1992_TI_Linear_Circuits_Data_Book_Vol_1 1992 TI Linear Circuits Data Book Vol 1
User Manual: 1992_TI_Linear_Circuits_Data_Book_Vol_1
Open the PDF directly: View PDF
.
Page Count: 1420
| Download | |
| Open PDF In Browser | View PDF |
Suggested Retail Price: $17 .95
•
TEXAS
INSTRUMENTS
Linear Circuits
Operational Amplifiers
1992
1992
Linear Products
Linear Products Quick Reference Guide
Data Book
Contents
Document No.
•
Optoelectronics and
Image Sensors
Optocouplers
CCD Image Sensors and Support
Phototransistors
IR-Emitting Diodes
Hybrid Displays
SOYD002A, 1990
•
Speech System Manuals
TSP50C4X Family
TSP50C10/11 Synthesizer
TSP53C30 Synthesizer
SPSS010, 1990
SPSS011,1990
SPSV006, 1991
•
Interface Circuits
Data Transmission and Control
Circuits, Peripheral Drivers/Power
Actuators, Display Drivers
SLYD006,1991
•
Telecommunications
Circuits
Transmission, Switching, Subscriber,
Transient Suppressors
SCTD001 B, 1991
•
Linear and Interface
Circuits Applications
Op Amps/Comparators, Video Amps,
VRegs, Power Supply Design, Timers,
Display Drivers, Datran, Peripheral
Drivers, Data Acq., Special Functions
SLYA005,1991
•
Mass Storage ICs
Designer's Reference
Guide
Disk Drivers: Read/Write, Servo/System
Control, Interface/Linear, Digital ASIC,
LinASICTM, Applications
SSCA001, 1992
•
Macromodel Data Manual
Levell: Operational Amplifiers,
Voltage Comparators, Building Blocks
Levell!: Selected Operational Amplifiers,
Buildilng Blocks
SLOS047B, 1992
January 1992
LinASIC is a trademark of Texas Instruments Incorporated.
General Information
..
-=...
~~~~~~~~
Operational Amplifiers
~~~~~~~~~
~M_e_C_h_a_n_ic_a_I_D_a_t_a____________________~1IDI
Linear Circuits
Data Book
1992
Volume 1
Operational Amplifiers
•
TEXAS
INSTRUMENTS
IMPORTANT NOTICE
Texas Instruments (TI) reserves the rightto make changes to or to discontinue any
semiconductor product or service identified in this publication without notice. TI
advises its customers to obtain the latest version of the relevant information to
verify, before placing orders, that the information being relied upon is current.
TI warrants performance of its semiconductor products to current specifications
in accordance with TI's standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty.
Unless mandated by government requirements, specific testing of all parameters
of each device is not necessarily performed .
. TI assumes no liability for TI applications assistance, customer product design,
software performance, or infringement of patents or services described herein.
Nor does TI warrant or representthat license, either express or implied, is granted
under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which
such semiconductor products or services might be or are used.
Texas Instruments products are not intended for use in life-support appliances,
devices, or systems. Use of a TI product in such applications without the written
consent of the appropriate TI officer is prohibited.
Copyright © 1992, Texas Instruments Incorporated
Printed in the U.S.A.
INTRODUCTION
Texas Instruments offers an extensive line of industry-standard and leadership products dedicated to Operational
Amplifier functions. The technologies represented in this book include traditional bipolar through BIDFET, BIFET,
IMPACT'" , LinCMOS'", Advanced linCMOS'", and Excalibur processes. The 1M PACT'" , Advanced linCMOS'",
and Excalibur technologies feature a step-function improvement in impedance, speed, power requirements, and
threshold stability.
This data book (Volume 1 of 3) provides information on the extensive listing ofTexas Instruments Operational Amplifier
products.
•
•
•
•
•
•
Commercial, Industrial, Automotive, and Military Temperature Ranges
Noncompensated, Single, Dual
Intemally Compensated, Single, Dual, Quad
Precision, Chopper-Stabilized
Excalibur: High-Speed, Low-Power, Precision, JFET Input, J-lPower, High Output, Low Noise
Precision virtual ground
EXCALIBUR PROCESS DISCUSSION: TLE2425
The TI complementary bipolar process (Excalibur) has several key components, which yield the high performance
of the TLE2425 Virtual Ground. Excalibur is a 44-V n-epi bipolar process that includes isolated high-speed PNPs,
metal-nitride-poly capacitors, p-channel JFETs, as well as the common bipolar devices. In other bipolar processes,
the capacitors have one plate made from the silicon substrate (bottom) and the other from metal. At low levels of
operating current, the leakage current from the silicon bottom plate can significantly impact the dc performance of the
circuits. The ac performance is also effected by the parasitic substrate capacitance. Use of the poly-nitride-metal
capacitor significantly reduces these effects, yielding higher ac performance and stable bias currents. Precision
p-channel JFETs are used in the current reference circuit to generate a temperature stable micropower current source.
Since this current source is used throughout the circuit, parametric performance stability is improved over the
operating temperature range. Single-supply circuits frequently are performance limited by the ac characteristics of
the PNP transistors. Using high-speed PNP transistors in the Signal path ofthe amplifier permits the TLE2425 to have
a three-to-five times higher bandwidth. This translates into improved load regulation and line regulation over
frequency. The capacitors, JFETs, and isolated PNP transistors all work together to provide a high-performance virtual
ground in a small package at low cost. This could not be accomplished with other process technologies.
FEATURES IN THIS BOOK
•
•
•
•
•
New Excalibur process devices
Selected Macromodel programs (Level I)
Expanded product characterization over supply voltage and temperature
Extensive graphs showing the characterization
New space-saving packages, 3-to-20 leads, TSSOP and SOT-89
The alphanumeric listing in this data book includes all devices contained in Volumes 1,2, and 3. Products in this book
are shown in BOLD type. Thus, the reader can easily find the particular volume for a given device. Also included are
those new products added to this volume as indicated by a dagger(t). The selection guide includes a functional
description of each device by providing key parametric information and packaging options. Ordering information and
mechanical data are in the last section of the book.
IMPACT, LinCMOS and Advanced LinCMOS are trademarks of Texas Instruments Incorporated.
v
Complete technical data for all TI semiconductor products are available from your nearest TI Field Sales Office, local
authorized TI distributor, or by writing directly to:
Texas Instruments Incorporated
LITERATURE RESPONSE CENTER
P.O. BOx 809066
Dallas, Texas 75380-9066
We sincerely feel that this new 1992 Linear Circuits Data Book, Volume 1, will be a significant addition to your technical
literature from Texas Instruments.
vi
1-1
Contents
Page
Alphanumeric Index ..................................................... 1-3
Operational Amplifiers - Selection Guide ............................. 1-7
Operational Amplifiers - Cross-Reference Guide ..................... 1-35
Operath)nal Amplifiers - Glossary ...................................... 1-41
1-2
ALPHANUMERIC INDEX
AD7524 ............•..... VOL 2
AD7524M ................
AD7528 •........... . . . . ..
AD7528M ................
AD762B .........•.. . . . . ..
ADCOB03 ..•.............
ADCOB04
ADCOBOS
ADCOBOB
ADCOB08M ..•......•.....
ADCOB09 ................
ADC08208 ....•..........
ADCOB20C
ADCOB31A
ADCOB318
ADCOB32A
ADCOB328
ADC0834A
ADC0834B
ADC0838A
ADC0838B
ICL7135 .................
LF347 •••••••••••••••••••
LF347B ••••••••••••••••••
LF351 •••••••••••••••••••
LF353 •••••••••••••••••••
LF411C ••••••••••••••••••
LF412C ••••••••••••••••••
LM101A •••••••••••••••••
LM107 ••••••••••••••••••
LM108 ••••••••••••••••••
LM108A •••••••••••••••••
LMlll ...................
t
LM118
LM124 ••••••••••••••••••
LM139 ..................
LM139A ..............•..
LM148 ••••••••••••••••••
LM158 ••••••••••••••••••
LM158A ••
LM18S-1.2 ................
! ..............
VOL 2
VOL 2
VOL 2
VOL 2
VOL 2
VOL2
VOL2
VOL2
VOL 2
VOL 2
VOL 2
VOL2
VOL2
VOL2
VOL2
VOL 2
VOL 2
VOL2
VOL2
VOL2
VOL 2
2-3
2-3
2-5
2-7
2-9
2-11
2-13
2-19
2-23
2-23
VOL3
2-35
2-39
VOL3
VOL3
2-47
2-51
2-51
VOL3
LM18S-2.S ..............•. VOL3
LM193 .................. VOL3
LM201A ••••••••••••••••• 2-13
LM207 ... t ..............
LM208 ..................
LM208A .. 1. .. .. .. .. .. ...
LM211 ••......••.........
2-19
2-23
2-23
VOL3
LM218 ••••••••••••••••••
LM224 ••••••••••••••••••
LM224A ••••••• ,., •• " •• ,
LM236-2.S ...... ,.........
2-35
2-39
2-39
VOL 3
LM237
LM239
............•...•. VOL3
........•.....•... VOL3
LM239A .......•....•....
LM248 , ••••••••••••••• ,.
VOL 3
2-47
LM258 ." •• , . , ' , . , " , . , '
LM258A .................
LM2B5-1.2 ...............
LM2BS-2.5 .....••........
LM293 ...•........•.....
LM293A ......••...•....•
LM301A ••••••••••• ,.,...
LM306
LM307 ••• " ••• , •• " . . . . .
LM308 ••••••••• , ••• , •• ,.
LM308A .................
LM311 ..•....•..•.......
LM311Y ...•........•....
LM318 ••••••••••••••••••
LM324 ..................
LM324A ••
LM324Y •• , ••••• ,., •• ,...
LM336-2.5 •...•..........
LM337 ...••....•..•.....
LM339 ...•..............
LM339A ........••.....•.
LM339Y .•.•....••..•.••.
LM348 ••••••• , ••••••••••
LM358 •••••••• , •• , ••• ,.,
2-51
2-51
VOL3
VOL 3
VOL3
VOL 3
2-13
VOL3
2-19
2-23
2-23
VOL3
VOL3
2-35
2-39
2-39
2-39
VOL 3
VOL3
VOL3
VOL 3
VOL 3
2-47
2-51
LM358A ,.
LM358Y •• " •••••• ,.,.,..
LM38S-1 .2 ...............
LM3858-1.2 ........•.....
LM38S-2.5 ....•..........
LM3858-2.5 ...•.........•
LM393 ......•...........
LM393A
LM393Y
LM2900
LM2901
LM2901 Q ....•.••..•.••..
LM2902 .................
LM2902Q • -:, ••• , •• , , • , • "
LM2903 ..•....•••••....•
2-51
2-51
VOL 3
VOL 3
VOL 3
VOL 3
VOL3
VOL3
VOL3
2-61
VOL3
VOL 3
2-39
2-39
VOL 3
r ........ ,. . ..
r .,' ..... ,.. ..
.•••.........••.
VOL 3
LM2904 •• 't' ... , , , , . , . , "
LM2904Q ., ••••••••••• " .
LM2907 ..•....•..••.•..•
LM2917 ...•...•.......••
LM2930-5 ................
LM2930-8 .•..........••••
LM3302 ...•.....•......•
LM3900 , ••••••••••• ,....
LP111 .•..............•.•
LP211
LP239
LP311
2-51
2-51
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
2-61
VOL 3
VOL3
VOL3
VOL3
LM2903Q
LP339 •.••...•.•.•••...•
LP2901 •..••••..•..•..••
LT1004 •.•.••...••. ,....
LTl007 , •• , ••• ', ••• , •• ,.
LTl007A , ......... ',.,.,
LT1009 ...•...•....•...•
LT1013 ••• ,t.. ,' ...... ,..
LTl013A ., .t... , ... , . , , ,.
VOL3
VOL 3
VOL 3
2-69
2-69
VOL 3
2-93
2-93
LTl013D ,.,t.. " .. " ... ,.
LT1013Y ••• t....... , .... ,
LT1037 ••••••• , ••••• ,...
LTl037A ••••••••••••••••
LT1054 •..•...•......•..
LT1070 ••........•....••
LT1070HV ...•...••....••
LT1071 .••.•...•.•..•..•
LT1071HV ...............
LT1072 •••.....•..••..••
LT1072HV ..•..•.•....•..
LT10B4C .•....•...••..•.
LTC1052 ••• t........ , . . ..
MC1445 •.••.•••••.••••..
MC1458
MC1558
MC3303
MC3403
MC3423
MC34060 ....••..•......•
MC79L05C ......•..••....
MC79L05AC ....•••.•..••
MC79L12C ...............
MC79L12AC ...•...•.••••
MC79L15C ...............
MC79L15AC .......••••.•
MF4A-50 •...•.•..••••.••
MF4A-l00 •....•.•.•••.••
MF10A ...••..•.•...••..
MF10C ..•..•.••.••••..•
NE555 ...••••.•••.•.•...
NE555Y ..........•.•...•
NE556 ••.•••••••.•.••..•
NE592 .•..••.••••.•.••..
NE5532 •••• , ••••••• ,....
NE55321 ••••• , •• , •• ,',..
NE5532A ••••••••••••••••
NE5532AI ••••••••• , . " . .
2-93
2-93
2-69
2-69
VOL3
VOL 3
VOL 3
VOL3
VOL3
VOL 3
VOL3
VOL3
2-117
VOL3
2-121
2-121
2-125
2-125
VOL3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 2
VOL 2
VOL2
VOL2
VOL3
VOL 3
VOL3
VOL3
2-131
2-131
2-131
2-131
NE5534 ' ••• ,',." •• " . . .
NE5534A •• , •••••••• ,....
OP07C
OP07D
OP07Y
OP27A
OP27C
OP27E
2-135
2-135
2-141
2-141
2-141
2-149
2-149
2-149
tNew devices added to this volume.
TEXAS
~
INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
1-3
ALPHANUMERIC INDEX
OP27G
OP37A
OP37C
OP37E
OP37G
RC4136 ••••••••••••••• ••
RC4558 ..
RC4558Y ................
RC4559
RM4136 •••••••••••••••••
RM4558 •••••••••••••••••
RV4136 ••••••••••••••••••
RV4558
SA555
SA556
SE555
SE555C .................
SE556 ..................
SE556C ............•..••
SE592 •...........•••..•
SE5534 ••••••••••••••••••
SE5534A ••••••••••••••••
SG2524 ..........••..••.
SG3524 ......•....••....
SN76494 ..............•.•
SN76494A ................
SN76496 .................
SN76496A ...•.••....•.••.
TL010C ..................
TL0101 .....•..••...•.•..
TL011 ...................
TL012 ...........•.....•.
TL014A ........•..•••...•
TL021 .........•.........
TL022C ••••••••••••••••••
TL022M •••••••••••••••••
TL026C ..................
TL027C ••••••••••••••••••
TL031 •••••••••••••••••••
TL031A ••••••••••••••••••
TL032 ...................
TL032A ..................
TL034 ...................
TL034A ..................
TL040C •.•.......•••..•.•
TL041AC .................
TL044C ..................
TL044M •••••.•••••••••••
TL051 •.•••••••••••••••••
TL051A ••••••••••••••••••
TL052 ...................
TL052A ..................
TL054 •••••••••••••••••••
TL054A ••••••••••••••••••
t ..............
2-149
2-149
2-149
2-149
2-149
2-159
2-163
2-163
2-169
2-159
2-163
2-159
2-163
VOL3
VOL 3
VOL 3
VOL 3
VOL3
VOL 3
VOL3
2-135
2-135
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL3
VOL 3
VOL 3
VOL3
2-171
2-171
VOL 3
VOL 3
2-175
2-175
2-203
2-203
2-229
2-229
VOL 3
VOL 3
2-253
2-253
2-257
2-257
2-283
2-283
2-311
2-311
TL061 •••• • • • • • • • • • • • • ••
TL061A •••••••••••••••••
TL061B .................
TL062 ••••••••••••••••••
TL062A •••••••••••••••••
TL062B •••••••••••••••••
TL064 ••••••••••••••••••
TL064A •••••••••••••••••
TL064B •••••••••••••••••
TL066C .................
TL0661 ..................
TL066M •••••••••••••••••
TL066AC ................
TL070C .................
TL071 ••••••••••••••••••
TL071A •••••••••••••••••
TL071 B .................
TL072 ..................
TL072A .................
TL072B .................
TL074 ••••••••••••••••••
TL074A •••••••••••••••••
TL074B •••••••••••••••••
TL080C .................
TL081 ..................
TL081 A •••••••••••••••••
TL081 B .................
TL082 ....... .. .. .. • ....
TL082A .................
TL082B •••••••••••••••••
TL084 ..................
TL084A. • • • • • • • • • • • • • • ••
TL084B •••••••••••••••••
TL087 ..................
TL088
TUB2
TUB5
TU88
TU91
TLSCSI285 ..••••.•.•.....
TL287 ..................
TL288 ..................
TL430C .................
TL4301 ..................
TL431C .................
TL431 I ..................
TL431M .................
TL431AC ........... ; ....
TL431AI ....•.•..•..•....
TL441AM ....•...•.•..•••
TL494 ..................
TL494M .................
TL496C .................
TL497AC ................
2-341
2-341
2-341
2-341
2-341
2-341
2-341
2-341
2-341
2-357
2-357
2-357
2-357
2-371
2-371
2-371
2-371
2-371
2-371
2-371
2-371
2-371
2-371
2-387
2-387
2-387
2-387
2-387
2-387
2-387
2-387
2-387
2-387
2-401
2-401
VOL2
VOL2
VOL 2
VOL 2
VOL 3
2-401
2-401
VOL 3
VOL 3
VOL3
VOL3
VOL3
VOL3
VOL 3
VOL3
VOL3
VOL 3
VOL 3
VOL3
tNew devices added to this volume.
TEXAS ..,
INSTRUMENTS
1-4
POST OFFICE BOX 655303 • DALlAS, TEXAS 75265
TL497AI ••.•••••••••.••••
TL499AC ................
TL500 •••.••••••••••••••
TL501
TL502
TL503
TL505C .................
TL507 ••••••••••••••••••
TL5~2 ..................
TL592B .................
TL594C ••••..•.••••••...
TL5941 ..................
TL598 ..................
TL598M ••••.•••..•••••.•
TL601 ..................
TL604 ..................
TL607
TL61 0
TL712 ..................
TL714C .................
TL721
TL750L05
TL750LOB
TL750L10
TL750L12
TL750M05
TL750MOB
TL750Ml0
TL750M12
TL751L05 •.••.•••.••••••
TL751L05M .......... '....
TL751 LOB ...............
TL751Ll0 .••..•..•••.•.•
TL751L12 .•••••••.••.•••
TL751L12M ..............
TL751M05 ...............
TL751 MOB
TL751Ml0
TL751M12
TL7BO-05
TL7BO-12 ..••.•••.•...•••
TL7BO-15 .,..............
TL782C
TL7820
TL783C
TL080B
TLOa09
TL.851
TL852 ..................
TL853 •••.•.••..•.••••••
TL1431C
TL14310 ................
TL1431Y •••••••••..•••••
TL1451AC .••••••••••.•••
VOL 3
VOL 3
VOL2
VOL 2
VOL2
VOL2
VOL 2
VOL2
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL2
VOL2
VOL 2
VOL 2
VOL 3
VOL3
VOL3
VOL 3
VOL 3
VOL 3
VOL3
VOL 3
VOL3
VOL 3
VOL 3
VOL 3
VOL 3
VOL3
VOL3
VOL3
VOL3
VOL 3
VOL3
VOL3
VOL3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 2
VOL 2
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL3
VOL3
ALPHANUMERIC INDEX
TL2217-285
TL2S28Y •• 'f ............ .
TL2828Z •• 't' ............ .
TL2829Y ............... ..
TL2829Z •••t ............. .
TL5501
TL5601
TL5602
TL7702A
TL7702B
TL7705A
TL7705B
TL7709A
TL7712A
TL7715A
TL7757
TL7759C ......
TL7770-5
TL7770-12
Of
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
00000000000000000
0
0
0
0
0
0
0000
0
0
TL7770-15 't'
TL33071
TL33071 A ••t",
0
0
0"
0"
0
0
0
0
..
0
0
0
..
0
0
..
0
0
0
0
....
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
000
0
0
••
00'
0
,
0
0
0
•
,
•••
,
,
•
0
0
••
t
TL33072 •• 't'"
TL33072A .............. ..
TL33074 •••t ....• , , .... , ,.
TL33074A • .t... ,., ..... , ..
TL34071 •••t ... , .... , .... .
TL34071A ••t ............. .
TL34072 ",t........... , ..
TL34072A ••t ..... , , , .... , .
0
0
•••
'
•••••
VOL3
2-421
2-421
2-429
2-429
VOL 2
VOL 2
VOL 2
VOL3
VOL3
VOL 3
VOL3
VOL3
VOL3
VOL3
VOL 3
VOL 3
VOL3
VOL 3
VOL3
2-443
2-443
2-443
2-443
2-443
2-443
2-443
2-443
2-443
2-443
2-443
TL34074 •• .t." ..... , .... .
TL34074A ••t, ....... , , ..•. 2-443
t . , ., ... , ... , , 2-443
TL35071 •• 't'
TL35071A .,.,' •••••••••• ' 2-443
TL35072 •••t ... " ........ . 2-443
TL35072A • •
2-443
TL35074 , •••• ,.,', ••• , ••• 2-443
TL35074A ••t, , , ..... , ..... 2-443
TLC04
VOL2
TLC10
VOL 2
TLC14
VOL 2
TLC20
VOL2
TLC139M
VOL3
TLC251C •••••••• " •••• ,. 2-449
TLC251AC .,., ••••••••••• 2-449
TLC251BC ............... 2-449
TLC251Y
2-449
TLC252C
2-467
t , .......... . 2-467
TLC252Y ....
i..... ,.... ,.. .
0000000000000000
,.!, ............
t ............ ,
TLC254C ..
TLC254Y •• ,., •• ,........
TLC25L2C .,',., ••• , ••• ,.
TLC25L2Y • ~ •••• , • , • • • • ••
TLC25L4C ...............
2-487
2-487
2-467
2-467
2-487
TLC25L4Y
2-487
TLC25M2C • t' .......... ,.
TLC25M2Y •• ,............
2-467
2-467
TLC25M4C • t" . .. .. . . ....
TLC25M4Y •••• ,..........
2-487
2-487
TLC271
TLC271A
TLC271 B
TLC272
•••••••••••••••••
••••••••••••••••
••• , •••••• ,',...
.................
2-507
2-5072-507
2-565
TLC272A ................
TLC272B •••• ,., •••••• ,..
TLC274 ••••••••••••• ,...
TLC274A •••••• ,', •••• " .
TLC274B ••••••••••••••••
TLC277 .................
2-565
2-565
2-597
2-597
2-597
2-565
TLC279 ' •••••• " . . . . . . . .
TLC27L2 •••••• ,',.......
TLC27L2A •••••••• , •• , •• ,
TLC27L2B •••••• ,', ••• ,..
TLC27L4 " , •••••• ,......
TLC27L4A •••••••• ,......
2-597
2-629
2-629
2-629
2-661
2-661
TLC27L4B ." ••• " •••• ,"
TLC27L7
TLC27L9 ••• " ••• ,',.,.,.
TLC27M2 ................
TLC27M2A ...............
TLC27M2B ., •••••• ,......
TLC27M4 ••••••••••••••••
TLC27M4A ,.,.' •••• , ••• ,.
TLC27M4B " , ••••• " •••• ,
TLC27M7
TLC27M9 ••••••• ,........
TLC339C •.
TLC3391 o.
TLC339M
TLC339Q •
TLC352C
TLC3521 .
TLC352M ...•
TLC354C o .
TLC3541 .
TLC354M .
TLC371 .
TLC372C
TLC3721 ..
TLC372M •........
TLC372Q .
TLC374C
TLC3741 ..
TLC374M
TLC374Q .•
TLC393C ...
TLC3931
TLC393M
2-661
2-629
2-661
2-693
2-693
2-693
2-725
2-725
2-725
2-693
2-725
VOL 3
VOL 3
VOL3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL3
VOL 3
VOL 3
VOL 3
VOL 3
••
0
0
0
0
•
0
0
0
0
•
0
••
0
0
•
0
0
••
0
•
0
0
•
0
0
•
0
•
0
•
0
•
0
•
0
••
0
0
0
0
0
0
0
0
0
•
0
0
0
0
0
••
0
0
•••
0
•
0
•
0
•
0
•
•
•
0
0
0
•••
0
•
0
••
0
0
0
0
0
0
0
0
0
••
0
0
0
0
0
0
0
•
0
0
0
0
0
•
0
••
0
0
0
••••
0
0
0
0
0
••••••
0
0
o.
••••
0
•
•
0
0
0
0
•••••
0
0
0
0
••••••
0
0
•••••
0
0
..........
0
•
•
•
•
••
0
0
0
0
0
•••
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
•
••
0
0
0
0
0
••
0
0
0
0
•
0
••
0
•
0
0
0
0
0
•
0
0
0
0
0
0
0
0
0
0
..
0
0
0
•
••
••
0"
0
0
0
••
0
0
0
0
0
0
0
0
0
0
0
••
0
0
0
0
•
0
0
0
•
0
0
•
0
0
0
0
TLC532A ,., •.
TLC533A
TLC540 ..
TLC541
TLC542
TLC545
TLC546
TLC548
TLC549
TLC551C
TLC551Y
TLC552C
TLC555C
TLC5551
TLC555M
TLC555Y
TLC556C
TLC5561
TLC556M ..•
TLC0820A
TLC0820B ...
TLC1078
TLC1079
TLC1125
TLC1225
TLC1540
TLC1541
TLC15501
TLC1551I
TLC2201
TLC2201A •••••••••••••••
VOL2
VOL2
VOL2
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL 3
VOL 2
VOL 2
2-757
2-771
VOL 2
VOL2
VOL2
VOL 2
VOL2
VOL2
2-785
2-785
TLC2201 B .. t .. .. .. .. ....
TLC2201Y ••••• ,.........
2-785
2-785
TLC2202 ...
TLC2202A .. t .. . .. .. .. ...
TLC2202B ,. t . . . . . . . . . . ..
TLC2202Y ..
TLC2272 '"
TLC2272A .. t .. .. . .. . ....
TLC2272Y •••••• , •• , . " . .
TLC2652 •••• ,., •••••••• ,
2-813
2-813
2-813
2-813
2-841
2-841
2-841
2-861
TLC2652A "t ... , .. ,.,...
TLC2652Y " •••• , ••••••• ,
TLC2654 " •••••••••••• ,'
TLC2654A ••• ,.,.........
TLC2654Y ••
TLC3702C ..
TLC37021 ..
TLC3702M
TLC3702Q ...•••
TLC3704C
TLC37041 . . . . . .. .. . .. • . •.
TLC3704M
TLC3704Q •
2-861
2-861
2-885
2-885
2-885
VOL 3
VOL 3
VOL3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
0
0
•
••
0
0
0
•
0
0
0
0
.....
0
0
••
0
0
0
0
0
•
0
••
0
0
•
••
0
••••
.....
••
0
0
0
0
0
0
0
0
••
0
0
0
••
0
•
••
0
•
•
•
•
•
•
•
••
•
0
0
•
0
f............
t
t............
t. . . . . . . . . . ..
! ........ ,',.
0
0
•••
•
•
•••••
0
•
••
0
0
•
•
••
0
0
••
••••••
•••
000
0
•••
0
0
•
•
•
••
0
0
•
•
0
0
•
0
0
••
0
••
0
0
0
••••
0
••••••
0
••
0
0
•
•
••
0
••
0
•
0
•
•
0
VOL 2
VOL 2
VOL 2
VOL2
VOL2
VOL2
tNew devices ddded to this volume.
TEXAS ~
INSTRUMENTS
POST OFFIC~ BOX 655303 • DALLAS, TEXAS 75265
1-5
ALPHANUMER~INDEX
TLC4016 ..............•.• VOL 2
TLE2082Y
•• :............
2-1147
TLC4066 .............•.•.
TLC5502·5 •......•...••••
TLC5503·2 ...•......•....
TLC5503-5 ............••.
TLC5602 ...••.......•.•.•
TLC5602A ....•....•.•...•
VOL 2
VOL 2
VOL 2
VOL 2
VOL 2
VOL 2
TLE2141 •••
TLE2141A ••
TLE2141Y •••••••••••••••
TLE2142 ••• :............
TLE2142A ••
TLE2142Y ••
J'. . . . . . . . . . ..
2-11B1
2-1181
2-1181
2-1199
2-1199
2-1199
TLC7135
TLC7524
TLC7528
TLC7628
TLC32040
VOL 2
VOL 2
VOL2
VOL 2
VOL 2
TLE2144 •••
TLE2144Y •• ~ ••••••••••••
TLE2161 • • • • • • • • • • • • • • ••
TLE2161A ••
1............
2-1227
2-1227
2-1255
2-1255
TLC32041
TLC32042
TLC32044
VOL2
VOL 2
VOL 2
VOL2
VOL2
VOL2
VOL 2
VOL2
VOL2
VOL 2
2-909
TLE2161B .. t
TLE2227 '"
TLE2227A •••••••••••••••
t
TLE2237 ••• T' . . . . . . . . . ..
TLE2237 A •••••••••••••••
TLE2425C ...............
TLE24251 ................
TLE2425M ...•...........
TLE2425Y ...........•...
TLE2426 ...•.•..........
TLE2426Y ...............
uA709C •••••••••••••••••
uA709M •••••••••••••••••
2-1255
2-1289
2-1289
2-1295
2-1295
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
2-1301
2-1301
uA709AM ••••••••••••••••
uA723C .•..••••••••...•.
2-1301
VOL 3
uA723M .•..•..•.•••.•..•
uA733C
uA733M
uA741C •••••••••••••••••
uA741 I ••••••••••••••••••
uA741M
VOL 3
VOL3
VOL3
2-1305
2-1305
2-1305
2-1313
2-1313
2-1319
2-1319
TLC32044M ...............
fLC32045
TLC32046
TLC32047
TLC32071
TLC34058 ...............
TLC34075 ...............
TLE2021 ••••t ............
TLE2021A •••t ............
TLE2021 B •••t ............
TLE2021Y •••t............
.
.
.
. 2-909
.
2-909
. 2-909
TLE2022 ••••t ............ . 2-935
TLE2022A •••t ............ . 2-935
TLE2022B •••t ............ . 2-935
TLE2022Y •••t............ . 2-935
TLE2024 ....t ........... .. 2-963
TLE2024A •••t ............ . 2-963
TLE2024B •••t ......• ; .... . 2-963
TLE2024Y •••t ............ . 2-963
TLE2027 •••
2-991
TLE2027A •••t ............ . 2-991
TLE2037 ••••t ............ . 2-1015
TLE2037A ., .t............ . 2-1015
.t............ .
TLE2061 ••••t ............ . 2-1039
TLE2061 A •••t ............ . 2-1039
TLE2061 B ...t ............ . 2-1039
TLE2061Y •••t............ . 2-1039
TLE2062 •• , .t............ . 2-1075
TLE2062A •••t ............ . 2-1075
TLE2062B •• .t............ . 2-1075
1-'t . • • • •• . •. ••
1-' • •• • . • • • • .•
J'.... .... ....
!............
1-"'" ........
1-' . •. •. . • • . ••
uA747C
uA747M
uA748C
uA748M
uA2240C
•....•..........
VOL 3
uA7805 .•••.............
uA7805Q ......•.....•..•
uA7806
uA7808
VOL3
VOL 3
VOL3
VOL3
VOL3
VOL3
uA7810
uA7812
uA7812Q ...•............
uA7815 ...•...........•.
TLE2062Y •• .t............ . 2-1075
TLE2064 ••••t ............ . 2-1111
uA7818
uA7824
TLE2064A •••t ............ . 2-1111
TLE2064B •••t ............ . 2-1111
TLE2064Y •••t............ . 2-1111
uA7885
uA78L02C ... •..•.....••
uA78L02AC .••••.••..•.•.
TLE2082 .... t
TLE20B2A ••• t
uA78L05C
uA78L05Q ••.............
.......... ..
........... .
2-1147
2-1147
VOL 3
VOL 3
VOL3
VOL3
VOL3
VOL 3
VOL 3
VOL3
VOL 3
tNew devices added to this volume.
TEXAS •
INSTRUMENlS
1-6
POST OFF1CE BOX 655303 • DALLAS. TEXAS 75265
uA78L05AC .....•....•.••
uA78L05AQ •.•...•.•..•..
uA78L06C .•.•..•.•.•.•.•
uA78L06AC .......•••.••.
uA7BL08C ...•....•••....
uA78L08AC ........•••.•.
uA78L09C •.•....•.....••
uA78L09AC .......•••.•..
uA78L10C ...............
uA78L 1OAC .•..•••.•.•.••
uA78L12C ...............
uA78L 12Q .....•.......•.
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL3
VOL3
VOL 3
VOL3
VOL 3
uA78L 12AC .............•
uA78L 12AQ ..............
uA78L15C ...............
uA78L 15AC ..........•..•
uA78M05C
uA78M05M
uA78M06C
uA78M08C
uA78M09C
uA78M10C
uA78M12C
VOL 3
VOL 3
VOL3
VOL 3
VOL3
VOL3
VOL3
VOL3
VOL3
uA78M12M
uA78M15C
uA78M20C
uA78M24C
uA7905C
uA7906C
uA7908C
uA7912C
uA7915C
uA7918C
uA7924C
uA7952C
uA79M05C
uA79M05M
uA79M06C
uA79M08C
uA79M12C
uA79M12M
uA79M15C
uA79M20C
uA79M24C .....•....•....
UC2842 .............•...
UC2843
UC2844
UC2845
UC3842
UC3843
UC3844
UC3845
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL 3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
OPERATIONAL AMPLIFIERS
SELECTION GUIDE
noncompensated, single
commercial temperature range
DESCRIPTION
(values specified for T A
SUPPLY
VOLTAGE
(V)
VIO
(mV)
(nA)
AVO
(V/mV)
B1
(MHz)
SR
(V/Ils)
lIB
TYPE
PACKAGES
= 25°C)
PAGE
NO.
MIN
MAX
MAX
MAX
MIN
TYP
TYP
High Performance
±5
±1S
7.5
250
15
1
7.5
LM301A
D,P
High Performance
±2
±18
7.5
2
25
1
0.3
LM308
D,P
2-23
High Performance
±2
±18
0.5
2
80
1
0.3
LM308A
D,P
2-23
BIFET, Low Noise
±3.5
±18
10
0.2
25
3
13
TL070C
D,P
2--371
BIFET, General Purpose
±3.5
±18
15
0.4
25
3
13
TLOSOC
D,P
2--3S7
industrial temperature range
DESCRIPTION
High Performance, Bipolar
(values specified for T A = 25°C)
SUPPLY
VOLTAGE
(V)
VIO
(mV)
(nA)
AVO
(V/mV)
B1
(MHz)
SR
(V/IlS)
lIB
MIN
I MAX
MAX
MAX
MIN
TYP
TYP
±5
I ± 22
2
75
50
1
0.5
military temperature range
DESCRIPTION
2-13
TYPE
PACKAGES
LM201A
D,P
PAGE
NO.
2-13
(values specified for T A = 25°C)
SUPPLY
VOLTAGE
(V)
VIO
(mV)
(nA)
AVO
(V/mV)
(MHz)
SR
(V/I-'s)
liB
B1
TYPE
PACKAGES
PAGE
NO.
MIN
MAX
MAX
MAX
MIN
TYP
TYP
High Performance, Bipolar
±5
±22
2
75
50
1
0.5
LM101A
FK,JG,U,W
2-13
High Performance, Low Bias Current,
Bipolar
±2
±20
2
2
50
1
0.3
LM108
JG
2-23
High Performance, Low Bias Current,
Bipolar
±2
±20
0.5
2
SO
1
0.3
LM10SA
JG
2-23
1
0.3
uA709AM
J,JG,U,W
2-1301
General Purpose, Precision Input,
Bipolar
±9
±18
2
200
Typ
45
General Purpose, Bipolar
±9
±18
5
500
Typ
45
1
0.3
uA709M
J,JG,U,W
2-1301
General Purpose, Bipolar
±2
±22
5
500
50
1
0.5
uA74SM
JG,U
2-1319
TEXAS .J!I
INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
1-7
OPERATIONAL AMPLIFIERS
SELECTION GUIDE
decompensated, single
(values specified for T A = 25°C)
commercial temperature range
DESCRIPTION
SUPPLY
VOLTAGE
M
VIO
(mV)
liB
(nA)
(y/mV)
GBW:I:
(MHz)
SR
(YhIS)
Avo
TYPE
PACKAGES
PAGE
NO.
MIN
MAX
MAX
MAX
MIN
TYP
TYP
Excalibur, Low Noise, High Speed,
Precision
±4
±22
0.025
90
10000
76
7.5
TLE2037AC
D,P
2-1015
Excalibur, Low Noise, High Speed,
Precision
±4
±22
0.1
90
5000
76
7.5
TLE2037C
D,P,Y
2-1015
Excalibur, JFET-Input, High-Output
Drive, flPower
±3.5
± 20
1.5
Typ
0.004
30
6.4
10
'TLE2161AC
D,P
2-1255
Excalibur, JFET-Input, High-Output
Drive, flPower
±3.5
±20
0.5
Typ
0.004
30
6.4
10
TLE2161BC
D,P
2-1255
3
Typ
0.004
30
6.4
10
TLE2161C
D,P
2-1255
Excalibur, JFET-Input, High-Output
Drive, flPower
±3.5
±20
t Y is chip form,
industrial temperature range
DESCRIPTION
(values specified for T A = 25°C)
SUPPLY
VOLTAGE
M
VIO
(mV)
liB
(nA)
AVO
fY/mV)
GBw:I:
(MHz)
SR
fY/flS)
TYPE
PACKAGES
PAGE
NO.
MIN
MAX
MAX
MAX
MIN
TYP
TYP
Excalibur, Low Noise, High Speed,
Precision
±4
±22
0.025
90
10000
76
7.5
TLE2037AI
D,P
2-1015
Excalibur, Low Noise, High Speed,
Precision
±4
±22
0.1
90
5000
76
7.5
TLE20371
D,P
2-1015
Excalibur, JFET-Input, High-Output
Drive, flPower
±3,5
±20
1,5
Typ
0.004
30
6.4
10
TLE2161AI
D,P
2-1255
Excalibur, JFET-Input, High-Output
Drive, flPower
±3.5
±20
0.5
Typ
0.004
30
6.4
10
TLE2161BI
D,P
2-1255
3
Typ
0.004
30
6.4
10
TLE2161I
D,P
2-1255
Excalibur, JFET-Input, High-Output
Drive, flPower
±3.5
±20
military temperature range
DESCRIPTION
(values specified for T A = 25°C)
SUPPLY
VOLTAGE
M
VIO
(mV)
liB
(nA)
(y/mV)
GBW+
(MHz)
SR
fY/flS)
Avo
TYPE
PACKAGES
PAGE
NO.
MIN
MAX
MAX
MAX
MIN
TYP
TYP
Excalibur, Low Noise, High Speed,
Precision
±4
±22
0.025
90
10000
76
7.5
TLE2037AM
D,FK,JG,P
2-1015
Excalibur, Low Noise, High Speed,
Precision
±4
±22
0.1
90
5000
76
7.5
TLE2037M
D,FK,JG,P
2-1015
Excalibur, JFET-Input, High-Output
Drive, flPower
± 3.5
±20
1.5
Typ
0.004
30
6.4
10
TLE2161AM
D,FK,JG,P
2-1255
Excalibur, JFET -Input, High-Output
Drive, flPower
±3.5
± 20
0.5
Typ
0.004
30
6.4
10
TLE2161BM
JG,P
2-1255
3
Typ
0.004
30
6.4
10
TLE2161M
D,FK,JG,P
2-1255
Excalibur, JFET -Input, High-Output
Drive, flPower
±3.5
±20
*Decompensated op amps are not unity-gain stable. Gain bandwidth product is specified with ACL =5.
TEXAS ~
INSIRUMENTS
1-8
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, single
commercial temperature range
DESCRIPTION
(values specified for T A = 25°C)
SUPPLY
VOLTAGE
(V)
VIO
(mV)
liB
(nA)
AVO
(V/mV)
81
(MHz)
SR
(V/Ils)
TYPE
PACKAGES
PAGE
NO.
MIN
MAX
MAX
MAX
MIN
TYP
TYP
BIFET
± 3.5
±18
10
0.2
25
3
13
LF351
D,P
2-5
BIFET
±3.5
±18
2
0.2
25
3
13
LF411C
D,P
2-9
High Performance
±2
±18
7.5
250
25
1
0.5
LM307
D,N,P,W
2-19
High Performance
±5
±20
10
250
25
15
70
LM318
D,P
2-35
Low Noise, High Speed, Precision Input
±2.5
±22
0.025
35
7000
8
1.7
LT1007AC
P
2~9
Low Noise, High Speed, Precision Input
± 2.5
±22
0.060
55
5000
8
1.7
LT1007C
P
2~9
Low Noise, High Speed,
Noncompensated, AVL " 5
±2.5
±22
0.025
35
7000
60
15
LT1037AC
P
2~9
Low Noise, High Speed,
Noncompensated, AVL" 5
±2.5
±22
0.060
55
5000
60
15
LT1037C
P
2~9
Low Noise, High Performance
±3
±22
4
1500
25
10
13
NE5534
D,P
2-135
Low Noise, High Performance
±3
±22
4
1500
25
10
13
NE5534A
D,P
2-135
Ultra-Low Offset Voltage
±3
±22
0.15
7
120
0.6
0.3
OP07C
D,P
2-141
Ultra-Low Offset Voltage
±3
±22
0.15
12
120
0.6
0.3
OP07D
D,P
2-141
±3.5
±18
0.8
0.2
5
1.1
2.9
TL031AC
D,P
2-175
BIFET, Low Power, Precision
±3.5
±18
1.5
0.2
5
1.1
2.9
TL031C
D,P
2-175
BIFET, Precision
±3.5
±18
0.8
0.2
50
3.1
20
TL051AC
D,P
2-257
BIFET, Precision
±3.5
±18
1.5
0.2
50
3.1
20
TL051C
D,P
2-257
BIFET, Low Power, Precision
BIFET, Low Power
±3.5
±18
6
0.2
4
1
3.5
TL061AC
D,P
2-341
BIFET, Low Power
±3.5
±18
3
0.2
4
1
3.5
TL061BC
D,P
2-341
BIFET, Low Power
±3.5
±18
15
0.2
3
1
3.5
TL061C
D,P
2-341
BIFET, Adjustable, Low Power
± 1.2
±18
6
0.2
4
1
3.5
TL066AC
D,P
2-357
BIFET, Adjustable, Low Power
± 1.2
±18
3
0.2
4
1
3.5
TL066BC
D,P
2-357
BIFET, Adjustable, Low Power
± 1.2
±18
15
0.4
3
1
3.5
TL066C
D,P
2-357
BIFET, Low Noise
±3.5
±18
6
0.2
50
3
13
TL071AC
D,P
2-371
BIFET, Low Noise
±3.5
±18
3
0.2
50
3
13
TL071BC
D,P
2-371
BIFET, Low Noise
±3.5
±18
10
0.2
25
3
13
TL071C
D,P
2-371
BIFET, General Purpose
±3.5
±18
6
0.2
50
3
13
TL081AC
D,P
2-387
BIFET, General Purpose
±3.5
±18
3
0.2
50
3
13
TL081BC
D,P
2-387
BIFET, General Purpose
±3.5
±18
15
0.4
25
3
13
TL081C
D,P
2-387
BIFET, Low VIO
±3.5
±18
0.5
0.2
50
3
13
TL087C
D,P
2-401
BIFET, Low VIO
±3.5
±18
1
0.2
50
3
13
TL088C
D,P
2-401
±2
±22
5
1500
25
4.5
10
TL34071
D,P
2-443
High-Slew Rate, Single Supply
TEXAS ~
INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
1-9
OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, single (continued)
(values specified for TA = 25°C)
commercial temperature range
DESCRIPTION
SUPPLY
VOLTAGE
(V)
MIN
MAX
via
(mV)
liB
(nA)
AVO
(V/mV)
B1
(MHz)
SR
(V/lts)
MAX
MAX
MIN
TYP
TYP
30
0.1
TYPE
PACKAGESt
PAGE
NO.
0.04
TLC251AC
D,P
2-449
LinCMOS, Programmable, Low Bias
1.4
18
5
Typ
0.001
LinCMOS, Programmable, Medium Bias
1.4
18
5
Typ
0.001
20
0.7
O.S
TLC251AC
D,P
2-449
LinCMOS, Programmable, High Bias
1.4
18
5
Typ
0.001
10
2.3
4.5
TLC251.AC
D,P
2-449
LinCMOS, Programmable, Low Bias
1.4
18
2
Typ
0.001
30
0.1
0.04
TLC251BC
D,P
2-449
LinCMOS, Programmable, Medium Bias
1.4
18
2
Typ
0.001
20
0.7
O.S
TLC251BC
D,P
2-449
LinCMOS, Programmable, High Bias
1.4
18
2
Typ
0.001
10
2.3
4.5
TLC251BC
D,P
2-449
LinCMOS, Programmable, Low Bias
1.4
18
10
Typ
0.001
30
0.1
0.04
TLC251C
D,P,Y
2-449
LinCMOS, Programmable, Medium Bias
1.4
18
10
Typ
0.001
20
0.7
O.S
TLC251C
D,P,Y
2-449
LinCMOS, Programmable, High Bias
1.4
18
10
Typ
0.001
10
2.3
4.5
TLC251C
D,P,Y
2-449
LinCMOS, Programmable, Low Bias
3
18
5
Typ
0.007
50
0.11
0.04
TLC271AC
D,P
2-507
LinCMOS, Programmable, Medium Bias
3
18
5
Typ
0.007
25
0.S4
0.56
TLC271AC
D,P
2-507
LinCMOS, Programmable, High Bias
3
18
5
Typ
0.007
10
2.2
4.6
TLC271AC
D,P
2-507
2
Typ
0.007
50
0.11
0.04
TLC271BC
D,P
2-507
25
0.64
0.56
TLC271BC
D,P
2-507
LinCMOS, Programmable, Low Bias
. 3
18
LinCMOS, Programmable, Medium Bias
3
18
2
Typ
0.007
LinCMOS, Programmable, High Bias
3
18
2
Typ
0.007
10
2.2
4.6
TLC271BC
D,P
2-507
10
Typ
0.007
50
0.11
0.04
TLC271C
D,P
2-507
25
0.64
0.56
TLC271C
D,P
2-507
LinCMOS, Programmable, Low Bias
3
18
LinCMOS, Programmable, Medium Bias
3
18
10
Typ
0.007
LinCMOS, Programmable, High Bias
3
18
10
Typ
0.007
10
2.2
4.6
TLC271C
D,P
2-507
LinCMOS, Precision, Low Noise
4.6
16
0.2
Typ
0.001
400
1.9
2.7
TLC2201AC
D,P
2-785
LinCMOS, Precision, Low Noise, 100%
Noise Tested
4.6
16
0.2
Typ
0.001
400
1.9
2.7
TLC2201BC
D,P
2-785
LinCMOS, Precision, Low Noise
4.6
16
0.5
Typ
0.001
400
1.9
2.7
TLC2201C
D,P,Y
2-785
LinCMOS, Precision, Chopper-Stabilized
3.8
16
0.001
Typ
0.004
5600
1.9
2.8
TLC2652AC
D,N,P
2-861
t Y is chip form.
TEXAS ~
INSTRUMENTS
1-10
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, single (continued)
(values specified for TA = 25°C)
commercial temperature range
DESCRIPTION
SUPPLY
VOLTAGE
M
MIN
MAX
VIO
(mV)
liB
AVO
B1
SR
(nA)
C'I/mV)
(MHz)
C'lh,s)
MAX
MAX
MIN
TYP
TYP
1000
1.9
PAGE
NO.
TYPE
PACKAGESt
2.8
TLC2652C
D,N,P,Y
2-861
LinCMOS, Precision, Chopper-Stabilized
3.8
16
0.003
Typ
0.004
LinCMOS, Low Noise, Precision,
Chopper-Stabilized
4.6
16
0.01
Typ
0.05
5600
1.9
2
TLC2654AC
D,N,P
2-885
LinCMOS, Low Noise, Precision,
Chopper-Stabilized
4.6
16
0.02
Typ
0.05
1000
1.9
2
TLC2654C
D,N,P,Y
2-885
Excalibur, High Speed, Low Power,
Precision
4
40
0.2
Typ
25
1000
2
0.65
TLE2021AC
D,P
2-909
Excalibur, High Speed, Low Power,
Precision
4
40
0.1
Typ
25
1000
2
0.65
TLE2021BC
D,P
2-909
Excalibur, High Speed, Low Power,
Precision
4
40
0.5
25
1000
2
0.9
TLE2021C
D,P,Y
2-909
Excalibur, Low Noise, High Speed,
Precision
±4
±22
0.025
Typ
15
8000
13
2.8
TLE2027AC
D,P
2-991
0.1
Typ
15
3500
13
2.8
TLE2027C
D,P,Y
2-991
1.5
Typ
0.004
30
2
3.4
TLE2061AC
D,P
2-1039
30
2
3.4
TLE20e1BC
D,P
2-1039
Excalibur, Low Noise, High Speed,
Precision
Excalibur, JFET-Input, High-Output
Drive, ~Power
±4
±3.5
± 22
± 20
Excalibur, JFET-Input, High-Output
Drive, ~Power
±3.5
± 20
0.5
Typ
0.004
Excalibur, JFET-Input, High-Output
Drive, ",Power
±3.5
±20
3
Typ
0.004
30
2
3.4
TLE2061C
D,P,Y
2-1039
Excalibur, Low Noise, High Speed,
Precision
±2
± 22
0.5
-700
100
6
45
TLE2141AC
D,P
2-1181
Excalibur, Low Noise, High Speed,
Precision
=2
= 22
0.9
-700
100
6
45
TLE2141C
D,P,Y
2-1181
General Purpose
±2
±18
6
500
20
1
0.5
uA741C
D,P
2 1305
tY
IS
chip form.
TEXAS ."
INSTRUMENlS
POST OFFICE BOX 65530a • DALLAS, TEXAS 75265
1-11
OPERATIONAL AMPLIFIERS
SELECTION GUIDE
Internally compensated, single (continued)
(values specified for TA = 25°C)
industrial temperature range
DESCRIPTION
SUPPLY
VOLTAGE
(V)
liB
VIO
(mY)
(nA)
Avo
(V/mY)
$1
(MHz)
SR
(V/lts)
TYP
TYPE
PACKAGES
PAGE
NO.
MIN
MAX
MAX
MAX
MIN
TYP
Chopper-Stabilized
± 1.9
±8
0.005
0.03
1000
1.2
4
LTC1052C
D,P
2-117
Low Noise, High Speed
±3.5
±22
0.025
40
1000
8
2.8
OP27E
P
2-149
Low Noise, High Speed
±3.5
±22
0.1
80
700
8
2.8
OP27G
P
2-149
±4
±22
0.025
40
1000
40
17
OP37E
P
2-149
2-149
Low Noise, High Speed, Bipolar,
Noncompensated, AVL " 5
Low Noise, High Speed, Bipolar,
Noncompensated, AVL " 5
±4
±22
0.1
80
700
40
17
OP37G
P
BIFET, Low Power, Precision
±3.5
±18
0.8
0.2
5
1.1
2.9
TL031AI
D,P
2-175
BIFET, Low Power, Precision
±3.5
=18
1.5
0.2
5
1.1
2.9
TL031 I
D,P
2-175
BIFET, Precision
=3.5
=18
0.8
0.2
50
3.1
20
TL051AI
D,P
2-257
BIFET, Precision
±3.5
±18
1.5
0.2
50
3.1
20
TL051 I
D,P
2-257
BIFET, Low Power
±3.5
=18
6
0.2
4
1
3.5
TL061 I
D,P
2-341
BIFET, Adjustable, Low Power
± 1.2
±lB
6
0.2
4
1
3.5
TL0661
D,P
2-357
BIFET, Low Noise
±3.5
±18
6
0.2
50
3
13
TL071 I
D,P
2-371
BIFET, General Purpose
=3.5
±18
6
0.2
50
3
13
TL081 I
D,P
2-387
BIFET, Low Offset Voltage
± 3.5
±18
0.5
0.2
50
3
13
TL0871
D,P
2--401
BIFET, Low Offset Voltage
±3.5
±18
1
0.2
50
3
13
TL0881
D,P
2-401
=2
±22
5
1500
25
4.5
10
TL33071
D,P
2--442
LinCMOS, Programmable, Low Bias
4
18
5
Typ
0.007
50
0.11
0.04
TLC271AI
D,P
2-507
LinCMOS, Programmable, Medium Bias
4
18
5
Typ
0.007
25
0.64
0.56
TLC271AI
D,P
2-507
LinCMOS, Programmable, High Bias
4
18
5
Typ
0.007
10
2.2
4.6
TLC271AI
D,P
2-507
LinCMOS, Programmable, Low Bias
4
18
2
Typ
0.007
50
0.11
0.04
TLC271BI
D,P
2-507
LinCMOS, Programmable, Medium Bias
4
18
2
Typ
0.007
25
0.64
0.56
TLC271BI
D,P
2-507
LinCMOS, Programmable, High Bias
4
18
2
Typ
0.007
10
2.2
4.6
TLC271BI
D,P
2-507
LinCMOS, Programmable, Low Bias
4
18
10
Typ
0.007
50
0.11
0.04
TLC271I
D,P
2-507
LinCMOS, Programmable, Medium Bias
4
18
10
Typ
0.007
25
0.64
0.56
TLC271I
D,P
2-507
LinCMOS, Programmable, High Bias
4
18
10
Typ
0.007
10
2.2
4.6
TLC271I
D,P
2-507
LinCMOS, Precision, Low Noise
4.6
16
0.2
Typ
0.001
400
1.9
2.7
TLC2201AI
D,P
2-785
LinCMOS, Precision, Low Noise, 100%
NOise Tested
4.6
16
0.2
Typ
0.001
400
1.9
2.7
TLC2201BI
D,P
2-785
LinCMOS, Precision, Low Noise
4.6
16
0.5
Typ
0.001
400
1.9
2.7
TLC22011
D,P
2-785
High-Slew Rate, Single Supply
TEXAS ~
INSIRUMENlS
1-12
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, single (continued)
(values specified for TA =25°C)
industrial temperature range
DESCRIPTION
SUPPLY
VOLTAGE
M
MIN
MAX
SR
VIO
(mV)
liB
(nA)
AVO
(V/mV)
Bl
(MHz)
(V/~s)
MAX
MAX
MIN
TYP
TYP
5600
1.9
PAGE
NO.
TYPE
PACKAGES
2.8
TLC2652AI
D.N.P
2-861
LinCMOS. Precision. ChopperStabilized
3.8
16
0.001
Typ
0.004
LinCMOS. Precision. ChopperStabilized
3.8
16
0.003
Typ
0.004
1000
1.9
2.8
TLC26521
D.N.P
2-861
LinCMOS. Low Noise. Precision.
Chopper-Stabilized
4.6
16
0.01
Typ
0.05
5600
1.9
2
TLC2654AI
D.N,P
2-885
LinCMOS. Low Noise. Precision.
Chopper-Stabilized
4.6
16
0.02
Typ
0.05
1000
1.9
2
TLC26541
D.N.P
2-885
Excalibur. High Speed. Low Power.
Precision
±2
",20
0.2
50
300
2
0.65
TLE2021AI
D.P
2-909
4
40
0.5
25
1000
2
0.9
TLE2021I
D.P
2-909
Excalibur. Low Noise. High Speed.
Precision
±4
",22
0.025
90
10000
13
2.8
TLE2027AI
D.P
2-991
Excalibur. Low Noise. High Speed.
Precision
±4
'" 22
0.1
90
5000
13
2.8
TLE20271
D.P
2-991
Excalibur. JFET-Input. High-Output
Drive. ftPower
±3.5
± 20
1.5
Typ
0.004
30
2
3.4
TLE2061AI
D.P
2-1039
Excalibur. JFET-Input. High-Output
Drive. ftPower
",3.5
± 20
0.5
Typ
0.004
30
2
3.4
TLE2061BI
D.P
2-1039
30
2
3.4
TLE2061I
D.P
2-1039
Excalibur. High Speed. Precision
Excalibur. JFET-Input. High-Output
Drive. ftPower
±3.5
",20
3
Typ
0.004
Excalibur. Low Noise. High Speed.
Precision
±2
",22
0.05
-1500
100
6
45
TLE2141AI
D.P
2-1181
Excalibur. Low Noise. High Speed.
Precision
",2
",22
0.9
-1500
100
6
45
TLE21411
D.P
2-1181
General Purpose
",2
",22
5
500
50
1
0.5
uA741 I
D.P
2-1305
TEXAS
-If
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
1-13
•
OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, single (continued)
(values specified for TA = 25°C)
automotive temperature range
DESCRIPTION
SUPPLY
VOLTAGE
(V)
SR
(mV)
liB
(nA)
fYfmV)
B1
(MHz)
('iff'S)
vlO
AVO
TYPE
PACKAGES
PAGE
NO.
MIN
MAX
MAX
MAX
MIN
TYP
TYP
High Performance
±5
±22
2
75
50
1
0.5
LM207
D,N,P,W
2-19
High Perormance
±5
± 20
4
250
50
15
70
LM218
D,P
2-35
Chopper-Stabilized
± 1.9
±8
0.005
0.03
1000
1.2
4
LTC1052C
J,N,P
2-117
Low Noise, High Speed
±3.5
± 22
0.025
40
1000
.8
2.8
OP27E
P
2-149
Low Noise, High Speed
±3.5
± 22
0.1
80
700
8
2.8
OP27G
P
2-149
Low Noise, High Speed
Noncompensated, AVL '" 5
±4
±22
0.025
40
1000
40
17
OP37E
P
2-149
Low Noise, High Speed
Noncompensated, AVL '" 5
±4
±22
0.1
80
700
40
17
OP37G
P
2-149
)3IFET, Low Power, Precision
±3.5
±18
0.8
0.2
5
1.1
2.9
TL031AI
D,P
2-175
BIFET, Low Power, Precision
±3.5
±18
1.5
0.2
5
1.1
2.9
TL031 I
D,P
2-175
BIFET, Precision
±3.5
±18
0.8
0.2
50
3.1
20
TL051AI
D,P
2-257
BIFET, Precision
±3.5
±18
1.5
0.2
50
3.1
20
TL051 I
D,P
2-257
BIFET, Low Power
±3.5
±18
6
0.2
4
1
3.5
TL061 I
D,P
2-341
BIFET, Adjustable, Low Power
± 1.2
±18
6
0.2
4
1
3.5
TL0661
D,P
2-357
BIFET, Low Noise
±3.5
±18
6
0.2
50
3
13
TL071 I
D,P
2-371
BIFET, General Purpose
±3.5
±18
6
0.2
50
3
13
TL081 I
D,P
2-387
BIFET, Low Offset Voltage
±3.5
±18
0.5
0.2
50
3
13
TL087 I
D,P
2-401
BIFET, Low Offset Voltage
±3.5
±18
1
0.2
50
3
13
TL0881
D,P
2-401
50
0.11
0.04
TLC271AI
D,P
2-507
LinCMOS, Programmable, Low Bias
4
18
5
Typ
0.007
LinCMOS, Programmable,
Medium Bias
4
18
5
Typ
0.007
25
0.64
0.56
TLC271AI
D,P
2-507
5
Typ
0.007
10
2.2
4.6
TLC271AI
D,P
2-507
50
'0.11
0.04
TLC271BI
D,P
2-507
LinCMOS, Programmable, High Bias
4
18
LinCMOS, Programmable, Low Bias
4
18
2
Typ
0.007
LinCMOS, Programmable,
Medium Bias
4
18
2
Typ
0.007
25
0.64
0.56
TLC271BI
D,P
2-507
LinCMOS, Programmable, High Bias
4
18
2
Typ
0.007
10
2.2
4.6
TLC271BI
D,P
2-507
LinCMOS, Programmable, Low Bias
4
18
10
Typ
0.007
50
0.11
0.04
TLC271I
D,P
2-507
LinCMOS, Programmable,
Medium Bias
4
18
10
Typ
0.007
25
0.64
0.56
TLC271I
D,P
2-507
LinCMOS, Programmable, High Bias
4
18
10
Typ
0.007
10
2.2
4.6
TLC271I
D,P
2-507
4.6
16
0.2
Typ
0.001
400
1.9
2.7
TLC2201AI
D,P
2-785
LinCMOS, Low Noise Precision
.
TEXAS ~
INSTRUMENTS
1-14
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, single (continued)
(values specified for TA
automotive temperature range
DESCRIPTION
SUPPLY
VOLTAGE
M
MIN
MAX
VIO
(mV)
liB
(nA)
AVO
(V/mV)
B1
(MHz)
SR
(V/Ils)
MAX
MAX
MIN
TYP
TYP
400
1.9
=25°C)
TYPE
PACKAGES
PAGE
NO.
2.7
TLC2201BI
D,P
2-785
LinCMOS, Low Noise, Precision, 100%
Noise Tested
4.6
16
0.2
Typ
0.001
LinCMOS, Low Noise, Precision
4.6
16
0.5
Typ
0.001
400
1.9
2.7
TLC22011
D,P
2-785
LinCMOS, Precision, Chopper
Stabilized
3.8
16
0.001
Typ
0.004
5600
1.9
2.8
TLC2652AI
D,N,P
2-861
LinCMOS, Precision, Chopper
Stabilized
3.8
16
0.003
Typ
0.004
1000
1.9
2.8
TLC26521
D,N,P
2-861
LinCMOS, Low Noise, Precision,
Chopper Stabilized
4.6
16
0.01
Typ
0.05
5600
1.9
2
TLC2654AI
D,N,P
2-885
LinCMOS, Low Noise, Precision,
Chopper Stabilized
4.6
16
0.02
Typ
0.05
1000
1.9
2
TLC26541
D,N,P
2-885
Excalibur, High Speed, Precision
4
40
0.5
25
1000
2
0.9
TLE2021I
D,P
2-909
TEXAS .J.!1
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
1-15
OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, single (continued)
military temperature range
(values specified for TA = 25°C)
SUPPLY
VOLTAGE
(V)
VIO
(mV)
(nA)
AVO
(V/mV)
(MHz)
SR
(V/I-'s)
MIN
MAX
MAX
MAX
MIN
TYP
TYP
",5
",20
2
75
50
1
Low Noise, High Speed, Precision Input
",2.5
",22
0.025
35
7000
8
Low Noise, High Speed, Precision Input
",2.5
±22
0.060
55
5000
Low Noise, High Speed,
Noncompensated, AVL" 5
±2.5
±22
0.025
35
Low Noise, High Speed,
Noncompensated, AVL " 5
± 2.5
± 22
0.060
Chopper-Stabilized
± 1.9
±8
Low Noise, High Speed
±3.5
± 22
Low Noise, High Speed
±3.5
DESCRIPTION
liB
B1
PAGE
NO.
TYPE
PACKAGES
0.5
LM107
J,JG,U,W
2-19
2.5
LT1007AM
JG
2-69
8
2.5
LT1007M
JG,P
2-69.
7000
60
15
LT1037AM
JG
2-69
55
5000
60
15
LT1037M
JG
2-69
0.005
0.03
1000
1.2
4
LTC1052M
J,JG
2-117
0.025
40
1000
8
2.8
OP27A
JG
2-149
±22
0.1
80
700
8
2.8
OP27C
JG
2-149
±4
± 22
0.025
40
1000
40
17
OP37A
JG
2-149
Low NOise, High Speed,
Noncompensated, AVL" 5
±4
±22
0.1
80
700
40
17
OP37C
JG
2-149
Low Noise, High Performance
,,3
±22
2
800
50
10
13
SE5534
FK,JG
2-135
Low NOise, High Performance
",3
±22
2
800
50
10
13
SE5534A
FK,JG
2-135
BIFET, Low Power, Precision
±3.5
±18
0.8
0.2
5
1.1
2.9
TL031AM
FK,JG
2-175
BIFET, Low Power, Precision
±3.5
±18
1.5
0.2
5
1.1
2.9
TL031M
FK,JG
2-175
BIFET, Precision
±3.5
±18
0.8
0.2
50
3.1
20
TL051AM
FK,JG
2-257
BIFET, Precision
±3.5
±18
1.5
0.2
50
3.1
20
TL051M
FK,JG
2-257
BIFET, Low Power
± 1.5
±18
6
0.2
4
1
3.5
TL061M
FK,JG,U
2-341
BIFET, Adjustable, Low Power
± 1.2
±18
6
0.2
4
1
3.5
TL066M
FK,JG
2-357
BIFET, Low Noise
± 3.5
±18
6
0.2
35
3
13
TL071M
FK,JG
2-371
BIFET, General Purpose
±3.5
±18
6
0.2
25
3
13
TL081M
FK,JG
2-387
BIFET, Low VIO
±3.5
±18
3
0.4
50
3
13
TL088M
JG,U
2-387
",2
±22
5
-1500
25
4.5
10
TL35071
D,P
2-443
LinCMOS, Programmable, Low Bias
4
18
10
Typ
0.007
50
0.11
0.04
TLC271M
FK,JG
2-507
LinCMOS, Programmable, Medium Bias
4
18
10
Typ
0.007
25
0.64
0.56
TLC271M
FK,JG
2-507
10
2.2
4.6
TLC271M
FK,JG
2-507
400
1.9
2.7
TLC2201AM
D,FK,JG,P
2-785
High Performance
Low Noise, High Speed,
Noncompensated, AVL" 5
High-Slew Rate, Single Supply
LinCMOS, Programmable, High Bias
LinCMOS, Low Noise, Precision
4
18
10
Typ
0.007
4.6
16
0.2
Typ
0.001
TEXAS •
INSTRUMENTS
1-16
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, single (continued)
(values specified for TA =25°C)
military temperature range
DESCRIPTION
SUPPLY
VOLTAGE
V
MIN
MAX
VIO
(mV)
(nA)
AVO
IY/mV)
(MHz)
SR
rJ/flS)
MAX
MAX
MIN
TYP
TYP
400
1.9
2.7
TLC2201BM
400
1.9
2.7
liB
LinCMOS, Low Noise, Precision,
100% Noise Tested
4.6
16
0.2
Typ
0.001
LinCMOS, Low Noise, Precision
4.6
16
0.5
Typ
0.001
Bl
TYPE
PACKAGES
PAGE
NO.
D,FK,JG,P
2-785
TLC2201M
D,FK,JG,P
2-785
2-861
LinCMOS, Precision, Chopper
Stabilized
3.8
16
0.001
Typ
0.004
5600
1.9
2.8
TLC2652AM
D,FK,J,JG,
N,P
LinCMOS, Precision, Chopper
Stabilized
3.8
16
0.003
Typ
0.004
1000
1.9
2.8
TLC2652M
D,FK,J,JG,
N,P
2-861
LinCMOS, Low Noise, Precision,
Chopper Stabilized
4.6
16
0.01
Typ
0.05
5600
1.9
2
TLC2654AM
D,FK,J,JG,
N,P
2-885
LinCMOS, Low Noise, Precision,
Chopper Stabilized
4.6
16
0.02
Typ
0.05
1000
2.2
2
TLC2654M
D,FK,J,JG,
N,P
2-885
Excalibur, High Speed, Low Power,
PreciSion
±2
±20
0.2
50
300
2
0.65
TLE2021AM
D,FK,JG,P
2-909
Excalibur, High Speed, Low Power,
Precision
±2
±20
0.1
50
300
2
0.65
TLE2021BM
D,FK,JG,P
2-909
Excalibur, High Speed, Precision
4
40
0.5
25
1000
2
0.9
TLE2021M
D,FK,JG,P
2 909
Excalibur, Low Noise, High Speed,
Precision
±4
± 22
0.025
90
10000
13
2.8
TLE2027AM
D,FK,JG,P
2-991
Excalibur, Low Noise, High Speed,
Precision
±4
±22
0.1
90
5000
13
2.8
TLE2027M
D,FK,JG,P
2-991
30
2
3.4
TLE2061AM
D,FK,JG,P
2-1039
Excalibur, JFET-Input,
High-Output Drive, flPower
±3.5
±20
1.5
Typ
0.004
Excalibur, JFET-Input,
High-Output Drive, I-IPower
±3.5
±20
0.5
Typ
0.004
30
2
3.4
TLE2061BM
JG,P
2-1039
Excalibur, JFET-Input,
High-Output Drive, flPower
±3.5
±20
3
Typ
0.004
30
2
3.4
TLE2061M
D,FK,JG,P
2-1039
Excalibur, Low Noise, High Speed,
Precision
±2
±22
0.5
-1500
100
6
45
TLE2141AM
D,FK,JG,P
2-1181
Excalibur, Low NOise, High Speed,
Precision
±2
±22
0.9
-1500
100
6
45
TLE2141M
D,FK,JG,P
2-1181
General Purpose
±2
±22
5
500
50
1
0.5
uA741M
FK,J,JG,U
2 1305
TEXAS ..tf
INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
1-17
..
OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, dual
commercial temperature range
DESCRIPTION
(values specified for TA = 25°C)
SUPPLY
VOLTAGE
(V)
vlO
(mV)
(nA)
AVO
(V/mV)
(MHz)
SR
(V/I1S)
TYP
liB
B1
TYPE
PACKAGESt
PAGE
NO.
MIN
MAX
MAX
MAX
MIN
TYP
BIFET, General Purpose
±3.5
±18
10
0.2
25
3
13
LF353
D,P
2-7
BIFET, Low Offset
±3.5
±18
3
0.2
25
3
13
LF412C
D,P
2-11
SIS
3
30
± 1.5
7
-250
±15
25
0.6
0.2
LM358
D,P,U,Y
2-51
DIS
3
-100
25
0.6
0.2
LM358A
D,P,U
2-51
High Gain, Low Power, Bipolar
High Gain, Low Power, Bipolar
SIS
3
30
DIS
± 1.5
±15
Precision
Precision
Precision
General Purpose
4
44
0.15
20
1500
0.8
0.4
LT1013AC
P
2---B3
SIS
4
44
0.3
30
1200
0.8
0.4
LT1013C
P
2-93
D/S
±2
± 22
0.3
30
500
0.8
0.4
LT1013C
P
2-93
SIS
4
44
0.8
30
1200
0.8
0.4
LT1013D
D,P
2-93
DIS
±2
± 22
0.8
30
500
0.8
0.4
LT1013D
D,P
2-93
± 1.5
±18
6
500
20
1
0.5
MC1458
D,P,U
2-121
Low Noise
±3
± 20
4
800
25
10
9
NE5532
P
2-131
Low Noise
±3
± 20
4
800
25
10
9
NE5532A
P
2-131
High Performance
±4
±18
6
500
20
3
1.7
RC4558
D,P,Y
2-163
High Performance
",4
±18
6
250
20
4
2
RC4559
D,P
2-169
Low Power
",2
±18
5
250
1
0.5
0.5
TL022C
D,P
2-171
BIFET, Low Power, Precision
'" 3.5
±18
0.8
0.2
5
1.1
2.9
TL032AC
D,P
2-202
BIFET, Low Power, Precision
±3.5
±18
1.5
0.2
5
1.1
2.9
TL032C
D,P
2-202
BIFET, Precision
± 3.5
",18
1.5
0.2
50
3
16
TL052AC
D,P
2-283
BIFET, Precision
'" 3.5
±18
4
0.2
50
3
16
TL052C
D,P
2-283
BIFET, Low Power
± 3.5
±18
6
0.2
4
1
3.5
TL062AC
D,P
2-341
BIFET, Low Power
±3.5
±18
3
0.2
4
1
3.5
TL062BC
D,P
2-341
BIFET, Low Power
± 3.5
±18
15
0.4
3
1
3.5
TL062C
D,P
2-341
BIFET, Low Noise
±3.5
±18
6
0.2
50
3
13
TL072AC
D,P
2-371
BIFET, Low Noise
± 3.5
",18
3
0.2
50
3
13
TL072BC
D,P
2-371
BIFET, Low Noise
±3.5
±18
10
0.2
25
3
13
TL072C
D,P
2-371
BIFET, General Purpose
± 3.5
±18
6
0.2
50
3
13
TL082AC
D,P
2-387
BIFET, General Purpose
±3.5
±18
3
0.2
50
3
13
TL082~C
D,P
2-387
BIFET, General Purpose
±3.5
±18
15
0.4
25
3
13
TL082C
D,P
2-387
BIFET, General Purpose
± 3.5
±18
0.5
2
50
3
13
TL287C
D,P
2-401
BIFET, General Purpose
±3.5
±18
1
0.2
50
3
13
TL288C
D,P
2-401
High:Slew Rate, Single Supply
±2
± 22
5
-2000
50
0.2
8
TL34072
D,P
2-443
High-Slew Rate, Single Supply
±2
± 22
3
-2000
50
0.2
8
TL34072A
D,P
2-443
Typ
35
2.25
3.6
TLC2272C
D,P,Y
2-841
Typ
35
2.25
3.6
TLC2272AC
D,P
2-841
LinCMOS, Rail-to-Rail
4.4
16
2.5
Typ
0.0001
LinCMOS, Rail-to-Rail
4.4
16
0.95
Typ
0.0001
t Y is chip form.
TEXAS -1!1
INSTRUMENTS
1-18
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
.
OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, dual (continued)
commercial temperature range
(values specified for T A
SUPPLY
VOLTAGE
DESCRIPTION
(V)
MIN
MAX
VIO
(mV)
liB
(nA)
Avo
(V/mV)
(MHz)
SR
(V/f's)
MAX
MAX
MIN
TYP
TYP
10
2.2
81
=25°C)
TYPE
PACKAGESt
PAGE
NO.
5.3
TLC252AC
D,P
2-467
LinCMOS, High Bias
1.4
18
5
Typ
0.005
LinCMOS, High Bias
1.4
18
2
Typ
0.005
10
2.2
5.3
TLC252BC
D,P
2-467
10
2.2
5.3
TLC252C
D,P,Y
2-467
LinCMOS, High Bias
1.4
18
10
Typ
0.005
LinCMOS, Low Bias
1.4
18
2
Typ
0.005
30
0.1
0.05
TLC25L2BC
D,P
2-467
LinCMOS, Low Bias
1.4
18
10
Typ
0.005
30
0.1
0.05
TLC25L2C
D,P,Y
2-467
LinCMOS, Medium Bias
1.4
18
5
Typ
0.005
20
0.6
0.6
TLC25M2AC
D,P
2-467
20
0.6
0.6
TLC25M2BC
D,P
2-467
LinCMOS, Medium Bias
1.4
18
2
Typ
0.005
LinCMOS, Medium Bias
1.4
18
10
Typ
0.005
20
0.6
0.6
TLC25M2C
D,P,Y
2-467
LinCMOS, High Bias
3
18
5
Typ
0.005
10
2.2
5.3
TLC272AC
D,P
2-565
LinCMOS, High Bias
3
18
2
Typ
0.005
10
2.2
5.3
TLC272BC
D,P
2-565
10
2.2
5.3
TLC272C
D,P
2-565
LinCMOS, High Bias
3
18
10
Typ
0.005
LinCMOS, High Bias
3
18
0.5
Typ
0.005
10
2.2
5.3
TLC277C
D,P
2-565
LinCMOS, Low Bias
3
18
5
Typ
0.005
50
0.1
0.05
TLC27L2AC
D,P
2-629
LinCMOS, Low Bias
3
18
2
Typ
0.005
50
0.1
0.05
TLC27L2BC
D,P
,2-629
50
0.1
0.05
TLC27L2C
D,P
2-629
LinCMOS, Low Bias
3
18
10
Typ
0.005
LinCMOS, Low Bias
3
18
0.5
Typ
0.005
50
0.1
0.05
TLC27L7C
D,P
2-629
LinCMOS, Medium Bias
3
18
5
Typ
0.005
25
0.6
0.6
TLC27M2AC
D,P
2-693
LinCMOS, Medium Bias
3
18
2
Typ
0.005
25
0.6
0.6
TLC27M2BC
D,P
2-693
LinCMOS, Medium Bias
3
18
10
Typ
0.005
25
0.6
0.6
TLC27M2C
D,P
2-693
LinCMOS, Medium Bias
3
18
0.5
Typ
0.005
25
0.6
0.6
TLC27M7C
D,P
2-693
1.4
18
0.6
Typ
0.007
500
0.11
0.05
TLC1078C
D,P
2-757
LinCMOS, f'Power, Precision
t Y IS chip form.
TEXAS
-'!1
INSTRUMENTS
POST OFFICE BOX 655303 • -DALLAS, TEXAS 75265
1-19
OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, dual (continued)
(values specified for TA = 25°C)
commercial temperature range
SUPPLY
VOLTAGE
(V)
DESCRIPTION
MIN
MAX
SR
(mV)
liB
(nA)
(V/mV)
B1
(MHz)
(V/IJ.S)
MAX
TYP
MIN
TYP
TYP
400
1.9
VIO
Avo
PAGE
"!O.
TYPE
PACKAGESt
1.8
TLC2202AC
D,P
2-813
LinCMOS, Low Noise, Precision
4.6
16
0.5
Typ
0.005
LinCMOS, Low Noise, Precision
4.6
16
0.5
Typ
0.005
400
1.9
1.8
TLC2202BC
D,P
2-813
LinCMOS, Low Noise, Precision
4.6
16
1
Typ
0.005
400
1.9
1.8
TLC2202C
D,P
2-813
Excalibur, High Speed, Low Power,
Precision
4
40
0.3
Typ
33
1000
2.8
0.65
TLE2022AC
D.P
2-935
Excalibur, High Speed, Low Power,
Precision
4
40
0.15
Typ
30
1500
2.8
0.65
TLE2022BC
D,P
2-935
Excalibur, High Speed, Low Power,
Precision
4
40
0.5
35
800
2.8
0.65
TLE2022C
D,P,Y
2-935
Excalibur, JFET-Input, High-Output
Drive, ~Power
",3.5
±20
2
Typ
0.004
30
2
3.4
TLE2062AC
D.P
2-1075
Excalibur, JFET-Input, High-Output
Drive, ~Power
±3.5
±20
1
Typ
0.004
30
2
3.4
TLE2062BC
D.P
2-1075
Excalibur, JFET-Input, High-Output
Drive, ~Power
±3.5
±20
4
Typ
0.004
30
2
3.4
D.P,Y
2-1075
Excalibur, Low Noise, High Speed,
Precision
±2
±22
1.2
-700
100
6
45
TLE2142AC
D.P
2-1199
Excalibur, Low Noise, High Speed,
Precision
±2
±22
0.75
-700
100
6
45
TLE2142C
D.P,Y
2-1199
3500
13
2.8
TLE2227C
D,P,Y
2-1289
25
1
0.5
uA747C
D,N
2-1313
Excalibur, Low Noise, High Speed,
Precision
",4
",22
0.1
Typ
15
General Purpose
±5
±22
6
500
' TLE2062C
t Y IS chip form.
decompensated, dual
(values specified for TA = 25°C)
commercial temperature range
DESCRIPTION
SUPPLY
VOLTAGE
(V)
MIN
Excalibur, Low Noise, High Speed,
Precision
±4
MAX
± 22
SR
(mV)
liB
(nA)
(V/mV)
GBW*
(MHz)
(VII'S)
MAX
TYP
MIN
TYP
TYP
0.1
Typ
15
5000
76
7.5
Via
Avo
.. with ACL = 5 .
*Decompensated op amps are not unity-gain stable. Gain bandwidth product IS specified
TEXAS
~
INSlRUMENlS
1-20
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TYPE
PACKAGES
PAGE
NO;
TLE2237C
D,P
2-1295
OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, dual
industrial temperature range
(values specified for TA = 25°C'
SUPPLY
VOLTAGE
(V)
DESCRIPTION
VIO
liB
(mV)
(nA)
AVO
(V/mV)
B1
SR
(MHz)
(V/f's)
TYPE
PACKAGES
PAGE
NO.
MIN
MAX
MAX
MAX
MIN
TYP
TYP
4
44
0.15
20
1500
0.8
0.4
LT1013AI
P
2-93
SIS
4
44
0.3
30
1200
0.8
0.4
LT10131
P
2-93
DIS
±2
± 22
0.3
30
500
0.8
0.4
LT10131
P
2-93
SIS
4
44
0.8
30
1200
0.8
0.4
LT1013DI
D,P
2-93
DIS
±2
±22
0.8
30
500
0.8
0.4
LT1013DI
D,P
2-93
BIFET, Low Power, Precision
±3.5
=18
0.8
0.2
5
1.1
2.9
TL032AI
D,P
2-203
BIFET, Low Power, Precision
±3.5
±18
1.5
0.2
5
1.1
2.9
TL0321
D,P
2-203
BIFET, Precision
±3.5
±18
0.8
0.2
50
3
16
TL052AI
D,P
2-283
BIFET, Precision
=3.5
±18
1.5
0.2
50
3
16
TL0521
D,P
2-283
BIFET, Low Power
±3.5
±18
6
0.2
4
1
3.5
TL0621
D,P
2-341
BIFET, Low Noise
±3.5
±18
6
0.2
50
3
13
TL0721
D,P
2-371
BIFET, General Purpose
±3.5
±18
6
0.2
50
3
13
TL0821
D,P
2-387
BIFET, General Purpose
±3.5
±18
0.5
0.2
50
3
13
TL2871
D,P
2-401
BIFET, General Purpose
±3.5
±18
1
0.2
50
3
13
TL2881
D,P
2-401
High-Slew Rate, Single Supply
±2
± 22
5
-2000
50
0.2
8
TL33072
D,P
2-443
High-Slew Rate, Single Supply
±2
±22
3
-2000
50
0.2
8
TL33072A
D,P
2-443
10
2.2
5.3
TLC272AI
D,P
2-565
High Performance, Bipolar
High Performance, Bipolar
High Performance, Bipolar
LinCMOS, High Bias
4
18
5
Typ
0.005
LinCMOS, High Bias
4
18
2
Typ
0.005
10
2.2
5.3
TLC272BI
D,P
2-565
10
Typ
0.005
10
2.2
5.3
TLC2721
D,P
2-565
10
2.2
5.3
TLC2771
D,P
2-565
LinCMOS, High Bias
4
18
LinCMOS, High Bias
4
18
0.5
Typ
0.005
LinCMOS, f'Power, Precision
4
18
0.6
Typ
0.007
500
0.11
0.05
TLC10781
D,P
2-757
LinCMOS, Low Noise, Precision
4.6
16
0.5
Typ
0.005
400
1.9
1.8
TLC2202AI
D,P
2-813
LinCMOS, Low Noise, PreCision
4.6
16
0.5
Typ
0.005
400
1.9
1.8
TLC2202BI
D,P
2-813
400
1.9
1.8
TLC22021
D,P
2-813
4.6
16
1
Typ
0.005
LinCMOS, Low Bias
4
18
5
Typ
0.005
50
0.1
0.05
TLC27L2AI
D,P
2-629
LinCMOS, Low Bias
4
18
2
Typ
0.005
50
0.1
0.05
TLC27L2BI
D,P
2-629
LinCMOS, Low Bias
4
18
10
Typ
0.005
50
0.1
0.05
TLC27L21
D,P
2-629
50
0.1
0.05
TLC27L71
D,P
2-629
LinCMOS, Low Noise, Precision
LinCMOS, Low Bias
4
18
0.5
Typ
0.005
LinCMOS, Medium Bias
4
18
5
Typ
0.005
25
0.6
0.6
TLC27M2AI
D,P
2-693
LinCMOS, Medium Bias
4
18
2
Typ
0.005
25
0.6
0.6
TLC27M2BI
D,P
2-693
LinCMOS, Medium Bias
4
18
10
Typ
0.005
25
0.6
0.6
TLC27M21
D,P
2-693
TEXAS
.Jf
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
1-21
...
OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, dual (continued)
industrial temperature range
DESCRIPTION
LinCMOS, Medium Bias
Excalibur, High Speed, Low Power,
Precision
Excalibur, High Speed, Precision
Excalibur, JFET-Input, High-Output
Drive, I-lPower
(values specified for T A = 25°C)
SUPPLY
VOLTAGE
(V)
VIO
(mV)
liB
(nA)
rJ/mV)
B1
(MHz)
rJ/flS)
MIN
MAX
MAX
MIN
TYP
TYP
25
0.6
MAX
AVO
SR
TYPE
PACKAGES
PAGE
NO.
0.6
TLC27M71
D,P
2-693
4
18
0.5
Typ
0.005
±2
± 20
0.3
55
1000
2.8
0.65
TLE2022AI
D,P
2-935
4
40
0.5
25
1000
2
0.9
TLE20221
D,P
2-935
2
Typ
0.004
30
2
3.4
TLE2062AI
D,P
2-1075
30
2
3.4
TLE2062BI
D,P
2-1075
±3.5
±20
Excalibur, JFET-Input, High-Output
Drive, I-lPower
±3.5
±20
1
Typ
0.004
Excalibur, JFET-Input, High-Output
Drive, flPower
±3.5
±20
4
Typ
0.004
30
2
3.4
TLE20621
D,P
2-1075
Excalibur, Low Noise, High Speed,
Precision
±2
±22
1.2
-1500
100
6
45
TLE2142AI
D,P
2-1199
Excalibur, Low Noise, High Speed,
Precision
±2
± 22
0.75
-1500
100
6
45
TLE21421
D,P
2-1199
extended temperature range
DESCRIPTION
General Purpose, Bipolar
(values specified for T A
SUPPLY
VOLTAGE
(V)
VIO
(mV)
liB
(nA)
rJ/mV)
B1
(MHz)
rJ/l-ls)
MIN
MAX
MAX
MAX
MIN
TYP
TYP
±2
±16
7
-100
25
0.4
Min
0.15
AVO
t Y is chip form.
TEXAS ."
INSTRUMENTS
1-22
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
=25°C)
SR
TYPE
PACKAGESt
TL2828Z
D,P,Y
PAGE
NO.
2-421
OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, dual (continued)
automotive temperature range
DESCRIPTION
High Gain, Low Power, Bipolar
High Gain, Low Power, Bipolar
High Gain, Low Power, Bipolar
High Performance
(values specified for T A = 25°C)
SUPPLY
VOLTAGE
(V)
VIO
(mV)
(nA)
AvO
IY/mV)
(MHz)
SR
(VII'S)
MAX
MAX
MIN
TYP
TYP
MIN
MAX
SIS
3
30
DIS
± 1.5
±15
SIS
3
30
DIS
± 1.5
±15
SIS
3
26
DIS
± 1.5
±13
liB
Bl
TYPE
PACKAGES
PAGE
NO,
5
-150
50
0,6
0,2
LM258
D,P,U
2-51
3
-80
50
0.6
0.2
LM258A
D,P,U
2-51
7
-250
Typ
100
0.6
0.2
LM2904
D,P,U
2-51
±4
±18
6
-500
20
3
1.7
RV4558
D,P
2-163
BIFET, Low Power, Precision
± 3.5
±18
0.8
0.2
5
1.1
2.9
TL032AI
D,P
2-203
BIFET, Low Power, Precision
± 3.5
±18
1.5
0.2
5
1.1
2.9
TL0321
D,P
2-203
BIFET, Precision
± 3.5
±18
0.8
0.2
50
3
16
TL052AI
D,P
2-283
BIFET, Precision
± 3.5
±18
1.5
0.2
50
3
16
TL0521
D,P
2-283
BIFET, Low Power
± 3.5
±18
6
0.2
4
1
3.5
TL0621
D,P
2-341
BIFET, Low Noise
±3.5
±18
6
0.2
50
3
13
TL0721
D,P
2-371
BIFET, General Purpose
±3.5
±18
6
0.2
50
3
13
TL0821
D,P
2-387
BIFET, General Purpose
±3.5
±18
0.5
0.2
50
3
13
TL2871
D,P
2-401
BIFET, General Purpose
±3.5
±18
1
0.2
50
3
13
TL2881
D,P
2-401
10
2.2
5.3
TLC272AI
D,P
2-565
LinCMOS, High Bias
4
18
5
Typ
0.005
LinCMOS, High Bias
4
18
2
Typ
0.005
10
2.2
5.3
TLC272BI
D,P
2-565
Lin CMOS, High Bias
4
18
10
Typ
0.005
10
2.2
5.3
TLC2721
D,P
2-565
LinCMOS, High Bias
4
18
0.5
Typ
0.005
10
2.2
5.3
TLC2771
D,P
2-565
LinCMOS, Low Bias
4
18
5
Typ
0.005
50
0.1
0.05
TLC27L2AI
D,P
2-629
LinCMOS, Low Bias
4
18
2
Typ
0.005
50
0.1
0.05
TLC27L2BI
D,P
2-629
LinCMOS, Low Bias
4
18
10
Typ
0.005
50
0.1
0.05
TLC27L21
D,P
2-629
LinCMOS, Low Bias
4
18
0.5
Typ
0.005
50
0.1
0.05
TLC27L71
D,P
2-629
LinCMOS, Medium Bias
4
18
5
Typ
0.005
25
0.6
0.6
TLC27M2AI
D,P
2-693
LinCMOS, Medium Bias
4
18
2
Typ
0.005
25
0.6
0.6
TLC27M2BI
D,P
2-693
LinCMOS, Medium Bias
4
18
10
Typ
0.005
25
0.6
0.6
TLC27M21
D,P
2-693
LinCMOS, Medium Bias
4
18
0.5
Typ
0.005
25
0.6
0.6
TLC27M71
D,P
2-693
TEXAS ~
INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
1-23
'II
OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, dual (continued)
(values specified for TA =25°C)
automotive temperature range
SUPPLY
VOLTAGE
DESCRIPTION
(V)
VIO
liB
(mV)
(nA)
AVO
(V/mV)
(MHz)
SR
(V/liS)
B1
PACKAGES
0.05
TLC10781
D,P
2-757
0.9
TLE2022I
D,P
2-935
MAX
MAX
MAX
MIN
TYP
TYP
LinCMOS, liPower, Precision
4
18
0.6
Typ
0.007
500
0.11
Excalibur, High Speed, Precision
4
40
0.5
25
1000
2
TEXAS ..,
INSTRUMENTS
1-24
POST OFFICE BOX 655303 • OALLAS, TEXAS 75265
PAGE
NO.
TYPE
MIN
OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, dual (continued)
military temperature range
(values specified for TA = 25°C)
SUPPLY
VOLTAGE
DESCRIPTION
High Gain. Low Power, Bipolar
M
ISIS
I DIS
VIO
(mV)
(nA)
AVO
(V/mV)
(MHz)
SR
(V/f!s)
TYP
liB
B1
MIN
MAX
MAX
MAX
MIN
TYP
3
30
3
-80
50
0.6
0.2
± 1.5
±15
5
-150
50
0.6
0.2
PAGE
NO.
TYPE
PACKAGES
LM158
FK,JG,U
2-51
General Purpose
±2
±22
5
500
50
1
0.5
MC1558
FK,JG,U
2-121
Precision
±5
±22
0.15
-20
1200
0.8
0.4
LT1013AM
D,FK,JG,P
2-93
Precision
±5
± 22
0.3
-30
1200
0.8
0.4
LT1013M
D,FK,JG,P
2-93
High Performance
±4
± 22
5
500
50
3.5
1.7
RM4558
JG
2-163
Low Power
±2
±22
5
100
1
0.5
0.5
TL022M
U
2-171
BIFET, Low Power, Precision
±3.5
±18
0.8
0.2
5
1.1
2.9
TL032AM
FK,JG
2-203
BIFET, Low Power, Precision
±3.5
±18
1.5
0.2
5
1.1
2.9
TL032M
FK,JG
2-203
BIFET, Precision
±3.5
±18
0.8
0.2
50
3
16
TL052AM
FK,JG
2-283
BIFET, Precision
0,3.5
±18
1.5
0.2
50
3
16
TL052M
FK,JG
2-283
BIFET, Low Power
±3.5
±18
6
0.2
4
1
3.5
TL062M
FK,JG,U
2-341
BIFET, Low Noise
±3.5
±18
6
0.2
35
3
13
TL072M
FK,JG
2-371
BIFET, General Purpose
±3.5
±18
16
0.2
25
3
13
TL082M
FK,JG
2-387
2-401
BIFET, General Purpose
±3.5
±18
3
0.4
50
3
13
TL287M
JG,U
BIFET, General Purpose
0,3.5
±18
3
0.4
'50
3
13
TL288M
JG,U
2-401
High·Slew Rate, Single Supply
±2
±22
5
-2000
50
0.2
8
TL35072
D,P
2-443
High-Slew Rate, Single Supply
±2
±22
3
-2000
50
0.2
8
TL35072A
D,P
2-443
10
2.2
5.3
TLC272M
FK,JG
2-565
LinCMOS, High Bias
4
18
10
Typ
0.005
LinCMOS, High Bias
4
18
0.5
Typ
0.005
10
2.2
5.3
TLC277M
FK,JG
2-565
LinCMOS, f!Power, Precision
4
18
0.6
Typ
0.007
500
0.11
0.5
TLC1078M
FK,JG
2-757
LinCMOS, Low Noise, Precision
±2.3
0,8
0.5
Typ
0.001
400
1.9
2.7
TLC2202AM
D,FK,JG,P
2-813
LinCMOS, Low Noise, Precision
0,2.3
±8
0.5
Typ
0.001
400
1.9
2.7
TLC2202BM
D,FK,JG,P
2-813
LinCMOS, Low Noise, Precision
±2.3
±8
1
Typ
0.001
400
1.9
2.7
TLC2202M
D,FK,JG,P
2-813
LinCMOS, Low Bias
4
18
10
Typ
0.005
50
0.1
0.05
TLC27L2M
FK,JG
2-629
LinCMOS, Low Bias
4
18
0.5
Typ
0.005
50
0.1
0.05
TLC27L7M
FK,JG
2-629
25
0.6
0.6
TLC27M2M
FK,JG
2-693
25
0.6
0.6
TLC27M7M
FK,JG
2-693
LinCMOS, Medium Bias
4
18
10
Typ
0.005
LinCMOS, Medium Bias
4
18
0.5
Typ
0.005
TEXAS -If
INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
1-25
OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, dual (continued)
military temperature range
DESCRIPTION
(values specified forTA = 25°C)
SUPPLY
VOLTAGE
(V)
VIO
(my)
(nA)
liB
AvO
(V/mY)
B1
SR
(MHz)
(V/flS)
TYPE
PACKAGES
PAGE
NO.
MIN
MAX
MAX
MAX
MIN
TYP
TYP
SIS
4
44
0.3
50
1200
0.8
0.2
LT1013M
JG
2-93
DIS
±2
00 22
0.3
50
500
0.8
0.2
LT1013M
JG
2-93
Excalibur, High Speed, Low Power,
Precision
±2
00 20
0.3
55
1000
2.8
0.65
TLE2022AM
D,FK,JG,P
2-935
Excalibur, High Speed, Low Power,
Precision
002
00 20
0.15
50
1500
2.8
0.65
TLE2022BM
JG
2-935
4
40
0.5
25
1000
2
0.9
TLE2022M
FK,JG
2-935
30
2
3.4
TLE2062AM
D,FK,JG,P
2-1075
PreciSion
I
I
Excalibur, High Speed, Precision
Excalibur, JFET-Input, High-Output
Drive, [,Power
00 3.5
00 20
2
Typ
0.004
Excalibur, JFET-Input, High-Output
Drive, [,Power
003.5
00 20
1
Typ
0.004
30
2
3.4
TLE2062BM
JG,P
2-1075
Excalibur, JFET-Input,
High-Output Drive, [,Power
±3.5
±20
4
Typ
0.004
30
2
3.4
TLE2062M
D,FK,JG,P
2-1075
Excalibur, Low Noise, High Speed,
Precision
002
00 22
1.2
-1500
100
6
45
TLE2142AM
D,FK,JG,P
2-1199
Excalibur, Low NOise,High Speed,
Precision
002
00 22
0.75
-1500
100
6
45
TLE2142M
D,FK,JG,P
2-1199
TEXAS ..,
INSlRUMENTS
1-26
POST OFFICE BOX 655303 • DALlAS, TEXAS 752115
OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, quad
commercial temperature range
DESCRIPTION
BIFET, General Purpose
(values specified for T A
SUPPLY
VOLTAGE
(V)
VIO
(mV)
lIB
(nA)
Avo
(V/mV)
B1
(MHz)
SR
(V/!'s)
MIN
MAX
MAX
MAX
MIN
TYP
TYP
10
0.2
25
3
TYPE
=25°C)
PACKAGESt
PAGE
NO.
" 3.5
=18
13
LF347
D,N
General Purpose
3
30
7
-250
25
0.6
0.3
LM324
D,N.W,Y
2-39
General Purpose
3
30
3
-100
25
0.6
0.3
LM324A
N,W
2-39
General Purpose
,,4
,,18
6
200
25
1
0.5
LM348
D,N
2-47
SIS
4
32
1.2
2.5
0.5
LM3900
D,N
DIS
,,2
-
200
=16
2-61
10
-500
20
1
0.6
MC3403
D,N
2-125
Norton Amplifier, Bipolar
2-3
SIS
3
36
DIS
,,18
Quad uA741 , High Periormance
" 1.5
,,4
±18
6
500
20
3
1.7
RC4136
D,N
2-159
BIFET, Low Power, Precision
,,3.5
,,18
1.5
0.2
5
1.1
2.9
TL034AC
D,N
2-229
BIFET, Low Power, Precision
" 3.5
=18
4
0.2
5
1.1
2.9
TL034C
D,N
2-229
General Purpose
,,2
,,18
5
250
60
0.5
0.5
TL044C
NW
2-253
BIFET, Precision
=3.5
,,18
1.5
0.2
50
2.7
16
TL054AC
D,N
2-311
BIFET, Precision
,,3.5
,,18
4
0.2
50
2.7
16
TL054C
D,N
2-311
BIFET, Low Power
,,3.5
,,18
6
0.2
4
1
3.5
TL064AC
D,N
2-341
BIFET, Low Power
,,3.5
,,18
3
0.2
4
1
3.5
TL064BC
D,N
2-341
BIFET, Low Power
,,3.5
,,18
15
0.4
3
1
3.5
TL064C
D,N
2-341
BIFET, Low Noise
,,3.5
,,18
6
0.2
50
3
13
TL074AC
D,N
2-371
Low Power, Bipolar
BIFET, Low Noise
,,3.5
,,18
3
0.2
50
3
13
TL074BC
D,N
2-371
BIFET, Low Noise
,,3.5
:018
10
0.2
50
3
13
TL074C
D,N
2-371
BIFET, General Purpose
,,3.5
,,18
6
0.2
50
3
13
TL084AC
D,N
2-387
BIFET, General Purpose
,,3.5
,,18
3
0.2
50
3
13
TL084BC
D,N
2-387
BIFET, General Purpose
± 3.5
,,18
15
0.4
25
3
13
TL084C
D,N
2-387
High-Slew Rate
,,2
±22
5
-2000
50
0.2
8
TL34074
DW,N
2-443
High-Slew Rate
,,2
± 22
3
-2000
50
0.2
8
TL34074A
DW,N
2-443
LinCMOS, High Bias
1.4
18
5
Typ
0.005
10
2.2
5.3
TLC254AC
D,N
2-487
LinCMOS, High Bias
1.4
18
2
Typ
0.005
10
2.2
5.3
TLC254BC
D,N
2-487
LinCMOS, High Bias
1.4
18
10
Typ
0.005
10
2.2
5.3
TLC254C
D,N,Y
2-487
LinCMOS, Low Bias
1.4
18
5
Typ
0.005
30
0.1
0.05
TLC25L4AC
D,N
2-487
LinCMOS, Low Bias
1.4
18
2
Typ
0.005
30
0.1
0.05
TLC25L4BC
D,N
2-487
10
Typ
0.005
30
0.1
0.05
TLC25L4C
D,N,Y
2-487
5
Typ
0.005
20
0.6
0.6
TLC25M4AC
D,N
2-487
LinCMOS, Low Bias
LinCMOS, Medium Bias
1.4
1.4
18
18
t Y is chip form.
TEXAS ."
INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75255
OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, quad (continued)
(values specified for TA = 2S°C)
commercial temperature range
SUPPLY
VOLTAGE
DESCRIPTION
(V)
MIN
MAX
V,O
(mV)
liB
Avo
B,
(nA)
(VlmV)
(MHz)
SR
(V/",s)
MAX
MAX
MIN
TYP
TYP
20
0.6
TYPE
PACKAGEst
PAGE
NO.
0.6
TLC25M4BC
D,N
2-487
LinCMOS, Medium Bias
1.4
18
2
Typ
0.005
LinCMOS, Medium Bias
1.4
18
10
Typ
0.005
20
0.6
0.6
TLC25M4C
D,N,Y
2-487
LinCMOS, High Bias
3
18
5
Typ
0.005
10
2.2
5.3
TLC274AC
D,N
2-597
LinCMOS, High Bias
3
18
2
Typ
0.005
10
2.2
5.3
TLC274BC
D,N
2-597
LinCMOS, High Bias
3
18
10
Typ
0.005
10
2.2
5.3
TLC274C
D,N
2-597
LinCMOS, High Bias
3
18
0.9
Typ
0.005
10
2.2
5.3
TLC279C
D,N
2-597
LinCMOS, Low Bias
3
18
5
Typ
0.005
50
0.1
0.05
TLC27L4AC
D,N
2-661
LinCMOS, Low Bias
3
18
2
Typ
0.005
50
0.1
0.05
TLC27L4BC
D,N
2-661
LinCMOS, Low Bias
3
18
10
Typ
0.005
50
0.1
0.05
TLC27L4C
D,N
2-661
LinCMOS, Low Bias
3
18
0.9
Typ
0.005
50
0.1
0.05
TLC27L9C
D,N
2-661
LinCMOS, Medium Bias
3
18
5
Typ
0.005
25
0.6
0.6
TLC27M4AC
D,N
2-725
LinCMOS, Medium Bias
3
18
2
Typ
0.005
25
0.6
0.6
TLC27M4BC
D,N
2-725
LinCMOS, Medium Bias
3
18
10
Typ
0.005
25
0.6
0.6
TLC27M4C
D,N
2-725
LinCMOS, Medium Bias
3
18
0.9
Typ
0.005
25
0.7
0.6
TLC27M9C
D,N'
2-725
1.4
18
1.15
Typ
0.007
500
0.11
0.05
TLC1079C
D,N
2-771
Excalibur, High Speed, Low Power,
Precision
4
40
0.75
Typ
45
800
2.8
0.7
TLE2024AC
DW,N
2-963
Excalibur, High Speed, Low Power,
Precision
4
40
0.5
Typ
40
1000
2.8
0.7
TLE2024BC
DW,N
2-963
",2
",22
0.9
-700
100
6
4.5
TLE2024C
DW,N,Y
2-963
30
2
3.4
TLE2064AC
D,N
2-1111
LinCMOS, ",Power, Precision
Excalibur, High Speed, Precision
Excalibur, JFET-Input, High-Output
Drive, ",Power
±3.5
±20
4
Typ
0.004
Excalibur, JFET-Input, High-Output
Drive, ",Power
,,3.5
,,20
2
Typ
0.004
30
2
3.4
TLE2064BC
D,N
2-1111
Excalibur, JFET-Input, High-Output
Drive, ",Power
±3.5
±20
6
Typ
0.004
30
2
3.4
TLE2064C
D,N,Y
2-1111
t Y IS chIp form.
TEXAS ~
INSTRUMEN1S
1-28
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
..
-
OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, quad (continued)
(values specified for TA = 25°C)
Industrial temperature range
DESCRIPTION
SUPPLY
VOLTAGE
(V)
VIO
(mV)
liB
(nA)
AVO
(V/mV)
B1
(MHz)
SR
(V/f!s)
TYPE
PACKAGES
PAGE
NO.
MIN
MAX
MAX
MAX
MIN
TYP
TYP
General Purpose, Bipolar
3
30
5
-150
50
0.6
0.3
LM224
D,N,W
2-{39
General Purpose, Bipolar
3
30
3
-80
50
0,6
0,3
LM224A
N,W
2-39
General Purpose, Bipolar
±4
±18
6
200
25
1
0.5
LM248
D,N
2-47
SIS
3
32
DIS
± 1,5
± 22
5
-150
50
0,6
0,2
LM258
D,P
2-51
3
-80
50
0,6
0.2
LM258A
D,P
2-51
-
200
1,2
2,5
0,5
LM2900
D,N
2-39
High Gain, Low Power, Bipolar
High Gain, Low Power, Bipolar
Norton Amplifier, Bipolar
SIS
3
32
DIS
± 1,5
± 22
SIS
4
32
DIS
±2
±16
BIFET, Low Power
±3,5
±18
1.5
0,2
5
1,1
2,9
TL034AI
D,N
2-229
BIFET, Low Power
±3.5
±18
4
0.2
5
1,1
2,9
TTL0341
D,N
2-229
BIFET, Precision
±3.5
±18
1,5
0.2
50
2.7
16
TL054AI
D,N
2-{311
BIFET, Precision
± 3,5
±18
4
0,2
50
2,7
16
TL0541
D,N
2-{311
BIFET, Low Power, Precision
±3,5
±18
6
0,2
4
1
3,5
TL0641
D,N
2-{341
BIFET, Low Noise, Precision
± 3,5
±18
6
0,2
50
3
13
TL0741
D,N
2-{371
BIFET, General Purpose
±3,5
±18
6
0,2
50
3
13
TL0841
D,N
2-387
High-Slew Rate
±2
± 22
3
-2000
50
0,2
8
TL33074A
DW,N
2-443
High-Slew Rate
±2
± 22
5
-2000
50
0,2
8
TL33074
DW,N
2-443
LinCMOS, High Bias
4
18
5
Typ
0.001
10
2.2
5,3
TLC274AI
D,N
2-597
LinCMOS, High Bias
4
18
2
Typ
0,001
10
2,2
5,3
TLC274BI
D,N
2-597
LinCMOS, High Bias
4
18
10
Typ
0,001
10
2,2
5,3
TLC2741
D,N
2-597
LinCMOS, High Bias
4
18
0,9
Typ
0.005
10
2,2
5.3
TLC2791
D,N
2-597
LinCMOS, Low Bias
4
18
5
Typ
0,005
50
0.1
0,05
TLC27L4AI
D,N
2~61
50
0,1
0,05
TLC27L4BI
D,N
2~61
LinCMOS, Low Bias
4
18
2
Typ
0,005
LinCMOS, Low Bias
4
18
10
Typ
0,005
50
0,1
0,05
TLC27L41
D,N
2~61
LinCMOS, Low Bias
4
18
0,9
Typ
0.005
50
0,1
0,05
TLC27L91
D,N
2~61
LinCMOS, Medium Bias
4
18
5
Typ
0,005
25
0.6
0,6
TLC27M4AI
D,N
2-725
LinCMOS, Medium Bias
4
18
2
Typ
0,005
25
0,6
0,6
TLC27M4BI
D,N
2-725
LinCMOS, Medium Bias
4
18
10
Typ
0,005
25
0,6
0,6
TLC27M41
D,N
2-725
LinCMOS, Medium Bias
4
18
0.9
Typ
0.005'
25
0,6
0,6
TLC27M91
D,N
2-725
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
1-29
OPERATIONAL AMPLIFIERS
SELECTION GUIDE
Internally compensated, quad (continued)
industrial temperature range
DESCRIPTION
(values specified for T A
SUPPLY
VOLTAGE
(V)
MIN
MAX
SR
(mV)
liB
(nA)
01/mV)
B1
(MHz)
01f"s)
MAX
MAX
MIN
TYP
TYP
500
0.11
VIO
AVO
= 25°C)
PAGE
NO.
TYPE
PACKAGES
0.05
TLC10791
D,P
2-771
4
18
1.15
Typ
0.007
Excalibur, High Speed, Low Power,
Precision
±2
00 20
0.75
55
800
2.8
0.7
TLE2024AI
DW,N
2-963
Excalibur, High Speed, Low Power,
Precision
002
±20
0.5
50
1000
2.8
0.7
TLE2024BI
DW,N
2-963
4
40
0.5
25
1000
2
0.9
TLE20241
DW,N
2-963
30
2
3.4
TLE2064AI
D,N
2-1111
LinCMOS, "Power, Precision
Excalibur, High Speed, Precision
Excalibur, JFET-Input, High-Output
Drive, "Power
±3.5
±20
4
Typ
0.004
Excalibur, JFET-Input, High-Output
Drive, "Power
±3.5
±20
2
Typ
0.004
30
2
3.4
TLE2064BI
N
2-1111
Excalibur, JFET-Input, High-Output
Drive, "Power
±3.5
±20
6
Typ
0.004
30
2
3.4
TLE20641
D,N
2-1111
TEXAS •
INSTRUMENTS
1-30
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, quad (continued)
(values specified for T A = 25°C)
automotive temperature range
SUPPLY
VOLTAGE
DESCRIPTION
Norton Amplifier, Bipolar
I SIS
I DIS
Extended Temperature Range LM324
I SIS
I DIS
(mV)
liB
(nA)
0IImV)
B1
(MHz)
SR
(V/fts)
MAX
MAX
MIN
TYP
TYP
200
1.2
2.5
0.5
0.6
0.3
1
0.6
VIO
(V)
MIN
MAX
4.5
32
± 2.2
±16
3
26
-
AVD
Typ
7
-250
8
-500
20
100
PAGE
NO.
TYPE
PACKAGES
LM2900
N
2-61
D,N
2-39
MC3303
D,N
2-125
LM2902
LM2902Q
3
36
± 1.5
±18
Quad uA741
± 4.5
±18
6
500
20
3
1.7
RM4136
D,N,W
2-159
BIFET, Low Power, Precision
± 3.5
±18
1.5
0.2
5
1.1
2.9
TL034AI
D,N
2-229
BIFET, Low Power, Precision
± 3.5
±18
4
0.2
5
1.1
2.9
TL0341
D,N
2-229
BIFET, Precision
±3.5
±18
1.5
0.2
50
2.7
16
TL054AI
D,N
2-311
BIFET, Precision
± 3.5
±18
4
0.2
50
2.7
16
TL0541
D,N
2-311
BIFET, Low Power, Precision
± 3.5
±18
6
0.2
4
1
3.5
TL064 I
D,N
2-341
BIFET, Low Noise, Precision
± 3.5
±18
6
0.2
50
3
13
TL0741
D,N
2-371
BIFET, General Purpose
± 3.5
±18
6
0.2
50
3
13
TL0841
D,N
2-387
LinCMOS, High Bias
4
18
5
Typ
0.001
10
2.2
5.3
TLC274AI
D,N
2-597
LinCMOS, High Bias
4
18
2
Typ
0.001
10
2.2
5.3
TLC274BI
D,N
2-597
LinCMOS, High Bias
4
18
10
Typ
0.001
10
2.2
5.3
TLC2741
D,N
2-597
LinCMOS, High Bias
4
18
1.2
Typ
0.005
10
2.2
5.3
TLC2791
D,N
2-597
LinCMOS, Low Bias
4
18
5
Typ
0.005
50
0.1
0.05
TLC27L4AI
D,N
2-661
LinCMOS, Low Bias
4
18
2
Typ
0.005
50
0.1
0.05
TLC27L4BI
D,N
2-661
LinCMOS, Low Bias
4
18
10
Typ
0.005
50
0.1
0.05
TLC27L41
D,N
2-661
LinCMOS, Low Bias
4
18
0.9
Typ
0.005
50
0.1
0.05
TLC27L91
D,N
2-661
LinCMOS, Medium Bias
4
18
5
Typ
0.005
25
0.6
0.6
TLC27M4AI
D,N
2-725
LinCMOS, Medium Bias
4
18
2
Typ
0.005
25
0.6
0.6
TLC27M4BI
D,N
2-725
LinCMOS, Medium Bias
4
18
10
Typ
0.005
25
0.6
0.6
TLC27M41
D,N
2-725
LinCMOS, Medium Bias
4
18
0.9
Typ
0.005
25
0.6
0.6
TLC27M91
D,N
2-725
LinCMOS, ftPower, Precision
4
18
1.15
Typ
0.007
500
0.11
0.05
TLC10791
D,N
2-771
Excalibur, High Speed, Precision
4
40
0.5
25
1000
2
0.9
TLE20241
DW,N
2-963
Low Power, Bipolar
TEXAS l!.J
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
1-31
OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, quad (continued)
(values specified for TA =25°C)
extended temperature range
SUPPLY
VOLTAGE
DESCRIPTION
(V)
VIO
(mV)
liB
(nA)
AVO
(V/mV)
B1
(MHz)
SR
(V/!-,s)
MIN
MAX
MAX
MAX
MIN
TYP
TYP
±2
±16
7
-100
25
0.4
Min
0.2
High Temperature (- 40'C to 150'C)
TYPE
PACKAGESt
PAGE
NO.
TL2829Z
D,N,Y
2--429
t Y IS chip form.
internally compensated, quad
(values specified for TA = 25°C)
military temperature range
DESCRIPTION
SUPPLY
VOLTAGE
(V)
VIO
(mV)
liB
(nA)
AVO
(V/mV)
Bl
(MHz)
SR
(V/!-,s)
TYPE
PACKAGES
PAGE
NO.
2-39
MIN
MAX
MAX
MAX
MIN
TYP
TYP
General Purpose
3
30
5
-150
50
0.6
0.13
LM124
FK,J,W
General Purpose
±4
± 22
5
100
50
1
0.5
LM148
FK,J
2--47
Quad uA741, High Performance
004
00 22
4
400
50
3.5
1.7
RM4136
FK,J,w
2-159
BIFET, Low Power, Precision
±3.5
0018
1.5
0.2
5
1.1
2.9
TL034AM
FK,J
2-229
BIFET, Low Power, Precision
±3.5
±18
4
0.2
5
1.1
2.9
TL034M
FK,J
2-229
±2
: 22
5
100
72
0.5
0.5
TL044M
FK,J,W
2-253
BIFET, Precision
:3.5
±18
1.5
0.2
50
2.7
16
TL054AM
FK,J
2-311
BIFET, Precision
±3.5
:18
4
0.2
50
2.7
16
TL054M
FK,J
2-311
BIFET, Low Power
003.5
±18
9
0.2
4
1
3.5
TL064M
FK,J,W
2-341
BIFET, Low Noise
±3.5
±18
9
0.2
35
3
13
TL074M
FK,J,W
2-371
BIFET, General Purpose
±3.5
±18
9
0.2
25
3
13
TL084M
FK,J,W
2-387
High-Slew Rate
:2
±22
5
-2000
50
0.2
8
TL35074
DW,N
2--443
High-Slew Rate
±2
±22
3
-2000
50
0.2
8
TL35074A
DW,N
2--443
10
2.2
5.3
TLC274AM
FK,J
2-597
Low Power
LinCMOS, High Bias
4
18
10
Typ
0.005
LinCMOS, High Bias
4
18
1.2
Typ
0.005
10
2.2
5.3
TLC279M
FK,J
2-597
LinCMOS, Low Bias
4
18
10
Typ
0.005
50
0.1
0.05
TLC27L4M
FK,J
2-661
LinCMOS, Low Bias
4
18
0.9
Typ
0.005
50
0.1
0.05
TLC27L9M
FK,J
2-661
LinCMOS, Medium Bias
4
18
10
Typ
0.005
20
0.6
0.6
TLC27M4M
FK,J
2-725
LinCMOS, Medium Bias
4
18
0.9
Typ
0.005
20
0.6
0.6
TLC27M9M
FK,J
2-725
LinCMOS, !-'Power, Precision
4
18
1.15
Typ
0.007
500
0.11
0.05
TLC1079M
D,J,P
2-771
TEXAS ..,
INSlRUMENlS
1-32
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
..
-
OPERATIONAL AMPLIFIERS
SELECTION GUIDE
Internally compensated, quad (continued)
military temperature range
DESCRIPTION
(values specified for TA = 25°C)
SUPPLY
VOLTAGE
(V)
VIO
(mV)
liB
(nA)
AVO
(V/mV)
B1
(MHz)
SR
(V/f!s)
TYPE
PACKAGES
PAGE
NO.
MIN
MAX
MAX
MAX
MIN
TYP
TYP
Excalibur, High Speed, Low Power,
Precision
±2
±20
0.75
55
800
2.8
0.7
TLE2024AM
DW,FK,J,N
2-963
Excalibur, High Speed, Low Power,
Precision
±2
±20
0.5
50
1000
2.8
0.7
TLE2024BM
DW,J,N
2-963
4
40
0.5
25
1000
2
0.9
TLE2024M
DW,FK,J,N
2-963
30
2
3.4
TLE2064AM
D,FK,J,N
2-1111
Excalibur, High Speed, Precision
Excalibur, JFET-Input, High-Output
Drive, f!Power
± 3.5
±20
4
Typ
0.004
Excalibur, JFET-Input, High-Output
Drive, f!Power
± 3.5
±20
2
Typ
0.004
30
2
3.4
TLE2064BM
J,N
2-1111
6
Typ
0.004
30
2
3.4
TLE2064M
D,FK,J,N
2-1111
Excalibur, JFET-Input, High-Output
Drive, f!Power
±3.5
±
20
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
1-33
..
1-34
OPERATIONAL AMPLIFIERS
CROSS·REFERENCE GUIDE
Replacements are based on similarity of electrical and mechanical characteristics shown in currently published data.
Interchangeability in particular applications is not guaranteed. Before using a device as a substitute, the user should
compare the specifications of the substitute device with the specifications of the original.
Texas Instruments makes no warranty as to the information furnished and the buyer assumes all risk in the use thereof.
No liability is assumed for damages resulting from the use of the information contained herein.
Manufacturers are arranged in alphabetical order.
ADVANCED
LINEAR
DEVICES
SUGGESTED
TI
REPLACEMENT
ALD17010r
ALD1702 or
ALD1703
TLC271
TI
REPLACEMENT
AD510 or AD517
AD712J
FAIRCHILD
uA714
uA714L
uA741
uA747
uA748
uA771
uA771 A
uA771B
uA771L
uA772
uA772A
uA772B
uA772L
uA774
uA7748
uA774L
BURR BROWN
OPA111
OPA211
DIRECT
TI
REPLACEMENT
NO.
2-507
SUGGESTED
ANALOG
DEVICES
PAGE
PAGE
NO.
OP-07
TLE2082A
2-141
2-1147
SUGGESTED
TI
REPLACEMENT
PAGE
NO.
OP-07C
OP-07D
uA741
uA747
uA748
TL071
TL0718
TL071A
TL081
TL072
TL0728
TL072A
TL082
TL074
TL074A
TL084
or TL081 8
or TL081 A
or TL082A
orTL0748
2-141
2-141
2-1305
2-1313
2-1319
2--371
2-371 /2-387
2-371 / 2--387
2-387
2-371
2-371
2-371 / 2-387
2-387
2-371
2-371
2-387
SUGGESTED
TI
REPLACEMENT
PAGE
NO.
TLC2201
TLC2202
2-785
2-813
TEXAS ."
INSIRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
1-35
OPERATIONAL AMPLIFIERS
CROSS-REFERENCE GUIDE
GENERAL
ELECTRIC
SUGGESTED
TI
REPLACEMENT
PAGE
NO.
ICL7611, or ICL7612,
or ICL7613
ICL7621
ICL7641
ICL7642
TLC271
2-507
TLC272
TLC274 or TLC27L9
TLC27M9
HARRIS
HA2515
HA5127
HA5135-5
HA5137
INTERSIL
ICL7611, or ICL7612
or ICL7613
ICL7621
ICL7641
ICL7642
ICL7652
LINEAR
TECHNOLOGY
LT1001
LT1007
LT1007A
LT1037
LT1037A
LTC1052
MAXIM
ICL7611, or ICL7612
or ICL76t3
ICL7621
ICL7641
ICL7642
ICL7652
SUGGESTED
TI
REPLACEMENT
PAGE
NO.
LM318
TLE2027
OP-07C
TLE2037
2-35
2-991
2-141
2-1015
SUGGESTED
TI
REPLACEMENT
PAGE
NO.
TLC271
2-507
TLC272
TLC274 or TLC27L9
TLC27M9
TLC2652 or TLC2654
DIRECT
TI
REPLACEMENT
LT1007
LT1007A
LT1037
LT1037A
SUGGESTED
TI
REPLACEMENT
OP-07C, OP-070,
TLE2027
TLE2037
TLC2652 or TLC2654
2-565
2-597 / 2-661
2-725
2-861 / 2-885
PAGE
NO.
2-141/2-149
2-69/2-991
2-69
2-69 / 2-.1015
2-69
2-861/2-885
SUGGESTED
TI
REPLACEMENT
PAGE
NO.
TLC271
2-565
TLC272
TLC274 or TLC27L9
TLC27M9
TLC2652 or TLC2654
TEXAS ."
INSTRUMENTS
1-36
2-565
2-597 / 2-661
.2-725
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-565
2-597 / 2-661
2-725
2-861 / 2-885
,..
OPERATIONAL AU'UFtIE,Jt$
CROSS-REFERENCE GUIH
DIRECT
MOTOROLA
MC748
MC1458
MC1558
MC1709
MC1741
MC1747
MC3303
MC3403
MC4558
MC4741
MC34001
MC34002
MC34004
MC34004B
MC34071
MC34072
MC34181
MC34182
MC34184
NATIONAL
TI
REPLACEMENT
uA748
MC1458
MC1558
uA709
uA741
uA747
MC3303
MC3403
RC4558
LM348
TL071 or LF351
TL072 or LF353
TL074 or LF347
TL074A or LF347B
TLE2141
TLE2142
TLE2061
TLE2062
TLE2064
DIRECT
TI
REPLACEMENT
LF347
LF347B
LF351
LF353
LF351
LF353
LF411
LF411A
LF411
LF412
LF412
LF412-1A
LF441
LF441A
LF442
LF442A
LF444
LF444A
LH0044
LH0044B
LM201A
LM207
LM218
RC4136
TL34071
TL34072
LF347
LF347B
SUGGESTED
TI
REPLACEMENT
SUGGESTED
TI
REPLACEMENT
TL074 or TL084
TL074A, TL074B,
orTL084A
TL071 or TL081A
TL072, TL072A,
orTL082A
TL081A
TL071 A, TL071 B,
TL081 A, or TL081 B
TL072A, TL082A,
orTL082B
TLE2082
TL061 or TLE2061
TL061A orTL061B
TL062 or TLE2062
TL062B
TL064 or TLE2064
TL064A
OP-07C
Op c07D
LM201A
LM207
LM218
PAGE
NO.
2-1319
2-121
2-121
2-1301
2-1305
2-1313
2-125
2-125/2-159
2-163
2-47
2-371/2-5
2-371/2-7
2-371/2-3
2--371/2-3
2-443/2-1181
2-443/2-1199
2-1039
2-1075
2-1111
PAGE
NO.
2-3 /2--371 /2--31!17
2--3 / 2-371 /2--3137
2-5/2--387
2-7 / 2--371/ 2--3137
2-9/2-387
2-371
2--387
2-9/2--387
2-1147
2-341/2-1039
2-341
2-341/2-1111
2--341
2-341 /2-1111
2-341
2-141
2-141
2-13
2-19
2-35
TEXAS ."
INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
1-37
OPERATIONAL AMPLIFIERS
CROSS·REFERENCE GUIDE
(Continued)
NATIONAL
LM224
LM248
LM258
LM301A
LM307
LM318
LM324
LM348
LM358
LM709
LM741
LM883
LM1458
LM2900
LM2902
LM2904
LM3900
LMC660
UMC662
DIRECT
TI
REPLACEMENT
LM224
LM248
LM258
LM301A
LM307
LM318
LM324
LM348
LM358
uA709
uA741
TLE2024
TLE2022
RC4558
MC1458
LM2900
LM2902
LM2904
LM3900
2~1
TLC274
TLC2202
2-597
2-813
SUGGESTED
TI
REPLACEMENT
PAGE
NO.
LM318
MC1458
OP-07
TL071 , TL081A,
or LF351
DIRECT
TI
REPLACEMENT
SUGGESTED
TI
REPLACEMENT
uA741
uA747
OP-07C
OP-07D
RC4136
MC1458
MC1558
TL071 , TL081A,
or LF351
TEXAS ~
INSTRUMENTS
1-38
2-39
2-47
2-51
2-13
2-19
2-35
2-39/2-963
2-47
2-51/2-935
2-1301
2-1305
2-163
2-121
2~1
uPC159
uPC251
uPC354
uPC801
OP-02
OP-04
OP-07C
OP-07D
OP-07F
OP-14C or OP-14E
OP-14J
OP-15F
PAGE
NO.
2-39
2-51
NEC
PMI
SUGGESTED
TI
REPLACEMENT
POST OFFICE BOX 655303 • DALlAS, TEXAS 75265
2-35
2-121
2-141
2-371 /2-387 / 2-5
PAGE
NO.
2-1305
2.,-1313
2-141
2-141
2-159
2-121
2-121
2-371 / 2-387 / 2-3
OPERATIONAL AMPLIFIERS
CROSS-REFERENCE GUIDE
(Continued)
PMI
OP-27E
OP-27G
OP-37E
OP-37G
OP-215F
DIRECT
TI
REPLACEMENT
OP-27E
OP-27G
OP-37E
OP-37G
TL072, TL082A,
LF353,orTLE2082
TLE2082A
TLE2021
TLE2027
TLE2037
TLE2022
TLE2024
OP-215G
OP-21
OP-27
OP-37
OP-221
OP-421
RAYTHEON
RC4136
RC4156
RC4157
RC4558
RC4559
DIRECT
TI
REPLACEMENT
LM348
LM348
RC4558
RC4559
SUGGESTED
TI
REPLACEMENT
CA081 A
CA081 A
CA082
CA082A
CA084
NE532
NE5532
NE5532A
NE5534
NE5534A
SE5534
SE5534A
SUGGESTED
TI
REPLACEMENT
RC4136
RCA
SIGNETICS
SUGGESTED
TI
REPLACEMENT
DIRECT
TI
REPLACEMENT
NE5532
NE5532A
NE5534
NE5534A
SE5534
SE5534A
2-149
2-149
2-149
2-149
2-371 / 2-387
2-1147
2-909
2-991
2-1015
2-935
2-963
PAGE
NO.
2-159
2-47
2-47
2-163
2-169
PAGE
NO.
TL081
TL081A
TL082
TL082A
TL084
2-387
2-387
2-387
2-387
2-387
SUGGESTED
TI
REPLACEMENT
PAGE
NO.
LM358 or TL022
2-51/2-171
2-131
2-131
2-135/2-1015
2-135/2-1015
2-135
2-135
TLE2037
TLE2037A
TEXAS
PAGE
NO.
.Jf
INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
1-S9
...
OPiftAflONAL.AMPL.lFIERS
CIOSS·REFERENCE GUIDE
SUGGESTED
TI
SGS-THOMSON
PAGE
NO.
REPLACEMENT
TS271
TS271A
TS271B
TS272
TS272A
TS272B
TS274
TS274A
TS274B
TS27L2
TS27L2A
TS27L2B
TS27L4
TS27L4A
TS27L4B
TS27M2
TS27M2A
TS27M2B
TS27M4
TS27M4A
TS27M4B
TLC271
TLC271A
TLC271B
TLC272
TLC272A
TLC2728
TLC274
TLC274A
TLC274B
TLC27L2
TLC27L2A
TLC27L2B
TLC27L4
TLC27L4A
TLC27L4B
TLC27M2
TLC27M2A
TLC27M2B
TLC27M4
TLC27M4A
TLC27M4B
TEXAS ""
INSIRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-507
2-507
2-507
2-565
2-565
2-565
2-597
2-597
2-597
2-629
2-629
2-629
2-661
2-661
2-661
2-693
2-693
2-693
2-725
2-725
2-725
GLOSSARY
OPERATIONAL AMPLIFIER TERMS AND DEFINITIONS
Input Offset Voltage (VIO)
The d-c voltage that must be applied between the input terminals to force the quiescent d-c output voltage to zero
or other level, if specified.
Average Temperature Coefficient of Input Offset Voltage (aVIO)
The ratio of the change in input offset voltage to the change in free-air temperature. This is an average value for the
specified temperature range.
"'VIO = [
(VIO @ TA(1))-(VI0 @ TA(2))]
T
T
where T A(1) and T A(2) are the specified temperature extremes.
A(1)- A(2)
Input Offset Current (110)
The difference between the currents into the two input terminals with the output at zero volts.
Average Temperature Coefficient of Input Offset Current (aIlO)
The ratio of the change in input offset current to the change in free-air temperature. This is an average value for the
specified temperature range.
"'110 = [
(110 @ TA(1))-(l10 @ TA(2))]
T
T
where T A( 1) and T A(2) are the specified temperature extremes.
A(1) - A(2)
Input Bias Current (lIB)
The average of the currents into the two input terminals with the output at zero volts.
Common-Mode Input Voltage (VIC)
The average of the two input voltages.
Common-Mode Input Voltage Range (VICR)
The range of common-mode input voltage that if exceeded will cause the amplifier to cease functioning properly.
Differential Input Voltage (VID)
The voltage at the noninverting input with respect to the inverting input.
Maximum Peak Output Voltage Swing (VOM)
The maximum positive or negative peak output voltage that can be obtained without waveform clipping when the
quiescent d-c output voltage is zero.
Maximum Peak-to-Peak Output Voltage Swing (VOpp)
The maximum peak-to-peak output voltage that can be obtained without waveform clipping when the quiescent d-c
output voltage is zero.
Large-Signal Voltage Amplification (AV)
The ratio of the peak-to-peak output voltage swing to the change in input voltage required to drive the output.
Differential Voltage Amplification (AVO)
The ratio of the change in output voltage to the change in differential input voltage producing it.
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
1-41
GLOSSARY
OPERATIONAL AMPLIFIER TERMS AND DEFINITIONS
Maximum-Output-Swing Bandwidth (BOM)
The range of frequencies within which the maximum output voltage swing is above a specified value.
Unity-Gain Bandwidth (B1)
The range of frequencies within which the open-loop voltage amplification is greater than unity.
Phase Margin ((j>m)
The absolute value of the open-loop phase shift between the output and the inverting input at the frequency at which
the modulus of the open-loop amplification is unity.
Gain Margin (Am)
The reciprocal of the open-loop voltage amplification at the lowest frequency at which the open-loop phase shift is
such that the output is in phase with the inverting input.
Input Resistance (ri)
The resistance between the input terminals with either input grounded.
Differential Input Resistance (rid)
The small-signal resistance between the two ungrounded input terminals.
Output Resistance (r9)
The resistance between the output terminal and ground.
Input Capacitance (Ci)
The capacitance between the input terminals with either input grounded.
Common-Mode Input Impedance (zicl
The parallel sum of the small-signal impedance between each input terminal and ground.
Output Impedance (zo)
The small-signal impedance between the output terminal and ground.
Common-Mode Rejection Ratio (kCMR. CMRR)
The ratio of differential voltage amplification to common-mode voltage amplification.
NOTE: This is measured by determining the ratio of a change in input common-mode voltage to the resulting change
in input offset voltage.
Supply Voltage Sensitivity (kSVS • .iVIO/.iVCC)
The absolute value of the ratio of the change in input offset voltage to the change in supply voltages producing it.
NOTES: 1. Unless otherwise noted. both supply voltages are varied symmetrically.
2. This is the reciprocal of supply voltage rejection ratio.
Supply Voltage Rejection Ratio (kSVR • .iVCC/.iVIO)
The absolute value of the ratio of the change in supply voltages to the change in input offset voltage.
NOTES: 1. Unless otherwise noted. both supply voltages are varied symmetrically.
2. This is the reCiprocal of supply voltage sensitivity.
TEXAS.
INSTRUMENTS
1-42
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
GLOSSARY
OPERATIONAL AMPLIFIER TERMS AND DEFINITIONS
Equivalent Input Noise Voltage (V n )
The voltage of an ideal voltage source (having an internal impedance equal to zero) in series with the input terminals
of the device that represents the part of the internally generated noise that can properly be represented by a voltage
source.
Equivalent Input Noise Current (In)
The current of an ideal current source (having an internal impedance equal to infinity) in parallel with the input terminals
of the device that represents the part of the internally generated noise that can properly be represented by a current
source.
Average Noise Figure (F)
The ratio of (1) the total output noise power within a designated output frequency band when the noise temperature
of the input termination(s) is at the reference noise temperature, TO, at all frequencies to (2) that part of (1) caused
by the noise temperature of the designated signal-input termination within a designated signal-input frequency band.
Short-Circuit Output Current (lOS)
The maximum output current available from the amplifier with the output shorted to ground, to either supply, or to
a specified point.
Supply Current (ICC)
The current into the
Vee
or
Vee +
terminal of an integrated circuit.
Total Power Dissipation (PO)
The total d-c power supplied to the device less any power delivered from the device to a load.
NOTE: At no load:
Po = VCC+ • ICC+ + VCC- .ICC-·
Crosstalk Attenuation (V o 1IV 02)
The ratio of the change in output voltage of a driven channel to the resulting change in output voltage of another channel.
Rise Time (t r )
The time required for an output voltage step to change from 10% to 90% of its final value.
Total Response Time (Settling Time) (ttot)
The time between a step-function change of the input signal level and the instant at which the magnitude of the output
signal reaches for the last time a specified level range (± €) containing the final output signal level.
Overshoot Factor
The ratio of (1) the largest deviation of the output signal value from its final steady-state value after a step-function
change of the input signal, to (2) the absolute value of the difference between the steady-state output signal values
before and after the step-function change of the input signal.
Slew Rate (SR)
The average time rate of change of the closed-loop amplifier output voltage for a step-signal input.
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
1-43
1-44
2-1
o
",..Q;
(1)
0"
::s
-l>
3
"--a;""
Q)
-iii
ifA
2-2
LF347, LF347B
WIDE·BANDWIDTH QUAD JFET·INPUT OPERATIONAL AMPLIFIERS
02997, MARCH 1987-REVISEO SEPTEMBER 1990
•
•
o OR N PACKAGE
Low Input Bias Current
Typically 50 pA
ITOPVIEW)
Low Input Noise Current
Typically 0,01 pA/v'Hz
rUT
IN-
AMP #1
IN+
VCC+
•
Low Total Harmonic Distortion
•
Low Supply Current ... Typically 8 rnA
•
Wide Gain Bandwidth, .. Typically 3 MHz
•
High Slew Rate ... Typically 13 V I P.s
•
Pin Compatible with the LM348
{N+
IN-
AMP #2
OUT
OUT}
ININ+
AMP #4
VCCIN+ }
IN-
AMP #3
OUT
description
These devices are low-cost, high-speed, JFET-input operational amplifiers. They require low supply current
yet maintain a large gain-bandwidth product and a fast slew rate. In addition, their matched high-voltage
JFET inputs provide very low input bias and offset current.
The LF347 and LF347B can be used in applications such as high-speed integrators, digital-to-analog
converters, sample-and-hold circuits, and many other circuits.
The LF347 and LF347B are characterized for operation from ooe to 70 oe.
symbol (each amplifier)
IN-=t>-
OUT
+
IN+
AVAILABLE OPTIONS
TA
ooe
PACKAGE
VIO MAX
AT 25°C
SMALL-OUTLINE
(0)
IN)
10 mV
LF347D
LF347N
5 mV
LF347BD
LF347BN
PLASTIC DIP
to
70 0 e
D packages are available taped and reeled. Add "R" suffix to
the device type, (e.g. LF347DR).
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee + ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18 V
Supply voltage, Vee - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 18 V
Differential input voltage, VID ..
. . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 30 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 15 V
Duration of output short circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Unlimited
eontinuous total power dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . .. See Dissipation Rating Table
Operating temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ooe to 70 0 e
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65 °e to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds. . . . . . . . . . . . . . . . . . . . .. 260°C
NOTE 1: Unless otherwise specified, the absolute maximum negative input voltage is equal to' the negative power supply voltage.
Copyright © 1990, Texas Instruments Incorporated
PRODUCTION DATA documents contain information
current as of publication date. Products conform to
specifications per the terms of Texas
Instr~ments
standard warranty. Production processing does not
necessarily include testing of all parameters,
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-3
...
LF347, LF347B
WIDE-BANDWIDTH QUAD JFET-INPUT OPERATIONAL AMPLIFIERS
DISSIPATION RATING TABLE
TA:5 25°C
DERATING
DERATE
TA = 70°C
POWER RATING
FACTOR
ABOVE TA
POWER RATING
D
680 mW
7.6 mW/oC
61°C
608 mW
N
680 mW
N/A
N/A
680 mW
PACKAGE
recommended operating conditions
MIN
MAX
Supply voltage, V cc +
3.5
18
V
Supply voltage, VCC-
-3.5
-18
V
electrical characterist.ics over operating free-air temperature range, Vee +
(unless otherwise specified)
PARAMETER
Via
Input offset voltage
~
VIC
Average temperature coefficient
VIC
of input offset voltage
RS
110
Input offset current t
VIC ~
liB
Input bias current t
~
VIC ~
MAX
5
10
Full range
MIN
0,
3
TJ
a
TJ
TJ
TJ
~
25°C
~
70°C
~
25°C
~
70°C
25
100
25
200
50
8
-12
VICR
Common-mode input voltage range
YOM
Maximum peak output voltage swing
AVO
Large-signal differential voltage
Input resistance
ri
CMRR Common-mode rejection ratio
kSVR
Supply voltage rejection ratio
ICC
Supply Current
±11
RL
~
10 k{l
VO~±10V,
RL
TJ
~
~
2 kO
I
~
25°C
Full range
to
±12 ± 13.5
100
See Note 2
70
100
8
15 V. Vee-
Unity-gain bandwidth
Equivalent input noise voltage
f
~
1 kHz,
100
80
100
11
In
Equivalent input noise current
f
~
1 kHz
V
V
Vim V
{l
dB
dB
11
MIN
TYP
MAX
13
3
~
nA
8
120
RS
pA
8
100
80
8
Vn
nA
200
10 12
1 kHz
Bl
pA
4
rnA
-15V.TA
TEST CONDITIONS
~
100
25
10 12
100
f
50
15
70
mV
"V/oC
to
±12 ± 13.5
25°C
PARAMETER
±11
15
25
UNIT
-12
15
RS :5 10 k{l
operating characteristics. Vee +
V01 1V02 Crosstalk attenuation
SR
Slew rate
TA
5
18
4
50
MAX
7
18
a
TYP
13
10 k{l
~
LF347B
TYP
TA ~ 25°C
0,
RS~10k{l
"'VIO
MIN
-15 V
15 V, Vee-
LF347
TEST CONDITIONS
UNIT
100 {l
UNIT
dB
V/"s
MHz
18
nV/,[Hz
0.01
pA/,[Hz
t Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques
must be used that will maintain the junction temperatures as close to the ambient temperature as possible.
•
NOTE 2: Supply voltage rejection ratio is measured for both supply magnitudes increasing. or decreasing simultaneously.
-II
TEXAS
INSTRUMENTS
2-4
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
LF351
WIDE·BANDWIDTH DUAL JFET·INPUT OPERATIONAL AMPLIFIER
D2997, MARCH 1987-REVISED SEPTEMBER 1990
•
•
D OR P PACKAGE
Low Input Bias Current
Typically 50 pA
(TOP VIEW)
Low Input Noise Voltage
Typically 18 nV/¥Z
B A L 1 [ ] 8 NC
•
Low Input Noise Current
Typically 0.01 pA/¥Z
•
Low Supply Current ... Typically 1.8 rnA
•
High Input Impedance
Typically 10 12 [J
•
Low Total Harmonic Distortion
•
Internally Trimmed Offset Voltage
Typically 10 mV
•
High Slew Rate ... Typically 13 VII's
•
Wide Gain Bandwidth ... Typically 3 MHz
•
Pin Compatible with Standard 741
)N-)N +
2
3
7
6
Vcc+
OUT
VCC-
4
5
BAL2
NC
No internal connection
description
This device is a low-cost, high-speed, JFET-input operational amplifier with an internally trimmed input
offset voltage. It requires low supply current yet maintains a large gain-bandwidth product and a fast slew
rate. In addition, the matched high-voltage JFET input provides very low input bias and offset currents.
It uses the same offset voltage adjustment circuits as the 741.
The LF351 can be used in applications such as high-speed integrators, digital-to-analog converters, sampleand-hold circuits, and many other circuits.
The LF351 is characterized for operation from
ooe
to 70 oe.
symbol leach amplifier)
(2)
IN-
(6) OUT
(3)
IN+
( 1)
BAll
(5)
BAL2
AVAILABLE OPTIONS
SYMBOLIZATION
DEVICE
LF351
PACKAGE
SUFFIX
D, P
OPERATING
VIO MAX
TEMPERATURE RANGE
at 25°C
-ooe
to 70
0
e
10 mV
The D packages are available taped and reeled. Add the suffix R to
the device type, (ie., LF351 DRI.
PRODUCTION DATA documents contain information
current as of publication date. Products conform to
specifications per the terms of Texas Instruments
standard warranty. Production processing does not
necessarily include testing of all parameters.
TEXAS
-1!1
Copyright © 1990, Texas Instruments Incorporated
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TeXAS 75265
1
2-5
I,
IiI':
LF351
WIDE-BANDWIDTH JFET-INPUT OPERATIONAL AMPLIFIER
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vcc + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18 V
Supply voltage, VCC _ .......
- 18 V
Differential input voltage, VID ........... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
± 30 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
± 15 V
Duration of output short circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Unlimited
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 mW
Operating temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 0 DC to 70 DC
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65 DC to 150 DC
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds. . . . . . . . . . . . . . . . . . . . .. 260 DC
NOTE 1: Unless otherwise specified, the absolute maximum negative input voltage is equal to the negative power supply voltage.
recommended operating conditions
MIN
MAX
Supply voltage, VCC+
3.5
18
V
Supply voltage, VCC-
-3.5
-18
V
electrical characteristics over operating free-air temperature range, Vee +
(unless otherwise specified)
PARAMETER
Via
Input offset voltage
Average temperature coefficient
"via
110
lIB
of input offset voltage
Input offset current t
Input bias current t
TEST CONDITIONS
VIC
=
0,
RS
=
10 kO
VIC
=
0,
RS
=
10 kO
VIC
=
0
VIC
=
25°C
TYP
MAX
5
10
Full range
13
TJ
TJ
TJ
=
=
=
=
25°C
25
50
mV
100
pA
4
nA
200
pA
8
nA
70°C
25°C
UNIT
p.V/oc
10
TJ
0
-15 V
15 V, VeeMIN
=
TA
UNIT
70°C
-12
VICR
Common-mode input voltage range
±11
to
V
15
VOM
Maximum peak output voltage swing
RL
AVD
Large-signal differential voltage
Va
r;
Input resistance
TJ
CMRR Common-mode rejection ratio
kSVR
Supply voltage rejection ratio
ICC
Supply current
operating characteristics, Vee +
PARAMETER
SR
Slew rate
B1
Unity-gain bandwidth
Vn
Equivalent input noise voltage
In
Equivalent input noise current
=
=
=
±12
10 kO
± 10 V,
RL
=
2 kO
TA
=
25°C
Full range
25
15
±13.5
V
200
V/mV
200
10 12
25°C
RS :5 10 kO
70
100
See Note 2
70
100
0
dB
dB
1.8
3.4
mA
MIN
TYP
MAX
8
13
V/p.s
3
MHz
-15V,TA
15 V, Vee-
TEST CONDITIONS
f = 1 kHz,
RS = 1000
f = 1 kHz
UNIT
18
nV/-IHz
0.01
pA/-IHz
t Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques
must be used that will maintain the junction temperatures as close to the ambient temperature as possible.
NOTE 2: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously.
~
TEXAS
INSTRUMENTS
2~
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
LF353
WIDE·BANDWIDTH DUAL JFET·INPUT OPERATIONAL AMPLIFIER
D2997, MARCH 1987-REVISED SEPTEMBER 1990
•
•
D OR P PACKAGE
Low Input Bias Current
Typically 50 pA
(TOP VIEW I
Low Input Noise Current
Typically 0.01 pAl
"'Hz
AMP #
1{~NU~ []1
~ ~C~}+
IN +
VCC-
•
Low Input Noise Voltage
Typically 18 nV/v'Hz
•
Low Supply Current ... Typically 3.6 rnA
•
High Input Impedance
Typically 10 12 n
•
Internally Trimmed Offset Voltage
•
Wide Gain Bandwidth ... Typically 3 MHz
•
High Slew Rate ... Typically 13 V I J1.s
3
4
6
IN -
5
IN+
AMP # 2
description
This device is a low-cost, high-speed, JFET-input operational amplifier with very low input offset voltage.
It requires low supply current yet maintains a large gain-bandwidth product and a fast slew rate. In addition,
the matched high-voltage JFET input provides very low input bias and offset currents.
The LF353 can be used in applications such as high-speed integrators, digital-to-analog converters, sampleand-hold circuits, and many other circuits.
The LF353 is characterized for operation from 0 DC to 70 DC.
symbol (each amplifier)
I N - = l > - OUT
+
IN+
AVAILABLE OPTIONS
SYMBOLIZATION
DEVICE
LF353
PACKAGE
SUFFIX
D. P
OPERATING
V,O MAX
TEMPERATURE RANGE
at 25°C
O°C to 70°C
10 mV
The D packages are available taped and reeled. Add the suffix R to
the device type, li.e. LP353DR).
PRODUCTION DATA documents contain information
current as of publication data. Products conform to
specifications par the tarms of Texas Instrumants
standard warranty. Production processing doas not
nacessarily include testing of all parametars.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Copyright
©
1990, Texas Instruments Incorporated
2-7
LF353
WIDE-BANDWIDTH DUAL JFET-INPUT OPERATIONAL AMPLIFIER
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee + .....................................................
18 V
Supply voltage, Vee - 18 V
Differential input voltage, VID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
± 30 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
± 15 V
Duration of output short circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Unlimited
eontinuoustotal power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 mW
Operating temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . .. ooe to 70 0 e
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65 °e to 150 °e
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds. . . . . . . . . . . . . . . . . . . . .. 260 0 e
NOTE 1: Unless otherwise specified, the absolute maximum negative input voltage is equal to the negative power supply voltage.
recommended operating conditions
MIN
MAX
Supply voltage, V CC +
3.5
18
V
Supply voltage, VCC-
-3.5
-18
V
electrical characteristics over operating free-air temperature range, Vee +
(unless otherwise specified)
PARAMETER
Via
Input offset voltage
Average temperature coefficient
aVIO
110
lIB
of input offset voltage
Input offset current t
Input bias current t
TEST CONDITIONS
VIC
=
0,
RS
=
10 kO
VIC
=
0,
RS
=
10 kO
VIC
VIC
=
=
=
-15 V
15 V, VeeMIN
TA
25°C
TYP
MAX
5
10
Full range
13
10
TJ
0
TJ
TJ
0
TJ
=
=
=
=
25
25°C
70°C
50
25°C
70°C
UNIT
UNIT
mV
/lV/oC
100
pA
4
nA
200
pA
8
nA
-12
VICR
Common-mode input voltage range
±11
to
V
15
YOM
Maximum peak output voltage swing
RL
=
AVO
Large·signal differential voltage
Va
=
r;
Input resistance
TJ
=
CMRR Common-mode rejection ratio
kSVR
Supply voltage rejection ratio
ICC
Supply current·
operating characteristics, Vee +
±12
10 kO
±10V,
Unity·gain bandwidth
Equivalent input noise voltage
In
Equivalent input noise current
25°C
Full range
25
± 13.5
Vim V
10 12
70
100
See Note 2
70
100
TEST CONDITIONS
f
=
MIN
1 kHz
dB
3.6
6.5
TYP
MAX
120
8
=
0
dB
mA
-15V,TA
15 V, Vee-
f
V
100
15
25°C
V01/V02 Crosstalk attenuation
SR
Slew rate
B1
2 kO
=
RS :5 10 kO
PARAMETER
Vn
=
RL
TA
1 kHz,
f
=
RS
=
1000
1 kHz
13
UNIT
dB
VII'S
3
MHz
18
nV/M
0.01
pAlM
t Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques
must be used that will maintain the junction temperatures as close to the ambient temperature as possible.
NOTE 2: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously.
TEXAS •
INSTRUMENTS
2-8
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
LF411C
JFET·INPUT OPERATIONAL AMPLIFIER
02997. MARCH 1987 - REVISED SEPTEMBER 1990
•
•
o OR P PACKAGE
Low Input Bias Current
Typically 50 pA
(TOP VIEW)
Low Input Noise Current
Typically 0.01 pA/y'Hi"
BAL1[J8 NC
•
Low Supply Current .. , Typically 2.0 mA
•
High Input Impedance
Typically 1012 [}
ININ+
2
7
Vcc-
3
6
OUT
VCC-
4
5
BAL2
NC - No internal connection
•
Low Total Harmonic Distortion
•
Low 1/f Noise Corner . . . Typically 50 Hz
description
This device is a low-cost, high-speed, JFET-input operational amplifier with very low input offset voltage
and a maximum input offset voltage drift. It requires low supply current yet maintains a large gain-bandwidth
product and a fast slew rate. In addition, the matched high-voltage JFET input provides very low input
bias and offset currents.
The LF411 C can be used in applications such as high-speed integrators, digital-to-analog converters, sampleand-hold circuits, and many other circuits.
The LF411 C is characterized for operation from OOC to 70 ac.
symbol
12)
IN-
>-_--=..;(6"") OUT
13)
IN+
11 )
BALl
BAL2(5)
AVAILABLE OPTIONS
TA
VIO MAX
AT 25°C
PACKAGE
SMALL-OUTLINE
(D)
PLASTIC DIP
(P)
LF411CO
LF411CP
QOC
to
2 mV
7QoC
D package is available taped and reeled. Add "R" suffix to device
type. (e.g. LF411 CDR)
PRODUCTIOII DATA documents contain information
current as of publication data. Products conform to
Ipacilications per the terms of Texas Instruments
standard warranty. Production proc..sing do.. not
nHesurity include testing of all parameters.
Copyright © 1990, Texas Instruments Incorporated
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-9
LF411 C
JFET-INPUT OPERATIONAL AMPLIFIER
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, V CC + ....................................................... 18 V
Supply voltage, V CC _
... ... ....
- 18 V
Differential input voltage, VID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
± 30 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
± 15 V
Duration of output short circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Unlimited
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 mW
Operating temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. OoC to 70°C
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds. . . . . . . . . . . . . . . . . . . . .. 260°C
NOTE 1: Unless otherwise specified, the absolute maximum negative input voltage is equal to the negative power supply voltage.
recommended operating conditions
MIN
MAX
Supply voltage, V CC +
3.5
18
V
Supply voltage, V CC-
-3.5
-18
V
electrical characteristics over operating free-air temperature range. Vee +
(unless otherwise specified)
PARAMETER
Via
Input offset voltage
Average temperature coefficient
"via
110
liB
of input offset voltage
Input offset current i
Input bias current i
TEST CONDITIONS
VIC
=
0,
RS
=
10 kO,
VIC
=
0,
RS
=
10 kll
VIC
=
0
VIC
TJ
=
TJ
TJ
0
TJ
=
=
=
=
-15 V
15 V. VeeMIN
=
TA
25°C
25°C
TYP
MAX
0.8
2
10
20t
~V/oc
25
100
pA
2
nA
200
pA
4
nA
70°C
50
25°C
UNIT
70°C
UNIT
mV
-11.5
VICR
Common-mode input voltage range
±11
to
V
14.5
=
VOM
Maximum peak output voltage swing
RL
AVD
Large-signal differential voltage
Va
=
r;
Input resistance
TJ
=
CMRR Common-mode rejection ratio
kSVR
Supply voltage rejection ratio
ICC
Supply current
operating characteristics. Vee +
±10V,
Slew rate
B1
Unity-gain bandwidth
Vn
Equivalent input noise voltage
In
Equivalent input noise current
=
RL
TA
2 kll
=
25°C
I Full range
25
15
± 13.5
V/mV
200
RS ,,; 10 kll
70
100
See Note 2
70
100
TEST CONDITIONS
=
Il
dB
dB
2
3.4
MIN
TYP
MAX
8
13
2.7
3
MHz
18
nV/v'Hz
0.01
pAlM
mA
-15 V. TA
15 V. Vee-
f
V
200
10 12
25°C
PARAMETER
SR
±12
10 kll
1 kHz,
f
=
RS
=
1001l
1 kHz
UNIT
V/!"s
tAt Jeast 90% of the devices meet this limit for "via.
t Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques
must be used that wiil maintain the junction temperatures as close to the ambient temperature as possible.
NOTE 2: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously.
TEXAS •
INSTRUMENTS
2-10
POST OFFICE BOX 655303 - DALLAS, TEXAS 75265
LF412C
DUAL JFET-INPUT OPERATIONAL AMPLIFIER
D2997, MARCH 1987-REVISED SEPTEMBER '990
•
Low Input Bias Current
Typically 50 pA
D OR P PACKAGE
(TOP VIEW)
•
Low Input Noise Current
Typically 0.01 pA/.JHz
•
Low Supply Current ... Typically 4.5 rnA
•
High Input Impedance
Typically 10 12 0
•
Internally Trimmed Offset Voltage
•
Wide Gain Bandwidth ... Typically 3 MHz
•
High Slew Rate ... Typically 13 VII's
AMP # 1
,
{~NU~ 0'
~ ~~~}+
IN+
3
6
IN-
VCC-
4
5
IN+
AMP #2
description
This device is a low-cost, high-speed, JFET-input operational amplifier with very low input offset voltage
and a specified maximum input offset voltage drift. It requires low supply current yet maintains a large
gain bandwidth product and a fast slew rate. In addition, the matched high-voltage JFET input provides
very low input bias and offset currents.
The LF412C can be used in applications such as high-speed integrators, digital-to-analog converters, sampleand-hold circuits, and many other circuits.
The LF412C is characterized for operation from OOC to 70°C.
symbol (each amplifier)
IN-=!>--
OUT
+
IN+
AVAILABLE OPTIONS
SYMBOLIZATION
DEVICE
LF412C
PACKAGE
SUFFIX
D, P
OPERATING
VIO MAX
TEMPERATURE RANGE
at 25°C
O°C to 70 0 C
3 mV
The D packages are available taped and reeled. Add the suffix R to
the device type, Ii.e. LF412CDRI.
PRODUCTION DATA documents contain information
current as of publication date. Products conform to
specifications per the terms of Texa. Instruments
standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 1990, Texas Instruments Incorporated
TEXAS •
INSTRUMENlS
POST OFFICE BOX 655303 - DALLAS, TEXAS 75265
2-11
LF412C
DUAL JFET·INPUT OPERATIONAL AMPLIFIER
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vcc+ ...................................................... 18 V
Supply voltage, VCC - .................................................... -18 V
Differential input voltage, VID ............................................... ± 30 V
Input voltage (see Note 1) ................................................. , ± 1 5 V
Duration of output short-circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Unlimited
Continuous total power dissipation .......................................... 500 mW
Operating temperature range .. '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. OoC to 70°C
Storage temperature range ......................................... - 65°C to 1 50°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds. . . . . . . . . . . . . . . . . . . . .. 260°C
NOTE 1: Unless otherwise specified, the absolute maximum negative input voltage is equal to the negative power supply voltage.
recommended oprating conditions
Supply voltage, VCC+
Supply voltage, V CC -
electrical characteristics over operating free-air temperature range, Vee +
(unless otherwise specified)
PARAMETER
Via
Input offset voltage
Average temperature coefficient
"'via
of input offset voltage
110
Input offset current*
lIB
Input bias current*
= 0,
RS
=
10 kll,
VIC
= 0,
RS
=
10 kll
VIC
=0
VIC
MAX
UNIT
3.5
-3.5
18
-18
V
... 15 V, Vee-
TEST CONDITIONS
VIC
MIN
MIN
= 25°C
TA
= 25°C
TJ
=0
TJ
= 25°C
= 70°C
-15 V
TYP
MAX
1
3
10
20t
pV/oc
25
100
pA
2
nA
200
pA
4
nA
TJ = 70°C
TJ
V
50
UNIT
mV
-11.5
VICR
± 11
Common-mode input voltage range
to
V
14.5
YOM
AvO
'i
Maximum peak output voltage swing
Large-signal differential voltage
Input resistance
CMRR Common-mode rejection ratio
kSVR
ICC
Supply voltage rejection ratio
Supply current
RL
=
10 kO
Va
=
TJ
= 25°C
±10V,
Equivalent input noise voltage
In
Equivalent input noise current
15
100
See Note 2
70
100
V/mV
f
=
MIN
d8
4.5
6.8
TYP
MAX
120
1 kHz
8
2.7
=
0
d8
mA
... - 15 V. T A == 25°e
TEST CONDITIONS
f
V
200
70
PARAMETER
Unity-gain bandwidth
Full range
± 13.5
200
RS s; 10 kO
VOl iV 02 Crosstalk attenuation
SR
Slew rate
Vn
kO
±12
25
10 12
operating characteristics, Vee + == 15 V, Vee -
Bl
=2
RL
I TA = 25°C
1 kHz,
f
=
RS
=
100 Il
1 kHz
13
UNIT
dB
3
V/".s
MHz
18
nV/v'Hz
0.01
pA/v'Hz
t At least 90% of the devices meet this limit for "'VIO.
t Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques
must be used that will maintain the junction temperatures as close to the ambient temperature as possible.
NOTE 2: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously.
TEXAS . "
INSTRUMENTS
2-12
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
LM101A, LM201A, LM301A
HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS
0961 OCTOBER 1979 - REVISED SEPTEMBER 1990
Low Input Currents
•
Frequency and Transient Response
Characteristics Adjustable
•
•
Short-Circuit Protection
•
•
D8
D, JG, OR P PACKAGE
(TOP VIEW)
•
•
Low Input Offset Parameters
N1/COMP
ININ+
2
3
4
Vce-
CaMP
7
Vcc+
6
5
OUT
OFFSET N2
Offset-Voltage Null Capability
LM101A
W FLAT PACKAGE
No Latch-Up
(TOP VIEW)
Wide Common-Mode and Differential
Voltage Ranges
•
Same Pin Assignments as uA709
•
Designed to be Interchangeable with
National Semiconductor LM101A and
LM301A
NC
NC
N1/COMP
ININ+
12
11
10
Vcc-
g
NC
a
description
The LM101A, LM201A, and LM301A are highperformance operational amplifiers featuring very
low input bias current and input offset voltage and
current to improve the accuracy of highimpedance circuits using these devices. The high
common-mode input voltage range and the
absence of latch-up make these amplifiers ideal
for voltage-follower applications. The devices are
protected to withstand short circuits at the output.
The external compensation of these amplifiers
allows the changing of the frequency response
(when the closed-loop gain is greater then unity)
for applications requiring wider bandwidth or
higher slew rate. A potentiometer may be
connected between the offset-null inputs (N1 and
N2), as shown in Figure 7, to null out the offset
voltage.
The LM1 01A is characterized for operation over
the full military temperature range of -55°e to
125°e, the LM201A is characterized for operation
from -25°e to 85°e, and the LM301A is
characterized for operation from
to 70
ooe
oe.
symbol
Nonlnvertlng
Input IN+
~
+
NC
NC
CaMP
Vcc+
OUT
OFFSET N2
NC
LM101A
U FLAT PACKAGE
(TOP VIEW)
9
NC
CaMP
a
Vcc+
7
OUT
OFFSET N2
NC
N1/COMP
ININ+
10
Vcc-
6
LM101A
FK CHiP-CARRIER PACKAGE
(TOP VIEW)
0..
:::;
oo :::;
0..
0;::000
zzzoz
NC
INNC
IN+
NC
3
18
NC
5
17
VCC+
6
16
7
15
8
14
g 10 11 1213
NC
OUT
NC
o
Output
2 1 2019
4
IONO
Z Uz Z Z
.y
Inverting ---~ Input IN-
NC - No internal connection
N2
N1/
COMP
::
~~o~~~~~~~o~:I: s';!:rw:at:~~si~e~~~:~!r!~ Ie~:~~~~fr~:ea~:s
standard warrtnty. Produetfon processing does not nece&S8rlly 'n.;:lud8
t.sllng ot all parameters.
TEXAS .If
Copyright © 1991, Texas Instruments Incorporated
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-13
LM101A, LM201A, LM301A
HIGH·PERFORMANCE OPERATIONAL AMPLIFIERS
AVAILABLE OPTIONS
PACKAGE
VIOMAX
at 2SoC
SMALL OUTLINE
CHIP CARRIER
CERAMIC DIP
PLASTIC DIP
FLAT PACK
(D)
(FK)
(JG)
(P)
(U)
(W)
7.SmV
LM301AD
-
LM301AP
-25'C to 85'C
2mV
LM201AD
-
-
LM201AP
-
-
-55 'c to 125°C
2mV
LM101AD
LM101AFK
LM101AJG
LM101AP
LM101AU
LM101AW
TA
O°C to 70°C
FLAT PACK .
The D package IS available taped and reeled. Add the suffix R to the device type, (I.e., LM301ADR).
absolute maximum ratings over operating free·air temperature range (unless otherwise noted)
LM101A
LM201A
LM301A
UNIT
Supply voltage VCC+ (see Note 1)
22
22
18
V
Supply voltage VCe- (see Note 1)
-22
-22
-18
V
Differential input voltage (see Note 2)
±30
±30
±30
V
±15
=15
=15
V
Voltage between either offset null terminal (N1/N2) and VCC-
-0.5 to 2
-0.5 to 2
-0.5 to 2
V
Duration of output short-circuit (see Note 4)
unlimited
unlimited
unlimited
Input voltage (either input, see Notes 1 and 3)
Continuous total power dissipation
See Dissipation Rating Table
Operating free·air temperature range
-55 to 125
-25 t085
Ot070
°C
Storage temperature range
-65 to 150
-65 t0150
-65t0150
°C
Case temperature for 60 seconds: FK package
260
I JG, U, or W package
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds
NOTES: 1.
2.
3.
4.
J D or P package
°C
300
260
°C
260
'c
260
All voltage values, unless otherwise noted, are with respect to the midpoint between VCC+ and VCC-.
Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
The output may be shorted to ground or either power supply. For the LM1 01 A only, the unlimited duration of the short-circuit applies
at (or above) 125°C case temperature or 7S'C free-air temperature. For the LM201 A only, the unlimited duration of the short-circuit
applies at (or below) 85'C case temperatuare or 7SoC free-air temperature.
DISSIPATION RATING TABLE
PACKAGE
TA"2SoC
DERATING
DERATE
TA = 70°C
TA = 8SoC
TA=12SoC
POWER RATING
FACTOR
ABOVETA
POWER RATING
POWER RATING
POWER RATING
D
500mW
S.8mWI'C
377mW
145mW
SOOmW
11.0 mW/oC
64'C
10SoC
464mW
FK
500mW
500mW
275mW
JG
SOOmW
8.4 mWI'C
90°C
500mW
SOOmW
210mW
P
'SOOmW
8.OmWI'C
87°C
500mW
500mW
200mW
U
SOOmW
5.4 mWI'C
57°C
432mW
351 mW
13SmW
W
SOOmW
8.OmWI'C
87°C
500mW
500mW
200mW
recommended operating conditions
MIN
MAX
Supply voltage, VCC+
S
18
Supply voltage, VCe-
-S
-18
TEXAS ~
INSlRUMENlS
2-14
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
UNIT
V
LM101A,LM201A,LM301A
HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Cc = 30 pF (see Note 5)
PARAMETER
VIO
Input offset voltage
VO;O
aVIO
Average temperature coefficient of
input offset voltage
VO;O
110
aliO
LM101A, LM201A
TEST CONDITIONSt
MIN
25'C
TYP
0.6
Full range
LM301A
MAX
MIN
2
10
15
6
30
25'C
1.5
10
3
50
TA ; -55'C to 25'C
0.02
0.2
Average temperature coefficient of
TA; 25'C to MAX
0.01
0.1
input offset current
TA ; O'C to 25'C
Input offset current
V'CR
Common-mode input voltage range
Full range
20
70
0.02
25'C
See Note 6
Maximum peak-to-peak output
RL; 10 kQ
voltage swing
VCC±; ±15V,
RL; 2 kQ
AVD
Large-signal differential voltage
amplification
q
Input resistance
Common-mode rejection ratio
VCC±; ±15V,
VO; ±10V,
RL" 2 kQ
VIC; VICR min
Supply voltage rejection ratio
(h VCC/h VIO)
Supply current
30
Full range
VCC±; ±15V,
ICC
7.5
3
Input bias current
kSVR
2
Full range
lIB
CMRR
MAX
3
TA ; 25'C to 70'C
VOpp
TYP
75
0.Q1
0.3
70
250
100
Full range
±15
25'C
24
Full range
24
25'C
20
0.6
300
±12
24
28
UNIT
mV
,M'C
nA
nN'C
nA
V
28
24
20
26
V
26
Full range
20
25'C
50
20
Full range
25
25'C
1.5
4
0.5
2
25'C
80
98
70
90
Full range
80
25'C
80
Full range
80
200
25
200
V/mV
15
MQ
dB
70
98
70
96
dB
70
No load, VO; 0,
25'C
1.8
3
See Note 6
MAX
1.2
2.5
1.8
3
rnA
..
t All characteristics are measured under open-loop conditions wilh zero common-mode input voltage unless otherwise specified. Full range for
LM101A is -55'C to 125'C, for LM201A is -25'C to 85'C, and for LM301A is O'C to 70'C.
NOTES: 5. Unless otherwise noted, VCC±; ±5 Vlo ±20 Vfor LM101Aand LM201A, and VCC±; ±5 Vto ±15 Vfor LM301A. All typical values
are at VCC±; ±15 V.
6. For LM101A and LM201A, VCC±; ±20 V. For LM301A, VCC±; ±15 V.
TEXAS
~
INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-15
lM101A,lM201A,lM301A
HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
INPUT BIAS CURRENT
INPUT OFFSET CURRENT
I
FREE·AIR TEMPERATURE
I
I
Vee,,=,,15V
1
1
Vee±=,,15V
3
I'"
,
~::s
"-
o
~
vs
FREE·AIR TEMPERATURE
100
4
~
vs
I
2
........
'SQ.
.E
'-.
«c
"
............
I
Q
'E
~::s
..........
.
0
'\\
60
c
""m
125
OPEN·LOOP LARGE·SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
FREQUENCY
I
Cl
"""'" - -
Figure 2
MAXIMUM PEAK·TO·PEAK OUTPUT VOLTAGE
(WITH SINGLE·POLE COMPENSATION)
..
"'-
-25
0
25
50
75
100
TA - Free·Alr Temperature - "C
Figure 1
>
\ ...
LM101A
LM201A
20
o
-25
0
25
50
75
100
TA - Free·Alr Temperature - "C
LM301A
1\
"\
40
\
\
!!l
o
-50
\
iii
LM101A
LM201A
-7
\
80
I
LM301A
~
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
16
V
18 20
LM101A, LM201A, LM301A
HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
OPEN·LOOP LARGE·SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
VOLTAGE·FOLLOWER
LARGE·SIGNAL PULSE RESPONSE
vs
FREQUENCY
107
'"
.9
106
"
105
n:;
~
I
E
«CI>
!!!
103
e
~
0
102
101
I
C
>
1
10
100
1k
I'"
>
-
I
'"
4
g
!!!
2
:;
a.
:;
0
I
I
II
I
~
'"
ftI
-2
~
I
1\
I
1/
I
0
'tl
«
10-1
6
CI>
Cl
'"
~
E
-
""I""
104
Cl
g
VCC ± = ±15 V
RL =2kQ
Cc = 30 pF
TA = 25"C
t--..
Q.
8
I
Input
'"
-4
-
I:
\
~
L
f--
-a
\
10 k 100 k 1 M
-
i
I
I
:;
a.
..E
T\
Output
VCC ± =±15V
RL = 2 kQ
CL = 100 pF
Cc = 30 pF
TA = 25'C
10 M 100 M
-8
o
10
20
f - Frequency - Hz
30 40 50
t-Tlme-Ils
60
70
80
90
Figure 6
Figure 5
TYPICAL APPLICATION DATA
R2
Cc
2:
Rl . 30 pF
Rl + R2
Rl . R2
R3~-
Rl + R2
Cc
Figure 7. Inverting Circuit with Adjustable Gain, Single-Pole Compensation,
and Offset Adjustment
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-17
2-18
LM107, LM207, LM307
HIGH·PERFORMANCE OPERATIONAL AMPLIFIERS
D962, DECEMBER 1970-REVISED SEPTEMBER 1990
LM107 ... J OR W PACKAGE
• Low Input Currents
(TOP VIEW)
• No Frequency Compensation Required
NC
NC
NC
ININ+
VCCNC
• Low Input Offset Parameters
• Short·Circuit Protection
• No Latch·Up
• Wide Common-Mode and Differential
Voltage Ranges
description
VCC+
OUT
NC
NC
LM107 ... JG PACKAGE
LM207, LM307 ... D OR P PACKAGE
The LM107, LM207, and LM307 are high·
performance operational amplifiers featuring very
low input bias current and input offset voltage
and current to improve the accuracy of high·
impedance circuits using these devices,
(TOP VIEW)
NCUB
IN2
7
IN+
3
6
VCC4
5
The high common-mode input voltage range and
the absence of latch-up make these amplifiers
ideal for voltage follower applications. The
devices are short-circuit protected and the
internal frequency compensation ensures
stability without external components,
NC
VCC+
OUT
NC
LM107 ... U FLAT PACKAGE
(TOP VIEW)
NC
NC
ININ+
VCC-
The LM 107 is characterized for operation over
the full military temperature range of -55°e
to 125°e, the LM207 is characterized for
operation from -25°e to 85°e, and the LM307 is
characterized for operation from
to 70
oe,
ooe
NC
NC
NC
NC
CaMP
VCC+
OUT
NC
NC - No internal connection
symbol
NONINVERTING=t>INPUT IN+
+
INVERTING
_
OUTPUT
INPUT INAVAILABLE OPTIONS
TA
VIO MAX
AT 25°C
PACKAGE
SMALL OUTLINE
CERAMIC
CERAMIC DIP
PLASTIC DtP
FLAT PACK
FLAT PACK
(DI
(JI
(JGI
(PI
(UI
(WI
ooe
to
7.5 mV
LM307D
-
-
LM307P
-
-
2 mV
LM207D
-
-
LM207P
-
-
-
LM107U
LM107W
70°C
-25°C
to
85°C
- 55°C
to
2 mV
-
LM107J
LM107JG
125°C
The D package is available taped and reeled. Add the suffix R to the device type, ie.g., LM307DRI.
PRODUCTION DATA documents contain information
current as of publication date. Products conform to
specifications par the tBrms of TB.as Instrumants
standard warranty. Production pro.Bssing does not
necessarily include testing of all parameters.
TEXAS
~
Copyright © 1990, Texas Instruments Incorporated
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-19
LM107, LM207, LM307
HIGH-PERFORMANCE OPERATIONAL AMPLlFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
LM107
LM207
LM307
UNIT
Supply voltage Vee + (see Note 1)
22
22
18
V
Supply voltage Vee _ (see Note 1)
-22
-22
-18
V
Differential input voltage (see Note 2)
±30
±30
±30
V
Input voltage (either input, see Notes 1 and 3)
±15
±15
±15
V
unlimited
unlimited
unlimited
Duration of output short-circuit (see Note 4)
eontinuous total dissipation
See Dissipation Rating Table
Operating free-air temperature range
- 55 to 125
-25 to 85
Storage temperature range
-65t0150
-65 to 150
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J, JG,
o to
De
70
De
- 65 to 150
De
300
U, or W package
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P
260
package
De
260
All voltage values, unless otherwise noted, are with respect to the midpoint between Vee + and Vee _.
Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
The output may be shorted to ground or either power supply. For the LM107 only, the unlimited duration of the short-circuit
applies at (or below) 125 De case temperature or 75 De free-air temperature. For the LM207 only, the unlimited duration of
the short-circuit applies at (or below) 85 De case temperature or 75 De free air temperature.
NOTES: 1.
2.
3.
4.
DISSIPATION RATING TABLE
PACKAGE
TA 5 25 DC
DERATING
DERATE
POWER RATING
FACTOR
ABOVE TA
64 De
D
500 mW
5.8 mW/De
J
500 mW
11.0 mW/DC
JG
500 mW
8.4 mW/De
P
500 mW
N/A
U
500 mW
W
500mW
TA = 70 DC
POWER RATING
TA = 85 DC
POWER RATING
TA = 125°C
POWER RATING
464mW
377 mW
105 De
gODe
500 mW
500 mW
275 mW
500mW
500 mW
210 mW
500 mW
500 mW
5.4 mW/DC
N/A
57 De
432 mW
351 mW
135 mW
8.0 mW/De
87 De
500 mW
500 mW
200 mW
recommended operating conditions
MIN
NOM
MAX
UNIT
Supply voltage, Vee +
2
18
V
Supply voltage, Vee-
-2
-18
V
TEXAS •
INSTRUMENTS
2-20
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
LM1 07, LM207, LM307
HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature (see Note 5)
PARAMETER
Via
Input offset voltage
LM107, LM207
TEST CONDITIONSt
MIN
25°C
0
LM307
TYP
MAX
0.6
2
Va
~
Va
~
0
Va
=
0
TA
=
-55°C to 25°C
0.02
0.2
TA
~
25°C to MAX
0.01
0.1
TA
~0°Ct025°C
TA
=
Full range
MIN
TYP
MAX
2
7.5
10
3
UNIT
mV
Average temperature
"'via
coefficeint of
Full range
3
15
6
10
3
30
",V/oC
input offset voltage
110
Input offset current
Average temperature
"'110
coefficient of
input offset current
lIB
input voltage range
VOpp
output voltage swing
See Note 6
RL
=
CMRR
±15V,
10 kO
=
250
25°C
24
Full range
24
300
±12
24
28
20
20
VCC± ~ ±15 V,
Va ~ ± 10 V,
25°C
50
Full range
25
Input resistance
25°C
1.5
4
0.5
2
Common-mode
25°C
80
98
70
90
Full range
80
25°C
80
Full range
80
voltage amplification
rejection ratio
RL;': 2 kO
VIC
~
VICR min
20
nA
V
26
20
200
25
200
Vim V
15
MO
dB
70
70
98
96
dB
rejection ratio
Supply current
nA/oC
28
24
26
nA
V
25°C
±15V,
(Ll.vCC/AVIO)
ICC
0.3
70
100
±15
0.6
0.001
Full range
=2
Supply voltage
kSVR
Full range
75
kO
Large-signal differential
r;
=
VCC±
RL
AVO
30
50
70
0.002
25°C
Full range
VCC±
Maximum peak-to-peak
20
25°C to 70°C
Input bias current
Common-mode
VICR
1.5
25°C
Full range
70
No load,
25°C
1.8
3
Va = 0,
See Note 6
MAX
1.2
2.5
1.8
3
mA
t All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range
for LM107 is -55°C to 125°C, for LM207 is -25°C to 85°C, and for LM307 is OoC to 70°C.
NOTES: 5. Unless otherwise note VCC ± ~ ± 5 V to ± 20 V for LM 107 and LM207, and VCC ± = 5 V to ± 15 V for LM307. All typical
values are at VCC ± ~ ± 15 V.
6. ForLM107 and LM207,VCC± ~ ±20V. ForLM307, VCC± = ±15V.
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-21
2-22
LM108, LM108A, LM208, LM208A, LM308, LM308A
OPERATIONAL AMPLIFIERS
D2808, OCTOBER 1983 - REVISED FEBRUARY 1991
•
•
Supply Current ... 600 ~A Max at 25°C for
LM108, LM108A, LM208, LM208A
•
Input Offset Voltage ... 500 ~V Max at
25°C for LM108A, LM208A, LM308A
•
Offset Voltage Temperature Coefficient
5 ~VloC Max for LM108A, LM208A, LM308A
•
Supply Voltage Range ... ± 2 V to ± 18 V
•
Applications:
- Integrators
- Transducer Amplifiers
- Analog Memories
- Light Meters
[JS
(TOP VIEW)
Input Bias Current ... 2 nA Max at 25°C for
LM108,LM108A,LM208,LM208A
•
•
0, JG, OR P PACKAGE
Input Offset Current ... 200 pA Max at
25°C for LM108, LM108A, LM208, LM208A
COMP1
ININ +
VCC-
2
7
3
6
COMP2
VCC+
OUT
4
5
NC
LPACKAGE
(TOP VIEW)
COMP2
VCCNC - No internal connection
Pin 4 (L package) is in electrical
contact with the case.
Designed To Be Interchangeable With
National LM108 Series and Linear
Technology LM108 Series
symbol
description
I N + = t c OUT
The LM108 series of precIsion operational
IN amplifiers is particularly well-suited for highCOMP2
source-impedance applications requiring low
COMP1
input offset and bias currents as well as low
power dissipation. Unlike FET input amplifiers,
the input offset and bias currents of the LM 108 series do not vary significantly with temperatu re. Advanced
deSign, processing, and testing techniques make this series a superior choice over previous devices. For
applications requiring higher performance, see the LT1 008 and LT1 012.
The LM1 08 and LM1 08A are characterized for operation over the full military temperature range of -55°e to
125°e. The LM208 and LM208A are characterized for operation from -40 oe to 105°e. The LM308 and
LM308A are characterized for operation from ooe to 70 oe.
AVAILABLE OPTIONS
TA
O°C to 70°C
- 40°C to 105°C
- 55°C to 125°C
VIOmax
AT 25°C
PACKAGE
SMALL OUTLINE
CERAMICOIP
METAL CAN
(0)
(JG)
(L)
PLASTIC DIP
(P)
O.5mV
7.5mV
LM30SAD
---
--
LM30SD
---
---
LM30SP
O.5mV
LM20SAD
---
LM20SAP
LM20SD
-----
---
LM20SP
LM10SAD
LM10SAJG
LM10SAL
LM10BAP
LM10SD
LM10SJG
LM10SL
LM10SP
2mV
O.5mV
2mV
LM30SAP
The D package is available taped and reeled. Add the suffix R to the device type (e.g., LM30SADR).
PRODUCTION DATA documents contain inlormation current as of
publication date. Products conform to specifications perthe terms olTeKas
Instruments standard warranty.
Production processing does not
necessarily include telting 01 all parametert.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
Copyright © 1991, Texas Instruments Incorporated
On products compliant to Mll·STD-883, Class a, all parameters
are tuted unless otherwise noled. On all other products,
production processing does not necessarily include tasting of all
parameters.
2-23
lM108, lM108A, lM208, lM208A, lM308, lM308A
OPERATIONAL AMPLIFIERS
schematic
COMPl
COMP2
HHI-'W......-OUT
IN-
IN+ ---1----4>-1
~--~~----~NH~--~~--*---~--------*_-----VCC-
All resistor values shown are nominal and in ohms.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC+ (see Note 1): LM108, LM108A, LM208, LM208A ....................... 20 V
LM308, LM308A ..................................... 18 V
Supply voltage, VCC- (see Note 1): LM108, LM108A, LM208, LM208A ...................... -20 V
LM308, LM308A .................................... -18 V
Input voltage range, VI (see Nole 2) ................................................... ±15 V
Differential input current (see Notes 3 and 4) .......................................... ±10 rnA
Duration of output short-circuit at (or below) 25°C (see Note 5) . . . . . . . . . . . . . . . . . . . . . . . . . .. unlimited
Operating free-air temperature range, TA LM108, LM108A . . . . . . . . . . . . . . . . . . . . . . .. -55°C to 125°C
LM208, LM208A ........................ -40°C to 105°C
LM308, LM308A .... . . . . . . . . . . . . . . . . . . . . . .. O°C to 70°C
Storage temperature range .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package .............. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: JG or L package. . . . . . . . . . . . .. 300°C
NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between VCC+ and VCC-.
2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
3. The inputs are shunted with two opposite-facing base-emitter diodes for over-voltage protection. Therefore, excessive current will
flow if a differential input voltage in excess of approximately 1 V is applied between the inputs unless some limiting resistance is used.
4. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
5. The output may be shorted to ground or either power supply.
TEXAS ~
INSTRUMENTS
2-24
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
lM108, lM108A, lM208, lM208A, lM308, lM308A
OPERATIONAL AMPLIFIERS
recommended operating conditions
LM208, LM208A
LM108, LM108A
MIN NOM MAX
20
S
Supply voltage, VCC+
Supply voltage, VCCOperating free-air temperature, TA
MIN NOM MAX
LM308, LM308A
MIN NOM MAX
20
S
UNIT
V
S
20
-S
-20
-S
- 20
-S
- 20
V
-SS
12S
-40
8S
0
70
°C
electrical characteristics at specified free-air temperature, VCC± = ± 5 V to ± 20 V (unless otherwise
noted)
PARAMETER
Via
Input offset voltage
TEST CONDITIONS
TAt
of input offset voltage
110
Input offset current
RS ; SOO
of input offset current
liB
Input bias current
YOM
AVD
fj
CMRR
voltage range
2SoC
RL; 10kO
Large-signal differential
VCC±; ±ISV,
voltage amplification
Va ;±10V, RL
II>
01
S
~
1i
~
/
10
4
:;
...
.E
I
LM308AI
E
~
8f
40
V
LM108, LM208
.i!
il...
iJ}
E
I...--'~
10
~
I
2
100
!E
"
/'
.,
LM108, LM20
0
=
:>:I.
V
E
=
Vcc±
±15 V
TA
MINtoMA
f;) 400
I
0.4 =LM108A, LM208A
0
I II 1111
0.1
0.1
4
LM108A, LM208A
:;:
I 11111111
±16
>
,
I
~ ±14
~
I'll
\
±12
VCC± = ±1S V
TA = 25°C
See Figure 13
~
"i
> ±10
c.
..&.
\
±6
Cr=30pF
\
E
:::>
±2
:;
o~
±7.5
~
E
±S
:::>
.
o
:;;
±2.5
I
:;;
:::---..
~
10 k
100 k
r - Frequency - Hz
o
±4
±S
±6
±7
±8
±9
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
SUPPLY VOLTAGE
DIFFERENTIAL VOLTAGE AMPLIFICATION
and PHASE DELAY
vs
FREQUENCY
120
195°
100
165°
80
135°
60
>.!l!
105° ~
III
"0
I
c
115
.2
;
u
110 r----TA
'"
G>
Ol
~ 105
:E
= 2SoC
..,--
0.
E
>
E
!!
100
I
9S
~
is
'!!!"
--
G>
Ol
:'--:;:-A = -S5·C
0
~
±3
Figure 6
I
E
±2
Figure 5
120
~0.
±1
10 - Output Current - rnA
"0
c
VCC± = ±1S V
o
1M
III
.2
1\\
E
.............
1k
±10
'M
\
:;;
~
TA = 1250C\
~
.....
Cr=3pF
\
.~ ±4
~
I
TA = 2S.C\
I'll
1\
±8
r--:r- -.....
"\
± 12.5
~
:;
~
-~
TA = -55°C
~
III
\
!!!
'0
±15
/V-
V
'0
>
TA = 12S·C
40
7S·
~
20
4S·
I
0
11>-
is
c
VCC± = ±15V
TA = 2S·C
See Figure 13
>
90
±S
'"
±7.S
±10
±12.S
±1S
±17.5
±20
1S·
-20~----------~--~--~--~--~
1
10
100
1k
10 k
100 k
VCC± - Supply Voltage - V
r - Frequency - Hz
Figure 7
Figure 8
1M
10 M
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
2-28
a.
I
.~
>
'"
G>
iii
c
...
.c
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
LM108, LM108A, LM208, LM208A, LM308, LM308A
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
SUPPLY VOLTAGE REJECTION RATIO
CLOSED-LOOP OUTPUT IMPEDANCE
vs
vs
FREQUENCY
FREQUENCY
120r-----r-----r-----r-----r---~
...
VCC±
III
1000r----r----r----r----r----r~~
= ±15V
I-----"'....--f__+-I-f__--+_ AV = 1
TA 25°C'
1
=
o
-;;
c:
See Figure 13
a:
100
c
oS!
8c
U
"
~
"
01
~
601---~f__-~f__~~f__--f__-_;
401----f__~~f__~~~~~f__-_;
>
~
~
rn'"
20r---r_--r_-~r_~L-~~~
III
'i...
.5
;
...
'5
0
0
N
1
a:
~
Or---r_--I----r_~~~~~
100 k
10 k
1k
1M
=
=
TA = 25°C
Vcc±
±15 V
0.1 I----+-F--I----+-- 10 ± 1 mA
See Figure 13
-20~--~----~----~----~----~
100
10
0.01
10
10 M
1k
100
10 k
100 k
f - Frequency - Hz
f - Frequency - Hz
Figure 9
Figure 10
1M
10 M
EQUIVALENT INPUT NOISE VOLTAGE
vs
VOLTAGE FOLLOWER
PULSE RESPONSE
FREQUENCY
1000
~>
c
1
-
S
'0
>
z
...
.E
E
!:
...
0
...
;
...
.E
III
W
1
--
1\
1\
I
I
-
I
I
I
I
I
-2
-4
INPUT
/
V
II OUTPUT
1/
\\
-6
-8
c
>
2
Vcc± = ±15 V
Cf = 30pF
TA = 25°C
~
'5
RS = 0
o::r
'0
0
c
LilLi II
"5
"
4
S
RS = 100 kQ
40
6
>
;
11111111
100
>
01
RS=lMQ
;
.!!
8
400
II>
01
::
'0
10
Vcc± = ±15
TA = 25°C
10
10
-10
100
1k
10 k
100 k
o
~
~
M
00
l00l~l~lMl00
f - Frequency - Hz
t - Time - Ils
Figure 11
Figure 12
TEXAS ~
INSfRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-29
lM108, lM108A, lM208, lM208A, lM308, lM308A
OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
frequency compensation
Figure 13 shows the frequency compensation circuits for standard compensation, alternate compensation, and
feed-forward compensation. The alternate compensation circuit improves supply voltage rejection by a factor
of ten.
C2
5pF
Rl
R2
Rl
R2
R2
Rl
10kn
10kn
IN
IN+
OUT
R3
IN+
-"oA1Y-4....-'
OUT
R3
C,
(see Note A)
(a) STANDARD
(b) ALTERNATE
(e) FEED-FORWARD
NOTES: A. Cf 2 R1CO I(R1 + R2), Co = 30 pF, bandwidth and slew rate are proportional to 1/Cf.
B. Bandwidth and slew rate are proportional to 1/C s .
Figure 13. Frequency Compensation Circuits
I
'/
input guarding
COMP2
vcc+
Input guarding is used to reduce surface leakage
(see Figure 14). Both sides of the board must be
guarded. Bulk leakage reduction is less than
surface leakage reduction and depends .on the
. guard-ring width. The guard ring is connected to a
low-impedance point at the same potential as the
sensitive input leads. Connections for various opamp configurations are shown in Figure 15.
COMPl
7 8 1 .
OUT,
6
NC
05
/4
VCC-
IN~RN1-.____~R~2~
Figure 14. Input Guarding
OUT
Rl
R3
IN
(a) INVERTING
~
+
OUT
LM108
(b) FOLLOWER
R2
r~
.
IN
+
LM108
(e) NONINVERTING
Figure 15. Guard Ring Connections for Various Op Amp Configurations
TEXAS
~
INSfRUMENTS
2-30
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
OUT
lM108, lM108A, lM208, lM208A, lM308, lM308A
OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
input protection
Current is limited by R2 even when the input is connected to a voltage source outside the common-mode range
[see Figure 16(a)]. If one supply reverses, current is controlled by R1. These resistors do not affect normal
operation. The input resistor controls the current when the input exceeds the supply voltages, when the power
for the op amp is turned off, or when the output is shorted [see Figure 16(b)].
R3
IN ~~---"oI'IV---,
R2
10kO
OUT
OUT
IN ----\Mr---l
(a) CURRENT UMITED BY R1 OR R2
(b) CURRENT UMITED BY R1
Figure 16. Input Protection
input offset voltage testing
The test circuit for input offset voltage is shown in Figure 17. This circuit is also used as the burn-in configuration
with supply voltages equal to ±20 V, R1 = R3 = 10 kil, R2 = 200 n, AV = 100.
R1
50kO
R2
1000
Va
=1000 Via
R3
50kO
NOTE A: Resistors must have low thermoelectric potenHal.
Figure 17. Test Circuit for Input Offset Voltage
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2--31
lMt08, lM108A, lM208, lM208A, lM308, lM308A
OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
R2
100 k.Q
IN _M-~~_ _--=::::::j~:t1r-RESET
~-~+-OUT
to
100 k.Q
R1
100 k.Q
R4
20MQ
to
100 k.Q
~--<-,*"""-",,-y
'-----.
NOTE A: 01 and 03 should not have internal
gate-protection diodes.
R1
R2
2MQ
1%
SMQ
Figure 19. Amplifier for Bridge
Transducers
R3
50SQ
1%
r--~-----~OUT
R4
SOkQ -:1%
OUT
8 LM108
RS
1 MQ
R3
R2
102 k.Q
NOTE A: R1 = R2R3/(R2 + R3).
Figure 18. Low-Drift Integrator With Reset
2MQ
1%
OUT
C1
10 J1F
R2
C1
1100PF
11 MQ
LM108
R1
11 MQ
T
NOTE A: R2 > R1, R2» R3,
AV = R2(R3 + R4)/R1R3.
Figure 20. Inverting Amplifier With High
Input Resistance
1
C1
30 pF
TRANSDUCER
Figure 21. Amplifier for Piezoelectric
Transducers
VI
--\/'./'r-_--'W'o.--,
R1
2MQ
1%
RS
2kQ
1%
OUT
R1
2 MQ '--_M-~1%
R4
10
1 MQ
1%
NOTE A: 10 = (R3)VI/RI RS
NOTES: A Teflon, polyethylene, or polycarbonate
dielectric capacitor.
B. Worst-case drift is less than 2.S mVis.
R3=R4+RS
Rl = R2
Figure 23. Bilateral Current Source
Figure 22. Sample-and-Hold Amplifier
TEXAS
+
INSTRUMENTS
2-32
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
lM108, lM108A, lM208, lM208A, lM308, lM308A
OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
R1
100kQ
= 0.1%
~
S1
R2
5~~
6
3
+
R2
1 kD.
0.1%
R3
R4
1 kQ
100kD.
0.1% 2 0.1%
OUT
Vo = 10 VIllA
8 LM108
C1
IN-
I100 PF
NOTE A: R1
Figure 24. Amplifier for Photodlode
Sensor
=
R4, R2
=
R3, AV
=
1 + R1/R2
Figure 25. Differential-Input Instrumentation
Amplifier
C5
(see NOleA)
IN
Rs
R1
150kD.
OUT
NOTES: A. C5 = 6 x 1O-B/Rf
B. Power bandwidth = 250 kHz
C. Small-signal bandwidth
3.5 MHz
D. Slew Rate
10 V/jJS
E. The LM101 increases speed, raises highand low-frequency gain, increases output
drive capability, and eliminates thermal
feedback.
=
=
Figure 26. Fast Summing Amplifier
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-33
2-34
LM118, LM218, LM318
HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS
02219, JUNE 1976-REVISEO SEPTEMBER 1990
•
Small-Signal Bandwidth ... 15 MHz Typ
•
Slew Rate . . . 50 VI p,s Min
•
Bias Current ... 250 nA Max (LM118,
LM218)
•
u8 2
D, JG, OR P PACKAGE
(TOP VIEW)
BAL/COMP
IN- . 2
IN+
3
VCC4
Supply Voltage Range ... ± 5 V to ± 20 V
•
Internal Frequency Compensation
•
Input and Output Overload Protection
•
Same Pin Assignments as General-Purpose
Operational Amplifiers
COMP
VCC+
OUT
BAL/COMP 3
7
6
5
FK PACKAGE
(TOP VIEW)
!l.
~
0
C'l
!l.
~
U «UOU
Z alZUZ
U
::J
description
The LM 118, LM218, and LM318 are precision,
high-speed operational amplifiers designed for
applications requiring wide bandwidth and high
slew rate. They feature a factor-of-ten increase
in speed over general-purpose devices without
sacrificing dc performance.
3
NC
INNC
IN+
NC
These operational amplifiers have internal unitygain frequency compensation. This considerably
simplifies their application, since no external
components are necessary for operation.
However, unlike most internally compensated
amplifiers, external frequency compensation
may be added for optimum performance. For
inverting
applications,
feed-forward
compensation boosts the slew rate to over
150 V/p,s and almost double the bandwidth.
Overcompensation can be used with the
amplifier for greater stability when maximum
bandwidth is not needed. Further, a single
capacitor may be added to reduce the settling
time for 0.1 % error band to under 1 p,s.
1 2019
18
NC
5
17
6
16
VCC+
NC
OUT
NC
7
15
8
14
9 1011 12 13
U
Z
I U C'l U
UZ!l. Z
U
~
>
0
U
::J
«
al
NC - No internal connection
L PACKAGE
(TOP VIEW)
COMP 2
The high speed and fast settling time of these
operational amplifiers make them useful in AID
converters, oscillators, active filters, sample and
hold circuits, and general-purpose amplifiers.
The LM 118 is characterized for operation from
- 55 °e to 125 °e. The LM21 8 is characterized
for operation from - 25 °e to 85°e, and the
LM318 is characterized for operation from ooe
to 70 o e.
2
4
IN-
VCC+
OUT
IN+
BAL/COMP 3
VCC-
Pin 4 of the L package is in electrical
contact with the case.
symbol
SAl/COMP 1
COMP2
SAL/COMP3
(1)
(8)
(5)
NONINVERTING
INPUTIN+
(3)
INVERTING
INPUT IN-
(2)
'>--- OUTPUT
PRODUCTION DATA documents contain information
current as of publication date. Products conform to
specifications per the terms of Te.as Instruments
standard warranty. Production processing does not
necesserily include testing of all parameters.
Copyright © 1990, Texas Instruments Incorporated
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
On products compliant to MIL·STD·B83. Class B. all paramlters are tasted
uniasl otherwise notad. On .11 other products, productioll processing does
not nBCe.la,ily include testing of all parameters.
2-35
LM118, LM218, LM318
HIGH·PERFORMANCE OPERATIONAL AMPLIFIERS
AVAILABLE OPTIONS
VIO MAX
AT 25°C
TA
PACKAGE
SMALL OUTLINE
(D)
CHIP CARRIER
(FK)
CERAMIC DIP
(JG)
METAL CAN
(L)
PLASTIC DIP
(P)
10 mV
LM318D
-
-
-
LM318P
4mV
LM218D
-
-
-
LM218P
4mV
LM118D
LM118FK
LM118JG
LM118L
LM118P
ooe
to
looe
-25°e
to
85°e
-55°C
to
125°e
The 0 package is available taped and reeled. Add the suffix R (e.g., LM318DR).
schematic
BALANCE
COMPENSATION-3
BALANCE
COMPENSATION·1
COMPENSATION-2
r-~~----~-----'--r-----~~-----t--~~------------~~--------- VCC+
2 kO
150 k!1
2 k!1
100 pF
250
INVERTING
INPUT
OUTPUT
33!1
NONINVERTING
INPUT
~~--~~---+----~------~-4----~~
__
~
__-4______-4____
Component values shown are nominal.
~
. TEXAS
INSTRUMENTS
2-36
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
~-4_______
VCC-
LM118, LM218, LM318
HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
LM218
LM118
LM318
UNIT
Supply voltage, Vee + (see Note 1)
20
20
20
V
Supply voltage, Vee _ (see Note 1)
-20
-20
-20
V
Input voltage (either input, see Notes 1 and 2)
±15
±15
±15
V
Differential input current (see Note 3)
±10
±10
±10
mA
unlimited
unlimited
Duration of output short-circuit (see Note 4)
unlimited
Continuous total power dissipation
See Dissipation Rating Table
-55 to 125
-65 to 150 -65 to 150 -65 to 150
Case temperature for 60 seconds
FK package
260
Lead temperature 1,6 mm (1116 inch) from case for 10 seconds
o or
260
Lead temperature 1,6 mm (1116 inch) from case for 60 seconds
JG or L package
P package
-25 to 85
o to 70
Operating free-air temperature range
Storage temperature range
°e
°e
°e
260
260
°e
300
°e
NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between Vee + and Vee _.
2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 1 5 V, whichever is less.
3. The inputs are shunted with two opposite-facing base-emitter diodes for overvoltage protection. Therefore, excessive current will flow
if a differential input voltage in excess of approximately 1 V is applied between the inputs unless some limiting resistance is used.
4. The output may be shorted to ground or either power supply. For the LM118 and LM218 only, the unlimited duration of the shortcircuit applies at (or below) 85 DC case temperature or 75 DC free-air temperature.
DISSIPATION RATING TABLE
PACKAGE
TA :5 25
DC
POWER RATING
DERATING
DERATE
FACTOR
ABOVE TA
TA -
70 D C
TA -
85 D C
POWER RATING
POWER RATING
TA -
125 D C
POWER RATING
D
500 mW
5.8 mWloC
64°C
464mW
377 mW
145 mW
FK
500 mW
11.0 mw/oe
105°C
500mW
500mW
275 mW
JG
500 mW
8.4 mWloe
90°C
500 mW
500 mW
210 mW
L
500 mW
6.6 mWloe
74°C
500mW
429 mW
165 mW
P
500 mW
8.0 mWloe
88°C
500 mW
500 mW
200 mW
-If
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-37
LM118, LM218, LM318
HIGH·PERFORMANCE OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature (see Note 5)
PARAMETER
Via
110
liB
Vb
Input offset voltage
Input offset current
Va
Input bias current
Va
Common-mode
VICR
input voltage range
Maximum peak
YOM
output voltage swing
voltage amplification
Bl
Unity-gain bandwidth
r;
Input resistance
~
0
~
0
~
2
4
25°C
6
50
120
250
TYP
MAX
4
10
30
200
150
300
500
6
15
100
750
500
Full range
± 11.5
VCC± ~ ±15 V,
RL ~ 2 k{l
Full range
±12
±13
±12
±13
25°C
50
200
25
200
Full range
25
~
mV
nA
nA
V
V
20
25°C
VIC ~ VICR min
No load, Va
± 11.5
UNIT
V/mV
0
15
15
1•
25°C
(AVCC/AVIO)
Supply current
MIN
VCC± ~ ±15 V
Supply voltage rejection ratio
ICC
25°C
Full range
Full range
RL"" 2 k{l
VCC± ~ ±15V
CMRR Common-mode rejection ratio
kSVR
MAX
25°C
0
LM318
TYP
MIN
Full range
VCC± ~ ±15 V,
Va ~ ± 10 V,
Large-signal differential
AVD
LMl18, LM218
TEST CONDITIONSt
3
0.5
3
MHz
M{l
Full range
80
100
70
100
dB
Full range
70
80
65
80
dB
25°C
5
8
10
5
mA
t All characteristics are measured under open-loop conditions with common-mode input voltage unless otherwise specified. Full range for
LMl18 is -55°C to 125°C, full range for LM218 is -25°C to 85°C, and for LM318 is O°C to 70°C.
NOTE 5: Unless otherwise noted, VCC ~ ± 5 V to ± 20 V. All typical values are at VCC ± ~ ± 15 V, T A ~ 25°C.
operating characteristics. VCC+
=
15 V, VCC == 15 V. TA
PARAMETER
SR
=
25°C
TEST CONDITIONS
Slew rate at unit gain
AVI
~
10 V,
CL
~
10 pF,
See Figure 1
MIN
50'
TYP
70
MAX
'On products compliant to MIL-STD-883, Class B, this parameter is not production tested.
PARAMETER MEASUREMENT INFORMATION
2kQ
I
-I·_
I
INPUT
:=lL_ _ _ _ _ _ _
2kQ
INPUT
. _ - - - -.......---10V
OUTPUT 90%-- : --!AVO
1 kH
10%-
_-==1_--= ______
I
I
\4-tt-.l
SR
= -_
tt
VOLTAGE WAVEFORMS
FIGURE 1. SLEW RATE
TEXAS " ,
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
-OV
AVO
TEST CIRCUIT
2-38
1 V
00V
LM124, LM124A, LM224, LM224A
LM324, LM324A, LM2902, LM2902Q
QUADRUPLE OPERATIONAL AMPLIFIERS
D1990, SEPTEMBER 1975-REVISED JULY 1991
•
LM124. LM124A ... J OR W PACKAGE
ALL OTHERS ... D. DB. J. N. OR PW PACKAGE
Wide Range of Supply Voltages:
Single Supply . . . 3 V to 30 V
(LM2902 and LM2902Q
3 V to 26 VI. or Dual Supplies
(TOP VIEWI
•
Low Supply Current Drain Independent of
Supply Voltage ... 0.8 mA Typ
•
Common-Mode Input Voltage Range
Includes Ground Allowing Direct Sensing
Near Ground
•
AMPL{OUT
IN#1
IN+
VCC
OUT} AMPL
IN#4
IN+
GND
AMPL{IN+
#2
INOUT
IN+}AMPL
IN#3
OUT
Low Input Bias and Offset Parameters:
Input Offset Voltage ... 3 mV Typ
A Versions ... 2 mV Typ
Input Offset Current ... 2 nA Typ
Input Bias Current ... 20 nA Typ
A Versions ... 15 nA Typ
""'1.---'-
LM124, LM124A
FK PACKAGE
(TOP VIEW)
II-
I-
~5
I
5~
~~U-
NON INVERTING
INPUTIN+
-
+
OUTPUT
Applications include transducer amplifiers, doc
amplification blocks, and all the conventional
operational amplifier circuits that now can be
more easily implemented in single-supply-voltage systems. For example, the LM 124 can be operated directly
off of the standard 5-V supply that is used in digital systems and will easily provide the required interface
electronics without requiring additional ± 15-V supplies.
The LM 124 and LM 124A are characterized for operation over the full military temperature range of - 55 °e
to 125 °e. The LM224 and LM224A are characterized for operation from - 25 °e to 85 °e. The LM324
and LM324A are characterized for operation from ooe to 70 °e. The LM2902 and LM2902Q are
characterized for operation from - 40 °e to 105 °e.
The LM2902Q is manufactured to demanding automotive requirements.
PRODUCTION DATA documents contain information
current as of publication date. Products conform to
specifications per the terms of Texas Instruments
standard warranty. Production processing does not
necessarily include testing of all parameters.
, TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
Copyright © 1991, Texas Instruments Incorporated.
2-39
LM124, LM124A, LM224, LM224A
LM324, LM324A, LM2902, LM2902Q
QUADRUPLE OPERATIONAL AMPLIFIERS
AVAILABLE OPTIONS
SMALL
VERV SMALL
CHIP
CERAMIC
PLASTIC
OUTLINE
(Olt
OUTLINE
DIP
(JI
DIP
(NI
-
LM324N
TA
VIO MAX
AT 25°C
O°C
7 mV
LM324D
(OBI*
LM324DBLE
CARRIER
(FKI
-
3 mV
5 mV
-
-
-
-
LM324AN
LM224D
-
-
-
LM224N
TSSOP
(PWlt
FLAT
CHIP
PACK
(WI
FORM
(VI
LM324PWLE
LM324Y
to
70°C
25°C
to
85°C
-
-
-
-
LM224AN
LM2902D
LM2902DBLE
-
-
LM2902N
3 mV
-40°C
to
7 mV
105°C
-55°C
5 mV
-
-
LM124FK
LM124J
-
to
125°C
2 mV
-
-
LM124AFK
LM124AJ
-
LM29020D
LM2902PWLE
LM29020N
LM124W
t The D package is available taped and reeled. Add the suffix R to the device type (e.g., LM324DR).
t The DB and PW packages are only available left-end taped and reeled.
schematic leach amplifier)
r--------------.----.----.-------.--~---VCC
OUT
INVERTING
INPUT IN-
....- - . - - - - - - GND
Component c.ount (total devicel
Epi-FET - 1
Diodes - 4
Resistors - 11
Transistors - 95
Capacitors - 4
TEXAS •
INSTRUMENTS
2-40
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
LM324Y
QUADRUPLE OPERATIONAL AMPLIFIERS
chip information
These chips, properly assembled, display characteristics similar to the LM324, (see the LM324Y electrical
table). Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. Chips
may be mounted with conductive epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
VCC+
(4)
IN + (3)
~
IN-(2)
OUT (7)
IN +
(10)~-
IN - (9)
OUT (14)
OUT (1)
~
+
IN +
(5)
IN - (6)
OUT (8)
=<;J=
-
+
IN + (12)
_
IN-(13)
VCC(11 )
CHIP THICKNESS:
15 TYPICAL
BONDING PADS:
4X4 MINIMUM
TJ max = 150°C
TOLERANCES
ARE ±10%
...
65
~
II II II II II II II II 1111 II II II 111'11 II I' III, I II II 1111 111111111111 II I' I'
ALL DIMENSIONS
ARE IN MILS
PIN (11) INTERN ALL V CONNECTED
TO 8ACKSIDE OF CHIP
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-41
LM124, LM124A, LM224, LM224A,
LM324, LM324A, LM2902, LM2902Q
QUADRUPLE OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
LM124. LM124A.
LM224. LM224A.
LM324. LM324A
32
LM2902.
LM2902Q
UNIT
Supply voltage. Vee (see Note 1)
Differential voltage (see Note 2)
26
±26
V
±32
Input voltage range (either input)
-0.3 to 32
-0.3 to 26
V
unlimited
unlimited
Duration of output short-circuit (one amplifier) to ground at (or below) T A
= 25°C.
(Vee,;; 15 V) (see Note 3)
Continuous total dissipation
V
See Dissipation Rating Table
Operating free-air temperature range
LM124. LM124A
- 55 to 125
LM224. LM224A
-25t085
o to
LM324. LM324A
°e
70
-40 to 105
LM2902. LM2902Q
- 65 to 150
260
-65 to 150
Lead temperature 1.6 mm (1/16 inch) from case for 60 seconds J or W package
300
300
°e
Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds D. DB. N. or PW package
260
260
°e
Storage temperature range
Case temperature for 60 seconds
FK package
°e
°e
NOTES: 1. All voltage values. except differential voltages and Vee specified for the measurement of lOS. are with respect to the network
ground terminal.
2. Differential voltages are at the non inverting input terminal with respect to the inverting input terminal.
3. Short circuits from outputs to Vee can cause. excessive heating and eventual destruction.
DISSIPATION RATING TABLE
PACKAGE
TA = 85°C
POWER RATING
32°C
608 mW
494mW
25°C
. 68°C
496 mW
403 mW
N/A
N/A
880mW
715 mW
275 mW
68°C
880 mW
715 mW
275 mW
40°C
52°C
656 mW
736 mW
533 mW
598 mW
25°C
448 mW
364 mW
N/A
N/A
N/A
37°C
640 mW
520 mW
200 mW
DERATING
DERATE
FACTOR
ABOVE TA
0
900 mW
DB
775 mW
FK
J (LM124_)
900 mW
J (all others)
900 mW
N
900 mW
PW
700 mW
W
900 mW
900 mW
7.6
6.2
11.0
11.0
8.2
9.2
5.6
8.0
mW/oe
mW/oe
mW/oe
mW/oe
mW/oe
mW/oe
mW/oe
mW/oe
TEXAS •
INSTRUMENTS
2-42
=
TA = 70°C
POWER RATING
TA ,;; 25°C
POWER RATING
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TA
125°C
POWER RATING
electrical characteristics at specified free-air temperature,
Vee = 5 V to MAX.
Input offset voltage
Vie = VieR min.
Va = 1.4 V
110
liB
Input offset current
Input bias current
Common-mode input
VieR
voltage range
C3
....
VOH
High-level output voltage
0
"''"
~Z
~~d
~c:~
;~
~(TJ
~z
~~~
VOl
low-level output voltage
Large-signal differential
AVD
eMRR
kSVR
voltage amplification
Va = 1.4 V
~
25°e
Full range
25°e
Vee=15V.
UNIT
7
2
30
50
-150
-20
-250
-20
-250
-500
-500
o to
o to
o to
o to
Vee- 2
Vce- 2
VCC- 2
Vee- 1 .5
VCC-1.5
28
5
27
20
100
Full range
25
25°e
70
80
65
100
5
25
25°e
-20
Full range
-10
10
-30
mV
V/mV
65
80
50
80
dB
65
100
50
100
dB
120
dB
-20
-30
-60
10
-20
-30
-60
-10
20
10
Short-circuit
Vee at 5 V.
GNO at - 5 V. Va = 0
No load
mA
20
N
r-
3l:
N
g~
C>
>~
Cr:::a3l:
CN
-aN
r-~
25°e
12
5
5
5
30
12
30
p.A
30
Or-a3l:
me:,.)
:::aN
>~
-f~
25°e
±40
±60
±40
±60
±40
±60
Full range
0.7
1.2
0.7
1.2
0.7
1.2
Full range
1.1
3
1.1
3
1.1
3
mA
mA
No load
~
-
m~
Full range
Vee = MAX.
Va = 0.5 Vee.
r-
3l:
~
15
-10
20
100
100
100
120
-60
24
5
20
15
120
25°e
23
nA
V
22
28
nA
V
VCC-1.5
26
50
25°e
50
200
Vee-1.5
25°e
25°e
2
150
VIO = -1 V.
output current
(four amplifiers)
MAX
10
o to
Full range
f = 1 kHz to 20 kHz
3
Vee-1.5
RI :s 10 kD
Va - 2.5 V.
lee
7
o to
27
Va = 1 V to 11 V.
TYP*
vee -1.5
Full range
Vee - 15 V.
MIN
9
-300
Vee = MAX. Rl = 10 kD
VIO - -1 V.
Va = 200 mV
Supply current
-20
26
Va = 15 V
lOS
3
100
Full range
Rl = 2 kD
Va = 0
Output current
5
MAX
25°e
Rl = 10 kD
VIO = 1 V.
110
2
Full range
Vee = 15V.
=
r-e
>.!"
3l:r;:23l:
-N
:!l=
me
:::aN
eng
~
electrical characteristics at specified free-air temperature,
VCC = 5 V to 30 V,
110
liB
Input offset voltage
Input offset current
Input bias current
Common-mode input
VICR
voltage range
VIC = VICR min,
Vo = 1.4 V
Vo = 1.4 V
Vo = 1.4V
~
'"....
~
""~z
VOH
VOL
~~
AVO
st:
CMRR
High-level output voltage
Low-level output voltage
Large-signal differential
voltage amplification
'~f
~1"1
kSVR
~z
~~~
Vo 1IV02 Crosstalk attenuation
~~
'"....
'"'"
'"
Common-mode rejection ratio
25°C
10
2
Full range
TYP*
MAX
2
3
UNIT
-100
Full range
25°C
2
30
-15
-100
75
-80
-100
-200
o to
o to
VCC- 1.5
VCC-l.5
VCC-1.5
o to
o to
o to
VCC-2
VCC-2
VCC-2
VCC-l
VCC-l
VCC-l
27
RI ,,; 10 k[J
Full range
25°C
15
o to
26
20
50
5
50
27
20
25
20
100
25
80
65
80
dB
25°C
65
65
100
65
100
dB
-30
-20
-30
120
Full range
VCC = 15 V,
15
120
-20
-10
-10
25°C
10
10
Full range
5
5
12
12
120
-60
dB
-60
-10
20
10
rnA
20
VIO = -1 V,
-1 V,
Vo = 200 mV
VCC at 5 V,
output current
GNO at -5 V,vO = 0
Vo - 2.5 V,
No load
25°C
I
5
30
12
~A
30
±40
±60
±40
±60
±40
±60
Full range
1.5
2.4
1.5
2.4
1.5
2.4
Full range
1.1
3
1.1
3
1.1
3
rnA
rnA
t All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Pull range is - 55°C to 125°C for LM 124A,
- 25°C to 85 °C for LM224A, and ooC to 70°C for LM324A.
= 25°C.
*All typical values are at TA
I
I
25°C
VCC = 30 V,
Vo = 15,
No load
=
en
V/mV
70
-20
:E
m
mV
25
25°C
-a
r-
V
70
25°C
r-:z:-
28
25°C
VCC=15V,
2N
:Z:-oilII
:z:-
Full range
f - 1 kHz to 20 kHz
-Ir-
-3:
erCo,J
2 kll
2:
m oilll
~}II
nA
3:
5
100
nA
VIC = VICR min
RL
m3:
erN
-aN
V
26
28
r- r-
5
30
-15
26
Short-circuit
(four amplifiers)
30
-50
25°C
27
VIO -
ICC
3
MIN
mV
Full range
Vo = 15 V
Supply current
2
4
Full range
Vo = 1 V to 11 V,
MAX
4
VCC = 30 V, RL = 10 k[J
VCC-15V,
c3:
LM324A
TYP*
2
VIO = 1 V,
lOS
MIN
VCC = 30 V, RL = 2 k[J
ratio (AVCC/AVIO)
Output current
LM224A
MAX
25°C
Full range
Vo = 0
110
TYP*
or:z:-ClN
=oilII
c:z:-a.
noted)
Full range
25°C
Supply. voltage rejection
0>
V (unless otherwise
MIN
VCC = 30 V
RL - 2 k[J
= 5
LM124A
TEST CONDITIONSt
PARAMETER
VIO
Vee
LM324Y
QUADRUPLE OPERATIONAL AMPLIFIERS
electrical characteristics,
Vee
PARAMETER
VIO
Input offset voltage
110
Input offset current
liB
Input bias current
25°e (unless otherwise noted)
5 V. TA
LM324Y
TEST CONOITIONst
VCC = 5 V to MAX, VIC = VICRmin,
MIN
VO=l.4V
Common-mode input
VICR
voltage range
VCC = 5 V to MAX
RL = 10 k!1
CMRR Common-mode rejection ratio
VIC = VICR min
lOS
ICC
Short-circuit output current
Supply current (four amplifiers)
mV
2
-20
50
nA
-250
nA
VCC = 15 V,
V
V
Vee -1.5
Vo = 1 V to 11 V,
RL
2:
2 k!1
(aVCC±1 aVIO)
Output current
7
Vee -1.5
Supply-voltage rejection ratio
10
MAX
3
o to
VOH+ High-level output voltage
Large-signal differential
AVO
voltage amplification
kSVR
UNIT
TYP
VCC=15V,
VID = 1 V,
Vo = 0
VCC = 15 V,
VIO = -1 V,
Vo = 15 V
VIO = 1 V,
Vo = 200 mV
VCC at 5 V,
GNO at -5 V,
Vo = 2.5 VCC,
No load
VCC = MAX,
Vo = 0.5 VCC,
Vo = 0
No load
15
100
Vim V
65
80
dB
65
100
dB
-20
-30
10
20
12
30
-60
mA
±40
±60
0.7
1.2
1.1
3
mA
mA
t All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. "MAX"
VCC for testing purposes is 30 V.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-45
2-46
LM148, LM248, LM348
QUADRUPLE OPERATIONAL AMPLIFIERS
02551, OCTOBER 1979 - REVISED SEPTEMBER 1990
•
uA 7 41 Operating Characteristics
•
Low Supply Current Drain ... 0.6 mA Typ
(per amplifier)
•
Low Input Offset Voltage
AMPL
Low Input Offset Current
#1
•
•
Class AB Output Stage
•
Input/Output Overload Protection
•
LM148 ... J PACKAGE
LM248. LM348 ... 0 OR N PACKAGE
(TOP VIEW)
{~NU~
~U~} AMPL
IN+
IN+
AMPL{V:~~
#2
Designed to be Interchangeable with National
LM 148. LM248. and LM348.
#4
:C~}-
AMPL
OUT -..._ _...r- OUT
#3
LM 148 ... FK PACKAGE
description
(TOP VIEW)
If-
The LM148. LM248. and LM348 are quadruple.
independent. high-gain. internally compensated
operational amplifiers designed to have operating
characteristics similar to the uA 741. These
amplifiers exhibit low supply current drain. and
input bias and offset currents that are much less
than those of the uA 7 41 .
z=>
_0
3
The LM 148 is characterized for operation over
the full military temperature range of - 55°C
to 125°C. the LM248 is characterized for
operation from - 25°C to 85 °C. and the LM348
is characterized for operation from 0 °C to 70°C.
t>-
2
~I
o~
1 20 19
# 1 IN +
4
18
#4IN+
NC
5
17
NC
VCC+
6
16
VCC-
NC
7
15
NC
#2IN+
8
14
#3IN+
9 1011 12 13
symbol (each amplifier)
NC - No internal connection
NON INVERTING
INPUTIN++
INVERTING _ _ _ _., _
OUTPUT
INPUT IN-
AVAILABLE OPTIONS
TA
PACKAGE
VIO MAX
AT 25°C
SMALL OUTLINE
CHIP CARRIER
CERAMIC DIP
PLASTIC DIP
(0)
(FK)
(J)
(N)
6 mV
LM348D
-
-
LM348N
6 mV
LM248D
-
-
LM248N
5 mV
-
LM148FK
LM148J
-
O°C
to
70°C
-25°C
to
85°C
- 55°C
to
125°C
The D package is available taped and reeled. Add the suffix R to the device type, le.g .• LM348DR).
PRODUCTION DATA documents contain information
curront as of pubUcation date. Products conform to
specifications per the terms of Texa. Instruments
standard warranty. Production processing does not
necessarily include testing of aU parameters.
Copyright © 1990, Texas Instruments Incorporated
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-47
LM148, LM248, LM348
QUADRUPLE OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
LM148
LM248
18
-18
LM348
UNIT
18
-18
V
V
44
36
±22
±18
36
±18
It
unlimited
unlimited
Supply voltage V CC + (see Note 1)
Supply voltage VCC _ (see Note 1)
Differential input voltage (see Note 2)
22
-22
Input voltage (either input, see Notes 1 and 3)
Duration of output short-circuit (see Note 4)
unlimited
V
See Dissipation Rating Table
Continuous total power dissipation
-55 to 125
-65 to 150
Operating free-air temperature range
Storage temperature range
Case temperature f()r 60 seconds
Lead temperature 1,6 mm (1/16 inch)
from case for 60 seconds
Lead temperature 1,6 mm (1/16 inch)
o to 70
-65 to 150
°C
°C
FK package
260
°C
J package
300
°C
D or N package
from case for 10 seconds
-25t085
-65 to 150
260
260
°C
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC + and VCC _.
2. Differential voltages are at the noninverting input terminal with respect to the inverting terminal.
3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or the value specified in the table,
whichever is less.
4. The output may be shorted to ground or either power supply. Temperature andlor supply voltages must be limited to ensure
that the dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
D
TA:5 25°C
POWER RATING
DERATING
FACTOR
7.6 mW/oC
DERATE
ABOVE TA
TA - 70°C
POWER RATING
TA - 85°C
POWER RATING
TA - 125°C
POWER RATING
608 mW
FK
900mW
900mW
11.0 mW/oC
32°C
68°C
880mW
494mW
715 mW
J
900mW
11.0 mW/oC
68°C
880mW
715 mW
NIA
275 mW
275 mW
N
900mW
9.2 mW/oC
52°C
736 mW
598mW
NIA
recommended operating conditions
Supply voltage, VCC+
MIN
4
MAX
18
V
Supply voltage, VCC-
-4
-18
V
TEXAS •
INSTRUMENlS
2-48
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
PARAMETER
Via
Input offset voltage
Va
~
0
110
Input offset current
Va
~
0
liB
Input bias current
Va
~
0
2l
VOM
~z
~CJ)
~-l
~;or;;l
8 c:~
;3:
AvO
~
'"'"g:
lOS
4
25°C
30
50
4
125
100
30
325
200
30
500
±12
25°C
Maximum peak output
RL
2:
10 kll
Full range
±12
voltage swing
RL
~
2 kll
25°C
±10
RL
2:
2 kll
Full range
±10
Large-signal differential
Va
voltage amplification
RL
~
± 10 V.
2 kll
2:
~
AVO
25°C
50
Full range
25
25°C
0.8
25°C
Phase margin
AVO ~ 1
25°C
Common-mode
VIC ~ VICR min,
25°C
70
rejection ratio
Va
Full range
70
Supply voltage rejection
VCC±
25°C
ratio (AVCC+/AVIO)
Va
77
77
~
0
~
±9Vto ±15V,
Full range
0
25°C
Short-circuit output current
(four amplifiers)
Vol IV 02 Crosstalk attenuation
No load
f
~
I
I
Va - 0
Va ~ VOM!
1 Hz to 20 kHz,
25°C
25°C
±12
±10
±10
160
25
0.8
2.5
25
2.5
0.8
70
77
77
±25
24
120
nA
V
±12
160
Vim V
2.5
Mil
MHz
60°
90
70
70
96
nA
±13
1
60°
90
mV
V
15
1
60°
UNIT
±10
160
15
1
1
~
±10
200
±12
±12
±12
50
400
±12
±13
6
100
±12
±13
MAX
7.5
±12
Supply current
ICC
25
75
Full range
1
6
±12
M
kSVR
4
25°C
TYP
7.5
6
Full range
MIN
±12
Unity-gain bandwidth
~ ~4r
'"
1
LM348
MAX
Full range
ri
~Z
5
TYP
10 kll
Bl
CMRR
MIN
~
Input resistance t
~rr1
LM248
MAX
RL
-I
:11-
TYP
1
25°C
input voltage range
'"
;::
MIN
Full range
Common-mode
VICR
LM148
TEST CONDITIONS t
90
dB
70
96
±25
24
77
77
4.5
96
C
I
±25
24
3.6
120
t=
dB
120
mA
4.5
!
;Do
CI
::ICI
C
,...
mA
."
dB
m
Q
."
m,...
.......
5:i!::
- .1=0
2;Do,...
QCCI
""i!::
;DoN
i!::.1=0
."pa
!:,...
::!!i!::
'r
'"
mw
::ICI.I=o
en CCI
LM148, LM248, LM348
QUADRUPLE OPERATIONAL AMPLIFIERS
operating characteristics. VCC± .. ± 15 V. TA '" 25°C
SR
PARAMETER
Slew rate at unity gain
MIN
TEST CONDITIONS
RL
=2
kO,
CL
=
100 pF,
See Figure 1
PARAMETER MEASUREMENT INFORMATION
FIGURE 1. UNITY-GAIN AMPLIFIER
10 k!1
AVO
= -100
FIGURE 2. INVERTING AMPLIFIER
~
TEXAS
INSTRUMENlS
2-50
POST OFFice BOX 655303 • DALLAS. TeXAS 75265
TYP
0.5
MAX
LM158, LM258, LM358, LM158A
LM258A, LM358A, LM2904, LM29040
DUAL OPERATIONAL AMPLIFIERS
D2231, JUNE 1976-REVISED JULY 1991
•
•
•
•
•
Wide Range of Supply Voltages:
Single Supply ... 3 V to 30 V
(LM2904 and LM2904Q
3 V to 26 VI or Dual Supplies
AMPL {OUT
#1
IN-
Low Supply Current Drain Independent of
Supply Voltage ... 0.7 mA Typ
IN +
GND
Common-Mode Input Voltage Range
Includes Ground Allowing Direct Sensing
Near Ground
•
Internal Frequency Compensation
7
3
4
6
5
I:::J
vcc+
OUT} AMPL
IN#2
IN
+
+
o
u~u
u
uu
z""z>z
3
Differential Input Voltage Range Equal to
Maximum-Rated Supply Voltage ... ± 32 V
( ± 26 V for LM2904 and LM2904QI
Open-Loop Differential Voltage
Amplification ... 100 V/mV Typ
2
LM15B, LM15BA
FK PACKAGE
(TOP VIEW)
Low Input Bias and Offset Parameters:
Input Offset Voltage ... 3 mV Typ
A Versions ... 2 mV Typ
Input Offset Current ... 2 nA Typ
Input Bias Current ... 20 nA Typ
A Versions ... 15 nA Typ
•
DB
0, DB, JG, P, OR PW PACKAGE
(TOP VIEW)
2
1 20 19
NC
4
1B
# 1 IN-
5
17
NC
6
16
15
#2IN-
8
14
NC
# 1 IN+
NC
NC
#2 OUT
NC
9 1011 12 13
description
These devices consist of two independent, highgain, frequency-compensated operational
amplifiers that were designed specifically to
operate from a single supply over a wide range
of voltages. Operation from split supplies is also
possible so long as the difference between the
two supplies is 3 V to 30 V (3 V to 26 V for the
LM2904 and LM2904Q), and the VCC pin is at
least 1.5 V more positive than the input
common-mode voltage. The low supply current
drain is independent of the magnitude of the
supply voltage.
NC-No internal connection
=t>-
symbol (each amplifier)
NONINVERTING
INPUTIN+
INVERTING
INPUT IN-
OUTPUT
_
Applications include transducer amplifiers, d-c amplification blocks, and all the conventional operational
amplifier circuits that now can be more easily implemented in single-supply-voltage systems. For example,
these devices can be operated directly off of the standard 5-V supply that is used in digital systems and
will easily provide the required interface electronics without requiring additional ± 15-V supplies.
The LM 158 and LM 1 58A are characterized for operation over the full military temperature range of - 55°C
to 125°C. The LM258 and LM258A are characterized for operation from - 25°C to 85 °C, the LM358
and LM358A from DoC to 70°C, and the LM2904 and LM2904Q from -40°C to 105°C.
The LM2904Q is manufactured to demanding automotive requirements.
PRODUCTION DATA documants contain information
currant as of publication date. Products conform to
specifications par the tarms of Texas Instrumants
standard warranty. Production procassing doas not
nacessarily include testing of all parametars.
TEXAS ~
Copyright @ 1991, Texas Instruments Incorporated
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-51
LM158, LM258, LM358, LM158A
LM258A, LM358A, LM2904, LM29040
DUAL OPERATIONAL AMPLIFIERS
AVAILABLE OPTIONS
TA
ooe
PACKAGE
VIO MAX
AT 25°C
SMALL OUTLINE
(01
SSOP
(OBI
7 mV
LM358D
LM358DB
CHIP CARRIER
(FKI
PLASTIC DIP
(PI
TSSOP
(PWI
CHIP FORM
(VI
LM358P
LM358PW
LM358V
I
to
70°C
-25°C
CERAMIC DIP
(JGI
3 mV
LM358AP
LM258P
5 mV
LM258D
3 mV
7 mV
LM2904D
LM2904DB
105°C
7 mV
LM2904QD
-
-55°C
5 mV
LM158D
to
85°C
-40°C
LM258AP
LM2904P
LM2904PW
LM2904QP
-
to
LM158FK
LM158JG
LM158AFK
LM158AJG
LM158P
to
125°C
2 mV
The D package is available taped and reeled. Add the suffix R (e.g., LM358DR).
The DB and PW packages are only available left-end taped and reeled. Add the suffix LE (e.g., LM358DBLE).
schematic leach amplifier)
r------------------e-----e-----e---------e---4~--Vcc+
OUTPUT
INVERTING
INPUT
+ ____-+______---'
NON INVE RTING _____
INPUT
...---e-------
Component count (total devicel
Epi-FET - 1
Diodes - 2
Resistors - 7
Transistors - 51
Capacitors - 2
TEXAS . "
INSTRUMENTS
2-52
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
GND (OR vee-I
LM358Y
DUAL OPERATIONAL AMPLIFIERS
chip information
These chips, properly assembled, display characteristics similar to the LM358. Thermal compression or ultrasonic
bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive epoxy
or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
Vcc+
IN
+
IN -
3~8
1
2
OUT 7
-
~
OUT
5IN+
6
4
-
IN-
VccCHIP THICKNESS: 15 TYPICAL
BONDING PADS: 4 X 4 MINIMUM
TJmax:150·C
TOLERANCES ARE ± 10%
ALL DIMENSIONS ARE IN MILS
NO BACKSIDE METALIZATION
PIN (4) INTERNALLY CONNECTED TO
BACKSIDE OF CHIP
,....
47
~I
111111111111111111111111111111111111111111111111
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-53
LM158. LM258. LM358. LM158A
LM258A. LM358A. LM2904. LM29040
DUAL OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
LM158, LM158A
LM258, LM258A
LM358, LM358A
Supply voltage, VCC (see Note 1)
LM2904,
LM2904Q
UNIT
32
26
V
Differential voltage (see Note 2)
±32
±26
V
Input voltage range (either input)
0.3 to 32
0.3 to 26
V
unlimited
unlimited
Duration of output short-circuit (one amplifier) to ground at (or below)
25°C free-air temperature (VCC '" 15 V)
(see Note 3)
Continuous total dissipation
Operating free-air temperature range
See Dissipation Rating Table
LM158, LM158A
- 55 to 125
LM258, LM258A
- 25 to 85
o to
LM358, LM358A
°C
70
LM2904, LM2904Q
-40 to 105
Storage temperature range
-65 to 150
- 65 to 150
°C
Case temperature for 60 seconds
FK package
260
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds
JG package
300
300
°C
260
260
°C
Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds
D, DB, P, or
PW package
°C
NOTES: 1. All voltage values, except differential voltages, and VCC specified for measurement of lOS, are with respect to the network
ground terminal.
2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
3. Short circuits from outputs to VCC can cause excessive heating and eventual destruction.
DISSIPATION RATING TABLE
PACKAGE
TA '" 25°C
POWER RATING
DERATING FACTOR
ABOVE TA - 25°C
TA = 70°C
POWER RATING
TA = 85°C
TA = 125°C
POWER RATING
POWER RATING
145 mW
D
725 mW
5.8 mW/oC
464 mW
377 mW
DB
525 mW
4.2 mWoC
336 mW
273 mW
FK
1375 mW
11.0 mW/oC
880 mW
715 mW
JG
1050 mW
8.4 mW/oC
672 mW
546 mW
210 mW
P
1000 mW
8.0 mW/oC
640 mW
520 mW
200 mW
525 mW
4.2 mW/oC
336 mW
273 mW
PW
TEXAS •
INSTRUMENTS
2-54
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
275 mW
electrical characteristics at specified free-air temperature,
Vee
Input offset voltage
~
5 V to MAX.
~
1.4 V
Average temperature 'coefficient
of input offset voltage
110
Input offset current
"110
of input offset current
~
Va
1.4 V
Average temperature coefficient
liB
."
0
III
....
0
~
~
-
Input bias current
Common-mode
VieR
~z
~ ;o~
8C:~
.;S:
~rrJ
~Z
~ Ci5~
..,
III
'"'"~
VOH
High-level output voltage
V (unless
otherwise noted)
LM158. LM258
MIN
MAX
3
5
25°C
LM2904, LM2904Q
LM358
TYP*
MIN
TYP*
MAX
3
7
MIN
TYP*
MAX
3
7
~
Va
1.4 V
Full range
7
25°C
2
~
25°C
Full range
RL"" 2 k{J
25°C
RL "" 10 k{J
Vee ~ MAX,
25°C
RL
~
Vee
2 k{J
~
MAX,
Full range
2
/Lv/oe
7
2
50
50
200
150
10
-20
-150
-20
nA
pA/oe
10
-250
-500
-300
Full range
5 V to MAX
30
10
-20
10
7
100
Full range
25°C
Vee
UNIT
mV
9
7
Full range
Full range
input voltage range
~~
5
VIC ~ VieR min.
Vo
"via
=
TEST CONDITIONSt
PARAMETER
VIO
Vee
-250
-500
a to
a to
a to
vee- 1
Vee- 1
Vee- 1
a to
a to
a to
Vee- 2
Vee -1.5
Vee- 2
Vee- 1.5
Vee- 2
nA
V
vee -1.5
22
26
26
V
Full range
27
28
27
28
23
24
U"I
RL "" 10 k{J
~_L__
Low-level output voltage
RL "
10 k{J
Full range
5
20
5
20
5
r-
s:::
100
mV
=
r-
eS:::
eN
>g;:
r-Clr-
-as:::
me."
::tCIU"I
>=
-I-r-
CIs:::
i2N
>ea
r-=
>~
S:::r~s:::
-N
:!lea
~
'"
m=
::tCI./:Io
(1)=
CJ r-
%
-
100
r- U'I
V/mV
25
25°C
70
80
65
80
50
80
dB
!:ai:
:l>N
VCC = 5 V to MAX
25°C
65
100
65
100
50
100
dB
-CD
=~
f = 1 kHz to 20 kHz
25°C
120
dB
VCC = 15 V,
25°C
-20
Full range
-10
RL = '" 2 kO
VCC = 5 V to MAX,
VIC = VICR min
15
=.!»
Full range
15
"'CJr-
-IU'I
2r-
120
120
-30
-20
-20
-30
>31:
r-w
:l>U'I
-30
VID = 1 V,
10
Output current
Va = 0
VCC=15V,
.
VIO = -1 V,
!!l
VIO
0
Va = 200 mV
Va = 15 V
0
::l_
~:z
~~
i~r
Short-circuit
lOS
.;~
~
.f!1
~z
e~4r
(II
...
;;l
"
output current
Supply current
ICC
(two amplifiers)
=
-1 V,
VCC at 5 V,
GNO at -5 V,
Va = 0
Va = 2.5 V,
No load
25°C
10
Full range
5
25°C
12
-10
20
10
20
10
5
30
12
S::.!»
-10
mA
20
==
m:a
30
p.A
r-
mA
=
=
.a:=o
31:
N
25°C
±40
±60
±40
±60
±40
±60
Full range
0.7
1.2
0.7
1.2
0.7
1.2
Full range
1
2
1
2
1
2
VCC = MAX,
Va = 0.5 VCC,
No load
"'CJr-
!::3I:
::!!N
m=
5
30
i
=
mA
electrical characteristics at specified free-air temperature,
= 5 V to 30 v,
= VICR min,
= 1.4 V
VCC
Input offset voltage
VIC
Va
110
of input offset voltage
Input offset current
=
Va
1.4 V
Average temperature coefficient
alia
liB
-.0
en
-<
0
~
-
~
f:iZ
~~d
~t:!Tl
~~~
~rr1
~z
~ ~.ct
Common-mode
VICR
=
Va
input voltage range
1.4 V
=
Low-level output voltage
Full range
4
MIN
LM358A
TYP
MAX
2
3
MIN
TYP
MAX
2
3
UNIT
mV
Full range
7
25°C
2
Full range
4
AL
=
=
30 V,
2 kO
=
30 V,
AL '" 10 kO
AL ,;; 10 kO
10
-15
25°C
25°C
7
10
2
5
15
7
15
2
30
200
10
-50
-15
-100
200
10
-80
-15
-100
o to
to
Vee-1.5
Vee -1.5
o to
o to
to
Vee- 2
Vee- 2
Vce- 2
Vee- l .5
Vee- l .5
Full range
27
5
27
20
300
-100
nA
I
pA/oC!
nA
V
Vee -1.5
26
28
p.V/oC
30
-200
o to
26
20
75
Vee- l .5
Full range
Full range
15
30
Full range
Full range
VCC
VOL
2
30 V
RL'" 2 kO
High-level output voltage
LM258A
MAX
25°C
25°C
VCC
VCC
VOH
TYP
Full range
of input offset current
Input bias current
MIN
!
Average temperature coefficient
aVIO
5 V (unless otherwise noted)
LM158A
TEST CONDITIONS t
PARAMETER
VIO
Vee
26
28
5
27
20
V
28
5
20
mV
en
~
'"'"
m
=
>
,...
,...
CI
Os:
"'=CCI
mU"l
»
......
S,...
Zs:
>N
""U"I
>CCI
s:?-'
!:s:
"'''''
""Co,)
-U"I
&
....
mCCl
~>
CJ r-
J:
0>
AVO
CMRR
Large-signal differential
voltage amplification
VCC - 15 V,
Va = 1 V to 11 V,
RL~2k!l
Common-mode rejection ratio
Supply voltage rejection
kSVR
ratio (AVCCiINPUT IN+
description
These devices consist of four independent, highgain frequency-compensated Norton operational
amplifiers that were designed specifically to
operate from a single supply over a wide range of
voltages. Operation from split supplies is also
possible. The low supply current drain is
essentially independent of the magnitude of the
supply voltage. These devices provide wide
bandwidth and large output voltage swing.
OUTPUT
INVERTING
INPUT IN-
The LM2900 is characterized for operation from
-40 o e to 85°C, and the LM3900 is characterized
for operation from ooe to 70 oe.
schematic (each amplifier)
,-----.-- Vee
OUTPUT
INVERTING
INPUT
-----4.---1
! 1.3 rnA
NONINVERTING _-.>---/
INPUT
PRODUCTION OATA documents contain information
current as of publication date. Products conform to
specifications per the terms of Texas Instruments
standard warranty. Production processing does not
necesserily include testing of all parameters.
~
Copyright © 1990, Texas Instruments Incorporated
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-61
LM2900, LM3900
QUADRUPLE OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
LM2900
LM3900
Supply voltage, Vee (see Note 1)
36
36
V
Input current
20
20
mA
unlimited
unlimited
Duration of output short circuit (one amplifier) to ground at (or below) 25 De free-air
temperature (see Note 2)
eontinuous total dissipation
UNIT
See Dissipation Rating Table
Operating free-air temperature range
o to
-40 to 85
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds
De
70
-65 to 150
-65 to 150
De
260
260
De
NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.
2. Short circuits from outputs to Vee can cause excessive heating and eventual destruction.
DISSIPATION RATING TABLE
PACKAGE
TA :5 25 C
POWER RATING
N
1150 mW
D
DERATING FACTOR
ABOVE TA = 25 D C
TA = 70°C
POWER RATING
TA = B5°C
POWER RATING
736mW
598 mW
recommended operating comditions
LM2900
MIN
MAX
Supply voltage, Vee (single supply)
4.5
Supply voltage, Vee + (dual supply)
2.2
Supply voltage, Vee _ (dual supply)
-2.2
LM3900
MAX
32
4.5
32
V
16
2.2
16
V
-16
-2.2
-16
V
-1
mA
De
-1
Input current (see Note 3)
-40
Operating free-air temperature, T A
UNIT
MIN
85
0
70
NOTE 3: elamp transistors are included that prevent the input voltages from swinging below ground more than approximately - 0.3 V.
The negative input currents that may result from large signal overdrive with capacitive input coupling must be limited externally
to values of approximately - 1 mAo Negative input currents in excess of - 4 mA will cause the output voltage to drop to a low
voltage. These values apply for anyone of the input terminals. If more than one of the input terminals are simultaneously driven
negative, maximum currents are reQuced. Common-mode current biasing can be used to prevent negative input voltages.
TEXAS •
INSTRUMENTS
2-62
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
LM2900, LM3900
QUADRUPLE OPERATIONAL AMPLIFIERS
electrical characteristics. Vee
PARAMETER
11+
(inverting input!
!L=-
Mirror gain
11+
Change in mirror gain
11+
TA
~
~
~
TA
0
TA
~
25°C
~
Full range
MAX
30
200
0.9
Large-signal differential
VO~10V,
RL
voltage amplification
f
~
10 kfI,
1.2
100 Hz
Output resistance
ro
Unity-gain bandwidth
B1
(inverting input!
VOH
Low-level output voltage
VOL
Short-circuit output current
IOHS
(output internally high!
11+
~
11-
=
RL
0,
~
Vec
a
2 k!l
~
= 0,
= 2 kO
11+ = 0,
Vo = 0
11-
= 10
11-
~
Low-level output current t
Supply current
lec
5
2
5
%
10
500
p.A
1.2
11- =5 fJ-A,
VOL
=
V/mV
1
M!l
8
2.5
MHz
70
70
dB
0.09
k!l
V
29.5
0.2
0.09
0.2
V
-6
-18
-6
-10
mA
0.5
1.3
0.5
1 .3
rnA
1 V
5
6.2
No load
(four amplifiers!
2.8
13.5
p.A,
Pull-down current
IOL
fJ-A/fJ-A
500
29.5
0
1.1
nA
2
13.5
30 V.
No load
11+
RL
200
8
ratio (l>.Vec/l>.Vlo!
High-level output voltage
30
UNIT
2.5
Supply voltage rejection
kSVR
MAX
0.9
1
(inverting input!
TYP
10
2.8
Input resistance
ri
MIN
300
1.1
Full range,
~
lM3900
TYP
300
20 /LA to 200 fJ-A
TA
~
MIN
Full range, See Note 4
VI+ ~ VI_,
See Note 4
Mirror current
AVO
lM2900
TEST CONDITIONSt
Input bias current
liB
25°e (unless otherwise noted)
15 V. TA
5
6.2
10
mA
10
mA
t All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified. Full range for
TA is -40 oe to 85°C for LM2900, and ooe to 70°C for LM3900.
tThe output current-sink capability can be increased for large-signal conditions by overdriving the inverting input.
NOTE 4: These parameters are measured with the output balanced midway between Vec and ground.
operating characteristics. Vee± = ± 15 V. TA = 25°e
PARAMETER
SR
TEST CONDITIONS
.1 Low-to-high output
Slew rate at unit gain I
High-to-Iow output
Vo
RL
= 10 V,
= 2 kO
eL
=
100 pF,
MIN
TYP
0.5
20
MAX
UNIT
V/fJ-s
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-63
LM2900, LM3900
QUADRUPLE OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
MIRROR GAIN
vs
FREE-AIR TEMPERATURE
INPUT BIAS CURRENT (INVERTING INPUT)
vs
FREE-AIR TEMPERATURE
1.20 ~~---'-T--,--~---r--"'--~---'
Vcc == 15V
1.15 11+ == 10 J.lA
SO
Vcc == 15 V
Vo == 7.5 V
11+ == 0
70
c:(
c: 60
I
1.1 0 ~-J---+--+-+-+--+--+----j
\
E
~ 50
5
()
II)
'"
iii
~
.E
40
c:
'iii
g
~
'"
30
I
I
Cl
!!! 20
1.05 ~-J---+--+-+-+--+--+----j
~
I
~
~ 0.95 ~-J---+--I--+-+--+--+----j
I
I---
= 0.90 ~---l---+--+-+-+--+--+----j
10
0.S5~-J---+--+-+-+--+--+----j
o
o.so L..---l_--1_-I-_-L_....L.._..l.-_L---'
-75 -50 -25
0
25
50
75 100 125
TA - Free-Air Temperature - 'C
-75 -50 -25
0
FIGURE 1
50
75
100 125
FIGURE 2
LARGE SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
SUPPLY VOLTAGE
LARGE SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREQUENCY
104
104
15 V
Vcc
25'C
TA
II 111111
----
)J
""":
"
1
100
25
TA - Free-Air Temperature - 'C
1k
10 k
100 k
f - Frequency - Hz
~
t-~RL
"
1M
10 kO
f-TA
25'C
fI
1
10 M
o
5
FIGURE 3
10
15
20
25
Vcc- Supply Voltage- V
FIGURE 4
t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSTRUMENlS
2-64
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
30
LM2900, LM3900
QUADRUPLE OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
LARGE SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
c
SUPPLY VOLTAGE REJECTION RATIO
vs
FREQUENCY
100
104
.2
Dl
~
~
cc
c
I
o
103
c(
cc
a;
I
o
~
10
g
40
-li
30
Q.
:l
Vee
Vo
RL
1
"r-...
50
Q)
Cl
2l
"E
Q)
::::
Ci
.....
60
Q)
·cu
::: 102
.!!!
-
70
"0
2l
"0
TA = 25°e
80
.2
Q)
Cl
V~~ 1~1111~ V
90
"0
Cii
u
:E
=
en 20
15 V
10 V
10 k!1
I
g:
en
10
o
-75 -50 -25
0
25
50
75 100 125
T A - Free-Air Temperature - °e
100
400 1 k
FIGURE 5
4 k 10k 40 k 100 k 400 k 1 M
f-Frequency-Hz
FIGURE 6
LM2900
SHORT-CIRCUIT OUTPUT CURRENT
(OUTPUT INTERNALLY HIGH)
vs
SUPPLY VOLTAGE
PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
16
.11111
I 14
Q)
Cl
2l
"0 12
>
"5
c..
"5
I 1111.11
= 15V
RL = 2 k!1
11+ = 0
TA = 25°e
Vee
>
.,
·5
I
0
>
U
4
.£:
TA
20
= ooe
~
V
TA = 25°e
15
.:: 10
o
en
I
en 5
"-
2
10 k
I
J:
52
~
o
1k
=
~
6
Q)
0.
0.
25
Vo = 0
11+ = 0
11_
0
~:l
~
8
0.
0.
I
"E
"5Q.
"5
Q)
b
];
.,
E
U
10
0
~
30
c(
100 k
1M
f - Frequency - Hz
10 M
o
o
5
FIGURE 7
10
15
20
25
vee-Supply Voltage- V
30
FIGURE 8
t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-65
lM2900, lM3900
QUADRUPLE OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
LOW-LEVEL OUTPUT CURRENT
vs
SUPPLY VOLTAGE
60
2.0
I
=1 V
=0
TA = 25°e
VOL
E 50 _11+
«
I
'E
f
....
::I 40
U
'5
Q.
'5 30
0
Qi
>
G>
--I
::
f
/
/~
11-
/'
--I
9
= 100 IlA
-
1.8
~
«
I
TA - 25°e
/"
U 1.0
'/
c
~
0e
,-
E 1.4
TA
=
85°e
0.8
2
:; 0.6
0.
= 10 IlA
11_ = 51lA
11-
o
o
TA - -40
~::I
20
10
I
1.6
C 1.2
0
--I
I
PULL-DOWN CURRENT
vs
SUPPLY VOLTAGE
I
0.4
0.2
r
5
10
15
20
Vee - Supply Voltage - V
25
o
o
30
15
25
10
20
vee-Supply Voltage-V
5
30
FIGURE 10
FIGURE 9
PULL-DOWN CURRENT
vs
FREE-AIR TEMPERATURE
TOTAL SUPPLY CURRENT
vs
SUPPLY VOLTAGE
2.0
8
Vee = 15V
1.8
1.6
«
E 1.4
I
'E 1.2
~::I
- --
«
r
.............
I
I
I
'E
~::l 5
...........
~
U
>C.
4
Q.
U
1.0
O~
0.8
VI
'§ 0.6
l-
'?
7
E
I 6
::I
Cii 3
"0
0.
I
U
0.4
9
0.2
2
TA = 25°e
r- No signal
No load
o
I
-75 -50 -25
0
25
50
75 100
TA - Free-Air Temperature - °e
125
5
25
10
15
20
Vee - Supply Voltage - V
FIGURE 12
FIGURE 11
t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
~
TEXAS
INSTRUMENTS
2-66
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 .
30
LM2900, LM3900
QUADRUPLE OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
Norton (or current-differencing) amplifiers can be used in most standard general-purpose op-amp applications.
Performance as a dc amplifier in a single-power-supply mode is not as precise as a standard integrated-circuit
operational amplifier operating from dual supplies. Operation of the amplifier can best be understood by noting
that input currents are differenced at the inverting input terminal and this current then flows through the external
feedback resistor to produce the output voltage. Common-mode current biasing is generally useful to allow
operating with signal levels near (or even below) ground.
Internal transistors clamp negative input voltages at approximately - 0.3 V but the magnitude of current flow
has to be limited by the external input network. For operation at high temperature, this limit should be
approximately - 100 p.A.
Noise immunity of a Norton amplifier is less than that of standard bipolar amplifiers. Circuit layout is more critical
since coupling from the output to the noninverting input can cause oscillations. Care must also be exercised
when driving either input from a low-impedance source. A limiting resistor should be placed in series with the
input lead to limit the peak input current. Current up to 20 mA will not damage the device but the current mirror
on the noninverting input will saturate and cause a loss of mirror gain at higher current levels, especially at
high operating temperatures.
v+
1 MIl
10 kH
1 Mfl
1 kll
1 M!l
INPUT ---'W~It--4~+--I
"-'--OUTPUT
10 '" 1 rnA per input volt
FIGURE 13. VOLTAGE·CONTROLLED CURRENT SOURCE
v+
1 Mfl
1 Mfl
-----OUTPUT
100 kfl
INPUT -.JVIIIr. .- - t - - t
100 k!l
1 k!l
10 '" 1 rnA per input volt
FIGURE 14. VOLTAGE·CONTROLLED CURRENT SINK
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 76265
2-67
2-68
LT1007, LT1007A, LT1037, LT1037A
LOW-NOISE, HIGH-SPEED, PRECISION OPERATIONAL AMPLIFIERS
03195, FEBRUARY 1989-REVISEO JUNE 1991
•
Maximum Equivalent Input Noise Voltage:
3.8 nV/y'Hz at 1 kHz
4.5 nV/y'Hz at 10 Hz
•
Low Peak-to-Peak Equivalent Input Noise
Voltage: 60 nV Typ from 0.1 Hz to 10Hz
•
Slew Rate (LT1037 and LT1037A):
11 VII's Min
OW SMALL-OUTLINE PACKAGE
(TOP VIEWI
NC
NC
Via TRIM
ININ+
High Voltage Amplification:
7 V/p.V Min. RL - 2 kn
3 V/p.V Min. RL = 600 n
u
JG AND P
DUAL-IN-L1NE PACKAGES
•
Low Input Offset Voltage 25 p.V Max
•
Low Input Offset Voltage Temperature
Coefficient: 0.6 p.V/oC Max
•
VCC+
aUT
NC
NC
NC
VCCNC
NC
LT1 007 A and LT1 037 A Specifications:
•
NC
NC
Via TRIM
(TOP VIEWI
Via TRIM
ININ +
VCC -
Common-Mode Rejection Ratio: 117 dB Min
8
2
7
3
6
4
5
Via TRIM
VCC+
aUT
NC
description
L PLUG-IN PACKAGE
These monolithic operational amplifiers feature
extremely low noise performance and outstanding precision and speed specifications.
The typical differential voltage amplification (at
T A = 25°C) of these devices is an extremely
high 20 V//lV driving a 2-kn load to ± 12 V and
12 V/p.V driving a 600-n load to± 10 V.
In the design. processing. and testing of the
device. particular attention has been paid to the
optimization of the entire distribution of several
key
parameters.
Consequently.
the
specifications of even the lowest-cost grades
(the LT1 007C and the LT1 037C) have been
greatly improved compared to equivalent grades
of competing amplifiers.
(TOP VIEWI
Via
TRIM
VCC+
aUT
NC
VCCPin 4 (L Package) is in electrical contact with the case
NC - No internal connection
AVAILABLE OPTIONS
TA
O°C
to
70°C
-55°C
to
125°C
VIO MAX
AT 25°C
PACKAGE
SMALL-OUTLINE
CERAMIC DIP
METAL CAN
(OWl
(JGI
(LI
PLASTIC DIP
(PI
LT1007CDW
-
LT1007CP
25 !'V
-
-
-
LT1007ACP
60 ,"V
LT1037CDW
-
-
LT1037CP
25!'V
-
-
-
60 !'V
-
LT1007MJG
LT1007ML
LT1007MP
60 !'V
LT1037ACP
25!'V
-
LT1007AMJG
LT1007AML
LT1007AMP
60 !'V
-
LT1037MJG
LT1037ML
LT1037MP
25!'V
-
LT1037AMJG
LT1037AML
LT1037AMP
The DW packages are available taped and reeled. Add the suffix "R" to the device type, (e.g ..
LT1007CDWRI.
PRODUCTION DATA documants contain information
currant as of publication data. Products conform to
spacifications par tha tarms of Te.as Instruments
standard warranty. Production proclSsing doas not
nacassarilyincluda tasting of all parametars.
~
Copyright © 1991, Texas Instruments Incorporated
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-69
LT1007, LT1007A, LT1037, LT1037A
LOW·NOISE, HIGH·SPEED, PRECISION OPERATIONAL AMPLIFIERS
schematic
I
o
o
>
1
0_
0
"'
:5'"
U
u.
"Cl
c:
0
0
0
....
"'
0
c:
N
'"
IC
N
U.
"-
0
co
c:
..
-
0
0
!-+-------,
+
!!;
I
!!;
~
TEXAS
INSTRUMENTS
2-70
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
LT1007, LT1007A, LT1037, LT1037A
LOW·NOISE, HIGH·SPEED, PRECISION OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee + (see Note 1) ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 22 V
Supply voltage, Vee - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -22 V
Input voltage .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Vee ±
Duration of output short-circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Unlimited
Differential input current (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 25 mA
Power dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. See Dissipation Rating Table
Operating free-air temperature range:
LTl007e, LT1007Ae, LT1037e, LT1037Ae ............................ oDe to 70 De
LT1007M, LT1007AM, LT1037M, LT1037AM ....................... -55 De to 125°e
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :.... - 65 De to 150 De
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: DW and P packages. . . .. 260 De
Lead temperature 1.6 mm (1/16 inch) from case for 60 seconds: JG and L packages ...... 300 De
NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between Vee + and Vee _.
2. The inputs are protected by back-to~back diodes. Current limiting resistors are not used in order to achieve low noise. Excessive
input current will flow if a differential input voltage in excess of approximately ± 0.7 V is applied between the inputs, unless
some limiting resistance is used.
DISSIPATION RATING TABLE
PACKAGE
TA :5 25°C
DERATING FACTOR
TA = 70°C
POWER RATING
ABOVE TA = 25°C
POWER RATING
TA
=
125°C
POWER RATING
OW
1025 mW
8.2 mw/oe
656 mW
N/A
JG
1050 mW
8.4 mw/oe
672 mW
210 mW
825 mW
6.6 mw/oe
528 mW
165 mW
1000 mW
8 mw/oe
640 mW
200 mW
l
P
recommended operating conditions
M-SUFFIX
C·SUFFIX
UNIT
MIN
NOM
MAX
MIN
NOM
MAX
Supply voltage, Vee +
4
15
22
4
15
22
V
Supply voltage, Vee-
-4
-15
-22
-4
-15
-22
V
Input voltage, VI
ITA=25°e
ITA = full range
±11
± 11
± 10.5
± 10.3
Operating free-air temperature, T A
0
TEXAS
70
-55
V
V
125
°e
~
INSTRUMENTS
POST OFFICE BOX 665303 • DALLAS. TEXAS 75265
2-71
LT1007C, LT1007AC, LT1037C, LT1037AC
LOW-NOISE, HIGH-SPEED, PRECISION OPERATIONAL AMPLIFIERS
electrical characteristics, Vee +
PARAMETER
VIO
Input offset voltage
-15 V
15 V, vee-
TEST CONDITIONS
TA
LT1007C, LT1037C LT1007AC, LT1037AC
TYP MAX
MIN
TYP MAX
MIN
20
25°C
ODC to 70 DC
See Note 3
60
10
UNIT
25
110
50
1
0.6
p.V
Average temperature
ODC to 70 DC
aVIO coefficient of input
offset voltage
110
liB
Input offset current
25 DC
DDC to 70 D C
12
Input bias current
25°C
ooC to 70 DC
±15
Peak output voltage
VOM
swing
RL
RL
RL
=
=
=
2 kO
25°C
2 kO
= ±12 V
= ±10 V
600 0, Vo = ± 10 V
2 kO, Vo = ± 10 V
1 kO, Vo = ± 10 V
RL ~ 2 kO, Vo
AVD
Large-signal
RL
differential voltage
RL ~
amplification
RL
~
RL
~
~
1, kO, Vo
Common-mode input
rilCM) resistance
ro
Open-loop output
resistance
CMRR Common-mode
rejection ratio
Supply voltage
kSVR
PD
rejection ratio
Power dissipation
VIC
VIC
=
=
±11 V
±10.5V
±10
±75
±12.5 ± 13.5
30
nA
40
±55
±35
nA
±45
±13 ± 13.8
25 DC
±10.5 ± 12.5
ODC to 70 DC
±12
6000
7
50
70
I'V/DC
± 11 ± 12.5
V
± 12.5
5
3.5
20
7
20
25°C
16
5
16
25°C
ODC to 70°C
2
2.5
12
3
4
12
V/",V
ODC to 70°C
2
GO
25°C
2.5
25°C
5
7
25 DC
70
70
25°C
110
O°C to 70 DC
106
114
106
110
VCC+ = ±4Vto ±18V
VCC± = ±4.5 V to ±18 V
LT1007C, LT1007AC
25°C
O°C to 70 DC
25°C
LT1037C, LT1037AC
25°C
ooC to 70°C
126
117
126
102
0
130
dB
130
dB
106
80
140
80
120
85
140
80
130
160
mW
144
NOTE 3: VIO measurements are performed by automatic test equipment approximately 0.5 seconds after application of power.
~
2-72
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
LT1007M, LT1007AM, LT1037M, LT1037AM
LOW·NOISE, HIGH·SPEEO, PRECISION OPERATIONAL AMPLIFIERS
electrical characteristics.
Vee + =
15
V. vee-
-15 V
LT1007M.
PARAMETER
TEST CONDITIONS
MIN
VIO
Input offset voltage
"'VIO
coefficient of input
TYP
25°C
See Note 3
LT1007AM.
LT1037M
TA
20
LT1037AM
MAX
MIN
60
TYP
10
UNIT
MAX
25
-55°C to 125°C
160
60
-55°C to 125°C
1
0.6
",V
Average temperature
",V/oC
offset voltage
110
liB
AVD
-55°C to 125°C
swing
RL
RL
=
=
=
2 kfl
600 fl
= ± 12 V
= ±10 V
600 D. Va = ± 1 0 V
2 kfl. Vo = ±10 V
1 kD. Vo = ±10V
±10
±35
± 12.5 ± 13.5
25°C
± 10.5 ± 12.5
± 11 ± 12.5
±12
5
20
7
25°C
3.5
16
5
16
differential voltage
RL ;;,
25°C
2
12
3
12
amplification
RL ;;,
-55°C to 125°C
2
3
-55°C to 125°C
1.5
2
Supply voltage
rejection ratio
VIC = ± 11 V
VIC = ±10.3V
Power dissipation
5
7
25°C
70
70
25°C
110
104
25°C
VCC+ = ±4 V to ± 18 V
VCC+=±4.5Vto ±18V -55°C to 125°C
LT1007M. LT1007AM
LT1037M. LT1037AM
20
25°C
- 55°C to 125°C
106
V
±12.5
25°C
CMRR Common-mode
rejection ratio
nA
±60
±13 ± 13.8
RL ;;, 2 kfl. Vo
resistance
nA
50
± 55
RL;;' 1 kfl. Vo
Open-loop output
PD
30
Large-signal
RL ;;,
kSVR
7
±95
25°C
-55°C to 125°C
2 kD
Common-mode input
rHCM) resistance
ro
±15
- 55°C to 125°C
RL
50
85
25°C
Input bias current
Peak output voltage
VOM
12
25°C
Input offset current
126
117
V/",V
GO
0
130
dB
112
126
110
100
130
dB
104
25°C
80
140
80
120
25°C
85
140
80
130
-55°C to 125°C
170
mW
150
NOTE 3: VIO measurements are performed by automatic test equipment approximately 0.5 seconds after application of power.
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-73
LT1007, LT1007A, LT1037, LT1037A
LOW·NOISE, HIGH·SPEED, PRECISION OPERATIONAL AMPLIFIERS
operating characteristics VCC±
PARAMETER
SR
Slew rate
=
± 15 V. TA
=
25°C
LT1007, LT1007A
TEST CONDITIONS
RL « 2 kll, AVO «1 (LT1007, LT1007A)
RL « 2 kll, AVO « 5 (LT1037, LT1037A)
MIN
TVP
1.7
2.5
Peak-to-peak equivalent f = 0.1 Hz to 10Hz,
VNPP input noise voltage
See Note 4
Vn
In
Equivalent input noise
f
noise voltage
Equivalent input
f
f
noise current
f
GBW Gain bandwidth product
f
f
=
=
=
=
=
=
MAX
LT1037, LT1037A
MIN
TVP
11
15
MAX
V/p.s
0.06
0.13
0.06
0.13
10 Hz
2.8
4.5
2.8
4.5
1 kHz
2.5
3.8
2.5
3.8
10Hz, See Note 5
1.5
4
1.5
4
1 kHz, See Note 5
0.4
0.6
0.4
0.6
100 kHz
5
10 kHz, AV « 15
8
45
60
UNIT
p.V
nV/.JHz
pA/.jf1z
MHz
NOTES: 4. See the test circuit and frequency response curve for 0.1 Hz to 10 Hz noise (Figure 39) in the Applications Information section.
5. See the test circuit for current noise measurement (Figure 40) in the Applications Information section.
+
TEXAS
INSTRUMENTS
2-74
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265
LT1007, LT1007A, LT1037, LT1037A
LOW-NOISE, HIGH-SPEED, PRECISION OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
table of graphs
FIGURE
VIO
Input offset voltage
aVIO
Change in input offset voltage
110
Input offset current
liB
Input bias current
VOM
AVD
vs Temperature
1
vs Time after power on
2
vs Time (long-term stability)
3
vs Temperature
4
vs Temperature
5
over common-mode range
6
Common-mode limit voltage
vs Free-air temperature
7
Maximum peak output voltage
vs Load resistance
8
swing
vs Frequency
9
vs Frequency
10
vs Frequency (LT1 007)
11
vs Frequency (L T1 037)
12
Differential voltage amplification
vs Temperature
13
vs Load resistance
14
vs Supply voltage
15
at 2 kll and 600 Il
16
VID
CMRR
Differential input voltage
vs Output voltage
16
Common-mode rejection ratio
vs Frequency
17
kSVR
Supply voltage rejection ratio
vs Frequency
18
SR
Slew rate
"'-
~
30f--t---+-----j---t--:;;""f----t---j
..
~
20f"'oo.~+--+--==--~-+---+---I-~
>
;
~
101-~:t==~.,..=+--+--+----jf_--:::J
:::0
10
I
I
Q)
I
11
...
~
o
8
~
I/)
6
...
L PACKAGE
:::J
Co
I--C::--+_--+-~""'F--+-~F___l
Co
Ioo"""'-+---+--:::;"""""--+-""ooc:-t--I--~
-25
2
I
0
-40~~~~+_--+--_+--+-~~__l
-50
//
Cl
C
.J:.
(.)
__L __ _~_ _~_ _~_ _~_ _~
0
25
50
75
100 125
>"
"
- 30
Cl
0
0
5 -1 0
I
VCC± = ±15 V
TA = 25°C
~
OW. JG. OR P PACKAGE
If
o
o
2
T A - Free-Air Temperature- °C
5
4
3
Time After Power On-minutes
Figure 1
Figure 2
INPUT OFFSET CURRENT
LONG TERM STABILITY OF
INPUT OFFSET VOLTAGE
FOR FOUR REPRESENTATIVE UNITS
10.----.---.----r---r----.
vs
TEMPERATURE
60
I
1
I.
VCC±=±15V
«c
50
~
40
...cI
:::J
(.)
...
Q)
I/)
:::
0
5
!
I
g
30
20
" 'r-.-
.....
10
o
"~
LT1007. LT1037
............ ~
LT1007A. LT1037A
-75 -50 -25
t- Time - months
0
25
50
75
100 125
T A - Free-Air Temperature - °C
Figure 3
Figure 4
tData at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices.
TEXAS •
INSTRUMENTS
2-76
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
LT1007. LT1007A. LT1037. LT1037A
LOW·NOISE. HIGH·SPEED. PRECISION OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
INPUT BIAS CURRENT
vs
FREE-AIR TEMPERATURE
50
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
20
V~CI± 1_1±~5IV
15
40
~
c
I
c
...
~
:;
30
u
.."'
iii
...
:::1
Co
~
I
~ 10
:;
5
"I"
u
j\.
20
.5
10
~
WITH iOSITIVIE
"
~ .....
"- ........
.... ....
, .....
-5
,
20 V
7 GO
rr(CMI - - - ,
,3 nA
25
50
I
I
I
I
./
I
.5
Ni-tllill
I
0
:::1
Co
...
lT1007M, lT1037M
JI I
-50 -25
0
iii
l Tl 007 AM, l Tl 037 AIM
0
.."'
I
75 100 125 150
-
,...;
INPUT CURRENT
c
I
c
...
1\
~IDEVICEI
..L...--
I
I
~ -10 -DEVICE WITH NEGATIVE
INPUT CURrENT ,
I
-15
VCC± = ±15 V
TA = 25°C
-20
15
-15
-10
-5
10
o
5
T A - Free-Air Temperature- °C
Vlc-Common-Mode Input Voltage
Figure 6
Figure 5
COMMON-MODE INPUT VOLTAGE RANGE LIMITS
vs
FREE-AIR TEMPERATURE
PEAK OUTPUT VOLTAGE SWING
vs
LOAD RESISTANCE
15
I
I
I
VCC+ - 3 V to 20 V_
POSITIVE LIMIT
>
II
I 12
'"c
'i
..'"..
~V
SWING~ V
POSITIVE
r-
en
9
)V
.t::
0
>
...
:::1
So
:::1
;;
6
0
VCC
-
-3 V to -20 V
0
>
NEGATIVE LIMIT
VCC-50 -25
I
~
3
1/
//
o
0
25
50
75
100
125
NEGATIVE
SWING
100
TA-Free-Air Temperature- °C
300
VCC±=±15V_
TA = 25°C
I
I I
1 k
3 k
10 k
Rl-load Resistance-O
Figure 7
Figure 8
tData at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices,
TEXAS
-1!1
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-77
LT1 007, LT1 001 A, 1T1 03l,LT1,031A
LOW·NOISE, HIGH·SPEED, PRECISION OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
PEAK-TO-PEAK OUTPUT VOLTAGE SWING
vs
FREQUENCY
>r
28
:t
(I)
1:11
.I
..
i:
24
.S!
180
,J
160
VCC± - ±15V_
RL-2kO
fA - 25°C
I
110
20
:::I
Q.
:::I
16
1\
>
i
120
LT1037
12
~
:.
1is
_1 LI
8
III
I_U
I
4 f- VCC± - 25°C
ii:
~
"r--.
,AI illirCI II
A.
1k
10 k
I
Q
>
~
100 k
~~
~ "~~
20
0
~
0
~~
~ r\.
1:11
III
""
::""00. :::""00.
140
III
CD
CJl
....
vii
FREQUENCY
'tI
CJl
.S
DIFFERENTIAL VOLTAGE AMPLIFICATION
I
' " 1/1
10
!
110·
.,8 40
III
If
140°
.... r-.
~
III
.
III
il-
160·
~
,
I
170·
180·
190°
10
100
1/1
!E
120·
1i
150· ~
1\
1111
~
&
!0
>
:i
30
130·
~
11
"
\
20
AVO"
i
~I
~
AV - 5
j
150·
'T
170·
.......
180·
~
o
0.1
10
f-Frequency-IIIIHz
Figure 11
Figure 12
~i;a
TEXAS 'V
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
III
iI-
Q
>
C
i
140°
160·
10
f-FrequencY-IIIIHz
2-78
90·
VCC:!: - :!:1 5V
100·
CL - 100 pF
~A - 25·C
110·
~
c
120·
130°
1111
0 f-VCC:!: - :!:15 V
CL - 100 pF
I
f-TA - 25°C
I I I I II III
-10
0.1
~
...I
III
u
20
AV~
50
100·
190·
100
LT1007. LT1007A. LT1037. LT1037A
LOW·NOISE. HIGH·SPEED. PRECISION OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
LOAD RESISTANCE
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
CD
25
"0
I
c
.g
Vcc I. ~1~
TA = 25°C
J
"...,
co 20
V
:eQ."
E
c:(
Q)
15
'"
!!
o
m
10~--+---~--~---+~~~--~~
.~
is
Q)
Vcc - ±15V
Vo - ±10 V
Vo - ±8 V for TA ;", 100°C
Rl - 600 {)
5
I
c
>
c:(
I
:::
is
I
o
-50 -25
25
50
5
c
o~--~--~--~--~--~--~--~
100
75
~
125
o
V
V
/
0.4
0.1
TA-Free-Air Temperature-oC
Figure 14
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
SUPPLY VOLTAGE
L
CD
"0
I
c
.g
Q.
E
20
/
15
c:(
~c
2!Q)
10
)
:::
is
I
c
>
c:(
5
o
>
I
co
!E"
DIFFERENTIAL INPUT VOLTAGE
vs
OUTPUT VOLTAGE
4
I
Rl - 2 k{)
TA = 25°C
I
3
Q)
V
!!'"
..
0
>
I
r-Ycc ± = ± 15 V
TA - 25°C
2
:>
//
Q.
Rl - 600 {)
-
.5
Rl - 600 {)
!c
2!
'/
Q)
~
0
I
C
"
o
">
-1
-
/
~ l--/
-2
±5
±10
10
4
Rl-load Resistance-k{)
Figure 13
25
II
10
2!
2!
Q)
:::
>
]
c
..-
±15
±20
±25
-15
-10
-5
/ /\
RL - 2 k{)
o
5
10
15
Yo-Output Voltage-V
Vcc± -Supply Voltage-V
Figure 15
Figure 16
tData at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-79
LT1007, LT1007A, LT1037, LT1037A
LOW·NOISE, HIGH·SPEED, PRECISION OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
SUPPLY VOLTAGE REJECTION RATIO
vs
FREQUENCY
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
!XI
160
140
Vc C = ± 15 V
Vc M = ± 10 V
TA = 25°C
"1:1
""'=f:;
I
o
'.;:l
&!
120
.~
U
.g
..
~ 120
~
C 80
~
NEGATIVE
'~ SUPPLY
..
-a
~ 80
~
:2:
100
;F
LT1037
o
o
E
E
o
K'
,2
G>
"1:1
~
I 140
~
G>
;F100
a:
a:
:2:
"1:1
~~
c::
TA 1= 251oC
!XI
'~
> 60
LT 1007 "\
'\
>-
Q.
I\.
60
UI
I
r\"\"\
U
POSITIVE
SUPPLY
~ 40
0'\
~ 20
-0
"- ~
~
40
103
f-Frequency-Hz
f-Frequency-Hz
Figure 17
I:
.~
5l
LT1037
SLEW RATE. PHASE MARGIN AND
GAIN BANDWIDTH PRODUCT
vs
FREE-AIR TEMPERATURE
r---
:E
fI
LT1007
SLEW RATE. PHASE MARGIN AND
GAIN BANDWIDTH PRODUCT
vs
FREE-AIR TEMPERATURE
70°
to
60°
E
-e- 500
III
~
3
I
~
""
-
2
m
...
9
...........
...........
-
--
(f -
100 kHz)
-..!B~
-
8
to
!XI
Vcc ~ ±15V
CL - 100 pF
'I
1
1
-50 -25
o
25
50
75
100
125
'"
11.
I
E 50
>
"1:1
c::
'(ij
60
III
'i
"1:1
0.........
..
b
~
~
I 20
~
r:r:
.!! 15
til
I
r:r:
til
- --
10
-50 -25
T A - Free-Air Temperature- °c
o
70
m
r---
~
~
~
~5V
CL - 100 pF
.s:
-e-
c::
7
:e.,'"
...
.c::
0
I
r:r:
U
:l
"1:1
0
ct:
UI
UI
V~C
I:
.~
_SR
~
r:r:
Figure 18
E
a.
.c::
(f -
100 kHz)_
............ r--..... GBW
----
25
50
75
100
!XI
50 c::
125
t Data at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices.
~
2-80
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
..
C
I--
Figure 20
TEXAS
INSTRUMENTS
~
"1:1
f-- ~
SR
60
T A - Free-Air Temperature- °c
Figure 19
.g
'(ij
Cl
LT1007, LT1007A, LT1037, LT1037A
LOW-NOISE, HIGH-SPEED, PRECISION OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREE-AIR TEMPERATURE
~:;
c:
I
5
VCC± -
'iii
.s;
4
----
!!!
'0
5:
·S
f - 10 Hz __
3
~
2
....::l
Co
.5
f = 0.01 Hz to 1 Hz
±15 V
c:
o
CD
CI
>
EQUIVALENT INPUT NOISE VOLTAGE
OVER A 100-SECOND TIME PERIOD
~
2
....c:
CD
.--
'5
:;
,.......- ~
c:
o
('oj
f - 1 kHz_
~
.=
o
CD
III
2
I
c:
>
o
-50 -25
o
25
50
75
100
o
125
20
Figure 21
10
:;
....::l
VCC+-+15V
TA = 25°C
VCC - ±15V
TA - 25°C
c:
I
2
>::I.
30
10
I
"'"
CD
CI
!!!
'0
>
CD
III
.5
....c:
..
>
I'
·S
2
Co
..!!
>
·S
C"
w
I
c:
100
BROADBAND NOISE VOLTAGE
0.1 Hz TO INDICATED FREQUENCY
~ 100
>
80
60
Figure 22
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
'0
40
t-Time-s
TA-Free-Air Temperature- °C
5:
·S
I
·S
C"
CD
CI
r
If
>
w
!!!
1
1,.'11~T' IJi
I
~l ,.Il
.i ,It J.
CD
Ol
·s>
I
c:
.II
I
iii
>
iii
~',
.. ,lJ Wfff
~IT
~~
~
3
....
"-
:!! 0.1
II:
I
c:
1-
r-, TI lllirT Ii IIIIT
1
0.1
I.;'~
I./l
MAXIMUM
10
>
TYPICAL
I'
1111111
100
1000
0.01
0.1
f-Frequency-Hz
10
100
B-Bandwidth-kHz
Figure 23
Figure 24
tData at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-81
LT1007, LT1007A, LT1037, LT1037A
LOW-NOISE, HIGH-SPEED, PRECISION OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
EQUIVALENT INPUT NOISE VOLTAGE
EQUIVALENT INPUT NOISE CURRENT
vs
vs
SUPPLY VOLTAGE
FREQUENCY
5
10
TA - 25°C
~
:>c
~
4
I
VCC+ = +15 V
~
Co
I
?:
·iii
?:
~
3
.......
·iii
c
CD
c
f = 10 Hz-
3
..
CD
·0
,MAXIMUM
:;
U
.
2
l!
~
~
f = 1 kHz
CD
g)
II
'E
I
Z
c
CD
"0
>
·0
Z
III
III
:IE
1/f CORNER
:IE
II:
o
0.1
o
±10
±5
±15
±20
±25
10
Figure 26
.TOTAL NOISE VOLTAGE
SHORT-CIRCUIT OUTPUT CURRENT
vs
vs
SOURCE RESISTANCE
ELAPSED TIME
50
1000
VCC = +15V
TA = 25°C
I- R
I-~
~
100
R
I-
RS = 2R
40
111111
~
J 1111
'E
a~
AT 1 kHz
CD
g)
g
30
~
r--- 1'--
TA -
l-
-55°C
.1
I
l!
.1
TA = 25°C
20
TA
10
=
125°C
.1::
..
AT 10 Hz
CD
V
~
...o!!t::'
10
0
o
l-
TA'= 125°C
-20
I
.9 -30
RESISTOR
NOISE
>
/
"""
0.1
-50
10
100
Rs-Source Resistance-kO
L
r--
V
-40
O~L~ IIII
±15 V
J
1::
~
III
I
c
VCC -
U -10
~
·0
z
10 k
f-Frequency-Hz
Figure 25
;;;
1k
100.
VCC± -Supply Voltage-V
I
-TYPICAL
120 Hz
I
.E
>
:>c
I~
II:
I
c
~
r-
I'
0.3
V"
--- -
I
TA = 25°C
TA
o
=
-
-55°C
1 1
2
3
Time from Output Short to Ground-minutes
Figure 27
Figure 28
tData at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices.
"I
TEXAS
INSTRUMENTS
2-82
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
LT1007, LT1007A, LT1037, LT1037A
LOW·NOISE, HIGH·SPEED, PRECISION OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
CLOSED·LOOP OUTPUT IMPEDANCE
vs
FREQUENCY
100 ,-----,,-----,,----,----,-----,
4
«
E
10 1---II---II-7"'----:ioo'---r-----i
LT1007
c:
3
TA - 125°C-
.!.c
TA - 25°C-
~
::I
TA - -55°C
..g
..
I
~
a.
::I
..&
I
o
J;
N
CJ
>a.
2
Q.
.E
::I
I/)
::I
0.1~'--~~--r---~~
I
CJ
o
0.01 J.I<---r---V7oL---tVCC ± -
± 15 V
10 - 1 rnA
o
TA - 25°C
0.001
o
±5
±10
±20
±15
' - - _ - - A L L . _ _' - - _ _' - - _ _- ' - - _ - - '
10
1 k
100
VCC ± -Supply Voltage- V
Figure 29
>
LT1037
LT1037
VOLTAGE-FOLLOWER
LARGE-SIGNAL PULSE RESPONSE
60
VCC± - ±15 V
15 _AV - 5
TA - 25°C
3.
20
~
{
........
10
f
5
I
..
::I
o
:;
o
-5
/
/
II
"0
>
0
a.
a.
~
>
..
g
:;
-20
I
I
~-40
-60
-80
=1
o
1M
VOLT AGE·FOLLOWER
SMALL·SIGNAL PULSE RESPONSE
20
40
100 k
Figure 30
80
E
I
10 k
f-Frequency-Hz
VCC± - ±15 V
AV - 5
CL - 15 pF
TA - 25°C
\
~
,,-
-
o
>
\
\
\
1\
\.-
I
-10
I
-15
-20
200 400 600 800 1000 1200 1400 1600
o
2
3
4
5
6
7
8
t-Tirne-!,s
t-Tirne-ns
Figure 31
Figure 32
t Data at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices.
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-83
LT1007, LT1007A, LT1037, LT1037A
LOW-NOISE, HIGH-SPEED, PRECISION OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
LT1007
LT1007
VOLTAGE-FOLLOWER
SMALL-SIGNAL PULSE RESPONSE
VOLTAGE-FOLLOWER
LARGE-SIGNAL PULSE RESPONSE
80
8
Vcc l± - 1±15V
60 AV m 1
CL = 15 pF "40 TA = 25°C
>
E
6
>
I
I
GO
o
~
o
>
...
8 -20
d
'0
>
;
:::J
V
0
-2
/
I
I
o
> -4
-40
~
-60
-80
\
/
2
a-
Co
\
I
4
g)
20
g)
!
I
GO
:!
~
I
VCC±=±15V
AV = -1
TA = 25°C
/
\
_II
\
~
-6
o
-8
0.5
1.5
2
2.5
3
3.5
4
o
2
t-Time-ps
4
6
8
10
12
14
16
t-Time-ps
Figure 34
Figure 33
TYPICAL APPLICATION DATA
general
The LT1 007- and LT1 037~series devices may be inserted directly into OP-07, OP-27, OP-37, and 5534
sockets with or without removal of external-compensation or nulling components. In addition, the LT1 007
and LT1 037 may be fitted to pA 741 sockets by removing or modifying external nulling components.
offset voltage adjustment
The input offset voltage and its change with temperature of the LT1 007 and LT1 037 are permanently
trimmed to a low level at wafer testing. However, if further adjustment of VIO is necessary, the use of
a 10-kO nulling potentiometer, as shown in Figure 35, will not degrade drift with temperature. Trimming
to a value other than zero creates a drift of VIO/300 ",V/oC (e.g., if VIO is adjusted to 300 ",V, the change
in temperature coefficient will be 1 ",V/OC).
The adjustment range with a 10-kO potentiometer is approximately ± 2.5 mV. If a smaller adjustment range
is needed, the sensitivity and resolution of the nulling can be improved by using a smaller potentiometer
in conjunction with fixed resistors. The example in Figure 36 has an approximate null range of ± 200 ",V.
offset voltage and drift
Unless proper care is exercised, thermocouple effects at the contacts to the input terminals, caused by
temperature gradients across dissimilar metals, can exceed the inherent temperature coefficient of the
amplifier. Air currents should be minimized, package leads should be short, input leads should be close
together, and input leads should be at the same temperature.
~
TEXAS
INSTRUMENTS
2-.84
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
LT1007, LT1007A, LT1037, LT1037A
LOW·NOISE, HIGH·SPEED, PRECISION OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION OATA
1 kO
10 kO
vCC+
IN-
INOUTPUT
IN+
vcc-
vccFigure 36. Improved Sensitivity
Adjustment
Figure 35. Standard Adjustment
The circuit shown in Figure 37 can be used to measure offset voltage. In addition, with the supply voltages
increased to ± 20 V, it can be used as the burn-in configuration for the LT1 007 and LT1 037.
°
When RF :s; 100 and the input is driven with a fast large-signal pulse (> 1 V), the output waveform will
be as shown in Figure 38.
During the fast-feedthrough-like portion of the output, the input protection diodes effectively short the
output to the input and a current, limited only by the output short-circuit protection, is drawn by the signal
generator. When RF is 2: 5000, the output is capable of handling the current requirements (lL :s; 20 mA
at 10 V), the amplifier stays in its active mode, and a smooth transition occurs.
When RF is > 2 kO, a pole will be created with RF and the amplifier's input capacitance, creating additional
phase shift and reducing the phase margin. A small capacitor (20 pF to 50 pF) in parallel with RF will eliminate
this problem.
50 kOt
15 V
100 {)
vo
50 kO
t Resistors must have low thermoelectric potential
Figure 37. Test Circuit for Offset
Voltage and Offset Voltage Drift With
Temperature
Figure 38. Pulse Operation
TEXAS
~
INSTRUMENTS
POST OFFICI; BOX 655303 • DALLAS, TEXAS 75265
2-85
LT1007. LT1007A. LT1037. LT1037A
LOW·NOISE. HIGH·SPEED. PRECISION OPERATIONAL AIVIPLIFIERS
TYPICAL APPLICATION OATA
noise testing
Figure 39 shows a test circuit for O. 1-Hz to 10.-Hz peak-to-peak noise measurement of the LT1 007 and
LT1 037. The frequency response of this noise tester indicates that the 0.1 Hz corner is defined by only
one zero. Because the time limit acts as an additional zero to eliminate noise contributions from the frequency
band below 0.1 Hz, the test time to measure O. 1-Hz to 10-Hz noise should not exceed 10 seconds.
0.1 Hz to 10Hz p-p NOISE TESTER
FREQUENCY RESPONSE
100
.
90
80
I
r\\,
I
~'
~ 70
I
c
,
'iii
Cl 60
50
40
30
0.01
0.1
10
100
Frequency - Hz
0.11'F
100 kll
221=I'F
.
~~OPE
RIN - 1 Mil
110 kll
24.3 kll
* Device under test
NOTE: All capacitor values are for non-polarized capacitors only.
Figure 39. O.1-Hz to 10-Hz Noise Test Circuit
TEXAS
~
INSTRUMENTS
2--86
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
LT1007, LT1007A, LT1037, LT1037A
LOW-NOISE, HIGH-SPEED, PRECISION OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION OAT A
Special test precautions are required to measure the typical 60-nV peak-to-peak noise performance of the
LT1007 and LT1037:
1.
The device should be warmed up for at least five minutes. As the operational amplifier warms up,
the offset voltage typically changes 3 /LV, due to the chip temperature increasing 10°C to 20°C from
the moment the power supplies are turned on. In the 10-second measurement interval, these
temperature-induced effects can easily exceed tens of nanovolts.
2.
The device must be well shielded from air currents to eliminate thermoelectric effects. In excess of
a few nanovolts, thermoelectric effects would invalidate the measurements.
3.
Sudden motion in the vicinity of the device can produce a feedthrough effect that increases observed
noise.
When measuring noise on a large number of units, a noise-voltage density test is recommended. A 10-Hz
noise-voltage density measurement will correlate well with a O. 1-Hz to 10-Hz peak-to-peak noise reading
since both results are determined by the white noise and the location of the 1If corner frequency.
Figure 40 shows a circuit that measures noise current and presents the formula for calculating noise current.
10 kll
in ..
[vn 2 - (130 nVl 2 j¥"
1 Mn x 100
Figure 40. Noise Test Circuit
The LT1 007 and LT1 037 achieve low noise, in part, by operating the input stage at 120 /LA versus the
typical 10 /LA for most other operational amplifiers. Voltage noise is directly proportional to the square
root of the stage current; therefore, the LT1 007 and LT1 037 noise current is relatively high. At low
frequencies, the low 1If current-noise corner frequency ( "" 120 Hz) minimizes noise current to some extent.
In most practical applications, however, noise current will not limit system performance; this is illustrated
in Figure 27, where:
total noise = [(noise voltage)2 (noise current x RS)2
+
(resistor noise)2] y,
Three regions can be identified as a function of source resistance:
RS:5
RS =
RS =
(iii) RS >
RS >
(i)
(ii)
400 G
400 G to 50 kG at 1 kHz
400 G to 8 kG at 10Hz
50 kG at 1 kHz
8 kG at 10Hz
Voltage noise dominates in region (i)
Resistor noise dominates in region (ii)
Current noise dominates in region (iii)
The LT1 007 and LT1 037 should not be used in region (iii) where total system noise is at least six times
higher than the noise voltage of the operational amplifier (i.e., the low-voltage noise specification is
completely wasted).
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-87
LT1007, LT1007A, LT1037, LT1037A
LOW·NOISE, HIGH·SPEED, PRECISION OPERATIONAL AMPLIFIERS
TYPICAL APPLICATIONS
The sine wave generator application shown below. utilizes the low-noise and low-distortion characteristics
of the LT1 037.
430 Il
"">,S'--e...-OUTPUT
C
#327 LAMP
1
f--2 ..RC
R - 1591.51l ±0.1%
C - 0.1 "F ±0.1%
TOTAL HARMONIC DISTORTION :s 0.0025%
NOISE :s 0.001%
AMPLITUDE - ± 8 v
OUTPUT FREQUENCY - 1.000 kHz FOR VALUES GIVEN ± 0.4%
Figure 41. Ultra-Pure 1-kHz Sine-Wave Generator
EQUIVALENT INPUT NOISE VOLTAGE
OVER A 10-SECOND PERIOD
f
~
340 kll
1%
0.1 Hz to 10 Hz
15 kll
5%
20 kll
TRIM
:>
Ci
:>c
rS:"--...OUTPUT
o
!::!.
III
1/1
'0
Z
"..
U~I
IJ
IV'f\YYI\
III
Cl
"~Mlj . .UJjI'lA~
J\111 ~ ~~"! ~"
~r
r',
to
.l::
o
>
o
2
4
6
t-Time-s
8
10
IN+
The high gain and wide bandwidth of the LT1 037 and (LTl 007)
is useful in low-frequency high-closed-Ioop-gain amplifier
applications. I/. typical precision Op Amp may have an open loop
gain of one million with 500 kHz bandwidth. As the gain error plot
shows, this device is capable of 0.1 % amplifying accuracy up to
0.3 Hz only. Even instrumentation range signals can vary at a faster
rate. The LT1 037's "gain precision-bandwidth product" is 200
times higher, as shown.
Figure 42
Figure 43. Gain 1000 Amplifier With
0.01 % Accuracy. DC to 5 Hz
TEXAS •
2-88
-15 V
RNSOC FILM RESISTORS
INSTRUMENTS
POST OFFICE BOX 655303 '" DALLAS, TEXAS 75265
LT1007, LT1007A, LT1037, LT1037A
LOW·NOISE, HIGH·SPEED, PRECISION OPERATIONAL AMPLIFIERS
TYPICAL APPLICATIONS
GAIN ERROR
vs
FREQUENCY
CLOSED LOOP GAIN = 1000
f=
r-r-- PRECISION
r-- OPAMP V'
TYPICAL
LT10
;I.
0.1
r-----tt-15 V
3650
1%
07V
15 kO
1%
IN+
~
E
W
c
'm
/
Cl 0.01
r--
GAIN ERROR -
>--....~OUTPUT
/
LT1037
Positive feedback to one of the nulling terminals creates
approximately 5 !'V of hysteresis. Output can sink 16 mAo
CLOSED LOOP GAIN
OPEN LOOP GAIN
0.001
0.1
III
10
100
Input offset voltage is typically changed less than 5 !'V due to the
feedback.
f-Frequency-Hz
Figure 44
340 k01%
20 kO 5%
Figure 45. Microvolt Comparator
With Hysteresis
10 kO
TRIM
0.01 !,F
100 kO
15 V
OUTPUT ± 10
v
6
OUTPUT
RL
3000
IN+
The addition of the LT1 007 doubles the amplifier's output drive
to ± 33 mAo Gain accuracy is 0.02%, slightly degraded compared
to above because of self heating of the LT1 037 under load.
ALL RESISTORS METAL FILM
MAG PHONO
INPUT
Figure 46. Precision Amplifier Drives
300·0 Load to ± 10 V
Figure 47. Phono Preamplifier
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-89
LT1DD7, LT1DD7A, LT1D37, LT1D37A
LOW·NOISE, HIGH·SPEED, PRECISION OPERATIONAL AMPLIFIERS
TYPICAL APPLICATIONS
4.99 kO
0.01
316 kO
OUTPUT
TAPE HEAD
INPUT
ALL RESISTORS METAL FILM
Figure 48. Tape Head Amplifier
15
V~'--4I------.
1 kO
CHOPPED DETECTOR
OUTPUT
2670*
.J""L.f""LI'"'t
15 V
+
100l'F
I
--+1
6
392 (J*
392 k(J*
-15 V
IRRADIA~I
1
OPTICAL
CHOPPER
PHOTO-CONDUCTIVE
INFRA-RED
DETECTOR
HgCdTe TYPE
INFRA-RED ASSOCIATES. INC
SYNCHRONOUS
392 (J*
* - 1 % metal film
Figure 49. Infra-Red Detector Preamplifier
~
2-90
OUTPUT
TO DEMODULATOR
TEXAS
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
LT1007, LT1007A, LT1037, LT1037A
LOW·NOISE, HIGH·SPEED, PRECISION OPERATIONAL AMPLIFIERS
TYPICAL APPLICATIONS
,----~t-7.5
350 Il
BRIDGE--+-
V
REFERENCE
OUT
-,
I
r
I
15 V
L
...J
7.5 V
o TO
10 V
OUTPUT
6
30.1
kilt
10 kll
ZERO
TRIM
1 p.F
6
tRN60C FILM RESISTORS
GAIN
TRIM
30.1 kilt
499 Ilt
1..-..---11....---..
The LT1 007 is capable of providing excitation current directly to
bias the 350-1l bridge at 5 V. With only 5 V across the bridge (as
opposed to the usual 10 VI total power dissipation and bridge warmup drift is reduced. The bridge output signal is halved, but the
LT1 007 can amplify the reduced signal accurately.
Figure 50. Strain Gauge Signal Conditioner With Bridge Excitation
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-91
2-92
LT1013, LT1013A, LT1013D, LT1013Y
DUAL PRECISION OPERATIONAL AMPLIFIERS
03237, MAY 1988- REVISED AUGUST 1991
•
•
•
•
•
Single-Supply Operation:
Input V~ltage Range Extends to Ground
Output Swings to Ground While Sinking
Current
1 I N + [ ] 8 11NVcc- 2
7 10UT
Input Offset Voltage ... 150 J.lV Max at
25°C for L T1 013A
21N +
21N-
(TOP VIEW)
3
4
Offset Voltage Temperature Coefficient
2.5 J.lV/oC Max for LT1013A
::>
()
() 0 () ()()
z~z>z
High Gain ... 1.5 V/J.lV Min (RL = 2 kQ) ,
0.8 V/J.lV Min (RL = 600 kQ) for LT1013A
Low Supply Current ... 0.5 IT!A Max at
TA = 25°C for LT1013A
•
Low Peak-to-Peak Noise Voltage
0.55 J.lV Typ
Vec +
20UT
6
5
FK PACKAGE
(TOP VIEW)
I+1
Input Offset Current ... 0.8 nA Max at 25°C
for LT1013A
•
•
o PACKAGE
'"
NC
1 INNC
1 IN +
NC
'3'2
1 2019
J4
5
18 ~
17
6
16
7
8
15
14
NC
20UT
NC
21NNC
~,10 11 1213
Low Current Noise •.. 0.07 pANHz Typ
()
I()
+()
z ()z z z
description
()
>
The LT1013 is a dual precision operational amplifier
featuring low offset voltage temperature coefficient,
high gain, low supply current, and low noise,
N
NC - No internal connection
JG OR P PACKAGE
(TOP VIEW)
The LT1 013 can be operated from a single 5-V
power supply; the common-mode input voltage
range includes ground, and the output can also
swing to within a few millivolts of ground, Crossover
distortion is eliminated, The LT1 013 can be
operated with both dual ±15-V and single 5-V
supplies,
1 OUT [ 1 8 VCC +
11N 2
7
20UT
11N + 3
6 21NVCC-
4
5
21N +
The LT1013C and LT1 013AC, and LT1 0130 are characterized for operation from O°C to 70°C, The LT10131
and LT1 013AI, and LT101301 are characterized for operation from - 40°C to 105°C, The LT1 013M and
LT1013AM, and LT10130M are characterized for operation over the full military temperature range of -55°C
to 125°C,
AVAILABLE OPTIONS
PACKAGE
TA
VIOmax
AT 25°C
SMALL OUTLINE
CHIP CARRIER
CERAMIC DIP
(D)
(FK)
(JG)
(P)
ODC
150 J.lV
-
-
LT1013ACP
to
70DC
300J.lV
-
SOOIlV
LT1013DD
-.WC
150 IlV
-
-
to
300llV
-
105 DC
-55 DC
SOOIlV
LT1013DID
150llV
to
125DC
300llV
SOOIlV
-
LT1013AMFK
LT1013MFK
LT1013DMD
-
PI-ASTIC DIP
-
LT1013CP
-
LT1013AIP
-
LT1013DIP
-
LT1013AMP
LT1013MJG
LT1013DMJG
CHIP FORM
(V)
LT1013DP
LT10131P
LT1013Y
LT1013MP
LT1013DMP
The 0 package is available taped and reeled. Add the suffix R to the device type (e.g., LT1013DDR).
~~~:~:~2n~o:1: .~~:rfTc~\~:~II:.~~~=~r~~:~ 11~~I!CI~~~r~~:!~
standard warranty. Production proclliing dOli not nlcillarily Include
telting of all parameter•.
TEXAS ~
INsrRUMENTS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
Copyright © 1991, Texas Instruments Incorporated
2-93
ro
J,
...
I schematic (each amplifier)
I
• •
• •
Vcc+
• • • •
o~
c:-'>C
.....-'W
-C
::xl~
•
m~
~-'-
C
en
--'-
ow
'Z.~
~~
m-'::xlC
~~
-0
o~
S;~
.....
-'-
-u
0
>~
U>
-i
SW
0-
:BZ
~~
=~r
~~
S:C
21 pF
-c-<
.....
2.5pF
-n
m
::xl
en
4000
IN-
~rrI
~Z
~.~~I
4000
IN+
(J)
-.J
Rl
s:
5kn~5kn
75pF
VCC-
• ••
Component values are nominal.
6000
42kn
2kn
300
•
• •• •
•
• ••
•••
••
.'
lT1013, lT1013A, lT1013D, lT1013Y
DUAL PRECISION OPERATIONAL AMPLIFIERS
LT1 013Y chip information
These chips, properly assembled, display characteristics similar to the LT1 013 (see electrical table). Thermal
compression or ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted
with conductive epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
11N +
11N -
VccCHIP THICKNESS:
15 TYPICAL
BONDING PADS:
4 X 4 MINIMUM
TJ max
=150°C
TOLERANCES
ARE ± 10%
ALL DIMENSIONS
ARE IN MILS
PIN (4) INTERNALLY
CONNECTEDTO
BACKSIDEOFCHIP
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC+ (see Note 1) .................................................... 22 V
Supply voltage, VCC- (see Note 1) ................................................... -22 V
Differential input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ±30 V
Input voltage range, VI (any input, see Note 1) .............................. VCC- - 5 V to VCC+
Duration of short-circuit current at (or below) 25°C (see Note 3) .......................... unlimited
Operating free-air temperature range, TA: LT1013C, LT1013AC, LT1013D ............. -O°C to 70°C
LT10131, LT1013AI, LT1013DI ............ -40°C.to 105°C
LT1013M, LT1013AM, LT1013DM .......... -55°C to 125°C
Storage temperature range .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package .............. 260°C
Case temperature for 60 seconds: FK package .......................................... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: JG package. . . . . . . . . . . . . . . . .. 300°C
NOTES: 1. Ali voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC-'
2. Differential voltages are at the noninverting input with respect to the inverting input.
3. The output may be shorted to either supply.
TEXAS ~
INSfRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-95
~
I
electrical characteristics at specified free-air temperature, VCC±
=± 15 V, VIC =0 (unless otherwise noted)
Ol
TEST CONDITIONS
PARAMETER
Via
Input offset voltage
"Via
input offset voltage
Rs
= son
offset voltage
~
0_
liB
Input bias current
VICR
:HZ
~~
~1"i'1
~Z~
~uJ~
1:;
m
0.4
25°C
0.5
25°C
0.2
1.5
-15
2.8
-30
25°C
Full range
25°C
Common-mode input
voltage range
AVO
Maximum peak output
voltage swing
Large-signal differential
voltage amplification
CMRR Common-mode
rejection ratio
Supply-voltage rejection
kSVR
ratio (!NCCI .1.VIO)
Channel separation
'Id
Differential input resistance
Common-mode input
'Ic
ICC
resistance
Supply current per amplifier
tFull range is O°C to 70°C.
*AII typical values are at TA = 25°C.
MIN
300
Full range
TYP*
40
LT1013DC
MAX
MIN
150
TYP*
200
240
2.5
0.3
MAX
800
1000
2
0.7
0.4
RL
= 2kn
Va
= ±10 V,
25°C
Full range
RL
5
RL
-20
-15
-25
-15
-15.3
-15
-15.3
-15
-15.3
to
to
to
to
to
to
13.5
13.8
13.5
13.8
13.5
13.8
-15
UNIT
ILV
ILVl oC
"tIW
:::xJ.P
m
-n!:j
.....
~=
0 .....
to
to
to
13
13
+12.5
±14
±13
±14
±12.5
+12
~!:j
nA
==c;
-Ow
.....
Zc
2.5
0.5
2
= 2kn
1.5
1
8
1.2
7
100
98
117
0.7
97
V
114
103
120
VlILV
97
94
114
25°C
Full range
100
117
25°C
120
137
123
140
120
137
dB
25°C
70
300
100
400
70
300
Mn
4
Gn
Full range
97
25°C
4
25°C
0.35
Full range
100
0.7
117
dB
97
5
0.55
dB
94
101
0.35
0.5
0.55
>n
r>
:s
"tI
m
±14
+12
0.8
= 2kn
nA
!::
7
25°C
O~
"tI~
."
0.2
0.7
ILVlmo
V
-15
13
±12.5
-30
-38
1.2
= ±2Vto±18V
= ±10V,
-12
1.5
2.8
0.5
= -15 V to 13.5 V
= -14.9 V to. 13 V
Va
0.2
1.5
25°C
Full range
VIC
VCC±
0.8
25°C
= ±10V,
VIC
0.5
= 600n
Va
RL
0.15
-38
-15
Full range
YOM
LT1013AC
MAX
400
Full range
~~
~~C::C~~
TYP*
60
ZW
Long-term drift of input
Input offset current
LT1013C
MIN
25°C
Full range
Temperature coefficient of
110
TAt
C!:j
c: .....
>=
r- .....
0.35
0.55
0.6
rnA
:::xJ
CI)
electrical characteristics at specified free-air temperature, VCC+
TEST CONDITIONS
PARAMETER
VIO
110
liB
Input offset IIOltage
°
= 5 V, VCC- = 0, Va = 1.4 V, VIC = (unless otherwise noted)
L T1013C
TAt
MIN
25°C
RS = 500
90
Full range
Input offset current
Input bias current
25°C
Full range
0.3
25°C
-18
Full range
Outputlow, No load
0-
Output low,
~z
~~
~~c:;;Od~
Maximum peak output
VOM voltage swing
~Z ....
~Ci1~
> '
'"~
8l
Output 10w,Isink = 1 rnA
Output high, No load
RL = 6000toGND
A
Large-signal differential
VD voltage amplification
ICC
Vo = 5mVto4V,
RL =5000
Supply current per amplifier
450
MIN
250
TYP
MAX
250
350
0.2
2
-15
0.3
2
-18
6
-50
-35
-55
to
to
3.5
3.83.8
3.5
-0.3
3.8
950
1200
1.3
3.5
-50
-0.3
LT1013DC
MAX
-90
0
0.3
3.5
3.8
to
0
0
0
to
to
to
3
3
15
25
15
25
25°C
Full range
5
10
5
10
5
10
13
220
4.4
25°C
3.4
4
Full range
3.2
13
350
220
4
3.4
1
25°C
0.32
13
350
220
4.4
4
4
3.4
3.3
25°C
0.55
nA
mV
350
4.4
4
V
3.2
1
0.5
nA
3
25
4
fLV
V
15
25°C
UNIT
to
25°C
Full range
--_.-
60
0
to
25°C
Output high,
~~
~1'r'J
RL = 6000toGND
TYP
-90
Full range
25°C
-l
MIN
6
Common-mode input
ICR voltage range
g
MAX
570
0
V
TYP
LT1013AC
0.31
VlfLV
1
0.45
0.32
0.5
0.5
0.55
=
± 15 V, VIC
= 0, TA =
rnA
Slew rate
Vn
Equivalent input noise voltage
VN(PPI
Peak-to-peak equivalent input noise voltage
In
Equivalent input noise current
f
f
f
f
-C
m
Q
en
O!:j
Z .....
og
25°C
TEST CONDITIONS
PARAMETER
SR
>
r-
::x:J
tFuil range is -O°C to 70°C.
operating characteristics, VCC±
e
c:::
MIN
0.2
TVP
0.4
= 10 Hz
24
= 1 kHz
= 0.1 Hz to 10Hz
22
0.55
= 10 Hz
0.07
MAX
UNIT
V1fLS
nVIv'HZ
fLV
pNv'HZ
-Cw
mC')
::x:J~
- .....
:!:;!:j
0
0
Z .....
r->
>w
>C')
S~
-C!:j
r.....
-,0
"T1 .....
b
""
-w
me
~C')
~
electrical characteristics at specified free-air temperature, vcc±
TEST CONDITIONS
PARAMETER
VIO
Input offset voltage
aVIO
input offset voltage
long-term drift 01 input
RS =
son
offset voltage
0_
~
Full range
0.4
25°C
0.5
Input offset current
25°C
Full range
0.2
liB
Input bias current
25°C
Full range
-15
VICR
~~d
~~Gl
~z
~@4P
In
TYP*
60
110
:HZ
i~~
LT10131
MIN
25°C
Full range
Temperature coefficient 01
~
TAt
=±15 V, VIC =0 (unless otherwise noted)
25°C
Common-mode input
voltage range
Full range
VOM
AVD
Maximum peak output
voltage swing
large-signal differential
voltage amplification
CMRR Common-mode
rejection ratio
Supply-voltage rejection
kSVR
ratio (tNCC I Ll.VIO)
Channel separation
Differential input resistance
I'jd
Common-mode input
I'jc
resistance
ICC
----
-
SuppLy current per amplifier
-----
tFull range is - 40°C to 105°C.
*AII typical values are at TA = 25°C.
25°C
Full range
Rl = 2kn
-15
to
13.5
-15
to
13
±12.5
VIC = -15Vto13.5V
VIC = -14.9 V to 13 V
25°C
Full range
VCC±= ±2Vto±18V
25°C
Full range
±12
0.5
1.2
0.7
97
94
100
97
25°C
25°C
120
70
Vo = ±10V, Rl =
soon
Vo = ±10V, Rl = 2kn
Vo = ±10V, Rl = 2kn
25°C
25°C
Full range
MIN
2.5
LT1013DI
TYP*
40
MAX
0.3
2
MIN
150
300
0.4
1.5
2.8
0.15
-30
-38
-12
-15.3
to
13.8
-15
to
13.5
-15
±14
0.2
7
±13
±12.5
0.8
1.5
114
1
100
TYP*
200
MAX
0.7
5
0.8
1.5
0.2
1.5
-20
-25
-15
2.8
-30
-38
-15.3
-15
to
13.5
to
13.8
-15.3
to
13.8
to
13
+12.5
+14
+14
2.5
8
0.5
1.2
0.7
2
7
114
117
120
117
137
300
123
100
140
400
100
97
120
70
0.55
0.7
0.35
-(1)=
.....
Ow
I1V/mo
0:-
nA
:xJ .....
Z»
~!:j
nA
I
V
,
V
I
!
V/I1V
dB
I
dB
I
137
dB
I
300
Mn
!
Gn I
4
0.5
0.55
11V1°C
I
97
94
0.35
m!:j
52 .....
!i~
-w
00
Z-
»
:s::
"'D
!::
117
25°C
"'D~
:xJ~
I1V
I
±12
5
UNIT
~
-15
97
103
101
4
800
1000
0.5
to
13
25°C
Full range
LT1013AI
MAX
300
550
O!:j
c: .....
>=
r- .....
0.35
0.55
0.6
_~AI
."
m
:xJ
(I)
electrical characteristics at specffied free-air temperature, VCC+
TEST CONDITIONS
PARAMETER
V,O
110
Input offset IIOltage
RS
=5 V, VCC- =0, Vo =1.4 V, VIC =°(unless otherwise noted)
LT10131
TAt
MIN
25°C
= SOO
MAX
90
4SO
Full range
0.3
-18
Full range
Common-mode input
leR vollage range
Full range
g
--I
0_
:BZ
frirn
~~~~
':'3:;
Maximum peak output
~f'1'1
~2
~W~
....~
~
9SO
0.2
1200
1.3
0.3
3.5
-SO
-15
0
-0.3
0
-0.3
to
to
to
to
3.5
3.8
3.5
3.8
2
6
-35
-55
-18
-SO
-90
0
0.3
3.5
3.8
0
0
0
to
to
to
3
3
15
25
Output low,
25°C
5
10
5
10
5
10
to GNO
Full range
= 1 rnA
Vo
RL
13
25°C
220
25°C
= 600 0 to GNO
= 5 mV to 4 V,
= SOOO
Supply current per amplifier
4
4.4
25°C
3.4
4
Full range
3.2
1
25°C
0.32
220
13
3SO
220
0.55
mV
3SO
-'
4.4
4
4.4
3.4
4
3.4
4
V
1
V/IlV
3.2
1
0.5
nA
4
3.3
25°C
Full range
13
350
nA
3
25
= 600 0
IlV
V
15
RL
UNIT
to
25
RL
ICC
MAX
2SO
15
Output high,
Large-signal differential
AVO vollage amplification
TYP
25°C
Output high, No load
§C
2SO
MIN
Output low, No load
Output low, Isink
YOM vollage swing
60
-90
25°C
V
MAX
6
25°C
Input bias current
LT1013D1
TYP
3SO
2
Full range
liB
MIN
570
25°C
Input offset current
LT1013AI
TYP
0.31
0.45
0.32
0.5
0.5
0.55
TEST CONDITIONS
SR
Slew rate
Vn
Equivalent input noise voltage
VN(PP)
Peak-to-peak equivalent input noise voltage
f
f
f
In
Equivalent input noise current
f
= 10 Hz
= 1kHz
= 0.1 Hz to 10 Hz
= 10 Hz
m
rnA
,
S2
en
o
Z.O:;!
= ± 15 V, VIC = 0, T A = 25°C
PARAMETER
""tI
:::c
tFull range is-40°C to 105°C.
operating characteristics, VCC±
'
c
c::
>
r-
MIN
TYP
0.2
0.4
24
22
0.55
0.07
MAX
UNIT
""tIc
m...a.
V/IlS
:::cw
nV/,jHz
:::!.-
IlV
pAl,jHz
>.:O~
Z...a.
>~
r-W
»:s:~""tI!:i
!::...a.
"TIC
-...a.
~
mW
:::cc
cn_
l
o
o
TEST CONDITIONS
PARAMETER
Via
Input offset voltage
aVIO
input offset voltage
Rs
= 50n
Temperature coefficient of
Long-term drift of input
'10
liB
0_
:HZ
VICR
gr!l
~~d~
8:c
~~
VOM
~~~
1$
....
~
AVD
800
1000
,N
52!:i
cn .....
Full range
0.5
2.5"
0.4
2"
0.5
2.5"
!lV/oC
0 .....
1.5
Input bias current
25°C
Full range
-15
-30
25°C
Common-mode input
voltage range
Channel separation
Differential input resistance
Common-mode input
fic
ICC
resistance
Supply current per amplifier
W
=3:
200
0.2
Large-signal differential
-C
150
300
25°C
Full range
voltage amplification
>e
r.....
UNIT
40
'nput offset current
Maximum peak output
LT1013DM
MIN TYP* MAX
300
550
0.5
voltage swing
LT1013AM
MIN TYP* MAX
60
25°C
CMRR Common-mode
rejection ratio
Supply-voltage rejection
kSVR
ratio (AVCC / AVIO)
fjd
LT1013M
MIN TYP* MAX
25°C
Full range
Full range
~.rr1
~z
TAt
m~
-e
Zw
offset voltage
~
CI!:i
c:
.....
electrical characteristics at specified free-air temperature, Vcc± = ± 15 v, VIC = 0 (unless otherwise noted)
25°C
Full range
RL
= 2kn
Va
= ±10V,
RL
= 600n
Va
= ±10V,
RL
= 2kn
VIC
= -15 V to l3.5 V
= -14.9 V to 13 V
VIC
VCC±
Va
= ±2Vto±18V
= ±10V,
RL
= 2kn
25°C
25°C
Full range
25°C
Full range
25°C
Full range
25°C
25°C
25°C
25°C
Full range
"On products compliant to MIL-STD-883, Class B, this parameter is not production tested.
tFull range is -55°C to 125°C.
tAli typical values are at TA = 25°C.
0.4
0.5
0.15
0.8
-12
-20
5
0.2
1.5
-15
-30
2.5
-45
5
-30
-45
-15
-15.3
-15
-15.3
-15
-15.3
to
13.5
-14.9
to
13
±12.5
±11.5
0.5
1.2
0.25
97
94
100
97
120
70
to
to
to
to
13.5
13.8
to
13.5
-14.9
to
13
±12.5
+11.5
0.5
1.2
0.25
97
94
100
97
120
70
13.8
-14.9
to
13
±14
±13
±14
+12
2
0.8
2.5
7
1.5
8
0.5
100
117
117
97'
117
103
120
100
137
123
140
300
100
400
4
0.35
5
0.55
0.7
0.35
0.5
0.6
13.8
±14
2
7
!lV/mo
0>
-c3:
nA
=!:i
nA
0 .....
ZW
m~
>CI
r-3:
>
V
3:
V
!::
::!!
m
cn
VI!lV
114
dB
117
dB
dB
137
300
Mn
4
Gn
0.35
0.55
0.7
~ .....
-e
mA
-C
=
electrical characteristics at specified free-air temperature, VCC+
TEST CONDITIONS
PARAMETER
VIO
110
liB
Input offset voltage
Rs
= son
RS
= 50 n, VIC = 0.1
= 5 V, VCC- = 0, Vo = 1.4 V, VIC = °(unless otherwise noted)
V
Input offset current
MIN
~f
~4r
voltage swing
ICC
TYP
MAX
4SO
SO
250
250
9SO
2SO
900
800
2000
125°C
200
7SO
120
4SO
560
1200
25°C
0.3
2
0.2
1.3
0.3
2
-18
-50
-15
-35
-18
-50
S
10
25°C
Full range
-120
-120
-80
0
-0.3
10
-0.3
0
to
to
to
to
to
to
3.5
3.8
3.5
3.8
3.5
3.8
0
0
0
to
to
to
3
3
25
15
25
15
25
Output low,
25°C
5
10
5
10
5
10
220
350
Full ran(Le
15
18
25°C
220
220
350
18
350
Output high, No load
25°C
4
4.4
4
4.4
4
4.4
Output high,
25°C
3.4
4
3.4
4
3.4
4
Full range
3.1
Large-signal differential
Vo
voltage amplification
RL
= sOOntoGND
= 5mVt04V,
= 500n
Supply current per
1
25°C
0.32
Full range
amplifier
3.2
25°C
0.S5
nA
mV
e
c:
V/j.1V
3.1
1
0.5
nA
3
15
= SOO.Q to GND
Output low, Isink = 1 rnA
j.1V
V
25°C
RL
UNIT
-0.3
Output low, No load
RL
AVD
MIN
1500
Full range
YOM
LT1013DM
MAX
90
voltage range
Maximum peak output
TYP
400
25°C
~
MIN
25°C
Common-mode input
-z
MAX
Full range
0
VICR
TYP
Full range
Input bias current
LT1013AM
LT1013M
TAt
0.31
""'C
:rJ
1
0.45
0.32
0.5
rnA
0.65
0.55
PARAMETER
Slew rate
Vn
Equivalent input noise voltage
VN(PP)
Peak-to-peak equivalent input noise voltage
In
Equivalent input noise current
--------
TEST CONDITIONS
CI)!:i
""'C3':
m~
= ± 15 V, VIC = 0, TA = 25°C
SR
m
n
O....a.
ZC
....a.
0(1.)
tFull range is -55°C to 125°C.
operating characteristics, VCC±
:z:,.
,-
MIN
TYP
0.2
0.4
f = 10 Hz
24
f = 1 kHz
f = 0.1 Hz to 10Hz
f = 10 Hz
22
MAX
UNIT
V/j.1s
nV/...[Hz
0.55
j.1V
0.07
pN...[Hz
~!:i
~....a.
-c
0....a.
Z(l.)
:z:,.:z:,.
'-3':
:z:,.~
3':!:i
""'C....a.
Cc
.." ....a.
-(I.)
~
~
me
~3':
lT1013Y
DUAL PRECISION OPERATIONAL AMPLIFIERS
electrical characteristics at VCC+
otherwise noted)
110
PARAMETER
Input offset voltage
Input offset current
liB
Input bias current
VIO
=5 V, VCC- = 0, Vo = 1.4 V,
TEST CONDITIONS
VIC
= 0, T A = 25°C (unless
MIN
RS=50Q
0
VICR
Common-mode input voltage range
Output low, Isink = 1 mA
Output high, No load
Output high, RL = 600 Q to GND
AVD
Large-signal differential
voltage amplification
ICC
Supply current per amplifier
2
nA
-18
-50
nA
to
5
4
3.4
UNIT
~V
0.3
3.8
15
220
4.4
V
25
10
V
4
0.32
mV
350
1
Vo = 5 mV to 4 V, RL = 500 Q
V/~V
0.5
mA
=± 15 V, VIC =0, T A =25°C (unless otherwise noted)
electrical characteristics at Vcc±
VIO
0.3
3.5
Output low, RI =600 Q to GND
Maximum peak outpyt voltage swing
MAX
950
to
Output low, No load
YOM
TYP
250
PARAMETER
Input offset voltage
TEST CONDITIONS
MIN
RS =50Q
TYP
200
MAX
800
0.5
Long-term drift of input offset voltage
UNIT
~V
~V!mo
110
Input offset current
0.2
1.5
nA
liB
Input bias current
-15
-30
nA
VICR
YOM
CMRR
Maximum peak output voltage swing
voltage amplification
Common-mode rejection ratio
Supply-voltage rejection
kSVR
ratio (IlVCClllVIO)
Channel separation
r;d
Differential input resistance
r;c
Common-mode input resistance
ICC
Supply current per amplilier
operating characteristics, VCC±
SR
PARAMETER
Slew rate
Vn
Equivalent input noise voltage
VN(PP)
Peak-to-peak equivalent
input noise voltage
In
-15.3
to
13.5
13.8
±12.5
±14
0.5
2
V!~V
VO=±10V,RL=2Q
VIC = -15 V to 13.5 V
1.2
7
114 .
dB
VCC± =±2 V to±18 V
100
117
dB
Vo =±10V, RL = 2 Q
120
137
dB
70
300
MQ
Common-mode input voltage range
Large-signal differential
AVD
-15
Equivalent input noise current
RL =2 kQ
VO=±10V,RL=600Q
V
V
4
GQ
0.35
0.55
mA
TYP
0.4
MAX
UNIT
= ± 15 V, VIC =0, TA =25°C
TEST CONDITIONS
1 - 10 Hz
1 = 1 kHz
MIN
0.2
V/~s
24
22
nVIVHZ
1=0.1 Hz to 10Hz
0.55
~V
f - 10 H~
0.07
pAlVHZ
TEXAS ."
INSTRUMENTS
2-102
97
to
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
lT1013, lT1013A, lT1013D
DUAL PRECISION OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
table of graphs
FIGURE
VIO
t.Vln
'10
118
Input offset voltage
Change in input offset voltage
Input offset current
vs
Source resistance
vs
Temperature
vs
vs
Time
Temperature
vs
vs
Temperature
Input bias current
Frequency
VIC
Input bias current
Common-mode input voltage
AVD
Differential voltage amplification
vs
vs
Load resistance
Channel separation
vs
Frequency
CMRR
Output saturation voltage
Common-mode rejection ratio
vs
vs
Temperature
Frequency
kSVR
ICC
Supply voltage rejection ratio
Supply current
vs
Frequency
vs
Temperature
Short-circuit output current
vs
Time
Equivalent input noise voltage
vs
Frequency
Equivalent input noise current
Peak-to-peak input noise voltage
vs
Frequency
vs
Time
lOS
Vn
In
VN(PP)
Pulse response
Phase shift
Small-signal
Large-signal
vs
Frequency
1
2
3
4
5
6
7,8
9,10
11
12
13
14
15
16
17
17
18
19,21
20,22,23
9
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
2-103
LT1013, LT1013A, LT1013D
DUAL PRECISION OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
INPUT OFFSET VOLTAGE
OF REPRESENTATIVE UNITS
INPUT OFFSET VOLTAGE
vs
vs
BALANCED SOURCE RESISTANCE
FREE-AIR TEMPERATURE
10
2S0
= 5 V, VCC- = Ii==:
= -550Cto12S0C~
Vcc+
TA
>
E
I
I
- /
=
=
~
r--
~
0
r--
SQ.
0.1
..5
I
0
>
>
1,/ . /
=
I
L_~
Qi
./
..,.;:V.//
VCC 0
TA
2SoC
=
GI
DI
~
0
i== VCC+ = 5V
Qi
>::I. 150
V~
/
VCC±
±15VI
TA
-55°C to 12SoC .
GI
DI
S
Vcc±
200
:I!!
0
0
~V
SQ. -50
t:
f-t=fvcc. ."V =f--!b>-
-;- -100
0
>-150
,
--
100
50
= ±15V
=-
--
r--
---- ---r--
I
0.01
1k
3k
10 k 30 k 100 k 300 kiM
RS - Source. Resistance - Q
3M
50
75
100
INPUT OFFSET CURRENT
vs
vs
ELAPSED TIME
FREE-AIR TEMPERATURE
=
=
VIC
4
oct
t:
E
i!!
;;
3
=0
O.S
0.6
0
==
0
In
2
SQ.
GI
DI
..
Vcc±
0.4
I
JG Package
g
I
o
o
"I
0.2
~
I
Vcc±
3
4
5
= ±2.5V
I
V
Vcc+ = 5 V, Vcc- = 0
~I
_VV V
:....-
..5
t:
J:
0
I
o
-
f-""
= ±15V
I
/
~
t - Time After Power-On - min
-25
0
25
50
75
100
T A - Free-Air Temperature - ·C
Figure 3
Figure 4
2
-50
-;-.:::
./
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
IN5rRUMENTS
2-104
125
I
SQ.
>
In
I----..
RS
Vcc±
±15V
TA
2SoC
~
GI
-200
I
-- - -- -......
Figure 1
5
N'
'0
= 25°C
I
-......
t-- r---
0
TA
-....
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
125
lT1013, lT1013A, lT1013D
DUAL PRECISION OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
INPUT BIAS CURRENT
vs
FREE-AIR TEMPERATURE
COMMON-MODE INPUT VOLTAGE
vs
INPUT BIAS CURRENT
-30
15
5
TA = 25°C
VIC = 0
\
>
>
.,
-25
:;
~~f=::::: r-r--
r--
I--r-
-
10
a.
.E
.,
'8
VCC± = ±15V\
(Left Scale)
0
:::;;
-
-15
f\.
o
-5
-10
-15
-20
-25
liB - Input Bias Current - nA
0
10
TA
==
'a
= -SsoC/
E
«.,
II
:g'"
os
TA
=
= 25°C
15
.~
I
/T
/rA
~
= -55°C
TA = 25~
TA
j
~
ii
.~
0.4
£
£
c
C
i3
/
0.4
I
~
1k
400
RL - Load Resistance -
4k
10 k
TA
I
II
i3
0.1
100
=0
/,....
~.,
125°C
ii
~
-1
-30
4
!E
i5..
>
~
1!
=
Vcc+
5 V, VccVa
20 mV to 3.5 V
IA"
V
->
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
LOAD RESISTANCE
10
4
0
Figure 6
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
LOAD RESISTANCE
u
I
0
'''--i""-
->
125
8
~
Figure 5
c
'8
E
E
0-10
o
';
.,
2
0
I
-5
=
a.
.E
-5
0
Vcc± = ±1S V
va
±10 V
=
=
VCC+
5V
VCC0
(Right Scale)
=!ic
0
~
>
.
~
:;
0
E
E
-25
0
25
50
75
100
TA - Free-Air Temperature - °C
3
I
C:
vcc± = ±2.5 V
vcc± = ±15 V
-50
.,
S'"
1\
5
4
II
0.1
100
n
Figure 7
= 125°C
II
I
400
1k
RL - Load Resistance -
4k
10 k
n
Figure 8
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSfRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-105
LT1D13, LT1D13A, LT1D13D
DUAL PRECISION OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
DIFFERENTIAL VOLTAGE AMPLIFICATION
and PHASE SHIFT
vs
FREQUENCY
FREQUENCY
"0
20
c
.~
::"
~: ~ ...... VCC± = ±15 V
AV';i\
is.
E
:i
0
'E
r--ro-
~
VCC+ = 5 V
VCC- = 0
VCC+ = 5V
.....VCC- = 0
~~II
'\
~ r\
~~
e
~
VCC± = ±15 V
I
c
~
I
-10
0.01
I
r "
~......
~
"0
I
c
120
0
-;
~
100
is.
E
Cl
220·
~ r---,
i5
I
c
~
240·
10
3
0
Figure 10
OUTPUT SATURATION VOLTAGE
CHANNEL SEPARATION
vs
vs
FREQUENCY
FREE-AIR TEMPERATURE
10
160
Vcc+ = 5Vt030V
VCC- = 0
VCC± = ±15 V
VI(PP) = 20 V to 5 kHz
140 .....,,=+=t=~-~.----- RL
= 2 kQ -1---'--1
In
"0
~os
120
r\
10 100 1 k 10 k 100 k 1 M 10 M
f - Frequency - Hz
0.1
Figure 9
I
",
~
-20
0.01
f - Frequency - MHz
c
= ±15V
~
~
e
200·
\
0.3
140
In
Ul
\
1\
c
>
Cl
l!
'0
80·
VIC = 0
CL = 100pF 100·
TA= 25·C
120·
I II
In
I
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
>
..
Islnk = 10mA
Cl
Thermal
Interaction
~Isink = 5 mA
l!
'0
>
c
.S!
c.
e
os
=
0.1
II>
Ul
Gi 100
c
c
os
.c
0
Isink = 1 mA
T
Ul
'5
,g.
Pin-to-Pin
Capacitance
80
I
Isink = 100llA
~
0
Isink = 10llA
Isink = 0
60~----~----~----~----~--~
10
100
1k
10 k
100 k
f - Frequency - Hz
1M
0.01
-50
-25
0
25
50
75
100
T A - Free-Air Temperature - ·C
Figure 12
Figure11
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSfRUMENTS
2-106
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
125
LT1013, LT1013A, LT1013D
DUAL PRECISION OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
SUPPLY VOLTAGE REJECTION RATIO
vs
FREQUENCY
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
140
120
...,£D
I
0
i
~
100
c
.~
80
vcc-
;;
...,..
a:
0
"
VCC+~
"=
a:
= 25°C
...,£D
I
I
vcc± = ±15V
I
TA
60
=i!c
0
E
E
40
0
c 100
..
.~
'a;
~'\
0
a:
a:
a:
0
~
0
0
.~
a:
..
80
0
~
60
>
:s
40
20
a:
>
20
III
~
o
100
10
1k
10 k
f - Frequency - Hz
100 k
o
1M
0.1
380
D..
C
Q.
:s
rJ)
I
'/
0
.9
= ±1~
V
300
'/
260
-50
10
100
lk
10k
i\
""
lOOk
SHORT-CIRCUIT OUTPUT CURRENT
vs
ELAPSED TIME
420
Q.
\Supply
Supply
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
'1
Vcc±
I
Positive
Figure 14
40
~
" "
\
"" "" \
'"
Negativ~
\
Figure 13
E
30
= -55°C
TA = 25°C
C
l!!
20
TA
<1:
:s
340
0
>-
...........
f - Frequency - Hz
460
<1:
TA
\
Q.
rJ)
:;:
0
....
""
'a
....E
r--
>-
a.
= ±lSV
= 25°C
Vcc±
120 I - - -
-'
/
Vcc+
-25
-- ----
..--
f...--
'S
S:s
I---
"5
~
~
.r:.
0
III
I
I
I
0
25
50
I
100
125
= ±1S V
I
= 125°C
0
=125°C
I
1
TA = 25°C
_ITA = -55°C
TA
-10
-20
-40
75
VCC±
10
1l-30
= 5 V, Vcc- = 0
I
TA
:;
0
~
~
r---
1M
~
V-- f-o
2
T A - Free-Air Temperature - °C
t - Time - min
Figure 15
Figure 16
3
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices,
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-107
lT1013, lT1013A, lT1013D
DUAL PRECISION OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
EQUIVALENT INPUT NOISE VOLTAGE
and EQUIVALENT INPUT NOISE CURRENT
vs
FREQUENCY
1000
~>
1000
=
=
I
300
300
J!
In
~
"-
,;
~ 100
i
.5
i
~
'S
"
100
=2 Hz
GI
m
;;
~ 12001------1I--...-.-:f--I--I--+--.--t----f
~
.~
~
...zc:;
>
4001------11-----I---+---t----f
.5OL-_~
o
1k
__
2
~
___
~
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
20
Vcc± = ±lS V
60 AV = 1
TA 2S"C
40
Vcc± = ±lSV
lS AV = 1
TA 2S"C
\
10
I
GI
E
S
>
o
I
1
I
"0
0
1,.
ad -20
o -s
I
o
I
~ -40
> -10
-60
-lS
-20
2
4
6
t - Time - fls
8
10
12
14
Figure 19
I
o
~
10
TEXAS ~
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
\
\
\
SO 100 lS0 200 2S0 300 3S0
I - Time - flS
Figure 20
INSTRUMENTS
2-108
__
=
>
20
o
~
8
Figure 18
80
-80
____
4
6
I-Time-s
Figure 17
J!
~
'S
~
I
&
10
100
f - Frequency - Hz
=
>
E
!:
=
I
10
1
;;
C
I 11111111
10
:!
z
'0
.!!
30
r-
1If Corner
~
8
...
I'-
!
~
I
..
.5
......
~
30
2000...----,r---....,.--...,.--""'T"'---,
Vcc±
±2Vlo±18V
f= 0.1 Hzlol0Hz
> 1600 TA 2S"C _ _f--_--I_ _-+_~-I
c
=
Vcc±
±2Vto ±18V
TA 2S"C
c
&
PEAK-TO-PEAK INPUT NOISE VOLTAGE
OVER A
1 O-SECOND PERIOD
LT1013, LT1013A, LT1013D
DUAL PRECISION OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
160
=
=
> 120
II>
til
80
:;
So
::I
60
0
I
>
E
3
0
>
2
:;Q.
AV
TA
=1
/
0
\
\
/
I
>
\
/
:;
20
=0
II
= 25°C
0
40
0
-1
0
-20
4
l!
0
>
=
=
I
II>
til
=
Vcc+
5 V, VCCVI
0104 V
RL
4.7 k.Q 10 5 V
5
=
100
g
6
=
AV = 1
TA
2SoC
E
l!
=
Vcc+
S V, VCC0
VI
010 100 mV RL
600 !l 10 GND
140
I
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
o
-2
20
40
60
80
o
100 120 140
10
20
30
1 - Time - Ils
1 - Time - IlS
Figure 21
Figure 22
40
50
60
70
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
6
5
>
4
I
II
01
~
>
:;
Q.
;;
RL
AV
TA
=0
=1
= 25°C
2
I
0
0
=0
If
3
0
>
Vcc+ = 5 V, VccVI = 0104 V
1\
\
I
\
/
J
\
-1
-2
o
10
20
30
40
50
60
70
1 - Time -Ils
Figure 23
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-109
LT1013, LT1013A, LT1013D, LT1013Y
DUAL PRECISION OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
single-supply operation
The L T1 013 is fully specified for single-supply operation (VCC- = 0). The common-mode input voltage range
includes ground, and the output swings within a few millivolts of ground.
Furthermore, the LT1 013 has specific circuitry that addresses the difficulties of single-supply operation, both
at the input and at the output. At the input, the driving signal can fall below 0 V, either inadvertently or on a
transient basis. If the input is more than a few hundred millivolts below ground, the LT1013 is designed to
deal with the following two problems that can occur:
1. On many other op amps, when the· input is more than a diode drop below ground, unlimited current
will flow from the substrate (VCC- terminal) to the input, which can destroy the unit. On the LT1013,
the 400-Q resistors in series with the input (see schematic) protect the device even when the input
is 5 V below ground.
2. When the input is mote than 400 mV below ground (at TA = 25°C), the input stage of similar type
op amps saturates and phase reversal occurs at the output. This can cause lock-up in servo systems.
Because of a unique phase-reversal protection circuitry (021, 022, 027, and 028), the LT1013
outputs do not reverse, even when the inputs are at -1.5 V (see Figure 24).
This phase-reversal protection circuitry, however, does not function when the other operational amplifier on
the LT1 013 is driven hard into negative saturation at the output. Phase-reversal protection does not work on
amplifier 1 when 2s output is in negative saturation or on amplifier 2 when 1s output is in negative saturation.
At the output, other single-supply designs either cannot swing to within 600 mV of ground or cannot sink more
than a few microamperes while swinging to ground. The all-NPN output stage of the LT1 013 maintains its low
output resistance and high gain characteristics until the output is saturated. In dual-supply operations, the
output stage is free of crossover distortion.
5
>
..
!i
4
5
~
f\,
I \
I
3
I \
I
!'5 2
1\
I \
~
\
\
I
o
0:\\, II
1\ I
~
1
>
-1
v
-2
>
..
Cl
S
4
3
(5
>
'5
2
So
:::I
0
I
0
>
0
5
"\
'
\
r
.......
I
>
"\
'f.-'
v to 4.5 V
Ir--I
4
I
3
>
'5
Q.
'5
\
2
0
0
L~
. TEXAS ~
2-110
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
l ~
(e) NO PHASE REVERSAL
EXHIBITED BY LT1013
Figure 24. VOltage-Follower Response With Input Exceeding
the Negative Common-Mode Input VOltage Range
INSfRUMENTS
I
II
I
~
-1
(b) OUTPUT PHASE REVERSAL
EXHIBITED BY LM358
1\
I \
II \
(5
-1
(a) VI(PP) = -1.5
Cl
S
\
I
1\ I
..
LT1013, LT1013A, LT1013D, LT1013Y
DUAL PRECISION OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
comparator applications
The single-supply operation of the LT1 013 lends itself for use as a precision comparator with TTL-compatible
output. In systems using both operational amplifiers and comparators, the LT1013 can perform multiple duties.
Refer to Figures 25 and 26.
5
>
,\!
10mV /
"0
>
3
2
:;
J
If 5 mV
/ /
:;
a.
r
f
4
CII
Ol
//
I
l /'"
0
I /
I
~
0
5
>
./
2mV
V
,\ ........
4
CII
Ol
\' r\
,\!
"0
>
~
3
:;
a.
:;
2
0
Overdrive
\
10mV
I
1\
"', ""'1\5mV
\
0
>
0
CII
\
CII
iuOl
1\
Vcc+ = 5V
Vcc- = 0
TA = 25°C
........
~2mV
Overdrive
"
i'..
iuOl
';: S
c~~
1100 mV
:!;
i5~
o
VCC+=5V
Vcc- = 0
TA = 25°C
'CIIE ~0
C a.
..5
o
50 100 150 200 250 300 350 400 450
1- Time - f.LS
Figure 25. Low-to-High-Level Output
Response for Various Input Overdrives
1100 mV
~>
.!!::: ::2
50 100 150 200 250 300 350 400 450
1- Time - f.LS
Figure 26. High-to-Low-Level Output
Response for Various Input Overdrives
low-supply operation
The minimum supply voltage for proper operation of the LT1 013 is 3.4 V (three Ni-Cad batteries). Typical supply
current at this voltage is 290 f.1,A; therefore, power dissipation is only 1 mW per amplifier.
offset voltage and noise testing
The test circuit for measuring input offset voltage and its temperature coefficient is shown in Figure 30. This circuit
with supply voltages increased to ±20 V is also used as the burn-in configuration.
The peak-to-peak equivalent input noise voltage of the LT1013 is measured using the test circuit shown in
Figure 27. The frequency response of the noise tester indicates that the 0.1-Hz corner is defined by only one
zero. The test time to measure 0.1-Hz to 10-Hz noise should not exceed 10 seconds, as this time limit acts as
an additional zero to eliminate noise contributions from the frequency band below 0.1 Hz.
An input noise voltage test is recommended when measuring the noise of a large number of units. A 1O-Hz input
noise voltage measurement correlates well with a 0.1-Hz peak-to-peak noise reading because both results are
determined by the white noise and the location of the 1/f corner frequency.
Current noise is measured by the circuit and formula shown in Figure 28. The noise of the source resistors is
subtracted.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
2-111
LT1013, LT1013A, LT1013D, LT1013Y
DUAL PRECISION OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
offset voltage and noise testing (continued)
0.11lF
100kO
2kO
100
>-+-'VI/'~'-H--.-Oscilloscope
Rin
=1 MO
110 kO
0.11l F
NOTE: All capacitor values are for non polarized capacitors only.
Figure 27. O.1·Hz to 10·Hz Peak·to·Peak Noise Test Circuit
10kn
50kO
(see Note A)
10Mot 10Mot
15V
1000
-::-
1000
(see Note A)
10Mot 10MOt
tMetal film resistor
=1000 Via
50kO
(see NOleA)
[Vno 2 - (820 nV)2J1/2
40 MO x 100
Figure 28. Noise Current Test Circuit
and Formula
NOTE A: Resistors must have low thermoelectric potential.
Figure 29. Test Circuit for VIO and aVIO
TEXAS ~
INSTRUMENTS
2-112
Va
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
LT1013, LT1013A, LT1013D, LT1013Y
DUAL PRECISION OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
typical applications
5V
03
2N2905
68Q
100 k.Q
100Qt
1 k.Q
4-mA
TRIM
.-----+-+4-mA to 20-mA OUT
To Load
L - . . - - - - - - + 2 . 2 k.Q Max
IN
o to 4 V
t1% film resistor. Match 10-kQ resistors 0.05%.
+T1 = PICO-31080
Figure 30. 5-V Powered 4-mA - 20-mA Current Loop Transmitter With 12-81t Accuracy
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
2-113
LT1013, LT1013A, LT1013D, LT1013Y
DUAL PRECISION OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
5V
To Inverler
Drive
4-mA 10 2D-mA OUT
Fully Floating
4kQ t
5V
2kQ
1 kQ
20-mA
Trim
Trim
-::-
IN
0104 V
":"
t1 % film resistor
Figure 31. Fully Floating Modification to 4-mA - 20-mA Current Loop
Transmitter With 8-Bit Accuracy
IN+
1/2 LTC1043
IN+
7
0-+=-8"'---=-1
OUTB
IN- 13
NOTE: VIO
= 150 flV, AVO = (R1/R2) + 1, CMRR = 120 dB, VICR = 0 to 5 V
Figure 32. S-V Single-Supply Dual Instrumentation Amplifier
TEXAS ~
INSTRUMENTS
2-114
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
LT1013, LT1013A, LT1013D, LT1013Y
DUAL PRECISION OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
To Input
Cable Shields
200 knt
10 kUt
20kU
IN-
OUT
1 IlF
20kU
10 kUt
IN+
5V
10 kU t
-:-
t1% film resistor. Match 10-kn resistors 0.05%.
:j:For high source impedances, use 2N2222 as diodes.
NOTE: AVD = (400,OOO/RG) + 1
Figure 33. 5-V Powered Precision Instrumentation Amplifier
TEXAS ~
INSfRUMENTS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
2-115
2-116
LTC 1052
CHOPPER-STABILIZED OPERATIONAL AMPLIFIER
MAY 1988-REVISED JULY 1991
•
•
•
Input Offset Voltage .•• 5 !-tV Max at 25°C
o OR P PACKAGE
(TOP VIEW)
Temperature Coefficient of Input Offset
Voltage .•. 0.001 !-tV;oC Typ
cXAUa
•
Maximum Input Bias Current ... 30 pA at
25°C
•
Minimum Differential Voltage Amplification
Over Full Temperature Range .•. 120 dB
•
Minimum Common-Mode Rejection Ratio
Over Full Temperature Range ..• 120 dB
•
Minimum Supply Voltage Rejection Ratio
Over Full Temperature Range ... 120 dB
•
Single-Supply Operation from 4.75 V to
16 V (Input Voltage Range Extends to
Ground)
•
ININ+
2
3
7
6
VDD-
4
5
Long-Term Drift of Input Offset Voltage
100 nV/mo Typ
CXB
VDD+
OUT
CLAMP
AVAILABLE OPTIONS
PACKAGE
TA
VIOMAX
at 25°C
SMALL OUTLINE
(D)
PLASTIC DIP
(P)
5 IAV
lTC1052CD
lTC1052CP
5IAV
lTC1052MD
lTC1052MP
-40°C
to
85°C
-55°C
to
125°C
The D package is available taped and reeled. Add the suffix R,
(e.g., lTC1052CDR).
External Capacitors Can Be Returned to
Vcc- with No Noise Degradation
description
The LTC1052 is a low-noise chopper-stabilized operational amplifier manufactured using CMOS silicon-gate
technology. The device is well-suited for applications such as thermocouple amplifiers, strain-gauge amplifiers,
low-level signal processing, and medical instrumentation.
Chopper stabilization constantly corrects input offset voltage errors, including both errors in the initial input offset
voltage and errors in input offset voltage due to time, temperature, and common-mode input voltage. The
chopper circuitry is internal and completely transparent to the user. Only two external capacitors are required
to alternately sample and hold the offset correction voltage and the amplified input signal.
Low-frequency (1/f) noise is also improved by the chopping technique. Instead of noise increasing continuously
at a rate of 3 dB/octave, the internal chopping causes noise to decrease at low frequencies. Picoampere input
currents further enhance the performance of this device.
The C-suffix devices are characterized for operation from -40°C to 85°C. The M-suffix devices are characterized
for operation over the full military temperature range of -55°C to 125°C.
~~~~~~T1!!~~:~A~f~r~:~Wc~~lo:rr:;~ a:h:f f:r::a:~nT:!~~
Instruments standard warranty. Production procesllng does not
necessarily Includelesflng of all parameters.
.Jf
INSlRUMENlS
Copyright © 1991, Texas Instruments Incorporated
TEXAS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-117
LTC 1052
CHOPPER·STABILlLZED OPERATIONAL AMPLIFIER
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Voo+ (see Notes 1 and 2) ..................................................... 8 V
Supply voltage, Voo- (see Notes 1 and 2) ..... ,............................................. -8 V
Input voltage range, VI (any input, see Note 1) ............................................... ± 16 V
Duration of short-circuit current at (or below) 25°C (see Note 2) .............................. unlimited
Operating free-air temperature, TA: C-suffix .......................................... -40°C to 85°C
M-suffix ......................................... -55°C to 125°C
Storage temperature range ....................................................... -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................... 260°C
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VOO + and VOO-.
2. Connecting any terminal to voltages greater than VOO + or less than VOO- may cause destructive latch-up. No sources operating
from ex1ernal supplies should be applied prior to device power up.
3. The output may be shorted to either supply.
electrical characteristics at specified free-air temperature, Voo± = ±5 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
"'VIO
Temperature coefficient
of input offset voltage
Long-term drift of input
offset voltage
110
liB
VICR
YOM
TEST CONDITIONS
RS=50Q
VIC=O,
Input offset current
TAt
LTC1052C
MIN TVP:j: MAX
25°C
0.5
Full range
0.01
25°C
100
25°C
5
Full range
Full range
Maximum peak output
RL = 100 kQ,
See Note 4
25'C
voltage swing
RL = 10 kO,
See Note 4
Full range
4.7
25°C
120
Full range
120
Full range
Large-signal differential
fch
Internal chopping
frequency
On-state clamp current
Vo = ±4V,
RL = 10 kQ
RL=100kQ
5
0.05
0.01
0.05
Vo =-4 Vt04 V
Common-mode
VO=O,
CMRR
rejection ratio
Supply-voltage rejection
kSVR
100
1000
120
150
V
dB
120
330
100
100
100
10
1
120
VCC", = 2.375 Vto ±8 V,
RS=50Q
VO=O,
25°C
120
ratio (/WCCJdVIO)
Full range
120
Supply current
VO=O,
25'C
Full range
t Full range IS -40°C to 85°C for the LTC1052C and -55'C to 125°C for the LTC 1052M.
:j: All typical values are at TA = 25°C.
NOTE 4: Output clamp is not connected.
TEXAS ."
INSIRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Hz
f.IA
25
25
Full range
120
140
100
pA
2
nA
140
dB
120
150
120
150
dB
120
1.7
pA
150
330
RS=50Q
pA
4.95
4.7
10
"V
"V/'C
V
25°C
120
30
-5
to
2.7
Full range
No load
1
25°C
25°C
30
2000
30
4.95
25'C
VIC = VICR min,
5
UNIT
nV/mo
100
30
to
2.7
Full range
Off-state clamp current
2-118
0.5
175
RS =50Q
voltage amplification
5
-5
Common-mode input
voltage range
AVO
MAX
350
1
25'C
Input bias current
LTC1052M
MIN TVP:j:
2
3
1.7
2
3
mA
LTC1052
CHOPPER-STABILIZED OPERATIONAL AMPLIFIER
operating characteristics, Voo± = ±S V, TA = 2SoC
PARAMETER
SR
VNPP
TEST CONDITIONS
Slew rate
RL= 10kQ,
Peak-to-peak equivalent input noise voltage
In
Input noise current (see Note 5)
GBP
Gain bandwidth product
NOTE 5: EqUivalent Input nOIse current
IS
CL = 50 pF
= 100 kQ to 10Hz
RS = 100 kQ to 1 Hz
f = 10 Hz
RS
MIN
TYP
4
MAX
UNIT
V/fl S
1.5
0.5
flY
0.6
WVHZ
1.2
MHz
calculated as follows: In = (2q x IIB)1/2, where q = 1.6 x 10-19.
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-119
2-120
MC1458, MC1558
DUAL GENERAL·PURPOSE OPERATIONAL AMPLIFIERS
D972, FEBRUARY 1971-REVISED OCTOBER 1990
•
Short-Circuit Protection
•
Wide Common-Mode and Differential
Voltage Ranges
•
No Frequency Compensation Required
•
Low Power Consumption
•
No Latch-Up
•
Designed to be Interchangeable With
Motorola MC 1558/MC 1458 and Signetics
S5558/N5558
MC1458 .. , D OR P PACKAGE
MC1558 , , , JG PACKAGE
(TOP VIEW)
AMPL{ OUT [ ] 8 VCC+
#1
IN 2
7
OUT} AMPL
IN+
3
6
IN #2
VCC-
4
5
IN+
MC1558, .. U FLAT PACKAGE
(TOP VIEW)
NC
description
AMPL {
OUT
#1
IN IN +
The MC 1458 and MC 1558 are dual generalpurpose operational amplifiers with each half
electrically similar to the uA 7 41 except that
offset null capability is not provided,
NC
VCC +
OUT} AMPL
IN#2
VCC- ';.. _ _:..r-' IN+
MC1558. , , FK PACKAGE
The high-common-mode input voltage range and
the absence of latch-up make these amplifiers
ideal for voltage-follower applications, The
devices are short-circuit protected and the
internal frequency compensation ensures
stability without external components,
(TOP VIEW)
f-
:::>
0
u
The MC1458 is characterized for operation from
o°C to 70°C, The MC1558 is characterized for
operation over the full military temperature range
of - 55°C to 125°(,
Z
'"
3
2
+
u
u uu
Z
>Z
20 19
NC
NC
4
18
# 1 IN-
S
17
#2 OUT
NC
6
16
NC
15
#2IN-
8
14
NC
# 1 IN+
NC
symbol (each amplifier)
9
NONINVERTING
INPUT IN+
U
Z
INVERTING
INPUT IN-
IU + U
U Z ~ Z
U
N
>
'"
NC - No internal connection
AVAILABLE OPTIONS
SYMBOLIZAnON
DEVICE
PACKAGE
SUFFIX
OPERATING
VIO MAX
TEMPERATURE RANGE
at 25°C
6 mV
5 mV
MC1458
D,P
ODC to 70 DC
MC1558
FK,JG,U
- 55 DC to 125 DC
The D packages are available taped and reeled, Add the suffix R to
the device type, (i.e., MC1458DR)
PRODUCTION DATA documents contain information
current as of publication date. Products conform to
specifications per the terms of Texas Instruments
standard warranty. Production processing does not
necessarily include testing of all parameters,
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Copyright © 1990, Texas Instruments Incorporated
On products compliant to MIL·STD·BB3, Class B, all parameters are tested
unless otherwise noted. On all other products. production processing dOBS
nol necessarilv include testinD of all parameters.
2-121
I
MC1458. MC1558
DUAL GENERAL·PURPOSE OPERATIONAL AMPLIFIERS
schematic (each amplifier)
r------.----.----------~---VCC+
+_+_-,
INVERTING _ _ _ _ _
INPUT IN-
OUTPUT
NONINVERTING
INPUT IN+
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage
Supply voltage
Vee +
Vee _
(see Note 1)
(see Note 1)
Differential input voltage (see Note 2)
Input voltage at either input (see Notes 1 and 3)
Duration of output short-circuit (see Note 4)
MC1458
MC1558
UNIT
18
-18
22
-22
V
±30
±30
V
±15
±15
unlimited
V
unlimited
eontinuous total dissipation
See Dissipation Rating Table
o to
Operating free-air temperature range
Storage temperature range
70
65 to 150
ease temperature for 60 seconds: FK package
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds
NOTES: 1.
2.
3.
4.
I JG or U package
I D or P package
- 55 to 125
-65 to 150
°e
°e
260
°e
°e
300
260
°e
All voltage values, unless otherwise noted, are with respect to the midpoint between Vee + and Vee _.
Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
The output can be shorted to ground or either power supply. Forthe Me1558 only, the unlimited duration of the short-circuit
applies at (or below I 125°e case temperature or 70 0 e free-air temperature.
DISSIPATION RATING TABLE
PACKAGE
TA"; 25°C
DERATING
POWER RATING
DERATE
TA - 70°C
POWER RATING
TA - 125°C
POWER RATING
D
680 mW
FACTOR
5.8 mw/oe
FK
680mW
11.0 mw/oe
88°e
880mW
275 mW
JG
P
680 mW
680 mW
8.4 mw/oe
8.0 mw/oe
69°e
65°e
672 mW
640 mW
210 mW
U
675 mW
5.4 mw/oe
25°e
432 mW
135 mW
ABOVE TA
33°e
TEXAS
464mW
~
INSTRUMENTS
2-122
V
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
MC1458, MC1558
DUAL GENERAL·PURPOSE OPERATIONAL AMPLIFIERS
recommended operating conditions
MIN
electrical characteristics at specified free-air temperature.
PARAMETER
VIO
110
liB
Input offset voltage
Input offset current
Input bias current
~
Vo
~
Va
~
Vo
RL
VOM
output voltage swing
Large-signal differential
AVO
0
20
Full range
80
Full range
10 kO
±12
Full range
±12
±12
±12
25°C
±10
RL '" 2 kO
Full range
±10
Maximum-output-swing
Va'" ±10V,
TYP
1
6
25°C
20
Full range
15
5
6
20
200
200
500
500
±13
MAX
80
500
1500
±12
±13
±12
±10
nA
nA
±14
±12
±13
mV
V
±12
±14
UNIT
V
±13
±10
200
50
200
V/mV
25
2 kO,
~
AVO
MIN
800
25°C
25°C
voltage amplification
MC1558
MAX
300
25°C
0
-15 V
7.5
25°C
RL '" 2 kO,
Va ~ ±10V
bandwidth (closed-loop)
1
Full range
~
TYP
MAX
±15
15 V. VCC-
Full range
RL '" 10 kO
RL ~ 2 kO
RL
BOM
~
MIN
25°C
0
input voltage range
Maximum peak
Vcc +
MC1458
TEST CONDITIONS t
Common-mode
VICR
NOM
±5
Supply voltage, VCC ±
25°C
1,
14
14
kHz
MHz
THO:£ 5%
B1
Unity-gain bandwidth
¢m
Phase margin
Am
r;
Gain margin
25°C
Input resistance
25°C
ro
Output resistance
Ci
Input capacitance
Common-mode
zie
CMRR
input impedance
Common-mode
rejection ratio
Supply voltage
kSVS
sensitivity
(AVIO/AVCC)
Equivalent input
Vn
noise voltage
(closed-loop)
~
AVO
~
Va
1
0,
See Note 5
f
~
20 Hz
VIC ~ VICR min, Va
~
VCC
Vo
~
f
~
~
0
± 9 V to ± 15 V,
0
~
AVO
RS
~
25°C
1
1
25°C
65°C
65°C
11
0.3'
0.3'
2
11
dB
2
MO
25°C
75
75
0
25°C
1.4
1.4
pF
25°C
200
200
MO
25°C
70
Full range
70
25°C
70
90
90
dB
70
30
150
30
150
rV/V
Full range
150
150
100,
0,
1 kHz,
25°C
45
45
nV/,fHz
BW = 1 Hz
"This parameter is not production tested.
t All characteristics are specified under open-loop operating conditions with zero common-mode input voltage unless otherwise specified.
Full range for MC1458 is O°C to 70°C and for MC1558 is - 55°C to 125°C.
NOTE 5: This typical value applies only at frequencies above a few hundred hertz because of the effect of drift and thermal feedback.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-123
MC1458, MC1558
DUAL GENERAL-PURPOSE OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Vee +
(continued)
MIN
Short-circuit
lOS
ICC
PD
=
-
15 V
MC1558
MC1458
TEST CONDITIONSt
PARAMETER
15 V, vee -
TYP
MAX
MIN
TYP
MAX
25°C
±25
±40
±25
±40
Supply current
No load,
25°C
3.4
5.6
3.4
5
(both amplifiers)
Full range
Total power dissipation
Vo = 0
No load,
(both amplifiers)
Vo
=0
Full range
output current
6.6
25°C
Vo1 N o2 Crosstalk attenuation
100
6.6
170
100
200
25°C
150
200
120
120
UNIT
mA
mA
mW
dB
t All characteristics are specified under open-loop operating conditions with zero common-mode input voltage unless otherwise spedified.
Full range for MC1458 is O°C to 70°C and for MC1558 is -55°C to 125°C.
operating characteristics. Vee + = 15 V . Vee PARAMETER
tr
SR
=
-
1 5 V. T A
MC1458
TEST CONDITIONS
MIN
TYP
MC1558
MAX
TYP
Rise time
VI = 20 mV,
RL = 2 kO,
0.3
0.3
Overshoot factor
CL = 100 pF,
See Figure 1
5%
5%
0.5
0.5
VI
Slew rate at unity gain
=
10 V,
RL
CL = 100 pF,
=2
k!l,
See Figure 1
PARAMETER MEASUREMENT INFORMATION
INPUT
INPUT VOLTAGE
WAVEFORM
TEST CIRCUITS
FIGURE 1. RISE TIME. OVERSHOOT. AND SLEW RATE
. TEXAS ~
INSTRUMENTS
2-124
MIN
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
MAX
UNIT
"s
V/"s
MC3303, MC3403
QUADRUPLE LOW-POWER OPERATIONAL AMPLIFIERS
D2517, FEBRUARY 1979-REVISED SEPTEBMER 1990
•
Wide Range of Supply Voltages
Single Supply .. , 3 V to 36 V
or Dual Supplies
•
Class AB Output Stage
•
True Differential Input Stage
o OR
N PACKAGE
(TOP VIEW)
A~~L {~NU~
~U!} AMPL
IN+
IN+
VCC+
•
Low Input Bias Current
•
Internal Frequency Compensation
•
Short-Circuit Protection
•
Designed to be Interchangeable with Motorola
MC3303, MC3403
AMPL{IN+
#2
INOUT
#4
VCCIN+} AMPL
IN#3
"""'-_---=..Jt-'
OUT
description
The MC3303 and the MC3403 are quadruple operational amplifiers similar in performance to the uA741
but with several distinct advantages. They are designed to operate from a single supply over a range of
voltages from 3 V to 36 V. Operation from split supplies is also possible provided the difference between
the two supplies is 3 V to 36 V. The common-mode input range includes the negative supply. Output range
is from the negative supply to VCC - 1.5 V. Quiescent supply currents are less than one-half those of
the uA741.
The MC3303 is characterized for operation from - 40°C to 85 °C and the MC3403 is characterized for
operation from O°C to 70°C.
symbol (each amplifier)
NONINVERT~NG
+
INPUT IN+
.
INVERTING
INPUT IN-
OUTPUT
AVAILABLE OPTIONS
TA
VIO MAX
AT 25°C
PACKAGE
SMALL-OUTLINE
PLASTIC DIP
(DI
(NI
10 mV
MC3403D
MC3403N
8 mV
MC3303D
MC3303N
OOC
to
70°C
-40°C
to
85°C
D packages are available taped and reeled. Add "R" suffix to the
device type, (e.g., MC3403DRI.
PRODUCTION DATA documant. cont.in inform.tion
currant •• of public.tion d.ta. Products conform to
specific.tions per the t.rms of T.x.s Instrumant.
st.nd.rd warr.nty. Production processing do •• not
n••••s.rily in.lud. t••ting of .n par.m.ters.
Copyright
©
1990, Texas Instruments Incorporated
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-125
MC3303, MC3403
QUADRUPLE LOW-POWER OPERATIONAL AMPLIFIERS
schematic (each amplifier)
COMMON
,-----.
BIAS CIRCUITRY I
r-------------~~------~r_--~--~------~~r_--~~_.-VCC+
I\IONINVERTING
-+-----------+-+-----..,
INPUT
}
+----l~I---
TO THREE
OTHER
AMPLIFIERS
''-~++----~-+---OUTPUT
INVERTING
INPUT
2.4 kll
Component values shown are nominal.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
MC3303
Supply voltage Vee + (see Note 1)
MC3403
UNIT
18
18
-18
-18
V
36
36
V
Differential input voltage (see Note 2)
±36
±36
V
Input voltage (see Notes 1 and 3)
±18
±18
V
Supply voltage Vee _ (see Note 1),
Supply voltage Vee + with respect to Vee-
Continuous total power dissipation
V
See Dissipation Rating Table
Operating free-air temperature range
o to
-40t085
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds
70
°e
-65 to 150
-65 to 150
°e
260
260
°e
NOTES: 1. These voltage values are with respect to the midpoint between Vee + and Vee _.
2. Differential voltages are at the non inverting input terminal with respect to the inverting terminal.
3. Neither input must ever be more positive then Vee + or more negative than Vee _.
DISSIPATION RATING TABLE
PACKAGE
DERATING FACTOR
TA :5 25°C
TA = 85°C
TA - 70°C
POWER RATING ABOVE TA - 25°C POWER RATING POWER RATING
D
950 mW
N
1150mW
7.6 mW/oe
9.2 mW/oe
608 mW
494mW
736 mW
598 mW
recommended operating conditions
MIN
Single supply voltage, Vee
Supply voltage, Vee +
Dual supply voltage, Vee-
TEXAS
~
INSTRUMENTS
2-126
POST OFFICE BOX 655303 ' DALLAS. TEXAS 75265
NOM
MAX
UNIT
5
30
V
2.5
15
V
-2.5
-15
V
MC3303, MC3403
QUADRUPLE LOW-POWER OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature; Vcc +
o V for MC3303;
14V,VCC-
Vcc ± == ± 15 V for MC3403
PARAMETER
Via
Input offset voltage
Temperature coefficient of
aVIO
',0
input offset voltage
Input offset current
Temperature coefficient of
alia
lIB
input offset current
Input bias current
TEST CONOITIONSt
See Note 4
YOM
See Note 4
See Note 4
80M
THO,; 5%,
30
;
o
20
I
:.g
15
..:..,
:.E
10
V
:::J
E
';(
~
5
I
8:
o
>
,/
0
g...
//
Q.
0
/
V
/
S:::J
o
.....,
V
25
20
~-
II
15
E
:::J
E
10
:.
.,
';(
\
1\
5
\
I
8
16
,
~-.
CD
g
..:..,
0..
0..
6
14
Vcc± - ±15 V
CL - 0
RL - 10 kO TA - 25°C
See Figure 1
0..
~
4
12
30
:::J
/
2
_ L_ _ _ L_ _~
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
!!
V
:::J
.....,
>
CD
Cl
RL - 10 kO
TA - 25°C
25
10
FIGURE 3
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
..
_ L_
IVcc± I-Supply Voltage-V
FIGURE 2
>
_
8
6
4
10
12
14
16
o
>
o
1 k
IVcc± I-Supply Voltage-V
r-10 k
100 k
-
1 M
f-Frequency-Hz
FIGURE 5
FIGURE 4
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-129
MC3303, MC3403
QUADRUPLE LOW-POWER OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREQUENCY
106
Vcc± - ±15 V
RL - 2 kO
TA - 25°C
c
c
";::;
01
(J
;;:::
105
[--..,
~
'a
E
103
e
102
~
~
>+'
~
>
1
100
1 k
10 k
::s
0.5
-5
..
~
100 k
-10
1 M
1\
\
I
0
+'
\
/
0
::s
0+'
::s
Vcc± - ±15 V
RL-2kO
TA - 25°C
\ See Figure 1
I
:I
"0
01
Q
VOLTAGE-FOLLOWER
LARGE-SIGNAL PULSE RESPONSE
/
\
I
o
\
,INPUT
10 20 30 40
i\
50 60 70 80 90
t-Time-,..s
f - Frequency - Hz
FIGURE 6
FIGURE 7
t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS •
INSTRUMENTS
2-130
POST OFFICE BOX 655303 " DALLAS. TEXAS 75265
NE5532, NE5532A, NE55321, NE5532AI
DUAL LOW-NOISE OPERATIONAL AMPLIFIERS
NOVEMBER 1979-REVISED SEPTEMBER 1990
•
Equivalent Input Noise Voltage ... 5 nv/v'HZ
Typ at 1 kHz
•
•
Unity-Gain Bandwidth .•. 10 MHz Typ
0
PPACKAGE
(TOP VIEW)
OUT
ININ+
Vcc-
Common-Mode Rejection Ratio ... 100 dB
Typ
•
High DC Voltage Gain .•• 100 V/mV Typ
•
Peak-to-Peak Output Voltage
Swing •.. 32 V Typ With Vcc± = ±18 V and
RL = 600 Q
•
High Slew Rate •.. 9 V/IJ-S Typ
•
Wide Supply Voltage Range ... ±3 V
to ±20V
•
Designed to Be Interchangeable With
Signetics NE5532 and NE5532A
1
2
3
4
8
7
6
5
Vcc+
OUT
ININ+
description
The NE5532 and NE5532A are monolithic high-performance operational amplifiers combining excellent dc and
ac characteristics. They feature very low noise, high output drive capability, high unity-gain and
maximum-output-swing bandwidths, low distortion, high slew rate, input-protection diodes, and output
short-circuit protection. These operational amplifiers are internally compensated for unity gain operation. The
NE5532A has specified maximum limits for equivalent input noise voltage.
The NE5532 and NE5532A are characterized for operation from O°C to 70°C. The NE55321 and NE5532AI are
characterized for operation from - 40°C to 85°C.
symbol (each amplifier)
~
Nonlnvertlng
Input IN+ _ _ _ _ +_
Inverting
_
Input IN-
>-_ __
PRODucnON DATA document. conlaln InfOtmatlon current IS of
UbllcatJon date. Product. conform to specifications perthe term. of Texa.
r,nstrumenls
standard warranty. Production procenlng dOl. not
necessarily Include telling of an parameter•.
Output
Copyright © 1990, Texas Instruments Incorporated
TEXAS ."
INSIRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-131
NE5532, NE5532A, NE55321, NE5532AI
DUAL LOW-NOISE OPERATIONAL AMPLIFIERS
schematic (each amplifier)
Nonlnvertlng _~I---_+_+--,
Input
15Q
Output
Inverting -__.___--1
Input
15Q
460Q
Component values shown are nominal.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, V cc+ (see Note 1) ........................................................... 22 V
Supply voltage, V cc- (see Note 1) ......................................................... - 22 V
Input voltage, either input (see Notes 1 and 2) ................................................ VCC±
Input current (see Note 3) ................................................................ ± 10mA
Duration of output short circuit (see Note 4) ............................................... unlimited
Continuous total power dissipation ..................................... See Dissipation Rating Table
Operating free-air temperature range: NE5532, NE5532A ............................... O°C to 70°C
NE55321, NE5532AI ............................ - 40°C to 85°C
Storage temperature range ....................................................... - 65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................... 260°C
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between vcc+ and VCe-.
2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage.
3. Excessive input current will flow if a differential input voltage in excess of approximately 0.6 V is applied between the inputs unless
some limiting resistance is used.
4. The output may be shorted to ground or either power supply. Temperature and/or supply voltages must be limited to ensure the
maximum dissipation rating is not exceeded.
DISSIPATION RATING TABLE
=
TAs25°C
POWER RATING
OPERATING FACTOR
ABOVE T A = 25°C
TA 70°C
POWER RATING
TA 85°C
POWER RATING
p
1000mW
8mWrC
640mW
520mW
TEXAS ~
INSTRUMENTS
2-132
=
PACKAGE
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
NE5532, NE5532A, NE55321, NE5532AI
DUAL LOW-NOISE OPERATIONAL AMPLIFIERS
recommended operating conditions
MIN
NOM
MAX
UNIT
Supply voltage, VCC+
5
15
V
Supply voltage, VCC-
-5
-15
V
TYP
MAX
UNIT
0.5
4
5
mV
25°C
Full range
10
150
200
nA
25°C
Full range
200
800
1000
nA
electrical characteristics, Vcc±
=+15 V, T A =25°C (unless otherwise noted)
PARAMETER
TEST CONDITIONSt
VIO
Input offset voltage
Vo
~O
110
Input offset current
TA
TA
~
liB
Input bias current
TA
TA
~
VICR
Common-mode input
voltage range
VOpp
Maximum peak-to-peak
output voltage swing
AVD
Large-signal differential
voltage amplification
~
~
RL",SOOQ
RL",SOOQ,
Vn~+10V
VCC+~±15V
VCC±-±18V
TA ~ 25°C
TA- Full range
RL",2 kQ,
TA~25°C
VO~±10V
T A - Full range
AVd
Small-signal differential
voltage amplification
f
BOM
Maximum-outputswing bandwidth
Rl
RL
Bl
Unity-gain bandwidth
RL ~ SOO Q,
r;
Input resistance
Zo
Output impedance
AVO
CMRR
Common-mode
rejection ratio
VIC = VICR min
kSVR
rejection ratio
~
MIN
I TA ~ 25°C
ITA - Full range
±12
±13
V
24
30
2S
32
V
15
10
25
15
50
10 kHz
~
~
SOO Q,
SOO Q,
VO~±10V
VO~±14V
VCC±~±18V,
CL ~ 100 pF
f~
RL ~ SOO Q,
2.2
V/mV
140
100
kHz
10
MHz
300
kQ
0.3
Q
70
100
dB
80
100
dB
30
~30dB,
V/mV
100
10kHz
Supply voltage
VCC±
~
±9 V to ±15 V,
VO=O
(,WCC±II1VIO)
lOS
Output short-circuit current
ICC
Total supply curent
38
VO~O
No load,
8
mA
is
mA
110
dB
VOl ~ 10 V peak, I ~ 1 kHz
V01N02 Crosstalk attenuation
..
tAli charactenslJcs are measured under open-loop conditions With zero common-mode Input voltage unless otherwise specified. Full range for
T A is O°C to 70°C for NE5532/NE5532A and - 40°C to 85°C lor NE55321/NE5532AI.
operating characteristics, VCC± =±15 V, TA =25°C
NE5532/NE55321
PARAMETER
SR
TEST CONDITIONS
MIN
Slew rate at unity gain
Overshoot factor
VI
~
100mV,
RL~600Q,
~
AVD~
1,
CL ~ 100 pF
TYP
MAX
NE5532A/NE5532AI
MIN
TYP
9
9
10%
10%
Vn
Equivalent input
noise voltage
I
f
30 Hz
1 kHz
8
5
8
5
In
Equivalent input
noise current
I~ 30 Hz
I -1 kHz
2.7
0.7
2.7
0.7
~
MAX
UNIT
V/",s
10
S
nV/v'HZ
pA/v'HZ
TEXAS ..,
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-133
2-134
NE5534, NE5534A, SE5534, SE5534A
LOW·NOISE OPERATIONAL AMPLIFIERS
02532, JULY 1979-REVISED SEPTEMBER 1990
•
Equivalent Input Noise Voltage
3.5 nV/,)Hz Typ
•
Unity-Gain Bandwidth
•
Common-Mode Rejection Ratio
100 dB Typ
•
High DC Voltage Gain .... 100 VlmV Typ
•
Peak-to-Peak Output Voltage Swing
32 V Typ with VCC± = ± 18 V and
RL = 600 n
NE5534, NE5534A ... D OR P PACKAGE
SE5534, SE5534A ... JG PACKAGE
DB
(TOP VIEW)
10 MHz Typ
BALANCE
ININ+
VCC-
2
3
4
7
6
5
SE5534, SE5534A
FK CHIP CARRIER PACKAGE
(TOP VIEW)
...J
13 VII's Typ
•
High Slew Rate
•
Wide Supply Voltage Range
±3 V to ±20 V
COMP/BAL
VCC+
OUT
CaMP
«
al
a::
•
Low Harmonic Distortion
•
Designed to be Interchangeable with Signetics
NE5534, NE5534A. SE5534. and SE5534A
NC
INNC
IN+
NC
symbol
COMP----,
CaMP/BALANCE - - - - ,
...J
U
Z
«
al
3
2
:;;;
u 0 u
Z
U Z
1 2019
4
18
NC
5
17
6
16
VCC+
NC
OUT
NC
7
15
B
14
9 1011 12 13
INVERTING
INPUT IN-
U
Z
OUTPUT
NON INVERTING
INPUT IN+
I U a.. u
UZ:;;; Z
U
0
>
U
BALANCE - - - - '
AVAILABLE OPTIONS
TA
VIO MAX
AT 25°C
ooe
to
CERAMIC
CERAMIC DIP
PLASTIC DIP
(D)
(FKj
(JG)
(PI
NE5534D
-
-
NE5534P
NE5534AD
-
-
NE5534AP
-
SE5534FK
SE5534JG
-
-
SE5534AFK
SE5534AJG
-
4 mV
70°C
-55°C
to
PACKAGE
SMALL OUTLINE
2 mV
125°C
The D package is available taped and reeled. Add the suffix R to the device type, (e.g.,
NE5534DRI.
SE5534A FROM TI NOT RECOMMENDED FOR NEW DESIGNS
description
The NE5534. NE5534A, SE5534. and SE5534A are monolithic high-performance operational amplifiers
combining excellent dc and ac characteristics. Some of the features include very low noise, high output
drive capability, high unity-gain and maximum-output-swing bandwidths, low distortion, and high slew rate.
These operational amplifiers are internally compensated for a gain equal to or greater than three. Optimization
of the frequency response for various applications can be obtained by use of an external compensation
capacitor between pins 5 and 8. The devices feature input-protection diodes, output short-circuit protection,
and offset-voltage nulling capability.
PRODUCTION DATA documents contain information
current as of publication date. Products conform to
specifications per the terms of Texas Instruments
standard warranty. Production processing does not
necessarily include testing of all parameters.
TEXAS
~
Copyright © 1990, Texas Instruments Incorporated
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-135
NE553' NE5534A, SE553' SE5534A
LOW·NOISE OPERATIONAL AMPLIFIERS
description (continued)
For the NE5534A, a maximum limit is specified for equivalent input noise voltage.
The NE5534 and NE5534A are characterized for operation from 0 °C to 70°C. The SE5534 and SE5534A
are characterized for operation over the full military temperature range of - 55°C to 125°C.
schematic
COMPENSATION/BALANCE
BALANCE
NONINVERTING
INPUT IN+
INVERTING
INPUT IN-
COMPENSATION
~.....--4'---4--,
----I
15 !l
OUTPUT
15 !l
All component values shown are nominal.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC + (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 V
Supply voltage, VCC _ (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 22 V
Input voltage either input (see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. VCC +
Input current (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 10 mA
Duration of output short-circuit (see Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. unlimited
Continuous total power dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . .. See Dissipation Rating Table
Operating free-air temperature range: NE5534, NE5534A . . . . . . . . . . . . . . . . . . . . .. ooC to 70°C
SE5534, SE5534A .................. - 55°C to 125°C
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65°C to 150°C
Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package ........... 300°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package. . . . . . . .. 260°C
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between Vee + and Vee _.
2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage.
3. Excessive current will flow if a differential input voltage in excess of approximately 0.6 V is applied between the inputs unless
some limiting resistance is used.
4. The output may be shorted to ground or either power supply. Temperature and/or supply voltages must be limited to ensure
the maximum dissipation rating .is not exceeded.
TEXAS •
INSTRUMENTS
2-136
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
NE5534, NE5534A, SE5534, SE5534A
LOW·NOISE OPERATIONAL AMPLIFIERS
DISSIPATION RATING TABLE
PACKAGE
TA :5 25°C
DERATING FACTOR
TA - 70°C
POWER RATING
ABOVE TA - 25°C
5.8 mW/oC
POWER RATING
464 mW
N/A
11.0 mW/oC
880 mW
275 mW
a
725 mW
TA -
125°C
POWER RATING
FK (see Note 51
1375 mW
JG
1050 mW
8.4 mW/oC
672 mW
210 mW
P
1000 mW
8.0 mW/oC
640mW
N/A
NOTE 5: For the FK package, power rating and derating factor will vary with actual mounting technique
used. The values stated here are believed to be conservative.
recommended operating conditions
MIN
NOM
MAX
UNIT
Supply voltage, V cc +
5
15
V
Supply voltage, V CC-
-5
-15
V
electrical characteristics.
Vee ±
± 15V.TA
TEST CONDITIONS t
PARAMETER
Via
Input offset voltage
110
Input offset current
liE
Input bias current
25°C (unless otherwise noted)
RS
= 0,
= 50!l
Va
=
0
Va
=
0
Va
TA
TA
TA
TA
TA
TA
=
=
=
=
=
=
VOpp
output voltage swing
Large-signal differential
Ava
voltage amplification
Small-signal differential
AVd
voltage amplification
RL ;,,; 600!l
Va =
RL ;,,; 600!l
± 10 V,
f
=
Va
10 kHz
=
=
25°C
32
30
32
25
100
50
100
TA
Cc
Cc
Cc
Input resistance
Common-mode
Va
RS
rejection ratio
(LlVCC/LlVIOI
Output short-circuit
lOS
ICC
CL
= full range
=a
= 22 pF
=0
= 22 pF
= ±14 V,
= 22 pF
= 100 pF
15
RL
f
=
VIC
=
600!l,
=
VICR min,
VCC+ = ±9 V to ± 15 V,
Va = 0,
Rs = 50 !l
6
2.2
2.2
200
200
95
70
70
Va
=
0
TA
TA
=
=
mV
nA
nA
V
V/mV
V/mV
kHz
MHz
100
k!l
0.3
!l
70
100
80
100
dB
80
100
86
100
dB
38
mA
38
No load,
UNIT
V
10
50
100
current
Supply current
95
0.3
10kHz
800
25
6
10
30
rejection ratio
Supply voltage
kSVR
=
200
1500
30
Cc
= 22 pF,
= 0,
= 50!l
400
VCC+ = ±18 V
TA = 25°C
VCC+
Unity-gain bandwidth
Cc
1500
2000
26
81
CMRR
500
25°C
full range
2
500
±13
ri
Output impedance
10
300
400
24
VCC± = ±18V,VO
RL = 600 !l,
Cc
Zc
20
full range
MAX
3
±12
Cc
30 dB,
0.5
5
26
±10 V,
=
4
±13
bandwidth
Ava
0.5
TYP
24
±10 V,
22 pF,
MAX
±12
Va
=
TYP
± 15 V
Maximum-output-swing
80M
MIN
25°C
input voltage range
Maximum peak-to-peak
SE5534, SE5534A
MIN
full range
Common-mode
VICR
NE5534, NE5534A
25°C
full range
4
8
4
6.5
9
mA
t All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range
is T A = O°C to 70°C for NE5534 and NE5534A and - 55°C to 125°C for SE5534 and SE5534A.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-137
NE553~ NE5534A, SE553~ SE5534A
LOW·NOISE OPERATIONAL AMPLIFIERS
operating characteristics, VCC± == ± 15 V, TA == 25°C
PARAMETER
TEST CONDITIONS
Cc = 0
Cc = 22 pF
YI = 50 mY,
Slew rate at
SR
unity gain
Rise time
tr
tr
Yn
In
F
RL
=
Overshoot factor
CL
Rise time
YI
= 100 pF
= 50 mY,
RL
=
600
=
500 pF
Overshoot factor
CL
Equivalent input
f
noise voltage
f
Equivalent input
f
noise current
f
Average noise figure
RS
=
=
=
=
600 D,
n.
SE5534, NE5534
MIN
TYP
SE5534A, NE5534A
MAX
MIN
TYP
13
13
6
6
20
20
20%
20%
50
50
35%
35%
AYD = 1,
Cc = 22 pF,
AYD = 1,
Cc = 47 pF,
Y/I'.8
ns
ns
30 Hz
7
5.5
7
1 kHz
4
3.5
4.5
30 Hz
2.5
1.5
1 kHz
0.6
0.4
=
5 kD,
f
=
10Hz to 20 kHz
UNIT
MAX
nY/..{HZ
pA/..{HZ
0.9
dB
TYPICAL CHARACTERISTICS t
NORMALIZED INPUT BIAS CURRENT
and INPUT OFFSET CURRENT
vs
FREE·AIR TEMPERATURE
...c
~
::I
u
1.6
:::o
1.4
...5l
...
1.2
'\.
:;
I~
u
IG
...
0.8
~ ~~
c
0.6
.~
Cii
E
5
z
0.4
-75 -50
-25
0
ee
n
25
ec=o
1\ \
50
""
75
CC= 47
.........
~
"
100
125
~ k~I~~
V
15
::I
Co
"5l
I
20
~~~
~
Vee± - ±15 V
TA = 25°C
25
~
~c
103
~
~
...i5
10 2
I
0
10
>
.~
-{.G
0.9
::>
~
~
1
10
1.2
:>!
3:
Vcc±= ±15 V
TA = 25°C
]
:J
co
a:
.,./'
0.8
'"
Vi
l\
]
I~
I
.!::!
2
0.4
o
I\.
10 M 100 M
",«'
A:~~
"2
G~\~
U~\"{'l ~\O"{\-\
"tl
c
I--~~~°V-V
!-
TOTAL HARMONIC DISTORTION
vs
I
~
~ 0.8
I
/
20
FIGURE 4
NORMALIZED SLEW RATE and
UNITY-GAIN BANDWIDTH
'i
15
10
IVcc± I-Supply Voltage-V
FIGURE 3
.s=
~
V
V c,,"
0.7
~
yo.
~O
'Q~
3:
0.0,(\
10 k 100 k 1 M
r---
I>-\~
-U~\-( ~\O:.....-
S~/
.g
P
t-V~CI± ~'i15Iv
t- AVO = 1
0.007
t-Vl(rms) = 2 V
t-TA = 25°C
V
0
~
i5
.~
V
0.004
1i
c
r-- ~
0
E
'"
:I:
~
...0
iO
l-
/
_I-'"
0.002
I
0
:I:
I-
-75 -50 -25
0
25
50
75
100 125
0.001
100
400
T A-Free-Air Temperature-°c
1k
4k
10 k
40 k
100 k
f-Frequency-Hz
FIGURE 5
FIGURE 6
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-139
NE553' NE5534A, SE553, SE5534A
lOW·NOISE OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
EQUIVALENT INPUT NOISE VOLTAGE
vs,
FREQUENCY
10
Vee± = ±15 V
TA = 25°e
1\
f'\..
4
ll:
'0
Co
4
SE5534 NE5534
:;
-.l.i.lll
. l-.lilllill LU 1
Co)
2
lWlll 1U
"
""
I
~
-.llWlIi
z...
.:...
c
2
1lill
SE5534A:' N E5534A
II
Cii
.:!
::s
tT
w
I
>
'5
tT
w
0.2
.E
1
10
100
1k
10 k
11111
0.4
Q)
Cii
I
c
0.7
Co
~
>
1\
SE5534, NE5534
::s
::s
Co
c
'i:
1\
\
ll:
'0
SEs'534A~ NE5534A
z...
0.1
10
100 k
1k
100
f-Frequency-Hz
f-Frequency-Hz
FIGURE 7
FIGURE 8
>:£.
I
Q)
CI
to
.1::
0
>
Q)
til
'0
z
...::s
.E
...c
TOTAL EQUIVALENT INPUT NOISE VOLTAGE
vs
SOURCE RESISTANCE
100
70
r=Vee+ - +15 V
40
~TA=25°e
20
10
7
Q)
~'+'
of};
4
1-'1)
,,~-?'V
2
... 9
1
0.7
w
0.4
iO
0.2 I -
0
I-
0.1
100
~1-
V
b<'+'
",0
~1f\)~
~f};
iO
>
'5
tT
V
~1-
Co
... "
1k
10 k
100 k
Rs-Source Resistance-,Q
FIGURE 9
TEXAS
~
INSTRUMENTS
2-140
Vcc+ = +15 V
TA = 25°e
,
7
...cI
Ul
I'
.......
10
~......«
11111
'\
7
EQUIVALENT INPUT NOISE CURRENT
vs
FREQUENCY
POST OFFICE BOX 655303 • DALLAS. TEXAS 7.265
1M
10 k
100 k
OP07C,OP07D,OP07Y
LOW·OFFSET VOLTAGE OPERATIONAL AMPLIFIERS
OCTOBER
•
•
•
•
•
•
Low Noise
OS
o OR P PACKAGE
(TOP VIEW)
No External Components Required
Replaces Chopper Amplifiers at a Lower
Cost
OFFSET N1
Single-Chip Monolithic Fabrication
Wide Input Voltage Range
o to ±14 VTyp
OFFSET N2
ININ+
2
3
7
6
VCC+
OUT
VCC-
4
5
NC
NC-No internal connection
symbol
Wide Supply Voltage Range
±3Vto±18V
OFFSETN1
•
Essentially Equivalent to Fairchild f.lA714
Operational Amplifiers
IN +
•
Direct Replacement for PMI OP07C and
OP07D
IN-
3
OUT
OFFSETN2
2
8
description
These devices represent a breakthrough in operational amplifier performance. Low offset and long-term stability
are achieved by means of a low-noise, chopperless, bipolar-input-transistor amplifier circuit. For most
applications, external components are required for offset nulling and frequency compensation. The true
differential input, with a wide input voltage range and outstanding common-mode rejection, provides maximum
flexibility and performance in high-noise environments and in noninverting applications. Low bias currents and
extremely high input impedances are maintained over the entire temperature range. The OPO? is unsurpassed
for low-noise, high-accuracy amplification of very low-level signals.
These devices are characterized for operation from O°C to ?O°C.
AVAILABLE OPTIONS
PACKAGE
TA
Vlomax
at 25°C
O°C to 70°C
150 !tV
SMALL OUTLINE
(0)
PLASTICOIP
(P)
OP07CD
OP07DD
OP07CP
OP07DP
CHIP FORM
(Y)
OP07Y
The D package IS available taped and reeled. Add the suffiX R to the device type (e.g .• OP07CDR). The chip
form (Y) is tested at TA = 25°C.
PRODUCTION DATA InformaHon Is current .s of publication dale.
Products conform 10 specifications per the terms of Texas
Instruments standard warranty. Production processing does not
necessarily Include tesllng of all parameters.
TEXAS ~
Copyright © 1991. Texas Instruments Incorporated
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-141
OP07Y
LOW-OFFSET VOLTAGE OPERATIONAL AMPLIFIERS
chip information
These chips, properly assembled, display characteristics similar to the OP07. Thermal compression or
ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive
epoxy or a gold-silicon preform.
OFFSETN1
IN+
BONDING PAD ASSIGNMENTS
OUT
IN-
r---------------------------------------~--~ OFFSETN2 ~__~
VCC-
CHIP THICKNESS: 15 TYPICAL
BONDING PADS: 4 x 4 MINIMUM
T Jmax
~72 -
=150·C
TOLERANCES ARE
±
10%
ALL DIMENSIONS ARE IN MILS
;;
-::
•
PIN (4) INTERNALLY CONNECTED
TO BACKSIDE OF CHIP
..
+
~
~
94
111111111'11111"1111111111111111111111111111111111"111111111111111111111111111111111111111111
TEXAS ~
INsmUMENTS
2-142
POST OFFICE BOX 655303 • DALLAS. TEXAS 75285
OP07C, OP07D
LOW·OFFSET VOLTAGE OPERATIONAL AMPLIFIERS
schematic
7 VCC+
OFFSETN1
OFFSET N2
B
6 OUT
IN +
3
2
IN-
Component Count:
Resistors - 2B
Transistors - 39
Capacitors - 4
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vcc+ (see Note 1) ........................................................... 22 V
Supply voltage, Vcc- .................................................................... -22 V
Differential input voltage (see Note 2) ...................................................... ±30 V
Input voltage, VI (either input, see Note 3) ................................................... ±22 V
Duration of output short circuit (see Note 4) ............................................... unlimited
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 5) ............... 500 mW
Operating free-air temperature range, T A .............................................. O°C to 70°C
Storage temperature range ....................................................... -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................... 260°C
NOTES: 1.
2.
3.
4.
5.
All voltage values, unless otherwise noted, are with respect to the midpoint between VCC+ and VCC-.
Differential voltages are at the non inverting input terminal with respect to the inverting input terminal.
The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
The output may be shorted to ground or either power supply.
For operation above 64'C free-air temperature, derate the D package to 464 mW at 70'C at the rate of 5.8 mW/'C.
recommended operating conditions
Supply voltage, VCC±
Common-mode input voltage, VIC
LVCC±=±15V
Operating free-air temperature, TA
MIN
MAX
UNIT
",3
±18
V
-13
13
V
0
70
'c
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-143
~
......
OP07C
PARAMETER
"0
en
....
0_
Input offset vottage
VO=O,
RS =50Q
aVIO
Temperature coefficient of input offset voltage
VO=O,
RS=50Q
Long-term drift of input offset voltage
See NoteS
Offset adjustment range
RS= 20kQ,
110
Input offset current
aliO
Temperature coefficient of input offset current
liB
Input bias current
aliB
Temperature coefficient of input bias current
VICR
25°C
See Figure 1
YOM
RL=2kQ
150
85
250
0.7
2.5
0.5
±4
25°C
0.8
S
0.8
S
O°C to 70°C
1.S
8
1.5
8
O°Cto 70°C
12
50
12
50
±4
25°C
±1.8
±7
+2
+12
±2.2
±9
±3
±14
18
50
18
50
±13
±11.5
±14
±13
±13.5
±13'
±12.8
!lV
'TIO
en"'C
me:>
-t .......
'TI~'
!lVrC
nA
±13.5
±12
±13
±11.5
±12.8
pA/oC
±11
±12.S
25'C
100
400
25'C
120
400
120
400
pA/oC
i
V/mV
100
400
100
400
0.4
O.S
0.4
O.S
MHz
[j
Input resistance
25'C
MQ
CMRR
Common-mode rejection ratio
kSVS
Supply voltage sensitivity (1..vlolINCC)
PD
Power dissipation
VIC = ±13 V,
RS= 50Q
VCC±=±3Vto±18V,
RS= 50Q
VO=O,
No load
VCC±=±3V,
No load
VO=O,
31
110
97
120
94
lOS
I
7
32
7
32
O°C to 70°C
10
51
10
51
80
150
80
150
4
8
4
8
dB
I
I
fJ.VN
I
i
mW
I"""
::;:;
m
::a
en
I
25°C
25°C
o:z:
"'C
25°C
7
!f
l>
15:
!
O°C to 70°C
94
m
::a
I"""
Unity-gain bandwidth
33
!
V
Bl
120
m
l>
400
8
G)
"'C
,
±12.S
100
<0
o
!:i
:J>i
o
nA
V
±12
O°C to 70°C
25'C
OOG to 70°C
i
±14
±13
±11
" .......
On
mV
O°C to 70°C
±13
UNIT
fJ.V / mo i
25°C
±12
Large-signal differential voltage amplification
SO
1.8
25'C
VO=±0.5V,
MAX
250
RL" 1 kQ
VO=±10V,
150
TYP
85
±12
RL,,2kQ
AVD
SO
MIN
0.5
O°C to 70°C
VCC±= ±3V,
RL,,500kQ
MAX
O°C to 700G
O°Cto 70°C
RL,,2kQ
:aEe:>
OP07D
TYP
O°Cto 70°C
RL,,10kQ
Peak output voltage
MIN
0.4
Common-mode input voltage range
~rrJ
~
en
...
fIJ
OJ
TA
25'C
~~
~ ~4r
TEST CONDlTIONst
VIO
3l~
i~f
1"""0
O"'C
electrical characteristics at specified free-air temperature, Vee ± = ±1S V (unless otherwise noted)
,
I
t All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise noted.
NOTES: Since long-term drift cannot be measured on the individual devices prior to shipment, this specification is not intended to be a warranty. ltis an engineering estimate oltho
averaged trend line of drift versus time over extended periods after the first thirty days of operation.
OP07C, OP07D
LOW·OFFSET VOLTAGE OPERATIONAL AMPLIFIERS
operating characteristics, VCC+-
= ±1S V, TA = 25°C
TEST
PARAMETER
Vn
VN(PP)
In
IN(PP)
SR
CONDITIONSt
Equivalent input noise voltage
Peak-to-peak equivalent input noise voltage
Equivalent input noise current
Peak-to-peak equivalent input noise current
OP07C
MIN
TYP
OP07D
MAX
MIN
TYP
f = 10 Hz
10.5
10.5
f=100Hz
10.2
10.3
f = 1 kHz
9.8
9.8
f = 0.1 Hz to 10 Hz
0.38
0.38
f = 10 Hz
0.35
0.35
1= 100 Hz
0.15
0.15
f = 1 kHz
0.13
0.13
15
15
f=0.1 Hzto10Hz
Slew rate
0.3
0.3
RL" 2 kQ
t All characteristics are measured under open-loop conditions with zero common-mode Input voltage unless otherwise noted,
MAX
UNIT
nV/VHz
flV
pNVHz
pA
V/flS
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-145
OP07Y
LOW-OFFSET VOLTAGE OPERATIONAL AMPLIFIERS
electrical characteristics,VCC± = ±15 V, TA
= 25°C (unless otherwise noted)
PARAMETER
VIO
TEST CONOITIONSt
TYP
MAX
RS =50g
60
150
Long-term drift 01 input offset voltage
See Note 6
0.5
Offset adjustment range
RS =20kg,
110
Input offset current
liB
Input bias current
VICR
Common-mode input voltage range
0.8
",2
Peak output voltage
RLs2 kg
",13
",14
",12
",13
± 11.5
",12.8
Large-signal differential voltage amplilication
"V
mV
6
nA
",12
nA
V
V
",12
RLs 1 kg
AVD
UNIT
"V/mo
",4
See Figure 1
RLs10 kg
YOM
MIN
Input offset voltage
VCC±=±3V,
Vo = ,,0.5 V,
VO=,,10V,
RL = 2 kg
B1
Unity-gain bandwidth
Yj
Input resistance
CMRR
Common-mode input resistance
VIC = ,,13 V,
kSVS
Supply-voltage rejection ratio (~Vce/~Vlo)
VCC+=,,3Vto,,18V,
RL s 500 kg
RS = 500
400
V/mV
120
400
0.4
0.6
MHz
7
31
MO
94
110
7
RS =50g
dB
32
p.VN
No load
80
150
Mg
No load
4
8
Vec± =,,3 V, VO=O,
. .
..
NOTE 6: Since long-term drift cannot be measured on the Individual devices prior to shipment, this speClllcatlon IS not mtended to be a warranty.
It is an engineering estimate 01 the averaged trend line 01 drift versus time over extended periods after the lirst thirty days 01 operation.
PD
VO=O,
Power dissipation
operating characteristics, Vcc+
-
=±15 V,
PARAMETER
Vn
TA
=25°C
TEST CONDITIONst
Equivalent input noise voltage
In
IN(PP)
SR
Peak-to-peak equivalent input noise voltage
Equivalent input noise current
TYP
10.5
1=1 kHz
10.3
I = 0.1 Hz to 10Hz
VN(PP)
MIN
1= 10 Hz
1=0.1 Hz to 10 Hz
0.38
0.35
1=100Hz
0.15
1= 1 kHz
0.13
Peak-to-peak equivalent input noise current
f = 0.1 Hz to 10 Hz
RL = 2 kg
TEXAS ."
2-146
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
nV/V"Hz
"V
pA/V"Hz
15
pA
0.3
V/"s
.. with zero common-mode mput voltage unless otherwise noted .
t All characteristics are measured under open-loop conditions
INSTRUMENTS
UNIT
9.8
1= 10 Hz
Slew rate
MAX
OP07C, OP07D
LOW·OFFSET VOLTAGE OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
20kQ
>4--__IN + --,3'----1
Vcc+
>-__-"-6
OUT
2
IN----f
Figure 1. Input Offset Voltage Null Circuit
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-147
2-148
OP27A, OP27C, OP·27E, OP27G
OP37A, OP37C, OP37E, OP37G
LOW·NOISE, HIGH·SPEED, PRECISION OPERATIONAL AMPLIFIERS
03176, FEBRUARY 1989-REVISEO AUGUST 1991
•
JG OR P PACKAGE
(TOP VIEW)
Direct Replacements for PMI and LTC OP27
and OP37 Series
Features of OP27 A, OP27C, OP37 A, and
OP37C:
•
Maximum Equivalent Input Noise Voltage:
3.8 nV/v'Hz at 1 kHz
5.5 nV/v'Hz at 10 Hz
•
Very Low Peak-to-Peak Noise Voltage at
0.1 Hz to 10Hz ... 80 nV Typ
•
Low Input Offset Voltage .. , 25 p.V Max
•
High Voltage Amplification ... 1 V/p.V Min
Via T R I M D 8
IN- 2
7
IN+ 3
6
Vcc 4
5
Via TRIM
Vcc+
OUT
NC
L PACKAGE
(TOP VIEW)
Via TRIM
Feature of OP37 Series:
•
Minimum Slew Rate ... 11 V/p.s
Vcc-
description
NC-No internal connection
The OP27 and OP37 operational amplifiers
combine outstanding noise performance with
excellent precision and high-speed specifications. The wide band noise is only 3 nV/v'Hz,
and with the 1If noise corner at 2,7 Hz, low
noise is maintained for all low-frequency
applications,
symbol
(3)
IN+
(2)
IN-
The outstanding characteristics of the OP27 and
OP37 make these devices excellent
choices for low-noise amplifier applications
requiring precision performance and reliability,
Additionally, the OP37 is free of latch-up in highgain, large-capacitive-feedback configurations.
VIO TRIM
The OP27 series is compensated for unity gain. The OP37 series is decompensated for increased bandwidth
and slew rate and is stable down to a gain of 5.
The OP27 A, OP27C, OP37 A, and OP37C are characterized for operation over the full military temperature
range of - 55°C to 125°C. The OP27E, OP27G, OP37E, and OP37G are characterized for operation from
-25°C to 85°C,
AVAILABLE OPTIONS
TA
-25°C
to
85°C
VIO MAX
AT 25°C
25 "V
100
"v
-55°C
to
25 "V
125°C
100 "V
STABLE
GAIN
PACKAGE
CERAMIC DIP
(JG)
METAL CAN
(L)
-
5
-
-
OP37GP
1
OP27AJG
OP27AL
5
1
OP37AJG
OP27CJG
OP37AL
-
5
OP37CJG
1
5
1
OP27EP
-
OP37EP
-
OP27GP
-
-
Copyright © 1991, Texas Instruments Incorporated
PRODUCTION DATA information is current 8S of publication
date. Products cenform to specifications paf the terms of
Texaalnstruments standard warranty. Produmon procasslng
daBS not necessarily include testing of all parameters.
PLASTIC DIP
(P)
TEXAS "'"
INSTRUMENTS
POST OFFICE BOX 655303 • OALLAS, TEXAS 75265
2-149
OP27A, OP27~ OP27t OP27G
OP37A, OP37C, OP37E, OP37G
LOW-NOISE, HIGH-SPEED, PRECISION OPERATIONAL AMPLIFIERS
schematic
VIO TRIM
VIO TRIM
OUT
~----+-I
045
IN-~~~~~---------+-----'--~
~-----------j
tC1 = 120 pF for OP27
C1 = 150 pF for OP37
026
L---~-------e------*-----~-------------e----~-----e--~--vcc_
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC + (see Note 1) ............................................ 22 V
Supply voltage, VCC _ (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 22 V
Input voltage . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. VCC ±
Duration of output short circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. unlimited
Differential input current (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 25 mA
Continuous power dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. See Dissipation Rating Table
Operating free-air temperature range: OP27 A, OP27C, OP37 A, OP37C . . . . . . .. - 55°C to 125°C
OP27E, OP27G, OP37E, OP37G. . . . . . . . .. - 25°C to 85 °C
Storage temperature range ......................................... - 65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG or L package ........ 300°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: P package ............ 260°C
NOTES: 1. All voltage values are with respect to the midpoint between VCC + and VCC _ unless otherwise noted.
2. The inputs are protected by back-to-back diodes. Current-limiting resistors are not used in order to achieve low noise. Excessive
input current will flow if a differential input voltage in excess of approximately ± O. 7 V is applied between the inputs unless
some limiting resistance is used.
DISSIPATION RATING TABLE
DERATING FACTOR
PACKAGE
TA:5 25°C
POWER RATING
JG
1050 mW
L
825 mW
6.6 mW/oC
P
1000 mW
8.0 mW/oC
520mW
N/A
ABOVE TA - 25°C
8.4 mW/oC
TA - B50C
POWER RATING
TA - 125°C
POWER RATING
546 mW
210mW
429 mW
165 mW
TEXAS ~
INSTRUMENTS
2-150
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
OP27A, OP27~ OP37A, OP37C
LOW·NOISE, HIGH·SPEED, PRECISION OPERATIONAL AMPLIFIERS
recommended operating conditions
OP27 A, OP37 A
OP27C, OP37C
MIN
NOM
MAX
MIN
NOM
MAX
Supply voltage, VCC +
4
15
22
4
15
22
V
Supply voltage, VCC-
-4
-15
-22
-4
-15
-22
V
Common-mode input
I VCC ±
= ±15 V, TA = 25°C
voltage, VICR
I VCC±
=±15V,TA= -55°C to 125°C
Operating free-air temperature, T A
electrical characteristics.
PARAMETER
VIO
Input offset voltage
±11
± 11
± 10.3
±10.2
-55
Vee ±
125
- 55
125
UNIT
V
°C
± 15 V (unless otherwise noted)
TEST CONDITIONS
MIN
TYP
MAX
10
25
25°C
Vo = 0, VIC = 0
RS = 50 0, See Note 3
OP27C, OP37C
OP27 A, OP37 A
TA
-55°C to 125°C
MIN
TYP
MAX
30
100
60
300
UNIT
",V
Average temperature
-55°C to 125°C
"'VIO coefficient of input
0.2
1.8
",V/oC
0.4
2
",V/mo
12
75
±15
±80
0.6
0.4
0.2
1
7
35
±10
±40
offset voltage
Long-term drift of
input offset voltage
110
118
Input offset current
Input bias current
See Note 4
25°C
Vo = 0, VIC = 0
-55°C to 125°C
Vo = 0, VIC = 0
VICR
25°C
voltage range
Peak output voltage
VOM
swing
RL 2: 2 kO
± 11
-55°C to 125°C ± 10.3
± 10.2
±12 ±13.8
25°C
RL 2: 0.6 kO
±10 ± 11.5
-55°C to 125°C ±11.5
RL 2: 2 kO
AVO
RL 2: 1 kO, Vo = ± 10V
differential voltage
RL 2: 0.6 kO, Vo = ± 1
amplification
VCC = ± 4 V
V.
RL 2: 2 kO, Vo = ± 10 V
25°C
-55°C to 125°C
Output resistance
CMRR Common-mode
rejection ratIo
1000
1800
800
1500
250
700
600
kSVR
Vo = 0,10 = 0
25°C
25°C
114
VIC = ± 10 V
-55°C to 125°C
108
25°C
100
VCC+ = ±4Vto ±18V
rejection ratio
VCC+ = ±4.5Vto ±18V -55°C to 125°C
V
±10 ± 11.5
700
V
1500
1500
200
500
VlmV
300
2
70
Supply voltage
nA
± 11.5 ± 13.5
3
VIC = ± 11 V
nA
± 10.5
Common-mode input
ri(CM) resistance
ro
± 150
± 11
RL 2: 2 kO, Vo = ± 10 V
Large-signal
±60
-55°C to 125°C
Common-mode input
135
50
25°C
126
70
100
120
94
120
96
94
86
118
GO
0
d8
d8
NOTES: 3. Input offset voltage measurements are performed by automatic test equipment approximately 0.5 seconds after applying power.
4. Long-term drift of input offset voltage refers to the average trend line of offset voltage versus time over extended periods
after the first 30 days of operation. Excluding the initial hour of operation, changes in VIO during the first 30 days are typically
2.5 ",V. See Figure 3.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265
2-151
OP27E, OP37E, OP27G, OP37G
LOW·NOISE, HIGH·SPEED, PRECISION OPERATIONAL AMPLIFIERS
recommended operating conditions
Supply voltage, Vcc +
Supply voltage, VCCCommon-mode input
voltage, VICR
I V CC ±
I VCC±
=
=
±15 V, TA
±15V,TA
=
=
PARAMETER
VIO
Input offset voltage
Vo
RS
NOM
MAX
UNIT
4
-4
15
-15
22
-22
V
± 11
25°C
± 10.5
-55°C to 125°C
-25
Operating free-air temperature, T A
Vee ±
electrical characteristics,
MIN
85
V
V
°C
± 15 V (unless otherwise noted)
TEST CONDITIONS
TA
= 0, VIC = 0
= 50 0, See Note
25°C
3
OP27E, OP37E
MIN
TYP
MAX
10
25
-25°C to 85°C
OP27G,OP37G
TYP
MAX
MIN
30
50
100
220
UNIT
",V
Average temperature
-25°C to 85°C
oc VIO coefficient of input
offset voltage
Long-term drift of
input offset voltage
110
liB
Input offset current
Input bias current
See Note 4
Vo
Vo
=
=
0, VIC
0, VIC
=
25°C
0
VOM
Peak output voltage
=0
AVO
RL'" 2 kO
RL '" 0.6 kO
0.4
2
",V/mo
7
35
12
=
±10 V
VCC
=
25°C
± 4 V
RL '" 2 kO, Vo
=
±10 V
-25°C to 85°C
1000
1800
800
1500
250
700
750
±15
±40
nA
V
± 10.5
± 11.5 ±13.5
±10 ± 11.5
± 11
700
1500
1500
200
500
2
70
70
126
110
100
nA
V
V/mV
450
Vo
114
±80
± 150
± 11
3
25°C
= 0,10 = 0
25°C
VIC = ±11 V
-25°C to 85°C
VIC = ± 10 V
VCC± = ±4Vto ±18V
25°C
VCC± = ±4.5Vto ±18V -25°C to 85°C
75
135
±60
-25°C to 85°C ± 11.7
amplification
Supply voltage
kSVR rejection ratio
1
± 11
-25°Ct085°C ± 10.5
±12 ± 13.8
25°C
±10 ± 11.5
differential voltage
Output resistance
0.2
-25°Ct085°C
RL '" 1 kO, Vo = ±10 V
RL '" 0.6 kO, Vo = ± 1 V,
CMRR C~mmon-m~de
rejection ratio
",V/oC
±10
Common-mode input
rHCM) resistance
ro
1.8
25°C
RL '" 2 kO
RL'" 2 kO, Vo
Large-signal
0.4
50
25°C
voltage range
swing
0.6
-25°C to 85°C
Common-mode input
VICR
0.2
100
120
96
120
97
94
90
118
GO
°
dB
dB
NOTES: 3. Input offset voltage measurements are performed by automatic test equipment approximately 0.5 seconds after applying power.
4. Long-term drift of input offset voltage refers to the average trend line of offset voltage versus time over extended periods
after the first 30 days of operation. Excluding the initial hour of operation, changes in VIO during the first 30 days are typically
2.5 ",V. See Figure 3.
TEXAS
~
INSTRUMENTS
2-152
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
OP27A, OP27~ OP27E, OP27G
OP37A, OP37C, OP37E, OP37G
LOW-NOISE, HIGH-SPEED, PRECISION OPERATIONAL AMPLIFIERS
OP27 operating characteristics over operating free-air temperature range, VCC± ... ± 15 V
PARAMETER
SR
VNPP
Vn
In
GBW
Slew rate at unity gain
AVD 2: 1, RL 2: 2 kn
Peak-to-peak equivalent
f
input noise voltage
See Figure 34
Equivalent input
noise voltage
Equivalent input
noise current
Gain bandwidth product
OP27 A, OP27E
TEST CONDITIONS
f
f
f
f
f
f
f
= 0.1
Hz to 10 Hz, RS
=
MIN
1.7
100 n,
= 10Hz, RS = 100 n,
= 30 Hz, RS = 100 n
= 1 kHz, RS = 100 n
= 10Hz, See Figure 35
= 30 Hz, See Figure 35
= 1 kHz, See Figure 35
= 100 kHz
OP27C, OP27G
TYP
2.8
MAX
0.08
TYP
2.8
MAX
0.18
0.09
0.25
3.5
5.5
3.8
3.1
4.5
3.3
8
5.6
3.0
3.8
1.5
1.0
4
2.3
3.2
1.5
0.4
0.6
5
8
MIN
1.7
V/p.s
5
p.V
nV/..jHz
4.5
pA/..jHz
1.0
0.4
UNIT
0.6
8
MHz
OP37 operating characteristics over operating free-air temperature range, V CC ± ... ± 15 V
PARAMETER
SR
VNPP
Vn
In
GBW
Slew rate at unity gain
Peak-to-peak equivalent
AVD 2: 5, RL 2: 2 kn
f = 0.1 Hz to 10Hz, RS
input noise voltage
See Figure 34
Equivalent input
noise voltage
Equivalent input
noise current
Gain bandwidth product
OP37A, OP37E
TEST CONDITIONS
= 10 Hz, RS = 100 n
= 30 Hz, RS = 100 n
f = 1 kHz, RS = 100 n
f = 10Hz, See Figure 35
f = 30 Hz, See Figure 35
f = 1 kHz, See Figure 35
f = 10 kHz
AV 2: 5, f = 1 MHz
=
MIN
TYP
11
17
100 n,
0.08
OP37C, OP37G
MAX
MIN
11
TYP
MAX
17
V/p.s
0.18
0.09
0.25
f
3.5
5.5
3.8
f
3.1
4.5
3.3
8
5.6
3.0
3.8
3.2
4.5
1.5
4
1.5
1.0
2.3
1.0
0.4
0.6
0.4
45
63
40
45
63
40
UNIT
p.V
nV/..jHz
pA/..jHz
0.6
MHz
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-153
OP27A, OP27C, OP27E, OP27G
OP37A, OP37C, OP37E, OP37G
LOW·NOISE, HIGH·SPEED, PRECISION OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
table of graphs
FIGURE
VIO
I nput offset voltage
vs Temperature
vs Time after power-on
ll.VIO
Change in input offset voltage
110
Input offset current
vs Temperature
liB
Input bias current
Common-mode input voltage range
vs Temperature
vs Supply voltage
VICR
VOM
vs Time (long-term drift)
Maximum peak output voltage
vs Load resistance
VOPP
Maximum peak-to-peak output voltage
vs Frequency
AVO
Differential voltage amplification
vs Load resistance
CMRR
Common-mode rejection ratio
vs Frequency
vs Frequency
kSVR
Supply voltage rejection ratio
vs Frequency
SR
Slew rate
vs Supply voltage
4>m
4>
Phase margin
vs Load resistance
vs Temperature
Phase shift
vs Frequency
vs Supply voltage
vs Temperature
vs Bandwidth
vs Source resistance
Vn
Equivalent input noise voltage
vs Supply voltage
vs Temperature
vs Frequency
In
GBW
Equivalent input noise current
vs Frequency
Gain bandwidth product
vs Temperature
lOS
ICC
Short-circuit output current
vs Time
Supply current
vs Supply voltage
Pulse response
Small-signal
Large-signal
TEXAS ~
2-154
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
1
2
3
4
5
6
7
8, 9
10
11
12,13,14
15
16
17
18
19
20,21
12, 13
22
23
24
25
26
27
20, 21
28
29
30, 32
31,33
OP27A, OP27C, OP27E, OP27G
OP37A, OP37C, OP37E, OP37G
LOW·NOISE, HIGH·SPEED, PRECISION OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
INPUT OFFSET VOLTAGE
OF REPRESENTATIVE UNITS
vs
FREE-AIR TEMPERATURE
WARM-UP CHANGE IN
INPUT OFFSET VOLTAGE
vs
ELAPSED TIME
100
VCC± -
>::I..
±15 V
80
>::s.
..
I
CI
!!!
...
..
"0
60
40
>
20
II)
0
~
0
..
OP27A/37A
........
~~~
~~
-20
::I
~
.J,.....oOi
.5 -40
I
-
...
..
>
I
II)
~
,.,
- ----.......
>
6P27CP/GP
OP37CP/GP
0
t---....
./
::I
-...........
~
.5
.5
5
..
..
CI
C
..........
J:
U
?P27C,'37C
I
-80
0
-100
-50 -25
'>
~;
~
0.2 ~V/",O
4
2
./ ~
.5
c
.; -2
CI
Ii
c3I
o
-4
~
-~
......
-
o
234
-
......... '-
-
~
- -
0.2 p.V/
1 -~
rno
'>
I 18
121----+_
Q)
'"
III
>I
8r------r---~_7~~--~----~
.1:
4 r------b~;.._
J:::
....
VCC± - ±15 V
TA - 25°C
I
16
>
Q.
:I
14 f-PO!ITI!E
SWING l.....
12
E
8
""
10
E
:I
E
8
III
:.
-41-----~~
-81-----4----/-~~~--~----~
-121----+-16~----~------~----~~~~
o
±5
±10
±15
Vcc+ -Supply Voltage-V
±20
'iii
III
::iE
I
::iE
0
>
6
4
""~
V' ~I.-'
0
0
I
0
:I
Q)
c~
75 100 125150
MAXIMUM PEAK OUTPUT VOLTAGE
vs
~
50
Figure 5
COMMON-MODE INPUT VOLTAGE RANGE LIMITS
:::i
25
TA -free-Air Temperature- °C
Figure 4
..E
JtH
OP27A/E
OP37A/E
o
-75 -50 -25
0 25 50 75 100
TA-free-Air Temperature- °C
OP27C/G
OP37C/G
j/)~
~
NEGATIVE
SWING
h
~
2
o
10
0.1
RL -Load Resistance-k!1
Figure 7
Figure 6
tOata for temperatures below -25°C and above 85°C are applicable to the OP27A, OP27C, OP37A, and OP37C only.
~
TEXAS
INSTRUMENTS
2-156
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
I,
OP27A, OP27C, OP27E, OP27G
OP37A, OP37C, OP37E, OP37G
LOW·NOISE, HIGH·SPEED, PRECISION OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
OP27
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE
vs
FREQUENCY
>
I
28
OP37
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE
vs
FREQUENCY
>
Vee± - ±15 V
RL - 1 kO
TA - 25 0 e
8.
l! 24
~
o
...
i
~
~
S 12
:
8
Q.
E
\r--.
:I
4
:I
.~
::E
10 k
4
as
"......
::E
..........
0
1k
t
\
012
as
:. 8
E
~
I
100 k
1M
f- Frequency - Hz
10 M
t
o
>
0
10 k
100 k
1 M
f- Frequency - Hz
OP27A, OP27E,OP37A, OP37E
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
TOTAL SUPPLY VOLTAGE
Vo - ±10V
TA - 25°e
J
c
./
2000
RL-2kO
/
Q.
1500
~V
8.
~
~
I
."..
/ ' ...-
Vee± - ±15V
Vo - ±10V
TA - 25°e
~~
:EQ. 1800
~
~
/
1600
III
1:11
1400
>
1200
~
o
/
iii
.~
1000
I!!
500
Q
I
~
800
I
600
:1
Q
Q
~
2400
~ 2200
~as 2000
RL - 1 kO
1000
=!c
i
OP27A, OP27E, OP-37A, OP-37E
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
LOAD RESISTANCE
~
~ 2500
>I
10 M
Figure 9
Figure 8
~
Vee± - ±15 V
RL - 1 kO
TA - 25°e
0 16
:.
I
\
! 20
So
:I
... 16
as
as
,
;'24
~
~20
!
.~
28
I
III
o
o
10
20
30
40
50
Vee + - Vee _ - Total Supply Voltage- V
~
400
0.1
10
RL -Load Resistance-kO
100
Figure 11
Figure 10
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-157
i,
2-158
RC4136, RM4136, RV4136
QUAD HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS
•
•
•
•
•
•
•
RM 4136 •.• J OR W PACKAGE
ALL OTHERS •.. 0 OR N PACKAGE
(TOP VIEW)
Contlnuous·Short·Circult Protection
Wide Common-Mode and Differential
Voltage Ranges
AMPL{ IN#1
IN +
OUT
No Frequency Compensation Required
Low Power Consumption
IN- }
IN +
OUT
Vcc+
AMPL {OUT
#2
IN +
IN-
No Latch-Up
Unity Gain Bandwidth 3 MHz Typical
AMPL
#4
OUT} AMPL
IN+
#3
IN-
VCC-
Gain and Phase Match Between Amplifiers
•
Designed to Be Interchangeable With
Raytheon RC4136, RM4136, and RV4136
•
Low Noise •.. 8 nVYHi Typ at 1 kHz
RM4136
FK CHIP CARRIER PACKAGE
(TOP VIEW)
~~
description
~~
Ovv
'11:'11: Z'll: 'II:
The RC4136, RM4136, and RV4136 are quad
high-performance operational amplifiers with
each amplifier electrically similar to the uA741
except that offset null capability is not provided.
# 1 OUT
NC
#20UT
NC
#21N +
The high common-mode input voltage range and
the absence of latch-up make these amplifiers
ideal for voltage-follower applications. The
devices are short-circuit protected and the internal
frequency compensation ensures stability without
external components.
4
3
2
2019
18
5
17
#40UT
NC
6
16
VCC+
7
15
8
14
9 10 11 12 13
NC
#30UT
~ 8~ ~MM~
C\I::>
'II:
'11:'11:
NC-No internal connection
The RC4136 is characterized for operation from
O°C to 70°C, the RM4136 is characterized for
operation over the full military temperature range
of -55°C to 125°C, and the RV4136 is
characterized for operation from - 40°C to 85°C.
=t>-
symbol (each amplifier)
Nonlnvertlng
Input IN+
Inverting
Input IN-
+
_
Output
AVAILABLE OPTIONS
PACKAGE
TA
O°Cto
70°C
- 40'Cto
85°C
-55'C to
125°C
VIOMAX
at 25°C
SMALL-OUTLINE
CHIP CARRIER
CERAMICOIP
PLASTICOIP
FLAT
(0)
(FK)
(J)
(N)
(W)
6mV
RC4136D
-
-
RC4136N
-
6mV
RV4136D
-
-
RV4136N
-
4mV
-
RM4136FK
RM4136J
-
RM4136W
The D packages are available taped and reeled. Add the suffix R to the device type, (e.g., RC4136DR).
PRODUCTION DATA documents contain Information current
~~e~~~~~'~,ai~~~~r~:i:::~~~~ss~:~~~~~!~:fa:;'f~:~~~r:~
processing does not necessarily Include testing of all
parameters.
..If
INSlRUMENlS
TEXAS
POST OFFICE BOX 655303 • DALlAS, TEXAS 75265
Copyright © t 990, Texas Instruments Incorporated
On products compliant to MIL-5TD-883, Clals B, all
parameter. are tested unless otherwise n,oted. On all
other products, production processing does not
necessarily Include testing of alf parameters.
2-159
RC4136, RM4136, RV4136
QUAD HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS
schematic (each amplifier)
VCC+
----------~._------------~._--------~._----~--------__
r_--,
Nonlnvertlng __________--+______-,
Input IN+
Inverting
Input IN-
Output
VCC-----e----.~--~----------~--------~._----~--------~--~----~
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
RC4136
RM4136
RV4136
UNIT
Supply voltage VCC+ (see Note 1)
18
22
18
Supply voltage VCC- (see Note 1)
-18
",30
-22
",30
-18
",30
V
V
V
V
Differential input voltage (see Note 2)
Input voltage (any input, see Notes 1 and 3)
Duration of output short-circuit to ground, one amplifier at a time
(see Note 4)
",15
",.15
",15
unlimited
unlimited
unlimited
Continuous total dissipation
See Dissipation Rating Table
Operating free-air temperature range
Storage temperature range
Oto 70
-55to 125
-40t085
·C
-65to 150
-65t0150
-65to150
·C
260
·C
300
-
-
260
·C
Case temperature for 60 seconds
FKpackage
Lead temperature 1,6 mm (1/16 inch)
from case for 60 seconds
J or W package
-
Lead temperature 1,6 mm (1/16 inch)
from case for 10 seconds
D or N package
260
NOTES: 1.
2.
3.
4.
·C
All voltage values, unless otherwise noted, are with respect to the midpoint between VCC+ and VCC-.
Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA,,25·C
POWER RATING
DERATING
FACTOR
DERATE
ABOVETA
TA =70·C
POWER RATING
TA=85°C
POWER RATING
45°C
77·C
B08mW
494mW
800mW
D
800mW
7.6mWrC
FK
800mW
11.0mWrC
715mW
275mW
J
800mW
77°C
800mW
715mW
275mW
N
800mW
11.0 mWrC
9.2mWrC
63°C
736mW
59BmW
W
BOOmW
8.0mWrC
50°C
640mW
520mW
TEXAS .Jf
INSlRUMENTS
2-1BO
TA = 125°C
POWER RATING
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
200mW
RC4136, RM4136, RV4136
QUAD HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS
recommended operating conditions
MIN
NOM
MAX
UNIT
Supply voltage, VCC+
5
15
V
Supply voltage, VCC-
-5
-15
V
electrical characteristics at specified free-air temperature, Vcc+
RC4136
PARAMETER
TEST CONDITIONSt
MIN
25'C
VIO
Input offset voltage
VO=O
Input offset current
VO=O
liB
Input bias current
Vi
Input voltage range
Maximum peak
YOM
output voltage
swing
RL,,2kQ
Large-signal
differential
voltage
amplification
VO=±10V,
RL,,2kQ
Bl
VO=O
MAX
0.5
4
5
1.50
300
140
800
±14
RL= 10 kQ
25'C
±12
±14
±12
RL=2kQ
25'C
±10
±13
±10
Full range
±10
25'C
20
Full range
15
Supply voltage
VCC=±9Vto
sensitivity
± 15V,
(IlVIO/tNCC)
VO=O
Vn
Equivalent input
noise voltage
(closed-loop)
AYD = 100,
BW=lHz,
f= 1 kHz,
RS = 100 Q
ICC
Supply current
(All four amplifiers)
VO=O,
No load
Total power
YO=O,
No load
6
5
200
7.5
500
400
140
±14
±14
±12
±14
±13
±10
±13
±10
50
mV
nA
500
1500
±12
UNIT
nA
V
V
±10
20
350
300
V/mV
25'C
CMRR
MAX
0.5
1500
±12
VO=O,
RS =50 Q
TYP
500
140
500
300
MIN
6
±14
Input resistance
(All four amplifiers)
200
RV4136
TYP
±12
Unity-gain
bandwith
dissipation
5
MIN
25'C
Common-mode
rejection ratio
PD
6
Full range
'i
kSVS
0.5
Full range
25'C
AVD
MAX
7.5
25'C
110
RM4136
TYP
Full range
=15 V, VCC- =-15 V
15
25
3
3.5
3
MHz
25'C
0.3*
5
0.3*
5
0.3*
5
MQ
25'C
70
90
70
90
70
90
dB
25'C
30
25'C
8
150
30
150
30
150
8
8
fl.VN
nVv'Hz
25'C
5
11.3
5
11.3
5
11.3
MINTA
6
13.7
6
13.3
6
13.7
MAXTA
4.5
10
4.5
10
4.5
10
340
25'C
150
340
150
340
150
MINTA
180
400
180
400
180
400
MAXTA
135
300
135
300
135
300
25'C
105
mA
mW
AVO = 100,
Y01N02
Crosstalk
attenuation
f= 10kHz,
105
105
dB
RS = 1 kQ
* This parameter is not production tested.
t All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range is O'C
to 70'C for RC4136, - 55'C to 125'C for RM4136, and- 40'C to 85'C for RY4136.
TEXAS ~
INSIRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-161
RC4136, RM4136, RV4136
QUAD HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS
operating characteristics, VCC+ = 15 V, VCC- =-15V, TA = 25°C
RC4136, RV4136
PARAMETER
tr
SR
TEST CONDITIONS
Rise time
VI ;20mV,
Overshoot factor
CL = 100 pF
Slew rate at unity gain
VI = 10V,
MIN
RL;2 kQ,
RL = 2 kQ,
CL= 100pF
TEXAS ,If
INSlRUMENlS
2-162
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TYP
MAX
RM4136
MIN
TYP
0.13
0.13
5%
5%
1.7
1.7
MAX
UNIT
I!S
V/lls
RC4558, RM4558, RV4558
DUAL HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS
08
0, DB, JG, P, OR PW PACKAGE
(TOP VIEW)
•
Continuous-5hort-Circuit Protection
•
Wide Common-Mode and Differential
Voltage Ranges
•
No Frequency Compensation Required
•
Low Power Consumption
•
No Latch-Up
•
Unity Gain Bandwidth 3 MHz Typical
•
Gain and Phase Match Between Amplifiers
•
Low Noise ••• 8 nVVRi Typ at 1 kHz
•
Designed to Be Interchangeable With
Raytheon RC4558, RM4558, and RV4558
AMPL
{
#1
OUT
ININ+
VCC-
2
3
4
7
6
5
Vcc+
OUT
IN- }
IN+
A~~L
description
The RC4558, RM4558, and RV4558 are dual high-performance operational amplifiers with each half electrica"y
similar to the uA741 except that offset null capability is not provided.
The high common-mode input voltage range and the absence of latch-up make these amplifiers ideal for
voltage-fo"ower applications. The devices are short-circuit protected and the internal frequency compensation
ensures stability without external components.
The RC4558 is characterized for operation from O°C to 70°C, the RM4558 is characterized for operation over
the full military temperature range of -55°C to 125°C, and the RV4558 is characterized for operation from -40°C
to 85°C.
AVAilABLE OPTIONS
TA
VloMAX
at 25°C
PACKAGE
SMAll-QUTlINE
SSOP
CERAMIC DIP
PLASTIC DIP
SSOP
(D)
(DBlE)
(JG)
(P)
(PWlE)
(V)
RC4558PWLE
RC4558Y
CHIP FORM
O·Cto
70°C
6mV
RC4558D
RC4558DBLE
-
RC4558P
-40·C to
85°C
6mV
RV4558D
-
-
RV4558P
-
-
-55°C to
125·C
6mV
-
-
RM4558JG
-
-
-
The 0 package IS available taped and reele(t Add the suffiX "R" to the deVice type, (e.g., RC4558DR).
The DB and PW packages are available only left-end taped and reeled.
RC4558Y is tested at 25°C. See pege 2-167 for electrical characteristics.
PRODUCTION DATA lnIonnoUon Is ounwnta. oIpubilesllon dale. ~
_ _ to opoc:II_ per tho Isnns 01 T.... klstJumonts slandard
=~uetlon proeoosIng does not n"o"•••"lIylnclucie tasIkIg 01 all
.Jf
INSTRUMENTS
Copyright © 1991, Texas Instruments Incorporated
TEXAS
POST OFFICE BOX 655303 • DAu.AS, TEXAS 75265
2-163
RC4558Y
DUAL HIGH·PERFORMANCE OPERATIONAL AMPLIFIER
chip information
These chips, properly assembled, display characteristics similar to the RC4558, (see the RC4558Y electrical
table). Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. Chips
may be mounted with conductive epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
VCC+
IN+
IN-
~
2~50UT
+
s
1
+
7
OUT
4
-
IN+
6
IN-
vCC-
59
CHIP THICKNESS: 15 TYPICAL
SON DING PADS: 4 x 4 MINIMUM
TJ max - 150°C
TOLERANCES ARE ± 10%
PIN 4 INTERNALLY CONNECTED
TO SACKS IDE OF CHIP
ALL DIMENSIONS ARE IN MILS
~-------------49----~--------~
1I111111111I11111I1111111I111111111111111I11111111
TEXAS ."
INSTRUMENTS
2-164
POST OFFICE BOX 655303 • OALlAS. TEXAS 75265
RC4558, RM4558, RV4558
DUAL HIGH·PERFORMANCE OPERATIONAL AMPLIFIERS
schematic (each amplifier)
VCC+-----------.------------~~--------~.-----~--------~---,
Inverting -----------jf------,
Input INNonlnvertlng
Input IN+
Output
VCC_---e---~~--~----------~--------~e_----~--------~--~----~
absolute maximum ratings over operating free·alr temperature range (unless otherwise noted)
RC4558
RM4558
RV4558
UNIT
Supply voltage VCC+ (see Note 1)
18
22
18
V
Supply voltage VCC- (see Note 1)
-18
-22
-18
V
Differential input voltage (see Note 2)
±30
±30
±30
V
Input voltage (any input, see Notes 1 and 3)
±15
±15
±15
V
unlimited
unlimited
unlimited
Duration of output short circuit to ground, one amplifier at a time (see Note 4)
See Dissipation Rating Table
Continuous total dissipation
Operating free-air temperature range
Storage temperature range
Oto 70
-55to 125
-40 to 85
-65 to 150
-65 to t50
-65 to 150
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package
260
·C
·c
300
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, DB, P, or PW package
NOTES: 1.
2.
3.
4.
·C
·C
260
All voltage values, unless otherwise noted, are with respect to the midpOint between VCC+ and VCC-.
Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TAs25'C
POWER RATING
DERATING FACTOR
ABOVE TA = 25'C
DERATE
ABOVETA
TA=70'C
POWER RATING
TA=85'C
POWER RATING
TA = 125'C
POWER RATING
N/A
D
680mW
5.8mWrC
33'C
464mW
377mW
DB or PW
525mW
4.2mWrC
25'C
336mW
N/A
N/A
JG
680mW
8.4 mwrc
69'C
672mW
546mW
210mW
P
680mW
8.0mWrC
65'C
640mW
520mW
N/A
TEXAS
~
INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-165
RC4558, RM4558, RV4558 .
DUAL HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS
recommended operating conditions
MIN
NOM
MAX
UNIT
Supply voltage, VCC+
5
15
V
Supply voltage, VCC-
-5
-15
V
electrical characteristics at specified free-air temperature, Vcc+
PARAMETER
TEST CONDITIONSt
25'C
VIO
Input offset voltage
VO=O
110
Input offset current
VO=O
118
Input bias current
VO=O
VICR
Common-mode
input voltage range
RL = 10 kQ
YOM
Maximum output
voltage swing
RL=2kQ
RL,,2kQ
Large-signal
differential
voltage
amplification
RL,,2kQ,
VO=±10V
AVO
RC4558
MIN
TYP
MIN
TYP
MAX
0.5
5
6
25'C
5
200
5
300
25'C
150
Full range
MIN
TYP
0.5
6
7.5
Full range
RV4558
RM4558
MAX
0.5
Full range
= 15 V, VCC- =-15 V
140
200
5
140
500
±14
±12
",14
±12
±14
25'C
±12
±14
±12
±14
±12
"014
25'C
±10
±13
±10
±13
±10
±13
Full range
±10
25'C
20
Full range
15
±10
300
50
500
1500
±12
25'C
200
500
1500
800
6
7.5
500
500
MAX
UNIT
mV
nA
nA
V
V
±10
20
350
300
V/mV
25
15
B1
Unity-gain
bandwith
25'C
3
2
3.5
3
MHz
q
Input resistance
25'C
0.3
5
0.3
5
0.3
5
MQ
CMRR
Common-mode
rejection ratio
25'C
70
90
70
90
70
90
dB
kSVS
Supply voltage
sensitivity
(AVIO/AVCC)
VCC=±15V
to ±9V
25'C
30
Vn
Equivalent input
noise voltage
(closed-loop)
AVO = 100,
RS = 100 Q,
f= 1 kHz,
BW=1 Hz
25'C
8
25'C
ICC
Supply current
(both amplifiers)
No load,
VO=O,
Total power
Po
No load,
VO=O,
dissipation
(both amplifiers)
150
30
150
30
8
150
IJ.VN
nWHz
8
2.5
5.6
2.5
5.6
2.5
5.6
MINTA
3
6.6
3
6.6
6.6
MAXTA
2.3
5
2
5
3
2.3
mA
5
25'C
75
170
75
170
75
170
MINTA
90
200
90
200
90
200
MAXTA
70
150
60
150
70
150
mW
I
85
85
25'C
85
V01 N 02 Crosstalk
Ooen 1000 RS = 1 kQ,
dB
105
105
25'C
105
attenuation I AVO = 100 f= 10 kHz
..
"
t All characteristics are measured under open-loop conditions
With zero common-mode Input voltage unless otherwise specified. Full range IS O'C
to 70'C for RC4558, -55'C to 125'C for RM4558, and -40'C to 85'C for RV4558.
operating characteristics, VCC+
=15 V, VCC- =-15 V, TA =25°C
Slew rate at unity gain
VI =20mV,
RL = 2 kQ,
CL = 100 pF
VI=10V,
RL= 2 kQ,
CL= 100pF
TEXAS .JJ.J
INSlRUMENTS
2-166
TYP
0.13
Rise time
Overshoot
SR
MIN
TEST CONDITIONS
PARAMETER
tr
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
MAX
ns
5%
1.1
1.7
V/IJ.S
RC4558Y
DUAL HIGH·PERFORMANCE OPERATIONAL AMPLIFIER
electrical characteristics, Vcc+
= 15 V, VCC- =-15 V, TA = 25°C (unless otherwise noted)
PARAMETER
TYP
MAX
VIO
Input offset voltage
VO=O
TEST CONDITIONSt
MIN
0.5
6
UNIT
mV
110
Input offset current
VO=O
5
200
nA
lIB
Input bias current
VO=O
150
500
nA
VICR
Common-mode input voltage range
YOM
Maximum output voltage swing
AVO
Large-signal differential voltage
amplification
±12
±14
RL = 10 kg
±12
±14
RL = 2 kg
±12
±13
20
300
V/mV
RL = 2 kg,
VO=±10V
V
V
Bl
Unity-gain bandwidth
'i
Input resistance
CMRR
Common-mode rejection ratio
kSVS
Supply voltage sensitivity (dVIO/dVCC)
VCC=±15Vto±9V
Vn
Equivalent input noise voltage
(closed-loop)
AVO = 100,
BW=1 Hz
RS=100g,
ICC
Supply current (both amplifiers)
No load,
VO=O
2.5
5.6
mA
Po
Total power dissipation (both amplifiers)
No load,
VO=O
75
170
mW
V01 N 02
Crosstalk attentuation
I Open loop
I AVO = 100
RS = 1 kg,
3
MHz
0.3
5
Mg
70
90
30
f = 1 kHz,
dB
150
8
IlVN
nVVHz
85
f= 10kHz
dB
105
..
..
tAli charactenstlcs are measured under open-loop conditions With zero common-mode Input voltage unless otherwise specified .
operating characteristics, VCC+
= 15 V, VCC- =-15 V, TA = 25°C
PARAMETER
tr
Overshoot
SR
Slew rate at unity gain
MIN
TEST CONDITIONS
Rise time
VI = 20mV,
VI
= 10V,
RL= 2 kg,
CL = 100 pF
= 2 kg,
CL = 100 pF
RL
.
TYP
0.13
MAX
UNIT
ns
5%
1.1
1.7
V/IlS
.I1~
TEXAS --.:r
INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-167
2-168
RC4559
DUAL HIGH·PERFORMANCE OPERATIONAL AMPLIFIER
D2785, OCT08ER 1983-REVISED JUNE 1988
•
Matched Gain and Offset Between Amplifiers
•
Unity·Gain Bandwidth ... 3 MHz Min
•
Slew Rate ... 1.5 V/ns Min
•
Low Equivalent Input Noise Voltage
... 2 pV/yHz Max (20 Hz to 20 kHz)
•
No Frequency Compensation Required
•
No Latch Up
•
Wide Common-Mode Voltage Range
•
Low Power Consumption
•
D OR P PACKAGE
(TOP VIEW)
AMP #1
{~NU~
IN+
VCC-
~ ~~~+}
[]1
3
6
IN4
5 IN+
AMP #2
symbol (each amplifier)
~N~~~~N~RTlNG ----1(>-+-
Designed to be Interchangeable with Raytheon
RC4559
INVERTING
INPUT IN-
OUTPUT
_
AVAILABLE OPTIONS
SYMBOLIZATION
PACKAGE
DEVICE
SUFFIX
RC4559
D,P
OPERATING
VIO MAX
TEMPERATURE RANGE
at 25°C
-O°C to 70°C
6 mV
The D packages are available taped and reeled. Add the suffix R to
the device type when ordering. (i.e.,RC4559DR)
description
The RC4559 is a dual high-performance operational amplifier. The high common-mode input voltage and
the absence of latch-up make this amplifier ideal for low-noise signal applications such as audio preamplifiers
and signal conditioners. This amplifier features a guaranteed dynamic performance and output drive
capability that far exceeds th~t of the general-purpose type amplifiers.
The RC4559 is characterized for operation from O°C to 70°C.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage VCC + (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18 V
Supply voltage VCC - (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -18 V
Differential input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 30 V
Input voltage (any input, see Notes 1 and 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 15 V
Duration of output short-circuit to ground, one amplifier at a time (see Note 4) ......... unlimited
Continuous total dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 500 mW
Operating free-air temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . ... OoC to 70°C
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,..... - 65°C to 125°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ...................... 260°C
NOTES:
1. All voltage values, unless otherwise noted, are with respect to the zero reference level (ground) of the supply voltages where
the zero reference level is the midpoint between VCC + and V CC _ .
2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
4. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.
PRODUCTION DATA documents contain information
currant as of publication data, Products .onform to
spa.ilicatians par the terms of Taxa. Instrumants
standard warranty, Production ,racassing da.s nat
nec.ssarily include tasting of all paramel.rs.
~
Copyright © 1983, Texas Instruments Incorporated
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-169
RC4559
DUAL HIGH·PERFORMANCE OPERATIONAL AMPLIFIER
electrical characteristics at specified free-air temperature, Vcc+ - 15 V, Vcc- ... -15 V
PARAMETER
TEST CONDITIONSt
~
VIO
Input offset voltage
Vo
110
Input offset current
Vo ~ 0
liB
Input bias current
VI
Input voltage range
VOM
AVO
BOM
~
Vo
0
0
RL 2: 3 kll
Maximum peak
RL~6001l
output voltage swing
Large-signal differential
RL 2: 2, kll
Vo ~ ±10V,
voltage amplification
RL~2kll
TYP
MAX
25 DC
ODC to 70 DC
25 DC
ODC to 70 DC
2
6
7.5
25 DC
ODC to 70 DC
25 DC
25 DC
40
25 DC
ODC to 70 DC
25 DC
ODC to 70 DC
VOpp ~ 20 V,
Maximum output-swing bandwidth
MIN
RL~2kll
5
±10
V
25°C
20
15
300
24
32
kHz
MHz
25°C
3
25°C
0.3
4
1
CMRR
Common-mode rejection ratio
Supply voltage sensitivity
80
100
Vn
Equivalent input noise voltage
(closed-loop)
Mil
~O
25°C
Vo
~
25°C
10
75
25°C
1.4
2
~
Equivalent input noise current
f
ICC
Supply current
(both amplifiers)
No load,
No signal
20 Hz to 20 kHz
AVO ~ 100,
RS ~ 1 kll,
f ~ 10 kHz
Vol IV 02 Crosstalk attenuation
V/mV
Vo
in
nA
±10
Unity-gain bandwidth
0
nA
V
Input resistance
AVO - 100,
RS ~ 1 kll,
f ~ 20 Hz to 20 kHz
mV
±13
±13
r;
(AVIO/AVCC)
250
500
±12
±12
±9.5
Bl
kSVS
100
200
UNIT
dB
25°C
25
25°C
ODC
3.3
4
5.6
6.6
70°C
3
5
25°C
90
25°C
90
pVIV
pV
pA
mA
dB
t All characteristics are specified under open-loop operation, unless otherwise noted.
matching characteristics at Vcc+ ... 15 V, VCC- ... -15 V, TA ... 25°C
PARAMETER
VIO
Input offset voltage
110
liB
Input offset current
Input bias current
AVO
Large-signal differential
voltage amplification
TEST CONDITIONS
MIN
TYP
MAX
UNIT
Vo = 0
Vo ~ 0
±0.2
mV
±7.5
nA
Vo - 0
±15
nA
±1
dB
VO=±10V,
RL
~
2 kll
operating characteristics, V CC + .. 15 V, V CC _ .. - 15 V, T A ... 25°C
PARAMETER
t,
SR
~
Rise time
VI
Overshoot
CL = 100 pF
Slew ,ate at unity gain
20 mV,
VI~10V,
TEST CONDITIONS
RL = 2 kll,
TYP
80
MAX
UNIT
I's
18%
RL = 2 kll,
CL = 100 pF
TEXAS •
INSTRUMENTS
2-170
MIN
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
1.5
2
VII'S
n022e, n022M
DUAL LOW-POWER OPERATIONAL AMPLIFIERS
D1661, SEPTEMBER 1973-REVISED SEPTEMBER 1990
•
Very Low Power Consumption
TL022M ... JG PACKAGE
TL022C ... 0 OR P PACKAGE
•
Power Dissipation with ± 2-V
Supplies ... 170 pW Typ
(TOP VIEW)
•
Low Input Bias and Offset Currents
•
Output Short-Circuit Protection
•
Low Input Offset Voltage
•
Internal Frequency Compensation
•
Latch-Up-Free Operation
•
Popular Dual Op Amp Pinout
A#~P{?NU~[]1
~ ~3~}+
IN+
VCC-
3
4
6
5
IN IN+
AMP
#2
TL022M ... U FLAT PACKAGE
(TOP VIEW)
NC
NC
AMP {OUT
#1
ININ+
VCC- -...._ _....r-
TL022M IS NOT RECOMMENDED FOR
NEW DESIGNS
VCC+
OUT} AMP
IN#2
IN+
NC - No internal connection
description
The TL022 is a dual low-power operational
amplifier designed to replace higher power
devices in many applications without sacrificing
system performance. High input impedance, low
supply currents, and low equivalent input noise
voltage over a wide range of operating supply
voltages result in an extremely versatile
operational amplifier for use in a variety of analog
applications including battery-operated circuits.
Internal frequency compensation, absence of
latch-up, high slew rate, and output short-circuit
protection assure ease of use.
symbol (each amplifier)
NONINVERTING=!>INPUT IN+
+
INVERTING
_
OUTPUT
INPUT IN-
The TL022C is characterized for operation from
o °C to 70°C. The TL022M is characterized for
operation over the full military temperature range
of - 55°C to 125°C.
AVAILABLE OPTIONS
TA
PACKAGE
VIO MAX
AT 25°C
SMALL OUTLINE
CERAMIC DIP
PLASTIC DIP
CERAMIC FLAT PACK
(D)
(JG)
(P)
(UI
5 mV
TL022CO
-
TL022CP
-
5 mV
-
TL022MJG
-
TL022MU
O°C
to
70°C
- 55°C
to
125°C
The 0 package is available taped and reeled. Add the suffix R to the device type, (i.e. TL022CORI.
PRODUCTION DATA documents contain information
current as of publication date. Products conform to
specifications par the term. of Te.a. Instruments
standard warranty, Production processing doas not
necessarily includo tasting of aU paramoters.
~
Copyright © 1990, Texas Instruments Incorporated
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • OALLAS. TEXAS 75265
2-171
n022e, n022M
DUAL LOW·POWER OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free· air temperature range (unless otherwise noted)
TL022C
18
Supply voltage VCC + (see Note 1)
Supply voltage Vec _ (see Note 1)
Differential input voltage (see Note 2)
Input voltage (any input, see Notes 1 and 3)
Duration of output short'circuit (see Note 4)
Continuous total dissipation
UNIT
V
-18
22
-22
±30
±30
V
±15
unlimited
±15
V
V
unlimited
See Dissipation Rating Table
o to 70
Operating free-air temperature range
Storage temperature range
-65 to 150
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds
NOTES: 1.
2.
3.
4.
TL022M
J JG or U package
I D or P package
- 55 to 125
-65 to 150
300
DC
DC
°C
°C
260
All voltage values, unless otherwise noted, are with respect to the midpoint between VCC + and VCC _.
Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
The output may be shorted to ground or either power supply. For the TL022M only, the unlimited duration of the short-circuit
applies at (or below) 125°C case temperature or 75°C free-air temperature.
DISSIPATION RATING TABLE
PACKAGE
TA :s 25°C
POWER RATING
DERATING
DERATE
ABOVE TA
33°C
TA - 70°C
POWER RATING
D
680 mW
FACTOR
5.8 mW/oe
JG
680 mW
8.4 mW/oe
69°C
672 mW
P
680 mW
675 mW
8.0 mW/oe
5.4 mW/oe
65°C
640mW
25°C
432mW
U
TA - 125°C
POWER RATING
464mW
210 mW
135 mW
recommended operating conditions
MIN
Supply voltage, Vec+
5
-5
Supply voltage, Vee-
TEXAS
2-172
+
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
NOM
MAX
UNIT
15
-15
V
V
n022e, n022M
DUAL LOW-POWER OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature. Vee +
PARAMETER
VIO
110
118
Input offset voltage
Input offset current
Input bias current
Vo = 0,
VOpp
AVO
Bl
CMRR
kSVS
lOS
ICC
Po
1
25°C
Vo = 0
15
Full range
100
Full range
±12
Full range
±12
Maximum peak-to-peak
RL = 10 kO
25°C
20
RL 2: 10 kO
Full range
20
Large·signal differential
RL2: 10kO,
25°C
60
voltage amplication
Vo = ±10V
Full range
60
25°C
rejection ratio
RS = 500
Supply voltage sensitivity
VCC = ± 9 V to ±15 V,
(~VIO/~VCC)
noise voltage
1
5
5
40
100
250
±13
50
60
Full range
60
100
250
±12
±13
26
20
26
72
86
0.5
60
30
200
30
200
nA
MHz
72
dB
60
25°C
nA
d8
66
72
mV
V
20
80
UNIT
V
±12
Full range
RS = 500
MAX
6
80
0.5
25°C
VIC = VICR min,
5
TYP
400
25°C
Unity-gain bandwidth
MIN
200
25°C
Vo = 0
TL022M
MAX
7.5
output voltage swing
Common-mode
TYP
25°C
input voltage range
Equivalent input
Vn
MIN
Full range
RS = 500
Common-mode
VICR
TL022C
TEST CONDITIONSt
-15 V
15 V. Vee-
150
150
~V/V
AVO = 20 dB,
B = 1 Hz,
25°C
nV/JHz
50
50
f = 1 kHz
Short-circuit output current
25°C
±6
Supply current
No load,
25°C
130
(both amplifiers)
Vo = 0
Full range
Total dissipation
No load,
25°C
(both amplifiers)
Vo = 0
Full range
±6
130
250
250
3.9
mA
250
250
3.9
7.5
7.5
6
6
p.A
mW
t All characteristics are measured under open·loop conditions with zero common-mode input voltage unless otherwise specified. Full range
for TL022C is O°C to 70°C and for TL022M is - 55°C to 125°C.
operating characteristics. Vee + = 15 V • Vee PARAMETER
tr
SR
=
- 15 V. T A
TEST CONDITIONS
Rise time
VI = 20 mV,
RL = 10 kO,
Overshoot factor
CL = 100 pF,
See Figure 1
VI=10V,
RL = 10 kO,
CL = 100 pF,
See Figure 1
Slew rate at unity gain
MIN
TYP
0.3
MAX
UNIT
p.s
5%
0.5
VII'S
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-173
n022e, n022M
DUAL LOW-POWER OPERATIONAL AMPLIFIERS
PARAMETER MEASUREMENT INFORMATION
TYPICAL CHARACTERISTICS
TOTAL POWER DISSIPATED
vs '
SUPPLY VOLTAGE
LV, t
INPUT
-~
V
----OV
INPUT VOLTAGE
WAVEFORM
10
7
CL
= 100pF
*
No load
No signal
4 TA = 25°e
OUTPUT
~
s:E
I
c:
2
0
V
'';;;
co
RL
Co
= 10 Hl
.~
C
--
/
1
0.7
,/
V
]i
.,1-
0
I-
I
0
TEST CIRCUIT
0.4
c..
/
0.2
I
J
0.1
0
2
4
8
10 12
14
16 18
20
IVee± I-Supply Voltage-V
FIGURE 1. RISE TIME. OVERSHOOT FACTOR.
AND SLEW RATE
schematic
6
FIGURE 2
OUTPUT
r------------I
rl-~~ro~-l
EACH AMPLIFIER
AMPLIFIERS
VCC+
I
I
I - - - - - - - - - - - - - - - l - - - I H - - + - - _ - - I - - - - - - j - - - + - -}
TO OTHER
AMPLIFIER
INVERTING
INPUT IN-
NON INVERTING
INPUT IN+
-t--+---+----'
I
I
I
I
I
IL _______________
L--___*-~-~..-----.......- + + t - - -........___*--__+!__+_- VCC~
TO OTHER SECTION
TEXAS •
INSTRUMENTS
2-174
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
Tl031 , Tl031A
ENHANCED JFET lOW-POWER lOW-OFFSET
OPERATIONAL AMPLIFIERS
D3151, JULY 1988 - REVISED FEBRUARY 1991
•
Maximum Offset Voltage ..• 800 IJ.V
•
Very Low Power Consumption ... 6.5 mW Typ
•
High Slew Rate ... 2.9 V/IJ.S Typ
•
Output Short-Circuit Protection
•
Low Input Bias Current •.. 2 pA Typ
FK PACKAGE
(TOP VIEW)
0, JG, or P PACKAGE
(TOP VIEW)
OFFSET Nl
IN IN +
VCC _
US
2
7
3
6
4
5
LPACKAGE
(TOP VIEW)
o~ooo
ZZZZZ
NC
VCC +
OUT
OFFSET N2
3
NC
INNC
IN +
NC
1
2
20 19
4
18
NC
5
17
6
16
VCC +
NC
OUT
NC
7
15
8
14
9
10 11 12 13
o
10 C\J 0
Z
OZ Z
Pin 4 (L Package) is in electrical
contact with the case
Z
0
>
NC - No internal connection
description
The TL031 and TL031A operational amplifiers incorporate well-matched, high-voltage JFET and bipolar
transistors in a monolithic integrated circuit. These devices offer the significant advantages of Texas
Instruments new enhanced JFET process. This process affords not only low initial offset voltage due to the
on-chip zener trim capability but also stable offset voltage over time and temperature. In comparison,
traditional JFET processes are plagued by significant offset voltage drift.
This new enhanced process still maintains the traditional JFET advantages of fast slew rates and low input
bias and offset currents. These advantages, coupled with low power consumption, make the TL031 wellsuited for new state-of-the-art designs as well as existing deSign upgrades. The TL031 has been designed
to be functionally compatible and pin compatible with the TL061.
DISTRIBUTION OF TL031A
INPUT OFFSET VOLTAGE
16r---~--~----~--~--~----'
14
AVAILABLE OPTIONS
PACKAGE
TA
VIO max SMAllAT 2SoC OUTLINE
(D)
CHIP
CARRIER
(FK)
CERAMIC
DIP
(JG)
METAL
CAN
(l)
-
PLASTIC
DIP
(P)
O°C
O.8mV TL031ACD
TL031ACP
to
1.5 mV TL031CD
TL031CP
70°C
- 40°C O.8mV TL031AID
TL031AIP
to
1.5mV TL0311D
TL0311P
85°C
-55°C O.8mV TL031AMD TL031AMFK TL031AMJG TL031AML TL031AMP
to
TL031ML TL031MP
125°C 1.5 mV TL031MD TL031MFK TL031MJG
D packages are available taped and reeled. Add "R" suffix to device type (e.g.,
TL031 CDR).
-
'JI. 12
1433 Units tested
VCC ± ± 15 V --1---1---1-----1
TA = 25°C
P Package -+--F±.;;""RH----j-----I
I
.~ 101----l----mY4i#!4i4ibl----l----I
08F1.ai
::>
8.
sc
6
~
d: 41--I4i.f
2
o
-900
PRODUCTION DATA docum.nts contain information current as 01
publication date. Products conform to splcUieations perthe terms onnas
Instruments standard warranty. Production proulting dOli not
necessarily include testing of all parameters.
=
TEXAS ~
INsrRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
-600 -300
o
300
600
VIO -Input Offset Voltage -I1V
900
Copyright © 1991. Texas Instruments Incorporated
2-175
TL031 , TL031A
ENHANCED JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
description (continued)
Two offset voltage grades are available: TL031 (1.5 mV max) and TL031A (800 lLV max).
A variety of available packaging options includes small-outline and chip carrier versions for high density
system applications.
The C-suffix devices are characterized for operation from DoC to 70°C. The I-suffix devices are characterized
for operation from - 40°C to 85°C. The M-suffix devices are characterized for operation over the full military
temperature range of - 55°C to 125°C.
equivalent schematic
01
IN + - - t - - - - ,
IN _ _.r-----,..J
~~---_+----+-- Vo
+-----...-[Q17
OFFSET N1
OFFSETN2
- + - -....
R1
Vcc_
symbol (each amplifier)
IN-=b>IN
+
+
OUT
TEXAS ."
INSTRUMEN1S
2-176
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TL031 , TL031A
ENHANCED JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vec + (see Note 1) ..................................................... 18 V
Supply voltage, Vec _ (see Note 1) .................................................... -18 V
Differential input voltage (see Note 2) ................................................... ± 30 V
Input voltage range, VI (any input, see Notes 1 and 3) ...................................... ± 15 V
Input current, II (each input) .......................................................... ± 1 rnA
Output current, 10 ................................................................ ± 40 mA
Total current into VCC + terminal ..................................................... 160 mA
Total current out of VCC _ terminal ................................................... 160 mA
Duration of short-circuit current at (or below) 25°C (see Note 4) ............................ unlimited
Continuous total dissipation ........................................ See Dissipation Rating Table
Operating free-air temperature range, TA: C-sullix ................................... O°C to 70°C
I-suffix ................................ - 40°C to 85°C
M-sullix ............................... - 55°C to 125°C
Storage temperature range ................................................... - 65°C to 150°C
Case temperature for 60 seconds: FK package ........................................... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package ................. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG or L package ................ 300°C
NOTES: 1.
2.
3.
4.
All voltage values, except differential voltages, are with respect to the midpoint between VCC + and VCC _ .
Differential voltages are at the non inverting input with respect to the inverting input.
The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the
maximum dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA s 25°C
POWER RATING
DERATING FACTOR
ABOVE T A = 25·C
5.8mW/oC
D
725mW
FK
1375mW
11.0mW/oC
JG
1050 mW
L
825mW
1000mW
p
TA = 70·C
POWER RATING
464mW
TA = 8500
POWER RATING
377mW
TA = 125·C
POWER RATING
145mW
880mW
715mW
275mW
8.4 mW;oC
672mW
546mW
210mW
6.6 mW;oC
8.0mW/oC
528mW
640mW
429mW
520mW
200mW
165mW
recommended operating conditions
I·SUFFIX
C-SUFFIX
MIN NOM MAX
Supply voltage, VCC
Common-mode input voltage, VIC
Operating free-air temperature, TA
I VCC+ = ±5V
IVCC+=±15V
±5
-1.5
±15
M·SUFFIX
MIN NOM MAX
±5
±15
MIN NOM MAX
±15
±5
4
-1.5
-11.5
14
-11.5
14
-40
85
-55
125
4
-1.5
-11.5
14
0
70
4
UNIT
V
V
°C
TEXAS ."
INSfRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-177
Tl031C, TL031AC
ENHANCED JFET lOW-POWER lOW-OFFSET
OPERATIONAL AMPLIFIERS
electrical characteristics
PARAMETER
TEST CONDITIONS
TL031C
Via
Input offset voltage
TL031AC
Va
aVIO
Temperature coefficient
of input offset voltage
(see Note 7)
VIC
RS
= 0,
= 0,
= 50n
TL031C
TL031AC
Input offset voltage
long-term drift (see Note 5)
TAt
VCC± = ±5V
MIN
25°C
TYP
0.54
0.41
25°C
Full range
70°C
25°C to
25°C
0.04
1
liB
Input bias current
Va = 0, VIC
See Figure 5
= 0,
9
2
70°C
50
output voltage swing
Maximum negative peak
VOM-
output voltage swing
Large-signal differential
AVD
voltage amplification
RL
=
10kn
RL = 10 kO,
See Note 6
UNIT
mV
1.8
0.04
70°C
25°C
10 kn
0.8
5.9
25°C
=
0.34
2.5
2.8
7.1
= 0,
RL
MAX
1.5
(J.VloC
70°C
Va = 0, VIC
See Figure 5
VOM+
0.5
5.9
Input offset current
Maximum positive peak
TYP
7.1
110
VICR
3.5
3.8
25°C to
Common-mode input
voltage range
MIN
4.5
Full range
25°C
VCC±=±15V
MAX
100
200
1
12
25
(J.Vlmo
100
200
200
2
200
400
80
400
-1.5
-3.4
-11.5
to
to
to
to
4
-1.5
5.4
14
-11.5
15.4
pA
pA
-13.4
Full range
to
25°C
4
3
4.3
13
14
13
14
V
to
14
O°C
70°C
25°C
3
4.2
3
-3
4.3
-4.2
13
14
-12.5 -13.9
O°C
-3
-4.1
-12.5 -13.9
70°C
-3
-4.2
-12.5
-14
25°C
4
12
5
14.3
O°C
3
11.1
4
13.5
70°C
4
13.3
5
15.2
V
V
VlmV
ri
Input resistance
25°C
1012
1012
Ci
Input capacitance
25°C
5
4
pF
dB
CMRR
Common-mode
rejection ratio
Supply-voltage
kSVR
rejection ratio
(AVce±/AVIO)
PD
ICC
Total power diSSipation
Supply current
= VICR min,
= 0,
RS = 500
VCC± = ±5Vto±15V,
Va = 0,
RS = 500
VIC
Va
No load,
Va
=0
No load,
Va
=0
25°C
70
O°C
70
70
87
87
75
75
94
94
87
94
96
96
75
75
O°C
75
96
75
96
70°C
75
96
75
96
70°C
25°C
75
0
dB
25°C
1.9
2.5
6.5
8.4
O°C
1.8
2.5
6.3
8.4
70°C
1.9
6.3
217
8.4
280
211
280
210
280
25°C
192
2.5
250
O°C
184
189
250
250
70°C
mW
(J.A
t Full range IS O°C to 70°C.
NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
6. At Vec ±= ± 5 V, Va = ± 2.3 V; at VCC ± = ± 15 V, Va = ± 10 V.
7. This parameter is tested on a sample basis for the TL031A. For other test requirements, please contact the factory. This statement
has no bearing on testing or nontesting of other parameters.
TEXAS ~
INSTRUMENTS
2-178
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TL031C, TL031AC
ENHANCED JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
operating characteristics
PARAMETER
SR+
SR-
Ir
TEST CONDITIONS
Positive slew rate
at unity gain
Negative slew rate
RL ; 10 kn,
CL ; 100 pF,
See Figure 1,
(see Note 9)
In
81
4lm
11%
5%
O°C
10%
4%
70°C
12%
6%
25°C
61
41
61
41
61
61
41
41
0.003
70°C
25°C
CL ; 100 pF,
See Figures 1 and 2
Overshoot lactor
Vn
150
O°C
Fall time
Equivalent
134
O°C
70°C
25°C
Rise time
input
noise voltage
O°C
25°C
See Note 8
TL031C
RS; 1000,
See Figure 3
TL031AC
Equivalent input
noise current
Unity-gain bandwidth
I ; 10 Hz
I ; 1 kHz
1 ; 10 Hz
1 ; 1 kHz
VCC±=±15V
70°C
25°C
O°C
70°C
at unity gain
VCC± = ±5V
TYP MAX
MIN
2.0
1.8
2.2
3.9
3.7
4.0
138
134
150
138
TVP
2.9
2.6
3.2
5.1
5.0
5.0
132
127
142
132
127
142
25°C
VIPP ; ± 10 mV,
RL ; 10 kO,
tl
TA
25°C
MIN
2
1.5
2
3.5
3.2
3.2
I ; 1 kHz
25°C
0.003
Vi ; 10 mV, RL ; 10 kn,
CL ; 25 pF, See Figure 4
25°C
1
1.1
O°C
70°C
1
1.1
1
10 mV, RL ; 10 kn,
Phase margin
Vi ;
at unity gain
CL ; 25 pF, See Figure 4
25°C
1
61°
65°
O°C
61°
65°
70°C
60°
64°
MAX
UNIT
V/p.s
V/p.s
ns
ns
nV/#iZ
60
pA/#iZ
MHz
NOTES: 8. ForVCC± ; ±5 V, VIPP ; ± 1 V; lor VCC ± ; ± 15 V, VIPP ; ±5 V.
9. This parameter is tested on a sample basis. For other test requirements, please contact the lactory. This statement has no bearing
on testing or nontesting 01 other parameters.
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-179
Tl0311, Tl031AI
ENHANCED JFET lOW-POWER lOW-OFFSET
OPERATIONAL AMPLIFIERS
electrical characteristics
PARAMETER
TEST CONDITIONS
TL031 I
VIO
Input offset voltage
TL031AI
Vo = 0,
Temperature coefficient
(lVIO
of input offset voltage
(see Note 7)
VIC = 0,
RS = son
TL0311
TL031AI
Input offset voltage
long-term drift (see Note 5)
110
Input offset current
Vo = 0, VIC = 0,
See Figure 5
liB
Input bias current
Vo = 0, VIC = 0,
See Figure 5
TAt
VCC±
25°C
Full range
0.54
3.5
25°C
0.41
5.3
2.8
25°C to
85°C
25°C to
Maximum negative peak
output voltage swing
Large-signal differential
AVO
voltage amplification
RL
= 10 kn
RL = 10 kn,
See Note 6
6.5
6.2
100
1
100
pA
85°C
0.02
0.45
25°C
2
0.2
200
0.9
0.02
2
0.45
200
nA
pA
0.2
0.9
nA
to
to
to
5.4
14
15.4
to
to
4
14
25°C
3
4.3
13
14
-40°C
3
4.1
13
14
85°C
3
4.4
13
14
25°C
-3
-4.2
-12.5
-13.9
-40°C
-3
-4.1
-12.5
-13.8
85°C
-3
-4.2
-12.5
-14
25°C
4
12
5
14.3
-40°C
3
8.4
4
11.6
85°C
4
5
15.3
1012
25°C
5
Supply-voltage
rejection ratio
(/lVCC±/ /lVIO)
Po
ICC
Total power dissipation
Supply current
= 0,
RS = 50n
VCC± = ±5Vto±15V,
Vo = 0,
RS = son
No load,
Vo
=0
No load,
Vo
=0
V
-11.5
25°C
Vo
flV/mo
-13.4
4
Input capacitance
kSVR
-11.5
to
Input resistance
rejection ratio
0.04
-3.4
Ci
VIC = VICR min,
25
1
ri
Common-mode
mV
2.6
6.2
13.5
1012
CMRR
0.34
0.04
Full range
VOM-
1.5
3.3
0.8
UNIT
25°C
85°C
= 10 kn
0.5
6.5
-1.5
RL
MAX
25°C
voltage range
Maximum positive peak
=±15 V
TYP
fl V/oC
85°C
25°C
output voltage swing
MIN
4.6
Full range
Common-mode input
VOM+
VCC±
MAX
-1.5
VICR
=±5V
TYP
MIN
V
V
V/mV
n
4
25°C
70
87
75
94
-40°C
70
87
75
94
85°C
87
96
75
94
25°C
70
75
75
96
-40°C
75
96
75
96
85°C
75
96
75
96
pF
dB
dB
-40°C
1.9
1.4
2.5
2.5
6.5
5.4
8.4
8.4
85°C
1.9
2.5
6.2
8.4
280
25°C
25°C
192
250
217
-40°C
144
2SO
181
280
85°C
189
2SO
207
280
mW
flA
t Full range is - 40°C to 85°C.
NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
6. AtVCC±
±5V, Vo = ±2.3V;atVcc± = ±15V, Vo
±10V.
7. This parameter is tested on a sample basis for the TL031A. For other test requirements, please contact the factory. This statement
has no bearing on testing or nontesting of other parameters.
=
=
=
TEXAS ~
INSTRUMENTS
2-180
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
Tl0311, Tl031AI
ENHANCED JFET lOW-POWER lOW-OFFSET
OPERATIONAL AMPLIFIERS
operating characteristics
PARAMETER
SR+
Positive slew rate
at unity gain
SR-
Negative slew rate
at unity gain
tr
tl
TEST CONDITIONS
VIPP = ± 10 mV,
RL = 10 kn,
CL = 100 pF,
See Figures 1 and 2
Vn
In
Equivalent
TL0311
input
noise voltage
TL031AI
(see Note 9)
Equivalentinput
noise current
RS = lOOn,
See Figure 3
I
I
I
I
=
=
=
=
1= 1 kHz
Bl
Unity-gain bandwidth
Vi = 10 mV, RL = 10 kn,
eL = 25 pF, See Figure 4
'm
Phase margin
at unity gain
Vi = 10 mV, RL = 10 kn,
CL = 25 pF, See Figure 4
= ±15V
25°C
0.003
0.003
25°e
-40 0 e
85°e
25°e
-40 oe
85°e
1
1.1
1.1
1
85°e
25°C
-40°C
85°e
10 Hz
1 kHz
10 Hz
1 kHz
VCC:t
MIN
2
1.5
2
3.5
3.2
11%
12%
13%
61
41
61
41
85°C
25°C
-40 0 e
Overshoot lactor
=
VCC:t
±5V
TYP MAX
MIN
2.0
1.6
2.3
3.9
3.3
TYP
2.9
2.1
3.3
5.1
4.8
4.9
132
123
146
132
123
146
5%
5%
7%
61
41
61
41
25°C
-40°C
85°C
25°C
-40°C
85°C
25°C
-40°C
RL = 10 kn,
CL = 100 pF,
See Figure 1,
See Note 8
Rise time
Fall time
TA
25°e
2500
4.1
138
132
154
138
132
154
1
0.9
61°
60°
60°
3.2
MAX
UNIT
Vills
V/lls
ns
ns
nV/.JHz
60
pAl.JHz
MHz
65°
65°
64°
NOTES: 8. For Vee ± = ± 5 V, VIPP = ± 1 V; lor Vee ± = ± 15 V, V,PP = ± 5 V.
9. This parameter is tested on a sample basis. For other test requirements, please contact the lactory. This statement has no bearing
on testing or nontesting 01 other parameters.
TEXAS ~
IN5rRUMENlS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-181
TL031 M, TL031AM
ENHANCED JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
electrical characteristics
PARAMETER
TEST CONDITIONS
TL031M
Via
Input offset voltage
TL031AM
Va = 0,
Temperature coefficient
"via
of input offset voltage
VIC = 0,
RS = 50£1
TL031M
TL031AM
Input offset voltage
long-term drift (see Note 5)
VCC±=±5V
TAt
MAX
25°C
Full range
0.54
3.5
25°C
0.41
Input offset current
Va = 0, VIC = 0,
See Figure 5
liB
Input bias current
Va = 0, VIC = 0,
See Figure 5
Full range
125°C
25°C to
output voltage swing
Maximum negative peak
VOM-
output voltage swing
Large-signal differential
AVO
voltage amplification
q
Input resistance
Ci
Input capacitance
CMRR
kSVR
Po
ICC
Common-mode
rejection ratio
RL = 10kn
RL = 10kn
RL = 10kn,
See Note 6
RS= 50£1
Supply-voltage
VCC± = ±5Vto±15V,
rejection ratio
Va = 0,
(,:WCC ±I aVIO)
RS = son
Total power dissipation
Supply current
No load,
Va = 0
No load,
Va = 0
0.8
UNIT
mV
3.8
4.3
5.1
4.3
0.04
0.04
25°C
1
0.2
2
125°C
7
100
10
200
20
-3.4
1
100
10
200
8
- 11.5 -13.4
20
to
to
to
4
-1.5
5.4
14
15.4
Full range
to
25°C
3
-55°C
3
3
fJ. V/mo
0.2
2
to
pA
nA
pA
nA
V
- 11.5
to
14
4.3
4.1
13
4.4
-4.2
14
13
14
13
14
-12.5 -13.9
V
V
125°C
25°C
-3
-55°C
-3
-4
-12.5
-13.8
125°C
-3
-12.5
-14
5
14.3
4
4
10.4
25°C
4
-4.3
12
-55°C
3
7.1
125°C
25°C
3
12.9
25°C
VIC = VICR min,
Va = 0,
0.34
4.5
2.8
4
VOM+
1.5
5.1
125°C
25°C
25°C
Maximum positive peak
MAX
0.5
fJ.V/ o C
125°C
- 1.5
VICR
TYP
5.8
25°C to
Common-mode input
voltage range
MIN
6.5
25°C
110
VCC± = ±15V
TYP
MIN
V/mV
1012
15
1012
£I
5
4
pF
25°C
70
87
75
94
-55°C
70
87
70
94
125°C
25°C
70
87
94
75
96
70
75
96
-55°C
75
95
75
95
125°C
75
96
75
96
dB
dB
25°C
1.9
2.5
6.5
8.4
-55°C
1.1
2.5
4.7
8.4
125°C
2.5
250
5.8
217
8.4
25°C
1.8
192
280
-55°C
114
250
156
280
125°C
178
250
197
280
mW
fJ.A
t Full range IS - 55°C to 125°C.
NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test atTA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
6. AtVCC± = ±5V, Va = ±2.3V;atVCC± = ±15V, Va = ±10V.
TEXAS ~
INsrRUMENTS
2-182
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
Tl031M, Tl031AM
ENHANCED JFET lOW-POWER lOW-OFFSET
OPERATIONAL AMPLIFIERS
operating characteristics
PARAMETER
SR+
SR-
tr
tf
TEST CONDITIONS
Positive slew rate
at unity gain
Negative slew rate
See Note 8
Rise time
VIPP = ± 10 mV,
RL = 10kn,
CL = 100 pF,
See Figures 1 and 2
Fall time
Overshoot lactor
Vn
In
Equivalent
input
noise voltage
TL031M
I =
1=
f =
I =
RS = 100n,
See Figure 3
TL031AM
Equivalent input
noise current
10 Hz
1 kHz
10 Hz
1 kHz
1= 1 kHz
81
Unity-gain bandwidth
Vi = 10 mV, RL = 10 kn,
CL = 25 pF, See Figure 4
.pm
Phase marg in
at unity gain
Vi = 10 mV, RL = 10 kil,
CL = 25 pF, See Figure 4
NOTE 8: For Vee ± =
= ±15V
TYP
2.9
1.4
2.4
3.9
1.2
1.2
3
3.2
4.1
138
142
166
138
142
166
11%
2.5
2.5
16%
14%
61
41
61
41
1.9
3.5
5.1
4.6
4.7
132
123
158
132
123
158
5%
6%
8%
61
41
61
41
25°C
0.003
0.003
25°C
-55°C
125°C
25°C
-55°C
1
1
0.9
61°
57°
59°
1.1
1.1
0.9
65°
64°
62°
MIN
25°C
-55°C
125°C
25°C
-55°C
125°C
25°C
- 55°C
125°C
25°C
-55°C
125°C
25°C
-55°C
125°C
RL = 10kil,
CL = 100 pF,
See Figure I,
at unity gain
VCC±
MIN
2
VCC±
TA
25°C
25°C
125°C
± 5 V,
VIPP =
± 1 V; lor Vee ±
=
± 15 V,
VIPP =
= ±5V
TYP
2.0
MAX
UNIT
MAX
VlJis
V/Jis
ns
ns
nVl,fR"Z
pA/,fR"Z
MHz
± 5 V.
PARAMETER MEASUREMENT INFORMATION
I
I
I
I
I
I
I
I
I
I
NOTE A: CL includes fixture capacitance.
I<--+i
Figure 1. Slew Rate, Rise/Fall Time, and
Overshoot Test Circuit
'r -
RISE TIME
Figure 2. Rise Time and Overshoot Waveform
TEXAS ~
INsrRUMENTS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
2-183
Tl031 , Tl031A
ENHANCED JFET lOW-POWER lOW-OFFSET
OPERATIONAL AMPLIFIERS
PARAMETER MEASUREMENT INFORMATION
10 kQ
10kQ
>--'--Vo
Vo
VeeRs
RS
NOTE A: CL includes fixture capacitance.
Figure 3. Noise VoHage Test Circuit
Figure 4. Unity-Gain Bandwidth and Phase Margin
Test Circuit
Figure 5. Input Bias and Offset Current
Test Circuit
typical values
Typical values as presented in this data sheet represent the median (50% point) of device parametric
performance.
input bias and offset current
At the picoamp bias current level typical of the TL031 and TL031 A, accurate measurement of the bias current
becomes difficult. Not only does this measurement require a picoammeter, but test socket leakages can easily
exceed the actual device bias currents. To accurately measure these small currents, Texas Instruments uses
a two-step process. The socket leakage is measured using picoammeters with bias voltages applied but with
no device in the socket. The device is then inserted into the socket and a second test that measures both
the socket leakage and the device input bias current is performed. The two measurements are then subtracted
algebraically to determine the bias current of the device.
noise
Because of the increasing emphasis on low noise levels in many of today's applications, the input noise voltage
density is sample-tested at f = 1 kHz. Texas Instruments also has additional noise testing capability to meet
specific application requirements. Please contact the factory for details.
TEXAS
~
INSTRUMENTS
2-184
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
Tl031 , Tl031A
ENHANCED JFET lOW-POWER lOW-OFFSET
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
table of graphs
FIGURE
V,O
Input offset voltage
Temperature coefficient
ctVIO
of input offset voltage
110
Input offset current
liB
Input bias current
VI
Input voltage range
VID
VOM
AVD
Zo
vs
Temperature
8
vs
VIC
Temperature
9
8
vs
VCC
Temperature
10
11
vs
Output voltage
12,13
vs
VCC
Output current
14
16,17
vs
voltage swing
vs
Frequency
vs
Temperature
vs
15
18,19
vs
RL
Frequency
20
Differential voltage amplification
Output impedance
vs
vs
Temperature
Frequency
22
23
Supply-voltage rejection ratio
Short-circuit output current
ICC
Supply current
SR
Slew rate
~
7
vs
kSVR
B1
Distribution
Maximum peak output
Common-mode rejection ratio
Vn
THD
6
vs
Differential input voltage
CMRR
lOS
Distribution
vs
Frequency
vs
Temperature
26
vs
Temperature
27
vs
28
vs
VCC
Time
vs
Temperature
29
30
vs
VCC
Temperature
33
vs
vs
vs
Overshoot factor
vs
Equivalent input noise voltage
Total harmonic distortion
Unity-gain bandwidth
Phase margin
Phase shift
Pulse response
21
RL
Temperature
24, 25
32
34,35
36,37
38
vs
CL
Frequency
vs
Frequency
39
vs
VCC
Temperature
40
vs
vs
VCC
42
vs
43
vs
CL
Temperature
vs
Frequency
21
31
41
44
Small-signal
45
Large-signal
46,47
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-185
TL031 , TL031A
ENHANCED JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
DISTRIBUTION OF TL031
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
DISTRIBUTION OFTL031
INPUT OFFSET VOLTAGE
24r---~--~----~---r----~--~
tested from 1 wafer lot
#
#
..
'0
..
I
vcc± = ±15V
T A = 25DC to 1250C
18 I----+----+-~+- P Package-+---J
I
:J
''0"
..
..
'2
~
~
Ol
12
Ol
l!
c
-E
~
~
c.
c.
-1.2
6
OL---ItiiIii..
-0.6
o
0.6
Via -Input Offset Voltage - mV
1.2
-30
-20
-10
10
o
20
aVIO - Temperature Coefflcient-IlV/DC
Figure 6
Figure 7
INPUT BIAS CURRENT AND
INPUT OFFSET CURRENT
INPUT BIAS CURRENT
vs
vs
FREE-AIR TEMPERATURE
COMMON-MODE INPUT VOLTAGE
10
30
10
VCC± = ±15V
Va = 0
VIC = 0
Vcc± = ±15V
TA = 250C
./
/'
"'
c
"'Cc
5
I
I
C
l!!
liB
!;
~
g.
~
/
0.1
~
/
lD
..: 0.01
v
In
III
V
0
.s
.,./'
I
~ -5
./
V
0.001
25
8
iii
'5
a.
110
./
III
/'
45
65
85
105
TA - Free-Air Temperature - DC
125
-10
-15
-10
-5
o
5
10
VIC - Common-Mode Input Voltage - V
Figure 8
Figure 9
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ."
2-186
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
15
Tl031 , Tl031A
ENHANCED JFET lOW-POWER lOW-OFFSET
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
COMMON-MODE
INPUT VOLTAGE RANGE LIMITS
COMMON-MODE
INPUT VOLTAGE RANGE LIMITS
vs
FREE-AIR TEMPERATURE
VS
SUPPLY VOLTAGE
16
TA = 25°C
>
12
POSITIVE UM~
I
III
C)
J!!
'0
>
:;
Q,
8
,/
/
V
20
/'
Vee±=±15V
>
0
,./'
:;
Q,
.E
4
i
0
::;:
:;;
l!
-4
0
E
E
8 -8
~EGATIVE
E
E
~ ...........
0
-> -12
-16
8
UMIT
..........
I
o
2
4
6
8
10
12
IVee ±I- Supply Voltage - V
10
5
0
-5
8 -10
I
o
-> -15
........
14
N,EGATI,VE UjlT
-20
-75 -50 -25
0
25
50
75
100
TA - Free-Air Temperature - °e
16
Figure 10
Figure 11
DIFFERENTIAL INPUT VOLTAGE
DIFFERENTIAL INPUT VOLTAGE
vs
OUTPUT VOLTAGE
VS
OUTPUT VOLTAGE
1.5
I
&
!!
~
0.5
-
:;
Q,
.E
0
!
~
~
I
-RL
RL
RL
I\,
\ 1\
" &.
::::: ::-.....
'"~
-0.5
-I
I
-1
-1.5
-
RL
RL
RL
RL
RL
1
=
=
=
=
=
~
I
III
RL = 10 k.Q
C)
J!!
'0
RL = 20kn
0.5
>
:;
Q,
1
20 kn
10 kn
5kn
2 k.Q
1 kn
.E
~
0
0
ii
EIII
~~
A~
~\
~ - 0.51---I----!---t---+~7"'-~~:_I
i5
I
2
345
=
RL
50 kn
RL = 20 k.Q - - I - - "
RL
10 k.Q _--1_-"
RL
=
5kn
-1.5 L - _......._..;;;.._ _......_ ......._ _.......--.:u
~ -11---+-
/
-5 -4 -3 -2 -1
125
1.51"'T""~....,..~......,.--.,......--r---r---.,
I
I
= 1 kn
= 2 k.Q
= 5 k.Q
.~
Vee± = ±5V
TA = 25°C
i5
~
\ t\
-
~
~OSITI~E U~IT
I
III
j
~
.E
III
'0
15
=
Va - Output Voltage - V
-5
0
5
Va-Output Voltage - V
Figure 12
Figure 13
-15
-10
10
15
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
2-187
Tl031 , Tl031A
ENHANCED JFET lOW-POWER lOW-OFFSET
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
MAXIMUM PEAK OUTPUT VOLTAGE
vs
vs
SUPPLY VOLTAGE
FREQUENCY
16
::;
RL = 10kO
TA = 25°C
12
f
I
VOM+,.;"
8
;;
Co
;;
o
./
4
~
0
§
-4
l
,5
.........
= -8
:::;;
I
111111
V
I \
~~ .......
~A 1= ,-,~~~,T\
~ .....
~ t::-.
. . . . r--..
IVcc ±I- Supply Voltage - V
10 k
100 k
f - Frequency - Hz
Figure 14
Figure 15
MAXIMUM PEAK OUTPUT VOLTAGE
MAXIMUM PEAK OUTPUT VOLTAGE
2
4
6
8
10
12
14
16
..
III
vs
vs
OUTPUT CURRENT
OUTPUT CURRENT
~
~
;;
Co
;;
3
0
...
~
Co
E
"E
'x
VCC±=±5V
TA = 25°C
VOM+
4
1M
16
>
~
v= TA = 125°C
\
VCC± = ±5V
5
I
RL = 10kO
vcc± = ±1SV\
\
:::;;
o
V
,.;"
/
~-12
-16
,
2
~
.
I
:i
~
5
1101-
..
14
~
>
12
I
CI
~1'\
:::;;
o
o
>
!i
9-
10
..
&.
8
~
Vcc± = ±15V
TA = 25°C
~
"
0
~
E
"
'"""
10
15
Output Current - mA
..............
'\
\
\
\
\
VOM+
,5"
6
:::Ii
4
..
"
VOM_
I
:i
~
20
2
o
o
Figure 16
5
10
15
20
1101- Output Current - mA
25
Figure 17
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices,
TEXAS ",
2-188
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
30
TL031 , TL031A
ENHANCED JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
MAXIMUM PEAK OUTPUT VOLTAGE
MAXIMUM PEAK OUTPUT VOLTAGE
vs
vs
FREE-AIR TEMPERATURE
FREE-AIR TEMPERATURE
16
5
>
I
G>
01
.\!
"0
>
'5
4
>
I
VOM+
G>
3
01
1l!0
2
>
0
...
0
m
=
=
.
I
-3
>
31
0
E
"E
'M
-4
:;;
-8
III
:;;
:;;
0
4
=
vcc±
±15 V
RL
10 kQ
=
0-
E -1
-2
~
0
vcc±
±5V_
RL
10 kQ
0-
"E
';(
8
'5
9-
..."
I
VOM +
12
I
:;;
0-12
-4
>
VOM-
VOM_
-5
-75
-50 -25
0
25
50
75
100
T A - Free-Air Temperature - °C
-16
-75
125
-50 -25
0
25
50
75
100
T A - Free-Air Temperature - °c
Figure 18
Figure 19
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
LARGE-SIGNAL VOLTAGE AMPLIFICATION
vs
vs
LOAD RESISTANCE
FREQUENCY
10 5,....._......._ _,--_......._ _,..-_......._--..,0 0
40
>
~
35
I
Vo
TA
=± 1 v
= 25°C
/
c
.2
iii
u
.::
=aE
30
25
<
G>
01'
.\!
20
"0
>
:i
15
!c
10
c
>
<
5
E
G>
I
125
/
V
V
V
=
=
.2
iii
VCC±
.!:!
= ±15V
==
a.
E
<
.
II"
Vi-"
VCC±=±15V
RL
10kQ
30 0
CL
25pF
TA = 25°C
c
10 3
60°
01
.\!
'0
> 10 2
VCC± = ±5V
90°
.s::
E
i
.
G>
III
~
./
::
:c
en
0..
10 1
120°
C
I
C
150°
>
<
0
10k
100 k
RL - Load Resistance - Q
1M
0,1 L--....I..--"--_....I.._ _"--_....I.._L.LI180°
10
100
1k
10 k
100 k
1M
10 M
f - Frequency - Hz
Figure 20
Figure 21
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INsrRUMENTS
POST OFFICE BOX 655303 - DALLAS, TEXAS 75265
2-189
Tl031 , Tl031A
ENHANCED JFET lOW-POWER lOW-OFFSET
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
LARGE-SIGNAL VOLTAGE AMPLIFICATION
OUTPUT IMPEDANCE
vs
vs
FREE-AIR TEMPERATURE
FREQUENCY
50
200
>
RL = 10 k.O.
E
:>
AtO
0
~
Vee±
'a
E
..
<
1
Jo
___ f---"""
I
c
10
c:
..
....."
= ±15V
I
V- :::+- .
Vcc+
Cl
C
!II
"to
= ±5V
..§
.\1!
:;
~
'0
>
S
100
80
/
/
60
-AVO
= 10
,../'
40
0
;:
2!
I
·0
~
N
20 r-- AVO
/
=1
i5
125
80
5
70
.~
60
-8o
50
~
'ij
a:
~o
40
E
30
E
8I
20
::e
10
a:
a:
o
0
10
TA
=
100 k
Figure 23
COMMON-MODE REJECTION RATIO
COMMON-MODE REJECTION RATIO
vs
vs
FREQUENCY
FREQUENCY
100
..........
=
..,
Vee ±
±5 V
TA
25°C
=
III
i'..
.2
iU
a:
" "\
c
.~
..,"..
i\
..,....
TA
'"'"
"""
80
70
60
a:
\
::e
\
C
0
\
E
E
0
50
40
"
30
0
\
I
20
::e
10
a:
a:
0
= ±15V
= 25°C
Vec±
90
I
\\
o
100
1k
10 k
100 k
f - Frequency - Hz
1M
10 M
10
100
1k
10 k
100 k
1M
f - Frequency - Hz
Figure 24
Figure 25
tDam at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSfRUMENTS
2-190
25°C
Figure 22
90
.2
I
10 k
f - Frequency - Hz
100
I
I
10
1k
1
-75 -50 -25
0
25
50
75
100
TA - Free-Air Temperature - °e
!g
,,/
Vee± = ±15V
ro (open loop) ~ 250 n
I
C
~
...-
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
10 M
TL031 , TL031A
ENHANCED JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICst
COMMON-MODE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
FREE-AIR TEMPERATURE
95
"1
VCC ± = ±15 V
.2
iii
90
c
.2
U
.;;
.
.2
a:
.~
III
!!
c0
0
I
a:
:::;;
U
96
..
VCC±=±5V
85
0
E
E
98
a:
c
..
"
Vee ± = ± 5 V .to ± 15 V
a:I
"I
a:
100
I
a:I
.2
iii
SUPPLY-VOLTAGE REJECTION RATIO
vs
~
94
Q.
Co
80
::I
rn
I
I
a:
a:
:::;;
u
92
a:
>
!R
VIC = VICRmln
75
-75
-50
-25
0
25
50
75
100
90
-75
125
-50
TA - Free-Air Temperature - °C
I
SHORT-CIRCUIT OUTPUT CURRENT
SHORT-CIRCUIT OUTPUT CURRENT
vs
vs
SUPPLY VOLTAGE
TIME
30
Vo
TA
20
=0
= 25°C
/"
~
10
-
E
I
20
C
~
VID = 100mV
8
i
10
8
.~
·s
l:!
q
VID = -100mV
-10
0
i
(;
.c
rn
I
rn -20
VID
= -100 mV
I -10
rn
.9
-30
I
VIO = 100mV
=0
-50 -25
0
25
50
75
100
TA - Free-Air Temperature - °e
40
10
125
"
1k
100
Figure 30
Figure 31
SUPPLY CURRENT
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
250
r~
I
C
e
8
I--
I--
0TA
150
II
"1
I
K ~e
C
I..-
c.
g.1oo
/
V-
\
til
I
I
I
I
150
g.
100
8...
ii.
IV:
V
/
-
I
Vee±
I
=±5V
--
I---
I
~
50
50
=
o
o
-
til
I
=-55°e
TA
~
I
e
I
/'
200
=25°e
=±15 V
I
i.-
\
~
100 k
vs
Vee±
"1
10 k
f - Frequency - Hz
250
200
=
±15V
RS
1000
TA
250C
See Figure 3
50c
.!!
0
.9
V~±
~
i>
0
:;
c.
:;
70
=
Vo
0
No Load
2
4
6
8
10
12
14
Vo
0
No Load
o
16
-75
-SO
IVee ±I- Supply Voltage - V
-25
0
25
50
75
100
TA -Free-Air Temperature- OC
Figure 33
Figure 32
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ."
INSTRUMENlS
2-192
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
125
TLD31 , TLD31A
ENHANCED JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
SLEW RATE
SLEW RATE
vs
LOAD RESISTANCE
..
~
>
6
6
5
5
4
I
~
a:
j
,/'
3
I/)
I
a:
I/)
VS
LOAD RESISTANCE
2
,/'
-
r-
~I
SR-
~
a:
-
~
SR +
I
a:
j
Vec ± = ±15 V
eL = loopF
TA = 25 DC
See Figure 1
a:
100
Figure 35
SLEW RATE
vs
FREE-AIR TEMPERATURE
SLEW RATE
vs
FREE-AIR TEMPERATURE
5
5
4
2
I/)
100
Figure 34
6
3
10
RL - Load Resistance - kG
1
6
I/)
I
2
SR +
o
I
i
~
V
VCC± = ±5V
CL = loopF
TA = 25"C
See Figure 1
10
RL - Load Resistance - kG
1
~
-
3
I/)
"'""
o
:>
-
V
4
SR-
..V
~
~
SR-
..
-
-
~ SR+
~
o
~
4
I
~
a:
S
.!!
--
I
a:
2
I/)
/
V
-75 -50 -25
0
25
50
75
100
TA - Free-Air Temperature - De
=
VCC±
±15 V
RL
10kO
CL
100pF
See Figure 1
=
=
o
125
~
SR+
=
Vce± ±5V
RL
10kO
CL
100 pF
See Figure 1
=
=
-f--
3
I/)
---..
SR-
-75 -50 -25
0
25
50
75
100
TA - Free-Air Temperature - De
Figure 36
125
Figure 37
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ."
INSfRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
2-193
TL031 , TL031A
ENHANCED JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
OVERSHOOT FACTOR
vs
LOAD CAPACITANCE
60
I
~
If
0.5
=
=
VIPP
±10mV
RL
10 kn
TA = 25°C
See Figure 1
50
'a'/.
.
~
/
40
Vcc±
V
= ±5V://
0.4
'#.
I
c
0
.~
0.3
is
.2
0
..
IV
~
20
1/
/
10
E
o
50
100
Vcc±
r--
I
Q
150
0.1
100
250
200
CL - Load Capacitance - pF
....... ~
1k
10 k
f - Frequency - Hz
100 k
Figure 39
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
UNITY-GAIN BANDWIDTH
vs
FREE-AIR TEMPERATURE
1.3
j-=
/'
,/
-g
1.0
V
V
....--l-
N
J:
:;;
VCC± = ±15V
~
".c
=
VI
10mV
RL = 10kn
CL = 25pF
See Figure 4
1.2
I
"i
1.1
-
Ol
c
i
iii
';:
~
C
VI = 10 mV
:;)
0.95
o
2
4
6
8
10
12
14
1.0
-
I
rii
16
r--.....
.........
~
~
VCC±=±5V
:;)
RL = 10kn
CL = 25pF
TA = 25°C
See Figure 4
rii
0.9
I
Figure 38
~ 1.05
I
/
/
J:
I-
:!i!
c
V
~
= ±15V
1.1
Ol
0.2
J:
/;
o
..
Avo
1
VO(rms)
6V
TA = 250C
c
.c
>
0
=±15V
=
=
Vcc±
30
00
TOTAL HARMONIC DISTORTION
vs
FREQUENCY
'"'"
-..........
0.9
0.8
-75 -50
IVcc ±I- Supply Vollage- V
Figure 40
~ I'--~
'"
-25
0
25
50
75
100
T A - Free-Air Temperature - °c
Figure 41
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSfRUMENTS
2-194
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
.........
125
TL031 , TL031A
ENHANCED JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
PHASE MARGIN
PHASE MARGIN
VS
VS
SUPPLY VOLTAGE
LOAD CAPACITANCE
65
..l!!
70
2'
"a
I
c
t
.....
:E
V
/
63
I
61
/'
~
68
..~
/"
66
...
2'
I
62
...
~
:E
60
See Note 10
c
...
::..
58
0..
I
56
=
=
=
=
vi
10 mV
RL
10 kQ
CL
25pF
TA
25°C
See Figure 4
59
57
o
....E
4
14
6
.
16
..::
.c
0..
I
r---........
VCC±
o
12
(
>
8
..
DO
4
>
:;
0
0
-4
E
........
=±5V
I'----
t-....
10
20
30
40
50
60
70
80
90 100
16
r- .............
63
59
"-
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
,V
"-
CL - Load Capacitance - pF
I I .l
VCC± = ±15V
61
, ,
PHASE MARGIN
c
~
'I'-.. r........
Figure 43
I
:E
"-
52
FREE-AIR TEMPERATURE
"a
r........ "- VCC± =±15V
Figure 42
67
65
........
54
50
8
10
12
IV CC ±I- Supply Voltage - V
2
=
=
=
Vi
10 mV
RL
10kQ TA
25°C _
See Figure 4
r........ .......
VCC± =±5V
VS
DO
..........
.c
0..
I
..
..l!!
..........
64
"a
.c
....E
r- ...
I
S
'0
So
::I
I'-....... ........
=
=
=
= 25°C
VCC±
±15V
RL
10 kQ
CL
100 pF
TA
See Figure 1
~
I
0
....E
57
55
-75
>
=
=
=
I
Vi
10mV
RL
10 kQ
CL
25 pF
See Figure 4
-8
-16
-50
-25
0
25
50
75
100
~J
V
-12
125
o
0.2
0.4
0.6
T A - Free-Air Temperature - °C
t-nme-~s
Figure 44
Figure 45
0.8
1.0
'--
1.2
1.4
NOTE 10: Values of phase margin below a load capacitance of 25 pF were estimated.
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
POST OFFice BOX 655303 • DALLAS. TexAS 75265
2-195
Tl031 , Tl031 A
ENHANCED JFET lOW-POWER lOW-OFFSET
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
8
2
,
A
/\
I
>
I
tI>
DI
as
~
0
:;
I
I
~
0
I
0
>
-1
6
IA
>
/
lL
I
tI>
DI
2
~
0
0
-2
!!
VCC±=±5V
RL = 10kO
CL = 100pF
:;
~
=
TA
25°C
See Figure 1
Ll
4
/
I
~ -4
1\
~
V
o
-8
2
3
456
1
1\
=
VCC±
±15V
RL
10 kO
CL
100pF
TA
25°C
See Figure 1
=
=
=
\ r-
1/
I--
-6
-2
\
7
8
o
2
4
6
8
10
t-TIme-J.1S
t- Time-J.1S
Figure 46
Figure 47
12
14
16
18
APPLICATION INFORMATION
input characteristics
The TL031 and TL031 A are specified with a minimum and a maximum input voltage that, if exceeded at either
input, could cause the device to malfunction.
Because of the extremely high input impedance and resulting low bias current requirements, the TL031 and
TL031A are well-suited for low-level signal processing; however, leakage currents on printed circuit boards
and sockets can easily exceed bias current requirements and cause degradation in system performance. It
is a good practice to include guard rings around inputs (see Figure 48). These guards should be driven from
a low-impedance source at the same voltage level as the common-mode input.
Vo
(e) NONINVERTING AMPLIFIER
(b) INVERTING AMPLIFIER
Figure 48. Use of Guard Rings
TEXAS ~
INSTRUMENTS
2-196
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
(e) UNITY-GAIN AMPLIFIER
Tl031 , Tl031A
ENHANCED JFET lOW-POWER lOW-OFFSET
OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
output characteristics
All operating characteristics (except bandwidth and phase margin) are specified with 100-pF load
capacitance. The TL031 and TL031 A will drive higher capacitive loads; however, as the load capacitance
increases, the resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even
oscillation. The value of the load capacitance at which oscillation occurs varies with production lots. If an
application appears to be sensitive to oscillation due to load capacitance, adding a small resistance in series
with the load should alleviate the problem. Capacitive loads of 1000 pF and larger may be driven if enough
resistance is added in series with the output (see Figure 49).
(a) Cl
=100 pF, R =0
(d) Cl
= 1000 pF, R = 0
(b) Cl
(e)Cl
= 300 pF, R = 0
= 1000pF,R = 50n
(e) Cl
(I) cl
=350 pF, R =0
=1000 pF, R = 2 k.Q
Figure 49. Effect of Capacitive Loads
+5V
-5V
n
-1
L
NOTE A: CL includes fixture capacitance.
Figure 50. Test Circuit for Output Characteristics
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
2-197
Tl031 , Tl031A
ENHANCED JfET lOW-POWER lOW-OffSET
OPERATIONAL AMPLIfiERS
APPLICATION INFORMATION
high-Q notch filter
In general, Texas Instruments enhanced JFET operational amplifiers serve as excellent filters. The circuit in
Figure 51 provides a narrow notch at a specific frequency. Notch filters are designed to eliminate frequencies
that are interfering with the operation of an application. For this filter, the center frequency can be calculated
as:
1
fa = 21tR1C1
With the resistors and capacitors shown in Figure 51, the center frequency is 1 kHz. Note that
C1 = C3 = C2 + 2 and also that Ri = R3 = 2 x R2. The center frequency can be modified by varying
these values. When adjusting the center frequency, be sure that the operational amplifier still has sufficient
gain at the frequency of interest.
VIN
R1
R3
1.5MQ
1.5MQ
VOUT
-15V
C2
220pF
R2
750 k.Q
C1
C3
110 pF
110 pF
2
0
-1
III
-2
t::
-3
"I
~
-
V
'\
/'
,.-
I
/
-4
I
-5
-6
-7
-8
0.2
0.4
0.6
0.8
0.2 0.4
f - Frequency - kHz
0.6
0.8
Figure 51. High-Q Notch Filter
TEXAS ."
2-198
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
2
Tl031 , Tl031A
ENHANCED JFET lOW-POWER lOW-OFFSET
OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
translmpedance amplifier
The low-power precision TL031 allows accurate measurement of low currents. The high input impedance and
low offset voltage of the TL031A greatly simplify the design of a transimpedance amplifier. At room
temperature, this design achieves ten-bit accuracy with an error of less than 1/2 LSB.
Assuming that R2 is much less than R1 and ignoring error terms, the output voltage can be expressed as:
Vo
= -liN x RF(R1R+2 R2)
Using the resistor values shown in the schematic, for a 1-nA input current, the output voltage equals - 0.1 V.
If the Vo limit for the TL031 A is measured to be ± 12 V, the maximum input current for these resistor values
is ± 120 nA. Similarly, one LSB on a ten-bit scale corresponds to 12 mV of output voltage or 120 pA of input
current.
The following equation shows the effect of input offset voltage and input bias current on the output voltage:
R1 + R2)
R2
Vo = - [VIO + RF(lIN + lIB)] (
If the application requires input protection for the transimpedance amplifier, do not use standard PN diodes.
Instead, use low-leakage Siliconix SN4117 JFETs (or equivalent) connected as diodes across the TL031 A
inputs as shown in Figuire 52.
As with all precision applications, special care must be taken to eliminate external sources of leakage and
interference. Other precautions include using high-quality insulation, cleaning insulating surfaces to remove
fluxes and other residue, and enclosing the application within a protective box.
RF
10MQ
+ 15 V
INPUT
CURRENT
------<._---___.--1
>----.--+-- Vo
-15 V R1
90 kQ
R2
10 kQ
SN4117
Figure 52. Transimpedance Amplifier
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
2-199
Tl031 , Tl031A
ENHANCED JFET lOW-POWER lOW-OFFSET
OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
4- to 20-mA current loops
Often information from an analog sensor must be sent over adistance to tha receiving circuitry. For many
applications, the most feasible method involves converting voltage information to a current before transmission. The following circuits give two variations of low-power current loops. The circuit in Figure 53 requires
three wires from the transmitting to receiving circuitry while the second variation in Figure 54 requires only two
wires but includes an extra integrated circuit. Both circuits benefit from the high input impedance of the
TL031 A since many inexpensive sensors do not have low output impedance.
Assuming that the voltage at the noninverting input of the TL031 A is zero, the following equation determines
the output current:
10 =
VIN(~)+5V(~)=
R1 x RS
R2xRS
0.16xVIN+4rnA
The circuits presently provide 4-to 20-mA output for an input voltage of 0 to 100 mY. By modifying R1, R2,
and R3, the input voltage range or the output current range can be adjusted.
Including the offset voltage of the operational amplifier in the above equation clearly illustrates why the low
offset TL031A was chosen:
10 =
VIN(~)+5V(~)-VI0(~+~+R1)
R1 x RS
R2 x RS
R1 x RS
R2 x RS
RS
= 0.16xVIN+4rnA-0.17xVI0
For example, an offset voltage of 1 mV decreases the output current by 0.17 mA..
Thanks to the low power consumption ()f the TL031A, both circuits have at least 2 rnA available to drive the
actual sensor from the 5-V reference node.
~------------------------------~--~~ vcc+
=10V
LT1019-S
+SVRM-------r-4~~--~~----------__,
R2
1 MO
10f.lF
10 J.IF
RS
3.3kO
R4
R3
2N3904
SkU
80kU
-----~-*_Ry,S~~_ - - - - -....
COMMON
RL ~ 500
Figure 53. 2·Wire 4· to 2D-mA Current Loop
TEXAS
~
INSTRUMENTS
2-200
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
TL031 , TL031A
ENHANCED JFET LOW-POWER LOW-OFFSET
OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
r---------------.-~~ vee +
= 10V
100kn R6
TL431
100kn R7
+ 5 V Ref - - - - + -____ + - - - - ,
R2 1 Mn
R5
R1
VIN -""5""kn-+-..---t---t
3.3kn
2N3904
'--------+-----<,~ VEE
R4
R3
=-5V
Skn
SOkn
SIGNAL
RS
""' I
COMMON---*-+--~---------~~10~0~n~~~+O
RLi son
Figure 54. 3-Wlre 4- to 20-mA Current Loop
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
2-201
2-202
Tl032, Tl032A
ENHANCED JFET lOW-POWER lOW-OFFSET
DUAL OPERATIONAL AMPLIFIERS
D3152, JULY 1988 - REVISED JANUARY 1991
•
lI!1aximum Offset Voltage ... 800 ~V
•
Very Low Power Consumption .•• 13 mW Typ
•
High Slew Rate ... 2.9 V/~s Typ
•
Output Short-Circuit Protection
•
Low Input Bias Current ... 2 pA Typ
FK PACKAGE
(TOP VIEW)
D, JG, or P PACKAGE
(TOP VIEW)
LPACKAGE
(TOP VIEW)
+
I--
::::>
0
000 00
1 0 U T [ j 8 VCC+
liN 2
7
20UT
liN + 3
6
21NVCC- 4
5
21N +
Z~Z>Z
/
NC
l1NNC
liN +
NC
3
2
1 20 19
4
18
5
17
6
16
7
15
J8
NC
20UT
NC
21NNC
14
o
Z
Pin 4 (L Package) is in electrical
contact with the case
10 + 0
OZ Z Z
o
-
>
N
NC - No internal connection
description
The TL032 and TL032A dual operational amplifiers incorporate well-matched, high-voltage JFET and bipolar
transistors in a monolithic integrated circuit. These devices offer the significant advantages of Texas
Instruments new enhanced JFET process. This process affords not only low initial offset voltage due to the
on-chip zener trim capability but also stable offset voltage over time and temperature. In comparison,
traditional JFET processes are plagued by significant offset voltage drift.
This new enhanced process still maintains the traditional JFET advantages of fast slew rates and low input
bias and offset currents. These advantages coupled with low power consumption make the TL032 well-suited
for new state-of-the-art designs as well as existing design upgrades. The TL032 has been designed to be
functionally compatible and pin compatible with the TL062.
DISTRIBUTION OF TL032A
INPUT OFFSET VOLTAGE
AVAILABLE OPTIONS
i!- 12
I
PACKAGE
TA
V,Omax SMALLAT 25°C OUTLINE
(0)
O°C
to
70°C
40°C
to
85°C
-55°C
to
125°C
CHIP
CARRIER
(FK)
CERAMIC
DIP
(JG)
-
O.8mV TL032ACD
1.5 mV TL032CD
O.8mV TL032AID
1.5mV TL0321D
O.8mV TL032AMD TL032AMFK TL032AMJG
1.5 mV TL032MD TL032MFK TL032MJG
o packages are available taped and reeled.
-
METAL
CAN
(L)
PLASTIC
DIP
(P)
-
TL032ACP
TL032CP
TL032AIP
TL0321P
TL032AML TL032AMP
TL032ML TL032MP
f!
:E
"
Q.
91---+-~
E
«
'0
8, 6
'"
E
@
rf
Add "R" suffix to device type,
(e.g., TL032CDR).
PRODUCTION DATA documents contain Information currant as of
publication date. Product. conform to specifications per the lermsolTexas
InstrUment, standard warranty. Production processing does not
necallarlly Include testing 01 all parameters.
-600 -300
0
300
600
V,O -Input Offset Voltage -IlV
~
900
Copyright © 1991, Texas Ins1ruments Incorporated
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-203
TL032, TL032A
ENHANCED JFET LOW-POWER LOW-OFFSET
DUAL OPERATIONAL AMPLIFIERS
description (continued)
functionally compatible and pin compatible with the TL062. Two offset voltage grades are available:
TL032 (1.5 mV max) and TL032A (800 ~V max).
A variety of available packaging options includes small-outline and chip carrier versions for high density
system applications.
The C-suffix devices are characterized for operation from ooe to 70o e. The I-suffix devices are characterized
for operation from - 40 0 e to 85°C. The M-suffix devices are characterized for operation over the full military
temperature range of - 55°C to 125°e.
equivalent schematic (each amplifier)
01
IN +---1---.
IN _ _ .r---"\-.I
~~----~------~Vo
+------....-1017
R1
Vcc-
symbol (each amplifier)
IN-=t>IN
+
OUT
+
TEXAS . "
INSTRUMENTS
2-204
POST OFFICE BOX 655303' DALLAS, TEXAS 15265
Tl032, Tl032A
ENHANCED JFET lOW-POWER lOW-OFFSET
DUAL OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC + (see Note 1) ..................................................... 18 V
Supply voltage, VCC _ (see Note 1) .................................................... -18 V
Differential input voltage (see Note 2) ................................................... ± 30 V
Input voltage range, VI (any input, see Notes 1 and 3) ...................................... ± 15 V
Input current, II (each input) .......................................................... ± 1 mA
Output current, 10 (each output) ..................................................... ± 40 mA
Total current into VCC + terminal ..................................................... 160 mA
Total current out of VCC _ terminal ................................................... 160 mA
Duration of short-circuit current at (or below) 25°C (see Note 4) ............................ unlimited
Continuous total dissipation ........................................ See Dissipation Rating Table
Operating free-air temperature, T A: C-suffix ........................................ O°C to 70°C
I-suffix ...................................... - 40°C to 85°C
M-suffix .................................... - 55°C to 125°C
Storage temperature range ................................................... - 65°C to 150°C
Case temperature for 60 seconds: FK package ........................................... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package ................. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG or L package ................ 300°C
NOTES: 1.
2.
3.
4.
All voltage values. except differential voltages, are with respect to the midpoint between vee + and VCC _ .
Differential voltages are at the noninverting input with respect to the inverting input.
The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
TA S 25°C
POWER RATING
DERATING FACTOR
ABOVE TA 25°C
5.8mW/oC
=
=
D
FK
464mW
377mW
1375mW
11.0 mW/oC
880mW
JG
1050mW
672mW
715mW
546mW
275mW
210mW
528mW
429mW
165mW
640mW
520mW
200mW
725mW
=
L
825mW
8.4 mwrc
6.6mW/oC
p
1000 mW
8.0 mW/oC
TA 70°C
POWER RATING
TA 85°C
POWER RATING
=
TA 125°C
POWER RATING
145mW
PACKAGE
recommended operating conditions
C-SUFFIX
Supply voltage, VCC
Common-mode input voltage, V'C
Operating free-air temperature, TA
I-SUFFIX
MIN NOM MAX
±15
±5
M-SUFFIX
MIN NOM MAX
±5
± 15
MIN NOM MAX
±15
±5
_1.5
4
IVCC+=±5V
-1.5
4
-1.5
4
I VCC+ = ±15V
-11.5
14
-11.5
14
-11.5
14
0
70
-40
85
-55
125
UNIT
V
V
°c
TEXAS ~
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-205
TL032C, TL032AC
ENHANCED JFET LOW-POWER LOW-OFFSET
DUAL OPERATIONAL AMPLIFIERS
electrical Characteristics
PARAMETER
Via
TEST CONDITIONS
Temperature coefficient
aYIO
of input offset voltage
(see Note 8)
VIC
RS
= O.
= 0,
= 50 Q
MIN
25°C
Full range
0.69
TL032AC
25°C
Full range
0.53
TL032C
TL032AC
Input offset voltage
110
Input offset current
liB
Input bias current
YO = 0, VIC
See Figure 5
= 0,
= 0,
70°C
25°C to
Maximum negative peak
VOM-
AyO
output voltage swing
Large-signal differential
voltage amplification
RL
RL
=
=
10 kQ
10kQ
RL = 10 kn,
See Note 6
2.8
0.39
11.5
10.8
11.5
10.8
0.04
0.04
100
70°C
9
200
200
12
2
200
200
400
80
-13.4
400
25°C
2
70°C
-1.5
50
-3.4
to
to
to
to
4
-1.5
5.4
14
-11.5
15.4
-11.5
to
to
4
14
25°C
3
4.3
13
14
O°C
70°C
25°C
3
4.2
13
14
3
-3
4.3
-4.2
14
13
-12.5 -13.9
O°C
-3
-4.1
-12.5 -13.9
70°C
-4.2
-12.5
-14
25°C
-3
4
12
5
14.3
O°C
3
11.1
4
13.5
70°C
4
13.3
5
15.2
25°C
1012
1012
Input capacitance
25°C
5
4
kSVR
Supply-voltage
rejection ratio
(aVcC +IAVIO)
Po
ICC
= VICR min,
= 0,
RS = 50Q
VCC± = ±5Yto±15V,
Va = 0,
RS = 50n
VIC
25°C
70
87
75
94
Va
O°C
70
87
75
94
70°C
25°C
70
75
87
96
75
75
94
96
O°C
75
96
75
96
75
75.
96
70°C
Total power dissipation
No load,
(two amplifiers)
YO
Supply current
No load,
(two amplifiers)
YO
25°C
=a
=a
ilV/ mo
1
Input resistance
Common-mode
mV
25
100
q
rejection ratio
0.8
1.8
Ci
CMRR
UNIT
1.5
2.5
1
Full range
Maximum positive peak
0.57
MAX
25°C
voltage range
output voltage swing
TYP
ilV/oC
70°C
Common-mode input
VOM+
MIN
3.8
25°C to
25°C
VICR
VCC± = ±15V
MAX
3.5
4.5
25°C
long-term drift (see Note 5)
YO = 0, YIC
See Figure 5
TYP
TL032C
Input offset voltage
YO
VCC±=±5V
TAt
pA
pA
V
V
V
V/mV
Q
pF
dB
dB
96
13
17
O°C
3.8
3.7
5
5
12.7
17
70°C
3.8
5
12.6
17
25°C
384
500
434
560
O°C
368
500
422
560
70°C
378
500
420
560
mW
IJ.A
AVO = 100
dB
120
120
25°C
Yo l IV02 Crosstalk attenuation
t Full range IS O°C to 70°C.
NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
6. AtVCC± = ±5Y, Va = ±2.3V;atVcc± = ±15Y, Va = ±IOV.
8. This parameter is tested on a sample basis for the TL032A. For other test requirements, please contact the factory. This statement
has no bearing on testing or nontesting of other parameters.
=
TEXAS . "
INSTRUMENTS
2-206
POST OFFICE BOX 6553()3· DALLAS, TEXAS 75265
Tl032C, Tl032AC
ENHANCED JFET lOW-POWER lOW-OFFSET
DUAL OPERATIONAL AMPLIFIERS
operating characteristics
PARAMETER
SR+
SR-
tr
tf
TEST CONDITIONS
Positive slew rate
at unity gain
RL
= 10 kU.
= 100 pF.
eL
See Figure 1.
Negative slew rate
at unity gain
See Note 7
Equivalent
Vn
(see Note 9)
In
Bl
I/Jm
noise current
Unity-gain bandwidth
VCC± = ±15V
MIN
TYP
25°C
ooe
2
2
2.9
1.8
1.5
2.6
70°C
2.2
2
3.2
25°C
ooe
3.9
3.5
5.1
3.7
3.2
5.0
70°C
4
138
3.2
5.0
132
134
127
150
142
RL
25°C
ooe
138
132
134
127
70°C
150
142
25°C
ooe
11%
5%
10%
4%
70°C
12%
6%
f
RS = 1000.
See Figure 3
f
f
TL032Ae
Equivalent input
MAX
70 c e
= ± 10 mY.
= 10kil.
= 100 pF.
eL
See Figures 1 and 2
TL032e
= ±5V
TYP
VIPP
Overshoot factor
input
noise voltage
VCC±
MIN
25°C
ooe
Rise time
Fall time
TA
f
f
= 10 Hz
= 1 kHz
= 10Hz
= 1 kHz
= 1 kHz
Vi = 10 mY. RL = 10 kil.
CL = 25 pF. See Figure 4
Phase margin
Vi
at unity gain
eL
= 10 mY,
= 25 pF,
RL
= 10 kn,
See Figure 4
49
49
41
49
41
49
41
41
25°C
0.003
0.003
25°C
ooe
1
1.1
70°C
1
1
1.1
1
25°C
ooe
61°
61°
70°C
60°
65°
65°
64°
25°C
25°C
MAX
UNIT
V/f!s
V/f!s
ns
ns
nV/.JHz
60
pA/.JHz
MHz
NOTES: 7. ForVec± = ±5V, VIPP = ±1 V;forVCe± = ±15V, VIPP = ±5V.
9. This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing
on testing or nontesting of other parameters.
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-207
Tl0321, Tl032AI
ENHANCED JFET lOW-POWER lOW-OFFSET
DUAL OPERATIONAL AMPLIFIERS
electrical characteristics
PARAMETER
TEST CONDITIONS
,
TL0321
Via
Input offset voltage
TL032AI
Va: 0,
Temperature coefficient
aVIO
VIC: 0,
RS : son
of input offset voltage
(see Note 8)
TL0321
TL032AI
Input offset voltage
VCC±
TAt
MIN
25°C
Full range
110
Input offset current
Va : 0, VIC : 0,
See Figure 5
liB
Input bias current
Va : 0, VIC : 0,
See Figure 5
0.53
25°C
Full range
85°C
25°C to
3.5
Maximum negative peak
RL: 10 kn
output voltage swing
Large-signal differential
AVO
RL: 10 kn,
See Note 6
voltage amplification
10.8
11.4
10.8
0.04
0.04
pA
0.02
0.45
200
0.02
0.45
nA
2
200
pA
0.9
0.3
-11.5 -13.4
0.9
nA
2
0.2
85°C
-3.4
to
to
to
to
4
5.4
14
-11.5
15.4
- 1.5
to
to
25°C
3
4.3
13
14
-40°C
3
4.1
13
14
85°C
4.4
-4.2
13
14
-12.5 -13.9
25°C
3
-3
-40°C
-3
-4.1
-12.5 -13.8
85°C
-3
-4.2
-12.5
25°C
4
12
5
14.3
3
8.4
4
11.6
85°C
4
13.5
5
15.3
1012
1012
25°C
rejection ratio
VCC± = ±5Vto±15V,
Va = 0,
(aVCC±laVIO)
RS
Supply-voltage
kSVR
Po
ICC
= 50n
Total power dissipation
No load,
(two amplifiers)
Va: 0
Supply current
No load,
(two amplifiers)
=0
AVO = 100
Va
V
V
-14
-40°C
25°C
Rs: 50n
V
14
Input capacitance
VIC : VICR min,
Va: 0,
/lV/mo
85°C
25°C
Input resistance
Common-mode
25
100
Ci
rejection ratio
mV
1
I'j
CMRR
0.8
2.6
11.4
4
VOM-
0.39
100
Full range
RL : 10 kn
1.5
3.3
2.8
UNIT
1
voltage range
Maximum positive peak
0.57
MAX
25°C
25°C
output voltage swing
=±15V
TYP
/lV/oC
85°C
Common-mode input
VOM+
VCC±
MIN
4.6
25°C to
-1.5
VICR
MAX
5.3
25°C
long-term drift (see Note 5)
=±5V
TYP
0.69
25°C
70
5
87
75
94
-40°C
70
87
75
94
85°C
70
87
75
94
V/mV
n
4
25°C
75
96
75
96
-40°C
75
96
75
96
85°C
75
96
75
96
pF
dB
dB
25°C
3.8
5
13
-40°C
2.9
5
10.9
17
85°C
3.7
12.4
434
17
17
25°C
384
5
500
-40°C
288
500
362
560
85°C
372
500
414
560
mW
560
!lA
Vo 11V02 Crosstalk attenuation
dB
25°C
120
120
t Full range IS -40°C to 85°C.
NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA : 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
6. At VCC ±
± 5 V, Va
± 2.3 V; at Vee ±
± 15 V, Va : ± 10 V.
8. This parameter is tested on a sample basis for the TL032A. For other test requirements, please contact the factory. This statement
has no bearing on testing or nontesting of other parameters.
=
=
=
~
TEXAS
INSTRUMENTS
2-208
POST OFFICE BOX ~55303' DALLAS, TEXAS 75265
TL0321, TL032AI
ENHANCED JFET LOW-POWER LOW-OFFSET
DUAL OPERATIONAL AMPLIFIERS
operating characteristics
PARAMETER
SR+
SR-
Ir
tf
TEST CONDITIONS
Positive slew rate
at unity gain
Negative slew rate
at unity gain
RL = 10 kn,
CL = 100 pF,
See Figure 1,
See Note 7
V,PP = ± 10 mV,
RL = 10kQ,
CL = 100 pF,
See Figures 1 and 2
Overshoot factor
Equivalent
Vn
input
noise voltage
(see Note 9)
In
Bl
Iflm
TL0321
Equivalent input
Unity-gain bandwidth
Phase margin
at unity gain
f = 10 Hz
RS = 100 Q,
See Figure 3
TL032AI
noise current
=
VCC±
±5V
MIN
TYP MAX
25°C
Rise time
Fall time
TA
f = 1 kHz
f = 10 Hz
f = 1 kHz
f = 1 kHz
Vi = 10 mV, RL = 10 kQ,
CL = 25 pF, See Figure 4
Vi = 10 mV. RL = 10 kQ,
CL = 25 pF, See Figure 4
2
VCC±
=±15V
MIN
TYP
2.9
2.1
-40°C
1.6
2
1.5
85°C
2.3
2
3.3
5.1
25°C
3.9
3.5
-40°C
3.3
3.2
4.8
85°C
4.1
3.2
4.9
25°C
138
-40°C
132
123
85°C
154
146
25°C
138
132
-40°C
85°C
132
154
123
146
25°C
-40°C
11%
12%
5%
85°C
13%
49
25°C
41
VIlIS
VIlIS
ns
ns
5%
7%
49
49
41
41
25°C
0.003
0.003
25°C
1
1.1
-40°C
85°C
1
0.9
1.1
25°C
-40°C
61°
85°C
60°
60°
UNIT
132
41
49
25°C
MAX
nV/.JFii
60
pAl.JFii
MHz
1
65°
65°
64°
NOTES: 7. For VCC ± = ± 5 V, VIPP = ± 1 V; for VCC ± = ± 15 V, V,PP = ± 5 V.
9. This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing
on testing or nontesting of other parameters.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-209
TL032M, TL032AM
ENHANCED JFET LOW-POWER LOW-OFFSET
DUAL OPERATIONAL AMPLIFIERS
electrical characteristics
PARAMETER
TEST CONDITIONS
TL032M
VIO
Input offset voltage
TL032AM
Va = 0,
"Via
Temperature coefficient
of input offset voltage
VIC = 0,
RS = 50n
TL032M
TL032AM
Input offset voltage
long-term drift (see Note 5)
25°C
Full range
25°C
Full range
25°C to
125°C
25°C to
125°C
110
Input offset current
liB
Input bias current
Va = 0, VIC = 0,
See Figure 5
25°C
125°C
25°C
125°C
25°C
Common-mode input
voltage range
Full range
VOM+
VOM-
AVO
fj
Ci
CMRR
kSVR
Maximum positive peak
output voltage swing
Maximum negative peak
output voltage swing
Large-signal differential
voltage amplification
Supply-voltage
rejection ratio
(c.vCC ±' AVIO)
Po
ICC
RL = 10 kn
RL = 10 kn,
See Note 6
Total power dissipation
(two amplifiers)
Supply current
(two amplifiers)
VIC = VICR min,
Va = 0,
RS= 50n
VCC± = ±5Vto±15V,
Va = 0,
RS = 50n
No load,
Va = 0
No load,
Vo = 0
=±15V
TYP
0.57
0.39
9.7
9.7
9.1
9.7
0.04
0.04
100
0.2
2
7
-3.4
to
5.4
10
200
20
1
0.2
2
8
-11.5 -13.4
to
to
14
15.4
-11.5
to
3
-3
-3
14
13
14
13
14
13
14
-12.5 -13.9
-12.5 -13.8
-3
-4.3
-12.5
-14
25°C
-55°C
125°C
25°C
25°C
4
3
3
12
7.1
5
4
4
14.3
10.4
25°C
-55°C
125°C
70
70
70
75
75
75
25°C
-55°C
125°C
25°C
-55°C
4
3
3
1
4.3
4.1
4.4
-4.2
-4
-55°C
125°C
Input resistance
Input capacitance
Common'mode
rejection ratio
-1.5
to
4
- 1.5
to
25°C
-55°C
125°C
25°C
RL = 10 kn
VCC±
MIN
MAX
1.5
4.5
0.8
3.8
UNIT
mV
v.Vl oC
25°C
Va = 0, VIC = 0,
See Figure 5
VICR
=
VCC±
±5V
MIN
TYP MAX
0.69
3.5
6.5
0.53
2.8
5.8
TAt
125°C
25°C
-55°C
125°C
25°C
12.9
10'2
5
87
87
87
96
95
96
3.8
2.3
3.6
384
228
356
120
75
70
70
75
75
75
5
5
5
500
500
500
v.Vlmo
100
10
200
20
V
V
V
VlmV
15
10'2
4
94
94
94
96
95
96
13
9.4
11.8
434
312
394
120
pA
nA
pA
nA
n
pF
dB
dB
17
17
17
560
560
mW
v.A
560
AVO = 100
dB
V0 11V02 Crosstalk attenuation
t Full range IS - 55°C to 125°C.
NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
6. AtVCC± = ±5V,VO = ±2.3V;atVcc± = ±15V,VO = ±10V.
TEXAS ."
INsrRUMENTS
2-210
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
Tl032M, Tl032AM
ENHANCED JFET lOW-POWER lOW-OFFSET
DUAL OPERATIONAL AMPLIFIERS
operating characteristics
PARAMETER
SR+
SR-
tr
TEST CONDITIONS
Positive slew rate
at unity gain
RL
Rise time
= ± 10 mV,
= 10kn,
= 100 pF,
RL
CL
See Figures 1 and 2
Fall time
Overshoot lactor
Vn
In
Equivalent
input
noise voltage
TL032M
1= 10 Hz
f = 1 kHz
1= 10 Hz
f = 1 kHz
RS = lOOn,
See Figure 3
TL032AM
Equivalent input
noise current
I=
1 kHz
Bl
Unity-gain bandwidth
Vi = 10 mV, RL = 10 kn,
CL = 25 pF, See Figure 4
~m
Phase margin
at unity gain
Vi = 10 mV, RL = 10 kn,
CL = 25 pF, See Figure 4
NOTE 7: ForVCC±
= ±5V, VIPP = ±1
25°C
0.003
0.003
25°C
-55°C
125°C
25°C
-55°C
125°C
1
1
0.9
61°
57°
59°
1.1
1.1
0.9
65°
64°
62°
125°C
25°C
-55°C
125°C
25°C
-55°C
125°C
25°C
-55°C
125°C
VIPP
tf
VCC±=±15V
MIN
TVP MAX
2.9
2
1.2
1.9
1.2
3.5
5.1
3
2.5
4.6
4.7
2.5
132
123
158
132
123
158
5%
6%
25°C
-55°C
125°C
25°C
-55°C
= 10 kQ,
= 100 pF,
CL
See Figure 1,
See Note 7
Negative slew rate
at unity gain
VCC±=±5V
MIN
TVP MAX
2
1.4
2.4
3.9
3.2
4.1
138
142
166
138
142
166
11%
16%
14%
49
41
49
41
TA
V;lorVCC±
25°C
25°C
8%
49
41
49
41
UNIT
V/IlS
V/IJ.S
ns
ns
nV/~
pAl~
MHz
= ±15V, VIPP = ±5V.
PARAMETER MEASUREMENT INFORMATION
>----VO
I
I
I
I
I
I
I
10%
:
I
......... t r - RISE TIME
NOTE A: CL includes fixture capacitance.
Figure 1. Slew Rate, Rise/Fail Time,
and Overshoot Test Circuit
Figure 2. Rise Time and Overshoot
Waveform
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-211
TL032, TL032A
ENHANCED JFET LOW-POWER LOW-OFFSET
DUAL OPERATIONAL AMPLIFIERS
PARAMETER MEASUREMENT INFORMATION
VI
1000
Vo
VeeRs
RS
NOTE A: CL includes fixture capacitance.
Figure 3. Noise Voltage Test Circuit
Figure 4. Unity-Gain Bandwidth and
Phase Margin Test Circuit
GROUND SHIELD
Vee +
Figure 5. Input Bias and Offset
Current Test Circuit
typical values
Typical values as presented in this data sheet represent the median (50% pOint) of device parametric
performance.
Input bias and offset current
At the picoamp bias current level typical of the TL032 and TL032A, accurate measurement of the bias current
becomes difficult. Not only does this measurement require a picoammeter, but test socket leakages ean easily
exceed the actual device bias currents. To accurately measure these small currents Texas Instruments uses
a two step process. The socket leakage is measured using picoammeters with bias voltages applied but with
no device in the socket. The device is then inserted into the socket and a second test that measures both
the socket leakage and the device input bias current is performed. The two measurements are then subtracted
algebraically to determine the bias current of the device.
noise
Because of the increasing emphasis on low noise levels in many of today's applications, the input noise voltage
density is sample-tested at f = 1 kHz. Texas Instruments also has additional noise testing capability to meet
specific application requirements. Please contact the factory for details.
TEXAS
2-212
~
INSTRUMENlS
POST OFFICE BOX 655303 • ~ALLAS. TEXAS 75265
Tl032, Tl032A
ENHANCED JFET lOW-POWER lOW-OFFSET
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
table of graphs
FIGURE
VIO
Distribution
6
Distribution
7
vs
Temperature
8
vs
VIC
Temperature
9
8
VCC
Temperature
10
vs
vs
Output voltage
12,13
vs
vs
vs
VCC
Output current
Frequency
16,17
vs
Temperature
18,19
vs
RL
Frequency
20
vs
vs
Temperature
vs
vs
Frequency
Frequency
22
23
vs
Temperature
26
vs
Temperature
27
vs
VCC
Time
28
Temperature
30
Vce
Temperature
32
34,35
vs
RL
Temperature
Equivalent input noise voltage
vs
vs
eL
Frequency
31
Total harmonic distortion
vs
Frequency
39
vs
40
vs
Vce
Temperature
vs
Vce
42
vs
43
vs
CL
Temperature
vs
Frequency
Input offset voltage
Temperature coefficient
(lVIO
of input offset voltage
110
Input offset current
liB
Input bias current
VI
Input voltage range
VID
VOM
AVO
Zo
Maximum peak output
voltage swing
Differential voltage amplification
Output impedance
Common-mode rejection ratio
kSVR
Supply-voltage rejection ratio
lee
SR
Short-circuit output current
Supply current
Slew rate
Overshoot factor
Vn
THO
B1
4Jm
vs
Differential input voltage
CMRR
lOS
vs
Unity-gain bandwidth
Phase margin
Phase shift
Pulse response
vs
vs
vs
vs
vs
Small-signal
Large-signal
11
14
15
21
24, 25
29
33
36,37
38
41
44
21
45
46,47
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-213
Tl032, Tl032A
ENHANCED JFET LOW-POWER lOW-OFFSET
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
DISTRIBUTION OF TL032
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
DISTRIBUTION OF TL032
INPUT OFFSET VOLTAGE
30
1681 Amplifiers
from 2 wafer lots
VCC±=±15V
TA = 25°C
VCC± = ±15V
25 I---t--t--+--+- T A = 25°C to 125°C
':!!.
P Package
°I
VS
VS
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
= 25°C
12
V
POSITIVE LlMV ./'
I
20
V
VCC±=±15V
>
6
&.
5
.E
~
o
0
E
E
~ '-...
4
10
~o
LIMIT
r--.....
2
E'"
~
~EGATIVE
o
~OSITI~E UJIT
I
,,- ./'
-16
15
8
10
12
-5
8 -10
I
o
>" -15
~
14
iGATllVE
-20
-75
16
-50
IVcc ±I- Supply Voltage - V
-25
0
25
50
75
100
TA - Free-Air Temperature - DC
Figure 10
Figure 11
DIFFERENTIAL INPUT VOLTAGE
DIFFERENTIAL INPUT VOLTAGE
VS
OUTPUT VOLTAGE
1.5 rT"..,................--...--.......- - . . . - -.......- - - ,
1.5 r-""II"TT'-I"T"-'-"""''''''-'--'''''-'--'''''-,---,
~
~
C)
Ol
..
..
I
I
B
0.5
.E
OJ
0
B
"0
>
0.5
:;
Il.
.E
OJ
=
Vcc±
±5V
TA
25°C
i
f
=
~ -0.5
I
is
RL
RL
RL
RL
I
~
125
VS
OUTPUT VOLTAGE
"0
>
'5
Co
urr
-1
I
0
..
'E
~ -0.51--+--1--+--p.-d~~:-..I
I
= 20 kn-+-t---+"
= 10 kn--+--t---t---'
= 5 kn --+--+--+--1
= 2kn
is
I
RL = 50 kn
RL = 20 kg ----if---"
RL = 10 kQ ---1--.-../
= 5kn
-1.5 ' - - -.......- -RL
' -.....
_ ......._ _....._ ......._ ......
-15
-10
-5
0
5
10
15
~ -11---1-
-1.5 L_~R~L~=~1~k~n~:t::t::t::~~~LJJ
4
2
3
5
-5 -4 -3 -2 -1 o
Vo - Output Voltage - V
Vo - Output Voltage - V
Figure 12
Figure 13
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-215
Tl032, Tl032A
ENHANCED JFET lOW-POWER lOW-OFFSET
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
MAXIMUM PEAK-TO-PEAK'OUTPUT VOLTAGE
vs
FREQUENCY
MAXIMUM PEAK OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
>
16
RL = 10 kQ
TA = 25°C
"",-
I
VOM+"",-
i
o
V
I I 1111
"
Cl
oS
"'0
>
V""
25
c5
."
,,:,
.
&.
RL = 10kQ
VCC± = ±15V\
\
S
So
[..../
.,,-
4
30
I
20
\
.:c .
0..
~
0
§
-4
&.
.......
E
')(
:;l
~M......
-8
I
.......
:;;
o
2
15
E
E
10
.
I
..is...
Cl
>
;;
co.
S
1'---. . . . ......
4
6
8
10
12
IVcc ±I- Supply Voltage - V
:0
...081
~
E
:::I
E
....
2
o
10k
100k
f - Frequency - Hz
1M
Figure 15
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
16
Vcc ± = ±5 V
TA = 25°C
>
I
Cl
oS
"'0
>
5
...0.
8
~
10
6
:0
4
..
=
"-.....
VOM-
~
r\.
\
VOM+
E
E
:::I
\
\
\
';(
I
""
:E
0
>
~
15
1101- Output Current - rnA
20
2
o
o
Figure 16
=
Vcc±
±15V
TA
25°C
0..
"~
~
0
10
"
~
12
>
S
co.
'5
~
I
14
"
~1\
:;;
o
o
= 125°C
~ i'..
1k
16
4 ~
D..
5
I
0..
0..
I'-
14
\
VCC±=±5V
Figure 14
VOM+
3
1;== TA
';(
5
>
~A 1,-,ii~,T\
:::I
;.9-12
-16
.9
5
10
15
20
1101- Output Current - rnA
25
Figure 17
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices,
~
2-216
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 ' DALLAS, TEXAS 75265
30
TL032, TL032A
ENHANCED JFET LOW-POWER LOW-OFFSET
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
MAXIMUM PEAK OUTPUT VOLTAGE
MAXIMUM PEAK OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
vs
FREE-AIR TEMPERATURE
16
5
>
I
GI
CI
S
'0
>
S
>
4
I
VOM+
"
3
Ol
lIS
'g
;;
~
....
o
VCC±=±5V_
RL = 10 kQ
0
""
~
§
e
.;:c
-1
-2
:II!
0
vcc± = ±15 V
RL = 10kn
0
-4
~ -8
:II!
I
4
Co
;;
D-
e:::I
e
8
>
2
0
""II!
I
vOM+
12
I
-3
:II!
0-12
> -4
>
VOM_
VOM-
-5
-75 -50
-25
0
25
50
75
100
T A - Free-Air Temperature - °c
-16
-75
125
-50
-25
0
25
50
75
100
125
T A - Free-Air Temperature - °C
Figure 18
Figure 19
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
LARGE-SIGNAL VOLTAGE AMPLI FICATION
vs
LOAD RESISTANCE
40
>
e
:>
35
I
Vo = ± 1 V
TA = 25°C
0
5
30
'a
25
~
>
~
j
I
c
~
"
;;:
VCC± = ±15V
<
GI
CI
';
20
.15
10
/
/
/'
30°
TA = 25°C
'a
II
;;:
e
o
V
c
VCC±=±15V
RL = 10 kn
1'<--"""1.--1----+--- CL = 25 pF
c
E 10 3
<
60°
"0
> 10 2
90°
N'"
V
vI--'
VCC±=±5V
iii
~"
:..
.c
.~
'/
==
.c
UI
D-
10 1
120°
i5
I
C
~
5
0
10 k
100 k
RL - Load Resistance -
1M
n
0.1 ' - - _......._ _'---_......._ _'---_............;1...&.1180°
10
100
1k
10 k
100 k
1M
10 M
f - Frequency - Hz
Figure 20
Figure 21
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSfRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-217
Tl032, Tl032A
ENHANCED JFET lOW-POWER lOW-OFFSET
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
LARGE-SIGNAL VOLTAGE AMPLIFICATION
OUTPUT IMPEDANCE
vs
vs
FREE-AIR TEMPERATURE
FREQUENCY
200
50
>
RL = 10kQ
E
:>
AtO
~ii.
E
""
1
,10
....-::~-I"""'
I
c
,S!
a
vcc± = ± 15 V
I
II>
~T
10
''""
."...- ~
I:
'0
.E
:;Q.
>
1,/
/
60
'--AVO = 10
Q.
S
'0
v
80
II>
VCC± = +5V
GI
CI
100
l./
40
8
OJ
E
..,.. vii
I
iis
0
N
20 I-- AVO = 1
VCC ± = ±15V
ro(openloop) ~ 250Q
I
C
I
>
""
10
1k
1
-75
-50
-25
0
25
50
75
100
125
'0
I
0
Figure 22
Figure 23
COMMON-MODE REJECTION RATIO
COMMON-MODE REJECTION RATIO
vs
vs
FREQUENCY
FREQUENCY
100
VCC±=±5V
TA = 25°C
............
80
.g
c
70
'iii'
60
GI
50
'" \
'0
0
=!ic
40
E
E
30
<3
I
20
::E
10
a:
a:
0
o
10
'~
80
~
70
'g
£'
i
\
::E
\
0
90
a:
r\
a:
~
\
\
~
<3
30
I
20
13
10
a:
a:
'"
50
40
o
'\.
60
C
Vcc± = ±15V
TA = 250C
'\.
I
.........
a:
g
100 k
f - Frequency - Hz
90
~
TA=25°C
T A - Free-Air Temperature - °C
100
III
I
10 k
~
'\.
~
\
o
100
1k
10 k
100 k
1M
10 M
10
100
f - Frequency - Hz
Figure 24
1k
10k
lOOk
f - Frequency - Hz
1M
Figure 25
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices,
TEXAS
~
INSTRUMENTS
2-218
POST OFFICE BOX 655303 ' DALLAS, TEXAS 75267
10M
Tl032, Tl032A
ENHANCED JFET lOW-POWER lOW-OFFSET
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
COMMON-MODE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
95
I
III
100
I
I
0
.~
90
c
II:
~
'a;"
II:
...
'U
'...8
0
'4)
II:
/"
96
..
VCC±=±5V
85
I
Cl
0
l!!
'0
~0
0
98
c
0
()
t-il.
94
Q.
80
rn"
I
II:
II:
I
92
II:
>
rn
...
::I!
()
VIC = VICR min
75
-75
-50
-25
0
25
50
75
100
90
-75
125
-50
TA - Free-Air Temperature - °C
I
()
75
100
SHORT-CIRCUIT OUTPUT CURRENT
vs
TIME
125
30
Vo = 0
TA
25°C
=
20
/"
'E"
V
VID
I
= 100mV
VIO = '100mv
20
E
~
10
"
U
;
10
Co
;
o
0
~
e
~
50
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
Co
0
25
Figure 27
:;
:;
0
Figure 26
C
I!!
13
-25
TA - Free-Air Temperature - °C
30
'E"
=±5V to ±15V
'U
vcc± = ±15V
I
E
E
VCC±
III
'U
~
II:
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
VID = -100 mV
-10
0
VID = -100mV
.c
1/1
:" -20
VCC± = ±15V
TA = 25"C
.9
-30
o
-20
2
4
6
8
10
12
14
16
I
o
5
10
15
/VCC ±/- Supply Voltage - V
20
t - Time - Seconds
Figure 28
Figure 29
I
25
30
tOala at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices,
TEXAS
~
IN5rRUMENTS
POST OFFICE SOX 655303 • DALLAS, TEXAS 75265
2-219
TL032, TL032A
ENHANCED JFET LOW-POWER LOW-OFFSET
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
FREQUENCY
25
r--
~
c(
20
E
I
~
"
EQUIVALENT INPUT NOISE VOLTAGE
vs
15
- =:t--+-= ± 15V
Vcc±
= ± 5V
vcc±
10
0
i
'I:
-.10
0
.c
CD
III
-15
~
-20
z
5Q.
.s
'=:::::
-25
- 75
40
E
CD
~
= ± 15 V
':;
=0
- 50
30
- 25
0
25
50
75
100
TA - Free-Air Temperature - °C
100
10
125
1k
10 k
f - Frequency - Hz
Figure 30
Figure 31
SUPPLY CURRENT
SUPPLY CURRENT
vs
SUPPL Y VOLTAGE
FREE-AIR TEMPERATURE
500
400
~
~
(.-:::::. I--
I
E
!! 300
~
-
r-
~
I
= 25°C
..,.,... V
ii.
~
~
r\ ~C
200
I
I
\
I
:;
300
,..
I
(.)
I
ii.
/ V
i.
I
- - r--
-
I
I
r--
VCC±=±5V
/
/
go 200
I
en
I
= -55'C
TA
~
I
I
/""
400
_r-TA
I
Vcc± = ±15V
\
8>-
100k
vs
500
go
......... r--.
I
Vo
1/1
",
'0
= ±5V
vcc±
1/1
I
50
>
vcc±
-5
I
CD
S
'0
0
I!
<;i
RS = 1000
TA = 25"C
See Figure 3
:>c
Ol
5
V~~± = ±15V
~
-
(.)
5Q.
5
60
I
~
100
100
=
o
o
=
Vo
0
No Load
2
4
6
8
10
12
14
Vo
0
No Load
o
16
-75
-50
IVcc ±I- Supply Voltage - V
Figure 32
-25
0
25
50
75
100
TA - Free-Air Temperature - °C
Figure 33
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices,
TEXAS
~
INSTRUMENTS
2-220
POST OFFICE BOX 655303' DALLAS, TEXAS 75267
125
TL032, TL032A
ENHANCED JFET LOW-POWER LOW-OFFSET
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
SLEW RATE
vs
LOAD RESISTANCE
SLEW RATE
vs
LOAD RESISTANCE
6
6
5
5
SR-
].
>
4
v
I
..
J
3
a:
2
!l
a:
I
III
-
~
I-
I
II>
iii
a:
;:
V
-
en
SR +
I
III
J
I
a:
III
SR+
=
=
= 250C
VCC±
±15V
CL
100 pF
TA = 25°C
See Figure 1
TA
See Figure 1
o
100
10
RL - Load Resistance - kn
Figure 35
SLEW RATE
vs
FREE-AIR TEMPERATURE
SLEW RATE
vs
FREE-AIR TEMPERATURE
5
:...--
..V I-- SR-
-
I--
~
>
-
o
SR-
4
*
3
I
a:
II>
..I--f-- SR+
-
!II
;:
- 75 - 50
100
Figure 34
5
4
10
RL - Load Resistance - kn
1
6
2
--
VCC±=±5V
CL=100pF
6
3
I-
V
2
a:
I-
1
i
3
II>
o
~I
4
>
SR-
1--
V
!II
en
I
a:
2
/
./"""
I-- SR+
-r---- ---
I---
III
vcc± = ±5V
RL = 10 kn
CL = 100 pF
See Figure 1
- 25
0
25
50
75
100
T A - Free-Air Temperature - °C
VCC± = ±15V
RL = 10kn
CL = 100 pF
See Figure 1
o
125
-75
-50
Figure 36
-25
0
25
50
75
100
TA - Free-Air Temperature - °c
125
Figure 37
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-221
TL032, TL032A
ENHANCED JFET LOW-POWER LOW-OFFSET
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
TOTAL HARMONIC DISTORTION
OVERSHOOT FACTOR
60
vs
vs
LOAD CAPACITANCE
FREQUENCY
0.5
=
=
TA = 25°C
VIPP
±10mV
RL
10 kQ
50
VCC±=±15V
;!<.
See Figure 1
If.
/
40
I
I
-
30
0
20
5
c
0
'f
10
Ii
o
o
1/
0.3
~
is
"
'2
0
IV
0
z:
;
VL
AVO = 1
VO(rms) = 6 V
TA = 25°C
I
±5V~ V
/
VCC+ =
u.
0.4
E
to
/
0.2
--
~
lI
0
:t:
I-
/
50
100
150
200
CL - Load Capacitance - pF
0.1
100
250
1--"' .....
1k
10 k
f- Frequency - Hz
100 k
Figure 38
Figure 39
UNITY-GAIN BANDWIDTH
UNITY-GAIN BANDWIDTH
vs
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
1.1
1.3
VI
~
~ 1.05
il
~
:;
/
1.0
ID
c
/'
/
V
V
!--
N
:t:
::;;
z:
~
3:
c
'0
VCC±
.;
~
c
;:)
0.95
~
ID
~
'2
Vi = 10 mV
;:)
RL = 10kQ
I
o
1.0
VCC±
-.....
............
............
=±5V
"-...
............
~
i"--... ~
~
m 0.9
CL = 25 pF
TA = 25°C
See Figure 4
0.9
-
.
C
=±15V
" - ............
1.1
to
ID
=10mV
=
=
RL
10kQ
CL
25pF
See Figure 4
1.2
I
~
I
V
V
:t:
VCC±=±15V
/
"-
0.8
2
4
6
8
10
12
14
16
- 75
- 50
IVcc ±I- Supply Voltage - V
Figure 40
- 25
0
25
50
75
100
T A - Free-Air Temperature - °C
Figure 41
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSTRUMENTS
2-222
..........
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
125
Tl032, Tl032A
ENHANCED JFET lOW-POWER lOW-OFFSET
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
PHASE MARGIN
vs
SUPPLY VOLTAGE
-
65
:l
e
I
c
.
...
:E
y
70
66
III
$
V
/
..,2'
'2»
./'
/
63
PHASE MARGIN
vs
LOAD CAPACITANCE
61
I
62
.....
60
See Note 10
co
:!i
II>
III
co
Q.
Vi = 10mV
RL = 10 kn
CL = 25 pF
E 59
....
I
57
o
....
4
6
6
10
65
...............
56
61
59
r-.......... .......
r-....
VCC±=±5V
...............
..........
56
i'..... .......
54
16
o
10
20
30
40
50
60
70
80
Figure 43
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
12
;--
---(
90
100
16
>
E
r---...........
6
.............
II>
0)
S
"0
r--.......... ........
'\...
~
4
>
:;
0
0
-4
.e::J
...............
VCC± = ±15V
RL=10kQ
CL = 100 pF
TA = 25 DC
See Figure 1
I
VCC± = ±5V
II>
r......
Figure 42
63
.s
...............
r-....
CL - Load Capacitance - pF
/'"
I
....
14
VCC± = ±15V
IVcc ±I- Supply Voltage - V
e
Q.
12
r-....
52
I I .l
VCC±=±15V
1ft
II>
.c
...............
50
2
67
.!!I
...............
E
TA = 25"C
See Figure 4
:E
t- . . .
.c
I
Vi = 10mV
RL = 10kn TA = 25 DC _
See Figure 4
, r......
..,
c
Q.
..,
.....
64
.~
.c
II>
.....
66
C,
II>
II>
0)
t- . . .
I
0
I
....E
57
55
- 75
I
>
Vi = 10mV
RL = 10 kg
CL = 25 pF
See Figure 4
-8
-16
- 50
- 25
0
25
50
75
100
TA - Free-Air Temperature - DC
V ---
~I
-12
125
Figure 44
o
0.2 0.4 0.6
t-Time-f.1s
0.8
1.0
1.2
1.4
Figure 45
rOala at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
NOTE 10: Values of phase margin below a load capacitance of 25 pF were estimated.
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
2-223
TL032, TL032A
ENHANCED JFET LOW-POWER LOW-OFFSET
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
8
2
A
6
/\
>
A
~
0
>
0
:;
~
0
I
0
>
-1
/
I
V
>
\
'j
I
G>
III
4
2
>
:;
0
"I
-2
l!!
'0
VCC± = ±5V
RL = 10 kn
CL = 100 pF
/
.s-
0
TA = 25°C
See Figure 1
>
V
-4
----,
-6
-2
o
-8
2
3
4
t - Time- fls
5
6
7
8
\
=
VCC±
±15V
RL
10 kn
CL = 100 pF
=
=
/
0
/I.
\
/
I
G>
III
\
TA
25°C
see Figure 1
\i
1/
o
2
4
6
8
10
12
14
'-
16
18
t- Time-J.LS
Figure 47
Figure 46
APPLICATION INFORMATION
Input characteristics
The TL032 and TL032A are specified with a minimum and a maximum input voltage that, if exceeded at either
input, could cause the device to malfunction.
Because of the extremely high input impedance and resulting low bias current requirements, the TL032 and
TL032A are well-suited for low-level signal processing; however, leakage currents on printed circuit boards
and sockets can easily exceed bias current requirements and cause degradation in system performance. It
is a good practice to include guard rings around inputs (see Figure 48). These guards should be driven from
a low-impedance source at the same voltage level as the common-mode input.
The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation.
Vo
(8) NONINVERTING AMPLIFIER
(b) INVERTING AMPLIFIER
Figure 48. Use of Guard Rings
TEXAS
~
INSTRUMENTS
2-224
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
(e) UNITY·GAIN AMPLIFIER
TL032, TL032A
ENHANCED JFET LOW-POWER LOW-OFFSET
DUAL OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
output characteristics
All operating characteristics (except bandwidth and phase margin) are specified with 100 pF load capacitance.
The TL032 and TL032A will drive higher capacitive loads; however, as the load capacitance increases, the
resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation. The
value of the load capacitance at which oscillation occurs varies with production lots. If an application appears
to be sensitive to oscillation due to load capacitance, adding a small resistance in series with the load should
alleviate the problem. Capacitive loads of 1000 pF and larger may be driven if enough resistance is added
in series with the output (see Figure 49).
(a) CL
= 100 pF, R = 0
(b) CL
= 300 pF, R = 0
(e) CL
= 350 pF, R = 0
,.,i....... ,.~ .,....... ~ ......... ~ ... .
1• • • •1• .·• :•
·••• : •••••••• : •••• 1··••••••
·::I::::·:::r::::::::::::::::j::::::::t::.·:::j::::
.... ~ ...... ,.. ~ .. ,......I········, ~ ..... '" I'···
(d) CL
=1000 pF, R = 0
(e) CL
= 1000 pF, R = 50 Q
(f) CL
= 1000 pF, R = 2 kQ
Figure 49. Effect of Capacitive Loads
+5V
n
-sv-.l
L
10 kQ
NOTE A: CL includes fixture capacitance.
Figure 50. Test Circuit for Output Characteristics
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-225
TL032, TL032A
.
ENHANCED JFET LOW-POWER LOW-OFFSET
DUAL OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
hlgh-Q notch filter
In general, Texas Instruments enhanced JFET operational amplifiers serve as excellent filters. This circuit
provides a narrow notch at a specific frequency. Notch filters are designed to eliminate frequencies that are
interfering with the operation of an application. For this filter, the center frequency can be calculated as:
1
fa = 21tR1C1
With the resistors and capacitors shown below, the center frequency is 1 kHz. Note that C1 = C3 = C2 + 2
and also that R1 = R3 = 2 x R2. The center frequency can be modified by varying these values. When
adjusting the center frequency, be sure that the operational amplifier still has sufficient gain at the frequency
of interest.
R1
vlN
vOUT
1.5MQ
C2
R2
750 kQ
C1
C3
110 pF
110 pF
2
-V
0
-1
III
\
/'
-2
"0
I
.;;;c:
.--
/
-3
/
I
'-' -4
-5
-6
-7
-8
0.2
0.4
0.6
0.8
0.2
0.4
0.6
0.8
f - Frequency - kHz
Figure 51. High-Q'Notch Filter
~
TEXAS
INSTRUMENTS
2-226
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2
Tl032, Tl032A
ENHANCED JFET lOW-POWER lOW-OFFSET
DUAL OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
2-wlre 4- to 20-mA current loop
Often information from an analog sensor must be sent over a distance to the receiving circuitry. For many
applications. the most feasible method involves converting voltage information to a current before
transmission. The following circuit benefits from the high input impedance of the TL032A since many
inexpensive sensors do not have low output impedance.
Assuming that the voltage at the TL032A's non-inverting input is zero, the following equation determines the
output current:
10 =
VIN(~)+5V(~)=0.16xVIN+4mA
R1 x RS
R2 x RS
The current presently provides 4 to 20 mA output for an input voltage of 0 to 100 mV. By modifying R1, R2,
and R3. the input voltage range or the output current range can be adjusted.
Including the offset voltage of the operational amplifier in the above equation clearly illustrates why the low
offset TL032A was chosen:
10 =
VIN(~)+5V(-~)-VIO(~+~+~)
R1 x RS
R2 x RS
R1 x RS
R2 x RS
RS
= 0.16xVIN+4mA-0.17xVIO
For example. an offset voltage of 1 mV decreases the output current by 0.17 mA.
Thanks to the low-power consumption of the TL032A, this circuit has at least 2 mA available to drive the actual
sensor from the 5-V reference node.
r-----------------------------~----~~
Vcc+= 10V
LT1019-5
+5VRef-------+~~~--~~----------__.
A2
1 Mfl
10llF
AS
A1
3.3 kfl
VIN ---S"'k....
fl--+------+-l
A4
A3
5 k!2
80 kfl
SIGNAL ________-+--_>---------------------___A"VS.........,e--(,~IO
COMMON
100 fl
1 ..
RL -=-50 n
Figure 52. 2-Wire 4- to 20-mA Current Loop
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-227
Tl032, Tl032A
ENHANCED JFET lOW-POWER lOW-OFFSET
DUAL OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
low-level light detector preamplifier
Applications that need to detect small currents require high input impedance operational amplifiers; otherwise,
the bias currents of the operational amplifier camouflage the current being monitored. Phototransistors
provide a current that is proportional to the light reaching the transistor. The TL032 allows even the small
currents resulting from low-level light to be detected.
In this circuit, if there is no light, the phototransistor is off and the output is high. As light is detected, the
operational amplifier output begins pulling low. Adjusting R4 both compensates for offset voltage of the
amplifier and adjusts the point of light detection by the amplifier.
+ 15 V
R6
10 kQ
R1
10 kQ
R3
10 kQ
-...
-...
-...
10 kQ
R5
R2
Vo
R7
R4
TlL601
C1
100 pF
10 kG
10 kn
5kQ
-15
v
Figure 53. Low-Level Light Detector Preamplifier
TEXAS
~
INSTRUMENTS
2-228
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
TL034, TL034A
ENHANCED JFET LOW-POWER LOW-OFFSET
QUAD OPERATIONAL AMPLIFIERS
03153, JULY 1988 - REVISED FEBRUARY 1991
0, J, or N PACKAGE
(TOP VIEW)
•
Maximum Offset Voltage ... 1.5 mV
•
High Slew Rate ... 2.9 V/JLS Typ
•
Low Input Bias Current ... 2 pA Typ
•
Very Low Power Consumption •.. 26 mW Typ
•
Output Short-Circuit Protection
•
Monolithic Construction
40UT
41N41N +
liN liN +
VCC+
VCC31N+
31N-
description
The TL034 and TL034A quadruple operational
amplifiers incorporate well-matched, high-voltage
JFET and bipolar transistors in a monolithic
integrated circuit, These devices offer the
significant advantages of Texas Instruments new
enhanced JFET process, This process affords
not only low initial offset voltage due to the onchip zener trim capability but also stable offset
voltage over time and temperature,
In
comparison, traditional JFET processes are
plagued by significant offset voltage drift.
This new enhanced process still maintains the
traditional JFET advantages of fast slew rates
and low input bias and offset currents. These
advantages, coupled with low power consumption, make the TL034 well-suited for new stateof-the-art designs as well as existing design
upgrades. The TL034 has been designed to be
functionally compatible and pin compatible with
the TL064.
FK PACKAGE
(TOP VIEW)
I!;
!;
I
~OuO~
...... .,....Z"d''''::f'
3
1 IN +
NC
VCC +
NC
21N +
2
1 20 19
d45
17
NC
6
16
VCCNC
31N +
IS! 41N +
7
15
S
14
9 10 11 12 13
If-- U
f--
I
z::>z::>z
-0
oN",
'" '"
NC - No internal connection
Two offset voltage grades are available:
TL034 (4 mV max) and TL034A (1.5 mV max),
DISTRIBUTION OF TL034A
INPUT OFFSET VOLTAGE
A variety of available packaging options includes
small-outline and chip carrier versions for high
density system applications.
AVAILABLE OPTIONS
PACKAGE
TA
O'C
to
70°C
40°C
to
85°C
-55°C
to
125°C
VIOmax SMALLAT 25°C OUTLINE
(0)
CHIP
CARRIER
(FK)
CERAMIC
DIP
(J)
PLASTIC
DIP
(N)
1.SmV TlO34ACD
TlO34ACN
4mV TL034CD
TL034CN
1.5 mV TL034AID
TL034AIN
4mV TL0341D
TL0341N
1.SmV Tl034AMD TL034AMFK TL034AMJ TL034AMN
4mV TlO34MD TL034MFK TL034MJ TL034MN
-
D packages are available taped and reeled. Add "R" suffix to device
type (e.g., TL034CDR).
PRODUCTION DATA documents contain Information currlnt II of
publication date. Produdlconform to th.1I .pKifi,..tioRl p.rtho term.
a'T81aslrtttruments Ilandard warranty. Produetion proctllingdo .. not
n.cessarily include tasting 01 all paramlters.
0'--""'"'"=
-1.8
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
-1.2 -0.6
o
0.6
1.2
VIO -Input Offset Voltage - mV
1,8
Copyright © 1991, Texas Instruments Incorporated
2-229
Tl034, Tl034A
ENHANCED JFET lOW-POWER lOW-OFFSET
QUAD OPERATIONAL AMPLIFIERS
description (continued)
The C-suffix device!) are characterized for operation from O°C to 70°C. The I-suffix devices are characterized
for operation from - 40~C to 85°C. The M-suffix devices are characterized for operation over the full military
temperature range of - 55°C to 125°C.
equivalent schematic {each amplifier}
Q2~----+-~------~----------~~----~
Q3I-----~----------r---------_+------~
IN+--+-~
IN_-.r--~""Lo...J
~~------_r--------+__VO
R1
Vcc_
symbol (each amplifier)
I N - = V - OUT
IN +
+
TEXAS ."
INSTRUMENTS
2-230
01
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
Tl034, Tl034A
ENHANCED JFET lOW-POWER lOW-OFFSET
QUAD OPERATIONAL AMPLIFIERS
absolute maxImum ratIngs over operating free-aIr temperature range (unless otherwIse noted)
Supply voltage, Vcc + (see Note 1) ..................................................... 18 V
Supply voltage, VCC _ (see Note 1) .................................................... - 18 V
Differential input voltage (see Note 2) ................................................... ± 30 V
Input voltage range, VI (any input, see Notes 1 and 3) ...................................... ± 15 V
Input current, II (each input) .......................................................... ± 1 mA
Output current, 10 (each output) ..................................................... ± 40 mA
Total current into VCC + terminal ..................................................... 160 mA
Total current out of VCC _ terminal ................................................... 160 mA
Duration of short-circuit current at (or below) 25°C (see Note 4) ............................ unlimited
Continuous total dissipation ........................................ See Dissipation Rating Table
Operating free-air temperature range, TA: C-suffix ................................... O°C to 70 0 e
I-suffix ................................ - 40 0 e to 85°e
M-suffix ............................... - 55°C to 125°e
Storage temperature range ................................................... - 65°e to 150 0 e
Case temperature for 60 seconds: FK package ........................................... 260 0 e
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package ................. 260 0 e
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package ..................... 300 0 e
NOTES: 1.
2.
3.
4.
All voltage values, except differential voltages, are with respect to the midpoint between VCC + and VCC _.
Differential voltages are at the noninverting input with respect to the inverting input.
The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the
maximum dissipation rating is not exceeded.
DISSfPATION RATING TABLE
PACKAGE
TA
s
2S"C
POWER RATING
DERATING FACTOR
ABOVE T A
= 2SoC
D
9SOmW
FK
1375mW
7.6mWI"C
11.0 mW/oC
J
1375mW
N
1150mW
=
=
TA
70"C
POWER RATING
TA
8S"C
POWER RATING
=
TA
125°C
POWER RATING
608mW
494mW
190mW
880mW
715mW
275mW
11.0 mW/oC
880mW
715mW
275mW
9.2mW/oC
736mW
598mW
230mW
recommended operating conditions
C-SUFFIX
I-SUFFIX
MIN NOM MAX
Supply voltage, VCC
Common-mode input voltage, VIC
Operating free-air temperature, TA
I VCC± = ±5 V
IVCC±=±15V
M-SUFFIX
MIN NOM MAX
MIN NOM MAX
±5
-1.5
±15
4
±5
-1.5
±15
±5
±15
4
-1.5
4
-11.5
14
-11.5
14
-11.5
14
0
70
-40
85
-55
125
UNIT
V
V
°C
TEXAS ",
INSfRUMENlS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-231
TL034C, TL034AC
ENHANCED JFET LOW-POWER LOW-OFFSET
QUAD OPERATIONAL AMPLIFIERS
electrical characteristics
PARAMETER
TEST CONDITIONS
TL034C
Via
Input offset voltage
TL034AC
Va = 0,
Temperature coefficient
aVIO
of input offset voltage
(see Note 7)
VIC = 0,
RS = son
TL034C
TL034AC
Input offset voltage
long-term drift (see Note 5)
110
liB
Input offset current
Va = 0, VIC = 0,
See Figure 5
Input bias current
Vo = 0, VIC = 0,
See Figure 5
=
VCC:t
:t5V
MIN
TYP MAX
VCC:t
:t15V
MIN
TYP MAX
25°C
0.91
0.79
6
8.2
Full range
0.7
25°C
Full range
25°C to
70°C
25°C to
70°C
11.6
12
11.6
12
25°C
100
1
100
70°C
25°C
9
2
200
12
200
200
2
200
50
400
80
400
voltage range
0.04
Maximum negative peak
AVO
output voltage swing
Large-signal differential
voltage amplification
RL = 10kn
RL = 10kn,
See Note 6
to
to
to
to
4
5.4
14
15.4
-1.5
-11.5
Full range
to
to
25°C
3
4.3
13
14
O°C
70°C
3
4.2
13
14
25°C
3
-3
4.3
-4.2
13
14
-12.5 -13.9
O°C
-3
-4.1
-12.5 -13.9
70°C
-3
-4.2
-12.5
25°C
O·C
4
12
5
14.3
3
4
13.5
70°C
4
11.1
13.3
5
15.2
Input resistance
25°C
1012
1012
Input capacitance
25°C
5
4
kSVR
Po
ICC
rejection ratio
VIC = VICR min,
Va = 0,
25°C
70
87
75
O°C
70
87
75
94
RS = son
70°C
87
25°C
70
75
96
75
75
94
96
O°C
75
96
75
96
70°C
75
96
75
96
Supply-voltage
VCC± = ±5Vto±15V,
rejection ratio
Va = 0,
(L\VCC +1 L\VIO)
RS = son
Total power dissipation
No load,
(four amplifiers)
Vo = 0
Supply current
No load,
(four amplifiers)
Vo = 0
VolIV02 Crosstalk attenuation
AVO = 100
pA
V
V
V
-14
q
Common-mode
pA
14
Ci
CMRR
!lV/mo
-11.5 -13.4
-3.4
4
VOM-
mV
25
1
70°C
RL = 10kn
1.5
3.7
0.04
25°C
VOM+
0.58
25°C
Common-mode input
Maximum positive peak
output voltage swing
4
6.2
3.5
5.7
UNIT
!lV/DC
-1.5
VICR
=
TAt
V/mV
n
pF
94
dB
dB
25°C
7.7
10
26
34
O°C
7.4
10
25.3
34
70°C
7.6
10
25.2
34
25°C
0.77
1
0.87
1.12
O°C
0.74
1
0.85
1.12
70°C
0.76
1
0.84
1.12
25°C
120
120
mW
mA
dB
t Full range is O°C to 70°C.
NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
6. AtVcc± = ±5V,VO = ±2.3 V; at VCC± = ±15V,VO = :tl0V.
7. This parameter is tested on a sample basis for the TL034A. For other test requirements, please contact the factory. This statement
has no bearing on testing or nontesting of other parameters.
TEXAS ."
INSTRUMENTS
2-232
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
TL034C, TL034AC
ENHANCED JFET LOW-POWER LOW-OFFSET
QUAD OPERATIONAL AMPLIFIERS
operating characteristics
PARAMETER
SR+
SR-
t,.
tf
TEST CONDITIONS
Positive slew rate
at unity gain
Negative slew rate
at unity gain
25°C
Rl
= 10 kn,
= 100 pF,
O°C
700C
2.2
25°C
3.9
3.5
5.1
See Note 8
O°C
70°C
25°C
3.7
4
3.2
5.0
5.0
138
134
132
127
VIPP
70°C
150
142
Rl
Cl
See Figures 1 and 2
25°C
138
132
O°C
70°C
134
127
150
11%
142
= ± 10 mV,
= 10 kn,
= 100 pF,
25°C
O°C
10010
120/0
70°C
Vn
input
noise voltage
(see Note 9)
In
91
4lm
Tl034C
Unity-gain bandwidth
Phase margin
at unity gain
RS = 100'l,
See Figure 3
Tl034AC
Equivalent input
noise current
3.2
O°C
Overshoot factor
Equivalent
=
VCC±
±15 V
MIN
TYP MAX
2
2.9
1.5
2.6
3.2
2
Cl
See Figure 1,
Rise time
Fall time
=
VCC±
±5V
TYP MAX
MIN
2
1.8
TA
f
I
= 10 Hz
I
f
= 1 kHz
I
= 1 kHz
= 10Hz
= 1 kHz
Vi
Cl
= 10 mV,
= 25 pF,
Rl
= 10 k'l,
See Figure 4
Vi = 10 mV, Rl = 10 kn,
Cl = 25 pF, See Figure 4
83
25°C
43
43
43
25°C
0.003
0.003
25°C
1
O°C
70°C
1
1
25°C
61°
1.1
1.1
1
65°
65°
64°
61°
60°
ns
ns
83
83
70°C
V/flS
6%
83
O°C
V/fls
5%
4%
43
25°C
UNIT
nW/Hz
60
pAl.JHz
MHz
NOTES: 8. ForVCC ± = ±5 V, VIPP = ± 1 V; forVCC± = ± 15 V, VIPP = ±5 V.
9. This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing
on testing or nontesting 01 other parameters.
TEXAS
+
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-233
TL0341, TL034AI
ENHANCED JFET LOW-POWER LOW-OFFSET
QUAD OPERATIONAL AMPLIFIERS
electrical characteristics
PARAMETER
VIO
TEST CONDITIONS
Vo
aVIO
VIC
RS
= 0,
= 0,
= 500.
TL034AI
25°C
Full range
0.7
TL034AI
110
Input offset current
Vo = 0, VIC
See Figure 5
= 0,
118
Input bias current
Vo = 0, VIC
See Figure 5
= 0,
25°C to
85°C
25°C to
VOM-
AVO
q
Ci
CMRR
kSVR
Po
ICC
RL
Maximum negative peak
RL
output voltage swing
= 10 kn
RL = 10 lin,
See Note 6
Large-signal differential
voltage amplification
Input resistance
Input capacitance
VIC = VICR min,
Vo = 0,
RS = 500.
VCC± = ±5Vto±15V,
Common-mode
rejection ratio
Supply-voltage
rejection ratio
Vo
= 0,
(tNCC ±/ ~VIO)
RS
= 500.
Total power dissipation
No load,
(four amplifiers)
Vo
Supply current
(four amplifiers)
No load,
100
0.02
2
0.45
200
0.2
-3.4
to
5.4
0.9
85°C
25°C
-40°C
85°C
25°C
-40°C
85°C
25°C
25°C
3
-3
-3
25°C
-40°C
85°C
70
70
70
25°C
-40°C
75
75
75
-3
4
3
4
25°C
-40°C
85°C
=0
AVO = 100
VolIV02 Crosstalk attenuation
-1.5
to
4
-1.5
to
4
3
3
-40°C
85°C
Vo
11.6
1
85°C
25°C
=0
11.5
0.04
25°C
-40°C
= 10kn
11.6
25°C
85°C
25°C
85°C
Full range
0.58
11.5
25°C
Common-mode input
voltage range
Maximum positive peak
output voltage swing
6
9.3
3.5
6.8
4
7.3
1.5
4.8
UNIT
mV
fl V/o C
85°C
25°C
VOM+
0.79
0.91
TL0341
=
VCC±
±15V
MIN
TYP MAX
25°C
Full range
Input offset voltage
long-term drift (see Note 5)
VICR
=
VCC±
±5 V
MIN
TYP MAX
TL0341
Input offset voltage
Temperature coefficient
of input offset voltage
(see Note 7)
TAt
25°C
0.04
4.3
4.1
4.4
-4.2
-4.1
-4.2
12
8.4
13.5
10'2
5
B7
B7
1
0.02
2
0.3
-11.5 -13.4
to
to
14
15.4
-11.5
to
14
13
14
13
14
13
14
-12.5 -13.9
-12.5 -13.8
-12.5
-14
5
4
5
75
75
75
75
75
75
B7
96
96
96
7.7
5.8
7.4
10
10
10
0.77
0.58
1
1
1
0.74
120
25
flV/mo
100
0.45
200
0.9
V
V
V/mV
0.
pF
94
94
21.7
24.8
0.87
0.72
0.83
120
nA
pA
nA
V
14.3
11.6
15.3
10'2
4
94
96
96
96
26
pA
dB
dB
34
34
34
1.12
1.12
mW
rnA
1.12
dB
t Full range IS - 40°C to 85°C.
NOTES; 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
6. AtVCC±
±5V, Vo
±2.3V;atVcc±
±15V, Vo = ±10V.
7. This parameter is tested on a sample basis for the TL034A. Forothertest requirements, please contact the factory. This statement
has no bearing on testing or nontesting of other parameters.
=
=
=
TEXAS ."
INSTRUMENTS
2-234
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TL0341, TL034AI
ENHANCED JFET LOW-POWER LOW-OFFSET
QUAD OPERATIONAL AMPLIFIERS
operating characteristics
PARAMETER
SR+
Positive slew rate
at unity gain
SR-
Negative slew rate
at unity gain
Ir
Rise time
TEST CONDITIONS
RL
25°C
-40°C
= 10 kil,
= 100 pF,
CL
See Figure 1,
See Note 8
85°C
25°C
-40°C
85°C
25°C
-40°C
85°C
= ± 10 mV,
= 10 kil,
= 100 pF,
VIPP
tl
Fall time
RL
CL
See Figures 1 and 2
25°C
-40°C
85°C
25°C
-40°C
85°C
Overshoot factor
Vn
In
91
Equivalent
TL0341
input
noise voltage
TL034AI
(see Note 9)
Equivalent input
noise current
Unity-gain bandwidth
Phase margin
flm
at unity gain
I
RS = lOOn,
See Figure 3
I
TA
= 10 Hz
I = 1 kHz
I = 10 Hz
I = 1 kHz
= 1 kHz
Vi = 10 mV, RL = 10 kil,
CL = 25 pF, See Figure 4
Vi = 10 mV, RL = 10 kil,
CL = 25pF, See Figure 4
VCCt = ±5V
TYP MAX
MIN
2
1.6
2.3
3.9
3.3
4.1
138
132
154
138
132
154
11%
12%
13%
83
VCCt
=
±15V
MIN
2
1.5
TYP
2.9
2.1
2
3.5
3.3
5.1
3.2
3.2
4.8
4.9
132
123
146
132
123
146
5%
43
83
43
5%
7%
83
43
83
43
25°C
0.003
0.003
25°C
-40°C
85°C
25°C
_40°C
1
1
0.9
1.1
1.1
1
61°
60°
60°
65°
65°
25°C
25°C
85°C
MAX
UNIT
VIlIS
VIlIS
ns
ns
nV/.ffiZ
60
pA/.ffiZ
MHz
64°
NOTES: 8. ForVCC± = ±5 V, VIPP = ± 1 V; 10rVCC± = ± 15 V, VIPP = ±5 V.
9. This parameter is tested on a sample basis. For other test requirements, please contact the lactory. This statement has no bearing
on testing or nontesting of other parameters.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
2-235
TL034M, TL034AM
ENHANCED JFET LOW-POWER LOW-OFFSET
QUAD OPERATIONAL AMPLIFIERS
electrical characteristics
PARAMETER
TEST CONDITIONS
TL034M
VIO
Input offset voltage
TL034AM
Vo = 0,
aVIO
Temperature coefficient
of input offset voltage
VIC = 0,
RS ,;, 50n
TL034M
TL034AM
Input offset voltage
long-term drift (see Note 5)
110
liB
Input ·offset current
Vo = 0, VIC = 0,
See Figure 5
Input bias current
Vo = 0, VIC = 0,
See Figure 5
25°C
Full range
2500 to
12500
2500 to
VOM-
AVO
0.04
2500
125°C
25°C
125°C
1
0.2
2
7
-3.4
to
5.4
RL = 10ka
CMRR
Common-mode
rejection ratio
kSVR
Supply-voltage
rejection ratio
(L\VCC ± / L\VIO)
Po
ICC
VIC = VICR min,
Vo = 0,
RS= 50n
VCC± = ±5Vto±15V,
Vo = 0,
RS = 50n
No load,
Total power diSSipation
(four amplifiers)
Vo = 0
Supply current
(four amplifiers)
Vo = 0
Vo llV02 Crosstalk attenuation
-1.5
to
4
-1.5
to
4
3
3
3
-3
-3
125°C
25°C
-55°C
-3
4
125°C
25°C
25°C
3
25°C
-55°C
125°C
25°C
-55°C
125°C
2500
70
70
70
3
75
75
75
-55°C
125°C
25°C
-55°C
125°C
No load,
AVO = 100
9
1.5
6.5
0.04
Maximum negative peak
output voltage swing
Input resistance
Input capacitance
0.58
25°C
125°C
25°C
_55°C
ri
Ci
MAX
4
UNIT
mV
flV/oc
125°C
25°C
_55°C
voltage amplification
3.5
8.5
TYP
0.78
10.9
RL = 10 ka
"
0.7
MIN
10.6
Maximum positive peak
output voltage swing
RL = 10ka,
See Note 6
MAX
6
11
10.9
Common-mode input
voltage range
Large,.signal differential
TYP
0.91
10.6
Full range
VOM+
MIN
25°C
Full range
25°C
VICR
VCC:l: = :l:15V
VCC:l:= :1:5 V
TAt
25°C
100
10
200
20
4.3
4.1
4.4
-4.2
-4
-4.3
12.9
1012
5
87
87
87
0.71
120
4
10.4
4
15
1012
4
94
94
94
96
95
75
70
70
96
95
0.77
0.46
100
pA
10
200
20
nA
pA
nA
V
V
13
14
-12.5 -13.9
-12.5 ~ 13.8
-14
-12.5
14.3
5
12
7.1
96
7.7
4.6
7.1
1
0.2
2
8
-11.5 -13.4
to
to
14
15.4
-11.5
to
14
14
13
14
13
flV/mo
75
75
75
10
12
12
1
1.2
1.2
96
26
18.7
23.6
0.87
0.62
0.79
120
V
V/mV
n
pF
dB
dB
34
45
45
1.12
1.5
1.5
mW
rnA
dB
t Full range is - 55°C to 125°C.
NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
6. AtVCC± = ±5V, Vo = ±2.3V;atVcc± = ±15V, Vo = ±10V.
TEXAS ""
INSTRUMENTS
2-236
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TL034M, TL034AM
ENHANCED JFET LOW-POWER LOW-OFFSET
QUAD OPERATIONAL AMPLIFIERS
operating characteristics
TEST CONDITIONS
PARAMETER
SR+
Positive slew rate
at unity gain
SR-
Negative slew rate
at unity gain
t,.
Rise time
RL
CL
tl
25°C
-55°C
125°C
25°C
-55°C
125°C
25°C
_55°C
= 10 kn.
= 100 pF.
See Figure 1.
See NoteS
VIPP
= ± 10 mY.
125°C
25°C
_55°C
AL = 10 kn,
CL = 100 pF,
See Figures 1 and 2
Fall time
=
TA
125°C
25°C
_55°C
Overshoot lactor
VCC±
±5V
MIN
TYP MAX
2
1.4
2.4
3.9
3.2
4.1
138
142
166
138
142
166
Vn
In
91
Equivalent
input
noise voltage
TL034AM
Equivalent input
noise current
Unity-gain bandwidth
Phase margin
4'm
TL034M
at unity gain
NOTES: ForVCC±
RS = lOOn,
See Figure 3
f
11%
16%
14%
83
43
83
43
25°C
0.003
0.003
25°C
_55°C
1.1
125°C
1
1
0.9
1.1
0.9
25°C
-55°C
125°C
61°
57°
59°
65°
64°
62°
= 10 Hz
= 1 kHz
25°C
= 10 Hz
= 1 kHz
25°C
= 1 kHz
Vi = 10 mV, RL = 10 kn,
CL = 25 pF, See Figure 4
Vi = 10mV, RL = 10kn,
CL = 25 pF, See Figure 4
=
±15V
TVP MAX
2.9
1.9
3.5
5.1
4.6
4.7
132
123
158
132
123
158
5%
6%
8%
83
43
83
43
125°C
I
I
f
f
VCC±
MIN
2
1.2
1.2
3
2.5
2.5
UNIT
V/JlS
V/Jls
ns
ns
nV/VHz
pA/VHz
MHz
= ±5V, VIPP = ±1 V;lorVCC± = ±15V, V\PP = ±5V.
PARAMETER MEASUREMENT INFORMATION
I
I
I
I
I
I
I
I
I
I
1o--I1r- RISE TIME
NOTE A: CL includes fixture capacitance.
Figure 1. Slew Rate, Rise/Fail Time,
and Overshoot Test Circuit
Figure 2. Rise Time and Overshoot Waveform
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655303 • OALLAS. TEXAS 75265
2-237
Tl034, Tl034A,
ENHANCEDJFET lOW~POWER lOW-OFFSET
QUAD OPERATIONAL AMPLIFIERS
PARAMETER MEASUREMENT INFORMATION
Vo
+
vcc_
RS
RS
NOT!: A: CL includes fixture capacitance.
Figure 3. Noise VoHage Test Circuit
Figure 4. Unity-Gain Bandwidth and Phase Margin
Test ClrcuH
Figure 5. Input Bias and Offset Current Test
Circuit
typical values
Typical values as presented in this data sheet represent the median (50% point) of device parametric
performance.
Input bias and offset current
At the picoamp bias current level typical of the TL034 and TL034A, accurate measurement of the bias current
becomes difficult. Not only does this measurement require a picoammeter, but test socket leakages can easily
exceed the actual device bias currents. To accurately measure these small currents, Texas Instruments uses
a two step process. The socket leakage is measured using picoammeters with bias voltages applied but with
no device in the socket. The device is then inserted into the socket and a second test that measures both
the socket leakage and the device input bias current is performed. The two measurements are then subtracted
algebraically to determine the bias current of the device.
noise
Because of the increasing emphasis on low noise levels in many of today's applications, the input nOise voltage
density is sample-tested at f = 1 kHz. Texas Instruments also has additional noise testing capability to meet
specific application requirements. Please contact the factory for details.
TEXAS . "
INSTRUMENTS
2-238
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
TL034, TL034A
ENHANCED JFET LOW-POWER LOW-OFFSET
QUAD OPERATIONAL AMPLIFIERS
TYPICAL. CHARACTERISTICS
table of graphs
FIGURE
VIO
aVIO
110
Input offset voltage
Distribution
6
Temperature coefficient
of input offset voltage
Distribution
7
Input offset current
liB
Input bias current
VI
Input voltage range
VID
vs
vs
vs
vs
vs
vs
Differential input voltage
vs
VOM
AVO
Zo
10
11
Output voltage
12, 13
VCC
Output current
16,17
vs
Frequency
vs
Temperature
vs
14
15
18,19
vs
RL
Frequency
20
Differential voltage amplification
Output impedance
vs
vs
Temperature
Frequency
22
23
Supply-voltage rejection ratio
Short-circuit output current
ICC
Supply current
SR
Slew rate
Frequency
vs
Temperature
26
vs
Temperature
27
vs
28
vs
Vee
Time
vs
Temperature
30
vs
Vee
Temperature
33
vs
vs
vs
Overshoot factor
vs
Equivalent input noise voltage
Total harmonic distortion
Unity-gain bandwidth
Phase margin
Phase shift
Pulse response
21
vs
RL
Temperature
24,25
29
32
34,35
36,37
38
vs
CL
Frequency
vs
Frequency
39
vs
Vee
Temperature
40
42
vs
Vee
CL
Temperature
vs
Frequency
vs
vs
fu,
VCC
Temperature
voltage swi ng
kSVR
B1
9
8
vs
Common-mode rejection ratio
Vn
THO
8
VIC
Temperature
Maximum peak output
CMRR
los
Temperature
vs
31
41
43
44
21
Smail-signal
45
Large-signal
46,47
TEXAS ~
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-239
Tl034, Tl034A
ENHANCED JFET lOW-POWER lOW-OFFSET
QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
DISTRIBUTION OF TL034
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
DISTRIBUTION OF TL034
INPUT OFFSET VOLTAGE
1988 Amplifiers
VCC± ±15V
TA = 25°C
--/--t--I--+-;
N
=
25
.,.
I
I
i
~
'0
f
&
10
5l--I---+-0 .....__
-4
15 r - - + - - t - -
"I---t--t-
51---1--
o
0fiiili~
-3
20 r--+--+--
j
15 r--+-~-+
1
251---+--+--
.,.
~ 20r--+-~-+-'0
from 3 wafer lots
Vcc± = ±15V
TA = 25°C to 125°C
N Package
-2 -1
0
2
Via -Input Offset Voltage - mV
3
-40 -30 -20 -10
0
10
20
30
aVIO - Temperature Coefficient - J1V1OC
4
Figure 6
Figure 7
INPUT BIAS CURRENT AND
INPUT OFFSET CURRENT
INPUT BIAS CURRENT
vs
vs
FREE-AIR TEMPERATURE
COMMON-MODE INPUT VOLTAGE
10
10
=
VCC± ±15V
Va
0
VIC
0
=
=
40
Vcc± = ±15 V
TA 250C
=
./
/
~
c(
c
5
I
I
i
8
C
~
liB
/
/
0.1
I
:;.
..
1!
/
.: 0.01
v
~
-;
/
0
.5
/'
I
~ -5
./
/'
0.001
25
B
III
D-
110
./
t:II
/'
85
105
TA - Free-Air TempElrature - OC
45
65
125
-10
-15
-10
-5
o
5
10
VIC - Common-Mode Input Voltage - V
Figure 8
Figure 9
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS . "
INSTRUMEN1S
2-240
POST OFFICE BOX 655303 • DALLAS. TexAS 75265
15
Tl034, Tl034A
ENHANCED JFET lOW-POWER lOW-OFFSET
QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
COMMON-MODE
INPUT VOLTAGE RANGE LIMITS
vs
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
16
TA
>
12
r
'0
8
...
4
..
= 25"C
POSITIVE UMy . /
I
>
'S
.E
..
'S
~0
E
E
8I
1
5
0
0
-4
~
c
~
'S
~
NEGATIVE UMIT
'-....
I
o
'14
N1EGATI1VE UjlT
-20
-75 -50 -25
0
25
50
75 100
TA - Free-Air Temperature - °e
16
DIFFERENTIAL INPUT VOLTAGE
DIFFERENTIAL INPUT VOLTAGE
vs
vs
OUTPUT VOLTAGE
OUTPUT VOLTAGE
\ t
......
0.5 I-
~-15
Figure 11
I
~
I
r---....
Figure 10
r-
&
8 -10
4
6
8
10
12
IVee ±I- Supply Voltage - V
1.5
~
-5
E
I"-.....
-8
2
~OSITI~E U~IT
I
,..V
o
= ±15V
15
.E
..
-16
C
l!!
Vcc±
>
10
>" -12
~
V
20
"...
t
()
]
COMMON-MODE
INPUT VOLTAGE RANGE LIMITS
'"
1\
\
=
= , ,
=
=
=
=
=
I
1.5..,..,.....,...,.........,.--.,...--...,..--r----,
I
=1 kO
=2kn
=5kn
= 10 kn
RL =2OkO
f - RL
RL
\
RL
1\ RL
~ :::- ~
Vcc± ±5V
TA
25°e
I
&.
125
~
.
I
til
!
~
'S
.E
...
~
"~ ~
0
ii
i
~h
-0.5 1-'
RL 20 kO
is
I
RL 10 kO
~ -1 I- RL 5kn
RL 2kn
RL 1 kn
-1.5
-5 -4 -3 -2 -1 0
2
3
Vo - Output Voltage - V
I
0.5
~ -0.51---+--t--+---+"""",,7"-o~~-I
~t\
is
I
~
i\
4
5
-1t-----t-
RL
RL
RL
RL
=50kn
= 20 kn ----1f-'
= 10 kn ----11--.../
=
5kO
-1.5 .....- ........-~--......- .....- -..........,j...
-15
-10
-5
0
5
10
15
YO-Output Voltage- V
Figure 12
Figure 13
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ."
INsrRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-241
TL034, TL034A
ENHANCED JFET LOW-POWER LOW-OFFSET
QUAD OPERATIONAL AMPLIFIERS.
TYPICAL CHARACTERISTICSt
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
MAXIMUM PEAK OUTPUT VOLTAGE
vs
vs
SUPPLY VOLTAGE
FREQUENCY
>
16
RL=10kO
TA = 25°C
I
VOM+./
./
i
0
§
-4
-=I
-8
E
::5
........
25
!
20
~ .....
......
...
4
6
8
10
12
IVee ±I- Supply Voltage - V
"
14
Co
:;
...0
i
E
::0
..
b= TA = 125°C
\
~~
1111111
10 k
16
100 k
1M
f - Frequency - Hz
Figure 14
Figure 15
MAXIMUM PEAK OUTPUT VOLTAGE
MAXIMUM PEAK OUTPUT VOLTAGE
vs
vs
OUTPUT CURRENT
OUTPUT CURRENT
VCC±=±5V
TA = 25°C
VOM+
4
\
16
>
~
~
:;
\
VCC± = ±5V
5
I
RL = 10 kn
VCC ± = ±15V\
"~A 1= 1-lj~IIT\
::5
2
I I II 11111
~M........
o
I_
~
:;
/'"
~-12
-16
"...
V
30
I
. /V
t;::-.....,.,
3
2
~
VCC± = ±15V
..
14
~
~
12
;-
10
I
CI
"
:;
~
.5
::5
I
"2
~
o
o
>
5
1101-
...0..
l.
E
'\
'"""
10
15
Output Current - mA
"'-
VOM-
.............
VOM+
6
::5
4
..
~
8
::0
.5
~
TA = 25°C
I
"2
~
20
2
o
o
Figure 16
:'\
\
\
\
\
5
10
15
20
Output Current - mA
1101-
25
Figure 17
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
2-242
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
30
TL034, TL034A
ENHANCED JFET LOW-POWER LOW-OFFSET
QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
MAXIMUM PEAK OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
MAXIMUM PEAK OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
16
5
>
.,I
>
'S
Q.
'S
2
...0
=
E
12
~
8
~
=
VCC±
±5V_
RL
10 kG
0
=
Il..
"E
><
.,
I
VOM+
3
S
'0
>
4
CI
-1
Io
4
:.-=
0
§
-4
-8
E
.
-2
I
-3
-=I
-4
~-12
::E
::E
0
>
::E
VOM+
=
vcc±
±15V
RL
10kG
=
::E
vOM_
VOM-
-5
-75
-50
-25
0
25
50
75
100
125
-16
-75
-50
T A - Free-Air Temperature - °C
-25
0
25
50
75
100
125
T A - Free-Air Temperature - °C
Figure 18
Figure 19
LARGE-SIGNAL VOLTAGE AMPLIFICATION
vs
LOAD RESISTANCE
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
40
>
~
35
c
.2
30
I
~
Vo
TA
=±1v
= 25°C
V
VCC±
E
25
oct
II>
CI
S
20
'0
>
:i
15
:l1
10
C
f
= ±15V
/
/
=
TA
.I~
:5
a
....--*--+---1---
=
Vcc±
±15V
RL
10 kG
CL = 25 pF
30°
=25°C
10 3
60°
.;:
V
V. .
10 2
VCC±
90°
= ±5V
:ctil
.
=
.c
./
Il..
V
10 1
120°
2i
I
c
>
oct
5
0
10 k
100 k
RL - Load Resistance - G
1M
0.1 L.._....I.._ _J..-_....I.._ _J..-_....I.._1-J.I180°
100
1k
10 k
100 k
1M
10 M
10
f - Frequency - Hz
Figure 20
Figure 21
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the vari9us devices.
TEXAS ~
IN5rRUMENTS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
2-243
TL034, TL034A
ENHANCED JFET LOW-POWER LOW-OFFSET
QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
LARGE-SIGNAL VOLTAGE AMPLIFICATION
OUTPUT IMPEDANCE
vs
vs
FREE-AIR TEMPERATURE
FREQUENCY
200
50
>
RL = 101cQ
~
AtO
I
c
.2
B
'a
E
cr
c::
Vee± = ±15 V
;;:
10
I
§
T
~ ---r
~
J
1!0
~ I-'"
80
as
60
1
40
I.§
VCC± = ±5V
II
DI
J!!
100
.---
/
/
'----AVO = 10
./'
dI
'li
~
II
0
~
N
,,- V~
20 -AVO = 1
C
Vee ± = ±15V
ro (open loop) = 250 n
TA
25°e
I
C
cr>
1
-75
-50 -25
0
25
50
75
100
TA - Free-Air Temperature - °e
125
'U
I
c
70
'ii'
60
vs
vs
FREQUENCY
FREQUENCY
100
50
~
c
40
E
E
30
I
20
8
II:
II:
~
0
It!
=
'U
I
r-.....
t
80
C
70
'i'
60
i
'\.
II
50
~0
40
1
\
1\
\
E
E
8
\
I
II:
II:
~
0
o
VCC±=±15V
TA = 250C
~
""""-
II:
10
10
90
II:
i\.
0
0
Vee± = ±5V
TA
250C
"\
II:
II
'U
100 k
COMMON-MODE REJECTION RATIO
II:
i
10 k
f - Frequency - Hz
COMMON-MODE REJECTION RATIO
..........
80
=
Figure 23
90
.2
i
I
Figure 22
100
It!
I
10
1k
30
\
20
10
o
100
1k
10 k
100 k
f - Frequency - Hz
1M
10 M
10
100
Figure 24
1k
10 k
100 k
f - Frequency - Hz
1M
Figure 25
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
2-244
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
10 M
TL034, TL034A
ENHANCED JFET LOW-POWER LOW-OFFSET
QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
COMMON-MODE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
FREE-AIR TEMPERATURE
95
vcc±
I
0
=±15V
I
..
-8
90
C
~
0
~
II:
'8
=Iic
vcc±
85
i'Qi'
=±5V
8I
J!
15
>
Q.
80
:::I
tIJ
I
II:
-25
0
25
50
15
100
TA - Free-Air Temperature - DC
125
SHORT-CIRCUIT OUTPUT CURRENT
vs
vs
SUPPLY VOLTAGE
TIME
20
./
oct
E
..-
I
I
VIO = 100mV
20
E
vlD = 100mV
~
10
<3
:;
10
!
0
'5
vlD = -100 mV
2
0
I
-10
~~
-10
tIJ
-20
vlD = -100 mV
~
.9
-30
125
30
Vo = 0
TA = 25 DC
2
:n
-25
0
25
50
15
100
TA - Free-Air Temperature - DC
SHORT-CIRCUIT OUTPUT CURRENT
!
~
,g
-50
Figure 27
E
o
'5
90
-15
Figure 26
30
:;
9:::I
92
>
tIJ
""
VIC = VICRmln
15
-15 -50
a
94
$.
Q.
:E
0
I
I
&
II:
II:
~
96
II:
0
E
E
98
II:
C
II
VCC ± = ± 5 V to ± 15 V
co
'"0
I
'"0
II:
100
I
III
~
SUPPLY-VOLTAGE REJECTION RATIO
vs
o
VCC±=±15V
TA
25 DC
=
-20
2
4
6
8
10
12
14
16
I
o
IVcc ±I- Supply Voltage - V
15
10
20
t- Time - Seconds
Figure 28
Figure 29
5
I
25
30
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
2-245
Tl034, Tl034A
ENHANCED JFET lOW-POWER lOW-OFFSET
QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
FREQUENCY
25
'"E
I
r--
•
20
15
E
~
:>
EQUIVALENT INPUT NOISE VOLTAGE
vs
-
90
=± 15V
vcc±
::t--h-..
=±5V
vee±
-S
~
5
0
'0
Z
-5
=
\
70
\
60
:;
= ±5V
D.
.5
~
-10
.!!
50
!:
= ± 15 V
Vee ±
1\
E
I
rJ)
:;
-15
I
""
vee± = ±15V
Rs
1000.
TA = 25°C
See Figure 3
:
J:
\
IT
rJ)
.9
I
~
Vcc±
I:!
.
!
()
0
80
CI
10
:;
a..
:;
~
>c
W
I
-20
Vo
-25
- 75
c
>
=0
- 50
- 25
0 .25
50
75
100
TA - Free-Air Temperature - °e
40
10
125
1k
100
Figure 30
Figure 31
SUPPLY CURRENT
SUPPLY CURRENT
vs
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
1000
0.8
'"E
I
E
~
~
0.6
>a..
\
ii
:>
rJ)
-- --r\
?~ ..---. ~
()
......
0.4
I
TA
-
I
iI
i
d
!t
= -55°C
J~V
V
--I
Vee±
- -
I
=±5V
r---
r--
J
400
I
]
200
0.2
o
o
600
~
I
rJ)
TA
I
=±15V
/"
800
= 25°C
I
I
Vee±
~e
\
()
.!:)
100 k .
10 k
f - Frequency - Hz
=
Vo = a
No Load
2
4
6
8
10
12
14
Vo
a
No Load
o
16
-75
-50
IVee ±I- Supply Voltage - V
Figure 32
-25
0
25
50
75
100
TA - Free-Air Temperature - °e
Figure 33
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ."
2-246
INSTRUMENTS
POST OFFICE BOX 655303, DALLAS. TEXAS 75265
125
Tl034, Tl034A
ENHANCED JFET lOW-POWER lOW-OFFSET
QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
SLEW RATE
vs
LOAD RESISTANCE
SLEW RATE
vs
LOAD RESISTANCE
..
::!.
6
6
5
5
:>
4
a;
V
3
.
I
a:
"
f-
.!!
III
I
a:
2
III
V
f-
.
-
~
>
SR-
a:
3
iii
/
2
"..
SR.
I
a:
VCC±=±15V
cL = 100 pF
TA = 25°C
See Figure 1
100
Figure 34
Figure 35
SLEW RATE
vs
FREE-AIR TEMPERATURE
SLEW RATE
vs
FREE-AIR TEMPERATURE
5
~
4
a:
2
~--
:.--- I-SR-
:>
~
.
.!
a:
o
-75
- 50
SR-
4
"..
3
a:
2
I
.....-I-- ~
SR.
~:.---r-
I
iii
III
10
RL - Load Resistance - kn
1
5
.!!
SR+
o
I
III
I
~
VCC±=±5V
CL = 100 pF
TA = 25°C
See Figure 1
6
3
V
III
6
.
a;
a:
"
--
I
.
10
RL - Load Resistance - kn
1
~
4
l!!
o
..
,..,....-
SRI-'"
/
III
V
--
I-SR.
=
VCC±
±5V
RL = 10 kQ
CL = 100 pF
See Figure 1
- 25
0
25
50
75
100
TA - Free-Air Temperature - °C
125
-r--
I--
VCC± = ±15V
RL = 10kQ
CL = 100 pF
See Figure 1
o
-75
100
-50
Figure 36
-25
0
25
50
75
100
TA - Free-Air Temperature - °c
125
Figure 37
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 - DALLAS. TEXAS 75265
2-247
Tl034, Tl034A
ENHANCED JFET lOW-POWER lOW-OFFSET
QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
OVERSHOOT FACTOR
60
vs
LOAD CAPACITANCE
FREQUENCY
0.5
=
=
=
VIPP ±10mV
RL
10kn
TA
25°C
See Figure 1
50
~
0
..
VCC±
ti
II.
30
'0
0
.c
i
//
/
40
I
TOTAL HARMONIC DISTORTION
vs
20
10
/;
=±5V
I
1/
/L /
0.4
~
I
c
.S!
'C
0.3
0
iii
is
II
~0
..
/
E
VCC±
,/
i0
=±15V
--
....
I
Q
i=
/
0.1
100
250
1---''''
lk
10 k
f - Frequency - Hz
Figure 39
UNITY-GAIN BANDWIDTH
UNITY-GAIN BANDWIDTH
vs
VS
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
1.3
~
~ 1.05
.c
i
V
./
1.0
V
.....-
f-
V
N
J:
:!i
~
,.
"1:1
~
CD
VpC±
-
1.1
c
,
1.0
-
=±15V
..........
--.
............
f'.....
VCC±=±5V
c
:::I
VI = 10mV
RL = 10kn
CL = 25pF
TA
25°C
See Figure 4
0.95
VI
10 mV
RL
10kn
CL
25 pF
See Figure 4
1.2
.c
%.
c
=
=
=
I
c
iii
~
~
...........
~
CD
o
2
4
6
8
10
12
IVee ±1-SupplyVoltage- V
14
16
"'-
""-. ~
'"""
I
0.9
=
0.9
100 k
Figure 38
1.1
:::I
I
/V
0.2
J:
50
100
150
200
CL - Load Capacitance - pF
!.5
=
=
=
=
Vcc± ±15 V
AVO
1
VO(rms)
6V
TA
25°C
0.8
-75 -50 -25
0
25
50
75
100
TA - Free-Air Temperature - °C
Figure 40
Figure 41
tData at high and low temperatures are applicable only within the rated operating free·air temperature ranges of the various devices.
TEXAS ."
INSTRUMENTS
2-248
POST OFFICE BOX 655303 • OALLAS. TeXAS 75265
125
Tl034, Tl034A
ENHANCED JFET lOW-POWER lOW-OFFSET
QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
PHASE MARGIN
PHASE MARGIN
vs
vs
SUPPLY VOLTAGE
LOAD CAPACITANCE
-
65
.
~
V
./
63
til
III
'0
I
.c
..
I
~
.
:::E
/
61
70
68
..~
/
1- ...
66
2'
I
62
... ...
to
60
See Note 10
:
58
.5
l»
:2
III
to
to
.c
Q..
E 59
'$.
57
Q..
=
=
VI
10 mV
RL
10 kn
CL = 25pF
TA = 25°C
See Figure 4
I
o
I
4
6
8
10
12
14
'0
.
Q..
59
I
E
~
57
...........
54
16
o
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
--
,V
r--... ~
I,;'""
12
>
E
......
V
I
OJ
~
0
r-.....
8
I
III
til
~
>
t-..
I'--. .............
10
90 100
VCC± = ±15V
RL = 10kn
CL = 100 pF
=
TA
25°C
See Figure 1
"-
4
0
-4
I
~
VI = 10mV
RL = 10kn
CL = 25pF
See Figure 4
-8
.1
125
Figure 44
o
r--
f
-12
-16
-25
0
25
50
75
100
T A - Free-Air Temperature - °c
......
16
I I .l
VCC± = ±15V
55
-75 -50
r....
52
VCC±=±5V
=:as
.c
...........
PHASE MARGIN
63
61
...........r-.,
r.....
Figure 43
c
2»
...........
Figure 42
I
:::E
r--......r-.,
r....
20 30 40 50 60 70 80
CL - Load Capacitance - pF
!!
til
III
VCC± = ±15V
E
'$.
FREE-AIR TEMPERATURE
65
.........
r....
IVcc ±I- Supply Voltage - V
67
III
...........
VCC± = ±5V
vs
.
r....
56
50
2
.........
64
'0
.c
...
VI = 10 mV
RL = 10kn TA = 250C _
See Figure 4
0.2 0.4 0.6 0.8
t- Time-lUI
1.0
1.2
1.4
Figure 45
NOTE 10: Values of phase margin below a load capacitance of 25 pF were estimated.
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
2-249
TL034, TL034A
ENHANCED JFET LOW-POWER LOW-OFFSET
QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
8
2
,
A
1\
>
1/
I
II>
J
::;
0
/
/
Q.
:;
0
I
0
>
-1
vcc± = ±5V
RL = 10 ko'
CL
100pF
TA
25°C
See Figure 1
6
>
IA
4
1
il
I
II
=
=
CI
I
2
:;
So
::I
0
0
-2
I
I
~ -4
1\
~
V
t--6
-2
o
vcc± = ±15 V
RL
10kn
CL
100pF
TA
250C
See Figure 1
=
=
=
1
\
1\
\ r-
1/
-8
2
3
4
5
6
7
8
o
2
4
6
8
10
t- TIme-1lB
I-TIme-1lB
Figure 46
Figure 47
12
14
16
18
APPLICATION INFORMATION
Input characteristics
The TL034 and TL034A are specified with a minimum and a maximum input voltage that, if el(ceeded at either
input, could cause the device to malfunction.
Because of the extremely high input impedance and resulting low bias current requirements, the TL034 and
TL034A are well-suited for low-level signal processing; however, leakage currents on printed circuit boards
and sockets can easily exceed bias current requirements and cause degradation in system performance. It
is a good practice to include guard rings around inputs (see Figure 48). These guards should be driven from
a low-impedance source at the same voltage level as the common-mode input.
The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation.
Vo
Vo
(s) NONINVERTING AMPUFIER
(b) INVERTING AMPUFIER
Figure 48. Use of Guard Rings
TEXAS
2-250
+
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
(e) UNITY-GAIN AMPUFIER
TLD34, TLD34A
ENHANCED JFET LOW-POWER LOW-OFFSET
QUAD OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
output characteristics
All operating characteristics (except bandwidth and phase margin) are specified with 100 pF load capacitance.
The TL034 and TL034A will drive higher capacitive loads; however, as the load capacitance increases, the
resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation. The
value of the load capacitance at which oscillation occurs varies with production lots. If an application appears
to be sensitive to oscillation due to load capacitance, adding a small resistance in series with the load should
alleviate the problem. Capacitive loads of 1000 pF and larger may be driven if enough resistance is added
in series with the output (see Figure 49) .
.•.. j," ..... ,:......... j.... ,.... i'
.. ,,, .. ~ ........ 'l' ...... "~ ... .
:::J::::::::I::::::::::-.:::::::::::::::::-::: :::::i::::
(a) CL
= 100 pF, R = 0
(d) CL
=1000 pF, R = 0
(b) CL
(e) CL
= 300 pF, R = 0
(e) CL
=1000 pF, R = 50 Q
(f) CL
=350 pF, R =0
= 1000 pF, R = 2 k.Q
Figure 49. Effect of Capacitive Loads
+5V
- 5V
R
n
.-J
>-.......---w.-......- - Vo
L
-15V
CL
10 k.Q
(see Nole A)
NOTE A: CL includes fixture capacitance.
Figure 50. Test Circuit for Output Characteristics
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
2-251
TL034, TL034A
ENHANCED JFET LOW-POWER LOW-OFFSET
QUAD OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
audio distribution amplifier
This audio distribution amplifier feeds the input signal to three separate output channels. U1A amplifies the
input signal with a gain of 10 while U1B, U1C, and U1D serve as buffers to the output channels. The gain
response of this circuit is very flat from 20 Hz to 20 kHz. The TL034 allows quick response to the input signal
while maintaining low power consumption.
R4
1 Mil
C1
VI~!r--+----~--~
>-'--VOB
1jlF
100 kn
100 jlF
R1
r
R2 100 kG
RS
'-~"IV-- Vee +
>---Voc
100kn
C2 R3
100 kil
NOTE: U1A through U1D
= TL034; Vce + = 5 V.
Instrumentation amplifier with linear gain adjust
The TL034 low-offset voltage and low-power consumption provides an accurate but inexpensive
instrumentation amplifier. This particular configuration offers the advantage that the gain can be linearly set
by one resistor:
R6
Va = RS x (VB - VA)
Adjusting R6 varies the gain. The value of R6 should always be greater or equal to the value of RS in order
to ensure stability. The disadvantage of this instrumentation amplifier topology is the high degree of CMRR
degradation resulting from mismatches between R1, R2, R3, and R4. For this reason, these four resistors
should be 0.1% tolerance resistors.
VA
R1
R3
10kn
0.1%
10kn
0.1%
Vo
RS
VB
R2
R4
10kn
0.1%
10kn
0.1%
NOTE: U1A through U1D
VCC_
= Tl034; Vee ± = ± 15 v.
TEXAS ."
INSTRUMENlS
2-252
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
TL044M, TL044C
QUAD LOW·POWER OPERATIONAL AMPLIFIERS
01662. SEPTEMBER 1973-REVISED JUNE 1988
•
Very Low Power Consumption
•
Typical Power Dissipat!on with ± 2·V
Supplies . . . 340 poW
•
Low Input Bias and Offset Currents
•
Output Short-Circuit Protection
•
Low Input Offset Voltage
•
Internal Frequency Compensation
•
Latch-Up-Free Operation
•
Power Applied in Pairs
TL044M ... J OR W DUAL-IN-L1NE PACKAGE
TL044C ... J OR N PACKAGE
(TOPVIEWI
Pins 4 and 12 are internally connected together in the
N package only.
TL044M IS NOT RECOMMENDED FOR
NEW DESIGNS.
TL044M •.• FK PACKAGE
(TOPVIEWI
description
The TL044 is a quad low-power operational
amplifier designed to replace higher-power
devices in many applications without sacrificing
system performance. High input impedance, low
supply currents, and low equivalent input noise
voltage over a wide range of operating supply
voltages result in an extremely versatile
operational amplifier for use in a variety of analog
applications including battery-operated circuits.
Internal frequency compensation, absenc~ of
latch-up, high slew rate, and output short-circuit
protection assure ease of use. Power may be
applied separately to Section A (amplifiers 1
and 4) or Section B (amplifiers 2 and 3) while the
other pair remains unpowered.
The TL044M is characterized for operation over
the full military temperature range of - 55 °C
to 125°C; the TL044C is characterized for
operation from 0 DC to 70°C.
3 2 1 20 19
# 1 IN +
#1,#4VCC-
4
18
5
17
#4IN#4IN+
NC
6
16
NC
# 2 IN +
#2IN-
7
15
8
14
#2, #3 VCC#3IN+
910111213
NC - No internal connection
symbol (each amplifier)
NONINVERTlNG=t>-+
.
INPUTIN+
INVERTING
INPUT IN-
_
PRODUCTION DATA documents contain information
current as of publication date. Products conform to
specifications per the terms of Texas Instruments
standard warranty. Production processing does not
necessarily include testing of all parameters.
OUTPUT
~
Copyright © 1983, Texas Instruments Incorpqralf'd
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
·2-253
TL044M, TL044C
QUAD LOW-POWER OPERATIONAL AMPLIFIERS
AVAILABLE OPTIONS
TA
VIO MAX
AT 25°C
PACKAGE
CHIP CARRIER
(FK)
CERAMIC DIP
(J)
PLASTIC DIP
(N)
FLAT PACK
(W)
5 mV
-
TL044CJ
TL044CN
-
5 mV
TL044MFK
Tl044MJ
-
Tl044MW
ooC
to
70°C
-55°C
to
125°C
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
TlO44M
22
-22
Supply voltage V CC + (See Note 1)
Supply voltage Vee _ (see Note 1)
Differential input voltage (see Note 2)
TlO44C
UNIT
18
-1B
V
V
±30
±30
V
Input voltage (any input, see Notes 1 and 3)
±15
±15
V
Duration of output short-circuit (see Note 41
unlimited
unlimited
Continuous total dissipation
See Dissipation Rating Table
Operating free-air temperature range
- 55 to 125
Storage temperature range
-65 to 150
Case temperature for 60 seconds
lead temperature 1,6 mm (1116 inch) from case for 60 seconds
FK package
260
J or W package
300
Lead temperature 1,6 mm (1/16 inch) frbm case for 10 seconds
N package
NOTES: 1.
2.
3.
4.
o to
70
-65 to 150
°C
°C
°C
300
260
°C
'."
°C
All voltage values, unless otherwise noted, are with respect to the midpoint between VCC + and VCC _.
Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
The output may be shorted to ground or either power supply. For the Tl044M only, the unlimited duration of the short-circuit
applies at (or below) 125°C case temperature or 85°C free-air temperature.
DISSIPATION RATING TABLE
PACKAGE
TA:$ 25°C
POWER RATING
DERATING
FACTOR
DERATE
TA - 70°C
POWER RATING
TA - 125°C
POWER RATING
FK
680mW
11.0 mW/oC
ABOVE TA
BBoC
6BOmW
275 mW
J (Tl044M)
680mW
11.0 mW/oC
B8°C
680mW
275 mW
J (Tl044C)
680mW
8.2 mW/oC
67°C
656 mW
N
680mW
680mW
N/A
8.0 mW/oC
N/A
65°C
680mW
W
TEXAS •
INSTRUMENTS
2-254
POST OFFICE BOX 655303 ' DALLAS, TEXAS 75265
640mW
200mW
TL044M, TL044C
QUAD LOW-POWER OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Vee +
PARAMETER
Input offset voltage
Vo
RS
= 0,
= 50
110
Input offset current
Vo
=
0
liB
Input bias current
Vo
=
0
VOpp
AVD
Bl
CMRR
Large-signal differential
RL ;,,: 10 k{l,
Vo
lOS
(AVIO/AVCC)
noise voltage
PD
±12
±12
25°C
20
Full range
20
25°C
72
Full range
66
= VICR min,
= 0, RS = 50 {l
VCC = ±9Vto ±15V,
Vo = 0, RS = 50 {l
AVD = 20 dB,
B = 1 Hz,
f = 1 kHz
25°C
60
Vo
Full range
60
(four amplifiers I
Vo
Total dissipation
No load,
(four amplifiers I
Vo
=
=
5
7.5
40
15
80
200
100
100
250
400
±12
26
±13
20
60
86
26
80
25°C
30
150
72
30
150
dB
25°C
±6
25°C
250
50
250
25°C
mA
500
500
12
7.5
15
15
12
p.VIV
nV/.J Hz
±6
400
400
7.5
200
200
50
25°C
nA
dB
60
Full range
nA
MHz
0.5
60
mV
V
60
72
UNIT
V
20
Full range
0 V
MAX
±12
Full range
0 V
TYP
1
0.5
VIC
No load,
5
±13
25°C
Short-circuit output current
Supply current
ICC
25°C
Unity-gain bandwidth
Equivalent input
Vn
±10V
MIN
250
Full range
10 k{l
voltage amplification
Supply voltage sensitivity
kSVS
50
-15 V
TL044C
MAX
100
25°C
RL ;,,: 10 k{l
Common-mode
5
Full range
RL
=
6
25°C
Maximum peak-to-peak
rejection ratio
1
Full range
output voltage swing
=
TYP
25°C
input voltage range
=
MIN
Full range
{l
Common-mode
VICR
TL044M
TEST CONDITIONSt
VIO
15 V, Vee _
",A
mW
t All characteristics are measured under open-loop conditions with zero common-mode input voltage, unless otherwise specified. Full range
for TL044M is - 55°C to 125°C and for TL044C is O°C to 70°C.
operating characteristics, Vee +
PARAMETER
tr
Rise time
Overshoot factor
SR
Slew rate at unity gain
=
= -
15 V, Vee -
TEST CONDITIONS
= 20 mV,
= 100 pF,
VI = 10 V,
Cl = 100 pF,
VI
CL
RL
=
15 V, TA
TlO44M
MIN
TYP
0.3
10 k{l,
See Figure 1
RL
=
5%
10k{l,
0.5
See Figure 1
TL044C
MAX
MIN
TYP
0.3
5%
0.5
MAX
UNIT
I's
V/",s
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-255
2-256
Tl051 , Tl051A
ENHANCED JFET PRECISION
OPERATIONAL AMPLIFIERS
D3234,JUNE 1988- REVISED NOVEMBER 1990
•
Maximum Offset Voltage ... 800 ~V (TL051A)
•
High Slew Rate ... 19.8 V/~ Typ at 25°C
•
Low Total Harmonic Distortion ... 0.003%
Typ at RL = 2 kQ
D, JG, or P PACKAGE
(TOP VIEW)
IN +
VCC _
Low NOise Voltage ... 18 nvNHi
Typ at f = 1 kHz
•
Low Input Bias Currents ... 30 pA Typ
FK PACKAGE
(TOP VIEW)
OFFSETNI u 8 NC
IN -
•
L PACKAGE
(TOP VIEW)
u~uuu
zzzzz
2
7
VCC +
3
6
4
5
OUT
OFFSET N2
/
3
2
1 20 19
NC d4
IN- 5
NC 6
IN + 7
NC B
9
10 11 12 13
U
I U '" U
uz
z z
u
Z
18
NC
17
VCC +
16
NC
15
OUT
14
NC
Pin 4 is in electrical contact with the case
>
NC - No internal connection
description
The TL051 and TL051A operational amplifiers incorporate well-matched, high-voltage JFET and bipolar
transistors in a monolithic integrated circuit. These devices offer the significant advantages of Texas
Instruments new enhanced JFET process. This process affords not only low initial offset voltage due to the
on-chip zener trim capability but also stable offset voltage over time and temperature. In comparison,
traditional JFET processes are plagued by significant offset voltage drift.
This new enhanced process still maintains the traditional JFET advantages of fast slew rates and low input
bias and offset currents. These advantages coupled with low noise and low harmonic distortion make the
TL051 well-suited for new state-of-the-art designs as well as existing design upgrades. The TL051 has been
DISTRIBUTION OF TL051A
INPUT OFFSET VOLTAGE
20r---~--~----r----r--~----'
393 Units tested
AVAILABLE OPTIONS
TA
V,Omax SMALlAT 25°C OUTLINE
(D)
O°C
800 J.1V
to
70°C 1500 J.1V
- 40°C 800 J.1V
to
85°C 1500 J.1V
-55°C 800 J.1V
to
125°C 1500 J.1V
CHIP
CARRIER
(FK)
CERAMIC
DIP
(JG)
Tl051ACD
TL051CD
TL051AID
Tl0511D
TL051AMD Tl051AMFK TL051AMJG
Tl051MD TL051MFK TL051MJG
-
VCC±=±15V
2S oC-+--+---+---f----J
PPackage
16 TA
PACKAGE
METAL
CAN
(l)
PLASTIC
DIP
(P)
#.
I
!!!
§
TL051ACP
TL051CP
TL051AIP
TL0511P
Tl051AMl TL051AMP
TL051ML TL051MP
=
12r--1---+1%~+---+-B%~----J
-
4
o packages are available taped-and-reeled. Add "R" suffix to device type (e.g ..
TL051CDR).
oLJlill!illllilli:lliillllillllJli.lilljttlllitJilllilll
- 900
- 600
- 300
0
300
600
900
V,O -Input Offset Voltage - j.1V
PRODUCTION DATA documents contain inlormation
currant a. 01 publication date. Products conlarm to
specifications per the terms 01 Texas Instruments
standard wananty. Production processing doe. not
necessarily include testing 01 all parameters.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Copyright © 1990. Texas Instruments Incorporated
2-257
Tl051 , Tl051A
ENHANCED JFET PRECISION
OPERATIONAL AMPLIFIERS
description (continued)
designed to be functionally compatible, as well as pin compatible, with the TL071 and TL081. Two offset
voHage grades are available: TL051 (1.5 mV max) and TL051 A (800 J,lV max).
A variety of available packaging options includes small-outline and chip carrier versions for high-density
system applications.
The C-suffix devices are characterized for operation from O°C to 70°C. The I-suffix devices are characterized
for operation from - 40°C to 85°C. The M-suffix devices are characterized for operation over the full military
temperature range of - 55°C to 125°C.
equivalent schematic (each amplifier)
02
03
013
IN + - - - - f - - - - ,
R9
Vo
Rs
R8
C1
017
08
09
OFFSETN1
OFFSET N2 -+--+---+
R1
R2
014
R10
R4
VCC-
symbol (each amplifier)
IN-=t>IN
+
+ .
OUT
TEXAS ~
INsrRUMENlS
2-258
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
02
TL051 , TL051A
ENHANCED JFET PRECISION
OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee + (see Note 1) ..................................................... 18 V
Supply voltage, Vee _ (see Note 1) .................................................... -18 V
Differential input voltage (see Note 2) ................................................... ± 30 V
Input voltage range, VI (any input, see Notes 1 and 3) ...................................... ± 15 V
Input current, II (each input) .......................................................... ± 1 mA
Output current, 10 (each output) ..................................................... ± 80 mA
Total current into Vee + terminal ..................................................... 160 mA
Total current out of Vee _ terminal ................................................... 160 mA
Duration of short-circuit current at (or below) 25°C (see Note 4) ............................ unlimited
Continuous total dissipation ........................................ See Dissipation Rating Table
Operating free-air temperature range, T A: e-suffix ................................... O°C to 70°C
I-suffix ................................ - 40°C to 85°e
M-suffix ............................... - 55°C to 125°C
Storage temperature range ................................................... - 65°C to 150°C
Case temperature for 60 seconds: FK package ........................................... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package ................. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG or L package ................ 300 0 e
NOTES: 1.
2.
3.
4.
All voltage values. except differential voltages, are with respect to the midpoint between VCC + and VCC _ .
Differential voltages are at the noninverting input with respect to the inverting input.
The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V. whichever is less.
The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the
maximum dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA s25°C
POWER RATING
DERATING FACTOR
ABOVE TA 25°C
5.8 mW/oC
=
0
725mW
FK
1375 mW
11.0 mW/oC
JG
1050 mW
L
825mW
P
1000 mW
=
=
TA 85°C
POWER RATING
TA 70°C
POWER RATING
464mW
=
TA 125°C
POWER RATING
145mW
880mW
377mW
715mW
275mW
8.4 mW/oC
672mW
546mW
210mW
6.6 mW/oC
528mW
429mW
165 mW
8.0 mW/oC
640mW
520mW
200mW
recommended operating conditions
C-SUFFIX
I-SUFFIX
MIN NOM MAX
Supply voltage, Vcc
Common-mode input voltage, VIC
Operating free-air temperature, TA
I VCC+ = ±5V
I VCC+=±15V
M-SUFFIX
MIN NOM MAX
±15
±5
-1
4
MIN NOM MAX
± 15
±5
-1
4
±5
-1
± 15
4
-11
11
-11
11
-11
11
0
70
-40
85
-55
125
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
UNIT
V
V
°c
2-259
TL051C, TL051AC
ENHANCED JFET PRECISION
OPERATIONAL AMPLIFIERS
electrical characteristics
PARAMETER
TEST CONDITIONS
TL051C
VIO
Input offset voltage
TL051AC
Vo = 0,
Temperature coefficient
aVIO
of input offset voltage
(see Note 9)
VIC
RS
= 0,
= 50Q
TL051C
TL051AC
VCC ±
TAt
MIN
25°C
Full range
25°C
Full range
3.8
25°C to
70°C
25°C to
70°C
110
Input offset current
liB
Input bias current
25°C
Maximum negative peak
output voltage swing
Large-signal differential
AVO
voltage amplification
0.04
0.04
25
)lV/mo
4
100
5
100
pA
1
0.025
1
nA
Vo = 0, VIC = 0,
See Figure 5
25°C
20
200
30
200
pA
70°C
0.15
4
0.2
4
nA
Full range
VOM_
8
0.02
voltage range
output voltage swing
8
25°C
25°C
VOM+
8
mV
70°C
Common-mode input
Maximum positive peak
8
UNIT
Vo = 0, VIC = 0,
See Figure 5
-1
VICR
v
VCC±
± 15
MIN
TYP MAX
0.59
1.5
2.5
0.35
0.8
1.8
)lV/DC
Input offset voltage
long-term drift (see Note 5)
=
= ±5 V
TYP MAX
0.75 . 3.5
4.5
2.8
0.55
25°C
RL = 10kQ
Full range
25°C
RL = 2 kU
RL = 10k1~
RL = 2 kU
-11
-12.3
to
to
to
to
4
-1
5.6
11
15.6
V
- 11
to
to
4
11
3
3
4.2
2.5
3.8
13
13.9
13
Full range
2.5
25°C
Full range
- 2.5
- 3.5
25°C
-2.5
-2.3
-3.2
Full range
-2.3
11.5
V
12.7
11.5
-12 - 13.2
-12
- 11
V
-12
-11
50
O°C
25
30
59
65
60
105
129
70°C
20
46
30
85
25°C
RL = 2 kQ,
See Note 6
-2.3
V/mV
fj
Input resistance
25°C
1012
1012
Q
Ci
Input capacitance
25°C
10
12
pF
CMRR
kSVR
ICC
VIC = V,CR min,
25°C
65
85
75
93
rejection ratio
Vo = 0,
RS = 50Q
O°C
70°C
65
84
75
92
65
84
75
91
Supply-voltage
VCC± = ±5Vto±15V,
25°C
75
99
75
99
rejection ratio
Vo
O°C
75
98
75
98
(6VCC±i6V,0)
RS = 50Q
70°C
75
97
75
97
Supply current
No load,
Common-mode
(four amplifiers)
Vo
= 0,
=0
dB
dB
25°C
2.6
3.2
2.7
O°C
70°C
2.7
3.2
2.8
3.2
3.2
2.6
3.2
2.7
3.2
mA
t Full range is O°C to 70°C.
NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T A = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
6. ForVCC± = ±5V,VO = ±2.3V;atVcc± = ±15V,VO = ±10V.
9. This parameter is tested on a sample basis for the TL051A. For other test requirements, please contact the factory. This statement
has no bearing on testing or nontesting of other parameters.
TEXAS ~
INSTRUMENTS
2-260
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TL051C, TL051AC
ENHANCED JFET PRECISION
OPERATIONAL AMPLIFIERS
operating characteristics
PARAMETER
SR +
SR-
tr
Positive slew rate
= 2 kn,
= 100 pF,
at unity gain
RL
CL
Negative slew rate
See Figure 1 and Note 7
at unity gain
Rise time
= ± 10 mY,
= 2kn,
= 100 pF,
VIPP
tf
Fall time
RL
eL
See Figures 1 and 2
Equivalent input noise
voltage (see Note 10)
Peak-to-peak equivalent
VNPP
input noise voltage
Equivalent input
In
THD
f
RS = lOOn,
See Figure 3
noise current
Total harmonic distortion
f
f
=
=
=
=
I/J m
Unity-gain bandwidth
Phase margin
at unity gain
13
22.6
25°C
DoC
16.5
15
19.8
16.8
13
19.9
70°C
16
13
19.3
25°C
DoC
55
54
55
70 0 e
63
63
25°C
DoC
55
54
57
56
64
24%
19%
70 0 e
24%
19%
10Hz
25°C
75
75
1 kHz
10 Hzto
25°C
18
18
25°e
4
4
25°C
0.01
0.01
25°C
0.003%
0.003%
25°e
oDe
3
3.2
3.1
3.3
70 0 e
2.7
2.8
2S o e
ooe
59 0
62°
58°
62 0
70°C
59°
62°
Vi = 10 mY. RL = 2 kil,
CL = 25 pF, See Figure 4
Vi = 10mV, RL = 2k12,
eL = 25 pF, See Figure 4
UNIT
V/lts
56
19%
c--
81
24.1
16.4
62
RL = 2 kn,
See Note 8
MAX
23.7
13
24%
1 kHz
RS = 1 kn,
f = 1 kHz,
70°C
= ± 15 v
TYP
25°C
oDe
10kHz
f
25°C
DoC
VCC±
MIN
15
70 0 e
Overshoot factor
Vn
=
VCC ±
±5 V
TYP MAX
MIN
18.2
19,5
TAt
TEST CONDITIONS
ns
30
nV/v'Hz
ltV
pAlv'Hz
MHz
t Full range is oDe to 70°C.
NOTES: 7. For Vee ± = ± 5 V, VIPP = ± 1 V; for Vee ± = ± 15 V, VIPP = ± 5 V.
8. For Vee ± = ±5 V, Vo(rms) = 1 V; for Vee ± = ± 15 V, Vo(rms) = 6 V.
10. This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing
on testing or nontesting of other parameters.
TEXAS .".,
INSTRUMENTS
POST OFFICE BOX 6550303 • DALLAS, TEXAS 75265
2-261
Tl0511, Tl051AI
ENHANCED JFET PRECISION
OPERATIONAL AMPLIFIERS
electrical characteristics
~-
PARAMETER
TEST CONDITIONS
-
TL0511
VIO
Input offset voltage
TL051AI
Vo
"'VIO
~
0,
VIC ~ 0,
RS = 50Q
Temperature coefficient
of input offset voltage
(see Note 9)
110
lIB
MAX
25°C
Full range
0.75
3.5
25°C
0.55
1.5
0.35
0.8
3.3
2.8
8
TL051AI
25°e to
85°C
8
8
0.04
0.04
25°e
4
100
5
100
pA
85°C
0.06
Input bias current
= 0,
25°C
20
0.07
30
10
200
nA
Vo ~ 0, VIC
See Figure 5
10
200
85"e
0.6
-2.3
20
0.7
-12.3
20
nA
voltage range
RL = 10 kU
output voltage swing
RL
= 2 klJ
RL
~
--
output voltage swing
10kQ
RL~2k!2
voltage amplification
-11
to
to
to
to
4
-1
5.6
11
-11
15.6
to
to
4
11
13
25°C
Full range
3
3
4.2
25°e
Full range
3.8
25'C
2.5
2.5
.- 2.5
Full range
- 2.5
25"C
11.5
11.5
13.9
- 12 ~ 13.2
-12
- 2.3
- 2.3
- 3.2
-11
25°C
25
59
50
105
-40°C
30
74
60
145
85"C
20
43
30
76
-11
Input resistance
25°C
1012
1012
Input capacitance
25°C
10
12
= 0,
= 50,2
rejection ratio
Vo
RS
Supply-voltage
VCC± = ±5Vto±15V,
rejection ratio
Vo ~ 0,
(t.VCC ±/ t.VIO)
RS = 50 n
--
Supply current
No load,
(four amplifiers)
Vo = 0
~-
,
V
-12
Ci
VIC ~ VICR min,
V
12.7
r;
Common-mode
25°C
65
85
75
93
- 40°C
85°C
65
65
83
84
75
75
90
93
25°C
75
99
75
99
- 40'C
75
98
75
98
85°C
75
99
75
99
V/mV
n
pF
dB
dB
2.6
2.4
3.2
3.2
2.7
- 40°C
2.6
3.2
3.2
85°C
2.5
3.2
2.6
3.2
25°C
pA
V
13
- 3.5
Full range
RL = 2 kn,
See Note 6
Large-signal differential
ICC
!lV/mo
Vo ~ 0, VIC ~ 0,
See Figure 5
Maximum negative peak
kSVR
25
Input offset current
Maximum positive peak
CMRR
mV
!lvre
25°C
long-term drift (see Note 5)
UNIT
2.6
7
Full range
AVD
MAX
0.59
25°e to
85°e
25°C
VOM-
= ±15V
TYP
4.6
Full range
Common-mode input
YOM +
vcc±
MIN
5.3
-1
VICR
= ±5V
TYP
MIN
TL0511
Input offset voltage
r------
Vcc±
TAt
mA
t Full range is - 40"C to 85"C.
NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life testatT A ~ 150a C extrapolated
to TA ~ 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
6. ForVCC± = ±5V,VO = ±2.3V;atVcc± ~ ±15V,VO ~ ±10V.
9. This parameter is tested on a sample basis forthe TL051A. For othertest requirements, please contact the factory. This statement
has no bearing on testing or nontesting of other parameters.
TEXAS ."
INSfRUMENlS
2-262
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Tl0511, Tl051AI
ENHANCED JFET PRECISION
OPERATIONAL AMPLIFIERS
operating characteristics
SR+
TAt
TEST CONDITIONS
PARAMETER
tr
23.7
13
23
13
21.9
25 QC
16.5
15
19.8
at unity gain
- 40 QC
85 QC
16.6
13
19.4
15.7
13
19.1
Rise time
25 QC
- 40 QC
85 QC
Negative slew rate
Fall time
voltage (see Note 10)
Peak-to-peak equivalent
See Figure 1 and Note 7
RL ~ 2 kQ,
CL ~ 100 pF,
~
RS
lOOn,
See Figure 3
input noise voltage
Equivalent input
noise current
THD
Total harmonic distortion
81
Unity-gain bandwidth
¢m
TYP
16.1
RL ~ 2 kQ,
Equivalent input noise
In
± = ±
20.1
Positive slew rate
at unity gain
Overshoot factor
VNPP
Vcc
MIN
15
See Figures 1 and 2
Vn
MAX
18.2
VIPP ~ ± 10 mV,
tf
=± 5 v
TYP
25 QC
-40QC
85 QC
CL ~ 100 pF,
SR-
Vce ±
MIN
f
~
10Hz
f
~
1 kHz
f
~
10 Hzto
10kHz
f
~
1 kHz
RS ~ 1 k!l,
f ~ 1 kHz,
Vi
~
RL ~ 2 k!l,
See Note 8
10mV, RL ~ 2 kfl,
CL ~ 25 pF, See Figure 4
Phase margin
Vi ~ 10mV, RL ~ 2kfl,
at unity gain
CL ~ 25 pF, See Figure 4
55
56
52
53
64
65
25QC
- 40 QC
85 QC
55
57
51
53
64
65
25QC
- 40 QC
85 QC
24%
19%
24%
19%
24%
19%
25 QC
25QC
75
75
18
18
25 QC
4
4
25 QC
0.01
0.01
25°C
0.003%
0.003%
15 v
25°C
3
3.1
- 40 QC
85 QC
3.5
3.6
2.7
2S QC
2.6
59 Q
62°
- 40 QC
85 QC
58 Q
59 Q
61"
62 Q
MAX
UNIT
VIIlS
ns
30
nVlv'HZ
!-'V
pAlv'HZ
MHz
t Full range IS - 40°C to 85 Q C.
NOTES: 7 For VCC ± ~ ± 5 V, VIPP ~ ± 1 V; for VCC ± ~ ± 15 V, VIPP ~ ± 5 V.
8. For VCC ± ~ ± 5 V, Vo(rms) ~ 1 V; for VCC ± ~ ± 15 V, Vo(rms) = 6 V.
10. This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing
on testing or nontesting of other parameters.
tEXAS
+
INSTRUMENlS
POST OFFICE BOX 6550303 • DALLAS, TEXAS 75265
2-263
Tl051 M,Tl051AM
ENHANCED JFET PRECISION
OPERATIONAL AMPLIFIERS
electrical characteristics
PARAMETER
TEST CONDITIONS
TLOSiM
VIO
Input offset voltage
TL051AM
etVIO
Temperature coefficient
of input offset voltage
Vo = 0,
VIC = 0,
RS = 50n
TLOS1M
TL051AM
Input offset voltage
long-term drift (see Note 5)
= 0,
110
Input offset current
Vo = 0, VIC
See Figure 5
liB
Input bias current
Vo = 0, VIC = 0,
See Figure 5
Vee ±
TAt
MIN
25"C
Full range
25"C
Full range
25"e to
125"C
25"C to
VOM-
Maximum positive peak
output voltage swing
Maximum negative peak
output voltage swing
Large-signal differential
AVD
r;
Ci
CMRR
kSVR
ICC
voltage amplification
RL=10k!1
RL = 2 kn
RL = 2kn,
See Note 6
Input resistance
Input capacitance
Common-mode
rejection ratio
VIC = VICR min,
Vo = 0,
RS = 50 Q
Supply-voltage
VCC± = ±5Vto±15V,
rejection ratio
Vo = 0,
(,WCC ± I !lVIO)
RS = 50n
Supply current
(four amplifiers)
No load,
Vo = 0
MAX
0.59
1.5
4.5
0.8
3.8
0.35
8
8
25"C
0.04
0.04
25"C
125"C
25"C
125"C
4
1
20
10
-2.3
to
5.6
UNIT
mV
JiVl"C
125"C
25"C
Full range
25"C
Full range
25"C
Full range
25"C
Full range
RL = 2 kn
3.5
6.S
2.8
5.8
= ±15 V
TYP
8
-1
to
4
-1
to
4
Full range
VOM+
0.75
Vee ±
MIN
8
Common-mode input
voltage range
RL = 10 kn
MAX
0.55
25"C
VICR
= ±5 V
TYP
3
3
2.5
2.5
-2.5
-2.5
- 2.3
- 2.3
100
20
200
50
5
.2
30
100
20
200
20
-11 -12.3
to
to
11
15.6
50
pA
nA
pA
nA
V
~11
to
11
13.9
13
13
11.5
12.7
11.5
-12 -13.2
-12
-11
-12
-11
4.2
3.8
-3.5
- 3.2
25"C
- 55"C
25
30
59
76
50
60
125"C
25"C
25"C
25"C
-55"C
125"C
10
15
65
65
65
32
1012
10
85
83
84
25"C
- 55"C
125"C
75
75
75
25"C
-55"C
125"C
JiV/mo
75
75
75
99
98
100
2.6
3.2
2.3
2.4
3.2
3.2
V
V
105
149
49
VlmV
1012
12
93
92
n
pF
dB
94
75
75
99
75
100
98
2.7
2.4
2.5
dB
3.2
3.2
3.2
mA
t Full range is - 55"C to 125"C.
NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150"C extrapolated
to TA = 25"C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
6. ForVCC± = ±5V,VO ~ ±2.3V;atVcc± = ±15V,VO = ±10V.
TEXAS ."
INSTRUMENTS
2-264
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Tl051M, Tl051AM
ENHANCED JFET PRECISION
OPERATIONAL AMPLIFIERS
operating characteristics
PARAMETER
SR+
SR-
tr
tf
TEST CONDITIONS
Positive slew rate
at unity gain
RL
= 2 k!l,
eL = 100 pF,
See Figure 1 and Note 7
Negative slew rate
at unity gain
VIPP = ± 10 mV.
RL = 2 k!l,
CL = 100 pF,
See Figures 1 and 2
Overshoot factor
Vn
Equivalent input noise
voltage
Peak-to-peak equivalent
VNPP
In
input noise voltage
Equivalent input
RS = 100 'l,
See Figure 3
f
= 10Hz
f
f
=
=
1 kHz
10Hzto
10kHz
f
noise current
= 1 kHz
=
VCC:I:
±15 V
MIN
TYP MAX
VCC:I:
:1:5 V
TYP MAX
MIN
25°e
18.2
-55°e
17.5
20
125°e
15
21.2
25°e
16.5
15.1
15
15
19.8
14.8
25°e
55
56
- 55°e
125°e
51
68
52
68
25°e
-55°e
55
57
51
52
125°e
68
25°e
24%
69
19%
- 55°e
25%
125°e
25%
19%
19%
25°e
25°C
75
75
18
19
25°e
4
4
25°e
0.01
0.01
25°e
0.003%
0.003%
THO
Total harmonic distortion
RS = 1 k!l, RL = 2 k!l,
f = 1 kHz,
See Note 8
3
3.1
Unity-gain bandwidth
Vi = 10mV, RL = 2k!l,
eL = 25 pF, See Figure 4
25°e
81
- 55°e
3.6
3.7
125°e
2.3
2.4
Vi = 10 mV, RL = 2 kn,
CL = 25 pF. See Figure 4
25°e
59 0
- 55°e
57"
125°C
59°
62°
61°
62°
4>m
Phase margin
at unity gain
UNIT
23.7
17
18.2
- 55°e
125°e
Rise time
Fall time
=
TAt
V/lls
ns
nV/VHZ
Il V
pA/VHZ
MHz
t Full range is - 55°e to 125 e.
u
NOTES: 7. For Vee ±
8. For Vee ±
= ± 5 V. VIPP = ± 1 V; for Vee ± = ± 15 V, VIPP = ± 5 V.
= ± 5 V, Vo(rms) = 1 V; for Vee ± = ± 15 V, Vo(rms) = 6 V.
TEXAS ."
INSTRUMENlS
POST OFFICE BOX 6550303' DALLAS. TEXAS 75265
2-265
TL051 , TL051A
ENHANCED JFET PRECISION
OPERATIONAL AMPLIFIERS
PARAMETER MEASUREMENT INFORMATION
>----Vo
1,- RISE TIME
NOTE A: CL includes fixture capacitance.
FIGURE 1. SLEW RATE, RISE/FALL TIME,
AND OVERSHOOT TEST CIRCUIT
FIGURE 2. RISE TIME AND OVERSHOOT
WAVEFORM
tOkn
tOkn
VI
toon
Vo
VeeRS
RS
NOTE A: CL includes fixture capacitance.
FIGURE 3. NOISE VOLTAGE TEST CIRCUIT
FIGURE 4. UNITY·GAIN BANDWIDTH AND
PHASE MARGIN TEST CIRCUIT
typical values
Typical values as presented in this data sheet
represent the median (50% point) of device
parametric performance.
GROUND SHIELD
Input bias and offset current
At the picoamp-bias-current level typical of the
TL051 and TL051 A, accurate measurement of the
bias current becomes difficult. Not only does this
FIGURE 5. INPUT BIAS AND OFFSET
measurement require a picoammeter, but test
CURRENT TEST CIRCUIT
socket leakages can easily exceed the actual
device bias currents. To accurately measure these small currents, Texas Instruments uses a two-step process.
The socket leakage is measured using picoammeters with bias voltages applied but with no device in the socket.
The device is then inserted in the socket and a second test that measures both the socket leakage and the
device input bias current is performed. The two measurements are then subtracted algebraically to determine
the bias current of the device.
noise
Because of the increasing emphasis on low noise levels in many of today's applications, the input noise voltage
density is sample-tested at f = 1 kHz. Texas Instruments also has additional noise testing capability to meet
specific application requirements. Please contact the factory for details.
TEXAS ,.,
INSTRUMENlS
2-266
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
TL051 , TL051A
ENHANCED JFET PRECISION
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
table of graphs
FIGURE
V,O
(lVIO
',0
Distribution
Input offset voltage
Temperature coefficient
Distribution
of input offset voltage
Input offset current
vs
Temperature
vs
V'C
Temperature
liB
Input bias current
V,
Input voltage range
Vo
Output voltage
vs
vs
vs
Maximum peak output
vs
voltage swing
vs
VCC
Output current
Frequency
vs
Temperature
vs
VOM
AVD
Zo
CMRR
kSVR
lOS
vs
vs
Differential voltage amplification
vs
RL
Frequency
vs
Temperature
Output impedance
vs
Frequency
Common-mode rejection ratio
Supply-voltage rejection ratio
Short-circuit output current
ICC
Supply current
SR
Slew rate
THD
Bl
Unity-gain bandwidth
Frequency
vs
vs
Temperature
vs
vs
VCC
Time
vs
Temperature
vs
VCC
Temperature
vs
Equivalent input noise voltage
Total harmonic distortion
vs
vs
Overshoot factor
Vn
Phase margin
Phase shift
Pulse response
Temperature
vs
RL
Temperature
vs
vs
CL
Frequency
vs
vs
vs
VS
¢m
VCC
Temperature
Differential input voltage
Frequency
VCC
Temperature
vs
VCC
CL
Temperature
vs
Frequency
vs
Small-signal
Large-signal
6
7
B
9
B
10
11
12,13
14
lB,19
15,16,17
20, 21
22
23
24, 25
29
26, 27
28
30
31
32
33
34
35
36, 37
38,39
40
41
42
43
44
45
46
47
23
4B
49
TEXAS ",
INSfRUMENTS
POST OFFICE BOX 655303 - DALLAS, TEXAS 75265
2-267
TL051 , TL051A
ENHANCED JFET PRECISION
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
DISTRIBUTION OF TL051
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
DISTRIBUTION OF TL051
INPUT OFFSET VOLTAGE
120 Units tested from
VCC±
16
TA
=±15V
= 25°C to 1250C
-+--1----+---11---+--1
81---+-1--+-
4 1---+--1--
o
-0.9
-0.3 0 0.3
0.9
VIO - Input Offset Voltage - mV
1.5
FIGURE 6
FIGURE 7
INPUT BIAS CURRENT AND
INPUT OFFSET CURRENT
INPUT BIAS CURRENT
vs
vs
FREE-AIR TEMPERATURE
COMMON-MODE INPUT VOLTAGE
100
.,
01
,/""
12
S
"0
8
:;
4
,/""
. /V
>
.
"
Q.
COMMON-MODE
INPUT VOLTAGE RANGE LIMITS
vs
FREE-AIR TEMPERATURE
20
V
V
Vee ± = ±15 V
--
01
POSITIVE LIMIT
:;
Q.
E
E
0
c..>
15
POSITIVE LIMIT
10
5
.E
0
I
:::;;
c0
..
S
"0
>
.E
0
>
........
-4
":::;;"
I
0
I
NEGATIVE LIMIT
c0
...........
E
E
...............
-8
0
c..>
...........
I
c..>
-5
-10
I
c..>
...............
'> -12
0
'>
~
-15
NEGATIVE LIMIT
-16
o
2
4
6
8
10
12
14
-20
-75
16
-50
IVee ±I-Supply Voltage - V
FIGURE 10
FIGURE 11
OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
5
I
"\1\
2
:;
Q.
:;
0
I
0
>
0
I
=
=
=
=
600 Q
1 kQ
2 kQ
10 kQ
:;
0
01
s-:l
0
~,
~
"
5
S
"0
>
~
-1
RL
-2 RL
-3 RL
RL
,
'\
>
~.
01
S
"0
>
Vee ± = ± 15 V
TA = 25°e
10
3
.,
I
~
-
0
-5 -
>
-200
-10 -
-100
o
100
VIO - Differential Input Voltage -IlV
200
-
RL = 600nRL = 1 kQRL = 2 kQ
-4
-5
125
15
Vee± = ±5V
TA = 25"C
4
>
-25
0
25
50
75
100
TA - Free-Air Temperature - °e
_.'1' "1
-15
-400
FIGURE 12
0
-
~
It
r--.........
--
-
>-r-~
i'-..
r--
-200
200
o
VIO - Oifferentiallnput Voltage - IlV
400
FIGURE 13
toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-269
TL051 , TL051A
ENHANCED JFET PRECISION
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
MAXIMUM PEAK OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
16
VO~ +
TA = 25°e
>
/'
RL~l~ V
'5
~
4
0.
8
""
i
0
§
-4
...
E
"x
~
RL '"
I
:::;:
~-12
>
'"'"
>
'5
4
""'"
rf
b
];
10k~
I
o
15
iE
10
"x
~
~ 1"--.
20
TA = 125°C =;--t
1 Jillill1
~
TA = -55°e
~~
Veet=t5V
5
I
00-
I'
o
>
14
,
1\
0.
8
~£
""E
VOM_
I
10
12
16
i'-,....
0
10 k
100 k
1M
10M
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
>
30
\
Veet = t5V
8
20
j
""m
1
ie:
~
15
1\
10
I'
""E
"=
:::;:
5
..........
0
10 k
~veet = t15V
0-
1\
10
25
:;
\
15
RL = 10 kQ
TA = 25°e
8,
:l
~
25
20
30
I
RL = 2 k1l
TA = 25°e
I 11111111
Vee ± = t 15V
00-
>
25
FIGURE 15
"x
'"I
'5
RL = 2kQ
FIGURE 14
m
:::;:
t--
ve~ ~ 1~IJllt
f - Frequency - Hz
0-
E
""E
a
6
0.
8
I~'"
IVee tl- Supply Voltage - V
I
:l
"0
2
~
~2kQ
-6
o
30
I
.¥
I
-16
~-
~=12k!l
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
100 k
1M
f - Frequency - Hz
5
Vee t = t5V
I
00-
o
I"-
>
10 M .
0
10 k
FIGURE 16
~ ,....
111111
100 k
1M
f - Frequency - Hz
FIGURE 17
IData at high and low temperatures are applicable only within the rated operating free"air temperature ranges of the various devices.
TEXAS ~
2-270
INSTRUMENTS
POST OFFICE BOX 655303" DALLAS. TEXAS 75265
10 M
TL051 , TL051A
ENHANCED JFET PRECISION
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
16
5
VCC±=±5V
Rl = 101<.0
>
I
"'"
0
!!l
4
3
f'"
0
'"m
"
"'-
"-~
"-
2
14
!!l
0
'"
12
:;
Q.
:;
10
'"..
.
6
E
E
"
';;
6
.
:E
4
~OM+
:E
I
~
0
~ i'-..
TA = 25°C
1""-' ~ i'-...
~ ~ "-YOM +
"""" "
..
"-
" "-
'\
'\
16
1101 - Output Current - mA
~
0
>
"
2
10
20
4
"
3
01
!!l
i5
>
:;
Q.
:;
16
>
I
Rl = 2 k!l
"
~
i5
>
:;
Q.
:;
2
~
0
E -1
E
';; -2
I
YOM -
:E
0
>
Rl = 2kn
-3
4
VCC ± = ± 15 V
0
I
-4
Rl - 10kQ
-5
I
I
50
75
- 50
- 25
0
25
Rl = 2 k!l
6
VOM-
:E
-75
I
YOM +
E
"E -4
';;
ca
:E -6
"
.
Rl = 10 k.Q
12
o
VCC ± = ±5 V
:E
50
MAXIMUM PEAK OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
Rl=10kn
0
'"m
0..
""
FIGURE 19
5
I
40
30
1101 - Output Current - mA
MAXIMUM PEAK OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
>
~
\
o
o
20
FIGURE 18
VOM+
""
\
~
I
12
6
VO~ "-'" i'--
0..
"
>
4
VCC ± = ±15 V
Rl = 10 k.Q
0
VOM~
o
o
I
>
0..
E
E
';;
.
TA = 25°C
~
>
:;
Q.
:;
f'...
>
Rl = 2 k.Q
0-12
>
Rl = 10kQ
-16
100
125
-75
-50
T A - Free-Air Temperature - °C
-25
0
25
50
75
10C
125
T A - Free-Air Temperature - °C
FIGURE 20
FIGURE 21
TData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655303 ' DALLAS. TEXAS 75265
2-271
TlQ51 , TlQ51A
ENHANCED JFET PRECISION
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
LARGE-SIGNAL VOLTAGE AMPLIFICATION
vs
vs
LOAD RESISTANCE
FREQUENCY
250
>
~I
<:
0
Vo
TA
= ±1 V
= 25°C
200
= ±15V
~
VCC±
=aE
f.-- r-
.g
.,
150
C)
!!
'0
> 100
/
VCC ±
:!
.,
Jii5
E
50
\
VL--'
00:(
/'
'"
""
= ±5 V
1----'1---
RL
cL
~
......
TA
'"
.;:
'"
.,..
III
..
i'....
PHASE SHIFT ' "
~
'"
>
0.4
1
0.1
10
100
4
10
40
RL - Load Resistance - kn
vs
FREE-AIR TEMPERATURE
FREE-AIR TEMPERATURE
1000
=
>
.E
>
Vcc+
+5V
Vo = ± 2.3 V
<:
0
- --
400
u
:;::
E
00:(
=aE
.,
00:(
RL = 10 kil
100
-
>
:!
~
=
RL
-;
:e
40
RL
= 2kn
"
:t:
i5
I
C
-----
-I---
>
00:(
C)
!!
'0
100
>
= 10kn
1------RL
I-.
~
= 2kn
~
------=
:!
E
=
Vec +
+15 V
Vo
+ 10 V
I
400
Ii
c
180°
10M
LARGE-SIGNAL VOLTAGE AMPLIFICATION
vs
"iu
C)
'\
150°
LARGE-SIGNAL VOLTAGE AMPLIFICATION
E
S
'0
1M
120°
FIGURE 23
:>
GO
lOOk
\
",\-
f - Frequency - Hz
1000
I
<:
10k
1k
90° .<:
Q.
FIGURE 22
>
0
100
30°
60° :E
I
o
= 25 pF
= 25°C
~VD
C
00:(
= ±15V
= 2kn
0°
Vcc±
t-...
40
i5
I
C
>
00:(
10
-75 -50 -25
0
25
50
75
100
T A - Free-Air Temperature - °c
125
10
-75 -50 -25
0
25
50
75
100
125
T A"" Free-Air Temperature - °C
FIGURE 25
FIGURE 24
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ."
2-272
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TL051 , TL051A
ENHANCED JFET PRECISION
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
COMMON-MODE REJECTION RATIO
COMMON-MODE REJECTION RATIO
vs
vs
FREQUENCY
FREQUENCY
100
..,
a:I
100
90
=
I
0
";
80
c
0
70
'Qj
60
Ql
'\.
=Iic
40
E
E
30
\
I
0==
\
20
70
\
1k
10 k
100 k
f - Frequency - Hz
1M
20
U
Ql
vs
FREQUENCY
1M
10M
100
I
/
VCC±=±15V
a
I
8
90
c
~
/
10
L
i.5
85
/
AVO = 1
o
-
L
VCC± = ±15V
TA
25°C
r 0 (open loop) = 250 Q
/
75
=
/'
0==
0
25
50
75
100
125
/
//
N
-25
/'
i/
/
L
I
70
-75-50
/
L
AVO = , .
~
80
AVO = 10~
/
i
VCC± = ±5V
0
a:
a:
1k
10 k
100 k
f - Frequency - Hz
FREE-AIR TEMPERATURE
0
I
100
OUTPUT IMPEDANCE
95
0
E
E
10
VIC = VICRmin
=Iic
0
\
vs
'Qj
Ql
I'\.
0
10
10M
a:
..,
'\
COMMON-MODE REJECTION RATIO
a:
0
'\.
FIGURE 27
a:I
c
'\
FIGURE 26
..,
I
I'\.
40
I
a:
a:
100
.2
1ii
'\
50
30
0==
100
=
60
E
E
=
VCC±
±15V
TA
25°C
(3
10
0
10
c
.!!
Ql
0
a:
a:
80
'8
~0
\
0
0
.2
g
l
\.
50
90
I
OJ
a:
a:
'8
..,
a:I
b-..
a:
~
=
Vcc±
±5V
TA
25°C
0.1
1k
TA - Free-Air Temperature - °c
10k
100 k
1M
f - Frequency - Hz
FIGURE 28
FIGURE 29
tDam at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
IN5rRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
2-273
Tl051 , Tl051A
ENHANCED JFET PRECISION
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
SHORT-CIRCUIT OUTPUT CURRENT
SUPPL Y-VOL TAGE REJECTION RATIO
vs
vs
FREE-AIR TEMPERATURE
SUPPLY VOLTAGE
60
110
Vee± = ±5V to ±15V
£II
"0
.2 106
'"
c
~
I
E
C
1
<3
-
8.
t
I
20
!-s
o
~
-20
V,O =
:n -40
90
-75
-60
-50
-25
0
25
50
75
100
TA - Free-Air Temperature - DC
125
o
4
6
8
10
12
IVee ±I- Supply ,Voltage - V
14
SHORT-CIRCUIT OUTPUT CURRENT
SHORT-CIRCUIT OUTPUT CURRENT
vs
vs
TIME
FREE-AIR TEMPERATURE
60
i--
I
'E"
~
~
40
40
I
20
d
0
o"
- - r---r--t--J.
vee± = ±15V
I
I
vce± = ±5V
20
1
i
0
Vec±=±5V
~
1-
-20
~
V,O = -100mV
:n-40
-60
o
10
20
20
UJ
:n -40
Vee± = ±15 V
TA = 25 De
9
30
40
Time - Seconds
50
9
60
-
-
I
I
Vee ± = ±15 V
Vo = 0
I
I
-60
-75 -50 -25
0
25
50
75
100
TA - Free-Air Temperature - DC
FIGURE 32
FIGURE 33
10ata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ."
2-274
16
FIGURE 31
VID = 100 mV
~
SR+
20
IV
I
l!!
~
..
iii
15
a:
10
~
I
10
III
r-- r--
V
SR-
----
III
vcc ±
vcc ±
5
o
-75
-50
-25
0
.25
= ±5 V
RL = 2kQ
CL = 100 pF
See Figure 1
I
I
50
75
100 125
= ±15 V
RL = 2 kQ
CL = 100 pF
See Figure 1
5
a
-75
- 50
- 25
a
25
50
I
I
75
100
125
TA - Free-Air Temperature -"C
TA - Free-Air Temperature - °C
FIGURE 38
FIGURE 39
OVERSHOOT FACTOR
vs
LOAD CAPACITANCE
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
50r---~----~--~--~~--~--~
100
~
:>c
..
..'l!
~
..
70
I
Ol
VCC±=±15V
RS = 100Q
TA = 25°C
See Figure 3
\
50
40
\
1\
II
'0
Z
;;
30
a..
.5
..
E
Oi
.i!:
20
:>
10~--~+---~--~---
Iff
'"
I
__ __ __
c
>
See Figure 1
O~--~--~--~~
a
50
~
~
100
150
200
250
CL - Load Capacitance - pF
~
300
10
10
FIGURE 40
100
1k
10 k
f - Frequency - Hz
FIGURE 41
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ."
INSTRUMENTS
2-276
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
100 k
Tl051 , Tl051A
ENHANCED JFET PRECISION
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
TOTAL HARMONIC DISTORTION
vs
FREQUENCY
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
3.2
= ±15 V
AVO = 1
Vo(rms) = 6 V
TA = 25°e
Vee +
;jI.
I
c
0
~
is
:t:!
::E
--- -
3.1
I
f.--
.J:.
0.1
:2
~
c
os
m
.!:!
c
0
3
c
E
1
~
2 •9
1a 0.01
= 10 mV
= 2 kQ
= 25 pF
TA = 25°e
Vi
c
;§
:;:)
RL
eL
I
I
Q
rii
..,/
J:
2.8
t-
See Figure 4
2.7
1k
10 k
, - Frequency - Hz
100 k
o
2
6
4
8
10
12
14
16
IVee ±I-Supply Voltage - V
FIGURE 42
FIGURE 43
UNITY-GAIN BANDWIDTH
vs
FREE-AIR TEMPERATURE
PHASE MARGIN
vs
SUPPLY VOLTAGE
65
N
J:
~
3r-~---+---+--~~~--+---r--1
-=
:2
...,~
...c
m
c
II
!!!
...,5P
I
c
.
.....
63
61
.~
2r-~r--1---+---+--~--1---+--4
'0;
C.jl
~
::E
,
59
.J:.
/
V'"
0-
'2
:;:)
= 10mV
RL = 2 kn
CL = 25 pF
Vi
I
rii
Vi = 10 mV
I
-1---+---+--~--1-~
RL = 2kQ
E
"'-
=
57
CL
25 pF
TA = 25°C
See Figure 4
See Figure 4
O~~~~--~--~--~--~--~~
- 75
- 50
- 25
0
25
50
75
100
T A - Free-Air Temperature - °C
125
--
I-
55
o
2
4
6
8
10
12
14
16
IVce ±I- Supply Voltage - V
FIGURE 44
FIGURE 45
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-277
Tl051 , Tl051A
ENHANCED JFET PRECISION
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
PHASE MARGIN
vs
LOAD CAPACITANCE
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
70
65
Vi = 10 mV
...
..,.
65
~
0>
RL = 2 kQ
"
,,
, "
"
60
..
.....
I'...
I
......
J '" ""-'" ."
I
c
...
..,..
TA = 25°C
See Figure 4
.... ,
I
0>
I
VCC± = ±15V
c
..
....
See Note 11
°Et
55
::!
VCC±=±5V
~
50
0..
I
E
~
40
o
10
20
30
40
50
60
..V
.~
r-.........
~
..........
70
80
90
.. /
I
E
~
57
55
- 75
100
..v V-
RL = 2 kQ
- 50
- 25
f\
'1
>
..
0>
±'a!
VCC± = ±15V
RL = 2 kQ
'0
-4
>
;;
0..
;;
CL = 100 pF
0
-8
0
TA = 25°C
See Figure 1
I
>
I
I
I
75
100
I
4
W
!,
'.J
o
vcc± = ±15V
RL = 2 kQ
CL = 100 pF
0
> -4
-6
-~
1--
-8
0.2
0.4
0.6
0.8
1.0
\
\\I\r-
TA = 25°C
See Figure 1
-2
1.2
1/
o
2
3
t - Time - flS
t-Time-f1s
FIGURE 48
FIGURE 49
4
5
toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
NOTE 11: Values of phase margin below a load capacitance of 25 pF were estimated.
TEXAS ~
INSTRUMENTS
2-278
125
I
I
2
0
-12
-16
50
6
4
0
25
8
I
;;
0..
;;
0
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
8
0
I
VOL TAGE-FOLLOWER
SMALL -SIGNAL
PULSE RESPONSE
I
>
I
Vi = 10mV
FIGURE 47
.~
0>
~
FIGURE 46
12
..
VCC± = ±5V
TA - Free-Air Temperature - °C
16
S
f--
CL = 25 pF
See Figure 4
CL - Load Capacitance - pF
>
E
--
VCC± = ±15V
:--
59
0..
.......
45
61
::!
'" "
'""
r-.........
63
~
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
6
TL051 , TL051A
ENHANCED JFET PRECISION
OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
output characteristics
All operating characteristics (except bandwidth and phase margin) are specified with 100-pF load capacitance. The TL051 and TL051 A will drive higher capacitive loads; however, as the load capacitance increases,
the resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation.
The value of the load capacitance at which oscillation occurs varies with production lots. If an application
appears to be sensitive to oscillation due to load capacitance, adding a small resistance in series with the load
should alleviate the problem. Capacitive loads of 1000 pF and larger may be driven if enough resistance is
added in series with the output (see Figure 50).
(a) CL
= 100 pF, R = 0
(d) CL
= 1000 pF, R = 0
(b) CL
= 300 pF, R = 0
(e) CL 1000 pF, R
(e) CL
= 50 n
(f) CL
= 350 pF, R = 0
= 1000 pF, R = 2 kn
FIGURE 50. EFFECT OF CAPACITIVE LOADS
+5V
-5V
2kn
(see Note A)
NOTE A: CL includes fixture capacitance.
FIGURE 51. TEST CIRCUIT FOR OUTPUT CHARACTERISTICS
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • OALLAS. TEXAS 75265
2-279
TL051 , TL051A
ENHANCED JFET PRECISION
OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
input characteristics
The TL051 and TL051A are specified with a minimum and a maximum input voltage that, if exceeded at either
input, could cause the device to malfUnction.
Because of the extremely high input impedance and resulting low bias current requirements, the TL051 and
TL051 A are well suited for low-level signal processing; however, leakage currents on printed circuit boards and
sockets can easily exceed bias current requirements and cause degradation in system performance. It is good
practice to include guard rings around inputs (see Figure 52). These guards should be driven from a lowimpedance source at the same voltage level as the common-mode input.
Vo
Vo
(a) NONINVERTING AMPLIFIER
(b) INVERTING AMPLIFIER
(e) UNITY-GAIN AMPLIFIER
FIGURE 52. USE OF GUARD RINGS
noise performance
The nOise specifications in op amp circuits are greatly dependent on the current in the first-stage differential
amplifier. The low input bias current requirements of the TL051 and TL051A result in a very low current noise.
This feature makes the devices especially favorable over bipolar devices when using values of circuit
impedance greater than 50 kQ.
TEXAS ."
INSTRUMENTS
2-280
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
Tl051 , Tl051A
ENHANCED JFET PRECISION
OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
phase meter
The phase meter in Figure 53 produces an output voltage of 10 mV per degree of phase delay between the
two input signals VA and VB' The reference signal VA must be the same frequency as VB' The TLC3702
comparators (U1) convert these two input sine waves into ± 5-V square waves. Then R1 and R4 provide level
shifting prior to the SN74HC109 dual J-K flip flop.
Flip-flop U2B is connected as a toggle flip-flop and generates a square wave at half the frequency of VB' Flipflop U2A also produces a square wave at half the input frequency. The pulse duration of U2A varies from zero
to half the period, where zero corresponds to zero phase delay between VA and VB and half the period
corresponds to VB lagging VA by 360 degrees.
'
The output pulse from U2A causes the TLC4066 (U3) switch to charge the TL051 (U4) integrator capacitors
C1 and C2. As the phase delay approaches 360 degrees, the output of U2A approximates a square wave,
and U4 has an output of almost 2.S V. US acts as a noninverting amplifier with a gain of 1.44 in order to scale
the 0- to 2.S-V integrator output to a 0- to 3.6-V output range.
R8 and R10 provide output gain and zero-level calibration. This circuit operates over a 100-Hz to 10-kHz
frequency range.
R2
100 lin
R1
100 lin
Vo
R9
20kn
RS
NC
Gain
U28
50kn
+5V
R10
R4
100 kQ
10kQ
Zero
-5V
NOTES: U 1 = TLC3702; VCC ± = ± 5 v.
U2 = SN74HC109.
U3 = TLC4066.
U4,U5 = TL051; VCC± = ±5V.
FIGURE 53. PHASE METER
TEXAS ",
INsrRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
2-281
TL051 , TL051A
ENHANCED JFET PRECISION
OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
precision constant-current source over temperature
A precision current source benefits from the high input impedance and stability of Texas Instruments enhanced
JFET process. A low-current shunt regulator maintains 2.5 V between the inverting input and the output of
the TL051. The negative feedback then forces 2.5 V across the current setting resistor R; therefore, the current
to the load is simply 2.5 V divided by A.
Possible choices for the shunt regulator include the LT1 004, LT1009, and LM385. Note that if the regulator's
cathode connects to the op amp output, this circuit will source load current. Similarly, if the cathode connects
to the inverting input, the circuit will sink current from the load. To minimize output current change with
temperature, R should be a metal film resistor with a low temperature coefficient. Also, this circuit must be
operated with split voltage supplies.
150pF
150pF
U2
U2
+ 15V
+ 15V
v=
(a) SOURCE CURRENT LOAD
(b) SINK CURRENT LOAD
NOTES: U1 = TL051.
U2 = LM385, LT1004, or LT1009 voltage reference.
I =
2.~ V, R
= Low temperature coefficient metal film resistor.
FIGURE 54. PRECISION CONSTANT-CURRENT SOURCE
TEXAS
2-282
.Jf
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TL052, TL052A
ENHANCED JFET PRECISION
DUAL OPERATIONAL AMPLIFIERS
03235. JUNE 1988 - REVISED FEBRUARY 1991
•
MaxImum Offset Voltage ..• 800 J1V (TL052A)
•
HIgh Slew Rate •.• 17.8 V/J1S Typ at 25°C
•
Low Total HarmonIc DIstortIon ..• 0.003%
Typ at RL = 2 k!l
D, JG, or P PACKAGE
(TOP VIEW)
lOUT
liN liN +
VCC _
[]8
2
7
3
6
4
5
•
Low NoIse Voltage ... 19 nV/{Hz
Typ at f = 1 kHz
•
Low Input BIas Currents .•• 30 pA Typ
LPACKAGE
(TOP VIEW)
FK PACKAGE
(TOP VIEW)
I+
:::>
VCC +
20UT
21N21N +
0
000 00
z_z>z
I'
NC
liN NC
liN +
NC
3
2
1 20 19
1St
04
5
17
6
16
7
15
NC
20UT
NC
21NPin 4 is in electrical contact with the case
NC
14
S
9 10 11 12 13
o
Z
10 + 0
OZ Z Z
o
>
-
'"
NC - No internal connection
description
The TL052 and TL052A dual operational amplifiers incorporate well-matched, high-voltage JFET and bipolar
transistors in a monolithic integrated circuit. These devices offer the significant advantages of Texas
Instruments new enhanced JFET process. This process affords not only low initial offset voltage due to the
on-chip zener trim capability but also stable offset voltage over time and temperature. In comparison,
traditional JFET processes are plagued by significant offset voltage drift.
This new enhanced process still maintains the traditional JFET advantages of fast slew rates and low input
bias and offset currents. These advantages coupled with low noise and low harmonic distortion make the
TL052 well-suited for new state-of-the-art designs as well as existing design upgrades. The TL052 has been
DISTRIBUTION OF TL052A
INPUT OFFSET VOLTAGE
20~--~---r---'----~--~---'
403 Amplifiers
AVAILABLE OPTIONS
PACKAGE
TA
VIOmax SMALLAT 25°C OUTLINE
(Dl
CHIP
CARRIER
(FKI
-
CERAMIC
DIP
(JGI
METAL
CAN
(Ll
PLASTIC
DIP
(PI
-
O°C
TL052ACP
800 ILV TL052ACD
to
TL052CP
70°C 1500 ILV TL052CD
-40°C 800 ILV TL052AID
TL052AIP
to
TL0521P
85°0 1500 ILV TL0521D
-55°0 800 ILV TL052AMD TL052AMFK TL052AMJG TL052AML TL052AMP
to
TL052ML TL052MP
125°C 1500 ILV TL052MD TL052MFK TL052MJG
o packages are available taped and reeled. Add "R" suffix to device type, (e.g.,
TL052CDR).
-
-
;J!.
; 15
f~!'f:~~:~t:.~t:;r.~rwC::'~~ ~ ;~:::~~T:~n;:::~=:~m=:!!-:~
necllsarlly include testing of III paramlters.
TEXAS
=
!!E
D.
E
IN
+
+
OUT
TEXAS . "
2-284
INSfRUMENTS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
02
TL052, TL052A
ENHANCED JFET PRECISION
DUAL OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC + (see Note 1) ..................................................... 18 V
Supply voltage, VCC:'" (see Note 1) .................................................... -18 V
Differential input voltage (see Note 2) ................................................... ± 30 V
Input voltage range, VI (any input, see Notes 1 and 3) ...................................... ± 15 V
Input current, II (each input) .......................................................... ± 1 mA
Output current, 10 (each output) ..................................................... ± 80 mA
Total current into VCC + terminal ..................................................... 160 mA
Total current out of VCC _ terminal ................................................... 160 mA
Duration of short-circuit current at (or below) 25°C (see Note 4) ............................ unlimited
Continuous total dissipation ........................................ See Dissipation Rating Table
Operating free-air temperature range, T A: C-suffix ................................... O°C to 70°C
I-suffix ................................ - 40°C to 85°C
M-suffix ............................... - 55°C to 125°C
Storage temperature range ................................................... - 65°C to 150°C
Case temperature for 60 seconds: FKpackage ........................................... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package ................. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG or L package ................ 300°C
NOTES: 1.
2.
3.
4.
All voltage values, except differential voltages, are with respect to the midpoint between VCC + and Vcc _ .
Differential voltages are at the noninverting input with respect to the inverting input.
The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the
maximum dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA ,,;25°C
POWER RATING
0
FK
725mW
1375mW
JG
L
p
DERATING FACTOR
ABOVE TA = 25°C
5.8 mW/oC
TA=70oC
POWER RATING
TA=85"C
POWER RATING
TA = 125°C
POWER RATING
464mW
377mW
145mW
11.0 mW/oC
880mW
715mW
275mW
1050 mW
8.4 mW/oC
672mW
546mW
210mW
825mW
1000mW
6.6 mW/oC
8.0 mW/oC
528mW
429mW
640mW
520mW
165mW
200mW
recommended operating conditions
C-SUFFIX
I-SUFFIX
MIN NOM MAX
Supply voltage, VCC
Common-mode input voltage, VIC
Operating free-air temperature, TA
I VCC+
= ±5V
IVcc+=±15V
M-SUFFIX
MIN NOM MAX
MIN NOM MAX
±5
-1
±15
4
±5
-1
±15
4
±5
-1
±15
4
-11
11
-11
11
-11
11
0
70
-40
85
-55
125
UNIT
V
V
°C
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-285
Tl052C, Tl052AC
ENHANCED JFET PRECISION
DUAL OPERATIONAL AMPLIFIERS
electrical characteristics
PARAMETER
TEST CONDITIONS
TL052C
VIO
Input offset voltage
TL052AC
= 0,
VIC = 0,
RS = 500
Vo
aVIO
Temperature coefficient
of input offset voltage
(see Note 9)
TL052C
TL052AC
Input offset voltage
long-term drift (see Note 5)
110
liB
TAt
25°C
Full range
25°C
=
VCC±
±5V
MIN
TYP MAX
0.73
3.5
4.5
2.8
0.51
Full range
Va = 0, VIC
See Figure 5
= 0,
Input bias current
Vo = 0, VIC
See Figure 5
= 0,
70°C
25°C to
70°C
Maximum positive peak
VOM+
output voltage swing
Maximum negative peak
VOM-
output voltage swing
Large-signal differential
AVD
voltage amplification
6
0.04
0.04
4
25°C
20
100
1
200.
0.15
4
70°C
-2.3
-11
nA
200
pA
0.2
4
nA
-12.3
to
to
11
15.6
to
4
3
11
13
4.2
RL
= 2kO
25°C
Full range
2.5
2.5
3.8
= 10ka
25°C
Full range
-2.5
-3.5
= 2 ka
25°C
-2.3
Full range
-2.3
3
13.9
13
11.5
11.5
-12 -13.2
-2.5
-12
-3.2
-11
-11
25°C
25
59
50
105
O°C
30
65
60
129
70°C
20
46
30
85
Input resistance
25°C
1012
1012
Input capacitance
25°C
10
12
CMRR
Common-mode
rejection ratio
kSVR
ICC
Supply-voltage
RS
VCC± = ±5Vto±15V,
rejection ratio
Va = 0,
(AVCC+/AVIO)
RS = SOO
Supply current
No load,
(four amplifiers)
Va
Vol iV02 Crosstalk attenuation
t Full range IS O°C to 70°C.
=0
AVD
= 100
V
-12
fj
= ViCR min,
= 0,
= ,SO 0
V
12.7
Ci
VIC
Vo
V
-11
to
pA
30
to
25°C
Full range
RL = 2kO,
See Note 6
flV/ mo
1
5.6
= 10ka
RL
25
100
4
RL
RL
mV
5
0.025
to
-1
Full range
UNIT
1.8
8
0.02
voltage range
0.8
8
70°C
25°C
0.4
8
25°C
Common-mode input
MAX
1.5
2.5
fl Vl o C
-1
VICR
= ±15V
TYP
0.65
3.8
25°C to
25°C
Input offset current
VCC±
MIN
25°C
65
85
75
93
O°C
70°C
65
84
75
92
65
84
75
91
25°C
75
99
75
99
O°C
75
98
98
70°C
75
97
75
75
VlmV
0
pF
dB
dB
97
25°C
4.6
4.7
5.6
6.4
4.8
4.8
5.6
O°C
70°C
4.4
6.4
4.6
6.4
25°C
120
120
6.4
mA
dB
NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
6. ForVCC± = ±5V, Vo = ±2.3V;atVcc± = ±15V, Vo = ±10V.
9. This parameter is tested on a sample basis for the TL052A. For other test requirements, please contact the factory. This statement
has no bearing on testing or nontesting of other parameters.
TEXAS ~
INSTRUMENTS
2-286
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TL052C, TL052AC
ENHANCED JFET PRECISION
DUAL OPERATIONAL AMPLIFIERS
operating characteristics
PARAMETER
SR +
SR-
tr
TAt
TEST CONDITIONS
25°C
DoC
Positive slew rate
at unity gain
RL = 2kn,
Negative slew rate
eL = 100 pF,
See Figure 1 and Note 7
70°C
25°C
DoC
at unity gain
70°C
25°C
DoC
Rise time
VIPP = ± 10 mV,
tl
Vn
Fall time
THO
B1
!Pm
54
VCC ± = ±15 V
MIN
13
11
11
13
11
11
TYP
20.7
20.9
20.8
17.8
18.5
16.5
56
63
63
25°C
DoC
55
57
54
56
70°C
62
24%
64
19%
Overshoot lactor
24%
19%
24%
19%
Equivalent input noise
70°C
25°C
71
71
25°C
19
19
25°C
4
4
25°C
0.01
0.01
25°C
0.003%
0.003%
25°C
ooe
3
3.2
3
3.2
70°C
2.6
2.7
25°C
DoC
60 0
63°
59°
63°
70°C
60°
63°
Equivalent input
noise current
Total harmonic distortion
Unity-gain bandwidth
RS = lOOn,
See Figure 3
1= 10 Hz
I = 1 kHz
1= 10 Hz to
10 kHz
1 = 1 kHz
RS = 1 kn,
1 = 1 kHz,
RL = 2kn,
See Note 8
Vi = 10 mV, RL = 2 kn,
eL = 25 pF, See Figure 4
Phase margin
Vi = 10 mV, RL = 2 kn,
at unity gain
eL = 25 pF, See Figure 4
MAX
UNIT
V/JJ.s
55
70°C
25°C
DoC
voltage (see Note 10)
Peak-to-peak equivalent
VNPP
input noise voltage
In
RL = 2kn,
eL = 100 pF,
See Figures 1 and 2
VCC±=±5V
MIN
TYP MAX
17.8
18.5
16.5
15.4
15.7
14.7
55
ns
30
nVl,jHz
JJ.V
pA/,jHz
MHz
t Full range is DoC to 70°C.
NOTES: 7. ForVee± = ±5 V, VIPP = ± 1 V; lor Vee ± = ± 15 V, VIPP = ±5 V.
8. ForVec± = ±5V, Vo(rms) = 1 V;lorVee± = ±15V, Vo(rms) = 6V.
10. This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing
on testing or nontesting 01 other parameters.
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
2-287
Tl0521, Tl052AI
ENHANCED JFET PRECISION
DUAL OPERATIONAL AMPLIFIERS
electrical characteristics
PARAMETER
VIO
TEST CONDITIONS
TL0521
25°C
Full range
TL052AI
25°C
Full range
Input offset voltage
Vo = 0,
Temperature coefficient
"Via
of input offset voltage
(see Note 9)
VIC = 0,
RS = 50n
TAt
TL0521
TL052AI
Input offset voltage
long-term drift (see Note 5)
VCC± = ±5V
MIN
TYP MAX
0.73
3.5
5.3
0.51
2.8
4.6
25°C to
VCC± = ±15V
MIN
TYP MAX
0.65
1.5
3.3
0.4
0.8
2.6
7
6
6
6
25°C
0.04
0.04
85°C
UNIT
mV
",Vloe
25°C to
85°C
25
",Vlmo
110
Input offset current
Va = 0, VIC = 0,
See Figure 5
25°C
85°C
4
100
5
100
pA
0.06
10
0.07
liB
Input bias current
Va = 0, VIC = 0,
See Figure 5
25°C
20
200
20
30
0.7
10
200
nA
pA
20
nA
85°C
-1
25°C
Common-mode input
VICR
voltage range
Maximum positive peak
output voltage swing
Maximum negative peak
VOM-
output voltage swing
Large-signal differential
AVO
voltage amplification
-11
RL = 10 lin
25°C
Full range
RL = 2kn
25°C
Full range
RL = 1011n
RL = 2kn
RL = 2kn,
See Note 6
-12.3
to
to
to
to
4
5.6
11
-11
15.6
-1
Full range
VOM+
0.6
-2.3
to
4
3
to
11
4.2
13
11.5
3.8
2.5
25°C
-2.5
Full range
-2.5
25°C
-2.3
Full range
-2.3
13.9
13
3
2.5
11.5
-3.5
-12 -13.2
-12
-3.2
-11
-11
25°C
-40°C
25
30
59
74
50
60
105
145
85°C
20
43
30
76
Input resistance
25°C
1012
1012
Input capacitance
25°C
10
12
kSVR
ICC
Vo l IV02
Common-mode
VIC = VICR min,
Va = 0,
RS = 50n
Supply-voltage
VCC± = ±5VIo±15V,
rejection ratio
Va = 0,
(tN CC ± UNIO)
RS = 50n
Supply current
(four amplifiers)
No load,
Va = 0
Crosstalk attenuation
AVO = 100
V
-12
Ci
rejection ratio
V
12.7
ri
CMRR
V
25°C
65
85
75
93
-40°C
85°C
65
83
75
90
65
84
75
93
25°C
75
99
75
99
-40°C
75
98
75
98
85°C
75
99
75
99
VlmV
n
pF
dB
dB
4.6
5.6
4.8
5.6
6.4
85°C
4.5
4.4
4.7
4.6
6.4
6.4
25°C
120
25°C
-40°C
6.4
120
rnA
dB
t Full range is - 40°C to 85°C.
NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
6. ForVCC± = ±5V,VO = ±2.3V:atVcc± = ±15V.VO = ±10V.
9. This parameter is tested on a sample basis for the TL052A. For other test requirements, please contact the factory. This statement
has no bearing on testing or nontesting of other parameters.
TEXAS ~
INSTRUMENTS
2-288
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TL0521, TL052AI
ENHANCED JFET PRECISION
DUAL OPERATIONAL AMPLIFIERS
operating characteristics
PARAMETER
SR+
SR-
Positive slew rate
at unity gain
Negative slew rate
at unity gain
tr
Rise time
tf
Fall time
TAt
TEST CONDITIONS
25°e
-40 0 e
RL = 2kQ,
eL = 100 pF,
See Figure 1 and Note 7
85°e
25°e
-400 e
VIPP = ± 10 mY,
RL = 2kO,
eL = 100 pF,
See Figures 1 and 2
Equivalent input noise
voltage (see Note 10)
Peak-to-peak equivalent
VNPP input noise voltage
Equivalent input
In
noise current
52
64
55
51
64
24%
24%
24%
71
=
VCC±
±15 V
MIN
TVP MAX
13
20.7
11
20.6
11
20.7
13
17.8
11
17.8
11
17.2
56
53
65
57
53
19
65
19%
19%
19%
71
19
25°e
4
4
f = 1 kHz
25°e
0.01
0.01
25°e
0.003%
0.003%
25°e
-40 0 e
85°e
25°e
-400 e
85°e
3
3.5
2.5
60°
58°
60°
3
3.6
2.6
63°
61°
Overshoot lactor
Vn
85°e
25°e
-400 e
85°e
25°e
-40 0 e
85°e
25°e
-40 0 e
85°e
25°e
25°e
=
VCC±
±5V
MIN
TVP MAX
17.8
18.8
16
15.4
16
14.5
55
RS = 1000,
See Figure 3
1= 10 Hz
I = 1 kHz
1= 10 Hz to
10 kHz
THO
Total harmonic distortion
RS = 1 kQ, RL = 2kQ,
See Note 8
I = 1 kHz,
81
Unity-gain bandwidth
Vi = 10 mY, RL = 2 kQ,
eL = 25 pF, See Figure 4
4>m
Phase margin
at unity gain
Vi = 10 mY, RL = 2 kQ,
eL = 25 pF, See Figure 4
30
UNIT
V/Jls
ns
nV/fHz
JlV
pAlfHz
MHz
63°
t Full range is - 40 0 e to 85°e.
NOTES: 7. For Vee ± = ± 5 V, VIPP = ± 1 V; for Vee ± = ± 15 V, VIPP = ± 5 V.
8. For Vee ± = ± 5 V, Vo(rms) = 1 V; lor Vee ± = ± 1(; V, Vo(rms) = 6 V.
10. This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing
on testing or nontesting of other parameters.
TEXAS ~
INsrRUMENTS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
2-289
IL052M, IL052AM
ENHANCED JFET PRECISION
DUAL OPERATIONAL AMPLIFIERS
electrical characteristiCs
PARAMETER
Via
TEST CONDITIONS
TL052M
25°C
Full range
TL052AM
25°C
Full range
Input offset voltage
Va = 0,
aVIO
Temperature coefficient
of input offset voltage
VIC = 0,
RS = 500
TAt
TL052M
TL052AM
Input offset voltage
long-term drift (see Note 5)
110
Input offset current
Va = 0, VIC = 0,
See Figure 5
lIB
Input bias current
Va = 0, VIC = 0,
See Figure 5
=
:1:5 V
VCC:I:
TYP MAX
MIN
0.73
3.5
6.5
0.51
2.8
5.8
25°C to
125°C
25°C to
125°C
9
9
8
25°C
0.04
0.04
25°C
125°C
25°C
125°C
4
1
20
10
-2.3
to
5.6
VOM+
VOM-
AVO
ri
Ci
CMRR
kSVR
Maximum positive peak
output voltage swing
to
Full range
4
-1
to
4
3
Maximum negative peak
output voltage swing
Large-signal differential
voltage amplification
RL=10kn
25°C
Full range
RL = 2kO
25°C
Full range
RL = 10kn
25°C
Full range
25°C
Full range
25°C
-55°C
125"C
RL = 2kn.
RL = 2 kn,
See Note 6
Input resistance
Input capacitance
Common-mode
rejection ratio
Supply-voltage
rejection ratio
(6.Vcc±I6.VIOl
3
2.5
2.5
-2.5
-2.5
-2.3
-2.3
25
30
10
25°C
25°C
VIC = VICR min,
Va = 0,
RS = 500
VCC ± = ± 5 V to ± 15 V,
Va = 0,
RS = 500
Supply current
(four amplifiers)
No load,
ICC
Vol N 02
Crosstalk attenuation
AVO = 100
Va = 0
25°C
_55°C
65
65
65
75
75
125°C
75
25°C
-55°C
125°C
mV
jJ.VloC
25°C
Common-mode input
voltage range
UNIT
3.8
10
-1
VICR
=
VCC:l:
±15V
MIN
TYP MAX
0.65
1.5
4.5
0.4
0.8
25°C
-55°C
125°C
25°C
100
20
200
50
4.2
3.8
-3.5
-3.2
-11
-11
50
60
15
59
76
32
1012
10
85
83
84
99
98
100
4.6
4.4
4.2
120
5
2
30
20
-11 -12.3
to
to
11
15.6
-11
to
11
13
13.9
13
11.5
12.7
11.5
-12 -13.2
-12
75
75
75
75
75
75
5.6
6.4
6.4
jJ.V/mo
100
20
pA
nA
200
50
pA
nA
V
V
V
-12
105
149
49
V/mV
1012
12
93
92
94
99
98
100
4.8
4.5
4.4
120
0
pF
dB
dB
5.6
6.4
6.4
rnA
dB
t Full range is - 55°C to 125°C.
NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test atTA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
6. ForVCC± = ±5V,VO = ±2.3V;atVcc± = ±15V,VO = ±10V.
TEXAS ~
INSTRUMENTS
2-290
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
TL052M, TL052AM
ENHANCED JFET PRECISION
DUAL OPERATIONAL AMPLIFIERS
operating characteristics
PARAMETER
SR+
SR-
Ir
II
Positive slew rate
al unity gain
Negative slew rale
al unity gain
TAt
TEST CONDITIONS
25°C
_55°C
RL = 21<0,
eL = 100pF,
See Figure 1 and Nole 7
125°C
25°e
-55°C
125°e
25°e
_55°e
Rise time
Fall time
125°e
25°e
_55°e
V,PP = ± 10 mY,
RL = 21<0,
eL = 100 pF,
See Figures 1 and 2
25°e
4
4
I = 1 kHz
25°e
0.01
0.01
25°C
0.003%
0.003%
25°C
-55°e
125°e
25°C
-55°e
125°e
3
3.6
2.3
60°
57°
60°
3
3.7
I = 10 Hz
I = 1 kHz
, = 10Hzlo
10kHz
Total harmonic dislortion
RS=ll----Vo
t r - RISE TIME
NOTE A: CL includes fixture capacitance.
Figure 1. Slew Rate, Rise/Fall Time,
and Overshoot Test Circuit
Figure 2. Rise Time and Overshoot Waveform
10kn
10kO
VI
1000
Vo
VeeRS
RS
NOTE A: CL includes fixture capacitance.
Figure 4. Unity-Gain Bandwidth and Phase Margin
Test Circuit
Figure 3. Noise Voltage Test Circuit
typical values
Typical values as presented in this data sheet
represent the median (50% point) of device
parametric performance.
GROUND SHIELD
input bias and offset current
At the picoamp-bias-current level typical of the
TL052 and TL052A, accurate measurement of the
bias current becomes difficult. Not only does this
Figure 5. Input Bias and Offset Current Test
measurement require a picoammeter, but test
Circuit
socket leakages can easily exceed the actual
device bias currents. To accurately measure these small currents, Texas Instruments uses a two-step process.
The socket leakage is measured using picoammeters with bias voltages applied, but with no device in the
socket. The device is then inserted in the socket and a second test that measures both the socket leakage
and the device input bias current is performed. The two measurements are then subtracted algebraically to
determine the bias current of the device.
noise
Because of the increasing emphasis on low noise levels in many of today's applications, the input noise voltage
density is sample-tested at f = 1 kHz. Texas Instruments also has additional noise testing capability to meet
specific application requirements. Please contact the factory for details.
TEXAS
~
INSTRUMENTS
2-292
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
TL052, TL052A
ENHANCED JFET PRECISION
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
table of graphs
FIGURE
110
Input offset voltage
Temperature coefficient
of input offset voltage
Input offset current
liB
Input bias current
VI
Input voltage range
Vo
Output voltage
VIO
(lVIO
Distribution
Distribution
VOM
Maximum peak output
voltage swing
AVD
Differential voltage amplification
Zo
Output impedance
CMRR
Common-mode rejection ratio
kSVR
Supply-voltage rejection ratio
lOS
Short-circuit output current
ICC
Supply current
SR
Slew rate
Vn
THD
Overshoot factor
Equivalent input noise voltage
Total harmonic distortion
Bl
Unity-gain bandwidth
¢m
Phase margin
Phase shift
Pulse response
vs Temperature
vs VIC
vs Temperature
vs VCC
vs Temperature
vs Differential input voltage
vs VCC
vs Output current
vs Frequency
vs Temperature
vs RL
vs Frequency
vs Temperature
vs Frequency
vs Frequency
vs Temperature
vs Temperature
vs VCC
vs Time
vs Temperature
vs VCC
vs Temperature
vs RL
vs Temperature
vs CL
vs Frequency
vs Frequency
vs VCC
vs Temperature
vs VCC
vs CL
vs Temperature
vs Frequency
Small-signal
Large-signal
6
7
8
9
8
10
11
12,13
14
18,19
15,16,17
20,21
22
23
24, 25
29
26, 27
28
30
31
32
33
34
35
36,37
38,39
40
41
42
43
44
45
46
47
23
48
49
TEXAS ~
INsrRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-293
Tl052, .TL052A
ENHANCED JFET PRECISION
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
DISTRIBUTION OF TL052
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
DISTRIBUTION OF TL052
INPUT OFFSET VOLTAGE
20r---~--~----~--~----~--~
172 Ampll-flers tested from 2
12
;II.
I
~
P Package
f!
:eis.
E
~
91--l--t-+
is.
~
'0
N'
61---+--+-
c
J
2
31-+--+
o
-1.5
-0.9
-0.3 0 0.3
0.9
VIO -Input Offset Voltage - mV
c
I
!l
10
c
Figure 7
INPUT BIAS CURRENT AND
INPUT OFFSET CURRENT
vs
FREE-AIR TEMPERATURE
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
VCC±=±15V
TA = 25°C
/'
=
liB
Gi
/'
-0
110
0
J!
(5
C
./
0.1
30
10
VCC+ = ±15 V
Vo = 0
VIC
0
~
as
-20
-10
10
o
20
aVIO - Temperature Coefficient -IJ.V/oC
-30
Figure 6
I!!
...
ii:i
5l----j-..."",""
o~-
1.5
100
CC
101----1--
..
'0
~
15
f!
cc
..
N'
VCC±=±15V
TA = 25°C to 125°C
P Package
One unit at - 34.6 IJ.V/oC
ccc
5
I
./
C
~
.'"
0
as
.-/
0
V
ii:i
/'
;;
c-
.5
I
I
g.
0.01
-0
c
as
~ -5
.,,/'
~
0.001
25
45
65
85
105
TA - Free-Air Temperature - °c
125
-10
-15
-10
-5
o
5
10
VIC - Common-Mode Input Voltage - V
Figure 9
FigureS
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSfRUMENTS
2-294
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
15
TL052, TL052A
ENHANCED JFET PRECISION
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
COMMON-MODE
INPUT VOLTAGE RANGE LIMITS
vs
SUPPLY VOLTAGE
16
TA = 25°C
>
12
/'"
II>
!!
'"
8
'5Q.
4
~
.
"8
/ 'V
20
,/'
V
./
COMMON-MODE
INPUT VOLTAGE RANGE LIM ITS
vs
FREE-AIR TEMPERATURE
Vee ± = ±15 V
>
POSITIVE LIMIT
0
E
E
0
0
S
'0
10
'5Q.
.5
5
"8
:;:
0
>
..
0
I
I
I
NEGATIVE LIMIT
.........
-4
..........
-8
I
0
:> -12
POSITIVE LIMIT
II
'"
.5
:;:c
15
"
c
0
E
E
(3
..........
-5
-10
I
I'-....... ...
0
:>
-15
NEGATIVE LIMIT
-16
o
2
4
6
8
10
12
IVee ±I- Supply Voltage - V
14
-20
-75
16
Figure 11
OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT V9LTAGE
~
3
I
\~
2
0
I
0
>
0
-5
-200
I
'"
=
=
=
=
600n
1 kn
2 kn
10kQ
~~
5
~
0
>
'5
~
-1
RL
-2 RL
-3 RL
RL
-4
,
~
>
II>
Vee±=±15V
TA = 250C
,I
10
I"~
'"
S
'0
>
'5
Q.
'5
125
15
Vee± = ±5V
TA = 25°C
4
..
-25
0
25
50
75
100
TA - Free-Air Temperature - °e
Figure 10
5
>
-50
~
0
-
r-...........
I'..
-
~
-100
o
100
VID - Dilferentlallnput Voltage -l1v
200
I
0
>
0
RL = 600n-5 I - - r- RL = 1 k n RL = 2kn
-10
r---
~I'-....... >-
~"r "1"'- ~
-15
-400
Figure 12
V"'-
""'---
-
I--
r-.........
o
200
-200
VID - Dilferentlallnput Voltage -I1V
-
400
Figure 13
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-295
TL052, TL052A
ENHANCED JFET PRECISION
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
MAXIMUM PEAK OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
FREQUENCY
16
.....
12
S
~
8
-S.
::I
o
0
§
-4
~
~
E
~
:E
~-12
>
o
~
I
~ r--...
1111111
I
\
TA = -55"C
V\
VCC± = ±5V
5
I
a..
a..
o
>
I'
14
I
10
~
~
=1"
TA = 125°e
16
"
0
10 k
~
100 k
1M
f - Frequency - Hz
10M
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
30
vs
vs
FREQUENCY
FREQUENCY
>
111111111
25
ig
15
=
\
\
.ole
Vee± = ±5V
E
30
I
RL
~:;
TA
~
...0
5
~
o
g
~
E
::I
E
..
1\
:E
I
100 k
1M
f - Frequency - Hz
0
>
10M
VCC± = ±15V
1\
10
~
5
Vee ±
a..
a..
~~
= 10 kO
= 25"C
\
15
.ole
III
a..
a..
10 k
1\
20
III
-=I
1\
25
III
~
\
10
::I
.....
RL = 2kO
TA
25"C
Vee± = ±15V
20
:E
15
,
1\
Figure 15
ad
E
i
E
VOM_
I
4
6
8
10
12
IVee ±I- Supply Voltage - V
:;
~
20
RL = 2 kO
Figure 14
I
t
2
10kO~
25
~
i
.
~kO
RL =
I
V~~ 1~IJllt
i
~=12kO
-8
I
-16
j
b
....
30
I
RL~1~ V
4
...
>
VO~+ / ~
TA = 25°e
::;-
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
o
10 k
Figure 16
= ±5 V
1\
JIll
~
100 k
1M
f - Frequency - Hz
-
Figure 17
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ",
INSTRUMENTS
2-296
POST OFFICE BOX 655303' OALLAS, TEXAS 75265
10M
Tl052, Tl052A
ENHANCED JFET PRECISION
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
MAXIMUM PEAK OUTPUT VOLTAGE
MAXIMUM PEAK OUTPUT VOLTAGE
vs
vs
OUTPUT CURRENT
OUTPUT CURRENT
16
5
VCC± = ±5V
RL = 10 kQ
TA = 25°C
>
.,
I
'"
!'!!
4
....
0
>
'5Do
'5
i'-...
3
0
.,..
.>t.
~
'" ""'-
~
"\
B-
E
E
:0
2
>
.
"K
I
~
8
:0
6
I~OM.
4
E
E
.
"K
::E
"'-,
12
8
12
:0
", "
>
o
o
10
>
'5
'r-... '\ " "-
~
0
a-
...0
!'!!
VOM~
::E
.,
'"
"0
14
I
16
1101 - Output Current - mA
VCC±=±15V
RL = 10kQ
TA = 25°C
~ l'-..
""'- ~ r---..
~ ~OM+
"
VO~ "'- ~
~
0
>
'"
2
1\
o
o
20
10
vs
FREE-AIR TEMPERATURE
FREE-AIR TEMPERATURE
16
~
'5
>
I
.
RL = 2kn
12
8,
~
2
4
0
~
0
E -1
E
"K -2
§
-4
':::E
-8
:0
0
~
:0
.
I
::;;
0
>
E
YOM -
RL = 2 kQ
-3
::E
RL = 10kn
-5
I
I
50
75
-75
-50
-25
0
25
VCC±=±15V
I
-4
RL = 2 kn
o
VCC± = ±5V
::E
V~M +
8
'5
Do
'5
a-
.>t.
50
RL = 10kQ
RL = 10 kQ
4
3
'"
MAXIMUM PEAK OUTPUT VOLTAGE
vs
YOM +
I
40
Figure 19
5
.,
'"
30
20
1101 - Output Current - mA
MAXIMUM PEAK OUTPUT VOLTAGE
!'!!
"
""\
1\
I
Figure 18
>
"\
4
YOM -
RL = 2 kQ
~-12
RL = 10kn
100
125
-16
-75 -50
T A - Free-Air Temperature - °C
-25
0
25
50
75
100
125
T A - Free-Air Temperature - °C
Figure 20
Figure 21
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices"
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303" DALLAS" TEXAS 75265
2-297
TL052, TL052A
ENHANCED JFET PRECISION
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
LARGE-SIGNAL VOLTAGE AMPLIFICATION
vs
LOAD RESISTANCE
250
~
I
c
j
=a.e
«
Vo = ±1 V
TA = 25"C
""- ""-
200
vcc±
I--
150
1
> 100
/
ii
i
50
/
Vcc± = ±15V
RL = 2kn
O·
CL = 25pF
TA = 25·C
30·
.......
= ±15V
,....
\
V~
"
1--"--
60·
"- "'-
......
VCC±=±5V
~
"-~VD
:.
PHASE SHIFT " -
r.........
0.4
10
40
RL - Load Resistance - kn
0.1
10
100
4
"\
180·
10 M
LARGE-SIGNAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
LARGE-SIGNAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
1000
>
VCC±=±5V
Vo
±2.3V
e
I
I
c 400
j
RL = 10kn
100
~
RL = 2kn
- - ----
40
is
I
~.
a.
r-- '- -......
r-.. I'--..
-I---
!
I---
100
RL = 2kn
'-
~
i
........
ii
r-..
10
-75 -50 -25
0
25
50
75
100
TA - Free-Air Temperature _·C
-
RL = 10kn
:I.
-....
ii
=
c 400
ia
=a.
=
VCC±
±15V
Vo
±10V
e
:>
=
:>
1
1M
Figure 23
1000
S
1k
10 k
100 k
f - Frequency - Hz
150·
Figure 22
>
e
«
:I.
100
120·
""- r.........\
I
o
90· .c
a..
\
Q
~
40
I
~
125
10
-75 -50 -25
0
25
50
75
100
T A - Free-Air Temperature _·C
Figure 25
Figure 24
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ."
INSTRUMENTS
2-298
POST OFFICE BOX 655303 • DAllAS. TEXAS 75265
4:
:c
til
125
TLD52, TLD52A
ENHANCED JFET PRECISION
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
COMMON-MODE REJECTION RATIO
COMMON-MODE REJECTION RATIO
vs
vs
FREQUENCY
FREQUENCY
100
III
"CI
I
0
li
a:
c
70
Qj
60
III
."
50
'"
a:
0
~0
E
E
YCC± = ±5Y
TA = 250C
,
80
0
13III
100
90
r\.
\
\
10
(,)
==
.
80
0
c
70
Qj
60
"8
III
50
C
0
E
E
40
::IE
\
30
::IE
\
8I
a:
a:
::IE
(,)
100
1k
10 k
100 k
f - Frequency - Hz
1M
~
c
g
'\
'\
\
20
10
10
100
1k
10 k
100 k
f - Frequency - Hz
1M
COMMON-MODE REJECTION RATIO
OUTPUT IMPEDANCE
vs
vs
FREE-AIR TEMPERATURE
FREQUENCY
10 M
100
YIC = YICRmln
I
95
/
Ycc± = ±15Y
a
I
8
90
..
c
l
i
,'"
Figure 27
"CI
.g
I'"'\
30
10 M
100
I
'\
Figure 26
III
.~
YCC± = ±15Y
TA = 250C
o
o
10
90
a:
0
20
I
0
==g
40
I
"CI
a:
(,)
a:
a:
III
85
~
~
E
80
r::a:
75
10
/
/
I
-,...-
1
:;
/
/
/
/
/
/
I
AyO = 1
o
N
./
L
~
70
-75 -50
/
/
AyO = 10
o
8
/
/
/
.5
YCC±=±5Y
AyO = 100/
-
YCC± = ±15 Y
TA = 25°C
r 0 (open loop) ~ 250 n
0.1
-25
0
25
50
75
100
TA - Free-Air Temperature - °c
125
1k
Figure 28
10 k
100 k
f - Frequency - Hz
1M
Figure 29
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
4
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-299
Tl052, Tl052A
ENHANCED JFET PRECISION
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
SUPPLV-VOLTAGE REJECTION RATIO
SHORT-CIRCUIT OUTPUT CURRENT
vs
vs
FREE-AIR TEMPERATURE
SUPPLV VOLTAGE
110.--....,r----r--r-..,..--,--..,---r---,
60
Vee ± = ± 5 V to ± 15 V
III
'1:1
I
ct
.g
106 J----1f---t--+--j---t---/--+---I
~
c
.g
E
I
C
~
<1
1..
!
Vo = 0
TA = 25°C
40
.....
,
20
.....-
l-
/ ' VVIO= 100mV
102
---
g'
98
ii
§-
~
VIO = -
94~~f---4--+-~-~-4--+-~
r;;;v--- r--
IX:
>
Jf
90~-~~--~--~--~--~--~~
-75
-50 -25
0
25
50
75
100
TA - Free-Air Temperature - °e
-60
125
o
2
4
~
<1
o
vs
TIME
FREE-AIR TEMPERATURE
Vcc±= ±15V
r--- r-- -,----L
ct
E
40
I
J
i:;
o
0
I I
vec+ = ±5V
20
I I
0
~
~
1!
VI
-20
o
.c
VIO = -100mV
VI
:n-40
o
10
20
30
40
Time - Seconds
50
Vec±=±5V
-20
:n-40
Vee± = ±15V
TA = 25°e
.9
-60
.9
-I---
I
60
I
I
I
I
-
vce± = ±15V
Vo = 0
I I
1
-60
-75 -50 -25
0
25
50
75
100
TA - Free-Air Temperature - °c
Figure 32
Figure 33
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSIRUMENTS
2-300
16
60
~
~
14
SHORT-CIRCUIT OUTPUT CURRENT
vs
20
:;
Q.
:;
12
SHORT-CIRCUIT OUTPUT CURRENT
40
I
10
Figure 31
VID = 100 mV
E
8
Figure 30
60
ct
6
IVee ±I- Supply Voltage - V
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
125
TL052, TL052A
ENHANCED JFET PRECISION
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
SUPPLY CURRENT
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
vs
SUPPLY VOLTAGE
5
5
E
I
~
:;
3
E
I
TA = 125°C_
(.)
::>
til
I
C
~
::>
3
VCC±=±15V
vcc± = ±5 V
(.)
a
~
a.
a.
R
c(
I'-TA= _55°C
F:::::: F::::
~ I\.
4
1'- TA = 25°C
"\f\-
c(
C
~
""-
4
a.
2
::>
til
2
I
(.)
(.)
.9
.9
o
o
Vo = 0
No Load
J
4
2
6
8
10
12
IVcc ±I- Supply Voltage - V
14
Vo = 0
No Load
o
16
-75
-50
-25
0
25
50
75
100
TA - Free-Air Temperature - °c
Figure 34
Figure 35
SLEW RATE
SLEW RATE
vs
vs
LOAD RESISTANCE
LOAD RESISTANCE
25
125
25
SR+
20
'"
~
I
!
II:
~
iii
I
II:
V
15
SR+
,
20
~ r.--
I
i-"'"
!
II:
.Itil
10
I
II:
til
V r.--rV
'"
~
>
SR-
V
~
SR
15
10
til
Vcc± = ±5V
CL = 100 pF
TA = 25°C
See Figure 1
5
0
0.4
4
10
50
RL - Load Resistance - kf!
VCC±=±15V
cL = 100 pF
TA = 25°C
See Figure 1
5
100
0
0.4
Figure 36
I
1-""
40
10
RL - Load Resistance - kf!
4
100
Figure 37
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS •
INSfRUMENTS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
2-301
Tl052, Tl052A
.',
ENHANCED JFET PRECISION
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
SLEW RATE
vs
FREE-AIR TEMPERATURE
SLEW RATE
vs
FREE-AIR TEMPERATURE
25
25
SR+
20
t
I
..
S
15
CC
- r-r-- -
SR+
SR-
~
£I
--
20
~
r---:
15
cc
..
~
iii
10
10
I
cc
CC
III
III
5
o
-75
VCC±=±5V
RL = 2k.Q
CL = 100 pF
See Figure 1
I
I
-50 -25
0
25
50
75
100 125
TA - Free-Air Temperature - °C
VCC± = ±15V
RL = 2 k.Q
CL = 100 pF
See Figure 1
5
I
o
-75
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
100
:>c
70
I
."
CI
"lI
50
>
40
"0
30
z=
'SQ.
u.
'00
..
S
VCC± = ±15V
Rs = loon
TA = 25°C
See Figure 3
1\
OIl
I!
125
OVERSHOOT FACTOR
vs
LOAD CAPACITANCE
40
.c
I
-25
0
25
50
75
100
T A - Free-Air Temperature - °C
Figure 39
~
[;l
-50
Figure 38
50
g
-
SR-
I
SIII
\
\
'0
20
30
i'.~
.E'
C
5
.!!
!l!
20
'S
10~--~+---~--~---
0-
W
I
C
>
o~--~--~--~~--~--~--~
o
50
100
150
200
250
300
CL - Load Capacitance - pF
10
10
100
1k
10 k
f - Frequency - Hz
Figure 40
Figure 41
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
+
INSTRUMENTS
2-302
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
100 k
TL052, TL052A
ENHANCED JFET PRECISION
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
TOTAL HARMONIC DISTORTION
vs
FREQUENCY
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
3.2
=+15V
AVD = 1
Vo(rms) = 6V
TA = 25°C
VI
VCC:!:
~
I
c
~.
::I:! 3.1
:Ii
I
..c
:0
0.1
~
til
is
0
'c0
=10mV
=
=
=
RL
2 kQ
CL
25pF
TA
25°C
See Figure 4
3
III
.
..
I
4
I
4
>
;;
0
'"
-4
CI
s-
0
I
~ -s
l!
'0
VCC± = ±15V
RL = 2 kn
CL = 100 pF
TA = 25°C
See Figure 1
>
-2
~ -4
\J
0.2
0.4
0.6
t- TIme- fIS
'"I
vcc± = ±15V
RL = 2 kn
CL = 100 pF
TA = 25°C
See Figure 1
s-
AJ
o
0
0
-12
-16
2
'5
O.S
Ir-
1.0
1.2
-6
-s
Figure 48
I
I
I
til
\
\
\If\,-
II
o
2
3
t-TIme-Its
4
5
Figure 49
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
NOTE 11: Values of phase margin below a load capacitance of 25 pF were estimated .
. TEXAS
+
INSTRUMENTS
2-304
125
S
S
l!
'0
-
VI = 10mV
57
55
-75 -50
90 100
V
,,/
I
E
./'"
59
if
.....
--
VCC±=±5V
Figure 46
12
E
/
:::E
16
>
61
V
V
2>os
i'.
10
63
III
Vee ± = ±15 V
VCC±=±5V
I
r
..e
e4
"- "-,
"
55
VJc± =1±15J
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
6
TL052, TL052A
ENHANCED JFET PRECISION
DUAL OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
output characteristics
All operating characteristics (except bandwidth and phase margin) are specified with 100-pF load
capacitance. The TL052 and TL052A will drive higher capacitive loads; however. as the load capacitance
increases. the resulting response pole occurs at lower frequencies. thereby causing ringing. peaking. or
even oscillation. The value of the load capacitance at which oscillation occurs varies with production lots. If
an application appears to be sensitive to oscillation due to load capacitance. adding a small resistance in
series with the load should alleviate the problem. Capacitive loads of 1000 pF and larger may be driven if
enough resistance is added in series with the output (see Figure 50).
(8) CL
=100 pF. R =0
(d) CL
=1000 pF, R = 0
(b) CL
= 300 pF, R = 0
(e) CL 1000 pF, R
(e) CL
= 50 Q
(I) CL
= 350 pF. R = 0
= 1000 pF. R = 2 k.Q
Figure 50. Effect of Capacitive Loads
+5V
-5V
2k.Q
(see Note A)
NOTE A: CL includes fixture capacitance.
Figure 51. Test Circuit for Output Characteristics
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
2-305
TL052, TL052A
ENHANCED JFET PRECISION
DUAL OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
Input characterIstics
The TL052 and TL052A are specified with a minimum and a maximum input voltage that, if exceeded at either
input, could cause the device to malfunction.
Because of the extremely high input impedance and resulting low bias current requirements, the TL052 and
TL052A are well suited for low-level signal processing; however, leakage currents on printed circuit boards and
sockets can easily exceed bias current requirements and cause degradation in system performance. It is good
practice to include guard rings around inputs (see Figure 52). These guards should be driven from a lowimpedance source at the same voltage level as the common-mode input.
The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation.
Vo
Vo
(a) NONINVERTING AMPLIFIER
(b) INVERTING AMPLIFIER--
(e) UNITY-GAIN AMPLIFIER
Figure 52. Use of Guard Rings
noIse performance
The noise specifications in op amp circuits are greatly dependent on the current in the first-stage differential
amplifier. The low input bias current requirements of the TL052 and TL052A result in a very low current noise.
This feature makes the devices especially favorable over bipolar devices when using values of circuit
impedance greater than 50 kil.
TEXAS ~
INsrRUMENTS
2-306
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TL052, TL052A
ENHANCED JFET PRECISION
DUAL OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
Instrumentation amplifier with adjustable galnlnull
The instrumentation amplifier in Figure 53 benefits greatly from the high input impedance and stable input
offset voltage of the TL052A. Amplifiers U1 A, U1 B, and U2A form the actual instrumentation amplifier, while
U2B provides offset nUll. Potentiometer R1 provides gain adjust. With R1 =2 kn, the circuit gain equals 100,
while with R1 =200 kn, the circuit gain equals two. The following equation shows the instrumentation amplifier
gain as a function of R1:
Readjusting the offset null is necessary whenever the circuit gain is changed. Note that if U2B is needed for
another application, R7 can be terminated at ground. The low input offset voltage of the TL052A minimizes
the dc error of the circuit. For best matching, all resistors should be one percent tolerance. The matching
between R4, R5, R6, and R7 controls the CMRR of this application.
The following equation shows the output voltages when the input voltage equals zero. This dc error can be
nul/ed by adjusting the offset null potentiometer; however, any change in offset voltage over time or
temperature also creates an error. To calculate the error from changes in offset, consider the three offset
components in the equation as delta offsets rather than initial offsets. The improved stability of Texas
Instruments enhanced JFETs minimizes the error resulting from change in input offset voltage with time.
Assuming VIN equals zero', Vo can be shown as a function of the offset voltage:
R3 ( R7
) (
R6 ) R6 (
R2 )U
(R6 )
- VI01 [ R1 R5 + R7
1 + R4 + R4 1 +Fi1U + VI03 1 + R4
R4
R6
10kn
10kn
>--+-----Vo
82kn
R5
R7
10 kn
10 kn
1--..-~1kn
82kn
VccNOTE: U1A through U2B = TL052A; Vee ± = ± 15 V.
Figure 53. Instrumentation Amplifier
TEXAS ",
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-{307
TL052, TL052A
ENHANCED JFET PRECISION
DUAL OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
analQg thermometer
By combining a current source that does not vary over temperature with an instrumentation amplifier, a precise
analog thermometer can be built (see Figure 54). Amplifier U1A and IC1 establish a constant current through
the temperature sensing diode D1. For this section of the circuit to operate correctly, the TL052 must use split
supplies and R3 must be a metal film resistor with a low temperature coefficient.
The temperature-sensitive voltage from the diode is compared to a temperature-stable voltage reference set
by IC2. R4 should be adjusted to provide the correct output voltage when the diode is at a known temperature.
Although this potentiometer resistance varies with temperature, the divider ratio of the potentiometer remains
constant.
Amplifiers U1 B, U2A, and U2B form the instrumentation amplifier that converts the difference between the
diode and reference voltage to a voltage proportional to the temperature. With switch S1 closed, the amplifier
gain equals 5, and the output voltage is proportional to temperature in degrees Celsius. With S1 open, the
amplifier gain is 9, and the output is proportional to temperature in degrees Fahrenheit. Every time that S1
is changed, R4 must be recalibrated. By setting S1 correctly, the output voltage equals 10 mV per degree
(C or F).
IC1
C1
R9
R12
10 kO
10kO
150 pF
R1
10 kO
+ 15 V
100 kO
10kQ
(see Note B)
01
(see Note A)
R5
5kO
R7
SkO
Vo
(see Note 0)
S1
(see Note C)
+ 15 V
R2
- 15 V
100 kQ
R10
IC2
NOTES: A.
B.
C.
O.
E.
10kO
R4
50kO
R11
Temperature sensing diode ~ (- 2 mVI"C).
Metal film (low temperature coefficient).
Switch open for OF and closed for °C.
VO'" Temperature; 10 mV/oC or 10 mVI"F.
UfA through U2B = TL052. IC1,IC2 = LM385, LT1004, or LT1009 voltage reference.
Figure 54. Analog Thermometer
TEXAS ~
INSTRUMENTS
2-308
10 kO
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TL052, TL052A
ENHANCED JFET PRECISION
DUAL OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
phase meter
The phase meter in Figure 55 produces an output voltage of 10 mV per degree of phase delay between the
two input signals VA and VB' The reference signal VA must be the same frequency as VB' The TLC3702
comparators (U1) convert these two input sine waves into ± 5 V square waves. Then R1 and R4 provide level
shifting prior to the SN74HC109 dual J-K flip flops.
Flip-flop U2B is connected as a toggle flip-flop and generates a square wave at half the frequency of VB' Flipflop U2A also produces a square wave at half the input frequency. The pulse duration of U2A varies from zero
to half the period. where zero corresponds to zero phase delay between VA and VB and half the period
corresponds to VB lagging V A by 360 degrees.
•
The output pulse from U2A causes the TLC4066 (U3) switch to charge the TL052 (U4) integrator capacitors
C1 and C2. As the phase delay approaches 360 degrees. the output of U4A approximates a square wave.
and U2A has an output of almost 2.5 V. U4B acts as a noninverting amplifier with a gain of 1.44 in order to
scale the 0- to 2.5-V integrator output to a O-to 3.6-V output range.
Ra and R10 provide output gain and zero-level calibration. This circuit operates over a 100-Hz to 10-kHz
frequency range.
+5V
R2
100 k.Q
Rl
100 k.Q
Vo
R9
20 k.Q
R8
Gain
50 k.Q
+5V
Rl0
10kQ
Zero
-5V
R4
100kQ
NOTES: Ul = TLC3702; VCC ± = ± 5 V.
U2 = SN74HC109.
U3 = TLC4066.
U4 = TL052; VCC ± = ± 5 V.
Figure 55. Phase Meter
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-309
Tl052, Tl052A
ENHANCED JFET PRECISION
DUAL OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
precision constant-current source over temperature
A precision current source benefits from the high input impedance and stability of Texas Instruments enhanced
JFET process. A low-current shunt regulator maintains 2.5 V between the inverting input and the output of
the TL052. The negative feedback then forces 2.5 V across the current setting resistor R; therefore, the current
to the load is simply 2.5 V divided by R.
.
Possible choices for the shunt regulator include the LT1 004, LT1009, and LM385. Note that if the regulator's
cathode connects to the op amp output, this circuit will source load current. Similarly, if the cathode connects
t6 the inverting input, the circuit will sink current from the load. To minimize output current change with
temperature, R should be a metal film resistor with a low temperature coefficient. Also, this circuit must be
operated with split voltage supplies.
150 pF
150 pF
U2
U2
+ 15 V
+ 15 V
Load
V
Load
V=Olo-10V
R
= Olo10V
(a) SOURCE CURRENT LOAD
(b) SINK CURRENT LOAD
NOTES: ICI = LM385, LT1004, or LT1009 voltage reference.
UIA = TL052.
I
= 2.~ V,
R
= Low temperature coefficient metal film resistor.
Figure 56. Precision Constant-Current Source
TEXAS . "
2-310
R
INsrRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
Tl054, Tl054A
ENHANCED JFET PRECISION
QUAD OPERATIONAL AMPLIFIERS
03236, JUNE 1988 - REVISED JANUARY 1991
D, J, or N PACKAGE
(TOP VIEW)
•
Maximum Offset Voltage ... 1.5 mV
(TL054A)
•
High Slew Rate ... 15.9 VlIlS Typ at 25°C
•
Low Total Harmonic Distortion ... 0.003%
Typ at RL = 2 kQ
•
Low Noise Voltage ... 21 nVl...[Hz
Typ at f = 1 kHz
•
Low Input Bias Currents ... 30 pA Typ
•
MonolithicConstruction
lOUT
liN +
4 OUT
41N41N +
VCC +
21N +
21N20UT
VCC31N +
31N30UT
FK PACKAGE
(TOP VIEW)
description
I ~
~ I
:;;;000:;;;
The TL054 and TL054A quad operational
amplifiers incorporate well-matched, high-voltage
JFET and bipolar transistors in a monolithic
integrated circuit. These devices offer the
significant advantages of Texas Instruments new
enhanced JFET process. This process affords
not only low initial offset voltage due to the onchip zener trim capability but also stable offset
voltage over time and temperature.
In
comparison, traditional JFET processes are
plagued by significant offset voltage drift.
.-...-z~'¢
3
(Dr
DOC
to
lO°C
-40°C
to
85°C
-55°C
to
125°C
1.5 mV
4 mV
1.5 mV
4 mV
1.5 mV
4 mV
CHIP
CARRIER
(FK)
VCC +
NC
21N +
6
7
15
PLASTIC
DIP
(N)
TL054ACN
TL054CN
TL054AIN
TL0541N
TL054AMN
TL054MN
C\I
I
o-M
CO)
1Sr---r--r---r--r---r--,
1048 Amplifiers
12
Q;
!E
C.
E
Vcc± = ±1SV
TA = 2SoC
N Package
9 I---j---t-:="''B
e~+t---t---l
«
'0
~6r.~
E
II>
o
Q;
0.
3
o
- 1.8
Production processing daBS not
VCCNC
31N +
DISTRIBUTION OF TL054A
INPUT OFFSET VOLTAGE
D packages are available taped and reeled. Add "R" suffix to device
necessarily include testing of all parameters.
14
8
41N +
NC
NC - No internal connection
type, (e.g., TL054CDR).
PRODUCTION DATA documents contain information current as of
publication date. Products conform to specifications per the te rms olTaxas
16
11-01-
---OUT
IN +
+
TEXAS ."
INSfRUMENTS
2-312
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
02
Tl054, Tl054A
ENHANCED JFET PRECISION
QUAD OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (uhlessotherwlse noted)
Supply voltage, VCC + (see Note 1) ..................................................... 18 V
Supply voltage, VCC _ (see Note 1) .................................................... -18 V
Differential input voltage (see Note 2) ................................................... ± 30 V
Input voltage range, VI (any input, see Notes 1 and 3) ...................................... ± 15 V
Input current, II (each input) .......................................................... ± 1 mA
Output current, 10 (each output) ..................................................... ± 80 mA
Total current into VCC + terminal ..................................................... 160 mA
Total current out of V CC _ terminal ................................................... 160 mA
Duration of short-circuit current at (or below) 25°C (see Note 4) ............................ unlimited
Continuous total dissipation ........................................ See Dissipation Rating Table
Operating free-air temperature range, T A C-suffix ................................... O°C to 70°C
I-suffix ................................ - 40°C to 85°C
M-suffix ............................... - 55°C to 125°C
Storage temperature range ................................................... - 65°C to 150°C
Case temperature for 60 seconds: FK package ........................................... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package ................. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package ..................... 300°C
NOTES: 1.
2.
3.
4.
All voltage values, except differential voltages, are with respect to the midpoint between Vee + and Vee _.
Differential voltages are at the noninverting input with respect to the inverting input.
The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the
maximum dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
D
FK
J
N
TA :5 25°C
POWER RATING
950 mW
1375 mW
1375mW
1575mW
DERATING FACTOR
ABOVE TA = 25°C
7.S mw/oe
11.0 mw/oe
11.0 mw/oe
TA = 70°C
POWER RATING
TA = 85°C
POWER RATING
494mW
715mW
715mW
819mW
S08mW
880mW
880mW
12.6 mw/oe
1008 mW
=
TA
125°C
POWER RATING
190mW
275mW
275mW
230mW
recommended operating conditions
C-SUFFIX
MIN NOM MAX
±15
±5
Supply voltage, Vee
Common-mode input voltage, VIC
Operating free-air temperature, TA
I Vee+ ~ ±5V
IVce+~±15V
-1
-11
0
4
11
70
I-SUFFIX
MIN NOM MAX
±5
±15
-1
-11
-40
4
11
85
M-SUFFIX
MIN NOM MAX
±5
±15
-1
4
-11
11
125
-55
UNIT
V
V
°C
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-313
TL054C, TL054AC
ENHANCED JFET PRECISION
QUAD OPERATIONAL AMPLIFIERS
electrical characteristics
PARAMETER
TEST CONDITIONS
TL054C
Via
Input offset voltage
TL054AC
Va
Temperature coefficient
aVIO
of input offset voltage
VIC
RS
= 0,
= 0,
= 500
TL054C
TL054AC
TAt
TYP
MAX
25°C
Full range
0.64
5.5
25°C
0.57
110
Input offset current
Va = 0, VIC
See Figure 5
= 0,
liB
Input bias current
Va = 0, VIC
See Figure 5
= 0,
25°C to
Maximum negative peak
output voltage swing
Large-signal differential
0.04
0.04
25°e
700 e
25°C
4
0.02
20
100
1
200
70°C
0.15
-2.3
4
to
to
11
15.6
to
to
4
11
= 10k.Q
25°e
Full range
3
RL
= 2 kO
25°e
Full range
2.5
2.5
3.8
RL
= 10 k.Q
25°C
Full range
-2.5
-2.5
-3.5
RL
= 2kO
25°C
-2.3
-3.2
Full range
-2.3
4.2
ICC
Vo l IV02
rejection ratio
(AVCC ±/ AVIO)
Supply current
(four amplifiers)
Vo
Crosstalk attenuation
AVD
=0
= 100
nA
V
V
V
-11
50
133
30
60
173
70°C
20
30
85
10'2
V/mV
0
12
25°C
65
84
75
92
O°C
65
84
75
92
70°C
65
84
75
93
25°C
oDe
75
99
75
99
75
99
75
99
700 e
75
99
75
99
25°e
4
11.5
-12 -13.2
-12
-11
-12
O°C
O°C
70°C
pA
nA
pA
12.7
72
25°e
No load,
11.5
25
10
Supply-voltage
1
200
13.9
25°C
25°C
kSVR
100
13
25°C
rejection ratio
13
3
Input capacitance
= VieR min,
= 0,
RS = 500
VCC± = ±5Vto±15V,
Vo = 0,
RS = 500
mV
fl V/ mo
- 11
RL
VIC
Vo
1.5
-12.3
to
Input resistance
Common-mode
-11
5.6
q
CMRR
30
0.2
4
Ci
voltage amplification
5
0.025
to
88
57
10'2
AVD
4
3.7
25°C
-1
RL = 2 kO,
See Note 6
UNIT
fl V/ oC
70°C
Full range
VOM-
0.5
23
25°e to
voltage range
output voltage swing
3.5
24
700 e
MAX
6.2
23
25°e
VOM+
0.56
25
Common-mode input
Maximum positive peak
TYP
5.7
Full range
-1
VICR
MIN
7.7
Input offset voltage
long-term drift (see Note 5)
VCC±=±15V
VCC± = ±5 V
MIN
pF
dB
dB
8.1
8.2
11.2
12.8
8.4
8.5
11.2
12.8
7.9
11.2
8.2
11.2
120
120
mA
dB
t Full range IS O°C to 70°C.
NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
6. For VCC ± = ± 5 V, Vo = ± 2.3 V; at Vec ± = ± 15 V, Vo = ± 10 V.
TEXAS ."
INSTRUMENTS
2-314
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Tl054C, Tl054AC
ENHANCED JFET PRECISION
QUAD OPERATIONAL AMPLIFIERS
operating characteristics
PARAMETER
SR+
SR-
tr
tl
Positive slew rate
at unity gain
Negative slew rate
TAt
TEST CONDITIONS
VNPP
In
THD
Bl
¢m
13.3
55
25°C
ooe
70°C
VIPP = ± 10 mV,
RL = 2 kn,
eL = 100 pF,
See Figures 1 and 2
Equivalent input noise
RS = lOOn,
See Figure 3
input noise voltage
Equivalent input
noise current
I = 1 kHz
Total harmonic distortion
RS = 1 kn,
f = 1 kHz,
Unity-gain bandwidth
14.3
70°C
Rise time
voltage (see Note 9)
Peak-to-peak equivalent
14.4
13.9
25°C
ooe
25°C
ooe
Overshoot lactor
Vn
15.7
70°C
eL = 100 pF,
See Figure 1 and Note 7
1= 10 Hz
I = 1 kHz
1= 10 Hz to
10kHz
= ±5V
TYP
15.4
25°C
ooe
RL = 2 kn,
at unity gain
Fall time
VCC±
MIN
MAX
VCC±
MIN
10
8
8
10
8
8
= ±15 V
TYP
17.8
16.1
15.5
56
54
55
63
55
63
57
54
700 e
62
56
64
25°C
oDe
24%
19%
24%
19%
70°C
24%
19%
25°e
75
75
25°e
21
21
25°e
4
4
0.01
0.01
25°C
0.003%
0.003%
Vi = 10 mV, RL = 2 kn,
25°C
ooe
2.7
2.7
3
3
70°C
25°C
ooe
2.4
61 0
2.4
70°C
61°
Phase margin
Vi = 10 mV, RL = 2 kn,
eL = 25 pF, See Figure 4
60°
V/fls
15.9
25°C
at unity gain
UNIT
17.9
17.5
RL = 2 kn,
See Note 8
eL = 25 pF, See Figure 4
MAX
ns
45
nV/{HZ
flV
pA/{HZ
MHz
64°
64°
63 0
t Full range IS ooe to 70°C.
NOTES: 7. ForVee± = ±5V, VIPP = ±1 V;lorVCC± = ±15V, VIPP = ±5V.
8. For Vec ± = ± 5 V, Vo(rms) = 1 V; lor Vee ± = ± 15 V, Vo(rms) = 6 V.
9. This parameter is tested on a sample basis. For other test reqUirements, please contact the lactory. This statement has no bearing
on testing or nontesting 01 other parameters.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2--315
TL0541, TL054AI
ENHANCED JFET PRECISION
QUAD OPERATIONAL AMPLIFIERS
electrical characteristics
PARAMETER
TEST CONDITIONS
TL0541
VIO
Input offset voltage
TL054AI
Vo = 0,
aVIO
Temperature coefficient
of input offset voltage
VIC = 0,
RS = 50 Q
TL054 I
TL054AI
Input offset voltage
long-term drift (see Note 5)
TAt
VCC± =±5 v
TYP MAX
MIN
VCC±=±15V
MIN
TYP MAX
25°C
0.64
5.5
0.56
0.57
3.5
6.8
25°C
Full range
25°C to
85°C
25°C to
110
Input offset current
liB
Input bias current
Vo = 0, VIC = 0,
See Figure 5
25
24
25
23
0.04
0.04
4
100
5
100
pA
10
20
200
0.07
30
10
200
nA
pA
0.6
20
0.7
20
nA
-1
-2.3
to
4
to
5.6
-11
Maximum negative peak
VOM-
output voltage swing
Large-signal differential
AVD
voltage amplification
-12.3
to
to
15.6
-1
11
-11
Full range
to
to
25°C
3
Full range
3
RL = 2kQ
25°C
Full range
2.5
2.5
3.8
RL=10kn
25°C
Full range
-2.5
-3.5
-2.5
RL = 2 kQ
25°C
Full range
-2.3
-2.3
-3.2
-11
-11
-12
25
RL = 2 kQ,
See Note 6
V
11
4
output voltage swing
!lV/mo
0.06
25°C
VOM+
mV
25°C
85°C
RL=10kn
1.5
4.8
85°C
25°C
Common-mode input
voltage range
Maximum positive peak
7.3
0.5
!lV/DC
85°C
25°C
Vo = 0, VIC = 0,
See Figure 5
VICR
8.8
Full range
UNIT
4
4.2
13
13.9
13
V
11.5
12.7
11.5
-12 -13.2
-12
25°C
-40°C
30
72
101
50
60
133
212
85°C
20
50
30
70
V
V/mV
q
Input resistance
25°C
1012
1012
Q
Ci
Input capacitance
25°C
10
12
pF
CMRR
kSVR
ICC
Vo l IV02
Common-mode
rejection ratio
VIC = VICR min,
Vo = 0,
RS = 50Q
Supply-voltage
VCC± = ±5Vto±15V,
rejection ratio
(L'.VCC +/ L'.VIO)
Vo = 0,
RS = 50Q
Supply current
No load,
(four amplifiers)
Vo = 0
Crosstalk attenuation
AVD = 100
25°C
65
84
75
92
-40°C
65
83
75
92
85°C
65
84
75
93
25°C
75
99
75
99
-40°C
75
75
98
99
75
99
75
85°C
dB
dB
25°C
-40°C
8.1
11.2
99
8.4
7.9
12.8
8.2
11.2
12.8
85°C
7.6
11.2
7.9
11.2
25°C
120
120
mA
dB
t Full range is - 40°C to 85°C.
NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
6. ForVCC± = ±5V,VO = ±2.3V;atVCC± = ±ISV,VO = ±10V.
TEXAS ~
INSTRUMENTS
2-316
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TL0541, Tl054AI
ENHANCED JFET PRECISION
QUAD OPERATIONAL AMPLIFIERS
operating characteristics
PARAMETER
SR+
SR-
tr
tf
TAt
TEST CONDITIONS
Positive slew rate
at unity gain
RL; 2kO,
Negative slew rate
CL ; 100 pF,
See Figure 1 and Note 7
at unity gain
Peak-to-peak equivalent
VNPP
input noise voltage
In
THD
91
'm
Equivalent input
noise current
Total harmonic distortion
Unity-gain bandwidth
VCC±=±15V
MIN
10
TYP
15.4
8
18
85°C
16.4
14
8
17.3
25°C
13.9
10
15.9
-40°C
14.7
8
16.1
85°C
8
15.3
52
85°C
64
65
25°C
55
57
-40°C
85°C
51
64
53
65
25°C
-40°C
24%
24%
19%
85°C
24%
19%
25°C
75
75
25°C
21
21
25°C
4
4
f ; 1 kHz
25°C
0.01
0.01
RS ; 1 kO, RL ; 2 kn,
f ; 1 kHz,
See Note 8
25°C
0.003%
0.003%
25°C
2.7
2.7
-40°C
3.3
3.3
85°C
2.3
2.4
64°
VIPP ; ± 10 mY,
RL ; 2kn,
CL ; 100 pF,
See Figures 1 and 2
RS ; 100n,
See Figure 3
f ; 10 Hz
f ; 1 kHz
f ; 10 Hz to
10 kHz
Vi ; 10 mY, RL ; 2 kO,
CL ; 25 pF, See Figure 4
Phase margin
Vi ; 10 mY, RL ; 2 kO,
at unity gain
CL ; 25 pF, See Figure 4
MAX
UNIT
17.8
25°C
-40°C
25°C
Equivalent input noise
voltage (see Note 9)
MAX
-40°C
Overshoot factor
Vn
TYP
13
55
Rise time
Fall time
VCC± = ±5V
MIN
V/Jls
56
53
ns
19%
25°C
61°
-40°C
59°
62°
85°C
61°
64°
45
nV/vHZ
JlV
pA/vHZ
MHz
t Full range is - 40°C to 85°C.
NOTES: 7. ForVCC±; ±5V, VIPP ; ±1 V;forVCC±; ±15V, VIPP; ±5V.
8. For VCC ± ; ± 5 V, Vo(rms) ; 1 V; for VCC ± ; ± 15 V, Vo(rms) ; 6 V.
9. This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing
on testing or nontesting of other parameters.
TEXAS ."
IN5rRUMENlS
POST OFFICE BOX 655303 ' DALLAS. TEXAS 75265
2-317
Tl054M, Tl054AM
ENHANCED JFET PRECISION
QUAD OPERATIONAL AMPLIFIERS
electrical characteristics
PARAMETER
TEST CONDITIONS
TL054M
VIO
Input offset voltage
TL054AM
Vo ~ 0,
aVIO
Temperature coefficient
of input offset voltage
VIC ~ 0,
RS = 50Q
TL054M
TL054AM
Input offset voltage
long-term drift (see Note 5)
110
liB
Input offset current
Va ~ 0, VIC ~ 0,
See Figure 5
Input bias current
Va ~ 0, VIC ~ 0,
See Figure 5
TAt
25°C
Maximum negative peak
VOM-
AVD
output voltage swing
0.57
5.5
20
25°C
0.04
0.04
1.5
mV
!-LV/mo
25°C
4
100
5
100
pA
125°C
25°C
1
2
20
nA
20
20
200
30
200
pA
125°C
10
50
20
50
nA
25°C
Full range
25°C
Full range
See Note 6
4
!-LV/oC
125°C
RL = 2 kQ
voltage amplification
UNIT
6.5
21
RL=10kQ
RL ~ 2 kQ,
0.5
20
25°C
Full range
Large-signal differential
MAX
9
21
125°C
25°C to
25°C
Full range
RL = 2 kQ
TYP
0.56
3.5
-1
-2.3
-11
to
4
to
to
to
5.6
11
15.6
-1
RL~10kQ
MIN
8.5
25°C to
voltage range
output voltage swing
VCC±=±15V
MAX
10.5
Full range
Full range
VOM+
0.64
25°C
25°C
Maximum positive peak
TYP
Full range
Common-mode input
VICR
VCC± = ±5V
MIN
-12.3
to
to
4
11
13
3
3
4.2
2.5
3.8
12.7
2.5
-2.5
11.5
11.5
-3.5
-12
-13.2
25
-55°C
125°C
V
-12
-3.2
-11
-2.3
25°C
13.9
13
-2.5
-2.3
V
-11
V
-12
-11
30
72
99
50
60
209
133
10
35
15
35
V/mV
q
Input resistance
25°C
1012
1012
Q
Ci
Input capacitance
25°C
10
12
pF
CMRR
Common-mode
rejection ratio
kSVR
ICC
Supply-voltage
VIC ~ VICR min,
Va = 0,
RS = 50Q
VCC± = ±5Vto±15V,
rejection ratio
Va ~ 0,
(.W CC + 1t,vIO)
RS = 50Q
Supply current
No load,
(four amplifiers)
Va = 0
25°C
65
84
75
92
-55°C
125°C
65
65
75
83
75
92
84
99
75
75
93
99
75
98
75
98
75
100
75
100
25°C
-55°C
l25°C
dB
dB
25°C
8.1
11.2
8.4
11.2
-55°C
7.8
12.8
8.1
12.8
125°C
7.1
11.2
7.5
11.2
mA
AVD ~ 100
120
120
dB
25°C
Vol iV02 Crosstalk attenuation
t Full range IS - 55°C to 125°C.
NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA ~ 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
6. ForVCC± ~ ±5V, Va ~ ±2.3V:atVcc± ~ ±15V, Va ~ ±10V.
TEXAS ."
INsrRUMENTS
2-318
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Tl054M, Tl054AM
ENHANCED JFET PRECISION
QUAD OPERATIONAL AMPLIFIERS
operati ng characteristics
PARAMETER
SR+
SR-
tr
tf
TAt
TEST CONDITIONS
Positive slew rate
at unity gain
Negative slew rate
at unity gain
RL ~ 2 kn,
eL ~ 100 pF,
See Figure 1 and Note 7
Rise time
Fall time
VIPP ~ ± 10 mV,
RL ~ 2 kn,
eL ~ 100 pF,
See Figures 1 and 2
Overshoot factor
Vn
Equivalent input noise
voltage
Peak-to-peak equivalent
VNPP
noise current
THD
Total harmonic distortion
81
Unity-gain bandwidth
¢m
Phase margin
at unity gain
t Full range
~
~
Vi
eL
Vi
eL
1 kHz,
~
~
~
~
TYP
25°e
-55°e
16.7
125°e
12.9
25°e
13.9
-55°e
14.7
125°e
25°e
12.2
16.3
14.5
55
56
-55°e
51
52
125°e
68
68
25°e
55
57
-55°e
51
52
125°e
68
69
25°e
24%
19%
-55°e
25%
19%
25%
75
19%
75
16.7
10
15.9
f
~
1 kHz
25°e
21
21
f
~
10 Hz to
25°e
4
4
25°e
0.01
0.01
25°e
0.003%
0.003%
RL ~ 2 kQ,
10 mV, RL
~
2 kQ,
25 pF, See Figure 4
10 mV, RL
~
25°e
2.7
2.7
- 55°e
3.4
2.1
3.4
2.1
-55°e
61°
58°
64°
62°
125°e
60°
64°
125°e
25°e
2 kQ,
25 pF, See Figure 4
UNIT
18.3
10 Hz
See Note 8
MAX
17.8
~
1 kHz
RS ~ 1 kQ,
f
MIN
10
f
10 kHz
f
MAX
VCC±=±15V
TYP
15.4
125°e
25°e
input noise voltage
Equivalent input
In
RS ~ lOOn,
See Figure 3
Vcc± = ±5V
MIN
ViIlS
ns
nV/'i'HZ
IlV
pA/'i'HZ
MHz
55°e to 125°e.
NOTES: 7. For Vee ± ~ ± 5 V, VIPP ~ ± 1 V; for Vee ± ~ ± 15 V, VIPP ~ ± 5 V.
8. For Vee ± ~ ± 5 V, Vo(rms) ~ 1 V; for Vee ± ~ ± 15 V, Vo(rms) ~ 6 V.
IS -
TEXAS ~
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2--319
Tl054, Tl054A
ENHANCED JFET PRECISION
QUAD OPERATIONAL AMPLIFIERS
PARAMETER MEASUREMENT INFORMATION
>--_-vo
'r- RISE TIME
NOTE A: CL includes fixture capacitance.
Figure 1. Slew Rate, Rise/Fall Time, and
Overshoot Test Circuit
Figure 2. Rise Time and Overshoot Waveform
10 kQ
10 kQ
>-_ _-vo
veeRS
RS
NOTE A: CL includes fixture capacitance.
Figure 4. Unity-Gain Bandwidth and Phase Margin
Test Circuit
Figure 3. Noise Voltage Test Circuit
typical values
Typical values as presented in this data sheet
represent the median (50% point) of device
parametric performance.
GROUND SHIELD
Input bias and offset current
At the picoamp-bias-current level typical of the
TL054 and TL054A, accurate meaSurement of the
bias current becomes difficult. Not only does this
Figure 5. Input Bias and Offset Current Test
measurement require a picoammeter, but test
Circuit
socket leakages can easily exceed the actual
device bias currents. To accurately measure these small currents, Texas Instruments uses a two-step process.
The socket leakage is measured using picoammeters with bias voltages applied, but with no device in the
socket. The device is then inserted in the socket and a second test that measures both the socket leakage
and the device input bias current is performed. The two measurements are then subtracted algebraically to
determine the bias current of the device.
noise
Because of the increasing emphasis on low noise levels in many of today's applications, the input noise voltage
density is sample-tested at f = 1 kHz. Texas Instruments also has additional noise testing capability to meet
specific application requirements. Please contact the factory for details.
TEXAS ~
INSTRUMENlS
2-320
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TL054, TL054A
ENHANCED JFET PRECISION
QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
table of graphs
FIGURE
VIO
Input offset voltage
Temperature coefficient
IlVIO
of input offset voltage
110
Input offset current
lIB
Input bias current
VI
Input voltage range
Vo
Output voltage
VOM
AVD
Zo
CMRR
kSVR
loS
6
Distribution
7
vs
Temperature
vs
VIC
Temperature
vs
vs
vs
VCC
Temperature
vs
Differential input voltage
vs
VCC
Output current
Maximum peak output
vs
voltage swing
vs
Frequency
vs
Temperature
vs
Differential voltage amplification
vs
RL
Frequency
vs
Temperature
Output impedance
vs
Frequency
Common-mode rejection ratio
Supply-voltage rejection ratio
Short-circuit output current
lee
Supply current
SR
Slew rate
Vn
THD
Distribution
vs
Frequency
vs
Temperature
vs
Temperature
vs
vs
Vee
Time
vs
Temperature
vs
Vee
Temperature
vs
vs
vs
RL
Temperature
Overshoot factor
vs
Equivalent input noise voltage
vs
Total harmonic distortion
vs
Frequency
vs
Vee
Temperature
81
Unity-gain bandwidth
¢m
Phase margin
Phase shift
Pulse response
vs
eL
Frequency
vs
Vee
vs
vs
CL
Temperature
vs
Frequency
Small-signal
Large-signal
8
9
8
10
11
12.13
14
18.19
15.16.17
20.21
22
23
24.25
29
26. 27
28
30
31
32
33
34
35
36.37
38.39
40
41
42
43
44
45
46
47
23
48
49
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
2-{321
Tl054, Tl054A
ENHANCED JFET PRECISION
QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
DISTRIBUTION OF TL054
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
DISTRIBUTION OF TL054
INPUT OFFSET VOLTAGE
50
1140 Amplifiers
324
25
;fl.
;fl.
I
I
~
G>
:e
"is..
E
"is..
E
«
30
«
151-----!--+--b
'0
G>
G>
~'"
S'"
~
,f
40
~
201-----1--+--1--
'0
from 3 wafer lots
vcc± = ±15V
TA = 25°C to 125°C
N Package
10
20
i!
,f
10
51-----1--+-
o'----...~
-4
-3
-2
-1
0
4
3
2
ClVIO
Via -Input Offset Voltage - mV
Figure7
INPUT BIAS CURRENT AND
INPUT OFFSET CURRENT
INPUT BIAS CURRENT
vs
vs
FREE-AIR TEMPERATURE
COMMON-MODE INPUT VOLTAGE
I
10
VCC±=±15V
TA = 25°C
/
VIC = 0
~
0
«c
C
~
/
./'
....
iii
<3
110
c
./
,,/
0.1
VI
.-/
0
'/
S
D-
E
I
g
".c
5
I
IIB/
~
"..
..
iii
60
10
VCC±=±15V
Va = 0
!!
c
E
40
Temperature Coefficient - J!V/oC
Figure6
100
«c
~
I
./
jl -5
.,./'
0.01
jl
0.001
25
45
65
85
105
TA - Free-Air Temperature - °c
125
-10
-15
-10
-5
o
5
10
VIC - Common-Mode Input Voltage - V
Figure9
FigureS
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices,
TEXAS ~
INSTRUMENTS
2-322
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
15
Tl054, Tl054A
ENHANCED JFET PRECISION
QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
COMMON-MODE
INPUT VOLTAGE RANGE LIMITS
vs
SUPPLY VOLTAGE
16
TA
>
= 25°e
12
!!
8
>
:;
4
'0
Q.
V
/
20
,.-
V
.,/
/
CII
Ol
COMMON-MODE
INPUT VOLTAGE RANGE LIMITS
vs
FREE-AIR TEMPERATURE
Vee±
>
CII
C
'0
POSITIVE LIMIT
>
:;
Q.
..
0
0
-4
0
I
-8
I
C
""" r--..........
.........
0
o
2
4
6
8
10
-5
0
-10
~
12
I
g
> -15
~
14
NEGATIVE LIMIT
-20
-75 -50 -25
0
25
50
75
100
TA - Free-Air Temperature - °e
16
Figure10
Figure 11
OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
5
15
=
=
=
'\[\
-,
!!
'0
0
I
0
>
0
-1
RL
-2
RL
-3 RL
RL
-4
-5
-200
= 600Q
= 1 kQ
= 2 kQ
= 10 kQ
\
>
I
~
CII
Ol
=
10
3
2
125
Vee ±
±15 V
TA
25°e
Vee± ±5V
TA
250C
4
>
:;
Q.
:;
0
0
IVee ±I- Supply Voltage - V
I
5
::il
e
e0
>-12
-16
."
0
I
NEGATIVE LIMIT
.........
I
>
10
.E
:::.
e
e0
POSITIVE LIMIT
CII
Ol
l!l
.E
."
0
=±15V
15
CII
\
5
Ol
l!l
'0
~
>
:;
0
"I
-5
.9-
0
~~ "-
-
........
-
-"\
o
100
-100
VIO - Oifferentiallnput Voltage- JlV
200
0
>
-10
r-- r--
RL
RL
RL
=600 Q= 1 kQ= 2 kQ
_ RLI"
-15
-400
-200
~i'-->--
"1"-~
o
~
~
--
--- -
200
400
VIO - Oifferentiallnput Voltage - JlV
Figure13
Figure12
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-323
Tl054,Tl054A
ENHANCED JFET PRECISION
QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
MAXIMUM PEAK OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
16
VO~ + /
TA = 25°C
RL~l~ V
'5
.9-
~
!l,
)!
o
§
'=
:E
.
...
~
E
~2kQ
:E
1
~-12
10~
I
~ ........
30
20
""'"'
~
~
\
1\ VCC± = ±15V
20
\
.>I.
m
Il.
\
.9
15
iE
10
.,:,
1\
\
1\
\
::I
VCC±=±5V
E
.;;:
.
::;:
5
I
Il.
Il.
Il.
100 k
1M
f - Frequency - Hz
5
VCC± = ±5V
c.
""-I--
o
10 k
25
"[
1\
10
RL = 10 kQ
TA = 25°C
g>
I
o
>
10 M
0
10 k
Figure 16
IIIIII
"
,
I--
100 k
1M
f - Frequency - Hz
Figure17
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSfRUMENTS
2-324
10 M
30
II>
>
15
E
~
100 k
1M
f - Frequency - Hz
I
RL = 2 kQ
TA = 25°C
25
::I
'=
0
10 k
>
vJcl ~ IJ~ll~
.>I.
:E
o
16
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
i
iE
14
~
Il.
Il.
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
.9-
~
I
""-
>
4
6
8
10
12
IVcc ±I- Supply Voltage - V
~~
5
Figure15
:;
6
::;:
TA = -55OC
Figure14
I
~
.
11iil~ I=~ ~V
VCC±=±5V
E
.;;:
I
2
,A 1=
10
::I
VOM_
o
15
.>I.
RL =
i
~
m
-8
>
20
!f
I
-16
~
~
-4
E
25
RL = 2 kQ
vcU ll'Jl't
.>I.
0
i
"0
>
'5c.
::I
.>I.
30
I
~=12kQ
~
4
>
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
10 M
Tl054, Tl054A
ENHANCED JFET PRECISION
QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
MAXIMUM PEAK OUTPUT VOLTAGE
MAXIMUM PEAK OUTPUT VOLTAGE
vs
vs
OUTPUT CURRENT
OUTPUT CURRENT
5
16
VCC±=±5V
Rl = 10kn
>
I
OIl
CI
~
4
r--...
:;
~
3
I"-
0
...:
l
E
E
...."
I
"-
"-
~
2
12
a.
10
:;
...:
I~OM+
VOM':::-..
'\.
I
"- r--...
"-
>
12
B
4
B
E
E
';;c
"
6
~
4
TA = 25 D C
"" ~I"- "'I'.....
..
"-
"
"\
"'-
>
r"-...
16
2
o
o
20
10
20
vs
FREE-AIR TEMPERATURE
FREE-AIR TEMPERATURE
16
~
:;
>
I
Rl = 2 kn
~
2
;;
a.
;;
"
l
..
-2
I
-3
~
~
0
>
ia.
5E
0
-1
'xca
YOM -
:Ii
Rl = 2 kn
:Ii
Rl = 10kn
-5
I
I
50
75
-75
-50
-25
0
25
Rl = 2 kn
4
VCC ± = ±15 V
0
-4
-8
I
-4
V~M +
8
o
VCC±= ±5 V
E
"E
'le
12
OIl
g>
,g.
0
...:
Rl = 10 kn
Rl = 10 kn
4
3
50
MAXIMUM PEAK OUTPUT VOLTAGE
vs
VOM+
I
40
30
Figure19
5
OIl
"-
1101 - Output Current - mA
MAXIMUM PEAK OUTPUT VOLTAGE
CI
\
""'- ~
1\
Figure18
S
\
I
~
0
1101 - Output Current - mA
>
~OM+
Vo~ i'.. " "'-
a.
"-
~
0
Z
Vec± = ±15V
Rl = 10 kn
~ t".....
0
~
o
o
'"
S
'0
>
:;
""-
14
OIl
TA = 25 D C
0
>
>
YOM -
Rl = 2kn
~-12
Rl = 10kn
100
125
-16
- 75 - 50
- 25
0
25
50
75
100
125
T A - Free-Air Temperature - DC
TA - Free-Air Temperature - DC
Figure21
Figure 20
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices,
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-325
TL054, TL054A
ENHANCED JFET PRECISION
QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
LARGE-SIGNAL VOLTAGE AMPLIFICATION
vs
vs
LOAD RESISTANCE
FREQUENCY
10 6
250
>
Vo = ±1 V
~I
c
TA = 25°C
c
0
;
200
.2
.l:!
:::
-
VCC± = ±15V
'"
'a
u
;:
f--
E 150
100
V~
V
ii5
50
<
GI
i
VCC±=±5V
~
c
'ii 10 4
E
'"
V
V
10 3
1\
OJ 10 2
.~
e
~-
Vcc± = ±15V
RL = 2 kQ
CL = 25 pF
10 5 i--..
GI
;: 10 1
i5
I
'"""-'"
'"
TA = 25°C
.:
rn
60° :E
"'"
........
..
GI
!II
""-
90° ..c
PHASE SHIFT " ' -
""-
0
<
o
0.4
4
10
40
RL - Load Resistance - kQ
0.1
10
100
c
vs
vs
FREE-AIR TEMPERATURE
FREE-AIR TEMPERATURE
5
'ii
100
......
~
r-......
"
OJ
'E
o
'"
40
i5
I
I
o
~
r--_
400
!
RL = 10 kQ
>
~
Vcc+ = +15V
I
1 - VO-+l0V
RL = 10 kQ
~I
400
<
c
180°
10 M
1000
>
Vcc+ = +5V
Vo - +2.3V
E
~
'\
LARGE-SIGNAL VOLTAGE AMPLIFICATION
'ii
8.
1M
LARGE-SIGNAL VOLTAGE AMPLIFICATION
B
:5
S
'0
1k
10 k
100 k
f - Frequency - Hz
150°
Figure23
1000
.2
120°
"'- ~\
Figure22
>
~I
100
0-
1\
>
<
30°
~VD
>
I
0
0°
o
10
-75
~
-50
-25
0
25
50
75
100
125
10
- 75
- 50
- 25
0
25
50
75
TA - Free-Air Temperature - °C
T A - Free-Air Temperature - °C
Figure24
Figure25
100
toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
2-326
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
125
n054, n054A
ENHANCED JFET PRECISION
QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
100
III
"t>
I
0
100
VCC±=±5V
TA = 25'C
90
';;
80
c
70
'" \
.~
';'
60
"t>
50
..
0
40
E
E
30
::;;
10
()
80
c
70
.,
';'
a:
.,
60
"t>
\
40
E
E
\
30
95
.2
90
I
20
::;;
10
a:
a:
o
1k
100
f - Frequency - Hz
1k
10 k
100 k
f - Frequency - Hz
Figure26
Figure27
COMMON-MODE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
OUTPUT IMPEDANCE
vs
FREQUENCY
10 k
100 k
1M
10
10 M
40
a
.
.."..
I
85
::;;
E
E
I
c
0
c0
80
-
a:
a:
10
/
/
/
c.
4
.§
'5
c.
'5
0
VCC± = ±5V
AVO - 10~
1M
10 M
/
/
/
AVO - . /
/
/
/
/
/
"t>
/
//
I
AVO = 1 _
0
0
()
I
100
100
VCC+ = ±15V
';'
"t>
\
0
()
()
"t>
..
a:
..
'" 1"''\
0
V'C = V'CRmin
.2
U
50
C
100
I
'\
0
\
III
OJ
a:
c
'"
::;;
o
10
TA = 25'C
'\
U
()
a:
a:
":;;
.2
0
20
VCC±=±15V
90
a:
0
I
I
0
\.
a:
=i'c
"t>
i'...
a:
0
III
N
0.4
75
/
VCC±=±15V
TA = 25°C
/
::;;
()
-
'0 (open loop) ~ 250 Q
70
-75
-50
-25
0
25
50
75
TA - Free-Air Temperature -
100
125
0.1
1k
°c
100 k
10 k
1M
f - Frequency - Hz
Figure28
Figure29
toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-327
TL054, TL054A
ENHANCED JFET PRECISION
QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
SHORT·CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
60
Vcc± = ±5V to ±15V
..,
III
Vo = 0
TA = 25°C
~
941--t----t--t---t---j---j--t--I
0::
J
90~~--~--~--~--~--~
-75
-50
~-40
.9
__~~
-25
0
25
50
75
100
TA - Free-Air Temperature - °c
-60
125
o
8
10
60
-
t--
o
.~
0
~
-20
20
I
0
~~40
-20
CIl
VCC± = ±15 V
TA = 25°C
.9
I
o
10
20
30
40
Time - Seconds
I
50
60
I
vec± = ±5V
.c
VIO = - 100 mV
CIl
I I
Vce±=±5V
o
.c
-60
~-40
.9
!-"
Vo = 0
-60
-75
I
---
I
I
I
I
I
I
I
Figure 33
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
,
-
Vee ± = ±15 V
-50 -25
0
25
50
75
100
TA - Free-Air Temperature - oc
Figure32
2-328
16
vee± = ±15V
r--- c-:t---J.
~
5a..
5
14
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
~
8
12
SHORT-CIRCUIT OUTPUT CURRENT
vs
TIME
C
~
6
Figure31
40
I
4
Figure30
'-
E
2
-
-~V--
IVee ±I- Supply Voltage - V
VID = 100 mV
15.
"::J
8
«
'\
'\
(
E
4
I
0
0
.9
2
o
o
.9
J
J
2
2
Vo = 0
No Load
Vo = 0
No Load
I
4
6
8
10
12
14
I
o
16
-75
-50
-250
25
50
75
IVcc ±I-Supply Voltage- V
TA - Free-Air Temperature - °C
Figure34
Figure35
SLEW RATE
vs
LOAD RESiSTANCE
SLEW RATE
vs
LOAD RESISTANCE
25
25
20
20
100
125
SR +
~
;
a:
I
~
iii
SR+
15
~
;
a:
. . . . . f-
V
:.-- ......
I
SR-
~
10
I
15
~
VffSR-
10
I
a:
a:
en
en
vcc± = ±5V
CL = 100 pF
TA = 25°C
See Figure 1
5
0
0.4
4
10
40
RL - Load Resistance - kQ
5
100
o
0.4
Figure36
VCC±=±15V
CL = 100 pF
TA = 25°C
See Figure 1
1 1 JLlLU
4
40
10
100
RL - Load Resistance - kQ
Figure37
tData at high and low temperatures are applicable only within the rated operating free-air temperatUre ranges of the various devices.
TEXAS
+
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
2...,'329
Tl054, Tl054A
ENHANCED JFET PRECISION
QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
SLEW RATE
vs
FREE-AIR TEMPERATURE
SLEW RATE
vs
FREE-AIR TEMPERATURE
20
20
-i15
~
SR-
:>
I
...
a:
CI>
;!:
--- --::::::
t--- SR +
10
t--- :--
SR+
~
1>
I
CI>
...
a:
~
10
Cii
Ul
I
I
a:
a:
Ul
Ul
5
5
Vcc± = ±5V
RL = 2kn
VCC±=±15V
RL = 2 kn
CL = 100 pF
CL = 100 pF
See IFigUr~ 1
o
-75
See Figure 1
I
I
o
-50
-25
0
25
50
75
100
125
-75
0
25
50
75
100
125
Figure38
Figure39
OVERSHOOT FACTOR
vs
LOAD CAPACITANCE
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
100
:>c
40
70
I
'"
vcc ± = ±15 V
RS = 100n
C)
'I
ll!0
I
~
>
30
CI>
50
40
\
1\
'0
Ll-
z
e;
"SQ.
0
~
a>
-25
T A - Free-Air Temperature - DC·
~
.s:.
-50
T A - Free-Air Temperature - °C
50~--~----~--~----~--~--~
.
-
15
.!!
oSu
:--
SR-
20
30
~ ....
..5
E
CI>
OJ
>
'5
10~--~+---~--~---
20
cr
w
I
e
>
See Figure 1
O~--~----~--~----~--~--~
o
50
100
150
200
250
300
10
10
40
CL - Load Capacitance - pF
100
400 1k
4k 10k
f - Frequency - Hz
40k100k
Figure41
Figure40
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ."
INSTRUMENTS
2-330
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TL054, TL054A
ENHANCED JFET PRECISION
QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
TOTAL HARMONIC DISTORTION
vs
FREQUENCY
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
2.9
VCC+=±15V
0.4
<11-
AVO = 1
N
:r
Vo(rms) = 6 V
TA = 25°C
I
c
.2
t:
g
:e
is
.
ID
c
'OJ
E
~
Cl
.~
c
0.01
~
2.7
c
0.04
'i
t-""
-6
..,'i
o
-
.c
0.1
-E
2.8
I
2.6
Vi = 10 mV
:J
RL = 2 kQ
CL = 25 pF
TA = 25°C
See Figure 4
I
I
~ 0.004
m 2.5
.."
0.001
2.4
100
400
1k
4k
10 k
40k 100k
:e
I
ID
c
'OJ
...,
t-.....
............
............
r--.. -......
I
r--
14
16
I
I
-25
c
..
....
.c
61
.~
:e.,
...e
59
=
25
50
75
100
125
Vi
10 mV
RL = 2 kQ
CL = 25 pF
TA = 25°C
See Figure 4
57
55
0
V r-
V
Co
I
=
-50
V
/'
01
VI
10 mV
RL = 2 kQ
CL = 25 pF
See Figure 4
o
.."
63
!!
..,.,
Vce ± = ± 5 V to ± 15 V
-75
12
PHASE MARGIN
vs
SUPPLY VOLTAGE
Cl
m
10
UNITY-GAIN BANDWIDTH
vs
FREE-AIR TEMPERATURE
2
I
8
65
3
?:
c:J
6
Figure43
..,-=
..,jc
..
4
Figure42
' ............
N
2
IVcc tl-Supply Voltage - V
4
:r
o
f - Frequency - Hz
o
2
4
6
8
10
12
TA - Free-Air Temperature - °C
IVcc ±I- Supply Voltage- V
Figure44
Figure 45
14
16
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSfRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-331
Tl054, Tl054A
ENHANCED JFET PRECISION
QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
PHASE MARGIN
vs
LOAD CAPACITANCE
65
70
..
65
~
" " ",
,
g>
I
60
..
:e
....
RL = 2kQ
TA = 25"C
"
'" '-",
'0
c
Vi = 10 mV
'E'
See Note 11
II>
""
Sj
~
'"
55
.c
Il.
....E
'0
I
c
..
:e
..'"
±~
"'"""
10
20
30
40
50
60
70
80
61
59
.c
Il.
,v
....E
/
./
55
- 75
90 100
RL = 2 kQ
CL = 25 pF
See Figure 4
I
- 50
Figure47
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONS~
f\
6
I~
IV'
8
>
I
4
II>
4
01
0
...
';
';
0
-4
I
~
-8
.l!
VCC± = ±15V
RL = 2 kQ
CL = 100 pF
TA = 25°C
See Figure 1
...
';
0
I
-2
0
>
IAI
'.J
o
r-
0.4
0.6
0.8
1.0
\
\
\f\,-
"':4
-6
-8
0.2
VCC± = ±15V
RL = 2 kQ
CL = 100 pF
TA = 25°C
See Figure 1
0
;;
-12
-16
2
'0
>
•
l
I
I
01
1.2
II
o
2
3
t-Time-fls
t-Time-fls
Figure48
Figure49
4
5
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
NOTE 11: Values of ph
I
- 25
0
25
50
75
100
TA - Free-Air Temperature - °c
Figure46
16
II>
-......
-
= ±5V
Vi = 10 mV
57
CL - Load Capacitance - pF
>
E
"..- r- VCC±
I
.......
o
.1-
I
VCC± = ±15V_
./'
.~
.........
1--:1
,V
g>
II>
50
45
!'l
"..-
63
!!
e4
X=±15V
VCC± =
I
r
Fi
_
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
6
Tl054, Tl054A
ENHANCED JFET PRECISION
QUAD OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
output characteristics
All operating characteristics (except bandwidth and phase margin) are specified with 100-pF load
capacitance. The TL054 and TL054A will drive higher capacitive loads; however, as the load capacitance
increases, the resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even
oscillation. The value of the load capacitance at which oscillation occurs varies with production lots. If an
application appears to be sensitive to oscillation due to load capacitance, adding a small resistance in series
with the load should alleviate the problem. Capacitive loads of 1000 pF and larger may be driven if enough
resistance is added in series with the output (see Figure 50).
(a)CL = 100pF,R = 0
(c)CL=3S0pF,R =0
(b) CL = 300 pF, R = 0
(e)CL 1000pF,R=
(d) CL = 1000 pF, R = 0
son
(f)CL= 1000pF,R= 2kn
Figure 50. Effect of Capacitive Loads
+sv
-sv
2kn
(see Note A)
NOTE A: CL includes fixture capacitance.
Figure 51. Test Circuit for Output Characteristics
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-333
TL054, TL054A
ENHANCED JFET PRECISION
QUAD OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
input characteristics
The TL054 and TL054A are specified with a minimum and a maximum input voltage that, if exceeded at either
input, could cause the device to malfunction.
Because of the extremely high input impedance and resulting low bias current requirements, the TL054 and
TL054A are well suited for low-level signal processing; however, leakage currents on printed Circuit boards and
sockets can easily exceed bias current requirements and cause degradation in system performance. It is a
good practice to include guard rings around inputs (see Figure 52). These guards should be driven from a
low-impedance source at the same voltage level as the common-mode input.
The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation.
Vo
VI-W'v-_+H
Vo
(a) NONINVERTING AMPLIFIER
(b) INVERTING AMPLIFIER
, (c) UNITY·GAIN AMPLIFIER
Figure 52. Use of Guard Rings
noise performance
The noise specifications in op amp circuits are greatly dependent on the current in the first-stage differential
amplifier. The low input bias current requirements of the TL054 and TL054A result in very low current noise.
This feature makes the devices especially favorable over bipolar devices when using values of circuit
impedance greater than 50 kil.
TEXAS ~
INSTRUMENTS
2-334
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
Tl054, Tl054A
ENHANCED JFET PRECISION
QUAD OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
Instrumentation amplifier with adjustable galnlnull
The instrumentation amplifier in Figure 53 benefits greatly from the high input impedance and stable input
offset voltage of the TL054A. Amplifiers U1A, U1B, and U1C form the actual instrumentation amplifier, while
U1D provides offset null. Potentiometer R1 provides gain adjust. With R1 = 2 kQ, the circuit gain equals 100,
while with R1 = 200 kQ, the circuit gain equals two. The following equation shows the instrumentation amplifier
gain as a function of R1:
Readjusting the offset null is necessary whenever the circuit gain is changed. Note that if U1 0 is needed for
another application, R7 can be terminated at ground. The low input offset voltage of the TL054A minimizes
the dc error of the Circuit. For best matching, all resistors should be one percent tolerance. The matching
between R4, R5, R6, and R7 controls the CMRR of this application.
The following equation shows the output voltages when the input voltage equals zero. This dc error can be
nulled by adjusting the offset null potentiometer; however, any change in offset voltage over time or
temperature also creates an error. To calculate the error from changes in offset, consider the three offset
components in the equation as delta offsets rather than initial offsets. The improved stability of Texas
Instruments enhanced JFETs minimizes the error resulting from change in input offset voltage with time.
Assuming Y,N equals zero, Vo can be shown as a function of the offset voltage:
)~
R3 ( R5 R7
R6) + R4
R6 (1 + R2
6)
- V,01 [ AT
+ R7 ) (1 + R4
R1~ + V,03 (1R
+ R4
R4
R6
10 kQ
10 kQ
>-......-----'- Va
NOTE A: U1A through U1 D
RS
R7
10 kQ
10 kQ
= TL054A; Vce ± = ± 15 V.
Figure 53. Instrumentation Amplifier
TEXAS ~
INsrRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-335
TL054, TL054A
ENHANCED JFET PRECISION
QUAD OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
high Input impedance log amplifier
The low input offset voltage and high input impedance of the TL054A create a precision log amplifier (see
figure 54). IC1 is a 2.5-V, low-current precision, shunt regulator. Transistors 01 and 02 must be a closely
matched NPN pair. For best performance over temperature, R4 should be a metal film resistor with a low
temperature coefficient.
In this circuit, U1 A serves as a high-impedance unity-gain buffer. Amplifier U1 B converts the input voltage
to a current through R1 and 01. Amplifier U1C, IC1, and R4 form a 1 IlA temperature-stable current source
that sets the base-emitter voltage of 02. Amplifier U1 D then amplifies the difference between the base-emitter
voltage of 01 and 02. The output voltage is given by the following equation:
J
wherek = 1.38x10-23 ,q = 1.602 x 10- 19 ,
d T' . k I .
an
IS In eVlns.
R6]kT[
VI
Vo = - [ 1 + In
R5 q
(R1 x 1 x 10 -6)
Vo
(see
equation above)
C1, 150 pF
R6
10 kQ
R5
R3
10 kQ
IC1
- 15 V
NOTES: UIA thru Ul D ; TL054A.
leI; LM385, LTt004, or LT1009 voltage reference.
Figure54. Log Amplifier
m -0.1
't>
I
c
.2 - 0.15 'I
10
\
"
:E
~ -0.2
\
<
"
Ol
oS -0.25
'\
'0
>
iii
~
-0.3
~
f
~
i5 - 0.35
I
C
~
-0.4
o
2
, i'--
---
--
3
4
5
6
7
f - Frequency - Hz
r-8
9
10
Figure 55. Output Voltage vs Input Voltage for Log Amplifier
TEXAS ""
INSTRUMENTS
2-336
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
Tl054, Tl054A
ENHANCED JFET PRECISION
QUAD OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
analog thermometer
By combining a current source that does not vary over temperature with an instrumentation amplifier, a precise
analog thermometer can be built (see Figure 56). Amplifier U1A and IC1 establish a constant current through
the temperature sensing diode D1. For this section of the circuit to operate correctly, the TL054 must use split
supplies and R3 must be a metal film resistor with a low temperature coefficient.
The temperature-sensitive voltage from the diode is compared io a temperature-stable voltage reference set
by IC2. R4 should be adjusted to provide the correct output voltage when the diode is at a known temperature.
Although this potentiometer resistance varies with temperature, the divider ratio of the potentiometer remains
constant.
Amplifiers U1 B, U1 C, and U1 D form the instrumentation amplifier that converts the difference between the
diode and reference voltage to a voltage proportional to the temperature. With switch S1 closed, the amplifier
gain equals 5, and the output voltage is proportional to temperature in degrees Celsius. With S1 open, the
amplifier gain is 9, and the output is proportional to temperature in degrees Fahrenheit. Every time that S1
is changed, R4 must be recalibrated. By setting S1 correctly, the output voltage equals 10 mV per degree
(C or F).
ICl
Cl
R9
R12
10 kO
10 kQ
150 pF
Rl
10kO
+ 15 V
100kO
R7
SkO
R5
SkO
10 kO
(see Note B)
Vo
Sl
(see Note 0)
(see Note C)
01
(see Note A)
- 15 V
+ 15 V
R2
R8
100 kO
Rl0
IC2
NOTES: A.
B.
C.
D.
E.
10kO
R4
50 kQ
Rll
10 kO
Temperature sensing diode ~ (- 2 mVlOC).
Metal film (low temperature coefficient).
Switch open for OF and closed for °C.
Vo oc Temperature; 10 mV/oC or 10 mVi"F.
U1Athru U1D = TL054. IC1,IC2 = LM385, LT1004,orLT1009voltagereference.
Figure56. Analog Thermometer
TEXAS
+
INSTRUMENlS
POST OFFICE BOX 655303 - DALLAS, TEXAS 75265
2-337
TL054, TL054A
ENHANCED JFET PRECISION
QUAD OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
vOltage-ratlo-to-d B converter
The application in Figure 57 measures. the amplitud~ ratio of two signals and then converts the ratio to
decibels. The output voltage provides a resolution of 100 mY/dB. The two inputs can be either dc or sinusoidal
ac signals. When using tic signals, both signals should be the same frequency or output glitches will occur.
For measuring two input signals of different frequencies, extra filtering should be added after the rectifiers.
The circuit contains three low-offset TL054A devices. Two of these devices provide the rectification and
logarithmic conversion of the inputs. The third TL054A forms an instrumentation amplifier. The stage
performing the logarithmic conversion also requires two well-matched NPN transistors.
The input signal first passes through a high impedance unity-gain buffer U1A (U2A). Then U1 B (U2B) rectifies
the input signal at a gain of 0.5, and U1C (U2C) provides a noninverting gain of 2 so that the system gain is
still one. U1 D (U2D), R6 (R13), and 01 (02) perform the logarithmic conversion of the rectified input signal.
The instrumentation amplifier formed by U3A, U3B, U3D scales the difference of the two logarithmic voltages
by a gain of 33.6. As a result, the output voltage equals 100 mY/dB. The 1-kQ potentiometer on the input
of U3C calibrates the zero dB reference level. The following equations are used to derive the relationship
between the input voltage ratio expressed in decibels and the output voltage.
r1
VA
X dB
X dB
VSE(01)
= kT
q
X dB
where k
=
J
= 8.686 Qn (VA) -
IJ~J
LR x IS
~VBE = VBE(01)
8.686
kT / q
rn (V A) - In (VB)l
In (10)
= 20 10gLVBJ = 20 L
~BE(01)
- VBE(02)
-
In (VB)]
VBE(02)
.
= kT
q
IJ~J
LR x IS
= k; Qn (VA) -In (VB)]
VBE(02~ = 336~BE(01)
-
VBE(02~
at 25°C.
= 1.38 x 10-23 , q = 1.602 x 10-19, and T is in kelvins.
This would give a resolution of 1 V/dB. Therefore, the gain of the instrumentation amplifier is set at 33.6 to
obtain 100 mY/dB.
TEXAS ."
INSTRUMENTS
2-338
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
Tl054, Tl054A
ENHANCED JFET PRECISION
QUAD OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
R2
R20
R3
30kn
Vo
10 kn
R19
R21
10 kn
+ 15 V
R10
30 kn
R11
10 kn
82 kn
1
kn~_--t
82 kn
- 15 V
NOTES: U1A through U30 = TL054A, Vee ±
01 and 02 = 1N914.
= ± 15 V.
Figure57. Voltage-Ratio-to-dB Converter
2
/'
>
I
V
Cl
0
'5
0
/
So
"I
0
0
>
-- v
/
.
S
>
V
,/
-1
-2
o
2
3
4
5
6
7
8
9
10
Ratio - (VAl VB)
Figure 58. Output Voltage vs the Ratio of the Input Voltages for Voltage-to-dB Converter
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-339
2-340
TL061, TL061A, TL061B
TL062, TL062A, TL062B, TL064, TL064A, TL064B
LOW-POWER JFET-INPUT OPERATIONAL AMPLIFIERS
02392, NOVEMBER 197B-REVISEO SEPTEMBER 1990
15 DEVICES COVER MILITARY, INDUSTRIAL, AND
COMMERCIAL TEMPERATURE RANGES
•
Very Low Power Consumption
•
Output Short-Circuit Protection
•
Typical Supply Current . . . 200 p.A
(per Amplifier)
•
High Input Impedance ... JFET-Input Stage
•
Internal Frequency Compensation
•
Wide Common-Mode and Differential
Voltage Ranges
•
Low Input Bias and Offset Currents
•
Common-Mode Input Voltage Range
Includes V CC +
•
Latch-Up-Free Operation
•
High Slew Rate ... 3.5 V/p.s Typ
description
The JFET-input operational amplifiers of the TL061 series are designed as low-power versions of the TL081
series amplifiers. They feature high input impedance, wide bandwidth, high slew rate, and low input offset
and bias currents. The TL061 series features the same terminal assignments as the TL071 and TL081
series. Each of these JFET-input operational amplifiers incorporates well-matched, high-voltage JFET and
bipolar transistors in a monolithic integrated circuit.
C-suffix devices are characterized for operation from 0 ac to 70 ac. I-suffix devices are characterized for
operation from - 40 ac to 85 oe, and M-suffix devices are characterized for operation over the full military
temperature range of - 55 °e to 125 ae.
TL061, TL061A, TL061B
D, JG, OR P PACKAGE
DB
(TOP VIEW)
OFFSET Nl
ININ +
Vcc _
2
7
3
4
6
5
NC
VCC+
OUT
OFFSET N2
TL062, TL062A, TL062B
D, JG, OR P PACKAGE
Tl061 ... U PACKAGE
(TOP VIEW)
DB
(lOP VIEW)
NC
NC
NC
OFFSET N1
ININ+
AMPL {OUT
IN#1
IN+
VCC+
OUT
OFFSET N2
VCC-
VCC-
VCC-
NC
VCC+
"""1...._ _r-
OUT}AMPL
ININ+
#2
PRODUCTION DATA docum.nts contlin information
curr.nt as of publication data. Products conform to
.pecifications per tho terms of T•••• Instrumants
st.ndard warranty. Production ~rocassing doas not
necaDarily includ. tasting of .11 paramaters.
7
6
4
5
Vcc +
OUT}
INAMPL
#2
IN+
TL064 ... D, J, N, OR W PACKAGE
Tl064A, Tl064B ... D OR N PACKAGE
(TOP VIEW)
TL062 ..• U PACKAGE
(TOP VIEW)
NC
OUT
AMPL { IN#1
IN +
2
3
AMPL {
OUT
IN-
#1
IN +
VCC+
IN+
AMPL { IN#2
OUT
OUT}
INAMPL
IN+
#3
VCCIN+ }
INOUT
AMPL
#4
Copyright © 1990, Texas Instruments Incorporated
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
On products compliant to MIL-STD·BBlC. Class B. all parameters are tested
unless otherwise notad, On all other products. production processing does
not IItIcassarily include tasting of all parameters.
2-341
TL061, TL061A, TL061B
TL062. TL062A, TL062B, TL064, TL064A, TL064B
LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIERS
TL061 ... L PACKAGE
TL062 ... L PACKAGE
(TOP VIEW)
(TOP VIEW)
VCC+
NC
®
OUT}~
ININ+
VCC-
VCC-
PIN 4 IS IN ELECTRICAL CONTACT
WITH THE CASE
PIN 4 IS IN ELECTRICAL CONTACT
WITH THE CASE
TL061 ... FK PACKAGE
TL062 ... FK PACKAGE
(TOP VIEW)
(TOP VIEW)
f:::J
Z
a..
~
U
Z
3
U
Z
0 U U U
U Z Z Z
18
NC
IN -
5
17
VCC +
NC
(N+
NC
6
16
15
14
NC
8
ott
NC
# 1 INNC
# 1 IN+
NC
OUT
NC
UU
Z
>
18
17
16
15
14
4
5
6
8
U
Z
I U + U
UZ ~ Z
U
N
>
TL064 ... FK PACKAGE
(TOP VIEW)
~~U~
-Cr-.....
V
_._-
4
RL'" 10 kll
= 10 kll, TA = 25°C
TA = 25°C
VIC = VICR min, Vo = 0,
RS = 500,
TA = 25°C
= ± 15 V
= 500,
VCC
to ±9 V, Vo
RS
TA
= 25°C
Va
= 0,
Vo
= 0,
TA
= 25°C
No load,
TA
= 25°C
No load,
leach amplifier)
TA
= 25°C
AVO = 100,
= 0,
4
rr-=
-0
- en
6
1
1
1
1
10 12
10 12
10 12
10 12
0
70
86
80
86
80
86
80
86
dB
70
95
80
95
80
95
80
95
dB
B
7.5
B
7.5
B
7.5
6
7.5
mW
200
250
200
250
200
250
200
250
~A
120
120
120
120
dB
t All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified. Full range for T A is 0 °C to 70°C for TlOB_ C, TLOB_AC, and TLOB _ Be
and -40°C to 85°C for TLOB_I.
~
maintain the junction temperature as close to the ambient temperature as possible.
en
MHz
:I: Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive as shown in Figure 17. Pulse techniques must be used that will
%
:::!:!~
g;;=
4
4
r-~
>~
V/mV
range
RL
Supply current
Crosstalk attenuation
TA
2=
>en
3!1: .....
±10
6
..... !X'=
-0
V
IAVCC±/AVIO)
Po
10 kll,
±11
differential voltage
amplification
CMRR
= 25°C
peak output
large-signal
AVO
TA
2==
-0 en en
eN
....
C .....
II)
.,,-
!il
....
.,,»
m· •
...............
.:.. r- r-
I
TL061, TL061A, TL061B
TL062, TL062A, TL062B, TL064, TL064A, TL064B
LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIERS
operating characteristics, VCC±
± 15 V, TA
=
PARAMETER
SR
tr
25°C
= 10 V,
CL = 100 pF,
VI = 20 mV,
CL = 100 pF,
RS = 100D,
Slew rate at unity gain
VI
(see Note 5)
Rise time
Overshoot lactor
Vn
=
TEST CONDITIONS
Equivalent input noise voltage
MIN
TYP
1.5
3.5
V/".s
10 kD,
0.2
I's
See Figure 1
10%
RL
=
10 kD,
See Figure 1
RL
I
=
=
42
1 kHz
NOTE 5: Slew rate at - 55°C to 125°C is 0.7 VII's min.
PARAMETER MEASUREMENT INFORMATION
10 kQ
RL =
10 kH
FIGURE 2. GAIN-OF-10
INVERTING AMPLIFIER
FIGURE 1. UNITY·GAIN AMPLIFIER
100 kG
1.5kH
VCC-
FIGURE 3, INPUT OFFSET VOLTAGE NULL CIRCUIT
TEXAS •
INSTRUMENTS
2-348
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
MAX
UNIT
nV/v'Hz
TL061, TL061A, TL061B
n062, n062A, n062B, n064, n064A, n064B
LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
MAXIMUM PEAK OUTPUT VOLT AGE
vs
SUPPLY VOLTAGE
±15
>
I
GI
S
"0
>
...
::I
CI.
=
o
.00=
:
>
R~
E
/
±7.5
±5
/V
E
j(
III
:!l
I
±2.5
o
"0
>
...=
CI.
::I
V
o
.00=
III
GI
±7.5
E
::I
E
±5
IL
V
'j(
III
:!l
I
:!l ±2.5
Vcc± - ±15 V
RL - 10 kO
See Figure 2
0
>
6
4
2
±10
0
,/
:!l
o
>
GI
0)
:! ± 12.5
/V
±10
±15
I
V_
- 1h kO
± 12.5 f- TA - 25°C
See Figure 2
IL
::I
MAXIMUM PEAK OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
8
10
12
14
16
o
I
I
I
~
0
>
...
::I
CI.
::I
...
0
...
III
GI
±10
±7.5
)1
±5
III
I
:!l
V~CI~ "':''' ± 15 1"
3.
"...
:! ± 12.5
"0
/
>...
;
::I
i
±2.5
/
/
'(
R!:' -
~
II "'"
kO'
10
TA - 25°C
See Figure 2
vc~~II~"I~ 1~ ~
±10
0
100
±7.5
E
::I
E
'j(
V
±5
III
:!l
I
:!l ±2.5
o
>
0
>
±15
I
.00=
'j(
:!l
100 125
o
IL
E
::I
E
>
,~ ~.
III
75
MAXIMUM PEAK OUTPUT VOLTAGE
vs
FREQUENCY
MAXIMUM PEAK OUTPUT VOLTAGE
vs
LOAD RESISTANCE
,
50
FIGURE 5
FIGURE 4
VCC± - ±15 V
>
I
TA - 25°C
3. ± 12.5 See Figure 2
25
TA-Free-Air Temperature- °C
IVcc± I-Supply Voltage-V
±15
o
-75 -50 -25
VCC±-±5V
400 700 1 k
2 k
4 k 7 k 10k
~---
...;
o
200
IllIlll
VCC±-±2V
111,1111
1k
10 k
100 k
1M
10 M
f - Frequency - Hz
RL - Load Resistance - 0
FIGURE 7
FIGURE 6
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ..,
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-349
n061, n061A, n061B
n062, n062A. n064, n064A, n064B
LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
AND PHASE SHIFT
vs
FREQUENCY
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
~10
Vcc± - ±15 V
RL - 10 kO
:>
.:E..
I
g
.g
VCC±-±15V
..
Rext - 0
~ 104 ~-+-~+--+--tRL - 10 kO
}
TA - 25°C
7
./
-
V
"
Q.
~ 4
«
~
..
"0
>
.,QI
~ 102 ~-+--+--+"'--+--+,~--+---j 90 ° f
~
o
.,
c:
f
£
is
is
c
>
2
~
I
I
1L-_~_~_~__-L_~__~~~180o
1
-75 -50 -25
0
25
50
75
AMPLIFICATION +--'k----Hr----i 135 °
(left scale)
10
«
c
«>
100 125
1
10
TA-Free-Air Temperature- °c
100 1 k 10 k 100 k 1 M 10 M
f - Frequency - Hz
FIGURE 9
FIGURE 8
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
250
250
~200
TA - 25°C
No Signal
No Load
I
e
f--
~
8
45 ° ~
~
PHASE SHIFT
S
QI
Cl
>
~c
I
103
,..--
~~
« 200
10-
I
e
~ 150
:::J
u
150
>
--
r--.
>
Q.
Q.
Q.
:::J
§o100
'1+1 100
en
I
u
+1
U
U
-
r--
::L
!:} 50
50
o
o
2
4
6
8
10
12
IVcc±I-Supply Voltage-V
14
16
o
VCC± - ±15 V
No Signal
No Load
-75 -50 -25
0
25 50 75 100 125
TA-Free-Air Temperature- °C
FIGURE 11
FIGURE 10
toata at high and low temperatures are applicable only within the rated operaung free-air temperature ranges of the various devices.
TEXAS •
INSTRUMENTS
2-350
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TL061, TL061A, TL0618
TL062, TL062A, TL0628, TL064, TL064A, TL0648
LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
ALL EXCEPT TL06_C
COMMON-MODE REJECTION RATIO
TOTAL POWER DISSIPATED
VS
VS
FREE-AIR TEMPERATURE
FREE-AIR TEMPERATURE
30
III
3:
E
25
I
....coCIl
c.
.
C
20
"iii
Q;
-r-----1---.. . . . . .
.gco
Tl064
VCC± = ±15 V
~
No Signal
No Load
a::
.,
85
'0
:;
::!:
i:.
~ 83
E
o
u
TlO~l
Tl060,
l-
5
I
I 82
a::
a::
::!:
u
o
o
-75 -50 -25
50
25
75
100 125
81
-75 -50 -25
°c
T A - Free-Air Temperature -
o
FREE-AIR TEMPERATURE
100
1" 3 ,--,----"-1,----,----,----.---r---.,.----, 1.03
3:
~-
UNITY-GAIN BANDWIDTH -·PHASE SHIFT
(left scale)
.:::
~
~
..
-6 1. 1 1---1---"'1~----+-___+-__+--+71"'-+---j 1.01 en.,
.§:
~
c..
-c
CIl
c:
~
c:
~
~
~
iii
0.9
0.99
E
0
z
~
~
.~0.8
iii
VCC±=±15V
RL = 10 kfl
E
f = B 1 for Phase Shift
~+--~~t--1
zo 0.7 '--_'---..-J_--'_--l._--'-_-'-_-'-_-'
-75-50-25
0
25
50
75
TA-Free-Air Temperature-
r---
-
1.02
~
b
~
100 125
°c
VCC+ = +15 V
40
CIl
~
75
INPUT BIAS CURRENT
vs
FREE-AIR TEMPERATURE
\IS
~ 1.2
50
FIGURE 13
NORMALIZED UNITY GAIN BANDW)DTH
SLEW RATE, AND PHASE SHIFT
J!!
25
TA -Free-Air Temperature-
FIGURE 12
/i
-
/
o
t--+-
0
/
/
~ 84
c..
iii 10
----
I
86
a::
Tl062
I
I
'Q;'
3:
I
I
VCC±=±15V
RL = 10 kfl
c
.g(.)
15
c
c..
87
-c
I
0.98
0.97
100125
c:t
c:
I
;:
~
:;
/
10
4
/
/
U
..'"
co
iii
0.4
::l
C.
/
.E
I
~
/
0.1
0.04
0.01
-50
°c
--
-25
,......
o
./
25
50
FIGURE 14
100
75
TA-Free-Air Temperature-
125
°c
FIGURE 15
t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 " DALLAS, TEXAS 75265
2-351
TL061, TL061A, TL0618
TL062, TL062A, TL064, TL064A, TL0648
LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
OUTPUT VOLTAGE
vs
ELAPSED TIME
VOLTAGE FOLLOWER
LARGE SIGNAL PULSE RESPONSE
28
6
>
4
til
2
.....
-a
---- 7
0
.....
c:: -2
..5 -4
r--
o
.
:: 16
>
:; 12
~
o
\
±15V
RL - 10 kO
CL - 100 pF
TA - 25°C
2
o
--10
8
r-
/
II
10%~
-4
6
4
I
j
8
o
> 4
~90%
T
-a
\OUTPUT
'/~cc± If
::I
Co
E 20
I
\
/
0
"tI
>
!\
/
>
-6
24
II
I
:;
So
::I
r~jdOT
INPUT
VCC± - ±15 V
RL - 10 kO
TA - 25°C
toot,...
o
0.2
t-Time-,.s
0.4
0.6
0.8
1.2
1.4
t-Time-,.s
FIGURE 17
FIGURE 16
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
~ 100
~ 90
I
&
~
80
\.
\
70
31
60
~
50
...
VCC± - ±15 V
RS - 1000
TA - 25 0 C
::I
..
~ 40
"
c:: 30
..!!
•i!: 20
::I
.
IT
II.!
I 10
c::
>
0
10
40 100
400 1 k
4 k 10 k 40 k 100 k
f- F,equency- Hz
FIGURE 18
t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
~
TEXAS
INSTRUMENlS
2-352
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TL061, TL061A, TL0618
TL062, TL062A, TL0628, TL064, TL064A, TL0648
LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION OAT A
~------~~----~~,--OUTPUT
FIGURE 19. INSTRUMENTATION AMPLIFIER
RF=100kil
+15 V
R1
INPUT -----e---OUTPUT
-::-
FIGURE 24. AC AMPLIFIER
10 kn
100 kn
1kn
0.1 J.LF
~kn
1 J.LF
100 kn
0.002J.LF
100
krl
10 kn
100 krl
50kn
"::"
b
0.02J.LF "::"
FIGURE 25. MICROPHONE PREAMPLIFIER WITH TONE CONTROL
TEXAS •
2-354
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS. 75265
TL061. TL061 A. TL0618
TL062. TL062A. TL0628. TL06' TL064A. TL0648
LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
+
100 kD
1 kU
1 kn
100 kD
FIGURE 26. INSTRUMENTATION AMPLIFIER
IC PREAMPLIFIER RESPONSE CHARACTERISTICS
25
MAX BASS
20
a::I
t--
15
"C
I
c:
.g
..
"
!E
C.
E
....en
«
10
"- I'-..
5
1p,).A'XII
TREBLE;
1/
i'-,.
/ -...,
0
,/
-5
V
~
r-.,
/
~ -10
>
11'1111
VCC± - ±15 V
TA - 25°C
'\. See Figure 30
~
-15
-20
-25
.....
MIN
_
T~Whf
~I~ M~,S
20 40
.......
100 200400 1 k 2 k 4 k 10 k 20 k
f - Frequency - Hz
FIGURE 27
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-355
n060, n060A, n060B, n061, n061A, n061B
n062, n062A, n062B, n064, n064A, n064B
LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
220 kn
0.00375/lF
0.003/lF
10kn
0.03/lF
27 kn
0.Q1 /IF
~N
Vcc+
~N
100 kn
I-
w
(/)
u.
u.
o
NC - No internal connection
TL066M IS NOT RECOMMENDED FOR NEW DESIGNS
description
symbol
The TL066 series are JFET-input operational
amplifiers similar to the TL061 with the
additional feature of being power-adjustable.
They feature very low input offset and bias
currents, high input impedance, wide bandwidth,
and high slew rate. The power-control feature
permits the amplifiers to be adjusted to require
as little as 25 /l-W of power. This type of
amplifier. which provides for changing several
characteristics by varying one external element.
is sometimes referred to as being
"programmable." The JFET-input stage
combined with the adjustable-low-power feature
results in superior bandwidth and slew-rate
performance compared to low-power bipolarinput devices.
OFFSET NULL _ _ _ _-,
Nl
OFFSET NULL
N2
NONINVERTING
INPUT IN+
OUTPUT
INVERTING
INPUT IN-
The TL066AC and TL066C are characterized for operation from 0 DC to 70 DC. The TL0661 is characterized
for operation from - 40°C to 85 °C; the TL066M is characterized for operation over the full military
temperature range of - 55 DC to 125 DC.
PRODUCTION DATA documents contain information
current as of publication date. Products conform to
specifications per the terms of Texas Instruments
standard warranty. Production processing does not
n,ecessarily include testing of an parameters.
TEXAS
~
Copyright © 1990, Texas Instruments Incorporated
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-357
n066AC, n066C, n0661, n066M
ADJUSTABLE LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIERS
AVAILABLE OPTIONS
TA
OOC
to
70°C
VIO MAX
AT 25°C
SMALL-OUTLINE
(D)
PACKAGE
CERAMIC DIP
(JG)
CHIP-CARRIER
(FK)
PLASTIC DIP
(PI
15 mV
TL066CD
TL066CP
6 mV
TL066ACD
TL066ACP
6 mV
TL0661D
TL0661P
-40°C
to
85°C
-55°C
to
125°C
6 mV
TL066MFK
TL066MJG
The D package is available taped and reeled. Add the suffix "R" to the device type, (e.g .. TL066CDR).
schematic
NONINVERTING _ _~-i_ _ _-,
INPUT
INVERTING
INPUT
2.85
ICC ~ 2.85 + Rext • ICC(O)
where Rext is in kO
and ICC(OI - ICC with Rext - 0
C~~~:~L
J
~--~~~.--e----e---1----e----4~--4~VCC- ~
OFFSET
NULL
IN1)
OFFSET
NULL
OUTPUT
(N2)
Component values shown are nominal.
TEXAS
-1.11
INSTRUMENTS
2-358
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
n066AC, n066C, n0661, n066M
ADJUSTABLE LOW-POWER JFET-INPUT OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
TL066AC,
TL066C
n0661
TL066M
UNIT
Supply voltage, Vee + (see Note 1)
18
18
18
V
Supply voltage, Vee _ (see Note 1)
-18
-18
-18
V
Differential input voltage (see Note 2)
±30
±30
±30
V
Input voltage (see Notes 1 and 3)
±15
±15
±15
V
Voltage between power-control terminal and Vee-
±0.5
±O.5
±0.5
V
unlimited
unlimited
unlimited
Duration of output short circuit (see Note 4)
eontinuous total dissipation
See Dissipation Rating Table
o to 70
-55to125
°e
-65 to 150 - 65 to 150 -65 to 150
°e
Operating free-air temperature range
Storage temperature range
-40 to 85
ease temperature for 60 seconds
FK package
260
°e
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds
JG package
300
°e
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds
D or P package
NOTES: 1.
2.
3.
4.
260
260
°e
All voltage values, except differential voltages, are with respect to the midpoint between Vee + and Vee _.
Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that
the dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
= 70°C
TA:5 25°C
DERATING
DERATE
POWER RATING
FACTOR
ABOVE TA
POWER RATING
TA = 85°C
POWER RATING
TA
TA
=
125°C
POWER RATING
D
680mW
5.8 mw/oe
33°e
464 mW
377 mW
N/A
FK
680 mW
11.0 mw/oe
88°e
680 mW
680 mW
275 mW
JG
680mW
8.4 mw/oe
69°e
672 mW
546 mW
210 mW
P
680mW
8.0 mw/oe
65°e
640 mW
520 mW
N/A
TEXAS.
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-359
b
electrical characteristics,
Vee
:2> .....
±15 V
C ....
0)
o
TEST CONDITIONSt
PARAMETER
Va
Via
Input offset voltage
Va
TA
Temperature coefficient
Vo
of input offset voltage
TA
Input offset current~
Va
110
Input bias current t
Common-mode input
2lV>
TA
°VIO
lIB
VICR
voltage range
TL066C
Vo
Vo
Va
= 0,
= 25°C
= 0,
= full range
= 0,
= full range
= 0,
= 0,
= 0,
= 0,
MIN
~Z
VOM
~iJr;;1
8C:~
;~
AVD
TA
RS
=
50O,
RS
=
50O,
TA
TA
=
=
=
=
25°C
full range
5
25°C
full range
30
=
MAX
3
6
9
10
5
100
5
10
5
400
30
10
± 11
25°C
10
10
200
200
30
20
-12
to
± 11.5
to
± 11.5
+ 15
±10 ±13.5
TA
full range,
RL
2:
10kn
±10 ±13.5
±10 ±13.5
+10 ±13.5
RL
2:
10 kn,
Vo
=
±10V,
Large-signal differential
TA
=
25°C
voltage amplification
RL 2: 10 kg,
Vo
=
±10V,
= full range
TA = 25°C,
RL = 10 kn
TA = 25°C
f = 1 kHz
TA = 25°C,
VIC = VICR min, Vo = 0,
RS = 50 n,
TA = 25°C
VCC = ±9 V to ± 15 V, Vo =
TA = 25°C
RS:= 50 n,
No load,
Vo = 0,
TA = 25°C
No load,
Va = 0,
~~4r
ro
Output resistance
CMRR Common-mode
rejection ratio
Supply voltage rejection
ratio (.iVCC+/.iVIO)
PD
Total power dissipation
ICC
Supply current
~A-'" 25°C
pA
20
nA
200
pA
50
nA
V
+15
4
100
to
+15
6
fLV/oC
-12
±10 ±13.5
3
I
I
9
±10 ±13.5
output voltage swing
UNIT
mV
20
6
4
0,
c:...=
C CD
en CD
..... S"
ca ....
;:;;~
:2> .....
.... CD
CI'::;is .....
"CI ....
CI=
:e=
~s:
c:...
'TI
m
-:-I
:2
"CI
C
V
.....
CI
"CI
m
6
V/mV
3
TA
kSVR
6
TYP
10 kn
Unity-gain bandwidth
N
3
MIN
2:
Input resistance
"'"
MAX
RL
Bl
m
TYP
25°C,
ri
V>
15
TL066M
=
=
TA
~rr1
il;Z
3
50O,
MIN
-12
Maximum peak
'8rJJ
~-l
MAX
=
-<
~
:n-
TYP
RS
TA
TA
TL0661
4
1
1
1
10 12
10 12
10 12
MHz
.220
220
220
°
n
70
76
80
86
80
86
dB
70
95
80
95
80
95
dB
6
7.5
6
7.5
6
7.5
mW
200
250
200
250
200
250
/LA
t All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range of TA is ooC to 70°C
for TL066C; -40°C to 85°C for'TL0661; and -55°C to 125°C for TL066M. The electrical parameters are measured with the power-control terminal (pin 8)
connected to V CC - .
~Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature-sensitive. Pulse techniques must be used
that will maintain the junction temperature as close to the ambient temperature as possible.
=
:2>
.....
S
i2
....:2>
:2>
s:
"CI
....
::;;
m
=
en
TL066AC
ADJUSTABLE LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIERS
electrical characteristics,
PARAMETER
Vee
=
± 15
V
TEST CONDITIONSt
Va = 0,
Via
Input offset voltage
TL066AC
MIN
RS = 50 !l,
TA = 25°C
Vo = 0,
TVP
MAX
3
6
mV
RS = 50 !l,
7.5
A = full range
aVIO
Temperature coefficient
Vo = 0,
of input offset voltage
T A = full range
110
Input offset current i
liB
Input bias current i
Common-mode input
VICR
VOM
AVO
voltage range
RS = 50 !l,
Vo = 0,
TA = 25°C
Vo = 0,
T A = full range
Vo = 0,
TA = 25°C
Vo = 0,
T A = full range
TA = 25°C,
RL;;' 10kll,
±10 ± 13.5
T A = full range,
RL ;;, 10 kll
±10 ± 13.5
RL ;;, 10 kll,
Vo = ±10 V,
Large-signal differential
TA = 25°C
voltage amplification
RL ;;, 10 kll,
Va = ±10 V,
TA = 25°C,
ri
Input resistance
TA = 25°C
ro
Output resistance
TA = 25°C,
f = 1 kHz
Common-mode
VIC = VICR min,
Vo = 0,
RS = 50 Il,
TA = 25°C
rejection ratio
(AVCC+ IAVIO)
ICC
Total power dissipation
Supply current
pA
3
nA
200
pA
7
nA
V
to
Maximum peak
Supply voltage
100
±15
T A = full range
Po
30
±11.5
TA = 25 DC
Unity-gain bandwidth
kSVR
5
output voltage swing
rejection ratio
I'V/oC
10
-12
Bl
CMRR
UNIT
6
Vim V
4
1
RL = 10 kll
MHz
10 12
VCC = ±9Vto±15V,VO=0,
RS = 50 Il,
TA = 25°C
No load,
Vo = 0,
TA = 25°C
No load,
4
V
Vo = 0,
TA = 25°C
Il
Il
220
80
86
dB
80
95
dB
6
7.5
mW
200
250
,.A
t All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range
of T A is °C to 70°C. The electrical parameters are measured with the power-control terminal connected to Vce _.
ilnput bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature-sensitive. Pulse techniques
must be used that will maintain the junction temperature as close to the ambient temperature as possible.
°
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-361
n066AC, n066C, n0661, n066M
ADJUSTABLE LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIERS
operating characteristics, Vee ±
± 15 V, TA = 25°e, Rext
PARAMETER
SR
tr
= 10 V,
CL = 100 pF,
VI = 20 mV,
CL = 100pF,
RS = 1000,
VI
Slew rate at unity gain
Rise time
Overshoot factor
Vn
o
TEST CONDITIONS
Equivalent input noise voltage
MIN
TYP
1.5
3.5
V/p.s
10 kO
0.2
p.s
See Figure 1
10%
RL = 10 kO,
See Figure 1
RL
f
=
=
1 kHz
42
MAX
UNIT
nV/$z
PARAMETER MEASUREMENT INFORMATION
10 kO
RL - 10 kO
FIGURE 1. UNITY·GAIN AMPLIFIER
FIGURE 2. GAIN·OF·10 INVERTING AMPLIFIER
i
VCC-
FIGURE 3. INPUT OFFSET VOLTAGE NULL CIRCUIT
2-362
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 855303 • DALLAS. TEXAS 75285
TL066AC, TL066C, TL0661, TL066M
ADJUSTABLE LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
MAXIMUM PEAK OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
INPUT BIAS CURRENT
vs
FREE-AIR TEMPERATURE
100
40
c:(
....
Vcc+ - +15 V
Rext - 0
I--
8, ± 12.5
/
f!
'0
I
c
>
S
So
:l
4
t:
/
:l
(.)
..
/
..
'"
iii
o
....
..'"
0.4
:l
E
E
/
:l
V
0.1
j!
±10~~--+--+--~-
± 7.5 ~---+---+--+-
~
Co
.E
I
RL - 10 kO
TA - 25 °C ~---1--+--+-----c,f----j
See Figure 2
I
10
c
>
±5~-i--+-
'j(
'"
::!:
0.04
--I-""
0.01
-50 -25
o
I
./
::!:
o
>
25
50
100
75
O~-J
o
125
FIGURE 4
±15
±12.5
..
RL - 2 kO
>
:l
Co
E
:l
E
'j(
::!:
16
±15
..5.
'0
>
±10
S
±10
o
....
±7.5
\\
±5
~
±7.5
E
:l
E
±5
'j(
'"
::!:
I
14
f!±12.5
i'-..
S
....
12
II>
Cl
0
:.'"
10
I
:--...
'0
8
MAXIMUM PEAK OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
>
RL - 10 kO
I
6
FIGURE 5
MAXIMUM PEAK OUTPUT VOLTAGE
vs
EXTERNAL CONTROL RESISTANCE
..
E
4
IVcc± I-Supply Voltage-V
TA - Free-Air Temperature- °C
>
_ _- L_ _- L_ _~_ _~_ _~-J_ _~
2
'"I
Vcc± .. ±15 V
Rext - 0
::!: ±2.5 RL - 10 kO
o
See Figure 2
>
I
I
I
o
-75 -50 -25 0
::!:
±2.5
0
>
0
~VCC± -
±15 V
TA .. 25°C
111111111
10
lillUIH
100
1 k
10 k
100 k
Rext-External Control Resistance-O
25
50
75
100 125
TA -Free-Air Temperature- °C
FIGURE 6
FIGURE 7
t Data at high and low temperatures are applicable only within the rated free-air temperature ranges of the various devices.
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2---363
n066AC, n066e, n0661, n066M
ADJUSTABLE LOW-POWER JFET-INPUT OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
MAXIMUM PEAK OUTPUT VOLTAGE
vs
FREQUENCY
MAXIMUM PEAK OUTPUT VOLTAGE
vs
LOAD RESISTANCE
±15
VCC± - ±15 V
I
Rext - 0
8, ± 12.5
TA - 25°C
See Figure 2
-a'"
±10
:::J
...
V
GI
Cl
I-""
B ± 12.5
~
V
0
~
o
V
±7.5
"":.'"
E
:::J
E
'j(
'"
:!:
I
:!:
±2.5
/
""
E
:::J
E
V
'"
:!:
I
:!: ±2.5
,/
0
100
±5
'j(
o
>
0
>
Vc~~II~"I~ 1~ ~
:. ±7.5
)1
±5
VCC±-±5V
VCC±-±2V
400 700 1. k
2 k
""'
"
o
200
1-
II 11111
± 10
'$
Q.
:::J
10 k
f- Frequency- Hz
FIGURE 9
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
EXTERNAL CONTROL RESISTANCE
~ 8
:>
I
7
g
5
2
;E
c
I
c
~ 0
f--
E 4
<
GI
Cl
11o
'0
~
2!
/
Q.
3. 4
3
VCC± - ±15 V
Rext - 0
RL - 10 k[)
!E
i'
f!
'ii
7
'B
6
>
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
~ 10
:>
~
10 M
1M
100 k
FIGURE 8
=a
~
111.1111
1k
4 k 7 k 10k
RL - Load Resistance - [)
bo
~
R~~t - 0
RL - 10 k[)
TA - 25°C
See Figure 2
V~CI± 11_"I± 15 1"
I
>
>
...
±15
>
>
\
!c
2
2!
£
Vc C±-±15V
-RL - 10 k[)
TA - 25°C
J'l'llfUl
1
10
I! lIlilil
100
is
I
c
~ 1
I
1k
10k
lOOk
-75 -50 -25
0
25
50
75
100 125
T A - Free-Air Temperature - °C
Rext - External Control Resistance - [)
FIGURE 11
FIGURE 10
tOata at high and low temperatures are applicable only within the rated free-air temperature ranges of the various devices.
~
TEXAS
INSTRUMENTS
2--364
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
H066AC, H066C, H0661, H066M
ADJU~TABLE
LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
LARGE SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
AND PHASE SHIFT
SUPPLY CURRENT
vs
vs
FREQUENCY
SUPPLY VOLTAGE
~ 105 r--..,---,----,------,--,.---..,.--..,
:>
b
.gco
250
~
TA
.!.
25°C
=
I
~
~ 103
I
Rext = 0
TA = 25°C
~200 _No Signal
No Load
c:
VCC±=±15V
Rext = 0
104 1--+--...-1----+------4 Rl = 10 kfl
~~
~
PHASE SHIFT
450 :;
.c
~
-
u!; 150
~
~
f-.-- I---
>-
~
~
Co
::J
g 10 2 r---+----+---+-"'"--'l,..--!-II;.;~+----I 90 ° £ cr 100
iii
.'c:"
10
is
I
o
~
1
+1
U
VOLTAGE
AMPLIFICATION +---'\c---+-'t--i 135°
(left scale)
~
Q;
:::
L - _ . . . . l . - _ - - L _ - ' - _ - - - '_ _-'---_lL..-L~
1
10
1 k
100
10k 100 k 1 M
J:?
50
o
180 °
10M
o
2
FIGURE 12
11111111
11111111
VCC± = ± 15 V
200
vs
:;
U
Co
::J
+1
U
J:?
11111
1111111
: I
11111
+6 V
ex:
I'I
I '
,
20
.-
...c:I
~ 150
!;
>-
~
~
~
g- 100
I
~
I
+1
U
i
IIIII
10
100
1k
10 k
VCC± = ± 15 V
-Rext = 0
No Signal
No load
I
I
I
o
J:? 50
1=
4
i----.
u
~'
TA = 25°C
See Figure 1
10
No Signal
7~
I--- No Load
-----
200
:I.
!
+
>-
I
I!
~
~
~
I1111111
VCC+
VCC± = ±2 V
70
40
16
250
400
100
14
FREE-AIR TEMPERATURE
EXTERNAL CONTROL RESISTANCE
~
12
SUPPLY CURRENT
vs
...
10
FIGURE 13
SUPPLY CURRENT
I
c:
8
IVcc±I-Supply Voltage-V
f-Frequency-Hz
ex:::<.
6
4
100k
-75 -50 -25
0
25
50
75
100 125
T A - Free-Air Temperature - °C
Rext - External Control Resistance - fl
FIGURE 14
FIGURE 15
tData at high and low temperatures are applicable only within the rated free-air temperature ranges of the various devices.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-365
n066C, n066AC, nOSHI, TL066M
ADJUSTABLE LOW-POWER JFET·INPUT OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
ALL EXCEPT TL066C
COMMON-MODE REJECTION RATIO
vs
EXTERNAL CONTROL RESISTANCE
TOTAL POWER DISSIPATION
vs
EXTERNAL CONTROL RESISTANCE
10000
III
87
"I
~
.g
4000 I--Vcc+ = +15V
=.
I
- nll~1 III1I1111
c
o
YP~I~
'~ 1000
a:'"
±6 V
=
.g
t'-..
1111
86
/
III
2:
...
I
\
~i\
80
Gl
III
'0
I
Rext
~
c
I
100 kO
I
Rext = 10 kO
60
~
Co
-:
=
VCC± = ± 15 V
RS = 1000
TA = 25°C
r-.
:::J
Rext = 0
40
Gl
~
(.)
'g.
I 82
a:
a:
20
w
I
c
::iE
(.)
10 k
FIGURE 17
FIGURE 16
87
1 k
Rext-External Control Resistance-O
Rext - External Control Resistance - 0
III
I
i
8
1IIIIIIr II
1
84
C
~ 83
E
r=
10
I
::iE
I\.
25°C
TA
I-- No Signal
40
I-- No Load
l-
-!o
"
1--.
I-- .
r\
I
a:
+2 V
I
81
-75 -50 -25
o
>
25
50
75
100 125
0
10
40 100
T A - Free-Air Temperature - °C
4 k 10 k 40 k 100 k
400 1 k
f - Frequency - Hz
FIGURE 19
FIGURE 18
t Data at high and low temperatures are applicable only within the rated free·air temperature ranges of the various devices,
TEXAS
2-366
~
INSTRUMENTS
POST OFFiCE BOX 655303 ' DALLAS, TEXAS 75265
n066AC, n066C r n0661, n066M
ADJUSTABLE LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
UNITY GAIN BANDWIDTH
vs
EXTERNAL CONTROL RESISTANCE
EQUIVALENT INPUT NOISE VOLTAGE
vs
SOURCE RESISTANCE
4
5
11111
Rext - 0
>=I.
..
ii
>
..
I
CI>
«I
..
4
......... 1--
N
i
1.11
~
I--
i
CT
w
'OJ
~ 0.4
~
)J
!..0.2
III
i il ~iI~C I II
10
l"\
::I
T
0
f'.
'2
1
VCC± = ±1
1 RL = 10 kO
I
c
>
c
I II
Q.
.5 2
±2 V
~ 0.7
100 kO
::I
I
±15 V
~
c
2
=
J.II
'i
'0
iii
>
'S
VCC+
ti
50 kO
3
2
I
5 kO
RL - 10 kO
TA - 25°C
jlllllill
0.1
40 100 400 1 k
4 k 10 k
Rs-Source Resistance-O
1
40 k 100 k
! 1.3 ,...--,---,---,--,,--,---,---r--. 1.03
a:
VCC± = ±15 V
RL - 10 kO
CL = 100 pF
TA = 25°C
See Figure 1
~~
100 k
NORMALIZED UNITY GAIN BANDWIDTH
SLEW RATE, AND PHASE SHIFT
vs
FREE-AIR TEMPERATURE
III ~TTTm
3
10 k
FIGURE 21
SLEW RATE
vs
EXTERNAL CONTROL RESISTANCE
~
1 k
100
Rext- External-Control Resistance - 0
FIGURE 20
4
I I
10
~
I
~ 1.2 UNITY-GAIN BANDWIDTH ~PHASE SHIFT 1.02
Iii
~
'i
(left scale I
i
:t:
1.11----l--~P'-_+--+--+---+_;~1_____11.01
;
~
c
r'\~
~
~
.~
c
~
~
~
.~
I
c:.c
:5
~
0.9
I----t---+---+--+---+---f"'-,.,--I--~
iii
0.99
~
2
~
.~0.8
VCC± - ±15V
-+----11--+---1 0.98
RL = 10 kO
~
f = B1 for Phase Shift
2 0.7 L-......J'-----'-_ _- - ' - _ .-L_......._..I.-__.L..--....J 0.97
-75 -50 -25
0
25
50 75 100 125
TA-Free-Air Temperature- °C
iii
~
o
100 k
10 k
1k
100
10
Rext- External-Control Resistance - 0
FIGURE 23
FIGURE 22
t Data at high and low temperatures are applicable ani V within the rated free-air temperature ranges of the various devices.
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-367
n066AC, n066C, n0661, n066M
ADJUSTABLE LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
OUTPUT VOLTAGE
vs
ELAPSED TIME
VOLTAGE FOLLOWER
LARGE SIGNAL PULSE RESPONSE
28
6
---
INPUT
/
4
>
/
I
II>
Q)
.
.,
Cl
2
>
:;
0
9:s
0
"tl
.,c
..
-2
/
:s
Co
.5 -4
~
-6
1/
o
E 20
I
~
16
>
:; 12
9:s
o
\
I
o
> 4
6
Rext - 0
RL - 10 kO
TA = 25°C
o
t-tp.
-4
4
VCC±=±15V
10% ,...
---
TA - 25°C
2
8
I
~
90oA,
/
/
"0
\OUTPUT
VCC± - ±15 V
Rext = 0
RL = 10 kO
CL = 100 pF
It
Q)
\
/
OT
>
1\
/
"0
r."ld
24
8
o
10
0.2
t-Time-jts
0.4
0.6
0.8
1.2
t-T-ime-jts
FIGURE 24
FIGURE 25
tData at high and low temperatures are applicable only within the rated free-air temperature ranges of the various devices.
TYPICAL APPLICATION DATA
Vcc+
INPUT 100 kll
A
i>------------4I~.....OUTPUT
100 kll
Vcc-
INPUT 100 kll
B
10 kll.
0.1%
10 klJ.
0.1%
Vcc-
Vcc-
FIGURE 26. INSTRUMENTATION AMPLIFIER
TEXAS •
INSTRUMENTS
2-368
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
1.4
TL066AC, H066C, TL0661, TL066M
ADJUSTABLE LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION OATA
10 k!l
n:r
0.1 I'F
47 k!l
1 I'F
1.2 M!l
100 k!l
0.061'F
0.061'F
100 k!l
1 k!l
=
10 k!l
0.0021'F
50 k!l
100 k!l
FIGURE 27. MICROPHONE PREAMPLIFIER WITH TONE CONTROL
0.1 I'F
1 M!l
Rext
PWR CONT
FIGURE 28. AC AMPLIFIER
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-369
Tl066AC·
ADJUSTABLE LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIER
TYPICAL APPLICATION DATA
IC PREAMPLIFIER RESPONSE CHARACTERISTICS
25
"c:I
"'- ~
5
"-
0
E
VCC±=±15V
TA = 25°C
See Figure 30
"
10
.g
..CJ
:eQ.
....
-5
I'--
15
III
-10
V
I~~~II
II IIII
MAX BASS
20
..-/
-.....
TREBLE:;
V
I"-
/
-15
-20
MIN
...... 1-"
-25
40
_
T~Whf
MIN Bt}SS
20
.........
100 200 400 1 k 2 k 4 k 10k 20 k
f-Frequency-Hz
FIGURE 29
220 kO
0.003751'F
0.0031'F
10 kO
0.031'F
27 kO
MIN
MIN
0.011'F
VCC+
100 kO >4____~e-~~~-4NY~.>100kO
TREBLE
BASS
3.3 kO
MAX
MAX
OUTPUT
0.031'F
10 kO
Rext
+
47 kO
68 kO
50 pF
FIGURE 30. Ie PREAMPLIFIER
TEXAS •
2-370
VCC+
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TL070, TL071, TL071A, TL071B
n072, n072A, n072B, n074, n074A, n074B
LOW·NOISE JFET·INPUT OPERATIONAL AMPLIFIERS
D2393, SEPTEMBER 1978-REVISED SEPTEMBER 1990
19 DEVICES COVER COMMERCIAL. INDUSTRIAL. AND MILITARY TEMPERATURE RANGES
•
Low Power Consumption
•
Low Noise, , . Vn = 18 nV/$z Typ
•
Wide Common-Mode and Differential
Voltage Ranges
•
High Input Impedance, .. JFET-Input Stage
•
Low Input Bias and Offset Currents
•
Output Short-Circuit Protection
•
Latch-Up-Free Operation
Low Total Harmonic Distortion,
•
High Slew Rate ... 13 V /P.s Typ
•
•
Internal Frequency Compensation (Except
n070)
0.003% Typ
•
Common· Mode Input Voltage Range
Includes V CC +
description
The JFET-input operational amplifiers in the TL07 _ series are designed as low-noise versions of the TL08_
series amplifiers with low input bias and offset currents and fast slew rate. The low harmonic distortion
and low noise make the TL07 _ series ideally suited as amplifiers for high-fidelity and audio preamplifier
applications. Each amplifier features JFET-inputs (for high input impedance) coupled with bipolar output
stages all integrated on a single monolithic chip.
The C suffix devices are characterized for operation from 0 DC to 70 DC. The I suffix devices are characterized
for operation from -40°C to 85°C. The M suffix devices are characterized for operation over the full
military temperature range of - 55 DC to 125 DC.
AVAILABLE OPTIONS
PACKAGE
TA
VIO MAX
SMALL
CHIP
CERAMIC
CERAMIC
METAL
PLASTIC
PLASTIC
FLAT
AT 25°C
OUTLINE
CARRIER
DIP
DIP
CAN
DIP
DIP
PACK
(D)
(FK)
(J)
(JG)
(L)
(N)
(P)
(W)
10 mV
10 mV
O°C
to
70°C
TL070CD
TL070CP
TL071 CD
TL071 CP
6 mV
TL071ACD
n071 ACP
3 mV
TL071 BCD
TL071BCP
10 mV
TL072CD
TL072CP
6 mV
TL072ACD
n072ACP
3 mV
TL072BCD
10 mV
TL072BCP
TL074CD
TL074CN
6 mV
TL074ACD
TL074ACN
3 mV
TL074BCD
TL074BCN
-40°C
6 mV
TL0711D
to
6 mV
TL072ID
85°C
- 55°C
6 mV
TL0741D
6 mV
TL071 MFK
TL071 MJG
TL071ML
to
6 mV
TL072MFK
TL072MJG
TL072ML
125°C
9 mV
TL074MFK
TL0711P
TL072P
TL0741N
TL074MJ
TL074MW
The D package is available taped and reeled. Add the suffix R to the device type (e.g., TL071 CDR).
PRODUCTION DATA documents contain information
current as of publication data. Products conform to
spacifications par the tarms of Taxas Instrumants
standard warranty. Production processing does not
necessarily include tasting of all parameters,
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Copyright © 1990, Texas Instruments Incorporated
2-371
TL07l TL071, TL071A, TL071B
TL072, TL072A, TL072B, TL07~TL074A, TL074B
LOW·NOISE JFET·INPUT OPERATIONAL AMPLIFIERS
n070
o OR P PACKAGE
n07l. TL071A. n07l8
D. JG. OR P PACKAGE
(TOP VIEW)
(TOP VIEW)
N1/COMP[]8 CaMP
IN2
7
VCC+
IN +
3
6
OUT
VCC -
4
N1/0FFSET[]8 NC
IN2
7
VCC.+
IN +
3
6
OUT
OFFSET N2
5
TL072. TL072A. TL072B
D. JG. OR P PACKAGE
(TOP VIEW)
VCC _
4
5
AMPL
#1
OFFSET N2
{OUT
ININ +
08
VCC _
2
3
7
6
VCC+
OUT}AMPL
IN #2
4
5
IN +
TL074. TL074A. TL0748
D. J, OR N PACKAGE
TL074 ... W PACKAGE
(TOP VIEW)
AMPL{OUT
#1
ININ+
OUT}AMPL
IN #3
IN+
VCC-
VCC+
IN+}AMPL
IN #4
OUT
AMPL{ IN+
#2
INOUT
n071 ... L PACKAGE
TL072 ... L PACKAGE
(TOP VIEW)
(TOP VIEW)
NC
VCC.).
N
~
N2
«
VCC-
VCC-
PIN 4 IS IN ELECTRICAL CONTACT
WITH THE CASE
PIN 4 IS IN ELECTRICAL CONTACT
WITH THE CASE
TL07l
FK PACKAGE
(TOP VIEW)
4
18
NC
5
17
NC
6
16
VCC+
NC
15
OUT
14
NC
8
9
10 11 12 13
U
Z
I U N
UZ Z
U
>
3
2
II-
U
U
z::J
3
18
5
17
VCC+
NC
6
16
2 IN·NC
21N+
8
17
2 OUT
NC
6
16
NC
15
14
18
9 10 11 12 13
U
Z
NC-No internal connection
TEXAS •
INSTRUMENTS
2-372
1 20 19
4
4
5
8
2
1 IN+
NC
NC
1 IN-
NC
I
::Jz
~~ZZ
1 20 19
NC
ININ+
NC
°
::J
ZZZZZ
2
U
(TOP VIEW)
+
I-
U~U.uu
3
TL074
FK PACKAGE
TL072
FK PACKAGE
(TOP VIEW)
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
9 10 11 12 13
41N+
NC
15
VCCNC
14
31N+
TL070, TL071, TL071A, TL071B
TL072, TL072A, TL072B, TL07~ TL074A, TL074B
LOW·NOISE JFET·INPUT OPERATIONAL AMPLIFIERS
schematic (each amplifier)
VCC+------------~--------------_e----------~--~------__- -__--~
-+________-,
NONINVERTING ____________
INPUT
INVERTING
INPUT --+1--'
~ {NULL/CO~~~NE~
o
- - -- -
-
-- -- --
1t'"
OFFSET
~
NULL IN2) -
-
COMP--- - - - - -
-
-
Cl
I
__
-.J
II
1080
n
I
VCC_~-~~----_4~--~-~I~~---~~--~~---a~-J
OFFSET
NULL
,IN1)
OFFSET
NULL
IN2),
C1 = 18 pFONTL071, TL072 ,
TL073, AND TL074 ONLY.
COMPONENT VALUES SHOWN ARE NOMINAL.
~--------~V~-----------J
TL071 ONLY
symbols
TL070
Nl ICOMP - - - - - - ,
TL071
TL072 lEACH AMPLIFIER)
TL074 lEACH AMPLIFIER)
Nl----....,
COMP-----,
IN+
IN+
OUT
OUT
IN-
N2------I
IN-
IN+=t>IN-
OUT
-
N2---~
-1!1
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-373
n070, n071, n071 A, n071 B
n072, n072A, n072B, n074, n074A, n074B
LOW·NOISE JFET-INPUT OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
TL07~C
TL07~AC
TL07~1
TL07~M
UNIT
TL07~BC
Supply voltage, Vee + (see Note 11
18
18
18
V
Supply voltage, Vee _ (see Note 11
-18
-18
-18
V
Differential input voltage (see Note 21
±30
±30
±30
V
Input voltage (see Notes 1 and 31
±15
±15
±15
V
unlimited
unlimited
unlimited
Duration of output short circuit (see Note 41
Continuous total dissipation
See Dissipation Rating Table
o to
-40 to 85 -55to125
DC
- 65 to 150 -65 to 150 -65to150
DC
Operating free-air temperature range
Storage temperature range
Case temperature for 60 seconds
FK package
Lead temperature 1,6 mm (1/16 inchl from case for 60 seconds
Lead temperature 1,6 mm (1116 inchl from case for 10 seconds
Lead temperature 1,6 mm (1116 inchl from case for 10 seconds
NOTES: 1.
2.
3.
4.
70
J, JG, or
W package
D, N, or
P package
260
260
DC
300
DC
DC
260
L package
DC
300
All voltage values, except differential voltages, are with respect to the midpoint between Vee + and Vee _.
Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that
the dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA'; 25°C
DERATING
DERATE
TA = 70°C
TA = 85°C
TA = 125°C
POWER RATING
FACTOR
ABOVE TA
33 De
POWER RATING
POWER RATING
POWER RATING
464 mW
377 mW
N/A
608 mW
494 mW
N/A
680 mW
680 mW
275 mW
D (8-pinl
680mW
5.8 mWIDe
D (14-pinl
680 mW
7.6 mWIDe
FK
680 mW
11.0 mWIDe
60 De
88 De
J
680 mW
11.0 mWIDe
88 De
680 mW
680 mW
275 mW
JG
680 mW
8.4 mWIDe
69,De
672 mW
546 mW
210 mW
L
680mW
6.6 mWIDe
528 mW
429 mW
165 mW
N
680mW
9.2 mWIDe
25 De
76 De
680 mW
598 mW
N/A
P
680mW
8.0 mWIDe
640 mW
520 mW
N/A
W
680 mW
8.0 mWIDe
640mW
520 mW
200 mW
65 De
65 De
~
TEXAS
INSTRUMENTS
2--374
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TL071M, TL072M, TL074M
LOW·NOISE JFET·INPUT OPERATIONAL AMPLIFIERS
electrical characteristics,
Vee ± =
± 15
V (unless
otherwise noted I
TL071M
PARAMETER
TEST CONDITIONst
MIN
VIO
Input offset voltage
"Via
coefficient of
Temperature
input offset voltage
Input offset
110
liB
current t
Input bias current
Common-mode
VICR
VOM
AVD
input voltage range
Vo
RS
= 25°C
= - 55°C
= 0,
RS = 50
= - 55°C to 125°C
Va
=
Vo
=
Va
TA
a
TA
TA
a
TA
=
=
=
=
TYP
3
MAX
6
MIN
TA
=
0,
3
25°C
5
-55°C to 125°C
65
100
5
200
65
50
-55°C to 125°C
± 11
=
Maximum
RL
RL 2: 10 kO
voltage swing
RL 2: 2 kO
Large-signal
Va
10 kO
=
±10V,
TA
=
25°C
TA
=
-55°C to 125°C
TA
=
25°C
TA
= -
"V/oC
100
pA
20
nA
200
pA
50
nA
± 11
to
V
to
+15
±12 ± 13.5
±12 ±13.5
±12
±12
±10
±10
200
35
V
200
Vim V
differential voltage
RL2:2kO
= 25°C
= 25°C
VIC = VICR
RS = 50 0,
Unity-gain bandwidth TA
Input resistance
Common-mode
rejection ratio
Supply voltage
rejection ratio
mV
-12
+15
35
9
18
20
25°C
UNIT
MAX
15
18
25°C
TYP
9
to 125°C
-12
r;
ICC
TA
TA
Bl
kSVR
TA
0,
peak output
amplification
CMRR
= 0,
= 50
TL074M
TL072M
55°C to 125°C
TA
VCC
RS
=
=
No load,
(each amplifier)
TA
=
Vol IV02 Crosstalk attenuation AVD
TA
=
0,
25°C
±15Vto ±9V,VO
50 0,
IAVCC+/AVIO)
Supply current
=
min, Va
TA
=
25°C
Va
=
0,
TA
=
25°C
=
0,
100,
3
3
10 12
10 12
MHz
0
80
86
80
86
dB
80
86
80
86
dB
25°C
=
15
15
1.4
120
2.5
1.4
120
2.5
mA
dB
t All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified.
tlnput bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive as shown
in Figure 6. Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible.
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 ' DALLAS. TEXAS 75265
2-375
zOl
electrical characteristics,
Vee ±
± 15 V (unless
otherwise noted)
TL070C
Tl071C
TEST CONDITIONS t
PARAMETER
TlO72C
TL074C
MIN
VIO
Input offset voltage
RS
Temperature
CiVIO
Vo
coefficient of
input offset voltage
TA
= 0,
= full
Vo
=0
Vo
=0
TA
= 25°C
Vo
Input offset
110
liB
~
(J)
current i
Input bias current;
TA
= full
Common-mode
VICR
i:lZ
~~
VOM
~c:
~rr1
~z
input voltage range
RS
=
TA
= 25°C
= full range
= 25°C
= full range
TA
TA
TA
-
AVO
=
RL
RL"'10kll
50 II,
voltage swing
RL '" 2 kll
Vo
=
TA
± 10 V.
= 25°C
5
TL074BC
TL0741
TYP
MAX
3
6
100
5
10
65
±12
200
65
±12
±12
±10
±10
TA
= 25°C
25
TA
= full
15
200
3
50
MIN
100
5
65
100
5
200
65
-12
±12
±11
±13.5
±12
~V/oC
100
pA
2
nA
200
pA
20
nA
V
to
±13.5
±12
V
±10
±10
50
mV
+15
±12
200
6
-12
to
+15
±13.5
MAX
18
7
±11
UNIT
8
2
200
to
TYP
3
18
+15
±13.5
MAX
2
5
-12
±11
to
TYP
7
±12
= full
MIN
2
7
TA
range
TlO721
TL074AC
18
18
±11
10 kll
Tl0711
TlO72BC
7.5
+15
Maximum
Large-signal
~@~
..'"'"'"
MIN
Tl071BC
TlO72AC
13
range
peak output
200
50
200
V/mV
differential voltage
range
25
25
25
,...
=-t
:e""
.=
iii .....
='"
C;;:...
m,...
c.,.=
.....
amplification
RL '" 2 kll
Bl
Unity-gain bandwidth
TA
3
3
3
3
'i
Input resistance
TA
10 12
10 12
10 12
10 12
II
m'"
-t:=O
iii-t
.",...-t
(J)
....
10
-12
0
'~f
MAX
3
range
....
::1-
.;~
TYP
I TA = 25°C
= II,
= 50 II
Tl071AC
CMRR
Common-mode
rejection ratio
Supply voltage
kSVR
rejection ratio
= 25°C
= 25°C
VIC = VICR
RS = 5011,
RS
= 25°C
= ±15Vto ±9V, Vo = 0,
= 50 II,
TA = 25°C
Supply current
No load,
(each amplifier)
TA
V0 1/V 02 Crosstalk attenuation
TA
= 0,
VCC
(AVCC±/AVIOI
ICC
min, Vo
= 25°C
AVO = 100,
Vo
= 0,
TA
= 25°C
MHz
70
100
80
100
80
100
80
100
dB
70
100
80
100
80
100
80
100
dB
1.4
120
2.5
1.4
120
2.5
1.4
120
2.5
1.4
120
2.5
mA
dB
t All characteristics are measured under open-loop conditions with zero common·mode voltage unless otherwise specified. Full range for T A is OOC to 70°C for TL07 _C, TL07JC, TL07 _BC
and -40°C to 85°C for TL07-'.
~Input bias currents of a FET-input operational amplifier are normal junction reverse currents. which are temperature sensitive as shown in Figure 6. Pulse techniques must be used that will maintain
the junction temperature as close to the ambient temperature as possible.
.."
.-
C=,...
-t .....
"' .....
=a::I=
=
-m-t-t
=,...,...
."
:=0==
-t ..........
-.po .....
=iiI-t-t
:=0""""
,...==
..........
_
-.po .....
!I'::=o:=o
.,,- -
,... -t-t
- ,...,...
::!!==
m ..........
=.po .....
CI.Ia::IClCI
TL070, TL071, TL071A, TL0718
n072, n072A, n072B, n074, n074A, n0748
LOW·NOISE JFET·INPUT OPERATIONAL AMPLIFIERS
operating characteristics, VCC± PARAMETER
Slew rate at unity gain
tr
Rise time
overshoot factor
In
THO
Equivalent input
noise voltage
Equivalent input
noise current
Total harmonic
distortion
TL07_M
TEST CONDITIONS
SR
Vn
± 15 V, TA - 25°C
V,
~
CL
V,
~
~
10 V,
RL
100 pF,
20mV,
See Figure 1
RL
See Figure 1
CL
~
100 pF,
RS
~
100 Il
If
If
RS
~
100 Il,
f
~
~
MIN
TYP
5
13
2 kll,
2 kll,
1 kHz
TYP
8
13
MAX
UNIT
V/p.s
0.1
20
20
/Ls
%
18
18
nV/$.
4
4
/LV
0.01
0.01
pAl$.
0.003
0.003
%
~ 10 Hz to 10 kHz
~
MIN
0.1
~ 1 kHz
VO(rms) ~ 10 V, RS :s; 1 kll,
f ~ 1 kHz
RL '" 2 kll,
ALL OTHERS
MAX
PARAMETER MEASUREMENT INFORMATION
100 kll
10 kll
RL 2 kll
FIGURE 2. GAIN-OF-10
INVERTING AMPLIFIER
FIGURE 1. UNITY·GAIN AMPLIFIER
FIGURE 3. FEED-FORWARD
COMPENSATION
INPUT OFFSET VOLTAGE NULL CIRCUITS
FIGURE 5
FIGURE 4
TEXAS
~
INSTRUMENTS
POST OFFICE
eox 655303 • DALLAS, TEXAS 75265
2--377
n070, n071, n071A, n071B
n072, n072A, n072B, n074, n074A, n074B
LOW·NOISE JFET·INPUT OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
MAXIMUM PEAK OUTPUT VOLTAGE
vs
FREQUENCY
INPUT BIAS CURRENT
vs
FREE·AIR TEMPERATURE
±15
100
!..
I
/
L
~
.
c:
I
c:
10
~
:l
..
V
CJ
co
..
;
o
:;
±10
~
±7.5
iii
&.
:l
E
Q.
"i
~
~
/
0.1
'xco
±5
\
VCC± = ±10 V
r--
VCC+-±5V
~
I
~
o
>
0.01
-50
-25
0
25
50
75
100
125
±2.5
r\
o
1k
100
T A - Free-Air Temperature - °C
±15
CD
r6'
=:
o
± 12.5
r--
>
:;
So
:l
±10
VCC± = ±10 V
o
~
RL
l )111
111111111 III
VCC± - ±15 V
r--
TA - 25°C
See Figure 2
I
"
.
-=
±7.5
'xco
~
±2.5
100
I
1 k
10k
100k
\1 IIIIII I
\~TA
:l
VCC±-±5V
o
t:= TA - 25°C
o
E
~
o
±12.5
±10
i
±5
>
vcc± - ±15V
RL - 2 kO
See Figure 2
111111111
>
~
~
!.
&.
'xco
10 M
±15
I
'0
±7.5
E
E
1 M
MAXIMUM PEAK OUTPUT VOLTAGE
vs
FREQUENCY
>
= 2 kO
&.
:l
100 k
FIGURE 7
MAXIMUM PEAK OUTPUT VOLTAGE
vs
FREQUENCY
I
10 k
f - Frequency - Hz
FIGURE 6
>
TA - 25°C
See Figure 2
~
±12.5
~
/
c:
RL '';; 10 kO
VCC± ':"±15 V
>
VCC+-+ 15V
"
1M
10M
-55°C
~
TA - 125 0 C\
±5
±2.5
~
o
>
-
o
10 k
f - Frequency - Hz
FIGURE 8
~
\
'r---
~~
40 k 100 k
400 k 1 M
f-Frequency-Hz
4 M 10 M
FIGURE 9
toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. An
18-pF compensation capacitor is used with TL070.
~
TEXAS
INSTRUMENTS
2-378
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
n070, n07l, n07l A, n07l B
TL072, TL072A, TL072B, TL074, TL074A, TL074B
LOW·NOISE JFET·INPUT OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
MAXIMUM PEAK OUTPUT VOLTAGE
vs
LOAD RESISTANCE
MAXIMUM PEAK OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
>
±15
QI
r--
"6
>
So
:::I
±10
~ ± 12.5
"6
>
..
.Ole
±7.5
l.
l.
E
:::I
E
E
..
±5
I
..
:::!:
±2.5
:::!:
o
>
±5
E
';(
o
I
Vcc± - ±15 V
See Figure 2
o
-75 -50 -25
±2.5
:::!:
o
>
25
50
75
o
100 125
)t'
I
I
0.1
0.2
>
±15
RL - 10 kO
TA - 25°C
I
E
;
±10
So
:::I
o
~
±7.5
/./
l.
E
:::I
E
';(
.
:::!:
I
±5
;;
V
± 12.5
-a
>
/
V
I
c
..
/V
400
.g
200
!i:
Q.
E
"
100
c:(
40
QI
l!!
20
>
~c
10
QI
4
"6
2!
~
:::!:
o
>
1000
I
o
C
o
2
-r--
r--.....
CI
/
±2.5
7 10
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
MAXIMUM PEAK OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
QI
0.4 0.7 1
4
2
RL -Load Resistance-kO
FIGURE 11
FIGURE 10
go
/
V
TA-Free-Air Temperature- °C
>
V
V
±7.5
:::I
';(
:::!:
± 10
;
o
o
~
Vcc± - ±15 V
TA - 25°C
See Figure 2
QI
&.
_...
±15
I
-
RL - 2 kO
~ ± 12.5
;
>
RL - 10 kO
I
6
10 12
14
8
IVcc± I-Supply Voltage-V
4
16
>
c:(
2
VCC± - ±15 V
VO-±10V
RL - 2 kO
1
o 25 50 75 100 125
-75 -50 -25
T A - Free-Air Temperature - °C
FIGURE 12
FIGURE 13
to ata' at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. An
18-pF compensation capacitor is used with TL070.
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-379
n070. n071. n071A. n071B
n072. n072A. n072B. n074. n074A. n074B
LOW·NOISE JFET·INPUT OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
TL070
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
and PHASE SHIFT
vs
FREQUENCY
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREQUENCY WITH FEED-FORWARD
COMPENSATION
106r--~-~-~-'--~--r-~
VCC-±15V
C2-3pF
TA - 25°C
See Figure 3
..........
1\
c
VCC± - ±5Vto ±15V
RL-2kO
~ 10 5 r-'--+--~r-'-TA _ 25°C
.!
ict 10
r-...
'\
:j
!
102
I
Q
10
~
"-
l
1
100
1k
10 k
100 k
f- Frequency- Hz
t
I
~ 103+---~r-+--~~
~
~
i
! 1021--+-~~_+--+~+-.....Ir;;::---l900
1\
1\
1M
0
G)
0
i
•=_G)
Q
610 1
(right scalel
l
135°
1'--_~_~_~_~_-L_.....L...~J1800
10 M
1
100 1 k 10 k 100 k 1 M 10 M
f- Frequency - Hz
10
FIGURE 14
FIGURE 15
COMMON-MODE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
1.3 r---r--,---,-,---,---,r---r---, 1.03
r:II
89
Vcc± - ±15V
RL - 10 kO
"t:I
I
.g
1.02
1.2 r-'---t-~-
I
iii
NORMALIZED UNITY-GAIN BANDWIDTH
and PHASE SHIFT
vs
FREE-AIR TEMPERATURE
~
I
DIFFERENTIAL
VOLTAGE
4
II
88
II:
~
~ 1.11--t--+---Pl....---t--+-----"1I--t---11.01
~
I/)
"t:I
.g
.~
:::e
J
0.9 1--I--+--+---+--+--''''-<::I--t---1 0.99 ~
Z~
0.8
iii
f - B1 for Phase Shift
O. 7 '----'_--'-_.....L..._~_ _ ' _ _ _ L . . - _ _ _ L _....... 0.97
-75 -50 -25
0
25 50 75 100 125
TA -Free-Air Temperature- °C
87
u
G)
'i'
G)
-+--I--+---""4 0.98
0
:
i
VCC± - ±15V
RL _ 2 kO
C
't::
Z
II:
86
...
c
~ 85
E
o
u
I 84
II:
II:
:::e
u
83
-75 -50 -25
o 25 50 75 100 125
TA-Free-Air Temperature- °C
FIGURE 16
FIGURE 17
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of tne various devices. An
18-pF compensation capacitor is used with TL070.
TEXAS " ,
INSTRUMENlS
2-380
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TL070,TL071, TL071A, TL0718
n072, n072A, n0728, n074, n074A, n0748
LOW·NOISE JFET·INPUT OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
SUPPLY CURRENT PER AMPLIFIER
vs
SUPPLY VOLTAGE
SUPPLY CURRENT PER AMPLIFIER
vs
FREE-AIR TEMPERATURE
2.0 r---,------r--,---,----,--r---,,....---.
TA - 25 °c -+_--!-_+-_+-~I__-I
- No signal
- 1.0
c.
c.
Jl
I
t--i--t--j---j--+--t---1I-----1
0.8 t--t--+--j---+---+--t------1r--I
+1
"': r~
...................
"'- r--....
1.2
u
al
u
0.6
0.2 1---I--+--j---+---+---!------1--I
0.2
o
0L---'-_.....L_-L-_L....---L_-L_.....L................l
-75 -55 -25
16
~
175
'c."
'iii
~
~
11.
100
iii
0
l-
75
I
50
c
11.
I I
!--
"'-r-TL074
-.......
150
Ul
C 125
0
1.15
Vcc± - ±15 V
No signal
No load
-
---
r-- -21072
TL070. TL071
50
75
100 125
NORMALIZED SLEW RATE
vs
FREE-AIR TEMPERATURE
250
E 200
I
25
FIGURE 19
TOTAL POWER DISSIPATED
vs
FREE-AIR TEMPERATURE
"tl
0
TA - Free-Air Temperature - °c
FIGURE 18
3::
t----...
0.8
I
+l
90.4
225
............
-ac. 1.0
u
9 0.4 1---+---+--+---!--+--+---I"'--1
246
8
10 12 14
IVcc ± I-Supply Voltage- V
............
I 1.4
0.6 t--t--+--j---+---+--t------1r--I
o
Vcc± - ±15 V
No signal
No load
1.8
1
- r--
1
!
!
a:: 1.05
~
"'-
.
VCC± - ±15 V
RL-2kD
1.10 I-- CL _ 100 pF
.......
£
]
'ii
1
0 .95
I
""
"- ~
t"--"
~
0.90
25
o
0.85
-75 -50 -25
0
25 50 75 100 125
TA - Free-Air Temperature - °c
-75 -50 -25
0
25 50 75 100 125
TA - Free-Air Temperature - °c
FIGURE 20
FIGURE 21
t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. An
18·pF compensation capacitor is used with TL070.
TEXAS
.Jf
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-381
TL07L TL071, TL071A, TL071B
n072, n072A, n072B, n074, n074A, n074B
LOW·NOISE JFET·INPUT OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
~ 50
~
~ 40
IUU
II
Vcc± - ±15 V
AVO - 10
RS - 100 (}
TA - 25°C
1\
J
.!!
TOTAL HARMONIC DISTORTION
vs
FREQUENCY
\
30
..
o
Z
'\.
::J
~ 20
i
.~ 10
.B"
I
c
> 0
10
40 100 400 1 k
4 k 10 k 40 k 100 k
f- Frequency - Hz
0.001 L-..-'-.............1...L..L.I..U----'~...L..L..L.U.J.~_'_...L-I....L..LJ.uJ
4 k 10 k
40 k 100 k
100
400 1 k
f-Freljuency-Hz
FIGURE 22
FIGURE 23
OUTPUT VOLTAGE
vs
ELAPSED TIME
VOLTAGE-FOLLOWER
LARGE-SIGNAL PULSE RESPONSE
6
-,
---
28
Vcc± - ±15 V
RL-2k(}
if -
,OOpf
/
OUTPUT
TA - 25°C
~
\\
II
/
--
r--o
0.5
1
1.5
20
DI
16
>
12
;-
8
1!o
5
o
INPUT
-6
OVERSHOOY
T I. 90%
I
/
I
11
24
2
2.5
/
I
~ 4
-4
3.5
I
I
1M
o
t-Tlme-I's
FIGURE 24
VCC± - ±15 V
RL-2kO
TA - 25°C
rtr
0.1
0.2 0.3 0.4
t-Time-I's
FIGURE 25
TEXAS
~
INSTRUMENTS
2-382
I
I
I
10%
o
3
./
I:
I
1\j
\
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
0.5 0.6
0.7
n070, n071, n071A, n071B
TL072, TL072A, TL072B, TL074, TL074A, TL074B
LOW·NOISE JFET·INPUT OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
RF - 100 kfl
+15 V
3.3 kfl
CF - 3.3P.F
OUTPUT
OUTPUT
r
1 kfl
3.3 kfl
R1 = R2 - 2R3 - 1.5 Mfl
R3
9.1 kfl
C1
1
f---2" RF CF
C2
C3
C1 - C2 - - 110 pF
1
2
fo = 2" R1 C1 -
FIGURE 26. O.5-Hz SQUARE-WAVE OSCILLATOR
1 kHz
FIGURE 27. HIGH-Q NOTCH FILTER
1 Mfl
>--e-- OUTPUT A
VCC+
1 p.F
INPUT
--11--1--.. . .-t
.>-......-OUTPUT
VCC100 kfl
B
100 kfl
100 kfl
100 p.F
1
-=100 kfl
>--.--OUTPUT C
FIGURE 28. AUDIO DISTRIBUTION AMPLIFIER
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-383
TL070,TL071, TL071A, TL071B
TL072, TL072A, TL072B, TL074, TL074A, TL074B
LOW·NOISE JFET·INPUT OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
1N4148
6 sin ",t
18 kO (see Note AI
r---~,---~~--~~----------15V
18 pF
1 kO
18 pF
88.4 kO
>-.....------------------....- 6 cos wt
88.4 kO
18 pF
Vcc-
1 kO
L - - -__~------~._~~----------+15V
18 kO (see Note AI
1N4148
88.4 kO
Note A: These resistor values may be adjusted for a symmetrical output.
FIGURE 29. 100·kHz QUADRATURE OSCILLATOR
0.1/lF'I'
-=
10 kO
1 M!l
10 kO
>-___-OUTPUT
500
0.1 "F
10 kO
FIGURE 30. AC AMPLIFIER
TEXAS •
INSTRUMENTS
2-364
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TL07l TL071, TL071A, TL0718
n072, n072A, n0728, TL074, TL074A, n0748
LOW·NOISE JFET·INPUT OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
220 k{J
0.00375/LF
10 k{J
27 k{J
MIN
MIN
100 k{J
.?4--....~'V\r--3-'1.3NVk{J~ TREBLE
MAX
100 {J
OUTPUT
INPUT
Vcc68 k{J
10 pF
FIGURE 31. Ie PREAMPLIFIER
IC PREAMPLIFIER
RESPONSE CHARACTERISTICS
25
MAX BASS
II
20
aI
15
"0
I
c::
5
c.
0
.,
-5
~
"
10
..
~
See Figure 31
I"
V
C>
~ -10
V
0
>
/
,/
........
/
"
-15
-20
-
TREBLEL
"- I\..
E
Z
U ttuu u
Z OZZ Z
IN-
AMPL
#2
NC
VCC+
NC
OUT
NC
18
17
16
15
14
4
5
6
NC
# 1 INNC
#1 IN+
NC
8
NC
#2 OUT
NC
#2INNC
9 1011 12 13
9 1011 12 13
U IU + U
Z U Z ZZ
U
N
>
U IU NU
Z U Z ZZ
I-U
UJ
>
(J)
""
ll.
ll.
TL084M ... FK CHIP CARRIER PACKAGE
0
(TOP VIEW)
II-I-- I
TL084. TL084A. TL084B
D. J. OR N PACKAGE
~6
6~
U'-
OUT
IN-
OUT
-
N2
N2
description
The TL08_ JFET-input operational amplifier family is designed to offer a wider selection than any previously
developed operational amplifier family. Each of these JFET-input operational amplifiers incorporates wellmatched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit. The devices feature
high slew rates, low input bias and offset currents, and low offset voltage temperature coefficient. Offset
adjustment and external compensation options are available within the TL08_ family .
. Device types with a "C" suffix are characterized for operation from 0 °C to 70°C, those with an "I" suffix
are characterized for operation from - 40 °C to 85 DC, and those with an HM" suffix are characterized
for operation over the full military temperature range of -55°C to 125°C.
AVAILABLE OPTIONS
TA
VIO MAX
AT
25°C
OOC
to
70 0 C
15 mV
15 mV
6mV
3mV
15 mV
6mV
to
3mV
15 mV
6mV
3mV
6 mV
6mV
6mV
6mV
6 mV
6mV
125°C
9 mV
-40 o C
to
85°C
-55°C
PACKAGE
SMALL
OUTLINE
(DOOS)
TL080CD
TL081CD
TL081ACD
TL081 BCD
TL082CD
TL082ACD
TL082BCD
SMALL
OUTLINE
(0014)
CHIP CARRIER
(FK)
-
-
-
CERAMIC DIP CERAMIC DIP PLASTIC DIP
(N)
(J)
(JG)
-
-
-
-
-
-
-
-
-
TL084CN
TL084ACN
TL084BCN
TL084CD
TL08110
TL0821D
TL0831D
TL0841D
TL084ACD
TL084BCD
-
-
-
TL081BCP
TL082CP
TL082ACP
TL082BCP
-
TL0841N
TL082MFK
TL084MFK
TL081MJG
TL082MJG
TL084MJ
The 0 package is available taped and reeled. Add "R" suffix to device type, (e.g., TL080CDR).
TEXAS . "
INSTRUMENlS
2-388
TL080CP
TL081CP
TL081ACP
TL0811P
TL0821P
-
TL0841D
TL081MFK
-
-
PLASTIC DIP
(P)
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
-
-
nOBO, nOB1, nOB2, nOB4, nOB1A, nOB2A, nOB4A
nOB1 B, nOB2B, nOB4B
JFET·INPUT OPERATIONAL AMPLIFIERS
schematic (each amplifier)
NONINVERTING
INPUT IN+
-----f-------,
INVERTING
INPUT IN-
.._--.Vv--!-----+--l-OUTPUT
OFFSET NUll/COMP ( N 1 ) - - - - - - - Tl080
ONLY
1
OFFSET NUll (N2) - -
C1 I
iE--,
COMP--- - - - - - - __ ....J
r-
--,
10801
I
I
1080!l
!l I
I
I
VCC_~:-~--~-~~I~~--..----~---~----J
OFFSET
NUll
OFFSET
NUll
~1)
~~
: C1 - 18 pF on TL081. TL082. AND TL084 ONLY
(INCLUDING THEIR SUFFIX VERSIONS).
COMPONENT VALUES SHOWN ARE NOMINAl.
Tl081 ONLY
TEXAS ~
INSfRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-389
TL080, TL081, TL082, TL084, TL081A, TL082A, TL084A
TL081B, TL082B, TL084B
JFET·INPUT OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
TL08_C
TL08 AC
TL08_BC
TL08_1
TL08_M
UNIT
18
-18
18
-18
18
-18
V
Supply voltage, VCC _ (see Note 1)
Differential input voltage (see Note 2)
±30
±30
±30
V
Input voltage (see Notes 1 and 3)
±15
±15
±15
V
unlimited
unlimited
unlimited
Supply voltage, VCC+ (see Note 1)
Duration of output short circuit (see Note 4)
Continuous total dissipation
See Dissipation Rating Table
o to
Operating free-air temperature range
- 55 to 125
°C
-65 to 150
°C
FK package
260
°C
J or JG package
300
°C
Storage temperature range
Lead temperature 1,6 mm (1/16 inch)
from case for 60 seconds
Lead temperature 1,6 mm (1/16 inch)
D, N, or P package
from case for 10 seconds
1.
2.
3.
4.
70
-40 to 85
-65 to 150 -65 to 150
Case temperature for 60 seconds
NOTES:
V
260
260
°C
All voltage values, except differential voltages, are with respect to the midpoint between VCC + and VCC _.
Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that
the dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA:5 25°C
POWER RATING
DERATING
DERATE
TA - 70°C
POWER RATING
TA - 85 Q C
POWER RATING
TA - 125°C
POWER RATING
N/A
D (8 Pin)
D (14 Pin)
680 mW
FACTOR
5.8 mW/oC
464mW
377 mW
680mW
7.6 mW/oC
60°C
608 mW
494mW
N/A
FK
J
680mW
11.0 mW/oC
88°C
680mW
680mW
275 mW
680mW
680mW
680mW
275 mW
680mW
11.0 mW/oC
8.4 mW/oC
88°C
JG
69°C
672 mW
546mW
210mW
9.2 mW/oC
8.0 mW/oC
76°C
65°C
680 mW
598 mW
N/A
640 mW
520mW
NIA
N
680mW
P
680mW
ABOVE TA
32°C
TExAs •
INSTRUMENTS
2-390
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
electrical characteristics,
Vee ±
± 15 V (unless otherwise noted)
TL080C
TL081AC
TL081C
TEST CONDITIONst
PARAMETER
TL082C
TL084C
MIN
VIO
Input offset voltage
Temperature
"VID
coefficient of input
offset voltage
110
."
liB
Input offset current i
Input bias current:!:
Vo
~
0,
TA
RS
~
500
TA = full range
Vo
~
0,
RS
~-
i:iZ
~~
~;o~
2C:~
;~
~(TJ
~Z
~~4r
...'"
'"
m
Common-mode
VICR
input voltage range
~
25°C
~
Vo
0
~
Vo
500,
TA
~
25°C
TA
~
full range
TA
~
MAX
3
15
MIN
5
200
VOM
AVO
output voltage swing
~
RL
25°C,
~
full range
10 kO
RL ~ " 10 kll
TA ~ full range RL " 2 kll
Vo
~
Large-signal differential
TA
~
voltage amplification
VO~±10V,
±10V,
±11
to
±12
±13.5
CMRR
30
MAX
2
3
±12
±13.5
MIN
3
100
5
30
100
5
200
30
7
-12
±11
to
±12
±13.5
15
to
±12
±13.5
15
mV
~VloC
100
pA
10
nA
200
pA
20
nA
±12
±12
±12
±10
±12
±10
±12
25
200
50
200
50
200
50
200
15
25
25
Co..
25
""1"1
3
3
3
3
~
25°C
10 12
10 12
10 12
10 12
11
86
dB
Input resistance
TA
Common-mode
VIC ~ VICR min,Vo ~ 0,
rejection ratio
RS
TA
~
70
25°C
80
86
86
80
86
80
MHz
VCC
RS
~
~
± 15 V to ± 9 V, Vo
5011,
Supply current
No load,
(per amplifier)
TA
V0 l/V 02 Crosstalk attenuation
~
0,
70
86
TA
~
25°C
Vo
~
0,
1.4
TA
~
25°C
120
80
80
86
86
80
86
-:-I
iii
-a
c
=
.... •=
-'="
~
AVD
25°C
~
100,
2.8
1.4
2.8
120
1.4
120
2.8
1.4
120
2.8
TLOB_AC, and TLOB_BC, and -40°C to
mr-r-
mA
Q ••
dB
B5°C for TLOB_I.
:j: Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive as shown in Figure 18. Pulse techniques
must be used that will maintain the junction temperatures as close to the ambient temperature as is possible.
-a ........
dB
t All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range for TA is O°C to 70°C for TLOB_C,
b
~
m
=
=
.r-...
=
=
.!"
....
r-
Q
(6.vCC+lavI01
ICC
-
VlmV
RL " 2 kO,
25°C
rejection ratio
....r-
V
±10
~
500,
=
=
?
TA
~
....
r-
V
15
±12
RL " 2 kO,
6
-12
±11
±10
25°C
MAX
18
2
200
UNIT
9
18
±12
TYP
5
-12
to
TL0831
TL0841
TYP
7
±11
TL0821
Unity-gain bandwidth
Supply voltage
kSVR
MIN
2
400
±12
N
ri
6
10
TA ::::: full range
Bl
MAX
3
5
-12
TA
TYP
18
15
Maximum peak
TL084BC
2
30
TA ~ 25°C
TL082BC
TL084AC
7.5
18
TA ~ 25°C
0
TYP
TL082AC
20
T A = full range
0
'"-<0
~
TL0811
TL081BC
===
,.==
--
....
-=,.
2 ........
,.r-r-
r-==
-==
_NN
5:="
-a. •
r- ........
- r- r:!:l==
m==
=-'="-'="
cn=,.
TL080M, TL081M, TL082M, TL084M, TL081AM, TL082AM, TL084AM
TL081 BM~ TL082BM, TL084BM
JFET-INPUT OPERATIONAL AMPLIFIERS
electrical characteristics,
Vee ± - ± 15 V (unless otherwise noted)
TEST CONDITIONS t
PARAMETER
VIO
Input offset voltage
"VIO
coefficient of input
1TA
1TA
Vo = 0,
RS = 50!l
Temperature
offset voltage
110
Input offset current:!:
liB
Input bias current*
MIN
input voltage range
Maximum peak
VOM
MAX
3
6
RS = 5011,
Vo = 0,
5
TA = 25°C
30
TA = 25°C
100
5
200
30
±11
RL = 10 kll
'" 10 kO
'" 2 kO
±12
±11
to
±13,5
±12
VO=±10V,
B,
Unity-gain bandwidth
TA = 25°C
3
3
r;
Input resistance
TA = 25°C
10 12
10 12
Common-mode
VIC = VICR min,
Vo = 0,
rejection ratio
RS = 5011,
TA = 25°C
Supply voltage
ICC
VCC = ±15Vto ±9V, Vo = 0,
RS = 5011,
TA = 25°C
Supply current
No load,
Vo = 0,
(per amplifier)
TA = 25°C
(,:\VCC±f,:\VIO)
Vo 1/Vo2 Crosstalk attenuation
AVO = 100,
V
±10
±12
±10
±12
25
200
25
200
V/mV
RL '" 2 kll,
TA = -55°C to 125°C
rejection ratio
nA
V
voltage amplification
kSVR
pA
50
±13.5
TA = 25°C
CMRR
nA
200
±12
±12
Large-signal differential
AVO
pA
20
to
TA = -55°C to
RL",2kO,
100
15
output voltage swing
VO=±10V,
mV
-12
15
.1 RL
125°C 1RL
UNIT
~VfoC
18
-12
TA = 25°C,
9
50
TA = 125°C
TA = 25°C
MAX
3
20
TA = 125°C
Vo = 0
TYP
15
18
TA = -55°C to 125°C
Vo = 0
MIIIi
9
= -55°C to 125"C
Common~mode
VICR
TYP
= 25°C
15
15
MHz
0
80
86
80
86
dB
80
86
80
86
dB
TA = 25°C
1.4
120
2.8
1.4
120
2.8
mA
dB
t All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified.
t Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive as shown
in Figure 18. Pulse techniques must be used that will maintain the junction temperatures as close to the ambient temperature as is possible.
TEXAS . "
INSTRUMENTS
2-392
POST OFFICE BOX 655303 • DALLAS, TEXAS 75266
nOBO, nOB1, nOB2, nOB4, nOB1A, nOB2A, TLOB4A
TLOB18, TLOB2~ TLOB48
JFET·INPUT OPERATIONAL AMPLIFIERS
operating characteristics, V CC ±
... ± 15 V,
VI = 10 V,
CL = 100 pF,
SR
TA
=
25 DC (unless otherwise noted)
TEST CONDITIONS
PARAMETER
TYP
8*
VI = 10 V,
RL = 2 kO
TL081M
CL = 100 pF,
See Figure 1
T A = - 55°C to 125°C
TL082M
Rise time
VI =20 mV,
Overshoot factor
CL = 100 pF,
RL = 2 kO,
See Figure 1
Vn
Equivalent input noise voltage
RS = 1000
In
Equivalent input noise current
RS = 1000,
THO
Total harmonic distortion
VO(rms) = 10 V, RS :5 1 kO,
f = 1 kHz
RL 2: 2 kO,
tr
Slew rate at unity gain
MIN
RL = 2 kO,
See Figure 1
MAX
UNIT
13
V/p$
5*
TL084M
Lf
If
0.05
I'S
20%
= 1 kHz
= 10 Hz to 10 kHz
f = 1 kHz
18
nV/../Hz
4
I'V
pA/../Hz
0.01
0.003%
*On products compliant to MIL-STD-883, Class B, this parameter is not production tested.
PARAMETER MEASUREMENT INFORMATION
100 kO
C2
10 kO
RL 2 kO
FIGURE 1. UNITY-GAIN AMPLIFIER
FIGURE 2. GAIN-OF-10
INVERTING AMPLIFIER
FIGURE 3. FEED-FORWARD
COMPENSATION
INPUT OFFSET VOLTAGE NULL CIRCUITS
VCC+
1 MO
FIGURE 4
FIGURE 5
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2--393
nOBO, nOB1, nOB2, nOB4, nOB1A, nOB2A, nOB4A
TLOB1B, TLOB2B, TLOB4B
JFET·INPUT OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
MAXIMUM PEAK OUTPUT VOLTAGE
vs
FREQUENCY
MAXIMUM PEAK OUTPUT VOLTAGE
vs
FREQUENCY
±15
i~1fI1
>
j
I
cc+
I
1'\
± 12.5
1
'0
~
R~ 10 kG
TA - 25°C
See Figure 2
=11I~15 V
f
±10
--=co
±7.5
VCC± = ±10 V
:::J
~
0
Gl
E
:::J
E
±5 f--
:!:
I
VCC±-±10V
± 7. 5 ~O:tUIIII==t:tl:mIIlH+J1rnd1~~uml~-UUIUl
E
VCC+ = +5 V
'xco
±5~~~~~~-4~~-4~~-44+~
'x
VCC± -
co
>
0
100
1k
10 k
100 k
1 M
~i'
o
>
f\"
0
O~~~~~~-L~~~~W-~~
10 M
100
±15
I
Gl
g' ± 12.5
~
5
±10
--=
±7.5
~
o
i
E
:::J
E
TA
'xco
:!:
I
±2.5
:!:
o
>
o
10 k
10 k
100 k
f-Frequency-Hz
FIGURE 6
FIGURE 7
- Lllll~!b
±5
1k
f - Frequency - Hz
IT
VCC±
RL
'\
iliil
~TA =
~
= 125 0 C\
\
±
10 M
±15
15'V
>
RL - 10 kG
S ±12.5
RL
I
2 kG
Gl
Figr 2
=
2 kG
25
50
-
'0
>
-55°C
5
So
:::J
±10
~
±7.5
o
~
E
~
:::J
E
±5
'xco
~
40 k 100 k
=
=
1 M
MAXIMUM PEAK OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
MAXIMUM PEAK OUTPUT VOLTAGE
vs
FREQUENCY
>
±5V
:!:
I ± 2.5 ~H-l4HIIHf+t-HHIH-++HH+H-++MH-++tfliI!
:!:
±2.5
:!:
See Figure 2
±10~~~~~~~~~-Y4+~~4+~
~
E
I
Q.
~III'T"TTTTI
1IIIIm""--'-'ll"TTTll1l'"
III1I1 --rTTT~~mrr--r,":1~"Ti-mm;~~"
± 12.5 R::ffRfniv..::cTcT+Trm-..,;;;±y-:.1n5TiV"",~
>
5
So
>
5
So
:::J
± 15
'"
~
400 k 1 M
:!: ±2.5
I
:!:
"""4 M 10 M
o
>
o
VCC± = ±15 V
See Figure 2
-75 -50 -25
o
75
100 125
TA-Free-Air Temperature- °C
f-Frequency-Hz
FIGURE 9
FIGURE 8
t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. A
12-pF compensation capacitor is used with TL080.
.
i
TEXAS
~
INSTRUMENTS
2-394
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
n080, n081, n082, n084, n081A, n082A, n084A
n0818, n0828, n0848
JFET·INPUT OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
MAXIMUM PEAK OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
MAXIMUM PEAK OUTPUT VOLTAGE
vs
LOAD RESISTANCE
±15
>
Vcc± - ±15 V
TA - 25°C
See Figure 2
I
F±12.5
"0
>
... ±10
011
...
±7.5
E
:::J
E
±5
011
a..
'j(
I
011
F ±12.5
V
±2.5
:!:
I
L
Co
±10
:;
o
i
/
:.
±7.5
E
~
..
±5
I
±2.5
V
'j(
:!:
I
0
0.1
0.2
0.4 0.7 1
4
2
o
o
7 10
2
4
..g
-
~
r--.. r--....
100
E 70
c:s:
40
10 5
~-+-~+--
VCC±-±5Vto±15V
RL - 10 kG
T A - 25°C
E
&
~~
~
i:5
I
c
VCC± - +15 V
Vo - ±10V
RL - 2 kG
I
I
1
-75 -50 -25
(/j
(left scalel
50
75
011
III
a..
102 f---+--.....:~-+--+-.lo,,--+--~---/ 90°
(right scale)
-+--+~-+-":\-1 135
L - _ L - _ L - _ L -__~__~__-L~J
25
..
45°
.r:
>
c:s:
I
o
:E
.r:
VOLTAGE
l!l
~ 103~-+4-+--+-~-+
10
2
16
c:s: 104 I..---+--+-~+---+ DIFFERENTIAL
20
7
4
14
0.
&
>
12
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
and PHASE SHIFT
.vs
FREQUENCY
c
:e0.
10
FIGURE 11
1000
700
I 400
c
.g.. 200
68
IVcc± I-Supply Voltage-V
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
~
V-
o
FIGURE 10
>
I/
/
/
/V
:!:
>
RL -Load Resistance-kG
.€>
V
"0
0
>
RL - 10 kG
TA - 25°C
>
/1/
...0..
..
,.... I--'~
±15
I
:;
:::J
Co
:::J
:!:
>
100 125
10
100
1k
°
180 0
10 k 100 k 1 M 10 M
f- Frequency - Hz
T A - Free-Air Temperature- °C
FIGURE 12
FIGURE 13
t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. A
12-pF compensation capacitor is used with TL080.
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2--395
TL080.TL081, TL082, TL08~ TL081A, TL082A, TL084A
TL0818, TL0828, TL0848
JFET·INPUT OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
TI,080
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREQUENCY WITH FEED-FORWARD COMPENSATION
TOTAL POWER DISSIPATED
vs
FREE-AIR TEMPERATURE
250
106
c
..,.0
'<>"
:E
10 5
.,
104
is.
E
c(
..........
~
'\
C>
f!
"5
> 103
~c
~
£
VCC±-±15V
C2 - 3 pF
TA - 25°C
See Figure 3
102
I
'"
Co
10 k
'"\
100 k
f-.... -!.l084, Tl085
150
..............
- --
G; 125
~
~
\
10
1k
................... 1"-...
is
>
c(
1
100
E 200
I
! 175
"0
.~
is
0
VCC± = ± 15 V
No signal
No load
~ 225
1 M
~o
100
75
I-
&
25
o
-75 -50 -25
10 M
VCC± = ±15 V
No signal
No load
1.8
E
1.c
:;~
1.4
r---.....
...............
75
100 125
c(
> 1.0
I
I
1.8 _ TA ~ 25°C
No signal
1.6 - No load
1.4
~
:; 1.2
~
is.
U
>
is.
1.0
Co
Jl
§- 0.8
+1
U
2.0
...cI
r---..... t--.....
u
en
I
50
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
E
"'f-....I"-...
1.2
25
FIGURE 15
SUPPLY CURRENT PER AMPLIFIER
vs
FREE-AIR TEMPERATURE
1.6
0
TA - Free-Air Temperature - °C
FIGURE 14
c(
- r--
Do
f - Frequency - Hz
2.0
Tl083
I
Tl080, TlO81
50
\
~082,
r--.
I
+1
U
0 .6
0.8
0.6
!:} 0.4
!:} 0.4
0.2
0.2
o
o
o
-75 -50 -25
0
25
50
75
100 125
2
4
6
8
10
12
14
16
IVcc± I-Supply Voltage-V
T A - Free-Air Temperature - °C
FIGURE 17
FIGURE 16
t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. A
12-pF compensation capacitor is used with TL080.
TEXAS •
INSTRUMENTS
2-396
POST OFFICE BOX 655303 - DALLAS. TEXAS 75265
TL080, TL081, TL082, TL08t TL081A, TL082A, TL084A
TL0818, TL0828, TL0848
JFET·INPUT OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
INPUT BIAS CURRENT
vs
FREE-AIR TEMPERATURE
VOLTAGE-FOLLOWER
LARGE-SIGNAL PULSE RESPONSE
100
6
Vcc+ = + 15 V
---
/
/
10
4
I
V
II)
III
E
co
~
~
i'!
/
2
"6
...
.,
as
II)
o
:::l
S:::l
:;
c.
.E
I 0.1
!§.
I\~l
TA -
I
INPUT
--
-25
0
25
50
75
-6
100 125
o
100 pF
25°C
\\
c.
.E -4
0.01
-50
OUTPUT
/
o
-g., -2
:;
/
Vcc± - ±15 V
!\ Rl - 2 kG
/
>
U
-,
1.5
0.5
TA -Free-Air Temperature- °C
2
\J
2.5
3
3.5
t-Time-,..s
FIGURE 18
FIGURE 19
OUTPUT VOLTAGE
vs
ELAPSED TIME
28
".....
24
>
E
I
20
co
16
III
i'!
"6
>
...
12
S:::l
8
VCC± - ±15 V
Rl - 2 kG
Cl - 100 pF
TA - 25°C
See Figure 1
:::l
0
I
0
>
4
'I
~
Ir-
0
V
-4
o
0.2
0.4
0.6 0.8
1.0 1.2
t-Time-I's
FIGURE 20
t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. A
12-pF compensation capacitor is used with TL080.
TEXAS
"'I
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-397
n080, n081, n082, n084, n081A, n082A, n084A
n081 B, n082B, n084B
JFET·INPUT OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
COMMON-MODE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
III
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
~
89
Vcc± - ±15 V
RL - 10 k!l
"0
I
o
';
:>c:
88
a:
I
87
I
86
'0
c:
.g
25
50
75
100 125
0
10
40 100
T A - Free-Air Temperature - °C
400 1 k
4 k 10 k 40 k 100 k
I-Frequency-Hz
FIGURE 21
FIGURE 22
TOTAL HARMONIC DISTORTION
vs
FREQUENCY
~
0.4
I
c:
o
'f
g
Vcc+ - +15 V
AVO - 1
VI(RMSI - 6 V
TA - 25°C
0.1
II)
is
-
'§t.......-OUTPUT C
-=
FIGURE 26. AUDIO DISTRIBUTION AMPLIFIER
1N4148
6 sin ",t
18 kll (see Note A)
....--t-.r--",--'lNv--- -15 V
18 pF
1 kll
18 pF
88.4 kll
>-......--------~..... 6 cos wt
88.4 kll
18 pF
1 kll
L--"~---~~~~---+15V
1N4148
18 kll (see Note A)
-=
88.4 kll
NOTE A: These resistor values may be adjusted for a symmetrical output.
FIGURE 27. 100-kHZ QUADRATURE OSCILLATOR
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-399
nOBO, nOB1, nOB2, nOB4, nOB1A, nOB2A, nOB4A
nOB1 B, nOB2B, nOB4B
JFET·INPUT OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
16 kO
16 kO
220 pF
220 pF
43 kO
43 kO
30 kO
30 kO
43 kO
VCC+
VCC+
VCC+
INPUT
43 kO
1.5 kO
43 kO
VCC-
OUTPUT
B
1.5 kO
VCC-
VCC-
OUTPUT
A
OUTPUT A
OUTPUT B
2 kHz/div
SECOND-ORDER BANDPASS FILTER
fa - 100 kHz. Q - 30. GAIN - 4
2 kHz/div
CASCADED BANDPASS FILTER
fa - 100 kHz. Q - 69. GAIN - 16
FIGURE 28. POSITIVE·FEEDBACK BANDPASS FILTER
220 kO
0.00375 "F
10 kO
0.003 "F
0.03 "F
27 kO
MIN
100 kO
BASS
MAX
0.01 "F
1000
3.3 kO
MIN
100 k!l
TREBLE
MAX
OUTPUT
0.03 "F
INPUT
BALANCE
10 kO
47 kO
10 pF
5 kO
GAIN
0.003 "F
~
68 kO
10 pF
47 "F
50 pF
FIGURE 29. IC PREAMPLIFIER
TEXAS . "
INSTRUMENTS
2-400
T
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TL087, TL088, TL287, TL288
JFET·INPUT OPERATIONAL AMPLIFIERS
D2484, MARCH 1979-REVISED MARCH 1989
•
Low Input Offset Voltage ... 0.5 mV Max
•
Internal Frequency Compensation
•
Low Power Consumption
•
Latch-Up-Free Operation
•
Wide Common-Mode and Differential
Voltage Ranges
•
High Slew Rate ... 18 V/p,s Typ
•
•
Low Input Bias and Offset Currents
Low Total Harmonic Distortion ...
0.003% Typ
•
High Input Impedance ... JFET-Input Stage
description
These JFET-input operational amplifiers incorporate well-matched high-voltage JFET and bipolar transistors
in a monolithic integrated circuit, They feature low input offset voltage, high slew rate, low input bias
and offset currents, and low temperature coefficient of input offset voltage. Offset-voltage adjustment
is provided for the TL087 and TL088.
The M-suffix devices are characterized for operation over the full military temperature range of - 55°C
to 125 DC. The I-suffix devices are characterized for operation from - 40 DC to 85 DC, and the C-suffix
devices are characterized for operation from 0 DC to 70 DC.
AVAILABLE OPTIONS
TA
O°C
TYPE
Single
to
70·C
-40°C
Dual
Single
to
85°C
-55°C
Dual
VIO MAX
AT 25°C
0.5 mV
PACKAGE
SMALL OUTLINE
CERAMIC DIP
METAL CAN
PLASTIC DIP
FLAT
(D)
(JG)
(L)
(P)
(U)
TL087CD
TL087CJG
TL087CL
TL087CP
1 mV
fL088CD
TL088CJG
TL088CL
TL088CP
0.5 mV
TL287CD
TL287CJG
TL287CL
TL287CP
1 mV
TL288CD
TL288CJG
TL288CL
TL288CP
TL0871D
TL0871JG
TL0871L
TL0871P
0.5 mV
1 mV
TL0881D
TL0881JG
TL0881L
TL0881P
0.5 mV
TL2871D
TL2871JG
TL2871L
TL2871P
1 mV
TL2881D
TL2881JG
TL2881L
TL2881P
Single
1 mV
TL088MJG
TL088ML
TL088MU
Dual
1 mV
TL288MJG
TL288ML
TL288MU
to
125°C
The D package is available taped and reeled. Add the suffix R to the device type (e.g., TL087CDR).
Copyright
PRODUCTION DATA documents contain information
current as of publication date. Products conform to
specifications per the terms of Texas Instruments
standard warranty. Production processing does not
necessarily include testing of an parameters.
TEXAS
© 1989, Texas Instruments Incorporated
-1!1
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-401
TL087, TL088, TL287, TL288
JFET·INPUT OPERATIONAL AMPLIFIERS
TL088M
U PACKAGE
(TOP VIEW)
TL087, TL088
D, JG, OR P PACKAGE
(TOP VIEW)
ININ +
VCC -
NC
NC
NC
OFFSET N1 u 8 NC
OFFSET N1
2
7
VCC+
3
.6
OUT
4
5
OFFSET N2
ININ+
VCC+
OUT
OFFSET N2
VCCTL288M
U PACKAGE
(TOP VIEW)
TL287, TL288
D, JG, OR P PACKAGE
(TOP VIEWI
AMPL
#1
O U T [ J 8 VCC+
IN 2
7
OUT
IN +
VCC-
3
6
4
5
ININ+
AMPL
AMPL
#2
=t>-
NC
NC
#1
OUT
VCC-t
ININ+
OUT
VCC-
IN +
IN-
AMPL
#2
NC - No internal connection
TL087, TL088
L PACKAGE
symbol (each amplifier)
NON INVERTING
INPUT IN+
INVERTING
INPUT IN-
+
(TOP VIEW)
NC
'
OUTPUT
VCC+
-
OUT
VCCTL287, TL288
L PACKAGE
(TOP VIEW)
VCC+
AMPL
#1
OUT
OUT
IN-
ININ+
IN+
AMPL
#2
VCCPin 4 (L Package) is in electrical contact with the case
NC-No internal connection
TEXAS •
INSTRUMENTS
2-402
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TL087, TL088, TL287, TL288
JFET·INPUT OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
n0871
n087C
TL088M
n0881
TL088C
TL288M
TL2871
n287C
TL2881
n288C
UNIT
Supply voltage, VCC + (see Note 1)
18
18
18
V
Supply voltage, VCC - (see Note 1)
-18
-18
-18
V
Differential input voltage (see Note 2)
±30
±30
±30
V
Input voltage (see Notes 1 and 3)
±15
±15
±15
V
±1
±1
±1
mA
±80
±80
±80
mA
160
160
160
mA
mA
Input current, II (each input)
Output current, 10 (each output)
Total V CC + terminal current
-160
-160
-160
unlimited
unlimited
unlimited
Total V CC _ terminal current
Duration of output short circuit (see Note 4)
See Dissipation Rating Table
Continuous total dissipation
o to
Operating free-air temperature range
-55to125
-25 to 85
Storage temperature range
-65 to 150
- 65 to 150
-65 to 150
°C
300
300
300
°C
260
260
°C
Lead temperature 1,6 mm (1/16 inch) from
JG, L, or U package
case for 60 seconds
Lead temperature 1,6 mm (1/16 inch) from
D or P package
case for 10 seconds
NOTES: 1.
2.
3.
4.
70
°C
All voltage values, except differential voltages, are with respect to the midpoint between VCC + and VCC _.
Differential voltages are at the non inverting input terminal with respect to the inverting input terminal.
The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that
the dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA
:5
DERATING FACTOR
25°C
POWER RATING
D
725 mW
JG
1050 mW
ABOVE TA - 25°C
5.8 mW/oC
TA - 70°C
POWER RATING
TA - 85°C
POWER RATING
TA - 125°C
POWER RATING
464mW
377 mW
N/A
8.4 mW/oC
672mW
546 mW
210 mW
130 mW
L
650 mW
5.2 mW/oC
416 mW
338 mW
P
1000 mW
8.0 mW/oC
640mW
520 mW
N/A
U
675 mW
5.4 mW/oC
432 mW
351 mW
135 mW
recommended operating conditions
M-SUFFIX
MIN
Supply voltage, VCC
Common-mode input voltage, VIC
VCC±
VCC±
Input voltage, VI
VCC±
VCC±
Operating free-air temperature, T A
=
=
=
=
±5V
± 15 V
±5 V
± 15 V
I-SUFFIX
±5
±15
±5
±15
V
-1
4
-1
4
V
11
-11
11
-11
11
V
-1
4
-1
4
-1
4
V
-11
11
-11
11
- 11
11
V
-55
125
-40
85
0
70
°c
MIN
±5
±15
-1
4
-11
TEXAS
NOM
MAX
UNIT
MIN
MAX
NOM
C-SUFFIX
MAX
NOM
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-403
~
c..-t
""1'1 rm=
-t=
.:.. ......
electrical characteristics. VCC± - ± 15 V
TEST CONDITIONSt
PARAMETER
TL0871
TL087C
TL088M
TL0881
TL088C
TL288M
TL2871
TL287C
MIN
RS = 50 Il,
TYP
MAX
MIN
TL2881
TYP MAX
TL087, TL287
MIN
2'
-a-t
c: r-t=
UNIT
=
TL288C
TYP MAX
0.1
0.5
0.1
0.5
0.1
1
0.1
1
Q=
-a'
m-t
:::ICI r-
Vo = 0,
VIO
Input offset voltage
Temperature coefficient
"VIO
of input offset voltage
~-n_
110
Input offset current
i:iZ
lIB
!i:
Input bias current~
~CIl
~~
g:;or;;i
Common-mode input
8C::~
03:
VICR
~Z
VOpp
~(Tl
~~4r
;;:'"
Sl
voltage range
Maximum-peak-to-peak
TA = 25°C
RS = 50 Il,
'"
0.1
3
TL087, TL287
TL088, TL288
RS = 50 Il,
TA = 25°C to MAX
6
10
5
25
30
100
T A = full range
1.5
3
2.5
8
100
5
3
30
TA = 25°C
2
8
5
TA = 25°C
T A = full range
200
30
20
TA = 25°C
VCC- +4
to
VCC- +4
to
VCC- +4
to
TA = 25°C,
VCC+ -4
24
27
VCC+-4
24
27
VCC+ -4
24
27
output voltage swing
T A = full range
Large-signal differential
TA = 25°C
voltage amplification
RL 2: 2 kll,
>N
RL = 10 kll
RL 2: 10 kll
RL 2: 2 kll
VO= ±10V,
Vo = ±10 V,
T A = full range
24
20
50
105
24
24
20
20
50
105
50
>rr-N
>=
100
pA
2
nA
200
pA
7
nA
V
105
VlmV
25
25
25
TA = 25°C
3
3
3
Input resistance
TA = 25°C
10 12
10 12
10 12
Il
CMRR Co~mon-mode rejection
ratio
RS = 50 Il,
Supply voltage rejection
ICC
ratio (J!.VCC±/J!.VIO)
VCC± = ±9 V to ±15 V,
Supply current
TA = 25°C
No load,
(per amplifier)
TA = 25°C
Vo = 0,
m
:::ICI
en
V
ri
VIC = VICR min, TA = 25°C
RS = 500,
Vo = 0 V,
!I: =
-a
r:;;
"V/oC
Unity-gain bandwidth
Vo = OV,
Q,
2-t
Bl
kSVR
-
-t=
......
mV
Vo = 0,
T A = full range
RL 2: 2 kll,
AVO
TL088, TL288
MHz
80
93
80
93
80
93
dB
80
99
80
99
80
99
dB
i
2.6
2.8
2.6
2.8
2.6
2.8
mA
t All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range for TA is - 55°C
to 125°C for TL_88M; -40°C to 85°C for TL_8_1; and OoC to 70°C for TL_8_C.
~Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques must be used
that will maintain the junction temperature as- close to the ambient temperature as possible.
TL087, TL088, TL287, TL288
JFET·INPUT OPERATIONAL AMPLIFIERS
operating characteristics Vee PARAMETER
± 15 V. TA - 25°e
TEST CONDITIONS
TL088M. TL288M
MIN
SR
tr
Vn
Slew rate at unity gain
VI = 10 V.
RL = 2 kO.
CL = 100 pF.
AVO = 1
RL = 2 kO.
Rise time
VI = 20 mV.
Overshoot factor
CL = 100 pF.
Equivalent input noise voltage
RS = 1000.
TYP
18
AVO = 1
f = 1 kHz
MAX
TL0871. TL087C
TL0881. TL088C
UNIT
MIN
TYP
8
18
Vlp.s
ns
55
55
25%
25%
19
19
MAX
nVI$.
~
TEXAS
INSTRUMENlS
POST OFFICE
aox
655303 • DALLAS. TEXAS 75265
2-405
n087, n088, n287, n288
JFET·INPUT OPERATIONAL AMPLIFIERS
PARAMETER MEASUREMENT INFORMATION
>------Vo
I r - RISE TIME
NOTE A: CL includes fixture capacitance.
FIGURE 1. SLEW RATE, RISE/FALL TIME,
AND OVERSHOOT TEST CIRCUIT
FIGURE 2. RISE TIME AND OVERSHOOT
WAVEFORM
10kQ
10kQ
>--+-____--Vo
Vo
VeeRS
RS
NOTE A: CL includes fixture capacitance.
FIGURE 4. UNITY-GAIN BANDWIDTH AND
PHASE MARGIN TEST CIRCUIT
FIGURE 3. NOISE VOLTAGE TEST CIRCUIT
typical values
Typical values as presented in this data sheet
represent the median (50% point) of device
parametric performance.
GROUND SHIELD
input bias and offset current
At the picoamp bias current level typical of
these JFET operational amplifiers, accurate
measurement of the bias current becomes
FIGURE 5. INPUT BIAS AND OFFSET
difficult. Not only does this measurement require
CURRENT TEST CIRCUIT
a picoammeter, but test socket leakages can
easily exceed the actual device bias currents. To
accurately measure these small currents, Texas Instruments uses a two-step process. The socket leakage
is measured using picoammeters with bias voltages applied, but with no device in the socket. The device
is then inserted in the socket and a second test that measures both the socket leakage and the device
input bias current is performed. The two measurements are then subtracted algebraically to determine
the bias current of the device.
TEXAS •
INSTRUMENTS
2-406
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TL087, TLOB8, TL287, TL288
JFET·INPUT OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
table of graphs
FIGURE
Temperature coefficient of input offset voltage
Distribution
110
Input offset current
vs Temperature
8
vs VIC
vs Temperature
9
liB
Input bias current
vs VCC
vs Temperature
10
VI
Common-mode input voltage range limits
VID
Differential input voltage
vs Output voltage
12
vs VCC
13
"VIO
VOM
Maximum peak output voltage swing
vs Output current
vs Frequency
vs Temperature
AVD
Differential voltage amplification
Zo
Output impedance
CMRR Common-mode rejection ratio
kSVR
lOS
Supply-voltage rejection ratio
Short-circuit output current
ICC
Supply current
SR
Slew Rate
6. 7
8
11
17
14.15.16
18
vs RL
19
vs Frequency
20
vs Temperature
21
vs Frequency
24
vs Frequency
22
vs Temperature
23
vs Temperature
25
vs VCC
26
vs Time
27
vs Temperature
28
vs VCC
vs Temperature
30
29
vs RL
31
vs Temperature
32
Overshoot factor
vs CL
33
Vn
THD
Equivalent input noise voltage
vs Frequency
34
Total harmonic distortion
vs Frequency
35
B1
Unity-gain bandwidth
vs VCC
vs Temperature
36
vs VCC
38
.
CI
12
!!
8
>
'Sa.
4
"C
0
,./'
..,.- V
"0
..
/
V
COMMON-MODE
INPUT VOLTAGE RANGE LIMITS
vs
FREE-AIR TEMPERATURE
20
V
>
'0"
0
u
POSITIVE LIMIT
CI
!!
10
>
'S
5
"C
0
"0
POSITIVE LIMIT
a.
.5
..
=F
E
E
15
..
.5
0
I
I
I
NEGATIVE LIMIT
.........
-4
..........
-8
0
:::;:
.:0
E
E
~
0
............
I
U
:> -12
,
Vee ± = ± 15 v
-10
U
~
-5
I
U
:>
,
-15
NEGATIVE LIMIT
-16
o
2
4
8
6
10
12
14
-20
-75
16
-50
-25
FIGURE 10
12
"0
!!
8
.s-
4
VOM+
./
RL~1~ V
CI
\
>
'S
5
!!
125
~
--:::
~=12kQ
:::J
"0
0
.....,
0
0
I
..
I
>
0
100
I
TA = 25°e
>
10
>
'S
a.
'S
75
16
Vee±=±15V
TA = 25°e
CI
50
MAXIMUM PEAK OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
15
I
25
FIGURE 11
OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
..
0
TA - Free-Air Temperature - °e
IVee ±I- Supply Voltage - V
-5
-
>
RL = 600 n
~
I- RL = 1 k n RL = 2kn
-10
-
-15
-400
.. RLI" "["-200
~>-r---
t'<:
o
"""'-- t - -
..
0
E
:::J
E
-4
:::;:
-8
'x.,
400
.....
I
RL =
I
:::;:
10k~
I
~,
VOMI
o
2
4
----
~2kQ
~-12
-16
200
VIO - Oifferentiallnput Voltage -!tV
I--
II..
6
8
10
12
.........
14
16
IVee ±I- Supply Voltage - V
FIGURE 12
FIGURE 13
t Data at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices.
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-409
TLOB7, TLOB8, TL287, TL288
JFET·INPUT OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
MAXIMUM PEAK· TO·PEAK OUTPUT VOLTAGE
vs
FREQUENCY
VC~ ~ 1~111~lt
,So
...
20
i
15
~
E
E
= 125°C ~
I I I UJll11
10
VCC±
'=
:;;
t
.f;
...
20
~
15
E
::I
E
10
~
~
TA
~
= -55°C
=±5V I V)\
~
I
11.
11.
........ r-
o
10 k
25
o
>
100 k
1M
f - Frequency- Hz
VCC±
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
30
= 10kQ
TA = 25°C
I
'"
;g
RL
:;
Co
:;
o
...
~
~
~
E
::I
E
25
i"---
o
100 k
1M
f - Frequency - Hz
'M
~
I
11.
11.
~
5
I
'"
j!!
o
10 k
12
a-
10
......
8
::I
=
""~~I'-.
i"'-,
1\
1\
:;;
4
...
I'
11111
6
VOM+
"
VO~ l',
11.
E
::I
E
'M
....,
I'-.
"\
1\
>
~,.....
100 k
1M
f - Frequency - Hz
10 M
2
o
o
"'-
\
I
~
0
=
VCC±
±15V
TA
25°C
~~
0
III
=±5V
14
'0
>
:;
\
VCC±
10 M
16
III
20
10
-
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
>
~VCC± =±15V
15
1\
5
FIGURE 15
III
j!!
1\
= ±5V
FIGURE 14
>
TA
\
\
10 k
10M
= 2kQ
= 25'C
RL
= ±15V
Co
:;
o
I
11.
11.
>
VCC±
:;
5
o
I I 11I1111
I
j
TA
::I
>
= 2 kQ
I~
:;
5
RL
MAXIMUM PEAK·TO·PEAK OUTPUT VOLTAGE
vs
FREQUENCY
30
1\
10
20
30
'"
~
40
1101 - Output Current - mA
FIGURE 16
FIGURE 17
tData at ,high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices,
TEXAS . "
2-410
INSTRUMENTS
POST OFFICE BOX 655303 ' DALLAS. TEXAS 75265
50
TL087, TL088, TL287, TL288
JFET·INPUT OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
LARGE-SIGNAL VOLTAGE AMPLIFICATION
vs
LOAD RESISTANCE
MAXIMUM PEAK OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
16
>
.,
I
12
V~M+
C)
.l!!
15
250
RL = 10kQ
>
E
I
<:
0
>
SCo
S
...,
0.
4
E 150
oc(
.,
vee ± = ±15 v
0
.l!!
15
E
::l
-4
E
> 100
~
'x
:;;
V
C)
0.
..
--
Vee±=±15V
:e
0
.><
200
:;u
-
8
Vo = ± 1 V
TA = 25°e
:>
RL = 2kQ
'E
I!!
.,
;:
-8
I
VOM-
:;;
is
RL = 2 kQ
V
50
V~
!--
Vee ± = ±5 V
vI-
I
0-12
>
C
>
RL=10kQ
-16
-75
- 50
- 25
0
25
50
75
oc(
100
o
0.4
125
10
4
TA - Free·Air Temperature - °e
40
100
RL - Load Resistance - kQ
FIGURE 18
FIGURE 19
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
LARGE-SIGNAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
1000
<:
0
:;u
:e
10 5
r----
0. 10 4
E
.,
oc(
C)
.l!!
10 3
~
15
>
(;j
~
Vee±=±15V
RL = 2kQ
eL = 25 pF
TA = 25°e
10 2
.,
I!!
!!: 10 1
c
I
""
'"
f'...
"'"
I'-
""
0...
""-
>
oc(
100
1k
10 k
100 k
f - Frequency - Hz
1\
RL
:::
:cU)
0.
E
., .,
.
C)
.l!!
.<:
0.
>
= 10 kQ
-r---__
oc(
In
100
RL
15
=
t--.
I--
= 2 kQ
-----r--.......
~
""'\"\
1M
400
:;u
:e
30°
90°
- --
I
<:
0
60°
PHASE SHIFT " "
:>
0°
=
Vee +
+15V
Vo
+ 10V
E
~VD
C
0.1
10
>
120°
150°
'E
I!!
!!:
.,
40
c
I
c
>
oc(
180°
10 M
10
-75
- 50
- 25
0
25
50
75
100
TA - Free-Air Temperature - °e
125
FIGURE 21
FIGURE 20
t Data at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices.
TEXAS
-1!1
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-411
TL087, TL088, TL287, TL288
JFET·INPUT OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
COMMON-MODE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
100
100
III
'1::J
I
0
90
~
80
..'"
a:
..
VCC± = ±15V
TA = 25"C
'\
0
70
'Q)
60
'1::J
50
~
C:0
E
E
'\
'" '\
40
30
20
::;;
10
0
VCC+ = ±15V
'o"
90
..
85
~C:
~
-
80
E
\
0
I
I
95
1
'\
0
a:
a:
I
a:
0
::;;
'1::J
o
~
'"
a:
VIC = VICR min
III
8
r::
a:
75
::;;
o
o
10
100
10 k
100 k
1k
f - Frequency - Hz
1M
70
-75
10 M
- 50
- 25
0
25
50
75
100
T A - Free-Air Temperature -"C
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
OUTPUT IMPEDANCE
vs
FREQUENCY
100
110
f--
/
Cl
/
/
I
u
10
AVD = 10~
/
'1::J
/
L
/
I
0
--
/
..
/
/
0
!l
'0
>
AVO = 1
Q.
--
VCC±=±15V
TA = 25"C
-r a (open loop) ~ 250 n
~
~
0.1
1k
98
c.
/
/
-
>.
-
I
0
102
'"
/
/V
N
..'"
a:
..
'Q)
/
.E
106
a:
0
AVO = / '
Q.
:;
~
'"
'1::J
VCC± = ±5V to ±15V
III
OJ
:;
Q.
:;
10 k
100 k
1M
:::I
!/)
I
94
a:
>
!/)
...
90
-75
-50
f - Frequency - Hz
-25
0
25
50
75
100
T A - Free-Air Temperature - °C
FIGURE 24
FIGURE 25
tData at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices.
2-412
125
FIGURE 23
FIGURE 22
..
VCC± = ±5V
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
125
TL087. TL088. TL281. TL288
JFET·INPUT OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
SHORT-CIRCUIT OUTPUT CURRENT
vs
TIME
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
60
60
Vo = 0
TA = 25'e
ct
E
I
40 - - -
t---~
f!
o
-
ct
E
-8
I
'E
8
~
V
/
,
20
I:
VVID=lV
/
f!
20
[
:::J
C.
'S
40
VID = -1 V
--
0
:;
o
----...
·s
~
U
i: -20
o
.s:::
:::J
l:!
vlD = 1 : - - - - -
Ul
0
."!:!
~
"I:
-20
o
r-
.s:::
VI
VID=-lV
:"-40
:"-40
.9
.9
-60
o
-60
2
14
10
12
IVee ±I- Supply Voltage- V
4
6
8
16
vec± = ±15V
TA = 25°C
o
10
20
30
I
I
40
50
60
Time - Seconds
FIGURE 26
FIGURE 27
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
60
-+-..
VIO = 1 V
ct
E
40
I
'E
~
8
-
- r--
I
VID = 1 V
:::J
Il.
o
I
0
·s
I
vce± = ±5V
t: -
20 r-VID = -1 V
o
..c:
VI
:"-40
.9
I
vcc± = ±5V
20
'S
l:!
U
VCC±=±15V
Il---L
l~;vo = 0
-60
-75
l
I
I
I
I
I
-
vce± = ±15V
I
I
I
-50 -25
0
25
50
75
100
TA - Free-Air Temperature - °c
125
FIGURE 28
t Data at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices.
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-413
nOB7, nOBB, n2B7, n2BB
JFET-INPUT OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
. SUPPLY CURRENT
SUPPLY CURRENT
vs
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
3
3
'\
2.5
E
I
2
"E
~
:::I
I
()
>- 1.5
Q.
Co
:::I
CIl
I
2.5
~
rr
c(
= 25°e
"'--- T A = - 55°e _
"- TA = 125°e
LTA
c(
...--: ::::::::
"
.V
E
I
"E
2!
2
I
Co
:::I
CIl
I
I
o J
o
0.5
0.5
Vo = 0
No Load
2
4
6
8
10
12
14
o
16
-75
Vo = 0
No Load
-50
IVee ±I-Supply Voltage- V
-25
0
25
50
75
100
T A - Free-Air Temperature - °e
FIGURE 29
SLEW RATE
vs
vs
LOAD RESISTANCE
FREE-AIR TEMPERATURE
30
30
-----
SR+
25
..
~
/
..
..
..
iii
SRI--
:::t
:>
V
~
II:
;:
I
II:
CIl
10
Vee± = ±15V
eL = 100 pF
TA = 25°e
See Figure 1
5
o
0.4
20
I
iii
I
SR +
25 -
V
15
II:
CIl
I
I
I I I III
4
10
40
RL - Load Resistance - kQ
100
~.
I
/'
,/"
15
r--
SR-
I
f----- f---
10
5
o
-75 -50
-25
0
25
Vee ± = ±15 V
RL = 2 kQ
eL = 100 pF
See Figure 1
I
I
50
75
100 125
TA - Free-Air Temperature - °e
FIGURE 32
FIGURE 31
t Data at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices.
-1!1
2-414
125
FIGURE 30
SLEW RATE
~
= ±5V-
~
()
II:
Vee±
>- 1.5
.9
I
= ±15V
Q.
()
20
i~
-..
Vee ±
()
.9
..
~
: ---.......,
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TL087. TL088. TL287. TL288
JFET·INPUT OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
OVERSHOOT FACTOR
vs
LOAD CAPACITANCE
50r-.....~.........., -....................-r..........~.....-,
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
100
VCC± = ±15V
RS = 100Q
~
:><:
70
.,I
OJ
S
>
50
-'\
1\
(5
.,
TA = 25°C
See Figure 3
40
III
·0
Z
:;
30
Q.
.E
.,
---+--
10 1---1+--1
i:
a;
VIPp=±10mV
RL
2 kQ
"-
20
>
co
·5
=
I
w
TA = 25°C
See Figure 1
I
<:
>
O~--~----~--~----~--~--~
100
150
200
250
300
o
50
10
10
1k
100
100 k
10 k
f - Frequency - Hz
CL - Load Capacitance - pF
FIGURE 33
FIGURE 34
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
TOTAL HARMONIC DISTORTION
vs
FREQUENCY
3.2
_VCC+=+15V- AVO = 1
E
6
'-"
8
VI
f-~-
--
'"
"0
S
>
'5
So
"I
0
CI)
4
0 -
-f--- - - - - r-- - VCC±=±15V
- - f- 1-- RL = 2kQ
-- --- ---CL = 100 pF
TA = 25"C
See Figure 1
-4
I
0
>
4
>
---~
I
0
-2
~
-12
\J
/
0.4
0.6
0.8
1.0
\
\
CL = 100pF
TA = 25"C
See Figure 1
-4
-6
-8
0.2
VCC±=±15V
RL = 2kQ
0
>
J'J
o
0
I
I
2
>
'5
I
-8
-16
'"
"0
S
f--
I
--~
I
I
CI)
I
1.2
t-Time-~s
\If\,-
II
o
2
t - Time -
FIGURE 41
3
4
5
6
~s
FIGURE 42
-1!1
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-417
TL087, TL088, TL287, TL288
JFET·INPUT OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
output characteristics
All operating characteristics are specified with 1OO-pF load capacitance. These amplifiers will drive higher
capacitive loads; however, as the load capacitance increases, the resulting response pole occurs at lower
frequencies, thereby causing ringing, peaking, or even oscillation. The value of the load capacitance at
which oscillation occurs varies with production lots. If an application appears to be sensitive to oscillation
due to load capacitance, adding a small resistance in series with the load should alleviate the problem.
Capacitive loads of 1000 pF and larger may be driven if enough resistance is added in series with the output
(see Figure 43).
(a) CL
= 100 pF, R = 0
(d) CL
= 1000 pF, R = 0
(b) CL
= 300 pF, R = 0
(e) CL 1000 pF, R
(e) CL
= 50 g
(f) CL
= 1000 pF, R = 2 kg
FIGURE 43. EFFECT OF CAPACITIVE LOADS
+5V
- 5V
2kQ
(see Note A)
NOTE A: CL includes fixture capacitance.
FIGURE 44. TEST CIRCUIT FOR OUTPUT CHARACTERISTICS
~
,
TEXAS
INSTRUMENTS
2-418
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
= 350 pF, R = 0
TL081, TL088, TL281, TL288
JFET·INPUT OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
input characteristics
These amplifiers are specified with a minimum and a maximum input voltage that, if exceeded at either
input, could cause the device to malfunction.
Because of the extremely high input impedance and resulting low bias current requirements, these amplifiers
are well suited for low-level signal processing; however, leakage currents on printed circuit boards and
sockets can easily exceed bias current requirements and cause degradation in system performance. It is
good practice to include guard rings around inputs (see Figure 45). These guards should be driven from
a low-impedance source at the same voltage level as the common-mode input.
Vo
Vo
(a) NONINVERTING AMPLIFIER
(b) INVERTING AMPLIFIER
(e) UNITY-GAIN AMPLIFIER
FIGURE 45. USE OF GUARD RINGS
noise performance
The noise specifications in op amp circuits are greatly dependent on the current in the first-stage differential
amplifier. The low input bias current requirements of these amplifiers result in a very low current noise.
This feature makes the devices especially favorable over bipolar devices when using values of circuit
impedance greater than 50 kO.
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-419
2-420
Tl2828Z, Tl2828Y
HIGH-TEMPERATURE DUAL
OPERATIONAL AMPLIFIERS
03971, DECEMBER 1991
•
Operating Free-Air Temperature Range
- 40°C to 150°C
•
•
•
•
Wide Range of Supply Voltages:
Single Supply
Or Dual Supplies ... 4 V to 30 V
Low Input Bias and Offset Parameters
Input Offset Voltage ••. 3 mV Typ
Input Offset Current ..• 2 nA Typ
Input Bias Current ••. 15 nA Typ
•
Low Supply Current Drain Indepedent of
Supply Voltage ... 0.7 mA Typ
Differential Input Voltage Range Equal to
Maximum-Rated Supply Voltage ... 30 V
•
Open-Loop Differential Voltage Amplification
100 VlmV Typ
Internal Frequency Compensation
description
These devices consist of two independent high-gain frequency-compensated operational amplifiers that are
designed specifically to operate over a wide range of voltages from a single supply. Operation from split
supplies is also possible as long as the difference between the two supplies is 4 V to 30 V, and Vce is at least
1.5 V more positive than the common-mode input voltage. The low supply current drain is independent of the
magnitude of the supply voltage.
Applications include transducer amplifiers, dc amplification blocks, and all the conventional operational
amplifier circuits that now can be implemented more easily in single-supply voltage systems. For example, the
TL2828Z can be operated on automotive engine blocks directly off the standard 12-V supply with minimal
electrical protection.
The TL2828Z is characterized for operation over the .extended temperature range of - 40 0 e to 150o e.
AVAILABLE OPTIONS
TA
VIOmax
AT 25°C
SMALL-
PACKAGE
PLASTIC
CHIP
OUTUNE
DIP
FORM
(D)
(P)
(V)
-40·C to
7mV
TL2828ZD
TL2828ZP
TL2828V
150·C
D packages are available taped and reelad. Add "R" suffiX to davlce typa (I.a.,
TL2828ZDR). Tha chip form is tastad at TA = 25·C.
PRODUCTION DATA InlonnaJlon is currenl as 01
publication data. Products conlonn 10 speCifications
par tha tarms 0' Texas Instrumenls siandard
warranlY. ProducJlon processing does nol
necassarlly Include tasUng 0' all pallimeters.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
Copyright@1991, Texas Instruments Incorporated
2-421
I
I
TL2828Z, TL2828Y
HIGH-TEMPERATURE DUAL
OPERATIONAL AMPLIFIERS
symbol (each amplifier)
Vcc+
IN+~
IN-
TL2828Z ••• D OR P PACKAGE
(TOP VIEW)
OUT
-
lOUT [ J S
1 IN2
7
llN+
3
6
VCC4
5
VCC-
VCC+
20UT
21N21N+
equivalent schematic (each amplifier)
r-----------------~--~~--~------~~~~VCC+
OUT
IN-
IN+
---+----+--------1----+----'
...-------+- To Other
Amplifier
L-~~----~~~~--------~--------4---~------~~VCC-
TEXAS .."
INSTRUMENTS
2-422
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
TL2828Y
HIGH-TEMPERATURE DUAL
OPERATIONAL AMPLIFIERS
chip Information
These chips, properly assembled, display characteristics similar to the TL2828Z. Thermal compression bonding
may be used on the gold bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
Vcc+ (8)
IN+ (3)
IN- (2)
=t>-+
-
1 OUT (1)
IN+(5)~
IN- (6)
~
2 OUT (7)
vcc- (4)
CHIP THICKNESS:
15 TYPICAL
BONDING PADS:
4 X 4 MINIMUM
TJmax
= 165°C
TOLERANCES
ARE ± 10%
ALL DIMENSIONS ARE IN MILS
PIN (4) INTERNALLY CONNECTED
TO BACKSIDE OF THE CHIP
TEXAS •
INSfRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
2-423
TL2828Z
HIGH-TEMPERATURE DUAL
OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vcc+ (see Note 1) .................................................... 16 V
Supply voltage, VCC- ........................................ '......•............... -16 V
Differential input voltage (see Note 2) ................................................. ± 32 V
Input voltage range, VI (any input) ................................................ -16 to 16 V
Input current, II (each input) ........................................................ ± 1 rnA
Output current, 10 ............................................................... ± 40 rnA
Total current into VCC+ terminal ..................................................... 60 rnA
Total current out of VCC- terminal .................................................... 60 rnA
Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... unlimited
Continuous total dissipation ........................................ See Dissipation Rating Table
Operating free-air temperature range, TA ....................................... - 40°C to 150°C
Storage temperature range ................................................... -65°C to 165°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................. 260°C
NOTES: 1. All voltage values. except differential voltages, are with respect to the midpoint between VCC+ and VCC- when dual supplies are
specified (e.g .• VCC± =± 15 V) and with respect to VCC- when a single supply is specified (e.g., VCC =5 V).
2. Differential voltages are at the noninverting input with respect to the inverting input. Excessive current will flow if the input is below
Vee-·
3. The output may be shorted to either supply. Temperature andlor supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
D
p
TA S25·C
DERATING FACTOR
TA = 70°C
POWER RATING ABOVE TA = 25°C POWER RATING
5.8 mW/oC
812mW
551 mW
8.0 mW/oC
1120mW
760mW
recommended
operating
TA = 105°C
POWER RATING
Input voltage range
232mW
87mW
480mW
320mW
120mW
conditions
VCC±
= ±2.5 V
= ± 15 V
Vec±
Vee± = ±2.5V
Vec± = ±15V
Operating free-air temperature, TA
TEXAS . "
INsrRUMENTS
2-424
TA=1SOoC
POWER RATING
348mW
Supply voltage, Vce ±
Common-mode input voltage, VIC
TA=12SoC
POWER RATING
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
MIN
MAX
UNIT
±2
-2.5
± 15
V
0.5
-15
13
-2.5
0.5
-15
13
-40
ISO
V
V
·C
Tl2828Z
HIGH-TEMPERATURE DUAL
OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature,
PARAMETER
VIO
TEST CONDITIONS
input offset voltage
110
Input offset current
liB
Input bias current
TAt
Common-mode input
voltage range
VIC = 0, Vo = 1.4 V, RS = 50 n
Full range
15
25°C
2
RS = 50n
High-level output voltage
= 1 rnA
CMRR
voltage amplification
Common-mode
rejection ratio
kSVR
Supply-voltage rejection ratio
ICC
Supply current
(total package)
Supply current change over
Ll.ICC
-15
30
-100
-500
0
to
3,5
Full range
to
3
3.5
25°C
3.3
3.2
3.7
25°C
Full range
3.3
3.2
3.6
25°C
0.8
0.6 _ _
25°C
Full range
0.9
Vo = 1 Vt03.5V, RL =2kn
25°C
Full range
25
0.7
100
VIC = VICRmin, Vo = 1.4 V,
RS= 50 n
25°C
Full range
65
80
VCC = 5Vt030V, Vo = 1.4 V,
25°C
Full range
45
65
100
V
V
0.7
1.1
V/mV
dB
dB
65
0.7
Full range
Full range
operating temperature range
nA
V
Full range
25°C
nA
0
IOL = 1 rnA
VIC = 0, Vo = 2.5 V, No load
,nV
to
1
RL =10kn
UNIT
/lV/oC
200
Full range
Low-level output voltage
Large-signal differential
7
0
IOL = 0.1 rnA
AVD
MAX
10
25°C
Full range
IOH
VOL
3
Full range
IOH = 0.1 rnA
VOH
TYP
Full range
25°C
VICR
MIN
25°C
Input offset voltage
Temperature coefficient of
aVIO
vee = 5 V (unless otherwise noted)
140
1.2
1.2
rnA
JlA
tFull range is - 40°C to 150°C.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-425
Tl2828Z
HIGH-TEMPERATURE DUAL
OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, V cc±
PARAMETER
VIO
Input offset voltage
aVIO
Temperature coefficient of
input offset voltage
=± 15 V (unless otherwise noted)
TAt
TEST CONDITIONS
VIC = 0, Vo =0, RS = 50n
MIN
TYP
MAX
25°C
Full range
3
.7
10
Full range
15
UNIT
mV
/lV/oC
110
Input offset current
25°C
Full range
2
30
200
nA
liB
Input bias current
25°C
Full range
-15
-100
-500
nA
25°C
VICR
Common-mode input
voltage range
RS = 50 n
Full range
25°C
Full range
10=-0.1 mA
VOM+
Maximum positive peak
output voltage swing
25°C
Full range
25°C
Full range
10 =-1 mA
10=-10mA
VOM-
Maximum negative peak
output voltage swing
10=1 mA
10=7mA
AVD
Large-signal differential
voltage amplification
CMRR
Common-mode
rejection ratio
kSVR
ICC
Ll.ICC
RL = 2 kn, Vo = - 5 V to 5 V
VIC = VICRmin, Vo = 1.4 V,
RS=50n
VCC = 5Vto30V,
Supply-voltage rejection ratio
RL =10kn, Vo = I.4V
Supply current
(total package)
Supply current change over
operating temperature range
VIC = 0, Vo = 0, No load
14.1
14
25°C
Full range
25°C
Full range
25
0.8
65
50
100
25°C
Full range
65
100
-14.4
-14.3
V/mV
75
dB
dB
65
Full range
140
POST OFFICE BOX 655303 - DALLAS, TEXAS 75265
V
-13.8
0.7
~
V
13.6
25°C
Full range
INSTRUMENTS
2-426
13.1
13.1
13
V
25°C
Full range
tFull range is - 40°C to 150°C.
TEXAS
13.5
-15
to
13
13.2
12.8
12.7
-13.7
-13.1
-13.6
-13
-12.9
-12.5
25°C
Full range
25°C
Full range
10=0.1 mA
-15
to
2
2
mA
JlA
Tl2828Z
HIGH-TEMPERATURE DUAL
OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature, vcc± =
PARAMETER
SR+
Positive slew rate
SR-
Negative slew rate
Vn
VN(PP)
TEST CONDITIONS
VO; 1 Vt04.5V,AVD ; 1,
RL ; 2 knt, CL ; 100 pF
Equivalent input noise
f ; 10 Hz
voltage
Peak-to-peak equivalent
f ; 10 kHz
input noise voltage
±15 V
TAt
MIN
25°C
Full range
0.15
0.1
25°C
Full range
0.15
25°C
TYP
MAX
UNIT
V/)lS
0.1
39
23
nVl#iZ
f ; 0.1 Hz to 10Hz
25°C
0.9
fLV
kHz
Bl
Unity-gain bandwidth
RL ; 10 kilt, CL ; 100 pF
25°C
400
¢m
Phase margin
RL ; 10 kilt, CL ; 100 pF
25°C
60°
tFull range is - 40°C to 150°C.
tRL terminates at a V.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-427
Tl2828Y
HIGH-TEMPERATURE DUAL
OPERATIONAL AMPLIFIERS
electrical characteristics at Vcc± = ± 15 V, TA = 25°C (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VIO
110
liB
Input offset voltage
Input offset current
Input bias current
VIC = 0, Vo = 0, RS = 50 n
VICR
Common-mode input
voltage range
RS = 50n
Maximum positive peak output voltage
VOM+ swing
Maximum negative peak output voltage
VOM-
swing
Large-signal differential
voltage amplification
CMRR Common,mode rejection ratio
kSVR Supply-voltage rejection ratio
Supply current (total package)
ICC
AVO
10=-0.1 rnA
10=-1 mA
TYP MAX
3
2
-15
-15
to
13.5
13.2
13.1
12.8
7
30
-100
UNIT
mV
nA
V
14.1
14
V
-13.7
-13.6
-12.9
13.6
-14.4
-14.3
-13.8
Vo = 1 Vto-1.5V, RL =2kn
25
100
V/mV
VIC = Oto28V,VO = 1.4V,RS=50n
VCC = 5Vto30V, Vo = 1.4 V, RL =10kn
65
65
75
100
0.7
dB
dB
mA
10=-10mA
10=0.1 mA
10= 1 mA
10= 10mA
VIC = 0, Vo = 0, No load
TEXAS ~
2--428
MIN
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
V
2
TL2829Z, Tl2829Y
HIGH-TEMPERATURE QUADRUPLE
OPERATIONAL AMPLIFIERS
D3827, APRIL 1991
available features
•
Free-Air Operating Temperature Range
- 40°C to 150°C
•
Wide Range of Supply Voltages:
Single Supply ••. 4 V to 30 V
Or Dual Supplies
•
Low Supply Current Drain Independent of
Supply Voltage ... 0.8 mA
•
Internal Frequency Compensation
•
Low Input Bias and Offset Parameters at
25°C
Input Offset Voltage ... 3 mV Typ
Input Offset Current ... 2 nA Typ
Input Bias Current ... 15 nA Typ
•
Differential Input Voltage Range Equal to
Maximum-Rated Supply Voltage ... 30 V
•
Open-Loop Differential Voltage Amplification
100 V/mV Typ at 25°C
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
INPUT OFFSET CURRENT
vs
FREE-AIR TEMPERATURE
o,g
2
VIC = 0
0.85 -RL= 0
""E
I
;:
~
:::J
...
0.8
0.75
0.7
,
/
./
....
-r..........
.",-
VCC±= ± 15V
......
I
;:
~
.
Ii
=
;;
is. 0.65
a.
0
:::J
I
0.6
0.55
0.5
1.4
a.
V
0
9
1.6
:::J
0
0
C/)
./
0.45
-50
./
..,.
1.8
""c
:--
VCC+ = ± 2.SV
.5
..............
I
.......
g
//
/
~
VCC± = ± 2.5 V to ± 15 V
RL = 10kn
1.2
VIC = 0
Vo 0
=
1
o
50
100
TA - Free-Air Temperature - ·C
-so
150
o
I
50
100
TA - Free·AirTemperature - ·C
150
description
These devices consist of four independent, high-gain frequency-compensated operational amplifiers that are
designed specifically to operate from a single supply over a wide range of voltages. Operation from split supplies
is also possible as long as the difference between the two supplies is 4 V to 30 V, and Vee is at least 1.5 V more
positive than the input common-mode voltage. The low supply current drain is independent of the magnitude of the
supply voltage.
AVAILABLE OPTIONS
PACKAGE
TA
VIOmax
AT2S·C
-40°C to
150°C
7mV
SMALLOUTLINE
(D)
PLASTIC
DIP
(N)
TL2829ZD
TL2829ZN
CHIP
FORM
(V)
TL2829V
'D packages are available taped and reeled. Add "R" suffix to device type,
(i.e., TL2829ZDR).
PRODUCTION DATA documents contain Information
current as of publication date. Products conform to
specifications per the terms of Texas Instruments
standard warranty. Production processing does not
necessarily Include testing of all parameters.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • OALLAS, TEXAS 75265
Copyright © I 991, Texas Instruments Incorporated
2-429
TL2829Z, TL2829Y
HIGH-TEMPERATURE QUADRUPLE
OPERATIONAL AMPLIFIERS
Applications include transducer amplifiers, doc amplification blocks, and all the conventional operational amplifier
circuits that now can be implemented more easily in single-supply-voltage systems. For example, the TL2829 can
be operated on automotive engine blocks directly off the standard 12-V supply with minimal electrical protection.
The TL2829 is characterized for operation over the extended (Z) temperature range of - 40°C to 150°C.
TL2829Z .•• D OR N PACKAGE
(TOP VIEW)
symbol (each amplifier)
lOUT
1 INliN +
IN + =t>-VCC+
IN-
OUT
-
VCC +
21N +
21N 20UT
VCC-
3
11
4 OUT
41N 41N +
GND
SIN +
SIN -
chip information
These chips, properly assembled, display characteristics similar to the TL2829. Thermal compression
bonding may be used on the gold bonding pads. Chips may be mounted with conductive epoxy or a goldsilicon preform.
BONDING PAD ASSIGNMENTS
Vcc+ (4)
lIN+(S)~
lIN-(2)
2 OUT (7)
D=
_
-
3IN+(10)~.
3 IN - (9)
40UT(14)
10UT(1)
2IN+(5)
21N- 6
()
SOUT(8)
=<;J=
+
4IN+(12)
-
4IN-(13)
VCC-(ll)
CHIP THICKNESS:
15TYPICAL
BONDING PADS:
4X4MINIMUM
TJmax= 165°C
TOLERANCES
ARE± 10%
ALL DIMENSIONS
AREINMILS
...
61
•
1I1111111I1111111111111111111111111111111111111111111111111111
~
2-430
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
TL2829Z, TL2829Y
HIGH-TEMPERATURE QUADRUPLE
OPERATIONAL AMPLIFIERS
equivalent schematic (each ampl ifier)
r---------------~--~--~~------.-~~vcc
OUT
IN-
IN+
-------+-------1--------'
+----GND
TO OTHER
AMPLIFIERS
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-431
TL2829Z, TL2829Y
HIGH-TEMPERATURE QUADRUPLE
OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, vcc+ (see Note 1) ......................................... ; .......... 16 V
Supply voltage, VCC- ............................................................. - 16 V
Differential input voltage (see Note 2) ................................................. ± 32 V
Input voltage range, VI (any input) ............................................... - 16 to 16 V
Input current, II (each input) ........................................................ ± 1 mA
Output current, 10' .............................................................. ± 40 mA
Total current into VCC+ terminal ..................................................... 60 mA
Total current out of VCC- terminal .................................................... 60 mA
Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... unlimited
Continuous total dissipation ........................................ See Dissipation Rating Table
Operating free-air temperature range, TA Z-suffix ............................... - 40°C to 150°C
Storage temperature range .................................................. - 65°C to 165°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package .... '" ........ 300°C
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC- when dual supplies are
specified (e.g., VCC± = ± 15 V) and with respect to VCC- when a single supply is specified (e.g., VCC = 5 V).
2. Differential voltages are atthe noninverting input with respecttothe inverting input. Excessive currentwill flow if input is brought below
VCC-'
.
3. The output may be shorted to either supply. Temperature andior supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
o
N
TAS; 25·C
DERATING FACTOR
TA = 70·C
POWER RATING ABOVETA = 25°C POWER RATING
7.6 mW/oC
1064 mW
722mW
12.6 mW/oC
1764mW
1197mW
TA= 100·C
TA= 125·C
TA= 150·C
POWER RATING
494mW
POWER RATING
POWER RATING
819mW
304mW
114mW
189mW
504mW
recommended operating conditions
MIN
MAX
UNIT
±2
±15
V
VCC+ = ±2.5 V
-2.5
0.5
VCC± = ± 15 V
VCC+ = ±2.5 V
VCC+ = ± 15 V
-15
-2.5
Supply voltage, VCC +
Common-mode input voltage, VIC
Input voltage range
Operating free-air temperature, TA: Z-suffix
TEXAS ~
INsrRUMENTS
2-432
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
13
V
-15
0.5
13
V
-40
150
°c
TL2829Z
HIGH-TEMPERATURE QUADRUPLE
OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature,
PARAMETER
VIO
TEST CONDITIONS
Temperature coefficient of
input offset voltage
110
Input offset current
liB
Input bias current
TAt
MIN
25°C
Input offset voltage
aVIO
Vee = 5 V (unless otherwise noted)
3
Full range
Vo = 1.4 V, VIC = 0, RS = 50 Q
Full range
15
25°C
2.0
Common-mode input
30
Full range
-500
RS = 50Q
UNIT
mV
/lV/oC
200
-12 -100
0
voltage range
7
to
Full range
25°C
25°C
VICR
TYP MAX
nA
nA
0
to
to
3.5
3.5
Full range
0
to
25°C
3.3
Full range
3.2
10H = 1 mA
25°C
Full range
3.3
3.2
3.6
10L = 0.1 mA
25°C
Full range
0.8
0.6
25°C
0.9
Full range
1.1
25°C
Full range
0.7
25°C
Full range
50
25°C
Full range
65
65
V
3
10H = 0.1 mA
VOH
VOL
High-level output voltage
Low-level output voltage
laL = 1 rnA
AVO
CMRR
Large-signal differential
voltage amplification
Common-mode
rejection ratio
kSVR
Supply-voltage rejection ratio
ICC
Supply current
(total package)
Supply current change over
AICC
Va = 1 V to 3.5 V, RL = 2 kQ
Va = 1.4 V, VIC = VICRmin,
RS = 50 Q
VCC = 5 V to 30 V, Va = 1.4 V,
RL =10kQ
25°C
Va = 2.5 V, VIC = 0, No load
V
1
25
65
V
0.7
60
V/mV
81
dB
103
0.6
Full range
Full range
operating temperature range
3.7
dB
1.2
1.2
140
rnA
jlA
t Full range is - 40°C to 150°C.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-433
TL2829Z
HIGH-TEMPERATURE QUADRUPLE
OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Vcc±
TEST CONDITIONS
PARAMETER
VIO
=± 15 V (unless otherwise noted)
TAt
MIN
3
25°C
Input offset voltage
TYP
Full range
Temperature coefficient of
Vo ;0.
aVIO
input offset voltage
VIC; 0
110
Input offset current
liB
Input bias current
RS ; 50Q.
MAX
7
10
Full range
15
25°C
Full range
2
25°C
mV
flVl oC
30
200
-15 -100
-500
Full range
UNIT
nA
nA
-15
25°C
Common-mode input
VICR
voltage range
to
13.5
RS ; 50 Q
V
-15
Full range
to
10 ;-0.1 mA
25°C
Full range
13.2
13.1
10;-1 mA
25°C
Full range
13.1
13
14
25°C
12.8
13.6
13
VOM+
Maximum positive peak
output voltage swing
10;-10mA
Full range
25°C
10;0.1 mA
VOM_
Maximum negative peak
output voltage swing
10; 1 mA
10; 10mA
Large-signal differential
AVD
CMRR
voltage amplification
Common-mode
rejection ratio
kSVR
Supply-voltage rejection ratio
ICC
Supply current
(total package)
Supply current change over
AICC
RL ;2kQ. Vo ; -5Vt05V
Vo ; 1.4 V. RS ; 50 Q
VIC ; VICRmin
VCC ; 5 V to 30 V.
RL ; 10 kQ. Vo ; 1.4 V
Vo ; O. VIC; O. No load
operating temperature range
12.7
-13.1
25°C
Full range
-13.6 -14.3
25°C
-12.9
-12.9
25°C
25
Full range
0.8
25°C
Full range
50
65
65
-13.8
210
103
Full range
140
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
dB
dB
65
0.8
TEXAS ~
V/mV
75
25°C
Full range
INSTRUMENTS
V
-13
Full range
25°C
Full range
V
-13.7 -14.4
Full range
t Full range is - 40°C to 150°C.
2-434
14.1
3
3
rnA
flA
Tl2829Z
HIGH-TEMPERATURE QUADRUPLE
OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature, Vee± = ± 15 V (unless otherwise noted)
PARAMETER
SR +
Positive slew rate
SR-
Negative slew rate
Equivalent input noise
Vn
VN(PP)
Bn
voltage
Peak-to-peak equivalent
input noise voltage
Unity-gain bandwidth
Phase margin at unity-
¢m
gain
TEST CONDITIONS
VCC
AVO
¥
= 15 V, Vo = 1 to 4.5 V,
= 1, RL = 2kn, CL = 100pF
TAt
MIN
25°C
0.2
Full range
0.1
25°C
0.25
Full range
0.2
TYP
MAX
UNIT
V/JlS
f
f
= 10 Hz
= 10 kHz
25°C
f
= 0.1
25°C
0.9
JlV
kHz
Hz to 10 Hz
39
23
RL
= 10k.Q+,
CL
= 100pF
25°C
400
RL
= 10 k.Q*,
CL
=
25°C
60°
100 pF
nV/VHz
t Full range is - 40°C to 150°C.
*RL terminates at 0 V.
TEXAS ~
IN srRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-435
TL2829Y
HIGH-TEMPERATURE QUADRUPLE
OPERATIONAL AMPLIFIERS
electrical characteristics at Vcc±
=± 15 V, TA = 25°C
PARAMETER
TEST CONDITIONS
VIO
110
liB
Input offset voltage
Input offset current
Input bias current
Vo = 0, VIC = 0, RS = 50 Q
VICR
Common-mode input
voltage range
RS = 50Q
10=-0.1 mA
10=-1 mA
10=-10mA
10=0.1 mA
Maximum negative peak output voltage
10= 1 mA
VOMswing
10 = 10 mA
Large-signal differential
Vo = 1 Vto-1.5V, RL =2kQ
AVD
voltage amplification
CMRR Common-mode rejection ratio
Vo = 1.4 V, VIC = Ot028V, RS=50Q
VCC = 5 V to 30 V, Vo = 1.4 V, RL = 10 kQ
kSVR Supply-voltage rejection ratio
Supply current (total package)
ICC
Vo = 0, VIC = 0, No load
VOM+
Maximum positive peak output voltage
swing
TEXAS ~
INSTRUMENTS
2-436
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
MIN
TYP
MAX
7
3
2
30
-15 -100
-15
to
13.5
13.2
13.1
12.8
UNIT
mV
nA
V
14.1
14
13.6
-13.7 -14.4
-13.6 -14.3
-12.9 -13.8
V
V
25
210
VlmV
65
65
75
103
0.8
dB
dB
3
mA
TL2829ZD, TL2829ZN, TL2829Y
HIGH-TEMPERATURE QUADRUPLE
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
110
TABLE OF GRAPHS
Input offset current
liB
Input bias current
VOM+
High-level output voltage
VOM-
Low-level output voltage
los
Short-circuit output current
AVO
CMRR
Differential voltage amplification
ksv~
ICC
SR+
SR-
vs
vs
vs
Temperature
Temperature (Vee = ± 2.5 V)
Temperature (VCC = ± 15 V)
FIGURE
1
2
3
vs
Temperature (VCC = ± 2.5 V)
4
vs
Temperature (VCC = ± 15 V)
5
vs
Temperature (Vee = ± 2.5 V)
vs
vs
Temperature (Vee = ± 15 V)
vs
vs
Temperature (VID.= - 1 V)
Temperature
6
7
8
9
10
Common-mode rejection ratio
Supply-voltage rejection ratio
vs
Temperature
11
vs
Temperature
Supply current
Positive slew rate
vs
vs
Temperature
12
13
Temperature
14
Negative slew rate
vs
Temperature
15
Equivalent input noise voltage
Over a 10-second period
Temperature (VID..= 1 V)
16
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-437
TL2829ZD, TL2829ZN, TL2829Y
HIGH-TEMPERATURE QUADRUPLE
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
INPUT OFFSET CURRENT
vs
FREE-AIR TEMPERATURE
2
c(
c
1.8
/
I
~
:I
1.6
/
I
0
Gi
:t!0
...
'5
1.4
.E
I
0
.::-
i"""
'"
VCC± = ± 2.5 V to ± 15 V
RL=10kn
1.2
VIC = 0
Vo = 0
1
1
o
-50
50
100
TA - Free-Air Temperature - ·C
150
Figure1
INPUT BIAS CURRENT
INPUT BIAS CURRENT
vs
vs
FREE-AIR TEMPERATURE
FREE-AIR TEMPERATURE
20
0
VCC± = ± 2.5 V
16 RL = 10 kQ
c(
12
I
8
c
E
~
:I
-2
VIC= 0
Vo = 0
c(
c
E
0
~
~
'5
-4
iii
Q.
.E
-8
/
....... V
~ -12
0
1/1
co
/
-8
'5Q. -10
.E
~
-12
-14
o
50
100
TA - Free-Air Temperature - ·C
150
~""
-16
-50
Figure2
L
TEXAS ~
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
V
/
o
50
100
T A - Free-Air Temperature - ·C
Figure3
INSTRUMENTS
2-438
1
-6
iii
-16
-20
-50
J
VIC = OV
-4 Vo = 0
I
4
0
1/1
co
VCC± = ± 15 V
RL = 10kn
1
1
150
TL2829ZD, TL2829ZN, TL2829Y
HIGH-TEMPERATURE QUADRUPLE
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE
>
MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE
vs
vs
FREE-AIR TEMPERATURE
FREE-AIR TEMPERATURE
1.8r-----~r------,------~------_,
Vee± = ± 2.5 V
> 14.6 r--------r-------,-------,-------:::I
Vee± = ± 15 V
"
Cl
1.6r-----~------~-------+~~~'9
$!
~
:;
1.4r-----~------~~~~~------_1
5"
14.4 1-------I__----~----------:::>~_____:7"'___1
14.2 1----------:I----------:::>~~~~---------1
o
1.2r-----~--~~~~-----+------_1
"'~'""
.~
1.0 I-----..~~F_------jf-----_I------_I
0.81-------t-----~"""'-----~----=......;;;:_/
.~ 13.8 r--:7""-~r_----~------~------___I
~
E
E 13.6 I-------ih""""'--~----'"'----r------~
"
:;
'"
'x
0.6
1-------,,,;£+-----~I__----~------___1
+
:;
~
:;
0.4L-------L-----~------~------~
-50
o
50
150
100
T A - Free-Air Temperature -
50
100
150
·e
MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE
vs
vs
FREE-AIR TEMPERATURE
FREE-AIR TEMPERATURE
~ -13.6 r-----~--------r---~---_,
Vee
~
$!
= ± 2.5V
"0 -1.0
Vee± = ± 15 V
~ -13.81-;;;;;;:::~:::;;;;::==T---.....,~:_:;n;;;A1
>
:;
Q.
:; -1.2
'[
:;
= 10 rnA
10
0
...
o -14.0 I-------f-------j------_I--------I
~
-1.4
.~ -14.2 1-'.......::----1-------1---------1------___1
;;;
-1.6
lE -14.4
E
-1.8
E
"
'x
:;
'"
o
T A - Free-Air Temperature -
MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE
"
g>
z
-50
·e
$!
"
">
~
13.2 '--____~L__ _ _ _~_ _ _ _ _ _~_ _ _ _ _ _~
Figure5
Cl
Q.
~
Figure4
> -0.8
I
"''""
13.4 h.c:---~I__----~---------I------___1
+
'" -14.6 1-------1__------1------=""""=-----___1
:;
-2.0
I
I
I
:;
0 -2.2
>
-50
1------'f""ooo;;;:-----1--=""""'.....::~------___1
"E
'x
:;
L-_ _L - L __ _- - '_ _ _ _ _ _- - '
-50
0
50
100
150
~-14.8
0
50
150
100
TA - Free-Air Temperature -
·e
~
T A - Free-Air Temperature -
Figure6
·e
Figure7
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
2-439
TL2829ZD, TL2829ZN, TL2829Y
HIGH-TEMPERATURE QUADRUPLE
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
SHORT-CIRCUIT OUTPUT CURRENT
SHORT-CIRCUIT OUTPUT CURRENT
vs
vs
FREE-AIR TEMPERATURE
FREE-AIR TEMPERATURE
-14
96
c:.'"0-
94
en
92
a:
>
en
90
'';ril
a:
'"
g
::I
""
0.85
-............
«
I
~
E
f!
"
"""
_Vcc = 5Vt030V
Vo = 1.4 V
88 -RL= 10kQ
0.7
c:.
'"0-
0.65
III
0.4
I
I
~
50
100
TA - Free-Air Temperature - DC
.9
0.2
0
a:+
0.1
en
o
50
100
TA - Free-Air Temperature - DC
Figure13
POSITIVE SLEW RATE
NEGATIVE SLEW RATE
vs
vs
FREE-AIR TEMPERATURE
FREE-AIR TEMPERATURE
0.45
en
.:!>
/'
VCC = 15V
Vo = 1 V to 4.5 V-
--
/"
--....
........
150
VCC = 5 V
Vo = 1 V 103 V
-50
o
50
"
100
TA - Free-Air Temperature - DC
~
......'"
.2:
~"
0.41
RL = 2kQ 1
CL = 100 pF
Av = 1
0.38
VCC = 15V
Vo = 1 V to 4.5 V
!!!
0.35
IV
a:
iii
~
0.05
o
......
VCC± = ± 2.5 V
Figure12
Av = 1
0.3
0.15
/
:--...............
~
/
0.45
-50
150
0.35
0I
0.55
CL = 100 pF
..
.;;;
vcc± = ± 15 V
0.48
iii 0.25
.~
0.6
U
I
>
!!!IV
a:
/
0.5
o
/
-..........
~
V
::I
en
RL = 2 kQ 1
.:!-
0.75
~
U
0.5
0.45
0.8
E
98
86
-50
VIC = 0
r- RL = 0
Z
I
a:
en
150
0.31
0.28
0.25
0.21
0.18
/'
/'
....-
./-
/"
~
..............
~
VCC = 5 V
Vo= lVt03V
0.11
o
-50
Figure14
""
"
"'-
0.15
50
o
100
TA - Free-Air Temperature - DC
150
Figure15
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-441
TL2829ZD, TL2829ZN, TL2829Y
HIGH-TEMPERATURE QUADRUPLE
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
EQUIVALENT INPUT NOISE VOLTAGE
OVER A 10·SECOND PERIOD
0.62 r - - - - , - - - , - - - - - r - - - , - - - - - ,
0.31
~
I
Q)
Cl
S
0
"0
>Q)
III
'0
Z
-
0.311-----+-+---~-_+_--+-+_IH
=
Vcc±
± 15V
f
0.11010 Hz
=
- 0.62 ' - - _ - ' -_ _'--_--'-_ _.L..-_--'
o
2
4
6
8
10
I - Time - s
Figure 16
TEXAS
~
INSTRUMENTS
2-442
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
Tl33071, Tl33072, Tl33074, Tl34071,Tl34072,Tl34074
Tl35071, Tl35072, Tl35074
HIGH-SLEW-RATE, SINGLE-SUPPLY OPERATIONAL AMPLIFIERS
D3825. MARCH 1991 - REVISED JULY 1991
available features
•
Wide Gain-Bandwidth Product ... 4.5 MHz
•
High Slew Rate ... 13 V/JlS
•
Fast Settling Time ... 1.1 JlS to 0.1 %
•
Wide-Range Single-Supply Operation
4 Vt044 V
•
Wide Input Common-Mode Range
Includes Ground (VCC-)
•
Low Total Harmonic Distortion ... 0.02 %
•
Low Input Offset Voltage ... 3 mV Max
(A Suffix)
u8
•
Large Output Voltage Swing
- 14.7 V to 14 V (With ± 15-V Supplies)
•
Large Capacitance Drive Capability
oto 10,000 pF
•
Excellent Phase Margin ... 60 0
•
Excellent Gain Margin ... 12 dB
•
Output Short-Circuit Protection
0·8 OR P PACKAGE
OFFSET Nl
ININ+
Vee _/GND
(DUAL, TOP VIEW)
10UT
1 IN -
2
3
7
6
NC
Vee +
OUT
4
5
OFFSET N2
1 IN +
Vec_/GND
OW PACKAGE
Vee +
21N +
21N -
1
lOUT
4 OUT
41N 41N +
2 OUT
Vee+
20UT
7
3
6
21N521N+
4
40UT
41N 41N +
1
liN Vee +
21N +
Vee_ /GND
31N +
31N 3 OUT
NC
5
8
2
N PACKAGE
(QUAD, TOP VIEW)
(QUAD, TOP VIEW)
lOUT
1 IN·
liN +
u
0·8 OR P PACKAGE
(SINGLE, TOP VIEW)
21N 8
Vee_ /GND
31N +
31N 30UT
Ne - No internal connection
AVAILABLE OPTIONS
PACKAGE
TA
COMPLEXITY
O°C
SMALL OUTLINE
PRIME
STANDARD
GRADE
GRADE
PLASTIC DIP
STANDARD
PRIME
GRADE
GRADE
Single
TL34071P
TL34071AP
TL34071D
TL34071AD
to
Dual
TL34072P
TL34072AP
TL34072D
TL34072AD
70 0 e
-40 o e
Quad
TL34074N
TL34074DW
TL34074ADW
Single
TL33071P
TL34074AN
TL33071AP
TL33071AD
TL33072AD
to
Dual
TL33072P
TL33072AP
TL33071D
TL33072D
105°e
Quad
TL33074N
TL33074AN
TL33074DW
TL33074ADW
-55°e
Single
TL35071P
TL35071AP
TL35071D
TL35071AD
to
Dual
TL35072P
TL35072AP
TL35072D
TL35072AD
125°e
Quad
TL35074N
TL35074AN
TL35074DW
TL35074ADW
D packages are available taped and reeled. Add "R" suffix to device type (e.g .•TL34071ADR).
PRODUCTION DATA documents contain inlormalion
current as 01 publication date. Products conlorm to
specifications per the terms 01 Texas Instruments
standard warranty. Production processing does not
necessarily include testing 01 all parameters.
TEXAS
~
Copyright © 1991. Texas Instruments Incorporated
INsrRUMENTS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
2-443
TL33071, TL33072, TL33074, TL34071,TL34072,TL34074
TL35071, TL35072, TL35074
HIGH-SLEW-RATE, SINGLE-SUPPLY OPERATIONAL AMPLIFIERS
description
Quality, low cost, bipolar fabrication with innovative design concepts are employed for the TL33071 12/4,
TL34071/2/4, and TL35071 12/4 series of monolithic operational amplifiers. This series of operational amplifiers
offer 4.5 MHz of gain bandwidth product, 13 V/IlS slew rate and fast settling time without the use of JFET device
technology. Although this series can be operated from split supplies, it is particularly suited for single-supply
operation, since the common-mode input voltage range includes ground potential (VCC-)' With a Darlington
input stage, this series exhibits high input resistance, low input offset voltage, and high gain. The all-NPN
output stage, characterized by no dead-band crossover distortion and large output voltage swing, provides
high-capacitance drive capability, excellent phase and gain margins, low open-loop high-frequency output
impedance, and symmetrical source/sink ac frequency response.
The TL33071 12/4, TL34071/1/4, and TL35071/2/4 series of devices are available in standard or prime
performance (A-Suffix) grades and are specified over the commercial (O°C to 70°C), industrial/vehicular
(- 40°C to 105°C) or military (- 55°C to 125°C) temperature ranges. These low-cost amplifiers are available
in single, dual and quad configurations and are pin-compatible wtth the (low-cost) MC33071 1214, MC34071/214, and
MC35071/2/4series of amplifiers. Packaging options include standard plastic DIP and SO packages.
symbol
SINGLE
DUAL AND QUAD
(PER AMPLIFIER)
OFFSET N1 - - - - - - - ,
IN+
IN+
OUT
OUT
IN-
IN-
OFFSET N2 _ _ _- - '
TEXAS ~
INSTRUMENTS
2-444
POST OFFICE BOX655303 • DALLAS, TEXAS 75265
Tl33071, Tl33072, Tl33074, Tl34071,Tl34072,TL34074
TL35071, Tl35072, TL35074
HIGH-SlEW-RATE, SINGLE-SUPPLY OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC+ (see Note 1) .................................................... 22 V
Supply voltage, VCC- .............................................................. -22 V
Differential input voltage (see Note 2) .................................................. ±44 V
Input voltage range, VI (any input) .................................................... VCC±
Input current, II (each input) ......................................................... ±1 mA
Output current, 10 ................................................................ ±80 mA
Total current into VCC+ terminal ..................................................... 80 mA
Total current out of VCC- terminal .................................................... 80 mA
Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... unlimited
Continuous total dissipation ........................................ See Dissipation Rating Table
Operating free-air temperature range, TA: TL3307_ ............................... - 40°C to 105°C
TL3407_ .................................. O°C to 70°C
TL3507_ ............................... - 55°C t0125°C
Storage temperature range ................................................... - 65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: 0, OW, N, or P package .......... 260°C
NOTES: 1.. All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC-.
2. Differential voltages are at the noninverting input with respect to the inverting input. Excessive current will flow if input is brought
below VCC- - 0.3 V.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA~25°C
DERATING FACTOR
TA=70oC
POWER RATING
725mW
POWER RATING
464mW
TA= 105°C
POWER RATING
261 mW
TA= 125°C
POWER RATING
145mW
OW
1025mW
ABOVETA = 25°C
5.8 mWI"C
8.2 mW/oC
656mW
369mW
205mW
N
p
1150 mW
9.2 mW/oC
736mW
414mW
230mW
1000mW
8.0 mW/oC
640mW
360mW
200mW
0-8
recommended operating conditions
TL3407
TL3307
Supply voltage, VCC +
jVcc - 5V
Common-mode input voltage, VIC j
VCC± = ±15V
Operating free-air temperature, TA
TL3507
MIN
MAX
MIN
MAX
MIN
MAX
±2
± 22
0
-15
- 40
2.7
±2
0
-15
± 22
2.9
± 22
2.7
12.9
±2
0
-15
70
-55
12.7
105
TEXAS
0
12.7
125
UNIT
V
V
DC
~
INsrRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-445
Tl33071, Tl33072, Tl33074, Tl34071,Tl34072,Tl34074
Tl35071, Tl35072, Tl35074
HIGH-SlEW-RATE,SINGlE-SUPPlY OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Vee±
PARAMETER
TEST CONDITIONS
Input offset voltage
Temperature coefficient of
"via
110
input offset voltage
0.5
3
25°C
Full range
0.5
3
5
VCC =±15V Full range
10
Input offset current
VCC=±15V
VIC =0,
VO=O,
RS=50n
VCC=±15V
VCC= 5V
liB
A SUFFIX
MIN lYPi MAX
TAt
25°C
VCC = 5 V
Via
= ± 15V (unless otherwise noted)
Input bias current
VCC =±15V
25°C
voltage range
6
-0.8
300
-2
-0.8
VOH
VOL
Low-level output voltage
Large-signal differential
AVD
lOS
CMRR
kSVR
voltage amplification
RL = 10 kQ
RI = 2 kn
VCC+ = 5 V, VCC- = 0,
RL = 2 k n
RL=10kQ
RL = 2 kn
to
13.2 V
-15 V
13.2 V
-15V
to
to
12.S V
Va
Common-mode
= 1 V, Va =0
Sink: VID =-1 V, Va = 0
VIC = VICR min,
rejection ratio
RS = 50n
Short-circuit output current
Source: V/D
Supply-voltage rejection ratio VCC± = ± 13.5 V to
±16.5V,RS = lOon
(AV cc + !tNIO)
Va
ICC
= ± 10 V, RL = 2 kn
Supply current (per channel)
= 0,
No Load
VCC+ = 5 V, VCC- = 0,
No Load
Va = 0,
3.7
4
3.7
4
25°C
Full range
13.6
14
13.6
14
13.4
0.1
0.3
0.1
- 14.7 -14.3
-13.5
25°C
50
25
V
100
25
100
-10
-30
20
30
20
30
25°C
SO
97
70
97
25°C
80
97
70
97
25°C
Full range
3.5
4.5
25°C
3.4
4.4
4.6
mA
dB
dB
3.5
4.5
4.7
3.4
4.4
4.7
V
V/mV
20
-30
Full range
0.3
- 14.7 -14.3
-13.5
-10
25°C
jJ.A
13.4
25°C
Full range
-1.5
V
25°C
25°C
Full range
nA
-2
-15V
12.S V
VCC+ = 5 V, VCC-= 0,
RL = 2 kO
mV
-1.6
to
Full range
High-level output voltage
-0.7
UNIT
jJ.V/oc
50
-2.3
-1.5
-1.6
Full range
5
7
300
-2.3
-0.7
25°C
RS = 500
5
10
-15 V
VICR
MAX
1.5
1.0
50
Full range
25°C
Common-mode input
lYPi
6
Full range
25°C
NON·A SUFFIX
MIN
mA
4.6
tFuil range is O°C to 70°C for the TL3407_ devices, - 40°C to 105°C for the TL3307_ devices, and - 55°C to 125°C for the TL3507_ device~.
tAli typical values are at TA = 25°C.
TEXAS ~
INSTRUMENTS
2-446
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Tl33071, Tl33072, Tl33074, Tl34071,Tl34072,Tl34074
Tl35071, Tl35072, Tl35074
HIGH-SlEW-RATE, SINGLE-SUPPLY OPERATIONAL AMPLIFIERS
operating characteristics at vee ±
PARAMETER
SR+
SR-
Positive slew rate
Negative slew rate
Settling time
Vn
In
Equivalent input noise
voltage
Equivalent input noise
current
THO
Total harmonic distortion
GBW
Gain-bandwidth product
BW
Power bandwidth
¢m
Phase margin
Gain margin
fj
C'
Zo
Differential input resistance
Input capacitance
Channel separation
Open-loop output
impedance
= ± 15 V, TA = 25°C
TEST CONDITIONS
VI =-10 V to
TYP
8
10
13
1.1
2.2
AV = 1
AV=-l
To 0.1%
To 0.01%
10V,RL=2kn
AVO = -1,
10-V Step
I = 1 kHz,
A SUFFIX
MIN
RS = lOOn
I = 1 kHz
Vo = 2 V to 20 V, RL = 2 kn,
1= 10 kHz
AVO = 10,
NON-A SUFFIX
MAX
MIN
TVP
8
10
13
1.1
2.2
MAX
UNIT
V/fls
fls
32
32
nVl,!Hz
0.22
0.22
pAl,!Hz
0.02
%
4.5
MHz
kHz
0.02
l=lookHz
RL = 2kn,
AVO = 1,
VOg'P) = 20 V,
TH =5.0%
200
200
RL
RL
RL
RL
CL
CL
CL
CL
60°
40°
12
4
60°
40°
12
4
VIC =0
150
150
Mn
VIC =0
I = 10 kHz
2.5
120
2.5
120
pF
dB
1= 1 MHz
30
30
Q
=
=
=
=
2kQ,
2kQ,
2kQ,
2kQ,
3.5
=
=
=
=
0
300 pF
0
300 pF
4.5
3.5
dB
TEXAS ~
INSfRUMENlS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
2-447
2-448
TLC251C,TLC251AC,TLC251BC,TLC251Y
PROGRAMMABLE LOW·POWER LinCMOSTM OPERATIONAL AMPLIFIERS
JULY 1983--REVISED NOVEMBER 1991
•
08
o OR P PACKAGE
Wide Range of Supply Voltages
1.4 Vto 16 V
(TOP VIEW)
•
•
True Single-Supply Operation
•
Low Noise ... 30 nV/vHz Typ at 1 kHz
(High Bias)
•
ESD Protection Exceeds 2000 V Per
MIL-STD-833C, Method 3015.1
Common-Mode Input Voltage Range
Includes the Negative Rail
OFFSET N1
ININ+
2
3
7
6
BIAS SELECT
VDD
OUT
VDD_/GND
4
5
OFFSET N2
symbol
BIAS SELECT - - - - - ,
description
The TLC251C, TLC251AC, and TLC251BC are
IN+
low-cost, low-power programmable operational
OUT
INamplifiers designed to operate with single or dual
supplies. Unlike traditional metal-gate CMOS op
amps, these devices utilize Texas Instruments
OFFSETN1
silicon-gate LinCMOS™ process, giving them
OFFSET N2 - - - - ,
stable input offset voltages without sacrificing the
advantages of metal-gate CMOS. This series of
parts is available in selected grades of input offset voltage and can be nulled with one external potentiometer.
Because the input common-mode range extends to the negative rail and the power consumption is extremely
low, this family is ideally suited for battery-powered or energy-conserving applications. A bias-select pin can be
used to program one of three ac performance and power-dissipation levels to suit the application. The series
features operation down to a 1.4-V supply and is stable at unity gain.
These devices have internal electrostatic-discharge (ESD) protection circuits that will prevent catastrophic
failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.1. However, care should be
exercised in handling these devices as exposure to ESD may result in a degradation of the device parametric
performance.
Because of the extremely high input impedance and low input bias and offset currents, applications for the
TLC251 C series include many areas that have previously been limited to BIFET and NFET product types. Any
circuit using high-impedance elements and requiring small offset errors is a good candidate for cost-effective
use of these devices. Many features associated with bipolar technology are available with LinCMOS™
operational amplifiers without the power penalties of traditional bipolar devices. Remote and inaccessible
equipment applications are possible using the low-voltage and low-power capabilities of the TLC251 C series.
AVAILABLE OPTIONS
PACKAGE
TA
VIOmax
AT 25"C
SMALL OUTLINE
(D)
PLASTIC DIP
(P)
lDmV
D"C to 7D"C
TLC251CD
TLC251CP
5mV
TLC251ACD
TLC251ACP
2mV
TLC251 BCD
TLC251BCP
CHIP FORM
(Y)
TLC251Y
-
The D package is available taped and reeled. Add the suffix "ROO to the device type (e.g., TLC251 CDR). Chips
are tested at 25"C.
LinCMOS is a trademark of Texas Instruments Incorporated.
PRODUCTION DATA Information Is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily Include
testing of all parameters.
TEXAS
~
Copyright © 1991, Texas Instruments Incorporated
INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-449
TLC251C,TLC251AC, TLC251BC, TLC251Y
PROGRAMMABLE LOW-POWER LinCMOS™ OPERATIONAL AMPLIFIERS
description (continued)
In addition, by driving the bias-select input with a logic signal from a microprocessor, these operational amplifiers
can have software-controlled performance and power consumption. The TLC251 C series is well suited to solve
the difficult problems associated with single battery and solar cell-powered applications.
The TLC251 C series is characterized for operation from DOC to 7DoC.
schematic
VDD~7------------------'----4~--------__--------~
8 BIAS
--r
/
SELECT
/
IN-
6
~~------+---------------
OFFSET_1______________+--e
N1
OFFSET~5~
____________+--r____r-___
N2
VDD-~ND-4--------------~~---4~~~____--~--------~
TEXAS ~
INSlRUMENlS
2-450
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
OUT
TLC251Y
PROGRAMMABLE LOW-POWER LinCMOSTM OPERATIONAL AMPLIFIER
chip information
These chips, properly assembled, display characteristics similar to the TLC251 C. Thermal compression or
ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive
epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
VDO
BIAS SELECT
(8)
IN+
INOFFSET N1
OFFSET N2
~'------'
VDD_/GND
48
CHIP THICKNESS: 15 TYPICAL
BONDING PADS: 4 x 4 MINIMUM
T JMAX = 150'C
TOLERANCES ARE ",10%
ALL DIMENSIONS ARE IN MILS
PIN (4) INTERNALLY CONNECTED
TO BACKSIDE OF CHIP
1.......t - - - - - - - 5 5
~I
II II II I II II IIII II II II I
TEXAS ,If
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-451
TLC251C, TLC251AC, TLC251BC
PROGRAMMABLE LOW-POWER LinCMOS™ OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VDD (see Note 1) ............................................................ 18 V
Differential input voltage (see Note 2) ...................................................... ± 18 V
Input voltage range (any input) ..................................................... -0.3 V to 18 V
Duration of short circuit at (or below) 25°C free-air temperature (see Note 3) .................. unlimited
Continuous total dissipation ........................................... See Dissipation Rating Table
Operating free-air temperature range .................................................. O°C to 70°C
Storage temperature range ....................................................... -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................... 260°C
NOTES: 1. All voltage values, except differential voltages, are wnh respect to VDD-1GND terminal.
2. Differential voltages are at the non inverting input terminal, with respect to the inverting input terminal.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure the maximum dissipation
rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
D
P
TA = 70'C
POWER RATING
TA,,25'C
POWER RATING
DERATING FACTOR
ABOVE TA = 25'C
725 mW
5.8mW/'C
464mW
1000mW
8.0mW/'C
640mW
recommended operating conditions
MIN
Supply voltage, VDD
VDD = 1.4 V
Common-mode input voltage, VIC
MAX
16
0
0.2
VDO =5V
-0.2
4
VDD = 10V
-0.2
VDD = 16V
-0.2
9
14
0
70
Operating free-air temperature, TA
Bias select pin voltage
UNIT
V
V
'C
See Application Information
TEXAS ."
INSlRUMENTS
2-452
NOM
1.4
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLC251C, TLC251AC, TLC251BC
PROGRAMMABLE LOW·POWER LinCMOSTM OPERATIONAL AMPLIFIERS
HIGH·BIAS MODE
electrical characteristics at specified free-air temperature
PARAMETER
TEST CONOITIONS
TAt
MIN
VOO=5V
TYP
MAX
25·C
TLC251C
Via
Input offset voltage
TLC251AC
TLC251BC
aVIO
Vo = 1.4 V,
VIC =OV,
25·C
RS = 50Q,
Full range
RL = 10 kQ
25·C
Input offset current (see Note 4)
liB
Input bias current (see Note 4)
0.9
0.34
VOL
Low-level output voltage
Large-signal differential
voltage amplification
AVO
CMRR
KSVR
IJ(SELl
100
Common-mode rejection ratio
2
0.39
1.8
2
0.1
0.1
VIC = Voo/2
70·C
7
Va =Voo/2,
25·C
0.6
VIC=Voo/2
70·C
40
Full range
-0.2
to
3.5
Vio = 100mV,
RL=10kQ
Vio =-100mV,
IOL=O
RL = 10 kQ,
See Note 6
VIC = VICRmin
5
300
7
!lVrC
300
600
-0.3
to
4.2
50
-0.2
to
9
600
-0.3
to
9.2
pA
V
-0.2
to
8.5
V
3.2
3.8
8
8.5
O·C
3
3.8
7.8
8.5
70·C
3
3.8
7.8
8.4
V
25·C
0
50
0
50
O·C
0
50
0
50
70·C
0
50
0
50
25·C
5
23
10
36
O·C
4
27
7.5
42
70·C
4
20
7.5
32
25·C
65
80
65
85
O·C
60
84
60
88
70·C
60
85
60
88
25·C
65
95
65
95
O·C
60
94
60
94
70·C
60
96
60
96
mV
V/mV
dB
Voo = 5 V to 10 V,
Va = 1.4 V
Input current to bias select pin
VUSEL)= 0
25·C
-1.4
Vo =Voo/2,
25·C
675
1600
950
2000
VIC =Voo/2,
No load
O·C
775
1800
1125
2200
70·C
575
1300
750
1700
t Full range
NOTES: 4.
5.
6.
pA
0.7
Supply-voltage rejection ratio
(dVoof,WIO)
Supply current
mV
2
3
25·C
-0.2
to
4
10
6.5
Vo =Voo/2,
range (see Note 5)
High-level output voltage
0.9
3
25·C
UNIT
12
5
6.5
25·C
VOH
1.1
25·C to
70·C
Common-mode input voltage
VICR
10
12
Full range
Average temperature coefficient
of input offset voltage
110
1.1
Full range
VOO = 10V
MIN
TYP
MAX
dB
JlA
-1.9
JlA
O·C to 70·C.
The typical values of input bias current and input offset current below 5 pA were determined mathematically.
This range also applies to each input individually.
At Voo = 5 V, Va = 0.25 V to 2 V; at Voo = 10 V, Va = 1 V to 6 V.
IS
TEXAS ,If
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-453
TLC251C,TLC251AC,TLC251BC
PROGRAMMABLE LOW·POWER LinCMOS™ OPERATIONAL AMPLIFIERS
HIGH·BIAS MODE
operating characteristics, Voo
=5 V
PARAMETER
TEST CONDITIONS
TA
25°C
VI(PP) = 1 V
SR
Slew rate at unity gain
RL = 10 kQ,
CL = 20 pF
VI(PP) = 2.5 V
Vn
BOM
B1
m
Equivalent input noise voltage
Maximum oulput swing bandwidth
Unity-gain bandwidth
VO=VOH,
VI = 10 mV,
Phase margin
operating characteristics,
f = 1 kHz,
VI
=10 mV,
RS=1000
CL = 20 pF,
RL= 100kO
CL = 20 pF
f = Bl,
CL = 20 pF
TA
25'C
TEST CONDITIONS
VI(PP) = 1 V
Slew rate at unity gain
RL = 100 kO, CL = 20 pF
VI(PP) = 5.5 V
BOM
Bl
m
Equivalent input noise voltage
Maximum output swing bandwidth
Unity-gain bandwidth
Phase margin
f = 1 kHz,
Vo =VOH,
VI = 10 mV,
VI = 10mV,
RS = 1000
CL = 20 pF,
RL = 100 kO
CL = 20 pF
f = 81,
CL = 20 pF
TEXAS ."
INSTRUMENlS
2-456
MAX
UNIT
0.43
O'C
0.46
70'C
0.36
25'C
0.40
O'C
0.43
70'C
0.34
25'C
32
25'C
55
O'C
60
70'C
50
25'C
525
O'C
600
70'C
400
25'C
40'
O'C
41'
70'C
39'
TA
25'C
Vn
TYP
V/lls
nV/v'Hz
kHz
kHz
Voo = 10 V
PARAMETER
SR
MIN
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
MIN
TYP
MAX
UNIT
0.62
O'C
0.67
70'C
0.51
25'C
0.56
O'C
0.61
70'C
0.46
25'C
32
25'C
35
O'C
40
70'C
30
25'C
635
O'C
710
70'C
510
25'C
43'
O'C
44'
70'C
42'
V/lls
nV/v'Hz
kHz
kHz
TLC251C,TLC251AC,TLC251BC
PROGRAMMABLE LOW-POWER LinCMOSTM OPERATIONAL AMPLIFIERS
LOW-BIAS MODE
electrical characteristics at specified free-air temperature
PARAMETER
TEST CONDITIONS
TLC251C
TAt
VOO =5V
MIN
TYP
MAX
25'C
1.1
Full range
Va = 1.4 V.
VOO= 10V
MIN
10
TYP
1.1
UNIT
MAX 1
10
12
12
~-.---::-
Via
Input offset voltage
TLC251AC
TLC251BC
aVIO
110
VIC =OV.
25'C
RS = 50Q.
Full range
RL= 1 MQ
25'C
Input bias current (see Note 4)
liB
0.24
VOL
Low-level output voltage
Large-signal differential
voltage amplification
AVO
CMRR
KSVR
II(SELl
100
Common-mode rejection ratio
Supply-voltage rejection ratio
(AVOO/AVIO)
Input current to bias select pin
Supply current
t Full range
NOTES: 4.
5.
6.
0.26
Va =VOo/2.
25'C
0.1
0.1
VIC =VOO/2
70'C
7
Va =VOo/2.
25'C
0.6
VIC =VOO/2
70'C
40
25'C
Full range
-0.2
to
3.5
VIO= 100mV.
RL= 1 MQ
VID = -100 mY.
10L=0
RL= 1 MQ.
See Note 6
VIC = VICRmin
VOO = 5 V to 10 V.
Va = 1.4 V
7
300
Ilvrc
300
0.7
50
600
-0.3
to
4.2
mV
2
3
1
range (see Note 5)
High-level output voltage
2
3
-0.2
to
4
5
6.5
1.1
-0.2
to
9
600
-0.3
to
9.2
pA
pA
V
-0.2
to
8.5
V
3.2
4.1
8
O'C
3
4.1
7.8
8.9
70'C
3
4.2
7.8
8.9
25'C
VOH
0.9
25'C to
70'C
Common-mode input voltage
VICR
5
6.5
Full range
Average temperature coefficient
of input offset voltage
Input offset current (see Note 4)
0.9
8.9
V
25'C
0
50
0
O'C
0
50
0
50
70'C
0
50
0
50
25'C
50
520
50
870
O'C
50
700
50
1030
70'C
50
380
50
660
25'C
65
94
65
97
O'C
60
95
60
97
70'C
60
95
60
97
25'C
70
97
70
97
O°C
60
97
60
97
70°C
60
98
60
98
50
mV
V/mV
dB
dB
95
nA
VI(SELl = VOO
25'C
65
Va =VOo/2.
25°C
10
17
14
23
VIC =VOO/2.
No load
O'C
12
21
18
33
70°C
8
14
11
20
jlA
is O°C to 70°C.
The typical values of input bias current and input offset current below 5 pA were determined mathematically.
This range also applies to each input individually.
At VOO = 5 V. Va = 0.25 V to 2 V; at VOO = 10 V. Va = 1 V to 6 V.
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-457
TLC251C, TLC251AC, TLC251BC
PROGRAMMABLE LOW-POWER LinCMOS™ OPERATIONAL AMPLIFIERS
LOW·BIAS MODE
operating characteristics, Voo
=5 V
PARAMETER
TEST CONDITIONS
VI{PP) = 1 V
SR
Slew rate at unity gain
RL= 1 MQ,
CL = 20 pF
VI{PP) = 2.5 V
Vn
BOM
Equivalent input noise voltage
Maximum output swing bandwidth
f = 1 kHz,
VO=VOH,
RS = 100Q
CL = 20 pF,
RL= 1 MQ
TA
25'C
MIN
-.........- ___-
>----
OUTPUT
OUTPUT
N2
IN+----J
INPUT
BIAS
Low
Medium
High
t
1 MQ
100kQ
10 kQ
25kQ
GNO
Figure 1. Unity-Gain Amplifier
Figure 2. Input Offset Voltage Null Circuit
TYPICAL CHARACTERISTICS
SUPPLY CURRENT
SUPPLY CURRENT
vs
vs
BIAS SELECT PIN VOLTAGE
SUPPLY VOLTAGE
10000
=
=
10000 r---r---r-..,--,---r---r--r----r---r---,
.1
Vo VIC = 0.2 VOO
No Load
TA 25'C
ct
::t
I
1000
C
~
:l
~
Q.
«::t
I
I
0
High-Bias Versions
VOO=16V
C
~
:l
100
0
VOO =4V
8:
:l
:l
I
.P
100
~
(/)
C
1000
I
(/)
-
VOO = 1.4V
10
~
I
C
.P
--
10
o~~~-~~--~~--~~~~
1
0.1
10
100
o
4
6
8
10
Figure 4
Figure 3
TEXAS ."
INSlRUMENTS
2-462
2
12
14
VOO - Supply Voltage - V
VB - Bias Select Pin Voltage - V
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
16
18
20
TLC251C,TLC251AC, TLC251BC, TLC251Y
PROGRAMMABLE LOW-POWER LinCMOSTM OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
SUPPLY CURRENT
vs
FREE·AIR TEMPERATURE
10000
is.
Q.
100
::I
III
I
Q
E
MJlum'E las vJslons
r--
10
o
o
Low·Blas Versions
10
20
30
40
50
60
70
80
TA - Free-Air Temperature - 'C
Figure 5
LOW BIAS
LARGE·SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
and PHASE SHIFT
vs
FREQUENCY
107
too
= ldv
RL=l MQ TA=25'C
c 106
0
:;u
iE
105
...
..3l
90°
Q.
150°
180°
0.1
10
100
1k
10k
100k
1M
Frequency - Hz
Figure 7
HIGH BIAS
LARGE·SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
and PHASE SHIFT
vs
FREQUENCY
107
c
0
106
i
.!.!
""Q.
E
....
'"
'"
«
~
!c
..
l!!
~
105
104
103
II
VOO=10V
RL,,10kQ
TA ,,25°C
"
--\,
"'-..'"
60°
~
"k
101
I
C
"-
«>
100
1k
10 k
100 k
\
'"
~
1M
Figure 8
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
:g..
s::
I\.
Frequency - Hz
2-464
VI
90°
.............
3:
s::
Phase Shift (right scale)
AVO (left Sdale)"
10
0°
30°
102
0.1
-
"
120°
150°
180°
10 M
Q.
TLC251C, TLC251AC, TLC251BC, TLC251Y
PROGRAMMABLE LOW-POWER LinCMOSTM OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
latch-up avoidance
Junction-isolated CMOS circuits have an inherent parasitic PNPN structure that can function as an SCR. Under
certain conditions, this SCR may be triggered into a low-impedance state, resulting in excessive supply current.
To avoid such conditions, no voltage greater than 0.3 V beyond the supply rails should be applied to any pin.
In general, the op amp supplies should be applied simultaneously with, or before, application of any input
signals.
using the bias select pin
The TLC251 C series has a bias select pin that allows the selection of one of three 100 conditions (10, 150, and
1000 [lA typical). This allows the user to trade-off power and ac performance. As shown in the typical supply
current (100) versus supply voltage (Voo) curves (Figure 4), the 100 varies only slightly from 4 V to 16 V. Below
4 V, the '00 varies more significantly. Note that the 100 values in the medium- and low-bias modes at
Voo = 1.4 V are typically 2 [lA, and in the high mode are typically 12 [lAo The following table shows the
recommended bias select pin connections at Voo = 10 V.
BIAS MODE
AC PERFORMANCE
Low
Medium
High
Low
Medium
High
BIAS SELECT
CONNECTIONt
voo
0.8 Vto 9.2 V
Ground pin
TYPICAL IOO:!:
10 (lA
150 (lA
lOOOIlA
t The bias select pin may also be controlled by external circuitry to conserve power, etc. For information regarding the bias select pin, see Figure 3
in the typical characteristics curves.
:j: For IDD characteristics at voltages other than 10 V, see Figure 4 in the typical characteristics curves.
output stage considerations
The amplifier's output stage consists of a source-follower-connected pullup transistor and an open-drain
pulldown transistor. The high-level output voltage (VOH) is virtually independent of the 100 selection and
increases with higher values of Voo and reduced output loading. The low-level output voltage (VOU decreases
with reduced output current and higher input common-mode voltage. With no load, VOL is essentially equal to
the VooJGND pin potential.
input offset nulling
The TLC251 C series offers external offset null control. Nulling may be achieved by adjusting a 25-kQ
potentiometer connected between the offset null terminals with the wiper connected to the device VooJGND
pin as shown in Figure 2. The amount of nulling range varies with the bias selection. At an 100 setting of 1000
[lA (high bias), the nulling range will allow the maximum offset specified to be trimmed to zero. In low or medium
bias or when the amplifier is used below 4 V, total nulling may not be possible for all units.
supply configurations
Even though the TLC251 C series is characterized for single-supply operation, it can be used effectively in a
split-supply configuration when the input common-mode voltage (V,eR), output swing (VOL and VOH), and
supply voltage limits are not exceeded.
circuit layout precautions
The user is cautioned that whenever extremely high circuit impedances are used, care must be exercised in
layout, construction, board cleanliness, and supply filtering to avoid hum and noise pickup, as well as excessive
dc leakages.
TEXAS ~
INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-465
2-466
TLC252C, TLC25L2C, TLC25M2C, TLC252Y, TLC25L2Y, TLC25M2Y
LinCMOS™ DUAL OPERATIONAL AMPLIFIERS
JUNE 1983-REVISED SEPTEMBER 1991
•
•
•
Os
o OR P PACKAGE
A-Suffix Versions Offer 5-mV VIO
(TOP VIEW}
B-Suffix Versions Offer 2-mV VIO
Wide Range of Supply Voltages
1.4 V to 16 V
1 OUT
11N11N+
•
True Single-Supply Operation
•
Common-Mode Input Voltage Includes the
Negative Rail
•
Low Noise ... 30 nV/VHZ Typ at f
(High-Bias Versions)
VOD_/GND
2
3
7
6
4
5
VDO
2 OUT
21N2 IN +
symbol (each amplifier)
=1 kHz
IN+~
description
OUT
IN----v--
The TLC252C, TLC25L2C, and TLC25M2C are
low-cost, low-power dual operational amplifiers
designed to operate with single or dual supplies. These devices utilize the Texas Instruments silicon gate
LinCMOS'" process, giving them stable input offset voltages that are available in selected grades of 2, 5, or
10 mV maximum, very high input impedances, and extremely low input offset and bias currents. Because the
input common-mode range extends to the negative rail and the power consumption is extremely low, this series
is ideally suited for battery-powered or energy-conserving applications. The series offers operation down to a
1.4-V supply, is stable at unity gain, and has excellent noise characteristics.
These devices have internal electrostatic-discharge (ESD) protection circuits that will prevent catastrophic
failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.1. However, care should be
exercised in handling these devices as exposure to ESD may result in a degradation of the device parametric
performance.
Because of the extremely high input impedance and low input bias and offset currents, applications for the
TLC252C series include many areas that have previously been limited to BIFET and NFET product types. Any
circuit using high-impedance elements and requiring small offset errors is a good candidate for cost-effective
use of these devices. Many features associated with bipolar technology are available with LinCMOS'"
operational amplifiers without the power penalties of traditional bipolar devices. General applications such as
AVAILABLE OPTIONS
PACKAGE
TA
VIOmax
AT 25°C
SMALL OUTLINE
(D)
PLASTIC DIP
(P)
TLC252CD
TLC252CP
10mV
O°C to 70°C
5mV
TLC252ACD
TLC252ACP
2mV
TLC252BCD
TLC252BCP
10 mV
CHIP FORM
M
TLC25L2CD
TLC25L2CP
TLC252Y
5 mV
TLC25L2ACD
TLC25L2ACP
TLC25L2Y
2 mV
TLC25L2BCD
TLC25L2BCP
TLC25M2Y
10 mV
TLC25M2CD
TLC25M2CP
5 mV
TLC25M2ACD
TLC25M2ACP
2mV
TLC25M2BCO
TLC25M2BCP
The 0 package is available taped and reeled. Add the suffix "R" to the device type (e.g., TLC252CDR). Chips
are tested at 25"C.
LinCMOS is a trademark of Texas Instruments Incorporated.
PRODUCTION DATA information Is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
lestlng of all parameters.
TEXAS
-'!1
Copyright © 1991, Texas Instruments Incorporated
INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TExAs 75265
2--467
TLC252C, TLC25L2C, TLC25M2C, TLC252Y, TLC25L2Y, TLC25M2Y
LinCMOSTM DUAL OPERATIONAL AMPLIFIERS
description (continued)
transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are all easily
designed with the TLC252C series devices. Remote and inaccessible equipment applications are possible using
their low-voltage and low-power capabilities. The TLC252C series is well suited to solve the difficult problems
associated with single-battery and solar-cell-powered applications. This series includes devices that are
characterized forthe commercial temperature range and are available in B-pin plastic dip (P)and the small outline
(0) package. The device is also available in chip form (Y).
The TLC252C series is characterized for operation from DOC to 7DoC.
equivalent schematic (each amplifier)
8
voo~------------------'----4~--------'
X}---_ _..:..1,,-,-7
VOO_/GNO ...:.4_____________+~>---+_- __......_4~--'
TEXAS
~
INSlRUMENlS
2-468
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
OUT
TLC252Y, TLC25L2Y, TLC25M2Y
LinCMOSTM DUAL OPERATIONAL AMPLIFIERS
chip information
These chips, properly assembled, display characteristics similar to the TLC25_2C. Thermal compression or
ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive
epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
IN+
(3)
IN-
(2)
OUT
IN+
(6)
IN-
VDD_/GND
CHIP THICKNESS: 15 TYPICAL
BONDING PADS: 4 x 4 MINIMUM
TJMAX '" 150'C
TOLERANCES ARE", 10%
ALL DIMENSIONS ARE IN MILS
PIN (4) INTERNALLY CONNECTED
TO BACKSIDE OF CHIP
I.
.,1
72
II II II II II II II II II II II II II II II
TEXAS ."
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-469
TLC252C, TLC25L2C, TLC25M2C
LinCMOSTM DUAL OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VDD (see Note 1) ............................................................ 18 V
Differential input voltage (see Note 2) ...................................................... ± 18 V
Input voltage range (any input) .................................................. :.. -0.3 V to 18 V
Duration of short circuit at (or below) 25°C free-air temperature (see Note 3) .................. unlimited
Continuous total dissipation ........................................... See Dissipation Rating Table
Operating free-air temperature range .................................................. O°C to 70°C
Storage temperature range ....................................................... -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................... 260°C
NOTES: 1. All voltage values. except differential voltages, are with respect to VOO_/GNO terminal.
2. Oifferential voltages are at the noninverting input terminal, with respect to the inverting input terminal.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure the maximum dissipation
rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
0
p
DERATING FACTOR
ABOVE T A " 25'C
TA" 70'C
POWER RATING
725 mW
5.8 mWI'C
464mW
1000mW
8.0mWI'C
640mW
TA" 25'C
POWER RATING
recommended operating conditions
MIN
Supply voltage, VOO
VOO = 1.4 V
Common·mode input voltage, VIC
MAX
16
0
0.2
VOO =5V
-0.2
4
VOO = 10V
-0.2
9
VOO = 16V
-0.2
14
0
70
Operating free-air temperature, T A
TEXAS ."
INSTRUMENlS
2-470
NOM
1.4
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
UNIT
V
V
'C
TLC252C, TLC25L2C, TLC25M2C
LinCMOSTM DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Voo
TLC252 C
PARAMETER
TEST CONOITIONSt
TLC25_2C
Via
Input
offset
voltage
TLC25_2AC
TYP
TLC25M2_C
TLC25L2_C
MAX
MIN
TYP
MAX
MIN
TYP
MAX
25'C
10
10
10
12
O'C to 70'C
12
12
Va = 0.2 V,
25'C
5
5
5
RS=50Q
O'C to 70'C
6.5
6.5
6.5
25'C
2
2
2
O'C to 70'C
3
3
3
TLC25_2BC
aVIO
MIN
= 1.4 V (unless otherwise noted)
Average temperature
coefficient of Input
2S'C to 70'C
1
25'C
1
1
1
UNIT
mV
",V/'C
offset voltage
110
Input offset current
Va =0.2V
liB
Input bias current
Vo =0.2V
VICR
voltage range
YOM
Peak output voltage
swing t
AvO
Large-signal
differential voltage
0
to
0.2
VID = 100 mV
2S'C
450
amplification
Va = 100 to 300 mV,
RS = 50 Q
2S'C
2S'C
CMRR
Common-mode
rejection ratio
Va = 0.2 V,
VIC = VICRmin
100
Supply current
Va = 0.2 V,
No load
25'C
600
0
to
0.2
700
450
0
to
0.2
700
300
450
60
700
mV
20
V/mV
77
dB
37S
60
77
25
34
pA
V
20
77
pA
1
600
10
60
300
1
600
2S'C
1
300
1
2S'C
O'C to 70'C
Common-mode input
1
300
O'C to 70'C
200
250
iJ.A
..
tAil charactenstlcs are measured uhder open-loop condlttons with zero common-mode Input voltage unless otherwise specified. Unless otherwise noted, an output
load resistor is connected from the output to ground and has the following value: for low bias RL = 1 MQ, for medium bias RL = 100 kQ, and for high bias
RL=10kQ.
t The output will swing to the potential of the VOO_/GNO pin.
operating characteristics, Voo
=1.4 V, TA =2S o C
TLC252_C
PARAMETER
TEST CONDITIONS
Bl
Unity-gain bandwidth
AV = 40 dB,
CL= 10pF,
RS = 50 Q
SR
Slew rate at unity gain
Overshoot factor
MIN
TYP
TLC25M2_C
TLC25L2_C
MAX
MIN
TYP
MAX
MIN
TYP
MAX
UNIT
12
kHz
0.001
0.01
VII's
35%
35%
12
12
See Figure 1
0.1
See Figure 1
30%
TEXAS ~
INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-471
TLC252C, TLC252AC, TLC252BC
LinCMOSTM DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Voo = 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
Va = 1.4 V,
TLC252C
Via
Input offset voltage
TLC252AC
TLC252BC
«via
VIC=O,
RS =50Q,
RL = 10 kQ
Va = 1.4 V,
VIC=O,
RS =50 Q,
RL = 10 kQ
Va = 1.4V,
VIC=O,
RS=50 Q,
RL = 10kQ
Average temperature coefficient
of input offset voltage
110
Input offset current (see Note 4)
Va = 2.5 V,
VIC =2.5V
liB
Input bias current (see Note 4)
Va = 2.5 V,
VIC =2.5V
TAt
VOH
VOL
AVD
CMRR
kSVR
100
Low-level output voltage
RL=10kQ
VIO = 100mV,
VIO = -100 mY,
10L=0
Large-signal differential
voltage amplification
Va = 0.25 Vto 2 V,
Common-mode rejection ratio
VIC = VICRmin
Supply-voltage rejection ratio
(tNOO/AVIO)
VOO = 5 Vto 10V,
Supply current (two amplifiers)
Va =2.5V,
No load
RL=10kQ
Va = 1.4 V
VIC = 2.5 V,
MAX
1.1
10
0.9
Full range
TEXAS .Jf
2-472
POST orFlcE BOX 655303 • DALLAS, TEXAS 75265
5
6.5
0.23
25°C
Full range
mV
2
3
25°C to 70°C
1.8
25°C
0.1
70°C
7
25°C
0.6
70°C
40
25°C
-0.2
to
4
Full range
-0.2
to
3.5
",V/oC
300
600
-0.3
to
4.2
pA
pA
V
V
25°C
3.2
3.8
O°C
3
3.8
70°C
3
3.8
V
25°C
0
50
O°C
0
50
70°C
0
50
25°C
5
23
O°C
4
27
70°C
4
20
25°C
65
80
O°C
60
84
70°C
60
85
25°C
65
95
O°C
60
94
70°C
60
96
mV
V/mV
dB
dB
25°C
1.4
3.2
O°C
1.6
3.6
70°C
1.2
2.6
t Full range IS O°C to 70°C.
'NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
INSIRUMENlS
UNIT
12
25°C
range (see Note 5)
High-level output voltage
TYP
Full range
Common-mode input voltage
VICR
MIN
25°C
rnA
TLC252C, TLC252AC, TLC252BC
LinCMOSTM DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Voo = 10 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TLC252C
Via
Input offset voltage
TLC252AC
TLC252BC
(IVIO
110
lIB
Vo
~
1.4 V,
25'C
~
Full range
RS
~50
Va
~
1.4 V,
VIC~O,
RS
~
50 Q,
RL~10kQ
Q,
RL
10 kQ
Va
~
1.4 V,
VIC~O,
RS
~
50 Q,
RL~10kQ
Average temperature coefficient
of input offset voltage
Input offset current (see Note 4)
Input bias current (see Note 4)
TAt
VIC~O,
VOL
AVO
CMRR
KSVR
100
Low-level output voltage
Large-signal differential
voltage amplification
Common-mode rejection ratio
Supply-voltage rejection ratio
(8VOO/8VI0)
Supply current (two amplifiers)
10
0.9
25'C
0.29
Va
~
~
5 V,
~
VIC
5 V,
~
VIC
5V
5V
VIO
VIO
~
~
RL
100 mY,
-100 mY,
~
10L
VO~1Vt06V,
RL
10 kQ
o. a
~
10 kQ
VIC ~ VICRmin
VOO~5Vt010V,
Va ~ 5 V,
No load
Va
~
1.4 V
VIC ~ 5 V,
mV
2
3
25'C to 70'C
Va
UNIT
5
6.5
Full range
IJ.vrc
2
25'C
0.1
70'C
7
25'C
0.7
70'C
50
25'C
-0.2
to
9
Full range
-0.2
to
8.5
range (see Note 5)
High-level output voltage
MAX
1.1
Full range
25'C
VOH
TYP
12
25'C
Common-mode input voltage
VICR
MIN
300
600
-0.3
to
9.2
pA
pA
V
V
8
8.5
O'C
7.8
8.5
70'C
7.8
8.4
V
25'C
0
50
o'c
0
50
70'C
0
50
25'C
10
O'C
7.5
42
70'C
7.5
32
25'C
65
85
O°C
60
88
70'C
60
88
25'C
65
95
O'C
60
94
70'C
60
96
mV
36
V/mV
dB
dB
25'C
1.9
4
O'C
2.3
4.4
70'C
1.6
3.4
mA
t Full range IS O'C to 70'C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
TEXAS ~
INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-473
TLC252C,TLC252AC,TLC252BC
LinCMOSTM DUAL OPERATIONAL AMPLIFIERS
operating characteristics, Voo = 5 V
PARAMETER
TEST CONDITIONS
TA
MIN
25'C
VI(PP) = 1 V
SR
Slew rate at unity gain
RL = 10 kQ,
See Figure 1
CL = 20 pF,
VI(PP)
Vn
BOM
B1
m
Equivalent input noise voltage
Maximum output swing bandwidth
Unity-gain bandwidth
Phase margin
f
=1 kHz,
RS=100Q,
VO=VOH,
See Figure 1
CL = 20 pF,
VI=10mV,
CL = 20 pF,
VI=10mV,
See Figure 3
f= B1,
=2.5 V
See Figure 2
RL = 10 kQ,
See Figure 3
CL = 20 pF,
TYP
MAX
UNIT
3.6
D'C
4
7D'C
3
25'C
2.9
D'C
3.1
7D'C
2.5
25'C
25
25'C
320
O'C
340
70'C
260
25'C
1.7
O'C
2
70'C
1.3
25'C
46'
O'C.
47'
70'C
43'
V/.".s
nV/VHz
kHz
MHz
operating characteristics, Voo = 10 V
PARAMETER
TEST CONDITIONS
VI(PP)
SR
Slew rate at unity gain
RL=10kQ,
See Figure 1
CL
BOM
B1
m
Equivalent input noise voltage
Maximum output swing bandwidth
Unity-gain bandwidth
Phase margin
f = 1 kHz,
RS=100Q,
Vo = VOH,
See Figure 1
CL = 20 pF,
VI = 10 mV,
CL = 20 pF,
VI = 10mV,
See Figure 3
=1 V
=20 pF,
VI(PP)
Vn
TA
f = B1,
= 5.5 V
See Figure 2
RL = 10 kQ,
See Figure 3
CL = 20 pF,
TEXAS ~
INSlRUMENlS
2-474
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
MIN
TYP
25'C
5.3
O'C
5.9
70'C
4.3
25'C
4.6
O'C
5.1
70'C
3.8
25'C
25
25'C
200
O'C
220
70'C
140
25'C
2.2
O'C
2.5
70'C
1.8
25'C
49'
O'C
50'
70'C
46'
MAX
UNIT
V/.".s
nV/VHz
kHz
MHz
TLC25L2C, TLC25L2AC, TLC25L2BC
LinCMOSTM DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Voo
TEST CONDITIONS
PARAMETER
Vo = 1.4 V,
TLC25L2C
VIO
"VIO
Average temperature coefficient
of input offset voltage
110
Input offset current (see Note 4)
liB
RS = 50Q,
RL = 1 MQ
VIC =0.
Input offset voltage TLC25L2AC RS = 50Q,
TLC2SL2BC
Input bias current (see Note 4)
TAt
VIC=O,
RS = SO Q,
RL = 1 MQ
Vo = 2.S V.
VOL
AVO
CMRR
kSVR
IDO
Low-level output voltage
VIO = 100 mV,
2S'C
0.1
10L=0
Large-signal differential
voltage amplification
Vo = 0.25 V to 2 V,
Common-mode rejection ratio
VIC = VICRmin
Supply-voltage rejection ratio
(AVOO/AVIO)
VOO = 5 V to 10 V,
Supply current (two amplifiers)
VO=2.5V,
No load
RL= 1 MQ
Vo = 1.4 V
VIC = 2.5 V,
mV
2
3
1.1
RL= 1 MQ
VIO = -100 mV,
0.204
2S'C to 70'C
VIC = 2.5 V
UNIT
5
6.5
25'C
70'C
7
2S'C
0.6
70'C
50
25'C
-0.2
to
4
Full range
-0.2
to
3.5
range (see Note S)
High-level output voltage
0.9
Full range
25'C
VOH
10
Full range
Common-mode input voltage
VICR
MAX
1.1
12
25'C
VIC = 2.5 V
Vo = 2.S V.
TYP
Full range
RL = 1 MQ
Vo = 1.4 V,
MIN
25'C
VIC =0,
VO=I.4V,
=5 V (unless otherwise noted)
3.2
.",V!'C
300
600
-0.3
to
4.2
pA
pA
V
V
4.1
O'C
3
4.1
70'C
3
4.2
V
25'C
0
50
O'C
0
50
70'C
0
50
25°C
50
O°C
50
700
70°C
SO
380
25°C
65
94
O°C
60
95
70°C
60
95
25'C
70
97
O'C
60
97
70°C
60
98
mV
700
V/mV
dB
dB
34
25'C
20
O'C
24
42
70°C
16
28
.",A
t Full range IS O°C to 70°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
TEXAS •
INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-475
TLC25L2C,TLC25L2AC,TLC25L2BC
LinCMOSTM DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, VDO
PARAMETER
TEST CONDITIONS
Va = 1.4 V,
TLC25L2C
Via
110
liB
RS =50Q,
RL= 1 MQ
Va = 1.4 V,
VIC=O,
Input offset voltage TLC25L2AC RS=50Q,
TLC25L2BC
aVIO
VIC=O,
RL= 1 MQ
Va = 1.4 V,
VIC=O,
RS = 50Q,
RL= 1 MQ
Average temperature coefficient
of input offset voltage
Input offset current (see Note 4)
Input bias current (see Note 4)
=10 V (unless otherwise noted)
TAt
VOH
25'C
VOL
AVO
CMRR
kSVR
100
Low-level output voltage
MAX
1.1
10
0.9
12
5'
6.5
Full range
25'C
0.235
Full range
VIC = 5 V
Va = 5 V,
VIC = 5 V
RL= 1 MQ
VIO = 100 mV,
VIO = -100 mV,
Large-signal differential
voltage amplification
Va = 1 Vto 6V,
Common-mode rejection ratio
VIC = VICRmin
10L= 0
RL= 1 MQ
Supply-voltage rejection ratio
(f>VOO/f>VIO)
VOO=5Vtol0V,
Supply current (two amplifiers)
Va = 5 V,
No load
VO=l.4V
VIC = 5V,
TEXAS
lJ1
2-476
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
"VI'C
0.1
70'C
8
25'C
0.7
70'C
50
25'C
-0.2
to
9
Full range
-0.2
to
8.5
300
600
-0.3
to
9.2
pA
pA
V
V
25'C
8
8.9
O'C
7.8
8.9
70'C
7.8
8.9
V
25'C
0
50
O°C
0
50
70'C
0
50
25'C
50
860
O'C
50
1025
70'C
50
660
25'C
65
97
O'C
60
97
70'C
60
97
25'C
DoC
70
97
60
97
70'C
60
98
mV
V/mV
dB
dB
25'C
29
46
O'C
36
66
70'C
22
40
t Full range is O'C to 70'C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
INSlRUMENlS
mV
2
1
25'C
Va = 5 V,
UNIT
3
25'C to 70'C
range (see Note 5)
High-level output voltage
TYP
Full range
Common-mode input voltage
VieR
MIN
25'C
ftA
TLC25L2C, TLC25L2AC, TLC25L2BC
LinCMOSTM DUAL OPERATIONAL AMPLIFIERS
operating characteristics,
Voo = 5 V
PARAMETER
TEST CONDITIONS
SR
Vn
BaM
B1
m
Equivalent input noise voltage
Maximum output swing bandwidth
Unity-gain bandwidth
Phase margin
f = 1 kHz,
RS=100g,
VO=VOH,
See Figure 1
GL = 20 pF,
VI = 10mV,
GL = 20 pF,
VI = 10mV,
See Figure 3
f= Bl,
TYP
0.43
VI(PP)
RL = 100 kg,
See Figure 1
MIN
TA
25°C
OOG
RL
See Figure 3
GL = 20 pF,
MAX
UNIT
0.46
V/I'-S
nVNHz
60
kHz
600
kHz
40°
operating characteristics, Voo = 10 V
PARAMETER
TEST CONDITIONS
Slew rate at unity gain
70 0G
0.51
25°G
OOG
0.56
70°C
0.46
See Figure 2
25'G
32
35
RL = 100 kg,
25°C
DOG
RL = 100 kg, CL= 20 pF,
See Figure 1
VI(PP) = 5.5 V
Vn
BOM
Equivalent input noise voltage
Maximum output swing bandwidth
f = 1 kHz,
VO=VOH,
See Figure 1
RS = 100 g,
GL = 20 pF,
70 0G
25°G
B1
Unity-gain bandwidth
VI=10mV,
GL
=20 pF,
TYP
0.62
VI(PP) = 1 V
SR
MIN
TA
25°C
DOG
See Figure 3
O°C
700G
MAX
0.67
V/I'-S
0.61
nV/VHz
40
_..
kHz
_,------_.
30
635
-~-----
510
-.---,~
4>m
Phase margin
=
VI 10mV,
See Figure 3
f = B1,
GL = 20 pF,
TEXAS •
INSlRUMENlS
2-480
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
UNIT
25°G
OOG
:w--
43°
700G
42'
--
kHz
TLC252Y, TLC25L2Y, TLC25M2Y
LinCMOSTM DUAL OPERATIONAL AMPLIFIERS
electrical characteristics,
Voo
=5 V, T A = 25°C
TLC252Y
TEST
CONDITIONS
PARAMETER
MIN
Va = 1.4 V, V'C = 0 V,
RS = 50 Q, See Note 6
Via
Input offset voltage
aVla
Average temperature
coefficient of input
offset voltage
',0
Input offset current
(see Note 4)
liB
Input bias current
(see Note 4)
V,CR
Common-mode input
voltage range
(see Note 5)
VOH
High-level output
voltage
V,O = 100 mV,
See Note 6
Val
low-level output
voltage
VID = -100 mV,
IOl = 0
AVO
Large-signal differential
voltage amplification
Va = 0.25 V,
See Note 6
CMRR
Common-mode
rejection ratio
kSVR
'DO
1.1
10
MIN
TLC25M2Y
TYP
MAX
1.1
10
MIN
TYP
MAX
1.1
10
UNIT
mV
1.1
1.7
livrc
Va = VOo/2,
V'C = VOO/2
0.1
0.1
0.1
pA
Va = VOO/2,
V'C = VOo/2
0.6
0.6
0.6
pA
-0.2
to
4
-0.3
to
4.2
-0.2
to
4
-0.3
to
4.2
-0.2
to
4
-0.3
to
4.2
V
3.2
3.8
3.2
4.1
3.2
3.9
V
0
50
0
50
0
50
mV
5
23
50
700
25
170
V/mV
V'C = V,CRmin
65
80
65
94
65
91
dB
Supply-voltage
rejection ratio
(LIVOO/AV,o)
VOO=5Vtol0V,
Va = 1.4 V
65
95
70
97
70
93
dB
Supply current
Vo =VOO/2,
V'C =VOD/2,
No load
PARAMETER
Voo
0.02
0.034
0.21
0.56
mA
= 5 V, T A = 25°C
TLC252Y
TEST
CONDITIONS
MIN
I V'(PP) = 1 V
Slew rate at
Cl = 20 pF,
See Note 6
Vn
Equivalent input
noise voltage
f = 1 kHz,
RS=100Q
BaM
Maximum output
swing bandwidth
Va =VaH,
Rl=10kQ
Cl = 20 pF,
Bl
Unity-gain
bandwidth
V, = 10 mV,
Cl = 20 pF
f = Bl,
Cl = 20 pF
V, = 10 mV,
Phase margin
3.2
1.4
unity gain
-....-
1/2 voo -
>----- Vo
Vo
100Q
(a) SPLIT SUPPLY
(a) SINGLE SUPPLY
Figure 2. Noise Test Circuit
10 kQ
10kQ
100Q
VI -vV'V-W--'
100 Q
VI
-,,\1'...---1
Vo
>--...- Vo
1/2VOO - - - - /
Voo(a) SPLIT SUPPLY
(a) SINGLE SUPPLY
Figure 3. Gain-of-100 Inverting Amplifier
TEXAS·~
INSTRUMENTS
2--482
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TlC252C, TlC25l2C, TlC25M2C
linCMOSTM DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
SUPPLY CURRENT
SUPPLY CURR.ENT
vs
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
10000
10000
Vo = VIC = 0.2 VOO
No Load
TA = 2S'C
«:t
«:t
1000
I
I
'E
'E
~
">-
0
--
CD
100
0
>-
Ii
a.
Ii
a.
J
_I.
\
VOO = 10V
RL= 1 MQ
TA =2S'C
0'
30'
~o (left scale)
'"
Phase Shift
(right scale)
60'
~
101
0.1
0.1
-
10
100
..........
""
1k
Frequency - Hz
90'
"-\
5!
'"
.s:
120' a.
""
10 k
-=
:c
.....
m
Equivalent input noise voltage
Maximum output swing bandwidth
Unity-gain bandwidth
Phase margin
operating characteristics, Voo
1 = 1 kHz,
RS = 100 Q,
Vo :VOH,
See Figure 1
GL = 20 pF,
VI = 10 mV,
GL = 20 pF,
VI:l0mV,
See Figure 3
1"= Bl,
See Figure 2
RL = 10 kQ,
See Figure 3
GL = 20 pF,
TA
25'G
TEST CONDITIONS
VI(PP) = 1 V
RL: 10kQ,
See Figure 1
CL = 20 pF
VI(PP) = 5.5 V
Vn
BOM
Bl
m
Equivalent input noise voltage
Maximum output swing bandwidth
Unity-gain bandwidth
Phase margin
1 = 1 kHz,
RS=100Q,
VO=VOH,
See Figure 1
GL: 20 pF,
VI=10mV,
GL = 20 pF,
VI = 10 mV,
See Figure 3
1=81,
See Figure 2
RL = 10 kQ,
See Figure 3
GL = 20 pF,
TEXAS ~
INSlRUMENlS
2-494
MAX
UNIT
3.6
4
O'G
70'G
3
25'G
2.9
O'G
3.1
70'G
2.5
25'G
25
25'G
320
O'G
340
70'G
260
25'G
1.7
O'G
2
70"G
1.3
25'G
46'
O'G
47'
70'C
44'
TA
25'G
Slew rate at unity gain
TYP
VII's
nV/v'Hz
kHz
MHz
= 10 V
PARAMETER
SR
MIN
POST OFFICE BOX 655303 • DAllAS, TEXAS 75265
MIN
TYP
MAX
UNIT
5.3
O'G
5.9
70'G
4.3
25"C
4.6
O'G
5.1
70'G
3.8
25'G
25
25'G
200
O'G
220
70'G
140
25'C
2.2
O'G
2.5
70'G
1.8
25'C
49'
O'G
50'
70'C
46'
VII's
nV/v'Hz
kHz
MHz
TLC25L4C, TLC25L4AC, TLC25L4BC
LinCMOSTM QUAD OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Voo
TEST CONDITIONS
PARAMETER
Vo = 1.4 V,
TLC25L4C
VIO
Input offset voltage TLC25L4AC
TLC25L4BC
aVIO
110
liB
RS = 50 Q,
RL= 1 MQ
VIC=O,
RS = 50Q,
RL = 1 MQ
Vo = 1.4 V,
VIC=O,
RS = 50Q,
RL= 1 MQ
Average temperature coefficient
of input offset voltage
Input offset current (see Note 4)
Input bias current (see Note 4)
TAt
VO=2.5V,
VOH
VOL
AVO
CMRR
kSVR
IDD
Low-level output voltage
VIO = -100 mV,
Large-signal differential
voltage amplification
Vo = 0.25 V to 2 V,
Common-mode rejection ratio
VIC = VICRmin
Supply-voltage rejection ratio
(~VOO/~VIO)
Supply current (four amplifiers)
VOO=5Vtol0V,
Vo = 2.5 V,
No load
0.24
1.1
25°C
0.1
RL = 1 MQ
VO=l.4V
VIC = 2.5 V,
mV
2
3
25°C to 70°C
IOL= 0
5
6.5
Full range
RL = 1 MQ
UNIT
12
25°C
VIC = 2.5 V
VIO = 100mV,
10
Full range
70°C
7
25°C
0.6
70°C
40
25°C
-0.2
to
4
Full range
-0.2
to
3.5
range (see Note 5)
High-level output voltage
MAX
1.1
0.9
25°C
Common-mode input voltage
VICR
TYP
Full range
VIC =2.5V
Vo = 2.5 V,
MIN
25°C
VIC=O,
Vo = 1.4 V,
= 5 V (unless otherwise noted)
Il
300
600
-0.3
to
4.2
vrc
pA
pA
V
V
25°C
3.2
4.1
O°C
3
4.1
70°C
3
4.2
V
25°C
0
50
O°C
0
50
70'C
0
50
25°C
50
O°C
50
680
70°C
50
380
25°C
65
94
O°C
60
95
70'C
60
95
25°C
70
97
O°C
60
97
70°C
60
98
mV
520
V/mV
dB
dB
25°C
40
68
O°C
48
84
70°C
31
56
!lA
t Full range IS O°C to 70°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
TEXAS ."
INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-495
TLC25L4C, TLC25L4AC, TLC25L4BC
LinCMOSTM QUAD OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Voo = 10 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
Va = 1.4 V,
TLC2SL4C
Via
Input offset voltage TLC25L4AC
TLC2SL4BC
aVIO
Average temperature coefficient
of input offset voltage
110
Input offset current (see Note 4)
liB
Input bias current (see Note 4)
VIC=O,
RS = 50Q,
RL= 1 MQ
VO=l.4V,
VIC=O,
RS = SOQ,
RL= 1 MQ
Va = 1.4 V,
VIC=O,
RS =SOQ,
RL= 1 MQ
TAT
VOH
VOL
AVO
CMRR
kSVR
100
Low-level output voltage
MAX
1.1
10
0.9
Full range
2S'C
0.26
Full range
Va = SV,
VIC = S V
VID = 100 mV,
RL= 1 MQ
VIO = -100 mV,
Large-signal differential
voltage amplification
Va = 1 Vt06V,
Common-mode rejection ratio
VIC = VICRmin
IOL=O
RL = 1 MQ
Supply-voltage rejection ratio
(t.VOO/t.VIO)
VOO = 5 V to 10 V,
Supply current (four amplifiers)
Va =5V,
No load
Vo = 1.4 V
VIC = 5V,
3
TEXAS ~
2-496
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
","V/'C
0.1
70'C
7
2S'C
0.7
70'C
SO
25'C
-0.2
to
9
Full range
-0.2
to
8.S
300
600
-0.3
to
9.2
pA
pA
V
V
25'C
8
8.9
O'C
7.8
8.9
70'C
7.8
8.9
V
25'C
0
SO
O'C
0
50
70'C
0
50
25'C
50
870
O'C
50
1020
70'C
50
660
25'C
65
97
O'C
60
97
70'C
60
97
25'C
70
97
O'C
60
97
70'C
60
98
mV
V/mV
dB
dB
25'C
57
92
O'C
72
132
lAA
70'C
44
80
._-
t Full range is O°C to 70'C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
INSTRUMENlS
mV
2
1
2S'C
VIC =SV
S
6.S
2S'C to 70'C
Va = SV,
UNIT
12
2S'C
range (see Note 5)
High·level output voltage
TYP
Full range
Common-mode input voltage
VICR
MIN
2S'C
TLC25L4C,TLC25L4AC,TLC25L4BC
LinCMOSTM QUAD OPERATIONAL AMPLIFIERS
operating characteristics, Voo = 5 V
PARAMETER
TEST CONDITIONS
VI(PP) = 1 V
SR
Slew rate at unity gain
RL= 1 MO,
See Figure 1
CL = 20 pF,
VI(PP) = 2.5 V
Vn
BOM
B1
m
Equivalent input noise voltage
Maximum output swing bandwidth
Unity-gain bandwidth
Phase margin
operating characteristics, Voo
f = 1 kHz,
RS = 100O,
Vo = VOH,
See Figure 1
CL = 20 pF,
VI=10mV,
CL = 20 pF,
VI = 10 mV,
See Figure 3
f= B1,
See Figure 2
RL= 1 MO,
See Figure 3
CL = 20 pF,
TEST CONDITIONS
VI(PP) = 1 V
Slew rate at unity gain
RL = 1 MO,
See Figure 1
CL = 20 pF
VI(PP) = 5.5 V
Vn
BOM
B1
-_ _
-~I--
>-_ _
Vo
-~I--
Vo
Voo(a) SINGLE SUPPLY
(b) SPLIT SUPPLY
Figure 1. Unity-Gain Amplifier
10kQ
10kQ
Voo
>--*'-
1/2 Voo
>--e--- Vo
Vo
100 Q
(a) SPLIT SUPPLY
(a) SINGLE SUPPLY
Figure 2. Noise Test Circuit
10kQ
10 kQ
100
VI
VI
Q
100 Q
-VV'rlt--1
-'V\I\.,.....-t
1/2 Voo - - - - 1
Voo(a) SPLIT SUPPLY
(a) SINGLE SUPPLY
Figure 3. Gain-of-100 Inverting Amplifier
TEXAS
~
INSTRUMENTS
2-502
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLC254C, TLC25L4C, TLC25M4C, TLC254Y, TLC25L4Y, TLC25M4Y
LinCMOSTM QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
SUPPLY CURRENT
SUPPLY CURRENT
vs
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
10000
10000
High-Bias Versions
«=L
«=L
1000
I
I
C
C
~
:l
.~
()
100
0.
'"
'"
0.
:l
:l
I
.9
100
>-
0.
0.
I
c
10
10
.9
o
o~~--~~--~~--~~~~~~
o
2
4
6
8
10
12
14
16
18
-
I I I
High-Bias Versions
Mel,um.1ias ve'rslons
I---
(,)
.?!-
C
1000
20
o
VOO=10V
V'C =OV
VO=2V
No Load
Low-Bias Versions
10
20
30
40
50
60
70
80
TA - Free-Air Temperature - "C
VOO - Supply Voltage - V
Figure 4
Figure 5
LOW BIAS
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
and PHASE SHIFT
vs
FREQUENCY
>
E
107
_1_I
Voo= 10V
RL= 1 MQ
TA = 25"C
3>
I
c:
106
0
~
(,)
105
!t:
0.
E
« 104
.
~
\
Ol
JS 103
~
:g
(ij
..
102
-
30"
" v o (left scale)
\
r--
'" "" "
'"
........
Phase Shift
(right scale)
\
~
::::: 101
0
I
C
«>
0.1
0.1
0"
10
100
1k
f - Frequency - Hz
"
10k
60"
=
90"
'".,:Jl
120"
Q.
:.c:
J::
150"
180"
100k
Figure 6
TEXAS
.J!1
INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-503
TLC254C, TLC25L4C, TLC25M4C, TLC254Y, TLC25L4Y, TLC25M4Y
LinCMOSTM QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
MEDIUM BIAS
LARGE·SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
and PHASE SHIFT
vs
>
.E.
>
107
c
106
I
i
C>
:e
105
FREQUENCY
«
8.
104
~
103
~
1!
\
_
102
C
I!!
~
VOO = 10V
RL= 100kQ TA=25'C
~
Q.
E
0'
30'
" "Avo (left scale)
\
60°
""
I
C
.c
~
..........
"~
"'
«>
0.1
10
lk
100
10k
90'
"'-\
'"
lOOk
1200
150'
"
180°
1M
Figure 7
HIGH BIAS
LARGE·SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
and PHASE SHIFT
vs
E
107
c
106
~
105
~
..
104
=
~
103
>-I
~
Q.
FREQUENCY
102
c
101
..
:E
Voo = 10V
RL=10kQ
TA=25°C
~.
"'-"- "
60°
............
"'-.
:t
10
100
1k
10 k
100 k
i'..
}
""
~
1M
f - Frequency - Hz
Figure 8
TEXAS
!II
90'
~
~
INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
"
!!:
.c
Phase Shift (right scale)
AVO (left Sda'e) " -
0.1
0'
30'
6
2-504
-
--\I"--.
CI
to
~I!!
J
.1.
~
.c
f - Frequency - Hz
>
!!:
!II
Phase Shift
(right scale)
101
c
J
.1.
120'
150°
180'
10 M
..
!
a.
a.
TLC254C, TLC25L4C, TLC25M4C, TLC254Y, TLC25L4Y, TLC25M4Y
LinCMOSTM QUAD OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
latch-up avoidance
Junction-isolated CMOS circuits have an inherent parasitic PNPN structure that can function as an SCA. Under
certain conditions, this SCR may be triggered into a low-impedance state, resulting in excessive supply current.
To avoid such conditions, no voltage greater than 0.3 V beyond the supply rails should be applied to any pin.
In general, the op amp supplies should be established simultaneously with, or before, application of any input
signals.
output stage considerations
The amplifier's output stage consists of a source-follower-connected pull up transistor and an open-drain
pulldown transistor. The high-level output voltage (VOH) is virtually independent of the 100 selection and
increases with higher values of Voo and reduced output loading. The low-level output voltage (Vall decreases
with reduced output current and higher input common-mode voltage. With no load, VOL is essentially equal to
the Voo_/GND pin potential.
supply configurations
Even though the TLC25_4C series is characterized for single-supply operation, it can be used effectively in a
split-supply configuration if the input common-mode voltage (VieR), output swing (VOL and VOH), and supply
voltage limits are not exceeded.
circuit layout precautions
Whenever extremely high circuit impedances are used, care must be exercised in layout, construction, board
cleanliness, and supply filtering to avoid hum and noise pickup as well as excessive dc leakages.
TEXAS ..If
INSIRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-505
2-506
TLC271, TLC271A, TLC271B
linCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
03137, NOVEMBER 1987 - REVISED JUNE 1991
D, JG, OR P PACKAGE
(TOP VIEW)
•
Input Offset Voltage Drift ... Typically
0.111 V/Month, Including the First 30 Days
•
Wide Range of Supply Voltages Over
Spec hied Temperature Range:
0° C to 70° C ... 3 V to 16 V
- 40°Ct085°C ... 4Vt016V
- 55°Ct0125°C ... 5Vt016V
•
Single-Supply Operation
•
Common-Mode Input Voltage Range
Extends Below the Negative Rail (C-Suffix
and I-Suffix Types)
•
OFFSET N 1 [ j 8
IN 2
7
IN + 3
6
GND 4
5
FK PACKAGE
(TOP VIEW)
f-
0
Z
W
....J
fW
low Noise ... 25 nV/¥ZTypicallyat
f:: 1 kHz (High-Bias Mode)
W
(f)
(f)
(f)
LL
OLL
o~o
20 2m2
•
Output Voltage Range Includes Negative
Rail
•
High Input Impedance ... 1012 Q Typical
•
ESD-Protection Circuitry
•
Small-Outline Package Option Also
Available In Tape and Reel
•
BIASSELECT
VDD
OUT
OFFSET N2
3
2
1
20 19
NC
IN -
4
18
NC
5
17
NC
6
16
IN +
NC
7
15
VDD
NC
OUT
NC
14
8
9
Designed-In latch-Up Immunity
10 11 12 13
000"'0
zzzzz
<.')
fW
~
LL
o
description
NC - No internal connection
The TLC271 operational amplifier combines a
wide range of input offset voltage grades with low
offset voltage drift and high input impedance. In addition, the TLC271 offers a bias select mode that allows the
user to select the best combination of power dissipation and ac pertormance for a particular application. These
devices use Texas Instruments Silicon-gate LinCMOSTM technology, which provide" offset voltage stability far
exceeding the stability available with conventional metal-gate processes.
AVAILABLE OPTIONS
-".,,-
TA
~----"--
---_ ... -._--
VIOMAX
AT
25°C
PACKAGE
SMALL
CHIP
CERAMIC
PLASTIC
OUTLINE
CARRIER
DIP
DIP
(D)
(JG)
-
(P)
TLC271BCP
-
TLC271ACP
-
TLC271CP
Vn
25
TLC271 BIP
B1
1.7
AVD
23
170
2 mV
TLC271 BCD
(FK)
-
to
5mV
TLC271ACD
-
O°C
------
DEVICE FEATURES
TYPICALATVDD=5V, TA=25°C
70°C
10mV
TLC271CD
-
- 40°C
2mV
TLC271 BID
-
to
5 mV
TLC271AID
-
-
TLC271AIP
85°C
-_.---55°C
10mV
TLC2711D
-
-
TLC2711P
to
125°C
10 mV
TLC271MD
TLC271MFK
TLC271 MJG
TLC271MP
BIAS-SELECT MODE
MEDIUM
HIGH
LOW
--
UNIT
PD
3375
525
50
SR
3.6
0.4
0.03
flW
V/flS
32
68
nVl-JHz
0.5
0.09
MHz
480
Vim V
The D package is available in tape and reel. Add R suffix to the device type (e.g.,
TLC271 BCDR).
LinCMOS is a trademark of Texas Instruments Incorporated.
PRODUCTION DATA documents contain information current as 01
publication data, Products conform to Sllecific3tions per the terms
d~~se~~~ ~~:!~~~~r~n~~~~~a~stin~~~~~· p~~~~u::!~~. processing
TEXAS
~
Copyright © 1991, Texas Instruments Incorporated
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-507
TLC271, TLC271A, TLC271B
linCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
description (continued)
Using the bias select option, these cost-effective devices can be "programmed" to span a wide range of
applications which previously required BiFET, NFET or bipolar technology. Three offset voltage grades are
available (C- suffix and 1- suffix types), ranging from the low-cost TLC271 (10 mY) to the TLC271 B (2 mY) lowoffset version. The extremely high input impedance and low bias currents, in conjunction with good commonmode rejection and supply voltage rejection, make these devices a good choice fOi new state-of-the-art
designs as well as for upgrading existing designs.
In general, many features associated with bipolar technology are available in LinCMOSTM operational
amplifiers, without the power penalties of bipolar technology. General applications such as transducer
interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are all easily designed with
the TLC271. The devices also exhibit low-voltage single-supply operation, making them ideally suited for
remote and inaccessible battery-powered applications. The common-mode input voltage range includes the
negative rail.
A wide range of packaging options is available, including small-outline and chip carrier versions for highdensity system applications.
The device inputs and output are designed to withstand -100-mA surge currents without sustaining latchup.
The TLC271 incorporates internal ESD-protection circuits that will prevent functional failures at voltages up
to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling
these devices as exposure to ESD may result in the degradation of the device parametric performance.
The C-suffix devices are characterized for operation from O°C to 70°C. The I-suffix devices are characterized
for operation from - 40°C to 85°C. The M-suffix devices are characterized for operation over the full military
temperature range of - 55°C to 125°C.
bias select feature
The TLC271 offers a bias select feature that allows the user to select anyone of three bias levels, depending
on the level of performance desired. The trade-oils between bias levels involve ac performance and power
dissipation (see Table 1).
Table 1. Effect of Bias Selection on Performance
MODE
TYPICAL PARAMETER VALUES
T A = 25°C, VDD = 5 V
HIGH-BIAS
RL= 10 kQ
MEDIUM-BIAS
RL=100kQ
LOW-BIAS
UNIT
RL= 1 MQ
Po
SR
Power dissipation
3.4
0.5
0.05
mW
Slew rate
3.6
0.4
0.03
Vn
Equivalent input noise voltage at f
25
32
68
V/!'s
nV/,fHZ
81
Unity-gain bandwidth
1.7
0.5
0.09
MHz
4>m
Phase margin
46°
40°
34°
AVO
Large-signal differential voltage amplification
23
170
480
= 1 kHz
V/mV
bias selection
Bias selection is achieved by connecting the bias select pin to one of three voltage levels (see Figure 1). For
medium-bias applications, it is recommended that the bias select pin be connected to the midpoint between
the supply rails. This procedure is simple in split-supply applications, since this point is ground. In singlesupply applications, the medium-bias mode will necessitate using a voltage divider as indicated in Figure 1.
The use of large-value resistors in the voltage divider will reduce the current drain of the divider from the supply
line. However, large-value resistors used in conjunction with a large-value capacitor will require significant
time to charge up to the supply midpoint after the supply is switched on. A voltage other than the midpoint
may be used if it is within the voltages specified in the following table.
TEXAS ~
INSfRUMENTS
2-508
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC271, TLC271A, TLC271B
LinCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
bias selection (continued)
VDD
Low
To the
Bias
Select
Pin
1 MQ
BIAS MODE
BIAS SELECT VOLTAGE
Medium
High
1MQ
(Single Supply)
LOW
VDD
MEDIUM
HIGH
1 Vto VDD-1 V
GND
Figure 1. Bias Selection for Single-Supply Applications
high-bias mode
In the high-bias mode, the TLC271 series features low offset voltage drift, high input impedance, and low noise.
Speed in this mode approaches that of BiFET devices, but at only a fraction of the power dissipation. Unitygain bandwidth is typically greater than 1 MHz.
medium-bias mode
The TLC271 in the medium-bias mode features low offset voltage drift, high input impedance, and low noise.
Speed in this mode is similar to general-purpose bipolar devices, but power dissipation is only a fraction of
that consumed by bipolar devices.
low-bias mode
In the low-bias mode, the TLC271 features low offset voltage drift, high input impedance, extremely loW power
consumption, and high differential voltage gain.
ORDER OF CONTENTS
TOPIC
BIAS-MODE
schematic
all
absolute maximum ratings
all
all
recommended operating conditions
electrical characteristics
operating characteristics
typical characteristics
high
(Figures 2 - 33)
electrical characteristics
operating characteristics
t)lpical characteristics
electrical characteristics
operating characteristics
typical characteristics
medium
(Figures 34 - 65)
low
(Figures 66 - 97)
parameter measurement information
all
application information
all
TEXAS ~
INsrRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-509
TLC271, TLC271A, TLC271B
LinCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
equivalent schematic
VDD
P1
IN -
Fm _--+-------+1
IN+---~--~~--~
OFFSET
N1
OFFSET
N2
OUT
GND
BIAS
SELECT
absolute maximum ratings over operating free-air temperature (unless otherwise noted)
Supply voltage, VDD (see Note 1) ....................................................... 18 V
Differential input voltage (see Note 2) ................................................... ± VDD
Input voltage range, VI (any input) ..... , ........................................ - 0.3 V to VDD
Input current, II. ................................................................... ± 5 mA
Output current, 10 ................................................................ ± 30 mA
Duration of short-circuit current at (or below) 25°C (see Note 3) ............................ Unlimited
Continuous total dissipation ........................................ See Dissipation Rating Table
Operating free-air temperature, T A: C-suffix ........................................ O°C to 70°C
I-suffix ....................................... - 40°C to 85°C
M-suffix ..................................... - 55°C to 125°C
Storage temperature range .................................................. - 65°C to 150°C
Case temperature for 60 seconds: FK package ........................................... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D and P package ............... 260°C
Lead temperature 1 ,6mm (1/16 inch) from case for 60 seconds: JG package .................... 300°C
NOTES:
1. All voltage values, except dilferential voltages, are with respect to network ground.
2. Differential voltages are at the noninverting input with respect to the inverting input.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded (see application section).
TEXAS ~
INsrRUMENTS
2-510
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
TLC271, TLC271A, TLC271B
LinCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
DISSIPATION RATING TABLE
PACKAGE
D
FK
JG
p
TA:O:25°C
POWER RATING
725mW
1375mW
1050mW
1000mW
DERATING FACTOR
TA=70°C
ABOVETA= 25°C POWER RATING
5.8 mW/oC
11 mW/oC
8.4 mwrc
8.0 mW/oC
TA=85°C
POWER RATING
464mW
880mW
672mW
640mW
TA= 125°C
POWER RATING
145mW
275mW
210mW
200mW
377mW
715mW
546mW
520mW
recommended operating conditions
C-SUFFIX
MIN
Supply voltage, VDD
Common-mode input voltage, V'C
Operating free-air temperature, TA
VDD =5 V
VDD = 10 V
3
-0.2
I-SUFFIX
NOM MAX
MIN
16
4
-0.2
-0.2
3.5
8.5
0
70
M-SUFFIX
UNIT
NOM MAX
16
MIN
5
NOM MAX
16
-0.2
3.5
8.5
0
0
3.5
8.5
V
-40
85
-55
125
°C
V
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-511
TLC271C, TLC271AC, TLC271BC
LinCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
HIGH-BIAS MODE
electrical characteristics over recommended free-air temperature range (unless otherwise noted)
TEST CONOITIONS
PARAMETER
TLC271C
VIO
Input offset voltage
TLC271AC
TLC271BC
«VIO
Average temperature coefficient
of input offset voltage
110
Input offset current (see Note 4)
liB
Input bias current (see Note 4)
TAt
25°C
Full range
Vo= 1.4 V.
25°C
Full range
25°C
Full range
25°C to
70°C
25°C
70°C
25°C
70°C
VIC =OV.
RS=50n.
RL=10kn
VO=VOO/2.
VIC =VOO/2
Vo= VOO/2.
VIC =VOO/2
25°C
VICR
Common-mode input
voltage range (see Note 5)
Full range
VOH
High-level output voltage
VOL
Low-level output voltage
CMRR
kSVR
II(SEL)
100
VIO = l00mV.
RL= 10kn
VID = -100 mV.
10L=0
Large-signal differential
AVO
voltage amplification
RL = 10 kn.
See Note 6
Common-mode rejection ratio
VIC = VICRmin
MIN
25°C
O°C
70°C
25°C
O°C
70°C
25°C
O°C
70°C
25°C
O°C
70°C
VOO=5V
TYP MAX
1.1
10
12
5
0.9
6.5
0.34
2
3
VOO= 10V
MIN
TYP
1.1
0.9
0.39
1.8
-0.2
to
4
-0.2
to
3.5
3.2
25°C
O°C
70°C
3
3
0.1
7
0.6
40
-0.3
to
300
600
-0.2
to
3.8
0.1
7
0.7
50
-0.3
to
9
-0.2
to
8.5
8
9.2
7.8
7.8
10
7.5
7.5
65
60
42
32
85
88
65
85
95
60
65
88
95
60
60
94
96
60
60
94
96
Supply-voltage rejection ratio
VOO = 5 V to 10 V.
(AVOO I AVIO)
VO= 1.4 V
Input current to bias select pin
VI(SEL) =0
25°C
-1.4
25°C
Supply current
VO=VOO/2.
VIC =VOO/2.
No load
675
775
575
O°C
70°C
TEXAS . "
2-512
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
600
pA
pA
V
V
50
50
50
950
1125
750
mV
V/mV
dB
dB
~
-1.9
1600
1800
1300
tFull range is O·C to 70°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
6. AtVOO =5 V, Vo =0.25 Vto 2 V;atVOO = 10V. Vo = 1 Vt06 V.
INSTRUMENTS
300
8.5
27
20
80
84
5
4
4
65
60
60
0
23
mV
V
8.5
8.4
0
0
0
36
50
50
50
UNIT
~V/oC
2
4.2
3.8
3.8
0
0
MAX
10
12
5
6.5
2
3
2000
2200
1700
~
TLC271I , TLC271 AI, TLC271 BI
LinCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
HIGH-BIAS MODE
electrical characteristics over recommended free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONOITIONS
TLC271I
VIO
Input offset voltage
TLC271AI
TLC271BI
aVIO
liB
Input bias current (see Note 4)
VIC =OV,
RS =50n,
RL= 10 kQ
25°C
Full range
25°C
AVD
CMRR
kSVR
II(SEL)
IDD
MAX
1.1
10
5
0.34
7
2
5
0.39
7
2
0.1
24
0.6
1000
26
1000
VIC = VDD/2
85°C
200
2000
0.7
220
2000
10L=0
0.1
-0.3
-0.2
to
to
to
to
4
4.2
9
9.2
-0.2
to
-0.2
3.5
8.5
V
25°C
3.2
3.8
3
3.8
8
7.8
8.5
85°C
3
3.8
7.8
8.5
85°C
25°C
8.5
0
50
0
50
50
50
0
50
0
0
RL = 10kn,
See Note 6
5
23
10
36
-40°C
3.5
32
7
46
85°C
3.5
19
7
31
25°C
65
80
65
85
Common-mode rejection ratio
VIC = VICRmin
-40°C
60
81
60
87
85°C
60
86
60
88
25°C
65
95
65
95
-40°C
60
92
60
92
85°C
60
96
60
96
VDD=5Vt010V,
(~VDD/~VIO)
Vo = 1.4 V
Input current to bias select pin
VI(SEL) = 0
25°C
-1.4
VO= VDD/2,
25°C
675
1600
VIC = VDD/2,
No load
-40°C
950
85°C
525
Supply current
V
0
Supply-voltage rejection ratio
pA
V
to
-40°C
25°C
-40°C
pA
-0.3
voltage amplification
Large-signal differential
/J-V/oC
2
25°C
VID = - 100 mV,
mV
3.5
85°C
25°C
VID = 100 mV,
UNIT
13
0.9
VO=VOD/2,
VIC =VDD/2
Vo = VDD 12,
RL = 10 kQ
Low-level output voltage
10
TYP
1.8
85°C
Full range
VOL
MIN
3.5
25°C to
Common-mode input
voltage range (see Note 5)
High-level output voltage
VOO = 10 V
MAX
0.9
Full range
25°C
VOH
v
13
-0.2
VICR
TYP
1.1
25°C
Full range
of input offset voltage
Input offset current (see Note 4)
MIN
VO= 1.4 V,
Average temperature coefficient
110
VOO=5
TAt
mV
50
V/mV
dB
dB
-1.9
JJ.A
2000
2200
950
1375
1200
725
1600
2500
JJ.A
tFull range is - 40°C to 85°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
6. At VDD = 5 V, Vo = 0.25 V to 2 V; at VDD = 10 V, Vo = 1 V to 6 V.
TEXAS
~
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-513
TLC271M
LinCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
HIGH-BIAS MODE
electrical characteristics over recommended free-air temperature range (unless otherwise noted)
PARAMETER
Via
Input offset voltage
TEST CONOITIONS
Vo = 1.4 V,
VIC =OV,
RS = 50n,
25°C to
125°C
liB
Input bias current (see Note 4)
1.1
10
VO= VDD/2,
VIC =VDD/2
Vo = VDD 12,
25°C
0.1
125°C
1.4
25°C
0.6
VIC = VDD/2
125°C
voltage range (see Note 5)
9
-0.3
to
to
4
4.2
0
to
3.5
AVD
CMRR
VID = 100 mY,
RL = 10 kn
Low-level output voltage
Large-signal differential
voltage amplification
Common-mode rejection ratio
10
_--
mV
12
2.2
/lVioC
0.1
pA
-'~"-~-'--
Full range
VOL
1.1
'-- r - -
25°C
High-level output voltage
VOO = 10 V
UNIT
TYP MAX-
2.1
Common-mode input
VOH
MIN
12
0
VICR
MAX
Full range
Average temperature coefficient
Input offset current (see Note 4)
TYP
._--_..
of input offset voltage
110
MIN
25°C
RL= 10kn
aVIO
VOO=5 v
TAt
25°C
-55°C
3.2
3
3.8
3.8
125°C
3
3.8
25°C
0
10L=0
-55°C
125°C
0
0
RL=10kn,
See Note 6
25°C
5
23
-55°C
3.5
35
VID = -100 mY,
15 ------riA
-----pA
0.7
--nA
10
35
15
1.8
35
-,-------.--~,----
0
-'---
-0.3
V
to
9.2 ..
9
- --._._
_._---0
V
to
8.5
- - - - - - - - - - --_ .. _------ -----8
8.5
-_."._----V
7.8
8.5
.-._-7.8
8.4
1----_._-----------_.50 - 1---_._--_._o 50
. __.. mV
50
50
0
to
.. _---
-------~--
50
---------0 -----_50
.. _-- ,------10
36
._----"-"._.
Vim V
7
50
~
~----
VIC = VICRmin
125°C
3.5
16
7
27
25°C
65
80
65
85
-55°C
60
81
60
87 ------_..
125°C
60
84
---.--
---....
----
dB
60
86
-----_
.. .
-'." 1············_-65
95
-----,
kSVR
II(SEL)
Supply-voltage rejection ratio
VDD=5Vtol0V,
(tNDD 1 dVIO)
VO=l.4V
Input current to bias select pin
VI(SEL) =0
VO= VDD/2,
IDD
Supply current
"_..... ,,--------
VIC = VDD/2,
No load
25°C
65
-55°C
60
90
125°C
60
97
25°C
95
-1.4
25°C
~-
90
97 --._--1----
1600
1000
2500
475
1100
---+---.----+.----.+--
950 2000
-_.-,_.-,-,--,.1475
..
625
tFull range is - 55°C to 125°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually_
6. At VDD = 5 V, Vo = 0.25 V to 2 V; at VDD = 10 V, Va = 1 V to 6 V.
TEXAS ~
INsrRUMENTS
2-514
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
JlA
-1.9
. -1 - - - - - --.------ .. - f--------
675
---~--~,-.----
125°C
dB
60
60
~----
3000
.. ----, ..
1400
JlA
.....
TLC271C, TLC271AC, TLC271BC
LinCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
HIGH-BIAS MODE
operating characteristics, VDD
=5 V
TEST CONDITIONS
PARAMETER
RL = 10kn,
SR
Slew rate at unity gain
VIPP = 1 V
CL=20pF,
See Figure 98
VIPp=2.5 V
Vn
Equivalent input noise voltage
f = 1 kHz,
RS= lOOn,
See Figure 99
BaM
Maximum output swing bandwidth
VO=VOH, CL = 20pF,
RL = 10 kn, See Figure 98
Bl
4lm
Vi = 10 mY, f = Bl,
CL=20pF, See Figure 100
Phase margin
operating characteristics, VDD
PARAMETER
SR
Vi=10mV, CL = 20 pF,
See Figure 100
Unity-gain bandwidth
Slew rate at unity gain
RL = 10 kn,
CL=20pF,
See Figure 98
VIPP = 1 V
VIPP =5.5 V
f = 1 kHz,
BaM
Maximum output swing bandwidth
Va = VOH, CL = 20 pF,
RL = 10 kn, See Fig ure 98
Phase margin
O°C
70°C
3
25°C
2.9
MAX
UNIT
4
O°C
3.1
70°C
2.5
25°C
25
25°C
320
O°C
340
70°C
25°C
260
V/fls
nV/vHz
kHz
1.7
MHz
2
O°C
70°C
1.3
25°C
46°
O°C
70°C
47°
44°
MIN
Vi=10mV,
CL = 20 pF, See Fig ure 100
--------,-Vi=10mV,
f = Bl,
CL = 20 pF, See Figure 100
--~-----~-----------
TYP
25°C
5.3
O°C
5.9
4.3
70°C
Vn
4lm
3.6
TEST CONDITIONS
RS=l00n,
See Figure 99
Unity-gain bandwidth
TYP
=10 V
Equivalent input noise voltage
Bl
MIN
25°C
25°C
4.6
O°C
5.1
70°C
3.8
25°C
25
25°C
200
O°C
220
70°C
140
25°C
O°C
2.2
70°C
2.5
1.8
25°C
49°
O°C
50°
70°C
46°
MAX
UNIT
V/flS
nV/..[Hz
kHz
MHz
..
TEXAS •
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-515
TLC2711, TLC271AI, TLC271BI
LinCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
HIGH-BIAS MODE
operating characteristics, VDD
=5 V
PARAMETER
SR
Vn
TEST CONDITIONS
RL=10kn,
CL = 20 pF,
See Figure 98
Slew rale at unity gain
VIPP = 2.5V
25°C
-40°C
85"C
2.9
3.5
2.3
Maximum output swing bandwidth
VO=VOH, CL=20pF,
RL = 10 kn, See Figure 98
Bl
Unity-gain bandwidth
Vi = 10mV, CL = 20pF,
See Figure 100
I/Im
Phase margin
Vi=10mV, f = Bl,
CL = 20pF, See Figure 100
PARAMETER
SR
Slew rate at unity gain
25"C
25
25°C
-40°C
85"C
25°C
-40°C
85°C
25°C
-40"C
85°C
320
380
250
1.7
2.6
1.2
MAX
UNIT
V/IlS
nV/Mz
kHz
MHz
46°
49°
43°
=10 V
TEST CONDITIONS
RL=10kn,
CL=20pF,
See Figure 98
TA
MIN
TYP
VIPP = 1 V
25"C
-40°C
85"C
5.3
6.8
4
VIPP =5.5 V
25"C
-40°C
85°C
4.6
5.8
3.5
Vn
Equivalent input noise voltage
f = 1 kHz,
RS= 100 n,
See Fig ure 99
BOM
Maximum output swing bandwidth
VO=VOH, CL = 20 pF,
RL = 10 kn, See Figure 98
Bl
Unity,gain bandwidth
Vi = 10mV, CL = 20pF,
See Figure 100
I/Im
Phase margin
Vi = 10mV, f = Bl,
CL=20pF, See Figure 100
TEXAS ~
INSTRUMENTS
2-516
TYP
VIPP = 1 V
BOM
operating characteristics, VDD
MIN
3.6
4.5
2.8
f=lkHz,
Rs= lOOn,
See Figure 99
Equivalent input noise voltage
.TA
25"C
-40"C
85"C
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
-
25°C
25
25"C
-40°C
85°C
25°C
-40°C
85°C
200
260
130
2.2
3.1
1.7
25°C
-40°C
85°C
52°
49°
46°
MAX
UNIT
V/IlS
nV/Mz
kHz
MHz
TLC271M
linCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
HIGH-BIAS MODE
operating characteristics, VDD
=5 V
TEST CONDITIONS
PARAMETER
SR
RL = 10 kn,
CL = 20 pF,
See Figure 98
Slew rate at unity gain
VIPP = 1 V
VIPP = 2.5 V
Vn
BOM
l=lkHz,
Rs= lOOn,
See Figure 99
Equivalent input noise voltage
VO=VOH, CL = 20 pF,
RL = 10 kn, See Figure 98
Maximum output swing bandwidth
Bl
Unity-gain bandwidth
Vi=10mV, CL = 20 pF,
See Figure tOO
¢Tn
Phase margin
Vi=10mV, I=Bl,
CL = 20 pF, See Figure 100
TA
MIN
25°C
-55°C
125°C
25°C
-55°C
125°C
TYP
MAX
3.6
4.7
2.3
2.9
3.7
UNIT
VlJl.s
2
25°C
25
25°C
_55°C
320
400
230
1.7
2.9
1.1
125°C
25°C
-55°C
125°C
25°C
-55°C
125°C
nV/VHz
kHz
MHz
46°
49°
41°
operating characteristics, VDD = 10 V
PARAMETER
SR
Slew rate at unity gain
TEST CONDITIONS
RL = 10 kn,
CL = 20 pF,
See Figure 98
VIPP = 1 V
VIPP =5.5 V
Vn
Equivalent input noise voltage
f = 1 kHz,
RS= lOOn,
See Figure 99
BOM
Maximum output swing bandwidth
VO=VOH, CL = 20pF,
RL = 10 kn, See Figure 98
Bl
Unity-gain bandwidth
Vi=10mV, CL = 20pF,
See Figure 100
¢Tn
Phase margin
Vi=10mV, f = Bl,
CL = 20 pF, See Figure 100
MIN
TYP
25°C
-55°C
125°C
25°C
-55°C
125°C
5.3
7.1
3.1
25°C
25
25°C
-55°C
125°C
25°C
-55°C
200
280
110
2.2
3.4
125°C
1.6
25°C
-55°C
49°
52°
44°
125°C
4.6
6.1
2.7
MAX
UNIT
VlJl.S
nVlVHz
kHz
MHz
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-517
TLC271, TLC271A, TLC271B
linCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)t
DISTRIBUTION OF TLC271
INPUT OFFSET VOLTAGE
DISTRIBUTION OF TLC271
INPUT OFFSET VOLTAGE
60
753 Amplifiers tel ted f :om
753 Amplifiers
50
VOO = 5 V
TA = 25°C
P Package
50
! waf,~r lot,
VOO=10V
TA = 25°C
P Package
~
I
!l
40
'c
:::I
.,
'0 30
OJ
!1!
t:
~.,
lIB
20
c..
10
oLLJ..JJI1i
-5 -4 -3 -2 -1
0
2
3
Via -Input Offset Voltage - mV
4
illlrn
o
5
-5 -4 -3 -2 -1
0
2
3
Via - Input Offset Voltage - mV
Figure 2
Figure 3
DISTRIBUTION OF TLC271
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
DISTRIBUTION OF TLC271
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
4
5
60
324 Amplifiers tested
324 Amplifiers tested
50
-;R
0
I
.~
40
I
I
VOO = 5 V
TA = 25°C to 125°C
P Package
Outliers:
(1) 20.5 jJ.VlOC
40
(1) 21.2
t:
:::I
1 30~-t--t-~1i1i1lr-t--t-t--t-1
.,
'0 30
OJ
!1!
t:
4i
c..
VOO=10V
TA = 25°C to 125°C --t--t--t--"1r--t---f
P Package
~
.~
t:
:::I
8
50
!1!
1.1
20
t:
~ 20r--r-1--+-fu+¥
tI
.f
10
o
-10 - 8 - 6
- 4 - 2
0
2
4
6
a via - Temperature Coefficient - jJ.v/oc
8
10
':w.
-10 - 8 - 6
- 4 - 2
0
2
4
6
8
a via - Temperature Coefficient - jJ.v/oc
Figure 4
Figure 5
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
2-518
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
10
TLC271, TLC271A, TLC271B
linCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS {HIGH-BIAS MODE)t
HIGH-LEVEL OUTPUT VOLTAGE
HIGH-LEVEL OUTPUT VOLTAGE
vs
vs
HIGH-LEVEL OUTPUT CURRENT
HIGH-LEVEL OUTPUT CURRENT
5
16
V10 = 100 mV
TA = 25°C
>
..
I
>
8,
Cl
S
>
'5
S
o
>
'5
a.
'5
0
.e:s
3
0
..
~
..J
14
""'"'-
4
o
a;
.3
2
1:.
1:.
Cl
12
10
8
--
I
I
.............
.............
5:
I
I
:I:
~
...........
6
VOO=10V
r-... .......
Cl
5:
TA = 25°C
I
-
............ VOO =16V
.......,
.............
I
V 10 = 100 mV
'-
""
.......
4
:I:
0
o
>
>
2
o
O~----~----~----~----~--~
o
-10
-2
-4
-6
-8
o
-10
-20
-40
-30
IOH - High-Level Output Current - mA
IOH - High-Level Output Current - mA
Figure 6
Figure 7
HIGH-LEVEL OUTPUT VOLTAGE
HIGH-LEVEL OUTPUT VOLTAGE
vs
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
16
>
..
14
I
Cl
~
VID = 100 mV
RL =10kQ
TA = 25°C
V
12
'5
10
:;
0
..
~
..J
1:.
8
/
6
Cl
5:
I
4
:I:
~
/
2
o
o
2
/
/
I
~
V
..J
V
-.........
-2
1
1:.
~~
~
VOO =10V ..............
I
-2.1
.......
............
"- ~
Cl
5:I
I
- ....................
> -1.9
:;
a.
:;
0
IOH =-5mA
V10 =100mV
.1
VOO = 5 V
'-.....
0
//
a.
...........
I
8, -1.8
/
0
>
> -1.7
-2.2
6
> -2.3
4
6
8
10
12
14
16
-2.4
-75
-50 -25
0
25
50
75
~
'"
100
125
TA - Free-Air Temperature - °C
V 00 - Supply Voltage - V
Figure 8
Figure 9
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-519
TLC271, TLC271A, TLC2718
LinCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)t
LOW·LEVEL OUTPUT VOLTAGE
LOW·LEVEL OUTPUT VOLTAGE
vs
vs
COMMON·MODE INPUT VOLTAGE
COMMON·MODE INPUT VOLTAGE
700
\
>
E
t
500
\
\
I
600
~
'$
So
6
l
VOO = 5 V
IOL =5mATA = 25°C
500
400
~
o
r-
f
\
E
I
600
500
'$
.9I
~
400
300
I
~ ~ .......
I
--.....:: ~
--
~
250
4
o
/ V IO =-1 V
~VID.-"V
"~
~,...
6
8
2
4
VIC - Common-Mode Input Voltage - V
Figure 11
LOW·LEVEL OUTPUT VOLTAGE
LOW·LEVEL OUTPUT VOLTAGE
vs
vs
DIFFERENTIAL INPUT VOLTAGE
FREE·AIR TEMPERATURE
I
900
I
IOL =5mA
>
VIC = WID I 21
TA =25°C
I
f
~\.VOO= 5 V
VOO = 10V
200
I
800 -
E
I I
'"~~ -
700
_
VOO =5 V
600
-
U 400
~
;I:
.9
~
I
..J
o
300
/'
/7
~
./
J ..........-
.....
."./'
....... ............
/
/'
.,/
/
..... VOO=10V
200
o
> 100
> 100
-4
o
VID - Oifferen1iallnput Voltage - V
-50 -25
0
25
50
75
100
TA - Free-Air Temperature - °C
Figure 12
Figure 13
-2
-6
-8
-10
-75
tOam at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSfRUMENlS
2-520
10
I
IOL =5mA
VIO =-1 V
VIC =0.5V
'[ 500
..J
o
o
~
300
..J
-I
____ VIO = -100 mV
Figure 10
I
> 700
~;I:
"- r--..." r-.....
\~
~ 350
2
3
VIC - Common-Mode Inpu\ VoUage - V
800
o~
!u
L
300
>
'$ 400
'\
VIO =-1 V
..J
1\\
~
\VIO = -100 mV
;I:
I
450
I
W
~
.9
>
E
-I
VOO=10V
IOL =5mA
TA =25°C
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
125
TlC271, TlC271A, TlC271B
linCMOSTM PROGRAMMABLE lOW-POWER
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)t
LOW·LEVEL OUTPUT VOLTAGE
I
>
I
II>
0.8
'" 0.7
~
0
>
;; 0.6
.e:>
°~
oJ
vs
LOW·LEVEL OUTPUT CURRENT
LOW·LEVEL OUTPUT CURRENT
°
>
0.5
/ ~
0.4
0.2
0.1
/
o
o
>
.E
>
I
.,I
VOO =5V/
VOO=3V~
oJ
oJ
>
VOO = 4
g 0.3
I
3
I
V10 =-1 V
VIC =0.5 V
TA =25°C
0.9
./
.1
LOW·LEVEL OUTPUT VOLTAGE
vs
~
j.
//
!!!
'"
g
/
I
V10 =-1 V
2.5 I-- VIC = 0.5 V
TA = 25"C
VOO=16y
2
;;
.e:>
° 1.5
~
~
/
~
V
oJ
3
4
5
6
7
IOL - Low-Level Output Current- mA
o
8
V
~
V
I
>00.5
2
L
VOO =10Y
V
o
10
5
15
20
25
30
IOL - Low-Level Output Current- mA
Figure 14
Figure 15
LARGE·SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
vs
SUPPLY VOLTAGE
FREE·AIR TEMPERATURE
>
50
~
45
I
50r-~r--1---+---+~~~1---+
.§
40
:=B
35
ii.
E
c:(
30
g
20
Ri
~
15
~
o
10
>
c:(
2
4
6
8
10
12
14
16
I
I
VOO=10V
.............. r-.,
"~
I'-..
25
I
RL =lokn_
'"
"-
II>
E
I
"'-
. . . r-.... r-...
voo = 5 V
10
.....
"'"----
----
5
0
- 75
- 50 - 25
0
25
50
75
V DO - Supply Voltage - V
TA - Free-Air Temperature - °C
Figure 16
Figure 17
100
125
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INsrRuMENTS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
2-521
TLC271, TLC271A, TLC271B
linCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS (HIGH-BIAS MODE}t
COMMON-MODE INPUT VOLTAGE
POSITIVE LIMIT
INPUT BIAS CURRENT AND INPUT OFFSET
CURRENT
vs
vs
FREE-AIR TEMPERATURE
SUPPLY VOLTAGE
16
10000
T~
VOO=10V
VIC = 5 V
See Note 4
1000
~
~
o
>
L
1I
liB
/
>
110
.E
/
"
V
'"!!l
,
,
V
::0
C
0
E
E
,
,
0
,
:>
,
4
/
2
65
85
105
TA - Free-Air Temperature - °e
/
/
/
/
o
125
2
6
4
10
8
1.2
14
Figure 19
SUPPLY CURRENT
SUPPLY CURRENT
vs
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
2
-'
2
vo=voo/2
No load
I
TA=]?
-
/'
:::I
en
j//
I
V
~
/h ,...-~ ~ r----
0
_0
0.5
looe
~
..,..-
--
V1Q oe
I
2
4
6
8
10
12
VDO - Supply Voltage - V
~'"=
VOO
o
_00.5 f--
0
"'"" "-..
f---- 1------
Jl
I-"":j I5 e
~
--
VOO=10V
1'i
Q.
--
___
5V
-- , - - - - -
-- -~~-
r--
-- ---
1-----
~
---- --------
/
o
1--
~
5
o
.
~
~ ,...-- ,/
1'i
Q.
14
16
o
-75
- 50 - 25
0
25
50
75
100
TA - Free-Air Temperature - "e
Figure 20
Figure 21
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices_
NOTE 4: The typical values of input bias current and input offset current below 5 pA were determined mathematically_
TEXAS
~.
INSTRUMENTS
2-522
16
VDO - Supply Voltage - V
Figure 18
VO=VOo/2
I- No load
o
V
/
/
V
/
/
o
45
2.5
E
~
6
0
I
0.1
25
8
"tI
0
"tI
s:::
10
'5
Q.
I
_Q 10
12
/
/
I
."
'5
0)
100
= 2510e
14
L
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
125
TLC271, TLC271A, TLC271B
linCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)t
SLEW RATE
vs
SUPPLY VOLTAGE
8
I
SLEW RATE
vs
FREE-AIR TEMPERATURE
8
I
7
Ay= 1
V 'PP = 1 V
6
C L = 20 pF
RL =10kQ
VI
TA = 25°C
See Fig u re 98
~
>
5
I
.
a:
$
4
;:
'"
1ii
3
I
-
a:
Ul
o
>
6 l-----"'k--+-~,L--j----+- See, Figure
, 99
I
..
a:
5
$
;:
'"
1ii
I
a:
4
3
Ul
-- f---
I
o
V~
/
L
VI
~
r-; /
2
-
/"
/
Ay= 1
RL =10kQ
C L = 20 pF
7
21---+-
Voo = 5 V
f--
t---j-~--+--t--
2
4
6
8
10
12
14
O~~--~--~--~--~--~--~~
16
- 75
- 50 - 25
0
25
50
BIAS SELECT CURRENT
vs
SUPPLY VOLTAGE
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
I 1111111
9 , - - VOO=10V
_
=0
- 2.4 l---If---+--+--j---+---;----r---I
J
-1.8-
/V
I
7
'"
6
Qi-l.2 ______ ~---L ------------+---------- -------------Ul
---c------ --- ---- - ------
------- - ------- c-------- ----
- - -----
'5
5
0
4
.e-:::>
:t:
0
11111
3
6
8
10
12
14
16
\
=
V TA =25°C
rl
TA =-55°C
\
\
I IIIIIII
_R L =10kQ
2
See Figure 98
, ,,- , tiL
o
4
II
IIIIII
TA 125°C
1\ V
VOO = 5 V
I
>
~
i¥'
'0
>
I
,
\ \\
0)
.f!
-g--r-----V-r----+----- - - ---- -----
8
>
V"'"
I
2
125
Figure 23
<:::l
.------1----
100
Figure 22
V'(SEL)
VI
75
TA - Free-Air Temperature - °C
10
..
=2.5 V
V 00 - Supply Voltage - V
l----jl----+--+--j---+-- TA = 25°C
iii
V,PP
10
V DO - Supply Voltage - V
Figure 24
'\.
0 t'-
....... ~~
IIIII
100
1000
f - Frequency - kHz
10000
Figure 25
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 7526S
2-523
TLC271, TLC271A, TLC271B
linCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)t
UNITY-GAIN BANDWIDTH
3
vs
FREE-AIR TEMPERATURE
SUPPLY VOLTAGE
I
\
r-.
\
~
~ 2.5
=
;:
c
2
.c
~
1.5
rD
1
-75
-50 -25
I
0
'"'"'"
25
50
i'2
1.5
I
rD
75
V
I
. . . r--100
V
V
.....-
/
:::>
........
."./
/
c
1
125
o
2
4
8
6
10
12
14
16
TA - Free-Air Temperature - °C
Voo -Supply Voltage- V
Figure 26
Figure 27
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
vs
FREQUENCY
FREQUENCY
Voo = 5 V
g 106 ';
r- RL = 10kQ
TA = 25°C
~
(,)
~ 105
0°
"
1\"
4 ~
30° = : 10
:c S
CD
!'.,.Avo
Phase Shift
100
VOO=10V
RL =10kQ
TA =25°C
E
.......
"'--r-...'""
0.1
10
2
~;
C
I
I
III
'iii
:::>
~
\
c
II
VI =10 mV
C L = 20 pF
I- TA = 25°C
See Figure 100
:;;
\.
"I:)
as
2.5
I
VOO = 5 V
VI = 10 mV
C L = 20 pF
See Figure 100
\
:s!
III
UNITY-GAIN BANDWIDTH
vs
If)
II>
~
.c
~
60°
.
en
900 0.
""~ \
'" "\
1k
10k
lOOk
f - Frequency - Hz
1M
120°
~
103
0°
"'\'"
" '" '"0
"- ~\
r--
102
~
i5 101
c
<
180°
10M
""-
1
0.1
10
100
Figure 28
"\
1k
10 k
100 k i M
f - Frequency - Hz
900
Il.
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
150°
180°
10 M
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
2-524
ill
II>
:::
.c
120°
Figure 29
TEXAS
60°
Phase Shift
I
150°
30° i!:
~o
TLC271, TLC271A, TLC271B
linCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)t
PHASE MARGIN
,
53
PHASE MARGIN
vs
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
50
M 51
2'
"0
/
I
:I
......
f.
49
I
...e 47
/
/
4
2
6
48
I
46
'"" ""
CI
"0
c
.~
c
TA = 25°C
See Figure 100
I
8, 300
~
E
~ 200
'5
Q.
.E
C
\.
~
~ 100
':;
.B'
I\.
I
\
25
o
20
r\
..
.!!
[\.
... 30
125
VOO =5 V
RS = loon
TA = 25°C
See Figure 99
1\
>
I
100
III
~
o
'" "'-
:I
:
Voo =5 V
VI =10mV
"-
75
EQUIVALENT INPUT NOISE VOLTAGE
CAPACITIVE LOAD
i"'-
"" '"
50
vs
50
'"
25
'""
Figure 31
PHASE MARGIN
~ 45
0
"-
TA - Free-Air Temperature - °C
VDO - Supply Voltage - V
45
"" ~
Q.
,-J
o
..1!!
..
III
V
c
'fI
V
Voo = 5 V
Vi = 10 mV
C L =20pF See Figure 100
40
60
80
C L - Capacitive Load - pF
c
>
'\
'" i"'-
t-
o
100
10
100
f - Frequency - Hz
1000
Figure 33
Figure 32
tOam at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INsrRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
2-525
TLC271C, TLC271AC, TLC271BC
linCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
MEDIUM-BIAS MODE
electrical characteristics over recommended free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TLC271C
Via
Input offset voltage
TLC271AC
TLC271BC
aVIO
110
lIB
VIC ~OV,
0.9
0.25
Full range
70°C
VIC ~ VDD 12
70°C
25°C
Common-mode input
voltage range (see Note 5)
-0.2
to
4
VOL
High-level output voltage
Low-level output voltage
Large-signal differential
AVD
CMRR
VID ~ 100 mV,
RL~ 100 kn
VID ~ - 100 mV,
10L~0
voltage amplification
RL ~ 100 kn,
See Note 6
Common-mode rejection ratio
VIC ~ VICRmin
1.1
10
0.9
0.26
1.7
2.1
0.1
40
600
-0.3
-0.2
to
to
4.2
9
to
3.5
8.5
7
0.7
300
50
600
to
9.2
V
3.2
3.9
8
8.7
O°C
3
3.9
7.8
8.7
70°C
3
4
7.8
8.7
0
·0
50
50
0
50
V
0
50
0
0
50
25°C
25
170
25
275
O°C
15
15
70°C
25°C
15
65
200
140
91
15
65
320
230
O°C
60
91
60
94
70°C
60
92
60
94
25°C
70
93
70
93
60
92
94
60
92
60
94
V/mV
94
dB
(tNDD I t. Via)
VO=l.4V
O°C
70°C
II(SEL)
Input current to bias select pin
VI(SEL) ~ VDD I 2
25°C
Va ~ VDD 12,
25°C
105
280
143
IDD
Supply current
VIC ~ VDD/2
No load
O°C
70°C
125
320
173
400
85
220
110
280
-130
TEXAS ~
2-526
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
dB
-160
tFull range is O°C to 70°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
6. At VDD = 5 V, Va = 0.25 V to 2V; at VDD ~ 10 V, Va = 1 V to 6 V.
INSfRUMENTS
mV
50
VDD~5Vtol0V,
60
pA
V
Suppiy-voitage rejection ratio
kSVR
pA
-0.3
25°C
O°C
70°C
/AV/oC
-0.2
to
25°C
mV
2
3
0.1
300
5
6.5
2
7
0.6
UNIT
12
5
-0.2
Full range
VOH
MAX
3
25°C to
Va ~ VDD 12,
VIC ~ VDD/2
Va ~ VDD 12,
=10V
TYP
6.5
25°C
25°C
70°C
VDD
MIN
12
Full range
RS = 50n,
RL~ 100 kn
25°C
VICR
VDD 5 V
TYP MAX
1.1
10
25°C
of input offset voltage
Input bias current (see Note 4)
MIN
25°C
Full range
VO~l.4V,
Average temperature coefficient
Input offset current (see Note 4)
=
TAt
nA
300
/AA
TLC2711, TLC271AI, TLC271BI
LinCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
MEDIUM-BIAS MODE
electrical characteristics over recommended free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TLC271I
Via
Input offset voltage
TLC271AI
TLC271BI
VIC ~O V,
RS
~
50 n,
RL~100kn
Average temperature coefficient
aVIO
Input offset current (see Note 4)
liB
Input bias current (see Note 4)
1.1
VIC ~ VOO/2
25°C
Full range
25°C
Full range
10
0.9
5
0.25
7
2
3.5
VOL
Low-level output voltage
CMRR
kSVR
II(SEL)
10L~0
0.26
24
0.6
1000
26
0.7
1000
200
2000
220
2000
-0.2
-0.3
-0.2
to
to
to
to
4
-0.2
4.2
9
-0.2
9.2
to
3.2
3
3.9
8.7
85°C
3
25°C
4
0
50
0
50
-40°C
0
50
0
50
85°C
0
50
0
50
8
7.8
8.7
7.8
8.7
170
25
275
voltage amplification
15
270
15
390
85°C
25°C
15
130
220
65
91
15
65
Common-mode rejection ratio
VIC ~ VICRmin
-40°C
60
90
60
93
85°C
60
90
60
94
25°C
-40°C
70
93
70
93
60
91
60
91
85°C
60
94
60
94
(t. VOO UNIO)
VO~
Input current to bias select pin
VI(SEL)
1.4 V
= VOO 1 2
Supply current
VIC ~ VOO 12,
No load
25°C
-130
pA
V
25°C
-40°C
25
VOO~5VtoI0V,
pA
V
25°C
Supply-voltage rejection ratio
l!VloC
to
8.5
3.9
mV
-0.3
-40°C
VO~ VOO/2,
100
5
7
2
3.5
85°C
25°C
85°C
UNIT
13
0.9
RL = 100kn,
See Note 6
Large-signal differential
AVO
VID ~ - 100 mY,
10
2.1
3.5
RL~100kn
1.1
0.1
Full range
VID ~ 100 mY,
MAX
0.1
voltage range (see Note 5)
High-level output voltage
TYP
25°C
Common-mode input
VOH
MIN
1.7
25°C
VICR
MAX
13
85°C
Va ~ Voo 12,
VIC ~ VOO 12
Va ~ VOo/2,
TYP
Full range
25°C to
of input offset voltage
110
MIN
25°C
Va ~ 1.4 V,
Voo= 10V
VOL> = 5 V
TAt
V
mV
V/mV
94
dB
dB
-160
nA
25°C
105
-40°C
158
280
400
143
225
300
85°C
80
200
103
260
450
!!A
tFull range is - 40°C to 85°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
6. At VOO = 5 V, Va = 0.25 V to 2 V: at VOO = 10 V, Va ~ 1 V to 6 V.
~
TEXAS
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-527
TLC271M
LinCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
MEDIUM-BIAS MODE
electrical characteristics over recommended free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VO=1.4V.
Via
(lVIO
Input offset voltage
TAt
25°C
VIC =OV.
Rs=50n.
RL = 100 kn
25°C to
125°C
liB
Input bias current (see Note 4)
Va = VOO 12.
25°C
0.6
VIC = VOO/2
125°C
0
9
-0.3
to
4
to
4.2
CMRR
VIO = - 100 mY.
10L=0
1.1
10
0.1
15
1.8
10
0
to
-0.3
to
9
9.2
0
0
to
3.5
to
25°C
3.2
3.9
8
8.7
3
3.9
7.8
8.6
125°C
3
4
7.8
8.8
a
50
0
50
0
50
125°C
50
0
0
50
50
25
275
15
290
15
420
125°C
15
120
15
190
25°C
65
91
65
94
Common-mode rejection ratio
VIC = VICRmin
-55°C
60
60
89
91
60
60
93
Input current to bias select pin
VI(SEL) = VOO 1 2
100
Supply current
V
25°C
25
II(SEL)
25°C
70
93
70
60
91
60
93
91
125°C
60
94
60
94
V/mV
dB
dB
.,..160
-130
nA
VO= VOO/2.
25°C
105
280
143
300
VIC = VOO/2.
No load
-55°C
170
440
245
500
125°C
70
180
90
240
tFull range is - 55°C to 125°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
6. At VOO = 5 V. Va = 0.25 V to 2 V; at VOO = 10 V. VO= 1 V to 6 V.
TEXAS . "
INSfRUMENlS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
mV
93
-55°C
25°C
nA
V
-55°C
25°C
VO= 1.4 V
pA
35
V
-55°C
VOO = 5 V to 10 V.
nA
8.5
RL = 100 kn.
See Note 6
(,WOO 1 t.vIO)
pA
15
0.7
35
voltage amplification
Supply-voltage rejection ratio
2-528
UNIT
!lV/oc
2.1
-55°C
125°C
kSVR
MAX
0
170
Large-signal differential
AVO
VID = 100 mY.
RL=100kn
Low-level output voltage
TYP
12
1.7
1.4
Full range
VOL
MIN
12
0.1
voltage range (see Note 5)
High-level output voltage
10
25°C
25°C
VOH
1.1
125°C
Va = Voo 12.
VIC = VOO/2
Common-mode input
VICR
MAX
mV
Average temperature coefficient
Input offset current (see Note 4)
VOD=10V
TYP
Full range
of input offset voltage
110
VDO=SV
MIN
flA
TLC271C, TLC271AC, TLC271BC
linCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
MEDIUM-BIAS MODE
operating characteristics, VDD = 5 V
PARAMETER
TEST CONDITIONS
VIPP ~ 1 V
RL ~ 100 kn,
SR
Slew rate at unity gain
Vn
Equivalent input noise voltage
BOM
Maximum output swing bandwidth
Bl
m
CL; 20 pF,
25°C
-40°C
~~--
f ; 81,
See Figure 100
PARAMETER
525
--------------~-
_ _ _ _3?~ ________
f----25°C
40°
.. ---------1------43°
- -40°C
..
.. --"----'"' ----'"'-_.,---,-,-----85°C
38°
~--
~---
..---
~--~----~--
TEST CONDITIONS
TAt
25°C
-40°C
85°C
---25°C
-40°C
MIN
-
RL; 100 kn,
CL; 20 pF,
See Figure 98
VIPP; 1 V
1---VIPP; 5.5 V
TYP
MAX
0.62
0.77
"-
___~4?~ _ _
0.56
0.70
Equivalent input noise voltage
BOM
Maximum output swing bandwidth
f; 1 kHz,
RS; 100n,
See Figure 99
VO;VOH, CL;20pF,
RL ; 100 kn, See Figure 98
------,.-
85°C
0.44
25°C
32
Unity-gain bandwidth
Vi; 10mV, CL; 20 pF,
See Figure 100
4>m
Phase margin
f; B1,
See Figure 100
nV/v'Hz
-----.-~
- ••• -
_
TEXAS ~
INSTRUMENTS
2-530
--
----.,~
-~-
Vi;10mV,
CL; 20 pF,
V/p.s
25°C
35
-kHz
-40°C
45
_
.,r-------85°C
25
--,_...,------.-.----,-- ~--~
-25°C
635
--".. _ - , - kHz
40°C
880
-- _
.. .... _- -, ..
.. ---85°C
480 -_._ ..
-_.._--_._---",._-..
..
25°C
43°
--------40°C
46°
85°C
41°
~--~--,-
81
UNIT
-------
~---
Vn
----
=10 V
1------
Slew rate at unity gain
kHz
770
-----.----.-~---.".-------.-
85°C
_._---_.
---~-
SR
kHz
--~
~----
----
operating characteristics, VOD
--------------
f-----~---
---~--
-------
-----
Vi; 10mV,
Phase margin
----7-5---~
-~------
Vi; 10mV, CL ; 20 pF,
See Figure 100
Unity-gain bandwidth
55
25°C
-40'C
85°C
------~
-~-
81-
nV/v'Hz
32
-------'--------
VO;VOH, CL;20pF,
RL; 100 kn, See Figure 98
Maximum output swing bandwidth
.---~---
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
--~
- • __ . _ ._ _ .m. _____ ." ___
--,---,-~-----.------
TlC271M
linCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
MEDIUM-BIAS MODE
operating characteristics, VDD
=5 V
PARAMETER
TEST CONDITIONS
VIPP = 1 V
RL =100 kQ,
SR
Slew rate at unity gain
CL = 20 pF,
See Figure 98
VIPP = 2.5 V
Vn
Equivalent input noise voltage
BOM
Maximum output swing bandwidth
-~------~--~
B1
¢m
..
RS= 100Q,
See Figure 99
CL = 20 pF,
VO= VOH,
RL = 100 kQ, See Figure 98
Vi = 10mV, CL = 20 pF,
See Figure 100
Unity-gain bandwidth
Vi = 10mV,
Phase margin
CL = 20 pF,
f = B1,
See Figure 100
--~----
operating characteristics, VDD
PARAMETER
TYP
MAX
UNIT
0.43
- 55°C
0.54
125°C
0.29
25°C
0.40
-55°C
0.50
125°C
0.28
25°C
32
25°C
55
-55°C
80
125°C
40
25°C
525
VlflS
nV/"RZ
kHz
Slew rate at unity gain
Vn
Equivalent input noise voltage
BOM
Maximum output swing bandwidth
--~
-55°C
850
125°C
330
25°C
40°
43°
36°
- 55°C
125°C
kHz
=10 V
TEST CONDITIONS
VIPP = 1 V
RL = 100 kQ,
SR
MIN
-------~--~~--
--
--
f~= 1 kHz,
TA
25°C
CL = 20 pF,
See Figure 98
f = 1 kHz,
VIPP = 5.5 V
RS = 100 Q,
See Figure 99
VO=VOH, CL = 20 pF,
RL = 100 kQ, See Figure 98
TA
MIN
TYP
25°C
0.62
-55°C
0.81
125°C
0.38
25°C
0.56
-55°C
f-125°C
0.35
MAX
UNIT
VlflS
0.73
25°C
32
25°C
35
- 55°C
50
125°C
20
25°C
-55°C
635
960
125°C
440
43°
47°
39°
nVlVHZ
kHz
~.
81
Unity-gain bandwidth
Vi=10mV, CL = 20 pF,
See Figure 100
-~
¢m
Phase margin
Vi=10mV,
f= 81,
CL = 20 pF,
See Fig ure 100
25°C
- 55°C
125°C
kHz
TEXAS ~
INSTRUMEN1S
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-531
TLC271, TLC271A, TLC271B
LinCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)t
DISTRIBUTION OF TLC271
INPUT OFFSET VOLTAGE
DISTRIBUTION OF TLC271
INPUT OFFSET VOLTAGE
60
50
'#.
I
~
c
40
:;)
'0 30
II>
'"
l!
c
~
20
II>
CI.
10
101-+-+-++
o L....c±::.!iUEEl
-5 -4 -3 -2 -1
0
2
3
VIO -Input Offset Voltage - mV
0
-5 -4 -3 -2 -1
0
2
3
VIO -Input Offset Voltage - mV
4· 5
Figure 34
Figure 35
DISTRIBUTION OF TLC271
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
DISTRIBUTION OF TLC271
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
'#.
I
.~
c
5
224 Amplifiers tested
224 Amplifiers tested
50
4
I
VOO=5V
TA = 25°C to 125°C .,.""b+-+--+--I----1
P Package
50
Outliers:
';/!.
~
40
C
:;)
VOO=10V
I
TA = 25°C to 125°C -t--t--t---t----i--I
P Package
40
(1) 34.6 V/oC
:;)
'0 301-+-+-+--r
&
l!!
~
&.
101--t--+-+-4
10 I--+---I:---t--
oL1...=l::!EE_m
-10 -8 -6
20 I---+---ic---+-
-4 -2
0
2
4
6
8
10
o L......:::b.:;:::I::::£lillilfrtEl .IIII~-.J
-10 -8 -6
-4 -2
0
2
4
6
8
aVIO - Temperature Coefficient - fLv/oc
aVIO - Temperaiure Coefficient - fLV/oC
Figure 36
Figure 37
toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSfRUMENTS
2-532
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
10
TLC271, TLC271A, TLC271B
LinCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)t
HIGH-LEVEL OUTPUT VOLTAGE
HIGH-LEVEL OUTPUT VOLTAGE
vs
vs
HIGH-LEVEL OUTPUT CURRENT
HIGH-LEVEL OUTPUT CURRENT
16
5~----~----~----~----~----,
VIO = 100 mV
>
TA = 25°C
>
14
I
4~----+-----+-----+-----+---~
I
-.......
8, 12
~'5
r-..
I
VIO =100mV
TA =25°C
VOO =16V
......
r--...... r--........
10
Q.
~
8
~
6
~
4
-....... r---
VOO=10V
......::.:
--.........
.2'
I
::I:
is
o
>
>
2
o
o
16
>
.,
Cl
.\!
14
'5
Q.
:;
0
.,>
S:.
Cl
J:
I
0
HIGH-LEVEL OUTPUT VOLTAGE
HIGH-LEVEL OUTPUT VOLTAGE
vs
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
VOO -1.6
VIO = 100 mV
RL = 100 k.Q
TA = 25°C
>
/
12
.,I
Cl
/
10
.\!
6
4
/
2
o
2
V
/
V
/
-1.7
............
-1.8
10H =-5mA
VID =100mV -
~
"0
>
V
/
8
o
-40
FIgure 39
::I:
>
-30
Figure 38
Qj
..J
-20
IOH - High-Level Output Current - mA
"0
>
-10
10H - High-Level Output Current - mA
I
r
r--
'5
~
/
-1.9
...............
0
-2
lS:.
-2.1
_
~
VOO =5 V
""'"
VOO =10V ............
r-.......
i'-- ......
I'......
.2'
~ -2.2
16
-2.4
-75
'"
~
::I:
14
~
............
>0 -2.3
4
6
8
10
12
VDO - Supply Voltage - V
"
-50 -25
0
25
50
75 100
TA - Free-Air Temperature - °C
Figure 40
125
Figure 41
toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-533
TLC271, TLC271A, TLC271B
linCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)t
LOW-LEVEL OUTPUT VOLTAGE
LOW-LEVEL C;>UTPUT VOLTAGE
vs
vs
COMMON-MODE INPUT VOLTAGE
COMMON-MODE INPUT VOLTAGE
700
500
\
~
\
\
I
., 600
i
~
'5
50
6
500
1\
400
I
o
'i
>
300
I
450
1\\
'5 400
50
o"
]
'" ~""
I
o
\ 1,\
350
~
~
b-,.
"~
VID = -1 V
..J
.,
I
'.... 300
~ t-....
o
-r-::: ~ r-3
2
>
250
o
4
VIC - Common-Mode Input Voltage - V
800
I
j
o
>
600
500
'5
50
6
]
400
300
..J~
I
~ V'D"-'·"
""~~~
2
4
6
8
VIC - Common-Mode Input Voltage - V
LOW-LEVEL OUTPUT VOLTAGE
LOW-LEVEL OUTPUT VOLTAGE
vs
vs
DIFFERENTIAL INPUT VOLTAGE
FREE-AIR TEMPERATURE
900
I
IOL =5mA
>
.,
.l!!
'"'0
-"
>
",V OO =5V
200
700
I
r-
"
0
-
j
I - VIC =0.5 V
VOO =5 V
600
.3
I'-.
~
..J
I
400
300
V
./V
V
f-"
""../ .,...
,.........
.-----
V
/
,./'"
V
VOO=10V
~
200
..J
..J
0
>0 100
o
o
>
-2
-4
-6
-8
-10
100
o
-75
VIO - Oifferentiallnpul Voltage - V
-50 -25
0
25
50
75
100
TA - Free-Air Temperature - DC
Figure 45
Figure 44
toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSTRUMENTS
2-534
10
I
IOL =5mA
VID = -1 V
50 500
"~ .......
VOO=10V
800
E
VIC = WIO I 21
TA = 25°C
\, 1 J
'\.
/ V IO =-l V
Figure 43
I
I
___ VID = -100 mV
Figure 42
I
~ 700 k--
I
VOO=10V
IOL =5mA
TA =25°C -
'"
'\
r--..
.3
>
E
g.l!!
VIO = -100 mV
1
..J~
VOO =5 V
IOL =5mATA = 25°C
POST OFFIc:E BOX 655303 • DALLAS. TEXAS 75265
125
TLC271, TLC271A, TLC271B
LinCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)t
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
LOW-LEVEL OUTPUT CURRENT
I
3
I
0.9 _V IO =-l V
VIC = 0.5V
0.8 - TA =25°C
>
I
III
CI
i>
>
I
VOO=4~
'S 0.6
So
::s
0.5
3
0.4
..9
0.3
•
I
oJ
VOO=3~
//
/. ~
0.2
° 0.1
>
o/
:/
o
~
I
VIO =-l V
VIC = 0.5 V
TA =25°C
2.5
III
CI
VOO=5y
0.7
°a;
LOW-LEVEL OUTPUT VOLTAGE
vs
i>
/
'S
So
::s
°
~
~
VOO =16vj
2
VOO = l i
1.5
hV
I
oJ
>00.5
5
34
2
7
6
V
l/
o
o
8
~
500
I
vs
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
I
B350
!5
f 300
C
ITA
/
/
W
& 250
V
III
:! 100
=-55.:£
f-" -40°C
"",""-!---"
O°C
",
Y
./
........ ...;...;;..
V
./ '". /~
hv/ V 6~V
// ~ ~
%~
~
~ 200
ii
'iii 150
--
~
70°C
~
~85°C
125°C
~ 50
> 500
~
:8
~
350
0..
E 300
C
,
"" "
"'-
.e&250
~
200
.........
.......VOO=10V
......
~
VOO =5 V ..............
C 150
i'-...
6
8
10
r---....
!:= 100
c
12
14
16
----
............
~ 50
>
4
I
,
c 400
C
2
450
I
I
RL = 100 kn_
~
~
Q
o
30
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
o
0
25
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
I
C
20
Figure 47
c 400
>
15
IOL - Low-Level Output Current - mA
Figure 46
RL =100kn
450
10
5
IOL - Low-Level Output Current- mA
>
:/
/
~
/
t"-=
0
-75
-50 -25
0
25
50
75
V DO - Supply Voltage - V
TA - Free-Air Temperature - DC
Figure 48
Figure 49
100
125
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ."
INSfRUMENTS
POST OFFice BOX 655303 • DALLAS. TexAS 75265
2-535
TLC271, TLC271A, TLC271B
linCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)t
INPUT BIAS CURRENT AND INPUT OFFSET
CURRENT
MAXIMUM INPUT VOLTAGE
vs
vs
FREE-AIR TEMPERATURE
SUPPLY VOLTAGE
16
10000
/'
100
()
.
I
/'
/'
-210
-g
-!XI
,
0.1
25
,
,
,
!!!
"0
>
:;
V
8
6
I
,
>4
45
65
85
105
TA - Free-Air Temperature - °C
o
125
o
J
~
0-
4
SUPPLY CURRENT
SUPPLY CURRENT
vs
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
225
300
"'lI
250r-~--+--+--I--~~~-r--4
~
!!!
!s
()
~
15.
0-
150r-~-~~-+~~-~~~-~~
I
o
:)
III
'r\.
'\
175
150
i'-..
..P
'"
125
100
"-
...... ~OO=10V
~I'o...
VOO =5 V
8
4
10
12
6
VDO - Supply Voltage - V
14
16
---- -...........
.........
75
50
50r-~~-+--+--I---I--+--+--4
2
---
25
o-75
-50 -25
0
25
50
75
100 125
TA - Free-Air Temperature - °C
Figure 52
Figure 53
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
NOTE 4: The typical values of input bias current and input offset current below 5 pA were determined mathematically.
TEXAS
~
INSTRUMENTS
2-536
16
Vo =Vool 2_
No load
~
I
0
_0 100r-~-b~~~~~=--I-~~--~~
14
250
VO=VOo/2
No load
-f---\---I--
200r-~--+--+~~~-I--~~~~
/
/
Figure 51
15.
~
/
Figure 50
I
~
!!
/
/
/
/
/
6
8
10
12
VDO - Supply Voltage - V
2
200
"'l
/
/
2
,
/
/
0-
.E
400r-~--~--~--~--~--~--~~
350
10
Cl
110
I
as
/
12
liB
I
!s
/
/
0-
~
T~ =2doc
14
./
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
TLC271, TLC271A, TLC271B
LinCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS.
TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)t
SLEW RATE
0.9
t..
I
.
~
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
0.9
I
'" 1
VIPP = 1 V
RL = 100 k.Q
C L =20pF
0.7 _ TA =25°C
See Figure 99
0.8
-
SLEW RATE
vs
0.8 t-----...:---t-
~
iii
I
rx: 0.5
/
0.4
V
/
.!!
rx: 0.6
C/)
V
/
~
:>
/
o
2
-+-
~ 0.6 t---I-:-t-'---1'-..::--P.....
rx:
C/)~
0.5
rx:
0.4 t---I-7f---+-="-k~..t::--+----"'k--""d
C/)
0.3
4
6
8
10
12
Vee - Supply Voltage- V
14
0.21-........1-.....- ......._ ....._ ......_..1.-_....---1
-75 -50 -25
0
25
50
75 100 125
16
TA - Free-Air Temperature - °C
Figure 54
Figure 55
BIAS SELECT CURRENT
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
vs
SUPPLY VOLTAGE
FREQUENCY
10
TA =25°C
-270
VI(SEL) = 1/2 Vee
-
II IIII
9
I
-aI - 210
~ -180
~
0-150
~
.....
'ii -120
C/)
..-V
--
~
-
>
I
GJ
7
l!!
'"
'0
6
:;
5
0
4
>
.e::>
~TA =-55°C
:I:
0
>
-60
IIIIIII
3
2
r-
-30
R~ ~~~~Il1
See Figure 99
I 1111111
IIIIIII
o
2
4
6
8
10
12
Vee - Supply Voltage- V
14
16
\
Vee = 5 V
I
-90
II II
I 11111
TA = 125°C
/ TA =25°C
8 r-- Vee = 10V
-240
~
I--d-~~-+--~~~~~-+-~
I
-300
..
0.7 t---I"""-::-t-7'~--+--j---,--,------I
I
/
/
0.3
r---,---r---,---,--...,--..,.--.,....-.....,
1
Figure 56
\
~
r--..
........
['.
10
100
f - Frequency - kHz
1000
Figure 57
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
2-537
TLC271, TLC271A, TLC271B
LinCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)t
UNITY-GAIN BANDWIDTH
UNITY-GAIN BANDWIDTH
vs
vs
FREE-AIR TEMPERATURE
SUPPLY VOLTAGE
900
1
VOO =5 V
VI = 10 mV
C L = 20 pF
See Figure 101
\
~ 800
\
""I
~ 700
li
c
600
750
I
TA = 25°C
See Figure 101
"';' 700
=
..
~
III
c
600
'm
c:J
~ 500
._
c
::>
"" '""-
I
m400
300
-75
-50 -25
0
25
50
'"
::>
I
m
i"-.
/
450
------
75
/
500
100
400
125
1/
/
o
4
2
8
6
10
12
14
V DO - Supply Voltage - V
Figure 58
Figure 59
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
vs
FREQUENCY
FREQUENCY
Voo =5V
RL = 100 kQTA=25°C
~.
\
.",
Phase Shilt
10
J'a
105
E
30°
~o
100
.:
:c
"'- ~
1k
10 k
60°
100 k
~CI 104
;g 103
.s::.
ii
..
120°
~
!
~
180°
1M
'"
"'"
30°
~
'" "'" '"
1
0.1
1
10
100
60°
1k
10 k
I - Frequency - Hz
f - Frequency - Hz
Figure 60
Figure 61
TEXAS
~
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
~
:3
900 B.
~
100 k
tData at high and low temperatures are applicable only within the rated operating Iree-air temperature ranges 01 the various devices.
INSTRUMENTS
S
.s::.
.s::.
I\.
Phase Shift
is 101
I
150°
0°
\
102
c
>
TA =25°C
~
S
~
900 B.
"~"
VOO=10V
RL = 100kQ-
5 106
0°
~
r\
2-538
16
TA - Free-Air Temperature - °C
--...."
1
%. 550
V
/'
/
650
c
'm
0.1
I
VI =10mV
C L =20pF
~
\
~
III
800
.1
120°
150°
180°
1M
TLC271, TLC271A, TLC271B
linCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)t
PHASE MARGIN
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
50
M
..
0)
....
44
D.
42
L
I
....E
40
38
/
Lo
2
V
V
.~
IV
::;;
/
L
41
I
c
=
.c
I
E
.... 37
4
6
8
10
12
V DO - Supply Voltage - V
14
35
-75
16
38
EI
IV
36
IV
34
..
::;;
.c
D.
I
....E 32
o
20
~
"-
EQUIVALENT INPUT NOISE VOLTAGE
vs
CAPACITIVE LOAD
FREQUENCY
VDD =5 V
VI = 10 mV
TA = 25°C
See Figure 100 -
~
~
..
>
...
250
z
;;
150
\
I
0)
~ 200
r-.......
'0
""'-
"
III~DD~5~1
125
III
RS= 100 Q
TA = 25°C
See Figure 99
\
1\
IV
"'-
-50 -25
0
25
50
75
100
TA - Free-Air Temperature - °C
PHASE MARGIN
30
28
"'-
Figure 63
"-
.5
~
vs
"'- "-
2'
I
'" '"
VI = 10 mV
CL =20pF
See Figure 100
Figure 62
......
l!! 40
I
""'-
300
:!
'0
39
D.
44
42
""
..
0)
IV
.c
~
43
'0
I
2'IV
I
VDD = 5 V
46
c
::;;
45
II
VI = 10 mV
CL = 20 pF
TA =25°C
See Figure 100
48
'0
PHASE MARGIN
vs
r\
a.
.5
I'......
t\.
C 100
"-
40
60
80
CL - Capacitive Load - pF
'Llf=*
.::
"
100
"'-I'.,
50
c
>
o
-
t--
I
1
10
100
f - Frequency - Hz
1000
Figure 65
Figure 64
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
2-539
TLC271C, TLC271AC, TLC271BC
LinCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
LOW-BIAS MODE
electrical characteristics over recommended free-air temperature range (unless otherwise noted)
TEST CONOITIONS
PARAMETER
TLC271C
VIO
Input offset voltage
TLC271AC
TLC271BC
110
25°C
lIB
Input bias current (see Note 4)
0.9
5
25°C
0.24
6.5
2
Full range
Low-level output voltage
CMRR
TYP
MAX
1.1
10
5
0.26
6.5
2
fJ.V/ oC
25°C
0.1
70°C
300
8
0.7
300
25°C
7
0.6
VIC = VOO/2
70°C
40
600
50
600
-0.3
-0.2
to
to
to
to
4
-0.2
4.2
9
-0.2
9.2
VID = -100 mV,
voltage amplification
RL=lMQ,
See Note 6
Common-mode rejection ratio
VIC = VICRmin
to
to
3.5
8.5
V
8
7.8
8.9
8.9
3
4.2
0
7.8
8.9
50
0
50
O°C
0
50
0
50
70°C
0
50
50
25°C
50
520
50
0
870
O°C
50
700
50
1030
70°C
50
380
50
660
25°C
65
94
65
97
O°C
60
95
60
97
70°C
60
95
60
97
25°C
70
60
97
70
O°C
60
97
97
70°C
60
97
98
60
98
V
dB
VOO=5Vto10V,
(iNOO 1 AVIO)
VO= 1.4 V
II(SEL)
Input current to bias select pin
VI(SEL) = VOO
25°C
65
VO= VOO/2,
25°C
10
17
14
23
100
Supply current
VIC = VOO/2,
No load
O°C
12
21
18
33
70°C
8
14
11
20
TEXAS . "
INSTRUMENTS
2-540
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
dB
95
tFull range is O°C to 70°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
6. AtVOO = 5 V, Vo = 0.25 V to 2 V; atVOO = 10V, Vo = 1 V t06 V.
mV
V/mV
Supply-voltage rejection ratio
kSVR
pA
V
4.1
4.1
70°C
25°C
pA
-0.3
3.2
3
O°C
RL= 1 Mn
0.1
-0.2
25°C
mV
3
1
Vo = VOO 12,
VIC = VOO/2
Vo = VOO/2,
VID = 100mV,
UNIT
12
0.9
1.1
70°C
10L=0
Large-signal differential
AVO
MIN
3
25°C to
Full range
VOL
10
25°C
Full range
voltage range (see Note 5)
High-level output voltage
1.1
VIC =OV,
RS=50n,
RL = 1 MQ
Common-mode input
VOH
VOO=10V
MAX
12
25°C
VICR
v
TYP
Full range
of input offset voltage
Input offset current (see Note 4)
MIN
VO=1.4V,
Average temperature coefficient
aVIO
VOO=5
TAt
nA
fJ.A
TLC2711, TLC271AI, TLC271BI
LinCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
lOW-BIAS MODE
electrical characteristics over recommended free-air temperature range (unless otherwise noted)
TEST CONOITIONS
PARAMETER
TLC2711
VIO
Input offset voltage
TLC271AI
TLC271BI
25°C
RS=50Q,
Full range
RL = 1 MQ
25°C
Input offset current (see Note 4)
liB
Input bias current (see Note 4)
0.24
Low-level output voltage
Va = VOO 12,
VIC = VOO/2
Va = VOO 12,
25°C
0.1
85°C
24
25°C
0.6
VIC = VOO/2
85°C
200
10L=0
Large-signal differential
AVO
CMRR
voltage amplification
Common-mode rejection ratio
Supply-voltage rejection ratio
kSVR
0.9
5
0.26
2
7
2
26
2000
220
-0.2
-0.3
-0.2
to
to
to
to
4
4.2
9
9.2
to
3.5
8.5
25°C
3.2
4.1
8
8.9
-40°C
3
4.1
7.8
8.9
85°C
3
4.2
7.8
8.9
25°C
0
50
0
0
50
0
50
85°C
0
50
0
50
50
870
50
1550
85°C
50
330
50
585
25°C
65
94
65
97
VIC = VICRmin
-40°C
60
95
60
97
85°C
60
95
60
98
97
Supply current
V
-40°C
900
100
V
V
520
VI(SEL) = VOO
pA
-0.2
to
50
Input current to bias select pin
2000
pA
-0.3
50
II(SEL)
1000
0.7
25°C
Vo= 1.4 V
fl Vio C
0.1
1000
-40°C
(,WOO 1 ",-Via)
mV
3.5
1
RL = 1 MQ,
See Note 6
VOO=5Vtol0V,
UNIT
13
5
-0.2
VIO = - 100 mY,
10
1.1
85°C
RL = 1 MQ
MAX
1.1
3.5
25°C to
VIO = 100 mY,
TYP
7
Full range
VOL
10
Full range
voltage range (see Note 5)
High-level output voltage
1.1
MIN
13
Common-mode input
VOH
MAX
0.9
25°C
VICR
VOO=10V
TYP
Full range
VO= 1.4V,
VIC =OV,
of input offset voltage
110
MIN
25°C
Average temperature coefficient
aVIO
VOO = 5 V
TAt
25°C
70
97
70
-40°C
60
97
60
97
85°C
60
98
60
98
50
mV
V/mV
dB
dB
25°C
65
95
nA
VO= VOO/2,
25°C
10
17
14
23
VIC = VOO 12,
No load
-40°C
16
27
25
43
85°C
17
13
10
18
flA
tFull range is - 40 to 85°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
6. At VOO = 5 V, Va = 0.25 V to 2 V; at VOO = 10 V, Va = 1 V to 6 V.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-541
TlC271M
linCMOSTM PROGRAMMABLE lOW-POWER
OPERATIONAL AMPLIFIERS
LOW-BIAS MODE
electrical characteristics over recommended free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONOITIONS
VO=l.4V,
V,O
Input offset voltage
Average temperature coefficient
of input offset voltage
',0
Input offset current (see Note 4)
liB
Input bias current (see Note 4)
MIN
VOO=5V
TYP MAX
1.1
25°C
V'C =OV,
RS=50n,
25°C to
125°C
25°C
125°C
25°C
125°C
VO=VDD/2,
V'C =VDD/2
VO=VDD/2,
V'C =VDD/2
25°C
Common-mode input
voltage range (see Note 5)
Full range
VOH
VOL
High-level output voltage
Low-level output voltage
CMRR
kSVR
"(SEL)
V,D = l00mV,
RL = 1 Mn
V,D = - 100 mV,
'OL=O
Large-signal differential
AVD
voltage amplification
RL= 1 Mn,
See Note 6
Common-mode rejection ratio
V'C = V'CRmin
Supply-voltage rejection ratio
(,WDD/&V,O)
VDD = 5 V to 10 V,
VO=l.4V
Input current to bias select pin
V'(SEL) = VDD
VO=VDD/2,
'DD
Supply current
V'C = VDD/2,
No load
10
TYP
MAX
1.1
10
12
25°C
-55°C
125°C
25°C
-55°C
125°C
25°C
-55°C
125°C
25°C
-55°C
125°C
25°C
_55°C
125°C
to
4
0
to
3.5
3.2
3
3
50
25
25
65
60
60
70
60
60
0.1
1.4
0.6
9
-0.3
15
35
0
to
4.2
4.1
4.1
4.2
0
0
0
520
1000
200
94
to
9
0
to
8.5
8
7.8
7.8
95
85
97
97
98
25°C
65
10
17
17
30
125°C
7
12
0.1
1.8
0.7
10
-0.3
TEXAS ~
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
15
35
pA
nA
pA
nA
V
to
9.2
V
8.9
8.8
50
9
0
0
0
870
25
25
65
60
60
70
60
60
1775
380
97
97
91
97
97
98
50
50
50
25°C
-55°C
INSTRUMENlS
fl V/oC
1.4
V
50
50
50
14
28
9
mV
V/mV
dB
dB
nA
95
tFull range is - 55°C to 125°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
6. At VDD = 5 V, Vo = 0.25 V to 2 V; at VDD = 10 V, Vo = 1 V to 6 V.
2-542
UNIT
12
1.4
0
V,CR
VOO=10V
MIN
mV
Full range
RL = 1 Mn
..
I
>
I
r--..
14
-......
4
CI
I'---- VOO =16V
~
>
:;
Q.
:;
I'-..............
i;
...........
3
'-
0
;;
-t
.c
I
VIO = 100 mV
TA = 25°C
..............
2
i"--..
VOO=10V
I'-.........
..............
CI
s:
I
J:
0
>
o
O~----~----~----~----~--~
o
-2
-4
-6
-8
-10
o
IOH - Hlgh·Level Output Current- mA
-10
-20
-30
IOH - Hlgh·Level Output Current - mA
Figure 70
Figure 71
HIGH·LEVEL OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
HIGH·LEVEL OUTPUT VOLTAGE
vs
FREE·AIR TEMPERATURE
16
>
I
II>
CI
S
"0
VOO -1.6
VIO =100 mV
14 - RL =1 Mn
TA = 25°C
12
~
;;
i;
....I
1:.
/
/
6
J:
I
/
4
J:
0
>
/
2
o
o
2
..
-1.7
...........
I
CI
V
S
"0
-1.8
> -1.9
:;
So
~
/
/
8
.J:!>
>
)/
> 10
:;
0
-40
-2
0
/
...............
~
~
V
1:.
I
~
VOO =5 V
""'-..
..........
~
I'-..
VOO =10V ..............
-2.1
J:
I
........
""
-2.2
J:
0
> -2.3
-2.4
-75
,
~
.J:!>
V
IOH =-5mA
Vlo =100 mV
"-
~
""
VDO - Supply Voltage - V
-50 -25
0
25
50
75 100
TA - Free·Air Temperature - °C
Figure 72
Figure 73
4
6
8
10
12
14
16
125
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
2-547
TLC271, TLC271A, TLC271B
linCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS (LOW-BIAS MODE)t
LOW-LEVEL OUTPUT VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
LOW-LEVEL OUTPUT VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
700
500
>
E
\
I
& 600
\ 1\
!!!
~
[
8 500
~
. ~. .I
VOO=5 V
IOL =5mATA =25°C
1\
I'...
300
~ 700
I
QI
E
600
"0
> 500
';
D..
8 400
~
. ~. .I
I
!
\~
........
~
350
~ 300
>
250
o
4
3
~~
o
r-:: :::::::: r--
/ VIO =-1 V
~I'"~:'D~-'5V
~
r-...
l..--" VIO = -100 mV
~
2
6
4
8
VIC - Common-Mode Input Voltage - V
Figure 74
Figure 75
LOW-LEVEL OUTPUT VOLTAGE
LOW-LEVEL OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
I
900
I
IOL =5mA
>
VIC = tvlD 121
TA =25OC
E
QI
:!!
~
VOO=10V
200
700
"
0
--
r--
1
400
~
.....I
300
~
I
.....I
.....I
200
0
>0 100
VOO = 5 V
600
,So 500
V
/V
-...... /
. ~ ...-V
..
fo"""
V
V
/
V
VOO=10V
> 100
-2
-4
-6
-8
-10
o
-75
VIO - Ollferentlallnput Voltage - V
-50 -25
0
25
50
75
100
TA - Free-Air Temperature - °C
Figure 77
Figure 76
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSTRUMENTS
2-548
10
I
I - VIC =0.5V
';
~VOO=5V
~~
I
IOL =5mA
800 I- V =-1 V
IO
Dl
I I
300
o
o
\ f'\
VIC - Common-Mode Input Voltage - V
I
[\..
1\\
'; 400
VIO = -100 mV
2
~
450
:!!
o
800
I
~
VIO = -1 V
T I
.....I
>0
>
E
&
"i'..." "~ :::-----
400
I
I
I
I
VOO=10V
IOL=5mA
TA =25°C -
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
125
TLC271, TLC271A, TLC271B
linCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS (LOW-BIAS MODE)t
LOW-LEVEL OUTPUT VOLTAGE
I
LOW-LEVEL OUTPUT VOLTAGE
vs
vs
LOW-LEVEL OUTPUT CURRENT
LOW-LEVEL OUTPUT CURRENT
3
I
0.9 r-- VIO =-1 V
VIC =0.5 V
0.8 i--TA = 25°C
>
I
OIl
>
VOO=4~
>
.s0
"
0.5
~OIl
0.4
...I
;i:
0
...I
I
...I
0
>
Cl
VOO=5y
.l!
"0 0.7
0.6
VOO=3~
/ ~
0.3
0.2
l/
o :/
'#
//
VOO =16;!
~
g
2
o"
1.5
-.s-"
/
VOO = 1 7
~
~
...I
4
3
5
6
7
IOL - Low·Level Output Current- rnA
V
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
1800
1600 J---f---t--t--vL--b.-L--j---t---l
>
S
RL =1 MQ
l1400/--f---t---t----r-+r--j---j--=-+-c-::-I
"as 1200 /--f---t----I-----r'-t---j---j-...,...-fo""'----cI
1800
~
1600
,
i
1000
800
~
800
--e
600
~
iii
E
~
400
~
i5
I
0
200
10
>
iii
0
30
Figure 79
I
~
i5
5
10
15
20
25
IOL - Low-Level Output Current - rnA
Figure 78
~
~
V
/
~
o
o
8
> 2000,---,-.....,.---r'--'--""""-"'--""""""'"
"0
h
I
>00.5
2
/
/
~
0.1
o
i
2.5
I
OIl
Cl
"S
I
VID = -1 V
VIC =0.5 V
TA =25°C
16
600
VOO=10V
'"
'--....
"-I'--...
VOO =5V ........
400
........
I'----
............
........
------
200
0
-75
~
I'---..
r--
-50 -25
0
25
50
75
100
TA - Free-Air Temperature - °C
Figure 80
125
Figure 81
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-549
TlC271, TLC271A,TLC271B
UnCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS (LOW-BIAS MODE)t
INPUT BIAS CURRENT AND INPUT OFFSET
CURRENT
MAXIMUM INPUT VOLTAGE
vs
vs.
FREE-AIR TEMPERATURE
SUPPLY VOLTAGE
16
10000
!=VOO =10V
I-VIC =5 V
1000 sSeeNole4
12
>
lIB
I
,/
100
I
,/
:::I
&
~
./
I
_Q 10
.5
'tI
c
,
0.1
25
,
,
,
8
j
V
/'
6
I
,
>-
65
45
85
105
TA - Free-Air Temperature - °C
o
125
10
8
12
SUPPLY CURRENT
va
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
14
/
/
/
,/
25
~V
20
h-
Q.
Q.
15
.IZ......-::::
I
j~ 10
~
5
o
I
2
/'
V
~ V-
--::::::
......
I---
4
V
/
/-40°C
'/'
V --o:c
---/
25
V ~
~
6
8
10
12
VDO - Supply Voltage - V
70aC
..;;..
'!
.!
~
20
a'" 15
'"
!r
'0 10
.F
16
'\.
'~
a.
1
Vo =V oo /2
No load
'\
II)
250C
14
"r\.
'\
~OO=10V
...........
"-i'-..
~
VOO =5 V
5
o
-75
-50 -25
0
25
-
r-- - -
50
f-
75
100 125
TA - Free-Air Temperature - OC
Figure 84
Figure 85
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
NOTE 4: The typical values of input bias current and input offset current below 5 pA were determined mathematically.
TEXAS
~
INSfRUMENTS
2-550
16
30
TA =-55;-
30
o
6
vs
(.)
:::I
II)
/
VDO - Supply Vollage - V
SUPPLY CURRENT
:::I
~
4
Figure 83
35
~
2
/
/
/
Figure 82
VO=VOO/2
40 I- No load
C
o
/
V
V
/
V
/
2
,
V
/
4
45
'!I
10
~
110
(.)
..
...s
/
./
'1
~
T~ = 2doc
14
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TlC271, TlC271A,TlC271B
linCMOSTM PROGRAMMABLE lOW-POWER
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS (LOW-BIAS MODE)t
SLEW RATE
0.07
I
I
FREE-AIR TEMPERATURE
I
V
V"
0.04
.!!
os
a:
1
Ul
0.03
a:
Ul
/'
/
I
./
1
:>
I
.!! 0.04 I--",!""",,-+--t---+--=""""po....::~
V
1
Ul
I
a:
Ul
0.02
0.02
0.01 t----+_-+-_+--+VOO = 5 V
VIPP 2.5 V
0.01
0.00
0.07 r----r---,---r---r--,...--.,.---,---.
RL 1 MQ
C L = 20pF
0.06 t---+~-+Ay=l
See Figure 98
0.05
=
./
RL =1 MQ
CL = 20pF
TA = 25°C
See Figure 98
0.05
t
vs
SUPPLY VOLTAGE
Ay=l
VIPP = 1 V
0.06
..
SLEW RATE
vs
=
o
2
4
8
6
10
12
14
16
0.00 '-----1-.......--'---'---'-----1-.......-75 -50 -25
0
25
50
75
100
.....
125
VDO - Supply Voltage - V
TA - Free-Air Temperature - DC
Figure 86
Figure 87
BIAS SELECT CURRENT
MAXIMUM PEAK·TO·PEAK OUTPUT VOLTAGE
vs
vs
SUPPLY VOLTAGE
FREQUENCY
150
r- TA =25OC
VI(SEL) = V DD
./'
120
'"
180°
1M
30°
~o
'",
Phase Shilt
60°
1
0.1
10
'" ~
Figure 92
Figure 93
TEXAS
~
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
GI
900 II.
I - Frequency - Hz
INSTRUMENTS
~
=
100
1k
10k
f - Frequency - Hz
1
:E
.c
~~
~
I
150°
0°
lOOk
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges 01 the various devices.
2-552
16
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
FREQUENCY
"-
12
Figure 91
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
1\
10
Voo - Supply Voltage- V
Figure 90
"-
V
/
TA - Free-Air Temperature - °C
~
/'
/
120°
150°
180°
1M
TLC271, TLC271A, TLC271B
linCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS (LOW-BIAS MODE)t
PHASE MARGIN
42
,
I
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
40
I
g' 38
I
c
..
36
II>
as
.c
Q.
/
34
I
....E
32
30
/
o
/
V
/
/
/
35
g' 33
'0
~
c
~
III
::&
31
as
:0
II>
Q.
29
I
....E
27
25
o
20
_,
VOO = 5V
VI = 10 mV
C L =20pF
See Figure 100
"'" "-"-
= 28
f
I
"'- r\.
'\
E
6
8
10
12
14
24
20
-75
16
-50 -25
0
25
50
75
100
VOO - Supply Voltage - V
TA - Free-Air Temperature - "C
Figure 94
Figure 95
PHASE MARGIN
EQUIVALENT INPUT NOISE VOLTAGE
vs
vs
CAPACITIVE LOAD
FREQUENCY
I
VOO=5V
VI =10mV
TA =25°C
See Figure 100
~
200
I
-
f
'" '"
"'"
125
III
~:> 175 1\
c
\
I
VOO=5V
Rs= 100 0
TA = 25°C
See Figure 99
150
;\
> 125
II>
..!!
o
Z 100
i""-
..
as
.c
32
I
c
....
~
I
36
.~
I
"-
~g'
'0
37
,
V
V
4
2
""'-
./
=
TA 2S"C
See Figure 100
'0
as
::&
I
'i"-..
VI = 10mV
CL =20pF
40
~
PHASE MARGIN
vs
"'-r--.
:;
Q.
.5 75
C
'" "'"
40
60
80
C L - Capacitive Load - pF
100
-!>
50
I
25
~
c
>
o
1
Figure 96
10
100
f - Frequency - Hz
1000
Figure 97
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INsrRuMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-553
TLC271, TLC271A, TLC271B
LinCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
PARAMETER MEASUREMENT INFORMATION
single-supply versus split-supply test circuits
Because the TLC271 is optimized for single-supply operation, circuit configurations used for the various tests
often present some inconvenience since the input signal, in many cases, must be offset from ground. This
inconvenience can be avoided by testing the device with split supplies and the output../oad tied to the negative
rail. A comparison of single-supply versus split-supply test circuits is shown below. The use of either circuit
will give the same result.
Voo
Voo(a) Single-Supply
(b) Split-Supply
Figure 98. Unity-Gain Amplifier
10kn
100 n
1/2
10kn
Voo
Voo
loon
loon
Voo(a) Single-Supply
(b) Split·Supply
Figure 99. Noise Test Circuit
10 kn
VI
loon
10kn
Voo
VI
Voo+
loon
Vo
Vo
1/2
Voo
CL
CL
-=
':"
VOD_
(a) Single·Supply
(b) Split-Supply
Figure 100. Gain-of-100 Inverting Amplifier
TEXAS
~
INSTRUMENTS
2-554
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC271, TLC271A, TLC271B
LinCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
PARAMETER MEASUREMENT INFORMATION
Input bias current
Because of the high input impedance of the TLC271 op amp, attempts to measure the input bias current can
result in erroneous readings. The bias current at normal room ambient temperature is typically less than 1 pA,
a value that is easily exceeded by leakages on the test socket. Two suggestions are offered to avoid erroneous
measurements:
1. Isolate the device from other potential leakage sources. Use a grounded shield around and between the
device inputs (see Figure 101). Leakages that would otherwise flow to the inputs will be shunted away.
2. Compensate for the leakage of the test socket by actually performing an input bias current test (using
a picoammeter) with no device in the test socket. The actual input bias current can then be calculated
by subtracting the "open-socket" leakage readings from the readings obtained with a device in the test
socket.
One word of caution ... many automatic testers as well as some bench-top op amp testers use the
servo-loop technique with a resistor in series with the device input to measure the input bias current (the
voltage drop across the series resistor is measured and the bias current is calculated). This method
requires that a device be inserted into the test socket to obtain a correct reading; therefore, an "opensocket" reading is not feasible using this method.
S
5
CCCC
,o~V.VIC
Figure 101. Isolation Metal Around Device Inputs
(JG arid P Dual·ln·Line Package)
low-level output voltage
To obtain low-supply-voltage operation, some compromise is necessary in the input stage. This compromise
results in the device low-level output being dependent on both the common-mode input voltage level as well
as the differential input voltage level. When attempting to correlate low-level output readings with those quoted
in the electrical specifications, these two conditions should be observed. If conditions other than these are to
be used, please refer to the Typical Characteristics section of this data sheet.
Input offset voltage temperature coefficient
Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This
parameter is actually a calculation using input offset voltage measurements obtained at two different
temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the
device and the test socket. This moisture will result in leakage and contact resistance which can cause
erroneous input offset voltage readings. The isolation techniques previously mentioned have no effect on the
leakage since the moisture also covers the isolation metal itself, thereby rendering it useless. It is suggested
that these measurements be performed at temperatures above freezing to minimize error.
full power response
Full power response, the frequency above which the op amp slew rate limits the output voltage swing, is often
specified two ways ... full-linear response and full-peak response. The full-linear response is generally
TEXAS ~.
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-555
TLC271, TLC271A, TLC271B
LinCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
PARAMETER MEASUREMENT INFORMATION
measured by monitoring the distortion level of the output while increasing the frequency of a sinusoidal input
signal until the maximum frequency is found above which the output contains significant distortion. The fullpeak response is defined as the maximum output frequency, without regard to distortion, above which full
peak-to-peak output swing cannot be maintained.
Because there is no industry-wide accepted value for "significant" distortion, the full-peak response is specified
in this data sheet and is measured using the circuit of Figure 98. The initial setup involves the use of a
sinusoidal input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal
wave is increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same
amplitude. The frequency is then increased until the maximum peak-to-peak output can no longer be
maintained (Figure 102). A square wave is used to allow a more accurate determination of the point at which
the maximum peak-to-peak output is reached.
(a) f
=100 Hz
11 A
(b) BOM > f > 100 Hz
(e) f
A
=BOM
(d) f> BOM
Figure 102. Full-Power-Response Output Signal
test time
Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume, shorttest-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET devices,
and require longer test times than their bipolar and BiFET counterparts. The problem becomes more
pronounced with reduced supply levels and lower temperatures.
TYPICAL APPLICATION DATA
single-supply operation
While the TLC271 will perform wel,1 using dual power supplies (also called balanced or split supplies), the
design is optimized for single-supply operation.
This includes an input common mode voltage
Voo
range that encompasses ground as well as an
output voltage range that pulls down to ground.
The supply voltage range extends down to 3 V
R4
(C- suffix types), thus allowing operation with
R1
supply levels commonly available for TTL and
HCMOS; however, for maximum dynamic range,
t§!b.
R2
16-V single-supply operation is recommended.
1
Vo
Many single-supply applications require that a
voltage be applied to one input to establish a
reference level that is above ground. A resistive
voltage divider is usually sufficient to establish
this reference level (see Figure 103). The low
input bias current consumption of the TLC271
permits the use of very large reSistive values to
implement the voltage divider, thus minimizing
power consumption.
TEXAS
'diP'
-
1
E.o1
C
R3
:=-
-::~
R3
R1 + R3
Vo = (VREF - VI) R4 + VREF
R2
Figure 103. Inverting Amplifier With Voltage
Reference
~
INSTRUMENTS
2-556
-=
VREF= Voo
J.lF
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
TLC271, TLC271A, TLC271B
LinCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
The TLC271 works well in conjunction with digital logic; however, when powering both linear devices and
digital logic from the same power supply, the following precautions are recommended:
1. Power the linear devices from separate bypassed supply lines (see Figure 104); otherwise, the linear
device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital
logic.
2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive
decoupling is often adequate; however, RC decoupling may be necessary in high-frequency applications.
-t 1+11+11+1 >
Power
Supply
(a) Common Supply Rails
Power
Supply
(b) Separate Bypassed Supply Rails (preferred)
Figure 104. Common Versus Separate Supply Rails
input offset voltage nulling
The TLC271 offers external input offset null control. Nulling of the input offset voltage may be achieved by
adjusting a 25-kil potentiometer connected between the offset null terminals with the wiper connected as
shown in Figure 105. The amount of nulling range varies with the bias selection. In the high-bias mode, the
nulling range will allow the maximum offset voltage specified to be trimmed to zero. In low-bias and mediumbias modes, total nulling may not be possible.
VDD
GND
(b) Split-Supply
(a) Single·Supply
Figure 105. Input Offset Voltage Null Circuit
. TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-557
TLC271, TLC271A, TLC271B
LinCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
bias selection
Bias selection is achieved by connecting the bias select pin to one of the three voltage levels (see Figure 106).
For medium-bias applications, it is recommended that the bias select pin be connected to the mid-point
between the supply rails. This is a simple procedure in split-supply applications, since this point is ground.
In single-supply applications, the medium-bias mode will necessitate using a voltage divider as indicated. The
use of large-value resistors in the voltage divider will reduce the current drain of the divider from the supply
line. However,large-value resistors used in conjunction with a large-value capacitor will require significant time
to charge up to the supply midpoint after the supply is switched on. A voltage other than the mid-point may
be used if it is within the voltages specified in the following table.
VDD
1 MQ
Low
To the Bias
Select Pin
BIAS MODE
BIAS SELECT VOLTAGE
(Single Supply)
LOW
MEDIUM
HIGH
VDD
1 VtoVDD-1 V
GND
Medium
High
1 MQ
Figure 106. Bias Selection for Single-Supply Applications
input characteristics
The TLC271 is specified with a minimum and a maximum input voltage that, if exceeded at either input, could
cause the device to malfunction. Exceeding this specified range is a common problem, especially in singlesupply operation. Note that the lower range limit includes the negative rail, whi.le the upper range limit is
specified at VDD - 1 V at T A = 25°C and at VDD - 1.5 Vat all other temperatures.
The use of the polysilicon-gate process and the careful input circuit design gives the TLC271 very good input
offset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage drift in CMOS
devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus dopant
implanted in the oxide. Placing the phosphorus dopant in a conductor (such as apolysilicon gate) alleviates
the polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude. The offset
voltage drift with time has been calculated to be typically 0.1 J.l.V/month, including the first month of operation.
Because of the .extremely high input impedance and resulting low bias current requirements, the TLC271 is
well suited for low-level signal processing; however, leakage currents on printed circuit boards and sockets
can easily exceed bias current requirements and cause a degradation in device performance. It is good
practice to include guard rings around inputs (similar to those of Figure 101 in the Parameter Measurment
Information section). These guards should be driven from a low-impedance source at the same voltage level
as the common-mode input (see Figure 107).
The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation.
noise performance
The noise specifications in op amp circuits are greatly dependent on the current in the first-stage differential
amplifier. The low input bias current requirements of the TLC271 results in a very low noise current, which is
insignificant in most applications. This feature makes the devices especially favorable over bipolar devices
when using values of circuit impedance greater than 50 kO, since bipolar devices exhibit greater noise
currents.
. TEXAS ~
INSTRUMENTS
2-558
POST OFFICE BOX 655303' OALLAS. TEXAS 75265
TLC271, TLC271A, TLC271B
linCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
VI---tH;Jy
(a) Nonlnverting Amplifier
(b) Inverting Amplifier
(e) Unity Gain Amplifier
Figure 107. Guard Ring Schemes
feedback
Op amp circuits nearly always employ feedback,
and since feedback is the first prerequisite for
oscillation, a little caution is appropriate. Most
oscillation problems result from driving capacitive
loads and ignoring stray input capacitance. A smallvalue capacitor connected in parallel with the
feedback resistor is an effective remedy (see
Figure 108). The value of this capacitor is optimized
empirically.
electrostatic discharge protection
Figure 108. Compensation for Input
The TLC271 incorporates an internal electrostatic
Capacitance
discharge (ESD) protection circuit that will prevent
functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2. Care should be
exercised, however, when handling these devices as exposure to ESD may result in the degradation of the
device parametric performance. The protection circuit also causes the input bias currents to be temperature
dependent and have the characteristics of a reverse-biased diode.
latchup
Because CMOS devices are susceptible to latchup due to their inherent parasitic thyristors, the TLC271 inputs
and output were designed to withstand -100-mA surge currents without sustaining latchup; however,
techniques should be used to reduce the chance of latchup whenever possible. Internal protection diodes
should not by design be forward biased. Applied input and output voltage should not exceed the supply voltage
by more than 300 mY. Care should be exercised when using capacitive coupling on pulse generators. Supply
transients should be shunted by the use of decoupling capacitors (0.1 ~F typical) located across the supply
rails as close to the device as possible.
The current path established if latchup occurs is usually between the positive supply rail and ground and can
be triggered by surges on the supply lines and / or voltages on either the output or inputs that exceed the supply
voltage. Once latchup occurs, the current flow is limited only by the impedance of the power supply and the
forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance
of latchup occuring increases with increasing temperature and supply voltages.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-559
I
I
TlC271, TlC271A, TlC271B
linCMOSTM PROGRAMMABLE lOW-POWER
OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
output characteristics
The output stage of the TLC271 is designed to sink
and source relatively high amounts of current (see
Typical Characteristics). If the output is subjected
to a short-circuit condition, this high current
capability can cause device damage under certain
conditions. Output current capability increases with
supply voltage.
2.5 V
CL
VIPP= 1 V
All operating characteristics of the TLC271
were measured using a 20-pF load. The
devices will drive higher capacitive loads;
however, as output load capacitance
increases, the resulting response pole occurs
at lower frequencies, thereby causing ringing,
peaking, or even oscillation (see Figures 110,
111, and 112). In many cases, adding some
compensation in the form of a series resistor in
the feedback loop will alleviate the problem .
=. .
.... ~ .. ..... ~ .... " ... ~ ......... :"'" .... ~ .... " ... ~ ......... :... .
L.. ...... ( .............. ..L ....... -!-....... ,.. ..
"
:·::c::::r::::::r:::::::::::::::x:::::. ·(· ....,. .
.
..
-2.5V
Figure 109. Test Circuit for Output
Characteristics
..
~
.... ;... , ....L........ ~ .................. :......... ~ ... .
~
····:·········i·········i·········r········~·········1 .....~
(a) CL
=20 pF, RL =No load
.................... ..
.. ,.: ........:
L........
:.................. ~ ......... :: ........:... .
:
.,.. .... ..,' j.. ,...... :.,.. ,.... .,., .... , ,....... 'l' .. .
... ·1 .. .. ... ·l ......... ~ .. ,...... ......... j........ ·l· ... .. .. l· .. .
.
1·· .. :· ...... ·-:-- .. ·· .. ·( .. ·.... ·.. ·.. ·; .... ·.... ;...... ·.. :.. ..
, ... :... , .... ;......... .. , .. , ... " ....... ... , ..... :... , ... ,: ... .
~
=
=
TA 25°C
f 1 kHz
~
:
::::C~:::::::::::::::::::::::::::r::::::r::~
(a) CL = 130 pF, RL = No load
(a) CL = 150 pF, RL = No load
Figure 110. Effect of Capacitive Loads in High-Bias Mode
......!.......... :.......... '.......... ;......... '......... ,... .
~
.
.
.... :........ :......... :.................. :......... :... .
....~ ... , .... ~, ........ ~ ... ".... .. ....... l......... ~ .,..
::::i:::::::f:::::J:::::::::::::::::I::::::::f:::::{::
... '1' ....... ,:"......... :"..... ,.:"...... '1"~
" ....... ~ ... ,.,... ~ "..
:
:
(a) CL = 20 pF, RL = No load
(a) CL = 170 pF, RL = No load
(a) CL
=190 pF, RL =No load
Figure 111. Effect of Capacitive Loads in Medium-Bias Mode
TEXAS
~
INSTRUMENTS
2-560
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TlC271, TlC271A, TlC271B
linCMOSTM PROGRAMMABLE lOW-POWER
OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
(a) CL = 20 pF, RL = No load
(a) CL
=260 pF, RL = No load
(a) CL
=310 pF, RL =No load
Figure 112. Effect of Capacitive Loads in Low-Bias Mode
Although the TLC271 possesses excellent high-level output voltage and current capability, methods are
available for boosting this capability, if needed. The simplest method involves the use of a pullup resistor (Rp)
connected from the output to the positive supply rail (see Figure 113). There are two disadvantages to the use
of this circuit. First, the NMOS pulldown transistor, N4 (see equivalent schematic) must sink a comparatively
large amount of current. In this circuit, N4 behaves like a linear resistor with an on-resistance between
approximately 60 nand 180 n, depending on how hard the op amp input is driven. With very low values of
Rp, a voltage offset from 0 V at the output will occur. Secondly, pullup resistor Rp acts as a drain load to N4
and the gain of the op amp is reduced at output voltage levels where N5 is not supplying the output current.
voo
Ip
Rp
~
Vo
Rp -
voo-vo
---=-=---=-
- IF + IL + Ip
=
Ip Pull-up curent required by
the op amp (typically 500 ).tA)
R2
R1
Figure 113. Resistive Pullup to Increase VOH
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-561
TlC271, TlC271A, TlC271B
linCMOSTM PROGRAMMABLE lOW-POWER
OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA (HIGH-BIAS MODE)
10kn
0.016 f1F
0.016 11F
5V
10kn
5V
:m>-........-
'-----------t---------
Low Pass
High Pass
5k.Q
...-'INr......------~-_'VIIIr_------~-------- Band Pass
R
=5 k.Q(3/d-1),
(see Note A)
NOTES: A. d = damping factor. 1/Q
B. Normalized to 10 kn and fC= 1 kHz
Figure 114. State Variable Filter
Vo (see Note A)
9V
10kn
..ru
9V
C=0.1 I1F
9V
Vo (see Note B)
/'V
10kn
F _ 1_.[R1]
0- 4C(R2) R3
R1,100 kn
R3, 47 k.Q
NOTES: A. Vopp = 8 V
B. Vopp =4 V
Figure 115. Single-Supply Function Generator
TEXAS ~
INSTRUMENTS
2-562
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLC271, TLC271A, TLC271B
LinCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA (HIGH-BIAS MODE)
+5V
10 kQ
100 kQ
+5V
+5V
-5V
10 kQ
95kQ
R1,10 kQ
(see Note A)
-5V
NOTE A: CMRR adjustment (must be noninductive).
Figure 116. Low-Power Instrumentation Anplifier
R
10MQ
R
10MQ
Vo
Bias Select
VI
2C
540 pF
f
NOTCH
=_1_
21tRC
R/2
5MQ
C
270 pF
C
270 pF
Figure 117. Single-Supply Twin-T Notch Filter
TEXAS ~
INSfRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-563
TLC271, TLC271A, TLC271B
linCMOSTM PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
TYPICAL APpLICATION DATA (HIGH-BIAS MODE)
VI
(see_t----------.._-----e---_t----------.
Note A)
100 kn
1.2kn
0.47 jlF
4.7kn
TL431
TIP31
20kO
150
0.1 jlF
TI5193
250I1F.
25V
Vo (see
Note B)
47kO
22kO
1100
0.01 jlF
NOTES: A. VI = 3.5 to 15 V
B. Vo=2.0V.Oto1A
Figure 118. Logic-Array Power Supply
12 V
H.P.
12V
5082·2835
0.511F
Mylar
Figure 119. Positive-Peak Detector
TEXAS ~
INSTRUMENTS
2-564
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC272, TLC272A, TLC272B, TLC277
LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS
D3138, OCTOBER 1987-REVISED OCTOBER 1990
•
D, JG, OR P PACKAGE
Trimmed Offset Voltage:
TLC277 ... 500 p,V Max at 25 DC,
VDD = 5 V
(TOP VIEW)
•
Input Offset Voltage Drift ... Typically
0.1 p,V/Month, Including the First 30 Days
•
Wide Range of Supply Voltages Over
Specified Temperature Range:
oDC to 70 DC ... 3 V to 16 V
_40DC to 85 DC ... 4 V to 16 V
- 55 DC to 125 DC ... 4 V to 16 V
1 a U T [ ] 8 VDD
1 IN 2
7
2 OUT
6
4
5
2 IN2 IN +
(TOP VIEW)
f-
=>
0
uO u ou
z
z >z
Single-Supply Operation
•
Common-Mode Input Voltage Range
Extends Below the Negative Rail IC-Suffix,
I-Suffix types)
•
3
GND
FK PACKAGE
•
•
1 IN +
3
Low Noise ... Typically 25 nV/y'Hz
at f = 1 kHz
1 2019
2
NC
4
18
IN-
S
17
NC
6
16
8
14
NC
15
IN+
NC
9 1011 12 13
Output Voltage Range Includes Negative
Rail
uo
Z
U
Z
Z
(:J
•
High Input Impedance ... 10 12 fl Typical
•
ESD-Protection Circuitry
•
Small-Outline Package Option Also Available
in Tape and Reel
•
Designed-In Latch-Up Immunity
+ U
Z
~
N
NC - No internal connection
AVAILABLE OPTIONS
Vlomax
TA
at
25°C
O°C
to
70°C
-40°C
to
85°C
- 55°C
PACKAGE
SMALL
CHIP
CERAMIC
PLASTIC
OUTLINE
CARRIER
DIP
DIP
(D)
(P)
(FK)
(JG)
TLC277CD
--
--
TLC277CP
2 mV
TLC272BCD
--
--
TLC272BCP
5 mV
TLC272ACD
--
--
TLC272ACP
TLC272CD
--
--
TLC272CP
TLC277ID
--
--
TLC277IP
2 mV
TLC272BID
--
--
TLC272BIP
5 mV
TLC272AID
--
--
TLC272AIP
TLC2721D
--
--
TLC272IP
500 ~V
10 mV
500
~V
10 mV
~V
TLC277MD
TLC277MFK
TLC277MJG
TLC277MP
10mV
TLC272MD
TLC272MFK
TLC272MJG
TLC272MP
500
DISTRIBUTION OF TLC277
INPUT OFFSET VOLTAGE
+
1-
473 Units tested from 2 wafer lots
-T-t '
,.,'
T
1S-r---n . . -IVDD
~ 5
V
~;o :: ;¥#:'-'I-:
&
f!c
i
10
-r
5
to
125°C
o
-800
The D package is available in tape and reel. Add R suffix to the device type, (e.g.,
TLC277CDR).
-400
o
800
400
V 10 -Input Offset Voltage -
~V
LinCMOS is a trademark of Texas Instruments Incorporated
PRODUCTION DATA documents contain information
current as of publication date, Products conform to
specifications per the terms of Texas Instruments
standard warranty. Production processing does not
necessarily include testing of aU parameters.
TEXAS
~
INSTRUMENTS
POST OF-FtCE BOX 655303 • DALLAS, TEXAS 75265
Copyright © 1990, Texas Instruments Incorporated
2-565
TLC272, TLC272A, TLC272B, TLC277
LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS
description
The TLC272 and TLC277 dual operational amplifiers combine a wide range of input offset voltage grades
with low offset voltage drift, high input impedance, low noise, and speeds approaching that of generalpurpose BiFET devices.
;These devices use Texas Instruments silicon-gate LinCMQS'" technology, which provides offset voltage
stability far exceeding the stability available with co~ventional metal-gate processes.
The extremely high input impedance, low bias currents, and high slew rates make these cost-effective
devices ideal for applications which have previo'usly been reserved for BiFET and NFET products. Four offset
voltage grades are available (C-suffix and I-suffix types), ranging from the low-cost TLC272 (10 mV) to
the high-precision TLC277 (500 p,V). These advantages, in combination with good common-mode rejection
and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well
as for upgrading existing designs.
In general, many features associated with bipolar technology are available on LinCMOS" operational
amplifiers, without the power penalties of bipolar technology. General applications such as transducer
interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are easily designed
with the TLC272 and TLC277. The devices also exhibit low voltage single-supply operation, making them
ideally suited for remote and inaccessible battery-powered applications. The common-mode input voltage
range includes the negative rail.
'
A wide range of packaging options is available, including small-outline and chip carrier versions for highdensity system applications.
'
The device inputs and outputs are designed to withstand - 100-mA surge currents without sustaining
latch-up.
The TLC272 and TLC277 incorporate internal ESD-protection circuits that prevent functional failures at
voltages up to 2000 Vas tested under MIL-STD-883C, Method 3015.2; however, care should be exercised
in handling these devices as exposure to ESD may result in the degradation of the device parametric
performance.
C-suffix devices are characterized for operation from ooC to 70°C. I-suffix devices are characterized for
operation from - 40°C to 85 °C. M-suffix devices are characterized for operation over the full military
temperature range of - 55°C to 125°C.
~
TEXAS
INSTRUMENTS
2-566
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC272, TLC272A, TLC272B, TLC277
linCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
equivalent schematic (each amplifier)
VDD
R1
I N - i ........._ _ _-+I
P5
IN +
P6
--,--+-----t-----'
__~-~----+_OUT
GND
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-567
TLC272, TLC272A, TLC2728, TLC277
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18 V
Differential input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± VDD
Input voltage range, VI (any input) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -0.3 V to VDD
Input current, II .... , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 5 mA
Output current, 10 (each output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . : . . . . . . . . .. ± 30 mA
Total current into VDD terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 mA
Total current out of ground terminal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 45 mA
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . .. Unlimited
Continuous total dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. See Dissipation Rating Table
Operating free-air temperature, T A: C-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O°C to 70°C
I-suffix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 40°C to 85 °C
M-suffix. . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 55°C to 125°C
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65°C to 150°C
Case temperature for 60 seconds: FK package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D and P package ....... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package ........... 300°C
NOTES:
1. All voltage
2. Differential
3. The output
dissipation
values, except differential voltages, are with respect to network ground.
voltages are at the noninverting input with respect to the inverting input.
may be shorted to either supply. Temperature andlor supply voltages must be limited to ensure that the maximum
rating is not exceeded (see application section).
DISSIPATION RATING TABLE
PACKAGE
TA:S 25°C
DERATING FACTOR
POWER RATING
ABOVE T A _25°C
D
725 mW
FK
1375 mW
JG
1050 mW
P
1000 mW
5.8 mW/oC
11 mW/oC
8.4 mW/oC
8.0 mW/oC
TA = 70°C
POWER RATING
TA = 85°C
POWER RATING
TA
= 125°C
POWER RATING
464mW
377 mW
880 mW
715 mW
275 mW
672 mW
546 mW
210 mW
640mW
520 mW
recommended operating conditions
C-SUFFIX
MIN
Supply voltage, VDD
Common-mode input voltage, VIC
Operating free-air temperature, T A
II VDD
= 5 V
VDD = 10 V
NOM
I-SUFFIX
MAX
MIN
NOM
MIN
NOM
MAX
3
16
4
16
4
16
-0.2
3.5
-0.2
3.5
0
3.5
-0.2
8.5
-0.2
8.5
0
8.5
70
-40
85
-55
125
0
TEXAS'.
INSTRUMENTS
2-568
M-SUFFIX
MAX
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
UNIT
V
V
°C
TLC272M, TLC277M
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature,
PARAMETER
TLC272M
VIO
Voo
TEST CONDITIONS
Input offset voltage
TLC277M
TAt
Vo
~
1.4 V,
VIC ~ 0,
RS
~
50!l,
RL
1.4 V,
VIC ~ 0,
50!l,
RL
Vo
~
RS
~
~
~
10 k!l
10 k!l
Average temperature coefficient
"'VI 0
5 V (unless otherwise noted)
MIN
25°C
Input offset current (see Note 4)
Vo
liB
Input bias current (see Note 4)
Vo
2.5 V,
~
2.5 V,
~
~
VIC
~
VIC
2.5 V
2.5 V
25°C
200
Full range
25°C
125°C
1.4
25°C
0.6
125°C
9
25°C
voltage range (see Note 5)
UNIT
mV
/"V
/"V/oC
2.1
0.1
Common-mode input
500
3750
0
VICR
10
12
125°C
110
MAX
1.1
Full range
25°C to
of input offset voltage
TYP
pA
15
nA
pA
35
nA
-0.3
to
to
4
4.2
V
0
Full range
V
to
3.5
VOH
VOL
High-level output voltage
Low-level output voltage
Large-signal differential
AVO
voltage amplification
CMRR Common-mode rejection ratio
VID
VID
Vo
100 mV,
~
-100 mV,
~
~
0.25 V to 2 V,
100
(dVOO/dVIO)
~
10 k!l
10L ~ 0
RL
~
10 k!l
VIC ~ VICR min
Supply-voltage rejection ratio
kSVR
RL
VOO
~
~
Supply current
Vo
(two amplifiers)
No load
5Vt010V,
2.5 V,
Vo
VIC
~
~
1.4 V
2.5 V,
25°C
3.2
3.8
-55°C
3
3.8
125°C
3
3.8
V
25°C
0
50
- 55°C
0
50
125°C
0
50
25°C
5
23
- 55°C
3.5
35
125°C
3.5
16
80
25°C
65
- 55°C
60
81
125°C
60
84
25°C
65
95
- 55°C
60
90
125°C
60
97
mV
V/mV
dB
dB
25°C
1.4
- 55°C
2
3.2
5
125°C
1
2.2
mA
'1 Full range is - 55°C to 125°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
TEXAS . . ,
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-569
TLC272M, TLC277M
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature,
PARAMETER
TEST CONDITIONS
TlC272M
Via
Voo
Input offset voltage
TlC277M
Va = 1.4 V,
VIC = 0,
RS = 50 D,
Rl = 10 kD
Va = 1.4V,
VIC = 0,
RS = 50 D,
Rl = 10 kD
Average temperature coefficient
"via
110
liB
. Input bias current (see Note 41
TAt
MIN
25°C
VIC = 5 V
Va = 5 V,
VIC = 5 V
10
250
800
Full range
4300
25°C
0.1
125°C
1.8
25°C
0.7
125°C
10
25°C
Common-mode input
voltage range (see Note 51
UNIT
mV
p.V
p.V/oC
2.2
0
VICR
MAX
1.1
12
25°C
125°C
Va = 5 V,
TYP
Full range
25°C to
of input offset voltage
Input offset current (see Note 41
10 V (unless otherwise noted)
pA
15
nA
pA
35
nA
-0.3
to
to
9
9.2
V
0
Full range
to
V
8.5
VOH
VOL
High-level output voltage
Low-level output voltage
Large-signal differential
AVO
voltage amplification
CMRR Common-mode rejection ratio
Supply-voltage rejection ratio
kSVR
100
(C.VOO/t:.VIOI
VID = 100 mY,
V/D = -100 mY,
Va = 1 V to 6 V,
RL = 10 kD
10l = 0
RL = 10 kD
VIC = VICR min
VOO=5Vt010V,
Supply current
Va = 5 V,
(two amplifiersl
No load
VO=1.4V
VIC = 5 V,
25°C
8
8.5
-55°C
7.8
8.5
125°C
7.8
8.4
V
25°C
0
50
-55°C
0
50
125°C
0
50
25°C
10
-55°C
7
50
125°C
7
27
36
25°C
65
85
-55°C
60
87
125°C
60
86
25°C
65
95
-55°C
60
90
125°C
60
97
V/mV
dB
dB
25°C
1.9
-55°C
3
4
6
125°C
1.3
2.8
t Full range is - 55°C to 125°C.
NOTES: 4. The typical val lies of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
~
2-570
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
mV
mA
TLC2721, TLC272AI, TLC272BI, TLC2771
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature.
PARAMETER
TEST CONDITIONS
TLC2721
TLC272AI
VIO
Voo
Input offset voltage
TLC272BI
TLC2771
Vo = 1.4 V,
VIC = 0,
RS = 50!l,
RL = 10 k!l
VO=1.4V,
VIC = 0,
RS = 50!l,
RL = 10 k!l
Vo = 1.4 V,
VIC = 0,
RS = 50!l,
RL = 10 k!l
Vo = 1.4 V,
VIC = 0,
RS = 50!l,
RL = 10 k!l
Average temperature coefficient
5 V (unless otherwise noted)
TAt
MIN
25°C
of input offset voltage
110
Input offset current (see Note 4)
Vo = 2.5 V,
VIC = 2.5 V
liB
Input bias current (see Note 4)
Vo = 2.5 V,
VIC = 2.5 V
10
13
25°C
0.9
5
230
2000
Full range
Full range
3500
25°C
200
Full range
mV
p.V
2000
25°C
0.1
85°C
24
25°C
0.6
85°C
200
-0.2
voltage range (see Note 5)
500
p.V/oC
1.8
85°C
Common-mode input
UNIT
7
25°C
25°C
VICR
MAX
1.1
Full range
25°C to
"'VIO
TYP
1000
2000
pA
pA
-0.3
to
to
4
4.2
V
-0.2
Full range
to
V
3.5
VOH
VOL
High-level output voltage
Low-level output voltage
Large-signal differential
AVO
voltage amplification
CMRR Common-mode rejection ratio
Supply-voltage rejection ratio
kSVR
IDO
(Ll.VOO/Ll.VIO)
VID = 100 mV,
VID = -100 mV,
Vo = 0.25 V to 2 V,
RL = 10 k!l
10L = 0
RL = 10 k!l
VIC = VICR min
VOO = 5 V to 10 V,
Supply current
Va = 2.5 V,
(two amplifiers)
No load
VO=1.4V
VIC = 2.5 V,
25°C
3.2
3.8
-40°C
3
3.8
85°C
3
3.8
V
25°C
0
-40°C
0
50
85°C
0
50
25°C
5
23
-40°C
3.5
32
85°C
3.5
19
25°C
65
80
-40°C
60
81
85°C
60
86
25°C
65
95
-40°C
60
92
85°C
60
96
50
mV
V/mV
dB
dB
25°C
1.4
3.2
-40°C
1.9
4.4
85°C
1.1
2.4
mA
t Full range is - 40°C to 85 °C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
TEXAS
-1/1
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-571
TLC2721, TLC272AI, TLC272BI, TLC2771
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature,
PARAMETER
TLC2721
TLC272AI
Via
Voo
TEST CONOITIONS
Input offset voltage
TLC272BI
TLC2771
Va = 1.4 V,
VIC = 0,
Rs = 50 fl,
RL = 10 kfl
Va = 1.4 V,
VIC = 0,
RS = 50 fl,
RL = 10 kfl
Vo = 1.4 V,
VIC = 0,
RS = 50 fl,
RL = 10 kfl
VO=l.4V,
VIC = 0,
RS = 50 fl,
RL = 10 kfl
Average temperature coefficient
"'via
10 V (unless otherwise noted)
TAt
MIN
25°C
Input offset current (see Note 4)
Va = 5 V,
VIC = 5 V
liB
Input bias current (see Note 4)
Va = 5 V,
VIC = 5 V
0.9
5
290
2000
Full range
Full range
250
Full range
800
"V
2900
2
25°C
0.1
85°C
26
25°C
0.7
85°C
220
-0.2
voltage range (see Note 5)
mV
3500
25°C
Common-mode input
UNIT
7
25°C
25°C
VICR
10
13
25°C
85°C
110
MAX
1.1
Full range
25°C to
of input offset voltage
TYP
"V/oC
1000
2000
pA
pA
-0.3
to
to
9
9.2
V
-0.2
Full range
to
V
8.5
VOH
VOL
High-level output voltage
Low-level output voltage
Large-signal differential
AVO
voltage amplification
CMRR Common-mode rejection ratio
Supply-voltage rejection ratio
kSVR
100
(Ll.Voo/Ll.VIO)
VIO = 100 mY,
VIO = -100 mY,
Va = 1 V to 6 V,
RL = 10 kfl
10L = 0
RL = 10 kfl
VIC = VICR min
VOO = 5Vto 10V,
Supply current
Vo = 5 V,
(two amplifiers)
No load
Va = 1.4 V
VIC = 5 V,
25°C
8
8.5
-40°C
7.8
8.5
85°C
7.8
8.5
V
25°C
0
50
-40°C
0
50
85°C
0
50
25°C
10
36
-40°C
7
46
85°C
7
31
25°C
65
85
-40°C
60
87
85°C
60
88
25°C
65
95
-40°C
60
92
85°C
60
96
V/mV
dB
dB
25°C
1.9
-40°C
2.8
4
5
85°C
1.5
3.2
t Full range is - 40°C to 85 °c.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
~
TEXAS
INSTRUMENTS
2-572
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
mV
mA
TLC272C. TLC272AC. TLC272BC. TLC277C
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature,
PARAMETER
TEST CONDITIONS
TLC272C
TLC272AC
Via
Voo
Input offset voltage
TLC272BC
TLC277C
Va = 1.4 V,
VIC = 0,
RS = 50 n,
RL = 10 kn
Va = 1.4 V,
VIC = 0,
RS = 50 n,
RL = 10 kn
Va = 1.4V,
VIC = 0,
5 V (unless otherwise noted)
TAt
25 DC
Full range
25 DC
230
2000
200
RL = 10 kn
Full range
25 DC
RS = 50 n,
RL=10kn
Full range
110
Input offset current (see Note 4)
Va = 2.5 V,
VIC = 2.5 V
liB
Input bias current (see Note 4)
Va = 2.5 V,
VIC = 2.5 V
12
3000
25 DC
0.1
70 DC
25 DC
7
0.6
70 DC
40
-0.2
voltage range (see Note 5)
mV
500
/LV
1500
1.8
Common-mode input
UNIT
6.5
25 DC to
70 DC
25 DC
VICR
10
5
VIC = 0,
of input offset voltage
MAX
1.1
0.9
RS = 50 n,
"via
TYP
Full range
25 DC
Va = 1.4 V,
Average temperature coefficient
MIN
/LV/DC
300
600
pA
pA
-0.3
to
to
4
4.2
V
-0.2
Full range
to
V
3.5
VOH
VOL
High-level output voltage
Low-level output voltage
Large-signal differential
AVO
voltage amplification
CMRR Common-mode rejection ratio
Supply-voltage rejection ratio
kSVR
100
(,WOO/AVIO)
VID = 100 mV,
VIO = -100 mV,
Va = 0.25 V to 2 V,
RL = 10 kn
10L = 0
RL = 10 kn
VIC = VICR min
VOO = 5 V to 10 V,
Supply current
Va = 2.5 V,
(two amplifiers)
No load
Va = 1.4 V
VIC = 2.5 V,
25 DC
ODC
3.2
3.8
3
3.8
70 DC
25 DC
3
3.8
0
O°C
70 DC
25 DC
ODC
V
50
0
50
0
50
5
23
4
27
70 DC
25 DC
4
20
65
80
ODC
60
84
70 DC
25 DC
60
85
65
95
ODC
60
94
70 DC
25 DC
60
96
1.4
mV
V/mV
dB
dB
3.2
ODC
1.6
3.6
70 DC
1.2
2.6
mA
t Full range is 0 DC to 70 DC.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-573
TLC272C. TLC272AC. TLC272BC. TLC277C
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature,
PARAMETER
TEST CONDITIONS
TLC272C
TLC272AC
Via
Voo
Input offset voltage
TLC272BC
TLC277C
Va = 1.4 V,
TAt
VIC = 0,
RS = 50 0,
RL.= 10 kO
Va = 1.4 V,
VIC = 0,
RS = 50 0,
RL = 10 kll
VO=l.4V,
VIC = 0,
RS = 50 0,
RL = 10 kO
Va = 1.4 V,
VIC = 0,
RS = 50 0,
RL
=
10 kll
Average temperature coefficient
o'VIO
10 V (unless otherwise noted)
MIN
25°C
Input offset current Isee Note 4)
Va = 5 V,
liB
Input bias current Isee Note 4)
Va
=
VIC = 5 V
5 V,
VIC
=
5 V
0.9
5
290
2000
Full range
Full range
3000
25°C
250
Full range
mV
,"V
1900
25°C
0.1
7
25°C
0.7
70°C
50
-0.2
voltage range Isee Note 5)
BOO
,"V/oC
2
70°C
Common-mode input
UNIT
6.5
25°C
25°C
VICR
10
12
25°C
70°C
110
MAX
1.1
Full range
25°C to
of input offset voltage
TYP
300
600
pA
pA
-0.3
to
to
9
9.2
V
-0.2
Full range
to
V
8.5
VOH
VOL
High-level output voltage
Low-level output voltage
VIO
=
100 mY,
RL = 10 kO
VIO = -100 mY.
IOL
=
a
25°C
8
O°C
7.8
8.5
70°C
7.8
8.4
a
a
a
25°C
ooc
70°C
Large-signal differential
AVO
CMRR
voltage amplification
Common~mode
rejection ratio
Supply-voltage rejection ratio
kSVR
100
IAVoo/AVlol
Va = 1 V to 6 V,
VIC
=
VICR min
VOO = 5Vto 10V,
=
RL = 10 kO
Supply current
Va
Itwo amplifiersl
No load
5 V,
Va = 1.4 V
VIC
=
5 V,
8.5
25°C
10
36
O°C
7.5
42
70°C
7.5
32
25°C
65
85
O°C
60
88
70°C
60
88
25°C
65
95
O°C
60
94
70°C
60
96
V
50
50
V/mV
dB
dB
25°C
OOC
1.9
4
2.3
4.4
70°C
1.6
3.4
t Full range is a °c to 70 DC.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
TEXAS
~
INSTRUMENTS
2-574
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
mV
50
mA
TLC272M, TLC277M
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
operating characteristics, VOO
5V
PARAMETER
TEST CONDITIONS
Rl = 10 kO,
SR
Slew rate at unity gain
Cl = 20 pF,
See Figure 1
Vn
BOM
B1
1>m
Equivalent input noise voltage
Maximum output swing bandwidth
Unity-gain bandwidth
Phase margin
operating characteristics, VOO
f = 1 kHz,
RS = 100O,
Vo = VOH,
Cl = 20 pF,
Rl = 10 kO,
See Figure 1
Vi = 10mV,
Cl = 20 pF,
See Figure 3
Vi = 10 mV,
Cl = 20 pF,
TEST CONDITIONS
Equivalent input noise voltage
BaM
Maximum output swing bandwidth
B1
1>m
Unity-gain bandwidth
Phase margin
VIPP = 1 V
Cl = 20 pF,
See Figure 1
Vn
f = B1,
See Figure 3
MIN
TYP
MAX
UNIT
3.6
4.7
125°C
2.3
25°C
2.9
-55°C
3.7
125°C
2
25°C
25
25°C
320
-55°C
400
125°C
230
25°C
1.7
- 55°C
2.9
125°C
1.1
25°C
46°
-55°C
49°
125°C
41°
VII''"
nV/.JHz
kHz
MHz
10 V
Rl = 10kO,
Slew rate at unity gain
VIPP = 2.5 V
See Figure 2
PARAMETER
SR
VIPP = 1 V
TA
25°C
-55°C
f = 1 kHz,
VIPP = 5.5 V
RS = 100O,
See Figure 2
Va = VOH,
Rl = 10kO,
CL = 20 pF,
Vi = 10mV,
Cl = 20 pF,
See Figure 1
See Figure 3
Vi = 10 mV,
Cl = 20 pF,
f = B1,
See Figure 3
TA
25°C
MIN
TYP
MAX
UNIT
5.3
-55°C
7.1
125°C
3.1
25°C
4.6
-55°C
6.1
125°C
2.7
25°C
25
25°C
200
-55°C
280
125°C
110
25°C
2.2
-55°C
3.4
125°C
1.6
25°C
49°
-55°C
52°
125°C
44°
VII''"
nV/.JHz
kHz
MHz
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-575
TLC2721, TLC272AI, TLC272BI, TLC2771
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
operating characteristics. VOO == 5 V
PARAMETER
TEST CONDITIONS
RL
SR
Vn
BaM
Bl
tPm
Slew rate at unity gain
Equivalent input noise voltage
Maximum output swing bandwidth
Unity-gain bandwidth
Phase margin
= 10 kO,
CL = 20 pF,
See Figure 1
= 1 kHz,
f
Equivalent input noise voltage
BaM
Maximum output swing bandwidth
Bl
tPm
2-576
Unity-gain bandwidth
Phase margin
RS = 100O,
CL = 20 pF,
See Figure 1
Vi = 10 mY,
See Figure 3
CL
= 10 mY,
Vi
CL = 20 pF,
f
= 20 pF,
= Bl,
See Figure 3
MIN
TYP
. MAX
UNIT
3.6
-40°C
85°C
4.5
2.8
25°C
-40°C
2.9
3.5
85°C
2.3
25°C
25
25°C
-40°C
320
85°C
250
25°C
-40°C
1.7
2.6
85°C
1.2
V/p,s
nV/,jHz"
380
25°C
46°
-40°C
49°
85°C
43°
kHz
MHz
10 V
TEST CONDITIONS
RL
Vn
= 2.5 V
Va = VOH,
RL = 10 kO,
PARAMETER
Slew rate at unity gain
VIPP
= 1V
See Figure 2
operating characteristics. VOO
SR
VIPP
TA
25°C
= 10 kO,
CL = 20 pF,
See Figure 1
f
= 1 kHz,
VIPP = 1 V
VIPP
RS
= 5.5 V
= 100O,
See Figure 2
Va = VOH,
RL = 10 kO,
CL = 20 pF,
See Figure 1
Vi = 10 mY,
See Figure 3
CL
Vi = 10'mV,
CL = 20 pF,
f
= 20 pF,
= Bl,
See Figure 3
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TA
25°C
MIN
TYP
MAX
UNIT
5.3
-40°C
6.8
85°C
25°C
4
4.6
-40°C
5.8
85°C
3.5
25°C
25
nV/,jHz"
25°C
-40°C
200
260
kHz
85°C
130
25°C
2.2
-40°C
3.1
85°C
1.7
25°C
-40°C
49°
85°C
46°
52°
V/fLS
MHz
TLC272C, TLC272AC, TLC272BC, TLC277C
LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS
operating characteristics. VOO
5 V
PARAMETER
SR
Slew rate at unity gain
TEST CONDITIONS
Rl
~
10 kll,
el
~
20 pF,
See Figure 1
Vn
BOM
B1
f > , kHz
(e) f -
BOM
(d) f
> BOM
FIGURE 5. FULL-POWER-RESPONSE OUTPUT SIGNAL
test time
Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume, shorttest-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET devices
and require longer test times than their bipolar and BiFET counterparts. The problem becomes more
pronounced with reduced supply levels and lower temperatures.
TEXAS
~
INSTRUMENTS
2-580
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC272, TLC272A, TLC272B, TLC277
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
DISTRIBUTION OF TLC272
INPUT OFFSET VOLTAGE
DISTRIBUTION OF TLC272
INPUT OFFSET VOLTAGE
50
*'l!l
753 Amplifiers
753 Amplifiers tested from 6 wafer lots
VOO - 5 V
TA - 25°C
P Package
VOO - 10 V
T A _ 25 0C
*'
.~
c
:::I
:::I
..
'0 30~--+---~-+---~
30
QI
CI
CI
l!lc
l!lc
~
~ 201--- --l----I----+--=I=
..
20~-~---~---+--~
:
a..
10
I---+--~---+-
0L....L........Eiil1.
01..-...1-......•
-5 -4 -3 -2 -1
0
234
Vlo-lnput Offset Voltage-mV
-5-4-3-2-10
5
5
324 Amplifiers tested from 8 wafer lots
--+--+---+--+----1
P Package
50
*'.~
I
40
'2
:::I
40
VOO - 10 V
TA - 25°C to 125°C
P Package
Outliers:
(1) 21.2 JlV/oC
I
:::I
'0
30 I---+---j---+_
8,
~u
4
DISTRIBUTION OF TLC272 AND TLC277
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
324 Amplifiers tested from 8
*'
k
3
FIGURE 7
DISTRIBUTION OF TLC272 AND TLC277
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
VOO - 5 V
50 TA _ 25°C to 125°C
2
Vlo-lnput Offset Voltage-mV
FIGURE 6
'0
-+--+---l---+----I----~--__l
P Package
I
I 40~---+---1--~----~
'2
'0
50
30 I-- +-----+----+--i
20 I---+----j--+_
~
1 0 I---l----+----+--i
10 1---+---1---+-
01..-.......-10 -8 -6 -4 -2
ou_iiI'.i1IIIIE
0
2
4
6
8
"'VIO - Temperature Coefficient - Jl V / °C
10
-10-8-6 - 4 - 2 0
2
4
6
810
"'VIO- Temperature Coefficient-JlV/oC
FIGURE 8
FIGURE 9
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-581
TLC272, TLC272A, TLC272B, TLC277
LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
5r---~----~----~----~--~
>
I
3.
:l
5.
;
~
~ 12
o
..3
;
3 k----j-----j----=-...b------r---------1
~
o
2
]
~
.i::.
til
:f
:f
::t
::t
I
I
o
o
>
>
..
-2
-4
-6
-10
-8
I--- i'-....
-........
6 r---
2
-10
-20
-40
-30
IOH-High-Level Output Current-rnA
HIGHcLEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
VOO-1.6
..
/
"0
>
10
8
:f
I
6
4
::t
/
~ 2
o
V
/
/
I
GI
til
2
_I
~
CII
....
VOO-1.9
Gi
>
GI
VOO-2.1
0
>
-..........
:::J
Q.
:::J
VOO-2.0
....i::.
..........
'-.....,
VOO - 10 V .............
0
V
I
"'-
.riP VOO-2.2
I
::t VOO-2.3
0
14
16
~
...............
" -.......
~
~
""
::t
8
10 12
4
6
VOO-Supply Voltage-V
IOH - -5 rnA
VIO - 100 rnV
~OO - 5V
VOO-1.8
.!::
>
o
.............
>
//
til
1
VOO-1.7
V
Q.
;
........
FIGURE 11
16
VIO - 100 rnV
>I 14 ~RL - 10 kO
TA - 25°C
til
:l 12
~
4
HIGH-LEVEL OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
.i::.
~
i'--.. ........VOO - 10 V
'r-......
FIGURE 10
o
Gi
ii
...
'-.....,
, .............
8 r-
IOH-Hlgh-Level Output Current-rnA
;
VIO - 100 rnV
- 25°C
VOO - 16 V
J TA
10
o
o
O~--~----~----~----~----
o
--
f---
>
~O-5V
o
1
14
3.
4 I--------f----+
~
..
16
VIO - 100 rnV
TA - 25°C
VOO-2.4
-75 -50 -25 0
25 50 75 100 125
TA - Free-Air Ternperature- °C
FIGURE 13
FIGURE 12
t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
~
TEXAS
INSTRUMENTS
2-582
POST OFFICE BOX 665303 • DALLAS. TEXAS 75265
TLC212, TLC212A, TLC2128, TLC211
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
LOW-LEVEL OUTPUT VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
LOW-LEVEL OUTPUT VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
700
>
E
I
:!l.
~
600
>
...
::I
aS- 500
Gi
>
\
---
--1
\
0
Gi
'"
....G>
300
v. . . .
I
....
....I
........
2
3
>
250
4
o
Vlc-Common-Mode Input Voltage-V
VIO - -100 mV
/VIO - -1V
-2.5 V
KJVIO
~
700
I
:!l.
600
>
;
500
~
o
t;
o
]
....~
....I
o
>
I----
~
\
400 :\..
300
I
900
I
I
S
I
;g
...
I
1
::I
Q.
",-VOO - 5 V
500
-
400
....!
VOO - 10 V- I--
~
....o
100
-4
-6
-8
-10
300
200
>
100
/
V
/V
,-- --,~
....I
o
VOO - 5 V
600
;
o
'i:J-2
10
I
IOL - 5 rnA
~ 800
VIO - -1 V
I
:!l. 700 ~ VIC - 0.5 V
-
200
o
o
~ ~t---
LOW-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
IOL - 5 rnA
VIC - IVIO/21
TA - 25°C
I
I
FIGURE 15
LOW-LEVEL OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
I
1-
2
4
6
8
Vlc-Common-Mode Input Voltage-V
FIGURE 14
800
I
V
~r"
300
0
r-::: :::::::: r--
I
\~
~
I
I
\
0
~ 0r-..
o
400
> 350
,,""-""-
-1
VIO -
o
>
\
C)
450
>
;
S::I
I
I
>
-a
--
400
....I
- -- - - - ' - .
\VIO - -100 mV
--
.3
~
....
500
VOO - 5 V
IOL - 5 mATA - 25°C
j/
/'
~
V
V
/'
V
VOO - 10 V
T
o
-75 -50 -25
Vlo-Differential Input Voltage-V
0
25
50
75
100 125
T A - Free-Air Temperature - °C
FIGURE 16
FIGURE 17
t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices .
. TEXAS'"
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-583
TLC272, TLC272A, TLC272B, TLC277
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
1.0
I
3.0
I
> 0.9 VID - -tV
t
VIC - 0.5 V
TA - 25°C
I
0.8
;g 0.7
1 0.6
=
0
t~
VOO - 5V/
VOO - 4~
VOO -
0.5
3~ ~
L
...
.3~ 0.3
#'
1/
0.1
o 1/
~
o
1.5
vbo -
~
1.0
~
/
V
.§
I
S 0.5
~ 0.2
o
>
~
o
>
2
3
4
5
6
7
10L -Low-Level Output Current-rnA
l/
8
~ 50
:>I
RL - 10 kO
45
c
50r-~---+---+--~~~--+---'
~40
I 40r-~---+---¥~~~~--~~
t
c(
c(
35
30
CD
DI
25
u
E
.=.
30r-~--~~~~~~~--~--~-1
125°C
;g
20r-~--~~~~~--~--+---r--;
10
r-~---CF+---+---+--~--+-
I
i
>
lI!!
O~~--~--~--~--~--~--~~
o
2
4
6
8
10 12
VOO-Supply Voltage-V
14
16
I
10
5
I
RL - 10 kO
~
I
I
I
-
VOO - 10 V
~,
""~
"'- ~
--"""'- t-....
VOO - 5 V
15
I
l
""
20
~
Q
Q
l
30
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
:>I
i
V
FIGURE 19
~ 60r-~--~---r--~--~--~-_-5~5-0C~
l
vj /
10
20
25
5
15
10L -Low-Level Output Current-rnA
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
SUPPLY VOLTAGE
CD
10
~
Y'"
FIGURE 18
5
VOO - 1 6 Y
I
2.0
:I
/ ~
'ii
~ 0.4
I
I
VIO - -1 V
L 2.5 -VIC - 0.5 V
TA - 25°C
>
--
--
r--- r---
0
-75 -50 -25 0
25 50 75 100 125
TA-Free-Air Ternperature- °C
FIGURE 20
FIGURE 21
toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS •
INSTRUMENTS
2-584
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC272. TLC272A. TLC2728, TLC277
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
COMMON-MODE
INPUT VOLTAGE POSiTIVE LIMIT
vs
SUPPLY VOLTAGE
INPUT BIAS CURRENT AND INPUT OFFSET CURRENT
vs
FREE-AIR TEMPERATURE
10000
16
,Voo· 10 V
> 14
./
VIC· 5 V
-I
",See
Note
4
1000
til
c(
--'" 12
r=~
Co
0
liB I
>
,-\ -r:::
:s 10
./
./
Co
100
~= '==
TAl.
2~oC
--
..
.
.
~
....
,-
.
§
/
r--- r---
110
I
g
V
10
~
0
:i1
C 6
0
/
r:::
'"
,
E
E
0
,
r-- r,L.
~
,
0.1
25
4
U
I
u
-
,
8
~
./
'>
,
0
45
105
65
85
TA - Free-Air Temperature - °C
125
V
/
2
2
0
/
4
..
r:::
!
~
t
~
g-
,
I
I
I
I
14
!
Vo • VOO/2
No load
3
I
1:
3
~
:s
U 2
u
>
15.
L
,
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
Vo - VOO/2
No load
4
/
FIGURE 23
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
E
I
V
V
6
10
12
8
4
VOO-Supply Voltage-V
FIGURE 22
c(
~
/V
..5
u
V
/
>
15.
~
"!'-..VDo • 10 V
f'....
g-
2
III
III
I
I
o
---- --
VOO· 5 V
o
f}
~r---
...........
f}
r--- - r--.. .-....
I
I
I
o
2
6
4
8
10 12
VOO-Supply Voltage-V
14
16
-75 -50 -25 0
25 50 75 100 125
TA - Free-Air Temperature - °C
FIGURE 24
FIGURE 25
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
NOTE 4: The typical values of input bias current and input offset current below 5 pA were determined mathematically.
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC272, TLC272A, TLC272B, TLC2l7
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
SLEW RATE
vs
FREE-AIR TEMPERATURE
SLEW RATE
vs
SUPPLY VOLTAGE
8
..
~
I
....."
II)
a:
it
I
4
\II
iii
I
a:
t/J
3
/
2
o
o
8~~--~--~--~------------~
AV - 1
71----"'1__-1-- VOO • 10 V _ RL - 10 kO
VIPP - 5.5 V CL. 20 pF
I
1 I
AV·
7 I-VIPP - 1 V
RL - 10 kO
6 I-CL - 20 pF
TA - 25°C
5 See Figure 1
V
/'
/
V
/'
'Ii
/
/'
:>
I
~
it
41--~~--+~~~-+-~~~~~+-~
.!!
t/J
I
a:
--
I
2
6 I----'""l-..o---+----'"",.,"---+-~+- See Figure 1
4
6
8
10 12
VOO-Supply Voltage-V
14
t/J
2
oL-~--~--~--~--~~--~--~
16
-75 -50 -25 0
25
50
75 100 125
TA-Free-Air Temperature- °C
FIGURE 27
FIGURE 26
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
NORMALIZED SLEW RATE
vs
FREE-AIR TEMPERATURE
10
1.5
1.4
1.3
!
a:
'0
.~
1.0
~ 0.9
~
VOO·
5~
>
8
..
7
I
II)
ell
.!::
"-~
0.8
0.7
0.6
0
6
;
5
>
~
5
I II11111
-
9
I
1.2
it
1.1
II)
iii
AV·1
VIPP - 1 VI
I
f-RL • 10 kO
~O-10VCL· 20 pF
4
\
x:
>
3
~
~
"
0.5
-75 -50 -25
0
25
50 75 100 125
TA-Free-Air Temperature- °C
2
R~
f---
1rnn11
~
1\
1.1 1116 kO
1\
See Figure 1
~
~ ........
'"r---.,I--
1111111
10
II II
TTTTTJl
\\
I I 111111
o
T
TA - 125°C
I/TA - 25°C
TA - -55°C
~
I
0
rr
""''\\
VOO - 5 V
0
II
VOO - 10 V
100
1000
f-Frequency-kHz
10000
FIGURE 29
FIGURE 28
t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
~
TEXAS
INSTRUMENTS
2-586
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC272, TLC272A, TLC272B, TLC277
LinCMoSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
UNITY-GAIN BANDWIDTH
vs
FREE-AIR TEMPERATURE
3.0
2.5
\
:l:
::E
I 2.5
...
.J:.
·i
"CI
c
III
2.0
ID
c
·iii
~
1.5
i:
:)
I"'"i'-0
25
1.5
·2
50
I
r;
t---
1.0
024
75
100 125
TA-Free-Air Temperature- °C
107
I
::E
~
.1::
:)
:l:
·i
Cl
c
N
.J:.
\
"CI
10 mV
CL - 20 pF
TA - 25°C
See Figure 3
Vi -
VOO - 5 V
Vi - 10 mV
CL - 20 pF
See Figure 3
1\
N
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
120°
& 104
'"
~
0
>
~ C'--,.
103
~"- I"-..,
"-1'-- "-1'..
]i
C 10 2
e
:EC
30° ;:
Phase Shift
10 1
I
~
150°
180°
1 M 10 M
:ctil
AVO
60° :
III
""" ~
C
>
·S
"'\
o
50
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
r\.
25
25
FIGURE 35
!!
~
0
T A - Free-Air Temperature - °C
VOO - 5 V
Vi - 10 mV
TA - 25°C
See Figure 3
"-
'" '"
42
PHASE MARGIN
vs
CAPACITIVE LOAD
'" """-
"'-,
t:I.
I
~
~
44
FIGURE 34
50
~
~
Vi - 10 mV
I---CL - 20 pF
TA - 25°C 1---See Figure 3
I
VOO - 5 V
Vi - 10 mV
CL - 20 pF See Figure 3
100
-
......
C'
w
I
c
100
>
t--r-
0
1
10
100
1000
f- Frequency - Hz
FIGURE 37
FIGURE 36
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
~
TEXAS
INSTRUMENTS
2-588
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLC272, TLC272A, TLC2728, TLC277
LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
single-supply operation
While the TLC272 and TLC277 perform well using dual power supplies (also called balanced or split
supplies), the design is optimized for single-supply operation. This design includes an input common-mode
voltage range that encompasses ground as well as an output voltage range that pulls down to ground.
The supply voltage range extends down to 3 V (C-suffix types), thus allowing operation with supply levels
commonly available for TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply
operation is recommended.
Many single-supply applications require that a voltage be applied to one input to establish a reference level
that is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see
Figure 38). The low input bias current of the TLC272 and TLC277 permits the use of very large resistive
values to implement the voltage divider, thus minimizing power consumption.
The TLC272 and TLC277 work well in conjunction with digital logic; however, when powering both linear
devices and digital logic from the same power supply, the following precautions are recommended:
1. Power the linear devices from separate bypassed supply lines (see Figure 39); otherwise the linear
device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital
logic.
2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive
decoupling is often adequate; however, high-frequency applications may require RC decoupling.
Voo
R1
R3
VREF - Voo R1 + R3
R2
Vo
-= R3
t.
c
01
~F-=
FIGURE 38. INVERTING AMPLIFIER WITH VOLTAGE REFERENCE
(a) Common Supply Rails
(b) Separate Bypassed Supply Rails (preferred)
FIGURE 39. COMMON VS SEPARATE SUPPLY RAILS
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • OAlLAS. TEXAS 75265
2-589
TLC272, TLC272A, TLC272B, TLC277
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
input characteristics
The TLC272 and TLC277 are specified with a minimum and a maximum input voltage that, if exceeded
at either input, could cause the device to malfunction. Exceeding this specified range is a common problem,
especially in single-supply operation. Note that the lower range limit includes the negative rail, while the
upper range limit is specified at VOO -1 Vat T A = 25 DC and at VOO -1.5 V at all other temperatures.
The use of the polysilicon-gate process and the careful input circuit design gives the TLC272 and TLC277
very good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset
voltage drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of
the phosphorus dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as
a polysilicon gate) alleviates the polarization problem, thus reducing threshold voltage shifts by more than
an order of magnitude. The offset voltage drift with time has been calculated to be typically 0.1 IN/month,
including the first month of operation.
Because of the extremely high input impedance and resulting low bias current requirements, the TLC272
and TLC277 are well suited for low-level signal processing; however, leakage currents on printed circuit
boards and sockets can easily exceed bias current requirements and cause a degradation in device
performance. It is good practice to include guard rings around inputs (similar to those of Figure 4 in the
Parameter Measurement Information section). These guards should be driven from a low-impedance source
at the same voltage level as the common-mode input (see Figure 40).
The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation.
noise performance
The noise specifications in op amp circuits are greatly dependent on the current in the first-stage differential
amplifier. The low input bias current requirements of the TLC272 and TLC277 result in a very low noise
current, which is insignificant in most applications. This feature makes the devices especially favorable
over bipolar devices when using values of circuit impedance greater than 50 kG, since bipolar devices exhibit
greater noise currents.
(a} Noninverting Amplifier
(b} Inverting Amplifier
(e} Unity·Gain Amplifier
FIGURE 40. GUARD-RING SCHEMES
output characteristics
The output stage of the TLC272 and TLC277 is designed to sink and source relatively high amounts of
current (see typical characteristics). If the output is subjected to a short-circuit condition, this high current
capability can cause device damage under certain conditions. Output current capability increases with supply
voltage.
All operating characteristics of the TLC272 and TLC277 were measured using a 20-pF load. The devices
will drive higher capacitive loads; however, as output load capacitance increases, the resulting response
pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figure 41 ).
In many cases, adding a small amount of resistance in series with the load capacitance will alleviate the
problem.
TEXAS
~
INSTRUMENTS
2-590
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC272, TLC272A, TLC272B, TLC277
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
Ibl CL - 130 pF, RL - No load
lal CL - 20 pF, RL - No load
TA - 25°C
f -
1 kHz
VIPP - 1 V
-2.5 V
Idl Test Circuit
lei CL - 150 pF, RL - No load
FIGURE 41. EFFECT OF CAPACITIVE LOADS AND TEST CIRCUIT
Although the TLC272 and TLC277 possess excellent high-level output voltage and current capability,
methods for boosting this capability are available, if needed. The simplest method involves the use of a
pullup resistor (Rp) connected from the output to the positive supply rail (see Figure 42). There are two
disadvantages to the use of this circuit. First, the NMOS pulldown transistor N4 (see equivalent schematic)
must sink a comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with
an on-resistance between approximately 60 fl and 180 fl, depending on how hard the op amp input is
driven. With very low values of Rp, a voltage offset from 0 V at the output will occur. Second, pullup
resistor Rp acts as a drain load to N4 and the gain of the op amp is reduced at output voltage levels where
N5 is not supplying the output current.
feedback
Op amp circuits nearly always employ feedback, and since feedback is the first prerequisite for oscillation,
some caution is appropriate. Most oscillation problems result from driving capacitive loads (discussed
previously) and ignoring stray input capacitance. A small-value capacitor connected in parallel with the
feedback resistor is an effective remedy (see Figure 43). The value of this capacitor is optimized empirically.
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-591
TLC272, TLC272A, TLC272B, TLC277
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
c
Voo
Ip -
Pullup current required by
the op amp (typically 500 "AI
FIGURE 42. RESISTIVE PULLUP TO INCREASE VOH
FIGURE 43. COMPENSATION FOR
INPUT CAPACITANCE
I
electrostatic discharge protection
The TLC272 and TLC277 incorporate an internal electrostatic discharge (ESO) protection circuit that
prevents functional failures at voltages up to 2000 V as tested under MIL-STO-883C, Method 3015.2.
Care should be exercised, however, when handling these devices as exposure to ESO may result in the
degradation of the device parametric performance. The protection circuit also causes the input bias currents
to be temperature dependent and have the characteristics of a reverse-biased diode.
latch-up
Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC272
and TLC277 inputs and outputs were designed to withstand - 1OO-mA surge currents without sustaining
latch-up; however, techniques should be used to reduce the chance of latch-up whenever possible. Internal
protection diodes should not, by design, be forward biased. Applied input and output voltage should not
exceed the supply voltage by more than 300 mY. Care should be exercised when using capacitive coupling
on pulse generators. Supply transients should be shunted by the use of decoupling capacitors (0.1 JLF typical)
located across the supply rails as close to the device as possible.
The current path established if latch-up occurs is usually between the positive supply rail and ground and
can be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed
the supply voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power
supply and the forward resistance of the parasitic thyristor and usually results in the destruction of the
device. The chance of latch-up occurring increases with increasing temperature and supply voltages.
TEXAS •
INSTRUMENTS
2-592
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC272, TLC272A, TLC272B, TLC277
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
10 kll
0.0161'F
0.0161'F
10 kll
10 kll
VI_VV<...-t·
5V
LOW PASS
~--------+---------
HIGH PASS
5 kll
~~~-------~~-------e----------BANDPASS
R - 5 kll (3/d-1),
(see Note A)
NOTES:
A. d = damping factor, l/Q
B. Normalized to 10 kll and Ic = 1 kHz
FIGURE 44. STATE VARIABLE FILTER
12 V
>-..........-VO
100 kll
FIGURE 45. POSITIVE-PEAK DETECTOR
TEXAS
-iii
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-593
TLC272. TLC272A. TLC272B. TLC277
LiaCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
VI (see ~~_ _ _ _ _ _ _ _......_ _ _ _..._ _-.....-_ _ _ _ _ _---,
Note A)
1.2 kO
TL431
100 kO
20 kO ~-A,/I,IIrlII---I
0.471'F
1 kO
TIP31
150
TIS193'-IVVI--------1
250I'F,
25V
;r-
Vo (see
Note B)
10 kO
47 kO
110 0
22 kO
NOTES: A. VI = 3.5 to 15 V
B. Vo = 2.0 V, 0 to 1 A
FIGURE 46. LOGIC ARRAY POWER SUPPLY
Vo (see Note A)
JlJ
9V
0.1 I'F
10 kO
">-------Vo (see Note B)
10 kO
/'V
47 kO
fO -
4C(~2) [:j]
R3
NOTES: A. VOpp = B V
B. VOpp = 4 V
FIGURE 47. SINGLE-SUPPLY FUNCTION GENERATOR
TEXAS
'iii
INSTRUMENlS
2-594
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLC272, TLC272A, TLC2728, TLC277
LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION OATA
+5 V
10 kll
100 kll
>-.....-+--VO
10 kll
10 kll
95 kll
R1,10 kll
(see Note A)
-5 V
NOTE A: CMRR adjustment must be noninductive .
FIGURE 48. LOW-POWER INSTRUMENTATION AMPLIFIER
R
>-.....-VO
10 mil
'~;1 ~
fNOTCH _ _1_
2"RC
5 Mil
C
C
270 pF
270 pF
FIGURE 49. SINGLE-SUPPLY TWIN-T NOTCH FILTER
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-595
2--596
TLC274, TLC274A, TLC274B, TLC279
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
03141, SEPTEMBER 1987-REVISEO OCTOBER 1990
O. J, OR N PACKAGE
(TOP VIEW)
•
Trimmed Offset Voltage:
TLC279 , .. 900 /LV Max at 25°C.
VDD - 5 V
•
Input Offset Voltage Drift ... Typically
0.1 /LV/Month. Including the First 30 Days
•
4 OUT
41N-
lOUT
1 IN-
Wide Range of Supply Voltages Over
Specified Temperature Range:
°C to 70°C ... 3 V to 16 V
-40°C to 85°C ... 4 V to 16 V
- 55°C to 125°C ... 4 V to 16 V
o
1 IN+
41N+
VDD
21N+
21N-
GND
31N+
31N-
2 OUT
3 OUT
FK PACKAGE
(TOP VIEW)
•
Single-Supply Operation
•
Common-Mode Input Voltage Range
Extends Below the Negative Rail IC-Suffix.
I-Suffix types)
II-
Zm
Equivalent input noise voltage
Maximum output swing bandwidth
Unity-gain bandwidth
Phase margin
operating characteristics, VOO
f = 1 kHz,
RS = 1001l,
Vo = VOH,
CL = 20 pF,
RL = 10 kll,
See Figure 1
Vi=10mV,
CL = 20 pF,
See Figure 3
Vi = 10mV,
f = B1,
CL = 20 pF,
See Figure 3
TEST CONDITIONS
BOM
B1
m
Equivalent input noise voltage
Maximum output swing bandwidth
Unity-gain bandwidth
Phase margin
VIPP = 1 V
CL = 20 pF,
See Figure 1
Vn
MIN
TYP
MAX
UNIT
3.6
- 55°C
4.7
125°C
2.3
25°C
2.9
-55°C
3.7
125°C
2
25°C
25
25°C
320
-55°C
400
125°C
230
25°C
1.7
- 55°C
2.9
125°C
1.1
25°C
46°
-55°C
49°
125°C
41°
V/p.s
nV/JR"Z
kHz
MHz
10 V
RL = 10 kll,
Slew rate at unity gain
VIPP = 2.5 V
See Figure 2
PARAMETER
SR
VIPP = 1 V
TA
25°C
f = 1 kHz,
VIPP = 5.5 V
RS = 1001l,
See Figure 2
Vo = VOH,
RL = 10 kll,
CL = 20 pF,
Vi = 10mV,
CL = 20 pF,
See Figure 1
See Figure 3
Vi=10mV,
f = B1,
CL = 20 pF,
See Figure 3
TA
25°C
-55°C
MIN
TYP
MAX
UNIT
5.3
7.1
125°C
3.1
25°C
4.6
-55°C
6.1
125°C
2.7
25°C
25
25°C
200
-55°C
280
125°C
110
25°C
2.2
-55°C
3.4
125°C
1.6
25°C
49°
-55°C
52°
125°C
44°
V/p.s
nV/JR"Z
kHz
MHz
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2--607
TLC2741, TLC274AI, TLC274BI, TLC2791
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
operating characteristics, VOO ... 5 V
PARAMETER
SR
Slew rate at unity gain
TEST CONDITIONS
RL
~
CL
= 20
10 kll,
BOM
Bl
m
Equivalent input noise voltage
Maximum output swing bandwidth
Unity-gain bandwidth
Phase margin
f = 1 kHz,
See Figure 2
= VOH,
= 10 kll,
Vo
RL
Equivalent input noise voltage
BOM
Maximum output swing bandwidth
Bl
m
2-608
Unity-gain bandwidth
Phase margin
=
10011,
CL = 20 pF,
See Figure 1
= 10 mV,
CL = 20 pF,
f = Bl,
See Figure 3
Vi
=
20 pF,
MIN
TYP
MAX
UNIT
3.6
-40°C
4.5
85°C
2.8
25°C
2.9
-40°C
3.5
85°C
2.3
25°C
25
25°C
320
-40°C
380
250
85°C
25°C
V/p.s
nV/.JHz
kHz
1.7
-40°C
85°C
2.6
1.2
25°C
46°
-40°C
49°
85°C
43°
MHz
10 V
TEST CONDITIONS
= 10 kll,
= 20 pF,
RL
Vn
RS
= 2.5 V
CL
PARAMETER
Slew rate at unity gain
VIPP
Vi = 10 mV,
See Figure 3
operating characteristics, VOO
SR
VIPP ~ 1 V
pF,
See Figure 1
Vn
TA
25°C
CL
See Figure 1
=
f
1 kHz,
VIPP
VIPP
RS
=
TA
25°C
=
-40°C
1 V
= 5.5
V
10011,
See Figure 2
Vo
RL
= VOH,
= 10kll,
CL = 20 pF,
See Figure 1
Vi
=
CL
10mV,
= 20 pF,
See Figure 3
= 10 mV,
CL = 20 pF,
Vi
f = Bl,
See Figure 3
TEXAS ~.
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
MIN
TYP
MAX
UNIT
5.3
6.7
85°C
4
25°C
-40°C
4.6
5.8
85°C
3.5
25°C
25
25°C
200
-40°C
260
85°C
130
25°C
2.2
-40°C
3.1
85°C
1.7
25°C
-40°C
49°
85°C
46°
52°
V/p.s
nV/.JHz
kHz
MHz
TLC274C, TLC274AC, TLC274BC, TLC279C
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
operating characteristics. VOO - 5 V
PARAMETER
TEST CONDITIONS
=
=
RL
SR
Slew rate at unity gain
eL
10 kO,
Vn
Equivalent input noise voltage
BOM
Maximum output swing bandwidth
8.1
cJ>m
Unity-gain bandwidth
Phase margin
=
1 kHz,
See Figure 2
Vo
RL
=
1 V
= VOH'
= 10 kO,
VIPP
RS
=
=
2.5 V
100O,
eL = 20 pF,
See Figure 1
Vi = 10 mV,
See Figure 3
eL
= 10mV,
eL = 20 pF,
f
Vi
MIN
=
20 pF,
Bl,
See Figure 3
MAX
3
2.9
25°C
ooe
3.1
70°C
2.5
25°C
25
25°C
ooe
340
UNIT
V/p.s
nV/.JHz
320
kHz
260
70°C
25°C
ooe
1.7
2
1.3
70°C
=
TYP
3.6
4
70°C
20 pF,
See Figure 1
f
VIPP
TA
25°C
ooe
25°C
ooe
46°
70°C
44°
MHz
47°
operating characteristics. VOO .. 10 V
PARAMETER
TEST CONDITIONS
RL
SR
Slew rate at unity gain
=
=
10 kO,
eL
20 pF,
See Figure 1
VIPP
VIPP
=
=
1 V
5.5 V
Vn
Equivalent input noise voltage
f = 1 kHz,
See Figure 2
BOM
Maximum output swing bandwidth
Vo
RL
= VOH'
= 10 kO,
eL = 20 pF,
See Figure 1
Vi
=
eL
B1
cJ>m
Unity-gain bandwidth
Phase margin
10 mV,
RS
=
=
100O,
20 pF,
See Figure 3
= 10 mV,
eL = 20 pF,
Vi
f = B1,
See Figure 3
TA
25°C
OOG
MIN
TYP
4.3
70 0 G
3.8
25°C
25
25°C
OOG
200
4.6
5.1
220
140
25°C
ooe
2.2
70°C
1.8
25°C
OOG
49°
70°C
UNIT
5.9
70°C
25°G
OOG
70°C
MAX
5.3
2.5
V/p.s
nV/.JHz
kHz
MHz
50°
46°
TEXAS .."
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2--609
TLC274, TLC274A, TLC274B, TLC279
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
PARAMETER MEASUREMENT INFORMATION
single-supply versus split-supply test circuits
Because the TLC274 and TLC279 are optimized for single-supply operation, circuit configurations used
for the various tests often present some inconvenience since the input signal. in many cases, must be
offset from ground. This inconvenience can be avoided by testing the device with split supplies and the
output load tied to the negative rail. A comparison of single-supply versus split-supply test circuits is shown
below. The use of either circuit will give the same result.
VI
VI
RL
-=
-=
RL
voo(b) Split-Supply
(a) Single-Supply
FIGURE 1. UNITY-GAIN AMPLIFIER
10 kG
10 kG
voo+
1/2 VOO
Vo
Vo
100 G
-=
-= -=
(a) Single-Supply
(b) Split-Supply
FIGURE 2. NOISE TEST CIRCUIT
10 kG
10 kG
100 G
VI
VI
1/2 VOO
CL
-=
VOO(b) Split-SupplY
(a) Single-Supply
FIGURE 3. GAIN-OF-100 INVERTING AMPLIFIER
TEXAS . .
INSTRUMENTS
2-610
POST OFFICE BOX 655303 • OALLAS. TEXAS 75265
TLC27~ TLC274A, TLC274B, TLC279
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
PARAMETER MEASUREMENT INFORMATION
input bias current
Because of the high input impedance of the TLC274 and TLC279 op amps, attempts to measure the input
bias current can result in erroneous readings. The bias current at normal room ambient temperature is
typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions
are offered to avoid erroneous measurements:
1. Isolate the device from other potential leakage sources. Use a grounded shield around and between
the device inputs (see Figure 4). Leakages that would otherwise flow to the inputs will be shunted
away.
2. Compensate for the leakage of the test socket by actually performing an input bias current test (using
a picoammeter) with no device in the test socket. The actual input bias current can then be calculated
by subtracting the "open-socket" leakage readings from the readings obtained with a device in the
test socket.
One word of caution ... many automatic testers as well as some bench-top op amp testers use the
servo-loop technique with a resistor in series with the device input to measure the input bias current
(the voltage drop across the series resistor is measured and the bias current is calculated). This method
requires that a device be inserted into the test socket to obtain a correct reading; therefore, an "opensocket" reading is not feasible using this method.
7
1
QQQQQ Q
v-
8
VIC
QQQQQ Q
- 14
FIGURE 4. ISOLATION METAL AROUND DEVICE INPUTS
(J AND N DUAL-IN-L/NE-PACKAGE)
low-level output voltage
To obtain low-supply-voltage operation, some compromise was necessary in the input stage. This
compromise results in the device low-level output being dependent on both the common-mode input voltage
level as well as the differential input voltage level. When attempting to correlate low-level output readings
with those quoted in the electrical specifications, these two conditions should be observed. If conditions
other than these are to be used, please refer to Figures 14 through 19 in the Typical Characteristics of
this data sheet.
input offset voltage temperature coefficient
Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage.
This parameter is actually a calculation using input offset voltage measurements obtained at two different
temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both
the device and the test socket. This moisture will result in leakage and contact resistance, which can cause
erroneous input offset voltage readings. The isolation techniques previously mentioned have no effect on
the leakage since the moisture also covers the isolation metal itself, thereby rendering it useless. It is
suggested that these measurements be performed at temperatures above freezing to minimize error.
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-611
TLC274, TLC274A, TLC274B, TLC279
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
full-power response
Full-power response, the frequency above which the op amp slew rate limits the output voltage swing,
is often specified two ways ... full-linear response and full-peak response. The full-linear response is
generally measured by monitoring the distortion level of the output while increasing the frequency of a
sinusoidal input signal until the maximum frequency is found above which the output contains significant
distortion. The full-peak response is defined as the maximum output fre~ency, without regard to distortion,
above which full peak-to-peak output swing cannot be maintained.
Because there is no industry-wide accepted value for "significant" distortion, the full-peak response is
specified in this data sheet and is measured using the circuit of Figure 1. The initial setup involves the
use of a sinusoidal input to determine the maximum peak-to-peak output of the device (the amplitude of
the sinusoidal wave is increased until clipping occurs). The sinusoidal wave is then replaced with a square
wave of the same amplitude. The frequency is then increased until the maximum peak-to-peak output
can no longer be maintained (Figure 5). A square wave is used to allow a more accurate determination
of the point at which the maximum peak-to-peak output is reached.
la} f - 1 kHz
11 A
Ib} BOM > f > 1 kHz.
Ie} f - BOM
A
(d) f> BOM
FIGURE 5. FULL-POWER-RESPONSE OUTPUT SIGNAL
test time
Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume, shorttest-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET devices
and require longer test times than their bipolar and BiFET counterparts. The problem becomes more
pronounced with reduced supply levels and lower temperatures.
TEXAS
~
INSTRUMENTS
2-612
POST OFFice BOX 655303 • DALLAS. TeXAS 75265
TLC274,TLC274A, TLC274B, TLC279
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
DISTRIBUTION OF TLC274
INPUT OFFSET VOLTAGE
50
#.
DISTRIBUTION OF TLC274
INPUT OFFSET VOLTAGE
753 Amplifiers
VOO - 5 V
TA _ 25°C
N Package
50
753 Amplifiers
VOO - 10 V
TA - 25°C
N Package
I
~ 40~--r~--~-+-
"2
::>
o
30~~---1---~-+-
CD
Cl
,f!
C
~
20~-r~--~-+-
CD
11.
10~-+-~--~
10~-r~--~
oL..-...l-......___
-5 -4 -3 -2 -1 0
234
Vlo-lnput Offset Voltage-mV
oL-...L.-......_
-5-4-3-2-10
2 3
4
Vlo-lnput Offset Voltage-mV
5
FIGURE 6
FIGURE 7
DISTRIBUTION OF TLC274 AND TLC279
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
DISTRIBUTION OF TLC274 AND TLC279
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
lots
324 Amplifiers tested
VOO - 5 V
50 A - 25°C to 125°C ---1--+----+--+---1
#.
N Package
~
.1::
5
50
N Package
#.
I 40
40
!l
·2
c
::>
...
Outliers:
(11 21.2 jtV/oC
::>
~ 30~-r~--~
0
CD
Cl
Cl
,f!
30
,f!
C
C
~ 20~-r~--~
CD
~
&.
20
CD
11.
10
01-..-..0..11-10 -8 -6 -4 -2 0
2 4
6
8 10
II'VIO- Temperature Coefficient-jtV/oC
oL..---
-10 -8 -6 -4 -2 0
2
4
6
8 10
II'VIO - Temperature Coefficient- jt V/ °C
FIGURE 9
FIGURE 8
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-613
TLC274. TLC274A. TLC274B. TLC279
LinCMOSlM PRECISION QUAD OPEATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
5~--~----~-----r----~--~
>
VIO - 100 mV
TA - 25°C
I
3.
B
~...
:::J
5
16
~
~ 12
~
15
3
5:::J
o
14
3.
4l-----t----t----t----t--------t
8
1:.
1:.
6
J:
J:
1
!l
....
2
en
----
---
o
..
............
..........
o
-10
-20
-40
-30
IOH-High-Level Output Current-mA
FIGURE 11
HIGH-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
HIGH-LEVEL OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
16
VOO-1.6
VID - 100 mV
~ 14 -RL - 10 kO
CIl
. TA - 25°C
en
B 12
/
"0
>
10
8
Gi
1:.
en
4
/
~ 2
o
V
o
2
/
/
Q)
en
.1
>
15
Voo-1.9
5
-.!. VOO-2.1
~
~ I'....
I'--........
VOO - 10 V ...........
i'-........
1:.
en
~
VOO-2.2
8
10
12
VOO-Supply Voltage-V
14
16
~
"-
~
~
""
::a::
6
IOH - -5 mA
VIO - 100 mV
r--.....
'-.....
o Voo-2.0
V
I
~OO - 5V
"0
~
4
............
B VOO-1.8
//
>
!l 6
I
~ VOO-1.7
V
Co
I
::a::
'-
I'---.. ........
'-
FIGURE 10
J:
~
VOO - 10 V
r-.......
o
o
o~--~----~----~----~----2
-4
-10
-6
-8
IOH-Hlgh-Level Output Current-mA
15
~
I 4
::a::
0
> 2
>
o
J
.............
en
I
::a::
;
t----..,
I
VIO - 100 mV
I
TA - 25°C
VOO - 16 V
10
0
"ii
>
Q)
Voo - 4 V
I
I
VOO-2.3
VOO-2.4
-75 -50 -25 0
25 50
75 100 125
T A -Free-Air Temperature- °C
FIGURE 13
FIGURE 12
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
2-614
, TEXAS ~
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC274, TLC274A, TLC274B, TLC279
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
LOW-LEVEL OUTPUT VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
~
-'. -1
I
!
I
1
VIO -
....
....
o
....I
I
300~-·~-·-~~~__t
o
>
>
250
300~~--~--~--~--~--~--~~
2
3
4
LL-L-L-.l::::J::::±:::±::t::::i-l
o
Vic-Cammon-Mode Input Voltage-V
2
4
>
E
I
CD
Cl
!!l
LOW-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
500
:J
S:J
0
Gi
>
II)
400
....
300
....0
200
0
100
~
"-
"VOO - 5 V
-'I~
lr
---t--- ---
o
o
[
I
"'0 600
>
...
I
:J
Co
:;
!
....
~
_.
I
-6
1/'
/~ V
500
300 1---
-10
Vlo-Oifferentiallnput Voltage-V
/'
V '"......... t.--r Voo -
V
10 V
~
200 1--- - - --
>
100
rI
o
-8
/'
V
VOO - 5 7 - - r----
....0
....I
0
--r--
I
-4
c---
1---
0
Gi 400
>
II)
r--
- - "-r---
I
!!l
I
i
-2
I
I
IOl - 5 rnA
E 800
VIO - -1 V
I
Q)
I-- VIC - 0.5 V
Cl 700
I--
>
~-U-+-Itt
VOO - 10 V-
....I
>
900
I
IOl - 5 rnA
700 t--VIC - IV10/21TA - 25 DC
600
"'0
>
...
I
10
FIGURE 15
LOW-LEVEL OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
I
8
6
Vic-Cammon-Mode Input Voltage-V
FIGURE 14
800
-100 rnV
-1 V
- 2.5 V
~
....o
-i-
400
VID ~-*->,-+""-- VID -
Gi
>
Q)
I
I
_~VIO
o
-l-J---! ---
o
I---t----\
Co
:;
-+--r--i----+-
--1- -
500
'
- 10 V
1-+ I· j ·i-j ~~ =~5~~
- l++-
~ 450
Cl
!!l
1
I
,I
! voo
I
E
:J
- 100 mV
....
.s
'I
>
"'0
Gi
>
II)
~
5m~-
:0_-5
ITA - 25 DC
>...
...
S.
6
-+--+--- --
LOW-LEVEL OUTPUT VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
-75 -50 -25
0
25 50
75 100 125
T A - Free-Air Temperature - DC
FIGURE 17
FIGURE 16
t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-615
TLC274, TLC274A, TLC2748, TLC279
LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
1.0
>
+O.~V +-1
VID I - -1I V
0.9
I
VIC =
~ 0.8
i
T A - 25 C
!!
_
:;
VOO 0.6
o 0.5
----
~--
---~
a;
~ 0.4
o~ 0.3
.....
~ 0.2
o
>
0.1
~-
/'
o
o
3~
VOO -
/
~
M
01
--- -
VIO VIC - 0.5 V --~~--~---~---cff
>
I 2.5
~
VOO - 5 VL'
~ 0.7
&.
3.0r----r--~----T_--~----r-~
i
-a'"
>
4,/ /
//
...
TA - 25°C
:::I
So
:::I
o
f---
=
1.5
..
~
.....
~
- - -- - -
.....o
i-----t--7'----7f-------+---+-----t
1.0
I
5 0.5 ~---+r:;;,,-L--\_-----__+-----t__--+-__I
>
- t---
i
2
3
4
7
5
6
IOl-low-level Output Current-rnA
o
5
10
15
20
25
IOl -low-level Output Current - rnA
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
60r--'--~---r--~--r-~--~--~
Rl - 10 kO
TA -
~ 50
-55°C
:>I
45
c
o 40
50~-~~--+--+-~~~4-
.~
l;::
~ 40r---r-~-~~-r~4--~~~
~
35
~
30
~
25
C.
e
~
..W
30~-~-1~'+~~-=~-~--~~
.!::
.!::
>
>
~ 20~-~74~~~~-~-+--+--~
~
o
o
.~
.~
2!
~
'" '"
~
20
~
RL I
~r-....
o
I
o
I
o
~ O~--~~--~--~--~--~--~~
2
4
6
8
10 12
VOO-Supply Voltage-V
14
16
........
............
. . . . r----.r--
VOO - 5 V
15
;; 10
101-----+---'--,1'+-
I
10 kO
I
-
VOO - 10 V
2!
o
30
FIGURE 19
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
SUPPLY VOLTAGE
>e
..
o~--~--~----~--~----~--
8
FIGURE 18
:>I
5
VOO =
-rio
~OV
~-~~-----+-'~+.,.L---+---I
2.0
-..
--
r-
r--
5
~ 0
-75 -50 -25 0
25 50
75 100 125
TA-Free-Air Ternperature- °C
FIGURE 20
FIGURE 21
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSTRUMENTS
2-616
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC274, TLC274A, TLC2748, TLC279
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
COMMON-MODE
INPUT VOLTAGE POSITIVE LIMIT
vs
SUPPLY VOLTAGE
INPUT BIAS CURRENT AND INPUT OFFSET CURRENT
vs
FREE-AIR TEMPERATURE
16
10000
TAl.
Voo - 10 V
VIC - 5 V
1000 1= See Note 4
I
liB
/
100
'"
..
>
/
::I
Co
10
CD
8
.E
110
I
":!:0
/
V
/
10
".,
I
'c
~
,
,
,
,
C:
0
E
E
---
6
4
0
(J
I
(J
,
0.1
25
45
85
65
105
o
o
125
/
/
2
>
,
2
/
4
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
8
7
8~--r---r---~~---
12
14
16
Vo - VOO/2
No load
E 6
.
I
c
6~--r---r---~~--~~~---
!
(J
(J
>4
5
:;
::I
g-
10
8
~
I
Q.
6
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
Vo - VOO/2
No load
~
/
/
/
/
FIGURE 23
FIGURE 22
C
/
/
V
/
/
VOO-Supply Voltage-V
TA-Free-Air Temperature- °C
~
/
CD
"0
(J
g.
2~oC
14
:l 12
c
~::I
/
/
~
Co
..
>
/
~--+---H~r---"~----j-="""""f'-----±~"""I
~
Co
::I
III
III
I
I
o
~ 2~--r+~~~~~~~--~--~---1
4
3
"'"r---....""-
t'-..VOO - 10 V
............
0 2
~
o
2
4
6
8
10
12
14
16
--
VOO - 5 V
-75 -50 -25
0
~
r--
25
--
'-
50
--r----
I--
75
100 125
T A - Free-Air Temperature - °C
VOO-Supply Voltage-V
FIGURE 25
FIGURE 24
t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
NOTE 4: The typical values of input bias current and input offset current below 5 pA were determined mathematically.
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-617
TLC274, TLC274A, TLC274B, TLC279
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
SLEW RATE
vs
FREE-AIR TEMPERATURE
SLEW RATE
vs
SUPPLY VOLTAGE
8
8r-~--'---r--r--~--------'
AV'.1
I
7 -VIPP - 1 V
RL - 10 kO
6 -CL • 20 pF
TA • 25°C
5 - See Figure 1
..
~
..
I
GI
1\1
a:
4
~
GI
iii
I
a:
(/)
3
I
2
V
/
V
/
/
/"
V
..
AV - 1
71-----'1'....--+- VOO - 10 V _ RL • 10 kO
VIPP - 5.5 V CL - 20 pF
6 I---~~__+-~,L--+---+-- See Figure 1
~
>
I
:l1\1
a:
~
41-----I-__+---'~--=--+---+"'~+"~+---I
GI
iii
I
a:
(/)
--
f
2
Voo - 5 V
- 2.5 V
t--~-+--+---+--VIPP
o
o
2
4
6
8
10 12
VOO-Supply Voltage-V
14
OL-~--~--~~--~~--~~
16
-75 -50 -25 0
25
TA-Free-Air Temperature- °C
FIGURE 27
FIGURE 26
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
NORMALIZED SLEW RATE
vs
FREE-AIR TEMPERATURE
1.5
1.4
1.3
!
a:
1.2
E 1.1
iii
-a 1.0
.~
1& 0.9
E
~
0.8
10
,
AV VIPP
I
I
I
Voo-10V- r-RL •
CL -
~
VOO·
5~
1
- 1 V10 kO_
20 pF
9 -
>
I
GI
Cl
S
"I"
0.7
0.6
125
::l
5
..
~
0
4
I
~
::c 3
0
>
~
0.5
-75 -50 -25 0
25 50 75 100 125
TA -Free-Air Temperature- °C
II I
I
:'I.
1\1
7
6
So
::l
1111111
8
'0
>
I
VOO - 10 V
~,
"'J
TA • 125°C
TA • 25°C
TA - -55°C
1\ ~
VOO - 5 V
\\
II IIII
\
R~ 1.1 1116"kO
2 r--- See Figure 1
I I I I illl
o
I I
.......
II IIII
10
"-~ r--..
100
1000
f-Frequency-kHz
r-....'
10000
FIGURE 29
FIGURE 28
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS •
INSTRUMENTS
2-618
POST OF"CE BOX 655303 • DALLAS. TeXAS 75265
TLC274, TLC274A, TLC2748, TLC279
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
UNITY-GAIN BANDWIDTH
vs
FREE-AIR TEMPERATURE
3.0
:!!
I 2.5
..
..c
.1\
"0
·i
"0
c
III
2.0
CO
c
VOO - 5 V
Vi - 10 mV
CL - 20 pF
See Figure 3
1\
:t
·iii
Cl
b
...I
:t
:!!
I
..c
c
"\
c
·ca
0
Cl
25
b1.5
·2
::J
"'"
50
~
...I
co
r--
1.0
75
100 125
T A - Free-Air Temperature - °C
o
2
4
6
107
c
VDO - 5 V
.g
"
~
.
I-RL - 10 kO
TA - 25°C
0°
100
1k
E
30° :E
..c
1/1
60° CD
.
III
J'...
10 k
""~ ~
100 k
14
16
'"
90°
..c
~
120°
J
VOO - 10
106 f-RL - 10 kG
TA - 25°C
10 5
~ ["'-...
103
:!
E 102 r-----.
~
~
"-1"---. " 1"-
Phase Shift
10 1
I
~
150°
180°
1 M 10 M
0
- - - - --
>
" ~"- ,\
c
I
&
~
300
75
'"
100 125
~
I"\.
~
Voo - 5 V
RS - 1000
TA - 25°C
See Figure 2
1\
g
:
""
50
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
"DO 1- 5 V
Vi - 10mV
TA - 25°C
See Figure 3
~
"'-
25
FIGURE 35
PHASE MARGIN
vs
CAPACITIVE LOAD
~
0
T A - Free-Air Temperature - °C
FIGURE 34
50
"" '" "
~
:44
..c
Vi - 10 mV
r-CL - 20 pF
TA - 25°C
!----See Figure 3
VOO - 5 V
Vi - 10 mV
CL-20pFSee Figure 3
\
1\
200
!
.5
~
1:
~
>
·S
'""1\
20
40
60
80
CL -Capacitive Load-pF
100
--
'I'-
C'
w
I
.;;
100
-I-
0
1
10
100
1000
f-Frequency-Hz
FIGURE 37
FIGURE 36
t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS .."
2-620
INSTRUMENTS
POST OFFice BOX 655303 • OALLAS. TeXAS 75265
TLC27~ TLC274A, TLC274~ TLC279
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
single-supply operation
While the TLC274 and TLC279 perform well using dual power supplies (also called balanced or split
supplies). the design is optimized for single-supply operation. This design includes an input common-mode
voltage range that encompasses ground as well as an output voltage range that pulls down to ground.
The supply voltage range extends down to 3 V (C-suffix types), thus allowing operation with supply levels
commonly available for TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply
operation is recommended.
Many single-supply applications require that a voltage be applied to one input to establish a reference level
that is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see
Figure 38). The low input bias current of the TLC274 and TLC279 permits the use of very large resistive
values to implement the voltage divider, thus minimizing power consumption.
The TLC274 and TLC279 work well in conjunction with digital logic; however, when powering both linear
devices and digital logic from the same power supply, the following precautions are recommended:
1. Power the linear devices from separate bypassed supply lines (see Figure 39); otherwise the linear
device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital
logic.
2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive
decoupling is often adequate; however, high-frequency applications may require RC decoupling.
voo
R3
VREF -
voo
Rl
+ R3
Vo
FIGURE 38. INVERTING AMPLIFIER WITH VOLTAGE REFERENCE
(a) Common Supply Rails
(b) Separate Bypassed Supply Rails (preferred)
FIGURE 39. COMMON VS SEPARATE SUPPLY RAILS
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TeXAS 75265
2-621
TLC274, TLC274A, TLC2748, TLC279
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
input characteristics
The TLC274 and TLC279 are specified with a minimum and a maximum input voltage that, if exceeded
at either input, could cause the device to malfunction. Exceeding this specified range is a common problem,
especially in single-supply operation. Note that the lower range limit includes the negative rail, while the
upper range limit is specified at VOO - 1 V at T A = 25°C and at VOO -1 .5 V at all other temperatures.
The use of the polysilicon-gate process and the careful input circuit design gives the TLC274 and TLC279
very good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset
voltage drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of
the phosphorus dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as
a polysilicon gate) alleviates the polarization problem, thus reducing threshold voltage shifts by more than
an order of magnitude. The offset voltage drift with time has been ca.lculated to be typically 0.1 ,N/month,
including the first month of operation.
Because of the extremely high input impedance and resulting low bias current requirements, the TLC274
and TLC279 are well suited for low-level signal processing; however, leakage currents on printed circuit
boards and sockets can easily exceed bias current requirements and cause a degradation in device
performance. It is good practice to include guard rings around inputs (similar to those of Figure 4 in the
Parameter Measurement Information section). These guards should be driven from a low-impedance source
at the same voltage level as the common-mode input (see Figure 40).
The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation.
noise performance
The noise specifications in op amp circuits are greatly dependent on the current in the first-stage differential
amplifier. The low input bias current requirements of the TLC274 and TLC279 result in a very low noise
current, which is insignificant in most applications. This feature makes the devices especially favorable
over bipolar devices when using values of circuit impedance greater than 50 kO, since bipolar devices exhibit
greater noise currents.
(a) Noninverting Amplifier
(b) Inverting Amplifier
(e) Unity·Gain Amplifier
FIGURE 40. GUARD-RING SCHEMES
output characteristics
The output stage of the TLC274 and TLC279 is designed to sink and source relatively high amounts of
current (see typical characteristics). If the output is subjected to a short-circuit condition, this high current
capability can cause device damage under certain conditions. Output current capability increases with supply
voltage.
All operating characteristics of the TLC274 and TLC279 were measured using a 20-pF load. The devices
will drive higher capacitive loads; however, as output load capacitance increases, the resulting response
pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figure 41 l.
In many cases, adding a small amount of resistance in series with the load capacitance will alleviate the
problem.
-1!1
2--622
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC274, TLC274A, TLC274B, TLC279
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
(a) CL -
20 pF. RL - No load
(b) CL -
130 pF. RL - No load
TA - 25°C
f -
1 kHz
VIPP -
1 V
-2.5 V
(c) CL -
(d) Test Circuit
150 pF. RL - No load
FIGURE 41. EFFECT OF CAPACITIVE LOADS AND TEST CIRCUIT
Although the TLC274 and TLC279 possess excellent high-level output voltage and current capability,
methods for boosting this capability are available, if needed. The simplest method involves the use of a
pullup resistor (Rp) connected from the output to the positive supply rail (see Figure 42). There are two
disadvantages to the use of this circuit. First, the NMOS pulldown transistor N4 (see equivalent schematic)
must sink a comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with
an on-resistance between approximately 60 nand 180 n, depending on how hard the op amp input is
driven. With very low values of Rp, a voltage offset from 0 V at the output will occur. Second, pullup
resistor Rp acts as a drain load to N4 and the gain of the op amp is reduced at output voltage levels where
N5 is not supplying the output current.
feedback
Op amp circuits nearly always employ feedback, and since feedback is the first prerequisite for oscillation,
some caution is appropriate. Most oscillation problems result from driving capacitive loads (discussed
previously) and ignoring stray input capacitance. A small-value capacitor connected in parallel with the
feedback resistor is an effective remedy (see Figure 43). The value of this capacitor is optimized empirically.
TEXAS
-1!1
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2--623
TLC274, TLC274A, TLC274B, TLC279
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
c
Voo
Rp _ ,..-V",O",O_-...:.V-"O,IF + IL + Ip
Ip - Pullup current required by
the op amp (typically 500 "A)
FIGURE 42. RESISTIVE PULLUP TO INCREASE VOH
FIGURE 43. COMPENSATION FOR
INPUT CAPACITANCE
electrostatic discharge protection
The TLC274 and TLC279 incorporate an internal electrostatic discharge (ESD) protection circuit that
prevents functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2.
Care should be exercised, however, when handling these devices as exposure to ESD may result in the
degradation of the device parametric performance. The protection circuit also causes the input bias currents
to be temperature-dependent and have the characteristics of a reverse-biased diode.
latch-up
Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC274
and TLC279 inputs and outputs were designed to withstand - 1OO-mA surge currents without sustaining
latch-up; however, techniques should be used to reduce the chance of latch-up whenever possible. Internal
protection diodes should not, by design, be forward biased. Applied input and output voltage should not
exceed the supply voltage by more than 300 mV. Care should be exercised when using capacitive coupling
on pulse generators. Supply transients should be shunted by the use of decoupling capacitors (0.1 flF typical)
located across the supply rails as close to the device as possible.
The current path established if latch-up occurs is usually between the positive supply rail and ground and
can be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed
the supply voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power
supply and the forward resistance of the parasitic thyristor and usually results in the destruction of the
device. The chance of latch-Up occurring increases with increasing temperature and supply voltages.
2-624 .
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC274, TLC274A, TLC274B, TLC279
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
10 kO
0.0161'F
0.0161'F
10 kO
5V
LOW PASS
' - - - - - - - - - - + - - - - - - - - H I G H PASS
5 kO
~~~------~~------~---------BANOPASS
R - 5 kO (3/d-11,
(see Note AI
NOTES:
A. d = damping factor, 1/Q
B. Normalized to 10 kll and fc
=
1 kHz
FIGURE 44. STATE VARIABLE FILTER
12 V
>-............-VO
100 kO
FIGURE 45. POSITIVE-PEAK DETECTOR
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DA~LAS. TEXAS 75265
2-625
TLC274, TLC274A, TLC274B, TLC279
LinCMOSTM PRECISION QUAD OPEATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
VI (see--41..-_ _ _ _ _ _ _ _......_ _ _ _-+__--t....-_ _ _ _ _ _---,
Note AI
1.2 k!l
100 k!l
TL431
0.47 "F
1 k!l
TIP31
15 !l
TIS193 '--'1N'v......- -.....- I
250 "F,
25 V
1>
10 k!l
Va (see
Note BI
47 k!l
110 !l
22 k!l
NOTES: A. VI ~ 3.5 to 15 V
B. Va ~ 2.0 V, 0 to 1 A
FIGURE 46. LOGIC ARRAY POWER SUPPLY
Va (see Note AI
Sl.S
9V
10 k!l
9V
0.1 "F
>-..-.... VO (see Note BI
10 k!l
/'V
47 k!l
fa -
4C(~21 [~iJ
R3
NOTES: A. VOPP ~ 8 V
B. VOPP ~ 4 V
FIGURE 47. SINGLE-SUPPLY FUNCTION GENERATOR
TEXAS
2-626
~
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLC274, TLC274A, TLC274B, TLC279
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
+5 V
10 kG
100 kG
>-...........-Vo
10 kG
10 kll
95 kG
R1,10kG
(see Note AI
-5 V
NOTE A: CMRR adjustment (must be noninductivei.
FIGURE 48. LOW-POWER INSTRUMENTATION AMPLIFIER
R
R
Vo
10 rnG
54~~CPF
RI2
fNOTCH _ _1_
2"RC
-::"
5 MG
C
C
270 pF
270 pF
FIGURE 49. SINGLE-SUPPLY TWIN-T NOTCH FILTER
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-627
2-628
LinCMOSTM
TLC27L2, TLC27L2A, TLC27L28, TLC27L7
PRECISION DUAL OPERATIONAL AMPLIFIERS
03139, OCTOBER 1987-REVISEO OCTOBER 1990
•
0, JG, OR P PACKAGE
Trimmed Offset Voltage:
TLC27L7 ... 500 p,V Max at 25°C,
VOO = 5 V
(TOP VIEWI
•
Input Offset Voltage Orift ... Typically
0.1 p,V/Month, Including the First 30 Oays
•
Wide Range of Supply Voltages over
Specified Temperature Range:
o°C to 70°C ... 3 V to 16 V
- 40°C to 85 °C . , . 4 V to 16 V
-55°C to 125°C ... 4 V to 16 V
VDD
2 OUT
2 IN21N+
FK PACKAGE
(TOP VIEWI
I::J
Cl
u O u ClU
Z~z>z
•
Single-Supply Operation
•
Common-Mode Input Voltage Range
Extends Below the Negative Rail IC-Suffix,
I-Suffix types)
•
1 aUTD8
1 IN2
7
1 IN +
3
6
GND
4
5
3
1 2019
4
18
NC
1 IN-
5
17
2 OUT
Ultralow Power .. , Typically 95 p,W at
25°C, VOO = 5 V
NC
6
16
NC
IN+
7
15
21N-
NC
8
14
NC
9 1011 12 13
•
Output Voltage Range Includes Negative
Rail
•
High Input Impedance. , , 1012
•
ESO-Protection Circuitry
•
Small-Outline Package Option Also Available
in Tape and Reel
•
Oe!iigned-In Latch-Up Immunity
(l
2
NC
Typical
NC-No internal connection
AVAILABLE OPTIONS
Vlomax
TA
at
25°C
OOC
to
70°C
-40°C
to
85°C
-55°C
p.v
PACKAGE
SMALL
CHIP
CERAMIC
PLASTIC
OUTLINE
(D)
CARRIER
DIP
DIP
(FKI
(JG)
(PI
-
-
TLC27L7CP
2 mV TLC27L2BCD
-
-
TLC27L2BCP
5 mV TLC27L2ACD
500
TLC27L7CD
-
-
TLC27L2ACP
10 mV TLC27L2CD
-
-
TLC27L2CP
500 fLY TLC27L71D
-
-
TLC27L71P
2 mV TLC27L2BID
-
-
TLC27L2BIP
5 mV TLC27L2AID
-
-
TLC27L2AIP
-
TLC27L21P
10 mV TLC27L21D
-
500 fLY TLC27L7MD
TLC27L7MFK
TLC27L7MJG
TLC27L7MP
10mV TLC27L2MD
TLC27L2MFK
TLC27L2MJG
TLC27L2MP
30
25
#I
:l 20
'2
=>
'0 15
"m
"~
""
'"
E
10
5
to
125°C
DISTRIBUTION OF TLC27L7
INPUT OFFSET VOLTAGE
The D package is available in tape and reel. Add R suffix to the device type, (e.g.,
TLC27L7CDR).
0
-800
-400
0
400
800
Vlo-lnput Offset Voltage-I'V
LinCMOS is a trademark of Texas Instroments Incorporated
PROOUCTIOII DATA documents contain information
current as of publication data, Products conform to
specifications per tho tarms of Te••s Instruments
standard warranty. Production processing does not
necessarily include testing of .11 paramBlBrs•.
TEXAS
+
Copyright © 1990, Texas Instruments Incorporated
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-£29
TLC27Lt TLC27L2A, TLC27L28, TLC27L7
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
description
The TLC27L2 and TLC27L7 dual operational amplifiers combine a wide range of input offset voltage grades
with low offset voltage drift, high input impedance, extremely low power, and high gain.
These devices use Texas Instruments silicon-gate LinCMOSTM technology, which provides offset voltage
stability far exceeding the stability available with conventional metal-gate processes.
The extremely high input impedance, low bias currents, and low power consumption make these costeffective devices ideal for high gain, low frequency, low power applications. Four offset voltage grades
are available (C-suffix and I-suffix types), ranging from the low-cost TLC27L2 (10 mV) to the high-precision
TLC27L7 (500 "V). These advantages, in combination with good common-mode rejection and supply
voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading
existing designs.
In general, many features associated with bipolar technology are available on LinCMOS'· operational
amplifiers, without the power penalties of bipolar technology. General applications such as transducer
interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are easily designed
with the TLC27L2 and TLC27L7. The devices also exhibit low voltage single-supply operation and ultralow power consumption, making them ideally suited for remote and inaccessible battery-powered
applications. The common-mode input voltage range includes the negative rail.
A wide range of packaging options is available, including small-outline and chip carrier vers.ions for highdensity system applications.
The device inputs and outputs are designed to withstand - 100-mA surge currents without sustaining
latch-up.
The TLC27L2 and TLC27L7 incorporate internal ESD-protection circuits that prevent functional failures
at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be
exercised in handling these devices as exposure to ESD may result in the degradation of the device
parametric performance.
C-suffix devices are characterized for operation from OOC to 70°C. I-suffix devices are characterized for
operation from - 40°C to 85 °C. M-suffix devices are characterized for operation over the full military
temperature range of - 55°C to 125°C.
TEXAS •
INSTRUMENlS
2-630
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7
LinCMOSTM PRECISION DUAL OPt:RATlONAL AMPLIFIERS
equivalent schematic (each amplifier)
VOO
-\1+-___
R1
IN
----4-1
P5
P6
+-____+-__...J
IN+ _ _ _
.-r---+-----+-OUT
GNO
TEXAS " ,
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-631
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7
LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18 V
Differential input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± VDD
Input voltage range, VI (any input) ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 0.3 V to VDD
Input current, II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 5 mA
Output current, 10 (each output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 30 mA
Total current into VDD terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 mA
Total current out of ground terminal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 45 mA
Duration of short-circuit current at (or below) 25 DC (see Note 3) . . . . . . . . . . . . . . . . . . .. Unlimited
Continuous total dissipation ..................... , . . . . . . . . . .. See Dissipation Rating Table
Operating free-air temperature, T A: C-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 0 DC to 70 DC
I-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 40 DC to 85 DC
M-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 55 DC to 125 DC
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65 DC to 150 DC
Case temperature for 60 seconds: FK package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 260 DC
Lead temperature 1,6 mm (1116 inch) from case for 10 seconds: D and P package ....... 260 DC
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package ........... 300 DC
NOTES:
1. All voltage
2. Differential
3. The output
dissipation
values, except differential voltages, are with respect to network ground.
voltages are at the noninverting input with respect to the inverting input.
may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
rating is not exceeded (see application section).
DISSIPATION RATING TABLE
PACKAGE
TA" 25°C
POWER RATING
725 mW
DERATING FACTOR
TA = 70°C
ABOVE TA = 25°C
5.8 mW/oC
POWER RATING
TA
= B50C
POWER RATING
TA = 125°C
POWER RATING
D
FK
464 mW
377 mW
1375 mW
11 mW/oC
880 mW
715 mW
275 mW
JG
1050 mW
8.4 mW/oC
672 mW
546 mW
210 mW
P
1000 mW
8.0 mW/oC
640 mW
520 mW
recommended operating conditions
C-SUFFIX
MIN
Common-mode input voltage, VIC
Operating free·air temperature, T A
I-SUFFIX
MAX
NOM
M-SUFFIX
MAX
MIN
NOM
MAX
3
16
4
16
4
16
-0.2
3.5
-0.2
3.5
0
3.5
10V
-0.2
8.5
-0.2
8.5
0
8.5
0
70
-40
85
-55
125
TEXAS
2~32
MIN
5 V
Supply voltage, VDD
II VDD=
VDD =
NOM
~
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 76265
UNIT
V
V
°C
TLC27L2C, TLC27L2AC, TLC27L2BC, TLC27L7C
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature,
PARAMETER
TEST CONOITIONS
TLC27L2C
TLC27L2AC
Via
Voo -=
Input offset voltage
TLC27L2BC
TLC27L7C
Va
RS
Va
RS
Va
RS
Va
RS
= 1.4 V,
= 50 G,
= 1.4 V,
= 50O,
= l.4V,
= 50 G,
= 1.4 V,
= 50 G,
5
V (unless
TAt
= 0,
RL = 1 MG
VIC = 0,
RL = 1 MG
VIC = 0,
RL = 1 MG
VIC = 0,
RL = 1 MG
VIC
Average temperature coefficient
MIN
25°C
of input offset voltage
110
Input offset current (see Note 4)
Va
=
2.5 V,
VIC
=
2.5 V
liB
Input bias current (see Note 4)
Va
=
2.5 V,
VIC
=
2.5 V
MAX
1.1
10
12
25°C
0.9
5
204
2000
Full range
Full range
3000
25°C
170
Full range
500
mV
I'V
1500
1.1
70°C
25°C
0.1
70°C
7
25°C
0.6
70°C
50
-0.2
Common-mode input
UNIT
6.5
25°C
25°C
VICR
TYP
Full range
25°C to
"'via
otherwise noted)
"V/oc
300
600
pA
pA
-0.3
to
to
4
4.2
V
-0.2
voltage range (see Note 5)
Full range
V
to
3.5
VOH
VOL
High-level output voltage
Low-level output voltage
Large-signal differential
AVO
voltage amplification
CMRR Common-mode rejection ratio
Supply-voltage rejection ratio
kSVR
100
(AVOO/AVIO)
=
VIO
=
VID
Va
100 mY,
=
-100mV,
0.25 V to 2 V,
=
VIC
VOO
10L
RL
=
=
=
1 MG
0
1 MG
VICR min
=
=
RL
Supply current
Va
(two amplifiers)
No load
5 V to 10 V,
2.5 V,
Va
VIC
=
=
1.4 V
2.5 V,
25°C
OoC
3.2
3
4.1
4.1
70°C
3
4.2
V
25°C
0
50
O°C
0
50
70°C
0
50
25°C
50
700
O°C
50
700
70°C
50
380
25°C
OoC
65
94
60
95
70°C
60
95
25°C
OoC
70
97
60
97
70°C
60
98
mV
V/mV
dB
dB
25°C
20
34
O°C
24
42
70°C
16
28
p.A
tFull range is O°C to 70°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-633
TLC21L2C, TLC21L2AC. TLC21L2BC. TLC21L7C
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature,
PARAMETER
TEST CONDITIONS
TLC27L2C
TLC27L2AC
Via
Voo
Input offset voltage
TLC27L2BC
TLC27L7C
Va = 1.4 V,
TAt
VIC = 0,
RS = 50 0,
RL = 1 MO
Va = l.4V,
VIC = 0,
RS = 50 0,
RL = 1 MO
Va = 1.4 V,
VIC = 0,
RS = 50 0,
RL = 1 MO
Va = l.4V,
VIC = 0,
RS = 50 0,
RL = 1 MO
Average temperature coefficient
o'VIO
110
liB
Input bias current Isee Note 4)
MIN
25°C
VIC = 5 V
Va = 5 V,
VIC = 5 V
10
0.9
Full range
235
25°C
Full range
25°C
190
,N
p.V/oC
1
0.1
25°C
8
25°C
0.7
70°C
voltage range Isee Note 5)
800
1900
70°C
25°C
mV
2000
3000
Full range
Common-mode input
5
UNIT
6.5
50
-0.2
VICR
MAX
1.1
12
25°C
70°C
Va = 5 V,
TYP
Full range
25°C to
of input offset voltage
Input offset current (see Note 4)
10 V (unless otherwise noted)
300
600
pA
pA
-0.3
to
to
9
9.2
V
-0.2
Full range
to
V
8.5
VOH
VOL
High-level output voltage
Low-level output voltage
VID = 100 mY,
VID = -100 mY,
RL = 1 MO
10L =
a
25°C
8
8.9
O°C
7.8
8.9
70°C
7.8
8.9
a
a
a
25°C
OOG
70°C
Large-signal differential
AVO
voltage amplification
CMRR Common-mode rejection ratio
Supply-voltage rejection ratio
kSVR
100
ILl VOO/LI Via)
Va = 1 V to 6 V,
RL = 1 MO
VIC = VICR min
VOO = 5 V to 10 V,
Supply current
Va = 5 V,
(two amplifiers)
No load
Va = 1.4 V
VIC =·5 V,
25°C
50
860
O°C
50
1025
70°C
50
660
25°C
ooC
65
97
60
97
70°C
60
97
25°C
ooC
70
97
60
97
70°C
60
98
29
V
50
50
V/mV
dB
dB
25°C
ooc
36
46
66
70°C
22
40
tFul1 range is OOC to 70°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
TEXAS ~
2-634
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
mV
50
p.A
TLC21L21, TLC21L2AI, TLC21L2BI, TLC21L71
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature,
PARAMETER
TEST CONDITIONS
TLC27L21
TLC27L2AI
VIO
Voo
Input offset voltage
TLC27L2BI
TLC27L71
Vo
~
RS
~
Vo
VIC
Vo
= 1.4 V,
= 50 Il,
= 1.4 V,
= 50 Il,
= 1.4 V,
RS
~
RL
RS
Vo
RS
1.4 V,
VIC
TAt
~
0,
= 1 Mil
= 0,
RL = 1 MD
VIC = 0,
RL = 1 Mil
VIC = 0,
50 D,
RL
50 D,
~
1 Mil
MIN
25°C
of input offset voltage
Input offset current (see Note 4)
Vo
=
2.5 V,
VIC
=
2.5 V
liB
Input bias current (see Note 4)
Vo
=
2.5 V,
VIC
=
2.5 V
10
0.9
5
240
2000
Full range
Full range
3500
25°C
200
Full range
mV
~V
2000
25°C
0.1
24
25°C
0.6
85°C
200
-0.2
voltage range (see Note 5)
900
MV/oC
1.1
85°C
Common-mode input
UNIT
7
25°C
25°C
VICR
MAX
1.1
13
25°C
85°C
110
TYP
Full range
25°C to
Average temperature coefficient
aVIO
5 V (unless otherwise noted)
1000
2000
pA
pA
-0.3
to
to
4
4.2
V
-0.2
Full range
V
to
3.5
VOH
VOL
High-level output voltage
Low-level output voltage
Large-signal differential
AVO
voltage amplification
CMRR Common-mode rejection ratio
=
VID
=
VID
Vo
=
100
(L>VOO/L> VIO)
-100 mV,
0.25 V to 2 V,
RL
10L
RL
=
=
=
1 Mil
0
1 Mil
VIC ~ VICR min
Supply-voltage rejection ratio
kSVR
100 mV,
VOO
=
=
5 V to 10 V,
Supply current
Vo
(two amplifiers)
No load
2.5 V,
Vo
VIC
=
1.4 V
=
2.5 V,
25°C
3.2
4.1
-40°C
3
4.1
85°C
3
4.2
V
25°C
0
50
-40°C
0
50
85°C
0
50
25°C
50
480
-40°C
50
900
85°C
50
330
25°C
65
94
-40°C
60
95
85°C
60
95
25°C
70
97
-40°C
60
97
85°C
60
98
mV
V/mV
dB
dB
25°C
20
-40°C
31
34
54
85°C
15
26
MA
tFull range is -40°C to 85°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-635
TLC27L21, TLC27L2AI, TLC27L2BI, TLC27L71
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature,
PARAMETER
TLC27L21
TLC27L2AI
Via
Voo
TEST CONDITIONS
Input offset voltage
TLC27L2BI
TLC27L71
TAt
Va = 1.4 V,
RS = 50 n,
VIC = 0,
Va = 1.4 V,
VIC = 0,
RS
=
RL = 1 Mn
= 1 Mn
VIC = 0,
RL = 1 Mn
VIC = 0,
RL = 1 Mn
50 n,
RL
Va = 1.4 V,
RS
=
50 n,
VO=l.4V,
RS
=
50 n,
Average temperature coefficient
"'VIO
of input offset voltage
110
Input offset current (see Note 4)
liB
Input bias current (see Note 4)
10 V (unless otherwise noted)
MIN
25°C
Va = 5 V,
VIC
=
5 V
13
Full range
235
25°C
Full range
25°C
190
0.1
26
25°C
0.7
220
85°C
Full range
".V
".V/oC
1
25°C
voltage range (see Note 5)
800
2900
85°C
25°C
mV
2000
3500
Full range
Common-mode input
5
UNIT
7
-0.2
VICR
10
0.9
25°C
85°C
VIC = 5 V
MAX
1.1
Full range
25°C to
Va = 5 V,
TYP
1000
2000
pA
pA
-0.3
to
to
9
-0.2
9.2
V
to
V
8.5
VOH
VOL
High-level output voltage
Low-level output voltage
Large-signal differential
AVD
voltage amplification
CMRR Common-mode rejection ratio
Supply-voltage rejection ratio
kSVR
IDD
(Ll.VDD/Ll.VIO)
VID = 100 mY,
=
VID
Va
=
-100 mY,
1 V to 6 V,
RL
=
1 Mn
IOL = 0
RL
=
1 Mn
VIC = VICR min
VDD
=
5 V to 10 V,
Supply Current
Vo = 5 V,
(two amplifiers)
No load
Va = 1.4 V
VIC = 5 V,
25°C
8
-40°C
7.8
8.9
8.9
85°C
7.8
8.9
V
25°C
0
50
-40°C
0
50
85°C
0
50
25°C
50
860
-40°C
50
1550
85°C
50
585
25°C
65
97
-40°C
60
97
85°C
60
98
97
25°C
70
-40°C
60
97
85°C
60
98
Vim V
dB
dB
25°C
29
46
-40°C
49
86
85°C
20
36
tFul1 range is -40°C to 85°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
TEXAS ~
INSTRUMENTS
2-636
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
mV
p.A
TLC21L2M, TLC21L7M
LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature,
PARAMETER
TEST CONDITIONS
TLC27L2M
Via
Voo
Input offset voltage
TLC27L7M
Va
~
1.4 V,
5 V (unless otherwise noted)
TAt
VIC = 0,
RS = 50 n,
RL = 1 Mn
Va = 1.4 V,
VIC = 0,
RS = 50 n,
RL = 1 Mn
Average temperature coefficient
MIN
25°C
of input offset voltage
110
Input offset current (see Note 41
Vo = 2.5 V,
VIC
liB
Input bias current (see Note 4)
Va = 2.5 V,
VIC = 2.5 V
2.5 V
170
500
Full range
3750
25°C
0.1
125°C
1.4
25°C
0.6
125°C
9
-0.3
25°C
Common-mode input
voltage range (see Note 5)
to
to
4
4.2
UNIT
mV
~V
~V/oC
1.4
0
VICR
10
12
25°C
125°C
~
MAX
1.1
Full range
25°C to
"'via
TYP
pA
15
nA
pA
35
nA
V
0
Full range
to
V
3.5
VOH
VOL
High-level output voltage
Low-level output voltage
Large-signal differential
AVO
voltage amplification
CMRR Common-mode rejection ratio
Supply-voltage rejection ratio
kSVR
100
(Ll.VDo/Ll.VIO)
VIO = 100 mY,
VIO = -100mV,
Va = 0.25 V to 2 V,
RL = 1 Mn
10L = 0
RL = 1 Mn
VIC = VICR min
VOO = 5Vto10V,
Supply current
Va = 2.5 V,
(two amplifiers)
No load
Va = 1.4 V
VIC = 2.5 V,
25°C
3.2
4.1
-55°C
125 DC
3
4.1
3
4.2
V
25 DC
0
50
- 55°C
125 DC
0
50
0
50
25 DC
50
500
- 55°C
25
1000
125°C
25 DC
25
200
65
94
- 55 DC
125 DC
60
95
60
85
97
25°C
70
- 55°C
60
97
125°C
60
98
mV
V/mV
dB
dB
25°C
20
34
- 55 DC
125 DC
35
60
14
24
I'A
tFull range is - 55°C to 125 DC.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-637
TLC27L2M, TLC27L7M
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature,
PARAMETER
TLC27l2M
VIO
Voo
TEST CONDITIONS
Input offset voltage
TlC27l7M
Vo
RS
Vo
RS
= 1.4 V,
= 50 fl,
= 1.4 V,
= 50 fl,
TAt
= 0,
Rl = 1 Mfl
VIC = 0,
Rl = 1 Mfl
VIC
Average temperature coefficient
"VIO
of input offset voltage
110
Input offset current (see Note 41
liB
Input bias current (see Note 41
10 V (unless otherwise noted)
MIN
25°C
Vo
=
5 V,
5 V,
VIC
VIC
=
=
5V
5V
25°C
190
Full range
25°C
0.1
1.8
25°C
0.7
125°C
10
25°C
voltage range (see Note 51
UNIT
mV
,"V
,"V/oC
1.4
125°C
Common-mode input
800
4300
0
VICR
10
12
125°C
=
MAX
1.1
Full range
25°C to
Vo
TYP
pA
15
nA
pA
35
nA
-0.3
to
to
9
9.2
V
0
Full range
V
to
8.5
VOH
VOL
High-level output voltage
low-level output voltage
voltage amplification
CMRR Common-mode rejection ratio
Vo
=
100
(6. VOO/6. ViOl
-100 mV,
1 V to 6 V,
=
VIC
Supply-voltage rejection ratio
kSVR
100 mV,
=
VID
large-signal differential
AVO
=
VID
VOO
10l
RL
=
=
=
1 Mfl
0
1 Mfl
VICR min
=
=
Rl
Supply current
Vo
(two amplifiersl
No load
5 V to 10 V,
5 V,
Vo
VIC
=
=
1.4 V
5 V,
25°C
8
8.9
- 55°C
7.8
8.8
125°C
7.8
9
V
25°C
0
50
- 55°C
0
50
125°C
0
50
25°C
50
860
- 55°C
25
1750
125°C
25
380
25°C
65
97
- 55°C
60
97
125°C
60
91
97
25°C
70
- 55°C
60
97
125°C
60
98
V/mV
dB
dB
25°C
29
46
- 55°C
56
96
125°C
18
30
tFuil range is - 55°C to 125°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
TEXAS •
INSTRUMENTS
2-638
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
mV
~A
TLC27L2C, TLC27L2AC, TLC27L2BC, TLC27L7C
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
operating characteristics. VOO = 5 V
PARAMETER
SR
Slew rate at unity gain
TEST CONDITIONS
RL
~
1 MO.
CL
~
20 pF.
See Figure 1
Vn
BaM
Bl
m
1 kHz,
BOM
Bl
..........- .....-vo
>-4IH~-.>--
vo
RL
voo(b) Split-Supply
(a) Single-Supply
FIGURE 1. UNITY-GAIN AMPLIFIER
10 kll
10 kll
Voo+
1/2 Voo
Vo
Vo
100 Il
(a) Single-Supply
(b) Split-Supply
FIGURE 2. NOISE TEST CIRCUIT
10 kO
10 kO
1000
1/2 Voo - - - - I
-=
Voo-
(a) Single-Supply
(b) Split-Supply
FIGURE 3. GAIN-OF-100 INVERTING AMPLIFIER
TEXAS . "
INSTRUMENTS
2-642
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
PARAMETER MEASUREMENT INFORMATION
input bias current
Because of the high input impedance of the TLC27L2 and TLC27L 7 op amps, attempts to measure the
input bias current can result in erroneous readings. The bias current at normal room ambient temperature
is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions
are offered to avoid erroneous measurements:
1. Isolate the device from other potential leakage sources. Use a grounded shield around and between
the device inputs (see Figure 4). Leakages that would otherwise flow to the inputs will be shunted
away.
2. Compensate for the leakage of the test socket by actually performing an input bias current test (using
a picoammeter) with no device in the test socket. The actual input bias current can then be calculated
by subtracting the "open-socket" leakage readings from the readings obtained with a device in the
test socket.
One word of caution ... many automatic testers as well as some bench-top op amp testers use the
servo-loop technique with a resistor in series with the device input to measure the input bias current
(the voltage drop across the series resistor is measured and the bias current is calculated). This method
requires that a device be inserted into the test socket to obtain a correct reading; therefore, an "opensocket" reading is not feasible using this method.
8
--
5
CC C
v-
CC C
-
VIC
4
FIGURE 4. ISOLATION METAL AROUND DEVICE INPUTS
(JG AND P DUAL-IN-LiNE-PACKAGEI
low-level output voltage
To obtain low-supply-voltage operation, some compromise was necessary in the input stage. This
compromise results in the device low-level output being dependent on both the common-mode input voltage
level as well as the differential input voltage level. When attempting to correlate low-level output readings
with those quoted in the electrical specifications, these two conditions should be observed. If conditions
other than these are to be used, please refer to Figures 14 through 19 in the Typical Characteristics of
this data sheet.
input offset voltage temperature coefficient
Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage.
This parameter is actually a calculation using input offset voltage measurements obtained at two different
temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both
the device and the test socket. This moisture will result in leakage and contact resistance, which can cause
erroneous input offset voltage readings. The isolation techniques previously mentioned have no effect on
the leakage since the moisture also covers the isolation metal itself, thereby rendering it useless. It is
\ suggested that these measurements be performed at temperatures above freezing to minimize error.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-643
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
PARAMETER MEASUREMENT INFORMATION
full-power response
FUll-power response, the frequency above which the op amp slew rate limits the output voltage swing,
is often specified two ways ... full-linear response and full-peak response. The full-linear response is
generally measured by monitoring the distortion level of the output while increasing the frequency of a
sinusoidal input signal until the maximum frequency is found above which the output contains significant
distortion. The full-peak response is defined as the maximum output frequency, without regard to distortion,
above which full peak-to-peak output swing cannot be maintained.
Because there is no industry-wide accepted value for "significant" distortion, the full-peak response is
specified in this data sheet and is measured using the circuit of Figure 1. The initial setup involves the
use of a sinusoidal input to determine the maximum peak-to-peak output of the device (the amplitude of
the sinusoidal wave is increased until clipping occurs). The sinusoidal wave is then replaced with a square
wave of the same amplitude. The frequency is then increased until the maximum peak-to-peak output
can no longer be maintained (Figure 5). A square wave is used to allow a more accurate determination
of the point at which the maximum peak-to-peak output is reached.
(a) f - 100 Hz
11 A
(b) BOM > f > 100 Hz
(e) f -
BOM
(d) f
> BOM
FIGURE 5. FULL-POWER-RESPONSE OUTPUT SIGNAL
test time
Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume, shorttest-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET devices
and require longer test times than their bipolar and BiFET counterparts. The problem becomes more
pronounced with reduced supply levels and lower temperatures.
~
TEXAS
INSTRUMENTS
2-644
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
LinCMOSTM
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7
PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
DISTRIBUTION OF TLC27L2
INPUT OFFSET VOLTAGE
DISTRIBUTION OF TLC27L2
INPUT OFFSET VOLTAGE
70
60
#. 50
I
!l
";:
;:)
905 Amplifiers
VOO - 5 V
TA - 25°C
P Package
60
P Package
#.I 501----+---~--+---~
!l
";:
...
40
;:)
o
30
B 30 r---+---~_r--~
'0
C
4>
"lii
c.
401----+---~--+---~
4>
4>
!:
905 Amplifiers
VOO - 10 V
TA - 25 0C ---i--~---i--~---i--~--t
r::
4>
"
~ 201----+---~--+---~
20
10
oL-................-
-5 -4 -3 -2 -1
0
2
3
4
Vlo-lnput Offset Voltage-mV
0&.-................-5 -4 -3 -2 -1 0
2
3
4
Vlo-lnput Offset Voltage-mV
5
FIGURE 7
FIGURE 6
DISTRIBUTION OF TLC27L2 AND TLC27L7
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
DISTRIBUTION OF TLC27L2 AND TLC27L7
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
356 Amplifiers tested
356 Amplifiers tested
60
60 VOO - 5 V
TA - 25°C to 125°C
'"
P Package
50
#.
i
VOO - 10 V
TA - 25°C to 125°C
P Package
I 50
.~
...;:)o
5
!l
";:
40
;:) 40
4>
B
30 I----+-----il---+--+r::
4>
"
~ 20r-_r--r-~~-
10
0--..............I11III·
-10-8-6-4-20246810
"'VIO- Temperature Coefficient-I'V/oC
r-_r--~--+--
0L.-..J..-~1111/111//11
-10-8-6-4-20246810
"'VIO - Temperature Coefficient -I'V1°C
FIGURE 8
FIGURE 9
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 " DALLAS, TEXAS 75265
2-645
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
16
5r---~----~----~----~----~
VIO - 100 rnV
TA - 25°C
>
..
I
14 I'--.
--........
Cl
!
'0
>
;
...
12
10
Co
:::I
o
a;
8
r---
..............
>
......
16 V
~ ............
~
~-10V
i'--
J:.
Cl
I
0 -
~
!l 6
:f
-..::e.
VID - 100 rnV
TA - 25°C
4
::t
~ 2
o
o
OL---~----~--~----~--~
-10
o
-2
-4
-6
-8
IOH-Hlgh-Level Output Current-rnA
-20
-40
-10
-30
IOH - High-Level Output Current - rnA
FIGURE 10
FIGURE 11
HIGH-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
HIGH-LEVEL OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
VOO - 1.6
16
>
..
14
!::
12
>...
10
I
Cl
."
VIO - 100 rnV
RL - 1 MO
TA - 25°C
:::I
..
a;
J:.
8
I
::t
0
>
6
4
/
2
o
>
o
2
V
4
/
;
VOO - 1.9
o
VOO-2.0
!l
VOO-2.1
S:::I
V
/
Cl
:f
Cl
'0
/
>
.....
..
! VOO-1.8
V
S:::I
0
~ VOO - 1.7 I-----'!"""'-:--+--+---+
/
0
r----,----,..--r--~-.,..--_r_-r-....,
~
/
J:.
Cl
~
VOO-2.2
::t
~
6
8
10
12
VOO-Supply Voltage-V
14
16
VOO-2.3
----Io".---t-.-----+--t---"-.,r--+--j------I
........+ - - I
---~I------i"-~+----t--+
=rI1~+j~_--I
VOO - 2.4 '--_I...-......I_ ......._-l.._.....1..._~_....--1
-75 -50 -25 0
25 50 75 100 125
T A - Free-Air Ternperature- °C
FIGURE 13
FIGURE 12
t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
~
TEXAS
INSTRUMENTS
2-646
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC27L2. TLC27L2A. TLC27L2B. TLC27L7
LinCMOS"" PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
LOW-LEVEL OUTPUT VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
LOW-LEVEL OUTPUT VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
700
>
E
I
8.
l!!
600
..
~
t\
::::I
o~
500r-~~--~-'--~-r--~~~~
VOO - 5 V
- - - IOL - 5 mATA - 25 DC
C)
~
.3
....I
o
-100 mV
100
\
]
","'-
400
"
-1 V.......
VIO I
I
-1V
I
- 2.5 V --r----t----r--;
----
I
~
~ ~r-..
.......
r-::: f:::::
>
2
3
--
250L-1-1--L-L:!~==t=t=1-J
o
4
Vlc-Common-Mode Input Voltage-V
2
4
6
8
Vlc-Common-Mode Input Voltage-V
FIGURE 14
~
700
I
III
C)
~
600
I
~.
o
~
::::I
5-
LOW-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
c5
~
.3
....I
~ 800
+---
I
I
1
~
300
VOO-10V200
700
g
600
'5
Co
'5
o
500
Qj
r--
5 mA
VIO - -1 V
VIC - 0.5 V
-
.3
~
.3
....I
VOO - 5 V
300
Y
/V
)/
400
>
~-----~~
200
fo-'
---
V
r'"
V
/
/"'"
V
VOO - 10 V
o 100
~ 100
o
o
8.
f--- IOL -
~
I
'\. VOO - 5 V
'\.
400
.......
]
900
I
IOL - 5 mA
VIC - IVIO/21
TA - 25 DC
I
500
I
10
FIGURE 15
LOW-LEVEL OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
800
J+
I--++---+---+-----t--------t~
"0
>
\VID -
- 10 V
. IOL - 5 mA
- TA - 25 D C -
E
~ 450w-~--r-~~
l!!
500
I VO~
>
>
-2
-4
-6
o
-8
-10
VID-Oifferentiallnput Voltage-V
-75 -50 -25
0
25 50
75 100 125
T A - Free-Air Temperature - DC
FIGURE 17
FIGURE 16
t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-647
TLC27L2, TLC27L2A, TLC21L2B, TlC21L7
LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
LOW-LEVEL OUTPUT VOLTAGE
1.0
LOW-LEVEL OUTPUT VOLTAGE
vs
vs
LOW-LEVEL OUTPUT CURRENT
LOW-LEVEL OUTPUT CURRENT
I
3.0
I
0.9 - VID - -1V
I
VIC - 0.5 V
(I)
CI O.S
-TA - 25°C
..
~
0
VOO -
0.7
>
...
::J
0::J
...
VOO - 4 ~
0.6
0
VOO -
0.5
Qj
>
(I)
...I
0.4
0
0.3
~
...I
0.2
>
5y
t
~
/
...
0.1
o/
o
#
1/
VOO -
o
VOO - 10,/
1.5
Qj
~
.3
~
V
I
5 0 .5
>
23456
7
IOL -Low-Level Output Current-rnA
V
o
o
S
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
~ 2000r-~--~--~--~~r-~--~~
~ 2000
~
~
RL - 1 MO -+--~c--------t",.c:.--+--=..4=---I
c
~ 1600r-~--+--+--V~~~T--r-~
fl
.~
1S00
1600
()
~ 1400r-~--+--+~-h~~-+--~~
~ 1400
~
~
1200 .--t--+-+--/-+---II---+--="""'~
(I)
~1000r-~--+-+~-~~~-~~~=--i
~ SOOr-~--4~-+'~-b~~-T--=~~
1&
<=c
2!
(I)
600
;e
400
I
200
>
SOO
.~
600
1&
~
2
4
6
S
10 12
VOO-Supply Voltage-V
14
\
1200
'0
Q
0
\
16
VOO - 10 V
~
(I)
~I
0
RL - 1 MIJ_
\
~ 1000
2!
Q
Q
30
FIGURE 19
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
0-
7
/
5
10
15
20
25
IOL -Low-Level Output Current-rnA
FIGURE 18
1S00
/
/
.3 1.0
~
16vj
2.0
::J
0-
S
/ ~
I
...I
0
3~ ~
I
VIO - -1 V
>
I 2.5 VIC - 0.5 V
TA - 25°C
>
'-....
""
~
VOO - 5 V .......
400
200
r-....
....... ~
~
...........
.......
r..........
r-- r-
o
-75 -50-25 o 25 50 75 100 125
TA - Free-Air Temperature - °C
FIGURE 21
FIGURE 20
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSTRUMENTS
2-648
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
COMMON-MODE
INPUT VOLTAGE POSITIVE LIMIT
INPUT BIAS CURRENT AND INPUT OFFSET CURRENT
vs
vs
FREE-AIR TEMPERATURE
SUPPLY VOLTAGE
10000
16
/
..
L-
>
/
100
:; 10
CI.
.E
~ 8
o
/
110
()
I
./
g.
/
10
'0
:!!
/
§
C
dI
~
;
,
'"
"0
liB
:;
/V
II>
!! 12
CI.
!
6
E
E
;
8
,
-/
4
I
->
,
;
45
105
65
85
TA-Free-Air Temperature- DC
2
o
o
125
16
SUPPLY CURRENT
vs
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
90
60
TA -
Vo - VOO/2
No load
80
-55 D C
70
c(
.
"I 60
c
"I 40
c
~
~
::s
::s 50
()
()
a::s 40
~
30
\.
'\
',,-
CI.
CI.
CI.
::s
(/)
(/)
I 30
I
20
Q
Q
I\.
'\
'I
_I
~ooa 10 V
~ ........... ~ '-......
-..............
VOO - 5 V
9
20
Vo - VOO/2
No load
\
50
9
14
FIGURE 23
SUPPLY CURRENT
.
v
10
12
4
6
8
VOO-Supply Voltage-V
2
FIGURE 22
c(
/
v
/
/
/
/
/
/
()
0.1
25
/
~ 14
./
c(
I
c
2~DC
TAI-
Voo - 10 V
VIC - 5 V
1000 ESee Note 4
--
:--- t--
10
10
0
0
2
10 12
6
8
4
VOO-Supply Voltage-V
14
16
o
-75 -50 -25 0
25
50 75 100 125
TA-Free-Air Temperature- DC
FIGURE 25
FIGURE 24
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
NOTE 4: The typical values of input bias current and input offset current below 5 pA were determined mathematically.
TEXAS •
INSTRUMENTS
POST OFFICE BOX 665303 • DALLAS. TEXAS 75265
2-649
TLC27L2, TLC27L2A, TLC27L28, TLC27L7
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
SLEW RATE
vs
SUPPLY VOLTAGE
SLEW RATE
vs
FREE-AIR TEMPERATURE
0.07
AV I = 1 1
VIPP = 1 V
Rl = 1 MO
Cl = 20 pF
TA = 25°C
See Figure 1
0.06
~
:>
I
0.05
!
0.04 -
~
0.03
a:
iii
./
V/
/'
/'
V
~
:>
I
!!!
.,
a:
/'
0.04I----"'jo......,.--+-+--+--''''''d~
~
.! 0.031--f--f+--+=--...t:-"'"""-..t--+-""""",p....-I
/
I
0.07 ~"""-'""T""--r---'-....,..-..,....-""--.....,
Rl = 1 MO
Cl
= 20 pF
0.061----1-:-0.....-+
AV = 1
See Figure 1
0.051-----,1---t"""""-'r''''''-::--+--t---+--+----1
til
I
~ 0.02
~ 0.02
0.011----I---+--+--VOO = 5 V
VIPP = 2.5 V
0.01
0.00
1.4
1.3
..,
1.2
CD
a: 1.1
~
CD
iii 1.0
"C
CD
.~
iii
0.9
E
0 0.8
0.001...---1._....1.._......._.1....--1__--1._....1..---1
o
2
6
8
10 12
4
VOO-Supply Voltage-V
14
16
-75 -50 -25 0
25 50
75 100 125
TA - Free-Air Temperature - °C
FIGURE 26
FIGURE 27
NORMALIZED SLEW RATE
vs
FREE-AIR TEMPERATURE
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
10
,
~
VOO =
Av = 1
VIPP = 1 VRl = 1 Mn_
Cl = 20 pF
VOO = 10 V
5~
~
".
0.7
0.6
8
.,
7
0
.
6
:I
5 -VOO = 5V
0
4
I
.t::
>
So
:I
~
\\1\
>
CD
Cl
~
2
9
\
11111
I I IIIIII
I
l:
0
r0
>
I
-
1\
1\
I IIIIII
1\\
Rl = 1 MO
See Figure 1
I
'\
0.5
-75 -50 -25 0
25
50 75 100 125
TA - Free-Air Temperature - °C
'< '\
11111
3
2
TA - 125°C
TA - 25°C
VTA _ -55°C
VOO = 1OV\r--..
I I
o
0.1
FIGURE 28
!~ ~
i I IIII
......
11111
10
f-Frequency-kHz
100
FIGURE 29
toata at high and low temperatures are applicable only within the rated operating free·air temperature ranges of the various devices.
-1!1
TEXAS
INSTRUMENTS
2~50
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLC21L2, TLC21L2A, TLC21L28, TLC21L7
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
UNITY-GAIN BANDWIDTH
vs
FREE-AIR TEMPERATURE
SUPPLY VOLTAGE
150
I
I\.
...I
-5
'C
°i
'C
c
\
110
I\.
"\
90
c
°iii
f'..
/
...
'C
!c
~
10 3
""
- 10 V
RL = 1 MO TA = 25°C
~
I-".
~
102
~
....
30° .:::
"~vo
"'-
:c
60°
Gl
-e-
o
I
VOO - 5 V
Vi - 10 mV_
TA = 25°C
See Figure 3
"'""'-
.s::
25
r'\.
'\
FIGURE 35
I
'"
'"
-e- 24
37
Gl
~
28
PHASE MARGIN
vs
CAPACITIVE LOAD
~
""'"
I
VOO - 5 V Vi = 10 mV _
CL = 20 pF
See Figure 3 -
.s::
FIGURE 34
:l 35
I
...............
Vi = 10 mV
_ CL = 20 pF
40
TA - 25°C
See Figure 3
~ 38
5:
.!
a.
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
"-..... r---....
5Q.
.5
"'""-
40
80
60
CL -Capacitive Load-pF
75
E
Gl
~
50
':;
C'
"'"
100
LJ
c
>
25
o
1
10
100
f-Frequency-Hz
1000
FIGURE 37
FIGURE 36
tO ata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS •
INSTRUMENTS
2-652
POST OFFICE BOX 655303 ' DALLAS. TEXAS 75265
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
single-supply operation
While the TLC27L2 and TLC27L 7 perform well using dual power supplies (also called balanced or split
supplies), the design is optimized for single-supply operation. This design includes an input common-mode
voltage range that encompasses ground as well as an output voltage range that pulls down to ground.
The supply voltage range extends down to 3 V (C-suffix types), thus allowing operation with supply levels
commonly available for TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply
operation is recommended.
Many single-supply applications require that a voltage be applied to one input to establish a reference level
that is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see
Figure 38). The low input bias current of the TLC27L2 and TLC27L7 permits the use of very large resistive
values to implement the voltage divider, thus minimizing power consumption.
The TLC27L2 and TLC27L7 work well in conjunction with digital logic; however, when powering both
linear devices and digital logic from the same power supply, the following precautions are recommended:
1. Power the linear devices from separate bypassed supply lines (see Figure 39); otherwise the linear
device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital
logic.
2. Use proper bypass techniques to reduce the probability of noi~e-induced errors. Single capacitive
decoupling is often adequate; however, high-frequency applications may require RC decoupling.
voo
R3
VREF - Voo R1
+ R3
Vo
FIGURE 38. INVERTING AMPLIFIER WITH VOLTAGE REFERENCE
(a) Common Supply Rails
(bl Separate Bypassed Supply Rails (preferred)
FIGURE 39. COMMON VS SEPARATE SUPPLY RAILS
TEXAS •
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-653
TLC27L2, TLC27L2A, TLC27L28, TLC27L7
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
input characteristics
The TLC27L2 and TLC27L7 are specified with a minimum and a maximum input voltage that, if exceeded
at either input, could cause the device to malfunction. Exceeding this specified range isa common problem,
especially in single-supply operation. Note that the lower range limit includes the negative rail, while the
upper range limit is specified at VOO -1 Vat T A = 25 DC and at VOO -1.5 V at all other temperatures.
The use of the polysilicon-gate process and the careful input circuit design gives the TLC27L2 and TLC27L7
very good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset
voltage drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of
the phosphorus dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as
a polysilicon gate) alleviates the polarization problem, thus reducing threshold voltage shifts by more than
an order of magnitude. The offset voltage drift with time has been calculated to be typically 0.1 /LV/month,
including the first month of operation.
Because of the extremely high input impedance and resulting low bias current requirements, the TLC27L2
and TLC27L 7 are well suited for low-level signal processing; however, leakage currents on printed circuit
boards and sockets can easily exceed bias current requirements and cause a degradation in device
performance. It is good practice to include guard rings around inputs (similar to those of Figure 4 in the
Parameter Measurement Information section). These guards should be driven from a low-impedance source
at the same voltage level as the common-mode input (see Figure 40).
The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation.
noise performance
The noise specifications in op amp circuits are greatly dependent on the current in the first-stage differential
amplifier. The low input bias current requirements of the TLC27L2 and TLC27L7 result in a very low noise
current, which is insignificant in most applications. This feature makes the devices especially favorable
over bipolar devices when using values of circuit impedance greater than 50 kfl, since bipolar devices exhibit
greater noise currents.
(a) Noninverting Amplifier
(b) Inverting Amplifier
(e) Unity-Gain Amplifier
FIGURE 40. GUARD-RING SCHEMES
output characteristics
The output stage of the TLC27L2 and TLC27L7 is designed to sink and source relatively high amounts
of current (see typical characteristics). If the output is subjected to a short-circuit condition, this high current
capability can cause device damage under certain conditions. Output current capability increases with supply
voltage.
All operating characteristics of the TLC27L2 and TLC27L7 were measured using a 20-pF load. The devices
will drive higher capacitive loads; however, as output load capacitance increases, the resulting response
pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figure 41).
In many cases, adding a small amount of resistance in series with the load capacitance will alleviate the
problem.
-I!}
TEXAS
INSTRUMENTS
2-654
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
(b) CL - 260 pF, RL - No load
(a) CL - 20 pF, RL - No load
2.5 V
Va
CL
TA - 25°C
f - 1 kHz
VIPP - 1 V
-2.5 V
(d)
(c) CL - 310 pF, RL - No load
Te~t
Circuit
FIGURE 41. EFFECT OF CAPACITIVE LOADS AND TEST CIRCUIT
Although the TLC27L2 and TLC27L7 possess excellent high-level output voltage and current capability,
methods for boosting this capability are available, if needed. The simplest method involves the use of a
pullup resistor (Rp) connected from the output to the positive supply rail (see Figure 42). There are two
disadvantages to the use of this circuit. First, the NMOS pulldown transistor N4 (see equivalent schematic)
must sink a comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with
an on-resistance between approximately 60 Q and 180 Q, depending on how hard the op amp input is
driven. With very low values of Rp, a voltage offset from 0 V at the output will occur. Second, pullup
resistor Rp acts as a drain load to N4 and the gain of the op amp is reduced at output voltage levels where
N5 is not supplying the output current.
feedback
Op amp circuits nearly always employ feedback, and since feedback is the first prerequisite for oscillation,
some caution is appropriate. Most oscillation problems result from driving capacitive loads (discussed
previously) and ignoring stray input capacitance. A small-value capacitor connected in parallel with the
feedback resistor is an effective remedy (see Figure 43). The value of this capacitor is optimized empirically.
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-655
TLC27L2, TLC27L2A, TLC27L28, TLC27L7
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
c
Voo
-,-V""D""D_-..;.V-",O,Rp - IF + IL + Ip
Ip -
Pullup current required by
the op amp (typically 500 ,..A)
FIGURE 42. RESISTIVE PULLUP TO INCREASE VOH
FIGURE 43. COMPENSATION FOR
INPUT CAPACITANCE
electrostatic discharge protection
The TLC27L2 and TLC27L7 incorporate an internal electrostatic discharge (ESD) protection circuit that
prevents functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2.
Care should be exercised, however, when handling these devices, as exposure to ESD may result in the
degradation of the device parametric performance. The protection circuit also causes the input bias currents
to be temperature-dependent and have the characteristics of a reverse-biased diode.
latch-up
Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC27L2
and TLC27L 7 inputs and outputs were designed to withstand - 1OO-mA surge currents without sustaining
latch-up; however, techniques should be used to reduce the chance of latch-up whenever possible. Internal
protection diodes should not, by design, be forward biased. Applied input and output voltage should not
exceed the supply voltage by more than 300 mY. Care should be exercised when using capacitive coupling
on pulse generators. Supply transients should be shunted by the use of decoupling capacitors (0.1 /LF typical)
located across the supply rails as close to the device as possible.
The current path established ·if latch-up occurs is usually between the positive supply rail and ground and
can be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed
the supply voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power
supply and the forward resistance of the parasitic thyristor and usually results in the destruction of the
device. The chance of latch-up occurring increases with increasing temperature and supply voltages.
"'II
TEXAS
INSTRUMENTS
2-656
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
500 kG
5V
500 kG
O.l".F
I
500 kG
500 kG
FIGURE 44. MULTIVIBRATOR
100 kG
100 kG
SET --'l/li'Y-+---1
Voo
RESET --'l/li'Y-+---1
100 kG
33 kG
-=-
NOTE: VOO = 5 V to 16 V
FIGURE 45. SET/RESET FLIP-FLOP
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-657
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
Voo
1/2
VI - - - - I
>---..---=90 kfl
Voo
C Xl
S1
A
TLC4066
1
ANALOG
2
1
9 kfl
C X2
S2
A
B
2
B
SWITCH
1 kfl
NOTE: VOO
~
5 V to 12 V
FIGURE 46. AMPLIFIER WITH DIGITAL GAIN SELECTION
10 kfl
Voo
20 kfl
>--I~-"'-e-- Vo
100 kfl
NOTE: VDD
~
5 V to 16 V
FIGURE 47. FULL-WAVE RECTIFIER
TEXAS . "
INSTRUMENTS
2-658
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
Vo
TLC27L2, TLC27L2A, TLC27L2B, TLC27L7
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
0.0161'F
5V
10 kO
10 kO
>-+-+-- Va
112
NOTE: Normalized to Fe = 1 kHz and RL = 10 kO
FIGURE 48. TWO-POLE LOW-PASS BUTTERWORTH FILTER
R2
100 kO
R1
10 kO
VOO
>-......- - V O
1/2
R1
10 kO
R2-=100 kO
NOTES: VOD
=
5 V to 16 V
R2
Va =
R1 (VIB-VIA)
FIGURE 49. DIFFERENCE AMPLIFIER
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-<;59
2-660
TLC27L4, TLC27L4A, TLC27L4B, TLC27L9
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
D3142, OCTOBER 1987-REVISED OCTOBER 1990
•
Trimmed Offset Voltage:
TLC27L9 ... 900 /lV Max at 25°C,
VDD = 5 V
0, J, OR N PACKAGE
(TOP VIEW)
1 OUT
•
Input Offset Voltage Drift ... Typically
0 ..1 /lV/Month, Including the First 30 Days
•
Wide Range of Supply Voltages Over
Specified Temperature Range:
o °C to 70°C , .. 3 V to 16 V
- 40°C to 85 °C , .. 4 V to 16 V
-55°C to 125°C, .. 4 V to 16 V
1 )N 1 IN +
VDD
21N+
21N2 OUT
~
FK PACKAGE
ITOP VIEW)
•
Single-Supply Operation
•
Common-Mode Input Voltage Range
Extends Below the Negative Rail (C-Suffix,
I-Suffix types)
•
Ultra-Low Power ... Typically 195 /lW
at 25°C, VDD = 5 V
3
•
Output Voltage Range Includes Negative
Rail
•
High Input Impedance ... 10 12 0 Typical
•
ESD-Protection Circuitry
•
Small-Outline Package Option Also Available
in Tape and Reel
•
Designed-In Latch-Up Immunity
IN+
NC
VDD
NC
:?IN+
at
25°C
O°C
to
70°C
-40°C
to
85°C
-55°C
900 ,"V
CHIP
CERAMIC
PLASTIC
OUTLINE
CARRIER
DIP
DIP
(D)
(FKI
(J)
(N)
TLC27L9CD
-
-
TLC27L9CN
-
-
TLC27L4BCN
6
16
8
14
15
41N+
NC
GND
NC
31N+
#. 30
.,I
~ 25~-+---4---~---+
-
-
TLC27L4ACN
:::>
-
TLC27L4CN
'0~
-
-
TLC27L91N
tn
2 mV TLC27L4BID
-
-
TLC27L4BIN
5 mV TLC27L4AID
-
-
TLC27L4AIN
10 mV TLC27L41D
-
-
TLC27L41N
900 ,"V TLC27L9MD
TLC27L9MFK
TLC27L9MJ
TLC27L9MN
10 mV TLC27L4MD
TLC27L4MFK
TLC27L4MJ
TLC27L4MN
900 ,"V TLC27L91D
17
35
-
5 mV TLC27L4ACD
10 mV TLC27L4CD
18
5
DISTRIBUTION OF TLC27L9
INPUT OFFSET VOLTAGE
SMALL
2 mV TLC27L4BCD
1 20 19
NC - No internal connection
PACKAGE
TA
2
4
9 1011 12 13
AVAILABLE OPTIONS
Vlomax
____...r-
4 OUT
4 IN4 IN +
GND
31N+
31N3 OUT
20 ~-+---+----~-+
E 15 I---+---+--~j'"
!!
:
10
~--+--+---j-
5 ~-+---+---
to
125°C
The 0 package is available in tape and reel. Add R suffix to the device type, ie.g.,
TLC27L9CDR).
Vlo-lnput Offset Voltage-,..V
LinCMOS is a trademark of Texas Instruments Incorporated
PRODUCTION DATA documants contain information
currant as of publication data. Products conform to
spacifications por the torms of Taxas Instruments
standard warranty. Production processing does not
nacassarily include testing of all parameters.
-IJ1
Copyright © 1990, Texas Instruments Incorporated
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-661
TLC27L4, TLC27L4A, TLC27L4B, TLC27L9
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
description
The TLC27L4 and TLC27L9 quad operational amplifiers combine a wide range of input offset voltage grades
with low offset voltage drift, high input impedance, extremely low power, and high gain.
These devices use Texas Instruments silicon-gate LinCMOS'· technology, which provides offset voltage
stability far exceeding the stability available with conventional metal-gate processes.
The extremely high input impedance, low bias currents, and low power consumption make these costeffective devices ideal for high gain, low frequency, low power applications. Four offset voltage grades
are available (C-suffix and I-suffix types), ranging from the low-cost TLC27L4 (10 mV) to the high-precision
TLC27L9 (900 /lV). These advantages, in combination with good common-mode rejection and supply
voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading
existing designs.
In general, many features associated with bipolar technology are available on LinCMOST. operational
amplifiers, without the power penalties of bipolar technology. General applications such as transducer
interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are easily designed
with the TLC27L4 and TLC27L9. The devices also exhibit low voltage single-supply operation and ultralow power comsumption, making them ideally suited for remote and inaccessible battery-powered
applications. The common-mode input voltage range includes the negative rail.
A wide range of packaging options is available, including small-outline and chip carrier versions for highdensity system applications.
The device inputs and outputs are designed to withstand - 100-mA surge currents without sustaining
latch-up.
The TLC27L4 and TLC27L9 incorporate internal ESD-protection circuits that prevent functional failures
at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be
exercised in handling these devices, as exposure to ESD may result in the degradation of the device
parametric performance.
C-suffix devices are characterized for operation from 0 DC to 70 DC. I-suffix devices are characterized for
operation from - 40 DC to 85 DC. M-suffix devices are characterized for operation from - 55 DC to 125 DC.
TEXAS . "
INSTRUMENTS
2-662
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLC27L4, TLC27L4A, TLC27L4B, TLC27L9
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
equivalent schematic (each amplifier)
Voo
Rl
'N-i .......
----+1
IN+
P5
P6
----+------+---.....
.-~---+---------+-OUT
N6
N7
R7
GNO
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-663
TLC27L4, TLC27L4A, TLC27L4B, TLC27L9
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature (unless otherwise noted)
Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18 V
Differential input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. ± VDD
Input voltage range, VI (any input) .................... , . . . . . . . . . . . . . . .. - 0.3 V to VDD
Input current, II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 5 mA
Output current, 10 (each output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 30 mA
Total current into VDD terminal .............................................. 45 mA
Total current out of ground terminal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 45 mA
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . .. Unlimited
Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. See Dissipation Rating Table
Operating free-air temperature, T A: C-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. O°C to 70°C
I-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 40°C to 85 °C
M-suffix .................... ; . . . . . .. - 55°C to 125°C
Storage temperature range ......................................... - 65°C to 150°C
Case temperature for 60 seconds: FK package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D andN package . . . . . .. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package ............ 300°C
NOTES:
1. All voltage values, except differential voltages, are with respect to network ground.
2. Differential voltages are at the noninverting input with respect to the inverting input.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded (see application section).
DISSIPATION RATING TABLE
PACKAGE
TA s 25°C
POWER RATING
D
FK
950mW
1375 mW
J
1375 mW
N
1575 mW
DERATING FACTOR
TA
70°C
TA - 85°C
POWER RATING
TA - 125°C
POWER RATING
608 mW
880 mW
494mW
715 mW
275 mW
11 mW/OC
880mW
715 mW
275 mW
12.6 mW/OC
1008 mW
819 mW
ABOVE TA = 25 D C
7.6 mW/OC
11 mW/oC
a
POWER RATING
recommended operating conditions
C-SUFFIX
MIN
Supply voltage, VDD
Common-mode input voltage, VIC
Operating free-air temperature, T A
II VDD = 5 V
VDD = 10V
NOM
MIN
NOM
MAX
MIN
NOM
MAX
3
16
4
16
3.5
4
-0.2
16
-0.2
-0.2
3.5
0
3.5
8.5
-0.2
8.5
0
8.5
0
70
-40
85
-55
125
TEXAS
~
INSTRUMENTS
2-664
M-SUFFIX
I-SUFFIX
MAX
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
UNIT
V
V
°C
TLC27L4C, TLC27L4AC, TLC27L4BC, TLC27L9C
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature.
PARAMETER
TEST CONDITIONS
TLC27L4C
TLC27L4AC
VIO
Voo
Input offset voltage
TLC27L4BC
TLC27L9C
Vo = 1,4V,
VIC = 0,
RS = 500,
RL = 1 MO
VO=1,4V,
VIC = 0,
RS = 500,
RL = 1 MO
Vo = 1,4V,
VIC = 0,
RS = 500,
RL = 1 MO
VO=1,4V,
VIC = 0,
RS = 500,
RL = 1 MO
Average temperature coefficient
aVIO
5 V (unless otherwise noted)
TAt
MIN
25°C
Input offset current (see Note 4)
Vo = 2.5 V,
VIC = 2.5 V
liB
Input bias current (see Note 4)
Vo = 2.5 V,
VIC = 2.5 V
0.9
5
240
2000
Full range
Full range
3000
25°C
200
Full range
mV
I"V
1500
0.1
70°C
7
25°C
0.6
70°C
40
-0.2
voltage range (see Note 5)
900
I"V/oC
1.1
25°C
Common-mode input
UNIT
6.5
25°C
25°C
VICR
10
12
25°C
70°C
110
MAX
1.1
Full range
25°C to
of input offset voltage
TYP
300
600
pA
pA
-0.3
to
to
4
4.2
V
-0.2
Full range
V
to
3.5
VOH
VOL
High-level output voltage
Low-level output voltage
Large-signal differential
AVO
voltage amplification
CMRR Common-mode rejection ratio
Supply-voltage rejection ratio
kSVR
100
(aVOO/avIO)
VID = 100 mV,
VIO = -100 mV,
Vo = 0.25 V to 2 V,
RL = 1 MO
IOL = 0
RL = 1 MO
VIC = VICR min
VOO=5Vt010V,
Supply current
Vo = 2.5 V,
(four amplifiers)
No load
Vo = 1,4 V
VIC = 2.5 V,
25°C
3.2
4.1
O°C
3
4.1
70°C
3
4.2
V
25°C
0
50
O°C
0
50
70°C
0
50
25°C
50
520
O°C
50
680
70°C
50
380
25°C
65
94
O°C
60
95
70°C
60
95
25°C
70
97
O°C
60
97
70°C
60
98
mV
V/mV
dB
dB
25°C
40
68
O°C
48
84
70°C
31
56
I"A
tFull range is O°C to 70°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-665
TLC27L4C. TLC27L4AC. TLC27L4BC. TLC27L9C
LinCMOS~ PRECISION QUAD OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature,
PARAMETER
TLC27L4C
TLC27L4AC
Via
Voo
TEST CONDITIONS
Input offset voltage
TLC27L4BC
TLC27L9C
Va = 1.4 V,
=
50 G,
Va = 1.4V,
RS
=
50 G,
Va = 1.4V,
RS
=
Full range
RL = 1 Mil
Full range
VIC
50 G,
Average te.mperature coefficient
o'VIO
MIN
25°C
= 1 Mil
= 0,
RL = 1 MG
VIC = 0,
RL = 1 Mil
VIC = 0,
RL
Va = 1.4 V,
RS
TAt
VIC = 0,
RS = 50 Il,
10 V (unless otherwise noted)
=
Input offset current (see Note 4)
Va
5 V,
VIC = 5 V
liB
Input bias current (see Note 4)
Va = 5 V,
VIC = 5 V
O.g
5
260
2000
Full range
1200
"V
1900
1
25°C
0.1
70°C
7
25°C
0.7
70°C
50
-0.2
voltage range (see Note 5)
mV
3000
210
25°C
Common-mode input
UNIT
6.5
25°C
25°C
VICR
10
Full range
70°C
110
MAX
1.1
12
25°C
25°C to
of input offset voltage
TYP
"V/oC
300
600
pA
pA
-0.3
to
to
9
9.2
V
-0.2
Full range
to
V
8.5
VOH
VOL
High-level output voltage
Low-level output voltage
Large-signal differential
AVO
voltage amplification
CMRR Common-mode rejection ratio
Supply-voltage rejection ratio
kSVR
100
(AVoo/AVIOr
VIO = 100 mY,
VIO
=
-100 mY,
Va = 1 V to 6 V,
RL = 1 Mil
10L = 0
RL = 1 Mil
VIC = VICR min
VOO
=
5Vto 10V,
Supply current
Va = 5 V,
(four amplifiers)
No load
Va
=
1.4 V
VIC = 5 V,
25°C
8
O°C
7.8
8.9
8.9
70°C
7.8
8.9
V
25°C
OoC
0
50
0
50
70°C
0
50
25°C
OoC
50
870
50
1020
70°C
50
660
25°C
65
97
O°C
60
97
70°C
60
97
25°C
70
97
O°C
60
97
70°C
60
98
V/mV
dB
dB
25°C
Ooc
57
92
72
132
70°C
44
80
tFull range is O°C to 70°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
TEXAS •
INSTRUMENTS
2-666
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
mV
"A
TLC27L41, TLC27L4AI, TLC27L4BI, TLC27L91
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature,
PARAMETER
TLC27L41
TLC27L4AI
V,O
Voo
TEST CONDITIONS
Input offset voltage
TLC27L4BI
TLC27L91
Vo
RS
Vo
RS
Vo
RS
Vo
RS
= 1.4V,
= 500,
= 1.4 V,
= 500,
= 1.4 V,
= 500,
= 1.4 V,
= 500,
TAt
V'C = 0,
RL = 1 MO
V'C = 0,
RL = 1 MO
Full range
',0
liB
Input offset current (see Note 4)
Input bias current (see Note 4)
Vo
=
=
2.5 V,
2.5 V,
V'C
V'C
=
=
2.5 V
2.5 V
25°C
240
200
Full range
,"V
,"V/oC
1.1
0.1
85°C
24
25°C
0.6
85°C
voltage range (see Note 5)
900
2000
25°C
25°C
mV
2000
3500
25°C
Common-mode input
5
UNIT
7
200
-0.2
V,CR
10
0.9
B5°C
Vo
MAX
1.1
13
25°C
25°C to
of input offset voltage
TVP
Full range
Full range
V'C = 0,
RL = 1 MO
MIN
25°C
V'C = 0,
RL = 1 MO
Average temperature coefficient
o'VIO
5 V (unless otherwise noted)
1000
2000
pA
pA
-0.3
to
to
4
4.2
V
-0.2
Full range
V
to
3.5
VOH
VOL
High-level output voltage
Low-level output voltage
Large-signal differential
AVO
voltage amplification
CMRR Common-mode rejection ratio
Supply-voltage rejection ratio
kSVR
100
(,1 Voo/,1 V,O)
=
V,O
=
V,O
Va
100 mV,
=
-100 mV,
0.25 V to 2 V,
=
V'C
VOO
IOL
RL
=
=
=
1 MO
0
1 MO
V,CR min
=
=
RL
Supply current
Vo
(four amplifiers)
No load
5Vt010V,
2.5 V,
Va
V'C
=
=
1.4 V
2.5 V,
25 DC
3.2
4.1
-40°C
3
4.1
85°C
3
4.2
V
25°C
0
50
-40 DC
85 DC
0
50
0
50
25°C
50
480
-40°C
50
900
85°C
25 DC
50
330
65
94
-40°C
60
95
85°C
60
95
25°C
70
97
-40°C
85 DC
60
97
60
98
mV
V/mV
d8
dB
25°C
39
68
-40 DC
62
108
85°C
29
52
,"A
tFull range is - 40°C to 85 DC.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-667
TLC27L41, TLC27L4AI, TLC27L4BI, TLC27L91
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature. Voo == 10 V (unless otherwise noted)
PARAMETER
TEST CONOITIONS
TLC27L41
TLC27L4AI
Via
Input offset voltage
TLC27L4BI
TLC27L91
Va = 1.4 V,
RS = 50O,
VIC = 0,
RL = 1 Mil
Va = 1.4 V,
VIC = 0,
RS = 50O,
RL = 1 Mil
110
liB
Input offset current (see Note 4)
RL = 1 Mil
Full range
Va = 1.4 V,
VIC = 0,
RL = 1 Mil
25°C
Full range
Input bias current (see Note 4)
Va = 5 V,
VIC = 5 V
260
25°C
210
26
25°C
0.7
85°C
voltage range (see Note 5)
Full range
p.V
p.V/oC
1
0.1
220
-0.2
VICR
1200
2900
25°C
25°C
mV
2000
3500
85°C
Common-mode input
5
UNIT
7
85°C
VIC = 5 V
10
13
25°C to
Va = 5 V,
MAX
1.1
0.9
25°C
Full range
VIC = 0,
of input offset voltage
TYP
Full range
Va = 1.4 V,
RS = 50O,
MIN
25°C
RS = 50O,
Average temperature coefficient
"via
TAt
1000
2000
pA
pA
-0.3
to
to
9
-0.2
9.2
V
to
V
8.5
VOH
VOL
High-level output voltage
Low-level output voltage
Large-signal differential
AVO
voltage amplification
CMRR Common-mode rejection ratio
Supply-voltage rejection ratio
kSVR
100
(fl.VODIfl.VIO)
VIO = 100 mY,
VIO = -100 mY,
Va = 1 V to 6 V,
RL = 1 Mil
IOL = 0
RL = 1 Mil
VIC = VICR min
VOo=5Vt010V,
Supply cunent
Va = 5 V,
(four amplifiers)
No load
Va = 1.4 V
VIC = 5 V,
25°C
8
8.9
-40°C
7.8
8.9
85°C
7.8
8.9
V
25°C
0
50
-40°C
0
50
85°C
0
50
25°C
50
800
-40°C
50
1550
85°C
50
585
25°C
65
97
-40°C
60
97
85°C
60
98
25°C
70
97
-40°C
60
97
85°C
60
98
V/mV
dB
dB
25°C
57
92
-40°C
98
172
85°C
40
72
tFull range is -40°C to 85°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
TEXAS •
2-668
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
mV
p.A
TLC21L4M, TLC21L9M
LinCMOSTM PRECISION QUAD OPEIiATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature.
PARAMETER
=0
TEST CONDITIONS
TLC27L4M
VIO
Voo
Input offset voltage
TLC27L9M
Vo
RS
Vo
RS
= 1.4 V,
= 50 {l,
= 1.4 V,
= 50 {l,
RL
V (unless
TAt
VIC = 0,
RL = 1 M{l
VIC
5
= 0,
= 1 M{l
Average temperature coefficient
MIN
25°C
of input offset voltage
110
Input offset current (see Note 4)
Vo
=
2.5 V,
VIC
=
2.5 V
liB
Input bias current (see Note 4)
Vo
=
2.5 V,
VIC
=
2.5 V
MAX
1.1
10
200
900
12
25°C
Full range
3750
25°C
0.1
125°C
1.4
25°C
0.6
125°C
9
25°C
Common-mode input
voltage range (see Note 5)
UNIT
mV
",V
",V/oC
1.4
125°C
0
VICR
TYP
Full range
25°C to
"'via
otherwise noted)
pA
15
nA
pA
35
nA
-0.3
to
to
4
4.2
V
0
Full range
V
to
3.5
VOH
VOL
High-level output voltage
Low-level output voltage
Large-signal differential
AVO
voltage amplification
CMRR Common-mode rejection ratio
=
VIO
=
VIO
Vo
=
100
(AVDO/AVIO)
-100 mY,
0.25 V to 2 V,
=
VIC
Supply-voltage rejection ratio
kSVR
100 mY,
VOO
10L
RL
=
1 M{l
=
=
0
1 M{l
VICR min
=
=
RL
Supply current
Vo
(four amplifiers)
No load
5Vt010V,
2.5 V,
Va
VIC
=
=
1.4 V
2.5 V,
25°C
3.2
4.1
-55°C
3
4.1
125°C
3
4.2
V
25°C
0
50
-55°C
0
50
125°C
0
50
25°C
50
480
-55°C
25
950
125°C
25
200
25°C
65
94
- 55°C
60
95
125°C
60
85
25°C
70
97
-55°C
60
97
125°C
60
98
mV
V/mV
dB
dB
25°C
39
68
-55°C
69
120
125°C
27
48
p.A
tFull range is - 55°C to 125°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
TEXAS •
INSTRUMENTS
POST OFFIce BOX 655303 • DALLAS. TeXAS 75265
2-669
TLC27L4M, TLC27L9M
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, VDD
PARAMETER
TEST CONDITIONS
TLC27L4M
Via
Input offset voltage
TLC27L9M
Va = 1.4 V,
VIC = 0,
RS = 500,
RL = 1 MO
Va = 1.4 V,
VIC = 0,
RS = 500,
RL = 1 MO
Average temperature coefficient
aVIO
10 V (unless otherwise noted)
TAt
MIN
25°C
Input offset current (see Note 4)
Va = 5 V,
VIC = 5 V
lIB
Input bias current (see Note 4)
Va = 5 V,
VIC = 5 V
210
1200
Full range
4300
25°C
0.1
125°C
1.8
25°C
0.7
125°C
10
25°C
Common-mode input
voltage range (see Note 5)
UNIT
mV
p.V
p.V/oC
1.4
0
VICR
10
12
25°C
125°C
110
MAX
1.1
Full range
25°C to
of input offset voltage
TYP
pA
15
nA
pA
35
nA
-0.3
to
to
9
9.2
V
0
Full range
to
V
8.5
VOH
VOL
High-level output voltage
Low-level output voltage
Large-signal differential
AVO
voltage amplification
CMRR Common-mode rejection ratio
Supply-voltage rejection ratio
kSVR
100
(Ll.Voo/Ll.VIO)
VIO
VIO
Va
=
=
=
RL = 1 MO
100 mY,
-100 mY,
1 V to 6 V,
10L = 0
RL = 1 MO
VIC = VICR min
VOO=5Vtol0V,
Supply current
Va = 5 V,
(four amplifiers)
No load
Va = 1.4 V
VIC = 5 V,
25°C
8
8.9
-55°C
7.8
8.8
125°C
7.8
9
V
25°C
0
50
-55°C
0
50
125°C
0
50
25°C
50
800
-55°C
25
1750
125°C
25
380
25°C
65
97
-55°C
60
97
125°C
60
91
97
25°C
70
-55°C
60
97
125°C
60
98
Vim V
dB
d8
25°C
57
92
-55°C
111
192
125°C
35
60
tFull range is - 55°C to 125°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually;
TEXAS
~
INSTRUMENTS
2-670
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
mV
p.A
TLC21L4C, TLC21L4AC, TLC21L4BC, TLC21L9C
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
operating characteristics,
Vee
V
5
PARAMETER
TEST CONDITIONS
=
=
RL
SR
Slew rate at unity gain
CL
1 Mil,
VIPP
TA
25°C
=
1V
20 pF,
See Figure 1
VIPP
=
2.5 V
Vn
Equivalent input noise voltage
f = 1 kHz,
See Figure 2
BaM
Maximum output swing bandwidth
Va
RL
= VOH,
= 1 Mil,
CL = 20 pF,
See Figure 1
Vi
=
CL
Bl
q,m
Unity-gain bandwidth
Vi
CL
Vee
= 10 mY,
= 20 pF,
=
=
Slew rate at unity gain
CL
1 Mil,
Bl
q,m
Equivalent input noise voltage
Maximum output swing bandwidth
Unity-gain bandwidth
Phase margin
20 pF,
f = Bl,
See Figure 3
=
f
VIPP
=
1V
20 pF,
See Figure 1
BaM
=
TEST CONDITIONS
RL
Vn
100 Il,
TYP
MAX
UNIT
0.03
O°C
0.04
70°C
0.03
25°C
0.03
O°C
0.03
70°C
0.02
25°C
70
25°C
OOC
6
70°C
4.5
25°C
OOC
100
70°C
65
25°C
OOC
34°
70°C
30°
Vlp.s
nV/.JHz
5
kHz
85
kHz
36°
10 V
=
PARAMETER
SR
=
See Figure 3
Phase margin
operating characteristics,
10mV,
RS
MIN
1 kHz,
VIPP
RS
=
=
5.5 V
1001l,
See Figure 2
Va = VOH,
RL = 1 Mil,
Vi
=
10 mY,
CL = 20 pF,
See Figure 1
CL
=
20 pF,
See Figure 3
= 10 mY,
CL = 20 pF,
Vi
f = Bl,
See Figure 3
TEXAS
TA
25°C
OOC
MIN
TYP
MAX
UNIT
0.05
0.05
70°C
0.04
25°C
OOC
0.04
70°C
0.04
25°C
70
25°C
1
Vlp.s
0.05
O°C
1.3
70°C
0.9
25°C
110
.O°C
125
70°C
90
25°C
OOC
38°
70°C
34°
nV/.JHz
kHt
kHz
40°
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 .
2-671
TLC27L41, TLC27L4AI, TlC27L4BI, TlC27L91
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
operating characteristics, VOO
=
5 V
TEST CONDITIONS
PARAMETER
RL = 1 Mil.
SR
Vn
BOM
Slew rate at unity gain
CL = 20 pF.
See Figure 1
f = 1 kHz.
See Figure 2
Equivalent input noise voltage
Maximum output swing bandwidth
Bl
Unity-gain bandwidth
.pm
Phase margin
operating characteristics, VOO
Vi = 10 mV.
See Figure 3
CL = 20 pF.
Vi = 10 mV.
f = Bl.
See Figure 3
CL = 20 pF.
Vn
Equivalent input noise voltage
BOM
Maximum output swing bandwidth
.pm
Phase margin
TEST CONDITIONS
CL = 20 pF.
See Figure 1
f=lkHz.
VIPP = 1 V
VIPP = 5.5 V
RS = 10011.
See Figure 2
Vo = VOH.
RL = 1 Mil.
CL = 20 pF.
See Figure 1
Vi = 10 mV.
See Figure 3
CL = 20 pF.
Vi = 10 mV.
CL = 20 pF.
f = Bl.
See Figure 3
TEXAS
~
INSTRUMENTS
2-672
MIN
TVP
MAX
UNIT
0.03
0.04
85°C
0.03
25°C
-40°C
0.03
0.04
85°C
0.02
25°C
70
25°C
-40°C
5
7
85°C
4
25°C
85
-40°C
85°C
130
55
25°C
34°
-40°C
38°
28°
85°C
V/p.s
nV/$z
kHz
kHz
-= 10 V
Slew rate at unity gain
Unity-gain bandwidth
RS = 10011.
CL = 20 pF.
See Figure 1
RL = 1 Mil.
Bl
VIPP = 2.5 V
Vo = VOH.
RL = 1 Mil.
PARAMETER
SR
VIPP = 1 V
TA
25°C
-40°C
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TA
25°C
-40°C
MIN
TVP
MAX
UNIT
0.05
85°C
0.06
0.03
25°C
-40°C
0.04
0.05
85°C
0.03
25°C
70
nV/$z
25°C
-40°C
1
1.4
kHz
85°C
0.8
25°C
110
-40°C
155
85°C
80
25°C
-40°C
38°
42°
85°C
32°
V/p.s
kHz
TLC21L4M, TLC21L9M
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
operating characteristics, VOO - 5 V
PARAMETER
TEST CONDITIONS
=
=
RL
SR
Vn
BaM
Bl
f > 100 Hz
(el f - BOM
A
(dl f> BOM
FIGURE 5. FULL-POWER-RESPONSE OUTPUT SIGNAL
test time
Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume, shorttest-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET devices
and require longer test times than their bipolar and BiFET counterparts. The problem becomes more
pronounced with reduced supply levels and lower temperatures.
TEXAS . "
2-676
INSTRUMENTS
POST OFFice BOX 655303 • DALLAS. TeXAS 75265
TLC27L4, TLC27L4A, TLC27L4B, TLC27L9
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
DISTRIBUTION OF TLC27L4
INPUT OFFSET VOLTAGE
DISTRIBUTION OF TLC27L4
INPUT OFFSET VOLTAGE
70
70
905 Amplifiers
60
'#. 50
I
Zl
VOO - 5 V
TA - 25°C
N Package
60
905
VOO - 10
TA - 25°C
N Package
50
'2
::I 40
....0
til
B
30
c
II)
~
Il.
20
10 t--t--I---f-
10
OL-.............IiliiiIiiIII
OL-.....-"""..tlillll1IIIiIIl
-5 -4 -3 -2 -1
0
2
3
4
Vlo-lnput Offset Voltage-mV
-5 -4 -3 -2 -1
0
234
Vlo-lnput Offset Voltage-mV
5
FIGURE 7
FIGURE 6
DISTRIBUTION OF TLC27L4 AND TLC27L9
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
DISTRIBUTION OF TLC27L4 AND TLC27L9
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
356 Amplifiers tested
356 Amplifiers tested
~
I
.~
c
::I
'0
5
60
60 VOO - 5 V
TA - 25°C to 125°C
N Package
50 Outliers:
(1) 19.2 p.V/oC
40 (1) 12.1 p.V/oC
~I 50
Zl
'2
::I 40
....o
VOO - 10 V
TA - 25°C to 125°C
N Package
Outliers:
(1) 18.7 p.V/oC
(1) 11.6 p.V/oC
10 t--t---"f---t-
01
...........
0 --"""--8-6-4-20246810
"'VIO - Temperature Coefficient - p. V / °C
OL-...J..........IIIIIIIIII.
-10 -8 -6 -4 -2 0
2
4
6
8 10
"'VIO - Temperature Coefficient - p.V / °C
FIGURE 8
FIGURE 9
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-677
TLC21L4, TLC21L4A, TLC21L4B, TLC21L9
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-L.EVEL OUTPUT CURRENT
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
16
5~--~----~-----r----~--~
VIO - 100 rnV
TA - 25°C
>
1
>
1
...& 4~~~~~~~~-4~~-4~~~
14 I'--.
---
G>
III
B 12
~
~
~~-
16 V
....i'--.
:; 10
c-
o
o
8
"ii
>
~
6
X
4
.1:III
'-
............
VIO - 100 rnV
TA - 25°C
"
'-.....
i"-...
~~ - 10V
J'-....
1
:t:
~
o
o
o~--~----~----~----~--~
o
-2
-4
-6
-10
-8
2
-40
-10
-20
...,30
IOH-High·Level Output Current-rnA
IOH-Hlgh-Level Output Current-rnA
FIGURE 10
FIGURE 11
HIGH-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
HIGH-LEVEL OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
16
VOO-1.6
VIO - 100 rnV
RL - 1 MO
TA - 25°C
~ 14
&
B 12
V
o 10
5
~
6
X1
4
o
> 2
/
o
2
/
/
o
Voo-1.9
5 Voo-2.0
V
..............
~~
o
I'--..
-...It
VOO - 10 V ..............
.1:
VOO-2.1
~
.'Il
~
6
14
16
""
i'..
.........
~
~
..........
~ VOO-2.2
~
::I:
8
10
12
VOO-Supply Voltage-V
4
f---- f--
.1
.
~OO - 5V
'0
//
:t:
o
B VOO-1.8
-..........
>
V
8
"ii
.1:III
&
/
'0
>
o
~ VOO-1.7
1
IOH - -5 rnA
VID - 100 rnV
Voo-2.3
VOO-2.4
-75 -50 -25 0
25 50 75 100 125
TA-Free-Air Ternperature- °C
FIGURE 13
FIGURE 12
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS.~
INSTRUMENTS
2-678
POST· OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC27L4, TLC27L4A, TLC27L4B, TLC27L9
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
LOW-LEVEL OUTPUT VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
LOW-LEVEL OUTPUT VOLT AGE
vs
COMMON-MODE INPUT VOLTAGE
700
~
I.. 600
500
11
\
\
I
>
5Q,
o5
Voo - 5 V
IOL - 5 mATA - 25°C
--
..
>
:;,
-100 mV
I\VIO 500
5
400
I
'"
~
0
"
I
>
t'---.........
....
....I
3
300
0
-..::: f::::::: r--
2
______ VIO -
~
....
1',,"'-..
""-1 V.......
VID -
..
iD
> 350
--
I
\ I~ /VIO -
0
>
250
4
I
o
Vlc-Common-Mode Input Voltage-V
-
"~
~t-..
2
4
>
E 700
.
I
CJ)
:!
600
0
>
5Q,
500
:;,
400
.
0
I---
~
[\.
..
iD
>
.... 300
~
....0
....I
0
>
I
FIGURE 15
LOW-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
900
!
I
..
0
>
I
1.
:;,
Q,
[\,.VOO - 5 V
5
VOO - 10 V-
~
-
..
~
--
-6
.9
....I
200 '-----
>
100
0
--1--- --- - -
-4
V
I
---t--
VOO - 5 V
I
500 - -
---iD 400
>
.... 300
100
-2
600
0
~
I
..
:!
200
o
o
I
_IOL - 5 mA
E 800
VIO - -1 V
I
__ VIC - 0.5 V
700
CJ)
>
IOL - 5 mA
VIC - IVID/21
TA - 25°C
I
10
8
6
Vlc-Common-Mode Input Voltage-V
LOW-LEVEL OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
I
-100 mV
-1V
-2.5 V
~VID
FIGURE 14
800
I
I
1\\
400
I
VOO - 10 V
IOL - 5 mA
TA - 25°C -
I
Q,
\
.3
.9
....I
o
I 450
CJ)
-S
1
~
E
...
~
I
J
>
1//
//
~--
V . . . ,. . . . . . ,.---V
~
--.~---
c---- c---- - -
VI
.--/
/
V
- -
-
VOO - 10 V
---r-----r--- r - - -
~---+----i
o
-8
-10
Vlo-Oifferential Input Voltage-V
-75 -50 -25
0
25 50
75 100 125
T A - Free-Air Temperature - °C
FIGURE 17
FIGURE 16
t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS •
INSTRUMENTS
POST OFFICE BOX S55303 • DALLAS. TEXAS 75265
2-679
TLC21L4, TLC21L4A, TLC21L4B, TLC21L9
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
1.0
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
3.0
I
I
0.9 I- VIO - -1 V
I
VIC - 0.5 V
III
0.8 I-TA - 25°C
=
III
-a
VOO -
0.7
>
:;Q.
..
VOO - 4~
0.6
:::I
0
VOO -
0.5
"i
:>
III
-' 0.4
~
0
-' 0.3
I
-'
0 0.2
>
1/
0.1
~
3~
L~
~
l'l"
5y
/
oi
VOO 1.5
l
/
III
-'
~ 1.0
V
oS
23456
7
IOL -Low-Level Output Current-rnA
8
o/
o
5
10
15
20
25
IOL -Low-Level Output Current-rnA
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
~ 2000~·--~--r--'--~---r--~--~~
~ 2000
~
c
.gIII
~
MO-+----jr-----t~-+-=""""'-_I
1600 t-----t---t--t---17''----bL-+--t-__J
~ 1400t-----t---t--t-~-h~4_-+--~__J
1800
.g 1600
.~
1200 1---+--+-+-+--f----1I---+--:;;;;....,.,,~
:sQ. 1400
~ 1200
W1000t-----t---t-+~-~~~-~=_r_~
E1000
:j
a.
~
~ 800~--t-~+_-+.~_b~4_-+-_=~~
'0
>
800
e
600
c
600
15
.~
:E
400
;E
I
200
0
,
\
\
400
~
:t
0
0
2
4
6
8
10 12
VOO-Supply Voltage-V
14
16
VOO - 10 V
'"
~~
~
VOO - 5V "-
o
I
o 200
0
«>
I
RL - 1 MO_
III
III
I!!
III
30
FIGURE 19
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
SUPPLY VOLTAGE
RL - 1
:/
V
FIGURE 18
1800
10;1 /
~
I
6 0 .5
>
16Y
VOO -
i> 2.0
o lL
o
I
VIO - -1 V
>
I 2.5 VIC - 0.5 V
TA - 25°C
&
>
"-~
I'---
-
............
I'-...
r-- r-
o
-75' -50-25 o
25 50 75 100 125
TA - Free-Air Temperature - °C
FIGURE 21
FIGURE 20
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSTRUMENTS
2-680
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
LinCMOSTM
TLC27L4, TLC27L4A, TLC27L4B, TLC27L9
PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
INPUT BIAS CURRENT AND INPUT OFFSET CURRENT
vs
FREE-AIR TEMPERATURE
10000
16
Voo - 10 V
./
> 14
VIC - 5 V
I
/
CD
1000 See Note 4
CI
as
c(
.!! 12
CI.
0
liB
I
>
c
:; 10
/
/
CI.
! 100
.5
$
u
110
CD
8
'1:1
I
COMMON-MODE
INPUT VOLTAGE POSITIVE LIMIT
vs
SUPPLY VOLTAGE
2~OC
TAI-
..
./
g.
10
'1:1
./
V
0
~
/
C:
C
as
~
,
,
0.1
25
,
,
,
0
6
0
4
E
E
u
I
u
">
,
45
105
65
85
TA -Free-Air Temperature- °C
/
2
o
o
125
/
L
16
120
TA - -55°5-
Vo - VOO/2
No load
160
./
140
::\,
/
1.120
c
!
/
$100
U
riI
14
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
180
8:
/
FIGURE 23
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
>-
/
/
/
/
10 12
4
6
8
VOO-Supply Voltage-V
2
FIGURE 22
c(
/
/
V
/
V
80
0
60
~
/"
V
#. ~ :::::..-
Q
~ 40
~
20
o
---==
V
~
--
::/'
/
V
100
c(
V
/ " ~c
-- --~
~
r""
~
,...~
125°C
I
f
024
6
8
10 12
VOO-Supply Voltage-V
14
..
::\,
40°C
16
I
c
~
::s
>- 60
Q.
CI.
::s
I
'\
80
U
I/)
Vo - VOO/2
No load
""-
40
""-
I\.
'"
'-'DO - 10 V
'i'---.......... ~
Q
............
VOO - 5 V
~
"'r--
-
'---
f--
20
o
-75 -50 -25 0
25 50 75 100 125
TA-Free-Air Temperature- °C
FIGURE 25
FIGURE 24
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
NOTE 4: The typical values of input bias current and input offset current below 5 pA were determined mathematically.
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-681
TLC21L4, TLC21L4A, TLC21L48, TLC21L9
LinCMOSTM PRECISION QUAD OPEATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
SLEW RATE
vs
SUPPLY VOLTAGE
0.07
I
~
:>
0.05
I
.! 0.04 r~
/
~ 0.03
Cij
./
V
./
V
~ 0.051----I--+--""o,."..,-...:--+---+---+-~+--_____I
V
:>
I
.!., 0.041---"I........::-t---j---t--""oo;;;:t-""......
a:
V
~
.
..!! 0.031----I---rt--t--"'"oo...t::=---..t:---t--""oe-.;;::-t
/
I
III
I
5i
~ 0.02
1.4
1.3
...,
1.2
CD
a: 1.1
~
.!!
III 1.0
"•!:!
CD
iii
0.9
E
0 0.8
z
0.02
0.011----I--t---t--VOO - 5 V
VIPP - 2.5 V
0.01
0.00
0.07.---,.--r--.,.--,....-......,-.....,..-...,....-.,
RL - 1 MO
CL - 20 pF
0.06 1----1""""':-1AV - 1
See Figure 1
I
AV - 1
VIPP - 1 V
RL-1MO
CL - 20 pF
TA - 25°C
See Figure 1
0.06
SLEW RATE
vs
FREE-AIR TEMPERATURE
6
8
10 12
024
VOO-Supply Voltage-V
16
0.00 ................----......- .....- ......- .......- ............
-75 -50 -25 0
100 125
TA - Free-Air Temperature- °C
FIGURE 26
FIGURE 27
NORMALIZED SLEW RATE
vs
FREE-AIR TEMPERATURE
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
10
,
~
VOO -
14
AV VIPP
RL CL -
VOO - 10 V
5~
1
- 1 V1 MO
20 pF-
9
>
8
.,
7
....
6
I
CD
~
g)
~
0
~
>
0.7
I
5 I--VOO - 5 V
4
lJ
I
l:
~
0
"
0.5
-75 -50 -25 0
25
50 75 100 125
TA - Free-Air Temperature - °C
11111
:::I
0
"Y-
0.6
JJlU
I
:::I
Q.
~
~~
v\ 1\
VOO - 10
>
3
£'l
~
I'
L\
11111
I
I
III~II
f\\
RL - 1 0
2
t-- See Figure 1
I I 111M
o
0.1
FIGURE 28
TA - 125°C
TA - 25°C
VTA - -55 DC
~~
II II
10
f-Frequency-kHz
100
FIGURE 29
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS . "
INSTRUMENTS
2-682
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC27L4, TLC27L4A, TLC27L48, TLC27L9
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
UNITY-GAIN BANDWIDTH
vs
FREE-AIR TEMPERATURE
150
l!
,
I
'\
~
I
.c
:2
~c
110
'\.
c
>-
~
70
II
...I
V
'iii
90
CI
.~c
80
...I
70
::l
~
III
.........
25
75 100 125
TA-Free-Air Temperature- °C
/
/
I
/
50
o
2
4
6
8
10
10 7
~
II
106
~
=aE
0°
'"
~oo
c
.g
Rl - 1 M!l
TA - 25°C
105
- 10 V
Rl - 1 M!l TA - 25°C
~
ct
30°
"'- ~vo
:t:
.c
"'" ~ ~
1 k
10 k
& 104
II
z:
0
>
~C
10 3
1\
~
..
2
2! 10
"'"
"'~vo
"'- I'-..
Phase Shift
:t:
~
0.1
'"
~.
~~
0.1
1
10
100
1 k
10 k
f - Frequency - Hz
f - Frequency - Hz
FIGURE 32
FIGURE 33
~ 180°
100 k
1 M
tO ata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-683
TLC27L4, TLC27L4A, TLC27L4B, TLC27L9
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
PHASE MARGIN
vs
SUPPLY VOLTAGE
,
42
!II
~
=
I
40
I
./"
I
c
.~
~ 36
if
I
E
34
/
I
iI-
32
/
V
/
/'
/
/
:=
~
36
!
I
b 32
.
.~
:;
!
E
iI-
'\
24
V
37
14
20
-75 -50 -25 0
25 50
75 100 125
TA-free-Air Temperature- °C
16
FIGURE 35
I
""-
33
.
.~
~
'"i'-
:; 31
...
..
VI
.&.
~ 29
E
iI-
27
25
~
"''\..
I
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
PHASE MARGIN
vs
CAPACITIVE LOAD
I'c
"""'-
28
FIGURE 34
35
~
I
VOO - 5 V Vi - 10 mV_
CL-20pf
See figure 3 -
if
4
6
8
10
12
VOO-Supply Voltage-V
:=
!
=
...
I
.........
Vi - 10 mV
_ CL - 20 pf
40
TA - 25°C
~ee figure 3
~ 38
:..
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
~
""
~
'c"",
20
~ 200
I
~
f
150
>
125
z
100
!
II
1\
VOO - 5 V
RS - 100 (J
TA - 25°C
See figure 2
\
...
.5
""
175
I
.~o
"~:*h
o
I
VOO - 5 V
Vi - 10 mV_
TA - 25°C
See figure 3
1\
1\
~ .......r-.
75
1:
'"'"
80
40
60
CL -Capacitive Load-pf
100
..!!
..
.~
50
.l3'I
25
>
o
c
1
10
100
f-frequency-Hz
1000
FIGURE 37
FIGURE 36
t Data at high''at,d low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
!
~
TEXAS
INSTRUMENlS
2-684
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC21L4, TLC21L4A, TLC21L48, TLC21L9
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
single-supply operation
While the TLC27L4 and TLC27L9 perform well using dual power supplies (also called balanced or split
supplies). the design is optimized for single-supply operation. This design includes an input common-mode
voltage range that encompasses ground as well as an output voltage range that pulls down to ground.
The supply voltage range extends down to 3 V (C-suffix types). thus allowing operation with supply levels
commonly available for TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply
operation is recommended.
Many single-supply applications require that a voltage be applied to one input to establish a reference level
that is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see
Figure 38). The low input bias current of the TLC27L4 and TLC27L9 permits the use of very large resistive
values to implement the voltage divider, thus minimizing power consumption.
The TLC27L4 and TLC27L9 work well in conjunction with digital logic; however, when powering both
linear devices and digital logic from the same power supply, the following precautions are recommended:
1. Power the linear devices from separate bypassed supply lines (see Figure 39); otherwise the linear
device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital
logic.
2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive
decoupling is often adequate; however, high-frequency applications may require RC decoupling.
voo
Rl
R3
vREF - voo Rl + R3
R2
Vo
-= R3
-:r.
c
Ol "F
-=
FIGURE 38. INVERTING AMPLIFIER WITH VOLTAGE REFERENCE
(a) COMMON SUPPLY RAILS
(b) SEPARATE BYPASSED SUPPLY RAILS (PREFERRED)
FIGURE 39. COMMON VS SEPARATE SUPPLY RAILS
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-685
TLC27L4, TLC27L4A, TLC27L48, TLC27L9
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
input characteristics
The TLC27L4 and TLC27L9 are specified with a minimum and a maximum input voltage that, if exceeded
at either input, could cause the device to malfunction. Exceeding this specified range is a common problem,
especially in single-supply operation. Note that the lower range limit includes the negative rail, while the
upper range limit is specified at VDD - 1 V at T A = 25°C and at VDD - 1 .5 V at all other temperatures.
The use of the polys iii con-gate process and the careful input circuit design gives the TLC27L4 and TLC27L9
very good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset
voltage drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of
the phosphorus dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as
a polysilicon gate) alleviates the polarization problem, thus reducing threshold voltage shifts by more than
an order of magnitude. The offset voltage drift with time has been calculated to be typically 0.1 /LV/month,
including the first month of operation.
Because of the extremely high input impedance and resulting low bias current requirements, the TLC27L4
and TLC27L9 are well suited for low-level signal processing; however, leakage currents on printed circuit
boards and sockets can easily exceed bias current requirements and cause a degradation in device
performance. It is good practice to include guard rings around inputs (similar to those of Figure 4 in the
Parameter Measurement Information section). These guards should be driven from a low-impedance source
at the same voltage level as the common-mode input (see Figure 40).
The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation.
noise performance
The noise specifications in op amp circuits are greatly dependent on the current in the first-stage differential
amplifier. The low input bias current requirements of the TLC27L4 and TLC27L9 result in a very low noise
current, which is insignificant in most applications. This feature makes the devices especially favorable
over bipolar devices when using values of circuit impedance greater than 50 k{l, since bipolar devices exhibit
greater noise currents.
(al NONINVERTING AMPLIFIER
(bl INVERTING AMPLIFIER
(el UNITY-GAIN AMPLIFIER
FIGURE 40. GUARD-RING SCHEMES
output characteristics
The output stage of the TLC27L4 and TLC27L9 is designed to sink and source relatively high amounts
of current (see typical characteristics). Ifthe output is subjected to a short-circuit condition, this high current
capability can cause device damage under certain conditions. Output current capability increases with supply
voltage.
All operating characteristics of the TLC27L4 and TLC27L9 were measured using a 20-pF load. The devices
will drive higher capacitive loads; however, as output load capacitance increases, the resulting response
pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figure 41).
In many cases, adding a small amount of resistance in series with the load capacitance will alleviate the
problem.
TEXAS . "
INSTRUMENTS
2-686
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC27L4, TLC27L4A, TLC27L48, TLC27L9
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
(8) CL -
Ib) CL - 260 pF. RL - NO LOAD
20 pF. RL - NO LOAD
2.5 V
Vo
CL
TA - 25°C
f - 1 kHz
VIPP - 1 V
-2.5 V
Id) TEST CIRCUIT
Ie) CL - 310 pF. RL - NO LOAD
FIGURE 41. EFFECT OF CAPACITIVE LOADS AND TEST CIRCUIT
Although the TLC27L4 and TLC27L9 possess excellent high-level output voltage and current capability.
methods for boosting this capability are available. if needed. The simplest method involves the use of a
pullup resistor (Rp) connected from the output to the positive supply rail (see Figure 42). There are two
disadvantages to the use of this circuit. First, the NMOS pulldown transistor N4 (see equivalent schematic)
must sink a comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with
an on-resistance between approximately 60 nand 180 n, depending on how hard the op amp input is
driven. With very low values of Rp, a voltage offset from 0 V at the output will occur. Second, pullup
resistor Rp acts as a drain load to N4 and the gain of the op amp is reduced at output voltage levels where
N5 is not supplying the output current.
feedback
Op amp circuits nearly always employ feedback, and since feedback is the first prerequisite for oscillation,
some caution is appropriate. Most oscillation problems result from driving capacitive loads (discussed
previously) and ignoring stray input capacitance. A small-value capacitor connected in parallel with the
feedback resistor is an effective remedy (see Figure 43). The value of this capacitor is optimized empirically.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-687
TLC27L4, TLC27L4A, TLC27L4B, TLC27L9
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
c
voo
Ip
VI
+IF
+-
Rp
Vo
IL.
R1
':'
Ip - Pullup current required bV
the op amp (typicallv 500 "AI
R2
RL
':'
FIGURE 42. RESISTIVE PULLUP TO INCREASE VOH
FIGURE 43. COMPENSATION FOR
INPUT CAPACITANCE
electrostatic discharge protection
The TLC27L4 and TLC27L9 incorporate an internal electrostatic discharge (ESDI protection circuit that
prevents functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2.
Care should be exercised, however, when handling these devices, as exposure to ESD may result in the
degradation of the device parametric performance. The protection circuit also causes the input bias currents
to be temperature dependent and have the characteristics of a reverse-biased diode.
latch-up
Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC27L4
and TLC27L9 inputs and outputs were designed to withstand - 1OO-mA surge currents without sustaining
latch-up; however, techniques should be used to reduce the chance of latch-up whenever possible. Internal
protection diodes should not, by design, be forward biased. Applied input and output voltage should not
exceed the supply voltage by more than 300 mV. Care should be exercised when using capacitive coupling
on pulse generators. Supply transients should be shunted by the use of decoupling capacitors (0.1 p.F typical)
located across the supply rails as close to the device as possible.
The current path established if latch-up occurs is usually between the positive supply rail and ground and
can be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed
the supply voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power
supply and the forward resistance of the parasitic thyristor and usually results in the destruction of the
device .. The chance of latch-up occurring increases with increasing temperature and supply voltages.
,
TEXAS
~
INSTRUMENTS
2-688
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC27L4, TLC27L4A, TLC27L4B, TLC27L9
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
500 kll
>---.--- V01
-vi"
5V
500 kll
0.1 p.F
>-~-'--------V02LJ1l
I
500 kll
500 kll
FIGURE 44. MULTIVIBRATOR
100 kll
Voo
100 kll
SET
RESET
100 kll
33 kll
-:-
NOTE: VOO = 5 V to 16 V
FIGURE 45. SET/RESET FLIP-FLOP
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-689
TLC27L4, TLC27L4A, TLC27L4B, TLC27L9
LinCMOST~ PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION· DATA
Voo
VI - - - - t
~--+----
-=-
Voo
90 kO
C X1
S1
TLC4066 1
A
1
C X2
S2
9 kO
ANALOG
A
B
2
2
B
SWITCH
1 kO
NOTE: VOO
=
5 V to 12 V
FIGURE 46. AMPLIFIER WITH DIGITAL GAIN SELECTION
10 kO
Voo
20 kO
........_ Vo
>----1~-
100 kO
NOTE: VOO
=
5 V to 16 V
FIGURE 47. FULL-WAVE RECTIFIER
TEXAS
~
INSTRUMENTS
2-690
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
Vo
TLC27L4, TLC27L4A, TLC27L4B, TLC27L9
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
0.016 flF
5V
10 kG
10 kG
NOTE: Normalized to Fe
=
1 kHz and RL
=
10 kG
FIGURE 48. TWO-POLE LOW-PASS BUTTERWORTH FILTER
R2
100 kG
VOO
R1
10 kG
'>--+-R1
10 kG
Vo
R2-=100 kG
NOTES: VOO
=
5 V to 16 V
R2
Vo =
R1 (VIB-VIAI
FIGURE 49. DIFFERENCE AMPLIFIER
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 855303 • DALLAS. TEXAS 75285
2-691
2-692
TLC27M2, TLC27M2A, TLC27M2B, TLC27M7
LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS
03140, OCTOBER 1987-REVISED OCTOBER 1990
•
•
•
D. JG. OR P PACKAGE
Trimmed Offset Voltage:
TLC27M7 ... 500 p.V Max at 25°C.
VDD = 5 V
(TOP VIEW)
2 IN-
5
2 IN +
I-
::J
uO
Z
Common-Mode Input Voltage Range
Extends Below the Negative Rail IC-Suffix.
I-Suffix types)
•
6
4
(TOP VIEW)
•
•
3
GNO
FK PACKAGE
Single-Supply Operation
•
1 IN +
Wide Range of Supply Voltages over
Specified Temperature Range:
o°C to 70°C ... 3 V to 16 V
-40°C to 85°C ... 4 V to 16 V
-55°C to 125°C ... 4 V to 16 V
•
•
O U T [ ] 8 VOO
1 IN 2
7
2 OUT
Input Offset Voltage Drift ... Typically
0.1 p.V/Month. Including the First 30 Days
3
Low Noise ... Typically 32 nV/,jHz
at f = 1 kHz
Cl
ClU
>z
1 2019
NC
4
18
IN-
s
17
2 OUT
NC
6
16
NC
15
21N-
8
14
NC
IN+
NC
NC
9 1011 12 13
Low Power ... Typically 2.1 mW at 25°C.
VDD = 5 V
UClU + U
zzz ~ Z
m
Phase margin
10 mV,
= 10 mV,
CL = 20 pF,
Vi
=
=
CL
100 kll,
BaM
Maximum output swing bandwidth
81
Q>m
Unity-gain bandwidth
Phase margin
=
100 Il,
=
20 pF,
See Figure 1
=
20 pF,
f = 81,
See Figure 3
TYP
MAX
UNIT
0.43
- 55°C
0.54
125°C
0.29
25°C
0.40
-55°C
0.49
125°C
0.28
25°C
32
25°C
55
-55°C
80
125°C
40
25°C
525
-55°C
850
125°C
330
25°C
40°
-55°C
44°
125°C
36°
=
f
VIPP
TA
25°C
=
1 V
20 pF,
See Figure 1
Vn
RS
TEST CONDITIONS
RL
Equivalent input noise voltage
2.5 V
MIN
Vlp.s
nVI.JHz
kHz
kHz
10 V
PARAMETER
Slew rate at unity gain
1 V
See Figure 3
operating characteristics, VOO
SR
=
VIPP
f = 1 kHz,
See Figure 2
Unity-gain bandwidth
=
20 pF,
See Figure 1
81
TA
25°C
1 kHz,
VIPP
=
5.5 V
RS
=
100 Il,
=
20 pF,
See Figure 2
Va
RL
= VOH,
= 100 kll,
CL
Vi
=
CL
10 mV,
See Figure 1
=
20 pF,
See Figure 3
= 10 mV,
CL = 20 pF,
Vi
f
=
81,
See Figure 3
TEXAS
MIN
TYP
MAX
UNIT
0.62
-55°C
0.81
125°C
0.38
25°C
0.56
-55°C
0.73
125°C
0.35
25°C
32
25°C
35
-55°C
50
125°C
20
25°C
635
-55°C
960
125°C
440
25°C
43°
-55°C
47°
125°C
39°
Vlp.s
nVI.JHz
kHz
kHz
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-705
TLC27M2, TLC27M2A, TLC27M2B, TLC27M7
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERSPARAMETER MEASUREMENT INFORMATION
single-supply versus split-supply test circuits
Because the TLC27M2 and TLC27M7 are optimized for single-supply operation, circuit configurations used
for the various tests often present some inconvenience since the input signal, in many cases, must be
offset from ground. This inconvenience can be avoided by testing the device with split supplies and the
output load tied to the negative rail. A comparison of single-supply versus split-supply test circuits is shown
below. The use of either circuit will give the same result.
Vo
VI
Vo
VI
RL
':'
RL
':'
voo(al Single-Supply
(b) Split-Supply
FIGURE 1. UNITY-GAIN AMPLIFIER
10 kll
10 kll
VOO+
1/2 VOO
Vo
Vo
100 Il
':'
':'
(a) Single-Supply
':'
Ib) Split-Supply
FIGURE 2. NOISE TEST CIRCUIT
10 kll
10 kll
100 Il
VI
VI
Vo
112 VOO
CL
VOO(a) Single-Supply
(b) Split-Supply
FIGURE 3. GAIN-OF-100 INVERTING AMPLIFIER
TEXAS .",
INSTRUMENTS
2-706
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC27M2, TLC27M2A, TLC27M2B, TLC27M7
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
PARAMETER MEASUREMENT INFORMATION
input bias current
Because of the high input impedance of the TLC27M2 and TLC27M7 op amps, attempts to measure the
input bias current can result in erroneous readings. The bias current at normal room ambient temperature
is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions
are offered to avoid erroneous measurements:
1. Isolate the device from other potential leakage sources. Use a grounded shield around and between
the device inputs (see Figure 41. Leakages that would otherwise flow to the inputs will be shunted
away.
2. Compensate for the leakage of the test socket by actually performing an input bias current test (using
a picoammeterl with no device in the test socket. The actual input bias current can then be calculated
by subtracting the "open-socket" leakage readings from the readings obtained with a device in the
test socket.
One word of caution ... many automatic testers as well as some bench-top op amp testers use the
servo-loop technique with a resistor in series with the device input to measure the input bias current
(the voltage drop across the series resistor is measured and the bias current is calculatedl. This method
requires that a device be inserted into the test socket to obtain a correct reading; therefore, an "opensocket" reading is not feasible using this method.
8
5
QQ Q
v -
VIC
QQ Q
4
FIGURE 4. ISOLATION METAL AROUND DEVICE INPUTS
(JG AND P DUAL-IN-LiNE-PACKAGEl
low-level output voltage
To obtain low-supply-voltage operation, some compromise was necessary in the input stage. This
compromise results in the device low-level output being dependent on both the common-mode input voltage
level as well as the differential input voltage level. When attempting to correlate low-level output readings
with those quoted in the electrical specifications, these two conditions should be observed. If conditions
other than these are to be used, please refer to Figures 14 through 19 in the Typical Characteristics of
this data sheet.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-707
nC27M2, nC27M2A, nC27M28, nC27M7
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
PARAMETER MEASUREMENT INFORMATION
input offset voltage temperature coefficient
Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage.
This parameter is actually a calculation using input offset voltage measurements obtained at two different
temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both
the device and the test socket. This moisture will result in leakage and contact resistance, which can cause
erroneous input offset voltage readings. The isolation techniques previously mentioned have no effect on
the leakage since the moisture also covers the isolation metal itself, thereby rendering it useless. It is
suggested that these measurements be performed at temperatures above freezing to minimize error.
full-power response
FUll-power response, the frequency above which the op amp slew rate limits the output voltage swing,
is often specified two ways ... full-linear response and full-peak response. The full-linear response is
generally measured by monitoring the distortion level of the output while increasing the frequency of a
sinusoidal input signal until the maximum frequency is found above which the output contains significant
distortion. The full-peak response is defined as the maximum output frequency, without regard to distortion,
above which full peak-to-peClk output swing cannot be maintained.
Because there is no industry-wide accepted value for "signifi'cant" distortion, the full-peak response is
specified in this data sheet and is measured using the circuit of Figure 1. The initial setup involves the
use of a sinusoidal input to determine the maximum peak-to-peak output of the device (the amplitude of
the sinusoidal wave is increased until clipping occurs). The sinusoidal wave is then replaced with a square
wave of the same amplitude. The frequency is then increased until the maximum peak-to-peak output
can no longer be maintained (Figure 5). A square wave is used to allow a more accurate determination
of the point at which the maximum peak-to-peak output is reached.
(0) f -
1 kHz
11 A
(b) BOM
>
f
> 1 kHz
(e) f -
BOM
A
(d) f> BOM
FIGURE 5. FULL-POWER-RESPONSE OUTPUT SIGNAL
test time
Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume, shorttest-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET devices
and require longer test times than their bipolar and BiFET counterparts. The problem becomes more
pronounced with reduced supply levels and lower temperatures.
TEXAS •
INSTRUMENTS
2-708
POST OFFICE BOX 655303 • OALLAS. TEXAS 75265
TLC27M2, TLC27M2A, TLC27M2B, TLC27M7
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
DISTRIBUTION OF TLC27M2
INPUT OFFSET VOLTAGE
DISTRIBUTION OF TLC27M2
INPUT OFFSET VOLTAGE
612 Amplifiers
50
;i.
I
,~
c
VOO - 5 V -f----+-~f----+----jf----+-__I
TA - 25°C
P Package
50
612 Amplifiers
VOO - 10 V
TA - 25°C
P Package
40 I---t--t---t--t-;;;::±::::-t---t--t---t----i
:::I
o Lsml:m::i:c.
01illllll:::lW!!!.
-5 -4 -3 -2 -1
0
2
3
4
Vlo-lnput Offset Voltage-mV
-5 -4 -3 -2 -1 0
2
3 4
Vlo-lnput Offset Voltage-mV
5
FIGURE 6
FIGURE 7
DISTRIBUTION OF TLC27M2 AND TLC27M7
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
'0
224 Amplifiers
VOO - 5 V
50 TA - 25°C to
125°C
P Package
40
Outliers:
(1) 33,0 flV/oC
301---t--t---t--t-
~
tl
20 I---t--t---t--t-
;i.
I
J!!
'2
:::I
..'"
cf
5
DISTRIBUTION OF TLC27M2 AND TLC27M7
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
224 Amplifiers tested
VOO - 10 V I
TA - 25°C to 125°C -+-+--+-+----1
P Package
Outliers:
(1) 34,6 flV/oC
I
50
;i.
I
J!! 40
'2
:::I
~ 30~-t--t---t--~
'"
i'!
c
8 20 I---t--t---+-
cf
10 I--t--t----+-
101--t---1--+-1
Ol-.J......allllillllli_
-10 -8 -6 -4 -2 0
2 4
6
8 10
avlO - Temperature Coefficient - flV / °C
oL.....--IIIIr.:di-10 -8 -6 -4 -2 0
2 4
6 8 10
"'VIO- Temperature Coefficient-flV / °C
FIGURE 9
FIGURE 8
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 ' DALLAS, TEXAS 15265
2-709
TLC27M2, TLC27M2A, TLC27M2B, TLC27M7
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
5
16
VIO - 100 mV
TA - 25°C
>
I
CD
CI
>
---
I 14
CD
CI
4
~ 12
15'"
0
>
...
::l
3
S::l
0
Gi
>
CD
>
VOO - 5 V
:; 10 I - -
S::l
VOO - 4 V
....
2
1:.
CI
:i:
I
0
Gi
>
CD
8
....
1:.
CI
:i:
6
I
4
:I:
:I:
>
>
0
0
..
-10
-40
-20
-30
IOH-High-Level Output Current-mA
HIGH-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
16
VOO-1.6
VIO = 100 mV
~ 14 c-RL = 100 kO
CD
TA = 25~C
CI
is 12
:; 10
8
CI
I
4
:I:
o
>
/
2
o
15'"
>
:;
S::l
0
a;
/V
6
o
2
V
/
>
CD
....
/
:I:
0
6
.1
............
~OO - 5V
VOO-1.8
~
VOO-1.9
8
10
12
VOO-Supply Voltage-V
14
16
IOH - -5 mA
VID - 100 mV
I
-.............
['-........
~ i'-.
~
VOO-2.0
VOO -
10V ~
VOO-2.1
I'-.......
1:.
CI
:i: VOO-2.2
I
>
4
VOO-1.7
CD
CI
/
S::l
:i:
I
V
>
1:.
>
/
o
>
"
FIGURE 11
HIGH-LEVEL OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
j
~
~ .......VOO - 10 V
"I'-
FIGURE 10
a;
b---.,
2
IOH-Hlgh-Level Output Current-mA
o
~
............
............
100 mV
- 25°C
VOO - 16 V
r--....
~
o
o
o~--~----~----~----~----10
o
-2
-6
-4
-8
--
VID -
J TA
~
VOO-2.3
VOO-2.4
-75 -50 -25
0
25
50
........
'"
75
~
~
100 125
TA -Free-Air Temperature- °C
FIGURE 12
FIGURE 13
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
~
TEXAS
INSTRUMENTS
2-710
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC27M2, TLC27M2A, TLC27M2B, TLC27M7
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
LOW-LEVEL OUTPUT VOLTAGE
LOW-LEVEL OUTPUT VOLTAGE
vs
vs
COMMON-MODE INPUT VOLTAGE
COMMON-MODE INPUT VOLTAGE
700
500
1\
>
E
I
\
\
E 600
"'0
>
...
CI>
::J
Co
o:;
500
>
~
E
I
CI> 450
co
>
...
::J
-100 mV
...::JCo
I
o
\ ~~
a;
> 350
~
-1 V.......
I
~
....CI>
-.....
--..:: r:::::
--
2
3
Vlc-Common-Mode Input Voltage-V
800
400
0
""",,""""~ ~
VID -
o
>
1\\
"'0
400
300
>
~\
....CI>
,
....0
....I
300
0
>
250
4
o
~/~
VID -
//VID -
~VID
~
FIGURE 15
LOW-LEVEL OUTPUT VOLTAGE
LOW-LEVEL OUTPUT VOLTAGE
vs
vs
DIFFERENTIAL INPUT VOLTAGE
FREE-AIR TEMPERATURE
I
900
I
I
>
...
500
::J
c5
400 ~
a;
~ 300
~
.3
....I
!]
I
I
!!
"'0 600
I
:
o
~
-
~
!l
VOO - 10 V-- r-
~
....o
....I
400
300
V
/
/V
;- 500
200
./
V
f--"
./
V
....-V
.......
V
,./
V
~_I---
VOO - 10 V
200
o
> 100
100
o
o
VOO - 5 V
::J
~VOO - 5 V
10
I
"'0
S-
-
2
4
6
8
Vlc-Common-Mode Input Voltage-V
I-IOL - 5 mA
~ 800
VID - -1 V
I
I- VIC - 0.5 V
CI>
700
co
::
-100 mV
-1 V
-2.5 V
FIGURE 14
I
\
I
~~
IOL - 5 mA
~ 700 r VIC
- IVID/21
I
CI>
TA - 25°C
co 600
!!
I
VOD - 10 V
IOL - 5 mA
TA - 25°C -
!!
I\VID -
a;
.3
....I
VOO - 5 V
IOL - 5 mATA - 25°C
-2
-4
-6
-8
-10
Vlo-Oifferentiallnput Voltage-V
o
-75 -50 -25
0
25 50
75 100 125
TA -Free-Air Temperature- °C
FIGURE 17
FIGURE 16
tO ata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-711
TLC27M2, TLC27M2A, TLC27M2B, TLC27M7
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
1.0
I
3.0
IJ
>
1
OIl
Cl
f---
>
VOO -
I
:! 0.7
0
>
...
VOO = 4 ~
0.6
:J
So
:J
3~ ~
VOO =
0.5
0
/
Qj
> 0.4
....OIl
~ 0.3
....
0
....1
0.2
>
0.1
0
o /'
o
/"
l#
I
1
VIO - - 1 V
VIC - 0.5 V
0.8 :--TA = 25°C
0.9
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
~
1
5y
VIO - -1 V
VIC - 0.5 V
TA - 25°C
2.5
OIl
Cl
:!
~
/
...
...
.l
:J
Co
c5
~
VOO - 10vj
1.5
0;
~
1.0
....o
h
1
5 0 .5
>
2
3
4
5
6
7
IOl -low-level Output Current-rnA
o
8
V
/
>
!l
VOO - 1 6 Y
I
2.0
V
o
V
/
V
5
10
15
20
25
IOl -low-level Output Current-rnA
30
FIGURE 18
FIGURE 19
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
SUPPLY VOLTAGE
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
~ 500~~--~--~--~--~--~--~~
~ 500
~ 450
I,
:>1
Rl - 100 kO_
TA - -55°C
Rl - 100 kO +-~+--~I-----t-=_-===:=I
450
35 400~~~-+~-+~~~~~~~+--~
c
·8400
~
~ 350
..
°
CJ
350~~~-+~-+~~~~~~~~-;
C.
~
~ 300~~~-+~~~~~~~~~~
OIl
...~
OIl
~ 250
o
250~~~-T7--T.~~~~'-T-~~~
>
200
ia
'E
150~~-.~~~~-r~~~+-~+---1
f
f
1
o
~
""
"",-
.....
"- ....... VOO .....
10 V
I'---..
50~~~-+~-+~~~~~+-~+--~
VOO - 5 V ...............
r---
o
>
50
'"
0
-75 -50 -25
0
25
50 75 100 125'
TA-Free-Air Ternperature- °C
1
o~~--~--~--~--~--~--~~
o 2 4 6 8 10 12 14 16
-----..............
~
~ 100
is
~ 100~~~~~-+~~~~~+-~+--~
o
150
I
,
!:!
~ 200~-4~~~~~~~~~~~~1
!c
300
I
VOO-Supply Voltage-V
FIGURE 21
FIGURE 20
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSTRUMENTS
2-712
POST OFFICE BOX 655303 ' DALLAS. TEXAS 75265
TLC27M2, TLC27M2A, TLC27M2B, TLC27M7
LinCMOS™ PRECISION OUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
COMMON-MODE
INPUT VOLTAGE POSITIVE LIMIT
vs
SUPPLY VOLTAGE
INPUT BIAS CURRENT AND INPUT OFFSET CURRENT
vs
FREE-AIR TEMPERATURE
16
14
.,I
C>
"
,-- . -
:;
I\.
450
~
600
400 1---
-~
I 350
t:
500
~
~ 300
16
> 250
III
300
III
200
6150
,9
100
C.
g.
I
c
100
200
Va - VOO/2
No load
-
-
~
1--
~
"'- ~
:::I
U
400
,9
,
500
Va c VOo/2
No load
>
C.
C.
:::I
14
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
I
u
/
FIGURE 23
800
f
//
V - - 1---,-,-- - -
10
12
4
6
8
VOO-Supply Voltage-V
2
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
I:
,/,/
V
/
2
FIGURE 22
..
/
i/
TA - Free-Air Temperature- °C
:;
:;
g
~
r-----
a.
.E
u
f----
!l 12
(5
Co
"'C
I:
I
~51oC
A-d'·
. . r-=
T
>
VOO - 5 V
"VOO - 10 V
.........
~ r-....
~ I'-I
~-
--
50
0
0
2
8
10 12
4
6
VOO-Supply Voltage-V
14
16
o
-75 -50 -25
0
25 50 75 100 125
TA - Free-Air Temperature- °C
FIGURE 24
FIGURE 25
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
NOTE 4: The typical values of input bias current and input offset current below 5 pA were dete,mined mathematically.
TEXAS . .
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-713
TLC27M2. TLC27M2A. TLC27M2B. TLC27M7
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
SLEW RATE
vs
SUPPLY VOLTAGE
0.9
I
0.9r-~---r--~--~--~~--~--~
I
AV - 1
0.8 r- VIPP - 1 V
RL - 100 kG
CL = 20 pF
~
> 0.7 r- TA = 25°C
I
See Figure 1
..
.....
a:
..
iii
/
0.6
I
a: 0.5
en
0.3
V
/
0.4
/
/
~
:>
V
2
O. 71----I"""---+~'_+~-+~--I-~._~-;--~
I
; 0.6 I-----j~_+~_f'~-+'....-+
/
a:
~
~
0.51---d~~~-+~-+~~~~~+-~
ffi
0.4~--I~~~-+~~~~~+-~~~
en
I
0.3
I
o
AV - 1
RL - 100 kG
CL - 20 pF
0.8
01
~
SLEW RATE
vs
FREE-AIR TEMPERATURE
14
4
6
8
10 12
VOO-Supply Voltage-V
0.2 '-----'_--1._--'-_......._ ........_ - ' - _......---1
-75 -50 -25 0
25 50 75 100 125
TA - Free-Air Temperature - °C
16
FIGURE 26
FIGURE 27
NORMALIZED SLEW RATE
vs
FREE-AIR TEMPERATURE
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
1.4
1.3
.....
a:
..
iii
1.2
01
~
.
~
1.1
1.0
.!:!
iii 0.9
E
0
z
0.8
10
~yoo
-
VOO-~
AV VIPP
RL CL -
10V
1
>
..
I
til
"-~
f!
:::I
5
0
4
:I:
3
0
>
~~
FIGURE 28
VOO - 5 V
1\
111111
I 1111111
\
2 f--- RL - 100 kG
I I 11-1111
"
I
I I I I II
TA - 125°C
TA - 25°C
TA - -55°C
See Figure 1
0.6
-75 -50 -25
0
25 50 75 100 125
TA-Free-Air Temperature- °C
I
~
I
I~ :.....
II
11-
7
6
So
:::I
II
\
8 r--- VOO - 10 V
"0
>
...
0.7
II 1111
9
- 1V
100 kG
20 pF
I
:::::
II! 1111
o
1
~
....... "'-
10
100
f- Frequency-kHz
1000
FIGURE 29
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSTRUMENTS
2-714
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC27M2, TLC27M2A, TLC27M2B, TLC27M7
LinCMOSTM PRECISION DUAL OPEATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
UNITY-GAIN BANDWIDTH
vs
FREE-AIR TEMPERATURE
900
...~I
\
~
~
700
~
C
1\1
~ 600
...
1\1
~ 600
CI
CI
~
"" '"
=
400
300
-75 -50 -25
/
.~ 650
c
~
·iii
I
0
25
550
/
·2
~
50
~ 500
...
~
450
r--
400
75
o
2
6
4
10 7
c
.~ 10 6
5 V
Rl - 100 kfl
TA - 25°C
1\
~o
60° .,
til
1\1
~
900 a.
~~
100
1k
10 k
~
100 k
~ 104
1\ ~
:!
g 103
1\
14
16
~
180°
1 M
15
~o
~
'--
"iii
.~ 102
Phase Shift
~
"
10
~ 10 5 ~
:c
en
0.1
1
1\1
30° :::
""
12
I
VOO - 10 V
Rl - 100 kflTA - 25°C
.~
E
..
.. 43
"~
~
"b 41
/""
,/
.~
~ 44
if
I
/
42
I
E
-e-
i'...
""'" ~
:2
/
i'...
.c
Q.
I
/'
L
40
..
s:.. 39
.~
i
I
VOO - 5 V
Vi - 10 mV_
CL - 20 pF
See Figure 3
....
Z'
" 46
I
c
.....
45
I
Vi = 10 mV
CL - 20 pF _
TA = 25°C
See Figure 3
37
"~
~
"
V
38
o
4
6
8
10
12
VOO-Supply Voltage-V
2
..
!
PHASE MARGIN
vs
CAPACITIVE LOAD
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
..
I'c
"i'..
38
.
~
.. 36
.::l
34
~
32
:2
.c
Q.
..
250
:>c
I
\
l!!
1\
'" ""
...
'0
...
VOO - 5 V
RS - 100 n
TA - 25°C
See Figure 2
1\
C>
2
\
150
::l
Co
"-
c
""I'"
20
300
"6 200
30
o
~
>
-e-
28
Il
VOO - 5 V
Vi - 10 mVTA - 25°C
See Figure 3 -
'~
40
125
FIGURE 35
I
C>
16
FIGURE 34
44
42
14
35
-75 -50 -25
0
25
50
75 100
T A - Free-Air Temperature - °C
40
60
80
CL -Capacitive Load-pF
E
.. 100
""1'.. . .
iii
>
.~
"100
50
>
-
r-
w
I
c
0
1
100
10
f- Frequency - Hz
1000
FIGURE 37
FIGURE 36
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
~
TEXAS
INSTRUMENTS
2-716
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC27M2, TLC27M2A, TLC27M2B, TLC27M7
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
single-supply operation
While the TLC27M2 and TLC27M7 perform well using dual power supplies (also called balanced or split
supplies), the design is optimized for single-supply operation. This design includes an input common-mode
voltage range that encompasses ground as well as an output voltage range that pulls down to ground.
The supply voltage range extends down to 3 V (C-suffix types), thus allowing operation with supply levels
commonly available for TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply
operation is recommended.
Many single-supply applications require that a voltage be applied to one input to establish a reference level
that is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see
Figure 38). The low input bias current of the TLC27M2 and TLC27M7 permits the use of very large resistive
values to implement the voltage divider, thus minimizing power consumption.
The TLC27M2 and TLC27M7 work well in conjunction with digital logic; however, when powering both
linear devices and digital logic from the same power supply, the following precautions are recommended:
1. Power the linear devices from separate bypassed supply lines (see Figure 39); otherwise the linear
device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital
logic.
2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive
decoupling is often adequate; however, high-frequency applications may require RC decoupling.
vDD
Vo
FIGURE 38. INVERTING AMPLIFIER WITH VOLTAGE REFERENCE
(a) Common Supply Ralls
(b) Sepafate Bypassed Supply Ralls (pfeferred)
FIGURE 39. COMMON VS SEPARATE SUPPLY RAILS
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-717
TLC27M2, TLC27M2A, TLC27M2B, TLC27M7
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
input characteristics
The TLC27M2 and TLC27M7 are specified with a minimum and a maximum input voltage that, if exceeded
at either input, could cause the device to malfunction. Exceeding this specified range is a common problem,
especially in single-supply operation. Note that the lower range limit includes the negative rail, while the
upper range limit is specified at VDD -1 Vat T A = 25°C and at VDD -1.5 V at all other temperatures.
The use of the polysilicon-gate process and the careful input circuit design gives the TLC27M2 and TLC27M7
very good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset
voltage drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of
the phosphorus dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as
a polysilicon gate) alleviates the polarization problem, thus reducing threshold voltage shifts by more than
an order of magnitude. The offset voltage drift with time has been calculated to be typically 0.1 /tV/month,
including the first month of operation.
Because of the extremely high input impedance and resulting low bias current requirements, the TLC27M2
and TLC27M7 are well suited for low-level signal processing; however, leakage currents on printed circuit
boards and sockets can easily exceed bias current requirements and cause a degradation in device
performance. It is good practice to include guard rings around inputs (similar to those of Figure 4 in the
Parameter Measurement Information section). These guards should be driven from a low-impedance source
at the same voltage level as the common-mode input (see Figure 40).
The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation.
noise performance
The noise specifications in op amp circuits are greatly dependent on the current in the first-stage differential
amplifier. The low input bias current requirements of the TLC27M2 and TLC27M7 result in a very low
noise current, which is insignificant in most applications. This feature makes the devices especially favorable
over bipolar devices when using values of circuit impedance greater than 50 kfl, since bipolar devices exhibit
greater noise currents.
(al Noninverting Amplifier
(bl Inverting Amplifier
(el Unity-Gain Amplifier
FIGURE 40. GUARD-RING SCHEMES
output characteristics
The output stage of the TLC27M2 and TLC27M7 is designed to sink and source relatively high amounts
of current (see typical characteristics). If the output is subjected to a short-circuit condition, this high current
capability can cause device damage under certain conditions. Output current capability increases with supply
voltage.
All operating characteristics of the TLC27M2 and TLC27M7 were measured using a 20-pF load. The devices
will drive higher capacitive loads; however, as output load capacitance increases, the resulting response
pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figure 41).
In many cases, adding a small amount of resistance in series with the load capacitance will alleviate the
problem.
TEXAS
"I
INSTRUMENTS
2-718
POST OFFICE BOX 655303 • BALLAS, TEXAS 75265
TLC27M2, TLC27M2A, TLC27M2B, TLC27M7
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
(a)
cL =20 pF, RL =no load
(b) CL
=170 pF, RL = no load
2.5 V
>-"*---<-- Vo
+
TA - 25°C
f = 1 kHz
VIPP
=
1 V
-2.5 V
(e) CL
=190 pF, RL =no load
(d) Test Circuit
FIGURE 41. EFFECT OF CAPACITIVE LOADS AND TEST CIRCUIT
Although the TLC27M2 and TLC27M7 possess excellent high-level output voltage and current capability,
methods for boosting this capability are available, if needed. The simplest method involves the use of a
pullup resistor (Rp) connected from the output to the positive supply rail (see Figure 42). There are two
disadvantages to the use of this circuit. First, the NMOS pulldown transistor N4 (see equivalent schematic)
must sink a comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with
an on-resistance between approximately 60 D and 180 D, depending on how hard the op amp input is
driven. With very low values of Rp, a voltage offset from 0 V at the output will occur. Second, pullup
resistor Rp acts as a drain load to N4 and the gain of the op amp is reduced at output voltage levels where
N5 is not supplying the output current.
feedback
Op amp circuits nearly always employ feedback, and since feedback is the first prerequisite for oscillation,
some caution is appropriate. Most oscillation problems result from driving capacitive loads (discussed
previously) and ignoring stray input capacitance. A small-value capacitor connected in parallel with the
feedback resistor is an effective remedy (see Figure 43). The value of this capacitor is optimized empirically.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-719
TLC27M2, TLC27M2A, TLC27M2B, TLC27M7
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
c
VDD
Rp -
_ _V.:;D.:;D_-_V-"O,-
IF + Il + Ip
Ip - Pullup current required by
the op amp (typically 500 ",A)
FIGURE 42. RESISTIVE PULLUP TO INCREASE VOH
Vo
FIGURE 43. COMPENSATION FOR
INPUT CAPACITANCE
electrostatic discharge protection
The TLC27M2 and TLC27M7 incorporate an internal electrostatic discharge (ESO) protection circuit that
prevents functional failures at voltages up to 2000 V as tested under MIL-STO-883C, Method 3015.2.
Care should be exercised, however, when handling these devices, as exposure to ESO may result in the
degradation of the device parametric performance. The protection circuit also causes the input bias currents
to be temperature-dependent and have the characteristics of a reverse-biased diode.
latch-up
Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC27M2
and TLC27M7 inputs and outputs were designed to withstand - 1OO-mA surge currents without sustaining
latch-up; however, techniques should be used to reduce the chance of latch-up whenever possible. Internal
protection diodes should not, by design, be forward biased. Applied input and output voltage should not
exceed the supply voltage by more than 300 mV. Care should be exercised when using capacitive coupling
on pulse generators. Supply transients should be shunted by the use of decoupling capacitors (0.1 p.F typical)
located across the supply rails as close to the device as possible.
The current path established if latch-up occurs is usually between the positive supply rail and ground and
can be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed
the supply voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power
supply and the forward resistance of the parasitic thyristor and usually results in the destruction of the
device. The chance of latch-up occurring increases with increasing temperature and supply voltages.
TEXAS •
INSTRUMENTS
2-720
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC27M2, TLC27M2A, TLC27M28, TLC27M7
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION OAT A
1N4148
470 kG
100 kG
5V
1/2
TLC27M2
47 kG
......-
>---~>--
100 kG
-=R1
68 kG
100 kG
1 "F
Va
R2
68 kG
C2
2.2 nF
C1
2.2 nF
NOTES: VOPP ~ 2 V
fa =
1
::--;;;;:;;;;;:~
2" ,jR1R2C1C2
FIGURE 44. WIEN OSCILLATOR
5V
VI----l
R
NOTES: VI
=0
V to 3 V
VI
IS
=
R
FIGURE 45. PRECISION LOW-CURRENT SINK
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-721
TLC27M2. TLC27M2A. TLC27M2B. TLC27M7
LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
5V
GAIN CONTROL
- - - - - - , 1 Mil
(see Note A)
1 "F
100 kll
+1
~+10kll
~l-'+----'lM--__--4~)
0.1 "F
1 "F
1 kll
100 kll
100 kll
NOTE A.: Low to medium impedance dynamic mike
FIGURE 46. MICROPHONE PREAMPLIFIER
10 Mil
Voo
1 kll
+
115
>------...- Vo
1/2
TLC27M2
nF
100 kll
150 pF
NOTES:
VOO = 4 V to 15 V
VREF = 0 V to VOO-2 V
FIGURE 47. PHOTO DIODE AMPLIFIER WITH AMBIENT LIGHT REJECTION
TEXAS . "
INSTRUMENTS
2-722
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC27M2, TLC27M2A, TLC27M28, TLC27M7
LinCMOSTM PRECISION DUAL 'OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
1 M!l
T
~
r>-~C~:M'
T
33 pF
-=-
1N4148
100 k!l
Vo
-=100 k!l
NOTES: VOO = 8 V to 16 V
Va = 5V, 10mA
FIGURE 48. 5-V LOW-POWER VOLTAGE REGULATOR
5V
1 M!l
0.01 "F
VI
--jf--__..........~-I +
0.22 "F
>--~~~~r--VO
1/2
TLC27M2
1 M!l
100 k!l
100 k!l
FIGURE 49. SINGLE-RAIL AC AMPLIFIER
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-723
2-724
TLC27M4, TLC27M4A, TLC27M4B, TLC27M9
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
03143, OCTOBER 1987-REVISED OCTOBER 1990
•
D. J. OR N PACKAGE
Trimmed Offset Voltage:
TLC27M9 , , . 900 pV Max at 25°C,
VDD = 5 V
(TOP VIEW)
•
Input Offset Voltage Drift ... Typically
0.1 pV/Month, Including the First 30 Days
•
Wide Range of Supply Voltages over
Specified Temperature Range:
o °C to 70°C ... 3 V to 16 V
- 40°C to 85 °C , .. 4 V to 16 V
- 55°C to 125°C , , . 4 V to 16 V
•
Single-Supply Operation
•
Common-Mode Input Voltage Range
Extends Below the Negative Rail IC-Suffix,
I-Suffix Types)
OUT
11N1 IN+
4 OUT
41N41N+
GND
31N+
31N3 OUT
VDD
21N+
21N2 OUT
FK PACKAGE
•
(TOP VIEW)
t:;
II-
~
Z::J
I
-OUO~
Z""""
3
Low Noise ... Typically 32 nV/'-'Hz
at f = 1 kHz
2
1 20 19
4
18
17
•
Low Power, .. Typically 2,1 mW at 25°C,
VDD = 5 V
•
Output Voltage Range Includes Negative
Rail
16
15
8
14
9 10 11 12 13
n Typical
•
High Input Impedance, . , 1012
•
ESD-Protection Circuitry
•
Small-Outline Package Option Also Available
in Tape and Reel
•
Designed-In Latch-Up Immunity
NN
C'lC'l
NC - No internal connection
AVAILABLE OPTIONS
Vlomax
TA
CHIP
CERAMIC
PLASTIC
OUTLINE
(D)
CARRIER
DIP
DIP
(FK)
(J)
-
-
TLC27M9CN
2 mV TLC27M4BCD
-
-
TLC27M4BCN
5 mV TLC27M4ACD
-
-
TLC27M4ACN
-
-
TLC27M4CN
-
-
TLC27M91N
2 mV TLC27M4BID
-
-
TLC27M4BIN
5 mV TLC27M4AID
-
-
TLC27M4AIN
-
-
TLC27M41N
at
25°C
OOC
to
70°C
-40°C
to
85°C
-55°C
PACKAGE
SMALL
900 p.V TLC27M9CD
10 mV TLC27M4CD
900 p.V TLC27M91D
10 mV TLC27M41D
(N)
900 p.V
TLC27M9MD
TLC27M9MFK
TLC27M9MJ
TLC27M9MN
10 mV
TLC27M4MD
TLC27M4MFK
TLC27M4MJ
TLC27M4MN
to
125°C
DISTRIBUTION OF TLC27M9
INPUT OFFSET VOLTAGE
301 Units tested from 2 wafer lots
35 'VOO - 5 v t---t"-'-r----j-+---1
TA - 25°C
#. 30 N Package +-~--+I
!l
'2 25
:::>
'0 20 - - t - -
r-:
f
~
~
15
-+--+--tf::::::l~It--,-+---1
1: =t0L--'--"*==Ci.Lo.....
The D package is available in tape and reel. Add R suffix to the device type, (e.g.,
TLC27M9CDR).
-1200
1200
Vlo-Input Offset Voltage-#,V
LinCMOS is a trademark of Texas Instruments Incorporated
Copyright © 1990, Texas Instruments Incorporated
PRODUCTION DATA documents contain inlormation
current as of publication date. Products conform to
specifications per the terms 01 Texas Instruments
standard warranty. Production processing does not
necessarily include testing 01 all parameters,
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-725
nC27M4, nC27M4A, nC27M48, nC27M9
linCMOSTM PRECISION QUAD OPERATIONAL AMPL1FIERS
description
The TLC27M4 and TLC27M9 quad operational amplifiers combine a wide range of input offset voltage
grades with low offset voltage drift. high input impedance. low noise. and speeds comparable to that of
general-purpose bipolar devices. These devices use Texas Instruments silicon-gate LinCMOS'M technology.
which provides offset voltage stability far exceeding the stability available with conventional metal-gate
processes.
The extremely high input impedance and low bias currents make these cost-effective devices ideal for
applications that have previously been reserved for general-purpose bipolar products. but with only a fraction
of the power consumption. Four offset voltage grades are available (C-suffix and I-suffix types). ranging
from the low-cost TLC27M4 (10 mV) to the high-precision TLC27M9 (900 /tV). These advantages. in
combination with good common-mode rejection and supply voltage rejection. make these devices a good
choice for new state-of-the-art designs as well as for upgrading existing designs.
In general. many features associated with bipolar technology are available on LinCMOS™ operational
amplifiers. without the power penalties of bipolar technology. General applications such as transducer
interfacing. analog calculations. amplifier blocks. active filters. and signal buffering are easily designed
with the TLC27M4 and TLC27M9. The devices also exhibit low voltage single-supply operation and low
power consumption. making them ideally suited for remote and inaccessible battery-powered applications.
The common-mode input voltage range includes the negative rail.
A wide range of packaging options is available. including small-outline and chip carrier versions for highdensity system applications.
The device inputs and outputs are designed to withstand - 100-mA surge currents without sustaining
latch-up.
The TLC27M4 and TLC27M9 incorporate internal ESD-protection circuits that prevent functional failures
at voltages up to 2000 Vas tested under MIL-STD-883C, Method 3015; however. care should be exercised
in handling these devices as exposure to ESD may result in the degradation of the device parametric
performance.
a
The C-suffix devices are characterized for operation from °C to 70 OCT The I-suffix devices are characterized
for operation from - 40 °C to 85°C. The M-suffix devices are characterized for operation over the full
military temperature range of - 55°C to 125°C.
TEXAS
~
INSTRUMENTS
2-726
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLC27M4, TLC27M4A, TLC27M4B, TLC27M9
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
equivalent schematic (each amplifier)
VDD
-,1+-.. .
R1
IN
----+1
P5
P6
IN+ _ _ _-+-_ _ _ _-+-_ _...J
~~--+-----+-OUT
N6
N7
R7
GND
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-727
TLC27M4, TLC27M4A, TLC27M4B, TLC27M9
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18 V
Differential input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. ± VDD
Input voltage range, VI (any input) " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -0.3 V to VDD
Input current, II ............. " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 5 rnA
Output current, 10 (each output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 30 rnA
Total current into VDD terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 rnA
Total current out of ground terminal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 45 rnA
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . .. unlimited
Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. See Dissipation Rating Table
Operating free-air temperature, T A: C-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. OOC to 70°C
I-suffix. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 40°C to 85 °C
M-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 55°C to 125°C
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65°C to 150°C
Case temperature for 60 seconds: FK package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D and N package . . . . . .. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package ............ 300°C
NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.
2. Differential voltages are at the noninverting input with respect to the inverting input.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded (see application sectionl.
DISSIPATION RATING TABLE
PACKAGE
TA
:5
DERATING FACTOR
25°C
POWER RATING
ABOVE TA
=
25°C
TA
=
70°C
TA
POWER RATING
=
85°C
TA
POWER RATING
=
125°C
POWER RATING
950 mW
7.6 mW/oC
608 mW
494 mW
FK
1375 mW
11 mW/oC
880 mW
715 mW
275 mW
J
1375 mW
11 mW/oC
880 mW
715 mW
275 mW
N
1575 mW
12.6 mW/oC
1008 mW
819 mW
0
recommended operating conditions
C·SUFFIX
MIN
4
16
4
16
3.5
-0.2
3.5
0
3.5
-0.2
8.5
-0.2
8.5
0
8.5
0
70
-40
85
-55
125
MAX
MIN
3
16
~ 5 V
-0.2
~
Supply voltage, VDD
Common-mode input voltage, VIC
Operating free-air temperature, T A
2-728
II VDD
VDD
10 V
M-SUFFIX
I·SUFFIX
MAX
MIN
NOM
NOM
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
NOM
MAX
UNIT
V
V
°C
TLC27M4C, TLC27M4AC, TLC27M4BC, TLC27M9C
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature,
PARAMETER
TEST CONDITIONS
TLC27M4C
TLC27M4AC
VIO
Voo
Input offset voltage
TLC27M4BC
TLC27M9C
Vo = 1.4 V,
RS = 50 n,
VIC = 0,
Vo = 1.4 V,
VIC = 0,
RS = 50
n,
VO=1.4V,
RS = 50
n,
Vo = 1.4V,
RS = 50
n,
RL = 100
RL = 100
TAt
kn
kn
kn
RL = 100 k!!
Input offset current (see Note 4)
Vo = 2.5 V,
VIC = 2.5 V
liB
Input bias current (see Note 4)
Vo = 2.5 V,
VIC = 2.5 V
5
250
2000
Full range
3000
210
25°C
Full range
0.1
7
25°C
0.6
70°C
40
-0.2
voltage range (see Note 5)
mV
p.V
1500
25°C
Common-mode input
900
p.V/oC
1.7
70°C
25°C
VICR
0.9
UNIT
6.5
70°C
110
10
Full range
25°C to
of input offset voltage
MAX
1.1
12
25°C
VIC = 0,
TYP
Full range
25°C
Average temperature coefficient
o'VIO
MIN
25°C
VIC = 0,
RL = 100
5 V (unless otherwise noted)
300
600
pA
pA
-0.3
to
to
4
4.2
V
-0.2
Full range
to
V
3.5
VOH
VOL
High-level output voltage
Low-level output voltage
Large-signal differential
AVO
voltage amplification
CMRR Common-mode rejection ratio
Supply-voltage rejection ratio
kSVR
100
(dVOO/dVIO)
VIO = 100 mV,
VIO = -100 mV,
Vo = 0.25 V to 2 V,
RL = 100 k!!
10L = 0
RL = 100 k!!
VIC = VICR min
VOO = 5Vto10V,
Supply current
Vo = 2.5 V,
(four amplifiers)
No load
Vo = 1.4 V
VIC = 2.5 V,
25°C
3.2
3.9
O°C
3
3.9
70°C
3
4
V
25°C
0
50
O°C
0
50
70°C
0
50
25°C
ooC
25
170
15
200
70°C
15
140
25°C
65
91
O°C
60
91
70°C
60
92
25°C
70
93
O°C
60
92
70°C
60
94
mV
Vim V
dB
dB
25°C
420
1120
O°C
500
1280
70°C
340
880
p.A
t Full range is O°C to 70°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
TEXAS """
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-729
TLC27M4C, TLC27M4AC, TLC27M4BC, TLC27M9C
LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature,
PARAMETER
TLC27M4C
TLC27M4AC
VIO
Voo
TEST CONDITIONS
Input offset voltage
TLC27M4BC
TLC27M9C
Vo
RS
Vo
RS
Vo
RS
Vo
RS
= 1.4 V,
= 500,
= 1.4 V,
= 500,
= 1.4 V,
= 500,
= 1.4 V,
= 500,
TAt
= 0,
RL = 100 kO
VIC = 0,
RL = 100 kO
VIC = 0,
RL = 100 kO
VIC = 0,
RL = 100 kO
VIC
Average temperature coefficient
"'via
10 V (unless otherwise noted)
MIN
25°C
Input offset current (see Note 4)
Va
=
5 V,
VIC
=
5 V
liB
Input bias current (see Note 4)
Va
=
5 V,
VIC
=
5 V
0.9
5
260
2000
Full range
Full range
3000
220
25°C
Full range
1200
p.V
p.V/oC
2.1
25°C
0.1
7
25°C
0.7
70°C
50
-0.2
voltage range (see Note 5)
mV
1900
70°C
Common-mode input
UNIT
6.5
25°C
25°C
VICR
10
12
25°C
70°C
110
MAX
1.1
Full range
25°C to
of input offset voltage
TYP
300
600
pA
pA
-0.3
to
to
9
9.2
V
-0.2
Full range
V
to
8.5
VOH
VOL
High-level output voltage
Low-level output voltage
Large-signal differential
AvO
voltage amplification
CMRR Common-mode rejection ratio
Supply-voltage rejection ratio
kSVR
100
(ll.VOO/ll.VIO)
=
VID
=
VID
Va
100 mY,
=
-100 mY,
1 V to 6 V,
=
VIC
VDO
IOL
RL
=
100 kO
=a
=
100 kO
VICR min
=
=
RL
Supply current
Vo
(four amplifiers)
No load
5 V to 10 V,
5 V,
Va
VIC
=
=
1.4 V
5 V,
25°C
8
B.7
O°C
7.B
B.7
70°C
7.B
B.7
V
25°C
0
50
O°C
a
50
70°C
0
50
25°C
OOC
25
275
15
320
70°C
15
230
25°C
OOC
65
94
60
94
70°C
60
94
25°C
70
93
O°C
60
92
70°C
60
94
V/mV
dB
dB
25°C
570
1200
O°C
690
1600
70°C
440
1120
t Full range is O°C to 70°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
TEXAS
~
INSTRUMENTS
2-730
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
mV
p.A
TLC27M41. TLC27M4AI. TLC27M4BI. TLC27M91
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature,
PARAMETER
TEST CONDITIONS
TLC27M41
TLC27M4AI
Via
Voo
Input offset voltage
TLC27M4BI
TLC27M91
Vo
RS
Va
RS
Va
RS
Va
RS
= 1.4 V,
= 50 {J,
= 1.4 V,
= 50 {J,
= 1.4 V,
= 50 {J,
= 1.4 V,
= 50 {J,
V'C = 0,
RL = 100 k{J
-.
'10
liB
Input bias current (see Note 4)
MIN
25°C
Va
=
2.5 V,
V'C = 0,
RL = 100 k{J
Full range
V'C = 0,
RL = 100 k{J
Full range
V'C
2,5 V,
V'C
=
=
2.5 V
2,5 V
250
25°C
210
900
/LV
2000
1.7
25°C
/LV/oC
0.1
85°C
24
25°C
0.6
85°C
25°C
mV
2000
3500
25°C
Common-mode input
5
UNIT
7
200
-0,2
V,CR
10
0.9
85°C
=
MAX
1.1
13
25°C
25°C to
Va
TYP
Full range
Full range
of input offset voltage
Input offset current (see Note 4)
TAt
V'C = 0,
RL = 100 k{J
Average temperature coefficient
"'via
5 V (unless otherwise noted)
1000
2000
pA
pA
-0,3
to
to
4
4,2
V
-0,2
voltage range (see Note 5)
Full range
to
V
3,5
VOH
VOL
High-level output voltage
Low-level output voltage
Large-signal differential
AVD
voltage amplification
CMRR Common-mode rejection ratio
=
V,D
=
VID
Va
=
'DD
(~VDD/~V,O)
-100 mY,
0,25 V to 2 V,
=
V'C
Supply-voltage rejection ratio
kSVR
100 mY,
VDD
10L
RL
=
=
=
100 k{J
0
100 k{J
V,CR min
=
=
RL
Supply current
Va
(four amplifiers)
No load
5 V to 10 V,
2,5 V,
Va
V'C
=
=
1.4 V
2.5 V,
25°C
3,2
3,9
-40°C
3
3,9
85°C
3
4
V
25°C
0
50
--40°C
0
50
85°C
0
50
25°C
25
170
-40°C
15
270
85°C
15
130
25°C
65
91
-40°C
60
90
85°C
60
90
25°C
70
93
-40°C
60
91
85°C
60
94
mV
V/mV
dB
dB
25°C
420
1120
-40°C
630
1600
85°C
320
800
/LA
t Full range is - 40°C to 85 DC.
NOTES: 4, The typical values of input bias current and input offset current below 5 pA were determined mathematically,
5, This range also applies to each input individually,
TEXAS . .
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-731
TLC27M41, TLC27M4AI, TLC27M4BI, TLC27M91
LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature,
PARAMETER
TEST CONDITIONS
TLC27M41
TLC27M4AI
Via
Voo
Input offset voltage
TLC27M4BI
TLC27M91
Va = 1.4 V,
VIC = 0,
RS = 50 n,
RL = 100 kn
Va = 1.4 V,
VIC = 0,
RS = 50 n,
RL = 100 kn
Va = 1.4 V,
VIC = 0,
RS = 50 n,
RL = 100 kn
Va = 1.4V,
VIC = 0,
RS = 50 n,
RL = 100 kn
Average temperature coefficient
"via
110
118
Input bias current (see Note 41
TAt
MIN
25°C
Va = 5 V,
VIC = 5 V
VIC = 5 V
10
13
Full range
260
25°C
Full range
220
25°C
1200
I'V
2900
2.1
25°C
I'V/oC
0.1
85°C
26
25°C
0.7
85°C
25°C
mV
2000
3500
Full range
Common-mode input
5
UNIT
7
220
-0.2
VICR
MAX
1.1
0.9
25°C
85°C
Va = 5 V,
TYP
Full range
25°C to
of input offset voltage
Input offset current (see Note 41
10 V (unless otherwise noted)
1000
2000
pA
pA
-0.3
to
to
9
9.2
V
-0.2
voltage range (see Note 51
Full range
to
V
8.5
VOH
VOL
High-level output voltage
Low-level output voltage
Large-signal differential
AVO
voltage amplification
CMRR Common-mode rejection ratio
Supply-voltage rejection ratio
kSVR
100
(LiVOO/LiVIO)
VID = 100 mY,
VID = -100 mY,
Va = 1 V to 6 V,
RL = 100 kn
10L = 0
RL = 100 kn
VIC = VICR min
VDO=5Vt010V,
Supply current
Va = 5 V,
(four amplifiers)
No load
VO=1.4V
VIC = 5 V,
25°C
8
8.7
-40°C
7.8
8.7
85°C
7.8
8.7
V
25°C
0
50
-40°C
0
50
85°C
0
50
25°C
25
275
-40°C
15
390
85°C
15
220
94
25°C
65
-40°C
60
93
85°C
60
94
93
25°C
70
-40°C
60
91
85°C
60
94
V/mV
dB
dB
25°C
570
1200
-40~C
·900
1800
85°C
410
1040
t Full range is - 40°C to 85 DC.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5: This range also applies to each input individually.
~
TEXAS
INSTRUMENTS
2-732
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
mV
I'A
TLC27M4M, TLC27M9M
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Voo - 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TLC27M4M
VIO
Input offset voltage
TLC27M9M
Vo = 1.4 V,
VIC = 0,
MIN
25°C
RS = 50 n,
RL = 100 kn
Vo = 1.4 V,
VIC = 0,
Full range
25 DC
RS = 50 n,
RL = 100 kn
Full range
Average temperature coefficient
aVIO
TAt
Input offset current (see Note 4)
Vo = 2.5 V,
VIC = 2.5 V
liB
Input bias current (see Note 4)
Vo = 2.5 V,
VIC = 2.5 V
210
900
25°C
0.1
125°C
25 DC
1.4
0.6
125 DC
9
25 DC
Common-mode input
voltage range (see Note 5)
UNIT
mV
p.V
p.V/oC
1.7
0
VICR
10
3750
125°C
110
MAX
1.1
12
25°C to
of input offset voltage
TYP
pA
15
nA
pA
35
nA
-0.3
to
to
4
4.2
V
0
Full range
V
to
3.5
VOH
VOL
High-level output voltage
Low-level output voltage
Large-signal differential
AVO
voltage amplification
CMRR Common-mode rejection ratio
Supply-voltage rejection ratio
kSVR
100
(aVOO/avIO)
VIO = 100 mV,
VIO = -100 mV,
Vo = 0.25 V to 2 V,
RL = 100 kn
10L = 0
RL = 100 kn
VIC = VICR min
VOO=5Vt010V,
Supply current
Vo = 2.5 V,
(four amplifiers)
No load
Vo = 1.4 V
VIC = 2.5 V,
25°C
3.2
3.9
-55°C
125 DC
3
3.9
3
4
V
25°C
0
50
-55°C
0
50
125°C
0
50
25°C
25
170
-55°C
15
290
125°C
15
120
25°C
65
91
-55 DC
60
89
125°C
25 DC
60
91
70
93
-55 DC
60
91
125°C
60
94
mV
V/mV
dB
dB
25"C
420
1120
-55°C
125 DC
680
1760
280
720
p.A
t Full range is - 55 DC to 125°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-733
TLC27M4M. TLC27M9M
LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature,
PARAMETER
Input offset voltage
TLC27M9M
Va
RS
Va
RS
= 1.4 V,
= 50 Il,
= 1.4V,
= 50 Il,
VIC = 0,
RL = 100 kll
Full range
= 0,
= 100 kll
Full range
VIC
RL
Average temperature coefficient
"'via
of input offset voltage
110
Input offset current (see Note 41
liB
Input bias current (see Note 41
10 V (unless otherwise noted)
TAt
TEST CONDITIONS
TLC27M4M
VI(:~
Voo
MIN
25°C
25°C
Va
=
5 V,
VIC
5 V,
VIC
=
5 V
=
5 V
25°C
0.1
1.8
25°C
0.7
125°C
10
25°C
voltage range (see Note 51
UNIT
mV
",V
",V/oC
2.1
125°C
Common-mode input
1200
4300
0
VICR
10
220
125°C
=
MAX
1.1
12
25°C to
Va
TYP
pA
15
nA
pA
35
nA
-0.3
to
to
9
9.2
V
0
Full range
V
to
8.5
VOH
VOL
AVD
High-level output voltage
Low-level output voltage
Large-signal differential
voltage amplification
CMRR Common-mode rejection ratio
Supply-voltage rejection ratio
kSVR
IDD
(~VDD/~VIO)
=
VID
=
VID
Va
100 mV,
=
100 mV,
1 V to 6 V,
=
VIC
VDD
10L
RL
=
100 kll
=
=
0
100 kll
VICR min
=
=
RL
Supply current
Va
(four amplifiers)
No load
5 V to 10 V,
5 V,
Va
VIC
=
=
1.4 V
5 V,
25°C
8
8.7
-55°C
7.8
8.6
125°C
7.8
8.8
V
25°C
0
50
-55°C
0
50
125°C
0
50
25°C
25
275
-55°C
15
420
125°C
15
190
25°C
65
94
-55°C
60
93
125°C
60
93
93
25°C
70
-55°C
60
91
125°C
60
94
V/mV
dB
dB
25°C
570
1200
- 55°C
980
2000
125°C
360
960
t Full range is - 55°C to 125°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
TEXAS
~
INSTRUMENlS
2-734
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
mV
",A
TLC27M4C, TLC27M4AC, TLC27M4BC, TLC27M9C
LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS
5V
operating characteristics, VOO
PARAMETER
TEST CONDITIONS
=
=
RL
SR
Slew rate at unity gain
CL
100 kll,
Equivalent input noise voltage
BOM
Maximum output swing bandwidth
Bl
-............- .....-Vo
>-............- .....-Vo
Voo(b) Split-Supply
(a) Single-Supply
FIGURE 1. UNITY-GAIN AMPLIFIER
10 kn
10 kn
Voo+
1/2 Voo
Vo
Vo
100n
(a) Single-Supply
(b) Split· Supply
FIGURE 2. NOISE TEST CIRCUIT
10 kn
10 kn
100 n
1/2 Voo - - - - - I
Voo(b) Split-Supply
(a) Single-Supply
FIGURE 3. GAIN-OF-100 INVERTING AMPLIFIER
TEXAS . "
INSTRUMENTS
2-738
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC27M4, TLC27M4A, TLC27M4B, TLC27M9
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
PARAMETER MEASUREMENT INFORMATION
input bias current
Because of the high input impedance of the TLC27M4 and TLC27M9 op amps, attempts to measure the
input bias current can result in erroneous readings. The bias current at normal room ambient temperature
is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions
are offered to avoid erroneous measurements:
1. Isolate the device from other potential leakage sources. Use a grounded shield around and between
the device inputs (see Figure 4). Leakages that would otherwise flow to the inputs will be shunted
away.
2. Compensate for the leakage of the test socket by actually performing an input bias current test (using
a picoammeter) with no device in the test socket. The actual input bias current can then be calculated
by subtracting the "open-socket" leakage readings from the readings obtained with a device in the
test socket.
One word of caution ... many automatic testers as well as some bench-top op amp testers use the
servo-loop technique with a resistor in series with the device input to measure the input bias current
(the voltage drop across the series resistor is measured and the bias current is calculated). This method
requires that a device be inserted into the test socket to obtain a correct reading; therefore, an "opensocket" reading is not feasible using this method.
7
--
1
C QCQQQ
CQQCCC
8
--
14
FIGURE 4. ISOLATION METAL AROUND DEVICE INPUTS
(J AND N DUAL-IN-LiNE-PACKAGEI
low-level output voltage
To obtain low-supply-voltage operation, some compromise was necessary in the input stage. This
compromise results in the device low-level output being dependent on both the common-mode input voltage
level as well as the differential input voltage level. When attempting to correlate low-level output readings
with those quoted in the electrical specifications, these two conditions should be observed. If conditions
other than these are to be used, please refer to Figures 14 through 19 in the Typical Characteristics of
this data sheet.
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TeXAS 75265
2-739
TLC27M4, TLC27M4A, TLC27M4B, TLC27M9
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
PARAMETER MEASUREMENT INFORMATION
input offset voltage temperature coefficient
Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage.
This parameter is actually a calculation using input offset voltage measurements obtained at two different
temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both
the device and the test socket. This moisture will result in leakage and contact resistance, which can cause
erroneous input offset voltage readings. The isolation techniques previously mentioned have no effect on
the leakage since the moisture also covers the isolation metal itself, thereby rendering it useless. It is
suggested that these measurements be performed at temperatures above freezing to minimize error.
full-power response
Full-power response, the frequency above which the op amp slew rate limits the output voltage swing,
is often specified two ways ... full-linear response and full-peak response. The full-linear response is
generally measured by monitoring the distortion level of the output while increasing the frequency of a
sinusoidal input signal until the maximum frequency is found above which the output contains significant
distortion. The full-peak response is defined as the maximum output frequency, without regard to distortion,
above which full peak-to-peak output swing cannot be maintained.
Because there is no industry-wide accepted value for "significant" distortion, the full-peak response is
specified in this data sheet and is measured using the circuit of Figure 1. The initial setup involves the
use of a sinusoidal input to determine the maximum peak-to-peak output of the device (the amplitude of
the sinusoidal wave is increased until clipping occurs). The sinusoidal wave is then replaced with a square
vvave of the same amplitude. The frequency is then increased until the maximum peak-to-peak output
can no longer be maintained (Figure 5). A square wave is used to allow a more accurate determination
of the point at which the maximum peak-to-peak output is reached.
(a) f -
1 kHz
11 A
(b) 1 kHz
<
f
< BOM
(e) f -
BOM
(d) f>
BOM
FIGURE 5. FULL-POWER-RESPONSE OUTPUT SIGNAL
test time
Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume, shorttest-time environment. Internal. capacitances are inherently higher in CMOS than in bipolar and BiFET devices
and require longer test times than their bipolar and BiFET counterparts. The problem becomes more
pronounced with reduced supply levels and lower temperatures.
TEXAS
-1!1
INSTRUMENTS
2-740
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC27M4, TLC27M4A, TLC27M4B, TLC27M9
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
DISTRIBUTION OF TLC27M4
INPUT OFFSET VOLTAGE
DISTRIBUTION OF TLC27M4
INPUT OFFSET VOLTAGE
l+t
IT,
612 Amplifiers tested from 4 wafer lots
50
I
..
-a
>I
14
g)
g)
:! 12
>
o
o
Qj
Qj
j
j
6
.i:g)
:f
:f
4
::E:
::E:
:; 10
So
::I
>
>
.i:g)
I
I
o
~
>
VOO· 10 V
""'""- ......
2
-40
-10
-20
-30
IOH-High-Level Output Current..,..mA
FIGURE 11
HIGH-LEVEL OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
HIGH-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
VOO-1.6
VIO - 100 mV
>I 14 I--RL - 100 kO
III
TA - 25°C
g)
:! 12
15
/
V
>
:; 10
8
6
I
::E:
/
~ 2
o
2
V
/
~ VOO-1.7
~
&
:! VOO-1.8
.1
~
:; VOO-1.9
-..........
So
::I
o
VOO - 10 V""-.,
>
j
VOO-2.1
~
VOO-2.2
.i:g)
IOH - -5 mA
VIO - 100 mV
'-....
...............
VOO-2.Q
Qj
/
I
~OO - 5V
>
/V
.i:g)
:f 4
1
15
/
So
::I
o
r--I-- -....
FIGURE 10
16
j
8 f'....
o
o
o~--~----~----~----~--~
-10
o
-6
-2
-4
-8
IOH-Hlgh-Level Output Current-mA
l
r--- ..............
15
>
:;
Co
:;
o
-....... ~~ .16V
CD
III
VIO - 100 mV
TA • 25°C
~
"'r--.
8
10
12
6
VOO-Supply Voltage-V
4
14
16
VOO-2.3
~
~
~
::E:
~
~
........
~
VOO-2,4
-75 -50 -25 0
25 50 75 100 125
TA-Free-Air Temperature- °C
FIGURE 12
FIGURE 13
tData at high and low temperatures are applicable only within the rated. operating free-air temperature ranges of the various devices.
TEXAS
2-742
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC27M4, TLC27M4A, TLC27M4B, TLC27M9
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
LOW-LEVEL OUTPUT VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
LOW-LEVEL OUTPUT VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
VOO - 5 V
IOL - 5 mATA - 25°C
>
E
I
>
E
I
~ 450
:l
til
'0
...
:J
Co
;
o
>
...
S:J
-lV
~
-2.5 V
~
~
o
400 --+--
I
I
o
o
~
~
300~-+-~~~~
>
>
250
2
3
Vic-Cammon-Mode Input Voltage-V
800
>
E 700
I
Q)
:l
I--
~
600
>...
500
S:J
400
"\.
Qj
>
Q)
~
0
~
300
LOW-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
IOL - 5 mA
V'C -
-
>
IV,0I2 ,
I
~ 700 - VIC - 0.5 V
:l
~
' "VOO - 5 V
~
400~~--+~~---~~~
>
Q)
10 V
~300
. -- -
.sI
200
~
o
_- '---
>
i
-4
500
Qj
~-
200
-2
S:J
VOO - 10 V
o
o
600
o
, -:--!--.
....
...
:J
~~.
100
IOL - 5 mA
E 800 - VID _ -- 1 V t--~--+--+---+--------:7'1
--~
TA - 25°C
-- -,
10
900~~--~--~--~--'---~--r-~
I
I
~
0
2
4
8
6
Vic-Cammon-Mode Input Voltage-V
LOW-LEVEL OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
I
>
LL..L...L-I::::t:::t::±::±::L-1
o
FIGURE 15
~-L-Lf
:J
~
4
FIGURE 14
I
'0
0
--+--+-----1
-100 mV
Qj
~
til
I~--+--~+---+
o
Qj
.s~
i
:J
-100 mV
500
-6
100~-t--~---+-
o~~--~~--~--~~--~~
-8
-10
VID-Oifferentiallnput Voltage-V
-75 -50 -25
0
25 50
75 100 125
TA-free-Air Temperature- °C
FIGURE 16
FIGURE 17
t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-743
TLC27M4, TLC27M4A, TLC27M48, TLC27M9
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
1.0
1
>
..
I
Cl
...
0.6
..
0.4
:I
Co
:I
0
'ii
>
-'
3.0
j
1
>I
~ 0.3
o/
o
~ 500
>I 450
= 3V~
/ ~
0
-'
I 0.2
-'
0
> 0.1
./
~
..
/
l
:I
VOO "" 10vj
S-
c5
'ii
>
~
1.5
~
1.0
c5
0.5
.sI
V
vj
/
/
h~
V
/
o
o
8
VOO"" 16
I
~ 2.0
5
15
10
20
25
IOL -Low-Level Output Current-rnA
30
FIGURE 18
FIGURE 19
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
SUPPLY VOLTAGE
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
~ 500
I
I
RL = 100 kO
TA = -55,:s
/
/
300
W
/
,.......-
f-" -40°C
f-"
~
25°C
V
-:::-
./
/" . /
V/
!J ~ ~
~ 250
>
~
234
5
6
7
IOL -Low-Level Output Current-rnA
is.
'0
2.5
>
o 400
~
<>
!E 350
..
//
VIO"" -1 V
VIC = 0.5 V
TA "" 25°C
Cl
~
c
~
= 4 'j.
VOO
0.5
..
VOO"" 5 " /
I
VOO
.I
1
0.9 r-VIO = -1 V
VIC = 0.5 V
0.8 r-TA"" 25°C
fI
'0 0.7
>
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
200
1/ ~ ~ V-
>I 450
c
..
.g
400
<>
~ 350
~
-
~
..g'
70°C
l..---t-'":
~85°C
~
o
>
125°C
250
~ t'--"VOO
......
'I'..
........
200
.~ 150
'--..
VOO = 5 V
= 10 V
i'--.. .............
i'--- r--......
2!
~ 100
i:3
I
c
~
6
~
300
1ij
~
4
RL = 100 kO_
,
Co
%~
2
I.
8
10
12
VOO-Supply Voltage-V
14
16
50
r-r--
- --
0
-75 -50 -25
0
25
50
75 100 125
TA-Free-Air Ternperature- °C
FIGURE 21
FIGURE 20
tData at high and low temperatures are applicable only within the rated operating free·air temperature ranges of the various devices.
TEXAS .."
INSTRUMENTS
2-744
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC27M4, TLC27M4A, TLC27M4B, TLC27M9
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
COMMON-MODE
INPUT VOLTAGE POSITIVE LIMIT
INPUT BIAS CURRENT AND INPUT OFFSET CURRENT
VS
vs
FREE-AIR TEMPERATURE
SUPPLY VOLTAGE
10000
16
TAl = 251o C
>
1000
Cl
~
12
>
...
10
105
45
85
65
TA - Free-Air Temperature- °C
/
2
o
o
125
2
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
1000
1600
900
= -55°C
- 500
C.
g. 400
I
c
700
I:
1000
u
>C.
a.
:::J
14
SUPPLY CURRENT
vs
Vo = VOO/2
No load
+--+--+-TA
/
FIGURE 23
SUPPLY CURRENT
1-I:
/
/
/
/
/
4
6
8
10
12
VOO-Supply Voltage-V
FIGURE 22
1400
/
/
V
/
V
/
'
"
""
''''-..VOO - 10 V
I'---
VOO = 5 V
.......
I'----.rI--- r--.
200
---
100
o
0
0
2
4
8
10 12
6
VOO-Supply Voltage-V
14
16
-75 -50 -25
0
25 50 75 100 125
TA-Free-Air Temperature- °C
FIGURE 24
FIGURE 25
t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
NOTE 4: The typical values of input bias current and input offset current below 5 pA were determined mathematically.
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-745
TLC27M4, TLC27M4A, TLC27M4B, TLC27M9
LinCMOSlM PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
SLEW RATE
vs
SUPPLY VOLTAGE
SLEW RATE
vs
FREE-AIR TEMPERATURE
0.9
AV I = 1
VIPP = 1 V
RL = 100 kO
CL = 20 pF
TA = 25°C
See Figure 1
0.8
..
~0.7
I
/
0.6
~
CIl
Vi
I 0.5
/
II:
(/)
/
0.4
V
~ O. 7 t-----i~c-t--7''-+---t----t---,_-,------I
:>
I
/
!
8!
AV = 1
RL = 100 kO
CL = 20 pF
I
/
; O. 6 t-----i--c-t--f''<;;:c---P~-t
II:
V
~
~ 0.5~~~~~-+-~-~~~-+--1
III
I
II:
III
0.3
/
0.3
o
0.2~~--~--~--~--~~--~--~
2
4
6
8
10 12
VOO-Supply Voltage-V
14
-75 -50 -25 0
25 50 75 100 125
TA - Free-Air Temperature - °C
16
FIGURE 26
FIGURE 27
NORMALIZED SLEW RATE
vs
FREE-AIR TEMPERATURE
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
1.4
1.3
.....
CIl
II:
~
1.2
1.1
CIl
Vi
'C
1.0
CIl
•J::!
c;;
E 0.9
10
,~voo
~.I
=
voo=~
10 V
AV = 1
VIPP = 1 V
RL = 100 kO
CL = 20 pF
>
I
CIl
Cl
~
0.8
...
::l
5
0
4
0.7
Q.
'"
0.6
-75 -50 -25
0
25 50
75 100 125
T A - Free-Air Temperature - °C
FIGURE 28
-
J:
0
\
10 V
II II
11-
I
I I I I II
TA = 125°C
TA = 25°C
TA = -55°C
V
~
VOO
I
>
=
VOO
II
7
'0
::l
~ t'...
~ l'-..
8
6
>...
I~
IIIII
9
!!!
0
2
0.4 t-----i--7'I---+--"......:-"'-...t:---t-~'k:---""d
3
I
2 -
=
1\
5 V
IIIII
IIII111
\
RL = 100 kO
See Figure 1
I I I 1-1111
I
.:::::
IIIIII
o
1
~
"........
100
10
f-Frequency-kHz
1000
FIGURE 29
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
-111
TEXAS
INSTRUMENTS
2-746
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC27M4, TLC27M4A, TLC27M4B, TLC27M9
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
UNITY-GAIN BANDWIDTH
vs
FREE-AIR TEMPERATURE
SUPPLY VOLTAGE
900
I
\
I
..c
700
~
c
co
~ 600
1\
'0;
CI
'2>-
800
I
VDD - 5 V
VI = 10 mV_
\
~ 800
....
~
UNITY-GAIN BANDWIDTH
vs
500
I
~ 400
300
-75 -50 -25
....J:
See Figure 3
.;;
750
r-
I 700 r--
L
'~ 650
c
~
co
~ 600
""~
'0;
CI
~
0
25
~
50
550
/
'c
~ 500
~ I-75
400
100 125
1/
V
o
2
6
4
8
10
12
VDD-Supply Voltage-V
FIGURE 30
FIGURE 31
vs
vs
FREQUENCY
10 7
5 V
RL = 100 k{J
TA = 25°C
r'\,
""
1\
~
~
10
100
1 k
1\ ~
.:::
:c
~
II)
co
~ f\.
~'\
0,1
10 k
100 k
= 10 V
RL = 100 k{JTA = 25°C
b
30 0
Phase Shift
16
!VDD
=
~D
14
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
FREQUENCY
r----...
-
/
T A - Free-Air Temperature - DC
lVDD
V
/
450
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
1
I
~
'"
:)
N
CL - 20 pF
I
VI = 10 mV
CL = 20 pF
TA = 25°C
See Figure 3
90 0
180 0
1 M
..c
Q.
~
~
Phase Shift
~~
I~
0,1
1
10
100
1 k
10 k
f - Frequency - Hz
f-Frequency-Hz
FIGURE 32
FIGURE 33
100 k
180 0
1 M
t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 ' DALLAS, TEXAS 75265
2-747
nC21M4, nC21M4A, nC21M4B, nC21M9
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
PHASE MARGIN
vs
SUPPLY VOLTAGE
50
II)
I
..
I
c
00,
48
/
/'"
/
42
I
E
~
40
38
~-
o
42 b,.
II>
v
2
./'
5:
2
II.
/
14
..
:(l 34
.c
35
-75 -50 -25
0
25 50
75 100
T A --:- Free-Air Temperature - °C
16
VI = 10 mVCl = 20 pF
See Figure 3-
~
300
..
l!!
>
..0
250
:>c
125
I
~
1\
!\
II)
°
""I"\.
30
150
5Co
C
'\.
~ 100
""I""
32
RS = 100 Q
TA = 25°C
See Figure 2
\
Cl
z
Vo~ ~ 151~/1
\1
"0 200
~
20
"" ""
~
37
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
II.
o
-.......
PHASE MARGIN
vs
CAPACITIVE LOAD
""
~ 36
""
i'...
FIGURE 35
........
.~
"-
FIGURE 34
"",
38
39
'"
'-..
I
i
V~o ~ 5 ~
40
28
~
4
6
8
10
12
VOO-Supply Voltage-V
Cl
~
"'"
41
.~
/
44
'Ic
..
b
..
I
VOO - 5 V
VI = 10 mV
TA = 25°C
See Figure 3
"'
43
II)
~
Cl
~
:;; 44
..~
I
46
~
..5:
if
45
I
VI = 10 mV
CL = 20 pF
TA = 25°C
See Figure 3
~
Cl
~
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
40
60
80
Cl -Capacitive load-pF
..
"-
0;
>
0g.
"
100
50
w
I
c
>
"
I
0
1
10
-100
1000
f - Frequency - Hz
FIGURE 36
FIGURE 37
t Data at high and low temperatures are applicable only within the rated operatir:lg free-air temperature ranges of the various devices_
-1!1
2-748
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 ° DALLAS, TEXAS 75265
TLC27M4. TLC27M4A. TLC27M4B. TLC27M9
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
single-supply operation
While the TLC27M4 and TLC27M9 perform well using dual power supplies (also called balanced or split
supplies). the design is optimized for single-supply operation. This design includes an input common-mode
voltage range that encompasses ground as well as an output voltage range that pulls down to ground.
The supply voltage range extends down to 3 V (C-suffix types), thus allowing operation with supply levels
commonly available for TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply
operation is recommended.
Many single-supply applications require that a voltage be applied to one input to establish a reference level
that is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see
Figure 38). The low input bias current of the TLC27M4 and TLC27M9 permits the use of very large resistive
values to implement the voltage divider, thus minimizing power consumption.
The TLC27M4 and TLC27M9 work well in conjunction with digital logic; however, when powering both
linear devices and digital logic from the same power supply, the following precautions are recommended:
1. Power the linear devices from separate bypassed supply lines (see Figure 39); otherwise the linear
device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital
logic.
2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive
decoupling is often adequate; however, high-frequency applications may require RC decoupling.
voo
R4
Rl
R3
VREF - voo Rl + R3
R2
VI
Vo
VREF
t.Ol ~F-=
Vo -
(VREF-VI)
C
R3
-=
~+
vREF
FIGURE 38. INVERTING AMPLIFIER WITH VOLTAGE REFERENCE
(a) Common Supply Ralls
(b) Separate Bypassed Supply Rails (preferred)
FIGURE 39. COMMON VS SEPARATE SUPPLY RAilS
TEXAS . .
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-749
TLC27M4, TLC27M4A, TLC27M4B, TLC27M9
LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
input characteristics
The TLC27M4 and TLC27M9 are specified with a minimum and a maximum input voltage that, if exceeded
at either input, could cause the device to malfunction. Exceeding this specified range is a common problem,
especially in single-supply operation. Note that the lower range limit includes the negative rail, while the
upper range limit is specified at VOO - 1 V at T A = 25°C and at VOO - 1 .5 V at all other temperatures.
The use of the polys iii con-gate process and t.he careful input circuit design gives the TLC27M4 and TLC27M9
very good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset
voltage drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of
the phosphorus dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as
a polysilicon gate) alleviates the polarization problem, thus reducing threshold voltage shifts by more than
an order of magnitude. The offset voltage drift with time has been calculated to be typically 0.1 IN/month,
including the first month of operation.
Because of the extremely high input impedance and resulting low bias current requirements, the TLC27M4
and TLC27M9 are well suited for low-level signal processing; however, leakage currents on printed circuit
boards and sockets can easily exceed bias current requirements and cause a degradation in device
performance. It is good practice to include guard rings around inputs (similar to those of Figure 4 in the
Parameter Measurement Information section). These guards should be driven from a low-impedance source
at the same voltage level as the common-mode input (see Figure 40).
The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation.
noise performance
The noise specifications in op amp circuits are greatly dependent on the current in the first-stage differential
amplifier. The low input bias current requirements of the TLC27M4 and TLC27M9 result in a very low
noise current, which is insignificant in most applications. This feature makes the devices especially favorable
over bipolar devices when using values of circuit impedance greater than 50 kO, since bipolar devices exhibit
greater noise currents.
Vo
(a) Noninverting Amplifier
Vo
(b) Inverting Amplifier
(e) Unity-Gain Amplifier
FIGURE 40. GUARD-RING SCHEMES
output characteristics
The output stage of the TLC27M4 and TLC27M9 is designed to sink and source relatively high amounts
of current (see typical characteristics). If the output is subjected to a short-circuit condition, this high current
capability can cause device damage under certain conditions. Output current capability increases with supply
voltage.
All operating characteristics of the TLC27M4 and TLC27M9 were measured using a 20-pF load. The devices
will drive higher capacitive loads; however, as output load capacitance increases, the resulting response
pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figure 41).
In many cases, adding a small amount of resistance in series with the load capacitance will alleviate the
problem.
TEXAS
2-750
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC27M4, TLC27M4A, TLC27M4B, TLC27M9
linCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
(b) CL - 170 pF, RL - No load
(a) CL - 20 pF, RL - No load
2.5 V
>-.....---Vo
TA - 25°C
f - 1 kHz
VIPP - 1 V
-2.5 V
(d) Test Circuit
(c) CL - 190 pF, RL - No load
FIGURE 41. EFFECT OF CAPACITIVE LOADS AND TEST CIRCUIT
Although the TLC27M4 and TLC27M9 possess excellent high-level output voltage and current capability,
methods for boosting this capability are available, if needed. The simplest method involves the use of a
pullup resistor (Rp) connected from the output to the positive supply rail (see Figure 42). There are two
disadvantages to the use of this circuit. First, the NMOS pulldown transistor N4 (see equivalent schematic)
must sink a comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with
an on-resistance between approximately 60 fl and 180 fl, depending on how hard the op amp input is
driven. With very low values of Rp, a voltage offset from 0 V at the output will occur. Second, pullup
resistor Rp acts as a drain load to N4 and the gain of the op amp is reduced at output voltage levels where
N5 is not supplying the output current.
feedback
Op amp circuits nearly always employ feedback, and since feedback is the first prerequisite for oscillation,
some caution is appropriate. Most oscillation problems result from driving capacitive loads (discussed
previously) and ignoring stray input capacitance. A small-value capacitor connected in parallel with the
feedback resistor is an effective remedy (see Figure 43). The value of this capacitor is optimized empirically.
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-751
TLC27M4, TLC27M4A, TLC27M4B, TLC27M9
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
c
VDD
--,-V..,D..,D_-.,..;V-"O,RR - IF + IL + Ip
Ip -
Pullup current required by
Vo
the op amp {typically 500 /tAl
FIGURE 43. COMPENSATION FOR
INPUT CAPACITANCE
FIGURE 42. RESISTIVE PULLUP TO INCREASE VOH
electrostatic discharge protection
The TLC27M4 and TLC27M9 incorporate an internal electrostatic discharge (ESD) protection circuit that
prevents functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2.
Care should be exercised, however, when handling these devices as exposure to ESD may result in the
degradation of the device parametric performance. The protection circuit also causes the input bias currents
to be temperature dependent and have the characteristics of a reverse-biased diode.
latch-up
Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC27M4
and TLC27M9 inputs and outputs were designed to withstand - 1OO-mA surge currents without sustaining
latch-up; however, techniques should be used to reduce the chance of latch-up whenever possible. Internal
protection diodes should not, by design, be forward biased. Applied input and output voltage should not
exceed the supply voltage by more than 300 mV. Care should be exercised when using capacitive coupling
on pulse generators. Supply transients should be shunted by the use of decoupling capacitors (0.1 I'F typical)
located across the supply rails as close to the device as possible.
The current path established if latch-up occurs is usually between the positive supply rail and ground and
can be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed
the supply voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power
supply and the forward resistance of the parasitic thyristor and usually results in the destruction of the
device. The chance of latch-up occurring increases with increasing temperature and supply voltages.
TEXAS
"JI
INSTRUMENTS
2-752
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC27M4, TLC27M4A. TLC27M4B. TLC27M9
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
lN4148
470 k!l
100 k!l
5V
1/4
TLC27M4
47 k!l
Vo
100 k!l
1 /LF
+
Rl
68 k!l
100 k!l
NOTES:
VOPP
=
1
R2
68 k!l
C2
2.2 nF
Cl
2.2 of
2 V
1
fa = :--;;:;;;;;;;;::;:;:;:
27r .,fR1 R2C1 C2
FIGURE 44. WIEN OSCILLATOR
VI----/
R
NOTES:
VI
=0
V to 3 V
VI
IS
=
R
FIGURE 45. PRECISION LOW-CURRENT SINK
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-753
TLC27M4, TLC27M4A, TLC27M4B, TLC27M9
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
5V
GAIN CONTROL
.-----,
1 ~F
(see Note A)
Ef-'-:
1 M{l
100 k{l
-'0,10r.r-k{l-*--.-1
0.1 ~F
1 k{l
~~l
100 k{l
100 k{l
NOTE A: Low to medium impedance dynamic mike.
FIGURE 46. MICROPHONE PREAMPLIFIER
10 M{l
Voo
K
1k{l
~~·-M-41i--'--'WV~-----+--1
115
>---e-......- Vo
nF
100 k{l
150 pF
NOTES:
VOO = 4 V to 15 V
VREF = 0 V to VOO-2 V
FIGURE 47. PHOTO DIODE AMPLIFIER WITH AMBIENT LIGHT REJECTION
TEXAS . "
INSTRUMENTS
2-754
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC27M4, TLC27M4A, TLC27M48, TLC27M9
LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
1 Mil
Voo
33 pF
/---------~-.---Vo
1N4148
100 kll
100 kll
NOTES:
VOO ~ 8 V to 16 V
Va ~ 5 V, 10 rnA
FIGURE 48, 5-V LOW-POWER VOLTAGE REGULATOR
5V
1 Mil
0.01 I'F
VI
-1
+
0.221'F
{--Vo
114
TLC27M4
-=1 Mil
100 kll
100 kll
10 kll
FIGURE 49, SINGLE-RAIL AC AMPLIFIER
TEXAS
~
INSTRUMENTS
POST oFFICE BoX 655303 • DALLAS, TEXAS 75265
2-75.5
2-756
TLC1078
LinCMOSTM J..lPOWER PRECISION DUAL OPERATIONAL AMPLIFIER
03146. AUGUST 19S5-REVISED JANUARY 1991
• Power Dissipation as Low as 10 IJW Typ per
Amplifier
D, JG, OR P PACKAGE
(TOP VIEW)
• Operates on a Single Silver-Oxide Watch
Battery, VDD = 1.4 V Min
1 0 U T D 8 VDD
11N- 2
720UT
1 IN+ 3
6
21NGND 4
5
21N+
• VIO ... 450 IJV Max in DIP and SmallOutline Package
• Input Offset Voltage Drift ... 0.1 IJV/Month
Typ, Including the First 30 Days
FK PACKAGE
(TOP VIEW)
• High-Impedance LinCMOS ,. Inputs
liB = 0.6 pA Typ
f-
::J
U 0 U
0
oU
z~z>z
• High Open-Loop Gain •.. 800,000 Typ
3
• Output Drive Capability> 20 mA
2
1 20 19
18
17
4
5
• Slew Rate ... 47 V/ms Typ
16
• Common-Modo Input Voltage Range
Extends Below the Negative Rail
7
15
8
14
9 10 11 12 13
• Output Voltage Range Includes Negative
Rail
UOU+U
zzzzz
(9
• On-Chip ESD-Protection Circuitry
;
NC - No internal connection
• Small-Outline Package Option Also
Available in Tape and Reel
symbol (each amplifier)
description
The TLC1078 operational amplifier offers ultralow offset voltage, high gain, 11 O-kHz bandwidth,
47-V/ms slew rate, and just 150-IJW power
dissipation per amplifier.
With a supply voltage of 1.4 V, common-mode
input to the negative rail, and output swing to the
negative rail, the TLC1078C is an ideal solution
for low-voltage battery-operated systems. The
20-mA output drive capability means that the
TLC1078 can easily drive small resistive and
large capacitive loads when needed, while
maintaining ultra-low standby power dissipation.
Since this device is functionally compatible as
well as pin compatible with the TLC27L2 and
TLC27L7, the TLC1078 easily upgrades existing
designs that can benefit from its improved
performance.
The TLC1078 incorporates internal ESDprotection circuits that will prevent functional
failures at voltages up to 2000 V as tested under
MIL-STD-883C, Method 3015.2; however, care
I N - = f > - OUT
IN+
+
DISTRIBUTION OF TLC1 078
INPUT OFFSET VOLTAGE
334 Amplifiers
25
=
~
vDD
5 V ---'e---+--I--+--I---I
TA
25°C
P Package
&
20~-+-~-+--~-+-~-4-~
;JI.
=e
=
is.
E
d-~r~
IN+ _R1:-+
----I
+-J07
'
~-----+-----~ OUT
GNO
.
TEXAS.
INSTRUMENTS
2-758
012
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC1078
LinCMOSTM /J.POWER PRECISION DUAL OPERATIONAL AMPLIFIER
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Voo (see Note 1) ............................................................ 18 V
Differential input voltage (see Note 2) ....................................................... ±Voo
Input voltage range, V, (any input) .................................................. - 0.3 V to Voo
Input current, I, (each input) ............................................................... ± 5mA
Output current, 10 (each output) .......................................................... ± 30mA
Total current into Voo terminal (see Note 3) ................................................. 45 mA
Duration of short-circuit at (or below) 25°C (see Note 3) .................................... Unlimited
Continuous total dissipation ........................................... see Dissipation Rating Table
Operating free-air temperature range, TA: C-suffix ...................................... O°C to 70°C
I-suffix ..................................... - 40°C to 85°C
M-suffix .................................... - 55°C to 125°C
Storage temperature range ....................................................... - 65°C to 150°C
Case temperature for 60 seconds: FK package .............................................. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package ................ 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package ................... 300°C
NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.
2. Differential voltages are at the non inverting input with respect to the inverting input.
3. The output may be shorted to either supply. temperature and/or supply voltages must be limited to ensurethatthe maximum dissipation
ratings are not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA,,25°C
POWER RATING
DERATING FACTOR
ABOVE T A = 25°C
TA=70°C
POWER RATING
5.8mWrC
11 mWrc
8.4 mWrc
8.0mWrC
464mW
377mW
145mW
880mW
715mW
275mW
672mW
546mW
210mW
640mW
520mW
200mW
D
725mW
FK
1375mW
JG
p
1050mW
1000mW
TA = 85°C
POWER RATING
TA = 125°C
POWER RATING
recommended operating conditions
I-SUFFIX
C-SUFFIX
MIN
Supply voltage, VDD
Common-mode input voltage, VIC
Operating free-air temperature, TA
I VDD =5V
I VDD = 10V
NOM
MAX
MIN
NOM
M-SUFFIX
MAX
MIN
NOM
MAX
1.4
16
3
16
4
16
-0.2
4
-0.2
4
0
4
-0.2
9
-0.2
9
0
9
0
70
-40
85
-55
125
UNIT
V
V
°C
TEXAS . "
INSTRUMENTS
POST OFFice BOX 655303 • DALLAS. TeXAS 75265
2-759
TLC1078C
LinCMOSTM f.lPOWER PRECISION DUAL OPERATIONAL AMPLIFIER
electrical characteristics over operating free-air temperature range (unless otherwise noted)
TEST CONOITIONS
PARAMETER
VOO - 5V
MIN
TA
VIO
aVIO
110
liB
Input offset voltage
Temperature coefficient
Vo = 1.4 V,
VIC=O,
RS = 50n,
RI=1Mn
(see Note 4)
Input bias current
25'C
0.1
Va = VOO/2,
70'C
VIC = VOO/2
25'C
70'C
7
0.6
40
-0.3
25'C
voltage range
(see Note 5)
VOL
AVO
Low-level output voltage
Large-signal differential
voltage amplification
CMRR Common-mode
rejection ratio
kSVR
100
Supply-voltage rejection
ratio (AVOO/AVIO)
Supply current
(two amplifiers)
Full range
VIO = 100 mY,
RL = 1 Mn
VIO = -100 mY,
IOL = 0
[RL= 1 MQ,
See Note 6
VIC = VICR min
VOO = 5 V to 10 V,
Va = 1.4 V
Va = VOO/2,
VIC = VOO/2,
No load
TYP
MAX
180
600
950
1.1
70'C
(see Note 4)
High-level output voltage
450
25'C to
Common-mode input
VOH
160
MIN
800
-0.2
VICR
MAX
25'C
Full range
of input offset voltage
Input offset current
VOO - 10V
TYP
1
600
-0.2
7
0.7
50
-0.3
to
to
to
to
4
-0.2
4.2
9
-0.2
9.2
to
to
3.5
8.5
300
600
pA
pA
V
V
25'C
3.2
4.1
8.2
O'C
70'C
3.2
4.1
8.2
8.9
3.2
4.2
8.2
8.9
8.9
V
25'C
0
O'C
0
25
25
0
0
25
25
70'C
25'C
250
0
525
25
0
25
O'C
250
680
500
850
1010
70'C
200
380
350
660
25'C
70
70
95
O'C
95
75
75
97
97
70'C
70
95
75
97
25'C
75
98
75
98
O'C
75
98
75
98
70'C
25'C
75
98
20
75
34
98
29
46
O'C
24
42
70'C
16
28
36
22
66
40
500
!lV
!lVrC
0.1
300
UNIT
mV
VlmV
dB
dB
!lA
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
6. AtVOO=5V, VO=0.25Vt02V;atVOO= 10V, Va = 1 Vt06V.
operating characteristics
TEST CONOITIONS
PARAMETER
Voo
TA
SR
Vn
B1
-~..-
VI
__- -
10 kfl
Vo
+
VOO
100 II
VI
Vo
+
VOO/2
-=-
I
Cl
-=Cl includes fixture capacitance.
Cl Includes fixture capacitance.
FIGURE 1. SLEW RATE TEST CIRCUIT
FIGURE 2. UNITY-GAIN BANDWIDTH AND
PHASE MARGIN TEST CIRCUIT
TYPICAL CHARACTERISTICS
DISTRIBUTION OF TLC1078
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
DISTRIBUTION OF TLC1078
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
70
356 Amplifiers tested from 8 wafer lots
356 Amplifiers tested from 8 wafer lots
60
'if!.
~ 50
'"
:E
is. 40
VOO = 5 V
---1--+-I--~
TA = 25'C to 125'C
,
'
I
P Package
Outliers:
(1) 19.2 ~V/'C
I
1/1
50
P Package
i
Outliers :--~1-~
~is.
E
(1) 18.7 ~vrc
40
30
8
~
20
'"
30
SC
lOt-- -+-~--1--+---
-1-'-L
~
i,
,,
I
I
,
,+-J
'
----t-t-
I
II>
~
IL
,
I
'0
II>
I'
(1) ,11.6 ~V/'C---- ~-~~-
«
II>
f
VOO=10V
i
!
I
TA = 25 0 Ct0125;c---r,
'if!.
~
'0
60
,
20
i
I
10
o t-......l--.i.___
ot-......l---IIIIII:CI·
-10 -8 -6 -4 -2
0
2
4
6
B
uVIO - Temperature Coefficient - ~v/oC
10
-10 -8 -6 -4 -2
0
2
4
6
8
uVIO - Temperature Coefficient - ~V/OC
FIGURE 3
10
FIGURE 4
TEXAS . .
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-763
TLC1078
LinCMOSTM J.,lPOWER PRECISION DUAL OPERATIONAL AMPLIFIER
TYPICAL CHARACTERISTICSt
HIGH-LEVEL OUTPUT VOLTAGE
HIGH-LEVEL OUTPUT VOLTAGE
vs
vs
HIGH-LEVEL OUTPUT CURRENT
HIGH-LEVEL OUTPUT CURRENT
5r---~----~----~----~--~
VIO
TA
16
= 100mV
= 25°C
>
I
II>
01
J!!
14
I
.......
VIO = 100 mV
TA = 25°C
-......... ~~=
16V
12
~ ............
~
10
'5
Q.
'5
0
lII>
....
1:.
8
r'---
............
6
I'---.. ~
=
VOO
~ .......
o
-4
-2
-6
2
o
-10
-8
4
o
OL-----~----~----~----~--~
IOH - High-Level Output Current - mA
>
I
II>
01
~
FIGURE 6
HIGH-LEVEL OUTPUT VOLTAGE
HIGH-LEVEL OUTPUT VOLTAGE
vs
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
!0
/
L
12
8
6
01
J:
I
:x:
0
>
4
/
2
o
o
> VOO -1.7
V
I
8.
/
V
/
/
/
V
/
/
!
o
VOO
-........
-2
1
-J.VOO-2.1
"
voo
~
I
VIO
IOH
I
"'~
'"'" '"
> VOO -2.3
4
8
10
12
6
VOO - Supply Voltage - V
14
16
VOO-2.4
-75
= 100mV
= -5mA-
= 5V
~
voo = 10 V"""""'"
l VOO -2.2
6
/
2
..............
VOO-l.8
~
~
'5 VOO -1.9
//
10
'ii
>
j
1:.
.......
~
~
~
-SO -25
0
25
SO
75 100
TA - Free-Air Temperature - °C
FIGURE 7
FIGURE 8
t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS " ,
INSTRUMENTS
2-764
-40
VOO-l.6
VIO = 100mV
RL = 1 MQ
TA = 25°C
0
>
'5
--20
-10
-30
IOH - High-Level Output Current - mA
FIGURE 5
16
14
-f---
i'--
DO
J:
I
:x:
0
>
10V
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
125
TLC1078
LinCMOS ™ I-lPOWER PRECISION DUAL OPERATIONAL AMPLIFIER
TYPICAL CHARACTERISTICSt
LOW-LEVEL OUTPUT VOLTAGE
LOW-LEVEL OUTPUT VOLTAGE
vs
vs
COMMON-MODE INPUT VOLTAGE
COMMON-MODE INPUT VOLTAGE
700
500
1\
>
\
E
I
III
01
600
~
~
'S
~'"
vdd = 5V
IOL = 5mA~
TA = 25°C
o
r\.\
Ii
0
...I
I
:: 400
&.
I
'S
o
500
j
400
I
'"
>
300
o
J
~
'- r-....
VID = -1 V
...I
0
7 450
~
~VID = -1oomV
Gi
>
>
III
01
\
........
,
I
1\\
\ i,\
350
~
~
~ ~ r-...
--r-:::::::::::
--
2
3
VIC - Common-Mode Input Voltage - V
~ 300
~
~ VID = -100 mV
/
VID = -1 V
~ VID
~
250
o
4
2
4
6
8
VIC - Common-Mode Input Voltage - V
vs
DIFFERENTIAL INPUT VOLTAGE
FREE-AIR TEMPERATURE
1\
'S
'S 400
0
'"
JIi
.3
...
0
I
>
E
I
I
III
\
'\.
300
!!
~
'S
..........VDD=5V
!
~ I'-
VDD = 10V
200
700
I
I - IOL = SmA.
--
VDD = 5 V
600
400
Ii0
300
I
200
...I
./
500
Gi
>
III
...I
...I
,./
~ ...........
........
.........
V
/'
/""
V
V
V
........... V VDD = 10V
~~
0
> 100
> 100
o
o
I
VID = -1 V
800 I - VIC = 0.5 V
01
\
500
10
LOW-LEVEL OUTPUT VOLTAGE
900
!!
i
~
vs
800
~
I
FIGURE 10
LOW-LEVEL OUTPUT VOLTAGE
01
= -2.5V
~~
FIGURE 9
VIC = IVID I 21
> 700 I--- IOL = SmA
E
TA = 25°C
I
III 600
I
I
VDD = 10V
IOL = SmA
TA = 25°C-
o
-2
-4
-6
-8
-10
-75
VID - Differential Input Voltage - V
-SO -25
0
25
SO
75
100
T A - Free-Air Temperature - °C
FIGURE 11
FIGURE 12
125
t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-765
TLC1078
Lin CMOS ™
~POWER
PRECISION DUAL OPERATIONAL AMPLIFIER
TYPICAL CHARACTERISTICSt
LOW-LEVEL OUTPUT VOLTAGE
LOW-LEVEL OUTPUT VOLTAGE
. vs
vs
LOW-LEVEL OUTPUT CURRENT
0.9
>
0.8
I
3
=-1 V
=0.5 V
= 25°C
VIO
VIC
TA
VOO
~
=4~ /
VOO
'5 0.6
Voo
0.5
>
GI 0.4
0.3
0
I
5 0.2
>
0.1
o~
o
,#
i/ .
I
RL
600
~
400
Q
I
Q
c>
~ 0.5
o /'
o
~
5
10
15
20
25
IOL - Low-Level Output Current - mA
8
vs
vs
FREE-AIR TEMPERATURE
I
TA
V
L
/ /
V//
!V
I
//
/ /
./V
V
200
,.....
TA
~
V
............ ~
-::;~
~~
2000
= _55°C............. f--:t:::
L
I
]i
I!!
I
..J
/
SUPPLY VOLTAGE
= 1 MQ
&1000
.!
C
/
~~
30
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
1200
800
1.5
10i /
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
1400
~
=
=16;,/
FIGURE 14
>
I
c 1600
.2
~
VOO
~
4
7
2
3
5
6
IOL - Low-Level Output Current - mA
2000
c
Voo
FIGURE 13
>
1§ 1800
~
:e
=-1 V
= 0.5 V
= 25°C
2
1
5
]
=3~ //
~
..J
;i
t
!t
/ ~
"ii
..J
I
=5 V /
01
.! 0.7
0
I
VIO
VIC
TA
> 2.5
GI
~
LOW-LEVEL OUTPUT CURRENT
-
~
-40°C
\
1
\
---
= O°C
2
4
i'--.
70°C
::::::fs;C
Oi
:eI!!
1
25°C
14
VOO
'"
...............
600
VOO
~
400
Q
200
16
I
-
""-.. .........
r-....
'
...............
=5 V"""'" ...........
...........
.........
-- -I'-
0
-75
I
= 1 MQ
= 10V
I
c>
6
8
10
12
Voo - Supply Voltage - V
\
25°C
0
o
I
RL
-50 -25
0
25
50
75
100
T A - Free-Air Temperature - °C
FIGURE 15
FIGURE 16
t Data at high and low temperatures are applicable only within the rated operating free:air temperature ranges of the various devices.
TEXAS'~
INSTRUMENTS
2-766
POST OFFICE BOX 655303 • DALLAS. TEXAS 15265
125
TLC10781
linCMOSTM /JPOWER PRECISION DUAL OPERATIONAL AMPLIFIER
TYPICAL CHARACTERISTICSt
INPUT BIAS CURRENT AND INPUT OFFSET CURRENT
COMMON-MODE INPUT VOLTAGE POSITIVE LIMIT
vs
vs
FREE-AIR TEMPERATURE
SUPPLY VOLTAGE
16
10000
_Voo = 10V
VIC = 5 V
>
/
1000
OJ
0>
!! 12
-a.
"0
liB
I
/
1:
!! 100
~
>
...
/
::J
C.
V
10
OJ
8
i:.
E
E
6
":!!;0
./
I
10
.5
110
U
~
I
~.
TA = 25°C
14
V
"
ftI
..g!
"
"
"
"
0
See Note 4
I
>"
."
0.1
25
4
U
U
"
45
105
65
85
TA - Free-Air Temperature - °C
2
o
o
125
/
2
/
SUPPLY CURRENT
SUPPLY CURRENT
vs
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
\.
\
c(
::t.
I
120 1----+-
1:
~S1001---+---r--~
80
~
...
::J
u
U
80~---~--t---~~~--~~~--+--1
~
D-
::J
C.
::J
I/)
Q
0
~ 60~~~~~-+~~--~~+---+-~
9 40~~~~~~~~--~~*-~~~
4
6
8
10
12
Voo - Supply Voltage - V
14
16
I
60
,
~
"\
~
40
I
f'......
'-.........
VOO = 5"";-
9
16
o
-75
-50 -25
I
~OO=10V
~
r--
20
2
14
Vo = Voo/2
No load
\
140
/
120
100
c(
/
4
8
10
12
6
Voo - Supply Voltage - V
FIGURE 18
160
i>-
/
/
V
/
/
/
FIGURE 17
180r-~--~--~---r--~--~--~-'
::t.
I
/
0
C
V
/
/
V
0
25
50
--
75
r--
100 125
TA - Free-Air Temperature - °C
FIGURE 20
FIGURE 19
t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
NOTE 4: The typical values of input bias current and input offset current below 5 pA were determined mathematically.
TEXAS
'"'I
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-767
TLC1078
LinCMOSTM f.lPOWER PRECISION DUAL OPERATIONAL AMPLIFIER
TYPICAL CHARACTERISTICSt
SLEW RATE
70
..
E
I
~
II:
I
I
SLEW RATE
vs
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
70
I
=
=
=
=
=
VIPP
1V
1 MQ
60 '- RL
CL
20pF
AV
1
50
TA
25°C
See Figure 1
40
/
30
/'
V
..
./
V
V
./
= 1 MQ
= 20pF
=1
See Figure 1
50
E
I
~
II:
I
40
30
I
I
II:
en
RL
CL
AV
60
II:
en
20
20
I
10 I---+_--+_+----+VOO
VIPP
10
O~~--~--~--~--~~--~--~
0
0
1.4
1.3
1.2
2
]
0.9
z~
0.8
-75
-50 -25
0
25
SO
75 100
TA - Free-Air Temperature - °C
NORMALIZED SLEW RATE
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
vs
FREE-AIR TEMPERATURE
FREQUENCY
voo-I
N
=5V
= 10V
RL
=1 V
= 1 MQ
= 20pF
=1
CL
AV
-
>
I
""-~
0.7
0.6
~
::J
(J
I
I
~
~
~
0.5
-75 -SO -25
0
25
50
75
100
TA - Free-Air Temperature - °C
"
125
10
f - Frequency - kHz
FIGURE 24
FIGURE 23
t Data at high and low temperatures are applicable only within the rated operating free·air temperature ranges of the various devices.
2-768
125
FIGURE 22
~
VOO
ii
16
vlPP
..
1en
14
FIGURE 21
,
Sl 1.1
II:
10
12
4
6
8
VOO - Supply Voltage - V
= 5 V :---+---1
= 2.5 V
TEXAS .."
INSTRUMENTS
POST OFFICE BOX 656303 • DALLAS. TEXAS 75265
100
TLC1078
LinCMOSTM f,lPOWER PRECISION DUAL OPERATIONAL AMPLIFIER
TYPICAL CHARACTERISTICSt
UNITY-GAIN BANDWIDTH
vs
FREE-AIR TEMPERATURE
SUPPLY VOLTAGE
150
\
I
~
"I\.
110
'\
~c:
..
90
III
c:
.;
b
'c
~
30
-75
~
I
I
I
i
I
.~
90
b
'c
80
:::l
I
70
m
/
125
o
2
8
10
12
4
6
Voo - Supply Voltage - V
14
16
FIGURE 25
FIGURE 26
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
vs
FREQUENCY
FREQUENCY
I
- -
I
I
"'" '"
"I
1\
=
=
= 25°C
Voo
5V
RL
1 MQ ~
TA
"
E
30°
AVO
"'" ""~~
UI
..3:
.I:
11.
90°
Phase Shift
10 k
100
1k
f - Frequency - Hz
!!:
.I:
60°
120°
150°
\
10
~
!E 105
ii
100 k
180°
1M
c(
II>
0>
104
~
:i
103
S
Q
I
Q
TA
"-
"'"
1\
~
~
C 102
I!!
II>
!!::
"" '""
AVO
"-
Phase Shift
101
>
c(
0.1
=
=
= 25°C
Voo
10V
RL
1 MQ-
c: 106
0
0°
0.1
1
10
100
" ~~
1k
10k
1\
lOOk
180°
1M
f - Frequency - Hz
FIGURE 27
t
V
/
V
/
60
50
-50 -25
0
25
50
75
100
TA - Free-Air Temperature - °C
I
1
100
III
--
I
.
-g
~!
I
I
~ 110
'j
I
I
m 50 - -
I
-I-i"",
70
:::l
I
/'
=
~ 120
,
I
= 10mV
CL " 20 pF
TA
25°C
See Figure 2
N
See Figure 2
I
I
Vi
130
=
CL = 20 pF
--+
'\'
~
=
I
I\.
130
140
I
I
voo
5V
Vi
10 mV
I
N
UNITY-GAIN BANDWIDTH
vs
FIGURE 28
Data at high and low.temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS " ,
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-769
TLC1078
linCMOSTM r-tPOWER PRECISION DUAL OPERATIONAL AMPLIFIER
TYPICAL CHARACTERISTICSt
PHASE MAR~IN
vs
SUPPLY VOLTAGE
42
,
I
40
II)
~
"'"I
"
II>
.
:;:
.
II>
II)
s:
a.
VC
,L
.-
34 t---· f - ......
I
E
/
V
~
V
II)
~
"'"I
"
30
..
.
II>
II)
28
a.
I
E
r· --
------->-
4
8
10
12
6
Voo - Supply Voltage - V
2
I~
i
I_
- - ----- 1 -
s:
14
24
--t--
-------
.
1
]----
:,
i
=
= 20 pF
""""
I~
!
I
20
-75
16
_I
See Figure 2
I
I
32
CL
:;:
I
o
~
I
.~
<:>
32
36 --
II>
<:>
------+--
~
/'
=
VOO
5V
Vi
10mV
..........
I
38
36
1
i
See Figure 2
.~
40
!
I
= 10mV
CL = 20 pF
TA = 25'C
Vi
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
-50 -25
0
25
50
75
100
T A - Free-Air Temperature - 'C
125
FIGURE 29
FIGURE 30
PHASE MARGIN
vs
CAPACITIVE LOAD
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
300
~
"I
S'"
'0
~
'"
I
"
II>
33
..3l
~
:;
TA
I
Co
E
~
80
~
70
I"
60
·S
1-------+---+--+
"\.
'-.
I
>
I
I
50
20
I
I
.E 100
"E 90
II>
29
I
40
60
80
CL - Capacitive Load - pF
100
1
100
10
f - Frequency - Hz
FIGURE 32
FIGURE 31
t
I
11
3l
z
'0
31
27
Voo
RS
'.
'\
>
.~
::i
200
=5 V
= lOOn
= 25'C
!
:>
35 -II)
~
I
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS •
INSTRUMENTS
2-770
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
1000
TLC1079
LinCMOSTM f.1POWER PRECISION QUAD OPERATIONAL AMPLIFIER
03147, AUGUST 19BB-REVISED JANUARY 1991
D, J, OR N PACKAGE
• Power Dissipation as Low as 10 IJ,W Typ per
Amplifier
(TOP VIEW)
1 OUT
1 IN11N+
VDD
21N+
21N2 OUT
• Operates on a Single Silver-Oxide Watch
Battery, VDD = 1.4 V Min
• VIO ... 850 IJ,V Max in DIP and SmallOutline Package
• Input Offset Voltage Drift ... 0.1 IJ,V/Month
Typ, Including the First 30 Days
• High-Impedance LinCMOS'M Inputs
liB = 0.6 pA Typ
4 OUT
41N41N+
GND
31N+
4
7
FK PACKAGE
(TOP VIEW)
• High Open-Loop Gain ... 800,000 Typ
I~
~I
• Output Drive Capability > 20 mA
~OUO~
• Slew Rate ... 47 V/ms Typ
3
~~z."..".
2
1 20 19
• Common-Mode Input Voltage Range
Extends Below the Negative Rail
• Output Voltage Range Includes Negative
Rail
• On-Chip ESD-Protection Circuitry
9 1011 12 13
• 14-Pin Small-Outline Package Option Also
Available in Tape and Reel
~6Z6~
If-Uf-
NC\J
41N+
NC
16
GND
15
NC
14
31N+
I
('1')(")
NC - No internal connection
description
The TLC1079 operational amplifier offers ultralow offset voltage, high gain, 11 O-kHz bandwidth,
47-V/ms slew rate, and just 150-IJ,W power
dissipation per amplifier.
With a supply voltage of 1.4 V, common-mode
input to the negative rail, and output swing to the
negative rail, the TLC1 079 is an ideal solution for
low-voltage, battery-operated systems, The
20-mA output drive capability means that the
TLC1079 can easily drive small resistive and
large capacitive loads when needed, while
maintaining ultra-low standby power dissipation,
Since this device is functionally compatible as
well as pin compatible with the TLC27L4 and
TLC27L9, the TLC1 079 easily upgrades existing
deSigns that can benefit from its improved
performance,
The TLC1079 incorporates internal ESDprotection circuits that prevent functional failures
at voltages up to 2000 V as tested under MILSTD-883C, Method 3015,2; however, care
symbol (each amplifier)
IN-=t>IN+
OUT
+
DISTRIBUTION OF TLC1 079
INPUT OFFSET VOLTAGE
40
35
#r
30
:;::
=a
25
«
20
Cl
15
..l!!
E
..
!
..e
..
'0
I:
10
0-
5
o '----1..--1""
-1200
-600
o
600
1200
VIO -Input Offset Voltage - ~V
LinCMOS is a trademark of Texas Instruments Incorporated.
PRODUCTION DATA documenls conlain informalion
currenl as of publicalion dale. Producls conform 10
specificalions per Ihe terms of Texas Inslruments
standard warranly. Production processing does not
necessarily include testing of all parameters.
18
17
Copyright © 1991, Texas Instruments Incorporated
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-771
TlC1079
linCMOSTM /-lPOWER PRECISION QUAD OPERATIONAL AMPLIFIERS
description (continued)
should be exercised when handling these devices as exposure to ESD may result in degradation of the device
parametric performance. The TLC1 079 design also inhibits latchup of the device inputs and outputs even with
surge currents as large as 100 mA.
The C- suffix devices are characterized for operation from O°C to 70°C. The 1- suffix devices are characterized
for operation from - 40°C to 85°C. The M- suffix devices are characterized for operation over the full military
temperature range - 55°C to 125°C. The wide range of packaging options includes small-outline and chip-carrier
versions for high-density system applications.
AVAILABLE OPTIONS
PACKAGE
SMALL OUTLINE
(0)
TA
CHIP CARRIER
(FK)
CERAMICOIP
(J)
PLASTIC OIP
(N)
O'C to 70'C
TLC1079CD
-
-
TLC1079CN
- 40'C to 85'C
TLC10791D
-
-
TLC10791N
- 55'C to 125'C
TLC1079MD
TLC1079MFK
TLC1079MJ
TLC1079MN
The D package
IS
available taped and reeled. Add the suffiX R to the device type (e.g., TLC1079CDR).
equivalent schematic (each amplifier)
VOO
01
IN-~
Rl
08
IN+
Cl
RS
all
012
,
~
07
OUT
02
013
09
R2
01
R3
02
R7
I
GNO
TEXAS •
INSTRUMENlS
2-772
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC1079
linCMOSTM I-lPOWER PRECISION QUAD OPERATIONAL AMPLIFIER
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Voo (see Note 1) ........................................................... 18 V
Differential input voltage (see Note 2) ...................................................... ± Voo
Input voltage range, VI (any input) .................................................... - 0.3 to Voo
Input current, II (each input) ............................................................... ± 5mA
Output current, 10 (each output) .......................................................... ± 30mA
Total current into VDD terminal (see Note 3) ................................................. 45 mA
Duration of short-circuit current at (or below) 25°C (see Note 3) ............................. Unlimited
Continuous total dissipation ........................................... See Dissipation Rating Table
Operating free-air temperature range, TA: C-suffix ...................................... O°C to 70°C
I-suffix ..................................... - 40°C to 85°C
M-suffix ................................... - 55°C to 125°C
Storage temperature range ....................................................... - 65°C to 150°C
Case temperature for 60 seconds: FK package .............................................. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package ................ 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package ..................... 300°C
NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.
2. Oifferential voltages are at the noninverting input with respect to the inverting input.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensurethatthe maximum dissipation
ratings are not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TAs25°C
POWER RATING
DERATING FACTOR
ABOVE TA = 25°C
TA = 70°C
POWER RATING
TA=85°C
POWER RATING
TA = 125°C
POWER RATING
0
950mW
7.6mWrC
608mW
494mW
190mW
FK
1375mW
11 mwrc
880mW
715mW
275mW
J
1375 mW
11 mWrc
880mW
715mW
275mW
N
1150mW
9.2mWrC
736mW
598mW
230mW
recommended operating conditions
C-SUFFIX
MIN
Supply voltage, VOO
Common-mode input voltage, VIC
Operating free-air temperature, TA
I VOO =5V
I VOO = 10 V
NOM
I-SUFFIX
MAX
MIN
1.4
16
-0.2
NOM
M-SUFFIX
NOM
MAX
MIN
3
16
4
MAX
16
4
-0.2
4
0
4
-0.2
9
-0.2
9
0
a
70
-40
85
-55
9
125
UNIT
V
V
°c
TEXAS •
INSTRUMENlS
POST OFFICE BOX 655303 • O!'LLAS. TEX!'S 75265
2-773
TLC1079C
LinCMOSTM f.lPOWER PRECISION QUAD OPERATIONAL AMPLIFIERS
electrical characteristics over operating free-air temperature range (unless otherwise noted)
PARAMETER
VIO
TEST CONDITIONS
25°C
Full range
VIC=O,
RI=1 MQ 25°C to
70°C
Input offset voltage
Temperature coefficient
Vo = 1.4 V,
RS =50 Q,
"'VIO of input offset voltage
110
Input offset current
(see Note 4)
liB
Input bias current
(see Note 4)
voo = 5V
MIN
TA
Va = VOO/2,
VIC = VOO/2
VICR
MAX
190
850
1200
0.1
70°C
7
25°C
0.6
70°C
40
VOL
AVO
High-level output voltage
low-level output voltage
large-signal differential
voltage amplification
CMRR Common-mode
rejection ratio
kSVR
Supply-voltage rejection
ratio (aVOOhWIO)
VIO = 100mV,
Rl= 1 MO
VIO = -100 mY,
10l = 0
Rl= 1 MQ,
See Note 6
VIC = VICR min
VOO=5Vt010V,
Vo = 1.4 V
Vo - VOO/2,
100
Supply current
(four amplifiers)
VIC = VOO/2,
No load
1150
1500
7
300
0.7
600
50
-0.2
-0.3
-0.2
-0.3
to
to
to
4
4.2
9
-0.2
to
9.2
to
600
J.lV
pA
pA
V
to
8.5
V
25°C
3.2
4.1
8.2
O°C
70°C
3.2
4.1
8.2
8.9
3.2
4.2
8.2
8.9
8.9
V
25°C
0
25
0
25
O°C
0
0
25
0
25
25
0
25
70°C
UNIT
J.lVrC
0.1
300
3.5
VOH
200
1
-0.2
Full range
VOO=10V
MIN
TYP
MAX
1.1
25°C
25°C
Common-mode input
voltage range
(see Note 5)
TYP
25°C
25.0
525
500
O°C
250
700
500
850
1010
70°C
25°C
200
70
380
95
350
75
660
97
mV
V/mV
O°C
70
95
75
97
70°C
70
95
75
97
25°C
75
98
75
98
O°C
75
98
75
98
70°C
25°C
75
98
40
75
68
98
57
92
O°C
48
84
72
132
70°C
31
56
44
80
dB
dB
J.lA
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
6. At VOO = 5 V, Vo = 0.25 V to 2 V; at VOO = 10 V, Va = 1 V to 6 V.
operating characteristics
PARAMETER
SR
Vn
B1
m
Slew rate at unity gain
Equivalent input noise voltage
Unity-gain bandwidth
Phase margin at unity gain
TEST CONDITIONS
Voo = 5V
TA
Rl= 1 MO, Cl = 20 pF,
VIPP = 1 V, See Figure 1
f=1kHz,
RS = 1000
Cl = 20 pF, See Figure 2
CL = 20 pF, See Figure 2
MIN
TYP
VOO=10V
MIN
TYP
MAX
UNIT
25°C
32
O°C
35
47
51
70°C
27
38
25°C
68
85
68
110
nvl/Hz
25°C
kHz
O°C
100
125
70°C
25°C
65
34°
90
38°
O°C
36°
40°
70°C
30°
34°
~
TEXAS
INSTRUMENTS
2-774
MAX
POST OFFICE BOX 655303 • DALLAS. TEXAS 76265
V/ms
TLC10791
LinCMOSTM f..lPOWER PRECISION ,QUAD OPERATIONAL AMPLIFIER
electrical characteristics over operating free-air temperature range (unless otherwise noted)
TEST CONDITIONS
PARAMETER
25'C
VIO Input offset voltage
)-----=,----:----::;-:---,----1 Vo = 1.4 V,
Temperature coefficient
RS = 50 Q,
aVIO of input offset voltage
I
10
Input offset current
(see Note 4)
~.~--~-----~
I
IB
Input bias current
(see Note 4)
Common-mode input
voltage range
(see Note 5)
VOH
High-level output voltage
VIO = 100 mY,
RL = 1 Mn
VOL
Low-level output voltage
VIO
AVO
Large-signal differential
voltage amplification
RL= 1 MQ,
See Note 6
25'C
-40'C
85'C
25'C
-40'C
3.2
3.2
3.2
250
250
150
Vo = VOO/2,
25'C
- 40'C
85'C
25'C
-40'C
85'C
25'C
-40'C
85'C
25'C
VIC = VOO/2,
No load
-40'C
85'C
= -100 mY,
10L = 0
CMRR Common-mode
rejection ratio
VIC = VICR min
kSVR Supply-voltage rejection
ratio (Il.VOO/Il.VIO)
VOO=5Vt010V,
Vo = 1.4V
Supply current
(four amplifiers)
TYP
MAX
190
850
MIN
TYP
MAX
200
1150
UNIT
).lV
VIC = 0, f-F::-:ul:-:-1c::-ra-,--ng=..e-t-_ _ _ _ _ _
13_5_0-f-_ _ _ _ _ _1_65_0-l-_ _- I
RI = 1 MQ 25'C to
1.1
).lvrc
85'C
0.1
0.1
pA
Vo = VOO/ 2,
85'C
24
1000
26
1000
25'C
0.6
0.7
VIC = VOO/ 2
pA
2000
220
85'C
200
2000
-0.2
-0.3
-0,2
-0.3
25'C
to
to
to
to
V
4
4.2
9
9.2
-0.2
-0.2
Full range
to
to
V
3.5
8.5
VICR
100
VDD = 10 V
VDD - 5 V
MIN
4.1
4.1
4.2
0
0
8.2
8.2
8.2
25
25
8.9
8.9
8.9
0
0
V
25
25
f--~8~5'~C~----~0-~2~5-f----~0--2::-:5-1
70
70
70
75
75
75
525
900
330
95
95
95
98
98
98
40
62
29
500
500
250
75
75
75
850
1550
585
97
97
97
75
75
75
98
98
98
57
98
40
68
108
52
mV
V/mV
dB
dB
92
172
72
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
6. AtVOO =5V, Vo =0.25Vt02V; atVOO= 10V, VO= 1 Vt06V.
operating characteristics
TEST CONDITIONS
PARAMETER
SR
Slew rate at unity gain
RL = 1 Mn, CL = 20 pF,
VIPP = 1 V, See Figure 1
Vn
Equivalent input noise voltage
f = 1 kHz,
B1
Unity-gain bandwidth
CL
m
Slew rate at unity gain
Equivalent input noise voltage
Unity-gain bandwidth
Phase margin at unity gain
RL=lMO., CL = 20 pF,
VIPP = 1 V, See Figure 1
=5V
VOO
TA
MIN
TYP
MIN
TYP
25°C
-55°C
32
41
47
125°C
20
27
63
MAX
UNIT
V/ms
RS = 1000.
25°C
68
68
nv!lHz
CL = 20 pF, See Figure 2
25°C
-55°C
85
140
110
165
kHz
125°C
25°C
45
70
34°
-55°C
39"
38°
43°
125°C
25°
29°
f=lkHz,
CL = 20 pF, See Figure 2
TEXAS·~
INSTRUMENTS
2-776
VOO=10V
MAX
POST OFFice BOX 655303 • DALLAS. TeXAS 75265
TLC1079
linCMOSTM fJ,POWER PRECISION QUAD OPERATIONAL AMPLIFIER
PARAMETER MEASUREMENT INFORMATION
10 kfi
Voo
CL includes fixture capacitance.
CL includes fixture capacitance.
FIGURE 1. SLEW RATE TEST CIRCUIT
FIGURE 2. UNITY-GAIN BANDWIDTH AND
PHASE MARGIN TEST CIRCUIT
TYPICAL CHARACTERISTICS
DISTRIBUTION OF TLC1 079
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
DISTRIBUTION OF TLC1 079
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
356 Amplifiers tested
356 Amplifiers
60
=
=
i!! 50
VOO
5V
TA
25°Cto
N Package
Outliers:
~
~
(1) 19.2 JlVrC
(1) 12.1 JlV/oC
~
40
50
N Package
Outliers:
40
(1) 11.6 JlV/oC
'#
I
i!!
~
~
c(
&
60
VOO = 10 V
I
TA
25°C to 125oC,----t---t---t---t---t----1
=
(1) 18.7 jlV/oC
c(
'0
&
30~~--~~--~
Sc
30~~--~~--~
S
J
~ 20~-r--r--r--~
If
10
~ +--------'I--+_
201-----+--1--+--+10
~--t----1r--+_
OL-..J...........1IIIIIIIIlI
0~...J.........I.---
-10 -8 -6 -4 -2
0
2
4
6
8
"VIO - Temperature Coefficient - JlVrC
10
-10 -8 -6 -4 -2
0
2
4
6
8
"VIO - Temperature Coefficient - JlV/oC
FIGURE 3
10
FIGURE 4
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-777
TLC1079
LinCMOSTM !lPOWER PRECISION QUAD OPERATIONAL AMPLIFIER
TYPICAL CHARACTERISTICSt
HIGH-LEVEL OUTPUT VOLTAGE
HIGH-LEVEL OUTPUT VOLTAGE
vs
vs
HIGH-LEVEL OUTPUT CURRENT
HIGH-LEVEL OUTPUT CURRENT
5~----~----~----~----~--~
16
VID = 100 mV
VIO = 100 mV
>
..
I
TA
= 25°C
>
..
4~----~-~--~----~--~
'"
'"
~
~
~
;3
~
-'
r.
3
~
p....c----~----~---=-~:----t-
:::l
'5
..
>
-'
2
r.
J:'"
'"
I
J:
1 t----
~-~~-~-+-----+-----
I
-
>
o
-6
-4
~2
'"
0
..
'"
4
J:
I
vs
VOO-1.6
,
j
)7
- _ . f---,i
I
I
0
2
o
o
/
-10
-20
-30
IOH - High-Level Output Current - mA
FREE-AIR TEMPERATURE
10~mV
J:
>
mA
SUPPLY VOLTAGE
8
6
r.
2
-40
HIGH-LEVEL OUTPUT VOLTAGE
0;
>
-'
.
vs
RL = 1 MQ
TA = 25°C
-
...........
4 --
HIGH-LEVEL OUTPUT VOLTAGE
12
10
i'-- ........
FIGURE 6
VID =
I
............
VOO = 10 V
FIGURE 5
16
14
~
6
o
o
-10
-8
IOH - High-Level Output Current
of!
(5
>
'5
Co
'5
............
J:
OL-----~----~----~----~--~
..
...............
'-
0
>
>
i'--,
10
8
/
/
V
~:
/
/
/
1--
>
I
8, VOO -1.8
of!
~
_. .I
;g
'5 VOO -1.9
Co
'5
o VOO
~~
-.......
-2
VOO -2.1
I
I'
10
12
14
16
VOO = 5 V
~
[--........
'"
'" ""
VOO -2.3
VOO-2.4
-75
Voo - Supply Voltage - V
"'-
--
"
~
~
o
8
~
'""-.,
J:
6
VID = 100 mV
IOH = -5mA
I
VOO = 10 V""""""
'" VOO -2.2
>
4
Voo ~ 1.7
J:
i
2
/
V
L
-50 -25
0
25
50
75
100
TA - Free-Air Temperature - °C
FIGURE 7
FIGURE 8
t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS . "
INSTRUMENTS
2-778
-
16V
.....................
0;
J:
o
12
Co
0
TA = 25°C
-........... ~~=
I
~
~
14 ........
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
125
TLC1079
LinCMOSTM I-lPOWER PRECISION QUAD OPERATIONAL AMPLIFIER
TYPICAL CHARACTERISTICSt
LOW-LEVEL OUTPUT VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
LOW-LEVEL OUTPUT VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
700
E
I
I
Ql
til
---r--+--
600
;g
I
'5
VID = -100 mV
Q.
'5 500
0
\-----t--,,-+Q;
>
Ql
....I
3:0
I
400
....I
>
7 450 I-t---t--t---+----IQl
-~--J-j-II --t--------f----t--
!
....I
Voo = 5 V
IOL = SmA
TA = 25"C
-~
>
j
.
til
!
"0
:: 400 1--\+-- t----+----r------,----+---l--:I
I
Q.
'5
o
~----+-"<--f---+----L-t--~
!
I
I
-tl-I--
]
3501--4-'<-+£
3:o
....I
~ 300 \--+----'.....--"<-1''-+
o
>
0
>
-j-----+----
300~--~~--~--~--~--~--~--~
o
2
3
VIC - Common-Mode Input Voltage - V
800
> 700
E
I
Ql
til
600
~
~ 500
'5
S:I
0
400
Q;
~ 300
3:0
I
FIGURE 10
LOW-LEVEL OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
LOW-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
-+
\,VDO=5V!
'
~-I
Voo = 10V
200
-
I
i
.
iI
i
r-
I I
>
.l!l
;g
'5
I
I
o
o
t
--
_-+ ___ -I- __
_
Ql
500 I--t-----I--- -+ --- -b.-c---i---'
Q;
4001----+--·
~
~
....I
300
I
200
~
--
6001---t---r---j-----t------·~--
S:I
o
....I
- --
-1-------+-----
IOL = 5 rnA -I-
til
t---
> 100
VID = -1 V
800 -- VIC = 0.5 V
7 700
....I
0
I
-
1001---t----~,--~---~-O~~
____
~
__
~
__
~
__
~~
FIGURE 11
FIGURE 12
-6
-8
-75
~
VIO - Differential Input Voltage - V
-4
-10
__
-50 -25
0
25
50
75
100
TA - Free-Air Temperature - °C
-2
10
900r---~----~--__- -__- - - - - -__--~
~~~~lII~l IT
....I
....I
FIGURE 9
I VIC' 'Voo'" i I
'-
2
4
6
8
VIC - Common-Mode Input Voltage - V
4
125
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
-iii
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-779
TlC1079
linCMOSTM IlPOWER PRECISION QUAD OPERATIONAL AMPLIFIER
TYPICAL CHARACTERISTICSt
LOW-LEVEL OUTPUT VOLTAGE
LOW-LEVEL OUTPUT VOLTAGE
vs
vs
LOW-LEVEL OUTPUT CURRENT
LOW-LEVEL OUTPUT CURRENT
3
>
I
0.9
VIO
VIC
0.8
TA
II>
= -1 V
-= 0.5 V
= 25°C
~
VOO
VOO
0 0.5
Gi
>
II> 0.4
I
0.2
>
= 3~
/ ~
0.3
5
= 4~
0.1
o/
o
IL
#
//
VOO = 16
'"
.l1!
/
~
VOO = ' 1 0 j
0 1.5
Gi
>
II>
....
,-
o /'
o
8
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
2000
1600
~ 1400~-~~~~-+~-h~~~~~~~
~
1400
~
'a
E
1200
~
1800
I
1200 ~~~.
+------.r---.L+-
'j"
1000
~
:!
800
~
c
C 600
E
~ 400
is
C
'"
0
30
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
5
>
I
I
FIGURE 14
1600~~~~~-+~-V~47L-+-~~~
200
~
FIGURE 13
5I
I
V
~
/
5
10
15
20
25
IOL - Low-Level Output Current - rnA
>
~
h
I
....
~ 0.5
2000~~--~--~--~--~--~--~~
'j"
/
....
:!:0
~
>
~ 1800
:t::
i
2
"SQ.
"S
2
3
4
5
6
7
IOL - Low-Level Output Current - rnA
1
II>
= 5V
VOO
VIC = 0.5 V
TA = 25°C
2.5
I
!
"S 0.6
So
::J
....
:!:
....0
>
I
'"
.l1! 0.7
I
VIO = -1 V
~
is
I
\
\
600
----- -~
'1
voo
I'"
1000
800
""" ~
i
voo
400
= 10V
~
~t-.....
"~
= 5 V"""'"i"'-.......
I
C
>
0
2
4
12
10
6
8
Voo - Supply Voltage - V
14
16
'"
200
0
-75
= 1 MQ_
RL
-50 -25
0
25
50
--............
75
f---
r--.....
r-
100
T A - Free-Air Temperature - 'C
FIGURE 15
FIGURE 16
t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices,
TEXAS . "
INSTRUMENTS
2-780
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
125
TLC1079
LinCMOSTM tJ.POWER PRECISION QUAD OPERATIONAL AMPLIFIER
TYPICAL CHARACTERISTICSt
INPUT BIAS CURRENT AND OFFSET CURRENT
COMMON-MODE INPUT VOLTAGE POSITIVE LIMIT
vs
vs
FREE-AIR TEMPERATURE
SUPPLY VOLTAGE
16
10000
1= VOO
= 10V
I--- VIC = 5V
>
./
~
Q)
C>
I
/'
/'
..
V
Q)
V
:E
C
0
E
C
III
;
;
;
10
"C
0
'a
.::-
>...
=
110
10
12
e.
.E
I
2-
~
"0
liB
~ 100
=
(.)
E
0
See Note 4
;
I
()
45
105
65
85
TA - Free-Air Temperature - °C
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
TA = -55°C/
i 100
/'
~
(.)
~
p ~V
~
20
o
V
~V V
40
o
/
2
14
SUPPLY VOLTAGE
120
Q
4
8
10
12
6
Voo - Supply Voltage - V
2
,
f\
100
./
60
L
vs
V
/
VV
/' /-40°C
-
I--::::
V
V
oc(
::l.
I
c:
- --
=
l--(i:"c
(.)
.l!-
I-- ~
+--
4
6
8
10
12
Voo - Supply Voltage - V
=
fII
I
20 1---
16
'\
-+,
~OO=10V
- --- t----
~1-> r----:-
-
VOO = 5 V
9
125°C
I
~~~
40 r------
Q
j.:..:..=.
14
l'..
e.
e.
J-- j...--- f..-- ~
-
'\
1"-
60
o
-75
16
Vo = Voo/2
No load
80
~
V
/
L
I'
SUPPLY CURRENT
140
80
V
V
.II'
120
1
/
L
FIGURE 18
~
9
L
2
V
V
V
FIGURE 17
Vo = voo/2
160 I--- No load
I
4
o
o
125
180
I
L
6
">
I
;
8
()
;
0.1
25
I
14
I
/
/
1000
I
TA = 25°C
---
--+----t-11
-50 -25
0
25
50
75
100
125
T A - Free-Air Temperature - °C
FIGURE 19
FIGURE 20
t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
NOTE 4: The typical values of input bias current and input offset current below 5 pA were determined mathematically.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-781
TLC1079C
LinCMOS ™ IJ.POWER PRECISION QUAD OPERATIONAL AMPLIFIER
TYPICAL CHARACTERISTICSt
SLEW RATE
70
'"I
E
CII
'Iii
I
III
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
70
I
=
=
=
=
=
VIPP
1V
1 Mil
60 _RL
CL
20 pF
AV
1
50
TA
25°C
See Figure 1
40
a:
1
SLEW RATE
vs
./
V
/'
30
See Figure 1
./
V ""
/
'"I
50
E
..
40
~
30
J!
a:
I
I
a:
III
= 1. Mil
= 20pF
AV =1
RL
CL
60
a:
III
20
20
I
10 .---1f------+_-+_-+Voo
VIPP
10
o
1.4
1.3
1.2
~
a:
.
'C
E
z
0.9
0.8
4
8
10
12
6
Voo - Supply Voltage - V
14
O~~--~--~--~--~~--~--~
16
-75
-50 -25
0
25
50
75 100
TA - Free-Air Temperature - °C
FIGURE 22
NORMALIZED SLEW RATE
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
vs
FREE-AIR TEMPERATURE
FREQUENCY
~
VOO
= 10V
~
= 5V
=
=
=
=
VIPP
1V
RL
1 Mil
CL
20pF
AV
1
>
I
i,.
I'
I"~
0.7
0.6
o
i
I
~
~
~'\
0.5
-75 -50 -25
0
25
50
75
100
TA - Free-Air Temperature - °C
O~~~~~--~"~~--~~~~
125
0.1
FIGURE 23
10
f - Frequency - kHz
FIGURE 24
t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSTRUMENTS
2-782
125
FIGURE 21
,
VOO
~
CII
.~
2
1.1
iii
.:s
o
= 5 V _--1-_-1
=2.5V
POST OFFICE BOX 655303 • OALLAS. TEXAS 75265
100
TLC1079
LinCMOSTM f.lPOWER PRECISION QUAD OPERATIONAL AMPLIFIER
TYPICAL CHARACTERISTICSt
UNITY-GAIN BANDWIDTH
vs
FREE-AIR TEMPERATURE
SUPPLY VOLTAGE
150
=
'\
~
I
~
110
..
90
'i
c
'OJ
~ 70
c
I
'iii
30
-75
~
100
.~
90
k
80
/
c
""- ~
/
::;)
I
rli
.......
70
I
60
I
V
/
/
:
50
-50 -25
0
25
50
75
100
T A - Free·Air Temperature - 'C
125
I
I
o
4
8
10
12
6
Voo - Supply Voltage - V
2
14
16
FIGURE 25
FIGURE 26
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
vs
FREQUENCY
FREQUENCY
=
=
= 25'C
Voo
5V
RL
1 MQTA
\
""'-- ""
AVO
...
a.
""
=
..=:
a..
.c
60°
UI
.c
'"
90°
~
1k
10k
f - Frequency - Hz
100
C
II>
Dl
104
~
3
~ 10
~I!!
102
~
101
\
II>
120'
~
0.1
10
~
:E 105 ........
E
30°
I
TA
""- r---..
'--
""-
AVO
........
""-
Phase Shift
Q
150'
r\
100k
180'
1M
=
=
= 25'C
Voo
10 V
RL
1 MQ-
c 106
0
0'
Phase Shift
1
-gos
1:11
I
50
/v
~ 110
::;)
rli
I
See Figure 2
I
'\.
"-
........
"'"~~
\
0.1
1
10
FIGURE 27
1k
10k
f - Frequency - Hz
100
100k
180'
1M
FIGURE 28
t Data at high and low temperatures are applicable only within the rated ope(ating free-air temperature ranges of the various devices.
TEXAS . "
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-783
TLC1079
linCMOS ™ f,lPOWER PRECISION QUAD OPERATIONAL AMPLIFIER
TYPICAL CHARACTERISTICSt
PHASE MARGIN
42
..~
S'
'C
I
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
38
I
C
of-
..
.....
_:::E
/
36
.c
a.. 34
-----
I
I
....E
32
30
V
/
/'
V
en
'C
I
35
i
32
I
!!!
-T
I
E
....
27
o
20
~
28
.c
I
"- '\.
'\
E
14
20
-75
16
-50 -25
0
25
50
75
100 125
TA - Free-Air Temperature - °C
FIGURE 29
FIGURE 30
PHASE MARGIN
EQUIVALENT INPUT NOISE VOLTAGE
vs
vs
CAPACITIVE LOAD
FREQUENCY
'"""
a.. 29
~
a..
300
I
I
=
=
=
:>c
.
'\
!\
...
TA
25°C
See Figure 2
~
=
=
=
Voo
5V
RS
1000
TA
25°C
~
VOO
5V
Vi
10mV
.c
!~
"'- 24
r---...
31
'"
~
/
4
8
10
12
6
Voo - Supply Voltage - V
2
36
~
c
I
33
25
..
I
o
C
~
:::E
V
=
=
=
Voo
5V
Vi
10mV
CL
20pF
See Figure 2
.~
37
..~
..
.
..
...
/'"
I
I
-~-
"',
40
I
=
=
=
Vi
10mV
CL
20pF
TA
25°C
See Figure 2
40
PHASE MARGIN
vs
I
200
en
~
0
>
'"
'0
~
z
'S
'" "'"
40
60
80
CL - Capacitive Load - pF
"r-.
a.
.5 100
..
C
.!!
.~
::I
IT
"
W
I
c
>
I\.
90
"
80
70
60
50
1
100
10
100
f - Frequency - Hz
FIGURE 32
FIGURE 31
t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSTRUMENTS
2-784
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
1000
TlC2201, TlC2201A, TlC2201B, TlC2201Y
Advanced linCMOSTM lOW-NOISE PRECISION
OPERATIONAL AMPLIFIERS
D3173. NOVEMBER 1988 - REVISED AUGUST 1991
•
TLC2201B Is 100% Tested for Noise:
25 nV/...JHz Max at f = 10 Hz
12 nV/...JHz Max at f = 1 kHz
•
Low Input Offset Voltage ... 200 ~V Max
•
Excellent Offset Voltage Stability
With Temperature ... 0.5 ~VloC Typ
•
Low Input Bias Current ... 1 pA Typ
at TA = 25°C
•
Fully Specified for Both Single-Supply
and Split-Supply Operation
•
Common-Mode Input Voltage Range
Includes the Negative Rail
TYPICAL EQUIVALENT
INPUT NOISE VOLTAGE
vs
FREQUENCY
description
The TLC2201, TLC2201 A, TLC22018, and
TLC2201Y are precision, low-noise operational
amplifiers using Texas Instruments Advanced
LinCMOSTM process. These devices combine
the noise performance of the lowest-noise JFET
amplifiers with the dc precision available
previously only in bipolar amplifiers. The
Advanced LinCMOSTM process uses silicon-gate
technology to obtain input offset voltage stability
with temperature and time that far exceeds that
obtainable using metal-gate technology. In
addition, this technology makes possible input
impedance levels that meet or exceed levels
offered by top-gate JFET and expensive
dielectric-isolated devices.
~
:>c
.,I
60
so 1
\
til
:!
'0 40
.,.
>
'0
z
= Sv
= loon
TA = 2S"C
VDD
RS
1\
30
'5
<>.
c
E
., 20
~r--
j
.~ 10
w
The combination of excellent dc and noise
performance with a common-mode input voltage
range that includes the negative rail makes these
devices an ideal choice for high-impedance, lowlevel signal conditioning applications in either
single-supply or split-supply configurations.
I
c
>
0
10
1
100
lk
1- Frequency - Hz
10 k
The device inputs and outputs are designed to withstand -1 OO-mA surge currents without sustaining latch-up.
In addition, internal ESO-protection circuits prevent functional failures at voltages up to 2000 V as tested under
MIL-STO-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure
to ESO may result in degradation of the device parametric performance.
AVAILABLE OPTIONS
TA
O°C
Vn max
PACKAGE
VIOmax
AT2SoC
1 = 10 Hz
AT2SoC
Vn max
1 = 1 kHz
AT2SoC
3S nV/VHz
15 nV/VHz
25 nV/VHz
12 nV/VHz
TLC2201BCD
to
200 flV
200 flV
70°C
500 flV
-40°C
200 flV
SMALL-
PLASTIC
CERAMIC
CHIP
CHIP
OUTLINE
DIP
DIP
CARRIER
FORM
(D)
(P)
(JG)
(FK)
(V)
TLC2201ACD
TLC2201ACP
TLC2201BCP
-
-
TLC2201CD
TLC2201CP
-
35 nV/VHz
15 nV/VHz
TLC2201AID
TLC2201AIP
-
-
to
200 flV
25 nV/VHz
12 nV/VHz
85°C
500 flV
-
-55°C
to
200 flV
35 nV/VHz
200 flV
25 nV/VHz
125°C
500 flV
-
15 nV/VHz
12 nV/VHz
-
TLC2201BID
TLC2201BIP
TLC22011D
TLC22011P
TLC2201AMD
TLC2201BMD
TLC2201AMP
TLC2201BMP
TLC2201AMJG
TLC2201 BMJG
TLC2201AMFK
TLC2201BMFK
TLC2201MD
TLC2201MP
TLC2201MJG
TLC2201MFK
TLC2201V
D packages are available taped-and-reeled. Add "R" suffix to deVice type (e.g .. TLC2201 BCDR). Chips are tested at 25°C.
Advanced Lin CMOS is a trademark 01 Texas Instruments Incorporated.
PRODUCTION DATA information is current al of publication date.
Products conform to specifications per the terms or Texas Instruments
standard warranty. Production processing dOls not necessarily Include
testing of all parameters.
TEXAS
~
Copyright © 1991, Texas Instruments Incorporated
INsrRuMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-785
TLC2201, TLC2201A, TLC2201B
Advanced LinCMOSTM LOW-NOISE PRECISION
OPERATIONAL AMPLIFIERS
description (continued)
The C-suffix devices are characterized for operation from O°C to 70°C. The I-suffix devices are characterized
for operation from -40°C to 85°C. The M-suffix devices are characterized for operation over the full military
temperature range of -55°C to 125°C.
D, JG, or P PACKAGE
U
FK PACKAGE
(TOP VIEW)
NC
IN IN +
VDD _/GND
(TOP VIEW)
00000
2
7
NC
VDD +
3
6
OUT
4
5
NC
8
zzzzz
3
2
1 20 19
18
NC
17
16
VDD +
NC
15
OUT
14
NC
910111213
00000
zzzzz
~
I
o
o
NC - No internal connection
>
equivalent schematic (each amplifier)
IN + - - - - - ! - - - I - - - ,
IN
-,1+-___
~--~-----+--OUT
Cl
--+-1
Ql
Q4
Q7
Q8
Ql0
Qll
Rl
VDD-
TEXAS ",
2-786
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
R2
TLC2201Y
Advanced LinCMOSTM LOW-NOISE PRECISION
OPERATIONAL AMPLIFIERS
chip information
These chips, properly assembled, display characteristics similar to the TLC2201. Thermal compression or
ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive
epoxy or a gold-silicon preform.
VDD+ (7)
BONDING PAD ASSIGNMENTS
1IN_(3)=t?1 IN+ (2)
OUT (6)
VDD- (4)
CHIP THICKNESS:
15 TYPICAL
BONDING PADS:
4 X4 MINIMUM
TJ max = 150°C
TOLERANCES
ARE ± 10%
ALL DIMENSIONS
ARE IN MILS
I...
90
...
1
1111111111111111111111111111111111111111111111
PIN (4) INTERNALLY
CONNECTED TO
BACKSIDE OF CHIP
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-787
TlC2201, TlC2201A, TlC22018
Advanced linCMOSTM lOW-NOISE PRECISION
OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature (unless otherwise noted)
Supply voHage, VDD + (see Note 1) ..................................................... 8 V
Supply voltage, VDD _ (see Note 1) .................................................... - 8 V
Differential input voltage (see Note 2) .................................................. ±16 V
Input voltage, VI (any input, see Note 1) ...................... ; .......................... ± 8 V
Input current, II (each input) ......................................................... ± 5 mA
Output current, 10 ................................................................ ± 50 mA
Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... Unlimited
Continuous total dissipation ........................................ See Dissipation Rating Table
Operating free-air temperature, TA: C-suffix ........................................ O°C to 70°C
I-suffix ...................................... - 40°C to 85°C
M-suffix .....................................- 55°C to 125°C
Storage temperature range .................................................. - 65°C to 150°C
Case temperature for 60 seconds: FK package .......................................... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package ............... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package .................. 300°C
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VDD + and VDD _ .
2. Differential voltages are at the noninverting input with respect to the inverting input.
.3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the
maximum dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA!>2SoC
DERATING FACTOR
POWER RATING
ABOVE TA = 25°C
5.8mW/oC
11.0 mW/oC
D
725mW
FK
1375 mW
TA =8SoC
POWER RATING
TA=70°C
POWER RATING
TA = 125°C
POWER RATING
464mW
377mW
880mW
715mW
145mW
275mW
JG
1050mW
8.4 mW/oC
672mW
546 mW
210mW
P
1000 mW
8.0 mW/oC
640mW
520mW
200 mW
recommended operating conditions
MIN
Supply voltage, VDO+
Common-mode input voltage, VIC
Operating free-air temperature, TA
C-SUFFIX
MAX
±2.3
VOO0
±8
MIN
I-SUFFIX
MAX
±2.3
VOO +-2.3 VOO-40
70
TEXAS ."
INSfRUMENTS
2-788
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
±8
MIN
M-SUFFIX
MAX
±2.3
VOD +-2.3 VOO85
-55
±8
VOO +-2.3
125-
UNIT
V
V
°C
TlC2201C
Advanced linCMOSTM lOW-NOISE PRECISION
OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Voo ±
=± 5 V(unless otherwise noted)
TYP
MAX
UNIT
VIO
Input offset voltage
25°C
Full range
100
500
600
flV
aVIO
Temperature coefficient 01 input offset voltage
Full range
0.5
PARAMETER
TEST CONDITIONS
Input offset voltage long-term drift (see Note 4)
110
TAt
RS = 500
VIC = 0,
Input offset current
liB
Input bias current
VICR
Common-mode input voltage range
MIN
25°C
0.001
25°C
0.5
Full range
25°C
flV/oC
0.005
100
1
Full range
100
flV/mo
pA
pA
-5
VOM+
Full range
RS = SOO
25°C
Full range
Maximum positive peak output voltage swing
RL = 10kO
VOM-
-4.7
25°C
400
560
RL = 500 kil,
Full range
Vo = ±4 V,
25°C
Full range
300
90
100
Vo = ±4 V,
AVO
Large-signal differential voltage amplilication
CMRR
Common-mode rejection ratio
Vo = 0, VIC = VICR min,
RS = 500
kSVR
Supply-voltage rejection ratio ("NOO ± / AVIO)
VOO ± = ± 2.3 V to ± 8 V
100
Supply current
Vo = 0,
RL = 10kn
Slew rate at unity gain
Vn
Equivalent input noise voltage
VN(PP)
Peak-to-peak equivalent input noise voltage
In
Equivalent input noise current
Gain-bandwidth product
m
1
to
2.7
25°C
No load
100
100
25°C
= 1 Vto 4 V,
0.005
0.5
Full range
= 500kO
0.001
1
UNIT
/LV/oc
100
25°C
Full range
RL
char~cteristics
0.005
0.5
Full range
Vo
PARAMETER
SR
= 50n
Large-signal differential
operating
0.001
25°C
25°C
Maximum low-level
VOL
= 50n
MAX
200
0.5
Full range
Maximum high-level
VOH
RS
TYP
80
300
0.5
25°C
Full range
Common-mode input
VICR
= 0,
VIC
MIN
300
Full range
long-term drift (see Note 4)
TLC2201BC
MAX
200
Full range
of input offset voltage
110
TYP
80
MIN
25°C
Temperature coefficient
aVIO
TLC2201AC
TAt
Phase margin at unity gain
0.5
nV/{Hz
/LV
= 10kHz,
. RL
= 10 kn,
CL
= 100 pF
= 10 kil,
= 100pF
RL
CL
tFull range is O°C to 70°C.
NOTES: 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
5. This parameter is tested on a sample basis forthe TLC2201Aand on all devices for the TLC2201 B. For othertest requirements, please
contact the factory. This statement has no bearing on testing or nontesting of other parameters.
=
TEXAS
~
INSTRUMENTS
2-792
POSTOFFICE BOX 655303' DALLAS. TEXAS 75265
TlC22011
Advanced linCMOSTM lOW-NOISE PRECISION
OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Voo ± =
PARAMETER
TEST CONDITIONS
VIO
Input offset voltage
(lVIO
Temperature coefficient 01 input offset voltage
Input offset voltage long-term drift (see Note 4)
110
liB
± 5 V (unless otherwise noted)
TAt
25°C
Full range
MIN
TYP
MAX
100
500
650
Full range
RS = 50n
VIC = O.
0.001
Input offset current
25°C
Full range
0.5
Input bias current
25°C
Full range
1
fLV
fLV/oC
0.5
25°C
UNIT
0.005
150
150
fLV/mo
pA
pA
-5
VICR
VOM+
Common-mode input voltage range
RS = 50n
Maximum positive peak output voltage swing
RL = 10 kn
VOM-
CMER
Common-mode rejection ratio
25°C
Full range
4.7
-4.7
Full range
-4.7
25°C
400
RL = 500kn.
Full range
250
Vo = ±4 V.
25°C
Full range
90
25°C
Full range
90
25°C
90
Full range
85
Vo = ±4 V.
Large-signal differential voltage amplilication
to
2.7
4.7
25°C
Maximum negative peak output voltage swing
AVO
Full range
RL = 10 kn
Vo = O.
VIC = VICR min.
RS = 50n
kSVR
Supply-voltage rejection ratio (eNOO ± / t1 VIO)
Voo ± = ± 2.3 V to ± 8 V
100
Supply current
Vo = O.
No load
V
4.8
V
-4.9
V
560
VlmV
100
65
115
dB
85
110
25°C
dB
1.1
1.5
Full range
1.5
mA
operating characteristics at specified free-air temperature, Voo ± = ± 5 V
PARAMETER
SR
Slew rate at unity gain
Equivalent input noise voltage
VN(PP)
Peak-to-peak equivalent input noise voltage
MIN
TYP
Vo = ±2.3V. RL = 10kn.
2
2.7
Phase margin at unity gain
MAX
UNIT
V/fLS
Full range
1.4
1 = 10 Hz
25°C
18
I = 1 kHz
25°C
25°C
8
0.5
25°C
0.7
25°C
0.6
IA/VHZ
25°C
1.9
MHz
25°C
48°
I = 0.1 to 1 Hz
I = 0.1 to 10Hz
Equivalent input noise current
Gain-bandwidth product
4>m
TAt
25°C
CL = 100 pF
Vn
In
TEST CONDITIONS
I = 10 kHz.
RL = 10 kn.
CL = 100pF
RL = 10kn.
CL = 100pF
tFull range is - 40°C to 85°C.
NOTE 4: Typical values are based on the input ollset voltage shift observed through 168 hours 01 operating life test at TA
to TA = 25°C using the Arrhenius equation and assuming an activation energy 01 0.96 eV.
= 150°C
nVlVHZ
fLV
extrapolated
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-793
TLC2201AI, TLC2201BI
Advanced LinCMOSTM LOW-NOISE PRECISION
OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Voo ±
PARAMETER
Via
Input offset voltage
aVIO
of input offset voltage
Input offset voltage
TEST CONDITIONS
110
Input offset current
liB
Input bias current
VICR
Common-mode input
voltage range
25°C
RS = 50n
VIC = 0,
output voltage swing
AVO
CMRR
kSVR
IDO
voltage amplification
Common-mode
rejection ratio
Supply-voltage rejection
ratio (Ll.VOO ±/ Ll.VIO)
Supply current
0.001
25°C
0.5
80
0.005
0.001
150
1
150
-5
to
-5
to
2.7
2.7
25°C
4.7
Full range
4.7
25°C
-4.7
Full range
-4.7
4.8
4.7
4.8
-4.7
-4.9
Vo = ±4 V,
25°C
400
Full range
250
25°C
90
100
90
RL = 10 kn
Full range
65
90
115
90
115
110
85
90
110
VOO±
= ±2.3Vto±8V
Full range
25°C
85
Full range
85
90
25°C
No load
Vo = 0,
25°C
400
pA
pA
V
-4.7
560
fLV/mo
V
4.7
-4.9
fLV
V
RL = 500kn
Vo = ±4 V,
Va = 0, VIC = VICR min,
RS = 50n
0.005
0.5
150
UNIT
fLV/oC
0.5
1
Full range
200
350
150
25°C
output voltage swing
Large-signal differential
25°C
Full range
RL = 10 kn
200
0.5
Full range
RS = 50n
TLC2201BI
MIN
TYP MAX
350
Full range
Maximum negative peak
VOM-
80
Full range
Maximum positive peak
VOM+
TLC2201AI
MIN
TYP MAX
TAt
Temperature coefficient
long-term drift (see Note 4)
=± 5 V (unless otherwise noted)
560
250
VimV
100
65
dB
dB
85
1.1
Full range
1.5
1.1
1.5
1.5
1.5
rnA
operating characteristics at specified free-air temperature, Voo ± = ± 5 V
PARAMETER
SR
Vn
VN(PP)
In
Slew rate
at unity gain
TEST CONDITIONS
TAt
Va = ±2.3 V,
TLC2201AI
MIN
TYP MAX
25°C
2
2.7
TLC2201BI
MIN
TYP MAX
2
2.7
RL = 10kn,
Equivalent input noise
CL=100pF
I = 10 Hz
voltage (see Note 5)
I = 1 kHz
Peak-to-peak equivalent
I = 0.1 to 1 Hz
input noise voltage
I = 0.1 to 10Hz
Equivalent input noise current
UNIT
V/fLS
Full range
..
1.4
1.4
25°C
18
35
18
25°C
8
15
8
25°C
0.5
0.5
25°C
0.7
0.7
25°C
0.6
0.6
fA/VHZ
25°C
1.9
1.9
MHz
25°C
48°
48°
25
12
nViVHZ
fLY
I = 10 kHz,
Gain-bandwidth product
RL = 10 kn,
CL = 100 pF
iflm
Phase margin at unity gain
RL = 10 kn,
CL = 100 pF
tFuli range is - 40°C to 85°C.
NOTES: 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating lile test at TA =150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
5. This parameter is testedon asample basis lor the TLC2201Aand on all devices forthe TLC2201 B. For othertest requirements, please
contact the factory. This statement has no bearing on testing or nontesting of other parameters.
TEXAS ~
INSTRUMENTS
2-794
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
TLC22011
Advanced linCMOSTM lOW-NOISE PRECISION
OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Voo
TEST CONDITIONS
PARAMETER
Via
Input offset voltage
aVIO
Temperature coefficient 01 input offset voltage
Input offset current
liB
Input bias current
V,CR
Common-mode input voltage range
TAt
25°C
MIN
TYP
MAX
100
500
Full range
650
Full range
Input offset voltage long-term drift (see Note 4)
',0
= 5 V (unless otherwise noted)
=
V'C
=
RS
0,
500
0.001
25°C
Full range
0.005
0.5
150
1
25°C
Full range
flV
flVloC
0.5
25°C
UNIT
150
fl V/mo
pA
pA
0
RS
=
500
Full range
to
V
2.7
=
VOH
Maximum high-level output voltage
RL
VOL
Maximum low-level output voltage
10 =
AVD
Va
RL
Va
Large-signal differential voltage amplification
RL
Va
RS
kSVR
Supply-voltage rejection ratio (L\.VDD ± / L\.Via)
VDD
'DD
Supply current
Va
V,CR min,
No load
2.5 V,
operating characteristics at specified free-air temperature, Voo
PARAMETER
SR
Vn
TEST CONDITIONS
Va
Slew rate at unity gain
RL
Peak-to-peak equivalent input noise voltage
In
Equivalent input noise current
¢m
Phase margin at unity gain
= 10 Hz
= 1 kHz
1 = O.ltol Hz
f = 0.1 to 10Hz
f
VN(PP)
Gain-bandwidth product
= 0.5 V to 2.5 V,
= 10kO, CL = 100 pF
1
Equivalent input noise voltage
f
=
CL
RL
10 kHz,
RL
= 10 kO,
=
=
CL
=
100pF
10 kO,
4.7
4.7
4.8
V
0
50
Full range
= 4.6Vto16V
=
25°C
Full range
25"C
a
= 1 Vt04 V,
= 500 kO,
= 1 Vt04 V,
= 10kO
= 0, V'C =
= 500
Common-mode rejection ratio
CMRR
10 kO
100pF
50
25"C
150
Full range
100
25'C
Full range
25
15
55
25'C
Full range
90
110
25'C
90
Full range
85
mV
315
VlmV
dB
85
110
dB
1
25°C
1.5
Full range
1.5
mA
=5 V
TAt
MIN
TYP
25°C
1.8
2.5
Full range
1.2
MAX
UNIT
V/flS
25°C
25°C
18
25°C
0.5
8
nV/¥Z
flV
25°C
0.7
25°C
0.6
fA/¥Z
25°C
1.8
MHz
25°C
45°
tFull range is - 40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
= 150°C
extrapolated
TEXAS ~
INSTRUMENlS
POST OFFICE BOX 655303 ' DALLAS, TEXAS 75265
2-795
TlC2201AI,TlC2201BI
Advanced linCMOSTM lOW-NOISE PRECISION
OPERATIONAL AMPLIFIERS
= 5 V (unless otherwise noted)
electrical characteristics at specified free-air temperature, VOO
PARAMETER
Via
TEST CONDITIONS
long-term drift (see Note 4)
110
liB
VICR
output voltage
Maximum low-level
VOL
RS = 50n
VIC = 0,
output voltage
kSVR
Va = 1 Vt04
Common-mode
Vo = 0, VIC = VICR min,
RS = 50n
v,
100
Supply current
VOO = 4.6Vt016V
Va = 2.5V,
SR
Vn
VN(PP)
In
Slew rate
TEST CONDITIONS
Va = 0.5 V to 2.5 V,
150
1
4.8
150
4.8
50
0
50
150
315
25°C
90
Full range
85
25°C
Full range
90
50
25
110
90
15
pA
pA
mV
315
100
55
flV/mo
V
50
150
100
flV
V
4.7
0
25
0.005
0.5
2.7
4.7
UNIT
flV/oC
0
to
4.7
4.7
25°C
Full range
TAt
0.001
150
V/mV
55
15
110
dB
85
110
90
85
85
1
110
1.5
1
1.5
operating characteristics at specified free-air temperature, Voo
PARAMETER
0.005
0
to
2.7
25°C
Full range
No load
350
1
25°C
Full range
voltage amplilication
80
MAX
200
0.5
Full range
RL = 500kn
ratio (AVOO ±/ AVIO)
200
TYP
150
25°C
10 = 0
Large-signal differential
rejection ratio
Supply-voltage rejection
0.5
25°C
Full range
RL = 10 kn
CMRR
0.001
25°C
Full range
Va = 1 V t04 V,
AVO
25°C
Full range
RL = 10 kn
MIN
0.5
25°C
RS = 50n
TLC2201BI
MAX
350
Full range
Input bias current
Maximum high-level
VOH
80
Full range
Input offset current
Common-mode input
voltage range
TYP
Full range
01 input offset voltage
Input offset voltage
MIN
25°C
Input offset voltage
Temperature coefficient
aVIO
TLC2201AI
TAt
dB
1.5
1.5
mA
=5 V
TLC2201AI
MIN
TYP
25°C
1.8
2.5
Full range
1.2
TLC2201BI
MAX
MIN
TYP
1.8
2.5
MAX
UNIT
Equivalent input noise
RL = 10 kn,
CL = 100pF
1= 10 Hz
25°C
18
35
18
25
voltage (see Note 5)
I = 1 kHz
25°C
8
15
8
12
Peak-to-peak equivalent
I = 0.1 to 1 Hz
25°C
0.5
0.5
input noise voltage
I = 0.1 to 10Hz
25°C
0.7
0.7
25°C
0.6
0.6
IA/..fHz
25°C
1.8
1.8
MHz
25°C
45°
45°
at unity gain
Equivalent input noise current
V/fls
1.2
nV/..fHz
flV
I = 10 kHz,
Gain-bandwidth product
RL = 10 kn,
CL = 100pF
4lm
Phase margin at unity gain
RL = 10 kil,
CL = 100pF
tFull range is - 40°C to 85°C.
NOTES: 4. Typical values are based on the input offset voltage shift observed through 168 hours 01 operating lile test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy 010.96 eV.
5. This parameter is tested on a sample basis lor the TLC2201Aandon all devices lor the TLC2201 B. Forothertestrequirements, please
contact the lactory. This statement has no bearing on testing or nontesting 01 other parameters.
TEXAS ~
INSTRUMENTS
2-796
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
TlC2201M
Advanced LinCMOSTM LOW-NOISE PRECISION
OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Voo ±
PARAMETER
=± 5 V (unless otherwise noted)
TEST CONDITIONS
VIO
Input offset voltage
(lVIO
Temperature coefficient 01 input offset voltage
TAt
25·C
MIN
TYP
100
Full range
110
Input offset current
liB
Input bias current
VICR
Common-mode input voltage range
VOM+
Maximum positive peak output voltage swing
700
Full range
VIC ~ 0,
Input offset voltage long-term drift (see Note 4)
RS ~ son
MAX
500
0.5
25·C
0.001
25·C
0.5
Full range
25·C
fLV
fLV/·C
0.005
500
1
Full range
UNIT
500
fLV/mo
pA
pA
-5
RS ~ 50n
Full range
RL ~ 10 kn
VOM-
Maximum negative peak output voltage swing
AVD
Large-signal differential voltage amplification
kSVR
IDD
Supply current
-4.7
Vo ~ ±4 V,
RL ~ 500kn,
Full range
200
Vo ~ ±4 V,
25 C
Full range
90
100
45
90
115
85
90
110
~
Q
10 kn
25·C
Full range
VDD ± ~ ± 2.3 V to ± 8 V
25°C
Full range
Vo ~ 0,
25°C
Full range
No load
operating characteristics at specified free-air temperature, Voo ±
PARAMETER
SR
Slew rate at unity gain
Equivalent input noise voltage
VN(PP)
Peak-to-peak equivalent input noise voltage
In
--"--Vo
Va
lOon
lOon
NOTE A: CL includes fixture capacitance.
Figure 1. Noise Voltage Test Circuit
Figure 2. Phase Margin Test Circuit
>--+-..-- Va
Vo
NOTE A: CL includes fixture capacitance.
Figure 3. Slew Rate Test Circuit
Figure 4. Input Bias and Offset
Current Test Circuit
typical values
Typical values presented in this data sheet represent the median (50% point) of device parametric performance.
input bias and offset current
At the picoamp bias current level typical of the TLC2201, TLC2201 A, and TLC2201 S, accurate measurement
of the bias current becomes difficult. Not only does this measurement require a picoammeter, but test socket
leakages can easily exceed the actual device bias currents. To measure these small currents, Texas
Instruments uses a two-step process. The socket leakage is measured using picoammeters with bias voltages
applied but with no device in the socket. The device is then inserted in the socket, and a second test measuring
both the socket leakage and the device input bias current is performed. The two measurements are then
subtracted algebraically to determine the bias current of the device.
noise
Texas Instruments offers automated production noise testing to meet individual applications requirements.
Noise voltage at f = 10Hz and f = 1 kHz is 100% tested on every TLC2201 S device, while lot sample testing
is performed on the TLC2201A. For other noise test requirements, please contact the factory.
TEXAS . "
INSTRUMENTS
2-802
POST OFFICE BOX 655303· OALLAS. TEXAS 75265
TLC2201, TLC2201A, TLC2201B
Advanced LinCMOSTM LOW-NOISE PRECISION
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
table of graphs
FIGURE
Via
Input offset voltage
liB
Input bias current
CMRR
VOM
VO(PPl
Distribution
Common-mode rejection ratio
Maximum peak output voltage
Maximum peak-to-peak output voltage
VOH
High-level output voltage
VOL
Low-level output voltage
AVD
Differential voltage amplification
lOS
Short-circuit output current
IDD
SR
Supply current
Slew rate
Gain-bandwidth product
4>m
Phase margin
Phase shift
vs
Temperature
vs
Frequency
vs
Output current
vs
Temperature
vs
Frequency
vs
Frequency
vs
Current
vs
Temperature
vs
Output current
vs
Temperature
vs
Frequency
vs
Temperature
vs
Supply voltage
vs
Temperature
Supply voltage
Temperature
vs
Supply voltage
vs
Temperature
Small-signal
Large-signal
Peak-to-peak equivalent input noise
voltage
Common-mode voltage
vs
vs
Pulse response
VN(PP)
vs
0.1 to 1 Hz
0.1 to 10 Hz
vs
vs
vs
vs
vs
Supply voltage
,Temperature
Supply voltage
Temperature
Frequency
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25, 26
27,28
29
30
31
32
33
34
17
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
2-803
TLC2201, TLC2201A, TLC2201B
Advanced LinCMOSTM LOW-NOISE PRECISION
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
DISTRIBUTION OF TLC2201
INPUT OFFSET VOLTAG E
10
16
1
~
I
!!l
'2
I
121--I--+--I--f--
:::l
Q)
E
~
=
6
4
C
~
:>
2
::
0
o
"0
=
Voo±
±5 V
TA
25°C
8
/"
iii
81---4----1--+--+
;
-2
I
-4
t
c..
l!
4 1---4----1--+
-6
-8
-10~~--~~--~~--~~--~~~
-300
-100
100
300
500
-5 -4 -3 -2 -1
0
234
VIC - Common-Mode Input Voltage - V
VIO -Input Offset Voltage - flV
Figure 5
Figure 6
INPUT BIAS CURRENT
vs
FREE-AIR TEMPERATURE
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
300
=
250
~
..,III
Voo±
±5V
Vo
0
VIC
=
=0
.gI
120 r==:::r~-r-I---:;r-::l
100 I--~k----"'.t---+---+--~
as
II:
c..
c
I
~
C 200
~
I
:>
....
0
150
iii
"Sc..
oS 100
I
l!
50
o
25
/
45
65
85
V
/
/
801---+--~~-~+---+--~
'ij'
II:
Q)
"&
~
c
o
E
E
8I
II:
II:
601---+---+--~~~~+--~
401---+---+---+--~+-~~
201----r---r-~-r---+--~
::;;
o
O~
105
125
____
10
~
100
____
~
1k
____
~
____
10 k
TA - Free-Air Temperature - °C
f - Frequency - Hz
Figure 7
Figure 8
~
__
100 k
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ."
INSTRUMENTS
2-804
5
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
~
1M
TLC2201, TLC2201A, TLC2201B
Advanced LinCMOSTM LOW-NOISE PRECISION
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
MAXIMUM PEAK OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
---, --- ---
5
~\
>
I
til
til
!!
'0
4
>
..
~
VOM-
:;
s0"
voo± = ±5V
TA = 25°C
3
~
til
a.
E
E
"
2
6
>
I
til
F
~
:;
a.
2
~
~
E
E
0
~
"
..
'r:
;c
:::;;
VOD±=±5V_
RL = 10 kn
-2
:::;;
I
I
:s0
:::;; -4
~
>
o
o
>
4
-6
2
4
6
1101- Output Current - mA
8
10
-75
-50
-25
0
25
50
75
100
TA - Free-Air Temperature - °C
Figure 9
Figure 10
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
HIGH-LEVEL OUTPUT VOLTAGE
vs
FREQUENCY
125
5
10
I
til
F
~
:;
a.
:;
o
~
i
z"
i
8
TA = -55OC
6
I I I II
I I I II
TA = 125°C
4
\
>
A
>
:;
I
\\
\
E
"E
I
2
til
til
1\
4
l!
'0
s0"
TA = -55OC
I I I II
3
~A ~ 1125~J
1i
iii
....I
~L\
I
J:
0
>
o
100 k
f - Frequency - Hz
~\
\
1:.
til
:f
~~
VOO±=±5V
RL = 10kn
2
~
1M
Voo = 5V
RL = 10kn
10 k
Figure 11
~ '\"-
i'~
r--
100 k
f - Frequency - Hz
1M
Figure 12
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
2--805
TLC2201, TLC2201A, TLC2201B
Advanced LinCMOSTM LOW-NOISE PRECISION
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
HIGH-LEVEL OUTPUT VOLTAGE
HIGH-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
vs
HIGH-LEVEL OUTPUT CURRENT
Voo
1\\ t'..
> VOO-2
voo = ~ V\ \
..
I
N' VOO-4
\
~
;; VOO-6
.a-::>
11:. VOO-l0
I
=
\
\ \
\
\
41--~-_+--+--r-~-+--+-~
31--~-_+--+--r-~-+--+-~
21--~-_+--+--r-~-+--+-~
voo = 16V\
Cl
:r
VOO= 5 V
RL
10kn
voo = 10V \
o VOO-8
3:
TA = 25'C
VOO-12
~ VOO-14
VOO-16
\
o
\
2
3
OL-~
4
__
~
__
~~
__
~
__
~
__
~~
-75 -50 -25
0
25
50
75
100
TA - Free-Air Temperature- 'C
5
IOH - High-Level Output Current- mA
125
Figure 14
Figure 13
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
LOW-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
1.5
2.0...---r----r----r---.....,.r----."
VOO= 5 V
>
N'..
>
I
..
I
1.51-----t----t----t---f--1T-"7'----I
S
"0
g. 1.0
;;
;;
0.
;;
>
.a::>
o 1.0 I----t----I__--,;~rr:_--I__----I
~
j
!
I
..I
_V-
0
~
....---I-"""
~
j
~
0.51----I__.,IhiL-I__--I__--I__----I
IOL = 5~ ~
Cl
.9
0.5
I
..I
o
0
>
>
IOL = 1 mA
8
4
6
2
IOL - Low-Level Output Current- mA
10
o
- 75 - 50 - 25
0
25
50
75
100
TA - Free-Air Temperature - 'C
Figure 16
Figure 15
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
2-806
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
125
TlC2201, TlC2201A, TlC2201B
Advanced linCMOSTM lOW-NOISE PRECISION
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
30°
120
Cl
'"0
I
c
.2
Oi
!5
100
"
80
.,
60
15.
E
-20
10 k
1k
f - Frequency - Hz
100
m
~
~
en.,
.
l1
c..
.i.,
S
~
]
C
~-
i5
150°
I
80~~--~--~--~--~--~--~~
-75
15
Vo
TA
8
=0
= 25°C
E
-
4
VID
0
=-100mV
~
'5
Q.
'5
o
l:!
'is
e
()
10
Vo
5
VID
= -100 mV
o
':;
l:!
':;
c::>
=±5 V
=0
Voo±
125
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
'5
0
-25
0
25
50
75
100
TA - Free-Air Temperature - DC
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
~
~
-50
Figure 18
C
()
Voo = 5 V, RL = 10 kg
901-~~-+-~--r--j--+--~~
Figure 17
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION
vs
FREE-AIR TEMPERATURE
~
-4
o
..c
r---......
5)
-12
-5
o
2
-
3
VID
4
en
I
en -10
= 100 mV
5
6
5)
7
8
----VID
..c
en
I
en -8
~
-15
- 75
= 100 mV
~
I--
IVoo ±I- Supply Voltage - V
- 50 - 25
0
25
50
75
100
TA - Free-Air Temperature - °C
Figure 19
Figure 20
125
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-807
TlC2201, TlC2201A, TlC2201B
Advanced linCMOSTM lOW-NOISE PRECISION
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
SUPPLY CURRENT
SUPPLY CURRENT
1.4
vs
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
1.2
=
Vo
0
No Load
1.2
<
e
I
1.0
~:s
0.8
ii
Q,
0.6
,.,
I
I.--
fY
(,)
:s
P"
--
~
./
V
.,/
~~
~
\ - TA
=25°C
I
I
rn
c
C
?Q,
:s
I
0.4
0.2
=
Vo
VDD+/2
No Load
J
0
-75
2345678
IVDD
RL
CL
TA
Figure 22
SLEW RATE
SLEW RATE
vs
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
=25°C
""
1
:>
-25
0
25
50
75
100
TA - Free-Air Temperature - °C
Figure 21
= 10kO
= 100 pF
3
-50
1- Supply Voltage - V
4
V
I
~
0.6
Q,
.9
o
o
~
~
0.8
~
0.2
a:
±5V
:s
(,)
c
0.4
VDD±
r-
t-..
I
~R-
r---.. .............
SR +
2
1
rn
I
r---..
-- "
3
J
-.....
I
a:
a:
rn
rn
o
o
o
2
3
4
5
678
=
VDD±
±5V
RL
10kO
CL
100 pF
-75
=
=
-50
IVDD ±I- Supply Voltage - V
-25
0
25
50
75
100
TA - Free-Air Temperature - °C
Figure 24
Figure 23
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
.INSTRUMENTS
TEXAS ""
2-808
125
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
125
TLC2201, TLC2201A, TLC2201B
Advanced LinCMOSTM LOW-NOISE PRECISION
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
100
160
Voo± = ±5V
75 RL = 10kQ
CL=100pF
50 TA = 25°C
>
E
1
>
E
.
I
I
..
~
~:;
25
S
'0
>
:;
So
,.
0
:;
0-25
0
I
I
o
>
J
-75
-100
o
40
20
1\
/I,
~
o
7
2
3
\-Time-Ils
456
Figure 25
Figure 26
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
Voo± = ±5V
RL = 10 kQ
CL = 100 pF
TA = 25°C
,.
7
~
>
I
CI
Voo = 5V
RL = 10 kQ
CL = 100 pF
TA = 25°C
4
..
2
3
CI
S
'0
S
'0
>
:;
0
'S
-1
>
:;
So
,.
D-
2
0
I
>
60
-20
23456
\- Time -Ils
3
0
¥I
80
5
4
0
\\/
100
0
5
I
~
0
> -50
..
.'.
CI
D-
>
I
Voo= 5 V
RL = 10 kQ
CL = 100 pF
120
TA = 25°C
140
I
-2
0
>
-3
0
-4
-5
-1
o
5
\- Time -Ils
15 20
\- Time-Ils
Figure 27
Figure 28
10
15
20
25
30
35
40
o
5
10
25
30
35
40
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-809
TlC2201, TlC2201A, TlC2201B
Advanced linCMOSTM lOW-NOISE PRECISION
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
PEAK-TO-PEAK EQUIVALENT
INPUT NOISE VOLTAGE
0.1 TO 10 Hz
PEAK-TO-PEAK EQUIVALENT
INPUT NOISE VOLTAGE
0.1 T01 Hz
~
!
~
Voo± = ±5V
TA = 25°C
0.75
:!
~
0.5
~
~
;;
Q.
oS
...
0
~
~.9. 0.25
,.
~ ,,;J ~
... ~ uI ~~
",vn
.....a.
\J
~-0.5
I
z
0.2
...
i
0
-0.2 II
~
.
~
-0.4
[
-0.8
0.6
0.4
;;
~
-1
:f
o
rY
,
.~
-1
o
GAIN-BANDWIDTH PRODUCT
7
8
9
10
2
3
7
8
vs
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
~~
N
J:
I
I
2
2
.c
:2
..,
~
1.9
t:
'iii
/
C)
o
2
V
3
4
./
/
V
'G
,.
..,
2
2
Q.
.c
-e
..,'i
..
I:
CD
10
9
RL = 10 kQ
CL = 100 pF
~
VOO± = ±5 V
~~
~~
VOO=
1.5
5~ ~
"~
t:
0;
C)
5
6
7
8
1
- 75
- 50
IVoo ±I- Supply Voltage - V
Figure 31
- 25
0
25
50
75
100
TA - Free-Air Temperature - °C
Figure 32
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
IN5rRUMENTS
2-810
r'~
2.5
::;;
1.8
1
V\
, I~II liMA
GAIN-BANDWIDTH PRODUCT
6
Q.
m
,"
V
.,
"
Figure 30
5
RL = 10kQ
CL = 100 pF
TA = 25°C
N
I:
I,
I'V
Figure 29
4
J:
..
Ihl~ ~ l.AI ~~
. I~
4
5
6
t-Time-s
3
::;;
I
~
~ j
II
I-Time-s
2
2.1
..,'G,.
In
-0.6
I
fO.75
~
0.8
'0
0.25
Voo± = ±5V
TA = 25°C
..
~
~
...
I
CI
POST OFFICE BOX 655303 - DALLAS, TEXAS 75265
125
TLC2201, TLC2201A, TLC2201B
Advanced linCMOSTM LOW-NOISE PRECISION
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
PHASE MARGIN
vs
SUPPLY VOLTAGE
50
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
50
I
RL = 10 kQ
V f--
CL = 100 pF
~
g'
TA = 25 C
D
48
/
"'0
I
c
46
.
:::;;
CD
:::
V
..
Ol
CD
"'0
I
46
c
l-::::::
-
'i'..
...........
"E'to
:::;;
...
-
!-- ~
r'-Voo = 5 V
CD
44
44
..c
a.
I
E
'"
.I
.1
1
VOO+=±5V
f
a.
...
48
CD
/
.~
..c
~
'~
I
...E
42
42
RL = 10 kQ
CL = 100 pF
40
o
2
3
4
5
6
7
8
40
-75
-50
-25
0
25
50
75
Ivoo ±I- Supply Voltage - V
TA - Free-Air Temperature - DC
Figure 33
Figure 34
100
125
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
APPLICATION INFORMATION
latch-up avoidance
Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC2201,
TLC2201A, and TLC2201B inputs and outputs are designed to withstand -100-mA surge currents without
sustaining latch-up; however, techniques reducing the chance of latch-up should be used whenever possible.
Internal protection diodes should not be forward biased in normal operation. Applied input and output voltages
should not exceed the supply voltage by more than 300 mV. Care should be exercised when using capacitive
coupling on pulse generators. Supply transients should be shunted by the use of decoupling capacitors (0.1 J1.F
typical) located across the supply rails as close to the device as possible.
electrostatic discharge protection
These devices use internal ESD-protection circuits that prevent functional failures at voltages at or below
2000 V. Care should be exercised in handling these devices as exposure to ESD may result in degradation
of the device parametric performance.
TEXAS
~
INSfRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-811
2-812
TLC2202, TLC2202A,TLC2202B, TLC2202Y
Advanced LinCMOSTM LOW-NOISE PRECISION
DUAL OPERATIONAL AMPLIFIERS
03497, MA V 1990· REVISED AUGUST 1991
•
TLC2202B Is 100% Tested for Noise:
25 nVl-vHz Max atf = 10 Hz
12 nVl-vHz Max atf = 1 kHz
•
Low Input Offset Voltage ••• 500 Jl.V Max
•
Excellent Offset Voltage Stability
With Temperature .•. 0.5 Jl.V/oC Typ
•
Rall-to-Rall Output Swing
•
Low Input Bias Current .•. 1 pA Typ
atTA = 25°C
•
Common-Mode Input Voltage Range
Includes the Negative Rail
description
TYPICAL EQUIVALENT
INPUT NOISE VOLTAGE
The TLC2202, TLC2202A, TLC2202B, and
TLC2202Y are precision, low-noise operational
amplifiers using Texas Instruments Advanced
LinCMOS™ process. These devices combine the
noise performance of the lowest-noise JFET
amplifiers with the dc precision available previously
only in bipolar amplifiers. The Advanced
LinCMOS'" process uses Silicon-gate technology to
obtain input offset voltage stability with temperature
and time that far exceeds that obtainable using
metal-gate technology. In addition, this technology
makes possible input impedance levels that meet or
exceed levels offered by top-gate JFET and
expensive dielectric-isolated devices.
vs
FREQUENCY
~
:>
';
•
60
voo= 5v
50 1\
\
J~ 40
iz
l
Rs=100n
TA = 2S"C
~
30
i
.s
c
20
1g.
10
w
The combination of excellent dc and noise
performance with a common-mode input voltage
range that includes the negative rail makes these
devices an ideal choice for high-impedance, lowlevel signal-conditioning applications in either
single-supply or split-supply configurations.
,~
I
.; 0
1
10
10 k
100
1k
f - Frequency - Hz
The device inputs and outputs are designed to withstand -100-mA surge currents without sustaining latch·up.
In addition, internal ESD-protection circuits prevent functional failures at voltages up to 2000 V as tested under
MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure
to ESD may result in degradation of the device parametric performance.
AVAILABLE OPTIONS
Vnmax
TA
Vlomax
AT 25°C
f
= 10 Hz
PACKAGE
Vnmax
f
= 1 kHz
AT2S"C
AT2S"C
12 nV/VHz
15 nV/VHz
SMALLOUTLINE
(D)
CHIP
CARRIER
(FK)
TLC2202BCD
-------
O°C
SOOIlV
25 nV/VHz
to
35 nV/VHz
70°C
500llV
1 mV
-40°C
500llV
25 nV/VHz
12 nVlVHz
TLC2202BID
to
500llV
35 nVlVHz
15 nVlVHz
TLC2202AID
85°C
1 mV
-55°C
500 IlV
to
500llV
--
-25 nV/VHz
35 nV/VHz
--
-
-
TLC2202ACD
TLC2202CD
TLC22021D
CERAMIC
DIP
(JG)
CHIP
FORM
(V)
PLASTIC
DIP
(P)
-
TLC2202BCP
-
TLC2202ACP
-
TLC2202CP
TLC2202BIP
TLC2202AIP
TLC2202Y
TLC22021P
12 nVlVHz
TLC2202BMD
TLC2202BMFK TLC2202BMJG
TLC2202BMP
15 nVlVHz
TLC2202AMD
TLC2202AMFK TLC2202AMJG
TLC2202AMP
-
TLC2202MD
TLC2202MJG
TLC2202MP
1 mV
TLC2202MFK
125°C
D packages are available taped·and·reeled. Add "R" suffiX to deVice type (e.g., TLC2202BCDR). Chips are tested at 25°C.
Advanced LinCMOS is a trademark of Texas Instruments Incorporated.
PRODUCTION DATA Information Is currant as of
publication date. PlOducls conform to speclfieallons
per Ihe terms of Texas Inslrumenls standard
warranty. Production processing does nol
necessarlly Include testing of all parameters.
TEXAS ""
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Copyright © 1991, Texas Instruments Incorporated
On plOducls compliant \0 MIL·STO·883, Class B, all
parameters ara tested unless olherwise noled. On all
other products, production processing does not
necessarily Include testing of all parameters.
2·813
TlC2202, TlC2202A, TlC2202B, TlC2202Y
Advanced linCMOSTM lOW-NOISE PRECISION
DUAL OPERATIONAL AMPLIFIERS
description (continued)
C-suffix devices are characterized for operation from O°C to 70°C. The I-suffix devices are characterized for
operation from -40°C to 85°C. The M-suffix devices are characterized for operation over the full military
temperature range of -55°C to 125°C.
o PACKAGE
FK PACKAGE
(TOP VIEW)
(TOP VIEW)
J+
::J
0
000 00
NC
NC
z_z>z
3
VDD+
2 OUT
21N21N+
NC
11
18
17
16
15
14
7
8
JG OR P PACKAGE
(TOP VIEW)
10UT[]8
l1N- 2
7
1 IN+ 3
6
VDD _/GND 4
5
2 1 2019
NC
20UT
NC
21NNC
9 10 11 12 13
000 + 0
_
N
ZaZ~Z
VDD+
20UT
21N21N+
I
0
0
>
NC - No internal connection
equivalent schematic (each amplifier)
IN+-----f-----i!---,
.-----~--------+--OUT
Cl
IN-l~-___-~
01
04
07
08
010
011
R1
VOO-/GNO
TEXAS ~
2-814
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
R2
TLC2202Y
Advanced linCMOSTM LOW-NOISE PRECISION
DUAL OPERATIONAL AMPLIFIERS
chip information
These chips, properly assembled, display characteristics similar to the TLE2202. Thermal compression or
ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive
epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
21N+
20UT
21NVDDCHIP THICKNESS:
15 TYPICAL
BONDING PADS:
4 X4 MINIMUM
TJ max
=150°C
TOLERANCES
ARE ±10%
ALL DIMENSIONS
ARE IN MILS
1__
100
__ I
111I111111111111111111111111111111111111111I111I111
PIN (4) INTERNALLY
CONNECTED TO
BACKSIDE OF CHIP
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
2-815
TLC2202, TLC2202A, TLC2202B
Advanced LinCMOSTM LOW-NOISE PRECISION
DUAL OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VDD+ (see Note 1) ...................................................... 8 V
Supply voltage, VDD- ............................................................... - 8 V
Differential input voltage (see Note 2) .................................................. ± 16 V
Input voltage, VI (any input) ........................................................... ± 8 V
Input current, II (each input) ......................................................... ± 5 rnA
Output current, 10 (each output) ..................................................... ± 50 rnA
Duration of short-circuit current at (or below) 25°e (see Note 3) ........................... unlimited
Continuous total dissipation ........................................ See Dissipation Rating Table
Operating free-air temperature range, T A: C-suffix ................................... O°C to 70 0 e
I-suffix ................................. - 40 0 e to 85°C
M-suffix ............................... - 55°e to 125°C
Storage temperature range .................................................. - 65°e to 150°C
Case temperature for 60 seconds: FK package .......................................... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package ............... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package .................. 300°C
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VDD+ and VDD- .
2. Differential voltages are at the non inverting input with respect to the inverting input.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
D
FK
JG
P
TA !>25°C
POWER RATING
950mW
1375 mW
1050 mW
1000mW
DERATING FACTOR
ABOVE TA = 25°C
7.6mWI"C
11.0 mW/oC
8.4mWI"C
8.0mWI"C
TA = 85°C
POWER RATING
494mW
715mW
546mW
TA=70OC
POWER RATING
608mW
880mW
672mW
640mW
TA = 125°C
POWER RATING
190mW
275mW
210mW
520mW
200mW
recommended operating conditions
C·SUFFIX
MIN
MAX
Supply voltage, VDD±
Common·mode input voltage, VIC
Operating free-air temperature, TA
±2.3
Vnn
0
±8
Vnn+- 2.3
70
I-SUFFIX
Von
-40
TEXAS ~
INSTRUMENTS
2-816
MAX
MIN
±2.3
POST OFFICE BOX 6SS303 • DALLAS. TEXAS 75265
Von
±8
-2.3
85
M-SUFFIX
MIN
MAX
±2.3
±8
VDD-55
VDD_±_-2.3
125
UNIT
V
V
°C
TlC2202C
Advanced linCMOSTM lOW-NOISE PRECISION
DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Voo± = ± 5 V (unless otherwise noted)
TEST CONDITIONS
PARAMETER
TA
VIO
Input offset voltage
aVIO
Temperature coefficient of input offset voltage
Full range
Input offset voltage long-term drift (see Note 4)
25°C
110
Input offset current
lIB
Input bias current
MIN
25°C
TYP
MAX
100
1000
Full range
RS ~ 500
VIC ~ 0,
1150
0.5
0.001
25°C
Full range
0.005
ltV
!!V/oC
!!V/mo
0.5
100
25°C
UNIT
1
Full range
100
pA
pA
-5
~
RS
VICR
Common-mode input voltage range
VOM+
Maximum positive peak output voltage swing
VOM-
Maximum negative peak output voltage swing
RL
~
500
Full range
10 kO
VO~±4V,
AVD
RL
Large-signal differential voltage amplification
~
500kQ
VO~±4V,
RL
~
25°C
to
2.7
4.7
Full range
4.7
25°C
-4.7
Full range
-4.7
25°C
300
Full range
200
25°C
10 kO
CMRR
Common-mode rejection ratio
Vo ~ 0, VIC ~ VICR min,
RS ~ 500
kSVR
Supply-voltage rejection ratio (C.VDD ±I C.VIO)
VDD ± ~
IDD
Supply current
Vo ~ 0,
± 2.3 V to ± 8 V
No load
50
Full range
25
25°C
Full range
80
80
25°C
Full range
80
80
25°C
Full range
V
4.8
V
-4.9
V
560
Vim V
100
115
dB
110
1.8
dB
2.5
2.5
rnA
operating characteristics at specified free-air temperature, VOO± = ± 5 V
TEST CONDITIONS
PARAMETER
SR
Slew rate at unity gain
Vn
Equivalent input noise voltage
Vo
VN(PP)
Peak-to-peak equivalent input noise voltage
In
Equivalent input noise current
Gain-bandwidth product
~
± 2.3 V, RL
~
10kO,
CL~100pF
TA
25°C
Full range
MIN
1.8
TYP
2.7
1.3
MAX
UNIT
V/!!s
f
~
10 Hz
25°C
18
f
f
~
25°C
8
~
1 kHz
0.1 to 1 Hz
25°C
0.5
f
~
0.1 to 10Hz
25°C
0.7
25°C
0.6
fAI,fHz
f
~
10 kHz,
25°C
1.9
MHz
RL ~ 10 kO,
CL ~ 100pF
nVl,fHz
J.1V
RL ~ 10kO, CL ~ 100 pF
Phase margin at unity gain
25°C
48°
4lm
tFull range IS ooe to 70 oe.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T A ~ 150°C extrapolated
to TA ~ 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-817
TlC2202AC, TlC2202BC
Advanced linCMOSTM lOW-NOISE PRECISION
DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Voo ±
PARAMETER
VIO
TEST CONDITIONS
Input offset voltage
TA
= ± 5 V (unless otherwise noted)
TLC2202AC
MIN
TLC2202BC
TYP
MAX
25°C
Full range
80
500
Full range
0.5
MIN
TYP
MAX
80
500
650
650
Temperature coefficient
aVIO
of input offset voltage
Input offset voltage
long-term drift (see Note 4)
110
Input offset current
liB
Input bias current
voltage range
output voltage swing
Maximum negative peak
VOM-
AVD
0.001
25°C
0.5
25°C
RS ; 50 n
output voltage swing
100
2.7
2.7
25°C
4.7
Full range
4.7
25°C
-4.7
Full range
-4.7
Large-signal differential
Full range
200
voltage amplification
Va; ±4 V,
25°C
50
ratio (.1.VOO +/ .1.VIO)
Supply current
Full range
Va ; 0, VIC; VICR min,
25°C
RS ; 50n
Full range
VOO ± ; ± 2.3 V to ± 8 V
Vo ; 0,
to
4.8
4.7
-4.9
-4.7
25°C
80
80
Full range
80
4.8
300
pA
pA
V
-4.9
V
-4.7
560
flV/mo
V
4.7
560
200
100
50
115
80
115
110
80
80
110
25
80
25°C
No load
100
-5
300
Supply-voltage rejection
kSVR
1
-5
to
25°C
rejection ratio
100
100
Vo - ±4V,
RL ; 500 kn
Common-mode
0.005
0.5
1
Full range
RL ; 10 kn
0.001
100
RL; 10 kn
CMRR
0.005
Full range
Maximum positive peak
VOM+
25°C
flV
flV/o C
0.5
Full range
Common-mode input
VICR
RS ; son
VIC; 0,
UNIT
Vim V
100
25
dB
dB
80
1.8
2.5
Full range
1.8
2.5
2.5
2.5
mA
operating characteristics at specified free-air temperature, Voo± = ± 5 V
PARAMETER
SR
Vn
VN(PP)
In
Slew rate
at unity gain
TEST CONDITIONS
Vo ; ±2.3 V,
TA
TLC2202AC
MIN
TYP
25°C
1.8
2.7
Full range
1.3
TLC2202BC
MAX
MIN
TYP
1.8
2.7
MAX
RL ; 10 kn,
V/fls
1.3
Equivalent input noise
CL; 100pF
I ; 10 Hz
25°C
18
35
18
25
voltage (see Note 5)
1 ; 1kHz
25°C
8
15
8
12
Peak-to-peak equivalent
1 ; 0.1 to 1 Hz
25°C
0.5
input noise voltage
1 ; 0.1 to 10 Hz
25°C
0.7
0.7
25°C
0.6
0.6
25°C
1.9
1.9
25"C
48°
48°
Equivalent input noise current
UNIT
0.5
nV/,[Hz
flV
IA/,[Hz
1 ; 10 kHz,
Gain-bandwidth product
RL; 10 kn,
CL; 100pF
m
Phase margin at unity gain
TA
MIN
25°C
1.8
Full range
1.1
TYP
2.7
MAX
UNIT
V/flS
CL
~
I
I
I
~
25°C
18
~
1 kHz
0.1 to 1 Hz
25°C
25°C
8
0.5
f
~
0.1 to 10 Hz
25°C
0.7
25°C
0.6
fA/.JHz
I
~
10 kHz,
25°C
1.9
MHz
25°C
48°
~
100 pF
10 Hz
RL
~
10kn,
CL ~ 100pF
RL ~ 10 kn,
CL ~ 100pF
nV/.JHz
flY
'On products compliant to MIL-STD-883, Class B, this parameter is not production tested.
tFull range is -55°C to 125°C.
NOTE 4: Typical values are based on the input oflset voltage shilt observed through 168 hours of operating life test at TA ~ 150°C extrapolated
to T A ~ 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655300 • OALLAS. TEXAS 75265
2-825
TLC2202AM, TLC2202BM
Advanced LinCMOSTM LOW-NOISE PRECISION
DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, VDD±
PARAMETER
Via
TEST CONDITIONS
TA
MIN
Input offset voltage
110
Input offset current
lIB
Input bias current
VICR
voltage range
VIC ~ 0,
RS ~ son
Maximum positive peak
output voltage swing
~
±4V,
Large-signal differential
RL ~ 500 kn
voltage amplilication
Va ~ ±4 V,
Common-mode
rejection ratio
ratio (t.VDD ±1t.VIO)
Supply current
Va
~
0,
to
2.7
2.7
4.7
25°C
-4.7
-4.9
-4.7
-4.9
Full range
-4.7
560
-4.7
300
560
25°C
300
100
25°C
50
25°C
so
so
Full range
so
100
50
115
SO
VN(PP)
In
Slew rate
at unity gain
~
±2.3V,
V
115
110
so
so
110
V/mV
100
dB
dB
so
2.5
1.S
2.5
2.5
mA
= ±5V
TLC2202BM
TLC2202AM
MIN
TYP
25°C
l.S
2.7
Full range
1.1
RL ~ 10 kn,
2.5
MAX
MIN
TYP
1.S
2.7
MAX
UNIT
VI/-ls
1.1
Equivalent input noise
CL ~ 100 pF
I ~ 10 Hz
25°C
lS
35'
lS
25'
voltage (see Note 5)
I
~
1 kHz
25"C
S
15'
S
12'
Peak-to-peak equivalent
I
~
0.1 to 1 Hz
25°C
0.5
0.5
input noise voltage
I
~
0.1 to 10Hz
25°C
0.7
0.7
25°C
0.6
0.6
IA/'-'Hz
f
~
10 kHz,
25°C
1.9
1.9
MHz
25°C
4SO
4SO
Equivalent input noise current
Gain-bandwidth product'
.pm
Va
TA
pA
25
Full range
TEST CONDITIONS
PARAMETER
pA
V
100
1.S
25°C
No load
4.8
4.7
25
SO
/-lVlmo
V
4.8
Full range
/-lV
-5
4.7
4.7
Full range
Va ~ 0, VIC ~ VICR min,
25°C
RS ~ son
Full range
VDD ± ~ ± 2.3 V to ± S V
500
to
operating characteristics at specified free-air temperature, VDD±
Vn
1
500
25°C
Full range
RL ~ 10 kn
500
1
Full range
output voltage swing
Supply-voltage rejection
SR
0.5
-5
RS ~ son
0.001 0.005'
500
25°C
UNIT
/-lVloC
0.5
0.5
RL ~ 10 kn
IDD
750
0.001 0.005'
25°C
25°C
Va
kSVR
750
Full range
Maximum negative peak
CMRR
500
Full range
Common-mode input
AVD
80
TLC220.2BM
MIN
TYP MAX
80
500
0.5
Full range
01 inp'ut offset voltage
long-term drift (see Note 4)
VOM-
MAX
Full range
Input offset voltage
VOM+
TYP
25°C
Temperature coefficient
aVIO
= ± 5 V (unless otherwise noted)
TLC2202AM
Phase margin at unity gain
RL~10kn,
CL
~
100pF
RL
~
10 kn,
CL ~ 100 pF
nVl'-'Hz
/-lV
'On products compliant to MIL-STD-SS3, Class B, thiS parameter IS not production tested.
tFull range is -55°C to 125°C.
NOTES: 4. Typical values are based on the input offset voltage shift observed through 16S hours 01 operating Ii Ie test at TA ~ 150°C extrapolated
to TA ~ 25°C using the Arrhenius equation and assuming an activation energy 010.96 eV.
5. This parameter is tested on a sample basis lor the TLC2202Aand on all devices lorthe TLC2202B. Forothertestrequirements, please
contact the factory. This statement has no bearing on testing or nontesting 01 other parameters.
TEXAS ~
2-S26
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
TLC2202M
Advanced LinCMOSTM LOW-NOISE PRECISION
DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Voo
TEST CONDITIONS
PARAMETER
= 5 V(unless otherwise noted)
TA
V[O
Input olfset voltage
25'C
Full range
(lV[O
Temperature coefficient of input offset voltage
Full range
Input offset voltage long-term drift (see Note 4)
25'C
[[0
Input offset current
[[B
Input bias current
RS = 50n
VIC = 0,
MIN
TYP
MAX
100
1000
1250
0.5
0.001
25'C
Full range
0.5
25'C
Full range
1
0.005'
UNIT
}!V
}!V/'C
}!V/mo
500
500
pA
pA
0
V[CR
RS = 50n
Common-m'ode input voltage range
VOM+
Maximum positive peak output voltage swing
VOM-
Maximum negative peak output voltage swing
RL = 10 kn
Full range
to
25'C
2.7
4.7
Full range
4.7
25'C
V
4.8
V
0
Full range
50
Va = lVt04V,
25'C
150
315
75
25
55
Large-signa[ differential voltage amplification
RL = SOOkQ
VO=lVt04V,
Full range
AVO
RL = 10kn
Full range
10
CMRR
Common-mode rejection ratio
VIC = V[CR min,
RS = 50n
25'C
75
Full range
75
kSVR
Supply-voltage rejection ratio (t.VOO ± I t. V[o)
VOO = 4.6 V to 16 V
25'C
Full range
80
80
[DO
Supply current
Va = 2.5 V,
No load
25'C
50
25'C
V/mV
110
dB
110
1.7
Full range
V
dB
2.4
2.4
mA
operating characteristics at specified free-air temperature, Voo = 5 V
TEST CONDITIONS
PARAMETER
SR
Vn
Va = 0.5 V to 2.5 V.
Slew rate at unity gain
RL = 10 kn,
1= 10 Hz
Equivalent input noise voltage
Peal-to-peak equivalent input noise voltage
In
Equiva[ent input noise current
Phase margin at unity gain
MIN
1.6
Full range
0.9
TYP
2.5
MAX
UNIT
VII's
25'C
18
f = 0.1 to 1 Hz
25'C
25'C
8
0.5
f=0.ltol0Hz
25'C
0.7
25'C
0.6
fA/*iZ
25'C
1.9
MHz
f = 1 kHz
VN(PP}
Gain-bandwidth product
CL=100pF
TA
25'C
1= 10kHz,
RL = 10 kn,
CL = 100 pF
RL = 10 kn,
nV/*iZ
}!V
CL = 100 pF
25'C
47°
4>m
'On products compliant to M[L-STO-883, Class B, this parameter IS not production tested.
tFull range is -55'C to 125'C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150'C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy 010.96 eV.
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-827
TlC2202AM, TlC2202BM
Advanced linCMOSTM lOW-NOISE PRECISION
DUAL OPERATIONAL AMPLIFIERS
=5 V (unless otherwise noted)
electrical characteristics at specified free-air temperature, Voo
PARAMETER
Via
TEST CONDITIONS
Input offset voltage
Temperature coefficient
"via
01 input offset voltage
Input offset voltage
long-term drift (see Note 4)
110
Input offset current
liB
Input bias current
VICR
voltage range
Common-mode input
Maximum high-level
VOH
output voltage
Maximum low-level
VOL
AVD
output voltage
RS = 50n
VIC = 0,
kSVR
IDD
TA
MIN
MAX
25°C
Full range
80
500
Full range
0.5
0
to
2.7
2.7
2SoC
4.7
Full range
4.7
voltage amplilication
Va = 1 V 104 V,
25°C
Full range
2SoC
10
75
Full range
75
25°C
Full range
80
SR
Vn
VN(PP)
In
Slew rate
at unity gain .
50
315
25
55
Va = 0.5 V to 2.S V,
pA
pA
mV
315
75
V/mV
55
10
110
75
110
dB
75
110
80
80
110
dB
80
1.7
2.4
1.7
2.4
2.4
2.4
mA
=5 V
TLC2202AM
TA
SO
50
25
I1V/mo
V
0
150
Full range
TEST CONDITIONS
4.8
4.7
150
75
operating characteristics at specified free-air temperature, Voo
PARAMETER
4.7
I1V
V
50
25°C
No load
Va = 2.5 V,
4.8
0
Full range
VDD = 4.6 V to 16 V
500
0
RL = 500 kn
Supply current
1
to
25°C
VIC = VICR min,
RS = 50n
SOO
500
Va = 1 V t04 V,
ratio (Ll.VDD +/ Ll.VIO)
0.5
1
UNIT
I1V/oC
500
Large-signal differential
Common-mode
500
0.001 0.005'
0.5
Full range
10 = 0
MAX
80
0.5
Full range
RL = 10 kn
TVP
750
0.001 0.005'
25°C
25°C
RS = 50n
MIN
750
Full range
2SoC
rejection ratio
Supply-voltage rejection
TLC2202BM
TVP
Full range
2SoC
RL = 10 kn
CMRR
TLC2202AM
MIN
TVP
25°C
1.6
2.5
Full range
0.9
TLC2202BM
MAX
MIN
TVP
1.6
2.5
MAX
RL = 10kn,
UNIT
V/I1S
0.9
Equivalent input noise
CL = 100 pF
I = 10 Hz
25°C
18
35'
18
25'
voltage (see Note 5)
1= 1 kHz
25°C
8
15'
8
12'
Peak-to-peak equivalent
I = 0.1 to 1 Hz
25°C
O.S
0.5
input noise voltage
I = 0.1 to 10Hz
25°C
0.7
0.7
25°C
0.6
0.6
IA/VHZ
25°C
1.9
1.9
MHz
25°C
47°
47°
Equivalent input noise current
nViVHZ
I1V
f = 10 kHz,
Gain-bandwidth product
RL = 10kn,
CL = 100 pF
tl>m
Phase margin at unity gain
RL = 10 kn,
CL = 100 pF
'On products compliant to MIL-STD-883, Class B, this parameter IS not production tested.
tFull range is -55°C to 125°C.
NOTES: 4. Typical values are based on the input offset voltage shift observed through 168 hours 01 operating lile test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
5. This parameter is tested on a sample basis for the TLC2202A and on all devices lor the TLC2202B. Forother test requirements, please
contact the lactory. This statement has no bearing on testing or nontesting of other parameters.
TEXAS
2-828
~
INsrRUMENlS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
TLC2202Y
Advanced LinCMOSTM LOW-NOISE PRECISION
DUAL OPERATIONAL AMPLIFIERS
electrical characteristics, V DO
=5 V, T A = 25°C (unless otherwise noted)
TEST CONDITIONS
PARAMETER
VIO
MIN
Input offset voltage
Input offset voltage
long-term drift (see Note 4)
110
Input offset current
liB
Input bias current
RS=50n
VIC =0,
TYP
MAX
UNIT
100
1000
fLV
0.001
0.005
).lV/mo
0.5
pA
1
pA
0
VICR
Common-mode input voltage range
RS=50n
to
V
2.7
VOH
VOL
AVO
CMRR
kSVR
100
Maximum high-level output voltage
RL = 10110
Maximum low-level output voltage
10=0
VO= 1 Vl04 V,
VO= 1 Vl04 V,
RL = 500 110
RL = 10110
Vo = 0, VICRmin,
RS=50n
Large-signal differential
voltage amplification
Common-mode rejection ratio
Supply-voltage rejection
ratio (t.VCC/t.VIO)
Supply current
4.7
4.8
0
VOO= 4.6 V 10 16 V,
V
50
mV
150
25
315
55
V/mV
75
110
dB
80
110
dB
Vo = 2.5 V, No load
1.7
2.4
MAX
rnA
operating characteristics, VDD = 5 V, T A = 25°C
PARAMETER
SR
Slew rate at unity gain
Vn
Equivalent input noise voltage
VN(PP)
TEST CONDITIONS
MIN
TYP
Vo = 0.5 V to 2.5 V, RL = 10110, CL = 100 pF
1.6
2.5
1 = 10 Hz
18
Peak-to-peak equivalent
1 = 1 kHz
1 = 0.1 101Hz
8
0.5
input noise voltage
1 = 0.1 to 10 Hz
0.7
In
Equivalent input noise current
Bl
Gain-bandwidth product
1=10Hz, RL=10kn, CL=100pF
1.9
-______-
100 n
Vo
(see Note A) .
NOTE A: CL includes fixture capacitance.
Figure 1. Noise Voltage Test Circuit
Figure 2. Phase Margin Test Circuit
>-.-___-Vo
NOTE A: CL includes fixture capacitance.
Figure 4. Input Bias and Offset
Current Test Circuit
Figure 3. Slew Rate Test Circuit
typical values
Typical values as presented in this data sheet represent the median (50% point) of device parametric
performance.
Input bias and offset current
At the picoamp bias current level typical of the TLC2202, TLC2202A, and TLC2202B, accurate measurement
of the bias current becomes difficult. Not only does this measurement require a picoammeter, but test socket
leakages can easily exceed the actual device bias currents. To measure these small currents, Texas
Instruments uses a two-step process. The socket leakage is measured using picoammeters with bias voltages
applied but with no device in the socket. The device is then inserted in the socket and a second test measuring
both the socket leakage and the device input bias current is performed. The two measurements are then
subtracted algebraically to determine the bias current of the device.
noise
Texas Instruments offers automated production noise testing to meet individual applications requirements.
Noise voltage at f = 10Hz and f = 1 kHz is 100% tested on every TLC2202B device, while lot sample testing
is performed on the TLC2202A. For other noise test requirements, please contact the factory.
TEXAS ."
INSTRUMENTS
2-830
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
TLC2202, TLC2202A, TLC22028
Advanced LinCMOSTM LOW-NOISE PRECISION
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
table of graphs
Via
Input offset voltage
lIB
Input bias current
VOM
Maximum peak output voltage
VO(PP)
Maximum peak-to-peak output voltage
VOH
VOL
AVD
lOS
Distribution
High-level output voltage
Low-level output voltage
Differential voltage amplification
Short-circuit output current
CMRR
Common-mode rejection ratio
IDD
Supply current
Pulse response
SR
Slew rate
Noise voltage (referred to input)
Gain-bandwidth product
.pm
Phase marg in
Phase shift
FIGURE
5
vs
Common-mode voltage
vs
Temperature
6
vs
Output current
8,9
10
7
vs
Temperature
vs
Frequency
11
vs
Frequency
12
vs
Current
13
vs
Temperature
14
vs
Output current
15
vs
Temperature
16
vs
Frequency
17
vs
Tem perature
18
vs
Supply voltage
19
vs
Temperature
20
vs
Frequency
vs
Supply voltage
vs
Temperature
21,22
23
24
Small-signal
25,26
Large-signal
27,28
vs
Supply voltage
29
vs
Temperature
30
0.1 to 1 Hz
31
0.1 to 10 Hz
32
vs
Supply voltage
33
vs
Temperature
34
vs
Supply voltage
35
vs
Temperature
36
vs
Frequency
17
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-831
TLC2202, TLC2202A, TLC2202B
Advanced LinCMOSTM LOW-NOISE PRECISION
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
TLC2202
INPUT BIAS CURRENT
DISTRIBUTION OF
INPUT OFFSET VOLTAGE
COMMON-MODE INPUT VOLTAGE
vs
10
1726 amplifiers
'$.
=
14
Voo±
± 15 V -1--1--1--1--1----,1--1
TA = 25°C
12
P Package
I
c
C
101--+--1--1--+
~
..
:::I
'0.,
'"
~
~
c..
0
81---1--1---+-
~
:;
61---+--+-+
I
41---+-t-
!I-
21---+--+
-1000
-600
-200
200
600
-4
-6
-5 -4 -3 -2 -1
0
2
3
4
VIC - Common-Mode Input Voltage - V
Figure 6
INPUT BIAS CURRENT
MAXIMUM POSITIVE PEAK
OUTPUT VOLTAGE
vs
vs
FREE-AIR TEMPERATURE
OUTPUT CURRENT
>
----
5
I
Voo± = ±5V
Vo = 0
VIC = 0
~
:l
~
'"
4
}
I
C
., 200
I
t:
::J
0
150
III
:;
0-
.E 100
I
!I50
/
o
25
""
-2
Figure 5
0-
..
0
-10
1000
300
.!!!
2
-8
VIO - Input Offset Voltage - "V
250
4
0-
.E
o
=
6
1.
I
l!!
=
Voo±
±5V
TA 25·C
8
V
/
/
~
~
~~
VOO± = ±5V
TA = 25·C
'\
3
:~
l
2
E
::J
E
~
==I
+
==
~
0
o
TA - Free-Air Temperature _·C
2
3
1101 - Output Current - rnA
Figure 7
Figure 8
45
65
85
105
5
125
4
toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ",
2-832
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2202·GlP·18121-8
TLC2202, TLC2202A, TLC2202B
Advanced LinCMOSTM LOW-NOISE PRECISION
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
MAXIMUM NEGATIVE PEAK
OUTPUT VOLTAGE
>
.,
-5
~
N'
~
1-4.5
:;
vs
OUTPUT CURRENT
FREE-AIR TEMPERATURE
=
~
'"
"'"
~
10
-4
.,
Cl
z
E
:::I
.~
..
6
=
Voo±
±5V
TA
25°C
o
.~
MAXIMUM PEAK OUTPUT VOLTAGE
vs
>
I
.,
S
'"
"0
>
:;
.9-
"-
4
2
:::I
o
........
~
-3.5
~
~
E
0
E
.;:
-2
=
Voo±
±5V _
RL
10kQ
=
:::I
..
::E
I
::E
::e -4
o
>
I
::E
~ -3
-6
o
2
1101 -
>
.,
6
8
Output Current - mA
4
25
50
vs
vs
FREQUENCY
FREQUENCY
10
75
100
~
8
= -55°C
TA
"'"
I I I II
I I I II
6
b
];
TA
= 125°C
4
>
.,I
S'"
"0
~
f\\
\
E
:::I
E
.;:
2
VOO±
o
125
5
:;
.
0
HIGH-LEVEL OUTPUT VOLTAGE
o
::E
-25
T A - Free-Air Temperature - °C
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
Q.
~
-50
Figure 10
Cl
~
-75
Figure 9
S
~
:;
10
RL
10 k
>
:;
Q.
:;
~~
= ±5V
= 10kQ
30 k
0
;;
~
..J
.r.
4
TA
3
2
\\
\
I
::t:
0
r-..~
>
o
300 k
\
'"
:E
I
100 k
= -55°C
I I I II
~A ~ lJs Jc l
1M
~1\
I"' ,~
=
=
VOO
5V
RL
10kQ
10 k
30 k
100 k
300 k
f - Frequency - Hz
f - Frequency - Hz
Figure 11
Figure 12
1M
tDala at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 - DALLAS. TEXAS 75265
2202·G!P-18121·8
2-833
TlC2202, TlC2202A, TlC2202B
Advanced linCMOSTM lOW-NOISE PRECISION
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
HIGH-LEVEL OUTPUT VOLTAGE
HIGH-LEVEL OUTPUT VOLTAGE
vs
vs
HIGH-LEVEL OUTPUT CURRENT
FREE-AIR TEMPERATURE
Voo
T\'. r'\.
> VOO-2
I
VOO = 5,V\ _\
II>
,\
~VOO-4
(5
>
'5 VOO-6
a.
'5
o
11:.
VOO = 10V
VOO-8
VOO-10
Cl
J:
I
TA = 25·C
\
=
I
II>
Cl
!!
\
;2
'5
a.
'5
\
\
o
~
!l
1:.
Cl
VOO=16V\
J:
VOO-12
2r-~r-~---+---r---r--~--+-~
I
::t:
o
> VOO-14
VOO-16
VOO = 5V
RL 10kn
>
::t:
1\
o
\
2
3
4
IOH - High-Level Output Current - rnA
~
__
__
__J -__
-25
0
25
50
75
100
T A - Free-Air Temperature - ·C
0~-...l~~_~
-75
5
-50
~
~
~--...l
Figure 13
Figure 14
LOW-LEVEL OUTPUT VOLTAGE
LOW-LEVEL OUTPUT VOLTAGE
vs
vs
LOW-LEVEL OUTPUT CURRENT
FREE-AIR TEMPERATURE
2.0 r----r---r---r--~r----..
125
1.5
VOO = 5 V
>
>
I
II>
Cl
!!
'0
I
II>
Cl
1.5
'5
"
.s-
~
~
~
0
'"
I
---
o"
1.0
!l
...J
1.0
'5
.s0
0.5
-
IOL = 5:!...- ~
!!
;2
>
V V
0.5
I
...J
...J
o
0
>
>
'OL = 1 rnA
o
2
4
6
8
IOL - Low-Level Output Current - rnA
10
-75
-50
Figure 15
-25
0
25
50
75
100
TA - Free-Air Temperature - ·C
125
Figure 16
tpata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
2-834
INSTRUMENTS
POST OFFice BOX 655303 • DALLAS. TexAS 75265
2202-GlP-18/21-8
TlC2202, TlC2202A, TlC2202B
Advanced linCMOSTM lOW·NOISE PRECISION
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION
vs
FREE-AIR TEMPERATURE
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
30·
120
ID
"I
c
100
0
~
u
~
1\
~ r...
AVO
80
60
Cl
!9
"0
>
E
~
:::
20
is
I
C
0
>
110· ]
c..
~
I
U
S
0S
0
~
~
is
I
150·
c
>
I
0
~
c
'" ""
100
c::
0
'u.,
80
.,
c::
't>
0
60
::;:
r:.
0
E
E
=
I
0
~
.
40
~
~
20
::;:
80
'8
::p
60
c
0
E
E
c::
c::
20
(,)
o
10
100
10 k
1k
100 k
o
1M
10
Figure 22
SUPPLY CURRENT
SUPPLY CURRENT
vs
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
2.5
2
.,.A
-
~ ~ ............
:::::::::I..-~
f.--
~~
~ f - TA =2SOC \.- ~A = 12SOC
r '(
>-
'li
Q.
=
Vo
VOO+/2
No Load
E
(,)
1M
100 k
Figure 21
=
1.5
10 k
1k
f - Frequency - Hz
Vo
0
No Load
I
100
f - Frequency - Hz
2.5
C
~
:::J
""
40
0
(,)
::;:
(,)
c:(
"" '""
c
.,
c::
.,
=
=
Voo
SV
TA
25°C
"-
100
.S!
U
0
(,)
c::
c::
a:I
't>
c::
"-~
'0;
=
Voo±
±5V
TA
25°C
rTA
:::J
C/)
c:(
2
VOO±
E
C
~
;;
-r-i"""'
VOO
1.5
= ±SV
-:--
=SV
~
::::----.
(,)
>-
= -Ssoc
'li
Q.
:::J
C/)
I
I
0
0
9
9
o.S
o
o
0.5
J
3
4
6
IVoo± I - Supply Voltage - V
2
S
7
8
o
-75
-50
-25
0
25
50
75
100
125
TA - Free-Air Temperature - °C
Figure 23
Figure 24
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
2-836
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2202-GlP-22126-7
TlC22D2, TlC22D2A, TlC22D2B
Advanced linCMOSTM lOW-NOISE PRECISION
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
100
75
>
50
E
160
VOOt = t5V
RL= 10kn
CL = 100 pF
TA = 25°C
1\
Vo~ = 51V
140 RL = 10kn
CL= 100pF
120
TA = 25°C
>
E
I
..
100
S
'0
80
s-
60
I
40
I
8.
S
~
:;
25
>
:;
a.
:;
1\
IV
01
0
o
(\
a
-25
I
o
0
> -50
>
~
-75
20
0
1
-100
-20
o
2
3
4
5
6
\
~
o
7
2
3
4
t - Time - I1S
Figure 25
Figure 26
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
5
I
A
..
I
S
'0
;;
0
S::J
-1
>
:;
0
2
s::J
0
I
>
3
01
S
0
'"
>
2
01
"0
>
7
Voo = 5V
RL = 10 kn
CL = 100pF
TA = 25°C
4
3
..
6
5
4
>
5
t - Time - I1S
I
-2
0
>
V[>Dt = t5V
RL = 10kn
CL = 100 pF
TA = 25°C
-3
-4
-5
o
5
T
I
I
10
15
20
0
-1
25
30
35
40
o
10
15
20
t - Time - 119
Figure 27
Figure 28
TEXAS
25
30
35
40
~
INSTRUMENTS
POST OFFICE BOX 655303 - DALLAS, TEXAS 75265
2202-GlP-22126-7
5
t - Time -l1s
2-837
TlC2202, TlC2202A, TlC22028
Advanced linCMOSTM lOW-NOISE PRECISION
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
SLEW RATE
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
4
RL = 10 kn
CL = 100 pF
TA = 25°C
~
3
,
.,.,-
~
..
-
SR-
.---
-- --
/
~
>
a:
SLEW RATE
vs
2
4
..
.s!-
~
-
r--
- -.....r-.....
--
3
>
I
!
a:
..
3
2
t-..
SR-
........
~
~ I'--..
3
1ii
1ii
I
I
a:
a:
en
en
o
o
o
2345678
IVOOt I - Supply Voltage - V
-75 -50 -25
0
25
50
75
100
TA - Free-Air Temperature - ·C
Figure 29
Figure 30
NOISE VOLTAGE
(REFERRED TO INPUn
OVER A 10-SECOND INTERVAL
NOISE VOLTAGE
(REFERRED TO INPUn
OVER A 10-SECOND INTERVAL
VOOt = ±5V
= 0.1 to 1 Hz
TA = 25·C
0.75
VOOt = t5V
RL = 10kn
CL = 100 pF
VOO± = ±5V
0.8
f
125
f = 0.1 to 10 Hz
TA = 25·C
0.6
0.5
>:I.
~
I
0.25
..
o~
~
;g
.
~ -0.25
~ ~~
~I\
. .V. ,JII4uI \J
.l.
.M.L
..
I
T
~
0
..
>
'z5
0.4
0.2
0
-0.2 I.
-0.4
-0.5
~
II
~ j
tll~ I,MI ,j/tJ ~ ,,~
~f\ IA
II ._ I.u
y
I,
I'V
rr
\II.,
, 1
.~
-0.6
-0.75
-1
-0.8
o
-1
2
3
10
o
t- Time-s
4
5
6
t-Time-s
Figure 31
Figure 32
4
5
6
7
8
9
2
3
7
8
9
10
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
2-838
~
INSTRUMENTs
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2202-GlP-22/26-7
TlC2202, TlC2202A, TlC22028
Advanced linCMOSTM lOW-NOISE PRECISION
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
GAIN-BANDWIDTH PRODUCT
GAIN-BANDWIDTH PRODUCT
vs
vs
SUPPLY VOLTAGE
2.1
=
=
=
N
::!i
I
U
:s
=
=
t= 10kHz
RL 10 k.Q
CL 100pF
TA 25"C
:I:
N
:I:
::!i
I
2
U
:s
-0
"2
£
.c
It.
.c
15
.~
-0
c
co
!Xl
1.9
V
/'
C
'ii
Cl
1.8
48"
--
~ 1.5 I----I--l---+---+---f---+--"~.t---l
C
Cl
4
3
5
6
IVoo± I - Supply Voltage - V
7
_ _ L_
-75 -50 -25
0
25
50
75
100
TA - Free-Air Temperature - "C
8
_L_~_~_~~
Figure 33
Figure 34
PHASE MARGIN
PHASE MARGIN
vs
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
125
50"
RL ~ 10kh
Cl = 100pF
TA 25"C
--
=
,.,..-V
c
V
46"
~~
-~
48"
c
co
::!i
..
1
1
.1
Voo± = ±5V
-..--
f'.-~
Voo=
.~
-
~
5V~
46"
II>
-.---.
en
co
.c
It.
I
~
'ii
2
.~
::!i
II>
en
.c
-
15
1L-~_~
o
50"
.
FREE-AIR TEMPERATURE
2.5...---,---r--,---,---r--..,.---r----.
t 10 kHz
RL 10 k.Q
CL = 100pF
It.
44"
I
....E
44"
....E
42"
42"
Rl = 10 k.Q
Cl = 100 pF
2
3
4
5
6
7
8
IVoo± I - Supply Voltage - V
40"
-75 -50 -25
0
25
50
75
100
TA - Free-Air Temperature - "C
Figure 35
125
Figure 36
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
2202-G/P·22126-7
2-839
TLC2202, TLC2202A, TLC22028
Advanced LinCMOSTM LOW-NOISE PRECISION
DUAL OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
latch-up avoidance
Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC2202,
TLC2202A, and TLC2202B inputs and outputs are designed to withstand -100-mA surge currents without
sustaining latch-up; however, techniques reducing the chance of latch-up should be used whenever possible.
Internal protection diodes should not be forward biased in normal operation. Applied input and output voltages
should not exceed the supply voltage by more than 300 mY. Care should be exercised when using capacitive
coupling on pulse generators. Supply transients should be shunted by the use of decoupling capacitors (0.1 IlF
typical) located across the supply rails as close to the device as possible.
electrostatic discharge protection
These devices use internal ESD-protection circuits that prevent functional failures at voltages at or below
2000 V. Care should be exercised in handling these devices as exposure to ESD may result in degradation
of the device parametric performance.
TEXAS ."
2-840
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TexAS 75265
2202·G/P·22I26·7
TLC2272, TLC2272A, TLC2272Y
Advanced LinCMOSTM DUAL RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
D3981 , NOVEMBER 1991
•
•
•
•
•
•
•
Output Swing Includes Both Supply Rails
Low Noise ... 9 nVl..fHz Typ at 1 kHz
Low Input Bias Current ... 1 pA Typ
Single Supply or Split Supply Operating
Capability
Common-Mode Input Voltage Range that
Includes Negative Rail
High Gain-Bandwidth Product
2 MHz at 25°C
High Slew Rate. , .3 V/J.l.S Typ
•
Low Input Offset Voltage
950 J.l. V Max at T A = 25°C - TLC2272A
2500 J.l. V Max at T A = 25°C - TLC2272
•
Macromodel Included
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
description
vs
The TLC2272 and TLC2272A are dual rail-to-rail
operational amplifiers using Texas Instruments
Advanced LinCMOS"" process. These devices
offer comparable ac performance to existing
CMOS operational amplifiers, but with better
noise, input offset voltage, and power dissipation.
In addition, the common-mode input voltage range
includes the negative rail, while delivering rail-to
rail outputs. The Advanced LinCMOSTM process
uses a Silicon-gate technology to obtain input
offset voltage stability with temperature and time
that far exceeds that obtainable using metal-gate
technology. In addition, this technology makes
possible input impedance levels that meet or
exceed levels offered by top-gate JFET and
expensive dielectric-isolated devices.
SUPPLY VOLTAGE
>
16~--~----~--~~---r----~--~
"
0>
!1!
>
'5
c.
'5
"0
.
0
12~---+----1---~~--~~--+---~
".
"b
Q.
~
3!
Q.
E
::s
E
'xos
::s
10~---+----4---~~--~----+---~
8~---+----~~~~--~----+-----~
6~--~~--4---~~--~----+---~
fL
With high input impedance and low noise, the
c.
4~--~----~--~----~--~--~
TLC2272 and TLC2272A are excellent for small
>
4
6
8
10
12
14
16
signal conditioning for high-impedance sources,
IVDD± I - Supply Voltage - V
such as piezoelectric transducers. In addition, the
rail-to-rail output feature with single or split-supply
make these devices great choices for inputs to ADC devices in either the unipolar or bipolar mode of operation.
Combining the previous feature with temperature performance, the TLC2272 family can be found in sonobuoys,
pressure sensors, temperature control, active VR sensors, accelerometers, and many other applications.
o
AVAILABLE OPTIONS
PACKAGE
TA
VIO max
AT 25°C
DoC to
950fLV
70°C
2500 fLV
SMALL
OUTUNE
(D)
TLC2272ACD
TLC2272CD
SSOP
(DB)
TLC2272DBLE
PLASTIC
DIP
(P)
TLC2272ACP
TLC2272CP
CHIP
TSSOP
(PW)
FORM
(V)
TLC2272PWLE
TLC2272Y
D packages are available taped and reeled. Add "R" suffix to device type, (e.g., TLE2272CDR). The DB and PW
packages are only available taped and reeled. The chip form (Y) is tested at T A = 25°C.
Advanced LinCMOS'" is a trademark of Texas Instruments Incorporated.
PRODUCTION DATA information is current as of
publication date. Products conform to specifications
per the terms of Texas Instruments standard
warranty. Production processing does not
necessarily include testing of all parameters.
TEXAS ~
Copyright © 1991, Texas Instruments Incorporated
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
2-841
lLC2272, lLC2272A, lLC2272Y
Advanced LinCMOSTM DUAL RAIL-lO-RAIL
OPERATIONAL AMPLIFIERS
description (continued)
The device inputs and outputs are designed to withstand 1OO-mA surge current without sustaining latch-up. In
addition, internal ESD protection circuits prevent functional failures up to 2000 V as tested under MIL-STD-883C,
Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result
in degradation of the device parametric performance.
D, DB, P, OR PW PACKAGE
(TOP VIEW)
1 0 U T [ j 8 VDD+
1 IN2
7 20UT
11N+ 3
6
21NVDD--/GND
4
5
21N+
chip Information
These chips, properly assembled, display characteristics similar to the TLC2272. Thermal compression or
ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive
epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
VDO+ (8)
IN+(3)~
-
IN-(2)
~OUT(1)
OUT (7)
-
o
C\I
re
0')
<)
+
Ci
a
0
0
>
II)
a
re
0
z
~
0
>
...
.-.
co
0)
:;:
i5.
E
::>
as
0
Co)
J::
I-
Co)
Z
as
W
~
Z
0
0..
::;;
0
Co)
:;:;
as
E
0)
J::
NO')
1:.
z
+
I
~
~
Co)
E
.~
V>
(/)
Q)
C:"O
V>
~
V>
~
0
BOG
.~ ~
~6 reo
Q)
'"
Co)
UI
C
0)
a;
>
'S
cO)
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2--843
I
TlC272, TlC272A
Advanced linCMOSTM DUAL RAll-TO-RAll
OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, vDD+ (see Note 1) ..................................................... 8 V
Supply voltage, VDD- (see Note 1) .................................................... -8 V
Differential input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 16 V
Input voltage, VI (any input, see Note 1) ................................................. ±8 V
Input current, II (each input) ......................................................... ±5 mA
Output current, 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ±50 mA
Total current into VDD+ terminal .................................................... ±50 mA
Total current out of VDD- terminal ................................................... ±50 mA
Duration 01 short-circuit current at (or below) 25°C (see Note 3) ........................... unlimited
Continuous total dissipation ........................................ See Dissipation Rating Table
Operating free-air temperature range ............................................. O°C TO 70°C
Storage temperature range ................................................... -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................. 260°C
NOTES: 1. All voltage values. except differential voltages. are with respect to the midpoint between VOO+ and VOO- for split supplies.
2. Oifferential voltages are at the noninverting input with respect to the inverting input. Excessive current will flow if input is below
VOO_-0.3 V.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TAS2S·C
DERATING FACTOR
POWER RATING
ABOVE T 4 = 2S·C
5.8mW/oC
D
725mW
DB
525mW
P
PW
1000mW
525mW
4.2mWfOC
8 mW/oC
4.2 mWfOC
TA =70·C
POWER RATING
464mW
336mW
640mW
336mW
recommended operating conditions
Supply voltage. VDO +
Input voltage range
Common-mode input voltage. VIC
Operating free-air temperature. TA
TEXAS . "
INSfRUMENTS
2-844
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
MIN
+2.2
MAX
+8
VOOVOO
0
VOD+ - 1.5
VOD+-l.5
70
UNIT
V
V
V
°C
TLC2272C, TLC2272AC
Advanced LinCMOSTM RAIL-TO-RAIL
DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-alr temperature, Voo+
PARAMETER
VIO
TEST CONDITIONS
Input offset voltage
Input offset voltage
VOO±=±2.5 V
VO=O,
RS=50n
Input offset current
lIB
Input bias current
25°C
VICR
Common-mode input
voltage range
VOM+
Maximum positive peak
output voltage swing
Maximum negative peak
VOM-
output voltage swing
AVO
Large-signal differential
voltage amplilication
rid
Differential input resistance
q
ci
Zo
CMRR
kSVR
100
input capacitance
Closed loop
output impedance
100
0.5
100
100
100
100
1
-0.5
0
to
4.2
to
4
100
100
-0.5
to
4.2
pA
pA
V
0
to
3.5
4.99
4.93
4.93
4.65
V
4.65
0.01
0.01
0.09
0.09
0.9
0.9
25°C
35
175
1012
35
175
1012
25°C
1012
1012
I = 10kHz, P package
25°C
8
8
1=1 MHz, AV = 10
25°C
140
140
n
25°C
75
75
dB
VIC = 2.5 V, IOL = 50 !lA
VIC = 2.5 V, 10L = 500 !lA
VIC = 2.5 V, IOL = 5 mA
VIC =2.5 V,
IRL= 10k!}
Va =; 1 V to 4 vrRL = 1 Mn'!'
25°C
25°C
Common-mode
VIC = 0 Vto 2.7 V,
rejection ratio
Va = 2.5 V, RS= 50n
Supply-voltage rejection
ratio (aVO[)±faVIO)
VOO+ = 4.4 V to 16 V,
No load, VIC = VOO/2
25°C
Full range
Va = 2.5 V, No load
25°C
Full range
Supply current
",V
",V/mo
100
0
to
4
0
to
3.5
UNIT
0.002
25°C
Common-mode
input resistance
Common-mode
950
1500
4.99
10H = 20!lA
IOH = 2OO!lA
IOH=lmA
MAX
300
0.002
1
Full range
TYP
",VloC
25°C
Full range
RS=50n,
2500
2
0.5
IVIO 1:'>5 mV
MIN
2
25°C
Full range
25°C
TLC2272AC
MAX
3000
Full range
VIC =0,
110
TYP
300
Full range
01 input offset voltage
long-term drift (see Note 4)
MIN
25°C
Temperature coefficient
aVIO
TAt
=5 V (unless otherwise noted)
TLC2272C
80
100
80
80
V
V/mV
n
n
pF
100
dB
80
2.2
3
3
2.2
3
3
mA
tFull range is O°C to 70°C.
:j:Relerenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours perating lile test at TA = 150°C extrapolated to
TA = 25°C using the Arrhenius equation and assuming an activation energy 010.96 eV.
TEXAS ."
INsrRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-845
TLC2272C, TLC2272AC
Advanced LinCMOSTM RAIL-TO-RAIL
DUAL OPERATIONALAMPLIFIERS
operating characteristics, VOO+
PARAMETER
= 5 V, TA =25°C
TEST CONDITIONS
TLC2272C
MIN
TYP MAX
Va = 0.5 V to 2.5 V,
RL = 10 kat, CL = 100 pFt
f = 10 Hz
Equivalent input noise voltage
Vn
f = 1 kHz
V
Peak-to-peak equivalent input f = 0.1 to 1 Hz
N(PP) noise voltage
f = 0.1 to 10 Hz
Equivalent input noise current
I'L
Va = 0.5 V to 2.5 V,
AVO = 1
Total harmonic distortion
RL = 10 kat,
AVO = 10
THO + N plus noise
f = 20kHz
AVO = 100
f = 10 kHz, RL = 10 kaT,
Gain-bandwidth product
CL = 100 pFt
Maximum output-swing
Va = 0.5 Vto 2.5 V, AVO = 1,
BaM bandwidth
RL = 10 kat, CL = 100 pFt
Phase margin at unity gain
~m
RL = 10 kat, CL = 100 pFt
Am
Gain margin
SR
Slew rate at unity gain
UNIT
3.6
3.6
VI Jls
50
50
9
nV/{Hz
9
1
1.4
0.6
0.0013%
0.004%
0.00%
1
1.4
0.6
0.0013%
0.004%
0.03%
2.18
2.18
MHz
1
1
MHz
50°
10
50°
10
tReferenced to 2.5 V
TEXAS ~
INSTRUMENTS
2-846
TLC2272AC
MIN
TYP MAX
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
JlV
fA/{Hz
dB
TlC2272C, TlC2272AC
Advanced linCMOSTM RAll-TO-RAll
DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, VOD±
PARAMETER
VIO
TEST CONDITIONS
Input offset voltage
long-term drift (see Note 4)
110
Input offset current
liB
Input bias current
IVIO 1:55 mV
VOM+
0.002
/lV/mo
25°C
0.5
100
Maximum negative peak
1
100
-5.5
4
-5.5
to
4.2
4
4.2
-5
to
to
CMRR
kSVR
100
3.5
4.99
4.93
-4.91
-4.1
-4.1
25°C
50
300
1012
50
300
1012
25°C
1012
1012
I = 10kHz, P package
25°C
8
8
I = 1 MHz, AV = 10
25°C
130
130
n
25°C
85
85
dB
25°C
I RL = 10 kn
IRL=lMn
Common-mode
input resistance
output impedance
V
-4.99
Differential input resistance
Closed loop
to
-4.91
ric!
Zo
pA
-4.99
VO=±4 V
input capacitance
100
100
-5
to
-5
VIC = 0, 10 = 50 J.lA
Large-signal differential
voltage amplification
ci
1
pA
4.65
AVO
Common-mode
100
100
-5
to
100
4.99
4.93
4.65
VIC = 0, 10 = 500 J.lA
VIC = 0, 10 = 5 mA
ri
0.5
100
25°C
output voltage swing
VOM-
/lV
0.002
3.5
10 = -20 J.lA
10 = -200 J.lA
10=-1 mA
950
1500
UNIT
25°C
Full range
Maximum positive peak
output voltage swing
300
MAX
/lV/oC
25°C
voltage range
2500
TYP
2
Full range
RS=50n,
MIN
2
Full range
Common-mode input
TLC2272C
MAX
3000
Full range
VIC=O,
VO=O,
RS=50n
25°C
VICR
300
Full range
Temperature coefficient
aVIO
TYP
MIN
25°C
Input offset voltage
of input offset voltage
TAt
=±5 V (unless otherwise noted)
TLC2272C
Common-mode
VIC = -5 V to 2.7 V,
rejection ratio
Supply-voltage rejection
ratio (tNOO:t"WIO)
Vo = 0, RS = 50 n
VOO± = ±2.2 V to ±8 V,
No load
Supply current
Vo = 0, No load
25°C
25°C
Full range
80
80
25°C
Full range
100
2.4
80
80
3
3
V
V
V/mV
n
n
pF
100
2.4
dB
3
3
mA
tFull range is O°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating lile test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
2-847
TLC2272C, TLC2272AC
Advanced LinCMOSTM RAIL-TO-RAIL
DUAL OPERATIONAL AMPLIFIERS
operating characteristics, VDD±
PARAMETER
=±5 V, TA =25°C
TLC2272C
MIN
TYP MAX
TEST CONDITIONS
Vo = ±2.3 V, RL = 10 kn,
CL = l00pF
f = 10 Hz
Equivalent input noise voltage
Vn
f = 1 kHz
Peak-Io-peak equivalent input f = 0.1 to 1 Hz
V
N(PP) noise voltage
f = 0.11010 Hz
SR
In
Slew rate at unity gain
Equivalent input noise current
Total harmonic distortion
THO + N plus noise
Gain-bandwidth product
BOM
m
Am
Maximum output-swing
bandwidth
Phase margin at unity gain
Gain margin
Vo =±2.3 V,
RL = 10kn,
f = 20 kHz
AVD = 1
AVO = 10
AVD = 100
f = 10kHz, RL = 10kn,
3.6
3.6
VI Jli>
50
50
9
9
nV/#fZ
1
1
1.4
0.6
0.0011%
0.004%
0.03%
2.25
2.25
MHz
0.54
0.54
MHz
52°
10
52°
10
dB
RL = 10 kn, CL = 100 pF
~
INSTRUMENTS
2-848
UNIT
1.4
0.6
0.0011%
0.004%
0.03%
CL = 100pF
Vo = ±2.3 V, AVO = I,
RL = 10kn, CL = 100pF
TEXAS
TLC2272AC
TYP MAX
MIN
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
IN
fA/#fZ
TLC2272Y
Advanced LinCMOSTM RAIL-TO-RAIL
DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at Voo
Via
110
liB
VICR
PARAMETER
Input offset voltage
Input offset voltage
long-term drift (see Note 4)
Input offset current
Input bias current
=5 V, TA =25°C (unless otherwise noted)
TEST CONDITIONS
4
4.2
LOW-level output voltage
voltage amplification
q
Common-mode
input resistance
Common-mode
input capacitance
Closed loop
output impedance
Common-mode
rejection ratio
Supply-voltage rejection
kSVR
100
100
IVlol S5mV
qd
CMRR
1
voltage range
Oifferential input resistance
Zo
100
-0.5
to
High-level output voltage
ratio (....VOO I ....VIO)
Supply current
UNIT
flV
f!A
flV!mo
0.5
0
to
Large-signal differential
ci
2500
RS = 50n
pA
pA
V
4.99
10H = 200 f!A
10H=lmA
4.93
V
4.65
f!A
0.01
VIC = 2.5 V, 10L = 500 f!A
0.09
VIC = 2.5 V,
Va = 1 V to 4 V
mV
0.9
VIC = 2.5 V, 10L = 5 mA
AVD
MAX
300
Common-mode input
VIC = 2.5 V, 10L = 50
VOL
TYP
0.002
VO=O,
RS = 50n
10H = 20
VOH
MIN
VIC =0,
VDD± = ±2.5 V,
I RL =
I RL =
10 knt
35
1 Mnt
175
10 12
V/mV
n
10 12
f = 10kHz
f = 1 MHz, AV = 10
VIC = 0 to 2.7 V, Va = 2.5 V, RS = 50 n
VOO = 4.4 V to 16 V, No load, VIC = VOO/2
80
n
8
pF
140
n
75
dB
dB
100
I
Va = 2.5 V, No load
2.2
3
mA
tReferenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-849
TlC2272Y
.
Advanced linCMOSTM RAll-TO-RAll
DUAL OPERATIONAL AMPLIFIERS
=
=
electrical characteristics at vOD± ±5 V, TA 25°C (unless otherwise noted)
Via
PARAMETER
Input offset voltage
Input offset voltage
long-term drift (see Note 4)
110
Input offset current
liB
Input bias current
VICR
TEST CONDITIONS
MIN
VIC;O,
VOO±; ±2.5 V,
RS ; 500
Common-mode input
RS ; 500,
IVlol s5mV
High-level output voltage
10H ~ 200
Low-level output voltage
Large-signal differential
voltage amplification
qd
Differential input resistance
ri
Common-mode
input resistance
ci
Zo
CMRR
Common-mode
input capacitance
Closed loop
output impedance
Common-mode
rejection ratio
Supply-voltage rejection
kSVR
100
ratio (toVDO / toVIO)
Supply current
100
pA
1
100
pA
to
4.2
4
!lV/mo
0.5
-5.5
V
4.99
JlA
4.93
V
4.65
-4.99
VIC ~ 0, 10 ~ 50 JlA
VIC ~ 0, 10 ~ 500 JlA
-4.91
VIC ~ 0, 10 ~ 5 rnA
AVO
!lV
to
10H~lmA
VOL
UNIT
2500
-5
10H ; 20 JlA
VOH
MAX
300
0.002
VO;O,
voltage range
TYP
mV
-4.1
I RL~
I RL ~
VIC ~2.5V,
Va ~ 1 Vt04 V
10knT
50
1 MoT
300
1012
V/mV
0
1012
f
~
10kHz
f
~
1 MHz, AV
VIC
~
0
8
~
10
Ot02.7V, Va
~
2.5 V, RS
~500
VOO ~ 4.4 V to 16 V, No load, VIC ~ VOO/2
80
130
0
85
dB
100
dB
2.4
Va ; 2.5 V, No load
pF
3
rnA
tReferenced to 0 V.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA ~ 150°C extrapolated
to TA ; 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TEXAS
"I
INSfRUMENTS
2-850
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TlC2272, TlC2272A
Advanced linCMOSTM RAll-TO-RAll
DUAL OPERATIONAL AMPLIFIERS
table of graphs
TYPICAL CHARACTERISTICS
RGURE
VIO
Input offset voltage
Distribution
1,2
3,4
6,7
VO(PP)
Maximum peak-to-peak output voltage swing
vs VIC
vs Frequency
VID
Differential input voltage
vs Output voltage
AVD
Large-signal differential voltage amplification
Zo
CMRR
vs RL
5
8
vs Frequency
9,10
Output impedance
vs Frequency
II, 12
Common-mode rejection ratio
vs Frequency
Large-signal pulse response
vs Time
14,15,16,17
vs Time
18,19,20,21
Small-signal pulse response
vs Frequency
13
22, 23
Vn
Input-referred noise voltage
THD + N
Total harmonic distortion plus noise
vs Frequency
25
"
COMMON-MODE VOLTAGE
J
0.5
II>
~'5
vs
,
COMMON-MODE VOLTAGE
>
~
-----
0.5
V
.,....--- ~~
~
/
·f
V
.".."...
-1
o
2
3
4
VIC - Common-Mode Voltage - V
5
-6 -S -4 -3 -2 -1 0
2 3
VIC - Common-Mode Voltage - V
Figure 4
Figure 3
TEXAS
~
INSTRUMENTS
2-852
1.6
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
4
S
TLC2272, TLC2272A
Advanced LinCMOSTM RAIL-TO-RAIL
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
DIFFERENTIAL INPUT VOLTAGE
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE SWING
>
vs
vs
FREQUENCY
OUTPUT VOLTAGE
10
I
..
GI
DI
9
~
8
~
7
\
..
6
s
s I-- Voo =SV
l
4
~
..:.
I
2
...0:;
1
~
600
>
400
';
II.
.5
200
\.
:iii
;c
::E
DI
S
'0
3
..
TA
800
..
Voo
E
::I
E
~
~
0
=SV
=2SOC
RL =10kQ
Voo
1000
,
';
~
,
1200
=10 k.Q
TA = 2SoC
RL
i..
= ±SV
0
""'\\
~ -200
I\.
6- 400
~
-> -600
.... t--
-800
0
10k
100k
1M
0
10M
vs
vs
OUTPUT VOLTAGE
LOAD RESISTANCE
= ±SV
TA =2SOC
RL =10 k.Q
I
600
200
II.
.5
I
0
100
==
rl
!E
1'i.
E
L
..
c(
10
0)
~
~
i- 2OO
0
>
\
~ -400
OJ
~
e
~
c
I
0 - 600
I
-800
Q
>
c(
-1000
-s
= ±1 V
= 2SOC
c
:j
->
TA
0
GI
';
Vo
~
DI
S 400
'0
>
1000
>
Voo
~
S
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
DIFFERENTIAL INPUT VOLTAGE
800
4
Figure 6
Figure 5
1000
3
2
Vo - Output Voltage - V
f - Frequency - Hz
-3
-1
3
S
Vo - Output Voltage - V
0.1
0.1
10
100
RL - Load Resistance - kQ
Figure 7
Figure 8
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-853
TLC2272, TLC2272A
Advanced LinCMOSTM RAIL-TO-RAIL
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION and PHASE MARGIN
vs
FREQUENCY
80
I'!!'
voo = sv
RL = 10kn
CL = 100pF
TA = 25"C
III
'U
I
c
oj
IS
I;:
i5.
60
"
40 i"'ooo
~
I
"'S•
at
'0
I'
I
c
I
c
4S"
1'1
>
AVO
!2'
'U
~m
~
20
13S"
90"
I
E
180"
'2'
'"
:i
91
r-....
0"
I"
-20
'"
....
.c
tI.
I
-4S"
~
-40
1k
10k
100k
-90"
10M
1M
f - Frequency - Hz
Figure 9
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION and PHASE MARGIN
vs
FREQUENCY
80
~~~ ='±'S'V
III
'U
I
c
60
IE
40
t
"'•
at
~
i'
RL = 10kn
CL = 100pF
TA = 2S"C
r-....
I
N~
r--..
20
180"
13S"
90"
I
4S"
>
;
Avo
r--..
'"
.c
'"
tI.
91
0"
-4S"
10k
100 k
1M
f - Frequency - Hz
Figure 10
TEXAS
2-854
2'
....I
-20
-40
1k
oS
:i
I'
I
!2'
'U
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
-90"
10M
TLC2272, TLC2272A
Advanced LinCMOSTM RAIL-TO-RAIL
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
OUTPUT IMPEDANCE
OUTPUT IMPEDANCE
vs
vs
FREQUENCY
FREQUENCY
1000
1000r~~~~;II!II~;I~
=
Voo = SV
TA = 2SOC
c:
100
Voo = ±SV
TA 25°C
II IIII
~100._11
I
G>
U
Ay = 100
C
III
Q.
.§
'SQ.
'S
/
10
AV = 10
0
0
N
!i
,
II III
I
§
i
/
-g
~
~
A
=100
Av
= 10
IIII!
AV
=1
10~~!I~II~III~II~ElII~~~I~~~!II
I
.f
A =1
IIIII
0.1
100
lk
10 k
100 k
0.1 '--.........L..U.I.w.....................u.w...................L.l..1JW--'--u.J..UOW
100
lk
10 k
100 k
1M
1M
f - Frequency - Hz
f - Frequency - Hz
Figure 11
Figure 12
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
100
ID
"0
I
0
~
80
c
a:
60
G>
"0
0
:;;
C
0
40
E
E
<3
I
a:
a:
=25°C
~~
~
I
Voo = SV
0
:i)
TA
Voo = SV
RL = 10 k.Q
CL = 100pF
TA = 25°C
AV = -1
Voo = ±SV
a:
"isG>
I
INVERTING LARGE-SIGNAL PULSE RESPONSE
5
20
:;;
0
o
10
4
r
>
..
V
I
DI
i
3
>
~\
:;
Q.
'S
0
2
I
r--
0
>
\
V
o
100
1k
10 k
100 k
1M
10 M
o
f - Frequency - Hz
234
567
t - Time - Ils
8
9
Figure 14
Figure 13
TEXAS . "
INSfRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-855
TLC2272, TLC2272A
Advanced LinCMOSTM RAIL-TO-RAIL
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
VOLTAGE·FOLLOWER
LARGE·SIGNAL PULSE RESPONSE
INVERTING LARGE·SIGNAL PULSE RESPONSE
S
= ±SY
=10 k.Q
=100pF
=2SoC
= -1
Yoo
RL
CL
TA
Ay
4
3
>
I
V\.
2
1\
\
II
DI
!
~
!i
So
:::I
0
I
~
I
I
II
0
-1
-2
S
4
>
I
II
DI
!
~
!i
So
:::I
,
1
~
0
3
~
\
.~
.........
-4
-s
I
2
I
J
-3
=5Y
=10 k.Q
=100pF
=1
=25°C
Yoo
RL
CL
Ay
TA
o
2
3
4
S
6
7
8
o
9
o
2
t - TIme -Ils
Figure 15
=
=
=
3
I
>
!i
;-
0
I
0
>
2
I
I
i
2.S5
i
2.S
I
~
\
1
-1
J\
>
11
I
II
-2
I--
o
I
~
-3
2.45
o
2.4
234
t -
9
~
1\
~
5
6
7
8
9
o
Time -Ils
\
0.5
1
1.5
2
2.5
TEXAS
+
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
3
Time -Ils
Figure 18
INSfRUMENTS
!roo.
\J
t -
Figure 17
2-856
8
=
=
=
-4
-S
7
Yoo = SY
RL 10 k.Q
CL 100pF
TA 25°C
Ay = -1
2.6
1\
0
6
2.65
Yoo
±5Y
RL 10 k.Q
CL 100pF
TA = 25°C
Ay = 1
4
I
5
INVERTING SMALL·SIGNAL PULSE RESPONSE
S
•
4
Time -Ils
Figure 16
VOLTAGE·FOLLOWER
LARGE·SIGNAL PULSE RESPONSE
>
3
t -
3.5
4
r--
4.5
5
TLC2272, TLC2272A
Advanced LinCMOSTM RAIL-TO-RAIL
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
VOLTAGE-FOLLOWER
SMALL-SIGNAL PULSE RESPONSE
INVERTING SMALL-SIGNAL PULSE RESPONSE
100
>
E
/\
so
I
2.65
= ±SV
= 10 k.Q
= 100 pF
= 2SoC
= -1
Voo
RL
CL
TA
Av
\ /'
1
2.6
>
1
S
"0
>
:;
0
Do
:3
II
1
0
~
'0
0
>
f\.
G>
E 2.SS
G>
01
>
'5
Do
'5
=SV
=10kn
=100pF
= 25°C
=1
voo
RL
CL
TA
Av
-so
2.5
1
/' r-....
.....
\/
~
2.4S
-100
V
2.4
o
0.5
1.S
2
2.5
3
3.5
o
4
I-Time-f.Ls
Figure 19
1.S
O.S
1- Time - f.LS
Figure 20
EQUIVALENT INPUT NOISE VOLTAGE
vs
VOLTAGE-FOLLOWER
SMALL-SIGNAL PULSE RESPONSE
100
>
E
FREQUENCY
60
= ±sv
=10kn
=100 pF f\.
=2SoC
=1
voo
RL
CL
so TA
AV
~>
c
.'!
'0
G>
01
>
'5
Do
'5
.
Z
30
\
'5Do
.5
E
G>
1
0
1\,
G>
'0
0
0
>
40
>
S
"0
50
1
G>
01
-50
·s.,.
w
10
c
>
-100
o
O.S
1- Time - f.Ls
1.S
i\
20
iii
>
V
=
=
=
voo SV
TA 25°C
Rs 20n
o
10
Figure 21
'"
r"--r--
100
1k
f - Frequency - Hz
10 k
Figure 22
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-857
TlC2272, TlC2272A
Advanced linCMOSTM RAll-TO-RAll
DUAL OPERATIONAL AMPLIFIERS·
TYPICAL CHARACTERISTICS
EQUIVALENT INPUT NOISE VOLTAGE
EQUIVALENT INPUT NOISE VOLTAGE
OVER A 10 SECOND PERIOD
vs
FREQUENCY
1000 r-----r-----,-----r----,---,
60
~>
so
c
I
G>
01
~
40
.
>
GI
'0
z
:;
voo=±sv
TA = 2S0C
RS = 20n
1\\
voo = .sv
TA
>
I
~
~
\
..
~-2S0
;;
20
a.
.5-S00
r"- ...... r-.
'5
0-
0
G>
1\
w
SOO~. .~---+~~-+---~--+_~
.. 2S0
a.
.5
..
~
=
c
30
;:
-+_ _-+-_ _+-_--1
f = 0.11010 Hz
2SoC
7S0
10
-7S0
I
c
>
o
-1000
10
100
1k
f - Frequency - Hz
0
10 k
4
2
Figure 23
vs
FREQUENCY
LOAD CAPACITANCE
7S
c::"
.
I I I II
o
'f
£
-Av = 100
..
~
'co
II
0,01
~
~
_I
I
c
..
......
Rnull = 20n
:;;
30
II
I
lS
v,
Z
+
c
o
100 k
~
..
,,~
-::
10
V
/
Rnull =0
r-..... -4'
-
"n,,11
~oo-
~ct.
II 1111
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
~
I ...... )' ....
RrTli 11111 n -
100
1000
Cl - load Capacitance - pF
Figure 26
Figure 25
2-858
~~
Q,
E
-e-
1k
10 k
f - Frequency - Hz
/11
"'it.
.c
lI
j!:0.0001
100
lll~L- --
R!utl=1 ~l~
~
4S
.~
~
1
=-AV = 1
RJJ
=--
01
/
0.001
TA =2SoC
-0
='AV = 10
E
60
..~
-
c
10
PHASE MARGIN
vs
voo = S V
TA = 2S0C
Rl = 10kn
0.1
8
Figure 24
TOTAL HARMONIC DISTORTION PLUS NOISE
..
6
t - Time - s
10000
TlC2272, TlC2272A
Advanced linCMOSTM RAll-TO-RAll
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
GAIN MARGIN
vs
LOAD CAPACITANCE
15
TA
12
= 25°C
~
...... r--.
..,
m
I
c
.~
9
:::E
c
OJ
CJ
'\
6
~,
I
E
oct
...........
3
r--
o
10
100
1000
10000
CL - Load Capacitance - pF
Figure 27
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-859
2-860
TlC2652, TlC2652A, TlC2652Y
Advanced linCMOSTM PRECISION CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
D3157, SEPTEMBER 1988 - REVISED AUGUST 1991
available features
0008, JG, or P PACKAGE
Extremely Low Offset Voltage ... 1 IlV Max
•
Extremely Low Change in Offset Voltage With
Temperature ... 0.003IlV/oC Typ
•
Low Input Offset Current ... 500 pA Max
at TA = -55°C to 125°C
•
Avo ... 135 dB Min
•
CMRR and kSVR ... 120 dB Min
•
Single-Supply Operation
•
Common-Mode Input Voltage Range Includes
the Negative Rail
•
U
(TOPVIEWj
•
CXA
IN IN +
VDD _
8
2
3
7
6
CXB
VDD +
OUT
4
5
CLAMP
0014, J, or N PACKAGE
(TOPVIEWj
INT/EXT
CXB
CXA
ClKIN
ClKOUT
NC
IN-
No Noise Degradation With External
Capacitors Connected to VOO-
IN +
VDD+
OUT
NC
CLAMP
C RETURN
VDD-
description
FK PACKAGE
(TOPVIEWj
The TLC2652 and TLC2652A are high-precision
chopper-stabilized operational amplifiers
using Texas Instruments Advanced LinCMOS™
process. This process in conjunction with unique
chopper-stabilization circuitry produces
operational amplifiers whose performance
matches or exceeds that of similar devices
available today.
I~
xz
~;:
«CD
GG~~d
2
3
1 20 19
NC
4
18
ClKOUT
NC
IN-
5
NC
6
17
16
NC
7
15
VDD+
NC
14
OUT
9 10 11 1213
I()za.
zoza:::2
()
0
>
::lc(
~-'
W()
a:
()
NC - No internal connection
AVAILABLE OPTIONS
PACKAGE
VIO max
TA
AT 25°C
8-PIN
20-PIN
CHIP
CERAMIC
PLASTIC
SMALL-
CERAMIC
PLASTIC
CHIP
FORM
OUTLINE
DIP
DIP
OUTLINE
DIP
DIP
CARRIER
(V)
(00081
(JG)
(P)
(0014)
(J)
(N)
(FK)
TLC2652ACN
TLC2652CN
-
TLC2652AIN
-
TLC26521N
-
SMALL-
DOC
to
70°C
1 flV
TLC2652AC-BO
-
TLC2652ACP
TLC2652AC-14D
3 flV
TLC2652C-BO
-
TLC2652CP
TLC2652C-14 D
-
TLC2652AIP
TLC2652AI-140
TLC26521P
TLC26521-14D
-40°C
to
B5°C
-55°C
to
14-PIN
1 J!V
TLC2652AI·BO
3flV
TLC26521-BO
1 J!V
TLC2652AM·BD
TLC2652AMJG
TLC2652M-BO
TLC2652MJG
-
-
TLC2652AMP
TLC2652AM-140
TLC2652AMJ
TLC2652AMN
TLC2652MP
TLC2652M-140
TLC2652MJ
TLC2652MN
TLC2652Y
TLC2652AMFK
TLC2652MfK
125°C
D008 and D014 packages are available taped and reeled. Add " R" suffiX to device type (e.g., TLC2652AC-8DR). Chips are tested at 25°C.
3 J!V
Advanced Lin CMOS is a trademark of Texas Instruments Incorporated.
PRODUCTION DATA information is current as of publication date.
Products conform 10 specUications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
Copyright © 1991, Texas Instruments Incorporated
TEXAS ",
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
On products compliant ttl MIL-STD-883. Clan B. all parameters
are tested unless otherwise noted. On all other products,
production processing does not net:Bssarily include testing of III
parameters.
2-861
TlC2652, TlC2652A
Advanced linCMOSTM PRECISION CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
description (continued)
Chopper-stabilization techniques make possible extremely high dc precision by continuously nulling input
offset voltage even during variations in temperature, time, common-mode voltage, and power supply voltage.
In addition, low-frequency noise voltage is significantly reduced. This high precision, coupled with the
extremely high input impedance of the CMOS input stage, makes the TLC2652 and TLC2652A an ideal choice
for low-level signal processing applications such as strain gauges, thermocouples, and other transducer
amplifiers. (For applications that require extremely low noise and higher usable bandwidth, use the TLC2654
or TLC2654A device, which has a chopping frequency of 10 kHz.)
The TLC2652 and TLC2652A input common-mode range includes the negative rail, thereby providing superior
performance in either single-supply or split-supply applications, even at power supply voltage levels as low as
±1.9 V.
Two external capacitors are required for operation of the device; however, the on-chip chopper control circuitry
is transparent to the user. On devices in the 14-pin and 20-pin packages, the control circuitry is made
accessible to allow the user the option of controlling the clock frequency with an external frequency source.
In addition, the clock threshold level of the TLC2652 and TLC2652A require no level shifting when used in the
single-supply configuration with a normal CMOS or TTL clock input.
Innovative circuit techniques are used on the TLC2652 and TLC2652A to allow exceptionally fast overload
recovery time. If deSired, an output clamp pin is available to reduce the recovery time eVen further.
The device inputs and output are designed to withstand -100-mA surge currents without sustaining latch-up.
Additionally, the TLC2652 and TLC2652A incorporate internal ESD-protection circuits that prevent functional
failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be
exercised in handling these devices as exposure to ESD may result in degradation of the device parametric
performance.
The C-suffix devices are characterized for operation from O°C to 70°C. The I-suffix devices are characterized
for operation from -40°C to 85°C. The M-suffix devices are characterized for operation over the full military
temperature range of -55°C to 125°C.
functional block diagram
DISTRIBUTION OF TLC2652
INPUT OFFSET VOLTAGE
36r---__- -______________
32
I
I
I
+-+--...----~
IN
IN - -+-,-+-------1
1-----'-- CLAMP
TA = 25°C-t--FBH_ _-i-_-l-_-I
N Package
28
>--~..._---+-
OUT
~---,
150 Units tested from 1 wafer lot
Voo ± = ± 5 V --li#t--t_-_t_-_\
r----------
"!.
~ 241---+--~4S~--t_--t--_\
'2
~ 20~--+---+~SH--+---+---1
'0
~ 16r--+---r1S~--r---+---1
E
~
12
I---+----t+.~~:.:'-*+..--t---t---\
81----t---H%%§H---i---l---I
I!:; n
41----i--,..,.H
Voo _
C RETURN
oLUJgi_··:;lilltilll'~. . ~.a.I
.
=.
-3
TEXAS ~
IN5rRUMENTS
2-862
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
-2
-1
0
2
VIO -Input Offset Voltage - J.lV
3
TlC2652Y
Advanced linCMOSTM PRECISION CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
chip information
These chips, properly assembled, display characteristics similar to the TLE2024. Thermal compression or
ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive
epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
CHIP TH/CKNESS:
15 TYP/CAL
-=-=
-=-=
BONDING PADS:
4X4M/NIMUM
TJmax= 150°C
TOLERANCES
ARE±10%
ALL D/MENS/ONS
AREIN MILS
PIN (7) INTERNALLY
CONNECTED TO
BACKS/DE OF CHIP
1<111
90
~I
11/11111/111/1/1/1/111/111/1/111/111111111/1/1/1/11111/111/111/111/1/111/1/1/1/111/1/1/1/11
TEXAS ~
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-863
TLC2652, TLC2652A
Advanced LinCMOSTM PRECISION CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VDD+ (see Note 1) ...................................................... 8 V
Supply voltage, VDD- (see Note 1) ..................................................... -8 V
Differential input voltage (see Note 2) .................................................. ±16 V
Input voltage, VI (any input, see Note 1) ................................................. ±8 V
Voltage range on ClK IN and INT/EXT pins .............................. VDD _ to VDD _ +5.2 V
Input current, II (each input) ...................................................... , ... ±5 mA
Output current, 10 ................................................................ ±50 mA
Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... Unlimited
Current into ClK IN and INT/EXT pins ................................................. ±5 mA
Continuous total dissipation ........................................ See Dissipation Rating Table
Operating free-air temperature, TA: C-suffix ........................................ O°C to 70°C
I-suffix ....................................... -40°C to 85°C
M-suffix ..................................... -55°C to 125°C
Storage temperature range ........................................... , ....... -65°C to 150°C
Case temperature for 60 seconds: FK package .......................................... 260°C
lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, or P package ............ 260°C
lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J, or JG package .............. 300°C
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VOO + and VOO _ .
2. Oifferential voltages are at the non inverting input with respect to the inverting input.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the
maximum dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
0008
0014
FK
J
JG
N
p
TAS25°C
POWER RATING
725mW
950mW
1375mW
1375mW
1050mW
1575 mW
1000 mW
DERATING FACTOR
ABOVETA = 25°C
TA= 70°C
POWER RATING
5.8 mW/oC
7.6 mW/oC
11 mW/oC
11 mW/oC
8.4 mW/oC
12.6 mW/oC
8.0mW/oC
TA=85°C
POWER RATING
464mW
608mW
880mW
880mW
672mW
100SmW
640mW
377mW
494mW
715mW
715mW
546mW
819mW
520mW
TA= 125°C
POWER RATING
145mW
190mW
275mW
275mW
210mW
315mW
200mW
recommended operating conditions
Supply voltage, VOO+
Common-mode
input voltage, VIC
Clock input voltage
Operating free-air
temperature, TA
UNIT
MAX
MIN
± 1.9
±8
± 1.9
±8
V
VOO-
VOO +-1.9
VOO-
VOO +-1.9
V
VOO-+5
VOO-
VOO-+ 5
VOO-
VOO_+ 5
V
70
-40
85
-55
125
°C
MAX
MIN
± 1.9
±8
VOO-
VOO +-1.9
VOO0
TEXAS ~
INSfRUMENTS
2-864
M-SUFFIX
I-SUFFIX
C-SUFFIX
MIN
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
MAX
TLC2652C, TLC2652AC
Advanced LinCMOSTM PRECISION CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, VOO± = ±5 V (unless otherwise noted)
PARAMETER
Via
TEST CONDITIONS
Input offset voltage
Temperature coefficient
aVIO
of input offset voltage
Input offset voltage longterm drift (see Note 4)
110
Input offset current
lIB
Input bias current
voltage range
Maximum positive peak
VOM+
output voltage swing
Maximum negative peak
VOM-
output voltage swing
Large-signal differential
AVO
~
0, RS
~
50 n
MIN
TYP
voltage amplification
RS ~ 50 n
TLC2652AC
MAX
3
~
10 kn, See Note 5
Va
~
±4V,RL
~
10kn
MAX
0.5
1
2.35
flV
Full range
0.003
0.03
0.003
0.03
flVloC
25°C
0.003
0.06
0.003
0.02
flVlmo
4.35
25°C
Full range
2
25°C
4
2
100
100
4
100
100
-5
-5
to
to
3.1
3.1
RL
25°C
4.7
Full range
25°C
4.7
-4.7
Full range
25°C
-4.7
Full range
120
120
4.8
4.7
4.8
-4.7
-4.9
V
-4.7
150
135
Clamp on-state current
Clamp off-state current
CMRR
Common-mode
rejection ratio
Supply-voltage rejection
kSVR
100
25°C
frequency
150
dB
130
ratio (llVOO +/ llVIO)
Supply current
RL
Va
~
~
25°C
Full range
100 kn
-4 V to 4 V
Va ~ 0, VIC ~ VICR min,
RS ~ 50n
VOO ± ~ ± 1.9 V to ± 8 V,
Va ~ 0, Rs ~ 50 n
450
Hz
450
25
25
25
f.1A
25
25°C
100
100
Full range
100
100
25°C
120
Full range
120
25°C
120
Full range
25°C
120
Full range
140
120
140
120
135
dB
120
1.5
2.4
2.5
1.5
pA
dB
120
135
pA
V
4.7
-4.9
pA
V
Internal chopping
fch
UNIT
TYP
0.6
Full range
RL ~ 10 kn, See Note 5
MIN
25°C
Full range
Full range
Common-mode input
VICR
VIC
TLC2652C
TAt
2.4
2.5
mA
tFull range is DoC to 70°C.
NOTES: 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test atTA ~ 150°C extrapolated
to TA ~ 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
5. Output clamp is not connected.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-865
TlC2652C, TlC2652AC
Advanced linCMOSTM PRECISION CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
operating characteristics at specified free-airtemperature, VOO± = ± 5
PARAMETER
SR +
SR-
Positive slew rate
at unity gain
Negative slew rate
at unity gain
TEST CONDITIONS
Vo
RL
CL
= ±2.3 V,
= 10 kn,
= 100 pF
= 10 Hz
Equivalent input noise
f
VN(PP)
voltage (see Note 6)
Peak-to-peak equivalent
input noise voltage
In
Equivalent input noise current
f = 1 kHz
f = 0 to 1 Hz
f = 0 to 10 Hz
f = 1 kHz
f = 10 kHz,
RL = 10 kn,
CL = 100 pF
RL = 10 kn,
CL = 100 pF
Vn
Gain-bandwidth product
4>m
Phase margin at unity gain
TAt
TLC2652C
MIN
TYP
2
2.8
25°C
Full range
1.5
25°C
2.3
Full range
1.8
v
TLC2652AC
MAX
MIN
TYP
2
2.8
MAX
V/!-'s
1.5
3.1
2.3
3.1
V/!-'s
1.8
25°C
94
94
140
25°C
23
35
25°C
0.8
2.8
23
0.8
2.8
25°C
25°C
0.004
0.004
25°C
1.9
1.9
25°C
48°
48°
UNIT
nVl,jHz
!-'V
pA/,jHz
MHz
tFull range is O°C to 70°C.
NOTE 6: This parameter is tested on a sample basis for the TLC2652A. For other test requirements, please contact the factory. This statement
has no bearing on testing or nontesting of other parameters.
TEXAS ~
INSfRUMENTS
2-866
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
TLC26521, TLC2652AI
Advanced LinCMOSTM PRECISION CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
=
electrical characteristics at specified free-airtemperature, VOO± ±5 V (unless otherwise noted)
PARAMETER
Via
Input offset voltage
aVIO
of input offset voltage
TEST CONDITIONS
Input offset voltage
110
Input offset current
liB
Input bias current
voltage range
output voltage swing
Maximum negative peak
VOMAVO
VIC = 0, RS = 50 Q
output voltage swing
Large-signal differential
voltage amplification
RL = 10 kQ, See Note 5
Va = ± 4 V, RL = 10 kQ
CMRR
kSVR
100
Va = -4 V to 4 V
Common-mode
Va = 0, VIC = VICR min,
rejection ratio
RS = 50 Q
Supply-voltage rejection
VOO ± = ± 1.9 V to ± 8 V,
ratio (t; VOO ± It; Via)
Va = 0, RS = 50 Q
Supply current
Va = 0, No load
0.5
1
2.95
UNIT
~V
0.03
0.003
0.03
~V!°C
25°C
0.003
0.06
0.003
0.02
~V/mo
25°C
2
2
150
150
4
4
150
150
to
to
3.1
3.1
25°C
4.7
Full range
4.7
25°C
-4.7
Full range
-4.7
25°C
120
Full range
120
4.8
4.7
-4.9
-4.7
150
-4.9
135
150
25
25
100
100
Full range
Full range
120
25°C
Full range
Hz
~
100
120
dB
450
25
120
V
125
25
25°C
V
-4.7
25°C
25°C
4.8
4.7
Full range
Full range
pA
V
450
120
pA
-5
25°C
Clamp off-state current
MAX
0.003
25°C
RL=100kQ
TYP
Full range
Full range
RL = 10 kQ, See Note 5
MIN
3
-5
RS = 50 Q
frequency
Clamp on-state current
TLC2652AI
MAX
4.95
25°C
Internal chopping
fch
0.6
25°C
Full range
Maximum positive peak
VOM+
TYP
Full range
Common-mode input
VICR
TLC26521
MIN
Full range
Temperature coefficient
long-term drift (see Note 4)
TAt
140
100
120
140
dB
120
135
120
135
dB
120
1.5
2.4
1.5
2.5
tFull range is - 40°C to 85°C.
NOTES: 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
5. Output clamp is not connected.
2.4
2.5
= 150°C
pA
mA
extrapolated
TEXAS,~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-867
TLC26521, TLC2652AI
Advanced LinCMOSTM PRECISION CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature, VOO± = ± 5 V
PARAMETER
SR+
SRVn
Positive slew rate
at unity gain
Negative slew rate
at unity gain
Equivalent input noise
voltage (see Note 6)
Peak-to-peak equivalent
VN(PP)
In
input noise voltage
Equivalent input noise current
Gain-bandwidth product
4>m
Phase margin at unity gain
TEST CONDITIONS
Va
Rl
Cl
1
f
f
f
=
=
=
=
=
=
= ±2.3 v,
= 10 kn,
= 100 pF
TAt
TLC26521
MIN
TYP
2
1.4
2.8
Full range
25°C
2.3
3.1
Full range
1.7
25°C
TLC2652AI
MAX
MIN
TYP
2
2.8
MAX
V/iJ.s
1.4
2.3
3.1
V/iJ.s
1.7
10 Hz
25°C
94
94
140
1 kHz
0 to 1 Hz
0 to 10 Hz
25°C
25°C
23
23
35
0.8
0.8
25°C
2.8
2.8
25°C
0.004
0.004
25°C
1.9
1.9
25"C
48"
48"
f
1 kHz
f
10 kHz,
Rl = 10 kn,
Cl = 100pF
Rl = 10 kn,
Cl = 100pF
UNIT
nVl,fHz
iJ.V
pA/,fHz
MHz
..-
tFull range IS - 40"C to 85°C.
NOTE 6: This parameter is tested on a sample basis for the TlC2652A. For other test requirements, please contact the factory. This statement
has no bearing on testing or nontesting 01 other parameters.
TEXAS ~
INsrRuMENTS
2-868
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TlC2652M, TlC2652AM
Advanced linCMOSTM PRECISION CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, VOO± = ±5 V (unless otherwise noted)
TEST CONDITIONS
PARAMETER
TLC2652M
MIN
Input offset voltage
Via
TAt
25°C
(see Note 7)
of input offset voltage
Input offset voltage longterm drift (see Note 4)
110
Inpilt offset current
liB
Input bias current
voltage range
Maximum positive peak
VOM+
output voltage swing
Maximum negative peak
VOMAVD
=
0, RS
=
50 n
output voltage swing
Large-signal differential
voltage amplification
=
50n
RL
=
10 kn, See Note 5
10 kn, See Note 5
RL
=
Va
= ±4V,RL =
10kQ
Clamp on-state current
Clamp off-state current
CMRR
Common-mode
rejection ratio
Supply-voltage rejection
kSVR
ratio (nVDD ±/ nVIO)
RL
=
Va
= -4 Vto 4 V
100kQ
= 0, VIC = VICR min,
= 50n
VDD ± = ± 1.9 V to ± 8 V,
Va = 0, RS = 50 n
Va
RS
3
8
UNIT
flV
0.003
0.03'
flV/oC
25°C
0.003
0.06'
0.003
0.02'
flV/mo
25°C
2
2
500
500
4
4
500
500
-5
-5
Full range
to
3.1
to
3.1
25°C
4.7
Full range
4.7
25°C
-4.7
Full range
25°C
-4.7
120
Full range
120
4.8
4.7
-4.9
-4.7
4.8
135
V
150
dB
120
Hz
450
25°C
25
25
Full range
25
25
f1A
25°C
100
100
Full range
500
500
25°C
120
Full range
120
25°C
120
Full range
25°C
120
140
120
140
120
135
120
120
pA
V
-4.9
-4.7
150
pA
V
4.7
450
25°C
frequency
MAX
0.03'
Internal chopping
fch
TYP
0.5
0.003
Full range
25°C
RS
MIN
Full range
Full range
Common-mode input
VICR
VIC
TLC2652AM
MAX
3.5
10
Full range
Temperature coefficient
(lVIO
TYP
0.6
135
pA
dB
dB
1.5
2.4
1.5
2.4
mA
2.5
2.5
Full range
• On products compliant to MIL-STD-883, Class B, this parameter is not production tested.
tFull range is - 55°C to 125°C.
NOTES: 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to T A = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
5. Output clamp is not connected.
7. This parameter is not production tested. Thermocouple effects preclude measurement of the actual Via of these devices in high speed
automated testing. Via is measured to a limit determined by the test equipment capability at the temperature extremes. The test
ensures that the stabilization circuitry is performing properly.
IDD
Supply current
Va
=
0, No load
TEXAS ",
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-869
TLC2652M, TLC2652AM
Advanced LinCMOSTM PRECISION CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
operating characteristics at specified free-airtemperature, VOO±
PARAMETER
=±5
TAt
TEST CONDITIONS
V
MIN
TYP
MAX
UNIT
\
SR+
SRVn
VN(PP)
In
Positive slew rate
at unity gain
Vo
Negative slew rate
CL
atunity gain
Equivalent input noise
voltage
Peak-to-peak equivalent
input noise voltage
Equivalent input noise current
Gain-bandwidth product
4>m
= ± 2.3 V, RL = 10 k.Q,
= 100 pF
Phase margin at unity gain
25°C
Full range
1.3
25°C
2.3
Full range
1.6
= 10 Hz
= 1 kHz
= 0 to 1 Hz
= Ot010Hz
= 1 kHz
f = 10 kHz, RL = 10 kQ,
CL = 100 pF
f
f
f
f
f
RL '" 10 kQ,
CL = 100 pF
tFull range is - 55°C to 125°C.
TEXAS ~
INSTRUMENTS
2-870
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2
2.8
3.1
25°C
94
25°C
25°C
25°C
23
0.8
2.8
25°C
0.004
25°C
1.9
25°C
48°
ViflS
V/flS
nV/,fHz
flV
pA/,fHz
MHz
TLC2652Y
Advanced LinCMOSTM PRECISION CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
electrical characteristics at Voo± = ± 5 V, T A = 25°C (unless otherwise noted)
VIO
PARAMETER
Input offset voltage
Input offset voltage
TEST CONDITIONS
long-term drift (see Note 4)
110
liB
MIN
RS = 50 Q
VIC = 0,
Input offset current
TYP
0.6
MAX
3
UNIT
j.1V
0.003
0.006
j.1V/mo
pA
2
4
Input bias current
pA
-5
VICR
Common-mode input voltage range
to
RS= 50n
V
3.1
Maximum positive peak
VOM+
VOM-
output voltage swing
Maximum negative peak
output voltage swing
AVD
Large-signal-differential
voltage amplification
fch
Internal chopping frequency
CMRR
kSVR
Inn
RL = 10kQ,
See Note 5
4.7
4.B
V
RL = 10 kQ,
See Note 5
-4.7
- 4.9
V
VO=±4V,
RL= 10 kQ
120
150
dB
450
Clamp on-state current
RL = 100 kQ
Clamp off-state current
VO=-4 Vt04 V
Common-mode rejection ratio
RS=50 Q
Supply-voltage rejection
Vo = 0, VIC = VICRmin,
VDD±=±1.9Vto±BV,
ratio (,W DD + iLW 10)
Supply current
VO=O,
Vn = 0, no load
RS=50 Q
Hz
j.1A
25
100
pA
120
140
dB
120
135
dB
1.5
2.4
mA
NOTES: 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.096 eV.
5. Output clamp is not connected.
operating characteristics at Voo ±
SR+
SRVn
VN(PP)
In
~m
PARAMETER
Positive slew rate at unity gain
Negative slew rate at unity gain
Equivalent input noise voltage
= ± 5 V, T A = 25°C
TEST CONDITIONS
VO=±2.3 V,
RL = 10 kQ,
CL = 100 pF
f = 10 Hz
MIN
TYP
2
2.B
V/j.1s
2.3
3.1
V/j.1s
94
23
nV/{Hz
Peak-to-peak equivalent
f = 1 kHz
f = 0 to 1 Hz
0.8
input noise voltage
f=Ot010Hz
2.8
Equivalent input noise current
Gain-bandwidth product
f = 1 kHz
f=10kHz,
RL=10kQ,
Phase margin at unity gain
RL = 10 kQ,
CL = 100 pF
MAX
UNIT
j.1V
pA/{Hz
CL=100pF
1.9
48"
MHz
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-871
TLC2652, TLC2652A
Advanced linCMOSTM PRECISION CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
table of graphs
FIGURE
Via
liB
110
Normalized input offset voltage
AVD
Input offset current
voltage swing
Output voltage
vs
Frequency
8
Chopping frequency
Large-signal
9,10
11,12
13
14
15
16
17
18
19
20
21
22
23
24
vs
25,26
Output current
Temperature
Supply current
lOS
Short-circuit output current
SR
Slew rate
Peak-to-peak equivalent input
noise voltage
Equivalent input noise voltage
Gain-bandwidth product
Phase margin
Phase shift
vs
Frequency
vs
Temperature
vs
Supply voltage
vs
Temperature
vs
Supply voltage
vs
Temperature
vs
Supply voltage
vs
Temperature
vs
Supply voltage
vs
Temperature
Small-signal
Pulse response
¢m
Temperature
vs
Temperature
vs
vs
IDD
Chopping frequency
vs
Frequency
vs
Supply voltage
vs
Temperature
vs
Supply voltage
vs
Temperature
vs
Load capacitance
vs
Frequency
TEXAS ~
INSTRUMENTS
2-872
2
vs
vs
vs
Differential voltage amplification
1
3
4
5
6
7
Chopping frequency
Maximum peak output voltage
Chopping frequency
Vn
Common-mode
swing
fch
VN(PP)
vs
vs
Maximum peak-to-peak output
VOM
Chopping frequency
input voltage
Input bias current
Clamp current
VO(PP)
vs
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
27
28
29
30
31
32
13
TlC2652, TlC2652A
Advanced linCMOSTM PRECISION CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
NORMALIZED INPUT OFFSET VOLTAGE
vs
CHOPPING FREQUENCY
25
70
>
"-
60
'"'"
50
I
2J
"0
VDD± = ±5V
TA = 25°C
VDD ± = ±5 V
VIC = 0
TA = 25°C
II
>
a;
~
:;
Il.
30
"tI
'"
.!:!
iO
E
is
z
:>
'"
iIi
:;
.E
/
10
I
~
v
10 k
1k
2
3
4
-5 -4 -3 -2 -1
0
VIC - Common-Mode Input Voltage - V
100 k
fch - Chopping Frequency - Hz
Figure1
Figure2
INPUT BIAS CURRENT
vs
CHOPPING FREQUENCY
INPUT BIAS CURRENT
vs
FREE-AIR TEMPERATURE
70
60
I
:;
U
'"
'"
iIi
:;
100
VDD±=±5V
VDD+=+5V
VIC = 0
TA = 25°C
Vo = 0
I
If
i:
.'"
10
iIi
:;
...,..,
Il.
.E
20
I
~
100
r--
............
"-....
~
II
10
o
7
'"
u~
,;
30
I
I
I
I
40
=F
VIC = 0
I
50
5
I
//7
S
;g
() 10 nA
II
0-
E
lnA
...
..
to
11111111
6
c-
.'"
I I
11111111
I I
TA = 125'C
~
cE
E
4
:;;
2
"
IINegative Clamp Current
'xto
~ '/
\~
I
ii:'
c-
O
>
1 pA
4.4
TA = -55'C
S
o
II
0-
8
'5
/1
:;
10
I
8,
II
~
4.2
85
/
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
Posi'tive Clamp Current
4
65
45
vs
E 100 nA
10pA
25
........
CLAMP CURRENT
I
100 pA
r---
Figure6
Voo ± = ±5 V
TA = 25'C
13
100 k
--- ---
/
Figure5
100 fLA
to
/
OJ
~
8'5
4.6
4.8
5
o
Voo± = ±5V
RL = 10 kQ
100
1k
f'.:
10k
IVol- Output Voltage - V
f - Frequency - Hz
Figure7
Figure8
100k
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS . "
INSTRUMENlS
2-874
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
1M
TlC2652, TlC2652A
Advanced linCMOS™ PRECISION CHOPPER·STABllIZED
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
MAXIMUM PEAK OUTPUT VOLTAGE
MAXIMUM PEAK OUTPUT VOLTAGE
vs
vs
OUTPUT CURRENT
OUTPUT CURRENT
5
voo± = ±5 V
TA = 25°C
>
I
01
~
I
01
4.8
~
'0
>
VOM+
:;
c.
:;
4.6
0
0
.><
'"0.'"
'"
0.
E
E
:::l
E
E
4.4
:::l
'x
'"I
::;;
~
0
::;;
4.2
>
4
6.7
0
0.4
0.8
1.2
1.6
2
1101- Output Current - rnA
0
0.8
1.6
1.2
Figure9
Figure 10
MAXIMUM PEAK OUTPUT VOLTAGE
MAXIMUM PEAK OUTPUT VOLTAGE
vs
vs
FREE-AIR TEMPERATURE
FREE-AIR TEMPERATURE
2
8
>
>
I
I
CI>
Q)
01
01
~
2.5
'0
>
4
>
:;
c.
:;
:;
c.
:;
0
~CI>
0.4
Ilol-Output Current - rnA
5
~
6.9
~
0
>
'0
7.1
'x
'"I
7.3
'0
>
:;
c.
:;
voo± = ±7.5
TA = 25°C
>
Voo ± = ±5 V _
RL = 10 kQ
0
0.
E
E
0
'"'"
0.
Q)
Voo± = ±7.5 v
RL = 10 kQ
0
E
E
:::l
:::l
'x
'x
:E - 2.5
:E
'"I
'"
-4
I
:E
:E
o
0
>
>
-5
-75
-8
-50
-25
0
25
50
75
100
125
- 75
- 50
T A - Free-Air Temperature - °C
- 25
0
25
50
75
100
TA - Free-Air Temperature - °C
125
Figure12
Figure 11
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
+
INsrRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-875
TlC2652, TlC2652A
Advanced linCMOSTM PRECISION CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
FREE-AIR TEMPERATURE
60 0
120
CD
"
I
100
I:
.2
iii
~
'li
E
..
)!!
40
tlI
~
80
60
<{
220°
10 M
135
- 75
25
50
75
100
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
= 25°C
Voo ±
450
\\
N
J:
I
>-
..g
460
tlI
I:
440
3
4
/
.......
V
c.
o
<3
5
6
7
8
=±5 V
'\
\
'is.
""'" I'--l-/
I
.c:
2
V
[
u.. 430
\ \.
c.
o
440
::J
1\
480
420
\
\\
I
.c:
_u
410
400
-75
-50
-25
0
25
50
75
IV DO ±I- Supply Voltage - V
TA - Free-Air Temperature - °C
Figure15
Figure16
100
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
2-876
125
460
500
420
0
vs
'is.
~
- 25
CHOPPING FREQUENCY
C'
U
- 50
CHOPPING FREQUENCY
II>
::J
.c:
t--..........
:t: 140
Figure14
I
0
"'"
Figure13
520
Cl
I:
~
TA - Free-Air Temperature - °C
N
~
/
v
I
~
180°
II
>
l!
/
.........
f - Frequency - Hz
J:
>-
145
'0
E
~
1M
TA
u
150
=e:
540
I:
Vo = ± 4
I:
.2
~Avo
0-20
Voo ± = ±5 V
RL = 10 kQ
"I
80°
PHASE SHIFT
>
155
CD
!'-..
'0
:!
LARGE-SIGNAL VOLTAGE AMPLIFICATION
vs
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
125
TLC2652, TLC2652A
Advanced LinCMOSTM PRECISION CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
SUPPLY CURRENT
SUPPLY CURRENT
vs
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
2
I
Vo = 0
'"
1.61-----\---+--+--j--+--=..r-:;:,......f---1
'"
E
2!
8,..
-r-..
-- r-- -...
,...-
I
!
1.2 I-----\--fl'------t....-""'F-~'+_'=
5
_T
a.
Q.
0.81---t-ll+---t--+--+---+--+--+_--I
I
g.
1.2 i - - - VOO ± = ±2.5 V
0.8
VI
C
C
E
0.4
0.4 I---HJ'------t--f---l----i--+--+------t
Vo = 0
No Load
o
2
3
4
5
6
7
8
-75
- 50
Ivoo ±I- Supply Voltage - V
SHORT-CIRCUIT OUTPUT CURRENT
SHORT-CIRCUIT OUTPUT CURRENT
vs
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
15
Vo = 0
TA = 25°C
:;
Q.
:;
0
'"E
10
4
E
~
:::J
o
5
o
o
I
:;
Q.
:;
VID = -100 mV
0
'5
E
~
VID = -100 mV
'5
E
~
-4
o
0
.c
VI
I
VI
Voo± = ±5V
Vo = 0
8
2!
5
125
Figure18
E
0
- 25
0
25
50
75
100
TA - Free-Air Temperature - °C
Figure 17
12
I
~
I
c
'"E
i'---
r--
I
o,..
a.
~
1-
1.6 f--- Voo± = ±5 V
E
I
E
-
I
Voo + = ±7.5V
-5
.c
-8
I'-.
.9
-12
o
2
--
3
VI
I
VI -10
VID = 100 mV
4
5
6
.9
7
8
-15
-75
.-- --
VID = 100 mV
--~
~
-50
-25
0
25
50
75
IVoo ±I- Supply Voltage - V
TA - Free-Air Temperature - °C
Figure 19
Figure20
--
100
125
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-877
TlC2652, TlC2652A
Advanced linCMOSTM PRECISION CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
SLEW RATE
vs'
FREE-AIR TEMPERATURE
SLEW RATE
vs
SUPPLY VOLTAGE
4
4
SR-
"'"
3
1/1
------
~ ......
./" ~+
:1.
:>
I
a;'"
SR
~
.......-
3
1/1
.,;:
iii
SR +
:1.
:>
I
~
2
II:
II:
-r-- t--
Voo± = ±5 V
RL = 10 kQ _
CL = 100 pF
- r--r--.
-..........
.............
'"
"'~
2
~
iii
I
I
II:
II:
C/)
C/)
RL= 10kQ
CL = 100 pF
TA = 25°C
o
o
>
E
2
3
4
5
6
7
o
8
-75
Ivoo ±I- Supply Voltage - V
-50 -25
0
25
50
75
100
TA - Free-Air Temperature - °C
Figure21
Figure22
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
100
4
75
3
'\
50
Voo± = ±5 V
RL
10 kQ
CL = 100 pF
TA = 25°C
=
1\,
>
2
125
IV'"
.,
I
I
8,
25
S
'0
;
c..
Cl
0
:;
0-25
S
voo± = ±5V
RL = 10 kQ
CL = 100 pF
>
TA = 25°C
0
'0
:;
;-
0
-1
I
I
o
> -50
0
II
-75
-100
> -2
o
l(\n
-3
-4
o
t - Time -Ils
10 15 20
t- Time-Ils
Figure23
Figure24
234
567
5
25
30
35
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices,
TEXAS ~
INSTRUMENTS
2-878
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
40
TlC2652, TlC2652A
Advanced linCMOSTM PRECISION CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
PEAK-TO-PEAK INPUT NOISE VOLTAGE
vs
CHOPPING FREQUENCY
PEAK-TO-PEAK INPUT NOISE VOLTAGE
vs
CHOPPING FREQUENCY
5
1.8
>
.,"I
1.6
C)
)!!
'0
.,
>
'E
z
1.4
Voo± = ±5V
RS = 1000
f=0101Hz
>
TA = 25°C
'0
-
1.2
.,
0.8
£
0.6
os
:.
0.4
\
"'os"
&
"
~
I
Ii:'
0.2
a..
Z
o
o
>
2
4
10
6
8
fch .:. Chopping Frequency - kHz
2.1
Rl = 10 kO
\
80
Cl = 100 pF
60
I
c:;
::s
.
0
a..
\
.s::
:2
!!:
40
.
'0
c
II]
1.9
;;,
iii
.,.
/
2
'0
10
GAIN-BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
C)
.=
C
.,
8
2
4
6
fch- Chopping Frequency - kHz
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
)!!
'5a.
o
o
Figure26
'0
.,
'"
-
.........
Figure25
~
>
\
2
a..
100
.,I
= 25°C
3
];
""-
Z
>=c
TA
.,
...
.=
\
I
>
=
4
>
'5
a..
[
C)
)!!
'0
Z
.=
".
I
TA = 25°C
c
Cl
I
o
1
1.8
10
100
1k
o
2
/
/"
3
V
-
4
/
..-/
5
6
f - Frequency - Hz
IVoo ±I- Supply Voltage - V
Figure27
Figure28
7
8
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
2-879
TLC2652, TLC2652A
Advanced LinCMOSTM PRECISION CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
PHASE MARGIN
GAIN-BANDWIDTH PRODUCT
vs
vs
FREE-AIR TEMPERATURE
SUPPLY VOLTAGE
2.6
50
2.4
""-,
N
J:
::;;
1
2.2
'"
U
,.
'0
2
2
D..
.J:.
-E
'i
'0
1.8
'C"
1.6
~
1
c
.
,
'"
!
25
50
III
1
E
~
~
............
75
100
125
III
44
PHASE MARGIN
PHASE MARGIN
vs
vs
FREE-AIR TEMPERATURE
LOAD CAPACITANCE
-
~t--
.
.'"
40
.
.,.
30
""
1
c
.~
'"
.J:.
D..
1
I
E
E
~
~
20
""-
~
10
Voo ± = ±5 V
RL = 10 kQ
CL = 100pF
40
- 75
- 50
- 25
............
~
o
0
25
50
75
100
125
o
200
400
600
ct - Load Capacitance -
T A - Free-Air Temperature - °C
Figure31
600
pF
Figure32
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
2-880
8
Voo ± = ±5 V
RL=10kQ
TA = 25°C
'\,
50
~
'0
::;;
42
567
4
Figure30
.J:.
D..
~
3
Figure29
g>
..
2
Ivoo ±I- Supply Voltage - V
'0
'"
o
TA - Free-Air Temperature - °C
~
46
42
60
48
1
c
.~
::;;
,/"
V
if
50
..
44
40
0
V
/
::;;
'"
1.4
-25
/
46
.~
'\,
Cl
-50
",.-
TA = 25°C
48
'0
~
'iii
1.2
-75
~Q
CL=100pF
g>
c
aJ
RL 1= 10
Voo± = ±5V
RL = 10kQ_
CL = 100 pF
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
1000
TlC2652, TlC2652A
Advanced linCMOS™ PRECISION CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
capacitor selection and placement
The two important factors to consider when selecting external capacitors CXA and CXB are leakage and
dielectric absorption. Both factors can cause system degradation, negating the performance advantages
realized by using the TlC2652.
Oegradation from capacitor leakage becomes more apparent with increasing temperatures. low-leakage
capacitors and standoffs are recommended for operation at TA = 125°C. In addition, guard bands are
recommended around the capacitor connections on both sides of the printed circuit board to alleviate problems
caused by surface leakage on circuit boards.
Capacitors with high dielectric absorption tend to take several seconds to settle upon application of power,
which directly affects input offset voltage. In applications where fast settling of input offset voltage is needed,
it is recommended that high-quality film capacitors, such as mylar, polystyrene, or polypropylene, be used. In
other applications, however, a ceramic or other low-grade capacitor may suffice.
Unlike many choppers available today, the TlC2652 is designed to function with values of CXA and CXB in
the range of 0.1 j.1F to 1 j.1F without degradation to input offset voltage or input noise Voltage. These capacitors
should be located as close as possible to the CXA and CXB pins and returned to either the VOO- pin or the
C RETURN pin. Note that on many choppers, connecting these capacitors to the VOO- pin causes
degradation in noise performance. This problem is eliminated on the TlC2652.
internal/external clock
The TlC2652 has an internal clock that sets the chopping frequency to a nominal value of 450 Hz. On 8-pin
packages, the chopping frequency can only be controlled by the internal clock; however, on all 14-pin
packages and the 20-pin FK package, the device chopping frequency may be set by the internal clock or
controlled externally by use of the INT/EXT and ClK IN pins. To use the internal 450-Hz clock, no connection
is necessary. If external clocking is desired, connect the INT/EXT pin to VOO- and the external clock to ClK
IN. The external clock trip point is 2.5 V above the negative rail; however, the ClK IN pin may be driven from
the negative rail to 5 V above the negative rail. If this level is exceeded, damage could occur to the device
unless the current into the ClK IN pin is limited to ±5 mA. When operating in the single-supply configuration,
this feature allows the TlC2652 to be driven directly by 5-V TTL and CMOS logic. A divide-by-two frequency
divider interfaces with the ClK IN pin and sets the
chopping frequency. The duty cycle of the
>
I
o
external clock is not critical but should be kept
CD
Cl
VDD± = ±5V
between 30% and 60%.
~
"0
overload recovery/output clamp
When large differential input voltage conditions
are applied to the TlC2652, the nulling loop will
attempt to prevent the output from saturating by
driving CXA and CXB to internally-clamped
voltage levels. Once the overdrive condition is
removed, a period of time is required to allow the
built-up charge to dissipate. This time period is
defined as overload recovery time (see Figure
33). Typical overload recovery time for the
TlC2652 is significantly faster than competitive
products; however, if required, this time can be
reduced further by use of internal clamp circuitry
accessible through the CLAMP pin.
TA = 25°C
>
::I
a.
V
;
o
I
o
-5
>
>
E,
V
0
I
CD
Cl
~
"0
>
;
a.
..5
I
:>
-50
o
10
20 30 40 50
t-Time-ms
60
70
80
Figure 33. Overload Recovery
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALI.AS. TEXAS 75265
2-881
TlC2652, TlC2652A
Advanced linCMOSTM PRECISION CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
The clamp is simply a switch that is automatically activated when the output is approximately 1 V from either
supply rail. When connected to the inverting input (in parallel with the closed-loop feedback resistor), the
closed-loop gain is reduced and the TLC2652 output is prevented from going into saturation. Since the output
must source or sink current through the switch (see Figure 7), the maximum output voltage swing is slightly
reduced.
thermoelectric effects
To take advantage of the extremely low offset voltage drift of the TLC2652, care
for the thermoelectric effects present when two dissimilar metals are brought
(such as device leads being soldered to a printed circuit board). Dissimilar
thermoelectric voltages in the range of several microvolts per degree Celsius
than the 0.01-I-LVloC typical of the TLC2652).
must be taken to compensate
into contact with each other
metal junctions can produce
(orders of magnitude greater
To help minimize thermoelectric effects, careful attention should be paid to component selection and circuit
board layout. Avoid the use of nonsoldered connections (such as sockets, relays, switches, etc.) in the input
signal path. Cancel thermoelectric effects by duplicating the number of components and junctions in each
device input. The use of low-thermoelectric-coefficient components, such as wire-wound resistors, is also
beneficial.
latch-up avoidance
Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC2652
inputs and output are designed to withstand -100-mA surge currents without sustaining latch-up; however,
techniques to reduce the chance of latch-up should be used whenever possible. Internal protection diodes
should not, by deSign, be forward biased. Applied input and output voltages should not exceed the supply
voltage by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators.
Supply transients should be shunted by the use of decoupling capacitors (0.1 I!F typical) located across the
supply rails as close to the device as possible.
The current path established if latch-up occurs is usually between the supply rails and is limited only by the
impedance of the power supply and the forward resistance of the parasitic thyristor. The chance of latch-up
occurring increases with increasing temperature and supply voltage.
electrostatic discharge protection
The TLC2652 incorporates internal ESD-protection circuits that prevent functional failures at voltages at or
below 2000 V. Care should be exercised in handling these devices, as exposure to ESD may result in
degradation of the device parametric performance.
theory of operation
Chopper-stabilized operational amplifiers offer the best dc performance of any monolithic operational amplifier.
This superior performance is the result of using two operational amplifiers - a main amplifier and a nulling
amplifier - plus oscillator-controlled logic and two external capacitors to create a system that behaves as a
single amplifier. With this approach, the TLC2652 achieves submicrovolt input offset voltage, submicrovolt
noise voltage, and offset voltage variations with temperature in the nVfOC range.
The TLC2652 on-chip control logic produces two dominant clock phases: a nulling phase and an amplifying
phase. The term "chopper-stabilized" derives from the process of switching between these two clock phases.
Figure 34 shows a simplified block diagram of the TLC2652. Switches A and Bare make-before-break types.
During the nulling phase, switch A is closed, shorting the nulling amplifier inputs together and allowing the
nulling amplifier to reduce its own input offset voltage by feeding its output signal back to an inverting input
TEXAS ~
INSTRUMENTS
2-882
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC2652, TLC2652A
Advanced LinCMOS™ PRECISION CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
Main
Amplifier
IN + _ _ _-+____-;
IN -
---.----+---------1
Vo
A
Figure 34. TLC2652 Simplified Block Diagram
node. Simultaneously, external capacitor CXA stores the nulling potential to allow the offset voltage of the
amplifier to remain nulled during the amplifying phase.
During the amplifying phase, switch B is closed, connecting the output of the nulling amplifier to a noninverting
input of the main amplifier. In this configuration, the input offset voltage of the main amplifier is nulled. Also,
external capacitor CXB stores the nulling potential to allow the offset voltage of the main amplifier to remain
nulled during the next nulling phase.
This continuous chopping process allows offset voltage nulling during variations in time and temperature and
over the common-mode input voltage range and power supply range. In addition, because the low-frequency
signal path is through both the null and main amplifiers, extremely high gain is achieved.
The low-frequency noise of a chopper amplifier depends on the magnitude of the component noise prior to
chopping and the capability of the circuit to reduce this noise while chopping. The use of the Advanced
LinCMOS process, with its low-noise analog MOS transistors and patent-pending input stage design,
significantly reduces the input noise voltage.
The primary source of nonideal operation in chopper-stabilized amplifiers is error charge from the switches.
As charge imbalance accumulates on critical nodes, input offset voltage can increase, especially with
increasing chopping frequency. This problem has been significantly reduced in the TLC2652 by use of a
patent-pending compensation circuit and the Advanced LinCMOS process.
The TLC2652 incorporates a feed-forward design that ensures continuous frequency response. Essentially,
the gain magnitude of the nulling amplifier and compensation network crosses unity at the break frequency
of the main amplifier. As a result, the high-frequency response of the system is the same as the frequency
response of the main amplifier. This approach also ensures that the slewing characteristics remain the same
during both the nulling and amplifying phases.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-883
2-884
TLC2654, TLC2654A, TLC2654Y
Advanced LinCMOSTM LOW-NOISE CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
03174, NOVEMBER 1988 - REVISED AUGUST 1991
0008, JG, OR P PACKAGE
available features
(TOP VIEW)
•
Input Noise Voltage
0.5 f.1V POp Typ, f = Oto 1 Hz
1.5 f.1V pop Typ, f = 0 to 10 Hz
47 nV/...fHZ Typ, f = 10 Hz
13 nVl...fHZ Typ, f = 1 kHz
C X A [ ] 8 CXB
IN 2
7 VOD +
IN + 3
6
OUT
VDD _
•
High Chopping Frequency ... 10 kHz Typ
•
No Clock Noise Below 10kHz
•
No Intermodulation Error Below 5 kHz
•
Low Input Offset Voltage ... 10 f.1V Max
•
Excellent Offset Voltage Stability
With Temperature ... 0.05 f.1V/oC Max
•
AVD'"
•
CMRR ... 110 dB Min
•
kSVR .•. 120 dB Min
•
Single-Supply Operation
•
Common-Mode Input Voltage Range
Includes the Negative Rail
•
4
CLAMP
5
0014, J, OR N PACKAGE
(TOP VIEW)
INT/EXT
ClKIN
ClKOUT
CXB
CXA
NC
IN-
VOD+
OUT
IN +
NC
CLAMP
C RETURN
VDD-
135 dB Min
FK PACKAGE
(TOP VIEW)
I~
z
w« CD i=:
~
GG~~d
'3'2
No Noise Degradation With External
Capacitors Connected to VDD-
1 2019
J4
18
17
CLKOUT
5
IN NC
6
16
VDD+
7
15
NC
IN +
8
14
OUT
NC
NC
NC
~~,!..!,~~
()
z
I()Zo.
ClZ
:2
Cl
=>
a:
>
«
tud
a:
()
NC - No internal connection
AVAilABLE OPTIONS
PACKAGE
TA
O'C
to
70'C
-40'C
to
85'C
-55'C
to
125'C
VIO max
AT 25'C
S·PIN
20·PIN
CHIP
CERAMIC
PLASTIC
SMALL·
CERAMIC
PLASTIC
CHIP
FORM
OUTLINE
DIP
DIP
OUTLINE
DIP
DIP
CARRIER
(V)
(DOOS)
(JG)
(P)
(D014)
(J)
(N)
(FK)
-
-
TLC2654ACN
-
TLC2654CN
-
-
TLC2654AIN
-
TLC26541N
-
TLC2654AMJ
TLC2654MJ
TLC2654AMN
TLC2654MN
SMALL·
IOfLV
TLC2654AC-BD
20fLV
TLC2654C-8D
IOfLV
TLC2654AI-BD
20 IN
TLC26541-BD
14-PIN
TLC2654ACP
TLC2654AC-14D
TLC2654CP
TLC2654C-14D
-
TLC2654AIP
TLC2654AI-14D
TLC26541P
TLC26541-14D
TLC2654AM-14D
TLC2654M-14D
IOfLV
TLC2654AM-BD
TLC2654AMJG
TLC2654AMP
20fLV
TLC2654M-BD
TLC2654MJG
TLC2654MP
TLC2654Y
TLC2654AMFK
TLC2654MFK
D008 and D014 packages are available taped and reeled_ Add "R" suffix to deVice type (e.g., TLC2654AC·8DR).
Advanced LinCMOS is a trademark of Texas Instruments Incorporated.
PRODUCTION DATA inlormalion is current as 01 publication
date. Products conlorm to specifications per the lerms 01
Texas Instruments standard warranty. Production
processing does not necessarily include testing 01 all
parameters.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
Copyright © 1991, Texas Instruments Incorporated
On products compliant to MIL·STD·883, Class B. all
paramelers are tesled unless olherwlse noted. On all
other products. production processing does nol
necessarily Include testing 01 all parameters.
2-885
TLC2654, TLC2654A
Advanced LinCMOSTM LOW-NOISE CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
description
The TLC2654 and TLC2654A are low-noise
chopper-stabilized operational amplifiers using
the Advanced LinCMOSTM process. Combining
this process with chopper stabilization circuitry
makes excellent dc precision possible. In
addition, circuit techniques are added that give the
TLC2654 and TLC2654A noise performance
unsurpassed by similar devices.
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
Chopper stabilization techniques provide for
extremely high dc precision by continuously nulling
input offset voltage even during variations in
temperature, time, common-mode voltage, and
power supply voltage. The high chopping
frequency of the TLC2654 and TLC2654A
provides excellent noise performance in a
frequency spectrum from near dc to 10 kHz. In
addition, intermodulation or aliasing error is
eliminated from frequencies up to 5 kHz.
A
TtPical 2S0-Hz
Copper-Stabilized
Operational Amplifier
III
/
~~bl~~~4
\
"'-10
100
f - Frequency - Hz
1k
This high dc precision and low noise, coupled with
the extremely high input impedance of the CMOS input stage, make the TLC2654 and TLC2654A ideal
choices for a broad range of applications such as low-level, low-frequency thermocouple amplifiers and strain
gauges and wide-bandwidth and subsonic circuits. (For applications requiring even greater dc precision, use
the TLC2652 or TLC2652A devices, which have a chopping frequency of 450 Hz.)
The TLC2654 and TLC2654A common-mode input voltage range includes the negative rail, thereby providing
superior performance in either single-supply or split-supply applications, even at power supply voltage levels
as low as ±2.3 V.
Two external capacitors are required to operate the device; however, the on-Chip chopper control circuitry is
transparent to the user. On devices in the 14-pin and 20-pin packages, the control circuitry is accessible,
allowing the user the option of controlling the clock frequency with an external frequency source. In addition,
the clock threshold of the TLC2654 and TLC2654A requires no level shifting when used in the single-supply
configuration with a normal CMOS or TTL clock input.
Innovative circuit techniques used on the TLC2654 and TLC2654A allow exceptionally fast overload recovery
time. An output clamp pin is available to reduce the recovery time further.
The device inputs and output are designed to withstand -100-mA surge currents without sustaining latch-up:
In addition, the TLC2654 and TLC2654A incorporate internal ESD-protection circuits that prevent functional
failures at voltages up to 2000 Vas tested under MIL-STD-883C, Method 3015; however, care should be
exercised in handling these devices, as exposure to ESD may result in degradation of the device parametric
performance.
The C-suffix devices are characterized for operation from O°C to 70°C. The I-suffix devices are characterized
for operation from-40°C to 85°C. The M-suffix devices are characterized for operation over the full military
temperature range of -55°C to 125°C.
TEXAS .~
INSTRUMENTS
2-886
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC2654, TLC2654A, TLC2654Y
Advanced LinCMOSTM LOW-NOISE CHOPPER-STABILIZED
OPERATIONAL AMPLIfiERS
functional block diagram
,------I
IN+ 5"----1------.--------l
IN- 4-=--1-f----+------l
I
I
OUT
A
I~~-l
7
8
VDD _
C RETURN
Pin numbers shown are for D014, J, and N packages.
TLC2654Y chip information
These chips, properly assembled, display characteristics similar to the TLC2654. Thermal compression or
ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive
epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
-=-=
CHIP THICKNESS:
15 TYPICAL
-=
BONDING PADS:
4 X 4 MINIMUM
-=
';8
TJ max
-=-=
-=
-=
TOLERANCES
ARE ± 10%
ALL DIMENSIONS
ARE IN MILS
-=-=
-=-=
=150°C
PIN (7) INTERNALLY
CONNECTED TO
BACKSIDEOFCHIP
I"
~I
90
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-887
TlC2654, TlC2654A
Advanced linCMOSTM lOW-NOISE CHOPPER~STABILIZED
OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, vDD+ (see Note 1) ..................... , ... '" .......................... 8 V
Supply voltage, VDD- (see Note 1) ..................................................... -8 V
Differential input voltage (see Note 2) ................................................... ±16 V
Input voltage, VI (any input, see Note 1) ................................................ , ±8 V
Voltage on ClK IN and INT/EXT pins ................................... VDD _ to VDD _ + 5.2 V
Input current, II (each input) .......................................................... ±5 mA
Output current, 10 ................................................................. ±50 mA
Duration of short-circuit current at (or below) 25°C (see N.ote 3) ........................... unlimited
Current into ClK IN and INT/EXT pins ................................................. ±5 mA
Continuous total dissipation ........................................ See Dissipation Rating Table
Operating free-air temperature range, T A: C-suffix ................................... O°C to 70°C
I-suffix ................................. - 40°C to 85°C
M-suffix ............................... - 55°C to 125°C
Storage temperature range .................................................. - 65°C to 150°C
Case temperature for 60 seconds: FK package .......................................... 260°C
lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, or P package ............ 260°C
lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J or JG package .............. 300°C
NOTES: 1. All voltage values. except differential voltages, are with respect to the midpoint between VOO+ and VOO- .
2. Differential voltages are at the noninverting input with respect to the inverting input.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited that the maximum dissipation rating
is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
D008
0014
FK
JG
N
P
TA';; 2S·C
POWER RATING
725mW
950mW
1375mW
1375mW
1050mW
1150mW
1000mW
DERATING FACTOR
ABOVE TA = 2S·C
5.8 mW/oC
7.6 mW/oC
11 mW/oC
11 mW/oC
8.4 mW/oC
9.2mW/oC
8mW/oC
TA = 70·C
POWER RATING
464mW
608mW
880mW
880mW
672mW
TA =8S·C
POWER RATING
377mW
494mW
715mW
715mW
546mW
598mW
520mW
736mW
640mW
TA = 12S·C
POWER RATING
14SmW
190mW
275mW
275mW
210mW
230mW
200mW
recommended operating conditions
C·SUFFIX
Supply voltage, VOD+
Common-mode
input voltage. VIC
Clock input voltage
Operating free-air
temperature, TA
MIN
±2.3
I·SUFFIX
MAX
±8
MIN
±2.3
M-SUFFIX
MAX
±8
VOO-
VOO+-2.3
VOO-
VOO+-2.3
VOO-
VOO-+ 5
VOO-
VOO-+ 5
0
70
-40
TEXAS
85
~
INSTRUMENTS
2-888
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
MIN
±2.3
MAX
±8
UNIT
V
VOO-
VOO+-2.3
V
VOO-
VOO-+5
V
-55
125
·C
TLC2654C, TLC2654AC
Advanced LinCMOSTM LOW-NOISE CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Voo ±
PARAMETER
TEST CONDITIONS
Input offset voltage
VIO
110
Input offset current
lIB
Input bias current
Common-mode input
VICR
voltage range
VIC
output voltage swing
output voltage swing
Large-signal differential
AVD
voltage amplification
= 0,
RS
= 50 Q
= SOQ
= 10 kQ,
See Note 6
RL
= 10 kQ,
See Note 6
Vo
= ±4 V,
RL
= 10 kQ
CMRR
kSVR
IDD
Clamp on-state current
RL
= 100kQ
Clamp off-state current
Vo
= -4 V t04 V
Common-mode
Supply-voltage rejection
Vo = 0, VIC = VICR min,
RS = 50Q
VDD ± = ± 2.3 V to ± 8 V,
ratio (Ll VDD + / Ll VIO)
Vo
rejection ratio
Supply current
Vo
= 0,
= 0,
RS
No load
10
24
UNIT
IlV
0.3
0.004
0.3
llV/oC
25°C
0.003
0.06
0.003
0.02
IlV/mo
25°C
30
30
150
150
50
50
150
150
to
2.7
2.7
25°C
4.7
Full range
4.7
25°C
-4.7
Full range
25°C
-4.7
Full range
120
120
4.8
4.7
4.8
-4.9
-4.7
-4.9
155
-4.7
135
V
155
V
dB
130
kHz
10
25°C
25
25
Full range
25°C
25
25
j.LA
100
100
100
100
25°C
105
Full range
105
110
25°C
110
120
Full range
110
Full range
pA
V
4.7
10
25°C
pA
-5
to
Full range
= 50 Q
4
MAX
0.004
25°C
frequency
TYP
Full range
Full range
RL
MIN
20
-5
RS
Internal chopping
fch
TLC2654AC
MAX
34
25°C
Full range
Maximum negative peak
VOM-
5
Full range
Maximum positive peak
VOM+
TYP
Full range
of input offset voltage
Input offset voltage
long-term drift (see Note 5)
TLC2654C
MIN
25°C
(see Note 4)
Temperature coefficient
aVIO
TAt
=± 5 V(unless otherwise noted)
110
125
125
125
dB
125
dB
120
1.5
2.4
2.5
1.5
pA
2.4
2.5
mA
tFull range is O°C to 70°C.
NOTES: 4. This parameter is not production tested full range. Thermocouple effects preclude measurement of the acutal VIO of these devices
in high-speed automated testing. VIO is measured to a limit determined by the test equipment capbility at the temperature extremes.
The test ensures that the stabilization circuitry is performing properly.
5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
6. Output clamp is not connected.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' OALLAS, TEXAS 75265
2-889
TlC2654C, TlC2654AC
Advanced linCMOSTM lOW-NOISE CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature,
PARAMETER
SR +
SRVn
VNCPP)
In
¢m
Positive slew rate
at unity gain
Negative slew rate
at unity gain
Equivalent input noise
voltage (see Note 7)
Peak-to-peak equivalent
input noise voltage
Equivalent input noise current
Gain-bandwidth product
Phase margin at unity gain
TEST CONDITIONS
Vo = ±2.3 V,
RL = 10 kG,
CL = 100 pF
I
I
I
I
I
I
Voo ± = ± 5 V
TLC2654C
TAt
MIN
TYP
2
25'C
1.5
Full range
1.3
25'C
Full range
2.3
TLC2654AC
MAX
MIN
TYP
1.5
2
MAX
V/lJ.s
1.3
3.7
1.7
2.3
1.7
UNIT
3.7
V/lJ.s
= 10 Hz
25'C
47
47
75
= 1 kHz
= 0 to 1 Hz
25'C
25'C
13
0.5
13
0.5
20
= 0 to 10 Hz
= 1 kHz
25'C
1.5
25'C
1.5
0.004
0.004
25'C
1.9
1.9
25'C
48°
48°
nV/,[Hz
IJ.V
pA/,[Hz
= 10 kHz,
RL = 10 kG,
CL = 100pF
RL=10kG,
CL = 100pF
MHz
tFull range is O°C to 70°C.
NOTE 7: This parameter is tested on a sample basis lor the TLC2654A. For other test requirements, please contact the lactory. This statement
has no bearing on testing or nontesting 01 other parameters.
TEXAS
+
INSTRUMENTS
2-890
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC26541, TLC2654AI
Advanced LinCMOSTM LOW-NOISE CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Vee ± = ± 5 V (unless otherwise noted)
PARAMETER
Via
TEST CONDITIONS
long-term drift (see Note 5)
110
Input offset current
liB
Input bias current
Common-mode input
VICR
voltage range
Maximum positive peak
VOM+
output voltage swing
Maximum negative peak
VOMAVO
output voltage swing
Large-signal differential
voltage amplification
RS = 500
VIC = 0,
CMRR
kSVR
100
5
40
30
0.3
0.004
0.3
flV/ o C
25°C
0.003
0.06
0.003
0.02
flV/mo
25°C
30
30
200
50
200
-5
Full range
RL = 10 kO, See Note 6
Va = ±4V, RL = 10 kO
Clamp on-state current
RL = 100kO
Clamp off-state current
VO=-4Vt04V
Common-mode
rejection ratio
Va = 0, VIC = VICR min,
RS = 50.Q
Supply-voltage rejection
VOO ± = ± 2.3 V to ± 8 V,
ratio (,WOO + III Via)
Va = 0,
RS = 500
Supply current
Va = 0,
No load
200
to
2.7
2.7
25°C
4.7
Full range
4.7
25°C
-4.7
Full range
25°C
-4.7
120
Full range
120
4.8
4.7
-4.7
-4.9
155
-4.7
135
155
25
25
25
Full range
25°C
Full range
110
25°C
dB
kHz
f!A
100
100
100
100
125
110
125
125
120
125
dB
120
1.5
2.4
2.5
1.5
pA
dB
110
110
Full range
V
10
25
105
V
125
25°C
105
4.8
-4.9
Full range
25°C
25°C
pA
V
4.7
10
Full range
pA
-5
to
25°C
frequency
200
50
25°C
RL = 10 kO, See Note 6
flV
0.004
Full range
RS = 500
UNIT
Full range
Full range
Internal chopping
fch
20
TLC2654AI
TYP MAX
MIN
4
10
TLC26541
TYP MAX
Full range
of input offset voltage
Input offset voltage
MIN
25°C
Input offset voltage
Temperature coefficient
aVIO
TAt
2.4
2.5
mA
tFull range is - 40°C to 85°C.
NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life testatTA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
6. Output clamp is not connected.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-891
TlC26541, TlC2654AI
Advanced linCMOSTM lOW-NOISE CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature, Voo ±
PARAMETER
SR+
SRVn
VN(PP)
In
4>m
Positive slew rate
at unity gain
Negative slew rate
at unity gain
TEST CONDITIONS
Vo = ±2.3 V,
RL = 10 kil,
CL=100pF
=± 5 V
TLC26541
TAt
MIN
TYP
25°C
Full range
1.5
1.2
2
25°C
Full range
2.3
3.7
TLC2654AI
MAX
MIN
1.5
TYP
2
MAX
V/J.!S
1.2
1.5
2.3
3.7
V/J.!s
1.5
Equivalent input noise
f = 10 Hz
25°C
47
47
75
voltage (see Note 7)
Peak-to-peak equivalent
f = 1 kHz
f = 0 to 1 Hz
25°C
13
0.5
20
25°C
13
0.5
input noise voltage
f = Ot010Hz
25°C
1.5
1.5
Equivalent input noise current
f = 1 kHz
25°C
0.004
0.004
Gain-bandwidth product
f= 10 kHz,
RL = 10 kil,
25°C
1.9
1.9
25°C
48°
48°
Phase margin at unity gain
CL = 100 pF
RL = 10k>!,
CL = 100 pF
UNIT
nV/#iZ
J.!V
pA/#iZ
MHz
tFull range is - 40°C to 85°C.
NOTE 7: This parameter is tested on a sample basis for the TLC2654A. For other test requirements, please contact the factory. This statement
has no bearing on testing or nontesting of other parameters.
~
TEXAS
INSfRUMENlS
2-892
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLC2654M, TLC2654AM
Advanced LinCMOSTM LOW-NOISE CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Voo ±
PARAMETER
TEST CONDITIONS
Input offset voltage
VIO
(see Note 4)
Input offset voltage long-
110
Input offset current
liB
Input bias current
VICR
Common-mode input
voltage range
Maximum positive peak
VOM+
output voltage swing
Maximum negative peak
VOMAVD
output voltage swing
Large-signal differential
voltage amplification
RS = 50Q
VIC = 0,
CMRR
kSVR
IDD
5
20
RL = 10 kQ, See Note 6
Vo = ±4 V, RL = 10 kQ
J.lV
0.004
0.3'
J.lV/oC
25°C
0.003
0.06'
0.003
0.02'
J.lV/mo
25°C
Full range
30
25°C
50
30
25°C
500
500
50
500
500
-5
to
to
2.7
25°C
-4.7
-4.9
-4.7
-4.9
Full range
-4.7
155
-4.7
135
155
25°C
120
120
4.7
25
25
25
25
25°C
105
rejection ratio
Vo = 0, VIC = VICR min,
RS = 50Q
Full range
105
Supply-voltage rejection
VDD± = ±2.3Vto±8V,
25°C
110
ratio (i\.VDD +1 i\.VIO)
Vo = 0,
Full range
105
V
dB
10
25°C
Common-mode
V
120
Full range
Vo = -4 V t04 V
4.8
4.7
10
Clamp off-state current
kHz
J.lA
25°C
100
100
Full range
500
500
25°C
125
110
125
125
120
125
dB
115
2.4
1.5
2.4
2.5
2.5
pA
dB
110
1.5
Full range
pA
V
4.8
Full range
pA
2.7
4.7
4.7
Full range
RL = 100kQ
No load
40
UNIT
0.3'
Clamp on-state current
Vo = 0,
MAX
10
0.004
25°C
RS = 50Q
TYP
4
Full range
Full range
RL = 10 kQ, See Note 6
MIN
50
-5
RS = 50Q
frequency
Supply current
MAX
Full range
Internal chopping
fch
TLC2654AM
TYP
Full range
of input offset voltage
term drift (see Note 5)
MIN
25°C
Temperature coefficient
aVIO
TAt
=± 5 V (unless otherwise noted)
TLC2654M
mA
'On products compliant to MIL-STD-BB3, Class B, this parameter is not production tested.
tFull range is - 55°C to 125°C.
NOTES: 4. This parameter is not production tested full range. Thermocouple effects preclude measurement of the actual VIO of these devices
in high-speed automated testing. VIO is measured to a limit determined by the test equipment capability at the temperature extremes.
The test ensures that the stabilization circuitry is performing properly.
5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
6. Output clamp is not connected.
=
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-893
TlC2654M, TlC2654AM
Advanced linCMOSTM lOW-NOISE CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature, Voo ±
PARAMETER
SR+
SRVn
TEST CONDITIONS
Positive slew rate
at unity gain
Negative slew rate
at unity gain
Equivalent input noise
voltage
VN(PP)
Peak-to-peak equivalent
input noise voltage
In
Equivalent input noise current
Gain-bandwidth product
Phase margin at unity gain
4>m
tFull range IS - 55°C to 125°C.
VO=±2.3V, RL = 10kn, CL = 100pF
f
f
f
f
f
f
MIN
TYP
25°C
Full range
TAt
1.5
1.1
2
25°C
2.3
3.7
Full range
1.3
= 10 Hz
25°C
= 1 kHz
25°C
13
= 0 to 1 Hz
25°C
25°C
0.5
1.5
= 0 to 10 Hz
= 1 kHz
= 10kHz, RL = 10kn, CL = 100pF
RL = 10 kQ, CL = 100 pF
TEXAS ~
INSfRUMENTS
2-894
=± 5 V
POST OFFICE BOX 655303' DALJ.AS. TEXAS 75265
47
25°C
0.004
25°C
1.9
25°C
48°
MAX
UNIT
VI(.1s
V/(.1s
nVl'I'HZ
(.1V
pA/'I'HZ
MHz
TlC2654Y
Advanced linCMOSTM lOW-NOISE CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Voo±
VIO
PARAMETER
Input offset voltage
Input offset voltage
long-term drift (see Note 4)
=± 5 V (unless otherwise noted)
TEST CONDITIONS
MIN
RS=50n
VIC =0,
TVP
5
MAX
20
UNIT
0.003
0.06
fLV/mo
fLY
110
Input offset current
30
pA
liB
Input bias current
50
pA
-S
VICR
Common-mode input voltage range
to
RS= 50
V
2.7
Maximum positive peak
VOM+
VOMAVO
fch
CMRR
kSVR
100
output voltage swing
Maximum negative peak
output voltage swing
Large-signal differential
voltage amplification
Internal chopping Irequency
Clamp on-state current
RL =10 kn,
See Note 5
4.7
4.8
V
RL =10 kn,
See Note 5
-4.7
-4.9
V
Vo =±4 V,
RL = 10 kg
120
155
dB
10
Clamp olf-state current
Common-mode rejection ratio
Supply-voltage rejection
Vo = 0, V'C = VICRmin,
VOO ± = ± 2.3 V to ± 8 V,
RS=SOn
ratio (,lVOO + I,lVIO)
Supply current
VO=O,
RS=50n
No load
VO=O,
Hz
25
RL=100kn
VO=-4Vt04V
fLA
100
10S
125
110
125
1.S
pA
dB
dB
2.4
mA
NOTES: 4. Typical values are based on the input offset voltage shift observed through 168 hours 01 operating lile test at TA = 150°C extrapolated
to TA = 2SoC using the Arrhenius equation and assuming an activation energy 010.96 eV.
5. Output clamp is not connected.
operating characteristics at Voo± = ±5 V, TA = 25°C
SR+
SRVn
VN(PP)
In
"m
PARAMETER
Positive slew rate at unity gain
Negative slew rate at unity gain
Equivalent input noise voltage
TEST CONDITIONS
Vo =±2.3 V, RL = 10 kn, CL = 100 pF
input noise voltage
I=Ot010Hz
2.3
3.7
13
1=1 kHz
I=Ot01Hz
TVP
2
47
1= 10 Hz
Peak-to-peak equivalent
MIN
1.5
O.S
1.S
0.004
Equivalent input noise current
1=1 kHz
Gain-bandwidth product
1= 10 kHz,
RL = 10 kn, CL = 100 pF
1.9
Phase margin at unity gain
RL = 10kn,
CL=100pF
48°
MAX
UNIT
V/fLS
V/fLs
nV/>JHZ
fLY
pAiMz
MHz
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • OALLAS. TEXAS 75265
2-89S
TLC2654, TLC2654A
Advanced LinCMOSTM LOW-NOISE CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
table of graphs
FIGURE
vs
Temperature
Clamp current
vs
Output voltage
Maximum peak output voltage
vs
Output current
swing
vs
Temperature
1
2
3
4
5
6
7
8
9
10
vs
Frequency
11
vs
Frequency
vs
Frequency
vs
Tem perature
vs
Supply voltage
12
13
14
15
16
17
18
19
20
21
22
23
24
Input offset voltage
VIO
110
liB
YOM
Distribution
vs' Chopping frequency
Normalized input oifsei voltage
Input offset current
Input bias current
Maximum peak-to-peak output voltage
VOPP
CMRR
AVD
swing
Common-mode rejection ratio
Differential voltage amplification
fch
Chopping frequency
IDD
Supply current
lOS
Short-circuit output current
SR
Slew rate
Vn
Chopping frequency
Common-mode voltage
vs
Temperature
vs
Supply voltage
vs
Temperature
vs
Supply voltage
vs
Temperature
vs
Supply voltage
Temperature
Large-signal
vs
Chopping frequency
Equivalent input noise voltage
vs
Frequency
Supply-voltage rejection ratio
vs
Frequency
vs
Supply voltage
noise voltage
Gain-bandwidth product
Phase margin
IPm
Temperature
vs
vs
Small-signal
Peak-to-peak equivalent input
kSVR
Chopping frequency
vs
vs
Pulse response
VN(PP)
vs
Phase shift
vs
Temperature
vs
Supply voltage
vs
Load capacitance
vs
Frequency
TEXAS ~
INSTRUMENTS
2-896
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
25,26
27
28
29
30
31
32
13
TLC2654, TLC2654A
Advanced LinCMOSTM LOW-NOISE CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
NORMALIZED INPUT OFFSET VOLTAGE
vs
DISTRIBUTION OF TLC2654
INPUT OFFSET VOLTAGE
CHOPPING FREQUENCY
20
40
456 Units Tested
16
#.
..
I
Cl
S
'c
(5
Qj
12
en
II:
HI
CI>
Cl
c
CI>
<>
Cii
I
>
'0
!!
30
!!
I
::>
VOO±=±5V
VIC = 0
TA = 25°C
>:::l
VOO± = ±5V
TA = 25°C
Packa ~e
20
0
II
'5
0-
..,..5.,
8
10
V
.!::!
OJ
0-
E
••••••••
~
m
4
z
I
0
0
:>
o
- 20 - 16 - 12 - 8 - 4 0
4
8
12
VIO - Input Offset Voltage - J.l V
16
-10
100
20
Figure 2
INPUT OFFSET CURRENT
INPUT OFFSET CURRENT
vs
vs
CHOPPING FREQUENCY
FREE-AIR TEMPERATURE
100
Voo± = ±5V
<0I
Voo± = ±5V
VIC = 0
TA = 25°C
VIC = 0
I
100
E
f!
:;
0
f!
80
40
Qj
en
0==
'5
40
0-
..5
I
1/
2-
./
60
0
I
I
60
'5
0I
I
:;
U)
..5
<0-
80
E
Qj
0==
100 k
10 k
Figure 1
140
120
1k
fch - Chopping Frequency - Hz
2-
V
/
/
/
/
20
20
o
100
r-
..,...""
o
1k
10 k
fch - Chopping Frequency - Hz
100 k
25
Figure 3
105
45
65
85
TA - Free-Air Temperature - °C
125
Figure 4
tData at high and low temperatures are applicable only within the rated operaling free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2--897
I
I
TLC2654, TLC2654A
Advanced LinCMOSTM LOW·NOISE CHOPPER-STABILIZED
OPERATIONAL AMPUFIERS
TYPICAL CHARACTERISTICSt
INPUT BIAS CURRENT
INPUT BIAS CURRENT
vs
vs
COMMON-MODE INPUT VOLTAGE
CHOPPING FREQUENCY
Voo± = ±5V
VIC = 0
TA = 25'C
Voo± = +5V
TA = 25°C
«Co
«Q.
I
I
E
I!!
E
I!!
~
u
(/)
in'"
SQ.
~
U
100
(/)
SQ.
-...
I
I
g=
1k
10 k
fch - Chopping Frequency - Hz
INPUT BIAS CURRENT
CLAMP CURRENT
vs
vs
FREE-AIR TEMPERATURE
OUTPUT VOLTAGE
lOOI1A
E
60
U
"---40
r--
.......
,/
/
/
r- TA = 25'C
/
II
I
positive Clamp Current
E 100 nA
~
10nA
Q.
E
o'"
.!:
II
Ii /
II
:::I
U
lnA
IINegative Clamp Current
I
g=
100 pA
L.- I
20
10 pA
o
25
1 pA
45
65
85
105
TA - Free-Air TemperatUre - 'c
125
4
4.2
4.4
4.6
4.8
IVol- Output Voltage - V
Figure 8
Figure 7
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
+
INSTRUMENTS
2-898
100 k
//V
Voo± = ±5V
I
'5Q.
-
100
Figure 6
80
.!!!
/'
V
Figure 5
VOO±=±5V
VIC = 0
lXI
20
o
5
100
(/)
40
.!:
10
-5 -4 -3 -2 -1 0
2
3
4
VIC - Common-Mode Input Voltage - V
:::I
I
60
lXI
g=
~
80
.!!!
.!:
«Q.
,
100
1000
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
5
TlC2654, TlC2654A
Advanced linCMOSTM lOW-NOISE CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
MAXIMUM PEAK OUTPUT VOLTAGE
MAXIMUM PEAK OUTPUT VOLTAGE
vs
vs
OUTPUT CURRENT
FREE-AIR TEMPERATURE
5~~--r-----r-----r-----r-----'
>
>
I
"
~
Cl
I
4.81---+_____-""...,---+_____---+-"'_=---+_____-___
5
>
4.61-~-+_____--+_____---"'k;----+_____-___I
""
~
~
4.41---t-----t-----t------'lJ----l
E
::I
E.
os
:::;; -2.5
os
4.21---+_____--+_____--+_____--+_____----'...--1
I
:::;;
o
~
>
4~----~----~----~----~--~
o
~
0.4
0.8
1.2
1.6
:;
-25
0
25
50
75
100
TA - Free-Air Temperature - °C
Figure 10
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
COMMON-MODE REJECTION RATIO
vs
vs
FREQUENCY
FREQUENCY
10
140
"o 120 r---..
TA = 25°C
I
8
.~
TA = - 55"C
""m
c-
11111111
6
I
o
'g
1
~
"8"
4
';(
~
40
'"
"I'
I
I
0
60
o
2
80
:::;;
C
o
E
E
::I
E
a::
Q.
'\
a:
c 100
11111111
I I
TA = 125°C
o
Zos
125
VO~±I=I HI"
m
o
~
-50
Figure 9
Q.
~
-75
1'01- Output Current - mA
:;
&.
-5
2
l"
~
VOO±=±5V_
RL = 10 kQ
0
';(
:::;;
I
~
5
~
E
2.5
o
&.
';(
:e
"g>
'5
o
>
5Q.
o
5
100
1k
~
~
Voo± = ±5V
RL = 10 kQ
100 k
10 k
f - Frequency - Hz
:::;;
20
o
1M
o
10
100
1k
10 k
f - Frequency - Hz
Figure 11
Figure 12
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-899
TlC2654, TlC2654A
Advanced linCMOSTM lOW-NOISE CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
FREE-AIR TEMPERATURE
120
lD
't>
I
100
r-...
c
~
80
.'"
PHASjSHIFT
Ol
40
~
20
~
l5
0
.............
"'"
60
g
'0
t'0vo
...............
I
CL = 100 pF
>
~
.
.c
\
'" '"
E
Ol
IV
160°
'a
Q.
IV
OJ 154
.~
12
180°
~
200°
0
>
I
.~ 10.2
o
I
.,.:>
12
u..
2
3
-......"
/'
~
9.5
\.
Ol
c
\.
9.8
o
/V
C
II>
'\
,g
10
"
\
g>
'ji
\
\
Co
0
.c
~
0
I
.c
/
-"
"- ./
456
7
9
8
8.5
- 75
- 50
- 25
0
25
50
75
Ivoo ±I- Supply Voltage - V
TA - Free-Air Temperature - °C
Figure 15
Figure 16
100
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
2-900
125
N
l!!
u..
9.4
- 25
TA - Free-Air Temperature - °C
Figure 13
~
c
j
- 50
10.5
'"I
8.,.
152
I
11.4
::r:
Va = ±4 V
158
"
-=
:E
\
100 k
f - Frequency - Hz
Voo± = ±5V
RL = 10 kn
0::
120°
"'-
""
VOO±=±5V
RL = 10 kn
0-20
~
,
>
E
l!!
80°
lD
't>
I
0
........
!E
E
160
60°
.2
Q.
LARGE-SIGNAL VOLTAGE AMPLIFICATION
vs
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
125
TlC2654, TlC2654A
Advanced linCMOSTM lOW-NOISE CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
SUPPLY CURRENT
SUPPLY CURRENT
VS
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
2
2
I
=
Vo
0
No Load
1.6
1.6
'"E
'"E
I
~,.
,.<>-<>-
E
~,.
1.2
3
4
5
6
7
8
............
Vo = 0
No Load
-75
-50
V
-25
0
25
50
75
100
TA - Free-Air Temperature - °C
125
Figure 17
Figure 18
SHORT-CIRCUIT OUTPUT CURRENT
SHORT-CIRCUIT OUTPUT CURRENT
vs
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
15
Vo
TA
8
=0
= 25°C
=±5V
=0
VOO±
'"
E
I
10
Vo
E
4
=-100mV
VIO
0
-
~
:;
o
5
o
o
1:;
·s
VID
= -100 mV
2
2
9t:
-4
-5
o
0
.c
!II
I
!II
t---..
= ±2.5 V
o
2
·s
9t:
VOO±
0.4
12
0
~
Q
/voo ±/- Supply Voltage -
"5
<>:;
r-
.P
0
0
1.2
...........
...........
,.
0
I
f-""
!II
I
0.4
C
,.~
VOO±=±5V
ii
<>- 0.8
0.8
Q
'"
--r--
r--
r--
0
>-
E
E
r--
I
0
b
!II
I
I
VOO± = ±7.5 V
.c
-8
I"-
.9
-12
o
2
-
3
!II
:n
= 100 mV
VID
I
4
567
-10
.9
8
f.--15
-75
-50
/VOO ±/- Supply Voltage - V
Figure 19
--
VID
= 100 mV
I---f--
I...---
--
-25
0
25
50
75
100
TA - Free-Air Temperature - °C
125
Figure 20
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
2-901
TlC2654, TlC2654A
Advanced linCMOSTM lOW-NOISE CHOPPER·STABILIZED
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
SLEW RATE
SLEW RATE
vs
vs
SUPPLY VOLTAGE
-
4
5
~
....... 1--.
SR-
-
........... ~R-
4
3
II>
II>
:>
:>
:::I.
~
a::
j
.,
I
2
III
/'"
I
a::
-
to-
SR+
10
a::
SR +
2
~
~
I
a::
III
III
o
o
RL
CL
TA
2
3
4
5
= 10 kQ
= 100 pF
= 25°C
=e
6
7
o
- 75
B
=
=
- 50
75
3
\
>
2
125
=
=
=
=
Voo±
±5V
RL
10 kQ
CL
100 pF
TA
25°C
~,
.,I
.
Cl
=
voo±
±5V
RL
10 kQ
CL
100 pF
'0
~
- 25
0
25
50
75
100
TA - Free-Air Temperature - °C
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
4
...........
=
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
25
!'!
--- ---....
Figure 22
I
8,
0
TA
-25
15
=
=
= 25°C
>
:;
Q.
:;
0
0
-1
I
I
>
............. ..........
Figure 21
100
50
o
-
Voo±
±5V
RL
10 kQ
100 pF
CL
Ivoo ±I- Supply Voltage - V
o
I--
:::I.
3
I
S.
:s
--
FREE-AIR TEMPERATURE
0
>
-50
If
-75
':'100
o
-2
-4
2
3
t- Time -fis
4
5
\~
-3
6
7
Figure 23
o
5
10 15 20
t- Time-fis
25
30
35
Figure 24
tOala at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices,
~
TEXAS
INSTRUMENTS
2-902
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
40
TLC2654, TLC2654A
Advanced LinCMOSTM LOW-NOISE CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
PEAK-TO-PEAK INPUT NOISE VOLTAGE
PEAK-TO-PEAK INPUT NOISE VOLTAGE
vs
vs
CHOPPING FREQUENCY
CHOPPING FREQUENCY
1.8
5
~
I
CI>
1.6
01
l!!
"0
>
.
1.4
Voo ± = ±5 V
RS = loon
f = 0101 Hz
~
TA = 25°C
>
CI>
Cl
l!!
"0
z
1.2
'0
z
'5
Il.
CI>
Il.
0.8
i
c..
0.4
gj
ii"
!:!:.
z
>
.5
as
\
CI>
'7
.2
-
~
I
ii"
c..
Z
>
4
8
2
6
fch - Chopping Frequency - kHz
10
..
vs
FREQUENCy
FREQUENCY
140
40
Voo± = ±5V
RS = loon
IX!
T
.2
c 100
0
'isCI>
30
'ar
a:
.,
20
'"
E
10
l!!
is
60
>.
0.
Il.
"I
'-
...
>c
20
VOO + = ± 2.3 V 10 ± 8 V
TA =-25°C 1111
I
I
f - Frequency - Hz
1k
f - Frequency - Hz
Figure 27
Figure 28
1k
kSVR""'::
40
a
o
100
kSVR+
til
a:
>
til
10
"""~,
80
>
W
I
1
I"--- r--..
r--..
Cl
1\
.!!
~
0-
120
'"
'5
:;
"tI
I
= 25°C
a:
z
.5
10
SUPPLY-VOLTAGE REJECTION RATIO
vs
'0
Il.
4
6
8
fch- Chopping Frequency - kHz
2
EQUIVALENT INPUT NOISE VOLTAGE
CI>
Cl
CI>
o
o
Figure 26
S
"0
>
'"
-
f'....
Figure 25
~>
I
2
"'c..asCI>"
0.2
o
o
\
.,.
\
50
c
3
Il.
0.6
I
TA = 25°C
CI>
'5
.,..5as
4
..
CI>
'0
Voo± = ±5V
RS = 100 n
f = 01010 Hz _
I
10 k
10
100
10 k
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-903
TlC2654, TlC2654A
Advanced linCMOSTM lOW-NOISE CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS .
TYPICAL CHARACTERISTICSt
GAIN-BANDWIDTH PRODUCT
GAIN-BANDWIDTH PRODUCT
vs
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
2.1
2.6
RL = 10 kn
CL = 100 pF
TA = 25°C
N
:x:
::;;
I
..
"
U
N
:x:
::;;
J
2
2
Q.
oS
1
"cos
III
1.9
C
'iii
(!l
I
1.8
o
-"
2.4
/
V
,..-
V
V
I
..
2.2
c:;
"2
2
Q.
.c
;;
'j
en
1.8
---
C 1.6
'iii
1.2
-75
2345678
-5\1
::
Figure 29
Figure 30
PHASE MARGIN
PHASE MARGIN
vs
LOAD CAPACITANCE
/
V
,/'
V
--
60
..e
5l'
40
2'
..
30
Q.
20
os
::;;
en
os
.c
f
I
I
~
"$.
40
=
'"
~~
~
.........
.............
~
10
o
2345678
IVoo ±I- Supply Voltage - V
o
o
Figure 31
200
400
600
G.. - Load Capacitance -
800
pF
Figure 32
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
2-904
125
=
E
42
...........
Voo± ±5V
RL = 10kn
TA
25°C
50 '\..
en
"cI
/
44
-25
0
25
50
75
100
TA - Free-Air Temperature - °C
SUPPLY VOLTAGE
46
.~
'" '"
vs
5l'
::;;
"
"-
III
1.4
f
"cI
'" "-"-
(!l
RL ~ 10 ~n
CL = 100 pF
TA = 25°C
48
=
I\.
"cos
Ivoo ±I- Supply Voltage - V
50
VOO±=±5V
RL = 10kn._
CL
100pF
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
1000
TlC2654, TlC2654A
Advanced linCMOSTM lOW-NOISE CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
capaCitor selection and placement
leakage and dielectric absorption are the two important factors to consider when selecting external capacitors
CXA and CXB' Both factors can cause system degradation, negating the performance advantages realized
by using the TlC2654.
Oegradation from capaCitor leakage becomes more apparent with increasing temperatures. low-leakage
capacitors and standoffs are recommended for operation at TA = 125°C. In addition, guard bands around the
capaCitor connections on both sides of the printed circuit board are recommended to alleviate problems
caused by surface leakage on circuit boards.
Capacitors with high dielectric absorption tend to take several seconds to settle upon application of power,
which directly affects input offset voltage. In applications needing fast settling of input offset voltage, it is
recommended that high-quality film capacitors, such as mylar, polystyrene, or polypropylene, be used. In
other applications, however, a ceramic or other low-grade capaCitor may suffice.
Unlike many choppers available today, the TlC2654 is designed to function with values of CXA and CXB in
the range of 0.1 jlF to 1 jlF without degradation to input offset voltage or input noise voltage. These capacitors
should be located as close as possible to the CXA and CXB pins and returned to either the Voo- pin or the
C RETURN pin. Note that on many choppers, connecting these capacitors to the Voo- pin causes
degradation in noise performance, a problem that is eliminated on the TlC2654.
internal/external clock
The TlC2654 has an internal clock that sets the chopping frequency to a nominal value of 10kHz. On a-pin
packages, the chopping frequency can only be controlled by the internal clock; however, on all 14-pin
packages and the 20-pin FK package, the device chopping frequency may be set by the internal clock or
controlled externally by use of the INT/EXT and ClK IN pins. To use the internal 1O-kHz clock, no connection
is necessary. If external clocking is desired, connect the INT/EXT pin to VOO- and the external clock to ClK
IN. The external clock trip point is 2.5 V above the negative rail; however, the ClK IN pin may be driven
from the negative rail to 5 V above the negative rail. This allows the TlC2654 to be driven directly by 5-V
TTL and CMOS logic when operating in the single-supply configuration. If this 5-V level.is exceeded, damage
could occur to the device unless the current into the ClK IN pin is limited to ±5 mA. A divide-by-two frequency
divider interfaces with the ClK IN pin and sets the
chopping frequency. The chopping frequency
>
I
o
appears on the ClK OUT pin.
III
N'
overload recovery/output clamp
When large differential input voltage conditions are
applied to the TlC2654, the nulling loop attempts
to prevent the output from saturating by driving
CXA and CXB to internally-clamped voltage levels.
Once the overdrive condition is removed, a period
of time is required to allow the built-up charge to
dissipate. This time period is defined as overload
recovery time (see Figure 33). Typical overload
recovery time for the TlC2654 is significantly
faster than competitive products; however, if
required, this time can be reduced further by use
of internal clamp circuitry accessible through the
CLAMP pin.
=
/
voo±
±5V
TA
25°C
=
~
"[
V
;;
o
I
0- 5
>
>
E
0
I
III
Dl
S
~
;;
0..
.E
I-50
o
">
10
20
30
40
50
60
70
80
t- Time - ms
Figure 33. Overload Recovery
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-905
TlC2654, TlC2654A
Advanced linCMOSTM lOW-NOISE CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
The clamp is simply a switch that is automatically activated when the output is approximately 1 V from either
supply rail. When connected to the inverting input (in parallel with the closed-loop feedback resistor), the
closed-loop gain is reduced, and the TLC2654 output is prevented from going into saturation. Since the output
must source or sink current through the switch (see Figure 8), the maximum output voltage swing is slightly
reduced.
thermoelectric effects
To take advantage of the extremely low offset voltage temperature coefficient 01 the TLC2654, care must be
taken to compensate for the thermoelectric effects present when two dissimilar metals are brought into contact
with each other (such as device leads being soldered to a printed circuit board). It is not uncommon for
dissimilar metal junctions to produce thermoelectric voltages in the range of several microvolts per degree
Celsius (orders of magnitude greater than the 0.01-ILV/oC typical of the TLC2654).
To help minimize thermoelectric effects, careful attention should be paid to component selection and circuit
board layout. Avoid the use of nonsoldered connections (such as sockets, relays, switches, etc.) in the input
Signal path. Cancel thermoelectric effects by duplicating the number of components and junctions in each
device input. The use of low-thermoelectric-coefficient components, such as wire-wound resistors, is also
beneficial.
latch-up avoidance
Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC2654
inputs and output are designed to withstand -100-mA surge currents without sustaining latch-up; however,
techniques to reduce the chance of latch-up should be used whenever possible. Internal protection diodes
should not be forward biased in normal operation: Applied input and output voltages should not exceed the
supply voltage by more than 300 mY. Care should be exercised when using capacitive coupling on pulse
generators. Supply transients should be shunted by using decoupling capacitors (0.1 ILF typical) located
across the supply rails as close to the device as possible.
The current path established if latch-up occurs is usually between the supply rails and is limited only by the
impedance of the power supply and the forward resistance of the parasitic thyristor. The chance of latCh-Up
occurring increases with increasing temperature and supply voltage.
electrostatic discharge protection
The TLC2654 incorporates internal ESD-protection circuits that prevent functional failures at voltages at or
below 2000 V. Care should be exercised in handling these devices, as exposure to ESD may result in
degradation of the device parametric performance.
theory of operation
Chopper-stabilized operational amplifiers offer the best dc performance of any monolithic operational
amplifiers. This superior performance is the result of using two operational amplifiers - a main amplifier and
a nulling amplifier - plus oscillator-controlled logic and two external capacitors to create a system that behaves
as a single amplifier. With this approach, the TLC2654 achieves submicrovolt input offset voltage,
submicrovolt noise voltage, and offset voltage variations with temperature in the nV/oC range.
The TLC2654 on-Chip control logic produces two dominant clock phases - a nulling phase and an amplifying
phase. The term "chopper-stabilized" derives from the process of switching between these two clock phases.
Figure 34 shows a simplified block diagram of the TLC2654. Switches A and Bare make-belore-break types.
During the nulling phase, switch A is closed, shorting the nulling amplifier inputs together and allowing the
nulling amplifier to reduce its own input offset voltage by feeding its output signal back to an inverting input
TEXAS ~
INSTRUMENTS
2-906
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TlC2654, TlC2654A
Advanced linCMOSTM lOW-NOISE CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
Main
IN+ ______- .__________,
IN - ______----+----------,
>-___ vo
A
Figure 34. TLC2654 Simplified Block Diagram
node. Simultaneously, external capacitor CXA stores the nulling potential to allow the offset voltage of the
amplifier to remain nulled during the amplifying phase.
During the amplifying phase, switch B is closed, connecting the output of the nulling amplifier to a noninverting
input of the main amplifier. In this configuration, the input offset voltage of the main amplifier is nulled. Also,
external capacitor CXB stores the nulling potential to allow the offset voltage of the main amplifier to remain
nulled during the next nulling phase.
This continuous chopping process allows offset voltage nulling during variations in time and temperature and
over the common-mode input voltage range and power supply range. In addition, because the low-frequency
signal path is through both the null and main amplifiers, extremely high gain is aChieved.
The low-frequency noise of a chopper amplifier depends on the magnitude of the component noise prior to
chopping and the capability of the Circuit to reduce this noise while chopping. The use of the Advanced
LinCMOS process, with its low-noise analog MOS transistors and patent-pending input stage deSign,
significantly reduces the input noise voltage.
The primary source of non ideal operation in chopper-stabilized amplifiers is error charge from the switches.
As charge imbalance accumulates on critical nodes, input offset voltage can increase, especially with
increasing chopping frequency. This problem has been significantly reduced in the TLC2654 by use of a
patent-pending compensation circuit and the Advanced LinCMOS process.
The TLC2654 incorporates a feed-forward design that ensures continuous frequency response. Essentially,
the gain magnitude of the nulling amplifier and compensation network crosses unity at the break frequency
of the main amplifier. As a result, the high-frequency response of the system is the same as the frequency
response of the main amplifier. This approach also ensures that the slewing characteristics remain the same
during both the nulling and amplifying phases.
The primary limitation on ac performance is the chopping frequency. As the input signal frequency approaches
the chopper's clock frequency, intermodulation (or aliasing) errors result from the mixing of these frequencies.
To avoid these error signals, the input frequency must be less than half the clock frequency. Most choppers
available today limit the internal chopping frequency to less than 500 Hz in order to eliminate errors due to
the charge imbalancing phenomenon mentioned previously. However, to avoid intermodulation errors on a
500-Hz chopper, the input signal frequency must be limited to less than 250 Hz. The TLC2654 removes this
restriction on ac performance by using a 1O-kHz internal clock frequency. This high chopping frequency allows
amplification of input signals up to 5 kHz without errors due to intermodulation and greatly reduces lowfrequency noise.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-907
TlC2654, TlC2654A
Advanced linCMOSTM lOW-NOISE CHOPPER-STABILIZED
OPERATIONAL AMPLIFIERS
THERMAL INFORMATION
temperature ~oefficient of Input offset voltage
Figure 35 shows the effects of package-induced thermal EMF. The TLC2654 can null only the offset voltage
within its nulling loop. There are metal-to-metal junctions outside the nulling loop (bonding wires, solder joints,
etc.) which produce EM F. In Figu re 35, a TLC2654 packaged in a 14-pin plastic package (N package) was placed
in an oven at 25°C at t = 0, biased up and allowed to stabilize. At t= 3 min, the oven was turned on and allowed
to rise in temperature to 125°C. As evidenced by the curve, the overall change in input offset voltage with
temperature is much less than the specified maximum limit of 0.05 IlV/oC.
8
4
0.04
~
G>
Cl
.....
,
0 p-
> -4
ii
~
:;
I
o
-0.04
!
-8
Q
,...18
G>
~
;g
VIa
a
t
:;
c-
.E
~
I
-15
0.11lF
I
5!
-12
>
0
~
II:
1/
c-
.E
"I,
Jrr
l!
"0
a
o.L
0.11lF
Ef
V
o
3
6
9
12 15 18 21
Time - minutes
24
27
30
Figure 35. Effects of Package-Induced Thermal EMF
TEXAS
~
INsrRUMENlS
2-908
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
Vo
=Va 11000
TlE2021 , TlE2021A, TlE2021 B, TlE2021Y
EXCALIBUR HIGH-SPEED lOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
03197, FEBRUARY 1989 - REVISED OCTOBER 1991
available features
•
Supply Current ... 230 J.lA Max
•
High Unity-Gain Bandwidth ... 2 MHz Typ
•
High Slew Rate ... 0.45 V/J.ls Min
•
Supply Current Change Over Military Temp
Range ... 10 J.lA Typ
•
Specified for Both 5-V Single-Supply and
± 15-V Operation
•
•
High Open-Loop Gain .•• 6.5 V/J.lV
(136 dB) Typ
•
Low Offset Voltage •.. 100 J.lV Max
•
Offset Voltage Drift With Time
0.005 J.lV/mo Typ
•
Low Input Bias Current .,. 50 nA Max
•
Low Noise Voltage ••• 19 nVi.fHZ Typ
Phase-Reversal Protection
description
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
The TLE2021, TLE2021 A, and TLE2021 B
devices are precision, high-speed, low-power
operational amplifiers using a new Texas
Instruments patent-pending Excalibur process.
These devices combine the best features of the
OP21 with highly improved slew rate and unitygain bandwidth.
120
III
Typ Icc
"0
I
I
Phase Shift
..,6 100
~
=a
~GO
The complementary bipolar Excalibur process
utilizes isolated vertical P-N-P transistors that
yield dramatic improvement in unity-gain
bandwidth and slew rate over similar devices.
"" A~i'..
60
40
~
e
The addition of a patent-pending bias circuit in
conjunction with this process results in extremely
stable parameters with both time and
temperature. This means that a "precision" device
remains a precision device even with changes in
temperature and over years of use.
20
~
oI
f
0
C
>
<_20
10
=
100
This combination of excellent dc performance with
a common-mode input voltage range that includes
I
\
""
~
-\-
""'I'...
1\
1k
10 k
100 k
f - Frequency - Hz
1M
.
120· ::
.c
D.
140· I
....
160·
"'" 11
1'...: \
80·
100· .::
I
,\ I
I'. . ;m =46· -
vcc±
±lSV
RL
10kn
CL
30 pF
TA
2S·C
=
=
=
=2 MHz
...........
i'..
80
E
~
60·
=200 IlA
180·
200·
10 M
AVAILABLE OPTIONS
PACKAGE
TA
VIOmax
AT 25°C
SMALL
OUTLINE
(D)
O·C
to
70°C
-40°C
200 flY
500 flY
SSOP
(DBLE)
CHIP
CERAMIC
PLASTIC
CARRIER
DIP
(JG)
DIP
(FK)
TLE2021ACD
TLE2021CD
(P)
200 flY
TLE2021AID
TLE2021AIP
TLE20211D
TLE20211P
to
100flV
200 flY
TLE2021AMD
TLE2021AMFK
TLE2021BMJG
TLE2021AMJG
TLE2021AMP
125°C
500 flY
TLE2021MD
TLE2021MFK
TLE2021MJG
TLE2021MP
-55°C
FORM
(PWLE)
(V)
TLE2021ACP
TLE2021CP
TLE2021CPWLE TLE2021Y
TLE2021CDBLE
500 flY
to
85°C
CHIP
TSSOP
The D package is available taped and reeled. Add the suffix R, (e.g., TLE2021CDR). The DB and PW packages are only available left-end taped
and reeled. Chips are tested at 25°C.
PRODUCTION DATA information i, current as of pUblication data.
Products conform to spacification. par the terms of Taxas Instruments
ltandard warranty. Production processing does not necessarily include
testing of all parameter•.
TEXAS ~.
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
Copyright © 1991, Texas Instruments Incorporated
2-909
TLE2021, TLE2021A, TLE2021B, TLE2021Y
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
description (continued)
includes the negative rail makes these devices the ideal choice for low-level signal-conditioning applications
in either single-supply or split-supply configurations. In addition, these devices offer phase-reversal protection
circuitry that eliminates an unexpected change in output states when one of the inputs goes below the negative
supply rail.
A variety of available options includes small-outline and chip carrier versions for high-density systems
applications.
The C~suffix devices are characterized for operation from O°C to 70°C. The I-suffix devices are characterized
for operation from - 40°C to 85°C. The M-suffix devices are characterized for operation over the full military
temperature range of -55°C to 125°C.
0, DB, JG, P, OR PW PACKAGE
(TOP VIEW)
OFFSET N1 r J 8
IN 2
7
IN + 3
6
VCC _/GND 4
5
FK PACKAGE
(TOP VIEW)
Z
NC
Vcc +
OUT
OFFSET N2
I-
W
f/)
lL
OlLOOO
zOzzz
3
2
1 20 19
NC
IN-
4
18
NC
5
17
IN +
NC
7
VCC +
NC
OUT
NC
16
15
8
14
9 1011 12 13
000"'0
zzzzz
0
I
0
0
>
NC - No internal connection
TEXAS ~
INSTRUMENTS
2-910
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
l-
w
(/)
lL
lL
0
TlE2021Y
EXCALIBUR HIGH-SPEED lOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
chip information
These chips, properly assembled, display characteristics similar to the TLE2021. Thermal compression or
ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive
epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
VCC+(7)
~
IN+(3)
+
OFFSET N1 (1)
IN- (2)
_
OFFSET N2 (5)
OUT (6)
Vcc_/GND (4)
CHIP THICKNESS:
15 TYPICAL
BONDING PADS:
4 X4MINIMUM
TJ max = 150°C
TOLERANCES
ARE ±10%
ALL DIMENSIONS
ARE IN MILS
PIN (4) INTERNALLY CONNECTED
TO BACKSIDE OF CHIP
TEXAS ",
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
2-911
~
om .....
"tI>N
>r-=
~_N
-=~
w
Oc::
Z::a .....
>:crr-_m
>Ci)N
7
3::C~
"tI0~
r-"tI>
:;;m:'"
iTimr-
.~.~.~
(1).0=
OUT
g...
,=
"tI w
0 .....
=ermm
::aN
~%
=
i~~~
!~
"tiN
::a~
m-<
52
(I)
-z
n'1
~z
~uJ4r
Ii>
i
=e~
o
R6
R1
C1
R2
R4
R3
R5
OFFSET N1 1'-11i----+_~
OFFSET N2 -".5_ _ _ _ _ _--'
Pin numbers shown are for the D, DB, JG, P, and PW packages.
4
VCC_ /GND
Component count: Diodes -
4
Resistors -
7
Capacitors -
4
Transistors -
40
TlE2021, TlE2021A, TlE2021B
EXCALIBUR HIGH-SPEED lOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vcc+ (see Note 1) .................................................... 20 V
Supply voltage, VCC- (see Note 1) ................................................... -20 V .
Differential input voltage (see Note 2) ................................................. ±0.6 V
Input voltage range, VI (any input, see Note 1) .......................................... ±VCC
Input current, II (each input) ......................................................... ±1 mA
Output current, 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ±20 mA
Total current into VCC+ terminal ..................................................... 20 mA
Total current out of VCC- terminal ................................................... -20 mA
Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... unlimited
Continuous total dissipation ........................................ See Dissipation Rating Table
Operating free-air temperature range, TA: C-suffix ................................... O°C to 70°C
I-suffix ................................ - 40°C to 85°'C
M-suffix ............................... - 55°C to 125°C
Storage temperature range ................................................... -65°C to 150°C
Case temperature for 60 seconds: FK package .......................................... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: 0, DB, P, or PW package ....... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package .................. 300°C
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between Vee + and Vee _.
2. Differential voltages are at the non inverting input with respect to the inverting input. Excessive current will flow if a differential input
voltage in excess of approximately ± 600 mV is applied between the inputs unless some limiting resistance is used.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA S 2SoC
POWER RATING
DERATING FACTOR
ABOVE T A
=2SOC
=
=
D
725mW
5.8 mw/oe
464mW
DBorPW
525mW
4.2mW/oe
336mW
=
TA
8S"C
POWER RATING
TA
7O"C
POWER RATING
TA
12S"C
POWER RATING
377mW
145mW
FK
1375mW
11.0 mw/oe
880mW
715mW
275mW
JG
1050mW
8.4mW/oC
672mW
546mW
210mW
p
1000mW
8.0 mw/oe
640mW
520mW
200mW
recommended operating conditions
Supply voltage, VCC±
.
Common-mode Input voltage, VIC
Operating free-air temperature, TA
I Vce+
I VCC+
= ±5 V
= ± 15 V
MIN
C-SUFFIX
MAX
NOM
MIN
I-SUFFIX
MAX
NOM
MIN
M-SUFFIX
±2
0
±20
3.5
±2
0
±20
3.2
±2
0
±20
3.2
-15
13.5
-15
13.2
-15
13.2
0
70
-40
85
-55
125
NOM
MAX
UNIT
V
V
°e
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
2-913
TlE2021, TlE2021A
EXCALIBUR HIGH-SPEED lOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
Vee
electrical characteristics at specified free-air temperature,
PARAMETER
Via
TEST CONDITIONS
Input offset voltage
Temperature coefficient of
aVIO
in put offset voltage
Input offset voltage long-term
drift (see Note 4)
110
Input offset current
liB
Input bias current
VIC=O,
RS=50n
TAt
MIN
VICR
AVD
CMRR
ICC
100
300
25°C
0.005
0.005
f1V/mo
25°C
0.2
3
25
0
-0.3
to
to
4
50
a
25
0
to
-0.3
3.5
4
to
3.5
4.3
0.7
Full range
4
3.9
0.8
0.85
Va = 1.4 V to 4 V,
25°C
Full range
0.3
0.3
1.5
RL = 10kn
Common-mode
rejection ratio
VIC = VICR min,
RS=50n
25°C
Full range
85
80
110
85
80
110
25°C
105
120
105
120
Full range
100
VCC=5Vt030V
Supply current
operating temperature range
Va = 2.5 V, No load
0.8
0.85
1.5
Full range
5
230
170
230
dB
dB
230
230
5
V
V/f1V
100
170
nA
V
0.3
25°C
Full range
nA
V
4.3
0.7
0.3
f1V
to
a
to
25°C
50
50
3.5
4
3.9
3
3
50
3.5
25°C
Full range
0.2
3
Large-signal differential
ratio (aVCC +1 aVIO)
UNIT
f1V/oC
600
voltage amplification
Supply current change over
alCC
MAX
2
RS=50n
600
TYP
2
25°C
LOW-level output voltage
MIN
Full range
Full range
High-level output voltage
Supply-voltage rejection
kSVR
MAX
850
Full range
RL=10kn
VOL
TYP
otherwise noted)
TLE2021AC
120
Full range
VOH
V (unless
25°C
Full range
25°C
Common-mode input
voltage range
= 5
TLE2021C
f1A
f1A
tFull range is O°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TEXAS·~
INSTRUMENTS
2-914
POST OFFICE BOX655303 • DALLAS. TEXAS 75265
TlE2021, TlE2021A
EXCALIBUR HIGH-SPEED lOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Vcc±
PARAMETER
VIO
TEST CONDITIONS
TLE2021C
TAt
MIN
25°C
Input offset voltage
TYP
120
Input offset voltage long-term
drift (see Note 4)
110
Input offset current
lIB
Input bias current
VIC =0,
RS = 50 n
Common-mode input
voltage range
Maximum negative peak
VOMAVD
0.006
JlV/mo
25°C
0.2
RS=50n
25
kSVR
ICC
-15
to
to
to
13.5
14
13.5
14
to
to
13.5
~ICC
14
25°C
-13.7
Full range
-13.7
25°C
1
1
VIC = VICR min,
RS=50n
25°C
Full range
100
25°C
105
Full range
100
Supply current change over
operating temperature range
14.3
14
13.9
-13.7
14.3
V
1
115
6.5
V/JlV
100
115
dB
96
120
105
120
dB
100
200
300
200
300
Full range
Full range
V
1
96
25°C
-14.1
-13.7
6.5
nA
V
13.9
-14.1
nA
-15.3
-15
13.5
Full range
Vo = 0, No load
50
-15.3
RL=10kn
Supply current
25
3
50
to
25°C
VCC± = ±2.5 V to ±15 V
3
-15
VO=±10V,
ratio (~V CC + / ~ VIO)
50
-15
Full range
0.2
50
Large-signal differential
Supply-voltage rejection
3
3
voltage amplification
CMRR Common-mode
rejection ratio
JlV
0.006
25°C
Full range
output voltage swing
500
UNIT
25°C
Full range
RL = 10 kn
MAX
200
JlV/oC
Full range
Maximum positive peak
VOM+ output voltage swing
TYP
80
2
25°C
VICR
MIN
2
Full range
input offset voltage
TLE2021AC
MAX
500
750
Full range
Temperature coefficient of
aVIO
=±15 V (unless otherwise noted)
6
6
300
300
JlA
JlA
tFull range is O°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test atTA = 150°C extrapolated
to T A = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TEXAS
"I
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-915
TlE2021, TlE2021A
EXCALIBUR HLGH-SPEED lOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Vee
PARAMETER
Via
TEST CONDITIONS
TAt
TYP
120
Input offset voltage long-term
VIC=O.
drift (see Note 4)
RS=50Q
110
Input offset current
liB
Input bias current
voltage range
0.005
j.!V/mo
25°C
0.2
RS=50Q
VOL
AVD
CMRR
25
ICC
-0.3
0
-0.3
to
to
to
3.5
4
3.5
4
to
to
3.2
4
4.3
3.9
0.8
0.7
0.9
Large-signal differential
VO=I.4Vt04V.
RL = 10 kQ
Full range
Common-mode
VIC = VICR min.
RS=50Q
25°C
85
Full range
80
80
25°C
105
105
Full range
100
rejection ratio
ratio (~VCC ±/ ~VIO)
VCC=5Vt030V
operating temperature range
0.3
1.5
0.25
25°C
Supply current
Supply current change over
0.3
0.8
1.5
85
110
120
V
V/j.!V
0.25
110
dB
120
dB
100
170
Full range
Full range
V
0.9
voltage amplification
25°C
4.3
3.9
0.7
nA
V
0
3.2
25°C
50
nA
50
0
Full range
Va = 2.5 V. No load
~ICC
25
to
4
3
4
50
25°C
Full range
0.2
50
0
Low-level output voltage
Supply-voltage rejection
kSVR
3
4
25°C
RL=10kQ
j.!V
600
0.005
Full range
High-level output voltage
300
UNIT
25°C
Full range
VOH
MAX
j.!V/"C
25°C
VICR
600
TYP
100
2
Full range
Common-mode input
MIN
2
Full range
input offset voltage
TLE2021AI
MAX
950
Full range
Temperature coefficient of
(lVIO
(unless otherwise noted)
TLE2021I
MIN
25°C
Input offset voltage
= 5V
230
170
230
6
230
230
6
j.!A
j.!A
tFull range is -40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TEXAS ~
INSTRUMENTS
2-916
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLE2021, TLE2021A
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONA~ AMPLIFIERS
electrical characteristics at specified free-air temperature,
PARAMETER
TEST CONDITIONS
VIO
Input offset voltage
a.VIO
input offset voltage
Input offset voltage long-term VIC=O,
drift (see Note 4)
RS=50n
Temperature coefficient of
110
Input offset current
liB
Input bias current
TAt
MIN
VICR
Maximum negative peak
VOMAVO
).IV/oC
25°C
0.006
0.006
).IV/mo
25°C
0.2
25
CMRR
25°C
Full range
Supply-voltage rejection
kSVR
ICC
ratio (I1VCC ±I I1VIO)
-15.3
to
13.5
to
14
to
to
13.2
13.2
Supply current change over
I1ICC
operating temperature range
14.3
14
14.3
-14.1
13.9
-13.7
-14.1
6.5
115
100
96
115
120
105
120
25°C
Full range
VCC± = ±2.5 V to ±15 V
25°C
Full range
105
1
25°C
Full range
6.5
V/).IV
dB
dB
100
200
300
200
300
Full range
7
300
300
7
nA
V
0.75
100
nA
V
-13.6
1
0.75
).IV
V
-15
14
.
50
50
-15
VIC = VICR min,
RS=50n
Vo = 0, No load
25
to
14
100
96
Supply current
50
-15.3
-13.6
3
4
to
13.5
-15
25°C
RL=10kn
0.2
-15
Full range
VO= 10V,
3
50
13.9
-13.7
voltage amplification
500
4
25°C
Large-signal differential
Common-mode
rejection ratio
UNIT
2
Full range
80
MAX
200
2
RS=50n
output voltage swing
TYP
Full range
25°C
Full range
RL= 10kn
500
850
Full range
Maximum positive peak
output voltage swing
TLE2021AI
MIN
25°C
Full range
Full range
VOM+
TLE2021I
TYP
MAX
120
25°C
Common-mode input
voltage range
vcc± =± 15 V (unless otherwise noted)
).LA
).LA
tFull range is -40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
2-917
~
'"
PARAMETER
Via
TEST CONDITIONS
Input offset voltage
drift (see Note 4)
£
....
~z
i~~d
~3:
~lTl
~z
110
Input offset current
liB
Input bias current
VICR
voltage range
120
600
RS ~ 50Q
0.005
25'C
0.2
Full range
25'C
RS ~ 50Q
VOL
Full range
25
~w4r
AVD
~
CMRR
Large-signal differential
1:;
voltage amplification
Common-mode
rejection ratio
Supply-voltage rejection
kSVR
ICC
~ICC
ratio (.1.VCC ±1t,VIO)
Va ~ 1.4 V to 4 V. RL ~ 10 kQ
VIC ~ VICR min.
RS ~ 50Q
VCC = 5Vl030V
Supply current change over
operating temperature range
Va ~ 2.5 V.
No load
MAX
80
200
300
UNIT
!lV
2
!lVloC
0.005
0.005
!lV/mo
3
3
0.2
5
50
25
50
25
50
0
-0.3
0
-0.3
to
to
to
to
3.5
4
3.5
4
3.5
0
0
0
to
to
to
4
4
3.8
0.8
0.3
0.7
25°C
85
Full range
80
25'C
105
Full range
100
0.8
1.5
85
110
120
105
170
Full range
230
120
0.8
1.5
105
170
230
110
dB
120
170
230
9
dB
230
230
9
::Dr-,",,",
OI,)or-
:e~
ms
m
~
01,)
V
V/!lV
100
230
9
V
80
100
-m>
:!!m::s:
mc~
::D
-g
::D
0.95
85
C
:em
,N
V
0.1
80
I
-gCl)N
r--g..J.
-gC
4.3
0.7
0.3
0.1
110
nA
~:l:N
;;::"
ON
4
0.95
0.3
1.5
-
3.8
0.95
0.1
4
4.3
3.8
0.7
50
nA
3.2
3.2
4.3
3
50
to
_r-
N
:::t_ CCI..J.
Oc:::::s:
z: ::D~
>:1:'"""'
r-_r-
>C')m
5
-0.3
25°C
Full range
0.2
0
Full range
25°C
Supply current
TYP
to
Full range
"
300
50
25'C
Low-level output voltage
100
MIN
2
3.2
25'C
RL ~ 10kQ
MAX
5
Full range
High-level output voltage
TLE2021BM
TYP
600
2
25°C
Full range
VOH
MIN
,
25'C
Common-mode input
MAX
1100
Full range
VIC ~ O.
TLE2021AM
TYP
Full range
input offset voltage
Input offset voltage long-term
TLE2021M
MIN
25°C
Temperature coefficient of
aVIO
TAt
om,",,",
-g>N
C
JJA
JJA
o
z:
electrical characteristics at specified free-air temperature, Vcc±
PARAMETER
VIO
TEST CONDITIONS
Input offsetvoltage
Temperature coefficient of
!lVIO
input offset voltage
Input offset voltage long-term
drift (see Note 4)
110
liB
VIC = 0,
RS = 50n
Input offset current
TAt
=± 15 V (unless otherwise noted)
TLE2021M
MIN
MAX
25°C
Full range
120
500
1000
Full range
2
0.006
25°C
0.2
3
25
50
Full range
25°C
0-
:HZ
;~d
Common-mode input
VICR
voltage range
Full range
~C~
~~
~z
YOM -
Maximum negative peak
output voltage swing
AVD
voltage amplification
CMRR
Common-mode
rejection ratio
~Ui4r
In
~
Large-signal differential
Supply-voltage rejection
kSVR
ratio (AVCC±I AVIO)
ICC
Supply current
AICC
Supply current change over
operating temperature range
25°C
Full range
RL = 10 kn
RL = 10 kn
VIC = VICR min,
RS = son
VCC± = ±2.5Vto±ISV
No load
MAX
40
100
200
0.006
0.2
3
25
50
3
25
50
5
50
50
- 15 - 15.3
to
to
to
to
to
to
14
13.5
14
13.5
14
-15
-15
-15
to
to
to
13.2
13.2
14.3
14
13.8
14.3
14
13.8
~
-13.7 -14.1
-13.7 -14.1
-13.6
-13.6
25°C
Full range
O.S
25°C
100
Full range
96
25°C
105
Full range
100
6.5
1
0.5
115
100
115
100
105
120
lOS
100
200
300
300
115
200
10
c:
dB
300
300
10
V
;::g
:::c
-~
elrm
:::c
, N
dB
120
300
~
r-
V/!lV
100
200
300
10
6.S
96
120
V
c:I
O.S
96
Full range
Full range
1
6.S
nA
V
14.3
-13.6
1
nA
-15 -15.3
-15
14
13.8
!lV
!lV/mo
0.2
5
UNIT
!lV/oC
2
-13.7 -14.1
25°C
Va = OV,
200
TYP
Full range
25°C
Va = ±10V,
MIN
500
50
13.2
Maximum positive peak
YOM + output voltage swing
~l"I'l
RS = son
80
TLE2021BM
MAX
0.006
-15 -15.3
~
TYP
5
25°C
."
MIN
2
25°C
Full range
Input bias current
TLE2021AM
TYP
f1A
f1A
tFull range is - 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = lSOOC extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
(1)=
"'tIN
m....&.
Oms
"'tIC~
mr-~
;::gor-
~:e~
-'
=
O"'tlN
Z°....&.
r-ms
>:e>
>
;::g~
s"'tl~
"'tI;::grr-mm
N
_n
"TI-=
_(I)N
~
CD
m-....&.
;::gOc:l
(l)ZS
:6o
operating characteristics at specified free-air temperature, Vee
'"
PARAMETER
SR
Vn
Slew rate at unity gain
VO=lVt03V,
See Figure 1
0.5
~.U}4r
j
I-SUFFIX
MAX
MIN
TYP
M-SUFFIX
MAX
MIN
0.5
TYP
VlJls
f = 10 Hz
25°C
21
50
21
50
21
f = 1 kHz
25°C
17
30
17
30
17
f = 0.1 to 1 Hz
25°C
0.16
0.16
0.16
f = 0.1 to 10Hz
25°C
0.47
0.47
0.47
25°C
0.09
0.09
0.9
pAlVHz
MHz
Bl
Unity-gain bandwidth
See Figure 3
25°C
1.2
1.2
1.2
Phase margin at unity gain
See Figure 3
25°C
42°
42°
42°
operating characteristics at specified free-air temperature, Vee ±
PARAMETER
Vn
UNIT
Equivalent input noise
~m
SR
MAX
0.5
Equivalent input noise current
~2
~z
TYP
25°C
g
~rr1
MIN
In
-<
!~~d
~~
C-SUFFIX
TA
voltage (see Figure 2)
Peak-to-peak equivalent
VN(PP) input noise voltage
-c
TEST CONDITIONS
=5 V
TEST CONDITIONS
See Figure 1
TAt
25°C
0.45
0.65
Full range
0.45
Equivalent input noise
f = 10 Hz
25°C
voltage (see Figure 2)
Peak-to-peak equivalent
VN(PP) input noise voltage
~:r:=
;:::.,N
-ecn ......
r--e>
:;:;
m--t
_m
mer-
::xJr-~
cn o =
:eN
.......
-eCI:I
C-SUFFIX
TYP
Vo = ±10V,
JlV
=± 15 V
MIN
Slew rate at unity gain
nVlVHz
om-t
-eXrmom
::xJ>N
-r-=
::::j-N
_ CI:I ......
oc:Z::xJ-t
>:r:rr-_m
>C')N
I-SUFFIX
MAX
MIN
TYP
0.45
0.65
MAX
50
30
MIN
0.45
TYP
0.65
0.4
0.42
19
19
50
15
30
19
15 .
f = 1 kHz
25°C
15
f=0.lt01Hz
25°C
0.16
0.16
0.16
f = 0.1 to 10 Hz
25°C
0.47
0.47
0.47
25°C
0.09
0.09
0.09
In
Equivalent input noise current
Bl
Unity-gain bandwidth
See Figure 3
25°C
2
2
2
~m
Phase margin at unity gain
See Figure 3
25°C
46°
46°
46°
tFull range is O°C to 70°C for the e-suffix devices, - 40°C to 85°C for the I-suffix devices, and - 55°C to 125°C for the M-suffix devices.
o
M-SUFFIX
MAX
UNIT
V/Jls
nV/VHz
JlV
pAlVHz
MHz
:em
::xJ
"tI
::xJ
m
o
en
o
Z
TLE2021Y
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
electrical characteristics at vee
Via
=5 V, TA = 25°e (unless otherwise noted)
TEST CONDITIONS
PARAMETER
Input offset voltage
Input offset voltage
long-term drift (see Note 4)
MIN
TYP
MAX
150
600
~V
~V/mo
0.005
VIC = 0, RS =50n
UNIT
110
Input offset current
0.5
5
nA
liB
Input bias current
35
60
nA
0
VICR
Common-mode input voltage range
VOH
VOl
Maximum high-level output voltage
AVD
CMRR
Maximum low-level output voltage
Large-signal differential
voltageamplilication
Common-mode rejection ratio
Supply-voltage rejection
kSVR
Icc
ratio (LI.V cc:t1tN 10)
Supply current
RS=50n
RL=10kn
VO= 1.4 Vt04 V, RL= 10kn
VIC = VICRmin, RS = 50 n
VCC = 5 Vt030 V
to
3.5
4
-0.3
to
44.3
0.7
V
0.8
V
V
0.3
1.5
85
100
dB
100
115
dB
400
Va = 2.5 V, No load
V/flV
500
IlA
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours 01 operating lile test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy 010.96 eV.
operating characteristics at Vee
SR
Vn
VN(PP)
PARAMETER
Slew rate at unity gain
Equivalent input noise voltage
=5 V, TA = 25°e
TEST CONDITIONS
VO=l Vt03V
1= 10 Hz
1=1 kHz
MIN
TYP
0.5
21
17
Peak-to-peak equivalent
1=0.1 to 1 Hz
0.16
input noise voltage
I =0.1 to 10 Hz
0.47
MAX
UNIT
V/flS
50
30
nV/vHZ
flV
In
Equivalent input noise current
0.1
pAlvHZ
B1
Unity-gain bandwidth
1.7
MHz
m
Phase margin at unity gain
47°
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655303· OALLAS, TEXAS 75265
2-921
TLE2021, TLE2021A, TLE2021B
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
PARAMETER MEASUREMENT INFORMATION
20kn
20kn
>----Vo
20kn
NOTE A: CL includes fixture capacitance.
(a) SINGLE-SUPPLY
(b) SPLIT-SUPPLY
Figure 1. Slew Rate Test Circuit
2.5
oon ~::n
~
v
loon
+
Va
loon
Va
".
(a) SINGLE-SUPPLY
(b) SPLIT-SUPPLY
Figure 2. Noise Voltage Test Circuit
10kn
10kn
VI
100 n
>----..-- Va
10 kn
NOTE A: CL includes fixture capacitance.
(a) SINGLE-SUPPLY
(b) SPLIT-SUPPLY
Figure 3. Unity-Gain Bandwidth and Phase Margin Test Circuit
TEXAS ."
INsrRUMENTS
2-922
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
TLE2021, TLE2021A, TLE2021B
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
PARAMETER MEASUREMENT INFORMATION
>----Vo
10 kQ
NOTE A: CL includes fixture capacitance.
(al SINGLE-SUPPLY
(bl SPLIT-SUPPLY
Figure 4. Small-Signal Pulse Response Test Circuit
typical values
Typical values as presented in this data sheet represent the median (50% point) of device parametric
performance of initial devices from three wafer lots used for characterization.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-923
TLE2021, TLE2021A, TLE2021B
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
table of graphs
FIGURE
VIO
lIB
Input offset voltage
Distribution
Input bias current
vs
Common-mode voltage
vs
Temperature
Input current
vs
Differential input voltage
VOM
Maximum peak output voltage
vs
vs
Output current
VOH
High-level output voltage
VOL
Low-level output voltage
II
VO(PP)
Maximum peak-to-peak output voltage swing
AVD
Differential voltage amplification
lOS
Short-circuit output current
ICC
CMRR
SR
Temperature
vs
High-level output current
vs
Temperature
vs
Low-level output current
vs
Temperature
vs
Frequency
vs
Frequency
vs
Temperature
vs
Supply voltage
vs
Temperature
Supply current
vs
vs
Supply voltage
Common-mocle rejection ratio
vs
Frequency
Slew rate
vs
Temperature
Temperature
Small-signal
Pulse response
Large-signal
Peak-to-peak equivalent input noise voltage
0.1 to 1 Hz
0.1 to 10 Hz
Vn
Equivalent input noise voltage
vs
Frequency
81
Unity-gain bandwidth
vs
Supply voltage
VN(PP)
flm
Phase margin
Phase shift
.
vs
Temperature
vs
Supply voltage
vs
Temperature
vs
Capacitive load
vs
Frequency
TEXAS ~
INSTRUMENTS
2-924
POST OFFICE eox 655303· DALLAS, TEXAS 75265
5
6
7
8
9
10
11
12
13
14
15,16
17
18
19,20
21,22
23
24
25
26
27,28
29,30
31
32
33
34
35
36
37
38
17
TLE2021 , TLE2021A, TLE20218
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
INPUT BIAS CURRENT
DISTRIBUTION OF TLE2021
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
20r-~--~--~--~--~~--~--,
-40
16
~ -30
~
=
'2
:::)
~
I
I
!l
12 r-------1I---+--+--ff.II--+--+-+---I
C
~ -25
':g"
=
VCC± ±15V
TA
25?C
-35
-........ I'-..
(J
---..... ............,
-20
........
iii
i
81-----11---+-1"'"
-15
..5
I
1'! -10
41---+--H
-5
-300
300
o
VIO -Input Offset Voltage - /-LV
o
600
-15
-10
-5
5
10
o
VIC - Common-Mode Input Voltage - V
Figure 5
Figure 6
INPUT BIAS CURRENT
INPUT CURRENT
vs
vs
FREE-AIR TEMPERATURE
DIFFERENTIAL INPUT VOLTAGE
-35
-30
c(
'i'
-25
C
~
'" -20
(J
'"
=
=
'-......
............
:g
I
0.9
0.8
=
VCC± ±15V
VIC
0
TA
25'C
=
=
c(
iii -15
'5
a.
..5
1'!
=
VCC±
±15V
Vo
0 VIC 0
'''-..,.
15
E 0.7
r---..... "-..
--
C 0.6
l!!
!5 0.5
(J
'5
a. 0.4
..5
I
. : 0.3
-10
0.2
-5
0.1
o
-75 -50 -25
0
25
50
75
100
TA - Free-Air Temperature - 'c
125
o
o
j
0.1
Figure 7
I
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
IVIDI- Differenliallnput Voltage - V
1
Figure 8
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS •
INSfRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-925
TlE2021, TlE2021A, TlE2021B
EXCALIBUR HIGH-SPEED lOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
MAXIMUM PEAK OUTPUT VOLTAGE
MAXIMUM PEAK OUTPUT VOLTAGE
vs
vs
OUTPUT CURRENT
FREE-AIR TEMPERATURE
16
>
I
15
14
"
III
01
!!
'0
12
>
:;
Q.
:; 10
...
0
J
I
~
VOM+\
VOM_
:;
D-
1\
\
\
1
2
o
4
6
8
1101- Output Current - rnA
E
E
::s
'"
I
:::E
I
:S12.5
~
TA
12
-75 -50 -25
10
0
25
50
75
100
HIGH-LEVEL OUTPUT VOLTAGE
vs
vs
HIGH-LEVEL OUTPUT CURRENT
FREE-AIR TEMPERATURE
5
-- """"'\
VCC = 5 V
TA = 25°C
r-..
4
3
VCC
=5 V
>
I
III
01
~
4.75
'0
>
:;
B::s
\
0
0;
NO~
4.5
1
/'"
~
2
1:
.21
1:
01
I
I
:f
J:
J:
4.25
J:
0
0
>
/'
V
V V
V
V
V
/'" .... ...--- ~ = 10kn
....---,...-
>
o
o
-1
-2
..:3
-4
-5
-6
-7
4
-75 -50 -25
0
25
50
75
10H - High-Level Output Current - rnA
TA - Free-Air Temperature - °C
Figure 11
Figure 12
100
tDala at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS . "
INSTRUMENTS
2-926
125
TA - Free-Air Temperature - °C
HIGH-LEVEL OUTPUT VOLTAGE
0
~
RL
Figure 10
~
>
= ±15 V
= 10 kQ
= 25°C
vcc±
Figure 9
!!
:;
Q.
:;
13
-::::::
14
Q.
6
2
VOM+
r- -I
o
8
o
14.5
:;
\
I
:s0
>
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
125
TLE2021, TLE2021A, TLE2021B
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
LOW-LEVEL OUTPUT VOLTAGE
LOW-LEVEL OUTPUT VOLTAGE
vs
vs
---- ----
LOW-LEVEL OUTPUT CURRENT
FREE-AIR TEMPERATURE
5
>
I
II>
Vcc = 5 V
TA = 25°C
I
4
'"
>
:;
co.
:;
i;
;i:
3
I
2
0
0.5
I
-I
.........
IOL
1 rnA
r-:.:::r--.
--
...............
r--.........r---........
IOL
=0
...............
Gi
~
)
0
-I
;i:
0
-I
I
0.25
-I
0
0
>
>
o
>
0.75
>
:;
co.
:;
Gi
-I
15'"
as
0
r-..
I
II>
S
"0
I= I
r--
>
o
o
0.5
1.5
2.5
2
IOL - Low-Level Output Current - rnA
VCC
-75
3
=5 V
-50
-25
0
25
50
75
100
125
TA - Free-Air Temperature - °C
Figure 13
Figure 14
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
vs
FREQUENCY
FREQUENCY
5
>
.'"
30
I
II>
S'"
~
:;
co.
:;
o
...
~
Z
:ll
Il.
S
~
4
!l-
.5
3
...as
20
b
15
E
10
&.
Z
~
2
E
::I
\
\
::I
E
.;;
as
E
:::;;
=
=
= 25°C
\
VCC
5V
RL
10 kQ
Il.
Il.
~
25
:;
TA
0
100
1k
'=
:::;;
~
10 k
100 k
5
I
Il.
Il.
[\
1M
vcc± = ±15V
RL
10 k.Q
o
TA
=
= 25'C
100
1k
"'10 k
f - Frequency - Hz
f - Frequency - Hz
Figure 15
Figure 16
100 k
1M
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-927
TlE2021, TlE2021A, TlE2021B
EXCALIBUR HIGH-SPEED lOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION
vs
FREE-AIR TEMPERATURE
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
10
120 r--..,...---i--~-..,..--r--.,60°
>
~
>
III
'0
I
1---+---180°
6
~
80
Q.
E
-:;
~
-
;g
I
S
I
c
~
E
I
E
~
:::I
o
60 l---+---l~.--I---+--H----1120 ~
~
20
140°
m
1!
~
.---I---t---I----t'~-Hr+--I1600
,e.
:::I
0
'5
0
.c
~
I
6
~
'0
>
4
~
2
]
E
=±15V
..........
~
\
Vee
f
o
-
=5 V
I
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
12
=0
=25°C
TA
125
= 25°C
c(
E
6
VIO
4
I
=-100 mV
8
E
!
!i
()
:;
Il.
:;
2
0
0
VID
Vo
4
=-100 mV
= Vee
0
':;
I:!
~
-4
-4
0
.c
-6
r-- r-- ........
-8
o
2
~
~
VID
I
=100mV
~
.9
r-+-
4
6
8
10
12
IVee ±I- Supply Voltage - V
14
-8
-12
16
o
5
- It-+-VIO
Vo
=100 mV
=0
10
15
20
Vee - Supply Voltage - V
25
Figure 20
Figure 19
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices,
TEXAS
~
IN5rRUMENTS
2-928
'\.
Figure 18
Vo
8 TA
-10
----
vee±
Figure 17
~
.9
r-- :---
-75 -50 -25
o 25 50 75 100
TA - Free-Air Temperature - °e
I:! -2
~
8
GI
~
()
:;
.i
C
I
C
=
RL
10 kO +---+--+--~..H_--I
eL = 30pF
T~ = 25°C
-~~~---~--~-~--~~~
10
100
1k
10 k
100 k
1M
f - Frequency - Hz
o
=10kO
~
'a
10
c(
c
'---P~-t---I---+-"rrt---I100
40
RL
I
POST OFFICE BOX 655303 ' DALLAS, TEXAS 75265
30
TLE2021, TLE2021A, TLE2021B
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS t
SHORT-CIRCUIT OUTPUT CURRENT
SHORT-CIRCUIT OUTPUT CURRENT
vs
vs
FREE-AIR TEMPERATURE
FREE-AIR TEMPERATURE
12
ct
E
I
8
VCC = 5V
VCC± = ±15V
Vo = 0
ct
E
8
l!!
5
;;
co.
;;
0
VID = -100mV
4
5
;;
CJ
::s
0
0
~
-4
rn
I
rn -8
' ..........
0
.c
rn
r--....
r-- r--
.9
-12
-75
0
-50
-::.r-
.9
VID = 100 mV
1
-25
0
25
50
75
100
TA - Free-Air Temperature - °c
~ 150
<1,.,
Vo = 0
:--"""""'1"'-
-6
-8
- 75
125
- 50
---
-
- 25
0
25
50
75
100
TA - Free-Air Temperature - °C
SUPPLY CURRENT
SUPPLY CURRENT
vs
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
125
225
VCC·±=±15V
/'---
~
::::::::-
~~
200
- VI
t:::;z::;: ;:..-
"3.I
/
TA = 25°C
I
'ii.
/;
I
I
C
l!!
5
V
CJ
100
I-150
VCC± = ±2.5V
125
co. 100
co.
:I
TA = _55°C
I
VI
I
~
.9
CJ
50
75
50
25
o
2
4
6
8
10
r-
175
2:-
,TA = ,125°C, . ; ;
o
o
~
Figure 22
200
C
VID = 100 mV
-4
Figure 21
Vo = 0
No Load
"3.I
2
I
VI
250
c7l
2
'3
.c
co.
.l
VID = -100 mV
Vo = 5V
4
.&
.~
~0
C
l!!
!.
I
I
C
CJ
6
12
14
16
Vo = 0
No Load
-75
-50
-25
0
25
50
75
IVcc ±I- Supply Voltage - V
TA - Free-Air Temperature - °C
Figure 23
Figure 24
100
125
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
2-929
TlE2021, TlE2021A, TlE2021B
EXCALIBUR HIGH-SPEED lOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
COMMON-MODE REJECTION RATIO
SLEW RATE
vs
vs
FREQUENCY
FREE-AIR TEMPERATURE
120
.....
III
'0
I
.g
~ ~Vee± = ±15V
os
c
a:
0
v-
~
100
t
..
Vee
a:
= 5~
60
'0
0
"
I
~
:;;
c
0
E
E
40
0
I
TA
10
= 25"C
100
1k
10 k
100 k
1M
f - Frequency - Hz
"
0.2
o
RL
eL
= 10 kn
= 30 pF
See Figure 1
- 75
- 50
- 25
0
25
50
75
100
125
TA - Free-Air Temperature - °e
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
2.6 r-----r----,..----,-----,..----r----,
Vee = 5 V
RL
10 kn
eL
30 pF
> 2.55 TA 25°C
=
=
=
..
See Figure 4
I
Dl
~
o
0~--_r----r_--_r----r_~_+---1
I
UI
Figure 26
~
;g
0.4
Figure 25
See Figure 4
I
iii
I
a:
10 M
=
..
-
I
=5 V
;;=
100r----r----,..----r----,..----r----,
Vee± = ±15V
RL = 10 kn
eL
30 pF
50 TA = 25°C
=e
I
Vee
0.6
'l
:E
o
.
~
20
()
,,~
~
a:
()
a:
a:
.
:>
I
=±15 V
0.8
::l
80
'u
I
Vee ±
>
:;
2.51---_r--r_--_r----r_~_+------f
Q.
:;
~
I
o
> -50~---+----~--_r----r_~_+--__i
o
I
o
> 2.451----+----~--_r----+__~_+--__i
-100~--~----~--~----~--~--~
o
20
40
60
80
2.4 ~--~----~--~----~--~--~
60
o
20
40
80
t-Time-~s
t-Time-~s
Figure 27
Figure 28
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS •
INSTRUMENlS
2-930
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
TlE2021, TlE2021A, TlE2021B
EXCAlIBUR HIGH-SPEED lOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
15
>
I
II>
CI
VCC±=±15V
RL = 10 kO
10 CL = 30pF
TA " 25'C
See Figure 1
5
'5
a.
'5
0
I
\
/
>
I
II>
CI
-5
\
\
I
>
-10
-15
~'5
1\
/
0
0
=
II
l!
(j
>
VCC = 5 V
RL
10kO
CL = 30pF
3 TA = 25'C -tI~-f---+--t--+----I
See Figure 1
o
20
40
t- Time-fis
2~--+---r-~--+-+--r-~
a.
'5
o
I
~
o
80
60
20
40
60
80
1- Time-fis
Figure 29
Figure 30
PEAK-TO-PEAK EQUIVALENT
INPUT NOISE VOLTAGE
0.1 T01 Hz
PEAK-TO-PEAK EQUIVALENT
INPUT NOISE VOLTAGE
0.1T010Hz
0.5
~
I
II>
CI
l!
~
VCC±=±15V
TA = 25'C
0.4
I
l
g
0.3
(j
>
II>
0.2
z
'5
a.
.....5
a!
0.1
.",
0
if'
-0.1
.I.""
TT
""',
...
~I
ilL
[T i''''''' "r r
~lJIItL
"...
1.
'111-
...
II>
Q..
z
>
z
0.1
'5
a.
.....5
o
a! - 0.1 H--Htf+-t--f'--If-4-I-lJ---+lf-l--+tIf-++t-'H--lI-"tH
I:\-
Z. - 0.2 ~--t-J.++--'--+--r~f--+--+-t--t-~
-0.2
II>
"i - 0.3 1----I--+-+---+----1-+----+-+-_+_--I
-0.3
I
Q..
Q..
0.3 I---+---t-+--+----jf----I---+-t---l----I
0.2 t---+t--t-tH--+--f----HI-i----;-t----t--t
'0
I:\-
~..
VCC± = ±15V
A = 25'C
--i-+----+-+-_+_--t--l
.
II>
III
'0
0.4
II>
Q..
-0.4
~ - 0.4 1----I--+-+---+----1--1----+-+-_+_--I
>
-0.5
o
2
3
4
5
6
t- Time-s
7
8
9
10
- 0.5 L...-.....L..--l._..1.....-"----l_"j,..--1.._..........L..----1
2
3
4
5
6
7
8
9
10
o
t-Time-s
Figure 31
Figure 32
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-931
TLE2021, TLE2021A, TLE2021B
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
UNITY-GAIN BANDWIDTH
EQUIVALENT INPUT NOISE VOLTAGE
VS
VS
FREQUENCY
SUPPLY VOLTAGE
200
'"
~>
=
=
'i' 160
E
'0
III
>
j
:;
c-
.5
5l
OJ
>
'S
.[
4
=
Vcc±
± 15V
RS
100n
TA
25°C
See Figure 2
RL
..
I
10kn
=
=
:E:
:E
~
CL
30pF
TA
25°C
Sea Figure 3
3
~
'i
'U
120
C
co
c
OJ
III
80 ~
\
-
k
~
c
::;)
1\
40
2
,...I
III
----
~
~
I
c
>
0
0
1
10
4
..
I
3
.c
.;;
'i
'U
UNITY-GAIN BANDWIDTH
PHASE MARGIN
VS
VS
FREE-AIR TEMPERATURE
SUPPLY VOLTAGE
'c
::;)
Il
~
i'-..
VCC±
"
14
16
=
=
=
48
r--.. -....
o
0
25
I
c
.
....
46
.~
:::E
~
vr=r
-25
CI
III
'U
=±15V
.............
.............
m
-50
16
RL
10 kn
CL
30 pF
25°C
TA
See Figure 3
f
I
-75
14
50
r-..... ~
l:
4
8
10
12
6
IVcc ±I- Supply Voltage - V
Figure 34
2
q
2
Figure 33
=
=
C
co
III
c
OJ
0
10 k
RL
10 kn
CL
30pF
See Figure 3
:E:
:::E
100
1k
f - Frequency - Hz
50
III
r-..... r--
--
75
r--
100
44
.c
a..
42
40
125
I
I
.....E
V
/
V
.--
I
o
2
4
6
8
10
12
TA - Free-Air Temperature - °c
IVcc ±I- Supply Voltage - V
Figure 35
Figure 36
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
2-932
POST OFFICE BOX 655303 • OALLAS. TEXAS 75265
TLE2021, TLE2021A, TLE2021B
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
PHASE MARGIN
vs
LOAD CAPACITANCE
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
50
..
!
i'
'U
48
46
I
c
..
•...
44
I
40
Ea
:E
60
RL = 10 kO
CL = 30pF
See Figure 3
,1/
r-- j-..
,/
-- ---VCC= 5 V
..f
50
01
OJ
'U
40
.
...
~r---
RL = 10 kO
TA = 25°C
See Figure 3
VCC=5V~
c
30
=:::::
OJ
r--
.c
Q.
20
----
I
E
....
10
38
36
- 75
~
I
:::E
I
I
Vcc± = ±15V
.~
I-.
42
.c
Q.
E
'Q.
VCC±=±15V
J
~
- 50
- 25
0
25
50
75
100
TA - Free-Air Temperature - °c
o
o
125
20
40
60
80
100
CL - Load Capacitance - pF
Figure 37
Figure 38
tOata at high and low temperatu(es are applicable only within the rated operating free-air temperature ranges of the various devices.
APPLICATION INFORMATION
voltage-follower applications
The TLE2021 circuitry includes input protection diodes to limit the voltage across the input transistors; however,
no provision is made in the circuit to limit the current if these diodes are forward-biased. Note that this condition
can occur when the device is operated in the voltage-follower configuration and driven with a fast, large-signal
pulse. It is recommended that a feedback resistor be used to limit the current to a maximum of 1 mA to prevent
degradation of the device. Also, remember that this feedback resistor will form a pole with the input capacitance
of the device. For feedback resistor values greater than 10 kil, this pole will degrade the amplifier's phase
margin. This problem can be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback
resistor (see Figure 39).
CF = 20t050pF
~IF
~ 1mA
>-......-Vo
VI --+.,-1-.....
Figure 39. Voltage Follower
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-933
TLE2021 , TLE2021 A, TLE2021 B
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
input offset voltage nulling
The TLE2021 series offers external null pins that can be used to further reduce the input offset voltage. The circuit
of Figure 40 can be connected as shown if this feature is desired. If external nulling is not needed, the null pins
may be left unconnected.
~
_
OFFSETN2
OFFSET N1 5 kQ
Vcc- (Split-Supply)
1 kQ GND (Slngle-Supply)
Figure 40. Input Offset Voltage Null Circuit
TEXAS
..J.lI
INSTRUMENTS
2-934
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLE2022, TLE2022A, TLE2022B, TLE2022Y
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
DUAL OPERATIONAL AMPLIFIERS
D3264, MAY 1989- REVISED OCTOBER 1991
available features
•
•
Supply Current ... 500 IlA Max
High Open-Loop Gain, ,. 10 VfllV (140 dB) Typ
High Unity-Gain Bandwidth ,.. 2.8 MHz Typ
•
•
•
High Slew Rate ... 0,7 Vflls Min
•
•
Supply Current Change Over Military Temp
Range .. , 37 IlA Typ
Offset Voltage Drift With Time
0.005 IlVfmo Typ
Low Input Bias Current .,' 50 nA Max
•
Specified for Both 5-V Single-Supply and
± 15-V Operation
•
•
•
Phase-Reversal Protection
Low Offset Voltage ... 150 IlV Max
Low Noise Voltage . " 19 nVf1Hz Typ
at f = 10 Hz
description
The TLE2022, TLE2022A, and TLE20228
devices are precision, high-speed, low-power
operational amplifiers using Texas Instruments
patent-pending Excalibur process. These
devices combine the best features of the OP221
with highly improved slew rate and unity-gain
bandwidth.
The complementary bipolar Excalibur process
utilizes isolated vertical P-N-P transistors that
yield dramatic improvement in unity-gain
bandwidth and slew rate over similar devices.
The addition of a patent-pending bias circuit in
conjunction with this process results in extremely
stable parameters with both time and
temperature. This means that a "precision"
device remains a precision device even with
changes in temperature and over years of use.
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION and PHASE SHIFT
vs
FREQUENCY
III
120
I
:5
100
r---..
I
"-
.~
is SO
C.
E
60
;g
40
I
PHASE SHIFT
"
~
"""-
:l!
;:
~
~I
20
=
=
Cl = 30 pF
TA = 25·C
0
>
<-20
10
100
This combination of excellent -dc performance
with a common-mode input voltage range that
includes the negative rail makes these devices
= 2.S MH
"'" f\:
!1m
"""-
VCC±
±15 V
Rl
10 kQ
C
f
I
AV";;-
~Cl
60·
= 235 IlA/amplifier
Typ ICC
'0
= 52·-
"""-
1k
10 k 100 k
f - Frequency - Hz
so·
100·
::
.-\i\
:.c
120· 1/1
.$
140.
.t::
D.
I
160·
I \
"I
1M
:'\
lS0·
200·
10 M
AVAilABLE OPTIONS
TA
VIOmax
AT 25·C
SMAll
OUTLINE
(D)
O°C
to
lOoe
-40°C
to
85°C
CHIP
SSOP
(DBlE)
PACKAGE
CERAMIC
CARRIER
DIP
PLASTIC
DIP
(FK)
(JG)
(P)
300llV
TLE2022ACD
5OOI·tV
TLE2022CD
300J.lV
TlE2022AID
TLE2022AIP
500J.lV
TlE20221D
TLE20221P
TSSOP
(PWlE)
CHIP
FORM
(V)
TLE2022ACP
TLE2022CDBLE
TLE2022CP
-55°C
150J,lV
to
125°C
300 J.lV
TLE2022AMD
TLE2022AMFK
TLE2022AMJG
TLE2022AMP
500J.lV
TLE2022MD
TLE2022MFK
TLE2022MJG
TLE2022MP
TLE2022PWlE TlE2022Y
TLE2022BMJG
The D package is available taped and reeled. Add the suffix R, (e.g., TLE2022CDR). The DB and PW packages are only available left-end taped
and reeled. Chips are tested at 25°C.
PRODUCTION DATA is information current as of publication dati. Products
conform to specifications par the terms 01 Texas Instruments standard
warranty. Production processing does not necessarily include tasting 01 all
parameters.
TEXAS
~
Copyright © 1991, Texas Instruments Incorporated
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-935
TlE2022, TlE2022A, TlE2022B
EXCAlIBUR HIGH-SPEED lOW-POWER PRECISION
DUAL OPERATIONAL AMPLIFIERS
description (continued)
the ideal choice for low-level signal conditioning applications in either single-supply or split-supply
configuration$. In addition, these devices offer phase-reversal protection circuitry that eliminates an
unexpected change in output states when one of the inputs goes below the negative supply rail.
Available packaging options include small-outline and chip-carrier versions for high-density systems
applications.
The C-suffix devices are characterized for operation from O°C to 70°C. The I-suffix devices are characterized
for operation from -40°C to 85°C. The M-suffix devices are characterized for operation over the full military
temperature range of -55°C to 125°C.
u
0, DB, JG, P, or PW PACKAGE
(TOPVIEWl
10UT
1 IN 1 IN +
VCC_/GND
8
2
7
3
6
4
5
VCC+
20UT
2 IN21N+
FK PACKAGE
(TOP VIEW)
r+
050
go
z..-z>z
~
NC
11NNC
11N +
NC
32120'19
4
18
5
17
6
16
7
15
8
14
9 1011 12,g
000
+ 0
ZZZZZ
_
Cl
-N
I
0
0
>
NC - No internal connection
~
2-936
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
NC
20UT
NC
21NNC
TLE2022Y
EXCAlIBUR HIGH-SPEED lOW-POWER PRECISION
DUAL OPERATIONAL AMPLIFIERS
chip information
These chips, properly assembled, display characteristics similar to the TLE2022. Thermal compression or
ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mou nte6 with conductive
epoxy or a gold-silicon preform.
VCC+ (8)
IN+(3)~
BONDING PAD ASSIGNMENTS
OUT (1)
IN-(2)
~
+
IN+ (5)
OUT (7)
IN- (6)
Vcc- (4)
CHIP THICKNESS:
15 TVPICAL
BONDING PADS:
4 X4 MINIMUM
~8
TJ max
=150'C
TOLERANCES
ARE ±10%
~II~!!!I~
i~
ALL DIMENSIONS
ARE IN MILS
PIN (4) INTERNALL V
CONNECTED TO
BACKSIDE OF CHIP
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-937
~
Cm .....
c::>om
r->N
equivalent schematic (each amplifier)
CD
Vcc+
1
~J
O
Q~
~
mC::~
;:r.I;:r.I .....
>:cr.....
_m
_C)N
~:c~
or
>'N
r-(I»
-c~
>m .....
smr-c Cm
N
r-r-
024
-0=
'"T1o::::::N
I L...[ all
OUT
"g
IN-
-<
l~jSJ
0_
:HZ
;~~
012
04
IN+
01
02
~. ~~
~~
....
u}4r
m"f~
;:r.I -c~
(1)0 .....
I t~
014
~040
:Ermm
=
;:r.IN
-c
m-<
N
;:r.IN
~
(I)
~(T1
~z
~1»
r-=
-N
-C~N
o
z
R6
06~09
Rl
~
C1
*
R2
R4
R3
R5
~
15
018
016
VCC_ /GND
Component count: Diodes - 8
Resistors - 14
Capacitors - 8
Transistors - 80
)26
r(030
)l I
033
(037
TlE2022, TlE2022A, TlE2022B
EXCALIBUR HIGH-SPEED lOW-POWER PRECISION
DUAL OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC+ (see Note 1) ..................................................... 20 V
Supply voltage, VCC- (see Note 1) .................................................... -20 V
Differential input voltage (see Note 2) .................................................. ±0.6 V
Input voltage range, VI (any input, see Note1) ........................................... VCC±
Input current, II (each input) .......................................................... ±1 mA
Output current, 10 (each output) ..................................................... ±30 mA
Total current into VCC+ terminal ...................................................... 80 mA
Total current out of VCC- terminal .................................................... 80 mA
Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... unlimited
Continuous total dissipation ........................................ See Dissipation Rating Table
Operating free-air temperature range, TA: C-suffix .................................. O°C to 70°C
I-suffix ................................. -40°C to 85°C
M-suffix ............................... -55°C to 125°C
Storage temperature range ................................................... -65°C to 150°C
Case temperature for 60 seconds: FK package .......................................... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, DB, P, or PW package ....... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package .................. 300°C
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC + and V CC _ .
2. Differential voltages are at the non inverting input with respect to the inverting input. Excessive current will flow if a differential input
voltage in excess 01 approximately ± 600 mV is applied between the inputs unless some limiting resistance is used.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA 5: 2S·C
POWER RATING
DERATING FACTOR
TA = 70·C
POWER RATING
D
725mW
ABOVE TA = 2S·C
5.8 mWI"C
DB, PW
525 mW
4.2 mWI"C
464 mW
336mW
TA=8S·C
POWER RATING
TA = 12S·C
POWER RATING
377mW
273 mW
145mW
FK
1375mW
11.0 mW;oC
880 mW
715mW
275mW
JG
1050mW
672mW
546mW
210mW
P
1000 mW
8.4 mW/'C
8.0 mW;oC
640 mW
520mW
200mW
recommended operating conditions
I-SUFFIX
C-SUFFIX
MIN
Supply voltage, VCC+
Common-mode input voltage, VIC
Operating free-air temperature, TA
±2
I VCC : 5 V
I VCC+: ±15V
0
-15
0
NOM
M-SUFFIX
MAX
MIN
±20
3.2
13.2
±2
0
-15
±20
3.2
13.5
±2
0
-15
70
-40
85
-55
125
MAX
MIN
± 20
3.5
NOM
NOM
MAX
13.2
UNIT
V
V
'C
TEXAS -111
INsrRUMENTS
POST OFFICE BOX 655303'- DALLAS, TEXAS 75265
2-939
~
electrical characteristics at specified free-air temperature, Vee
=5 V(unless otherwise noted)
o
PARAMETER
Via
TEST CONDITIONS
Input offset voltage
Temperature coefficient of
aVIO
Input offset voltage long-term
~
0-
:HZ
i.~~d
~S':
i!!!Tl
~z
110
Input offset current
lIB
Input bias current
Common-mode input
RS = 50Q
voltage range
VOH
VOL
AVO
"
CMRR
Large-signal differential
voltage amplification
Common-mode
rejection ratio
Supply-voltage rejection
kSVR
ICC
ratio ("'VCC +1 ",Via)
VIC = VICR min,
Va = 2.5 V,
Supply current change over
"'ICC
operating temperature range
No load
UNIT
flV
:z: ::J::J~
2
2
2
flV/o C
25°C
0.005
0.005
0.005
flVlmo
;c.::z:::-f
r-_r;c.C')m
N
!:IO::z:::
;;::a I =
25°C
0.5
nA
r--e
:;;m>
_mC")
35
0.4
4
0.3
4
60
33
60
3
3
55
30
50
50
55
nA
-e(l)N
N
m ~
::J::JC-f
(l)r-rOm
a
-0.3
a
-0.3
a
-0.3
:EN
to
to
to
to
to
3.5
4
3.5
4
3.5
to
4
ON
a
a
to
to
to
3.5
3.5
3.5
4
3.9
4.3
4
4.3
0.8
0.3
25°e
85
Full range
80
25°e
Full range
100
0.8
0.4
1.5
100
0.4
87
102
103
450
600
1.5
118
105
dB
120
dB
100
450
600
450
600
7
600
600
7
V
V/flV
105
85
600
7
V
0.8
0.85
90
98
Full range
-e
4.3
0.5
82
115
::J::J
0.7
0.5
:E~
m
0.85
1.5
95
V
3.9
0.7
0.85
Full range
4
.=
-eN
a
3.9
0.7
0.3
Full range
5
5
25°e
25°e
Supply current
MAX
250
25°C
Full range
VCC = 5Vt030V
TYP
400
25°C
Full range
RS = 50Q
MIN
550
RS = 50Q
Va = 1.4Vt04V, RL.= 10kQ
TLE2022B
MAX
400
Full range
Low-level output voltage
TYP
600
25°C
RL = 10 kQ
MIN
800
Full range
High-level output voltage
TLE2022A
MAX
25°C
Full range
~w4r
ili
~
VIC = 0,
TYP
Full range
25°C
VICR
TLE2022
MIN
Full range
input offset voltage
drift (see Note 4)
TAt
om-f
mC")m
::J::J;c.N
):oor-=
N
-f_g:,N
OC::C")
-eXr-
f1A
f1A
tFuil range is O°C to 70o e.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to T A = 25°C using the Arrhenius equation.
and assuming an activation energy of 0.96 eV.
::J::J
m
52
(I)
o
:z:
electrical characteristics at specified free-air temperature, Vcc±
PARAMETER
Via
TEST CONDITIONS
drift (see Note 4)
110
,
liB
VIC = 0,
RS = 500
~
~i
~4r
YOM -
Maximum negative peak
output voltage swing
Large-signal differential
fLV/mo
25°C
0.5
AVO
CMRR
voltage amplification
Common-mode
rejection ratio
Supply-voltage rejection
kSVR
ratio (AVCC + / A Via)
ICC
Supply current
AICC
Supply current change over
operating temperature range
25°C
25°C
Full range
Va = ± 10 V,
VIC
= VICR min,
VCC±
RL = 10 kO
RS = 500
= ±2.5Vto±15V
35
= 0,
No load
60
-15.3
4
0.3
4
33
55
55
- 15 - 15.3
to
to
to
to
to
13.5
14
13.5
14
-15
-15
-15
to
13.5
to
to
13.5
13.5
14.3
14
-13.7 -14.1
-13.7
-13.7
-13.7
0.8
25°C
95
full range
91
25°C
100
14.3
14
13.9
4
1
106
97
115
103
1.5
109
100
118
105
1
550
9
700
700
700
V
c::
V/fLV
::t:
dB
.....
......::t:~
m
::c
10
C')~
112
120
550
700
9
~
g;J
dB
100
550
>
V
96
98
Full range
14.3
1.5
93
95
m
><
n
-13.7
7
nA
V
13.9
-13.7 -14.1
-14.1
nA
-15.3
14
14
50
50
-15
to
13.9
3
3
30
13.5
Full range
Full range
0.4
60
0.8
Full range
5
5
25°C
25°C
Va
fLV
0.006
Full range
RL = 10 kO
150
300
UNIT
0.006
Full range
Maximum positive peak
YOM + output voltage swing
70
450
MAX
0.006
= 500
i
300
TYP
25°C
Full range
RS
120
MIN
fLV/o C
25°C
voltage range
MAX
2
-15
VICR
500
TLE2022B
TYP
2
25°C
!
MIN
700
Full range
Input bias current
TLE2022A
MAX
2
,
z
150
Full range
Input offset current
Common-mode input
TYP
Full range
input offset voltage
Input offset voltage long-term
TLE2022
MIN
25°C
Input offset voltage
Temperature coefficient of
(lVIO
TAt
=±15 V (unless otherwise noted)
9
700
700
!iA
!iA
tFuil range is O°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shiftobserved through 168 hours of operating life testatTA =150°C extrapolated to TA =25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
c::rnN
>"'CC)
~mN
mN
OOn
"'C
~
m~~
::c0~
>:Em
~'N
-
"'C C)
°ON
Z:e N
>m>
~ ..... n
l>-~
3:"'C~
'»
~
"'C::c~
~mN
-nC)
:!!Ci)N
m-N
::C0g;J
rnzn
~
operating characteristics at specified free-air temperature, Vee
SR
Vn
Slew rate at unity gain
Va = 1 Vt03V,
Equivalent input noise
voltage (see Figure 2)
Peak-to-peak equivalent
VN(PP) input noise voltage
§
In
Equivalent input noise current
81
¢m
Unity-gain bandwidth
Phase margin at unity gain
~~~~
§c
~~
~l"l'I
~z
~~4r
1:;
~
See Figure 1
TLE2022
TA
MIN
Vn
25°C
21
50
f = 1 kHz
f = 0.1 to 1 Hz
f = 0.1 to 10 Hz
25°C
17
30
25°C
0.16
TLE2022B
MIN
TYP
MAX
-r-=
:::j_N
0.5
0.5
V/JJ.s
oeo
21
50
17
30
0.16
21
50
nV/-IHz
>:::z:-I
r-_r-
17
30
0.16
25°C
0.47
0.47
0.47
25°C
0.1
0.1
0.1
pAl-IHz
See Figure 3
25°C
1.7
1.7
1.7
MHz
See Figure 3
25°C
47"
47"
47°
TEST CONDITIONS
Equivalent input noise
f
f
f
f
See Figure 1
TAt
MIN
TYP
25°C
0.45
0.65
Full range
0.45
TLE2022A
MAX
MIN
TYP
0.45
0.65
MIN
TYP
0.65
MAX
UNIT
0.45
::D
"1:J
::D
= 10 Hz
25°C
19
50
19
50
19
50
= 1 kHz
25°C
15
30
15
30
15
30
= 0.1 to 1 Hz
25°e
0.16
0.16
0.16
= 0.1 to 10Hz
25°e
0.47
0.47
0.47
I1V
nVl-IHz
Equivalent input noise current
25°e
0.1
0.1
0.1
pAl-IHz
Unity-gain bandwidth
See Figure 3
25°C
2.8
2.8
2.8
MHz
4>m
Phase margin at unity gain
See Figure 3
25°C
52°
52°
52°
0
:e~
m
V/l1s
81
ooe to 70 e.
-m>
:!!m~
mC-I
"1:JN
0.45
0.45
>C')m
~:::z:N
;;:::",=
"1:J(I)N
r-"1:J N
ON
TLE2022B
MAX
::D~
:eN
,=
= ± 15 V(unless otherwise noted)
TLE2022
z:
::Dr-renOm
In
tFull range is
::D>N
UNIT
I1V
Va = ±10V,
Peak-to-peak equivalent
VN(PP) input noise voltage
TLE2022A
MIN
TYP MAX
om-l
"1:J>
fL V/cC
25°C
0.005
0.005
0.005
fLV/mo
25°C
0.5
VIC
VCC
= 1.4Vt04V,
= VICR min,
RL
RS
=
10kQ
operating temperature range
35
= 50 Q
= 5Vt030V
= 2.5 V,
No load
4
0.3
4
60
33
30
55
55
-0.3
0
-0.3
0
-0.3
to
to
to
to
to
3.5
4
3.5
4
3.5
4
to
to
to
3.2
3.2
4
4.3
4
4.3
0.7
0.8
0.7
0.9
Full range
0.2
25°C
85
Full range
80
25°C
100
Full range
95
4
1.5
0.5
1.5
0.2
87
103
600
90
118
15
105
105
600
450
600
600
15
15
ca
c:
V/fLV
:J:
C"l
:J:
:D
dB
600
><
~
r-
V
dB
120
100
450
600
Full range
1.5
85
98
450
0.8
0.2
102
82
115
V
0.9
0.9
0.4
100
4.3
0.7
0.8
nA
m
3.9
3.9
nA
V
a
3.2
3.9
50
50
0
a
3
3
to
0.3
Full range
0.4
60
25°C
25°C
Va
5
5
25°C
Supply current
Supply current change over
"'ICC
%
...
2
Full range
Va
fLV
2
Full range
10 kQ
UNIT
2
a
Low-level output voltage
Large-signal differential
CMRR
=
MAX
400
25°C
RL
TYP
250
= 50Q
High-level output voltage
MIN
550
Full range
VOH
TLE2022B
MAX
400
25°C
~~
TYP
800
Full range
RS
MIN
600
25°C
&l
TLE2022A
MAX
25°C
Full range
"0
-i
TYP
Full range
Full range
input offset voltage
drift (see Note 4)
TLE2022
MIN
j.LA
j.LA
C.-i
c:cnr»""'C m
r-mN
Omc
""'CC~
mr-:D O »::-i
-i.r-""'C m
OON
Zc::::c
»c N
r-m N
»:D:;S""'C-i
""'C:Drr-mm
-("')N
." - c
m~N
:DON
cnz~
i
electrical characteristics at specified free-air temperature, Vcc±
PARAMETER
VIO
TEST CONDITIONS
Input offset voltage
Input offset voltage long-term
110
Input offset current
liB
Input bias current
MIN
VIC; 0,
RS; 50Q
TLE2022A
TVP
MAX
150
500
Full range
:;JZ
~~d
Common-mode input
VICR
voltage range
§e:~
~z
VOM -
~ ~&l.
~(jj~
AVO
~
CMRR
Maximum negative peak
output voltage swing
Large-signal differential
voltage amplification
Common-mode
rejection ratio
Supply-voltage rejection
kSVR
ratio (t.VCC ± I t.VIO)
ICC
Supply current
Supply current change over
t.ICC
operating temperature range
25°C
Full range
25°C
No load
450
5
35
300
to
to
13.5
14
4
0.3
4
60
33
60
55
30
55
-15 - 15.3
to
to
13.5
14
to
13.5
14
-15
to
to
to
13.2
13.2
13.2
14.3
14
13.9
-13.7 -14.1
13.9
-13.7 -14.1
-13.7 -14.1
-13.6
-13.6
-13.6
25°C
95
Full range
91
25°C
Full range
100
4
1
1.5
7
1
106
97
115
103
109
100
118
105
100
550
700
550
700
30
700
~::t:r
__ m
OC)N
Z::t: C
::r>,N
N
rc:n
-C::r>
::r> m~-
:s:m-l
nA
I
-COr
rrm
-ON
::!!:e
m,N
C
::II-C N
c:nO~
:e
m
V
::II
14.3
m
V
I
V
112
dB
120
dB
700
700
30
C;;.
z
VlflV
550
(")
o
10
700
30
i
nA
I
96
98
Full range
50
1.5
93
95
::II::II-I
-C
14
0.8
mC:~-
::II
14.3
13.9
-N
-C:CO N
flV
- 15 -15.3
-15
14
UNIT
fl V/ mo •
3
50
to
::r>(")m
r::r>N
O rC
fl V/oC
3
-15
0.8
Full range
0.4
5
Full range
25°C
Va; 0,
150
0.5
Full range
VCC±; ±2.5Vto±15V
MAX
70
25°C
25°C
RS ; 50Q
TVP
0.006
RS ; 50Q
VIC ; VICR min,
MIN
0.006
25°C
RL ; 10 kQ
300
0.006
Full range
Va ; ± 10 V,
MAX
120
25°C
Full range
RL ; 10 kQ
TVP
2
Full range
Maximum positive peak
VOM + output voltage swing
c:><
("')
nV/'<'RZ
):00
r-
c::J
c:
JJ.V
In
Equivalent input noise current
25°C
0.1
0.1
0.1
pAl'<'RZ
91
Unity-gain bandwidth
See Figure 3
25°C
2.8
2.8
2.8
MHz
.pm
Phase margin at unity gain
See Figure 3
25°C
52°
52°
52°
tFuli range is - 40°C to 85°C.
m
V/JJ.s
:lJ
::J:
C)
::J:
0.-1
c:(I)r>"m
r-mN
Omc
"O~
mr-:lJ0~
~:e~
--em
OON
z<::c
>c::;;;N
r-m N
>:lJ:-
S"-I
,,:lJrr-mm
-
~
01
("')N
"T1-c
iii~N
:lJO N
(l)Z~
~
electrical characteristics at specified free-air temperature, Vee
=5 V(unless otherwise noted)
0>
PARAMETER
Via
TEST CON DITIONS
Input offset voltage
Temperature coefficient of
°VIO
Input offset voltage long-term
110
liB
VIC = 0,
RS = 50Q
Input offset current
-i.
:HZ
~~d
i!lC:~
~3::
VOL
~ wet
AVD
~
CMRR
"
Large-signal differential
voltage amplification
2
2
25°C
0.005
25°C
0.5
5
35
60
Full range
Common-mode
rejection ratio
Supply-voltage rejection
kSVR
ratio (t.vCC ±/ llVI.O)
ICC
Supply current
Supply current change over
lllCC
operating temperature range
VIC = VICR min,
VCC = 5 V to 30 V
Va = 2.5 V,
33
55
0.3
3
30
50
4
60
3
55
50
0
-0.3
0
-0.3
to
to
to
to
to
to
3.5
4
3.5
4
3.5
4
0
0
0
to
to
to
4
3.2
4.3
4
0.7
0.8
0.3
25°C
85
Full range
80
25°C
100
Full range
95
1.5
0.7
4
0.8
1.5
100
87
115
103
102
450
600
flV/mo
nA
nA
105
V
600
0.8
1.5
dB
120
450
dB
600
600
37
V
V/flV
105
600
37
r-CI)N
"'tIN
>m>
Sms
"'tIC~
r-r--I
-Or-
:c'e
CI)"'tIN
ON
:Eo::J
:c
m
("')
100
450
>,e
"'tI
4.3
0.95
90
118
600
37
__ r~::I:-I
O!:i)m
Z::I: N
V
85
98
Full range
flV/oC
:!!~m
0.1
82
mC:s
:c:c~
mS
0.7
0.5
0.1
"'tIo::JN
:c
0.95
0.4
flV
c:Xr>(",)m
r->N
r-e
ON
mc:;;N
3.8
0.95
0.1
UNIT
3.2
4.3
3.8
3.8
25°C
Full range
4
-0.3
Full range
25°C
No load
0.005
0.4
0
25°C
RS = 50Q
MAX
2
0.005
5
Full range
Va = 1.4Vt04V, RL = 10kQ
TYP
250
25°C
Low-level output voltage
MIN
400
RS = 50Q
RL = 10 kQ
MAX
550
3.2
VOH
TYP
800
Full range
High-level output voltage
MIN
Full range
Full range
~1'T1
~Z
voltage range
MAX
400
25°C
Input bias current
Common-mode input
VICR
TYP
TLE2022B
600
25°C
@
MIN
TLE2022A
25°C
Full range
"1l
0-
TLE2022
Full range
input offset voltage
drift (see Note 4)
TAt
cm-l
flA
flA
tFull range is - 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150ac extrapolated to T A = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
en
o
z
electrical characteristics at specified free-air temperature, Vcc± = ±15 V (unless otherwise noted)
PARAMETER
Via
Input offset voltage
aVIO
input offset voltage
TEST CONDITIONS
drift (see Note 4)
110
Input offset current
liB
Input bias current
TLE2022
MIN
25°C
TYP
150
Full range
Temperature coefficient of
Input offset voltage long-term
TAt
= 0,
RS
= 50n
500
~z
VICR
~c
Maximum positive peak
VOM + output voltage swing
i~~d
.~
~f'!1
~z
voltage range
~(j)~
AVO
~
CMRR
Large-signal differential
voltage amplification
0.006
flV/mo
25°C
0.5
= 50n
Common-mode
rejection ratio
Supply-voltage rejection
kSVR
ratio (AVCC +/ AVIO)
ICC
Supply current
Supply current change over
AICC
operating temperature range
25°C
Full range
25°C
Full range
Va
= ±10V,
RL
VIC
= VICR min,
RS = 50n
VCC±
= 10kn
= ±2.5Vto±15V
5
= 0,
No load
35
4
0.3
4
60
33
60
55
30
55
-15 -15.3
to
to
to
to
13.5
14
13.5
14
13.5
14
-15
-15
-15
to
to
to
13.2
14.3
14
14
~
-13.7 -14.1
-13.6
-13.6
-13.6
25°C
95
Full range
91
25°C
Full range
100
4
1
97
7
1.5
109
100
103
95
105
98
550
Full range
700
550
700
112
dB
120
550
700
60
dB
700
700
60
V
c:
c::
::z;J
::E:
---I
tilr-
V/flV
100
700
60
10
96
118
V
>
~
1.5
93
115
n
13.9
1
106
V
14.3
13.9
-13.7 -14.1
0.8
nA
13.2
14.3
-13.7 -14.1
0.8
50
nA
-15 -15.3
to
14
13.9
3
3
50
to
25°C
Full range
0.4
5
Full range
25°C
Va
flV
0.006
13.2
VOM -
150
300
UNIT
0.006
25°C
= 10kn
70
450
MAX
25°C
Full range
RL
300
TYP
flV/ oC
Full range
MaximiJm negative peak
output voltage swing
120
MIN
2
Full range
RS
MAX
2
25°C
Common-mode input
TLE2022B
TYP
2
-15 -15.3
~
MIN
700
Full range
VIC
TLE2022A
MAX
f1A
f1A
tFull range is - 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life testatTA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
C::E:m
c:cn
>."f,;S
N
r-m N
Om3:
."C~
mr---I
::z;JOr-
~:e~
--tl=
OON
z:~N
>c:;>
r-m3:
>
::z;J~
3:.,,--1
.,,::z;Jrr-mm
N
_n
-n-=
_cn N
~
~
m_N
::z;JO~
cnz:3:
~
operating characteristics at specified free-air temperature,
Vee
= 5 V (unless otherwise noted)
0>
TEST CONDITIONS
PARAMETER
SR
Vn
Slew rate at unity gain
Vo ~ 1 Vt03 V,
Equivalent input noise
f
f
~
~
f
f
voltage (see Figure 2)
Peak-ta-peak equivalent
VN(PP) input noise voltage
See Figure 1
TLE2022
TA
1:;
'"
~
TLE2022B
MAX
MIN
TYP
0.5
0.5
10 Hz
25°C
21
21
21
1 kHz
25°C
17
17
17
~
0.1 to 1 Hz
25°C
0.16
0.16
0.16
~
0.1 to 10 Hz
25°C
0.47
0.47
0.47
MAX
UNIT
VlflS
nV/YHz
J.lV
25°C
0.1
0.1
0.1
pAlYHz
Unity-gain bandwidth
See Figure 3
25°C
1.7
1.7
1.7
MHz
4>m
Phase margin at unity gain
See Figure 3
25°C
47°
47°
47°
TEST CONDITIONS
PARAMETER
Vee ±
TAt
SR
Vn
Slew rate at unity gain
Vo ~ ± 10V,
Equivalent input noise
f
f
f
f
voltage (see Figure 2)
Peak-to-peak equivalent
VN(PP) input noise voltage
~
See Figure 1
25°C
Full range
=
TLE2022
TYP
0.45
0.65
0.4
TLE2022A
MAX
MIN
TYP
0.45
0.65
0.4
MIN
TYP
0.45
0.65
-or
iTi"fN
::1J-C 0
eno N
:e~
m:S
MAX
UNIT
J.lV
en
0.1
pAlYHz
z
MHz
~
1 kHz
25°C
15
15
15
~
0.1 to 1 Hz
25°C
0.16
0.16
0.16
~
0.1 tol0Hz
25°C
0.47
0.47
0.47
25°C
0.1
0.1
19
In
Equivalent input noise current
Bl
Unity-gain bandwidth
See Figure 3
25°C
2.8
2.8
2.8
4>m
Phase margin at unity gain
See Figure 3
25°C
52°
52°
52°
tFull range is - 55°C to 125°C.
>~~
:sm:s
-cc~
nV/YHz
25°C
19
N
z::C
>
,0
r enN
::1J
-C
::1J
0.4
10 Hz
19
:::;::c-l
__ r
rr-l
TLE2022B
MAX
mC::::s
::1J ::1J~
-n~m
± 15 V (unless otherwise noted)
MIN
-c txlN
O",m
Equivalent input noise current
:HZ
~U14r
TYP
Bl
~
~z
MIN
In
--<
~3:':
~1TI
TLE2022A
MAX
0.5
0-
~~c:::a~d
TYP
25°C
operating characteristics at specified free-air temperature,
~~
MIN
cm-l
xr
c:::
:z:,.om
r>N
O rO
_N
VlJ.ls
m
~
o
TlE2022Y
EXCALIBUR HIGH-SPEED lOW-POWER PRECISION
DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at Vee
=5 V, TA =25°e,
TEST CONDITIONS
PARAMETER
VIO
(unless otherwise noted)
TLE2022Y
MIN
Input offset voltage
Input offset voltage
long-term drift (see Note 4)
TYP
MAX
150
600
0.005
VIC =0, RS = 500
UNIT
/lV
/lV/mo
110
Input offset current
0.5
5
nA
liB
Input bias current
35
60
nA
0
VICR
Common-mode input voltage range
RS=500
to
-0.3
to
3.5
4
V
VOH
VOl
Maximum high-level output voltage
Maximum low-level output voltage
RL = 10 kn
AVO
Large-signal differential
voltage amplification
VO= 1.4Vt04 V, RL= 10kO
0.3
1.5
V//lV
VIC = VICRmin, RS = 500
85
100
dB
100
115
dB
CMRR
kSVR
ICC
Common-mode rejection ratio
Supply-voltage rejection
ratio (<1VCC:t!<1VIO)
Supply current
VCC=5Vt030V
4
4.3
0.7
Vo = 2.5 V, No load
450
V
0.8
600
V
J.tA
NOTE: 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C
extrapolated to TA = 25°C using the Arrhenius equation and assuming and activation energy of 0.96 eV.
operating characteristics at Vee
SR
Vn
VN(PP)
=5 V, TA =25°e
PARAMETER
Slew rate at unity gain
TEST CONDITIONS
VO= 1 Vt03V,SeeFigure 1
Equivalent input noise voltage
f = 10 Hz
MIN
TYP
MAX
0.5
21
50
17
30
(see Figure 2)
f = 1 kHz
Peak-to-peak equivalent
f = 0.1 to 1 Hz
0.16
input noise voltage
f=0.ltol0Hz
0.47
UNIT
VI/ls
nVl'I'HZ
/lV
In
Equivalent input noise current
0.1
pAl'I'HZ
Bl
Unity gain-bandwidth
See Figure 3
1.7
MHz
'm
Phase margin at unity gain
See Figure 3
47°
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303· OALLAS, TEXAS 75265
2-949
TlE2022, TlE2022A, TlE2022B
EXCALIBUR HIGH-SPEED lOW-POWER PRECISION
DUAL OPERATIONAL AMPLIFIERS
PARAMETER MEASUREMENT INFORMATION
20kn
>-~--Vo
20 kn
NOTE A: CL includes fixture capacitance.
(a) SINGLE·SUPPLY .
(b) SPLlT·SUPPLY
Figure 1. Slew Rate Test Circuit
$oon.
2.5 v
100n
~::n
+
Vo
100n
Vo
':'
(a) SINGLE·SUPPL Y
(b) SPLlT·SUPPLY
Figure 2. Noise Voltage Test Circuit
10kn
10kn
100n
VI
>--_-Vo
100n
>--_-Vo
2.SV
10 kn
10 kn
NOTE A: CL includes fixture capacitance.
(a) SINGLE·SUPPLY
(b) SPLlT·SUPPLY
Figure 3. Unity·Gain Bandwidth and Phase Margin Test Circuit
TEXAS ~
2-950
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
TlE2022, TlE2022A, TlE2022B
EXCALIBUR HIGH-SPEED lOW-POWER PRECISION
DUAL OPERATIONAL AMPLIFIERS
PARAMETER MEASUREMENT INFORMATION
>--+-_-Vo
>----Vo
10 kn
10 kn
NOTE A: CL includes fixture capacitance.
(a) SINGLE·SUPPLY
(b) SPLlT·SUPPLY
Figure 4. Small·Signal Pulse Response Test Circuit
typical values
Typical values as presented in this data sheet represent the median (50% point) of device parametric
performance.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS .15265
2-951
TlE2022,TlE2022A, TlE2022B
EXCAlIBUR HIGH-SPEED lOW-POWER PRECISION
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
table of graphs
FIGURE
Via
Input offset voltage
liB
Input bias current
II
Input current
YOM
Maximum peak output voltage
YaH
High-level output voltage
VOL
Low-level output voltage
YO(PP)
Maximum peak-to-peak output voltage swing
AYD
Differential voltage amplification
lOS
Short-circuit output current
ICC
Supply current
CMRR
SR
Differential input voltage
8
vs
Output current
vs
Temperature
Common-mode voltage
vs
vs
High-level output current
vs
Temperature
vs
Low-level output current
vs
Temperature
vs
Frequency
vs
Frequency
vs
Temperature
vs
Supply voltage
vs
Temperature
vs
Supply voltage
vs
Temperature
Common-mode rejection ratio
vs
Frequency
vs
Temperature
Small-signal
Large-signal
Peak-to-peak equivalent input noise voltage
Yn
Equivalent input noise voltage
Bl
Unity-gain bandwidth
I/lm
vs
vs
Slew rate
Pulse response
YN(PP)
Temperature
5
6
7
Distribution
Phase margin
Phase shift
.
O.ltolHz
0.1 to 10 Hz
vs
Frequency
vs
Supply voltage
vs
Temperature
vs
Supply voltage
vs
Capacitive load
vs
Temperature
vs
Frequency
TEXAS ~
INSTRUMENTS
2-952
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
9
10
11
12
13
14
15,16
17
18
19,21
20, 22
23
24
25
26
27,28
29,30
31
32
33
34
35
36
37
38
17
TLE2022, TLE2022A, TLE2022B
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
TLE2022
INPUT BIAS CURRENT
TLE2022
DISTRIBUTION OF
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
20
-50
398 amplifiers tested
16
lot
Vee± = ±15V
TA = 25'e
Vee± = ±15V
TA = 25'e
P Package
-45
«<:
E -40
~
:::I
12
~
()
'0
'"
'"
E
1:
.,'"
l~
.~ -35
7
OJ
~
OJ
:;
8
~
Q.
-=
-30
~
I
Q.
........
ffi
4
- 25
I
o
- 600
o
- 20
-15
Via - Input Offset Voltage - J.l V
-10
-5
o
5
10
VIC - Common-Mode Input Voltage - V
Figure 5
Figure 6
TLE2022
INPUT BIAS CURRENT
INPUT CURRENT
- 400
- 200
200
600
400
vs
vs
FREE-AIR TEMPERATURE
DIFFERENTIAL INPUT VOLTAGE
-50
1.0
Vee ± = ±15 V
0.9
Va = 0
-45
VIC = 0
«c:
I
r----
~
............
iii
:;
Q.
-=
-30
I
0.8
«
~
~
:l
()
-35
r------
"~
'E -40
~
15
0.7
E
!!
0.6
5
()
:;
~ .........
Q.
~
I
~
E
-=
.:
VCC±=±15V
VIC = 0
TA = 25'C
0.5
0.4
0.3
0.2
-25
I
0.1
-20
- 75
- 50
- 25
0
25
50
75
100
TA - Free-Air Temperature -"C
125
o
o
)
0.1
Figure 7
0.2
0.3
0.4
0.5
0.6
0.7
0.8
IVIDI- Differential Input Voltage - V
0.9
1.0
Figure 8
toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-953
TlE2022, TlE2022A, TlE2022B
EXCAlIBUR HIGH-SPEED lOW-POWER PRECISION
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
MAXIMUM PEAK OUTPUT VOLTAGE
YS
OUTPUT CURRENT
MAXIMUM PEAK OUTPUT VOLTAGE
YS
FREE-AIR TEMPERATURE
15
16
>
I
..
14
~
12
=
10
""III
8
E
E
6
::!i
4
0
>
S
2
4
1101-
6
8
10
Output Current - rnA
~
E
E
"
..
'l(
12
I
::!i 12.5 VCC± = ±15V
o
12
-75
14
-25
0
25
50
75
TA - Free-Air Temperature -
100
..........
4
I
III
Ol
"~
3
VCC
4.8
S
'0
>
S0S
\
2
~
..5
1:
:r:
I
:r:
>
>
.2'
NoLoa~
4.4
.2'
0
0
-2
-4
-6
/
4.6
0
:r:
I
:r:
o
=5 V
>
1:
-8
-10
4.2
4
- 75
V
./
V
V........V
- 50
IOH - High-Level Output Current - rnA
/
,./
/
.....---
~~10kQ
- 25
0
25
50
75
100
TA - Free-Air Temperature - °c
Figure 12
Figure 11
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
2-954
125
°c
5
=
=
VCC
5V
TA
25°C
o
-50
HIGH-LEVEL OUTPUT VOLTAGE
YS
FREE-AIR TEMPERATURE
0
..5
TA = 25°C
HIGH-LEVEL OUTPUT VOLTAGE
YS
HIGH-LEVEL OUTPUT CURRENT
'0
~
RL = 10 kQ
>
Figure 10
S
>
S0S
13
::!i
Figure 9
>
I
I
~ 13.5
5
III
Ol
~
-YOM -
8
\
o
o
14
0-
\
2
YOM +
;g
\
\
I
14.5
~
\
- VOM-
';(
::!i
0
I
III
J
~
0-
.."
>
\ YOM +
S
0S
..
.............
\
III
Ol
=
VCC±
±15V
TA
25°C
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
125
TLE2022, TLE2022A, TLE2022B
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
I.OW-LEVEL OUTPUT VOLTAGE
LOW-LEVEL OUTPUT VOLTAGE
vs
vs
LOW-LEVEL OUTPUT CURRENT
FREE-AIR TEMPERATURE
5
>
I
II)
Vee = 5 V
TA = 25°C
t--. r--
I
>
I
4
II)
Cl
Cl
~
J!
'0
>
'5
~
>
'5
>
o
o
o
>
0.75
r---....
0
0
..J
~r--...
0.5
1.5
2
2.5
Vee
-75
3
=5V
-50
-25
0
25
50
75
100
125
IOL - Low-Level Output Current - mA
TA - Free-Air Temperature - °e
Figure 13
Figure 14
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
vs
FREQUENCY
FREQUENCY
>
5
30
II)
Cl
J!
;g
4
'5<
Vee = 5 V
RL = 10 kQ
Ii:"
o
TA
=
100
~t-.
25°C
1k
10 k
f - Frequency - Hz
f - Frequency - Hz
Figure 15
Figure 16
100 k
1M
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ."
IN SfRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-955
TlE2022, TlE2022A, TlE2022B
EXCAlIBUR HIGH-SPEED lOW-POWER PRECISION
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
TLE2022
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION
TLE2022
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION and PHASE SHIFT
vs
vs
FREQUENCY
FREE-AIR TEMPERATURE
120...-_-.-_ _,..-_-.-_ _,..-_-.-_--,600
6
>
100
RL
~
80 0
I
= 10 kn
--
5
c
0
60
1000
60
1200
';
~
.::
:cen
is.
E
..:ll
<.,
...
>
.
.c
Cl
c..
'-.....
}!
E
e
20
3
-
2
~
= 10 kQ +---t----t---t--V-4-+l180
=30 pF
TA = 25°e
-20L-______
__
__
o
RL
eL
~_~
10
~
i5
I
0
E
I
:;
o
-50
-25
o 25 50 75 100
TA - Free-Air Temperature - De
SHORT-CIRCUIT OUTPUT CURRENT
SHORT-CIRCUIT OUTPUT CURRENT
vs
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
15
=0
= 25°e
125
=±15V
=0
Vee±
<
E
10
I
Vo
~
~
(5
5
vlD
5
'5
c..
= -100 mV
:;
o
0
VID
=-100 mV
VID
= 100 mV
0
·s
~
(3
~
~
"-
= 5 V___ '\
~r--
Figure 18
'5
c..
o
'S
o
-75
1M
~
8
'" ""
Vee
Figure 17
Vo
TA
10
"'"
= ±15V
C
15
<
Vee±
>
<
~_~
1k
10 k
100 k
f - Frequency - Hz
100
"'-
'S
1400 I
40
4
- - -
-5
.c
en
r---
:n -10
.9
-15
o
2
4
VID
6
6
10
en
= 100 mV
r-- I12
14
-5
~
.c
:n
r----
-10
.9
-15
- 75
16
- 50
IVee ±I-Supply Voltage - V
r--
---
--.:::.,.
- 25
0
25
50
75
100
TA - Free-Air Temperature - De
Figure 20
Figure 19
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSTRUMENTS
2-956
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
125
TlE2022, TlE2022A, TlE2022B
EXCALIBUR HIGH-SPEED lOW-POWER PRECISION
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
SHORT-CIRCUIT OUTPUT CURRENT
SHORT-CIRCUIT OUTPUT CURRENT
vs
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
6
15
TA = 25 DC
Vcc = 5 V
ct
E
I
ct
E
10
I
VID = -100 mV
~
5
:;
Co
:;
o
o
U
C
I!!
u!:i
:;
Co
:;
Va = VCC
0
·S
'5
l:!
l:!
~
-5
.s::;
Va = 0
.9
o
5
10
15
--r-20
2
VIO = 100mV
Va = 5V
0
-2
~
-4
rn
-6
0
.s::;
VID = 100 mV
r--- ----....
rn
I
rn -10
-15
4
,
r-
rn
I--
25
.9 -8
-10
- 75
30
- 50
Vcc - Supply Voltage - V
'1I
C
I!! 300
!:i
Figure 22
SUPPLY CURRENT
SUPPLY CURRENT
vs
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
~
-- --
~
f..-- f..-- !.---
~--
d--./
TA = 25 o
TA = 125°C~
TA = - 55°C-l
o,..
..-
~t
~V
400
bI
,V--
'1I
C
Co
300
a,.
200
Co
200
rn
I
--
125
-+--b
VCC±=±15V
I--l--
Vcc± = ±2.5V
I!!
u!:i
Q.
Jl
- 25
0
25
50
75
100
TA - Free-Air Temperature- DC
500
Va = 0
No Load
--
Figure 21
500
400
VID = 100 mV
.......... ~a= 0
I
I
~
~
100
100
o
o
o
2
4
6
8
10
12
14
16
va = 0
No Load
-75
-50
-25
0
25
50
75
IVcc ±I- Supply Voltage- V
TA - Free-Air Temperature - °c
Figure 23
Figure 24
100
125
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ."
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-957
TLE2022, TLE2022A, TLE2022B
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
TLE2022
COMMON-MODE REJECTION RATIO
SLEW RATE
vs
vs
FREQUENCY
FREE-AIR TEMPERATURE
120
TA = 25'C
al
"0
.......
I
.!2 100
~
'iU
c
c:
·u0
80
..
c:
..
60
"0
~
0
::;:
c0
E
E
40
~
\
0
()
I
20
c:
c:
*
c:
~
::;:
en
0.4
lk
10k
lOOk
f - Frequency - Hz
1M
en
0.2
'\
o
10M
Figure 25
Figure 26
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
VCC± = ±15 V
RL
10 kQ
CL
30 pF
50 TA = 25'C -I,...--+--_+_--.-f___--I
See Figure 4
=
=
..
I
RL = 20 kQ
CL = 30 pF
See Figure 1
- 75 - 50 - 25
0
25
50
75
100
TA - Free-Air Temperature - 'C
100~--~--~----~---r--~~--~
~
-
c:
o
100
VCC = 5 V
I
()
10
I
,--
o.S
I
VCC ± = ±15 V
,...--
::!.
:>
VCC=~ ~
.~
O.S
..
VCC±=±15V
~
2.S
125
r-----r------,----..,..---...,...----or----...,
VCC = 5 V
RL
10 kQ
CL
30 pF
2.55 TA = 25'C
>
See Figure 4
I
=
=
Gl
~
Ol
S
;g
S
0~-~--1--+---+~f___~-4
c..
S
o
I
o
>
-50~-4---~--+--_+_--I~~-4
g
.§.
,.
o
I
o
> 2.451-----+--..........--+---+---11--1----1
-100~--~--~----~--~----~--~
o
40
20
t-Time-J.ls
60
2.5 J-----+-----1c----\---+--If---t---i
2.4
~
__
~
__--I.____..J.-__.....i..____l..-__.....
o
80
Figure 27
40
20
t-Time-J.ls
SO
Figure 28
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSTRUMENTS
2-958
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
80
TLE2022, TLE2022A, TLE2022B
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
>
.,I
15
4r---~---r---'----~---r---'
Vcc± = ±15V
RL = 10 kQ
10 CL = 30 pF
TA = 25°C
See Figure 1
5
VCC = 5 V
RL=10kQ
CL
30 pF
3 TA = 25°C
See Figure 1
=
Ol
l!!
0
>
;
Q.
;
0
0
I
0
-5
-10
-15
0.4
.l!!
0.3
>.,
0.2
Ol
'"
/
/
.l!!
"0
>
;
o
o
I
o
>
20
1- Time - IlS
0
40
80
60
Q.
.=
"'.,'""
£
..::
.,'"
Q.
0
20
40
60
60
1- Time-Ils
Figure 29
Figure 30
PEAK-TO-PEAK EQUIVALENT
INPUT NOISE VOLTAGE
0.1 TO 1 Hz
PEAK-TO-PEAK EQUIVALENT
INPUT NOISE VOLTAGE
0.1 TO 10 Hz
~
VCC± = ±15V
TA = 25°C
0.5
.,
0.4
.l!!
>
0.3
Ol
"0
VCC± = ±15V
TA = 25°C
"
>::I.
>
I
z
;
0.1
0
-0.1
.,-' rTf i.,...,
.J.. l.l.o.I
lill 11IlI. ,10 •• It.. •.1. l
'lIP' I"P -ny 11'
... .Ia.
~1'
0.1
Q.
!pili
.=
0
"'&'"" - 0.1 ft--HH+-1I-f--Ij-!J.t-'t--l~-I"'tIF-.p-I-+-Hrtt-t
£
-0.2
..:: - 0.2 r--+-'+-t---'-+---+--+--+---/--+----1r-~
-0.3
~ - 0.31--t--l--+---+---I--+--t--+--lr---I
-0.4
Z
> -0.5
&" - 0.4 r--+---t--+---+--+--+--t--+-----,r-~
Q.
I
~
&"
Z
o
> - 0.5 L....-l---'_ _..........I._-'---'-_"'--"---'.........
2
3
4
5
6
7
8
9
10
o
1- Time-s
2
3
4
5
6
I-Time-s
Figure 31
Figure 32
7
6
9
10
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-959
TlE2022, TlE2022A, TlE2022B
EXCALIBUR HIGH-SPEED lOW-POWER PRECISION
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
SUPPLY VOLTAGE
200
I
4
'"
~>
c
.
vcc± = ± 15 V
RS = 100Q
TA = 25°C
See Figure 2
160
GI
Cl
S
g
GI
,l!!
120
0
E.
'E
~
".,.
N
:I:
::E
I
III
III
c
';
1\
80
3
2
V
V
V
--
l-
/'
:J
1\
40
,/"
b
'c
\
GI
W
I
RL = 10 kQ
CL = 30 pF
TA = 25°C
See Figure 3
:6'i
"c
z
;;
Q.
UNITY-GAIN BANDWIDTH
vs
I
~
c
>
0
0
1
10
100
1k
f - Frequency - Hz
0
10 k
Figure 34
UNITY-GAIN BANDWIDTH
PHASE MARGIN
vs
vs
FREE-AIR TEMPERATURE
SUPPLY VOLTAGE
N
I
3
J:!
:2;:
"
c
'"
NI
,
VCC±=
C
III
III
2
±15~
I l'--.
';
k
VCC = 5 V
16
c
..
53
5l'
1'---.
"I
c
f'-... ~
's,
:;;
GI
In
1-- r---
~
o
III
J:!
49
47
45
-25
0
25
50
75
100
TA - Free-Air Temperature - °c
125
/
0I
....E
14
16
r-
V
51
::E
I
-50
RL = 10 kQ
CL = 30 pF
TA = 25°C
See Figure 3
!!
t"-... t--
:J
-75
14
55
RL = 10 kQ
CL = 30 pF
See Figure 3
'",
::E
4
6
8
10
12
IVcc ±I- Supply Voltage - V
Figure 33
4
:I:
2
o
2
V
4
V
6
8
10. 12
IVcc ±I- Supply Voltage - V
Figure 35
Figure 36
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
2-960
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
TlE2022, TlE2022A, TlE2022B
EXCALIBUR HIGH-SPEED lOW-POWER PRECISION
DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
PHASE MARGIN
vs
LOAD CAPACITANCE
70
60
..,g>
c
'"
RL = 10 kn
~
50
I
.~
~
VCC=5~
40
30
'"
a.
E
-<>
52
:::--r----r--
.c
I
TA = 25°C
See Figure 3
~C± = ±15V
::E
5l
54
I
.,
~
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
--
.,
"
C.
Q)
,/' . I
/
50
..,
I
::::--
VCC±=±15V
r-- -.....
Q)
- --
I
I--
c
48
'c,
:;;
~
::E
.'"
46
Q)
.c
a.
I
20
E
44
---
VCC = 5 V
r--..
-<>
42
10
o
o
RL = 10 kn
CL = 30 pF
See Figure 3
20
40
60
80
CL - Load Capacitance - pF
100
40
-75
-50
-25
0
25
50
75
TA - Free·Air Temperature -
Figure 37
100
125
'c
Figure 38
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
APPLICATION INFORMATION
voltage-follower applications
The TLE2022 circuitry includes input protection
CF = 20 to 50 pF
diodes to limit the voltage across the input
....-IF $: 1 mA
transistors; however, no provision is made in the
circuit to limit the current if these diodes are
forward-biased. Note that this condition can occur
when the device is operated in the voltagefollower configuration and driven with a fast, large>-......-Vo
signal pulse. It is recommended that a feedback
resistor be used to limit the current to a maximum
VCCof 1 mA to prevent degradation of the device.
Also, remember that this feedback resistor will
Figure 39. Voltage Follower
form a pole with the input capacitance of the
device. For feedback resistor values greater than 10 kQ, this pole will degrade the amplifier's phase margin.
This problem can be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor
(see Figure 39).
input characteristics
The input of any unused amplifiers should be tied to ground to avoid possible oscillation.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-961
2-962
TlE2024, TlE2024A, TlE2024B, TlE2024Y
EXCALIBUR HIGH-SPEED lOW-POWER PRECISION
QUAD OPERATIONAL AMPLIFIERS
03265, MAY 1989 - REVISED OCTOBER 1991
available features
•
Supply Current ... 1 rnA Max
•
High Open-Loop Gain ... 7 V/IlV (137 dB) Typ
•
High Unity-Gain Bandwidth ... 2.8 MHz Typ
•
Low Offset Voltage ... 500 IlV Max
•
High Slew Rate ... 0.45 V/IlS Min
•
•
Supply Current Change Over Military Temp
Range ... 50 IlA Typ
Offset Voltage Drift With Time
0.0051J.V/mo Typ
•
Low Input Bias Current ... 50 nA Max
•
Low Noise Voltage ... 19 nVNHz Typ
at f = 10 Hz
•
Specified for Both 5 VlGnd and
Operation
•
Phase-Reversal Protection
± 15 V
description
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION and PHASE SHIFT
vs
FREQUENCY
The TLE2024, TLE2024A, TLE2024B, and
TLE2024Y devices are precision, high-speed, lowpower quad operational amplifiers using Texas
Instruments patent-pending Excalibur process.
These devices combine the best features of the
OP421 with highly improved slew rate, unity-gain
bandwidth, and input offset voltage.
co 120
Typ ICC
'"0
I
,2 100 ,
N
I
"'-
!E 80
ii
E
The complementary bipolar Excalibur process
utilizes isolated vertical P-N-P transistors that yield
dramatic improvement in unity-gain bandwidth and
slew rate over similar devices.
<
"
~
"0
>
I
PHASE SHIFT
I"
AV"";;--
60
,
40
~
20
"'-I'-...
=
VCC±
±15 V
RL
10 kQ
~
C
I
o
>
""" \:
~m
= 52~
""- I'-...
=
= 30 pF
TA = 25'C
0
CL
<-20
10
100
This combination of excellent dc performance with
a common-mode input voltage range that includes
= 2.B MHz
f
I
~
The addition of a patent-pending bias circuit in
conjunction with this process results in extremely
stable parameters with both time and temperature.
This means that a "precision" device remains a
precision device even with changes in temperature
and over years of use.
60'
= 235 !lA/amplifier
100'
.t:
:c
'i-
!\
""-,: \
N
1k
10 k
100 k
1M
BO'
120' III
"
~
.c
140' 0.
I
160'
1BO'
200'
10 M
f - Frequency - Hz
AVAILABLE OPTIONS
TA
VIOmax
AT 25°C
PACKAGE
CERAMIC
SMALL
CHIP
PLASTIC
OUTLINE
CARRIER
DIP
DIP
(FK)
(J)
(N)
O°C
500 JlV
(OW)
TLE2024BCDW
to
750 JlV
TLE2024ACDW
TLE2024ACN
70°C
1000J.lV
TLE2024CDW
TLE2024CN
-40°C
500 JlV
TLE2024BIDW
TLE2024BIN
TLE2024AIDW
TLE2024AIN
to
750 JlV
85°C
1000JlV
-55°C
500 JlV
TLE2024BMDW
to
750 JlV
TLE2024AMDW
125°C
1000J.lV
TLE2024MDW
CHIP
FORM
(Y)
TLE2024BCN
TLE20241DW
TLE2024Y
TLE20241N
TLE2024BMJ
TLE2024BMN
TLE2024AMFK
TLE2024AMJ
TLE2024AMN
TLE2024MFK
TLE2024MJ
TLE2024MN
The D package is available taped and reeled. Add the suffix R (e.g., TLE2024CDWR). Chips are tested at 25°C.
PRODUCTION DATA informalionisturrentasofpublication dati. Products
conform to spacifications per the terms of Texas Instruments standard
warranty. Production processing does natnac.ssarily include testing olall
parameters.
TEXAS
~
INSTRUMENTS
POST OFFICE SOX 655303 • DALLAS, TEXAS 75265
Copyright © 1991 , Texas Instruments Incorporated
2-963
TlE2024, TlE2024A, TlE2024B
EXCAlIBUR HIGH-SPEED lOW-POWER PRECISION
QUAD OPERATIONAL AMPLIFIERS
description (continued)
the negative rail makes these devices the ideal choice for low-level signal conditioning applications in either
single-supply or split-supply configurations. In addition. these devices offer phase-reversal protection circuitry
that eliminates an unexpected change in output states when one of the inputs goes below the negative supply
rail.
A variety of available packaging options includes small-outline and chip carrier versions for high-density
systems applications.
The e-suffix devices are characterized for operation from ooe to 70°C. The I-suffix devices are characterized
for operation from -40°C to 85°C. The M-suffix devices are characterized for operation over the full military
temperature range of -55°C to 125°C.
ow PACKAGE
1 OUT
VCC +
21N +
21N20UT
NC
1
6
I
4 OUT
41N41N +
VCC _/GND
31N +
31N30UT
J or N PACKAGE
FK PACKAGE
(TOP VIEW)
(TOP VIEW)
~
~
(TOP VIEW)
I
lOUT
l1N-
~O()O~
...-..-2..q...,.
3
2
1 2019
liN +
NC
4
18
5
17
VCC+
NC
21N +
6
16
7
15
8
14
41N +
NC
VCC_/GND
NC
31N +
9 10 11 12 13
II-()I-I
z::Jz::Jz
-0
0"IN
",,,,
NC - No internal connection
TEXAS ~
INSTRUMENTS
2-964
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VCC +
21N +
21N20UT
6
7
40UT
41N41N +
VCC_/GND
31N +
31N30UT
TLE2024Y
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
QUAD OPERATIONAL AMPLIFIERS
chip Information
These chips, properly assembled, display characteristics similar to the TLE2024. Thermal compression or
ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive
epoxy or a gold-silicon preform.
VCC+(4)
IN+(3)~
BONDING PAD ASSIGNMENTS
IN-(2
OUT (7)
OUT (1)
~
+
IN+ (5)
IN+(10)~
-
IN- 6
()
OUT (8)
IN-(9)~
+
IN+(12)
OUT (14)
-
IN- (13)
VCC- (11)
CHIP THICKNESS:
15 TYPICAL
BONDING PADS:
4X4MINIMUM
TJ max = 150°C
TOLERANCES
ARE ±10%
ALL DIMENSIONS
ARE IN MILS
I.,.
140
-'1
1I1I 1111 II II 111111 II II 111111 11111111111111111111 II 1111 1111 111111 1111 II I
PIN (11) INTERNALLY
CONNECTED TO
BACKSIDE OF CHIP
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-965
cm~
b
c:Xr>(,,)m
equivalent schematic (each amplifier)
'"'"
C>N
r-O
O N
-cc:J~
mC:~
:::JJ:::JJ~
:!:i2:!;;
_C')N
Vcc+
1
0
0:x:
Z,N
>(I)~
Q'~ ~~
Q"
r--C.?>
>m~
Smr-C Cm
r-r-N
0
01
024
-0
:!!=:N
ml~
t-----il---;r..,039
:::JJ -C~c:J
(l)0~
=:r-
Z
~d
~~
~~
mm
::xJN
o
~
00
IN - - ....._-r-i
~
04
H040
IN+-~~-+~--~r-----+-~-{-
01
Cl
06>--I=209
=*
(I)
o
z
02
R6
R1
-C N
::xJ~
m-<
R2
R4
R3
R5
~
15
~26
016
T
VCC_ /GNO
Component count: Diodes - 16
Capacitors - 16
Resistors - 28 Transistors - 160
[(030
~
033
018
I
'037
TLE2024, TLE2024A, TLE2024B, TLE2024Y
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
QUAD OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC+ (see Note 1) ..................................................... 20 V
Supply voltage, VCC- (see Note 1) .................................................... -20 V
Differential input voltage (see Note 2) .................................................. ±0.6 V
Input voltage, VI (any input, see Note 1) ............................................... VCC±
Input current, II (each input) .......................................................... ±1 mA
Output current, 10 (each output) ..................................................... ±40 mA
Total current into VCC+ terminal ...................................................... 80 mA
Total current out of VCC- terminal .................................................... 80 mA
Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... unlimited
Continuous total dissipation ........................................ See Dissipation Rating Table
Operating free-air temperature range,TA: C-suffix ................................... O°C to 70°C
I-suffix ................................. -40°C to 85°C
M-suffix ............................... -55°C to 125°C
Storage temperature range ................................................... -65°C to 150°C
Case temperature for 60 seconds: FK package .......................................... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: DW or N package ............. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package ................... 300°C
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC-'
2. Differential voltages are at the noninverting input with respect to the inverting input. Excessive current will flow if a differential input
voltage in excess of approximately ±600 mV is applied between the inputs unless some limiting resistance is used.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
DERATING FACTOR
OW
FK
1375 mW
11.0 mW/oC
J
1375mW
1150mW
11.0 mW/oC
880mW
880mW
9.2 mW/oC
736mW
N
=
ABOVE TA 25°C
8.2 mW/oC
=
=
TA s 25°C
POWER RATING
1025mW
PACKAGE
TA 85°C
POWER RATING
533 mW
TA 70°C
POWER RATING
656mW
=
TA 12SoC
POWER RATING
205 mW
715mW
275mW
715mW
598mW
275 mW
230mW
recommended operating conditions
I·SUFFIX
C-SUFFIX
MAX
MIN
±2
±20
0
-15
3.5
13.5
0
70
MIN
Supply voltage, VCC+
Common-mode input voltage, VIC
I
Vec = 5 V
-' Vec+ = ±15V
Operating free-air temperature, TA
NOM
NOM
M-SUFFIX
UNIT
MAX
MIN
±2
±20
±2
±20
0
-15
3.2
13.2
0
-15
3.2
13.2
V
-40
85
-55
125
°c
NOM
MAX
V
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
2-967
~
electrical characteristics at specified free-air temperature, Vee
'"
TEST CONDITIONS
PARAMETER
VIO
TAt
Input offset voltage
Temperature coefficient of
(lVIO
Input offset voltage long-term
~
0_
:HZ
110
Input offset current
liB
Input bias current
Common-mode input
voltage range
VIC = O.
RS =
son
~f!1~
~~~
VOL
Large-signal differential
AVO
~
j
CMRR
voltage amplification
C~m~on-m~de
rejeCIJon rafio
Supply-voltage rejection
kSVR
ratio (t.VCC /aVIO)
ICC
Supply current
Supply current change over
t.ICC
operating temperature range
Vo = 1.4 V to 4 V, RL
VIC = VICR min,
=
RS =
10
kn
son
VCC = 5Vt030V
No load
TYP
MAX
800
UNIT
c:>C')~
c>=
J,lV
°COol:oo
""Cc:C')
2
2
2
J,lV/oC
25°C
0.005
0.005
0.005
J,lV/mo
25°C
0.6
45
0.5
5
40
5
55
60
65
0.4
35
60
-0.3
0
-0.3
0
-0.3
to
to
to
to
to
3.5
4
3.5
4
3.5
4
0
0
0
to
to
to
3.5
3.5
3.5
3.7
4.2
3.9
4.2
0.7
0.8
0.7
0.2
0.1
25°C
Full range
80
25°C
98
Full range
93
80
1.5
0.8
0.3
1.5
90
82
92
112
100
103
95
800
1200
15
4.3
V
0.8
800
1200
dB
117
800
dB
1200
1200
15
V
V/J,lV
95
1200
15
cnOco
:EC')
:::J:J
m
C')
Ci)
(5
Z
1.5
98
1200
Full range
""C .... rr-om
:::J:J
85
115
r-""C>
_mC')
-m_
SC-4
nA
V
0.95
85
>cnol:oo
"TI:E~
:::J:J""C0I:00
0.1
82
Z'N
""C
0.7
0.4
m:::J:J:::J:J
-4
>::c
r- .
~-m
-C)N
0::c=
m
0.95
0.1
nA
CN
mIN
3.8
0.95
25°C
Full range
4
3.7
50
55
0
3.9
4
4
to
25°C
Full range
6
6
Full range
250C
Vo = 2.5 V,
MIN
1050
25°C
Full range
Low-level output voltage
MAX
1300
son
RL = 10 k.Q
TYP
Full range
25°C
High-level output voltage
MIN
600
Full range
RS =
MAX
TLE2024BC
8SO
Full range
;~d
~~~
TYP
TLE2024AC
1100
Full range
VOH
MIN
cm-4
25°C
25°C
VICR
TLE2024C
Full range
input offset voltage
drift (see Note 4)
=5 V(unless otherwise noted)
J.lA
J.lA
tFuli range is OOC to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life testa! TA = 150°C extrapolated to T A = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
electrical characteristics at specified free-air temperature,
PARAMETER
Via
TEST CONDITIONS
Input offset voltage
Temperature coefficient of
aVIO
drift (see Note 4)
110
Input offset current
liB
Input bias current
TAt
= ± 15 V(unless otherwise noted)
TLE2024C
MIN
VIC
= 0,
RS
= 50 Q
TYP
TLE2024AC
MAX
0-
:BZ
VICR
voltage range
~~c:::o~~
500
700
~~
i!!1'!'1
~z
~u1..t
t\;
Ol
~
YOM -
Maximum negative peak
output voltage swing
Large-signal differential
AVO
CMRR
kSVR
ICC
voltage amplification
Common-mode
rejection ratio
Supply-voltage rejection
ratio (t.VCC ±i t.VIO)
= 10 kQ
2
/lVfOC
25°C
0.006
0.006
0.006
/lV/mo
25°C
0.6
6
50
= ±10V,
VIC = VICR min,
VCC±
RL
RS
= 10 kQ
= 50Q
= ±2.5Vto±15V
operating temperature range
Va
= 0,
No load
5
0.4
5
60
45
55
- 15 - 15.3
40
to
to
to
to
to
14
13.5
14
13.5
14
-15
-15
-15
to
to
to
13.5
13.5
13.5
13.9
14.1
14
14.2
13.8
14.3
-13.7 -14.1
-13.7 -14.1
-13.6
0.4
25°C
92
Full range
88
25°C
98
Full range
93
2
0.8
4
1
0.8
102
94
105
97
100
103
95
25°C
Full range
1050
Full range
20
1400
1400
7
1400
108
c::
dB
:l:I
::I:
1050
dB
1400
1400
20
C::I:rc::cn~
»"'Cc::;)
117
1400
20
V
C'J-4
98
1050
»
r-
VI/lV
93
115
V
c::J
1
90
112
(")
13.9
-13.6
0.4
V
m
-13.6
25°C
nA
><
-13.7 -14.1
Full range
nA
-15.3
to
13.8
50
55
-15
13.5
13.7
4
4
60
65
25°C
25°C
0.5
6
Full range
Full range
Va
/lV
2
= 50Q
Supply current
Supply current change over
t.lec
RL
UNIT
2
Full range
Maximum positive peak
YOM + output voltage swing
MAX
750
25°C
~~
TYP
950
Full range
RS
MIN
1000
25°C
Common-mode input
TLE2024BC
MAX
1200
Full range
-0
TYP
25°C
-15 -15.3
5l-i
MIN
Full range
Full range
input offset voltage
Input offset voltage long-term
Vee ±
om I ' )
m~
00(")
!lA
!lA
tFull range is O°C to 70o e.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test atTA =150a C extrapolated to T A =25°e using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
"'C
~
mr--4
:D0r-
:=;~~
-"'Cc::;)
001')
Z::E~
F=m~
»
:l:I~
3:"'C-4
"'C:D::;:;
r-ml')
-(")c::;)
:!!cnl')
:bm
<0
m-~
:l:IOc::J
en Z (")
b
operating characteristics at Vee
2l
Vn
om-l
c::>m
Phase margin at unity gain
See Figure 3
25°C
52°
52°
52°
0
enoc:J
:En
m
V/}lS
Bl
ooe to 70 e.
>en~
r-'"'C>
_mn
-m~
sq-l
'"'Cr-rr-om
::x:J'"'C~
TlE2024AC
In
tFull range is
>:::t:r-"'N
0:::t:=
Z'N
"'""I- m
mIN
TlE2024C
TYP
'"'Cc::n
m::x:J~
::x:J -I
"'T'I:E~
=± 15 V
MIN
>n~
c>=
eN
0c:J~
VI}ls
30
See Figure 3
SR
0.5
17
See Figure 3
TAt
MAX
21
Phase margin at unity gain
=BZ
0.5
TYP
50
Unity-gain bandwidth
TEST CONDITIONS
MIN
30
Bl
PARAMETER
MAX
17
4>m
g
TYP
21
In
-<
MIN
0.1
operating characteristics at specified free-air temperature, Vee ±
TLE2024BC
TLE2024AC
MAX
0.5
Equivalent input noise current
0_
~~
TYP
::x:J
'"'C
::x:J
m
~
en
°Z
electrical characteristics at specified free-air temperature, Vee = 5 V(unless otherwise noted)
PARAMETER
Via
TEST CONDITIONS
Input offset voltage
Temperature coefficient of
(lVIO
drift (see Note 4)
110
liB
~
0-
:HZ
~~d
VICR
voltage range
VOM -
Maximum negative peak
output voltage swing
Large-signal differential
AVO
....
CMRR
voltage amplification
Common-mode
rejection ratio
Supply-voltage rejection
kSVR
ICC
ratio (t. VCC ± / t. Via)
= ±2.5Vto±15V
operating temperature range
2
Vo = 0,
No load
2
25°C
0.005
25°C
0.6
6
45
60
40
55
to
to
4
3.5
to
3.5
60
-0.3
to
to
to
4
3.5
4
0
to
to
to
3.2
3.2
3.2
4.2
3.9
4.2
0.8
0.7
0.95
25°C
0.2
Full range
0.1
25°C
80
Full range
80
25°C
98
Full range
93
4
1.5
0.8
1.5
0.1
90
82
112
100
85
115
103
30
117
1200
800
1200
30
V/flV
:ll
::I:
dB
c;;,=F -I
dB
98
800
V
><
~
rt:D
c:::
C')
95
85
1200
Full range
1.5
0.1
95
1200
V
0.8
0.95
92
82
800
4.3
0.7
0.4
nA
m
0.95
0.3
nA
V
3.8
3.7
0.7
50
0
0
3.7
35
5
0
3.9
4
65
-0.3
flV
flV/mo
0.4
6
0
-0.3
25°C
Full range
5
70
0
0.005
0.5
UNIT
flVloC
2
0.005
7
Full range
25°C
Supply current
Supply current change over
t.ICC
VCC±
= 50n
MAX
800
25°C
RS
TYP
600
Full range
VIC ~ VICR min,
MIN
850
RS ~ 50n
= 10kn
TLE2024BI
MAX
1050
Full range
RL
TYP
1300
25°C
VO~±10V,
MIN
1100
Full range
RL = 10 kn
TLE2024AI
MAX
25°C
Full range
~z
~
= 50n
TYP
Full range
25°C
Maximum positive peak
VOM + output voltage swing
~W~
i;;
RS
Input bias current
1!lC:~
~~
~l"I
VIC ~ 0,
Input offset current
Common-mode input
TLE20241
MIN
Full range
input offset voltage
Input offset voltage long-term
TAt
1200
1200
30
f1A
f1A
tFull range is - 40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life testatTA ~ 150°C extrapolated to T A ~ 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
C:::(I)r:S:--C m
cmN
Ome;:)
-cc~
mr-~-
:ll0-l
~:Er
--em
OON
~:E~
r-mt
:s:-:ll~-
S-C-l
-c:llrr-mm
-C":I N
"T'I-e;:)
b~
m~N
:llO.j:::o
(l)Z:~
~
electrical characteristics at specified free-air temperature, Vee ±
= ± 15 V (unless otherwise noted)
TLE20241
I\)
PARAMETER
Via
Input offset voltage
(lVIO
input offset voltage
TEST CONDITIONS
Input offset voltage long-term
110
Input offset current
liB
Input bias current
MIN
TYP
25°C
Full range
Temperature coefficient of
drift (see Note 4)
TAt
= 0,
RS
= 50n
0_
3lZ
i~~d
~~
~tr'l
~z
VICR
voltage range
YOM -
~uJ4r
In
AVD
~
CMRR
Large-signal differential
kSVR
ICC
voltage amplification
Common-mode
rejection ratio
Supply-voltage rejection
ratio (!!"vCC ± / ~ Via)
25°C
0.6
6
Supply current change over
50
60
~ICC
operating temperature range
45
55
40
65
-15 -15.3
to
to
13.5
14
13.5
14
13.5
14
-15
-15
-15
to
to
to
Full range
13.7
13.2
14.1
13.9
14
-13.7 -14.1
Full range
-13.6
-13.6
-13.6
0.4
= 10kn
VIC
= VICR min,
RS
= 50n
25°C
Full range
92
25°C
Full range
98
25°C
0.4
102
94
112
100
105
97
115
103
1050
1400
1400
50
1400
V
V/flV
108
dB
117
1400
50
dB
1400
1400
50
(")
o
Z
7
1050
:E
m
:::c
-a
:::c
m
C;;
98
1050
-cC~
-ON
:!!:E=
miN
V
93
95
93
r-r-m
C'l)0~
1
90
Full range
Full range
1
4
0.8
88
nA
V
14.3
-13.7 -14.1
0.8
>m~:s:m
.
:::c-c.j::lo
13.8
-13.7 -14.1
>C'I).j::Io
nA
13.2
14.2
13.7
2
50
Z.N
r--c>
-15 -15.3
to
13.8
4
60
to
25°C
0::z::~
5
to
RL
No load
0.4
to
= ±10V,
= 0,
5
6
70
Va
Va
0.5
7
25°C
Full range
Supply current
flV
flV/mo
25°C
= ±2.5Vto±15V
700
0.006
= 50n
VCC±
500
0.006
25°C
= 10 kn
750
950
UNIT
0.006
Full range
RL
MAX
25°C
13.2
Maximum negative peak
output voltage swing
TYP
flV/oC
Full range
Maximum positive peak
YOM + output voltage swing
MIN
2
Full range
RS
TLE2024BI
MAX
2
25°C
Common-mode input
TYP
2
-15 -15.3
g--<
MIN
1000
1200
Full range
VIC
TLE2024AI
MAX
cm-t
c::>(,,)m
C>N
r-=
O_N
-cCO.j::lo
me::.::::c:::C-t
:!:j::z::r_c:;m
f!A
f!A
tFull range is - 40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA =150°C extrapolated to TA =25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
.
operating characteristics at vee
=5v, TA =25°e
SR
Vn
Slew rate at unity gain
Vo
I
~
i
,
MIN
MAX
0.5
0.5
0.5
TYP
f
= 10 Hz
21
50
21
50
21
50
17
30
17
30
17
30
f = 0.1 to 1 Hz
f
= 0.1 to 10 Hz
0.16
0.16
0.16
0.47
0.47
0.47
UNIT
V/jJS
f=lkHz
nV/~
j.tV
0.1
0.1
0.1
pAl,[Hz
See Figure 3
1.7
1.7
1.7
MHz
Phase margin at unity gain
See Figure 3
47°
47"
47°
operating characteristics at specified free-air temperature, Vee ±
TEST CONDITIONS
Slew rate at unity gain
Vo = ± 10V,
Equivalent input noise
f
f
f
f
voltage (see Figure 2)
Peak-to-peak equivalent
VN(PP) input noise voltage
...
TLE2024BI
MAX
Unity-gain bandwidth
Vn
~@4'
Iii
TYP
Equivalent input noise current
SR
~z
MIN
Equivalent input noise
PARAMETER
~3::
~1"1"1
TLE2024AI
MAX
Bl
;m
~z
~c:
See Figure 1
TYP
In
-<
~~~~
= 1 Vto 3 V,
MIN
voltage (see Figure 2)
V
Peak-Io-peak equivalent
N(PP) input noise voltage
~
TLE20241
TEST CONDITIONS
PARAMETER
= 10 Hz
= 1 kHz
= 0.1101 Hz
= 0.1 1010Hz
See Figure 1
TAt
25°C
Full range
=± 15 V
TLE20241
MIN
TYP
0.45
0.42
0.7
TLE2024AI
MAX
MIN
0.45
TYP
0.7
TLE2024BI
MAX
0.42
MIN
0.45
TYP
0.7
MAX
19
15
50
V/Jls
0.42
25°C
19
50
19
50
25°C
15
30
15
30
25°C
0.16
0.16
0.16
25°C
0.47
0.47
0.47
UNIT
30
nV/~
JlV
m
><
n
>
c:
CD
c:
::c
In
Equivalent inpul noise current
25°C
0.1
0.1
0.1
pAl,[Hz
:::t:
Bl
Unity-gain bandwidth
See Figure 3
25°C
2.8
2.8
2.8
MHz
C)
;m
Phase margin at unity gain
See Figure 3
25°C
52°
52°
52°
tFull range is - 40°C to 85°C.
C::;C-t
c: Gf,I'>-a m
cmN
Ome
-aC~
m'--:-
::C0-t
:!:i:E.-_..!am
°ON
:z:~e
>c::;N
.--m-'="
>::c:=:s:-a-t
-a::C.-.--mm
-nN
"T1-e
~
;:;;~N
::co-'="
Gf,I:Z:~
~
electrical characteristics at specified free-air temperature,
TEST CONDITIONS
PARAMETER
Via
Input offset voltage long-term
110
lIB
~....
0_
:HZ
~~d
-~l!JC:~
~
= 0,
RS
= 50U
voltage range
VOM-
Maximum negative peak
.
output voltage sWing
~@4r
In
AVD
voltage amplification
~
CMRR
Large-signal differential
0.005
0.005
flV/mo
6
45
Common-mode
..
.
rejection raM
Supply-voltage rejection
kSVR
ratio (AVCC ±/ AVIO)
ICC
Supply current
Supply current change over
AICC
operating temperature range
VIC
= VICR min,
RS = 50U
VCC± = ±2.5Vto±15V
No load
60
40
55
35
75
0
-0.3
0
-0.3
to
to
to
to
to
3.5
4
3.5
4
3.5
4
0
0
0
to
to
to
Full range
3.7
3.2
3.9
0.8
25°C
0.2
0.1
25°C
80
Full range
80
25°C
Full range
98
1.5
0.7
4
0.8
82
112
100
92
800
1200
85
115
103
800
95
dB
117
1200
800
1200
50
dB
1200
1200
50
V
V/flV
98
1200
50
1.5
85
95
Full range
0.8
0.1
82
93
V
0.95
0.4
1.5
0.1
90
0.7
::c ::c ..
~:::t:-I
_c:;r0:::t:~
z:
,=
>(I.)N
I
r--C-'="
>m>
3: m ..3:
-CO
r-r--I
-Orm
::!!:e
mIN
::C-C=
(l.)ON
4.3
0.95
0.3
nA
V
3.8
0.95
Full range
nA
3.2
4.2
3.7
0.7
50
70
-0.3
4.2
4
8
0
3.9
Full range
0.4
to
25°C
25°C
Va = 0,
5
9
80
25°C
RL = 10kU
0.5
OC~
-C~-'="
mC:::3:
flV
0.005
Full range
Va = ±10V,
800
O>N
UNIT
flV/o C
Full range
RL = 10ka
600
1050
10
25°C
MAX
850
2
3.2
Maximum positive peak
YOM + output voltage swing
TYP
c:::Xr>C")m
2
0.6
25°C
Full range
MIN
1300
25°C
RS = 50U
MAX
TlE2024BM
MIN
TYP MAX
2
Full range
Input bias current
i!'1TI
~z
VIC
25°C
VICR
TYP
pm-l
TlE2024AM
1100
Full range
Input offset current
Common-mode input
MIN
Full range
input offset voltage
drift (see Note 4)
TAt
TlE2024M
25°C
Input offset voltage
Temperature coefficient of
aVIO
Vee =5 V (unless otherwise noted)
f1A
f1A
tFull range is - 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life lest at TA = 150°C extrapolated to T A = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
:et'i;
m3:
::c
-C
::c
m
g
en
o
z:
electrical characteristics at specified free-air temperature,
PARAMETER
Via
TEST CONDITIONS
Input offset voltage
Input offset voltage long-term
~
0-
3lZ
i~~=l
~~
i!'1Tl
~z
~~..t
110
Input offset current
lIB
Input bias current
VICR
~
VIC = 0,
RS = 50Q
Maximum positive peak
YOM + output voltage swing
YOM -
Maximum negative peak
output voltage swing
Large-signal differential
AVD
CMRR
voltage amplification
Common-mode
rejection ratio
Supply-voltage rejection
kSVR
ICC
ratio (L',vcc±/ aVid
alec
operating temperature range
Va = 0,
1200
9SO
700
0.6
6
No load
5
60
45
55
40
8
50
70
-15 -15.3
to
to
-15 -15.3
to
to
to
to
13.5
13.5
14
13.5
14
14
-15
-15
to
to
to
13.2
13.2
Full range
13.7
14.1
13.9
14.2
14
13.7
~
-13.7 -14.1
-13.7 -14.1
-13.6
-13.6
Full range
0.4
25°C
92
Full range
88
25°C
98
Full range
93
2
0.8
4
1
105
97
0.8
102
94
100
1050
Full range
115
103
117
1050
1400
1050
1400
85
1400
85
=
c:::
V/flV
::I:
dB
1400
n
>
r-
V
dB
98
1400
85
108
93
95
1400
7
1
90
112
V
13.8
-13.6
0.4
nA
V
14.3
-13.7 -14.1
25°C
nA
- 15.3
-15
13.2
flY
flV/mo
4
75
UNIT
flV/oC
0.4
9
80
13.8
Full range
0.5
10
25°C
25°C
Supply current
Supply current change over
500
25°C
50
MAX
750
0.006
25°C
VCC± = ±2.5Vto±15V
TYP
1000
-15
RS = 50Q
MIN
0.006
Full range
VIC = VICR min,
TLE2024BM
MAX
0.006
RS = SOQ
RL = 10 kQ
TYP
25°C
25°C
Full range
RL = 10 kQ
MIN
2
Full range
Va = ± 10 V,
TLE2024AM
MAX
2
Full range
en
"
voltage range
TYP
2
25°C
Common-mode input
TLE2024M
MIN
Full range
input offset voltage
drift (see Note 4)
TAt
25°C
Full range
Temperature coefficient of
aVIO
Vee ± = ± 15 V(unless otherwise noted)
flA
flA
tFull range is - 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to T A = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
;:x:J
--I
'"' r-
C::I:m
c:::'N
>enc::::l
c~~
Oms
"'CC~
mr--I
;:x:Jor-
~:E~
_'c::::I
O"'CN
zO,j::o.
>:E>
r-ms
>;:x:J~
s"'C-I
"'C;:x:Jrr-mm
_n N
~_c::::I
b
Ol
N
-en
m-oI::o
;:x:JO=
enzs
:b
operating characteristics at Vee
Ol
PARAMETER
SR
Vn
Vo
Equivalent input noise
f - 10 Hz
f = 1 kHz
f = 0.1 to 1 Hz
f - 0.1 to 10 Hz
voltage (see Figure 2)
~z
~ CiJ4r
~
See Figure 1
TLE2024AM
MAX
MIN
TYP
MAX
TLE2024BM
MIN
TYP
0.5
0.5
0.5
21
21
21
0.47
0.47
0.1
0.1
pAlv'Hz
MHz
1.7
1.7
47°
47°
Vn
= ±10V.
Equivalent input noise
f - 10 Hz
f = 1kHz
f = O.Ho 1 Hz
f = 0.1 tol0 Hz
voltage (see Figure 2)
Peak-to-peak equivalent
VN(PP) input noise voltage
In
Equivalent input noise current
Bl
Unity-gain bandwidth
flm
Phase margin at
unity gain
tFull range is - 55°C to 125°C.
See Figure 1
flV
0::E:~
Z,C)
TLE2024M
TYP
25°C
0.45
0.7
Full range
0.4
_c:;r
>mN
r-a~
>m>
m 3:
3:
-aC~
r r ....
or
m
:!!:e
mIN
=± 15 V
MIN
-a=~
==~
0.1
1.7
Vo
2:j::E: ....
0.47
47°
Slew rate at unity gain
nVlv'Hz
17
See Figure 3
SR
m C 3:
0.16
Phase margin at unity gain
TAt
VlfJS
17
flm
TEST CONDITIONS
C>N
r=
O_N
0.16
Bl
PARAMETER
>C')m
UNIT
17
See Figure 3
operating characteristics at specified free-air temperature, Vee ±
MAX
0.16
Unity-gain bandwidth
=BZ
~l"l
= 1 Vt03 V.
Slew rate at unity gain
TYP
Equivalent input noise current
0_
~~
TLE2024M
MIN
In
-i
i~~~
em .... ·
C>----Vo
20 ko.
NOTE A: CL includes fixture capacitance.
(a) SINGLE SUPPLY
(b) SPLIT SUPPLY
Figure 1. Slew Rate Test Circuit
$
000.
2.5 v
1000.
~::o.
+
Vo
1000.
Vo
':"-
(a) SINGLE SUPPLY
(b) SPLIT SUPPLY
Figure 2. Noise Voltage Test Circuit
10ko.
10ko.
1000.
2.5 V
VI
>--_-Vo
1000.
>-4-..--Vo
10 ko.
10kQ
NOTE A: CL includes fixture capacitance.
(a) SINGLE SUPPLY
(b) SPLIT SUPPLY
Figure 3. Unity-Gain Bandwidth and Phase Margin Test Circuit
TEXAS ~
2-978
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
TlE2024, TlE2024A, TlE2024B
EXCALIBUR HIGH-SPEED lOW-POWER PRECISION·
QUAD OPERATIONAL AMPLIFIERS
PARAMETER MEASUREMENT INFORMATION
>-~~-vo
10 kQ
NOTE A: CL includes fixture capacitance.
(a) SINGLE SUPPLY
(b) SPLIT SUPPLY
Figure 4. Small-Signal Pulse Response Test Circuit
typical values
Typical values presented in this data sheet represent the median (50% point) of device parametric performance.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-979
TLE2024, TlE2024A, TlE2024B
EXCALIBUR HIGH-SPEED lOW-POWER PRECISION
QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
table of graphs
FIGURE
Via
lIB
Input offset voltage
Input bias current
Distribution
5
vs
Common-mode voltage
6
vs
Temperature
Input current
vs . Differential input voltage
VOM
Maximum peak output voltage
vs
vs
VOH
High-level output voltage
VOL
Low-level output voltage
II
VO(PP)
AVD
lOS
iCC
CMRR
SR
vs
High-level output current
11
vs
Temperature
12
13
vs
Low-level output current
Temperature
vs
vs
Frequency
15,16
Frequency
17
vs
Temperature
vs
vs
Supply voltage
19,21
Temperature
20, 22
vs
Supply voltage
23
vs
Temperature
24
Common-mode rejection ratio
vs
Frequency
25
Slew rate
vs
Temperature
Maximum peak-to-peak output voltage swing
Differential voltage amplification
Short-circuit output current
Supply current
Peak-to-peak equivalent input noise voltage
Vn
Equivalent input noise voltage
Bl
Unity-gain bandwidth
¢m
Phase margin
Phase shift
14
18
26
Small-Signal
27,28
Large-signal
29,30
0.1 to 1 Hz
31
0.ltol0Hz
32
vs
Frequency
33
vs
Supply voltage
34
vs
Temperature
35
vs
Supply voltage
36
vs
Capacitive load
37
vs
Temperature
38
vs
Frequency
17
TEXAS ~
INSTRUMENlS
2-980
9
10
vs
Pulse response
VN(PP)
Output current
Temperature
7
8
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLE2024, TLE2024A, TLE2024B
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
TLE20248
INPUT BIAS CURRENT
TLE2024
DISTRIBUTION OF
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
-60
VCC± = ±15V
TA = 25°C
;!.
12
~ -50
N Package
C
~
:J
:!l
C
:::l
..
f
..~
'0
a.
~
I
I
0
8
:: -40
iii
'S
a.
.E
"- --........
I
!'! -30
4
-20
-15
-10
-5
o
10
5
VIC - Common-Mode Input Voltage - V
Figure 5
Figure 6
TLE20248
INPUT BIAS CURRENT
INPUT CURRENT
vs
vs
FREE-AIR TEMPERATURE
DIFFERENTIAL INPUT VOLTAGE
=
=
~ -50
I
'I'---
:J
o
-40
m
i
~
"
.E
I
i'-- ~
!'! -30
=
0.8
oot
E
0.7
C
0.6
0
r--
=
VCC±
±15V
VIC ~ 0
TA
25°C
0.9
~
:J
...............
15
1.0
=
VCC± ±15V
Va
0
VIC 0
C
~
----r--
Via - Input Offset Voltage - fl V
-60
~
'"
0.5
'Sa. 0.4
.E
. : 0.3
0.2
0.1
-20
-75 -50 -25
0
25
50
75
100
TA - Free-Air Temperature _·C
125
j
o
o
0.1
Figure 7
J
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
IVIDI- Differential Input Voltage - V
Figure 8
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
2-981
TLE2024, TLE2024A, TLE2024B
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
TLE2024B
MAXIMUM PEAK OUTPUT VOLTAGE
TLE2024B
MAXIMUM PEAK OUTPUT VOLTAGE
vs
vs
OUTPUT CURRENT
FREE-AIR TEMPERATURE
16
>
.,
Jl!
'"
;g
15
14
\
12
'5
Q.
'5
10
"'.,"
8
"E
E
6
:::;;
4
0
>
~
'5
1Ii
&.
\
\
4
10
jlol- Output Current - mA
2
6
12
8
I
:::;; 12.5
~
12
-75
14
-50
-25
0
25
50
75
100
TLE2024B
HIGH-LEVEL OUTPUT VOLTAGE
TLE2024B
HIGH-LEVEL OUTPUT VOLTAGE
vs
vs
HIGH-LEVEL OUTPUT CURRENT
FREE-AIR TEMPERATURE
5
Vec = 5 V
TA = 25°C
r-....
>
I
"-
3
VCC = 5 V
.,
.......
4
'\
>
'5
a.
'5
\
2
4.8
'"
Jl!
'0
/
4.6
0
l
j
.r.
I
::t:
0
>
,-
4.2
V
/'
,.......
~
V ,....... ~r:10kQ
/
I
::t:
0
No Loay
./'
4.4
:r'"
::t:
V
>
o
o
-2
-4
-6
-8
-10
4
-75
-50
-25
0
25
50
75
10H - High-Level Output Current- mA
TA - Free-Air Temperature - °C
Figure 11
Figure 12
100
toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
2-982
125
TA - Free-Air Temperature - °C
Figure 10
0
l.,
..J
.r..2'
VCC±=±15V
RL = 10 k.Q
TA = 25°C
Figure 9
>
'5
c.
'5
13
:::;;
5
I
13.5
E
"E
'x
VOM +
;g
Q.
-VOM-
I
:::;;
I
., 14.5
~I
Il.
'x
1\ VOM+
0
II
Ol
Vee = 5 V
TA = 25°e
,
I
4
II
Ol
B
'0
B
'0
>
:;
"'5
0
li
ij
....
'5
"'5
0
a;
I
2
IOL
1 mA
I--r--.
.............
............. r---......
IOL
= 0 .............
0.5
j
)
:i:
....0,
....
0
:i:
.9
....
"
0.25
0
>
>
o
o
>
0.75
>
3
I= I
I-:--I'-........
>
o
0.5
1.5
2.5
2
IOL - Low-Level Output eurrent - mA
Vee
-75
3
=5V
-50
-25
0
25
50
75
100
TA - Free-Air Temperature - °e
125
Figure 13
Figure 14
TLE2024B
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
TLE2024B
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
>
5
.
30
Ol
B
'0
>
25
:;
"-
'5
....,
20
i.
15
0
\
o
vee± = ±15V
RL = 10 kn
TA = 25'e
100
f - Frequency - Hz
Figure 15
1k
"
10 k
100 k
f - Frequency - Hz
1M
Figure 16
toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
2-983
TlE2024, TlE2024A, TlE2024B
EXCALIBUR HIGH-SPEED lOW-POWER PRECISION
QUAD OPERATIONAL AMPLIFIERS
TYPICAL·CHARACTERISTICSt
TLE2024
TLE2024B
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION and PHASE SHIFT
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION
vs
vs
FREQUENCY
FREE-AIR TEMPERATURE
120.----,....-.....,.--..,.---,..--....--..., 60°
10
>
!XI
"I
100~~~---4----+---_+----~--~
I:
I
I:
.2
B
=
c.
E
~
N'
~
.S!
80r----P~~----+----+~~r---~
~
.::
E
~.
c(
III
.
III
III
iii
"$.
10
~_~
1k
100
10 k
f!
~
is
~
1M
o
I
-25
0
25
50
75
100
Figure 18
SHORT-CIRCUIT OUTPUT CURRENT
SHORT-CIRCUIT OUTPUT CURRENT
vs
vs
SUPPL Y VOLTAGE
FREE-AIR TEMPERATURE
125
15
10
=0
= 25°e
c(
E
10
I
Vee± = ±15V
Vo = 0
E
~
<3
5
vlD
5
"S
=-100 mV
3-
VIO
c5
0
=-100 mV
0
'5
l:!
o
-50
-r---- ---r--....-
= 5V
Figure 17
'S
~
I
o
\
TA - Free-Air Temperature - °e
f!
"S
I
=
=
.......
.1l!
.c
40~--~---4----~~_+----~1-~ 140° Q.
o
8
= 10 kQ
~ r-....
B
100°
60~--~---4~~+----+----~c-~ 120°
RL
~
80°
l:!
----- -
-5
.c
Ul
VID
:n -10
.9
-15
o
2
4
6
8
10
~
~
:n -10
= 100 mV
r-- -
12
14
-5
r-..
.9
-15
-75
16
-50
IVee ±I- Supply Voltage - V
Figure 19
--- --
~
= 100mV
Figure 20
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSTRUMENTS
2-984
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
I
-25
0
25
50
75
100
TA - Free-Air Temperature - °e
125
TlE2024, TlE2024A, TlE2024B
EXCALIBUR HIGH-SPEED lOW-POWER PRECISION
QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
SHORT-CIRCUIT OUTPUT CURRENT
SHORT-CIRCUIT OUTPUT CURRENT
vs
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
6
15
TA
= 25°e
Vee = 5 V
-
I
400
125
1000
fo-
TA
125 De
TA = - 55·e
ii
= 100 mV
......... ~o= 0
Vee - Supply Voltage - V
~
100mV
= 5V
a-
';
2(;
4
ii
Co
"
00
I
0
400
~
.9
200
200
=
o
o
o
2
4
6
8
10
12
14
16
Vo
0
No Load
-75
-50
-25
0
25
50
75
IVee ±I- Supply Voltage - V
TA - Free-Air Temperature - °e
Figure 23
Figure 24
100
125
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices,
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-985
TlE2024, TlE2024A, TlE2024B
EXCALIBUR HIGH-SPEED lOW-POWER PRECISION
QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
TLE20248
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
SLEW RATE
vs
FREE-AIR TEMPERATURE
120
VCC±=±15V
III
"
........
I
0
100
';
a:
VCC
c
0
'u
~
=5 V
80
CI)
';;
a:
CI)
0.8
.,
~
::L
~
60
"0
~0
I
"
~
40 - -
E
E
:>
~
"\
0
(.)
I
20
a:
a:
o
TA
10
= 25'C
1k
100
10 k
100 k
...
0.6
...
-:...--
Vee
0.4
0.2
RL
o
-50
Figure 26
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
=
VCC±
±15 V
RL
10 kQ
CL
30 pF
50 TA
See Figure 4
>
125
2.6.---...,..--r--.....,...---.,...---...,..---.,
Vee = 5 V
RL = 10 kQ
CL = 30 pF
2.55 TA = 25°e
See Figure 4
I
CI)
CI)
~
Ol
S
~'S
0
-------~----
g
-------c-----I--+-+--
'S
:;
o
I
o
2.5 -----------..------
.__._--- ---
-- ---"---
0-
0-
>
-25
0
25
50
75
100
TA - Free-Air Temperature - °e
Figure 25
100r---~----r---~----r---~--~
I
-
= 20 kQ
=
f - Frequency - Hz
=e
=5 V
eL
30 pF
See Figure 1
-75
1 M10 M
=
=
= 25'C
= ±15 V
Ul
"
::E
(.)
S.,
a:
;:
CI)
iii
I
a:
Vee ±
:;
o
I
o
-50r---_r----~--_r----~~_r--~
> 2.45 r---_r---'f----+----~~_+-~
-100~--~----~--~----~--~--~
2.4~-~--.....-~---~-~-~
o
20
40
1- Time -fLs
60
o
80
Figure 27
20
40
1- Time-fLs
60
Figure 28
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSTRUMENTS
2-986
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
80
TLE2024, TLE2024A, TLE2024B
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
15
Vcc± = ±15V
RL = 10 kQ
10
>
.,I
5
Vee = 5 V
RL=10kQ
=
CL = 30 pF
TA = 25'e
See Figure 1
"0
0
:;
Q.
:;
I
~
:;
Q.
:;
/
0
-5
0
.,I
'"
g
/
'"
~
>
>
I
o
I
o
>
I
>
-10
-15
o
20
\- Time
CL
30 pF
TA = 25'e
See Figure 1
3
40
60
o
80
PEAK TO-PEAK EQUIVALENT
INPUr NOISE VOLTAGE
0.1 TO 1 Hz
0.5 r--...,..---"-...,--'-r-..,.----,--.,..--,--r-..,
0.4
F
"0
0.3
.,
>
Vee±=±15V
TA" 25"C
Z
0.1
:;
--
~
~'"
I
f
~
Vee± = ±15V
25'e
_r---t--t----+---+--;-----t
0.4
'"
0.3 1----t---I-_+_--+--;----j---+--_+_-I__-1
0.2
TA
=
'"
II>
~---H---l-I+____+-+_-++_+---+---I--_1
0.1
Z
[
!:
_
80
'0
"-
""~'"
60
PEAK-TO-PEAK EQUIVALENT
INPUT NOISE VOLTAGE
O.1T010Hz
0.5 r--",,---,,-"""....,.-,..--,--r--,---.,r---,
.\'l
"0
>
.,
=t-I---+---l
_. _-++
0.2
-
0.5 ..........I---'_...l-........_ - ' -......._ " ' - - - ' - _ ' - -.....
o
3
4
5
6
7
8
9
10
2
\- Time- s
Z
> -
0.5 L-.-J...--'_...l-....J._..i.-...J-_"--...I-_i.-....
023
4
5
6
7
8
9
10
\-Time-s
Figure 32
Figure 31
TEXAS ~
INSTRUMENTS
POST OF FICE BOX 655303 • DALLAS. TEXAS 75265
2--987
TLE2024, TLE2024A, TLE2024B
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
SUPPLY VOLTAGE
200
~>
.,"
'"
~
>.,
I
'"' = ±15V
vcc±
RS
100n.
TA = 25°C
See Figure 2
160
I
'""'"
In
III
\
:;
80
3
.,
0;
'm"
40
V
--
V
/"
f-- f-
::J
!\
>
/'
2
b
'c
\
i:
0W
N
::t
:e
~
Z
'S
RL 1= 10 kn.
CL = 30 pF
TA = 25"C
See Figure 3
~
120
'0
0..
4
=
0
.=
UNITY-GAIN BANDWIDTH
vs
1
m
I
>"
o
10
1
100
1k
f - Frequency - Hz
o
o
10 k
N
:e
I
3
.c:
'0
'""
'"
'm"
III
2
8
10
12
14
16
Figure 34
UNITY-GAIN BANDWIDTH
PHASE MARGIN
vs
vs
FREE-AIR TEMPERATURE
SUPPLY VOLTAGE
14
16
55
'"
i'--
RL = 10 kn.
RL I=10kn.
CL = 30 pF
See Figure 3
CL
30 pF
TA = 25'C
See Figure 3
=
.,
i!:!
'".,
'"I
"
:e.,
In
NI
'"±15~
J.VCC=1'--5V 1--
b
'c
::J
I
I'--...
'"
l"- I--
~
53
.~
IV
In
IV
r--
o
49
-25
0
25
50
75
I
0..
I
...E
47
45
-50
V
51
.c:
m
-75
6
Figure 33
VCC± =
'j;
4
IVcc ±I-Supply Voltage - V
4
::t
2
100
125
o
2
V
4
r-
V
6
8
10
12
TA - Free-Air Temperature -"C
IVcc ±I-Supply Voltage - V
Figure 35
Figure 36
toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices,
TEXAS ~
INSTRUMENTS
2-988
POST OFFICE BOX 655303 ' DALLAS, TEXAS 75265
TlE2024, TlE2024A, TlE2024B
EXCAlIBUR HIGH-SPEED lOW-POWER PRECISION
QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
PHASE MARGIN
vs
LOAD CAPACITANCE
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
70
.
60
l!!
50
54
~
II>
!l'
"0
c
.
..
:iii
II>
~
VCC=
I
.~
~C± = ±15V
5~
40
30
Q.
E
--
~ r---
.c
I
RL = 10 kQ
TA = 25'C
See Figure 3
52
g:
l!!
5l'
/
50
/~CC±~±~
---- ----
"0
I
r--
c
:--
.
48
II>
46
.~
~
r--
:iii
.
~
Q.
I
20
E
"S-
44
"S-
10
o
o
42
r-- -......
VCC = 5 V
RL = 10 kQ
CL = 30 pF
See Figure 3
20
40
60
80
CL - Load Capacitance - pF
100
40
-75
-50
-25
0
25
50
75
100
125
TA - Free-Air Temperature -'C
Figure 37
Figure 38
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
APPLICATION INFORMATION
voltage-follower applications
The TLE2024 circuitry includes input protection
diodes to limit the voltage across the input
CF = 20to50pF
transistors; however, no provision is made in the
..--IF ,,1mA
circuit to limit the current if these diodes are
forward-biased. Note that this condition can occur
when the device is operated in the voltagefollower configuration and driven with a fast, largesignal pulse. It is recommended that a feedback
resistor be used to limit the current to a maximum
of 1 mA to prevent degradation of the device.
Also, remember that this feedback resistor will
VCCform a pole with the input capacitance of the
Figure 39. Voltage Follower
device. For feedback resistor values greater than
10 kQ, this pole will degrade the amplifier's phase
margin. This problem can be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback
resistor (see Figure 39).
input characteristics
The input of any unused amplifiers should be tied to ground to avoid possible oscillation.
TEXAS ~
INSfRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-989
2-990
TlE2027, TlE2027A
EXCALIBUR lOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
03440, MAY 1990 - REVISED APRil 1991
available features
•
Outstanding Combination of DC PreciSion
and AC Performance:
Unity·Galn Bandwidth ..• 15 MHz Typ
Vn.••. 3.3 nV/-IHz at f = 10 Hz Typ,
2.5 nVl-IHz at f = 1 kHz Typ
VIO ... 25 ~V Max
AVD ... 45 V/~V Typ, With RL = 2 kQ,
19 V/~V Typ, With RL = 600 Q
•
Available In Standard·Plnout Small·Outline
Package
•
Output Features Saturation Recovery
Circuitry
•
Macromodels and Statistical Information
description
LARGE·SIGNAL
DIFFERENllAL VOLTAGE AMPLlFICA1l0N
The TLE2027 and TLE2027A contain innovative
circuit design expertise and high-quality process
control techniques to produce a level of ac
performance and dc precision previously
unavailable in single operational amplifiers.
Manufactured using Texas Instruments state-ofthe-art Excalibur process, these devices allow
upgrades to systems that use lower-precision
devices,
vs
FREQUENCY
IX! 160
"0
I
c 140
o
'\"~
'-;
~ 120
...~
In the area of dc precision, the TLE2027 and
TLE2027A offer maximum offset voltages of
100 ~V and 25 ~V, respectively, common-mode
rejection ratio of 131 dB (typ) , supply voltage
rejection ratio of 144 dB (typ) , and dc gain of
45 V/~V (typ).
\
AVO = 153 dB ' \
~
80
OJ
60
~
",'\~
1\
100
GI
'\
1
= 15 MHz
'\
i5
I
B1
'\
40
Ac performance is highlighted by a typical unitygain bandwidth specification of 15 MHz, 55° of
phase m~in, and noise voltage specifications of
3.3 nV/"rHz and 2.5 nV/'I'HZ at frequencies of
10 Hz and 1 kHz, respectively.
VCC± = ±15 V
RL = 2kn CL = 100 pF
TA= 25°C -
20
'\~
c
~
\
\
o
100
100 k
f - Frequency - Hz
0.1
100M
80th the TLE2027 and TLE2027A are available in a wide variety of packages, including the industry-standard
a-pin small-outline version for high-density system applications. The C-suffix devices are characterized for
operation from O°C to 70°C. The I-suffix devices are characterized for operation from -40°C to 105°e. The
M-suffix devices are characterized for operation over the full military temperature range of -55°e to 125°e.
AVAILABLE OPTIONS
PACKAGE
TA
O°Cto
70°C
-40°C to
VIOmax
AT 25°C
SMALL·
OUTLINE
(D)
25llV
100 llV
25llV
100 llV
TLE2027ACD
TLE2027CD
TLE2027AID
CHIP
CARRIER
(FK)
CERAMIC
DIP
(JG)
--
-
---
METAL
CAN
(Ll
-
PLASTIC
DIP
(P)
TLE2027ACP
TLE2027CP
TLE2027AIP
TLE20271P
105°C
TLE20271D
-TLE2027AMP
- 55°C to
TLE2027AMD TLE2027AMFK
TLE2027AMJG
TLE2027AML
25llV
125°C
TLE2027MD
TLE2027MFK
TLE2027MJG
TLE2027ML
TLE2027MP
100llV
D packages are avrulable taped and reeled. Add "R" suffix to device type, (e.g., TLE2027ACDR).
PRODUCTION DATA documents contain InformatiDn
current as of publication date. Products cDnform 10
specificatiDos per the terms DI Texas Instruments
standard warranty. Production processing does nDt
necessarily Include testing 01 all parameters.
-
--
TEXAS
--
~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
Copyright © 1991, Texas Instruments Incorporated
On products comptlant 10 MIL-STO-B83, Class B, all
parameters are tested unless otherwise noted. On all
other products, prDduction processing dDes not
necessarily Include testing 01 all parameters.
2-991
TLE2027, TLE2027A
EXCALIBUR LOW;.NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
D, JG, OR P PACKAGE
o~o"'o
z
zzzz
OFFSET N1 u 8 OFFSET N2
ININ +
2
7
VCC +
3
6
OUT
VCC-
4
5
NC
LPACKAGE
(TOP VIEW)
FKPACKAGE
(TOP VIEW)
(TOP VIEW)
3
2
OFFSET N2
1 20 19
NC
4
18
NC
IN NC
IN +
NC
5
17
6
16
VCC+
NC
7
15
OUT
8
14
NC
Pin 4 of the L package is in electrical
contact with the case.
9 10 11 12 13
o
Z
1000
OZ Z
o
>
Z
NC - No internal oonnection
symbol
OFFSETN1
IN+
OUT
IN-
OFFSETN2
TEXAS ~
INSTRUMENTS
2-992
VCC-
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
equivalent schematic
I
OFFS~N22 ~~::::::~~~Il~rl---r--~--~9t------+-~---r-~
Vcc+
OFFSETN!...
-,-----,
R20
,
IN+
OUT
-
~62
z
~d
~~
z
Ui4r
"\:rZl)",,
'0-
05
01~
R3t
R6f
R7fRl0f fR1211R14f I R1Sf
I R19f I I I
T
Vcc-
R23UlJJ
sR24 I a26
""D
:D m
m)(
C")C")
->
~r-
0-
Z~
O:D
""Dr-
mO
~:e
~'-t
-Zr°Om
Z-N
>C'I)C
r-mN
>:::J:-...J
3:5:""
i
""D:::J:rr-'m
-C'I)N
:!!""Dc
mmN
:Dm-...J
C'l)c>
TLE2027, TLE2027A
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC+ (see Note 1) ............
. .................................... 22 V
Supply voltage, VCC- . . . . . . . . . . . . . . . . . . . . . . . . . .. .........
.. . . .. .., ......... .. ··22 V
Differential input voltage (see Note 2) ................................................. ±1.2 V
Input voltage range, VI (any input) .................................................... VCC±
Input current, II (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ±1 rnA
Output current, 10 . . . . . . . . . . . . . . . . . . . . . . . . . .. .....
' . . . . .. ..
. . . .. ±50 rnA
Total current into VCC+ terminal ....................... ........................... . 50 rnA
Total current out of VCC- terminal .................................................... 50 rnA
Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... unlimited
Continuous total dissipation ........................................ See Dissipation Rating Table
Operating free-air temperature range, T A: C-suffix
. . . . . . . . . . .. . ................... DoC to 70°C
I-suffix ................. . ............. -40°C to 105°C
M-suffix ............................... -55°C to 125°C
Storage temperature range ................................................... -65°C to 150°C
Case temperature for 60 seconds: FK package .......................................... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: 0 or P package ............... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: ,JG or L package .............. 300°C
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC-.
2. Differential voltages are at the noninverting input with respect to the inverting input. Excessive current will flow if a differential input
voltage in excess of approximately ±1.2 V is applied between the inputs unless some limiting resistance is used.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not excaeded.
DISSIPATION RATING TABLE
PACKAGE
D
FK
JG
L
p
TA :;25°C
POWER RATING
725mW
1375 mW
1050mW
650mW
1000mW
DERATING FACTOR
ABOVE TA 25°C
=
.----.---------.-~:;--.
TA =70°C
POWER RATING
TA = 105°C
POWER RATING
TA =125°C
POWER RATING
----·-S."iJ-n;virc-------·-4"64mW-·--·- ........ 261'mW""-"--{4"ifmw- .........
11.0mWrC
8.4 mWrC
5.2 mW/oC
8.0mWrC
880mW
672mW
416mW
640mW
495 rnW
378mW
234mW
360mW
275 rnW
210 rnW
130 rnW
200mW
recommended operating conditions
M-SUFFfX
UNIT
MAX
± 22
V
11
Common-mode input voltage, VIC TA "'----.+.. -...--.... -.......... ---..- ..+ ..............
V
TA = Full range - 10.5
10.2
125
"C
Operating free-air temperature, ~
_ _ _ _ _ _..._L__...:O.. ___...__ . __.....c•..L. .. _ ........ __......._ .. _.......:_.L••.__'-'_._._.______...:c::::...L.
TEXAS
~
INSTRUMENTS
2-994
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
TlE2027C, TlE2027AC
EXCALIBUR lOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Vcc± =
±15 V (unless otherwise noted)
.-......- - . - . - - - - - - - - - - - - - - . - - - . - - - ----·--·----·----,,-,-T=LC":E=-=2.,.O"'27=-=A=-=Cc----,----,
PARAMETER
TEST CONDITIONS
TAt
_ .. __ !!:~2.0:_:_:2.-'7.....
C-:""C~+-~~.,-=-:-:c--~= UNIT
MIN
TYP MAX
MIN
TYP MAX
2SoC
20
100
10
25
Input offset voltage
!lV
145
70
Full range
Temperature coefficient of
Full range
0.4
1
0.2
1 !lVloC
aVIO ... in~u~..()~~!lt~o.I~\J!l ......
__
-.
... - - .... - ..-- .•..- - - - - - . - - - - - f - - Input offset voltage
0.006
25°C
0.006
!lVlmo
RS = 50n
_ .. _ _lo_n=.g·_te_r_m_d_ri_ft-'..(s_e_e_N_o_te_4.:...)- j
90
6
90
6
25°C
Input offset current
nA
110
Full range 1- .. _ ..
150
'50
--_..-'.25°C
90
15
90
'5
Input bias current
nA
Full range ----·-'-.. --·--··-'~~·""-15o ,...--------150·
.---.--.-.------.- -··---'-r--=·lT - 13
-11
-13
to
25°C
to
to
to
Common·mode input
11
13
11
13
RS = 50Q
~--+---1-0-.5--------~---------I
V
voltage range
-10.5
Full range
to
to
10.5
10.5
1 - - - - · - · · · - - - - - - - - + - - - - - - - - - · · - - - · - · - 1 - · 25oC
10.5
10.5
V
~~nge
RL
= 600n
RI.
.-... -~.
Maximum negative peak
RL
= 600 n
i-Fulira~g~
--=·"10··_-'-·-
1RL
- -=-2.kn
_--.
25°C
-12 -13.5
Maximum positive peak
OM + output voltage swing
VOM- ou tput voI
tsWlng
'
age
10
·-·----·--·----I---;,50C-+-"i2-·
2 kn
10
12
v
..._E.l'~~~~:~lI=.~~-..~==~~·i1---=--~_-25°C
-10.5
- 13
-10.5
-13
_1 0 · -12
-13.5
V
r - -..- - - . - - - - -..- - - I - : - : - - - - - - . -..- - ~-+_F_UI:-:Ir,..a::-'ng::...e+---l-:slc---"C"45=----f_---:11.".01--4-=5---+---1
Va = ± 11 v, RL = 2 kn
25°C
~"9~=;;=:±:i~=~RL ~_.~:~Q ~:-~_:-II-r1l:-n.9-e-+---2: - - - - - - - + - -4- - - - - - 1
.
AVD
Large·signal differential
voltage amplification
25°C
-:i"~5-38--f--- 8
Va ,,. ± 10 V, RL- 1 kn Ful7""1r-an-g-e+-·-l
2.5
- -.. - - - - -.........-...-- ..-.f_~-=-"-+--_:_:25°C
2
19
5
r-.._. ___ ...... _. __ . __ .._._f-V.~ = ± , °V, RL
~~put capacitance
r=2. ____0pen.loop outP~~~.~an.~~Q. = 0
=
38
19
60~~I-;F:-U_-;;-II.-':.a-.rl-!:!e-.. 1-_-."""'_0::--..:.·50:-..--.--.---g-.--..-.----+r------:..2-:-----.-.8----.==~f-.---1
._._._~5°C_
pF
oC,__+-_,-..0""'0--'1."':-~----+-1-1-=7----1::-:~_ _-I_..:cn=--_I
5-:
__ . __ ._..+_3__
CMRR Common·mode
VIC = VieR min,
+-_ _ _ _ __
dB
f--. ___rejec!i<:n_rl'l!~ _____ ~~L:"~O n ____ . _ _ ~UII ra~ge
98
114
Vee± = ±4Vto±18V,
25°C
94
144
110
144
Supply·voltage rejection ratio RS = 50 n
1-: ...-.-- ........................ - .......- ....... -.-----.-.----+----------1 dB
kSVR
(",VCC ±Ii\VIO)
VCC± = ± 4 V to ± 18 V,
Full range
92
106
RS = 50Q
··---------·---··----...Jf-"-.·-····-·-·-····-··--·+·-::2--=5°:-:C'-- ---··3=-.8::---=5-=.3-+-----:3:-:.8:----:-4.-=7+---1
ICC
Supply current
Va = 0,
No Load
mA
Full range
5.6
4.8
I-:::-l::;og- _.____ . . _. ___
tFuil range is O°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TEXAS '"
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-995
TlE2027C, TlE2027AC
EXCAUBUR lOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature, Vcc±
PARAMETER
SR
Vn
VN(PP)
In
THO
Bl
BaM
4>m
TEST CONDITIONS
TAt
Slew rate at unity gain
RL = 2kn. CL = 100 pF.
25°C
See Figure 1
Full range
Equivalent input noise
RS = 100 n. f = 10 Hz
voltage (see Figure 2)
RS = 100 n. f = 1 kHz
Peak-to-peak equivalent
f = 0.1 Hztol0Hz
current
1 = 1 kHz
Total harmonic distortion
Va = ± 10 V. AVO = 1.
See Note 5
25°C
RL = 2kn.
25°C
Unity-gain bandwidth
Maximum output-swing
bandwidth
Phase margin at unity
gain (see Figure 3)
1.7
25°C
CL = 100pF
RL = 2kn
RL = 2kn.
CL = 100 pF
TYP
2.B
MAX
B
3.3
4.5
2.5
4.5
2.5
3.B
50
250
50
130
1.5
4
0.6
1.5
0.4
4
MAX
3.3
0.4
MIN
1.7
1.2
<0.002%
1
13
9
nV
pAl'I'Hz
kHz
25°C
55°
55°
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
0.6
nV/'I'Hz
MHz
30
TEXAS ~
V/fJ.s
13
30
INsrRUMENTS
UNIT
<0.002%
25°C
tFull range is O°C to lO°C.
NOTE 5: Measured distortion 01 the source used in the analysis was 0.002%.
2-996
TLE2027AC
TYP
2.B
1.2
25°C
f = 10 Hz
(see Figure 3)
TLE2027C
MIN
25°C
input noise voltage
Equivalent input noise
= ±15 V
TLE2D271, TLE2D27AI
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Vcc±
PARAMETER
VIO
TEST CONDITIONS
Input offset voltage
VIC; 0,
RS ; 50n
25°C
110
Input offset current
lIB
Input bias current
25°C
Full range
25°C
VICR
VOM+
voltage range
Maximum positive peak
output voltage swing
Maximum negative peak
VOMoutput voltage swing
RS ; 50n
RL ; 600n
RL ; 600n
RL ; 2kn
Vo ; ± 11 V, RL ; 2 kQ
AVD
Large-signal differential
voltage amplification
ci
Input capacitance
Zo
Open-loop output impedance
Common-mode
CMRR
kSVR
Ice
0.2
1
flV/o C
0.006
1
0.006
1
flV/ mo
6
90
150
6
90
15
90
15
150
-13
to
-11
to
to
11
-10.4
13
11
13
25°C
Full range
10.5
10.5
10
10
12
V
11
-13
-10.5
-13
-10
-10
25°C
Full range
-12 -13.5
-12 -13.5
-11
-11
5
Vo ; ± 10 V, RL ; 1 kn
25°C
Full range
3.5
1
38
8
2.2
38
Vo ; ±10V, RL; 600n
25°C
Full range
2
0.5
19
5
1.1
19
10
25°C
100
rejection ratio
Full range
96
Supply-voltage rejection ratio
Vce±; ±4Vto±18V,
RS ; 50n
25°C
94
(t.Vee ±/ t.VIO)
Vec±; ±4Vto±18V,
RS ; 50n
Full range
90
Supply current
Vo ; 0,
25°C
Full range
V
45
3.5
V/flV
8
8
50
VIC ; VICR min,
RS ; 50n
No Load
45
2
25°C
nA
V
12
Full range
25°C
nA
-13
-10.4
to
10.4
10; 0
90
150
25°C
Full range
VO; ±10V, RL; 2kn
flV
1
-11
to
11
-10.5
UNIT
25
0.4
to
10.4
25°C
MAX
105
Full range
Full range
TYP
10
150
25°C
RL ; 2 kn
TLE2027AI
MIN
180
Full range
25°C
Full range
Common-mode input
TLE20271
TYP MAX
100
20
Full range
input offset voltage
Input offset voltage
long-term drift (see Note 4)
MIN
25°C
Temperature coefficient of
"VIO
TAt
= ±15 V (unless otherwise noted)
131
117
pF
50
131
n
dB
113
110
144
144
dB
105
3.8
5.3
5.6
3.8
4.7
4.9
mA
tFull range IS -40°C to 105°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA ; 150°C extrapolated
to TA ; 25°e using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TEXAS ~
INsrRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-997
TLE20271, TLE2027AI
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature, Vcc±
PARAMETER
SR
Vn
VN(PP)
In
Slew rate at unity gain
TEST CONDITIONS
RL ; 2kQ,
CL ; 100 pF,
See Figure 1
Equivalent input noise
RS ; 100 Q, 1 ; 10 Hz
voltage (see Figure 2)
RS ; 100 Q, f ; 1 kHz
Peak-to-peak equivalent
input noise voltage
Equivalent input noise
current
2.5
3.8
25°C
50
250
50
130
1 ; 10 Hz
1 ; 1 kHz
25°C
1.5
0.4
4
1.5
0.4
4
25°C
<0.002%
25°C
f ; 0.1 Hz to 10Hz
CL; 100pF
RL ; 2kQ
RL ; 2kQ,
CL; 100pF
25°C
7
13
0.6
9
kHz
25°C
55°
55°
"I
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
pAl#lZ
MHz
30
TEXAS
nV
13
30
INSTRUMENTS
0.6
nV/#lZ
<0.002%
25°C
tFull range is-40°C to 105°C.
NOTE 5: Measured distortion 01 the source used in the analysis was 0.002%.
2-998
VIlIS
1.1
4.5
RL ; 2kQ,
Phase margin at unity
1.1
UNIT
2.8
2.5
Unity-gain bandwidth
(see Figure 3)
gain (see Figure 3)
1.7
2.8
4.5
Bl
~
1.7
3.3
Total harmonic distortion
Maximum output-swing
25°C
Full range
TLE2027AI
MIN
TYP MAX
8
THD
bandwidth
TAt
3.3
VO; ±10V, AVD ; 1,
See Note 5
BOM
= ±15 V
TLE20271
MIN
TYP MAX
TLE2027M, TLE2027AM
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Vcc±
PARAMETER
V,O
TEST CONDITIONS
Input offset voltage
Temperature coefficient of
aVIO
input offset voltage
Input offset voltage
long-term drift (see Note 4)
V'C = 0,
RS = 50n
TAt
TLE2027M
MIN
TYP MAX
MAX
100
200
10
25
105
Full range
0.4
l'
0.2
l'
jlV/oC
0.006
l'
0.006
l'
jlV/mo
6
90
6
90
15
25°C
Input offset current
liB
Input bias current
25°C
Full range
150
RS = 50n
V
Maximum negative peak
OM - output voltage swing
Large-signal differential
voltage amplification
-13
-11
to
to
to
to
11
-10.3
13
11
-10.4
13
Input capacitance
Zo
Open-loop output impedance
Common-mode
CMRR
rejection ratio
Supply-voltage rejection ratio
(AVCC ±/ AV,O)
10.5
10
RL = 2kn
25°C
Full range
12
12
RL
= GOon
RL
= 2kn
25°C
Full range
Vo = ±10V, RL = 2kn
Vo = ± 10 V, RL = 1 kn
ICC
V'C = V,CR min,
RS = 50n
RS = 50n
VCC± = ±4Vto±18V,
Vo = 0,
25°C
Full range
No Load
11
-10.5
-13
- 11
5
25°C
3.5
Full range
1.8
25°C
25°C
45
10
2
25°C
Full range
100
25°C
94
Full range
90
nA
nA
V
V
-13
V
-12 -13.5
-11
2.5
jlV
-13
-10
-12 -13.5
25°C
10 = 0
RS = 50n
Supply current
to
10.4
10.5
10
VCC± = ±4Vto±18V,
kSVR
to
10.3
11
-10.5
25°C
Full range
-10
90
150
25°C
Full range
Vo = ±10V, RL = 600n
ci
15
RL = 600n
Vo = ± 11 V, RL = 2 kn
AVD
90
-11
Full range
Maximum positive peak
VOM+
output voltage swing
150
150
25°C
voltage range
MIN
UNIT
TYP
20
',0
V,CR
TLE2027AM
25°C
Full range
25°C
Full range
Common-mode input
= ± 15 V (unless otherwise noted)
45
3.5
38
8
38
V/jlV
2.2
19
8
5
19
8
50
131
50
131
117
pF
n
dB
113
96
144
110
144
dB
25°C
Full range
105
3.8
5.3
5.6
3.8
4.7
5
mA
'On products compliant to MIL-STD-883, Class B, thiS parameter IS not production tested.
tFuil range is -55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TEXAS ~
INsrRUMENTS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
2-999
TLE2027M, TLE2027AM
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
operating characteristics, VCC±
PARAMETER
'"
~""
SR
.
TEST CONDITIONS
.,"-,-"'-~
Slew rate at unity gain
-----" "-
-~
Total harmonic distortion
""_._-"".
~
~.-'--'-"-
...
-
= 100 pF,
TLE2027AM
TLE2027M
MIN
TYP
1.7
2.8
25°C
MAX
1
Full range
MIN
1.7
1
TYP
MAX
bandwidth
.-".".---¥~'
RS
RS
1
= 1000, 1 = 10 Hz
= 100 0, 1 = 1 kHz
= 0.1
Hz to 10Hz
25°C
25°C
= 10 Hz
= 1 kHz
Vo = ±10V,AVO =
1
25°C
1
V/flS
1,
See Note 5
3.3
8'
3.3
4.5'
2.5
4.5'
2.5
3.8'
50
250'
50
130'
1.5
4'
O.S'
1.5
4'
0.4
0.6'
0.4
<0.002%
25°C
RL
= 2 kn,
RL
= 2kQ
CL
=
100 pF
r
25°C
nV/~
nV
pAl~
<0.002%
25°C
9'
13
MHz
30
30
kHz
55°
55°
13
..- "
Phase margin at unity
RL = 2 kn, CL = 100pF
25°C
,__g~i~~see Figure 3)
'On products compliant to MIL-ST0-883, Class B, this parameter IS not production tested.
tFull range is - 55°C to 125°C.
NOTi" 5. Measured distortion 01 the source used in the analysis was 0.002%.
-.....----.- Vo
Vo
4kn
Figure 1. Slew Rate Test Circuit
1000
Figure 2. Noise Voltage Test Circuit
10kQ
>--+--.....-Vo
2 kO
Figure 3. Unity-Gain Bandwidth and
Phase Margin Test Circuit
Figure 4. Small-Signal Pulse
Response Test Circuit
NOTE A: C,- includes fixture capacitance.
TEXAS . "
2-1000
UNIT
2.8
-.-"-~.~
,. (see Figure 3)
Maximum output-swing
-,--.
BOM
-- .
.
Unity-gain bandwidth
B1
RL = 2kQ, CL
See Figure 1
TAt
-.--.~-
Equivalent input noise
Vn
'_'_._'~()!.tage (see Figure 2)
Peak-to-peak equivalent
VN(PP)
input noise voltage
..----'"-"
Equivalent input noise
In
current
-' --".'. __ ..THD
= ±15 V, TA =25°C (unless otherwise noted) .
INSTRUMENTS
POST OFFICE BOX 655303' OALLAS, TEXAS 75265
TlE2027, TlE2027A
EXCALIBUR lOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
PARAMETER MEASUREMENT INFORMATION
typical values
Typical values as presented in this data sheet represent the median (50% point) of device parametric
performance.
initial estimates of parameter distributions
In the on-going program 01 improving data sheets and supplying more information to our customer, Texas
Instruments has added an estimate of not only the "typical" values but also the spread around these values.
These are in the form of distribution bars that show the 95% (upper) points and the 5% (lower) points from
our characterization of the initial wafer lots of this new device type (see Figure 5). The distribution bars are
shown at the pOints where data was actually collected. The 95% and 5% pOints are used instead of ±3 sigma
since some of the distributions are not true Gaussian distributions.
The number of units tested and the number of different wafer lots used are on all of the graphs where
distribution bars are shown. As noted in Figure 5, there were a total of 835 units from 2 wafer lots. In this
case, there is a very good estimate for the within-lot variability and a possibly poor estimate of the lot-io-iol
variability. This will always be the case on newly released products since there will only be data available from
a few wafer lots.
The distribution bars are not intended to replace the minimum and maximum limits in the electrical tables.
Each distribution bar represents 90% of the total units tested at a specific temperature. While 10% of the units
tested fell outside any given distribution bar, this should not be interpreted to mean that the same individual
devices fell outside every distribution bar.
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
5
Vcc±
«
E
E
f
= ±15V
I
=
4.5
a
Vo
0
No Load
Sample Size
835 Units
From 2 Wafer Lots
=
/
4
g. 3.5
3
95% point on the distribution bar
(5% of the devices fell above this point.)
90% of the devices were within the upper
and lower points on the distribution bar.
~
I ' !'--- 5% point on the distribution bar
(5% of the devices fell beiow this point)
V
I/)
~
:/
V
vV'
>-
"ii
I
~V'"""
V
1'1
2.5
-75 -50 -25 0
25 50 75 100 125 150
TA - Free-Air Temperature - 'c
Figure 5. Sample Graph with Distribution Bars
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
2-1001
I,
TlE2027, TlE2027A
EXCAlIBUR lOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
table of graphs
FIGURE
Via
~VIO
Input offset current
liB
Input bias current
II
VO(PP)
YOM
Time aft~r power o~___...
Temperature
---.-.--.....- .. - ... ----.-.-.-- ..-.~-vs Common·mode input voltage
Input offset voltage change
110
6
Distribution
Input offset voltage
vs
vs
vs
Input current
vs
Large-signal differential
voltage amplification
vs
vs
.~.-
--
""---"'--"~
.. -"
Load resistance
Frequency
_-_.
_
12
13- - - - -
"m"" •• __
16,17
18
20
19,21
Temperature
__..- .... ..•--_....... _ .._ - - 1--'.'.'.' -,-,,---22
..
Frequency
23
...--.-....
- ...... -.......-.- ...... --.-....-...... f-- ..-..
24
vs..
vs
--".-.-.-~-,-,--
Output impedance
kSVR
Supply voltage rejection ratio
vs
vs
Frequency
Frequency
vs
vs
Su pply voltage
Short-circuit output current
Time
28, 29
vs
.
30,31
vs
Tempera!.'-!r!:.... ____.._ •.
Supply voltage
vs
Tern perature
lOS
Common-mode rejection ratio
-'
ICC
Supply current
Small-signal
Large·signal
Pulse response
32
33
34
35
_.
----·--·--36--·------ --·-·----37----_._---_..
..- , - ---_.----_..
vs Frequency
0.1 to 10 Hz
Unity-gain·bandwidth
vs
Load capacitance
SR
Slew rate
vs
vs
Temperature
Supply voltage
¢m
Phase margin
vs
Load capacitance
vs
Tern perature
vs
Frequency
_._-
Supply voltage
"--""."~--~,-,
TEXAS ."
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
__
38
39
-- _.
40
41
42
._---_._.---_.
INSTRUMENTS
2-1002
26, 27
B1
Phase shift
----,-
__._-_.- -······-·-25------
Equivalent input noise voltage
Noise voltage (referred to input)
vs
..
___. __•••..
.
Vn
dJ
"".-,"-,-,-~
14, 15
Zo
CMRR
- - f--..-
........ -
10
..- f - - - - - ...
----~
AVO
9
f..··-···-·
11
Temperature
Differential input voltage
Maximum peak-to·peak output
voltage
._._---_._
.._._-- _ _v~.•..y!!..~.':1.:~._ ... __ .. _....
vs Load resistance
Maximum peak output voltage
vs Temperature
--- ..-...
._----vs Supply voltage
7,8
-.-
43
19,21
--
TlE2027, TlE2027A
EXCALIBUR lOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
TLE2027
INPUT OFFSET VOLTAGE CHANGE
DISTRIBUTION OF
INPUT OFFSET VOLTAGE
TIME AFTER POWER ON
vs
12
1568 Amplifiers
I
=
Vcc±
± 15 V t-___ri'!'Rt-t--t--f----I
TA
25°C
14
'J!.
>::I.
=
CD
'"
.
"0
:!
CD
>
5
ii
E
a
oCt
.
8
~
:5
a.
.E
.E
'0
CD
c'"
/
.!!!
0 Package --t--Bffilt.+--i---!---!---I
12
~
10
61----j--t--t-
CD
..'"
CD
c
.c
!:!CD
Q.
6
/
I
4
I
a
=
2
-60
-30
0
30
60
90
o
o
120
10
Via - Input Offset Voltage - IlV
20
30
Figure 7
INPUT OFFSET VOLTAGE CHANGE
INPUT OFFSET CURRENT
vs
vs
TIME AFTER POWER ON
FREE-AIR TEMPERATURE
30
Vcc±
5
"0
.
=
4
:5a.
3
..'"'"
2
Gi
V
a
.E
.E
c
.c
/'
I
C
~
= ±15V
Sample Size
~
.."
15
a.
.E
10
g
5
= 50 Units
from 2 Water LoIs
20
I
20
I
=
a
= ±15 V
I
=
0
TA
25°C -'
P Package
I
=
oCt
c
Vcc±
0
60
. VIC
0
Sample Size
833 Units
From 2 Wafer Lots
25
V
8:5
I
o
o
50
Figure 6
6
>
40
I - Time After Power On - s
>::I.
'"
'"
.!!!
I
=
">
20
V
III
:;
a.
..5
15
,g!
10
C
l!!
30
:;
./
./
o
-12
OJ
0.8
.... r-..,
(.)
,/
5
=
I
/
(.)
.!!
'"
40
c
30
=
VCC±
±15 V
VIC
0
I
Sample Size
836 Units
From 2 Wafer Lots. I - -
50
20
~
r
TA
=125"C
.5
~ -0.4
~
-0.5
-0.8
-1
-1.8
ii:"
Q.
-1.2
-0.6
o
0.6
1.2
VIO - Oifferentlallnput Voltage - V
1.8
~
0
10 k
Y'="lmoc
Figure 12
~~
...
100 k
1M
f - Frequency - Hz
Figure 13
tData at high and low temperatures are applicable only within the rated operating lree-air temperature ranges of the various devices.
TEXAS ~
2-1004
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TexAS 75265
10 M
TlE2D27, TlE2D27A
EXCALIBUR lOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
MAXIMUM NEGATIVE PEAK
OUTPUT VOLTAGE
MAXIMUM POSITIVE PEAK
OUTPUT VOLTAGE
>
8,
~
>
;;
5
vs
LOAD RESISTANCE
~
14
.
Cl
/~
/
10 1---
6
4
2
+
:E
V
.....
II
I
.
Z
e
e
;c
:s
VCC:I:
= :l:15V
= 25·C
tJ
1k
RL - Load Resistance - Q
10 k
>
/
vee:l: ::: :1:15 V
25·C
TA
r'
II
=
100
t
I
1k
RL - Load Resistance -
10 k
Q.
Figure 14
Figure 15
MAXIMUM POSITIVE PEAK
OUTPUT VOLTAGE
MAXIMUM NEGAliVE PEAK
OUTPUT VOLTAGE
vs
vs
FREE-AIR TEMPERATURE
FREE-AIR TEMPERATURE
>
= 2kQ
I.
I
.~ 13.2
V
/
V
-13
Vec:!: :: :!:15 v i
CIl
~
/.
jf
~
13
o
0
8... 13.3
:s
-2
:E
From 2 Wafer LoIs
~e 13.1
V
i
'0 13.4 Sample Size = 832 Units
>
c..
-4
..
Vcc:!: = ±15V
;;
-6
Cl
II
--I
/
>
-:::
:E
RL
I
II
> 13.5
.
N'
I[
-8
c..
V
TA
I
1;; -10
o
/
0
100
J
~ -12
12
8
e
:E
-=
-14
CIl
o
~
vs
LOAD RESISTANCE
""
'0
VI
:.: -13.2
:s
So
...d
...
:ll
c..
l
l~
-13.4
~
;
-
'e-
V
13 6
•
:s
e
.;c
W
...
~
+
:E
I
RL" 2kQ
Sample Size = 831 Units
From 2 Wafer Lots
~T
'"
1\~
~
-13.8
I
~ 12.9
-75 -50 -25 0
25
50 75 100 125 150
T A - Free·Alr Temperature - ·C
$
~T
~
-14
-75 -50 -25 0
25
50 75 100 125 150
TA - Free-Air Temperature - ·C
Figure 16
Figure 17
tData at high and low temperatures are applicable only within the rated operating free··air temperature ranges of the various devices.
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
2-1005
TlE2027, TlE2027A
EXCAUBUR lOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICA nON
~
50
TA
3>
vs
vs
SUPPLY VOLTAGE
FREQUENCY
160
=25°C
-B
!5
ii
""..
Rl
= 2kQ
Rl
= 1 kQ
"0
I
·8
rl
""..
>
iii
Rl
e
is
= 600Q
e
•
4
8
12
16
20
IVCC± I - Supply Voltage - V
24
0.1
'\
250 0
'\
It
275°
100 M
100 k
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
vs
LOAD RESISTANCE
FREQUENCY
6
40
= ±15V
= 25°C
/
If
ID
"0
~
I
3
c
0
'3
0
Ie
'[
E
""..
30
D)
J
-3
!!
'0
-6
iii
-9
Jj
-12
100°
"~'"
"~
>
20
..
~
I
Q
Q
-15
>
o
400
lk
4k
Rl - load Resistance - Q
10k
""
1250
1500
\,
Phase Shift
is
10
100
~
225°
'\
100
III
200 0 ~
LARGE-SIGNAL VOLTAGE AMPLIFICATION
TA
-18
10
I
VCC± = :15 V
Rl = 2kQ
Cl =' 100 pF
TA = 25°C
Figure 20
TEXAS .,.,
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
,t
i\AVO
i'- ~ -~
~
\
175° :E
.c
VI
200° :
6:
225 0 ~
250°
i\.... 1-"" L
20
40
f - Frequency - MHz
Figure 21
INSTRUMENTS
2-1006
,,~
VCC± = ±15V
Rl = 2kQ
Cl = 100 pF
TA = 25°C
o
..
VI
1750
f - Frequency - Hz
Q,
~
20
1500 :E
.c
Figure 19
i
Q
Q
1250
Figure 18
Vcc:
I
I!I!
40
""
o
o
10
~
:!
>
~
.
"
is
10
I
~
60
C
Q
J
~
100°
)
>
20
E
:!
80
"'"
Phase Shift
D)
!!
'0
75 0
I
AVO",
E 100
D)
!!
'0
120
isQ,
30
,
I
",
140
c
40
rl
E
~
ID
I
c
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
.... ~/\. 275
70
0
300 0
100
TlE2D27, TlE2D27A
EXCALIBUR lOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
>
.::!>
OUTPUT IMPEDANCE
vs
vs
FREE-AIR TEMPERATURE
FREQUENCY
l00r---~--'----r---r--~--~---'
60
Vcc± = ±lSV
Vcc± = ±1SV
2S·C
TA
=
c
0
c:
~
S
'ii
E
.,u
SO
.,
~
'0
>
iii
.~
1/
40
140
"0
120
.~
100
.,
.,
't;
'ar 80
II:
:;
a.
:;
0
of
0.01 L -__-'--__......_ - ' - _ - ' - _ - - ' - _ - - - ' _ - - '
10
100
1k
10 k 100 k 1 M 10 M 100 M
f - Frequency - Hz
SUPPLY VOLTAGE REJECTION RATIO
vs
vs
FREQUENCY
FREQUENCY
140
VCC± = ±lSV
TA = 2S·C _
"r'\.
""-
60
0
120
.,
.,
'"
~
100
'ii
II:
~
"""-
>'ii
a.
::I
o
10 k
100 k
1M
TA= 2S"C _
~ r\..
~ ......
~ ......
80
60
kSVR~
40
In
\
::;;
0
I\..
kSVR-
~
20
1k
I
0
c
0
100
"0
'-;
"r'\.
VCC± = ±lSV
III
II:
"
C
0
E
E 40
0
10
0.1
COMMON-MODE REJECTION RATIO
0
II:
II:
-
Figure 23
"0
::;;
L___ r-
Figure 22
,
II:
0
I
30
-7S -SO -2S 0
2S SO 7S 100 12S lS0
T A - Free-Air Temperature - ·C
III
c
~=2kO
8.E
I I
Q
>
I
0
"0
V ~L
IVV
~
==
C
20
~
r\
10 M 100 M
o
10
100
1k
10 k
,
~,
~
100 k
1M
f - Frequency - Hz
f - Frequency - Hz
Figure 24
Figure 25
10 M 100 M
'Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ",
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
2-1007
TlE2027, TlE2027A
EXCALIBUR lOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
SHORT-CIRCUIT OUTPUT CURRENT
SHORT·CIRCUIT OUTPUT CURRENT
vs
vs
SUPPLY VOLTAGE
SUPPLY VOLTAGE
-42
44
VID
E
50
Vcc± = ±15 V
RL = 2 k.Q
CL = 100 pF
TA = 25°C _
See Figure 4
(
..
>
.,
Vcc± = ±15V
RL = 2 kQ
10 CL = 100 pF
TA = 25°C
See Figure 1
5
/
/
0)
s.
~
0)
~
0
>
;;
Il.
;;
0
;;
S-
I
'I"
0
>
0
0
0
-5
0
> -50
o
400
600
I - Time - ns
200
-15
800
1000
~
..
I
EQUIVALENT INPUT NOISE VOLTAGE
NOISE VOLTAGE
(REFERRED TO INPUT)
OVER A 10-SECOND INTERVAL
\
\
S
~.,
.,
6
'0
Z
;;
Il.
.E
4
C
CI>
~
'5
Iff
Vcc± = ±15 V
40 f = 0.11010 Hz
30 TA = 25°C
I
I
-
>c
20
.,
10
i
0
I
0)
>.,
\
In
-10
'0
z
i'-
2
I
-40
c
>
o
1
-50
10
100
lk
f - Frequency - Hz
10 k
100 k
0
Figure 36
2
4
6
I - Time - s
Figure 37
TEXAS ~
2-1010
25
50
VCC± = ±15 V
RS = loon
TA = 25°C
See Figure 2
Sample Size = 100 Unils
From 2 Wafer LoIs
\
8
20
Figure 35
\
0)
10
15
I - Time - I1S
Figure 34
FREQUENCY
~
5
0
vs
10
\
\
\
V
-10
-100
I 1\
INSfRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
8
10
TlE2027, TlE2027A
EXCAlIBUR lOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
UNITY-GAIN BANDWIDTH
UNITY-GAIN BANDWIDTH
vs
vs
SUPPLY VOLTAGE
LOAD CAPACITANCE
20
16
= 2 kn
CL = 100 pF
TA = 25·C
r--- ..........
RL
N
:I:
::;;
18
N
:I:
::;;
See Figure 3
.c
;;
..,'i
16
.
8
c
OJ
14
......
<;I
~
~
12
o
2
4
6
8
10
4
I
I--
r£
12
14
16
18
20
o
22
100
Figure 38
Figure 39
SLEW RATE
PHASE MARGIN
vs
vs
FREE·AIR TEMPERATURE
SUPPLY VOLTAGE
58°
~
>
iii
a:
2.4
IX
I
/
V
-
./
2.2
=
=
=
2 kn
RL
CL
100 pF
2S·C
TA
See Figure 3
56°
54°
..
..
.~
. -r--
/
52·
::;;
Q)
!II
50·
.c
'r--
I
....E
= ±15V
=
=
48·
44·
42·
25
50
75
100 125
150
/'
/
.......
---
/
/
/
46·
AVD
5
RL
2 kO
CL=100pF
See Figure 1
0
/
D..
----- 1- .•
2
-75 -50 -25
~
c
VCC±
1/1
10000
CL - Load Capacitance - pF
2.8
2.6 -
1000
IVcc± I - Supply Voltage - V
3
~
iii
II
'2
10
I
~ r--.....
c
~
..
RL = 2 kn
TA = 25·C
See Figure 3
'0
!II
'2
r£
12
,
;;
'i
c
os
c
.;
!-
......
.c
III
Cl
VCC± = ±15 V
~
o
2
4
6
8
IVcc± I
TA - Free-Air Temperature - ·C
Figure 40
-
10
12
14
16
18
20
22
Supply Voltage - V
Figure 41
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
"I
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
2-1011
TlE2027, TlE2027A
EXCAUBUR lOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
PHASE MARGIN
PHASE MARGIN
vs
vs
LOAD CAPACITANCE
FREE-AIR TEMPERATURE
65·
60·
VCC±
c
'2co>
40·
1\
::;:
.
II>
co
.c:
n.
I
....E
20·
=
=
= ±15 V
RL 2kn
TA 25·C
See Figure 3
I
60·
c
\
..
::;:
.~
1\
...
II>
.c:
n.
"
.......
55·
t'- r-
~
" "~
50·
"\
I
i
i'--.
VCC± = ±15 V
RL = 2 kn
CL = 100pF See Figure 3
45·
40·
o·
1\,
35·
100
1000
CL - Load Capacitance - pF
-75 -50 -25 0
25 50 75 100 125 150
TA - Free-Air Temperature - ·C
10000
Figure 42
Figure 43
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using PSpiceC$} Parts™ model generation software. The Boyle
macromodel (see Note 6) and subcircuit in Figures 44 and 45 were generated using the TLE2027 typical
electrical and operating characteristics at 25°C. Using this information, output simulations of the following key
parameters can be generated to a tolerance of 20% (in most cases):
•
•
•
•
•
•
Maximum positive output voltage swing
Maximum negative output voltage swing
Slew rate
Quiescent power dissipation
Input bias current
Open-loop voltage amplification
•
•
•
•
•
•
Gain-bandwidth product
Common-mode rejection ratio
Phase margin
DC output resistance
AC output resistance
Short-circuit output current limit
NOTE 6: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeiing of Integrated Circuit Operational Amplifiers", IEEE JDurnal
of Solid-State Circuits, SC-9, 353 (1974).
PSpice is a registered trademark of MicroSim Corporation.
Parts is a trademark of MicroSim Corporation.
Macromodels, simulation models, or olfiar modals
provided by TI, dlrecUy or IndirecUy, ara nol
warranled by 11 as lully representing all of Iha
spa.ifiealions and oparaling characlerlstics ollha
semiconduclor producllo which the modal reJalas.
2-1012
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
TLE2027, TLE2027A
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
macromodel Information (continued)
3
din
t
r02
IN+
IN-
~
90
hlim
+dlp
+
-
_
•.. vip
.. vln
--4H-+-i
2
5
Vcc-
OUT
Figure 44. Boyle Macromodel
.subekt TLE2027
*
e1
11
e2
6
de
5
da
54
1mA
,--i~Mr--*"----,
>-~-Vo
Figure 46. Voltage-Follower
input offset voltage nulling
The TLE2027 series offers external null pins that can be used to further reduce the input offset voltage. The
circuits of Figure 47 can be connected as shown if the feature is desired. If external nulling is not needed,
the null pins may be left disconnected.
1 kn
ININ+
VCC-
VCC-
(a) Standard Adjustment
(b) Adjustment with Improved Sensitivity
Figure 47. Input Offset Voltage Nulling Circuits
TEXAS
"I
INSTRUMENlS
2-1014
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLE2037, TLE2037A
EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION
DECOMPENSATED OPERATIONAL AMPLIFIERS
D3454. MAY 1990- REVISED APRIL 1991
available features
• Outstanding Combination of DC Precision
and AC Performance:
Gain-Bandwidth Product. .. 80 MHz Typ
V
... 3.3 nV/..JHz at f = 10 Hz Typ,
2.5 nVHHz at f = 1 kHz Typ
VIO ... 25 J1V Max
AVD ... 45 V/J1V Typ, With RL = 2 kn,
19 V/J1V Typ, With RL = 600 n
•
Available in Standard-Pinout Small-Outline
Package
•
Output Features Saturation Recovery
Circuitry
•
Macromodels and Statistical Information
Included
description
The TLE2037 and TLE2037A combine innovative
circuit design expertise and high-quality process
control techniques to produce a level of ac
performance and dc precision previously
unavailable in single operational amplifiers.
Using the Texas Instruments state-of-the-art
Excalibur process, these devices allow upgrades
to systems that use lower-precision devices.
The TLE2037 and TLE2037A are decompensated versions of the TLE2027 and
TLE2027A and are stable to a close-loop gain of
5. In the area of dc precision, these parts offer
maximum offset voltages of 100 ~V and 25 ~V,
respectively, common-mode rejection ratio
of 131 dB (typ), supply voltage rejection ratio of
144 dB (typ), and dc gain of 45 V/~V (typ).
The ac performance is highlighted by a typical
gain-bandwidth product specification of 80 MHz,
50° of phase margin, and noise voltage
specifications of 3.3 nV/..fRZ and 2.5 nV/..fRZ at
frequencies of 10Hz and 1 kHz, respectively.
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREQUENCY
m 160
'tI
I
c 140
o
r- ~
"1;
~ 120
\
\
'ii
~ 100
S
"'"
;g
80
:!
60
AVD
~
"-~
= 153 dB
V "-
E
~
GBP
40
is
I
20
c
~
=
=
CL = 100 pF
TA = 25°C -
VCC±
±15 V
RL
2kn -
"- ~
o
100
100 k
f - Frequency - Hz
0.1
\
100M
Both the TLE2037 and TLE2037A are available in a wide variety of packages, including the industry-standard
8-pin small-outline version for high-density system applications. The e-suffix devices are characterized for
operation from ooe to 70 0 e. The I-suffix devices are characterized for operation from -40 0 e to 105°e. The
M-suffix devices are characterized for operation over the full military temperature range of -55°e to 125°e.
AVAILABLE OPTIONS
PACKAGE
TA
O°Cto
V,Omax
AT 25°C
25flV
70°C
100 flV
-40°C to
25 flV
SMALLOUTLINE
(D)
CHIP
CARRIER
(FK)
CERAMIC
DIP
(JG)
TLE2037ACD
--
-
TLE2037CD
-
--
METAL
CAN
(L)
-
PLASTIC
DIP
(P)
TLE2037ACP
TLE2037CP
TLE2037AIP
TLE20371D
105°C
TLE20371P
100 flV
-TLE2037AMD TLE2037AMFK
TLE2037AMJG
TLE2037AML
TLE2037AMP
-55°C to
25flV
TLE2037MFK
TLE2037MJG
TLE2037ML
TLE2037MP
TLE2037MD
125°C
100 flV
D packages are available taped and reeled. Add' R" suffix to device type. (e.g .• TLE2037ACDR).
TLE2037AID
.
PRODUCTION DATA documents contain information
current as of publication date. Products conform to
specifications per the terms of Te.as Inslruments
standard warranty. Production processing does not
necessarily include testing of all paramelers.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
Copyright © 1991. Texas Instruments Incorporated
On products compliant to Mll'STD-BB3, Class S, all
paramelers are tested unless olherwise noted. On all
other products, production processing does not
necessarily include testing of all parameter••
2-1015
TLE2037, TLE2037A
EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION
DECOMPENSATED OPERATIONAL AMPLIFIERS
D, JG, OR P PACKAGE
(TOP VIEW)
OFFSET N1
ININ +
[j8
VCC-
FK PACKAGE
LPACKAGE
(TOP VIEW)
(TOP VIEW)
O~ONO
2
3
7
6
OFFSET N2
VCC+
OUT
4
5
NC
OFFSET N2
zzzzz
~
3
2
1 20
~9
NC
4
18
NC
INNC
IN +
NC
5
6
17
16
7
8
15
14
VCC +
NC
OUT
NC
9 10 11 12 13
o
Z
1000
OZ Z Z
~
NC - No internal connection
symbol
OFFSETN1
IN+
OUT
IN-
OFFSETN2
TEXAS ."
Il'lSTRUMENTS
2-1016
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
VCCPin 4 of the L package is in electrical
contact with the case.
equivalent schematic
Q}r
IN+
...,
...,g
0_
:BZ
~~
m
i~~~
~~
><
e(")
m>
(")r0-
3:~
1='!'I"I
>z
~~4r
~
~
R26
R18
R19
1
Vcc-
-g:C
mr-
Zo
en
:!:j=!=
mZ
CO
oCii
-gm
m::J:
:c):IC)
:::!::J:-I
Oc:nrz-gm
>mN
r-m C
>e~
3: -g~
-g:c-l
~
~
'"
r-mr_(,,)m
-n- N
-enc
m-c..,)
:cO .....
enz>
TLE2037, TLE2037A
EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION
DECOMPENSATED OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC+ (see Note 1) .......................... " ....... " .................. 22 V
Supply vol!age, V CC- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -22 V
Differential input voltage (see Note 2) ................................................. ±1.2 V
Input voltage range, VI (any input) ." .......................................... "........ VCC±
Input current, 'I (each input) ................................. " " " "
+1 mA
Output current, 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .±50 mA
Total current into VCC± terminal ..................................................... 50 mA
Total current out of VCC- terminal .................................................... 50 mA
Duration of short-circuit current at (or below) 25°C (see Note 3) .............. : ............ unlimited
Continuous total dissipation" ....................................... See Dissipation Rating Table
Operating free-air temperature range, TA: C-suffix ................................... O°C to 70°C
I-suffix ................................ -40°C to 105°C
M-suffix ............................... -55°C to 125°C
Storage temperature range ................................................... -65°C to 150°C
Case temperature for 60 seconds: FK package .......................................... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D orP package ............... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG or L package .............. 300°C
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC + and VCC- .
2. Differential voltages are at the non inverting input with respect to the inverting input. Excessive current will flow if a differential input
voltage in excess of approximately ±1.2 V is applied between the inputs unless some limiting resistance is used.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TAs25·C
POWER RATING
D
725mW
FK
1375mW
JG
1050mW
L
P
650mW
1000mW
DERATING FACTOR
=
ABOVE TA 25°C
5.8 mW/oC
.TA = 70·C
POWER RATING
TA = 105°C
POWER RATING
TA= 125°C
POWER RATING
464mW
261 mW
145 mW
11.0 mW/oC
8.4 mW/oC
880mW
495mW
275mW
672mW
378mW
5.2 mW/oC
416mW
640mW
234mW
360 rnW
210mW
130mW
8.0 mW/oC
_._---.._----_ _..... _ ...._--_
...._... ------------,......
...
200mW
----.--.,~--------.---.
recommended operating conditions
I-SUFFIX
C-SUFFIX
Supply voltage, VCC +
.
ITA
Common .. mode Input voltage, VIC I
TA
Operating free-air temperature, TA
= 25°C
= Full range
MIN
MAX
MIN
±4
± 22
- 11
MIN
MAX
±4
±4
± 22
11
- 11
11
-11
11
-10.5
10.5
-.. 10.4
10.4
-10.2
10.2
0
70
-40
105
-55
125
TEXAS ~
INSTRUMENTS
2-1018
M-SUFFIX
MAX
± 22
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
UNIT
V
V
°C
TLE2037C, TLE2037AC
EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION
DECOMPENSATED OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Vcc± =
TEST CONDITIONS
PARAMETER
VIO
Input offset voltage
aVIO
input offset voltage
Input offset voltage
long-term drift (see Note 4)
110
liB
TLE2037C
TYP MAX
MIN
100
20
TAt
25°C
Full range
Temperature coefficient of
=
RS
0,
=
SOU
Input offset current
VICR
voltage range
)lV/oC
25°C
0.006
1
0.006
1
)lV/mo
25°C
6
90
6
SOU
150
15
90
-13
- 11
-- 13
to
11
to
13
to
11
to
13
-10.5
to
to
Maximum positive peak
VOM+
output voltage swing
Maximum negative peak
VOM-
AVO
output voltage swing
Large-signal differential
voltage amplification
RL
=
2kU
RL
=
600U
RL
=
2 kU
Vo
= ± 11 V,
= ± 10 V,
RL
Vo
RL
=
=
Vo
= ± 10 V,
RL
=
1 kn
Vo
ci
Input capacitance
Zo
Open-loop output impedance
Common-mode
CMRR
rejection ratio
Supply-voltage rejection ratio
kSVR
ICC
(t-VCC ±It-VIO)
Supply current
= ± 10 V,
10.5
10
12.9
12
13.2
25°C
RL
=
-10
-12
-11
2 kU
Full range
2SoC
2 kn
Full range
2
600 n
25°C
Full range
-13.5
38
2
V
45
8
--
38
V/)lV
2.5
-----19
5
19
0.5
2
50
= VICR min,
= 50n
VCC± = ±4Vto±18V,
RS = 50n
VCC± = ±4Vto±18V,
RS = son
25°C
100
Full range
98
2SoC
94
Full range
92
No Load
10
1
25°C
0,
-13
4
10 = 0
=
V
13.2
-12 -13.5
-11
45
8
Vo
12.9
-10
25°C
VIC
RS
-10.5
-13
3.5
-
12
nA
11
5
25°C
Full range
10.5
10.5
nA
V
10
11
Full range
2SoC
-10.S
Full range
2SoC
90
150
- 11
10.5
600U
15
-10.5
25°C
Full range
=
90
150
150
Full range
RL
)lV
1
25°C
=
70
UNIT
0.2
Full range
RS
MAX
25
1
25°C
Common-mode input
TYP
10
0.4
Full range
Input bias current
--
TLE2037AC
MIN
145
Full range
VIC
±15 V (unless otherwise noted)
8
50
131
117
pF
n
131
dB
114
144
110
144
dB
25°C
Full range
106
3.8
5.3
5.6
3.8
4.7
4.8
rnA
tFull range is OOG to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating Hfe test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TEXAS ~
INSfRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 752£5
2-1019
TLE2037C, TLE2037AC
EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION
DECOMPENSATED OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature, Vcc±
PARAMETER
SR
Slew rate
Equivalent input noise
Vn
voltage (see Figure 2)
Peak-to-peak equivalent
VN(PP)
input noise voltage
Equivalent input noise
In
current
THO
Total harmonic distortion
Gain-bandwidth product
BaM
¢m
Maximum output-swing
bandwidth
Phase margin
TEST CONDITIONS
TAt
RL = 2kO,
AVO = 5,
CL = 100 pF, See Figure 1
RS = 1000, I = 10 Hz
RS = 1000, I = 1 kHz
25°C
Full range
TLE2037AC
MIN
TYP MAX
6
7.5
5
3.3
4.5
2.5
3.8
UNIT
TYP
7.5
MAX
25°C
3.3
2.5
8
4.5
I = 0.1 Hz to 10 Hz
25°C
50
250
50
130
nV
I = 10 Hz
I = 1 kHz
25°C
1.5
0.4
4
0.6
1.5
0.4
4
0.6
pAlVHz
25°C
<0.002%
VO=±10V, AVO = 5,
See Note 5
I = 100 kHz, RL = 2kO,
CL = 100 pF
RL = 2kO
RL = 2 kO,
CL = 100pF
MIN
6
5
25°C
50
76
50
MHz
kHz
80
25°C
50°
50°
TEXAS
~
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
nV/VHz
76
80
INSTRUMENTS
V/flS
< 0.002%
25°C
tFull range is O°C to 70°C.
NOTE 5: Measured distortion 01 the source used in the analysis was 0.002%.
2-1020
= ±15 V
TLE2037C
TLE20371, TLE2037AI
EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION
DECOMPENSATED OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Vcc±
PARAMETER
Via
TEST CONDITIONS
long-term drift (see Note 4)
110
lIB
TLE20371
TYP MAX
20
100
VIC = 0,
RS = 50n
25°C
Input bias current
lS
voltage range
Maximum positive peak
RS = son
output voltage swing
Maximum negative peak
output voltage swing
25°C
Full range
2SoC
RL = 600n
RL = 2kQ
RL = 600Q
2SoC
RL=2kQ.
= 2 kQ
Va = ± 10 V, RL = 2 kQ
Large-signal differential
voltage amplification
Va = ± 10 V, RL = 1 kQ
Va = ±10V, RL = 600n
ci
Input capacitance
Zo
Open-loop output impedance
10 = 0
Common-mode
rejection ratio
VIC = VICR min,
RS = SOQ
VCC± = ±4Vto±18V,
Supply-voltage rejection ratio
RS = SOQ
(,WCC±U,vIO)
VCC± = ±4Vto±18V,
CMRR
kSVR
Supply current
Va = 0,
No Load
1
fLV/mo
6
90
lS0
nA
lS
90
lS0
nA
-13
to
to
11
-10.4
13
to
11
-10.4
13
to
to
10.4
10.S
12
10.5
10
12.9
13.2
12
13.2
-13
11
-10.S
-13
Full range
2SoC
Full range
2SoC
Full range
2SoC
100
Full range
96
2SoC
94
Full range
90
V
10
4S
3.S
38
8
1.8
2
O.S
V
-11
4S
2.S
3.5
V
-10
-12 -13.S
-12 -13.S
-11
S
to
12.9
10
fLV
0.006
-11
10.4
25
105
UNIT
fLV/oC
-13
25°C
2SoC
RS = SOQ
ICC
Full range
2SoC
90
lS0
MAX
1
lS0
11
Full range
-10.S
2SoC
-10
Full range
Va = ± 11 V, RL
AVD
1
90
25°C
Full range
Full range
VOM-
0.006
25°C
Full range
25°C
VOM+
0.2
Input offset current
-11
VICR
TYP
10
1
0.4
6
Common-mode input
TLE2037AI
MIN
180
Full range
input offset voltage
Input offset voltage
MIN
25°C
Full range
Input offset voltage
Temperature coefficient of
aVIO
TAt
= ±15 V (unless otherwise noted)
38
V/fLV
2.2
19
S
1.1
19
8
8
pF
SO
50
n
131
117
131
dB
113
144
110
144
dB
2SoC
Full range
lOS
3.8
S.3
5.6
3.8
4.7
4.9
mA
tFull range is -40°C to 10SoC.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = lS0°C extrapolated
to TA = 2SoC using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
2-1021
TlE20371, TlE2037AI
EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION
DECOMPENSATED OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature, Vcc±
PARAMETER
SR
Slew rate
Equivalent input noise
voltage (see Figure 2)
Peak-to-peak equivalent
YN(PP)
input noise voltage
Equivalent input noise
In
current
Yn
THO
Total harmonic distortion
Gain-bandwidth product
BOM
iflm
Maximum output-swing
bandwidth
Phase marg in
TEST CONDITIONS
TAt
RL = 2kn,
AYD = 5,
eL = 100 pF, See Figure 1
RS = lOOn, I = 10 Hz
RS = lOOn, I = 1 kHz
25°e
Full range
TLE20371
MIN
TYP
6
4.7
7.5
TLE2037AI
MAX
MIN
TYP
6
4.7
7.5
MAX
UNIT
Y/JlS
25°e
3.3
2.5
8
4.5
3.3
2.5
4.5
3.8
nY/%
I = 0.1 Hz to 10 Hz
25°e
50
250
50
130
nY
1 = 10 Hz
1 = 1 kHz
25°e
1.5
0.4
4
0.6
1.5
0.4
4
0.6
pAl,fHz'
25°e
<0.002%
YO = ± 10 Y, AyO = 5,
See Note 5
1 = 100 kHz, RL = 2kn,
eL = 100pF
RL = 2kn
RL = 2kn,
eL= 100 pF
25°e
50
76
<0.002%
50
76
MHz
kHz
25°e
80
80
25°e
50°
50°
tFuil range is - 40 0 e to 105°e.
NOTE 5: Measured distortion 01 the source used in the analysis was 0.002%.
TEXAS ~
INSTRUMENTS
2-1022
= ± 15 V
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLE2037M, TLE2037AM
EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION
DECOMPENSATED OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Vcc±
PARAMETER
Via
TEST CONDITIONS
25°C
Full range
Input offset voltage
Temperature coefficient of
aVIO
Input offset voltage
long-term drift (see Note 4)
Input offset current
1,8
Input bias current
VIC = 0,
RS = 500
.. -
Common-mode input
voltage range
VOM-
AVD
output voltage swing
ftV/ oC
0.006
1
0.006
1
ftV/mo
25°C
Full range
6
90
6
90
25°C
Full range
15
25°C
150
90
Maximum negative peak
output voltage swing
Large-signal differential
voltage amplification
-13
to
-11
to
-13
to
11
13
11
-10.4
13
-10.3
to
to
13.2
12
13.2
11
-13
-10.5
-10
Full range
-12 -13.5
25°C
-11
Full range
11
-10.5
-13
45
Va = ± 10 V, RL = 1 kO
25°C
Full range
3.5
38
Open-loop output impedance
10 = 0
Common-mode
rejection ratio
V'C = V,CR min,
RS = 500
Supply-voltage rejection ratio
VCC± = ±4Vto±18V,
RS = 500
(,",-VCC ±I ,",-Via)
VCC± = ±4Vto±18V,
Supply current
Va = 0,
RS = 500
ICC
12
5
2.5
Zo
kSVR
12.9
25°C
Full range
Va = ± 10 V, RL = 6000
CMRR
10.5
10
Va =±llV,RL = 2kO
Va = ±10V, RL = 2kO
Input capacitance
No load
25°C
nA
V
V
-10
V
-12 -13.5
-11
1.8
2
nA
10.4
12.9
25°C
ci
90
150
-11
to
Full range
RL = 2kO
15
150
25°C
RL = 6000
150
10.5
10
25°C
Full range
RL = 2kO
ftV
l'
10.3
VOM+
105
UNIT
0.2
RS = 500
RL = 6000
MAX
25
l'
Full range
Maximum positive peak
TVP
10
0.4
25°C
VICR
TlE2037AM
MIN
200
Full range
input offset voltage
',0
TAt
= ± 15 V (unless otherwise noted)
TlE2037M
TVP MAX
MIN
100
20
10
3.5
45
8
38
V/ftV
2.2
5
19
19
25°C
8
8
pF
25°C
50
50
0
25°C
Full range
100
25°C
94
Full range
90
131
117
96
131
dB
113
144
110
144
dB
25°C
Full range
105
3.8
5.3
5.6
3.8
4.7
5
mA
'On products compliant to Mll-STD-883, Class 8, thiS parameter IS not production tested.
tFull range is -55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TEXAS ~
INsrRUMENTS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
2-1023
TLE2037M, TLE2037AM
EXCALIBUR LOW-NOISE HIGH'-SPEED PRECISION
DECOMPENSATED OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature, Vcc±
PARAMETER
SR
Vn
Slew rate
In
THD
input noise voltage
Equivalent input noise
current
Total harmonic distortion
Maximum output-swing
¢m
2SoC
Full range
4.4-
RS = 1000, 1 = 10 Hz
Gain-bandwidth product
BOM
RL = 2kO,
AVD = S,
CL = 100 pF, See Figure 1
MIN
6-
RS = 1000, 1 = 1 kHz
Peak-to-peak equivalent
VN(PP)
TAt
Equivalent input noise
bandwidth
Phase margin
TYP
7.S
MAX
2SoC
S-
3.3
4.S'
2.S
3.S'
SO
2S0'
SO
130'
4'
1.S
4-
0.6'
0.4
0.6'
Vo = ±10V, AVD = S,
See Note S
2SoC
<0.002%
RL = 2kO
RL = 2kO,
CL = 100 pF
2SoC
SO
76
SO
kHz
SO
SO
Soo
'On products compliant to MIL-STD-SS3, Class B, this parameter IS not production tested.
tFull range is - 55°C to 12SoC.
NOTE S: Measured distortion 01 the source used in the analysis was 0.002%.
PARAMETER MEASUREMENT INFORMATION
10 kO
Vo
1000
NOTE A: CL includes lixture capacitance.
Figure 1. Slew Rate Test Circuit
Figure 2. Noise Voltage Test Circuit
TEXAS .~
INSTRUMENlS
2-1024
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
pAl..fHz
MHz
Soo
4kO
nV
76
2SoC
>-"*_--..- Vo
nV/..fHz
<0.002%
2SoC
4kO
UNIT
V/l1s
4.S'
1.S
0.4
RL = 2kO,
MAX
2.S
2SoC
CL = 100pF
TYP
7.S
3.3
1 = 10 Hz
1 = 1 kHz
1 = 100 kHz,
MIN
64.4-
2SoC
1 = 0.1 Hzt010Hz
TlE2037AM
TlE2037M
TEST CONDITIONS
voltage (see Figure 2)
= ±15 V
TlE2037, TlE2037A
EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION
DECOMPENSATED OPERATIONAL AMPLIFIERS
PARAMETER MEASUREMENT INFORMATION
typical values
Typical values as presented in this data sheet represent the median (50% point) of device parametric
performance.
initial estimates of parameter distributions
In the on-going program of improving data sheets and supplying more information to our customer, Texas
Instruments has added an estimate of not only the "typical" values but also the spread around these values.
These are in the form of distribution bars that show the 95% (upper) points and the 5% (lower) points from
our characterization of the initial wafer lots of this new device type (see Figure 3). The distribution bars are
shown at the points where data was actually collected. The 95% and 5% points are used instead of ±3 sigma
since some of the distributions are not true Gaussian distributions.
The number of units tested and the number of different wafer lots
distribution bars are shown. As noted in Figure 3, there were a total
case, there is a very good estimate for the within-lot variability and a
variability. This will always be the case on newly released products,
from a few wafer lots.
used are on all of the graphs where
of 835 units from 2 wafer lots. In this
possibly poor estimate of the lot-to-lot
since there will only be data available
The distribution bars are not intended to replace the minimum and maximum limits in the electrical tables.
Each distribution bar represents 90% of the total units tested at a specific temperature. And, while 10% of
the units tested fell outside any given distribution bar, this should not be interpreted to mean that the same
individual devices fell outside every distribution bar.
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
5
vcc± = ±15V
I
Vo = 0
«
E
C
f!
5
()
4.5
No Load
I
Sample Size = 835 Units
./
4
VV
UJ
I
3
V
V
From 2 Wafer Lots
>a.
g. 3.5
~
.k'"
V .,
i'-
95% point on the distribution bar
(5% of the devices fell above this point.)
90% of thtl devices were within the upper
and lower points on the distribution bar.
5% point on the distribution bar
(5% of the devices fell below this point.)
V
V
1'1
2.5
-75 -50 -25 0
25 50 75 100 125 150
T A - Free-Air Temperature - ·c
Figure 3. Sample Graph with Distribution Bars
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-1025
TlE2037, TlE2037A
EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION
DECOMPENSATED OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
table of graphs
FIGURE
Input offset voltage
Distribution
Input offset voltage change
vs
110
Input offset current
vs
Temperature
lIB
Input bias current
vs
Common-mode input voltage
vs
Temperature
Differential input voltage
VIO
l!.VIO
II
VO(PP)
YOM
AVO
Time after power on
Input current
vs
Maximum peak-to-peak output voltage
vs
Frequency
vs
Load resistance
Maximum peak output voltage
vs
Temperature
vs
Supply voltage
Large-signal differential
vs
Load resistance
voltage amplification
vs
Frequency
vs
Temperature
Zo
CMRR
Output impedance
vs
Frequency
Common-mode rejection ratio
vs
Frequency
kSVR
Supply voltage rejection ratio
vs
Frequency
vs
Supply voltage
vs
Time
lOS
ICC
Short-circuit output current
Supply current
-"
Vn
Temperature
vs
Supply voltage
vs
Temperature
Small-signal
Pulse response
--
vs
Large-signal
Equivalent input noise voltage
vs
Noise voltage (referred to input)
0.1 to 10 Hz
Gain-bandwidth product
vs
Frequency
Supply voltage
vs
Load capacitance
SR
Slew rate
vs
Temperature
vs
Supply voltage
q>m
Phase margin
vs
Load capacitance
vs
Temperature
vs
Frequency
q,
Phase shift
TEXAS ~
INSTRUMENTS
2-1026
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
4
5,6
7
8
9
10
11
12,13
14,15
16
18
17,19
20
21
22
23
24, 25
26,27
28, 29
30
31
32
33
34
35
36
37
38
39
40
41
17,19
TLE2037, TLE2037A
EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION
DECOMPENSATED OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
TLE2037
INPUT OFFSET VOLTAGE CHANGE
DISTRIBUTION OF
INPUT OFFSET VOLTAGE
TIME AFTER POWER ON
vs
12r----r----~---,-----r----r---_,
1568 Amplifiers
=
VCC±
±15 V t---t~i--t--t--t----t
TA = 25·C
0 Package --+---E
14
'if.
I
>=.
12
10~--~~~_r--_4----+---~--_4
.,!:!
E
Ii
E
I
=
VIO - Input Offset Voltage - J.lV
.,
= ±15 V
TA = 25·C
2 \I---+---t----IO Package -+1--1
Sample Size
50 Units
From 2 Wafer Lots
S
i--
o
180
-75 -50 -25 0
25
50
75 100 125
TA - Free-Air Temperature - ·C
Figure 6
150
Figure 7
toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-1027
TLE2037, TLE2037A
EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION
DECOMPENSATED OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
INPUT BIAS CURRENT
INPUT BIAS CURRENT
vs
vs
COMMON-MODE INPUT VOLTAGE
FREE-AIR TEMPERATURE
40
35
oct
c
60
=
VCC±
±15 V
TA
25°C
=
oct
c
30
I
E
~
25
"
/
U
..
iii
20
c.
.5
'S
15
,g!
10
III
V
E
~
30
.
III
20
iii
'Sc.
10
"
/
-8
-12
,g!
-4
o
4
8
.\
0
Figure 8
Figure 9
INPUT CURRENT
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE
vs
vs
DIFFERENTIAL INPUT VOLTAGE
FREQUENCY
VCC±
= ±lS V
t
g
=0
= 2SOC
30
=
\
25
=
VCC±
±15 V
RL
2 kQ
'[
~
0.4
-
0.2
!
- -
-20
-75 -50 -25 0
25
50
75 100 125 150
TA - Free-Air Temperature - °C
12
>
0.6
~
.5
VIC - Common-Mode Input Voltage - V
VIC
TA
.... 1---.
=
-10
o
0.8
40
U
./"
L
5
=
I
./
=
VCC±
±15 V
VIC
0
I
Sample Size
836 Units
From 2 Wafer Lots r---
50
8
0
'S
o
~
J
r
o
15
Ii
10
Z
~
'[ -0.2
.5
.!:. -0.4
20
..::eE
';(
-0.6
-0.8
\1
TA
1\
= -Ssoc
S
~=:=
6:'
-1.2
-0.6
o
0.6
1.2
VID - Differential Input Voltage - V
1.8
~
= 12SOC
\~
Q.
-1
-1.8
TA
0
10 k
Figure 10
100 k
1M
10 M
f - Frequency - Hz
Figure 11
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS . "
2-1028
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
100M
TLE2037, TLE2037A
EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION
DECOMPENSATED OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
MAXIMUM NEGATIVE PEAK
OUTPUT VOLTAGE
MAXIMUM POSITIVE PEAK
OUTPUT VOLTAGE
>
vs
vs
LOAD RESISTANCE
LOAD RESISTANCE
~
14
.
G>
'"
~
I
>
'5
5'
'"
10
8
6
4
/
:;
c.
~ -10
II
o
1/
as
~ -12
I/,I-12
-14
....as
..
..
z'"
a..
/
V
/
-8
V
~
as
E
'E"
'M
-6
/
-4
as
2
o
:::e
Vcc± = ±15V
TA = 2S·C
II
100
1k
RL - Load Resistance -
10 k
~
...
vs
vs
FREE-AIR TEMPERATURE
FREE-AIR TEMPERATURE
=
~
13
/
Y...
V
V
..'"
1,./
I
.~ 13.2
'=
10k
n
MAXIMUM NEGATIVE PEAK
OUTPUT VOLTAGE
~
:::e
JJ
1k
RL - Load Resistance -
100
MAXIMUM POSITIVE PEAK
OUTPUT VOLTAGE
13.3
E 13.1
'"
E
=
Figure 13
>
=
o
=
VCC±
±lSV
TA
2S·C
Figure 12
Vcc±
±15 V
.1
RL
2 kn
S'"
'0 13.4 Sample Size = 832 Units
>
From 2 Wafer Lots
[
"
:::e
0
>
n
> 13.5
I
-2
I
.A
V
-13
S
'0
:: -13.2
V~
a.
'5
o
81 -13.4
...
~
1-"
..
>
';
1- 13.6
E
'E"
'M
:;!
+
I
l...r
a..
V
Vcc± = ±lSV
J.
RL = 2 kn
Sample Size = 831 Units
From 2 Wafer Lots
-13.8
~
1'\~
1'1~
I
:::e
:::e
~ 12.9
-75 -50 -25 0
25
50 75 100 125 150
T A - Free-Air Temperature - ·C
~
,
T
-14
-75 -50 -25 0
25
50 75 100 125 150
T A - Free·Alr Temperature - ·C
Figure 14
Figure 15
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS . "
- INSTRUMENlS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
2-1029
TLE2037, TLE2037A
EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION
DECOMPENSATED OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
~
vs
vs
SUPPLY VOLTAGE
FREQUENCY
160
50
TA = 25·C
:>
"I
RL = 2kn
.2
1U
u
5:
40
E
30
iiu
..
>
~
E 100
..
RL = 600 Q
o
4
8
12
16
20
IVcc± I - Supply Voltage - V
vs
vs
FREQUENCY
30
/
'I
I---
"
~
20
:eQ.
15
l!
'0
10
iii
..
5
:t:
OJ
0
E
100 M
100·
I\~
~
I
I
c
~
C
o
150·
-5
10 k
1
Figure 18
,,
~
~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS. TE.XAS 75265
.... ~
\/
10
f - Frequency - MHz
4
Figure 19
TEXAS
175·
i"\
VCC± = ±15 V
RL = 2 kn
CL = 100 pF
TA= 25°C
-10
400
1k
4k
RL - Load Resistance - Q
1\
\~
is
10
125·
1\\
>
.~
2-1030
250·
. \Phase ShIft
..
>
iii
is
10
C
>
20
;::
~
AVO
Q.
>
60
=
Vcc± = ±15V
~
I
C
0
c:
'1;
'a
50
c
E
...
15
40
C
I
C
~
~k.Q
V
iVV
~
a.
~ = 2k.Q
1 1.---
V
>
..
'0
V~
01
~
...
()
«
Oi
10
..
()
0;:
.E
'5
a.
'5
i---
0
I
~ -10
I I
-100~--~--~--~--~--~--~--~
30
-75 -50 -25 0
25 50 75 100 125 150
TA - Free-Air Temperature - ·C
10
'0
I
0
120
~
a:
c 100
.!!
..
a:
..
U
'ii"
80
0
:E
C
60
0
E
E
0
10 M 100 M
SUPPLY VOLTAGE REJECTION RATIO
vs
vs
FREQUENCY
FREQUENCY
140
=
VCC±
±15V
TA 25·C _
,
=
III
'0
I
120
0
" ""'
:E
0
100
1k
~
~
c 100
a:
"'
20
10
1M
COMMON-MODE REJECTION RATIO
40
o
100 k
Figure 21
0
a:
a:
10 k
Figure 20
"
'0
1k
f - Frequency - Hz
140
III
100
0
..
a:
..
';;
80
S
'0
'"
60
7i
""' "'
" "-
10 k
100 k
1M
"\~
"\~kSVR"\ ~
>
kSVR)\::
>-
is.
a.
::I
40
I
a: 20
>
1/1
~
10 M 100 M
...
o
10
~
~~
~~
1/1
\
= ±15 V
= 25·C _
VCC±
TA
100
1k
10 k
100 k
1M
f - Frequency - Hz
f - Frequency - Hz
Figure 22
Figure 23
10 M 100 M
tData at high and .Iow temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
"I
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
2-1031
TlE2037, TlE2037A
EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION
DECOMPENSATED OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
SHORT-CIRCUIT OUTPUT CURRENT
SHORT-CIRCUIT OUTPUT CURRENT
vs
vs
SUPPLY VOLTAGE
SUPPLY VOLTAGE
-42
44
= 100 mV
Vo = 0
TA = 2SoC-
= -100mV
=0
TA = 25°C
VID
;;
./
4
>a. 3.5
:>
il.
til
I
()
()
.9
.9
4
6
8
10
12
14
16
18
20
22
= 836 Units
From 2 Wafer Lots
()
2
3
150
I
Vo
0
No Load
Sample Size
E
= 125·C
= 25·C
I I I
TA = -55·C
~
;;
4.5
125
= ±15V
=
E
2
25
TA - Free-Air Temperature - ·C
oCt
o
o
0
T A - Free-Air Temperature - ·C
5
til
I
"
0
til
=
>a.
r----
.s::
"i'--
75
34
Vo
0
No Load
()
I'......
IV
:;
6
E
--...
//
=
Vcc±
±15V
VID
-100 mV
Vo
0 _
P Package
=
=
oCt
()
:;
I
=
Vcc±
±15V
VID
100 mV
Vo
0 P Package
V
/
V
/'
V
V
VI
2.5
-75 -50 -25
0
25
50
75
100
iVcc±l- Supply Voltage - V
TA - Free-Air Temperature - ·C
Figure 30
Figure 31
125
150
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSfRUMENTS
POST OFFICE BOX 655303' DALLAS. TeXAS 75265
2--1033
TLE2037, TLE2037A
EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION
DECOMPENSATED OPERATIONAL AMPLIfiERS
TYPICAL
CHARACTERISTI~S
LARGE-SIGNAL
PULSE RESPONSE
SMALL-SIGNAL
PULSE RESPONSE
15
100
VCC± = ±15 V
>
A
50
E
I
..
'"
S
"0
>
:;
Co
:;
0
1/
0
I
0
> -50
-100
6
4
..
'"
S
/~
\
\
"0
>
;;
Co
;;
0
/
/
0
I
-5
0
>
'-'
-10
1\
\
-15
100
200
300
400
0
4
2
6
8
t - Time - ns
I - Time - I1S
Figure 32
Figure 33
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
NOISE VOLTAGE
(REFERRED TO INPUT)
OVER A 10-SECOND INTERVAL
\
10
50
\
\
\
8
\\
vcc± = ±15 V
AVD = 5
RL = 2 kQ
CL = 100pF
TA = 25°C
o
10
>
AVD = 5
10 RL = 2 kQ
CL = 100 pF
TA = 25°C
5
See FigUrej
VCC± = ±15 V
RS = 100 Q
TA = 25°C
See Figure 2
I
VCC± = ±15V
f= 0.ltol0Hz
40
30 TA = 25°C
1
Sample Size = 100 Units
From 2 Wafer Lots
-
>c
20
I
10
.
s'"
"0
0
.
-10
Z
-20
>
to
'0
i'-
-30
2
-40
o
1
-50
10
100
1k
f - Frequency - Hz
10 k
100 k
0
4
6
t - Time - s
Figure 34
Figure 35
TEXAS ~
2-1034
2
INSTRUMENlS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
8
10
TlE2037, TlE2037A
EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION
DECOMPENSATED OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
GAIN-BANDWITH PRODUCT
vs
SUPPLY VOLTAGE
GAIN-BANDWIDTH PRODUCT
vs
LOAD CAPACITANCE
78
78
= 100 kHz
RL = 2 kQ
CL = 100 pF
n TA = 25·C
f
N
:x::
::;:
ti
::s
..c::
76
-6
'~
"0
s:::
as
ttl
C
';
74
/
/
75
/'
./
::s
-
"0
2
0..
=
o
2
4
:;;
~
iii
6
s:::
as
t--."
'" "
ttl
C
a;
75
8
10
12
14
16
18
20
74
100
22
........
r---r--
1000
10000
IVcc± I - Supply Voltage - V
CL - Load Capacitance - pF
Figure 36
Figure 37
SLEW RATE
vs
FREE-AIR TEMPERATURE
PHASE MARGIN
vs
SUPPLY VOLTAGE
52·
=
=
=
=
Vcc±
±15V
AVO
5
RL
2 kQ
CL
100 pF
See Figure 1
8
7
r--.
"0
~
c
V~C~ ~I ~~IV
TA
= 2S"C
8
~
..
~
'0
6
.;
4
........1-"
-
_I-'
>
:;
o
I
if
~
2
o
10
100
1k
10 k
RL - Load Resistance - Q
A variety of available package options includes small-outline and chip-carrier versions for high-density system
applications.
AVAILABLE OPTIONS
PACKAGE
SMALL
OUTUNE
(D)
TA
VIO max
AT 2S"C
O°C
SOO flV
to
1.S flV
TLE2061ACD
TLE2061CD
--
70°C
3mV
-40°C
SOO flV
to
8SoC
1.S flV
TLE2061AID
3mV
TLE20611D
-SsoC
SOOflV
to
12SoC
l.S flV
TLE2061AMD
3mV
TLE2061MD
---
CHIP
CARRIER
(FK)
CERAMIC
DIP
(JG)
--
--
--
------
--------
TLE2061AMFK
TLE2061AMJG
TLE2061AMP
TLE2061MFK
TLE2061MJG
TLE2061MP
SSOP
(DB)
TLE2061 CDBLE
-------
--
PLASTIC
DIP
(P)
-TLE2061ACP
TLE2061CP
--
TSSOP
(PW)
CHIP
FORM
(V)
---
---
TLE2061CPWLE TLE2061Y
--
--
TLE2061AIP
--
--
TLE20611P
--
--
----
----
--
D packages are available taped and reeled. Add "R" suffix to device type, (e.g., TLE2061 ACDR).The DB and PW packages are only available leftend taped and reeled. Chips are tested at 2SoC.
PRODUCTION DATA information Is curl'9nt as of publication date. Products
conform to specifications per the term. of Tual Instruments standard
warranty. Production proc81Sing does not necessarily include tasting 01 all
parameters.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
Copyright © 1991. Texas Instruments Incorporated
2-1039
TlE2061, TlE2061A, TlE2061B, TlE2061Y
EXCALIBUR JFET-INPUT HIGH OUTPUT-DRIVE
IlPOWER OPERATIONAL AMPLIFIERS
description (continued)
The e-suffix devices are characterized for operation from ooe to 70 oe. The I-suffix devices are characterized
for operation from -40 oe to 85°e. The M-suffIx devices are characterized for operation over the full military
temperature range 01 -55°e to 125°e.
US
0, DB, JG, P, or PW PACKAGE
FK PACKAGE
(TOP VIEW)
(TOP VIEW)
OFFSETN1
ININ +
VCC _
2
3
7
6
4
5
Z
NC
VCC+
OUT
OFFSET N2
I-
w
en
lL
OlLOOO
zOzzz
3
NC
INNC
IN+
NC
2
1 20 19
4
18
NC
S
6
17
7
15
VCC+
NC
OUT
NC
16
14
8
9 1011 1213
0
Z
IONO
OZ Z Z
I-
0
>
W
en
lL
lL
NC - No internal connection
0
equivalent schematic
ACTUAL DEVICE
COMPONENT COUNT
Capacitors
3
Diodes
9
Resistors
Transistors
42
-+__--,
IN+ _ _ _
IN-
+-ICC
RL = 10 kn
VO=Oto2V,
RL= 100n
Vo = Oto-2V,
RL = 100 n
Input capacitance
Supply-voltage rejection ratio (!!,vCC±1 !'>VIO)
---
VIC = VICR min
VCC± = ±5Vto±20V,
RS = 50n
3.1
Vo = 0,
No load
-3.7
Full range
-3.3
25°C
Full range
-2.5
-2
-2.7
25°C
15
80
Full range
2
-3.9
25°C
0.75
45
Full range
25°C
0.5
0.5
3
Full range
0.25
25°C
10-~
25°C
4
V
VlmV
n
pF
280
25°C
Full range
65
65
82
25°C
75
93
Full range
75
280
Full range
Full range
operating temperature range
V
2
25°C
25°C
Supply current
Supply current change over
2.5
25°C
10 = 0
RS = 50 n,
CMRR Common-mode rejection ratio
f---
Vo = ±2.8V,
---
r'
r-L--
25°C
Full range
RL = 10kQ
AVD
3.5
3.3
3.7
Full range
n
dB
dB
325
350
29
flA
flA
tFull range IS O°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 - DALLAS, TEXAS 75265
2-1043
TlE2061C, TlE2061AC, TlE2061BC
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
flPOWER OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature, vee ±
TEST CONDITIONS
PARAMETER
SR
Slew rate at unity gain
(see Figure 1)
Equivalent input noise voltage
Vn
(see Figure 2)
Peak-to-peak equivalent input
VN(PP)
noise voltage
= 100 pF
59
100
25°C
43
60
25°C
1.1
f = 0.1 Hz to 10 Hz
25°C
1
25°C
0.025%
CL = 100pF
25°C
1.8
= 100 pF
25°C
1.3
f = 10 kHz,
RL = 10kil
Unity-gain bandwidth
RL = 10 kn,
(see Figure 3)
RL
= 100 n,
CL
0.1%
25°C
5
0.01%
25°C
10
Avo = 1,
RL = 10kn
25°C
140
Phase margin at unity gain
RL = 10 kil,
CL = 100pF
25°C
58°
(see Figure 3)
RL = 100n,
CL = 100pF
25°C
75°
tFull range IS O°C to 70°C.
TEXAS ~
2-1044
INSTRUMENTS
POST OFFICE BOX 655303' OALLAS, TEXAS 75265
UNIT
V/JJ.s
25°C
f = 1kHz
bandwidth
MAX
RS = 100n
AVO = 2,
VO(PP) = 2V,
¢m
3.4
RS = 100n
Equivalent input noise current
Maximum-output-swing
TYP
2.2
2.1
f = 10 Hz,
f = 1 kHz,
Total harmonic distortion
BaM
MIN
CL
In
Settling time
TA
25°C
Full range
RL = 10 kn,
THD
B1
= ±5 V
nV/%
JJ.V
fA/%
MHz
JJ.S
kHz
TlE2061C, TlE2061AC, TlE2061BC
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J.1POWER OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, vee ±
PARAMETER
TEST CONDITIONS
TLE2061C
VIO
Input offset voltage
Input offset current
liB
Input bias current
MAX
0.6
3
3.9
RS = 50n
0.3
UNIT
mV
0.5
1
Full range
25°C
~VloC
6
0.04
25°C
~Vlmo
2
Full range
pA
1
25°C
4
Full range
Common-mode input voltage range
1.5
2.5
Full range
25°C
VICR
TYP
0.5
25°C
Input offset voltage long-term drift (see Note 4)
110
MIN
Full range
VIC = 0,
Temperature coefficient of input offset voltage
TA
25°C
Full range
25°C
TLE2061AC
TLE2061BC
"VIO
=± 15 V (unless otherwise noted)
pA
3
-11
to
-12
13
16
nA
to
nA
V
-11
Full range
to
V
13
RL = 10 kn
VOM+ Maximum positive peak output voltage swing
RL = 600n
13.7
25°C
12.5
13.2
12
-13.2 -13.7
-13
Full range
25°C
-12.5
-13
RL = 600n
Full range
Vo = ±10V,
RL = 10 kn
Vo = Oto 8 V,
RL = 600n
Vo = Oto-8V,
RL = 600n
30
Full range
20
25°C
25
Full range
10
25°C
3
Full range
1
230
100
Input resistance
25°C
10·~
Input capacitance
25°C
4
Zo
Open-loop output impedance
kSVR
ICC
Supply-voltage rejection ratio (liVCC±1 liVIO)
VIC = VICR min
VCC± = ±5Vto±15V,
RS = 50n
Vo = 0,
No load
72
70
90
25°C
75
93
Full range
75
290
Full range
Full range
operating temperature range
n
pF
280
25°C
Full range
25°C
Supply current
Su pply current change over
lilCC
25°C
RS = 50n,
V/mV
25
'i
10 = 0
V
-12
25°C
ci
CMRR Common-mode rejection ratio
V
25°C
RL=10kn
Large-signal differential voltage amplification
13.2
13
Full range
VOM- Maximum negative peak output voltage swing
AVD
25°C
Full range
n
dB
dB
350
375
34
~
~
tFull range IS O°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
2-1045
TLE2061C, TLE2061AC, TLE2061BC
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J.1POWER OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature, Vcc±
PARAMETER
SR
Vn
RL
Equivalent input noise voltage
f
(see Figure 2)
f
= 10 Hz,
= 1 kHz,
f
= 0.1
Peak-to-peak equivalent input
VN(PP)
noise voltage
In
Equivalent input noise current
THO
Total harmonic distortion
Unity-gain bandwidth
Bl
(see Figure 3)
Settling time
= 10 kn,
tPm
bandwidth
MIN
TYP
2.6
2.5
3.4
CL
= 100 pF
RS
= loon
= loon
RS
Hz to 10 Hz
= 1 kHz
AVO = 2,
VO(PP) = 2V,
RL = 10kn,
RL = 600n,
f
f = 10 kHz,
RL = 10 kn
CL
CL
= 100pF
= 100 pF
0.1%
0.01%
Maximum-output-swing
BaM
TA
25°C
Full range
TEST CONDITIONS
Slew rate at unity gain
(see Figure 1)
AVO
Phase margin at unity gain
RL
(see Figure 3)
RL
= 1,
= 10 kn,
= 600n,
RL
=
CL
= 100 pF
= 100pF
CL
10kn
tFull range IS O°C to 70°C.
TEXAS ~
INSTRUMENTS
2-1046
= ± 15 V
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
MAX
UNIT
V/v.s
25°C
70
100
25°C
40
60
25°C
1.1
v.V
25°C
1.1
fAl-JHz
25°C
0.025%
25°C
2
25°C
1.5
25°C
5
25°C
10
25°C
40
25°C
60°
25°C
70°
nV/-JHz
MHz
v. s
kHz
TlE2061C, TlE2061AC, TlE2061BC
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
JlPOWER OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, vee ± =
PARAMETER
TEST CONDITIONS
TLE20S1C
VIO
Input offset voltage
TLE20S1AC
liB
MAX
O.S
3
Input offset current
Input bias current
1.S
2.5
0.3
mV
0.5
1
Full range
25°C
6
J.l.V/oC
0.04
J.l.V/mo
pA
nA
pA
25°C
Full range
3
25°C
5
1
Full range
Common-mode input voltage range
UNIT
3.9
Full range
25°C
VICR
TYP
O.S
25°C
RS = 50n
Input offset voltage long-term drift (see Note 4)
110
MIN
Full range
VIC = 0,
Temperature coefficient of input offset voltage
TA
25°C
Full range
25°C
TLE20S1BC
aVIO
± 20 V (unless otherwise noted)
3
-15
to
-17
1S.5
21
to
nA
V
-15
Full range
to
V
1S.5
25°C
RL=10kQ
Full range
VOM+ Maximum positive peak output voltage swing
RL = soon
VOM- Maximum negative peak output voltage swing
RL = SOO n
AVD
Large-signal differential voltage amplification
Vo = ±15V,
RL = 10 kn
Vo = 0 to 10 V,
RL = SOO n
VO=Oto-10V, RL = soon
18.7
18
25°C
15
Full range
12
25°C
RL = 10kQ
18.2
-18.2
Full range
-18
25°C
-15
Full range
-12
-18.7
25°C
30
20
25°C
25
80
Full range
10
3
20
280
Input resistance
25°C
10-"
c'
Input capacitance
25°C
4
Zo
Open-loop output impedance
kSVR
Supply-voltage rejection ratio (/1V CC± I /1 V 10)
ICC
Supply current
Supply current change over
10 = 0
25°C
RS = son,
25°C
75
Full range
70
25°C
75
Full range
70
VIC = VICR min
VCC± = ±5Vto±20V,
RS = 50n
25°C
Vo = 0,
No load
Full range
V/mV
1
r'
CMRR Common-mode rejection ratio
V
-18
Full range
25°C
Full range
V
18.1
n
pF
280
n
91
dB
93
300
dB
375
400
JJ.A
Full range
18
JJ.A
operating temperature range
tFull range IS O°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
/1ICC
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-1047
TLE2061C, TLE2061AC, TLE2061BC
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
JLPOWER OPERATIONAL AMPLlFJERS
operating characteristics at specified free-air temperature, Vcc±
PARAMETER
SR
Vn
VN(PP)
Slew rate at unity gain
TYP
2.8
3.4
Full range
2.5
UNIT
V/Jls
CL = 100pF
RS = loon
25°C
75
100
(see Figure 2)
Peak-to-peak equivalent input
f = 1 kHz,
RS = lOOn
25°C
40
60
f = 0.1 Hz to 10Hz
25°C
1.1
JlV
f = 1 kHz
25°C
1.3
fA/{Hz
f = 10 kHz,
RL = 10kil
25°C
0.025%
Cl = 100pF
25°C
2.1
CL = 100pF
25°C
1.6
25°C
5
25°C
10
noise voltage
Total harmonic distortion
Unity-gain bandwidth
(see Figure 3)
Settling time
AVO = 2,
VO(PP) = 2V,
RL = 10 kil,
RL = 600n,
0.1%
0.01%
Maximum-output-swing
bandwidth
AVO
Phase margin at unity gain
RL = 10 kn,
(see Figure 3)
RL
= 1,
= 600n,
RL = 10 kn
25°C
28
CL = 100 pF
CL = 100pF
25°C
60°
25°C
70°
tFull range IS O°C to 70°C.
TEXAS ~
INSTRUMENTS
2-1048
MAX
RL = 10 kn,
THO
m
Phase margin at unity gain (see Figure 3)
3.4
RS= 100n
40
RL = 600 n,
0.1%
CL=100pF
1.5
RL= 10 kQ
10
40
TEXAS
nV/,fHz"
1.1
RL = 10 kQ
CL = 100 pF
0.025%
2
5
RL = 600 n,
V/flS
flV
VO(PPl =2V,
RL = 10 kQ,
CL = 100 pF
CL = 100 pF
UNIT
IA/,fHz"
1= 10 kHz,
AVD= 1,
RL = 10kn,
MAX
1.1
AVD = 2,
0.01%
BOM
TYP
2.6
70
1=1 Hz
Settling time
MIN
Rs= lOOn
1=0.1 Hz to 10 Hz
input noise voltage
Equivalent input noise current
TEST CONDITIONS
CL = 100 pF
MHz
fls
kHz
60 0
70°
~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-1061
TLE2061, TLE2061A, TLE2061B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-ORIVE
J.LPOWER OPERATIONAL AMPLIFIERS
PARAMETER MEASUREMENT INFORMATION
10 kQ
vo
CL
(see Note A)
VCCRS
RS
NOTE A: CL includes fixture capacitance,
Figure 1. Slew Rate Test Circuit
Figure 2. Noise Voltage Test Circuit
10kn
NOTE A: CL includes fixture capacitance,
Figure 3. Unity-Gain Bandwidth and Phase Margin Test Circuit
typical values
Typical values as presented in this data sheet represent the median (50% point) of device parametric
performance,
input bias and offset current
At the picoamp bias current level typical of the TLE2061, TLE2061 A, and TLE2061 B, accurate measurement
of the bias current becomes difficult Not only does this measurement require a picoammeter, but test socket
leakages can easily exceed the actual device bias currents. To accurately measure these small currents, Texas
I nstruments uses a two-step process. The socket leakage is measured using picoammeters with bias voltages
applied but with no device in the socket. The device is then inserted into the socket and a second test that
measures both the socket leakage and the device input bias current is performed. The two measurements
are then subtracted algebraically to determin~ the bias current of the device.
TEXAS ~
INsrRUMENTS
2-1062
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLE2061, TLE2061A, TLE2061B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J1POWER OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
table of graphs
FIGURE
VIO
Input offset voltage
lIB
Input bias current
vs
Temperature
110
Input offset current
vs
Temperature
VICR
Common-mode input voltage range limits
Temperature
Output current
VOM
Maximum peak output voltage swing
vs
vs
vs
Supply voltage
Frequency
VO(PP)
Distribution
vs
Maximum peak-to-peak output voltage
vs
Frequency
vs
Temperature
vs
Time
vs
Temperature
Output impedance
vs
Frequency
Common-mode rejection ratio
vs
Frequency
vs
Supply voltage
AVD
Differential voltage amplification
lOS
Short-circuit output current
Zo
CMRR
ICC
Supply current
vs Temperature
Small-signal
Pulse response
Vn
THD
81
¢m
vs
Common-mode voltage
Large-signal
Noise voltage (referred to input)
0.1 to 10 Hz
Equivalent input noise voltage
vs
vs
Frequency
vs
Supply voltage
Total harmonic distortion
Unity-gain bandwidth
Phase margin
Phase shift
Frequency
vs
Temperature
vs
Supply voltage
vs
Load capacitance
vs
Temperature
vs
Frequency
4
5
6
6
7
8,9
10, 11,12
13,14,15
16
17
18
19
20
21
22
23
24, 25
26, 27
28
29
30,31
32
33
34
35
36
16
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-1063
TLE2061, TLE2061A, TLE20618
EXCALIBUR JFET-INPUT HIGH.. OUTPUT-DRIVE
J.LPOWER OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
TLE2061
INPUT BIAS CURRENT
DISTRIBUTION OF
INPUT OFFSET VOLTAGE
COMMON-MODE INPUT VOLTAGE
vs
15
2
736 Amplifiers
=
'#.
I
~
5
Ci.
VIO
TA
=
VCC±
±15V
TA 25"C
PPackage
c(
c
10
'!
§
0
'0
.!!
CD
GI
:;
...
CI
8
a;
I
..
E
c
1.5
I
c(
J!
=0
= 25"C
.5
5
Vcc±
I
I
1!
CL
0.5
Vcc±
o
o '----'-'_""
-4
-3
-2 -1
0
2
VIO -Input Offset Voltage - mV
3
Figure 5
INPUT BIAS CURRENT
and INPUT OFFSET CURRENT
COMMON-MODE
INPUT VOLTAGE RANGE LIMITS
=
I
vs
vs
FREE-AIR TEMPERATURE
FREE-AIR TEMPERATURE
>
I
8,
!
S
~
1ii
...
.5
0
"0
C
-g
L
liB
102
./'
POSITIVE LIMIT
:;
./
3
;: 10
VCC+ + 1
~
0
iii
VCC+
~
"
:!! VCC- +4
/110
r!:
~
I
-
E
2-
..
"0
c 101
./'
<3I
./
VCC- +3
o
NEGATIVE LIMIT
-
->
1!
100
25
45
65
85
105
TA - Free-Air Temperature - ·c
125
Vcc- +2
-75
-50
Figure 6
-25
0
25
50
75
100
TA - Free-Air Temperature _·C
Figure 7
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
2-1064
20
=
'! 104
.
..
- 20 - 15 - 10 - 5
0
5
10
15
VIC - Common-Mode Input Voltage - V
4
Vcc±
±15V
VIC 0
...
I
= ±1~
Figure 4
105
c(
V
~
= ±20V,
TEXAS ""
INSIRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
125
TlE2061, TlE2061A, TlE2061B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J.1POWER OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
MAXIMUM POSITIVE PEAK
OUTPUT VOLTAGE
>
.,
~
;g
MAXIMUM NEGATIVE PEAK
OUTPUT VOLTAGE
vs
vs
OUTPUT CURRENT
OUTPUT CURRENT
20
--
TA = 25°C
18 -
vcc± = ±20V
16
'5
~
o
14
.:w:
12 _ VCC± = ±15V
~
10
'g
8
D..
4
+
::;;
2 _VCC±=±5V
~
0
>
'5
D..
'5
.,.
0
.:w:
E
E
=
'5
D..
'5 -14
o
.
"
-8
~
-6
'x
~
-2 _ vcc±
I
I
I
-20
-30
-40
-50
-60
~
0
o
=
±5V
I
I
I
5
10
15
~
20
25
30
35
40
10 - Output Current - mA
10 - Output Current - rnA
Figure 8
Figure 9
MAXIMUM PEAK OUTPUT VOLTAGE
MAXIMUM PEAK OUTPUT VOLTAGE
vs
vs
SUPPLY VOLTAGE
SUPPLY VOLTAGE
RL = 10kn
TA = 25°C
15
-4
::;;
-10
"-
-.......
E
o
= 25°C
-.......
±20V
~ -12 _ vcc± = ±15V
Y
10
../
5
./
./
./
~
VOM+
""
20
RL
>
I
15
0
10
.,
'"
~
TA
y
=600n
= 25°C
V
'5
So
5
.,.
0
. ./
::J
0
.:w:
0
./
VOM+
./
V
>
D..
::J
TA
vcc±
.:w:
20
.,
.\'!
'"
'0
-
Cl
::;;
I
"5
r-...
> -16
~
6
>
g' -18
'~ -10
E
::J
E
'xco
.,
D..
~
'::;
~ -20
./
D..
E
E
...........
-5
..........
'xco
...........
::;; -10
r-.....
I
::;;
0-15
o
4
6
8
10
I'-- ...........
12
14
VOM-
16
18
~
.............
I
::;;
........... r-..,VOM-
0-15
>
-20
20
o
2
4
6
8
10
12
14
16
l'
18
20
IVcc± I - Supply Voltage - V
IVcc± I - Supply Voltage - V
Figure
...........
::;; -10
~
2
.........
'xco
>
-20
...........
-5
::J
10
Figure
11
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-1065
TLE2061, TLE2061A, TLE2061B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J.1POWER OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE
MAXIMUM PEAK OUTPUT VOLTAGE
6
RL
TA
>
I
"
CI
4
vs
vs
SUPPLY VOLTAGE
FREQUENCY
= loon
=2SoC
>
:;
Co
:;
.."
2
~
L
V
l!
0
>
"
;g
E
E
"
';c
..
.
6
~os
0
,
-2
'"
E
"E
';c
4
::;:
2
Co
~
I
-4
£'
VOM-
o
2
4
6
8
1\
~
..
-
~
>
-6
\
a
~
::;:
::;:
0
8
:;
S-
""
Co
Vcc± = ±SV
RL = 10 kn
TA= 2SoC
CI
l!
0
""
10
'-.. I-
0..
10
~
0
10 k
100 k
1M
f - Frequency - Hz
IVcc± I - Supply Voltage - V
Figure
12
Figure 13
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE
>
vs
vs
FREQUENCY
>
30
Vcc± = ±lSV
RL = 10kn
TA = 2SOC
'"
l!
o
>
:;
Co
:;
o
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAG E
FREQUENCY
CI
2S
.
20
..
~
o
lS
§
10
""
~
o
~
E
';c
co
::;:
5
~
co
~
t-- f-
30
20
,~"
10
::;:
!'.
£'
1\
2S
15
..
vcc± = ±20V
RL = 10kn
TA = 2SOC
3S
~
E
\
40
"
E
;g
&.
:;
o
""
~
\
i'
0..
~
0
10 k
~
100 k
1M
f - Frequency - Hz
Figure
"'"
10M
100 k
1M
f - Frequency - Hz
14
Figure
TEXAS
2-1066
10M
~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
15
10M
TlE2061, TlE2061A, TlE2061B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
jJ.POWER OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION and PHASE SHIFT
..,III
120
..\ ~
I
c 100
.2
5
01:
=a
vs
FREQUENCY
FREE-AIR TEMPERATURE
pJASE
II>
CI
~HIFT
60
.'!
15
>
:i!
40
~
i5
20
~
I
C
vcc± = ±1SV
Rl = 10kn
Cl = 100pF
TA = 2S·C
0
>
140·6:
I
....
160'
180·
200·
10 k 100 k 1 M 10 M
f -Frequency - Hz
100
400
>
80·
..........
~
E
CI
>
i
I
c
>
-
~
"
~
Figure
C
f! 300
TA = 2SOC
~
c
II
0.001
10
80
.~
AVD= 1
I-
Vcc:t = :t20V
IX!
/
I
I
III
Av D = 10
a.
100
.,.
III
I
.
'll
FREQUENCY
"""
100
8c
vs
FREQUENCY
VCC:t = :t1SV
TA = 2S·C
c::
COMMON-MODE REJECTION RATIO
vs
~
260 1--.lt~-t---j--t--t--t---I--1
TA = -55OC
240
I
o
2
I
I
4
6
8 10 12 14 16
IVcc:t I - Supply Voltage - V
Figure
18
20
240 '----'"--'---'-----'----'--.......--'----'
-75 -50 -25
0
25
50
75 100 125
TA - Free-Air Temperature - ·C
22
.Figure
23
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ",
INSTRUMENTS
2-1068
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TlE2061, TlE2061A, TlE2061B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
f.lPOWER OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
100
100
>
E
'"
50
..
>
E
-
50
..
I
I
CI
.!!!
'0
>
'5
c.
CI
.!!!
~
0
'5
c.
'5
~
o
o
I
o
>
-50
-100
I
vcc± = ±5V
RL = 10kn
CL = 100pF
TA = 25°C
See Figure 1
V
-100
o
2
o
3
t - Time - JLs
Figure
Figure
24
15
10
3
>
>
.
I
2
CI
I
I
.!!!
'0
~
>
'5
'5
c.
'5
.e::I
I
0
I
0
0
I
5
VCC± = ±1SV
RL = 10k!}
CL = 100pF
TA = 2SoC
See Figure 1
CI
.!!!
0
0
I
0
VCC± = ±SV
RL = 10kn
>
o
-5
>
CL= 100pF
TA = 2SOC
See Figure 1
-1
-2
25
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
4
I
3
2
t - Time - JLs
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
..
-
VCC± = ±1SV
RL=10kn
CL = 100 pF
TA = 2SoC
See Figure 1
o
> -50
-10
-15
S
t - Time -
Figure
10
15
I
o
10
20
30
40
t - Time - JLs
JLS
26
Figure
TEXAS
27
"I
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-1069
TLE2061, TLE2061A, TlE2061B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
JlPOWER OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
NOISE VOLTAGE
(REFERRED TO INPUT)
OVER A 10-SECOND INTERVAL
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
100
~>
VCC± = ±lSV
f 0.1 1010Hz
=
c
I
0.51-+.-t-+---f--:ot-lt--+-t-----t----1;-t\-i
80
~
II)
S'"
g
II)
V~~±
=
1\
60
I. . . . . ~
!II
'0
z
r-
'S
!
=
±SV
RS = loon
TA 2SoC
See Figure 2
40
~
-0.5 1---t----1-+-+-+--+-1--I-I--I----1
~
.~
w
20
c
>
2
3
4
5
6
I-Time-s
Figure
7
8
9
10
f - Frequency - Hz
28
Figure
TOTAL H)!;RMONIC DISTORTION
0.3
TOTAL HARMONIC DISTORTION
vs
vs
FREQUENCY
FREQUENCY
0.6 r-TliTTTTl,"rr-T"'T'TT'Imr---r-n'TTTm--rTTrTTi'rl
AVO = 10
= IL'"
=
=
AvO
2
VO(PP)
2V
TA 25°C
60°
D.
I
l.
58°
54·~--~~~~--~--~--~--~--~
-75
-50
-25
0
25
50
75
100
125
T A - Free-Air Temperature - °C
Figure 36
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
APPLICATION INFORMATION
macromodel Information
Macromodel information provided was derived using PSpice™ Parts™ model generation software. The Boyle
macromodel (see Note 5) and subcircuit in Figure 37 were generated using the TLE2061 typical electrical and
operating characteristics at 25°C. Using this information, output simulations of the following key parameters
can be generated to a tolerance of 20% (in most cases):
••
••
•
•
Maximum positive output voltage swing
Maximum negative output voltage swing
Slew rate
Quiescent power dissipation
Input bias current
Open-loop voltage amplification
•••
••
•
Unity gain frequency
Common-mode rejection ratio
Phase margin
dc output resistance
ac output resistance
Short-circuit output current limit
NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers",IEEE Journal
of Solid-State Circuits, SC-9, 353 (1974).
Parts is a trademark of MicroSim Corporation.
PSpice is a trademark of MicroSim Corporation.
TEXAS'~
2-1072
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TLE2061, TLE2061A, TLE2061B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-ORIVE
IlPOWER OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
macromodel Information (continued)
99
din
. - - - . , . . . -.. 92
egnd
rp
vln
IN - -+--+-._-4+--'
+
IN+--~-~~-~--r-~
C1
rd1
vcc-
~~~~
___4~__~;--r-e~~~________________________5~
+
ve
OUT
.subekt TLE2061 1 2 3 4 5
e1
11 12 1.457E-12
e2
6 7 15.00E-12
de
5 53 dx
de
54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp
4 3 dx
egnd 99 0 po1y(2) (3,0) (4,0) 0 .5 .5
fb
7 99 po1y(5) vb ve ve vlp vln 0 4.357E6 -4E6 4E6 4E6 -4E6
ga
6 0 11 12 188.5E-6
gem
0 6 10 99 3.352E-9
iss
3 10 de 51.00E-6
hlim 90 0 vlim 1K
j1
11 2 10 jx
j2
12 1 10 jx
r2
6 9 100.0E3
rd1
4 11 5.305E3
rd2
4 12 5.305E3
ro1
8 5 280
ro2
7 99 280
rp
3 4 113.2E3
rss 10 99 3.922E6
vb
90deO
ve
3 53 de 2
ve
54 4 de 2
vlim 7 8 de 0
vlp 91 0 de 50
vln
0 92 de 50
.model dx D(Is=800.0E-18)
.model jx PJF(Is=2.000E-12 Beta=423E-6 Vto=-l)
. ends
Figure 37. Boyle Macromodel and Subcircuit
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-1073
TlE2061, TlE2061A, TlE2061B
EXCAlIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
JlPOWER OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
input characteristics
The TLE2061, TLE2061 A, and TLE2061 B are specified with a minimum and a maximum input voltage that,
if exceeded at either input, could cause the device to maHunction.
Because of the extremely high input impedance and resulting low bias current requirements, the TLE2061,
TLE2061A, and TLE2061B are well suited for low-level signal processing; however, leakage currents on
printed circuit boards and sockets can easily exceed bias current requirements and cause degradation in
system performance. It is a good practice to include guard rings around inputs (see Figure 38). These guards
should be driven from a low-impedance source at the same voltage level as the common-mode input.
Vo
Rl
Vo
R3
R4
WHERE R3
R4
= R2
Rl
Figure 38. Use Of Guard Rings
input offset voltage nulling
The TLE2061 series offers external null pins that can be used to further reduce the input offset voltage. The
circuit of Figure 39 can be connected as shown if the feature is desired. If external nulling is not needed, the
null pins may be left disconnected.
N2
..........'I/III,_VCC-
Figure 39. Input Offset Voltage Nulling
TEXAS
~
INSTRUMENTS
2-1074
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
TLE2062, TLE2062A, TLE2062B, TLE2062Y
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J.LPOWER DUAL OPERATIONAL AMPLIFIERS
03346, OCTOBER 1989 - REVISED NOVEMBER 1991
available features
•
Excellent Output Drive Capability
VO= ±2.5VMinatRL= 1000,
VCC± = ±5V
Vo = ± 12.5 V Min at RL = 600 0,
VCC± = ± 15 V
•
Low Supply Current ... 280 J.lA Typ
Per Amplifier
•
High Unity-Gain Bandwidth ... 2.1 MHz Typ
•
High Slew Rate ... 3.4 V/J.lS Typ
•
Macromodels Included
•
Wide Operating Supply Voltage Range
VCC± = ± 3.5 V to ± 20 V
•
High Open-Loop Gain ... 280 VlmV Typ
•
Low Offset Voltage ... 1 mV Max
•
Low Offset Voltage Drift With Time
0.04 (lV/mo Typ
•
Low Input Bias Current ... 5 pA Typ
description
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE SWING
vs
LOAD RESISTANCE
The TLE2062, TLE2062A, and TLE2062B are
JFET-input, low-power, precIsion dual
operational amplifiers manufactured using Texas
Instruments Excalibur process. These devices
combine outstanding output drive capability with
low power consumption, excellent dc precision,
and wide bandwidth.
10
>
v~C~
~~IV
8
Cl
c:
~.,
In addition to maintaining the traditional JFET
advantages of fast slew rates and low input bias
and offset currents, the Excalibur process offers
outstanding parametric stability over time and
temperature. This results in a "precision" device
remaining precise even with changes in
temperature and over years of use.
1=1
TA = 25°C
~
6
./
.....
--
(5
>
'5
S- 4
o"
f
2
0"
The TLE2062, TLE2062A, and TLE2062B are
ideal choices for any application requiring
excellent dc precision, high output drive, wide
bandwidth, and low power consumption.
>
o
10
100
1k
10 k
RL - Load Resistance - Q
AVAILABLE OPTIONS
PACKAGE
TA
VIOmax
AT 25°C
SMALL
OUTLINE
(0)
CHIP
CARRIER
(FK)
CERAMIC
DIP
(JG)
PLASTIC
DIP
(P)
O°C
1 mV
--
--
--
--
to
2mV
TLE2062ACD
--
--
TLE2062ACP
lO°C
- 40·C
4 mV
TLE2062CD
--
--
---
--
TLE2062CP
--
1 mV
--
to
2 mV
TLE2062AID
85°C
4 mV
---
--
TLE2062AIP
CHIP
FORM
(Y)
TLE2062Y
TLE20621P
- 55°C
1 mV
TLE20621D
--
--
--
--
to
2 mV
TLE2062AMD
TLE2062AMFK
TLE2062AMJG
TLE2062AMP
125°C
4 mV
TLE2062MD
TLE2062MFK
TLE2062MJG
TLE2062MP
D packages are available taped and reeled. Add "R" suffix to device type (e.g., TLE2062ACDR). Chips are tested
at 25°C.
PRODUCTION DATA information is current as of pUblication date. Products
conform to specifications per the terms of Texas Instruments standard
warranty. Production processing does not necessarily include testingolall
parameters.
TEXAS
~
Copyright © 1991 , Texas Instruments Incorporated
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-1075
TlE2062, TlE2062A, TlE2062B, TlE2062Y
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
IlPOWER DUAL OPERATIONAL AMPLIFIERS
descri ption (conti nued)
A variety of available package options includes smaH-outline and chip carrier versions for high-density system
applications.
The C-suffix devices are characterized for operation from O°C to 70°C. The I-suffix devices are characterized
for operation from -40°C to 85°C. The M-suffix devices are characterized for operation over the full military
temperature range of -55°C to 125°C.
u
D, JG, OR P PACKAGE
FK PACKAGE
(TOP VIEW)
(TOP VIEW)
10UT
1 IN 1 IN +
VCC _
+
f-
2
8
7
VCC+
20UT
3
6
21N-
4
5
21N +
=>
000
0
00
2~2>2
3
2
1 2019
NC
4
18
NC
11N-
5
17
20UT
NC
6
16
11N +
7
15
NC
21N -
NC
8
14
NC
9 1011 1213
0
2
10 + 0
0222
-N
0
>
NC - No internal connection
equivalent schematic (each channel)
ACTUAL DEVICE
COMPONENT COUNT
Transistors
42
Resistors
9
Diodes
3
Capacitors
2
IN+
Vcc+
----+----,
IN-
R7
600n
Component values are nominal.
Vcc-
~
TEXAS
INSTRUMENTS
2-1076
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TlE2062Y
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J.1POWER DUAL OPERATIONAL AMPLIFIERS
chip information
These chips, properly assembled, display characteristics similar to the TLE2062. Thermal compression or
ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive
epoxy or a gold-silicon preform.
VCC+(8)
BONDING PAD ASSIGNMENTS
IN+(3)i:k
IN-(2)
OUT (7)
-=
-=
-=
-=
-=
-=
-=-
OUT (1)
~.
+
-
IN+ (5)
IN- (6)
VCC- (4)
i
•
-
-=-=
-=-=
"+
-+
II><
CHIP THICKNESS:
15 TYPICAL
-
:::70
T
BONDING PADS:
4 X 4 MINIMUM
-=
TJmax=150°C
TOLERANCES
ARE ± 10%
ALL DIMENSIONS
AREIN MILS
68
~I
111111111111111111111111111111111111111111111111111111111111111111111
I"
PIN (4) INTERNALLY
CONNECTED TO
BACKSIDE OF CHIP
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
2-1077
TlE2062, TlE2062A, TlE2062B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J.1POWER DUAL OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vcc+ (see Note 1) .................................................... 22 V
Supply voltage, VCC- .............................................................. -22 V
Differential input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ±44 V
Input voltage, VI (any input) .......................................................... VCC±
Input current, II (each input) ......................................................... ±1 mA
Output current, 10 (each output) ..................................................... ±80 mA
Total current into VCC+ terminal ..................................................... 80 mA
Total current out of VCC- terminal .................................................... 80 mA
Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... unlimited
Continuous total dissipation ........................................ See Dissipation Rating Table
Operating free-air temperature range, T A: C-suffix ................................... O°C to 70°C
I-suffix ................................. -40°C to 85°C
M-suffix ................................ -55°C to 125°C
Storage temperature range ................................................... -65°C to 150°C
Case temperature for 60 seconds: FK package .......................................... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package ............... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package .................. 300°C
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC- .
2. Differential voltages are at the noninverting input with respect to the inverting input.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
D
TA,,2SoC
DERATING FACTOR
POWER RATING
725mW
ABOVETA = 25°C
5.8 mW/oC
TA=70°C
POWER RATING
464mW
TA = 85°C
POWER RATING
377mW
TA= 125°C
POWER RATING
145mW
FK
1375mW
11 mW/oC
880mW
715mW
275 mW
JG
p
1050mW
8.4 mW/oC
8 mW/oC
672mW
546mW
210mW
640 mW
520mW
200mW
1000mW
recommended operating conditions
C-SUFFIX
Supply voltage, VCC+
VCC+
Common-mode input voltage, VIC
VCC+
VCC+
Operating free-air temperature, TA
= ±5 V
= ± 15V
= ± 20 V
UNIT
MAX
MIN
MAX
MIN
MAX
± 3.5
± 20
± 3.5
± 20
± 3.5
± 20
V
- 1.6
-11
4
13
- 1.6
-11
4
13
-1.6
-11
4
13
V
-15
16.5
-15
16.5
-15
16.5
0
70
40
85
- 55
125
TEXAS ~
INSTRUMENTS
2-1078
M-SUFFIX
I-SUFFIX
MIN
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
°C
TLE2062C, TLE2062AC, TLE2062BC
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
JlPOWER DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Vcc+
-
Via
TYP
MAX
TLE2062C
1
5
TLE2062AC
25°C
Full range
0.9
25°C
0.7
TLE2062BC
eNIO
TAt
25°C
Full range
TEST CONDITIONS
Input offset voltage
=±s V (unless otherwise noted)
RS ; 50 Q
VIC; 0,
Temperature coefficient of input offset voltage
Input offset voltage long-term drift (see Note 4)
MIN
5.9
Full range
Input offset current
25°C
Full range
1
liB
Input bias current
25°C
Full range
3
RL;10kQ
25°C
Full range
RL; 100Q
25°C
Full range
VOM+ Maximum positive peak output voltage swing
25°C
RL;10kQ
VOM- Maximum negative peak output voltage swing
RL ; 100 Q
Large-signal differential voltage amplification
to
4
6
0.8
pA
nA
2
pA
nA
V
Va; ±2.8 V,
RL ; 10 kQ
Va; 0 to 2 V,
RL; 100Q
VO;Oto-2V,
RL; 100Q
3.1
2
-3.7
-3.9
15
2
-2.5
0.75
45
0.5
0.5
3
Full range
0.25
10; 0
25°C
RS ; 50Q,
25°C
65
VIC ; VICR min
VCC±;±5Vto±20V,
Full range
65
25°C
75
RS ; 50
Full range
75
25°C
Va; 0,
No load
V/mV
10 12
4
pF
560
Q
Q
82
dB
93
560
Full range
Full range
operating temperature range
V
80
25°C
Open-loop output impedance
V
-2.7
Full range
25°C
Zo
Supply current
3.7
2.5
25°C
25°C
Q
V
3.3
Full range
25°C
kSVR Supply-voltage rejection ratio (LlVCC±,,~VIO)
4
3.5
-2
Input capacitance
CMRR Common-mode rejection ratio
to
Full range
Input resistance
Supply current change over
-2
to
-3.3
ri
LlICC
- 1.6
Full range
25°C
ci
ICC
I'V/oC
I'V/mo
-1.6
Full range
AVD
3
6
0.04
25°C
Common-mode input voltage range
mV
3.9
110
VICR
4
4.9
Full range
25°C
UNIT
dB
620
635
26
f'A
f'A
tFull range is O°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA; 150°C extrapolated
to TA ; 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
2-1079
TlE2062C, TlE2062AC, TlE2062BC
EXCAlIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
JlPOWER DUAL OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature, Vcc±
SR
PARAMETER
Slew rate at unity gain
(see Figure 1)
Equivalent input noise voltage
Vn
(see Figure 2)
RS = 100n
25°C
59
100
= 1000
25°C
43
60
25°C
1.1
25°C
1
f
= 1 kHz
B1
(see Figure 3)
Settling time
Maximum-output-swing
BaM
4m
bandwidth
RS
Hz to 10Hz
3.4
f = 10 kHz,
25°C
0.025%
CL = 100pF
25°C
1.8
RL = 1000,
0.1%
0.01%
CL = 100 pF
25°C
1.3
25°C
25°C
10
AVO = 1,
RL = 10kO
25°C
140
CL = 100pF
25°C
58°
CL = 100 pF
25°C
75°
Phase margin at unity gain
RL
(see Figure 3)
RL
= 10 kO,
= 100O,
RL = 10 kQ
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
5
UNIT
VliJ.s
2.1
AVO = 2,
VO(PP) = 2V,
RL = 10 kO,
tFull range is O°C to 70 0 e.
2-1080
MAX
f = 10 Hz,
f = 1 kHz,
Equivalent input noise current
Unity-gain bandwidth
TYP
CL = 100 pF
= 0.1
Total harmonic distortion
MIN
2.2
RL = 10kO,
25°C
Full range
f
THO
TAt
TEST CONDITIONS
Peak-to-peak equivalent input
VN(PP) noise voltaae
In
= ±s V
nV/,[Hz
iJ.V
fA/,[Hz
MHz
iJ.S
kHz
TlE2062C, TlE2062AC, TlE2062BC
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
/J.POWER DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, V CC± = ±15 V (unless otherwise noted)
TEST CONDITIONS
TLE2062C
Via
Input offset voltage
liB
4
RS ; 50 n
Input offset current
0.5
Full range
mV
1
1.9
6
jlV/oC
25°C
0.04
ilV/ mo
25°C
2
Full range
Full range
4
Full range
25°C
Common-mode input voltage range
pA
1
25°C
Input bias current
2
2.9
25°C
VIC; 0,
UNIT
4.9
nA
pA
3
-11
VICR
MAX
0.9
Full range
Input offset voltage long-term drift (see Note 4)
110
TYP
0.8
25°C
TLE2062AC
Temperature coefficient of input offset voltage
MIN
Full range
TLE2062BC
aVIO
t
TA
25°C
nA
-12
to
to
13
16
V
-11
Full range
to
V
13
25°C
RL ; 10 k.Q
Full range
VOM+ Maximum positive peak output voltage swing
25°C
RL ; 600 n
Full range
25°C
RL ; 10 k.Q
Full range
VOM- Maximum negative peak output voltage swing
25°C
RL ; 600 n
AVD
Large-signal differential voltage amplification
Full range
Vo ; ±10V,
RL ; 10 kn
VO;Ot08V,
RL; 600 n
VO;Oto-8V,
RL ; 600 n
13.2
13.7
13
12.5
12
-13.2
-13.7
-13
-12.5
25°C
30
20
25°C
25
Full range
10
25°C
3
Full range
1
230
100
Input resistance
25°C
10 12
ci
Input capacitance
25°C
4
Zo
Open-loop output impedance
kSVR Supply-voltage rejection ratio (/lVCC±"tNIO)
ICC
25°C
Full range
70
25°C
75
RS ; 50n
Full range
75
25°C
Va; 0,
No load
n
90
dB
93
625
Full range
Full range
operating temperature range
n
pF
560
72
VIC ; VICR min
VCC±; ±5Vto±15V,
Supply current
Supply current change over
/lICC
25°C
RS ; 50n,
V/mV
25
q
CMRR Common-mode rejection ratio
V
-13
-12
Full range
10; 0
V
13.2
dB
690
715
36
JlA
JlA
tFull tange is O°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA ; 150°C extrapolated
to T A ; 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
2-1081
TlE2062C, TlE2062AC, TlE2062BC
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
IlPOWER DUAL OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature, Vcc± = ± 15 V
SR
Yn
PARAMETER
Slew rate at unity gain
(see Figure 1)
Equivalent input noise voltage
(see Figure 2)
Peak-to-peak equivalent input
YN(PP)
noise voltage
In
Equivalent input noise current
THO
Total harmonic distortion
Unity-gain bandwidth
Bl
(see Figure 3)
Settling time
BOM
ifJm
Maximum-output-swing
bandwidth
TEST CONDITIONS
MIN
TYP
2.6
2.5
3.4
MAX
UNIT
CL
=
100 pF
RS
=
=
loon
25°C
loon
25°C
70
40
f = 0.1 Hz to 10Hz
25°C
1.1
flY
f = 1 kHz
25°C
1.1
fA/v'Hz
25°C
0.025%
RL
=
10 kn,
f = 10 Hz,
f = 1 kHz,
AyO
=
2,
YO(PP) = 2Y,
RL = 10 kn,
RL = 600 n,
RS
f = 10 kHz,
RL
CL
CL
= 10 kn
= 100 pF
= 100 pF
25°C
2
25°C
1.5
0.1%
25°C
5
0.01%
25°C
10
AyO
Phase margin at unity gain
RL
(see Figure 3)
RL
=
=
RL
=
10 kn,
CL
600 n,
CL
= 100 pF
= 100pF
=
1,
10 kn
tFull range is O°C to 70°C.
TEXAS ~
INSTRUMENTS
2-1082
TAt
25°C
Full range
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
25°C
40
25°C
60°
70°
25°C
VlflS
100
60
nVlv'Hz
MHz
fls
kHz
TLE2062C, TLE2062AC, TLE2062BC
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J,LPOWER DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-ai r temperature, V CC± = ±20 V (unless otherwise noted)
TAt
TEST CONDITIONS
I
TLE2062C
VIC
Input offset voltage
25°C
TLE2062AC
RS
=
50n
Input offset voltage long-term drift (see Note 4)
110
Input offset current
liB
Input bias current
4
4.9
0.8
25°C
Full range
0.5
Full range
25°C
6
0.04
25°C
3
25°C
Full range
25°C
UNIT
mV
1.7
2.6
Full range
Common-mode input voltage range
2.6
3.5
f!VloC
f!Vlmo
pA
1
nA
pA
3
nA
5
-15
VICR
MAX
0.9
Full range
VIC = 0,
Temperature coefficient of input offset voltage
TYP
Full range
TLE2062BC
aVIO
MIN
25°C
-17
to
to
16.5
21
V
-15
Full range
V
to
16.5
RL = 10 kn
25°C
Full range
RL = 600 n
25°C
Full range
VOM+ Maximum positive peak output voltage swing
25°C
RL=10kQ
-15
Full range
-12
25°C
10 kn
Full range
30
RL
=
Vo = 0 to 10 V,
RL
= 600 n
= 0 to -
10 V,
RL
= 600 n
25°C
25
10
25°C
3
Full range
1
ri
25°C
ci
Input capacitance
25°C
Zo
Open-loop output impedance
kSVR Supply-voltage rejection ratio (~VCC:t't,vIO)
ICC
~ICC
10 = 0
25°C
= 50n,
VIC = VICR min
VCC± = ±5Vto±20V,
25°C
75
Full range
70
25°C
Full range
75
RS
RS = 50n
Supply current
Supply current change over
Vo
=
0,
No load
operating temperature range
V
V
-18
280
20
Full range
Input resistance
CMRR Common-mode rejection ratio
18.1
-18
Vo = ± 15 V,
Vo
15
12
-18.2 -18.7
25°C
RL = 600n
Large-signal differential voltage amplification
18.7
Full range
VOM- Maximum negative peak output voltage swing
AVD
18.2
18
80
V/mV
20
10 12
4
pF
560
n
n
91
dB
93
dB
70
25°C
Full range
660
Full range
41
730
750
f!A
f!A
tFull range is O°C to 70 u C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-1083
TlE2062C, TlE2062AC, TlE2062BC
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
IlPOWER DUAL OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature, Vcc± = ± 20 V
SR
Vn
PARAMETER
Slew rate at unity gain
3.4
UNIT
,
~
10 Hz,
RS ~ 100n
25°C
75
100
,
~
1 kHz,
RS ~ 100n
25°C
40
60
,
~
0.1 Hz to 10 Hz
25°C
1.1
flY
f
~
1 kHz
25°C
1.3
fA/,fHz
noise voltage
THD
100 pF
nV/,fHz
,
25°C
0.025%
Unity-gain bandwidth
CL = 100 pF
25°C
(see Figure 3)
RL = 600 n,
CL = 100pF
25°C
2.1
1.6
MHz
Settling time
0.1%
0.01%
25°C
5
10
flS
kHz
bandwidth
~
10 kHz,
V/flS
2.5
AVD ~ 2,
VO(PP) ~ 2V,
RL ~ 10 kn,
Maximum-output-swing
RL = 10 kn
25°C
AVD ~ 1,
RL = 10 kn
25°C
28
~
CL = 100pF
CL = 100 pF
25°C
60°
25°C
70 0
Phase margin at unity gain
RL
(see Figure 3)
RL = 600 n,
10 kn,
tFull range is O°C to 70°C.
TEXAS ~
INSfRUMENlS
2-1084
MAX
Equivalent input noise voltage
Equivalent input noise current
ICC
2.5
= 10 kn
25°C
Full range
-3.7
-3.1
-3.9
RL
= lOOn
25°C
Full range
-2.5
-2.7
Vo
= ±2.8 V,
RL
= 10 kn
25°C
Full range
15
Vo
= Oto 2 V,
RL
= lOOn
Vo
= Oto-2V,
RL
= lOOn
=0
= son,
VIC = VICR min
VCC± = ±5Vto±20V,
RS = son
RS
0.75
0.5
25°C
Full range
0.25
0.5
Vo
= 0,
No load
V/mV
3
10 12
4
560
82
25°C
75
93
FuJI range
65
560
FuJI range
FuJI range
operating temperature range
45
65
65
25°C
Supply current
80
2
25°C
Full range
V
-2
Full range
25°C
25°C
V
3.1
2
10
kSVR Supply-voltage rejection ratio (!>VCC±'!>VIO)
Supply current change over
25°C
3.7
3.1
25°C
25°C
CMRR Common-mode rejection ratio
ICC
3.5
Full range
VOM- Maximum negative peak output voltage swing
AVD
25°C
Full range
n
pF
n
dB
dB
620
640
54
~
~
tFull range is - 40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
2-1085
TlE20621, TlE2062AI, TlE2062BI
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J.1POWER DUAL OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature, Vcc± =
PARAMETER
Slew rate at unity gain
SR
(see Figure 1)
Equivalent input noise voltage
Vn
(see Figure 2)
Peak-to-peak equivalent input
VN(PP)
noise voltage
Equivalent input noise current
In
THO
Total harmonic distortion
Bl
Unity-gain bandwidth
(see Figure 3)
Settling time
BOM
¢m
Maximum-output-swing
bandwidth
Phase margin at unity gain
(see Figure 3)
TAt
MIN
TYP
25"C
Full range
25"C
25"C
2.2
1.7
3.4
TEST CONDITIONS
RL = 10 kn,
CL = 100pF
f = 10 Hz,
f = 1 kHz,
RS = lOOn
RS = lOOn
±5 V
59
43
f = 0.1 Hz to 10 Hz
25"C
1.1
f = 1 kHz
25°C
1
25°C
0.025%
25°C
25°C
25°C
25"C
1.8
1.3
5
10
AVD = 2,
Vo(PP) = 2V,
RL=10kn,
RL = 100 n,
0.1%
0.01%
f = 10 kHz,
AVD = 1,
RL = 10 kn
25"C
140
RL = 10 kn,
RL = 100 n,
CL = 100 pF
CL = 100 pF
25°C
25"C
58"
75°
RL = 10 kn
CL = 100 pF
CL = 100 pF
tFull range is - 40"C to 85"C.
TEXAS ~
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
MAX
UNIT
V/J.ls
100
60
nV/-,fHZ"
J.lV
fAI-,fHZ"
MHz
J.ls
kHz
TlE20621, TlE2062AI, TlE2062BI
EXCAlIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
IlPOWER DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air tern perature, V cc+ = ±15 V (unless otherwise noted)
-
TEST CONDITIONS
TLE20621
VIO
Input offset voltage
TLE2062AI
RS ; 50n
Input offset voltage long-term drift (see Note 4)
110
Input offset current
liB
Input bias current
TYP
MAX
0.9
4
5.3
25°C
0.8
0.5
Full range
UNIT
mV
1
2.3
6
/lV/oC
25°C
0.D4
/lV/mo
25°C
2
Full range
Full range
25°C
Full range
25°C
Common-mode input voltage range
pA
3
nA
5
pA
nA
4
-11
VICR
2
3.3
25°C
VIC; 0,
Temperature coefficient of input offset voltage
MIN
Full range
TLE2062BI
aVIO
TAt
25°C
Full range
-12
to
to
13
16
V
-11
Full range
to
V
13
25°C
RL;10kn
Full range
VOM+ Maximum positive peak output voltage swing
25°C
RL ; 600n
Full range
25°C
RL;10kn
Full range
VOM- Maximum negative peak output voltage swing
25°C
RL ; 600n
AVD
Large-signal differential voltage amplification
VO; 0 t08 V,
RL; 600n
VO; Oto-8V,
RL ; 600 n
25°C
25
10
25°C
3
Full range
1
Zo
Open-loop output impedance
Supply current change over
t.ICC
10; 0
25°C
RS ; 50 n,
25°C
72
VIC ; VICR min
VCC±;±5Vto±15V,
Full range
65
25°C
75
RS ; 50 n
Full range
65
Supply current
Vo ; 0,
No load
operating temperature range
V
-13
230
20
Full range
25°C
ICC
-12.5
30
25°C
-13.7
-13
-12
Input capacitance
V
13.2
12
-13.2
25°C
RL ; 10 kn
Full range
Input resistance
kSVR Supply-voltage rejection ratio (t.VCC±"t.VIO)
12.5
Full range
ci
13.7
13
VO; ±10V,
ri
CMRR Common-mode rejection ratio
13.2
100
V/mV
25
10 12
4
pF
560
n
n
90
dB
93
25°C
Full range
625
Full range
74
dB
690
720
!J.A
!J.A
tFull range is - 40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T A; 150°C extrapolated
to TA ; 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TEXAS
+
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-1087
TLE20621, TLE2062AI, TLE2062BI
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J.LPOWER DUAL OPERATIONAL AMPLIFIERS
- = ± 15 V
operating characteristics at specified free-air temperature, VcC+
PARAMETER
SR
Vn
VN(PP)
Slew rate at unity gain
(see Figure 1)
= 10 kn,
f
(see Figure 2)
Peak-to-peak equivalent input
I
= 10 Hz,
= 1 kHz,
f
= 0.1
In
Equivalent input noise current
THO
Total harmonic distortion
61
RL
Equivalent input noise voltage
noise voltage
Unity-gain bandwidth
(see Figure 3)
Settling time
¢m
bandwidth
Phase margin at unity gain
(see Figure 3)
CL
= 100 pF
RS
RS
= 100n
= 100n
MIN
TYP
2.S
3.4
= 1 kHz
AVO = 2,
Vo(PP) = 2V,
RL = 10 kn,
RL = soon,
25°C
40
SO
25°C
1.1
flV
. 25°C
1.1
fA/-IHZ
25°C
0.025%
25°C
2
1.5
MHz
5
10
fls
kHz
= 10 kHz,
= 10 kn
CL = 100pF
CL = 100 pF
f
RL
25°C
= 1,
RL
= 10 kn
25°C
40
CL
CL
= 100 pF
= 100pF
25°C
SOO
25°C
70°
tFull range is - 40°C to 85°C.
TEXAS ~
INSTRUMENTS
2-1088
25°C
0.01%
= 10kn,
= soon,
V/fls
2.1
100
25°C
RL
RL
UNIT
70
0.1%
AVO
MAX
25°C
Hz to 10 Hz
f
Maximum-output-swing
BaM
TAt
25°C
Full range
TEST CONDITIONS
POST OFFICE BOX 655303 ' DALLAS, TEXAS 75265
nV/-IHZ
TlE20621, TlE2062AI, TlE2062BI
EXCAlIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
~POWER DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, V cc+
- = ±20V (unless otherwise noted)
TEST CONDITIONS
TLE20621
VIO
Input offset voltage
TLE2062AI
RS = son
VIC = 0,
Temperature coefficient of input offset voltage
Input offset voltage long-term drift (see Note 4)
110
Input offset current
118
Input bias current
TYP
MAX
0.9
4
S.3
2S'C
0.8
0.5
Full range
2S'C
6
0.04
25'C
3
Full range
25'C
Full range
Common-mode input voltage range
Full range
2.6
3.9
2S'C
Full range
25'C
VICR
MIN
Full range
TLE2062BI
aVIQ
TAt
25'C
Full range
-17
to
16.5
21
mV
1.7
3
IlV/'C
IlV/mo
pA
3
nA
5
nA
5
-15
to
UNIT
pA
V
-15
to
V
16.5
RL=10kn
25'C
Full range
RL = 600n
25'C
Full range
VOM+ Maximum positive peak output voltage swing
25'C
RL=10kn
Full range
VOM- Maximum negative peak output voltage swing
25'C
Full range
RL = 600 n
AVD
Large-signal differential voltage amplification
Vo = ± 15 V,
RL=10kn
Vo = 0 to 10 V,
RL = 600n
Vo = 0 to - 10 V,
RL = 600n
80
10
3
20
25'C
25'C
Zo
Open-loop output impedance
niCe
Supply current change over
operating temperature range
RS = 50n,
VIC = VICR min
Vee± = ±5Vto±20V,
RS = 50 Q
25'C
Full range
75
25'e
75
Full range
65
25'e
No load
10 12
4
pF
560
n
n
91
dB
65
93
660
Full range
Full range
V/mV
1
25'C
10 = 0
Vo = 0,
-12
25
25'C
V
-18
25'C
Input capacitance
Supply current
-18
-15
Full range
Full range
V
12
-18.2 -18.7
280
Input resistance
ICC
18.1
30
20
r;
kSVR Supply-voltage rejection ratio (nVce:tfnVIO)
18.7
18
15
25'C
Full range
ci
CMRR Common-mode rejection ratio
18.2
dB
730
755
82
}lA
}lA
tFull range is - 40'e to 85'e.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150'C extrapolated
to TA = 25'C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TEXAS
+
INSTRUMENTS
POST OFFICE BOX 655303 ' DALLAS, TEXAS 75265
2-1089
TLE20621, TLE2062AI, TLE2062BI
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
IlPOWER DUAL OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature, Vcc±
SR
Vn
PARAMETER
Slew rate at unity gain
(see Figure 1)
Equivalent input noise voltage
(see Figure 2)
Peak-to-peak equivalent input
VN(PP)
In
noise voltage
Equivalent input noise current
THD
Total harmonic distortion
Bl
Unity-gain bandwidth
(see Figure 3)
Settling time
Maximum-output-swing
BOM
tPm
TAT
MIN
TYP
25°C
Full range
2.8
2.1
3.4
TEST CONDITIONS
RL = 10 kn,
CL = 100 pF
I = 10 Hz,
RS = lOOn
I = 1 kHz,
RS = loon
I = 0.1 Hz to 10Hz
I = 1 kHz
AVD = 2,
VO(PP) = 2V,
RL = 10 kn,
I = 10 kHz,
RL = 600 n,
0.1%
CL = 100 pF
RL = 10 kn
CL =100 pF
0.01%
40
60
25°C
1.1
flV
25°C
1.3
IA/%
25°C
0.025%
25°C
25°C
2.1
1.6
25°C
5
25°C
10
28
Phase margin at unity gain
RL = 10 kn,
CL = 100 pF
25°C
60°
(see Figure 3)
RL = 600 n,
CL = 100 pF
25°C
70°
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
V/fls
100
25°C
TEXAS ~
UNIT
75
RL = 10 kn
INSTRUMENTS
MAX
25°C
25°C
AVD = 1,
bandwidth
tFull range is - 40°C to 85°C.
2-1090
= ± 20 V
nV/%
MHz
fls
kHz
TLE2062M, TLE2062AM, TLE2062BM
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
IlPOWER DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-airtemperature, VCC± = ±5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TLE2062M
Via
Input ollset voltage
liB
5
7
0.9
RS = 50n
VIC = 0,
0.7
6
0.04
Input offset current
25"C
Full range
1
Input bias current
25"C
Full range
3
Common-mode input voltage range
V
Maximum positive peak
OM+ output voltage swing
FK, and JG
packages
o and P
RL=10kn
25"C
Full range
RL = 600 n
25"C
Full range
25°C
RL = loon
Full range
25"C
RL = 10 kQ
FK, and JG
packages
o and P
packages
FK, and JG
Large-signal differential
voltage amplification
mV
3
flV/"C
15
pA
30
-1.6
-2
to
to
4
6
flV/ mo
pA
nA
nA
V
-1.6
packages
V
Maximum negative peak
OM- output voltage swing
UNIT
5
Full range
25"C
Temperature coefficent of input offset voltage
4
6
25"C
Full range
AVO
MAX
1
Full range
25"C
VICR
TYP
Full range
Input offset voltage long-term drift (see Note 4)
110
MIN
25"C
TLE2062AM
TLE2062BM
aVIO
TAt
25"C
Full range
packages
o and P
packages
Full range
25"C
RL = 600 n
Full range
25"C
RL = loon
Full range
25"C
3.7
3
2.5
3.6
2
2.5
3.1
2
-3.5
-3.9
-2.5
-2
-3.5
-2.5
-2
- 2.7
15
80
2
1
65
RL = 10 kn
Va = 0 to 2.5 V,
RL= 600n
25"C
Full range
0.5
Va = 0 to - 2.5 V,
RL = 600 n
25"C
Full range
0.5
Va = Oto 2 V,
25"C
RL= loon
Full range
Va = Oto-2 V,
RL = loon
V
-3
Va = ±2.8 V,
Full range
V
to
4
3.5
1
0.75
16
V
V/mV
45
0.5
25"C
0.5
Full range
0.25
3
tFuil range is - 55"C to 125"C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150"C extrapolated
to TA = 25"C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TEXAS
+
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
2-1091
TLE2062M, TLE2062AM, TLE2062BM
EXCALIBUR JFET·INPUT HIGH-OUTPUT-DRIVE
JJ,POWER DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, vee± = ±5 V (unless otherwise noted)
(continued)
PARAMETER
TAt
TEST CONDITIONS
Input resistance
25°C
ci
Input capacitance
25°C
Zo
Open-loop output impedance
CMRR Common-mode rejection ratio
kSVR
Supply-voltage rejection ratio ("'VCC ± I ",VIO)
ICC
Supply current (two amplifiers)
"'ICC
560
n
25°C
25°C
65
82
Full range
60
75
93
No load
Vo ; 0,
UNIT
pF
RS ; 50n,
25°C
Full range
MAX
10 12
4
10; 0
VIC ; VICR min
VCC±; ±5Vto±20V,
RS; 50n
Supply current change over operating
temperature range (two amplifiers)
TYP
MIN
fj
n
dB
dB
65
25°C
Full range
560
Full range
72
620
650
j!A
j!A
operating characteristics at specified free-air temperature, Vee± = ± 5 V
PARAMETER
SR
Slew rate at unity gain
(see Figure 1)
Equivalent input noise voltage
Vn
(see Figure 2)
Peak-to-peak equivalent input
VN(PP)
noise voltage
In
Equivalent input noise current
THO
Total harmonic distortion
Bl
Unity-gain bandwidth
(see Figure 3)
Settling time
Maximum-output-swing
BOM
.pm
TAt
TEST CONDITIONS
TYP
RL ; 10kn,
CL ; 100 pF
f ; 10 Hz,
f ; 1 kHz,
Rs; lOon
25°C
59
RS ; lOon
25°C
43
f ; 0.1 Hz to 10 Hz
25°C
1.1
f ; 1 kHz
25°C
1
25°C
0.025%
25°C
25°C
1.8
0.1%
25°C
5
0.01%
25°C
10
AVO; 2,
VO(PP) ; 2V,
RL ; 10 kn,
RL ; 600 n,
f ; 10kHz,
RL; 10kn
CL; 100pF
CL; 100pF
3.4
1.3
AVO; 1,
RL; 10kn
25°C
140
Phase margin at unity gain
RL ; 10 kn,
CL ; 100 pF
25°C
58°
(see Figure 3)
RL ; 600n,
CL ; 100 pF
25°C
75°
bandwidth
tFull range is - 55°C to 125°C.
TEXAS ~
INSTRUMENTS
2-1092
MIN
25°C
Full range
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
MAX
UNIT
V//-Is
nV/{Hz"
/-IV
fA/{Hz"
MHz
/-Is
kHz
TlE2062M, TlE2062AM, TlE2062BM
EXCAlIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
IlPOWER DUAL OPERATIONAL AMPLIFIERS
=
electrical characteristics at specified free-air temperature, V cc± ±15 V (unless otherwise noted)
Via
"Via
Input offset voltage
TYP
MAX
TLE2062M
0.9
TLE2062AM
25°C
Full range
O.S
TLE2062BM
25°C
Full range
0.5
4
6
2
4
1
3
TEST CONDITIONS
Temperature coefficient of input offset voltage
VIC; O.
RS = son
Input offset voltage long-term drift (see Note 4)
110
liB
TAt
25°C
Full range
PARAMETER
MIN
Full range
25°C
VICR
Input bias current
25°C
Full range
4
Common-mode input voltage range
RL=10kf.!
25°C
Full range
RL = 600n
25°C
Full range
VO M- Maximum negative peak output voltage swing
RL; 600n
Large-signal differential voltage amplification
ri
Input resistance
Input capacitance
Zo
Open-loop output impedance
Va; ±10V.
RL = 10 kn
Va = Oto S V.
RL; 600n
Vo;Oto-SV.
RL;600n
pA
nA
V
16
VIC ; VICR min
VCC:!:; ±5Vto±15V,
RS = 50n
13.7
12.5
12.5
13.2
25°C
Full range
30
V
25°C
25
7
25°C
3
Full range
1
25°C
Full range
No load
230
100
V/mV
25
10 12
4
n
pF
n
560
72
90
dB
65
25°C
75
Full range
65
93
625
Full range
Full range
operating temperature range
V
20
Full range
25°C
Supply current
Va; 0,
V
to
25°C
10 = 0
RS = 50n,
kSVR Supply-voltage rejection ratio (~V CC:t'~Via)
~ICC
40
-12
to
13
13
25°C
25°C
CMRR Common-mode rejection ratio
Supply current change over
nA
11
25°C
-13 -13.7
Full range -12.5
25°C
-12.5
-13
Full range
-11
RL;10kf.!
ci
to
13
20
-11
VOM+ Maximum positive peak output voltage swing
ICC
IlV/oC
IlV/mo
pA
2
Full range
AVD
6
25°C
Full range
-11
mV
0.04
Input offset current
25°C
UNIT
dB
690
730
97
IJ.A
IJ.A
tFull range is - 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA; 150°C extrapolated
to TA ; 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-1093
TlE2062M, TlE2062AM, TlE2062BM
EXCALIBUR JFET·INPUT HIGH-OUTPUT-DRIVE
~POWER DUAL OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature, Vcc±
PARAMETER
SR
Slew rate at unity gain
(see Figure 1)
Equivalent input noise voltage
Vn
(see Figure 2)
Peak-to-peak equivalent input
VN(PP)
noise voltage
In
Equivalent input noise current
THD
Total harmonic distortion
Unity-gain bandwidth
Bl
(see Figure 3)
Settling time
Maximum-output-swing
BaM
bandwidth
Phase margin at unity gain
1m
(see Figure 3)
TEST CONDITIONS
MIN
TVP
2
1.8
3.4
MAX
UNIT
RL = 10 kn,
CL = 100 pF
25°C
Full range
f = 10 Hz,
f = 1 kHz,
RS = loon
25°C
70
RS = loon
25°C
40
25°C
1.1
lJ.V
fA/~
f = 0.1 Hz to 10Hz
f = 1 kHz
AVD = 2,
VOIPP} = 2 V,
RL = 10 kn,
RL = 600 n,
0.1%
f = 10 kHz,
RL = 10 kn
CL = 100pF
CL = 100 pF
1.1
0.025%
25°C
2
1.5
MHz
25°C
5
10
lJ.s
kHz
25°C
RL = 10kn
25°C
40
RL = 10 kn,
RL = 600 n,
CL = 100pF
25°C
60°
CL = 100 pF
25°C
70°
TEXAS ~
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
nV/~
25°C
AVD = 1,
INSTRUMENTS
V/lJ.S
25°C
25°C
0.01%
tFull range is - 55°C to 125°C.
2-1094
= ±15 V
TAt
TlE2062M, TlE2062AM, TlE2062BM
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J,LPOWER DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air tern perature, Vcc± = ±20 V (unless otherwise noted)
PARAMETER
Via
Input offset voltage
TYP
MAX
TLE2062M
0.9
4
TLE2062AM
25°C
Full range
0.8
2.6
25°C
0.5
TLE2062BM
(lVIO
Temperature coefficient of input offset voltage
RS = 50 n
VIC = 0,
Input oflset voltage long-term drift (see Note 4)
110
liB
TAt
25°C
Full range
TEST CONDITIONS
Input offset current
4.6
mV
1.7
3.7
Full range
6
flV;oC
25°C
0.04
25°C
3
flV/ mo
pA
Full range
25°C
Input bias current
UNIT
6
Full range
Common-mode input voltage range
Full range
20
nA
40
nA
5
Full range
25°C
VICR
MIN
-15
-17
to
16.5
-15
21
pA
to
V
to
V
16.5
25°C
RL=10kn
Full range
VOM+ Maximum positive peak output voltage swing
RL = 600 n
VOM- Maximum negative peak output voltage swing
RL = 600 n
Large-signal differential voltage amplification
25°C
15
Full range
12
25°C
-1B
Full range -17.5
25°C
-15
Full range
-12
RL = 10kn
AVD
Va = ± 15 V,
RL = 10 kn
Va = 0 to 10 V,
RL = 600 n
Va = 0 to - 10 V,
RL = 600n
25°C
30
Full range
20
25°C
25
Full range
10
25°C
3
Full range
1
q
Input resistance
25°C
ci
Input capacitance
25°C
Zo
Open-loop output impedance
kSVR Supply-voltage rejection ratio (LWCC±"L\VIO)
ICC
= 50n
Va
=
0,
.No load
-18.7
280
80
V/mV
20
10 12
4
n
pF
560
25°C
Full range
65
25°C
75
Full range
65
75
n
91
dB
93
660
Full range
tFull range is - 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TEXAS
V
-18
Full range
operating temperature range
V
1B.1
25°C
Supply current
Supply current change over
L\ICC
VIC = VICR min
VCC± = ±5Vto±20V,
RS
1B.7
25°C
10 = 0
RS = 50n,
CMRR Common-mode rejection ratio
1B
17.5
dB
730
770
106
=
f!A
f!A
150°C extrapolated
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-1095
TlE2062M, TlE2062AM, TlE2062BM
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J.1POWER DUAL OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature, Vcc+ = ± 20 V
-
PARAMETER
Slew rate at unity gain
SR
(see Figure 1)
Equivalent input noise voltage
Vn
(see Figure 2)
Peak-to-peak equivalent input
VN(PP)
noise voltage
Equivalent input noise current
In
THO
Total harmonic distortion
Bl
Unity-gain bandwidth
(see Figure 3)
Settling time
BOM
I/Im
Maximum-output-swing
bandwidth
Phase margin at unity gain
(see Figure 3)
TAt
TEST CONDITIONS
RL = 10 kn,
CL = 100pF
1= 10 Hz,
I = 1 kHz,
RS = lOOn
RS = lOOn
25°C
Full range
25°C
25°C
TYP
3.4
75
40
MAX
UNIT
V/llS
nV/1Hz
I = 0.1 Hz to 10Hz
25°C
1.1
llV
I = 1 kHz
25°C
1.3
lA/1Hz
25°C
0.025%
25°C
25°C
25°C
25°C
2.1
1.6
5
10
AVO = 2,
VO(PP) = 2V,
RL = 10 kn,
RL = 600n,
0.1%
0.01%
I = 10 kHz,
RL = 10 kn
AVO = 1,
RL = 10 kn
25°C
28
RL = 10 kn,
RL = 600n,
CL = 100 pF
CL = 100pF
25°C
25°C
60 0
70 0
CL = 100 pF
CL = 100 pF
tFull range is - 55°C to 125°C.
TEXAS ~
INSTRUMENTS
2-1096
MIN
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
MHz
lls
kHz
TlE2062Y
EXCAlIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J.1POWER DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at vcc± = ±15 V, TA = 25°C (unless otherwise noted)
TEST CONDITIONS
MIN
TYP
0.9
MAX
4
UNIT
mV
VIO
PARAMETER
Input offset voltage
~Vio
long-term drift (see Note 4)
110
Input offset current
2
pA
liB
Input bias current
4
pA
Input offset voltage
-11
VICR
VOM+
VOM-
Common-mode input voltage range
to
16
RL = 10kQ
13.2
13.7
RL =soon
12.5
13.2
Maximum negative peak
RL= 10kQ
-13.2
-13.7
output voltage swing
RL = SOD n
-12.5
-13
voltage amplification
VO=±10V,
RL=10kn
30
230
Vo -0 to 8 V,
RL -600n
25
100
Vo = 0 to -8 V,
RL = 600 Q
3
25
10 12
Input resistance
ci
Input capacitance
Zo
CMRR
Open-loop ouput impedance
10=0
Common-mode rejection ratio
RS =50n,
ICC
to
13
Maximum positive peak
q
kSVR
-12
output voltage swing
Large-signal differential
AVO
~V/mo
0.04
RS =50n
VIC = 0,
V
V
V
Vim V
n
4
VIC = VICRmin
Supply-voltage rejection
VCC±=±5Vto±15V,
ratio (AVCClt,vIO)
RS = 50n
Supply current
VO=O,
pF
560
Q
72
90
dB
75
93
dB
No load
625
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA =
extrapolated to TA = 25°C using the Arrhenius equation and assuming and activation energy of 0.96 eV.
690
~
150 a C
operating characteristics at V cc± = ± 15 V, T A = 25°C
PARAMETER
SR
Vn
TEST CONDITIONS
CL = 100 pF
3.4
Equivalent input noise voltage
f = 10 Hz,
RS=100Q
70
(see Figure 2)
f= 1 kHz,
RS = 100 Q
40
input noise voltage
In
Equivalent input noise current
THO
Total harmonic distortion
B1
TYP
2.6
RL = 10 kQ,
Peak-to-peak equivalent
VN(PP)
MIN
Slew rate at unity gain
Unity gain-bandwidth (see Figure 3)
BOM
G>m
Phase margin at unity gain (see Figure 3)
VI~s
nV/{RZ
--
1.1
~V
f = 1 Hz
1.1
fA/{RZ
AVO = 2,
f = 10 kHz,
VOIPPI = 2 V,
RL=10kn,
RL= 10 kQ
CL = 100 pF
2
RL = 600 Q,
CL= 100 pF
1.5
0.025%
5
0.01%
Maximum-output-swing bandwidth
UNIT
f = 0.1 Hz to 10 Hz
0.1%
Settling time
MAX
10
AVO = 1,
RL= 10 kQ
40
RL = 10 kQ,
CL= 100pF
60"
RL =600n,
CL = 100 pF
70"
MHz
~s
kHz
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-1097
TLE2062, TLE2062A,TLE2062B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
JlPOWER DUAL OPERATIONAL AMPLIFIERS
PARAMETER MEASUREMENT INFORMATION
10 kQ
Vo
VccRS
RS
NOTE A: CL includes fixture capacitance.
Figure 2. Noise Voltage Test Circuit
Figure 1. Slew Rate Test Circuit
10kQ
100
Q
>-,-_Vo
NOTE A: CL includes fixture capacitance.
Figure 3. Unity-Gain Bandwidth and Phase Margin Test Circuit
typical values
Typical values as presented in this data sheet represent the median (50% point) of device parametric
performance.
input bias and offset current
At the picoamp bias current level typical of the TLE2062, TLE2062A, and TLE2062B, accurate measurement
of the bias current becomes difficult. Not only does this measurement require a picoammeter, but test socket
leakages can easily exceed the actual device bias currents. To accurately measure these small currents, Texas
Instruments uses a two-step process. The socket leakage is measured using picoammeters with bias voltages
applied but with no device in the socket. The device is then inserted into the socket and a second test that
measures both the socket leakage and the device input bias current is performed. The two measurements
are then subtracted algebraically to determine the bias current of the device.
TEXAS ~
INSTRUMENTS
2-1098
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TlE2062, TlE2062A, TlE2062B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J,LPOWER DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
table ofgraphs
FIGURE
VIO
Input offset voltage
Distribution
vs
Common-mode voltage
118
Input bias current
vs
Temperature
110
Input offset current
vs
Temperature
Common-mode input voltage range
vs
Temperature
vs
Output current
vs
Supply voltage
vs
Frequency
VICR
VOM
VO(PP)
Maximum peak output voltage swing
Maximum peak-to-peak output voltage
vs
Frequency
vs
Temperature
vs
vs
Time
Temperature
Output impedance
vs
Frequency
Common-mode rejection ratio
vs
Frequency
vs
Supply voltage
vs
Temperature
AVD
Differential voltage amplification
lOS
Short-circuit output current
Zo
CMRR
ICC
Supply current
Small-signal
Pulse response
Large-signal
Noise voltage (referred to input)
Vn
THD
81
.pm
0.1 to 10 Hz
Equivalent input noise voltage
vs
Frequency
Total harmonic distortion
vs
Frequency
vs
Supply voltage
Unity-gain bandwidth
Phase margin
Phase shift
vs
Temperature
vs
Supply voltage
vs
Load capacitance
vs
Temperature
vs
Frequency
4
5
6
6
7
8,9
10, II, 12
13,14,15
16
17
18
19
20
21
22
23
24, 25
26,27
28
29
30,31
32
33
34
35
36
16
TEXAS ~
INSfRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-1099
TlE2062, TlE2062A, TlE2062B
EXCAlIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
JlPOWER DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
TLE2062
INPUT BIAS CURRENT
DISTRIBUTION OF
INPUT OFFSET VOLTAGE
COMMON-MODE INPUT VOLTAGE
vs
15
2
1836 Amplifiers Tested
=
I
:e
=
VCC±
±15 V
TA
25·C
P Package
'!.
.,f!
VID = 0
TA = 25·C
Lot
«c
rmI
c.
E
"
C)
CIl
'"
16
'0.,
;;
Cl
5i
~
c..
I
C
~
«
s
1.5
I
10
c..
.E
5
o
-4
A
-3
-2
VCC±
i
g! 0.5
tIt
VCC+
-
o
0
2
VIO -Input Offset Voltage - mV
3
i!!
vs
FREE-AIR TEMPERATURE
VIC
= ±15 V
=0
>
I
104
~ VCC+ + 1
>
;;
/'
103
c..
~
/'
liB
102
/'
:g.
./110
/'
~
C
a
E
E
a
/'
101
,VCC+
"~ VCC- + 4
./
I
"..c
VIC+
"5
"
16
~
/
VCC- +3
VIC-
2
>
g!
45
65
85
105
TA - Free-Air Temperature - ·C
125
VCC- + 2
-75
-50
-25
0
25
50
75
100
TA - Free-Air Temperature - ·C
Figure7
Figure6
toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSfRUMENTS
2-1100
20
VCC+ + 2
VCC±
0
c
..'CIl"
.......
FREE-AIR TEMPERATURE
!;
:l!!
II
COMMON-MODE INPUT VOLTAGE RANGE
C)
a;
±1~
vs
105
I
=
IJ
FigureS
INPUT BIAS CURRENT
and INPUT OFFSET CURRENT
E
I
5
10
15
0
- 20 - 15 - 10 - 5
VIC - Common-Mode Input Voltage - V
4
Figure4
«c..
±20V,
II
ill
-1
=
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
125
TlE2062, TlE2062A, TlE2062B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J.1POWER DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
MAXIMUM POSITIVE PEAK
OUTPUT VOLTAGE
vs
OUTPUT CURRENT
>
20
"
18
~
16
Ol
!'!
:;
--
TA '- 2S0C
-
vcc±
-
= ±20V
Q.
:;
14
"i
12 _ vcc±
.~
10
~
8
o
--
= ±lSV
0..
.;;
~
"
!'!
"E
4
2 -
vcc±
±s V
o
o
I
I
-10
-20
~
-4
I
::0
o
-so
-30
-40
10 - Output Current - mA
-60
>
r- VCC± - ±SV
I
o
o
I
I
10
lS
"
20
2S
30
10 - Output Current - mA
40
3S
Figure9
MAXIMUM PEAK OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
MAXIMUM PEAK OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
10
V
.,./
Y
,,/"
V
20
>
"
!'!
VOM+
0
>
SQ.
S
..V
"
E
...........
'" '"
'E"
I
-15
4
.,./
S
6
8
10
12
'",
-5
.......
14
~
16
18
~ ...........
~
I
VOM-
20
~
>
V
VOM+
0
::0 -10
I"-..
V
,./
,,/"
V
'xOJ
......
2
10
0..
r-......
-5
= 25°C
0
.:.t.
OJ
0
k
RL = 600 Q
TA
15
Ol
./
S
o
-2
'"
Figure8
= 10 kQ
TA = 25°C
15
-6
I
RL
-20
-.......
= ±lS V
-8
'"
E
'x
::0 -10
>
VCC±
0..
6
'x
OJ
~
:3 -14
E
0..
'E"
Q.
m -12 r-
= 2SoC
"-
:;
OJ
0
.:.t.
OJ
o
TA
= ±20 V
> -16
I
Ol
"0
>
:;
Q.
:;
-
I -20
I"-..
N'" -18 rVCC±
.~ -10
20
>
>
.:.t.
E
'x
:!l!
MAXIMUM NEGATIVE PEAK
OUTPUT VOLTAGE
vs
OUTPUT CURRENT
-15
-20
o
2
4
6
8
10
12
"
14
t--..VOM -
16
IVcc± I - Supply Voltage - V
IVcc± I - Supply Voltage - V
Figure10
Figure 11
"
18
20
TEXAS ~
INSfRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-1101
TlE2062, TlE2062A, TlE2062B
EXCAlIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
flPOWER DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE
MAXIMUM PEAK OUTPUT VOLTAGE
vs
vs
SUPPLY VOLTAGE
FREQUENCY
6
RL= 100Q
TA = 25°C
>
..
Cl
~
>
:;
a.
:;
...m
4
/
V
2
>
~
VOM+
10
Vcc± = ±5V
RL = 10 kQ
TA = 25°C
8
\
6
0
0
1\
a.
E
E
4
::>
.
';c
:;;
I
:;;
0
"~
-2
-4
>
VOM-
-6
>
.
--- -
o
2
4
6
10
vs
vs
FREQUENCY
FREQUENCY
>
..
§
10
40
S
35
E
5
-
30
o
...
25
~
20
~
1\
15
E
TA
\
=
= 25°C
\
1\
::J
E
'~
10
:;;
r-..
0
100 k
-
1M
a:
a.
10M
~
5
0
10 k
'\
",
-
f - Frequency - Hz
100 k
1M
f - Frequency - Hz
Figure14
Figure15
TEXAS ~
INSTRUMENTS
2-1102
vcc± = ±20 V
RL
10 kQ
:;
a:
a.
10k
-
Cl
~
';(
>
..
~
TA = 25°C
~
~
10 M
1M
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAG E
'[
15
100 k
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE
25
~
'-..... I-0
10 k
Figure13
Vcc± = ±15 V
RL = 10 kQ
20
0'
~
Figure 12
30
a
...
.
a:
a.
f - Frequency - Hz
:;
S-
:;;
2
IVcc± I - Supply Voltage - V
~
~
8
\
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
10 M
TlE2062, TlE2062A, TlE2062B
EXCAlIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
JlPOWER DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION and PHASE SHIFT
120
\
aJ
"tl
I
c
.2
~
vs
FREQUENCY
FREE-AIR TEMPERATURE
I
~
100
CI>
Cl
3
>
"0
:!
cCI>
80·
~
c
>
0
VCC± = ±15 V
RL = 10 k.Q
Cl= 100pF
TA = 25·C
«
-20
0.1
10
Rl = 10 kQ
350
VCC± = ±20 v
100
1k
120· ~
\
""
.s::
Q.
I
....
160·
180·
\
10 k 100 k 1 M
.
CI>
140·
ii 250
E
«
200
"0
>
~
150
!!!
~
is
100
I
50
- I I I
o
«>
-75
C
!!!
-50
-25
25
50
........
f'-....
--
75
.......
100
vs
ELAPSED TIME
FREE-AIR TEMPERATURE
80
I
ili
60
C
40
!!!
60
1
I
vcc± = ±15V
I:-+::--
VIO = -100 mV
40
Vo = 0 -
r-- --r--
-
:;
20
o
0
§ -20
-60
-80
o
0
~
(;
~ -40
I
20
-20
-- --
VID=
(;
~ -40
I
/
o
IVID
10
-
·S
Vo = 0
(J
()
'SQ.
'S
VCC± = ±15 V
TA = 25·C
·S
125
SHORT-CIRCUIT OUTPUT CURRENT
vs
VID = -100 mV
()
~
0
i'..
Figure17
:;
'SQ.
'S
.............
TA - Free-Air Temperature - ·C
SHORT-CIRCUIT OUTPUT CURRENT
ili
~
r---......
-r--
VCC±=±5V
Figure16
I
I'--.
C
f - Frequency - Hz
80
--
VCC± = ±15 V
Gl
Cl
3
c
200·
10 M
r--- --
300
~
.t:
\
""
.2
10
100·
\
""
40
is
400
c
i'-..
A~
60
20
>
>
~
PHASE SHIFT
ii
E
«
60·
I
'\
80
LARGE-SIGNAL VOLTAGE AMPLIFICATION
vs
20
30
40
t - Time - seconds
~
= Tmv
50
60
I--
-60
-80
-75
-50
-25
0
25
10~V_ _
f-"
50
75
100
125
T A - Free-Air Temperature - ·C
Figure18
Figure19
TEXAS ~
INsrRuMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-1103
TlE2062, TlE2062A, TlE2062B
EXCALIBUR JFET·INPUT HIGH-OUTPUT-DRIVE
J.1.POWER DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
OUTPUT IMPEDANCE
35
vs
FREQUENCY
FREQUENCY
100
'""
=
"0
II
a
25
011
Avo
"co
C
"i0.E
:;
20
1/
;
a:
c
~
= 101
0
'~.,
a:
TA = 25°C
v~Jll ~III± ~~
60
::E
15
AVO = 100
0
I
e0
AVO = 1
"",
40
E
E
10
~
0
0
I
I
5
100
a:
a:
/
/
o
SUPPLY CURRENT
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
600
/
I
/'"
o
9 550
L
V
/
/
/'"
./
V
./
675
./
V'/'
V V
V
0::>
en 575
I
2
,
I
I
525
4
6
8 10 12 14 16
IVcc± I - Supply Voltage - V
18
20
500
- 75
/'
/
..
/:
V
~
10 M
fo"'"
f.--
V
/ ' VCC±= ±15V
/"'" .....--"'"
o
9 550
/'"
o
V
,/"
'/
TA = -55°C
I'
_I,
./
/
/
600
Q.
I
Vcc± = ±20~
/'
E 625
~
::>
.//
I,
Vo = 0
NO LOAO
1650
~
V TA = 25°C
/
700
/'
/"''''
V
525
500
1M
vs
TA = 125°Y
0::>
1k
10 k
100 k
f -Frequency - Hz
100
Figure21
~ 625
:::::>
en 575
10
Figure20
650
Q.
o
10 M
1M
Vo = 0
NO LOAO
675
I\t\
0
10 k
100 k
f - Frequency - Hz
1k
20
::E
700
~
80
""
= ±20V
II IIi-.I
I
0
011
"0
0
So
::>
1
Vcc±
aJ
VCC±
±lS V
30 TA 25°C
=
COMMON-MODE REJECTION RATIO
vs
--
~
Vvcc± = ±5V
- 50 - 25
0
25
50
75
100
TA - Free-Air Temperature - °C
Figure 23
Figure 22
toata at high and. low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
2-1104
INSTRUMENTS
POST OFFICE BOX 655303 ' DALLAS. TEXAS 75265
125
TlE2062, TlE2062A, TlE2062B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J.lPOWER DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
100
~
100
'"
50
~
.,
.,
N'
S
~
'5
Co
:;
o
'5Co
:;
-100
I
vcc± = ±5V
RL = 10 kQ
.g -50
vcc± = ±15 V
RL = 10 kQ
.g -50
V
CL = 100 pF
CL = 100 pF
TA = 25°C
See Figure 1
TA = 25°C
See Figure 1
-100
o
2
o
3
3
2
t - Time - lis
t - Time - lis
Figure24
Figure25
VOL TAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
VOL TAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
4
15
3
10
f
>
>
.,
2
01
5
=
=
=
TA = 25°C
VCC±
±15 V
RL
10kQ
CL
100pF
See Figure 1
01
~
S
0
0
>
'5
Co
'5
>
'5
Co
'5
0
I
o
o
I
0
~
01
;g
o
.,I
50
0
0
0
I
VCC±=±5V
RL = 10kQ
>
0
= 100 pF
TA = 25°C
CL
-1
-5
>
-10
I
I
I
I
See Figure 1
-2
o
-15
5
10
15
o
10
t - Time - lis
t - Time - lis
Figure 26
Figure27
20
30
40
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-1105
TlE2062, TlE2062A, TlE2062B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J.LPOWER DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
NOISE VOLTAGE
(REFERRED TO INPUT)
0.1 TO 10 Hz
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
100
~>
VCC± = ±15 V
TA = 25°C
c
..
I
0.5
80
1\
VCC±=±5V
RS= loon
TA = 25°C
See Figure 2
[\
0)
S
>:I.
;g
..
..
60
"I"-
III
0)
jg
'0
0
Z
:;
0
..
>
a.
-=;:
III
..
'0
Z
r-
40
a;
~0.5
>
'5
.,.
W
20
I
c
>
2
3
4
5
6
I-Time-s
7
8
9
10
f - Frequency - Hz
Figure28
Figure29
TOTAL HARMONIC DISTORTION
TOTAL HARMONIC DISTORTION
vs
vs
FREQUENCY
FREQUENCY
0.3
0.6 r-"'I'""T"T'TTI"',"r-"'T""'"l'"T'TTI'MT"""-'-T'"T"T'l'mT--'-""""""""
AVD = 10
AVD = 2
'if!.
VO(PP) = 2V
TA = 25°C
'if!.
I
c
c
o
of0
.9III
is
.~u;
0.2
0.4 J-t-+t+HitI-+++t-tlffi---jI-+Htt+tt---t-t++tM
is
u
u
'2
.~
0
E
IV
II
0.3 t--t-+tttt-ttt--t-+-H+tttl--1H-t-tttttt--+-t-++HflI
VCC±=±5V
~
0.2
~
VCC± = ±5V
J:
S
VO(PP)= 2V
TA = 250C -+-t-t-tt-ttt+--+-++++ttH--+-++++HH
0.5
J:
0.1
~
I
C
J:
f-
~
SOURCE SIGNAL
o
10
II IIIII
100
II I
@
f-
0.1
f=H=m:m==tmW=1H=l+t+tIl=:t1+t1:tm
VCC± = ±20 V
1k
10 k
f - Frequency - Hz
10k
100 k
f - Frequency - Hz
Figure 30
Figure31
TEXAS ~
INSTRUMENTS
2-1106
l.I
SOURCE SIGNAL
I
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
lOOk
TLE2062, TLE2062A, TLE2062B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J,LPOWER DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
UNITY-GAIN BANDWIDTH
vs
FREE-AIR TEMPERATURE
2.5 r----,---r--,---.---r--.,.---;---,
2.5
Rl = 10 kn
Cl = 100 pF
TA = 25·C
See Figure 3
N
:x:
::;;
.:;;
;;
-- -
2
'jE
"C
~
C
'"
Cl
I:
'(ij
I---
f-
~
-
q
i!' 1.5
'c
::J
m
=
=
Rl
10 kn
Cl
100 pF
See Figure 3
1
o
2
4
6
8
10 12 14 16
IVcc± I - Supply Voltage - V
18
1
-75
20
I:
Figure33
PHASE MARGIN
vs
SUPPLY VOLTAGE
PHASE MARGIN
vs
LOAD CAPACITANCE
60·
Rl = 10 kn
Cl = 100 pF
TA = 25·C
See Figure 3
.,
.:;;
'"
no
60·
,/'
I
/
58·
c
'§ 40·
.,'"
.:;;
'"
no
::;;
/
III
125
VCC± = ±15 V
Rl = 10 kn
-- TA = 25·C
See Figure 3
r'\.
~
~
r---
....
E 20·
57·
10·
56·
55·
30·
I
.IV
E
""-
V
/'
59·
III
\\
50·
'0,
:u
::;;
-25
0
25
75
100
50
TA - Free-Air Temperature - ·C
Figure32
62·
61·
-50
o
2
4
6
8
10 12 14 16
IVcc± I - Supply Voltage - V
18
20
o·
o
Figure34
200
400
600
800
Cl - load Capacitance - pF
1000
Figure35
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSfRUMENTS
POST OFFICE BOX 655303' OALLAS. TEXAS 75265
2-1107
TlE2062, TlE2062A, TlE2062B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
IlPOWER DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
66·~--r---r---~--~--~--~--~--~
RL
CL
= 10 kQ
= 100 pF
64· I---M.-+--+--+---+- See Figure 3
c
.~
62.1--~~-~~+--+--1--1--1--'
'"
:::;;
Qj
~
.c
60·~-t--~__+-~~,-1--1---r-,
Do
I
i
58·1---+---+---+-~~-~~~.--r-,
56·1---+--+---+--+--.H-~~---r-,
54·~--~--~--~--~--~--~--~--~
-75
-50 -25
0
25
50
75
100
125
TA - Free-Air Temperature - DC
Figure36
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using PSpice™ Parts™ model generation software. The Boyle
macromodel (see Note 5) and subcircuit in Figure 37 were generated using the TLE2062 typical electrical and
operating characteristics at 25°C. Using this information, output simulations of the following key parameters
can be generated to a tolerance of 20% (in most cases):
•
•
•
•
•
•
Maximum positive output voltage swing
Maximum negative output voltage swing
Slew rate
Quiescent power dissipation
Input bias current
Open-loop voltage amplification
NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J.
of Solid-State Circuits. SC-9, 353 (1974).
•
•
•
•
•
•
Unity-gain frequency
Common-mode rejection ratio
Phase margin
dc output resistance
ac output resistance
Short-circuit output current limit
E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers", IEEE Journal
PSpice and Parts are trademarks of MicroSim Corporation.
TEXAS ~
2-1108
INSfRUMENlS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
TlE2062, TlE2062A, TlE2062B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
JlPOWER DUAL OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
macromodel information (continued)
din
9 egnd
,...----141--.92
t
vb
rp
hlim
+
IN-
-+---+-_-+1--'
6
IN+
vln
+
r2
C2
--t---t-+--"--i--'
C1
rd1
VCC- -.~-.~_ _4+-_~~~-e~~~_ _ _ _ _ _ _ _ _ _ _ _
5~
+
ve
OUT
.subekt TLE2062 1 2 3 4 5
e1
11 12 1.457E-12
e2
6 7 15.00E-12
de
5 53 dx
de
54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp
4 3 dx
egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
fb
7 99 poly(5) vb ve ve vlp vln 0 4.357E6 -4E6 4E6 4E6 -4E6
ga
6 0 11 12 188.5E-6
gem
0 6 10 99 3.352E-9
iss
3 10 de 51.00E-6
hlim 90 0 vlim 1K
j1
11 2 10 jx
j2
12 1 10 jx
r2
6 9 100.0E3
rd1
4 11 5.305E3
rd2
4 12 5.305E3
ro1
8 5 280
ro2
7 99 280
rp
3 4 113.2E3
rss 10 99 3.922E6
vb
90deO
ve
3 53 de 2
ve
54 4 de 2
vlim 7 8 de 0
vlp 91 0 de 50
vln
0 92 de 50
.~del dx D(Is=800.0E-18)
.model jx PJF(Is=2.000E-12 Beta=423E-6 Vto=-l)
. ends
Figure 37. Boyle Macromodel and Subcircuit
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-1109
TLE2062, TL~2062A, TLE2062B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J.lPOWER DUAL OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
input characteristics
The TLE2062, TLE2062A, and TLE2062B are specified with a minimum and a maximum input voltage that,
if exceeded at either input, could cause the device to malfunction.
Because of the extremely high input impedance and resulting low bias current requirements, the TLE2062,
TLE2062A, and TLE2062B are well suited for low-level signal processing; however, leakage currents on
printed circuit boards and sockets can easily exceed bias current requirements and cause degraqation in
system performance. It is a good practice to include guard rings around inputs (see Figure 38). These guards
should be driven from a low-impedance source at the same voltage level as the common-mode input.
The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation.
Vo
Vo
Figure 38. Use of Guard Rings
TEXAS ~
INSTRUMENTS
2-1110
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
Vo
TlE2064, TlE2064A, TlE2064B, TlE2064Y
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
JlPOWER QUAD OPERATIONAL AMPLIFIERS
03367, NOVEMBER 1989 - REVISED NOVEMBER 1991
available features
•
•
Excellent Output Drive Capability
VO= ±2,5VMinatRL= 100n,
VCC± = ±5 V
Vo = ± 12,5 V Min at RL = 600 n,
VCC± = ±15V
•
Macromodels Included
•
Wide Operating Supply Voltage Range
VCC± = ± 3,5 V to ± 20 V
•
High Open-Loop Gain , .. 280 V/mV Typ
Low Supply Current ", 280!lA Typ
Per Amplifier
•
Low Offset Voltage ... 2 mV Max
•
Low Offset Voltage Drift With Time
0.04 !lv/mo Typ
•
Low Input Bias Current ... 5 pA Typ
•
High Unity-Gain Bandwidth, "
2,1 MHz Typ
•
High Slew Rate ", 3,4 Vi!lS Typ
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE SWING
vs
LOAD RESISTANCE
description
The TLE2064, TLE2064A, TLE2064B, and
TLE2064Y are JFET-input, high-output-drive,
micropower quad operational amplifiers
manufactured using Texas Instruments Excalibur
process. These devices combine outstanding
output drive capability with low-power
consumption, excellent dc precision, and wide
bandwidth.
10
>
Cl
V I I I_I ~~IV
CC± - TA = 25°C
8
~"
I--I-
CI>
In addition to maintaining the traditional JFET
advantages of fast slew rates and low input bias
and offset currents, the Excalibur process offers
outstanding parametric stability over time and
temperature. This results in a "precision" device
remaining precise even with changes in
temperature and over years of use.
The TLE2064, TLE2064A, and TLE2064B are
ideal choices for any application requiring
excellent dc precision, high output drive, wide
bandwidth, and low power consumption.
~
./
6
J..-'
"0
>
:;
S4
::I
o
[
o
>
2
o
10
100
1 k
10 k
RL - Load Resistance - Q
AVAILABLE OPTIONS
PACKAGE
CHIP
CERAMIC
SMALL
PLASTIC
VIOmax
AT 25°C
OUTLINE
CARRIER
DIP
DIP
ODG
2mV
(D)
-
(FK)
-
(J)
-
(N)
-
to
70 DC
4mV
TLE2064ACO
-
-
TLE2064ACN
6mV
TLE2064CD
-
-
TLE2064CN
-
-
TA
_40DC
2mV
to
85 DC
4 mV
TLE2064AID
-
6mV
TLE20641D
-
-
TLE2064AIN
(V)
TLE2064V
TLE20641N
-
- 55 DC
2mV
-
-
to
125 DC
4 mV
TLE2064AMD
TLE2064AMFK
TLE2064AMJ
TLE2064AMN
6 mV
TLE2064MD
TLE2064MFK
TLE2064MJ
TLE2064MN
-
CHIP
FORM
D packages are available taped and reeled. Add "R" suffix to device type, (e.g., TLE2064ACDR). Chips are tested
at 25'C.
Copyright © 1991, Texas Instruments Incorporated
PRODUCTION DATA documents contain information current as of
publication date. Products conform to specifications per the terms of
Texas Instrumenls standard warranty. Production processing does not
necessarilv include testing 01 all parameters.
TEXAS •
INSTRUMENTS
,POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-1111
TlE2064, TlE2064A, TlE2064B, TlE2064Y
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
f.1POWER QUAD OPERATIONAL AMPLIFIERS
description (continued)
A variety of available options includes small-outline and chip-carrier versions for high-density system
applications.
The C-suffix devices are characterized for operation from O°C to 70°C. The I-suffix devices are characterized
for operation from - 40°C to 85°C. The M-suffix devices are characterized for operation over the full military
temperature range of -55°C to 125°C.
D,
J, OR N PACKAGE
FK PACKAGE
(TOP VIEW)
1 OUT
(TOP VIEW)
4 OUT
41N41N +
9
20UT
3
VCC31N +
31N-
7
2
1 20 19
11N +
NC
4
5
18
VCC+
NC
6
7
16
21N +
8
17
15
14
41N +
NC
VCCNC
31N +
9 1011 1213
NC - No internal connection
equivalent schematic (each channel)
IN+
----t----,
IN-
+----vv.---4-....__
VccAll component values are nominal.
Component count: Diodes - 2
Capacitors -
TEXAS ~
2-1112
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
3
Resistors - 9
Transistors - 42
OUT
TLE2064Y
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J.lPOWER QUAD OPERATIONAL AMPLIFIERS
chip information
These chips, properly assembled, display characteristics similar to the TLE2064. Thermal compression or
ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive
epoxy or a gold-silicon preform.
VCC+(4)
IN+(3)~+
OUT (1)
IN- 2
() U = I N + ( 5 )
OUT (7)
IN-(6)
IN+ (10)
+
OUT (8)
IN- 9
()
OUT (14)
IN- (13)
~
BONDING PAD ASSIGNMENTS
~IN+(12)
VCC- (11)
:::. 73
CHIP THICKNESS:
15TYPICAl
T
11!-----_
I...
~I
130
11111111111111 111111 II II 111111 11111111 11111111111111111111 11111111
BONDING PADS:
4X4MINIMUM
T J max = 150 0 C
TOLERANCES
ARE± 10%
ALL DIMENSIONS
ARE IN MILS
PIN(11)INTERNALLY
CONNECTED TO
BACKSIDE OF CHIP
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-1113
TLE2064, TLE2064A, TLE2064B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
/lPOWER QUAD OPERATIONAL AMPLIFIERS
absol ute maxi mum rati ngs over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC+ (see Note 1) .................................................... 22 V
Supply voltage, VCC- .............................................................. -22 V
Differential input voltage (see Note 2) .................................................. ±44 V
Input voltage range, VI (any input) .................................................... VCC±
Input current, II (each input) ......................................................... ±1 mA
Output current, 10 (each output) ..................................................... ±80 mA
Total current into VCC+ terminal ..................................................... 80 mA
Total current out of VCC- terminal .................................................... 80 mA
Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... unlimited
Continuous total dissipation ........................................ See Dissipation Rating Table
Operating free-air temperature range, TA: C-suffix ................................... O°C to 70°C
I-suffix ................................. -40°C to 85°C
M-suffix .............................. -55°C to 125°C
Storage temperature range ................................................... -65°C to 150°C
Case temperature for 60 seconds: FK package .......................................... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package ............... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package ................... 300°C
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC- .
2. Differential voltages are at the non inverting input with respect to the inverting input.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
DERATING FACTOR
D
TAS25°C
POWER RATING
950mW
FK
1375 mW
11.0 mW/oC
880mW
715mW
1375mW
11.0mW/oC
9.2 mW/oC
880mW
715mW
275mW
736mW
598 mW
230 mW
PACKAGE
N
1150mW
ABOVE TA = 25°C
7.6mWrC
TA=85°C
POWER RATING
494 mW
TA=70°C
POWER RATING
608mW
TA-125°C
POWER RATING
190mW
275 mW
recommended operating conditions
Supply voltage, VCC+
Common-mode input voltage, VIC
VCC+ = ±5 V
VCC+ = ± 15V
VCC+ = ± 20 V
Operating free-air temperature, TA
I-SUFFIX
C-SUFFIX
MAX
MIN
MAX
MIN
MAX
UNIT
±3.5
± 20
± 3.5
± 20
± 3.5
± 20
-1.6
4
- 1.6
4
-1.6
4
- 11
-15
13
16.5
-11
-15
13
16.5
-11
-15
13
16.5
V
0
70
-40
85
-55
125
°C
TEXAS ~
INSTRUMENTS
2-1114
M-SUFFIX
MIN
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
V
TlE2064C, TlE2064AC, TlE2064BC
EXCAlIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J.lPOWER QUAD OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Vee ± = ± 5 V(unless otherwise noted)
TYP
MAX
TLE2064C
25°C
Full range
1.2
7
7.9
TLE2064AC
25°C
Full range
1.2
25°C
0.8
PARAMETER
VIO
Input offset voltage
TEST CONDITIONS
TLE2064BC
(lVIO
Temperature coefficient of input offset voltage
Input offset voltage long-term drift (see Note 4)
110
Input offset current
liB
Input bias current
VIC =0,
RS =50Q
TAt
25°C
0.8
nA
pA
2
nA
3
Full range
-1.6
-2
to
4
to
V
6
-1.6
Maximum positive peak output voltage swing
VO=±2.8 V,
RL= 10kn
Vo = Oto 2 V,
RL=100Q
RL = 100Q
V
25°C
3.5
Full range
3.3
25°C
2.5
3.1
2
-3.7
-3.9
-3.3
-2.5
-2.7
25°C
RL = 100Q
VO=Oto-2V,
to
4
25°C
Full range
Maximum negative peak output voltage swing
Large-signal differential voltage amplification
Full range
Full range
RL=10k.Q
AVD
IlV;oC
IlVimo
pA
1
25°C
RL=100Q
VOM-
mV
3.5
6
0.04
Full range
RL = 10k.Q
VOM+
UNIT
4.4
25°C
Full range
Common-mode input voltage range
6
6.9
Full range
25°C
VICR
MIN
Full range
-2
25°C
15
Full range
2
25°C
0.75
Full range
0.5
25°C
0.5
Full range
3.7
V
V
80
45
V/mV
3
0.15
q
Input resistance
25°C
1012
Q
c·
Input capacitance
25°C
4
pF
Zo
Open-loop output impedance
560
Q
CMRR
Common-mode rejection ratio
kSVR
Supply-voltage rejection ratio (/'N CC± I ~ V 10)
ICC
Supply current (four amplifiers)
~ICC
Vol/V02
Supply current change over operating
25°C
10=0
VIC = VICR min,
RS = 50Q
VCC±=±5Vto±20V,
RS = 50Q
65
Full range
65
25°C
75
Full range
75
25°C
VO=O,
No load
AVD = 1000,
f = 1 kHz
temperature range (four amplifiers)
Crosstalk attenuation
25°C
82
dB
93
1.12
Full range
dB
1.3
1.3
mA
Full range
52
J.lA
25°C
120
dB
tFull range is O°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 ' DALLAS, TEXAS 75265
2-1115
TlE2064C, TlE2064AC, TlE2064BC
EXCAlIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
/lPOWER QUAD OPERATIONAL AMPLIFIERS
- = ±5 V
operating characteristics at specified free-air temperature, Vcc+
PARAMETER·
SR
Vn
Slew rate at unity gain
(see Figure 1)
Equivalent input noise voltage
(see Figure 2)
Peak-to-peak equivalent input
VN(PP)
noise voltage
In
Equivalent input noise current
THO
Total harmonic distortion
B1
RL = 10 kn,
CL = 100 pF
f = 10 Hz,
f = 1 kHz,
RS = 100Q
MIN
TYP
2.2
3.4
Full range
2.1
RS = 100n
25°C
25°C
1
25°C
0.025%
f = 10kHz,
RL = 10 kQ
RL = 10kn,
CL = 100 pF
(see Figure 3)
RL = 100n,
CL = 100 pF
£=0.1%
25°C
25°C
£ = 0.01%
BaM
m
3.4
CL
= 100 pF
RS = loon
RS = lOOn
f = 10 kHz,
RL = 10kn
CL = 100 pF
CL = 100 pF
= 0.1 °/0
= 0.01%
Maximum-output-swing
bandwidth
TYP
2.2
1.7
f = 1 kHz
AVO = 2,
£
BaM
MIN
f = 0.1 Hz to 10 Hz
Unity-gain bandwidth
Settling time
TAt
25°C
Full range
TEST CONDITIONS
f = 10 Hz,
f = 1 kHz,
Avo
= 1,
RL
= 10 kn
Phase margin at unity gain
RL = 10 kQ,
CL = 100 pF
(see Figure 3)
RL = 100 Q,
CL = 100 pF
tFull range is - 40°C to 85°C
TEXAS ~
INSTRUMENlS
2-1122
= ±5 V
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
MAX
UNIT
VlflS
25°C
59
43
25°C
1.1
25°C
1
25°C
0.025%
25°C
1.8
1.3
MHz
25°C
5
10
fls
25°C
140
kHz
25°C
58°
75°
100
60
nV/~
flV
fA/~
TlE20641, TlE2064AI, TlE2064BI
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
JlPOWER QUAD OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-airtemperature, V CC±= ±15 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TLE20641
Via
Input offset voltage
TLE2064AI
Temperature coefficient of input offset voltage
RS = 50n
VIC = 0,
Input offset voltage long-term drift (see Note 4)
110
liB
TYP
MAX
0.9
6
7.3
25°C
0.9
4
5.3
25"C
0.7
Full range
Full range
25°C
2
3.3
6
0.04
25°C
Input offset current
25°C
Input bias current
Common-mode input voltage range
25"C
RL=10kQ
Full range
Maximum positive peak output voltage swing
25°C
RL = 600Q
Full range
25"C
RL=10kQ
VOM-
Full range
Maximum negative peak output voltage swing
25"C
RL = 600 Q
AVD
Large-signal differential voltage amplification
Vo = ±10V,
RL = 10 kQ
Va = 0 to 8 V,
RL = 600Q
VO=Oto-8V,
RL = 600 Q
Zo
Open-loop output impedance
Common-mode rejection ratio
kSVR
Supply-voltage rejection ratio ("'V cc ± ~ '" VIO)
ICC
Supply current (four amplifiers)
10 = 0
VIC = VICR min,
RS = 50Q
VCC±=±5Vto±15V,
RS = 50Q
No load
temperature range (four amplifiers)
VolIV02 Crosstalk attenuation
AVD = 1000,
f = 1 kHz
13.2
-13.2
-13.7
10
25°C
3
Full range
1
V
V
100
V/mV
25
10 12
4
72
560
90
25"C
65
75
93
Full range
65
Full range
V
20
25
25"C
25°C
pA
-13
25"C
25"C
Vo = 0,
12.5
12
Full range
25°C
nA
13.7
230
25°C
5
13
30
Input capacitance
3
V
25°C
Full range
Input resistance
CMRR
to
13
13.2
-13
ci
Supply current change over operating
to
16
- 12.5
-12
Full range
r;
"'ICC
-12
to
13
-11
Full range
VOM+
-11
mV
fl V/o C
4
Full range
UNIT
fl V/mo
pA
nA
2
Full range
25"C
VICR
MIN
Full range
TLE2064BI
ctVIO
TAt
25°C
Full range
1.25
Full range
Q
pF
Q
dB
dB
1.4
1.5
mA
Full range
148
f1A
25"C
120
dB
tFull range is - 40"C to 85"C
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150"C extrapolated
to TA = 25"C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
2-1123
TlE20641, TlE2064AI, TlE2064BI
EXCAlIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J.1POWER QUAD OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature, Vcc+ = ± 15 V
-
PARAMETER
SR
Vn
Slew rate at unity gain
(see Figure 1)
Equivalent input noise voltage
(see Figure 2)
Peak-to-peak equivalent input
VN(PP) noise voltage
RL
=
10 kn,
I = 10 Hz,
I = 1 kHz,
100 pF
=
=
100n
Full range
2.1
RS
100n
100
40
60
nV/1HZ
flV
25°C
0.025%
25°C
2
1.5
MHz
25°C
5
10
fls
25°C
40
kHz
25°C
60°
70°
Unity-gain bandwidth
RL
(see Figure 3)
RL
£
£
=
=
I = 10 kHz,
RL
10 kn,
CL
600 n,
CL
=
=
=
10 kn
100pF
100pF
= 0.1%
= 0.01%
Maximum-output-swing
AvO
RL
RL
=
=
1,
RL
=
10 kn
10 kn,
600 n,
CL
=
=
100pF
=
CL
100pF
tFull range is - 40°C to 85°C
TEXAS ~
INSTRUMENlS
2-1124
25°C
V/flS
70
lA/1HZ
AVO = 2,
VO(PP) = 2 V,
Phase margin at unity gain
(see Figure 3)
=
RS
UNIT
1.1
Total harmonic distortion
iRZ
0.025%
E = 0.1%
INSTRUMENTS
2-1128
MIN
RL = 10 kQ,
MHz
~s
kHz
TlE2064M, TlE2064AM, TlE2064BM
EXCAlIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J.lPOWER QUAD OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Vcc+=
- ±15 V (unless otherwise noted)
TEST CONDITIONS
PARAMETER
TLE2064M
Via
Input offset voltage
TLE2064AM
Temperature coefficient of input offset voltage
Input offset current
lIB
Input bias current
TYP
MAX
0.9
6
25°C
0.9
RS = 50 Q
V'C = 0,
0.7
Full range
25°C
4
20
AVD
13.7
12.5
12.5
13.2
25°C
Full range
-13
-13
Va = ±10V,
RL = 10 kQ
25°C
Full range
-12.5
30
20
230
Va = 0 to 8 V,
RL = 600 Q
25
100
Va = Oto-8V,
RL = 600 Q
Full range
7
25°C
3
Full range
1
r;
Input resistance
25°C
Input capacitance
25°C
Zo
Open-loop output impedance
10 = 0
25°C
CMRR
Common-mode rejection ratio
VIC = VICR min,
kSVR
Supply-voltage rejection ratio ("NCC ±I LlVIO)
VCC± = ±5Vto±15V,
RS = 50Q
ICC
LlICC
RS = 50 Q
Va =0,
No load
temperature range (four amplifiers)
V011V02 Crosstalk attenuation
25°C
72
Full range
65
25°C
Full range
75
25°C
Supply current (four amplifiers)
Supply current change over operating
-13.7
RL = 600 Q
ci
AVD = 1000,
f = 1 kHz
V
12
-13
-12.5
25°C
V
V
Full range
Maximum negative peak output voltage swing
Large-signal differential voltage amplification
to
16
25°C
25°C
RL = 10 kQ
to
13
-11
to
Full range
nA
-12
13
13
25°C
nA
pA
40
Full range
Full range
Maximum positive peak output voltage swing
RL = 600 Q
VOM-
flV/ o C
fl V/mo
pA
Full range
RL = 10 kQ
VOM+
6
2
Common-mode input voltage range
mV
2
4
0.04
25°C
Full range
-11
VICR
4
6
Full range
25°C
25°C
UNIT
8
25°C
Input offset voltage long-term drift (see Note 4)
110
MIN
Full range
TLE2064BM
aVIO
TAT
25°C
Full range
V
V/mV
25
10 12
4
pF
Q
560
Q
90
dB
93
dB
65
1.25
Full range
1.4
1.5
mA
Full range
194
J.lA
25°C
120
dB
tFul1 range is - 55°C to 125°C
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T A = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 ' DALLAS, TEXAS 7526S
2-1129
TlE2064M, TlE2064AM, TlE2064BM
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J.LPOWER QUAD OPERATIONAL AMPLIFIERS
- = ± 15 V
operating characteristics at specified free-air temperature, Vcc+
,PARAMETER
SR
Vn
VN(PP)
Slew rate at unity gain
(see Figure 1)
Equivalent input noise voltage
(see Figure 2)
Peak-to-peak equivalent input
noise voltage
In
Equivalent input noise current
THO
Total harmonic distortion
Bl
TEST CONDITIONS
RL ~ 10 kn,
CL ~ 100 pF
f
f
~
10 Hz,
RS
~
1 kHz,
RS ~ loon
f
~
0.1 Hz to 10Hz
f
~
1 kHz
~
lOOn
25°C
~
f
Unity-gain bandwidth
VO(PP) ~ 2V,
RL ~ 10kn,
CL ~ 100pF
(see Figure 3)
RL ~ soon,
CL ~ 100 pF
10 kHz,
RL ~ 10 kn
E ~ 0.1%
BaM
¢m
bandwidth
Phase margin at unity gain
(see Figure 3)
AVO ~ 1,
RL
RL ~ 10 kn,
RL ~ soon,
CL ~ 100 pF
CL ~ 100pF
~
10kn
tFull range is - 55°C to 125°C
TEXAS ~
INSTRUMENTS
2-1130
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TYP
2.S
1.8
3.4
70
40
MAX
UNIT
VII's
nVl,,!Hz
I'V
25°C
1.1
fA/,,!Hz
25°C
0.025%
25°C
2
1.5
MHz
25°C
5
10
I's
25°C
40
kHz
E ~ 0.01%
Maximum-output-swing
MIN
1.1
25°C
AVO ~ 2,
Settling time
TA
25°C
Full range
25°C
SOO
70°
TLE2064M, TLE2064AM, TLE2064BM
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
JlPOWER QUAD OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-airtemperature, Vcc+=
- ±20 V (unless otherwise noted)
PARAMETER
Via
aVIO
110
liB
TAt
TEST CONDITIONS
TYP
MAX
TLE2064M
25"C
Full range
1
6
8
TLE2064AM
25°C
Full range
1
TLE2064BM
25°C
Full range
0.7
Full range
6
IlV/ o C
0.04
IlV/mo
Input offset voltage
Temperature coefficient of input offset voltage
Input offset voltage long-term drift (see Note 4)
VIC ~ 0,
RS
~
50 Q
MIN
Input offset current
25"C
Full range
3
Input bias current
25°C
Full range
5
-15
VICR
Common-mode input voltage range
Full range
RL~10k.Q
VOM+
Maximum positive peak ou.tput voltage swing
VOM-
AVD
Maximum negative peak output voltage swing
Large-signal differential voltage amplification
RL
~
600 Q
Va
~
± 15 V,
RL
~
10 kQ
Va
~
Oto 10V,
RL
~
600 Q
Va
~
0 to - 10 V,
RL
~
600 Q
Full range
-12
25°C
30
Full range
20
25°C
25
Full range
10
25°C
3
Full range
1
Zo
Open-loop output impedance
10 ~ 0
Common-mode rejection ratio
VIC ~ VICR min,
~
50 Q
ICC
!lICC
RS
~
50Q
Va
~
0,
No load
temperature range (four amplifiers)
Va 1IV 02 Crosstalk attenuation
80
65
25°C
75
Full range
65
AVD ~ 1000,
f
~
1 kHz
V/mV
20
10 12
4
pF
560
Q
75
25°C
Supply current (four amplifiers)
Supply current change over operating
25°C
Full range
V
280
25°C
RS
VCC± ~ ±5Vto±20V,
Supply-voltage rejection ratio (!lVCC ± I !lVIO)
12
-18
25°C
V
18.1
-18.7
25°C
kSVR
15
-17.5
-15
Input capacitance
V
187
Full range
25°C
Input resistance
40
V
-18
'i
nA
pA
nA
to
17.5
ci
CMRR
to
21
25°C
25°C
RL ~ 10 kQ
to
Full range
Full range
pA
20
-17
16.5
-15
16.5
18
25°C
RL ~ 600 Q
mV
2.2
4.2
25°C
25"C
4.6
6.6
UNIT
Q
91
dB
93
1.32
Full range
dB
1.5
1.6
mA
Full range
212
J.lA
25°C
120
dB
tFuil range is - 55°C to 125°C
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA
to TA ~ 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
~
150"C extrapolated
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-1131
TlE2064M, TlE2064AM, TlE2064BM
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
IlPOWER QUAD OPERATIONAL AMPLIFIERS
operating characteristics, VCC± = ± 20 V, TA
PARAMETER
= 25°C
TEST CONDITIONS
SR
Slew rate at unity gain (see Figure 1)
Vn
Equivalent input noise voltage (see Figure 2)
VN(PP)
Peak-Io-peak equivalent input noise voltage
f = 1 kHz,
f = 0.1 Hztol0Hz
In
Equivalent input noise current
f = 1 kHz
THO
Total harmonic di stortion
Bl
Unity-gain bandwidth (see Figure 3)
RL = 10 kQ,
f = 10 Hz,
RS = 100Q
RS = 100Q
Maximum-output-swing bandwidth
vs
vs
Output impedance
Pulse response
Vn
THD
7
Phase shift
vs
Supply voltage
vs
Temperature
vs
Load capacitance
32
33
34
35
vs
Supply voltage
vs
Temperature
36
vs
Frequency
16
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655012· DALLAS, TEXAS 75265
2-1135
TlE2064, TlE2064A, TlE2064B
EXCAlIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J,LPOWER QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
TLE2064
INPUT BIAS CURRENT
DISTRIBUTION OF
INPUT OFFSET VOLTAGE
COMMON-MODE INPUT VOLTAGE
vs
20
2
2792 Amplifiers Tested
'#
I
~
VID
TA
=
VCC±
±15V
TA 250C
NPackage
=
15
Lots
'c"
I
E
~
c.
..
E
(.)
10
.!!
III
...
Cl
~
c
.5
!!
...~
1.5
I
~
''0.,"
=0
= 250C
VCC±
I
5
j! 0.5
0
o
II
VCC±
-8
-6
-4
0
2
4
-2
VIO -Input Offset Voltage - mV
6
8
E
~
::>
Figure 5
INPUT BIAS CURRENT
and INPUT OFFSET CURRENT
COMMON-MODE INPUT VOLTAGE RANGE
vs
vs
FREE-AIR TEMPERATURE
FREE-AIR TEMPERATURE
VCC+ + 2
>
I
104
~ VCC++1
!!
...
./
103
~
.,
.5
0
....
iii
'tI
'8
C
liB
102
V
:;; VCC- +4
/110
.
j!
'tI
c 101
100
25
i'
C
~
I
12
VIC+
~
(.)
~
./
~ VCC- +3
./
-
I
VIC-
~
45
65
85
105
T A - Free-Air Temperature - ·C
125
VCC- +2
-75
-50
-25
0
25
50
75
100
TA - Free-Air Temperature - ·C
Figure 7
Figure 6
tData at high and low temperatures are applicable only within the rated. operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
2-1136
20
Figure 4
VCC± = ±15V
VIC = 0
I
= ±1~
- 20 - 15 - 10 - 5
0
5
10
15
VIC - Common-Mode Input Voltage - V
105
~
V
= ±20V,
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
125
TlE2064, TlE2064A, TlE2064B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
JlPOWER QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
MAXIMUM POSITIVE PEAK
OUTPUT VOLTAGE
>
"
Cl
2l
"0
>
:;
Il.
vs
vs
OUTPUT CURRENT
OUTPUT CURRENT
>
20
TAl
18
-
vcc±
25°C
- t---
= ±20V
16
~
12 t- vcc± - ±15 V
~
10
-I--
+
>
E
::I
6
E
2 f- vcc± = ±5V
o
o
--.
I
I
-10
-20
'-.....
VOM-
............
............
I
VOM-
'-.....
VOM+
"V
"j(
'-.....
I
V
/'
,/"
0
0..
.........,
'-..... r-...,
4
.,,- ,/"
:;
:;
""
2
10
>
,/"
0
:E -10
~
= 600 Q
= 25°C
Cl
0
i'-...
TA
15
,/"
-5
RL
>
,/
o
o
o
I
MAXIMUM PEAK OUTPUT VOLTAGE
10
-20
~
~
I
vs
SUPPLY VOLTAGE
-60
= ±5V
I
MAXIMUM PEAK OUTPUT VOLTAGE
"j(
~
-50
-2 I-VCC±
Figure9
0..
::I
I
:E
-4 I......
Figure8
0
""
-8
-6
10 - Output Current - rnA
:;
Il.
~
10 - Output Current - rnA
>
:;
-40
-30
= 10 kQ
TA = 25°C
15
~
-
__.
RL
>
"0
-
"j(
4
20
"Cl
2l
= ± 15 V
~
8
:E
o
-12 I- VCC±
= 25°C
Cl
"j(
~
-14
"":l
":;
E
~
:3
a..
~ -10
a..
"'"
= ±20 V
"0
~ -16
-'"
TA
f- VCC±
::I
14
"iii
~
-20
" -18 I'-..
~
Il.
:;
o
MAXIMUM NEGATIVE PEAK
OUTPUT VOLTAGE
-15
-20
o
2
4
6
8
10
12
14
16
1"
18
20
JVcc± J - Supply Voltage - V
Supply Voltage - V
Figure 10
Figure 11
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 " DALLAS" TEXAS 75265
2-1137
TlE2064, TlE2064A, TlE2064B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J,LPOWER QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE
MAXIMUM PEAK OUTPUT VOLTAGE
vs
vs
SUPPLY VOLTAGE
FREQUENCY
6
= 100 n
TA = 25°C
RL
>
Q)
Cl
4
0
>
'5
0.
'5
2
"'m
"
0.
0
/
V
!'J
~
VOM+
"
.,
';(
"'0...,"
.,
"~
-2
-4
-
I---
VOM-
o
>
~ I-
0
10 k
100 k
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE
vs
vs
FREQUENCY
FREQUENCY
>
=
=
TA = 25°C
25
..
f-
Cl
35
1
30
-
vcc± = ±20 V
RL = 10 kn
TA = 25°C
1\
'5
o
20
"'"
m
25
0.
§
10
~
.,
20
Q)
0.
E
.,
';(
5
E
E
\
"
'~
0.
0
10 k
15
10
::;;
"-
0:100 k
-
1M
0:-
5
'\
.....
0.
0'
10 M
>
0
10 k
100 k
1M
f - Frequency - Hz
f - Frequency - Hz
Figure14
Figure 15
TEXAS ~
INSfRUMENTS
2-1138
10 M
40
.i!!
o
>
~
>
0:-
0.
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE
Vcc±
±15 V
RL
10 kn
15
0'
2
Figure13
30
.
::;;
::;;
Figure12
10
6
~
P.
.,
1M
f - Frequency - Hz
6
4
'50.
.:<
f\
"E
IVcc± I - SUpply Voltage - V
2
Cl
8-"
\
4
';(
0'
!'J
g
\
6
E
>
..
8
~
I
>
=
=
TA = 25°C
Vcc±
±5V
RL
10 kn
'5
o
0.
~
10
:g
~
::;;
::;;
0
.,
.,Cl
>
'5
0.
0
E
E
>
POST OFFICE BOX 655303 ' DALLAS, TEXAS 75265
10 M
TlE2064, TlE2064A, TlE2064B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
IlPOWER QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION and PHASE SHIFT
120
\
co
"I
c 100
.2
~C.
80
«.,
60
vs
FREQUENCY
FREE-AIR TEMPERATURE
I
~
~
~
Cl
C
.,
Q;
:::
C
c
>
40
"" ~
'\
\
"\
20
«
-20
0.1
10
~
100·
.;:
120· ~
.,
II>
OJ
..c:
140· Il.
..,.I
160·
'\
VCC± = ±15 V
Rl = 10 kQ
Cl = 100 pF
TA = 25·C
0
>
80·
(5
~
60·
I
PHASE SHIFT
E
S
>
LARGE-SIGNAL VOLTAGE AMPLIFICATION
vs
c
.2
'iii
:5
C.
E
400
Rl = 10 kQ
350
VCC± = ±20V
r----r-r--
300
"
250
«.,
Cl
S
VCC±=±15V
200
\
~
~
~
100
I
«
1
o
- 75
«
- 50
- 25
vs
FREE-AIR TEMPERATURE
80
I
VID= -100mV
C
40
C
40
20
()
20
a
0
~
'5
Q.
'5
VCC± = ±15 V
0
TA = 25·C·
'5
~
100
l
I
I-r--VID = -100 mV
r-- :-----
-
'5
Vo = 0
c3"
-20
-20
,!.
(;
(;
..c:
Ul -40
I
£l-60
-80
--
. ~ -40
I
/
o
IVID = Tmv
10
125
vcc± = ±15 V
Vo = 0 - r----
:;
:;
~
75
ELAPSED TIME
60
a
50
-..
SHORT-CIRCUIT OUTPUT CURRENT
~
'5
Q.
'5
25
vs
60
()
0
---
Figure 17
E
~
""""
~
TA - Free-Air Temperature - ·C
SHORT-CIRCUIT OUTPUT CURRENT
I
-r--
50 I - Vr± =1±5V
Figure 16
80
~
150
C
c
>
200·
100 1 k 10 k 100 k 1 M 10 M
f - Frequency - Hz
I'--.. ~ r-......
(5
>
C
180·
r-....
20
30
40
t - Time - seconds
50
£l-60
-80
- 75
60
- 50
- 25
VID = 10~r---
f-- f--
0
25
.-
50
75
100
125
TA - Free-Air Temperature - ·C
Figure18
Figure 19
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
+
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-1139
TlE2064, TlE2064A, TlE2064B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
IlPOWER QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
COMMON-MODE REJECTION RATIO
OUTPUT IMPEDANCE
35
vs
vs
FREQUENCY
FREQUENCY
100
""
I-'
VCC± = ±15 V
TA = 25°C
30
/
G>
"
AVO =
C
-g'"
20
~
:;
Q.
10t
't;
a:
Vcc± = ±20V
T I ':\
VCC±=±5V
0
·u
G>
'Qj
a:
60
'\
'tI
0
C
0
AVO = 100
40
'\
E
E
Avo = 1
10
0
0
U
N
I
/
5
100
20
a:
a:
::;;
u
V
V
o
100k
10
10 M
1M
SUPPLY CURRENT
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
//
V
TA = 125°0/
f:!
V/ V
1.1
V
'"
o
2
4
'/
I
.-
Q.
u
9
I
1.1
I
Y
6
8
10
12
14
16
18
20
1
-75
/"
-50
IVcc± I - Supply Voltage - V
./
l/
' / Vcc±
/
/TA = -55°C
I
V
/
./
::>
Q.
V
1
1/
1.2
rn
/
V
./
f:!
V
vcc± = ± 2 0 /
1.3
5
./
/
E
U
", TA = 25°C
'//
I
100 k
Figure20
c:
'"
10 k
f - Frequency - Hz
Vo = 0
NO LOAO
Q.
1k
100
SUPPLY VOLTAGE
rn
'\
f - Frequency - Hz
1.4
1.2
~
o
10 k
1k
vs
U
~
::;;
0
E
~
.,
15
:;
I
vcc± = ±5V
RL = 10 kQ
-50
~
V
CL = 100 pF
CL = 100 pF
TA = 25°C
See Figure 1
TA = 25°C
See Figure 1
-100
-100
o
2
I - Time - 119
Figure 24
Figure25
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
VOL TAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
10
>
.,
.
'6'"
2
>
>
:;
c.
:;
'5Co
'5
0
5
VCC± = ±15 V
RL = 10 kQ
CL = 100 pF
TA = 25°C
See Figure 1
0
0
0
I
VCC±=±5V
RL = 10kQ
CL = 100pF
TA = 25°C
See Figure 1
>
-1
-2
3
15
>
I
2
I - Time - 119
3
0
o
3
4
.,
.
''"6
--
vcc± = ±15 V
RL = 10 kQ
-50
o
0
-5
>
-10
-15
5
I - Time - I1S
10
15
I
I
I
II
o
10
20
30
40
I - Time - 119
Figure26
Figure27
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-1141
TlE2064, TlE2064A, TlE2064B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J.LPOWER QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
NOISE VOLTAGE
(REFERRED TO INPUT)
0.1 TO 10 Hz
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
100
~>
VCC± = ±1S V
TA = 2SoC
c
I
O.S
80
G>
01
vcc±=±sv
RS = 100 Q
TA = 2SoC
1\1\
See Figure 2
S
>::1.
g
G>
G>
60
1',
II>
Ol
S
'0
'0
z
0
r--
:;
>
a.
.E
.,G>
'0
40
C
G>
Z
"iii
>
'5
-O.S
.,.
w
20
c
-1~~~--~~--~~
o
2
3
4
S
__~~~~~
6
7
8
9
>
10
I-Time-s
f - Frequency - Hz
Figure28
Figure29
TOTAL HARMONIC DISTORTION
TOTAL HARMONIC DISTORTION
vs
vs
FREQUENCY
FREQUENCY
0.3
AVO = 10
AVO = 2
~
VO(PP) = 2 V
TA = 2SoC
~
O.S
c
o
c
.g
S.,
VO(PP) = 2 V
TA = 2SoC -H-t+t+Ht-t--t-Htlttt---t-t+l-ttIfI
.~'iii
0.2
0.4 1--+-t-t+ttttt---+-++++tt+t--HH+t+ttt--l-t-HtlIHl
C
C
'c0
'gE
0.3 1--+-t-t+ttttt---+-++++tt+t--HH+t+ttt--l-t-!+H1il
"iii
0.2
t-+-t+tttttt--t+t++tttt--t-1H+ttItt-t--+'IlIHttl
0.1
t=t+:mm::=++++trtt!=t:1mtM:::1+m!~
u
u
E
VCC± = ±SV
"
"iii
0
0.1
~
l-
I
I
0
J:
!i!
I-
I-
~
SOURCE SIGNAL
o
10
II IIIII
100
II I
VCC± = ±S V
~
J:
VCC± = ±20 V
1k
10 k
f - Frequency - Hz
10k
100 k
f - Frequency - Hz
Figure30
Figure31
TEXAS ~
INSTRUMENTS
2-1142
1/
SOURCE SIGNAL
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
100 k
TlE2064, TlE2064A, TlE2064B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J,lPOWER QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
UNITY-GAIN BANDWIDTH
vs
FREE-AIR TEMPERATURE
2.5
2.5
r-----J-~--r--~--r--_r_--r-.....,
RL = 10 kQ
CL = 100 pF
N
TA = 25·C
See Figure 3
J:
:0
..::
-6
.3:
2
...c
-
~
l1I
a:J
c
.OJ
-
~~
~
~
i..--
."
2~-1--~~-+--~~~+-+---+--1
~c
l1I
a:J
c
.OJ
<;l
~
i..::
<;l
·f
1.5
::;)
::;)
r£
r£
1.5
~-1---+---+---+---+---+----f"'o,..,.....J
RL = 10 kQ
=
CL
100 pF
See Figure 3
1~~-~-~-~-~-~-~~
1
o
2
4
6
IVcc± I
8
-
10
12
14
16
18
-75
20
59·
....E
c
V
.~
\
40·
125
\.
~
:0
.,
!II
l1I
..::
30·
...............
c..
. ,v
I
....E
57·
20·
-
-
10·
56·
55·
100
VCC± = ±15 V
RL = 10kQ
TA = 2S·C
See Figure 3
l1I
//
I
\
50·
V
./
c.. 58·
75
PHASE MARGIN
vs
LOAD CAPACITANCE
60·
..::
50
PHASE MARGIN
vs
SUPPLY VOLTAGE
RL = 10 kQ
61· CL = 100 pF
TA = 25·C
. See Figure 3
60·
l1I
25
Figure33
l1I
.,.
0
Figure32
.~
:0
-25
T A - Free·Air Temperature - ·C
62·
c
-50
Supply Voltage - V
o
o·
2
4
6
8
10
12
14
16
18
20
o
200
400
600
800
IVcc± I - Supply Voltage - V
CL - Load Capacitance - pF
Figure34
Figure35
1000
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
2-1143
TlE2064, TlE2064A, TlE2064B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J.1POWER QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
=
=
RL
10 kQ
CL
100 pF
See Figure 3
64·
."
:e
...
.~
62·
II>
.<:
C.
I
60·
E 58·
~
56·r---~--~~---4---H--~~-+--~
54·L-__ __
__ __ __ __ __
-75 -50 -25
0
25
50
75
100 125
TA - Free-Air Temperature - ·C
~
~~
~
~
~
~
~
Figure36
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TYPICAL APPLICATION OAT A
macromodel information
Macromodel information provided was derived using PSpice™ Parts™ model generation software. The Boyle
macromodel (see Note 5) and subcircuit in Figure 37 were generated using the TLE2064 typical electrical and
operating characteristics at 25°C. Using this information, output simulations of the following key parameters
can be generated to a tolerance of 20% (in most cases):
•
•
•
•
•
•
Maximum positive output voltage swing
Maximum negative output voltage swing
Slew rate
Quiescent power dissipation
Input bias current
Open-loop voltage amplification
•
•
•
•
•
•
Unity gain frequency
Common-mode rejection ratio
Phase margin
dc output resistance
ac output resistance
Short-circuit output current limit
. To model the TLE2064, TLE2064A, or TLE2064B, use four macromodels in your simulation.
NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, Macromodeling of Integrated Circuit Operational Amplifiers, IEEE Journal
of Solid-State Circuits, SC-9, 353 (1974).
PSpice and Parts are trademarks of MicroSim Corporation.
Macromodels, simulation models, or other models
provided by II, directly or indirectly, are not
warranted by 11 as lully representln~ all 01 the
~:~l~~c~J~~~~r ~~~d°J::~~~t~Ri;~~~c~~d~:cr~'~'li~~
2-1144
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TlE2064, TlE2064A, TlE2064B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
IlPOWER QUAD OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
macromodel information (continued)
99
din
9
egnd
r------I41--.... 92
rp
vln
IN-
-+---t---#---'
IN+
--+---+-...---!----\---'
+
r01
4
5
VCC- ~~~---~~~~~--~~~------------~
+
ve
OUT
.subekt TLE2064 1 2 3 4 5
el
11 12 1;457E-12
e2
6 7 15.00E-12
de
5 53 dx
de
54 5 dx
dIp 90 91 dx
dIn 92 90 dx
dp
4 3 dx
egnd 99
poly(2) (3,0) (4,0)
.5 .5
fb
7 99 poly(5) vb ve ve vIp vln
4.357E6 -4E6 4E6 4E6 -4E6
ga
6
11 12 188.5E-6
gem
6 10 99 3.352E-9
iss
3 10 de 51.00E-6
hlim 90 0 vlim 1K
j1
11 2 10 jx
j2
12 1 10 jx
r2
6 9 100.0E3
rd1
4 11 5.305E3
rd2
4 12 5.305E3
ro1
8 5 280
ro2
7 99 280
rp
3 4 113.2E3
rss 10 99 3.922E6
vb
9 0 de 0
ve
3 53 de 2
ve
54
4 de 2
vlim 7 8 de 0
vlp 91 0 de 50
vln
92 de 50
.model dx D(Is=800.0E-18)
.model jx PJF(Is=2.000E-12 Beta=423E-6 Vto=-1)
. ends
°
°
°
° °
°
Figure 37. Boyle Macromodel and Subcircuit
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-1145
TlE2064, TlE2064A, TlE2064B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J.LPOWER QUAD OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
Input characteristics
The TLE2064, TLE2064A and TLE2064B are specified with a minimum and a maximum input voltage that,
if exceeded at either input, could cause the device to malfunction.
Because of the extremely high input impedance and resulting low bias current requirements, the TLE2064,
TLE2064A and TLE2064B are well-suited for low-level signal processing; however, leakage currents on
printed circuit boards and sockets can easily exceed bias current requirements and cause degradation in
system performance. It is a good practice to include guard rings around inputs (see Figure 38). These guards
should be driven from a low-impedance source at the same voltage level as the common-mode input.
The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation.
Vo
Vo
Figure 38. Use of Guard Rings
TEXAS
~
INSTRUMENlS
2-1146
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
Vo
TLE2082, TLE2082A, TLE2082Y
EXCALIBUR HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
D3958. AUGUST 1991
available features
•
40 VIJls Slew Rate Typ
•
Wide Supply Range ... ± 2.25 V to ± 22 V
•
High-Gain Bandwidth Product ... 10 MHz
•
Input Range Includes the Positive Supply
•
± 30 rnA Minimum Short-Circuit Output
Current
•
Macromodel Included
•
Fast Settling Time ... 400 ns to 10 mV
10-V Step Typ ....... 1.5 Jls to 1 mV
OUTPUT VOLTAGE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
vs
FREQUENCY
SETTLING TIME
12.S
;fl.
10
"
7.S
/
S
./'mv
10lmV
In
'0
Z
+
c
.g
(;
0.1
'iii
i5
()
'c0
E
to
:z: 0.01
A~ ~ I ~~~:IRL ~ 121~"
/
AV = 10, Rl = 600Q
~
I
o
Z
+
0.001
10
100
1k
10 k
f - Frequency - Hz
\
-S
\
-7.S
VCC± = ±lSV
Vo = 20Vpp I
TA = 2S"C . I _I.
Filter: 10 Hz to SOO kHz Band Pass
o
' ....
o
'SQ,
~
I
2.S
~ -2.S
>
I
I-
"
~
o
>
Av = 10, RL = 2 kU'
~
l-
:z:
V
AV - 100, RL _ 600 Q
>
VCC± = ±lSV
RL = 1 kQ
CL = 100pFAV = -1
TA= 2 5 " C -
Rising
Falling
~
~V
10,mV
"
-10
-12.S
100 k
o
O.S
1.S
Settling Time -
2
~s
description
The TLE2082 and TLE2082A are high-performance, high-speed, internally-compensated JFET-input dual
operational amplifiers built using Texas Instruments complementary bipolar Excalibur process. The TLE2082A
has a lower input offset voltage than the TLE2082. Both are pin-compatible upgrades to standard industry
products.
AVAILABLE OPTIONS
PACKAGE
TA
VIO max
AT 2S"C
O°C to
70°C
-40°C to
85°C
- 55°C to
125°C
4mV
7mV
4mV
7mV
4mV
7mV
SMALLOUTUNE
(D)
TlE2082ACD
TLE2082CD
TLE2082AID
TLE2082ID
TLE2082AMD
TLE2082MD
CHIP
CARRIER
(FK)
CERAMIC
PLASTIC
DIP
-----
-----
TlE2082AMFK
TlE2082MFK
TlE2082AMJG
TlE2082MJG
DIP
(P)
TlE2082ACP
TlE2082CP
TlE2082AIP
TlE20821P
TlE2082AMP
TLE2082MP
(JG)
CHIP
FORM
(V)
TLE2082Y
D packages are available taped-and-reeled. Add "R" suffix 10 device type (e.g .. TlE2082ACDR). Chips are tested
alTA = 25°C.
PRODUCTION DATA Information is current as of publicalion date.
Products conform to specifications pe rthe terms atTnas Instruments
standard warranty.
Production processing does not necessarily
include testing 01 all parameters.
TEXAS ~
IN5rRUMENlS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
Copyright © 1991. Texas Instruments Incorporated
On produciscompliantto Mll-STD·883, all parameters are tested
unless otherwise noted. On all other products, processing does
not necessarily include testing of parameters.
2-1147
TlE2082, TlE2082A, TlE2082Y
EXCALIBUR HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
description (continued)
The design features a 30-V/JlS minimum slew rate, which results in a high-power bandwidth. Settling time to
0.1 % of a 1O-V step (1 kO 11 OO-pF load) is approximately 400 ns. Gain-bandwidth product is typically 10 MHz
with an 8-MHz minimum. As such, the TLE2082 and TLE2082A offer significant speed and noise advantages
at a low 1.5-mA typical supply current per channel.
The input current characteristics traditionally associated with JFET-input amplifiers have been maintained.
Input offset voltage is graded to a 4-mV maximum. Typically, temperature coefficient of input offset voltage
is 2.4 'tlV/oC and typical CMRR and kSVR are 98 dB and 99 dB, respectively. Device performance is relatively
independent of supply voltage over the wide ±2.25-V to ±22-V range. The input common-mode voltage range
extends from the positive supply down to VCC- + 4 V without significant degradation to dynamic performance.
Maximum peak output voltage swing is from VCC+ -1 Vto VCC- + 1 V under light current loading conditions.
The output is capable of sourcing and sinking currents internally limited to at least 30 mA and can sustain
shorts to either supply. Care must be taken to ensure that maximum power dissipation is not exceeded for long
durations.
Both the TLE2082 and TLE2082A are available in a wide variety of packages, including both the industrystandard 8-pin small-outline version and chip form for high density system applications. The C-suffix devices
are characterized for operation from O°C to 70°C, the I-suffix over the -40°C to 85°C range, and the M-suffix
over the full military temperature range of -55°C to 125°C.
D, JG, OR P PACKAGE
(TOP VIEW)
10UT
liN 1 IN +
Vcc-
FK PACKAGE
(TOP VIEW)
U
3
6
Vcc+
20UT
21N-
4
5
21N+
2
8
7
~
+
000
So
z~z::>z
3
NC
liN -
2
1 20 19
4
18
NC
5
20UT
NC
6
17
16
1 IN +
7
15
2 IN-
NC
8
14
NC
910111213
010+0
zoz~z
>o
'"
NC - No internal connection
symbol
I N + = [ > - OUT
IN-
TEXAS
-II
INSTRUMENTS
2-1148
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
NC
TlE2082Y
EXCALIBUR HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
Chip information
These chips, properly assembled, display characteristics similar to the TLE2082. Thermal compression or
ultrasonic bonding may be used on the doped aluminumbonding pads. Chips may be mounted with conductive
epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
11N+
1 IN-
vccCHIP THICKNESS:
15 TYPICAL
BONDING PADS:
4 X4 MINIMUM
TOLERANCES
ARE ±10%
~1~'------------80------------~~~1
ALL DIMENSIONS
ARE IN MILS
I I
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-1149
~
'"o
ACTUALOEVICE
COMPONENTCOUNT
equivalent schematic (each channel)
Transistors
Resistors
Diodes
Capacitors
VCC+
01
I
R2
I
l
t
57
37
5
11
Rl
c....m-l
,"">c:rmnm
-;-I>N
-r-=
Z-co
-etaN
c:c:~
-I:a-l
C::J:~
N
c:>C)=
r-::J:ClCI
Ccn N
-e-e>
mm
:am
>C
g
-I
0_
:HZ
~~d
~c:~
b~
i!'1'!'l
IN_+~·I
::::!
os
c
r-
OUT
'""
:a
025
en
"
~
02 I
3:
-e
C
m
(I)
09
~(j}~
:I>
:I>
~~J~
~Z
z
02S
01
010
R14
C2
VCe-
TLE2082, TLE2082A
EXCALIBUR HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC+ (see Note 1) .................................................... 22 V
Supply voltage, VCC- (see Note 1) ................................................... -22 V
Differential input voltage range (see Note 2) .......... , .......................... VCC+ to VCCInput voltage range, V, (any input) ............................................. VCC+ to VCCInput current, " (each input) ................................ , ........................ ±1 mA
Output current, 10 (each output) ..................................................... ±80 mA
Total current into VCC+ terminal .................................................... 160 mA
Total current out of VCC- terminal ................................................... 160 mA
Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... unlimited
Continuous total dissipation ........................................ See Dissipation Rating Table
Operating free-air temperature range, TA: C-suffix ................................... O°C to 70°C
I-suffix ................................. -40°C to 85°C
M-suffix ............................... -55°C to 125°C
Storage temperature range ................................................... -65°C to 150°C
Case temperature for 60 seconds: FK package .......................................... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package ............... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package .................. 300°C
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between vcc+ and VCC- .
2. Differential voltages are at the noninverting input with respect to the inverting input.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
0
FK
JG
p
TA ~ 2S·C
POWER RATING
725mW
1375mW
1050mW
1000mW
DERATING FACTOR
ABOVE TA =2S·C
5.8 mW/oC
11.0 mW/oC
8.4 mWI"C
8.0mW/oC
TA =70·C
POWER RATING
464mW
880mW
672mW
640mW
TA =8S·C
POWER RATING
377mW
715mW
546mW
344mW
TA =12S·C
POWER RATING
145mW
275mW
210mW
200mW
recommended operating conditions
Supply voltage, VCC+
Common-mode input voltage, VIC
Input voltage range
Operating free-air temperature, TA
VCC±=±5V
VCC+ -±15V
VCC+=±5V
VCC+=±15V
M-SUFFIX
C-SUFFIX
I-SUFFIX
MIN
MAX
MIN
MAX
MIN
MAX
±2.25
± 20 ±2.25
± 20 ± 2.25
± 20
-1
-1
5
-1
5
5
-11
15
-11
15
-11
15
5
-1
5
-1
5
-1
-11
15
-11
15
-11
15
-40
125
0
70
85
-55
UNIT
V
V
V
°C
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-1151
TlE2082C, TlE2082AC
EXCAlIBUR HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature,
PARAMETER
VIO
Input offset voltage
aVIO
Temperature coefficient of
input offset voltage
110
Input ollset current
liB
Input bias current
TEST CONDITIONS
VIC
RS
= 0, Vo = 0,
= 50 Q
VIC = 0, Vo
See Figure 4
= 0,
TAt
Common-mode input
voltage range
RS
=± 5 V
TLE2082C
TYP MAX
MIN
MAX
4
5.1
25
2.3
25
100
350
175
850
5
100
350
175
850
0.9
7
8.1
Full range
2.3
25°C
Full range
25°C
Full range
5
= 50 Q
15
5
to
-1
5
to
-0.9
3.8
25°C
Full range 3.7
3.7
25°C
Full range 3.6
1.5
25°C
Full range 1.5
-3.8
25°C
Full range -3.7
25°C
-3.7
Full range -3.6
-1.5
25°C
Full range -1.5
85
25°C
84
Full range
5
to
-1.9
VOM+
Maximum positive peak
output voltage swing
= -200 JJ.A
10
= -2 mA
10 = -20 mA
10 = 200
VOM-
Maximum negative peak
output voltage swing
JJ.A
10 = 2mA
10 = 20mA
RL = 600 Q
AVO
Large-signal differential
voltage amplification
VO=±2.3 V RL = 2 kQ
RL=10kQ
I"j
Input resistance
ci
Input capacitance
Zo
Open-loop output impedance
Common-mode
rejection ratio
CMRR
Supply-voltage rejection ratio
kSVR
VIC = a
VIC = 0,
Common mode
See Figure 5 Differential
f = 1 MHz
VIC = VICR min, Vo = 0,
RS = 50Q
VCC± = ±5Vto±15V,
VO=O, RS = 50Q
ICC
(dVCC +1t.v10)
Supply current
(both channels)
ax
Crosstalk attenuation
VIC = 0, RL = 2 kQ
lOS
Short-circuit output current
Vo = 0, No load
25°C
Full range
25°C
Full range
25°C
25°C
25°C
25°C
25°C
Full range
25°C
Full range
25°C
Vo =
a
TEXAS
15
3.9
2.3
-4.2
-3.7
-3.7
-3.6
-1.5
-1.5
85
84
-4.1
-2.4
91
5
to
-1.9
91
95
94
106
2.9
25°C
25°C
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
3.4
82
80
2.7
dB
Q
10 12
11
2.5
80
89
pF
Q
dB
99
2.9
3.4
120
-35
45
V
-2.4
106
99
pA
V
-4.1
100
80
2.7
pA
-4.2
90
89
70
68
JJ.V!°C
2.3
100
70
68
82
mV
V
3.9
90
10 1.2
11
2.5
80
89
UNIT
4.1
89
95
94
tFull range is O°C to 70°C.
2-1152
4.1
Full range
VID = 1 V
VID = -1 V
MIN
5
to
-1
5
to
-0.9
3.8
3.7
3.7
3.6
1.5
1.5
-3.8
Full range
10
TLE2082AC
TYP
0.65
25°C
Full range
25°C
VICR
vcc±
dB
3.4
mA
3.4
120
-35
45
dB
mA
TlE2082C, TlE2082AC
EXCALIBUR HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature, V cc±
TEST CONDITIONS
PARAMETER
SR +
Positive slew rate
RL ~ 2 kQ, CL ~ 100 pF,
SR-
Negative slew rate
See Figure 1
2~V
Step, RL
1 kJ:l,
25'C
Equivalent input noise
f
~
10 Hz
f
~
10 kHz
f
~
equivalent See Figure 3
input noise voltage
Equivalent input noise
current
f
~
0.1 Hz to
VIC ~ 0, f ~ 10 kHz
Total harmonic distortion VO(PP) ~ 5 V, AVO ~ 10,
THO + N plus noise
f ~ 1 kHz, RL ~ 2 kQ, RS ~ 25 Q
B1
Unity gain bandwidth
4>m
CL
~
~
10 mV, RL
~
2kn,
25 pF, See Figure 2
bandwidth
VO(PP) ~ 4 V, AVO ~ -1,
RL ~ 2 kQ, CL ~ 25 pF
Phase margin at unity
VI ~ 10 mV, RL ~ 2kQ,
gain
CL
Maximum
BOM
VI
tFull range is
output~swing
~
38
V/flS
0.25
0.25
0.4
0.4
85
85
13
13
6
6
0.6
0.6
25'C
2.8
2.8
25'C
0.013%
0.013%
25'C
9.4
9.4
MHz
25'C
2.8
2.8
MHz
25'C
56'
56'
fls
25'C
25'C
25 pF, See Figure 2
nV/'I'HZ
flV
10 Hz
In
V/fls
23
10 Hz to
10 kHz
UNIT
35
38
23
To 1 mV
RS ~ 20Q,
Vn(PP)
TLE2082AC
MIN
TYP MAX
25'C
voltage
Peak~to~peak
MAX
23
23
To 10mV
~
CL ~ 100 pF
Vn
TYP
35
25'C
Full range
Full range
AVO ~ -1,
Settling time
TLE2082C
TAt
MIN
VO(PP) ~ ± 2.3 V, AVO ~ - 1,
= ±5 V
fA/'I'HZ
onc to 70nC.
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
2-1153
TlE2082C, TlE2082AC
EXCALIBUR HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Vcc±
PARAMETER
Via
Input offset voltage
aVIO
Temperature coefficient of
input offset voltage
110
Input offset current
liB
TEST CONDITIONS
TAt
= ±15 V (unless otherwise noted)
TLE2082AC
TLE2082C
MIN
TYP
1.1
MAX
7
8.1
RS = 50Q
Full range
2.4
25
2.4
25
25°C
Full range
25°C
Full range
6
100
350
175
900
6
VIC = 0, Va = 0,
See Figure 4
100
350
175
900
20
15
15
to
to
-11 -11.9
15
Full range
to
-10.9
25°C
13.8
14.1
Full range 13.7
25°C
13.7
13.9
Full range 13.6
25°C
11.5
12.3
Full range 11.5
25°C
-13.8 -14.2
Full range -13.7
RS = 50 Q
voltage range
10 = -200}lA
VOM+
Maximum positive peak
output voltage swing
10 = -2 mA
10 = -20 mA
10 = 200}lA
VOM-
Maximum negative peak
output voltage swing
10 = 2 mA
10 = 20 mA
RL = 600Q
AVD
Large-signal differential
voltage amplification
VO=±10V RL = 2 kQ
RL = 10 kQ
q
Input resistance
ci
Input capacitance
Zo
Open-loop output impedance
Common-mode
CMRR
kSVR
rejection ratio
Supply-voltage rejection ratio
ICC
(eN CC + I Ll Via)
Supply current
(both channels)
ax
Crosstalk attenuation
lOS
Short-circuit output current
VIC = 0
VIC = 0,
Common mode
See Figure 5 Differential
f = 1 MHz
VIC = VICR min, Va = 0,
RS = 50 Q
VCC± = ±5Vto±15V,
Va = 0, RS = 50 Q
Va = 0, No load
25°C
Full range
25°C
Full range
25°C
Full range
25°C
Full range
25°C
Full range
85
84
96
95
94
95
109
10 12
7.5
80
Full range
25°C
Full range
25°C
79
82
81
2.7
3.1
-30
30
120
-45
48
25°C
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
mV
}lV/oC
pA
pA
V
V
dB
94
94
25°C
25°C
25°C
25°C
25°C
25°C
UNIT
V
-13.7
-14
-13.7
-13.6
-11.5 -12.4
-11.5
85
96
84
95
109
94
95
118
118
Q
10 12
7.5
2.5
2.5
80
98
80
99
Full range
VIC = 0, RL = 2 kQ
VID - 1 V
Va = 0
VID = -1 V
20
15
15
to
to
-11 -11.9
15
to
-10.9
13.8
14.1
13.7
13.7
13.9
13.6
11.5
12.3
11.5
-13.8 -14.2
-13.7
-14
-13.6
-11.5 -12.4
-11.5
tFull range is O°C to 70°C.
2-1154
MAX
4
5.1
25°C
Full range
Input bias current
Common-mode input
TYP
0.7
VIC = 0, Va = 0,
25°C
VICR
MIN
3.4
3.4
pF
Q
80
98
79
82
81
2.7
3.1
-30
30
120
-45
48
dB
99
dB
3.4
3.4
mA
dB
mA
TLE2082C, TlE2082AC
EXCALIBUR HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature, Vcc±
PARAMETER
SR +
Positive slew rate
SR-
Negative slew rate
Settling time
TAt
TEST CONDITIONS
VO(PP) = 10 V, AVD = -1,
RL = 2 kn,
CL = 100 pF,
See Figure 1
AVD = -1,
To10mV
10-V Step, RL = 1 kn,
To 1 mV
CL = 100 pF
25°C
Full range
25°C
Full range
45
27
13.7
6
6
0.6
0.6
25°C
2.8
2.8
25°C
0.008%
0.008%
h 10 Hz to
10 kHz
f = 0.1 Hz to
10 Hz
25°C
'hn
27
30
97
13.7
RS = 20 £1,
Peak-to-peak equivalent See Figure 3
input noise voltage
Phase margin at unity
gain
TYP
40
1.5
Vn(PP)
VO(PP) = 20 V, AVD = -1,
RL = 2 kn, CL = 25 pF
VI = 10 mY, RL = 2 kn,
CL = 25 pF, See Figure 2
45
30
27
MIN
30
1.5
25°C
BaM
27
TLE2082AC
MAX
0.4
f = 10 Hz
f=10kHz
Maximum output-swing
bandwidth
TYP
40
0.4
Equivalent input noise
voltage
Equivalent input noise
VIC = 0, f = 10 kHz
current
Total harmonic distortion VO(PP) = 20 V, AVD = 10,
THD + N plus noise
f = 1 kHz, RL = 2 kn, RS = 25 £1
VI = 10 mY, RL = 2 kn,
Unity-gain bandwidth
B1
CL = 25 pF, See Figure 2
TLE2082C
MIN
30
25°C
Vn
In
= ± 15 V
97
MAX
UNIT
V/flS
V/fls
fls
nV/fRZ
flY
fA/fRZ
25°C
8
10
8
10
MHz
25°C
478
637
478
637
kHz
25°C
57°
57"
tFull range is O°C to 70°C.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-1155
TlE20821, TlE2082AI
EXCAlIBUR HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Vcc±
PARAMETER
TEST CONDITIONS
TAt
= ± 5 V (unless otherwise noted)
TLE2082AI
TLE20821
MIN
25°C
TYP
0.9
MAX
7
MIN
TYP
0.65
MAX
4
VIO
Input offset voltage
VIC = 0, Vo = 0,.
Full range
(lVIO
Temperature coefficient of
input offset voltage
RS = 50 n,
Full range
2.4
25
2.4
25
5
100
5
VIC = 0, Vo = 0,
See Figure 4
25°C
Full range
25°C
Full range
15
950
175
15
100
950
175
2
110
liB
Input offset current
Input bias current
8.5
2
5
to
-1
5
Full range
to
-D.8
25°C
3.8
Full range 3.7
25°C
3.7
Full range 3.6
25°C
1.5
Full range 1.5
25°C
-3.8
Full range -3.7
25°C
-3.7
Full range -3.6
25°C
-1.5
Full range -1.5
25°C
VICR
Common-mode input
voltage range
RS = 50n
10 = -200 j.lA
VOM+
Maximum positive peak
output voltage swing
10 = -2 mA
10 = -20 mA
10 = 200 j.lA
VOM-
Maximum negative peak
output voltage swing
10 = 2 mA
10 = 20 mA
RL = 600n
AVD
Large-signal differential
voltage amplification
VO=±2.3V RL = 2 kn
RL = 10 kn
r;
Input resistance
ci
Input capacitance
zo
Open-loop output impedance
Common-mode
CMRR
ax
rejection ratio
Supply-voltage rejection ratio
(t.VCC+lt.VIO)
Supply current
(both channels)
Crosstalk attenuation
lOS
Short-circuit output current
kSVR
ICC
25°C
Full range
25°C
Full range
25°C
Full range
VIC = 0
25°C
VIC - 0,
Common mode
25°C
See Figure 5 Differential
25°C
f = 1 MHz
25°C
VIC = VICR min, Vo = 0,
RS = 50 n
VCC± = ±5Vto±15V,
Vo = 0, RS = 50 n
Vo = 0, No load
VIC = 0, RL = 2 kn
Vo = 0
VID = 1 V
VID = -1 V
25°C
Full range
25°C
Full range
25°C
Full range
25°C
85
84
90
89
95
94
5
to
-1.9
5
to
-1
70
68
82
80
2.7
25°C
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
5
to
-1.9
4.1
3.8
3.7
3.7
3.6
1.5
1.5
-3.8
3.9
2.3
-4.2
-3.7
-3.7
-3.6
-1.5
-1.5
85
-4.1
-2.4
91
84
90
89
95
94
100
106
2.5
80
89
70
99
2.9
120
-35
45
3.4
3.4
68
82
80
2.7
mV
IlVl o C
pA
pA
nA
V
5
to
-0.8
10 12
11
tFull range is - 40°C to 85°C.
2-1158
5.5
UNIT
4.1
3.9
V
2.3
-4.2
-4.1
V
-2.4
91
100
dB
106
10 12
11
2.5
80
89
n
pF
n
dB
99
2.9
120
-35
45
dB
3.4
3.4
mA
dB
mA
TlE20821, TlE2082AI
EXCAlIBUR HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature, V cc±
SR+
SR-
Vn
Vn(PP}
MIN
Negative slew rate
VO(PP} ~ ± 2.3 V, AVO ~ - 1,
RL ~ 2 kn, CL ~ 100 pF,
See Figure 1
To 10mV
Settling time
AVD ~ -1,
2-V Step, RL ~ 1 kn,
CL ~ 100 pF
To 1 mV
Positive slew rate
TLE20821
TAt
TEST CONDITIONS
PARAMETER
25°C
Full range
TYP
35
TLE2082AI
MAX
MIN
TYP
35
22
22
25°C
Full range
= ±5 V
UNIT
V/!Ls
38
38
V/!Ls
22
22
MAX
0.25
0.25
0.4
0.4
85
13
85
6
6
0.6
0.6
25°C
2.8
2.8
25°C
0.013%
0.013%
VI ~ 10mV, RL ~ 2kn,
CL ~ 25 pF, See Figure 2
25°C
9.4
9.4
MHz
VO(PP} ~ 4 V, AVD ~ -1,
RL ~ 2 kn, CL ~ 25 pF
25°C
2.8
2.8
MHz
25°C
56°
56°
25°C
~
10 Hz
Equivalent input noise
f
voltage
f~10kHz
RS ~ 20n,
Peak-to-peak equivalent See Figure 3
f~10Hzto
input noise voltage
f
~
10 kHz
0.1 Hz to
25°C
13
25°C
!Ls
nV/{Hz
!LV
10 Hz
Equivalent input noise
VIC ~ 0, f ~ 10 kHz
current
Total harmonic distortion VO(PP} ~ 5 V, AVD ~ 10,
THD + N plus noise
f ~ 1 kHz, RL ~ 2 kn, RS
In
Bl
Unity-gain bandwidth
BOM
bandwidth
Phase margin at unity
VI
gain
CL
Maximum output-swing
.pm
~
~
10 mV, RL
~
2 kn,
25 pF, See Figure 2
~
25 n
fA/{Hz
tFull range is - 40°C to 85°C.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-1157
TlE20821, TlE2082AI
EXCALIBUR HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Vcc±
PARAMETER
Via
Input offset voltage
Temperature coefficient of
aVIO
110
liB
TEST CONDITIONS
Input offset current
TAt
TlE2082AI
MIN
TYP MAX
25°C
1.1
7
8.5
0.7
2.4
25
6
100
950
175
2.5
VIC = 0, Va = 0,
Full range
RS = 50 n,
Full range
input offset voltage
Input bias current
25°C
VICR
Common-mode input
voltage range
RS = 50n
Full range
10 = -200
VOM+
Maximum positive peak
output voltage swing
VOM-
Maximum negative peak
output voltage swing
25°C
Full range
JlA
10 = -2 mA
25°C
Full range
10 = -20 mA
25°C
Full range
25°C
Full range
10 = 200
JlA
10 = 2mA
25°C
Full range
10 = 20 mA
25°C
Full range
25°C
Full range
RL '" 600 n
Large-signal differential
voltage amplification
VO=±10V RL = 2 kn
r'
Input resistance
ci
Input capacitance
25°C
Full range
VIC = 0
25°C
VIC = 0,
Common mode
25°C
See Figure 5 Differential
25°C
Zo
Open-loop output impedance
Common-mode
rejection ratio
AVO
25°C
Full range
RL = 10 kn
CMRR
kSVR
ICC
ax
lOS
Supply-voltage rejection ratio
(,:\VCC+/,:\VIO)
Supply current
(both channels)
Crosstalk attenuation
Short-circuit output current
,
25°C
Full range
25°C
Full range
VIC = 0, Va = 0,
See Figure 4
f = 1 MHz
VIC = VICR min, Va = 0,
RS = 50n
VCC± = ±5Vto±15V,
VO=O, Ra = 50n
Va = 0, No load
VIC = 0, RL = 2 kn
VID - 1 V
Va = 0
VID = -1 V
25°C
25°C
Full range
25°C
Full range
25°C
Full range
20
15
to
-11
15
to
-10.8
13.8
13.7
13.7
13.6
11.5
11.5
-13.8
-13.7
-13.7
-13.6
-11.5
-11.5
85
83
95
94
15
to
-11.9
95
94
118
80
79
82
80
2.7
25°C
25°C
-30
30
tFull range is - 40°C to 85°C.
TEXAS ~
INSTRUMENTS
2-1158
= ±15 V (unless otherwise noted)
TlE20S21
MIN
TYP MAX
POST OFFICE BOX 655303' OALLAS. TEXAS 75265
-10.8
13.8
13.7
13.7
13.6
11.5
11.5
-13.8
-13.7
-13.7
-13.6
-11.5
-11.5
85
83
14.1
13.9
12.3
-14.2
-14
-12.4
96
109
95
94
95
94
10 12
7.5
2.5
80
98
120
-45
48
2.4
25
/lV/oC
6
100
950
175
2.5
pA
nA
15
to
-11.9
80
79
3.4
3.4
82
80
2.7
-30
30
pA
V
14.1
13.9
V
12.3
-14.2
-14
V
-12.4
96
109
dB
118
1012
7.5
99
3.1
mV
20
15
to
-11
15
to
UNIT
4
5.5
n
pF
2.5
80
98
n
dB
99
3.1
dB
3.4
3.4
mA
120
dB
-45
48
mA
TLE20821, TLE2082AI
EXCALIBUR HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature, Vcc± = ± 15 V
PARAMETER
SR+
SR-
Positive slew rate
Negative slew rate
Settling time
Vn
Vn(PP)
TEST CONDITIONS
VO(PP) = 10V,AVD = -1,
RL = 2 kn, CL = 100 pF,
See Figure 1
AVO = -1,
To 10mV
10-V Step, RL = 1 kn,
To
1 mV
CL = 100 pF
Equivalent input noise
voltage
RS = 20 n,
Peak-to-peak equivalent See Figure 3
input noise voltage
f = 10 Hz
f=10kHz
f = 10 Hz to
10 kHz
f = 0.1 Hz to
10 Hz
Equivalent input noise
VIC = 0, f = 10 kHz
current
Total harmonic distortion VO(PP) = 20 V, AVO = 10,
THO + N plus noise
f = 1 kHz, RL = 2 kn, RS = 25 n
VI = 10 mV, RL = 2 kn,
Unity-gain bandwidth
Bl
CL = 25 pF, See Figure 2
In
BaM
tPm
Maximum output-swing
bandwidth
Phase margin at unity
gain
VO(PP) = 20 V, AVO = -1,
RI = 2 kn, CL = 25 pF
VI = 10 mV, RL = 2 kn,
CL = 25 pF, See Figure 2
TLE20821
TAt
25°C
Full range
25°C
Full range
MIN
30
24
TYP
40
30
24
45
TLE2082AI
MAX
MIN
TYP
30
24
30
24
40
UNIT
V/flS
45
V/flS
0.4
0.4
1.5
1.5
97
13.7
13.7
6
6
0.6
0.6
25°C
2.8
2.8
25°C
0.008%
0.008%
25°C
25°C
MAX
97
25°C
fls
nV/%
flV
fA/%
25°C
8
10
8
10
MHz
25°C
478
637
478
637
kHz
25°C
57°
57°
tFull range is - 40°C to 85°C.
TEXAS ~
INSfRUMENlS
POST OFFICE BOX 655303 ' DALLAS. TEXAS 75255
2-1159 .
TlE2082M, TlE2082AM
EXCAlIBUR HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Vcc±
PARAMETER
Via
Input offset voltage
(lVIO
Temperature coefficient of
input offset voltage
110
Input offset current
liB
Input bias current
TEST CONDITIONS
TAt
Common-mode input
voltage range
Maximum positive peak
output voltage swing
2.3
VIC = 0, Va = 0,
See Figure 4
25°C
Full range
25°C
Full range
25°C
Full range
IlA
25°C
-3.7
Full range -3.5
-1.5
25°C
10 = 2 mA
VO=±2.3V RL = 2 kn
RL = 10 kn
°
q
Input resistance
ci
Input capacitance
zo
Open-loop output impedance
f = 1 MHz
CMRR
Common-mode
rejection ratio
VIC = VICR min, Va = 0,
RS = 50n
VCC± = ±5Vto±15V,
Va = 0, RS = 50 n
ICC
Supply-voltage rejection ratio
(AVCC+/AVIO)
Supply current
(both channels)
ax
Crosstalk attenuation
VIC = 0, RL = 2 kn
kSVR
lOS
Short-circuit output current
VIC =
VIC - 0,
Common mode
See Figure 5 Differential
Va = 0, No load
Va = a
3.8
3.6
3.7
25°C
Full range 3.5
25°C
1.5
Full range 1.4
25°C
-3.8
Full range -3.6
10 = -2 mA
RL = 600n
Large-signal differential
voltage amplification
5
to
-1
VID = 1 V
VID = -1 V
Full range -1.4
85
25°C
Full range 83
25°C
90
Full range 88
25°C
95
Full range 93
25°C
25°C
25°C
25°C
25°C
Full range
25°C
Full range
25°C
Full range
25°C
25
IlV/oC
5
100
pA
15
15
7.5
175
60
nA
pA
nA
5
to
-1.9
5
to
-1
5
to
-0.8
3.8
3.6
3.7
4.1
3.9
3.5
1.5
1.4
-3.8
-3.6
-3.7
-3.5
-1.5
2.3
-4.2
-4.1
-2.4
-1.4
85
83
90
88
95
93
91
100
106
99
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
mV
7.5
175
60
82
80
2.7
~
UNIT
4
6.5
100
89
TEXAS
INSTRUMENTS
MAX
5
70
68
25°C
TYP
0.65
2.3
25
.
5
to
-1.9
V
4.1
3.9
V
2.3
-4.2
-4.1
V
-2.4
91
100
dB
106
10 12
11
1012
11
2.5
80
'On products compliant to MIL-STD-883, Class B, this parameter is not production tested.
tFull range is -55°C to 125°C.
2-1160
MIN
.
5
Full range
to
-0.8
10 = 20 mA
AVD
7
9.5
Full range
10 = 200 IlA
Maximum negative peak
output voltage swing
0.9
RS = 50 n,
10 = -20 mA
VOM-
MAX
Full range
RS = 50n
TLE2082AM
TYP
VIC = 0, Va = 0,
10 = -200
VOM+
MIN
25°C
25°C
VICR
= ± 5 V (unless otherwise noted)
TLE2082M
n
pF
2.5
80
70
n
89
dB
68
2.9
120
-35
45
3.4
3.4
82
80
2.7
99
2.9
120
-35
45
dB
3.4
3.4
mA
dB
mA
TLE2082M, TLE2082AM
EXCALIBUR HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature, V cc± =
PARAMETER
TAt
Positive slew rate
VO(PP) ~ ± 2.3 V, AVO ~ - 1,
RL ~ 2 k.n, CL ~ 100 pF,
SR-
Negative slew rate
See Figure 1
Settling time
AVD ~ -1,
2-V Step, RL ~ 1 kn,
CL ~ 100 pF
Vn(PP)
35
20
38
25°C
20
38
20
MAX
UNIT
V/fis
V/fis
0.4
OA
85
85
13
13
6
6
0.6
0.6
25°C
2.8
2.8
25°C
0.013%
0.013%
25°C
9A'
9.4'
MHz
VO(PP) - 4 V, AVO = -1,
RL ~ 2 kn, CL = 25 pF
25°C
2.8'
2.8'
MHz
VI = 10 mV, RL = 2 kn,
CL ~ 25 pF, See Figure 2
25°C
56°
56°
fis
To 1 mV
f~10kHz
RS ~ 20n,
Peak-to-peak equivalent See Figure 3
f = 10 Hz to
10 kHz
input noise voltage
f = 0.1 Hz to
10 Hz
Phase margin at unity
35
20
TYP
0.25
f ~ 10 Hz
gain
MIN
0.25
Equivalent input noise
VIC = 0, f = 10 kHz
current
Total harmonic distortion VO(PP) ~ 5 V, AVO = 10,
THO + N plus noise
f = 1 kHz, RL = 2 kn, RS
VI = 10 mV, RL = 2 kn,
Unity-gain
bandwidth
Bl
CL = 25 pF, See Figure 2
¢m
MAX
25°C
Equivalent input noise
bandwidth
TYP
To 10 mV
In
BOM
MIN
25°C
Full range
Full range
voltage
Maximum output-swing
TLE2082AM
TLE2082M
TEST CONDITIONS
SR+
Vn
±5 V
= 25 n
25°C
25°C
nV/,!Hz
fiV
fA/,,!Rz
'On products compliant to MIL-STO-883, Class B, this parameter is not production tested.
tFull range is -55°C to 125°C.
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-1161
TLE2082M, TLE2082AM
EXCALIBUR HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Vcc±
PARAMETER
VIO
Input offset voltage
aVIO
Temperature coefficient of
input offset voltage
110
Input offset current
liB
Input bias current
TEST CONDITIONS
TAt
Common-mode input
voltage range
RS = 50Q,
Full range
2.4
25°C
Full range
6
25°C
Full range
20
RS = 50Q
10 = -200
Maximum positive peak
output voltage swing
25°C
Full range
25°C
Full range
JlA
10 = -2 mA
25°C
Full range
25°C
Full range
25°C
Full range
10 = -20 mA
10 = 200
VOM-
Maximum negative peak
output voltage swing
JlA
10 = 2 mA
10 = 20 mA
RL = 600 Q
Large-signal differential
AVO
VO=±10V RL = 2 kQ
voltage amplification
RL = 10 kQ
r'
Input resistance
ci
Input capacitance
~
..
CMRR
kSVR
ICC
ax
lOS
°
25°C
Full range
25°C
Full range
25°C
Full range
25°C
Full range
Open-loop output impedance
Common-mode
rejection ratio
f = 1 MHz
VIC = VICR min, Vo = 0,
RS = 50 Q
25°C
25°C
25°C
25°C
25°C
Full range
Supply-voltage rejection ratio
(l1VCC+/l1VIO)
Supply current
(both channels)
Crosstalk attenuation
VCC± = ±5Vto±15V,
Vo = 0, RS = 50 Q
25°C
Full range
Short-circuit output current
1.1
Full range
Full range
VOM+
VIC =
VIC - 0,
Common mode
See Figure 5 Differential
Vo = 0, No load
VIC = 0, RL = 2 kQ
VIO - 1 V
Vo = a
VIO = -1 V
25°C
Full range
25°C
25°C
MAX
MIN
7
.
25
MAX
0.7
4
6.5
mV
25
',lV/oC
100
7.5
175
65
pA
nA
15
15
to
to
-11 -11.9
15
to
-10.8
13.8
14.1
13.6
13.7
13.9
13.5
12.3
11.5
11.4
-13.8 -14.2
-13.6
-13.7
-14
-13.5
-11.5 -12.4
-11.4
85
96
83
95
109
93
95
83
95
93
95
93
10 12
7.5
2.5
80
98
-30
30
120
-45
48
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 688303 • DALLAS, TEXAS 78268
80
78
99
3.1
20
.
3.4
3.4
pA
nA
15
to
to
-11 -11.9
15
to
-10.8
13.8
14.1
13.6
13.7
13.9
13.5
11.5
12.3
11.4
-13.8 -14.2
-13.6
-13.7
-14
-13.5
-11.5 -12.4
-11.4
85
96
118
82
80
2.7
6
15
93
80
78
2.4
100
7.5
175
65
UNIT
TVP
9.5
• On products compliant to MIL-STO-883, Class B, this parameter is not production tested.
tFull range is -55°C to 125°C.
2-1162
TVP
VIC = 0, Vo = 0,
VIC = 0, Vo = 0,
See Figure 4
TLE2082AM
TLE2082M
MIN
25°C
25°C
VICR
= ±15 V (unless otherwise noted)
V
V
V
109
dB
118
10 12
7.5
2.5
80
98
82
80
99
2.7
3.1
-30
30
120
-45
48
Q
pF
Q
dB
dB
3.4
3.4
mA
dB
mA
TLE2082M, TLE2082AM
EXCALIBUR HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature, V cc±
TEST CONDITIONS
PARAMETER
SR+
Positive slew rate
VO(PP) ~ 10V,AVO ~ -1,
RL ~ 2 kn, CL ~ 100 pF,
SR-
Vn
Negative slew rate
See Figure 1
Settling time
AVO ~ -1,
To 10 mV
10-V Step, RL ~ 1 kn,
To 1 mV
CL ~ 100 pF
Equivalent input noise
f
~
10 Hz
voltage
f
~
10 kHz
f
~
10 Hz to
~
10 kHz
0.1 Hz to
RS ~ 20 n,
Peak-to-peak equivalent See Figure 3
Vn(PP)
f
input noise voltage
TAt
TLE2082M
MIN
TYP
30
25°C
Full range
22
25°C
30
Full range
22
In
current
VIC
~
0, f
~
10 kHz
Total harmonic distortion VO(PP) - 20 V, AVO - 10,
THO + N plus noise
f ~ 1 kHz, RL ~ 2 kn, RS ~ 25 n
VI ~ 10 mV, RL ~ 2 kn,
Unity-gain bandwidth
B1
CL ~ 25 pF, See Figure 2
Maximum output-swing
BaM
--tl--.....--VO
>--tl--.....--VO
tlnciudes Fixture Capacitance
tlnciudes Fixture Capacitance
Figure 1. Slew Rate
Figure 2. Unity-Gain Bandwidth
and Phase Margin Test Circuit
TEXAS ~
INSTRUMENTS
2-1164
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
pA
V
2.5
No load
mV
pA
V
7.5
= 0, RS = 50 Q
UNIT
15
13.8
Common mode
Differential
VID
100
175
to
= ±5Vto±15V,VO = O,RS = 50Q
Va
6
20
11.9
Zo
kSVR
7
to
= 600Q
= 2 kQ
= 10 kQ
Open-loop output impedance f = 1 MHz
Common-mode
CMRR
VIC = VICR min, Va
rejection ratio
MAX
1.1
-11
=0
Input resistance
TYP
rnA
rnA
TlE2082, TlE2082A
EXCALIBUR HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
PARAMETER MEASUREMENT INFORMATION
2kil
>---Vo
>---e--Vo
RS
Rs
Figure 4. Input Bias and Offset
Current Test Circuit
Figure 3. Noise Voltage Test Circuit
IN IN+
-..-----.----1
-+----.-+----1
>---Vo
Cic
(Common Mode and Differential)
Figure 5. Internal Input Capacitance
typical values
Typical values presented in this data sheet represent the median (50% point) of device parametric
performance.
input bias and offset current
At the picoampere bias current level typical of the TLE2082 and TLE2082A, accurate measurement of
the bias becomes difficult. Not only does this measurement require a picoammeter, but test socket
leakages can easily exceed the actual device bias currents. To accurately measure these small
currents, Texas Instruments uses a two-step process. The socket leakage is measured using
picoammeters with bias voltages applied, but with no device in the sockel. The device is then inserted
in the socket and a second test is performed that measures both the socket leakage and the device input
bias current. The two measurements are then subtracted algebraically to determine the bias current of
the device.
~
TEXAS
INsrRUMENTS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
2-1165
TLE2082, TLE2082A
EXCALIBUR HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
t/:ible of graphs
TYPICAL CHARACTERISTICS
FIGURE#
via
aVIO
Input offset voltage
Distribution
Temperature coefficient of input offset voltage
Distribution
110
Input offset current
vs Temperature
8,9
Input bias current
vs Temperature
lIB
8,9
10
VICR
VID
Common-mode input voltage range
vsVCC
vs Temperature
Differential input voltage
vs Output voltage
VOM+
Maximum positive peak output voltage
vs Output current
vs Temperature
vs VCC
vs Output current
6
7
11
12,13
14
16,17
18
15
Maximum negative peak output voltage
vs Temperature
VO(PP)
Maximum peak-to-peak output voltage swing
vs VCC
vs Frequency
19
Va
Output voltage
vs Settling time
20
AVD
Differential voltage amplification
vs RL
vs Temperature
22,23
Zo
Output impedance
VOM-
CMRR
Common-mode rejection ratio
kSVR
Supply-voltage rejection ratio
ICC
Supply current
SR
24
25
vs Frequency
26
vs Temperature
27
vs Frequency
28
vs Temperature
29
vs Supply voltage
30
Vn
vs VCC
vs Time
Slew rate
Input-referred noise voltage
21
vs Frequency
vs Temperature
Short-circuit output current
18
vs Frequency
vs Differential input voltage
lOS
16,17
31
32,33
34
35
vs Temperature
36
vs Temperature
37,38
vs RL
vs Differential input voltage
39
vs Frequency
41
40
vs Noise bandwidth
42
Over a 1O-second time interval
43
Third-octave spectral noise density
vs Frequency
44
THD + N
Total harmonic distortion plus noise
vs Frequency
45,46
B1
Unity-gain bandwidth
vs Load capacitance
47
vs Temperature
48
vs VCC
vs Load capacitance
50
GBWP
Gain bandwidth product
Am
Gain margin
vs Temperature
51
m
Phase margin
vsVCC
vs Load capacitance
52
53
Phase shift
vs Frequency
24
Large-signal pulse response, noninverting
vs Time
54
Small-signal pulse response
ax
Crosstalk attenuation
vs Time
55
vs Frequency
56
vs Frequency
57
TEXAS ~
INSfRUMENTS
2-1166
49
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TlE2082, TlE2082A
EXCALIBUR HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
DISTRIBUTION OF TLE2082
INPUT OFFSET VOLTAGE
DISTRIBUTION OF TLE2082 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
20
30
600 Units Tested
18 VCC
±15 V
TA
25·C
16 ,·Packalle
310 Amplifiers
27 VCC
±15V
TA
-55to
24 '·Packalle
=
=
Vcc+ + 0.5
"go
.
105
oCt
a:
I
"
Q.
R~ = 5~Q
VCC+
VIC max
"f I
C>
~ Vcc+ - 0.5
C 104
~
:::I
~
:;
()
~
~
~
]" VCC- + 3.5
103
III
OJ
~
r--
-8
iii
:;
Q.
.5 102
~E
VCC- + 3.0
8
Vcc- + 2.5
o
E
E
g!
101
~
~
-
J.
J.
~
I I
VIC min
r-r--_
-
~
r-
-
I
()
100~~--~--~~--~--~--~~---J
o
5
10 15
20
25
30
35
40
45
VCC - Total Supply Voltage (Referred To Vcc-l - V
:>
Vcc- + 2.0
-75 -55 -35 -15 5
25 45. 65 85 105 125
TA - Free-Air Temperature - °C
Figure 10
Figure 11
DIFFERENTIAL INPUT VOLTAGE
DIFFERENTIAL INPUT VOLTAGE
vs
vs
OUTPUT VOLTAGE
OUTPUT VOLTAGE
400
~
400
300
>::L
"Cl 200
;g
I I
100
RL= 2kQ "-
:;
Q.
.5
1--,
RL= 600 Q
g
.5
/~
c
RL= 10 kQ
I
/
'7
V
~
1
1
-4 -3
-2
-1
0
2
3
4
5
-' ~
RL= 10 kQ
0
j!!-100
I
-400
-5
I
RL= 2kQ"
Oi
VCC± = ±5 V
VIC = 0
RS = 50Q I---TA = 25°C
6~0 Q I
RL= 600 Q
"E
I
I I
I'RL= 2 kQ
R =
C
:> -300
Cl
Q.
:!
f -100
~
isI -200
200
g"
"0 100
>
:;
RL=10kQ
0
300
,-- ~V
;r
~
~-200
c
:>-300
-400
-15
RL= 10 kQ
I
(L= 2kQ
/
!RL= 600h
I·
1
-10
-5
I
Vo - Output Voltage - V
Figure 12
I
Vcc± = ±15V
VIC = 0
Rs = 5 0 Q TA = 25°C
I
o
5
Vo - Output Voltage - V
1
10
Figure 13
toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices,
TEXAS
2-1168
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
15
TlE2082, TlE2082A
EXCAlIBUR HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE
>
15
& 13.5 ~
.E!
(5
>
:;
.....
12
,
MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE
vs
vs
OUTPUT CURRENT
OUTPUT CURRENT
>
-15
...................
~ -13.5
~
~ 10.5
~
""'f\~
" ~r-..
\ \
o
9
\
7.5
6
4.5
TA
:;
' \ TA
= - WC
I
= 125°C \
I
~
1\
\ \
\ \
3
'0
>
\
o
~
!
CIl
= 25°C
.~
I
z
= 85°C_
TA
I
1.5
::;:
o
>
o
VCC±
o
I
= ± 15 V
::;:
o
-5 -10 -15 -20 -25 -30 -35 -40 -45 -50
10 - Output Current - mA
>
o
VCC±
o
5
10
15
tll
:;
>
I
10
14.5
CIl
tll
~
2
10
- 1
14
=
> 13.5 r--':Q.5
:;
13
20mA
""
= ±5V
10
= 2mA
10
= -2 mA
25
= 85°C
I I-
vs
'5
"
::;:
"
I-
FREE-AIR TEMPERATURE
4
"""
t--
FREE-AIR TEMPERATURE
Q.
CIl
Q.
TA
Figure 15
10
0
I--
vs
5
CIl
20
25°C
1---
\
= 125°C
C
10 - Output Current - mA
MAXIMUM PEAK OUTPUT VOLTAGE
.E!
(5
>
\\
= ±15 V
Figure 14
>
----
I I
-1.5
I
I
TA
-9
E
"E
I
\ '\. . . . . ~ -Sr
=
\
~ -10.5
::;:
+
~ .........
CIl
Q.
TA
TA
-12
= 20 mA
= - 20 ,;;:;:--1
11.5
2...
11
::;:
0 10.5
~
I
= 2 mA
10 - 200 J.lA
- 5
-75 -55 -35 -15 5
25 45 65 85
TA - Free·Air Temperature - °c
105 125
-
F;::::
--
_.,--
r-
VCC± = ±15V
10
-75 -55 -35 -15 5
25 45
65 85 105 125
TA - Free-Air Temperature - °c
Figure 16
Figure 17
tDala at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
2-1169
TLE2082, TLE2082A
EXCALIBUR HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
MAXIMUM PEAK OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
>
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
30
Vcc± = ± 15 V i
II>
>
'"
'0
!l
>
25
:;
o
20
o
"'~"
:;
0..
:;
.e:::J
~
"'0.."
"'0..~"
E
E
'" -1 0 ~-+-+---+--'l"'I"""'o;;;:--+--~-+-+-----I
:;:
I -15~-+-+---+-4-~-~b?~-r-
:;:
~ -20~-+-+---+-4-~--+--r--P~
.
E
10
.
:::J
\
:;:
1
'ii:
o
2.5
5
7.5
10 12.5 15 17.5 20 22.5 25
a
>
1
i'
~
~ !lI:!.
5
0..
-25~~-~~-~~-~-~~--L-~
TA = 25°C,
125°C
VCC± = ±5V
E
'."
~ 12 1Ji
= -55°C
II>
:::J
RIL
25 oC,
125°C
TA
15
U1=1 1
o
100 k
IVcc±1 - Supply Voltage - V
Figure 18
lilli-
J'~
WC
t:::!
I"""r:~
1M
f - Frequency - Hz
10 M
Figure 19
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLI FICATION
vs
LOAD RESISTANCE
OUTPUT VOLTAGE
vs
SETTLING TIME
12.5
..,
125
III
10
/
10lmv
7.5
>
I
5
!l
'"
'0
2.5
>
:;
o
,
0..
8 -2.5
\
...
~
Falling
110\mv
-10
-12.5
o
VCC± = ±15 V
11)1'
>
0.5
1.5
105
~
/
C
~
:::
"
1.1
110
'"
oS
'0
100
C
c
V
115
E
"mv
-7.5
120
C.
~
-5
~
VCC± = ±15 V
RL = 1 kQ
CL = 100pFAV = -1
TA = 2 5 ° C -
Rising
...
I
>
~
v'mv
II>
o
I
"
.2
95
/
V
1/
~Io'
VCC± = ±5V
~Ici =10
RS = 50
>
<
2
l-'"
90
0.1
Settling Time - Its
10
RL - Load Resistance - kQ
Figure 20
Figure 21
tData at high and low temperatures are applicable only within the rated operating lree-air temperature ranges of the various devices.
~
TEXAS
INSTRUMENlS
2-1170
Q
TA = 25°C
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
100
TlE2082, TlE2082A
EXCALIBUR HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
110
III
"0
0
.~
~
C.
E
«
-
107
= 10kQ
IRL
c:
104
101
RL
-r-
= 2 kQ
98
CI>
Ol
S
"0
>
95
~
92
l!!CI>
89
E
RL
;:
Q
c
«>
86
83
I
-- --
"0
117 f - RL = 10 kQ
~
113
«
109
u
C.
E
I
S
"0
>
1!
101
Q;
97
Q
I
93
;:
I I
= ±5V
c
RL
I\.
\
I
10 0
~
~
C.
E
«
1!
C
~
80
40
o t-- VCC±
«
.......... l........
60·
Phase Shift
80·
.....
= ±15 V
RL = 2kQ
C
>
40·
20
Q
I
'""-
-2 o t-- CL
TA
-4 0
/
"-l~\
= 100 pF
= 25·C
I
I
10
100
1k
10 k 100 k 1 M
100·
~
\'
140·
CI>
.."&1!
.::
.E
:::
:E
...
Ul
0-
..,.
/
c:
AV = 100
V
/
/
/
V
0-
:;
f=AV = 10
0:; 0.1
/
V
/
/
0
0
N
0.01
f--
AV
~
1
/
VCC± - ±15 V
TA = 2 5 · C -
160·
180·
10 M 100 M
/
V
d
I
120·
/
V
10
yGain
"-
6
:--
100
20·
~
.§
r-- r-..
CLOSED-LOOP OUTPUT IMPEDANCE
vs
FREQUENCY
o
0-.......
12o
~
Figure 23
Figure 22
"0
r-
89 VCC±
VO=±10V!
85
-75 -55 -35 -15 5
25 45 65 85 105 125
TA - Free-Air Temperature - ·C
«>
SMALL-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
III
--
= 600 Q
I
= ±15 V
-
I
80
-75 -55 -35 -15 5
25 45 65 85 105 125
TA - Free-Air Temperature - ·C
14
---
105
C
CI>
i""- t-- ""--.
I
RL = 2 kQ
CI>
Ol
VCC±
Vo
±2.3V
=
.
..g
r-
- ---
121
I
c:
r- '-
--
= 600Q
125
III
0.001
10
f - Frequency - Hz
I·
100
1k
10 k
100 k
I
1M
10 M
f - Frequency - Hz
Figure 24
Figure 25
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-1171
TLE2082, TLE2082A
EXCALIBUR HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
FREE-AIR TEMPERATURE
100
III
"to
90
1
I
0
.1.
80 _VCC± =±5V
';
"
II:
c
0
70
'0;
60
'7.,3
.,
100
I
III
_'" Vcc± = J 5 V -
"'"
,
0
C
40
E
E
30
0
II:
II:
10
::;;
~
'0;
()
o
10
100
.,
88
~
"to
85
0
::;;
C
0
E
E
82
79
0
()
76
II:
II:
::;;
VIC = VICR min
Vo
0
I
RS = 50n
=
73
()
10k
100k
f - Frequency - Hz
1M
1k
70
-75 -55 -35 -15 5
25 45 65 85
TA - Free-Air Temperature _·C
10 M
Figure 26
SUPPLY-VOLTAGE REJECTION RATIO
vs
vs
FREQUENCY
FREE-AIR TEMPERATURE
120
120
III
.2
';
II:
C
0
·u.,
'0;
.,
II:
80
----- ~
60
>
~
Q.
a.
en"
20
r--
1
.2
';
I
~
t.VCC± = ±5 V to ±15 V
vIC = 0
Vo = 0
0
II:
Rs = 50 n
>
en
TA = 25·C
I
-20
10
100
1k
r--
"'"
10 k
"
1M
102
~
96
.,
Ol
90
>,.,
0
84
Q.
78
'0;
II:
"r-...
100 k
kSVR+
108
c
.2
~
1\\
f - Frequency - Hz
114
II:
" "\
I
40
"to
"
kSVR-
Ol
S
"0
III
"-~SVR+
"to
100
105 125
Figure 27
SUPPLY-VOLTAGE REJECTION RATIO
1
= ±15 V
VCC±=±5V
II:
VIC = 0
Vo = 0
RS = 50 n
TA = 25·C
20
VCC±
94
II:
~
~
()
97
c .91
..2
::;;
0
1
';
,~
50
"to
.2
~
II:
"to
COMMON-MODE REJECTION RATIO
vs
a.
en"
\
"'"
10 M
~
kSVR-
V
72 I- VIC = 0
II:
>
en
Y
66
r-- Vo = 0
RS = son
60
-75 -55 -35 -15 5
25 45 65 85 105 125
;rA - Free-Air Temperature - ·C
Figure 29
Figure 28
toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS . "
2-1172
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
TlE2082, TlE2082A
EXCALIBUR HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
SUPPLY CURRENT
4
SUPPLY CURRENT
vs
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
3.5
=0
Vo = 0
VIC
3.8
VIC
3.4
No Load
3.6
oCt
E
I
C
~
:::J
0
>-
Ii
":::J
tJ)
I
0
3.4
3.2
.l.--r-
.....-I---
3
TA
.,
-
2.8
2.6
9
-
= 125°C
TA
TA
oCt
E
C
~
~
0
= 25°C
I
>Ii
":::J
en
= -55°C
I
0
9
2.4
2.2
2
3.3
=0
=
Vo
0
No Load
3.2
./
3
2.9
2.8
2.7
/
o
2.5
5
7.5
2.5
-75 -55 -35 -15
10 12.5 15 17.5 20 22.5 25
12
6
=5 V
=0
.1
= +4.5 V
TA = 25°C
/'"
oCt
E
I
II
C
~
~
=
=
0
VIC
25°C
20 _ TA
Open Loop
No Load
/
....-
I
15
0
>Ii
":::J
10
tJ)
I
4
0
9
-
5
2
-0.5
105 125
_I.
VCC± = ±15 V
9
o
85
vs
No Load
tJ)
65
DIFFERENTIAL INPUT VOLTAGE
10 - Open Loop
8
45
SUPPLY CURRENT
25
C
25
DIFFERENTIAL INPUT VOLTAGE
Vcc +
_ VCC _
oCt
5
vs
VIC
0
=
i'
:--
Figure 31
14
I
I
±5 V
TA - Free·Air Temperature - °C
SUPPLY CURRENT
>Ii
":::J
I
VCC±
2.6
Figure 30
~
~
0
V
........-r.
--..
I. '/
~
IVcc±1 - Supply Voltage - V
E
....,
VCC± = ±15 V
3.1
-0.25
o
0.25
VID - Differential Input Voltage - V
o
0.5
-1.5
Figure 32
-0.5
o
0.5
VID - Differential Input Voltage - V
-1
1.5
Figure 33
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-1173
TlE2082, TlE2082A
EXCALIBUR HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
SHORT-CIRCUIT OUTPUT CURRENT
SHORT-CIRCUIT OUTPUT CURRENT
60
vs
vs
SUPPLY VOLTAGE
TIME
50
=0
TA = 25~
Vo
48
..
a:
'.."
iii
VID
=1 V
.........: I--
Vo
VC'i.±~
~J
VCC± = ±15V_
39
I
37
a:
en
1 I I
=0
41
~
~
-16
180
Figure 35
SHORT-CIRCUIT OUTPUT CURRENT
c
~V=1
VCC± = ±15 V i i 1
VO± = ± 10 V (10% - 90%)
CL = 100 pF
z
V
/
~
-1
..
'5
>
..
Rising Edge
j
150
~AV=
20
v"'~
I
I II
E
C
a;
>
':;
..
FallingE~ ..........
-50
0.1
"""'"
= -1
4
VID - Input Differential Voltage - V
75
1\
i\
45
30
c
15
10
I III
TA = 25°C
60
&if
>
AV - 1
0.4
90
I
= ±15 V
VIC = 0
RS = 20 Q
120
In
'0
Q.
AV
VCC±
as 105
:;
.............
IIIIIIII
135
01
TA = 25°C
-40
100k
INPUT-REFERRED NOISE VOLTAGE SPECTRAL DENSITY
DIFFERENTIAL INPUT VOLTAGE
30
10
10k
vs
40
11111
I
Figure 39
SLEW RATE
50
= 25°C
RL - Load Resistance - Q
Figure 38
...
TA
1,\
Falling Edge
-50
100
1k
TA - Free-Air Temperature - °c
~
Vc C± = ±15V
Va± = ±10V
I I I
VCC± = ±5V
Va± = ±2.5 V
-
"-
....
o
10
Figure 40
100
10k
1k
f - Frequency - Hz
100k
Figure 41
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
2-1175
TLE2082, TLE2082A
EXCALIBUR HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
INPUT-REFERRED NOISE VOLTAGE
INPUT-REFERRED NOISE VOLTAGE
OVER A 10-SECOND TIME INTERVAL
vs
NOISE BANDWIDTH
1.2 ...---r--..-----,--..-----,--..-----,--..-----,----,
VCC±
±15 V
f = 0.1 1010Hz
~
0.9
TA = 25°C +--+-+--+-+--+-+--1
100
>:s.
..
>
..
10
CI
B
=
VCC± = ±15 V
VIC = 0
RS = 20n
TA = 25°C
t
;g
'0
'0
Z
V
..... 10-
~
.!
z
0.31--+-+--+-+--+-+--+.--+--1---1
~
RMS:::
..
0.61----+-+-'-+-+-'-+-+-'-+-+--+--1
~
'0
1/
pop
~
a:
~
-;
-=
Q.
1
0.1
-=
I -0.31----+-+-'-+-+-'-+-+-'-+-+--+-+1
>'"
>'"
- 0.6 L-...J..--.,....L.-...J.._.L.-...J.._.L.-...J.._.L.-...J...----J
o
. 2 3 4 5 6 7 8 9 10
0.01
10
1
100
1k
10k
100k
f - Frequency - Hz
I - Time - s
Figure 43
Figure 42
TOTAL HARMONIC DISTORTION PLUS NOISE
THIRD-OCTAVE SPECTRAL NOISE DENSITY
vs
vs
FREQUENCY
FREQUENCY
-75
;P.
Slarl Frequency: 12.5 Hz
-80 _ SlOp Frequency: 20 kHz
./
VCC± = ±15 V
VIC = 0
-85 - TA = 25°C
III -90
"tI
!.
-95
....n..r' ~
'0
Z_100
-105
..r-U
.r~
..
'0
z
+
/
0.1
7ii
i5
.!:!
0
~
~
=
_111111111
111111111
AV = 10, RL = 600n
..
::t:
AV = 100, RL = 600n
AV = 100, RL = 2 kn
'"
~
0.01
III
1111.
AV = 10, RL = 2 kn
lI
III
+
C
::t:
-115
10
I-
15
20
25
30
35
40
45
0.001
10
100
1k
f - Frequency - Hz
Frequency Bands
Figure 45
Figure 44
TEXAS
~
INsrRUMENTS
2-1176
~/
.......
VCC± =±5V
Vo = 5Vpp
TA = 25°C I I
Filter: 10Hz to 500 kHz Band Pa ss
Z
-110
_
...
'0"
.~
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
10k
100k
TlE2082, TlE2082A
EXCALIBUR HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
UNITY GAIN BANDWIDTH
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
vs
FREQUENCY
LOAD CAPACITANCE
13
"#.
..
III
'0
N
:x:
Z
"
,S!
0,1
t:
AV
~
= 100, RL =
V
.c
/
..,'i
."
V
Oi
Cl
600 Q
is
I 11111111
0
':0"
I I11II
= 100, RL = 2 kQ
= 10, RL = 600 Q
AV = 10, RL = 2 kQ
AV
AV
0
E
:x: 0,01
~
l-
:x:
0,001
10
100
11
III
10
::-
'"
9
rlJ
8
=
::l
=
Z
+
c
'D
"
VCC± - ±15 V
Vo
20Vpp
TA = 25·C I I
Filter: 10 Hz 10 500 kHz Band Pass
I
I-
12
::;;
+
I
1k
10 k
, - Frequency - Hz
7
100 k
VCC±
±15 V
VIC = 0
VO=oRL = 2 kQ
TA = 25·C
o
40
60
80
20
CL - Load Capacitance - pF
Figure 46
100
Figure 47
GAIN-BANDWIDTH PRODUCT
GAIN-BANDWIDTH PRODUCT
vs
vs
FREE-AIR TEMPERATURE
SUPPLY VOLTAGE
13
= ~OO k~Z
VIC = 0
Vo = 0
RL = 2 kQ
CL = 100 pF _
13
I,
N
12
:x:
::;;
..,U
11
:l
E
~
.c
10
'D
..,'i
.."
III
'-...
~
. . . . . . . 'r--...
.........
VCC± =
9
±5~
,
I::
';
Cl
8
"-,
..,U
11
----
2
~
±15V-
.c
10
'D
l,.--"
..,'i
........................
...........
12
::;;
:l
I=I I
.........VCC±
N
:x:
r---.
."
III
~
,=
9
I::
';
Cl
1'-
7
-75 -55 -35 -15 5
25 45 65 85 105 125
TA - Free-Air Temperature - ·C
-
=
=
Vo
0
RL
2 kQ _
CL = 100 pF
TA = 25·C
8
7
100kHz
VIC = 0
o
5
10
15
20
25
(VCC ± ( - Supply Voltage - V
Figure 49
Figure 48
tOata al high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices,
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 ' DALLAS, TEXAS 75265
2-1177
TLE2082, TLE2082A
EXCALIBUR HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
PHASE MARGIN
GAIN MARGIN
vs
vs
LOAD CAPACITANCE
TEMPERATURE
90·
10
80·
8
70·
..,Ie
---- -
I
.c
6
..
~
:;;
.;c
c
.
.
.~
:;;
/!)
.c
~
....E
VCC± =±1SV
E
2
r-
20·
Vo = 0
RL = 2 kQ
I
20
40
60
80
CL - Load Capacitance - pF
100
/!)
~
I.l
VCC± = ±SV-
CL= 100 pF
5
25
45
65
PHASE MARGIN
PHASE MARGIN
vs
vs
SUPPLY VOLTAGE
LOAD CAPACITANCE
90·
80·
80·
85
105 125
70·
60·
-
CL= 2 S p F _
...
50·
40·
c
.
...
'2'
:;;
/!)
CL = 100 pF
.c
.... "'""
~
60·
:::--r---
50·
VCC± = ±Sr;---
40·
....E
10·
8
12
16
20
o·
VIC = 0
r- Vo = 0
r-
RL = 2 kQ
TA = 2S·C
I
o
IVcc±1 - Supply Voltage - V
Figure 52
20
40
60
80
CL - Load Capacitance - pF
Figure 53
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
2-1178
-
1-
20·
10· I-- RL = 2 kQ
TA = 2S·C
I
o·
4
~t::---
30·
VIC = 0
I- Vo = 0
o
VCC± = ±15V _
I
30·
20·
I--VIC = 0
Figure 51
90·
I
....E
VCC± = ±SV
Figure 50
II)
.c
_I •
TA - Free-Air Temperature - ·C
70·
.
:;;;.- ",-.1
10· I-- Vo = 0
RL = 2 kQ
I
I
o
-75 -55 -35 -15
TA = 2S·C
o
o
.~
~
30·
I
1 1
VCC± = ±15V
40·
I
VIC = 0
II>
5
~
TA = -55·C
Ol
TA = -55·C
II>
/
g
Ol
g
"0
>
:;
Q.
:;
"0
>
0
I
-5
0
>
I
VCC± = ±15 V
AV = 1
RL = 2 kn
CL = 100 pF
I
I
2
3
t - Time - I1s
o
0
o
I
I
-10
-15
:;
Q.
:;
TA = 25·C"
I 125.C
0
A.
50
~ -50
\
VCC±=±15V
AV = -1
RL = 2 kn
CL = 100 pF
TA = 25·C
-100
4
o
5
0.4
A
v
0.8
1.2
1.6
t - Time - I1s
Figure 54
Figure 55
SMALL-SIGNAL RESPONSE
CROSSTALK ATTENUATION
vs
vs
FREQUENCY
FREQUENCY
,...--"'T'"--,---,--,-T"T"T'T"I--'T"""-r-r"'T'"r-T"n'1
80·
140
III
"t>
I
I:
III
100·
.2
OJ
I:
:::
.2 100
:c
II>
en
OJ:::J
g
3l
<1
«
~
I
~
0..
E
120
"t>
I---t-~...-t-+'\H--Nf--+--+-+-t-++t-H
120·
Ol
;g
"
.::.
Q.
140·
:!
E
1!!
~
is
I
....
I:
$
80
I~
~
:g
..
2
60
tl
VCC± = ±15 V
><
til
I
40
o
«>
'--_-'---L--L....J....-U..J...J...J_--'-..J..L......J.,,LJ,......LJ..J....L,..u..J
4
10
I - Frequency - MHz
40
100
180.
VIC = 0
RL = 2 kn
TA = 25·C
20
10
100
1k
10 k
100 k
I - Frequency - Hz
Figure 56
Figure 57
tData at high and low temperatures are applicable only within the rated operating Iree-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-1179
TlE2082, TlE2082A
EXCAlIBUR HIGH-SPEED
JFET-INPUT DUAL OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using PSpice™ Parts™ model generation software. The Boyle
macromodel (see Note 4) and subcircuit in Figure 58 were generated using the TLE2082 typical electrical and
operating characteristics at TA = 25°C. Using this information, output simulations of the following key
parameters can be generated to a tolerance of 20% (in most cases):
•
•
•
•
•
•
Maximum positive output voltage swing
Maximum negative output voltage swing
Slew rate
Quiescent power dissipation
Input bias current
Open-loop voltage amplification
•
•
•
•
•
•
Unity gain frequency
Common-mode rejection ratio
Phase margin
dc output resistance
ac output resistance
Short-circuit output current limit
NOTE 4: G. R. Boyle. B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers", IEEE Journal
of Solid-State Circuits, SC-9, 353 (1974).
99
3
+
EGND
DIN
,-----14--.92
RP
VIN
2
+
IN -
-+-t--+---~-t--'
IN+
-++-+-----:-:-f__--j-------'
VCC_~~__----4~-~~-f__.-~+_---------------.
VE
.SUBCKT TLE2082 1 2 3 4 5
C1
11 12 2.2E-12
C2
6 7 10.00E-12
DC
5 53 DX
DE
54 5 DX
DLP 90 91 DX
DLN 92 90 DX
DP
4 3 DX
EGND 99 0 POLY (2) (3,0) (4,0) 0 .5 .5
FB
7 99 POLY(5) VB VC VE VLP VLN 0
+ 5.607E6 -6E6 6E6 6E6 -6E6
GA
6 o 11 12 333.0E-6
GeM
0 6 10 99 7.436E-9
ISS
3 10 DC 400.0E-6
HLIM 90 o VLIM 1K
J1
11 2 10 JX
J2
12 1 10 JX
BETA=554.5E-6
Figure 58. Boyle Macromodel and Subcircuit
PSpice and Parts are trademarks of MicroSim Corporation.
Macromodels. simulation modals, or oth.r
models provided by n. directly or Indirectly. are
not warranted byTI as fully repl'8senting all aftha
:::~~C~J~~~~pnr~~~:t~;:~j~~~~~c:!~~:~:r~hs~
2-1180
TEXAS
~
IN5rRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TlE2141, TlE2141A, TlE2141Y
EXCALIBUR lOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
03652, NOVEMBER 1990- REVISED FEBRUARY 1991
available features
•
•
Low V,O .•. 500 I.lV Max at 25°C
Single or Split Supply '" 4 V to 44 V
•
Fast Settling Time •.. 340 ns to 0.1%
400 ns to 0.01%
20-mA Min Short Circuit Output Current
•
Saturation Recovery ... 150 ns
•
30-V/I.lS Min Slew Rate
•
•
High Gain-Bandwidth Product ... 5.9 MHz
Large Output Swing ... VCC- + 0.1 V
toVCC+-1V
•
Low Noise:
10 Hz .•. 15 nVNHz
1 kHz ... 10.5 nVl-.fHz
•
10,000-pF Load Capability
•
SLEW RATE
EQUIVALENT INPUT NOISE VOLTAGE
vs
vs
LOAD CAPACITANCE
FREQUENCY
50
250
~>
\
40
.
>
30
CD
~
a:
iii
=
CD
Dl
I/O
~
=
VCC±
±15V
RS
loon
I/O
1\
20
I
'0
Z
:;
1\
Co
.5
E
CD
SR-'
a:
If)
OJ
1\1'
·s>o:r
10
o
~~~:= =~5111I
TA
w
I'
I
c
>
25°C
0.01
0
0.1
CL - Load Capacitance - nF
10
1
10
1k
100
10 k
f - Frequency - Hz
description
The TLE2141 and TLE2141 A are high-performance, internally compensated operational amplifiers built using
Texas Instruments complementary bipolar Excalibur process. The TLE2141 A is a tighter offset voltage grade
of the TLE2141. Both are pin-compatible upgrades to standard industry products.
AVAILABLE OPTIONS
PACKAGE
VIOmax
AT 25·C
SMALL·
OUTLINE
(D)
CHIP
CARRIER
(FK)
CERAMIC
DIP
(JG)
PLASTIC
DIP
(P)
500/J-V
900/J.V
TLE2141ACD
-40°C to
105°C
500/J-V
900/J-V
TLE2141AID
-----
----
TLE2141ACP
70°C
TA
O°Cto
TLE2141CD
TLE2141CP
TLE2141AIP
TLE21411P
TLE21411D
--55°C to 500/J-V
TLE2141AMD TLE2141AMFK
TLE2141AMJG
TLE2141AMP
125°C
TLE2141MD
900/J-V
TLE2141MFK
TLE2141MJG
TLE2141MP
D packages are available taped-and-reeled. Add "R" suffix to deVice type, (e.g., TLE2141ACDR).
PRODUCTION DATA documents contain Information current I ' of
pUblication date. Produetsconform to .pacificationl p.rthetermlol
T8xaslnslrum,nts standard warranty. Production processing dOB'
not naclISlarlly Include testing of all parametel'S.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
CHIP
FORM
(V)
TLE2141V
Copyright © 1991, Texas Instruments Incorporated
On products compliant to Mll-STD~883. Clas. B, all parameters
;:d~~i~~ p~~!~~~l~~h:o,:~s~tnn~~:'sa~l~ '~~'uaJ:~srl~gd~i~ii
parameters.
2-1181
TlE2141, TlE2141A, TlE2141Y
EXCAUBUR lOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
description (continued)
The design incorporates a patent-pending input stage that simultaneously achieves low audio band noise of
10.5 nV/1R"Z with a 10-Hz 111 comer and symmetrical 40-V/J.1s slew rate typically with loads up to 800 pF. The
resulting low distortion and high power-bandwidth are important in hi-Ii audio applications. A fast settling time
of 340 ns to 0.1 % of a 1 O-V step with. a 2-kn /1 OO-pF load is useful in fast actuator/positioning drivers. Under
similar test conditions, settling time to 0.01% is 400 ns.
The devices are stable with capacitive loads up to 10 nF, although the 6 MHz bandwidth decreases to 1.8 MHz
at this high loading level. As such, the TLE2141 and TLE2141A are useful for low droop sample-and-holds
and direct buffering of long cables, including 4-20 mA current loops.
The special design also exhibits an improved insensitivity to inherent IC component mismatches. as is
evidenced by a 500-J.1V maximum offset voltage and 1.7-J.1V/oC typical drift. Minimum common-mode rejection
ratio and supply-voltage rejection ratio are 85 dB and 90 dB, respectively.
Device performance is relatively independent of supply voltage over the ±2-V to ±22-V range. Inputs can
operate between VCC- -0.3 V to VCC + -1.8 V without inducing phase reversal, although excessive input
current may flow out of each input exceeding the lower common-mode input range. The all NPN output stage
provides a nearly rail-to-rail output swing of VCC_+0.1 V to VCC+-1 V under light current loading conditions.
The device can sustain shorts to either supply since output current is internally limited, but care must be taken
to ensure that maximum package power dissipation is not exceeded.
Both versions can also be used as comparators. Differential inputs of VCC± can be maintained without
damage to the device. Open-loop propagation delay with TTL supply levels is typically 200 ns. This gives
a good indication as to output stage saturation recovery when the device is over-driven beyond the limits of
recommended output swing.
Both the TLE2141 and TLE2141A are available in a wide variety of packages, including both the industrystandard 8-pin small-outline version and chip form for high-density system applications. The C-suffix devices
are characterized for operation from O°C to 70°C, the I-suffix from -40°C to 105°C, and the M-suffix over the
full military temperature range of -55°C to 125°C.
TEXAS ~
INSfRUMENTS
2-1182
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TlE2141, TlE2141A, TlE2141Y
EXCALIBUR lOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
D, JG, OR P PACKAGE
FK PACKAGE
(TOP VIEW)
(TOP VIEW)
0_000
zzzzz
OFFSET N1 u B NC
IN- 2
7
VCC+
IN + 3
6
OUT
VCC _
4
3
OFFSET N2
5
2
1 20 19
NC
4
18
NC
IN-
S
17
7
15
VCC +
NC
OUT
NC
16
IN +
NC
symbol
OFFSETN1
14
8
910111213
o
ION 0
ZOZZZ
0
IN+
OUT
>
IN-
NC - No internal connection
OFFSET N2
chip information
These chips, properly assembled, display characteristics similar to the TLE2141, (see electrical table on page
18). Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may
be mounted with conductive epoxy or a gold-silicon preform.
VCC+
(7)
BONDING PAD ASSIGNMENTS
OFFSET N1 (1)
IN +(3)
OUT
(6)
IN - (2)
OFFSET N2 (5)
VCC-(4)
64
CHIP THICKNESS:
15 TYPICAL
BONDING PADS:
4X4 MINIMUM
TJ max
=150°C
TOLERANCES
ARE ±10%
I ...
65
I
I
I
...
TEXAS
ALL DIMENSIONS
ARE IN MILS
~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
2-1183
~
~
""Cm .....
mnm
:IJ>N
-r- .....
en--,=,"
Vcc+
R:l
R4
-CCl .....
Oc:~
R14
R7
R18
0-
=HZ
~~
~~~~
~c
IN-
~-Q
01
)04
or
03
Q"
IN+
Q~~
~
04
R15
ob-
/j;
....
O~;.1
1-"025
r...:
('
R10
07".:}0.-
OFFSETN2
C3
"F=C1
~
OFFSETN1
'"
Y03 7
t-...
:r
R5
C2
C4~
~19
018
024
0
l(017
020
02~33
020
R11
R12
VCC-
",,035
06W-J
032
07
...
05
- ""C
"T1m
-m
OUT
=M
R20
R22
zen
>m
r-:J:
:5::J:
""C'
r- en
f--(036
R17
:!:iz:;:
-0
0-
>c;
R23
IL 08
R13
016
1t:-
~I 24
1 ~034
t-
I
~w..t
t-...
R16
~~
~lTl
~z
J-";
030
02~
I
~,~ ~
06
I
022'"'-1
~11L:°2
-<
m:e .....
R21
OO~~08~ 0~36J
"&l
z:IJ .....
Or-r""CO~
:IJ,-'='"
R19
~c
en
TLE2141, TLE2141A
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC+ (see Note 1) .................................................... 22 V
Supply voltage, VCC- .............................................................. -22 V
Differential input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ±44 V
Input voltage range, VI (any input) ...................................... VCC+ to VCC- - 0.3 V
Input current, II (each input) ......................................................... ±1 rnA
Output current, 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ±80 rnA
Total current into VCC+ terminal ................................................... " 80 rnA
Total current out of VCC- terminal .................................................... 80 rnA
Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... unlimited
Continuous total dissipation ........................................ See Dissipation Rating Table
Operating free-air temperature range, T A: C-suffix ................................... O°C to 70°C
I-suffix ................................ -40°C to 105°C
M-suffix ............................... -55°C to 125°C
Storage temperature range ................................................... -65°C to 150°C
Case temperature for 60 seconds: FK package .......................................... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package ............... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG or L package .............. 300°C
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC-.
2. Differential voltages are at the noninverting inputwith respect to the inverting input. Excessive currentwill flow if input is brought below
VCC_-0.3 V.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA:52SoC
DERATING FACTOR
POWER RATING
=
=
=
=
TA 10SoC
POWER RATING
TA 70°C
POWER RATING
TA 12SOC
POWER RATING
D
725mW
ABOVE T A 2SOC
5.8 mW/oC
145 mW
1375mW
11.0 mW/oC
464mW
880mW
261 mW
FK
495mW
275mW
JG
1050mW
8.4 mW/oC
672mW
378mW
210mW
L
P
650mW
5.2 mw/oe
416mW
234mW
130mW
1000mW
8.0 mW/oC
640mW
360mW
200mW
recommended operating conditions
C·SUFFIX
Supply voltage, Vce +
Cd'
IVcc = 5V
ommon-mo e Input voltage, VIC /'
VCC+ = ±15 V
Operating free-air temperature, TA
I·SUFFIX
M·SUFFIX
MIN
MAX
MIN
MAX
MIN
MAX
±2
+ 22
+2
± 22
2.9
0
2.7
±2
0
± 22
0
-15
12.9
-15
12.7
-15
12.7
0
70
- 40
105
-55
125
2.7
UNIT
V
V
°C
TEXAS ~
INSfRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
2-1185
TlE2141C, TlE2141AC
EXCAlIBUR lOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Vee
PARAMETER
VIO
TEST CONDITIONS
Input offset voltage
Temperature coefficient of
aVIO
110
liB
input offset voltage
Input offset current
Vo = 2.5V.
RS = 50Q.
TAt
TLE2141C
MIN
TYP MAX
25°C
Full range
225
Full range
1.7
25°C
Full range
VICR
voltage range
High-level output voltage
10H =-1.5 mA
10H =-15 mA
VOL
AVD
Low-level output voltage
Large-signal differential
voltage amplification
1000
1300
1.7
100
8
-0.8
150
-2
-0.8
to
to
to
3.2
3
3.2
Full range
3
0
to
3.9
Full range
3.B
25°C
3.B
Full range
3.7
25°C
3.2
Full range
3.2
~
2.9
4.1
3.9
4.1
3.8
4
3.B
4
V
3.7
3.7
3.2
3.7
3.2
25°C
Full range
75
125
75
125
10L = 1.5 mA
25°C
Full range
150
150
225
250
150
150
225
250
IOL=15mA
25°C
Full range
1.2
1.6
1.2
1.6
1.7
50
25
nA
V
0
to
10L= 150~
25°C
VCC = ±2.5 V, RL = 2 kQ,
Full range
Vo = lVto-l.5V
~V
-0.3
to
25°C
-2
-2.1
0
UNIT
~V/oC
100
150
-0.3
2.9
VOH
200
25°C
RS = 50Q
10H =-150~
MAX
-2.1
0
Common-mode input
1400
TYP
8
Full range
Input bias current
TLE2141AC
MIN
1700
25°C
VIC = 2.5 V
= 5 V(unless otherwise noted)
1.7
50
220
220
mV
V
V/mV
25
q
Input resistance
25°C
70
70
ci
Input capacitance
25°C
2.5
2.5
MQ
pF
zo
Open-loop output impedance f = 1 MHz
25°C
30
Q
Common-mode
VIC = VICR min,
CMRR
rejection ratio
RS = 50Q
Supply-voltage rejection ratio VCC± = ±2.5Vto±15V,
kSVR
(t.VCC +1 t.VIO)
RS = 50Q
Vo = 2.5V, No load,
Supply current
ICC
VIC = 2.5 V
25°C
Full range
25°C
Full range
30
85
80
90
85
25°C
Full range
TEXAS ~
INSfRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
118
dB
80
106
90
85
tFull range IS O°C to 70°C.
2-1186
118
106
dB
85
3.4
4.4
4.6
3.4
4.4
4.6
mA
TlE2141C, TlE2141AC
EXCALIBUR lOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature,
PARAMETER
SR+
SR-
Positive slew rate
Negative slew rate
AVO =-1,
CL = 500 pF
Settling time
AVO = -1,
2.5-V Step
Equivalent input noise
Vn
voltage
Peak-to-peak equivalent
VN(PP) input noise voltage
Equivalent input noise
In
current
Total harmonic distortion
THO + N
plus noise
Bl
BaM
tl>m
TEST CONDITIONS
RL = 2 kOT,
I ToO.l%
I To 0.01%
RS = 1000, I = 10 Hz
RS = 100 Q, I = 1 kHz
f = 0.1 Hz to 1 Hz
f = 0.1 Hz to 10Hz
f = 10 Hz
f = 1 kHz
Vee
=5 V
TLE2141AC
TLE2141C
TA
MIN
TYP
45
25°C
25°C
25°C
25°C
25°C
MAX
MIN
TYP
45
42
42
0.16
0.22
15
10.5
0.48
0.16
0.22
15
10.5
0.48
0.51
1.92
0.5
0.51
1.92
0.5
MAX
UNIT
V/~s
~s
nVlv'Hz
~V
pA/v'Hz
Va = 1 V to 3 V, RL = 2 kQT,
f=10kHz
25°C
Unity-gain bandwidth
RL = 2 kot, CL = 100 pF
25°C
5.9
5.9
MHz
Gain-bandwidth product
RL = 2 koT, CL = 100 pF,
1= 100 kHz
25°C
5.8
5.8
MHz
25°C
6.6
6.6
MHz
25°C
57°
57"
Maximum output-swing
bandwidth
Phase margin at unitygain
AVO = 2,
RL = 2 kOT, VO(PP) = 2 V,
AVO = 1,
CL = 100pF
RL = 2 kQt, CL = 100pF
0.0052 %
0.0052 %
tRL terminates at 2.5 V.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
2-1187
TLE2141C, TLE2141AC
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Vcc± =
PARAMETER
VIO
TEST CONDITIONS
25°C
Full range
Input offset voltage
Temperature coefficient 01
ir!put offset voltage
VIC = 0,
RS = son,
110
Input offset current
Vo = 0
liB
Input bias current
aVIO
-
TAt
VICR
1.7
25°C
Full range
25°C
Full range
7
RS = son
Full range
25°C
Full range
10 = -150 I1A
Maximum positive peak
VOM+
output voltage swing
25°C
Full range
25°C
Full range
10=-1.5 rnA
10=-15mA
VOM-
AVO
tj
ci
Maximum negative peak
output voltage swing
Large-signal differential
voltage amplification
Input resistance
Input capacitance
Open-loop output impedance
Common-mode
CMRR
rejection ratio
Supply-voltage rejection ratio
kSVR
(AVCC+/ AVIO)
Zo
lOS
Short-circuit output current
ICC
Supply current
10 = 150 I1A
25°C
Full range
10= 1.5mA
25°C
Full range
10=15mA
25°C
Full range
Vo = ±10V
25°C
Full range
1 = 1 MHz
25°C
VIC = VICR min,
Full range
RS = 50n
25°C
VCC± = ±2.5Vto±15V,
Full range
RS = son
Vo = 0
Vo = 0,
-0.7
I VID
I VIO
= 1V
25°C
= -1 V
No load
80
90
85
-25
20
- 1.5
- 1.6
-0.7
150
-1.5
-1.6
-15 -15.3
to
to
13
13.2
-15 -15.3
to
to
12.9
13.1
13.8
14.1
25°C
Full range
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
106
4.5
4.7
nA
I1A
V
V
VlmV
65
2.5
30
108
Mn
pF
n
dB
106
-50
31
3.5
I1V
V
13.7
14
13.7
13.6
13.1
13.7
13
-14.7 -14.9
-14.6
-14.5 -14.8
-14.4
-13.4 -13.8
-13.3
100
450
75
85
80
90
85
-25
20
UNIT
Jl.V/oC
100
30
108
-50
31
3.5
500
800
7
65
2.5
85
MAX
100
150
13.8
14.1
13.7
13.7
14
13.6
13.7
13.1
13
-14.7 -14.9
-14.6
-14.5 -14.8
-14.4
-13.4 -13.8
-13.3
100
450
75
tFull range is DoC to 700 e.
2-1188
TYP
175
1.7
-15 -15.3
to
to
13
13.2
-15 -15.3
to
to
12.9
13.1
25°C
25°C
25°C
RL = 2kn
TLE2141AC
MIN
1300
Full range
25°C
Common-mode input
voltage range
±15 V (unless otherwise noted)
TLE2141C
MIN
TYP MAX
900
200
dB
rnA
4.5
4.7
rnA
TlE2141C, TlE2141AC
EXCALIBUR lOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature, Vcc±
TEST CONDITIONS
PARAMETER
SR+
SR-
Positive slew rate
Negative slew rate
Settling time
Equivalent input noise
Vn
voltage
Peak-to-peak equivalent
VN(PP) input noise voltage
Equivalent input noise
In
current
Total harmonic distortion
THO + N plus noise
Bl
BOM
AVO = -1,
10-V Step
RL
= 2kn,
IToO.l%
I To 0.01%
= lOOn, I = 10 Hz
RS = lOOn, I = 1 kHz
I = 0.1 Hz to 1 Hz
RS
= 0.1 Hz to 10Hz
= 10 Hz
I = 1 kHz
VO(PP) = 20 V, RL = 2 kn,
I = 10kHz
AVO = 10,
I
I
Unity-gain bandwidth
RL
= 2kn,
CL
= 100pF
Gain-bandwidth product
RL = 2kn,
I = 100 kHz
CL
= 100 pF,
Maximum output-swing
bandwidth
VO(PP) = 20 V, RL = 2 kn,
eL = 100pF
AVD = 1,
Phase margin at unity
m
1
AVO = -1,
CL = 500pF
gain
RL
= 2kn,
CL
= 100pF
= ± 15 V
TLE2141C
TA
MIN
TYP
30
30
45
42
25°C
25°C
0.34
25°C
TLE2141AC
MAX
MIN
30
30
TYP
45
42
0.34
MAX
UNIT
V/fls
fls
0.4
15
0.4
10.5
0.48
10.5
0.48
0.51
0.51
1.89
1.89
0.47
0.47
25°C
0.01%
0.01%
25°C
6
6
MHz
25°C
5.9
5.9
MHz
25°C
668
668
kHz
25°C
58°
58°
25°C
25°C
25°C
15
nV/{Hz"
flY
pA/{Hz"
TEXAS ,.,
INsrRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-1189
TLE21421, TLE2141AI
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
= 5 V(unless otherwise noted)
electrical characteristics at specified free-air temperature, Vee
PARAMETER
VIO
Input offset voltage
(Y.VIO
Temperature coefficient of
input offset voltage
110
liB
Input offset current
TEST CONDITIONS
Vo = 2.5 V,
RS = 5OU,
VIC = 2.5V
Input bias current
TAt
TLE2141I
MIN
MAX
25°C
Full range
225
1400
1900
Full range
1.7
25°C
Full range
25°C
Full range
8
100
200
8
-0.8
-2
-0.6
25°C
VICR
Common-mode input
voltage range
RS = son
Full range
10H = - 150 f1A
10H =-1.5 mA
VOH
VOL
AVD
q
ci
Zo
High-level output voltage
low-level output voltage
large-signal differential
voltage amplification
Input resistance
Input capacitance
Open-loop output impedance
Common-mode
CMRR
rejection ratio
Supply-voltage rejection ratio
kSVR
(t.vCC±nVIO)
ICC
Supply current
IOH=-15mA
10H = -100 f1A
10H=-1 mA
10H =-10 mA
25°C
Full range
200
10l = 150 f1A
25°C
10l = 1.5 mA
10l= 15mA
IOL = 100 f1A
Full range
10l=1 mA
IOl=10mA
VCC = ± 2.5 V, Rl = 2 kil,
25°C
Full range
Vo = 1 V to - 1.5 V
25°C
25°C
2SoC
f = 1 MHz
25°C
VIC = VICR min,
Full range
RS = son
2SoC
VCC± = ±2.SVto±lSV,
Full range
RS = 50n
No load,
25°C
Vo = 2.5 V,
Full range
ViC = 2.5 V
-0.3
0
to
3
0
to
2.7
3.9
3.6
3.2
3.8
to
3.2
-0.3
to
2.9
4.1
4
3.7
80
90
85
TEXAS ~
INSfRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
flV
flV/oC
100
200
-2
-2.2
-0.3
to
3.2
-0.3
to
2.9
4.1
4
nA
f1A
V
3.7
125
75
150
1.2
225
1.6
17S
225
1.4
85
UNIT
V
3.7
3.3
75
lS0
1.2
SO
10
1000
1500
1.7
-2.2
0
to
3
0
to
2.7
3.9
3.8
3.2
3.8
3.7
3.3
tFull range is -40°C to lOSoC.
2-1190
TLE2141AI
MIN
TYP MAX
TYP
220
50
10
70
2.S
30
118
85
80
90
85
106
3.4
4.4
4.6
125
225
1.6
175
22S
1.4
220
V
mV
V
V/mV
70
2.S
30
118
Mn
pF
n
dB
106
3.4
mV
dB
4.4
4.6
mA
TlE21421, TlE2141AI
EXCALIBUR lOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature,
PARAMETER
SR+
SR-
Vn
AVO = -1,
Cl = 500 pF
Settling time
AVO = -1,
2.5-V Step
Equivalent input noise
RS
voltage
Peak-to-peak equivalent
RS = 100 n, I = 1 kHz
f = 0.1 Hz to 1 Hz
Total harmonic distortion
THO +N
plus noise
BaM
= 2 knT,
Positive slew rate
Negative slew rate
VN(PP) input noise voltage
Equivalent input noise
In
current
Bl
TEST CONDITIONS
Rl
I ToO.l%
I
= lOon,
To 0.01%
I
= 10 Hz
f = 0.1 Hz to 10Hz
f = 10 Hz
f = 1 kHz
Va = 1 V to 3 V, Rl = 2 kgT,
f = 10 kHz
AVO = 2
= 2 knt ,
Unity-gain bandwidth
RL
CL
= 100 pF
Gain-bandwidth product
RL = 2 kQT, CL
f = 100 kHz
= 100 pF,
Maximum output-swing
RL
bandwidth
AVO
Phase margin at unity¢m
gain
Rl terminates at 2.5 V.
= 2 kQT,
= 1,
VO(PP) = 2 V,
Cl = 100 pF
RL = 2 kQt, CL
= 100 pF
Vee = 5 V
TLE21421
TA
TYP
MIN
45
25'C
25'C
25'C
25'C
TYP
45
42
0.16
0.22
0.22
15
15
10.5
10.5
0.48
0.51
1.92
0.5
25°C
MIN
42
0.16
0.48
25'C
TLE2141AI
MAX
0.0052 %
0.51
1.92
0.5
MAX
UNIT
V/fiS
fis
nVl,fHz
fiV
pA/,fHz
0.0052 %
25'C
5.9
5.9
MHz
25'C
5.8
5.8
MHz
25'C
6.6
6.6
MHz
25'C
57'
57'
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-1191
TlE21411, TlE2141AI
EXCAlIBUR lOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
= ± 15 V (unless otherwise noted)
electrical characteristics at specified free-air temperature, Vcc±
PARAMETER
VIO
Input offset voltage
etVIO
Temperature coefficient 01
input offset voltage
110
Input oflset current
liB
Input bias current
TEST CONDITIONS
TAt
25°C
Full range
VIC = 0,
RS = 5OU,
Vo = 0
TLE2141I
MIN
TYP MAX
200
900
1500
voltage range
1.7
100
200
7
-0.7
-1.5
-0.7
25°C
RS = 50n
-1.7
to
to
to
13.2
13
13.2
-15 -15.3
-15
to
-15.3
25°C
13.7
13.1
13.7
Full range
13.6
10 = 150 fIA
25°C
10= 1.5 mA
Maximum negative peak
VOMoutput voltage swing
AVD
Large-signal differential
voltage amplification
to
12.9
12.7
to
12.9
14.1
13.8
14.1
14
13.7
13.7
13.1
13.7
14
13.7
.10= 15mA
-14.7 -14.9
-14.7 -14.9
-14.5 -14.8
-13.4 -13.8
-14.6
-14.5
10'" 100 fIA
10=1 mA
Full range -14.5
10= 10 mA
-13.4
Vo = ± 10 V, RL = 2 kn
25°C
Full range
100
40
100
40
450
25°C
25°C
65
2.5
65
2.5'
Zo
Open-loop output impedance
I = 1 MHz
25°C
30
30
Common-mode
rejection ratio
Supply-voltage rejection ratio
VCC± = ±2.5Vto±15V,
(....VCC±16VIO)
RS = 50n
lOS
Short-circuit output current
Vo = 0
ICC
Supply current
Vo = 0,
I VID
I VID
= 1V
= -1 V
85
108
85
25°C
80
90
106
90
Full range
85
No load
25°C
TEXAS
-25
-50
20
31
3.5
"I
2-1192
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
n
dB
106
31
INSTRUMENTS
pF
dB
85
-50
Full ran g e is -40C to 105°C.
Mn
80
20
25°C
VimV
108
-25
Full range
V
-13.4
450
Input capacitance
kSVR
V
-14.5
Input resistance
25°C
Full range
fIA
-14.8
ci
VIC = VICR min,
RS = 50n
nA
V
-13.4 -13.8
-14.6
q
CMRR
100
200
-1.5
13.6
13.1
13.1
10=-10mA
J,lV
',J.VioC
-1.7
to
to
UNIT
-15 -15.3
13
12.7
13.8
10=-100fIA
10=-1 mA
1000
7
Full range
Maximum positive peak
VOM+
output voltage swing
500
25°C
Full range
Full range
10=- 15O fIA
10=-1.5 mA
10=-15mA
MAX
175
1.7
25°C
VICR
TYP
Full range
-15 -15.3
Common-mode input
TLE2141AI
MIN
4.5
4.7
3.5
mA
4.5
4.7
mA
TlE21411, TlE2141AI
EXCALIBUR lOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature, Vcc±
PARAMETER
SR+
SR-
Positive slew rate
Negative slew rate
AVO = -1,
CL = 500pF
Settling time
AVO = -1,
10-V Step
Equivalent input noise
Vn
voltage
Peak-to-peak equivalent
VN(PP) input noise voltage
Equivalent input noise
In
current
Total harmonic distortion
THO + N plus noise
91
TEST CONDITIONS
RL
= 2kn,
IToO.l%
I To 0.01%
RS = lOOn, I = 10 Hz
RS = lOOn, I = 1 kHz
1= 0.1 Hztol Hz
I = 0.1 Hz to 10Hz
= ± 15 V
TlE2141I
TA
MIN
30
30
25°C
25°C
TYP
45
42
0.34
0.4
25°C
25°C
25°C
MAX
TlE2141AI
MIN
TYP MAX
45
30
30
42
0.34
0.4
15
10.5
0.48
0.51
15
10.5
0.48
0.51
1.89
0.47
UNIT
V/Jls
Jls
nVl*lZ
JlV
I = 10 Hz
I = 1 kHz
25°C
1.89
0.47
VO(PP) = 20 V, RL = 2 kn,
t = 10 kHz
AVO = 10,
25°C
0.01%
0.01%
Unity-gain bandwidth
RL = 2kn,
CL = 100 pF
25°C
6
6
MHz
Gain-bandwidth product
RL = 2kn,
I = 100 kHz
CL = 100 pF,
25°C
5.9
5.9
MHz
VO(PP)· = 20 V, RL = 2 kn,
CL = 100 pF
AVO = 1,
25°C
668
668
kHz
RL = 2kn,
25°C
58°
58°
BaM
Maximum output-swing
bandwidth
Phase margin at unity
¢m
gain
CL = 100pF
TEXAS
pAl*lZ
+
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-1193
TLE2141M, TLE2141AM
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Vee = 5 V(unless otherwise noted)
PARAMETER
Via
Input offset voltage
CLVIO
Temperature coefficient 01
input offset voltagA
110
lIB
Input offset current
TEST CONDITIONS
Va = 2.5 V,
RS = 50Q,
VIC = 2.5V
Input bias current
TAt
TLE2141M
TYP MAX
MIN
25°C
Full range
225
Full range
1.7
25°C
Full range
25°C
Full range
8
VICR
-0.8
RS = 50Q
Full range
VOH
High-level output voltage
10H = -150 flA
10H =-1.5 rnA
IOH=-15mA
25°C
10H = -100 flA
10H=-lmA
10H =-10 rnA
Full range
10L = 150 flA
10L = 1.5mA
VOL
AVD
q
ci
Zo
Low-level output voltage
Large-signal differential
voltage amplification
Input resistance
Input capacitance
Open-loop output impedance
Common-mode
CMRR
rejection ratio
Supply-voltage rejection ratio
kSVR
(AVCC±/AVIO)
ICC
Supply current
200
1000
25°C
VCC± = ±2.5Vto±15V,
Full range
RS = 50Q
No load,
Vo = 2.5 V,
25°C
Full range
VIC = 2.5 V
-0.8
3
0
to
2.7
3.9
3.8
3.2
-0.3
to
2.9
4.1
4
3.7
3
0
to
2.7
3.9
3.8
3.2
3.75
3.65
3.25
10L = 15 rnA
IOL = 100 flA
25°C
Full range
8
0
to
3.2
3.75
3.65
3.25
Full range
10L = 1 rnA
IOL=10mA
25°
VCC± = ± 2.5 V, RL = 2kn,
Full range
Va = lVto-l.5V
25°C
25°C
1 = 1 MHz
25°C
1.7
100
250
-2
-2.3
-0.3
to
75
150
125
225
1.2
1.4
200
250
50
5
85
80
90
85
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
106
3.4
125
225
1.4
200
250
1.25
85
80
90
85
4.4
4.6
flA
V
220
V
mV
V
MQ
pF
Q
30
118
dB
106
3.4
mV
V/mV
70
2.5
30
118
nA
V
3.7
75
70
2.5
flV
!J.V/oC
100
250
-2
-2.3
to
3.2
-0.3
to
2.9
4.1
4
150
1.2
50
5
220
UNIT
-0.3
1.25
tFull range is -55°C to 1250 C.
2-1194
MAX
1700
0
to
25°C
VIC = VICR min,
RS = 50Q
1400
TYP
2100
25°C
Common-mode input
voltage range
TLE2141AM
MIN
dB
4.4
4.6
rnA
TlE2141M, TlE2141AM
EXCALIBUR lOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
operating characteristics,
Vee = 5 V
PARAMETER
SR+
SR-
Positive slew rate
Negative slew rate
Settling time
VN(pP
THO+N
Bl
RL ~ 2 kn t , CL ~ 100pF
current
Total harmonic distortion
Maximum output-swing
¢m
I ToO.l%
I To 0.01%
Unity-gain bandwidth
input noise voltage
Gain-bandwidth product
BOM
AVO ~ -1,
2.5-V Step
RL ~ 2 knT,
plus noise
voltage
Peak-to-peak equivalent
Equivalent input noise
In
AVO ~ -1,
CL ~ 500 pF
f ~ 10 Hz
Rs ~ 100 n, f ~ 1 kHz
f ~ 0.1 Hz to 1 Hz
f ~ 0.1 Hz to 10Hz
f ~ 10 Hz
f ~ 1 kHz
Vo ~ 1 V to 3 V, RL ~ 2 kn t ,
f~ 10kHz
A',/O ~ 2,
Equivalent input noise
Vn
TEST CONDITIONS
bandwidth
Phase margin at
unity gain
RS
~
100 n,
RL ~ 2 kn t , CL ~ 100 pF,
f ~ 100 kHz
RL ~ 2 kn t , VO(PP) ~ 2 V,
AVD ~ 1
RL ~ 2 knt , CL
~
100 pF
TA
25°C
TLE2141M
MIN
TYP MAX
45
25°C
25°C
TLE2141AM
MIN
TYP
45
42
42
0.16
0.16
0.22
15
0.22
15
MAX
UNIT
V/)lS
)ls
nV/-fHz
10.5
10.5
0.48
0.48
0.51
0.51
1.92
1.92
0.5
0.5
25°C
0.0052%
0.0052%
25°C
5.9
5.9
MHz
25°C
5.8
5.8
MHz
25°C
6.6
6.6
MHz
25°C
57°
57°
25°C
25°C
)lV
pA/-fHz
tRL terminates at 2.5 V.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-1195
TlE2141M, TlE2141AM
EXCALIBUR lOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Vcc±
PARAMETER
VIO
Input offset voltage
(XVIO
Temperature coefficient of
input offset voltage
110
liB
TEST CONDITIONS
TAt
25°C
Full range
VIC == 0,
RS "'" 50n
Input offset current
Input bias current
Full range
1.7
25°C
Full range
25°C
Full range
7
25°C
VICR
Common-mode input
voltage range
RS = 500
Full range
Maximum positive peak
VOM+
output voltage swing
V
Maximum negative peak
OM - output voltage swing
Large-signal differential
voltage amplification
Input resistance
q
Input capacitance
ci
Open-loop output impedance
Zo
Common-mode
CMRR
rejection ratio
Supply-voltage rejection ratio
kSVR
(AVCC±/AVIO)
AVD
lOS
ICC
10 = -1501tA
10 = -1.5mA
10 = -15 mA
10=- lOO IlA
10=-lmA
10 = -10mA
10 = 150 ItA
10 = 1.5 mA
10 = 15mA
Full range
10 = 100 ItA
10=lmA
10 = 10mA
Full range
25°C
25°C
25°C
Full range
25°C
25°C
f = 1 MHz
25°C
25°C
VIC = VICR min,
Full range
RS = 500
25°C
VCC± = ±2.5Vto±15V,
Full range
RS = 500
Vo = ± 10 V, RL = 2 kO
I VID
I VID
Short-circuit output current
Vo = 0
Supply current
Vo = 0,
VIC = 2.5 V
= 1V
= -1 V
No load,
25°C
-0.7
-15
to
13
-15
to
12.7
13.8
13.7
13.1
13.7
13.6
13.1
-14.7
-14.5
-13.4
-14.6
-14.5
-13.4
100
20
100
250
-1.5
-1.8
25°C
Full range
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
450
65
2.5
30
108
-0.7
85
80
90
85
-25
20
106
-50
31
3.5
7
-15
to
13
-15
to
12.7
13.8
13.7
13.1
13.7
13.6
13.1
-14.7
-14.5
-13.4
-14.6
-14.5
-13.4
100
20
-14.9
-14.8
-13.8
85
80
90
85
-25
20
TLE2141AM
MIN
TYP MAX
175
500
1200
1.7
-15.3
to
13.2
-15.3
to
12.9
14.1
14
13.7
tFull range is -55°C to 125°C.
2-1196
= ±15 V (unless otherwise noted)
TLE2141M
MIN
TYP MAX
200
900
1700
4.5
4.7
IlV
IlV/oC
100
250
-1.5
-1.8
-15.3
to
13.2
-15.3
to
12.9
14.1
14
13.7
nA
ItA
V
V
-14.9
-14.8
-13.8
V
450
V/mV
65
2.5
30
108
MO
pF
0
dB
106
-50
31
3.5
UNIT
dB
mA
4.5
4.7
mA
TlE2141M, TlE2141AM
EXCAlIBUR lOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
operating characteristics, VCC±
PARAMETER
SR+
SR-
BaM
¢m
± 15 V
TEST CONDITIONS
Positive slew rate
Negative slew rate
AVO = -1,
CL =100 pF
Settling time
AVO = -1,
10-V Step
Equivalent input noise
Vn
voltage
Peak-to-peak equivalent
VN(PP) input noise voltage
Equivalent input noise
In
current
Total harmonic distortion
THO + N plus noise
Bl
=
RS
RS
I =
I =
I =
I =
RL = 2kO,
IToO.l%
ITo 0.01%
= 1000, 1= 10 Hz
= 1000, I = 1 kHz
0.1 Hz to 1 Hz
0.1 Hz to 10Hz
10 Hz
1 kHz
TLE2141M
TA
25°C
25°C
MIN
30
30
TYP
45
42
0.34
25°C
25°C
25°C
25°C
TLE2141AM
MAX
MIN
30
30
.4
15
10.5
0.48
0.51
1.89
0.47
TYP
45
42
0.34
.4
15
10.5
0.48
0.51
1.89
0.47
MAX
UNIT
VlllS
lls
nVl{RZ
llV
pA/{RZ
VO(PP) = 20 V, RL = 2 kO,
I = 10 kHz
AVO = 10,
25°C
0.01 %
0.01 %
Unity-gain bandwidth
RL = 2kO,
CL = 100 pF
25°C
6
6
MHz
Gain-bandwidth product
RL = 2kQ,
I = 100 kHz
CL = 100 pF,
Maximum output-swing
bandwidth
Phase margin at unity
gain
25°C
5.9
5.9
MHz
VO(PP) = 20 V, RL = 2 kO,
CL = 100pF
AVO = 1,
25°C
668
668
kHz
RL = 2kO,
25°C
58°
58°
CL = 100pF
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-1197
TLE2141Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, vee ± =
(unless otherwise noted)
VIO
110
liB
VICR
PARAMETER
Input offset voltage
Input offset current
Input bias current
Curnrnurl-mode inpui
voltage range
VOM+
Maximum positive peak
output voltage swing
VOM-
Maximum negative peak output
voltage swing
AVD
r;
ci
Zo
CMRR
kSVR
Large-signal differential
voltage amplification
Input resistance
Input capacitance
Open-loop output impedance
Common-mode
rejection ratio
Supply-voltage rejection ratio
(6VCC+/6VI0)
TEST CONDITIONS
MIN
VIC = 0, RS = 500, Vo = 0
TYP
MAX
UNIT
200
1000
100
fLV
nA
- 1.5
f1A
7
-0.7
-15 -15.3
RS = SOO
to
13
13.8
10 = - 150 j.iA
10=-1.5mA
10=-15mA
10 = 150 j.iA
10= 1.5mA
10= 15 mA
to
13.2
14.1
14
V
V
13.7
13.3
13.7
-14.7 -14.9
-14.5 -14.8
-13.4 -13.8
VO=±10V, RL = 2 kQ
100
f = 1 MHz
V
450
V/mV
65
2.5
30
MO
pF
0
VIC = VICR min, RS = 500
80
108
dB
VCC± = ±2.5Vto±15V, RS = 500
85
106
dB
-25
20
-50
31
mA
I
I
lOS
Short-circuit output current
Vo = 0
ICC
Supply current
Vo = 0, No load
VIO = 1 V
VID = -1 V
TEXAS ~
INSTRUMENTS
2-1198
±15 V, T A = 25°C
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
3.5
4.5
mA
TLE2142, TLE2142A, TLE2142Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
D3667, DECEMBER 1990
available features
•
Low Noise:
10 Hz ..• 15 nVNHz
1 kHz ... 10.5 nvNHz
•
10,000-pF Load Capability
•
20-mA Min Short-Circuit Output Current
•
30-VlJ.1s Min Slew Rate
•
High Gain-Bandwidth Product ..• 5.9 MHz
•
Low VIO ••• 750 J.1V Max at 25°C
•
Single or Split Supply ... 4 V to 44 V
•
Fast Settling Time ... 340 ns to 0.1 %
400 ns to 0.01%
•
Saturation Recovery ... 150 ns
•
Large Output Swing ... VCC- + 0.1 V
to VCC+ -1 V
SLEW RATE
EQUIVALENT INPUT NOISE VOLTAGE
vs
vs
LOAD CAPACITANCE
FREQUENCY
50
..
250
~>
\
40
c
= 1000
I
~
\SR+
>
0
>
30
G>
~
IX:
-az
1\ 1\
3:
In
I
IX:
In
RS
G>
Dl
~
.!l
= ±15V
VCC±
20
SR-'
'SCt.
.5
i
~I\
iii
>
'5
10
o
~~~=~ =~5111I
TA
IT
w
I'
I
c
>
25°C
0.01
0
0.1
10
10
1
CL - Load Capacitance - nF
100
1k
10 k
f - Frequency - Hz
description
The TLE2142 and TLE2142A are high-performance internally compensated operational amplifiers built using Texas
Instruments complementary bipolar Excalibur process. The TLE2142A is a tighter offset voltage grade of the
TLE2142. Both are pin-compatible upgrades to standard industry products.
AVAILABLE OPTIONS
PACKAGE
VIO max
AT 25°C
SMALL·
OUTLINE
(D)
CHIP
CARRIER
(FK)
CERAMIC
DIP
(JG)
METAL
CAN
(L)
PLASTIC
DIP
(P)
O°C to
750 flV
TLE2142ACD
--
1200 l1V
TLE2142CD
- 40°C to
750 flV
TLE2142AID
---
105°C
1200 l1V
TLE21421D
--
-----
-----
TLE2142ACP
70°C
- 55°C to
750 flV
TLE2142AMD
TLE2142AMFK
TLE2142AMJG
TLE2142AML
TLE2142AMP
125°C
1200 l1V
TLE2142MD
TLE2142MFK
TLE2142MJG
TLE2142ML
TLE2142MP
Add 'R" suffix to device type, (e.g., TLE2142ACDR).
TA
CHIP
FORM
(V)
TLE2142CP
TLE2142AIP
TLE21421P
TLE2142Y
o packages are aVailable taped and reeled.
PRODUCTION DATA documents contain information currlnt II of
publication data. Products conform to .pecifications pe, the terml of
Tllxallnstruments standard warranty. Produc;tion proc... lng dOl.
not necessarily Include testing 01 an parameteJl.
TEXAS
~
IN5rRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
Copyright © 1990 , Texas Ins trumen Is Incorporated
On products compliant to MIL-STO-883. Class B. all paramatel'$
are tested unless otherwise noted.
On all other products,
production processing does not necessarily include testing of all
parameters.
2-1199
TlE2142, TlE2142A, TlE2142Y
EXCALIBUR lOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
description (continued)
The design incorporates a patent-pending input stage that simultaneously achieves low audio band noise of
10.5 nV/VHZ with a 6-Hz 1/f corner and symmetricaI40-V/lls slew rate typically with loads up to 800 pF. The resulting
low distortion and high power-bandwidth are important in hi-fi audio applications. A fast settling time of 340 ns to
0.1 % of a 10-V step with a 2-kn/100-pF load is useful in fast actuator/positioning drivers. Under similar test
conditions, settling time to 0.01% is 400 ns.
The devices are stable with capacitive loads up to 10 nF, although the 6-MHz bandwidth decreases to 1.8 MHz at
this high loading level. As such, the TLE2142 and TLE2142A are useful for low droop sample-and-holds and direct
buffering of long cables, including 4 rnA to 20 rnA current loops.
The special design also exhibits an improved insensitivity to inherent IC component mismatches as is evidenced
by a 750-IlV maximum offset voltage and1.7-IlV/oC typical drift. Minimum common-mode rejection ratio and supplyvoltage rejection ratio are 85 dB and 90 dB, respectively.
Device performance is relatively independent of supply voltage over the ±2-V to ±22-V range. Inputs can operate
between VCC_-0.3 V to VCC+-1.8 V without inducing phase reversal, although excessive input current may flow
out of each input exceeding the lower common-mode input range. The all-NPN output stage provides a nearly railto-rail output swing of VCC_+0.1 V to VCC+-1 V under light current loading conditions. The device can sustain
shorts to either supply since output current is internally limited, but care must be taken to ensure that maximum
package power dissipation is not exceeded.
Both versions can also be used as comparators. Differential inputs of VCC± can be maintained without damage to
the device. Open-loop propagation delay with TTL supply levels is typically 200 ns. This gives a good indication as
to output stage saturation recovery when the device is over-driven beyond the limits of recommended output swing.
Both the TLE2142 and TLE2142A are available in a wide variety of packages, including both the industry-standard
8-pin small-outline version and chip form for high-density system applications. The C-suffix devices are characterized for operation from O°C to 70°C, the I-suffix from -40°C to 105°C, and the M-suffix over the full military
temperature range of -55°C to 125°C.
TEXAS ~
INSTRUMENTS
2-1200
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
TlE2142, TlE2142A, TlE2142Y
EXCAlIBUR lOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
D, JG, OR P PACKAGE
(TOP VIEW)
I OUT
I IN I IN +
VCC-
US
2
7
3
6
4
5
21N +
a
OUT
:::l
a
aa
a
a
2
1 20 19
z~z>z
3
NC
IINNC
IIN+
NC
IN+=[>
+
f-
VCC+
2 OUT
2 IN-
symbol
IN-
FK PACKAGE
(TOP VIEW)
4
18
5
17
6
16
7
15
8
14
NC
20UT
NC
21NNC
9 1011 1213
-
ala+a
zazz
a
>
Z
N
NC - No internal connection
chip information
These chips, properly assembled, display characteristics similar to the TLE2142, (see electrical table on page
18). Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may
be mounted with conductive epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
v
(8) VCC+
(3)IIN+
(2) liN -
IOUT(I)
-
(5) 21N + t > - +
2 OUT (7)
(6)2IN -
(4) VCC-
CHIP THICKNESS:
15 TYPICAL
BONDING PADS:
4X4MINIMUM
TOLERANCES
ARE ±10%
ALL DIMENSIONS
ARE IN MILS
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-1201
l
""Cm-l
mnm
n>N
:::e>:e; ......
r-,~
R1,l
R4
R14
R7
Z
~d
~~
z
~~Q
INQ1
)Q4
Q6
R19
Q2~
I
-r
f.¥
I
":~
Q11~
~
03
04
"8
t--..Q30
Q2~
~
R15
r
~
,7
'" Q3
~
Q~ I
~~C1
Q~~
$R10
y:::
R5
Q12
"Q25
C3
fC2
C4~Q24
~19
Q18
~Q36
OUT
R12
Vcc-
Q35
07 U d 3 2
y::Q17
R11
~31
06
Q29~33
Q20
~I
05
>""C
""CO
R17
Q28T
OC;
Z:J:
>,
r-C'I)
3:~
R23
~ 08
R16
Q16
24
",Q34
R13
IN+
:::eC'l)
m
!i:J:
±--
"'02
(j)~
m-
R21
a~~a~bJ
"~jl
R18
OZN
""Co>
R20
R22
C
'"T1
m
:::e
C'I)
TlE2142, TlE2142A
EXCALIBUR lOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC+ (see Note 1) .................................................... 22 V
Supply voltage, VCC- .............................................................. -22 V
Differential input voltage (see Note 2) .......................................... VCC+ to VCCInput voltage range, VI (any input) ...................................... VCC+ to VCC- - 0.3 V
Input current, II (each input) ......................................................... ±1 rnA
Output current, 10' ............................................................... ±80 rnA
Total current into VCC+ terminal .................................................... 160 rnA
Total current out of VCC- terminal ................................................... 160 rnA
Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... unlimited
Continuous total dissipation ........................................ See Dissipation Rating Table
Operating free-air temperature range, TA: C-sulfix ................................... O°C to 70°C
I-suffix ................................ -40°C to 105°C
M-suffix ............................... -55°C to 125°C
Storage temperature range ................................................... -65°C to 150°C
Case temperature for 60 seconds: FK package .......................................... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package ............... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG or L package .............. 300°C
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC-.
2. Differential voltages are at the noninverting input with respect to the inverting input. Excessive currentwill flow if input is brought below
VCC_-0.3 V.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA '" 2SoC
POWER RATING
DERATING FACTOR
TA=10SoC
POWER RATING
TA = 70°C
POWER RATING
TA=12SoC
POWER RATING
D
FK
725mW
ABOVE TA = 2SoC
5.8 mW/oC
145 mW
11.0 mW/oC
464mW
880mW
261 mW
1375mW
495mW
275mW
JG
1050mW
8.4 mW/oC
672mW
378 mW
210 mW
L
p
650mW
5.2 mW/oC
416mW
234 mW
130 mW
1000 mW
8.0 mW/oC
640mW
360mW
200mW
recommended operating conditions
C-SUFFIX
Supply voltage, VCC +
IVCC-5V
Common-mode input voltage, VIC I'
VCC± = 15V
Operating free-air temperature, TA
I-SUFFIX
M-SUFFIX
MIN
MAX
MIN
MAX
MIN
MAX
+2
+ 22
+2
+ 22
+2
± 22
0
2.9
0
2.7
0
2.7
-15
12.9
-15
12.7
70
-15
-40
12.7
0
105
-55
125
UNIT
V
V
°C
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-1203
TlE2142C, TlE2142AC
EXCALIBUR lOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Vee
PARAMETER
VIO
Input offset voltage
aVIO
Temperature coefficient of
input offset voltage
110
Input offset current
liB
TEST CONDITIONS
Vo = 2.5V,
RS = 500,
VIC = 2.5 V
Input bias current
TLE2142C
MIN
TYP MAX
TLE2142AC
MIN
TYP MAX
25°C
Full range
220
200
Full range
1.7
25°C
Full range
25°C
Full range
8
100
8
100
-0.8
150
-2
-2.1
-0.8
150
-2
-2.1
TAt
25°C
VICR
Common-mode input
voltage range
RS = 500
Full range
VOH
High-level output voltage
10H = - 150 jlA
25°C
Full range
10H =-1.5 rnA
25°C
Full range
10H =-15 rnA
25°C
Full range
25°C
Full range
25°C
Low-level output voltage
10L = 1.5mA
VOL
Full range
25°C
IoL = 15 rnA
Full range
Large-signal differential
25°C
VCC = ± 2.5 V, RL = 21<0,
AVD
voltage amplification
Full range
Vo = lVto-l.5V
q
Input resistance
25°C
Input capacitance
25°C
ci
Open-loop output impedance f = 1 MHz
25°C
Zo
Common-mode
25°C
VIC = VICR min,
CMRR
rejection ratio
Full range
RS = SOO
Supply-voltage rejection ratio VCC± = ±2.5Vto±15V,
25°C
kSVR
Full range
(,,w cc ± UNIO)
RS = 50n
Vo = 2.5 V, No load,
25°C
Supply current
ICC
Full range
VIC = 2.5 V
1900
2200
-0.3
to
0
to
-0.3
to
3
0
to
2.9
3.9
3.8
3.8
3.7
3.4
3.4
3.2
3
0
to
2.9
3.9
3.8
3.8
3.7
3.4
3.4
3.2
4.1
4
3.7
75
1SO
1.2
50
25
125
150
225
250
1.4
1.5
t Full range is O°C to 70°C.
TEXAS ~
INSfRUMENTS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
106
V
125
150
225
250
1.4
1.5
220
8.8
9.2
V
Mn
pf
0
118
dB
106
6.6
mV
V/mV
dB
85
6.6
jlA
3.7
1.2
85
80
90
nA
V
70
2.5
30
118
IN
fJ.V/ oC
4
lSO
50
25
220
UNIT
4.1
75
70
2.5
30
85
80
90
85
1500
1800
1.7
0
to
10L = 150 fJ.A
2-1204
= 5 V(unless otherwise noted)
8.8
9.2
rnA
TLE2142C, TLE2142AC
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature,
PARAMETER
SR+
SR-
Positive slew rate
Negative slew rate
AVO = -1,
CL = 500 pF
Settling time
AVO =-1,
2.5-V Step
Equivalent input noise
voltage
Peak-to'peak equivalent
VN(PP) input noise voltage
Equivalent input noise
In
current
Total harmonic distortion
THO +N
plus noise
Vn
Bl
¢m
RL = 2 kQt,
IToO.l%
I To 0.01%
RS = 100Q, f = 10 Hz
RS = 100Q, f = 1 kHz
f = 0.1 Hz to 1 Hz
f = 0.1 Hz to 10Hz
f = 10 Hz
f = 1 kHz
Vo = 1 V to 3 V, RL = 2 kQt,
f=10kHz
AVO = 2,
MIN
TYP
45
25°C
42
0.16
0.22
15
10.5
0.48
25°C
25°C
25°C
0.51
1.92
0.5
25°C
25°C
0.0052%
TLE2142AC
MAX
MIN
TYP
45
42
0.16
0.22
15
10.5
0.48
0.51
1.92
0.5
MAX
UNIT
V/fls
flS
nV/'i'Hz
flV
pAl'i'Hz
0.0052%
5.9
5.9
MHz
25°C
5.8
5.8
MHz
RL = 2 kQt, VO(PP) = 2 V,
CL = 100 pF
25°C
6.6
6.6
MHz
RL = 2 kQt,
25°C
57°
57°
RL = 2 kQt,
CL = 100pF
Gain-bandwidth product
RL = 2 kQt,
f=100kHz
CL = 100 pF,
bandwidth
Phase margin at unitygain
TLE2142C
TA
25°C
Unity-gain bandwidth
Maximum output-swing
BaM
TEST CONDITIONS
Vee = 5 V
AVO = 1,
CL = 100pF
t Note: RL terminates at 2.5 V.
TEXAS "'"
INsrRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-1205
TLE2142C, TLE2142AC
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, VCC±
PARAMETER
Via
Input offset voltage
aVIO
Temperature coefficient of
input offset voltage
110
lIB
Input offset current
TEST CONDITIONS
VIC = 0,
RS = son,
Vo = 0
Input bias current
TAt
Common-mode input
voltage range
290
Full range
1.7
25°C
Full range
25°C
Full range
7
RS = son
Full range
25°C
Full range
25°C
Full range
25°C
Full range
25°C
Full range
25°C
Full range
25°C
Full range
25°C
Full range
10 = - 150 J.LA
VOM+
Maximum positive peak
output voltage swing
10=-1.5mA
10=-15mA
10 = 150 J.LA
Maximum negative peak
VOMoutput voltage swing
10= 1.5mA
10=15mA
AVD
Large-signal differential
voltage amplification
Input resistance
Input capacitance
ci
Open-loop output im pedance
Zo
Common-mode
CMRR
rejection ratio
Supply-voltage rejection ratio
kSVR
(",VCC +/ ",VIO)
fj
lOS
ICC
Short-circuit output current
Supply current
Vo = ±10V
RL = 2kn
25°C
25°C
25°C
25°C
Full range
f = 1 MHz
VIC = VICR min,
RS = son
25°C
VCC± = ±2.5Vto±15V,
Full range
Rs = son
Va = 0
I VID
I VID
Va = 0, No load
= 1V
= -1 V
TLE2142C
TYP MAX
MIN
25°C
Full range
25°C
VICR
25°C
-0.7
25°C
Full range
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' DA~LAS, TEXAS 75265
MAX
275
750
1200
7
-0.7
-50
31
20
9
9.4
nA
J.LA
V
V
V/mV
Mn
pF
n
dB
106
dB
-50
31
6.9
!lV
V
-14.5 -14.8
-14.4
-13.4 -13.8
-13.3
100
450
75
65
2.5
30
108
85
80
90
85
-25
UNIT
!lV/oC
100
150
-1.5
-1.6
-15 -15.3
to
to
13
13.2
-15 -15.3
to
to
13.1
12.9
14.1
13.8
13.7
14
13.7
13.6
13.3
13.7
13.2
-14.7 -14.9
-14.6
106
6.9
TYP
1.7
100
150
-1.5
-1.6
13.6
13.7
13.3
13.2
-14.7 -14.9
-14.6
-14.5 -14.8
-14.4
-13.4 -13.8
-13.3
100
450
75
65
2.5
30
108
85
80
90
85
-25
20
TLE2142AC
MIN
1200
1600
-15 -15.3
to
to
13.2
13
-15 -15.3
to
to
12.9
13.1
13.8
14.1
13.7
13.7
14
t Full range is O°C to 70°C.
2-1206
=± 15 V (unless otherwise noted)
mA
9
9.4
mA
TlE2142C, TlE2142AC
EXCAlIBUR lOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature, Vcc±
PARAMETER
SR+
SR-
= ± 15 V
TLE2142C
TEST CONDITIONS
TA
RL = 2kn,
Positive slew rate
Negative slew rate
AVO = - 1,
CL = 500 pF
Settling time
AVO = -1,
10-V Step
Equivalent input noise
RS = 100n,
voltage
Peak-to-peak equivalent
RS = 100n, I = 1 kHz
I = 0.1 Hz to 1 Hz
ITo 0.1%
25°C
25°C
MIN
30
30
TYP
45
42
0.34
25°C
TLE2142AC
MAX
MIN
30
30
TYP
45
42
0.34
MAX
UNIT
V/Jls
Jls
0.4
0.4
15
10.5
0.48
15
10.5
0.48
0.51
0.51
25°C
1.89
0.47
1.89
0.47
Vo = 20 VPP, RL = 2 kil,
I = 10 kHz
25°C
0.01%
0.01%
Unity-gain bandwidth
RL = 2kn,
CL = 100 pF
25°C
6
6
MHz
Gain-bandwidth product
RL = 2kn,
I = 100kHz
CL = 100 pF,
25°C
5.9
5.9
MHz
BOM
Maximum output-swing
bandwidth
VO(PP) = 20 V, RL = 2 kn,
CL = 100pF
AVO = 1,
25°C
668
668
kHz
¢m
gain
RL = 2 kn,
25°C
58°
58°
Vn
VN(PP) input noise voltage
In
Bl
I = 0.1 Hz to 10Hz
Equivalent input noise
I = 10 Hz
current
I = 1 kHz
Total harmonic distortion
THO + N plus noise
Phase margin at unity
ITo 0.01%
I = 10 Hz
AVO = 10,
CL = 100pF
25°C
25°C
TEXAS
nV/{Hz
JlV
pA/{Hz
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-1207
TLE21421, TLE2142AI
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
= 5 V(unless otherwise noted)
electrical characteristics at specified free-air temperature, Vee
PARAMETER
TEST CONDITIONS
Input offset voltage
VIO
Temperature coefficient of
(tVIO
....
110
liB
input offset voltage
"---,-.~
Input offset current
Vo = 2.5 V,
n
ns
.... '""
= "vu,
TAt
TLE21421
TYP MAX
MIN
25°C
Full range
220
Full range
1.7
25°C
VIC = 2.5 V
25°C
Full range
High-level output voltage
AVD
Large-signal differential
voltage amplification
1.7
UNIT
flV
flV/oC
100
8
100
-0.8
200
-2
-0.8
200
-2
-2.2
-2.2
to
to
to
3
3.2
3
3.2
Full range
0
to
-0.3
to
0
to
-0.3
to
2.7
2.9
25°C
4.1
4
2.7
3.9
2.9
3.9
3.8
10H =-15 mA
3.4
3.7
10H = 100 f1A
10H = 1 mA
3.8
3.7
RS = 500
Full range
~oC
10L= 15mA
10L = 100 f1A
IOL=1mA
3.8
4.1
4
3.4
3.7
V
3.5
125
75
125
150
225
150
225
1.2
1.4
175
225
1.2
1.4
175
225
1.2
50
f1A
V
75
Full range
10L = 10 mA
VCC = ± 2.5 V, RL = 2 kil,
25°C
Vo = 1 V to -1.5 V
Full range
nA
-0.3
3.8
3.7
3.5
10H = 10mA
Low-level output voltage
2000
to
10L = 150 f1A
10L = 1.5mA
VOL
1500
0
10H = -150 f1A
10H =-1.5 mA
VOH
MAX
220
-0.3
25°C
voltage range
TYP
8
Full range
0
VICR
1900
2400
~
Input bias current
Common-mode input
TLE2142AI
MIN
1.2
50
220
10
220
mV
V
mV
V
V/mV
10
q
Input resistance
25°C
70
70
ci
Input capacitance
25°C
2.5
2.5
MO
pF
Zo
Open-loop output impedance
I = 1 MHz
25°C
30
0
Common-mode
VIC = VICR min,
RS = 500
25°C
CMRR
kSVR
ICC
rejection ratio
Supply-voltage rejection ratio
(t"v CC ± 1t"v10)
Supply current
VCC± = ±2.5Vto±15V,
RS = 500
Vo = 2.5 V,
VlQ = 2.5 V
No load
30
85
Full range
80
25°C
90
Full range
85
25°C
Full range
t Full range is - 40°C to 105°C.
TEXAS ~
INSfRUMENlS
2-1208
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
118
85
106
90
118
dB
80
106
dB
85
6.6
8.8
9.2
6.6
8.8
9.2
mA
TlE21421, TlE2142AI
EXCALIBUR lOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature,
TEST CONDITIONS
PARAMETER
SR +
SR-
Positive slew rate
Negative slew rate
Settling time
Equivalent input noise
voltage
Peak-to-peak equivalent
VN(PP) input noise voltage
Equivalent input noise
In
current
Total harmonic distortion
THO+ N
plus noise
Vn
Bl
BaM
II>
Cl
!!
"0
0
..
'x
0
;g
Co
........
'= -14.2
6
9
12
15
18
VCC± - Supply Voltage - V
:;:
~-14.6
I'
21
>
RL
vs
vs
OUTPUT CURRENT
OUTPUT CURRENT
~ -13.4
01
'5
14.2
o
-
~
/
= 125°C
. . . . 1\
~
= -55°C
. . . . r-.
+
:;:
~ 13.6
- 0.1
-0.4
-1
-4
=
-14
l-14.4 ,-TA
E
= 25°C
~~
-10
.
.5
= 25°C
II
-14.6
1\/V~
~
:;:
-14.8
I
P'
I
:;:
~
-40 -100
-15
0.1
10 - Output Current - mA
= -55°C
'I
I----
::J
~ TA
125°1~
1ft)
~ -14.2
"iii
....... 1'
TA
13.8
TA
~
~A
14
E
::J
E
:;:
J
'[ -13.8
.~
'x..
= ±15 V
~ -13.6
'5
Co
'5
~
VCC±
II>
= ±15 V
> 14.4
o
-
I
MAXIMUM NEGATIVE PEAK
OUTPUT VOLTAGE
~
c..
VOM-
=100
Figure 6
o
-=
= 2kQ
-15
- 75 - 50 - 25 0
25
50 75 100 125 150
TA - Free-Air Temperature - °C
24
I I I I 11111
~
.
~
RL
MAXIMUM POSITIVE PEAK
OUTPUT VOLTAGE
VCC±
= 2kQ- f - -
I
Figure 5
II>
Cl
-
00
::J
-18
> 14.6
RL
=
E
['-... ........VOM-
>
3
--
RL
VOM+
~E -13.8
r-...... ..........
o
13.8
".
-12
-24
. ....-
14.2
'5
~
i'--
-6
14.6
01
VOM+
I
:;:
II>
= ±15 V
!!
.....V
.....
Co
:;:
V
V
I
/'
V
VCC±
>
l,.;
L
II>
E
E
15
I
12
".
::J
FREE-AIR TEMPERATURE
= 2 kQ
TA = 25°C
18 -
6
..
vs
SUPPLY VOLTAGE
RL
>
'5
Co
'5
0
I
MAXIMUM PEAK OUTPUT VOLTAGE
vs
0.4
4
10
40
100
10 - Output Current - mA
Figure 7
Figure 8
tOala at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
2-1219
TLE2142, TLE2142A
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
MAXIMUM PEAK·TO·PEAK
OUTPUT VOLTAGE
MAXIMUM PEAK OUTPUT VOLTAGE
12.S
vs
vs
SETTLING TIME
FREQUENCY
I
>
>
]
O.y 1 /
~ V,..,..
AVO = - 1
10
... = ± 15 V
TA-=-2SoC
7.5
;g
o
. /' /
;;
S-
2.5
'"
o
iE
-2.5
><
-5
I
-7.5
~
-10
~
/TA
=25°C
I~
/TA
= 125°C
~
\
I
........
~'"
O.1~
\
0.01%
""\."
TA = -55°C /
,"'"
Vi--'
...............
0:-
Il.
-12.S
o
200
300
Settling Time (ns)
100
soo
400
~
I
> 4.2
:;
So
"
0
1-t
4
vs
vs
OUTPUT CURRENT
OUTPUT CURRENT
1400
>
TA = 12SOC
= -SsoC
r--;.t-I-
.2' 3.8
::r:
0
VCC
=5 V
~1000
;g
........
......... ~"
TA
,IJ
= 125°C
:; 800
So
o"
....
Qj
600
~
400
~
......... I,\
I
.J
3.6
3.4
-0.1
~ 200
\
-1
-10
10 - Output Current - mA
-100
o
0.1
Figure 11
~~
j
TA = 2SOC
P
~ i"-
TA
= -55°C
10
10 - Output Current - mA
Figure 12
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
2-1220
10 M
I
III
r-..
niffi
..c:
::r:
=5 V
=e 1200
fA
4M
LOW·LEVEL OUTPUT VOLTAGE
r-I-r-,
'"
1M
400 k
f - Frequency - Hz
100 k
HIGH·LEVEL OUTPUT VOLTAGE
4.4
S
0
~ ~ ...
Figure 10
VCC
III
0
Figure 9
4.6
>
I I
\
Falling
"E
=
I I
~, ~ ~
20
Rising
o
VCC± = ±1~,~
RL 2 kn
~
\
25
:;
Q.
:;
.ACo1%
5
30
8J
.=
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
100
TlE2142, TlE2142A
EXCALIBUR lOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
LARGE·SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
,
140
II:!
'0
I
\
c
o
~
'a
120
vs
vs
FREE·AIR TEMPERATURE
FREQUENCY
120
RL
VCC± = ±15 V
Vo = ±10V
I I
=
""..'"
~
.~
e
110
c
100
'0
I
.~
i\.
RL = 2kQ
~
CD
~
O·
100
"
80
E
70
ii
""g..'"
"'-0...
"0
>
1!
E
~
1'\
~
is
I
~
is
~
80
-75 -50 -25 0
25
50 75 100 125 150
TA - Free·Air Temperature - ·C
""
30
0
-10
10
1
100
1k
10 k 100 k
f - Frequency - Hz
vs
FREQUENCY
FREE·AIR TEMPERATURE
160·
....
180·
200·
220·
240·
260·
10 M
60
e:;
a
VCC± = ±15 V
Vo = 0
-
r--.....
50
VID = 1
o
'S
c..
'S
o
40
'@
0.11--_~-+--7flL_-+-_"<_-
(3
:0
o
~
eli
I
0.011--_~__+---_+---+_--___\
30
I
/
~
L -____--'-______...J...._ _ _ _ _ _- ' -_ _ _ _- - '
10 k
..
Co.
I
SHORT·CIRCUIT OUTPUT CURRENT
vs
""E
1k
1M
~
140· ]
Figure 14
100.------.-------r------,---~_,
0.001
120·
"- I'...
"-
VCC± = ±15 V
RL = 2kQ
CL = 100 pF
TA = 25·C
20
100· ~
"
AVO"-
40
CLOSED· LOOP OUTPUT IMPEDANCE
~
80·
50
Figure 13
'S
So
60·
,
~
60
C
>
[\..,
Phase Shift
10
C
40·
,~
90
:E
20·
~"-
0
10kQ
'-...
.:--- ~ "'
"
E
LARGE·SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
100 k
1M
f - Frequency - Hz
10 M
""""-
'"
."...,..
VID
1-
1
20
-75 -50 -25 0
25
50
75 100 125 150
TA - Free-Air Temperature - ·C
Figure 15
Figure 16
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices,
TEXAS ~
INSfRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-1221
TLE2142, TLE2142A
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
VC~± =
T.
.",=
.~
I:
o
100
~
80
:;:
60
..
"8
:5
~
'n
.*,
'"
o
40
I
~
20
..
112
II:
"8
~o
108
E
E
<3
104
I
II:
= VICR min
.V
1k
100 k
10 k
I--..
.
100
-75 -50 -25
1M
~
0
140
..
120
o
a::
kSVR+
'1ij 108
\
I:
kSVR-
"~
'Qj'
II:
80
60
::I
40
......
'"
20
>
rn
...
VCC±
TA
o
10
c
o
"
l106
~ .....
1k
10 k
100 k
f - Frequency - Hz
\
1M
............
r---
l!
g
Q.
'"
104
Q..
::I
rn
102
I
II:
~
I
100
= ±2,5Vto±15V
~
C)
~\
= 25°C
'\
..
\
= ±2.5Vto±15V
"
a::
~
Q..
I
II:
Vcc±
I
0
100 125 150
V5
110
g 100
75
FREE-AIR TEMPERATURE
..,CD
.g
~
Q.
50
SUPPLY-VOLTAGE REJECTION RATIO
160
I
25
Figure 18
..,CD
rn
~
T A - Free-Air Temperature - °C
SUPPLY VOLTAGE REJECTION RATIO
vs
FREQUENCY
C)
\
VVCC± = ±15V
-- I""'-
Figure 17
..
I
t--::r--""-
V
\1
IV
f - Frequency - Hz
l!
"0
I
Vee == 5V
~
o
100
II:
---..
a::
:;;
o
VIC
I
~
E
E
_
120
..,CD
.2 116
I:
<3
__
?t;;o~
v
I
-.....
II:
g
±15 V
COMMON-MODE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
10 M
100
-75 -50 -25
0
25
50
75
100 125 150
TA - Free-Air Temperature -
Figure 19
·c
Figure 20
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSTRUMENTS
2-1222
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
TlE2142, TlE2142A
EXCAlIBUR lOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
SUPPLY CURRENT
SUPPLY CURRENT
vs
vs
FREE-AIR TEMPERATURE
SUPPLY VOLTAGE
7.4
Vo = 0
No Load
oct
E
I
7.0
..",
I
E 6.6
~
;;
,.,
()
ii.
c. 6.2
I
"
I~
II)
I
()
9
V
V
VCC± = :l:1V
5.8
~
V
~
y
V
8
V
V
J
oct
--
7
E
E
~
TA = 25°C
;;
VCC± = ±2.5 V
,.,
()
-
TA = )25 0C
I
6
ii.
c.
TA = -55°C
"I
II)
()
5
9
I
Vo = 0
No Load
4
5.4
-75 -50 -25 0
25 50 75 100 125 150
TA - Free-Air Temperature - °C
o
4
8
12
20
16
24
iVcc± I - Supply Voltage - V
Figure 21
Figure 22
EQUIVALENT INPUT NOISE VOLTAGE
EQUIVALENT INPUT NOISE VOLTAGE
OVER A 10-SECOND PERIOD
vs
FREQUENCY
250
750r---~~--~~----r-----r---~
~>
Vcc± = ±15 V
f = 0.1 to 10 Hz
500 TA 250C --l---l---l--~
Vcc± = ±15V
Rs=100n
c
=
I
CI)
>c
01
l!
"0
I
>
250r---r---r---r---r.r-~
CI)
01
CI)
II)
l!
'0
~
z
;;
CI)
II)
c.
.5
'0
z
E
'5 -250
CI)
c.
.5
iii
>
·sIT
f---l---'--l---l---l--~
-500r----r---r---r---r--~
W
I
c
>
0
-750~----~----~----~----~--~
1
10
100
1k
f - Frequency - Hz
o
10 k
2
4
6
8
10
t - Time - s
Figure 23
Figure 24
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-1223
TlE2142, TlE2142A
EXCALIBUR lOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
NOISE CURRENT
vs
FREQUENCY
TOTAL HARMONIC DISTORTION
PLUS NOISE vs
FREQUENCY
:.!!
°
8
=
Vo 20V(PP)
± 15 Y
vCC±
TA 25°C
..,'"
·0
z
=
+
c
~
.~
I
.le
a..
=
0.1
C
C
~
:::I
·cu0
E
Ay
RL
..
U
'"
1k
10 k
f - Frequency - Hz
Figure 25
60
.:;
100
Hz
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
10
TlE2142, TlE2142A
EXCALIBUR lOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
NONINVERTING
LARGE·SIGNAL
PULSE RESPONSE
15
INVERTING
LARGE·SIGNAL
PULSE RESPONSE
15
I
J
TA = ,1~SoC
10
>
~
'"
~
>
:;
0
~AI=
0
>
VCC± = ±lS V
AVO = 1
RL = 2 kQ
CL = 300 pF
-10
-15
0
VJ
fA/I 12SOC
0
TA = -55°C
-5
I
I
-S
~
25°C
-10
1
4
~I=
vcc± = ±lS V
AVO = - 1
RL = 2 kQ
CL = 300 pF
; ; = 112S0C
2
3
t - Time - Ils
~/
0
:;
Co
:;
Co
TA = -SSOC
TA = 12S0C
'"
g
"0
0
:;
~ TA = -SSOC
5
4>
TA = -SSOC
0
>
'-rA
>
'7bA = 2S0C
5
4>
TA = 2S0C
10
2SoC
-15
0
S
2
3
t - Time - IlS
Figure 29
5
4
Figure 30
UNITY·GAIN BANDWIDTH
vs
SMALL SIGNAL
PULSE RESPONSE
LOAD CAPACITANCE
100
7
~ = 1_15~lbl
vcc± = ±15 V
RL = 2 kQ
T
=e
...
L
IVv
50
:I:
.c
;;
'i
4>
'"
"..
.l!
~
:;
50
::>
~A = 2SoC
'I I l l l
5 TA = 12SoC
~
I:
o
OJ
4
"\
I:
'iii
C1
o
I
~-
6
::;;
VCC± = ± lS V
AVO = - 1
RL = 2 kQ
CL = 300 pF
TA = 2SoC
SO
- 100
o
b
.
1\
'"
3
rJj
2
~
;:)
"~
1
800
400
t - Time - ns
1200
1400
10
100
1000
CL - Load Capacitance - pF
10000
Figure 32
Figure 31
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices,
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-1225
TLE2142, TLE2142A'
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
PHASE MARGIN
GAIN MARGIN
vs
vs
LOAD CAPACITANCE
LOAD CAPACITANCE
70
I III~~~±== ±lsvlllll
I I IIIII
AVO
=60
1
RL = 2 kn to 00 1111
V = -10Vtol0V
III
~
I
In
2'
0
~
SO
c
40
c
.~
os
::;;
c
::;;
"E'
-
;- TA
--
~
...
TA
=
- SSOCI J.l
11111
TA = 2S0C
~
= 12S~ ~~
\1"
as
...In
I\.
30
as
'0;
.c
CI
~
[l.
I
20
~ ~~....
:::;;
....
10
2S0C
10
100'
1000
= ±lS V
= 2 kQ 111111
VCC±
O~~~~~~~L-~I~~
10000
o RL
10
CL - Load Capacitance - pF
100
1000
CL - Load Capacitance - pF
Figure 33
Figure 34
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices,
TEXAS •
INSTRUMENTS
2-1226
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
10000
TlE2144, TlE2144A, TlE2144Y
EXCALIBUR lOW-NOISE HIGH-SPEED
PRECISION QUAD OPERATIONAL AMPLIFIERS
D3964, NOVEMBER 1991
available features
•
Low Noise:
10 Hz ... 15 nVNHz
1 kHz ... 10.5 nVl-{Hz
•
10,000-pF Load Capability
•
20-mA Min Short-Circuit Output Current
•
30-V/f.1S Min Slew Rate
•
High Gain-Bandwidth Product ... 5.9 MHz
•
Low VIO ... 1.5 mV Max at 25°C
•
Single or Split Supply ... 4 V to 44 V
•
Fast Settling Time ... 340 ns to 0.1%
400 ns to 0.01%
•
Saturation Recovery
150 ns
•
Large Output Swing
VCC- + 0.1 V
to VCC+ -1 V
SLEW RATE
EQUIVALENT INPUT NOISE VOLTAGE
vs
vs
LOAD CAPACITANCE
FREQUENCY
50
\
40
.,
:::I.
:>
\SR+
.
30
iii
20
\ i\,,\
!!
r:r::
;::
.,
SR-\
r:r::
en
10
= ±15
= II
=
I
vCC±
o
ACL
-1
TA
25°C
0.01
0.1
10
f - Frequency - Hz
CL - Load Capacitance - nF
description
The TLE2144 and TLE2144A are high-performance internally compensated operational amplifiers built using
the Texas Instruments complementary bipolar Excalibur process. The TLE2144A is a tighter offset voltage
grade of the TLE2144. Both are pin-compatible upgrades to standard industry products,
AVAILABLE OPTIONS
PACKAGE
TA
VIOmax
AT 25°C
O°C to
1.5mV
70°C
2.4mV
- 40°C to
1.5mV
105°C
2.4mV
-55°C to
1.5 mV
SMALLOUTLINE
(OW)
TLE2144COW
TLE214410W
-
CHIP
CARRIER
(FK)
CERAMIC
DIP
(J)
PLASTIC
DIP
(N)
-
-
TLE2144ACN
-
-
TLE2144CN
-
--
TLE2144AIN
--
-
TLE21441N
TLE2144AMFK
TLE2144AMJ
CHIP
FORM
(V)
TLE2144Y
TLE2144AMN
2.4 mV
TLE2144MDW TLE2144MFK
TLE2144MJ
TLE2144MN
125°C
OW packages are available taped and reeled. Add "R" suffix to device type (e.g., TLE2144COWR). Chips are tested
at TA = 25°C.
PRODUCTION DATA information Is curront as of
publication dato. Products conform to spocilicalions
per the torms of Texas Instruments standard
warranty. Produclion processing does not
necessarily include lesling of all parametors.
TEXAS ~
Copyright © 1991, Texas Instruments Incorporated
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-1227
TlE2144, TlE2144A, TlE2144Y
EXCALIBUR lOW-NOISE HIGH-SPEED
PRECISION QUAD OPERATIONAL AMPLIFIERS
description (continued)
The design incorporates a patent-pending input stage that simultaneously achieves low audio band noise of
10.5 nV/..JHz with a 6-Hz 1/f corner and symmetrical 40-V/IlS slew rate typically with loads up to 800 pF. The
resulting low distortion and high power bandwidth are important in high-fidelity audio applications. A fast
settling time of 340-ns to 0.1% of a 10-V step with a 2-kQJ100-pF load is useful in fast actuator/positioning
drivers. Under similar test conditions, settling time to 0.01% is 400 ns The devices are stable with capacitive
loads up to 10 nF, although the 6-MHz bandwidth decreases to 1.8 MH7 at this high loading !eveL ,A.S such,
the TLE2144 and TLE2144A are useful for low-droop sample and holds and direct buffering of long cables,
including 4-mA to 20-mA current loops. The special design also exhibits an improved insensitivity to inherent
integrated circuit component mismatches as is evidenced by a 1.5-mV maximum offset voltage and
1.7-IlV/oC typical drift. Minimum common-mode rejection ratio and supply-voltage rejection ratio are 85 dB
and 90 dB, respectively.
Device performance is relatively independent of supply voltage over the ±2-V to ±22-V range. Inputs can
operate between VCC_-0.3 V to VCC+-1.8 V without inducing phase reversal, although excessive input
current may flow out of each input exceeding the lower common-mode input range. The all-NPN output stage
provides a nearly rail-to-rail output swing of VCC_+0.1 V to VCC+-1 V under light current loading conditions.
The device can sustain shorts to either supply since output current is internally limited, but care must be taken
to ensure that maximum package power dissipation is not exceeded.
Both versions can also be used as comparators. Differential inputs of VCC± can be maintained without
damage to the device. Open-loop propagation delay with TTL supply levels is typically 200 ns. This gives a
good indication as to output stage saturation recovery when the device is overdriven beyond the limits of
recommended output swing.
80th the TLE2144 and TLE2144A are available in a wide variety of packages, including the industry-standard
8-pin small-outline version and chip form for high-density system applications. The C-suffix devices are
characterized for operation from O°C to 70°C, the I-suffix from -40°C to 105°C, and the M-suffix over the full
military temperature range of -55°C to 125°C.
J OR N PACKAGE
(TOP VIEW)
OW PACKAGE
(TOP VIEW)
9
40UT
41N41N+
VCC-/GND
31N+
31N30UT
NC
lOUT
1 IN11N+
VCC+
21N+
21N20UT
1
4
5
~
_ _r
40UT
41N41N+
VCc-IGND
31N+
31N30UT
FK PACKAGE
(TOP VIEW)
11;
1;
I
~OOO~
,-,-z..q..q
3
11N+
NC
VCC+
NC
21N+
2
1 20 19
4
18
5
17
6
16
7
15
14
8
910111213
If-Of-
symbol
I
~6Z6~
C\I
C')
NC - No internal connection
I N + t > OUT
IN-
-
TEXAS ~
INSTRUMENTS
2-1228
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
41N+
NC
VCC-IGND
NC
31N+
TlE2144Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION QUAD OPERATIONAL AMPLIFIERS
chip information
These chips, properly assembled, display characteristics similar to the TLE2144C. Thermal compression or
ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive
epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
21N+
21N31N+
31N-
(~)
+
(7)
(6)
-
(1~)
+
(8)
(9)
-
2 OUT
3 OUT
CHIP THICKNESS:
15 TYPICAL
BONDING PADS:
4X4MINIMUM
~~
__-------------140--------------.~~
11111111111111111111111111111111111111111111111111111111111111111111111
TOLERANCES
ARE ± 10%
ALL DIMENSIONS
ARE IN MILS
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
2-1229
TLE2144, TLE2144A
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION QUAD OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vcc+ (see Note 1) .................................................... 22 V
Supply voltage, VCC- .............................................................. -22 V
Differential input voltage range (see Note 2) ..................................... VCC+ to VCCInput voltage range, VI (any input) ...................................... VCC+ to VCC- - 0.3 V
Input current, II (each input) ......................................................... ±1 mA
Output current, !o ................................................................ ±80 mA
Total current into VCC+ terminal .................................................... 160 rnA
Total current out of VCC- terminal ................................................... 160 mA
Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... unlimited
Continuous total dissipation ........................................ See Dissipation Rating Table
Operating free-air temperature range, TA C-suffix ................................... O°C to 70°C
I-suffix ................................ -40°C to 105°C
M-suffix ............................... -55°C to 125°C
Storage temperature range ................................................... -65°C to 150°C
Case temperature for 60 seconds: FK package .......................................... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: OW or N package ............. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package ................... 300°C
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC-'
2. Differential voltages are at the noninverting inputwit~ respect to the inverting input. Excessive current will flow if input is brought below
VCC_-0.3 V.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA52S'C
POWER RATING
OW
1025mW
FK
1375mW
J
N
1375mW
1150mW
DERATING FACTOR
TA = 70'C
POWER RATING
=
TA = 10S'C
POWER RATING
656mW
369mW
TA 125°C
POWER RATING
205mW
880mW
495mW
275mW
11 mW/oC
880mW
495mW
275mW
9.2 mW/oC
736mW
414mW
230mW
ABOVE TA = 2S'C
8.2 mW/oC
11 mW/oC
recommended operating conditions
C-SUFFIX
Supply voltage, VCC +
/VCC-5V
Common-mode input voltage, VIC /
VCC± = ±15 V
Operating free-air temperature, TA
I-SUFFIX
UNIT
MAX
MIN
MAX
MIN
MAX
±2
± 22
±2
± 22
±2
± 22
0
-15
2.9
12.9
0
-15
2.7
12.7
0
-15
2.7
12.7
V
0
70
- 40
105
-55
125
°C
TEXAS ~
INSTRUMENTS
2-1230
M-SUFFIX
MIN
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
V
TlE2144C, TlE2144AC
EXCALIBUR lOW-NOISE HIGH-SPEED
PRECISION QUAD OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature,
PARAMETER
VIO
TEST CONDITIONS
2SoC
Input offset voltage
Full range
Temperature coefficient of
(lVIO
input offset voltage
110
Input offset current
liB
Input bias current
TAt
Vo = 2.S V,
RS = SOQ,
vee
TLE2144C
TYP MAX
MIN
o.s
3.8
4.4
Full range
Full range
2SoC
25°C
VICR
RS = 50Q
Full range
VOL
High-level output voltage
Low-level output voltage
AVD
voltage amplification
q
Input resistance
ci
Zo
CMRR
kSVR
ICC
o.s
3
3.6
1.7
100
8
-0.8
150
-2
-0.8
-2.1
-0.3
to
to
3
3.2
0
to
2.9
3.9
0
to
-0.3
3
0
3.2
mV
100
150
nA
-2
!iA
to
V
to
2.9
3.9
4.1
4.1
10H =-1.5 mA
25°C
Full range
3.8
3.7
4
3.8
4
10H =-15 rnA
25°C
Full range
3.4
3.4
3.7
3.7
3.4
3.7
IOL = 150!iA
25°C
Full range
75
10L = 1.5 rnA
25°C
Full range
150
25°C
Full range
2SoC
VCC = ± 2.5 V, RL = 2 kQ,
Vo = 1 Vto-l.5V
Full range
1.2
3.8
3.8
V
3.4
75
125
150
225
150
1.2
1.6
1.7
50
25
225
mV
250
1.6
1.7
95
125
150
250
50
UNIT
/lV/oC
-2.1
J.IA
10L = 15 rnA
Large-signal differential
MAX
25°C
Full range
10H = -150
VOH
TYP
8
Full range
0
Common-mode input
voltage range
TLE2144AC
MIN
1.7
2SoC
VIC = 2.S V
= 5 V (unless otherwise noted)
95
V
V/mV
25
70
70
MQ
Input capacitance
25°C
25°C
2.5
DF
Open-loop output impedance f = 1 MHz
25°C
30
2.5
30
Common-mode
rejection ratio
VIC = VICR min,
RS = 50Q
Supply-voltage rejection ratio VCC± = ±2.5Vto±15V,
(t.VCC +/ t.VIO)
RS = 50Q
Vo = 2.5 V, No load,
Supply current
VIC = 2.5 V
25°C
Full range
85
25°C
Full range
90
85
118
85
80
25°C
Full range
Q
118
dB
80
90
85
106
13.2
17.6
18.5
106
13.2
dB
17.6
18.5
mA
tFull range is O°C to 70°C.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-1231
TLE2144C, TLE2144AC
EXCAliBUR LOW-NOISE HIGH-SPEED
PRECISION QUAD OPERATIONAL AMPLIFIERS
operating characteristics, Vee
PARAMETER
SR+
SR-
Positive slew rate
Negative slew rate
Settlir.gtime
Vn
B1
m
Phase margin
vs
Load capacitance
Phase shift
vs
Frequency
34
14
TEXAS ~
INSTRUMENTS
2-1244
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TlE2144, TlE2144A
EXCALIBUR lOW-NOISE HIGH-SPEED
PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
TLE2144
INPUT OFFSET CURRENT
DISTRIBUTION OF
INPUT OFFSET VOLTAGE
FREE-AIR TEMPERATURE
vs
20
2S0 Units Tested
20
VCC± = ±1SV
TA = 2S·C -!--+--!--+---+-+---+--I
18
10
----
0
:t:
0
'5
c..
.E
I
g.
4
=0
=0
8
6
VCC±
I-.
= ±2.SV
c:::::t-VCC±
~
= ±1S V
4
2
o
-1.6
-1000
Vo
~
o
-0.8
o
0.8
.
INPUT BIAS CURRENT
c..
.E
~ -600
12S
vs
vs
FREE-AIR TEMPERATURE
COMMON-MODE INPUT VOLTAGE
o
0
I
150
I
VCC± = ± 2.5 V
./
~/
Vcc± = ±2.5
II>
-700
100
INPUT BIAS CURRENT
0
:;
7S
Figure 2
I
iii
SO
Figure 1
-900
-800
2S
TA - Free-Air Temperature - ·C
c
C
~
:>
0
VIO - Input Offset Voltage - mV
V'C = 0
~
c..
.E
/vCC± = ±15V
I
.V
-1
-1.2
-500
-75 -50 -25
0
25
50
75
100
125 150
-
TA = 125·C
-0.8
:>
-1.4
-3
...,V
..., V
...,
-2.5
V V
TA=V-
-
.--' ~
~
V
.--V~
-2
.--' ~
~
........
.--
~
TA = -5S·C
-1.5
-1
-0.5
0
0.5
T A - FreeJAir Temperature - ·C
V'C - Common-Mode Input Voltage - V
Figure 3
Figure 4
tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
2-1245
TLE2144, TLE2144A
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
MAXIMUM PEAK OUTPUT VOLTAGE
241
I
vs
SUPPLY VOLTAGE
FREE-AIR TEMPERATURE
I
=
RL 2kn
18 I- TA = 2S-C
>I
12
~
'5
Co
'5
o
~
-6
~
-12
,/""
~
V
.....
VC~±
c5
= 1±15V
1
1
I
14.2
.~
............
R~ = L
~
RL
13.8
.~ -14.2
::;;
RL
r-.........
is- 14.6
.......
21
>
RL
24
MAXIMUM NEGATIVE PEAK
OUTPUT VOLTAGE
vs
vs
OUTPUT CURRENT
OUTPUT CURRENT
~ -13.4
I I IIIIIII
Cl
J
;g
/
&'-13.8
14.2
~
~
:;
o
-
'"
~
~
..... 1"= -55°C
13.8
::;;
~ 13.6
=
I
-14.4 -TA
.5x
-14.6
= 2SOC
= 25°C
-0.4 -1
-4
-10
10 - Output Current - mA
"
II
\/ I~
.J
:;;
I
-14.8
~
I
::;;
-40 -100
~
-15
0.1
= -5SOC
'I
I - -r-
E
:s
~ TA
~
V/rA
~ -14.2
~~
+
TA
125°1
-14
.~
..... 1"TA
- 0.1
~
= 125°C
'~
14
E
:s
E
'x
= ±15 V
i!! -13.6
14.4
:;
o
"
::;;
VCC±
If)
= ±15 V
Co
~
I
Figure 6
'5
'"
VOM-
=100
-15
- 75 - 50 - 25 0
25
50
75 100 125 150
TA - Free·Alr Temperature - °C
MAXIMUM POSITIVE PEAK
OUTPUT VOLTAGE
~
>
= 2kn
I
6
9
12
15
18
VCC± - Supply Voltage - V
VCC±
= 2kn- I - ~
Figure 5
Cl
-
VOM+
"E
VOM-
.......
-18
If)
I
~E -13.8
j'.......
> 14.6
I
14.6
:;
,s.
............
3
15 1
'"
..........
o
I
;g
I
>
-24
>
~
i!!
VOM+
I
is
V
.... ,/""
o
E
:s
E
'x
./
6
1- I
~
If)
Cl
MAXIMUM PEAK OUTPUT VOLTAGE
vs
0.4
4
10
10 - Output Current - mA
Figure 7
Figure 8
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
2-1246
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
40
100
TlE2144, TlE2144A
EXCALIBUR lOW-NOISE HIGH-SPEED
PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
MAXIMUM PEAK·TO·PEAK
OUTPUT VOLTAGE
vs
FREQUENCY
MAXIMUM PEAK OUTPUT VOLTAGE
vs
SETTLING TIME
12.S
>
I
AvO = - 1
10 -VCC±=±lSV
TA = 2SoC
7.S
>
.,
Ol
"0
>
Rising
0
0
Falling
Q.
E -2.S
E
.;:c
-S
.........
:::J
'"
:::;;
I
-7.S
:::;;
0
-10
>
-12.S
"0
,,,,
0.1~
100
'"
200
300
Settling Time (ns)
SOO
~
I
:;
Q.
:;
0
q;
>
.,
4
...J
~
Ol
::r
0
1M
400 k
~~
4M
HIGH·LEVEL OUTPUT VOLTAGE
vs
OUTPUT CURRENT
LOW·LEVEL OUTPUT VOLTAGE
vs
OUTPUT CURRENT
10 M
1400
VCC = S V
:e 1200
TA = 125°C
"
N'1000
!:'+-
TA = 25°C
g
.........
btill
'I'
r-.
r-::r-r-.
3.8
TA = -SsoC
:3
.......... i '
~
3.6
3.4
-0.1
11
TA=12SOC
w
q; 600
3:
.3
~
-10
I
...J
-100
~
400
~ 200
I
-1
I
'[ 800
..........
J:
>
0
100 k
Figure 10
r-r--.r-.
4.2
'i'-. ~
Figure 9
4.4
Ol
5
f - Frequency - Hz
VCC = S v
.,
!!
g
",'\~
TA = -55°C /
'"
a:
c..
400
~
10
:::;;
4.6
>
\
"'"
§
I I I
\
15
c..
E
.;:c
I I
/TA = 2SoC
VTA = 125°C
~
0.01%
VCC± = ±lS V
RL = 2 kQ
I~
~
20
"'£f'""
"'\."'
o
\
25
>
:;
Q.
:;
o
./"' /
2.S
"''".,"
!!
/
I
c
.2
~
:;:
Q.
120
vs
vs
FREE-AIR TEMPERATURE
FREQUENCY
> 120
\
I
I I
N'
g
= ±10V
F
110
I
100
~
c
.2
90
E:
Q.
E
80
~
\.
.--
.,
104
,:..
"-
""
t-.
0.
Q.
::I
VI
I
102
a::
>
VI
...
o
10
1\
a::
~
0.
Q.
...
VCC± = ±2.5 V to ±15 V
III
';
a::
>
VI
~
Figure 18
III
::I
-........
= ±15 V :--....i'-
100
-75 -50 -25 0
25
50 75 100 125 150
T A - Free-Air Temperature - ·C
1M
100 k
10 k
f - Frequency - Hz
..,
VI
\
104
SUPPLY-VOLTAGE REJECTION RATIO
~
>
,:..
-""'::r--
/
Figure 17
as
I
=5 V
0
1k
100
Ol
VCC
:;;
o
.,
..,
a::.,
i--
a::
a::
20
:.
o
I
0
I
= VICR min
.2 116
1U
E
8
VIC
I
..........
g
..,o"
FREE-AIR TEMPERATURE
10 M
100
-75 -50 -25 0
25
50
75 100 125 150
TA - Free-Air Temperature - ·C
Figure 19
Figure 20
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-1249
TLE2144, TLE2144A
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
SUPPLY CURRENT
SUPPLY CURRENT
vs
vs
FREE-AIR TEMPERATURE
SUPPLY VOLTAGE
14.8
Vo = 0
No load
c:(
~
I
E
VCC± = ±1
I
~
13.2
5
o
>il.
go
I
12.4
IIf
(/)
I
g
-
11.6
VJ
/ ' ---V V
V"..
I
14
~
c:(
V
-
14
E
.--'"
C
~
5
VCC± = ±2.5 V
0
>-
I
-
I
-
TA = 1'25°C
TA = 25°C
I
12
il.
TA = -55°C
Il.
:::>
(/)
I
0
10
9
Vo = 0
No load
10.8
-75 -50 -25 0
25
50
75 100 125
TA - Free-Air Temperature - °C
8
150
o
4
8
12
16
20
24
IV cc± I - Supply Voltage - V
Figure 21
Figure 22
EQUIVALENT INPUT NOISE VOLTAGE
INPUT NOISE VOLTAGE
OVER A 1O-SECOND PERIOD
vs
FREQUENCY
250
750
~>
"I
Vcc± = ±15V
f = 0.1to10Hz
Vcc± = ±15 V
Rs=100Q
500
200
CD
>
OJ
"I
ll!
"0
> 150
CD
ll!
;g
0
z
s
100
z0
S -250
Il.
iii
.E
.~
"
IT
0
CD
.!!!
C
CD
W
250
CD
OJ
.!!!
..5"
TA = 25°C
50
>"
-500
0
-750
1
10
100
1k
f - Frequency - Hz
10 k
0
2
4
t - Time -
Figure 23
6
8
s
Figure 24
toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS .
2-1250
POST OFFICE BOX 655303· DALLAS. TEXAS 75265
10
TlE2144, TlE2144A
EXCAlIBUR lOW-NOISE HIGH-SPEED
PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
NOISE CURRENT
vs
FREQUENCY
TOTAL HARMONIC DISTORTION
PLUS NOISE vs
FREQUENCY
8
.,
~
~
6
I
1:
~
:::J
4
.,en
U
'0
Z
.E
2
+
'f
A=
A~~lt ,/11
0.1
£fII
is
·C
()
'co
~~
Ay
f--- RL
E
~ 0.01
~
~~
2
10
Frequency -
1k
Hz
0.001
10
10 k
100
10 k
1k
100 k
f - Frequency - Hz
Figure 26
INPUT NOISE VOLTAGE
OVER A 1O-SECOND PERIOD
750
SR+-
en
20
= 10
rim
I-
100
50
a:
/V
-i-"
+
o
::c
60
.,
iii
II
Ay
SLEW RATE
vs
FREE-AIR TEMPERATURE
.,
V
Z
Figure 25
3:
II
/~
I
f -
30
= 2 kQ
til
(:.
1
1ii
a:
RL
= 10
= 600 Q
::c
TA: 2 •
I
= 100 V
= 600Q,
111111 ./I
0
o
40
Ay
RL
I,
<::
T =
~
111111
YCC±
± 15Y
TA
25·C
Z
~\
Co
= 20 Y(PP)
=
=
Yo
fII
'0
.~
~
~
K
~
~~
=
YCC±
±15 Y
f
0.1 to 10 Hz
=
500 TA
\
= 25·C
>c
.,I
250
'"
f--SR-
!'3
'0
>
0
"
fII
'0
Z
;; -250
Co
(/)
YCC:!:
10
o
.E
= :!:15 Y
=
=
CL = 500 pF
-500
-1
AYD
RL
2 kQ
-75 -50 -25
-750
0
25
50
75
100
125
150
0
2
4
6
T A - Free-Air Temperature - ·C
t - Time - s
Figure 27
Figure 28
8
10
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-1251
TlE2144, TlE2144A
EXCALIBUR lOW-NOISE HIGH-SPEED
PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
NONINVERTING
LARGE·SIGNAL
PULSE RESPONSE
I
TA = 12S'C
10
11:r~
It<., I
>
.,
S
~
Cl
~
'0
INVERTING
LARGE·SIGNAL
PULSE RESPONSE
I
= 25 0
I
TA = 2S'C
10
b
>
"4rtTA = -SS'C
I
5
Q)
TA = -55°C
~
,/
'0
>
Sa.
S
>
Sa.
0
0
'5
0
-s
I
0
>
VCC± = ±15 V
-10
AVO = 1
RL = 2 kQ
CL = 300 pF
-1S
TA = -5SoC
0
~AI=
V~I
>
\TAlL 125°C
-5
VCC± = ±15 V
1
2SoC
AVO = - 1
RL = 2 kQ
CL = 300 pF
; ; = 112S0C
4
~AI=
0
2SoC
-10
2
3
t - Time - 115
0
I
5SOC
TA =
TA = 12SOC
Cl
-15
S
3
2
t - Time - 115
0
Figure 29
4
5
Figure 30
UNITY·GAIN BANDWIDTH
SMALL·SIGNAL
PULSE RESPONSE
vs
LOAD CAPACITANCE
100
=e
7
N
~
50
J:
:E
IVv
.,
..,
I
~
1'5
o
'I
-0
5
..
4
CD
<:
I I
..:
vcc± = ±15 V
RL = 2 kQ
-
TA = 12SoC
I
VCC± = ± 15 V
~
50
AVO = - 1
RL = 2 kQ
CL = 300 pF
f\
'c
3
cO
2
,
~
~
'ro
o
~-
r-;:A = 2SoC
..,'i<:
Cl
;g
6
T~ = '-'5~lb
::l
r'\
TA = 25°C
- 100
o
400
800
t- Time - n5
1200
1
10
1400
100
1000
CL - Load Capacitance - pF
, Figure 32
Figure 31
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
2-1252
~
INSTRUMENTS
POST OFFICE BOX 655303 ' DALLAS, TEXAS 75265
10000
TlE2144, TlE2144A
EXCALIBUR lOW-NOISE HIGH-SPEED
PRECISION QUAD OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
GAIN MARGIN
vs
LOAD CAPACITANCE
70
14
12
..,
10
cc
I
I:
.~
.
:;;
I:
8
"-
"
'"
6
'iii
Cl
4
2
=
=
=
=
VCC±
±1S V
AVO
1 I II
RL
2 kn to 00
V
-10Vt010V
~,
~
\
- SsoC
~1\
,,,
'" "
10
!l
~
C
SO
I:
.~
.
40
..
30
I
20
:;;
Q)
!II
r-- r-.TA =
r-
J,l
- WC
I
TA
25°C
=
"
r- -r-.
~
TA
= 125::;\
~~
1\ "
.c:
12SoC
c.
..J....- .... ~
:;;
~
10
2SoC
100
1000
CL - Load Capacitance - pF
~
~ ~~i'
-<>-
= ±15 V
= 2 kn IIIIII
VCC±
I
o
60
!II
--
PHASE MARGIN
vs
LOAD CAPACITANCE
o
10000
RL
10
Figure 33
1000
100
CL - Load Capacitance - pF
10000
Figure 34
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 6SS303 ' DALLAS, TEXAS 75265
2-1253
2-1254
TlE2161, TlE2161A, TlE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J.LPOWER OPERATIONAL AMPLIFIERS
03371, NOVEMBER 1989 - REVISED FEBRUARY 1991
available features
•
Excellent Output Drive Capability
Vo
± 2.5 V Min at RL
100 n,
VCC± = ±5V
Vo
±12.5VMinatRL
600n,
VCC± = ±15V
•
Macromodel Included
•
Wide Operating Supply Voltage Range
VCC± = ±3.5 V to ±20 V
•
High Open-Loop Gain ... 280 V/mV Typ
•
Low Supply Current ... 280 f.LA Typ
•
Low Offset Voltage ... 500 f.LV Max
•
Decompensated for High Slew Rate and
Gain-Bandwidth Product
AVD = 5 Min
Slew Rate = 10 V/f.LS Typ
Gain-Bandwidth Product = 6.5 MHz Typ
•
Low Offset Voltage Drift With Time
0.04 f.LV/month Typ
•
Low Input Bias Current ... 5 pA Typ
=
=
=
=
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE SWING
vs
LOAD RESISTANCE
description
The TLE2161, TLE2161A, and TLE2161B are
JFET-input, low-power, precision operational
amplifiers manufactured using the Texas
Instruments Excalibur process. Decompensated
for stability with a minimum closed-loop gain of 5,
these devices combine outstanding output drive
capability with low power consumption, excellent
de precision, and high gain-bandwidth product.
In addition to maintaining the traditional JFET
advantages of fast slew rates and low input bias
and offset currents, the Excalibur process offers
outstanding parametric stability over time and
temperature. This results in a device that
remains precise even with changes in temperature and over years of use.
10
V6c! 1=1
>
~~~
TA = 25°C
'"
c
8
~.,
'"
l!
"0
6
.s-::>
4
f
2
>
"5
L
~
,.....1-'
~
..
o
0"
>
o
A variety of available options includes sma"outline packages and chip-carrier versions for
high-density system applications.
10
100
1k
RL - Load Resistance -
10 k
n
AVAILABLE OPTIONS
PACKAGE
TA
VIOmax
AT 25°C
O°C
500~V
to
1.5mV
lO°C
3mV
-40°C
500~V
to
1.5mV
85°C
3mV
-55°C
500~V
to
1.5mV
125°C
3mV
SMALL·
OUTLINE
(D)
CHIP
CARRIER
(FK)
CERAMIC
DIP
(JG)
METAL
CAN
(L)
PLASTIC
DIP
(P)
-
-
TLE2161BCP
----
-
"'' '"'C'I
TLE2161AID
-
TLE21611D
--
--
-
TLE21611P
TLE2161ACD
TLE2161CD
-
-
TLE2161CP
TLE2161BIP
TLE2161AIP
TLE2161 BMJG
TLE2161BML
TLE2161BMP
TLE2161AMD
TLE2161AMFK
TLE2161AMJG
TLE2161AML
TLE2161AMP
TLE2161MD
TLE2161MFK
TLE2161MJG
TLE2161ML
TLE2161MP
D packages are available taped and reeled. Add "R" suffix to device type, (e.g., TLE2161ACDR).
PRODUCTION DATA documents contain Information current I I of
publication date. Products conform to specifications perth. term. ofT8.a.
Instruments standard warranty. Production procas,i"g dolt not
necessarily include testing of all parameters.
TEXAS
~
Copyright © 1991, Texas Instruments Incorporated
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-1255
TLE2161, TLE2161A, TLE2161B
EXCALIBUR JFET-INPUT HIGH OUTPUT-DRIVE
IlPOWER OPERATIONAL AMPLIFIERS
description (continued)
The C-suffix devices are characterized for operation from O°C to 70°C. The I-suffix devices are characterized
for operation from -40°C to 85°C. The M-suffix devices are characterized for operation over the full military
temperature range of -55°C to 125°C.
0, JG, OR P PACKAGE
FK PACKAGE
(TOP VIEW)
(TOP VIEW)
INOFFSET"
IN+
VCC-
~LJWC
LPACKAGE
(TOP VIEW)
u~uuu
NC
zzzzz
I'
2
7
3
6
VCC+
OUT
4
5
OFFSETN2
NC
INNC
IN+
NC
3212019
4
18
NC
5
17
6
16
7
15
8
14
VCC+
NC
OUT
NC
~,10 11 1213
U
Z
VCCPin 4 of the L package is in electrical
contact with the case.
I UN U
UZ Z Z
U
>
NC - No internal connection
equivalent schematic
Vcc+
IN+ -
_ _-1-_ _-.,
IN-
+-'Nv--+',,-
OFFSETN1
OFFSET N2
-1---+-----+
R1
1.1 kn
R4
55 kn
R2
1.1 kn
R7
R5
60 kO
6000
VccAll component values are nominal.
. TEXAS ."
INSTRUMENTS
2-1256
POST OFFICE BOX 655303· OALLAS. TEXAS 75265
OUT
TlE2161, TlE2161A, TlE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
flPOWER OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vcc+ (see Note 1) .................................................... 22 V
Supply voltage, VCC- .............................................................. -22 V
Differential input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ±44 V
Input voltage range, VI (any input) .................................................... VCC±
Input current, II (each input) ......................................................... ±1 mA
Output current, 10 ................................................................ ±80 mA
Total current into VCC+ terminal ..................................................... 80 mA
Total current out of VCC- terminal .................................................... 80 mA
Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... unlimited
Continuous total dissipation ........................................ See Dissipation Rating Table
Operating free-air temperature range, TA: C-suffix ................................... O°C to 70°C
I-suffix ................................. -40°C to 85°C
M-suffix ............................... -55°C to 125°C
Storage temperature range ................................................... -65°C to 150°C
Case temperature for 60 seconds: FK package .......................................... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package ............... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG or L package .............. 300°C
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC-'
2. Differential voltages are at the noninverting input with respect to the inverting input.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA",2S"C
POWER RATING
D
FK
72SmW
1375mW
JG
L
p
DERATING FACTOR
ABOVE TA = 2S"C
5.8 mW/oC
TA=70"C
POWER RATING
TA = 8S"C
POWER RATING
TA = 12S"C
POWER RATING
464mW
377mW
145mW
880mW
672mW
715mW
546mW
275mW
1050mW
11.0 mW/oC
8.4 mW/oC
650mW
5.2 mW/oC
416mW
338mW
1000mW
8.0 mW/oC
640mW
520mW
130mW
200mW
210mW
recommended operating conditions
C-SUFFIX
Supply voltage, Vec +
Common-mode
input voltage, VIC
Operating free-air temperature, TA
Vec+
VCC+
Vce+
= ±5V
= ± 15 V
= ± 20 V
I-SUFFIX
M-SUFFIX
UNIT
MIN
MAX
MIN
MAX
MIN
MAX
±3.5
-1.6
± 20
4
± 3.5
-1.6
± 20
± 3.5
± 20
V
-11
13
-11
4
13
-1.6
-11
V
-15
16.5
-15
16.5
-15
4
13
16.5
0
70
- 40
85
- 55
125
°C
TEXAS ~
IN5rRUMENTS
POST OFFICE BOX 655303' OALLAS, TEXAS 75265
2-1257
TlE2161C, TlE2161AC, TlE2161BC
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
JlPOWER OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, vee ± = ± 5 V (unless otherwise noted)
TEST CONDITIONS
PARAMETER
VIO
Input offset voltage
110
liB
3.1
4
TLE2161AC
25°C
Full range
0.6
2.6
3.5
1.9
20
Temperature coefficient of input offset voltage
Input offset voltage long-term drift (see Note 4)
VIC = 0,
RS = 500
Full range
Input offset current
Input bias current
1
25°C
3
RL = 100Q
RL = 10 kQ
VOM- Maximum negative peak output voltage swing
Large-signal differential voltage amplification
3.3
25°C
Full range
2.5
3.7
25°C
-3.7
-3.9
-3.3
-2.5
-2.7
Vo = ±2.8 V,
RL = 10 kO
25°C
Full range
15
Va = Oto 2 V,
RL = 1000
25°C
Full range
0.75
0.5
45
25°C
0.5
3
Full range
0.25
Input capacitance
25°C
Zo
Open-loop output impedance
VIC = VICR min, RS = SOQ
VCC± = ±5Vto±20V,
RS = 500
Supply current
Va = 0,
No load
operating temperature range
V
-2
80
2
V/mV
1012
4
25°C
10 = 0
V
3.1
2
Full range
ci
~ICC
V
25°C
Full range
RL = 100Q
nA
V
- 1.6
to
25°C
25°C
Supply current change over
to
6
RL = 100Q
Va = Oto-2V,
kSVR Supply-voltage rejection ratio (!NCC ± I ~VIO)
to
4
Full range
Input resistance
CMRR Common-mode rejection ratio
-2
nA
pA
2
-1.6
4
3.5
q
J!V/mo
pA
0.8
Full range
VOM+ Maximum positive peak output voltage swing
mV
J!V/oC
6
0.04
25°C
Full range
Common-mode input voltage range
UNIT
2.4
Full range
25°C
RL = 10 k.Q
ICC
0.5
u (;
Full range
AVO
TYP MAX
0.8
25°C
VICR
MIN
25°C
Full range
TLE2161BC
"VIO
TAt
TLE2161C
Q
pF
Q
280
25°C
Full range
65
25°C
75
Full range
75
82
dB
65
93
25°C
Full range
280
Full range
29
dB
325
350
J!A
J!A
tFull range IS O°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TEXAS ~
2-1258
INSTRUMENTS
POST OFFICE BOl( 655303' DALLAS, TEXAS 75265
TlE2161C, TlE2161AC, TlE2161BC
EXCAlIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
IlPOWER OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature, Vee± = ± 5 V (unless otherwise noted)
PARAMETER
SR
Vn
RS
=
(see Figure 2)
RS
=
CL
= 100pF
=
Full range
25°C
1 kHz
TYP
59
100
43
60
1.1
Equivalent input noise current
t
=
1 kHz
25°C
1
Total harmonic distortion
AVD = 5,
t = 10 kHz,
Gai n-bandwidth product
t
(see Figure 3)
t
Settling time
E
= 100 kHz,
= 100 kHz,
= 0.1%
bandwidth
Phase margin (see Figure 3)
RL
=
=
25°C
10kn, CL
=
lOOn, CL
= 100 pF
100 pF
AVD
= 5,
RL
=
10 kn
AVD
=
=
5,
RL
RL
=
=
10 kn,
5,
AVD
25°C
25°C
0.01%
E -
Maximum output-swing
RL
25°C
CL
100 n, CL
=
toO pF
= 100pF
25°C
UNIT
V/IlS
5
25°C
VO(PP) = 2V,
RL = 10kn
MAX
10
0.1 Hz to 10Hz
In
m
Phase margin (see Figure 3)
AVD = 5,
AVD = 5,
Rl = 10 kn, CL = 100pF
Rl = 600 n, Cl = 100 pF
25°C
72°
78°
IS
V/!'s
RS = lOOn, 1= 10 Hz
RS = 100n, I = 1 kHz
E = 0.01%
tFuil range
UNIT
nV/..JHz
MHz
!,s
kHz
O°C to 70°C.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-1263
TLE21611, TLE2161 AI, TlE2161 81
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J.lPOWER OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, vee ± =
PARAMETER
TEST CONDITIONS
TLE21611
Via
Input offset voltage
TLE2161AI
110
liB
Temperature coefficient of input offset voltage
Input offset voltage long-term drift (see Note 4)
TAt
TYP
MAX
25°C
Full range
o.s
25°C
0.6
3.1
4.4
2.6
MIN
Full range
TLE2161BI
aVIO
± 5 V (unless otherwise noted)
VIC = 0,
RS = 50n
3.9
O.t>
25°C
Full range
25°C
6
fLV/oC
fLV/mo
pA
25°C
Full range
1
Input bias current
25°C
Full range
3
2
to
Full range
nA
pA
4
-2
to
nA
V
6
4
-1.6
Common-mode input voltage range
i.9
0.04
Input offset current
-1.6
VICR
mV
2.7
Full range
25°C
UNIT
V
to
4
RL = 10 kn
VOM+ Maximum positive peak output voltage swing
RL = 100n
Large-signal differential voltage amplification
3.5
25°C
2.5
3.1
2
-3.7
-3.9
-3.1
-2.5
-2.7
Full range
RL = 10kn
25°C
Full range
RL = 100n
25°C
Full range
VOM- Maximum negative peak output voltage swing
AVD
25°C
Full range
Va = ±2.S V,
RL = 10 kn
Va = Oto 2V,
RL = 100n
Va = Oto-2V,
RL = 100n
25°C
Full range
45
3
25°C
Input capacitance
25°C
Zo
OpenJloop output impedance
kSVR Supply-voltage rejection ratio (AVCC ±/ AVIO)
ICC
AICC
VCC± = ±5Vto±20V,
RS = 50n
Supply current
Supply current change over
Va = 0,
No load
operating temperature range
25°C
Full range
25°C
Full range
1012
4
pF
2S0
n
65
. TEXAS ~
2-1264
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
n
82
dB
65
75
93
dB
65
25°C
Full range
280
Full range
29
tFull range IS - 40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
INSTRUMENTS
V/mV
0.25
25°C
VIC = VICR min, RS = 50n
SO
0.5
0.5
Input resistance
V
2
0.75
ci
CMRR Common-mode rejection ratio
15
25°C
25°C
Full range
V
-2
Full range
r;
10 = 0
3.7
3.1
325
350
fLA
fLA
= 150°C extrapolated
TlE21611, TlE2161AI, TlE2161BI
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
IlPOWER OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature, Vcc±
PARAMETER
SR
Vn
Slew rate (see Figure 1)
AVO
Equivalent input noise voltage
RS
(see Figure 2)
RS
Peak-to-peak equivalent input
VN(PP)
noise voltage
In
Equivalent input noise current
THO
Total harmonic distortion
Gain-bandwidth product
(see Figure 3)
Settling time
Maximum output-swing
BaM
4>m
TEST CONDITIONS
bandwidth
Phase margin (see Figure 3)
I
= 5,
= 1000,
= 1000,
= 0.1
RL
I
I
= 10 kO,
CL
= 100pF
= 10 Hz
= 1 kHz
= 1 kHz
= 5,
I = 10 kHz,
I = 100 kHz,
I = 100 kHz,
E = 0.1%
B = 0.01%
AVO = 5,
AVO
= 5,
= 5,
MIN
7
Full range
5
25°C
f
AVO
TAt
25°C
25°C
Hz to 10Hz
AVO
= ± 5 V (unless otherwise noted)
25°C
VO(PP) = 2V,
RL = 10kO
RL
RL
= 10 kO,
= 100O,
25°C
CL
CL
=
=
100pF
100pF
25°C
25°C
RL
=
RL
= 10kO,
= 1000,
RL
25°C
10kO
CL
CL
= 100 pF
= 100pF
25°C
TYP
10
MAX
59
100
43
60
1.1
1
UNIT
V/J1.S
nV/%
J1.V
IA/%
0.025%
5.8
4.3
5
10
420
MHz
J1.s
kHz
70°
84°
tFull range is - 40°C to 85°C.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
2-1265
TlE21611, TlE2161AI, TlE2161BI
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
JlPOWER OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, vee ±
YIO
Input offset voltage
=± 15 V (unless otherwise noted)
TYP
MAX
TLE21611
25°C
Full range
0.6
3
4.3
TLE2161AI
25°C
Full range
0.5
1.5
2.9
25°C
Full range
0.3
0.5
Full range
25°C
6
0.04
25°C
Full range
2
25°C
4
PARAMETER
TEST CONDITIONS
TLE2161BI
aYIO
Temperature coefficient of input offset voltage
Input offset voltage long-term drift (see Note 4)
110
Input offset current
lIB
Input bias current
YIC = 0,
RS = son
TAt
Common-mode input voltage range
13.2
13
13.7
RL = 6000.
25°C
Full range
12.5
13.2
YO = ± lOY,
RL = 10kn
YO= Ot08Y,
RL = 6000.
YO=Oto-8Y,
RL = 6000.
30
20
230
100
25°C
25
Full range
10
25°C
3
Full range
1
Input resistance
25°C
Input capacitance
25°C
Zo
Open-loop output impedance
ICC
10 = 0
YIC = YICR min, RS = 500.
AICC
YCC± = ±5Yto±15Y,
RS =.500.
Supply current
Supply current change over
YO = 0,
3
nA
5
pA
nA
Y
Y
25°C
Full range
ci
No load
operating temperature range
mY
J.l.V!°C
J.l.Vfmo
pA
Y
12
-13.2 -13.7
25°C
Full range
-13
25°C
-12.5
-13
Full range
-12
q
kSYR Supply-voltage rejection ratio (AYCC ±f AYIO)
16
25°C
Full range
RL = 6000.
CMRR Common-mode rejection ratio
13
-11
RL = 10 kn
RL = 10 kn
Large-signal differential voltage amplification
-12
to
to
13
YOM- Maximum negative peak output voltage swing
AYD
-11
to
Full range
VOM+ Maximum positive peak output voltage swing
UNIT
1.3
Full range
25°C
YICR
MIN
Y
YfmY
25
10 12
4
25°C
25°C
Full range
65
25°C
Full range
75
65
72
0.
pF
280
90
0.
dB
93
25°C
Full range
290
Full range
34
dB
350
375
J.LA
J.LA
tFull range is - 40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eY.
TEXAS ~
INSTRUMENTS
2-1266
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
TlE21611, TlE2161AI, TlE2161BI
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J.1POWER OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature, VCC± = ± 15 V (unless otherwise noted)
PARAMETER
SR
Slew rate (see Figure 1)
Equivalent input noise voltage
(see Figure 2)
Peak-to-peak equivalent input
VN(PP)
noise voltage
Equivalent input noise current
In
Vn
THO
Total harmonic distortion
Gain-bandwidth product
(see Figure 3)
Settling time
TEST CONDITIONS
AVO = 5,
m
MIN
TVP
7
5
10
MAX
UNIT
V//ls
RS = lOOn, I = 10 Hz
RS = lOOn, I = 1 kHz
25°C
70
40
I = 0.1 Hz to 10Hz
25°C
1.1
/lV
1= 1 kHz
25°C
1.1
IA/VHz
25°C
0.025%
25°C
6.4
5.6
MHz
25°C
5
10
/ls
25°C
116
25°C
72°
78°
AVO = 5,
I = 10 kHz,
I = 100 kHz,
I = 100 kHz,
E
E
BaM
RL = 10 kn, CL = 100pF
TAt
25°C
Full range
VO(PP) = 2V,
RL = 10 kn
RL = 10 kn, CL = 100 pF
RL = 600 n, CL = 100 pF
= 0.1%
= 0.01%
Maximum output-swing
bandwidth
AVO = 5,
RL = 10 kn
Phase margin (see Figure 3)
AVO = 5,
AVO = 5,
RL = 10 kn, CL = 100pF
RL = 600n, CL = 100pF
100
60
nVlVHz
kHz
tFull range is - 40°C to 85°C.
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
2-1267
TlE21611, TlE2161AI, TlE2161BI
EXCAlIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
JlPOWER OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, vee ± =± 20 V (unless otherwise noted)
TEST CONDITIONS
PARAMETER
TLE21611
VIO
Input offset voltage
TLE2161AI
Temperature coefficient of input offset voltage
Input offset voltage long-term drift (see Note 4)
110
Input offset current
liB
Input bias current
VIC = 0,
mV
0.5
JJ.V/oC
6
0.04
JJ.V/mo
3
pA
3
5
5
-15
to
-17
to
16.5
21
nA
pA
nA
V
-15
Large-signal differential voltage amplification
Full range
to
16.5
25°C
Full range
18.2
25°C
Full range
RL = 10 kn
25°C
Full range
RL = 600n .
25°C
Full range
VOM- Maximum negative peak output voltage swing
VO=±15V,
RL = 10kn
25°C
Full range
Vo = 0 to 10 V,
RL = 600n
25°C
Full range
Vo = 0 to - 10 V, RL = 6000.
25°C
Full range
r;
Input resistance
25°C
ci
Input capacitance
25°C
Zo
Open-loop output impedance
VIC = VICR min, RS = 500.
VCC± = ±5Vto±20V,
Supply-voltage rejection ratio (t.VCC ±I t.VIO)
RS = 50n
Supply current
Vo = 0,
No load
25°C
Full range
25°C
Full range
25°C
Full range
Full range
operating temperature range
V
18.7
18
15
18.1
V
12
-18.2 -18.7
-18
-15
-12
-18
30
280
20
25
80
10
3
20
V
V/mV
1
25°C
10 = 0
CMRR Common-mode rejection ratio
t.ICC
UNIT
1.3
Full range
Common-mode input voltage range
Supply current change over
0.3
Full range
25°C
Full range
RL = 600n
ICC
3
4.3
1.6
Full range
RL = 10 kn
kSVR
MAX
0.6
2.9
25°C
25°C
VOM+ Maximum positive peak output voltage swing
AVD
TYP
0.6
25°C
RS = 50n
25°C
VICR
MIN
Full range
TLE2161B~
m
bandwidth
Phase margin (see Figure 3)
RL
f
I
= 10 kn,
CL
= 100pF
= 10 Hz
= 1 kHz
25°C
Hz to 10Hz
= 1 kHz
AVO = 5,
I = 10 kHz,
I = 100 kHz,
I = 100 kHz,
I
E -
0.1%
E -
0.01%
Maximum output-swing
BaM
= 5,
TAt
VO(PP) = 2V,
RL = 10kn
RL
RL
= 10 kn,
= 600n,
CL
CL
= 100 pF
= 100pF
= 5,
RL
= 10kn
AVO
= 5,
= 5,
RL
= 10 kn,
= 600n,
RL
CL
= 100pF
= 100.pF
TYP
7
10
MAX
UNIT
V/Jls
5
75
100
40
60
nVl..fHz
25°C
1.1
JlV
1.3
IA/..fHz
25°C
0.025%
25°C
25°C
CL
MIN
25°C
25°C
AVO
AVO
25°C
Full range
25°C
6.5
5.7
MHz
5
10
Jls
85
kHz
72°
78°
tFull range is - 40°C to 85°C.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
2-1269
TlE2161M, TlE2161AM, TlE2161BM
EXCALIBUR JFET-INPUT HIGH-OUTPUT-ORIVE
J.lPOWER OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, vee ±
PARAMETER
TEST CONDITIONS
Via
25°C
TLE2161AM
liB
3.1
0.6
6
2.6
RS = 50n
0.5
Full range
Input bias current
25°C
Full range
1
25°C
3
Full range
iJ-V/ oC
iJ-Vlmo
pA
15
Full range
Common-mode input voltage range
mV
1.9
6
0.04
25°C
Input offset current
UNIT
3.1
Full range
25°C
VICR
MAX
o.s
4.6
25°C
Input offset voltage long-term drift (see Note 4)
110
TYP
Full range
VIC = 0,
Temperature coefficient of input offset voltage
MIN
Full range
TLE2161BM
aVIO
TAt
25°C
TLE2161M
Input offset voltage
=± 5 V (unless otherwise noted)
pA
30
-1.6
to
-2
to
4
- 1.6
6
nA
nA
V
V
to
4
25°C
RL = 10 kn
VOM+
Maximum positive peak
FK, JG, and
output voltage swing
L packages
OandP
packages
VOM-
Maximum negative peak
FK, JG, and
output voltage swing
L packages
o and P
FK, JG, and
Large-signal differential
L packages
voltage amplification
o and P
packages
25°C
RL = 600n
3.5
3.7
3
2.5
3.6
Full range
2
RL = 100n
25°C
Full range
2.5
3.1
RL = 10 kn
25°C
Full range
2
-3.7
-3.9
25°C
RL = 600n
Full range
25°C
RL = 100n
packages
AVO
Full range
Va = ±2.SV,
RL = 10 kn
Va = 0 to 2.5 V,
RL = 600n
Vo = 0 to - 2.5 V, RL = 600 n
Va = Oto 2V,
RL = 100n
Va = Oto-2V,
RL = 100n
-3
-2.5
-3.5
-2
-2.5
Full range
-2
25°C
15
Full range
2
25°C
Full range
0.5
25°C
1
TEXAS
"I
2-1270
POST OFFIOE BOX 655303' DALLAS. TEXAS 75265
SO
65
1
16
Full range
25°C
0.5
0.75
45
Full range
0.5
25°C
0.5
Full range
0.25
V
-2.7
tFull range is - 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
INSTRUMENTS
V
V/mV
3
= 150°C
extrapolated
TlE2161M, TlE2161AM, TlE2161BM
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J.LPOWER OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Vcc ±
(continued)
PARAMETER
q
ci
Zo
TEST CONDITIONS
Input resistance
Input capacitance
Open-loop output impedance
10 =
a
CMRR Common-mode rejection ratio
VIC = VICR min, RS = 50n
kSVR
VCC± = ±5Vto±20V,
RS = 50n
Supply-voltage rejection ratio
ICC
Supply current
~ICC
Supply current change over
operating temperature range
(~VCC
±I ~VIO)
No load
Vo = 0,
=± 5 V (unless otherwise noted)
TAt
25°C
25°C
25°C
25°C
Full range
25°C
Full range
MIN
65
60
75
65
TYP
MAX
1012
4
280
82
n
pF
n
dB
93
25°C
Full range
280
Full range
39
UNIT
dB
325
350
J.lA
J.lA
tFull range is - 55°C to 125°C.
operating characteristics, VCC±
= ±5 V, TA = 25 C
D
PARAMETER
TEST CONDITIONS
SR
Slew rate (see Fig ure 1)
Vn
Equivalent input noise voltage (see Figure 2)
VN(PP) Peak-to-peak equivalent input noise voltage
Equivalent input noise current
In
THO
Total harmonic distortion
Gain-bandwidth product (see Figure 3)
Settling time
RL = 10 kn, CL = 100 pF
AVO = 5,
RS = 100n, 1= 10 Hz
RS = 100n, I = 1 kHz
I = 0.1 Hz to 10Hz
I = 1 kHz
AVO = 5,
I = 10 kHz,
I = 100 kHz,
f = 100 kHz,
= 0.1%
= 0.01%
AVO = 5,
AVO = 5,
AVO = 5,
VO(PP) = 2V,
RL = 10 kn
RL = 10 kn, CL = 100 pF
Maximum output-swing bandwidth
~m
Phase margin (see Figure 3)
TYP
10
59
43
1.1
1
5.8
RL = 10 kn
RL = 10 kn, CL = 100 pF
RL = 600n, CL = 100pF
70 0
84 0
E
MAX
UNIT
V/l1s
nV/-IHz
I1V
fA/-IHz
0.025%
4.3
5
10
420
RL = 600 n, CL = 100 pF
E
BOM
MIN
MHz
I1s
kHz
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • OALLAS, TEXAS 75265
2-1271
TlE2161M, TlE2161AM, TlE2161BM
EXCAlIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
JlPOWER OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, vee ±
VIO
Input offset voltage
TYP
MAX
TLE2161M
0.6
3
6
TLE2161AM
25°C
Full range
0.5
25°C
0.3
TEST CONDITIONS
TLE216iBM
aVIO
=± 15 V (unless otherwise noted)
25°C
Full range
PARAMETER
Temperature coefficient of input offset voltage
Input offset voltage long-term drift (see Note 4)
= 0,
VIC
RS
= son
TAt
MIN
Full range
6
0.04
Input offset current
25°C
Full range
2
liB
Input bias current
25°C
Full range
4
25°C
Common-mode input voltage range
Large-signal differential voltage amplification
13.2
12.5
12.5
25°C
Full range
RL
= 10kn
RL
= 600n
Vo
= ±10V,
RL
= 10 kn
25°C
Full range
30
Vo
= Ot08 V,
RL
= 600n
25°C
Full range
25
100
7
3
25
= Oto-8V,
=
ci
Input capacitance
25°C
Zo
Open-loop output impedance
10
.1.ICC
=0
VIC
= VICR min,
RS
= son
= ±5Vto±15V,
= 50n
Supply current
Supply current change over
Vo
= 0,
13.7
V
13.2
No load
operating temperature range
V
230
20
V/mV
1
25°C
VCC±
RS
V
12
25°C
-13.2 -13.7
Full range -12.5
25°C
-12.5
-13
Full range
-12
RL
nA
V
= 600n
25°C
600n
Full range
nA
pA
to
RL
25°C
ICC
16
to
13
Input resistance
kSVR Supply-voltage rejection ratio (tNCC ± I AVIO)
13
-11
Full range
q
CMRR Common-mode rejection ratio
-12
25°C
Full range
Vo
fJ.V/oC
fJ.V/mo
pA
40
- 11
to
= 10kn
VOM- Maximum negative peak output voltage swing
AVD
0.5
20
RL
VOM+ Maximum positive peak output voltage swing
mV
1.7
Full range
25°C
110
VICR
1.5
3.6
UNIT
1012
4
pF
280
n
25°C
Full range
72
65
90
25°C
Full range
75
93
65
25°C
Full range
290
Full range
46
n
dB
dB
350
375
fJ.A
fJ.A
tFull range is - 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TEXAS ~
INSTRUMENTS
2-1272
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLE2161M, TLE2161AM, TLE2161BM
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
JlPOWER OPERATIONAL AMPLIFIERS
operati ng characteristics at specified free-air temperature, Vee ±
PARAMETER
SR
Vn
Slew rate (see Figure 1)
AVO
Equivalent input noise voltage
RS
(see Figure 2)
RS
Peak-to-peak equivalent input
VN(PP)
noise voltage
In
Equivalent input noise current
THD
Total harmonic distortion
Gain-bandwidth product
(see Figure 3)
Settling time
Maximum output-swing
BOM
m
TEST CONDITIONS
bandwidth
Phase margin (see Figure 3)
I
= 5,
= 1000,
= 1000,
= 0.1
RL
I
I
= 10 kO,
CL
= 100pF
= 10 Hz
= 1 kHz
I
VO(PP) = 2V,
RL = 10kO
RL
RL
= 10kO,
= 6000,
MIN
TYP
7
10
Full range
5
CL
CL
= 100 pF
= 100 pF
= 5,
RL
= 10 kO
AVO
= 5,
= 5,
RL
= 10kO,
= 6000,
RL
CL
= 100pF
= 100 pF
40
UNIT
V/flS
nV/~
1.1
flV
25°C
1.1
fA/~
25°C
0.025%
25°C
25°C
CL
70
MAX
25°C
25°C
AVO
AVO
TAt
25°C
25°C
Hz to 10 Hz
= 1 kHz
AVO = 5,
I = 10 kHz,
I = 100 kHz,
I = 100 kHz,
£ = 0.1%
£ = 0.01%
= ± 15 V(unless otherwise noted)
25°C
6.4
5.6
5
10
116
MHz
fls
kHz
72°
78°
tFull range is - 55°C to 125°C.
TEXAS ."
INsrRUMENTS
POST OFFICE BOX 655303 ' DALLAS, TEXAS 75265
2-1273
TlE2161M, TlE2161AM, TlE2161BM
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J1POWER OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, vee ±
Input offset voltage
TYP
MAX
TLE2161M
0.6
3
TLE2161AM
25°C
Full range
0.6
6
1.6
25°C
Full range
0.3
3.6
0.5
Full range
6
0.04
TLE21618M
aVIO
110
liB
TAt
25°C
Full range
TEST CONDITIONS
PARAMETER
VIO
=± 20 V (unless otherwise noted)
Temperature coefficient of input offset voltage
Input offset voltage long-term drift (see Note 4)
VIC = 0,
RS = 50n
Input offset current
Input bias current
25°C
Full range
3
25°C
5
Full range
Common-mode input voltage range
Full range
UNIT
mV
1.7
25°C
25°C
VICR
MIN
-15
to
-17
to
16.5
21
flV/oC
flV/ mo
pA
20
nA
40
nA
pA
V
-15
to
V
16.5
25°C
Full range
RL = 10kn
VOM+ Maximum positive peak output voltage swing
25°C
RL = 600n
Full range
25°C
RL = 10 kn
RL = 600n
Large-signal differential voltage amplification
Vo = 0 to 10 V,
RL = 600n
25°C
Full range
25
80
10
3
20
Full range
ci
Input capacitance
25°C
Zo
Open-loop output impedance
VIC = VICR min, RS = 50n
AICC
VCC± = ±5Vto±20V,
RS = 50n
Supply current
Vo = 0,
No load
operating temperature range
25 0 C
Full range
65
25°C
Full range
65
10 12
4
pF
280
n
75
TEXAS
2-1274
+
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
n
91
75
dB
93
25°C
Full range
300
Full range
50
tFull range is - 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
INSTRUMENTS
V/mV
1
25°C
10 = 0
V
-18
280
25°C
Supply current change over
12
30
20
25°C
V
-18.2 -18.7
25°C
Full range
Vo = 0 to - 10 V, RL = 600n
ICC
18.1
RL = 10 kn
Input resistance
kSVR Supply-voltage rejection ratio (AVCC ± / AVIO)
15
Vo = ± 15V,
fj
CMRR Common-mode rejection ratio
18.7
Full range -17.5
25°C
-15
Full range
-12
VOM- Maximum negative peak output voltage swing
AVD
18.2
17.5
dB
375
400
f!A
f!A
= 150°C extrapolated
TlE2161M, TlE2161AM, TlE2161BM
EXCAlIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
JlPOWER OPERATIONAL AMPLIFIERS
operating characteristics, VCC± = ± 20 V, TA = 25°C
PARAMETER
TEST CONDITIONS
SR
Slew rate (see Figure 1)
Vn
Equivalent input noise voltage (see Figure 2)
VN(PP) Peak-to-peak equivalent input noise voltage
Equivalent input noise current
In
THO
Total harmonic distortion
Gain-bandwidth product (see Figure 3)
Settling time
RL = 10 kn,
AVO = 5,
RS = 100a, I = 10 Hz
RS = 100a, I = 1 kHz
1= 0.1 Hz to 10Hz
CL = 100pF
I = 1 kHz
AVO = 5,
I = 10 kHz,
I = 100 kHz,
VO(PP) = 2V,
RL = 10 ka
RL = 10ka, CL = 100pF
= 100 kHz,
I: = 0.1%
RL = 600a, CL = 100 pF
I
= 0.01%
AVO = 5,
I:
BaM
Maximum output-swing bandwidth
-~-+--Vo
-:-
NOTE A: CL includes fixture capacitance.
Figure 3. Gain-Bandwidth Product and Phase Margin Test Circuit
typical values
Typical values as presented in this data sheet represent the median (50% point) of device parametric
performance.
input bias and offset current
At the picoampere bias-current level typical of the TLE2161, TLE2161 A, and TLE2161 B, accurate
measurement 01 the bias current becomes difficult. Not only does this measurement require a picoammeter,
but test socket leakages can easily exceed the actual device bias currents. To accurately measure these small
currents, Texas Instruments uses a two-step process. The socket leakage is measured using picoammeters
with bias voltages applied but with no device in the socket. The device is then inserted into the socket and
a second test that measures both the socket leakage and the device input bias current is performed. The two
measurements are then subtracted algebraically to determine the bias current of the device.
TEXAS
2-1276
~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
TlE2161, TlE2161A, TlE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J,LPOWER OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
table of graphs
FIGURE
VIO
Input offset voltage
liB
Input bias current
110
Input offset current
VICR
VOM
VO(PPl
Distribution
vs
Common-mode input voltage range limits
Maximum peak output voltage swing
Maximum peak-to-peak output voltage
vs
Supply voltage
vs
Frequency
vs
Time
vs
Temperature
Output impedance
vs
Frequency
Common-mode rejection ratio
vs
Frequency
vs
Supply voltage
Supply current
vs Temperature
Small-signal
Pulse response
Large-signal
Noise voltage (referred to input)
0.1 to 10 Hz
Equivalent input noise voltage
vs
Total harmonic distortion
vs
Frequency
vs
Supply voltage
Gai n-bandwidth product
¢
Temperature
Output current
Frequency
Short-circuit output current
¢m
vs
vs
Temperature
lOS
Vn
THO
Temperature
Temperature
vs
AVO
ICC
vs
vs
vs
Differential voltage amplification
Zo
CMRR
Common-mode voltage
Phase margin
Phase shift
Frequency
vs
Temperature
vs
Supply voltage
vs
Temperature
vs
Frequency
4
5
6
6
7
8.9
10.11.12
13.14.15
16
17
18
19
20
21
22
23
24. 25
26.27
28
29
30.31
32
33
34
35
16
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
2-1277
TLE2161, TLE2161A, TLE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J.1POWER OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
TLE2161
DISTRIBUTION OF
INPUT OFFSET VOLTAGE
TA =
'"
'#.
I
~
.,
c
I
!E
C
~
E
0
10
c..
j
II)
os
jjj
'S
Il.
til
~.,
1.5
:I
''0.,"
oSc
25~C
..5
5
1!
Q.
VCC±
I
0.5
VCC± =
-4
-3
-2
-1
0
2
3
Figure 4
Figure 5
INPUT BIAS CURRENT
and INPUT OFFSET CURRENT
vs
FREE-AIR TEMPERATURE
COMMON-MODE
INPUT VOLTAGE RANGE LIMITS
vs
FREE-AIR TEMPERATURE
105
VIC
I
C
~
:I
=
±15V
=0
>
8.
VCC+ + 1
S
POSITIVE LIMIT
;g
li
~ 103
/'
'S
Il.
.,
..5
0
"D
C
./
os
os 102
liB
II)
jjj
/'
...-
"D
~
./110
;.~
;.
VCC- +4
g
E
I
g
c
os
-
I
104
0
"D
20
VCC+ + 2
VCC±
Il.
±1~
II
- 20 - 15 - 10 - 5
0
5
10
15
VIC - Common-Mode Input Voltage - V
4
VIO -Input Offset Voltage - mV
'"
I
I I
o
OL----'.."..~""
V
= ±20V,
/ ' '" . /
101
~
E
a
NEGATIVE LIMIT
~ VCCo
+3
;>
L;"
45
65
85
105
TA - Free-Air Temperature - ·C
125
VCC- + 2
-75
-50
-25
0
25
50
75
100
T A - Free-Air Temperature - ·C
Figure 7
Figure 6
toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ",
INSTRUMENTS
2-1278
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
125
TlE2161, TlE2161A, TlE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
IlPOWER OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
MAXIMUM POSITIVE PEAK
OUTPUT VOLTAGE
vs
OUTPUT CURRENT
>
1:,
3
"0
>
:;
c.
:;
a
-:
c..
~
'w
g"
>
20
18
I
TA
r- vcc± = ±20 V
= 25°C
r--
16
12 I- Vcc±
= ±15V
g:
c.
8
zg'
-8
6
E
::I
E
-6
~
-4
>
o
o
r- Vcc±
I
'0
10
'5
c.
'5
5
-20
-
-60
I
I
'"
MAXIMUM PEAK OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
y
= 10kn
= 25°C
"/
V
V
VOM+
.,
15
3
"0
10
'5
So
::I
...........
..
::;; -10
E
::I
E
..
i'- r-......
-15
6
8
10
"f'...
-5
12
::;; -10
r--...
14
~
16
18
.........
r-..... ..........
I
VOM-
25
>
20
I"--- .......... "VOM-
-15
-20
o
2
4
6
8
10
12
14
16
IVcc± I - Supply Voltage - V
IVcc± I - Supply Voltage - V
Figure 10
Figure 11
TEXAS
VOM+
..V
'w
..........
I
".
"/
0
D-
.........
4
V
V
./
5
0
g:
40
35
y
= 600n
= 25°C
>
".
2
RL
TA
Ol
",
..V
-5
5
20
>
./
o
I
o
o
MAXIMUM PEAK OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
0
-20
= ±5V
Figure 9
';(
>
-50
~
-2 _ Vcc±
Figure 8
D-
25
~
10
15
20
25
30
10 - Output Current - rnA
a
E
E
-40
-30
>
::I
I
::;;
Ol
g:
= ±15 V
10 - Output Current - rnA
RL
TA
15
I
I
-10
20
>
- ±5V
= 25°C,
~
L
';(
+
::;;
".
I
~ -10
4
.,
-12 _ Vcc±
":;
2
l!!
TA
= ±20V
-'
:: -16
::I
c.
-14
10
~
I
.......
~ -18
- Vcc±
"0
".
';(
a
-
-20
ei
14
E
~
.,
MAXIMUM NEGATIVE PEAK
OUTPUT VOLTAGE
vs
OUTPUT CURRENT
l'
18
20
~
INSTRUMENTS
POST OFFICE BOX 655303 ' DALLAS, TEXAS 75265
2-1279
TLE2161, TLE2161A, TLE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-ORIVE
J.1POWER OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE
vs
FREQUENCY
MAXIMUM PEAK OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
>
6
RL = loon
>
..
01
TA
4
= 25°C
V
S
'0
>
:;
2
II.
~
VOM+
L
~
~
i
0
to
..
==
-4
';c
.f
~
~ I'--.
i
~
o
-
25
II.
...8
20
~
.
.f
15
§
10
4
8
6
IVcc± I - Supply Voltage - V
2
10
10k
10 M
1M
f - Frequency - Hz
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE
vs
FREQUENCY
>
\
,
\
Vcc± = ±15 V
RL = 10 kn
TA = 25°C
..
40
~
35
30
So
~
o
...
25
~
20
-
15
~
10
E
~
E
==
5
Il.
100 k
'"
1M
f - Frequency - Hz
ii:'
....
=
=
~
:;
1\
VCC± = ±20 V
RL 10 kQ
TA
2SoC
01
~
j
ii:'
1\
\,
1\
5
r--....
Il.
10M
~
0
10 k
Figure 14
100 k
1M
f - Frequency - Hz
Figure 15
TEXAS
2-1280
100 k
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE
vs
FREQUENCY
I'
0
0
Figure 13
E
10 k
"
ii:'
~
Figure 12
~
~
1\,
2
==
Il.
30
:;
~
..
';c
VOM~
4
E
~
E
~
>
6
Il.
-2
==I
=
i
Il.
E
~
E
VCC±=±5V
RL = 10 kQ
TA
2Soc
8
...o3l
:;
...03l
10rl--rl-I~I~I~II~II--~I-rI'i'i~ii~ii~i--.-rrlniiliimlj
&
~
INSfRUMENTS
POST OFFice BOX 655303 ' DALLAS, TexAS 75265
-
10 M
TLE2161, TLE2161A, TLE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
JlPOWER OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION and PHASE SHIFT
vs
FREQUENCY
..,
120
c
60'
\
tIl
I
"
0
"
80
ii
E
..
.c:
140· Co
'\~
....I
'\
~
300
ii
E
250
.'!!
'0
Ol
200
~
150
I-I----r--....
E
ol:
160'
=
Vcc±
±lSV
RL
10 kO
CL 100 pF
TA
2S'C
=
=
=
RL = 10 kO
350
c
PHASE SHIFT
'\
Ol
.'!!
'0
>
.]!
:>
I\"\.
100
400
>
E
';;
:E
LARGE-SIGNAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
..
Vcc± = ±lS V
............
C
..
~
II:
100
180·
l\
\ 200'
I
c
>
-so
-100
J
=
=
=
=
=
VCC±
±SV
AVO
s
RL
10 kn
CL
100 pF
2SoC
TA
See Figure 1
= ±1S V
=
=
=
=
VCC±
AVO
S
RL
10 kn
CL
100 pF
TA
2SoC
See Figure 1
\
-100
o
2
t - Time -
t - Time -
Figure 25
LARGE-SIGNAL
PULSE RESPONSE
LARGE-SIGNAL
PULSE RESPONSE
1S
1-
10
>
I
>
.,I
S'"
'0
2
S'"
'0
>
>
:;
3-
:;
Co
:;
=
=
=
=
=
0
>
-1
-2
"I
VCC±
±S V
Avo
S
RL
10kn
CL
100 pF
2SoC
TA
See Figure 1
I
0
0
3
Ils
Figure 24
3
I
2
JLS
4
.,
o
3
\.
o
S
S
0
0
0
-S
>
-10
- 15
10
1S
=
=
=
=
=
VCC±
±1SV
AVO
S
RL
10 kn
CL
100 pF
TA
2SoC
See Figure 1
I
I
o
10
I - Time - Ils
I - Time - Ils
Figure 26
Figure 27
20
30
40
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
2-1283
TlE2161, TlE2161A, TlE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J.1POWER OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
NOISE VOLTAGE
(REFERRED TO INPUT)
OVER A 10-SECOND INTERVAL
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
100
~
Vcc± = ±lS V
f = 0.1 to 10Hz
TA = 25°C
..
I
VCC±=±5V
RS
100 Q
TA= 25°C
See Figure 2
K\
~
80
~
=
~
..
=
01
'0
>
"5
S
'0
['..~
60
z
J
.;
t40
~
~
~
·S
M
20
I
-1L-~~_~~
o
2
3
__~~__~~~~~
4
5
6
I-TIme-s
7
8
9
>'"
10
o
10
1
100
1k
f - Frequency - Hz
Figure 28
Figure 29
TOTAL HARMONIC DISTORTION
TOTAL HARMONIC DISTORTION
vs
vs
FREQUENCY
0.25
1111
FREQUENCY
0.6 r-TlTnmr--r-nTTTlrr--rrrrnm-rTTTT1m
.
=5
VO(PP) = 2V
TA =25°C
AVO
'if!.
0.2
AVO = 10
'if!.
0.5
'"
§
II>
~
~
0.15
()
0.4 t--H-ttiittt--t--HtttI:tt--t-Httttt1-t-+tt-H1tI
.!:!
E
iii
::r:
]
VCC±
0.1
I IIIII
SOURCE SIGNAL
0
l-
I
=
i5
'c0
c
::r:
=
VO(PP)
2V
TA
2SoC +-H-ttHtt--l-j-Htlilt---j-++HtIfl
'o"
0
i5
10 k
VcC±
0.05
IS
E
= ±SV
0.3 1--t-t-t-HtHt--t-t-t-tttlit--J-i-ttttffi-t-t-tffiftl
VCC±
'"
::r:
ill
=
~
±20V
0.2
I
o
100
1k
10 k
f - Frequency - Hz
10k
100 k
f _ Frequency - Hz
Figure 30
Figure 31
TEXAS •
INsrRUMENlS
2-1284
11'
SOURCE SIGNAL
~ 0.1I=Hmlm==1=rn+m~H=m:m:+'I+Im
I-
I-
10
= ±SV
POST OFFICE BOX 655303 • OALLAS. TEXAS 75265
lOOk
TLE2161, TLE2161A, TLE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J.LPOWER OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
GAIN-BANDWIDTH PRODUCT
GAIN-BANDWIDTH PRODUCT
vs
FREE-AIR TEMPERATURE
VS
SUPPLY VOLTAGE
7
= 100 kHz
RL = 10 k.Q
CL = 100 pF
TA = 25·C
See Figure 3
f= 100kHz
f
N
J:
6.6
::IE
RL
~~
(;
"
."
6.2
£
:;
'i 5.S
..
."
C
= 10 k.Q
= 100 pF
6.2
Q,
.c
-6
~
..
5.S t---t--+--+-""'I-o;;;::--j--+---I---I
c
/'
ID
ID
C
'Cl=
6.6 t---t--T'""",,"---f"'o...,--+--t-- CL
(;
i
/'
/
."
~
~
::IE
C
~ 5.41--I--t--+--t--+-+---t-~
5.4
5
5~~--~--~--~--~--~--~~
o
4
8
12
16
IVcc± I - Supply Voltage - V
-75
20
-50
-25
0
25
50
75
100
T A - Free-Air Temperature - ·C
Figure 32
Figure 33
PHASE MARGIN
vs
SUPPLY VOLTAGE
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
125
74·
c
..
....
73·
AVD = 5
RL = 10 kQ
CL = 100 pF
72·
TA = 2S·C
See Figure 3
.~
::IE
I
-
V V
See Figure 3
c
.~
..
..
=
.c
./
70·
I
l
"G-
69·
70·1--I--t--+-~-~~~~-t--1
68·t---t--+--+--r-H-~~--I---I
6S·
67·
72·t---t--+~-+~~r--j--+---I---I
Q,
~~
E
74.t--~~-+~~--r--j--+---I---I
::IE
V
til
.c
Q,
=
/'
71·
AVD = 5
RL
10 kQ
76·1---'l~-t--+--t--+- CL = 100 pF
66·~~--~--~--~--~--~--~~
o
2
4
6
8
10 12 14 16
IVcc± I - Supply Voltage - V
18
20
-75
-50
Figure 34
-25
0
25
50
75
100
TA - Free-Air Temperature - ·C
125
Figure 35
tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265
2-1285
TlE2161,TlE2161A, TlE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
JlPOWER OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using PSpice® Parts™ model generation software. The Boyle
macromodel (see Note 5) and subcircuit in Figures 36 and 37 were generated using the TLE2161 typical
electrical and operating characteristics at 25°C. Using this information, output simulations of the following key
parameters can be generated to a tolerance of 20% (in most cases):
•
•
•
•
•
Maximum positive output voltage swing
Maximum negative output voltage swing
Slew rate
Quiescent power dissipation
Input bias current
Open-loop voltage amplification
•
•
•
•
•
•
•
Gain-bandwidth product
Common-mode rejection ratio
Phase margin
DC output resistance
AC output resistance
Short-circuit output current limit
din
,..----1<1___ 92
egnd
vcc+---'--'---+--~~------'
rp
+
2
IN- -_-I--t--....ff-l
vln
+
ve
IN+
de
de
Vcc- ____- __--~-~~-r_._~~__-------------5~
+
ve
OUT
Figure 36. Boyle Macromodel
NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers",IEEE Journal
of Solid-State Circuits. SC-9, 353 (1974).
PSpice is a registered trademark of MicroSim Corporation.
Parts is a trademark of MicroSim Corporation.
TEXAS ~
2-1286
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLE2161, TLE2161A, TLE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
IlPOWER OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
macromodel information (continued)
.subekt TLE2161 1 2 3 4 5
e1
11 12 125.4E-14
e2
6 7 5.000E-12
de
5 53 dx
da
54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp
43dx
agnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
fb
7 99 poly(5) vb ve va vlp v1n 0 4.085E6 -4E6 4E6 4E6 -4E6
ga
6 0 11 12 201.1E-6
gem
0 6 10 99 3.576E-9
iss
3 10 de 45.00E-6
hlim 90 0 v1im 1K
j1
11 2 10 jx
j2
12 1 10 jx
r2
6 9 100.0E3
rd1
4 11 4.973E3
rd2
4 12 4.973E3
ro1
8 5 280
ro2
7 99 280
rp
3 4 113.2E3
rss 10 99 4.444E6
vb
90deO
ve
353de2
va
54 4 de 2
vlim ·7 8 de 0
vlp 91 0 de 50
v1n
0 92 de 50
.modal dx O(Is=800.0E-18)
.modal jx PJF(Is=1.000E-12 Beta=480E-6 Vto=-l)
.ands
Figure 37. Marcomodel Subcircuit
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-1287
TlE2161, TlE2161A, TlE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
J.LPOWER OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION
input characteristics
The TLE2161, TLE2161A and TLE2161B are specified with a minimum and a maximum input voltage that,
if exceeded at either input, could cause the device to malfunction.
Because of the extremely high input impedance and resulting low bias-current requirements, the TLE2161,
TLE2161A, and TLE2161B are well-suited for low-level signal processing; however, leakage currents on
printed circuit boards and sockets can easily exceed bias-current requirements and cause degradation in
system performance. It is a good practice to include guard rings around inputs (see Figure 38). These guards
should be driven from a low-impedance source at the same voltage level as the common-mode input.
V,
Vo
WHERE R3
R4
= R2
R1
Figure 38. Use of Guard Rings
input offset voltage nulling
The TLE2161 series offers external null pins that can be used to further reduce the input offset voltage. The
circuit of Figure 39 can be connected as shown if the feature is desired. If external nulling is not needed, the
null pins may be left disconnected.
N2
~VV'v-Vcc
Figure 39. Input Offset Voltage Nulling
TEXAS
2-1288
+
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
TlE2227, TlE2227A
EXCALIBUR lOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
03959, SEPTEMBER 1991 - REVISED DECEMBER 1991
available features
•
Outstanding Combination of DC Precision
and AC Performance:
Unity-Gain Bandwidth ... 15 MHz Typ
Vn.... 3.3 nV/¥Z at f = 10 Hz Typ,
2.5 nV/¥Z at f = 1 kHz Typ
VIO' .. 25 J.lV Typ
Avo ... 45 V/J.lV Typ With RL = 2 kQ,
38 V/J.lV Typ With RL = 1 kQ
•
Available in 16-Pin Small-Outline Wide-Body
Package
•
Output Features Saturation Recovery
Circuitry
•
Macromodels and Statistical Information
Included
description
The TLE2227 and TLE2227A combine innovative
circuit design expertise and high-quality process
control techniques to produce a level of ac
performance and dc precision previously
unavailable in dual operational amplifiers. These
devices allow upgrades to systems that use lowerprecision devices and are manufactured using
Texas Instruments state-of-the-art Excalibur
process.
In the area of dc precision, the TLE2227 and
TLE2227A offer a typical offset voltage of 25 IlV,
a common-mode rejection ratio of 131 dB (typ), a
supply voltage rejection ratio of 144 dB (typ), and
a dc gain of 45 WIlV (typ).
Ac performance is highlighted by a typical unitygain bandwidth specification of 15 MHz, 55° of
phase margin, and noise voltage specifications of
3.3 nV/~ and 2.5 nV/~ at frequencies of
10 Hz and 1 kHz, respectively.
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREQUENCY
.., 160
III
I
c 140
o
r'~
'i;
~ 120
1\
~ 100
.,
80
~
60
!l2
40
;:
'\
AVO = 153 dB "\
F
~
"\
\
Q.
'\
'\
20
o
~
o
0.1
Bl = 15 MHz
'\
C
I
vcc± = ±15 V
RL= 2kn CL = 100 pF
TA = 25°C -
10
l1
\
"t
100 1 k 10 k 100 kl M 10 M 100 M
f - Frequency - Hz
The TLE2227 and TLE2227 A are available in a wide variety of packages, including the industry standard 16pin small-outline wide-body version for high-density system applications. The TLE2227 amd TLE2227A are
characterized for operation from O°C to 70°C.
AVAILABLE OPTIONS
Vlolyp
AT 2S c C
TA
o °C 10 70°C
251lV
PACKAGE
SMALL·OUTLINE PLASTIC DIP
(OW)
(PI
TLE2227CP
TLE2227CDW
TLE2227ACP
D packages are available taped and reeled. Add "R" suffix to device type
(e.g., TLE2227CDWR).
PRODUCTION DATA information is current as or publication date.
Products conform to specifications per the terms 01 Texas Instruments
standard warranty. Production processing dOlls not necessarily include
tasting of all parameters.
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Copyright © 1991, Texas Instruments Incorporated
On products compliant to Mll·STD·883. Class 8, all parameters
are tested unless othelWise noted. On all other products,
production processing does not necessarily include tasting of all
parameters.
2-1289
TlE2227,TlE2227A
EXCAllBUR lOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
P PACKAGE
(TOP VIEW)
OW PACKAGE
(TOP VIEW)
NC
NC
1 0 U T [ j 8 VCC+
11N - 2
7
2 OUT
1 IN + 3
6 2 INVCC- 4
5 21N +
NC
NC
VCC+
11
'---------
20UT
21N21N+
NC
NC
NC - No internal connection
symbol (each amplifier)
IN+~
IN -
----v-
OUT
~
TEXAS
INSTRUMENTS
2-1290
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
equivalent schematic for 1 channel
Vcc+
~
Q~
~
Ql0
Q~
R9
Rl
R2
Q9
b~j1T
R5
Q13
I
.-----T
Q49'1-,
Q6
Q46
C1
IN+
OUT
"tl
o
U>
-i
0_
IN-
~6
2lZ
~~
~~c;:c~~
""'D
~~
:JJ
m
1"tr1
~z
C'")
~U1~
U>
t!! !! II f It I! t I I I
Q3l
Qlr
R3
R6
"
~
R7
Rl0
R12
R14
R1B
R19
T
VccComponent Count: Transistors - 62
Resistors - 24
Capacitors Diodes - 0
4
!~H24
I
~
CI)
HZti
om
z><
C'")
Cl=e:: rl=--
r-~
O:JJ
""'Dr-
mo
~~
~I--I
-Zr°Om
Z-N
l=-CI)N
r-mN
l=- :E~-.J
SC)--1
""'D::Z:::r-
r-'m
-CI)N
~
I\J
~
:::!!""'DN
mmN
:JJm-.J
Cl)C>
•
TlE2227, TlE2227A
EXCALIBUR lOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vcc+ (see Note 1) .................................................... 22 V
Supply voltage, VCC- .............................................................. -22 V
Differential input voltage (see Note 2) ................................................. ±1.2 V
Input voltage range, VI (any input) .................................................... VCC±
Input current, II (each input) ......................................................... ±1 rnA
Output current, 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ±50 mA
Total current into VCC+ terminal ..................................................... 50 mA
Total current out of VCC- terminal .................................................... 50 mA
Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... unlimited
Continuous total dissipation ........................................ See Dissipation Rating Table
Operating free-air temperature range, TA ......................................... O°C to 70°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: OW or P package ............. 260°C
NOTES: 1. All voltage values, except differential voltages. are with respect to the midpoint between VCC+ and VCC-.
2. Differential voltages are at the non inverting input with respect to the inverting input. Excessive current will flow if a differential input
voltage in excess of approximately ±1.2 V is applied between the inputs unless some limiting resistance is used.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA s25·C
POWER RATING
DW
p
1025mW
1000mW
DERATING FACTOR
ABOVE T A = 25·C
8.2 mW/oC
8.0 mW/oC
TA = 70·C
POWER RATING
656mW
640mW
recommended operating conditions
Supply voltage, VCC +
Common-mode input voltage, VIC
I
I
TA = 25°C
T A = Full range
Operating free-air temperature, TA
TEXAS.~
INSTRUMENTS
2-1292
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
MIN
MAX
±4
± 22
11
11
-10.5
10.5
0
70
UNIT
V
V
°C
TLE2227C, TLE2227AC
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Vee +
-
PARAMETER
VIO
aVIO
TEST CONDITIONS
TAt
Input offset voltage
Temperature coefficient of
input offset voltage
Input offset voltage
long-term drift (see Note 4)
110
Input offset current
liB
Input bias current
VIC ~O,
RS
~50
Q
VICR
voltage range
25°C
Full range
0.4
MAX
1
0.2
1
).LV/oC
0.006
1
0.006
1
).LV/mo
25°C
Full range
6
90
150
6
90
150
25°C
15
90
15
25°C
~
50 Q
YOM -
Maximum negative peak
output voltage swing
RL
~
2 kQ
RL
~
1 kQ
RL
~
2 kQ
VO~±
Large-signal differential
AVD
voltage amplification
c·
Input capacitance
20
Open-loop output impedance
Common-mode
CMRR
rejection ratio
~
2 kQ
VO~±10V,
RL
~
1 kQ
10~0
VIC - VICR min,
RS ~ 50Q
RS~
(.WCC±' ~VIO)
VCC±~±4
Supply current
Full range
RL
RL ~ 2 kQ
RS
ICC
25°C
~
V to± 18 V,
50Q
Vto± 18 V,
50Q
VO~O,
-13
-11
-13
to
11
-10.5
to
to
13
11
-10.5
to
13
No load
-13
-10.5
-11
-11
25°C
3.5
-13
-10
-12
Full range
V
12
11
-12 -13.5
2
V
10.5
10
10
12
Full range
nA
10.5
10.5
5
90
nA
to
to
10.5
25°C
).LV
150
-11
11
-10.5
25°C
Full range -10
VO~±10V,
Supply-voltage rejection ratio
150
Full range
25°C
Full range
11 V,
VCC±~±4
kSVR
25°C
RL ~ 1 kQ
MIN
UNIT
TYP
25
Full range
RS
TLE2227AC
MAX
Full range
Maximum positive peak
VOM+ output voltage swing
MIN
TYP
25
25°C
Common-mode input
=± 15 V(unless otherwise noted)
TLE2227C
45
5
V
-13.5
45
2
38
3.5
1
V/).LV
38
1
25°C
8
8
pF
25°C
50
50
131
Q
25°C
Full range
100
25°C
94
Full range
92
131
100
98
dB
98
144
94
144
dB
25'C
Full range
92
7.6
10.6
11.2
7.6
10.6
11.2
rnA
tFull range is O°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T A ~ 150°C extrapolated
to TA ~ 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-1293
I
I ..
TlE2227C, TlE2227AC
EXCALIBUR lOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature, V cc±
PARAMETER
SR
Vn
Slew rate
RL = 2 kn,
CL = 100 pF
Equivalent input noise
RS= 100n,
1= 10 Hz
voltage
RS=100n,
f = 1 kHz
Peak-to-peak equivalent
VN(PP)
In
input noise voltage
Equivalent input noise
current
THD
Total harmonic distortion
Bl
Unity-gain bandwidth
BaM
4>m
TEST CONDITIONS
Maximum output-swing
bandwidth
Phase margin
TYP
1.7
2.8
25°C
Full range
1= 10 Hz
VO=±10V,
AVD = 1,
25'C
CL = 100 pF
RL = 2 kn
CL=100pF
25'C
TYP
1.7
2.8
MAX
7
V/fls
8
3.3
8
2.5
4.5
2.5
4.5
50
250
50
250
nV
4
0.6
pAl#lZ
1.5
4
1.5
0.4
0.6
0.4
13
7
13
MHz
kHz
30
30
25'C
55'
55'
TEXAS ~
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
nV/#lZ
<0.002%
25'C
INSTRUMENTS
UNIT
3.3
<0.002%
tFull range is O'C to 70°C.
NOTE 5: Measured distortion 01 the source used in the analysis was 0.002%.
2-1294
MIN
1.2
25'C
See Note 5
TLE2227AC
MAX
1.2
25'C
1=1 kHz
RL = 2 kn,
MIN
25'C
f = 0.1 Hz to 10Hz
RL = 2 kn,
TAt
= ±15 V
TLE2227C
TLE2237, TLE2237A
EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION
NONCOMPENSATED DUAL OPERATIONAL AMPLIFIERS
03957, SEPTEMBER 1991 - REVISED DECEMBER 1991
available features
•
Outstanding Combination of DC Precision
and AC Performance:
Gain-Bandwidth Product. .. 80 MHz Typ
Vn ... 3.3 nV/{RZ at f = 10 Hz Typ,
2.5 nV/{RZ at f = 1 kHz Typ
VIO ... 25 /lV Max
AVD ... 45 V//lV Typ With RL = 2 kQ,
38 V//lV Typ With RL = 1 kQ
•
Available in i6-Pin Small-Outline Wide-Body
Package
•
Output Features Saturation Recovery
Circuitry
•
Macromodels and Statistical Information
Included
description
The TLE2237 and TLE2237A combine innovative
circuit design expertise and high-quality process
control techniques to produce a level of ac
performance and dc precision previously
unavailable in dual operational amplifiers. Using
the Texas Instruments state-of-the-art Excalibur
process, these devices allow upgrades to
systems that use lower-precision devices.
TLE2237
and
TLE2237A
are
The
noncompensated versions of the TLE2027 and
TLE2027A. The devices are stable to a closedloop gain of 5. In the area of dc precision, both
devices offer an input offset voltage of 25 IlV
(typ) , a common-mode rejection ratio of 131 dB
(typ), a supply voltage rejection ratio of 144 dB
(typ). and a dc gain of 45 V/IlV (typ).
The ac performance is highlighted by a typical
gain-bandwidth product specification of 80 MHz,
50° of phase margin, and noise voltage
specifications of 3.3 nV/~ and 2.5 nV/~ at
frequencies of 10Hz and 1 kHz, respectively.
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREQUENCY
D:l
160
"I
c: 140
.2
\
iO
~ 120
a.
~ 100
.,
Cl
\
:\
80
~
60
"""'""
I
V
i:
'"
VCC±=±1SV
RL = 2kn CL = 100 pF
TA = 25°C -
AvO = 153 dB
S
>
"0
~
GBP
~
40
I
20
25
\
C
>
o
m~
>C-.,J
r-mw
S-e~
-e::D;:!
r
I\)
~
r-mm
-C"'.)N
:!!C;;N
m-w
::DO-.,J
cnZ>
TlE2237,TlE2237A
EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION
NONCOMPENSATED DUAL OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vcc+ (see Note 1) .................................................... 22 V
Supply voltage, VCC- .......... , ................................................... -22 V
Differential input voltage (see Note 2) ................................................. ±1.2 V
Input voltage range, VI (any input) .................................................... VCC±
Input current, II (each input) ......................................................... ±1 mA
Output current, 10 ................................................................ ±50 mA
Total current into VCC+ terminal ..................................................... 50 mA
Total current out of VCC- terminal .................................................... 50 mA
Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... unlimited
Continuous total dissipation ........................................ See Dissipation Rating Table
Operating free-air temperature range, TA ........................................... O°C to 70°C
Storage temperature range ................................................... -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: OW or P package ............. 260°C
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC-.
2. Differential voltages are at the non inverting input with respect to the inverting input. Excessive current will flow if a differential input
voltage in excess of approximately ±1.2 V is applied between the inputs unless some limiting resistance is used.
3. The output may be shorted to either supply. Temperature andlor supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA'; 25·C
DERATING FACTOR
POWER RATING
DW
1025mW
P
1000mW
ABOVE TA
=25·C
8.2 mW/'C
8.0 mW/'C
TA
=70·C
POWER RATING
656 mW
640 mW
recommended operating conditions
Supply voltage, VCC +
I
I
Common-mode input voltage, VIC
TA = 25'C
TA = Full range
Operating free-air temperature, TA
.
TEXAS
~
INSTRUMENTS
2-1298
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
MIN
MAX
UNIT
±4
± 22
V
-11
-10.5
11
0
10.5
70
V
'c
TlE2237C, TlE2237AC
EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION
NONCOMPENSATED DUAL OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Vee +
-
PARAMETER
VIO
aVIO
TEST CONDITIONS
Input offset voltage
Temperature coefficient of
input offset voltage
Input offset voltage
long-term drift (see Note 4)
110
Input offset current
liB
Input bias current
RS=50 Q
VIC=O,
TAt
MIN
VICR
voltage range
VOM+ output voltage swing
Maximum negative peak
YOM - output voltage swing
Large-signal differential
AVD
voltage amplification
c'
Input capacitance
Zo
Open-loop output impedance
Common-mode
CMRR
rejection ratio
25°C
0.4
1
0.2
1
J,lVloC
25°C
0.006
1
0.006
1
J,lVlmo
25°C
6
90
150
6
Full range
25°C
90
150
15
90
15
RS =50 Q
150
25°C
-11
-13
-11
-13
to
11
to
13
to
11
to
13
to
10.5
10.5
10
10
RL = 2kQ
25°C
Full range
12
11
RL = 1 kQ
-10.5
25°C
Full range -10
12
11
-10.5
VO-±11 v,
KL-2KQ
VO=±10V,
RL = 2 kQ
VO=±10V,
RL = 1 kQ
-12
Full range
- 11
25°C
Full range
5
25°C
Full range
3.5
1
-13
-13
-13.5
-12
-13.5
45
-11
5
45
38
2
3.5
38
8
8
25°C
50
50
VIC - VICR min,
RS= 50Q
25°C
100
Full range
98
25°C
94
Full range
92
(t:NCC±1 AVIO)
VCC±=±4 Vto± 18 V,
VO=O,
No load
V
VIJ,lV
1
25°C
RS=50n
nA
V
-10
2
nA
V
10=0
Supply-voltage rejection ratio
Supply current
to
10.5
25°C
90
-10.5
10.5
RL = 2 kQ
J,lV
150
Full range
RS= 50 Q
ICC
25
-10.5
RL = 1 kQ
UNIT
Full range
Full range
VCC± - ±4 V to± 18 V,
kSVR
TLE2237AC
TYP
MAX
MAX
Full range
Maximum positive peak
MIN
TYP
25
25°C
Common-mode input
= ± 15 V(unless otherwise noted)
TLE2237C
131
100
pF
n
131
dB
98
144
94
144
dB
92
7.6
25'C
Full range
10.6
11.2
7.6
10.6
11.2
mA
tFull range is O°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-1299
TlE2237C, TlE2237AC
EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION
NONCOMPENSATED DUAL OPERATIONAL AMPLIFIERS
operating characteristics at specified free-air temperature, Vee± = ± 15 V
TEST CONDITIONS
TAt
RL = 2kQ,
AVD = 5,
CL = 100pF
RS = lOOn, 1= 10 Hz
25°C
Full range
PARAMETER
SR
Vn
VN(PP)
Slew rate
Equivalent input noise
voltage
Peak-to-peak equivalent
RS = lOOn,
f = 1 kHz
f = 0.1 Hz to 10Hz
1 = 10 Hz
current
f = 1 kHz
THD
Total harmonic distortion
Va = ±10V, AVD
See Note 5
GBP
Gain-bandwidth product
Maximum output-swing
BaM
ifJm
bandwidth
Phase margin
1
= 100 kHz,
= 100 pF
RL
= 2 kQ,
eL
RL
25°C
= 2kQ
RL = 2kQ,
50
25°e
eL = 100 pF
25°C
tFull range is ooe to 700 e.
NOTE 5: Measured distortion 01 the source used in the analysis was 0.002%.
TEXAS ."
INSTRUMENTS
2-1300
3.3
MIN
6
TYP
7.5
MAX
8
3.3
8
2.5
4.5
2.5
4.5
50
250
50
250
4
1.5
4
0.4
0.6
0.4
0.6
POST OFFICE BOX 655303' DALLAS, TEXAS 75265
76
80 .
50°
UNIT
V/Jls
1.5
<0.002%
25°e
25°e
MAX
5
25°e
= 5,
TLE2237AC
TYP
7.5
5
25°C
input noise voltage
Equivalent input noise
In
TLE2237C
MIN
6
nV/..fiTz
nV
pAl..fiTz
<0.002%
50
76
MHz
80
kHz
50°
uA709AM. uA709M. uA709C
GENERAL-PURPOSE OPERATIONAL AMPLIFIERS
D942, FEBRUARY 1971 - REVISED MAY 1988
•
Common-Mode Input Range . . . ± 10 V Typical
•
Designed to be Interchangeable with Fairchild
p,A709A. p,A709. and p,A709C
•
uA709AM. uA709M ... J OR W PACKAGE
(TOP VIEW)
Maximum Peak-to-Peak Output Voltage
Swing ... 28-V Typical with 15-V Supplies
description
These circuits are general-purpose operational
amplifiers. each having high-impedance
differential inputs and a low-impedance output.
Component matching. inherent with silicon
monolithic circuit-fabrication techniques.
produces an amplifier with low-drift and lowoffset
characteristics.
Provisions
are
incorporated within the circuit whereby external
components may be used to compensate the
amplifier for stable operation under various
feedback or load conditions. These amplifiers are
particularly useful for applications reqUiring
transfer or generation ·of linear or nonlinear
functions.
The uA 709A circuit features improved offset
characteristics.
reduced
input-current
requirements. and lower power dissipation when
compared to the uA 709 circuit. In addition.
maximum values of the average temperature
coefficients of offset voltage and current are
specified for the uA 709A.
NC
NC
FREO COMP A
NC
NC
FREO COMP B
ININ+
VCCNC
VCC+
OUT
OUT FREO COMP
NC
uA709AM, uA709M ... JG PACKAGE
uA709C ... D. JG, OR P PACKAGE
(TOP VIEW)
FREO COMP B [ ] B
IN2
7
IN+
3
6
VCC 4
5
FREO COMP A
VCC+
OUT
OUT FREO COMP
uA709AM. uA709M ... U FLAT PACKAGE
(TOP VIEW)
NC
FREO COMP B
ININ+
VCC-
""'1-_ _""
NC
FREO COMP A
VCC+
OUT
OUT FREO COMP
NC - No internal connection
symbol
The uA 709AM and uA 709M are characterized
for operation over the full military temperature
range of - 55°C to 125°C. The uA 709C is
characterized for operation from 0 °C to 70°C,
OUTPUT
FREQ
COMP
NONINVER=+}ING
INPUT IN+
+
OUTPUT
INVERTING
INPUT IN-
FREQ FREQ
COMP COMP
A
B
A V AILABLE OPTIONS
TA
VIO MAX
AT 25°C
PACKAGE
SMALL OUTLINE
CERAMIC
CERAMIC DIP PLASTIC DIP FLAT PACK
(D)
(J)
(JG)
(P)
(U)
FLAT PACK
(W)
uA709CD
-
uA709CJG
uA709CP
-
-
uA709MJ
uA709MJG
uA709MU
uA709MW
uA709AMU
uA709AMW
O°C
to
7,5 mV
70°C
-55°C
5 mV
-
to
125°C
2 mV
uA709AMJ uA709AMJG
The D package is available taped and reeled. Add the suffix R to the device type when ordering, (e.g., uA709CDR)
PRODUCTION DATA documents contain information
current as of publication date. Products conform to
specifications per the terms of Texas Instruments
standard warranty. Production processing does not
necessarily include testing of all parameters.
~
Copyright © 1983. Texas Instruments Incorporated
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-1301
uA709AM, uA709M, uA709C
GENERAL-PURPOSE OPERATIONAL AMPLIFIERS
schematic
r--------1~--------------_.--------._--_.----~--VCC+
10 kn
>-
10 k!1
A
'-'2
20
w_
::>1-
0«
WIll
a: 2
LLle
1-:2;
::>0
~U
B
25 kn
1 kn
OUTPUT
30 k!1
3k!1
OUTPUT
FREQUENCY
COMPENSATION
INVERTING
INPUT
NONINVERTING
INPUT
10 k!1
2.4 kn
75kn
L---------4-----------~~--4---
VCC-
Component values shown are nominal.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
uA709AM
uA709M
uA709C
UNIT
Supply voltage V CC + (see Note 1)
18
18
V
Supply voltage Vee _ (see Note 1)
-18
-18
V
±5
±5
V
±10
±10
V
5
5
s
Differential input voltage (see Note 2)
Input voltage (either input, see Notes 1 and 3)
Duration of output short-circuit (see Note 4)
Continuous total dissipation
See Dissipation Rating Table
o to
Operating free-air temperature range
- 55 to 125
Storage temperature range
-65 to 150
- 65 to 150
°e
300
300
°e
260
°e
I
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds J, JG, U, or W package
Lead temperature 1,6 mm (1116 inch) from case for 10 secondsl Dar P package
NOTES: 1.
2.
3.
4.
°c
All voltage values, unless otherwise noted, are with respect to the midpoint between Vec + and VCC _.
Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 10 V, whichever is less.
The output may be shorted to ground or either power supply.
TEXAS . "
INSTRUMENTS
2-1302
70
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
uA709AM, uA709M, uA709C
GENERAL-PURPOSE OPERATIONAL AMPLIFIERS
DISSIPATION RATING TABLE
PACKAGE
TA :5 25°C
POWER RATING
DERATING
DERATE
FACTOR
ABOVE TA
D
300mW
N/A
N/A
300 mW
N/A
300mW
11.0 mW/oC
123°C
300mW
275 mW
JG luA709_M)
300mW
8.4 mW/oC
114°C
300 mW
210 mW
JG (uA709C)
300mW
N/A
300 mW
N/A
P
300mW
U
W
N/A
N/A
300 mW
N/A
300mW
N/A
5.4 mWjOC
94°C
300 mW
135 mW
300mW
8.0 mW/oC
113°C
300 mW
200 mW
PARAMETER
110
25°C
'i
ro
CMRA
ICC
Po
TYP*
1
2
= 0,
RS
= 5011
Full range
1.8
10
3
offset voltage
Vo
= 0,
RS
=
Full range
4.8
25
6
Input offset current
Vo
=0
coefficient of input
Input bias current
input voltage range
output voltage swing
Full range
3
MAX
5
6
10 kll
=
VCC±
±15 V
VCC±
=
±15 V,
RL '" 10 kll
VCC±
=
=
=
±15 V,
AL
±15 V,
RL '" 2 kO
Vo
=
= 2 kll
±15V, RL '" 2 kll,
50
100
500
125°C
3.5
50
20
200
Vo
= 0,
=
VIC
VCC
See Note 5
VICA min
=
0.45
2.8
25°C to 125°C
0.08
0.5
25°C
0.1
0 ..2
0.2
0.5
-55°C
0.3
0.6
0.5
1.5
25°C
±8
Full range
±8
25°C
24
Full range
24
25°C
20
Full range
20
25°C
=
=0
±15 V,
=
±15 V,
VCC±
=0
±10
No load,
±10
nA
24
28
24
26
20
45
70
25
70
350
750
150
400
85
185
40
100
150
25°C
80
Full range
80
V
26
20
25
25°C
~A
V
±8
28
70
(l
90
dB
70
40
100
25
100
25°C
2.5
3.6
-55°C
2.7
4.5
125°C
2.1
3
25°C
75
108
-55°C
81
135
125°C
63
90
150
150
2.6
V/mV
kO
150
110
Full range
No load,
±8
45
25°C
±9 Vto ±15 V
VCC±
Vo
200
-55°C to 25°C
25°C
Vo
Total power dissipation
50
250
-55°C
Common-mode
Supply current
10
40
Full range
±10 V
Input resistance
I~VIO/~VCC)
mV
nA/oC
=0
Vo
voltage amplification
rejection ratio
25°C
-55°C
=0
Vo
VCC±
Output resistance
UNIT
~V/oC
Large-signal differential
Power supply sensitivity
kSVS
MIN
Vo
VCC±
AVO
0.6
uA709M
MAX
coefficient of input
Maximum peak-to-peak
VOpp
TYP*
RS s 10 kll
Common~mode
VICR
MIN
=0
offset current
liB
uA709AM
TEST CONDITIONSt
Average temperature
"'110
... ± 9 V to ± 15 V (unless otherwise
Vo
Input offset voltage
Average temperature
"'VIO
TA - 125°C
POWER RATING
J (uA709_M)
electrical characteristics at specified free-air temperature, Vee ±
noted)
VIO
TA - 70°C
POWER RATING
~V/V
5.5
mA
78
165
mW
t All characteristics are specified under open-loop with zero common-mode input voltage unless otherwise specified. Full range for uA709AM
and uA 709M is - 55°C to 125°C.
t All typical values are at V CC ± = ± 1 5 V.
NOTE 5: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-1303
uA709AM, uA709M, uA709C
GENERAL-PURPOSE OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature (unless otherwise noted V CC ±
TEST CONDITIONSt
PARAMETER
Via
Input offset voltage
VCC± = ±9Vto ±15V,VO = 0
110
Input offset current
VCC± = ±g V to ±15 V, Va = 0
liB
Input bias current
VCC± = ±9 V to ±15V,VO=0
VICR
Common-mode input voltage range
VOpp
MIN
25°C
Maximum peak-to-peak
AVD
ri
voltage amplification
kSVS Supply voltage sensitivity
Total power dissipation
1.5
0.3
2
25°C
±8
±10
24
28
Full range
24
25°C
20
Full range
20
25°C
15
Full range
12
25°C
50
Full range
35
See Note 5
25°C
25°C
No load
Va = 0,
500
750
25°C
VIC = VICR min
VCC = ±9Vto±15V
PD
100
25°C
Va = ± 10 V
Va = 0,
7.5
Full range
Input resistance
Output resistance
ro
CMRR Common-mode rejection ratio
2
10
25°C
RL ;,: 2 kg
RL :5 2 kg,
MAX
Full range
RL = 2 kg
Large-signal differential
TYP
Full range
RL ;,: 10 kg
output voltage swing
± 15 VI
uA709C
65
UNIT
mV
nA
~A
V
V
26
45
V/mV
250
kg
150
g
90
dB
25°C
25
200
~V/V
25°C
80
200
mW
t All characteristics are specified under open-loop operation with zero volts common-mode voltage unless otherwise specified. Full range
for uA 709C is O°C to 70°C.
NOTE 5: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.
operating characteristics VCC± =
±9 V to ± 15 V. TA = 25°C
uA709AM
PARAMETER
uA709M
TEST CONDITIONS
MIN
tr
Rise time
Overshoot factor
VI = 20 mY,
RL = 2 kg,
UNIT
uA709C
See Figure 1
II CL
CL
= 0
= 100 pF
TYP
MAX
0.3
1
6%
30%
PARAMETER MEASUREMENT INFORMATION
10
kn
200 pF
OUTPUT
50n
OUTPUT
INPUT
INPUT VOLTAGE
WAVEFOflM
FIGURE 1. RISE TIME AND SLEW RATE
TEXAS •
INSTRUMENTS
2-1304
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
~s
uA741C, uA741I, uA741M
GENERAL-PURPOSE OPERATIONAL AMPLIFIERS
•
•
•
•
•
•
•
Short-Circuit Protection
uA741M ... J PACKAGE
(TOP VIEW)
Offset-Voltage Null Capability
NC
NC
OFFSET N1
ININ+
VccNC
Large Common-Mode and Differential
Voltage Ranges
No Frequency Compensation Required
Low Power Consumption
No Latch-Up
Designed to Be Interchangeable With
Fairchild ftA741
NC
NC
NC
Vcc+
OUT
OFFSET N2
NC
7
uA741M •.. JG PACKAGE
uA741C, uA741 I ... 0 OR P PACKAGE
(TOP VIEW)
description
The uA741 is a general-purpose operational
amplifier featuring offset-voltage null capability.
The high common-mode input voltage range and
the absence of latch-up make the amplifier ideal
for voltage-follower applications. The device is
short-circuit protected and the internal frequency
compensation ensures stability without external
components. A low potentiometer may be
connected between the offset null inputs to null out
the offset voltage as shown in Figure 2.
The uA741e is characterized for operation from
ooe to 70 oe. The uA741 I is characterized for
operation from -40 oe to 85°e.The uA741 M is
characterized for operation over the full military
temperature range of -55°e to 125°e.
OFFSET N1 ( ] 8 NC
IN- 2
7 Vcc+
IN+ 3
6 OUT
Vcc- 4
5 OFFSET N2
uA741M •.• U FLAT PACKAGE
(TOP VIEW)
NC
NC
NC
OFFSET N1
ININ+
Vcc+
OUT
OFFSET N2
Vcc-
uA741M •.. FK PACKAGE
(TOP VIEW)
symbol
Z
tu
(/)
LL
OLLOOO
zozzz
NC
INNC
IN+
NC
3 2 1 2019
18
17
16
15
14
8
9 10 11 12 13
4
5
6
7
0
Z
NC
Vcc+
NC
OUT
NC
0 C\J 0
0 zzz
~
tu
(/)
LL
LL
0
NC-No internal connection
PRODucnON DATA Information is currenl as of publication date.
Products conform to specifications per the terms 01 Texas Instruments
standard warranty. Production processing does not necessarily
Include testing of all parameters.
Copyright © 1992, Texas Instruments Incorporated
TEXAS ."
INSIRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-1305
uA741C, uA741I, uA741M
GENERAL·PURPOSE OPERATIONAL AMPLIFIERS
AVAILABLE OPTIONS
PACKAGE
TA
SMALL OUTLINE
(D)
O°C to 70°C
uA741CD
-40°C to 85°C
uA7411D
CHIP CARRIER
(FK)
-55°C to 125°C
The D package
IS
CERAMIC DIP
(J)
CERAMIC DIP
(JG)
PLASTIC DIP
(P)
FLAT PACK
(U)
uA741CP
uA7411P
uA741MFK
uA741MJ
uA741MU
uA741MJG
available taped and reeled. Add the suffix R (e.g., uA741 CDR).
schematic
r---------~~----~~----------------~~- VCC+
IN -
----------t----+----,
OUT
IN+
Component Count
Transistors 22
Resistors - 11
Diode
-1
Capacitor - 1
OFFSETN1
OFFSETN2
L--+----~--+-----~------~----~~----+---VCC-
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
uA741C
uA741 I
uA741M
Supply voltage VCC+ (see Note 1)
18
22
22
UNIT
V
Supply voltage VCC- (see Note 1)
-18
-22
-22
V
Differential input voltage (see Note 2)
±15
±30
±30
V
Input voltage any input (see Notes 1 and 3)
±15
±15
±15
V
Voltage between either offset null terminal (N1/N2) and VCC-
±15
",0.5
±0.5
V
unlimited
unlimited
unlimited
Duration of output short circuit (see Note 4)
See Dissipation Rating Table
Continuous total power dissipation
Operating free-air temperature range
Storage temperature range
Case temperature for 60 seconds
FKpackage
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds
J, JG, or U package
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds
D or P package
NOTES: 1.
2.
3.
4.
Oto 70
-401085
-55to 125
-65 to 150
-65 to 150
-65 to 150
°C
260
°C
260
°C
°C
All voltage values, unless otherwise noted, are With respect to the midpoint between VCC+ and VCe-.
Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
The output may be shorted to ground or either power supply. For the uA741 M only, the unlimited duration of the short circuit applies
at (or below) 125°C case temperature or 75°C free-air temperature.
TEXAS .."
INSlRUMENTS
2-1306
300
260
°c
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
uA741C, uA741I, uA741M
GENERAL·PURPOSE OPERATIONAL AMPLIFIERS
DISSIPATION RATING TABLE
PACKAGE
TA" 25'C
POWER RATING
DERATING
FACTOR
DERATE
ABOVETA
105'C
90'C
D
500mW
FK
500mW
J
JG
500mW
5.8mWrC
11.0mWrC
11.0mWrC
500mW
8.4 mW/oC
P
500mW
U
500mW
=
=
=
TA 70'C
POWER RATING
TA 85'C
POWER RATING
64°C
464mW
377mW
N/A
105'C
500mW
500mW
275mW
500mW
500mW
275mW
500mW
500mW
210mW
N/A
500mW
500mW
N/A
57'C
432mW
351 mW
135mW
N/A
5.4 mwrc
TA 125'C
POWER RATING
electrical characteristics at specified free-air temperature, Vcc± = ±15 V
PARAMETER
TEST
VIO
Input offset voltage
VO=O
AVIO(adj)
Offset voltage adjust range
Vo =0
110
liB
Input offset curent
VO=O
Input bias current
Vo =0
YOM
AVD
25'C
±15
25'C
20
25'C
80
Full range
25'C
±12
Full range
±12
±12
±12
voltage swing
RL = 2 kQ
25'C
±10
±10
RL" 2 kQ
Full range
Large-signal differential
RL" 2 kQ
25'C
20
voltage amplification
VO=±10V
Full range
15
25'C
0.3
Vo =0,
See Note 5
25'C
Common-mode rejection ratio
Supply voltage sensitivity
(!NIO/!:NCC)
ICC
Supply current
No load, Vo = 0
PD
Total power dissipation
No load, Vo = 0
±15
200
20
80
Full range
70
mV
200
500
1500
±12
±13
±12
±14
±10
±13
V
±13
±10
200
50
200
V/mV
25
2
0.3
90
70
MQ
2
75
Q
1.4
pF
90
dB
70
30
150
30
150
150
±25
±40
±25
±40
1.7
2.8
1.7
2.8
Full range
3.3
50
85
100
",VN
150
25'C
25°C
nA
±12
25'C
Full range
nA
V
±12
±14
mV
500
500
±13
Full range
Short-circuit output current
..
70
25'C
VCC=±9Vto
±15V
5
6
1.4
25'C
UNIT
MAX
1
6
75
25'C
VIC = VICR min
TYP
800
25'C
Input capacitance
MIN
300
Full range
Ci
lOS
25'C
RL = 10 kQ
ro
UA7411, UA741M
MAX
7.5
RL" 10 kQ
Input resistance
kSVS
1
Maximum peak output
Output resistance
TYP
Full range
. voltage range
'i
CMRR
MIN
Full range
Common-mode input
VICR
UA741C
TAt
CONDITIONS
3.3
50
85
mA
mA
mW
100
t All characteristics are measured under open-loop conditions With zero common-mode Input voltage unless otherwise specified.
Full range for
the uA741C is O'C to 70'C, the uA741 I is-40°Cto 85°C, and the uA741M is-55°C to 125'C.
NOTE 5: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.
TEXAS ~
INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-1307
uA741C, uA7411, uA741M
GENERAL·PURPOSE OPERATIONAL AMPLIFIERS
operating characteristics, VCC:!:
PARAMETER
tr
SR
= ±15 V, TA = 25°C
uA741C
TEST CONDITIONS
MIN
TYP
uA7411, uA741M
MAX
MIN
VI = 20mV,
RL=2kQ,
0.3
0.3
Overshoot factor
CL = 100 pF,
See Figure 1
5%
5%
Slew rate at unity gain
VI = 10 V,
CL = 100 pF,
RV 2kQ,
See Figure 1
0.5
0.5
PARAMETER MEASUREMENT INFORMATION
Output
INPUT VOLTAGE
WAVEFORM
TEST CIRCUIT
Figure 1. Rise Time, Overshoot, and Slew Rate
APPLICATION INFORMATION
N2
ToVCC_
Figure 2. Input Offset Voltage Null Circuit
TEXAS ~
INSlRUMEN1S
2-1308
TYP
Rise time
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
MAX
UNIT
I'S
VII's
uA741C, uA741I, uA741M
GENERAL·PURPOSE OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
INPUT OFFSET CURRENT
INPUT BIAS CURRENT
vs
vs
FREE-AIR TEMPERATURE
FREE-AIR TEMPERATURE
400
100
90
1
.,
'"
~
;g
S
,e.
VCC~ = 11SV
±13 - VCC- =-1S V
TA = 2S0C
±12
"
.,'"
±10
E
±8
I
±9
I
/
±7
1
±6
~
±S
:;;
/"
I
D-
"E
'x
:;;
'"
~:,...
±11
0
:I!.
.....
I
±4
0.1
II
/
0.2
0.4
0.7 1
2
4
7
10
RL - Load Resistance - kQ
Figure 5
t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TEXAS
.JJ1
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-1309
uA741C, uA741I, uA741M
GENERAL-PURPOSE OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
OPEN·LOOP SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
MAXIMUM PEAK OUTPUT VOLTAGE
±20
>
..
I
C1
!!!
;g
:;
Co
:;
Jeb~ I~ li~ V
.
a..'"
E
::l
E
vs
SUPPLY VOLTAGE
>
.g
I.
>
±18 I- Vec_=-15V
RL=10kQ
±16 I- TA = 25°e
I
g
~
±14
±6
I
±4
::;;'"
::;;
-?
- vcJ = ±110V
RL=2 kQ
200 _ TA = 25°e
V
V
./
~
k'" V
14
16
L
!'l
iii
,.....
/'
/
40
/
~
~
f\
~
c
20
I
±2
.........
0
1k
10 k
100 k
J
~
10
1M
o
2
4
f - Frequency - Hz
6
8
10
12
Vee ± - Supply Voltage - V
Figure 6
Figure 7
OPEN·LOOP LARGE·SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
FREQUENCY
107~rTTM~-T~~~~~~~~~
l~g~+=11~JII
106 1--+-+++++ItI-"'-+-+++H+tl---++ VCC- = -15 V
Vo =±10V
RL=2 kQ
TA = 25°C
104 1--If-+1H+fl'l<-,,-t-+H++tIt--+-t+tfflIl--I-t-t-tttttl
102 1--If-+1H+HtI---t-+++H1'It,,--+-t+tfflIl--t-t-t-tttttl
f - Frequency - Hz
Figure 8
TEXAS ~
INSTRUMENTS
2-1310
I
100
~
\
±8
·x
~
\
±10
400
ii
~
±12
0
".
vs
FREQUENCY
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
18
20
uA741C, uA741I, uA741M
GENERAL·PURPOSE OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
ELAPSED TIME
100
III
"0
I
o
~
a:
c
o
g
'a;
a:
CD
90
'\
80
~~~~ = 115 ~ 11
28
VCC_=-15V
BS = 10 kQ
TA=25"C
24
C
o
E
E
40
Ol
\.
\
a:
a:
:::iii
o
'"
~
12
\.
1\
~
8
L:
0
I
I
30
4
0
>
20
10%
0
~
I
I
I
I
I
10
o
-
I:
'5
o
I
16
CD
60
50
90%1
E
I
'8
f....
20
>
70
:::iii
o
OUTPUT VOLTAGE
vs
tr
-4
1
100
10 k
1M
o
100M
VCC+ = 15 V
VCC-=-15V RL= 2 kQ
CL=100pF TA = 25"C
I'
1.5
0.5
1
2
2.5
t-Time-!-,s
f - Frequency - Hz
Figure 10
Figure 9
VOLTAGE-FOLLOWER
LARGE-SIGNAL PULSE RESPONSE
8
6
>
.
4
'"
~
2
I
-
'5
Q,
'5
c
0
-2
'"
'5
Q,
.5 -4
1\
Vo
I
I
L
/
0
"0
~
I
/
Ol
VCC+ = 15V
VCC_=-15V
RL=2 kQ
CL= 100 pF
TA = 25"C
I
I
VI
I
-
1\
\
\
\
L I-
-6
-8
o
10
20
30
40
50
60
70
80
90
t-Tlme-!-'s
Figure 11
TEXAS
~
INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-1311
uA747C, uA747M
DUAL GENERAL·PURPOSE OPERATIONAL AMPLIFIERS
0971, FEBRUARY 1971 -REVISED OCTOBER 1990
•
No Frequency Compensation Required
•
Low Power Consumption
•
Short· Circuit Protection
•
Offset-Voltage Null Capability
•
Wide Common· Mode and Differential
Voltage Ranges
•
No Latch-Up
•
Designed to be Interchangeable with
Fairchild p.A747M and p.A747C
0, J, N, OR W PACKAGE
(TOP VIEW)
IN-
OFFSET 1 N1
IN+
OFFSET 1N2
1 VCC+ t
OUT
NC
OUT
2 VCC + t
OFFSET 2N1
VCCOFFSET 2N2
IN+
IN-
uA747M ... FK PACKAGE
(TOP VIEW)
description
2
The uA 7 4 7 is a dual general-purpose operational
amplifier featuring offset-voltage null capability.
Each half is electrically similar to uA 7 41.
~
IUJ
en
u.
+ I Uu.
~ ~ 20
The high common-mode input voltage range and
the absence of latch-up make this amplifier ideal
for voltage-follower applications. The device is
short-circuit protected and the internal frequency
compensation ensures stability without external
components. A low-value potentiometer may be
connected between the offset null inputs to null
out the offset voltage as shown in Figure 2.
=1rtN1
4
18
5
17
6
16
OUT
NC
NC
NC
OUT
14
8
9 1011 12 13
+
I U
~ ~
2
2
+
I-
U
U
N
>
en
u. N
UJ
u.
0
symbol (each amplifier)
INVERTING
INPUT IN-
>
15
OFFSET 2N2
The uA747C is characterized for operation from
OOC to 70°C; the uA747M is characterized for
operation over the full military temperature range
of -55°C to 125°C.
NONINVERTING
INPUT IN +
+
U
U
2019
2
OFFSET 1N2
+-
NC - No internal connection
tThe two positive supply terminals (1 VCC + and 2 VCC +) are
connected together internally.
OUTPUT
N2
AVAILABLE OPTIONS
PACKAGE
TA
VIO MAX
AT 25°C
20-PIN
14-PIN
PLASTIC DIP
FLAT PACK
CHIP CARRIER
(O)
CERAMIC DIP
(J)
(N)
{WI
(FK)
6 mV
uA747CD
-
uA747CN
-
-
5 mV
-
uA747MJ
-
uA747MW
uA747MFK
SMALL OUTLINE
O°C
to
70°C
-55°C
to
125°C
The 0 package is available taped and reeled. Add the suffix R to the device type, (i.e., uA747CDR).
PRODUCTION DATA documents contain informetion
current as of publication date. Products conform to
specifications per the terms of Texes Instruments
standard warranty. Production procassing doas not
necessarily include tasting of an paremoters.
Copyright © 1990, Texas Instruments Incorporated
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
On products compliant to MIL-STD-883, Cla"s B. all parameters art tasted
unless otherwise noted. On all other products. production processing does
not necessarily include testiltff of all paramaters.
2-1313
uA747C, uA747M
DUAL GENERAL-PURPOSE OPERATIONAL AMPLIFIERS
schematic (each amplifier)
r---------------~------~---------------.---VCC+
INVERTING
INPUT (IN-)
NONINVERTING
INPUT (IN+)
OFFSET NULL
(N2)
OUTPUT
_-++--____+-____+_,
OFFSET NULL
(N1)
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
uA747C
uA747M
UNIT
Supply voltage, Vee + (see Note 1)
1B
22
V
Supply voltage, Vee _ (see Note 1)
-1B
-22
V
Differential input voltage (see Note 2)
±30
±30
V
Input voltage any input Isee Notes 1 and 3)
±15
±15
V
Voltage between any offset null terminal (N1/N2) and Vee-
±0.5
±0.5
V
unlimited
unlimited
Duration of output short-circuit (see Note 4)
eontinuous total dissipation
See Dissipation Rating Table
o to
Operating free-air temperature range
70
-65 to 150
Storage temperature range
- 55 to 125
°e
-65 to 150
°e
Case temperature for 60 seconds
FK package
260
°e
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds
J or W package
300
°e
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds
D or N package
NOTES: 1.
2.
3.
4.
260
°C
All voltage values, unless otherwise noted, are with respect to the midpoint between Vee + and Vee _.
Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
The output may be shorted to ground or either power supply. For the uA747M only, the unlimited duration of the short-circuit
applies at (or below) 125°e case temperature or 75°e free-air temperature.
DISSIPATION RATING TABLE
PACKAGE
TA'" 25°C
POWER RATING
DERATING
DERATE
FACTOR
ABOVE TA
e
TA - 70 0
POWER RATING
D
BOO mW
7.6 mW/oe
45°C
FK
BOOmW
11.0 mW/oe
J
BOOmW
11.0 mW/oe
noe
noe
N
BOOmW
9.2 mw/oe
63°e
736 mW
W
BOOmW
B.O mw/oe
50 0 e
640 mW
TEXAS
60B mW
BOOmW
275 mW
BOOmW
275 mW
~
INSTRUMENTS
2-1314
TA - 125°C
POWER RATING
POST OFFICE BOX 655303 - DALLAS. TEXAS 75265
200 mW
uA747C, uA747M
DUAL GENERAL·PURPOSE OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature. Vee +
Input offset voltage
VIO
~
Va
0
Input offset current
liB
Input bias current
~
RL ., 10 k!l
output voltage swing
RL
~
Large-signal differential
RL ., 2 k!l,
voltage amplification
VO~±10V
Input resistance
Output resistance
Ci
Input capacitance
Common-mode
CMRR
rejection ratio
VIC ~ VICR
~
25°C
24
24
25°C
20
Full range
20
25°C
25
Full range
15
25°C
0.3"
(each amplifier)
Po
Va 1IV02
5
6
±15
200
20
80
±13
500
1500
±12
±13
24
20
V
26
20
50
200
200
V/mV
25
0.3
2
2
MO
75
75
!l
25°C
1.4
1.4
pF
25°C
70
70
90
70
gO
d8
70
30
150
30
150
pVIV
± 9 V to ± 15 V
Full range
No load
nA
28
24
26
nA
V
±12
28
mV
mV
200
500
500
UNIT
25°C
Full range
output current
ICC
MAX
1
800
Full range
Short-circuit
Supply current
80
25°C
VCC
TYP
300
±12
See Note 6
(Il.VIO/Il.VCC)
lOS
20
±12
Supply voltage
sensitivity
kSVS
±15
25°C
25°C
2 k!l
RL ., 2 k!l
r;
25°C
Full range
10 k!l
Maximum peak-to-peak
ro
6
MIN
7.5
25°C
RL
AVO
1
Full range
input voltage range
VOpp
MAX
Full range
Common-mode
VICR
uA747M
TYP
Full range
adjust range
110
MIN
25°C
Offset voltage
Il.VIO(adj)
uA747C
TEST CONOITIONSt
PARAMETER
-15 V
15 V. Vee-
150
25°C
±25
±40
±25
±40
25°C
1.7
2.8
1.7
2.8
3.3
Full range
Power dissipation
No load,
25°C
(each amplifier)
Vo ~ 0
Full range
Channel separation
150
50
25°C
3.3
85
50
100
85
100
120
120
0
mA
mA
mW
dB
t All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range
for uA747C is ooC to 70°C and for uA747M is -55°C to 125°C.
"On products compliant to MIL-STD-883, Class B, this parameter is not production tested.
NOTE 6: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.
operating characteristics. Vee + = 15 V. Vee _ = -15 V. TA = 25 °e
PARAMETER
tr
Rise time
Overshoot factor
SR
Slew rate at unity gain
TEST CONDITIONS
VI
CL
~
~
RL
100 pF,
See Figure 1
VI~10V,
CL
~
~
20 mY,
100 pF,
RL
~
2 k!l,
2 k!l,
See Figure 1
MIN
TYP
0.3
MAX
UNIT
"s
5%
0.5
V/,.s
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-1315
uA747C, uA747M
DUAL GENERAL·PURPOSE OPERATIONAL AMPL1FIERS
PARAMETER MEASUREMENT INFORMATION
>--*-.--fo) OUTPUT
INPUT
INPUT VOLTAGE
WAVEFORM
CL = 100 pF
TEST CIRCUIT
FIGURE 1. RISE TIME. OVERSHOOT. AND SLEW RATE
TYPICAL APPLICATION DATA
TO VCC-
FIGURE 2. INPUT OFFSET VOLTAGE NULL CIRCUIT
TYPICAL CHARACTERISTICS
INPUT OFFSET CURRENT
vs
FREE-AIR TEMPERATURE
100
28
~
~
26
vs
vs
LOAD RESISTANCE
FREQUENCY
~ 24
...
S-
22
~'"
20
";
18
.
co
I
.
'"
:ifu
~
~
'0
:/
1I
.
40
11111
VCC+ = 15 V
VCC- = -15 V
RL = 10 k!1
TA = 25°C
36
>
:;
32
;-
28
o
V
16
co
24
$
20
co
16
'"
12
~
\
\
.,;,
c..
'"
E
I
E 14
E
I
,f,
c..
'xco
.
~
J:l
~
>
....... f.--" i""'!--
Vcc+ = 15 V
VCC- = -15 V
TA = 25°C
I
/
12
.§
x
co
8
:a;
I
10
/
8
0,1
c..
c..
4
>
o
o
0,2
0.4 0,7
2
4
~
100
7 10
1k
FIGURE 6
FIGURE 5
OPEN-LOOP LARGE-SIGNAL
DIFFERENTIAL
VOLTAGE AMPLIFICATION
E
,,g
OPEN-LOOP LARGE-SIGNAL
DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
vs
SUPPLY VOLTAGE
FREQUENCY
400
107
= 2 k!1
TA = 25°C
">I
c
200
"
~
a.
/'
E 100
.'"
V
V
V
V
,/"
"iii
V
c
.
Ci
..
104
>
10 3
...'"co
'0
~
"'"
"iii
'';:::
/
c
..
~
....
....
102
Ci 10 1
I
20
Cl
>
I
'"
~
~
Cl
~
105
~
~
:::
106
a.
E
/
'';:::
co
"
./
40
0
'';:::
~
~
J!!
Vcc+ = 15 V
VCC- = -15 V
RL = 2 k!1
TA = 25°C
c
RL
co
~
10
1M
f-Frequency-Hz
RL -Load Resistance-k!1
>
't--.
100 k
10 k
o
2
4
6
10- 1
8
10
12
14
16
18 20
1
10
IVcc±I-Supply Voltage- V
100
'"
\
1 k 10 k 100 k 1 M 10 M 100 M
f-Frequency-Hz
FIGURE 7
FIGURE 8
TEXAS ""
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-1317
uA747C, uA747M
DUAL GENERAL·PURPOSE OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
100
~
c
90
o
70
';;;
60
..
50
.~
a::
~C:
'\,
80
1\
30
I
20
::.E
(.)
20
>
.
...
\
90%1
I
en
16
'"
'0
I\.
\
,.
S,.
1\
8
0
I
\
L
1:
12
>...
(.)
a::
a::
24
E
40
o
E
E
o
28
vcd+= 1~V
VCC- = -15 V
RS = 50Q
TA = 25°C
£Xl
i'
.g
OUTPUT VOLTAGE
vs
ELAPSED TIME
~
/
4
10%V
o
.......... ',
-4
1
10
100
1k
20 k
I
I
I
0
10
Vcc+=15V
Vcc- = -15 V
RL = 2 kQ
CL=100pF
TA = 25°C
I
I
I
o
100 k 1 M 10 M 100 M
1
0,5
f-Frequency-Hz
t-Time-lls
FIGURE 9
FIGURE 10
VOLTAGE-FOLLOWER
LARGE-SIGNAL PULSE RESPONSE
8
6
>I
.
...
en
'"
'0
>...
,.
...,.c.
- 11
4
c
...,.'"
-2
.=
-4
c.
~
I
I
/
0
Vcc+= 15 V
VCC-= -15 V
RL =2 kQ
CL = 100 pF
TA = 25°C
:\
I
"OUTPUT
2
I
I~PUT
II
0
"0
1\
\
:
I
I
I
11
- - _\
L
~
-6
-8
o
10
20
30
40
50
60
70 80
t-Time-lls
FIGURE 11
TEXAS
~
INSTRUMENTS
2-1318
1,5
POST OFFICE BOX 655303 ' DALLAS, TEXAS 75265
90
2
2,5
uA748C, uA748M
GENERAL·PURPOSE OPERATIONAL AMPLIFIERS
0921, DECEMBER 1970-REVISED OCTOBER 1990
uA748C ... 0 OR P PACKAGE
uA748M ... JG PACKAGE
•
Frequency and Transient Response
Characteristics Adjustable
•
Short-Circuit Protection
•
Offset-Voltage Null Capability
•
Wide Common-Mode and Differential
Voltage Ranges
•
Low Power Consumption
•
No Latch-Up
•
Same Pin Assignments as uA709
(TOP VIEW)
Nl/COMP[]8
IN2
7
IN+
3
6
VCC 4
5
CaMP
VCC+
OUT
N2
uA748M ... U FLAT PACKAGE
(TOP VIEW)
NC
Nl(COMP
ININ+
VCC-
description
The uA748 is a general-purpose operational
amplifier that offers the same advantages and
attractive features as the uA 7 41 except for
internal compensation. External compensation
can be as simple as a 30-pF capacitor for unitygain conditions and, when the closed-loop gain
is greater than one, can be changed to obtain
wider bandwidth or higher slew rate. This circuit
features high gain, large differential and
common-mode input voltage range, and output
short-circuit protection. Input offset voltage
adjustment can be provided by connecting a
variable resistor between the offset null pins as
shown in Figure 12,
NC
CaMP
- " "_ _r"
VCC+
OUT
N2
NC - No internal connection
symbol
COMP
Nl/COMP
N2
NON INVERTING
INPUT IN+
OUTPUT
INVERTING
INPUT IN-
The uA 7 48C is characterized for operation from
OOC to 70°C; the uA748M is characterized for
operation over the full military temperature range
of -55°C to 125°C.
AVAILABLE OPTIONS
PACKAGE
TA
8-PIN
VIO MAX
lO-PIN
SMALL OUTLINE
(D)
CERAMIC DIP
(JG)
PLASTIC DIP
(P)
FlAT PACK
6 mV
uA748CD
-
uA748CP
-
5 mV
-
uA748MJG
-
uA748MU
AT 25°C
(U)
O°C
to
70°C
-55°C
to
125°C
The D package is available taped and reeled. Add the suffix R to the device type, (e.g., uA748CDR).
PRODUCTION DATA documants contain information
currant as of publication data. Products conform to
spacifications par tha tarms of Taxas Instrumants
standard warranty. Production procassing doas not
nace••arily includa tasting of aU parameters.
~
Copyright © 1990, Texas Instruments Incorporated
TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-1319
uA748C. uA748M
GENERAL·PURPOSE OPERATIONAL AMPLIFIERS
schematic
COMP
INVERTING
--~------r~~~~~~~~~----~------~-'--~~--------------'- VCC+
INPUT IN-
NONINVERTING
INPUT IN+
OUTPUT
34
n
OFFSET
NULL
N2
OFFSET
NULL Nl/COMP
Resistor values shown are nominal.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
uA748C
uA748M
UNIT
Supply voltage Vee + (see Note 1)
18
22
V
Supply voltage Vee _ (see Note 1)
-18
-22
V
Differential input voltage (see Note 2)
±30
±30
V
Input voltage (either input, see Notes 1 and 3)
±15
±15
V
Voltage range between either offset null terminal (Nl/N2) and Vee-
-0.5 to 2
-0.5 to 2
V
Duration of output short-circuit (see Note 4)
unlimited
unlimited
eontinuous total power dissipation
See Dissipation Rating Table
o to
Operating free-air temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds
NOTES:
1.
2.
3.
4.
70
-65 to 150
I
I
JG or U package
D or P package
- 55 to 125
°e
- 65 to 150
°e
300
°e
260
°e
All. voltage values, unless otherwise noted, are with respect to the midpoint between Vee + and Vee _.
Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
The output may be shorted to ground or either power supply. For the uA 748M only, the unlimited duration of the short-circuit
applies at (or below) 125°e case temperature or 75°e free-air temperature.
DISSIPATION RATING TA8LE
PACKAGE
TA " 25°C
POWER RATING
DERATING
DERATE
TA = 70°C
TA = 125°C
FACTOR
ABOVE TA
POWER RATING
POWER RATING
5.8 mW/oe
8.4 mW/oe
64°e
464mW
N/A
90 0 e
500 mW
210mW
D
500 mW
JG
500mW
P
500 mW
N/A
N/A
500 mW
N/A
U
500 mW
5.4 mW/oe
57°e
432 mW
135 mW
TEXAS . .
INSTRUMENTS
2-1320
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
uA748C, uA748M
GENERAL-PURPOSE OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Vee +
ee = 30 pF
Via
Input offset voltage
Va = 0
110
Input offset current
Va = 0
liB
Input bias current
Va = 0
VOM
output voltage swing
Large-signal differential
AVD
ri
voltage amplification
Output resistance
Ci
Input capacitance
CMRR
kSVS
PD
SO
25°C
±12
±12
RL = 10 kll
25°C
±12
RL '" 10 kll
RL = 2 kll
Full range
±12
25°C
±10
RL '" 2 kll
Full range
±10
25°C
20
Full range
15
25°C
0.3
rejection ratio
Va = 0
Supply voltage
VCC = ± 9 V to ± 15 V,
200
20
70
Full range
70
5
200
500
500
SO
500
1500
±12
±13
±14
±12
±10
nA
nA
V
±13
±10
50
200
200
VlmV
25
2
0.3
2
Mil
Il
75
1.4
70
90
pF
90
dB
70
25°C
30
150
30
150
sensitivity
p.V/V
Full range
Va = 0
150
150
25°C
±25
±40
±25
±40
No load,
25°C
1.7
2.S
1.7
2.8
output current
Supply current
mV
±14
±12
±13
UNIT
V
±12
1.4
25°C
MAX
6
75
25°C
VIC = VICR min,
1
6
±13
25°C
See Note 5
TYP
SOO
Full range
Va = O.
MIN
300
25°C
Short-circuit
ICC
20
Full range
RL '" 2 kll,
Va = ±10 V
uA74SM
MAX
7.5
25°C
Common-mode
(~Vlo/~Vccl
lOS
1
Full range
Input resistance
ro
TYP
25°C
input voltage range
Maximum peak
MIN
Full range
Common-mode
VICR
uA74SC
TEST CONDITIONS t
PARAMETER
-15 V,
15 V, Vee-
Va = 0
Full range
Total power
No load,
25°C
dissipation
Va = 0
Full range
3.3
50
3.3
85
50
100
85
100
mA
mA
mW
t All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range
for uA748C is O°C to 70°C and for uA748M is -55°C to 125°C.
NOTE 5: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.
operating characteristics, Vee+
PARAMETER
tr
Rise time
Overshoot factor
SR
Slew rate at unity gain
= 15 V, Vee- = -15 V, TA = 25°e
TEST CONDITIONS
VI = 20 mV,
RL = 2 kll,
CL = 100 pF,
Cc = 30 pF,
MIN
TYP
0.3
MAX
UNIT
p.s
5%
See Figure 1
VI=10V,
RL = 2 kll,
CL = 100 pF,
Cc = 30 pF,
0.5
V/p.s
See Figure 1
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2-1321
uA748C, uA748M
GENERAL·PURPOSE OPERATIONAL AMPLIFIERS
PARAMETER MEASUREMENT INFORMATION
N2 (OPEN)
I
VI
OUTPUT
~---OV
CC-30pF
INPUT VOLTAGE
WAVEFORM
TEST CIRCUIT
FIGURE 1. RISE TIME. OVERSHOOT. AND SLEW RATE
TYPICAL CHARACTERISTICS
INPUT OFFSET CURRENT
vs
FREE-AIR TEMPERATURE
FREE·AIR TEMPERATURE
100
...
s-'"
0'"
.:.:
."
'"
'x
."
:2
I
:2
0
>
~ I-
>
I
...
"0
J
±10
/
±8
±7
/
±6
±14
~
±10
E
'"
'"
E
±8
'x
'"
~
±6
~
'" ±12
So'"
V
±9
±18
>
...
\
\
0..
/
~
±4
:2
~ ±2
±5
1-
±4
0.1
0.4
0.7 1
4
2
7 10
f-Frequency-Hz
. FIGURE 5
OPEN-LOOP LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
OPEN·LOOP LARGE·SIGNAL 01 FFERENTIAL
VOLTAGE AMPLIFICATION
vs
, vs
FREQUENCY
SUPPLY VOLTAGE
107
400
RL = 2 kU
TA = 25°C
3;
I
/""
§ 200
.~
;~
:!:
0.
E
/'
100
iO
.;;
/"
/""
c,)
5
0. 10
E
C
c:
~
V
'"
:I:
C
I
20
104
~
103
~
10 2
~
10 1
~
C
>
I
C
>
V
II
VCC+=15V
VCC- = -15 V
RL=10Hl
Cc = 30 pF
TA = 25°C
'"g> ±16
1/
±11
0..
E
'E"
-,rrnrr
±20
±14
>I
12
14
16
18
20
10
100
IVcc±I-Supply Voltage-V
1k
r\
10 k 100 k 1 M 10 M 100 M
f-·Frequency-Hz
FIGURE 6
FIGURE 7
TEXAS •
INSTRUMENlS
POST OFFICE BOX 655303 • OALLAS. TEXAS 75265
2-1323
uA748C. uA748M
GENERAL·PURPOSE OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
OUTPUT VOLTAGE
COMMON·MODE REJECTION RATIO
vs
FREOUENCY
co
100
I 90
'\\
0
'';::
co
a: 80
I:
0
1\
70
.,
'a;a:.,
60
"t:I
0
50
28
VCC+=15V
VCC-= -15V
RS = 10 kn
Cc = 30 pF
TA = 25°C
"t:I
.~
VS
ELAPSED TIME
24
>
20
\
~ 16
/:
/:
/
E
1\
~
.
\
~
c 40
0
E
E 30
0
u
I
a: 20
12
::0
E8
o
1\
\
~ 4
I
o
10
100
1k
I
~tr
-4
0
1
I
I
10%/
10
o
10 k 100 k 1 M 10 M 100 M
I
I
I
0.5
1,5
2
t-Time-j.ls
f-Frequency-Hz
FIGURE 9
FIGURE 8
VOL TAGE·FOLLOWER
LARGE·SIGNAL PULSE RESPONSE
8
6
-
>
.,~
...""co
4
>
..
.
2
.:
-4
'0
::0
Co
::0
I
~
/
'/
0
"t:I
cco -2
VCC+=15V
VCC- = -15 V
RL = 2 kn
CL = 100 pF
Cc = 30 pF
TA = 25°C
1,\
:
'/OUTPUT
0
::0
Co
\
I
I
I
\
INPUT:
1
I
L
'--
~
-- \
-6
-8
o
10
20
30
40
50
60
70
t-Time-j.ls
FIGURE 10
TEXAS •
INSTRUMENTS
2-1324
VCC+ = 15 V
VCC- = -15 V
RL=2kn
CL = 100 pF
Cc = 30 pF
TA = 25°C
I
I
I
I
a:
:a:u
90%1
E
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
80 90
2.5
uA748C, uA748M
GENERAL·PURPOSE OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
Vcc'j -
30 pF
400 Mil.
BW = 1 MHz
Cj - 1 pF.
FIGURE 11. UNITY·GAIN VOLTAGE FOLLOWER
R2
VI
1.
R1
R1
VI
R3
R1 • 30 pF
CC'" R1 + R2
Rl '" 2 kll
Vo
-::-
1.
-::-
R1 • R2
R3 = - - R1 + R2
VCCCOMP
N1
N2
FIGURE 12. INVERTING CIRCUIT WITH ADJUSTABLE GAIN
COMPENSATION. AND OFFSET ADJUSTMENT
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
2-1325
2-1326
3-1
Contents
Page
Ordering Instructions ..................................................... 3-3
Mechanical Data ........................................................... 3-5
i:
(1)
(")
:T
r»
_.
::J
(")
r»
C
ar»
3-2
ORDERING INSTRUCTIONS
ORDERING INSTRUCTIONS
Electrical characteristics presented in this data book, unless otherwise noted, apply for the circuit type(s) listed in the
page heading regardless of package. The availability of a circuit function in a particular package is denoted by an
alphabetical reference above the pin-connection diagram(s). These alphabetical references refer to mechanical
outline drawings shown in this section.
Factory orders for circuits described in this data book should include a four-part type number as shown in the following
example.
Example:
TL
598M
J
Prefix ____________________________________~
MUST CONTAIN TWO OR THREE LETTERS
SN .......... TI Special Functions or Interface Products
TL, TLE .......................... TI Linear Products
TLC ........... TI Linear Silicon-Gate CMOS Products
STANDARD SECOND-SOURCE PREFIXES
AD ................................. Analog Devices
ADC, LF, LM, LP, or MP ................... :. National
LT or LTC .......................... Linear Technology
MC ....................................... Motorola
NE, SA, or SE .............................. Signetics
OP ........................................... PMI
RC, RM, or RV ............................ Raytheon
uA ................................ Fairchild/National
UC ....................................... Unitrode
Unique Circuit Description Including Temperature Range ________--'
MUST CONTAIN TWO OR MORE CHARACTERS
(From Individual Data Sheets)
Examples:
10
592
7757
34070
1451AC
2217-285
Package ____________________________________________________
MUST CONTAIN ONE OR TWO LETTERS
D, DB, DW, FK, FN, J, JD, JG, KC, KK, KV, LP, N, NS, NT, NW, P, PK, PW, U
(From Pin-Connection Diagrams on Individual Data Sheet)
MIL-STD-8836, Method 5004, Class 6
Omit /883B When Not Applicable
TEXAS ,If
INSTRUMENlS
POST OFFICE BOX 655303 • DALlAS. TEXAS 75265
~
/8836
ORDERING INSTRUCTIONS
Circuits are shipped in one of the carriers below. Unless a specific method of shipment is specified by the customer
(with possible additional costs), circuits will be shipped via the most practical carrier.
Dual-In-Line (J, JD, JG, N, NT, NS, NW, P)
- A-Channel Antistatic or
Conductive Plastic Tubing
Shrink Small Outline (DB)
- Tape and Reel
Thin Shrink Small Outline (PW)
- Tape and Reel
Plug-In (LP)
- Plastic Bag
- Tape and Reel
Small Outline (0, OW)
- Tape and Reel
.
- Antistatic or Conductive
Plastic Tubing
Chip Carriers (FK, FN)
- Antistatic or Conductive
Plastic Tubing
Power Tab (KC,KK,K\0
- A-Channel Antistatic or
Conductive Plastic Tubing
Flat (U)
- Milton Ross Carriers
TEXAS .J!I
INSTRUMENTS
3-4
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
MECHANICAL DATA
0008, 0014, and 0016 .
plastic small-outline packages
Each of these small-outline packages consists of a circuit mounted on a lead frame and encapsulated within a
plastic compound. The compound will withstand soldering temperature with no deformation, and circuit
performance characteristics will remain stable when operated in high-humidity conditions. Leads require no
additional cleaning or processing when used in soldered assembly.
D008, D014, and D016
(16-pln package used for Illustration)
Designation per JEDEC Std 30:
PDSO·G8
PDSO·G14
PDSO·G16
4,00 (0.157)
3,81 (0.150)
9
8
j I~ ~op~::C~s
1,75 (0.069)
1,35 (0.053)
5,21 (0.205) -t'I'----~
4,60 (0.181)
0,229 (0.0090)
0,190 (0.0075)
0,50 (0.020) x 45' NOM
0,25 (0.010)
~6;-~-~-I:::J-=-I:::J_-I:::J-=-C:l-_C:l-_-8-"j
0,203 (0.008)
0,102 (0.004)
0,79 (0.031)
0,28 (0.011)
I I
,
,
:r~
--,.1 I.r-
0,51 (0.020)
0,36 (0.014)
7' NOM
4 Places
Pin Spacing
1,27 (0.050)
(see Note A)
DIM
~
8
14
16
AMIN
4,80
(0.189)
8,55
(0.337)
9,80
(0.386)
A MAX
5,00
(0.197)
8,74
(0.344)
10,00
(0.394)
]l
~t.!;
0,51 (0.020)
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTES: A.
B.
C.
D.
Leads are within 0,25 (0.010) radius of true position at maximum material condition.
Body dimensions do not include mold flash or protrusion.
Mold flash or protrusion shall not exceed 0,15 (0.006).
Lead tips to be planar within ±0,051 (0.002) exclusive of solder.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
3-5
MECHANICAL DATA
08008,08014,08016,08020, and 08024
shrink small-outline packages
These shrink small-outline packages consist of a circuit mounted on a lead frame and encapsulated within a
plastic compound. The compound will withstand soldering temperature with no deformation, and circuit
performance characteristics will remain stable when operated in high-humidity conditions. Leads require no
additional cleaning or processing when used in soldered assembly.
Designation per JEOEC Std 30:
POSQ·G8
POSO-G14
POSO·G16
POSQ·G20
POSQ·G24
OB008, OB014, OB016, OB020, and OB024
(24·pln package used for Illustration)
~---------A ----------~~I
)~
f
2'0-'1<-M_AX_----,.---
~::;::;::;:;::;::::;:-':;::;;tLPJLRJLP
j
0,05 MIN
j
B ....
!
~
L~IEBI
0.13®1
?f~======~~
~d
Q,gQ
W
0,10
£J~
10' MAX
0,55
Pin Spacing 0,65 NOM (see Note A)
Cl 0.015
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS
NOTES: A. Leads are within 0,25 mm radius of true position at maximum material condition.
B. Body dimensions do not include mold flash or protrusion.
C. Mold or flash end protrusion shall not exceed 0.15 mm.
D. Interlead flash shall be controlled by TI statistical process conlrol (additional information available through TI field office).
E. Lead tips to be planar within ±0,05 mm exclusive of solder.
~
8
14
16
AMIN
2,70
5,90
A MAX
3,30
6,50
BMAX
0,68
1,30
DIM
20
24
5,90
6,90
7,90
6,50
7,50
8;50
0,98
0,83
0,68
TEXAS .J4.J
INSlRUMENlS
3-6
POST OFFICE BOX 655303 • DALUlS, TEXAS 75265
MECHANICAL DATA
DW016, DW020, DW024, and DW028
plastic sma"-outline packages
Each of these small-outline packages consists of a circuit mounted on a lead frame and encapsulated within a
plastic compound. The compound will withstand soldering temperature with no deformation, and circuit
performance characteristics will remain stable when operated in high-humidity conditions. Leads require no
additional cleaning or processing when used in soldered assembly.
DW016, DW020, DW024, and DW028
(20-pln package used for Illustration)
i
8-8
8
11+--'8
10,65 (0.419)
10,15 (0.400)
T
Designation per JEDEC Std 30:
PDSO-G16
PDSO·G20
PDSO·G24
PDSO·G28
A---+I
r,;:20~==::::'==============1~1
I
7,55 (0.297)
7,45 (0.293)
l;CD~:;:;::;::;::;::;:::;:::;::;:;:;::;:;:;::;l~O
L
~t r,'~,~~.
. . (0,", . " .
~:~;.~r(g_:~_~;-l--;-I~
0,30 (0.012)
0,10 (0.004)
I I
.J
0,785 (0.031)
0,585 (0.023)
-+
j
L
9,0 (0.354)
',' (0,""
0,490 (0.019)
0,350 (0.014)
0,320 (0.013)
0,230 (0.009)
~
~
c0 C
~,. ~\"r,~::~,
L
'u-'
~
A
1,27 (O.OSO)
0,40 (0.016)
1,27 (0.050) TP (see Note A)
~
16
20
24
28
10,16
(00400)
12,70
(0.500)
15,29
(0.602)
17,68
(0.696)
10,36
(00408)
12,90
(0.508)
15,49
(0.610)
17,88
(0.704)
DIM
AMIN
A MAX
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTES: A.
B.
C.
D,
Leads are within 0,25 (0.010) radius of true position at maximum material condition.
Body dimensions do not include mold flash or protrusion.
Mold flash or protrusion shall not exceed, 0,15 (0.006).
Lead tips to be planar within ±0,051 (0,002) exclusive of solder,
TEXAS .JJ1
INSTRUMENTS
POST OFFICE
sox 655303
• DALLAS, TEXAS 75265
3-7
MECHANICAL DATA
FK020, FK028, FK044, FK052, FK068, and FK084
ceramic chip carrier
Each of these hermetically sealed chip carrier packages has a three-layer ceramic base with a metal lid and
braze seal. These packages are intended for surface mounting on solder leads on 1,27 (0.050) centers.
Terminals require no additional cleaning or processing when used in soldered assembly.
FK package terminal aSSignments conform toJEDEC Standards 1 and 2.
FK020, FK028, FK044, FK052, FK068, AND FK084
(28-pin used for illustration)
Designation per JEDEC Std 30:
CQCC-N20
CQCC-N28
CQCC-N44
CQCC-N52
CQCC-N68
CQCC-N84
19
25
Index Corner
~ 0,51 (0.020)
0,25 (0.010)
1,14 (0.045)
~ 0,89 (0.035)
j
-I..
t
1,14 (0.045)
0,89 (0.035)
~
2,03 (0.080)
1,63 (0.064)
1,27 (0.050) T.P.
l
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTES: A. See next page for A and B dimensions.
TEXAS ."
INSlRUMENlS
3-8
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
MECHANICAL DATA
FK020, FK028, FK044, FK052, FK068, and FK084
ceramic chip carrier (continued)
B
A
JEDEC OUTLINE
NUMBER OF
DESIGNATIONt
TERMINALS
MIN
MAX
MIN
MAX
MS-o.o.4-CB
20.
8,69 (0.342)
11,23 (0.442)
9,09 (0.358)
11,63 (0.458)
7,80 (0.307)
10,31 (0.406)
9,09 (0.358)
11,63 (0.458)
MS-o.o.4-CC
'.' 'MS-004;CD
MS-004-CE .'. . . .•. .
MS,004-CF . •.•. .
MS-004-CG
28
'" ,.·•... · ·. (44..(, •.. . ·jl';?ifrn.A4i'il...
1~\{fj(0.~§9) .•• ··.1;?,$aW4~?r.
o14:??{Q.P/ilQ)
. . . . . .•. .....g • •. . '('.
,v"v IV. lV)1.9,32(6.76.6)(: .12;$8(0.495),14,2?(O;SElO).
· ••••.. • ·61:l...,······(?~;a3(p.~38J
•.•.......
84,
2M~(1 ,)4:1)
?4,43(O··9~?)?l';~O(o·I:l'!9r
.",
:29,59 ().,f64)
26,fjO(104?)
·······.~1,80(o:~5~)
'1 ( 27;ob (1,C\(l3)
t All dimensions and notes for the specified JEDEC outline apply.
TEXAS
.JJ1
INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
3-9
MECHANICAL DATA
FN020,FN028,FN044,FN052,FN068,andFN084
plastic J-Ieaded chip carrier
Each of these chip carrier packages consists of a circuit mounted on a lead frame and encapsulated within an
electrically nonconductive plastic compound. The compound withstands soldering temperatures with no
deformation, and circuit performance characteristics remain stable when the devices are operated in
high-humidity conditions. The package is intended for surface mounting on 1,27 (0.050) centers. Leads require
no additional cleaning or processing when used in soldered assembly.
FN020, FN028, FN044, FN052, FN068, and FN084
(20-PIN package used for Illustration)
Designation per JEDEC Std 30:
S-PLCC-J20
S-PLCC-J28
S·PLCC·J44
S·PLCC·J52
S·PLCC·J68
S·PLCC·J84
~
-A- D, (see Note B)
1.1018(0007)®IB®1 D-E®I
I.L I (Q.002IN./IN) I B I
0.51 (0020) R Max
1.-_~_·~: ~:;:~g=:g:=~=l2=p=la=c=eS=1 cct: ~'~' ~7
~
r_~
"0'
•
"@
L!l ~o'
•
3
L
·i '1!i~';8 C(1~
@
_0
-1
2
1
20 19
6.~: (g:g~;l
'-'-====== .+--1----11' -r
2 Sides (see Note E)
~ r~:t " -i--+--+-
•
L
(~e~3r!! Frl ~'-1C:-0'-:C38:-c: -:eo",~ 2-: ~ -"; "~-=D- :E"@ "'I
10
11
I
~
-.-L 1·10.38(0.015)®IF-G@1
I
-L--+---t-
(see Note C)
i
.
w
9
R. TYP
,.."----=,---,,cr---:=
J
l2Jzll
1_
0.10 0.004
12 13
"
Lc±l
0.51 (0.020) MIN.
(see Note C)
g.~g 19:96:l (Includes Lead Finish)
SUM OF DAM BAR PROTRUSIONS
TO BE 0,18 (0.007) MAXIMUM
PER LEAD
1.10.18 (0.007) i&lil D-E@I
(see table on following page for additional dimensions)
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTES: B. All dimensions conform to JEDEC Specification MO·047AA1AF. Dimensions and tolerancing are per ANSI Y14.5M -1982.
C. Dimensions D1 and E1 do not include mold flash protrusion. Protrusion shall not exceed 0,25 (0.010) on any side. Centerline of center
pin each side is within 0,10 (0.004) of package centerline by dimension B. The lead contact points are planar within 0,10 (0.004).
I - H -I.
I - H -I is located al top of leads where they exit plastic body.
F. Location of datums I - A -I and I - B -I to be determined at datum I - H -I·
G. Determined at seating plane I - C -I.
D. Datums ~ and ~ for center leads are determined at datum
E. Datum
TEXAS
-If
INSIRUMENlS
3-10
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
MECHANICAL DATA
FN020, FN028, FN044, FN052, FN068, and FN084
plastic J-Ieaded chip carrier (continued)
JEDEC
OUTLINE
PINS
MO-047AA
20
MO-047AB
28
MO-047AF
84
30,10
(1.185)
30,35
(1.195)
29,21
(1.150)
29,41
(1.141)
27,69
(1.090)
28,70
(1.130)
25,40
(1.000)
NOTES A: All dimensions conform to JEDEC Specification MO-047ANAF. Dimensions and tolerancing are per ANSI Y14.5M - 1982.
F: Determined at seating plane
C
1- -I.
TEXAS ."
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
3-11
MECHANICAL DATA
J014
ceramic dual-in-line package
This hermetically sealed dual-in-line package consists of a ceramic base, ceramic cap, and lead frame. Hermetic
sealing is accomplished with glass. The package is intended for insertion in mounting hole rows on 7,62 (0.300)
centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in
the board during soldering. Tin-plated ("bright-dipped") leads require no additional cleaning or processing when
used in soldered assembly.
J014
Designation per JEDEC Std 30:
GDIP-T14
0,63 (0.025) R NOM
~------J'i-- 7,87 (0.310)
7,37 (0.290)
I+----~_ 7,11 (0.280)
6,22 (0.245)
IW\
1050
90 0
0,51 (0.020) MIN
1,27 (0.050)
NOM
l
t
I~~~
5,08 (0.200) MAX
--Seatlng------I-----.,._+_~
14 Places ~~
0,36 (0.014)
0,20(0.008)
14 Places
Glass
Sealant
l
Plane
-..I
~
0,69 (0.027) MIN
14 Places
0,58 (0.023)
0,38 (0.015)
14 Places
(see Notes B & C)
II
-+II+--
3,30 (0.130)
MIN
2,54 (0.100)
1,78 (0.070)
4 Places
Pin Spacing 2,54 (0.100) T.P.
(see Note A)
Falls within JEDEC TO-116 and EIA MO-001AAdimensions
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTES: A. Each pin centerline is located within 0,25 (0.010) of its true longitudinal position.
B. This dimension does not apply for solder-dipped leads.
C. When solder-dipped leads are specified, dipped area olthe lead extends from the lead tip to at least 0,51 (0.020) above seating plane.
TEXAS ~
INSTRUMENTS
3-12
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
MECHANICAL DATA
J016, J018, J020, and J022
ceramic dual-in-line
These hermetically sealed dual-in-line packages consist of a ceramic base, ceramic cap, and a lead frame.
Hermetic sealing is accomplished with glass. These packages are intended for insertion in mounting-hole rows
of 7,62 (0.300) centers forthe J016, J018, J020, and 10,16 (00400) centers forthe J022, respectively. Once the
leads are compressed and inserted, sufficient tension is provided to secure the package in the board during
soldering. Tin-plated (bright-dipped) leads require no additional cleaning or processing when used in solder
assembly.
J016, J018, J020, and J022
(22-pin package used for illustration)
tf.
Designation per JEDEC Std 30:
GDIP·T16
GDIP·T18
GDIP·T20
GDIP·T22
tf.
11Il\~·'('OO')NO.
'.' i ;"T~
.',n
5.0~CJ100)"-- Sealant
~:~'"
~~~o
-
S~r~:,neg ~
...
to
22 Places
- II
0,36 (0.014)
~\'4- 0,20
(0.008)
22 Places
JL
l-.I I I
-U
I
l'
-J'~ g'~:~ «g:g~~»
0.305 (0.012) MIN
4 Places
Pin Spacing
2,54 (0.100) T. P.
(see Note A)
0,76 (0.030) M I N ]
18 Places
22 Places
(see Notes B & C)
1,27 (0.050)
0,38 (0.015)
4 Places
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
~
PINS
16
B
A
MAX
MIN
MAX
MIN
MAX
19,18 (0.755)
19,94 (0.785)
7,37 (0.290)
7,87 (0.310)
6,22 (0.245)
7,62 (0.300)
23,1 (d.910)
4,37 (0,29()
7:87(0.3)0)
13,?2 (0.2~9)
7,132 (0.3QO)
6,22 (0.245)
7,62 (0.300)
18
.....•...
20
22
C
MIN
23,132 (0.930)
'00
.......
24,76 (0.975)
7,37 (0.290)
7,87 (0.310)
28,0 (1.100)
9,91 (0.390)
10,41 (0.410)
9,65 (0.388)
NOTES: A. Each pin centerline is located within 0,25 (0.010) of its true longitudinal position.
B. This dimension does not apply for solder-dipped leads.
C. When solder-dipped leads are specified, dipped area of the lead extends from the lead tip to at least 0,51 (0.020) above the seating
plane.
TEXAS
-1!1
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
3-13
MECHANICAL DATA
J028
ceramic dual-in-line package
This hermetically sealed dual-in-line package consists of a ceramic base, ceramic cap, and lead frame. Hermetic
sealing is accomplished with glass. The package is intended for insertion in mounting hole rows on 15,24 (0.600)
centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in
the board during soldering. Tin-plated ("bright-dipped") leads require no additional cleaning or processing when
used in soldered assembly.
J028
Designation per JEDEC Std 30:
GDIP-T8
GDIP-T14
GDIP-T16
k f - - - - - - - 37,1 (1.460) MAX
~
~
~_ 15,49 (0.61.Ql
I
0,63 (0.025) R
NOM
j
14,99 (0.590)
r
14,2 (0.560)
(0.515)
--=--~+-13'1
~I
Glass Sealent
1,27 (0.050) NOM
1,78 (0.070) MAX 28 Places
~-S9""'
fY-~
28 Places
0,36 (0.014)
0,20 (0.008)
14 Places
Plane
~~
4,06 (0.160)
3,17 (0.125)
28 Places
2,54 (0.100)
1,52 (0.060)
4 Places
0,71 (0.028) MIN
28 Places
0,51 (0.020)
0,41 (0.016)
28 Places
Pin Spacing 2,54 (0.100) T.P.
(see Note A)
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTES: D. Each pin centerline is located within 0,25 (0.010) of its true longitudinal position.
E. This dimension does not apply for solder-dipped leads.
F. When sOlder-dipped leads are specified, dipped area ofthe lead extends from the lead tip to at least 0,51 (0.020) above seating plane.
TEXAS "f
INSlRUMENTS
3-14
POST OFFICE BOX 655303 • DAL'-"'S, TEXAS 75265
MECHANICAL DATA
JD024 and JD028
ceramic side-braze dual-in-line packages
These hermetically sealed dual-in-line packages consist of a ceramic base, metal cap, and side-brazed
tin-plated leads. These packages are intended for insertion in mounting-hole rows of 15,24 (0.600) centers.
Leads require no additional cleaning or processing when used in solder assembly.
JD024 and JD028
(28-pln package used for illustration)
r-- =1r-
ct.
Designation per JEDEC Std 30:
GDIP-T24
GDIP-T28
ct.
A
~ ~ 'ES-j
-+
I~
i
90'
0,36 (0.015)
0,25 (0.008)
-'11- ~:;: :~:~;~~
0,51 (0.020) MIN
S;~~~g
5,08 (0.200) MAX
+-In-TMl'''1nT'''1!"~;;;:;;:;:;;:;:;;;:;;:~;;:;;:;;::;:;;:;;:;;:;---r
I-I
JL
1,91 (0.075) MAX
4 Places
.1
Pin Spacing 2,54 (0.100) T.P. ~
(see Note A)
DIM
~
I.
r24
28
15.24 (0.600)
15.24 (0.600)
8 (MAX)
31.8 (1.250)
36.8 (1.450)
C(NOM)
15.0 (0.590)
15,0 (0.590)
A
+0.51 (+0.020)
-{).25 (-0.010)
3,18 (0.125) MIN
0,53 (0.021)
0,38 (0.015)
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTE A: Each pin centerline is located within 0,25 (0.010) of its true longitudinal position.
TEXAS
-III
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
3-15
MECHANICAL DATA
JG008
ceramic dual-in-line package
This hermetically sealed dual-in-line package consists of a ceramic base, ceramic cap, and lead frame. Hermetic
sealing is accomplished with glass. The package is intended for insertion in mounting hole rows on 7,62 (0.300)
centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in
the board during soldering. Tin-plated ("bright-dipped") leads require no additional cleaning or processing when
used in soldered assembly.
JG08
r
I"
Designation per JEDEC Std 30:
GDIP·T8
10,2 (0.400)
----1
9,0 (0.355) ' \
I
0,63 (0.025) R NOM
5,08 (0.200)
MAX
1,78 (0.070) 8 Places
--;r-------
1r
I
0,51 (0.020) MIN
_____ Seating
Plane
..\ 1..-Q,.~.Ol~
~ \'
0,20 (0.008)
8 Places
~
3,30 (0.130) MIN,
-
J~
1,6 (0.065)
0,4 (0.015)
4 Places
I
I
U
-,J 1-r-
Pin Spacing
2,54 (0.100) T.P.
(see Note A)
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTE A: Each pin centerline is located within 0,25 (0,010) of its true longitudinal position,
TEXAS -1!1
INSfRUMENTS
3-16
POST OFFICE BOX 655303· DALLAS, TEXAS 75265
!o.,~
0,,"
0,38 (0.015)
8 Places
MECHANICAL DATA
KC003
plastic flange-mount package
This package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The
compound will withstand soldering temperature with no deformation, and circuit performance characteristics will
remain stable when the package is operated under high-humidity coriditions.
KC003
0,81
(0.032
2,79 (0.110)
2,29 (0.090)
±
±
Designation per JEDEC Std 30:
R-PSFM-T3
0,08
0.003)
1[
3 Places
0,64 (0.025) R NOM
2 Places (see Note A)
1,78 (0.070)
1,14 (0.045)
5,34 (0.210)
4,82 (0.190)
Pin Spacing
2,79 (0.110)
2,29 (0.090)
(see Note B)
L
6,35 (0.250)
MAX
15,88 (0.6?§.!
I
14,22 (0.560) - ,
0,64 (o.o25)
!4--L~5,8410:236)2
6,86 (0.270
M=I
0,30 (0.012)
"'-"
1_ _ _ _ _ 1
* -it
,-L-_--",
2.92-(f11- 5-}- - - - - - 0 .2,03 (O.080)
tl
~!0.055) j- 3,56 (0.140)
0,51 (0.020)
4,S;U0.190}
3,56 (0.140)
3,05 (0.120)
The center terminal is in electrical contact with the mounting tab.
Falls within JEDEC TO-220AB dimensions
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTES: A. Notches and/or mold chamfer mayor may not be present.
B. Leads are within 0,13 (0.005) radius of true pOSition (T.P.) at maximum material conditions.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
3--17
MECHANICAL DATA
KC005
plastic flange-mount package
This package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The
compound will withstand soldering temperaturewith no deformation, and circuit performance characteristics will
remain stable when the package is operated under high-humidity conditions.
KC005
4,83 (0.190)
3,56 (0.140)
3,96 (0.156)
3,71 (0.146)
14------_____
a
10,67 (0.420)
9,65 (0.380)
t
2 Places
(see Note A)
R-PSFM-T5
3,56 (0.140)
3,05 (0.120)
1,40 (0.055)
0,51 (0.020)
1
6,B6 (0.270)
5,84 (0.230)
0,64 (0.025) R NOM
Designation per JEDEC Std 30:
-
~
- -
~-
15,88 (0.625)
14,22 (0.560)
J
14,27 (0.562)
12,70 (0.500)
L
Pin Spacing
1,70 (0.067)
(see Note B)
-.
. . . . 11..- 0,76
1,02 (0.040)
(0.030)
5 Places
J
2,92 (0.115)
2,03 (O.OBO)
0,64 (0.025)
0,30 (0.012)
5 Places
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTES: A. Notches and chamfer mayor may not be present.
B. Leads are with 0.13 (0.005) radius of true position (T.P.) at maximum material conditions.
TEXAS ~
INSlRUMENTS
3-18
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
MECHANICAL DATA
KK003
plastic flange-mount package
This package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The
compound will withstand soldering temperature with no deformation, and circuit performance characteristics will
remain stable when the package is operated under high-humidity conditions.
KK003
Designation per JEDEC Std 30:
X·PSFM·T3
.1
16,26 (0.640)
15,75 (0.620)
5,08 (0.200)
r;=====1'1 = L ; , 7 54,57(0.180)
(0.180)
4,06 (0.160)
2 Places
15'
20,83 (0.820)
19,81 (0.780)
5,33 (0.210)
4,83 (0.190)
15' NOM
22,35 (0.880)
21,84 (0.860)
~
No~1 r
}}-
I
Mounting Hole
3,18 (0.125)
DIANOM
':r-c:=:::r--=:r0-dJ
Ie
=-==t.
6,35 (0.250)
r
7' NOM
MAX
2,29 (0.090)
1,78 (0.070)
2,29 (0.090)
1,78(0.070)
-iI
Jl
Lead Spacing
5,08 (0.200)
TP
~
0,89 (0.035)
0,64 (0.025)
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
TEXAS "J1
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
3-19
MECHANICAL DATA
KV005
plastic flange-mount package
This package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The
compound will withstand soldering temperature with no deformation, and circuit performance characteristics will
remain stable when the package is operated under high-humidity conditions.
rah
Designation per JEDEC Std 30:
R-PSFM-T5
KV005
~::~ !g:~:gl
0,64 (0.025) NOM
2 Places
(see Note A)
..
t-
3,56 (0.140)
3,05 (0.120)
1,40 (0.055)
0,51 (0.020)
------,.-------6,86 (0.270)
5,84 (0.230)
15,88 (0.625)
14,22 (0.560)
21,920 (0.863)
MIN
25,4 (1.00)
MIN
L
I
Lead Spacing
1,70 (0.067)
(see Note B)
-I~
-*-----£
JJJ
15,77 (0.621)
NOM
18,03 (0.710)
NOM
5 'A)
/
(see 4
Note
I
&.....,-r--I
I 1,02 (0.040)
J.-- 0,76
(0.030)
5 Places
2,92 (0.115)
2,03 (0.080)
0,64 (0.025)
0,30 (0.012)
It----~- 4,67 (0.184)
4,29 (0.169)
8,59 (0.338) ----i.--------i'I
8,20 (0.323)
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTES: A. Notches and chamfer mayor may not be present.
B. Leads are with 0.13 (0.005) radius of true position (T,P.) at maximum material conditions.
TEXAS
~
INSlRUMENlS
3-20
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
MECHANICAL DATA
KV007 plastic flange-mount package
This package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The
compound will withstand soldering temperature with no deformation, and circuit performance characteristics will
remain stable when the package is operated under high-humidity conditions.
KV007
Designation per JEDEC Std 30:
R-PSFM-T7
r
3,96 (0.156) DIA
3,71 (0.146)
10,39 (0.409)
10,13 (0.399)
1
4,597 ( 0 . 1 8 1 ) M
4,547 (0.179)
2,87 (0.113)
2,62 (0.103)
3,43 (0.135)
3,17 (0.125)
1,40 (0.055)
1,14(0.045)
~
I
--~
17,58 (0.692)
17,32 (0.682)
1,40 (0.055)
1,14 (0.045)
0,762 (0.030)
0,660 (0.026)
2,79 (0.110)
2,54 (0.100)
I.------.!-- 7,75 (0.305)
7,49 (0.295)
7,75 (0.305) --14----+1
7,49 (0.295)
9,52 (0.375)
9,27 (0.365) NOM
0,63 (0.025)
0,38 (0.015) R
-------.
20,88 (0.822)
20,62 (0.812)
0,51 (0.020)
0,25 (0.010)
- -n -n
in
\
"
2
PI~~es
J~----_~.1_10'211
(0.4020)
10,109 (0.3980)
C
ALL LINEAR DIMENSIONS ARE IN MILLILMETERS AND PARENTHETICALLY IN INCHES.
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
3-21
MECHANICAL DATA
LP003
plastic cylindrical package
a
This package consists of a circuit mounted on a lead frame and encapsulated within plastic compound. The
compound will withstand soldering temperature with no deformation and circuit performance characteristics
remain stable when operated in high-humidity conditions. Leads require no additional cleaning or processing
when used in soldered assembly.
LP003
Designation per JEDEC Std 30:
PBCY·W3
r-E
~
Seating Plane
t
~,43 (0.135)
MIN
.~
5,2110.205)
4,44 (0.175)
DIA
l
oll
Jt
1,27
(0.050
±
±
0,13
0.005)
2,54 ± 0,13
(0.100 ± 0.005)
1,27 (0.050)
4.19 (0.165)
3,17 (0.125)
l4-----lol- .2.67 10.105)
2,03 (0.080)
F ( s e e Note A)
-
--=-=::::==:=:::::::'=:======:1==3
..;:
J
============::J
~~5'34
(0.210)
4,32 (0.170)
12,7 (o.sOO) MIN
2,67 (0.1.2§)
2,03 (0.080)
3 Leads
0,43 + 0,13, - 0,03 WIDE
0,38 ± 0,03 THICK
(0.017 + 0.005, - 0.001 WIDE
0.015 ± 0.001 THICK)
Falls within JEDEC TO·226AA dimensions
(T0-226AA replaces TO·92)
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTE A: Lead dimensions are not controlled within this area.
TEXAS -If
INSTRUMENTS
3-22
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
MECHANICAL DATA
N014, N016, N018, and N020
300-mil plastic dual-in-line packages
These dual-in-line packages consist of a circuit mounted on a lead frame and encapsulated within a plastic
compound. The compound will withstand soldering temperature with no deformation and circuit performance
characteristics will remain stable when operated in high-humidity conditions. These packages are intended for
insertion in mounting-hole rows on 7,62 (0.300) centers. Once the leads are compressed and inserted, sufficient
tension is provided to secure the package in the board during soldering. Leads require no additional cleaning
or processing when used in soldered assembly.
Designation per JEDEC Std 30:
PDlp·T14
PDIP·T18
PDIP-T16
PDIP·T20
11
N014, N016, N018, AND N020
(20-pln package used for Illustration)
20
10
t
~,
~
0" . " . NOM
~~
- .t
1050
90'
20 Places
J~
L.
ro-
0," '0 OW)
MIN _
,-1-
I~ """1
I
------~~I
Al
~ 1,78 (0.070) MAX 18 Places
I
5,08 (0.200) MAX ~ h-rr-,-r-rr-,-r-rr-,-r-rr-.r-rr,-!
- - Seating - - r - - - r - - - t 1
Plane
-+\\4- 0,36
(0.014)
0,25 (0.010)
20 Places
(see Notes B and C)
G
4 Places
Pin Spacing 2,54 (0.100) T.P.
(see Note A)
1 4 - - - - - - - A2
0,533 (0.021)
0,381 (0.015)
20 Places
(see Notes B and C)
------~
1,91 (0.075)
1,02 (0.040)
4 Places
VIEW A
H
4 Places
~
Pin Spacing 2,54 (0.100) T.P.
(see Note A)
0,533 (0.021)
0,381 (0.015)
20 Places
(see Notes B and C)
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTES: A. Each pin centerline is located within 0,25 (0.010) of its true longitudinal position.
B. This dimension does not apply for solder-dipped leads.
C. When solder-dipped leads are specified, dipped area of the lead extends from the lead tipto at least 0,51 (0.020) above seating plane.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
3-23
MECHANICAL DATA
N014, N016, N018, and N020
300·mil plastic dual·in·line package (continued)
DIM
~
MIN
A1
A2
B
C
0
E
F
G
H
MAX
MIN
MAX
NOM
MIN
MAX
MIN
MAX
NOM
MIN
MIN
MAX
MIN
MAX
14
18
16
18,0 (0,710)
19,8 (0,780)
20
23,22 (0,914)
19,8 (0,780)
23,4 (0,920)
18,0 (0,710)
24,77 (0,975)
23,62 (0,930)
19,8 (0,780)
25,4 (1,000)
2,8 (0,110)
2,8 (0,110)
4,06 (0,160)
2,80 (0,110)
7,37 (0,290)
7,37 (0,290)
7,37 (0,290)
7,37 (0,290)
7,87 (0,310)
7,87 (0,310)
7,87 (0,310)
7,87 (0,310)
6,10 (0,240)
6,10 (0,240)
6,60 (0,2130)
6,60 (0,260)
6,99 (0,275)
2,0 (0,080)
2,0 (0,080)
2,03 (0,080)
2,0 (0,080)
0,84 (0,033)
0,84 (0,033)
0,89 (0,035)
0,84 (0,033)
(see Note A)
0,38 (0,015)
(See Note A)
1,68 (0,066)
(see Note A)
1,65 (0,065)
(see Note A)
0,22 (0,009)
2,54 (0,100)
1,02 (0,040)
0,23 (0,009)
0,38 (0,015)
1,52 (0,060)
2,41 (0,095)
1,91 (0,075)
1,27 (0,050)
6,60 (0,240)
7,11 (0,280)
NOTES: A. The 14-pin and 18-pin plastic dual-in-line package is only offered with the external pins shaped
in their entirety, and do not have alternate side view dimensions,
TEXAS ~
INSTRUMENTS
3-24
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
MECHANICAL DATA
N022
400-mil plastic dual-in-line package
This dual-in-line package consist of a circuit mounted on a lead frame and encapsulated within a plastic
compound. The compound will withstand soldering temperature with no deformation and circuit performance
characteristics will remain stable when operated in high-humidity conditions. This package is intended for
insertion in mounting-hole rows on 10, 16 (0.400) centers. Once the leads are compressed and inserted,
sufficient tension is provided to secure the package in the board during soldering. Leads require no additional
cleaning or processing when used in soldered assembly.
N022
Designation per JEDEC Sid 30:
PDIP-T22
22
10,41 (0.410)
9,91 (0.390)
r
0,355
cJl~ ~'"'
.,~
(0.01~
0,203 (0.008)
22 Places
(see Noles B and C)
0,51JO.020)
f
12
11
I"
~I
28,5 (1.120) MAX
L
J
3,17(0.125)MINpinSpaCing2~,54(0.100)T.P.
(see Nole A)
1,78 (0.070) MAX
22 Places
WI-.j h~
0,84 (0.033) MIN
22 Places
0,533 (0.021)
0,381 (0.015)
22 Places
(see Noles B and C)
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTES: B. Each pin centerline is located within 0,25 (0.010) of its true longitudinal position.
C. This dimension does not apply for solder-dipped leads.
D. When solder-dipped leads are specified, dipped area ofthe lead extends from the lead tip to at least 0,51 (0.020) above seating plane.
TEXAS ..1!1
INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
3-25
MECHANICAL DATA
N028
600-mil plastic dual-in-line package
This dual-in-line package consists of a circuit mounted on a lead frame and encapsulated within a plastic
compound. The compound will withstand solderil1g temperature with no deformation anp circuit performance
characteristics will remain stable when operated in high-humidity conditions. This package is intended for
insertion in mounting-hole rows on 15,24 (0.600) centers (see Note A). Once the leads are compressed and
inserted, sufficient tension is provided to secure the package in the board during soldering. Leads require no
additional cleaning or processing when used in soldered assembly.
N028
Designation per JEDEC Std 30:
PDIP-T28
I~
~I
36,6 (1.441) MAX
28
15
,~!;:~.:E::::::::::::: 1:t~J
ru
f
14
<
24 Places
5,08 (0.200)
'------r----'
0,36(0.014)
°2~Op(~~~:)
~\.-
(see Noles B and C)
s~~:~g
T j-LJ l
t
3,17(0.125) MIN
2;:~~~~:95) MAX
4 Places
Pin Spacing 2,54 (0.100) T. P.
(see Nole A)
~:~~~!~:~~!l ~k(see
Jl
~~:e~~e:nd C)
0,83 (0.095) MAX
24 Places
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTES: A. Each pin centerline is located within 0,25 (0.010) of its true longitudinal position.
B. This dimension does not apply for solder-dipped leads.
C. When solder-dipped leads are specified, dipped area olthe lead extends from the lead tip to at least 0,51 (0.020) above seating plane.
TEXAS ~
INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
3-29
· MECHANICAL DATA
P008
plastic dual·in·!ine package
This package consists of a circuit mounted on an B-pin lead frame and encapsulated within a plastic
compound.The compound will withstand soldering temperature with no deformation, and circuit performance
characteristics will remain stable when operated in high-humidity conditions. The package is intended for
insertion in mounting-hole rows on 7,62 (0.300) centers. Once the leads are compressed and inserted, sufficient
tension is provided to secure the package in the board during soldering. Solder-plated lead require no additional
cleaning or processing when used in soldered assembly.
P008
I.
Designation per JEDEC Std 30:
PDIP-T8
10,2 (0,400) MAX
8
j
5
Index Dot
7,87 (0.310)
7,37 (0.290)
§,§O (0.260)
6,10 (0.240)
1,78 (0.070) MAX
8 Places
.5,08 (0.200)
MAX
Seating Plane
~ Gauge Plane
J
l[
L .()O~:~~ !g:g~gl
~
3,17 (0.125)
MIN
0,36 (0.014)
0,20 (0.008)
2,54 (0.100) T. P.
6 Places
(see Note A)
(see Note B and C)
I.-
0,533 (0.021)
0,381 (0.015)
(see Note B and C)
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTES: A. Each pin centerline is located within 0,25 (0.010) of its true longitudinal position.
B. This dimension does not apply for solder· dipped leads.
C. When solder·dipped leads are specified, dipped area of the lead extends from the lead tip to at least 0,51 (0.020) above seating plane.
TEXAS
~
INSlRUMENTS
3-30
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
MECHANICAL DATA
PK003
plastic lead-mount package
This package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The
compound will withstand soldering temperature with no deformation, and circuit performance characteristics will
remain stable when operated in high-humidity conditions.
PK003
~
4'60(0'181)
4,40 (0.173)
J
Designation per JEDEC Std 30:
PSSO-F3
1,80 (0.071) MAX
0,40 (0.016) NOM
__
I
~')~
""1,,,, f
"'1~
0,480 (0.019) MAX --..
II II+I
I
I
L
I --"11 .
1,50 (0.059) NOM
0,80 (0.032) MIN
0,44 (0.017) MAX
~~
0,53 (0.021) MAX
~
The center lead is in electrical contact with the tab
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
TEXAS
-1!1
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
3-31
MECHANICAL DATA
PVV008, PVV014, PVV016, PVV020
shrink small-outline packages
These shrink small-outline packages consist of a circuit mounted on a lead frame and encapsulated within a
plastic compound. The compound will withstand soldering temperature with no deformation, and circuit
performance characteristics will remain stable when operated in high-humidity conditions. Leads require no
additional cleaning or processing when used in soldered assembly.
PW008, PW014, PW016, PW020
(14-pin package used for Illustration)
Designation per JEOEC Std 30:
POSO·G8
POSO·G14
POSO·G16
POSO·G20
~
tMQ
MQ
0,40
0,10
DETAIL A
B
0,65 NOM
(see Note A)
1,10 MAX
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS
NOTES: A.
S.
C.
D.
Leads are within 0,25 mm radius of true position at maximum material condition.
Sody dimensions include mold flash or protrusion.
Mold flash or protrusion shall not exceed 0,15 mm.
Lead tips to be planar within ±0,051 mm exclusive of solder.
~
8
14
16
20
AMIN
2,99
4,99
4,99
6,40
A MAX
3,03
5,30
5,30
6,80
SMAX
0,65
0,70
0,38
0,48
DIM
TEXAS ~
INSlRUMENTS
3--32
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
MECHANICAL DATA
U010
ceramic flat package
This flat package consists of a ceramic base, ceramic cap, and lead frame. Circuit bars are alloy mounted.
Hermetic sealing is accomplished with glass. Leads require no additional cleaning or processing when used in
soldered assembly.
U010
0,153 (0.006)
0,076 (0.003)
10 Leads
1r
0,483 (0.019)
0,381 (0.015)
10 Leads
Designation per JEDEC Std 30:
GDFP-F10
11-
~ 1,27 (0.050) NOM
(see Note A)
.,,[
n
r
II
5,08 (0.200)
25'4(1~:)--I----T---uL-~10~~-U~6
19,0 (0.750)
6,35 (0.250)
5,97 (0.235)
7,62 (0.300)
(see Note B)
2,03 (0.080)
1,27 (0.050)
1
Alternate
Index Points ~~
r-
~- ---J------------
r-
5
-
8,89 (0.350)
"~I
L
1,27 (0.050)
0,13 (0.005)
~
~
r"
0,64 (0.025)
0,00 (0.000)
6,35 (0.250) ........
Falls within JEDEC MO-004AA dimensions
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTES: A. Leads are within 0.13 (0.005) radius of true position (T.P.) at maximum material conditions.
B. This dimension determines a zone within which all body and lead irregularities lie.
TEXAS ."
INSIRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
3-·33
MECHANICAL DATA
W014
ceramic flat package
This hermetically sealed flat package consists of an electrically nonconductive ceramic base and cap and a lead
frame. Hermetic sealing is accomplished with glass. Leads require no additional cleaning or processing when
used in soldered assembly.
W014
0,152 (0.006)
0,076 (0.003)
14 Leads
1r
r
----x-
0,483 (0.019)
0,381 (0.015)
14 Leads
l
r
Designation per JEDEC SId 30:
GDFP-F14
-+J
~ 1,27 (0.050) NOM
12 Places
(see Note A)
1 ~
8,00 (L15)
Base And
Seating
Plane
--T ---- ~]~ -"' :; 1; ;'4' ' ':; -~=. . :; ; :,1-. . :; .;:.i-;;;:,......:;;
7,0 (0.275)
....8=-.-
(see Note C)
7
-
2,03 (0.080)
1,27 (0.050)
.-
8,00 (0.315)
'~[
-.J
1,02 (0.040)
0,51 (0.020)
r.----
8,89 (0.350) _ _...
8,56 (0.337) -----,..
~ 0,64 (0.025)
0,25 (0.010)
4 Places
Fall within JEDEC MO-004AA dimensions
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTES: A. Leads are within 0,13 (0.005) radius of true position (T.P.) at maximum material condition.
B. This dimension determines a zone within which all body and lead irregularities lie.
C. Index point is provided on cap for terminal identification only.
TEXAS .JJ1
INSTRUMENlS
3-34
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265
NOTES
NOTES
NOTES
NOTES
-
TINorth
American Sales
Offices
TI Authorized
North American
Distributors
ALABAMA: Huntsville: (205) 837-7530
ARIZONA: Phoenix: (602)995-1007
CALIFORNIA: Irvine: (714) 660-1200
Alliance Electronics, Inc. (military product only)
Almac Electronics
Aose"'lle: (916) 78&-9206
San Diego: (619)278-9600
Santa Ciani: (408)980-9000
Anthem Electronics
Arrow (Canada)
Woodland Hills: (818) 704-8100
Arrow/Kierulff Electronics Group
Future Electronics (Canada)
COLORADO: Aurora: (303) 368-8000
CONNECTICUT: Wamngford: (203) 269-0074
GRS Electronics Co., Inc.
Hall-Mark Electronics
FLORIDA: Altamonte Springs: (407) 260-2116
Fort Lauderdale: (305) 973-8502
Tampa: (813) 882-0017
GEORGIA: Norcross: (404) 662-7900
ILLINOIS: Arlington Heights: (708) 64()..3000
INDIANA: Cannel: (317) 573-6400
Fort Wayne: (219) 482-3311
lex Electronics
Marshall Industries
Newark Electronics
Rochester Electronics, Inc. (obsolete product only (508)
462-9332)
Wyle laboratories
Zeus Components
IOWA: Cedar Rapids: (319) 395-9550
KANSAS: Overtand Park: (913) 451-4511
MARYLAND: Columbia: (301) 964-2003
MASSACtiUSETIS: Waltham: (617) 895-9100
MICHIGAN: Fannlngton Hills: (313) 553-1500
MINNESOTA: Eden Prairie: (612) 828-9300
MISSOURI: St. Louis: (314) 821-8400
NEW JERSEY: Iselin: (908) 750-1050
NEW MEXICO: Albuquerque: (505) 345-2555
TI Distributors
ALABAMA: Arrow/Kierulff (205) 837-6955; Hall-Mark
(205) 837-8700; Marshall (205) 881-9235; Lex (205)
895-0480.
OHIO: Beachwood: (216) 464-6100
Beavercreek: (513) 427-6200
ARIZONA: Anthem (602) 96&6600; Arrow/Kierulff (602)
437-0750; Hall-Mark (602) 437-1200; Marshall (602)
496-0290; Lex (602) 431-0030; Wyle (602) 437-2088.
CALIFORNIA: Los AngeleslOrange County: Anthem
(818) 775-1333, (714) 769-4444; Arrow/Kierulff (818)
701-7500, (714) 838-5422; Hall-Mark (818) 773-4500,
(714) 727-6000; Marshall (818) 878-7000, (714)
458-5301; Lex (818) 880-9686, (714) 587-0404; Wyle
(818) 880-9000, (714) 863-9953; Zeus (714) 921-9000,
(818) 889-3838;
OREGON: Beaverton: (503) 643-6758
Rucklin: (916) 624-9744;
NEW YORK: East Syracuse: (315) 463-9291
Fishkill: (914) 897-2900
Melyjlle: (516) 454-6600
Pittsford: (716) 385-6nO
NORTH CAROLINA: Charlotte: (704) 527-0930
Raleigh: (919) 876-2725
KANSAS: Arrow/Kierulff (913) 541-9542; Hall-Mark
(913) 888-4747; Marshall (913) 492-3121; lex (913)
492-2922.
MARYLAND: Anthem (301) 995-6640; ArrowlKierulff
(301) 995-6002; Hall-Mark (301) 988-9800; Marshall
(301) 622-1118; Lex (301) 59&7800; Zeus (301)
997-1118.
MASSACHUSETTS: Anthem (508) 657-5170;
ArrowlKierulff (508) 658-0900; Hall-Mark (508) 667-0902;
Marshall (508) 658-0810; Lex (508) 694-9100; Wyle
(617) 272-7300; Zeus (617) 246-8200.
MICHIGAN: Detroft: ArrowlKierulff (313) 462-2290;
Hall-Mark (313) 462-1205; Marshall (313) 525-5850;
Newark (313) 967-0600; lex (313) 525-8100;
Grand Rapids: ArrowlKierulff (616) 243-0912.
MINNESOTA: AnttJem (612) 944-5454; ArrowlKierulff
(612) 829-5588; Halt-Mark (612) 941-2600; Marshall
(612) 559-2211; Lex (612) 941-5280
MISSOURI: Arrow/Kierulff (314) 567-6888; Hall-Mark
(314) 291-5350; Marshall (314) 291-4650; Lex (314)
739-0526
NEW JERSEY: Anthem (201) 227-7960; Arrow/Kierulff
(201)536-0900, (609)596-8000; GAS (609)964-8560;
Halt-Mark (201) 515-3000, (6OO) 235-1900; Marshall
(201) 882-0320, (609) 234-9100; lex (201) 227-7880,
(6OO) 273-7900
NEW MEXICO: Alliance (505) 292-3360.
NEW YORK: Long Island: Anthem (516) 864-6600;
ArrowlKierulff (516) 231-1000; Hall-Mark (516) 737-0600;
Marshall (516) 273-2424; Lex (516) 231-2500; Zeus
(914) 937-7400:
Rochester: Arrow/Kierulff (716) 427-0300; Hall-Mark
(716) 425-3300; Marshall (716) 235-7620; lex (716)
383-8020;
Syracuse: Marshall (607) 785-2345.
NORTH CAROLINA: Arrow/Kierulfi (919) 87&3132;
Hall-Mark (919) 872-0712; Marshall (919) 878-9882; lex
(919) 876-0000
OHIO: Cleveland: Arrow/Kierulff (216) 248-3990;
Hall-Mark (216) 349-4632; Marshall (216) 248-1788; Lex
(216) 464-2970:
Columbus: Han-Mark (614) 888-3313;
Dayton: Arrow/Kierulff (513) 435-5563; Marshall (513)
898-4480; lex (513) 439-1800; Zeus (5l3) 293-6162.
OKLAHOMA: Hall-Mark (918)254-6110; Lex (918)
622-8000.
PENNSYLVANIA: Blue Bell: (215) 825-9500
PUERTO RICO: Halo Rey: (809) 753-8700
Sacramento: Hall-Mark (916) 624·9781; Marshall (916)
635-9700; lex (916) 364-0230; Wyle (916) 638-5282;
TEXAS: Austin: (512) 250-6769
Dallas: (214) 917-1264
Houston: (713) 778-6592
UTAH: Salt Lake City: (801)466-8973
San Diego: Anthem (619) 453-9005; ArrowlKierulff (619)
565-4800; Han-Mark (619) 268-1201; Marshall (619)
578·9600; lex (619) 495-0015; Wyle (619) 565-9171;
Zeus (619) 277-9681;
WASHINGTON: Redmond: (206) 881-3080
San Francisco Bay Area: Anthem (408) 453-1200;
Arrow/Kierulff (408) 441-9700; Hall-Mark (408) 432-4000;
Marshall (408) 942-4600; lex (408) 432-7171; Wyle
(408) 727-2500; zeus (408) 629-4789.
TEXAS: Austin: ArrowlKieru!ff (512) 835-4180;
Hall-Mark (512) 258-8848; lex (512) 339-0088; Wyle
(512) 345-8853;
COLORADO: Anthem (303) 79Q-4500; ArrowJKierulff
(303) 373-5616; Hall-Mark (303) 790-1662; Marshall
(303) 45 H3383; lex (303) 799-0258; Wyle (303)
457-9953.
Dallas: Anthem (214) 238-7100; ArrowlKierulff (214)
380-6464; Hall-Mark (214) 553-4300; Marshall (214)
233-5200; lex (214) 247-6300; Wyle (214) 235-9953;
Zeus (214) 783-7010;
TI Regional
Technology
Centers
CONNECTICUT: Anthem (203) 575-1575; ArrowlKierulff
(203) 265-7741; Hatl-Mark (203) 271-2844; Marshall
(203)265-3822; Lex (203)264-4700.
FLORIDA: Fort Lauderdale: ArrowlKierulff (305)
429-8200; Hall-Mark (305) 971-9280; Marshall (305)
977-4880; Lex (305) 421-6633;
Houston: ArrowA
Source Exif Data:
File Type : PDF
File Type Extension : pdf
MIME Type : application/pdf
PDF Version : 1.3
Linearized : No
XMP Toolkit : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date : 2017:07:27 17:20:44-08:00
Modify Date : 2017:07:27 22:24:06-07:00
Metadata Date : 2017:07:27 22:24:06-07:00
Producer : Adobe Acrobat 9.0 Paper Capture Plug-in
Format : application/pdf
Document ID : uuid:eee8c7e1-caef-dc40-b857-6e9fa79335d2
Instance ID : uuid:49238ca1-2a3f-904c-8f71-ff7da9dc7193
Page Layout : SinglePage
Page Mode : UseNone
Page Count : 1420
EXIF Metadata provided by EXIF.tools