAST RECOVERY
POWER RECTIFIERS

50-600 VOLTS
24 AMPERES

· .. designed for special applications such as dc power supplies,
inverters, converters, ultrasonic systems, choppers, low RF interference, sonar power supplies and free wheeling diodes. A complete
line of fast recovery rectifiers having typical recovery time of 150
nanoseconds providing high efficiency at frequencies to 250 kHz.

~~

• Same Mounting as a TO-220AB
• Cost Effective in Low Current Applications

r~

• Lead or Chassis Mounted
• High Surge Current Capability

II

MAXIMUM RATINGS
Symbol

Rating
Peak Repetitive Reverse Voltage

Working Peak Reverse Voltage
DC Blocking Voltage
Nonrepetitive Peak Reverse Voltage

RMS Reverse Voltage

MR2400F MR2401F MR2402F MR2404F MR2406F
50

100

200

VRSM

75

150

250

450

650

VR(RMS)

35

70

140

280

420

10

.

IFSM

•

Average Rectified Forward Current

400

600

..

24

.
...

(Single phase, resistive load, TC; 125°C)
Nonrepetitive Peak Surge Current
(surge applied @ rated load conditions)
Operating Junction Temperature Range

TJ

Storage Temperalure Range

Tstg

Unit
Volts

VRRM
VRWM
VR

300 (for 1 cycle)

..

-65 to +150
-6510+175

Volts
Volts
Amp
Amp
°c
°c

THERMAL CHARACTERISTICS
Characteristic

Symbol

Max

Unit

Thermal Resistance. Junction to Case

R9JC

0.8

°C/W

Thermal Resistance, Junclion to Air, PC Board Mounl; Perpendicular to Surface

R9JA

55

°C/W

ELECTRICAL CHARACTERISTICS
Symbol

Min

Typ

Max

Unit

Instantaneous Forward Voltage (IF; 75 Amp, TJ ; 150°C)

Characteristic

vF

-

1.15

1.29

Volts

Forward Voltage (iF; 24 Amp, TC = 25°q

VF

-

1.00

1.15

Volls

Reverse Current (rated dc voltage) TC = 25°C
TC= 100°C
TC=150oC

IR

-

-

10
0.5
7.0

25
1.0
10

p.A
mA
mA

Min

Typ

Max

Unit

-

150
200

200
300

-

-

4.0

REVERSE RECOVERY CHARACTERISTICS
Characteristic

Symbol

Reverse Recover Time - Soft Recovery
(IFI= 1.0 Amp to VR = 30 Vdc, Figura 19)
(lFM = 36 Amp, di/dt = 25 AIl's, Figure 20)

Irr

Reverse Recovery Current
(IF = 1.0 Amp to VR = 30 Vdc, Figure 19)

IRM(REC)

3-229

ns

Amp

MR2400F thru MR2406F

FIGURE 2 - MAXIMUM SURGE CAPABILITY

FIGURE 1 - MAXIMUM FORWARD VOLTAGE
100

300

"'- ......

90
200

./ ~

100
70

/

TJ = 150 Cj

50
L
::Ii!

~

IS
II:
II:

=>

0

/

20

/

Q

~

'"...=>
Q

•

r-....

?

V
10

II

TJ = 25°C

-

/'\

r--

/

o
1.0

/

n

/ /

0.7

::;

I

I

I
0.6

30

50 70100

nL

P
"pk

P DUTY CYCLE. 0 = tpltl
"pk PEAK POWER. Ppk. is peak of an
equivalent square power pulse.
Time

To determine maximum junction temperature of the
diode in a given situation, the following procedure is
recommended.
The temperature of the case should be measureed using a thermocouple placed on the case at the temperature
reference point. The thermal mass connected to the case
is normally large enough so that it will not significantly
respond to heat surges generated in the diode as a result
of pulsed operation once steady-state conditions are
achieved. Using the measured value of TC. the junction
temperature may be determined by:
TJ=TC+·HJC

l

1.0

~

3.0 5.0 7.010
20
NUMBER OF CYCLES AT 60 Hz

I---tl--1

II

il

2.0

0.3
0.4

2.0

NOTE 1

I

I

:;. 3.0

I'-U
II

10

1tp~

S
z

..........

f'\

/'\

I----l-l CYCLE

7.0

~ 5.0

II

H-l

Z

0.5

r--..

/

V

30

U

I

7

II

Prior to surge. the rectilier
is operated such that TJ = 150°C;
VRRM mav be applied between
each evcl. of surge

0.8
1.0
1.2
1.4
vF. INSTANTANEOUS VOLTAGE (VOLTS)

where .1TJC is the increase in junction temperature
above the case temperature. It may be determined by:

1.B

1.6

.:l. TJC = Ppk. R8JC [0 + (I - 0).r(t1 + t p) + r(t p ) - r(tl)]
where
r(t) = normalized value oftransientthermal resistance
at time. t. from Figure 3. i.e.:
r(1l +tp) = normalized value oftransientthermal resistance at time tl + tp.

FIGURE 3 - THERMAL RESPONSE. CHASSIS MOUNTED
1.0
O. 7

~ o. 5

o

.

~ 0.3

z

~
~

0.2

I--

O. 1

R(JJC(t) ~ ROJC • ,(t)
NOTE 1

~0.Q7

ffi 0.05
'".... 0.03
~

in

/'

0.02

z

:=" 0.01
~

0.05 0.07

0.1

0.2

0.3

0.5

0.7

1.0

2.0

3.0

5.0

I. TIME (ms)

3-230

7.0

10

20

30

50

70

100

200

300

500

MR2400F thru MR2406F
CHASSIS MOUNT RATING DATA
Square Wave Input

Sine Wave Input
FIGURE 4 - FORWARD POWER DISSIPATION

FIGURE 5 - FORWARD POWER DISSIPATION

in

540
~

:

30

'"~

25

OS

I-~

~

~I'--.... .......

20 ~t-....

-7/

20

~ 15

~

/

~ 10

;C 0
8.0
12
16
20
24
28
IFIAV). AVERAGE FORWARD CURRENT lAMP)

32

~

0

4.0

40

~ 35~--+_--~--~----+_--~--~----+_--~

.........

~ 35

!'-...

:!.

30~~~~~--~----+_~~~~~~---+_--~

~ 30

a:
a:

:::J

u 25~~d-~~~~---~+_--~--­

13

25

~

!Ii!
~

20

~
'"
If_--+_--__j

120

125
130
135
140
TC. CASE TEMPERATURE laC)

32

II

CAPAJITIVE LOiDS
I(PK) = 5.0
IIAV)

110

~

~

V

20

~~
~

145

150

110

115

120

,

~

S? 0
115

I--

V~ b?"

", V

~

!Ii!

~

Vi.

FIGURE 7 - CURRENT DERATING

FIGURE 6 - CURRENT DERATING

~
w

/
1'7' :/ ~
17/ ~

~~

"-

40r---,----.---.----~--_.--_,----~--~

!Z
~

r-.......

~~

w

ffi'" S.O

/ [7

I-I(AV) = 5.0 ~;......
10

"<>

4.0

/

CAPlCITIVE L6ADS

'"
<> 35
i=

125
130
135
140
TC. CASE TEMPERATURE (OCI

145

150

PRINTED CIRCUIT BOARD RATING DATA

'"~ 4.0
z

~

i:j
c;

3.0

FIGURE 9 - CURRENT DERATING

FIGURE 8 - FORWARD POWER DISSIPATION

4.0

~--,-----.-------'r---~--_.--_'-----'----'

SINE AND S~UARE WAVE
CAPACITIVE LOAD
--~--~+-~~£-:7"I

~=20_dr--~--~~~~74~~
I(AV)
I---f----+ 10 _t-----I7~._&~.-r_7'_"+--__j

5

~ 2.0 I---+----r'=-:::..k:-,L~,.£,>"'F.,.,.~I_--+_---I

"-

I
~

1.0 f----+---....,jS~...,..I"'----+_--_+----r_--+_---

w

'"

~ O~~~__~____~__~__~____~__~___
4.0
1.0
2.0
3.0
IF(AV). AVERAGE FORWARD CURRENT (AMP)
...~ 0

3-231

W

~

00

00

100

lW

TA. AMBIENT TEMPERATURE (OC)

140

160

MR2400F thru MR2406F

TYPICAL DYNAMIC CHARACTERISTICS
FIGURE 11 - JUNCTION CAPACITANCE

FIGURE 10- FORWARD RECOVERY TIME
200

10
7.01

U~

~ 5.oI

I----

w

~

E

\-llr

3.01----

I

TJ = 25 0 C

...

Ufr

~

~

z

V

>

<>

~

1I

2.0

'"
c
'"

i

1.0
O.7
O. 5

~

O.3

~

o.2~

i!:

u

VIr = 1.1 V

:

70

z
<>

50

~

t;

--

O. 1

z

~

f-'"



...........

Ii! 6.0
~ 5.0
0:

............ ............ ~....... Mr,...20

u

"""
..........

C>

~ 4.0

'"~

100

VR, REVERSE VOLTAGE (VOLTS)

1"--....--""""': ~

3.0

~ 2.0
;;-

R6JA = 14°C/W

~1.0

I

I

40

60

~~
~~
......

~

"""'Ii

o

o

20

Figure 14 shows the current carrying capability of a
device mounted on a printed circuit board with a typical
TO-220 type heatsink having a sink-to-air thermal resistance of 12°C/W. Allowing another 2°C/W for R6JC plus
R6CS (case-to-sink) puts the total at 14°C/W as indicated.
The unit and heatsink were mounted perpendicular to the
printed circuit b,!ard for this data.

I(AV)

80

100

120

~

140

160

TA. AMBIENTTEMPERATURE (OC)

3-232

MR2400F thru MR2406F

TYPICAL RECOVERED STORED CHARGE DATA
(See Note 3)
FIGURE 15 - TJ = 25°C

FIGURE 16 - TJ = 75°C

1.0

2.0
IFM~20A

3-

.
w
to

40 A

O. 5

«

G

..'"
..
§
..
~

""

IV
.L.

o.2

.L.

~

~ 0.05

0.0

~
'"t;

~_>

IDA
~

",!?

:~
1.0

~ P"
~

2.0

....
50

40 A

o. 5
/'1/

/: "/ 1/ i-'

2

0.5< V- 1--'1--'
r-.....

o. I

lOA

§

50A

.. 00 5

\OA

'"'"

I

10

IJ201

1. 0

~

5

yV'

~ ~ V-

t;; O. I

~O.O

w

v

20

50

100

5.0 A
~

002
10

LOA

20

5.0

dl/dl (AMP/lAs)

w

..
'"
~

1

G

V

L v::

v

~ 0.0 5

'"'" 0.02
1.0

~~

20

50

20

~

.1

>

'"'"

I'D A
10

/
O. 2

§
..

50A

~ ~I-""

100

•

Vl.-

5

~
w

~IOA

2

IFM~4JA

0

~

~ ~ vI--'

>

50

~

V

t;

3w

«

~

2

V

40 A

~

5 o.5

20

FIGURE 18 - TJ = 150°C
0

IF~ ~ 20lA

.3 1. 0

10
dildl. IAMPI•• )

FIGURE 17 - TJ = 100°C
0

I

,eJ3 ~I-""

50

100

/

/'

A V

l-"

j><
~ .y ~OA
lOA

0.0 5

LOA

/h
0.02
1.0

~~

2.0

5.0

10

20

50

dildIIAMPI••)

dlld •. IAMPI••)

NOTE 3
Reverse recovery time is the period which elapses from the
time that the current, thru a previously forward biased rectifier
diode, passes thru zer090;ng negatively until the reverse current
recovers to a point which is less than 10% peak reverse current.

di/dt

Reverse recovery time is a direct function of the forward

current prior to the application of reverse voltage.
For any given rectifier, recovery time is very circuit dependent. Typical and maximum recovery time of all Motorola fast
recovery power rectifiers are rated under a fixed set of conditions
using IF = 1.0 A. VR = 30 V. In order to cover all c"cuit
conditions, curves are given for typical recovered stored charge
versus commutation di/dt for various levels of forward current
and for junction temperatures of 250 C. 750 C. 100"C. and
15o"C.
To use these curves, it is necessary to know the forward
current level just before commutation, the circuit commutation
di/dt. and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery
recti'i.,s is shown.

'AMIAEC)+--........_ -

From stored charge curves versus dildt, recovery time (lrr)
and peak reverse recovery current II RMIRECII can be closely
approximated using the following formulas:

3-233

0 11/2
[
trr= 1.41 x di/:d

IRMIRECI = 1.41 x [OR x di/dt] 112

100

MR2400F thru MR2406F

FIGURE 19 - JEDEC REVERSE RECOVERY CIRCUIT
RI

LI
dildt ADJUST
T1

~ II
T2

CI

03

120 Va,
60 Hz

I (PKI ADJUST

out

1:1
R2
RI • 50 Ohms
R2' 250 Ohms
01'IN4723
02 'IN4001
03' IN4933
SCRI·MCR729·10

01
CURRENT
VIEWING
RESISTOR

CI·0.5to50~F

C2 ~ 400o.F

•

L1 • 1.0 - 27 ~H

T1 • Va"a, Adjusts I(PKI and dl/dt
T2'1:1
T3 = 1:1 (ta trigger circuli)

FIGURE 20 -

REVERSE RECOVERY CHARACTERISTIC

~

Time

SOFT RECOVERY

MECHANICAL CHARACTERISTICS
CASE: Plastic Encapsulated. Metal Tabs.
FINISH: All external surfaces are corrosion resistant and are readily solderable.
POLARITY: Cathode to Tab with hole; Reverse polarity available by adding "R" Suffix. MR2402FR.
WEIGHT: 3.6 Grams (Approximately).
MOUNTING TORQUE: 8 in-Ibs max.
MAXIMUM TEMPERATURE FOR SOLDERING PURPOSES: 360·C. 3/8" from case for 10 seconds.

3-234

MR2500
Series

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

•

MR2504 and MR2510 are
Motorola Preferred Devices

MEDIUM-CURRENT SILICON RECTIFIERS
MEDIUM-CURRENT
· .. compact, highly efficient silicon rectifiers for medium·current
applications requiring:
•

High Current Surge - 400 Amperes @ T J = 175°C

•

Peak Performance
TC= 150°C

•
•

Low Cost
Compact, Molded Package - ·For Optimum Efficiency in a Small
Case Configuration

@

SILICON RECTIFIERS
50 - 1000 VOL TS
25 AMPERES
DIFFUSED JUNCTION

Elevated Temperature - 25 Amperes @

• Available Wilh a Single Lead Attached

MECHANICAL CHARACTERISTICS
CASE: Transfer Molded Plastic

FINISH: All External Surfaces are Corrosion Resistant and the Contact Areas Readily
Solderable.
POLARITY: Indicated bV dot on Cathode Side
MOUNTING POSITIONS: AnV
MAXIMUM TEMPERATURE FOR SOLDERING PURPOSES: 25o"C
WEIGHT: 1.8 Grams (Approximatelv)

MAXIMUM RATINGS

Characteristic
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage

MR MR MR
Svmbol 2500 2501 2502

MR
25~

MR MR MR
2501 25011 2510 Unit
Volts

VRRM
VRWM
VR

50

100

200

400

600

800

1000

Non-Repetitive Peak Reverse
VoJtage (halfwave, single phase,
60 Hz peak)

VRSM

60

120

240

480

720

960

1200 Volts

Average Rectified Forward Curren

10

•

DC Blocking Voltage

(Single phase, resistive load,

IFSM

.

TJ,Tstg

...

60 Hz, TC = 150°C)
Non-Repetitive Peak Surge
Current (surge applled@rated

load conditions, half wave,
single phase, 60 Hz)
Operat 109 and Storage Ju nction
Temperature Range

•

Amp

400 (for 1 cyclel

•

Amp

-65 to +175

•

°c

25

THERMAL CHARACTERISTICS
Character istic
Thermal ReSistance, Junction to Case
(Single Side Cooled)

ELECTRICAL'CHARACTERISTICS
Characteristics and Conditions
Maximum Instantaneous Forward Voltage
(iF = 78.5 Amp, T" = 25°C)
Maximum Reverse Current (rated de voltage)
TC = 25°C
TC = 100°C

Symbol

vF

Max
1.18

Unit
Volts
~A

IR
100
500

3-235

•

I

MR2500 Series

--

FIGURE 2 - NON·REPETITIVE SURGE CURRENT

FIGURE 1- FORWARD VOLTAGE
700
500 -TJ=25 0C

./

/'

300

/

200

-

-TYPICAL

1/ V

J

100

V

600

V

z

MAXIMUM

a

~

0::

'">-

:;

/

•

20

i'"

10

"

......

~

~

I

............

.............. ......

I

l-lcvcte~

25 0 C

.....

:-.....

tOO
80

60
1.0

2.0

10

5.0

/I
I

Q

I

..............

TJ = 1750C

r-f\.J\

~
~

J

~
a

..............

300

~ 200

'"'"~

30

VRRM MAY BE APPLIED BETWEEN
EACH CYCLE OF SURGE. THE TJ
NOTED IS TJ PRIOR TO SURGE
f = 60 Hz

~

w

70
50

............

~
~ 400

r-

20

100

50

NUMBER OF CYCLES

FIGURE 3 - FORWARD VOLTAGE TEMPERATURE
COEFFICIENT

~
~ 7. 0
=>
~ 5.0
z

+0.5

~

:i
In
z

3. 0

iii

~ 2.0

3>

I--'l

5 -0.5

ffi
U

1.0
O. 7

~ -1.0

0.5

8

-

·1.5
0.3
0.2
0.6

O.B

1.0

1.2

1.4

1.6

I.B

2.0

2.2

2.4

-2.0
0.2

2.6

0.5

vF.INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

FIGURE 4 - CURRENT DERATING

i

~

i""-..IJ ::~~: = _(SINE WAVE RESISTIVE LOAO)_
i- 40 1-"""'<:Ir---f
........
Ii"'.. j)~lCAP~CITIV~
.....M--",..A~~20
LOADS -+-+--1
a 30~~r--T~~~~~r-~~+--r--1--+--1
....................
r-.,. 7'A

I ......
50

de

Q

i~ 201-----

N ~
"""
-r--tt
. . . . . . ~~

~

-~

;::

10

j

0
125

-.

135

140
145
150
155
160
TC. CASE TEMPERATURE IOC)

~

30

165

170

...~
'"...

20

;::

10

~

It

175

3-236

200

f-:

IFM)
IIAV)

/

=2~ -j ~5
/

/ //
h

'/

,.,

/'

./
de

I / V/ r SDUARE_ r-WAVE
/ / ~V
V
/ I/, ~ i'-.. SINE ~AVE _ _
RESISTIVE LOAD
1// ~ V

/~ ~

ffi

"'~~

130

/

50
SINEWAVE
40 CAPAC)TIVE
LOADS

w

\.
_P'<

FIGURE 5 - FORWARD POWER DISSIPATION

'"

r---.::~~
-~~~r--

.....- ,.,...

"...

1.0
2.0
5.0
10
20
50
100
iF. INSTANTANEOUS FORWARD CURRENT (AMP)

i5

~

V

-

TYPICAL RANGE,

~

0~

o

"'"

10
20
30
40
IFIAV). AVERAGE FORWARD CURRENT lAMP)

50

MR2500 Series

FIGURE 6 - THERMAL RESPONSE

~

1.0
O. 7
O. 5

~

II:
C>

~ 0.3
~ 0.2

~

I--

~ o. 1

ROJCIt) = ROJC. rlt)
NOTE 1

~

0.07
~ 0.05
:z:

0.03

*
t-

!;;

./

0.02

z

~

=
III

O. 5

~

O.3

>
C>

f-TJ=250C

~

I-tlr..J PI,

./'
.......

C>
II:

~
=
~

2.0

O.

...... V
V

--

j

..t...-t-"

w

Vf,"1.0V

~

0.1 - - 1.0

~

_i'"""

--

2.0
3.0
5.0
IF. FORWARD CURRENT IAMPI

0

'"
ffi

1.0

>

~
II:

5.0

$

3.0

~

2. 0

II:

2.0V

7.0

50

.......

100

TJ = 25°C

::---.. :-.....

IF

I'-...

0~Ur°'25IR

;:

/

O. 2

5.0
10
20
1.0
2.0
YR. REVERSE VOLTAGE IVOLTS)

FIGURE 9 - REVERSE RECOVERY TIME

FIGURE 8 - FORWARO RECOVERY TIME
1.0

0.5

0.2

-

IF -IDA

1.0
0.1

10

3-237

...... :-.....

"':>c ~
5.0 A

$
0.2

I-t"

........

I'

......

"

II

r-.....

r-.. r-....

.1.;11

I"

0.3
0.5 0.7 1.0 2.0
3.0
5.0 7.0
IRIIF, RATIO OF REVERSE TO FORWARO CURRENT

10

MR2500 Series

FIGURE 10 - RECTIFICATION WAVEFORM EFFICIENCY

60

-

40

- '"

TJ = 25°C

,

~

0:

...co
'"
:t

~ 20

1\
"\

ill
u

§

CURRENT INPUT WAVEFORM

.;

10

B.O
6.0
1.0

JV'vI ~-~-~ II
2.0

3.0

5.0 7.0

10

20

30

50

70

100

f, FREQUENCY (kHzl

II
RECTIFICATION EFFICIENCY NOTE
FIGURE 11 - SINGLE·PHASE HALF·WAVE RECTIFIER CIRCUIT

The rectification efficiency factor a shown in Figure 10 was
calculated using the formula:

For a square wave input of amplitude V m • the efficiency factor

becomes:
V2m

V20(dcl
Pdc
0=

RL

.,00%

Prms = V20(rmsl

=

v20ldcl
.,00%
V20 (acl + V2 0 (dcl

2RL
O(squarel = V2m • 100% = 50%

III

RL

RL

(A full wave circuit has twice these efficienciesl
As the frequency of the input signal is increased, the reverse
recovery time of the diode (Figure 9) becomes significant, resulting 10 an increasing ae voltage component across R L which is

For a sine wave input Vm sin (wt~ to the diode, assume lossless,
the maximum theoretical efficiency factor becomes:

opposite in polarity to the forward current, thereby reducing the
value of the efficiency factor 0, as shown on Figure 10.
It should be emphasized that Figure 10 shows waveform
efficiency only; it does not provide a measure of diode losses.
Data was obtained by measuring the ac component of Va with a
true rms ac voltmeter and the dc component with a dc voltmeter.
The data was used in Equation 1 to obtain points for Figure 10.

V2m
n 2RL

O(sinel

= V2m

4
• 100% =-;;2

(31

•

100%

=40.6%

121

4RL

3-238

MR2500 Series

ASSEMBLY AND SOLDERING INFORMATION

Exceeding these recommended maximums can result in
electrical degradation of the device.

There are two basic areas of consideration for successful
implementation of button rectifiers:
1. Mounting and Handling
2. Soldering
each should be carefully examined before attempting a
finished assembly or mounting operation.

SOLDERING
The button rectifier is basically a semiconductor chip
bonded between two nickel·plated copper heat sinks with
an encapsulating material of thermal·setting silicone. The
exposed metal areas are also tin piated to enhance
solderability .
In the soldering process it is important that the tem·
perature not exceed 2500 C if device damage is to be
avoided. Various solder alloys can be used for this operation but two types are recommended for best results:
1. 96.5% tin, 3.5% silver; Melting point is 221 0 C (this
particular eutetic is used by Motorola for its button
rectifier assemblies).
2. 63% tin, 37% lead; Melting point 1830 C (eutetic).
Solder is available as preforms or paste. The paste
contains both the metal and flux and can be dispensed
rapidly. The solder preform requires the application of a
flux to assure good wetting of the solder. The type of
flux used depends upon the degree of cleaning to be
accomplished and is a function of the metals involved.
These fluxes range from a mild rosin to a strong acid; e.g.,
Nickel plating oxides are best removed by an acid base
flux while an activated rosin flux may be sufficient
for tin plated parts.
Since the button is relatively light·weight, there is a
tendency for it to float when the solder becomes liquid.
To prevent bad joints and misalignment it is suggested
that a weighting or spring loaded fixture be employed. It
is also important that severe thermal shock (either heating
or cooling) be avoided as it may lead to damage of the die
or encapsulant of the part.

MOUNTING AND HANDLING
The button rectifier lends itself to a multitude of
assembly arrangements but one key consideration must
always be included:
One Side of the Connections to
the Button Must Be Flexible I
Strain Relief Terminal

4:

for Button Aectlfler

This stress relief to the button
should also be chosen for maximum contact area to afford the
best heat transfer - but not at
the expense of flexibility. For an
annealed copper terminal a thick·
ness of 0.015" is suggested.

,-.;

Copper
Terminai

Button

__ r~::'t
Sink
Materiall

The base heat sink may be of various materials whose
shape and size are a function of the individual application
and the heat transfer requirements.
Common
Materials
Advantages and Disadvantages
Steel
Low Cost; relatively low heat conductivity
Copper
High Cost; high heat conductivity
Aluminum Medium Cost; medium heat conductivity
Relatively expensive to plate and not all
platers can process aluminum.
Handling of the button during assembly must be
relatively gentle to minimize sharp impact shocks and
avoid nicking of the plastic. Improperly designed automatic
handling equipment is the worst source of unnecessary
shocks. Techniques for vacuum handling and spring load·
ing should be investigated.
The mechanical stress limits for the button diode are
as follows:
Compression 32 Ibs.
142.3 Newton
Tension
321bs.
142.3 Newton
Torsion
6·inch Ibs. 0.68 Newton-meters
Shear
551bs.
244.7 Newton

Button holding fixtures for use during soldering may be
of various materials. Stainless steel has a longer use life
while black anodized aluminum is less expensive and will
limit heat reflection and enhance absorption. The assembly
volume will influence the choice of materials. Fixture
dimension tolerances for locating the button must allow
for expansion during soldering as well as allowing for
button clearance.
HEATING TECHNIQUES
The following four heating methods have their ad·
vantages and disadvantages depending on volume of
buttons to be soldered.
1. Belt Furnaces readily handle large or small volumes
and are adaptable to establishment of "on·line"
assembly since a variable belt speed sets the run
rate. Individual furnace zone controls make excellent
temperature control possible.

MECHANICAL STRESS

I

Compression

~

)j;;"

2. Flame Soldering involves the directing of natural
gas flame jets at the base of a heatsink as the heatsink is indexed to various loading-heating-coolingunloading positions. This is the most economical
labor method of soldering large volumes. Flame
soldering offers good temperature control but requires sophisticated temperature monitoring systems
such as infrared.

Shear

3-239

II
I

MR2500 Series

ASSEMBLY AND SOLDERING INFORMATION (continuedl
1. Peeling or plating separation is generally seen when
a button is broken away for solder inspection. If
heatsink or terminal base metal is present the
plating is poor and must be corrected.
2. Thin plating allows the solder to penetrate through
to the base metal and can give a poor connection.
A suggested minimum plating thickness is 300
microinches.
3. Contaminated soldering surfaces may out-gas and
cause non·wetting resulting in voids in the solder
connection. The exact cause is not always readily
apparent and can be because of:
(a) improper plating
(b) mishandling of parts
(c) improper andlor excessive storage time

3. Ovens are good for batch soldering and are production limited. There are handling problems because
of slow cooling. Response time is load dependent,
being a function of the watt rating of the oven and
the mass of parts. Large ovens may not give an
acceptable temperature gradient. Capital cost is low
compared to belt. furnaces and flame soldering.

•

4. Hot Plates are good for soldering small quantities of
prototype devices. Temperature control is fair with
overshoot common because of the exposed heating
surface. Solder flow and positioning can be cor·
rected during soldering since the assembly is exposed.
Investment cost is very low.
Regardless of the heating method used, a soldering
'profile giving the time·temperature relationship of the
particular method must be determined to assure proper
soldering. Profiling must be performed on a scheduled
basis to minimize poor soldering. The time· temperature
relationship will change depending on the heating meth·
od used.

SOLDER PROCESS EVALUATION
Characteristics to look for when setting up the soldering process:
I Overtemperature is indicated by anyone or all three
of the following observations.
1. Remelting of the solder inside the button rectifier
shows the temperature has exceeded 2B50 C and is
noted by "islands" of shiny solder and solder
dewetting when a unit is broken apart.
2. Cracked die inside the button may be observed by a
moving reverse oscilloscope trace when pressure is
applied to the unit.
3. Cracked plastic may be caused by thermal shock as
well as overtemperature so cooling rate should
also be checked.
II Cold soldering gives a grainy appearance and solder
build·up without a smooth continuous solder fillet. The
temperature must be adjusted until the proper solder
fillet is obtained within the maximum temperature
limits.
III Incomplete solder fillets result from insufficient solder
or parts not making proper contact.
IV Tilted buttons can cause a void in the solder between
the heatsink and button rectifier which will result in
poor heat transfer during operation. An eight degree
tilt is a suggested maximum value.
V Plating problems require a knowledge of plating
operations for complete understanding of observed
deficiencies.

SOLDER PROCESS MONITORING
Continuous monitoring of the soldering process must
be established to minimize potential problems. All parts
used in the soldering operation should be sampled on a lot
by lot basis by assembly of a controlled sample. Evaluate
the control sample by break·apart tests to view the solder
connections, by physical strength tests and by di mensional
characteristics for part mating.
A shear test is a suggested way of testing the solder
bond strength.

POST SOLDERING OPERATION CONSIDERATIONS
After soldering, the completed assembly must be un·
loaded, washed and inspected.
Unloading must be done carefully to avoid unnecessary
stress. Assembly fixtures should be cooled to room
temperature so solder profiles are not affected.
Washing is mandatory if an acid flux is used because
of its ionic and corrosive nature. Wash the assemblies
in agitated hot water and detergent for three to five
minutes. After washing; rinse, blow off excessive water
and bake 30 minutes at 1500 C to remove trapped
moisture.
Inspection should be both electrical and physical. Any
rejects can be reworked as required.
SUMMARY
The Button Rectifier is an excellent building block for
specialized applications. The prime example of its use is
the output bridge of the automative alternator where
millions are used each year. Although the material pre·
sented here is not all inclusive, primary considerations for
use are presented. For further information, contact the
nearest Motorola Sales Office or franchised distributor.

3-240

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

MR2535L

Advance Information

Overvoltage
Transient Suppressors

Motorola Preferred Device

· .. designed for applications requiring a low voltage rectifier with reverse avalanche
characteristics for use as reverse power transient suppressors. Developed to suppress
transients in the automotive system, these devices operate in the forward mode as standard rectifiers or reverse mode as power avalanche rectifier and will protect electronic
equipment from overvoltage conditions.
•
•
•
•
•

MEDIUM CURRENT
OVERVOLTAGE
TRANSIENT
SUPPRESSORS

Avalanche Voltage 24 to 32 Volts
High Power Capability
Economical
Increased Capacity by Parallel Operation
Replaces MR2520U2525L

•

MECHANICAL CHARACTERISTICS:
CASE: Transfer Molded Plastic
MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 350'C 3/S" from case
for 10 seconds at 5 Ibs. tension
ANISH: All external surfaces are corrosion-resistant, leads are readily solderable
POLARITY: Indicated by diode symbol or cathode band
WEIGHT: 2.5 Grams (approx.)
CASE 194-04
MR2535L

MAXIMUM RATINGS
Rating
DC Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Repetitive Peak Reverse Surge Current
(Time Constant = 10 ms, Duty Cycle S 1%, TC = 25'C) (See Figure 1)
Average Rectified Forward Current
(Single Phase, Resistive Load, 60 Hz, T C = 150'C)
Non·Repetitive Peak Surge Current
Surge Supplied at Rated Load Conditions
Hallwave, Single Phase
Operating and Storage Junction Temperature Range

Symbol

Value

Unit

VRRM
VRWM
VR

20

Volts

IRSM

62

Amps

10

35

Amps

IFSM

400

Amps

TJ, Tstg

-65 to +175

'C

Symbol

Max

Unit

Re.JL

7.5
10
13

'C/W

Re.JC

O.S"

'C/W

THERMAL CHARACTERISTICS
Lead
Length

Characteristic
Thermal Resistance, Junction to Lead @ Both Leads to Heat Sink,
Equal Length

1/4"

3/8"
112"

Thermal Resistance Junction to Case

"Typical
This document contains information on a new product. Specifications and information herein are subject to change without notice.

3-241

I

MR2535L

ELECTRICAL CHARACTERISTICS
Symbol

Min

Max

Unit

Instantaneous Forward Voltage (1)
(iF = 100 Amps. TC = 25"<:)

Characteristic

vF

-

1.1

Volts

Reverse Current
(VR = 20 Vdc. TC = 25·C)

IR

-

200

nAdc

Breakdown Voltage (1)
(lR = 100 mAde. TC = 25·C)

V(BR)

24

32

Volts

Breakdown Voltage (1) MR2535L only
(lR = 90 Amp. TC = 150·C. PW = 80 /15)

V(BR)

-

40

Volts

Breakdown Voltage Temperature Coefficient

V(BR)TC

Forward Voltage Temperature Coefficient @ IF = 10 mA

VFTC

111 Pulse Test: Pulse Width" 300 .... Duty Cycle" 2%.
* Typical.

•

IRRMIEXP)~
IRRMIEXP)
2

__
I
I
I

:

10

20

30
40
(TIME IN ms)

I

50

60

Figure 1. Surge Current Characteristics

3-242

-

0.096-

%t'C

2-

mvrc

MOTOROLA

SEMiCONDUCTOR . . . . . . . . . . . . . . . . . . . . . . . .. .
TECHNICAL DATA

MR4422CT
MR4422CTR

Advance Information
Complementary Medium
Current Silicon Rectifiers

Motorola Preferred Devices

For Linear Power Supply Applications
· .. using monolithic silicon technology for perfect matching of diodes
in center tap configuration. These state-of-the-art devices have the
following features:
•
•
•
•
•

Low Forward Voltage Drop
Soft Reverse Recovery for Low Noise
High Surge Current Capability
150°C Operating Junction Temperature
Direct Replacement for Varo R711 and R711A

POWER RECTIFIERS
30 AMPERES
100 VOLTS

~
MR4422CT

--c::

~
CASE 1-07
(TO-204AA)
METAL

MR4422CTR

II

MAXIMUM RATINGS (PER LEG)
Rating

Symbol

Max

Unit

VRRM
VRWM
VR

100

Volls

IF(AV)

15
30

Amps

Peak Repetitive Forward Current, Per Diode Leg
(Rated VR, Square Wave, 20 kHz) TC 125°C

IFRM

30

Amps

Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions hallwave, single phase, 60 Hz)

IFSM

400

Amps

IRRM

2.0

Amps

TJ

-65 to +150

°C

Tstg

-65 to +175

°C

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current
(Rated VR) TC 125°CPer Device

Per Leg

=

=

Peak Repetitive Reverse Surge Current (2.0

~s,

1.0 kHz)

Operating Junction Temperature
Storage Temperature

THERMAL CHARACTERISTICS (PER LEG)
Thermal Resistance -

Junction to Case

ELECTRICAL CHARACTERISTICS (PER LEG)
Maximum Instantaneous Forward Voltage (1)
(IF = 15 Amps, TC =25°C)
(IF = 10 Amps, TC = 125°C)

vF

Maximum Instantaneous Reverse Current (1)
(Rated de Voltage, TC = 25°C)
(Rated de Voltage, TC = 125°C)

iR

Volts
1.2
1.1
mA
1.0
250

(1) Pulse Test: Pulse Width = 300 J.lS. Duly Cycle s 2.0%.
This document contains mformation on a new product. Specifications and Information herein are subject to change without notice.

3-243

MUR105
MURll0
MUR115
MUR120

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

•

•

MUR130
MURI40
MUR150
MUR160

MUR120, MUR140 and MURl60 are
Motorola Preferred Devices

ULTRAFAST
RECTIFIERS

SWITCHMODE POWER RECTIFIERS
· .• designed for use in switching power supplies, inverters and
as free wheeling diodes, these state-of-the-art devices have the
following features:

1.0 AMPERE
50-600 VOLTS

• Ultrafast 25, 50 and 75 Nanosecond Recovery limes
• 175'C Operating Junction Temperature
• Low Forward Voltage
• Low Leakage Current

•

• High Temperature Glass Passivated Junction
• Reverse Voltage to 600 Volts

CASE 59-04
PLASTIC

MAXIMUM RATINGS
MUR
Rating

Symbol

105

110

115

50

100

150

120

130

140

300

400

150

160

Unit

600

Volts

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

Average Rectified Forward Current
(Square Wave Mounting Method #3 Per Note 1)

IF(AV)

Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions, hallwave,
single phase, 60 Hz)

IFSM

35

Amps

TJ, Tstg

-65 to +175

'c

Operating Junction Temperature and
Storage Temperature

200

1.0 @TA= 130'C

500

1.0 @ TA = 120'C

Amps

THERMAL CHARACTERISTICS
Maximum Thermal Resistance, Junction to Ambient

See Note 1

ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)'
(iF= 1.0 Amp, TJ = 150'C)
(iF = 1.0 Amp, TJ = 25'C)

vF

Maximum Instantaneous Reverse Current (1)
(Rated dc Voltage, TJ = 150'C)
(Rated dc Voltage, T J = 25'C)

iR

Maximum Reverse Recovery lime
(IF = 1.0 Amp, dildt = 50 Amp/~s)
(IF = 0.5 Amp, iR = 1.0 Amp, IREC = 0.25 A)

trr

Maximum Forward Recovery lime
(IF = 1.0 A, dildt = 100 AI~, IREC to 1.0 V)

tfr

(1) Pulse Test: Pulse Width = 300 ~s, Duty Cycle ';2.0%

3-244

Volts
0.710
0.875

1.05
1.25

50
2.0

150
5.0

35
25

75
50

25

50

I1A

ns

ns

•

MUR105 Series

MUR105, 110 AND 115
FIGURE 2 - TYPICAL REVERSE CURRENT*

FIGURE 1 - TYPICAL FORWARD VOLTAGE
10
7.0

/

5.0

I

I

TJ = 175'~
2.0

/

~
~

0.8
0.4
0.2
~ 0.08
~ 0.04
a: 0.02
50.008
0.004
0.002
0.00 I

~f1 Hoo;C

j. 1---25'C

~ 0.7

!Z

I

0.5

g§

/

a

I

~
~

25'C= ~
l-

o

~

/

~ 0.2

~
80 ~ m ~
VR, REVERSE VOLTAGE (VOLTS)

40

~

~

m

II

FIGURE 3 - CURRENT DERATING
(MOUNTING METHOD #3 PER NOTE 1)

III

ie

/ '/

o.1

~

/

'The curves shown are typical for the highest voltage

trvi,;'~~h:;:g:er:~~~9C:~~~'~e::~~:~
thue same curves if VR is sufficiently below rated VR-

I III

0.3

i

175'C-

l00'C= 1==

a

II IV

1.0

TJ

~:~

1

/I!I

3.0

~

80
40
20
8.0

/

5.0

~
!Z

4.0

g§

0.07

Rated VR
R9JA = 50'00

::::l

.!?

U

0.05

[i! 3.0

II I I

0.03

o

~

I

0.02

0.0 1
0.3

0.4

'~dc

2.0

~

Square' ~
~8ve

'it

II I
I ~l
0.5

........ ~

~
a:

I

~

~

0.6 0.7
0.8
0.9
1.0
1.1
vF, INSTANTANEOUS VOLTAGE (VOLTS)

S

1.2

o

1.3

50

I

17J,C

./
/'

~

/'

w

/'

~

V

V
V

/'" . / :..,....- 1-""- I-"
1--1-""
~~~

~ 1.0

~
0

I~K

o

200

0
4D

I
=

20-

~

i

~
de_

-

./

0

\..
................

:-.........

oJ 10

V

2.5

9. 0
8.0
7.0
6.0
5. 0

o

10

r--..

20

3D

VR, REVERSE VOLTAGE (VOLTS)

3-245

= 2S'C

"\.

i

1&L

./" Y

0.5
1.0
1.5
2.0
IF(AV), AVERAGE FORWARO CURRENT (AMPS)

TJ

0\

../I

/'

3. 0

Ii2 2.0

E

I

100
150
TA, AMBIENT TEMPERATURE

FIGURE 5 - TYPICAL CAPACITANCE

(Capacitive Load) I
AV

!f
~

'"

o

FIGURE 4 - POWER DISSIPATION

is 4.o r- T} =

~

jf:

_ 5.0

~

~

1.0

40

50

MUR105 Series

MUR120. 130. 140. 150. 160
FIGURE 7 - TYPICAL REVERSE CURRENT'

FIGURE 6 - TYPICAL FORWARD VOLTAGE
10

400
200
100
40
20
IThe curves shown are typical r the highest voltage
10 device
in Ihe voltage grouping. Typicalreverl8current
!Z 4.0 fot lower voltage selections can be estimated trom
these
same curves if VR is sufficientlv below raled V .
::! 2.0
II:
::>
1.0
<..>
en
0.4
II:
:::; 0.2
0.1
II:
~ 0.04
r0.02
0.008
0.004
o
100
200
300
400
SOO
VR. REVERSE VOLTAGE (VOLTS I

7.0

/

5.0

TJ = moc/ /
2.0

0.7
0.5

t-

~
::>
c

II

II:

//f
I
f f

0.2

S

:z

.!f-

0.1

i

!Z

a ~
'" 3.0

I

~ 2.0
iiii: 1.0

iL

0.03

f if

0.02

I

0.01
0.3

LJ

O.S

j

I
0.9
1.1
1.3
1.S
1.7 1.9
vF INSTANTANEOUS VOLTAGE (VOLTS)

2.1

o

1.3

TJ = 17SoC

!;i'
10

2.ot--(Capaeitive Load} ~

/'

V V ./
Ay~ V !.--::::: V
= 20

~

~'J<.ra
~/

."...-

de

~ 0

"

100
150
TA. AMBIENT TEMPERATURE

250

200

t.J

l."...III ~

o

0.5
1.0
1.5
2.0
IF(AV}. AVERAGE FORWARD CURRENT (AMPS)

TJ = 251c

\
"-

"-

5 4.0

./. ~ % ~
.&. ~ P

iii: 1.0

~

10
9.0
~ 8.0
;;; 7.0
~ 6.0
~ 5.0

~or---;;-

3.0

II:

~

50

FIGURE 10 - TYPICAL CAPACITANCE

o

~

wr ~" ~

Squa'....
e

20

~

~

--........
............ .........de

l? 0

0.7

S.0

:z 4.0

~

...........
..........

~

FIGURE 9 - POWER DISSIPATION

c

Rated VR
RBJA = 5O"CIW

4.0

::!

O.OS

~

800

S.O

0.07

-

600

FIGURE 8 - CURRENT DERATING
(MOUNTING METHOD #3 PER NOne 11

I

::>

~
;;:;

2S0( , -

V

I /

en

~

100"1:=

-

I

0.3

~

-

--

~

I 1//

<..>

~

1- -lory:

/ :-- -2SOC

1.0

:z

1

/ II

3.0

5

/

/

.A
TJ 175"C_

3.0
2.0

1.5

3-246

o

to

"'

. . . . r---....

...... I-....

20
30
VR. REVERSE VOLTAGE (VOLTSI

-

r--

40

-

50

MUR105 Series

RGURE 12 - TYPICAL REVERSE CURRENT-

FIGURE" - TYPICAL FORWARD VOLTAGE
10

SOO
400
200
- SO

1//

/

/

140

!Z

// /
TJ = 17S"C,h

~

20
8.0
4.0
~ 2.0

~ 0.40


u

c

I II
/I , ~

f.I "'
/ /
//

...;... TJ

I

:::>

::~2.0

~

0.80

-

:g 0.40

25'C

100,1:=

'The c:urves shown are typical for the highesl voltage

1:j~~rth~=g:ef=:~g~~:':m:~=

~ 0.20

these same CUNes if VR is sufficiently below rated VR.

_ 0.08
.!!F 0.04
0.02
0.008
0.004

100'C

175'C=

.....0

100

25'C-'

i..--t'"""

200
300
500
400
VR. REVERSE VOLTAGE VOLTS

60

800

0.7

~~

1/

0.5

'"
:::>

I

fi! 0.3

~

I

0

II I
II I I
II

0.2

~

FIGURE 8 - CURRENT DERAnNG
(MOUNnNG METHOD #3 PER NOTE 1)

I II I

~

.~

0.1

RatedVR
RflJA = 28'C/W

0
0

0.07

III

0.02
0.3

I I
0.5

Squ...... ~
~.ve

0

0.7

0.9 1.1 1.3
1.5 1.7
1.9
VF.INSTANTANEOUS VOLTAGE (VOLTSI

2.1

I"..
50

2.3

~

40

~ 121--+--+--1--~--1-~--+--+~-7q-.)'~

30

~

1--l--+-+-+--i--~5.0-l------J
~£...-+"t:...--l

1--l--+-+-+--i--t--l_.Squ.re W.V~

~ 101-_+-+-+--~_+--h~~~/~~~d~c~
m
v
B.O
--)'-j.,~/4/«:-..j".

~

25'C

I I

Ii'!

:i

200

175'C
100'C

-

1
~ 0.4
~
0.2
W
a:: 0.1
ci;0.04
- 0.02
O.OOS
0.004
0.002
0.001 0

/ /

1'a::5

10

~

u

//

~

!z

:::>

/ /

Ie

TJ

100

I

I I

1000
400
200

25'C

o

0.2

0.4

1

1.S

50

70
60
50

= 175'C

/
/ V ./""
10

= 20

IAV./"""'-:::: . /

......-: i j ~
...& ~ :::::::- r-

::..---

V

100
150
TA. AMBIENT TEMPERATURE

\

v.~
c;~
~,e

./' "'de

10
9
S
7

o

2
3
IFIAVj. AVERAGE FORWARD CURRENT

Figure 4. Power Dissipation

TJ

= 25'C

10

--

I--

20
30
VR. REVERSE VOLTAGE (VOLTSj

Figure 5. Typical Capacitance

3-258

11

\

""~ . . . . 1'-....

/'"

l.,....III IP""

250

200

1\

5

Load

....... ~

Figure 3. Current Derating
(Mounting Method #3 Per Note

10

t - - (Capacitive) IpK

:--.....

~

O.S
1.0
1.2
1.4
1.6
vF. INSTANTANEOUS VOLTAGE (VOLTSj

0.6

Figure 1. Typical Forward Voltage

TJ

'----de

Squ;;;e-...
W,ve

-r.40

50

MUR470E, MUR480E, MUR490E, MUR4100E

BVOUT
r---~----------4DVO

10

MERCURY
SWITCH

S1

Figure 6. Test Circuit

Figure 7. Current-Voltage Waveforms

The unclamped inductive switching circuit shown in
Figure 6 was used to demonstrate the controlled avalanche capability of the new "E" series Ultrafast rectifiers.
A mercury switch was used instead of an electronic
switch to simulate a noisy environment when the switch
was being opened.
When S1 is closed at to the current in the inductor IL
ramps up linearly; and energy is stored in the coil. At t1
the switch is opened and the voltage across the diode
under test begins to rise rapidly, due to dildt effects, when
this induced voltage reaches the breakdown voltage of
the diode, it is clamped at BVDUT and the diode begins
to conduct the full load current which now starts to decay
linearly through the diode, and goes to zero at t2'
By solving the loop equation at the point in time when
S1 is opened; and calculating the energy that is transferred to the diode it can be shown that the total energy
transferred is equal to the energy stored in the inductor
plus a finite amount of energy from the VDD power supply while the diode is in breakdown (from t1 to t2) minus

any losses due to finite component resistances. Assuming the component resistive elements are small Equation
(1) approximates the total energy transferred to the
diode. It can be seen from this equation that if the VDD
voltage is low compared to the breakdown voltage of the
device, the amount of energy contributed by the supply
during breakdown is small and the total energy can be
assumed to be nearly equal to the energy stored in the
coil during the time when S1 was closed, Equation (2).
The oscilloscope picture in Figure 8, shows the information obtained for the MUR8100E (similar die construction as the MUR4100E Series) in this test circuit conducting a peak current of one ampere at a breakdown
voltage of 1300 volts, and using Equation (2) the energy
absorbed by the MUR8100E is approximately 20 mjoules.
Although it is not recommended to design for this
condition, the new "E" series provides added protection against those unforeseen transient viruses that can
produce unexplained random failures in unfriendly
environments.

EQUATION (1):

W

CHANNEL 2:

- .! U 2
(
BVDUT
)
AVAL - 2 LPK BVDUT -. VDD

IL
0.5 AMPS/OIV.

EQUATION (2):

WAVAL =

1

CHANNEL 1:

2

2" U LPK

VOUT
500 VOLTSIDIV.

TIME BASE:
20/LslOIV.

Figure S. Current-Voltage Waveforms

3-259

II

MUR470E, MUR480E, MUR490E, MUR4100E

Note 1 -

Ambient Mounting Data

MECHANICAL CHARACTERISTICS
Case: Transfer Molded Plastic
Finish: External Leads are Plated, Leads are
readily Solderable
Polarity: Indicated by Cathode Band
Weight: 1.1 Grams (Approximately)
Maximum Lead Temperature for Soldering
Purposes:
300·C, 1/8" from case for 10 seconds

Data shown for thermal resistance junction-toambient (R6JA) for the mountings shown is to be used
as typical guideline values for preliminary engineering
or in case the tie point temperature cannot be measured.

TYPICAL VALUES FOR R6JA IN STILL AIR
LEAD LENGTH, L (IN)

MOUNTING
METHOD
1

~

r-a

R6JA

1/8

1/4

1/2

3/4

UNITS

50
58

51
59

53
61

55
63

·crw

28

·CIW
·CIW

MOUNTING METHOD 1

II

P.C. Board Where Available Copper
Surface area is small.

MOUNTING METHOD 2
Vector Push-In Terminals T-28

MOUNTING METHOD 3
P.C. Board with
1-1/2" x 1-1/2" Copper Surface

t.kL=

1/2"

~Jq:
Board Ground Plane

3-260

MUR60SCT
MUR610CT
MUR61SCT
MUR620CT

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

•

MUR620CTls a
Motorola Preferred Device

ULTRAFAST
RECTIFIERS
6 AMPERES
50-200 VOLTS

SWITCHMODE POWER RECTIFIERS
· .. designed for use in switching power supplies, inverters and
as free wheeling diodes, these state-of-the-art devices have the
following features:
• Ultrafast 35 Nanosecond Recovery Time
• 175·C Operating Junction Temperature
• Popular TO-220 Package

CASE 221 A-IlS
TO-220AB
PLASTIC

MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current
130·C
(Rated VR) TC

Per Diode
Total Device

Symbol

MUR605CT

MURS10CT

MURS15CT

MUR620CT

Unit

VRRM
VRWM
VR

50

100

150

200

Volts

IF(AV)

3.0
6.0

Amps

Peak Repetitive Forward Current Per Diode leg
(Rated VR, Square Wave, 20 kHz) TC = 130·C

IFRM

S.O

Amps

Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave,
single phase, SO Hz)

IFSM

Operating Junction Temperature and
Storage Temperature

Amps
75

TJ, Tstg

·C

-65 to +175

THERMAL CHARACTERISTICS PER DIODE LEG
Rating
Thermal Resistance, Junction to Case

Typical

Maximum

5.0-6.0

7.0

0.80
0.94

0.895
0.975

2.0-10
0.01-3.0

250
5.0

20-30

35

ELECTRICAL CHARACTERISTICS PER DIODE LEG
Instantaneous Forward Voltage (1)
(iF = 3.0 Amp, TC = 150·C)
(iF = 3.0 Amp, TC = 25·C)

vF

Instantaneous Reverse Current (1)
(Rated dc Voltage, TC = 150·C)
(Rated dc Voltage, TC = 25"C)

iR

Reverse Recovery Time
(IF = 1.0 Amp, dildt = 50 Amp/l£S)

trr

111 Pul •• T.st: Puis. Width = 300

p.O,

Volts

pA

Duty Cycl. " 2.0%.

3-261

ns

•

MUR605CT, MUR610CT, MUR615CT, MUR620

FIGURE 1 - TYPICAL FORWARD VOLTAGE

FIGURE 2 - TYPICAL REVERSE CURRENT

~ 10
~ 7.0
!Z 5.0
~
~

1.0

~

OJ
0.5

z

I

~ 0.3

t;

I

TJ - 175"C 1//

0.2

I

~

.!f. 0.1

0.2

/

/

1.0
~ 0.4

/

a
!il
_
w

II

:$

!Z

g§

0.004
0.002

150"C+ 1-1
l00"C
I
0.4
0.6
0.8
1.0
vF. INSTANTANEOUS FORWARO VOLTAGE IVOLTSI

1.2

~

!1i

5.0

~ 4.0

f2
ttl 3.0

Square Wave

:e

6.0

!Z
ii§

5.0

~

~

f2 3.0

"~
~

~

~1.0

120

25"C

.-

40

140
TC. CASE TEMPERATURE I"CI

w

,

160

-r

I

~

~

"

~

2.0 _SquareWaie

5.0

i

4.0

~

I
20

180

40

3.0

/

//

is

V/

ffi 2.0
~

~1.0

«

E

0

~

1/1.0

- ...... -... ...... ..." '"
I

/'

/" de

'/ /"/
'/

~V
/

2.0
3.0
4.0
5.0
6.0
IFIAVI. AVG FORWARD CURRENT IAMPSI

""

7.0

8.0

~

... ...

60
80
~
m ~
TAo AMBIENT TEMPERATURE I"CI

V

3-262

"""

'\

/
Square Wave/,

~

200

+-RI/JA = l6"CIWwith
a Iypicel TO·22O heat sink "-de

--RI/JA = 6O"CIW
Ifree air. no heat sinkl

~1.0

6.0

~

180

'\
'\.

-- ........ ·_rde . . . . .

$

~ :::
~

160

Square Wave ~

T

FIGURE 5 - POWER DISSIPATION

z

"7

SO
80 100 120 140
VR. REVERSE VOLTAGE IVOLTSI

Ii! 4.0

~

100

:$

a

~ 2.0

o

-

FIGURE 4 - TOTAL DEVICE CURRENT DERATING. AMBIENT

de

~

20

~ 7.0

Rated VR Applied

~

100"C

I--

0.001 0

7.0

6.0

0.2
0.1

G:; 0.04
a:. 0.02
!E'O.ot

I

FIGURE 3 _ TOTAL DEVICE CURRENT DERATING. CASE

:e

i.-'

~

/25"C

ie 8.0

150"<:

I-

/

/

175"<:

TJ

to

1 2.04.0

/

1// 1/ V

O

f2

fa

/

3.0

r'
u

100
40
20

~
~~
~

~

~

MUR80S
MUR810
MUR8lS
MUR820

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

•

•

MUR830
MUR840
MUR8S0
MUR860

•

MUR820, MUR840 and MUR860
are Motorola Preferred Devices

SWITCH MODE

POWER RECTIFIERS

ULTRAFAST
RECTIFIERS

• •• designed for use in switching power supplies, inverters and
as free wheeling diodes, these state-of-the-art devices have the
following features:

8 AMPERES
50-600 VOLTS

• Ultrafast 25, 50 and 75 Nanosecond Recovery Time
• 175'C Operating Junction Temperature
• Popular TO·220 Package
• Epoxy meets UL94, Vo @ 1/8"
• Low Forward Voltage
• Low Leakage Current
• High Temperature Glass Passivated Junction
• Reverse Voltage to 600 Volts

CASE 2218-02
TO-220AC
PLASTIC

MAXIMUM RATINGS
MUR
Rating

Symbol

805

810

815

820

830

840

850

860

Unit

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

50

100

150

200

300

400

500

600

Volts

Average Rectified Forward Current
Total Device, (Rated VR)' T C = 150'C

IF(AV)

8.0

Amps

IFM

16

Amps

IFSM

100

Amps

TJ. Tstg

-65 to +175

'C

Peak Repetitive Forward Current
(Rated VR, Square Wave. 20 kHz).
TC = 150'C
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions hallwave.
single phase. 60 Hz)
Operating Junction Temperature and
Storage Temperature

THERMAL CHARACTERISTICS
Maximum Thermal Resistance. Junction to Case

2.0

3.0

ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)
(iF B.O Amp, T C 150'C)
(iF 8.0 Amp. T C 25'C)

vF

Maximum Instantaneous Reverse Current (1)
(Rated dc Voltage, TJ 150'C)
(Rated dc Voltage, T J 25'C)

iR

Maximum Reverse Recovery Time
(IF 1.0 Amp, dildt 50 Amp/"s)
(IF 0.5 Amp, iR 1.0 Amp, IREC

trr

=
=

=
=

=
=

=
=

=
=

Volts
0.895
0.975

1.00
1.30

1.20
1.50

250
5.0

500
10

500
10

"A

ns
35
25

=0.25 Amp)

(1) Pulse Test: Pulse Width = 300 "s, Duty Cycle ,,2.0%

3-263

60
50

•

I

MUR805 Series
MUR805, 810 AND 815
FIGURE 2 - TYPICAL REVERSE CURRENT-

FIGURE 1 - TYPICAL FORWARD VOLTAGE

100
'The curves shown are typical (or the highest voltage
70

device in the voltage grouping. Typical reverse current

V/ r/

20

~

i

/

!z

~

a

v

~

7 II

I

10

~
a::
.Ii:-

7.0

a::
:::>
u

5.0

~

3.0

I

/

c

•

1:

/ /V

30

~

Ii!
en

:::>

5l

2.0

.!l-

TJ=0 17S'C
1.0

I

0.1

i
!z
~

I

40

90
8.0

""

7.0

0.8

1.0

12
~

10 I - - ......

1.2

B
c 80
a:

~

~

f--- _SquareWa~

6.0

I

150

140

....

f--f---

-

40

.........

80

100

~

7.0

~

to

ffi~

~
~

140

180

7
Square Wave

6.0

~

180 200

,/'

~
~

./
o 1.0

~

2.0

3.0

4.0

5.0

6.0

1.0

8.0

IFIAV!. AVERAGE FORWARD CURRENT lAMPS!

TA. AMBIENT TEMPfRATURE IOC!

3·264

7

/ ..... V

2.0

0

V ./

V Vdc
V

3.0

~ 1.0

~

160

"

.,-

~ 4.0

120

170

V

~

........ 1'..

60

~

~

TJ= 175'C

8.0

ill 5.0

~

1'-.'~
"

160

c

-- --- -- -- - ""
-- ....
I
I

20

9.0

c

........

Square Wave

~

10

~z
In
!!!

de

I--

."""'-"

1>=

in

........

-

~

FIGURE 5 - POWER DISSIPATION

=

RtiJA =16°C/v.:
---/VIJA =60 o C/W
(N. Heat Sinkl . -

~
........ ........

~

TCo CASE TEMPERATURE I'C!

I

..........

,,"\
"-.,

~ 20
.... 10
~

0.6

rn

~e

~ 3.0

14
12

~

Square Wave

FIGURE 4 - CURRENT DERATING. AMBIENT

~

~

Rated VR Applied

vF. INSTANTANEOUS VOLTAGE IVOLTS!

...:E'"

50

~

10

~ 4.0
Ii!

/ /
I
/ II I
0.4

~

6.0
~ 5.0

I

0.2

o

..... ./

~

25'C

a

II

0.2

~

lOO'C

FIGURE 3 - CURRENT DERATING. CASE

rT

/

-

VR. REVERSE VOLTAGE IVOLTS!

/

0.3

20
10
4.0
2.0
1.0
0.4
0.2
0.1
0.02
0.01

/'OO"C / 2S'C

0.7
0.5

40 ~ ==TJ 175'C

0.04

/

/

I II II
I
I I I

~

~
;!;

for lower voltage selections can be estimated from =
these seme curves if VR is sufficiently below rated VR.

1.01(
4DO

50

9.0

10

MUR805 Series

MUR820, 830 AND 840
FIGURE 6 - TYPICAL FORWARD VOLTAGE

FIGURE 7 - TYPICAL REVERSE CURRENT'

100
'The curves shown are typical for the highest voltage
device in the voltage grouping. Typical reverse current
for lower voltage selections can be estimated from
these curves if VR is sufficiently below rated VR.

70
1.0K

50
./

30
20

Ie

::E

10

!Z
gj

7.0

:::>

5.0

1./

V

V 1/

/ 'V

V
/

2.0

/ /

z

~
;;:;
.~

25°C

1.0

/

Tr175"C:
lWe':"=""':

20
10

4.0
2.0
1.0
.!E- 0.4
0.2
0.1
0.04
0.02
0.01

l00"C._

~
a:

1

TJ = 175°C/

en

@
z
;5

/'00°C /

/

~ 3.0
a:
Ii!
:::>

I

~

~

V

/

II

J

i5
w

5

u
c
a:

200
100

a~

/'

/

/

~O

'1
;::

o

~

50

I

~

...

0.4

0.6

""-

~ 7.0

fil

.........

f2

4.D

~

3.0

10

~

c

1.2

1.4

1.6

~

140

150
160
TC. CASE TEMPERATURE ("C)

iIi!
~~

4.0

!i

~

z

0

~
en

::;:: ::::::- de
"l"--.

~c
I==" ':::'.,--

2.0 t - - r-- Square
~
f--- f-- Wave
J>:

o
o

~

~

10
9.0

-

~

""'"""-" r-...."""-

-- -- -- --...

~~

"",-"

~

50
~
~
m ~
TA. AMBIENT TEMPERATURE (OC)

~

-...;;::

~

~

"

180

8.0
7.0

;F
W

~

/
Square
Wavy

5.0

/

4.0

./

3.0

'/

/

/' .-;;;
/'

'/

.......:: V

~~

u

~

~

~

~

~

U

IF(AV). AVERAGE FORWARD CURRENT (AMPSI

3·265

./

./ ~

2.0
1.0

7

7
/

TJ= 175°C

en 6.0

l5
a:

["'-.....

I'--.

170

FIGURE 10 - POWER DISSIPATION
in

R8JA = 16'CW ---- R8JA=6O"CIW(No Heat Sink) -

~
_ Square
6.0 I-Wave

•

~

J>:

I

8.0

~

Square Wave

FIGURE 9 - CURRENT DERATING, AMBIENT

a:
:::>
u

~

"""-"1'0..

~ 10

14
12

i'-.'-

~ 20

1.0

~

Rated VR Applied

VF.INSTANTANEOUS VOLTAGE (VOLTS)

~

~

Nt

~ 5.0

0.8

~

9.0

z

/ V
/ / /

0.1

~

10

/

II

0.2

~

FIGURE 8 - CURRENT DERATING, CASE

/

/

a 6.0

I

0.3

Ie

~

VR. REVERSE VOLTAGE (VOLTS)

I

0.5

I---

--

;:: 8.0
0.7

25"C

".

~

~

w

MUR805 Series
MUR850 AND 860
FIGURE 12 - TYPICAL REVERSE CURRENT·

FIGURE" - TYPICAL FORWARD VOLTAGE
100

~ 1= "The curves shown are typical for the highest vohage ~

0

50
TJ=15O"C

30

t7

VV

20

l00"C:; ~ V

V

/ /

0

./

f--- f- device in the voltage grouping. Typical reverse current f--1.0K ~ 1= for lower voltage selections can be estimated from F=
400 ~ these same curves if VR is ,sufficiently below rated VR. ~

l5

V

l:!

a:

::>
u
w

/


u

60

'"a:~

50

a:

40

...a:w

30

~

10

f2

~

;C

0.8

1.2

1.0

1.4

1.8

1.6

~

~

'"

if2

~

I

9.0
8.0
7.0

6.0

r--

5.0

'"'" i"..
""h.
r-.....
Square
Wive

4.0

de

3.0

r-- -"'7~:--~ 2.0 t---r-Squ;;;~ 1.0 t---rif:

o

o

wr

20

20

~

~

~~

150

m w

w

14
13

T

'2

Squ~re

"

180

~

.l!"

W

~

3·266

7

7'

dc -

/'

./ ./
./

/

5.0

./

;;.'

.......,.... / ......

0 ~

o

U

W M

TJ=175'C
~

M

M

g

IFIAV!. AVERAGE FORWARD CURRENT lAMPS!

TA. AMBtENT TEMPERATURE I'C!

./
/'

./

,/

;C 3.0
~ 2.0
_ 1.0

~

~

1/

Wava7

~ 4.0

~

~

170

160

10
u; 9.0
~ 8.0
a: 7.0
~ 6.0

-- """.. ....

~

~

"'\

140

1;:

"'- ,
"
-- """ "~

~
~

if:

~

"'-

::::.

""

""'-"-

FIGURE 15 - POWER DISSIPATION

J.

I
R/IJA = 16"CIW_
____ R/lJA=6Il"CIW
INa Heat Sink! -

F:::.;;

,,,

TC. CASE TEMPERATURE I'C!

I

""",de

Rated VR Apph.d

Square Wave

FIGURE 14 - CURRENT DERATING. AMBIENT

I

~

500

i'-..dC

"'-

vF INSTANTANEOUS VOLTAGE IVOLTS!

10

300
400
VR. REVERSE VOLTAGE (VOLTS!

,

70
l:!
a:

2

O.1

ie
~

0.7

I

25'C

J.-

FIGURE 13 - CURRENT DERATING. CASE

.~

o. 5

~

10

/

/ /

-

c:;;;;-

I

/ II

~

l00"C

0.2
0.1
0.04
0.02
0.01
100

/

/

/ I

0

II

/

-

TJ lSO'C

20
10
4.0
2.0
1.0

.sf: 0.4

0
0

=

1... 200
100
z
40

I
M

e-M

W

MUR805 Series

FIGURE 16 - THERMAL RESPONSE

8

~

lo

:;;
~

O. 5

0
D

0.5

i5
~

z

10.1

~ 0.2
in

l - f-

~ O. 1

;;/.

v

~

t::: v
Z/iJC(t) = r(t) R/iJC
R/iJC = 1.5 'CW Max
D curves applv for power
pulse train shown
-~11-1
read time at T,
t2~

I---

P(pk)

tJUl

0.05
I-""

!z

~ 0.02 .........

g~ 0.01
cg

~

-f::::. r;-

0.01

:;;

i

.-

......

0.01

V

Single Pulse

Duty Cycle, D = 'ln2' TJ(pk) - TC = P(pk) Z/iJC(t)

I I III

11111
0.02

0.05

0.1

0.2

0.5

2.0
I. TIME Im,l

1.0

FIGURE 17 loOK

300

10

-

1--

1.0

--

-r-.

5.0

10

I

III II
50

20

100

200

500

lK

TYPICAL CAPACITANCE

- - - - - MUR820 thru MUR860
MUR805 thru MUR815
MUR870 thru MUR8100
TJ=25'C

-

-

'''f-....

10
VR. REVERSE VOLTAGE (VOLTS)

3-267

100

II

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

MUR870E
MUR880E
MUR890E
MUR8100E

Switch mode Power Rectifiers
Ultrafast "E" Series
w/High Reverse Energy Capability

MUR81DOE 18 a
Motorola Preferred Device

· .. designed for use in switching power supplies, inverters and as free wheeling diodes,
these state-of-the-art devices have the following features:
•
•
•
•
•
•
•
•
•
•

ULTRAFAST
RECTIFIERS
8.0 AMPERES
700-1000 VOLTS

20 mjoules Avalanche Energy Guaranteed
Excellent Protection Against Voltage Transients in Switching Inductive Load Circuits
Ultrafast 75 Nanosecond Recovery Time
175e C Operating Junction Temperature
Popular TO-220 Package
Epoxy Meets UL94, Vo @ 1/8"
Low Forward Voltage
Low Leakage Current
II1I...I
High Temperature Glass Passivated Junction
0....,
0
Reverse Voltage to 1000 Volts

II

CASE 2218-02
T0-220AC

MAXIMUM RATINGS
MUR
Rating
Peak" Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current Total Device, (Rated VR), TC
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz), TC

= 150·C

= 150·C

Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz)
Operating Junction Temperature and Storage Temperature

Symbol

870

880

890

8100

Unit

VRRM
VRWM
VR

700

BOO

900

1000

Volts

IF(AV)

B.O

Amps

IFM

16

Amps

IFSM

100

Amps

TJ, Tstg

-65 to +175

·C

THERMAL CHARACTERISTICS
Maximum Thermal Resistance, Junction to Case

2.0

ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)
(iF = 8.0 Amp, TC = 150·C)
(iF = B.O Amp, TC = 25eC)

vF

Maximum Instantaneous Reverse Current (1)
(Rated dc Voltage, TC = 100·C)
(Rated dc Voltage, TC = 25·C)

iR

Maximum Reverse Recovery Time
(IF = 1.0 Amp, di/dt = 50 Amp/!'s)
(IF = 0.5 Amp, iR = 1.0 Amp, IREC

trr

Volts
1.5
1.B

pA
500
25
ns
100
75

= 0.25 Amp)

Controlled Avalanche Energy
(See Test Circuit in Figure 6)

WAVAL

111 Pulse Test: Pulse W,dth = 300 "s, Duty Cycle'" 2.0%.
SWITCHMODE is a trademark of Motorola Inc.

3-268

20

mJ

MUR870E, MUR880E

100

r- 'The curves shown are typical for the highest voltage
~ device in the voltage grouping. Typical reverse current
lK '= for lower voltage selections can be estimated from
400 ~ these same curves if VR is sufficiently below rated YR.

0
50

1/V

20

V
/

10

/

)

/ Jv

/

/

~
a:
u

TJ = 175'C

V 100'C V

II

II

w

0.4
O. 2

....- 4c

0.04
0.02
0.01

/

o

200

25'C/

v

V

I'..

15
a:

/

II

/

a:
u

:::>

o

II

Rated VR
Applied

"-

f'.- f'\ dc

"

Square.......
Wave

~

a:

""'- "'-

II!

"""

~

/

0.6

lK

10

~ 9
~

w

0.4

800

600
400
VR. REVERSE VOLTAGE (VOLTS)

Figure 2. Typical Reverse Current*

II /

I

L..--"

.Ji: 0.1

J

I

0.2

-

1/

1

ffi
a:;

}

0.3

100'C

II

J /
I
1/

-

150'C

~

t--

17

/

)

I--'

10

:::>

/

I

TJ - 175'C

~

1!z

/

a:

0.1

I

200
100

30

:it

0.8
1.0
1.2
1.4
vF. INSTANTANEOUS VOLTAGE (VOLTS)

1.6

~1

1.8

if:

o

150

140

Figure 1. Typical Forward Voltage

160
TC. CASE TEMPERATURE ('C)

~

"'\
180

170

Figure 3. Current Derating, Case
10

9

k(JJA!

8

...........

r-....
.......

4

f==

-- --

de

I--

2

Square
1J- Ware
20

- - - R(JJA = SO'CIW(No Heat Sink) -

dc

7
61-- ............
Square ..........
5 ' - - Wave

I--

" ".........

13
12
~ 11
!;;: 10
~


u
w

/ /

II

150·~

TJ

50
20
10
5.0

~
a:

VV I

20

j

TYPICAL REVERSE CURRENT'

~

160

~

180 200

3-273

0

~~-L

o

____L-__-L__~~__-L__~____-L__~

2.0

14
4.0
80
10
12
60
IFIAV). AVERAGE FORWARD CURRENT lAMPS)

16

II

MUR1505 thru MUR1560
MUR1520. 1530. 1540

FIGURE 6 - TYPICAL FORWARD VOLTAGE

FIGURE 7 - TYPICAL REVERSE CURRENT'

100

100

50

TJ

30

l00"C

= l5O'C

~~

VV /

20

/ 1/ /

. 0

/ /

I

0.3
0.2

0.1
0.2

II
0.4

I

I

12

G

10

~

Rottd Voltage Applied

~2.0

0.6
0.8
1.0
1.2
vF. INSTANTANEOUS VOLTAGE IVOLTS)

1.4

1.6

JF

12

........
"l
a - ... "" I""'--."'" K
~
r-.J'"
"" "
III
de

/

~ 2.0

~

j!:

RIAJA

= 5O'CIW

~ 10r---~--_+----~--~~~~~~--~--~

f--

'.0

~ aOr---~--~~~~~~--_+----~--~--~

!4.0I---.. . .

y7f,.,-£::A!=:..-___I--+_-_I_-+-__I

~
~

""""'" ....

w

16r---r---.---,---~---r---r~~---,

Ii

I--

~

~

0 As obtained in free air. no heat sink
o ~ ~ 50 ~ m

180

~~ 14r---r---r---r---r---~~~

~ 6.0

de

180
170
TC. CASE TEMPERATURE lOCI

~ 12

f--

5?

Square Wav.

150

,

~

FIGURE 10 - POWER DISSIPATION
-

I

-

,,\.

0
140

RIAJA = 16'CIW
as obtained from
a small TO·220
Heat Sink

de

~'\.

"\

'" 4.0
~

I

4.0

"

5!
~ 6.0

~

ffi

450 500

squorew...~

0

I

8.0 Square Wave

~

I"

1.

FIGURE 9 - CURRENT DERATING. AMBIENT

!Z 10

"'"'" r--..'"

~ 14

14

~
~

150 200 250 300 350
VR. REVERSE VOLTAGE (VOLTS)

~ 16

I

I I

100

50

FIGURE 8 - CURRENT DERATING, CASE

I

I II

=

rated VR.

I

II

I25'C

*The curves shown are typical for the highest voltage device in the
voltage grouping. Typical reverse current for 'ower voltage selections
can be estimated from these same curves if VR is sufficiently below

/ / /
'/
I
/ /

II

~

il:ili

'/

II

rJ~~

0.2
0.1
0.05
n,

:I I J

10

~

50
20
10
5.0
2.0
1.0
0.5

~

'C

S

~

~

~

~

2.01--~iI'S~4--+-___I~-+_-_I_-+-__I

E O~~~~~~~~~~~~~~~~
o
4.0
6.0
8.0
10
12
14
16
IFIAY). AVERAGE FORWARD CURRENT (AMPSI

TA. AMBIENT TEMPERATURE I'C)

3-274

MUR1505 thru MUR1560
MUR1550. 1560

FIGURE 11 - TYPICAL FORWARD VOLTAGE

FIGURE 12 - TYPICAL REVERSE CURRENT'

200
100

100

50

1
....

TJ :.'~'C

30

ffi

V t/ V,fC

20

g§
::::I

u

V V L..4"c
'/ V '/

10

, ,
I

llj

~
5

,

~

~

TJ

§

&ii

15O"C
l00'C

25'C

~

~

~

~

~

~

~

~

~

~

VR, REVERSE VOLTAGE (VOLTS)

/

I

50
20
10
5.0
2.0
1.0
0.5
0.2
0.1
0.05
0.02

*The curves shown are typical for the highest voltage device in the

I

voltage grouping. Typical reverse current for lower voltage selections
can be estimated from thasa lame curves if VR is sufficiently below

// /

ralad VR.
FIGURE 13 - CURRENT DERAnNG. CASE

// /

16

1'4
!z

a
II!

I I
II ,/

0.3
0.2

0.2

8.0

i2

8.0

'"

1.0

1.2

1A

1.8

vF,lNSTANTANEOUS VOLTAGE (VOLTS)

}

t'--.""-l\.

~

Riled Voltage Applied

~2.0

0.8

~

SquareWa~....... I\.

4.0

0.6

0.4

i

........

1

I

I

II I

10

Q

/

I I

0.1

I

12

.........

~

0
1~

150

lro

170

Teo CASE TEMPERATURE I'C)
FIGURE 15 - POWER DISSIPATION

FIGURE 14 - CURRENT DERAnNG. AMBIENT

10

ie
~
~ 9.0
~ 8.0 --+..

Square Wave

17.0

~
~
~

3.0

RSJf! s lrim .'Obtain!, _

d"

" "-I'.

'<'

6.0

frvm I amln ro.m

HeltSink

" ,'-'"

-

-

I'..:

5.0
Ii! 4.0

l!!

de

~

--

~

2> t-.
~ 2.0
ReJA=N
~1.0 AI obtained in free lir, no hili sink.......::: ::::-.... ~
.If. 0
~~
Square WINe

o

~

~

ro

_

,~

~

~

~

~

~

~

TAo AMBIENT TEMPERATURE re)

3-275

'\

180

•

MUR1505 thru MUR1560

a

~

~~

FIGURE 16 - THERMAL RESPONSE
1.0

0

O.S

0.5

~
~
~

~

~

0.11

0.2

gj

~ f-"

o. 1

-

- ...--

~

fat;
0.01

--::::

.p(pt)

~ 0.05

!Z

lJ;!
0.02 ~
z

......

V

~

~ 001

~ . 0.01

I I

O.OS

Duty Cycle. 0 = 11'12

TJlpkl- TC" P/pk,Z9JCII)

putse Ir'In shown
rNdllmealTI

II III

0.1

0.2

II

1.0

O.S

rfllRWC

o

~;,:j

si~~le louise

=

RtuC = 1.S"CrNMax
turves.pply for power

111111
0.02

z8JCltl

tIUl

2.0
t, TIME Imsl

S.O

I I

III I

so

20

10

FIGURE 17 - TYPICAL CAPACITANCE

lK
500

~200

~

100

~
:: SO
u

- --

TJ

2SoC

r-

r-

<3
20
10
1.0

2.0

S.O

10

20

VR, REVERSE VOLTAGE IVOLTSI

3-276

SO

100

100

200

500

lK

MURl605CT
MUR1610CT
MUR1615CT
MUR1620CT

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

MURl630CT
MUR1640CT
MUR1650CT
MUR1660CT

•

_mod_

IIIUR162OCT,IIIUR184OCT III1d IIIUR1680CT

_1II0t0r01.

ULTRAFAST
RECTIFIERS

SWITCHMODE POWER RECTIFIERS

8 AMPERES

• .. designed for use in switching power supplies, inverters and
as free wheeling diodes, these state-of-the-art devices have the
following features:

50-600 VOLTS

• Ultrafast 35 and 60 Nanosecond Recovery Times
• 175'C Operating Junction Temperature
• Popular TO-220 Package
• Epoxy meets UL94, Vo @ Yo"
• High Temperature Glass Passivated Junction

II

• High Voltage Capability to 600 Volts
• Low Leakage Specified @ 150'C Case Temperature
• Current Derating @ Both Case and Ambient Temperatures

I

CASE 221A-06
To-Z20AB
PLASTIC

MAXIMUM RATINGS
MUR
Rating

Symbol 16D5CT 1610CT 1615CT 1620CT 1630CT 1640CT 1650CT 1660CT Unit

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current
Total Device, (Rated VR), TC = 150'C

VRRM
VRWM
VR
Per Leg
Total Device

Peak Repetitive Forward Current
Per Diode Leg
(Rated VR. Square Wave. 20 kHz). TC = 150'C
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions hallwave.
single phase. 60 Hz)
Operating Junction Temperature and
Storage Temperature

50

100

150

200

300

500

400

600

Volts

IF(AV)

8.0
16

Amps

IFM

16

Amps

IFSM

100

Amps

TJ. Tstg

-65 to + 175

'C

THERMAL CHARACTERISTICS. PER DIODE LEG
Maximum Thermal Resistance. Junction to Case

3.0

'CIW

2.0

ELECTRICAL CHARACTERISTICS PER DIODE LEG
Maximum Instantaneous Forward Voltage (11
liF=8.0Amp. TC=l50'C)
liF=8.0 Amp. TC=25'C)

VF

Maximum Instantaneous Reverse Current 111
(Rated de Voltage. TC= 150'C)
(Rated de Voltage. TC=25'C)

iR

Maximum Reverse Recovery Time
(IF= 1.0 Amp. di/dt=50 Amp/l"')
(IF = 0.5 Amp. iR = 1.0 Amp. IREC = 0.25 Amp)

trr

Volts
0.895
0.975

1.00
1.30

1.20
1.50

250
5.0

500
10

500
10

pA.

ns
35
25

(1)Pulse Test: Pulse Width =300 ,.... Duty Cycle "'2.0%

3-277

60
50

MUR1605CT thru MUR1660CT

MUR1605CT, 1610CT AND 1615CT
FIGURE 2 - TYPICAL REVERSE CURRENT, PER LEG'

FIGURE 1 - TYPICAL FORWARD VOLTAGE, PER LEG
100

'The curves shown are typical for the highest voltage
device in the voltage grouping. Typical reverse current
for lower voltage selections can be estimated from
th~same curves HVR is sutrrcienfly below rated VR.

70

50

10

~

7.0

:$

..

..
a:
::>
u

5.0

if2

3.0

2

2.0

en

z~
~
3!;

a:
a:

::>
u

/ V

w

en
a:

I / /

~

a:

J!:

I

I

I

I

I

I I :/
I

I J

'"~

I!l

I

ffi

OA

0.2

0.6

14

::E
:$ 12

....z

......
~

~

a:

..... "
10 I - - ""'

::>

u

0.8

1.0

1.2

.. 8.0

ie

i....

-

to

4.0

~ 2.0

-

..........

5.0

-

Squara Way; - -

o

20

40

~

~

~

~

Rated VR Applied

"'"

~e

r-....".

""- "'-.

"'"

"- r-...."'-.

Square Wave

140

-

; 9.0
:; 8.0

'"~

7.0

~

6.0

'"
a:

5.0

...!;i!

.......

~

~

~

~

60
80 100 120 140
TPo, AMBIENT TEMPERATURE 1°C)

....
~

~
~

150
160
TC CASE TEMPERATURE 1°C)

170

"

180

~ 10

." "-

-- -- ---de

50
50 ~ ~
VR. REVERSE VOLTAGE IVOLTS)

3.0

j

~
...

I

]; 0

.1

I

......... ..........
f--- Square W~ ..........

6.0

40

FIGURE 5 - POWER DISSIPATION, PER LEG

R8JA; IsoC/W- , - ---RBJA; SooC/WINo H.a..ink) - I--

~

~

2.0
..... 1.0

I

r---

o

7.0

FIGURE 4 - CURRENT DERAnNG, AMBIENT, PER LEG
ii;

-

./

........

25'C

6.0

VF,INSTANTANEOUS VOLTAGE IVOLTS)

...

I-""

~ 4.0

II 1 /
I I
:
I
I
I

0.2

0.1

Il5

I

0.3

./

l00'C

~~ 9.0
8.0

0.7

I

Tr175'C _

10

z

0.5

==

FIGURE 3 - CURRENT DERAnNG CASE, PER LEG

I

/'00'C / 25'C

TJ=175'C /
1.0

.~

~

V/ /

20

i!
::E

1

"/V

30

1.0K
400
200
100
40
20
10
4.0
2.0
1.0
0.4
0.2
0.1
0.04
0.02
0.01

~
160 180 200

,/

TJ = 175'C
Square Wave

V
V V

2.0

V ./
/'

/ ' de

,/>V

4.0
3.0

/'

~

~~
~ 1.0
,/1"'"
0
o 1.0 2.0 3.0 4.0 5.0 S.O 7.0 B.O
'FIAV). AVERAGE FORWARD CURRENT lAMPS)

E

3-278

9.0

10

MUR1605CT thru MUR1660CT

MUR1620CT, 1630CT AND 1640CT
FIGURE 6 - TYPICAL FORWARD VOLTAGE. PER LEG

FIGURE 7 - TYPICAL REVERSE CURRENT. PER LEG'

100
'The curves shown are typical for the highest voltage
device in the voltage grouping. Typical reverse current
for lower voltage selections can be estimeted from
these curves if VR is sufficiently below rated VR.

70

loOK
400

50

....

30
20

/

~
S

10

:;;

I-

V

V

!i;:

/

/

1 ~~~

./

. / ,,/

./

/

I

II

3.0

/

TJ-175'j

:::>

. 2.0

I

1000e

/

~

1.0

.!f-

/

0.3

1/

/ I

0.1

0.4

V

~

~

8.0

7.0

~~

6.0

6

5.0

"'"

ffi

u

c

~

f2
w

~

ffi

/

~
1.0

1.2

1.4

J!;

1.6

~•

~
.;;;:

Square Wave

1.0
140

t50
160
TC, CASE TEMPERATURE

1"--..
r-- -~ ...........
....... ,......."
6. Of--- - Wave
r--.... I'..
r--.. t-...
-d~
4.

0

w

~

50

m m

5.0

l(

4.0

w

'"~

~

'it

Ioo~

~

f--~

m

~

~

TA, AMBIENT TEMPERATURE I'C)

TJ

170

1°C)

= m'c

/
Square
Wavy

6.0

IX:

~

- -- --- -50

7.0



~

Rated VR Applied

vF, INSTANTANEOUS VOLTAGE IVOLTS)

~
~

~

9.0

o

::t

0.6

~

FIGURE 8 - CURRENT DERATING. CASE:PER LEG

I /

0.2

m

10

/

I

50

VR. REVERSE VOLTAGE (VOLTS)

z

I

-"'.
o

25'C

0.7
0.5

-

.......

.......

0.04
0.02
O.Ot

/

/ II

z

~

u
c
a:

TJ m'c
150'C-

40

~ 4.0

/

!/

a~

=

M

W

MUR1605CT thru MUR1660CT

MUR1650CT AND 1660CT
FIGURE 12 - TYPICAL REVERSE CURRENT, PER LEG-

FIGURE 11 - TYPICAL FORWARD VOLTAGE, PER LEG

100

~ 1= 'The curves shown are typical lor the highest voltage

f-- I- device in the voltage grouping. Typical reverse current

0
1.0K

so
TJ= 15O'C
30

VV

20

II

i~

7.0

a

5.0

l00"C;; ~ V

/

.~

/

~

a

/

~
_

Tr15O'C
l00"C

-

/

/ II

V

I

200

100

~

~_.

'"is
0:

0.6

.

~

'"~
0.8

"-de
""- ,,,-

6.0

'" ""'-

5.0

1.2

1.0

1.4

1.8

1.6

~
~

1?

'\ ~
Square Wave

3.0
1.0
140

150

!Z

.0
9
8.0

~

7.0

a

6. 0

a:

I:

"i--.
Square

Or-- -Wre

0

~
~

3.0
2.Ot---

~ 1.ot---t-wr
jf:
0
20
~

I
Square
Wave/,

I............

l'..

""'" -...

m w

,7

~

"- f'.,.

00
00
~
TA. AMBIENT TEMPERATURE (OC)

~

~

W

~.

~

3-280

/" /"
/

/

V

/"
~c-

17

/'

/

V

........-.:V

~V"

0~

o

~
/

5

.........

F-:: ::: ... l~

180

T

!i

"- ..........

"""
~~q1a;:: -- -de

"

FIGURE 15 - POWER DISSIPATION, PER LEG
14
13
~
12
is 11
~ 10
en 9. 0
B. 0
a:: 7.0
6.0
w
5.0
~ 4.0
~ 3.0
~ 2.0
- 1.0

I
=
---- ROJA = 60°CIW
(No Heat Sink)

,..........

170

u;

ROJ~ l~oCiW

I

~c

160

~

TC. CASE TEMPERATURE (DC)

FIGURE 14 - CURRENT DERATING, AMBIENT, PER LEG

i

"'S

2.0

vF. INSTANTANEOUS VOLTAGE (VOLTS)

10

000

Rated VR Applied

8.0

~ 4.0

o.2

0.4

soo

400

~ 9.0

I

/ /
II /
,v II

- ---

FIGURE 13 - CURRENT DERATING, CASE, PER LEG

II

I

o.3

-

25'C

300

~ 7.0

I II

==
-

10

I

I

r==
-

VR. REVERSE VOLTAGE (VOLTS)

I

O.7
O.5

;..-

0,01

/

/ /

1.0

0.2
0.1
0.04
0.02

/

J
/

2.0

O.

~

20
10
4.0
I2.0
1.0

~

25°C

~

~

!Z

V

/

1/

/

~

~
;;:;

V

/

1:
.$ 0.4

Ii1
~
a: 3.0
2

~

V

/ /

0

~

P~

I=lor lower voltage selections can be estimated Irom=
F== 1=
these same curves il VR is sufficiently below rated VR.

1.0

V"
TJ = 175°C f - -

2.0
3.0 4.0
5.0 6.0 7.0
8.0
IF(AV). AVERAGE FORWARD CURRENT (AMPS)

9.0

10

MUR1605CT thru MUR1660CT

,.a:~
0

;;;

FIGURE 16 - THERMAL RESPONSE
0

O.5

tl
:z

~ O.2

'"

~

O. 1
ZWCUI"IIURruc
DCUNes app1v lor power
pulSelr,Mst!own

!§§~~~!I

readllmealT,

FIGURE 17 - TYPICAL CAPACITANCE. PER LEG
1.0K
--- MUR1620CT thru 166OCT
MURI60SCT lhru 161 SCT
300

~
w

j;;!100

-

1--

I

-

13

TJ=25'C

1"'-_

-

c.i 30

10

1.0

10
VR. REVERSE VOLTAGE (VOLTS)

3-281

100

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

MUR1605CTR
MUR1610CTR
MUR1615CTR
MUR1620CTR

Switchmode
Dual Ultrafast Power Rectifiers
· .. designed for use in negative switching power supplies, inverters and as free wheeling diodes. Also, used in conjunction with common cathode dual Ultrafast Rectifiers,
makes a single phase full-wave bridge. These state-of-the-art devices have the following
features:
•
•
•
•
•
•
•
•

MUR1620CTR 18 •
Motorol8 Preferred Devleo

ULTRAFAST RECTIFIERS
16 AMPERES
50-200 VOLTS

Common Anode Dual Rectifier (8.0 A per Leg or 16 A per Package)
Ultrafast 35 Nanosecond Reverse Recovery Times
Exhibits Soft Recovery Characteristics
High Temperature Glass Passivated Junction
Low Leakage Specified (i, 150°C Case Temperature
Current Derating (i, Both Case and Ambient Temperatures
Epoxy Meets Ul94, Vo (i, 1/8"
Complement to MUR1605CT Series of Common Cathode Devices

II

CASE 221A-06
TO-22DAB

MAXIMUM RATINGS (Per Leg)
MUR
Symbol

1605CTR

1610CTR

1615CTR

1620CTR

Unit

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

50

100

150

200

Volts

Average Rectified Forward Current, (Rated VR), TC ~ 160'C
Per Leg
Per Total Device

IF(AV)

Rating

Peak Repetitive Surge Current, Per Diode
(Rated VR, Square Wave, 20 kHz), TC ~ 140'C

IFM

16

Amps

IFSM

100

Amps

TJ, Tstg

--65 to +175

'c

Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave,
single phase, 60 Hz)
Operating Junction Temperature and Storage Temperature

Amps
8.0
16

THERMAL CHARACTERISTICS (Per Leg)
Thermal Resistance -

Junction to Case

2.0

ELECTRICAL CHARACTERISTICS (Per Leg)
Maximum Instantaneous Forward Voltage (1)
(iF ~ 8.0 Amp, TC ~ 25'C)
(iF ~ 8.0 Amp, TC ~ 150'C)

vF

Maximum Instantaneous Reverse Current (1)
(Rated dc Voltage, TC ~ 25'CI
(Rated dc Voltage, TC ~ 150'CI

iR

Maximum Reverse Recovery Time
(IF ~ 1.0 Amp, di/dt ~ 50 Amp/Jl.s)
(IF ~ 0.5 Amp, dildt ~ 100 Amp/Jl.sl

trr

Volts
1.2
1.1
Jl.A
5.0
500
ns
85
35

111 Pulse Test: Pulse W,dth -- 5.0 ms, Duty Cycle' 10%.
Switch mode is a trademark of Motorola Inc.

3-282

MUR160SCTR, MUR1610CTR, MUR161SCTR, MUR1620CTR

100
70
50
TJ = 17~c.p

20

I~

~

10

~/

!$

/

~

iQ

50
20

10

W/
~
:::l

u

~

III

u

rH -

'"~a:

/,

a:

12
:::l

~
z:
z:

""
""

F

'The curves shown are typical for the highest ==

~

0.2
0.1

g§ 0.5
a:w~ 0.05
a: 0.03

H50"C

11OO"C

il=iiSUiffiiC!iein~tiIY!bie~IO~Wir~a~te!diV~R~'iiiilili=

.£i: 0.02

III' I
(' I
I

V>

~110'C

I

~ reverse current for lower voltage selections can. ~
E
be estimated from these same curves if VR is

V '/

IJ

a:

:::l

= 175'C

~ voltage device in the voltage grouping. Typical;:::

f-

iE
a:

~=

1=='

~ 100~~

~

30

::;;
S-

ij)100011111~1~_

!:i 500
~ 200

0,01

0

20

40

60
80 100 120 140
VR, REVERSE VOLTAGE IVOLTS)

160

180

200

Figure 2. Typical Reverse Current* (Per Leg)

1/25'C

V>

~

.~

~

0.7

16

~ 14

0.5

I

~
a:

12

a

10

RATED VR APPLIED
ROJC = 2'CW

a:

0.3

" r0.

'"
~
a:

0.2

"

12
w

~

~

0.1

o

0.4

0.2

0.6

O.B

1.2

1.4

WAVE

~
~

Figure 1. Typical Forward Voltage (Per Leg)

I

~

'\

~ 0
140

VF, INSTANTANEOUS VOLTAGE IVOLTSI

t\.DC

SQUARE~

150

160
170
TC, CASE TEMPERATURE I'C)

180

Figure 3. Current Derating, Case (Per Leg)

V

TJ = 175'C

-

/

ROJA = 16'CW

""-. r-...DC
..........

/

SQUARE
WAVE/V /

1"--..." I'....
SQUA~ i'...
WAVE
~~

50

75

100

125

V'

V ........V DC

~

25

V

/
/

~

"

150

TA, AMBIENT TEMPERATURE I'CI

~~

175

200

Figure 4. Current Derating, Ambient (Per Leg)

~

~~

14
10
12
IFIAV), AVERAGE FORWARD CURRENT lAMPS)

Figure 5. Power Dissipation (Per Leg)

3-283

16

MUR1605CTR, MUR1610CTR, MUR1615CTR, MUR1620CTR

o

~

1

-

;:;
tj

::;;

ffi 0.05

i=

iii

0.02

~ 0.01
~

~

~

f-

0.1

<[

IZ

~~

AI.

z

>! 0.2


u

1

U)

=>

fa
z
z

1

0.05
0.02
1SO

,

200

250

300

350

...........

SQUARE WAV~"

I

I

1/ :1

O.3
O. 2

O. 1
0.2

~

I

0.4

650

,,"" ,

I

il I

600

"\

/

I I

550

..........

~~

I

500

Figure 12. Typical Reverse Current*

i;

I

450

-The curves shown are typical for the highest voltage device in the
voltage grouping. Tvpical reverse current for lower voltage selections
can be estimated from these same curves if VR is sufficiently below
rated VR.

~

O. 5

400

VR. REVERSE VOLTAGE (VOLTSI

I
If

U)

.!?

25°C

~ O. 2
.Jt. O. I
a:

/ / II
/ / /

I
~

I

I

<>

I

150·C

100·C

m
0.5
a:

Ac

0-

Il

TJ

50
20

50

RATED VOLTAGE APPLIED

~

'\.

1.6

0.6
0.8
1
1.2
1.4
VF.INSTANTANEOUS VOLTAGE (VOLTSI

150

160

170

180

TC. CASE TEMPERATURE (·CI

Figure 11. Typical Forward Voltage

Figure 13. Current Derating. Case

'" ""de

~

SQUAREWAV'E"<

~

Rrul =

~

"'"f'.-."-

FROM A SMALL TO·220
HEAT SINK

'" '"

WCW

t--.

~

50

50

12

z

...en

!i

10

...~

~

r-:::

~

14

0

~

m

w

C!>

«

" ~~

~
RruA =
AS OBTAINED IN FREE AIR. NO HEAT SINK
~

~~

a:

i'-,."'

SQUARE WAVE?> I---

_ 16

lJCW A~ OBTAiNED

ffi

~

~
E

f=::::: ~

~

~

~

~

16

TAo AMBIENT TEMPERATURE (·CI

Figure 15. Power Dissipation

Figure 14. Current Derating. Ambient

3-290

MUR3005PT thru MUR3060PT

a

~
~

;;;

1
0

o. 5

0.5

w
u

~ o. 2

~

;;;.

0.11

i.-- r-'

o. 1

......

~ ~ ......

~5

V

~
I...,..... ::::-

:;;

tJUl
-rl-j

ffi 0.05

i=
!Z

",.....

~ 0.02~
~
1=.0.01
~ 0.01
0.02

V

---

"S:NGL~ PULSE

DUTY

II II
0.05

0.1

0.2

Z8JC(11 = r!11 R8JC
R8JC = 1.5 'CIW MAX
oCURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READTIMEATTl

, P(pkl

~

0.01

0.5

CYCL~~ 0 = 11/12 IIII
10

2
I, TIME {msl

TJ(pkl - TC = P(pkl Z8JC(11

II II

20

50

Figure 16. Thermal Response

lK
500

t--~200

-

.

r- J-..

~ 100

g
~

25"C

r- r-

w

<'i

TJ

50

20
10

1

5
10
20
VR. REVERSE VOLTAGE (VOLTSI

50

Figure 17. Typical Capacitance (Per Leg)

3-291

100

100

200

500

lK

MOTOROLA

... SEMICONDUCTOR . . . . . . . . . . . . . . . . . . . . . . . . . .•
TECHNICAL DATA

MUR3020
MUR3030
MUR3040

SWITCHMODE
Power Rectifiers

MUR3020 and MUR3040

· .. designed for use in switching power supplies, inverters and as free wheeling diodes,
these state-of-the-art devices have the following features:
•
•
•
o
•
•

Ultrafast 100 Nanosecond Recovery Time
175°C Operating Junction Temperature
State-of-the-Art Single TO-218 Atlas Package
High Voltage Capability to 400 Volts
Low Forward Voltage Drop
High Temperature Glass Passivated Junction

are Motorola Preferred Devices

ULTRAFAST RECTIFIERS
30 AMPERES
200-400 VOLTS

O--I.~II-I- 0

II

MAXIMUM RATINGS
Symbol

Max

Unit

VRRM
VRWM
VR

200
300
400

Volts

Average Rectified Forward Current
TC = 70"C

IFIAV)

3D

Amps

Peak Repetitive Forward Current
(Rated VR Square Wave 20 kHz) TC = 15O"C

IFRM

3D

Amps

Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions
halfwave, single phase, 60 Hz)

IFSM

300

Amps

TJ, Tstg

-65to +175

·C

Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

Operating Junction Temperature and
Storage Temperature

MUR3020
MUR3030
MUR3D40

THERMAL CHARACTERISTICS
Thermal Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS
Instantaneous Forward Voltage
(IF = 3D Amp, TC = 10D"C)
(IF = 3D Amp, TC = 25"C)

vF

Instantaneous Reverse Current
(Rated de Voltage, TC = lOD"C)
(Rated de Voltage, TC = 25"C)

iR

Reverse Recovery Time
(IF = 1.0 Amp dlldt = 15 Amplp.S

trr

Volts

1.4
1.5

SWITCHMODE is • trademark of Motorola, Inc.

3-292

6.0
35

mA
pA

100

ns

MUR3020, MUR3030, MUR3040

TYPICAL ELECTRICAL CHARACTERISTICS,
100

~

,----

;:;;

~

I-

100"C

I

./ / . /

25"C

t---

1.5

VV

10

a::
a::
u

1000

===

150"C

/'

I----

iii
0-

l00"C

;:;;
=
w
a:
a:
::>
'-"
w

/

/ / /I

20

tn

a:

I

II

/

1/
I

I

I

0.2

-

0.05
0.02
0.01

I

I

/

if
:;
:$.

~

I

12

~

10

V"

180

200

1.4

" ,"-

de

~'\.

~"

~'\.

~

RA DVO[ AGE AP UED

~

1.6

I

'"

:ii:

0.6
0.8
1
1.2
INSTANTANEOUS VOLTAGE (VOLTS)

II

.......

SQUARE WAV

~w

I

0.4

"-

14

i1C

I / II
0.2

60
80 100 120 140 160
VR. REVERSE VOLTAGE (VOLTS)

16

a:
a:
a:

I I

40

::>

I I

0.2

0.1

II

I I

20

Figure 2. Typical Reverse Current (Per Leg)"

I

0.3

o

is sufficiently below rated VR-

/ ;/
I

0.1

II

I

0.5

2 'G- -

.......

*The curves shown are typical for the highest voltage device In the voltage grouping. Typical
reverse current for lower voltage selections can be estimated from these same curves If VA

I I

/

100'C I - -

0.5

~a:

c:r

TJ = 150'G ==

~

iI'

150

Figure 1. Typical Forward Voltage (Per Leg)

160
170
TC. CASE TEMPERATURE ('G)

~

180

Figure 3. Current Derating. Case (Per Leg)

,

I

r-- r"J
r-- I""'--...

.......

SQU REW !IE

I

u;-

I

!;2

I

R~A = 1~'C/W ~S OB+AINED1 -

"

......

"""C

'/

USING A SMALL FINNED
HEAT SINK.

1-0-.

r--

-

~

14

Q

12

en

10

~

-

~

c
a:

.......

"'."

-

~

...:::-.

~"w



2

Ml
a:

/ '/ J
'j /

0.5

a:: 0.2
a: 0.1
a:
- 0.05

I

1

I

I

if

I

a:~
a:

I

r

0.3

a~
i!(

I

I

I I

O.10.2

II I
0.4

100

0.6

150 200 ~ 300 350 400
VR. REVERSE VOLTAGE (VOLTS)

,

16

~

:$.

I I

o. 2

50

450

500

Figure 7. Typical Reverse Current (Per Leg)"

I

5

/

-The curves shown are typical for the highest voltage device In the voHage grouping. Typical
reverse current for lower voltage selections can be estimated from these same curves It VA
Is sufficiently below rated VR-

I I -'

I

,-

100°
; 25°(; .===:

t)

0.02
0.01 0

J J

..

1 ~oC

TJ = 150°C

0.8

1.2

1.4

1.6

VI'- INSTANTANEOUS VOLTAGE (VOLTS)

~

~

14

.......

12

,"i'..'\ de

~

" "\..

10

SQUAREWAV
8

'\

~\.

'\

4

RA ED VOL AGEAP UED

Figure 6. Typical Forward Voltage (Per Leg)
150

,

~

180

160
170
TC. CASE TEMPERATURE (0C)

Figure 8. Current Derating, Case (Per Leg)

I

~ ~e

..........

":-.....

:;uu ~RE:W,\vE:

R~A = l~oCJW As OBTAINED 1 -

-1 USING
A SMALL FINNED
~
HEAT SINK.

z

(RESISTIVE-INDUCTIVE LOAD) I PK = 11
AV
r-~~-I-7""I
(CAPACITIVE LOAD) I PK =5
de
AV
-!----,;<++--I---7"f-----l

a

12

~

10r---+----r---+~~~~r-~~---+--~

10

is

I~

.........

"'''

-

14

~

-

" '" "r-...

16r-----------------~------.-~.----,

~

~

"C

e

~

...... ~

SQUAREW VE-r-- ~
~
::""-0
~
ReJ~ =4O°CIW ..?-'"
I""'::: ~.~
AS OBTAINED IN FREE AIR
.......
WITH NO HEAT SINK.
20
40
60
80 100 120 140 160
TA. AMBIENT TEMPERATURE (0C)

......

180

4r---~~~~~~__Ir_--t---~__-r--~

:i(

~
200

Ll:'

Q.

2

4

6

8

10

12

14

IF(AV). AVERAGE FORWARD CURRENT (AMPS)

Figure 9. Current Derating, Ambient (Per Leg)

Figure 10. Power DIssipation (Per Leg)

3-296

16

MUR3060WT, MUR3040WT, MUR3020WT

MUR3060WT
200
100
50

100

<"
::1.

50

>=
zw

TJ=I~Of -

30

,/
.,r , /

20

/

~

/

/

100°C

c:
c:

t/ 4c
V

TJ = 150°C

20
10

:J
<.)

W

en
c:
w

~c

i'c:i:i
!i-

0.5

-

0.2
0.1
0.05
0.02
150

/

I

/

I

1i)

0.3

~
!z

O. 1
0.2

I II
0.4

14

~

12

G

10

c:

...........

450

500

550

600

650

•

..........

~
SQUA EWAV

'"

c:

~

I

I
I I

0.2

400

16

D..

!I

II I

350

Figure 12. typical Reverse Current (Per Leg)"

I

I I

300

-The curves shown are typical for the highest voltage device in the voltage grouping. Typical
reverse current for lower voltage selections can be estimated from these same culVes if VR
is suffICiently below rated VA-

I

0.5

250

VR. REVERSE VOLTAGE (VOLTS)

I II II
// /
I

200

/

25°C

f2

~

I

I

w

1.4

1.6

~
;r

" ~"
"-

"-l\.

6
4

~

RAT D VOLT. GE APpliED

;;C

0.6
0.8
1
1.2
vf, INSTANTANEOUS VOLTAGE (VOLTS)

Ne

~

o
140

Figure 11. Typical Forward Voltage (Per Leg)

150

180
170
TC. CASE TEMPERATURE (0C)

"

180

Figure 13. Current Derating, Case (Per Leg)

~ 10
::E

$.

~

r-...

I--r--..

~

c:

a

~

7
6

~

~

-de

w

~

/J FROM A SMALL TO·220

.........

SQUAREW~

'<

HEAT SINK.

2

~
:;.

-

de

14

z

N i"",,-

I'.. ~
"-.'

16

0

12

en
C

10

~
1i.i
c:
w

~

~

SQUARE WAVE:--r-,.....t>-~
RaJA = 6DoCrw'?/
-~,
~
~
AS OBTAINED IN FREE AIR
~
WITH
NO
HEAT
SINK.
~
~
;r 0
o 20 40 60 80 100 120 140 160 180
TA. AMBIENT TEMPERATURE (OC)

~

1i)

R~A = 16LCrw ~S OBTAINED I

de

D..

LOAD)

W

~W

"-

;;C

[
200

"-

D..

4
6
8
10
12
14
IF(AV). AVERAGE FORWARD CURRENT (AMPS)

Figure 15. Power Dissipation (Per Leg)

Figure 14. Current Derating, Ambient (Per Leg)

3-297

16

MUR3060WT, MUR3040WT, MUR3020WT

!

0=0.5

~ 0.5

~~

0.2

ill
a:

0.1

.....

'"1Ii! 0.05
a:i

!l1
~

~

0.02

I-'"

]..

p(Pk)lJ1SL

: 0.05
.1

w

F
t-

-- - -~ I-

0.\

~

......

0.01
0.01

........

0.02

~tJG

~~~

LSE

I 1
0.1

0.05

0.2

0.5

DUTY CYCLE, 0 = 11/12

J Il 10

2

ZruC(I) = r(l) ROJC
Rruc = 1.5°CfW MAX
o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME ATT 1
TJ(pk) - TC = P(pk) ZruC(I)

20

50

I, TIME (ms)

Figure 16. Thermal Response
lK

•

500

~

w
u

z

200

;;:

100

if

50

J = 25°

-r--

~

-I"-

<3

<3

d'

20

2

5
10
20
VR, REVERSE VOLTAGE (VOLTS)

50

Figure 17. Typical Capacitance (Per Leg)

3-298

100

II II

100

200

I

500

lK

MURSOOS
MURS010
MUR5015
MUR5020

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

•

MURS020 I••

•

•

Motorola Preferred Devlco

ULTRAFAST
RECTIFIERS
50 AMPERES
50 to 200 VOLTS

SWITCH MODE POWER RECTIFIERS
· .. designed for use in switching power supplies. inverters and as
free wheeling diodes. these state-of-the-art devices have the following features:

A~

• Ultrafast 50 Nanosecond Recovery Time
• Low Forward Voltage Drop
•

Hermetically Sealed Metal DO-203AB Package

Do-203AB
METAL

MECHANICAL CHARACTERISTICS
CASE: Welded. hermetically sealed
FINISH: All external surface corrosion
resistant and terminal leads are
readilv solderable
POLARITY: Cathode to Case
MOUNTING POSmONS: Any
MOUNTING TORQUE: 25 in-Ib max

MAXIMUM RATINGS
Rating

Symbol

Peak Repelltlve Reverse Voltage
Working Peak Reverse Voltage

DC Blocking Voltage
NonrepetltlVe Peak Reverse

MUR

Unit

5005

5010

5015

5020

VRRM
VRWM
VR

50

100

150

200

Volts

VRSM

55

110

165

220

Volts

Voltage
IF(AV)

50

Amps

Nonrepetltlve Peak Surge
Forward Current (half cycle,
60 Hz. Sinusoidal Waveform)

IFSM

600

Amps

Operating Junction and Storage
Temperature

TJ. Tstg

-55 to +175

°c

Average Forward Current

TC: 125°C

THERMAL CHARACTERISTICS
Rating
Thermal Resistance, Junctton to Case

ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage Drop

MaXimum Reverse Current @ DC Voltage

1.15
0.95
1.10
IR

(TJ = 25°C)
ITJ = 125°CI
MaXimum Reverse Recovery Time

Volts

vF

(iF: 50 Amp. TJ : 25°CI
(IF = 50 Amp. TJ = 125°CI
(IF = 100 Amp. TJ : 125°CI

trr

~A

10
10

mA

50

ns

(IF = 1.0 Amp. dl/dt = 50 Amp/~s. VR = 30 V.
TJ = 25°CI

3-299

•

MUR5005, MUR5010, MUR5015, MUR5020
FIGURE 1 - TYPICAL FORWARD VOLTAGE

FIGURE 2 - TYPICAL REVERSE CURRENT"
1000
500
300
ZOO
100
.3 50

100
TJ = 150°C

/

/

j

/

II
~

...5

10

~

0:

'-'

I

c

0:

I

Z5°C

20

~

/
I

'"

::>

S
z

I

/I

;:
z
;:
1.0

40

60
80
100
lZ0 140
VR. REVERSE VOLTAGE IVOLTS)

160

180

ZOO

"The curves shown are typical for the hIghest voltage device In the
voltage grouping. TYPical reverse current for lower voltage selections
can be estimated from these same curves If VR IS sufficiently below
rated VR.

I

II

~

0:

II

/

I

::>

'"
3E

100°C

10
~ 5.0
~ 3.0
~ 2.0
1.0
S- 0.5
0.3
O.Z
O. I

/

II

TJ = 150°C

Ia ~~

/25 0 C

/

~

cr

;;25°C

FIGURE 3 - CURRENT DERATING. CASE
70

I

.!f

.........

.......

I

II

Square

II

II

I

I

Wave

I.!.

I

,II
04

02

I

100

FIGURE 4 - POWER DISSIPATION

S
~ 60
z

50
Capacitive
Load
I
10
20/,

0:

...~
'"
~
~

~

I

30

I

I

I

I

I

I

20

/.

:....-: V

:.-'~ V
~~

10

~=5.0

...... .......
....... ......

170

180

300

~200
z

5 100

de

f
5

",

TJ = 175°C

-

70
50
TJ = 25°C

30

I

ZO

J

.JtI! ~

130
140
150
160
TC. CASE TEMPERATURE 1°C)

~

.......

.....

120

FIGURE 5 - TYPICAL CAPACITANCE

IAV

V

~

1000
700
500

ReslSllve
l. !..
Load - Square Wa~

51

is 40

0-

'\

1.2

06
0.8
1.0
vF. INSTANTANEOUS VOLTAGE IVOLTS)

i:i

.

Rated Voltage Applied

in 70

if

de

.......

I

10

10
20
30
40
IFIAV). AVERAGE FORWARD CURRENT lAMPS)

50

20

10

30

50 70 100
ZOO 300
VR. REVERSE VOLTAGE IVOLTS)

500 700 1000

FIGURE 6 - THERMAL RESPONSE

ffi

1.0

:l

-

~ 0.5
~ 0.3
~

l:1

O.Z

~

..,.-

Single Puis.

~ O.1 /

ZoJClt) = rlt) R6JC

~

ffi 0.05

:z:

:: 0.03

z

~ 0.02

~
'": 0.01
~
0.01

002

005

01

0.2

0.5

1.0

2.0
t. TlMElms)

3-300

5.0

10

20

50

100

200

500

100~

MOTOROLA

SEMiCONDUCTOR . . . . . . . . . . . . . . . . . . . . . . . .. .
TECHNICAL DATA

Designer'sTM Data Sheet
SCANSWITCHTM Power Rectifier

MUR5150E
Molorola Preferred Device

For Use As A Damper Diode
In High and Very High Resolution Monitors

SCANSWITCH
RECTIFIER
5.0 AMPERES
1500 VOLTS

The MUR5150E is a state-of-the-art Ultrafast Power Rectifier specifically designed for use as
a damper diode in horizontal deflection circuits for high and very high resolution monitors. In
these applications, the outstanding performance of the MUR5150E is fully realized when paired
with the appropriate 1500V SCANSWITCH Bipolar Power Transistor.
•
•
•
•
•

1500 V Blocking Voltage
20 mjoules Avalanche Energy Guaranteed
Peak Transient Overshoot Voltage Specified, 17 Volts (typical)
Forward Recovery Time Specified, 175 ns (typical)
Epoxy Meets UL94, Vo at 1/8"

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VRRM
VRWM
VR

1500

Volts

IF(AV)

5.0

Amps

IFRM

10

Amps

IFSM

100

Amps

Operating Junction and Storage Temperature

TJ, Tstg_

-65 to +125

°C

Controlled Avalanche Energy

WAVAL

20

mJ

Peak Repetilive Reverse Vollage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current, (Rated VR), TC
Peak Repetitive Forward Current, Per Leg
(Rated VR, Square Wave, 20 kHz), TC

=100°C

=100°C

Non-Repetitive Peak Surge Current
(Surge applied at rated load conditions hallwave, single phase, 60 Hz)

THERMAL CHARACTERISTICS
Thermal Resistance - Junction to Case

2.0

ELECTRICAL CHARACTERISTICS
Rating

Symbol

Maximum Instantaneous Forward Voltage (1)
(iF = 2.0 Amps, TJ =25°C)
(iF = 5.0 Amps, TJ =25°C)

vF

Maximum Instantaneous Reverse Current (1)
(Rated dc Voltage, TJ = 125°C)
(Rated dc Voltage, TJ =25°C)

iR

Typ

Max

1.7
2.0

2.0
2.4

100
10

500
50

Units
Volts

liA

Maximum Reverse Recovery Time (IF = 1.0 Amps, di/dt =50 Amps/lis)

trr

130

175

Maximum Forward Recovery Time (IF =6.5 Amps, di/dt = 12 Amps/lis)

tfr

175

225

ns

VRFM

17

20

Volts

Peak Transient Overshoot Voltage
(1) Pulse Test: Pulse Width

ns

=300 Ils, Duty Cycle :0:;; 2%

SCANSWITCH IS a trademark of Motorola Inc.

Preferred devices are Motorola recommended choices for future use and best overall value
Designer's Data for "Worst Case" Conditions - The DeSigner's Data Sheet permits the design of most circUits entirely from the Information presented. Limit curves - representing boundaries on
deVice charactenstlcs -

are given to facilitate "worst case" deSign.

3-301

II

MUR5150E

TYPICAL ELECTRICAL CHARACTERISTICS

~

~ 100

l;;
w

g§

20

G
c

10

.....: "

~

'"

TJ = 125°C ~ ~85°C./

II:

~

::::>

~

~

0.5

z

~

z

TJ=125°C

~
~

/
1.0

10

u
w

II:

f2

w

"

~

0.1

II:

w

[rj

~u.. 0.10.II
6

"

BO°C

-==

25°C

3.0

0.001 0

3.4

Figure 1. Typical Forward Voltage

II

ii)

~

TJ = 125°C
17.5

~

15

V

o

"'c-;;; 12.5

~

10

w

7.5

~w

~
;. 2.5

tile

:$.
"0..

(RATEb
RWC = .o°cm

ffi~

6.0

G
c

5.0

~

4.0

w

3.0

II:

f2

~W

~V

2

"'" "'- ","",

t'-...de
SQUARE
WAVE " "

2.0

~

4

5

B5

6

90

95

IF(AV). AVG FORWARD CURRENT (AMPS)

Figure 3. Forward Power Dissipation

250
225

u:-

200

.s

175

~

150

w
u

U

1E

125

;:§ 100
>- 75
u
50
25

~ "-

I

~1.0

~

i:L
3

300
'0

.s.

OV=240pF
100kHz,;;t,;; 1.0MHz

270

w

15

@ 150

II:

w

'"

II:

........

W

[rj

.......

120
90

II:

60
ir
II:

1'---

1
10
VR. REVERSE VOLTAGE (VOLTS)

Figure 5. Typical Capacitance

H

120

125

200
160~

VRfO

::;; 240
;:::
di/dt= l00N~s
... ~_ ~
210 r~~_
~
w
.--..
50N~s
180

to-.

"-

100
10.5
110
115
TC. CASE TEMPERATURE (OC)

Figure 4. Current Derating Case

'ri-~ldlL C~plCliA~C~ ~+ I

\

1.5K

V~AP~UED)

::;;

:$. 7.0

/de

/ /
/.V

0.9K
1.2K
0.6K
VR. REVERSE VOLTAGE (VOLTS)

~ B.O

/

V /"

SQUARE / "
WAVE

II:

0.3K

Figure 2. Typical Reverse Leakage Current

20

~

L--"'"

II:

1.4
I.B
2.2
2.6
vf, INSTANTANEOUS VOLTAGE (VOLTS)

1.0

=

......

0.01

II:

,/

/

0.2

-

100

w

II:
II:

25°C

5

fil

1000

«::L

50

>-

30

--

-,.....-

i-"'"'"

I -r-s;;N~S

-

--I--100N~s

- 1 60 ~

."=" ~1 40
........ .......

---

1.5
2
2.5
3 3.5
4
If, FORWARD CURRENT (AMPS)

100

",.

w

100
BO
60

20
50

STORED RECOVERY CHARGE
- - - REVERSE RECOVERY TIME

Figure 6. Typical Reverse Switching Characteristics

3-302

:2

u
120 ~

40

4.5

II:

15u

M!
~
~
II:
II:

o

MOTOROLA

- SEMICONDUCTOR
TECHNICAL DATA

MUR6020
MUR6030
MUR6040

SWITCHMODE
Power Rectifiers

MUR60ZO and MUR6040 are
Motorola Preferred Devices

· .. designed for use in switching power supplies, inverters and as free wheeling diodes,
these state-of-the-art devices have the following features:
•
•
•
•
o
•

Ultrafast 100 Nanosecond Recovery Time
175'C Operating Junction Temperature
State-of-the-Art Single TO-218 Atlas Package
High Voltage Capability to 400 Volts
Low Forward Voltage Drop
High Temperature Glass Passivated Junction

ULTRAFAST RECTIFIERS
60 AMPERES
200-400 VOLTS

0--'."'-1- 0

II
MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

MUR6020
MUR6030
MUR6040

Average Rectified Forward Current
TC = 70°C
Peak Repetitive Forward Current
(Rated VR Square Wave 20 kHz) TC

=

Max

Unit

VRRM
VRWM
VR

200
300
400

Volts

'F(AV)

60

Amps

IFRM

60

Amps

IFSM

600

Amps

TJ, Tstg

-65to +175

°c

150'C

Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions
halfwave, single phase, 60 Hz)
Operating Junction Temperature and
Storage Temperature

Symbol

THERMAL CHARACTERISTICS
Thermal Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS
Instantaneous Forward Voltage
(IF = 60 Amp, TC = 100'C)
(IF = 60 Amp. TC = 25'C)

VF

Instantaneous Reverse Current
(Rated dc Voltage, TC = 100°C)
(Rated dc Voltage, TC = 25'C)

'R

Reverse Recovery Time
(IF = 1.0 Amp dlldt = 15 Amp/I'S

trr

Volts
1.4
1.5

SWITCH MODE i. a trademark of Motorola. Inc.

3-303

10
60

mA
p.A

100

ns

MUR6020, MUR6030, MUR6040

TYPICAL ELECTRICAL CHARACTERISTICS
100

l00'C

1000

==

u;

15O'C

a..

'/

:;;

S

10

I-

/

./

~

V25'C
~

Z

w
a:
a:
::>
u
c
a:

==
-

a:

12
~

I

I

II I

0.1
0.1

0.3

1.1
1.3
0.9
VF. INSTANTANEOUS FORWARD VOLTAGE IV)
0.5

l00'C

0.7

25'C~
./'"

w

en

a:

~ 0.1
E:

a:

1.5

0.Q1

50

150

100

200

250

350

300

400

VR. REVERSE VOLTAGE IVOLTS)

Figure 2. Typical Reverse Current

Figure 1. Typical Forward Voltage

•

===

-I-

10

a:
a:

I I

~

1

100

ffi
a

/

150'C=

TJ

-

80

lL 70

:;;

S 60

!z

I"'"

~5O

a:

1340
c
~ 30

12

t-l'...

"""

20

~ 10

o

120

140

I'-- ~
i'-- I'-..

de

~

~

160

i'--- t'.....de
r'::::::::

o

175

TC' CASE TEMPERATURE I'C)

IN FREE AIR
WITH NO HEATSINK

o

20

40

60

80

100

120

'""'"

140

160

180

TA. AMBIENT TEMPERATURE I'C)

Figure 4. Current Derating. Ambient

Figure 3. Current Derating. Case

3-304

200

MOTOROLA

-

SEMICONDUCTOR - - - - - - - - - - - - - -

TECHNICAL DATA

MUR7005
MUR7010
MUR7015
MUR7020

Switchmode
Power Rectifiers
· .. designed for use in switching power supplies, inverters and as free wheeling diodes,
these state-of-the-art devices have the following features:

MUR7020 Is.
Motorola Preferred Device

• Ultrafast 50 Nanosecond Recovery Time
• Low Forward Voltage Drop
• Hermetically Sealed Metal 00-203AB (00-5) Package
Mechanical Characteristics
Case: Welded. hermetically sealed
Finish: All external surface corrosion resistant and terminal leads are readily solderable
Polarity: Cathode to Case
Mounting Positions: Any
Mounting Torque: 25 in-Ib max

•

.,

ULTRAFAST
RECTIFIERS
70 AMPERES
50 TO 200 VOLTS

~~,~

•

DO·203AB

MAXIMUM RATINGS
Rating

Symbol

MUR
7005

7010

7015

7020

150

200

165

220

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

50

100

Nonrepetitive Peak Reverse Voltage

VRSM

55

110

Average Forward Current

TC = 125"C

Nonrepetitive Peak Surge
Forward Current (half cycle.
60 Hz, Sinusoidal Waveform)
Operating Junction and Storage Temperature

Unit
Volts

Volts

IF(AV)

70

Amps

IFSM

1000

Amps

TJ, Tstg

-55 to +175

"C

THERMAL CHARACTERISTICS
All Devices

,Iatlng

O.S

Thermal Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage Drop
(iF = 70 Amps, TJ = 25"C)
(iF = 70 Amps, TJ = 150'C)

vF

Maximum Reverse Current @ DC Voltage
(TJ = 25"C)
(TJ = 150"C)

IR

Maximum Reverse Recovery Time
(IF = 1 Amp, dildt = SO Ampslp,s,
VR = 30 V, TJ = 25"C)

trr

Volts
0.975
0.840
25
30

ns
60

(IF = O.S Amp, iR = 1 Amp,
IREC = 0.25 A, VR = 30 V, TJ = 25"C)

50

3-305

,.A
mA

II

MUR7005, MUR7010, MUR7015, MUR7020

100
70

2000
1000
SOD
300
_ 200
100

/

/

50

/

III I
VI II
I I I

30
20
TJ

~ 10
::=;;

/

a

$:

$

I

I

I

'"'"

I I

I

~

•

fi'l
z

40

80
80 ~ W ~
VR. REVERSE VOLTAGE IVOLTS)

'"

I

II

I
I

0.1
0.2

/

I

I

0.4
0.6
0.8
vF. INSTANTANEOUS VOLTAGE IVOLTS)

1.2

90

1000

~80
~
~ 70

700
600
500
400

..".-

..".-

~ 10

o

~

....

10

k:: ::::.- i-"'"

120

APPLIED

de

~

'"

~

~

130
140
150
160
TC. CASE TEMPERATURE lOCI

,

170

180

1 ---- -~

r--

300

..".- de

i:5 200

l..---' --:... ..".-

30
~20

0

l..---' V . /

SQUAREWA~ V

140

E

..".-

SINE WAVE
OR

60
50

100

RAT~D VOLT1GE_

Figure 3. Current Derating. Case

100

~

'"

jAVE

~90
~

~~
SQUARE
AND
SINE

Figure 1. Typical Forward Voltage

c

["-.

I

0.2

~

selections can be estimated from these same curves if VR is suf-

~0.7

0.3

W

ficiently below rated VR.

z

0.5

~

80

I

/ /

:!'
z
:!'


25°C

1
0.5
0.3
0.2 0

*The curves shown are typical for the highest voltage device in
the voltage grouping. Typical reverse current for lower voltage

/

II


u

TJ

c.i

TJ

= 175°C

Th 20 ~ 30 ~ 40 ~ 50 ~ 50
IFIAV). AVERAGE FORWARD CURRENT lAMPS)

100
~

ro

10

20
30
40 50
VR. REVERSE VOLTAGE (VOLTS)

50 70 80 90 100

Figure 5. Typical Capacitance

Figure 4. Average Power Dissipation

3-306

MUR7005, MUR7010, MUR7015, MUR7020

~_

0.7
0.5

~

0.3

~

j3

'"~
~
~

.......

V

0.1
0.07
0.05

i!!....

0.03

~

0.Q1

~ 0.02
~

t-

......,1.....

0.2

0.01

SINGLE PULSE

,It) R8JC

Z8JClti

V
0.02 0.03

0.05

0.1

0.2

0.3

0.5

2

3

10

20

30

50

100

200 300

500

1000

t. T!MElm.I

Figure 6. Thermal Response

II

3-307

MUR1000SCT
MUR1OO1OCT
MUR1OO1SCT
MUR1OO2OCT

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

MUR10020CT I••
Motorola Preferred Oavlce

Advance Information
ULTRAFAST
SWITCHMODE POWER RECTIFIERS

ULTRAFAST
RECTIFIERS

· •. designed for use in switching power supplies, inverters, and
as free wheeling diodes. These state-of-the-art devices have the
following features:

100 AMPERES
50 TO 200 VOLTS

• Dual Diode Construction
• Low Leakage Current
• Low Forward Voltage
• 175°C Operating Junction Temperature
• Labor Saving POWERTAP Package

•

-- -------

MAXIMUM RATINGS

MUR

Symbol 1000SCT 10010CT l0015CT l0020CT Unit

Rating

Peak Repetitive Reverse
Voltage
Working Peak Reverse
Voltage
DC Blocking Voltage

50

100

150

200

VRRM
VRWM
VR

Average Rectified Forward
Current, (Rated VR),
TC = 140°C
Per Device
Per Leg

IF(AV)

Peak Repetitive Forward
Current, Per Leg, (Rated VR,
Square Wave, 20 kHz),
TC = 1400C

IFRM

100

Amps

Nonrepetitive Peak Surge
Current Per Leg
(Surge applied at rated
load conditions
hallwave, single
phase, 60 Hz)

IFSM

400

Amps

TJ,Tstg

-65 to +175

°c

Operating Junction and
Storage Temperature

CASE 357c-G3

Volts

Amps

100
50

THERMAL CHARACTERISTICS PER LEG
Rating

Thermal Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS PER LEG
Instantaneous Forward Voltage (1)
(iF = 50 Amp, TC = 25°C)

vF

Instantaneous Reverse Current (1)
(Rated dc Voltage, TC = 125OC)
(Rated dc Voltage, TC = 25°C)

iR

Maximum Reverse Recovery Time
(IF = 1.0 Amps, di/dt = 50 Ampsi!",)
(1) Puis. Test: Puis. Width = 300 p.O, Duty Cycle" 2.0%.

trr

1.10

Volts
pA

250
25

50

This document contams information on a new product, Specifications and information herein

are sub,ect to change without notice.

3-308

ns

Terminal Penetration:
Terminal Torque:
Mounting Torque Outside Holes:"

0.280 max
25-40 in-Ib max
30-40 in-Ib max

"Center Hole Must be
Torqued Fir~

8-10 in-Ib max

•

MUR1000SCT, MUR10010CT, MUR1001SCT, MUR10020CT
FIGURE 1 - FORWARD VOLTAGE

FIGURE 2 - TYPICAL REVERSE CURRENT'

tOK
SK
3K
_ 2K
'1 lK

lK
700
500

;:: 500

300

V- I
II V I
J

~

..
..~
I-

~100

:::>
u
Q

70

II

I

50

'"
:::>
fil

30

I

z

~
~
'"
i!!i
.!?

20

I I
I

12S'C ~
2S'C r---

o

60
80
tOO 120 140 160 180 200
VR. REVERSE VOLTAGE (VOLTS)
'The curves shown are typical for the highest voltage device in the voltage
grouping. Typical reverse current for lower voltage selections can be
estimated from these same curves. if VR is sufficienlly below rated VR.

II

~

;;;;:

lS0'C r---

100
~ 50
~ 30
~ 20
.!t 10
S.O
3.0
2.0
1.0

u

I

200

ie

175'C

TJ

il'i 300
~ 200

/

II

20

40

FIGURE 3 - CURRENT DERATING (PER LEGI

TJ = 175'C/ 1/12S'C 2S'C

II

10
7.0
S.O

I

II

1\

I I

3.0

1/1/

2.0

1.0

I

I I

o

I

TJ =

0.4
0.6
0.8
1.0
VF.INSTANTANEOUS VOLTAGE IVOLTS)

1.2

z

Q

~
~

..
~
..~

~ 30 I-- Rated Voltage Applied
Resistive Load
Q

~

t!I

;:;
~

~

~

10

~

/

w

\

100
120
140
TC. CASE TEMPERATURE ('C)

1\
160

180

700
300

/ 1/

E: 200
~

1/ V

z

g 100
f

70

~ SO

~

TJ =2SoC

30

I

20

30
40
50
00
IFIAV). AVERAGE FORWARD CURRENT lAMPS)

1'\ 175'C~

SOD

~V

ro

lSO'C

FIGURE 5 - CAPACITANCE (PER LEGI

I/. V

20 I-- TJ 1= lJS'C

12S'~\

~

1000

Square
Wa'Y j

40

80

00

V /
IL' ~ DC

~

~
1\

1.4

FIGURE 4 - POWER DISSIPATION (PER LEGI

~50

\

~

\

Duty Cycle

I

J J
0.2

Rated Vohage Applied

I-- Square Wave. SO%

~

70

3-309

i

1

10

to

20

30

50 70 100
200 300
VR. REVERSE VOLTAGE IVOLTS)

500 700 1000

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

SCANSWITCH ™

MUR10120E

Power Rectifier For High and Very High
Resolution Monitors

Motorola Pref8mtd Device

This state-of-the-art power rectifier is specifically designed for use as a damper diode
in horizontal deflection circuits for high and very high resolution monitors. In these
applications, the outstanding performance of the MUR10120E is fully realized when
paired with either the MJH16206 or MJF16206 monitor specific, 1200 volt bipolar power
transistor.
•
•
•
•

•

SCANSWITCH
RECTIFIER
10 AMPERES
1200 VOLTS

1200 Volt Blocking Voltage
20 mJ Avalanche Energy (Guaranteed)
12 Volt (Typical) Peak Transient Overshoot Voltage
135 ns (Typical) Forward Recovery Time

CASE 2218-02
(To-220AC)

MAXIMUM RATINGS
Symbol

Value

Unit

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

1200

Volts

Average Rectified Forward Current
(Rated VR) TC = 125°C

IF(AV)

10

Amps

Peak Repetitive Forward Current, Per Leg
(Rated VR, Square Wave, 20 kHz) TC = 125°C

IFRM

20

Amps

Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions, halfwave, single phase, 60 Hz)

IFSM

100

Amps

TJ

-65 to + 125

°c

WAVAL

20

mJ

Rating

Operating Junction Temperature
Controlled Avalanche Energy

THERMAL CHARACTERISTICS
Thermal Resistance -

Junction to Case

2.0

ELECTRICAL CHARACTERISTICS
Characteristic

Symbol

Maximum Instantaneous Forward Voltage (1)
(IF = 6.5 Amps, TJ = 125°C)
(IF = 6.5 Amps, TJ = 25°C)

vF

Maximum Instantaneous Reverse Current (1)
(Rated de Voltage, T J = 25°C)
(Rated de Voltage, T J = 125°C)

iR

Maximum Reverse Recovery Time
(IF = 1.0 A, di/dt = 50 Ampslp.s)
Maximum Forward Recovery Time
IF = 6.5 Amps, di/dt = 12 Ampslp.s (As Measured on a Deflection Circuit)
Peak Transient Overshoot Voltage
(1) Pulse Test: Pulse WIdth = 300 I's. Duty Cycle" 2.0%.
SCANSWITCH is a trademark of Motorola Inc.

3-310

Typ

Max

Unit
Volts

1.7
1.9

2.0
2.2

25
750

100
1000

trr

150

175

ns

tfr

135

175

ns

VRFM

12

14

Volts

p.A

MUR10120E

1000

100
70

j

100

125"C
~

>-

-

~ 10

a:
a:

=>
u
w

20

~ V/,

lore

125"~

/.

/ If

V

ii;

'/

...!--""
85"C

l--

a:

~ ,.h5"e

..... 25"C

.!f. 0.1

85"C
I

I.

/

'"
ffi

./

100"C

0.Q1

200

400

600

800

lK

1.2K

VR. REVERSE VOLTAGE IVOLTS)

/
/

Figure 2. Typical Reverse Current

/ I; /

VI' J

h~

1

/

II

0

9

RATED VR APPLIED

8

0.7

I

I!J

0.5

7
~

"~

5

"

4
0.2

~c

SQUARE WAVE" ~

3

~~

2

~

1
0.8

0.6

1.2

1.4

1.7

1.6

1.8

0
100

105

VF.INSTANTANEOUS VOLTAGE IVOLTS)

Figure 1, Typical Forward Voltage

"

125

5

9

ROJA

8
7

""
"""

6
5

1

o

120

Figure 3. Current Derating, Case

0

o

110
115
TC. CASE TEMPERATURE I"C)

15

30

= 16°CW

TJ = 125"C
2

~

9

""" ~ ~
"""
""" "'"

SQUARE WAVy

......-:: ~c

6

L..--:;:: V

~
~

45
60
75
90
105
TA, AMBIENT TEMPERATURE I"C)

"

120

.:;
135

150

....-:::

v----

~

2345678
IFIAV). AVERAGE FORWARD CURRENT lAMPS)

Figure 5. Power Dissipation

Figure 4. Current Derating, Ambient

3-311

/'"

10

MUR10120E

500

LI
TJ = 25°C
TYPICAL CAPACITANCE
ATOV = 500pF

400

~
~ 300

........

~

~ 200

r--

.........
...........

r---

U

r-

100

~

50

o

1

r-

10
VR. REVERSE VOLTAGE (VOLTS}

Figure 6. Typical Capacitance

I

3-312

-~

-

100

MOTOROLA

SEMiCONDUCTOR . . . . . . . . . . . . . . . . . . . . . . . . . ..
TECHNICAL DATA

Designer'sTM Data Sheet
SCANSWITCHTM
Power Rectifier

MUR10150E
Motorola Preferred Device

For Use As A Damper Diode In High
And Very High Resolution Monitors

SCANSWITCH
RECTIFIERS
10 AMPERES
1500 VOLTS

The MUR10150E is a state-of-the-art Power Rectifier specifically designed for use as a
damper diode in horizontal deflection circuits for high and very high resolution monitors. In
these applications, the outstanding performance of the MUR10150E is fully realized when
paired with either the MJW16212 or MJF16212 monitor specific, 1500 V bipolar power
transistor.
•
•
•
•
•

1500 V Blocking Voltage
20 mJ Avalanche Energy Guaranteed
Peak Transient Overshoot Voltage Specified, 14 Volt (typical)
Forward Recovery Time Specified, 135 ns (typical)
Epoxy Meets UL94, Vo at 1/8"
CASE 2218-02
TO-220AC

MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current, (Rated VR), T C

=125°C

Symbol

Value

Unit

VRRM
VRWM
VR

1500

Volts

IF(AV)

10

Amps

Peak Repetitive Forward Current, Per Leg
(Rated VR, Square Wave, 20 kHz), TC 125°C

IFRM

20

Amps

Non-repetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz)

IFSM

100

Amps

Operating Junction and Storage Temperature

TJ, Tsta

-65 to +125

°C

Controlled Avalanche Energy

WAVAL

20

mJ

RWC

2.0

°C/W

=

THERMAL CHARACTERISTICS

I Thermal Resistance -

Junction to Case

ELECTRICAL CHARACTERISTICS
Rating

Symbol

Maximum Instantaneous Forward Voltage (1)
(IF 6.5 Amps, T J 125°C)
(iF 6.5 Amps, T J 25°C)

vF

Maximum Instantaneous Reverse Current (1)
(Rated de Voltage, T J 125°C)
(Rated de Voltage, TJ 25°C)

iR

Maximum Reverse Recovery Time
(IF 1.0 Amp, di/dt 50 Amps/jls)
Maximum Forward Recovery Time
(IF 6.5 Amp, di/dt 12 Amps/jls)

=
=

=
=

=
=

=
=

=

=

Peak Transient Overshoot Voltage
(1) Pulse Test. Pulse Width

Typ

Max

Unit
Volts

1.7
1.9

2.2
2.4

750
25

1000
100

trr

150

175

ns

tfr

135

175

ns

VRFM

14

16

Volts

jlA

=300 lIS, Duty CycleS20/o.

Preferred devices are Motorola recommended choices for future use and best overall value.
Designer's Data for "Worst Case" Conditions - The Designer's Data Sheet permits the design of most CircUits entirely from the mformation presented. Limit curves - representing boundaries on

device charactenstics - are given to facIlitate "worst case" design.

3-313

11

MUR10150E

1000

--

100

<.a.

10

:z
w
a:
a:
20

a:
w
(lj
a:

Ji.
0.01

/

TJ=125°C /

0.1

Y

/

0.001

1/

o

600

900

1.2K

Figure 2. Typical Reverse Current
u;-

S

~ 40

~

0.2

0.1
0.4

L

1

i3c

I

0.8

SI EWAVE
(RESISTIVE LO~

25

a.. 20
~

1 1/ J
I V
0.6

30

ffi
~

io
1

1.2

1.4

1.6

vf, INSTANTANEOUS VOLTAGE (VOLTS)

Figure 1. Typical Forward Voltage

1.8

15

::; 10
Cl

~

~

A

5

~•

e;;

~V
,
e

/ /de
V

t!I P

0

5

0

.e:

SQU~y
WAVE

TJ = 125°C

if 35

I I
Ij

1.5K

VR. REVERSE VOLTAGE (VOLTS)

I

I

.....

"""-25°C

300

V J 25°C

II
0.5

....

,{,°c/

/ /

II

.,.,.

100°C

-

en

./

/V / /
/

-

:::>
0
w

I' V

I

f-- ~ TJ = 125 C
D

I-

10

15

IF(AV). AVERAGE FORWARD CURRENT (AMPS)

Figure 3. Forward Power Dissipation

(RATEb VR APPUED)
RruC = 2.0°C/W

''-'

"'SQ~
~

WAVE

de

~

~
95

105
115
TC. CASE TEMPERATURE (OC)

Figure 4. Current Derating Case

3-314

,

~

125

20

MUR10150E

500

400

~JIJ1L

CAPlclTlNCE
OV=430pF

r--......

IT

f'.r---I'
r-....

f'.

'" '" r-.

t--....

100

0
0.1

0.5

0.2

~

2
5
10
VR. REVERSE VOLTAGE (VOLTS)

i"- l"- t50

20

II

100

Figure 5. Typical Capacitance

300

I

270 t-

!:l!

240
210

i=

V~=30J

L

...... V

§?i 180 I - W

a:

120

I-

90

.i'

dVdl l= 50 AIl's

.... I--'""'""

150

i W

V
./

,. V'

.,.i-"""'"
~

V
~

~

,

lK

I

900

VR=30V

::
ffi

~

~

/

./ ~

di/dl = 100 AIl'S...,.....

600

...

f-""'"

V

/ 'V

~ 400
c

./ V

~ 300

o
t; 200

60
30

~

/ / VsoAil's

8 500

V- 100 AIl's

!-'-

f-""

V

W

/.V

O~ 100

o

o

4

5

6

7

9

10

0

o

3

4

5

6

7

9

If; FORWARD CURRENT (AMPS)

If; FORWARD CURRENT (AMPS)

Figure 6. Typical Reverse Recovery Time

Figure 7. Typical Stored Recovery Charge

3-315

10

•

MUR2000SCT
MUR20010CT
MUR20015CT
MUR20020CT

MOTOROLA

SEMICONDUCTOR

TECHNICAL DATA

D(c~!-;ig;ll(, .'!-;

Data Shept

MUR20020CT Is •
Motorola Preferred Device

ULTRAFAST
SWITCHMODE POWER RECTIFIERS

ULTRAFAST
RECTIFIERS

· .. designed for use in switching power supplies, inverters, and
as free wheeling diodes. These state-of-the-art devices have the
following features:

200 AMPERES
50 TO 200 VOLTS

• Dual Diode Construction
• Low Leakage Current
• Low Forward Voltage
• 175°C Operating Junction Temperature
• Labor Saving POWERTAP Package

II

MAXIMUM RATINGS

MUR
Symbol 20005CT 2001 OCT 20015CT 20020CT Unit

Rating
Peak Repetitive Reverse
Voltage
Working Peak Reverse
Voltage
DC Blocking Voltage

50

100

150

200

Volts

VRRM

CASE 357c'()3
POWERTAP

VRWM
VR

Average Rectified Forward
Current, (Rated VR),
TC = 95'C
Per Device
Per Leg

IF(AV)

Peak Repetitive Forward
Current, Per Leg, (Rated VR,
Square Wave, 20 kHz),
TC = 95'C

IFRM

Nonrepetitive Peak Surge
Current Per Leg
(Surge applied at rated
load conditions
hallwave, single
phase, 60 Hz)

IFSM

800

Amps

TJ,Tstg

-65 to + 175

·C

Operating Junction and
Storage Temperature

Amps

200
100
200

Amps

THERMAL CHARACTERISTICS PER LEG
Rating
Thermal Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS PER LEG
Instantaneous Forward Voltage (1)
(iF = 100 Amp, TC = 25'C)

vF

Instantaneous Reverse Current (1)
(Rated dc Voltage, TC = 125'C)
(Rated dc Voltage, TC = 25°C)

iR

Maximum Reverse Recovery Time
(IF = 1.0 Amps, dildt = 50 Amps/!'s)

trr

(1)

Puis. T.st: Pul •• Width

1.25

Volts

p.A
500
50
50

ns

= 300 lOS, Duty Cycle'" 2.0%.

Designe,'s Data for "Worst Case" Conditions
The Designers Data sheets' permit the design of most circuits entirely from the
information presented, Limit curves - representing boundaries on deVIce character·
Istics - are given to facilitate "worst case" deSign.

3-316

0.280 max
25-40 in-Ib max

Terminal Penetration:
Terminal Torque:
Mounting TorqueOutside Holes:'

30-40 in·lb max

'Center Hole Must be
Torqued Fir~

8-10 in-Ib max

•

MUR20005CT, MUR20010CT, MUR20015CT, MUR20020CT

FIGURE 2 - TYPICAL REVERSE CURRENT-

FIGURE 1 - TYPICAL FORWARD VOLTAGE (PER LEG)
lK
500

1000
700

1

500
300
TJ

200

~

VI

~ 100

~
a:

70

ac

50

a:
a:
~

=>
'"

@

~

;<;

.~

V

J

V 125"CjJI /25"C I -

/

20

25"~

2.0
Ji: 1.0
O. 5

/

o

/

V

20

40

60
80 100 120 140
VR, REVERSE VOLTAGE (VOLTS)

160

180

200

*The curves shown are typical for the highest voltage device in the
voltage grouping. Typical reverse current for lower voltage selections
can be estimated from these curves, if VR is sufficiently below rated

VR·

FIGURE 3 - CURRENT DERATING (PER LEG)

II

0

1/1/ /

10

7~

O. 2
O. 1

I /
I
II
V
/ /
/

30

150"C=

~

/

~

a:

= 175"'1

175"C =

TJ

200
100
~ 0
g§ 20
~1 0
~ 5. 0

0

I

7.0

I

5.0

I

I

I II

I I

o

II

0.2

0

Wave

Rated Voltage Applied
0 - 50% Duty Cycle
TJ 1= 1~5"C I
0

0.4

I

0.6

I

I

0.8

1.0

1.2

1.4

I

de

'"

I
-

I

2.0

Squar~ ~

II

II

3.0

1.0

I
I

0

"""

1"-.'\
~

~

I

1 I

I

50

80

VF, INSTANTANEOUS VOLTAGE (VOLTS)

100
120
140
TC, CASE TEMPERATURE ("C)

1"-

160

~

150

RGURE 5 - CAPACITANCE (PER LEG)

FIGURE 4 - POWER DISSIPATION (PER LEG)
1000

s~uare

0

700

Wavy
0
0
10

/' V
/ ' / " .......:.....-:: V

f - - -lpK/IAV = 20,.,

//~V
F""

~ ~

0

O~

~ p-

w

~500

./

5.0

V

V

/

.......

5

TJ = 25"C

u 200

fll(1·gM~

TJ = 175"C-

50
50
m
50
IFlAV), AVERAGE FORWARD euRRENT (AMPS)

50

~

r-...I'-..

~

~ 300

I

~

j;1~ 0

,./

I

~

r-..

w

!/de

I

~

100

o

2.0 3.0

111m

5.0

10

20 30

50

100

200'

VR, REVERSE VOLTAGE (VOLTS)

3-317

500

lK

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

MUR20030CT
MUR20040CT

Ultrafast
SWITCH MODE Power Rectifiers

II

MUR20040CT I. a

· .. designed for use in switching power supplies, inverters, and as freewheeling diodes.
These state-of-the-art devices have the following features:

Motorola _red Device

•
•
•
•
•

ULTRAFAST
RECTIFIERS
200 AMPERES
300 and 400 VOLTS

Dual Diode Construction - May Be Paralleled For Higher Current Output
Low Leakage Current
Low Forward Voltage
175°C Operating Junction Temperature
Labor Saving POWERTAP Package

Mounting Specifications
Terminal Penetration:
0.280 max
Terminal Torque:
25-40 in-Ib max
Mounting TorqueOutside Holes:'
30-40 in-Ib max
'Center Hole Must be
Torqued First:
8-10 in-Ib max
CASE 357C-03
POWERTAP

MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Currenl, (Rated VR), TC
Per Device
Per Leg

= 95"C

Symbol

MUR20030CT

MUR20040CT

Unit

VRRM
VRWM
VR

300

400

Volts

Amps

IF(AV)
200
100

Peak Repetitive Forward Current, Per Leg,
(Raled VR, Square Wave. 20 kHz). TC = 95°C

IFRM

200.

Amps

Nonrepetitive Peak Surge Current Per Leg
(Surge applied at rated load conditions halfwave,
single phase, 60 Hz)

IFSM

800

Amps

Operating Junction and Storage Temperature

TJ, Tstg

-65 to

+ 175

"C

THERMAL CHARACTERISTICS PER LEG
Rating

Max

Thermal Resistance, Junction to Case

0.75

ELECTRICAL CHARACTERISTICS PER LEG
Instantaneous Forward Voltage (1)
(iF = 100 Amp, TC = 25"C)
(iF = 100 Amp, TC = 125°C)

vF

Instantaneous Reverse Current (1)
(Rated de Voltage, TC = 125"C)
(Rated de Voltage, TC = 25"C)

iR

Maximum Reverse Recovery Time
(IF = 1 Amp, di/dt = 50 Ampslp.s)

Irr

(1) Pulse Test: Pulse Width

= 300 p.s, Duty Cycle"

Volls
1.35
1.25
p.A
500
50

2%.

3-318

75

ns

MUR20030CT, MUR20040CT

~
:;;

:$.

!Z

lS0

l!§

ac
~

5?
~

@

f--125'C

~

~

.... 10
0.2

~

2SoC

/

a:

/

b(.

/
0.4

a:

aw
a:
'"

01== ~17SoC

~

~

/: V/

~ 100

1#

/

/
0.6

200
VR. REVERSE VOLTAGE (VOLTS)

2.2

0.8
1
1.2
1.4
1.6
1.8
vF. INSTANTANEOUS VOLTAGE (VOLTS)

Figure 2. Typical Reverse Current

Figure 1. Typical Forward Voltage
0

0

I
I

0

DC
SciUA~ I"-... "- ~

WAVE

0

I"

5

IpK/lAV = 5

0

I~
80
100
120
140
TC. CASE TEMPERATURE (OC)

160

IPK/IAV = 101/

~ ~P'"

15

~.

180

.. ~

o

o

10

20

30

40
50
60
70
AVERAGE CURRENT (AMPS)

1000
700
SOO

~400

...... 1--..

~
t::: 300

§u

!'-...

200

100

o

80

90

Figure 4. Average Power Dissipation and
Average Current

Figure 3. Current Derating (Per Leg)

~
,E,

-!,100

~

<'S

u

50

r-..

30
0
10

o

W

W

30

~

50

50

M

50

VR. REVERSE VOLTAGE (VOLTS!

Figure 6. Typical Capacitance

II

3-322

00

~

•

MOTOROLA

SEMICONDUCTOR

TECHNICAL DATA

SWITCHMODE Power Rectifiers
DPAK Surface Mount Package
• •. designed for use in switching power supplies, inverters and as free wheeling diodes,
these state-of-the-art devices have the following features:
• Ultrafast 35 Nanosecond Recovery Time
• Low Forward Voltage Drop
• Low Leakage
Mechanical Characteristics
• Case: Epoxy, Molded
• Finish: All External Surface Corrosion Resistance and Terminal Leads are Readily
Solderable
• Lead Formed for Surface Mount
• Available in 16 mm Tape and Reel or Plastic Rails
• Compact Size
• Dual Rectifier Single Chip Construction
• Lead Temperature for Soldering Purpose: 260°C for 10 Seconds

MURD605CT
MURD61 OCT
MURD615CT
MURD620CT
MURD620CT 10 •

Motorola PrelornKI Device

ULTRAFAST
RECTIFIERS
6 AMPERES
50 TO 200 VOLTS

II

MAXIMUM RATINGS

Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Voltage
(TC = 145°C, Rated VR)

VRRM
VRWM
VR
Per Diode
Per Device

Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz, TC = 145°C)

MURD

Symbol

IFIAV)

605CT

610CT

615CT

620CT

50

100

150

200

Unit
Volts

Amps

3

6
IF

6

Amps

IFSM

63

Amps

Per Diode

Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions, halfwave, 60 Hz)
Operating Junction and Storage Temperature

TJ, Tstg

-65 to

+ 175

°c

THERMAL CHARACTERISTICS PER DIODE
9

Thermal Resistance, Junction to Case
Junction to Ambient (1)

80

ELECTRICAL CHARACTERISTICS PER DIODE
Maximum Instantaneous Forward Voltage Drop (2)
iF = 3 Amps, TC = 25°C
iF = 3 Amps, TC = 125°C
iF = 6 Amps, TC = 25°C
iF = 6 Amps, TC = 125"<:

vF

Maximum Instantaneous Reverse Current (2)
(TJ = 25°C, Rated dc Voltage)
(TJ = 125°C, Rated dc Voltage)

iR

Maximum Reverse Recovery Time
(IF = 1 Amp, dildt = 50 AmpslILs, VR = 30 V, TJ = 25°C)
(IF = 0.5 Amp, iR = 1 Amp, 'REC • 0.25 A, VR = 30 V, TJ

trr

=

/LA
5
250

= 25°C)

(1) Rating applies when surface mounted on the minimum pad size recommended.

(2) Pulse Test: Pulse Width

Volts
1
0.95
1.2
1.1

300l's, Duty Cycle" 2%.

3-323

ns
35
25

MURD605CT, MURD610CT, MURD615CT, MURD620CT
100

100
70

10

!Z
~

SO

-

1

20

0.1

a:

/~ /
II

,

"/

25"c_

........

./

0.00 1

o

20

40

60
80
100 120 140
VR, REVERSE VOLTAGE (VOLTS)

Figure 2. Typical Leakage Current* (Per Leg)
4
5/ SINE---.

2

J

J....

0.3

,

'j

II

o

0.2

2

0.4
0.6
O.S
1
vF, INSTANTANEOUS VOLTAGE (VOLTS)

Figure 1. Typical Forward Voltage (Per Leg)

~

"'-

""

""'-

SINE WAVE'--OR
SQUARE WAVE

RATED VOL~AGE AP~UED

~

R8JC = WClW
TJ = 17S'C-

!Z

110

120

r---

1
i
c

de

~

~

"~

130
140
1S0
160
TC, CASE TEMPERATURE ('C)

~:;;:

"

V

,de
/.
' / ./'

V/

TJ = 175'C I - -

....

~~ II"'"

2
4
6
8
IF(AV), AVERAGE FORWARD CURRENT (AMPS)

10

RATED VOLTAGEIAPPLIEb
RaJA

~

180

= SO'CIW

SUR~ACE MIOUNTEb ON

2.5

t - - ...............

I
MIN. PAD SIZE RECrMMEiDED

,.......

~~

1.5

0

o

20

40

60

TJ

de

r--.:::::: t-....

SINEWAVE
OR
SQUARE WAVE

1

~ O.S

170

/'

/'/ / '

/

~ 3.S

0

~

WAVE?

Figure 3. Average Power Dissipation (Per Leg)

"~

1

/

~QUARE

/

./
'/

/
/

./ u-;,

/
/ / V~

O~

1.4

1.2

/

/
/

/
/

4

= 25'C

I

I

6

l00'C
~TJ

O. 1

,

8

......

jV WA~

10,

01--- IpllAV = 20,

lSO'C ....

200

grouping. Typical reverse current for lower voltage selections can be

IJ
I
II! / /
175'C ....

180

estimated from these curves if VR is sufficient below rated VR'

/

0.5

160

*The curves shown are typical forthe highest voltage device in the voltage

/ I

1

-

l00'C

~

0.01

/II I

•

lSO'C

a

30

17S'C

TJ

«_E

.......

~

~

= 17S'C

'-180

80
100 120 140 160
TA, AMBIENT TEMPERATURE (OC)

Figure 5. Current Derating. Ambient (Per Leg)

Figure 4. Current Derating. Case (Per Leg)

3-324

200

MURD605CT, MURD610CT, MURD615CT, MURD620CT

100
0
0

o\

TJ = 25·C

o \
0
7

\

3

2
1

10

20

30
40
50
60
70
VR. REVERSE VOLTAGE (VOLTS)

80

90

100

Figure 6. Typical Capacitance (Per Leg)

•

3-325

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

Switch mode
Power Rectifiers

MURH840CT
Motorol. Pretemtc:l Device

· .• designed for use in switching power supplies, inverters and as free wheeling diodes,
these state-of-the-art devices have the following features:
•
•
•
e
•
•
•
•

II

Ultrafast 28 Nanosecond Recovery Times
175°C Operating Junction Temperature
Popular TO-220 Package
Epoxy Meets UL94, Vo t?t 1/8"
High Temperature Glass Passivated Junction
High Voltage Capability to 400 Volts
Low Leakage Specified (a. 150°C Case Temperature
Current Derating (U' Both Case and Ambient Temperatures

ULTRAFAST RECTIFIER
8.0 AMPERES
400 VOLTS

CASE 221 A-06
TQ-220AB

MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current
Total Device, (Rated VR), TC = 120°C
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz), TC

Per Leg
Total Device
Per Diode Leg

= 120°C

Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz)

Symbol

Value

Unit

VRRM
VRWM
VR

400

Volts

IF(AV)

4.0
8.0

Amps

IFM

16

Amps

IFSM

100

Amps

Controlled Avalanche Energy

WAVAL

20

mJ

Operating Junction Temperature and Storage Temperature

TJ, Tstg

-65 to + 175

°c

THERMAL CHARACTERISTICS, PER DIODE LEG
Maximum Thermal Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS. PER DIODE LEG
Maximum Instantaneous Forward Voltage (1)
(IF = 4.0 Amps, TC = 150°C)
(IF = 4.0 Amps, TC = 25°C)

vF

Maximum Instantaneous Reverse Current (1)
(Rated de Voltage, TC = 150°C)
(Rated de Voltage, TC = 25°C)

iR

Maximum Reverse Recovery Time
(IF = 1.0 Amp, dildt = 50 Amps/ILs)

trr

Volts

1.9
2.2
/LA
500
10

(1) Pulse Test: Pulse WIdth = 300 p.s, Duty Cycle'" 2.0%.
Switchmode is a trademark of Motorola Inc.

3-326

28

ns

MURH840CT

1000
500
200

150'C

r--

100"C

F=

1 100

50

;::: 50
~

~

/

20

150V

V

25 'C
~ Vioo~

a

20
10

ffi

5

g§

~

L

~

25'C F=

2

~

1
0.5
0.2

/

/

/'

0.1 0

V

50

100

150

J J /

I II v

/ /
/ /

o. 2
O. 1
0.4

I----- .....

/ /
II

0.8

1.2

1.4

1.6

18

2.2

sauAIiE'WAVE

~

"

i'-

a:

~

2

20

"

WAVE

~

'l:

1f

120

130

140

150

40

60

80

100

120

~

"

140

160

180

200

Figure 3. Forward Current Derating. Ambient. Per Leg

1000~!mlllellm!~II'~11

~1001l_11

........

...'"ffi
110

"

........ .:-...

TA. AMBIENT TEMPERATURE ('C)

tl

........ ~C
SQUA~ ........

C

o

"'"

i'...

"""

2.4

RATED VR APPLIED

.........

a

~c

1

10

"in
en

......

r--...

2

Figure 1. Typical Forward Voltage

z

'"

3

vF. INSTANTANEOUS VOLTAGE (VOLTS)

~~

II

~

5

/
0.6

400

6

// /

II /

350

7

I

I

300

/

I

5

250

Figure 2. Typical Reverse Current. Per Leg

II

/

1

200

VR. REVERSE VOLTAGE (VOLTS)

;z

I
"
160

<3

~
~
170

10
. . . . . .
l~~~wwW-~~~~~~~~~~~~

180

TC. CASE TEMPERATURE ("C)

0.01

0.1

1

10

VR. REVERSE VOLTAGE (VOLTS)

Figure 4. Current Derating. Case. Per Leg

Figure 5. Typical Capacitance. Per Leg

3-327

100

MURH840CT

S
~
z
o

20

/

18
SQUARE WAVE/

16

/

15

ffi
;;::

~

./ / '

8

~

6

~

4

~ 2

~

/'

./ ./

10

./ :/'

UJ

ffi

VDC

/

~ 14
gj 12

/

~V

/. V

./
10
IF(AV), AVERAGE FORWARD CURRENT (AMPS)

Figure 6, Forward Power Dissipation, Per Leg

II

3-328

MOTOROLA

SEMiCONDUCTOR . . . . . . . . . . . . . . . . . . . . . . . .. .
TECHNICAL DATA

Designer'sTM Data Sheet
SWITCHMODETM
Power Rectifiers

MURH860CT
Motorola Preferred Device

· .. designed for use in switching power supplies, inverters and as free wheeling diodes, these
state-of-the-art devices have the following features:
•
•
•
•
•
•
•
•

Ultrafast 35 Nanosecond Recovery Times
175°C Operating Junction Temperature
Popular TO-220 Package
Epoxy Meets UL94, Vo @ 1/8"
High Temperature Glass Passivated Junction
High Voltage Capability to 600 Volts
Low Leakage Specified @ 150°C Case Temperature
Current Derating @ Both Case and Ambient Temperatures

ULTRAFAST RECTIFIER
8.0 AMPERES
600 VOLTS

CASE 221A-06
TO-220AB

MAXIMUM RATINGS, PER LEG
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current
Total Device, (Rated VR), TC 120°C

=

Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz), TC

Symbol

Value

Unit

VRRM
VRWM
VR

600

Volts

IF(AV)

4.0
8.0

Amps

IFM

16

Amps

IFSM

100

Amps

TJ, Tstg

-65 to +175

·C

Total Device

=120°C

Non·repetitive Peak Surge Current
(Surge applied at rated load conditions hallwave, single phase, 60 Hz)
Operating Junction Temperature and Storage Temperature

THERMAL CHARACTERISTICS, PER LEG
Maximum Thermal Resistance, Junction to Case

3.0

ELECTRICAL CHARACTERISTICS, PER LEG
Maximum Instantaneous Forward Voltage (1)
(iF =4.0 Amps, TC = 150°C)
(iF =4.0 Amps, TC = 25°C)

vF

Maximum Instantaneous Reverse Current (1)
(Rated dc Voltage, TC = 150°C)
(Rated dc Voltage, TC =25°C)

iR

Maximum Reverse Recovery TIme
(IF = 1.0 Amp, di/dt =50 Amps/~s)

trr

Volts
2.5
2.8
~A

500
10
35

ns

(1) Pulse Test: Pulse Width = 300 !ls, Duty Cycle s2.0%.

SWITCHMODE is a trademark of Motorola Inc.
Preferred devices are Motorola recommended choices for future use and best overall value.
Designer's Data for "Worst Case" Conditions - The Designer's Data Sheet permits the design of most circuits entirely from the information presented. Umi! curves - representing boundaries on
device characteristics - are given to facilitate "worst case" design.

3-329

•

MURH860CT

./

--

.,.,.......

TJ=lS0OC~
.7

2SoC

100

1
!Z

i

so
20

1~

w

L

!

./ ./

/ L

O.S

a:. O.OS

I

Jf 0.02

Ii
I

O.S

1

1.S
2
2.S
3
3.S
4
vF. INSTANTANEOUS VOLTAGE (VOLTS)

0.01 0

4.S

•

~

TJ = lS0°C

28

V

en 24
a:
w 20

i5

~
0..
w

~w

'i:

~
"-

a..

SQUARE
WAVE

16

--

./

12

,/

4

o

i-"'" ....
1

~

;'

....... .......

/'f'

/'
.... V

./

V

/

9

~
a:

8

32

::;;

;:::
~

28
24

w

20

frl
a:

16

en
a:

12

~
w

~
a:

8

.§:

4

Trr

f2
w

DC

~

........

--...--- .--

".'

""
........

~

3

~

2

1'-0..

SQUARE

4

" "-

~

" ~....

~

I\.

if' 0

40

7

DC

I......... '\

~1

60

80

100
120
140
TC. CASE TEMPERATURE (0C)

160

180

Figure 4. Typical Current Derating, Case, Per Leg

32

6
28 ~

u
10
w
UJ
a:
w

UJ

:::>

TJ = 150°C

~ 200

0.8

1
1.2 1.4 1.6 1.8
2
vf, INSTANTANEOUS VOLTAGE (VOLTS)

2.2

2.4

•

~

z

Q

10

I I

8

;:
~

~

6

~w

4

........ ...... ........
........

I

I'.. DC
.........
SQUAR~
WAVE

~~

iz~

120

1~

10011l1li11

U

~

1'-...'1'1...

~
110

1~

150
150
TC. CASE TEMPERATURE (OC)

11.1

~
r'\.

170

10 • • • • •

1~~~~~U-~~~~~~~~~~~

180

0.01

0.1
1
10
VR. REVERSE VOLTAGE (VOLTS)

Figure 4. Typical Capacitance, Per Leg

Figure 3. Current Derating, Case

f! 20

~ 18 -

~

I
I
TJ= 175°C

16

/

/

VDC

V V
/ V
/' /"

12

~

10
~ 8
w

~ 6
~ 4
~ 2

A

SQUARE WAVE /

~ 14

~

400

~

~

o

150 200 250 300 350
VR. REVERSE VOLTAGE (VOLTS)

1 0 0 0 _. . . .

~

III

.!E-

I

RATED VR APPUED
R9JC= 3°Ctw

,

100

=

Figure 2. Typical Reverse Current, Per Leg

Figure 1. Typical Forward Voltage

g

50

==

/
./

..& V

Eo ~

Y"

:'/"

P'"

2

3

4

5

6

7

8

9

IF(AV). AVERAGE FORWARD CURRENT (AMPS)

Figure 5. Forward Power Dissipation, Per Leg

3-332

10

100

MOTOROLA

- SEMICONDUCTOR
TECHNICAL DATA

Surface Mount
Ultrafast Power Rectifiers

MURS120T3
MURS160T3

Ideally suited for high voltage. high frequency rectification. or as free wheeling and
protection diodes in surface mount applications where compact size and weight are critical to the system.
•
•
•
•
•

Motorola Preferred Devices

Small Compact Surface Mountable Package with J-Bend Leads
Rectangular Package for Automated Handling
Packaged in 12 mm Pocket Tape and Reel
High Temperature Glass Passivated Junction
Low Forward Voltage Drop (0.71 to 1.05 Volts Max (il 1.0 A. TJ = 150°C)

ULTRAFAST RECTIFIERS
1.0 AMPERE
200-600 VOLTS

MECHANICAL CHARACTERISTICS

•

CASE: Transfer Molded Plastic Package
LEAD FINISH: Plated Leads. Readily Solderable in Surface Mount Applications
POLARITY IDENTIFICATION: Notch in Plastic Body Indicates Cathode Lead
DEVICE MARKING: MURS120T3 .......... U1D MURS160T3 .......... U1J

CASE 403A-03
MAXIMUM RATINGS
MURS
Rating

Symbol

120T3

160T3

Unit

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

200

600

Volts

Average Rectified Forward Current

IF(AV)

Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions hallwave,
single phase, 60 Hz)

'FSM

Operating Junction Temperature

1.0 @TL
2.0 @TL

= 155°C 1.0 @ TL = 150°C
= 145°C 2.0 @ TL = 125°C

40

35

-65 to +175

TJ

Amps
Amps

°C

THERMAL CHARACTERISTICS
Thermal Resistance - Junction to Lead
(TL = 25°C)

13

ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)
(iF = 1.0 A, TJ = 25°C)
(iF = 1.0A, TJ = 150°C)

vF

Maximum Instantaneous Reverse Current (1)
(Rated de Voltage, TJ = 25°C)
(Rated de Voltage, TJ = 150°C)

IR

Maximum Reverse Recovery Time
(iF = 1.0 A, di/dt = 50 A/p,s)
(iF = 0.5 A, iR = 1.0 A, 'R to 0.25 A)

trr

Maximum Forward Recovery Time
(iF = 1.0 A, di/dt = 100 A/p,s, Rec. to 1.0 V)

tfr

(1) Pulse Test: Pulse Width

= 300 !J,s, Duty Cycle'" 2.0%

3-333

Volts
0.875
0.71

1.25
1.05

2.0
50

5.0
150

35
25

75
50

25

50

p,A

ns

ns

II

MURS120T3, MURS160T3

10

I

5

/

if

3
TC = 175'C

-j

2

~

::;;;

'il

L

~

~
::>
u
~

~

ex:
'"

0.08
0.04
0.02
ci:
- 0.008
0.004
0.002

100"C

~

h5'C

II

I

I

40

---

./

/'

TJ

25'C

k-""'"

60
80
100
120 140
VR. REVERSE VQLTAGE IVOLTS)

I

160

180

200

Figure 2. Typical Reverse Current*

"/

'The curves shown are typical for the highest voltage device in the voltage grouping. Typical
reverse current for lower voltage selections can
be estimated from these same curves if applied
VR is sufficiently below rated VR.

II

LII /

;;; o.1

100°C

..-

///

0.3

'" o. 2
@

.~

- -

0.8
0.4
0,2

20

@

TJ

r-

~

a:i

0.7

I

175°C

....

~

'" o. 5
13

TJ

«

/

rIJ

/ /

1

/

80
40
20

0.07

I I II

5

I

0

0.03

I

0.02

0.0 1
0.3

0

I

0.0 5

III
0.5

~

0

~

20

U

15

~

I JI
0.4

~

5

0.6

0.7

0.8

0.9

1.1

1.2

1.3

VF. INSTANTANEOUS VOLTAGE IVOLTSI

NO~E:

TYP:CAL - - , CAPACITANCE AT
OV = 45pF

-

5

\

10

"-

........

Figure 1. Typical Forward Voltage

o

o

10

-

20

30
40
50
60
70
VR. REVERSE VOLTAGE IVOLTS)

80

90

100

Figure 3. Typical Capacitance

VOLT~GE A~PLlED

mc

TJ

RATE6
R/lJC " 13 CW
TJ • 175'C

SQUARE WAVE
-(CAPACITANCE LOADI :PK
AV

r-.. ::-----.

r-...::: :--....
SQUARE'WAVE

80

100

~

/
~

120
140
TC. CASE TEMPERATURE I CI

20

1/

::,.......- ........-::: ~

~~

'""

160

/

./
/ ' . . . .V

./'

-::;:::--

5

~

10

V )...
L---:::
Voc'
i-""

:;...-

,..-

~
180

Figure 4. Current Derating. Case

0.5
1
1.5
2
IFIAV). AVERAGE FORWARD CURRENT (AMPS I

Figure 5. Power Dissipation

3-334

2.5

MURS120T3, MURS160T3

10

400
200
100
/

/

5
TC
3

= 175°C/

~

!Z

10

~

4

~

0.2
$. 0.1

0.04
0.02
0.008
0.004

:5

>- O.
7

~

::0
U

I

O. 5

cc

I I

~

cc O. 3

 0.4

I 1//

1

40

~ ~

100°C

25°C

/

«

3- 20

/J

II 'I

2

:E

/

/

--

....I
TJ

II

.... 0.07
25
0.05

0.03
0.02

I I

II

J

20

~

I

w
u

L

z

0.3

0.5

;t

«
u
0.7

15

\

~
u

I I

0.01

NO~:

TypICAL I - CAPACITANCE AT
I-OV = 24pF

I I

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

\

10

\

U

i'...

vF. INSTANTANEOUS VOLTAGE (VOLTS)

...........

Figure 6. Typical Forward Voltage

o
o

-

12
16
20
24
28
VR. REVERSE VOLTAGE (VOLTS)

32

36

40

Figure 8. Typical Capacitance

(CAPACITANCE LOAD)
RATE6 VOLT~GE A~PLlED
RHJC = 13°CW
TJ = 175'>C

--40

I!'.K
IAV
TJ

~

175 C

L

lq/

/
1/

.......

---

/ /

~

SQUARE-- ~
WAVE

~

BO
120
TC. CASE TEMPERATURE I'C)

'"

160

V
/

SQUARE WAVE/.

/

/
/

...........

II

/

~ 20/

V

/

/ ' DC

/'

./

/" /""

/ V / / . ,,/'"
/ v-:: ~ V
/~ ~ P
~~

0.5
1
1.5
IFIAV). AVERAGE FORWARD CURRENT (AMPS)

200

Figure 10. Power Dissipation

Figure 9. Current Derating. Case

3-335

2.5

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

MURS320T3
MURS360T3

Surface Mount
Ultrafast Power Rectifiers

Motorola _DeYI...

· .. employing state-of-the·art epitaxial construction with oxide passivation and metal
overlay contact. Ideally suited for high voltage, high frequency rectification, or as free
wheeling and protection diodes, in surface mount applications where compact size and
weight are critical to the system.
•
•
•
•
•

ULTRAFAST RECTIAERS
3.0 AMPERES
200-600 VOLTS

Small Compact Surface Mountable Package with J-Bend Leads
Rectangular Package for Automated Handling
Packaged in 16 mm Pocket Tape and Reel
Highly Stable Oxide Passivated Junction
Low Forward Voltage Drop (0.71 to 1.05 Volts Max (/ 3.0 A, T J = 150°C)

MECHANICAL CHARACTERISTICS

II

CASE: Transfer Molded Plastic Package
LEAD FINISH: Plated Leads, Readily Solderable in Surface Mount Applications
POLARITY IDENTIFICATION: Notch in Plastic Body Indicates Cathode Lead
DEVICE MARKING: MURS320T3.......... U3D MURS360T3 .......... U3J

CASE 403·03

MAXIMUM RATINGS
MURS'
Rating

Symbol

320T3

360T3

Unit

Peak RepetHive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

200

600

Volts

Average Rectified Forward Current

IF(AV)

3.0 @ TL = 140°C
4.0 @ TL = 130°C

3.0 @ TL = 130°C
4.0 @TL = 115°C

Amps

Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions hallwave,
single phase, 60 Hz)

IFSM

75

Amps

TJ

-65 to +175

·C

Operating Junction Temperature

THERMAL CHARACTERISTICS
Thermal Resistance -

Junction to Lead

11

ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)
(iF = 3.0 A, TJ = 25°C)
(iF = 4.0 A, TJ = 25°C)
(iF = 3.0 A, TJ = 150°C)

vF

Maximum Instantaneous Reverse Current (1)
(Rated de Voltage, TJ = 25°C)
(Rated de Voltage, TJ = 150°C)

iR

Maximum Reverse Recovery Time
(IF = 1.0 A, di/dt = 50 A/p.S)
(IF = 0.5 A, iR = 1.0 A, IREC to 0.25 A)

trr

Maximum Forward Recovery Time
. (IF = 1.0 A, di/dt = 100 A/,..s, Recovery to 1.0 V)

tfr

(1) Pulse TeSI: Pulse Width

= 300 p.S, Duty Cycle'" 2.0%

3-336

Volts
0.875
0.89
0.71

1.25
1.28
1.05

5.0
15

10
250

35
25

75
50

25

50

p.A

ns

ns

MURS320T3, MURS360T3

80

I

II I /
/ i/

...:::;;

in

l II

~
0-

/

15
a:
a:
:::>
u
ca:

TJ = 175'C_

~
a:

~ 0.7
en

I

r

~

a

1--25'C

I

I

~

I

I

Z

~

Z

~
en

II

0.3

;;:;
.!f. 0.2

0.1
0.2

0.3

0.4

....

2

o.8

~

100'C

~

-

25'C

W

I I

I I

175'C
L

o.4
D. 2
~ 0.08
ll! 0.04
.!!: 0.02
0.00 8
0.004
0.002-

:::>

cw 0.5

TJ

~

100lc

I

40
20
8
4

40

M
00 ~ rn ~
VR, REVERSE VOLTAGE IVOLTS)

~

~

~

Figure 2. Typical Reverse Current*

I

-The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse
current for lower voltage selections can be estimated from these same curves If VR IS suffICiently below
ratedVR·

/ I I

0.5 0.6
0.7
0.8 0.9
1
vF, INSTANTANEOUS VOLTAGE IVOLTS)

1.1

1.2

Figure 1. Typical Forward Voltage

LO~D)

I&PAClfIVE
IpK = 20
IAV

5
10

V

V
/
V
V A.
V L
~
/ . / .;- I-' b::::::: 1::1'

5

.L L :.,...-- .....-::: P
~ v:: ~

1

SQUARE_
WAVE

r-

"I"""'""
1

2

3

4

IFIAV), AVERAGE FORWARD CURRENT lAMPS)

Figure 3. Power Dissipation

0
200

9

RATEb VOLT~GE AJPLlED
R/lJC = 11'CIW
TJ = 175'C

8
7
6

~

5
4

1
0
90

i'-.
-........: NC
SQUARE"
WAVE

3
2

100

110

TYPICAL CAPACITANCE AT 0 V = 135 pF
100
~ 00
w
U
z
;5 M

t--...

"""

\

\.

u
~ 40
«
u
U

t-...
~

"

120 130 140 150 160
TC, CASE TEMPERATURE I"C)

170

.........

30
20

180

190

Figure 4. Current Derating (Casel

10

o

w

W

-~
40
50
M
m
VR, REVERSE VOLTAGE IVOLTS)

Figure 5. Typical Capacitance

3-337

00

90

~

..

MURS320T3, MURS360T3

I

/

TJ = 1750C

Ie

.; IL -,

I

/

~

ffi
a:
a:

a

Ii! 0.7
~

0.2

.!f.

0.1

II

I""'

l000C=
-I""'

0.8
0.4
i:f1 0.2
": 0.08

/I

~

0.02
0.008
0.004

I

o

2S-c-

...--

- -

0.04

If I
1/ I I
II

~

~

/

I

I

~ 0.3

40
20

!z
~
~

J I J

~

z

1

l00"C

175°C=

TJ

80

25°C

.!iF

I

!2 0.5

tn
~

/ e..-

-

400
200

I

/

If /

200
300
400
500
VR. REVERSE VOLTAGE VOLTS

100

800

600

Figure 7. Typical Reverse Current*
4The curves shown are typical forthe highest vohage device in Ihp voltage grouping. Typical reverse
current for lower voltage selections can be eslimated from these same curves if VR is sufficiently
belowratedVR·

0.07
0.05

I I

I II

0.03
0.02
0.3

I II I
0.5

0.7

0.9
1.1
1.3
1.5 1.7
1.9
VF.INSTANTANEOUS VOLTAGE (VOLTSI

2.1

-"/

SQUARE
WAVE

2.3

(CAPACInVE LOADSI

-

-!fK _ 20

-

'';1'

_IAV

Figure 6. Typical Forward Voltage

...

-

/.

~~

/~

V/ DC

5~ V
1J.- L ......

~~
~

1
2
3
4
IF(AVI. AVERAGE FORWARD CURRENT (AMPSI

Figure 8. Power Dissipation

100
80

TYPICAL CAPACITANCE AT 0 V = 75 pF

-.......... 01--..

I'"""' ::::---..
SOUARE
~AVE

70

o\

\

~

~

""""""""'

1

o

~:...

80

90

100 110 120 130 140
TC. CASE TEMPERATURE (OCI

150

0

'\
............

I'..

160

170

Figure 9. Current Derating ICase)

W

40
80
VR. REVERSE VOLTAGE (VOLTSI

Figure 10. Typical Capacitance

3-338

80

100

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

R710XPT R712XPT
R711XPT R714XPT
R712XPTI••
Motorola Preferred Device

SWITCHMODE POWER RECTIFIERS

ULTRAFAST RECOVERY
RECTIFIERS
· .. designed for special applications such as dc power supplies,
inverters, converters. ultrasonic systems, choppers, low RF interference, sonar power supplies and free wheeling diodes. A complete
line of fast recovery rectifiers having typical recovery time of 150
nanoseconds providing high efficiency at frequencies to 50 kHz.
•

30 AMPERES
60 to 400 VOLTS

Dual Diode Construction

• 150aC Operating Junction Temperature

CASE 3400-01

To-218AC

MAXIMUM RATINGS
Rating
Peak Repetitl~e Reverse Voltage
Working Peak Reverse Voltage

OC Blocking Voltage
Average Rectified Forward Current

(Rated VRI TC ; 100°C

R710XPT
R711XPT
R712XPT
R714XPT
Per Device
Per Diode

Peak Repetitive Forward Current. Per Diode

Symbol

Maximum

Unit

VRRM
VRWM
VR

50
100
200
400

Volts

10

30
15

Amps

IFRM

50

Amps

IFSM

150

Amps

TJ. Tstg

-65 to +150

°c

(1 Second at 60 Hz. TC; 100°C I
Nonrepetitive Peak Surge Current Per Diode

(Surge applied at rated load conditions
halfwave, single phase, 60 Hz)
Operating Junction and Storage Temperature

THERMAL CHARACTERISTICS PER DIODE
Symbol

Maximum

Unit

Thermal Resistance, Junction to Case

ROJC

1.5

°C/W

Thermal Resistance, Junction to Ambient

R(JJA

40

°C/W

Characteristic

ELECTRICAL CHARACTERISTICS PER DIODE
Characteristic
Instantaneous Forward Voltage (1)

Symbol

Maximum

Unit

vF

130

Volts

(IF = 15 Amp, TC; 25°CI
Instantaneous Reverse Current (1)

(Rated de Voltage, TC = 100°C)
(Rated de Voltage, TC = 25°CI

---

Reverse Recoverv Time

10
0015
- - -f------100
trr

~~~,,~-,e_ ~V.!!. = 30 Vd:!. __ ------ - - (1 J Pulse Test Pulse WIdth -. 300

/-IS,

Duty Cycle'

mA

'R

~-----

20%

3-339

--ns

---

•

R710XP~R711XP~R712XPT,R714XPT

FIGURE 1 - TYPICAL FORWARD VOLTAGE

FIGURE 2 - TYPICAL REVERSE CURRENT

~IOOO

~

i

'"

13

i

Ii:

~
..

FTJ'ISOO~~~

50
~

30
20

TJ = 150°C . /
~./'

5.0

~

3.0
2.0

r?

./':

10
7.0

5

~

104

,t"-±!2S 0 C

./

./

./

75°C

125°C

/

1

1 /25°C

1//

L

.!? 1.0

If

0.4

0.6

f= =50°C
F

IF

~

0.8

J

ploooe

1.0

100
o

1.4

1.2

~

:: 2S oe

400
300
500
VR. REVERSE VOLTAGE IVOLTSI

100

200

'F.INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

700

600

FIGURE 4 - TYPICAL CAPACITANCE
FIGURE 3 - CURRENT DERATING - TOTAL UNIT

~

II

40

500
I kI
IP
AV

~

i

~

f---

z
'"

5:

Squa:. Wa.e

..

\

./
~ N" \

"" "~

CI

20

~

...

~

liD

$o

I'\.

I

I
80

I

AV

I

I

100
120
TC. CASE TEMPERATURE 1°C)

de

~

50

FIGURE 5 - POWER DISSIPATION - TOTAL UNIT
100

.

30

II II
I I I I
Prior to surg., thl rlCtrh.,.

..... 1"-

50

70 100

.....

~ 70

~ 50
ill 40 r--

'"
"";=

w

or-

;:j 3

>

10

40

3·340

1.0

I

III'

/\

/\

~leYCLE

0

o

I

"N.L

~ 20

'"
""~'"

I
I

is oplrlttd such th.t TJ ., IsoaC;
VRRM m.y be .pplied bltWlln
_h eyel. of ILIrge

~60

35

..........

20 30
5.0 7.0 10
VR. REVERSE VOLTAGE (VOLTSI

..........

0

;;;80

30

10
15
20
25
30
IFIAV). AVERAGE FORWARD CURRENT lAMPS)

........

FIGURE 6 - MAXIMUM SURGE CAPABILITY

CI

""S
""
~

2.0

10

40r---,----r----r---,----r---,r---,---,

~ 20

...

'r-..
........

160

140

'"
~

'"
~

.............

200

70

z

ill
is

r---..r-.,

100

c
;:::

:

300

'"
u

c-ICtp.e~i•• LD.d) :Pk =2{10. ~.( ...........:: ~....... \c\

60

i

I

I

"-o.13(O.005)®ITI Q®I v®1

STYLE 9:
PIN 1. ANODE.l
2. ANODEII2
CASE: CATHODE

OOH)7.
DIM

A
B
C
D
E
G

H
K
L
N
Q

U
V

MILLIMETERS
MIN
MAX
39.37 REF
26.67
6.35
8.51
0.97
1.09
1.40
1,77
10.92BSC
5.46BSC
11.18 12.19
laS9BSC
21.08
3.84
4.19
30.15BSC
3.33
4.17

INCHES
MIN
MAX
1.550 REF
1.050
0.250 0.335
0.038 0.043
0.055 0.070
O.430BSC
0.215BSC
0.440 0.480
0.665BSC
0.830
0.151 0.165
1.187BSC
0.131 0.188

CASE1-D7

f

NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M.I982.
2. CONTROWNG DIMENSION: INCH.

W
SEATING
PLANE

-

-

STYLE 4:
PIN 1. ANODE,l
2. ANODE.2
CASE: CATHODE

6.35
0.99

~~
3.84

II

CASE 11-03

7-2

-

-

0.250
0.039

-'1.431

0.151

PACKAGE OUTLINE DIMENSIONS AND FOOTPRINTS (continued)

NOTES:
1. CHAMFER OR UNOERCUT ON ONE OR BOTH
ENDS OF HEXAGONAL BASE IS OPTIONAL
2. ANGULAR ORIENTATION AND CONTOUR OF
TERMINAL ONE IS OPTIONAL
3. THREADS ARE PLATED.
4. DIMENSIONING AND TOLERANCING PER

T7~~
A

1

~

R

4B~

F

L;J D.G-

~

S~~

eg
=

t.HT==
r-

SEATING PLANE

-

ANSI Y14.5, 1982.
STYLE\:
TERM. 1. CATHODE
2. ANODE

TERMINAL 1

~

DIM
A
B
C
D
E
F
J
K
L

;1/4-211
t UNF-2A

P
Q

TERMINAL 2

R
S

MILUMETERS
MIN
MAX
20.07
16.94 17.45
11.43
9.53
2.92
5.08
203
10.72 11.51
19.05 25.40
3.96
5.59
6.32
3.56
4.45
16.94
2.26

INCHES

MIN

0.669

0.115
0.422
0.750
0.156
0.220
0.140

MAX
0.790
0.687
0.450
0.375
0.200
0.080
0.453
1.00

0.249
0.175
0.667
0.089

CASE 42A-01

NOTES:
1. ALL RULES AND NOTES ASSOCIATED WITH
REFERENCED 004 OUTUNE SHALL APPLY.
2. DIMENSIONING AND TOLERANCING PER ANSI

VI4.5M,19B2.
STYLE 2:
TERM. I. ANODE
2. CATHODE

I'

]

}

Il~ 1
1

I T-r,u.

~IJ.32UNF-2AA-

c

3. CONTROLUNG DIMENSION: INCH.
4. 056·01,·02 OBSOLETE, NEW STANDARD 056-03.

DIM
A
B

C
D
E
F
J
K
P

SEATING
PLANE

*

Q

R

MIUUMETERS
MIN
MAX
12.82
10.77 11.09
10,28
635
1.53
1.91
4.44
10.72 1150
15.24 20.32
4.14
4.80
1.53
2.41
6.74 10.76

INCHES
MAX
MIN
0.505
0.424 0.437
0.405
0.250
0.060
0.075 0.175
0.422 0.453
0.600 0.800
0.163 0.189
0.060 0.095
0.265 0.424

CASE 56-03

NOTES:
1. ALL RULES AND NOTES ASSOCIATED WITH
JEDEC 00·41 OUTUNE SHALL APPLY.
2. POLARITY DENOTED BY CATHODE BAND.
3. lEAD DIAMETER NOT CONTROLLED WITHIN oF"
DIMENSION.
DIM
A
B

D
F

K

CASE 59-03

7-3

MIUUMETERS
MIN
MAX
4.07
5.20
2.04
2.71
0.71
0.86
1.27
27.94

INCHES
MIN
MAX
0.160 0.205
0.080 0.107
0,028
0.034
0050
1.100

II
I

PACKAGE OUTLINE DIMENSIONS AND FOOTPRINTS (continued)

-l)I-B

[

NOTES:
1. All RULES ANO NOTEs ASSOCIATED WrYH JEDEC
D0-41 OUTUNE SHAll APPLY.
2. POLARITY DENOTED BY CATHODE BAND.
3. LEAD DIAMETER NOT CONTROLLED WITHIN'F"
DIMENSION.

1---0

K

~

9

DIM
A
B
D
K

K

MILLIMETERS
MIN
MAX
5.97
6.60
2.79
3.05
0.76
0.86
27.94

INCHES
MIN
MAX
0.235 0.260
0.110 0120
0.030 0034
1.1(10

--.1

CASE 59-04

}.[

r

STYLE 1:
PIN 1. CATHODE
2. ANODE

1

K

L
t
C

L

NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M,1982.
2. COI"fTROWNG DIMENSION: INCH.
DIM
A
B
C
D
K

MILLIMETERS
MIN
MAX
11.43
889
7.62
1.17
142
24.90

INCHES
MIN
MAX
0.450
0.350
0300
0046 0.056
0.980

DIM
A
B
D
F
M

MILUMETERS
MIN
MAX
8.43
8.69
4.45
4.19
5.54
5.64
5.94
6.25
50 NOM

INCHES
MIN
MAX
0.332 0.342
0.165 0.175
0.218 0.222
0.234 0.246
5° NOM

2

-11-0
CASE 60-01

•

@j
r-:-,
"§
I

~ t
F

=t *
CASE 193-04

7-4

PACKAGE OUTLINE DIMENSIONS AND FOOTPRINTS (continued)

NOTE:
1. CATHODE SYMBOL ON PKG.
DIM
A
B
0
K

MILUMETERS
MIN
MAX
8.43
8.69
5.94
625
1.27
1.35
25.15 25.65

INCHES
MAX
0342
0246

MIN
0.332
0234
O.OSO
0.990

0.053
1.010

CASE 194-04

UB~

_C

F

QJ~l

t i

H

f

_123-1

%~ ~
V_

~ ~~~~G

-H

T

J

Y14.5M, 1982.
2. CONTROLUNG DIMENSION: INCH.
3. DIM Z DEFINES A ZONE WHERE ALL BODY AND
LEAD IRREGULARITIES ARE ALLOWED.

S

LW

U

NOTES:
I. DIMENSIONING AND TOLERANCING PER ANSI

STYLE 6:
PIN I.
2.
3.
4.

l,

ANODE
CATHODE
ANODE
CATHODE

DIM
A
B
C
D
F
G
H
J

K
L
N
Q

R
S

y.~
1.4-0

T
U
V

N_

MILUMETERS
MIN
MAX
14.48 15.75
9.66 10.28
4.07
4.62
0.66
0.64
3.61
3.73
2.42
2.66
3.93
2.80
0.48
0.64
12.70 14.27
1.15
1.52
4.83
5.33
2.54
3.04
2.04
2.79
1.15
1.39
a97 6.47
1.27
0.00
1.15
2.04

INCHES
MIN
MAX
0.570 0.620
0.380 0.405
0.160 0.190
0.025 0.035
0.142 0.147
0.095 0.105
0.110 0.155
0.018 0.025
0.500 0.562
0.045 0.050
0.190 0.210
0.100 0.120
0.080 0.110
0.045 0.055
0.235 0.255
0.000 0.050
0.045
0.080

CASE 221 A-06

STYLE 1:
PIN I.
2.
3.
4.

CATHODE
NfA
ANODE
CATHODE

TIt

TSECTA-A

J

NOTES:
I. DIMENSIONING AND TOLERANCING PER ANSI
Y14~, 1982.
2. CONmOLUNG DIMENSION: INCH.
3. 221B.ol OBSOLETE, NEW STANDARD 221B·02.

DIM

15.11

15.75

B
C

H
J

9.65
4.06
0.64
3.81
4.83
2.79
0.46

10.29
4.82
0.89
3.73
5.33
3.30
0.64

K

12.70

14.27

L

1.14
2.54
2.04
1.14
5.97
0:76

1.27
3.04
2.79
1.39
.48
1.27

o
F

G

Q

R

-U

CASE 221 B-02

7-5

MILUMETERS
IIlN
MAX

A

INCHES
MIN
MAX
0.620
0.380 0.405
0.160 0.190
0.025 0.035
0.142 0.147
0.190 0.210
0.110 0.130
0.018 0.025
0.500 0.562
0.045 0.050
0.100 0.120
0.080 0.110
0.045 0.055
0.235 0.2,.
0.030 0.050

0.595

•

I

PACKAGE OUTLINE DIMENSIONS AND FOOTPRINTS (continued)

NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Vl'.5M. 1982.
2. CONTROLUNG DIMENSION: INCH.
3. 2210·01 OBSOLETE, NEW STANDARD 2210·02.

STYLE 3:
PIN 1. ANODE
2. CATHODE
3. ANODE

DIM

A
a
C
D
F
G

H
J

G

K

N
L

L
N
Q

D 3PL

-"

Itlo.25(D.D1D)®1 B®lvl

MILUMETERS
MIN
MAX
15.78 15S7
10.01 10.21
4.60
4.60
0.67
0.88
3.08
3.27
2.54aSC
3.13
3.27
0.46
0.64
12.70 14.27
1.14
1.52
5.08BSC
3.21
3.40
2.72
2.81
2.44
2.64
6.78
6.58

INCHES
MIN
MAX
0.621 0.629
0.394 0.402
0.181 0.189
0.028 0.034
0.121 0.129
O.I00BSC
0.123 0.129
0.018 0.025
0.500 0.562
0.045 0.060
0.200BSC
0.126 0.34
0.107 0.111
0.09
0.04
0.259 0.267

CASE 221 D-02

NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI

Y14.SM,1982.
STYLE 2:
PIN 1. ANODE
2. CATHODE

2. CONTROLLING DIMENSION: INCH.

3. 20.25(0.010) ® ITI A® I B®I
l±l SEATING PLANE

A
B
C
E
F
G
H

N
Q

R
U
V
W

MILUMETERS
MIN
MAX
87.63 92.20
17.78 20.57
15.63 16.26
3.05
3.30
11.30
'1,05
34.60 35.05
0.68
0.16
1/4-2OUNC-2B
7.23
6.66
80.01 H:)li
15.24 16.00
6.39
9.52
4.32
4.82

INCHES
MIN
MAX
3.450 3.635
0.700 0.610
0.615 0.640
0.120 0.130
0.435 0.445
1.370 1.360
0.007 0.030
1/4-20 NC·2B
0.270 0.265
3.150."0
0.600 0.630
0.330 0.375
0.170 0.190

CASE 357C-03

0.165

I
0.190

-

I

O.IIB

r-4T9f~0.100t3.0
2.54
I--- -

D

1

Ot~:3 f

- - 1 1 - - - - - - TO.243

D~r

DPAK
FOOTPRINT

NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
VI4.5M,I982.
2. CONTROWNG DIMENSION: INCH.
3. 389A'()1 THRU ·03 OBSOLETE.
4. 369A.()4THRU .100BSOLETE, NEW STANDARD
36911-11.
STYLE 3:
PIN 1. ANODE
CATHODE
ANODE
CATHODE

DIM
A
B
C
D
E

F
G
H

J
K
L
R
S
U
V
Z

CASE 369A-11

7-9

MILU
MIN
5.97
6.35
2.19
0.69
0.84
0.84
4.58BSC
0.87
1.01
0.46
0.58
2.89
2.60
2.29BSC
4.45
5.46
0.51
1.27
0.51
0.77
1.27
3.51

~
~
~
~
~
~

0.18~

0.034 0.040
0.018 0.023
0.102 0.114
0.090BSC
0.175 0.215
0.050
0.020
0.020
0.030 0.050
0.138

•

I

•

PACKAGE OUTLINE DIMENSIONS AND FOOTPRINTS (continued)

I---

I

0.171
4.343

-----i
I

TO 0
3.810

L

I-

.QJ1Q
2.794

-I

NOTES:
1. D1MENS10N1NG AND TOLERANC1NG PER ANSl
Y14.5M.1982.
2. CONTROLL1NG D1MENS10N: lNCH.
3. 0 DIMENSION SHALL BE MEASURED WITHm
D1MENS1DN P.
4. 403'()1 AND '()2 OBSOLETE, NEW STANDARD
403.()3.

SMC
FOOTPRINT

D1M
A

B
C
0

H

J
K

P
S

M1WMETERS
M1N
MAX
7.11
6.60
5.59
6.10
1.90
2.41
2.92
3.07
0,051 0.152
0,30
0,15
0,76
1,27
0.51 REF
8,13
7.75

lNCHES
M1N
MAX
0.260 0.280
0.220 0.240
0.075 0.095
0.115 0.121
0.0020 0.0060
0.006 0.012
0.030 0,050
0.020 REF
0.305 0,320

CASE 403-03

I-

0.089
2.261

TaO
2.743

L

I- 0.085 -I
2.159

o
Cn:")

NOTES:
1. D1MENS10N1NG AND TOLERANC1NG PER ANSl
Y14.5M,1982.
2. CDNTROWNG D1MENS10N: lNCH,
3. 0 D1MENS10N SHALL BE MEASURED WJTH1N
D1MENS10N P.
4. 403A'()l AND'()2 OBSOLETE, NEW STANDARD

5MB
FOOTPRINT

403A.()3.
D1M
A
B

C

M1WMETERS
M1N
MAX
4.06

4.57

3,30
1.90

3.81
2.41

1.96
0,051

2.11
0.152

0.15
o~o
0.76
1.27
0,51 REF
5.21
5~9

--'

~

~
~
- - -

---

H

C

t

CASE 403A-03

7-10

lNCHES
M1N
MAX
0.160 0.180
0.130 0.150
0.075 0.095
o.on 0.083
0.0020 0.0060
0.006 0.012
0,030 0.050
0,020 REF
0.205 0220

0.74
18.79

I"

I
L

1
D -.L
___
D=r
0.065
1.651

0.420
10.66

-

0.07

Us

~0.330~
8.38

~

0.14
3.56

NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
YI4.5M.1982.
2. COI>ITROLUNG DIMENSION: INCH.

~ (,::e5)

02PAK

DIM

FOOTPRINT

r-

B

-1ft

A

B
C
D
E

l~~E
-,c

G

H

J
K

S

"'~

rn-W r wS~~~ ~G~'L

V

MILUMETERS
MIN
MAX
8.64
9.65
9.65 10.29
4.06
4.83
0.S1
0.89
1.14
1.40
2.54BSC
2.03
2.79
0.64
0.46
2.29
~79
14.60 1588
1.14
1.40

INCHES
MIN
MAX
0.340 0.380
0.380 0.405
0.180 0.190
0.020 0.035
0.045 0.055
O.l00BSC
0.080 0.110
0.018 0.025
0.090 0.110
0575

0.625

0.045

0.055

D f-I
hj
K

t
03PL

1+10.13(0.005)

-ITI~-tJ

®

CASE

4188-01

•
7-11

II

7-12

a

Index and Cross Reference

II
II
II
II

Selector Guide
Data Sheets
Tape and Reell
Packaging Specifications
Surface Mount Information

II
II

TO-220 Leadform Information
Package Outline Dimensions
and Footprints

IPHX33042R-O Printed in U.S.A. 11/92 COURIER CO. 62718 20,000 RECT YAABAA

DL151/D

111111111111111111111111111111111111111111111



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2017:07:10 18:05:20-08:00
Modify Date                     : 2017:07:10 18:23:36-07:00
Metadata Date                   : 2017:07:10 18:23:36-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:956fdb89-d922-c549-9ad8-36f567555cf2
Instance ID                     : uuid:0aefaa27-3ffb-7249-a74b-5a9ca6f8d87d
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 402
EXIF Metadata provided by EXIF.tools

Navigation menu