1992_TI_Linear_Circuits_Data_Book_Vol_1 1992 TI Linear Circuits Data Book Vol 1

User Manual: 1992_TI_Linear_Circuits_Data_Book_Vol_1

Open the PDF directly: View PDF PDF.
Page Count: 1420

Download1992_TI_Linear_Circuits_Data_Book_Vol_1 1992 TI Linear Circuits Data Book Vol 1
Open PDF In BrowserView PDF
Suggested Retail Price: $17 .95

•
TEXAS
INSTRUMENTS

Linear Circuits
Operational Amplifiers

1992

1992

Linear Products

Linear Products Quick Reference Guide
Data Book

Contents

Document No.

•

Optoelectronics and
Image Sensors

Optocouplers
CCD Image Sensors and Support
Phototransistors
IR-Emitting Diodes
Hybrid Displays

SOYD002A, 1990

•

Speech System Manuals

TSP50C4X Family
TSP50C10/11 Synthesizer
TSP53C30 Synthesizer

SPSS010, 1990
SPSS011,1990
SPSV006, 1991

•

Interface Circuits

Data Transmission and Control
Circuits, Peripheral Drivers/Power
Actuators, Display Drivers

SLYD006,1991

•

Telecommunications
Circuits

Transmission, Switching, Subscriber,
Transient Suppressors

SCTD001 B, 1991

•

Linear and Interface
Circuits Applications

Op Amps/Comparators, Video Amps,
VRegs, Power Supply Design, Timers,
Display Drivers, Datran, Peripheral
Drivers, Data Acq., Special Functions

SLYA005,1991

•

Mass Storage ICs
Designer's Reference
Guide

Disk Drivers: Read/Write, Servo/System
Control, Interface/Linear, Digital ASIC,
LinASICTM, Applications

SSCA001, 1992

•

Macromodel Data Manual

Levell: Operational Amplifiers,
Voltage Comparators, Building Blocks
Levell!: Selected Operational Amplifiers,
Buildilng Blocks

SLOS047B, 1992

January 1992

LinASIC is a trademark of Texas Instruments Incorporated.

General Information

..
-=...

~~~~~~~~
Operational Amplifiers

~~~~~~~~~
~M_e_C_h_a_n_ic_a_I_D_a_t_a____________________~1IDI

Linear Circuits
Data Book
1992
Volume 1
Operational Amplifiers

•

TEXAS
INSTRUMENTS

IMPORTANT NOTICE
Texas Instruments (TI) reserves the rightto make changes to or to discontinue any
semiconductor product or service identified in this publication without notice. TI
advises its customers to obtain the latest version of the relevant information to
verify, before placing orders, that the information being relied upon is current.
TI warrants performance of its semiconductor products to current specifications
in accordance with TI's standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty.
Unless mandated by government requirements, specific testing of all parameters
of each device is not necessarily performed .
. TI assumes no liability for TI applications assistance, customer product design,
software performance, or infringement of patents or services described herein.
Nor does TI warrant or representthat license, either express or implied, is granted
under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which
such semiconductor products or services might be or are used.
Texas Instruments products are not intended for use in life-support appliances,
devices, or systems. Use of a TI product in such applications without the written
consent of the appropriate TI officer is prohibited.

Copyright © 1992, Texas Instruments Incorporated
Printed in the U.S.A.

INTRODUCTION
Texas Instruments offers an extensive line of industry-standard and leadership products dedicated to Operational
Amplifier functions. The technologies represented in this book include traditional bipolar through BIDFET, BIFET,
IMPACT'" , LinCMOS'", Advanced linCMOS'", and Excalibur processes. The 1M PACT'" , Advanced linCMOS'",
and Excalibur technologies feature a step-function improvement in impedance, speed, power requirements, and
threshold stability.
This data book (Volume 1 of 3) provides information on the extensive listing ofTexas Instruments Operational Amplifier
products.
•
•
•
•
•
•

Commercial, Industrial, Automotive, and Military Temperature Ranges
Noncompensated, Single, Dual
Intemally Compensated, Single, Dual, Quad
Precision, Chopper-Stabilized
Excalibur: High-Speed, Low-Power, Precision, JFET Input, J-lPower, High Output, Low Noise
Precision virtual ground

EXCALIBUR PROCESS DISCUSSION: TLE2425
The TI complementary bipolar process (Excalibur) has several key components, which yield the high performance
of the TLE2425 Virtual Ground. Excalibur is a 44-V n-epi bipolar process that includes isolated high-speed PNPs,
metal-nitride-poly capacitors, p-channel JFETs, as well as the common bipolar devices. In other bipolar processes,
the capacitors have one plate made from the silicon substrate (bottom) and the other from metal. At low levels of
operating current, the leakage current from the silicon bottom plate can significantly impact the dc performance of the
circuits. The ac performance is also effected by the parasitic substrate capacitance. Use of the poly-nitride-metal
capacitor significantly reduces these effects, yielding higher ac performance and stable bias currents. Precision
p-channel JFETs are used in the current reference circuit to generate a temperature stable micropower current source.
Since this current source is used throughout the circuit, parametric performance stability is improved over the
operating temperature range. Single-supply circuits frequently are performance limited by the ac characteristics of
the PNP transistors. Using high-speed PNP transistors in the Signal path ofthe amplifier permits the TLE2425 to have
a three-to-five times higher bandwidth. This translates into improved load regulation and line regulation over
frequency. The capacitors, JFETs, and isolated PNP transistors all work together to provide a high-performance virtual
ground in a small package at low cost. This could not be accomplished with other process technologies.

FEATURES IN THIS BOOK
•
•
•
•
•

New Excalibur process devices
Selected Macromodel programs (Level I)
Expanded product characterization over supply voltage and temperature
Extensive graphs showing the characterization
New space-saving packages, 3-to-20 leads, TSSOP and SOT-89

The alphanumeric listing in this data book includes all devices contained in Volumes 1,2, and 3. Products in this book
are shown in BOLD type. Thus, the reader can easily find the particular volume for a given device. Also included are
those new products added to this volume as indicated by a dagger(t). The selection guide includes a functional
description of each device by providing key parametric information and packaging options. Ordering information and
mechanical data are in the last section of the book.

IMPACT, LinCMOS and Advanced LinCMOS are trademarks of Texas Instruments Incorporated.

v

Complete technical data for all TI semiconductor products are available from your nearest TI Field Sales Office, local
authorized TI distributor, or by writing directly to:
Texas Instruments Incorporated
LITERATURE RESPONSE CENTER
P.O. BOx 809066
Dallas, Texas 75380-9066
We sincerely feel that this new 1992 Linear Circuits Data Book, Volume 1, will be a significant addition to your technical
literature from Texas Instruments.

vi

1-1

Contents
Page
Alphanumeric Index ..................................................... 1-3
Operational Amplifiers - Selection Guide ............................. 1-7
Operational Amplifiers - Cross-Reference Guide ..................... 1-35
Operath)nal Amplifiers - Glossary ...................................... 1-41

1-2

ALPHANUMERIC INDEX

AD7524 ............•..... VOL 2
AD7524M ................
AD7528 •........... . . . . ..
AD7528M ................
AD762B .........•.. . . . . ..
ADCOB03 ..•.............
ADCOB04
ADCOBOS
ADCOBOB
ADCOB08M ..•......•.....
ADCOB09 ................
ADC08208 ....•..........
ADCOB20C
ADCOB31A
ADCOB318
ADCOB32A
ADCOB328
ADC0834A
ADC0834B
ADC0838A
ADC0838B
ICL7135 .................
LF347 •••••••••••••••••••
LF347B ••••••••••••••••••
LF351 •••••••••••••••••••
LF353 •••••••••••••••••••
LF411C ••••••••••••••••••
LF412C ••••••••••••••••••
LM101A •••••••••••••••••
LM107 ••••••••••••••••••
LM108 ••••••••••••••••••
LM108A •••••••••••••••••
LMlll ...................
t
LM118
LM124 ••••••••••••••••••
LM139 ..................
LM139A ..............•..
LM148 ••••••••••••••••••
LM158 ••••••••••••••••••
LM158A ••
LM18S-1.2 ................

! ..............

VOL 2
VOL 2
VOL 2
VOL 2
VOL 2
VOL2
VOL2
VOL2
VOL 2
VOL 2
VOL 2
VOL2
VOL2
VOL2
VOL2
VOL 2
VOL 2
VOL2
VOL2
VOL2
VOL 2
2-3
2-3
2-5
2-7
2-9
2-11
2-13
2-19
2-23
2-23
VOL3
2-35
2-39
VOL3
VOL3
2-47
2-51
2-51
VOL3

LM18S-2.S ..............•. VOL3
LM193 .................. VOL3
LM201A ••••••••••••••••• 2-13
LM207 ... t ..............
LM208 ..................
LM208A .. 1. .. .. .. .. .. ...
LM211 ••......••.........

2-19
2-23
2-23
VOL3

LM218 ••••••••••••••••••
LM224 ••••••••••••••••••
LM224A ••••••• ,., •• " •• ,
LM236-2.S ...... ,.........

2-35
2-39
2-39
VOL 3

LM237
LM239

............•...•. VOL3
........•.....•... VOL3

LM239A .......•....•....
LM248 , ••••••••••••••• ,.

VOL 3
2-47

LM258 ." •• , . , ' , . , " , . , '
LM258A .................
LM2B5-1.2 ...............
LM2BS-2.5 .....••........
LM293 ...•........•.....
LM293A ......••...•....•
LM301A ••••••••••• ,.,...
LM306
LM307 ••• " ••• , •• " . . . . .
LM308 ••••••••• , ••• , •• ,.
LM308A .................
LM311 ..•....•..•.......
LM311Y ...•........•....
LM318 ••••••••••••••••••
LM324 ..................
LM324A ••
LM324Y •• , ••••• ,., •• ,...
LM336-2.5 •...•..........
LM337 ...••....•..•.....
LM339 ...•..............
LM339A ........••.....•.
LM339Y .•.•....••..•.••.
LM348 ••••••• , ••••••••••
LM358 •••••••• , •• , ••• ,.,

2-51
2-51
VOL3
VOL 3
VOL3
VOL 3
2-13
VOL3
2-19
2-23
2-23
VOL3
VOL3
2-35
2-39
2-39
2-39
VOL 3
VOL3
VOL3
VOL 3
VOL 3
2-47
2-51

LM358A ,.
LM358Y •• " •••••• ,.,.,..
LM38S-1 .2 ...............
LM3858-1.2 ........•.....
LM38S-2.5 ....•..........
LM3858-2.5 ...•.........•
LM393 ......•...........
LM393A
LM393Y
LM2900
LM2901
LM2901 Q ....•.••..•.••..
LM2902 .................
LM2902Q • -:, ••• , •• , , • , • "
LM2903 ..•....•••••....•

2-51
2-51
VOL 3
VOL 3
VOL 3
VOL 3
VOL3
VOL3
VOL3
2-61
VOL3
VOL 3
2-39
2-39
VOL 3

r ........ ,. . ..

r .,' ..... ,.. ..

.•••.........••.

VOL 3

LM2904 •• 't' ... , , , , . , . , "
LM2904Q ., ••••••••••• " .
LM2907 ..•....•..••.•..•
LM2917 ...•...•.......••
LM2930-5 ................
LM2930-8 .•..........••••
LM3302 ...•.....•......•
LM3900 , ••••••••••• ,....
LP111 .•..............•.•
LP211
LP239
LP311

2-51
2-51
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
2-61
VOL 3
VOL3
VOL3
VOL3

LM2903Q

LP339 •.••...•.•.•••...•
LP2901 •..••••..•..•..••
LT1004 •.•.••...••. ,....
LTl007 , •• , ••• ', ••• , •• ,.
LTl007A , ......... ',.,.,
LT1009 ...•...•....•...•
LT1013 ••• ,t.. ,' ...... ,..
LTl013A ., .t... , ... , . , , ,.

VOL3
VOL 3
VOL 3
2-69
2-69
VOL 3
2-93
2-93

LTl013D ,.,t.. " .. " ... ,.
LT1013Y ••• t....... , .... ,
LT1037 ••••••• , ••••• ,...
LTl037A ••••••••••••••••
LT1054 •..•...•......•..
LT1070 ••........•....••
LT1070HV ...•...••....••
LT1071 .••.•...•.•..•..•
LT1071HV ...............
LT1072 •••.....•..••..••
LT1072HV ..•..•.•....•..
LT10B4C .•....•...••..•.
LTC1052 ••• t........ , . . ..
MC1445 •.••.•••••.••••..
MC1458
MC1558
MC3303
MC3403
MC3423
MC34060 ....••..•......•
MC79L05C ......•..••....
MC79L05AC ....•••.•..••
MC79L12C ...............
MC79L12AC ...•...•.••••
MC79L15C ...............
MC79L15AC .......••••.•
MF4A-50 •...•.•..••••.••
MF4A-l00 •....•.•.•••.••
MF10A ...••..•.•...••..
MF10C ..•..•.••.••••..•
NE555 ...••••.•••.•.•...
NE555Y ..........•.•...•
NE556 ••.•••••••.•.••..•
NE592 .•..••.••••.•.••..
NE5532 •••• , ••••••• ,....
NE55321 ••••• , •• , •• ,',..
NE5532A ••••••••••••••••
NE5532AI ••••••••• , . " . .

2-93
2-93
2-69
2-69
VOL3
VOL 3
VOL 3
VOL3
VOL3
VOL 3
VOL3
VOL3
2-117
VOL3
2-121
2-121
2-125
2-125
VOL3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 2
VOL 2
VOL2
VOL2
VOL3
VOL 3
VOL3
VOL3
2-131
2-131
2-131
2-131

NE5534 ' ••• ,',." •• " . . .
NE5534A •• , •••••••• ,....
OP07C
OP07D
OP07Y
OP27A
OP27C
OP27E

2-135
2-135
2-141
2-141
2-141
2-149
2-149
2-149

tNew devices added to this volume.

TEXAS

~

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

1-3

ALPHANUMERIC INDEX

OP27G
OP37A
OP37C
OP37E
OP37G
RC4136 ••••••••••••••• ••
RC4558 ..
RC4558Y ................
RC4559
RM4136 •••••••••••••••••
RM4558 •••••••••••••••••
RV4136 ••••••••••••••••••
RV4558
SA555
SA556
SE555
SE555C .................
SE556 ..................
SE556C ............•..••
SE592 •...........•••..•
SE5534 ••••••••••••••••••
SE5534A ••••••••••••••••
SG2524 ..........••..••.
SG3524 ......•....••....
SN76494 ..............•.•
SN76494A ................
SN76496 .................
SN76496A ...•.••....•.••.
TL010C ..................
TL0101 .....•..••...•.•..
TL011 ...................
TL012 ...........•.....•.
TL014A ........•..•••...•
TL021 .........•.........
TL022C ••••••••••••••••••
TL022M •••••••••••••••••
TL026C ..................
TL027C ••••••••••••••••••
TL031 •••••••••••••••••••
TL031A ••••••••••••••••••
TL032 ...................
TL032A ..................
TL034 ...................
TL034A ..................
TL040C •.•.......•••..•.•
TL041AC .................
TL044C ..................
TL044M •••••.•••••••••••
TL051 •.•••••••••••••••••
TL051A ••••••••••••••••••
TL052 ...................
TL052A ..................
TL054 •••••••••••••••••••
TL054A ••••••••••••••••••

t ..............

2-149
2-149
2-149
2-149
2-149
2-159
2-163
2-163
2-169
2-159
2-163
2-159
2-163
VOL3
VOL 3
VOL 3
VOL 3
VOL3
VOL 3
VOL3
2-135
2-135
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL3
VOL 3
VOL 3
VOL3
2-171
2-171
VOL 3
VOL 3
2-175
2-175
2-203
2-203
2-229
2-229
VOL 3
VOL 3
2-253
2-253
2-257
2-257
2-283
2-283
2-311
2-311

TL061 •••• • • • • • • • • • • • • ••
TL061A •••••••••••••••••
TL061B .................
TL062 ••••••••••••••••••
TL062A •••••••••••••••••
TL062B •••••••••••••••••
TL064 ••••••••••••••••••
TL064A •••••••••••••••••
TL064B •••••••••••••••••
TL066C .................
TL0661 ..................
TL066M •••••••••••••••••
TL066AC ................
TL070C .................
TL071 ••••••••••••••••••
TL071A •••••••••••••••••
TL071 B .................
TL072 ..................
TL072A .................
TL072B .................
TL074 ••••••••••••••••••
TL074A •••••••••••••••••
TL074B •••••••••••••••••
TL080C .................
TL081 ..................
TL081 A •••••••••••••••••
TL081 B .................
TL082 ....... .. .. .. • ....
TL082A .................
TL082B •••••••••••••••••
TL084 ..................
TL084A. • • • • • • • • • • • • • • ••
TL084B •••••••••••••••••
TL087 ..................
TL088
TUB2
TUB5
TU88
TU91
TLSCSI285 ..••••.•.•.....
TL287 ..................
TL288 ..................
TL430C .................
TL4301 ..................
TL431C .................
TL431 I ..................
TL431M .................
TL431AC ........... ; ....
TL431AI ....•.•..•..•....
TL441AM ....•...•.•..•••
TL494 ..................
TL494M .................
TL496C .................
TL497AC ................

2-341
2-341
2-341
2-341
2-341
2-341
2-341
2-341
2-341
2-357
2-357
2-357
2-357
2-371
2-371
2-371
2-371
2-371
2-371
2-371
2-371
2-371
2-371
2-387
2-387
2-387
2-387
2-387
2-387
2-387
2-387
2-387
2-387
2-401
2-401
VOL2
VOL2
VOL 2
VOL 2
VOL 3
2-401
2-401
VOL 3
VOL 3
VOL3
VOL3
VOL3
VOL3
VOL 3
VOL3
VOL3
VOL 3
VOL 3
VOL3

tNew devices added to this volume.

TEXAS ..,
INSTRUMENTS
1-4

POST OFFICE BOX 655303 • DALlAS, TEXAS 75265

TL497AI ••.•••••••••.••••
TL499AC ................
TL500 •••.••••••••••••••
TL501
TL502
TL503
TL505C .................
TL507 ••••••••••••••••••
TL5~2 ..................
TL592B .................
TL594C ••••..•.••••••...
TL5941 ..................
TL598 ..................
TL598M ••••.•••..•••••.•
TL601 ..................
TL604 ..................
TL607
TL61 0
TL712 ..................
TL714C .................
TL721
TL750L05
TL750LOB
TL750L10
TL750L12
TL750M05
TL750MOB
TL750Ml0
TL750M12
TL751L05 •.••.•••.••••••
TL751L05M .......... '....
TL751 LOB ...............
TL751Ll0 .••..•..•••.•.•
TL751L12 .•••••••.••.•••
TL751L12M ..............
TL751M05 ...............
TL751 MOB
TL751Ml0
TL751M12
TL7BO-05
TL7BO-12 ..••.•••.•...•••
TL7BO-15 .,..............
TL782C
TL7820
TL783C
TL080B
TLOa09
TL.851
TL852 ..................
TL853 •••.•.••..•.••••••
TL1431C
TL14310 ................
TL1431Y •••••••••..•••••
TL1451AC .••••••••••.•••

VOL 3
VOL 3
VOL2
VOL 2
VOL2
VOL2
VOL 2
VOL2
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL2
VOL2
VOL 2
VOL 2
VOL 3
VOL3
VOL3
VOL 3
VOL 3
VOL 3
VOL3
VOL 3
VOL3
VOL 3
VOL 3
VOL 3
VOL 3
VOL3
VOL3
VOL3
VOL3
VOL 3
VOL3
VOL3
VOL3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 2
VOL 2
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL3
VOL3

ALPHANUMERIC INDEX

TL2217-285
TL2S28Y •• 'f ............ .
TL2828Z •• 't' ............ .
TL2829Y ............... ..
TL2829Z •••t ............. .
TL5501
TL5601
TL5602
TL7702A
TL7702B
TL7705A
TL7705B
TL7709A
TL7712A
TL7715A
TL7757
TL7759C ......
TL7770-5
TL7770-12
Of

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00000000000000000

0

0

0

0

0

0

0000

0

0

TL7770-15 't'
TL33071
TL33071 A ••t",
0

0

0"

0"

0

0

0

0

..

0

0

0

..

0

0

..

0

0

0

0

....

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

000

0

0

••

00'

0

,

0

0

0

•

,

•••

,

,

•

0

0

••

t
TL33072 •• 't'"
TL33072A .............. ..
TL33074 •••t ....• , , .... , ,.
TL33074A • .t... ,., ..... , ..
TL34071 •••t ... , .... , .... .
TL34071A ••t ............. .
TL34072 ",t........... , ..
TL34072A ••t ..... , , , .... , .
0

0

•••

'

•••••

VOL3
2-421
2-421
2-429
2-429
VOL 2
VOL 2
VOL 2
VOL3
VOL3
VOL 3
VOL3
VOL3
VOL3
VOL3
VOL 3
VOL 3
VOL3
VOL 3
VOL3
2-443
2-443
2-443
2-443
2-443
2-443
2-443
2-443
2-443
2-443
2-443

TL34074 •• .t." ..... , .... .
TL34074A ••t, ....... , , ..•. 2-443
t . , ., ... , ... , , 2-443
TL35071 •• 't'
TL35071A .,.,' •••••••••• ' 2-443
TL35072 •••t ... " ........ . 2-443
TL35072A • •
2-443
TL35074 , •••• ,.,', ••• , ••• 2-443
TL35074A ••t, , , ..... , ..... 2-443
TLC04
VOL2
TLC10
VOL 2
TLC14
VOL 2
TLC20
VOL2
TLC139M
VOL3
TLC251C •••••••• " •••• ,. 2-449
TLC251AC .,., ••••••••••• 2-449
TLC251BC ............... 2-449
TLC251Y
2-449
TLC252C
2-467
t , .......... . 2-467
TLC252Y ....

i..... ,.... ,.. .

0000000000000000

,.!, ............

t ............ ,

TLC254C ..
TLC254Y •• ,., •• ,........
TLC25L2C .,',., ••• , ••• ,.
TLC25L2Y • ~ •••• , • , • • • • ••
TLC25L4C ...............

2-487
2-487
2-467
2-467
2-487

TLC25L4Y

2-487

TLC25M2C • t' .......... ,.
TLC25M2Y •• ,............

2-467
2-467

TLC25M4C • t" . .. .. . . ....
TLC25M4Y •••• ,..........

2-487
2-487

TLC271
TLC271A
TLC271 B
TLC272

•••••••••••••••••
••••••••••••••••
••• , •••••• ,',...
.................

2-507
2-5072-507
2-565

TLC272A ................
TLC272B •••• ,., •••••• ,..
TLC274 ••••••••••••• ,...
TLC274A •••••• ,', •••• " .
TLC274B ••••••••••••••••
TLC277 .................

2-565
2-565
2-597
2-597
2-597
2-565

TLC279 ' •••••• " . . . . . . . .
TLC27L2 •••••• ,',.......
TLC27L2A •••••••• , •• , •• ,
TLC27L2B •••••• ,', ••• ,..
TLC27L4 " , •••••• ,......
TLC27L4A •••••••• ,......

2-597
2-629
2-629
2-629
2-661
2-661

TLC27L4B ." ••• " •••• ,"
TLC27L7
TLC27L9 ••• " ••• ,',.,.,.
TLC27M2 ................
TLC27M2A ...............
TLC27M2B ., •••••• ,......
TLC27M4 ••••••••••••••••
TLC27M4A ,.,.' •••• , ••• ,.
TLC27M4B " , ••••• " •••• ,
TLC27M7
TLC27M9 ••••••• ,........
TLC339C •.
TLC3391 o.
TLC339M
TLC339Q •
TLC352C
TLC3521 .
TLC352M ...•
TLC354C o .
TLC3541 .
TLC354M .
TLC371 .
TLC372C
TLC3721 ..
TLC372M •........
TLC372Q .
TLC374C
TLC3741 ..
TLC374M
TLC374Q .•
TLC393C ...
TLC3931
TLC393M

2-661
2-629
2-661
2-693
2-693
2-693
2-725
2-725
2-725
2-693
2-725
VOL 3
VOL 3
VOL3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL3
VOL 3
VOL 3
VOL 3
VOL 3

••

0

0

0

0

•

0

0

0

0

•

0

••

0

0

•

0

0

••

0

•

0

0

•

0

0

•

0

•

0

•

0

•

0

•

0

••

0

0

0

0

0

0

0

0

0

•

0

0

0

0

0

••

0

0

•••

0

•

0

•

0

•

0

•

•

•

0

0

0

•••

0

•

0

••

0

0

0

0

0

0

0

0

0

••

0

0

0

0

0

0

0

•

0

0

0

0

0

•

0

••

0

0

0

••••

0

0

0

0

0

••••••

0

0

o.

••••

0

•

•

0

0

0

0

•••••

0

0

0

0

••••••

0

0

•••••

0

0

..........

0

•

•

•

•

••

0

0

0

0

0

•••

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

•

••

0

0

0

0

0

••

0

0

0

0

•

0

••

0

•

0

0

0

0

0

•

0

0

0

0

0

0

0

0

0

0

..

0

0

0

•

••

••

0"

0

0

0

••

0

0

0

0

0

0

0

0

0

0

0

••

0

0

0

0

•

0

0

0

•

0

0

•

0

0

0

0

TLC532A ,., •.
TLC533A
TLC540 ..
TLC541
TLC542
TLC545
TLC546
TLC548
TLC549
TLC551C
TLC551Y
TLC552C
TLC555C
TLC5551
TLC555M
TLC555Y
TLC556C
TLC5561
TLC556M ..•
TLC0820A
TLC0820B ...
TLC1078
TLC1079
TLC1125
TLC1225
TLC1540
TLC1541
TLC15501
TLC1551I
TLC2201
TLC2201A •••••••••••••••

VOL2
VOL2
VOL2
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL 3
VOL 2
VOL 2
2-757
2-771
VOL 2
VOL2
VOL2
VOL 2
VOL2
VOL2
2-785
2-785

TLC2201 B .. t .. .. .. .. ....
TLC2201Y ••••• ,.........

2-785
2-785

TLC2202 ...
TLC2202A .. t .. . .. .. .. ...
TLC2202B ,. t . . . . . . . . . . ..
TLC2202Y ..
TLC2272 '"
TLC2272A .. t .. .. . .. . ....
TLC2272Y •••••• , •• , . " . .
TLC2652 •••• ,., •••••••• ,

2-813
2-813
2-813
2-813
2-841
2-841
2-841
2-861

TLC2652A "t ... , .. ,.,...
TLC2652Y " •••• , ••••••• ,
TLC2654 " •••••••••••• ,'
TLC2654A ••• ,.,.........
TLC2654Y ••
TLC3702C ..
TLC37021 ..
TLC3702M
TLC3702Q ...•••
TLC3704C
TLC37041 . . . . . .. .. . .. • . •.
TLC3704M
TLC3704Q •

2-861
2-861
2-885
2-885
2-885
VOL 3
VOL 3
VOL3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3

0

0

•

••

0

0

0

•

0

0

0

0

.....

0

0

••

0

0

0

0

0

•

0

••

0

0

•

••

0

••••

.....

••

0

0

0

0

0

0

0

0

••

0

0

0

••

0

•

••

0

•

•

•

•

•

•

•

••

•

0

0

•

0

f............

t

t............

t. . . . . . . . . . ..

! ........ ,',.
0

0

•••

•

•

•••••

0

•

••

0

0

•

•

••

0

0

••

••••••

•••

000

0

•••

0

0

•

•

•

••

0

0

•

•

0

0

•

0

0

••

0

••

0

0

0

••••

0

••••••

0

••

0

0

•

•

••

0

••

0

•

0

•

•

0

VOL 2
VOL 2
VOL 2
VOL2
VOL2
VOL2

tNew devices ddded to this volume.

TEXAS ~

INSTRUMENTS
POST OFFIC~ BOX 655303 • DALLAS, TEXAS 75265

1-5

ALPHANUMER~INDEX

TLC4016 ..............•.• VOL 2

TLE2082Y

•• :............

2-1147

TLC4066 .............•.•.
TLC5502·5 •......•...••••
TLC5503·2 ...•......•....
TLC5503-5 ............••.
TLC5602 ...••.......•.•.•
TLC5602A ....•....•.•...•

VOL 2
VOL 2
VOL 2
VOL 2
VOL 2
VOL 2

TLE2141 •••
TLE2141A ••
TLE2141Y •••••••••••••••
TLE2142 ••• :............
TLE2142A ••
TLE2142Y ••

J'. . . . . . . . . . ..

2-11B1
2-1181
2-1181
2-1199
2-1199
2-1199

TLC7135
TLC7524
TLC7528
TLC7628
TLC32040

VOL 2
VOL 2
VOL2
VOL 2
VOL 2

TLE2144 •••
TLE2144Y •• ~ ••••••••••••
TLE2161 • • • • • • • • • • • • • • ••
TLE2161A ••

1............

2-1227
2-1227
2-1255
2-1255

TLC32041
TLC32042
TLC32044

VOL2
VOL 2
VOL 2
VOL2
VOL2
VOL2
VOL 2
VOL2
VOL2
VOL 2
2-909

TLE2161B .. t
TLE2227 '"
TLE2227A •••••••••••••••
t
TLE2237 ••• T' . . . . . . . . . ..
TLE2237 A •••••••••••••••
TLE2425C ...............
TLE24251 ................
TLE2425M ...•...........
TLE2425Y ...........•...
TLE2426 ...•.•..........
TLE2426Y ...............
uA709C •••••••••••••••••
uA709M •••••••••••••••••

2-1255
2-1289
2-1289
2-1295
2-1295
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
2-1301
2-1301

uA709AM ••••••••••••••••
uA723C .•..••••••••...•.

2-1301
VOL 3

uA723M .•..•..•.•••.•..•
uA733C
uA733M
uA741C •••••••••••••••••
uA741 I ••••••••••••••••••
uA741M

VOL 3
VOL3
VOL3
2-1305
2-1305
2-1305
2-1313
2-1313
2-1319
2-1319

TLC32044M ...............
fLC32045
TLC32046
TLC32047
TLC32071
TLC34058 ...............
TLC34075 ...............
TLE2021 ••••t ............
TLE2021A •••t ............
TLE2021 B •••t ............
TLE2021Y •••t............

.
.

.
. 2-909

.

2-909

. 2-909
TLE2022 ••••t ............ . 2-935
TLE2022A •••t ............ . 2-935
TLE2022B •••t ............ . 2-935
TLE2022Y •••t............ . 2-935
TLE2024 ....t ........... .. 2-963
TLE2024A •••t ............ . 2-963
TLE2024B •••t ......• ; .... . 2-963
TLE2024Y •••t ............ . 2-963
TLE2027 •••
2-991
TLE2027A •••t ............ . 2-991
TLE2037 ••••t ............ . 2-1015
TLE2037A ., .t............ . 2-1015

.t............ .

TLE2061 ••••t ............ . 2-1039
TLE2061 A •••t ............ . 2-1039
TLE2061 B ...t ............ . 2-1039
TLE2061Y •••t............ . 2-1039
TLE2062 •• , .t............ . 2-1075
TLE2062A •••t ............ . 2-1075
TLE2062B •• .t............ . 2-1075

1-'t . • • • •• . •. ••
1-' • •• • . • • • • .•

J'.... .... ....

!............

1-"'" ........
1-' . •. •. . • • . ••

uA747C
uA747M
uA748C
uA748M
uA2240C

•....•..........

VOL 3

uA7805 .•••.............
uA7805Q ......•.....•..•
uA7806
uA7808

VOL3
VOL 3
VOL3
VOL3
VOL3
VOL3

uA7810
uA7812
uA7812Q ...•............
uA7815 ...•...........•.

TLE2062Y •• .t............ . 2-1075
TLE2064 ••••t ............ . 2-1111

uA7818
uA7824

TLE2064A •••t ............ . 2-1111
TLE2064B •••t ............ . 2-1111
TLE2064Y •••t............ . 2-1111

uA7885
uA78L02C ... •..•.....••
uA78L02AC .••••.••..•.•.

TLE2082 .... t
TLE20B2A ••• t

uA78L05C
uA78L05Q ••.............

.......... ..
........... .

2-1147
2-1147

VOL 3
VOL 3
VOL3
VOL3
VOL3
VOL 3
VOL 3
VOL3
VOL 3

tNew devices added to this volume.

TEXAS •

INSTRUMENlS
1-6

POST OFF1CE BOX 655303 • DALLAS. TEXAS 75265

uA78L05AC .....•....•.••
uA78L05AQ •.•...•.•..•..
uA78L06C .•.•..•.•.•.•.•
uA78L06AC .......•••.••.
uA7BL08C ...•....•••....
uA78L08AC ........•••.•.
uA78L09C •.•....•.....••
uA78L09AC .......•••.•..
uA78L10C ...............
uA78L 1OAC .•..•••.•.•.••
uA78L12C ...............
uA78L 12Q .....•.......•.

VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL 3
VOL3
VOL3
VOL 3
VOL3
VOL 3

uA78L 12AC .............•
uA78L 12AQ ..............
uA78L15C ...............
uA78L 15AC ..........•..•
uA78M05C
uA78M05M
uA78M06C
uA78M08C
uA78M09C
uA78M10C
uA78M12C

VOL 3
VOL 3
VOL3
VOL 3
VOL3
VOL3
VOL3
VOL3
VOL3

uA78M12M
uA78M15C
uA78M20C
uA78M24C
uA7905C
uA7906C
uA7908C
uA7912C
uA7915C
uA7918C
uA7924C
uA7952C
uA79M05C
uA79M05M
uA79M06C
uA79M08C
uA79M12C
uA79M12M
uA79M15C
uA79M20C
uA79M24C .....•....•....
UC2842 .............•...
UC2843
UC2844
UC2845
UC3842
UC3843
UC3844
UC3845

VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL 3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3
VOL3

OPERATIONAL AMPLIFIERS
SELECTION GUIDE
noncompensated, single
commercial temperature range

DESCRIPTION

(values specified for T A
SUPPLY
VOLTAGE
(V)

VIO
(mV)

(nA)

AVO
(V/mV)

B1
(MHz)

SR
(V/Ils)

lIB

TYPE

PACKAGES

= 25°C)
PAGE
NO.

MIN

MAX

MAX

MAX

MIN

TYP

TYP

High Performance

±5

±1S

7.5

250

15

1

7.5

LM301A

D,P

High Performance

±2

±18

7.5

2

25

1

0.3

LM308

D,P

2-23

High Performance

±2

±18

0.5

2

80

1

0.3

LM308A

D,P

2-23

BIFET, Low Noise

±3.5

±18

10

0.2

25

3

13

TL070C

D,P

2--371

BIFET, General Purpose

±3.5

±18

15

0.4

25

3

13

TLOSOC

D,P

2--3S7

industrial temperature range

DESCRIPTION

High Performance, Bipolar

(values specified for T A = 25°C)
SUPPLY
VOLTAGE
(V)

VIO
(mV)

(nA)

AVO
(V/mV)

B1
(MHz)

SR
(V/IlS)

lIB

MIN

I MAX

MAX

MAX

MIN

TYP

TYP

±5

I ± 22

2

75

50

1

0.5

military temperature range

DESCRIPTION

2-13

TYPE

PACKAGES

LM201A

D,P

PAGE
NO.
2-13

(values specified for T A = 25°C)
SUPPLY
VOLTAGE
(V)

VIO
(mV)

(nA)

AVO
(V/mV)

(MHz)

SR
(V/I-'s)

liB

B1

TYPE

PACKAGES

PAGE
NO.

MIN

MAX

MAX

MAX

MIN

TYP

TYP

High Performance, Bipolar

±5

±22

2

75

50

1

0.5

LM101A

FK,JG,U,W

2-13

High Performance, Low Bias Current,
Bipolar

±2

±20

2

2

50

1

0.3

LM108

JG

2-23

High Performance, Low Bias Current,
Bipolar

±2

±20

0.5

2

SO

1

0.3

LM10SA

JG

2-23

1

0.3

uA709AM

J,JG,U,W

2-1301

General Purpose, Precision Input,
Bipolar

±9

±18

2

200

Typ
45

General Purpose, Bipolar

±9

±18

5

500

Typ
45

1

0.3

uA709M

J,JG,U,W

2-1301

General Purpose, Bipolar

±2

±22

5

500

50

1

0.5

uA74SM

JG,U

2-1319

TEXAS .J!I

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

1-7

OPERATIONAL AMPLIFIERS
SELECTION GUIDE
decompensated, single
(values specified for T A = 25°C)

commercial temperature range
DESCRIPTION

SUPPLY
VOLTAGE

M

VIO
(mV)

liB
(nA)

(y/mV)

GBW:I:
(MHz)

SR
(YhIS)

Avo

TYPE

PACKAGES

PAGE
NO.

MIN

MAX

MAX

MAX

MIN

TYP

TYP

Excalibur, Low Noise, High Speed,
Precision

±4

±22

0.025

90

10000

76

7.5

TLE2037AC

D,P

2-1015

Excalibur, Low Noise, High Speed,
Precision

±4

±22

0.1

90

5000

76

7.5

TLE2037C

D,P,Y

2-1015

Excalibur, JFET-Input, High-Output
Drive, flPower

±3.5

± 20

1.5

Typ
0.004

30

6.4

10

'TLE2161AC

D,P

2-1255

Excalibur, JFET-Input, High-Output
Drive, flPower

±3.5

±20

0.5

Typ
0.004

30

6.4

10

TLE2161BC

D,P

2-1255

3

Typ
0.004

30

6.4

10

TLE2161C

D,P

2-1255

Excalibur, JFET-Input, High-Output
Drive, flPower

±3.5

±20

t Y is chip form,
industrial temperature range

DESCRIPTION

(values specified for T A = 25°C)
SUPPLY
VOLTAGE

M

VIO
(mV)

liB
(nA)

AVO
fY/mV)

GBw:I:
(MHz)

SR
fY/flS)

TYPE

PACKAGES

PAGE
NO.

MIN

MAX

MAX

MAX

MIN

TYP

TYP

Excalibur, Low Noise, High Speed,
Precision

±4

±22

0.025

90

10000

76

7.5

TLE2037AI

D,P

2-1015

Excalibur, Low Noise, High Speed,
Precision

±4

±22

0.1

90

5000

76

7.5

TLE20371

D,P

2-1015

Excalibur, JFET-Input, High-Output
Drive, flPower

±3,5

±20

1,5

Typ
0.004

30

6.4

10

TLE2161AI

D,P

2-1255

Excalibur, JFET-Input, High-Output
Drive, flPower

±3.5

±20

0.5

Typ
0.004

30

6.4

10

TLE2161BI

D,P

2-1255

3

Typ
0.004

30

6.4

10

TLE2161I

D,P

2-1255

Excalibur, JFET-Input, High-Output
Drive, flPower

±3.5

±20

military temperature range

DESCRIPTION

(values specified for T A = 25°C)
SUPPLY
VOLTAGE

M

VIO
(mV)

liB
(nA)

(y/mV)

GBW+
(MHz)

SR
fY/flS)

Avo

TYPE

PACKAGES

PAGE
NO.

MIN

MAX

MAX

MAX

MIN

TYP

TYP

Excalibur, Low Noise, High Speed,
Precision

±4

±22

0.025

90

10000

76

7.5

TLE2037AM

D,FK,JG,P

2-1015

Excalibur, Low Noise, High Speed,
Precision

±4

±22

0.1

90

5000

76

7.5

TLE2037M

D,FK,JG,P

2-1015

Excalibur, JFET-Input, High-Output
Drive, flPower

± 3.5

±20

1.5

Typ
0.004

30

6.4

10

TLE2161AM

D,FK,JG,P

2-1255

Excalibur, JFET -Input, High-Output
Drive, flPower

±3.5

± 20

0.5

Typ
0.004

30

6.4

10

TLE2161BM

JG,P

2-1255

3

Typ
0.004

30

6.4

10

TLE2161M

D,FK,JG,P

2-1255

Excalibur, JFET -Input, High-Output
Drive, flPower

±3.5

±20

*Decompensated op amps are not unity-gain stable. Gain bandwidth product is specified with ACL =5.

TEXAS ~

INSIRUMENTS
1-8

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, single
commercial temperature range

DESCRIPTION

(values specified for T A = 25°C)
SUPPLY
VOLTAGE
(V)

VIO
(mV)

liB
(nA)

AVO
(V/mV)

81
(MHz)

SR
(V/Ils)

TYPE

PACKAGES

PAGE
NO.

MIN

MAX

MAX

MAX

MIN

TYP

TYP

BIFET

± 3.5

±18

10

0.2

25

3

13

LF351

D,P

2-5

BIFET

±3.5

±18

2

0.2

25

3

13

LF411C

D,P

2-9

High Performance

±2

±18

7.5

250

25

1

0.5

LM307

D,N,P,W

2-19

High Performance

±5

±20

10

250

25

15

70

LM318

D,P

2-35

Low Noise, High Speed, Precision Input

±2.5

±22

0.025

35

7000

8

1.7

LT1007AC

P

2~9

Low Noise, High Speed, Precision Input

± 2.5

±22

0.060

55

5000

8

1.7

LT1007C

P

2~9

Low Noise, High Speed,
Noncompensated, AVL " 5

±2.5

±22

0.025

35

7000

60

15

LT1037AC

P

2~9

Low Noise, High Speed,
Noncompensated, AVL" 5

±2.5

±22

0.060

55

5000

60

15

LT1037C

P

2~9

Low Noise, High Performance

±3

±22

4

1500

25

10

13

NE5534

D,P

2-135

Low Noise, High Performance

±3

±22

4

1500

25

10

13

NE5534A

D,P

2-135

Ultra-Low Offset Voltage

±3

±22

0.15

7

120

0.6

0.3

OP07C

D,P

2-141

Ultra-Low Offset Voltage

±3

±22

0.15

12

120

0.6

0.3

OP07D

D,P

2-141

±3.5

±18

0.8

0.2

5

1.1

2.9

TL031AC

D,P

2-175

BIFET, Low Power, Precision

±3.5

±18

1.5

0.2

5

1.1

2.9

TL031C

D,P

2-175

BIFET, Precision

±3.5

±18

0.8

0.2

50

3.1

20

TL051AC

D,P

2-257

BIFET, Precision

±3.5

±18

1.5

0.2

50

3.1

20

TL051C

D,P

2-257

BIFET, Low Power, Precision

BIFET, Low Power

±3.5

±18

6

0.2

4

1

3.5

TL061AC

D,P

2-341

BIFET, Low Power

±3.5

±18

3

0.2

4

1

3.5

TL061BC

D,P

2-341

BIFET, Low Power

±3.5

±18

15

0.2

3

1

3.5

TL061C

D,P

2-341

BIFET, Adjustable, Low Power

± 1.2

±18

6

0.2

4

1

3.5

TL066AC

D,P

2-357

BIFET, Adjustable, Low Power

± 1.2

±18

3

0.2

4

1

3.5

TL066BC

D,P

2-357

BIFET, Adjustable, Low Power

± 1.2

±18

15

0.4

3

1

3.5

TL066C

D,P

2-357

BIFET, Low Noise

±3.5

±18

6

0.2

50

3

13

TL071AC

D,P

2-371

BIFET, Low Noise

±3.5

±18

3

0.2

50

3

13

TL071BC

D,P

2-371

BIFET, Low Noise

±3.5

±18

10

0.2

25

3

13

TL071C

D,P

2-371

BIFET, General Purpose

±3.5

±18

6

0.2

50

3

13

TL081AC

D,P

2-387

BIFET, General Purpose

±3.5

±18

3

0.2

50

3

13

TL081BC

D,P

2-387

BIFET, General Purpose

±3.5

±18

15

0.4

25

3

13

TL081C

D,P

2-387

BIFET, Low VIO

±3.5

±18

0.5

0.2

50

3

13

TL087C

D,P

2-401

BIFET, Low VIO

±3.5

±18

1

0.2

50

3

13

TL088C

D,P

2-401

±2

±22

5

1500

25

4.5

10

TL34071

D,P

2-443

High-Slew Rate, Single Supply

TEXAS ~

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

1-9

OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, single (continued)
(values specified for TA = 25°C)

commercial temperature range
DESCRIPTION

SUPPLY
VOLTAGE

(V)
MIN

MAX

via
(mV)

liB
(nA)

AVO
(V/mV)

B1
(MHz)

SR
(V/lts)

MAX

MAX

MIN

TYP

TYP

30

0.1

TYPE

PACKAGESt

PAGE
NO.

0.04

TLC251AC

D,P

2-449

LinCMOS, Programmable, Low Bias

1.4

18

5

Typ
0.001

LinCMOS, Programmable, Medium Bias

1.4

18

5

Typ
0.001

20

0.7

O.S

TLC251AC

D,P

2-449

LinCMOS, Programmable, High Bias

1.4

18

5

Typ
0.001

10

2.3

4.5

TLC251.AC

D,P

2-449

LinCMOS, Programmable, Low Bias

1.4

18

2

Typ
0.001

30

0.1

0.04

TLC251BC

D,P

2-449

LinCMOS, Programmable, Medium Bias

1.4

18

2

Typ
0.001

20

0.7

O.S

TLC251BC

D,P

2-449

LinCMOS, Programmable, High Bias

1.4

18

2

Typ
0.001

10

2.3

4.5

TLC251BC

D,P

2-449

LinCMOS, Programmable, Low Bias

1.4

18

10

Typ
0.001

30

0.1

0.04

TLC251C

D,P,Y

2-449

LinCMOS, Programmable, Medium Bias

1.4

18

10

Typ
0.001

20

0.7

O.S

TLC251C

D,P,Y

2-449

LinCMOS, Programmable, High Bias

1.4

18

10

Typ
0.001

10

2.3

4.5

TLC251C

D,P,Y

2-449

LinCMOS, Programmable, Low Bias

3

18

5

Typ
0.007

50

0.11

0.04

TLC271AC

D,P

2-507

LinCMOS, Programmable, Medium Bias

3

18

5

Typ
0.007

25

0.S4

0.56

TLC271AC

D,P

2-507

LinCMOS, Programmable, High Bias

3

18

5

Typ
0.007

10

2.2

4.6

TLC271AC

D,P

2-507

2

Typ
0.007

50

0.11

0.04

TLC271BC

D,P

2-507

25

0.64

0.56

TLC271BC

D,P

2-507

LinCMOS, Programmable, Low Bias

. 3

18

LinCMOS, Programmable, Medium Bias

3

18

2

Typ
0.007

LinCMOS, Programmable, High Bias

3

18

2

Typ
0.007

10

2.2

4.6

TLC271BC

D,P

2-507

10

Typ
0.007

50

0.11

0.04

TLC271C

D,P

2-507

25

0.64

0.56

TLC271C

D,P

2-507

LinCMOS, Programmable, Low Bias

3

18

LinCMOS, Programmable, Medium Bias

3

18

10

Typ
0.007

LinCMOS, Programmable, High Bias

3

18

10

Typ
0.007

10

2.2

4.6

TLC271C

D,P

2-507

LinCMOS, Precision, Low Noise

4.6

16

0.2

Typ
0.001

400

1.9

2.7

TLC2201AC

D,P

2-785

LinCMOS, Precision, Low Noise, 100%
Noise Tested

4.6

16

0.2

Typ
0.001

400

1.9

2.7

TLC2201BC

D,P

2-785

LinCMOS, Precision, Low Noise

4.6

16

0.5

Typ
0.001

400

1.9

2.7

TLC2201C

D,P,Y

2-785

LinCMOS, Precision, Chopper-Stabilized

3.8

16

0.001

Typ
0.004

5600

1.9

2.8

TLC2652AC

D,N,P

2-861

t Y is chip form.

TEXAS ~

INSTRUMENTS
1-10

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, single (continued)
(values specified for TA = 25°C)

commercial temperature range
DESCRIPTION

SUPPLY
VOLTAGE

M
MIN

MAX

VIO
(mV)

liB

AVO

B1

SR

(nA)

C'I/mV)

(MHz)

C'lh,s)

MAX

MAX

MIN

TYP

TYP

1000

1.9

PAGE
NO.

TYPE

PACKAGESt

2.8

TLC2652C

D,N,P,Y

2-861

LinCMOS, Precision, Chopper-Stabilized

3.8

16

0.003

Typ
0.004

LinCMOS, Low Noise, Precision,
Chopper-Stabilized

4.6

16

0.01

Typ
0.05

5600

1.9

2

TLC2654AC

D,N,P

2-885

LinCMOS, Low Noise, Precision,
Chopper-Stabilized

4.6

16

0.02

Typ
0.05

1000

1.9

2

TLC2654C

D,N,P,Y

2-885

Excalibur, High Speed, Low Power,
Precision

4

40

0.2

Typ
25

1000

2

0.65

TLE2021AC

D,P

2-909

Excalibur, High Speed, Low Power,
Precision

4

40

0.1

Typ
25

1000

2

0.65

TLE2021BC

D,P

2-909

Excalibur, High Speed, Low Power,
Precision

4

40

0.5

25

1000

2

0.9

TLE2021C

D,P,Y

2-909

Excalibur, Low Noise, High Speed,
Precision

±4

±22

0.025

Typ
15

8000

13

2.8

TLE2027AC

D,P

2-991

0.1

Typ
15

3500

13

2.8

TLE2027C

D,P,Y

2-991

1.5

Typ
0.004

30

2

3.4

TLE2061AC

D,P

2-1039

30

2

3.4

TLE20e1BC

D,P

2-1039

Excalibur, Low Noise, High Speed,
Precision
Excalibur, JFET-Input, High-Output
Drive, ~Power

±4
±3.5

± 22
± 20

Excalibur, JFET-Input, High-Output
Drive, ~Power

±3.5

± 20

0.5

Typ
0.004

Excalibur, JFET-Input, High-Output
Drive, ",Power

±3.5

±20

3

Typ
0.004

30

2

3.4

TLE2061C

D,P,Y

2-1039

Excalibur, Low Noise, High Speed,
Precision

±2

± 22

0.5

-700

100

6

45

TLE2141AC

D,P

2-1181

Excalibur, Low Noise, High Speed,
Precision

=2

= 22

0.9

-700

100

6

45

TLE2141C

D,P,Y

2-1181

General Purpose

±2

±18

6

500

20

1

0.5

uA741C

D,P

2 1305

tY

IS

chip form.

TEXAS ."

INSTRUMENlS
POST OFFICE BOX 65530a • DALLAS, TEXAS 75265

1-11

OPERATIONAL AMPLIFIERS
SELECTION GUIDE
Internally compensated, single (continued)
(values specified for TA = 25°C)

industrial temperature range
DESCRIPTION

SUPPLY
VOLTAGE
(V)

liB

VIO
(mY)

(nA)

Avo
(V/mY)

$1
(MHz)

SR
(V/lts)
TYP

TYPE

PACKAGES

PAGE
NO.

MIN

MAX

MAX

MAX

MIN

TYP

Chopper-Stabilized

± 1.9

±8

0.005

0.03

1000

1.2

4

LTC1052C

D,P

2-117

Low Noise, High Speed

±3.5

±22

0.025

40

1000

8

2.8

OP27E

P

2-149

Low Noise, High Speed

±3.5

±22

0.1

80

700

8

2.8

OP27G

P

2-149

±4

±22

0.025

40

1000

40

17

OP37E

P

2-149
2-149

Low Noise, High Speed, Bipolar,
Noncompensated, AVL " 5
Low Noise, High Speed, Bipolar,
Noncompensated, AVL " 5

±4

±22

0.1

80

700

40

17

OP37G

P

BIFET, Low Power, Precision

±3.5

±18

0.8

0.2

5

1.1

2.9

TL031AI

D,P

2-175

BIFET, Low Power, Precision

±3.5

=18

1.5

0.2

5

1.1

2.9

TL031 I

D,P

2-175

BIFET, Precision

=3.5

=18

0.8

0.2

50

3.1

20

TL051AI

D,P

2-257

BIFET, Precision

±3.5

±18

1.5

0.2

50

3.1

20

TL051 I

D,P

2-257

BIFET, Low Power

±3.5

=18

6

0.2

4

1

3.5

TL061 I

D,P

2-341

BIFET, Adjustable, Low Power

± 1.2

±lB

6

0.2

4

1

3.5

TL0661

D,P

2-357

BIFET, Low Noise

±3.5

±18

6

0.2

50

3

13

TL071 I

D,P

2-371

BIFET, General Purpose

=3.5

±18

6

0.2

50

3

13

TL081 I

D,P

2-387

BIFET, Low Offset Voltage

± 3.5

±18

0.5

0.2

50

3

13

TL0871

D,P

2--401

BIFET, Low Offset Voltage

±3.5

±18

1

0.2

50

3

13

TL0881

D,P

2-401

=2

±22

5

1500

25

4.5

10

TL33071

D,P

2--442

LinCMOS, Programmable, Low Bias

4

18

5

Typ
0.007

50

0.11

0.04

TLC271AI

D,P

2-507

LinCMOS, Programmable, Medium Bias

4

18

5

Typ
0.007

25

0.64

0.56

TLC271AI

D,P

2-507

LinCMOS, Programmable, High Bias

4

18

5

Typ
0.007

10

2.2

4.6

TLC271AI

D,P

2-507

LinCMOS, Programmable, Low Bias

4

18

2

Typ
0.007

50

0.11

0.04

TLC271BI

D,P

2-507

LinCMOS, Programmable, Medium Bias

4

18

2

Typ
0.007

25

0.64

0.56

TLC271BI

D,P

2-507

LinCMOS, Programmable, High Bias

4

18

2

Typ
0.007

10

2.2

4.6

TLC271BI

D,P

2-507

LinCMOS, Programmable, Low Bias

4

18

10

Typ
0.007

50

0.11

0.04

TLC271I

D,P

2-507

LinCMOS, Programmable, Medium Bias

4

18

10

Typ
0.007

25

0.64

0.56

TLC271I

D,P

2-507

LinCMOS, Programmable, High Bias

4

18

10

Typ
0.007

10

2.2

4.6

TLC271I

D,P

2-507

LinCMOS, Precision, Low Noise

4.6

16

0.2

Typ
0.001

400

1.9

2.7

TLC2201AI

D,P

2-785

LinCMOS, Precision, Low Noise, 100%
NOise Tested

4.6

16

0.2

Typ
0.001

400

1.9

2.7

TLC2201BI

D,P

2-785

LinCMOS, Precision, Low Noise

4.6

16

0.5

Typ
0.001

400

1.9

2.7

TLC22011

D,P

2-785

High-Slew Rate, Single Supply

TEXAS ~

INSIRUMENlS
1-12

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, single (continued)
(values specified for TA =25°C)

industrial temperature range
DESCRIPTION

SUPPLY
VOLTAGE

M
MIN

MAX

SR

VIO
(mV)

liB
(nA)

AVO
(V/mV)

Bl
(MHz)

(V/~s)

MAX

MAX

MIN

TYP

TYP

5600

1.9

PAGE
NO.

TYPE

PACKAGES

2.8

TLC2652AI

D.N.P

2-861

LinCMOS. Precision. ChopperStabilized

3.8

16

0.001

Typ
0.004

LinCMOS. Precision. ChopperStabilized

3.8

16

0.003

Typ
0.004

1000

1.9

2.8

TLC26521

D.N.P

2-861

LinCMOS. Low Noise. Precision.
Chopper-Stabilized

4.6

16

0.01

Typ
0.05

5600

1.9

2

TLC2654AI

D.N,P

2-885

LinCMOS. Low Noise. Precision.
Chopper-Stabilized

4.6

16

0.02

Typ
0.05

1000

1.9

2

TLC26541

D.N.P

2-885

Excalibur. High Speed. Low Power.
Precision

±2

",20

0.2

50

300

2

0.65

TLE2021AI

D.P

2-909

4

40

0.5

25

1000

2

0.9

TLE2021I

D.P

2-909

Excalibur. Low Noise. High Speed.
Precision

±4

",22

0.025

90

10000

13

2.8

TLE2027AI

D.P

2-991

Excalibur. Low Noise. High Speed.
Precision

±4

'" 22

0.1

90

5000

13

2.8

TLE20271

D.P

2-991

Excalibur. JFET-Input. High-Output
Drive. ftPower

±3.5

± 20

1.5

Typ
0.004

30

2

3.4

TLE2061AI

D.P

2-1039

Excalibur. JFET-Input. High-Output
Drive. ftPower

",3.5

± 20

0.5

Typ
0.004

30

2

3.4

TLE2061BI

D.P

2-1039

30

2

3.4

TLE2061I

D.P

2-1039

Excalibur. High Speed. Precision

Excalibur. JFET-Input. High-Output
Drive. ftPower

±3.5

",20

3

Typ
0.004

Excalibur. Low Noise. High Speed.
Precision

±2

",22

0.05

-1500

100

6

45

TLE2141AI

D.P

2-1181

Excalibur. Low Noise. High Speed.
Precision

",2

",22

0.9

-1500

100

6

45

TLE21411

D.P

2-1181

General Purpose

",2

",22

5

500

50

1

0.5

uA741 I

D.P

2-1305

TEXAS

-If

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

1-13

•
OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, single (continued)
(values specified for TA = 25°C)

automotive temperature range
DESCRIPTION

SUPPLY
VOLTAGE
(V)

SR

(mV)

liB
(nA)

fYfmV)

B1
(MHz)

('iff'S)

vlO

AVO

TYPE

PACKAGES

PAGE
NO.

MIN

MAX

MAX

MAX

MIN

TYP

TYP

High Performance

±5

±22

2

75

50

1

0.5

LM207

D,N,P,W

2-19

High Perormance

±5

± 20

4

250

50

15

70

LM218

D,P

2-35

Chopper-Stabilized

± 1.9

±8

0.005

0.03

1000

1.2

4

LTC1052C

J,N,P

2-117

Low Noise, High Speed

±3.5

± 22

0.025

40

1000

.8

2.8

OP27E

P

2-149

Low Noise, High Speed

±3.5

± 22

0.1

80

700

8

2.8

OP27G

P

2-149

Low Noise, High Speed
Noncompensated, AVL '" 5

±4

±22

0.025

40

1000

40

17

OP37E

P

2-149

Low Noise, High Speed
Noncompensated, AVL '" 5

±4

±22

0.1

80

700

40

17

OP37G

P

2-149

)3IFET, Low Power, Precision

±3.5

±18

0.8

0.2

5

1.1

2.9

TL031AI

D,P

2-175

BIFET, Low Power, Precision

±3.5

±18

1.5

0.2

5

1.1

2.9

TL031 I

D,P

2-175

BIFET, Precision

±3.5

±18

0.8

0.2

50

3.1

20

TL051AI

D,P

2-257

BIFET, Precision

±3.5

±18

1.5

0.2

50

3.1

20

TL051 I

D,P

2-257

BIFET, Low Power

±3.5

±18

6

0.2

4

1

3.5

TL061 I

D,P

2-341

BIFET, Adjustable, Low Power

± 1.2

±18

6

0.2

4

1

3.5

TL0661

D,P

2-357

BIFET, Low Noise

±3.5

±18

6

0.2

50

3

13

TL071 I

D,P

2-371

BIFET, General Purpose

±3.5

±18

6

0.2

50

3

13

TL081 I

D,P

2-387

BIFET, Low Offset Voltage

±3.5

±18

0.5

0.2

50

3

13

TL087 I

D,P

2-401

BIFET, Low Offset Voltage

±3.5

±18

1

0.2

50

3

13

TL0881

D,P

2-401

50

0.11

0.04

TLC271AI

D,P

2-507

LinCMOS, Programmable, Low Bias

4

18

5

Typ
0.007

LinCMOS, Programmable,
Medium Bias

4

18

5

Typ
0.007

25

0.64

0.56

TLC271AI

D,P

2-507

5

Typ
0.007

10

2.2

4.6

TLC271AI

D,P

2-507

50

'0.11

0.04

TLC271BI

D,P

2-507

LinCMOS, Programmable, High Bias

4

18

LinCMOS, Programmable, Low Bias

4

18

2

Typ
0.007

LinCMOS, Programmable,
Medium Bias

4

18

2

Typ
0.007

25

0.64

0.56

TLC271BI

D,P

2-507

LinCMOS, Programmable, High Bias

4

18

2

Typ
0.007

10

2.2

4.6

TLC271BI

D,P

2-507

LinCMOS, Programmable, Low Bias

4

18

10

Typ
0.007

50

0.11

0.04

TLC271I

D,P

2-507

LinCMOS, Programmable,
Medium Bias

4

18

10

Typ
0.007

25

0.64

0.56

TLC271I

D,P

2-507

LinCMOS, Programmable, High Bias

4

18

10

Typ
0.007

10

2.2

4.6

TLC271I

D,P

2-507

4.6

16

0.2

Typ
0.001

400

1.9

2.7

TLC2201AI

D,P

2-785

LinCMOS, Low Noise Precision

.

TEXAS ~

INSTRUMENTS
1-14

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, single (continued)
(values specified for TA

automotive temperature range
DESCRIPTION

SUPPLY
VOLTAGE

M
MIN

MAX

VIO
(mV)

liB
(nA)

AVO
(V/mV)

B1
(MHz)

SR
(V/Ils)

MAX

MAX

MIN

TYP

TYP

400

1.9

=25°C)

TYPE

PACKAGES

PAGE
NO.

2.7

TLC2201BI

D,P

2-785

LinCMOS, Low Noise, Precision, 100%
Noise Tested

4.6

16

0.2

Typ
0.001

LinCMOS, Low Noise, Precision

4.6

16

0.5

Typ
0.001

400

1.9

2.7

TLC22011

D,P

2-785

LinCMOS, Precision, Chopper
Stabilized

3.8

16

0.001

Typ
0.004

5600

1.9

2.8

TLC2652AI

D,N,P

2-861

LinCMOS, Precision, Chopper
Stabilized

3.8

16

0.003

Typ
0.004

1000

1.9

2.8

TLC26521

D,N,P

2-861

LinCMOS, Low Noise, Precision,
Chopper Stabilized

4.6

16

0.01

Typ
0.05

5600

1.9

2

TLC2654AI

D,N,P

2-885

LinCMOS, Low Noise, Precision,
Chopper Stabilized

4.6

16

0.02

Typ
0.05

1000

1.9

2

TLC26541

D,N,P

2-885

Excalibur, High Speed, Precision

4

40

0.5

25

1000

2

0.9

TLE2021I

D,P

2-909

TEXAS .J.!1

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

1-15

OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, single (continued)
military temperature range

(values specified for TA = 25°C)
SUPPLY
VOLTAGE
(V)

VIO
(mV)

(nA)

AVO
(V/mV)

(MHz)

SR
(V/I-'s)

MIN

MAX

MAX

MAX

MIN

TYP

TYP

",5

",20

2

75

50

1

Low Noise, High Speed, Precision Input

",2.5

",22

0.025

35

7000

8

Low Noise, High Speed, Precision Input

",2.5

±22

0.060

55

5000

Low Noise, High Speed,
Noncompensated, AVL" 5

±2.5

±22

0.025

35

Low Noise, High Speed,
Noncompensated, AVL " 5

± 2.5

± 22

0.060

Chopper-Stabilized

± 1.9

±8

Low Noise, High Speed

±3.5

± 22

Low Noise, High Speed

±3.5

DESCRIPTION

liB

B1

PAGE
NO.

TYPE

PACKAGES

0.5

LM107

J,JG,U,W

2-19

2.5

LT1007AM

JG

2-69

8

2.5

LT1007M

JG,P

2-69.

7000

60

15

LT1037AM

JG

2-69

55

5000

60

15

LT1037M

JG

2-69

0.005

0.03

1000

1.2

4

LTC1052M

J,JG

2-117

0.025

40

1000

8

2.8

OP27A

JG

2-149

±22

0.1

80

700

8

2.8

OP27C

JG

2-149

±4

± 22

0.025

40

1000

40

17

OP37A

JG

2-149

Low NOise, High Speed,
Noncompensated, AVL" 5

±4

±22

0.1

80

700

40

17

OP37C

JG

2-149

Low Noise, High Performance

,,3

±22

2

800

50

10

13

SE5534

FK,JG

2-135

Low NOise, High Performance

",3

±22

2

800

50

10

13

SE5534A

FK,JG

2-135

BIFET, Low Power, Precision

±3.5

±18

0.8

0.2

5

1.1

2.9

TL031AM

FK,JG

2-175

BIFET, Low Power, Precision

±3.5

±18

1.5

0.2

5

1.1

2.9

TL031M

FK,JG

2-175

BIFET, Precision

±3.5

±18

0.8

0.2

50

3.1

20

TL051AM

FK,JG

2-257

BIFET, Precision

±3.5

±18

1.5

0.2

50

3.1

20

TL051M

FK,JG

2-257

BIFET, Low Power

± 1.5

±18

6

0.2

4

1

3.5

TL061M

FK,JG,U

2-341

BIFET, Adjustable, Low Power

± 1.2

±18

6

0.2

4

1

3.5

TL066M

FK,JG

2-357

BIFET, Low Noise

± 3.5

±18

6

0.2

35

3

13

TL071M

FK,JG

2-371

BIFET, General Purpose

±3.5

±18

6

0.2

25

3

13

TL081M

FK,JG

2-387

BIFET, Low VIO

±3.5

±18

3

0.4

50

3

13

TL088M

JG,U

2-387

",2

±22

5

-1500

25

4.5

10

TL35071

D,P

2-443

LinCMOS, Programmable, Low Bias

4

18

10

Typ
0.007

50

0.11

0.04

TLC271M

FK,JG

2-507

LinCMOS, Programmable, Medium Bias

4

18

10

Typ
0.007

25

0.64

0.56

TLC271M

FK,JG

2-507

10

2.2

4.6

TLC271M

FK,JG

2-507

400

1.9

2.7

TLC2201AM

D,FK,JG,P

2-785

High Performance

Low Noise, High Speed,
Noncompensated, AVL" 5

High-Slew Rate, Single Supply

LinCMOS, Programmable, High Bias
LinCMOS, Low Noise, Precision

4

18

10

Typ
0.007

4.6

16

0.2

Typ
0.001

TEXAS •

INSTRUMENTS
1-16

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, single (continued)
(values specified for TA =25°C)

military temperature range
DESCRIPTION

SUPPLY
VOLTAGE
V
MIN

MAX

VIO
(mV)

(nA)

AVO
IY/mV)

(MHz)

SR
rJ/flS)

MAX

MAX

MIN

TYP

TYP

400

1.9

2.7

TLC2201BM

400

1.9

2.7

liB

LinCMOS, Low Noise, Precision,
100% Noise Tested

4.6

16

0.2

Typ
0.001

LinCMOS, Low Noise, Precision

4.6

16

0.5

Typ
0.001

Bl

TYPE

PACKAGES

PAGE
NO.

D,FK,JG,P

2-785

TLC2201M

D,FK,JG,P

2-785
2-861

LinCMOS, Precision, Chopper
Stabilized

3.8

16

0.001

Typ
0.004

5600

1.9

2.8

TLC2652AM

D,FK,J,JG,
N,P

LinCMOS, Precision, Chopper
Stabilized

3.8

16

0.003

Typ
0.004

1000

1.9

2.8

TLC2652M

D,FK,J,JG,
N,P

2-861

LinCMOS, Low Noise, Precision,
Chopper Stabilized

4.6

16

0.01

Typ
0.05

5600

1.9

2

TLC2654AM

D,FK,J,JG,
N,P

2-885

LinCMOS, Low Noise, Precision,
Chopper Stabilized

4.6

16

0.02

Typ
0.05

1000

2.2

2

TLC2654M

D,FK,J,JG,
N,P

2-885

Excalibur, High Speed, Low Power,
PreciSion

±2

±20

0.2

50

300

2

0.65

TLE2021AM

D,FK,JG,P

2-909

Excalibur, High Speed, Low Power,
Precision

±2

±20

0.1

50

300

2

0.65

TLE2021BM

D,FK,JG,P

2-909

Excalibur, High Speed, Precision

4

40

0.5

25

1000

2

0.9

TLE2021M

D,FK,JG,P

2 909

Excalibur, Low Noise, High Speed,
Precision

±4

± 22

0.025

90

10000

13

2.8

TLE2027AM

D,FK,JG,P

2-991

Excalibur, Low Noise, High Speed,
Precision

±4

±22

0.1

90

5000

13

2.8

TLE2027M

D,FK,JG,P

2-991

30

2

3.4

TLE2061AM

D,FK,JG,P

2-1039

Excalibur, JFET-Input,
High-Output Drive, flPower

±3.5

±20

1.5

Typ
0.004

Excalibur, JFET-Input,
High-Output Drive, I-IPower

±3.5

±20

0.5

Typ
0.004

30

2

3.4

TLE2061BM

JG,P

2-1039

Excalibur, JFET-Input,
High-Output Drive, flPower

±3.5

±20

3

Typ
0.004

30

2

3.4

TLE2061M

D,FK,JG,P

2-1039

Excalibur, Low Noise, High Speed,
Precision

±2

±22

0.5

-1500

100

6

45

TLE2141AM

D,FK,JG,P

2-1181

Excalibur, Low NOise, High Speed,
Precision

±2

±22

0.9

-1500

100

6

45

TLE2141M

D,FK,JG,P

2-1181

General Purpose

±2

±22

5

500

50

1

0.5

uA741M

FK,J,JG,U

2 1305

TEXAS ..tf

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

1-17

..
OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, dual
commercial temperature range
DESCRIPTION

(values specified for TA = 25°C)
SUPPLY
VOLTAGE
(V)

vlO
(mV)

(nA)

AVO
(V/mV)

(MHz)

SR
(V/I1S)
TYP

liB

B1

TYPE

PACKAGESt

PAGE
NO.

MIN

MAX

MAX

MAX

MIN

TYP

BIFET, General Purpose

±3.5

±18

10

0.2

25

3

13

LF353

D,P

2-7

BIFET, Low Offset

±3.5

±18

3

0.2

25

3

13

LF412C

D,P

2-11

SIS

3

30

± 1.5

7

-250

±15

25

0.6

0.2

LM358

D,P,U,Y

2-51

DIS

3

-100

25

0.6

0.2

LM358A

D,P,U

2-51

High Gain, Low Power, Bipolar

High Gain, Low Power, Bipolar

SIS

3

30

DIS

± 1.5

±15

Precision
Precision

Precision
General Purpose

4

44

0.15

20

1500

0.8

0.4

LT1013AC

P

2---B3

SIS

4

44

0.3

30

1200

0.8

0.4

LT1013C

P

2-93

D/S

±2

± 22

0.3

30

500

0.8

0.4

LT1013C

P

2-93

SIS

4

44

0.8

30

1200

0.8

0.4

LT1013D

D,P

2-93

DIS

±2

± 22

0.8

30

500

0.8

0.4

LT1013D

D,P

2-93

± 1.5

±18

6

500

20

1

0.5

MC1458

D,P,U

2-121

Low Noise

±3

± 20

4

800

25

10

9

NE5532

P

2-131

Low Noise

±3

± 20

4

800

25

10

9

NE5532A

P

2-131

High Performance

±4

±18

6

500

20

3

1.7

RC4558

D,P,Y

2-163

High Performance

",4

±18

6

250

20

4

2

RC4559

D,P

2-169

Low Power

",2

±18

5

250

1

0.5

0.5

TL022C

D,P

2-171

BIFET, Low Power, Precision

'" 3.5

±18

0.8

0.2

5

1.1

2.9

TL032AC

D,P

2-202

BIFET, Low Power, Precision

±3.5

±18

1.5

0.2

5

1.1

2.9

TL032C

D,P

2-202

BIFET, Precision

± 3.5

",18

1.5

0.2

50

3

16

TL052AC

D,P

2-283

BIFET, Precision

'" 3.5

±18

4

0.2

50

3

16

TL052C

D,P

2-283

BIFET, Low Power

± 3.5

±18

6

0.2

4

1

3.5

TL062AC

D,P

2-341

BIFET, Low Power

±3.5

±18

3

0.2

4

1

3.5

TL062BC

D,P

2-341

BIFET, Low Power

± 3.5

±18

15

0.4

3

1

3.5

TL062C

D,P

2-341

BIFET, Low Noise

±3.5

±18

6

0.2

50

3

13

TL072AC

D,P

2-371

BIFET, Low Noise

± 3.5

",18

3

0.2

50

3

13

TL072BC

D,P

2-371

BIFET, Low Noise

±3.5

±18

10

0.2

25

3

13

TL072C

D,P

2-371

BIFET, General Purpose

± 3.5

±18

6

0.2

50

3

13

TL082AC

D,P

2-387

BIFET, General Purpose

±3.5

±18

3

0.2

50

3

13

TL082~C

D,P

2-387

BIFET, General Purpose

±3.5

±18

15

0.4

25

3

13

TL082C

D,P

2-387

BIFET, General Purpose

± 3.5

±18

0.5

2

50

3

13

TL287C

D,P

2-401

BIFET, General Purpose

±3.5

±18

1

0.2

50

3

13

TL288C

D,P

2-401

High:Slew Rate, Single Supply

±2

± 22

5

-2000

50

0.2

8

TL34072

D,P

2-443

High-Slew Rate, Single Supply

±2

± 22

3

-2000

50

0.2

8

TL34072A

D,P

2-443

Typ
35

2.25

3.6

TLC2272C

D,P,Y

2-841

Typ
35

2.25

3.6

TLC2272AC

D,P

2-841

LinCMOS, Rail-to-Rail

4.4

16

2.5

Typ
0.0001

LinCMOS, Rail-to-Rail

4.4

16

0.95

Typ
0.0001

t Y is chip form.

TEXAS -1!1

INSTRUMENTS
1-18

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

.
OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, dual (continued)
commercial temperature range

(values specified for T A
SUPPLY
VOLTAGE

DESCRIPTION

(V)
MIN

MAX

VIO
(mV)

liB
(nA)

Avo
(V/mV)

(MHz)

SR
(V/f's)

MAX

MAX

MIN

TYP

TYP

10

2.2

81

=25°C)

TYPE

PACKAGESt

PAGE
NO.

5.3

TLC252AC

D,P

2-467

LinCMOS, High Bias

1.4

18

5

Typ
0.005

LinCMOS, High Bias

1.4

18

2

Typ
0.005

10

2.2

5.3

TLC252BC

D,P

2-467

10

2.2

5.3

TLC252C

D,P,Y

2-467

LinCMOS, High Bias

1.4

18

10

Typ
0.005

LinCMOS, Low Bias

1.4

18

2

Typ
0.005

30

0.1

0.05

TLC25L2BC

D,P

2-467

LinCMOS, Low Bias

1.4

18

10

Typ
0.005

30

0.1

0.05

TLC25L2C

D,P,Y

2-467

LinCMOS, Medium Bias

1.4

18

5

Typ
0.005

20

0.6

0.6

TLC25M2AC

D,P

2-467

20

0.6

0.6

TLC25M2BC

D,P

2-467

LinCMOS, Medium Bias

1.4

18

2

Typ
0.005

LinCMOS, Medium Bias

1.4

18

10

Typ
0.005

20

0.6

0.6

TLC25M2C

D,P,Y

2-467

LinCMOS, High Bias

3

18

5

Typ
0.005

10

2.2

5.3

TLC272AC

D,P

2-565

LinCMOS, High Bias

3

18

2

Typ
0.005

10

2.2

5.3

TLC272BC

D,P

2-565

10

2.2

5.3

TLC272C

D,P

2-565

LinCMOS, High Bias

3

18

10

Typ
0.005

LinCMOS, High Bias

3

18

0.5

Typ
0.005

10

2.2

5.3

TLC277C

D,P

2-565

LinCMOS, Low Bias

3

18

5

Typ
0.005

50

0.1

0.05

TLC27L2AC

D,P

2-629

LinCMOS, Low Bias

3

18

2

Typ
0.005

50

0.1

0.05

TLC27L2BC

D,P

,2-629

50

0.1

0.05

TLC27L2C

D,P

2-629

LinCMOS, Low Bias

3

18

10

Typ
0.005

LinCMOS, Low Bias

3

18

0.5

Typ
0.005

50

0.1

0.05

TLC27L7C

D,P

2-629

LinCMOS, Medium Bias

3

18

5

Typ
0.005

25

0.6

0.6

TLC27M2AC

D,P

2-693

LinCMOS, Medium Bias

3

18

2

Typ
0.005

25

0.6

0.6

TLC27M2BC

D,P

2-693

LinCMOS, Medium Bias

3

18

10

Typ
0.005

25

0.6

0.6

TLC27M2C

D,P

2-693

LinCMOS, Medium Bias

3

18

0.5

Typ
0.005

25

0.6

0.6

TLC27M7C

D,P

2-693

1.4

18

0.6

Typ
0.007

500

0.11

0.05

TLC1078C

D,P

2-757

LinCMOS, f'Power, Precision

t Y IS chip form.

TEXAS

-'!1

INSTRUMENTS
POST OFFICE BOX 655303 • -DALLAS, TEXAS 75265

1-19

OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, dual (continued)
(values specified for TA = 25°C)

commercial temperature range
SUPPLY
VOLTAGE
(V)

DESCRIPTION

MIN

MAX

SR

(mV)

liB
(nA)

(V/mV)

B1
(MHz)

(V/IJ.S)

MAX

TYP

MIN

TYP

TYP

400

1.9

VIO

Avo

PAGE
"!O.

TYPE

PACKAGESt

1.8

TLC2202AC

D,P

2-813

LinCMOS, Low Noise, Precision

4.6

16

0.5

Typ
0.005

LinCMOS, Low Noise, Precision

4.6

16

0.5

Typ
0.005

400

1.9

1.8

TLC2202BC

D,P

2-813

LinCMOS, Low Noise, Precision

4.6

16

1

Typ
0.005

400

1.9

1.8

TLC2202C

D,P

2-813

Excalibur, High Speed, Low Power,
Precision

4

40

0.3

Typ
33

1000

2.8

0.65

TLE2022AC

D.P

2-935

Excalibur, High Speed, Low Power,
Precision

4

40

0.15

Typ
30

1500

2.8

0.65

TLE2022BC

D,P

2-935

Excalibur, High Speed, Low Power,
Precision

4

40

0.5

35

800

2.8

0.65

TLE2022C

D,P,Y

2-935

Excalibur, JFET-Input, High-Output
Drive, ~Power

",3.5

±20

2

Typ
0.004

30

2

3.4

TLE2062AC

D.P

2-1075

Excalibur, JFET-Input, High-Output
Drive, ~Power

±3.5

±20

1

Typ
0.004

30

2

3.4

TLE2062BC

D.P

2-1075

Excalibur, JFET-Input, High-Output
Drive, ~Power

±3.5

±20

4

Typ
0.004

30

2

3.4

D.P,Y

2-1075

Excalibur, Low Noise, High Speed,
Precision

±2

±22

1.2

-700

100

6

45

TLE2142AC

D.P

2-1199

Excalibur, Low Noise, High Speed,
Precision

±2

±22

0.75

-700

100

6

45

TLE2142C

D.P,Y

2-1199

3500

13

2.8

TLE2227C

D,P,Y

2-1289

25

1

0.5

uA747C

D,N

2-1313

Excalibur, Low Noise, High Speed,
Precision

",4

",22

0.1

Typ
15

General Purpose

±5

±22

6

500

' TLE2062C

t Y IS chip form.

decompensated, dual
(values specified for TA = 25°C)

commercial temperature range
DESCRIPTION

SUPPLY
VOLTAGE
(V)
MIN

Excalibur, Low Noise, High Speed,
Precision

±4

MAX
± 22

SR

(mV)

liB
(nA)

(V/mV)

GBW*
(MHz)

(VII'S)

MAX

TYP

MIN

TYP

TYP

0.1

Typ
15

5000

76

7.5

Via

Avo

.. with ACL = 5 .
*Decompensated op amps are not unity-gain stable. Gain bandwidth product IS specified

TEXAS

~

INSlRUMENlS
1-20

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TYPE

PACKAGES

PAGE
NO;

TLE2237C

D,P

2-1295

OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, dual
industrial temperature range

(values specified for TA = 25°C'
SUPPLY
VOLTAGE
(V)

DESCRIPTION

VIO

liB

(mV)

(nA)

AVO
(V/mV)

B1

SR

(MHz)

(V/f's)

TYPE

PACKAGES

PAGE
NO.

MIN

MAX

MAX

MAX

MIN

TYP

TYP

4

44

0.15

20

1500

0.8

0.4

LT1013AI

P

2-93

SIS

4

44

0.3

30

1200

0.8

0.4

LT10131

P

2-93

DIS

±2

± 22

0.3

30

500

0.8

0.4

LT10131

P

2-93

SIS

4

44

0.8

30

1200

0.8

0.4

LT1013DI

D,P

2-93

DIS

±2

±22

0.8

30

500

0.8

0.4

LT1013DI

D,P

2-93

BIFET, Low Power, Precision

±3.5

=18

0.8

0.2

5

1.1

2.9

TL032AI

D,P

2-203

BIFET, Low Power, Precision

±3.5

±18

1.5

0.2

5

1.1

2.9

TL0321

D,P

2-203

BIFET, Precision

±3.5

±18

0.8

0.2

50

3

16

TL052AI

D,P

2-283

BIFET, Precision

=3.5

±18

1.5

0.2

50

3

16

TL0521

D,P

2-283

BIFET, Low Power

±3.5

±18

6

0.2

4

1

3.5

TL0621

D,P

2-341

BIFET, Low Noise

±3.5

±18

6

0.2

50

3

13

TL0721

D,P

2-371

BIFET, General Purpose

±3.5

±18

6

0.2

50

3

13

TL0821

D,P

2-387

BIFET, General Purpose

±3.5

±18

0.5

0.2

50

3

13

TL2871

D,P

2-401

BIFET, General Purpose

±3.5

±18

1

0.2

50

3

13

TL2881

D,P

2-401

High-Slew Rate, Single Supply

±2

± 22

5

-2000

50

0.2

8

TL33072

D,P

2-443

High-Slew Rate, Single Supply

±2

±22

3

-2000

50

0.2

8

TL33072A

D,P

2-443

10

2.2

5.3

TLC272AI

D,P

2-565

High Performance, Bipolar
High Performance, Bipolar
High Performance, Bipolar

LinCMOS, High Bias

4

18

5

Typ
0.005

LinCMOS, High Bias

4

18

2

Typ
0.005

10

2.2

5.3

TLC272BI

D,P

2-565

10

Typ
0.005

10

2.2

5.3

TLC2721

D,P

2-565

10

2.2

5.3

TLC2771

D,P

2-565

LinCMOS, High Bias

4

18

LinCMOS, High Bias

4

18

0.5

Typ
0.005

LinCMOS, f'Power, Precision

4

18

0.6

Typ
0.007

500

0.11

0.05

TLC10781

D,P

2-757

LinCMOS, Low Noise, Precision

4.6

16

0.5

Typ
0.005

400

1.9

1.8

TLC2202AI

D,P

2-813

LinCMOS, Low Noise, PreCision

4.6

16

0.5

Typ
0.005

400

1.9

1.8

TLC2202BI

D,P

2-813

400

1.9

1.8

TLC22021

D,P

2-813

4.6

16

1

Typ
0.005

LinCMOS, Low Bias

4

18

5

Typ
0.005

50

0.1

0.05

TLC27L2AI

D,P

2-629

LinCMOS, Low Bias

4

18

2

Typ
0.005

50

0.1

0.05

TLC27L2BI

D,P

2-629

LinCMOS, Low Bias

4

18

10

Typ
0.005

50

0.1

0.05

TLC27L21

D,P

2-629

50

0.1

0.05

TLC27L71

D,P

2-629

LinCMOS, Low Noise, Precision

LinCMOS, Low Bias

4

18

0.5

Typ
0.005

LinCMOS, Medium Bias

4

18

5

Typ
0.005

25

0.6

0.6

TLC27M2AI

D,P

2-693

LinCMOS, Medium Bias

4

18

2

Typ
0.005

25

0.6

0.6

TLC27M2BI

D,P

2-693

LinCMOS, Medium Bias

4

18

10

Typ
0.005

25

0.6

0.6

TLC27M21

D,P

2-693

TEXAS

.Jf

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

1-21

...
OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, dual (continued)
industrial temperature range
DESCRIPTION

LinCMOS, Medium Bias
Excalibur, High Speed, Low Power,
Precision
Excalibur, High Speed, Precision
Excalibur, JFET-Input, High-Output
Drive, I-lPower

(values specified for T A = 25°C)
SUPPLY
VOLTAGE
(V)

VIO
(mV)

liB
(nA)

rJ/mV)

B1
(MHz)

rJ/flS)

MIN

MAX

MAX

MIN

TYP

TYP

25

0.6

MAX

AVO

SR
TYPE

PACKAGES

PAGE
NO.

0.6

TLC27M71

D,P

2-693

4

18

0.5

Typ
0.005

±2

± 20

0.3

55

1000

2.8

0.65

TLE2022AI

D,P

2-935

4

40

0.5

25

1000

2

0.9

TLE20221

D,P

2-935

2

Typ
0.004

30

2

3.4

TLE2062AI

D,P

2-1075

30

2

3.4

TLE2062BI

D,P

2-1075

±3.5

±20

Excalibur, JFET-Input, High-Output
Drive, I-lPower

±3.5

±20

1

Typ
0.004

Excalibur, JFET-Input, High-Output
Drive, flPower

±3.5

±20

4

Typ
0.004

30

2

3.4

TLE20621

D,P

2-1075

Excalibur, Low Noise, High Speed,
Precision

±2

±22

1.2

-1500

100

6

45

TLE2142AI

D,P

2-1199

Excalibur, Low Noise, High Speed,
Precision

±2

± 22

0.75

-1500

100

6

45

TLE21421

D,P

2-1199

extended temperature range

DESCRIPTION

General Purpose, Bipolar

(values specified for T A
SUPPLY
VOLTAGE
(V)

VIO
(mV)

liB
(nA)

rJ/mV)

B1
(MHz)

rJ/l-ls)

MIN

MAX

MAX

MAX

MIN

TYP

TYP

±2

±16

7

-100

25

0.4

Min
0.15

AVO

t Y is chip form.

TEXAS ."

INSTRUMENTS
1-22

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

=25°C)

SR
TYPE

PACKAGESt

TL2828Z

D,P,Y

PAGE
NO.

2-421

OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, dual (continued)
automotive temperature range

DESCRIPTION

High Gain, Low Power, Bipolar

High Gain, Low Power, Bipolar
High Gain, Low Power, Bipolar
High Performance

(values specified for T A = 25°C)
SUPPLY
VOLTAGE
(V)

VIO
(mV)

(nA)

AvO
IY/mV)

(MHz)

SR
(VII'S)

MAX

MAX

MIN

TYP

TYP

MIN

MAX

SIS

3

30

DIS

± 1.5

±15

SIS

3

30

DIS

± 1.5

±15

SIS

3

26

DIS

± 1.5

±13

liB

Bl

TYPE

PACKAGES

PAGE
NO,

5

-150

50

0,6

0,2

LM258

D,P,U

2-51

3

-80

50

0.6

0.2

LM258A

D,P,U

2-51

7

-250

Typ
100

0.6

0.2

LM2904

D,P,U

2-51

±4

±18

6

-500

20

3

1.7

RV4558

D,P

2-163

BIFET, Low Power, Precision

± 3.5

±18

0.8

0.2

5

1.1

2.9

TL032AI

D,P

2-203

BIFET, Low Power, Precision

± 3.5

±18

1.5

0.2

5

1.1

2.9

TL0321

D,P

2-203

BIFET, Precision

± 3.5

±18

0.8

0.2

50

3

16

TL052AI

D,P

2-283

BIFET, Precision

± 3.5

±18

1.5

0.2

50

3

16

TL0521

D,P

2-283

BIFET, Low Power

± 3.5

±18

6

0.2

4

1

3.5

TL0621

D,P

2-341

BIFET, Low Noise

±3.5

±18

6

0.2

50

3

13

TL0721

D,P

2-371

BIFET, General Purpose

±3.5

±18

6

0.2

50

3

13

TL0821

D,P

2-387

BIFET, General Purpose

±3.5

±18

0.5

0.2

50

3

13

TL2871

D,P

2-401

BIFET, General Purpose

±3.5

±18

1

0.2

50

3

13

TL2881

D,P

2-401

10

2.2

5.3

TLC272AI

D,P

2-565

LinCMOS, High Bias

4

18

5

Typ
0.005

LinCMOS, High Bias

4

18

2

Typ
0.005

10

2.2

5.3

TLC272BI

D,P

2-565

Lin CMOS, High Bias

4

18

10

Typ
0.005

10

2.2

5.3

TLC2721

D,P

2-565

LinCMOS, High Bias

4

18

0.5

Typ
0.005

10

2.2

5.3

TLC2771

D,P

2-565

LinCMOS, Low Bias

4

18

5

Typ
0.005

50

0.1

0.05

TLC27L2AI

D,P

2-629

LinCMOS, Low Bias

4

18

2

Typ
0.005

50

0.1

0.05

TLC27L2BI

D,P

2-629

LinCMOS, Low Bias

4

18

10

Typ
0.005

50

0.1

0.05

TLC27L21

D,P

2-629

LinCMOS, Low Bias

4

18

0.5

Typ
0.005

50

0.1

0.05

TLC27L71

D,P

2-629

LinCMOS, Medium Bias

4

18

5

Typ
0.005

25

0.6

0.6

TLC27M2AI

D,P

2-693

LinCMOS, Medium Bias

4

18

2

Typ
0.005

25

0.6

0.6

TLC27M2BI

D,P

2-693

LinCMOS, Medium Bias

4

18

10

Typ
0.005

25

0.6

0.6

TLC27M21

D,P

2-693

LinCMOS, Medium Bias

4

18

0.5

Typ
0.005

25

0.6

0.6

TLC27M71

D,P

2-693

TEXAS ~

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

1-23

'II

OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, dual (continued)
(values specified for TA =25°C)

automotive temperature range
SUPPLY
VOLTAGE
DESCRIPTION

(V)

VIO

liB

(mV)

(nA)

AVO
(V/mV)

(MHz)

SR
(V/liS)

B1

PACKAGES

0.05

TLC10781

D,P

2-757

0.9

TLE2022I

D,P

2-935

MAX

MAX

MAX

MIN

TYP

TYP

LinCMOS, liPower, Precision

4

18

0.6

Typ
0.007

500

0.11

Excalibur, High Speed, Precision

4

40

0.5

25

1000

2

TEXAS ..,
INSTRUMENTS
1-24

POST OFFICE BOX 655303 • OALLAS, TEXAS 75265

PAGE
NO.

TYPE

MIN

OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, dual (continued)
military temperature range

(values specified for TA = 25°C)
SUPPLY
VOLTAGE

DESCRIPTION

High Gain. Low Power, Bipolar

M

ISIS
I DIS

VIO
(mV)

(nA)

AVO
(V/mV)

(MHz)

SR
(V/f!s)
TYP

liB

B1

MIN

MAX

MAX

MAX

MIN

TYP

3

30

3

-80

50

0.6

0.2

± 1.5

±15

5

-150

50

0.6

0.2

PAGE
NO.

TYPE

PACKAGES

LM158

FK,JG,U

2-51

General Purpose

±2

±22

5

500

50

1

0.5

MC1558

FK,JG,U

2-121

Precision

±5

±22

0.15

-20

1200

0.8

0.4

LT1013AM

D,FK,JG,P

2-93

Precision

±5

± 22

0.3

-30

1200

0.8

0.4

LT1013M

D,FK,JG,P

2-93

High Performance

±4

± 22

5

500

50

3.5

1.7

RM4558

JG

2-163

Low Power

±2

±22

5

100

1

0.5

0.5

TL022M

U

2-171

BIFET, Low Power, Precision

±3.5

±18

0.8

0.2

5

1.1

2.9

TL032AM

FK,JG

2-203

BIFET, Low Power, Precision

±3.5

±18

1.5

0.2

5

1.1

2.9

TL032M

FK,JG

2-203

BIFET, Precision

±3.5

±18

0.8

0.2

50

3

16

TL052AM

FK,JG

2-283

BIFET, Precision

0,3.5

±18

1.5

0.2

50

3

16

TL052M

FK,JG

2-283

BIFET, Low Power

±3.5

±18

6

0.2

4

1

3.5

TL062M

FK,JG,U

2-341

BIFET, Low Noise

±3.5

±18

6

0.2

35

3

13

TL072M

FK,JG

2-371

BIFET, General Purpose

±3.5

±18

16

0.2

25

3

13

TL082M

FK,JG

2-387
2-401

BIFET, General Purpose

±3.5

±18

3

0.4

50

3

13

TL287M

JG,U

BIFET, General Purpose

0,3.5

±18

3

0.4

'50

3

13

TL288M

JG,U

2-401

High·Slew Rate, Single Supply

±2

±22

5

-2000

50

0.2

8

TL35072

D,P

2-443

High-Slew Rate, Single Supply

±2

±22

3

-2000

50

0.2

8

TL35072A

D,P

2-443

10

2.2

5.3

TLC272M

FK,JG

2-565

LinCMOS, High Bias

4

18

10

Typ
0.005

LinCMOS, High Bias

4

18

0.5

Typ
0.005

10

2.2

5.3

TLC277M

FK,JG

2-565

LinCMOS, f!Power, Precision

4

18

0.6

Typ
0.007

500

0.11

0.5

TLC1078M

FK,JG

2-757

LinCMOS, Low Noise, Precision

±2.3

0,8

0.5

Typ
0.001

400

1.9

2.7

TLC2202AM

D,FK,JG,P

2-813

LinCMOS, Low Noise, Precision

0,2.3

±8

0.5

Typ
0.001

400

1.9

2.7

TLC2202BM

D,FK,JG,P

2-813

LinCMOS, Low Noise, Precision

±2.3

±8

1

Typ
0.001

400

1.9

2.7

TLC2202M

D,FK,JG,P

2-813

LinCMOS, Low Bias

4

18

10

Typ
0.005

50

0.1

0.05

TLC27L2M

FK,JG

2-629

LinCMOS, Low Bias

4

18

0.5

Typ
0.005

50

0.1

0.05

TLC27L7M

FK,JG

2-629

25

0.6

0.6

TLC27M2M

FK,JG

2-693

25

0.6

0.6

TLC27M7M

FK,JG

2-693

LinCMOS, Medium Bias

4

18

10

Typ
0.005

LinCMOS, Medium Bias

4

18

0.5

Typ
0.005

TEXAS -If

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

1-25

OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, dual (continued)
military temperature range

DESCRIPTION

(values specified forTA = 25°C)
SUPPLY
VOLTAGE
(V)

VIO
(my)

(nA)

liB

AvO
(V/mY)

B1

SR

(MHz)

(V/flS)

TYPE

PACKAGES

PAGE
NO.

MIN

MAX

MAX

MAX

MIN

TYP

TYP

SIS

4

44

0.3

50

1200

0.8

0.2

LT1013M

JG

2-93

DIS

±2

00 22

0.3

50

500

0.8

0.2

LT1013M

JG

2-93

Excalibur, High Speed, Low Power,
Precision

±2

00 20

0.3

55

1000

2.8

0.65

TLE2022AM

D,FK,JG,P

2-935

Excalibur, High Speed, Low Power,
Precision

002

00 20

0.15

50

1500

2.8

0.65

TLE2022BM

JG

2-935

4

40

0.5

25

1000

2

0.9

TLE2022M

FK,JG

2-935

30

2

3.4

TLE2062AM

D,FK,JG,P

2-1075

PreciSion

I
I

Excalibur, High Speed, Precision
Excalibur, JFET-Input, High-Output
Drive, [,Power

00 3.5

00 20

2

Typ
0.004

Excalibur, JFET-Input, High-Output
Drive, [,Power

003.5

00 20

1

Typ
0.004

30

2

3.4

TLE2062BM

JG,P

2-1075

Excalibur, JFET-Input,
High-Output Drive, [,Power

±3.5

±20

4

Typ
0.004

30

2

3.4

TLE2062M

D,FK,JG,P

2-1075

Excalibur, Low Noise, High Speed,
Precision

002

00 22

1.2

-1500

100

6

45

TLE2142AM

D,FK,JG,P

2-1199

Excalibur, Low NOise,High Speed,
Precision

002

00 22

0.75

-1500

100

6

45

TLE2142M

D,FK,JG,P

2-1199

TEXAS ..,
INSlRUMENTS
1-26

POST OFFICE BOX 655303 • DALlAS, TEXAS 752115

OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, quad
commercial temperature range

DESCRIPTION

BIFET, General Purpose

(values specified for T A
SUPPLY
VOLTAGE
(V)

VIO
(mV)

lIB
(nA)

Avo
(V/mV)

B1
(MHz)

SR
(V/!'s)

MIN

MAX

MAX

MAX

MIN

TYP

TYP

10

0.2

25

3

TYPE

=25°C)

PACKAGESt

PAGE
NO.

" 3.5

=18

13

LF347

D,N

General Purpose

3

30

7

-250

25

0.6

0.3

LM324

D,N.W,Y

2-39

General Purpose

3

30

3

-100

25

0.6

0.3

LM324A

N,W

2-39

General Purpose

,,4

,,18

6

200

25

1

0.5

LM348

D,N

2-47

SIS

4

32

1.2

2.5

0.5

LM3900

D,N

DIS

,,2

-

200

=16

2-61

10

-500

20

1

0.6

MC3403

D,N

2-125

Norton Amplifier, Bipolar

2-3

SIS

3

36

DIS

,,18

Quad uA741 , High Periormance

" 1.5
,,4

±18

6

500

20

3

1.7

RC4136

D,N

2-159

BIFET, Low Power, Precision

,,3.5

,,18

1.5

0.2

5

1.1

2.9

TL034AC

D,N

2-229

BIFET, Low Power, Precision

" 3.5

=18

4

0.2

5

1.1

2.9

TL034C

D,N

2-229

General Purpose

,,2

,,18

5

250

60

0.5

0.5

TL044C

NW

2-253

BIFET, Precision

=3.5

,,18

1.5

0.2

50

2.7

16

TL054AC

D,N

2-311

BIFET, Precision

,,3.5

,,18

4

0.2

50

2.7

16

TL054C

D,N

2-311

BIFET, Low Power

,,3.5

,,18

6

0.2

4

1

3.5

TL064AC

D,N

2-341

BIFET, Low Power

,,3.5

,,18

3

0.2

4

1

3.5

TL064BC

D,N

2-341

BIFET, Low Power

,,3.5

,,18

15

0.4

3

1

3.5

TL064C

D,N

2-341

BIFET, Low Noise

,,3.5

,,18

6

0.2

50

3

13

TL074AC

D,N

2-371

Low Power, Bipolar

BIFET, Low Noise

,,3.5

,,18

3

0.2

50

3

13

TL074BC

D,N

2-371

BIFET, Low Noise

,,3.5

:018

10

0.2

50

3

13

TL074C

D,N

2-371

BIFET, General Purpose

,,3.5

,,18

6

0.2

50

3

13

TL084AC

D,N

2-387

BIFET, General Purpose

,,3.5

,,18

3

0.2

50

3

13

TL084BC

D,N

2-387

BIFET, General Purpose

± 3.5

,,18

15

0.4

25

3

13

TL084C

D,N

2-387

High-Slew Rate

,,2

±22

5

-2000

50

0.2

8

TL34074

DW,N

2-443

High-Slew Rate

,,2

± 22

3

-2000

50

0.2

8

TL34074A

DW,N

2-443

LinCMOS, High Bias

1.4

18

5

Typ
0.005

10

2.2

5.3

TLC254AC

D,N

2-487

LinCMOS, High Bias

1.4

18

2

Typ
0.005

10

2.2

5.3

TLC254BC

D,N

2-487

LinCMOS, High Bias

1.4

18

10

Typ
0.005

10

2.2

5.3

TLC254C

D,N,Y

2-487

LinCMOS, Low Bias

1.4

18

5

Typ
0.005

30

0.1

0.05

TLC25L4AC

D,N

2-487

LinCMOS, Low Bias

1.4

18

2

Typ
0.005

30

0.1

0.05

TLC25L4BC

D,N

2-487

10

Typ
0.005

30

0.1

0.05

TLC25L4C

D,N,Y

2-487

5

Typ
0.005

20

0.6

0.6

TLC25M4AC

D,N

2-487

LinCMOS, Low Bias
LinCMOS, Medium Bias

1.4
1.4

18
18

t Y is chip form.

TEXAS ."

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75255

OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, quad (continued)
(values specified for TA = 2S°C)

commercial temperature range
SUPPLY
VOLTAGE
DESCRIPTION

(V)
MIN

MAX

V,O
(mV)

liB

Avo

B,

(nA)

(VlmV)

(MHz)

SR
(V/",s)

MAX

MAX

MIN

TYP

TYP

20

0.6

TYPE

PACKAGEst

PAGE
NO.

0.6

TLC25M4BC

D,N

2-487

LinCMOS, Medium Bias

1.4

18

2

Typ
0.005

LinCMOS, Medium Bias

1.4

18

10

Typ
0.005

20

0.6

0.6

TLC25M4C

D,N,Y

2-487

LinCMOS, High Bias

3

18

5

Typ
0.005

10

2.2

5.3

TLC274AC

D,N

2-597

LinCMOS, High Bias

3

18

2

Typ
0.005

10

2.2

5.3

TLC274BC

D,N

2-597

LinCMOS, High Bias

3

18

10

Typ
0.005

10

2.2

5.3

TLC274C

D,N

2-597

LinCMOS, High Bias

3

18

0.9

Typ
0.005

10

2.2

5.3

TLC279C

D,N

2-597

LinCMOS, Low Bias

3

18

5

Typ
0.005

50

0.1

0.05

TLC27L4AC

D,N

2-661

LinCMOS, Low Bias

3

18

2

Typ
0.005

50

0.1

0.05

TLC27L4BC

D,N

2-661

LinCMOS, Low Bias

3

18

10

Typ
0.005

50

0.1

0.05

TLC27L4C

D,N

2-661

LinCMOS, Low Bias

3

18

0.9

Typ
0.005

50

0.1

0.05

TLC27L9C

D,N

2-661

LinCMOS, Medium Bias

3

18

5

Typ
0.005

25

0.6

0.6

TLC27M4AC

D,N

2-725

LinCMOS, Medium Bias

3

18

2

Typ
0.005

25

0.6

0.6

TLC27M4BC

D,N

2-725

LinCMOS, Medium Bias

3

18

10

Typ
0.005

25

0.6

0.6

TLC27M4C

D,N

2-725

LinCMOS, Medium Bias

3

18

0.9

Typ
0.005

25

0.7

0.6

TLC27M9C

D,N'

2-725

1.4

18

1.15

Typ
0.007

500

0.11

0.05

TLC1079C

D,N

2-771

Excalibur, High Speed, Low Power,
Precision

4

40

0.75

Typ
45

800

2.8

0.7

TLE2024AC

DW,N

2-963

Excalibur, High Speed, Low Power,
Precision

4

40

0.5

Typ
40

1000

2.8

0.7

TLE2024BC

DW,N

2-963

",2

",22

0.9

-700

100

6

4.5

TLE2024C

DW,N,Y

2-963

30

2

3.4

TLE2064AC

D,N

2-1111

LinCMOS, ",Power, Precision

Excalibur, High Speed, Precision
Excalibur, JFET-Input, High-Output
Drive, ",Power

±3.5

±20

4

Typ
0.004

Excalibur, JFET-Input, High-Output
Drive, ",Power

,,3.5

,,20

2

Typ
0.004

30

2

3.4

TLE2064BC

D,N

2-1111

Excalibur, JFET-Input, High-Output
Drive, ",Power

±3.5

±20

6

Typ
0.004

30

2

3.4

TLE2064C

D,N,Y

2-1111

t Y IS chIp form.

TEXAS ~

INSTRUMEN1S
1-28

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

..

-

OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, quad (continued)
(values specified for TA = 25°C)

Industrial temperature range

DESCRIPTION

SUPPLY
VOLTAGE
(V)

VIO
(mV)

liB
(nA)

AVO
(V/mV)

B1
(MHz)

SR
(V/f!s)

TYPE

PACKAGES

PAGE
NO.

MIN

MAX

MAX

MAX

MIN

TYP

TYP

General Purpose, Bipolar

3

30

5

-150

50

0.6

0.3

LM224

D,N,W

2-{39

General Purpose, Bipolar

3

30

3

-80

50

0,6

0,3

LM224A

N,W

2-39

General Purpose, Bipolar

±4

±18

6

200

25

1

0.5

LM248

D,N

2-47

SIS

3

32

DIS

± 1,5

± 22

5

-150

50

0,6

0,2

LM258

D,P

2-51

3

-80

50

0,6

0.2

LM258A

D,P

2-51

-

200

1,2

2,5

0,5

LM2900

D,N

2-39

High Gain, Low Power, Bipolar

High Gain, Low Power, Bipolar
Norton Amplifier, Bipolar

SIS

3

32

DIS

± 1,5

± 22

SIS

4

32

DIS

±2

±16

BIFET, Low Power

±3,5

±18

1.5

0,2

5

1,1

2,9

TL034AI

D,N

2-229

BIFET, Low Power

±3.5

±18

4

0.2

5

1,1

2,9

TTL0341

D,N

2-229

BIFET, Precision

±3.5

±18

1,5

0.2

50

2.7

16

TL054AI

D,N

2-{311

BIFET, Precision

± 3,5

±18

4

0,2

50

2,7

16

TL0541

D,N

2-{311

BIFET, Low Power, Precision

±3,5

±18

6

0,2

4

1

3,5

TL0641

D,N

2-{341

BIFET, Low Noise, Precision

± 3,5

±18

6

0,2

50

3

13

TL0741

D,N

2-{371

BIFET, General Purpose

±3,5

±18

6

0,2

50

3

13

TL0841

D,N

2-387

High-Slew Rate

±2

± 22

3

-2000

50

0,2

8

TL33074A

DW,N

2-443

High-Slew Rate

±2

± 22

5

-2000

50

0,2

8

TL33074

DW,N

2-443

LinCMOS, High Bias

4

18

5

Typ
0.001

10

2.2

5,3

TLC274AI

D,N

2-597

LinCMOS, High Bias

4

18

2

Typ
0,001

10

2,2

5,3

TLC274BI

D,N

2-597

LinCMOS, High Bias

4

18

10

Typ
0,001

10

2,2

5,3

TLC2741

D,N

2-597

LinCMOS, High Bias

4

18

0,9

Typ
0.005

10

2,2

5.3

TLC2791

D,N

2-597

LinCMOS, Low Bias

4

18

5

Typ
0,005

50

0.1

0,05

TLC27L4AI

D,N

2~61

50

0,1

0,05

TLC27L4BI

D,N

2~61

LinCMOS, Low Bias

4

18

2

Typ
0,005

LinCMOS, Low Bias

4

18

10

Typ
0,005

50

0,1

0,05

TLC27L41

D,N

2~61

LinCMOS, Low Bias

4

18

0,9

Typ
0.005

50

0,1

0,05

TLC27L91

D,N

2~61

LinCMOS, Medium Bias

4

18

5

Typ
0,005

25

0.6

0,6

TLC27M4AI

D,N

2-725

LinCMOS, Medium Bias

4

18

2

Typ
0,005

25

0,6

0,6

TLC27M4BI

D,N

2-725

LinCMOS, Medium Bias

4

18

10

Typ
0,005

25

0,6

0,6

TLC27M41

D,N

2-725

LinCMOS, Medium Bias

4

18

0.9

Typ
0.005'

25

0,6

0,6

TLC27M91

D,N

2-725

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

1-29

OPERATIONAL AMPLIFIERS
SELECTION GUIDE
Internally compensated, quad (continued)
industrial temperature range

DESCRIPTION

(values specified for T A
SUPPLY
VOLTAGE
(V)
MIN

MAX

SR

(mV)

liB
(nA)

01/mV)

B1
(MHz)

01f"s)

MAX

MAX

MIN

TYP

TYP

500

0.11

VIO

AVO

= 25°C)
PAGE
NO.

TYPE

PACKAGES

0.05

TLC10791

D,P

2-771

4

18

1.15

Typ
0.007

Excalibur, High Speed, Low Power,
Precision

±2

00 20

0.75

55

800

2.8

0.7

TLE2024AI

DW,N

2-963

Excalibur, High Speed, Low Power,
Precision

002

±20

0.5

50

1000

2.8

0.7

TLE2024BI

DW,N

2-963

4

40

0.5

25

1000

2

0.9

TLE20241

DW,N

2-963

30

2

3.4

TLE2064AI

D,N

2-1111

LinCMOS, "Power, Precision

Excalibur, High Speed, Precision
Excalibur, JFET-Input, High-Output
Drive, "Power

±3.5

±20

4

Typ
0.004

Excalibur, JFET-Input, High-Output
Drive, "Power

±3.5

±20

2

Typ
0.004

30

2

3.4

TLE2064BI

N

2-1111

Excalibur, JFET-Input, High-Output
Drive, "Power

±3.5

±20

6

Typ
0.004

30

2

3.4

TLE20641

D,N

2-1111

TEXAS •

INSTRUMENTS
1-30

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, quad (continued)
(values specified for T A = 25°C)

automotive temperature range
SUPPLY
VOLTAGE

DESCRIPTION

Norton Amplifier, Bipolar

I SIS
I DIS

Extended Temperature Range LM324

I SIS
I DIS

(mV)

liB
(nA)

0IImV)

B1
(MHz)

SR
(V/fts)

MAX

MAX

MIN

TYP

TYP

200

1.2

2.5

0.5

0.6

0.3

1

0.6

VIO

(V)
MIN

MAX

4.5

32

± 2.2

±16

3

26

-

AVD

Typ

7

-250

8

-500

20

100

PAGE
NO.

TYPE

PACKAGES

LM2900

N

2-61

D,N

2-39

MC3303

D,N

2-125

LM2902
LM2902Q

3

36

± 1.5

±18

Quad uA741

± 4.5

±18

6

500

20

3

1.7

RM4136

D,N,W

2-159

BIFET, Low Power, Precision

± 3.5

±18

1.5

0.2

5

1.1

2.9

TL034AI

D,N

2-229

BIFET, Low Power, Precision

± 3.5

±18

4

0.2

5

1.1

2.9

TL0341

D,N

2-229

BIFET, Precision

±3.5

±18

1.5

0.2

50

2.7

16

TL054AI

D,N

2-311

BIFET, Precision

± 3.5

±18

4

0.2

50

2.7

16

TL0541

D,N

2-311

BIFET, Low Power, Precision

± 3.5

±18

6

0.2

4

1

3.5

TL064 I

D,N

2-341

BIFET, Low Noise, Precision

± 3.5

±18

6

0.2

50

3

13

TL0741

D,N

2-371

BIFET, General Purpose

± 3.5

±18

6

0.2

50

3

13

TL0841

D,N

2-387

LinCMOS, High Bias

4

18

5

Typ
0.001

10

2.2

5.3

TLC274AI

D,N

2-597

LinCMOS, High Bias

4

18

2

Typ
0.001

10

2.2

5.3

TLC274BI

D,N

2-597

LinCMOS, High Bias

4

18

10

Typ
0.001

10

2.2

5.3

TLC2741

D,N

2-597

LinCMOS, High Bias

4

18

1.2

Typ
0.005

10

2.2

5.3

TLC2791

D,N

2-597

LinCMOS, Low Bias

4

18

5

Typ
0.005

50

0.1

0.05

TLC27L4AI

D,N

2-661

LinCMOS, Low Bias

4

18

2

Typ
0.005

50

0.1

0.05

TLC27L4BI

D,N

2-661

LinCMOS, Low Bias

4

18

10

Typ
0.005

50

0.1

0.05

TLC27L41

D,N

2-661

LinCMOS, Low Bias

4

18

0.9

Typ
0.005

50

0.1

0.05

TLC27L91

D,N

2-661

LinCMOS, Medium Bias

4

18

5

Typ
0.005

25

0.6

0.6

TLC27M4AI

D,N

2-725

LinCMOS, Medium Bias

4

18

2

Typ
0.005

25

0.6

0.6

TLC27M4BI

D,N

2-725

LinCMOS, Medium Bias

4

18

10

Typ
0.005

25

0.6

0.6

TLC27M41

D,N

2-725

LinCMOS, Medium Bias

4

18

0.9

Typ
0.005

25

0.6

0.6

TLC27M91

D,N

2-725

LinCMOS, ftPower, Precision

4

18

1.15

Typ
0.007

500

0.11

0.05

TLC10791

D,N

2-771

Excalibur, High Speed, Precision

4

40

0.5

25

1000

2

0.9

TLE20241

DW,N

2-963

Low Power, Bipolar

TEXAS l!.J

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

1-31

OPERATIONAL AMPLIFIERS
SELECTION GUIDE
internally compensated, quad (continued)
(values specified for TA =25°C)

extended temperature range
SUPPLY
VOLTAGE

DESCRIPTION

(V)

VIO
(mV)

liB
(nA)

AVO
(V/mV)

B1
(MHz)

SR
(V/!-,s)

MIN

MAX

MAX

MAX

MIN

TYP

TYP

±2

±16

7

-100

25

0.4

Min
0.2

High Temperature (- 40'C to 150'C)

TYPE

PACKAGESt

PAGE
NO.

TL2829Z

D,N,Y

2--429

t Y IS chip form.

internally compensated, quad
(values specified for TA = 25°C)

military temperature range
DESCRIPTION

SUPPLY
VOLTAGE

(V)

VIO
(mV)

liB
(nA)

AVO
(V/mV)

Bl
(MHz)

SR
(V/!-,s)

TYPE

PACKAGES

PAGE
NO.
2-39

MIN

MAX

MAX

MAX

MIN

TYP

TYP

General Purpose

3

30

5

-150

50

0.6

0.13

LM124

FK,J,W

General Purpose

±4

± 22

5

100

50

1

0.5

LM148

FK,J

2--47

Quad uA741, High Performance

004

00 22

4

400

50

3.5

1.7

RM4136

FK,J,w

2-159

BIFET, Low Power, Precision

±3.5

0018

1.5

0.2

5

1.1

2.9

TL034AM

FK,J

2-229

BIFET, Low Power, Precision

±3.5

±18

4

0.2

5

1.1

2.9

TL034M

FK,J

2-229

±2

: 22

5

100

72

0.5

0.5

TL044M

FK,J,W

2-253

BIFET, Precision

:3.5

±18

1.5

0.2

50

2.7

16

TL054AM

FK,J

2-311

BIFET, Precision

±3.5

:18

4

0.2

50

2.7

16

TL054M

FK,J

2-311

BIFET, Low Power

003.5

±18

9

0.2

4

1

3.5

TL064M

FK,J,W

2-341

BIFET, Low Noise

±3.5

±18

9

0.2

35

3

13

TL074M

FK,J,W

2-371

BIFET, General Purpose

±3.5

±18

9

0.2

25

3

13

TL084M

FK,J,W

2-387

High-Slew Rate

:2

±22

5

-2000

50

0.2

8

TL35074

DW,N

2--443

High-Slew Rate

±2

±22

3

-2000

50

0.2

8

TL35074A

DW,N

2--443

10

2.2

5.3

TLC274AM

FK,J

2-597

Low Power

LinCMOS, High Bias

4

18

10

Typ
0.005

LinCMOS, High Bias

4

18

1.2

Typ
0.005

10

2.2

5.3

TLC279M

FK,J

2-597

LinCMOS, Low Bias

4

18

10

Typ
0.005

50

0.1

0.05

TLC27L4M

FK,J

2-661

LinCMOS, Low Bias

4

18

0.9

Typ
0.005

50

0.1

0.05

TLC27L9M

FK,J

2-661

LinCMOS, Medium Bias

4

18

10

Typ
0.005

20

0.6

0.6

TLC27M4M

FK,J

2-725

LinCMOS, Medium Bias

4

18

0.9

Typ
0.005

20

0.6

0.6

TLC27M9M

FK,J

2-725

LinCMOS, !-'Power, Precision

4

18

1.15

Typ
0.007

500

0.11

0.05

TLC1079M

D,J,P

2-771

TEXAS ..,
INSlRUMENlS
1-32

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

..

-

OPERATIONAL AMPLIFIERS
SELECTION GUIDE
Internally compensated, quad (continued)
military temperature range
DESCRIPTION

(values specified for TA = 25°C)
SUPPLY
VOLTAGE
(V)

VIO
(mV)

liB
(nA)

AVO
(V/mV)

B1
(MHz)

SR
(V/f!s)

TYPE

PACKAGES

PAGE
NO.

MIN

MAX

MAX

MAX

MIN

TYP

TYP

Excalibur, High Speed, Low Power,
Precision

±2

±20

0.75

55

800

2.8

0.7

TLE2024AM

DW,FK,J,N

2-963

Excalibur, High Speed, Low Power,
Precision

±2

±20

0.5

50

1000

2.8

0.7

TLE2024BM

DW,J,N

2-963

4

40

0.5

25

1000

2

0.9

TLE2024M

DW,FK,J,N

2-963

30

2

3.4

TLE2064AM

D,FK,J,N

2-1111

Excalibur, High Speed, Precision
Excalibur, JFET-Input, High-Output
Drive, f!Power

± 3.5

±20

4

Typ
0.004

Excalibur, JFET-Input, High-Output
Drive, f!Power

± 3.5

±20

2

Typ
0.004

30

2

3.4

TLE2064BM

J,N

2-1111

6

Typ
0.004

30

2

3.4

TLE2064M

D,FK,J,N

2-1111

Excalibur, JFET-Input, High-Output
Drive, f!Power

±3.5

±

20

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

1-33

..

1-34

OPERATIONAL AMPLIFIERS
CROSS·REFERENCE GUIDE
Replacements are based on similarity of electrical and mechanical characteristics shown in currently published data.
Interchangeability in particular applications is not guaranteed. Before using a device as a substitute, the user should
compare the specifications of the substitute device with the specifications of the original.
Texas Instruments makes no warranty as to the information furnished and the buyer assumes all risk in the use thereof.
No liability is assumed for damages resulting from the use of the information contained herein.
Manufacturers are arranged in alphabetical order.

ADVANCED
LINEAR
DEVICES

SUGGESTED
TI

REPLACEMENT

ALD17010r
ALD1702 or
ALD1703

TLC271

TI

REPLACEMENT

AD510 or AD517
AD712J

FAIRCHILD
uA714
uA714L
uA741
uA747
uA748
uA771
uA771 A
uA771B
uA771L
uA772
uA772A
uA772B
uA772L
uA774
uA7748
uA774L

BURR BROWN
OPA111
OPA211

DIRECT
TI
REPLACEMENT

NO.
2-507

SUGGESTED

ANALOG
DEVICES

PAGE

PAGE
NO.

OP-07
TLE2082A

2-141
2-1147

SUGGESTED
TI
REPLACEMENT

PAGE
NO.

OP-07C
OP-07D
uA741
uA747
uA748
TL071
TL0718
TL071A
TL081
TL072
TL0728
TL072A
TL082
TL074
TL074A
TL084

or TL081 8
or TL081 A

or TL082A

orTL0748

2-141
2-141
2-1305
2-1313
2-1319
2--371
2-371 /2-387
2-371 / 2--387
2-387
2-371
2-371
2-371 / 2-387
2-387
2-371
2-371
2-387

SUGGESTED
TI
REPLACEMENT

PAGE
NO.

TLC2201
TLC2202

2-785
2-813

TEXAS ."

INSIRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

1-35

OPERATIONAL AMPLIFIERS
CROSS-REFERENCE GUIDE

GENERAL
ELECTRIC

SUGGESTED
TI
REPLACEMENT

PAGE
NO.

ICL7611, or ICL7612,
or ICL7613
ICL7621
ICL7641
ICL7642

TLC271

2-507

TLC272
TLC274 or TLC27L9
TLC27M9

HARRIS

HA2515
HA5127
HA5135-5
HA5137

INTERSIL

ICL7611, or ICL7612
or ICL7613
ICL7621
ICL7641
ICL7642
ICL7652
LINEAR
TECHNOLOGY

LT1001
LT1007
LT1007A
LT1037
LT1037A
LTC1052

MAXIM

ICL7611, or ICL7612
or ICL76t3
ICL7621
ICL7641
ICL7642
ICL7652

SUGGESTED
TI
REPLACEMENT

PAGE
NO.

LM318
TLE2027
OP-07C
TLE2037

2-35
2-991
2-141
2-1015

SUGGESTED
TI
REPLACEMENT

PAGE
NO.

TLC271

2-507

TLC272
TLC274 or TLC27L9
TLC27M9
TLC2652 or TLC2654
DIRECT
TI
REPLACEMENT

LT1007
LT1007A
LT1037
LT1037A

SUGGESTED
TI
REPLACEMENT

OP-07C, OP-070,
TLE2027
TLE2037
TLC2652 or TLC2654

2-565
2-597 / 2-661
2-725
2-861 / 2-885
PAGE
NO.

2-141/2-149
2-69/2-991
2-69
2-69 / 2-.1015
2-69
2-861/2-885

SUGGESTED
TI
REPLACEMENT

PAGE
NO.

TLC271

2-565

TLC272
TLC274 or TLC27L9
TLC27M9
TLC2652 or TLC2654

TEXAS ."

INSTRUMENTS
1-36

2-565
2-597 / 2-661
.2-725

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-565
2-597 / 2-661
2-725
2-861 / 2-885

,..
OPERATIONAL AU'UFtIE,Jt$
CROSS-REFERENCE GUIH
DIRECT
MOTOROLA

MC748
MC1458
MC1558
MC1709
MC1741
MC1747
MC3303
MC3403
MC4558
MC4741
MC34001
MC34002
MC34004
MC34004B
MC34071
MC34072
MC34181
MC34182
MC34184

NATIONAL

TI
REPLACEMENT
uA748
MC1458
MC1558
uA709
uA741
uA747
MC3303
MC3403
RC4558
LM348

TL071 or LF351
TL072 or LF353
TL074 or LF347
TL074A or LF347B
TLE2141
TLE2142
TLE2061
TLE2062
TLE2064

DIRECT
TI
REPLACEMENT

LF347
LF347B

LF351
LF353

LF351
LF353

LF411
LF411A

LF411

LF412

LF412

LF412-1A
LF441
LF441A
LF442
LF442A
LF444
LF444A
LH0044
LH0044B
LM201A
LM207
LM218

RC4136

TL34071
TL34072

LF347
LF347B

SUGGESTED
TI
REPLACEMENT

SUGGESTED
TI
REPLACEMENT

TL074 or TL084
TL074A, TL074B,
orTL084A
TL071 or TL081A
TL072, TL072A,
orTL082A
TL081A
TL071 A, TL071 B,
TL081 A, or TL081 B
TL072A, TL082A,
orTL082B
TLE2082
TL061 or TLE2061
TL061A orTL061B
TL062 or TLE2062
TL062B
TL064 or TLE2064
TL064A
OP-07C
Op c07D

LM201A
LM207
LM218

PAGE
NO.

2-1319
2-121
2-121
2-1301
2-1305
2-1313
2-125
2-125/2-159
2-163
2-47
2-371/2-5
2-371/2-7
2-371/2-3
2--371/2-3
2-443/2-1181
2-443/2-1199
2-1039
2-1075
2-1111
PAGE
NO.

2-3 /2--371 /2--31!17
2--3 / 2-371 /2--3137
2-5/2--387
2-7 / 2--371/ 2--3137
2-9/2-387
2-371
2--387
2-9/2--387
2-1147
2-341/2-1039
2-341
2-341/2-1111
2--341
2-341 /2-1111
2-341
2-141
2-141
2-13
2-19
2-35

TEXAS ."

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

1-37

OPERATIONAL AMPLIFIERS
CROSS·REFERENCE GUIDE
(Continued)

NATIONAL

LM224
LM248
LM258
LM301A
LM307
LM318
LM324
LM348
LM358
LM709
LM741
LM883
LM1458
LM2900
LM2902
LM2904
LM3900
LMC660
UMC662

DIRECT
TI
REPLACEMENT

LM224
LM248
LM258
LM301A
LM307
LM318
LM324
LM348
LM358
uA709
uA741

TLE2024
TLE2022

RC4558
MC1458
LM2900
LM2902
LM2904
LM3900

2~1

TLC274
TLC2202

2-597
2-813

SUGGESTED
TI
REPLACEMENT

PAGE
NO.

LM318
MC1458
OP-07
TL071 , TL081A,
or LF351
DIRECT
TI
REPLACEMENT

SUGGESTED
TI
REPLACEMENT

uA741
uA747
OP-07C
OP-07D
RC4136
MC1458
MC1558
TL071 , TL081A,
or LF351

TEXAS ~

INSTRUMENTS
1-38

2-39
2-47
2-51
2-13
2-19
2-35
2-39/2-963
2-47
2-51/2-935
2-1301
2-1305
2-163
2-121
2~1

uPC159
uPC251
uPC354
uPC801

OP-02
OP-04
OP-07C
OP-07D
OP-07F
OP-14C or OP-14E
OP-14J
OP-15F

PAGE
NO.

2-39
2-51

NEC

PMI

SUGGESTED
TI
REPLACEMENT

POST OFFICE BOX 655303 • DALlAS, TEXAS 75265

2-35
2-121
2-141
2-371 /2-387 / 2-5

PAGE
NO.

2-1305
2.,-1313
2-141
2-141
2-159
2-121
2-121
2-371 / 2-387 / 2-3

OPERATIONAL AMPLIFIERS
CROSS-REFERENCE GUIDE
(Continued)

PMI

OP-27E
OP-27G
OP-37E
OP-37G
OP-215F

DIRECT
TI
REPLACEMENT

OP-27E
OP-27G
OP-37E
OP-37G
TL072, TL082A,
LF353,orTLE2082
TLE2082A
TLE2021
TLE2027
TLE2037
TLE2022
TLE2024

OP-215G
OP-21
OP-27
OP-37
OP-221
OP-421

RAYTHEON

RC4136
RC4156
RC4157
RC4558
RC4559

DIRECT
TI
REPLACEMENT

LM348
LM348
RC4558
RC4559
SUGGESTED
TI
REPLACEMENT

CA081 A
CA081 A
CA082
CA082A
CA084

NE532
NE5532
NE5532A
NE5534
NE5534A
SE5534
SE5534A

SUGGESTED
TI
REPLACEMENT

RC4136

RCA

SIGNETICS

SUGGESTED
TI
REPLACEMENT

DIRECT
TI
REPLACEMENT

NE5532
NE5532A
NE5534
NE5534A
SE5534
SE5534A

2-149
2-149
2-149
2-149
2-371 / 2-387
2-1147
2-909
2-991
2-1015
2-935
2-963
PAGE
NO.

2-159
2-47
2-47
2-163
2-169
PAGE
NO.

TL081
TL081A
TL082
TL082A
TL084

2-387
2-387
2-387
2-387
2-387

SUGGESTED
TI
REPLACEMENT

PAGE
NO.

LM358 or TL022

2-51/2-171
2-131
2-131
2-135/2-1015
2-135/2-1015
2-135
2-135

TLE2037
TLE2037A

TEXAS

PAGE
NO.

.Jf

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

1-S9

...
OPiftAflONAL.AMPL.lFIERS
CIOSS·REFERENCE GUIDE
SUGGESTED

TI

SGS-THOMSON

PAGE
NO.

REPLACEMENT

TS271
TS271A
TS271B
TS272
TS272A
TS272B
TS274
TS274A
TS274B
TS27L2
TS27L2A
TS27L2B
TS27L4
TS27L4A
TS27L4B
TS27M2
TS27M2A
TS27M2B
TS27M4
TS27M4A
TS27M4B

TLC271
TLC271A
TLC271B
TLC272
TLC272A
TLC2728
TLC274
TLC274A
TLC274B
TLC27L2
TLC27L2A
TLC27L2B
TLC27L4
TLC27L4A
TLC27L4B
TLC27M2
TLC27M2A
TLC27M2B
TLC27M4
TLC27M4A
TLC27M4B

TEXAS ""
INSIRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-507
2-507
2-507
2-565
2-565
2-565
2-597
2-597
2-597
2-629
2-629
2-629
2-661
2-661
2-661
2-693
2-693
2-693
2-725
2-725
2-725

GLOSSARY
OPERATIONAL AMPLIFIER TERMS AND DEFINITIONS

Input Offset Voltage (VIO)
The d-c voltage that must be applied between the input terminals to force the quiescent d-c output voltage to zero
or other level, if specified.

Average Temperature Coefficient of Input Offset Voltage (aVIO)
The ratio of the change in input offset voltage to the change in free-air temperature. This is an average value for the
specified temperature range.

"'VIO = [

(VIO @ TA(1))-(VI0 @ TA(2))]
T
T
where T A(1) and T A(2) are the specified temperature extremes.
A(1)- A(2)

Input Offset Current (110)
The difference between the currents into the two input terminals with the output at zero volts.

Average Temperature Coefficient of Input Offset Current (aIlO)
The ratio of the change in input offset current to the change in free-air temperature. This is an average value for the
specified temperature range.

"'110 = [

(110 @ TA(1))-(l10 @ TA(2))]
T
T
where T A( 1) and T A(2) are the specified temperature extremes.
A(1) - A(2)

Input Bias Current (lIB)
The average of the currents into the two input terminals with the output at zero volts.

Common-Mode Input Voltage (VIC)
The average of the two input voltages.

Common-Mode Input Voltage Range (VICR)
The range of common-mode input voltage that if exceeded will cause the amplifier to cease functioning properly.

Differential Input Voltage (VID)
The voltage at the noninverting input with respect to the inverting input.

Maximum Peak Output Voltage Swing (VOM)
The maximum positive or negative peak output voltage that can be obtained without waveform clipping when the
quiescent d-c output voltage is zero.

Maximum Peak-to-Peak Output Voltage Swing (VOpp)
The maximum peak-to-peak output voltage that can be obtained without waveform clipping when the quiescent d-c
output voltage is zero.

Large-Signal Voltage Amplification (AV)
The ratio of the peak-to-peak output voltage swing to the change in input voltage required to drive the output.

Differential Voltage Amplification (AVO)
The ratio of the change in output voltage to the change in differential input voltage producing it.

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

1-41

GLOSSARY
OPERATIONAL AMPLIFIER TERMS AND DEFINITIONS

Maximum-Output-Swing Bandwidth (BOM)
The range of frequencies within which the maximum output voltage swing is above a specified value.

Unity-Gain Bandwidth (B1)
The range of frequencies within which the open-loop voltage amplification is greater than unity.

Phase Margin ((j>m)
The absolute value of the open-loop phase shift between the output and the inverting input at the frequency at which
the modulus of the open-loop amplification is unity.

Gain Margin (Am)
The reciprocal of the open-loop voltage amplification at the lowest frequency at which the open-loop phase shift is
such that the output is in phase with the inverting input.

Input Resistance (ri)
The resistance between the input terminals with either input grounded.

Differential Input Resistance (rid)
The small-signal resistance between the two ungrounded input terminals.

Output Resistance (r9)
The resistance between the output terminal and ground.

Input Capacitance (Ci)
The capacitance between the input terminals with either input grounded.

Common-Mode Input Impedance (zicl
The parallel sum of the small-signal impedance between each input terminal and ground.

Output Impedance (zo)
The small-signal impedance between the output terminal and ground.

Common-Mode Rejection Ratio (kCMR. CMRR)
The ratio of differential voltage amplification to common-mode voltage amplification.
NOTE: This is measured by determining the ratio of a change in input common-mode voltage to the resulting change
in input offset voltage.

Supply Voltage Sensitivity (kSVS • .iVIO/.iVCC)
The absolute value of the ratio of the change in input offset voltage to the change in supply voltages producing it.
NOTES: 1. Unless otherwise noted. both supply voltages are varied symmetrically.
2. This is the reciprocal of supply voltage rejection ratio.

Supply Voltage Rejection Ratio (kSVR • .iVCC/.iVIO)
The absolute value of the ratio of the change in supply voltages to the change in input offset voltage.
NOTES: 1. Unless otherwise noted. both supply voltages are varied symmetrically.
2. This is the reCiprocal of supply voltage sensitivity.

TEXAS.

INSTRUMENTS
1-42

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

GLOSSARY
OPERATIONAL AMPLIFIER TERMS AND DEFINITIONS

Equivalent Input Noise Voltage (V n )
The voltage of an ideal voltage source (having an internal impedance equal to zero) in series with the input terminals
of the device that represents the part of the internally generated noise that can properly be represented by a voltage
source.

Equivalent Input Noise Current (In)
The current of an ideal current source (having an internal impedance equal to infinity) in parallel with the input terminals
of the device that represents the part of the internally generated noise that can properly be represented by a current
source.

Average Noise Figure (F)
The ratio of (1) the total output noise power within a designated output frequency band when the noise temperature
of the input termination(s) is at the reference noise temperature, TO, at all frequencies to (2) that part of (1) caused
by the noise temperature of the designated signal-input termination within a designated signal-input frequency band.

Short-Circuit Output Current (lOS)
The maximum output current available from the amplifier with the output shorted to ground, to either supply, or to
a specified point.

Supply Current (ICC)
The current into the

Vee

or

Vee +

terminal of an integrated circuit.

Total Power Dissipation (PO)
The total d-c power supplied to the device less any power delivered from the device to a load.
NOTE: At no load:

Po = VCC+ • ICC+ + VCC- .ICC-·

Crosstalk Attenuation (V o 1IV 02)
The ratio of the change in output voltage of a driven channel to the resulting change in output voltage of another channel.

Rise Time (t r )
The time required for an output voltage step to change from 10% to 90% of its final value.

Total Response Time (Settling Time) (ttot)
The time between a step-function change of the input signal level and the instant at which the magnitude of the output
signal reaches for the last time a specified level range (± €) containing the final output signal level.

Overshoot Factor
The ratio of (1) the largest deviation of the output signal value from its final steady-state value after a step-function
change of the input signal, to (2) the absolute value of the difference between the steady-state output signal values
before and after the step-function change of the input signal.

Slew Rate (SR)
The average time rate of change of the closed-loop amplifier output voltage for a step-signal input.

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

1-43

1-44

2-1

o

",..Q;
(1)

0"

::s

-l>
3
"--a;""
Q)

-iii

ifA

2-2

LF347, LF347B
WIDE·BANDWIDTH QUAD JFET·INPUT OPERATIONAL AMPLIFIERS
02997, MARCH 1987-REVISEO SEPTEMBER 1990

•
•

o OR N PACKAGE

Low Input Bias Current
Typically 50 pA

ITOPVIEW)

Low Input Noise Current
Typically 0,01 pA/v'Hz

rUT
IN-

AMP #1

IN+
VCC+

•

Low Total Harmonic Distortion

•

Low Supply Current ... Typically 8 rnA

•

Wide Gain Bandwidth, .. Typically 3 MHz

•

High Slew Rate ... Typically 13 V I P.s

•

Pin Compatible with the LM348

{N+
IN-

AMP #2

OUT

OUT}

ININ+

AMP #4

VCCIN+ }
IN-

AMP #3

OUT

description
These devices are low-cost, high-speed, JFET-input operational amplifiers. They require low supply current
yet maintain a large gain-bandwidth product and a fast slew rate. In addition, their matched high-voltage
JFET inputs provide very low input bias and offset current.
The LF347 and LF347B can be used in applications such as high-speed integrators, digital-to-analog
converters, sample-and-hold circuits, and many other circuits.
The LF347 and LF347B are characterized for operation from ooe to 70 oe.

symbol (each amplifier)

IN-=t>-

OUT

+

IN+

AVAILABLE OPTIONS

TA

ooe

PACKAGE

VIO MAX
AT 25°C

SMALL-OUTLINE
(0)

IN)

10 mV

LF347D

LF347N

5 mV

LF347BD

LF347BN

PLASTIC DIP

to
70 0 e

D packages are available taped and reeled. Add "R" suffix to
the device type, (e.g. LF347DR).

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee + ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18 V
Supply voltage, Vee - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 18 V
Differential input voltage, VID ..
. . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 30 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 15 V
Duration of output short circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Unlimited
eontinuous total power dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . .. See Dissipation Rating Table
Operating temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ooe to 70 0 e
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65 °e to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds. . . . . . . . . . . . . . . . . . . . .. 260°C
NOTE 1: Unless otherwise specified, the absolute maximum negative input voltage is equal to' the negative power supply voltage.

Copyright © 1990, Texas Instruments Incorporated

PRODUCTION DATA documents contain information

current as of publication date. Products conform to

specifications per the terms of Texas

Instr~ments

standard warranty. Production processing does not

necessarily include testing of all parameters,

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-3

...
LF347, LF347B
WIDE-BANDWIDTH QUAD JFET-INPUT OPERATIONAL AMPLIFIERS

DISSIPATION RATING TABLE
TA:5 25°C

DERATING

DERATE

TA = 70°C

POWER RATING

FACTOR

ABOVE TA

POWER RATING

D

680 mW

7.6 mW/oC

61°C

608 mW

N

680 mW

N/A

N/A

680 mW

PACKAGE

recommended operating conditions
MIN

MAX

Supply voltage, V cc +

3.5

18

V

Supply voltage, VCC-

-3.5

-18

V

electrical characterist.ics over operating free-air temperature range, Vee +
(unless otherwise specified)
PARAMETER
Via

Input offset voltage

~

VIC

Average temperature coefficient

VIC

of input offset voltage

RS

110

Input offset current t

VIC ~

liB

Input bias current t

~

VIC ~

MAX

5

10

Full range

MIN

0,

3

TJ

a

TJ

TJ
TJ

~

25°C

~

70°C

~

25°C

~

70°C

25

100

25

200

50

8
-12

VICR

Common-mode input voltage range

YOM

Maximum peak output voltage swing

AVO

Large-signal differential voltage

Input resistance
ri
CMRR Common-mode rejection ratio

kSVR

Supply voltage rejection ratio

ICC

Supply Current

±11
RL

~

10 k{l

VO~±10V,

RL
TJ

~
~

2 kO

I

~

25°C

Full range

to

±12 ± 13.5

100

See Note 2

70

100
8

15 V. Vee-

Unity-gain bandwidth
Equivalent input noise voltage

f

~

1 kHz,

100

80

100

11

In

Equivalent input noise current

f

~

1 kHz

V
V
Vim V
{l
dB
dB
11

MIN

TYP

MAX

13
3

~

nA

8

120

RS

pA

8

100

80

8

Vn

nA

200

10 12

1 kHz

Bl

pA

4

rnA

-15V.TA

TEST CONDITIONS
~

100

25
10 12
100

f

50

15

70

mV
"V/oC

to

±12 ± 13.5

25°C

PARAMETER

±11

15

25

UNIT

-12

15

RS :5 10 k{l

operating characteristics. Vee +
V01 1V02 Crosstalk attenuation
SR
Slew rate

TA

5

18

4
50

MAX
7

18

a

TYP

13

10 k{l

~

LF347B

TYP

TA ~ 25°C

0,

RS~10k{l

"'VIO

MIN

-15 V

15 V, Vee-

LF347

TEST CONDITIONS

UNIT

100 {l

UNIT
dB
V/"s
MHz

18

nV/,[Hz

0.01

pA/,[Hz

t Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques
must be used that will maintain the junction temperatures as close to the ambient temperature as possible.
•
NOTE 2: Supply voltage rejection ratio is measured for both supply magnitudes increasing. or decreasing simultaneously.

-II

TEXAS
INSTRUMENTS
2-4

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

LF351
WIDE·BANDWIDTH DUAL JFET·INPUT OPERATIONAL AMPLIFIER
D2997, MARCH 1987-REVISED SEPTEMBER 1990

•
•

D OR P PACKAGE

Low Input Bias Current
Typically 50 pA

(TOP VIEW)

Low Input Noise Voltage
Typically 18 nV/¥Z

B A L 1 [ ] 8 NC

•

Low Input Noise Current
Typically 0.01 pA/¥Z

•

Low Supply Current ... Typically 1.8 rnA

•

High Input Impedance
Typically 10 12 [J

•

Low Total Harmonic Distortion

•

Internally Trimmed Offset Voltage
Typically 10 mV

•

High Slew Rate ... Typically 13 VII's

•

Wide Gain Bandwidth ... Typically 3 MHz

•

Pin Compatible with Standard 741

)N-)N +

2
3

7
6

Vcc+
OUT

VCC-

4

5

BAL2

NC

No internal connection

description
This device is a low-cost, high-speed, JFET-input operational amplifier with an internally trimmed input
offset voltage. It requires low supply current yet maintains a large gain-bandwidth product and a fast slew
rate. In addition, the matched high-voltage JFET input provides very low input bias and offset currents.
It uses the same offset voltage adjustment circuits as the 741.
The LF351 can be used in applications such as high-speed integrators, digital-to-analog converters, sampleand-hold circuits, and many other circuits.
The LF351 is characterized for operation from

ooe

to 70 oe.

symbol leach amplifier)
(2)

IN-

(6) OUT
(3)

IN+

( 1)

BAll

(5)

BAL2

AVAILABLE OPTIONS
SYMBOLIZATION
DEVICE
LF351

PACKAGE
SUFFIX
D, P

OPERATING

VIO MAX

TEMPERATURE RANGE

at 25°C

-ooe

to 70

0

e

10 mV

The D packages are available taped and reeled. Add the suffix R to
the device type, (ie., LF351 DRI.

PRODUCTION DATA documents contain information
current as of publication date. Products conform to
specifications per the terms of Texas Instruments
standard warranty. Production processing does not
necessarily include testing of all parameters.

TEXAS

-1!1

Copyright © 1990, Texas Instruments Incorporated

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TeXAS 75265

1

2-5

I,

IiI':

LF351
WIDE-BANDWIDTH JFET-INPUT OPERATIONAL AMPLIFIER
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vcc + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18 V
Supply voltage, VCC _ .......
- 18 V
Differential input voltage, VID ........... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
± 30 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
± 15 V
Duration of output short circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Unlimited
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 mW
Operating temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 0 DC to 70 DC
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65 DC to 150 DC
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds. . . . . . . . . . . . . . . . . . . . .. 260 DC
NOTE 1: Unless otherwise specified, the absolute maximum negative input voltage is equal to the negative power supply voltage.

recommended operating conditions
MIN

MAX

Supply voltage, VCC+

3.5

18

V

Supply voltage, VCC-

-3.5

-18

V

electrical characteristics over operating free-air temperature range, Vee +
(unless otherwise specified)
PARAMETER
Via

Input offset voltage
Average temperature coefficient

"via

110
lIB

of input offset voltage
Input offset current t
Input bias current t

TEST CONDITIONS
VIC

=

0,

RS

=

10 kO

VIC

=

0,

RS

=

10 kO

VIC

=

0

VIC

=

25°C

TYP

MAX

5

10

Full range

13

TJ
TJ
TJ

=
=
=
=

25°C

25
50

mV

100

pA

4

nA

200

pA

8

nA

70°C
25°C

UNIT

p.V/oc

10

TJ

0

-15 V

15 V, VeeMIN

=

TA

UNIT

70°C
-12

VICR

Common-mode input voltage range

±11

to

V

15
VOM

Maximum peak output voltage swing

RL

AVD

Large-signal differential voltage

Va

r;

Input resistance

TJ

CMRR Common-mode rejection ratio
kSVR

Supply voltage rejection ratio

ICC

Supply current

operating characteristics, Vee +
PARAMETER
SR

Slew rate

B1

Unity-gain bandwidth

Vn

Equivalent input noise voltage

In

Equivalent input noise current

=
=
=

±12

10 kO
± 10 V,

RL

=

2 kO

TA

=

25°C

Full range

25
15

±13.5

V

200

V/mV

200
10 12

25°C

RS :5 10 kO

70

100

See Note 2

70

100

0
dB
dB

1.8

3.4

mA

MIN

TYP

MAX

8

13

V/p.s

3

MHz

-15V,TA

15 V, Vee-

TEST CONDITIONS

f = 1 kHz,

RS = 1000

f = 1 kHz

UNIT

18

nV/-IHz

0.01

pA/-IHz

t Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques
must be used that will maintain the junction temperatures as close to the ambient temperature as possible.
NOTE 2: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously.

~

TEXAS
INSTRUMENTS
2~

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

LF353
WIDE·BANDWIDTH DUAL JFET·INPUT OPERATIONAL AMPLIFIER
D2997, MARCH 1987-REVISED SEPTEMBER 1990

•
•

D OR P PACKAGE

Low Input Bias Current
Typically 50 pA

(TOP VIEW I

Low Input Noise Current
Typically 0.01 pAl

"'Hz

AMP #

1{~NU~ []1
~ ~C~}+
IN +
VCC-

•

Low Input Noise Voltage
Typically 18 nV/v'Hz

•

Low Supply Current ... Typically 3.6 rnA

•

High Input Impedance
Typically 10 12 n

•

Internally Trimmed Offset Voltage

•

Wide Gain Bandwidth ... Typically 3 MHz

•

High Slew Rate ... Typically 13 V I J1.s

3
4

6

IN -

5

IN+

AMP # 2

description
This device is a low-cost, high-speed, JFET-input operational amplifier with very low input offset voltage.
It requires low supply current yet maintains a large gain-bandwidth product and a fast slew rate. In addition,
the matched high-voltage JFET input provides very low input bias and offset currents.
The LF353 can be used in applications such as high-speed integrators, digital-to-analog converters, sampleand-hold circuits, and many other circuits.
The LF353 is characterized for operation from 0 DC to 70 DC.

symbol (each amplifier)

I N - = l > - OUT

+

IN+

AVAILABLE OPTIONS
SYMBOLIZATION
DEVICE
LF353

PACKAGE
SUFFIX
D. P

OPERATING

V,O MAX

TEMPERATURE RANGE

at 25°C

O°C to 70°C

10 mV

The D packages are available taped and reeled. Add the suffix R to
the device type, li.e. LP353DR).

PRODUCTION DATA documents contain information
current as of publication data. Products conform to
specifications par the tarms of Texas Instrumants
standard warranty. Production processing doas not
nacessarily include testing of all parametars.

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Copyright

©

1990, Texas Instruments Incorporated

2-7

LF353
WIDE-BANDWIDTH DUAL JFET-INPUT OPERATIONAL AMPLIFIER

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee + .....................................................
18 V
Supply voltage, Vee - 18 V
Differential input voltage, VID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
± 30 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
± 15 V
Duration of output short circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Unlimited
eontinuoustotal power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 mW
Operating temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . .. ooe to 70 0 e
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65 °e to 150 °e
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds. . . . . . . . . . . . . . . . . . . . .. 260 0 e
NOTE 1: Unless otherwise specified, the absolute maximum negative input voltage is equal to the negative power supply voltage.

recommended operating conditions
MIN

MAX

Supply voltage, V CC +

3.5

18

V

Supply voltage, VCC-

-3.5

-18

V

electrical characteristics over operating free-air temperature range, Vee +
(unless otherwise specified)
PARAMETER
Via

Input offset voltage
Average temperature coefficient

aVIO
110
lIB

of input offset voltage
Input offset current t

Input bias current t

TEST CONDITIONS
VIC

=

0,

RS

=

10 kO

VIC

=

0,

RS

=

10 kO

VIC

VIC

=
=

=

-15 V

15 V, VeeMIN

TA

25°C

TYP

MAX

5

10

Full range

13
10

TJ
0

TJ
TJ

0

TJ

=
=
=
=

25

25°C
70°C

50

25°C
70°C

UNIT

UNIT
mV
/lV/oC

100

pA

4

nA

200

pA

8

nA

-12
VICR

Common-mode input voltage range

±11

to

V

15
YOM

Maximum peak output voltage swing

RL

=

AVO

Large·signal differential voltage

Va

=

r;

Input resistance

TJ

=

CMRR Common-mode rejection ratio
kSVR

Supply voltage rejection ratio

ICC

Supply current·

operating characteristics, Vee +

±12

10 kO
±10V,

Unity·gain bandwidth
Equivalent input noise voltage

In

Equivalent input noise current

25°C

Full range

25

± 13.5

Vim V

10 12
70

100

See Note 2

70

100

TEST CONDITIONS
f

=

MIN

1 kHz

dB

3.6

6.5

TYP

MAX

120
8

=

0
dB
mA

-15V,TA

15 V, Vee-

f

V

100

15

25°C

V01/V02 Crosstalk attenuation
SR
Slew rate
B1

2 kO

=

RS :5 10 kO

PARAMETER

Vn

=

RL

TA

1 kHz,
f

=

RS

=

1000

1 kHz

13

UNIT
dB
VII'S

3

MHz

18

nV/M

0.01

pAlM

t Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques
must be used that will maintain the junction temperatures as close to the ambient temperature as possible.
NOTE 2: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously.

TEXAS •
INSTRUMENTS
2-8

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

LF411C
JFET·INPUT OPERATIONAL AMPLIFIER
02997. MARCH 1987 - REVISED SEPTEMBER 1990

•
•

o OR P PACKAGE

Low Input Bias Current
Typically 50 pA

(TOP VIEW)

Low Input Noise Current
Typically 0.01 pA/y'Hi"

BAL1[J8 NC

•

Low Supply Current .. , Typically 2.0 mA

•

High Input Impedance
Typically 1012 [}

ININ+

2

7

Vcc-

3

6

OUT

VCC-

4

5

BAL2

NC - No internal connection

•

Low Total Harmonic Distortion

•

Low 1/f Noise Corner . . . Typically 50 Hz

description
This device is a low-cost, high-speed, JFET-input operational amplifier with very low input offset voltage
and a maximum input offset voltage drift. It requires low supply current yet maintains a large gain-bandwidth
product and a fast slew rate. In addition, the matched high-voltage JFET input provides very low input
bias and offset currents.
The LF411 C can be used in applications such as high-speed integrators, digital-to-analog converters, sampleand-hold circuits, and many other circuits.
The LF411 C is characterized for operation from OOC to 70 ac.
symbol
12)

IN-

>-_--=..;(6"") OUT
13)

IN+

11 )

BALl

BAL2(5)

AVAILABLE OPTIONS

TA

VIO MAX
AT 25°C

PACKAGE
SMALL-OUTLINE
(D)

PLASTIC DIP
(P)

LF411CO

LF411CP

QOC
to

2 mV

7QoC
D package is available taped and reeled. Add "R" suffix to device
type. (e.g. LF411 CDR)

PRODUCTIOII DATA documents contain information
current as of publication data. Products conform to
Ipacilications per the terms of Texas Instruments
standard warranty. Production proc..sing do.. not
nHesurity include testing of all parameters.

Copyright © 1990, Texas Instruments Incorporated

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-9

LF411 C
JFET-INPUT OPERATIONAL AMPLIFIER

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, V CC + ....................................................... 18 V
Supply voltage, V CC _
... ... ....
- 18 V
Differential input voltage, VID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
± 30 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
± 15 V
Duration of output short circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Unlimited
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 mW
Operating temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. OoC to 70°C
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds. . . . . . . . . . . . . . . . . . . . .. 260°C
NOTE 1: Unless otherwise specified, the absolute maximum negative input voltage is equal to the negative power supply voltage.

recommended operating conditions
MIN

MAX

Supply voltage, V CC +

3.5

18

V

Supply voltage, V CC-

-3.5

-18

V

electrical characteristics over operating free-air temperature range. Vee +
(unless otherwise specified)
PARAMETER
Via

Input offset voltage
Average temperature coefficient

"via

110
liB

of input offset voltage
Input offset current i
Input bias current i

TEST CONDITIONS
VIC

=

0,

RS

=

10 kO,

VIC

=

0,

RS

=

10 kll

VIC

=

0

VIC

TJ

=

TJ
TJ

0

TJ

=
=
=
=

-15 V

15 V. VeeMIN

=

TA

25°C

25°C

TYP

MAX

0.8

2

10

20t

~V/oc

25

100

pA

2

nA

200

pA

4

nA

70°C
50

25°C

UNIT

70°C

UNIT
mV

-11.5
VICR

Common-mode input voltage range

±11

to

V

14.5

=

VOM

Maximum peak output voltage swing

RL

AVD

Large-signal differential voltage

Va

=

r;

Input resistance

TJ

=

CMRR Common-mode rejection ratio
kSVR

Supply voltage rejection ratio

ICC

Supply current

operating characteristics. Vee +

±10V,

Slew rate

B1

Unity-gain bandwidth

Vn

Equivalent input noise voltage

In

Equivalent input noise current

=

RL

TA

2 kll

=

25°C

I Full range

25
15

± 13.5

V/mV

200

RS ,,; 10 kll

70

100

See Note 2

70

100

TEST CONDITIONS

=

Il
dB
dB

2

3.4

MIN

TYP

MAX

8

13

2.7

3

MHz

18

nV/v'Hz

0.01

pAlM

mA

-15 V. TA

15 V. Vee-

f

V

200
10 12

25°C

PARAMETER
SR

±12

10 kll

1 kHz,
f

=

RS

=

1001l

1 kHz

UNIT
V/!"s

tAt Jeast 90% of the devices meet this limit for "via.
t Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques
must be used that wiil maintain the junction temperatures as close to the ambient temperature as possible.
NOTE 2: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously.

TEXAS •
INSTRUMENTS
2-10

POST OFFICE BOX 655303 - DALLAS, TEXAS 75265

LF412C
DUAL JFET-INPUT OPERATIONAL AMPLIFIER
D2997, MARCH 1987-REVISED SEPTEMBER '990

•

Low Input Bias Current
Typically 50 pA

D OR P PACKAGE
(TOP VIEW)

•

Low Input Noise Current
Typically 0.01 pA/.JHz

•

Low Supply Current ... Typically 4.5 rnA

•

High Input Impedance
Typically 10 12 0

•

Internally Trimmed Offset Voltage

•

Wide Gain Bandwidth ... Typically 3 MHz

•

High Slew Rate ... Typically 13 VII's

AMP # 1

,

{~NU~ 0'
~ ~~~}+
IN+

3

6

IN-

VCC-

4

5

IN+

AMP #2

description
This device is a low-cost, high-speed, JFET-input operational amplifier with very low input offset voltage
and a specified maximum input offset voltage drift. It requires low supply current yet maintains a large
gain bandwidth product and a fast slew rate. In addition, the matched high-voltage JFET input provides
very low input bias and offset currents.
The LF412C can be used in applications such as high-speed integrators, digital-to-analog converters, sampleand-hold circuits, and many other circuits.
The LF412C is characterized for operation from OOC to 70°C.

symbol (each amplifier)
IN-=!>--

OUT

+

IN+

AVAILABLE OPTIONS
SYMBOLIZATION
DEVICE
LF412C

PACKAGE
SUFFIX
D, P

OPERATING

VIO MAX

TEMPERATURE RANGE

at 25°C

O°C to 70 0 C

3 mV

The D packages are available taped and reeled. Add the suffix R to
the device type, Ii.e. LF412CDRI.

PRODUCTION DATA documents contain information
current as of publication date. Products conform to
specifications per the terms of Texa. Instruments
standard warranty. Production processing does not
necessarily include testing of all parameters.

Copyright © 1990, Texas Instruments Incorporated

TEXAS •
INSTRUMENlS
POST OFFICE BOX 655303 - DALLAS, TEXAS 75265

2-11

LF412C
DUAL JFET·INPUT OPERATIONAL AMPLIFIER
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vcc+ ...................................................... 18 V
Supply voltage, VCC - .................................................... -18 V
Differential input voltage, VID ............................................... ± 30 V
Input voltage (see Note 1) ................................................. , ± 1 5 V
Duration of output short-circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Unlimited
Continuous total power dissipation .......................................... 500 mW
Operating temperature range .. '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. OoC to 70°C
Storage temperature range ......................................... - 65°C to 1 50°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds. . . . . . . . . . . . . . . . . . . . .. 260°C
NOTE 1: Unless otherwise specified, the absolute maximum negative input voltage is equal to the negative power supply voltage.

recommended oprating conditions
Supply voltage, VCC+
Supply voltage, V CC -

electrical characteristics over operating free-air temperature range, Vee +
(unless otherwise specified)
PARAMETER
Via

Input offset voltage
Average temperature coefficient

"'via

of input offset voltage

110

Input offset current*

lIB

Input bias current*

= 0,

RS

=

10 kll,

VIC

= 0,

RS

=

10 kll

VIC

=0

VIC

MAX

UNIT

3.5
-3.5

18
-18

V

... 15 V, Vee-

TEST CONDITIONS
VIC

MIN

MIN

= 25°C

TA

= 25°C

TJ

=0

TJ

= 25°C
= 70°C

-15 V

TYP

MAX

1

3

10

20t

pV/oc

25

100

pA

2

nA

200

pA

4

nA

TJ = 70°C
TJ

V

50

UNIT
mV

-11.5
VICR

± 11

Common-mode input voltage range

to

V

14.5
YOM
AvO

'i

Maximum peak output voltage swing
Large-signal differential voltage
Input resistance

CMRR Common-mode rejection ratio
kSVR
ICC

Supply voltage rejection ratio
Supply current

RL

=

10 kO

Va

=

TJ

= 25°C

±10V,

Equivalent input noise voltage

In

Equivalent input noise current

15

100

See Note 2

70

100

V/mV

f

=

MIN

d8

4.5

6.8

TYP

MAX

120

1 kHz
8
2.7

=

0
d8
mA

... - 15 V. T A == 25°e

TEST CONDITIONS

f

V

200

70

PARAMETER

Unity-gain bandwidth

Full range

± 13.5
200

RS s; 10 kO

VOl iV 02 Crosstalk attenuation
SR
Slew rate
Vn

kO

±12
25

10 12

operating characteristics, Vee + == 15 V, Vee -

Bl

=2

RL

I TA = 25°C

1 kHz,
f

=

RS

=

100 Il

1 kHz

13

UNIT
dB

3

V/".s
MHz

18

nV/v'Hz

0.01

pA/v'Hz

t At least 90% of the devices meet this limit for "'VIO.
t Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques
must be used that will maintain the junction temperatures as close to the ambient temperature as possible.
NOTE 2: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously.

TEXAS . "
INSTRUMENTS
2-12

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

LM101A, LM201A, LM301A
HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS
0961 OCTOBER 1979 - REVISED SEPTEMBER 1990

Low Input Currents

•

Frequency and Transient Response
Characteristics Adjustable

•
•

Short-Circuit Protection

•
•

D8

D, JG, OR P PACKAGE
(TOP VIEW)

•
•

Low Input Offset Parameters
N1/COMP
ININ+

2
3
4

Vce-

CaMP

7

Vcc+

6
5

OUT
OFFSET N2

Offset-Voltage Null Capability
LM101A
W FLAT PACKAGE

No Latch-Up

(TOP VIEW)

Wide Common-Mode and Differential
Voltage Ranges

•

Same Pin Assignments as uA709

•

Designed to be Interchangeable with
National Semiconductor LM101A and
LM301A

NC
NC
N1/COMP
ININ+

12
11
10

Vcc-

g

NC

a

description
The LM101A, LM201A, and LM301A are highperformance operational amplifiers featuring very
low input bias current and input offset voltage and
current to improve the accuracy of highimpedance circuits using these devices. The high
common-mode input voltage range and the
absence of latch-up make these amplifiers ideal
for voltage-follower applications. The devices are
protected to withstand short circuits at the output.
The external compensation of these amplifiers
allows the changing of the frequency response
(when the closed-loop gain is greater then unity)
for applications requiring wider bandwidth or
higher slew rate. A potentiometer may be
connected between the offset-null inputs (N1 and
N2), as shown in Figure 7, to null out the offset
voltage.
The LM1 01A is characterized for operation over
the full military temperature range of -55°e to
125°e, the LM201A is characterized for operation
from -25°e to 85°e, and the LM301A is
characterized for operation from
to 70

ooe

oe.

symbol
Nonlnvertlng
Input IN+

~
+

NC
NC
CaMP
Vcc+

OUT
OFFSET N2
NC

LM101A

U FLAT PACKAGE
(TOP VIEW)

9

NC
CaMP

a

Vcc+

7

OUT
OFFSET N2

NC
N1/COMP
ININ+

10

Vcc-

6

LM101A
FK CHiP-CARRIER PACKAGE
(TOP VIEW)

0..

:::;
oo :::;
0..
0;::000
zzzoz
NC
INNC
IN+
NC

3

18

NC

5

17

VCC+

6

16

7

15

8

14
g 10 11 1213

NC
OUT
NC

o

Output

2 1 2019

4

IONO

Z Uz Z Z

.y

Inverting ---~ Input IN-

NC - No internal connection

N2
N1/
COMP

::

~~o~~~~~~~o~:I: s';!:rw:at:~~si~e~~~:~!r!~ Ie~:~~~~fr~:ea~:s

standard warrtnty. Produetfon processing does not nece&S8rlly 'n.;:lud8
t.sllng ot all parameters.

TEXAS .If

Copyright © 1991, Texas Instruments Incorporated

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-13

LM101A, LM201A, LM301A
HIGH·PERFORMANCE OPERATIONAL AMPLIFIERS
AVAILABLE OPTIONS
PACKAGE
VIOMAX
at 2SoC

SMALL OUTLINE

CHIP CARRIER

CERAMIC DIP

PLASTIC DIP

FLAT PACK

(D)

(FK)

(JG)

(P)

(U)

(W)

7.SmV

LM301AD

-

LM301AP

-25'C to 85'C

2mV

LM201AD

-

-

LM201AP

-

-

-55 'c to 125°C

2mV

LM101AD

LM101AFK

LM101AJG

LM101AP

LM101AU

LM101AW

TA
O°C to 70°C

FLAT PACK .

The D package IS available taped and reeled. Add the suffix R to the device type, (I.e., LM301ADR).

absolute maximum ratings over operating free·air temperature range (unless otherwise noted)
LM101A

LM201A

LM301A

UNIT

Supply voltage VCC+ (see Note 1)

22

22

18

V

Supply voltage VCe- (see Note 1)

-22

-22

-18

V

Differential input voltage (see Note 2)

±30

±30

±30

V

±15

=15

=15

V

Voltage between either offset null terminal (N1/N2) and VCC-

-0.5 to 2

-0.5 to 2

-0.5 to 2

V

Duration of output short-circuit (see Note 4)

unlimited

unlimited

unlimited

Input voltage (either input, see Notes 1 and 3)

Continuous total power dissipation

See Dissipation Rating Table

Operating free·air temperature range

-55 to 125

-25 t085

Ot070

°C

Storage temperature range

-65 to 150

-65 t0150

-65t0150

°C

Case temperature for 60 seconds: FK package

260

I JG, U, or W package

Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds
NOTES: 1.
2.
3.
4.

J D or P package

°C

300
260

°C
260

'c

260

All voltage values, unless otherwise noted, are with respect to the midpoint between VCC+ and VCC-.
Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
The output may be shorted to ground or either power supply. For the LM1 01 A only, the unlimited duration of the short-circuit applies
at (or above) 125°C case temperature or 7S'C free-air temperature. For the LM201 A only, the unlimited duration of the short-circuit
applies at (or below) 85'C case temperatuare or 7SoC free-air temperature.
DISSIPATION RATING TABLE

PACKAGE

TA"2SoC

DERATING

DERATE

TA = 70°C

TA = 8SoC

TA=12SoC

POWER RATING

FACTOR

ABOVETA

POWER RATING

POWER RATING

POWER RATING

D

500mW

S.8mWI'C

377mW

145mW

SOOmW

11.0 mW/oC

64'C
10SoC

464mW

FK

500mW

500mW

275mW

JG

SOOmW

8.4 mWI'C

90°C

500mW

SOOmW

210mW

P

'SOOmW

8.OmWI'C

87°C

500mW

500mW

200mW

U

SOOmW

5.4 mWI'C

57°C

432mW

351 mW

13SmW

W

SOOmW

8.OmWI'C

87°C

500mW

500mW

200mW

recommended operating conditions
MIN

MAX

Supply voltage, VCC+

S

18

Supply voltage, VCe-

-S

-18

TEXAS ~

INSlRUMENlS
2-14

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

UNIT
V

LM101A,LM201A,LM301A
HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature, Cc = 30 pF (see Note 5)
PARAMETER

VIO

Input offset voltage

VO;O

aVIO

Average temperature coefficient of
input offset voltage

VO;O

110

aliO

LM101A, LM201A

TEST CONDITIONSt

MIN

25'C

TYP

0.6

Full range

LM301A

MAX

MIN

2

10

15

6

30

25'C

1.5

10

3

50

TA ; -55'C to 25'C

0.02

0.2

Average temperature coefficient of

TA; 25'C to MAX

0.01

0.1

input offset current

TA ; O'C to 25'C

Input offset current

V'CR

Common-mode input voltage range

Full range

20

70

0.02
25'C

See Note 6

Maximum peak-to-peak output

RL; 10 kQ

voltage swing

VCC±; ±15V,
RL; 2 kQ

AVD

Large-signal differential voltage
amplification

q

Input resistance
Common-mode rejection ratio

VCC±; ±15V,
VO; ±10V,
RL" 2 kQ

VIC; VICR min

Supply voltage rejection ratio
(h VCC/h VIO)
Supply current

30

Full range
VCC±; ±15V,

ICC

7.5

3

Input bias current

kSVR

2

Full range

lIB

CMRR

MAX

3

TA ; 25'C to 70'C

VOpp

TYP

75

0.Q1

0.3

70

250

100

Full range

±15

25'C

24

Full range

24

25'C

20

0.6

300
±12
24

28

UNIT

mV
,M'C
nA

nN'C

nA
V

28

24
20

26

V

26

Full range

20

25'C

50

20

Full range

25

25'C

1.5

4

0.5

2

25'C

80

98

70

90

Full range

80

25'C

80

Full range

80

200

25

200
V/mV

15

MQ
dB

70
98

70

96

dB

70

No load, VO; 0,

25'C

1.8

3

See Note 6

MAX

1.2

2.5

1.8

3

rnA

..
t All characteristics are measured under open-loop conditions wilh zero common-mode input voltage unless otherwise specified. Full range for
LM101A is -55'C to 125'C, for LM201A is -25'C to 85'C, and for LM301A is O'C to 70'C.
NOTES: 5. Unless otherwise noted, VCC±; ±5 Vlo ±20 Vfor LM101Aand LM201A, and VCC±; ±5 Vto ±15 Vfor LM301A. All typical values
are at VCC±; ±15 V.
6. For LM101A and LM201A, VCC±; ±20 V. For LM301A, VCC±; ±15 V.

TEXAS

~

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-15

lM101A,lM201A,lM301A
HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
INPUT BIAS CURRENT

INPUT OFFSET CURRENT

I

FREE·AIR TEMPERATURE
I
I
Vee,,=,,15V

1
1
Vee±=,,15V

3

I'"

,

~::s

"-

o

~

vs

FREE·AIR TEMPERATURE
100

4

~

vs

I

2

........

'SQ.
.E

'-.

«c

"
............

I

Q

'E
~::s

..........

.

0

'\\

60


c

""m

125

OPEN·LOOP LARGE·SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION

FREQUENCY
I

Cl

"""'" - -

Figure 2

MAXIMUM PEAK·TO·PEAK OUTPUT VOLTAGE
(WITH SINGLE·POLE COMPENSATION)

..

"'-

-25
0
25
50
75
100
TA - Free·Alr Temperature - "C

Figure 1

>

\ ...
LM101A
LM201A

20

o
-25
0
25
50
75
100
TA - Free·Alr Temperature - "C

LM301A

1\

"\

40

\
\

!!l

o
-50

\

iii

LM101A
LM201A

-7

\

80

I

LM301A

~

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

16
V

18 20

LM101A, LM201A, LM301A
HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
OPEN·LOOP LARGE·SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
VOLTAGE·FOLLOWER
LARGE·SIGNAL PULSE RESPONSE

vs
FREQUENCY
107

'"
.9

106

"

105

n:;
~

I

E

«CI>
!!!

103

e

~
0

102
101

I

C

>

1

10

100

1k

I'"

>

-

I

'"

4

g

!!!

2

:;
a.
:;

0

I

I
II
I

~

'"

ftI

-2

~

I

1\
I

1/

I

0
'tl

«

10-1

6

CI>
Cl

'"

~

E

-

""I""

104

Cl

g

VCC ± = ±15 V
RL =2kQ
Cc = 30 pF
TA = 25"C

t--..

Q.

8

I

Input

'"

-4

-

I:

\
~

L

f--

-a

\

10 k 100 k 1 M

-

i

I
I

:;

a.
..E

T\

Output

VCC ± =±15V
RL = 2 kQ
CL = 100 pF
Cc = 30 pF
TA = 25'C

10 M 100 M

-8

o

10

20

f - Frequency - Hz

30 40 50
t-Tlme-Ils

60

70

80

90

Figure 6

Figure 5

TYPICAL APPLICATION DATA
R2

Cc

2:

Rl . 30 pF
Rl + R2
Rl . R2

R3~-­

Rl + R2

Cc

Figure 7. Inverting Circuit with Adjustable Gain, Single-Pole Compensation,
and Offset Adjustment

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-17

2-18

LM107, LM207, LM307
HIGH·PERFORMANCE OPERATIONAL AMPLIFIERS
D962, DECEMBER 1970-REVISED SEPTEMBER 1990

LM107 ... J OR W PACKAGE

• Low Input Currents

(TOP VIEW)

• No Frequency Compensation Required
NC
NC
NC
ININ+
VCCNC

• Low Input Offset Parameters
• Short·Circuit Protection
• No Latch·Up
• Wide Common-Mode and Differential
Voltage Ranges
description

VCC+
OUT
NC
NC

LM107 ... JG PACKAGE
LM207, LM307 ... D OR P PACKAGE

The LM107, LM207, and LM307 are high·
performance operational amplifiers featuring very
low input bias current and input offset voltage
and current to improve the accuracy of high·
impedance circuits using these devices,

(TOP VIEW)

NCUB
IN2
7
IN+
3
6
VCC4
5

The high common-mode input voltage range and
the absence of latch-up make these amplifiers
ideal for voltage follower applications. The
devices are short-circuit protected and the
internal frequency compensation ensures
stability without external components,

NC
VCC+
OUT
NC

LM107 ... U FLAT PACKAGE
(TOP VIEW)

NC
NC
ININ+
VCC-

The LM 107 is characterized for operation over
the full military temperature range of -55°e
to 125°e, the LM207 is characterized for
operation from -25°e to 85°e, and the LM307 is
characterized for operation from
to 70

oe,

ooe

NC
NC
NC

NC
CaMP
VCC+
OUT
NC

NC - No internal connection

symbol
NONINVERTING=t>INPUT IN+
+
INVERTING

_

OUTPUT

INPUT INAVAILABLE OPTIONS

TA

VIO MAX
AT 25°C

PACKAGE
SMALL OUTLINE

CERAMIC

CERAMIC DIP

PLASTIC DtP

FLAT PACK

FLAT PACK

(DI

(JI

(JGI

(PI

(UI

(WI

ooe
to

7.5 mV

LM307D

-

-

LM307P

-

-

2 mV

LM207D

-

-

LM207P

-

-

-

LM107U

LM107W

70°C
-25°C
to
85°C
- 55°C
to

2 mV

-

LM107J

LM107JG

125°C
The D package is available taped and reeled. Add the suffix R to the device type, ie.g., LM307DRI.

PRODUCTION DATA documents contain information
current as of publication date. Products conform to
specifications par the tBrms of TB.as Instrumants
standard warranty. Production pro.Bssing does not
necessarily include testing of all parameters.

TEXAS

~

Copyright © 1990, Texas Instruments Incorporated

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-19

LM107, LM207, LM307
HIGH-PERFORMANCE OPERATIONAL AMPLlFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
LM107

LM207

LM307

UNIT

Supply voltage Vee + (see Note 1)

22

22

18

V

Supply voltage Vee _ (see Note 1)

-22

-22

-18

V

Differential input voltage (see Note 2)

±30

±30

±30

V

Input voltage (either input, see Notes 1 and 3)

±15

±15

±15

V

unlimited

unlimited

unlimited

Duration of output short-circuit (see Note 4)
eontinuous total dissipation

See Dissipation Rating Table

Operating free-air temperature range

- 55 to 125

-25 to 85

Storage temperature range

-65t0150

-65 to 150

Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J, JG,

o to

De

70

De

- 65 to 150

De

300

U, or W package
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P

260

package

De

260

All voltage values, unless otherwise noted, are with respect to the midpoint between Vee + and Vee _.
Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
The output may be shorted to ground or either power supply. For the LM107 only, the unlimited duration of the short-circuit
applies at (or below) 125 De case temperature or 75 De free-air temperature. For the LM207 only, the unlimited duration of
the short-circuit applies at (or below) 85 De case temperature or 75 De free air temperature.

NOTES: 1.
2.
3.
4.

DISSIPATION RATING TABLE
PACKAGE

TA 5 25 DC

DERATING

DERATE

POWER RATING

FACTOR

ABOVE TA
64 De

D

500 mW

5.8 mW/De

J

500 mW

11.0 mW/DC

JG

500 mW

8.4 mW/De

P

500 mW

N/A

U

500 mW

W

500mW

TA = 70 DC
POWER RATING

TA = 85 DC
POWER RATING

TA = 125°C
POWER RATING

464mW

377 mW

105 De
gODe

500 mW

500 mW

275 mW

500mW

500 mW

210 mW

500 mW

500 mW

5.4 mW/DC

N/A
57 De

432 mW

351 mW

135 mW

8.0 mW/De

87 De

500 mW

500 mW

200 mW

recommended operating conditions
MIN

NOM

MAX

UNIT

Supply voltage, Vee +

2

18

V

Supply voltage, Vee-

-2

-18

V

TEXAS •
INSTRUMENTS
2-20

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

LM1 07, LM207, LM307
HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS
electrical characteristics at specified free-air temperature (see Note 5)
PARAMETER
Via

Input offset voltage

LM107, LM207

TEST CONDITIONSt

MIN
25°C

0

LM307

TYP

MAX

0.6

2

Va

~

Va

~

0

Va

=

0

TA

=

-55°C to 25°C

0.02

0.2

TA

~

25°C to MAX

0.01

0.1

TA

~0°Ct025°C

TA

=

Full range

MIN

TYP

MAX

2

7.5
10

3

UNIT
mV

Average temperature
"'via

coefficeint of

Full range

3

15

6

10

3

30

",V/oC

input offset voltage

110

Input offset current
Average temperature

"'110

coefficient of
input offset current

lIB

input voltage range

VOpp

output voltage swing

See Note 6

RL

=

CMRR

±15V,

10 kO

=

250

25°C

24

Full range

24

300
±12
24

28

20
20

VCC± ~ ±15 V,
Va ~ ± 10 V,

25°C

50

Full range

25

Input resistance

25°C

1.5

4

0.5

2

Common-mode

25°C

80

98

70

90

Full range

80

25°C

80

Full range

80

voltage amplification

rejection ratio

RL;': 2 kO

VIC

~

VICR min

20

nA

V

26

20
200

25

200

Vim V
15
MO
dB

70
70

98

96
dB

rejection ratio

Supply current

nA/oC

28

24
26

nA

V

25°C

±15V,

(Ll.vCC/AVIO)
ICC

0.3

70

100
±15

0.6

0.001

Full range

=2

Supply voltage
kSVR

Full range

75

kO

Large-signal differential

r;

=

VCC±
RL

AVO

30

50
70

0.002
25°C
Full range

VCC±
Maximum peak-to-peak

20

25°C to 70°C

Input bias current
Common-mode

VICR

1.5

25°C
Full range

70

No load,

25°C

1.8

3

Va = 0,
See Note 6

MAX

1.2

2.5

1.8

3
mA

t All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range
for LM107 is -55°C to 125°C, for LM207 is -25°C to 85°C, and for LM307 is OoC to 70°C.
NOTES: 5. Unless otherwise note VCC ± ~ ± 5 V to ± 20 V for LM 107 and LM207, and VCC ± = 5 V to ± 15 V for LM307. All typical
values are at VCC ± ~ ± 15 V.
6. ForLM107 and LM207,VCC± ~ ±20V. ForLM307, VCC± = ±15V.

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-21

2-22

LM108, LM108A, LM208, LM208A, LM308, LM308A
OPERATIONAL AMPLIFIERS
D2808, OCTOBER 1983 - REVISED FEBRUARY 1991

•
•

Supply Current ... 600 ~A Max at 25°C for
LM108, LM108A, LM208, LM208A

•

Input Offset Voltage ... 500 ~V Max at
25°C for LM108A, LM208A, LM308A

•

Offset Voltage Temperature Coefficient
5 ~VloC Max for LM108A, LM208A, LM308A

•

Supply Voltage Range ... ± 2 V to ± 18 V

•

Applications:
- Integrators
- Transducer Amplifiers
- Analog Memories
- Light Meters

[JS
(TOP VIEW)

Input Bias Current ... 2 nA Max at 25°C for
LM108,LM108A,LM208,LM208A

•

•

0, JG, OR P PACKAGE

Input Offset Current ... 200 pA Max at
25°C for LM108, LM108A, LM208, LM208A

COMP1
ININ +
VCC-

2

7

3

6

COMP2
VCC+
OUT

4

5

NC

LPACKAGE
(TOP VIEW)
COMP2

VCCNC - No internal connection
Pin 4 (L package) is in electrical
contact with the case.

Designed To Be Interchangeable With
National LM108 Series and Linear
Technology LM108 Series

symbol

description
I N + = t c OUT
The LM108 series of precIsion operational
IN amplifiers is particularly well-suited for highCOMP2
source-impedance applications requiring low
COMP1
input offset and bias currents as well as low
power dissipation. Unlike FET input amplifiers,
the input offset and bias currents of the LM 108 series do not vary significantly with temperatu re. Advanced
deSign, processing, and testing techniques make this series a superior choice over previous devices. For
applications requiring higher performance, see the LT1 008 and LT1 012.

The LM1 08 and LM1 08A are characterized for operation over the full military temperature range of -55°e to
125°e. The LM208 and LM208A are characterized for operation from -40 oe to 105°e. The LM308 and
LM308A are characterized for operation from ooe to 70 oe.
AVAILABLE OPTIONS

TA

O°C to 70°C
- 40°C to 105°C
- 55°C to 125°C

VIOmax
AT 25°C

PACKAGE
SMALL OUTLINE

CERAMICOIP

METAL CAN

(0)

(JG)

(L)

PLASTIC DIP
(P)

O.5mV
7.5mV

LM30SAD

---

--

LM30SD

---

---

LM30SP

O.5mV

LM20SAD

---

LM20SAP

LM20SD

-----

---

LM20SP

LM10SAD

LM10SAJG

LM10SAL

LM10BAP

LM10SD

LM10SJG

LM10SL

LM10SP

2mV
O.5mV
2mV

LM30SAP

The D package is available taped and reeled. Add the suffix R to the device type (e.g., LM30SADR).

PRODUCTION DATA documents contain inlormation current as of

publication date. Products conform to specifications perthe terms olTeKas
Instruments standard warranty.

Production processing does not

necessarily include telting 01 all parametert.

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265

Copyright © 1991, Texas Instruments Incorporated

On products compliant to Mll·STD-883, Class a, all parameters
are tuted unless otherwise noled. On all other products,
production processing does not necessarily include tasting of all
parameters.

2-23

lM108, lM108A, lM208, lM208A, lM308, lM308A
OPERATIONAL AMPLIFIERS
schematic
COMPl

COMP2

HHI-'W......-OUT

IN-

IN+ ---1----4>-1

~--~~----~NH~--~~--*---~--------*_-----VCC-

All resistor values shown are nominal and in ohms.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC+ (see Note 1): LM108, LM108A, LM208, LM208A ....................... 20 V
LM308, LM308A ..................................... 18 V
Supply voltage, VCC- (see Note 1): LM108, LM108A, LM208, LM208A ...................... -20 V
LM308, LM308A .................................... -18 V
Input voltage range, VI (see Nole 2) ................................................... ±15 V
Differential input current (see Notes 3 and 4) .......................................... ±10 rnA
Duration of output short-circuit at (or below) 25°C (see Note 5) . . . . . . . . . . . . . . . . . . . . . . . . . .. unlimited
Operating free-air temperature range, TA LM108, LM108A . . . . . . . . . . . . . . . . . . . . . . .. -55°C to 125°C
LM208, LM208A ........................ -40°C to 105°C
LM308, LM308A .... . . . . . . . . . . . . . . . . . . . . . .. O°C to 70°C
Storage temperature range .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package .............. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: JG or L package. . . . . . . . . . . . .. 300°C
NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between VCC+ and VCC-.
2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
3. The inputs are shunted with two opposite-facing base-emitter diodes for over-voltage protection. Therefore, excessive current will
flow if a differential input voltage in excess of approximately 1 V is applied between the inputs unless some limiting resistance is used.
4. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
5. The output may be shorted to ground or either power supply.

TEXAS ~

INSTRUMENTS
2-24

POST OFFICE BOX 655303' DALLAS. TEXAS 75265

lM108, lM108A, lM208, lM208A, lM308, lM308A
OPERATIONAL AMPLIFIERS

recommended operating conditions
LM208, LM208A

LM108, LM108A
MIN NOM MAX
20
S

Supply voltage, VCC+
Supply voltage, VCCOperating free-air temperature, TA

MIN NOM MAX

LM308, LM308A
MIN NOM MAX
20
S

UNIT
V

S

20

-S

-20

-S

- 20

-S

- 20

V

-SS

12S

-40

8S

0

70

°C

electrical characteristics at specified free-air temperature, VCC± = ± 5 V to ± 20 V (unless otherwise
noted)
PARAMETER
Via

Input offset voltage

TEST CONDITIONS

TAt

of input offset voltage

110

Input offset current

RS ; SOO

of input offset current

liB

Input bias current

YOM
AVD
fj

CMRR

voltage range

2SoC

RL; 10kO

Large-signal differential

VCC±; ±ISV,

voltage amplification

Va ;±10V, RL 

II>
01

S

~
1i
~

/

10
4

:;

...
.E

I

LM308AI

E

~

8f

40

V
LM108, LM208

.i!

il...

iJ}

E

I...--'~

10

~

I

2

100

!E
"

/'

.,

LM108, LM20

0

=

:>:I.

V

E

=

Vcc±
±15 V
TA
MINtoMA

f;) 400

I

0.4 =LM108A, LM208A

0

I II 1111
0.1
0.1

4

LM108A, LM208A

:;:

I 11111111

 ±16

>

,

I

~ ±14

~

I'll

\

±12

VCC± = ±1S V
TA = 25°C
See Figure 13

~

"i

> ±10
c.

..&.

\

±6

Cr=30pF

\

E

:::>

±2

:;
o~

±7.5

~
E

±S

:::>

.

o

:;;

±2.5

I

:;;

:::---..

~

10 k
100 k
r - Frequency - Hz

o

±4

±S

±6

±7

±8

±9

DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
SUPPLY VOLTAGE

DIFFERENTIAL VOLTAGE AMPLIFICATION
and PHASE DELAY
vs
FREQUENCY
120

195°

100

165°

80

135°

60

>.!l!
105° ~

III
"0

I

c

115

.2

;

u

110 r----TA

'"

G>
Ol

~ 105

:E

= 2SoC

..,--

0.

E

>

E
!!

100

I

9S

~
is

'!!!"

--

G>
Ol

:'--:;:-A = -S5·C

0

~

±3

Figure 6

I

E

±2

Figure 5

120

~0.

±1

10 - Output Current - rnA

"0

c

VCC± = ±1S V

o

1M

III

.2

1\\

E

.............

1k

±10

'M

\

:;;

~

TA = 1250C\

~

.....

Cr=3pF

\

.~ ±4
~
I

TA = 2S.C\

I'll

1\

±8

r--:r- -.....

"\

± 12.5

~

:;

~

-~
TA = -55°C

~

III

\

!!!
'0

±15

/V-

V

'0

>

TA = 12S·C

40

7S·

~

20

4S·

I

0

11>-

is
c

VCC± = ±15V
TA = 2S·C
See Figure 13

>

90
±S

'"
±7.S

±10

±12.S

±1S

±17.5

±20

1S·

-20~----------~--~--~--~--~

1

10

100

1k

10 k

100 k

VCC± - Supply Voltage - V

r - Frequency - Hz

Figure 7

Figure 8

1M

10 M

tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TEXAS ~

INSTRUMENTS
2-28

a.
I

.~

>

'"

G>

iii

c

...

.c

POST OFFICE BOX 655303· DALLAS. TEXAS 75265

LM108, LM108A, LM208, LM208A, LM308, LM308A
OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
SUPPLY VOLTAGE REJECTION RATIO

CLOSED-LOOP OUTPUT IMPEDANCE

vs

vs

FREQUENCY

FREQUENCY

120r-----r-----r-----r-----r---~

...

VCC±

III

1000r----r----r----r----r----r~~

= ±15V

I-----"'....--f__+-I-f__--+_ AV = 1
TA 25°C'

1

=

o

-;;

c:

See Figure 13

a:

100

c

oS!

8c

U

"

~

"

01

~

601---~f__-~f__~~f__--f__-_;

401----f__~~f__~~~~~f__-_;

>

~

~

rn'"

20r---r_--r_-~r_~L-~~~

III

'i...

.5
;

...

'5
0

0

N

1

a:

~

Or---r_--I----r_~~~~~

100 k

10 k

1k

1M

=
=
TA = 25°C

Vcc±
±15 V
0.1 I----+-F--I----+-- 10 ± 1 mA
See Figure 13

-20~--~----~----~----~----~

100

10

0.01
10

10 M

1k

100

10 k

100 k

f - Frequency - Hz

f - Frequency - Hz

Figure 9

Figure 10

1M

10 M

EQUIVALENT INPUT NOISE VOLTAGE

vs

VOLTAGE FOLLOWER
PULSE RESPONSE

FREQUENCY
1000

~>
c

1

-

S
'0

>
z

...
.E
E

!:

...

0

...
;
...
.E
III

W

1

--

1\
1\
I
I

-

I
I
I

I
I

-2
-4

INPUT

/
V

II OUTPUT

1/

\\

-6
-8

c

>

2

Vcc± = ±15 V
Cf = 30pF
TA = 25°C

~

'5

RS = 0

o::r

'0

0
c

LilLi II

"5

"

4

S

RS = 100 kQ
40

6

>
;

11111111

100

>
01

RS=lMQ

;

.!!

8

400

II>
01

::
'0

10
Vcc± = ±15
TA = 25°C

10
10

-10
100

1k

10 k

100 k

o

~

~

M

00

l00l~l~lMl00

f - Frequency - Hz

t - Time - Ils

Figure 11

Figure 12

TEXAS ~

INSfRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265

2-29

lM108, lM108A, lM208, lM208A, lM308, lM308A
OPERATIONAL AMPLIFIERS
APPLICATION INFORMATION

frequency compensation
Figure 13 shows the frequency compensation circuits for standard compensation, alternate compensation, and
feed-forward compensation. The alternate compensation circuit improves supply voltage rejection by a factor
of ten.
C2
5pF

Rl

R2

Rl

R2

R2

Rl

10kn

10kn

IN
IN+

OUT

R3

IN+

-"oA1Y-4....-'

OUT

R3

C,
(see Note A)
(a) STANDARD

(b) ALTERNATE

(e) FEED-FORWARD

NOTES: A. Cf 2 R1CO I(R1 + R2), Co = 30 pF, bandwidth and slew rate are proportional to 1/Cf.
B. Bandwidth and slew rate are proportional to 1/C s .

Figure 13. Frequency Compensation Circuits

I
'/

input guarding

COMP2

vcc+

Input guarding is used to reduce surface leakage
(see Figure 14). Both sides of the board must be
guarded. Bulk leakage reduction is less than
surface leakage reduction and depends .on the
. guard-ring width. The guard ring is connected to a
low-impedance point at the same potential as the
sensitive input leads. Connections for various opamp configurations are shown in Figure 15.

COMPl

7 8 1 .

OUT,

6

NC

05

/4

VCC-

IN~RN1-.____~R~2~

Figure 14. Input Guarding
OUT

Rl

R3
IN
(a) INVERTING

~
+

OUT

LM108

(b) FOLLOWER

R2

r~
.

IN

+

LM108

(e) NONINVERTING

Figure 15. Guard Ring Connections for Various Op Amp Configurations

TEXAS

~

INSfRUMENTS
2-30

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

OUT

lM108, lM108A, lM208, lM208A, lM308, lM308A
OPERATIONAL AMPLIFIERS

APPLICATION INFORMATION

input protection
Current is limited by R2 even when the input is connected to a voltage source outside the common-mode range
[see Figure 16(a)]. If one supply reverses, current is controlled by R1. These resistors do not affect normal
operation. The input resistor controls the current when the input exceeds the supply voltages, when the power
for the op amp is turned off, or when the output is shorted [see Figure 16(b)].
R3
IN ~~---"oI'IV---,
R2

10kO
OUT

OUT
IN ----\Mr---l

(a) CURRENT UMITED BY R1 OR R2

(b) CURRENT UMITED BY R1

Figure 16. Input Protection

input offset voltage testing
The test circuit for input offset voltage is shown in Figure 17. This circuit is also used as the burn-in configuration
with supply voltages equal to ±20 V, R1 = R3 = 10 kil, R2 = 200 n, AV = 100.
R1

50kO
R2

1000

Va

=1000 Via

R3

50kO

NOTE A: Resistors must have low thermoelectric potenHal.

Figure 17. Test Circuit for Input Offset Voltage

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2--31

lMt08, lM108A, lM208, lM208A, lM308, lM308A

OPERATIONAL AMPLIFIERS

APPLICATION INFORMATION
R2
100 k.Q

IN _M-~~_ _--=::::::j~:t1r-RESET

~-~+-OUT

to
100 k.Q

R1

100 k.Q
R4
20MQ

to
100 k.Q

~--<-,*"""-",,-y

'-----.

NOTE A: 01 and 03 should not have internal
gate-protection diodes.

R1

R2
2MQ
1%

SMQ

Figure 19. Amplifier for Bridge
Transducers

R3

50SQ
1%

r--~-----~OUT

R4
SOkQ -:1%
OUT
8 LM108

RS
1 MQ

R3

R2
102 k.Q

NOTE A: R1 = R2R3/(R2 + R3).

Figure 18. Low-Drift Integrator With Reset

2MQ
1%

OUT

C1
10 J1F
R2

C1
1100PF

11 MQ

LM108

R1
11 MQ

T

NOTE A: R2 > R1, R2» R3,

AV = R2(R3 + R4)/R1R3.

Figure 20. Inverting Amplifier With High
Input Resistance

1

C1
30 pF

TRANSDUCER

Figure 21. Amplifier for Piezoelectric
Transducers
VI

--\/'./'r-_--'W'o.--,

R1

2MQ
1%

RS
2kQ
1%
OUT

R1

2 MQ '--_M-~1%
R4
10
1 MQ
1%
NOTE A: 10 = (R3)VI/RI RS

NOTES: A Teflon, polyethylene, or polycarbonate
dielectric capacitor.
B. Worst-case drift is less than 2.S mVis.

R3=R4+RS
Rl = R2

Figure 23. Bilateral Current Source

Figure 22. Sample-and-Hold Amplifier

TEXAS

+

INSTRUMENTS
2-32

POST OFFICE BOX 655303' DALLAS. TEXAS 75265

lM108, lM108A, lM208, lM208A, lM308, lM308A
OPERATIONAL AMPLIFIERS

APPLICATION INFORMATION
R1

100kQ
= 0.1%

~
S1
R2

5~~

6
3

+

R2

1 kD.
0.1%

R3

R4

1 kQ
100kD.
0.1% 2 0.1%
OUT

Vo = 10 VIllA

8 LM108
C1

IN-

I100 PF

NOTE A: R1

Figure 24. Amplifier for Photodlode
Sensor

=

R4, R2

=

R3, AV

=

1 + R1/R2

Figure 25. Differential-Input Instrumentation
Amplifier
C5
(see NOleA)

IN

Rs

R1

150kD.
OUT

NOTES: A. C5 = 6 x 1O-B/Rf
B. Power bandwidth = 250 kHz
C. Small-signal bandwidth
3.5 MHz
D. Slew Rate
10 V/jJS
E. The LM101 increases speed, raises highand low-frequency gain, increases output
drive capability, and eliminates thermal
feedback.

=

=

Figure 26. Fast Summing Amplifier

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265

2-33

2-34

LM118, LM218, LM318
HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS
02219, JUNE 1976-REVISEO SEPTEMBER 1990

•

Small-Signal Bandwidth ... 15 MHz Typ

•

Slew Rate . . . 50 VI p,s Min

•

Bias Current ... 250 nA Max (LM118,
LM218)

•

u8 2

D, JG, OR P PACKAGE

(TOP VIEW)

BAL/COMP
IN- . 2
IN+
3
VCC4

Supply Voltage Range ... ± 5 V to ± 20 V

•

Internal Frequency Compensation

•

Input and Output Overload Protection

•

Same Pin Assignments as General-Purpose
Operational Amplifiers

COMP
VCC+
OUT
BAL/COMP 3

7

6
5

FK PACKAGE
(TOP VIEW)
!l.
~

0

C'l

!l.
~
U «UOU
Z alZUZ
U

::J

description
The LM 118, LM218, and LM318 are precision,
high-speed operational amplifiers designed for
applications requiring wide bandwidth and high
slew rate. They feature a factor-of-ten increase
in speed over general-purpose devices without
sacrificing dc performance.

3

NC
INNC
IN+
NC

These operational amplifiers have internal unitygain frequency compensation. This considerably
simplifies their application, since no external
components are necessary for operation.
However, unlike most internally compensated
amplifiers, external frequency compensation
may be added for optimum performance. For
inverting
applications,
feed-forward
compensation boosts the slew rate to over
150 V/p,s and almost double the bandwidth.
Overcompensation can be used with the
amplifier for greater stability when maximum
bandwidth is not needed. Further, a single
capacitor may be added to reduce the settling
time for 0.1 % error band to under 1 p,s.

1 2019
18

NC

5

17

6

16

VCC+
NC
OUT
NC

7

15

8

14

9 1011 12 13
U
Z

I U C'l U
UZ!l. Z
U
~

>

0

U

::J

«
al

NC - No internal connection

L PACKAGE
(TOP VIEW)

COMP 2

The high speed and fast settling time of these
operational amplifiers make them useful in AID
converters, oscillators, active filters, sample and
hold circuits, and general-purpose amplifiers.
The LM 118 is characterized for operation from
- 55 °e to 125 °e. The LM21 8 is characterized
for operation from - 25 °e to 85°e, and the
LM318 is characterized for operation from ooe
to 70 o e.

2

4

IN-

VCC+
OUT

IN+

BAL/COMP 3
VCC-

Pin 4 of the L package is in electrical
contact with the case.

symbol
SAl/COMP 1
COMP2
SAL/COMP3

(1)
(8)
(5)

NONINVERTING
INPUTIN+

(3)

INVERTING
INPUT IN-

(2)

'>--- OUTPUT

PRODUCTION DATA documents contain information
current as of publication date. Products conform to
specifications per the terms of Te.as Instruments
standard warranty. Production processing does not
necesserily include testing of all parameters.

Copyright © 1990, Texas Instruments Incorporated

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

On products compliant to MIL·STD·B83. Class B. all paramlters are tasted
uniasl otherwise notad. On .11 other products, productioll processing does
not nBCe.la,ily include testing of all parameters.

2-35

LM118, LM218, LM318
HIGH·PERFORMANCE OPERATIONAL AMPLIFIERS

AVAILABLE OPTIONS
VIO MAX
AT 25°C

TA

PACKAGE
SMALL OUTLINE
(D)

CHIP CARRIER
(FK)

CERAMIC DIP
(JG)

METAL CAN
(L)

PLASTIC DIP
(P)

10 mV

LM318D

-

-

-

LM318P

4mV

LM218D

-

-

-

LM218P

4mV

LM118D

LM118FK

LM118JG

LM118L

LM118P

ooe

to

looe
-25°e

to
85°e
-55°C

to
125°e

The 0 package is available taped and reeled. Add the suffix R (e.g., LM318DR).

schematic
BALANCE
COMPENSATION-3
BALANCE
COMPENSATION·1

COMPENSATION-2

r-~~----~-----'--r-----~~-----t--~~------------~~--------- VCC+
2 kO

150 k!1

2 k!1

100 pF

250
INVERTING
INPUT

OUTPUT

33!1

NONINVERTING
INPUT

~~--~~---+----~------~-4----~~

__

~

__-4______-4____

Component values shown are nominal.

~

. TEXAS
INSTRUMENTS
2-36

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

~-4_______

VCC-

LM118, LM218, LM318
HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
LM218

LM118

LM318

UNIT

Supply voltage, Vee + (see Note 1)

20

20

20

V

Supply voltage, Vee _ (see Note 1)

-20

-20

-20

V

Input voltage (either input, see Notes 1 and 2)

±15

±15

±15

V

Differential input current (see Note 3)

±10

±10

±10

mA

unlimited

unlimited

Duration of output short-circuit (see Note 4)

unlimited

Continuous total power dissipation

See Dissipation Rating Table
-55 to 125

-65 to 150 -65 to 150 -65 to 150

Case temperature for 60 seconds

FK package

260

Lead temperature 1,6 mm (1116 inch) from case for 10 seconds

o or

260

Lead temperature 1,6 mm (1116 inch) from case for 60 seconds

JG or L package

P package

-25 to 85

o to 70

Operating free-air temperature range

Storage temperature range

°e
°e
°e

260

260

°e

300

°e

NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between Vee + and Vee _.
2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 1 5 V, whichever is less.

3. The inputs are shunted with two opposite-facing base-emitter diodes for overvoltage protection. Therefore, excessive current will flow
if a differential input voltage in excess of approximately 1 V is applied between the inputs unless some limiting resistance is used.
4. The output may be shorted to ground or either power supply. For the LM118 and LM218 only, the unlimited duration of the shortcircuit applies at (or below) 85 DC case temperature or 75 DC free-air temperature.
DISSIPATION RATING TABLE
PACKAGE

TA :5 25

DC

POWER RATING

DERATING

DERATE

FACTOR

ABOVE TA

TA -

70 D C

TA -

85 D C

POWER RATING

POWER RATING

TA -

125 D C

POWER RATING

D

500 mW

5.8 mWloC

64°C

464mW

377 mW

145 mW

FK

500 mW

11.0 mw/oe

105°C

500mW

500mW

275 mW

JG

500 mW

8.4 mWloe

90°C

500 mW

500 mW

210 mW

L

500 mW

6.6 mWloe

74°C

500mW

429 mW

165 mW

P

500 mW

8.0 mWloe

88°C

500 mW

500 mW

200 mW

-If

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-37

LM118, LM218, LM318
HIGH·PERFORMANCE OPERATIONAL AMPLIFIERS

electrical characteristics at specified free-air temperature (see Note 5)
PARAMETER
Via

110
liB

Vb

Input offset voltage
Input offset current

Va

Input bias current

Va

Common-mode
VICR

input voltage range
Maximum peak

YOM

output voltage swing

voltage amplification

Bl

Unity-gain bandwidth

r;

Input resistance

~

0

~

0

~

2

4

25°C

6

50

120

250

TYP

MAX

4

10

30

200

150

300
500

6

15

100

750

500

Full range

± 11.5

VCC± ~ ±15 V,
RL ~ 2 k{l

Full range

±12

±13

±12

±13

25°C

50

200

25

200

Full range

25

~

mV
nA
nA
V
V

20

25°C

VIC ~ VICR min

No load, Va

± 11.5

UNIT

V/mV

0

15

15
1•

25°C

(AVCC/AVIO)
Supply current

MIN

VCC± ~ ±15 V

Supply voltage rejection ratio
ICC

25°C
Full range

Full range

RL"" 2 k{l
VCC± ~ ±15V

CMRR Common-mode rejection ratio
kSVR

MAX

25°C

0

LM318

TYP

MIN

Full range

VCC± ~ ±15 V,
Va ~ ± 10 V,

Large-signal differential
AVD

LMl18, LM218

TEST CONDITIONSt

3

0.5

3

MHz
M{l

Full range

80

100

70

100

dB

Full range

70

80

65

80

dB

25°C

5

8

10

5

mA

t All characteristics are measured under open-loop conditions with common-mode input voltage unless otherwise specified. Full range for
LMl18 is -55°C to 125°C, full range for LM218 is -25°C to 85°C, and for LM318 is O°C to 70°C.
NOTE 5: Unless otherwise noted, VCC ~ ± 5 V to ± 20 V. All typical values are at VCC ± ~ ± 15 V, T A ~ 25°C.

operating characteristics. VCC+

=

15 V, VCC == 15 V. TA

PARAMETER
SR

=

25°C

TEST CONDITIONS

Slew rate at unit gain

AVI

~

10 V,

CL

~

10 pF,

See Figure 1

MIN
50'

TYP
70

MAX

'On products compliant to MIL-STD-883, Class B, this parameter is not production tested.

PARAMETER MEASUREMENT INFORMATION
2kQ

I
-I·_

I

INPUT
:=lL_ _ _ _ _ _ _

2kQ
INPUT

. _ - - - -.......---10V
OUTPUT 90%-- : --!AVO

1 kH

10%-

_-==1_--= ______
I
I
\4-tt-.l

SR

= -_
tt

VOLTAGE WAVEFORMS

FIGURE 1. SLEW RATE

TEXAS " ,
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

-OV

AVO

TEST CIRCUIT

2-38

1 V
00V

LM124, LM124A, LM224, LM224A
LM324, LM324A, LM2902, LM2902Q
QUADRUPLE OPERATIONAL AMPLIFIERS
D1990, SEPTEMBER 1975-REVISED JULY 1991

•

LM124. LM124A ... J OR W PACKAGE
ALL OTHERS ... D. DB. J. N. OR PW PACKAGE

Wide Range of Supply Voltages:
Single Supply . . . 3 V to 30 V
(LM2902 and LM2902Q
3 V to 26 VI. or Dual Supplies

(TOP VIEWI

•

Low Supply Current Drain Independent of
Supply Voltage ... 0.8 mA Typ

•

Common-Mode Input Voltage Range
Includes Ground Allowing Direct Sensing
Near Ground

•

AMPL{OUT
IN#1
IN+
VCC

OUT} AMPL
IN#4
IN+
GND

AMPL{IN+
#2
INOUT

IN+}AMPL
IN#3
OUT

Low Input Bias and Offset Parameters:
Input Offset Voltage ... 3 mV Typ
A Versions ... 2 mV Typ
Input Offset Current ... 2 nA Typ
Input Bias Current ... 20 nA Typ
A Versions ... 15 nA Typ

""'1.---'-

LM124, LM124A
FK PACKAGE
(TOP VIEW)

II-

I-

~5

I

5~

~~U-

NON INVERTING
INPUTIN+

-

+

OUTPUT

Applications include transducer amplifiers, doc
amplification blocks, and all the conventional
operational amplifier circuits that now can be
more easily implemented in single-supply-voltage systems. For example, the LM 124 can be operated directly
off of the standard 5-V supply that is used in digital systems and will easily provide the required interface
electronics without requiring additional ± 15-V supplies.
The LM 124 and LM 124A are characterized for operation over the full military temperature range of - 55 °e
to 125 °e. The LM224 and LM224A are characterized for operation from - 25 °e to 85 °e. The LM324
and LM324A are characterized for operation from ooe to 70 °e. The LM2902 and LM2902Q are
characterized for operation from - 40 °e to 105 °e.
The LM2902Q is manufactured to demanding automotive requirements.

PRODUCTION DATA documents contain information
current as of publication date. Products conform to
specifications per the terms of Texas Instruments
standard warranty. Production processing does not
necessarily include testing of all parameters.

, TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

Copyright © 1991, Texas Instruments Incorporated.

2-39

LM124, LM124A, LM224, LM224A
LM324, LM324A, LM2902, LM2902Q
QUADRUPLE OPERATIONAL AMPLIFIERS
AVAILABLE OPTIONS
SMALL

VERV SMALL

CHIP

CERAMIC

PLASTIC

OUTLINE
(Olt

OUTLINE

DIP
(JI

DIP
(NI

-

LM324N

TA

VIO MAX
AT 25°C

O°C

7 mV

LM324D

(OBI*
LM324DBLE

CARRIER
(FKI
-

3 mV
5 mV

-

-

-

-

LM324AN

LM224D

-

-

-

LM224N

TSSOP
(PWlt

FLAT

CHIP

PACK
(WI

FORM
(VI

LM324PWLE

LM324Y

to
70°C
25°C
to
85°C

-

-

-

-

LM224AN

LM2902D

LM2902DBLE

-

-

LM2902N

3 mV

-40°C
to

7 mV

105°C
-55°C

5 mV

-

-

LM124FK

LM124J

-

to
125°C

2 mV

-

-

LM124AFK

LM124AJ

-

LM29020D

LM2902PWLE

LM29020N
LM124W

t The D package is available taped and reeled. Add the suffix R to the device type (e.g., LM324DR).
t The DB and PW packages are only available left-end taped and reeled.

schematic leach amplifier)
r--------------.----.----.-------.--~---VCC

OUT

INVERTING
INPUT IN-

....- - . - - - - - - GND

Component c.ount (total devicel
Epi-FET - 1
Diodes - 4
Resistors - 11
Transistors - 95
Capacitors - 4

TEXAS •
INSTRUMENTS
2-40

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

LM324Y
QUADRUPLE OPERATIONAL AMPLIFIERS

chip information
These chips, properly assembled, display characteristics similar to the LM324, (see the LM324Y electrical
table). Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. Chips
may be mounted with conductive epoxy or a gold-silicon preform.

BONDING PAD ASSIGNMENTS

VCC+
(4)

IN + (3)

~

IN-(2)
OUT (7)
IN +

(10)~-

IN - (9)
OUT (14)

OUT (1)

~
+
IN +

(5)

IN - (6)
OUT (8)

=<;J=
-

+

IN + (12)

_

IN-(13)

VCC(11 )
CHIP THICKNESS:
15 TYPICAL
BONDING PADS:
4X4 MINIMUM
TJ max = 150°C
TOLERANCES
ARE ±10%

...
65
~
II II II II II II II II 1111 II II II 111'11 II I' III, I II II 1111 111111111111 II I' I'

ALL DIMENSIONS
ARE IN MILS
PIN (11) INTERN ALL V CONNECTED
TO 8ACKSIDE OF CHIP

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-41

LM124, LM124A, LM224, LM224A,
LM324, LM324A, LM2902, LM2902Q
QUADRUPLE OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
LM124. LM124A.
LM224. LM224A.
LM324. LM324A

32

LM2902.
LM2902Q

UNIT

Supply voltage. Vee (see Note 1)
Differential voltage (see Note 2)

26
±26

V

±32

Input voltage range (either input)

-0.3 to 32

-0.3 to 26

V

unlimited

unlimited

Duration of output short-circuit (one amplifier) to ground at (or below) T A

= 25°C.

(Vee,;; 15 V) (see Note 3)
Continuous total dissipation

V

See Dissipation Rating Table

Operating free-air temperature range

LM124. LM124A

- 55 to 125

LM224. LM224A

-25t085

o to

LM324. LM324A

°e

70
-40 to 105

LM2902. LM2902Q
- 65 to 150
260

-65 to 150

Lead temperature 1.6 mm (1/16 inch) from case for 60 seconds J or W package

300

300

°e

Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds D. DB. N. or PW package

260

260

°e

Storage temperature range
Case temperature for 60 seconds

FK package

°e
°e

NOTES: 1. All voltage values. except differential voltages and Vee specified for the measurement of lOS. are with respect to the network
ground terminal.
2. Differential voltages are at the non inverting input terminal with respect to the inverting input terminal.
3. Short circuits from outputs to Vee can cause. excessive heating and eventual destruction.
DISSIPATION RATING TABLE
PACKAGE

TA = 85°C
POWER RATING

32°C

608 mW

494mW

25°C
. 68°C

496 mW

403 mW

N/A
N/A

880mW

715 mW

275 mW

68°C

880 mW

715 mW

275 mW

40°C
52°C

656 mW
736 mW

533 mW
598 mW

25°C

448 mW

364 mW

N/A
N/A
N/A

37°C

640 mW

520 mW

200 mW

DERATING

DERATE

FACTOR

ABOVE TA

0

900 mW

DB

775 mW

FK
J (LM124_)

900 mW

J (all others)

900 mW

N

900 mW

PW

700 mW

W

900 mW

900 mW

7.6
6.2
11.0
11.0
8.2
9.2
5.6
8.0

mW/oe
mW/oe
mW/oe
mW/oe
mW/oe
mW/oe
mW/oe
mW/oe

TEXAS •

INSTRUMENTS
2-42

=

TA = 70°C
POWER RATING

TA ,;; 25°C
POWER RATING

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TA

125°C

POWER RATING

electrical characteristics at specified free-air temperature,

Vee = 5 V to MAX.
Input offset voltage

Vie = VieR min.
Va = 1.4 V

110
liB

Input offset current
Input bias current

Common-mode input

VieR

voltage range

C3

....

VOH

High-level output voltage

0

"''"
~Z

~~d
~c:~
;~
~(TJ

~z

~~~

VOl

low-level output voltage
Large-signal differential

AVD
eMRR
kSVR

voltage amplification

Va = 1.4 V

~

25°e
Full range
25°e

Vee=15V.

UNIT

7

2

30

50

-150

-20

-250

-20

-250
-500

-500

o to

o to

o to

o to

Vee- 2

Vce- 2

VCC- 2

Vee- 1 .5

VCC-1.5

28
5

27
20

100

Full range

25

25°e

70

80

65

100

5
25

25°e

-20

Full range

-10
10

-30

mV
V/mV

65

80

50

80

dB

65

100

50

100

dB

120

dB

-20

-30

-60

10

-20

-30

-60

-10
20

10

Short-circuit

Vee at 5 V.
GNO at - 5 V. Va = 0
No load

mA

20

N

r-

3l:

N

g~

C>
>~
Cr:::a3l:
CN
-aN
r-~

25°e

12

5

5

5
30

12

30

p.A

30

Or-a3l:
me:,.)
:::aN
>~
-f~

25°e

±40

±60

±40

±60

±40

±60

Full range

0.7

1.2

0.7

1.2

0.7

1.2

Full range

1.1

3

1.1

3

1.1

3

mA

mA

No load

~

-

m~

Full range

Vee = MAX.
Va = 0.5 Vee.

r-

3l:

~

15

-10
20

100

100

100

120
-60

24
5

20

15

120

25°e

23

nA

V

22
28

nA

V

VCC-1.5

26

50

25°e

50
200

Vee-1.5

25°e

25°e

2

150

VIO = -1 V.

output current

(four amplifiers)

MAX

10

o to

Full range

f = 1 kHz to 20 kHz

3

Vee-1.5

RI :s 10 kD

Va - 2.5 V.
lee

7

o to

27

Va = 1 V to 11 V.

TYP*

vee -1.5

Full range

Vee - 15 V.

MIN

9

-300

Vee = MAX. Rl = 10 kD

VIO - -1 V.
Va = 200 mV

Supply current

-20

26

Va = 15 V

lOS

3

100

Full range

Rl = 2 kD

Va = 0
Output current

5

MAX

25°e

Rl = 10 kD

VIO = 1 V.

110

2

Full range

Vee = 15V.

=
r-e
>.!"
3l:r;:23l:

-N

:!l=
me

:::aN
eng

~

electrical characteristics at specified free-air temperature,

VCC = 5 V to 30 V,

110
liB

Input offset voltage

Input offset current
Input bias current

Common-mode input

VICR

voltage range

VIC = VICR min,
Vo = 1.4 V
Vo = 1.4 V
Vo = 1.4V

~

'"....

~

""~z

VOH
VOL

~~

AVO

st:

CMRR

High-level output voltage
Low-level output voltage
Large-signal differential
voltage amplification

'~f
~1"1

kSVR

~z

~~~

Vo 1IV02 Crosstalk attenuation

~~

'"....
'"'"
'"

Common-mode rejection ratio

25°C

10

2

Full range

TYP*

MAX

2

3

UNIT

-100

Full range

25°C

2

30

-15

-100

75

-80
-100

-200

o to

o to

VCC- 1.5

VCC-l.5

VCC-1.5

o to

o to

o to

VCC-2

VCC-2

VCC-2

VCC-l

VCC-l

VCC-l

27

RI ,,; 10 k[J

Full range
25°C

15

o to

26
20

50

5
50

27
20
25

20

100

25
80

65

80

dB

25°C

65

65

100

65

100

dB

-30

-20

-30

120

Full range

VCC = 15 V,

15

120
-20

-10

-10

25°C

10

10

Full range

5

5

12

12

120
-60

dB
-60

-10
20

10

rnA

20

VIO = -1 V,
-1 V,

Vo = 200 mV
VCC at 5 V,

output current

GNO at -5 V,vO = 0
Vo - 2.5 V,
No load

25°C

I

5
30

12

~A

30

±40

±60

±40

±60

±40

±60

Full range

1.5

2.4

1.5

2.4

1.5

2.4

Full range

1.1

3

1.1

3

1.1

3

rnA

rnA

t All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Pull range is - 55°C to 125°C for LM 124A,
- 25°C to 85 °C for LM224A, and ooC to 70°C for LM324A.
= 25°C.

*All typical values are at TA

I
I

25°C

VCC = 30 V,
Vo = 15,
No load

=
en

V/mV

70

-20

:E
m

mV

25

25°C

-a
r-

V

70

25°C

r-:z:-

28

25°C

VCC=15V,

2N
:Z:-oilII

:z:-

Full range

f - 1 kHz to 20 kHz

-Ir-

-3:
erCo,J

2 kll

2:

m oilll
~}II

nA

3:
5

100

nA

VIC = VICR min

RL

m3:
erN
-aN

V

26
28

r- r-

5

30
-15

26

Short-circuit

(four amplifiers)

30
-50

25°C

27

VIO -

ICC

3

MIN

mV

Full range

Vo = 15 V

Supply current

2

4

Full range

Vo = 1 V to 11 V,

MAX

4

VCC = 30 V, RL = 10 k[J
VCC-15V,

c3:

LM324A

TYP*

2

VIO = 1 V,

lOS

MIN

VCC = 30 V, RL = 2 k[J

ratio (AVCC/AVIO)

Output current

LM224A
MAX

25°C

Full range

Vo = 0

110

TYP*

or:z:-ClN
=oilII
c:z:-a.

noted)

Full range

25°C

Supply. voltage rejection

0>

V (unless otherwise

MIN

VCC = 30 V

RL - 2 k[J

= 5

LM124A

TEST CONDITIONSt

PARAMETER

VIO

Vee

LM324Y
QUADRUPLE OPERATIONAL AMPLIFIERS

electrical characteristics,

Vee

PARAMETER
VIO

Input offset voltage

110

Input offset current

liB

Input bias current

25°e (unless otherwise noted)

5 V. TA

LM324Y

TEST CONOITIONst

VCC = 5 V to MAX, VIC = VICRmin,

MIN
VO=l.4V

Common-mode input
VICR

voltage range

VCC = 5 V to MAX

RL = 10 k!1

CMRR Common-mode rejection ratio

VIC = VICR min

lOS
ICC

Short-circuit output current
Supply current (four amplifiers)

mV

2
-20

50

nA

-250

nA

VCC = 15 V,

V
V

Vee -1.5

Vo = 1 V to 11 V,

RL

2:

2 k!1

(aVCC±1 aVIO)
Output current

7

Vee -1.5

Supply-voltage rejection ratio

10

MAX

3

o to

VOH+ High-level output voltage
Large-signal differential
AVO
voltage amplification

kSVR

UNIT

TYP

VCC=15V,

VID = 1 V,

Vo = 0

VCC = 15 V,

VIO = -1 V,

Vo = 15 V

VIO = 1 V,

Vo = 200 mV

VCC at 5 V,

GNO at -5 V,

Vo = 2.5 VCC,

No load

VCC = MAX,

Vo = 0.5 VCC,

Vo = 0
No load

15

100

Vim V

65

80

dB

65

100

dB

-20

-30

10

20

12

30

-60
mA

±40

±60

0.7

1.2

1.1

3

mA
mA

t All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. "MAX"
VCC for testing purposes is 30 V.

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-45

2-46

LM148, LM248, LM348
QUADRUPLE OPERATIONAL AMPLIFIERS
02551, OCTOBER 1979 - REVISED SEPTEMBER 1990

•

uA 7 41 Operating Characteristics

•

Low Supply Current Drain ... 0.6 mA Typ
(per amplifier)

•

Low Input Offset Voltage

AMPL

Low Input Offset Current

#1

•
•

Class AB Output Stage

•

Input/Output Overload Protection

•

LM148 ... J PACKAGE
LM248. LM348 ... 0 OR N PACKAGE
(TOP VIEW)

{~NU~

~U~} AMPL

IN+

IN+

AMPL{V:~~
#2

Designed to be Interchangeable with National
LM 148. LM248. and LM348.

#4

:C~}-

AMPL

OUT -..._ _...r- OUT

#3

LM 148 ... FK PACKAGE

description

(TOP VIEW)
If-

The LM148. LM248. and LM348 are quadruple.
independent. high-gain. internally compensated
operational amplifiers designed to have operating
characteristics similar to the uA 741. These
amplifiers exhibit low supply current drain. and
input bias and offset currents that are much less
than those of the uA 7 41 .

z=>
_0

3

The LM 148 is characterized for operation over
the full military temperature range of - 55°C
to 125°C. the LM248 is characterized for
operation from - 25°C to 85 °C. and the LM348
is characterized for operation from 0 °C to 70°C.

t>-

2

~I

o~

1 20 19

# 1 IN +

4

18

#4IN+

NC

5

17

NC

VCC+

6

16

VCC-

NC

7

15

NC

#2IN+

8

14

#3IN+

9 1011 12 13

symbol (each amplifier)

NC - No internal connection

NON INVERTING
INPUTIN++

INVERTING _ _ _ _., _

OUTPUT

INPUT IN-

AVAILABLE OPTIONS

TA

PACKAGE

VIO MAX
AT 25°C

SMALL OUTLINE

CHIP CARRIER

CERAMIC DIP

PLASTIC DIP

(0)

(FK)

(J)

(N)

6 mV

LM348D

-

-

LM348N

6 mV

LM248D

-

-

LM248N

5 mV

-

LM148FK

LM148J

-

O°C
to
70°C
-25°C
to
85°C
- 55°C
to
125°C
The D package is available taped and reeled. Add the suffix R to the device type, le.g .• LM348DR).

PRODUCTION DATA documents contain information
curront as of pubUcation date. Products conform to
specifications per the terms of Texa. Instruments
standard warranty. Production processing does not
necessarily include testing of aU parameters.

Copyright © 1990, Texas Instruments Incorporated

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-47

LM148, LM248, LM348
QUADRUPLE OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
LM148

LM248
18
-18

LM348

UNIT

18
-18

V
V

44

36

±22

±18

36
±18

It

unlimited

unlimited

Supply voltage V CC + (see Note 1)
Supply voltage VCC _ (see Note 1)
Differential input voltage (see Note 2)

22
-22

Input voltage (either input, see Notes 1 and 3)
Duration of output short-circuit (see Note 4)

unlimited

V

See Dissipation Rating Table

Continuous total power dissipation

-55 to 125
-65 to 150

Operating free-air temperature range
Storage temperature range
Case temperature f()r 60 seconds
Lead temperature 1,6 mm (1/16 inch)
from case for 60 seconds
Lead temperature 1,6 mm (1/16 inch)

o to 70
-65 to 150

°C
°C

FK package

260

°C

J package

300

°C

D or N package

from case for 10 seconds

-25t085
-65 to 150

260

260

°C

NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC + and VCC _.
2. Differential voltages are at the noninverting input terminal with respect to the inverting terminal.
3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or the value specified in the table,
whichever is less.
4. The output may be shorted to ground or either power supply. Temperature andlor supply voltages must be limited to ensure
that the dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
D

TA:5 25°C
POWER RATING

DERATING
FACTOR
7.6 mW/oC

DERATE
ABOVE TA

TA - 70°C
POWER RATING

TA - 85°C
POWER RATING

TA - 125°C
POWER RATING

608 mW

FK

900mW
900mW

11.0 mW/oC

32°C
68°C

880mW

494mW
715 mW

J

900mW

11.0 mW/oC

68°C

880mW

715 mW

NIA
275 mW
275 mW

N

900mW

9.2 mW/oC

52°C

736 mW

598mW

NIA

recommended operating conditions
Supply voltage, VCC+

MIN
4

MAX
18

V

Supply voltage, VCC-

-4

-18

V

TEXAS •
INSTRUMENlS
2-48

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

PARAMETER
Via

Input offset voltage

Va

~

0

110

Input offset current

Va

~

0

liB

Input bias current

Va

~

0

2l

VOM

~z
~CJ)

~-l

~;or;;l

8 c:~
;3:

AvO

~

'"'"g:

lOS

4

25°C

30

50

4

125

100

30

325

200

30

500
±12

25°C

Maximum peak output

RL

2:

10 kll

Full range

±12

voltage swing

RL

~

2 kll

25°C

±10

RL

2:

2 kll

Full range

±10

Large-signal differential

Va

voltage amplification

RL

~

± 10 V.
2 kll

2:

~

AVO

25°C

50

Full range

25

25°C

0.8

25°C

Phase margin

AVO ~ 1

25°C

Common-mode

VIC ~ VICR min,

25°C

70

rejection ratio

Va

Full range

70

Supply voltage rejection

VCC±

25°C

ratio (AVCC+/AVIO)

Va

77
77

~

0
~

±9Vto ±15V,

Full range

0

25°C

Short-circuit output current

(four amplifiers)

Vol IV 02 Crosstalk attenuation

No load
f

~

I

I

Va - 0
Va ~ VOM!

1 Hz to 20 kHz,

25°C
25°C

±12

±10

±10
160

25
0.8

2.5

25

2.5

0.8

70

77
77

±25
24
120

nA

V

±12
160

Vim V

2.5

Mil
MHz

60°

90

70

70
96

nA

±13

1

60°

90

mV

V

15
1

60°

UNIT

±10
160

15
1

1

~

±10

200

±12

±12
±12

50

400

±12

±13

6

100

±12

±13

MAX
7.5

±12

Supply current
ICC

25
75

Full range

1

6

±12

M

kSVR

4

25°C

TYP

7.5

6

Full range

MIN

±12

Unity-gain bandwidth

~ ~4r
'"

1

LM348
MAX

Full range

ri

~Z

5

TYP

10 kll

Bl

CMRR

MIN

~

Input resistance t

~rr1

LM248
MAX

RL

-I

:11-

TYP
1

25°C

input voltage range

'"

;::

MIN
Full range

Common-mode
VICR

LM148

TEST CONDITIONS t

90

dB

70
96
±25
24

77
77
4.5

96

C
I

±25
24

3.6
120

t=

dB

120

mA
4.5

!

;Do
CI

::ICI
C

,...

mA

."

dB

m
Q

."

m,...

.......

5:i!::

- .1=0
2;Do,...
QCCI

""i!::
;DoN
i!::.1=0
."pa

!:,...

::!!i!::

'r
'"

mw
::ICI.I=o

en CCI

LM148, LM248, LM348
QUADRUPLE OPERATIONAL AMPLIFIERS
operating characteristics. VCC± .. ± 15 V. TA '" 25°C
SR

PARAMETER
Slew rate at unity gain

MIN

TEST CONDITIONS
RL

=2

kO,

CL

=

100 pF,

See Figure 1

PARAMETER MEASUREMENT INFORMATION

FIGURE 1. UNITY-GAIN AMPLIFIER
10 k!1

AVO

= -100

FIGURE 2. INVERTING AMPLIFIER

~

TEXAS
INSTRUMENlS
2-50

POST OFFice BOX 655303 • DALLAS. TeXAS 75265

TYP

0.5

MAX

LM158, LM258, LM358, LM158A
LM258A, LM358A, LM2904, LM29040
DUAL OPERATIONAL AMPLIFIERS
D2231, JUNE 1976-REVISED JULY 1991

•

•
•

•

•

Wide Range of Supply Voltages:
Single Supply ... 3 V to 30 V
(LM2904 and LM2904Q
3 V to 26 VI or Dual Supplies

AMPL {OUT
#1
IN-

Low Supply Current Drain Independent of
Supply Voltage ... 0.7 mA Typ

IN +
GND

Common-Mode Input Voltage Range
Includes Ground Allowing Direct Sensing
Near Ground

•

Internal Frequency Compensation

7

3
4

6
5

I:::J

vcc+

OUT} AMPL
IN#2
IN

+

+

o

u~u

u

uu

z""z>z
3

Differential Input Voltage Range Equal to
Maximum-Rated Supply Voltage ... ± 32 V
( ± 26 V for LM2904 and LM2904QI
Open-Loop Differential Voltage
Amplification ... 100 V/mV Typ

2

LM15B, LM15BA
FK PACKAGE
(TOP VIEW)

Low Input Bias and Offset Parameters:
Input Offset Voltage ... 3 mV Typ
A Versions ... 2 mV Typ
Input Offset Current ... 2 nA Typ
Input Bias Current ... 20 nA Typ
A Versions ... 15 nA Typ

•

DB

0, DB, JG, P, OR PW PACKAGE
(TOP VIEW)

2

1 20 19

NC

4

1B

# 1 IN-

5

17

NC

6

16

15

#2IN-

8

14

NC

# 1 IN+

NC

NC
#2 OUT

NC

9 1011 12 13

description
These devices consist of two independent, highgain, frequency-compensated operational
amplifiers that were designed specifically to
operate from a single supply over a wide range
of voltages. Operation from split supplies is also
possible so long as the difference between the
two supplies is 3 V to 30 V (3 V to 26 V for the
LM2904 and LM2904Q), and the VCC pin is at
least 1.5 V more positive than the input
common-mode voltage. The low supply current
drain is independent of the magnitude of the
supply voltage.

NC-No internal connection

=t>-

symbol (each amplifier)
NONINVERTING
INPUTIN+
INVERTING
INPUT IN-

OUTPUT

_

Applications include transducer amplifiers, d-c amplification blocks, and all the conventional operational
amplifier circuits that now can be more easily implemented in single-supply-voltage systems. For example,
these devices can be operated directly off of the standard 5-V supply that is used in digital systems and
will easily provide the required interface electronics without requiring additional ± 15-V supplies.
The LM 158 and LM 1 58A are characterized for operation over the full military temperature range of - 55°C
to 125°C. The LM258 and LM258A are characterized for operation from - 25°C to 85 °C, the LM358
and LM358A from DoC to 70°C, and the LM2904 and LM2904Q from -40°C to 105°C.
The LM2904Q is manufactured to demanding automotive requirements.

PRODUCTION DATA documants contain information

currant as of publication date. Products conform to

specifications par the tarms of Texas Instrumants
standard warranty. Production procassing doas not
nacessarily include testing of all parametars.

TEXAS ~

Copyright @ 1991, Texas Instruments Incorporated

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-51

LM158, LM258, LM358, LM158A
LM258A, LM358A, LM2904, LM29040
DUAL OPERATIONAL AMPLIFIERS
AVAILABLE OPTIONS

TA

ooe

PACKAGE

VIO MAX
AT 25°C

SMALL OUTLINE
(01

SSOP
(OBI

7 mV

LM358D

LM358DB

CHIP CARRIER
(FKI

PLASTIC DIP
(PI

TSSOP
(PWI

CHIP FORM
(VI

LM358P

LM358PW

LM358V

I

to
70°C
-25°C

CERAMIC DIP
(JGI

3 mV

LM358AP
LM258P

5 mV

LM258D

3 mV
7 mV

LM2904D

LM2904DB

105°C

7 mV

LM2904QD

-

-55°C

5 mV

LM158D

to
85°C
-40°C

LM258AP
LM2904P

LM2904PW

LM2904QP

-

to
LM158FK

LM158JG

LM158AFK

LM158AJG

LM158P

to
125°C

2 mV

The D package is available taped and reeled. Add the suffix R (e.g., LM358DR).
The DB and PW packages are only available left-end taped and reeled. Add the suffix LE (e.g., LM358DBLE).

schematic leach amplifier)
r------------------e-----e-----e---------e---4~--Vcc+

OUTPUT

INVERTING
INPUT

+ ____-+______---'

NON INVE RTING _____
INPUT

...---e-------

Component count (total devicel
Epi-FET - 1
Diodes - 2
Resistors - 7
Transistors - 51
Capacitors - 2

TEXAS . "
INSTRUMENTS
2-52

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

GND (OR vee-I

LM358Y
DUAL OPERATIONAL AMPLIFIERS
chip information
These chips, properly assembled, display characteristics similar to the LM358. Thermal compression or ultrasonic
bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive epoxy
or a gold-silicon preform.

BONDING PAD ASSIGNMENTS

Vcc+
IN

+

IN -

3~8
1

2

OUT 7

-

~

OUT

5IN+

6

4

-

IN-

VccCHIP THICKNESS: 15 TYPICAL
BONDING PADS: 4 X 4 MINIMUM

TJmax:150·C
TOLERANCES ARE ± 10%
ALL DIMENSIONS ARE IN MILS
NO BACKSIDE METALIZATION
PIN (4) INTERNALLY CONNECTED TO
BACKSIDE OF CHIP

,....
47
~I
111111111111111111111111111111111111111111111111

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-53

LM158. LM258. LM358. LM158A
LM258A. LM358A. LM2904. LM29040
DUAL OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
LM158, LM158A
LM258, LM258A
LM358, LM358A
Supply voltage, VCC (see Note 1)

LM2904,
LM2904Q

UNIT

32

26

V

Differential voltage (see Note 2)

±32

±26

V

Input voltage range (either input)

0.3 to 32

0.3 to 26

V

unlimited

unlimited

Duration of output short-circuit (one amplifier) to ground at (or below)
25°C free-air temperature (VCC '" 15 V)

(see Note 3)

Continuous total dissipation

Operating free-air temperature range

See Dissipation Rating Table
LM158, LM158A

- 55 to 125

LM258, LM258A

- 25 to 85

o to

LM358, LM358A

°C

70

LM2904, LM2904Q

-40 to 105

Storage temperature range

-65 to 150

- 65 to 150

°C

Case temperature for 60 seconds

FK package

260

Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds

JG package

300

300

°C

260

260

°C

Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds

D, DB, P, or
PW package

°C

NOTES: 1. All voltage values, except differential voltages, and VCC specified for measurement of lOS, are with respect to the network
ground terminal.
2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
3. Short circuits from outputs to VCC can cause excessive heating and eventual destruction.
DISSIPATION RATING TABLE
PACKAGE

TA '" 25°C
POWER RATING

DERATING FACTOR
ABOVE TA - 25°C

TA = 70°C
POWER RATING

TA = 85°C

TA = 125°C

POWER RATING

POWER RATING
145 mW

D

725 mW

5.8 mW/oC

464 mW

377 mW

DB

525 mW

4.2 mWoC

336 mW

273 mW

FK

1375 mW

11.0 mW/oC

880 mW

715 mW

JG

1050 mW

8.4 mW/oC

672 mW

546 mW

210 mW

P

1000 mW

8.0 mW/oC

640 mW

520 mW

200 mW

525 mW

4.2 mW/oC

336 mW

273 mW

PW

TEXAS •
INSTRUMENTS
2-54

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

275 mW

electrical characteristics at specified free-air temperature,

Vee
Input offset voltage

~

5 V to MAX.

~

1.4 V

Average temperature 'coefficient

of input offset voltage

110

Input offset current

"110

of input offset current

~

Va

1.4 V

Average temperature coefficient

liB
."

0

III

....
0

~

~

-

Input bias current

Common-mode
VieR

~z

~ ;o~
8C:~
.;S:

~rrJ
~Z

~ Ci5~
..,

III

'"'"~

VOH

High-level output voltage

V (unless

otherwise noted)

LM158. LM258
MIN

MAX

3

5

25°C

LM2904, LM2904Q

LM358

TYP*

MIN

TYP*

MAX

3

7

MIN

TYP*

MAX

3

7

~

Va

1.4 V

Full range

7

25°C

2

~

25°C

Full range
RL"" 2 k{J

25°C

RL "" 10 k{J
Vee ~ MAX,

25°C

RL

~

Vee

2 k{J
~

MAX,

Full range

2

/Lv/oe

7

2

50

50
200

150
10
-20

-150

-20

nA
pA/oe

10
-250
-500

-300

Full range

5 V to MAX

30

10
-20

10

7

100

Full range

25°C
Vee

UNIT

mV

9

7

Full range

Full range

input voltage range

~~

5

VIC ~ VieR min.
Vo

"via

=

TEST CONDITIONSt

PARAMETER

VIO

Vee

-250
-500

a to

a to

a to

vee- 1

Vee- 1

Vee- 1

a to

a to

a to

Vee- 2
Vee -1.5

Vee- 2
Vee- 1.5

Vee- 2

nA

V

vee -1.5
22

26

26

V
Full range

27

28

27

28

23

24

U"I

RL "" 10 k{J
~_L__

Low-level output voltage

RL "

10 k{J

Full range

5

20

5

20

5

r-

s:::

100

mV

=
r-

eS:::
eN
>g;:
r-Clr-

-as:::
me."

::tCIU"I

>=
-I-r-

CIs:::
i2N

>ea
r-=
>~

S:::r~s:::
-N
:!lea

~

'"

m=
::tCI./:Io

(1)=

CJ r-

%
-

100

r- U'I

V/mV
25

25°C

70

80

65

80

50

80

dB

!:ai:
:l>N

VCC = 5 V to MAX

25°C

65

100

65

100

50

100

dB

-CD
=~

f = 1 kHz to 20 kHz

25°C

120

dB

VCC = 15 V,

25°C

-20

Full range

-10

RL = '" 2 kO
VCC = 5 V to MAX,
VIC = VICR min

15

=.!»

Full range

15

"'CJr-

-IU'I

2r-

120

120

-30

-20

-20

-30

>31:

r-w
:l>U'I

-30

VID = 1 V,

10

Output current

Va = 0
VCC=15V,

.

VIO = -1 V,

!!l

VIO

0

Va = 200 mV

Va = 15 V

0

::l_

~:z

~~

i~r

Short-circuit
lOS

.;~
~

.f!1

~z

e~4r

(II

...

;;l

"

output current

Supply current
ICC

(two amplifiers)

=

-1 V,

VCC at 5 V,
GNO at -5 V,
Va = 0
Va = 2.5 V,
No load

25°C

10

Full range

5

25°C

12

-10
20

10

20

10

5
30

12

S::.!»

-10

mA
20

==

m:a
30

p.A

r-

mA

=
=
.a:=o

31:

N

25°C

±40

±60

±40

±60

±40

±60

Full range

0.7

1.2

0.7

1.2

0.7

1.2

Full range

1

2

1

2

1

2

VCC = MAX,
Va = 0.5 VCC,
No load

"'CJr-

!::3I:
::!!N

m=

5
30

i

=

mA

electrical characteristics at specified free-air temperature,

= 5 V to 30 v,
= VICR min,
= 1.4 V

VCC
Input offset voltage

VIC
Va

110

of input offset voltage
Input offset current

=

Va

1.4 V

Average temperature coefficient
alia
liB

-.0
en

-<

0

~

-

~
f:iZ

~~d
~t:!Tl
~~~
~rr1

~z

~ ~.ct

Common-mode
VICR

=

Va

input voltage range

1.4 V

=

Low-level output voltage

Full range

4

MIN

LM358A

TYP

MAX

2

3

MIN

TYP

MAX

2

3

UNIT

mV

Full range

7

25°C

2

Full range

4

AL

=

=

30 V,

2 kO

=

30 V,

AL '" 10 kO
AL ,;; 10 kO

10
-15

25°C

25°C

7

10

2

5

15

7

15

2

30

200

10

-50

-15

-100

200

10

-80

-15

-100

o to

to

Vee-1.5

Vee -1.5

o to

o to

to

Vee- 2

Vee- 2

Vce- 2

Vee- l .5

Vee- l .5

Full range

27

5

27
20

300
-100

nA

I

pA/oC!
nA

V

Vee -1.5

26
28

p.V/oC

30

-200

o to

26

20

75

Vee- l .5

Full range

Full range

15

30

Full range

Full range

VCC
VOL

2

30 V

RL'" 2 kO
High-level output voltage

LM258A

MAX

25°C

25°C
VCC

VCC
VOH

TYP

Full range

of input offset current
Input bias current

MIN

!

Average temperature coefficient
aVIO

5 V (unless otherwise noted)
LM158A

TEST CONDITIONS t

PARAMETER

VIO

Vee

26
28
5

27
20

V
28
5

20

mV

en
~

'"'"
m

=
>
,...
,...
CI

Os:

"'=CCI
mU"l

»
......

S,...
Zs:
>N

""U"I

>CCI

s:?-'
!:s:
"'''''

""Co,)

-U"I

&
....

mCCl

~>

CJ r-

J:
0>

AVO
CMRR

Large-signal differential
voltage amplification

VCC - 15 V,
Va = 1 V to 11 V,
RL~2k!l

Common-mode rejection ratio
Supply voltage rejection

kSVR

ratio (AVCCiINPUT IN+

description
These devices consist of four independent, highgain frequency-compensated Norton operational
amplifiers that were designed specifically to
operate from a single supply over a wide range of
voltages. Operation from split supplies is also
possible. The low supply current drain is
essentially independent of the magnitude of the
supply voltage. These devices provide wide
bandwidth and large output voltage swing.

OUTPUT

INVERTING
INPUT IN-

The LM2900 is characterized for operation from
-40 o e to 85°C, and the LM3900 is characterized
for operation from ooe to 70 oe.

schematic (each amplifier)
,-----.-- Vee

OUTPUT
INVERTING
INPUT

-----4.---1
! 1.3 rnA

NONINVERTING _-.>---/
INPUT

PRODUCTION OATA documents contain information
current as of publication date. Products conform to
specifications per the terms of Texas Instruments
standard warranty. Production processing does not
necesserily include testing of all parameters.

~

Copyright © 1990, Texas Instruments Incorporated

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-61

LM2900, LM3900
QUADRUPLE OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
LM2900

LM3900

Supply voltage, Vee (see Note 1)

36

36

V

Input current

20

20

mA

unlimited

unlimited

Duration of output short circuit (one amplifier) to ground at (or below) 25 De free-air
temperature (see Note 2)
eontinuous total dissipation

UNIT

See Dissipation Rating Table

Operating free-air temperature range

o to

-40 to 85

Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds

De

70

-65 to 150

-65 to 150

De

260

260

De

NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.
2. Short circuits from outputs to Vee can cause excessive heating and eventual destruction.

DISSIPATION RATING TABLE
PACKAGE

TA :5 25 C
POWER RATING

N

1150 mW

D

DERATING FACTOR
ABOVE TA = 25 D C

TA = 70°C
POWER RATING

TA = B5°C
POWER RATING

736mW

598 mW

recommended operating comditions
LM2900
MIN

MAX

Supply voltage, Vee (single supply)

4.5

Supply voltage, Vee + (dual supply)

2.2

Supply voltage, Vee _ (dual supply)

-2.2

LM3900
MAX

32

4.5

32

V

16

2.2

16

V

-16

-2.2

-16

V

-1

mA
De

-1

Input current (see Note 3)
-40

Operating free-air temperature, T A

UNIT

MIN

85

0

70

NOTE 3: elamp transistors are included that prevent the input voltages from swinging below ground more than approximately - 0.3 V.
The negative input currents that may result from large signal overdrive with capacitive input coupling must be limited externally
to values of approximately - 1 mAo Negative input currents in excess of - 4 mA will cause the output voltage to drop to a low
voltage. These values apply for anyone of the input terminals. If more than one of the input terminals are simultaneously driven
negative, maximum currents are reQuced. Common-mode current biasing can be used to prevent negative input voltages.

TEXAS •
INSTRUMENTS
2-62

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

LM2900, LM3900
QUADRUPLE OPERATIONAL AMPLIFIERS
electrical characteristics. Vee
PARAMETER

11+

(inverting input!

!L=-

Mirror gain

11+
Change in mirror gain

11+
TA

~

~

~

TA

0

TA

~

25°C

~

Full range

MAX

30

200

0.9

Large-signal differential

VO~10V,

RL

voltage amplification

f

~

10 kfI,

1.2

100 Hz

Output resistance

ro

Unity-gain bandwidth
B1

(inverting input!

VOH

Low-level output voltage

VOL

Short-circuit output current
IOHS

(output internally high!

11+

~

11-

=

RL

0,

~

Vec

a

2 k!l
~

= 0,
= 2 kO
11+ = 0,
Vo = 0

11-

= 10

11-

~

Low-level output current t
Supply current

lec

5

2

5

%

10

500

p.A

1.2

11- =5 fJ-A,

VOL

=

V/mV

1

M!l

8
2.5

MHz

70

70

dB

0.09

k!l

V

29.5
0.2

0.09

0.2

V

-6

-18

-6

-10

mA

0.5

1.3

0.5

1 .3

rnA

1 V

5
6.2

No load

(four amplifiers!

2.8

13.5

p.A,

Pull-down current
IOL

fJ-A/fJ-A

500

29.5

0

1.1

nA

2

13.5

30 V.

No load

11+
RL

200

8

ratio (l>.Vec/l>.Vlo!
High-level output voltage

30

UNIT

2.5

Supply voltage rejection
kSVR

MAX

0.9

1

(inverting input!

TYP

10
2.8

Input resistance
ri

MIN

300
1.1

Full range,

~

lM3900

TYP
300

20 /LA to 200 fJ-A

TA

~

MIN

Full range, See Note 4

VI+ ~ VI_,
See Note 4

Mirror current

AVO

lM2900

TEST CONDITIONSt

Input bias current

liB

25°e (unless otherwise noted)

15 V. TA

5
6.2

10

mA
10

mA

t All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified. Full range for
TA is -40 oe to 85°C for LM2900, and ooe to 70°C for LM3900.
tThe output current-sink capability can be increased for large-signal conditions by overdriving the inverting input.
NOTE 4: These parameters are measured with the output balanced midway between Vec and ground.

operating characteristics. Vee± = ± 15 V. TA = 25°e
PARAMETER
SR

TEST CONDITIONS

.1 Low-to-high output
Slew rate at unit gain I
High-to-Iow output

Vo
RL

= 10 V,
= 2 kO

eL

=

100 pF,

MIN

TYP
0.5
20

MAX

UNIT

V/fJ-s

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-63

LM2900, LM3900
QUADRUPLE OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
MIRROR GAIN
vs
FREE-AIR TEMPERATURE

INPUT BIAS CURRENT (INVERTING INPUT)
vs
FREE-AIR TEMPERATURE

1.20 ~~---'-T--,--~---r--"'--~---'
Vcc == 15V
1.15 11+ == 10 J.lA

SO
Vcc == 15 V
Vo == 7.5 V
11+ == 0

70
c:(

c: 60
I

1.1 0 ~-J---+--+-+-+--+--+----j

\

E

~ 50

5

()

II)

'"

iii

~

.E

40

c:
'iii

g

~

'"

30
I

I

Cl

!!! 20

1.05 ~-J---+--+-+-+--+--+----j

~
I

~

~ 0.95 ~-J---+--I--+-+--+--+----j
I

I---

= 0.90 ~---l---+--+-+-+--+--+----j

10

0.S5~-J---+--+-+-+--+--+----j

o

o.so L..---l_--1_-I-_-L_....L.._..l.-_L---'

-75 -50 -25
0
25
50
75 100 125
TA - Free-Air Temperature - 'C

-75 -50 -25

0

FIGURE 1

50

75

100 125

FIGURE 2
LARGE SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
SUPPLY VOLTAGE

LARGE SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREQUENCY
104

104
15 V
Vcc
25'C
TA

II 111111

----

)J
""":

"
1
100

25

TA - Free-Air Temperature - 'C

1k

10 k
100 k
f - Frequency - Hz

~

t-~RL

"

1M

10 kO
f-TA
25'C
fI
1
10 M

o

5

FIGURE 3

10
15
20
25
Vcc- Supply Voltage- V

FIGURE 4

t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TEXAS

~

INSTRUMENlS
2-64

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

30

LM2900, LM3900
QUADRUPLE OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
LARGE SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
c

SUPPLY VOLTAGE REJECTION RATIO
vs
FREQUENCY
100

104

.2

Dl

~

~
cc
c

I

o

103

c(

cc

a;
I

o
~

10

g

40

-li

30

Q.

:l

Vee
Vo

RL
1

"r-...

50

Q)

Cl

2l

"E
Q)

::::
Ci

.....

60

Q)

·cu

::: 102
.!!!

-

70

"0

2l
"0

TA = 25°e

80

.2

Q)

Cl

V~~ 1~1111~ V

90

"0

Cii
u
:E

=

en 20

15 V
10 V
10 k!1

I

g:
en

10

o

-75 -50 -25
0
25
50
75 100 125
T A - Free-Air Temperature - °e

100

400 1 k

FIGURE 5

4 k 10k 40 k 100 k 400 k 1 M
f-Frequency-Hz

FIGURE 6
LM2900

SHORT-CIRCUIT OUTPUT CURRENT
(OUTPUT INTERNALLY HIGH)
vs
SUPPLY VOLTAGE

PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
16

.11111

I 14

Q)

Cl

2l
"0 12

>
"5
c..
"5

I 1111.11

= 15V
RL = 2 k!1
11+ = 0
TA = 25°e
Vee

>

.,

·5

I

0

>

U

4

.£:

TA

20

= ooe

~

V

TA = 25°e

15

.:: 10
o

en
I
en 5

"-

2

10 k

I

J:

52

~

o
1k

=

~

6

Q)

0.
0.

25

Vo = 0
11+ = 0
11_
0

~:l

~

8

0.

0.

I

"E

"5Q.
"5

Q)

b
];
.,

E

U

10

0

~

30
c(

100 k
1M
f - Frequency - Hz

10 M

o
o

5

FIGURE 7

10
15
20
25
vee-Supply Voltage- V

30

FIGURE 8

t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-65

lM2900, lM3900
QUADRUPLE OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICSt
LOW-LEVEL OUTPUT CURRENT
vs
SUPPLY VOLTAGE
60

2.0

I

=1 V
=0
TA = 25°e

VOL
E 50 _11+

«
I

'E
f
....
::I 40

U

'5
Q.
'5 30

0

Qi

>
G>

--I

::

f

/

/~
11-

/'

--I

9

= 100 IlA

-

1.8

~

«
I

TA - 25°e

/"

U 1.0

'/

c

~

0e

,-

E 1.4

TA

=

85°e

0.8

2

:; 0.6
0.

= 10 IlA
11_ = 51lA

11-

o
o

TA - -40

~::I

20

10

I

1.6

C 1.2

0
--I

I

PULL-DOWN CURRENT
vs
SUPPLY VOLTAGE

I

0.4
0.2

r
5

10
15
20
Vee - Supply Voltage - V

25

o
o

30

15
25
10
20
vee-Supply Voltage-V

5

30

FIGURE 10

FIGURE 9
PULL-DOWN CURRENT
vs
FREE-AIR TEMPERATURE

TOTAL SUPPLY CURRENT
vs
SUPPLY VOLTAGE

2.0

8
Vee = 15V

1.8
1.6

«

E 1.4
I

'E 1.2

~::I

- --

«

r

.............

I
I
I

'E

~::l 5

...........

~

U

>C.
4
Q.

U

1.0

O~

0.8

VI

'§ 0.6

l-

'?

7

E
I 6

::I

Cii 3

"0

0.

I

U

0.4

9

0.2

2
TA = 25°e

r- No signal
No load

o

I

-75 -50 -25
0
25
50
75 100
TA - Free-Air Temperature - °e

125

5

25
10
15
20
Vee - Supply Voltage - V

FIGURE 12

FIGURE 11

t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

~

TEXAS
INSTRUMENTS
2-66

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 .

30

LM2900, LM3900
QUADRUPLE OPERATIONAL AMPLIFIERS
TYPICAL APPLICATION DATA
Norton (or current-differencing) amplifiers can be used in most standard general-purpose op-amp applications.
Performance as a dc amplifier in a single-power-supply mode is not as precise as a standard integrated-circuit
operational amplifier operating from dual supplies. Operation of the amplifier can best be understood by noting
that input currents are differenced at the inverting input terminal and this current then flows through the external
feedback resistor to produce the output voltage. Common-mode current biasing is generally useful to allow
operating with signal levels near (or even below) ground.
Internal transistors clamp negative input voltages at approximately - 0.3 V but the magnitude of current flow
has to be limited by the external input network. For operation at high temperature, this limit should be
approximately - 100 p.A.
Noise immunity of a Norton amplifier is less than that of standard bipolar amplifiers. Circuit layout is more critical
since coupling from the output to the noninverting input can cause oscillations. Care must also be exercised
when driving either input from a low-impedance source. A limiting resistor should be placed in series with the
input lead to limit the peak input current. Current up to 20 mA will not damage the device but the current mirror
on the noninverting input will saturate and cause a loss of mirror gain at higher current levels, especially at
high operating temperatures.

v+
1 MIl
10 kH

1 Mfl

1 kll

1 M!l
INPUT ---'W~It--4~+--I
"-'--OUTPUT

10 '" 1 rnA per input volt

FIGURE 13. VOLTAGE·CONTROLLED CURRENT SOURCE

v+

1 Mfl

1 Mfl
-----OUTPUT

100 kfl
INPUT -.JVIIIr. .- - t - - t

100 k!l
1 k!l
10 '" 1 rnA per input volt

FIGURE 14. VOLTAGE·CONTROLLED CURRENT SINK

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 76265

2-67

2-68

LT1007, LT1007A, LT1037, LT1037A
LOW-NOISE, HIGH-SPEED, PRECISION OPERATIONAL AMPLIFIERS
03195, FEBRUARY 1989-REVISEO JUNE 1991

•

Maximum Equivalent Input Noise Voltage:
3.8 nV/y'Hz at 1 kHz
4.5 nV/y'Hz at 10 Hz

•

Low Peak-to-Peak Equivalent Input Noise
Voltage: 60 nV Typ from 0.1 Hz to 10Hz

•

Slew Rate (LT1037 and LT1037A):
11 VII's Min

OW SMALL-OUTLINE PACKAGE
(TOP VIEWI

NC
NC
Via TRIM
ININ+

High Voltage Amplification:
7 V/p.V Min. RL - 2 kn
3 V/p.V Min. RL = 600 n

u

JG AND P
DUAL-IN-L1NE PACKAGES

•

Low Input Offset Voltage 25 p.V Max

•

Low Input Offset Voltage Temperature
Coefficient: 0.6 p.V/oC Max

•

VCC+
aUT
NC
NC
NC

VCCNC
NC

LT1 007 A and LT1 037 A Specifications:
•

NC
NC
Via TRIM

(TOP VIEWI

Via TRIM
ININ +
VCC -

Common-Mode Rejection Ratio: 117 dB Min

8

2

7

3

6

4

5

Via TRIM
VCC+
aUT
NC

description
L PLUG-IN PACKAGE

These monolithic operational amplifiers feature
extremely low noise performance and outstanding precision and speed specifications.
The typical differential voltage amplification (at
T A = 25°C) of these devices is an extremely
high 20 V//lV driving a 2-kn load to ± 12 V and
12 V/p.V driving a 600-n load to± 10 V.
In the design. processing. and testing of the
device. particular attention has been paid to the
optimization of the entire distribution of several
key
parameters.
Consequently.
the
specifications of even the lowest-cost grades
(the LT1 007C and the LT1 037C) have been
greatly improved compared to equivalent grades
of competing amplifiers.

(TOP VIEWI

Via
TRIM
VCC+
aUT
NC
VCCPin 4 (L Package) is in electrical contact with the case
NC - No internal connection

AVAILABLE OPTIONS

TA

O°C
to
70°C
-55°C
to
125°C

VIO MAX
AT 25°C

PACKAGE
SMALL-OUTLINE

CERAMIC DIP

METAL CAN

(OWl

(JGI

(LI

PLASTIC DIP
(PI

LT1007CDW

-

LT1007CP

25 !'V

-

-

-

LT1007ACP

60 ,"V

LT1037CDW

-

-

LT1037CP

25!'V

-

-

-

60 !'V

-

LT1007MJG

LT1007ML

LT1007MP

60 !'V

LT1037ACP

25!'V

-

LT1007AMJG

LT1007AML

LT1007AMP

60 !'V

-

LT1037MJG

LT1037ML

LT1037MP

25!'V

-

LT1037AMJG

LT1037AML

LT1037AMP

The DW packages are available taped and reeled. Add the suffix "R" to the device type, (e.g ..
LT1007CDWRI.

PRODUCTION DATA documants contain information
currant as of publication data. Products conform to
spacifications par tha tarms of Te.as Instruments
standard warranty. Production proclSsing doas not
nacassarilyincluda tasting of all parametars.

~

Copyright © 1991, Texas Instruments Incorporated

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-69

LT1007, LT1007A, LT1037, LT1037A
LOW·NOISE, HIGH·SPEED, PRECISION OPERATIONAL AMPLIFIERS
schematic

I

o
o
>

1
0_
0

"'

:5'"
U

u.
"Cl

c:

0

0
0

....
"'

0

c:

N

'"

IC

N
U.

"-

0

co
c:

..

-

0
0

 !-+-------,

+

!!;

I

!!;

~

TEXAS
INSTRUMENTS
2-70

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

LT1007, LT1007A, LT1037, LT1037A
LOW·NOISE, HIGH·SPEED, PRECISION OPERATIONAL AMPLIFIERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee + (see Note 1) ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 22 V
Supply voltage, Vee - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -22 V
Input voltage .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Vee ±
Duration of output short-circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Unlimited
Differential input current (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 25 mA
Power dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. See Dissipation Rating Table
Operating free-air temperature range:
LTl007e, LT1007Ae, LT1037e, LT1037Ae ............................ oDe to 70 De
LT1007M, LT1007AM, LT1037M, LT1037AM ....................... -55 De to 125°e
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :.... - 65 De to 150 De
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: DW and P packages. . . .. 260 De
Lead temperature 1.6 mm (1/16 inch) from case for 60 seconds: JG and L packages ...... 300 De
NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between Vee + and Vee _.
2. The inputs are protected by back-to~back diodes. Current limiting resistors are not used in order to achieve low noise. Excessive
input current will flow if a differential input voltage in excess of approximately ± 0.7 V is applied between the inputs, unless
some limiting resistance is used.
DISSIPATION RATING TABLE
PACKAGE

TA :5 25°C

DERATING FACTOR

TA = 70°C

POWER RATING

ABOVE TA = 25°C

POWER RATING

TA

=

125°C

POWER RATING

OW

1025 mW

8.2 mw/oe

656 mW

N/A

JG

1050 mW

8.4 mw/oe

672 mW

210 mW

825 mW

6.6 mw/oe

528 mW

165 mW

1000 mW

8 mw/oe

640 mW

200 mW

l

P

recommended operating conditions
M-SUFFIX

C·SUFFIX

UNIT

MIN

NOM

MAX

MIN

NOM

MAX

Supply voltage, Vee +

4

15

22

4

15

22

V

Supply voltage, Vee-

-4

-15

-22

-4

-15

-22

V

Input voltage, VI

ITA=25°e
ITA = full range

±11

± 11

± 10.5

± 10.3

Operating free-air temperature, T A

0

TEXAS

70

-55

V
V
125

°e

~

INSTRUMENTS
POST OFFICE BOX 665303 • DALLAS. TEXAS 75265

2-71

LT1007C, LT1007AC, LT1037C, LT1037AC
LOW-NOISE, HIGH-SPEED, PRECISION OPERATIONAL AMPLIFIERS
electrical characteristics, Vee +
PARAMETER
VIO

Input offset voltage

-15 V

15 V, vee-

TEST CONDITIONS

TA

LT1007C, LT1037C LT1007AC, LT1037AC
TYP MAX
MIN
TYP MAX
MIN
20

25°C
ODC to 70 DC

See Note 3

60

10

UNIT

25

110

50

1

0.6

p.V

Average temperature
ODC to 70 DC

aVIO coefficient of input
offset voltage
110

liB

Input offset current

25 DC
DDC to 70 D C

12

Input bias current

25°C
ooC to 70 DC

±15

Peak output voltage
VOM

swing

RL
RL
RL

=
=
=

2 kO

25°C

2 kO

= ±12 V
= ±10 V
600 0, Vo = ± 10 V
2 kO, Vo = ± 10 V
1 kO, Vo = ± 10 V

RL ~ 2 kO, Vo
AVD

Large-signal

RL

differential voltage

RL ~

amplification

RL

~

RL

~

~

1, kO, Vo

Common-mode input
rilCM) resistance
ro

Open-loop output
resistance

CMRR Common-mode
rejection ratio
Supply voltage
kSVR

PD

rejection ratio
Power dissipation

VIC
VIC

=
=

±11 V
±10.5V

±10

±75
±12.5 ± 13.5

30

nA

40

±55

±35

nA

±45
±13 ± 13.8

25 DC
±10.5 ± 12.5
ODC to 70 DC
±12

6000

7

50
70

I'V/DC

± 11 ± 12.5

V

± 12.5

5
3.5

20

7

20

25°C

16

5

16

25°C
ODC to 70°C

2
2.5

12

3
4

12

V/",V

ODC to 70°C

2

GO

25°C

2.5

25°C

5

7

25 DC

70

70

25°C

110

O°C to 70 DC

106

114

106

110

VCC+ = ±4Vto ±18V
VCC± = ±4.5 V to ±18 V
LT1007C, LT1007AC

25°C
O°C to 70 DC
25°C

LT1037C, LT1037AC

25°C
ooC to 70°C

126

117

126

102

0

130

dB

130

dB

106
80

140

80

120

85

140

80

130

160

mW

144

NOTE 3: VIO measurements are performed by automatic test equipment approximately 0.5 seconds after application of power.

~

2-72

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

LT1007M, LT1007AM, LT1037M, LT1037AM
LOW·NOISE, HIGH·SPEEO, PRECISION OPERATIONAL AMPLIFIERS

electrical characteristics.

Vee + =

15

V. vee-

-15 V
LT1007M.

PARAMETER

TEST CONDITIONS

MIN
VIO

Input offset voltage

"'VIO

coefficient of input

TYP

25°C

See Note 3

LT1007AM.

LT1037M

TA

20

LT1037AM
MAX

MIN

60

TYP
10

UNIT
MAX
25

-55°C to 125°C

160

60

-55°C to 125°C

1

0.6

",V

Average temperature

",V/oC

offset voltage
110
liB

AVD

-55°C to 125°C

swing

RL
RL

=
=
=

2 kfl
600 fl

= ± 12 V
= ±10 V
600 D. Va = ± 1 0 V
2 kfl. Vo = ±10 V
1 kD. Vo = ±10V

±10

±35

± 12.5 ± 13.5

25°C

± 10.5 ± 12.5

± 11 ± 12.5

±12
5

20

7

25°C

3.5

16

5

16

differential voltage

RL ;;,

25°C

2

12

3

12

amplification

RL ;;,

-55°C to 125°C

2

3

-55°C to 125°C

1.5

2

Supply voltage
rejection ratio

VIC = ± 11 V
VIC = ±10.3V

Power dissipation

5

7

25°C

70

70

25°C

110
104

25°C
VCC+ = ±4 V to ± 18 V
VCC+=±4.5Vto ±18V -55°C to 125°C
LT1007M. LT1007AM
LT1037M. LT1037AM

20

25°C

- 55°C to 125°C

106

V

±12.5

25°C

CMRR Common-mode
rejection ratio

nA

±60
±13 ± 13.8

RL ;;, 2 kfl. Vo

resistance

nA

50

± 55

RL;;' 1 kfl. Vo

Open-loop output

PD

30

Large-signal

RL ;;,

kSVR

7

±95

25°C
-55°C to 125°C

2 kD

Common-mode input
rHCM) resistance
ro

±15

- 55°C to 125°C
RL

50
85

25°C

Input bias current

Peak output voltage
VOM

12

25°C

Input offset current

126

117

V/",V

GO
0

130

dB

112
126

110

100

130

dB

104

25°C

80

140

80

120

25°C

85

140

80

130

-55°C to 125°C

170

mW

150

NOTE 3: VIO measurements are performed by automatic test equipment approximately 0.5 seconds after application of power.

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-73

LT1007, LT1007A, LT1037, LT1037A
LOW·NOISE, HIGH·SPEED, PRECISION OPERATIONAL AMPLIFIERS
operating characteristics VCC±
PARAMETER
SR

Slew rate

=

± 15 V. TA

=

25°C
LT1007, LT1007A

TEST CONDITIONS
RL « 2 kll, AVO «1 (LT1007, LT1007A)
RL « 2 kll, AVO « 5 (LT1037, LT1037A)

MIN

TVP

1.7

2.5

Peak-to-peak equivalent f = 0.1 Hz to 10Hz,
VNPP input noise voltage
See Note 4
Vn
In

Equivalent input noise

f

noise voltage
Equivalent input

f
f

noise current

f

GBW Gain bandwidth product

f
f

=
=
=
=
=
=

MAX

LT1037, LT1037A
MIN

TVP

11

15

MAX

V/p.s

0.06

0.13

0.06

0.13

10 Hz

2.8

4.5

2.8

4.5

1 kHz

2.5

3.8

2.5

3.8

10Hz, See Note 5

1.5

4

1.5

4

1 kHz, See Note 5

0.4

0.6

0.4

0.6

100 kHz

5

10 kHz, AV « 15

8
45

60

UNIT

p.V
nV/.JHz
pA/.jf1z
MHz

NOTES: 4. See the test circuit and frequency response curve for 0.1 Hz to 10 Hz noise (Figure 39) in the Applications Information section.
5. See the test circuit for current noise measurement (Figure 40) in the Applications Information section.

+

TEXAS
INSTRUMENTS
2-74

POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

LT1007, LT1007A, LT1037, LT1037A
LOW-NOISE, HIGH-SPEED, PRECISION OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
table of graphs
FIGURE

VIO

Input offset voltage

aVIO

Change in input offset voltage

110

Input offset current

liB

Input bias current

VOM

AVD

vs Temperature

1

vs Time after power on

2

vs Time (long-term stability)

3

vs Temperature

4

vs Temperature

5

over common-mode range

6

Common-mode limit voltage

vs Free-air temperature

7

Maximum peak output voltage

vs Load resistance

8

swing

vs Frequency

9

vs Frequency

10

vs Frequency (LT1 007)

11

vs Frequency (L T1 037)

12

Differential voltage amplification

vs Temperature

13

vs Load resistance

14

vs Supply voltage

15

at 2 kll and 600 Il

16

VID
CMRR

Differential input voltage

vs Output voltage

16

Common-mode rejection ratio

vs Frequency

17

kSVR

Supply voltage rejection ratio

vs Frequency

18

SR

Slew rate

"'- ~ 30f--t---+-----j---t--:;;""f----t---j .. ~ 20f"'oo.~+--+--==--~-+---+---I-~ > ; ~ 101-~:t==~.,..=+--+--+----jf_--:::J :::0 10 I I Q) I 11 ... ~ o 8 ~ I/) 6 ... L PACKAGE :::J Co I--C::--+_--+-~""'F--+-~F___l Co Ioo"""'-+---+--:::;"""""--+-""ooc:-t--I--~ -25 2 I 0 -40~~~~+_--+--_+--+-~~__l -50 // Cl C .J:. (.) __L __ _~_ _~_ _~_ _~_ _~ 0 25 50 75 100 125 >" " - 30 Cl 0 0 5 -1 0 I VCC± = ±15 V TA = 25°C ~ OW. JG. OR P PACKAGE If o o 2 T A - Free-Air Temperature- °C 5 4 3 Time After Power On-minutes Figure 1 Figure 2 INPUT OFFSET CURRENT LONG TERM STABILITY OF INPUT OFFSET VOLTAGE FOR FOUR REPRESENTATIVE UNITS 10.----.---.----r---r----. vs TEMPERATURE 60 I 1 I. VCC±=±15V «c 50 ~ 40 ...cI :::J (.) ... Q) I/) ::: 0 5 ! I g 30 20 " 'r-.- ..... 10 o "~ LT1007. LT1037 ............ ~ LT1007A. LT1037A -75 -50 -25 t- Time - months 0 25 50 75 100 125 T A - Free-Air Temperature - °C Figure 3 Figure 4 tData at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices. TEXAS • INSTRUMENTS 2-76 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 LT1007. LT1007A. LT1037. LT1037A LOW·NOISE. HIGH·SPEED. PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t INPUT BIAS CURRENT vs FREE-AIR TEMPERATURE 50 INPUT BIAS CURRENT vs COMMON-MODE INPUT VOLTAGE 20 V~CI± 1_1±~5IV 15 40 ~ c I c ... ~ :; 30 u .."' iii ... :::1 Co ~ I ~ 10 :; 5 "I" u j\. 20 .5 10 ~ WITH iOSITIVIE " ~ ..... "- ........ .... .... , ..... -5 , 20 V 7 GO rr(CMI - - - , ,3 nA 25 50 I I I I ./ I .5 Ni-tllill I 0 :::1 Co ... lT1007M, lT1037M JI I -50 -25 0 iii l Tl 007 AM, l Tl 037 AIM 0 .."' I 75 100 125 150 - ,...; INPUT CURRENT c I c ... 1\ ~IDEVICEI ..L...-- I I ~ -10 -DEVICE WITH NEGATIVE INPUT CURrENT , I -15 VCC± = ±15 V TA = 25°C -20 15 -15 -10 -5 10 o 5 T A - Free-Air Temperature- °C Vlc-Common-Mode Input Voltage Figure 6 Figure 5 COMMON-MODE INPUT VOLTAGE RANGE LIMITS vs FREE-AIR TEMPERATURE PEAK OUTPUT VOLTAGE SWING vs LOAD RESISTANCE 15 I I I VCC+ - 3 V to 20 V_ POSITIVE LIMIT > II I 12 '"c 'i ..'".. ~V SWING~ V POSITIVE r- en 9 )V .t:: 0 > ... :::1 So :::1 ;; 6 0 VCC - -3 V to -20 V 0 > NEGATIVE LIMIT VCC-50 -25 I ~ 3 1/ // o 0 25 50 75 100 125 NEGATIVE SWING 100 TA-Free-Air Temperature- °C 300 VCC±=±15V_ TA = 25°C I I I 1 k 3 k 10 k Rl-load Resistance-O Figure 7 Figure 8 tData at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices, TEXAS -1!1 INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-77 LT1 007, LT1 001 A, 1T1 03l,LT1,031A LOW·NOISE, HIGH·SPEED, PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS PEAK-TO-PEAK OUTPUT VOLTAGE SWING vs FREQUENCY >r 28 :t (I) 1:11 .I .. i: 24 .S! 180 ,J 160 VCC± - ±15V_ RL-2kO fA - 25°C I 110 20 :::I Q. :::I 16 1\ > i 120 LT1037 12 ~ :. 1is _1 LI 8 III I_U I 4 f- VCC± - 25°C ii: ~ "r--. ,AI illirCI II A. 1k 10 k I Q > ~ 100 k ~~ ~ "~~ 20 0 ~ 0 ~~ ~ r\. 1:11 III "" ::""00. :::""00. 140 III CD CJl .... vii FREQUENCY 'tI CJl .S DIFFERENTIAL VOLTAGE AMPLIFICATION I ' " 1/1 10 ! 110· .,8 40 III If 140° .... r-. ~ III . III il- 160· ~ , I 170· 180· 190° 10 100 1/1 !E 120· 1i 150· ~ 1\ 1111 ~ & !0 > :i 30 130· ~ 11 " \ 20 AVO" i ~I ~ AV - 5 j 150· 'T 170· ....... 180· ~ o 0.1 10 f-Frequency-IIIIHz Figure 11 Figure 12 ~i;a TEXAS 'V INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 III iI- Q > C i 140° 160· 10 f-FrequencY-IIIIHz 2-78 90· VCC:!: - :!:1 5V 100· CL - 100 pF ~A - 25·C 110· ~ c 120· 130° 1111 0 f-VCC:!: - :!:15 V CL - 100 pF I f-TA - 25°C I I I I II III -10 0.1 ~ ...I III u 20 AV~ 50 100· 190· 100 LT1007. LT1007A. LT1037. LT1037A LOW·NOISE. HIGH·SPEED. PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t DIFFERENTIAL VOLTAGE AMPLIFICATION vs LOAD RESISTANCE DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE CD 25 "0 I c .g Vcc I. ~1~ TA = 25°C J "..., co 20 V :eQ." E c:( Q) 15 '" !! o m 10~--+---~--~---+~~~--~~ .~ is Q) Vcc - ±15V Vo - ±10 V Vo - ±8 V for TA ;", 100°C Rl - 600 {) 5 I c > c:( I ::: is I o -50 -25 25 50 5 c o~--~--~--~--~--~--~--~ 100 75 ~ 125 o V V / 0.4 0.1 TA-Free-Air Temperature-oC Figure 14 DIFFERENTIAL VOLTAGE AMPLIFICATION vs SUPPLY VOLTAGE L CD "0 I c .g Q. E 20 / 15 c:( ~c 2!Q) 10 ) ::: is I c > c:( 5 o > I co !E" DIFFERENTIAL INPUT VOLTAGE vs OUTPUT VOLTAGE 4 I Rl - 2 k{) TA = 25°C I 3 Q) V !!'" .. 0 > I r-Ycc ± = ± 15 V TA - 25°C 2 :> // Q. Rl - 600 {) - .5 Rl - 600 {) !c 2! '/ Q) ~ 0 I C " o "> -1 - / ~ l--/ -2 ±5 ±10 10 4 Rl-load Resistance-k{) Figure 13 25 II 10 2! 2! Q) ::: > ] c ..- ±15 ±20 ±25 -15 -10 -5 / /\ RL - 2 k{) o 5 10 15 Yo-Output Voltage-V Vcc± -Supply Voltage-V Figure 15 Figure 16 tData at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-79 LT1007, LT1007A, LT1037, LT1037A LOW·NOISE, HIGH·SPEED, PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t SUPPLY VOLTAGE REJECTION RATIO vs FREQUENCY COMMON-MODE REJECTION RATIO vs FREQUENCY !XI 160 140 Vc C = ± 15 V Vc M = ± 10 V TA = 25°C "1:1 ""'=f:; I o '.;:l &! 120 .~ U .g .. ~ 120 ~ C 80 ~ NEGATIVE '~ SUPPLY .. -a ~ 80 ~ :2: 100 ;F LT1037 o o E E o K' ,2 G> "1:1 ~ I 140 ~ G> ;F100 a: a: :2: "1:1 ~~ c:: TA 1= 251oC !XI '~ > 60 LT 1007 "\ '\ >- Q. I\. 60 UI I r\"\"\ U POSITIVE SUPPLY ~ 40 0'\ ~ 20 -0 "- ~ ~ 40 103 f-Frequency-Hz f-Frequency-Hz Figure 17 I: .~ 5l LT1037 SLEW RATE. PHASE MARGIN AND GAIN BANDWIDTH PRODUCT vs FREE-AIR TEMPERATURE r--- :E fI LT1007 SLEW RATE. PHASE MARGIN AND GAIN BANDWIDTH PRODUCT vs FREE-AIR TEMPERATURE 70° to 60° E -e- 500 III ~ 3 I ~ "" - 2 m ... 9 ........... ........... - -- (f - 100 kHz) -..!B~ - 8 to !XI Vcc ~ ±15V CL - 100 pF 'I 1 1 -50 -25 o 25 50 75 100 125 '" 11. I E 50 > "1:1 c:: '(ij 60 III 'i "1:1 0......... .. b ~ ~ I 20 ~ r:r: .!! 15 til I r:r: til - -- 10 -50 -25 T A - Free-Air Temperature- °c o 70 m r--- ~ ~ ~ ~5V CL - 100 pF .s: -e- c:: 7 :e.,'" ... .c:: 0 I r:r: U :l "1:1 0 ct: UI UI V~C I: .~ _SR ~ r:r: Figure 18 E a. .c:: (f - 100 kHz)_ ............ r--..... GBW ---- 25 50 75 100 !XI 50 c:: 125 t Data at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices. ~ 2-80 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 .. C I-- Figure 20 TEXAS INSTRUMENTS ~ "1:1 f-- ~ SR 60 T A - Free-Air Temperature- °c Figure 19 .g '(ij Cl LT1007, LT1007A, LT1037, LT1037A LOW-NOISE, HIGH-SPEED, PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t EQUIVALENT INPUT NOISE VOLTAGE vs FREE-AIR TEMPERATURE ~:; c: I 5 VCC± - 'iii .s; 4 ---- !!! '0 5: ·S f - 10 Hz __ 3 ~ 2 ....::l Co .5 f = 0.01 Hz to 1 Hz ±15 V c: o CD CI > EQUIVALENT INPUT NOISE VOLTAGE OVER A 100-SECOND TIME PERIOD ~ 2 ....c: CD .-- '5 :; ,.......- ~ c: o ('oj f - 1 kHz_ ~ .= o CD III 2 I c: > o -50 -25 o 25 50 75 100 o 125 20 Figure 21 10 :; ....::l VCC+-+15V TA = 25°C VCC - ±15V TA - 25°C c: I 2 >::I. 30 10 I "'" CD CI !!! '0 > CD III .5 ....c: .. > I' ·S 2 Co ..!! > ·S C" w I c: 100 BROADBAND NOISE VOLTAGE 0.1 Hz TO INDICATED FREQUENCY ~ 100 > 80 60 Figure 22 EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY '0 40 t-Time-s TA-Free-Air Temperature- °C 5: ·S I ·S C" CD CI r If > w !!! 1 1,.'11~T' IJi I ~l ,.Il .i ,It J. CD Ol ·s> I c: .II I iii > iii ~', .. ,lJ Wfff ~IT ~~ ~ 3 .... "- :!! 0.1 II: I c: 1- r-, TI lllirT Ii IIIIT 1 0.1 I.;'~ I./l MAXIMUM 10 > TYPICAL I' 1111111 100 1000 0.01 0.1 f-Frequency-Hz 10 100 B-Bandwidth-kHz Figure 23 Figure 24 tData at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-81 LT1007, LT1007A, LT1037, LT1037A LOW-NOISE, HIGH-SPEED, PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t EQUIVALENT INPUT NOISE VOLTAGE EQUIVALENT INPUT NOISE CURRENT vs vs SUPPLY VOLTAGE FREQUENCY 5 10 TA - 25°C ~ :>c ~ 4 I VCC+ = +15 V ~ Co I ?: ·iii ?: ~ 3 ....... ·iii c CD c f = 10 Hz- 3 .. CD ·0 ,MAXIMUM :; U . 2 l! ~ ~ f = 1 kHz CD g) II 'E I Z c CD "0 > ·0 Z III III :IE 1/f CORNER :IE II: o 0.1 o ±10 ±5 ±15 ±20 ±25 10 Figure 26 .TOTAL NOISE VOLTAGE SHORT-CIRCUIT OUTPUT CURRENT vs vs SOURCE RESISTANCE ELAPSED TIME 50 1000 VCC = +15V TA = 25°C I- R I-~ ~ 100 R I- RS = 2R 40 111111 ~ J 1111 'E a~ AT 1 kHz CD g) g 30 ~ r--- 1'-- TA - l- -55°C .1 I l! .1 TA = 25°C 20 TA 10 = 125°C .1:: .. AT 10 Hz CD V ~ ...o!!t::' 10 0 o l- TA'= 125°C -20 I .9 -30 RESISTOR NOISE > / """ 0.1 -50 10 100 Rs-Source Resistance-kO L r-- V -40 O~L~ IIII ±15 V J 1:: ~ III I c VCC - U -10 ~ ·0 z 10 k f-Frequency-Hz Figure 25 ;;; 1k 100. VCC± -Supply Voltage-V I -TYPICAL 120 Hz I .E > :>c I~ II: I c ~ r- I' 0.3 V" --- - I TA = 25°C TA o = - -55°C 1 1 2 3 Time from Output Short to Ground-minutes Figure 27 Figure 28 tData at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices. "I TEXAS INSTRUMENTS 2-82 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 LT1007, LT1007A, LT1037, LT1037A LOW·NOISE, HIGH·SPEED, PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t SUPPLY CURRENT vs SUPPLY VOLTAGE CLOSED·LOOP OUTPUT IMPEDANCE vs FREQUENCY 100 ,-----,,-----,,----,----,-----, 4 « E 10 1---II---II-7"'----:ioo'---r-----i LT1007 c: 3 TA - 125°C- .!.c TA - 25°C- ~ ::I TA - -55°C ..g .. I ~ a. ::I ..& I o J; N CJ >a. 2 Q. .E ::I I/) ::I 0.1~'--~~--r---~~­ I CJ o 0.01 J.I<---r---V7oL---tVCC ± - ± 15 V 10 - 1 rnA o TA - 25°C 0.001 o ±5 ±10 ±20 ±15 ' - - _ - - A L L . _ _' - - _ _' - - _ _- ' - - _ - - ' 10 1 k 100 VCC ± -Supply Voltage- V Figure 29 > LT1037 LT1037 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 60 VCC± - ±15 V 15 _AV - 5 TA - 25°C 3. 20 ~ { ........ 10 f 5 I .. ::I o :; o -5 / / II "0 > 0 a. a. ~ > .. g :; -20 I I ~-40 -60 -80 =1 o 1M VOLT AGE·FOLLOWER SMALL·SIGNAL PULSE RESPONSE 20 40 100 k Figure 30 80 E I 10 k f-Frequency-Hz VCC± - ±15 V AV - 5 CL - 15 pF TA - 25°C \ ~ ,,- - o > \ \ \ 1\ \.- I -10 I -15 -20 200 400 600 800 1000 1200 1400 1600 o 2 3 4 5 6 7 8 t-Tirne-!,s t-Tirne-ns Figure 31 Figure 32 t Data at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices. ~ TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-83 LT1007, LT1007A, LT1037, LT1037A LOW-NOISE, HIGH-SPEED, PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS LT1007 LT1007 VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 80 8 Vcc l± - 1±15V 60 AV m 1 CL = 15 pF "40 TA = 25°C > E 6 > I I GO o ~ o > ... 8 -20 d '0 > ; :::J V 0 -2 / I I o > -4 -40 ~ -60 -80 \ / 2 a- Co \ I 4 g) 20 g) ! I GO :! ~ I VCC±=±15V AV = -1 TA = 25°C / \ _II \ ~ -6 o -8 0.5 1.5 2 2.5 3 3.5 4 o 2 t-Time-ps 4 6 8 10 12 14 16 t-Time-ps Figure 34 Figure 33 TYPICAL APPLICATION DATA general The LT1 007- and LT1 037~series devices may be inserted directly into OP-07, OP-27, OP-37, and 5534 sockets with or without removal of external-compensation or nulling components. In addition, the LT1 007 and LT1 037 may be fitted to pA 741 sockets by removing or modifying external nulling components. offset voltage adjustment The input offset voltage and its change with temperature of the LT1 007 and LT1 037 are permanently trimmed to a low level at wafer testing. However, if further adjustment of VIO is necessary, the use of a 10-kO nulling potentiometer, as shown in Figure 35, will not degrade drift with temperature. Trimming to a value other than zero creates a drift of VIO/300 ",V/oC (e.g., if VIO is adjusted to 300 ",V, the change in temperature coefficient will be 1 ",V/OC). The adjustment range with a 10-kO potentiometer is approximately ± 2.5 mV. If a smaller adjustment range is needed, the sensitivity and resolution of the nulling can be improved by using a smaller potentiometer in conjunction with fixed resistors. The example in Figure 36 has an approximate null range of ± 200 ",V. offset voltage and drift Unless proper care is exercised, thermocouple effects at the contacts to the input terminals, caused by temperature gradients across dissimilar metals, can exceed the inherent temperature coefficient of the amplifier. Air currents should be minimized, package leads should be short, input leads should be close together, and input leads should be at the same temperature. ~ TEXAS INSTRUMENTS 2-.84 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 LT1007, LT1007A, LT1037, LT1037A LOW·NOISE, HIGH·SPEED, PRECISION OPERATIONAL AMPLIFIERS TYPICAL APPLICATION OATA 1 kO 10 kO vCC+ IN- INOUTPUT IN+ vcc- vccFigure 36. Improved Sensitivity Adjustment Figure 35. Standard Adjustment The circuit shown in Figure 37 can be used to measure offset voltage. In addition, with the supply voltages increased to ± 20 V, it can be used as the burn-in configuration for the LT1 007 and LT1 037. ° When RF :s; 100 and the input is driven with a fast large-signal pulse (> 1 V), the output waveform will be as shown in Figure 38. During the fast-feedthrough-like portion of the output, the input protection diodes effectively short the output to the input and a current, limited only by the output short-circuit protection, is drawn by the signal generator. When RF is 2: 5000, the output is capable of handling the current requirements (lL :s; 20 mA at 10 V), the amplifier stays in its active mode, and a smooth transition occurs. When RF is > 2 kO, a pole will be created with RF and the amplifier's input capacitance, creating additional phase shift and reducing the phase margin. A small capacitor (20 pF to 50 pF) in parallel with RF will eliminate this problem. 50 kOt 15 V 100 {) vo 50 kO t Resistors must have low thermoelectric potential Figure 37. Test Circuit for Offset Voltage and Offset Voltage Drift With Temperature Figure 38. Pulse Operation TEXAS ~ INSTRUMENTS POST OFFICI; BOX 655303 • DALLAS, TEXAS 75265 2-85 LT1007. LT1007A. LT1037. LT1037A LOW·NOISE. HIGH·SPEED. PRECISION OPERATIONAL AIVIPLIFIERS TYPICAL APPLICATION OATA noise testing Figure 39 shows a test circuit for O. 1-Hz to 10.-Hz peak-to-peak noise measurement of the LT1 007 and LT1 037. The frequency response of this noise tester indicates that the 0.1 Hz corner is defined by only one zero. Because the time limit acts as an additional zero to eliminate noise contributions from the frequency band below 0.1 Hz, the test time to measure O. 1-Hz to 10-Hz noise should not exceed 10 seconds. 0.1 Hz to 10Hz p-p NOISE TESTER FREQUENCY RESPONSE 100 . 90 80 I r\\, I ~' ~ 70 I c , 'iii Cl 60 50 40 30 0.01 0.1 10 100 Frequency - Hz 0.11'F 100 kll 221=I'F . ~~OPE RIN - 1 Mil 110 kll 24.3 kll * Device under test NOTE: All capacitor values are for non-polarized capacitors only. Figure 39. O.1-Hz to 10-Hz Noise Test Circuit TEXAS ~ INSTRUMENTS 2--86 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 LT1007, LT1007A, LT1037, LT1037A LOW-NOISE, HIGH-SPEED, PRECISION OPERATIONAL AMPLIFIERS TYPICAL APPLICATION OAT A Special test precautions are required to measure the typical 60-nV peak-to-peak noise performance of the LT1007 and LT1037: 1. The device should be warmed up for at least five minutes. As the operational amplifier warms up, the offset voltage typically changes 3 /LV, due to the chip temperature increasing 10°C to 20°C from the moment the power supplies are turned on. In the 10-second measurement interval, these temperature-induced effects can easily exceed tens of nanovolts. 2. The device must be well shielded from air currents to eliminate thermoelectric effects. In excess of a few nanovolts, thermoelectric effects would invalidate the measurements. 3. Sudden motion in the vicinity of the device can produce a feedthrough effect that increases observed noise. When measuring noise on a large number of units, a noise-voltage density test is recommended. A 10-Hz noise-voltage density measurement will correlate well with a O. 1-Hz to 10-Hz peak-to-peak noise reading since both results are determined by the white noise and the location of the 1If corner frequency. Figure 40 shows a circuit that measures noise current and presents the formula for calculating noise current. 10 kll in .. [vn 2 - (130 nVl 2 j¥" 1 Mn x 100 Figure 40. Noise Test Circuit The LT1 007 and LT1 037 achieve low noise, in part, by operating the input stage at 120 /LA versus the typical 10 /LA for most other operational amplifiers. Voltage noise is directly proportional to the square root of the stage current; therefore, the LT1 007 and LT1 037 noise current is relatively high. At low frequencies, the low 1If current-noise corner frequency ( "" 120 Hz) minimizes noise current to some extent. In most practical applications, however, noise current will not limit system performance; this is illustrated in Figure 27, where: total noise = [(noise voltage)2 (noise current x RS)2 + (resistor noise)2] y, Three regions can be identified as a function of source resistance: RS:5 RS = RS = (iii) RS > RS > (i) (ii) 400 G 400 G to 50 kG at 1 kHz 400 G to 8 kG at 10Hz 50 kG at 1 kHz 8 kG at 10Hz Voltage noise dominates in region (i) Resistor noise dominates in region (ii) Current noise dominates in region (iii) The LT1 007 and LT1 037 should not be used in region (iii) where total system noise is at least six times higher than the noise voltage of the operational amplifier (i.e., the low-voltage noise specification is completely wasted). TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-87 LT1007, LT1007A, LT1037, LT1037A LOW·NOISE, HIGH·SPEED, PRECISION OPERATIONAL AMPLIFIERS TYPICAL APPLICATIONS The sine wave generator application shown below. utilizes the low-noise and low-distortion characteristics of the LT1 037. 430 Il "">,S'--e...-OUTPUT C #327 LAMP 1 f--2 ..RC R - 1591.51l ±0.1% C - 0.1 "F ±0.1% TOTAL HARMONIC DISTORTION :s 0.0025% NOISE :s 0.001% AMPLITUDE - ± 8 v OUTPUT FREQUENCY - 1.000 kHz FOR VALUES GIVEN ± 0.4% Figure 41. Ultra-Pure 1-kHz Sine-Wave Generator EQUIVALENT INPUT NOISE VOLTAGE OVER A 10-SECOND PERIOD f ~ 340 kll 1% 0.1 Hz to 10 Hz 15 kll 5% 20 kll TRIM :> Ci :>c rS:"--...OUTPUT o !::!. III 1/1 '0 Z ".. U~I IJ IV'f\YYI\ III Cl "~Mlj . .UJjI'lA~ J\111 ~ ~~"! ~" ~r r', to .l:: o > o 2 4 6 t-Time-s 8 10 IN+ The high gain and wide bandwidth of the LT1 037 and (LTl 007) is useful in low-frequency high-closed-Ioop-gain amplifier applications. I/. typical precision Op Amp may have an open loop gain of one million with 500 kHz bandwidth. As the gain error plot shows, this device is capable of 0.1 % amplifying accuracy up to 0.3 Hz only. Even instrumentation range signals can vary at a faster rate. The LT1 037's "gain precision-bandwidth product" is 200 times higher, as shown. Figure 42 Figure 43. Gain 1000 Amplifier With 0.01 % Accuracy. DC to 5 Hz TEXAS • 2-88 -15 V RNSOC FILM RESISTORS INSTRUMENTS POST OFFICE BOX 655303 '" DALLAS, TEXAS 75265 LT1007, LT1007A, LT1037, LT1037A LOW·NOISE, HIGH·SPEED, PRECISION OPERATIONAL AMPLIFIERS TYPICAL APPLICATIONS GAIN ERROR vs FREQUENCY CLOSED LOOP GAIN = 1000 f= r-r-- PRECISION r-- OPAMP V' TYPICAL LT10 ;I. 0.1 r-----tt-15 V 3650 1% 07V 15 kO 1% IN+ ~ E W c 'm / Cl 0.01 r-- GAIN ERROR - >--....~OUTPUT / LT1037 Positive feedback to one of the nulling terminals creates approximately 5 !'V of hysteresis. Output can sink 16 mAo CLOSED LOOP GAIN OPEN LOOP GAIN 0.001 0.1 III 10 100 Input offset voltage is typically changed less than 5 !'V due to the feedback. f-Frequency-Hz Figure 44 340 k01% 20 kO 5% Figure 45. Microvolt Comparator With Hysteresis 10 kO TRIM 0.01 !,F 100 kO 15 V OUTPUT ± 10 v 6 OUTPUT RL 3000 IN+ The addition of the LT1 007 doubles the amplifier's output drive to ± 33 mAo Gain accuracy is 0.02%, slightly degraded compared to above because of self heating of the LT1 037 under load. ALL RESISTORS METAL FILM MAG PHONO INPUT Figure 46. Precision Amplifier Drives 300·0 Load to ± 10 V Figure 47. Phono Preamplifier TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-89 LT1DD7, LT1DD7A, LT1D37, LT1D37A LOW·NOISE, HIGH·SPEED, PRECISION OPERATIONAL AMPLIFIERS TYPICAL APPLICATIONS 4.99 kO 0.01 316 kO OUTPUT TAPE HEAD INPUT ALL RESISTORS METAL FILM Figure 48. Tape Head Amplifier 15 V~'--4I------. 1 kO CHOPPED DETECTOR OUTPUT 2670* .J""L.f""LI'"'t 15 V + 100l'F I --+1 6 392 (J* 392 k(J* -15 V IRRADIA~I 1 OPTICAL CHOPPER PHOTO-CONDUCTIVE INFRA-RED DETECTOR HgCdTe TYPE INFRA-RED ASSOCIATES. INC SYNCHRONOUS 392 (J* * - 1 % metal film Figure 49. Infra-Red Detector Preamplifier ~ 2-90 OUTPUT TO DEMODULATOR TEXAS INSTRUMENlS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 LT1007, LT1007A, LT1037, LT1037A LOW·NOISE, HIGH·SPEED, PRECISION OPERATIONAL AMPLIFIERS TYPICAL APPLICATIONS ,----~t-7.5 350 Il BRIDGE--+- V REFERENCE OUT -, I r I 15 V L ...J 7.5 V o TO 10 V OUTPUT 6 30.1 kilt 10 kll ZERO TRIM 1 p.F 6 tRN60C FILM RESISTORS GAIN TRIM 30.1 kilt 499 Ilt 1..-..---11....---.. The LT1 007 is capable of providing excitation current directly to bias the 350-1l bridge at 5 V. With only 5 V across the bridge (as opposed to the usual 10 VI total power dissipation and bridge warmup drift is reduced. The bridge output signal is halved, but the LT1 007 can amplify the reduced signal accurately. Figure 50. Strain Gauge Signal Conditioner With Bridge Excitation TEXAS . " INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-91 2-92 LT1013, LT1013A, LT1013D, LT1013Y DUAL PRECISION OPERATIONAL AMPLIFIERS 03237, MAY 1988- REVISED AUGUST 1991 • • • • • Single-Supply Operation: Input V~ltage Range Extends to Ground Output Swings to Ground While Sinking Current 1 I N + [ ] 8 11NVcc- 2 7 10UT Input Offset Voltage ... 150 J.lV Max at 25°C for L T1 013A 21N + 21N- (TOP VIEW) 3 4 Offset Voltage Temperature Coefficient 2.5 J.lV/oC Max for LT1013A ::> () () 0 () ()() z~z>z High Gain ... 1.5 V/J.lV Min (RL = 2 kQ) , 0.8 V/J.lV Min (RL = 600 kQ) for LT1013A Low Supply Current ... 0.5 IT!A Max at TA = 25°C for LT1013A • Low Peak-to-Peak Noise Voltage 0.55 J.lV Typ Vec + 20UT 6 5 FK PACKAGE (TOP VIEW) I+1 Input Offset Current ... 0.8 nA Max at 25°C for LT1013A • • o PACKAGE '" NC 1 INNC 1 IN + NC '3'2 1 2019 J4 5 18 ~ 17 6 16 7 8 15 14 NC 20UT NC 21NNC ~,10 11 1213 Low Current Noise •.. 0.07 pANHz Typ () I() +() z ()z z z description () > The LT1013 is a dual precision operational amplifier featuring low offset voltage temperature coefficient, high gain, low supply current, and low noise, N NC - No internal connection JG OR P PACKAGE (TOP VIEW) The LT1 013 can be operated from a single 5-V power supply; the common-mode input voltage range includes ground, and the output can also swing to within a few millivolts of ground, Crossover distortion is eliminated, The LT1 013 can be operated with both dual ±15-V and single 5-V supplies, 1 OUT [ 1 8 VCC + 11N 2 7 20UT 11N + 3 6 21NVCC- 4 5 21N + The LT1013C and LT1 013AC, and LT1 0130 are characterized for operation from O°C to 70°C, The LT10131 and LT1 013AI, and LT101301 are characterized for operation from - 40°C to 105°C, The LT1 013M and LT1013AM, and LT10130M are characterized for operation over the full military temperature range of -55°C to 125°C, AVAILABLE OPTIONS PACKAGE TA VIOmax AT 25°C SMALL OUTLINE CHIP CARRIER CERAMIC DIP (D) (FK) (JG) (P) ODC 150 J.lV - - LT1013ACP to 70DC 300J.lV - SOOIlV LT1013DD -.WC 150 IlV - - to 300llV - 105 DC -55 DC SOOIlV LT1013DID 150llV to 125DC 300llV SOOIlV - LT1013AMFK LT1013MFK LT1013DMD - PI-ASTIC DIP - LT1013CP - LT1013AIP - LT1013DIP - LT1013AMP LT1013MJG LT1013DMJG CHIP FORM (V) LT1013DP LT10131P LT1013Y LT1013MP LT1013DMP The 0 package is available taped and reeled. Add the suffix R to the device type (e.g., LT1013DDR). ~~~:~:~2n~o:1: .~~:rfTc~\~:~II:.~~~=~r~~:~ 11~~I!CI~~~r~~:!~ standard warranty. Production proclliing dOli not nlcillarily Include telting of all parameter•. TEXAS ~ INsrRUMENTS POST OFFICE BOX 655303· DALLAS, TEXAS 75265 Copyright © 1991, Texas Instruments Incorporated 2-93 ro J, ... I schematic (each amplifier) I • • • • Vcc+ • • • • o~ c:-'>C .....-'W -C ::xl~ • m~ ~-'- C en --'- ow 'Z.~ ~~ m-'::xlC ~~ -0 o~ S;~ ..... -'- -u 0 >~ U> -i SW 0- :BZ ~~ =~r ~~ S:C 21 pF -c-< ..... 2.5pF -n m ::xl en 4000 IN- ~rrI ~Z ~.~~I 4000 IN+ (J) -.J Rl s: 5kn~5kn 75pF VCC- • •• Component values are nominal. 6000 42kn 2kn 300 • • •• • • • •• ••• •• .' lT1013, lT1013A, lT1013D, lT1013Y DUAL PRECISION OPERATIONAL AMPLIFIERS LT1 013Y chip information These chips, properly assembled, display characteristics similar to the LT1 013 (see electrical table). Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform. BONDING PAD ASSIGNMENTS 11N + 11N - VccCHIP THICKNESS: 15 TYPICAL BONDING PADS: 4 X 4 MINIMUM TJ max =150°C TOLERANCES ARE ± 10% ALL DIMENSIONS ARE IN MILS PIN (4) INTERNALLY CONNECTEDTO BACKSIDEOFCHIP absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, VCC+ (see Note 1) .................................................... 22 V Supply voltage, VCC- (see Note 1) ................................................... -22 V Differential input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ±30 V Input voltage range, VI (any input, see Note 1) .............................. VCC- - 5 V to VCC+ Duration of short-circuit current at (or below) 25°C (see Note 3) .......................... unlimited Operating free-air temperature range, TA: LT1013C, LT1013AC, LT1013D ............. -O°C to 70°C LT10131, LT1013AI, LT1013DI ............ -40°C.to 105°C LT1013M, LT1013AM, LT1013DM .......... -55°C to 125°C Storage temperature range .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package .............. 260°C Case temperature for 60 seconds: FK package .......................................... 260°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: JG package. . . . . . . . . . . . . . . . .. 300°C NOTES: 1. Ali voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC-' 2. Differential voltages are at the noninverting input with respect to the inverting input. 3. The output may be shorted to either supply. TEXAS ~ INSfRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-95 ~ I electrical characteristics at specified free-air temperature, VCC± =± 15 V, VIC =0 (unless otherwise noted) Ol TEST CONDITIONS PARAMETER Via Input offset voltage "Via input offset voltage Rs = son offset voltage ~ 0_ liB Input bias current VICR :HZ ~~ ~1"i'1 ~Z~ ~uJ~ 1:; m 0.4 25°C 0.5 25°C 0.2 1.5 -15 2.8 -30 25°C Full range 25°C Common-mode input voltage range AVO Maximum peak output voltage swing Large-signal differential voltage amplification CMRR Common-mode rejection ratio Supply-voltage rejection kSVR ratio (!NCCI .1.VIO) Channel separation 'Id Differential input resistance Common-mode input 'Ic ICC resistance Supply current per amplifier tFull range is O°C to 70°C. *AII typical values are at TA = 25°C. MIN 300 Full range TYP* 40 LT1013DC MAX MIN 150 TYP* 200 240 2.5 0.3 MAX 800 1000 2 0.7 0.4 RL = 2kn Va = ±10 V, 25°C Full range RL 5 RL -20 -15 -25 -15 -15.3 -15 -15.3 -15 -15.3 to to to to to to 13.5 13.8 13.5 13.8 13.5 13.8 -15 UNIT ILV ILVl oC "tIW :::xJ.P m -n!:j ..... ~= 0 ..... to to to 13 13 +12.5 ±14 ±13 ±14 ±12.5 +12 ~!:j nA ==c; -Ow ..... Zc 2.5 0.5 2 = 2kn 1.5 1 8 1.2 7 100 98 117 0.7 97 V 114 103 120 VlILV 97 94 114 25°C Full range 100 117 25°C 120 137 123 140 120 137 dB 25°C 70 300 100 400 70 300 Mn 4 Gn Full range 97 25°C 4 25°C 0.35 Full range 100 0.7 117 dB 97 5 0.55 dB 94 101 0.35 0.5 0.55 >n r> :s "tI m ±14 +12 0.8 = 2kn nA !:: 7 25°C O~ "tI~ ." 0.2 0.7 ILVlmo V -15 13 ±12.5 -30 -38 1.2 = ±2Vto±18V = ±10V, -12 1.5 2.8 0.5 = -15 V to 13.5 V = -14.9 V to. 13 V Va 0.2 1.5 25°C Full range VIC VCC± 0.8 25°C = ±10V, VIC 0.5 = 600n Va RL 0.15 -38 -15 Full range YOM LT1013AC MAX 400 Full range ~~ ~~C::C~~ TYP* 60 ZW Long-term drift of input Input offset current LT1013C MIN 25°C Full range Temperature coefficient of 110 TAt C!:j c: ..... >= r- ..... 0.35 0.55 0.6 rnA :::xJ CI) electrical characteristics at specified free-air temperature, VCC+ TEST CONDITIONS PARAMETER VIO 110 liB Input offset IIOltage ° = 5 V, VCC- = 0, Va = 1.4 V, VIC = (unless otherwise noted) L T1013C TAt MIN 25°C RS = 500 90 Full range Input offset current Input bias current 25°C Full range 0.3 25°C -18 Full range Outputlow, No load 0- Output low, ~z ~~ ~~c:;;Od~ Maximum peak output VOM voltage swing ~Z .... ~Ci1~ > ' '"~ 8l Output 10w,Isink = 1 rnA Output high, No load RL = 6000toGND A Large-signal differential VD voltage amplification ICC Vo = 5mVto4V, RL =5000 Supply current per amplifier 450 MIN 250 TYP MAX 250 350 0.2 2 -15 0.3 2 -18 6 -50 -35 -55 to to 3.5 3.83.8 3.5 -0.3 3.8 950 1200 1.3 3.5 -50 -0.3 LT1013DC MAX -90 0 0.3 3.5 3.8 to 0 0 0 to to to 3 3 15 25 15 25 25°C Full range 5 10 5 10 5 10 13 220 4.4 25°C 3.4 4 Full range 3.2 13 350 220 4 3.4 1 25°C 0.32 13 350 220 4.4 4 4 3.4 3.3 25°C 0.55 nA mV 350 4.4 4 V 3.2 1 0.5 nA 3 25 4 fLV V 15 25°C UNIT to 25°C Full range --_.- 60 0 to 25°C Output high, ~~ ~1'r'J RL = 6000toGND TYP -90 Full range 25°C -l MIN 6 Common-mode input ICR voltage range g MAX 570 0 V TYP LT1013AC 0.31 VlfLV 1 0.45 0.32 0.5 0.5 0.55 = ± 15 V, VIC = 0, TA = rnA Slew rate Vn Equivalent input noise voltage VN(PPI Peak-to-peak equivalent input noise voltage In Equivalent input noise current f f f f -C m Q en O!:j Z ..... og 25°C TEST CONDITIONS PARAMETER SR > r- ::x:J tFuil range is -O°C to 70°C. operating characteristics, VCC± e c::: MIN 0.2 TVP 0.4 = 10 Hz 24 = 1 kHz = 0.1 Hz to 10Hz 22 0.55 = 10 Hz 0.07 MAX UNIT V1fLS nVIv'HZ fLV pNv'HZ -Cw mC') ::x:J~ - ..... :!:;!:j 0 0 Z ..... r-> >w >C') S~ -C!:j r..... -,0 "T1 ..... b "" -w me ~C') ~ electrical characteristics at specified free-air temperature, vcc± TEST CONDITIONS PARAMETER VIO Input offset voltage aVIO input offset voltage long-term drift 01 input RS = son offset voltage 0_ ~ Full range 0.4 25°C 0.5 Input offset current 25°C Full range 0.2 liB Input bias current 25°C Full range -15 VICR ~~d ~~Gl ~z ~@4P In TYP* 60 110 :HZ i~~ LT10131 MIN 25°C Full range Temperature coefficient 01 ~ TAt =±15 V, VIC =0 (unless otherwise noted) 25°C Common-mode input voltage range Full range VOM AVD Maximum peak output voltage swing large-signal differential voltage amplification CMRR Common-mode rejection ratio Supply-voltage rejection kSVR ratio (tNCC I Ll.VIO) Channel separation Differential input resistance I'jd Common-mode input I'jc resistance ICC ---- - SuppLy current per amplifier ----- tFull range is - 40°C to 105°C. *AII typical values are at TA = 25°C. 25°C Full range Rl = 2kn -15 to 13.5 -15 to 13 ±12.5 VIC = -15Vto13.5V VIC = -14.9 V to 13 V 25°C Full range VCC±= ±2Vto±18V 25°C Full range ±12 0.5 1.2 0.7 97 94 100 97 25°C 25°C 120 70 Vo = ±10V, Rl = soon Vo = ±10V, Rl = 2kn Vo = ±10V, Rl = 2kn 25°C 25°C Full range MIN 2.5 LT1013DI TYP* 40 MAX 0.3 2 MIN 150 300 0.4 1.5 2.8 0.15 -30 -38 -12 -15.3 to 13.8 -15 to 13.5 -15 ±14 0.2 7 ±13 ±12.5 0.8 1.5 114 1 100 TYP* 200 MAX 0.7 5 0.8 1.5 0.2 1.5 -20 -25 -15 2.8 -30 -38 -15.3 -15 to 13.5 to 13.8 -15.3 to 13.8 to 13 +12.5 +14 +14 2.5 8 0.5 1.2 0.7 2 7 114 117 120 117 137 300 123 100 140 400 100 97 120 70 0.55 0.7 0.35 -(1)= ..... Ow I1V/mo 0:- nA :xJ ..... Z» ~!:j nA I V , V I ! V/I1V dB I dB I 137 dB I 300 Mn ! Gn I 4 0.5 0.55 11V1°C I 97 94 0.35 m!:j 52 ..... !i~ -w 00 Z- » :s:: "'D !:: 117 25°C "'D~ :xJ~ I1V I ±12 5 UNIT ~ -15 97 103 101 4 800 1000 0.5 to 13 25°C Full range LT1013AI MAX 300 550 O!:j c: ..... >= r- ..... 0.35 0.55 0.6 _~AI ." m :xJ (I) electrical characteristics at specffied free-air temperature, VCC+ TEST CONDITIONS PARAMETER V,O 110 Input offset IIOltage RS =5 V, VCC- =0, Vo =1.4 V, VIC =°(unless otherwise noted) LT10131 TAt MIN 25°C = SOO MAX 90 4SO Full range 0.3 -18 Full range Common-mode input leR vollage range Full range g --I 0_ :BZ frirn ~~~~ ':'3:; Maximum peak output ~f'1'1 ~2 ~W~ ....~ ~ 9SO 0.2 1200 1.3 0.3 3.5 -SO -15 0 -0.3 0 -0.3 to to to to 3.5 3.8 3.5 3.8 2 6 -35 -55 -18 -SO -90 0 0.3 3.5 3.8 0 0 0 to to to 3 3 15 25 Output low, 25°C 5 10 5 10 5 10 to GNO Full range = 1 rnA Vo RL 13 25°C 220 25°C = 600 0 to GNO = 5 mV to 4 V, = SOOO Supply current per amplifier 4 4.4 25°C 3.4 4 Full range 3.2 1 25°C 0.32 220 13 3SO 220 0.55 mV 3SO -' 4.4 4 4.4 3.4 4 3.4 4 V 1 V/IlV 3.2 1 0.5 nA 4 3.3 25°C Full range 13 350 nA 3 25 = 600 0 IlV V 15 RL UNIT to 25 RL ICC MAX 2SO 15 Output high, Large-signal differential AVO vollage amplification TYP 25°C Output high, No load §C 2SO MIN Output low, No load Output low, Isink YOM vollage swing 60 -90 25°C V MAX 6 25°C Input bias current LT1013D1 TYP 3SO 2 Full range liB MIN 570 25°C Input offset current LT1013AI TYP 0.31 0.45 0.32 0.5 0.5 0.55 TEST CONDITIONS SR Slew rate Vn Equivalent input noise voltage VN(PP) Peak-to-peak equivalent input noise voltage f f f In Equivalent input noise current f = 10 Hz = 1kHz = 0.1 Hz to 10 Hz = 10 Hz m rnA , S2 en o Z.O:;! = ± 15 V, VIC = 0, T A = 25°C PARAMETER ""tI :::c tFull range is-40°C to 105°C. operating characteristics, VCC± ' c c:: > r- MIN TYP 0.2 0.4 24 22 0.55 0.07 MAX UNIT ""tIc m...a. V/IlS :::cw nV/,jHz :::!.- IlV pAl,jHz >.:O~ Z...a. >~ r-W »:s:~""tI!:i !::...a. "TIC -...a. ~ mW :::cc cn_ l o o TEST CONDITIONS PARAMETER Via Input offset voltage aVIO input offset voltage Rs = 50n Temperature coefficient of Long-term drift of input '10 liB 0_ :HZ VICR gr!l ~~d~ 8:c ~~ VOM ~~~ 1$ .... ~ AVD 800 1000 ,N 52!:i cn ..... Full range 0.5 2.5" 0.4 2" 0.5 2.5" !lV/oC 0 ..... 1.5 Input bias current 25°C Full range -15 -30 25°C Common-mode input voltage range Channel separation Differential input resistance Common-mode input fic ICC resistance Supply current per amplifier W =3: 200 0.2 Large-signal differential -C 150 300 25°C Full range voltage amplification >e r..... UNIT 40 'nput offset current Maximum peak output LT1013DM MIN TYP* MAX 300 550 0.5 voltage swing LT1013AM MIN TYP* MAX 60 25°C CMRR Common-mode rejection ratio Supply-voltage rejection kSVR ratio (AVCC / AVIO) fjd LT1013M MIN TYP* MAX 25°C Full range Full range ~.rr1 ~z TAt m~ -e Zw offset voltage ~ CI!:i c: ..... electrical characteristics at specified free-air temperature, Vcc± = ± 15 v, VIC = 0 (unless otherwise noted) 25°C Full range RL = 2kn Va = ±10V, RL = 600n Va = ±10V, RL = 2kn VIC = -15 V to l3.5 V = -14.9 V to 13 V VIC VCC± Va = ±2Vto±18V = ±10V, RL = 2kn 25°C 25°C Full range 25°C Full range 25°C Full range 25°C 25°C 25°C 25°C Full range "On products compliant to MIL-STD-883, Class B, this parameter is not production tested. tFull range is -55°C to 125°C. tAli typical values are at TA = 25°C. 0.4 0.5 0.15 0.8 -12 -20 5 0.2 1.5 -15 -30 2.5 -45 5 -30 -45 -15 -15.3 -15 -15.3 -15 -15.3 to 13.5 -14.9 to 13 ±12.5 ±11.5 0.5 1.2 0.25 97 94 100 97 120 70 to to to to 13.5 13.8 to 13.5 -14.9 to 13 ±12.5 +11.5 0.5 1.2 0.25 97 94 100 97 120 70 13.8 -14.9 to 13 ±14 ±13 ±14 +12 2 0.8 2.5 7 1.5 8 0.5 100 117 117 97' 117 103 120 100 137 123 140 300 100 400 4 0.35 5 0.55 0.7 0.35 0.5 0.6 13.8 ±14 2 7 !lV/mo 0> -c3: nA =!:i nA 0 ..... ZW m~ >CI r-3: > V 3: V !:: ::!! m cn VI!lV 114 dB 117 dB dB 137 300 Mn 4 Gn 0.35 0.55 0.7 ~ ..... -e mA -C = electrical characteristics at specified free-air temperature, VCC+ TEST CONDITIONS PARAMETER VIO 110 liB Input offset voltage Rs = son RS = 50 n, VIC = 0.1 = 5 V, VCC- = 0, Vo = 1.4 V, VIC = °(unless otherwise noted) V Input offset current MIN ~f ~4r voltage swing ICC TYP MAX 4SO SO 250 250 9SO 2SO 900 800 2000 125°C 200 7SO 120 4SO 560 1200 25°C 0.3 2 0.2 1.3 0.3 2 -18 -50 -15 -35 -18 -50 S 10 25°C Full range -120 -120 -80 0 -0.3 10 -0.3 0 to to to to to to 3.5 3.8 3.5 3.8 3.5 3.8 0 0 0 to to to 3 3 25 15 25 15 25 Output low, 25°C 5 10 5 10 5 10 220 350 Full ran(Le 15 18 25°C 220 220 350 18 350 Output high, No load 25°C 4 4.4 4 4.4 4 4.4 Output high, 25°C 3.4 4 3.4 4 3.4 4 Full range 3.1 Large-signal differential Vo voltage amplification RL = sOOntoGND = 5mVt04V, = 500n Supply current per 1 25°C 0.32 Full range amplifier 3.2 25°C 0.S5 nA mV e c: V/j.1V 3.1 1 0.5 nA 3 15 = SOO.Q to GND Output low, Isink = 1 rnA j.1V V 25°C RL UNIT -0.3 Output low, No load RL AVD MIN 1500 Full range YOM LT1013DM MAX 90 voltage range Maximum peak output TYP 400 25°C ~ MIN 25°C Common-mode input -z MAX Full range 0 VICR TYP Full range Input bias current LT1013AM LT1013M TAt 0.31 ""'C :rJ 1 0.45 0.32 0.5 rnA 0.65 0.55 PARAMETER Slew rate Vn Equivalent input noise voltage VN(PP) Peak-to-peak equivalent input noise voltage In Equivalent input noise current -------- TEST CONDITIONS CI)!:i ""'C3': m~ = ± 15 V, VIC = 0, TA = 25°C SR m n O....a. ZC ....a. 0(1.) tFull range is -55°C to 125°C. operating characteristics, VCC± :z:,. ,- MIN TYP 0.2 0.4 f = 10 Hz 24 f = 1 kHz f = 0.1 Hz to 10Hz f = 10 Hz 22 MAX UNIT V/j.1s nV/...[Hz 0.55 j.1V 0.07 pN...[Hz ~!:i ~....a. -c 0....a. Z(l.) :z:,.:z:,. '-3': :z:,.~ 3':!:i ""'C....a. Cc .." ....a. -(I.) ~ ~ me ~3': lT1013Y DUAL PRECISION OPERATIONAL AMPLIFIERS electrical characteristics at VCC+ otherwise noted) 110 PARAMETER Input offset voltage Input offset current liB Input bias current VIO =5 V, VCC- = 0, Vo = 1.4 V, TEST CONDITIONS VIC = 0, T A = 25°C (unless MIN RS=50Q 0 VICR Common-mode input voltage range Output low, Isink = 1 mA Output high, No load Output high, RL = 600 Q to GND AVD Large-signal differential voltage amplification ICC Supply current per amplifier 2 nA -18 -50 nA to 5 4 3.4 UNIT ~V 0.3 3.8 15 220 4.4 V 25 10 V 4 0.32 mV 350 1 Vo = 5 mV to 4 V, RL = 500 Q V/~V 0.5 mA =± 15 V, VIC =0, T A =25°C (unless otherwise noted) electrical characteristics at Vcc± VIO 0.3 3.5 Output low, RI =600 Q to GND Maximum peak outpyt voltage swing MAX 950 to Output low, No load YOM TYP 250 PARAMETER Input offset voltage TEST CONDITIONS MIN RS =50Q TYP 200 MAX 800 0.5 Long-term drift of input offset voltage UNIT ~V ~V!mo 110 Input offset current 0.2 1.5 nA liB Input bias current -15 -30 nA VICR YOM CMRR Maximum peak output voltage swing voltage amplification Common-mode rejection ratio Supply-voltage rejection kSVR ratio (IlVCClllVIO) Channel separation r;d Differential input resistance r;c Common-mode input resistance ICC Supply current per amplilier operating characteristics, VCC± SR PARAMETER Slew rate Vn Equivalent input noise voltage VN(PP) Peak-to-peak equivalent input noise voltage In -15.3 to 13.5 13.8 ±12.5 ±14 0.5 2 V!~V VO=±10V,RL=2Q VIC = -15 V to 13.5 V 1.2 7 114 . dB VCC± =±2 V to±18 V 100 117 dB Vo =±10V, RL = 2 Q 120 137 dB 70 300 MQ Common-mode input voltage range Large-signal differential AVD -15 Equivalent input noise current RL =2 kQ VO=±10V,RL=600Q V V 4 GQ 0.35 0.55 mA TYP 0.4 MAX UNIT = ± 15 V, VIC =0, TA =25°C TEST CONDITIONS 1 - 10 Hz 1 = 1 kHz MIN 0.2 V/~s 24 22 nVIVHZ 1=0.1 Hz to 10Hz 0.55 ~V f - 10 H~ 0.07 pAlVHZ TEXAS ." INSTRUMENTS 2-102 97 to POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 lT1013, lT1013A, lT1013D DUAL PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt table of graphs FIGURE VIO t.Vln '10 118 Input offset voltage Change in input offset voltage Input offset current vs Source resistance vs Temperature vs vs Time Temperature vs vs Temperature Input bias current Frequency VIC Input bias current Common-mode input voltage AVD Differential voltage amplification vs vs Load resistance Channel separation vs Frequency CMRR Output saturation voltage Common-mode rejection ratio vs vs Temperature Frequency kSVR ICC Supply voltage rejection ratio Supply current vs Frequency vs Temperature Short-circuit output current vs Time Equivalent input noise voltage vs Frequency Equivalent input noise current Peak-to-peak input noise voltage vs Frequency vs Time lOS Vn In VN(PP) Pulse response Phase shift Small-signal Large-signal vs Frequency 1 2 3 4 5 6 7,8 9,10 11 12 13 14 15 16 17 17 18 19,21 20,22,23 9 TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303· DALLAS, TEXAS 75265 2-103 LT1013, LT1013A, LT1013D DUAL PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt INPUT OFFSET VOLTAGE OF REPRESENTATIVE UNITS INPUT OFFSET VOLTAGE vs vs BALANCED SOURCE RESISTANCE FREE-AIR TEMPERATURE 10 2S0 = 5 V, VCC- = Ii==: = -550Cto12S0C~ Vcc+ TA > E I I - / = = ~ r-- ~ 0 r-- SQ. 0.1 ..5 I 0 > > 1,/ . / = I L_~ Qi ./ ..,.;:V.// VCC 0 TA 2SoC = GI DI ~ 0 i== VCC+ = 5V Qi >::I. 150 V~ / VCC± ±15VI TA -55°C to 12SoC . GI DI S Vcc± 200 :I!! 0 0 ~V SQ. -50 t: f-t=fvcc. ."V =f--!b>- -;- -100 0 >-150 , -- 100 50 = ±15V =- -- r-- ---- ---r-- I 0.01 1k 3k 10 k 30 k 100 k 300 kiM RS - Source. Resistance - Q 3M 50 75 100 INPUT OFFSET CURRENT vs vs ELAPSED TIME FREE-AIR TEMPERATURE = = VIC 4 oct t: E i!! ;; 3 =0 O.S 0.6 0 == 0 In 2 SQ. GI DI .. Vcc± 0.4 I JG Package g I o o "I 0.2 ~ I Vcc± 3 4 5 = ±2.5V I V Vcc+ = 5 V, Vcc- = 0 ~I _VV V :....- ..5 t: J: 0 I o - f-"" = ±15V I / ~ t - Time After Power-On - min -25 0 25 50 75 100 T A - Free-Air Temperature - ·C Figure 3 Figure 4 2 -50 -;-.::: ./ tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ IN5rRUMENTS 2-104 125 I SQ. > In I----.. RS Vcc± ±15V TA 2SoC ~ GI -200 I -- - -- -...... Figure 1 5 N' '0 = 25°C I -...... t-- r--- 0 TA -.... POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 125 lT1013, lT1013A, lT1013D DUAL PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt INPUT BIAS CURRENT vs FREE-AIR TEMPERATURE COMMON-MODE INPUT VOLTAGE vs INPUT BIAS CURRENT -30 15 5 TA = 25°C VIC = 0 \ > > ., -25 :; ~~f=::::: r-r-- r-- I--r- - 10 a. .E ., '8 VCC± = ±15V\ (Left Scale) 0 :::;; - -15 f\. o -5 -10 -15 -20 -25 liB - Input Bias Current - nA 0 10 TA == 'a = -SsoC/ E «., II :g'" os TA = = 25°C 15 .~ I /T /rA ~ = -55°C TA = 25~ TA j ~ ii .~ 0.4 £ £ c C i3 / 0.4 I ~ 1k 400 RL - Load Resistance - 4k 10 k TA I II i3 0.1 100 =0 /,.... ~., 125°C ii ~ -1 -30 4 !E i5.. > ~ 1! = Vcc+ 5 V, VccVa 20 mV to 3.5 V IA" V -> DIFFERENTIAL VOLTAGE AMPLIFICATION vs LOAD RESISTANCE 10 4 0 Figure 6 DIFFERENTIAL VOLTAGE AMPLIFICATION vs LOAD RESISTANCE u I 0 '''--i""- -> 125 8 ~ Figure 5 c '8 E E 0-10 o '; ., 2 0 I -5 = a. .E -5 0 Vcc± = ±1S V va ±10 V = = VCC+ 5V VCC0 (Right Scale) =!ic 0 ~ > . ~ :; 0 E E -25 0 25 50 75 100 TA - Free-Air Temperature - °C 3 I C: vcc± = ±2.5 V vcc± = ±15 V -50 ., S'" 1\ 5 4 II 0.1 100 n Figure 7 = 125°C II I 400 1k RL - Load Resistance - 4k 10 k n Figure 8 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSfRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2-105 LT1D13, LT1D13A, LT1D13D DUAL PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt DIFFERENTIAL VOLTAGE AMPLIFICATION and PHASE SHIFT vs FREQUENCY FREQUENCY "0 20 c .~ ::" ~: ~ ...... VCC± = ±15 V AV';i\ is. E :i 0 'E r--ro- ~ VCC+ = 5 V VCC- = 0 VCC+ = 5V .....VCC- = 0 ~~II '\ ~ r\ ~~ e ~ VCC± = ±15 V I c ~ I -10 0.01 I r " ~...... ~ "0 I c 120 0 -; ~ 100 is. E Cl 220· ~ r---, i5 I c ~ 240· 10 3 0 Figure 10 OUTPUT SATURATION VOLTAGE CHANNEL SEPARATION vs vs FREQUENCY FREE-AIR TEMPERATURE 10 160 Vcc+ = 5Vt030V VCC- = 0 VCC± = ±15 V VI(PP) = 20 V to 5 kHz 140 .....,,=+=t=~-~.----- RL = 2 kQ -1---'--1 In "0 ~os 120 r\ 10 100 1 k 10 k 100 k 1 M 10 M f - Frequency - Hz 0.1 Figure 9 I ", ~ -20 0.01 f - Frequency - MHz c = ±15V ~ ~ e 200· \ 0.3 140 In Ul \ 1\ c > Cl l! '0 80· VIC = 0 CL = 100pF 100· TA= 25·C 120· I II In I DIFFERENTIAL VOLTAGE AMPLIFICATION vs > .. Islnk = 10mA Cl Thermal Interaction ~Isink = 5 mA l! '0 > c .S! c. e os = 0.1 II> Ul Gi 100 c c os .c 0 Isink = 1 mA T Ul '5 ,g. Pin-to-Pin Capacitance 80 I Isink = 100llA ~ 0 Isink = 10llA Isink = 0 60~----~----~----~----~--~ 10 100 1k 10 k 100 k f - Frequency - Hz 1M 0.01 -50 -25 0 25 50 75 100 T A - Free-Air Temperature - ·C Figure 12 Figure11 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSfRUMENTS 2-106 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 125 LT1013, LT1013A, LT1013D DUAL PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt SUPPLY VOLTAGE REJECTION RATIO vs FREQUENCY COMMON-MODE REJECTION RATIO vs FREQUENCY 140 120 ...,£D I 0 i ~ 100 c .~ 80 vcc- ;; ...,.. a: 0 " VCC+~ "= a: = 25°C ...,£D I I vcc± = ±15V I TA 60 =i!c 0 E E 40 0 c 100 .. .~ 'a; ~'\ 0 a: a: a: 0 ~ 0 0 .~ a: .. 80 0 ~ 60 > :s 40 20 a: > 20 III ~ o 100 10 1k 10 k f - Frequency - Hz 100 k o 1M 0.1 380 D.. C Q. :s rJ) I '/ 0 .9 = ±1~ V 300 '/ 260 -50 10 100 lk 10k i\ "" lOOk SHORT-CIRCUIT OUTPUT CURRENT vs ELAPSED TIME 420 Q. \Supply Supply SUPPLY CURRENT vs FREE-AIR TEMPERATURE '1 Vcc± I Positive Figure 14 40 ~ " " \ "" "" \ '" Negativ~ \ Figure 13 E 30 = -55°C TA = 25°C C l!! 20 TA <1: :s 340 0 >- ........... f - Frequency - Hz 460 <1: TA \ Q. rJ) :;: 0 .... "" 'a ....E r-- >- a. = ±lSV = 25°C Vcc± 120 I - - - -' / Vcc+ -25 -- ---- ..-- f...-- 'S S:s I--- "5 ~ ~ .r:. 0 III I I I 0 25 50 I 100 125 = ±1S V I = 125°C 0 =125°C I 1 TA = 25°C _ITA = -55°C TA -10 -20 -40 75 VCC± 10 1l-30 = 5 V, Vcc- = 0 I TA :; 0 ~ ~ r--- 1M ~ V-- f-o 2 T A - Free-Air Temperature - °C t - Time - min Figure 15 Figure 16 3 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices, TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2-107 lT1013, lT1013A, lT1013D DUAL PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS EQUIVALENT INPUT NOISE VOLTAGE and EQUIVALENT INPUT NOISE CURRENT vs FREQUENCY 1000 ~> 1000 = = I 300 300 J! In ~ "- ,; ~ 100 i .5 i ~ 'S " 100 =2 Hz GI m ;; ~ 12001------1I--...-.-:f--I--I--+--.--t----f ~ .~ ~ ...zc:; > 4001------11-----I---+---t----f .5OL-_~ o 1k __ 2 ~ ___ ~ VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 20 Vcc± = ±lS V 60 AV = 1 TA 2S"C 40 Vcc± = ±lSV lS AV = 1 TA 2S"C \ 10 I GI E S > o I 1 I "0 0 1,. ad -20 o -s I o I ~ -40 > -10 -60 -lS -20 2 4 6 t - Time - fls 8 10 12 14 Figure 19 I o ~ 10 TEXAS ~ POST OFFICE BOX 655303· DALLAS. TEXAS 75265 \ \ \ SO 100 lS0 200 2S0 300 3S0 I - Time - flS Figure 20 INSTRUMENTS 2-108 __ = > 20 o ~ 8 Figure 18 80 -80 ____ 4 6 I-Time-s Figure 17 J! ~ 'S ~ I & 10 100 f - Frequency - Hz = > E !: = I 10 1 ;; C I 11111111 10 :! z '0 .!! 30 r- 1If Corner ~ 8 ... I'- ! ~ I .. .5 ...... ~ 30 2000...----,r---....,.--...,.--""'T"'---, Vcc± ±2Vlo±18V f= 0.1 Hzlol0Hz > 1600 TA 2S"C _ _f--_--I_ _-+_~-I c = Vcc± ±2Vto ±18V TA 2S"C c & PEAK-TO-PEAK INPUT NOISE VOLTAGE OVER A 1 O-SECOND PERIOD LT1013, LT1013A, LT1013D DUAL PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 160 = = > 120 II> til 80 :; So ::I 60 0 I > E 3 0 > 2 :;Q. AV TA =1 / 0 \ \ / I > \ / :; 20 =0 II = 25°C 0 40 0 -1 0 -20 4 l! 0 > = = I II> til = Vcc+ 5 V, VCCVI 0104 V RL 4.7 k.Q 10 5 V 5 = 100 g 6 = AV = 1 TA 2SoC E l! = Vcc+ S V, VCC0 VI 010 100 mV RL 600 !l 10 GND 140 I VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE o -2 20 40 60 80 o 100 120 140 10 20 30 1 - Time - Ils 1 - Time - IlS Figure 21 Figure 22 40 50 60 70 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 6 5 > 4 I II 01 ~ > :; Q. ;; RL AV TA =0 =1 = 25°C 2 I 0 0 =0 If 3 0 > Vcc+ = 5 V, VccVI = 0104 V 1\ \ I \ / J \ -1 -2 o 10 20 30 40 50 60 70 1 - Time -Ils Figure 23 TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-109 LT1013, LT1013A, LT1013D, LT1013Y DUAL PRECISION OPERATIONAL AMPLIFIERS APPLICATION INFORMATION single-supply operation The L T1 013 is fully specified for single-supply operation (VCC- = 0). The common-mode input voltage range includes ground, and the output swings within a few millivolts of ground. Furthermore, the LT1 013 has specific circuitry that addresses the difficulties of single-supply operation, both at the input and at the output. At the input, the driving signal can fall below 0 V, either inadvertently or on a transient basis. If the input is more than a few hundred millivolts below ground, the LT1013 is designed to deal with the following two problems that can occur: 1. On many other op amps, when the· input is more than a diode drop below ground, unlimited current will flow from the substrate (VCC- terminal) to the input, which can destroy the unit. On the LT1013, the 400-Q resistors in series with the input (see schematic) protect the device even when the input is 5 V below ground. 2. When the input is mote than 400 mV below ground (at TA = 25°C), the input stage of similar type op amps saturates and phase reversal occurs at the output. This can cause lock-up in servo systems. Because of a unique phase-reversal protection circuitry (021, 022, 027, and 028), the LT1013 outputs do not reverse, even when the inputs are at -1.5 V (see Figure 24). This phase-reversal protection circuitry, however, does not function when the other operational amplifier on the LT1 013 is driven hard into negative saturation at the output. Phase-reversal protection does not work on amplifier 1 when 2s output is in negative saturation or on amplifier 2 when 1s output is in negative saturation. At the output, other single-supply designs either cannot swing to within 600 mV of ground or cannot sink more than a few microamperes while swinging to ground. The all-NPN output stage of the LT1 013 maintains its low output resistance and high gain characteristics until the output is saturated. In dual-supply operations, the output stage is free of crossover distortion. 5 > .. !i 4 5 ~ f\, I \ I 3 I \ I !'5 2 1\ I \ ~ \ \ I o 0:\\, II 1\ I ~ 1 > -1 v -2 > .. Cl S 4 3 (5 > '5 2 So :::I 0 I 0 > 0 5 "\ ' \ r ....... I > "\ 'f.-' v to 4.5 V Ir--I 4 I 3 > '5 Q. '5 \ 2 0 0 L~ . TEXAS ~ 2-110 POST OFFICE BOX 655303· DALLAS. TEXAS 75265 l ~ (e) NO PHASE REVERSAL EXHIBITED BY LT1013 Figure 24. VOltage-Follower Response With Input Exceeding the Negative Common-Mode Input VOltage Range INSfRUMENTS I II I ~ -1 (b) OUTPUT PHASE REVERSAL EXHIBITED BY LM358 1\ I \ II \ (5 -1 (a) VI(PP) = -1.5 Cl S \ I 1\ I .. LT1013, LT1013A, LT1013D, LT1013Y DUAL PRECISION OPERATIONAL AMPLIFIERS APPLICATION INFORMATION comparator applications The single-supply operation of the LT1 013 lends itself for use as a precision comparator with TTL-compatible output. In systems using both operational amplifiers and comparators, the LT1013 can perform multiple duties. Refer to Figures 25 and 26. 5 > ,\! 10mV / "0 > 3 2 :; J If 5 mV / / :; a. r f 4 CII Ol // I l /'" 0 I / I ~ 0 5 > ./ 2mV V ,\ ........ 4 CII Ol \' r\ ,\! "0 > ~ 3 :; a. :; 2 0 Overdrive \ 10mV I 1\ "', ""'1\5mV \ 0 > 0 CII \ CII iuOl 1\ Vcc+ = 5V Vcc- = 0 TA = 25°C ........ ~2mV Overdrive " i'.. iuOl ';: S c~~ 1100 mV :!; i5~ o VCC+=5V Vcc- = 0 TA = 25°C 'CIIE ~0 C a. ..5 o 50 100 150 200 250 300 350 400 450 1- Time - f.LS Figure 25. Low-to-High-Level Output Response for Various Input Overdrives 1100 mV ~> .!!::: ::2 50 100 150 200 250 300 350 400 450 1- Time - f.LS Figure 26. High-to-Low-Level Output Response for Various Input Overdrives low-supply operation The minimum supply voltage for proper operation of the LT1 013 is 3.4 V (three Ni-Cad batteries). Typical supply current at this voltage is 290 f.1,A; therefore, power dissipation is only 1 mW per amplifier. offset voltage and noise testing The test circuit for measuring input offset voltage and its temperature coefficient is shown in Figure 30. This circuit with supply voltages increased to ±20 V is also used as the burn-in configuration. The peak-to-peak equivalent input noise voltage of the LT1013 is measured using the test circuit shown in Figure 27. The frequency response of the noise tester indicates that the 0.1-Hz corner is defined by only one zero. The test time to measure 0.1-Hz to 10-Hz noise should not exceed 10 seconds, as this time limit acts as an additional zero to eliminate noise contributions from the frequency band below 0.1 Hz. An input noise voltage test is recommended when measuring the noise of a large number of units. A 1O-Hz input noise voltage measurement correlates well with a 0.1-Hz peak-to-peak noise reading because both results are determined by the white noise and the location of the 1/f corner frequency. Current noise is measured by the circuit and formula shown in Figure 28. The noise of the source resistors is subtracted. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303· DALLAS, TEXAS 75265 2-111 LT1013, LT1013A, LT1013D, LT1013Y DUAL PRECISION OPERATIONAL AMPLIFIERS APPLICATION INFORMATION offset voltage and noise testing (continued) 0.11lF 100kO 2kO 100 >-+-'VI/'~'-H--.-Oscilloscope Rin =1 MO 110 kO 0.11l F NOTE: All capacitor values are for non polarized capacitors only. Figure 27. O.1·Hz to 10·Hz Peak·to·Peak Noise Test Circuit 10kn 50kO (see Note A) 10Mot 10Mot 15V 1000 -::- 1000 (see Note A) 10Mot 10MOt tMetal film resistor =1000 Via 50kO (see NOleA) [Vno 2 - (820 nV)2J1/2 40 MO x 100 Figure 28. Noise Current Test Circuit and Formula NOTE A: Resistors must have low thermoelectric potential. Figure 29. Test Circuit for VIO and aVIO TEXAS ~ INSTRUMENTS 2-112 Va POST OFFICE BOX 655303' DALLAS, TEXAS 75265 LT1013, LT1013A, LT1013D, LT1013Y DUAL PRECISION OPERATIONAL AMPLIFIERS APPLICATION INFORMATION typical applications 5V 03 2N2905 68Q 100 k.Q 100Qt 1 k.Q 4-mA TRIM .-----+-+4-mA to 20-mA OUT To Load L - . . - - - - - - + 2 . 2 k.Q Max IN o to 4 V t1% film resistor. Match 10-kQ resistors 0.05%. +T1 = PICO-31080 Figure 30. 5-V Powered 4-mA - 20-mA Current Loop Transmitter With 12-81t Accuracy TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303· DALLAS, TEXAS 75265 2-113 LT1013, LT1013A, LT1013D, LT1013Y DUAL PRECISION OPERATIONAL AMPLIFIERS APPLICATION INFORMATION 5V To Inverler Drive 4-mA 10 2D-mA OUT Fully Floating 4kQ t 5V 2kQ 1 kQ 20-mA Trim Trim -::- IN 0104 V ":" t1 % film resistor Figure 31. Fully Floating Modification to 4-mA - 20-mA Current Loop Transmitter With 8-Bit Accuracy IN+ 1/2 LTC1043 IN+ 7 0-+=-8"'---=-1 OUTB IN- 13 NOTE: VIO = 150 flV, AVO = (R1/R2) + 1, CMRR = 120 dB, VICR = 0 to 5 V Figure 32. S-V Single-Supply Dual Instrumentation Amplifier TEXAS ~ INSTRUMENTS 2-114 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 LT1013, LT1013A, LT1013D, LT1013Y DUAL PRECISION OPERATIONAL AMPLIFIERS APPLICATION INFORMATION To Input Cable Shields 200 knt 10 kUt 20kU IN- OUT 1 IlF 20kU 10 kUt IN+ 5V 10 kU t -:- t1% film resistor. Match 10-kn resistors 0.05%. :j:For high source impedances, use 2N2222 as diodes. NOTE: AVD = (400,OOO/RG) + 1 Figure 33. 5-V Powered Precision Instrumentation Amplifier TEXAS ~ INSfRUMENTS POST OFFICE BOX 655303· DALLAS, TEXAS 75265 2-115 2-116 LTC 1052 CHOPPER-STABILIZED OPERATIONAL AMPLIFIER MAY 1988-REVISED JULY 1991 • • • Input Offset Voltage .•• 5 !-tV Max at 25°C o OR P PACKAGE (TOP VIEW) Temperature Coefficient of Input Offset Voltage .•. 0.001 !-tV;oC Typ cXAUa • Maximum Input Bias Current ... 30 pA at 25°C • Minimum Differential Voltage Amplification Over Full Temperature Range .•. 120 dB • Minimum Common-Mode Rejection Ratio Over Full Temperature Range ..• 120 dB • Minimum Supply Voltage Rejection Ratio Over Full Temperature Range ... 120 dB • Single-Supply Operation from 4.75 V to 16 V (Input Voltage Range Extends to Ground) • ININ+ 2 3 7 6 VDD- 4 5 Long-Term Drift of Input Offset Voltage 100 nV/mo Typ CXB VDD+ OUT CLAMP AVAILABLE OPTIONS PACKAGE TA VIOMAX at 25°C SMALL OUTLINE (D) PLASTIC DIP (P) 5 IAV lTC1052CD lTC1052CP 5IAV lTC1052MD lTC1052MP -40°C to 85°C -55°C to 125°C The D package is available taped and reeled. Add the suffix R, (e.g., lTC1052CDR). External Capacitors Can Be Returned to Vcc- with No Noise Degradation description The LTC1052 is a low-noise chopper-stabilized operational amplifier manufactured using CMOS silicon-gate technology. The device is well-suited for applications such as thermocouple amplifiers, strain-gauge amplifiers, low-level signal processing, and medical instrumentation. Chopper stabilization constantly corrects input offset voltage errors, including both errors in the initial input offset voltage and errors in input offset voltage due to time, temperature, and common-mode input voltage. The chopper circuitry is internal and completely transparent to the user. Only two external capacitors are required to alternately sample and hold the offset correction voltage and the amplified input signal. Low-frequency (1/f) noise is also improved by the chopping technique. Instead of noise increasing continuously at a rate of 3 dB/octave, the internal chopping causes noise to decrease at low frequencies. Picoampere input currents further enhance the performance of this device. The C-suffix devices are characterized for operation from -40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of -55°C to 125°C. ~~~~~~T1!!~~:~A~f~r~:~Wc~~lo:rr:;~ a:h:f f:r::a:~nT:!~~ Instruments standard warranty. Production procesllng does not necessarily Includelesflng of all parameters. .Jf INSlRUMENlS Copyright © 1991, Texas Instruments Incorporated TEXAS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-117 LTC 1052 CHOPPER·STABILlLZED OPERATIONAL AMPLIFIER absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, Voo+ (see Notes 1 and 2) ..................................................... 8 V Supply voltage, Voo- (see Notes 1 and 2) ..... ,............................................. -8 V Input voltage range, VI (any input, see Note 1) ............................................... ± 16 V Duration of short-circuit current at (or below) 25°C (see Note 2) .............................. unlimited Operating free-air temperature, TA: C-suffix .......................................... -40°C to 85°C M-suffix ......................................... -55°C to 125°C Storage temperature range ....................................................... -65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................... 260°C NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VOO + and VOO-. 2. Connecting any terminal to voltages greater than VOO + or less than VOO- may cause destructive latch-up. No sources operating from ex1ernal supplies should be applied prior to device power up. 3. The output may be shorted to either supply. electrical characteristics at specified free-air temperature, Voo± = ±5 V (unless otherwise noted) PARAMETER VIO Input offset voltage "'VIO Temperature coefficient of input offset voltage Long-term drift of input offset voltage 110 liB VICR YOM TEST CONDITIONS RS=50Q VIC=O, Input offset current TAt LTC1052C MIN TVP:j: MAX 25°C 0.5 Full range 0.01 25°C 100 25°C 5 Full range Full range Maximum peak output RL = 100 kQ, See Note 4 25'C voltage swing RL = 10 kO, See Note 4 Full range 4.7 25°C 120 Full range 120 Full range Large-signal differential fch Internal chopping frequency On-state clamp current Vo = ±4V, RL = 10 kQ RL=100kQ 5 0.05 0.01 0.05 Vo =-4 Vt04 V Common-mode VO=O, CMRR rejection ratio Supply-voltage rejection kSVR 100 1000 120 150 V dB 120 330 100 100 100 10 1 120 VCC", = 2.375 Vto ±8 V, RS=50Q VO=O, 25°C 120 ratio (/WCCJdVIO) Full range 120 Supply current VO=O, 25'C Full range t Full range IS -40°C to 85°C for the LTC1052C and -55'C to 125°C for the LTC 1052M. :j: All typical values are at TA = 25°C. NOTE 4: Output clamp is not connected. TEXAS ." INSIRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Hz f.IA 25 25 Full range 120 140 100 pA 2 nA 140 dB 120 150 120 150 dB 120 1.7 pA 150 330 RS=50Q pA 4.95 4.7 10 "V "V/'C V 25°C 120 30 -5 to 2.7 Full range No load 1 25°C 25°C 30 2000 30 4.95 25'C VIC = VICR min, 5 UNIT nV/mo 100 30 to 2.7 Full range Off-state clamp current 2-118 0.5 175 RS =50Q voltage amplification 5 -5 Common-mode input voltage range AVO MAX 350 1 25'C Input bias current LTC1052M MIN TVP:j: 2 3 1.7 2 3 mA LTC1052 CHOPPER-STABILIZED OPERATIONAL AMPLIFIER operating characteristics, Voo± = ±S V, TA = 2SoC PARAMETER SR VNPP TEST CONDITIONS Slew rate RL= 10kQ, Peak-to-peak equivalent input noise voltage In Input noise current (see Note 5) GBP Gain bandwidth product NOTE 5: EqUivalent Input nOIse current IS CL = 50 pF = 100 kQ to 10Hz RS = 100 kQ to 1 Hz f = 10 Hz RS MIN TYP 4 MAX UNIT V/fl S 1.5 0.5 flY 0.6 WVHZ 1.2 MHz calculated as follows: In = (2q x IIB)1/2, where q = 1.6 x 10-19. TEXAS ." INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-119 2-120 MC1458, MC1558 DUAL GENERAL·PURPOSE OPERATIONAL AMPLIFIERS D972, FEBRUARY 1971-REVISED OCTOBER 1990 • Short-Circuit Protection • Wide Common-Mode and Differential Voltage Ranges • No Frequency Compensation Required • Low Power Consumption • No Latch-Up • Designed to be Interchangeable With Motorola MC 1558/MC 1458 and Signetics S5558/N5558 MC1458 .. , D OR P PACKAGE MC1558 , , , JG PACKAGE (TOP VIEW) AMPL{ OUT [ ] 8 VCC+ #1 IN 2 7 OUT} AMPL IN+ 3 6 IN #2 VCC- 4 5 IN+ MC1558, .. U FLAT PACKAGE (TOP VIEW) NC description AMPL { OUT #1 IN IN + The MC 1458 and MC 1558 are dual generalpurpose operational amplifiers with each half electrically similar to the uA 7 41 except that offset null capability is not provided, NC VCC + OUT} AMPL IN#2 VCC- ';.. _ _:..r-' IN+ MC1558. , , FK PACKAGE The high-common-mode input voltage range and the absence of latch-up make these amplifiers ideal for voltage-follower applications, The devices are short-circuit protected and the internal frequency compensation ensures stability without external components, (TOP VIEW) f- :::> 0 u The MC1458 is characterized for operation from o°C to 70°C, The MC1558 is characterized for operation over the full military temperature range of - 55°C to 125°(, Z '" 3 2 + u u uu Z >Z 20 19 NC NC 4 18 # 1 IN- S 17 #2 OUT NC 6 16 NC 15 #2IN- 8 14 NC # 1 IN+ NC symbol (each amplifier) 9 NONINVERTING INPUT IN+ U Z INVERTING INPUT IN- IU + U U Z ~ Z U N > '" NC - No internal connection AVAILABLE OPTIONS SYMBOLIZAnON DEVICE PACKAGE SUFFIX OPERATING VIO MAX TEMPERATURE RANGE at 25°C 6 mV 5 mV MC1458 D,P ODC to 70 DC MC1558 FK,JG,U - 55 DC to 125 DC The D packages are available taped and reeled, Add the suffix R to the device type, (i.e., MC1458DR) PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters, TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Copyright © 1990, Texas Instruments Incorporated On products compliant to MIL·STD·BB3, Class B, all parameters are tested unless otherwise noted. On all other products. production processing dOBS nol necessarilv include testinD of all parameters. 2-121 I MC1458. MC1558 DUAL GENERAL·PURPOSE OPERATIONAL AMPLIFIERS schematic (each amplifier) r------.----.----------~---VCC+ +_+_-, INVERTING _ _ _ _ _ INPUT IN- OUTPUT NONINVERTING INPUT IN+ absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage Supply voltage Vee + Vee _ (see Note 1) (see Note 1) Differential input voltage (see Note 2) Input voltage at either input (see Notes 1 and 3) Duration of output short-circuit (see Note 4) MC1458 MC1558 UNIT 18 -18 22 -22 V ±30 ±30 V ±15 ±15 unlimited V unlimited eontinuous total dissipation See Dissipation Rating Table o to Operating free-air temperature range Storage temperature range 70 65 to 150 ease temperature for 60 seconds: FK package Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds NOTES: 1. 2. 3. 4. I JG or U package I D or P package - 55 to 125 -65 to 150 °e °e 260 °e °e 300 260 °e All voltage values, unless otherwise noted, are with respect to the midpoint between Vee + and Vee _. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less. The output can be shorted to ground or either power supply. Forthe Me1558 only, the unlimited duration of the short-circuit applies at (or below I 125°e case temperature or 70 0 e free-air temperature. DISSIPATION RATING TABLE PACKAGE TA"; 25°C DERATING POWER RATING DERATE TA - 70°C POWER RATING TA - 125°C POWER RATING D 680 mW FACTOR 5.8 mw/oe FK 680mW 11.0 mw/oe 88°e 880mW 275 mW JG P 680 mW 680 mW 8.4 mw/oe 8.0 mw/oe 69°e 65°e 672 mW 640 mW 210 mW U 675 mW 5.4 mw/oe 25°e 432 mW 135 mW ABOVE TA 33°e TEXAS 464mW ~ INSTRUMENTS 2-122 V POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MC1458, MC1558 DUAL GENERAL·PURPOSE OPERATIONAL AMPLIFIERS recommended operating conditions MIN electrical characteristics at specified free-air temperature. PARAMETER VIO 110 liB Input offset voltage Input offset current Input bias current ~ Vo ~ Va ~ Vo RL VOM output voltage swing Large-signal differential AVO 0 20 Full range 80 Full range 10 kO ±12 Full range ±12 ±12 ±12 25°C ±10 RL '" 2 kO Full range ±10 Maximum-output-swing Va'" ±10V, TYP 1 6 25°C 20 Full range 15 5 6 20 200 200 500 500 ±13 MAX 80 500 1500 ±12 ±13 ±12 ±10 nA nA ±14 ±12 ±13 mV V ±12 ±14 UNIT V ±13 ±10 200 50 200 V/mV 25 2 kO, ~ AVO MIN 800 25°C 25°C voltage amplification MC1558 MAX 300 25°C 0 -15 V 7.5 25°C RL '" 2 kO, Va ~ ±10V bandwidth (closed-loop) 1 Full range ~ TYP MAX ±15 15 V. VCC- Full range RL '" 10 kO RL ~ 2 kO RL BOM ~ MIN 25°C 0 input voltage range Maximum peak Vcc + MC1458 TEST CONDITIONS t Common-mode VICR NOM ±5 Supply voltage, VCC ± 25°C 1, 14 14 kHz MHz THO:£ 5% B1 Unity-gain bandwidth ¢m Phase margin Am r; Gain margin 25°C Input resistance 25°C ro Output resistance Ci Input capacitance Common-mode zie CMRR input impedance Common-mode rejection ratio Supply voltage kSVS sensitivity (AVIO/AVCC) Equivalent input Vn noise voltage (closed-loop) ~ AVO ~ Va 1 0, See Note 5 f ~ 20 Hz VIC ~ VICR min, Va ~ VCC Vo ~ f ~ ~ 0 ± 9 V to ± 15 V, 0 ~ AVO RS ~ 25°C 1 1 25°C 65°C 65°C 11 0.3' 0.3' 2 11 dB 2 MO 25°C 75 75 0 25°C 1.4 1.4 pF 25°C 200 200 MO 25°C 70 Full range 70 25°C 70 90 90 dB 70 30 150 30 150 rV/V Full range 150 150 100, 0, 1 kHz, 25°C 45 45 nV/,fHz BW = 1 Hz "This parameter is not production tested. t All characteristics are specified under open-loop operating conditions with zero common-mode input voltage unless otherwise specified. Full range for MC1458 is O°C to 70°C and for MC1558 is - 55°C to 125°C. NOTE 5: This typical value applies only at frequencies above a few hundred hertz because of the effect of drift and thermal feedback. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-123 MC1458, MC1558 DUAL GENERAL-PURPOSE OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Vee + (continued) MIN Short-circuit lOS ICC PD = - 15 V MC1558 MC1458 TEST CONDITIONSt PARAMETER 15 V, vee - TYP MAX MIN TYP MAX 25°C ±25 ±40 ±25 ±40 Supply current No load, 25°C 3.4 5.6 3.4 5 (both amplifiers) Full range Total power dissipation Vo = 0 No load, (both amplifiers) Vo =0 Full range output current 6.6 25°C Vo1 N o2 Crosstalk attenuation 100 6.6 170 100 200 25°C 150 200 120 120 UNIT mA mA mW dB t All characteristics are specified under open-loop operating conditions with zero common-mode input voltage unless otherwise spedified. Full range for MC1458 is O°C to 70°C and for MC1558 is -55°C to 125°C. operating characteristics. Vee + = 15 V . Vee PARAMETER tr SR = - 1 5 V. T A MC1458 TEST CONDITIONS MIN TYP MC1558 MAX TYP Rise time VI = 20 mV, RL = 2 kO, 0.3 0.3 Overshoot factor CL = 100 pF, See Figure 1 5% 5% 0.5 0.5 VI Slew rate at unity gain = 10 V, RL CL = 100 pF, =2 k!l, See Figure 1 PARAMETER MEASUREMENT INFORMATION INPUT INPUT VOLTAGE WAVEFORM TEST CIRCUITS FIGURE 1. RISE TIME. OVERSHOOT. AND SLEW RATE . TEXAS ~ INSTRUMENTS 2-124 MIN POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 MAX UNIT "s V/"s MC3303, MC3403 QUADRUPLE LOW-POWER OPERATIONAL AMPLIFIERS D2517, FEBRUARY 1979-REVISED SEPTEBMER 1990 • Wide Range of Supply Voltages Single Supply .. , 3 V to 36 V or Dual Supplies • Class AB Output Stage • True Differential Input Stage o OR N PACKAGE (TOP VIEW) A~~L {~NU~ ~U!} AMPL IN+ IN+ VCC+ • Low Input Bias Current • Internal Frequency Compensation • Short-Circuit Protection • Designed to be Interchangeable with Motorola MC3303, MC3403 AMPL{IN+ #2 INOUT #4 VCCIN+} AMPL IN#3 """'-_---=..Jt-' OUT description The MC3303 and the MC3403 are quadruple operational amplifiers similar in performance to the uA741 but with several distinct advantages. They are designed to operate from a single supply over a range of voltages from 3 V to 36 V. Operation from split supplies is also possible provided the difference between the two supplies is 3 V to 36 V. The common-mode input range includes the negative supply. Output range is from the negative supply to VCC - 1.5 V. Quiescent supply currents are less than one-half those of the uA741. The MC3303 is characterized for operation from - 40°C to 85 °C and the MC3403 is characterized for operation from O°C to 70°C. symbol (each amplifier) NONINVERT~NG + INPUT IN+ . INVERTING INPUT IN- OUTPUT AVAILABLE OPTIONS TA VIO MAX AT 25°C PACKAGE SMALL-OUTLINE PLASTIC DIP (DI (NI 10 mV MC3403D MC3403N 8 mV MC3303D MC3303N OOC to 70°C -40°C to 85°C D packages are available taped and reeled. Add "R" suffix to the device type, (e.g., MC3403DRI. PRODUCTION DATA documant. cont.in inform.tion currant •• of public.tion d.ta. Products conform to specific.tions per the t.rms of T.x.s Instrumant. st.nd.rd warr.nty. Production processing do •• not n••••s.rily in.lud. t••ting of .n par.m.ters. Copyright © 1990, Texas Instruments Incorporated TEXAS • INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-125 MC3303, MC3403 QUADRUPLE LOW-POWER OPERATIONAL AMPLIFIERS schematic (each amplifier) COMMON ,-----. BIAS CIRCUITRY I r-------------~~------~r_--~--~------~~r_--~~_.-VCC+ I\IONINVERTING -+-----------+-+-----.., INPUT } +----l~I--- TO THREE OTHER AMPLIFIERS ''-~++----~-+---OUTPUT INVERTING INPUT 2.4 kll Component values shown are nominal. absolute maximum ratings over operating free-air temperature range (unless otherwise noted) MC3303 Supply voltage Vee + (see Note 1) MC3403 UNIT 18 18 -18 -18 V 36 36 V Differential input voltage (see Note 2) ±36 ±36 V Input voltage (see Notes 1 and 3) ±18 ±18 V Supply voltage Vee _ (see Note 1), Supply voltage Vee + with respect to Vee- Continuous total power dissipation V See Dissipation Rating Table Operating free-air temperature range o to -40t085 Storage temperature range Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 70 °e -65 to 150 -65 to 150 °e 260 260 °e NOTES: 1. These voltage values are with respect to the midpoint between Vee + and Vee _. 2. Differential voltages are at the non inverting input terminal with respect to the inverting terminal. 3. Neither input must ever be more positive then Vee + or more negative than Vee _. DISSIPATION RATING TABLE PACKAGE DERATING FACTOR TA :5 25°C TA = 85°C TA - 70°C POWER RATING ABOVE TA - 25°C POWER RATING POWER RATING D 950 mW N 1150mW 7.6 mW/oe 9.2 mW/oe 608 mW 494mW 736 mW 598 mW recommended operating conditions MIN Single supply voltage, Vee Supply voltage, Vee + Dual supply voltage, Vee- TEXAS ~ INSTRUMENTS 2-126 POST OFFICE BOX 655303 ' DALLAS. TEXAS 75265 NOM MAX UNIT 5 30 V 2.5 15 V -2.5 -15 V MC3303, MC3403 QUADRUPLE LOW-POWER OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature; Vcc + o V for MC3303; 14V,VCC- Vcc ± == ± 15 V for MC3403 PARAMETER Via Input offset voltage Temperature coefficient of aVIO ',0 input offset voltage Input offset current Temperature coefficient of alia lIB input offset current Input bias current TEST CONOITIONSt See Note 4 YOM See Note 4 See Note 4 80M THO,; 5%, 30 ; o 20 I :.g 15 ..:.., :.E 10 V :::J E ';( ~ 5 I 8: o > ,/ 0 g... // Q. 0 / V / S:::J o ....., V 25 20 ~- II 15 E :::J E 10 :. ., ';( \ 1\ 5 \ I 8 16 , ~-. CD g ..:.., 0.. 0.. 6 14 Vcc± - ±15 V CL - 0 RL - 10 kO TA - 25°C See Figure 1 0.. ~ 4 12 30 :::J / 2 _ L_ _ _ L_ _~ MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY !! V :::J ....., > CD Cl RL - 10 kO TA - 25°C 25 10 FIGURE 3 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs SUPPLY VOLTAGE .. _ L_ IVcc± I-Supply Voltage-V FIGURE 2 > _ 8 6 4 10 12 14 16 o > o 1 k IVcc± I-Supply Voltage-V r-10 k 100 k - 1 M f-Frequency-Hz FIGURE 5 FIGURE 4 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS • INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-129 MC3303, MC3403 QUADRUPLE LOW-POWER OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREQUENCY 106 Vcc± - ±15 V RL - 2 kO TA - 25°C c c ";::; 01 (J ;;::: 105 [--.., ~ 'a E 103 e 102 ~ ~ >+' ~ > 1 100 1 k 10 k ::s 0.5 -5 .. ~ 100 k -10 1 M 1\ \ I 0 +' \ / 0 ::s 0+' ::s Vcc± - ±15 V RL-2kO TA - 25°C \ See Figure 1 I :I "0 01 Q VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE / \ I o \ ,INPUT 10 20 30 40 i\ 50 60 70 80 90 t-Time-,..s f - Frequency - Hz FIGURE 6 FIGURE 7 t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS • INSTRUMENTS 2-130 POST OFFICE BOX 655303 " DALLAS. TEXAS 75265 NE5532, NE5532A, NE55321, NE5532AI DUAL LOW-NOISE OPERATIONAL AMPLIFIERS NOVEMBER 1979-REVISED SEPTEMBER 1990 • Equivalent Input Noise Voltage ... 5 nv/v'HZ Typ at 1 kHz • • Unity-Gain Bandwidth .•. 10 MHz Typ 0 PPACKAGE (TOP VIEW) OUT ININ+ Vcc- Common-Mode Rejection Ratio ... 100 dB Typ • High DC Voltage Gain .•• 100 V/mV Typ • Peak-to-Peak Output Voltage Swing •.. 32 V Typ With Vcc± = ±18 V and RL = 600 Q • High Slew Rate •.. 9 V/IJ-S Typ • Wide Supply Voltage Range ... ±3 V to ±20V • Designed to Be Interchangeable With Signetics NE5532 and NE5532A 1 2 3 4 8 7 6 5 Vcc+ OUT ININ+ description The NE5532 and NE5532A are monolithic high-performance operational amplifiers combining excellent dc and ac characteristics. They feature very low noise, high output drive capability, high unity-gain and maximum-output-swing bandwidths, low distortion, high slew rate, input-protection diodes, and output short-circuit protection. These operational amplifiers are internally compensated for unity gain operation. The NE5532A has specified maximum limits for equivalent input noise voltage. The NE5532 and NE5532A are characterized for operation from O°C to 70°C. The NE55321 and NE5532AI are characterized for operation from - 40°C to 85°C. symbol (each amplifier) ~ Nonlnvertlng Input IN+ _ _ _ _ +_ Inverting _ Input IN- >-_ __ PRODucnON DATA document. conlaln InfOtmatlon current IS of UbllcatJon date. Product. conform to specifications perthe term. of Texa. r,nstrumenls standard warranty. Production procenlng dOl. not necessarily Include telling of an parameter•. Output Copyright © 1990, Texas Instruments Incorporated TEXAS ." INSIRUMENlS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-131 NE5532, NE5532A, NE55321, NE5532AI DUAL LOW-NOISE OPERATIONAL AMPLIFIERS schematic (each amplifier) Nonlnvertlng _~I---_+_+--, Input 15Q Output Inverting -__.___--1 Input 15Q 460Q Component values shown are nominal. absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, V cc+ (see Note 1) ........................................................... 22 V Supply voltage, V cc- (see Note 1) ......................................................... - 22 V Input voltage, either input (see Notes 1 and 2) ................................................ VCC± Input current (see Note 3) ................................................................ ± 10mA Duration of output short circuit (see Note 4) ............................................... unlimited Continuous total power dissipation ..................................... See Dissipation Rating Table Operating free-air temperature range: NE5532, NE5532A ............................... O°C to 70°C NE55321, NE5532AI ............................ - 40°C to 85°C Storage temperature range ....................................................... - 65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................... 260°C NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between vcc+ and VCe-. 2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage. 3. Excessive input current will flow if a differential input voltage in excess of approximately 0.6 V is applied between the inputs unless some limiting resistance is used. 4. The output may be shorted to ground or either power supply. Temperature and/or supply voltages must be limited to ensure the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE = TAs25°C POWER RATING OPERATING FACTOR ABOVE T A = 25°C TA 70°C POWER RATING TA 85°C POWER RATING p 1000mW 8mWrC 640mW 520mW TEXAS ~ INSTRUMENTS 2-132 = PACKAGE POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 NE5532, NE5532A, NE55321, NE5532AI DUAL LOW-NOISE OPERATIONAL AMPLIFIERS recommended operating conditions MIN NOM MAX UNIT Supply voltage, VCC+ 5 15 V Supply voltage, VCC- -5 -15 V TYP MAX UNIT 0.5 4 5 mV 25°C Full range 10 150 200 nA 25°C Full range 200 800 1000 nA electrical characteristics, Vcc± =+15 V, T A =25°C (unless otherwise noted) PARAMETER TEST CONDITIONSt VIO Input offset voltage Vo ~O 110 Input offset current TA TA ~ liB Input bias current TA TA ~ VICR Common-mode input voltage range VOpp Maximum peak-to-peak output voltage swing AVD Large-signal differential voltage amplification ~ ~ RL",SOOQ RL",SOOQ, Vn~+10V VCC+~±15V VCC±-±18V TA ~ 25°C TA- Full range RL",2 kQ, TA~25°C VO~±10V T A - Full range AVd Small-signal differential voltage amplification f BOM Maximum-outputswing bandwidth Rl RL Bl Unity-gain bandwidth RL ~ SOO Q, r; Input resistance Zo Output impedance AVO CMRR Common-mode rejection ratio VIC = VICR min kSVR rejection ratio ~ MIN I TA ~ 25°C ITA - Full range ±12 ±13 V 24 30 2S 32 V 15 10 25 15 50 10 kHz ~ ~ SOO Q, SOO Q, VO~±10V VO~±14V VCC±~±18V, CL ~ 100 pF f~ RL ~ SOO Q, 2.2 V/mV 140 100 kHz 10 MHz 300 kQ 0.3 Q 70 100 dB 80 100 dB 30 ~30dB, V/mV 100 10kHz Supply voltage VCC± ~ ±9 V to ±15 V, VO=O (,WCC±II1VIO) lOS Output short-circuit current ICC Total supply curent 38 VO~O No load, 8 mA is mA 110 dB VOl ~ 10 V peak, I ~ 1 kHz V01N02 Crosstalk attenuation .. tAli charactenslJcs are measured under open-loop conditions With zero common-mode Input voltage unless otherwise specified. Full range for T A is O°C to 70°C for NE5532/NE5532A and - 40°C to 85°C lor NE55321/NE5532AI. operating characteristics, VCC± =±15 V, TA =25°C NE5532/NE55321 PARAMETER SR TEST CONDITIONS MIN Slew rate at unity gain Overshoot factor VI ~ 100mV, RL~600Q, ~ AVD~ 1, CL ~ 100 pF TYP MAX NE5532A/NE5532AI MIN TYP 9 9 10% 10% Vn Equivalent input noise voltage I f 30 Hz 1 kHz 8 5 8 5 In Equivalent input noise current I~ 30 Hz I -1 kHz 2.7 0.7 2.7 0.7 ~ MAX UNIT V/",s 10 S nV/v'HZ pA/v'HZ TEXAS .., INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-133 2-134 NE5534, NE5534A, SE5534, SE5534A LOW·NOISE OPERATIONAL AMPLIFIERS 02532, JULY 1979-REVISED SEPTEMBER 1990 • Equivalent Input Noise Voltage 3.5 nV/,)Hz Typ • Unity-Gain Bandwidth • Common-Mode Rejection Ratio 100 dB Typ • High DC Voltage Gain .... 100 VlmV Typ • Peak-to-Peak Output Voltage Swing 32 V Typ with VCC± = ± 18 V and RL = 600 n NE5534, NE5534A ... D OR P PACKAGE SE5534, SE5534A ... JG PACKAGE DB (TOP VIEW) 10 MHz Typ BALANCE ININ+ VCC- 2 3 4 7 6 5 SE5534, SE5534A FK CHIP CARRIER PACKAGE (TOP VIEW) ...J 13 VII's Typ • High Slew Rate • Wide Supply Voltage Range ±3 V to ±20 V COMP/BAL VCC+ OUT CaMP « al a:: • Low Harmonic Distortion • Designed to be Interchangeable with Signetics NE5534, NE5534A. SE5534. and SE5534A NC INNC IN+ NC symbol COMP----, CaMP/BALANCE - - - - , ...J U Z « al 3 2 :;;; u 0 u Z U Z 1 2019 4 18 NC 5 17 6 16 VCC+ NC OUT NC 7 15 B 14 9 1011 12 13 INVERTING INPUT IN- U Z OUTPUT NON INVERTING INPUT IN+ I U a.. u UZ:;;; Z U 0 > U BALANCE - - - - ' AVAILABLE OPTIONS TA VIO MAX AT 25°C ooe to CERAMIC CERAMIC DIP PLASTIC DIP (D) (FKj (JG) (PI NE5534D - - NE5534P NE5534AD - - NE5534AP - SE5534FK SE5534JG - - SE5534AFK SE5534AJG - 4 mV 70°C -55°C to PACKAGE SMALL OUTLINE 2 mV 125°C The D package is available taped and reeled. Add the suffix R to the device type, (e.g., NE5534DRI. SE5534A FROM TI NOT RECOMMENDED FOR NEW DESIGNS description The NE5534. NE5534A, SE5534. and SE5534A are monolithic high-performance operational amplifiers combining excellent dc and ac characteristics. Some of the features include very low noise, high output drive capability, high unity-gain and maximum-output-swing bandwidths, low distortion, and high slew rate. These operational amplifiers are internally compensated for a gain equal to or greater than three. Optimization of the frequency response for various applications can be obtained by use of an external compensation capacitor between pins 5 and 8. The devices feature input-protection diodes, output short-circuit protection, and offset-voltage nulling capability. PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. TEXAS ~ Copyright © 1990, Texas Instruments Incorporated INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-135 NE553' NE5534A, SE553' SE5534A LOW·NOISE OPERATIONAL AMPLIFIERS description (continued) For the NE5534A, a maximum limit is specified for equivalent input noise voltage. The NE5534 and NE5534A are characterized for operation from 0 °C to 70°C. The SE5534 and SE5534A are characterized for operation over the full military temperature range of - 55°C to 125°C. schematic COMPENSATION/BALANCE BALANCE NONINVERTING INPUT IN+ INVERTING INPUT IN- COMPENSATION ~.....--4'---4--, ----I 15 !l OUTPUT 15 !l All component values shown are nominal. absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, VCC + (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 V Supply voltage, VCC _ (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 22 V Input voltage either input (see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. VCC + Input current (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 10 mA Duration of output short-circuit (see Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. unlimited Continuous total power dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . .. See Dissipation Rating Table Operating free-air temperature range: NE5534, NE5534A . . . . . . . . . . . . . . . . . . . . .. ooC to 70°C SE5534, SE5534A .................. - 55°C to 125°C Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65°C to 150°C Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package ........... 300°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package. . . . . . . .. 260°C NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between Vee + and Vee _. 2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage. 3. Excessive current will flow if a differential input voltage in excess of approximately 0.6 V is applied between the inputs unless some limiting resistance is used. 4. The output may be shorted to ground or either power supply. Temperature and/or supply voltages must be limited to ensure the maximum dissipation rating .is not exceeded. TEXAS • INSTRUMENTS 2-136 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 NE5534, NE5534A, SE5534, SE5534A LOW·NOISE OPERATIONAL AMPLIFIERS DISSIPATION RATING TABLE PACKAGE TA :5 25°C DERATING FACTOR TA - 70°C POWER RATING ABOVE TA - 25°C 5.8 mW/oC POWER RATING 464 mW N/A 11.0 mW/oC 880 mW 275 mW a 725 mW TA - 125°C POWER RATING FK (see Note 51 1375 mW JG 1050 mW 8.4 mW/oC 672 mW 210 mW P 1000 mW 8.0 mW/oC 640mW N/A NOTE 5: For the FK package, power rating and derating factor will vary with actual mounting technique used. The values stated here are believed to be conservative. recommended operating conditions MIN NOM MAX UNIT Supply voltage, V cc + 5 15 V Supply voltage, V CC- -5 -15 V electrical characteristics. Vee ± ± 15V.TA TEST CONDITIONS t PARAMETER Via Input offset voltage 110 Input offset current liE Input bias current 25°C (unless otherwise noted) RS = 0, = 50!l Va = 0 Va = 0 Va TA TA TA TA TA TA = = = = = = VOpp output voltage swing Large-signal differential Ava voltage amplification Small-signal differential AVd voltage amplification RL ;,,; 600!l Va = RL ;,,; 600!l ± 10 V, f = Va 10 kHz = = 25°C 32 30 32 25 100 50 100 TA Cc Cc Cc Input resistance Common-mode Va RS rejection ratio (LlVCC/LlVIOI Output short-circuit lOS ICC CL = full range =a = 22 pF =0 = 22 pF = ±14 V, = 22 pF = 100 pF 15 RL f = VIC = 600!l, = VICR min, VCC+ = ±9 V to ± 15 V, Va = 0, Rs = 50 !l 6 2.2 2.2 200 200 95 70 70 Va = 0 TA TA = = mV nA nA V V/mV V/mV kHz MHz 100 k!l 0.3 !l 70 100 80 100 dB 80 100 86 100 dB 38 mA 38 No load, UNIT V 10 50 100 current Supply current 95 0.3 10kHz 800 25 6 10 30 rejection ratio Supply voltage kSVR = 200 1500 30 Cc = 22 pF, = 0, = 50!l 400 VCC+ = ±18 V TA = 25°C VCC+ Unity-gain bandwidth Cc 1500 2000 26 81 CMRR 500 25°C full range 2 500 ±13 ri Output impedance 10 300 400 24 VCC± = ±18V,VO RL = 600 !l, Cc Zc 20 full range MAX 3 ±12 Cc 30 dB, 0.5 5 26 ±10 V, = 4 ±13 bandwidth Ava 0.5 TYP 24 ±10 V, 22 pF, MAX ±12 Va = TYP ± 15 V Maximum-output-swing 80M MIN 25°C input voltage range Maximum peak-to-peak SE5534, SE5534A MIN full range Common-mode VICR NE5534, NE5534A 25°C full range 4 8 4 6.5 9 mA t All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range is T A = O°C to 70°C for NE5534 and NE5534A and - 55°C to 125°C for SE5534 and SE5534A. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-137 NE553~ NE5534A, SE553~ SE5534A LOW·NOISE OPERATIONAL AMPLIFIERS operating characteristics, VCC± == ± 15 V, TA == 25°C PARAMETER TEST CONDITIONS Cc = 0 Cc = 22 pF YI = 50 mY, Slew rate at SR unity gain Rise time tr tr Yn In F RL = Overshoot factor CL Rise time YI = 100 pF = 50 mY, RL = 600 = 500 pF Overshoot factor CL Equivalent input f noise voltage f Equivalent input f noise current f Average noise figure RS = = = = 600 D, n. SE5534, NE5534 MIN TYP SE5534A, NE5534A MAX MIN TYP 13 13 6 6 20 20 20% 20% 50 50 35% 35% AYD = 1, Cc = 22 pF, AYD = 1, Cc = 47 pF, Y/I'.8 ns ns 30 Hz 7 5.5 7 1 kHz 4 3.5 4.5 30 Hz 2.5 1.5 1 kHz 0.6 0.4 = 5 kD, f = 10Hz to 20 kHz UNIT MAX nY/..{HZ pA/..{HZ 0.9 dB TYPICAL CHARACTERISTICS t NORMALIZED INPUT BIAS CURRENT and INPUT OFFSET CURRENT vs FREE·AIR TEMPERATURE ...c ~ ::I u 1.6 :::o 1.4 ...5l ... 1.2 '\. :; I~ u IG ... 0.8 ~ ~~ c 0.6 .~ Cii E 5 z 0.4 -75 -50 -25 0 ee n 25 ec=o 1\ \ 50 "" 75 CC= 47 ......... ~ " 100 125 ~ k~I~~ V 15 ::I Co "5l I 20 ~~~ ~ Vee± - ±15 V TA = 25°C 25 ~ ~c 103 ~ ~ ...i5 10 2 I 0 10 > .~ -{.G 0.9 ::> ~ ~ 1 10 1.2 :>! 3: Vcc±= ±15 V TA = 25°C ] :J co a: .,./' 0.8 '" Vi l\ ] I~ I .!::! 2 0.4 o I\. 10 M 100 M ",«' A:~~ "2 G~\~ U~\"{'l ~\O"{\-\ "tl c I--~~~°V-V !- TOTAL HARMONIC DISTORTION vs I ~ ~ 0.8 I / 20 FIGURE 4 NORMALIZED SLEW RATE and UNITY-GAIN BANDWIDTH 'i 15 10 IVcc± I-Supply Voltage-V FIGURE 3 .s= ~ V V c,," 0.7 ~ yo. ~O 'Q~ 3: 0.0,(\ 10 k 100 k 1 M r--- I>-\~ -U~\-( ~\O:.....- S~/ .g P t-V~CI± ~'i15Iv t- AVO = 1 0.007 t-Vl(rms) = 2 V t-TA = 25°C V 0 ~ i5 .~ V 0.004 1i c r-- ~ 0 E '" :I: ~ ...0 iO l- / _I-'" 0.002 I 0 :I: I- -75 -50 -25 0 25 50 75 100 125 0.001 100 400 T A-Free-Air Temperature-°c 1k 4k 10 k 40 k 100 k f-Frequency-Hz FIGURE 5 FIGURE 6 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-139 NE553' NE5534A, SE553, SE5534A lOW·NOISE OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS EQUIVALENT INPUT NOISE VOLTAGE vs, FREQUENCY 10 Vee± = ±15 V TA = 25°e 1\ f'\.. 4 ll: '0 Co 4 SE5534 NE5534 :; -.l.i.lll . l-.lilllill LU 1 Co) 2 lWlll 1U " "" I ~ -.llWlIi z... .:... c 2 1lill SE5534A:' N E5534A II Cii .:! ::s tT w I > '5 tT w 0.2 .E 1 10 100 1k 10 k 11111 0.4 Q) Cii I c 0.7 Co ~ > 1\ SE5534, NE5534 ::s ::s Co c 'i: 1\ \ ll: '0 SEs'534A~ NE5534A z... 0.1 10 100 k 1k 100 f-Frequency-Hz f-Frequency-Hz FIGURE 7 FIGURE 8 >:£. I Q) CI to .1:: 0 > Q) til '0 z ...::s .E ...c TOTAL EQUIVALENT INPUT NOISE VOLTAGE vs SOURCE RESISTANCE 100 70 r=Vee+ - +15 V 40 ~TA=25°e 20 10 7 Q) ~'+' of}; 4 1-'1) ,,~-?'V 2 ... 9 1 0.7 w 0.4 iO 0.2 I - 0 I- 0.1 100 ~1- V b<'+' ",0 ~1f\)~ ~f}; iO > '5 tT V ~1- Co ... " 1k 10 k 100 k Rs-Source Resistance-,Q FIGURE 9 TEXAS ~ INSTRUMENTS 2-140 Vcc+ = +15 V TA = 25°e , 7 ...cI Ul I' ....... 10 ~......« 11111 '\ 7 EQUIVALENT INPUT NOISE CURRENT vs FREQUENCY POST OFFICE BOX 655303 • DALLAS. TEXAS 7.265 1M 10 k 100 k OP07C,OP07D,OP07Y LOW·OFFSET VOLTAGE OPERATIONAL AMPLIFIERS OCTOBER • • • • • • Low Noise OS o OR P PACKAGE (TOP VIEW) No External Components Required Replaces Chopper Amplifiers at a Lower Cost OFFSET N1 Single-Chip Monolithic Fabrication Wide Input Voltage Range o to ±14 VTyp OFFSET N2 ININ+ 2 3 7 6 VCC+ OUT VCC- 4 5 NC NC-No internal connection symbol Wide Supply Voltage Range ±3Vto±18V OFFSETN1 • Essentially Equivalent to Fairchild f.lA714 Operational Amplifiers IN + • Direct Replacement for PMI OP07C and OP07D IN- 3 OUT OFFSETN2 2 8 description These devices represent a breakthrough in operational amplifier performance. Low offset and long-term stability are achieved by means of a low-noise, chopperless, bipolar-input-transistor amplifier circuit. For most applications, external components are required for offset nulling and frequency compensation. The true differential input, with a wide input voltage range and outstanding common-mode rejection, provides maximum flexibility and performance in high-noise environments and in noninverting applications. Low bias currents and extremely high input impedances are maintained over the entire temperature range. The OPO? is unsurpassed for low-noise, high-accuracy amplification of very low-level signals. These devices are characterized for operation from O°C to ?O°C. AVAILABLE OPTIONS PACKAGE TA Vlomax at 25°C O°C to 70°C 150 !tV SMALL OUTLINE (0) PLASTICOIP (P) OP07CD OP07DD OP07CP OP07DP CHIP FORM (Y) OP07Y The D package IS available taped and reeled. Add the suffiX R to the device type (e.g .• OP07CDR). The chip form (Y) is tested at TA = 25°C. PRODUCTION DATA InformaHon Is current .s of publication dale. Products conform 10 specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily Include tesllng of all parameters. TEXAS ~ Copyright © 1991. Texas Instruments Incorporated INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-141 OP07Y LOW-OFFSET VOLTAGE OPERATIONAL AMPLIFIERS chip information These chips, properly assembled, display characteristics similar to the OP07. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform. OFFSETN1 IN+ BONDING PAD ASSIGNMENTS OUT IN- r---------------------------------------~--~ OFFSETN2 ~__~ VCC- CHIP THICKNESS: 15 TYPICAL BONDING PADS: 4 x 4 MINIMUM T Jmax ~72 - =150·C TOLERANCES ARE ± 10% ALL DIMENSIONS ARE IN MILS ;; -:: • PIN (4) INTERNALLY CONNECTED TO BACKSIDE OF CHIP .. + ~ ~ 94 111111111'11111"1111111111111111111111111111111111"111111111111111111111111111111111111111111 TEXAS ~ INsmUMENTS 2-142 POST OFFICE BOX 655303 • DALLAS. TEXAS 75285 OP07C, OP07D LOW·OFFSET VOLTAGE OPERATIONAL AMPLIFIERS schematic 7 VCC+ OFFSETN1 OFFSET N2 B 6 OUT IN + 3 2 IN- Component Count: Resistors - 2B Transistors - 39 Capacitors - 4 absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, Vcc+ (see Note 1) ........................................................... 22 V Supply voltage, Vcc- .................................................................... -22 V Differential input voltage (see Note 2) ...................................................... ±30 V Input voltage, VI (either input, see Note 3) ................................................... ±22 V Duration of output short circuit (see Note 4) ............................................... unlimited Continuous total dissipation at (or below) 25°C free-air temperature (see Note 5) ............... 500 mW Operating free-air temperature range, T A .............................................. O°C to 70°C Storage temperature range ....................................................... -65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................... 260°C NOTES: 1. 2. 3. 4. 5. All voltage values, unless otherwise noted, are with respect to the midpoint between VCC+ and VCC-. Differential voltages are at the non inverting input terminal with respect to the inverting input terminal. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less. The output may be shorted to ground or either power supply. For operation above 64'C free-air temperature, derate the D package to 464 mW at 70'C at the rate of 5.8 mW/'C. recommended operating conditions Supply voltage, VCC± Common-mode input voltage, VIC LVCC±=±15V Operating free-air temperature, TA MIN MAX UNIT ",3 ±18 V -13 13 V 0 70 'c TEXAS • INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-143 ~ ...... OP07C PARAMETER "0 en .... 0_ Input offset vottage VO=O, RS =50Q aVIO Temperature coefficient of input offset voltage VO=O, RS=50Q Long-term drift of input offset voltage See NoteS Offset adjustment range RS= 20kQ, 110 Input offset current aliO Temperature coefficient of input offset current liB Input bias current aliB Temperature coefficient of input bias current VICR 25°C See Figure 1 YOM RL=2kQ 150 85 250 0.7 2.5 0.5 ±4 25°C 0.8 S 0.8 S O°C to 70°C 1.S 8 1.5 8 O°Cto 70°C 12 50 12 50 ±4 25°C ±1.8 ±7 +2 +12 ±2.2 ±9 ±3 ±14 18 50 18 50 ±13 ±11.5 ±14 ±13 ±13.5 ±13' ±12.8 !lV 'TIO en"'C me:> -t ....... 'TI~' !lVrC nA ±13.5 ±12 ±13 ±11.5 ±12.8 pA/oC ±11 ±12.S 25'C 100 400 25'C 120 400 120 400 pA/oC i V/mV 100 400 100 400 0.4 O.S 0.4 O.S MHz [j Input resistance 25'C MQ CMRR Common-mode rejection ratio kSVS Supply voltage sensitivity (1..vlolINCC) PD Power dissipation VIC = ±13 V, RS= 50Q VCC±=±3Vto±18V, RS= 50Q VO=O, No load VCC±=±3V, No load VO=O, 31 110 97 120 94 lOS I 7 32 7 32 O°C to 70°C 10 51 10 51 80 150 80 150 4 8 4 8 dB I I fJ.VN I i mW I""" ::;:; m ::a en I 25°C 25°C o:z: "'C 25°C 7 !f l> 15: ! O°C to 70°C 94 m ::a I""" Unity-gain bandwidth 33 ! V Bl 120 m l> 400 8 G) "'C , ±12.S 100 <0 o !:i :J>i o nA V ±12 O°C to 70°C 25'C OOG to 70°C i ±14 ±13 ±11 " ....... On mV O°C to 70°C ±13 UNIT fJ.V / mo i 25°C ±12 Large-signal differential voltage amplification SO 1.8 25'C VO=±0.5V, MAX 250 RL" 1 kQ VO=±10V, 150 TYP 85 ±12 RL,,2kQ AVD SO MIN 0.5 O°C to 70°C VCC±= ±3V, RL,,500kQ MAX O°C to 700G O°Cto 70°C RL,,2kQ :aEe:> OP07D TYP O°Cto 70°C RL,,10kQ Peak output voltage MIN 0.4 Common-mode input voltage range ~rrJ ~ en ... fIJ OJ TA 25'C ~~ ~ ~4r TEST CONDlTIONst VIO 3l~ i~f 1"""0 O"'C electrical characteristics at specified free-air temperature, Vee ± = ±1S V (unless otherwise noted) , I t All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise noted. NOTES: Since long-term drift cannot be measured on the individual devices prior to shipment, this specification is not intended to be a warranty. ltis an engineering estimate oltho averaged trend line of drift versus time over extended periods after the first thirty days of operation. OP07C, OP07D LOW·OFFSET VOLTAGE OPERATIONAL AMPLIFIERS operating characteristics, VCC+- = ±1S V, TA = 25°C TEST PARAMETER Vn VN(PP) In IN(PP) SR CONDITIONSt Equivalent input noise voltage Peak-to-peak equivalent input noise voltage Equivalent input noise current Peak-to-peak equivalent input noise current OP07C MIN TYP OP07D MAX MIN TYP f = 10 Hz 10.5 10.5 f=100Hz 10.2 10.3 f = 1 kHz 9.8 9.8 f = 0.1 Hz to 10 Hz 0.38 0.38 f = 10 Hz 0.35 0.35 1= 100 Hz 0.15 0.15 f = 1 kHz 0.13 0.13 15 15 f=0.1 Hzto10Hz Slew rate 0.3 0.3 RL" 2 kQ t All characteristics are measured under open-loop conditions with zero common-mode Input voltage unless otherwise noted, MAX UNIT nV/VHz flV pNVHz pA V/flS TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-145 OP07Y LOW-OFFSET VOLTAGE OPERATIONAL AMPLIFIERS electrical characteristics,VCC± = ±15 V, TA = 25°C (unless otherwise noted) PARAMETER VIO TEST CONOITIONSt TYP MAX RS =50g 60 150 Long-term drift 01 input offset voltage See Note 6 0.5 Offset adjustment range RS =20kg, 110 Input offset current liB Input bias current VICR Common-mode input voltage range 0.8 ",2 Peak output voltage RLs2 kg ",13 ",14 ",12 ",13 ± 11.5 ",12.8 Large-signal differential voltage amplilication "V mV 6 nA ",12 nA V V ",12 RLs 1 kg AVD UNIT "V/mo ",4 See Figure 1 RLs10 kg YOM MIN Input offset voltage VCC±=±3V, Vo = ,,0.5 V, VO=,,10V, RL = 2 kg B1 Unity-gain bandwidth Yj Input resistance CMRR Common-mode input resistance VIC = ,,13 V, kSVS Supply-voltage rejection ratio (~Vce/~Vlo) VCC+=,,3Vto,,18V, RL s 500 kg RS = 500 400 V/mV 120 400 0.4 0.6 MHz 7 31 MO 94 110 7 RS =50g dB 32 p.VN No load 80 150 Mg No load 4 8 Vec± =,,3 V, VO=O, . . .. NOTE 6: Since long-term drift cannot be measured on the Individual devices prior to shipment, this speClllcatlon IS not mtended to be a warranty. It is an engineering estimate 01 the averaged trend line 01 drift versus time over extended periods after the lirst thirty days 01 operation. PD VO=O, Power dissipation operating characteristics, Vcc+ - =±15 V, PARAMETER Vn TA =25°C TEST CONDITIONst Equivalent input noise voltage In IN(PP) SR Peak-to-peak equivalent input noise voltage Equivalent input noise current TYP 10.5 1=1 kHz 10.3 I = 0.1 Hz to 10Hz VN(PP) MIN 1= 10 Hz 1=0.1 Hz to 10 Hz 0.38 0.35 1=100Hz 0.15 1= 1 kHz 0.13 Peak-to-peak equivalent input noise current f = 0.1 Hz to 10 Hz RL = 2 kg TEXAS ." 2-146 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 nV/V"Hz "V pA/V"Hz 15 pA 0.3 V/"s .. with zero common-mode mput voltage unless otherwise noted . t All characteristics are measured under open-loop conditions INSTRUMENTS UNIT 9.8 1= 10 Hz Slew rate MAX OP07C, OP07D LOW·OFFSET VOLTAGE OPERATIONAL AMPLIFIERS APPLICATION INFORMATION 20kQ >4--__IN + --,3'----1 Vcc+ >-__-"-6 OUT 2 IN----f Figure 1. Input Offset Voltage Null Circuit TEXAS ." INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-147 2-148 OP27A, OP27C, OP·27E, OP27G OP37A, OP37C, OP37E, OP37G LOW·NOISE, HIGH·SPEED, PRECISION OPERATIONAL AMPLIFIERS 03176, FEBRUARY 1989-REVISEO AUGUST 1991 • JG OR P PACKAGE (TOP VIEW) Direct Replacements for PMI and LTC OP27 and OP37 Series Features of OP27 A, OP27C, OP37 A, and OP37C: • Maximum Equivalent Input Noise Voltage: 3.8 nV/v'Hz at 1 kHz 5.5 nV/v'Hz at 10 Hz • Very Low Peak-to-Peak Noise Voltage at 0.1 Hz to 10Hz ... 80 nV Typ • Low Input Offset Voltage .. , 25 p.V Max • High Voltage Amplification ... 1 V/p.V Min Via T R I M D 8 IN- 2 7 IN+ 3 6 Vcc 4 5 Via TRIM Vcc+ OUT NC L PACKAGE (TOP VIEW) Via TRIM Feature of OP37 Series: • Minimum Slew Rate ... 11 V/p.s Vcc- description NC-No internal connection The OP27 and OP37 operational amplifiers combine outstanding noise performance with excellent precision and high-speed specifications. The wide band noise is only 3 nV/v'Hz, and with the 1If noise corner at 2,7 Hz, low noise is maintained for all low-frequency applications, symbol (3) IN+ (2) IN- The outstanding characteristics of the OP27 and OP37 make these devices excellent choices for low-noise amplifier applications requiring precision performance and reliability, Additionally, the OP37 is free of latch-up in highgain, large-capacitive-feedback configurations. VIO TRIM The OP27 series is compensated for unity gain. The OP37 series is decompensated for increased bandwidth and slew rate and is stable down to a gain of 5. The OP27 A, OP27C, OP37 A, and OP37C are characterized for operation over the full military temperature range of - 55°C to 125°C. The OP27E, OP27G, OP37E, and OP37G are characterized for operation from -25°C to 85°C, AVAILABLE OPTIONS TA -25°C to 85°C VIO MAX AT 25°C 25 "V 100 "v -55°C to 25 "V 125°C 100 "V STABLE GAIN PACKAGE CERAMIC DIP (JG) METAL CAN (L) - 5 - - OP37GP 1 OP27AJG OP27AL 5 1 OP37AJG OP27CJG OP37AL - 5 OP37CJG 1 5 1 OP27EP - OP37EP - OP27GP - - Copyright © 1991, Texas Instruments Incorporated PRODUCTION DATA information is current 8S of publication date. Products cenform to specifications paf the terms of Texaalnstruments standard warranty. Produmon procasslng daBS not necessarily include testing of all parameters. PLASTIC DIP (P) TEXAS "'" INSTRUMENTS POST OFFICE BOX 655303 • OALLAS, TEXAS 75265 2-149 OP27A, OP27~ OP27t OP27G OP37A, OP37C, OP37E, OP37G LOW-NOISE, HIGH-SPEED, PRECISION OPERATIONAL AMPLIFIERS schematic VIO TRIM VIO TRIM OUT ~----+-I 045 IN-~~~~~---------+-----'--~ ~-----------j tC1 = 120 pF for OP27 C1 = 150 pF for OP37 026 L---~-------e------*-----~-------------e----~-----e--~--vcc_ absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, VCC + (see Note 1) ............................................ 22 V Supply voltage, VCC _ (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 22 V Input voltage . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. VCC ± Duration of output short circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. unlimited Differential input current (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 25 mA Continuous power dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. See Dissipation Rating Table Operating free-air temperature range: OP27 A, OP27C, OP37 A, OP37C . . . . . . .. - 55°C to 125°C OP27E, OP27G, OP37E, OP37G. . . . . . . . .. - 25°C to 85 °C Storage temperature range ......................................... - 65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG or L package ........ 300°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: P package ............ 260°C NOTES: 1. All voltage values are with respect to the midpoint between VCC + and VCC _ unless otherwise noted. 2. The inputs are protected by back-to-back diodes. Current-limiting resistors are not used in order to achieve low noise. Excessive input current will flow if a differential input voltage in excess of approximately ± O. 7 V is applied between the inputs unless some limiting resistance is used. DISSIPATION RATING TABLE DERATING FACTOR PACKAGE TA:5 25°C POWER RATING JG 1050 mW L 825 mW 6.6 mW/oC P 1000 mW 8.0 mW/oC 520mW N/A ABOVE TA - 25°C 8.4 mW/oC TA - B50C POWER RATING TA - 125°C POWER RATING 546 mW 210mW 429 mW 165 mW TEXAS ~ INSTRUMENTS 2-150 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 OP27A, OP27~ OP37A, OP37C LOW·NOISE, HIGH·SPEED, PRECISION OPERATIONAL AMPLIFIERS recommended operating conditions OP27 A, OP37 A OP27C, OP37C MIN NOM MAX MIN NOM MAX Supply voltage, VCC + 4 15 22 4 15 22 V Supply voltage, VCC- -4 -15 -22 -4 -15 -22 V Common-mode input I VCC ± = ±15 V, TA = 25°C voltage, VICR I VCC± =±15V,TA= -55°C to 125°C Operating free-air temperature, T A electrical characteristics. PARAMETER VIO Input offset voltage ±11 ± 11 ± 10.3 ±10.2 -55 Vee ± 125 - 55 125 UNIT V °C ± 15 V (unless otherwise noted) TEST CONDITIONS MIN TYP MAX 10 25 25°C Vo = 0, VIC = 0 RS = 50 0, See Note 3 OP27C, OP37C OP27 A, OP37 A TA -55°C to 125°C MIN TYP MAX 30 100 60 300 UNIT ",V Average temperature -55°C to 125°C "'VIO coefficient of input 0.2 1.8 ",V/oC 0.4 2 ",V/mo 12 75 ±15 ±80 0.6 0.4 0.2 1 7 35 ±10 ±40 offset voltage Long-term drift of input offset voltage 110 118 Input offset current Input bias current See Note 4 25°C Vo = 0, VIC = 0 -55°C to 125°C Vo = 0, VIC = 0 VICR 25°C voltage range Peak output voltage VOM swing RL 2: 2 kO ± 11 -55°C to 125°C ± 10.3 ± 10.2 ±12 ±13.8 25°C RL 2: 0.6 kO ±10 ± 11.5 -55°C to 125°C ±11.5 RL 2: 2 kO AVO RL 2: 1 kO, Vo = ± 10V differential voltage RL 2: 0.6 kO, Vo = ± 1 amplification VCC = ± 4 V V. RL 2: 2 kO, Vo = ± 10 V 25°C -55°C to 125°C Output resistance CMRR Common-mode rejection ratIo 1000 1800 800 1500 250 700 600 kSVR Vo = 0,10 = 0 25°C 25°C 114 VIC = ± 10 V -55°C to 125°C 108 25°C 100 VCC+ = ±4Vto ±18V rejection ratio VCC+ = ±4.5Vto ±18V -55°C to 125°C V ±10 ± 11.5 700 V 1500 1500 200 500 VlmV 300 2 70 Supply voltage nA ± 11.5 ± 13.5 3 VIC = ± 11 V nA ± 10.5 Common-mode input ri(CM) resistance ro ± 150 ± 11 RL 2: 2 kO, Vo = ± 10 V Large-signal ±60 -55°C to 125°C Common-mode input 135 50 25°C 126 70 100 120 94 120 96 94 86 118 GO 0 d8 d8 NOTES: 3. Input offset voltage measurements are performed by automatic test equipment approximately 0.5 seconds after applying power. 4. Long-term drift of input offset voltage refers to the average trend line of offset voltage versus time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in VIO during the first 30 days are typically 2.5 ",V. See Figure 3. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TeXAS 75265 2-151 OP27E, OP37E, OP27G, OP37G LOW·NOISE, HIGH·SPEED, PRECISION OPERATIONAL AMPLIFIERS recommended operating conditions Supply voltage, Vcc + Supply voltage, VCCCommon-mode input voltage, VICR I V CC ± I VCC± = = ±15 V, TA ±15V,TA = = PARAMETER VIO Input offset voltage Vo RS NOM MAX UNIT 4 -4 15 -15 22 -22 V ± 11 25°C ± 10.5 -55°C to 125°C -25 Operating free-air temperature, T A Vee ± electrical characteristics, MIN 85 V V °C ± 15 V (unless otherwise noted) TEST CONDITIONS TA = 0, VIC = 0 = 50 0, See Note 25°C 3 OP27E, OP37E MIN TYP MAX 10 25 -25°C to 85°C OP27G,OP37G TYP MAX MIN 30 50 100 220 UNIT ",V Average temperature -25°C to 85°C oc VIO coefficient of input offset voltage Long-term drift of input offset voltage 110 liB Input offset current Input bias current See Note 4 Vo Vo = = 0, VIC 0, VIC = 25°C 0 VOM Peak output voltage =0 AVO RL'" 2 kO RL '" 0.6 kO 0.4 2 ",V/mo 7 35 12 = ±10 V VCC = 25°C ± 4 V RL '" 2 kO, Vo = ±10 V -25°C to 85°C 1000 1800 800 1500 250 700 750 ±15 ±40 nA V ± 10.5 ± 11.5 ±13.5 ±10 ± 11.5 ± 11 700 1500 1500 200 500 2 70 70 126 110 100 nA V V/mV 450 Vo 114 ±80 ± 150 ± 11 3 25°C = 0,10 = 0 25°C VIC = ±11 V -25°C to 85°C VIC = ± 10 V VCC± = ±4Vto ±18V 25°C VCC± = ±4.5Vto ±18V -25°C to 85°C 75 135 ±60 -25°C to 85°C ± 11.7 amplification Supply voltage kSVR rejection ratio 1 ± 11 -25°Ct085°C ± 10.5 ±12 ± 13.8 25°C ±10 ± 11.5 differential voltage Output resistance 0.2 -25°Ct085°C RL '" 1 kO, Vo = ±10 V RL '" 0.6 kO, Vo = ± 1 V, CMRR C~mmon-m~de rejection ratio ",V/oC ±10 Common-mode input rHCM) resistance ro 1.8 25°C RL '" 2 kO RL'" 2 kO, Vo Large-signal 0.4 50 25°C voltage range swing 0.6 -25°C to 85°C Common-mode input VICR 0.2 100 120 96 120 97 94 90 118 GO ° dB dB NOTES: 3. Input offset voltage measurements are performed by automatic test equipment approximately 0.5 seconds after applying power. 4. Long-term drift of input offset voltage refers to the average trend line of offset voltage versus time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in VIO during the first 30 days are typically 2.5 ",V. See Figure 3. TEXAS ~ INSTRUMENTS 2-152 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 OP27A, OP27~ OP27E, OP27G OP37A, OP37C, OP37E, OP37G LOW-NOISE, HIGH-SPEED, PRECISION OPERATIONAL AMPLIFIERS OP27 operating characteristics over operating free-air temperature range, VCC± ... ± 15 V PARAMETER SR VNPP Vn In GBW Slew rate at unity gain AVD 2: 1, RL 2: 2 kn Peak-to-peak equivalent f input noise voltage See Figure 34 Equivalent input noise voltage Equivalent input noise current Gain bandwidth product OP27 A, OP27E TEST CONDITIONS f f f f f f f = 0.1 Hz to 10 Hz, RS = MIN 1.7 100 n, = 10Hz, RS = 100 n, = 30 Hz, RS = 100 n = 1 kHz, RS = 100 n = 10Hz, See Figure 35 = 30 Hz, See Figure 35 = 1 kHz, See Figure 35 = 100 kHz OP27C, OP27G TYP 2.8 MAX 0.08 TYP 2.8 MAX 0.18 0.09 0.25 3.5 5.5 3.8 3.1 4.5 3.3 8 5.6 3.0 3.8 1.5 1.0 4 2.3 3.2 1.5 0.4 0.6 5 8 MIN 1.7 V/p.s 5 p.V nV/..jHz 4.5 pA/..jHz 1.0 0.4 UNIT 0.6 8 MHz OP37 operating characteristics over operating free-air temperature range, V CC ± ... ± 15 V PARAMETER SR VNPP Vn In GBW Slew rate at unity gain Peak-to-peak equivalent AVD 2: 5, RL 2: 2 kn f = 0.1 Hz to 10Hz, RS input noise voltage See Figure 34 Equivalent input noise voltage Equivalent input noise current Gain bandwidth product OP37A, OP37E TEST CONDITIONS = 10 Hz, RS = 100 n = 30 Hz, RS = 100 n f = 1 kHz, RS = 100 n f = 10Hz, See Figure 35 f = 30 Hz, See Figure 35 f = 1 kHz, See Figure 35 f = 10 kHz AV 2: 5, f = 1 MHz = MIN TYP 11 17 100 n, 0.08 OP37C, OP37G MAX MIN 11 TYP MAX 17 V/p.s 0.18 0.09 0.25 f 3.5 5.5 3.8 f 3.1 4.5 3.3 8 5.6 3.0 3.8 3.2 4.5 1.5 4 1.5 1.0 2.3 1.0 0.4 0.6 0.4 45 63 40 45 63 40 UNIT p.V nV/..jHz pA/..jHz 0.6 MHz TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-153 OP27A, OP27C, OP27E, OP27G OP37A, OP37C, OP37E, OP37G LOW·NOISE, HIGH·SPEED, PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS table of graphs FIGURE VIO I nput offset voltage vs Temperature vs Time after power-on ll.VIO Change in input offset voltage 110 Input offset current vs Temperature liB Input bias current Common-mode input voltage range vs Temperature vs Supply voltage VICR VOM vs Time (long-term drift) Maximum peak output voltage vs Load resistance VOPP Maximum peak-to-peak output voltage vs Frequency AVO Differential voltage amplification vs Load resistance CMRR Common-mode rejection ratio vs Frequency vs Frequency kSVR Supply voltage rejection ratio vs Frequency SR Slew rate vs Supply voltage 4>m 4> Phase margin vs Load resistance vs Temperature Phase shift vs Frequency vs Supply voltage vs Temperature vs Bandwidth vs Source resistance Vn Equivalent input noise voltage vs Supply voltage vs Temperature vs Frequency In GBW Equivalent input noise current vs Frequency Gain bandwidth product vs Temperature lOS ICC Short-circuit output current vs Time Supply current vs Supply voltage Pulse response Small-signal Large-signal TEXAS ~ 2-154 INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 1 2 3 4 5 6 7 8, 9 10 11 12,13,14 15 16 17 18 19 20,21 12, 13 22 23 24 25 26 27 20, 21 28 29 30, 32 31,33 OP27A, OP27C, OP27E, OP27G OP37A, OP37C, OP37E, OP37G LOW·NOISE, HIGH·SPEED, PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt INPUT OFFSET VOLTAGE OF REPRESENTATIVE UNITS vs FREE-AIR TEMPERATURE WARM-UP CHANGE IN INPUT OFFSET VOLTAGE vs ELAPSED TIME 100 VCC± - >::I.. ±15 V 80 >::s. .. I CI !!! ... .. "0 60 40 > 20 II) 0 ~ 0 .. OP27A/37A ........ ~~~ ~~ -20 ::I ~ .J,.....oOi .5 -40 I - ... .. > I II) ~ ,., - ----....... > 6P27CP/GP OP37CP/GP 0 t---.... ./ ::I -........... ~ .5 .5 5 .. .. CI C .......... J: U ?P27C,'37C I -80 0 -100 -50 -25 '> ~; ~ 0.2 ~V/",O 4 2 ./ ~ .5 c .; -2 CI Ii c3I o -4 ~ -~ ...... - o 234 - ......... '- - ~ - - 0.2 p.V/ 1 -~ rno '> I 18 121----+_ Q) '" III >I 8r------r---~_7~~--~----~ .1: 4 r------b~;.._ J::: .... VCC± - ±15 V TA - 25°C I 16 > Q. :I 14 f-PO!ITI!E SWING l..... 12 E 8 "" 10 E :I E 8 III :. -41-----~~ -81-----4----/-~~~--~----~ -121----+-16~----~------~----~~~~ o ±5 ±10 ±15 Vcc+ -Supply Voltage-V ±20 'iii III ::iE I ::iE 0 > 6 4 ""~ V' ~I.-' 0 0 I 0 :I Q) c~ 75 100 125150 MAXIMUM PEAK OUTPUT VOLTAGE vs ~ 50 Figure 5 COMMON-MODE INPUT VOLTAGE RANGE LIMITS :::i 25 TA -free-Air Temperature- °C Figure 4 ..E JtH OP27A/E OP37A/E o -75 -50 -25 0 25 50 75 100 TA-free-Air Temperature- °C OP27C/G OP37C/G j/)~ ~ NEGATIVE SWING h ~ 2 o 10 0.1 RL -Load Resistance-k!1 Figure 7 Figure 6 tOata for temperatures below -25°C and above 85°C are applicable to the OP27A, OP27C, OP37A, and OP37C only. ~ TEXAS INSTRUMENTS 2-156 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 I, OP27A, OP27C, OP27E, OP27G OP37A, OP37C, OP37E, OP37G LOW·NOISE, HIGH·SPEED, PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS OP27 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY > I 28 OP37 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY > Vee± - ±15 V RL - 1 kO TA - 25 0 e 8. l! 24 ~ o ... i ~ ~ S 12 : 8 Q. E \r--. :I 4 :I .~ ::E 10 k 4 as "...... ::E .......... 0 1k t \ 012 as :. 8 E ~ I 100 k 1M f- Frequency - Hz 10 M t o > 0 10 k 100 k 1 M f- Frequency - Hz OP27A, OP27E,OP37A, OP37E LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs TOTAL SUPPLY VOLTAGE Vo - ±10V TA - 25°e J c ./ 2000 RL-2kO / Q. 1500 ~V 8. ~ ~ I .".. / ' ...- Vee± - ±15V Vo - ±10V TA - 25°e ~~ :EQ. 1800 ~ ~ / 1600 III 1:11 1400 > 1200 ~ o / iii .~ 1000 I!! 500 Q I ~ 800 I 600 :1 Q Q ~ 2400 ~ 2200 ~as 2000 RL - 1 kO 1000 =!c i OP27A, OP27E, OP-37A, OP-37E LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs LOAD RESISTANCE ~ ~ 2500 >I 10 M Figure 9 Figure 8 ~ Vee± - ±15 V RL - 1 kO TA - 25°e 0 16 :. I \ ! 20 So :I ... 16 as as , ;'24 ~ ~20 ! .~ 28 I III o o 10 20 30 40 50 Vee + - Vee _ - Total Supply Voltage- V ~ 400 0.1 10 RL -Load Resistance-kO 100 Figure 11 Figure 10 TEXAS . " INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-157 i, 2-158 RC4136, RM4136, RV4136 QUAD HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS • • • • • • • RM 4136 •.• J OR W PACKAGE ALL OTHERS •.. 0 OR N PACKAGE (TOP VIEW) Contlnuous·Short·Circult Protection Wide Common-Mode and Differential Voltage Ranges AMPL{ IN#1 IN + OUT No Frequency Compensation Required Low Power Consumption IN- } IN + OUT Vcc+ AMPL {OUT #2 IN + IN- No Latch-Up Unity Gain Bandwidth 3 MHz Typical AMPL #4 OUT} AMPL IN+ #3 IN- VCC- Gain and Phase Match Between Amplifiers • Designed to Be Interchangeable With Raytheon RC4136, RM4136, and RV4136 • Low Noise •.. 8 nVYHi Typ at 1 kHz RM4136 FK CHIP CARRIER PACKAGE (TOP VIEW) ~~ description ~~ Ovv '11:'11: Z'll: 'II: The RC4136, RM4136, and RV4136 are quad high-performance operational amplifiers with each amplifier electrically similar to the uA741 except that offset null capability is not provided. # 1 OUT NC #20UT NC #21N + The high common-mode input voltage range and the absence of latch-up make these amplifiers ideal for voltage-follower applications. The devices are short-circuit protected and the internal frequency compensation ensures stability without external components. 4 3 2 2019 18 5 17 #40UT NC 6 16 VCC+ 7 15 8 14 9 10 11 12 13 NC #30UT ~ 8~ ~MM~ C\I::> 'II: '11:'11: NC-No internal connection The RC4136 is characterized for operation from O°C to 70°C, the RM4136 is characterized for operation over the full military temperature range of -55°C to 125°C, and the RV4136 is characterized for operation from - 40°C to 85°C. =t>- symbol (each amplifier) Nonlnvertlng Input IN+ Inverting Input IN- + _ Output AVAILABLE OPTIONS PACKAGE TA O°Cto 70°C - 40'Cto 85°C -55'C to 125°C VIOMAX at 25°C SMALL-OUTLINE CHIP CARRIER CERAMICOIP PLASTICOIP FLAT (0) (FK) (J) (N) (W) 6mV RC4136D - - RC4136N - 6mV RV4136D - - RV4136N - 4mV - RM4136FK RM4136J - RM4136W The D packages are available taped and reeled. Add the suffix R to the device type, (e.g., RC4136DR). PRODUCTION DATA documents contain Information current ~~e~~~~~'~,ai~~~~r~:i:::~~~~ss~:~~~~~!~:fa:;'f~:~~~r:~ processing does not necessarily Include testing of all parameters. ..If INSlRUMENlS TEXAS POST OFFICE BOX 655303 • DALlAS, TEXAS 75265 Copyright © t 990, Texas Instruments Incorporated On products compliant to MIL-5TD-883, Clals B, all parameter. are tested unless otherwise n,oted. On all other products, production processing does not necessarily Include testing of alf parameters. 2-159 RC4136, RM4136, RV4136 QUAD HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS schematic (each amplifier) VCC+ ----------~._------------~._--------~._----~--------__ r_--, Nonlnvertlng __________--+______-, Input IN+ Inverting Input IN- Output VCC-----e----.~--~----------~--------~._----~--------~--~----~ absolute maximum ratings over operating free-air temperature range (unless otherwise noted) RC4136 RM4136 RV4136 UNIT Supply voltage VCC+ (see Note 1) 18 22 18 Supply voltage VCC- (see Note 1) -18 ",30 -22 ",30 -18 ",30 V V V V Differential input voltage (see Note 2) Input voltage (any input, see Notes 1 and 3) Duration of output short-circuit to ground, one amplifier at a time (see Note 4) ",15 ",.15 ",15 unlimited unlimited unlimited Continuous total dissipation See Dissipation Rating Table Operating free-air temperature range Storage temperature range Oto 70 -55to 125 -40t085 ·C -65to 150 -65t0150 -65to150 ·C 260 ·C 300 - - 260 ·C Case temperature for 60 seconds FKpackage Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds J or W package - Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds D or N package 260 NOTES: 1. 2. 3. 4. ·C All voltage values, unless otherwise noted, are with respect to the midpoint between VCC+ and VCC-. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TA,,25·C POWER RATING DERATING FACTOR DERATE ABOVETA TA =70·C POWER RATING TA=85°C POWER RATING 45°C 77·C B08mW 494mW 800mW D 800mW 7.6mWrC FK 800mW 11.0mWrC 715mW 275mW J 800mW 77°C 800mW 715mW 275mW N 800mW 11.0 mWrC 9.2mWrC 63°C 736mW 59BmW W BOOmW 8.0mWrC 50°C 640mW 520mW TEXAS .Jf INSlRUMENTS 2-1BO TA = 125°C POWER RATING POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 200mW RC4136, RM4136, RV4136 QUAD HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS recommended operating conditions MIN NOM MAX UNIT Supply voltage, VCC+ 5 15 V Supply voltage, VCC- -5 -15 V electrical characteristics at specified free-air temperature, Vcc+ RC4136 PARAMETER TEST CONDITIONSt MIN 25'C VIO Input offset voltage VO=O Input offset current VO=O liB Input bias current Vi Input voltage range Maximum peak YOM output voltage swing RL,,2kQ Large-signal differential voltage amplification VO=±10V, RL,,2kQ Bl VO=O MAX 0.5 4 5 1.50 300 140 800 ±14 RL= 10 kQ 25'C ±12 ±14 ±12 RL=2kQ 25'C ±10 ±13 ±10 Full range ±10 25'C 20 Full range 15 Supply voltage VCC=±9Vto sensitivity ± 15V, (IlVIO/tNCC) VO=O Vn Equivalent input noise voltage (closed-loop) AYD = 100, BW=lHz, f= 1 kHz, RS = 100 Q ICC Supply current (All four amplifiers) VO=O, No load Total power YO=O, No load 6 5 200 7.5 500 400 140 ±14 ±14 ±12 ±14 ±13 ±10 ±13 ±10 50 mV nA 500 1500 ±12 UNIT nA V V ±10 20 350 300 V/mV 25'C CMRR MAX 0.5 1500 ±12 VO=O, RS =50 Q TYP 500 140 500 300 MIN 6 ±14 Input resistance (All four amplifiers) 200 RV4136 TYP ±12 Unity-gain bandwith dissipation 5 MIN 25'C Common-mode rejection ratio PD 6 Full range 'i kSVS 0.5 Full range 25'C AVD MAX 7.5 25'C 110 RM4136 TYP Full range =15 V, VCC- =-15 V 15 25 3 3.5 3 MHz 25'C 0.3* 5 0.3* 5 0.3* 5 MQ 25'C 70 90 70 90 70 90 dB 25'C 30 25'C 8 150 30 150 30 150 8 8 fl.VN nVv'Hz 25'C 5 11.3 5 11.3 5 11.3 MINTA 6 13.7 6 13.3 6 13.7 MAXTA 4.5 10 4.5 10 4.5 10 340 25'C 150 340 150 340 150 MINTA 180 400 180 400 180 400 MAXTA 135 300 135 300 135 300 25'C 105 mA mW AVO = 100, Y01N02 Crosstalk attenuation f= 10kHz, 105 105 dB RS = 1 kQ * This parameter is not production tested. t All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range is O'C to 70'C for RC4136, - 55'C to 125'C for RM4136, and- 40'C to 85'C for RY4136. TEXAS ~ INSIRUMENlS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-161 RC4136, RM4136, RV4136 QUAD HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS operating characteristics, VCC+ = 15 V, VCC- =-15V, TA = 25°C RC4136, RV4136 PARAMETER tr SR TEST CONDITIONS Rise time VI ;20mV, Overshoot factor CL = 100 pF Slew rate at unity gain VI = 10V, MIN RL;2 kQ, RL = 2 kQ, CL= 100pF TEXAS ,If INSlRUMENlS 2-162 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TYP MAX RM4136 MIN TYP 0.13 0.13 5% 5% 1.7 1.7 MAX UNIT I!S V/lls RC4558, RM4558, RV4558 DUAL HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS 08 0, DB, JG, P, OR PW PACKAGE (TOP VIEW) • Continuous-5hort-Circuit Protection • Wide Common-Mode and Differential Voltage Ranges • No Frequency Compensation Required • Low Power Consumption • No Latch-Up • Unity Gain Bandwidth 3 MHz Typical • Gain and Phase Match Between Amplifiers • Low Noise ••• 8 nVVRi Typ at 1 kHz • Designed to Be Interchangeable With Raytheon RC4558, RM4558, and RV4558 AMPL { #1 OUT ININ+ VCC- 2 3 4 7 6 5 Vcc+ OUT IN- } IN+ A~~L description The RC4558, RM4558, and RV4558 are dual high-performance operational amplifiers with each half electrica"y similar to the uA741 except that offset null capability is not provided. The high common-mode input voltage range and the absence of latch-up make these amplifiers ideal for voltage-fo"ower applications. The devices are short-circuit protected and the internal frequency compensation ensures stability without external components. The RC4558 is characterized for operation from O°C to 70°C, the RM4558 is characterized for operation over the full military temperature range of -55°C to 125°C, and the RV4558 is characterized for operation from -40°C to 85°C. AVAilABLE OPTIONS TA VloMAX at 25°C PACKAGE SMAll-QUTlINE SSOP CERAMIC DIP PLASTIC DIP SSOP (D) (DBlE) (JG) (P) (PWlE) (V) RC4558PWLE RC4558Y CHIP FORM O·Cto 70°C 6mV RC4558D RC4558DBLE - RC4558P -40·C to 85°C 6mV RV4558D - - RV4558P - - -55°C to 125·C 6mV - - RM4558JG - - - The 0 package IS available taped and reele(t Add the suffiX "R" to the deVice type, (e.g., RC4558DR). The DB and PW packages are available only left-end taped and reeled. RC4558Y is tested at 25°C. See pege 2-167 for electrical characteristics. PRODUCTION DATA lnIonnoUon Is ounwnta. oIpubilesllon dale. ~ _ _ to opoc:II_ per tho Isnns 01 T.... klstJumonts slandard =~uetlon proeoosIng does not n"o"•••"lIylnclucie tasIkIg 01 all .Jf INSTRUMENTS Copyright © 1991, Texas Instruments Incorporated TEXAS POST OFFICE BOX 655303 • DAu.AS, TEXAS 75265 2-163 RC4558Y DUAL HIGH·PERFORMANCE OPERATIONAL AMPLIFIER chip information These chips, properly assembled, display characteristics similar to the RC4558, (see the RC4558Y electrical table). Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform. BONDING PAD ASSIGNMENTS VCC+ IN+ IN- ~ 2~50UT + s 1 + 7 OUT 4 - IN+ 6 IN- vCC- 59 CHIP THICKNESS: 15 TYPICAL SON DING PADS: 4 x 4 MINIMUM TJ max - 150°C TOLERANCES ARE ± 10% PIN 4 INTERNALLY CONNECTED TO SACKS IDE OF CHIP ALL DIMENSIONS ARE IN MILS ~-------------49----~--------~ 1I111111111I11111I1111111I111111111111111I11111111 TEXAS ." INSTRUMENTS 2-164 POST OFFICE BOX 655303 • OALlAS. TEXAS 75265 RC4558, RM4558, RV4558 DUAL HIGH·PERFORMANCE OPERATIONAL AMPLIFIERS schematic (each amplifier) VCC+-----------.------------~~--------~.-----~--------~---, Inverting -----------jf------, Input INNonlnvertlng Input IN+ Output VCC_---e---~~--~----------~--------~e_----~--------~--~----~ absolute maximum ratings over operating free·alr temperature range (unless otherwise noted) RC4558 RM4558 RV4558 UNIT Supply voltage VCC+ (see Note 1) 18 22 18 V Supply voltage VCC- (see Note 1) -18 -22 -18 V Differential input voltage (see Note 2) ±30 ±30 ±30 V Input voltage (any input, see Notes 1 and 3) ±15 ±15 ±15 V unlimited unlimited unlimited Duration of output short circuit to ground, one amplifier at a time (see Note 4) See Dissipation Rating Table Continuous total dissipation Operating free-air temperature range Storage temperature range Oto 70 -55to 125 -40 to 85 -65 to 150 -65 to t50 -65 to 150 Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package 260 ·C ·c 300 Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, DB, P, or PW package NOTES: 1. 2. 3. 4. ·C ·C 260 All voltage values, unless otherwise noted, are with respect to the midpOint between VCC+ and VCC-. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TAs25'C POWER RATING DERATING FACTOR ABOVE TA = 25'C DERATE ABOVETA TA=70'C POWER RATING TA=85'C POWER RATING TA = 125'C POWER RATING N/A D 680mW 5.8mWrC 33'C 464mW 377mW DB or PW 525mW 4.2mWrC 25'C 336mW N/A N/A JG 680mW 8.4 mwrc 69'C 672mW 546mW 210mW P 680mW 8.0mWrC 65'C 640mW 520mW N/A TEXAS ~ INSlRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-165 RC4558, RM4558, RV4558 . DUAL HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS recommended operating conditions MIN NOM MAX UNIT Supply voltage, VCC+ 5 15 V Supply voltage, VCC- -5 -15 V electrical characteristics at specified free-air temperature, Vcc+ PARAMETER TEST CONDITIONSt 25'C VIO Input offset voltage VO=O 110 Input offset current VO=O 118 Input bias current VO=O VICR Common-mode input voltage range RL = 10 kQ YOM Maximum output voltage swing RL=2kQ RL,,2kQ Large-signal differential voltage amplification RL,,2kQ, VO=±10V AVO RC4558 MIN TYP MIN TYP MAX 0.5 5 6 25'C 5 200 5 300 25'C 150 Full range MIN TYP 0.5 6 7.5 Full range RV4558 RM4558 MAX 0.5 Full range = 15 V, VCC- =-15 V 140 200 5 140 500 ±14 ±12 ",14 ±12 ±14 25'C ±12 ±14 ±12 ±14 ±12 "014 25'C ±10 ±13 ±10 ±13 ±10 ±13 Full range ±10 25'C 20 Full range 15 ±10 300 50 500 1500 ±12 25'C 200 500 1500 800 6 7.5 500 500 MAX UNIT mV nA nA V V ±10 20 350 300 V/mV 25 15 B1 Unity-gain bandwith 25'C 3 2 3.5 3 MHz q Input resistance 25'C 0.3 5 0.3 5 0.3 5 MQ CMRR Common-mode rejection ratio 25'C 70 90 70 90 70 90 dB kSVS Supply voltage sensitivity (AVIO/AVCC) VCC=±15V to ±9V 25'C 30 Vn Equivalent input noise voltage (closed-loop) AVO = 100, RS = 100 Q, f= 1 kHz, BW=1 Hz 25'C 8 25'C ICC Supply current (both amplifiers) No load, VO=O, Total power Po No load, VO=O, dissipation (both amplifiers) 150 30 150 30 8 150 IJ.VN nWHz 8 2.5 5.6 2.5 5.6 2.5 5.6 MINTA 3 6.6 3 6.6 6.6 MAXTA 2.3 5 2 5 3 2.3 mA 5 25'C 75 170 75 170 75 170 MINTA 90 200 90 200 90 200 MAXTA 70 150 60 150 70 150 mW I 85 85 25'C 85 V01 N 02 Crosstalk Ooen 1000 RS = 1 kQ, dB 105 105 25'C 105 attenuation I AVO = 100 f= 10 kHz .. " t All characteristics are measured under open-loop conditions With zero common-mode Input voltage unless otherwise specified. Full range IS O'C to 70'C for RC4558, -55'C to 125'C for RM4558, and -40'C to 85'C for RV4558. operating characteristics, VCC+ =15 V, VCC- =-15 V, TA =25°C Slew rate at unity gain VI =20mV, RL = 2 kQ, CL = 100 pF VI=10V, RL= 2 kQ, CL= 100pF TEXAS .JJ.J INSlRUMENTS 2-166 TYP 0.13 Rise time Overshoot SR MIN TEST CONDITIONS PARAMETER tr POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 MAX ns 5% 1.1 1.7 V/IJ.S RC4558Y DUAL HIGH·PERFORMANCE OPERATIONAL AMPLIFIER electrical characteristics, Vcc+ = 15 V, VCC- =-15 V, TA = 25°C (unless otherwise noted) PARAMETER TYP MAX VIO Input offset voltage VO=O TEST CONDITIONSt MIN 0.5 6 UNIT mV 110 Input offset current VO=O 5 200 nA lIB Input bias current VO=O 150 500 nA VICR Common-mode input voltage range YOM Maximum output voltage swing AVO Large-signal differential voltage amplification ±12 ±14 RL = 10 kg ±12 ±14 RL = 2 kg ±12 ±13 20 300 V/mV RL = 2 kg, VO=±10V V V Bl Unity-gain bandwidth 'i Input resistance CMRR Common-mode rejection ratio kSVS Supply voltage sensitivity (dVIO/dVCC) VCC=±15Vto±9V Vn Equivalent input noise voltage (closed-loop) AVO = 100, BW=1 Hz RS=100g, ICC Supply current (both amplifiers) No load, VO=O 2.5 5.6 mA Po Total power dissipation (both amplifiers) No load, VO=O 75 170 mW V01 N 02 Crosstalk attentuation I Open loop I AVO = 100 RS = 1 kg, 3 MHz 0.3 5 Mg 70 90 30 f = 1 kHz, dB 150 8 IlVN nVVHz 85 f= 10kHz dB 105 .. .. tAli charactenstlcs are measured under open-loop conditions With zero common-mode Input voltage unless otherwise specified . operating characteristics, VCC+ = 15 V, VCC- =-15 V, TA = 25°C PARAMETER tr Overshoot SR Slew rate at unity gain MIN TEST CONDITIONS Rise time VI = 20mV, VI = 10V, RL= 2 kg, CL = 100 pF = 2 kg, CL = 100 pF RL . TYP 0.13 MAX UNIT ns 5% 1.1 1.7 V/IlS .I1~ TEXAS --.:r INSlRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-167 2-168 RC4559 DUAL HIGH·PERFORMANCE OPERATIONAL AMPLIFIER D2785, OCT08ER 1983-REVISED JUNE 1988 • Matched Gain and Offset Between Amplifiers • Unity·Gain Bandwidth ... 3 MHz Min • Slew Rate ... 1.5 V/ns Min • Low Equivalent Input Noise Voltage ... 2 pV/yHz Max (20 Hz to 20 kHz) • No Frequency Compensation Required • No Latch Up • Wide Common-Mode Voltage Range • Low Power Consumption • D OR P PACKAGE (TOP VIEW) AMP #1 {~NU~ IN+ VCC- ~ ~~~+} []1 3 6 IN4 5 IN+ AMP #2 symbol (each amplifier) ~N~~~~N~RTlNG ----1(>-+- Designed to be Interchangeable with Raytheon RC4559 INVERTING INPUT IN- OUTPUT _ AVAILABLE OPTIONS SYMBOLIZATION PACKAGE DEVICE SUFFIX RC4559 D,P OPERATING VIO MAX TEMPERATURE RANGE at 25°C -O°C to 70°C 6 mV The D packages are available taped and reeled. Add the suffix R to the device type when ordering. (i.e.,RC4559DR) description The RC4559 is a dual high-performance operational amplifier. The high common-mode input voltage and the absence of latch-up make this amplifier ideal for low-noise signal applications such as audio preamplifiers and signal conditioners. This amplifier features a guaranteed dynamic performance and output drive capability that far exceeds th~t of the general-purpose type amplifiers. The RC4559 is characterized for operation from O°C to 70°C. absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage VCC + (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18 V Supply voltage VCC - (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -18 V Differential input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 30 V Input voltage (any input, see Notes 1 and 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 15 V Duration of output short-circuit to ground, one amplifier at a time (see Note 4) ......... unlimited Continuous total dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 500 mW Operating free-air temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . ... OoC to 70°C Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,..... - 65°C to 125°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ...................... 260°C NOTES: 1. All voltage values, unless otherwise noted, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between VCC + and V CC _ . 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal. 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less. 4. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded. PRODUCTION DATA documents contain information currant as of publication data, Products .onform to spa.ilicatians par the terms of Taxa. Instrumants standard warranty, Production ,racassing da.s nat nec.ssarily include tasting of all paramel.rs. ~ Copyright © 1983, Texas Instruments Incorporated TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-169 RC4559 DUAL HIGH·PERFORMANCE OPERATIONAL AMPLIFIER electrical characteristics at specified free-air temperature, Vcc+ - 15 V, Vcc- ... -15 V PARAMETER TEST CONDITIONSt ~ VIO Input offset voltage Vo 110 Input offset current Vo ~ 0 liB Input bias current VI Input voltage range VOM AVO BOM ~ Vo 0 0 RL 2: 3 kll Maximum peak RL~6001l output voltage swing Large-signal differential RL 2: 2, kll Vo ~ ±10V, voltage amplification RL~2kll TYP MAX 25 DC ODC to 70 DC 25 DC ODC to 70 DC 2 6 7.5 25 DC ODC to 70 DC 25 DC 25 DC 40 25 DC ODC to 70 DC 25 DC ODC to 70 DC VOpp ~ 20 V, Maximum output-swing bandwidth MIN RL~2kll 5 ±10 V 25°C 20 15 300 24 32 kHz MHz 25°C 3 25°C 0.3 4 1 CMRR Common-mode rejection ratio Supply voltage sensitivity 80 100 Vn Equivalent input noise voltage (closed-loop) Mil ~O 25°C Vo ~ 25°C 10 75 25°C 1.4 2 ~ Equivalent input noise current f ICC Supply current (both amplifiers) No load, No signal 20 Hz to 20 kHz AVO ~ 100, RS ~ 1 kll, f ~ 10 kHz Vol IV 02 Crosstalk attenuation V/mV Vo in nA ±10 Unity-gain bandwidth 0 nA V Input resistance AVO - 100, RS ~ 1 kll, f ~ 20 Hz to 20 kHz mV ±13 ±13 r; (AVIO/AVCC) 250 500 ±12 ±12 ±9.5 Bl kSVS 100 200 UNIT dB 25°C 25 25°C ODC 3.3 4 5.6 6.6 70°C 3 5 25°C 90 25°C 90 pVIV pV pA mA dB t All characteristics are specified under open-loop operation, unless otherwise noted. matching characteristics at Vcc+ ... 15 V, VCC- ... -15 V, TA ... 25°C PARAMETER VIO Input offset voltage 110 liB Input offset current Input bias current AVO Large-signal differential voltage amplification TEST CONDITIONS MIN TYP MAX UNIT Vo = 0 Vo ~ 0 ±0.2 mV ±7.5 nA Vo - 0 ±15 nA ±1 dB VO=±10V, RL ~ 2 kll operating characteristics, V CC + .. 15 V, V CC _ .. - 15 V, T A ... 25°C PARAMETER t, SR ~ Rise time VI Overshoot CL = 100 pF Slew ,ate at unity gain 20 mV, VI~10V, TEST CONDITIONS RL = 2 kll, TYP 80 MAX UNIT I's 18% RL = 2 kll, CL = 100 pF TEXAS • INSTRUMENTS 2-170 MIN POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1.5 2 VII'S n022e, n022M DUAL LOW-POWER OPERATIONAL AMPLIFIERS D1661, SEPTEMBER 1973-REVISED SEPTEMBER 1990 • Very Low Power Consumption TL022M ... JG PACKAGE TL022C ... 0 OR P PACKAGE • Power Dissipation with ± 2-V Supplies ... 170 pW Typ (TOP VIEW) • Low Input Bias and Offset Currents • Output Short-Circuit Protection • Low Input Offset Voltage • Internal Frequency Compensation • Latch-Up-Free Operation • Popular Dual Op Amp Pinout A#~P{?NU~[]1 ~ ~3~}+ IN+ VCC- 3 4 6 5 IN IN+ AMP #2 TL022M ... U FLAT PACKAGE (TOP VIEW) NC NC AMP {OUT #1 ININ+ VCC- -...._ _....r- TL022M IS NOT RECOMMENDED FOR NEW DESIGNS VCC+ OUT} AMP IN#2 IN+ NC - No internal connection description The TL022 is a dual low-power operational amplifier designed to replace higher power devices in many applications without sacrificing system performance. High input impedance, low supply currents, and low equivalent input noise voltage over a wide range of operating supply voltages result in an extremely versatile operational amplifier for use in a variety of analog applications including battery-operated circuits. Internal frequency compensation, absence of latch-up, high slew rate, and output short-circuit protection assure ease of use. symbol (each amplifier) NONINVERTING=!>INPUT IN+ + INVERTING _ OUTPUT INPUT IN- The TL022C is characterized for operation from o °C to 70°C. The TL022M is characterized for operation over the full military temperature range of - 55°C to 125°C. AVAILABLE OPTIONS TA PACKAGE VIO MAX AT 25°C SMALL OUTLINE CERAMIC DIP PLASTIC DIP CERAMIC FLAT PACK (D) (JG) (P) (UI 5 mV TL022CO - TL022CP - 5 mV - TL022MJG - TL022MU O°C to 70°C - 55°C to 125°C The 0 package is available taped and reeled. Add the suffix R to the device type, (i.e. TL022CORI. PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications par the term. of Te.a. Instruments standard warranty, Production processing doas not necessarily includo tasting of aU paramoters. ~ Copyright © 1990, Texas Instruments Incorporated TEXAS INSTRUMENTS POST OFFICE BOX 655303 • OALLAS. TEXAS 75265 2-171 n022e, n022M DUAL LOW·POWER OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free· air temperature range (unless otherwise noted) TL022C 18 Supply voltage VCC + (see Note 1) Supply voltage Vec _ (see Note 1) Differential input voltage (see Note 2) Input voltage (any input, see Notes 1 and 3) Duration of output short'circuit (see Note 4) Continuous total dissipation UNIT V -18 22 -22 ±30 ±30 V ±15 unlimited ±15 V V unlimited See Dissipation Rating Table o to 70 Operating free-air temperature range Storage temperature range -65 to 150 Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds NOTES: 1. 2. 3. 4. TL022M J JG or U package I D or P package - 55 to 125 -65 to 150 300 DC DC °C °C 260 All voltage values, unless otherwise noted, are with respect to the midpoint between VCC + and VCC _. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less. The output may be shorted to ground or either power supply. For the TL022M only, the unlimited duration of the short-circuit applies at (or below) 125°C case temperature or 75°C free-air temperature. DISSIPATION RATING TABLE PACKAGE TA :s 25°C POWER RATING DERATING DERATE ABOVE TA 33°C TA - 70°C POWER RATING D 680 mW FACTOR 5.8 mW/oe JG 680 mW 8.4 mW/oe 69°C 672 mW P 680 mW 675 mW 8.0 mW/oe 5.4 mW/oe 65°C 640mW 25°C 432mW U TA - 125°C POWER RATING 464mW 210 mW 135 mW recommended operating conditions MIN Supply voltage, Vec+ 5 -5 Supply voltage, Vee- TEXAS 2-172 + INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 NOM MAX UNIT 15 -15 V V n022e, n022M DUAL LOW-POWER OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature. Vee + PARAMETER VIO 110 118 Input offset voltage Input offset current Input bias current Vo = 0, VOpp AVO Bl CMRR kSVS lOS ICC Po 1 25°C Vo = 0 15 Full range 100 Full range ±12 Full range ±12 Maximum peak-to-peak RL = 10 kO 25°C 20 RL 2: 10 kO Full range 20 Large·signal differential RL2: 10kO, 25°C 60 voltage amplication Vo = ±10V Full range 60 25°C rejection ratio RS = 500 Supply voltage sensitivity VCC = ± 9 V to ±15 V, (~VIO/~VCC) noise voltage 1 5 5 40 100 250 ±13 50 60 Full range 60 100 250 ±12 ±13 26 20 26 72 86 0.5 60 30 200 30 200 nA MHz 72 dB 60 25°C nA d8 66 72 mV V 20 80 UNIT V ±12 Full range RS = 500 MAX 6 80 0.5 25°C VIC = VICR min, 5 TYP 400 25°C Unity-gain bandwidth MIN 200 25°C Vo = 0 TL022M MAX 7.5 output voltage swing Common-mode TYP 25°C input voltage range Equivalent input Vn MIN Full range RS = 500 Common-mode VICR TL022C TEST CONDITIONSt -15 V 15 V. Vee- 150 150 ~V/V AVO = 20 dB, B = 1 Hz, 25°C nV/JHz 50 50 f = 1 kHz Short-circuit output current 25°C ±6 Supply current No load, 25°C 130 (both amplifiers) Vo = 0 Full range Total dissipation No load, 25°C (both amplifiers) Vo = 0 Full range ±6 130 250 250 3.9 mA 250 250 3.9 7.5 7.5 6 6 p.A mW t All characteristics are measured under open·loop conditions with zero common-mode input voltage unless otherwise specified. Full range for TL022C is O°C to 70°C and for TL022M is - 55°C to 125°C. operating characteristics. Vee + = 15 V • Vee PARAMETER tr SR = - 15 V. T A TEST CONDITIONS Rise time VI = 20 mV, RL = 10 kO, Overshoot factor CL = 100 pF, See Figure 1 VI=10V, RL = 10 kO, CL = 100 pF, See Figure 1 Slew rate at unity gain MIN TYP 0.3 MAX UNIT p.s 5% 0.5 VII'S TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-173 n022e, n022M DUAL LOW-POWER OPERATIONAL AMPLIFIERS PARAMETER MEASUREMENT INFORMATION TYPICAL CHARACTERISTICS TOTAL POWER DISSIPATED vs ' SUPPLY VOLTAGE LV, t INPUT -~ V ----OV INPUT VOLTAGE WAVEFORM 10 7 CL = 100pF * No load No signal 4 TA = 25°e OUTPUT ~ s:E I c: 2 0 V '';;; co RL Co = 10 Hl .~ C -- / 1 0.7 ,/ V ]i .,1- 0 I- I 0 TEST CIRCUIT 0.4 c.. / 0.2 I J 0.1 0 2 4 8 10 12 14 16 18 20 IVee± I-Supply Voltage-V FIGURE 1. RISE TIME. OVERSHOOT FACTOR. AND SLEW RATE schematic 6 FIGURE 2 OUTPUT r------------I rl-~~ro~-l EACH AMPLIFIER AMPLIFIERS VCC+ I I I - - - - - - - - - - - - - - - l - - - I H - - + - - _ - - I - - - - - - j - - - + - -} TO OTHER AMPLIFIER INVERTING INPUT IN- NON INVERTING INPUT IN+ -t--+---+----' I I I I I IL _______________ L--___*-~-~..-----.......- + + t - - -........___*--__+!__+_- VCC~ TO OTHER SECTION TEXAS • INSTRUMENTS 2-174 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 Tl031 , Tl031A ENHANCED JFET lOW-POWER lOW-OFFSET OPERATIONAL AMPLIFIERS D3151, JULY 1988 - REVISED FEBRUARY 1991 • Maximum Offset Voltage ..• 800 IJ.V • Very Low Power Consumption ... 6.5 mW Typ • High Slew Rate ... 2.9 V/IJ.S Typ • Output Short-Circuit Protection • Low Input Bias Current •.. 2 pA Typ FK PACKAGE (TOP VIEW) 0, JG, or P PACKAGE (TOP VIEW) OFFSET Nl IN IN + VCC _ US 2 7 3 6 4 5 LPACKAGE (TOP VIEW) o~ooo ZZZZZ NC VCC + OUT OFFSET N2 3 NC INNC IN + NC 1 2 20 19 4 18 NC 5 17 6 16 VCC + NC OUT NC 7 15 8 14 9 10 11 12 13 o 10 C\J 0 Z OZ Z Pin 4 (L Package) is in electrical contact with the case Z 0 > NC - No internal connection description The TL031 and TL031A operational amplifiers incorporate well-matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit. These devices offer the significant advantages of Texas Instruments new enhanced JFET process. This process affords not only low initial offset voltage due to the on-chip zener trim capability but also stable offset voltage over time and temperature. In comparison, traditional JFET processes are plagued by significant offset voltage drift. This new enhanced process still maintains the traditional JFET advantages of fast slew rates and low input bias and offset currents. These advantages, coupled with low power consumption, make the TL031 wellsuited for new state-of-the-art designs as well as existing deSign upgrades. The TL031 has been designed to be functionally compatible and pin compatible with the TL061. DISTRIBUTION OF TL031A INPUT OFFSET VOLTAGE 16r---~--~----~--~--~----' 14 AVAILABLE OPTIONS PACKAGE TA VIO max SMAllAT 2SoC OUTLINE (D) CHIP CARRIER (FK) CERAMIC DIP (JG) METAL CAN (l) - PLASTIC DIP (P) O°C O.8mV TL031ACD TL031ACP to 1.5 mV TL031CD TL031CP 70°C - 40°C O.8mV TL031AID TL031AIP to 1.5mV TL0311D TL0311P 85°C -55°C O.8mV TL031AMD TL031AMFK TL031AMJG TL031AML TL031AMP to TL031ML TL031MP 125°C 1.5 mV TL031MD TL031MFK TL031MJG D packages are available taped and reeled. Add "R" suffix to device type (e.g., TL031 CDR). - 'JI. 12 1433 Units tested VCC ± ± 15 V --1---1---1-----1 TA = 25°C P Package -+--F±.;;""RH----j-----I I .~ 101----l----mY4i#!4i4ibl----l----I 08F1.ai ::> 8. sc 6 ~ d: 41--I4i.f 2 o -900 PRODUCTION DATA docum.nts contain information current as 01 publication date. Products conform to splcUieations perthe terms onnas Instruments standard warranty. Production proulting dOli not necessarily include testing of all parameters. = TEXAS ~ INsrRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 -600 -300 o 300 600 VIO -Input Offset Voltage -I1V 900 Copyright © 1991. Texas Instruments Incorporated 2-175 TL031 , TL031A ENHANCED JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS description (continued) Two offset voltage grades are available: TL031 (1.5 mV max) and TL031A (800 lLV max). A variety of available packaging options includes small-outline and chip carrier versions for high density system applications. The C-suffix devices are characterized for operation from DoC to 70°C. The I-suffix devices are characterized for operation from - 40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of - 55°C to 125°C. equivalent schematic 01 IN + - - t - - - - , IN _ _.r-----,..J ~~---_+----+-- Vo +-----...-[Q17 OFFSET N1 OFFSETN2 - + - -.... R1 Vcc_ symbol (each amplifier) IN-=b>IN + + OUT TEXAS ." INSTRUMEN1S 2-176 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TL031 , TL031A ENHANCED JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, Vec + (see Note 1) ..................................................... 18 V Supply voltage, Vec _ (see Note 1) .................................................... -18 V Differential input voltage (see Note 2) ................................................... ± 30 V Input voltage range, VI (any input, see Notes 1 and 3) ...................................... ± 15 V Input current, II (each input) .......................................................... ± 1 rnA Output current, 10 ................................................................ ± 40 mA Total current into VCC + terminal ..................................................... 160 mA Total current out of VCC _ terminal ................................................... 160 mA Duration of short-circuit current at (or below) 25°C (see Note 4) ............................ unlimited Continuous total dissipation ........................................ See Dissipation Rating Table Operating free-air temperature range, TA: C-sullix ................................... O°C to 70°C I-suffix ................................ - 40°C to 85°C M-sullix ............................... - 55°C to 125°C Storage temperature range ................................................... - 65°C to 150°C Case temperature for 60 seconds: FK package ........................................... 260°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package ................. 260°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG or L package ................ 300°C NOTES: 1. 2. 3. 4. All voltage values, except differential voltages, are with respect to the midpoint between VCC + and VCC _ . Differential voltages are at the non inverting input with respect to the inverting input. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TA s 25°C POWER RATING DERATING FACTOR ABOVE T A = 25·C 5.8mW/oC D 725mW FK 1375mW 11.0mW/oC JG 1050 mW L 825mW 1000mW p TA = 70·C POWER RATING 464mW TA = 8500 POWER RATING 377mW TA = 125·C POWER RATING 145mW 880mW 715mW 275mW 8.4 mW;oC 672mW 546mW 210mW 6.6 mW;oC 8.0mW/oC 528mW 640mW 429mW 520mW 200mW 165mW recommended operating conditions I·SUFFIX C-SUFFIX MIN NOM MAX Supply voltage, VCC Common-mode input voltage, VIC Operating free-air temperature, TA I VCC+ = ±5V IVCC+=±15V ±5 -1.5 ±15 M·SUFFIX MIN NOM MAX ±5 ±15 MIN NOM MAX ±15 ±5 4 -1.5 -11.5 14 -11.5 14 -40 85 -55 125 4 -1.5 -11.5 14 0 70 4 UNIT V V °C TEXAS ." INSfRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2-177 Tl031C, TL031AC ENHANCED JFET lOW-POWER lOW-OFFSET OPERATIONAL AMPLIFIERS electrical characteristics PARAMETER TEST CONDITIONS TL031C Via Input offset voltage TL031AC Va aVIO Temperature coefficient of input offset voltage (see Note 7) VIC RS = 0, = 0, = 50n TL031C TL031AC Input offset voltage long-term drift (see Note 5) TAt VCC± = ±5V MIN 25°C TYP 0.54 0.41 25°C Full range 70°C 25°C to 25°C 0.04 1 liB Input bias current Va = 0, VIC See Figure 5 = 0, 9 2 70°C 50 output voltage swing Maximum negative peak VOM- output voltage swing Large-signal differential AVD voltage amplification RL = 10kn RL = 10 kO, See Note 6 UNIT mV 1.8 0.04 70°C 25°C 10 kn 0.8 5.9 25°C = 0.34 2.5 2.8 7.1 = 0, RL MAX 1.5 (J.VloC 70°C Va = 0, VIC See Figure 5 VOM+ 0.5 5.9 Input offset current Maximum positive peak TYP 7.1 110 VICR 3.5 3.8 25°C to Common-mode input voltage range MIN 4.5 Full range 25°C VCC±=±15V MAX 100 200 1 12 25 (J.Vlmo 100 200 200 2 200 400 80 400 -1.5 -3.4 -11.5 to to to to 4 -1.5 5.4 14 -11.5 15.4 pA pA -13.4 Full range to 25°C 4 3 4.3 13 14 13 14 V to 14 O°C 70°C 25°C 3 4.2 3 -3 4.3 -4.2 13 14 -12.5 -13.9 O°C -3 -4.1 -12.5 -13.9 70°C -3 -4.2 -12.5 -14 25°C 4 12 5 14.3 O°C 3 11.1 4 13.5 70°C 4 13.3 5 15.2 V V VlmV ri Input resistance 25°C 1012 1012 Ci Input capacitance 25°C 5 4 pF dB CMRR Common-mode rejection ratio Supply-voltage kSVR rejection ratio (AVce±/AVIO) PD ICC Total power diSSipation Supply current = VICR min, = 0, RS = 500 VCC± = ±5Vto±15V, Va = 0, RS = 500 VIC Va No load, Va =0 No load, Va =0 25°C 70 O°C 70 70 87 87 75 75 94 94 87 94 96 96 75 75 O°C 75 96 75 96 70°C 75 96 75 96 70°C 25°C 75 0 dB 25°C 1.9 2.5 6.5 8.4 O°C 1.8 2.5 6.3 8.4 70°C 1.9 6.3 217 8.4 280 211 280 210 280 25°C 192 2.5 250 O°C 184 189 250 250 70°C mW (J.A t Full range IS O°C to 70°C. NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 6. At Vec ±= ± 5 V, Va = ± 2.3 V; at VCC ± = ± 15 V, Va = ± 10 V. 7. This parameter is tested on a sample basis for the TL031A. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters. TEXAS ~ INSTRUMENTS 2-178 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TL031C, TL031AC ENHANCED JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS operating characteristics PARAMETER SR+ SR- Ir TEST CONDITIONS Positive slew rate at unity gain Negative slew rate RL ; 10 kn, CL ; 100 pF, See Figure 1, (see Note 9) In 81 4lm 11% 5% O°C 10% 4% 70°C 12% 6% 25°C 61 41 61 41 61 61 41 41 0.003 70°C 25°C CL ; 100 pF, See Figures 1 and 2 Overshoot lactor Vn 150 O°C Fall time Equivalent 134 O°C 70°C 25°C Rise time input noise voltage O°C 25°C See Note 8 TL031C RS; 1000, See Figure 3 TL031AC Equivalent input noise current Unity-gain bandwidth I ; 10 Hz I ; 1 kHz 1 ; 10 Hz 1 ; 1 kHz VCC±=±15V 70°C 25°C O°C 70°C at unity gain VCC± = ±5V TYP MAX MIN 2.0 1.8 2.2 3.9 3.7 4.0 138 134 150 138 TVP 2.9 2.6 3.2 5.1 5.0 5.0 132 127 142 132 127 142 25°C VIPP ; ± 10 mV, RL ; 10 kO, tl TA 25°C MIN 2 1.5 2 3.5 3.2 3.2 I ; 1 kHz 25°C 0.003 Vi ; 10 mV, RL ; 10 kn, CL ; 25 pF, See Figure 4 25°C 1 1.1 O°C 70°C 1 1.1 1 10 mV, RL ; 10 kn, Phase margin Vi ; at unity gain CL ; 25 pF, See Figure 4 25°C 1 61° 65° O°C 61° 65° 70°C 60° 64° MAX UNIT V/p.s V/p.s ns ns nV/#iZ 60 pA/#iZ MHz NOTES: 8. ForVCC± ; ±5 V, VIPP ; ± 1 V; lor VCC ± ; ± 15 V, VIPP ; ±5 V. 9. This parameter is tested on a sample basis. For other test requirements, please contact the lactory. This statement has no bearing on testing or nontesting 01 other parameters. TEXAS ." INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-179 Tl0311, Tl031AI ENHANCED JFET lOW-POWER lOW-OFFSET OPERATIONAL AMPLIFIERS electrical characteristics PARAMETER TEST CONDITIONS TL031 I VIO Input offset voltage TL031AI Vo = 0, Temperature coefficient (lVIO of input offset voltage (see Note 7) VIC = 0, RS = son TL0311 TL031AI Input offset voltage long-term drift (see Note 5) 110 Input offset current Vo = 0, VIC = 0, See Figure 5 liB Input bias current Vo = 0, VIC = 0, See Figure 5 TAt VCC± 25°C Full range 0.54 3.5 25°C 0.41 5.3 2.8 25°C to 85°C 25°C to Maximum negative peak output voltage swing Large-signal differential AVO voltage amplification RL = 10 kn RL = 10 kn, See Note 6 6.5 6.2 100 1 100 pA 85°C 0.02 0.45 25°C 2 0.2 200 0.9 0.02 2 0.45 200 nA pA 0.2 0.9 nA to to to 5.4 14 15.4 to to 4 14 25°C 3 4.3 13 14 -40°C 3 4.1 13 14 85°C 3 4.4 13 14 25°C -3 -4.2 -12.5 -13.9 -40°C -3 -4.1 -12.5 -13.8 85°C -3 -4.2 -12.5 -14 25°C 4 12 5 14.3 -40°C 3 8.4 4 11.6 85°C 4 5 15.3 1012 25°C 5 Supply-voltage rejection ratio (/lVCC±/ /lVIO) Po ICC Total power dissipation Supply current = 0, RS = 50n VCC± = ±5Vto±15V, Vo = 0, RS = son No load, Vo =0 No load, Vo =0 V -11.5 25°C Vo flV/mo -13.4 4 Input capacitance kSVR -11.5 to Input resistance rejection ratio 0.04 -3.4 Ci VIC = VICR min, 25 1 ri Common-mode mV 2.6 6.2 13.5 1012 CMRR 0.34 0.04 Full range VOM- 1.5 3.3 0.8 UNIT 25°C 85°C = 10 kn 0.5 6.5 -1.5 RL MAX 25°C voltage range Maximum positive peak =±15 V TYP fl V/oC 85°C 25°C output voltage swing MIN 4.6 Full range Common-mode input VOM+ VCC± MAX -1.5 VICR =±5V TYP MIN V V V/mV n 4 25°C 70 87 75 94 -40°C 70 87 75 94 85°C 87 96 75 94 25°C 70 75 75 96 -40°C 75 96 75 96 85°C 75 96 75 96 pF dB dB -40°C 1.9 1.4 2.5 2.5 6.5 5.4 8.4 8.4 85°C 1.9 2.5 6.2 8.4 280 25°C 25°C 192 250 217 -40°C 144 2SO 181 280 85°C 189 2SO 207 280 mW flA t Full range is - 40°C to 85°C. NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 6. AtVCC± ±5V, Vo = ±2.3V;atVcc± = ±15V, Vo ±10V. 7. This parameter is tested on a sample basis for the TL031A. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters. = = = TEXAS ~ INSTRUMENTS 2-180 POST OFFICE BOX 655303' DALLAS, TEXAS 75265 Tl0311, Tl031AI ENHANCED JFET lOW-POWER lOW-OFFSET OPERATIONAL AMPLIFIERS operating characteristics PARAMETER SR+ Positive slew rate at unity gain SR- Negative slew rate at unity gain tr tl TEST CONDITIONS VIPP = ± 10 mV, RL = 10 kn, CL = 100 pF, See Figures 1 and 2 Vn In Equivalent TL0311 input noise voltage TL031AI (see Note 9) Equivalentinput noise current RS = lOOn, See Figure 3 I I I I = = = = 1= 1 kHz Bl Unity-gain bandwidth Vi = 10 mV, RL = 10 kn, eL = 25 pF, See Figure 4 'm Phase margin at unity gain Vi = 10 mV, RL = 10 kn, CL = 25 pF, See Figure 4 = ±15V 25°C 0.003 0.003 25°e -40 0 e 85°e 25°e -40 oe 85°e 1 1.1 1.1 1 85°e 25°C -40°C 85°e 10 Hz 1 kHz 10 Hz 1 kHz VCC:t MIN 2 1.5 2 3.5 3.2 11% 12% 13% 61 41 61 41 85°C 25°C -40 0 e Overshoot lactor = VCC:t ±5V TYP MAX MIN 2.0 1.6 2.3 3.9 3.3 TYP 2.9 2.1 3.3 5.1 4.8 4.9 132 123 146 132 123 146 5% 5% 7% 61 41 61 41 25°C -40°C 85°C 25°C -40°C 85°C 25°C -40°C RL = 10 kn, CL = 100 pF, See Figure 1, See Note 8 Rise time Fall time TA 25°e 2500 4.1 138 132 154 138 132 154 1 0.9 61° 60° 60° 3.2 MAX UNIT Vills V/lls ns ns nV/.JHz 60 pAl.JHz MHz 65° 65° 64° NOTES: 8. For Vee ± = ± 5 V, VIPP = ± 1 V; lor Vee ± = ± 15 V, V,PP = ± 5 V. 9. This parameter is tested on a sample basis. For other test requirements, please contact the lactory. This statement has no bearing on testing or nontesting 01 other parameters. TEXAS ~ IN5rRUMENlS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2-181 TL031 M, TL031AM ENHANCED JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS electrical characteristics PARAMETER TEST CONDITIONS TL031M Via Input offset voltage TL031AM Va = 0, Temperature coefficient "via of input offset voltage VIC = 0, RS = 50£1 TL031M TL031AM Input offset voltage long-term drift (see Note 5) VCC±=±5V TAt MAX 25°C Full range 0.54 3.5 25°C 0.41 Input offset current Va = 0, VIC = 0, See Figure 5 liB Input bias current Va = 0, VIC = 0, See Figure 5 Full range 125°C 25°C to output voltage swing Maximum negative peak VOM- output voltage swing Large-signal differential AVO voltage amplification q Input resistance Ci Input capacitance CMRR kSVR Po ICC Common-mode rejection ratio RL = 10kn RL = 10kn RL = 10kn, See Note 6 RS= 50£1 Supply-voltage VCC± = ±5Vto±15V, rejection ratio Va = 0, (,:WCC ±I aVIO) RS = son Total power dissipation Supply current No load, Va = 0 No load, Va = 0 0.8 UNIT mV 3.8 4.3 5.1 4.3 0.04 0.04 25°C 1 0.2 2 125°C 7 100 10 200 20 -3.4 1 100 10 200 8 - 11.5 -13.4 20 to to to 4 -1.5 5.4 14 15.4 Full range to 25°C 3 -55°C 3 3 fJ. V/mo 0.2 2 to pA nA pA nA V - 11.5 to 14 4.3 4.1 13 4.4 -4.2 14 13 14 13 14 -12.5 -13.9 V V 125°C 25°C -3 -55°C -3 -4 -12.5 -13.8 125°C -3 -12.5 -14 5 14.3 4 4 10.4 25°C 4 -4.3 12 -55°C 3 7.1 125°C 25°C 3 12.9 25°C VIC = VICR min, Va = 0, 0.34 4.5 2.8 4 VOM+ 1.5 5.1 125°C 25°C 25°C Maximum positive peak MAX 0.5 fJ.V/ o C 125°C - 1.5 VICR TYP 5.8 25°C to Common-mode input voltage range MIN 6.5 25°C 110 VCC± = ±15V TYP MIN V/mV 1012 15 1012 £I 5 4 pF 25°C 70 87 75 94 -55°C 70 87 70 94 125°C 25°C 70 87 94 75 96 70 75 96 -55°C 75 95 75 95 125°C 75 96 75 96 dB dB 25°C 1.9 2.5 6.5 8.4 -55°C 1.1 2.5 4.7 8.4 125°C 2.5 250 5.8 217 8.4 25°C 1.8 192 280 -55°C 114 250 156 280 125°C 178 250 197 280 mW fJ.A t Full range IS - 55°C to 125°C. NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test atTA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 6. AtVCC± = ±5V, Va = ±2.3V;atVCC± = ±15V, Va = ±10V. TEXAS ~ INsrRUMENTS 2-182 POST OFFICE BOX 655303' DALLAS. TEXAS 75265 Tl031M, Tl031AM ENHANCED JFET lOW-POWER lOW-OFFSET OPERATIONAL AMPLIFIERS operating characteristics PARAMETER SR+ SR- tr tf TEST CONDITIONS Positive slew rate at unity gain Negative slew rate See Note 8 Rise time VIPP = ± 10 mV, RL = 10kn, CL = 100 pF, See Figures 1 and 2 Fall time Overshoot lactor Vn In Equivalent input noise voltage TL031M I = 1= f = I = RS = 100n, See Figure 3 TL031AM Equivalent input noise current 10 Hz 1 kHz 10 Hz 1 kHz 1= 1 kHz 81 Unity-gain bandwidth Vi = 10 mV, RL = 10 kn, CL = 25 pF, See Figure 4 .pm Phase marg in at unity gain Vi = 10 mV, RL = 10 kil, CL = 25 pF, See Figure 4 NOTE 8: For Vee ± = = ±15V TYP 2.9 1.4 2.4 3.9 1.2 1.2 3 3.2 4.1 138 142 166 138 142 166 11% 2.5 2.5 16% 14% 61 41 61 41 1.9 3.5 5.1 4.6 4.7 132 123 158 132 123 158 5% 6% 8% 61 41 61 41 25°C 0.003 0.003 25°C -55°C 125°C 25°C -55°C 1 1 0.9 61° 57° 59° 1.1 1.1 0.9 65° 64° 62° MIN 25°C -55°C 125°C 25°C -55°C 125°C 25°C - 55°C 125°C 25°C -55°C 125°C 25°C -55°C 125°C RL = 10kil, CL = 100 pF, See Figure I, at unity gain VCC± MIN 2 VCC± TA 25°C 25°C 125°C ± 5 V, VIPP = ± 1 V; lor Vee ± = ± 15 V, VIPP = = ±5V TYP 2.0 MAX UNIT MAX VlJis V/Jis ns ns nVl,fR"Z pA/,fR"Z MHz ± 5 V. PARAMETER MEASUREMENT INFORMATION I I I I I I I I I I NOTE A: CL includes fixture capacitance. I<--+i Figure 1. Slew Rate, Rise/Fall Time, and Overshoot Test Circuit 'r - RISE TIME Figure 2. Rise Time and Overshoot Waveform TEXAS ~ INsrRUMENTS POST OFFICE BOX 655303· DALLAS, TEXAS 75265 2-183 Tl031 , Tl031A ENHANCED JFET lOW-POWER lOW-OFFSET OPERATIONAL AMPLIFIERS PARAMETER MEASUREMENT INFORMATION 10 kQ 10kQ >--'--Vo Vo VeeRs RS NOTE A: CL includes fixture capacitance. Figure 3. Noise VoHage Test Circuit Figure 4. Unity-Gain Bandwidth and Phase Margin Test Circuit Figure 5. Input Bias and Offset Current Test Circuit typical values Typical values as presented in this data sheet represent the median (50% point) of device parametric performance. input bias and offset current At the picoamp bias current level typical of the TL031 and TL031 A, accurate measurement of the bias current becomes difficult. Not only does this measurement require a picoammeter, but test socket leakages can easily exceed the actual device bias currents. To accurately measure these small currents, Texas Instruments uses a two-step process. The socket leakage is measured using picoammeters with bias voltages applied but with no device in the socket. The device is then inserted into the socket and a second test that measures both the socket leakage and the device input bias current is performed. The two measurements are then subtracted algebraically to determine the bias current of the device. noise Because of the increasing emphasis on low noise levels in many of today's applications, the input noise voltage density is sample-tested at f = 1 kHz. Texas Instruments also has additional noise testing capability to meet specific application requirements. Please contact the factory for details. TEXAS ~ INSTRUMENTS 2-184 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 Tl031 , Tl031A ENHANCED JFET lOW-POWER lOW-OFFSET OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS table of graphs FIGURE V,O Input offset voltage Temperature coefficient ctVIO of input offset voltage 110 Input offset current liB Input bias current VI Input voltage range VID VOM AVD Zo vs Temperature 8 vs VIC Temperature 9 8 vs VCC Temperature 10 11 vs Output voltage 12,13 vs VCC Output current 14 16,17 vs voltage swing vs Frequency vs Temperature vs 15 18,19 vs RL Frequency 20 Differential voltage amplification Output impedance vs vs Temperature Frequency 22 23 Supply-voltage rejection ratio Short-circuit output current ICC Supply current SR Slew rate ~ 7 vs kSVR B1 Distribution Maximum peak output Common-mode rejection ratio Vn THD 6 vs Differential input voltage CMRR lOS Distribution vs Frequency vs Temperature 26 vs Temperature 27 vs 28 vs VCC Time vs Temperature 29 30 vs VCC Temperature 33 vs vs vs Overshoot factor vs Equivalent input noise voltage Total harmonic distortion Unity-gain bandwidth Phase margin Phase shift Pulse response 21 RL Temperature 24, 25 32 34,35 36,37 38 vs CL Frequency vs Frequency 39 vs VCC Temperature 40 vs vs VCC 42 vs 43 vs CL Temperature vs Frequency 21 31 41 44 Small-signal 45 Large-signal 46,47 TEXAS ." INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-185 TL031 , TL031A ENHANCED JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt DISTRIBUTION OF TL031 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT DISTRIBUTION OFTL031 INPUT OFFSET VOLTAGE 24r---~--~----~---r----~--~ tested from 1 wafer lot # # .. '0 .. I vcc± = ±15V T A = 25DC to 1250C 18 I----+----+-~+- P Package-+---J I :J ''0" .. .. '2 ~ ~ Ol 12 Ol l! c -E ~ ~ c. c. -1.2 6 OL---ItiiIii.. -0.6 o 0.6 Via -Input Offset Voltage - mV 1.2 -30 -20 -10 10 o 20 aVIO - Temperature Coefflcient-IlV/DC Figure 6 Figure 7 INPUT BIAS CURRENT AND INPUT OFFSET CURRENT INPUT BIAS CURRENT vs vs FREE-AIR TEMPERATURE COMMON-MODE INPUT VOLTAGE 10 30 10 VCC± = ±15V Va = 0 VIC = 0 Vcc± = ±15V TA = 250C ./ /' "' c "'Cc 5 I I C l!! liB !; ~ g. ~ / 0.1 ~ / lD ..: 0.01 v In III V 0 .s .,./' I ~ -5 ./ V 0.001 25 8 iii '5 a. 110 ./ III /' 45 65 85 105 TA - Free-Air Temperature - DC 125 -10 -15 -10 -5 o 5 10 VIC - Common-Mode Input Voltage - V Figure 8 Figure 9 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ." 2-186 INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 15 Tl031 , Tl031A ENHANCED JFET lOW-POWER lOW-OFFSET OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt COMMON-MODE INPUT VOLTAGE RANGE LIMITS COMMON-MODE INPUT VOLTAGE RANGE LIMITS vs FREE-AIR TEMPERATURE VS SUPPLY VOLTAGE 16 TA = 25°C > 12 POSITIVE UM~ I III C) J!! '0 > :; Q, 8 ,/ / V 20 /' Vee±=±15V > 0 ,./' :; Q, .E 4 i 0 ::;: :;; l! -4 0 E E 8 -8 ~EGATIVE E E ~ ........... 0 -> -12 -16 8 UMIT .......... I o 2 4 6 8 10 12 IVee ±I- Supply Voltage - V 10 5 0 -5 8 -10 I o -> -15 ........ 14 N,EGATI,VE UjlT -20 -75 -50 -25 0 25 50 75 100 TA - Free-Air Temperature - °e 16 Figure 10 Figure 11 DIFFERENTIAL INPUT VOLTAGE DIFFERENTIAL INPUT VOLTAGE vs OUTPUT VOLTAGE VS OUTPUT VOLTAGE 1.5 I & !! ~ 0.5 - :; Q, .E 0 ! ~ ~ I -RL RL RL I\, \ 1\ " &. ::::: ::-..... '"~ -0.5 -I I -1 -1.5 - RL RL RL RL RL 1 = = = = = ~ I III RL = 10 k.Q C) J!! '0 RL = 20kn 0.5 > :; Q, 1 20 kn 10 kn 5kn 2 k.Q 1 kn .E ~ 0 0 ii EIII ~~ A~ ~\ ~ - 0.51---I----!---t---+~7"'-~~:_I i5 I 2 345 = RL 50 kn RL = 20 k.Q - - I - - " RL 10 k.Q _--1_-" RL = 5kn -1.5 L - _......._..;;;.._ _......_ ......._ _.......--.:u ~ -11---+- / -5 -4 -3 -2 -1 125 1.51"'T""~....,..~......,.--.,......--r---r---., I I = 1 kn = 2 k.Q = 5 k.Q .~ Vee± = ±5V TA = 25°C i5 ~ \ t\ - ~ ~OSITI~E U~IT I III j ~ .E III '0 15 = Va - Output Voltage - V -5 0 5 Va-Output Voltage - V Figure 12 Figure 13 -15 -10 10 15 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 2-187 Tl031 , Tl031A ENHANCED JFET lOW-POWER lOW-OFFSET OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE MAXIMUM PEAK OUTPUT VOLTAGE vs vs SUPPLY VOLTAGE FREQUENCY 16 ::; RL = 10kO TA = 25°C 12 f I VOM+,.;" 8 ;; Co ;; o ./ 4 ~ 0 § -4 l ,5 ......... = -8 :::;; I 111111 V I \ ~~ ....... ~A 1= ,-,~~~,T\ ~ ..... ~ t::-. . . . . r--.. IVcc ±I- Supply Voltage - V 10 k 100 k f - Frequency - Hz Figure 14 Figure 15 MAXIMUM PEAK OUTPUT VOLTAGE MAXIMUM PEAK OUTPUT VOLTAGE 2 4 6 8 10 12 14 16 .. III vs vs OUTPUT CURRENT OUTPUT CURRENT ~ ~ ;; Co ;; 3 0 ... ~ Co E "E 'x VCC±=±5V TA = 25°C VOM+ 4 1M 16 > ~ v= TA = 125°C \ VCC± = ±5V 5 I RL = 10kO vcc± = ±1SV\ \ :::;; o V ,.;" / ~-12 -16 , 2 ~ . I :i ~ 5 1101- .. 14 ~ > 12 I CI ~1'\ :::;; o o > !i 9- 10 .. &. 8 ~ Vcc± = ±15V TA = 25°C ~ " 0 ~ E " '""" 10 15 Output Current - mA .............. '\ \ \ \ \ VOM+ ,5" 6 :::Ii 4 .. " VOM_ I :i ~ 20 2 o o Figure 16 5 10 15 20 1101- Output Current - mA 25 Figure 17 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices, TEXAS ", 2-188 INSTRUMENlS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 30 TL031 , TL031A ENHANCED JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt MAXIMUM PEAK OUTPUT VOLTAGE MAXIMUM PEAK OUTPUT VOLTAGE vs vs FREE-AIR TEMPERATURE FREE-AIR TEMPERATURE 16 5 > I G> 01 .\! "0 > '5 4 > I VOM+ G> 3 01 1l!0 2 > 0 ... 0 m = = . I -3 > 31 0 E "E 'M -4 :;; -8 III :;; :;; 0 4 = vcc± ±15 V RL 10 kQ = 0- E -1 -2 ~ 0 vcc± ±5V_ RL 10 kQ 0- "E ';( 8 '5 9- ..." I VOM + 12 I :;; 0-12 -4 > VOM- VOM_ -5 -75 -50 -25 0 25 50 75 100 T A - Free-Air Temperature - °C -16 -75 125 -50 -25 0 25 50 75 100 T A - Free-Air Temperature - °c Figure 18 Figure 19 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT LARGE-SIGNAL VOLTAGE AMPLIFICATION vs vs LOAD RESISTANCE FREQUENCY 10 5,....._......._ _,--_......._ _,..-_......._--..,0 0 40 > ~ 35 I Vo TA =± 1 v = 25°C / c .2 iii u .:: =aE 30 25 < G> 01' .\! 20 "0 > :i 15 !c 10 c > < 5 E G> I 125 / V V V = = .2 iii VCC± .!:! = ±15V == a. E < . II" Vi-" VCC±=±15V RL 10kQ 30 0 CL 25pF TA = 25°C c 10 3 60° 01 .\! '0 > 10 2 VCC± = ±5V 90° .s:: E i . G> III ~ ./ :: :c en 0.. 10 1 120° C I C 150° > < 0 10k 100 k RL - Load Resistance - Q 1M 0,1 L--....I..--"--_....I.._ _"--_....I.._L.LI180° 10 100 1k 10 k 100 k 1M 10 M f - Frequency - Hz Figure 20 Figure 21 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INsrRUMENTS POST OFFICE BOX 655303 - DALLAS, TEXAS 75265 2-189 Tl031 , Tl031A ENHANCED JFET lOW-POWER lOW-OFFSET OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt LARGE-SIGNAL VOLTAGE AMPLIFICATION OUTPUT IMPEDANCE vs vs FREE-AIR TEMPERATURE FREQUENCY 50 200 > RL = 10 k.O. E :> AtO 0 ~ Vee± 'a E .. < 1 Jo ___ f---""" I c 10 c: .. ....." = ±15V I V- :::+- . Vcc+ Cl C !II "to = ±5V ..§ .\1! :; ~ '0 > S 100 80 / / 60 -AVO = 10 ,../' 40 0 ;: 2! I ·0 ~ N 20 r-- AVO / =1 i5 125 80 5 70 .~ 60 -8o 50 ~ 'ij a: ~o 40 E 30 E 8I 20 ::e 10 a: a: o 0 10 TA = 100 k Figure 23 COMMON-MODE REJECTION RATIO COMMON-MODE REJECTION RATIO vs vs FREQUENCY FREQUENCY 100 .......... = .., Vee ± ±5 V TA 25°C = III i'.. .2 iU a: " "\ c .~ ..,".. i\ ..,.... TA '"'" """ 80 70 60 a: \ ::e \ C 0 \ E E 0 50 40 " 30 0 \ I 20 ::e 10 a: a: 0 = ±15V = 25°C Vec± 90 I \\ o 100 1k 10 k 100 k f - Frequency - Hz 1M 10 M 10 100 1k 10 k 100 k 1M f - Frequency - Hz Figure 24 Figure 25 tDam at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSfRUMENTS 2-190 25°C Figure 22 90 .2 I 10 k f - Frequency - Hz 100 I I 10 1k 1 -75 -50 -25 0 25 50 75 100 TA - Free-Air Temperature - °e !g ,,/ Vee± = ±15V ro (open loop) ~ 250 n I C ~ ...- POST OFFICE BOX 655303' DALLAS. TEXAS 75265 10 M TL031 , TL031A ENHANCED JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICst COMMON-MODE REJECTION RATIO vs FREE-AIR TEMPERATURE FREE-AIR TEMPERATURE 95 "1 VCC ± = ±15 V .2 iii 90 c .2 U .;; . .2 a: .~ III !! c0 0 I a: :::;; U 96 .. VCC±=±5V 85 0 E E 98 a: c .. " Vee ± = ± 5 V .to ± 15 V a:I "I a: 100 I a:I .2 iii SUPPLY-VOLTAGE REJECTION RATIO vs ~ 94 Q. Co 80 ::I rn I I a: a: :::;; u 92 a: > !R VIC = VICRmln 75 -75 -50 -25 0 25 50 75 100 90 -75 125 -50 TA - Free-Air Temperature - °C I SHORT-CIRCUIT OUTPUT CURRENT SHORT-CIRCUIT OUTPUT CURRENT vs vs SUPPLY VOLTAGE TIME 30 Vo TA 20 =0 = 25°C /" ~ 10 - E I 20 C ~ VID = 100mV 8 i 10 8 .~ ·s l:! q VID = -100mV -10 0 i (; .c rn I rn -20 VID = -100 mV I -10 rn .9 -30 I VIO = 100mV =0 -50 -25 0 25 50 75 100 TA - Free-Air Temperature - °e 40 10 125 " 1k 100 Figure 30 Figure 31 SUPPLY CURRENT SUPPLY CURRENT vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 250 r~ I C e 8 I-- I-- 0TA 150 II "1 I K ~e C I..- c. g.1oo / V- \ til I I I I 150 g. 100 8... ii. IV: V / - I Vee± I =±5V -- I--- I ~ 50 50 = o o - til I =-55°e TA ~ I e I /' 200 =25°e =±15 V I i.- \ ~ 100 k vs Vee± "1 10 k f - Frequency - Hz 250 200 = ±15V RS 1000 TA 250C See Figure 3 50c .!! 0 .9 V~± ~ i> 0 :; c. :; 70 = Vo 0 No Load 2 4 6 8 10 12 14 Vo 0 No Load o 16 -75 -SO IVee ±I- Supply Voltage - V -25 0 25 50 75 100 TA -Free-Air Temperature- OC Figure 33 Figure 32 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ." INSTRUMENlS 2-192 POST OFFICE BOX 655303· DALLAS. TEXAS 75265 125 TLD31 , TLD31A ENHANCED JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt SLEW RATE SLEW RATE vs LOAD RESISTANCE .. ~ > 6 6 5 5 4 I ~ a: j ,/' 3 I/) I a: I/) VS LOAD RESISTANCE 2 ,/' - r- ~I SR- ~ a: - ~ SR + I a: j Vec ± = ±15 V eL = loopF TA = 25 DC See Figure 1 a: 100 Figure 35 SLEW RATE vs FREE-AIR TEMPERATURE SLEW RATE vs FREE-AIR TEMPERATURE 5 5 4 2 I/) 100 Figure 34 6 3 10 RL - Load Resistance - kG 1 6 I/) I 2 SR + o I i ~ V VCC± = ±5V CL = loopF TA = 25"C See Figure 1 10 RL - Load Resistance - kG 1 ~ - 3 I/) "'"" o :> - V 4 SR- ..V ~ ~ SR- .. - - ~ SR+ ~ o ~ 4 I ~ a: S .!! -- I a: 2 I/) / V -75 -50 -25 0 25 50 75 100 TA - Free-Air Temperature - De = VCC± ±15 V RL 10kO CL 100pF See Figure 1 = = o 125 ~ SR+ = Vce± ±5V RL 10kO CL 100 pF See Figure 1 = = -f-- 3 I/) ---.. SR- -75 -50 -25 0 25 50 75 100 TA - Free-Air Temperature - De Figure 36 125 Figure 37 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ." INSfRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 2-193 TL031 , TL031A ENHANCED JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt OVERSHOOT FACTOR vs LOAD CAPACITANCE 60 I ~ If 0.5 = = VIPP ±10mV RL 10 kn TA = 25°C See Figure 1 50 'a'/. . ~ / 40 Vcc± V = ±5V:// 0.4 '#. I c 0 .~ 0.3 is .2 0 .. IV ~ 20 1/ / 10 E o 50 100 Vcc± r-- I Q 150 0.1 100 250 200 CL - Load Capacitance - pF ....... ~ 1k 10 k f - Frequency - Hz 100 k Figure 39 UNITY-GAIN BANDWIDTH vs SUPPLY VOLTAGE UNITY-GAIN BANDWIDTH vs FREE-AIR TEMPERATURE 1.3 j-= /' ,/ -g 1.0 V V ....--l- N J: :;; VCC± = ±15V ~ ".c = VI 10mV RL = 10kn CL = 25pF See Figure 4 1.2 I "i 1.1 - Ol c i iii ';: ~ C VI = 10 mV :;) 0.95 o 2 4 6 8 10 12 14 1.0 - I rii 16 r--..... ......... ~ ~ VCC±=±5V :;) RL = 10kn CL = 25pF TA = 25°C See Figure 4 rii 0.9 I Figure 38 ~ 1.05 I / / J: I- :!i! c V ~ = ±15V 1.1 Ol 0.2 J: /; o .. Avo 1 VO(rms) 6V TA = 250C c .c > 0 =±15V = = Vcc± 30 00 TOTAL HARMONIC DISTORTION vs FREQUENCY '"'" -.......... 0.9 0.8 -75 -50 IVcc ±I- Supply Vollage- V Figure 40 ~ I'--~ '" -25 0 25 50 75 100 T A - Free-Air Temperature - °c Figure 41 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSfRUMENTS 2-194 POST OFFICE BOX 655303' DALLAS. TEXAS 75265 ......... 125 TL031 , TL031A ENHANCED JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt PHASE MARGIN PHASE MARGIN VS VS SUPPLY VOLTAGE LOAD CAPACITANCE 65 ..l!! 70 2' "a I c t ..... :E V / 63 I 61 /' ~ 68 ..~ /" 66 ... 2' I 62 ... ~ :E 60 See Note 10 c ... ::.. 58 0.. I 56 = = = = vi 10 mV RL 10 kQ CL 25pF TA 25°C See Figure 4 59 57 o ....E 4 14 6 . 16 ..:: .c 0.. I r---........ VCC± o 12 ( > 8 .. DO 4 > :; 0 0 -4 E ........ =±5V I'---- t-.... 10 20 30 40 50 60 70 80 90 100 16 r- ............. 63 59 "- VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE ,V "- CL - Load Capacitance - pF I I .l VCC± = ±15V 61 , , PHASE MARGIN c ~ 'I'-.. r........ Figure 43 I :E "- 52 FREE-AIR TEMPERATURE "a r........ "- VCC± =±15V Figure 42 67 65 ........ 54 50 8 10 12 IV CC ±I- Supply Voltage - V 2 = = = Vi 10 mV RL 10kQ TA 25°C _ See Figure 4 r........ ....... VCC± =±5V VS DO .......... .c 0.. I .. ..l!! .......... 64 "a .c ....E r- ... I S '0 So ::I I'-....... ........ = = = = 25°C VCC± ±15V RL 10 kQ CL 100 pF TA See Figure 1 ~ I 0 ....E 57 55 -75 > = = = I Vi 10mV RL 10 kQ CL 25 pF See Figure 4 -8 -16 -50 -25 0 25 50 75 100 ~J V -12 125 o 0.2 0.4 0.6 T A - Free-Air Temperature - °C t-nme-~s Figure 44 Figure 45 0.8 1.0 '-- 1.2 1.4 NOTE 10: Values of phase margin below a load capacitance of 25 pF were estimated. tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFice BOX 655303 • DALLAS. TexAS 75265 2-195 Tl031 , Tl031 A ENHANCED JFET lOW-POWER lOW-OFFSET OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 8 2 , A /\ I > I tI> DI as ~ 0 :; I I ~ 0 I 0 > -1 6 IA > / lL I tI> DI 2 ~ 0 0 -2 !! VCC±=±5V RL = 10kO CL = 100pF :; ~ = TA 25°C See Figure 1 Ll 4 / I ~ -4 1\ ~ V o -8 2 3 456 1 1\ = VCC± ±15V RL 10 kO CL 100pF TA 25°C See Figure 1 = = = \ r- 1/ I-- -6 -2 \ 7 8 o 2 4 6 8 10 t-TIme-J.1S t- Time-J.1S Figure 46 Figure 47 12 14 16 18 APPLICATION INFORMATION input characteristics The TL031 and TL031 A are specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction. Because of the extremely high input impedance and resulting low bias current requirements, the TL031 and TL031A are well-suited for low-level signal processing; however, leakage currents on printed circuit boards and sockets can easily exceed bias current requirements and cause degradation in system performance. It is a good practice to include guard rings around inputs (see Figure 48). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input. Vo (e) NONINVERTING AMPLIFIER (b) INVERTING AMPLIFIER Figure 48. Use of Guard Rings TEXAS ~ INSTRUMENTS 2-196 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 (e) UNITY-GAIN AMPLIFIER Tl031 , Tl031A ENHANCED JFET lOW-POWER lOW-OFFSET OPERATIONAL AMPLIFIERS APPLICATION INFORMATION output characteristics All operating characteristics (except bandwidth and phase margin) are specified with 100-pF load capacitance. The TL031 and TL031 A will drive higher capacitive loads; however, as the load capacitance increases, the resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation. The value of the load capacitance at which oscillation occurs varies with production lots. If an application appears to be sensitive to oscillation due to load capacitance, adding a small resistance in series with the load should alleviate the problem. Capacitive loads of 1000 pF and larger may be driven if enough resistance is added in series with the output (see Figure 49). (a) Cl =100 pF, R =0 (d) Cl = 1000 pF, R = 0 (b) Cl (e)Cl = 300 pF, R = 0 = 1000pF,R = 50n (e) Cl (I) cl =350 pF, R =0 =1000 pF, R = 2 k.Q Figure 49. Effect of Capacitive Loads +5V -5V n -1 L NOTE A: CL includes fixture capacitance. Figure 50. Test Circuit for Output Characteristics TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303· DALLAS. TEXAS 75265 2-197 Tl031 , Tl031A ENHANCED JfET lOW-POWER lOW-OffSET OPERATIONAL AMPLIfiERS APPLICATION INFORMATION high-Q notch filter In general, Texas Instruments enhanced JFET operational amplifiers serve as excellent filters. The circuit in Figure 51 provides a narrow notch at a specific frequency. Notch filters are designed to eliminate frequencies that are interfering with the operation of an application. For this filter, the center frequency can be calculated as: 1 fa = 21tR1C1 With the resistors and capacitors shown in Figure 51, the center frequency is 1 kHz. Note that C1 = C3 = C2 + 2 and also that Ri = R3 = 2 x R2. The center frequency can be modified by varying these values. When adjusting the center frequency, be sure that the operational amplifier still has sufficient gain at the frequency of interest. VIN R1 R3 1.5MQ 1.5MQ VOUT -15V C2 220pF R2 750 k.Q C1 C3 110 pF 110 pF 2 0 -1 III -2 t:: -3 "I ~ - V '\ /' ,.- I / -4 I -5 -6 -7 -8 0.2 0.4 0.6 0.8 0.2 0.4 f - Frequency - kHz 0.6 0.8 Figure 51. High-Q Notch Filter TEXAS ." 2-198 INSTRUMENTS POST OFFICE BOX 655303· DALLAS. TEXAS 75265 2 Tl031 , Tl031A ENHANCED JFET lOW-POWER lOW-OFFSET OPERATIONAL AMPLIFIERS APPLICATION INFORMATION translmpedance amplifier The low-power precision TL031 allows accurate measurement of low currents. The high input impedance and low offset voltage of the TL031A greatly simplify the design of a transimpedance amplifier. At room temperature, this design achieves ten-bit accuracy with an error of less than 1/2 LSB. Assuming that R2 is much less than R1 and ignoring error terms, the output voltage can be expressed as: Vo = -liN x RF(R1R+2 R2) Using the resistor values shown in the schematic, for a 1-nA input current, the output voltage equals - 0.1 V. If the Vo limit for the TL031 A is measured to be ± 12 V, the maximum input current for these resistor values is ± 120 nA. Similarly, one LSB on a ten-bit scale corresponds to 12 mV of output voltage or 120 pA of input current. The following equation shows the effect of input offset voltage and input bias current on the output voltage: R1 + R2) R2 Vo = - [VIO + RF(lIN + lIB)] ( If the application requires input protection for the transimpedance amplifier, do not use standard PN diodes. Instead, use low-leakage Siliconix SN4117 JFETs (or equivalent) connected as diodes across the TL031 A inputs as shown in Figuire 52. As with all precision applications, special care must be taken to eliminate external sources of leakage and interference. Other precautions include using high-quality insulation, cleaning insulating surfaces to remove fluxes and other residue, and enclosing the application within a protective box. RF 10MQ + 15 V INPUT CURRENT ------<._---___.--1 >----.--+-- Vo -15 V R1 90 kQ R2 10 kQ SN4117 Figure 52. Transimpedance Amplifier TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303· DALLAS. TEXAS 75265 2-199 Tl031 , Tl031A ENHANCED JFET lOW-POWER lOW-OFFSET OPERATIONAL AMPLIFIERS APPLICATION INFORMATION 4- to 20-mA current loops Often information from an analog sensor must be sent over adistance to tha receiving circuitry. For many applications, the most feasible method involves converting voltage information to a current before transmission. The following circuits give two variations of low-power current loops. The circuit in Figure 53 requires three wires from the transmitting to receiving circuitry while the second variation in Figure 54 requires only two wires but includes an extra integrated circuit. Both circuits benefit from the high input impedance of the TL031 A since many inexpensive sensors do not have low output impedance. Assuming that the voltage at the noninverting input of the TL031 A is zero, the following equation determines the output current: 10 = VIN(~)+5V(~)= R1 x RS R2xRS 0.16xVIN+4rnA The circuits presently provide 4-to 20-mA output for an input voltage of 0 to 100 mY. By modifying R1, R2, and R3, the input voltage range or the output current range can be adjusted. Including the offset voltage of the operational amplifier in the above equation clearly illustrates why the low offset TL031A was chosen: 10 = VIN(~)+5V(~)-VI0(~+~+R1) R1 x RS R2 x RS R1 x RS R2 x RS RS = 0.16xVIN+4rnA-0.17xVI0 For example, an offset voltage of 1 mV decreases the output current by 0.17 mA.. Thanks to the low power consumption ()f the TL031A, both circuits have at least 2 rnA available to drive the actual sensor from the 5-V reference node. ~------------------------------~--~~ vcc+ =10V LT1019-S +SVRM-------r-4~~--~~----------__, R2 1 MO 10f.lF 10 J.IF RS 3.3kO R4 R3 2N3904 SkU 80kU -----~-*_Ry,S~~_ - - - - -.... COMMON RL ~ 500 Figure 53. 2·Wire 4· to 2D-mA Current Loop TEXAS ~ INSTRUMENTS 2-200 POST OFFICE BOX 655303' DALLAS. TEXAS 75265 TL031 , TL031A ENHANCED JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS APPLICATION INFORMATION r---------------.-~~ vee + = 10V 100kn R6 TL431 100kn R7 + 5 V Ref - - - - + -____ + - - - - , R2 1 Mn R5 R1 VIN -""5""kn-+-..---t---t 3.3kn 2N3904 '--------+-----<,~ VEE R4 R3 =-5V Skn SOkn SIGNAL RS ""' I COMMON---*-+--~---------~~10~0~n~~~+O RLi son Figure 54. 3-Wlre 4- to 20-mA Current Loop TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 2-201 2-202 Tl032, Tl032A ENHANCED JFET lOW-POWER lOW-OFFSET DUAL OPERATIONAL AMPLIFIERS D3152, JULY 1988 - REVISED JANUARY 1991 • lI!1aximum Offset Voltage ... 800 ~V • Very Low Power Consumption .•• 13 mW Typ • High Slew Rate ... 2.9 V/~s Typ • Output Short-Circuit Protection • Low Input Bias Current ... 2 pA Typ FK PACKAGE (TOP VIEW) D, JG, or P PACKAGE (TOP VIEW) LPACKAGE (TOP VIEW) + I-- ::::> 0 000 00 1 0 U T [ j 8 VCC+ liN 2 7 20UT liN + 3 6 21NVCC- 4 5 21N + Z~Z>Z / NC l1NNC liN + NC 3 2 1 20 19 4 18 5 17 6 16 7 15 J8 NC 20UT NC 21NNC 14 o Z Pin 4 (L Package) is in electrical contact with the case 10 + 0 OZ Z Z o - > N NC - No internal connection description The TL032 and TL032A dual operational amplifiers incorporate well-matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit. These devices offer the significant advantages of Texas Instruments new enhanced JFET process. This process affords not only low initial offset voltage due to the on-chip zener trim capability but also stable offset voltage over time and temperature. In comparison, traditional JFET processes are plagued by significant offset voltage drift. This new enhanced process still maintains the traditional JFET advantages of fast slew rates and low input bias and offset currents. These advantages coupled with low power consumption make the TL032 well-suited for new state-of-the-art designs as well as existing design upgrades. The TL032 has been designed to be functionally compatible and pin compatible with the TL062. DISTRIBUTION OF TL032A INPUT OFFSET VOLTAGE AVAILABLE OPTIONS i!- 12 I PACKAGE TA V,Omax SMALLAT 25°C OUTLINE (0) O°C to 70°C 40°C to 85°C -55°C to 125°C CHIP CARRIER (FK) CERAMIC DIP (JG) - O.8mV TL032ACD 1.5 mV TL032CD O.8mV TL032AID 1.5mV TL0321D O.8mV TL032AMD TL032AMFK TL032AMJG 1.5 mV TL032MD TL032MFK TL032MJG o packages are available taped and reeled. - METAL CAN (L) PLASTIC DIP (P) - TL032ACP TL032CP TL032AIP TL0321P TL032AML TL032AMP TL032ML TL032MP f! :E " Q. 91---+-~ E « '0 8, 6 '" E @ rf Add "R" suffix to device type, (e.g., TL032CDR). PRODUCTION DATA documents contain Information currant as of publication date. Product. conform to specifications per the lermsolTexas InstrUment, standard warranty. Production processing does not necallarlly Include testing 01 all parameters. -600 -300 0 300 600 V,O -Input Offset Voltage -IlV ~ 900 Copyright © 1991, Texas Ins1ruments Incorporated TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-203 TL032, TL032A ENHANCED JFET LOW-POWER LOW-OFFSET DUAL OPERATIONAL AMPLIFIERS description (continued) functionally compatible and pin compatible with the TL062. Two offset voltage grades are available: TL032 (1.5 mV max) and TL032A (800 ~V max). A variety of available packaging options includes small-outline and chip carrier versions for high density system applications. The C-suffix devices are characterized for operation from ooe to 70o e. The I-suffix devices are characterized for operation from - 40 0 e to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of - 55°C to 125°e. equivalent schematic (each amplifier) 01 IN +---1---. IN _ _ .r---"\-.I ~~----~------~Vo +------....-1017 R1 Vcc- symbol (each amplifier) IN-=t>IN + OUT + TEXAS . " INSTRUMENTS 2-204 POST OFFICE BOX 655303' DALLAS, TEXAS 15265 Tl032, Tl032A ENHANCED JFET lOW-POWER lOW-OFFSET DUAL OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, VCC + (see Note 1) ..................................................... 18 V Supply voltage, VCC _ (see Note 1) .................................................... -18 V Differential input voltage (see Note 2) ................................................... ± 30 V Input voltage range, VI (any input, see Notes 1 and 3) ...................................... ± 15 V Input current, II (each input) .......................................................... ± 1 mA Output current, 10 (each output) ..................................................... ± 40 mA Total current into VCC + terminal ..................................................... 160 mA Total current out of VCC _ terminal ................................................... 160 mA Duration of short-circuit current at (or below) 25°C (see Note 4) ............................ unlimited Continuous total dissipation ........................................ See Dissipation Rating Table Operating free-air temperature, T A: C-suffix ........................................ O°C to 70°C I-suffix ...................................... - 40°C to 85°C M-suffix .................................... - 55°C to 125°C Storage temperature range ................................................... - 65°C to 150°C Case temperature for 60 seconds: FK package ........................................... 260°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package ................. 260°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG or L package ................ 300°C NOTES: 1. 2. 3. 4. All voltage values. except differential voltages, are with respect to the midpoint between vee + and VCC _ . Differential voltages are at the noninverting input with respect to the inverting input. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE TA S 25°C POWER RATING DERATING FACTOR ABOVE TA 25°C 5.8mW/oC = = D FK 464mW 377mW 1375mW 11.0 mW/oC 880mW JG 1050mW 672mW 715mW 546mW 275mW 210mW 528mW 429mW 165mW 640mW 520mW 200mW 725mW = L 825mW 8.4 mwrc 6.6mW/oC p 1000 mW 8.0 mW/oC TA 70°C POWER RATING TA 85°C POWER RATING = TA 125°C POWER RATING 145mW PACKAGE recommended operating conditions C-SUFFIX Supply voltage, VCC Common-mode input voltage, V'C Operating free-air temperature, TA I-SUFFIX MIN NOM MAX ±15 ±5 M-SUFFIX MIN NOM MAX ±5 ± 15 MIN NOM MAX ±15 ±5 _1.5 4 IVCC+=±5V -1.5 4 -1.5 4 I VCC+ = ±15V -11.5 14 -11.5 14 -11.5 14 0 70 -40 85 -55 125 UNIT V V °c TEXAS ~ INSTRUMENlS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-205 TL032C, TL032AC ENHANCED JFET LOW-POWER LOW-OFFSET DUAL OPERATIONAL AMPLIFIERS electrical Characteristics PARAMETER Via TEST CONDITIONS Temperature coefficient aYIO of input offset voltage (see Note 8) VIC RS = O. = 0, = 50 Q MIN 25°C Full range 0.69 TL032AC 25°C Full range 0.53 TL032C TL032AC Input offset voltage 110 Input offset current liB Input bias current YO = 0, VIC See Figure 5 = 0, = 0, 70°C 25°C to Maximum negative peak VOM- AyO output voltage swing Large-signal differential voltage amplification RL RL = = 10 kQ 10kQ RL = 10 kn, See Note 6 2.8 0.39 11.5 10.8 11.5 10.8 0.04 0.04 100 70°C 9 200 200 12 2 200 200 400 80 -13.4 400 25°C 2 70°C -1.5 50 -3.4 to to to to 4 -1.5 5.4 14 -11.5 15.4 -11.5 to to 4 14 25°C 3 4.3 13 14 O°C 70°C 25°C 3 4.2 13 14 3 -3 4.3 -4.2 14 13 -12.5 -13.9 O°C -3 -4.1 -12.5 -13.9 70°C -4.2 -12.5 -14 25°C -3 4 12 5 14.3 O°C 3 11.1 4 13.5 70°C 4 13.3 5 15.2 25°C 1012 1012 Input capacitance 25°C 5 4 kSVR Supply-voltage rejection ratio (aVcC +IAVIO) Po ICC = VICR min, = 0, RS = 50Q VCC± = ±5Yto±15V, Va = 0, RS = 50n VIC 25°C 70 87 75 94 Va O°C 70 87 75 94 70°C 25°C 70 75 87 96 75 75 94 96 O°C 75 96 75 96 75 75. 96 70°C Total power dissipation No load, (two amplifiers) YO Supply current No load, (two amplifiers) YO 25°C =a =a ilV/ mo 1 Input resistance Common-mode mV 25 100 q rejection ratio 0.8 1.8 Ci CMRR UNIT 1.5 2.5 1 Full range Maximum positive peak 0.57 MAX 25°C voltage range output voltage swing TYP ilV/oC 70°C Common-mode input VOM+ MIN 3.8 25°C to 25°C VICR VCC± = ±15V MAX 3.5 4.5 25°C long-term drift (see Note 5) YO = 0, YIC See Figure 5 TYP TL032C Input offset voltage YO VCC±=±5V TAt pA pA V V V V/mV Q pF dB dB 96 13 17 O°C 3.8 3.7 5 5 12.7 17 70°C 3.8 5 12.6 17 25°C 384 500 434 560 O°C 368 500 422 560 70°C 378 500 420 560 mW IJ.A AVO = 100 dB 120 120 25°C Yo l IV02 Crosstalk attenuation t Full range IS O°C to 70°C. NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 6. AtVCC± = ±5Y, Va = ±2.3V;atVcc± = ±15Y, Va = ±IOV. 8. This parameter is tested on a sample basis for the TL032A. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters. = TEXAS . " INSTRUMENTS 2-206 POST OFFICE BOX 6553()3· DALLAS, TEXAS 75265 Tl032C, Tl032AC ENHANCED JFET lOW-POWER lOW-OFFSET DUAL OPERATIONAL AMPLIFIERS operating characteristics PARAMETER SR+ SR- tr tf TEST CONDITIONS Positive slew rate at unity gain RL = 10 kU. = 100 pF. eL See Figure 1. Negative slew rate at unity gain See Note 7 Equivalent Vn (see Note 9) In Bl I/Jm noise current Unity-gain bandwidth VCC± = ±15V MIN TYP 25°C ooe 2 2 2.9 1.8 1.5 2.6 70°C 2.2 2 3.2 25°C ooe 3.9 3.5 5.1 3.7 3.2 5.0 70°C 4 138 3.2 5.0 132 134 127 150 142 RL 25°C ooe 138 132 134 127 70°C 150 142 25°C ooe 11% 5% 10% 4% 70°C 12% 6% f RS = 1000. See Figure 3 f f TL032Ae Equivalent input MAX 70 c e = ± 10 mY. = 10kil. = 100 pF. eL See Figures 1 and 2 TL032e = ±5V TYP VIPP Overshoot factor input noise voltage VCC± MIN 25°C ooe Rise time Fall time TA f f = 10 Hz = 1 kHz = 10Hz = 1 kHz = 1 kHz Vi = 10 mY. RL = 10 kil. CL = 25 pF. See Figure 4 Phase margin Vi at unity gain eL = 10 mY, = 25 pF, RL = 10 kn, See Figure 4 49 49 41 49 41 49 41 41 25°C 0.003 0.003 25°C ooe 1 1.1 70°C 1 1 1.1 1 25°C ooe 61° 61° 70°C 60° 65° 65° 64° 25°C 25°C MAX UNIT V/f!s V/f!s ns ns nV/.JHz 60 pA/.JHz MHz NOTES: 7. ForVec± = ±5V, VIPP = ±1 V;forVCe± = ±15V, VIPP = ±5V. 9. This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters. ~ TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-207 Tl0321, Tl032AI ENHANCED JFET lOW-POWER lOW-OFFSET DUAL OPERATIONAL AMPLIFIERS electrical characteristics PARAMETER TEST CONDITIONS , TL0321 Via Input offset voltage TL032AI Va: 0, Temperature coefficient aVIO VIC: 0, RS : son of input offset voltage (see Note 8) TL0321 TL032AI Input offset voltage VCC± TAt MIN 25°C Full range 110 Input offset current Va : 0, VIC : 0, See Figure 5 liB Input bias current Va : 0, VIC : 0, See Figure 5 0.53 25°C Full range 85°C 25°C to 3.5 Maximum negative peak RL: 10 kn output voltage swing Large-signal differential AVO RL: 10 kn, See Note 6 voltage amplification 10.8 11.4 10.8 0.04 0.04 pA 0.02 0.45 200 0.02 0.45 nA 2 200 pA 0.9 0.3 -11.5 -13.4 0.9 nA 2 0.2 85°C -3.4 to to to to 4 5.4 14 -11.5 15.4 - 1.5 to to 25°C 3 4.3 13 14 -40°C 3 4.1 13 14 85°C 4.4 -4.2 13 14 -12.5 -13.9 25°C 3 -3 -40°C -3 -4.1 -12.5 -13.8 85°C -3 -4.2 -12.5 25°C 4 12 5 14.3 3 8.4 4 11.6 85°C 4 13.5 5 15.3 1012 1012 25°C rejection ratio VCC± = ±5Vto±15V, Va = 0, (aVCC±laVIO) RS Supply-voltage kSVR Po ICC = 50n Total power dissipation No load, (two amplifiers) Va: 0 Supply current No load, (two amplifiers) =0 AVO = 100 Va V V -14 -40°C 25°C Rs: 50n V 14 Input capacitance VIC : VICR min, Va: 0, /lV/mo 85°C 25°C Input resistance Common-mode 25 100 Ci rejection ratio mV 1 I'j CMRR 0.8 2.6 11.4 4 VOM- 0.39 100 Full range RL : 10 kn 1.5 3.3 2.8 UNIT 1 voltage range Maximum positive peak 0.57 MAX 25°C 25°C output voltage swing =±15V TYP /lV/oC 85°C Common-mode input VOM+ VCC± MIN 4.6 25°C to -1.5 VICR MAX 5.3 25°C long-term drift (see Note 5) =±5V TYP 0.69 25°C 70 5 87 75 94 -40°C 70 87 75 94 85°C 70 87 75 94 V/mV n 4 25°C 75 96 75 96 -40°C 75 96 75 96 85°C 75 96 75 96 pF dB dB 25°C 3.8 5 13 -40°C 2.9 5 10.9 17 85°C 3.7 12.4 434 17 17 25°C 384 5 500 -40°C 288 500 362 560 85°C 372 500 414 560 mW 560 !lA Vo 11V02 Crosstalk attenuation dB 25°C 120 120 t Full range IS -40°C to 85°C. NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA : 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 6. At VCC ± ± 5 V, Va ± 2.3 V; at Vee ± ± 15 V, Va : ± 10 V. 8. This parameter is tested on a sample basis for the TL032A. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters. = = = ~ TEXAS INSTRUMENTS 2-208 POST OFFICE BOX ~55303' DALLAS, TEXAS 75265 TL0321, TL032AI ENHANCED JFET LOW-POWER LOW-OFFSET DUAL OPERATIONAL AMPLIFIERS operating characteristics PARAMETER SR+ SR- Ir tf TEST CONDITIONS Positive slew rate at unity gain Negative slew rate at unity gain RL = 10 kn, CL = 100 pF, See Figure 1, See Note 7 V,PP = ± 10 mV, RL = 10kQ, CL = 100 pF, See Figures 1 and 2 Overshoot factor Equivalent Vn input noise voltage (see Note 9) In Bl Iflm TL0321 Equivalent input Unity-gain bandwidth Phase margin at unity gain f = 10 Hz RS = 100 Q, See Figure 3 TL032AI noise current = VCC± ±5V MIN TYP MAX 25°C Rise time Fall time TA f = 1 kHz f = 10 Hz f = 1 kHz f = 1 kHz Vi = 10 mV, RL = 10 kQ, CL = 25 pF, See Figure 4 Vi = 10 mV. RL = 10 kQ, CL = 25 pF, See Figure 4 2 VCC± =±15V MIN TYP 2.9 2.1 -40°C 1.6 2 1.5 85°C 2.3 2 3.3 5.1 25°C 3.9 3.5 -40°C 3.3 3.2 4.8 85°C 4.1 3.2 4.9 25°C 138 -40°C 132 123 85°C 154 146 25°C 138 132 -40°C 85°C 132 154 123 146 25°C -40°C 11% 12% 5% 85°C 13% 49 25°C 41 VIlIS VIlIS ns ns 5% 7% 49 49 41 41 25°C 0.003 0.003 25°C 1 1.1 -40°C 85°C 1 0.9 1.1 25°C -40°C 61° 85°C 60° 60° UNIT 132 41 49 25°C MAX nV/.JFii 60 pAl.JFii MHz 1 65° 65° 64° NOTES: 7. For VCC ± = ± 5 V, VIPP = ± 1 V; for VCC ± = ± 15 V, V,PP = ± 5 V. 9. This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2-209 TL032M, TL032AM ENHANCED JFET LOW-POWER LOW-OFFSET DUAL OPERATIONAL AMPLIFIERS electrical characteristics PARAMETER TEST CONDITIONS TL032M VIO Input offset voltage TL032AM Va = 0, "Via Temperature coefficient of input offset voltage VIC = 0, RS = 50n TL032M TL032AM Input offset voltage long-term drift (see Note 5) 25°C Full range 25°C Full range 25°C to 125°C 25°C to 125°C 110 Input offset current liB Input bias current Va = 0, VIC = 0, See Figure 5 25°C 125°C 25°C 125°C 25°C Common-mode input voltage range Full range VOM+ VOM- AVO fj Ci CMRR kSVR Maximum positive peak output voltage swing Maximum negative peak output voltage swing Large-signal differential voltage amplification Supply-voltage rejection ratio (c.vCC ±' AVIO) Po ICC RL = 10 kn RL = 10 kn, See Note 6 Total power dissipation (two amplifiers) Supply current (two amplifiers) VIC = VICR min, Va = 0, RS= 50n VCC± = ±5Vto±15V, Va = 0, RS = 50n No load, Va = 0 No load, Vo = 0 =±15V TYP 0.57 0.39 9.7 9.7 9.1 9.7 0.04 0.04 100 0.2 2 7 -3.4 to 5.4 10 200 20 1 0.2 2 8 -11.5 -13.4 to to 14 15.4 -11.5 to 3 -3 -3 14 13 14 13 14 13 14 -12.5 -13.9 -12.5 -13.8 -3 -4.3 -12.5 -14 25°C -55°C 125°C 25°C 25°C 4 3 3 12 7.1 5 4 4 14.3 10.4 25°C -55°C 125°C 70 70 70 75 75 75 25°C -55°C 125°C 25°C -55°C 4 3 3 1 4.3 4.1 4.4 -4.2 -4 -55°C 125°C Input resistance Input capacitance Common'mode rejection ratio -1.5 to 4 - 1.5 to 25°C -55°C 125°C 25°C RL = 10 kn VCC± MIN MAX 1.5 4.5 0.8 3.8 UNIT mV v.Vl oC 25°C Va = 0, VIC = 0, See Figure 5 VICR = VCC± ±5V MIN TYP MAX 0.69 3.5 6.5 0.53 2.8 5.8 TAt 125°C 25°C -55°C 125°C 25°C 12.9 10'2 5 87 87 87 96 95 96 3.8 2.3 3.6 384 228 356 120 75 70 70 75 75 75 5 5 5 500 500 500 v.Vlmo 100 10 200 20 V V V VlmV 15 10'2 4 94 94 94 96 95 96 13 9.4 11.8 434 312 394 120 pA nA pA nA n pF dB dB 17 17 17 560 560 mW v.A 560 AVO = 100 dB V0 11V02 Crosstalk attenuation t Full range IS - 55°C to 125°C. NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 6. AtVCC± = ±5V,VO = ±2.3V;atVcc± = ±15V,VO = ±10V. TEXAS ." INsrRUMENTS 2-210 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 Tl032M, Tl032AM ENHANCED JFET lOW-POWER lOW-OFFSET DUAL OPERATIONAL AMPLIFIERS operating characteristics PARAMETER SR+ SR- tr TEST CONDITIONS Positive slew rate at unity gain RL Rise time = ± 10 mV, = 10kn, = 100 pF, RL CL See Figures 1 and 2 Fall time Overshoot lactor Vn In Equivalent input noise voltage TL032M 1= 10 Hz f = 1 kHz 1= 10 Hz f = 1 kHz RS = lOOn, See Figure 3 TL032AM Equivalent input noise current I= 1 kHz Bl Unity-gain bandwidth Vi = 10 mV, RL = 10 kn, CL = 25 pF, See Figure 4 ~m Phase margin at unity gain Vi = 10 mV, RL = 10 kn, CL = 25 pF, See Figure 4 NOTE 7: ForVCC± = ±5V, VIPP = ±1 25°C 0.003 0.003 25°C -55°C 125°C 25°C -55°C 125°C 1 1 0.9 61° 57° 59° 1.1 1.1 0.9 65° 64° 62° 125°C 25°C -55°C 125°C 25°C -55°C 125°C 25°C -55°C 125°C VIPP tf VCC±=±15V MIN TVP MAX 2.9 2 1.2 1.9 1.2 3.5 5.1 3 2.5 4.6 4.7 2.5 132 123 158 132 123 158 5% 6% 25°C -55°C 125°C 25°C -55°C = 10 kQ, = 100 pF, CL See Figure 1, See Note 7 Negative slew rate at unity gain VCC±=±5V MIN TVP MAX 2 1.4 2.4 3.9 3.2 4.1 138 142 166 138 142 166 11% 16% 14% 49 41 49 41 TA V;lorVCC± 25°C 25°C 8% 49 41 49 41 UNIT V/IlS V/IJ.S ns ns nV/~ pAl~ MHz = ±15V, VIPP = ±5V. PARAMETER MEASUREMENT INFORMATION >----VO I I I I I I I 10% : I ......... t r - RISE TIME NOTE A: CL includes fixture capacitance. Figure 1. Slew Rate, Rise/Fail Time, and Overshoot Test Circuit Figure 2. Rise Time and Overshoot Waveform TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2-211 TL032, TL032A ENHANCED JFET LOW-POWER LOW-OFFSET DUAL OPERATIONAL AMPLIFIERS PARAMETER MEASUREMENT INFORMATION VI 1000 Vo VeeRs RS NOTE A: CL includes fixture capacitance. Figure 3. Noise Voltage Test Circuit Figure 4. Unity-Gain Bandwidth and Phase Margin Test Circuit GROUND SHIELD Vee + Figure 5. Input Bias and Offset Current Test Circuit typical values Typical values as presented in this data sheet represent the median (50% pOint) of device parametric performance. Input bias and offset current At the picoamp bias current level typical of the TL032 and TL032A, accurate measurement of the bias current becomes difficult. Not only does this measurement require a picoammeter, but test socket leakages ean easily exceed the actual device bias currents. To accurately measure these small currents Texas Instruments uses a two step process. The socket leakage is measured using picoammeters with bias voltages applied but with no device in the socket. The device is then inserted into the socket and a second test that measures both the socket leakage and the device input bias current is performed. The two measurements are then subtracted algebraically to determine the bias current of the device. noise Because of the increasing emphasis on low noise levels in many of today's applications, the input noise voltage density is sample-tested at f = 1 kHz. Texas Instruments also has additional noise testing capability to meet specific application requirements. Please contact the factory for details. TEXAS 2-212 ~ INSTRUMENlS POST OFFICE BOX 655303 • ~ALLAS. TEXAS 75265 Tl032, Tl032A ENHANCED JFET lOW-POWER lOW-OFFSET DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS table of graphs FIGURE VIO Distribution 6 Distribution 7 vs Temperature 8 vs VIC Temperature 9 8 VCC Temperature 10 vs vs Output voltage 12,13 vs vs vs VCC Output current Frequency 16,17 vs Temperature 18,19 vs RL Frequency 20 vs vs Temperature vs vs Frequency Frequency 22 23 vs Temperature 26 vs Temperature 27 vs VCC Time 28 Temperature 30 Vce Temperature 32 34,35 vs RL Temperature Equivalent input noise voltage vs vs eL Frequency 31 Total harmonic distortion vs Frequency 39 vs 40 vs Vce Temperature vs Vce 42 vs 43 vs CL Temperature vs Frequency Input offset voltage Temperature coefficient (lVIO of input offset voltage 110 Input offset current liB Input bias current VI Input voltage range VID VOM AVO Zo Maximum peak output voltage swing Differential voltage amplification Output impedance Common-mode rejection ratio kSVR Supply-voltage rejection ratio lee SR Short-circuit output current Supply current Slew rate Overshoot factor Vn THO B1 4Jm vs Differential input voltage CMRR lOS vs Unity-gain bandwidth Phase margin Phase shift Pulse response vs vs vs vs vs Small-signal Large-signal 11 14 15 21 24, 25 29 33 36,37 38 41 44 21 45 46,47 ~ TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-213 Tl032, Tl032A ENHANCED JFET LOW-POWER lOW-OFFSET DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt DISTRIBUTION OF TL032 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT DISTRIBUTION OF TL032 INPUT OFFSET VOLTAGE 30 1681 Amplifiers from 2 wafer lots VCC±=±15V TA = 25°C VCC± = ±15V 25 I---t--t--+--+- T A = 25°C to 125°C ':!!. P Package °I VS VS SUPPLY VOLTAGE FREE-AIR TEMPERATURE = 25°C 12 V POSITIVE LlMV ./' I 20 V VCC±=±15V > 6 &. 5 .E ~ o 0 E E ~ '-... 4 10 ~o LIMIT r--..... 2 E'" ~ ~EGATIVE o ~OSITI~E UJIT I ,,- ./' -16 15 8 10 12 -5 8 -10 I o >" -15 ~ 14 iGATllVE -20 -75 16 -50 IVcc ±I- Supply Voltage - V -25 0 25 50 75 100 TA - Free-Air Temperature - DC Figure 10 Figure 11 DIFFERENTIAL INPUT VOLTAGE DIFFERENTIAL INPUT VOLTAGE VS OUTPUT VOLTAGE 1.5 rT"..,................--...--.......- - . . . - -.......- - - , 1.5 r-""II"TT'-I"T"-'-"""''''''-'--'''''-'--'''''-,---, ~ ~ C) Ol .. .. I I B 0.5 .E OJ 0 B "0 > 0.5 :; Il. .E OJ = Vcc± ±5V TA 25°C i f = ~ -0.5 I is RL RL RL RL I ~ 125 VS OUTPUT VOLTAGE "0 > '5 Co urr -1 I 0 .. 'E ~ -0.51--+--1--+--p.-d~~:-..I I = 20 kn-+-t---+" = 10 kn--+--t---t---' = 5 kn --+--+--+--1 = 2kn is I RL = 50 kn RL = 20 kg ----if---" RL = 10 kQ ---1--.-../ = 5kn -1.5 ' - - -.......- -RL ' -..... _ ......._ _....._ ......._ ...... -15 -10 -5 0 5 10 15 ~ -11---1- -1.5 L_~R~L~=~1~k~n~:t::t::t::~~~LJJ 4 2 3 5 -5 -4 -3 -2 -1 o Vo - Output Voltage - V Vo - Output Voltage - V Figure 12 Figure 13 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENlS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-215 Tl032, Tl032A ENHANCED JFET lOW-POWER lOW-OFFSET DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt MAXIMUM PEAK-TO-PEAK'OUTPUT VOLTAGE vs FREQUENCY MAXIMUM PEAK OUTPUT VOLTAGE vs SUPPLY VOLTAGE > 16 RL = 10 kQ TA = 25°C "",- I VOM+"",- i o V I I 1111 " Cl oS "'0 > V"" 25 c5 ." ,,:, . &. RL = 10kQ VCC± = ±15V\ \ S So [..../ .,,- 4 30 I 20 \ .:c . 0.. ~ 0 § -4 &. ....... E ')( :;l ~M...... -8 I ....... :;; o 2 15 E E 10 . I ..is... Cl > ;; co. S 1'---. . . . ...... 4 6 8 10 12 IVcc ±I- Supply Voltage - V :0 ...081 ~ E :::I E .... 2 o 10k 100k f - Frequency - Hz 1M Figure 15 MAXIMUM PEAK OUTPUT VOLTAGE vs OUTPUT CURRENT MAXIMUM PEAK OUTPUT VOLTAGE vs OUTPUT CURRENT 16 Vcc ± = ±5 V TA = 25°C > I Cl oS "'0 > 5 ...0. 8 ~ 10 6 :0 4 .. = "-..... VOM- ~ r\. \ VOM+ E E :::I \ \ \ ';( I "" :E 0 > ~ 15 1101- Output Current - rnA 20 2 o o Figure 16 = Vcc± ±15V TA 25°C 0.. "~ ~ 0 10 " ~ 12 > S co. '5 ~ I 14 " ~1\ :;; o o = 125°C ~ i'.. 1k 16 4 ~ D.. 5 I 0.. 0.. I'- 14 \ VCC±=±5V Figure 14 VOM+ 3 1;== TA ';( 5 > ~A 1,-,ii~,T\ :::I ;.9-12 -16 .9 5 10 15 20 1101- Output Current - rnA 25 Figure 17 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices, ~ 2-216 TEXAS INSTRUMENTS POST OFFICE BOX 655303 ' DALLAS, TEXAS 75265 30 TL032, TL032A ENHANCED JFET LOW-POWER LOW-OFFSET DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt MAXIMUM PEAK OUTPUT VOLTAGE MAXIMUM PEAK OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE vs FREE-AIR TEMPERATURE 16 5 > I GI CI S '0 > S > 4 I VOM+ " 3 Ol lIS 'g ;; ~ .... o VCC±=±5V_ RL = 10 kQ 0 "" ~ § e .;:c -1 -2 :II! 0 vcc± = ±15 V RL = 10kn 0 -4 ~ -8 :II! I 4 Co ;; D- e:::I e 8 > 2 0 ""II! I vOM+ 12 I -3 :II! 0-12 > -4 > VOM_ VOM- -5 -75 -50 -25 0 25 50 75 100 T A - Free-Air Temperature - °c -16 -75 125 -50 -25 0 25 50 75 100 125 T A - Free-Air Temperature - °C Figure 18 Figure 19 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY LARGE-SIGNAL VOLTAGE AMPLI FICATION vs LOAD RESISTANCE 40 > e :> 35 I Vo = ± 1 V TA = 25°C 0 5 30 'a 25 ~ > ~ j I c ~ " ;;: VCC± = ±15V < GI CI '; 20 .15 10 / / /' 30° TA = 25°C 'a II ;;: e o V c VCC±=±15V RL = 10 kn 1'<--"""1.--1----+--- CL = 25 pF c E 10 3 < 60° "0 > 10 2 90° N'" V vI--' VCC±=±5V iii ~" :.. .c .~ '/ == .c UI D- 10 1 120° i5 I C ~ 5 0 10 k 100 k RL - Load Resistance - 1M n 0.1 ' - - _......._ _'---_......._ _'---_............;1...&.1180° 10 100 1k 10 k 100 k 1M 10 M f - Frequency - Hz Figure 20 Figure 21 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSfRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-217 Tl032, Tl032A ENHANCED JFET lOW-POWER lOW-OFFSET DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt LARGE-SIGNAL VOLTAGE AMPLIFICATION OUTPUT IMPEDANCE vs vs FREE-AIR TEMPERATURE FREQUENCY 200 50 > RL = 10kQ E :> AtO ~ii. E "" 1 ,10 ....-::~-I"""' I c ,S! a vcc± = ± 15 V I II> ~T 10 ''"" ."...- ~ I: '0 .E :;Q. > 1,/ / 60 '--AVO = 10 Q. S '0 v 80 II> VCC± = +5V GI CI 100 l./ 40 8 OJ E ..,.. vii I iis 0 N 20 I-- AVO = 1 VCC ± = ±15V ro(openloop) ~ 250Q I C I > "" 10 1k 1 -75 -50 -25 0 25 50 75 100 125 '0 I 0 Figure 22 Figure 23 COMMON-MODE REJECTION RATIO COMMON-MODE REJECTION RATIO vs vs FREQUENCY FREQUENCY 100 VCC±=±5V TA = 25°C ............ 80 .g c 70 'iii' 60 GI 50 '" \ '0 0 =!ic 40 E E 30 <3 I 20 ::E 10 a: a: 0 o 10 '~ 80 ~ 70 'g £' i \ ::E \ 0 90 a: r\ a: ~ \ \ ~ <3 30 I 20 13 10 a: a: '" 50 40 o '\. 60 C Vcc± = ±15V TA = 250C '\. I ......... a: g 100 k f - Frequency - Hz 90 ~ TA=25°C T A - Free-Air Temperature - °C 100 III I 10 k ~ '\. ~ \ o 100 1k 10 k 100 k 1M 10 M 10 100 f - Frequency - Hz Figure 24 1k 10k lOOk f - Frequency - Hz 1M Figure 25 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices, TEXAS ~ INSTRUMENTS 2-218 POST OFFICE BOX 655303 ' DALLAS, TEXAS 75267 10M Tl032, Tl032A ENHANCED JFET lOW-POWER lOW-OFFSET DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt COMMON-MODE REJECTION RATIO vs FREE-AIR TEMPERATURE 95 I III 100 I I 0 .~ 90 c II: ~ 'a;" II: ... 'U '...8 0 '4) II: /" 96 .. VCC±=±5V 85 I Cl 0 l!! '0 ~0 0 98 c 0 () t-il. 94 Q. 80 rn" I II: II: I 92 II: > rn ... ::I! () VIC = VICR min 75 -75 -50 -25 0 25 50 75 100 90 -75 125 -50 TA - Free-Air Temperature - °C I () 75 100 SHORT-CIRCUIT OUTPUT CURRENT vs TIME 125 30 Vo = 0 TA 25°C = 20 /" 'E" V VID I = 100mV VIO = '100mv 20 E ~ 10 " U ; 10 Co ; o 0 ~ e ~ 50 SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE Co 0 25 Figure 27 :; :; 0 Figure 26 C I!! 13 -25 TA - Free-Air Temperature - °C 30 'E" =±5V to ±15V 'U vcc± = ±15V I E E VCC± III 'U ~ II: SUPPLY-VOLTAGE REJECTION RATIO vs FREE-AIR TEMPERATURE VID = -100 mV -10 0 VID = -100mV .c 1/1 :" -20 VCC± = ±15V TA = 25"C .9 -30 o -20 2 4 6 8 10 12 14 16 I o 5 10 15 /VCC ±/- Supply Voltage - V 20 t - Time - Seconds Figure 28 Figure 29 I 25 30 tOala at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices, TEXAS ~ IN5rRUMENTS POST OFFICE SOX 655303 • DALLAS, TEXAS 75265 2-219 TL032, TL032A ENHANCED JFET LOW-POWER LOW-OFFSET DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt SHORT-CIRCUIT OUTPUT CURRENT vs FREE-AIR TEMPERATURE FREQUENCY 25 r-- ~ c( 20 E I ~ " EQUIVALENT INPUT NOISE VOLTAGE vs 15 - =:t--+-= ± 15V Vcc± = ± 5V vcc± 10 0 i 'I: -.10 0 .c CD III -15 ~ -20 z 5Q. .s '=::::: -25 - 75 40 E CD ~ = ± 15 V ':; =0 - 50 30 - 25 0 25 50 75 100 TA - Free-Air Temperature - °C 100 10 125 1k 10 k f - Frequency - Hz Figure 30 Figure 31 SUPPLY CURRENT SUPPLY CURRENT vs SUPPL Y VOLTAGE FREE-AIR TEMPERATURE 500 400 ~ ~ (.-:::::. I-- I E !! 300 ~ - r- ~ I = 25°C ..,.,... V ii. ~ ~ r\ ~C 200 I I \ I :; 300 ,.. I (.) I ii. / V i. I - - r-- - I I r-- VCC±=±5V / / go 200 I en I = -55'C TA ~ I I /"" 400 _r-TA I Vcc± = ±15V \ 8>- 100k vs 500 go ......... r--. I Vo 1/1 ", '0 = ±5V vcc± 1/1 I 50 > vcc± -5 I CD S '0 0 I! <;i RS = 1000 TA = 25"C See Figure 3 :>c Ol 5 V~~± = ±15V ~ - (.) 5Q. 5 60 I ~ 100 100 = o o = Vo 0 No Load 2 4 6 8 10 12 14 Vo 0 No Load o 16 -75 -50 IVcc ±I- Supply Voltage - V Figure 32 -25 0 25 50 75 100 TA - Free-Air Temperature - °C Figure 33 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices, TEXAS ~ INSTRUMENTS 2-220 POST OFFICE BOX 655303' DALLAS, TEXAS 75267 125 TL032, TL032A ENHANCED JFET LOW-POWER LOW-OFFSET DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt SLEW RATE vs LOAD RESISTANCE SLEW RATE vs LOAD RESISTANCE 6 6 5 5 SR- ]. > 4 v I .. J 3 a: 2 !l a: I III - ~ I- I II> iii a: ;: V - en SR + I III J I a: III SR+ = = = 250C VCC± ±15V CL 100 pF TA = 25°C See Figure 1 TA See Figure 1 o 100 10 RL - Load Resistance - kn Figure 35 SLEW RATE vs FREE-AIR TEMPERATURE SLEW RATE vs FREE-AIR TEMPERATURE 5 :...-- ..V I-- SR- - I-- ~ > - o SR- 4 * 3 I a: II> ..I--f-- SR+ - !II ;: - 75 - 50 100 Figure 34 5 4 10 RL - Load Resistance - kn 1 6 2 -- VCC±=±5V CL=100pF 6 3 I- V 2 a: I- 1 i 3 II> o ~I 4 > SR- 1-- V !II en I a: 2 / ./""" I-- SR+ -r---- --- I--- III vcc± = ±5V RL = 10 kn CL = 100 pF See Figure 1 - 25 0 25 50 75 100 T A - Free-Air Temperature - °C VCC± = ±15V RL = 10kn CL = 100 pF See Figure 1 o 125 -75 -50 Figure 36 -25 0 25 50 75 100 TA - Free-Air Temperature - °c 125 Figure 37 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-221 TL032, TL032A ENHANCED JFET LOW-POWER LOW-OFFSET DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt TOTAL HARMONIC DISTORTION OVERSHOOT FACTOR 60 vs vs LOAD CAPACITANCE FREQUENCY 0.5 = = TA = 25°C VIPP ±10mV RL 10 kQ 50 VCC±=±15V ;!<. See Figure 1 If. / 40 I I - 30 0 20 5 c 0 'f 10 Ii o o 1/ 0.3 ~ is " '2 0 IV 0 z: ; VL AVO = 1 VO(rms) = 6 V TA = 25°C I ±5V~ V / VCC+ = u. 0.4 E to / 0.2 -- ~ lI 0 :t: I- / 50 100 150 200 CL - Load Capacitance - pF 0.1 100 250 1--"' ..... 1k 10 k f- Frequency - Hz 100 k Figure 38 Figure 39 UNITY-GAIN BANDWIDTH UNITY-GAIN BANDWIDTH vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 1.1 1.3 VI ~ ~ 1.05 il ~ :; / 1.0 ID c /' / V V !-- N :t: ::;; z: ~ 3: c '0 VCC± .; ~ c ;:) 0.95 ~ ID ~ '2 Vi = 10 mV ;:) RL = 10kQ I o 1.0 VCC± -..... ............ ............ =±5V "-... ............ ~ i"--... ~ ~ m 0.9 CL = 25 pF TA = 25°C See Figure 4 0.9 - . C =±15V " - ............ 1.1 to ID =10mV = = RL 10kQ CL 25pF See Figure 4 1.2 I ~ I V V :t: VCC±=±15V / "- 0.8 2 4 6 8 10 12 14 16 - 75 - 50 IVcc ±I- Supply Voltage - V Figure 40 - 25 0 25 50 75 100 T A - Free-Air Temperature - °C Figure 41 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS 2-222 .......... POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 125 Tl032, Tl032A ENHANCED JFET lOW-POWER lOW-OFFSET DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt PHASE MARGIN vs SUPPLY VOLTAGE - 65 :l e I c . ... :E y 70 66 III $ V / ..,2' '2» ./' / 63 PHASE MARGIN vs LOAD CAPACITANCE 61 I 62 ..... 60 See Note 10 co :!i II> III co Q. Vi = 10mV RL = 10 kn CL = 25 pF E 59 .... I 57 o .... 4 6 6 10 65 ............... 56 61 59 r-.......... ....... r-.... VCC±=±5V ............... .......... 56 i'..... ....... 54 16 o 10 20 30 40 50 60 70 80 Figure 43 PHASE MARGIN vs FREE-AIR TEMPERATURE VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 12 ;-- ---( 90 100 16 > E r---........... 6 ............. II> 0) S "0 r--.......... ........ '\... ~ 4 > :; 0 0 -4 .e::J ............... VCC± = ±15V RL=10kQ CL = 100 pF TA = 25 DC See Figure 1 I VCC± = ±5V II> r...... Figure 42 63 .s ............... r-.... CL - Load Capacitance - pF /'" I .... 14 VCC± = ±15V IVcc ±I- Supply Voltage - V e Q. 12 r-.... 52 I I .l VCC±=±15V 1ft II> .c ............... 50 2 67 .!!I ............... E TA = 25"C See Figure 4 :E t- . . . .c I Vi = 10mV RL = 10kn TA = 25 DC _ See Figure 4 , r...... .., c Q. .., ..... 64 .~ .c II> ..... 66 C, II> II> 0) t- . . . I 0 I ....E 57 55 - 75 I > Vi = 10mV RL = 10 kg CL = 25 pF See Figure 4 -8 -16 - 50 - 25 0 25 50 75 100 TA - Free-Air Temperature - DC V --- ~I -12 125 Figure 44 o 0.2 0.4 0.6 t-Time-f.1s 0.8 1.0 1.2 1.4 Figure 45 rOala at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. NOTE 10: Values of phase margin below a load capacitance of 25 pF were estimated. TEXAS . " INSTRUMENTS POST OFFICE BOX 655303· DALLAS. TEXAS 75265 2-223 TL032, TL032A ENHANCED JFET LOW-POWER LOW-OFFSET DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 8 2 A 6 /\ > A ~ 0 > 0 :; ~ 0 I 0 > -1 / I V > \ 'j I G> III 4 2 > :; 0 "I -2 l!! '0 VCC± = ±5V RL = 10 kn CL = 100 pF / .s- 0 TA = 25°C See Figure 1 > V -4 ----, -6 -2 o -8 2 3 4 t - Time- fls 5 6 7 8 \ = VCC± ±15V RL 10 kn CL = 100 pF = = / 0 /I. \ / I G> III \ TA 25°C see Figure 1 \i 1/ o 2 4 6 8 10 12 14 '- 16 18 t- Time-J.LS Figure 47 Figure 46 APPLICATION INFORMATION Input characteristics The TL032 and TL032A are specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction. Because of the extremely high input impedance and resulting low bias current requirements, the TL032 and TL032A are well-suited for low-level signal processing; however, leakage currents on printed circuit boards and sockets can easily exceed bias current requirements and cause degradation in system performance. It is a good practice to include guard rings around inputs (see Figure 48). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input. The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation. Vo (8) NONINVERTING AMPLIFIER (b) INVERTING AMPLIFIER Figure 48. Use of Guard Rings TEXAS ~ INSTRUMENTS 2-224 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 (e) UNITY·GAIN AMPLIFIER TL032, TL032A ENHANCED JFET LOW-POWER LOW-OFFSET DUAL OPERATIONAL AMPLIFIERS APPLICATION INFORMATION output characteristics All operating characteristics (except bandwidth and phase margin) are specified with 100 pF load capacitance. The TL032 and TL032A will drive higher capacitive loads; however, as the load capacitance increases, the resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation. The value of the load capacitance at which oscillation occurs varies with production lots. If an application appears to be sensitive to oscillation due to load capacitance, adding a small resistance in series with the load should alleviate the problem. Capacitive loads of 1000 pF and larger may be driven if enough resistance is added in series with the output (see Figure 49). (a) CL = 100 pF, R = 0 (b) CL = 300 pF, R = 0 (e) CL = 350 pF, R = 0 ,.,i....... ,.~ .,....... ~ ......... ~ ... . 1• • • •1• .·• :• ·••• : •••••••• : •••• 1··•••••• ·::I::::·:::r::::::::::::::::j::::::::t::.·:::j:::: .... ~ ...... ,.. ~ .. ,......I········, ~ ..... '" I'··· (d) CL =1000 pF, R = 0 (e) CL = 1000 pF, R = 50 Q (f) CL = 1000 pF, R = 2 kQ Figure 49. Effect of Capacitive Loads +5V n -sv-.l L 10 kQ NOTE A: CL includes fixture capacitance. Figure 50. Test Circuit for Output Characteristics TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-225 TL032, TL032A . ENHANCED JFET LOW-POWER LOW-OFFSET DUAL OPERATIONAL AMPLIFIERS APPLICATION INFORMATION hlgh-Q notch filter In general, Texas Instruments enhanced JFET operational amplifiers serve as excellent filters. This circuit provides a narrow notch at a specific frequency. Notch filters are designed to eliminate frequencies that are interfering with the operation of an application. For this filter, the center frequency can be calculated as: 1 fa = 21tR1C1 With the resistors and capacitors shown below, the center frequency is 1 kHz. Note that C1 = C3 = C2 + 2 and also that R1 = R3 = 2 x R2. The center frequency can be modified by varying these values. When adjusting the center frequency, be sure that the operational amplifier still has sufficient gain at the frequency of interest. R1 vlN vOUT 1.5MQ C2 R2 750 kQ C1 C3 110 pF 110 pF 2 -V 0 -1 III \ /' -2 "0 I .;;;c: .-- / -3 / I '-' -4 -5 -6 -7 -8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 f - Frequency - kHz Figure 51. High-Q'Notch Filter ~ TEXAS INSTRUMENTS 2-226 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2 Tl032, Tl032A ENHANCED JFET lOW-POWER lOW-OFFSET DUAL OPERATIONAL AMPLIFIERS APPLICATION INFORMATION 2-wlre 4- to 20-mA current loop Often information from an analog sensor must be sent over a distance to the receiving circuitry. For many applications. the most feasible method involves converting voltage information to a current before transmission. The following circuit benefits from the high input impedance of the TL032A since many inexpensive sensors do not have low output impedance. Assuming that the voltage at the TL032A's non-inverting input is zero, the following equation determines the output current: 10 = VIN(~)+5V(~)=0.16xVIN+4mA R1 x RS R2 x RS The current presently provides 4 to 20 mA output for an input voltage of 0 to 100 mV. By modifying R1, R2, and R3. the input voltage range or the output current range can be adjusted. Including the offset voltage of the operational amplifier in the above equation clearly illustrates why the low offset TL032A was chosen: 10 = VIN(~)+5V(-~)-VIO(~+~+~) R1 x RS R2 x RS R1 x RS R2 x RS RS = 0.16xVIN+4mA-0.17xVIO For example. an offset voltage of 1 mV decreases the output current by 0.17 mA. Thanks to the low-power consumption of the TL032A, this circuit has at least 2 mA available to drive the actual sensor from the 5-V reference node. r-----------------------------~----~~ Vcc+= 10V LT1019-5 +5VRef-------+~~~--~~----------__. A2 1 Mfl 10llF AS A1 3.3 kfl VIN ---S"'k.... fl--+------+-l A4 A3 5 k!2 80 kfl SIGNAL ________-+--_>---------------------___A"VS.........,e--(,~IO COMMON 100 fl 1 .. RL -=-50 n Figure 52. 2-Wire 4- to 20-mA Current Loop TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-227 Tl032, Tl032A ENHANCED JFET lOW-POWER lOW-OFFSET DUAL OPERATIONAL AMPLIFIERS APPLICATION INFORMATION low-level light detector preamplifier Applications that need to detect small currents require high input impedance operational amplifiers; otherwise, the bias currents of the operational amplifier camouflage the current being monitored. Phototransistors provide a current that is proportional to the light reaching the transistor. The TL032 allows even the small currents resulting from low-level light to be detected. In this circuit, if there is no light, the phototransistor is off and the output is high. As light is detected, the operational amplifier output begins pulling low. Adjusting R4 both compensates for offset voltage of the amplifier and adjusts the point of light detection by the amplifier. + 15 V R6 10 kQ R1 10 kQ R3 10 kQ -... -... -... 10 kQ R5 R2 Vo R7 R4 TlL601 C1 100 pF 10 kG 10 kn 5kQ -15 v Figure 53. Low-Level Light Detector Preamplifier TEXAS ~ INSTRUMENTS 2-228 POST OFFICE BOX 655303' DALLAS, TEXAS 75265 TL034, TL034A ENHANCED JFET LOW-POWER LOW-OFFSET QUAD OPERATIONAL AMPLIFIERS 03153, JULY 1988 - REVISED FEBRUARY 1991 0, J, or N PACKAGE (TOP VIEW) • Maximum Offset Voltage ... 1.5 mV • High Slew Rate ... 2.9 V/JLS Typ • Low Input Bias Current ... 2 pA Typ • Very Low Power Consumption •.. 26 mW Typ • Output Short-Circuit Protection • Monolithic Construction 40UT 41N41N + liN liN + VCC+ VCC31N+ 31N- description The TL034 and TL034A quadruple operational amplifiers incorporate well-matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit, These devices offer the significant advantages of Texas Instruments new enhanced JFET process, This process affords not only low initial offset voltage due to the onchip zener trim capability but also stable offset voltage over time and temperature, In comparison, traditional JFET processes are plagued by significant offset voltage drift. This new enhanced process still maintains the traditional JFET advantages of fast slew rates and low input bias and offset currents. These advantages, coupled with low power consumption, make the TL034 well-suited for new stateof-the-art designs as well as existing design upgrades. The TL034 has been designed to be functionally compatible and pin compatible with the TL064. FK PACKAGE (TOP VIEW) I!; !; I ~OuO~ ...... .,....Z"d''''::f' 3 1 IN + NC VCC + NC 21N + 2 1 20 19 d45 17 NC 6 16 VCCNC 31N + IS! 41N + 7 15 S 14 9 10 11 12 13 If-- U f-- I z::>z::>z -0 oN", '" '" NC - No internal connection Two offset voltage grades are available: TL034 (4 mV max) and TL034A (1.5 mV max), DISTRIBUTION OF TL034A INPUT OFFSET VOLTAGE A variety of available packaging options includes small-outline and chip carrier versions for high density system applications. AVAILABLE OPTIONS PACKAGE TA O'C to 70°C 40°C to 85°C -55°C to 125°C VIOmax SMALLAT 25°C OUTLINE (0) CHIP CARRIER (FK) CERAMIC DIP (J) PLASTIC DIP (N) 1.SmV TlO34ACD TlO34ACN 4mV TL034CD TL034CN 1.5 mV TL034AID TL034AIN 4mV TL0341D TL0341N 1.SmV Tl034AMD TL034AMFK TL034AMJ TL034AMN 4mV TlO34MD TL034MFK TL034MJ TL034MN - D packages are available taped and reeled. Add "R" suffix to device type (e.g., TL034CDR). PRODUCTION DATA documents contain Information currlnt II of publication date. Produdlconform to th.1I .pKifi,..tioRl p.rtho term. a'T81aslrtttruments Ilandard warranty. Produetion proctllingdo .. not n.cessarily include tasting 01 all paramlters. 0'--""'"'"= -1.8 TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 -1.2 -0.6 o 0.6 1.2 VIO -Input Offset Voltage - mV 1,8 Copyright © 1991, Texas Instruments Incorporated 2-229 Tl034, Tl034A ENHANCED JFET lOW-POWER lOW-OFFSET QUAD OPERATIONAL AMPLIFIERS description (continued) The C-suffix device!) are characterized for operation from O°C to 70°C. The I-suffix devices are characterized for operation from - 40~C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of - 55°C to 125°C. equivalent schematic {each amplifier} Q2~----+-~------~----------~~----~ Q3I-----~----------r---------_+------~ IN+--+-~ IN_-.r--~""Lo...J ~~------_r--------+__VO R1 Vcc_ symbol (each amplifier) I N - = V - OUT IN + + TEXAS ." INSTRUMENTS 2-230 01 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 Tl034, Tl034A ENHANCED JFET lOW-POWER lOW-OFFSET QUAD OPERATIONAL AMPLIFIERS absolute maxImum ratIngs over operating free-aIr temperature range (unless otherwIse noted) Supply voltage, Vcc + (see Note 1) ..................................................... 18 V Supply voltage, VCC _ (see Note 1) .................................................... - 18 V Differential input voltage (see Note 2) ................................................... ± 30 V Input voltage range, VI (any input, see Notes 1 and 3) ...................................... ± 15 V Input current, II (each input) .......................................................... ± 1 mA Output current, 10 (each output) ..................................................... ± 40 mA Total current into VCC + terminal ..................................................... 160 mA Total current out of VCC _ terminal ................................................... 160 mA Duration of short-circuit current at (or below) 25°C (see Note 4) ............................ unlimited Continuous total dissipation ........................................ See Dissipation Rating Table Operating free-air temperature range, TA: C-suffix ................................... O°C to 70 0 e I-suffix ................................ - 40 0 e to 85°e M-suffix ............................... - 55°C to 125°e Storage temperature range ................................................... - 65°e to 150 0 e Case temperature for 60 seconds: FK package ........................................... 260 0 e Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package ................. 260 0 e Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package ..................... 300 0 e NOTES: 1. 2. 3. 4. All voltage values, except differential voltages, are with respect to the midpoint between VCC + and VCC _. Differential voltages are at the noninverting input with respect to the inverting input. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSfPATION RATING TABLE PACKAGE TA s 2S"C POWER RATING DERATING FACTOR ABOVE T A = 2SoC D 9SOmW FK 1375mW 7.6mWI"C 11.0 mW/oC J 1375mW N 1150mW = = TA 70"C POWER RATING TA 8S"C POWER RATING = TA 125°C POWER RATING 608mW 494mW 190mW 880mW 715mW 275mW 11.0 mW/oC 880mW 715mW 275mW 9.2mW/oC 736mW 598mW 230mW recommended operating conditions C-SUFFIX I-SUFFIX MIN NOM MAX Supply voltage, VCC Common-mode input voltage, VIC Operating free-air temperature, TA I VCC± = ±5 V IVCC±=±15V M-SUFFIX MIN NOM MAX MIN NOM MAX ±5 -1.5 ±15 4 ±5 -1.5 ±15 ±5 ±15 4 -1.5 4 -11.5 14 -11.5 14 -11.5 14 0 70 -40 85 -55 125 UNIT V V °C TEXAS ", INSfRUMENlS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2-231 TL034C, TL034AC ENHANCED JFET LOW-POWER LOW-OFFSET QUAD OPERATIONAL AMPLIFIERS electrical characteristics PARAMETER TEST CONDITIONS TL034C Via Input offset voltage TL034AC Va = 0, Temperature coefficient aVIO of input offset voltage (see Note 7) VIC = 0, RS = son TL034C TL034AC Input offset voltage long-term drift (see Note 5) 110 liB Input offset current Va = 0, VIC = 0, See Figure 5 Input bias current Vo = 0, VIC = 0, See Figure 5 = VCC:t :t5V MIN TYP MAX VCC:t :t15V MIN TYP MAX 25°C 0.91 0.79 6 8.2 Full range 0.7 25°C Full range 25°C to 70°C 25°C to 70°C 11.6 12 11.6 12 25°C 100 1 100 70°C 25°C 9 2 200 12 200 200 2 200 50 400 80 400 voltage range 0.04 Maximum negative peak AVO output voltage swing Large-signal differential voltage amplification RL = 10kn RL = 10kn, See Note 6 to to to to 4 5.4 14 15.4 -1.5 -11.5 Full range to to 25°C 3 4.3 13 14 O°C 70°C 3 4.2 13 14 25°C 3 -3 4.3 -4.2 13 14 -12.5 -13.9 O°C -3 -4.1 -12.5 -13.9 70°C -3 -4.2 -12.5 25°C O·C 4 12 5 14.3 3 4 13.5 70°C 4 11.1 13.3 5 15.2 Input resistance 25°C 1012 1012 Input capacitance 25°C 5 4 kSVR Po ICC rejection ratio VIC = VICR min, Va = 0, 25°C 70 87 75 O°C 70 87 75 94 RS = son 70°C 87 25°C 70 75 96 75 75 94 96 O°C 75 96 75 96 70°C 75 96 75 96 Supply-voltage VCC± = ±5Vto±15V, rejection ratio Va = 0, (L\VCC +1 L\VIO) RS = son Total power dissipation No load, (four amplifiers) Vo = 0 Supply current No load, (four amplifiers) Vo = 0 VolIV02 Crosstalk attenuation AVO = 100 pA V V V -14 q Common-mode pA 14 Ci CMRR !lV/mo -11.5 -13.4 -3.4 4 VOM- mV 25 1 70°C RL = 10kn 1.5 3.7 0.04 25°C VOM+ 0.58 25°C Common-mode input Maximum positive peak output voltage swing 4 6.2 3.5 5.7 UNIT !lV/DC -1.5 VICR = TAt V/mV n pF 94 dB dB 25°C 7.7 10 26 34 O°C 7.4 10 25.3 34 70°C 7.6 10 25.2 34 25°C 0.77 1 0.87 1.12 O°C 0.74 1 0.85 1.12 70°C 0.76 1 0.84 1.12 25°C 120 120 mW mA dB t Full range is O°C to 70°C. NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 6. AtVcc± = ±5V,VO = ±2.3 V; at VCC± = ±15V,VO = :tl0V. 7. This parameter is tested on a sample basis for the TL034A. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters. TEXAS ." INSTRUMENTS 2-232 POST OFFICE BOX 655303' DALLAS, TEXAS 75265 TL034C, TL034AC ENHANCED JFET LOW-POWER LOW-OFFSET QUAD OPERATIONAL AMPLIFIERS operating characteristics PARAMETER SR+ SR- t,. tf TEST CONDITIONS Positive slew rate at unity gain Negative slew rate at unity gain 25°C Rl = 10 kn, = 100 pF, O°C 700C 2.2 25°C 3.9 3.5 5.1 See Note 8 O°C 70°C 25°C 3.7 4 3.2 5.0 5.0 138 134 132 127 VIPP 70°C 150 142 Rl Cl See Figures 1 and 2 25°C 138 132 O°C 70°C 134 127 150 11% 142 = ± 10 mV, = 10 kn, = 100 pF, 25°C O°C 10010 120/0 70°C Vn input noise voltage (see Note 9) In 91 4lm Tl034C Unity-gain bandwidth Phase margin at unity gain RS = 100'l, See Figure 3 Tl034AC Equivalent input noise current 3.2 O°C Overshoot factor Equivalent = VCC± ±15 V MIN TYP MAX 2 2.9 1.5 2.6 3.2 2 Cl See Figure 1, Rise time Fall time = VCC± ±5V TYP MAX MIN 2 1.8 TA f I = 10 Hz I f = 1 kHz I = 1 kHz = 10Hz = 1 kHz Vi Cl = 10 mV, = 25 pF, Rl = 10 k'l, See Figure 4 Vi = 10 mV, Rl = 10 kn, Cl = 25 pF, See Figure 4 83 25°C 43 43 43 25°C 0.003 0.003 25°C 1 O°C 70°C 1 1 25°C 61° 1.1 1.1 1 65° 65° 64° 61° 60° ns ns 83 83 70°C V/flS 6% 83 O°C V/fls 5% 4% 43 25°C UNIT nW/Hz 60 pAl.JHz MHz NOTES: 8. ForVCC ± = ±5 V, VIPP = ± 1 V; forVCC± = ± 15 V, VIPP = ±5 V. 9. This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting 01 other parameters. TEXAS + INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-233 TL0341, TL034AI ENHANCED JFET LOW-POWER LOW-OFFSET QUAD OPERATIONAL AMPLIFIERS electrical characteristics PARAMETER VIO TEST CONDITIONS Vo aVIO VIC RS = 0, = 0, = 500. TL034AI 25°C Full range 0.7 TL034AI 110 Input offset current Vo = 0, VIC See Figure 5 = 0, 118 Input bias current Vo = 0, VIC See Figure 5 = 0, 25°C to 85°C 25°C to VOM- AVO q Ci CMRR kSVR Po ICC RL Maximum negative peak RL output voltage swing = 10 kn RL = 10 lin, See Note 6 Large-signal differential voltage amplification Input resistance Input capacitance VIC = VICR min, Vo = 0, RS = 500. VCC± = ±5Vto±15V, Common-mode rejection ratio Supply-voltage rejection ratio Vo = 0, (tNCC ±/ ~VIO) RS = 500. Total power dissipation No load, (four amplifiers) Vo Supply current (four amplifiers) No load, 100 0.02 2 0.45 200 0.2 -3.4 to 5.4 0.9 85°C 25°C -40°C 85°C 25°C -40°C 85°C 25°C 25°C 3 -3 -3 25°C -40°C 85°C 70 70 70 25°C -40°C 75 75 75 -3 4 3 4 25°C -40°C 85°C =0 AVO = 100 VolIV02 Crosstalk attenuation -1.5 to 4 -1.5 to 4 3 3 -40°C 85°C Vo 11.6 1 85°C 25°C =0 11.5 0.04 25°C -40°C = 10kn 11.6 25°C 85°C 25°C 85°C Full range 0.58 11.5 25°C Common-mode input voltage range Maximum positive peak output voltage swing 6 9.3 3.5 6.8 4 7.3 1.5 4.8 UNIT mV fl V/o C 85°C 25°C VOM+ 0.79 0.91 TL0341 = VCC± ±15V MIN TYP MAX 25°C Full range Input offset voltage long-term drift (see Note 5) VICR = VCC± ±5 V MIN TYP MAX TL0341 Input offset voltage Temperature coefficient of input offset voltage (see Note 7) TAt 25°C 0.04 4.3 4.1 4.4 -4.2 -4.1 -4.2 12 8.4 13.5 10'2 5 B7 B7 1 0.02 2 0.3 -11.5 -13.4 to to 14 15.4 -11.5 to 14 13 14 13 14 13 14 -12.5 -13.9 -12.5 -13.8 -12.5 -14 5 4 5 75 75 75 75 75 75 B7 96 96 96 7.7 5.8 7.4 10 10 10 0.77 0.58 1 1 1 0.74 120 25 flV/mo 100 0.45 200 0.9 V V V/mV 0. pF 94 94 21.7 24.8 0.87 0.72 0.83 120 nA pA nA V 14.3 11.6 15.3 10'2 4 94 96 96 96 26 pA dB dB 34 34 34 1.12 1.12 mW rnA 1.12 dB t Full range IS - 40°C to 85°C. NOTES; 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 6. AtVCC± ±5V, Vo ±2.3V;atVcc± ±15V, Vo = ±10V. 7. This parameter is tested on a sample basis for the TL034A. Forothertest requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters. = = = TEXAS ." INSTRUMENTS 2-234 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TL0341, TL034AI ENHANCED JFET LOW-POWER LOW-OFFSET QUAD OPERATIONAL AMPLIFIERS operating characteristics PARAMETER SR+ Positive slew rate at unity gain SR- Negative slew rate at unity gain Ir Rise time TEST CONDITIONS RL 25°C -40°C = 10 kil, = 100 pF, CL See Figure 1, See Note 8 85°C 25°C -40°C 85°C 25°C -40°C 85°C = ± 10 mV, = 10 kil, = 100 pF, VIPP tl Fall time RL CL See Figures 1 and 2 25°C -40°C 85°C 25°C -40°C 85°C Overshoot factor Vn In 91 Equivalent TL0341 input noise voltage TL034AI (see Note 9) Equivalent input noise current Unity-gain bandwidth Phase margin flm at unity gain I RS = lOOn, See Figure 3 I TA = 10 Hz I = 1 kHz I = 10 Hz I = 1 kHz = 1 kHz Vi = 10 mV, RL = 10 kil, CL = 25 pF, See Figure 4 Vi = 10 mV, RL = 10 kil, CL = 25pF, See Figure 4 VCCt = ±5V TYP MAX MIN 2 1.6 2.3 3.9 3.3 4.1 138 132 154 138 132 154 11% 12% 13% 83 VCCt = ±15V MIN 2 1.5 TYP 2.9 2.1 2 3.5 3.3 5.1 3.2 3.2 4.8 4.9 132 123 146 132 123 146 5% 43 83 43 5% 7% 83 43 83 43 25°C 0.003 0.003 25°C -40°C 85°C 25°C _40°C 1 1 0.9 1.1 1.1 1 61° 60° 60° 65° 65° 25°C 25°C 85°C MAX UNIT VIlIS VIlIS ns ns nV/.ffiZ 60 pA/.ffiZ MHz 64° NOTES: 8. ForVCC± = ±5 V, VIPP = ± 1 V; 10rVCC± = ± 15 V, VIPP = ±5 V. 9. This parameter is tested on a sample basis. For other test requirements, please contact the lactory. This statement has no bearing on testing or nontesting of other parameters. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303· DALLAS. TEXAS 75265 2-235 TL034M, TL034AM ENHANCED JFET LOW-POWER LOW-OFFSET QUAD OPERATIONAL AMPLIFIERS electrical characteristics PARAMETER TEST CONDITIONS TL034M VIO Input offset voltage TL034AM Vo = 0, aVIO Temperature coefficient of input offset voltage VIC = 0, RS ,;, 50n TL034M TL034AM Input offset voltage long-term drift (see Note 5) 110 liB Input ·offset current Vo = 0, VIC = 0, See Figure 5 Input bias current Vo = 0, VIC = 0, See Figure 5 25°C Full range 2500 to 12500 2500 to VOM- AVO 0.04 2500 125°C 25°C 125°C 1 0.2 2 7 -3.4 to 5.4 RL = 10ka CMRR Common-mode rejection ratio kSVR Supply-voltage rejection ratio (L\VCC ± / L\VIO) Po ICC VIC = VICR min, Vo = 0, RS= 50n VCC± = ±5Vto±15V, Vo = 0, RS = 50n No load, Total power diSSipation (four amplifiers) Vo = 0 Supply current (four amplifiers) Vo = 0 Vo llV02 Crosstalk attenuation -1.5 to 4 -1.5 to 4 3 3 3 -3 -3 125°C 25°C -55°C -3 4 125°C 25°C 25°C 3 25°C -55°C 125°C 25°C -55°C 125°C 2500 70 70 70 3 75 75 75 -55°C 125°C 25°C -55°C 125°C No load, AVO = 100 9 1.5 6.5 0.04 Maximum negative peak output voltage swing Input resistance Input capacitance 0.58 25°C 125°C 25°C _55°C ri Ci MAX 4 UNIT mV flV/oc 125°C 25°C _55°C voltage amplification 3.5 8.5 TYP 0.78 10.9 RL = 10 ka " 0.7 MIN 10.6 Maximum positive peak output voltage swing RL = 10ka, See Note 6 MAX 6 11 10.9 Common-mode input voltage range Large,.signal differential TYP 0.91 10.6 Full range VOM+ MIN 25°C Full range 25°C VICR VCC:l: = :l:15V VCC:l:= :1:5 V TAt 25°C 100 10 200 20 4.3 4.1 4.4 -4.2 -4 -4.3 12.9 1012 5 87 87 87 0.71 120 4 10.4 4 15 1012 4 94 94 94 96 95 75 70 70 96 95 0.77 0.46 100 pA 10 200 20 nA pA nA V V 13 14 -12.5 -13.9 -12.5 ~ 13.8 -14 -12.5 14.3 5 12 7.1 96 7.7 4.6 7.1 1 0.2 2 8 -11.5 -13.4 to to 14 15.4 -11.5 to 14 14 13 14 13 flV/mo 75 75 75 10 12 12 1 1.2 1.2 96 26 18.7 23.6 0.87 0.62 0.79 120 V V/mV n pF dB dB 34 45 45 1.12 1.5 1.5 mW rnA dB t Full range is - 55°C to 125°C. NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 6. AtVCC± = ±5V, Vo = ±2.3V;atVcc± = ±15V, Vo = ±10V. TEXAS "" INSTRUMENTS 2-236 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TL034M, TL034AM ENHANCED JFET LOW-POWER LOW-OFFSET QUAD OPERATIONAL AMPLIFIERS operating characteristics TEST CONDITIONS PARAMETER SR+ Positive slew rate at unity gain SR- Negative slew rate at unity gain t,. Rise time RL CL tl 25°C -55°C 125°C 25°C -55°C 125°C 25°C _55°C = 10 kn. = 100 pF. See Figure 1. See NoteS VIPP = ± 10 mY. 125°C 25°C _55°C AL = 10 kn, CL = 100 pF, See Figures 1 and 2 Fall time = TA 125°C 25°C _55°C Overshoot lactor VCC± ±5V MIN TYP MAX 2 1.4 2.4 3.9 3.2 4.1 138 142 166 138 142 166 Vn In 91 Equivalent input noise voltage TL034AM Equivalent input noise current Unity-gain bandwidth Phase margin 4'm TL034M at unity gain NOTES: ForVCC± RS = lOOn, See Figure 3 f 11% 16% 14% 83 43 83 43 25°C 0.003 0.003 25°C _55°C 1.1 125°C 1 1 0.9 1.1 0.9 25°C -55°C 125°C 61° 57° 59° 65° 64° 62° = 10 Hz = 1 kHz 25°C = 10 Hz = 1 kHz 25°C = 1 kHz Vi = 10 mV, RL = 10 kn, CL = 25 pF, See Figure 4 Vi = 10mV, RL = 10kn, CL = 25 pF, See Figure 4 = ±15V TVP MAX 2.9 1.9 3.5 5.1 4.6 4.7 132 123 158 132 123 158 5% 6% 8% 83 43 83 43 125°C I I f f VCC± MIN 2 1.2 1.2 3 2.5 2.5 UNIT V/JlS V/Jls ns ns nV/VHz pA/VHz MHz = ±5V, VIPP = ±1 V;lorVCC± = ±15V, V\PP = ±5V. PARAMETER MEASUREMENT INFORMATION I I I I I I I I I I 1o--I1r- RISE TIME NOTE A: CL includes fixture capacitance. Figure 1. Slew Rate, Rise/Fail Time, and Overshoot Test Circuit Figure 2. Rise Time and Overshoot Waveform TEXAS ." INSTRUMENTS POST OFFICE BOX 655303 • OALLAS. TEXAS 75265 2-237 Tl034, Tl034A, ENHANCEDJFET lOW~POWER lOW-OFFSET QUAD OPERATIONAL AMPLIFIERS PARAMETER MEASUREMENT INFORMATION Vo + vcc_ RS RS NOT!: A: CL includes fixture capacitance. Figure 3. Noise VoHage Test Circuit Figure 4. Unity-Gain Bandwidth and Phase Margin Test ClrcuH Figure 5. Input Bias and Offset Current Test Circuit typical values Typical values as presented in this data sheet represent the median (50% point) of device parametric performance. Input bias and offset current At the picoamp bias current level typical of the TL034 and TL034A, accurate measurement of the bias current becomes difficult. Not only does this measurement require a picoammeter, but test socket leakages can easily exceed the actual device bias currents. To accurately measure these small currents, Texas Instruments uses a two step process. The socket leakage is measured using picoammeters with bias voltages applied but with no device in the socket. The device is then inserted into the socket and a second test that measures both the socket leakage and the device input bias current is performed. The two measurements are then subtracted algebraically to determine the bias current of the device. noise Because of the increasing emphasis on low noise levels in many of today's applications, the input nOise voltage density is sample-tested at f = 1 kHz. Texas Instruments also has additional noise testing capability to meet specific application requirements. Please contact the factory for details. TEXAS . " INSTRUMENTS 2-238 POST OFFICE BOX 655303' DALLAS. TEXAS 75265 TL034, TL034A ENHANCED JFET LOW-POWER LOW-OFFSET QUAD OPERATIONAL AMPLIFIERS TYPICAL. CHARACTERISTICS table of graphs FIGURE VIO aVIO 110 Input offset voltage Distribution 6 Temperature coefficient of input offset voltage Distribution 7 Input offset current liB Input bias current VI Input voltage range VID vs vs vs vs vs vs Differential input voltage vs VOM AVO Zo 10 11 Output voltage 12, 13 VCC Output current 16,17 vs Frequency vs Temperature vs 14 15 18,19 vs RL Frequency 20 Differential voltage amplification Output impedance vs vs Temperature Frequency 22 23 Supply-voltage rejection ratio Short-circuit output current ICC Supply current SR Slew rate Frequency vs Temperature 26 vs Temperature 27 vs 28 vs Vee Time vs Temperature 30 vs Vee Temperature 33 vs vs vs Overshoot factor vs Equivalent input noise voltage Total harmonic distortion Unity-gain bandwidth Phase margin Phase shift Pulse response 21 vs RL Temperature 24,25 29 32 34,35 36,37 38 vs CL Frequency vs Frequency 39 vs Vee Temperature 40 42 vs Vee CL Temperature vs Frequency vs vs fu, VCC Temperature voltage swi ng kSVR B1 9 8 vs Common-mode rejection ratio Vn THO 8 VIC Temperature Maximum peak output CMRR los Temperature vs 31 41 43 44 21 Smail-signal 45 Large-signal 46,47 TEXAS ~ INSTRUMENlS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-239 Tl034, Tl034A ENHANCED JFET lOW-POWER lOW-OFFSET QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt DISTRIBUTION OF TL034 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT DISTRIBUTION OF TL034 INPUT OFFSET VOLTAGE 1988 Amplifiers VCC± ±15V TA = 25°C --/--t--I--+-; N = 25 .,. I I i ~ '0 f & 10 5l--I---+-0 .....__ -4 15 r - - + - - t - - "I---t--t- 51---1-- o 0fiiili~ -3 20 r--+--+-- j 15 r--+-~-+ 1 251---+--+-- .,. ~ 20r--+-~-+-'0 from 3 wafer lots Vcc± = ±15V TA = 25°C to 125°C N Package -2 -1 0 2 Via -Input Offset Voltage - mV 3 -40 -30 -20 -10 0 10 20 30 aVIO - Temperature Coefficient - J1V1OC 4 Figure 6 Figure 7 INPUT BIAS CURRENT AND INPUT OFFSET CURRENT INPUT BIAS CURRENT vs vs FREE-AIR TEMPERATURE COMMON-MODE INPUT VOLTAGE 10 10 = VCC± ±15V Va 0 VIC 0 = = 40 Vcc± = ±15 V TA 250C = ./ / ~ c( c 5 I I i 8 C ~ liB / / 0.1 I :;. .. 1! / .: 0.01 v ~ -; / 0 .5 /' I ~ -5 ./ /' 0.001 25 B III D- 110 ./ t:II /' 85 105 TA - Free-Air TempElrature - OC 45 65 125 -10 -15 -10 -5 o 5 10 VIC - Common-Mode Input Voltage - V Figure 8 Figure 9 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS . " INSTRUMEN1S 2-240 POST OFFICE BOX 655303 • DALLAS. TexAS 75265 15 Tl034, Tl034A ENHANCED JFET lOW-POWER lOW-OFFSET QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt COMMON-MODE INPUT VOLTAGE RANGE LIMITS vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 16 TA > 12 r '0 8 ... 4 .. = 25"C POSITIVE UMy . / I > 'S .E .. 'S ~0 E E 8I 1 5 0 0 -4 ~ c ~ 'S ~ NEGATIVE UMIT '-.... I o '14 N1EGATI1VE UjlT -20 -75 -50 -25 0 25 50 75 100 TA - Free-Air Temperature - °e 16 DIFFERENTIAL INPUT VOLTAGE DIFFERENTIAL INPUT VOLTAGE vs vs OUTPUT VOLTAGE OUTPUT VOLTAGE \ t ...... 0.5 I- ~-15 Figure 11 I ~ I r---.... Figure 10 r- & 8 -10 4 6 8 10 12 IVee ±I- Supply Voltage - V 1.5 ~ -5 E I"-..... -8 2 ~OSITI~E U~IT I ,..V o = ±15V 15 .E .. -16 C l!! Vcc± > 10 >" -12 ~ V 20 "... t () ] COMMON-MODE INPUT VOLTAGE RANGE LIMITS '" 1\ \ = = , , = = = = = I 1.5..,..,.....,...,.........,.--.,...--...,..--r----, I =1 kO =2kn =5kn = 10 kn RL =2OkO f - RL RL \ RL 1\ RL ~ :::- ~ Vcc± ±5V TA 25°e I &. 125 ~ . I til ! ~ 'S .E ... ~ "~ ~ 0 ii i ~h -0.5 1-' RL 20 kO is I RL 10 kO ~ -1 I- RL 5kn RL 2kn RL 1 kn -1.5 -5 -4 -3 -2 -1 0 2 3 Vo - Output Voltage - V I 0.5 ~ -0.51---+--t--+---+"""",,7"-o~~-I ~t\ is I ~ i\ 4 5 -1t-----t- RL RL RL RL =50kn = 20 kn ----1f-' = 10 kn ----11--.../ = 5kO -1.5 .....- ........-~--......- .....- -..........,j... -15 -10 -5 0 5 10 15 YO-Output Voltage- V Figure 12 Figure 13 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ." INsrRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2-241 TL034, TL034A ENHANCED JFET LOW-POWER LOW-OFFSET QUAD OPERATIONAL AMPLIFIERS. TYPICAL CHARACTERISTICSt MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE MAXIMUM PEAK OUTPUT VOLTAGE vs vs SUPPLY VOLTAGE FREQUENCY > 16 RL=10kO TA = 25°C I VOM+./ ./ i 0 § -4 -=I -8 E ::5 ........ 25 ! 20 ~ ..... ...... ... 4 6 8 10 12 IVee ±I- Supply Voltage - V " 14 Co :; ...0 i E ::0 .. b= TA = 125°C \ ~~ 1111111 10 k 16 100 k 1M f - Frequency - Hz Figure 14 Figure 15 MAXIMUM PEAK OUTPUT VOLTAGE MAXIMUM PEAK OUTPUT VOLTAGE vs vs OUTPUT CURRENT OUTPUT CURRENT VCC±=±5V TA = 25°C VOM+ 4 \ 16 > ~ ~ :; \ VCC± = ±5V 5 I RL = 10 kn VCC ± = ±15V\ "~A 1= 1-lj~IIT\ ::5 2 I I II 11111 ~M........ o I_ ~ :; /'" ~-12 -16 "... V 30 I . /V t;::-.....,., 3 2 ~ VCC± = ±15V .. 14 ~ ~ 12 ;- 10 I CI " :; ~ .5 ::5 I "2 ~ o o > 5 1101- ...0.. l. E '\ '""" 10 15 Output Current - mA "'- VOM- ............. VOM+ 6 ::5 4 .. ~ 8 ::0 .5 ~ TA = 25°C I "2 ~ 20 2 o o Figure 16 :'\ \ \ \ \ 5 10 15 20 Output Current - mA 1101- 25 Figure 17 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS 2-242 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 30 TL034, TL034A ENHANCED JFET LOW-POWER LOW-OFFSET QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt MAXIMUM PEAK OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE MAXIMUM PEAK OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE 16 5 > .,I > 'S Q. 'S 2 ...0 = E 12 ~ 8 ~ = VCC± ±5V_ RL 10 kG 0 = Il.. "E >< ., I VOM+ 3 S '0 > 4 CI -1 Io 4 :.-= 0 § -4 -8 E . -2 I -3 -=I -4 ~-12 ::E ::E 0 > ::E VOM+ = vcc± ±15V RL 10kG = ::E vOM_ VOM- -5 -75 -50 -25 0 25 50 75 100 125 -16 -75 -50 T A - Free-Air Temperature - °C -25 0 25 50 75 100 125 T A - Free-Air Temperature - °C Figure 18 Figure 19 LARGE-SIGNAL VOLTAGE AMPLIFICATION vs LOAD RESISTANCE LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY 40 > ~ 35 c .2 30 I ~ Vo TA =±1v = 25°C V VCC± E 25 oct II> CI S 20 '0 > :i 15 :l1 10 C f = ±15V / / = TA .I~ :5 a ....--*--+---1--- = Vcc± ±15V RL 10 kG CL = 25 pF 30° =25°C 10 3 60° .;: V V. . 10 2 VCC± 90° = ±5V :ctil . = .c ./ Il.. V 10 1 120° 2i I c > oct 5 0 10 k 100 k RL - Load Resistance - G 1M 0.1 L.._....I.._ _J..-_....I.._ _J..-_....I.._1-J.I180° 100 1k 10 k 100 k 1M 10 M 10 f - Frequency - Hz Figure 20 Figure 21 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the vari9us devices. TEXAS ~ IN5rRUMENTS POST OFFICE BOX 655303· DALLAS. TEXAS 75265 2-243 TL034, TL034A ENHANCED JFET LOW-POWER LOW-OFFSET QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt LARGE-SIGNAL VOLTAGE AMPLIFICATION OUTPUT IMPEDANCE vs vs FREE-AIR TEMPERATURE FREQUENCY 200 50 > RL = 101cQ ~ AtO I c .2 B 'a E cr c:: Vee± = ±15 V ;;: 10 I § T ~ ---r ~ J 1!0 ~ I-'" 80 as 60 1 40 I.§ VCC± = ±5V II DI J!! 100 .--- / / '----AVO = 10 ./' dI 'li ~ II 0 ~ N ,,- V~ 20 -AVO = 1 C Vee ± = ±15V ro (open loop) = 250 n TA 25°e I C cr> 1 -75 -50 -25 0 25 50 75 100 TA - Free-Air Temperature - °e 125 'U I c 70 'ii' 60 vs vs FREQUENCY FREQUENCY 100 50 ~ c 40 E E 30 I 20 8 II: II: ~ 0 It! = 'U I r-..... t 80 C 70 'i' 60 i '\. II 50 ~0 40 1 \ 1\ \ E E 8 \ I II: II: ~ 0 o VCC±=±15V TA = 250C ~ """"- II: 10 10 90 II: i\. 0 0 Vee± = ±5V TA 250C "\ II: II 'U 100 k COMMON-MODE REJECTION RATIO II: i 10 k f - Frequency - Hz COMMON-MODE REJECTION RATIO .......... 80 = Figure 23 90 .2 i I Figure 22 100 It! I 10 1k 30 \ 20 10 o 100 1k 10 k 100 k f - Frequency - Hz 1M 10 M 10 100 Figure 24 1k 10 k 100 k f - Frequency - Hz 1M Figure 25 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ 2-244 INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 10 M TL034, TL034A ENHANCED JFET LOW-POWER LOW-OFFSET QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt COMMON-MODE REJECTION RATIO vs FREE-AIR TEMPERATURE FREE-AIR TEMPERATURE 95 vcc± I 0 =±15V I .. -8 90 C ~ 0 ~ II: '8 =Iic vcc± 85 i'Qi' =±5V 8I J! 15 > Q. 80 :::I tIJ I II: -25 0 25 50 15 100 TA - Free-Air Temperature - DC 125 SHORT-CIRCUIT OUTPUT CURRENT vs vs SUPPLY VOLTAGE TIME 20 ./ oct E ..- I I VIO = 100mV 20 E vlD = 100mV ~ 10 <3 :; 10 ! 0 '5 vlD = -100 mV 2 0 I -10 ~~ -10 tIJ -20 vlD = -100 mV ~ .9 -30 125 30 Vo = 0 TA = 25 DC 2 :n -25 0 25 50 15 100 TA - Free-Air Temperature - DC SHORT-CIRCUIT OUTPUT CURRENT ! ~ ,g -50 Figure 27 E o '5 90 -15 Figure 26 30 :; 9:::I 92 > tIJ "" VIC = VICRmln 15 -15 -50 a 94 $. Q. :E 0 I I & II: II: ~ 96 II: 0 E E 98 II: C II VCC ± = ± 5 V to ± 15 V co '"0 I '"0 II: 100 I III ~ SUPPLY-VOLTAGE REJECTION RATIO vs o VCC±=±15V TA 25 DC = -20 2 4 6 8 10 12 14 16 I o IVcc ±I- Supply Voltage - V 15 10 20 t- Time - Seconds Figure 28 Figure 29 5 I 25 30 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303· DALLAS, TEXAS 75265 2-245 Tl034, Tl034A ENHANCED JFET lOW-POWER lOW-OFFSET QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt SHORT-CIRCUIT OUTPUT CURRENT vs FREE-AIR TEMPERATURE FREQUENCY 25 '"E I r-- • 20 15 E ~ :> EQUIVALENT INPUT NOISE VOLTAGE vs - 90 =± 15V vcc± ::t--h-.. =±5V vee± -S ~ 5 0 '0 Z -5 = \ 70 \ 60 :; = ±5V D. .5 ~ -10 .!! 50 !: = ± 15 V Vee ± 1\ E I rJ) :; -15 I "" vee± = ±15V Rs 1000. TA = 25°C See Figure 3 : J: \ IT rJ) .9 I ~ Vcc± I:! . ! () 0 80 CI 10 :; a.. :; ~ >c W I -20 Vo -25 - 75 c > =0 - 50 - 25 0 .25 50 75 100 TA - Free-Air Temperature - °e 40 10 125 1k 100 Figure 30 Figure 31 SUPPLY CURRENT SUPPLY CURRENT vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 1000 0.8 '"E I E ~ ~ 0.6 >a.. \ ii :> rJ) -- --r\ ?~ ..---. ~ () ...... 0.4 I TA - I iI i d !t = -55°C J~V V --I Vee± - - I =±5V r--- r-- J 400 I ] 200 0.2 o o 600 ~ I rJ) TA I =±15V /" 800 = 25°C I I Vee± ~e \ () .!:) 100 k . 10 k f - Frequency - Hz = Vo = a No Load 2 4 6 8 10 12 14 Vo a No Load o 16 -75 -50 IVee ±I- Supply Voltage - V Figure 32 -25 0 25 50 75 100 TA - Free-Air Temperature - °e Figure 33 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ." 2-246 INSTRUMENTS POST OFFICE BOX 655303, DALLAS. TEXAS 75265 125 Tl034, Tl034A ENHANCED JFET lOW-POWER lOW-OFFSET QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt SLEW RATE vs LOAD RESISTANCE SLEW RATE vs LOAD RESISTANCE .. ::!. 6 6 5 5 :> 4 a; V 3 . I a: " f- .!! III I a: 2 III V f- . - ~ > SR- a: 3 iii / 2 ".. SR. I a: VCC±=±15V cL = 100 pF TA = 25°C See Figure 1 100 Figure 34 Figure 35 SLEW RATE vs FREE-AIR TEMPERATURE SLEW RATE vs FREE-AIR TEMPERATURE 5 ~ 4 a: 2 ~-- :.--- I-SR- :> ~ . .! a: o -75 - 50 SR- 4 ".. 3 a: 2 I .....-I-- ~ SR. ~:.---r- I iii III 10 RL - Load Resistance - kn 1 5 .!! SR+ o I III I ~ VCC±=±5V CL = 100 pF TA = 25°C See Figure 1 6 3 V III 6 . a; a: " -- I . 10 RL - Load Resistance - kn 1 ~ 4 l!! o .. ,..,....- SRI-'" / III V -- I-SR. = VCC± ±5V RL = 10 kQ CL = 100 pF See Figure 1 - 25 0 25 50 75 100 TA - Free-Air Temperature - °C 125 -r-- I-- VCC± = ±15V RL = 10kQ CL = 100 pF See Figure 1 o -75 100 -50 Figure 36 -25 0 25 50 75 100 TA - Free-Air Temperature - °c 125 Figure 37 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 - DALLAS. TEXAS 75265 2-247 Tl034, Tl034A ENHANCED JFET lOW-POWER lOW-OFFSET QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt OVERSHOOT FACTOR 60 vs LOAD CAPACITANCE FREQUENCY 0.5 = = = VIPP ±10mV RL 10kn TA 25°C See Figure 1 50 ~ 0 .. VCC± ti II. 30 '0 0 .c i // / 40 I TOTAL HARMONIC DISTORTION vs 20 10 /; =±5V I 1/ /L / 0.4 ~ I c .S! 'C 0.3 0 iii is II ~0 .. / E VCC± ,/ i0 =±15V -- .... I Q i= / 0.1 100 250 1---'''' lk 10 k f - Frequency - Hz Figure 39 UNITY-GAIN BANDWIDTH UNITY-GAIN BANDWIDTH vs VS SUPPLY VOLTAGE FREE-AIR TEMPERATURE 1.3 ~ ~ 1.05 .c i V ./ 1.0 V .....- f- V N J: :!i ~ ,. "1:1 ~ CD VpC± - 1.1 c , 1.0 - =±15V .......... --. ............ f'..... VCC±=±5V c :::I VI = 10mV RL = 10kn CL = 25pF TA 25°C See Figure 4 0.95 VI 10 mV RL 10kn CL 25 pF See Figure 4 1.2 .c %. c = = = I c iii ~ ~ ........... ~ CD o 2 4 6 8 10 12 IVee ±1-SupplyVoltage- V 14 16 "'- ""-. ~ '""" I 0.9 = 0.9 100 k Figure 38 1.1 :::I I /V 0.2 J: 50 100 150 200 CL - Load Capacitance - pF !.5 = = = = Vcc± ±15 V AVO 1 VO(rms) 6V TA 25°C 0.8 -75 -50 -25 0 25 50 75 100 TA - Free-Air Temperature - °C Figure 40 Figure 41 tData at high and low temperatures are applicable only within the rated operating free·air temperature ranges of the various devices. TEXAS ." INSTRUMENTS 2-248 POST OFFICE BOX 655303 • OALLAS. TeXAS 75265 125 Tl034, Tl034A ENHANCED JFET lOW-POWER lOW-OFFSET QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt PHASE MARGIN PHASE MARGIN vs vs SUPPLY VOLTAGE LOAD CAPACITANCE - 65 . ~ V ./ 63 til III '0 I .c .. I ~ . :::E / 61 70 68 ..~ / 1- ... 66 2' I 62 ... ... to 60 See Note 10 : 58 .5 l» :2 III to to .c Q.. E 59 '$. 57 Q.. = = VI 10 mV RL 10 kn CL = 25pF TA = 25°C See Figure 4 I o I 4 6 8 10 12 14 '0 . Q.. 59 I E ~ 57 ........... 54 16 o VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE -- ,V r--... ~ I,;'"" 12 > E ...... V I OJ ~ 0 r-..... 8 I III til ~ > t-.. I'--. ............. 10 90 100 VCC± = ±15V RL = 10kn CL = 100 pF = TA 25°C See Figure 1 "- 4 0 -4 I ~ VI = 10mV RL = 10kn CL = 25pF See Figure 4 -8 .1 125 Figure 44 o r-- f -12 -16 -25 0 25 50 75 100 T A - Free-Air Temperature - °c ...... 16 I I .l VCC± = ±15V 55 -75 -50 r.... 52 VCC±=±5V =:as .c ........... PHASE MARGIN 63 61 ...........r-., r..... Figure 43 c 2» ........... Figure 42 I :::E r--......r-., r.... 20 30 40 50 60 70 80 CL - Load Capacitance - pF !! til III VCC± = ±15V E '$. FREE-AIR TEMPERATURE 65 ......... r.... IVcc ±I- Supply Voltage - V 67 III ........... VCC± = ±5V vs . r.... 56 50 2 ......... 64 '0 .c ... VI = 10 mV RL = 10kn TA = 250C _ See Figure 4 0.2 0.4 0.6 0.8 t- Time-lUI 1.0 1.2 1.4 Figure 45 NOTE 10: Values of phase margin below a load capacitance of 25 pF were estimated. tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS . " INSTRUMENTS POST OFFICE BOX 655303· DALLAS, TEXAS 75265 2-249 TL034, TL034A ENHANCED JFET LOW-POWER LOW-OFFSET QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 8 2 , A 1\ > 1/ I II> J ::; 0 / / Q. :; 0 I 0 > -1 vcc± = ±5V RL = 10 ko' CL 100pF TA 25°C See Figure 1 6 > IA 4 1 il I II = = CI I 2 :; So ::I 0 0 -2 I I ~ -4 1\ ~ V t--6 -2 o vcc± = ±15 V RL 10kn CL 100pF TA 250C See Figure 1 = = = 1 \ 1\ \ r- 1/ -8 2 3 4 5 6 7 8 o 2 4 6 8 10 t- TIme-1lB I-TIme-1lB Figure 46 Figure 47 12 14 16 18 APPLICATION INFORMATION Input characteristics The TL034 and TL034A are specified with a minimum and a maximum input voltage that, if el(ceeded at either input, could cause the device to malfunction. Because of the extremely high input impedance and resulting low bias current requirements, the TL034 and TL034A are well-suited for low-level signal processing; however, leakage currents on printed circuit boards and sockets can easily exceed bias current requirements and cause degradation in system performance. It is a good practice to include guard rings around inputs (see Figure 48). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input. The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation. Vo Vo (s) NONINVERTING AMPUFIER (b) INVERTING AMPUFIER Figure 48. Use of Guard Rings TEXAS 2-250 + INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 (e) UNITY-GAIN AMPUFIER TLD34, TLD34A ENHANCED JFET LOW-POWER LOW-OFFSET QUAD OPERATIONAL AMPLIFIERS APPLICATION INFORMATION output characteristics All operating characteristics (except bandwidth and phase margin) are specified with 100 pF load capacitance. The TL034 and TL034A will drive higher capacitive loads; however, as the load capacitance increases, the resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation. The value of the load capacitance at which oscillation occurs varies with production lots. If an application appears to be sensitive to oscillation due to load capacitance, adding a small resistance in series with the load should alleviate the problem. Capacitive loads of 1000 pF and larger may be driven if enough resistance is added in series with the output (see Figure 49) . .•.. j," ..... ,:......... j.... ,.... i' .. ,,, .. ~ ........ 'l' ...... "~ ... . :::J::::::::I::::::::::-.:::::::::::::::::-::: :::::i:::: (a) CL = 100 pF, R = 0 (d) CL =1000 pF, R = 0 (b) CL (e) CL = 300 pF, R = 0 (e) CL =1000 pF, R = 50 Q (f) CL =350 pF, R =0 = 1000 pF, R = 2 k.Q Figure 49. Effect of Capacitive Loads +5V - 5V R n .-J >-.......---w.-......- - Vo L -15V CL 10 k.Q (see Nole A) NOTE A: CL includes fixture capacitance. Figure 50. Test Circuit for Output Characteristics TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 2-251 TL034, TL034A ENHANCED JFET LOW-POWER LOW-OFFSET QUAD OPERATIONAL AMPLIFIERS APPLICATION INFORMATION audio distribution amplifier This audio distribution amplifier feeds the input signal to three separate output channels. U1A amplifies the input signal with a gain of 10 while U1B, U1C, and U1D serve as buffers to the output channels. The gain response of this circuit is very flat from 20 Hz to 20 kHz. The TL034 allows quick response to the input signal while maintaining low power consumption. R4 1 Mil C1 VI~!r--+----~--~ >-'--VOB 1jlF 100 kn 100 jlF R1 r R2 100 kG RS '-~"IV-- Vee + >---Voc 100kn C2 R3 100 kil NOTE: U1A through U1D = TL034; Vce + = 5 V. Instrumentation amplifier with linear gain adjust The TL034 low-offset voltage and low-power consumption provides an accurate but inexpensive instrumentation amplifier. This particular configuration offers the advantage that the gain can be linearly set by one resistor: R6 Va = RS x (VB - VA) Adjusting R6 varies the gain. The value of R6 should always be greater or equal to the value of RS in order to ensure stability. The disadvantage of this instrumentation amplifier topology is the high degree of CMRR degradation resulting from mismatches between R1, R2, R3, and R4. For this reason, these four resistors should be 0.1% tolerance resistors. VA R1 R3 10kn 0.1% 10kn 0.1% Vo RS VB R2 R4 10kn 0.1% 10kn 0.1% NOTE: U1A through U1D VCC_ = Tl034; Vee ± = ± 15 v. TEXAS ." INSTRUMENlS 2-252 POST OFFICE BOX 655303· DALLAS. TEXAS 75265 TL044M, TL044C QUAD LOW·POWER OPERATIONAL AMPLIFIERS 01662. SEPTEMBER 1973-REVISED JUNE 1988 • Very Low Power Consumption • Typical Power Dissipat!on with ± 2·V Supplies . . . 340 poW • Low Input Bias and Offset Currents • Output Short-Circuit Protection • Low Input Offset Voltage • Internal Frequency Compensation • Latch-Up-Free Operation • Power Applied in Pairs TL044M ... J OR W DUAL-IN-L1NE PACKAGE TL044C ... J OR N PACKAGE (TOPVIEWI Pins 4 and 12 are internally connected together in the N package only. TL044M IS NOT RECOMMENDED FOR NEW DESIGNS. TL044M •.• FK PACKAGE (TOPVIEWI description The TL044 is a quad low-power operational amplifier designed to replace higher-power devices in many applications without sacrificing system performance. High input impedance, low supply currents, and low equivalent input noise voltage over a wide range of operating supply voltages result in an extremely versatile operational amplifier for use in a variety of analog applications including battery-operated circuits. Internal frequency compensation, absenc~ of latch-up, high slew rate, and output short-circuit protection assure ease of use. Power may be applied separately to Section A (amplifiers 1 and 4) or Section B (amplifiers 2 and 3) while the other pair remains unpowered. The TL044M is characterized for operation over the full military temperature range of - 55 °C to 125°C; the TL044C is characterized for operation from 0 DC to 70°C. 3 2 1 20 19 # 1 IN + #1,#4VCC- 4 18 5 17 #4IN#4IN+ NC 6 16 NC # 2 IN + #2IN- 7 15 8 14 #2, #3 VCC#3IN+ 910111213 NC - No internal connection symbol (each amplifier) NONINVERTlNG=t>-+ . INPUTIN+ INVERTING INPUT IN- _ PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. OUTPUT ~ Copyright © 1983, Texas Instruments Incorpqralf'd TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 ·2-253 TL044M, TL044C QUAD LOW-POWER OPERATIONAL AMPLIFIERS AVAILABLE OPTIONS TA VIO MAX AT 25°C PACKAGE CHIP CARRIER (FK) CERAMIC DIP (J) PLASTIC DIP (N) FLAT PACK (W) 5 mV - TL044CJ TL044CN - 5 mV TL044MFK Tl044MJ - Tl044MW ooC to 70°C -55°C to 125°C absolute maximum ratings over operating free-air temperature range (unless otherwise noted) TlO44M 22 -22 Supply voltage V CC + (See Note 1) Supply voltage Vee _ (see Note 1) Differential input voltage (see Note 2) TlO44C UNIT 18 -1B V V ±30 ±30 V Input voltage (any input, see Notes 1 and 3) ±15 ±15 V Duration of output short-circuit (see Note 41 unlimited unlimited Continuous total dissipation See Dissipation Rating Table Operating free-air temperature range - 55 to 125 Storage temperature range -65 to 150 Case temperature for 60 seconds lead temperature 1,6 mm (1116 inch) from case for 60 seconds FK package 260 J or W package 300 Lead temperature 1,6 mm (1/16 inch) frbm case for 10 seconds N package NOTES: 1. 2. 3. 4. o to 70 -65 to 150 °C °C °C 300 260 °C '." °C All voltage values, unless otherwise noted, are with respect to the midpoint between VCC + and VCC _. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less. The output may be shorted to ground or either power supply. For the Tl044M only, the unlimited duration of the short-circuit applies at (or below) 125°C case temperature or 85°C free-air temperature. DISSIPATION RATING TABLE PACKAGE TA:$ 25°C POWER RATING DERATING FACTOR DERATE TA - 70°C POWER RATING TA - 125°C POWER RATING FK 680mW 11.0 mW/oC ABOVE TA BBoC 6BOmW 275 mW J (Tl044M) 680mW 11.0 mW/oC B8°C 680mW 275 mW J (Tl044C) 680mW 8.2 mW/oC 67°C 656 mW N 680mW 680mW N/A 8.0 mW/oC N/A 65°C 680mW W TEXAS • INSTRUMENTS 2-254 POST OFFICE BOX 655303 ' DALLAS, TEXAS 75265 640mW 200mW TL044M, TL044C QUAD LOW-POWER OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Vee + PARAMETER Input offset voltage Vo RS = 0, = 50 110 Input offset current Vo = 0 liB Input bias current Vo = 0 VOpp AVD Bl CMRR Large-signal differential RL ;,,: 10 k{l, Vo lOS (AVIO/AVCC) noise voltage PD ±12 ±12 25°C 20 Full range 20 25°C 72 Full range 66 = VICR min, = 0, RS = 50 {l VCC = ±9Vto ±15V, Vo = 0, RS = 50 {l AVD = 20 dB, B = 1 Hz, f = 1 kHz 25°C 60 Vo Full range 60 (four amplifiers I Vo Total dissipation No load, (four amplifiers I Vo = = 5 7.5 40 15 80 200 100 100 250 400 ±12 26 ±13 20 60 86 26 80 25°C 30 150 72 30 150 dB 25°C ±6 25°C 250 50 250 25°C mA 500 500 12 7.5 15 15 12 p.VIV nV/.J Hz ±6 400 400 7.5 200 200 50 25°C nA dB 60 Full range nA MHz 0.5 60 mV V 60 72 UNIT V 20 Full range 0 V MAX ±12 Full range 0 V TYP 1 0.5 VIC No load, 5 ±13 25°C Short-circuit output current Supply current ICC 25°C Unity-gain bandwidth Equivalent input Vn ±10V MIN 250 Full range 10 k{l voltage amplification Supply voltage sensitivity kSVS 50 -15 V TL044C MAX 100 25°C RL ;,,: 10 k{l Common-mode 5 Full range RL = 6 25°C Maximum peak-to-peak rejection ratio 1 Full range output voltage swing = TYP 25°C input voltage range = MIN Full range {l Common-mode VICR TL044M TEST CONDITIONSt VIO 15 V, Vee _ ",A mW t All characteristics are measured under open-loop conditions with zero common-mode input voltage, unless otherwise specified. Full range for TL044M is - 55°C to 125°C and for TL044C is O°C to 70°C. operating characteristics, Vee + PARAMETER tr Rise time Overshoot factor SR Slew rate at unity gain = = - 15 V, Vee - TEST CONDITIONS = 20 mV, = 100 pF, VI = 10 V, Cl = 100 pF, VI CL RL = 15 V, TA TlO44M MIN TYP 0.3 10 k{l, See Figure 1 RL = 5% 10k{l, 0.5 See Figure 1 TL044C MAX MIN TYP 0.3 5% 0.5 MAX UNIT I's V/",s ~ TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-255 2-256 Tl051 , Tl051A ENHANCED JFET PRECISION OPERATIONAL AMPLIFIERS D3234,JUNE 1988- REVISED NOVEMBER 1990 • Maximum Offset Voltage ... 800 ~V (TL051A) • High Slew Rate ... 19.8 V/~ Typ at 25°C • Low Total Harmonic Distortion ... 0.003% Typ at RL = 2 kQ D, JG, or P PACKAGE (TOP VIEW) IN + VCC _ Low NOise Voltage ... 18 nvNHi Typ at f = 1 kHz • Low Input Bias Currents ... 30 pA Typ FK PACKAGE (TOP VIEW) OFFSETNI u 8 NC IN - • L PACKAGE (TOP VIEW) u~uuu zzzzz 2 7 VCC + 3 6 4 5 OUT OFFSET N2 / 3 2 1 20 19 NC d4 IN- 5 NC 6 IN + 7 NC B 9 10 11 12 13 U I U '" U uz z z u Z 18 NC 17 VCC + 16 NC 15 OUT 14 NC Pin 4 is in electrical contact with the case > NC - No internal connection description The TL051 and TL051A operational amplifiers incorporate well-matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit. These devices offer the significant advantages of Texas Instruments new enhanced JFET process. This process affords not only low initial offset voltage due to the on-chip zener trim capability but also stable offset voltage over time and temperature. In comparison, traditional JFET processes are plagued by significant offset voltage drift. This new enhanced process still maintains the traditional JFET advantages of fast slew rates and low input bias and offset currents. These advantages coupled with low noise and low harmonic distortion make the TL051 well-suited for new state-of-the-art designs as well as existing design upgrades. The TL051 has been DISTRIBUTION OF TL051A INPUT OFFSET VOLTAGE 20r---~--~----r----r--~----' 393 Units tested AVAILABLE OPTIONS TA V,Omax SMALlAT 25°C OUTLINE (D) O°C 800 J.1V to 70°C 1500 J.1V - 40°C 800 J.1V to 85°C 1500 J.1V -55°C 800 J.1V to 125°C 1500 J.1V CHIP CARRIER (FK) CERAMIC DIP (JG) Tl051ACD TL051CD TL051AID Tl0511D TL051AMD Tl051AMFK TL051AMJG Tl051MD TL051MFK TL051MJG - VCC±=±15V 2S oC-+--+---+---f----J PPackage 16 TA PACKAGE METAL CAN (l) PLASTIC DIP (P) #. I !!! § TL051ACP TL051CP TL051AIP TL0511P Tl051AMl TL051AMP TL051ML TL051MP = 12r--1---+1%~+---+-B%~----J - 4 o packages are available taped-and-reeled. Add "R" suffix to device type (e.g .. TL051CDR). oLJlill!illllilli:lliillllillllJli.lilljttlllitJilllilll - 900 - 600 - 300 0 300 600 900 V,O -Input Offset Voltage - j.1V PRODUCTION DATA documents contain inlormation currant a. 01 publication date. Products conlarm to specifications per the terms 01 Texas Instruments standard wananty. Production processing doe. not necessarily include testing 01 all parameters. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Copyright © 1990. Texas Instruments Incorporated 2-257 Tl051 , Tl051A ENHANCED JFET PRECISION OPERATIONAL AMPLIFIERS description (continued) designed to be functionally compatible, as well as pin compatible, with the TL071 and TL081. Two offset voHage grades are available: TL051 (1.5 mV max) and TL051 A (800 J,lV max). A variety of available packaging options includes small-outline and chip carrier versions for high-density system applications. The C-suffix devices are characterized for operation from O°C to 70°C. The I-suffix devices are characterized for operation from - 40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of - 55°C to 125°C. equivalent schematic (each amplifier) 02 03 013 IN + - - - - f - - - - , R9 Vo Rs R8 C1 017 08 09 OFFSETN1 OFFSET N2 -+--+---+ R1 R2 014 R10 R4 VCC- symbol (each amplifier) IN-=t>IN + + . OUT TEXAS ~ INsrRUMENlS 2-258 POST OFFICE BOX 655303' DALLAS. TEXAS 75265 02 TL051 , TL051A ENHANCED JFET PRECISION OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, Vee + (see Note 1) ..................................................... 18 V Supply voltage, Vee _ (see Note 1) .................................................... -18 V Differential input voltage (see Note 2) ................................................... ± 30 V Input voltage range, VI (any input, see Notes 1 and 3) ...................................... ± 15 V Input current, II (each input) .......................................................... ± 1 mA Output current, 10 (each output) ..................................................... ± 80 mA Total current into Vee + terminal ..................................................... 160 mA Total current out of Vee _ terminal ................................................... 160 mA Duration of short-circuit current at (or below) 25°C (see Note 4) ............................ unlimited Continuous total dissipation ........................................ See Dissipation Rating Table Operating free-air temperature range, T A: e-suffix ................................... O°C to 70°C I-suffix ................................ - 40°C to 85°e M-suffix ............................... - 55°C to 125°C Storage temperature range ................................................... - 65°C to 150°C Case temperature for 60 seconds: FK package ........................................... 260°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package ................. 260°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG or L package ................ 300 0 e NOTES: 1. 2. 3. 4. All voltage values. except differential voltages, are with respect to the midpoint between VCC + and VCC _ . Differential voltages are at the noninverting input with respect to the inverting input. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V. whichever is less. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TA s25°C POWER RATING DERATING FACTOR ABOVE TA 25°C 5.8 mW/oC = 0 725mW FK 1375 mW 11.0 mW/oC JG 1050 mW L 825mW P 1000 mW = = TA 85°C POWER RATING TA 70°C POWER RATING 464mW = TA 125°C POWER RATING 145mW 880mW 377mW 715mW 275mW 8.4 mW/oC 672mW 546mW 210mW 6.6 mW/oC 528mW 429mW 165 mW 8.0 mW/oC 640mW 520mW 200mW recommended operating conditions C-SUFFIX I-SUFFIX MIN NOM MAX Supply voltage, Vcc Common-mode input voltage, VIC Operating free-air temperature, TA I VCC+ = ±5V I VCC+=±15V M-SUFFIX MIN NOM MAX ±15 ±5 -1 4 MIN NOM MAX ± 15 ±5 -1 4 ±5 -1 ± 15 4 -11 11 -11 11 -11 11 0 70 -40 85 -55 125 TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 UNIT V V °c 2-259 TL051C, TL051AC ENHANCED JFET PRECISION OPERATIONAL AMPLIFIERS electrical characteristics PARAMETER TEST CONDITIONS TL051C VIO Input offset voltage TL051AC Vo = 0, Temperature coefficient aVIO of input offset voltage (see Note 9) VIC RS = 0, = 50Q TL051C TL051AC VCC ± TAt MIN 25°C Full range 25°C Full range 3.8 25°C to 70°C 25°C to 70°C 110 Input offset current liB Input bias current 25°C Maximum negative peak output voltage swing Large-signal differential AVO voltage amplification 0.04 0.04 25 )lV/mo 4 100 5 100 pA 1 0.025 1 nA Vo = 0, VIC = 0, See Figure 5 25°C 20 200 30 200 pA 70°C 0.15 4 0.2 4 nA Full range VOM_ 8 0.02 voltage range output voltage swing 8 25°C 25°C VOM+ 8 mV 70°C Common-mode input Maximum positive peak 8 UNIT Vo = 0, VIC = 0, See Figure 5 -1 VICR v VCC± ± 15 MIN TYP MAX 0.59 1.5 2.5 0.35 0.8 1.8 )lV/DC Input offset voltage long-term drift (see Note 5) = = ±5 V TYP MAX 0.75 . 3.5 4.5 2.8 0.55 25°C RL = 10kQ Full range 25°C RL = 2 kU RL = 10k1~ RL = 2 kU -11 -12.3 to to to to 4 -1 5.6 11 15.6 V - 11 to to 4 11 3 3 4.2 2.5 3.8 13 13.9 13 Full range 2.5 25°C Full range - 2.5 - 3.5 25°C -2.5 -2.3 -3.2 Full range -2.3 11.5 V 12.7 11.5 -12 - 13.2 -12 - 11 V -12 -11 50 O°C 25 30 59 65 60 105 129 70°C 20 46 30 85 25°C RL = 2 kQ, See Note 6 -2.3 V/mV fj Input resistance 25°C 1012 1012 Q Ci Input capacitance 25°C 10 12 pF CMRR kSVR ICC VIC = V,CR min, 25°C 65 85 75 93 rejection ratio Vo = 0, RS = 50Q O°C 70°C 65 84 75 92 65 84 75 91 Supply-voltage VCC± = ±5Vto±15V, 25°C 75 99 75 99 rejection ratio Vo O°C 75 98 75 98 (6VCC±i6V,0) RS = 50Q 70°C 75 97 75 97 Supply current No load, Common-mode (four amplifiers) Vo = 0, =0 dB dB 25°C 2.6 3.2 2.7 O°C 70°C 2.7 3.2 2.8 3.2 3.2 2.6 3.2 2.7 3.2 mA t Full range is O°C to 70°C. NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T A = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 6. ForVCC± = ±5V,VO = ±2.3V;atVcc± = ±15V,VO = ±10V. 9. This parameter is tested on a sample basis for the TL051A. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters. TEXAS ~ INSTRUMENTS 2-260 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TL051C, TL051AC ENHANCED JFET PRECISION OPERATIONAL AMPLIFIERS operating characteristics PARAMETER SR + SR- tr Positive slew rate = 2 kn, = 100 pF, at unity gain RL CL Negative slew rate See Figure 1 and Note 7 at unity gain Rise time = ± 10 mY, = 2kn, = 100 pF, VIPP tf Fall time RL eL See Figures 1 and 2 Equivalent input noise voltage (see Note 10) Peak-to-peak equivalent VNPP input noise voltage Equivalent input In THD f RS = lOOn, See Figure 3 noise current Total harmonic distortion f f = = = = I/J m Unity-gain bandwidth Phase margin at unity gain 13 22.6 25°C DoC 16.5 15 19.8 16.8 13 19.9 70°C 16 13 19.3 25°C DoC 55 54 55 70 0 e 63 63 25°C DoC 55 54 57 56 64 24% 19% 70 0 e 24% 19% 10Hz 25°C 75 75 1 kHz 10 Hzto 25°C 18 18 25°e 4 4 25°C 0.01 0.01 25°C 0.003% 0.003% 25°e oDe 3 3.2 3.1 3.3 70 0 e 2.7 2.8 2S o e ooe 59 0 62° 58° 62 0 70°C 59° 62° Vi = 10 mY. RL = 2 kil, CL = 25 pF, See Figure 4 Vi = 10mV, RL = 2k12, eL = 25 pF, See Figure 4 UNIT V/lts 56 19% c-- 81 24.1 16.4 62 RL = 2 kn, See Note 8 MAX 23.7 13 24% 1 kHz RS = 1 kn, f = 1 kHz, 70°C = ± 15 v TYP 25°C oDe 10kHz f 25°C DoC VCC± MIN 15 70 0 e Overshoot factor Vn = VCC ± ±5 V TYP MAX MIN 18.2 19,5 TAt TEST CONDITIONS ns 30 nV/v'Hz ltV pAlv'Hz MHz t Full range is oDe to 70°C. NOTES: 7. For Vee ± = ± 5 V, VIPP = ± 1 V; for Vee ± = ± 15 V, VIPP = ± 5 V. 8. For Vee ± = ±5 V, Vo(rms) = 1 V; for Vee ± = ± 15 V, Vo(rms) = 6 V. 10. This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters. TEXAS ."., INSTRUMENTS POST OFFICE BOX 6550303 • DALLAS, TEXAS 75265 2-261 Tl0511, Tl051AI ENHANCED JFET PRECISION OPERATIONAL AMPLIFIERS electrical characteristics ~- PARAMETER TEST CONDITIONS - TL0511 VIO Input offset voltage TL051AI Vo "'VIO ~ 0, VIC ~ 0, RS = 50Q Temperature coefficient of input offset voltage (see Note 9) 110 lIB MAX 25°C Full range 0.75 3.5 25°C 0.55 1.5 0.35 0.8 3.3 2.8 8 TL051AI 25°e to 85°C 8 8 0.04 0.04 25°e 4 100 5 100 pA 85°C 0.06 Input bias current = 0, 25°C 20 0.07 30 10 200 nA Vo ~ 0, VIC See Figure 5 10 200 85"e 0.6 -2.3 20 0.7 -12.3 20 nA voltage range RL = 10 kU output voltage swing RL = 2 klJ RL ~ -- output voltage swing 10kQ RL~2k!2 voltage amplification -11 to to to to 4 -1 5.6 11 -11 15.6 to to 4 11 13 25°C Full range 3 3 4.2 25°e Full range 3.8 25'C 2.5 2.5 .- 2.5 Full range - 2.5 25"C 11.5 11.5 13.9 - 12 ~ 13.2 -12 - 2.3 - 2.3 - 3.2 -11 25°C 25 59 50 105 -40°C 30 74 60 145 85"C 20 43 30 76 -11 Input resistance 25°C 1012 1012 Input capacitance 25°C 10 12 = 0, = 50,2 rejection ratio Vo RS Supply-voltage VCC± = ±5Vto±15V, rejection ratio Vo ~ 0, (t.VCC ±/ t.VIO) RS = 50 n -- Supply current No load, (four amplifiers) Vo = 0 ~- , V -12 Ci VIC ~ VICR min, V 12.7 r; Common-mode 25°C 65 85 75 93 - 40°C 85°C 65 65 83 84 75 75 90 93 25°C 75 99 75 99 - 40'C 75 98 75 98 85°C 75 99 75 99 V/mV n pF dB dB 2.6 2.4 3.2 3.2 2.7 - 40°C 2.6 3.2 3.2 85°C 2.5 3.2 2.6 3.2 25°C pA V 13 - 3.5 Full range RL = 2 kn, See Note 6 Large-signal differential ICC !lV/mo Vo ~ 0, VIC ~ 0, See Figure 5 Maximum negative peak kSVR 25 Input offset current Maximum positive peak CMRR mV !lvre 25°C long-term drift (see Note 5) UNIT 2.6 7 Full range AVD MAX 0.59 25°e to 85°e 25°C VOM- = ±15V TYP 4.6 Full range Common-mode input YOM + vcc± MIN 5.3 -1 VICR = ±5V TYP MIN TL0511 Input offset voltage r------ Vcc± TAt mA t Full range is - 40"C to 85"C. NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life testatT A ~ 150a C extrapolated to TA ~ 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 6. ForVCC± = ±5V,VO = ±2.3V;atVcc± ~ ±15V,VO ~ ±10V. 9. This parameter is tested on a sample basis forthe TL051A. For othertest requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters. TEXAS ." INSfRUMENlS 2-262 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Tl0511, Tl051AI ENHANCED JFET PRECISION OPERATIONAL AMPLIFIERS operating characteristics SR+ TAt TEST CONDITIONS PARAMETER tr 23.7 13 23 13 21.9 25 QC 16.5 15 19.8 at unity gain - 40 QC 85 QC 16.6 13 19.4 15.7 13 19.1 Rise time 25 QC - 40 QC 85 QC Negative slew rate Fall time voltage (see Note 10) Peak-to-peak equivalent See Figure 1 and Note 7 RL ~ 2 kQ, CL ~ 100 pF, ~ RS lOOn, See Figure 3 input noise voltage Equivalent input noise current THD Total harmonic distortion 81 Unity-gain bandwidth ¢m TYP 16.1 RL ~ 2 kQ, Equivalent input noise In ± = ± 20.1 Positive slew rate at unity gain Overshoot factor VNPP Vcc MIN 15 See Figures 1 and 2 Vn MAX 18.2 VIPP ~ ± 10 mV, tf =± 5 v TYP 25 QC -40QC 85 QC CL ~ 100 pF, SR- Vce ± MIN f ~ 10Hz f ~ 1 kHz f ~ 10 Hzto 10kHz f ~ 1 kHz RS ~ 1 k!l, f ~ 1 kHz, Vi ~ RL ~ 2 k!l, See Note 8 10mV, RL ~ 2 kfl, CL ~ 25 pF, See Figure 4 Phase margin Vi ~ 10mV, RL ~ 2kfl, at unity gain CL ~ 25 pF, See Figure 4 55 56 52 53 64 65 25QC - 40 QC 85 QC 55 57 51 53 64 65 25QC - 40 QC 85 QC 24% 19% 24% 19% 24% 19% 25 QC 25QC 75 75 18 18 25 QC 4 4 25 QC 0.01 0.01 25°C 0.003% 0.003% 15 v 25°C 3 3.1 - 40 QC 85 QC 3.5 3.6 2.7 2S QC 2.6 59 Q 62° - 40 QC 85 QC 58 Q 59 Q 61" 62 Q MAX UNIT VIIlS ns 30 nVlv'HZ !-'V pAlv'HZ MHz t Full range IS - 40°C to 85 Q C. NOTES: 7 For VCC ± ~ ± 5 V, VIPP ~ ± 1 V; for VCC ± ~ ± 15 V, VIPP ~ ± 5 V. 8. For VCC ± ~ ± 5 V, Vo(rms) ~ 1 V; for VCC ± ~ ± 15 V, Vo(rms) = 6 V. 10. This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters. tEXAS + INSTRUMENlS POST OFFICE BOX 6550303 • DALLAS, TEXAS 75265 2-263 Tl051 M,Tl051AM ENHANCED JFET PRECISION OPERATIONAL AMPLIFIERS electrical characteristics PARAMETER TEST CONDITIONS TLOSiM VIO Input offset voltage TL051AM etVIO Temperature coefficient of input offset voltage Vo = 0, VIC = 0, RS = 50n TLOS1M TL051AM Input offset voltage long-term drift (see Note 5) = 0, 110 Input offset current Vo = 0, VIC See Figure 5 liB Input bias current Vo = 0, VIC = 0, See Figure 5 Vee ± TAt MIN 25"C Full range 25"C Full range 25"e to 125"C 25"C to VOM- Maximum positive peak output voltage swing Maximum negative peak output voltage swing Large-signal differential AVD r; Ci CMRR kSVR ICC voltage amplification RL=10k!1 RL = 2 kn RL = 2kn, See Note 6 Input resistance Input capacitance Common-mode rejection ratio VIC = VICR min, Vo = 0, RS = 50 Q Supply-voltage VCC± = ±5Vto±15V, rejection ratio Vo = 0, (,WCC ± I !lVIO) RS = 50n Supply current (four amplifiers) No load, Vo = 0 MAX 0.59 1.5 4.5 0.8 3.8 0.35 8 8 25"C 0.04 0.04 25"C 125"C 25"C 125"C 4 1 20 10 -2.3 to 5.6 UNIT mV JiVl"C 125"C 25"C Full range 25"C Full range 25"C Full range 25"C Full range RL = 2 kn 3.5 6.S 2.8 5.8 = ±15 V TYP 8 -1 to 4 -1 to 4 Full range VOM+ 0.75 Vee ± MIN 8 Common-mode input voltage range RL = 10 kn MAX 0.55 25"C VICR = ±5 V TYP 3 3 2.5 2.5 -2.5 -2.5 - 2.3 - 2.3 100 20 200 50 5 .2 30 100 20 200 20 -11 -12.3 to to 11 15.6 50 pA nA pA nA V ~11 to 11 13.9 13 13 11.5 12.7 11.5 -12 -13.2 -12 -11 -12 -11 4.2 3.8 -3.5 - 3.2 25"C - 55"C 25 30 59 76 50 60 125"C 25"C 25"C 25"C -55"C 125"C 10 15 65 65 65 32 1012 10 85 83 84 25"C - 55"C 125"C 75 75 75 25"C -55"C 125"C JiV/mo 75 75 75 99 98 100 2.6 3.2 2.3 2.4 3.2 3.2 V V 105 149 49 VlmV 1012 12 93 92 n pF dB 94 75 75 99 75 100 98 2.7 2.4 2.5 dB 3.2 3.2 3.2 mA t Full range is - 55"C to 125"C. NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150"C extrapolated to TA = 25"C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 6. ForVCC± = ±5V,VO ~ ±2.3V;atVcc± = ±15V,VO = ±10V. TEXAS ." INSTRUMENTS 2-264 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Tl051M, Tl051AM ENHANCED JFET PRECISION OPERATIONAL AMPLIFIERS operating characteristics PARAMETER SR+ SR- tr tf TEST CONDITIONS Positive slew rate at unity gain RL = 2 k!l, eL = 100 pF, See Figure 1 and Note 7 Negative slew rate at unity gain VIPP = ± 10 mV. RL = 2 k!l, CL = 100 pF, See Figures 1 and 2 Overshoot factor Vn Equivalent input noise voltage Peak-to-peak equivalent VNPP In input noise voltage Equivalent input RS = 100 'l, See Figure 3 f = 10Hz f f = = 1 kHz 10Hzto 10kHz f noise current = 1 kHz = VCC:I: ±15 V MIN TYP MAX VCC:I: :1:5 V TYP MAX MIN 25°e 18.2 -55°e 17.5 20 125°e 15 21.2 25°e 16.5 15.1 15 15 19.8 14.8 25°e 55 56 - 55°e 125°e 51 68 52 68 25°e -55°e 55 57 51 52 125°e 68 25°e 24% 69 19% - 55°e 25% 125°e 25% 19% 19% 25°e 25°C 75 75 18 19 25°e 4 4 25°e 0.01 0.01 25°e 0.003% 0.003% THO Total harmonic distortion RS = 1 k!l, RL = 2 k!l, f = 1 kHz, See Note 8 3 3.1 Unity-gain bandwidth Vi = 10mV, RL = 2k!l, eL = 25 pF, See Figure 4 25°e 81 - 55°e 3.6 3.7 125°e 2.3 2.4 Vi = 10 mV, RL = 2 kn, CL = 25 pF. See Figure 4 25°e 59 0 - 55°e 57" 125°C 59° 62° 61° 62° 4>m Phase margin at unity gain UNIT 23.7 17 18.2 - 55°e 125°e Rise time Fall time = TAt V/lls ns nV/VHZ Il V pA/VHZ MHz t Full range is - 55°e to 125 e. u NOTES: 7. For Vee ± 8. For Vee ± = ± 5 V. VIPP = ± 1 V; for Vee ± = ± 15 V, VIPP = ± 5 V. = ± 5 V, Vo(rms) = 1 V; for Vee ± = ± 15 V, Vo(rms) = 6 V. TEXAS ." INSTRUMENlS POST OFFICE BOX 6550303' DALLAS. TEXAS 75265 2-265 TL051 , TL051A ENHANCED JFET PRECISION OPERATIONAL AMPLIFIERS PARAMETER MEASUREMENT INFORMATION >----Vo 1,- RISE TIME NOTE A: CL includes fixture capacitance. FIGURE 1. SLEW RATE, RISE/FALL TIME, AND OVERSHOOT TEST CIRCUIT FIGURE 2. RISE TIME AND OVERSHOOT WAVEFORM tOkn tOkn VI toon Vo VeeRS RS NOTE A: CL includes fixture capacitance. FIGURE 3. NOISE VOLTAGE TEST CIRCUIT FIGURE 4. UNITY·GAIN BANDWIDTH AND PHASE MARGIN TEST CIRCUIT typical values Typical values as presented in this data sheet represent the median (50% point) of device parametric performance. GROUND SHIELD Input bias and offset current At the picoamp-bias-current level typical of the TL051 and TL051 A, accurate measurement of the bias current becomes difficult. Not only does this FIGURE 5. INPUT BIAS AND OFFSET measurement require a picoammeter, but test CURRENT TEST CIRCUIT socket leakages can easily exceed the actual device bias currents. To accurately measure these small currents, Texas Instruments uses a two-step process. The socket leakage is measured using picoammeters with bias voltages applied but with no device in the socket. The device is then inserted in the socket and a second test that measures both the socket leakage and the device input bias current is performed. The two measurements are then subtracted algebraically to determine the bias current of the device. noise Because of the increasing emphasis on low noise levels in many of today's applications, the input noise voltage density is sample-tested at f = 1 kHz. Texas Instruments also has additional noise testing capability to meet specific application requirements. Please contact the factory for details. TEXAS ,., INSTRUMENlS 2-266 POST OFFICE BOX 655303· DALLAS. TEXAS 75265 TL051 , TL051A ENHANCED JFET PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS table of graphs FIGURE V,O (lVIO ',0 Distribution Input offset voltage Temperature coefficient Distribution of input offset voltage Input offset current vs Temperature vs V'C Temperature liB Input bias current V, Input voltage range Vo Output voltage vs vs vs Maximum peak output vs voltage swing vs VCC Output current Frequency vs Temperature vs VOM AVD Zo CMRR kSVR lOS vs vs Differential voltage amplification vs RL Frequency vs Temperature Output impedance vs Frequency Common-mode rejection ratio Supply-voltage rejection ratio Short-circuit output current ICC Supply current SR Slew rate THD Bl Unity-gain bandwidth Frequency vs vs Temperature vs vs VCC Time vs Temperature vs VCC Temperature vs Equivalent input noise voltage Total harmonic distortion vs vs Overshoot factor Vn Phase margin Phase shift Pulse response Temperature vs RL Temperature vs vs CL Frequency vs vs vs VS ¢m VCC Temperature Differential input voltage Frequency VCC Temperature vs VCC CL Temperature vs Frequency vs Small-signal Large-signal 6 7 B 9 B 10 11 12,13 14 lB,19 15,16,17 20, 21 22 23 24, 25 29 26, 27 28 30 31 32 33 34 35 36, 37 38,39 40 41 42 43 44 45 46 47 23 4B 49 TEXAS ", INSfRUMENTS POST OFFICE BOX 655303 - DALLAS, TEXAS 75265 2-267 TL051 , TL051A ENHANCED JFET PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt DISTRIBUTION OF TL051 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT DISTRIBUTION OF TL051 INPUT OFFSET VOLTAGE 120 Units tested from VCC± 16 TA =±15V = 25°C to 1250C -+--1----+---11---+--1 81---+-1--+- 4 1---+--1-- o -0.9 -0.3 0 0.3 0.9 VIO - Input Offset Voltage - mV 1.5 FIGURE 6 FIGURE 7 INPUT BIAS CURRENT AND INPUT OFFSET CURRENT INPUT BIAS CURRENT vs vs FREE-AIR TEMPERATURE COMMON-MODE INPUT VOLTAGE 100 ., 01 ,/"" 12 S "0 8 :; 4 ,/"" . /V > . " Q. COMMON-MODE INPUT VOLTAGE RANGE LIMITS vs FREE-AIR TEMPERATURE 20 V V Vee ± = ±15 V -- 01 POSITIVE LIMIT :; Q. E E 0 c..> 15 POSITIVE LIMIT 10 5 .E 0 I :::;; c0 .. S "0 > .E 0 > ........ -4 ":::;;" I 0 I NEGATIVE LIMIT c0 ........... E E ............... -8 0 c..> ........... I c..> -5 -10 I c..> ............... '> -12 0 '> ~ -15 NEGATIVE LIMIT -16 o 2 4 6 8 10 12 14 -20 -75 16 -50 IVee ±I-Supply Voltage - V FIGURE 10 FIGURE 11 OUTPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE OUTPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE 5 I "\1\ 2 :; Q. :; 0 I 0 > 0 I = = = = 600 Q 1 kQ 2 kQ 10 kQ :; 0 01 s-:l 0 ~, ~ " 5 S "0 > ~ -1 RL -2 RL -3 RL RL , '\ > ~. 01 S "0 > Vee ± = ± 15 V TA = 25°e 10 3 ., I ~ - 0 -5 - > -200 -10 - -100 o 100 VIO - Differential Input Voltage -IlV 200 - RL = 600nRL = 1 kQRL = 2 kQ -4 -5 125 15 Vee± = ±5V TA = 25"C 4 > -25 0 25 50 75 100 TA - Free-Air Temperature - °e _.'1' "1 -15 -400 FIGURE 12 0 - ~ It r--......... -- - >-r-~ i'-.. r-- -200 200 o VIO - Oifferentiallnput Voltage - IlV 400 FIGURE 13 toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS . " INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-269 TL051 , TL051A ENHANCED JFET PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt MAXIMUM PEAK OUTPUT VOLTAGE vs SUPPLY VOLTAGE 16 VO~ + TA = 25°e > /' RL~l~ V '5 ~ 4 0. 8 "" i 0 § -4 ... E "x ~ RL '" I :::;: ~-12 > '"'" > '5 4 ""'" rf b ]; 10k~ I o 15 iE 10 "x ~ ~ 1"--. 20 TA = 125°C =;--t 1 Jillill1 ~ TA = -55°e ~~ Veet=t5V 5 I 00- I' o > 14 , 1\ 0. 8 ~£ ""E VOM_ I 10 12 16 i'-,.... 0 10 k 100 k 1M 10M MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY > 30 \ Veet = t5V 8 20 j ""m 1 ie: ~ 15 1\ 10 I' ""E "= :::;: 5 .......... 0 10 k ~veet = t15V 0- 1\ 10 25 :; \ 15 RL = 10 kQ TA = 25°e 8, :l ~ 25 20 30 I RL = 2 k1l TA = 25°e I 11111111 Vee ± = t 15V 00- > 25 FIGURE 15 "x '"I '5 RL = 2kQ FIGURE 14 m :::;: t-- ve~ ~ 1~IJllt f - Frequency - Hz 0- E ""E a 6 0. 8 I~'" IVee tl- Supply Voltage - V I :l "0 2 ~ ~2kQ -6 o 30 I .¥ I -16 ~- ~=12k!l MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY 100 k 1M f - Frequency - Hz 5 Vee t = t5V I 00- o I"- > 10 M . 0 10 k FIGURE 16 ~ ,.... 111111 100 k 1M f - Frequency - Hz FIGURE 17 IData at high and low temperatures are applicable only within the rated operating free"air temperature ranges of the various devices. TEXAS ~ 2-270 INSTRUMENTS POST OFFICE BOX 655303" DALLAS. TEXAS 75265 10 M TL051 , TL051A ENHANCED JFET PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt MAXIMUM PEAK OUTPUT VOLTAGE vs OUTPUT CURRENT MAXIMUM PEAK OUTPUT VOLTAGE vs OUTPUT CURRENT 16 5 VCC±=±5V Rl = 101<.0 > I "'" 0 !!l 4 3 f'" 0 '"m " "'- "-~ "- 2 14 !!l 0 '" 12 :; Q. :; 10 '".. . 6 E E " ';; 6 . :E 4 ~OM+ :E I ~ 0 ~ i'-.. TA = 25°C 1""-' ~ i'-... ~ ~ "-YOM + """" " .. "- " "- '\ '\ 16 1101 - Output Current - mA ~ 0 > " 2 10 20 4 " 3 01 !!l i5 > :; Q. :; 16 > I Rl = 2 k!l " ~ i5 > :; Q. :; 2 ~ 0 E -1 E ';; -2 I YOM - :E 0 > Rl = 2kn -3 4 VCC ± = ± 15 V 0 I -4 Rl - 10kQ -5 I I 50 75 - 50 - 25 0 25 Rl = 2 k!l 6 VOM- :E -75 I YOM + E "E -4 ';; ca :E -6 " . Rl = 10 k.Q 12 o VCC ± = ±5 V :E 50 MAXIMUM PEAK OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE Rl=10kn 0 '"m 0.. "" FIGURE 19 5 I 40 30 1101 - Output Current - mA MAXIMUM PEAK OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE > ~ \ o o 20 FIGURE 18 VOM+ "" \ ~ I 12 6 VO~ "-'" i'-- 0.. " > 4 VCC ± = ±15 V Rl = 10 k.Q 0 VOM~ o o I > 0.. E E ';; . TA = 25°C ~ > :; Q. :; f'... > Rl = 2 k.Q 0-12 > Rl = 10kQ -16 100 125 -75 -50 T A - Free-Air Temperature - °C -25 0 25 50 75 10C 125 T A - Free-Air Temperature - °C FIGURE 20 FIGURE 21 TData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ." INSTRUMENTS POST OFFICE BOX 655303 ' DALLAS. TEXAS 75265 2-271 TlQ51 , TlQ51A ENHANCED JFET PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT LARGE-SIGNAL VOLTAGE AMPLIFICATION vs vs LOAD RESISTANCE FREQUENCY 250 > ~I <: 0 Vo TA = ±1 V = 25°C 200 = ±15V ~ VCC± =aE f.-- r- .g ., 150 C) !! '0 > 100 / VCC ± :! ., Jii5 E 50 \ VL--' 00:( /' '" "" = ±5 V 1----'1--- RL cL ~ ...... TA '" .;: '" .,.. III .. i'.... PHASE SHIFT ' " ~ '" > 0.4 1 0.1 10 100 4 10 40 RL - Load Resistance - kn vs FREE-AIR TEMPERATURE FREE-AIR TEMPERATURE 1000 = > .E > Vcc+ +5V Vo = ± 2.3 V <: 0 - -- 400 u :;:: E 00:( =aE ., 00:( RL = 10 kil 100 - > :! ~ = RL -; :e 40 RL = 2kn " :t: i5 I C ----- -I--- > 00:( C) !! '0 100 > = 10kn 1------RL I-. ~ = 2kn ~ ------= :! E = Vec + +15 V Vo + 10 V I 400 Ii c 180° 10M LARGE-SIGNAL VOLTAGE AMPLIFICATION vs "iu C) '\ 150° LARGE-SIGNAL VOLTAGE AMPLIFICATION E S '0 1M 120° FIGURE 23 :> GO lOOk \ ",\- f - Frequency - Hz 1000 I <: 10k 1k 90° .<: Q. FIGURE 22 > 0 100 30° 60° :E I o = 25 pF = 25°C ~VD C 00:( = ±15V = 2kn 0° Vcc± t-... 40 i5 I C > 00:( 10 -75 -50 -25 0 25 50 75 100 T A - Free-Air Temperature - °c 125 10 -75 -50 -25 0 25 50 75 100 125 T A"" Free-Air Temperature - °C FIGURE 25 FIGURE 24 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ." 2-272 INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TL051 , TL051A ENHANCED JFET PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt COMMON-MODE REJECTION RATIO COMMON-MODE REJECTION RATIO vs vs FREQUENCY FREQUENCY 100 .., a:I 100 90 = I 0 "; 80 c 0 70 'Qj 60 Ql '\. =Iic 40 E E 30 \ I 0== \ 20 70 \ 1k 10 k 100 k f - Frequency - Hz 1M 20 U Ql vs FREQUENCY 1M 10M 100 I / VCC±=±15V a I 8 90 c ~ / 10 L i.5 85 / AVO = 1 o - L VCC± = ±15V TA 25°C r 0 (open loop) = 250 Q / 75 = /' 0== 0 25 50 75 100 125 / // N -25 /' i/ / L I 70 -75-50 / L AVO = , . ~ 80 AVO = 10~ / i VCC± = ±5V 0 a: a: 1k 10 k 100 k f - Frequency - Hz FREE-AIR TEMPERATURE 0 I 100 OUTPUT IMPEDANCE 95 0 E E 10 VIC = VICRmin =Iic 0 \ vs 'Qj Ql I'\. 0 10 10M a: .., '\ COMMON-MODE REJECTION RATIO a: 0 '\. FIGURE 27 a:I c '\ FIGURE 26 .., I I'\. 40 I a: a: 100 .2 1ii '\ 50 30 0== 100 = 60 E E = VCC± ±15V TA 25°C (3 10 0 10 c .!! Ql 0 a: a: 80 '8 ~0 \ 0 0 .2 g l \. 50 90 I OJ a: a: '8 .., a:I b-.. a: ~ = Vcc± ±5V TA 25°C 0.1 1k TA - Free-Air Temperature - °c 10k 100 k 1M f - Frequency - Hz FIGURE 28 FIGURE 29 tDam at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ IN5rRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 2-273 Tl051 , Tl051A ENHANCED JFET PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt SHORT-CIRCUIT OUTPUT CURRENT SUPPL Y-VOL TAGE REJECTION RATIO vs vs FREE-AIR TEMPERATURE SUPPLY VOLTAGE 60 110 Vee± = ±5V to ±15V £II "0 .2 106 '" c ~ I E C 1 <3 - 8. t I 20 !-s o ~ -20 V,O = :n -40 90 -75 -60 -50 -25 0 25 50 75 100 TA - Free-Air Temperature - DC 125 o 4 6 8 10 12 IVee ±I- Supply ,Voltage - V 14 SHORT-CIRCUIT OUTPUT CURRENT SHORT-CIRCUIT OUTPUT CURRENT vs vs TIME FREE-AIR TEMPERATURE 60 i-- I 'E" ~ ~ 40 40 I 20 d 0 o" - - r---r--t--J. vee± = ±15V I I vce± = ±5V 20 1 i 0 Vec±=±5V ~ 1- -20 ~ V,O = -100mV :n-40 -60 o 10 20 20 UJ :n -40 Vee± = ±15 V TA = 25 De 9 30 40 Time - Seconds 50 9 60 - - I I Vee ± = ±15 V Vo = 0 I I -60 -75 -50 -25 0 25 50 75 100 TA - Free-Air Temperature - DC FIGURE 32 FIGURE 33 10ata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ." 2-274 16 FIGURE 31 VID = 100 mV ~ SR+ 20 IV I l!! ~ .. iii 15 a: 10 ~ I 10 III r-- r-- V SR- ---- III vcc ± vcc ± 5 o -75 -50 -25 0 .25 = ±5 V RL = 2kQ CL = 100 pF See Figure 1 I I 50 75 100 125 = ±15 V RL = 2 kQ CL = 100 pF See Figure 1 5 a -75 - 50 - 25 a 25 50 I I 75 100 125 TA - Free-Air Temperature -"C TA - Free-Air Temperature - °C FIGURE 38 FIGURE 39 OVERSHOOT FACTOR vs LOAD CAPACITANCE EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY 50r---~----~--~--~~--~--~ 100 ~ :>c .. ..'l! ~ .. 70 I Ol VCC±=±15V RS = 100Q TA = 25°C See Figure 3 \ 50 40 \ 1\ II '0 Z ;; 30 a.. .5 .. E Oi .i!: 20 :> 10~--~+---~--~--- Iff '" I __ __ __ c > See Figure 1 O~--~--~--~~ a 50 ~ ~ 100 150 200 250 CL - Load Capacitance - pF ~ 300 10 10 FIGURE 40 100 1k 10 k f - Frequency - Hz FIGURE 41 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ." INSTRUMENTS 2-276 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 100 k Tl051 , Tl051A ENHANCED JFET PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt TOTAL HARMONIC DISTORTION vs FREQUENCY UNITY-GAIN BANDWIDTH vs SUPPLY VOLTAGE 3.2 = ±15 V AVO = 1 Vo(rms) = 6 V TA = 25°e Vee + ;jI. I c 0 ~ is :t:! ::E --- - 3.1 I f.-- .J:. 0.1 :2 ~ c os m .!:! c 0 3 c E 1 ~ 2 •9 1a 0.01 = 10 mV = 2 kQ = 25 pF TA = 25°e Vi c ;§ :;:) RL eL I I Q rii ..,/ J: 2.8 t- See Figure 4 2.7 1k 10 k , - Frequency - Hz 100 k o 2 6 4 8 10 12 14 16 IVee ±I-Supply Voltage - V FIGURE 42 FIGURE 43 UNITY-GAIN BANDWIDTH vs FREE-AIR TEMPERATURE PHASE MARGIN vs SUPPLY VOLTAGE 65 N J: ~ 3r-~---+---+--~~~--+---r--1 -= :2 ...,~ ...c m c II !!! ...,5P I c . ..... 63 61 .~ 2r-~r--1---+---+--~--1---+--4 '0; C.jl ~ ::E , 59 .J:. / V'" 0- '2 :;:) = 10mV RL = 2 kn CL = 25 pF Vi I rii Vi = 10 mV I -1---+---+--~--1-~ RL = 2kQ E "'- = 57 CL 25 pF TA = 25°C See Figure 4 See Figure 4 O~~~~--~--~--~--~--~~ - 75 - 50 - 25 0 25 50 75 100 T A - Free-Air Temperature - °C 125 -- I- 55 o 2 4 6 8 10 12 14 16 IVce ±I- Supply Voltage - V FIGURE 44 FIGURE 45 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-277 Tl051 , Tl051A ENHANCED JFET PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt PHASE MARGIN vs LOAD CAPACITANCE PHASE MARGIN vs FREE-AIR TEMPERATURE 70 65 Vi = 10 mV ... ..,. 65 ~ 0> RL = 2 kQ " ,, , " " 60 .. ..... I'... I ...... J '" ""-'" ." I c ... ..,.. TA = 25°C See Figure 4 .... , I 0> I VCC± = ±15V c .. .... See Note 11 °Et 55 ::! VCC±=±5V ~ 50 0.. I E ~ 40 o 10 20 30 40 50 60 ..V .~ r-......... ~ .......... 70 80 90 .. / I E ~ 57 55 - 75 100 ..v V- RL = 2 kQ - 50 - 25 f\ '1 > .. 0> ±'a! VCC± = ±15V RL = 2 kQ '0 -4 > ;; 0.. ;; CL = 100 pF 0 -8 0 TA = 25°C See Figure 1 I > I I I 75 100 I 4 W !, '.J o vcc± = ±15V RL = 2 kQ CL = 100 pF 0 > -4 -6 -~ 1-- -8 0.2 0.4 0.6 0.8 1.0 \ \\I\r- TA = 25°C See Figure 1 -2 1.2 1/ o 2 3 t - Time - flS t-Time-f1s FIGURE 48 FIGURE 49 4 5 toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. NOTE 11: Values of phase margin below a load capacitance of 25 pF were estimated. TEXAS ~ INSTRUMENTS 2-278 125 I I 2 0 -12 -16 50 6 4 0 25 8 I ;; 0.. ;; 0 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 8 0 I VOL TAGE-FOLLOWER SMALL -SIGNAL PULSE RESPONSE I > I Vi = 10mV FIGURE 47 .~ 0> ~ FIGURE 46 12 .. VCC± = ±5V TA - Free-Air Temperature - °C 16 S f-- CL = 25 pF See Figure 4 CL - Load Capacitance - pF > E -- VCC± = ±15V :-- 59 0.. ....... 45 61 ::! '" " '"" r-......... 63 ~ POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 6 TL051 , TL051A ENHANCED JFET PRECISION OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA output characteristics All operating characteristics (except bandwidth and phase margin) are specified with 100-pF load capacitance. The TL051 and TL051 A will drive higher capacitive loads; however, as the load capacitance increases, the resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation. The value of the load capacitance at which oscillation occurs varies with production lots. If an application appears to be sensitive to oscillation due to load capacitance, adding a small resistance in series with the load should alleviate the problem. Capacitive loads of 1000 pF and larger may be driven if enough resistance is added in series with the output (see Figure 50). (a) CL = 100 pF, R = 0 (d) CL = 1000 pF, R = 0 (b) CL = 300 pF, R = 0 (e) CL 1000 pF, R (e) CL = 50 n (f) CL = 350 pF, R = 0 = 1000 pF, R = 2 kn FIGURE 50. EFFECT OF CAPACITIVE LOADS +5V -5V 2kn (see Note A) NOTE A: CL includes fixture capacitance. FIGURE 51. TEST CIRCUIT FOR OUTPUT CHARACTERISTICS TEXAS . " INSTRUMENTS POST OFFICE BOX 655303 • OALLAS. TEXAS 75265 2-279 TL051 , TL051A ENHANCED JFET PRECISION OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA input characteristics The TL051 and TL051A are specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfUnction. Because of the extremely high input impedance and resulting low bias current requirements, the TL051 and TL051 A are well suited for low-level signal processing; however, leakage currents on printed circuit boards and sockets can easily exceed bias current requirements and cause degradation in system performance. It is good practice to include guard rings around inputs (see Figure 52). These guards should be driven from a lowimpedance source at the same voltage level as the common-mode input. Vo Vo (a) NONINVERTING AMPLIFIER (b) INVERTING AMPLIFIER (e) UNITY-GAIN AMPLIFIER FIGURE 52. USE OF GUARD RINGS noise performance The nOise specifications in op amp circuits are greatly dependent on the current in the first-stage differential amplifier. The low input bias current requirements of the TL051 and TL051A result in a very low current noise. This feature makes the devices especially favorable over bipolar devices when using values of circuit impedance greater than 50 kQ. TEXAS ." INSTRUMENTS 2-280 POST OFFICE BOX 655303' DALLAS. TEXAS 75265 Tl051 , Tl051A ENHANCED JFET PRECISION OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA phase meter The phase meter in Figure 53 produces an output voltage of 10 mV per degree of phase delay between the two input signals VA and VB' The reference signal VA must be the same frequency as VB' The TLC3702 comparators (U1) convert these two input sine waves into ± 5-V square waves. Then R1 and R4 provide level shifting prior to the SN74HC109 dual J-K flip flop. Flip-flop U2B is connected as a toggle flip-flop and generates a square wave at half the frequency of VB' Flipflop U2A also produces a square wave at half the input frequency. The pulse duration of U2A varies from zero to half the period, where zero corresponds to zero phase delay between VA and VB and half the period corresponds to VB lagging VA by 360 degrees. ' The output pulse from U2A causes the TLC4066 (U3) switch to charge the TL051 (U4) integrator capacitors C1 and C2. As the phase delay approaches 360 degrees, the output of U2A approximates a square wave, and U4 has an output of almost 2.S V. US acts as a noninverting amplifier with a gain of 1.44 in order to scale the 0- to 2.S-V integrator output to a 0- to 3.6-V output range. R8 and R10 provide output gain and zero-level calibration. This circuit operates over a 100-Hz to 10-kHz frequency range. R2 100 lin R1 100 lin Vo R9 20kn RS NC Gain U28 50kn +5V R10 R4 100 kQ 10kQ Zero -5V NOTES: U 1 = TLC3702; VCC ± = ± 5 v. U2 = SN74HC109. U3 = TLC4066. U4,U5 = TL051; VCC± = ±5V. FIGURE 53. PHASE METER TEXAS ", INsrRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 2-281 TL051 , TL051A ENHANCED JFET PRECISION OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA precision constant-current source over temperature A precision current source benefits from the high input impedance and stability of Texas Instruments enhanced JFET process. A low-current shunt regulator maintains 2.5 V between the inverting input and the output of the TL051. The negative feedback then forces 2.5 V across the current setting resistor R; therefore, the current to the load is simply 2.5 V divided by A. Possible choices for the shunt regulator include the LT1 004, LT1009, and LM385. Note that if the regulator's cathode connects to the op amp output, this circuit will source load current. Similarly, if the cathode connects to the inverting input, the circuit will sink current from the load. To minimize output current change with temperature, R should be a metal film resistor with a low temperature coefficient. Also, this circuit must be operated with split voltage supplies. 150pF 150pF U2 U2 + 15V + 15V v= (a) SOURCE CURRENT LOAD (b) SINK CURRENT LOAD NOTES: U1 = TL051. U2 = LM385, LT1004, or LT1009 voltage reference. I = 2.~ V, R = Low temperature coefficient metal film resistor. FIGURE 54. PRECISION CONSTANT-CURRENT SOURCE TEXAS 2-282 .Jf INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TL052, TL052A ENHANCED JFET PRECISION DUAL OPERATIONAL AMPLIFIERS 03235. JUNE 1988 - REVISED FEBRUARY 1991 • MaxImum Offset Voltage ..• 800 J1V (TL052A) • HIgh Slew Rate •.• 17.8 V/J1S Typ at 25°C • Low Total HarmonIc DIstortIon ..• 0.003% Typ at RL = 2 k!l D, JG, or P PACKAGE (TOP VIEW) lOUT liN liN + VCC _ []8 2 7 3 6 4 5 • Low NoIse Voltage ... 19 nV/{Hz Typ at f = 1 kHz • Low Input BIas Currents .•• 30 pA Typ LPACKAGE (TOP VIEW) FK PACKAGE (TOP VIEW) I+ :::> VCC + 20UT 21N21N + 0 000 00 z_z>z I' NC liN NC liN + NC 3 2 1 20 19 1St 04 5 17 6 16 7 15 NC 20UT NC 21NPin 4 is in electrical contact with the case NC 14 S 9 10 11 12 13 o Z 10 + 0 OZ Z Z o > - '" NC - No internal connection description The TL052 and TL052A dual operational amplifiers incorporate well-matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit. These devices offer the significant advantages of Texas Instruments new enhanced JFET process. This process affords not only low initial offset voltage due to the on-chip zener trim capability but also stable offset voltage over time and temperature. In comparison, traditional JFET processes are plagued by significant offset voltage drift. This new enhanced process still maintains the traditional JFET advantages of fast slew rates and low input bias and offset currents. These advantages coupled with low noise and low harmonic distortion make the TL052 well-suited for new state-of-the-art designs as well as existing design upgrades. The TL052 has been DISTRIBUTION OF TL052A INPUT OFFSET VOLTAGE 20~--~---r---'----~--~---' 403 Amplifiers AVAILABLE OPTIONS PACKAGE TA VIOmax SMALLAT 25°C OUTLINE (Dl CHIP CARRIER (FKI - CERAMIC DIP (JGI METAL CAN (Ll PLASTIC DIP (PI - O°C TL052ACP 800 ILV TL052ACD to TL052CP 70°C 1500 ILV TL052CD -40°C 800 ILV TL052AID TL052AIP to TL0521P 85°0 1500 ILV TL0521D -55°0 800 ILV TL052AMD TL052AMFK TL052AMJG TL052AML TL052AMP to TL052ML TL052MP 125°C 1500 ILV TL052MD TL052MFK TL052MJG o packages are available taped and reeled. Add "R" suffix to device type, (e.g., TL052CDR). - - ;J!. ; 15 f~!'f:~~:~t:.~t:;r.~rwC::'~~ ~ ;~:::~~T:~n;:::~=:~m=:!!-:~ necllsarlly include testing of III paramlters. TEXAS = !!E D. E IN + + OUT TEXAS . " 2-284 INSfRUMENTS POST OFFICE BOX 655303· DALLAS. TEXAS 75265 02 TL052, TL052A ENHANCED JFET PRECISION DUAL OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, VCC + (see Note 1) ..................................................... 18 V Supply voltage, VCC:'" (see Note 1) .................................................... -18 V Differential input voltage (see Note 2) ................................................... ± 30 V Input voltage range, VI (any input, see Notes 1 and 3) ...................................... ± 15 V Input current, II (each input) .......................................................... ± 1 mA Output current, 10 (each output) ..................................................... ± 80 mA Total current into VCC + terminal ..................................................... 160 mA Total current out of VCC _ terminal ................................................... 160 mA Duration of short-circuit current at (or below) 25°C (see Note 4) ............................ unlimited Continuous total dissipation ........................................ See Dissipation Rating Table Operating free-air temperature range, T A: C-suffix ................................... O°C to 70°C I-suffix ................................ - 40°C to 85°C M-suffix ............................... - 55°C to 125°C Storage temperature range ................................................... - 65°C to 150°C Case temperature for 60 seconds: FKpackage ........................................... 260°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package ................. 260°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG or L package ................ 300°C NOTES: 1. 2. 3. 4. All voltage values, except differential voltages, are with respect to the midpoint between VCC + and Vcc _ . Differential voltages are at the noninverting input with respect to the inverting input. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TA ,,;25°C POWER RATING 0 FK 725mW 1375mW JG L p DERATING FACTOR ABOVE TA = 25°C 5.8 mW/oC TA=70oC POWER RATING TA=85"C POWER RATING TA = 125°C POWER RATING 464mW 377mW 145mW 11.0 mW/oC 880mW 715mW 275mW 1050 mW 8.4 mW/oC 672mW 546mW 210mW 825mW 1000mW 6.6 mW/oC 8.0 mW/oC 528mW 429mW 640mW 520mW 165mW 200mW recommended operating conditions C-SUFFIX I-SUFFIX MIN NOM MAX Supply voltage, VCC Common-mode input voltage, VIC Operating free-air temperature, TA I VCC+ = ±5V IVcc+=±15V M-SUFFIX MIN NOM MAX MIN NOM MAX ±5 -1 ±15 4 ±5 -1 ±15 4 ±5 -1 ±15 4 -11 11 -11 11 -11 11 0 70 -40 85 -55 125 UNIT V V °C TEXAS . " INSTRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2-285 Tl052C, Tl052AC ENHANCED JFET PRECISION DUAL OPERATIONAL AMPLIFIERS electrical characteristics PARAMETER TEST CONDITIONS TL052C VIO Input offset voltage TL052AC = 0, VIC = 0, RS = 500 Vo aVIO Temperature coefficient of input offset voltage (see Note 9) TL052C TL052AC Input offset voltage long-term drift (see Note 5) 110 liB TAt 25°C Full range 25°C = VCC± ±5V MIN TYP MAX 0.73 3.5 4.5 2.8 0.51 Full range Va = 0, VIC See Figure 5 = 0, Input bias current Vo = 0, VIC See Figure 5 = 0, 70°C 25°C to 70°C Maximum positive peak VOM+ output voltage swing Maximum negative peak VOM- output voltage swing Large-signal differential AVD voltage amplification 6 0.04 0.04 4 25°C 20 100 1 200. 0.15 4 70°C -2.3 -11 nA 200 pA 0.2 4 nA -12.3 to to 11 15.6 to 4 3 11 13 4.2 RL = 2kO 25°C Full range 2.5 2.5 3.8 = 10ka 25°C Full range -2.5 -3.5 = 2 ka 25°C -2.3 Full range -2.3 3 13.9 13 11.5 11.5 -12 -13.2 -2.5 -12 -3.2 -11 -11 25°C 25 59 50 105 O°C 30 65 60 129 70°C 20 46 30 85 Input resistance 25°C 1012 1012 Input capacitance 25°C 10 12 CMRR Common-mode rejection ratio kSVR ICC Supply-voltage RS VCC± = ±5Vto±15V, rejection ratio Va = 0, (AVCC+/AVIO) RS = SOO Supply current No load, (four amplifiers) Va Vol iV02 Crosstalk attenuation t Full range IS O°C to 70°C. =0 AVD = 100 V -12 fj = ViCR min, = 0, = ,SO 0 V 12.7 Ci VIC Vo V -11 to pA 30 to 25°C Full range RL = 2kO, See Note 6 flV/ mo 1 5.6 = 10ka RL 25 100 4 RL RL mV 5 0.025 to -1 Full range UNIT 1.8 8 0.02 voltage range 0.8 8 70°C 25°C 0.4 8 25°C Common-mode input MAX 1.5 2.5 fl Vl o C -1 VICR = ±15V TYP 0.65 3.8 25°C to 25°C Input offset current VCC± MIN 25°C 65 85 75 93 O°C 70°C 65 84 75 92 65 84 75 91 25°C 75 99 75 99 O°C 75 98 98 70°C 75 97 75 75 VlmV 0 pF dB dB 97 25°C 4.6 4.7 5.6 6.4 4.8 4.8 5.6 O°C 70°C 4.4 6.4 4.6 6.4 25°C 120 120 6.4 mA dB NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 6. ForVCC± = ±5V, Vo = ±2.3V;atVcc± = ±15V, Vo = ±10V. 9. This parameter is tested on a sample basis for the TL052A. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters. TEXAS ~ INSTRUMENTS 2-286 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TL052C, TL052AC ENHANCED JFET PRECISION DUAL OPERATIONAL AMPLIFIERS operating characteristics PARAMETER SR + SR- tr TAt TEST CONDITIONS 25°C DoC Positive slew rate at unity gain RL = 2kn, Negative slew rate eL = 100 pF, See Figure 1 and Note 7 70°C 25°C DoC at unity gain 70°C 25°C DoC Rise time VIPP = ± 10 mV, tl Vn Fall time THO B1 !Pm 54 VCC ± = ±15 V MIN 13 11 11 13 11 11 TYP 20.7 20.9 20.8 17.8 18.5 16.5 56 63 63 25°C DoC 55 57 54 56 70°C 62 24% 64 19% Overshoot lactor 24% 19% 24% 19% Equivalent input noise 70°C 25°C 71 71 25°C 19 19 25°C 4 4 25°C 0.01 0.01 25°C 0.003% 0.003% 25°C ooe 3 3.2 3 3.2 70°C 2.6 2.7 25°C DoC 60 0 63° 59° 63° 70°C 60° 63° Equivalent input noise current Total harmonic distortion Unity-gain bandwidth RS = lOOn, See Figure 3 1= 10 Hz I = 1 kHz 1= 10 Hz to 10 kHz 1 = 1 kHz RS = 1 kn, 1 = 1 kHz, RL = 2kn, See Note 8 Vi = 10 mV, RL = 2 kn, eL = 25 pF, See Figure 4 Phase margin Vi = 10 mV, RL = 2 kn, at unity gain eL = 25 pF, See Figure 4 MAX UNIT V/JJ.s 55 70°C 25°C DoC voltage (see Note 10) Peak-to-peak equivalent VNPP input noise voltage In RL = 2kn, eL = 100 pF, See Figures 1 and 2 VCC±=±5V MIN TYP MAX 17.8 18.5 16.5 15.4 15.7 14.7 55 ns 30 nVl,jHz JJ.V pA/,jHz MHz t Full range is DoC to 70°C. NOTES: 7. ForVee± = ±5 V, VIPP = ± 1 V; lor Vee ± = ± 15 V, VIPP = ±5 V. 8. ForVec± = ±5V, Vo(rms) = 1 V;lorVee± = ±15V, Vo(rms) = 6V. 10. This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting 01 other parameters. TEXAS ." INSTRUMENTS POST OFFICE BOX 655303· DALLAS, TEXAS 75265 2-287 Tl0521, Tl052AI ENHANCED JFET PRECISION DUAL OPERATIONAL AMPLIFIERS electrical characteristics PARAMETER VIO TEST CONDITIONS TL0521 25°C Full range TL052AI 25°C Full range Input offset voltage Vo = 0, Temperature coefficient "Via of input offset voltage (see Note 9) VIC = 0, RS = 50n TAt TL0521 TL052AI Input offset voltage long-term drift (see Note 5) VCC± = ±5V MIN TYP MAX 0.73 3.5 5.3 0.51 2.8 4.6 25°C to VCC± = ±15V MIN TYP MAX 0.65 1.5 3.3 0.4 0.8 2.6 7 6 6 6 25°C 0.04 0.04 85°C UNIT mV ",Vloe 25°C to 85°C 25 ",Vlmo 110 Input offset current Va = 0, VIC = 0, See Figure 5 25°C 85°C 4 100 5 100 pA 0.06 10 0.07 liB Input bias current Va = 0, VIC = 0, See Figure 5 25°C 20 200 20 30 0.7 10 200 nA pA 20 nA 85°C -1 25°C Common-mode input VICR voltage range Maximum positive peak output voltage swing Maximum negative peak VOM- output voltage swing Large-signal differential AVO voltage amplification -11 RL = 10 lin 25°C Full range RL = 2kn 25°C Full range RL = 1011n RL = 2kn RL = 2kn, See Note 6 -12.3 to to to to 4 5.6 11 -11 15.6 -1 Full range VOM+ 0.6 -2.3 to 4 3 to 11 4.2 13 11.5 3.8 2.5 25°C -2.5 Full range -2.5 25°C -2.3 Full range -2.3 13.9 13 3 2.5 11.5 -3.5 -12 -13.2 -12 -3.2 -11 -11 25°C -40°C 25 30 59 74 50 60 105 145 85°C 20 43 30 76 Input resistance 25°C 1012 1012 Input capacitance 25°C 10 12 kSVR ICC Vo l IV02 Common-mode VIC = VICR min, Va = 0, RS = 50n Supply-voltage VCC± = ±5VIo±15V, rejection ratio Va = 0, (tN CC ± UNIO) RS = 50n Supply current (four amplifiers) No load, Va = 0 Crosstalk attenuation AVO = 100 V -12 Ci rejection ratio V 12.7 ri CMRR V 25°C 65 85 75 93 -40°C 85°C 65 83 75 90 65 84 75 93 25°C 75 99 75 99 -40°C 75 98 75 98 85°C 75 99 75 99 VlmV n pF dB dB 4.6 5.6 4.8 5.6 6.4 85°C 4.5 4.4 4.7 4.6 6.4 6.4 25°C 120 25°C -40°C 6.4 120 rnA dB t Full range is - 40°C to 85°C. NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 6. ForVCC± = ±5V,VO = ±2.3V:atVcc± = ±15V.VO = ±10V. 9. This parameter is tested on a sample basis for the TL052A. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters. TEXAS ~ INSTRUMENTS 2-288 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TL0521, TL052AI ENHANCED JFET PRECISION DUAL OPERATIONAL AMPLIFIERS operating characteristics PARAMETER SR+ SR- Positive slew rate at unity gain Negative slew rate at unity gain tr Rise time tf Fall time TAt TEST CONDITIONS 25°e -40 0 e RL = 2kQ, eL = 100 pF, See Figure 1 and Note 7 85°e 25°e -400 e VIPP = ± 10 mY, RL = 2kO, eL = 100 pF, See Figures 1 and 2 Equivalent input noise voltage (see Note 10) Peak-to-peak equivalent VNPP input noise voltage Equivalent input In noise current 52 64 55 51 64 24% 24% 24% 71 = VCC± ±15 V MIN TVP MAX 13 20.7 11 20.6 11 20.7 13 17.8 11 17.8 11 17.2 56 53 65 57 53 19 65 19% 19% 19% 71 19 25°e 4 4 f = 1 kHz 25°e 0.01 0.01 25°e 0.003% 0.003% 25°e -40 0 e 85°e 25°e -400 e 85°e 3 3.5 2.5 60° 58° 60° 3 3.6 2.6 63° 61° Overshoot lactor Vn 85°e 25°e -400 e 85°e 25°e -40 0 e 85°e 25°e -40 0 e 85°e 25°e 25°e = VCC± ±5V MIN TVP MAX 17.8 18.8 16 15.4 16 14.5 55 RS = 1000, See Figure 3 1= 10 Hz I = 1 kHz 1= 10 Hz to 10 kHz THO Total harmonic distortion RS = 1 kQ, RL = 2kQ, See Note 8 I = 1 kHz, 81 Unity-gain bandwidth Vi = 10 mY, RL = 2 kQ, eL = 25 pF, See Figure 4 4>m Phase margin at unity gain Vi = 10 mY, RL = 2 kQ, eL = 25 pF, See Figure 4 30 UNIT V/Jls ns nV/fHz JlV pAlfHz MHz 63° t Full range is - 40 0 e to 85°e. NOTES: 7. For Vee ± = ± 5 V, VIPP = ± 1 V; for Vee ± = ± 15 V, VIPP = ± 5 V. 8. For Vee ± = ± 5 V, Vo(rms) = 1 V; lor Vee ± = ± 1(; V, Vo(rms) = 6 V. 10. This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters. TEXAS ~ INsrRUMENTS POST OFFICE BOX 655303· DALLAS, TEXAS 75265 2-289 IL052M, IL052AM ENHANCED JFET PRECISION DUAL OPERATIONAL AMPLIFIERS electrical characteristiCs PARAMETER Via TEST CONDITIONS TL052M 25°C Full range TL052AM 25°C Full range Input offset voltage Va = 0, aVIO Temperature coefficient of input offset voltage VIC = 0, RS = 500 TAt TL052M TL052AM Input offset voltage long-term drift (see Note 5) 110 Input offset current Va = 0, VIC = 0, See Figure 5 lIB Input bias current Va = 0, VIC = 0, See Figure 5 = :1:5 V VCC:I: TYP MAX MIN 0.73 3.5 6.5 0.51 2.8 5.8 25°C to 125°C 25°C to 125°C 9 9 8 25°C 0.04 0.04 25°C 125°C 25°C 125°C 4 1 20 10 -2.3 to 5.6 VOM+ VOM- AVO ri Ci CMRR kSVR Maximum positive peak output voltage swing to Full range 4 -1 to 4 3 Maximum negative peak output voltage swing Large-signal differential voltage amplification RL=10kn 25°C Full range RL = 2kO 25°C Full range RL = 10kn 25°C Full range 25°C Full range 25°C -55°C 125"C RL = 2kn. RL = 2 kn, See Note 6 Input resistance Input capacitance Common-mode rejection ratio Supply-voltage rejection ratio (6.Vcc±I6.VIOl 3 2.5 2.5 -2.5 -2.5 -2.3 -2.3 25 30 10 25°C 25°C VIC = VICR min, Va = 0, RS = 500 VCC ± = ± 5 V to ± 15 V, Va = 0, RS = 500 Supply current (four amplifiers) No load, ICC Vol N 02 Crosstalk attenuation AVO = 100 Va = 0 25°C _55°C 65 65 65 75 75 125°C 75 25°C -55°C 125°C mV jJ.VloC 25°C Common-mode input voltage range UNIT 3.8 10 -1 VICR = VCC:l: ±15V MIN TYP MAX 0.65 1.5 4.5 0.4 0.8 25°C -55°C 125°C 25°C 100 20 200 50 4.2 3.8 -3.5 -3.2 -11 -11 50 60 15 59 76 32 1012 10 85 83 84 99 98 100 4.6 4.4 4.2 120 5 2 30 20 -11 -12.3 to to 11 15.6 -11 to 11 13 13.9 13 11.5 12.7 11.5 -12 -13.2 -12 75 75 75 75 75 75 5.6 6.4 6.4 jJ.V/mo 100 20 pA nA 200 50 pA nA V V V -12 105 149 49 V/mV 1012 12 93 92 94 99 98 100 4.8 4.5 4.4 120 0 pF dB dB 5.6 6.4 6.4 rnA dB t Full range is - 55°C to 125°C. NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test atTA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 6. ForVCC± = ±5V,VO = ±2.3V;atVcc± = ±15V,VO = ±10V. TEXAS ~ INSTRUMENTS 2-290 POST OFFICE BOX 655303· DALLAS, TEXAS 75265 TL052M, TL052AM ENHANCED JFET PRECISION DUAL OPERATIONAL AMPLIFIERS operating characteristics PARAMETER SR+ SR- Ir II Positive slew rate al unity gain Negative slew rale al unity gain TAt TEST CONDITIONS 25°C _55°C RL = 21<0, eL = 100pF, See Figure 1 and Nole 7 125°C 25°e -55°C 125°e 25°e _55°e Rise time Fall time 125°e 25°e _55°e V,PP = ± 10 mY, RL = 21<0, eL = 100 pF, See Figures 1 and 2 25°e 4 4 I = 1 kHz 25°e 0.01 0.01 25°C 0.003% 0.003% 25°C -55°e 125°e 25°C -55°e 125°e 3 3.6 2.3 60° 57° 60° 3 3.7 I = 10 Hz I = 1 kHz , = 10Hzlo 10kHz Total harmonic dislortion RS=ll----Vo t r - RISE TIME NOTE A: CL includes fixture capacitance. Figure 1. Slew Rate, Rise/Fall Time, and Overshoot Test Circuit Figure 2. Rise Time and Overshoot Waveform 10kn 10kO VI 1000 Vo VeeRS RS NOTE A: CL includes fixture capacitance. Figure 4. Unity-Gain Bandwidth and Phase Margin Test Circuit Figure 3. Noise Voltage Test Circuit typical values Typical values as presented in this data sheet represent the median (50% point) of device parametric performance. GROUND SHIELD input bias and offset current At the picoamp-bias-current level typical of the TL052 and TL052A, accurate measurement of the bias current becomes difficult. Not only does this Figure 5. Input Bias and Offset Current Test measurement require a picoammeter, but test Circuit socket leakages can easily exceed the actual device bias currents. To accurately measure these small currents, Texas Instruments uses a two-step process. The socket leakage is measured using picoammeters with bias voltages applied, but with no device in the socket. The device is then inserted in the socket and a second test that measures both the socket leakage and the device input bias current is performed. The two measurements are then subtracted algebraically to determine the bias current of the device. noise Because of the increasing emphasis on low noise levels in many of today's applications, the input noise voltage density is sample-tested at f = 1 kHz. Texas Instruments also has additional noise testing capability to meet specific application requirements. Please contact the factory for details. TEXAS ~ INSTRUMENTS 2-292 POST OFFICE BOX 655303' DALLAS. TEXAS 75265 TL052, TL052A ENHANCED JFET PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS table of graphs FIGURE 110 Input offset voltage Temperature coefficient of input offset voltage Input offset current liB Input bias current VI Input voltage range Vo Output voltage VIO (lVIO Distribution Distribution VOM Maximum peak output voltage swing AVD Differential voltage amplification Zo Output impedance CMRR Common-mode rejection ratio kSVR Supply-voltage rejection ratio lOS Short-circuit output current ICC Supply current SR Slew rate Vn THD Overshoot factor Equivalent input noise voltage Total harmonic distortion Bl Unity-gain bandwidth ¢m Phase margin Phase shift Pulse response vs Temperature vs VIC vs Temperature vs VCC vs Temperature vs Differential input voltage vs VCC vs Output current vs Frequency vs Temperature vs RL vs Frequency vs Temperature vs Frequency vs Frequency vs Temperature vs Temperature vs VCC vs Time vs Temperature vs VCC vs Temperature vs RL vs Temperature vs CL vs Frequency vs Frequency vs VCC vs Temperature vs VCC vs CL vs Temperature vs Frequency Small-signal Large-signal 6 7 8 9 8 10 11 12,13 14 18,19 15,16,17 20,21 22 23 24, 25 29 26, 27 28 30 31 32 33 34 35 36,37 38,39 40 41 42 43 44 45 46 47 23 48 49 TEXAS ~ INsrRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2-293 Tl052, .TL052A ENHANCED JFET PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt DISTRIBUTION OF TL052 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT DISTRIBUTION OF TL052 INPUT OFFSET VOLTAGE 20r---~--~----~--~----~--~ 172 Ampll-flers tested from 2 12 ;II. I ~ P Package f! :eis. E ~ 91--l--t-+ is. ~ '0 N' 61---+--+- c J 2 31-+--+ o -1.5 -0.9 -0.3 0 0.3 0.9 VIO -Input Offset Voltage - mV c I !l 10 c Figure 7 INPUT BIAS CURRENT AND INPUT OFFSET CURRENT vs FREE-AIR TEMPERATURE INPUT BIAS CURRENT vs COMMON-MODE INPUT VOLTAGE VCC±=±15V TA = 25°C /' = liB Gi /' -0 110 0 J! (5 C ./ 0.1 30 10 VCC+ = ±15 V Vo = 0 VIC 0 ~ as -20 -10 10 o 20 aVIO - Temperature Coefficient -IJ.V/oC -30 Figure 6 I!! ... ii:i 5l----j-..."","" o~- 1.5 100 CC 101----1-- .. '0 ~ 15 f! cc .. N' VCC±=±15V TA = 25°C to 125°C P Package One unit at - 34.6 IJ.V/oC ccc 5 I ./ C ~ .'" 0 as .-/ 0 V ii:i /' ;; c- .5 I I g. 0.01 -0 c as ~ -5 .,,/' ~ 0.001 25 45 65 85 105 TA - Free-Air Temperature - °c 125 -10 -15 -10 -5 o 5 10 VIC - Common-Mode Input Voltage - V Figure 9 FigureS tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSfRUMENTS 2-294 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 15 TL052, TL052A ENHANCED JFET PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt COMMON-MODE INPUT VOLTAGE RANGE LIMITS vs SUPPLY VOLTAGE 16 TA = 25°C > 12 /'" II> !! '" 8 '5Q. 4 ~ . "8 / 'V 20 ,/' V ./ COMMON-MODE INPUT VOLTAGE RANGE LIM ITS vs FREE-AIR TEMPERATURE Vee ± = ±15 V > POSITIVE LIMIT 0 E E 0 0 S '0 10 '5Q. .5 5 "8 :;: 0 > .. 0 I I I NEGATIVE LIMIT ......... -4 .......... -8 I 0 :> -12 POSITIVE LIMIT II '" .5 :;:c 15 " c 0 E E (3 .......... -5 -10 I I'-....... ... 0 :> -15 NEGATIVE LIMIT -16 o 2 4 6 8 10 12 IVee ±I- Supply Voltage - V 14 -20 -75 16 Figure 11 OUTPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE OUTPUT VOLTAGE vs DIFFERENTIAL INPUT V9LTAGE ~ 3 I \~ 2 0 I 0 > 0 -5 -200 I '" = = = = 600n 1 kn 2 kn 10kQ ~~ 5 ~ 0 > '5 ~ -1 RL -2 RL -3 RL RL -4 , ~ > II> Vee±=±15V TA = 250C ,I 10 I"~ '" S '0 > '5 Q. '5 125 15 Vee± = ±5V TA = 25°C 4 .. -25 0 25 50 75 100 TA - Free-Air Temperature - °e Figure 10 5 > -50 ~ 0 - r-........... I'.. - ~ -100 o 100 VID - Dilferentlallnput Voltage -l1v 200 I 0 > 0 RL = 600n-5 I - - r- RL = 1 k n RL = 2kn -10 r--- ~I'-....... >- ~"r "1"'- ~ -15 -400 Figure 12 V"'- ""'--- - I-- r-......... o 200 -200 VID - Dilferentlallnput Voltage -I1V - 400 Figure 13 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS . " INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-295 TL052, TL052A ENHANCED JFET PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt MAXIMUM PEAK OUTPUT VOLTAGE vs SUPPLY VOLTAGE FREQUENCY 16 ..... 12 S ~ 8 -S. ::I o 0 § -4 ~ ~ E ~ :E ~-12 > o ~ I ~ r--... 1111111 I \ TA = -55"C V\ VCC± = ±5V 5 I a.. a.. o > I' 14 I 10 ~ ~ =1" TA = 125°e 16 " 0 10 k ~ 100 k 1M f - Frequency - Hz 10M MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE 30 vs vs FREQUENCY FREQUENCY > 111111111 25 ig 15 = \ \ .ole Vee± = ±5V E 30 I RL ~:; TA ~ ...0 5 ~ o g ~ E ::I E .. 1\ :E I 100 k 1M f - Frequency - Hz 0 > 10M VCC± = ±15V 1\ 10 ~ 5 Vee ± a.. a.. ~~ = 10 kO = 25"C \ 15 .ole III a.. a.. 10 k 1\ 20 III -=I 1\ 25 III ~ \ 10 ::I ..... RL = 2kO TA 25"C Vee± = ±15V 20 :E 15 , 1\ Figure 15 ad E i E VOM_ I 4 6 8 10 12 IVee ±I- Supply Voltage - V :; ~ 20 RL = 2 kO Figure 14 I t 2 10kO~ 25 ~ i . ~kO RL = I V~~ 1~IJllt i ~=12kO -8 I -16 j b .... 30 I RL~1~ V 4 ... > VO~+ / ~ TA = 25°e ::;- MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs o 10 k Figure 16 = ±5 V 1\ JIll ~ 100 k 1M f - Frequency - Hz - Figure 17 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ", INSTRUMENTS 2-296 POST OFFICE BOX 655303' OALLAS, TEXAS 75265 10M Tl052, Tl052A ENHANCED JFET PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt MAXIMUM PEAK OUTPUT VOLTAGE MAXIMUM PEAK OUTPUT VOLTAGE vs vs OUTPUT CURRENT OUTPUT CURRENT 16 5 VCC± = ±5V RL = 10 kQ TA = 25°C > ., I '" !'!! 4 .... 0 > '5Do '5 i'-... 3 0 .,.. .>t. ~ '" ""'- ~ "\ B- E E :0 2 > . "K I ~ 8 :0 6 I~OM. 4 E E . "K ::E "'-, 12 8 12 :0 ", " > o o 10 > '5 'r-... '\ " "- ~ 0 a- ...0 !'!! VOM~ ::E ., '" "0 14 I 16 1101 - Output Current - mA VCC±=±15V RL = 10kQ TA = 25°C ~ l'-.. ""'- ~ r---.. ~ ~OM+ " VO~ "'- ~ ~ 0 > '" 2 1\ o o 20 10 vs FREE-AIR TEMPERATURE FREE-AIR TEMPERATURE 16 ~ '5 > I . RL = 2kn 12 8, ~ 2 4 0 ~ 0 E -1 E "K -2 § -4 ':::E -8 :0 0 ~ :0 . I ::;; 0 > E YOM - RL = 2 kQ -3 ::E RL = 10kn -5 I I 50 75 -75 -50 -25 0 25 VCC±=±15V I -4 RL = 2 kn o VCC± = ±5V ::E V~M + 8 '5 Do '5 a- .>t. 50 RL = 10kQ RL = 10 kQ 4 3 '" MAXIMUM PEAK OUTPUT VOLTAGE vs YOM + I 40 Figure 19 5 ., '" 30 20 1101 - Output Current - mA MAXIMUM PEAK OUTPUT VOLTAGE !'!! " ""\ 1\ I Figure 18 > "\ 4 YOM - RL = 2 kQ ~-12 RL = 10kn 100 125 -16 -75 -50 T A - Free-Air Temperature - °C -25 0 25 50 75 100 125 T A - Free-Air Temperature - °C Figure 20 Figure 21 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices" TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303" DALLAS" TEXAS 75265 2-297 TL052, TL052A ENHANCED JFET PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY LARGE-SIGNAL VOLTAGE AMPLIFICATION vs LOAD RESISTANCE 250 ~ I c j =a.e « Vo = ±1 V TA = 25"C ""- ""- 200 vcc± I-- 150 1 > 100 / ii i 50 / Vcc± = ±15V RL = 2kn O· CL = 25pF TA = 25·C 30· ....... = ±15V ,.... \ V~ " 1--"-- 60· "- "'- ...... VCC±=±5V ~ "-~VD :. PHASE SHIFT " - r......... 0.4 10 40 RL - Load Resistance - kn 0.1 10 100 4 "\ 180· 10 M LARGE-SIGNAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE LARGE-SIGNAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE 1000 > VCC±=±5V Vo ±2.3V e I I c 400 j RL = 10kn 100 ~ RL = 2kn - - ---- 40 is I ~. a. r-- '- -...... r-.. I'--.. -I--- ! I--- 100 RL = 2kn '- ~ i ........ ii r-.. 10 -75 -50 -25 0 25 50 75 100 TA - Free-Air Temperature _·C - RL = 10kn :I. -.... ii = c 400 ia =a. = VCC± ±15V Vo ±10V e :> = :> 1 1M Figure 23 1000 S 1k 10 k 100 k f - Frequency - Hz 150· Figure 22 > e « :I. 100 120· ""- r.........\ I o 90· .c a.. \ Q ~ 40 I ~ 125 10 -75 -50 -25 0 25 50 75 100 T A - Free-Air Temperature _·C Figure 25 Figure 24 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ." INSTRUMENTS 2-298 POST OFFICE BOX 655303 • DAllAS. TEXAS 75265 4: :c til 125 TLD52, TLD52A ENHANCED JFET PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt COMMON-MODE REJECTION RATIO COMMON-MODE REJECTION RATIO vs vs FREQUENCY FREQUENCY 100 III "CI I 0 li a: c 70 Qj 60 III ." 50 '" a: 0 ~0 E E YCC± = ±5Y TA = 250C , 80 0 13III 100 90 r\. \ \ 10 (,) == . 80 0 c 70 Qj 60 "8 III 50 C 0 E E 40 ::IE \ 30 ::IE \ 8I a: a: ::IE (,) 100 1k 10 k 100 k f - Frequency - Hz 1M ~ c g '\ '\ \ 20 10 10 100 1k 10 k 100 k f - Frequency - Hz 1M COMMON-MODE REJECTION RATIO OUTPUT IMPEDANCE vs vs FREE-AIR TEMPERATURE FREQUENCY 10 M 100 YIC = YICRmln I 95 / Ycc± = ±15Y a I 8 90 .. c l i ,'" Figure 27 "CI .g I'"'\ 30 10 M 100 I '\ Figure 26 III .~ YCC± = ±15Y TA = 250C o o 10 90 a: 0 20 I 0 ==g 40 I "CI a: (,) a: a: III 85 ~ ~ E 80 r::a: 75 10 / / I -,...- 1 :; / / / / / / I AyO = 1 o N ./ L ~ 70 -75 -50 / / AyO = 10 o 8 / / / .5 YCC±=±5Y AyO = 100/ - YCC± = ±15 Y TA = 25°C r 0 (open loop) ~ 250 n 0.1 -25 0 25 50 75 100 TA - Free-Air Temperature - °c 125 1k Figure 28 10 k 100 k f - Frequency - Hz 1M Figure 29 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS 4 INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-299 Tl052, Tl052A ENHANCED JFET PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt SUPPLV-VOLTAGE REJECTION RATIO SHORT-CIRCUIT OUTPUT CURRENT vs vs FREE-AIR TEMPERATURE SUPPLV VOLTAGE 110.--....,r----r--r-..,..--,--..,---r---, 60 Vee ± = ± 5 V to ± 15 V III '1:1 I ct .g 106 J----1f---t--+--j---t---/--+---I ~ c .g E I C ~ <1 1.. ! Vo = 0 TA = 25°C 40 ..... , 20 .....- l- / ' VVIO= 100mV 102 --- g' 98 ii §- ~ VIO = - 94~~f---4--+-~-~-4--+-~ r;;;v--- r-- IX: > Jf 90~-~~--~--~--~--~--~~ -75 -50 -25 0 25 50 75 100 TA - Free-Air Temperature - °e -60 125 o 2 4 ~ <1 o vs TIME FREE-AIR TEMPERATURE Vcc±= ±15V r--- r-- -,----L ct E 40 I J i:; o 0 I I vec+ = ±5V 20 I I 0 ~ ~ 1! VI -20 o .c VIO = -100mV VI :n-40 o 10 20 30 40 Time - Seconds 50 Vec±=±5V -20 :n-40 Vee± = ±15V TA = 25°e .9 -60 .9 -I--- I 60 I I I I - vce± = ±15V Vo = 0 I I 1 -60 -75 -50 -25 0 25 50 75 100 TA - Free-Air Temperature - °c Figure 32 Figure 33 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSIRUMENTS 2-300 16 60 ~ ~ 14 SHORT-CIRCUIT OUTPUT CURRENT vs 20 :; Q. :; 12 SHORT-CIRCUIT OUTPUT CURRENT 40 I 10 Figure 31 VID = 100 mV E 8 Figure 30 60 ct 6 IVee ±I- Supply Voltage - V POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 125 TL052, TL052A ENHANCED JFET PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt SUPPLY CURRENT SUPPLY CURRENT vs FREE-AIR TEMPERATURE vs SUPPLY VOLTAGE 5 5 E I ~ :; 3 E I TA = 125°C_ (.) ::> til I C ~ ::> 3 VCC±=±15V vcc± = ±5 V (.) a ~ a. a. R c( I'-TA= _55°C F:::::: F:::: ~ I\. 4 1'- TA = 25°C "\f\- c( C ~ ""- 4 a. 2 ::> til 2 I (.) (.) .9 .9 o o Vo = 0 No Load J 4 2 6 8 10 12 IVcc ±I- Supply Voltage - V 14 Vo = 0 No Load o 16 -75 -50 -25 0 25 50 75 100 TA - Free-Air Temperature - °c Figure 34 Figure 35 SLEW RATE SLEW RATE vs vs LOAD RESISTANCE LOAD RESISTANCE 25 125 25 SR+ 20 '" ~ I ! II: ~ iii I II: V 15 SR+ , 20 ~ r.-- I i-"'" ! II: .Itil 10 I II: til V r.--rV '" ~ > SR- V ~ SR 15 10 til Vcc± = ±5V CL = 100 pF TA = 25°C See Figure 1 5 0 0.4 4 10 50 RL - Load Resistance - kf! VCC±=±15V cL = 100 pF TA = 25°C See Figure 1 5 100 0 0.4 Figure 36 I 1-"" 40 10 RL - Load Resistance - kf! 4 100 Figure 37 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS • INSfRUMENTS POST OFFICE BOX 655303· DALLAS. TEXAS 75265 2-301 Tl052, Tl052A .', ENHANCED JFET PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt SLEW RATE vs FREE-AIR TEMPERATURE SLEW RATE vs FREE-AIR TEMPERATURE 25 25 SR+ 20 t I .. S 15 CC - r-r-- - SR+ SR- ~ £I -- 20 ~ r---: 15 cc .. ~ iii 10 10 I cc CC III III 5 o -75 VCC±=±5V RL = 2k.Q CL = 100 pF See Figure 1 I I -50 -25 0 25 50 75 100 125 TA - Free-Air Temperature - °C VCC± = ±15V RL = 2 k.Q CL = 100 pF See Figure 1 5 I o -75 EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY 100 :>c 70 I ." CI "lI 50 > 40 "0 30 z= 'SQ. u. '00 .. S VCC± = ±15V Rs = loon TA = 25°C See Figure 3 1\ OIl I! 125 OVERSHOOT FACTOR vs LOAD CAPACITANCE 40 .c I -25 0 25 50 75 100 T A - Free-Air Temperature - °C Figure 39 ~ [;l -50 Figure 38 50 g - SR- I SIII \ \ '0 20 30 i'.~ .E' C 5 .!! !l! 20 'S 10~--~+---~--~--- 0- W I C > o~--~--~--~~--~--~--~ o 50 100 150 200 250 300 CL - Load Capacitance - pF 10 10 100 1k 10 k f - Frequency - Hz Figure 40 Figure 41 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS + INSTRUMENTS 2-302 POST OFFICE BOX 655303' DALLAS. TEXAS 75265 100 k TL052, TL052A ENHANCED JFET PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt TOTAL HARMONIC DISTORTION vs FREQUENCY UNITY-GAIN BANDWIDTH vs SUPPLY VOLTAGE 3.2 =+15V AVD = 1 Vo(rms) = 6V TA = 25°C VI VCC:!: ~ I c ~. ::I:! 3.1 :Ii I ..c :0 0.1 ~ til is 0 'c0 =10mV = = = RL 2 kQ CL 25pF TA 25°C See Figure 4 3 III . .. I 4 I 4 > ;; 0 '" -4 CI s- 0 I ~ -s l! '0 VCC± = ±15V RL = 2 kn CL = 100 pF TA = 25°C See Figure 1 > -2 ~ -4 \J 0.2 0.4 0.6 t- TIme- fIS '"I vcc± = ±15V RL = 2 kn CL = 100 pF TA = 25°C See Figure 1 s- AJ o 0 0 -12 -16 2 '5 O.S Ir- 1.0 1.2 -6 -s Figure 48 I I I til \ \ \If\,- II o 2 3 t-TIme-Its 4 5 Figure 49 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. NOTE 11: Values of phase margin below a load capacitance of 25 pF were estimated . . TEXAS + INSTRUMENTS 2-304 125 S S l! '0 - VI = 10mV 57 55 -75 -50 90 100 V ,,/ I E ./'" 59 if ..... -- VCC±=±5V Figure 46 12 E / :::E 16 > 61 V V 2>os i'. 10 63 III Vee ± = ±15 V VCC±=±5V I r ..e e4 "- "-, " 55 VJc± =1±15J POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 6 TL052, TL052A ENHANCED JFET PRECISION DUAL OPERATIONAL AMPLIFIERS APPLICATION INFORMATION output characteristics All operating characteristics (except bandwidth and phase margin) are specified with 100-pF load capacitance. The TL052 and TL052A will drive higher capacitive loads; however. as the load capacitance increases. the resulting response pole occurs at lower frequencies. thereby causing ringing. peaking. or even oscillation. The value of the load capacitance at which oscillation occurs varies with production lots. If an application appears to be sensitive to oscillation due to load capacitance. adding a small resistance in series with the load should alleviate the problem. Capacitive loads of 1000 pF and larger may be driven if enough resistance is added in series with the output (see Figure 50). (8) CL =100 pF. R =0 (d) CL =1000 pF, R = 0 (b) CL = 300 pF, R = 0 (e) CL 1000 pF, R (e) CL = 50 Q (I) CL = 350 pF. R = 0 = 1000 pF. R = 2 k.Q Figure 50. Effect of Capacitive Loads +5V -5V 2k.Q (see Note A) NOTE A: CL includes fixture capacitance. Figure 51. Test Circuit for Output Characteristics TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 2-305 TL052, TL052A ENHANCED JFET PRECISION DUAL OPERATIONAL AMPLIFIERS APPLICATION INFORMATION Input characterIstics The TL052 and TL052A are specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction. Because of the extremely high input impedance and resulting low bias current requirements, the TL052 and TL052A are well suited for low-level signal processing; however, leakage currents on printed circuit boards and sockets can easily exceed bias current requirements and cause degradation in system performance. It is good practice to include guard rings around inputs (see Figure 52). These guards should be driven from a lowimpedance source at the same voltage level as the common-mode input. The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation. Vo Vo (a) NONINVERTING AMPLIFIER (b) INVERTING AMPLIFIER-- (e) UNITY-GAIN AMPLIFIER Figure 52. Use of Guard Rings noIse performance The noise specifications in op amp circuits are greatly dependent on the current in the first-stage differential amplifier. The low input bias current requirements of the TL052 and TL052A result in a very low current noise. This feature makes the devices especially favorable over bipolar devices when using values of circuit impedance greater than 50 kil. TEXAS ~ INsrRUMENTS 2-306 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TL052, TL052A ENHANCED JFET PRECISION DUAL OPERATIONAL AMPLIFIERS APPLICATION INFORMATION Instrumentation amplifier with adjustable galnlnull The instrumentation amplifier in Figure 53 benefits greatly from the high input impedance and stable input offset voltage of the TL052A. Amplifiers U1 A, U1 B, and U2A form the actual instrumentation amplifier, while U2B provides offset nUll. Potentiometer R1 provides gain adjust. With R1 =2 kn, the circuit gain equals 100, while with R1 =200 kn, the circuit gain equals two. The following equation shows the instrumentation amplifier gain as a function of R1: Readjusting the offset null is necessary whenever the circuit gain is changed. Note that if U2B is needed for another application, R7 can be terminated at ground. The low input offset voltage of the TL052A minimizes the dc error of the circuit. For best matching, all resistors should be one percent tolerance. The matching between R4, R5, R6, and R7 controls the CMRR of this application. The following equation shows the output voltages when the input voltage equals zero. This dc error can be nul/ed by adjusting the offset null potentiometer; however, any change in offset voltage over time or temperature also creates an error. To calculate the error from changes in offset, consider the three offset components in the equation as delta offsets rather than initial offsets. The improved stability of Texas Instruments enhanced JFETs minimizes the error resulting from change in input offset voltage with time. Assuming VIN equals zero', Vo can be shown as a function of the offset voltage: R3 ( R7 ) ( R6 ) R6 ( R2 )U (R6 ) - VI01 [ R1 R5 + R7 1 + R4 + R4 1 +Fi1U + VI03 1 + R4 R4 R6 10kn 10kn >--+-----Vo 82kn R5 R7 10 kn 10 kn 1--..-~1kn 82kn VccNOTE: U1A through U2B = TL052A; Vee ± = ± 15 V. Figure 53. Instrumentation Amplifier TEXAS ", INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-{307 TL052, TL052A ENHANCED JFET PRECISION DUAL OPERATIONAL AMPLIFIERS APPLICATION INFORMATION analQg thermometer By combining a current source that does not vary over temperature with an instrumentation amplifier, a precise analog thermometer can be built (see Figure 54). Amplifier U1A and IC1 establish a constant current through the temperature sensing diode D1. For this section of the circuit to operate correctly, the TL052 must use split supplies and R3 must be a metal film resistor with a low temperature coefficient. The temperature-sensitive voltage from the diode is compared to a temperature-stable voltage reference set by IC2. R4 should be adjusted to provide the correct output voltage when the diode is at a known temperature. Although this potentiometer resistance varies with temperature, the divider ratio of the potentiometer remains constant. Amplifiers U1 B, U2A, and U2B form the instrumentation amplifier that converts the difference between the diode and reference voltage to a voltage proportional to the temperature. With switch S1 closed, the amplifier gain equals 5, and the output voltage is proportional to temperature in degrees Celsius. With S1 open, the amplifier gain is 9, and the output is proportional to temperature in degrees Fahrenheit. Every time that S1 is changed, R4 must be recalibrated. By setting S1 correctly, the output voltage equals 10 mV per degree (C or F). IC1 C1 R9 R12 10 kO 10kO 150 pF R1 10 kO + 15 V 100 kO 10kQ (see Note B) 01 (see Note A) R5 5kO R7 SkO Vo (see Note 0) S1 (see Note C) + 15 V R2 - 15 V 100 kQ R10 IC2 NOTES: A. B. C. O. E. 10kO R4 50kO R11 Temperature sensing diode ~ (- 2 mVI"C). Metal film (low temperature coefficient). Switch open for OF and closed for °C. VO'" Temperature; 10 mV/oC or 10 mVI"F. UfA through U2B = TL052. IC1,IC2 = LM385, LT1004, or LT1009 voltage reference. Figure 54. Analog Thermometer TEXAS ~ INSTRUMENTS 2-308 10 kO POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TL052, TL052A ENHANCED JFET PRECISION DUAL OPERATIONAL AMPLIFIERS APPLICATION INFORMATION phase meter The phase meter in Figure 55 produces an output voltage of 10 mV per degree of phase delay between the two input signals VA and VB' The reference signal VA must be the same frequency as VB' The TLC3702 comparators (U1) convert these two input sine waves into ± 5 V square waves. Then R1 and R4 provide level shifting prior to the SN74HC109 dual J-K flip flops. Flip-flop U2B is connected as a toggle flip-flop and generates a square wave at half the frequency of VB' Flipflop U2A also produces a square wave at half the input frequency. The pulse duration of U2A varies from zero to half the period. where zero corresponds to zero phase delay between VA and VB and half the period corresponds to VB lagging V A by 360 degrees. • The output pulse from U2A causes the TLC4066 (U3) switch to charge the TL052 (U4) integrator capacitors C1 and C2. As the phase delay approaches 360 degrees. the output of U4A approximates a square wave. and U2A has an output of almost 2.5 V. U4B acts as a noninverting amplifier with a gain of 1.44 in order to scale the 0- to 2.5-V integrator output to a O-to 3.6-V output range. Ra and R10 provide output gain and zero-level calibration. This circuit operates over a 100-Hz to 10-kHz frequency range. +5V R2 100 k.Q Rl 100 k.Q Vo R9 20 k.Q R8 Gain 50 k.Q +5V Rl0 10kQ Zero -5V R4 100kQ NOTES: Ul = TLC3702; VCC ± = ± 5 V. U2 = SN74HC109. U3 = TLC4066. U4 = TL052; VCC ± = ± 5 V. Figure 55. Phase Meter TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2-309 Tl052, Tl052A ENHANCED JFET PRECISION DUAL OPERATIONAL AMPLIFIERS APPLICATION INFORMATION precision constant-current source over temperature A precision current source benefits from the high input impedance and stability of Texas Instruments enhanced JFET process. A low-current shunt regulator maintains 2.5 V between the inverting input and the output of the TL052. The negative feedback then forces 2.5 V across the current setting resistor R; therefore, the current to the load is simply 2.5 V divided by R. . Possible choices for the shunt regulator include the LT1 004, LT1009, and LM385. Note that if the regulator's cathode connects to the op amp output, this circuit will source load current. Similarly, if the cathode connects t6 the inverting input, the circuit will sink current from the load. To minimize output current change with temperature, R should be a metal film resistor with a low temperature coefficient. Also, this circuit must be operated with split voltage supplies. 150 pF 150 pF U2 U2 + 15 V + 15 V Load V Load V=Olo-10V R = Olo10V (a) SOURCE CURRENT LOAD (b) SINK CURRENT LOAD NOTES: ICI = LM385, LT1004, or LT1009 voltage reference. UIA = TL052. I = 2.~ V, R = Low temperature coefficient metal film resistor. Figure 56. Precision Constant-Current Source TEXAS . " 2-310 R INsrRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 Tl054, Tl054A ENHANCED JFET PRECISION QUAD OPERATIONAL AMPLIFIERS 03236, JUNE 1988 - REVISED JANUARY 1991 D, J, or N PACKAGE (TOP VIEW) • Maximum Offset Voltage ... 1.5 mV (TL054A) • High Slew Rate ... 15.9 VlIlS Typ at 25°C • Low Total Harmonic Distortion ... 0.003% Typ at RL = 2 kQ • Low Noise Voltage ... 21 nVl...[Hz Typ at f = 1 kHz • Low Input Bias Currents ... 30 pA Typ • MonolithicConstruction lOUT liN + 4 OUT 41N41N + VCC + 21N + 21N20UT VCC31N + 31N30UT FK PACKAGE (TOP VIEW) description I ~ ~ I :;;;000:;;; The TL054 and TL054A quad operational amplifiers incorporate well-matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit. These devices offer the significant advantages of Texas Instruments new enhanced JFET process. This process affords not only low initial offset voltage due to the onchip zener trim capability but also stable offset voltage over time and temperature. In comparison, traditional JFET processes are plagued by significant offset voltage drift. .-...-z~'¢ 3 (Dr DOC to lO°C -40°C to 85°C -55°C to 125°C 1.5 mV 4 mV 1.5 mV 4 mV 1.5 mV 4 mV CHIP CARRIER (FK) VCC + NC 21N + 6 7 15 PLASTIC DIP (N) TL054ACN TL054CN TL054AIN TL0541N TL054AMN TL054MN C\I I o-M CO) 1Sr---r--r---r--r---r--, 1048 Amplifiers 12 Q; !E C. E Vcc± = ±1SV TA = 2SoC N Package 9 I---j---t-:="''B e~+t---t---l « '0 ~6r.~ E II> o Q; 0. 3 o - 1.8 Production processing daBS not VCCNC 31N + DISTRIBUTION OF TL054A INPUT OFFSET VOLTAGE D packages are available taped and reeled. Add "R" suffix to device necessarily include testing of all parameters. 14 8 41N + NC NC - No internal connection type, (e.g., TL054CDR). PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the te rms olTaxas 16 11-01- ---OUT IN + + TEXAS ." INSfRUMENTS 2-312 POST OFFICE BOX 655303' DALLAS. TEXAS 75265 02 Tl054, Tl054A ENHANCED JFET PRECISION QUAD OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature range (uhlessotherwlse noted) Supply voltage, VCC + (see Note 1) ..................................................... 18 V Supply voltage, VCC _ (see Note 1) .................................................... -18 V Differential input voltage (see Note 2) ................................................... ± 30 V Input voltage range, VI (any input, see Notes 1 and 3) ...................................... ± 15 V Input current, II (each input) .......................................................... ± 1 mA Output current, 10 (each output) ..................................................... ± 80 mA Total current into VCC + terminal ..................................................... 160 mA Total current out of V CC _ terminal ................................................... 160 mA Duration of short-circuit current at (or below) 25°C (see Note 4) ............................ unlimited Continuous total dissipation ........................................ See Dissipation Rating Table Operating free-air temperature range, T A C-suffix ................................... O°C to 70°C I-suffix ................................ - 40°C to 85°C M-suffix ............................... - 55°C to 125°C Storage temperature range ................................................... - 65°C to 150°C Case temperature for 60 seconds: FK package ........................................... 260°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package ................. 260°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package ..................... 300°C NOTES: 1. 2. 3. 4. All voltage values, except differential voltages, are with respect to the midpoint between Vee + and Vee _. Differential voltages are at the noninverting input with respect to the inverting input. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE D FK J N TA :5 25°C POWER RATING 950 mW 1375 mW 1375mW 1575mW DERATING FACTOR ABOVE TA = 25°C 7.S mw/oe 11.0 mw/oe 11.0 mw/oe TA = 70°C POWER RATING TA = 85°C POWER RATING 494mW 715mW 715mW 819mW S08mW 880mW 880mW 12.6 mw/oe 1008 mW = TA 125°C POWER RATING 190mW 275mW 275mW 230mW recommended operating conditions C-SUFFIX MIN NOM MAX ±15 ±5 Supply voltage, Vee Common-mode input voltage, VIC Operating free-air temperature, TA I Vee+ ~ ±5V IVce+~±15V -1 -11 0 4 11 70 I-SUFFIX MIN NOM MAX ±5 ±15 -1 -11 -40 4 11 85 M-SUFFIX MIN NOM MAX ±5 ±15 -1 4 -11 11 125 -55 UNIT V V °C TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-313 TL054C, TL054AC ENHANCED JFET PRECISION QUAD OPERATIONAL AMPLIFIERS electrical characteristics PARAMETER TEST CONDITIONS TL054C Via Input offset voltage TL054AC Va Temperature coefficient aVIO of input offset voltage VIC RS = 0, = 0, = 500 TL054C TL054AC TAt TYP MAX 25°C Full range 0.64 5.5 25°C 0.57 110 Input offset current Va = 0, VIC See Figure 5 = 0, liB Input bias current Va = 0, VIC See Figure 5 = 0, 25°C to Maximum negative peak output voltage swing Large-signal differential 0.04 0.04 25°e 700 e 25°C 4 0.02 20 100 1 200 70°C 0.15 -2.3 4 to to 11 15.6 to to 4 11 = 10k.Q 25°e Full range 3 RL = 2 kO 25°e Full range 2.5 2.5 3.8 RL = 10 k.Q 25°C Full range -2.5 -2.5 -3.5 RL = 2kO 25°C -2.3 -3.2 Full range -2.3 4.2 ICC Vo l IV02 rejection ratio (AVCC ±/ AVIO) Supply current (four amplifiers) Vo Crosstalk attenuation AVD =0 = 100 nA V V V -11 50 133 30 60 173 70°C 20 30 85 10'2 V/mV 0 12 25°C 65 84 75 92 O°C 65 84 75 92 70°C 65 84 75 93 25°C oDe 75 99 75 99 75 99 75 99 700 e 75 99 75 99 25°e 4 11.5 -12 -13.2 -12 -11 -12 O°C O°C 70°C pA nA pA 12.7 72 25°e No load, 11.5 25 10 Supply-voltage 1 200 13.9 25°C 25°C kSVR 100 13 25°C rejection ratio 13 3 Input capacitance = VieR min, = 0, RS = 500 VCC± = ±5Vto±15V, Vo = 0, RS = 500 mV fl V/ mo - 11 RL VIC Vo 1.5 -12.3 to Input resistance Common-mode -11 5.6 q CMRR 30 0.2 4 Ci voltage amplification 5 0.025 to 88 57 10'2 AVD 4 3.7 25°C -1 RL = 2 kO, See Note 6 UNIT fl V/ oC 70°C Full range VOM- 0.5 23 25°e to voltage range output voltage swing 3.5 24 700 e MAX 6.2 23 25°e VOM+ 0.56 25 Common-mode input Maximum positive peak TYP 5.7 Full range -1 VICR MIN 7.7 Input offset voltage long-term drift (see Note 5) VCC±=±15V VCC± = ±5 V MIN pF dB dB 8.1 8.2 11.2 12.8 8.4 8.5 11.2 12.8 7.9 11.2 8.2 11.2 120 120 mA dB t Full range IS O°C to 70°C. NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 6. For VCC ± = ± 5 V, Vo = ± 2.3 V; at Vec ± = ± 15 V, Vo = ± 10 V. TEXAS ." INSTRUMENTS 2-314 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Tl054C, Tl054AC ENHANCED JFET PRECISION QUAD OPERATIONAL AMPLIFIERS operating characteristics PARAMETER SR+ SR- tr tl Positive slew rate at unity gain Negative slew rate TAt TEST CONDITIONS VNPP In THD Bl ¢m 13.3 55 25°C ooe 70°C VIPP = ± 10 mV, RL = 2 kn, eL = 100 pF, See Figures 1 and 2 Equivalent input noise RS = lOOn, See Figure 3 input noise voltage Equivalent input noise current I = 1 kHz Total harmonic distortion RS = 1 kn, f = 1 kHz, Unity-gain bandwidth 14.3 70°C Rise time voltage (see Note 9) Peak-to-peak equivalent 14.4 13.9 25°C ooe 25°C ooe Overshoot lactor Vn 15.7 70°C eL = 100 pF, See Figure 1 and Note 7 1= 10 Hz I = 1 kHz 1= 10 Hz to 10kHz = ±5V TYP 15.4 25°C ooe RL = 2 kn, at unity gain Fall time VCC± MIN MAX VCC± MIN 10 8 8 10 8 8 = ±15 V TYP 17.8 16.1 15.5 56 54 55 63 55 63 57 54 700 e 62 56 64 25°C oDe 24% 19% 24% 19% 70°C 24% 19% 25°e 75 75 25°e 21 21 25°e 4 4 0.01 0.01 25°C 0.003% 0.003% Vi = 10 mV, RL = 2 kn, 25°C ooe 2.7 2.7 3 3 70°C 25°C ooe 2.4 61 0 2.4 70°C 61° Phase margin Vi = 10 mV, RL = 2 kn, eL = 25 pF, See Figure 4 60° V/fls 15.9 25°C at unity gain UNIT 17.9 17.5 RL = 2 kn, See Note 8 eL = 25 pF, See Figure 4 MAX ns 45 nV/{HZ flV pA/{HZ MHz 64° 64° 63 0 t Full range IS ooe to 70°C. NOTES: 7. ForVee± = ±5V, VIPP = ±1 V;lorVCC± = ±15V, VIPP = ±5V. 8. For Vec ± = ± 5 V, Vo(rms) = 1 V; lor Vee ± = ± 15 V, Vo(rms) = 6 V. 9. This parameter is tested on a sample basis. For other test reqUirements, please contact the lactory. This statement has no bearing on testing or nontesting 01 other parameters. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2--315 TL0541, TL054AI ENHANCED JFET PRECISION QUAD OPERATIONAL AMPLIFIERS electrical characteristics PARAMETER TEST CONDITIONS TL0541 VIO Input offset voltage TL054AI Vo = 0, aVIO Temperature coefficient of input offset voltage VIC = 0, RS = 50 Q TL054 I TL054AI Input offset voltage long-term drift (see Note 5) TAt VCC± =±5 v TYP MAX MIN VCC±=±15V MIN TYP MAX 25°C 0.64 5.5 0.56 0.57 3.5 6.8 25°C Full range 25°C to 85°C 25°C to 110 Input offset current liB Input bias current Vo = 0, VIC = 0, See Figure 5 25 24 25 23 0.04 0.04 4 100 5 100 pA 10 20 200 0.07 30 10 200 nA pA 0.6 20 0.7 20 nA -1 -2.3 to 4 to 5.6 -11 Maximum negative peak VOM- output voltage swing Large-signal differential AVD voltage amplification -12.3 to to 15.6 -1 11 -11 Full range to to 25°C 3 Full range 3 RL = 2kQ 25°C Full range 2.5 2.5 3.8 RL=10kn 25°C Full range -2.5 -3.5 -2.5 RL = 2 kQ 25°C Full range -2.3 -2.3 -3.2 -11 -11 -12 25 RL = 2 kQ, See Note 6 V 11 4 output voltage swing !lV/mo 0.06 25°C VOM+ mV 25°C 85°C RL=10kn 1.5 4.8 85°C 25°C Common-mode input voltage range Maximum positive peak 7.3 0.5 !lV/DC 85°C 25°C Vo = 0, VIC = 0, See Figure 5 VICR 8.8 Full range UNIT 4 4.2 13 13.9 13 V 11.5 12.7 11.5 -12 -13.2 -12 25°C -40°C 30 72 101 50 60 133 212 85°C 20 50 30 70 V V/mV q Input resistance 25°C 1012 1012 Q Ci Input capacitance 25°C 10 12 pF CMRR kSVR ICC Vo l IV02 Common-mode rejection ratio VIC = VICR min, Vo = 0, RS = 50Q Supply-voltage VCC± = ±5Vto±15V, rejection ratio (L'.VCC +/ L'.VIO) Vo = 0, RS = 50Q Supply current No load, (four amplifiers) Vo = 0 Crosstalk attenuation AVD = 100 25°C 65 84 75 92 -40°C 65 83 75 92 85°C 65 84 75 93 25°C 75 99 75 99 -40°C 75 75 98 99 75 99 75 85°C dB dB 25°C -40°C 8.1 11.2 99 8.4 7.9 12.8 8.2 11.2 12.8 85°C 7.6 11.2 7.9 11.2 25°C 120 120 mA dB t Full range is - 40°C to 85°C. NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 6. ForVCC± = ±5V,VO = ±2.3V;atVCC± = ±ISV,VO = ±10V. TEXAS ~ INSTRUMENTS 2-316 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TL0541, Tl054AI ENHANCED JFET PRECISION QUAD OPERATIONAL AMPLIFIERS operating characteristics PARAMETER SR+ SR- tr tf TAt TEST CONDITIONS Positive slew rate at unity gain RL; 2kO, Negative slew rate CL ; 100 pF, See Figure 1 and Note 7 at unity gain Peak-to-peak equivalent VNPP input noise voltage In THD 91 'm Equivalent input noise current Total harmonic distortion Unity-gain bandwidth VCC±=±15V MIN 10 TYP 15.4 8 18 85°C 16.4 14 8 17.3 25°C 13.9 10 15.9 -40°C 14.7 8 16.1 85°C 8 15.3 52 85°C 64 65 25°C 55 57 -40°C 85°C 51 64 53 65 25°C -40°C 24% 24% 19% 85°C 24% 19% 25°C 75 75 25°C 21 21 25°C 4 4 f ; 1 kHz 25°C 0.01 0.01 RS ; 1 kO, RL ; 2 kn, f ; 1 kHz, See Note 8 25°C 0.003% 0.003% 25°C 2.7 2.7 -40°C 3.3 3.3 85°C 2.3 2.4 64° VIPP ; ± 10 mY, RL ; 2kn, CL ; 100 pF, See Figures 1 and 2 RS ; 100n, See Figure 3 f ; 10 Hz f ; 1 kHz f ; 10 Hz to 10 kHz Vi ; 10 mY, RL ; 2 kO, CL ; 25 pF, See Figure 4 Phase margin Vi ; 10 mY, RL ; 2 kO, at unity gain CL ; 25 pF, See Figure 4 MAX UNIT 17.8 25°C -40°C 25°C Equivalent input noise voltage (see Note 9) MAX -40°C Overshoot factor Vn TYP 13 55 Rise time Fall time VCC± = ±5V MIN V/Jls 56 53 ns 19% 25°C 61° -40°C 59° 62° 85°C 61° 64° 45 nV/vHZ JlV pA/vHZ MHz t Full range is - 40°C to 85°C. NOTES: 7. ForVCC±; ±5V, VIPP ; ±1 V;forVCC±; ±15V, VIPP; ±5V. 8. For VCC ± ; ± 5 V, Vo(rms) ; 1 V; for VCC ± ; ± 15 V, Vo(rms) ; 6 V. 9. This parameter is tested on a sample basis. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters. TEXAS ." IN5rRUMENlS POST OFFICE BOX 655303 ' DALLAS. TEXAS 75265 2-317 Tl054M, Tl054AM ENHANCED JFET PRECISION QUAD OPERATIONAL AMPLIFIERS electrical characteristics PARAMETER TEST CONDITIONS TL054M VIO Input offset voltage TL054AM Vo ~ 0, aVIO Temperature coefficient of input offset voltage VIC ~ 0, RS = 50Q TL054M TL054AM Input offset voltage long-term drift (see Note 5) 110 liB Input offset current Va ~ 0, VIC ~ 0, See Figure 5 Input bias current Va ~ 0, VIC ~ 0, See Figure 5 TAt 25°C Maximum negative peak VOM- AVD output voltage swing 0.57 5.5 20 25°C 0.04 0.04 1.5 mV !-LV/mo 25°C 4 100 5 100 pA 125°C 25°C 1 2 20 nA 20 20 200 30 200 pA 125°C 10 50 20 50 nA 25°C Full range 25°C Full range See Note 6 4 !-LV/oC 125°C RL = 2 kQ voltage amplification UNIT 6.5 21 RL=10kQ RL ~ 2 kQ, 0.5 20 25°C Full range Large-signal differential MAX 9 21 125°C 25°C to 25°C Full range RL = 2 kQ TYP 0.56 3.5 -1 -2.3 -11 to 4 to to to 5.6 11 15.6 -1 RL~10kQ MIN 8.5 25°C to voltage range output voltage swing VCC±=±15V MAX 10.5 Full range Full range VOM+ 0.64 25°C 25°C Maximum positive peak TYP Full range Common-mode input VICR VCC± = ±5V MIN -12.3 to to 4 11 13 3 3 4.2 2.5 3.8 12.7 2.5 -2.5 11.5 11.5 -3.5 -12 -13.2 25 -55°C 125°C V -12 -3.2 -11 -2.3 25°C 13.9 13 -2.5 -2.3 V -11 V -12 -11 30 72 99 50 60 209 133 10 35 15 35 V/mV q Input resistance 25°C 1012 1012 Q Ci Input capacitance 25°C 10 12 pF CMRR Common-mode rejection ratio kSVR ICC Supply-voltage VIC ~ VICR min, Va = 0, RS = 50Q VCC± = ±5Vto±15V, rejection ratio Va ~ 0, (.W CC + 1t,vIO) RS = 50Q Supply current No load, (four amplifiers) Va = 0 25°C 65 84 75 92 -55°C 125°C 65 65 75 83 75 92 84 99 75 75 93 99 75 98 75 98 75 100 75 100 25°C -55°C l25°C dB dB 25°C 8.1 11.2 8.4 11.2 -55°C 7.8 12.8 8.1 12.8 125°C 7.1 11.2 7.5 11.2 mA AVD ~ 100 120 120 dB 25°C Vol iV02 Crosstalk attenuation t Full range IS - 55°C to 125°C. NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA ~ 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 6. ForVCC± ~ ±5V, Va ~ ±2.3V:atVcc± ~ ±15V, Va ~ ±10V. TEXAS ." INsrRUMENTS 2-318 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Tl054M, Tl054AM ENHANCED JFET PRECISION QUAD OPERATIONAL AMPLIFIERS operati ng characteristics PARAMETER SR+ SR- tr tf TAt TEST CONDITIONS Positive slew rate at unity gain Negative slew rate at unity gain RL ~ 2 kn, eL ~ 100 pF, See Figure 1 and Note 7 Rise time Fall time VIPP ~ ± 10 mV, RL ~ 2 kn, eL ~ 100 pF, See Figures 1 and 2 Overshoot factor Vn Equivalent input noise voltage Peak-to-peak equivalent VNPP noise current THD Total harmonic distortion 81 Unity-gain bandwidth ¢m Phase margin at unity gain t Full range ~ ~ Vi eL Vi eL 1 kHz, ~ ~ ~ ~ TYP 25°e -55°e 16.7 125°e 12.9 25°e 13.9 -55°e 14.7 125°e 25°e 12.2 16.3 14.5 55 56 -55°e 51 52 125°e 68 68 25°e 55 57 -55°e 51 52 125°e 68 69 25°e 24% 19% -55°e 25% 19% 25% 75 19% 75 16.7 10 15.9 f ~ 1 kHz 25°e 21 21 f ~ 10 Hz to 25°e 4 4 25°e 0.01 0.01 25°e 0.003% 0.003% RL ~ 2 kQ, 10 mV, RL ~ 2 kQ, 25 pF, See Figure 4 10 mV, RL ~ 25°e 2.7 2.7 - 55°e 3.4 2.1 3.4 2.1 -55°e 61° 58° 64° 62° 125°e 60° 64° 125°e 25°e 2 kQ, 25 pF, See Figure 4 UNIT 18.3 10 Hz See Note 8 MAX 17.8 ~ 1 kHz RS ~ 1 kQ, f MIN 10 f 10 kHz f MAX VCC±=±15V TYP 15.4 125°e 25°e input noise voltage Equivalent input In RS ~ lOOn, See Figure 3 Vcc± = ±5V MIN ViIlS ns nV/'i'HZ IlV pA/'i'HZ MHz 55°e to 125°e. NOTES: 7. For Vee ± ~ ± 5 V, VIPP ~ ± 1 V; for Vee ± ~ ± 15 V, VIPP ~ ± 5 V. 8. For Vee ± ~ ± 5 V, Vo(rms) ~ 1 V; for Vee ± ~ ± 15 V, Vo(rms) ~ 6 V. IS - TEXAS ~ INSTRUMENlS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2--319 Tl054, Tl054A ENHANCED JFET PRECISION QUAD OPERATIONAL AMPLIFIERS PARAMETER MEASUREMENT INFORMATION >--_-vo 'r- RISE TIME NOTE A: CL includes fixture capacitance. Figure 1. Slew Rate, Rise/Fall Time, and Overshoot Test Circuit Figure 2. Rise Time and Overshoot Waveform 10 kQ 10 kQ >-_ _-vo veeRS RS NOTE A: CL includes fixture capacitance. Figure 4. Unity-Gain Bandwidth and Phase Margin Test Circuit Figure 3. Noise Voltage Test Circuit typical values Typical values as presented in this data sheet represent the median (50% point) of device parametric performance. GROUND SHIELD Input bias and offset current At the picoamp-bias-current level typical of the TL054 and TL054A, accurate meaSurement of the bias current becomes difficult. Not only does this Figure 5. Input Bias and Offset Current Test measurement require a picoammeter, but test Circuit socket leakages can easily exceed the actual device bias currents. To accurately measure these small currents, Texas Instruments uses a two-step process. The socket leakage is measured using picoammeters with bias voltages applied, but with no device in the socket. The device is then inserted in the socket and a second test that measures both the socket leakage and the device input bias current is performed. The two measurements are then subtracted algebraically to determine the bias current of the device. noise Because of the increasing emphasis on low noise levels in many of today's applications, the input noise voltage density is sample-tested at f = 1 kHz. Texas Instruments also has additional noise testing capability to meet specific application requirements. Please contact the factory for details. TEXAS ~ INSTRUMENlS 2-320 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TL054, TL054A ENHANCED JFET PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS table of graphs FIGURE VIO Input offset voltage Temperature coefficient IlVIO of input offset voltage 110 Input offset current lIB Input bias current VI Input voltage range Vo Output voltage VOM AVD Zo CMRR kSVR loS 6 Distribution 7 vs Temperature vs VIC Temperature vs vs vs VCC Temperature vs Differential input voltage vs VCC Output current Maximum peak output vs voltage swing vs Frequency vs Temperature vs Differential voltage amplification vs RL Frequency vs Temperature Output impedance vs Frequency Common-mode rejection ratio Supply-voltage rejection ratio Short-circuit output current lee Supply current SR Slew rate Vn THD Distribution vs Frequency vs Temperature vs Temperature vs vs Vee Time vs Temperature vs Vee Temperature vs vs vs RL Temperature Overshoot factor vs Equivalent input noise voltage vs Total harmonic distortion vs Frequency vs Vee Temperature 81 Unity-gain bandwidth ¢m Phase margin Phase shift Pulse response vs eL Frequency vs Vee vs vs CL Temperature vs Frequency Small-signal Large-signal 8 9 8 10 11 12.13 14 18.19 15.16.17 20.21 22 23 24.25 29 26. 27 28 30 31 32 33 34 35 36.37 38.39 40 41 42 43 44 45 46 47 23 48 49 TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 2-{321 Tl054, Tl054A ENHANCED JFET PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt DISTRIBUTION OF TL054 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT DISTRIBUTION OF TL054 INPUT OFFSET VOLTAGE 50 1140 Amplifiers 324 25 ;fl. ;fl. I I ~ G> :e "is.. E "is.. E « 30 « 151-----!--+--b '0 G> G> ~'" S'" ~ ,f 40 ~ 201-----1--+--1-- '0 from 3 wafer lots vcc± = ±15V TA = 25°C to 125°C N Package 10 20 i! ,f 10 51-----1--+- o'----...~ -4 -3 -2 -1 0 4 3 2 ClVIO Via -Input Offset Voltage - mV Figure7 INPUT BIAS CURRENT AND INPUT OFFSET CURRENT INPUT BIAS CURRENT vs vs FREE-AIR TEMPERATURE COMMON-MODE INPUT VOLTAGE I 10 VCC±=±15V TA = 25°C / VIC = 0 ~ 0 «c C ~ / ./' .... iii <3 110 c ./ ,,/ 0.1 VI .-/ 0 '/ S D- E I g ".c 5 I IIB/ ~ ".. .. iii 60 10 VCC±=±15V Va = 0 !! c E 40 Temperature Coefficient - J!V/oC Figure6 100 «c ~ I ./ jl -5 .,./' 0.01 jl 0.001 25 45 65 85 105 TA - Free-Air Temperature - °c 125 -10 -15 -10 -5 o 5 10 VIC - Common-Mode Input Voltage - V Figure9 FigureS tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices, TEXAS ~ INSTRUMENTS 2-322 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 15 Tl054, Tl054A ENHANCED JFET PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt COMMON-MODE INPUT VOLTAGE RANGE LIMITS vs SUPPLY VOLTAGE 16 TA > = 25°e 12 !! 8 > :; 4 '0 Q. V / 20 ,.- V .,/ / CII Ol COMMON-MODE INPUT VOLTAGE RANGE LIMITS vs FREE-AIR TEMPERATURE Vee± > CII C '0 POSITIVE LIMIT > :; Q. .. 0 0 -4 0 I -8 I C """ r--.......... ......... 0 o 2 4 6 8 10 -5 0 -10 ~ 12 I g > -15 ~ 14 NEGATIVE LIMIT -20 -75 -50 -25 0 25 50 75 100 TA - Free-Air Temperature - °e 16 Figure10 Figure 11 OUTPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE OUTPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE 5 15 = = = '\[\ -, !! '0 0 I 0 > 0 -1 RL -2 RL -3 RL RL -4 -5 -200 = 600Q = 1 kQ = 2 kQ = 10 kQ \ > I ~ CII Ol = 10 3 2 125 Vee ± ±15 V TA 25°e Vee± ±5V TA 250C 4 > :; Q. :; 0 0 IVee ±I- Supply Voltage - V I 5 ::il e e0 >-12 -16 ." 0 I NEGATIVE LIMIT ......... I > 10 .E :::. e e0 POSITIVE LIMIT CII Ol l!l .E ." 0 =±15V 15 CII \ 5 Ol l!l '0 ~ > :; 0 "I -5 .9- 0 ~~ "- - ........ - -"\ o 100 -100 VIO - Oifferentiallnput Voltage- JlV 200 0 > -10 r-- r-- RL RL RL =600 Q= 1 kQ= 2 kQ _ RLI" -15 -400 -200 ~i'-->-- "1"-~ o ~ ~ -- --- - 200 400 VIO - Oifferentiallnput Voltage - JlV Figure13 Figure12 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-323 Tl054,Tl054A ENHANCED JFET PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY MAXIMUM PEAK OUTPUT VOLTAGE vs SUPPLY VOLTAGE 16 VO~ + / TA = 25°C RL~l~ V '5 .9- ~ !l, )! o § '= :E . ... ~ E ~2kQ :E 1 ~-12 10~ I ~ ........ 30 20 ""'"' ~ ~ \ 1\ VCC± = ±15V 20 \ .>I. m Il. \ .9 15 iE 10 .,:, 1\ \ 1\ \ ::I VCC±=±5V E .;;: . ::;: 5 I Il. Il. Il. 100 k 1M f - Frequency - Hz 5 VCC± = ±5V c. ""-I-- o 10 k 25 "[ 1\ 10 RL = 10 kQ TA = 25°C g> I o > 10 M 0 10 k Figure 16 IIIIII " , I-- 100 k 1M f - Frequency - Hz Figure17 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSfRUMENTS 2-324 10 M 30 II> > 15 E ~ 100 k 1M f - Frequency - Hz I RL = 2 kQ TA = 25°C 25 ::I '= 0 10 k > vJcl ~ IJ~ll~ .>I. :E o 16 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY i iE 14 ~ Il. Il. MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY .9- ~ I ""- > 4 6 8 10 12 IVcc ±I- Supply Voltage - V ~~ 5 Figure15 :; 6 ::;: TA = -55OC Figure14 I ~ . 11iil~ I=~ ~V VCC±=±5V E .;;: I 2 ,A 1= 10 ::I VOM_ o 15 .>I. RL = i ~ m -8 > 20 !f I -16 ~ ~ -4 E 25 RL = 2 kQ vcU ll'Jl't .>I. 0 i "0 > '5c. ::I .>I. 30 I ~=12kQ ~ 4 > POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 10 M Tl054, Tl054A ENHANCED JFET PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt MAXIMUM PEAK OUTPUT VOLTAGE MAXIMUM PEAK OUTPUT VOLTAGE vs vs OUTPUT CURRENT OUTPUT CURRENT 5 16 VCC±=±5V Rl = 10kn > I OIl CI ~ 4 r--... :; ~ 3 I"- 0 ...: l E E ...." I "- "- ~ 2 12 a. 10 :; ...: I~OM+ VOM':::-.. '\. I "- r--... "- > 12 B 4 B E E ';;c " 6 ~ 4 TA = 25 D C "" ~I"- "'I'..... .. "- " "\ "'- > r"-... 16 2 o o 20 10 20 vs FREE-AIR TEMPERATURE FREE-AIR TEMPERATURE 16 ~ :; > I Rl = 2 kn ~ 2 ;; a. ;; " l .. -2 I -3 ~ ~ 0 > ia. 5E 0 -1 'xca YOM - :Ii Rl = 2 kn :Ii Rl = 10kn -5 I I 50 75 -75 -50 -25 0 25 Rl = 2 kn 4 VCC ± = ±15 V 0 -4 -8 I -4 V~M + 8 o VCC±= ±5 V E "E 'le 12 OIl g> ,g. 0 ...: Rl = 10 kn Rl = 10 kn 4 3 50 MAXIMUM PEAK OUTPUT VOLTAGE vs VOM+ I 40 30 Figure19 5 OIl "- 1101 - Output Current - mA MAXIMUM PEAK OUTPUT VOLTAGE CI \ ""'- ~ 1\ Figure18 S \ I ~ 0 1101 - Output Current - mA > ~OM+ Vo~ i'.. " "'- a. "- ~ 0 Z Vec± = ±15V Rl = 10 kn ~ t"..... 0 ~ o o '" S '0 > :; ""- 14 OIl TA = 25 D C 0 > > YOM - Rl = 2kn ~-12 Rl = 10kn 100 125 -16 - 75 - 50 - 25 0 25 50 75 100 125 T A - Free-Air Temperature - DC TA - Free-Air Temperature - DC Figure21 Figure 20 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices, TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2-325 TL054, TL054A ENHANCED JFET PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT LARGE-SIGNAL VOLTAGE AMPLIFICATION vs vs LOAD RESISTANCE FREQUENCY 10 6 250 > Vo = ±1 V ~I c TA = 25°C c 0 ; 200 .2 .l:! ::: - VCC± = ±15V '" 'a u ;: f-- E 150 100 V~ V ii5 50 < GI i VCC±=±5V ~ c 'ii 10 4 E '" V V 10 3 1\ OJ 10 2 .~ e ~- Vcc± = ±15V RL = 2 kQ CL = 25 pF 10 5 i--.. GI ;: 10 1 i5 I '"""-'" '" TA = 25°C .: rn 60° :E "'" ........ .. GI !II ""- 90° ..c PHASE SHIFT " ' - ""- 0 < o 0.4 4 10 40 RL - Load Resistance - kQ 0.1 10 100 c vs vs FREE-AIR TEMPERATURE FREE-AIR TEMPERATURE 5 'ii 100 ...... ~ r-...... " OJ 'E o '" 40 i5 I I o ~ r--_ 400 ! RL = 10 kQ > ~ Vcc+ = +15V I 1 - VO-+l0V RL = 10 kQ ~I 400 < c 180° 10 M 1000 > Vcc+ = +5V Vo - +2.3V E ~ '\ LARGE-SIGNAL VOLTAGE AMPLIFICATION 'ii 8. 1M LARGE-SIGNAL VOLTAGE AMPLIFICATION B :5 S '0 1k 10 k 100 k f - Frequency - Hz 150° Figure23 1000 .2 120° "'- ~\ Figure22 > ~I 100 0- 1\ > < 30° ~VD > I 0 0° o 10 -75 ~ -50 -25 0 25 50 75 100 125 10 - 75 - 50 - 25 0 25 50 75 TA - Free-Air Temperature - °C T A - Free-Air Temperature - °C Figure24 Figure25 100 toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS 2-326 POST OFFICE BOX 655303' DALLAS. TEXAS 75265 125 n054, n054A ENHANCED JFET PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt COMMON-MODE REJECTION RATIO vs FREQUENCY COMMON-MODE REJECTION RATIO vs FREQUENCY 100 III "t> I 0 100 VCC±=±5V TA = 25'C 90 ';; 80 c 70 '" \ .~ ';' 60 "t> 50 .. 0 40 E E 30 ::;; 10 () 80 c 70 ., ';' a: ., 60 "t> \ 40 E E \ 30 95 .2 90 I 20 ::;; 10 a: a: o 1k 100 f - Frequency - Hz 1k 10 k 100 k f - Frequency - Hz Figure26 Figure27 COMMON-MODE REJECTION RATIO vs FREE-AIR TEMPERATURE OUTPUT IMPEDANCE vs FREQUENCY 10 k 100 k 1M 10 10 M 40 a . ..".. I 85 ::;; E E I c 0 c0 80 - a: a: 10 / / / c. 4 .§ '5 c. '5 0 VCC± = ±5V AVO - 10~ 1M 10 M / / / AVO - . / / / / / / "t> / // I AVO = 1 _ 0 0 () I 100 100 VCC+ = ±15V ';' "t> \ 0 () () "t> .. a: .. '" 1"''\ 0 V'C = V'CRmin .2 U 50 C 100 I '\ 0 \ III OJ a: c '" ::;; o 10 TA = 25'C '\ U () a: a: ":;; .2 0 20 VCC±=±15V 90 a: 0 I I 0 \. a: =i'c "t> i'... a: 0 III N 0.4 75 / VCC±=±15V TA = 25°C / ::;; () - '0 (open loop) ~ 250 Q 70 -75 -50 -25 0 25 50 75 TA - Free-Air Temperature - 100 125 0.1 1k °c 100 k 10 k 1M f - Frequency - Hz Figure28 Figure29 toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-327 TL054, TL054A ENHANCED JFET PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt SUPPLY-VOLTAGE REJECTION RATIO vs FREE-AIR TEMPERATURE SHORT·CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE 60 Vcc± = ±5V to ±15V .., III Vo = 0 TA = 25°C ~ 941--t----t--t---t---j---j--t--I 0:: J 90~~--~--~--~--~--~ -75 -50 ~-40 .9 __~~ -25 0 25 50 75 100 TA - Free-Air Temperature - °c -60 125 o 8 10 60 - t-- o .~ 0 ~ -20 20 I 0 ~~40 -20 CIl VCC± = ±15 V TA = 25°C .9 I o 10 20 30 40 Time - Seconds I 50 60 I vec± = ±5V .c VIO = - 100 mV CIl I I Vce±=±5V o .c -60 ~-40 .9 !-" Vo = 0 -60 -75 I --- I I I I I I I Figure 33 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 , - Vee ± = ±15 V -50 -25 0 25 50 75 100 TA - Free-Air Temperature - oc Figure32 2-328 16 vee± = ±15V r--- c-:t---J. ~ 5a.. 5 14 SHORT-CIRCUIT OUTPUT CURRENT vs FREE-AIR TEMPERATURE ~ 8 12 SHORT-CIRCUIT OUTPUT CURRENT vs TIME C ~ 6 Figure31 40 I 4 Figure30 '- E 2 - -~V-- IVee ±I- Supply Voltage - V VID = 100 mV 15. "::J 8 « '\ '\ ( E 4 I 0 0 .9 2 o o .9 J J 2 2 Vo = 0 No Load Vo = 0 No Load I 4 6 8 10 12 14 I o 16 -75 -50 -250 25 50 75 IVcc ±I-Supply Voltage- V TA - Free-Air Temperature - °C Figure34 Figure35 SLEW RATE vs LOAD RESiSTANCE SLEW RATE vs LOAD RESISTANCE 25 25 20 20 100 125 SR + ~ ; a: I ~ iii SR+ 15 ~ ; a: . . . . . f- V :.-- ...... I SR- ~ 10 I 15 ~ VffSR- 10 I a: a: en en vcc± = ±5V CL = 100 pF TA = 25°C See Figure 1 5 0 0.4 4 10 40 RL - Load Resistance - kQ 5 100 o 0.4 Figure36 VCC±=±15V CL = 100 pF TA = 25°C See Figure 1 1 1 JLlLU 4 40 10 100 RL - Load Resistance - kQ Figure37 tData at high and low temperatures are applicable only within the rated operating free-air temperatUre ranges of the various devices. TEXAS + INSTRUMENTS POST OFFICE BOX 655303· DALLAS. TEXAS 75265 2...,'329 Tl054, Tl054A ENHANCED JFET PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt SLEW RATE vs FREE-AIR TEMPERATURE SLEW RATE vs FREE-AIR TEMPERATURE 20 20 -i15 ~ SR- :> I ... a: CI> ;!: --- --:::::: t--- SR + 10 t--- :-- SR+ ~ 1> I CI> ... a: ~ 10 Cii Ul I I a: a: Ul Ul 5 5 Vcc± = ±5V RL = 2kn VCC±=±15V RL = 2 kn CL = 100 pF CL = 100 pF See IFigUr~ 1 o -75 See Figure 1 I I o -50 -25 0 25 50 75 100 125 -75 0 25 50 75 100 125 Figure38 Figure39 OVERSHOOT FACTOR vs LOAD CAPACITANCE EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY 100 :>c 40 70 I '" vcc ± = ±15 V RS = 100n C) 'I ll!0 I ~ > 30 CI> 50 40 \ 1\ '0 Ll- z e; "SQ. 0 ~ a> -25 T A - Free-Air Temperature - DC· ~ .s:. -50 T A - Free-Air Temperature - °C 50~--~----~--~----~--~--~ . - 15 .!! oSu :-- SR- 20 30 ~ .... ..5 E CI> OJ > '5 10~--~+---~--~--- 20 cr w I e > See Figure 1 O~--~----~--~----~--~--~ o 50 100 150 200 250 300 10 10 40 CL - Load Capacitance - pF 100 400 1k 4k 10k f - Frequency - Hz 40k100k Figure41 Figure40 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ." INSTRUMENTS 2-330 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TL054, TL054A ENHANCED JFET PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt TOTAL HARMONIC DISTORTION vs FREQUENCY UNITY-GAIN BANDWIDTH vs SUPPLY VOLTAGE 2.9 VCC+=±15V 0.4 <11- AVO = 1 N :r Vo(rms) = 6 V TA = 25°C I c .2 t: g :e is . ID c 'OJ E ~ Cl .~ c 0.01 ~ 2.7 c 0.04 'i t-"" -6 ..,'i o - .c 0.1 -E 2.8 I 2.6 Vi = 10 mV :J RL = 2 kQ CL = 25 pF TA = 25°C See Figure 4 I I ~ 0.004 m 2.5 .." 0.001 2.4 100 400 1k 4k 10 k 40k 100k :e I ID c 'OJ ..., t-..... ............ ............ r--.. -...... I r-- 14 16 I I -25 c .. .... .c 61 .~ :e., ...e 59 = 25 50 75 100 125 Vi 10 mV RL = 2 kQ CL = 25 pF TA = 25°C See Figure 4 57 55 0 V r- V Co I = -50 V /' 01 VI 10 mV RL = 2 kQ CL = 25 pF See Figure 4 o .." 63 !! ..,., Vce ± = ± 5 V to ± 15 V -75 12 PHASE MARGIN vs SUPPLY VOLTAGE Cl m 10 UNITY-GAIN BANDWIDTH vs FREE-AIR TEMPERATURE 2 I 8 65 3 ?: c:J 6 Figure43 ..,-= ..,jc .. 4 Figure42 ' ............ N 2 IVcc tl-Supply Voltage - V 4 :r o f - Frequency - Hz o 2 4 6 8 10 12 TA - Free-Air Temperature - °C IVcc ±I- Supply Voltage- V Figure44 Figure 45 14 16 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSfRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-331 Tl054, Tl054A ENHANCED JFET PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt PHASE MARGIN vs FREE-AIR TEMPERATURE PHASE MARGIN vs LOAD CAPACITANCE 65 70 .. 65 ~ " " ", , g> I 60 .. :e .... RL = 2kQ TA = 25"C " '" '-", '0 c Vi = 10 mV 'E' See Note 11 II> "" Sj ~ '" 55 .c Il. ....E '0 I c .. :e ..'" ±~ "'""" 10 20 30 40 50 60 70 80 61 59 .c Il. ,v ....E / ./ 55 - 75 90 100 RL = 2 kQ CL = 25 pF See Figure 4 I - 50 Figure47 VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONS~ f\ 6 I~ IV' 8 > I 4 II> 4 01 0 ... '; '; 0 -4 I ~ -8 .l! VCC± = ±15V RL = 2 kQ CL = 100 pF TA = 25°C See Figure 1 ... '; 0 I -2 0 > IAI '.J o r- 0.4 0.6 0.8 1.0 \ \ \f\,- "':4 -6 -8 0.2 VCC± = ±15V RL = 2 kQ CL = 100 pF TA = 25°C See Figure 1 0 ;; -12 -16 2 '0 > • l I I 01 1.2 II o 2 3 t-Time-fls t-Time-fls Figure48 Figure49 4 5 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. NOTE 11: Values of ph I - 25 0 25 50 75 100 TA - Free-Air Temperature - °c Figure46 16 II> -...... - = ±5V Vi = 10 mV 57 CL - Load Capacitance - pF > E "..- r- VCC± I ....... o .1- I VCC± = ±15V_ ./' .~ ......... 1--:1 ,V g> II> 50 45 !'l "..- 63 !! e4 X=±15V VCC± = I r Fi _ POST OFFICE BOX 655303' DALLAS. TEXAS 75265 6 Tl054, Tl054A ENHANCED JFET PRECISION QUAD OPERATIONAL AMPLIFIERS APPLICATION INFORMATION output characteristics All operating characteristics (except bandwidth and phase margin) are specified with 100-pF load capacitance. The TL054 and TL054A will drive higher capacitive loads; however, as the load capacitance increases, the resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation. The value of the load capacitance at which oscillation occurs varies with production lots. If an application appears to be sensitive to oscillation due to load capacitance, adding a small resistance in series with the load should alleviate the problem. Capacitive loads of 1000 pF and larger may be driven if enough resistance is added in series with the output (see Figure 50). (a)CL = 100pF,R = 0 (c)CL=3S0pF,R =0 (b) CL = 300 pF, R = 0 (e)CL 1000pF,R= (d) CL = 1000 pF, R = 0 son (f)CL= 1000pF,R= 2kn Figure 50. Effect of Capacitive Loads +sv -sv 2kn (see Note A) NOTE A: CL includes fixture capacitance. Figure 51. Test Circuit for Output Characteristics TEXAS • INSTRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2-333 TL054, TL054A ENHANCED JFET PRECISION QUAD OPERATIONAL AMPLIFIERS APPLICATION INFORMATION input characteristics The TL054 and TL054A are specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction. Because of the extremely high input impedance and resulting low bias current requirements, the TL054 and TL054A are well suited for low-level signal processing; however, leakage currents on printed Circuit boards and sockets can easily exceed bias current requirements and cause degradation in system performance. It is a good practice to include guard rings around inputs (see Figure 52). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input. The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation. Vo VI-W'v-_+H Vo (a) NONINVERTING AMPLIFIER (b) INVERTING AMPLIFIER , (c) UNITY·GAIN AMPLIFIER Figure 52. Use of Guard Rings noise performance The noise specifications in op amp circuits are greatly dependent on the current in the first-stage differential amplifier. The low input bias current requirements of the TL054 and TL054A result in very low current noise. This feature makes the devices especially favorable over bipolar devices when using values of circuit impedance greater than 50 kil. TEXAS ~ INSTRUMENTS 2-334 POST OFFICE BOX 655303· DALLAS. TEXAS 75265 Tl054, Tl054A ENHANCED JFET PRECISION QUAD OPERATIONAL AMPLIFIERS APPLICATION INFORMATION Instrumentation amplifier with adjustable galnlnull The instrumentation amplifier in Figure 53 benefits greatly from the high input impedance and stable input offset voltage of the TL054A. Amplifiers U1A, U1B, and U1C form the actual instrumentation amplifier, while U1D provides offset null. Potentiometer R1 provides gain adjust. With R1 = 2 kQ, the circuit gain equals 100, while with R1 = 200 kQ, the circuit gain equals two. The following equation shows the instrumentation amplifier gain as a function of R1: Readjusting the offset null is necessary whenever the circuit gain is changed. Note that if U1 0 is needed for another application, R7 can be terminated at ground. The low input offset voltage of the TL054A minimizes the dc error of the Circuit. For best matching, all resistors should be one percent tolerance. The matching between R4, R5, R6, and R7 controls the CMRR of this application. The following equation shows the output voltages when the input voltage equals zero. This dc error can be nulled by adjusting the offset null potentiometer; however, any change in offset voltage over time or temperature also creates an error. To calculate the error from changes in offset, consider the three offset components in the equation as delta offsets rather than initial offsets. The improved stability of Texas Instruments enhanced JFETs minimizes the error resulting from change in input offset voltage with time. Assuming Y,N equals zero, Vo can be shown as a function of the offset voltage: )~ R3 ( R5 R7 R6) + R4 R6 (1 + R2 6) - V,01 [ AT + R7 ) (1 + R4 R1~ + V,03 (1R + R4 R4 R6 10 kQ 10 kQ >-......-----'- Va NOTE A: U1A through U1 D RS R7 10 kQ 10 kQ = TL054A; Vce ± = ± 15 V. Figure 53. Instrumentation Amplifier TEXAS ~ INsrRUMENlS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-335 TL054, TL054A ENHANCED JFET PRECISION QUAD OPERATIONAL AMPLIFIERS APPLICATION INFORMATION high Input impedance log amplifier The low input offset voltage and high input impedance of the TL054A create a precision log amplifier (see figure 54). IC1 is a 2.5-V, low-current precision, shunt regulator. Transistors 01 and 02 must be a closely matched NPN pair. For best performance over temperature, R4 should be a metal film resistor with a low temperature coefficient. In this circuit, U1 A serves as a high-impedance unity-gain buffer. Amplifier U1 B converts the input voltage to a current through R1 and 01. Amplifier U1C, IC1, and R4 form a 1 IlA temperature-stable current source that sets the base-emitter voltage of 02. Amplifier U1 D then amplifies the difference between the base-emitter voltage of 01 and 02. The output voltage is given by the following equation: J wherek = 1.38x10-23 ,q = 1.602 x 10- 19 , d T' . k I . an IS In eVlns. R6]kT[ VI Vo = - [ 1 + In R5 q (R1 x 1 x 10 -6) Vo (see equation above) C1, 150 pF R6 10 kQ R5 R3 10 kQ IC1 - 15 V NOTES: UIA thru Ul D ; TL054A. leI; LM385, LTt004, or LT1009 voltage reference. Figure54. Log Amplifier m -0.1 't> I c .2 - 0.15 'I 10 \ " :E ~ -0.2 \ < " Ol oS -0.25 '\ '0 > iii ~ -0.3 ~ f ~ i5 - 0.35 I C ~ -0.4 o 2 , i'-- --- -- 3 4 5 6 7 f - Frequency - Hz r-8 9 10 Figure 55. Output Voltage vs Input Voltage for Log Amplifier TEXAS "" INSTRUMENTS 2-336 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 Tl054, Tl054A ENHANCED JFET PRECISION QUAD OPERATIONAL AMPLIFIERS APPLICATION INFORMATION analog thermometer By combining a current source that does not vary over temperature with an instrumentation amplifier, a precise analog thermometer can be built (see Figure 56). Amplifier U1A and IC1 establish a constant current through the temperature sensing diode D1. For this section of the circuit to operate correctly, the TL054 must use split supplies and R3 must be a metal film resistor with a low temperature coefficient. The temperature-sensitive voltage from the diode is compared io a temperature-stable voltage reference set by IC2. R4 should be adjusted to provide the correct output voltage when the diode is at a known temperature. Although this potentiometer resistance varies with temperature, the divider ratio of the potentiometer remains constant. Amplifiers U1 B, U1 C, and U1 D form the instrumentation amplifier that converts the difference between the diode and reference voltage to a voltage proportional to the temperature. With switch S1 closed, the amplifier gain equals 5, and the output voltage is proportional to temperature in degrees Celsius. With S1 open, the amplifier gain is 9, and the output is proportional to temperature in degrees Fahrenheit. Every time that S1 is changed, R4 must be recalibrated. By setting S1 correctly, the output voltage equals 10 mV per degree (C or F). ICl Cl R9 R12 10 kO 10 kQ 150 pF Rl 10kO + 15 V 100kO R7 SkO R5 SkO 10 kO (see Note B) Vo Sl (see Note 0) (see Note C) 01 (see Note A) - 15 V + 15 V R2 R8 100 kO Rl0 IC2 NOTES: A. B. C. D. E. 10kO R4 50 kQ Rll 10 kO Temperature sensing diode ~ (- 2 mVlOC). Metal film (low temperature coefficient). Switch open for OF and closed for °C. Vo oc Temperature; 10 mV/oC or 10 mVi"F. U1Athru U1D = TL054. IC1,IC2 = LM385, LT1004,orLT1009voltagereference. Figure56. Analog Thermometer TEXAS + INSTRUMENlS POST OFFICE BOX 655303 - DALLAS, TEXAS 75265 2-337 TL054, TL054A ENHANCED JFET PRECISION QUAD OPERATIONAL AMPLIFIERS APPLICATION INFORMATION vOltage-ratlo-to-d B converter The application in Figure 57 measures. the amplitud~ ratio of two signals and then converts the ratio to decibels. The output voltage provides a resolution of 100 mY/dB. The two inputs can be either dc or sinusoidal ac signals. When using tic signals, both signals should be the same frequency or output glitches will occur. For measuring two input signals of different frequencies, extra filtering should be added after the rectifiers. The circuit contains three low-offset TL054A devices. Two of these devices provide the rectification and logarithmic conversion of the inputs. The third TL054A forms an instrumentation amplifier. The stage performing the logarithmic conversion also requires two well-matched NPN transistors. The input signal first passes through a high impedance unity-gain buffer U1A (U2A). Then U1 B (U2B) rectifies the input signal at a gain of 0.5, and U1C (U2C) provides a noninverting gain of 2 so that the system gain is still one. U1 D (U2D), R6 (R13), and 01 (02) perform the logarithmic conversion of the rectified input signal. The instrumentation amplifier formed by U3A, U3B, U3D scales the difference of the two logarithmic voltages by a gain of 33.6. As a result, the output voltage equals 100 mY/dB. The 1-kQ potentiometer on the input of U3C calibrates the zero dB reference level. The following equations are used to derive the relationship between the input voltage ratio expressed in decibels and the output voltage. r1 VA X dB X dB VSE(01) = kT q X dB where k = J = 8.686 Qn (VA) - IJ~J LR x IS ~VBE = VBE(01) 8.686 kT / q rn (V A) - In (VB)l In (10) = 20 10gLVBJ = 20 L ~BE(01) - VBE(02) - In (VB)] VBE(02) . = kT q IJ~J LR x IS = k; Qn (VA) -In (VB)] VBE(02~ = 336~BE(01) - VBE(02~ at 25°C. = 1.38 x 10-23 , q = 1.602 x 10-19, and T is in kelvins. This would give a resolution of 1 V/dB. Therefore, the gain of the instrumentation amplifier is set at 33.6 to obtain 100 mY/dB. TEXAS ." INSTRUMENTS 2-338 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 Tl054, Tl054A ENHANCED JFET PRECISION QUAD OPERATIONAL AMPLIFIERS APPLICATION INFORMATION R2 R20 R3 30kn Vo 10 kn R19 R21 10 kn + 15 V R10 30 kn R11 10 kn 82 kn 1 kn~_--t 82 kn - 15 V NOTES: U1A through U30 = TL054A, Vee ± 01 and 02 = 1N914. = ± 15 V. Figure57. Voltage-Ratio-to-dB Converter 2 /' > I V Cl 0 '5 0 / So "I 0 0 > -- v / . S > V ,/ -1 -2 o 2 3 4 5 6 7 8 9 10 Ratio - (VAl VB) Figure 58. Output Voltage vs the Ratio of the Input Voltages for Voltage-to-dB Converter TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-339 2-340 TL061, TL061A, TL061B TL062, TL062A, TL062B, TL064, TL064A, TL064B LOW-POWER JFET-INPUT OPERATIONAL AMPLIFIERS 02392, NOVEMBER 197B-REVISEO SEPTEMBER 1990 15 DEVICES COVER MILITARY, INDUSTRIAL, AND COMMERCIAL TEMPERATURE RANGES • Very Low Power Consumption • Output Short-Circuit Protection • Typical Supply Current . . . 200 p.A (per Amplifier) • High Input Impedance ... JFET-Input Stage • Internal Frequency Compensation • Wide Common-Mode and Differential Voltage Ranges • Low Input Bias and Offset Currents • Common-Mode Input Voltage Range Includes V CC + • Latch-Up-Free Operation • High Slew Rate ... 3.5 V/p.s Typ description The JFET-input operational amplifiers of the TL061 series are designed as low-power versions of the TL081 series amplifiers. They feature high input impedance, wide bandwidth, high slew rate, and low input offset and bias currents. The TL061 series features the same terminal assignments as the TL071 and TL081 series. Each of these JFET-input operational amplifiers incorporates well-matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit. C-suffix devices are characterized for operation from 0 ac to 70 ac. I-suffix devices are characterized for operation from - 40 ac to 85 oe, and M-suffix devices are characterized for operation over the full military temperature range of - 55 °e to 125 ae. TL061, TL061A, TL061B D, JG, OR P PACKAGE DB (TOP VIEW) OFFSET Nl ININ + Vcc _ 2 7 3 4 6 5 NC VCC+ OUT OFFSET N2 TL062, TL062A, TL062B D, JG, OR P PACKAGE Tl061 ... U PACKAGE (TOP VIEW) DB (lOP VIEW) NC NC NC OFFSET N1 ININ+ AMPL {OUT IN#1 IN+ VCC+ OUT OFFSET N2 VCC- VCC- VCC- NC VCC+ """1...._ _r- OUT}AMPL ININ+ #2 PRODUCTION DATA docum.nts contlin information curr.nt as of publication data. Products conform to .pecifications per tho terms of T•••• Instrumants st.ndard warranty. Production ~rocassing doas not necaDarily includ. tasting of .11 paramaters. 7 6 4 5 Vcc + OUT} INAMPL #2 IN+ TL064 ... D, J, N, OR W PACKAGE Tl064A, Tl064B ... D OR N PACKAGE (TOP VIEW) TL062 ..• U PACKAGE (TOP VIEW) NC OUT AMPL { IN#1 IN + 2 3 AMPL { OUT IN- #1 IN + VCC+ IN+ AMPL { IN#2 OUT OUT} INAMPL IN+ #3 VCCIN+ } INOUT AMPL #4 Copyright © 1990, Texas Instruments Incorporated TEXAS • INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 On products compliant to MIL-STD·BBlC. Class B. all parameters are tested unless otherwise notad, On all other products. production processing does not IItIcassarily include tasting of all parameters. 2-341 TL061, TL061A, TL061B TL062. TL062A, TL062B, TL064, TL064A, TL064B LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIERS TL061 ... L PACKAGE TL062 ... L PACKAGE (TOP VIEW) (TOP VIEW) VCC+ NC ® OUT}~ ININ+ VCC- VCC- PIN 4 IS IN ELECTRICAL CONTACT WITH THE CASE PIN 4 IS IN ELECTRICAL CONTACT WITH THE CASE TL061 ... FK PACKAGE TL062 ... FK PACKAGE (TOP VIEW) (TOP VIEW) f:::J Z a.. ~ U Z 3 U Z 0 U U U U Z Z Z 18 NC IN - 5 17 VCC + NC (N+ NC 6 16 15 14 NC 8 ott NC # 1 INNC # 1 IN+ NC OUT NC UU Z > 18 17 16 15 14 4 5 6 8 U Z I U + U UZ ~ Z U N > TL064 ... FK PACKAGE (TOP VIEW) ~~U~ -Cr-..... V _._- 4 RL'" 10 kll = 10 kll, TA = 25°C TA = 25°C VIC = VICR min, Vo = 0, RS = 500, TA = 25°C = ± 15 V = 500, VCC to ±9 V, Vo RS TA = 25°C Va = 0, Vo = 0, TA = 25°C No load, TA = 25°C No load, leach amplifier) TA = 25°C AVO = 100, = 0, 4 rr-= -0 - en 6 1 1 1 1 10 12 10 12 10 12 10 12 0 70 86 80 86 80 86 80 86 dB 70 95 80 95 80 95 80 95 dB B 7.5 B 7.5 B 7.5 6 7.5 mW 200 250 200 250 200 250 200 250 ~A 120 120 120 120 dB t All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified. Full range for T A is 0 °C to 70°C for TlOB_ C, TLOB_AC, and TLOB _ Be and -40°C to 85°C for TLOB_I. ~ maintain the junction temperature as close to the ambient temperature as possible. en MHz :I: Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive as shown in Figure 17. Pulse techniques must be used that will % :::!:!~ g;;= 4 4 r-~ >~ V/mV range RL Supply current Crosstalk attenuation TA 2= >en 3!1: ..... ±10 6 ..... !X'= -0 V IAVCC±/AVIO) Po 10 kll, ±11 differential voltage amplification CMRR = 25°C peak output large-signal AVO TA 2== -0 en en eN .... C ..... II) .,,- !il .... .,,» m· • ............... .:.. r- r- I TL061, TL061A, TL061B TL062, TL062A, TL062B, TL064, TL064A, TL064B LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIERS operating characteristics, VCC± ± 15 V, TA = PARAMETER SR tr 25°C = 10 V, CL = 100 pF, VI = 20 mV, CL = 100 pF, RS = 100D, Slew rate at unity gain VI (see Note 5) Rise time Overshoot lactor Vn = TEST CONDITIONS Equivalent input noise voltage MIN TYP 1.5 3.5 V/".s 10 kD, 0.2 I's See Figure 1 10% RL = 10 kD, See Figure 1 RL I = = 42 1 kHz NOTE 5: Slew rate at - 55°C to 125°C is 0.7 VII's min. PARAMETER MEASUREMENT INFORMATION 10 kQ RL = 10 kH FIGURE 2. GAIN-OF-10 INVERTING AMPLIFIER FIGURE 1. UNITY·GAIN AMPLIFIER 100 kG 1.5kH VCC- FIGURE 3, INPUT OFFSET VOLTAGE NULL CIRCUIT TEXAS • INSTRUMENTS 2-348 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MAX UNIT nV/v'Hz TL061, TL061A, TL061B n062, n062A, n062B, n064, n064A, n064B LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt MAXIMUM PEAK OUTPUT VOLT AGE vs SUPPLY VOLTAGE ±15 > I GI S "0 > ... ::I CI. = o .00= : > R~ E / ±7.5 ±5 /V E j( III :!l I ±2.5 o "0 > ...= CI. ::I V o .00= III GI ±7.5 E ::I E ±5 IL V 'j( III :!l I :!l ±2.5 Vcc± - ±15 V RL - 10 kO See Figure 2 0 > 6 4 2 ±10 0 ,/ :!l o > GI 0) :! ± 12.5 /V ±10 ±15 I V_ - 1h kO ± 12.5 f- TA - 25°C See Figure 2 IL ::I MAXIMUM PEAK OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE 8 10 12 14 16 o I I I ~ 0 > ... ::I CI. ::I ... 0 ... III GI ±10 ±7.5 )1 ±5 III I :!l V~CI~ "':''' ± 15 1" 3. "... :! ± 12.5 "0 / >... ; ::I i ±2.5 / / '( R!:' - ~ II "'" kO' 10 TA - 25°C See Figure 2 vc~~II~"I~ 1~ ~ ±10 0 100 ±7.5 E ::I E 'j( V ±5 III :!l I :!l ±2.5 o > 0 > ±15 I .00= 'j( :!l 100 125 o IL E ::I E > ,~ ~. III 75 MAXIMUM PEAK OUTPUT VOLTAGE vs FREQUENCY MAXIMUM PEAK OUTPUT VOLTAGE vs LOAD RESISTANCE , 50 FIGURE 5 FIGURE 4 VCC± - ±15 V > I TA - 25°C 3. ± 12.5 See Figure 2 25 TA-Free-Air Temperature- °C IVcc± I-Supply Voltage-V ±15 o -75 -50 -25 VCC±-±5V 400 700 1 k 2 k 4 k 7 k 10k ~--- ...; o 200 IllIlll VCC±-±2V 111,1111 1k 10 k 100 k 1M 10 M f - Frequency - Hz RL - Load Resistance - 0 FIGURE 7 FIGURE 6 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS .., INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-349 n061, n061A, n061B n062, n062A. n064, n064A, n064B LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE ~10 Vcc± - ±15 V RL - 10 kO :> .:E.. I g .g VCC±-±15V .. Rext - 0 ~ 104 ~-+-~+--+--tRL - 10 kO } TA - 25°C 7 ./ - V " Q. ~ 4 « ~ .. "0 > .,QI ~ 102 ~-+--+--+"'--+--+,~--+---j 90 ° f ~ o ., c: f £ is is c > 2 ~ I I 1L-_~_~_~__-L_~__~~~180o 1 -75 -50 -25 0 25 50 75 AMPLIFICATION +--'k----Hr----i 135 ° (left scale) 10 « c «> 100 125 1 10 TA-Free-Air Temperature- °c 100 1 k 10 k 100 k 1 M 10 M f - Frequency - Hz FIGURE 9 FIGURE 8 SUPPLY CURRENT vs FREE-AIR TEMPERATURE SUPPLY CURRENT vs SUPPLY VOLTAGE 250 250 ~200 TA - 25°C No Signal No Load I e f-- ~ 8 45 ° ~ ~ PHASE SHIFT S QI Cl > ~c I 103 ,..-- ~~ « 200 10- I e ~ 150 :::J u 150 > -- r--. > Q. Q. Q. :::J §o100 '1+1 100 en I u +1 U U - r-- ::L !:} 50 50 o o 2 4 6 8 10 12 IVcc±I-Supply Voltage-V 14 16 o VCC± - ±15 V No Signal No Load -75 -50 -25 0 25 50 75 100 125 TA-Free-Air Temperature- °C FIGURE 11 FIGURE 10 toata at high and low temperatures are applicable only within the rated operaung free-air temperature ranges of the various devices. TEXAS • INSTRUMENTS 2-350 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TL061, TL061A, TL0618 TL062, TL062A, TL0628, TL064, TL064A, TL0648 LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t ALL EXCEPT TL06_C COMMON-MODE REJECTION RATIO TOTAL POWER DISSIPATED VS VS FREE-AIR TEMPERATURE FREE-AIR TEMPERATURE 30 III 3: E 25 I ....coCIl c. . C 20 "iii Q; -r-----1---.. . . . . . .gco Tl064 VCC± = ±15 V ~ No Signal No Load a:: ., 85 '0 :; ::!: i:. ~ 83 E o u TlO~l Tl060, l- 5 I I 82 a:: a:: ::!: u o o -75 -50 -25 50 25 75 100 125 81 -75 -50 -25 °c T A - Free-Air Temperature - o FREE-AIR TEMPERATURE 100 1" 3 ,--,----"-1,----,----,----.---r---.,.----, 1.03 3: ~- UNITY-GAIN BANDWIDTH -·PHASE SHIFT (left scale) .::: ~ ~ .. -6 1. 1 1---1---"'1~----+-___+-__+--+71"'-+---j 1.01 en., .§: ~ c.. -c CIl c: ~ c: ~ ~ ~ iii 0.9 0.99 E 0 z ~ ~ .~0.8 iii VCC±=±15V RL = 10 kfl E f = B 1 for Phase Shift ~+--~~t--1 zo 0.7 '--_'---..-J_--'_--l._--'-_-'-_-'-_-' -75-50-25 0 25 50 75 TA-Free-Air Temperature- r--- - 1.02 ~ b ~ 100 125 °c VCC+ = +15 V 40 CIl ~ 75 INPUT BIAS CURRENT vs FREE-AIR TEMPERATURE \IS ~ 1.2 50 FIGURE 13 NORMALIZED UNITY GAIN BANDW)DTH SLEW RATE, AND PHASE SHIFT J!! 25 TA -Free-Air Temperature- FIGURE 12 /i - / o t--+- 0 / / ~ 84 c.. iii 10 ---- I 86 a:: Tl062 I I 'Q;' 3: I I VCC±=±15V RL = 10 kfl c .g(.) 15 c c.. 87 -c I 0.98 0.97 100125 c:t c: I ;: ~ :; / 10 4 / / U ..'" co iii 0.4 ::l C. / .E I ~ / 0.1 0.04 0.01 -50 °c -- -25 ,...... o ./ 25 50 FIGURE 14 100 75 TA-Free-Air Temperature- 125 °c FIGURE 15 t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS . " INSTRUMENTS POST OFFICE BOX 655303 " DALLAS, TEXAS 75265 2-351 TL061, TL061A, TL0618 TL062, TL062A, TL064, TL064A, TL0648 LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t OUTPUT VOLTAGE vs ELAPSED TIME VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE 28 6 > 4 til 2 ..... -a ---- 7 0 ..... c:: -2 ..5 -4 r-- o . :: 16 > :; 12 ~ o \ ±15V RL - 10 kO CL - 100 pF TA - 25°C 2 o --10 8 r- / II 10%~ -4 6 4 I j 8 o > 4 ~90% T -a \OUTPUT '/~cc± If ::I Co E 20 I \ / 0 "tI > !\ / > -6 24 II I :; So ::I r~jdOT INPUT VCC± - ±15 V RL - 10 kO TA - 25°C toot,... o 0.2 t-Time-,.s 0.4 0.6 0.8 1.2 1.4 t-Time-,.s FIGURE 17 FIGURE 16 EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY ~ 100 ~ 90 I & ~ 80 \. \ 70 31 60 ~ 50 ... VCC± - ±15 V RS - 1000 TA - 25 0 C ::I .. ~ 40 " c:: 30 ..!! •i!: 20 ::I . IT II.! I 10 c:: > 0 10 40 100 400 1 k 4 k 10 k 40 k 100 k f- F,equency- Hz FIGURE 18 t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ~ TEXAS INSTRUMENlS 2-352 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TL061, TL061A, TL0618 TL062, TL062A, TL0628, TL064, TL064A, TL0648 LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIERS TYPICAL APPLICATION OAT A ~------~~----~~,--OUTPUT FIGURE 19. INSTRUMENTATION AMPLIFIER RF=100kil +15 V R1 INPUT -----e---OUTPUT -::- FIGURE 24. AC AMPLIFIER 10 kn 100 kn 1kn 0.1 J.LF ~kn 1 J.LF 100 kn 0.002J.LF 100 krl 10 kn 100 krl 50kn "::" b 0.02J.LF "::" FIGURE 25. MICROPHONE PREAMPLIFIER WITH TONE CONTROL TEXAS • 2-354 INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS. 75265 TL061. TL061 A. TL0618 TL062. TL062A. TL0628. TL06' TL064A. TL0648 LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA + 100 kD 1 kU 1 kn 100 kD FIGURE 26. INSTRUMENTATION AMPLIFIER IC PREAMPLIFIER RESPONSE CHARACTERISTICS 25 MAX BASS 20 a::I t-- 15 "C I c: .g .. " !E C. E ....en « 10 "- I'-.. 5 1p,).A'XII TREBLE; 1/ i'-,. / -..., 0 ,/ -5 V ~ r-., / ~ -10 > 11'1111 VCC± - ±15 V TA - 25°C '\. See Figure 30 ~ -15 -20 -25 ..... MIN _ T~Whf ~I~ M~,S 20 40 ....... 100 200400 1 k 2 k 4 k 10 k 20 k f - Frequency - Hz FIGURE 27 TEXAS • INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-355 n060, n060A, n060B, n061, n061A, n061B n062, n062A, n062B, n064, n064A, n064B LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA 220 kn 0.00375/lF 0.003/lF 10kn 0.03/lF 27 kn 0.Q1 /IF ~N Vcc+ ~N 100 kn I- w (/) u. u. o NC - No internal connection TL066M IS NOT RECOMMENDED FOR NEW DESIGNS description symbol The TL066 series are JFET-input operational amplifiers similar to the TL061 with the additional feature of being power-adjustable. They feature very low input offset and bias currents, high input impedance, wide bandwidth, and high slew rate. The power-control feature permits the amplifiers to be adjusted to require as little as 25 /l-W of power. This type of amplifier. which provides for changing several characteristics by varying one external element. is sometimes referred to as being "programmable." The JFET-input stage combined with the adjustable-low-power feature results in superior bandwidth and slew-rate performance compared to low-power bipolarinput devices. OFFSET NULL _ _ _ _-, Nl OFFSET NULL N2 NONINVERTING INPUT IN+ OUTPUT INVERTING INPUT IN- The TL066AC and TL066C are characterized for operation from 0 DC to 70 DC. The TL0661 is characterized for operation from - 40°C to 85 °C; the TL066M is characterized for operation over the full military temperature range of - 55 DC to 125 DC. PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not n,ecessarily include testing of an parameters. TEXAS ~ Copyright © 1990, Texas Instruments Incorporated INSTRUMENlS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-357 n066AC, n066C, n0661, n066M ADJUSTABLE LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIERS AVAILABLE OPTIONS TA OOC to 70°C VIO MAX AT 25°C SMALL-OUTLINE (D) PACKAGE CERAMIC DIP (JG) CHIP-CARRIER (FK) PLASTIC DIP (PI 15 mV TL066CD TL066CP 6 mV TL066ACD TL066ACP 6 mV TL0661D TL0661P -40°C to 85°C -55°C to 125°C 6 mV TL066MFK TL066MJG The D package is available taped and reeled. Add the suffix "R" to the device type, (e.g .. TL066CDR). schematic NONINVERTING _ _~-i_ _ _-, INPUT INVERTING INPUT 2.85 ICC ~ 2.85 + Rext • ICC(O) where Rext is in kO and ICC(OI - ICC with Rext - 0 C~~~:~L J ~--~~~.--e----e---1----e----4~--4~VCC- ~ OFFSET NULL IN1) OFFSET NULL OUTPUT (N2) Component values shown are nominal. TEXAS -1.11 INSTRUMENTS 2-358 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 n066AC, n066C, n0661, n066M ADJUSTABLE LOW-POWER JFET-INPUT OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) TL066AC, TL066C n0661 TL066M UNIT Supply voltage, Vee + (see Note 1) 18 18 18 V Supply voltage, Vee _ (see Note 1) -18 -18 -18 V Differential input voltage (see Note 2) ±30 ±30 ±30 V Input voltage (see Notes 1 and 3) ±15 ±15 ±15 V Voltage between power-control terminal and Vee- ±0.5 ±O.5 ±0.5 V unlimited unlimited unlimited Duration of output short circuit (see Note 4) eontinuous total dissipation See Dissipation Rating Table o to 70 -55to125 °e -65 to 150 - 65 to 150 -65 to 150 °e Operating free-air temperature range Storage temperature range -40 to 85 ease temperature for 60 seconds FK package 260 °e Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds JG package 300 °e Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds D or P package NOTES: 1. 2. 3. 4. 260 260 °e All voltage values, except differential voltages, are with respect to the midpoint between Vee + and Vee _. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE = 70°C TA:5 25°C DERATING DERATE POWER RATING FACTOR ABOVE TA POWER RATING TA = 85°C POWER RATING TA TA = 125°C POWER RATING D 680mW 5.8 mw/oe 33°e 464 mW 377 mW N/A FK 680 mW 11.0 mw/oe 88°e 680 mW 680 mW 275 mW JG 680mW 8.4 mw/oe 69°e 672 mW 546 mW 210 mW P 680mW 8.0 mw/oe 65°e 640 mW 520 mW N/A TEXAS. INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-359 b electrical characteristics, Vee :2> ..... ±15 V C .... 0) o TEST CONDITIONSt PARAMETER Va Via Input offset voltage Va TA Temperature coefficient Vo of input offset voltage TA Input offset current~ Va 110 Input bias current t Common-mode input 2lV> TA °VIO lIB VICR voltage range TL066C Vo Vo Va = 0, = 25°C = 0, = full range = 0, = full range = 0, = 0, = 0, = 0, MIN ~Z VOM ~iJr;;1 8C:~ ;~ AVD TA RS = 50O, RS = 50O, TA TA = = = = 25°C full range 5 25°C full range 30 = MAX 3 6 9 10 5 100 5 10 5 400 30 10 ± 11 25°C 10 10 200 200 30 20 -12 to ± 11.5 to ± 11.5 + 15 ±10 ±13.5 TA full range, RL 2: 10kn ±10 ±13.5 ±10 ±13.5 +10 ±13.5 RL 2: 10 kn, Vo = ±10V, Large-signal differential TA = 25°C voltage amplification RL 2: 10 kg, Vo = ±10V, = full range TA = 25°C, RL = 10 kn TA = 25°C f = 1 kHz TA = 25°C, VIC = VICR min, Vo = 0, RS = 50 n, TA = 25°C VCC = ±9 V to ± 15 V, Vo = TA = 25°C RS:= 50 n, No load, Vo = 0, TA = 25°C No load, Va = 0, ~~4r ro Output resistance CMRR Common-mode rejection ratio Supply voltage rejection ratio (.iVCC+/.iVIO) PD Total power dissipation ICC Supply current ~A-'" 25°C pA 20 nA 200 pA 50 nA V +15 4 100 to +15 6 fLV/oC -12 ±10 ±13.5 3 I I 9 ±10 ±13.5 output voltage swing UNIT mV 20 6 4 0, c:...= C CD en CD ..... S" ca .... ;:;;~ :2> ..... .... CD CI'::;is ..... "CI .... CI= :e= ~s: c:... 'TI m -:-I :2 "CI C V ..... CI "CI m 6 V/mV 3 TA kSVR 6 TYP 10 kn Unity-gain bandwidth N 3 MIN 2: Input resistance "'" MAX RL Bl m TYP 25°C, ri V> 15 TL066M = = TA ~rr1 il;Z 3 50O, MIN -12 Maximum peak '8rJJ ~-l MAX = -< ~ :n- TYP RS TA TA TL0661 4 1 1 1 10 12 10 12 10 12 MHz .220 220 220 ° n 70 76 80 86 80 86 dB 70 95 80 95 80 95 dB 6 7.5 6 7.5 6 7.5 mW 200 250 200 250 200 250 /LA t All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range of TA is ooC to 70°C for TL066C; -40°C to 85°C for'TL0661; and -55°C to 125°C for TL066M. The electrical parameters are measured with the power-control terminal (pin 8) connected to V CC - . ~Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature-sensitive. Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible. = :2> ..... S i2 ....:2> :2> s: "CI .... ::;; m = en TL066AC ADJUSTABLE LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIERS electrical characteristics, PARAMETER Vee = ± 15 V TEST CONDITIONSt Va = 0, Via Input offset voltage TL066AC MIN RS = 50 !l, TA = 25°C Vo = 0, TVP MAX 3 6 mV RS = 50 !l, 7.5 A = full range aVIO Temperature coefficient Vo = 0, of input offset voltage T A = full range 110 Input offset current i liB Input bias current i Common-mode input VICR VOM AVO voltage range RS = 50 !l, Vo = 0, TA = 25°C Vo = 0, T A = full range Vo = 0, TA = 25°C Vo = 0, T A = full range TA = 25°C, RL;;' 10kll, ±10 ± 13.5 T A = full range, RL ;;, 10 kll ±10 ± 13.5 RL ;;, 10 kll, Vo = ±10 V, Large-signal differential TA = 25°C voltage amplification RL ;;, 10 kll, Va = ±10 V, TA = 25°C, ri Input resistance TA = 25°C ro Output resistance TA = 25°C, f = 1 kHz Common-mode VIC = VICR min, Vo = 0, RS = 50 Il, TA = 25°C rejection ratio (AVCC+ IAVIO) ICC Total power dissipation Supply current pA 3 nA 200 pA 7 nA V to Maximum peak Supply voltage 100 ±15 T A = full range Po 30 ±11.5 TA = 25 DC Unity-gain bandwidth kSVR 5 output voltage swing rejection ratio I'V/oC 10 -12 Bl CMRR UNIT 6 Vim V 4 1 RL = 10 kll MHz 10 12 VCC = ±9Vto±15V,VO=0, RS = 50 Il, TA = 25°C No load, Vo = 0, TA = 25°C No load, 4 V Vo = 0, TA = 25°C Il Il 220 80 86 dB 80 95 dB 6 7.5 mW 200 250 ,.A t All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range of T A is °C to 70°C. The electrical parameters are measured with the power-control terminal connected to Vce _. ilnput bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature-sensitive. Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible. ° ~ TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-361 n066AC, n066C, n0661, n066M ADJUSTABLE LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIERS operating characteristics, Vee ± ± 15 V, TA = 25°e, Rext PARAMETER SR tr = 10 V, CL = 100 pF, VI = 20 mV, CL = 100pF, RS = 1000, VI Slew rate at unity gain Rise time Overshoot factor Vn o TEST CONDITIONS Equivalent input noise voltage MIN TYP 1.5 3.5 V/p.s 10 kO 0.2 p.s See Figure 1 10% RL = 10 kO, See Figure 1 RL f = = 1 kHz 42 MAX UNIT nV/$z PARAMETER MEASUREMENT INFORMATION 10 kO RL - 10 kO FIGURE 1. UNITY·GAIN AMPLIFIER FIGURE 2. GAIN·OF·10 INVERTING AMPLIFIER i VCC- FIGURE 3. INPUT OFFSET VOLTAGE NULL CIRCUIT 2-362 ~ TEXAS INSTRUMENTS POST OFFICE BOX 855303 • DALLAS. TEXAS 75285 TL066AC, TL066C, TL0661, TL066M ADJUSTABLE LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t MAXIMUM PEAK OUTPUT VOLTAGE vs SUPPLY VOLTAGE INPUT BIAS CURRENT vs FREE-AIR TEMPERATURE 100 40 c:( .... Vcc+ - +15 V Rext - 0 I-- 8, ± 12.5 / f! '0 I c > S So :l 4 t: / :l (.) .. / .. '" iii o .... ..'" 0.4 :l E E / :l V 0.1 j! ±10~~--+--+--~- ± 7.5 ~---+---+--+- ~ Co .E I RL - 10 kO TA - 25 °C ~---1--+--+-----c,f----j See Figure 2 I 10 c > ±5~-i--+- 'j( '" ::!: 0.04 --I-"" 0.01 -50 -25 o I ./ ::!: o > 25 50 100 75 O~-J o 125 FIGURE 4 ±15 ±12.5 .. RL - 2 kO > :l Co E :l E 'j( ::!: 16 ±15 ..5. '0 > ±10 S ±10 o .... ±7.5 \\ ±5 ~ ±7.5 E :l E ±5 'j( '" ::!: I 14 f!±12.5 i'-.. S .... 12 II> Cl 0 :.'" 10 I :--... '0 8 MAXIMUM PEAK OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE > RL - 10 kO I 6 FIGURE 5 MAXIMUM PEAK OUTPUT VOLTAGE vs EXTERNAL CONTROL RESISTANCE .. E 4 IVcc± I-Supply Voltage-V TA - Free-Air Temperature- °C > _ _- L_ _- L_ _~_ _~_ _~-J_ _~ 2 '"I Vcc± .. ±15 V Rext - 0 ::!: ±2.5 RL - 10 kO o See Figure 2 > I I I o -75 -50 -25 0 ::!: ±2.5 0 > 0 ~VCC± - ±15 V TA .. 25°C 111111111 10 lillUIH 100 1 k 10 k 100 k Rext-External Control Resistance-O 25 50 75 100 125 TA -Free-Air Temperature- °C FIGURE 6 FIGURE 7 t Data at high and low temperatures are applicable only within the rated free-air temperature ranges of the various devices. ~ TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2---363 n066AC, n066e, n0661, n066M ADJUSTABLE LOW-POWER JFET-INPUT OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt MAXIMUM PEAK OUTPUT VOLTAGE vs FREQUENCY MAXIMUM PEAK OUTPUT VOLTAGE vs LOAD RESISTANCE ±15 VCC± - ±15 V I Rext - 0 8, ± 12.5 TA - 25°C See Figure 2 -a'" ±10 :::J ... V GI Cl I-"" B ± 12.5 ~ V 0 ~ o V ±7.5 "":.'" E :::J E 'j( '" :!: I :!: ±2.5 / "" E :::J E V '" :!: I :!: ±2.5 ,/ 0 100 ±5 'j( o > 0 > Vc~~II~"I~ 1~ ~ :. ±7.5 )1 ±5 VCC±-±5V VCC±-±2V 400 700 1. k 2 k ""' " o 200 1- II 11111 ± 10 '$ Q. :::J 10 k f- Frequency- Hz FIGURE 9 DIFFERENTIAL VOLTAGE AMPLIFICATION vs EXTERNAL CONTROL RESISTANCE ~ 8 :> I 7 g 5 2 ;E c I c ~ 0 f-- E 4 < GI Cl 11o '0 ~ 2! / Q. 3. 4 3 VCC± - ±15 V Rext - 0 RL - 10 k[) !E i' f! 'ii 7 'B 6 > DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE ~ 10 :> ~ 10 M 1M 100 k FIGURE 8 =a ~ 111.1111 1k 4 k 7 k 10k RL - Load Resistance - [) bo ~ R~~t - 0 RL - 10 k[) TA - 25°C See Figure 2 V~CI± 11_"I± 15 1" I > > ... ±15 > > \ !c 2 2! £ Vc C±-±15V -RL - 10 k[) TA - 25°C J'l'llfUl 1 10 I! lIlilil 100 is I c ~ 1 I 1k 10k lOOk -75 -50 -25 0 25 50 75 100 125 T A - Free-Air Temperature - °C Rext - External Control Resistance - [) FIGURE 11 FIGURE 10 tOata at high and low temperatures are applicable only within the rated free-air temperature ranges of the various devices. ~ TEXAS INSTRUMENTS 2--364 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 H066AC, H066C, H0661, H066M ADJU~TABLE LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt LARGE SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT SUPPLY CURRENT vs vs FREQUENCY SUPPLY VOLTAGE ~ 105 r--..,---,----,------,--,.---..,.--.., :> b .gco 250 ~ TA .!. 25°C = I ~ ~ 103 I Rext = 0 TA = 25°C ~200 _No Signal No Load c: VCC±=±15V Rext = 0 104 1--+--...-1----+------4 Rl = 10 kfl ~~ ~ PHASE SHIFT 450 :; .c ~ - u!; 150 ~ ~ f-.-- I--- >- ~ ~ Co ::J g 10 2 r---+----+---+-"'"--'l,..--!-II;.;~+----I 90 ° £ cr 100 iii .'c:" 10 is I o ~ 1 +1 U VOLTAGE AMPLIFICATION +---'\c---+-'t--i 135° (left scale) ~ Q; ::: L - _ . . . . l . - _ - - L _ - ' - _ - - - '_ _-'---_lL..-L~ 1 10 1 k 100 10k 100 k 1 M J:? 50 o 180 ° 10M o 2 FIGURE 12 11111111 11111111 VCC± = ± 15 V 200 vs :; U Co ::J +1 U J:? 11111 1111111 : I 11111 +6 V ex: I'I I ' , 20 .- ...c:I ~ 150 !; >- ~ ~ ~ g- 100 I ~ I +1 U i IIIII 10 100 1k 10 k VCC± = ± 15 V -Rext = 0 No Signal No load I I I o J:? 50 1= 4 i----. u ~' TA = 25°C See Figure 1 10 No Signal 7~ I--- No Load ----- 200 :I. ! + >- I I! ~ ~ ~ I1111111 VCC+ VCC± = ±2 V 70 40 16 250 400 100 14 FREE-AIR TEMPERATURE EXTERNAL CONTROL RESISTANCE ~ 12 SUPPLY CURRENT vs ... 10 FIGURE 13 SUPPLY CURRENT I c: 8 IVcc±I-Supply Voltage-V f-Frequency-Hz ex:::<. 6 4 100k -75 -50 -25 0 25 50 75 100 125 T A - Free-Air Temperature - °C Rext - External Control Resistance - fl FIGURE 14 FIGURE 15 tData at high and low temperatures are applicable only within the rated free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-365 n066C, n066AC, nOSHI, TL066M ADJUSTABLE LOW-POWER JFET·INPUT OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t ALL EXCEPT TL066C COMMON-MODE REJECTION RATIO vs EXTERNAL CONTROL RESISTANCE TOTAL POWER DISSIPATION vs EXTERNAL CONTROL RESISTANCE 10000 III 87 "I ~ .g 4000 I--Vcc+ = +15V =. I - nll~1 III1I1111 c o YP~I~ '~ 1000 a:'" ±6 V = .g t'-.. 1111 86 / III 2: ... I \ ~i\ 80 Gl III '0 I Rext ~ c I 100 kO I Rext = 10 kO 60 ~ Co -: = VCC± = ± 15 V RS = 1000 TA = 25°C r-. :::J Rext = 0 40 Gl ~ (.) 'g. I 82 a: a: 20 w I c ::iE (.) 10 k FIGURE 17 FIGURE 16 87 1 k Rext-External Control Resistance-O Rext - External Control Resistance - 0 III I i 8 1IIIIIIr II 1 84 C ~ 83 E r= 10 I ::iE I\. 25°C TA I-- No Signal 40 I-- No Load l- -!o " 1--. I-- . r\ I a: +2 V I 81 -75 -50 -25 o > 25 50 75 100 125 0 10 40 100 T A - Free-Air Temperature - °C 4 k 10 k 40 k 100 k 400 1 k f - Frequency - Hz FIGURE 19 FIGURE 18 t Data at high and low temperatures are applicable only within the rated free·air temperature ranges of the various devices, TEXAS 2-366 ~ INSTRUMENTS POST OFFiCE BOX 655303 ' DALLAS, TEXAS 75265 n066AC, n066C r n0661, n066M ADJUSTABLE LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t UNITY GAIN BANDWIDTH vs EXTERNAL CONTROL RESISTANCE EQUIVALENT INPUT NOISE VOLTAGE vs SOURCE RESISTANCE 4 5 11111 Rext - 0 >=I. .. ii > .. I CI> «I .. 4 ......... 1-- N i 1.11 ~ I-- i CT w 'OJ ~ 0.4 ~ )J !..0.2 III i il ~iI~C I II 10 l"\ ::I T 0 f'. '2 1 VCC± = ±1 1 RL = 10 kO I c > c I II Q. .5 2 ±2 V ~ 0.7 100 kO ::I I ±15 V ~ c 2 = J.II 'i '0 iii > 'S VCC+ ti 50 kO 3 2 I 5 kO RL - 10 kO TA - 25°C jlllllill 0.1 40 100 400 1 k 4 k 10 k Rs-Source Resistance-O 1 40 k 100 k ! 1.3 ,...--,---,---,--,,--,---,---r--. 1.03 a: VCC± = ±15 V RL - 10 kO CL = 100 pF TA = 25°C See Figure 1 ~~ 100 k NORMALIZED UNITY GAIN BANDWIDTH SLEW RATE, AND PHASE SHIFT vs FREE-AIR TEMPERATURE III ~TTTm 3 10 k FIGURE 21 SLEW RATE vs EXTERNAL CONTROL RESISTANCE ~ 1 k 100 Rext- External-Control Resistance - 0 FIGURE 20 4 I I 10 ~ I ~ 1.2 UNITY-GAIN BANDWIDTH ~PHASE SHIFT 1.02 Iii ~ 'i (left scale I i :t: 1.11----l--~P'-_+--+--+---+_;~1_____11.01 ; ~ c r'\~ ~ ~ .~ c ~ ~ ~ .~ I c:.c :5 ~ 0.9 I----t---+---+--+---+---f"'-,.,--I--~ iii 0.99 ~ 2 ~ .~0.8 VCC± - ±15V -+----11--+---1 0.98 RL = 10 kO ~ f = B1 for Phase Shift 2 0.7 L-......J'-----'-_ _- - ' - _ .-L_......._..I.-__.L..--....J 0.97 -75 -50 -25 0 25 50 75 100 125 TA-Free-Air Temperature- °C iii ~ o 100 k 10 k 1k 100 10 Rext- External-Control Resistance - 0 FIGURE 23 FIGURE 22 t Data at high and low temperatures are applicable ani V within the rated free-air temperature ranges of the various devices. TEXAS . " INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-367 n066AC, n066C, n0661, n066M ADJUSTABLE LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt OUTPUT VOLTAGE vs ELAPSED TIME VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE 28 6 --- INPUT / 4 > / I II> Q) . ., Cl 2 > :; 0 9:s 0 "tl .,c .. -2 / :s Co .5 -4 ~ -6 1/ o E 20 I ~ 16 > :; 12 9:s o \ I o > 4 6 Rext - 0 RL - 10 kO TA = 25°C o t-tp. -4 4 VCC±=±15V 10% ,... --- TA - 25°C 2 8 I ~ 90oA, / / "0 \OUTPUT VCC± - ±15 V Rext = 0 RL = 10 kO CL = 100 pF It Q) \ / OT > 1\ / "0 r."ld 24 8 o 10 0.2 t-Time-jts 0.4 0.6 0.8 1.2 t-T-ime-jts FIGURE 24 FIGURE 25 tData at high and low temperatures are applicable only within the rated free-air temperature ranges of the various devices. TYPICAL APPLICATION DATA Vcc+ INPUT 100 kll A i>------------4I~.....OUTPUT 100 kll Vcc- INPUT 100 kll B 10 kll. 0.1% 10 klJ. 0.1% Vcc- Vcc- FIGURE 26. INSTRUMENTATION AMPLIFIER TEXAS • INSTRUMENTS 2-368 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 1.4 TL066AC, H066C, TL0661, TL066M ADJUSTABLE LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIERS TYPICAL APPLICATION OATA 10 k!l n:r 0.1 I'F 47 k!l 1 I'F 1.2 M!l 100 k!l 0.061'F 0.061'F 100 k!l 1 k!l = 10 k!l 0.0021'F 50 k!l 100 k!l FIGURE 27. MICROPHONE PREAMPLIFIER WITH TONE CONTROL 0.1 I'F 1 M!l Rext PWR CONT FIGURE 28. AC AMPLIFIER TEXAS . " INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-369 Tl066AC· ADJUSTABLE LOW·POWER JFET·INPUT OPERATIONAL AMPLIFIER TYPICAL APPLICATION DATA IC PREAMPLIFIER RESPONSE CHARACTERISTICS 25 "c:I "'- ~ 5 "- 0 E VCC±=±15V TA = 25°C See Figure 30 " 10 .g ..CJ :eQ. .... -5 I'-- 15 III -10 V I~~~II II IIII MAX BASS 20 ..-/ -..... TREBLE:; V I"- / -15 -20 MIN ...... 1-" -25 40 _ T~Whf MIN Bt}SS 20 ......... 100 200 400 1 k 2 k 4 k 10k 20 k f-Frequency-Hz FIGURE 29 220 kO 0.003751'F 0.0031'F 10 kO 0.031'F 27 kO MIN MIN 0.011'F VCC+ 100 kO >4____~e-~~~-4NY~.>100kO TREBLE BASS 3.3 kO MAX MAX OUTPUT 0.031'F 10 kO Rext + 47 kO 68 kO 50 pF FIGURE 30. Ie PREAMPLIFIER TEXAS • 2-370 VCC+ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TL070, TL071, TL071A, TL071B n072, n072A, n072B, n074, n074A, n074B LOW·NOISE JFET·INPUT OPERATIONAL AMPLIFIERS D2393, SEPTEMBER 1978-REVISED SEPTEMBER 1990 19 DEVICES COVER COMMERCIAL. INDUSTRIAL. AND MILITARY TEMPERATURE RANGES • Low Power Consumption • Low Noise, , . Vn = 18 nV/$z Typ • Wide Common-Mode and Differential Voltage Ranges • High Input Impedance, .. JFET-Input Stage • Low Input Bias and Offset Currents • Output Short-Circuit Protection • Latch-Up-Free Operation Low Total Harmonic Distortion, • High Slew Rate ... 13 V /P.s Typ • • Internal Frequency Compensation (Except n070) 0.003% Typ • Common· Mode Input Voltage Range Includes V CC + description The JFET-input operational amplifiers in the TL07 _ series are designed as low-noise versions of the TL08_ series amplifiers with low input bias and offset currents and fast slew rate. The low harmonic distortion and low noise make the TL07 _ series ideally suited as amplifiers for high-fidelity and audio preamplifier applications. Each amplifier features JFET-inputs (for high input impedance) coupled with bipolar output stages all integrated on a single monolithic chip. The C suffix devices are characterized for operation from 0 DC to 70 DC. The I suffix devices are characterized for operation from -40°C to 85°C. The M suffix devices are characterized for operation over the full military temperature range of - 55 DC to 125 DC. AVAILABLE OPTIONS PACKAGE TA VIO MAX SMALL CHIP CERAMIC CERAMIC METAL PLASTIC PLASTIC FLAT AT 25°C OUTLINE CARRIER DIP DIP CAN DIP DIP PACK (D) (FK) (J) (JG) (L) (N) (P) (W) 10 mV 10 mV O°C to 70°C TL070CD TL070CP TL071 CD TL071 CP 6 mV TL071ACD n071 ACP 3 mV TL071 BCD TL071BCP 10 mV TL072CD TL072CP 6 mV TL072ACD n072ACP 3 mV TL072BCD 10 mV TL072BCP TL074CD TL074CN 6 mV TL074ACD TL074ACN 3 mV TL074BCD TL074BCN -40°C 6 mV TL0711D to 6 mV TL072ID 85°C - 55°C 6 mV TL0741D 6 mV TL071 MFK TL071 MJG TL071ML to 6 mV TL072MFK TL072MJG TL072ML 125°C 9 mV TL074MFK TL0711P TL072P TL0741N TL074MJ TL074MW The D package is available taped and reeled. Add the suffix R to the device type (e.g., TL071 CDR). PRODUCTION DATA documents contain information current as of publication data. Products conform to spacifications par the tarms of Taxas Instrumants standard warranty. Production processing does not necessarily include tasting of all parameters, TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Copyright © 1990, Texas Instruments Incorporated 2-371 TL07l TL071, TL071A, TL071B TL072, TL072A, TL072B, TL07~TL074A, TL074B LOW·NOISE JFET·INPUT OPERATIONAL AMPLIFIERS n070 o OR P PACKAGE n07l. TL071A. n07l8 D. JG. OR P PACKAGE (TOP VIEW) (TOP VIEW) N1/COMP[]8 CaMP IN2 7 VCC+ IN + 3 6 OUT VCC - 4 N1/0FFSET[]8 NC IN2 7 VCC.+ IN + 3 6 OUT OFFSET N2 5 TL072. TL072A. TL072B D. JG. OR P PACKAGE (TOP VIEW) VCC _ 4 5 AMPL #1 OFFSET N2 {OUT ININ + 08 VCC _ 2 3 7 6 VCC+ OUT}AMPL IN #2 4 5 IN + TL074. TL074A. TL0748 D. J, OR N PACKAGE TL074 ... W PACKAGE (TOP VIEW) AMPL{OUT #1 ININ+ OUT}AMPL IN #3 IN+ VCC- VCC+ IN+}AMPL IN #4 OUT AMPL{ IN+ #2 INOUT n071 ... L PACKAGE TL072 ... L PACKAGE (TOP VIEW) (TOP VIEW) NC VCC.). N ~ N2 « VCC- VCC- PIN 4 IS IN ELECTRICAL CONTACT WITH THE CASE PIN 4 IS IN ELECTRICAL CONTACT WITH THE CASE TL07l FK PACKAGE (TOP VIEW) 4 18 NC 5 17 NC 6 16 VCC+ NC 15 OUT 14 NC 8 9 10 11 12 13 U Z I U N UZ Z U > 3 2 II- U U z::J 3 18 5 17 VCC+ NC 6 16 2 IN·NC 21N+ 8 17 2 OUT NC 6 16 NC 15 14 18 9 10 11 12 13 U Z NC-No internal connection TEXAS • INSTRUMENTS 2-372 1 20 19 4 4 5 8 2 1 IN+ NC NC 1 IN- NC I ::Jz ~~ZZ 1 20 19 NC ININ+ NC ° ::J ZZZZZ 2 U (TOP VIEW) + I- U~U.uu 3 TL074 FK PACKAGE TL072 FK PACKAGE (TOP VIEW) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 10 11 12 13 41N+ NC 15 VCCNC 14 31N+ TL070, TL071, TL071A, TL071B TL072, TL072A, TL072B, TL07~ TL074A, TL074B LOW·NOISE JFET·INPUT OPERATIONAL AMPLIFIERS schematic (each amplifier) VCC+------------~--------------_e----------~--~------__- -__--~ -+________-, NONINVERTING ____________ INPUT INVERTING INPUT --+1--' ~ {NULL/CO~~~NE~ o - - -- - - -- -- -- 1t'" OFFSET ~ NULL IN2) - - COMP--- - - - - - - - Cl I __ -.J II 1080 n I VCC_~-~~----_4~--~-~I~~---~~--~~---a~-J OFFSET NULL ,IN1) OFFSET NULL IN2), C1 = 18 pFONTL071, TL072 , TL073, AND TL074 ONLY. COMPONENT VALUES SHOWN ARE NOMINAL. ~--------~V~-----------J TL071 ONLY symbols TL070 Nl ICOMP - - - - - - , TL071 TL072 lEACH AMPLIFIER) TL074 lEACH AMPLIFIER) Nl----...., COMP-----, IN+ IN+ OUT OUT IN- N2------I IN- IN+=t>IN- OUT - N2---~ -1!1 TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-373 n070, n071, n071 A, n071 B n072, n072A, n072B, n074, n074A, n074B LOW·NOISE JFET-INPUT OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) TL07~C TL07~AC TL07~1 TL07~M UNIT TL07~BC Supply voltage, Vee + (see Note 11 18 18 18 V Supply voltage, Vee _ (see Note 11 -18 -18 -18 V Differential input voltage (see Note 21 ±30 ±30 ±30 V Input voltage (see Notes 1 and 31 ±15 ±15 ±15 V unlimited unlimited unlimited Duration of output short circuit (see Note 41 Continuous total dissipation See Dissipation Rating Table o to -40 to 85 -55to125 DC - 65 to 150 -65 to 150 -65to150 DC Operating free-air temperature range Storage temperature range Case temperature for 60 seconds FK package Lead temperature 1,6 mm (1/16 inchl from case for 60 seconds Lead temperature 1,6 mm (1116 inchl from case for 10 seconds Lead temperature 1,6 mm (1116 inchl from case for 10 seconds NOTES: 1. 2. 3. 4. 70 J, JG, or W package D, N, or P package 260 260 DC 300 DC DC 260 L package DC 300 All voltage values, except differential voltages, are with respect to the midpoint between Vee + and Vee _. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TA'; 25°C DERATING DERATE TA = 70°C TA = 85°C TA = 125°C POWER RATING FACTOR ABOVE TA 33 De POWER RATING POWER RATING POWER RATING 464 mW 377 mW N/A 608 mW 494 mW N/A 680 mW 680 mW 275 mW D (8-pinl 680mW 5.8 mWIDe D (14-pinl 680 mW 7.6 mWIDe FK 680 mW 11.0 mWIDe 60 De 88 De J 680 mW 11.0 mWIDe 88 De 680 mW 680 mW 275 mW JG 680 mW 8.4 mWIDe 69,De 672 mW 546 mW 210 mW L 680mW 6.6 mWIDe 528 mW 429 mW 165 mW N 680mW 9.2 mWIDe 25 De 76 De 680 mW 598 mW N/A P 680mW 8.0 mWIDe 640 mW 520 mW N/A W 680 mW 8.0 mWIDe 640mW 520 mW 200 mW 65 De 65 De ~ TEXAS INSTRUMENTS 2--374 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TL071M, TL072M, TL074M LOW·NOISE JFET·INPUT OPERATIONAL AMPLIFIERS electrical characteristics, Vee ± = ± 15 V (unless otherwise noted I TL071M PARAMETER TEST CONDITIONst MIN VIO Input offset voltage "Via coefficient of Temperature input offset voltage Input offset 110 liB current t Input bias current Common-mode VICR VOM AVD input voltage range Vo RS = 25°C = - 55°C = 0, RS = 50 = - 55°C to 125°C Va = Vo = Va TA a TA TA a TA = = = = TYP 3 MAX 6 MIN TA = 0, 3 25°C 5 -55°C to 125°C 65 100 5 200 65 50 -55°C to 125°C ± 11 = Maximum RL RL 2: 10 kO voltage swing RL 2: 2 kO Large-signal Va 10 kO = ±10V, TA = 25°C TA = -55°C to 125°C TA = 25°C TA = - "V/oC 100 pA 20 nA 200 pA 50 nA ± 11 to V to +15 ±12 ± 13.5 ±12 ±13.5 ±12 ±12 ±10 ±10 200 35 V 200 Vim V differential voltage RL2:2kO = 25°C = 25°C VIC = VICR RS = 50 0, Unity-gain bandwidth TA Input resistance Common-mode rejection ratio Supply voltage rejection ratio mV -12 +15 35 9 18 20 25°C UNIT MAX 15 18 25°C TYP 9 to 125°C -12 r; ICC TA TA Bl kSVR TA 0, peak output amplification CMRR = 0, = 50 TL074M TL072M 55°C to 125°C TA VCC RS = = No load, (each amplifier) TA = Vol IV02 Crosstalk attenuation AVD TA = 0, 25°C ±15Vto ±9V,VO 50 0, IAVCC+/AVIO) Supply current = min, Va TA = 25°C Va = 0, TA = 25°C = 0, 100, 3 3 10 12 10 12 MHz 0 80 86 80 86 dB 80 86 80 86 dB 25°C = 15 15 1.4 120 2.5 1.4 120 2.5 mA dB t All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified. tlnput bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive as shown in Figure 6. Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible. TEXAS • INSTRUMENTS POST OFFICE BOX 655303 ' DALLAS. TEXAS 75265 2-375 zOl electrical characteristics, Vee ± ± 15 V (unless otherwise noted) TL070C Tl071C TEST CONDITIONS t PARAMETER TlO72C TL074C MIN VIO Input offset voltage RS Temperature CiVIO Vo coefficient of input offset voltage TA = 0, = full Vo =0 Vo =0 TA = 25°C Vo Input offset 110 liB ~ (J) current i Input bias current; TA = full Common-mode VICR i:lZ ~~ VOM ~c: ~rr1 ~z input voltage range RS = TA = 25°C = full range = 25°C = full range TA TA TA - AVO = RL RL"'10kll 50 II, voltage swing RL '" 2 kll Vo = TA ± 10 V. = 25°C 5 TL074BC TL0741 TYP MAX 3 6 100 5 10 65 ±12 200 65 ±12 ±12 ±10 ±10 TA = 25°C 25 TA = full 15 200 3 50 MIN 100 5 65 100 5 200 65 -12 ±12 ±11 ±13.5 ±12 ~V/oC 100 pA 2 nA 200 pA 20 nA V to ±13.5 ±12 V ±10 ±10 50 mV +15 ±12 200 6 -12 to +15 ±13.5 MAX 18 7 ±11 UNIT 8 2 200 to TYP 3 18 +15 ±13.5 MAX 2 5 -12 ±11 to TYP 7 ±12 = full MIN 2 7 TA range TlO721 TL074AC 18 18 ±11 10 kll Tl0711 TlO72BC 7.5 +15 Maximum Large-signal ~@~ ..'"'"'" MIN Tl071BC TlO72AC 13 range peak output 200 50 200 V/mV differential voltage range 25 25 25 ,... =-t :e"" .= iii ..... ='" C;;:... m,... c.,.= ..... amplification RL '" 2 kll Bl Unity-gain bandwidth TA 3 3 3 3 'i Input resistance TA 10 12 10 12 10 12 10 12 II m'" -t:=O iii-t .",...-t (J) .... 10 -12 0 '~f MAX 3 range .... ::1- .;~ TYP I TA = 25°C = II, = 50 II Tl071AC CMRR Common-mode rejection ratio Supply voltage kSVR rejection ratio = 25°C = 25°C VIC = VICR RS = 5011, RS = 25°C = ±15Vto ±9V, Vo = 0, = 50 II, TA = 25°C Supply current No load, (each amplifier) TA V0 1/V 02 Crosstalk attenuation TA = 0, VCC (AVCC±/AVIOI ICC min, Vo = 25°C AVO = 100, Vo = 0, TA = 25°C MHz 70 100 80 100 80 100 80 100 dB 70 100 80 100 80 100 80 100 dB 1.4 120 2.5 1.4 120 2.5 1.4 120 2.5 1.4 120 2.5 mA dB t All characteristics are measured under open-loop conditions with zero common·mode voltage unless otherwise specified. Full range for T A is OOC to 70°C for TL07 _C, TL07JC, TL07 _BC and -40°C to 85°C for TL07-'. ~Input bias currents of a FET-input operational amplifier are normal junction reverse currents. which are temperature sensitive as shown in Figure 6. Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible. .." .- C=,... -t ..... "' ..... =a::I= = -m-t-t =,...,... ." :=0== -t .......... -.po ..... =iiI-t-t :=0"""" ,...== .......... _ -.po ..... !I'::=o:=o .,,- - ,... -t-t - ,...,... ::!!== m .......... =.po ..... CI.Ia::IClCI TL070, TL071, TL071A, TL0718 n072, n072A, n072B, n074, n074A, n0748 LOW·NOISE JFET·INPUT OPERATIONAL AMPLIFIERS operating characteristics, VCC± PARAMETER Slew rate at unity gain tr Rise time overshoot factor In THO Equivalent input noise voltage Equivalent input noise current Total harmonic distortion TL07_M TEST CONDITIONS SR Vn ± 15 V, TA - 25°C V, ~ CL V, ~ ~ 10 V, RL 100 pF, 20mV, See Figure 1 RL See Figure 1 CL ~ 100 pF, RS ~ 100 Il If If RS ~ 100 Il, f ~ ~ MIN TYP 5 13 2 kll, 2 kll, 1 kHz TYP 8 13 MAX UNIT V/p.s 0.1 20 20 /Ls % 18 18 nV/$. 4 4 /LV 0.01 0.01 pAl$. 0.003 0.003 % ~ 10 Hz to 10 kHz ~ MIN 0.1 ~ 1 kHz VO(rms) ~ 10 V, RS :s; 1 kll, f ~ 1 kHz RL '" 2 kll, ALL OTHERS MAX PARAMETER MEASUREMENT INFORMATION 100 kll 10 kll RL 2 kll FIGURE 2. GAIN-OF-10 INVERTING AMPLIFIER FIGURE 1. UNITY·GAIN AMPLIFIER FIGURE 3. FEED-FORWARD COMPENSATION INPUT OFFSET VOLTAGE NULL CIRCUITS FIGURE 5 FIGURE 4 TEXAS ~ INSTRUMENTS POST OFFICE eox 655303 • DALLAS, TEXAS 75265 2--377 n070, n071, n071A, n071B n072, n072A, n072B, n074, n074A, n074B LOW·NOISE JFET·INPUT OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt MAXIMUM PEAK OUTPUT VOLTAGE vs FREQUENCY INPUT BIAS CURRENT vs FREE·AIR TEMPERATURE ±15 100 !.. I / L ~ . c: I c: 10 ~ :l .. V CJ co .. ; o :; ±10 ~ ±7.5 iii &. :l E Q. "i ~ ~ / 0.1 'xco ±5 \ VCC± = ±10 V r-- VCC+-±5V ~ I ~ o > 0.01 -50 -25 0 25 50 75 100 125 ±2.5 r\ o 1k 100 T A - Free-Air Temperature - °C ±15 CD r6' =: o ± 12.5 r-- > :; So :l ±10 VCC± = ±10 V o ~ RL l )111 111111111 III VCC± - ±15 V r-- TA - 25°C See Figure 2 I " . -= ±7.5 'xco ~ ±2.5 100 I 1 k 10k 100k \1 IIIIII I \~TA :l VCC±-±5V o t:= TA - 25°C o E ~ o ±12.5 ±10 i ±5 > vcc± - ±15V RL - 2 kO See Figure 2 111111111 > ~ ~ !. &. 'xco 10 M ±15 I '0 ±7.5 E E 1 M MAXIMUM PEAK OUTPUT VOLTAGE vs FREQUENCY > = 2 kO &. :l 100 k FIGURE 7 MAXIMUM PEAK OUTPUT VOLTAGE vs FREQUENCY I 10 k f - Frequency - Hz FIGURE 6 > TA - 25°C See Figure 2 ~ ±12.5 ~ / c: RL '';; 10 kO VCC± ':"±15 V > VCC+-+ 15V " 1M 10M -55°C ~ TA - 125 0 C\ ±5 ±2.5 ~ o > - o 10 k f - Frequency - Hz FIGURE 8 ~ \ 'r--- ~~ 40 k 100 k 400 k 1 M f-Frequency-Hz 4 M 10 M FIGURE 9 toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. An 18-pF compensation capacitor is used with TL070. ~ TEXAS INSTRUMENTS 2-378 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 n070, n07l, n07l A, n07l B TL072, TL072A, TL072B, TL074, TL074A, TL074B LOW·NOISE JFET·INPUT OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt MAXIMUM PEAK OUTPUT VOLTAGE vs LOAD RESISTANCE MAXIMUM PEAK OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE > ±15 QI r-- "6 > So :::I ±10 ~ ± 12.5 "6 > .. .Ole ±7.5 l. l. E :::I E E .. ±5 I .. :::!: ±2.5 :::!: o > ±5 E ';( o I Vcc± - ±15 V See Figure 2 o -75 -50 -25 ±2.5 :::!: o > 25 50 75 o 100 125 )t' I I 0.1 0.2 > ±15 RL - 10 kO TA - 25°C I E ; ±10 So :::I o ~ ±7.5 /./ l. E :::I E ';( . :::!: I ±5 ;; V ± 12.5 -a > / V I c .. /V 400 .g 200 !i: Q. E " 100 c:( 40 QI l!! 20 > ~c 10 QI 4 "6 2! ~ :::!: o > 1000 I o C o 2 -r-- r--..... CI / ±2.5 7 10 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE MAXIMUM PEAK OUTPUT VOLTAGE vs SUPPLY VOLTAGE QI 0.4 0.7 1 4 2 RL -Load Resistance-kO FIGURE 11 FIGURE 10 go / V TA-Free-Air Temperature- °C > V V ±7.5 :::I ';( :::!: ± 10 ; o o ~ Vcc± - ±15 V TA - 25°C See Figure 2 QI &. _... ±15 I - RL - 2 kO ~ ± 12.5 ; > RL - 10 kO I 6 10 12 14 8 IVcc± I-Supply Voltage-V 4 16 > c:( 2 VCC± - ±15 V VO-±10V RL - 2 kO 1 o 25 50 75 100 125 -75 -50 -25 T A - Free-Air Temperature - °C FIGURE 12 FIGURE 13 to ata' at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. An 18-pF compensation capacitor is used with TL070. TEXAS • INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-379 n070. n071. n071A. n071B n072. n072A. n072B. n074. n074A. n074B LOW·NOISE JFET·INPUT OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt TL070 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION and PHASE SHIFT vs FREQUENCY DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREQUENCY WITH FEED-FORWARD COMPENSATION 106r--~-~-~-'--~--r-~ VCC-±15V C2-3pF TA - 25°C See Figure 3 .......... 1\ c VCC± - ±5Vto ±15V RL-2kO ~ 10 5 r-'--+--~r-'-TA _ 25°C .! ict 10 r-... '\ :j ! 102 I Q 10 ~ "- l 1 100 1k 10 k 100 k f- Frequency- Hz t I ~ 103+---~r-+--~~ ~ ~ i ! 1021--+-~~_+--+~+-.....Ir;;::---l900 1\ 1\ 1M 0 G) 0 i •=_G) Q 610 1 (right scalel l 135° 1'--_~_~_~_~_-L_.....L...~J1800 10 M 1 100 1 k 10 k 100 k 1 M 10 M f- Frequency - Hz 10 FIGURE 14 FIGURE 15 COMMON-MODE REJECTION RATIO vs FREE-AIR TEMPERATURE 1.3 r---r--,---,-,---,---,r---r---, 1.03 r:II 89 Vcc± - ±15V RL - 10 kO "t:I I .g 1.02 1.2 r-'---t-~- I iii NORMALIZED UNITY-GAIN BANDWIDTH and PHASE SHIFT vs FREE-AIR TEMPERATURE ~ I DIFFERENTIAL VOLTAGE 4 II 88 II: ~ ~ 1.11--t--+---Pl....---t--+-----"1I--t---11.01 ~ I/) "t:I .g .~ :::e J 0.9 1--I--+--+---+--+--''''-<::I--t---1 0.99 ~ Z~ 0.8 iii f - B1 for Phase Shift O. 7 '----'_--'-_.....L..._~_ _ ' _ _ _ L . . - _ _ _ L _....... 0.97 -75 -50 -25 0 25 50 75 100 125 TA -Free-Air Temperature- °C 87 u G) 'i' G) -+--I--+---""4 0.98 0 : i VCC± - ±15V RL _ 2 kO C 't:: Z II: 86 ... c ~ 85 E o u I 84 II: II: :::e u 83 -75 -50 -25 o 25 50 75 100 125 TA-Free-Air Temperature- °C FIGURE 16 FIGURE 17 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of tne various devices. An 18-pF compensation capacitor is used with TL070. TEXAS " , INSTRUMENlS 2-380 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TL070,TL071, TL071A, TL0718 n072, n072A, n0728, n074, n074A, n0748 LOW·NOISE JFET·INPUT OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t SUPPLY CURRENT PER AMPLIFIER vs SUPPLY VOLTAGE SUPPLY CURRENT PER AMPLIFIER vs FREE-AIR TEMPERATURE 2.0 r---,------r--,---,----,--r---,,....---. TA - 25 °c -+_--!-_+-_+-~I__-I - No signal - 1.0 c. c. Jl I t--i--t--j---j--+--t---1I-----1 0.8 t--t--+--j---+---+--t------1r--I +1 "': r~ ................... "'- r--.... 1.2 u al u 0.6 0.2 1---I--+--j---+---+---!------1--I 0.2 o 0L---'-_.....L_-L-_L....---L_-L_.....L................l -75 -55 -25 16 ~ 175 'c." 'iii ~ ~ 11. 100 iii 0 l- 75 I 50 c 11. I I !-- "'-r-TL074 -....... 150 Ul C 125 0 1.15 Vcc± - ±15 V No signal No load - --- r-- -21072 TL070. TL071 50 75 100 125 NORMALIZED SLEW RATE vs FREE-AIR TEMPERATURE 250 E 200 I 25 FIGURE 19 TOTAL POWER DISSIPATED vs FREE-AIR TEMPERATURE "tl 0 TA - Free-Air Temperature - °c FIGURE 18 3:: t----... 0.8 I +l 90.4 225 ............ -ac. 1.0 u 9 0.4 1---+---+--+---!--+--+---I"'--1 246 8 10 12 14 IVcc ± I-Supply Voltage- V ............ I 1.4 0.6 t--t--+--j---+---+--t------1r--I o Vcc± - ±15 V No signal No load 1.8 1 - r-- 1 ! ! a:: 1.05 ~ "'- . VCC± - ±15 V RL-2kD 1.10 I-- CL _ 100 pF ....... £ ] 'ii 1 0 .95 I "" "- ~ t"--" ~ 0.90 25 o 0.85 -75 -50 -25 0 25 50 75 100 125 TA - Free-Air Temperature - °c -75 -50 -25 0 25 50 75 100 125 TA - Free-Air Temperature - °c FIGURE 20 FIGURE 21 t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. An 18·pF compensation capacitor is used with TL070. TEXAS .Jf INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-381 TL07L TL071, TL071A, TL071B n072, n072A, n072B, n074, n074A, n074B LOW·NOISE JFET·INPUT OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY ~ 50 ~ ~ 40 IUU II Vcc± - ±15 V AVO - 10 RS - 100 (} TA - 25°C 1\ J .!! TOTAL HARMONIC DISTORTION vs FREQUENCY \ 30 .. o Z '\. ::J ~ 20 i .~ 10 .B" I c > 0 10 40 100 400 1 k 4 k 10 k 40 k 100 k f- Frequency - Hz 0.001 L-..-'-.............1...L..L.I..U----'~...L..L..L.U.J.~_'_...L-I....L..LJ.uJ 4 k 10 k 40 k 100 k 100 400 1 k f-Freljuency-Hz FIGURE 22 FIGURE 23 OUTPUT VOLTAGE vs ELAPSED TIME VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 6 -, --- 28 Vcc± - ±15 V RL-2k(} if - ,OOpf / OUTPUT TA - 25°C ~ \\ II / -- r--o 0.5 1 1.5 20 DI 16 > 12 ;- 8 1!o 5 o INPUT -6 OVERSHOOY T I. 90% I / I 11 24 2 2.5 / I ~ 4 -4 3.5 I I 1M o t-Tlme-I's FIGURE 24 VCC± - ±15 V RL-2kO TA - 25°C rtr 0.1 0.2 0.3 0.4 t-Time-I's FIGURE 25 TEXAS ~ INSTRUMENTS 2-382 I I I 10% o 3 ./ I: I 1\j \ POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 0.5 0.6 0.7 n070, n071, n071A, n071B TL072, TL072A, TL072B, TL074, TL074A, TL074B LOW·NOISE JFET·INPUT OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA RF - 100 kfl +15 V 3.3 kfl CF - 3.3P.F OUTPUT OUTPUT r 1 kfl 3.3 kfl R1 = R2 - 2R3 - 1.5 Mfl R3 9.1 kfl C1 1 f---2" RF CF C2 C3 C1 - C2 - - 110 pF 1 2 fo = 2" R1 C1 - FIGURE 26. O.5-Hz SQUARE-WAVE OSCILLATOR 1 kHz FIGURE 27. HIGH-Q NOTCH FILTER 1 Mfl >--e-- OUTPUT A VCC+ 1 p.F INPUT --11--1--.. . .-t .>-......-OUTPUT VCC100 kfl B 100 kfl 100 kfl 100 p.F 1 -=100 kfl >--.--OUTPUT C FIGURE 28. AUDIO DISTRIBUTION AMPLIFIER ~ TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-383 TL070,TL071, TL071A, TL071B TL072, TL072A, TL072B, TL074, TL074A, TL074B LOW·NOISE JFET·INPUT OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA 1N4148 6 sin ",t 18 kO (see Note AI r---~,---~~--~~----------15V 18 pF 1 kO 18 pF 88.4 kO >-.....------------------....- 6 cos wt 88.4 kO 18 pF Vcc- 1 kO L - - -__~------~._~~----------+15V 18 kO (see Note AI 1N4148 88.4 kO Note A: These resistor values may be adjusted for a symmetrical output. FIGURE 29. 100·kHz QUADRATURE OSCILLATOR 0.1/lF'I' -= 10 kO 1 M!l 10 kO >-___-OUTPUT 500 0.1 "F 10 kO FIGURE 30. AC AMPLIFIER TEXAS • INSTRUMENTS 2-364 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TL07l TL071, TL071A, TL0718 n072, n072A, n0728, TL074, TL074A, n0748 LOW·NOISE JFET·INPUT OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA 220 k{J 0.00375/LF 10 k{J 27 k{J MIN MIN 100 k{J .?4--....~'V\r--3-'1.3NVk{J~ TREBLE MAX 100 {J OUTPUT INPUT Vcc68 k{J 10 pF FIGURE 31. Ie PREAMPLIFIER IC PREAMPLIFIER RESPONSE CHARACTERISTICS 25 MAX BASS II 20 aI 15 "0 I c:: 5 c. 0 ., -5 ~ " 10 .. ~ See Figure 31 I" V C> ~ -10 V 0 > / ,/ ........ / " -15 -20 - TREBLEL "- I\.. E Z U ttuu u Z OZZ Z IN- AMPL #2 NC VCC+ NC OUT NC 18 17 16 15 14 4 5 6 NC # 1 INNC #1 IN+ NC 8 NC #2 OUT NC #2INNC 9 1011 12 13 9 1011 12 13 U IU + U Z U Z ZZ U N > U IU NU Z U Z ZZ I-U UJ > (J) "" ll. ll. TL084M ... FK CHIP CARRIER PACKAGE 0 (TOP VIEW) II-I-- I TL084. TL084A. TL084B D. J. OR N PACKAGE ~6 6~ U'- OUT IN- OUT - N2 N2 description The TL08_ JFET-input operational amplifier family is designed to offer a wider selection than any previously developed operational amplifier family. Each of these JFET-input operational amplifiers incorporates wellmatched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit. The devices feature high slew rates, low input bias and offset currents, and low offset voltage temperature coefficient. Offset adjustment and external compensation options are available within the TL08_ family . . Device types with a "C" suffix are characterized for operation from 0 °C to 70°C, those with an "I" suffix are characterized for operation from - 40 °C to 85 DC, and those with an HM" suffix are characterized for operation over the full military temperature range of -55°C to 125°C. AVAILABLE OPTIONS TA VIO MAX AT 25°C OOC to 70 0 C 15 mV 15 mV 6mV 3mV 15 mV 6mV to 3mV 15 mV 6mV 3mV 6 mV 6mV 6mV 6mV 6 mV 6mV 125°C 9 mV -40 o C to 85°C -55°C PACKAGE SMALL OUTLINE (DOOS) TL080CD TL081CD TL081ACD TL081 BCD TL082CD TL082ACD TL082BCD SMALL OUTLINE (0014) CHIP CARRIER (FK) - - - CERAMIC DIP CERAMIC DIP PLASTIC DIP (N) (J) (JG) - - - - - - - - - TL084CN TL084ACN TL084BCN TL084CD TL08110 TL0821D TL0831D TL0841D TL084ACD TL084BCD - - - TL081BCP TL082CP TL082ACP TL082BCP - TL0841N TL082MFK TL084MFK TL081MJG TL082MJG TL084MJ The 0 package is available taped and reeled. Add "R" suffix to device type, (e.g., TL080CDR). TEXAS . " INSTRUMENlS 2-388 TL080CP TL081CP TL081ACP TL0811P TL0821P - TL0841D TL081MFK - - PLASTIC DIP (P) POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 - - nOBO, nOB1, nOB2, nOB4, nOB1A, nOB2A, nOB4A nOB1 B, nOB2B, nOB4B JFET·INPUT OPERATIONAL AMPLIFIERS schematic (each amplifier) NONINVERTING INPUT IN+ -----f-------, INVERTING INPUT IN- .._--.Vv--!-----+--l-OUTPUT OFFSET NUll/COMP ( N 1 ) - - - - - - - Tl080 ONLY 1 OFFSET NUll (N2) - - C1 I iE--, COMP--- - - - - - - __ ....J r- --, 10801 I I 1080!l !l I I I VCC_~:-~--~-~~I~~--..----~---~----J OFFSET NUll OFFSET NUll ~1) ~~ : C1 - 18 pF on TL081. TL082. AND TL084 ONLY (INCLUDING THEIR SUFFIX VERSIONS). COMPONENT VALUES SHOWN ARE NOMINAl. Tl081 ONLY TEXAS ~ INSfRUMENlS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-389 TL080, TL081, TL082, TL084, TL081A, TL082A, TL084A TL081B, TL082B, TL084B JFET·INPUT OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) TL08_C TL08 AC TL08_BC TL08_1 TL08_M UNIT 18 -18 18 -18 18 -18 V Supply voltage, VCC _ (see Note 1) Differential input voltage (see Note 2) ±30 ±30 ±30 V Input voltage (see Notes 1 and 3) ±15 ±15 ±15 V unlimited unlimited unlimited Supply voltage, VCC+ (see Note 1) Duration of output short circuit (see Note 4) Continuous total dissipation See Dissipation Rating Table o to Operating free-air temperature range - 55 to 125 °C -65 to 150 °C FK package 260 °C J or JG package 300 °C Storage temperature range Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds Lead temperature 1,6 mm (1/16 inch) D, N, or P package from case for 10 seconds 1. 2. 3. 4. 70 -40 to 85 -65 to 150 -65 to 150 Case temperature for 60 seconds NOTES: V 260 260 °C All voltage values, except differential voltages, are with respect to the midpoint between VCC + and VCC _. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TA:5 25°C POWER RATING DERATING DERATE TA - 70°C POWER RATING TA - 85 Q C POWER RATING TA - 125°C POWER RATING N/A D (8 Pin) D (14 Pin) 680 mW FACTOR 5.8 mW/oC 464mW 377 mW 680mW 7.6 mW/oC 60°C 608 mW 494mW N/A FK J 680mW 11.0 mW/oC 88°C 680mW 680mW 275 mW 680mW 680mW 680mW 275 mW 680mW 11.0 mW/oC 8.4 mW/oC 88°C JG 69°C 672 mW 546mW 210mW 9.2 mW/oC 8.0 mW/oC 76°C 65°C 680 mW 598 mW N/A 640 mW 520mW NIA N 680mW P 680mW ABOVE TA 32°C TExAs • INSTRUMENTS 2-390 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 electrical characteristics, Vee ± ± 15 V (unless otherwise noted) TL080C TL081AC TL081C TEST CONDITIONst PARAMETER TL082C TL084C MIN VIO Input offset voltage Temperature "VID coefficient of input offset voltage 110 ." liB Input offset current i Input bias current:!: Vo ~ 0, TA RS ~ 500 TA = full range Vo ~ 0, RS ~- i:iZ ~~ ~;o~ 2C:~ ;~ ~(TJ ~Z ~~4r ...'" '" m Common-mode VICR input voltage range ~ 25°C ~ Vo 0 ~ Vo 500, TA ~ 25°C TA ~ full range TA ~ MAX 3 15 MIN 5 200 VOM AVO output voltage swing ~ RL 25°C, ~ full range 10 kO RL ~ " 10 kll TA ~ full range RL " 2 kll Vo ~ Large-signal differential TA ~ voltage amplification VO~±10V, ±10V, ±11 to ±12 ±13.5 CMRR 30 MAX 2 3 ±12 ±13.5 MIN 3 100 5 30 100 5 200 30 7 -12 ±11 to ±12 ±13.5 15 to ±12 ±13.5 15 mV ~VloC 100 pA 10 nA 200 pA 20 nA ±12 ±12 ±12 ±10 ±12 ±10 ±12 25 200 50 200 50 200 50 200 15 25 25 Co.. 25 ""1"1 3 3 3 3 ~ 25°C 10 12 10 12 10 12 10 12 11 86 dB Input resistance TA Common-mode VIC ~ VICR min,Vo ~ 0, rejection ratio RS TA ~ 70 25°C 80 86 86 80 86 80 MHz VCC RS ~ ~ ± 15 V to ± 9 V, Vo 5011, Supply current No load, (per amplifier) TA V0 l/V 02 Crosstalk attenuation ~ 0, 70 86 TA ~ 25°C Vo ~ 0, 1.4 TA ~ 25°C 120 80 80 86 86 80 86 -:-I iii -a c = .... •= -'=" ~ AVD 25°C ~ 100, 2.8 1.4 2.8 120 1.4 120 2.8 1.4 120 2.8 TLOB_AC, and TLOB_BC, and -40°C to mr-r- mA Q •• dB B5°C for TLOB_I. :j: Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive as shown in Figure 18. Pulse techniques must be used that will maintain the junction temperatures as close to the ambient temperature as is possible. -a ........ dB t All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range for TA is O°C to 70°C for TLOB_C, b ~ m = = .r-... = = .!" .... r- Q (6.vCC+lavI01 ICC - VlmV RL " 2 kO, 25°C rejection ratio ....r- V ±10 ~ 500, = = ? TA ~ .... r- V 15 ±12 RL " 2 kO, 6 -12 ±11 ±10 25°C MAX 18 2 200 UNIT 9 18 ±12 TYP 5 -12 to TL0831 TL0841 TYP 7 ±11 TL0821 Unity-gain bandwidth Supply voltage kSVR MIN 2 400 ±12 N ri 6 10 TA ::::: full range Bl MAX 3 5 -12 TA TYP 18 15 Maximum peak TL084BC 2 30 TA ~ 25°C TL082BC TL084AC 7.5 18 TA ~ 25°C 0 TYP TL082AC 20 T A = full range 0 '"-<0 ~ TL0811 TL081BC === ,.== -- .... -=,. 2 ........ ,.r-r- r-== -== _NN 5:=" -a. • r- ........ - r- r:!:l== m== =-'="-'=" cn=,. TL080M, TL081M, TL082M, TL084M, TL081AM, TL082AM, TL084AM TL081 BM~ TL082BM, TL084BM JFET-INPUT OPERATIONAL AMPLIFIERS electrical characteristics, Vee ± - ± 15 V (unless otherwise noted) TEST CONDITIONS t PARAMETER VIO Input offset voltage "VIO coefficient of input 1TA 1TA Vo = 0, RS = 50!l Temperature offset voltage 110 Input offset current:!: liB Input bias current* MIN input voltage range Maximum peak VOM MAX 3 6 RS = 5011, Vo = 0, 5 TA = 25°C 30 TA = 25°C 100 5 200 30 ±11 RL = 10 kll '" 10 kO '" 2 kO ±12 ±11 to ±13,5 ±12 VO=±10V, B, Unity-gain bandwidth TA = 25°C 3 3 r; Input resistance TA = 25°C 10 12 10 12 Common-mode VIC = VICR min, Vo = 0, rejection ratio RS = 5011, TA = 25°C Supply voltage ICC VCC = ±15Vto ±9V, Vo = 0, RS = 5011, TA = 25°C Supply current No load, Vo = 0, (per amplifier) TA = 25°C (,:\VCC±f,:\VIO) Vo 1/Vo2 Crosstalk attenuation AVO = 100, V ±10 ±12 ±10 ±12 25 200 25 200 V/mV RL '" 2 kll, TA = -55°C to 125°C rejection ratio nA V voltage amplification kSVR pA 50 ±13.5 TA = 25°C CMRR nA 200 ±12 ±12 Large-signal differential AVO pA 20 to TA = -55°C to RL",2kO, 100 15 output voltage swing VO=±10V, mV -12 15 .1 RL 125°C 1RL UNIT ~VfoC 18 -12 TA = 25°C, 9 50 TA = 125°C TA = 25°C MAX 3 20 TA = 125°C Vo = 0 TYP 15 18 TA = -55°C to 125°C Vo = 0 MIIIi 9 = -55°C to 125"C Common~mode VICR TYP = 25°C 15 15 MHz 0 80 86 80 86 dB 80 86 80 86 dB TA = 25°C 1.4 120 2.8 1.4 120 2.8 mA dB t All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. t Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive as shown in Figure 18. Pulse techniques must be used that will maintain the junction temperatures as close to the ambient temperature as is possible. TEXAS . " INSTRUMENTS 2-392 POST OFFICE BOX 655303 • DALLAS, TEXAS 75266 nOBO, nOB1, nOB2, nOB4, nOB1A, nOB2A, TLOB4A TLOB18, TLOB2~ TLOB48 JFET·INPUT OPERATIONAL AMPLIFIERS operating characteristics, V CC ± ... ± 15 V, VI = 10 V, CL = 100 pF, SR TA = 25 DC (unless otherwise noted) TEST CONDITIONS PARAMETER TYP 8* VI = 10 V, RL = 2 kO TL081M CL = 100 pF, See Figure 1 T A = - 55°C to 125°C TL082M Rise time VI =20 mV, Overshoot factor CL = 100 pF, RL = 2 kO, See Figure 1 Vn Equivalent input noise voltage RS = 1000 In Equivalent input noise current RS = 1000, THO Total harmonic distortion VO(rms) = 10 V, RS :5 1 kO, f = 1 kHz RL 2: 2 kO, tr Slew rate at unity gain MIN RL = 2 kO, See Figure 1 MAX UNIT 13 V/p$ 5* TL084M Lf If 0.05 I'S 20% = 1 kHz = 10 Hz to 10 kHz f = 1 kHz 18 nV/../Hz 4 I'V pA/../Hz 0.01 0.003% *On products compliant to MIL-STD-883, Class B, this parameter is not production tested. PARAMETER MEASUREMENT INFORMATION 100 kO C2 10 kO RL 2 kO FIGURE 1. UNITY-GAIN AMPLIFIER FIGURE 2. GAIN-OF-10 INVERTING AMPLIFIER FIGURE 3. FEED-FORWARD COMPENSATION INPUT OFFSET VOLTAGE NULL CIRCUITS VCC+ 1 MO FIGURE 4 FIGURE 5 TEXAS . " INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2--393 nOBO, nOB1, nOB2, nOB4, nOB1A, nOB2A, nOB4A TLOB1B, TLOB2B, TLOB4B JFET·INPUT OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt MAXIMUM PEAK OUTPUT VOLTAGE vs FREQUENCY MAXIMUM PEAK OUTPUT VOLTAGE vs FREQUENCY ±15 i~1fI1 > j I cc+ I 1'\ ± 12.5 1 '0 ~ R~ 10 kG TA - 25°C See Figure 2 =11I~15 V f ±10 --=co ±7.5 VCC± = ±10 V :::J ~ 0 Gl E :::J E ±5 f-- :!: I VCC±-±10V ± 7. 5 ~O:tUIIII==t:tl:mIIlH+J1rnd1~~uml~-UUIUl E VCC+ = +5 V 'xco ±5~~~~~~-4~~-4~~-44+~ 'x VCC± - co > 0 100 1k 10 k 100 k 1 M ~i' o > f\" 0 O~~~~~~-L~~~~W-~~ 10 M 100 ±15 I Gl g' ± 12.5 ~ 5 ±10 --= ±7.5 ~ o i E :::J E TA 'xco :!: I ±2.5 :!: o > o 10 k 10 k 100 k f-Frequency-Hz FIGURE 6 FIGURE 7 - Lllll~!b ±5 1k f - Frequency - Hz IT VCC± RL '\ iliil ~TA = ~ = 125 0 C\ \ ± 10 M ±15 15'V > RL - 10 kG S ±12.5 RL I 2 kG Gl Figr 2 = 2 kG 25 50 - '0 > -55°C 5 So :::J ±10 ~ ±7.5 o ~ E ~ :::J E ±5 'xco ~ 40 k 100 k = = 1 M MAXIMUM PEAK OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE MAXIMUM PEAK OUTPUT VOLTAGE vs FREQUENCY > ±5V :!: I ± 2.5 ~H-l4HIIHf+t-HHIH-++HH+H-++MH-++tfliI! :!: ±2.5 :!: See Figure 2 ±10~~~~~~~~~-Y4+~~4+~ ~ E I Q. ~III'T"TTTTI 1IIIIm""--'-'ll"TTTll1l'" III1I1 --rTTT~~mrr--r,":1~"Ti-mm;~~" ± 12.5 R::ffRfniv..::cTcT+Trm-..,;;;±y-:.1n5TiV"",~ > 5 So > 5 So :::J ± 15 '" ~ 400 k 1 M :!: ±2.5 I :!: """4 M 10 M o > o VCC± = ±15 V See Figure 2 -75 -50 -25 o 75 100 125 TA-Free-Air Temperature- °C f-Frequency-Hz FIGURE 9 FIGURE 8 t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. A 12-pF compensation capacitor is used with TL080. . i TEXAS ~ INSTRUMENTS 2-394 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 n080, n081, n082, n084, n081A, n082A, n084A n0818, n0828, n0848 JFET·INPUT OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt MAXIMUM PEAK OUTPUT VOLTAGE vs SUPPLY VOLTAGE MAXIMUM PEAK OUTPUT VOLTAGE vs LOAD RESISTANCE ±15 > Vcc± - ±15 V TA - 25°C See Figure 2 I F±12.5 "0 > ... ±10 011 ... ±7.5 E :::J E ±5 011 a.. 'j( I 011 F ±12.5 V ±2.5 :!: I L Co ±10 :; o i / :. ±7.5 E ~ .. ±5 I ±2.5 V 'j( :!: I 0 0.1 0.2 0.4 0.7 1 4 2 o o 7 10 2 4 ..g - ~ r--.. r--.... 100 E 70 c:s: 40 10 5 ~-+-~+-- VCC±-±5Vto±15V RL - 10 kG T A - 25°C E & ~~ ~ i:5 I c VCC± - +15 V Vo - ±10V RL - 2 kG I I 1 -75 -50 -25 (/j (left scalel 50 75 011 III a.. 102 f---+--.....:~-+--+-.lo,,--+--~---/ 90° (right scale) -+--+~-+-":\-1 135 L - _ L - _ L - _ L -__~__~__-L~J 25 .. 45° .r: > c:s: I o :E .r: VOLTAGE l!l ~ 103~-+4-+--+-~-+ 10 2 16 c:s: 104 I..---+--+-~+---+ DIFFERENTIAL 20 7 4 14 0. & > 12 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION and PHASE SHIFT .vs FREQUENCY c :e0. 10 FIGURE 11 1000 700 I 400 c .g.. 200 68 IVcc± I-Supply Voltage-V LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE ~ V- o FIGURE 10 > I/ / / /V :!: > RL -Load Resistance-kG .€> V "0 0 > RL - 10 kG TA - 25°C > /1/ ...0.. .. ,.... I--'~ ±15 I :; :::J Co :::J :!: > 100 125 10 100 1k ° 180 0 10 k 100 k 1 M 10 M f- Frequency - Hz T A - Free-Air Temperature- °C FIGURE 12 FIGURE 13 t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. A 12-pF compensation capacitor is used with TL080. TEXAS • INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2--395 TL080.TL081, TL082, TL08~ TL081A, TL082A, TL084A TL0818, TL0828, TL0848 JFET·INPUT OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt TI,080 DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREQUENCY WITH FEED-FORWARD COMPENSATION TOTAL POWER DISSIPATED vs FREE-AIR TEMPERATURE 250 106 c ..,.0 '<>" :E 10 5 ., 104 is. E c( .......... ~ '\ C> f! "5 > 103 ~c ~ £ VCC±-±15V C2 - 3 pF TA - 25°C See Figure 3 102 I '" Co 10 k '"\ 100 k f-.... -!.l084, Tl085 150 .............. - -- G; 125 ~ ~ \ 10 1k ................... 1"-... is > c( 1 100 E 200 I ! 175 "0 .~ is 0 VCC± = ± 15 V No signal No load ~ 225 1 M ~o 100 75 I- & 25 o -75 -50 -25 10 M VCC± = ±15 V No signal No load 1.8 E 1.c :;~ 1.4 r---..... ............... 75 100 125 c( > 1.0 I I 1.8 _ TA ~ 25°C No signal 1.6 - No load 1.4 ~ :; 1.2 ~ is. U > is. 1.0 Co Jl §- 0.8 +1 U 2.0 ...cI r---..... t--..... u en I 50 SUPPLY CURRENT vs SUPPLY VOLTAGE E "'f-....I"-... 1.2 25 FIGURE 15 SUPPLY CURRENT PER AMPLIFIER vs FREE-AIR TEMPERATURE 1.6 0 TA - Free-Air Temperature - °C FIGURE 14 c( - r-- Do f - Frequency - Hz 2.0 Tl083 I Tl080, TlO81 50 \ ~082, r--. I +1 U 0 .6 0.8 0.6 !:} 0.4 !:} 0.4 0.2 0.2 o o o -75 -50 -25 0 25 50 75 100 125 2 4 6 8 10 12 14 16 IVcc± I-Supply Voltage-V T A - Free-Air Temperature - °C FIGURE 17 FIGURE 16 t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. A 12-pF compensation capacitor is used with TL080. TEXAS • INSTRUMENTS 2-396 POST OFFICE BOX 655303 - DALLAS. TEXAS 75265 TL080, TL081, TL082, TL08t TL081A, TL082A, TL084A TL0818, TL0828, TL0848 JFET·INPUT OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt INPUT BIAS CURRENT vs FREE-AIR TEMPERATURE VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 100 6 Vcc+ = + 15 V --- / / 10 4 I V II) III E co ~ ~ i'! / 2 "6 ... ., as II) o :::l S:::l :; c. .E I 0.1 !§. I\~l TA - I INPUT -- -25 0 25 50 75 -6 100 125 o 100 pF 25°C \\ c. .E -4 0.01 -50 OUTPUT / o -g., -2 :; / Vcc± - ±15 V !\ Rl - 2 kG / > U -, 1.5 0.5 TA -Free-Air Temperature- °C 2 \J 2.5 3 3.5 t-Time-,..s FIGURE 18 FIGURE 19 OUTPUT VOLTAGE vs ELAPSED TIME 28 "..... 24 > E I 20 co 16 III i'! "6 > ... 12 S:::l 8 VCC± - ±15 V Rl - 2 kG Cl - 100 pF TA - 25°C See Figure 1 :::l 0 I 0 > 4 'I ~ Ir- 0 V -4 o 0.2 0.4 0.6 0.8 1.0 1.2 t-Time-I's FIGURE 20 t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. A 12-pF compensation capacitor is used with TL080. TEXAS "'I INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-397 n080, n081, n082, n084, n081A, n082A, n084A n081 B, n082B, n084B JFET·INPUT OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt COMMON-MODE REJECTION RATIO vs FREE-AIR TEMPERATURE III EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY ~ 89 Vcc± - ±15 V RL - 10 k!l "0 I o '; :>c: 88 a: I 87 I 86 '0 c: .g 25 50 75 100 125 0 10 40 100 T A - Free-Air Temperature - °C 400 1 k 4 k 10 k 40 k 100 k I-Frequency-Hz FIGURE 21 FIGURE 22 TOTAL HARMONIC DISTORTION vs FREQUENCY ~ 0.4 I c: o 'f g Vcc+ - +15 V AVO - 1 VI(RMSI - 6 V TA - 25°C 0.1 II) is - '§t.......-OUTPUT C -= FIGURE 26. AUDIO DISTRIBUTION AMPLIFIER 1N4148 6 sin ",t 18 kll (see Note A) ....--t-.r--",--'lNv--- -15 V 18 pF 1 kll 18 pF 88.4 kll >-......--------~..... 6 cos wt 88.4 kll 18 pF 1 kll L--"~---~~~~---+15V 1N4148 18 kll (see Note A) -= 88.4 kll NOTE A: These resistor values may be adjusted for a symmetrical output. FIGURE 27. 100-kHZ QUADRATURE OSCILLATOR TEXAS . " INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-399 nOBO, nOB1, nOB2, nOB4, nOB1A, nOB2A, nOB4A nOB1 B, nOB2B, nOB4B JFET·INPUT OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA 16 kO 16 kO 220 pF 220 pF 43 kO 43 kO 30 kO 30 kO 43 kO VCC+ VCC+ VCC+ INPUT 43 kO 1.5 kO 43 kO VCC- OUTPUT B 1.5 kO VCC- VCC- OUTPUT A OUTPUT A OUTPUT B 2 kHz/div SECOND-ORDER BANDPASS FILTER fa - 100 kHz. Q - 30. GAIN - 4 2 kHz/div CASCADED BANDPASS FILTER fa - 100 kHz. Q - 69. GAIN - 16 FIGURE 28. POSITIVE·FEEDBACK BANDPASS FILTER 220 kO 0.00375 "F 10 kO 0.003 "F 0.03 "F 27 kO MIN 100 kO BASS MAX 0.01 "F 1000 3.3 kO MIN 100 k!l TREBLE MAX OUTPUT 0.03 "F INPUT BALANCE 10 kO 47 kO 10 pF 5 kO GAIN 0.003 "F ~ 68 kO 10 pF 47 "F 50 pF FIGURE 29. IC PREAMPLIFIER TEXAS . " INSTRUMENTS 2-400 T POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TL087, TL088, TL287, TL288 JFET·INPUT OPERATIONAL AMPLIFIERS D2484, MARCH 1979-REVISED MARCH 1989 • Low Input Offset Voltage ... 0.5 mV Max • Internal Frequency Compensation • Low Power Consumption • Latch-Up-Free Operation • Wide Common-Mode and Differential Voltage Ranges • High Slew Rate ... 18 V/p,s Typ • • Low Input Bias and Offset Currents Low Total Harmonic Distortion ... 0.003% Typ • High Input Impedance ... JFET-Input Stage description These JFET-input operational amplifiers incorporate well-matched high-voltage JFET and bipolar transistors in a monolithic integrated circuit, They feature low input offset voltage, high slew rate, low input bias and offset currents, and low temperature coefficient of input offset voltage. Offset-voltage adjustment is provided for the TL087 and TL088. The M-suffix devices are characterized for operation over the full military temperature range of - 55°C to 125 DC. The I-suffix devices are characterized for operation from - 40 DC to 85 DC, and the C-suffix devices are characterized for operation from 0 DC to 70 DC. AVAILABLE OPTIONS TA O°C TYPE Single to 70·C -40°C Dual Single to 85°C -55°C Dual VIO MAX AT 25°C 0.5 mV PACKAGE SMALL OUTLINE CERAMIC DIP METAL CAN PLASTIC DIP FLAT (D) (JG) (L) (P) (U) TL087CD TL087CJG TL087CL TL087CP 1 mV fL088CD TL088CJG TL088CL TL088CP 0.5 mV TL287CD TL287CJG TL287CL TL287CP 1 mV TL288CD TL288CJG TL288CL TL288CP TL0871D TL0871JG TL0871L TL0871P 0.5 mV 1 mV TL0881D TL0881JG TL0881L TL0881P 0.5 mV TL2871D TL2871JG TL2871L TL2871P 1 mV TL2881D TL2881JG TL2881L TL2881P Single 1 mV TL088MJG TL088ML TL088MU Dual 1 mV TL288MJG TL288ML TL288MU to 125°C The D package is available taped and reeled. Add the suffix R to the device type (e.g., TL087CDR). Copyright PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of an parameters. TEXAS © 1989, Texas Instruments Incorporated -1!1 INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-401 TL087, TL088, TL287, TL288 JFET·INPUT OPERATIONAL AMPLIFIERS TL088M U PACKAGE (TOP VIEW) TL087, TL088 D, JG, OR P PACKAGE (TOP VIEW) ININ + VCC - NC NC NC OFFSET N1 u 8 NC OFFSET N1 2 7 VCC+ 3 .6 OUT 4 5 OFFSET N2 ININ+ VCC+ OUT OFFSET N2 VCCTL288M U PACKAGE (TOP VIEW) TL287, TL288 D, JG, OR P PACKAGE (TOP VIEWI AMPL #1 O U T [ J 8 VCC+ IN 2 7 OUT IN + VCC- 3 6 4 5 ININ+ AMPL AMPL #2 =t>- NC NC #1 OUT VCC-t ININ+ OUT VCC- IN + IN- AMPL #2 NC - No internal connection TL087, TL088 L PACKAGE symbol (each amplifier) NON INVERTING INPUT IN+ INVERTING INPUT IN- + (TOP VIEW) NC ' OUTPUT VCC+ - OUT VCCTL287, TL288 L PACKAGE (TOP VIEW) VCC+ AMPL #1 OUT OUT IN- ININ+ IN+ AMPL #2 VCCPin 4 (L Package) is in electrical contact with the case NC-No internal connection TEXAS • INSTRUMENTS 2-402 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TL087, TL088, TL287, TL288 JFET·INPUT OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) n0871 n087C TL088M n0881 TL088C TL288M TL2871 n287C TL2881 n288C UNIT Supply voltage, VCC + (see Note 1) 18 18 18 V Supply voltage, VCC - (see Note 1) -18 -18 -18 V Differential input voltage (see Note 2) ±30 ±30 ±30 V Input voltage (see Notes 1 and 3) ±15 ±15 ±15 V ±1 ±1 ±1 mA ±80 ±80 ±80 mA 160 160 160 mA mA Input current, II (each input) Output current, 10 (each output) Total V CC + terminal current -160 -160 -160 unlimited unlimited unlimited Total V CC _ terminal current Duration of output short circuit (see Note 4) See Dissipation Rating Table Continuous total dissipation o to Operating free-air temperature range -55to125 -25 to 85 Storage temperature range -65 to 150 - 65 to 150 -65 to 150 °C 300 300 300 °C 260 260 °C Lead temperature 1,6 mm (1/16 inch) from JG, L, or U package case for 60 seconds Lead temperature 1,6 mm (1/16 inch) from D or P package case for 10 seconds NOTES: 1. 2. 3. 4. 70 °C All voltage values, except differential voltages, are with respect to the midpoint between VCC + and VCC _. Differential voltages are at the non inverting input terminal with respect to the inverting input terminal. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TA :5 DERATING FACTOR 25°C POWER RATING D 725 mW JG 1050 mW ABOVE TA - 25°C 5.8 mW/oC TA - 70°C POWER RATING TA - 85°C POWER RATING TA - 125°C POWER RATING 464mW 377 mW N/A 8.4 mW/oC 672mW 546 mW 210 mW 130 mW L 650 mW 5.2 mW/oC 416 mW 338 mW P 1000 mW 8.0 mW/oC 640mW 520 mW N/A U 675 mW 5.4 mW/oC 432 mW 351 mW 135 mW recommended operating conditions M-SUFFIX MIN Supply voltage, VCC Common-mode input voltage, VIC VCC± VCC± Input voltage, VI VCC± VCC± Operating free-air temperature, T A = = = = ±5V ± 15 V ±5 V ± 15 V I-SUFFIX ±5 ±15 ±5 ±15 V -1 4 -1 4 V 11 -11 11 -11 11 V -1 4 -1 4 -1 4 V -11 11 -11 11 - 11 11 V -55 125 -40 85 0 70 °c MIN ±5 ±15 -1 4 -11 TEXAS NOM MAX UNIT MIN MAX NOM C-SUFFIX MAX NOM ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-403 ~ c..-t ""1'1 rm= -t= .:.. ...... electrical characteristics. VCC± - ± 15 V TEST CONDITIONSt PARAMETER TL0871 TL087C TL088M TL0881 TL088C TL288M TL2871 TL287C MIN RS = 50 Il, TYP MAX MIN TL2881 TYP MAX TL087, TL287 MIN 2' -a-t c: r-t= UNIT = TL288C TYP MAX 0.1 0.5 0.1 0.5 0.1 1 0.1 1 Q= -a' m-t :::ICI r- Vo = 0, VIO Input offset voltage Temperature coefficient "VIO of input offset voltage ~-n_ 110 Input offset current i:iZ lIB !i: Input bias current~ ~CIl ~~ g:;or;;i Common-mode input 8C::~ 03: VICR ~Z VOpp ~(Tl ~~4r ;;:'" Sl voltage range Maximum-peak-to-peak TA = 25°C RS = 50 Il, '" 0.1 3 TL087, TL287 TL088, TL288 RS = 50 Il, TA = 25°C to MAX 6 10 5 25 30 100 T A = full range 1.5 3 2.5 8 100 5 3 30 TA = 25°C 2 8 5 TA = 25°C T A = full range 200 30 20 TA = 25°C VCC- +4 to VCC- +4 to VCC- +4 to TA = 25°C, VCC+ -4 24 27 VCC+-4 24 27 VCC+ -4 24 27 output voltage swing T A = full range Large-signal differential TA = 25°C voltage amplification RL 2: 2 kll, >N RL = 10 kll RL 2: 10 kll RL 2: 2 kll VO= ±10V, Vo = ±10 V, T A = full range 24 20 50 105 24 24 20 20 50 105 50 >rr-N >= 100 pA 2 nA 200 pA 7 nA V 105 VlmV 25 25 25 TA = 25°C 3 3 3 Input resistance TA = 25°C 10 12 10 12 10 12 Il CMRR Co~mon-mode rejection ratio RS = 50 Il, Supply voltage rejection ICC ratio (J!.VCC±/J!.VIO) VCC± = ±9 V to ±15 V, Supply current TA = 25°C No load, (per amplifier) TA = 25°C Vo = 0, m :::ICI en V ri VIC = VICR min, TA = 25°C RS = 500, Vo = 0 V, !I: = -a r:;; "V/oC Unity-gain bandwidth Vo = OV, Q, 2-t Bl kSVR - -t= ...... mV Vo = 0, T A = full range RL 2: 2 kll, AVO TL088, TL288 MHz 80 93 80 93 80 93 dB 80 99 80 99 80 99 dB i 2.6 2.8 2.6 2.8 2.6 2.8 mA t All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range for TA is - 55°C to 125°C for TL_88M; -40°C to 85°C for TL_8_1; and OoC to 70°C for TL_8_C. ~Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques must be used that will maintain the junction temperature as- close to the ambient temperature as possible. TL087, TL088, TL287, TL288 JFET·INPUT OPERATIONAL AMPLIFIERS operating characteristics Vee PARAMETER ± 15 V. TA - 25°e TEST CONDITIONS TL088M. TL288M MIN SR tr Vn Slew rate at unity gain VI = 10 V. RL = 2 kO. CL = 100 pF. AVO = 1 RL = 2 kO. Rise time VI = 20 mV. Overshoot factor CL = 100 pF. Equivalent input noise voltage RS = 1000. TYP 18 AVO = 1 f = 1 kHz MAX TL0871. TL087C TL0881. TL088C UNIT MIN TYP 8 18 Vlp.s ns 55 55 25% 25% 19 19 MAX nVI$. ~ TEXAS INSTRUMENlS POST OFFICE aox 655303 • DALLAS. TEXAS 75265 2-405 n087, n088, n287, n288 JFET·INPUT OPERATIONAL AMPLIFIERS PARAMETER MEASUREMENT INFORMATION >------Vo I r - RISE TIME NOTE A: CL includes fixture capacitance. FIGURE 1. SLEW RATE, RISE/FALL TIME, AND OVERSHOOT TEST CIRCUIT FIGURE 2. RISE TIME AND OVERSHOOT WAVEFORM 10kQ 10kQ >--+-____--Vo Vo VeeRS RS NOTE A: CL includes fixture capacitance. FIGURE 4. UNITY-GAIN BANDWIDTH AND PHASE MARGIN TEST CIRCUIT FIGURE 3. NOISE VOLTAGE TEST CIRCUIT typical values Typical values as presented in this data sheet represent the median (50% point) of device parametric performance. GROUND SHIELD input bias and offset current At the picoamp bias current level typical of these JFET operational amplifiers, accurate measurement of the bias current becomes FIGURE 5. INPUT BIAS AND OFFSET difficult. Not only does this measurement require CURRENT TEST CIRCUIT a picoammeter, but test socket leakages can easily exceed the actual device bias currents. To accurately measure these small currents, Texas Instruments uses a two-step process. The socket leakage is measured using picoammeters with bias voltages applied, but with no device in the socket. The device is then inserted in the socket and a second test that measures both the socket leakage and the device input bias current is performed. The two measurements are then subtracted algebraically to determine the bias current of the device. TEXAS • INSTRUMENTS 2-406 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TL087, TLOB8, TL287, TL288 JFET·INPUT OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS table of graphs FIGURE Temperature coefficient of input offset voltage Distribution 110 Input offset current vs Temperature 8 vs VIC vs Temperature 9 liB Input bias current vs VCC vs Temperature 10 VI Common-mode input voltage range limits VID Differential input voltage vs Output voltage 12 vs VCC 13 "VIO VOM Maximum peak output voltage swing vs Output current vs Frequency vs Temperature AVD Differential voltage amplification Zo Output impedance CMRR Common-mode rejection ratio kSVR lOS Supply-voltage rejection ratio Short-circuit output current ICC Supply current SR Slew Rate 6. 7 8 11 17 14.15.16 18 vs RL 19 vs Frequency 20 vs Temperature 21 vs Frequency 24 vs Frequency 22 vs Temperature 23 vs Temperature 25 vs VCC 26 vs Time 27 vs Temperature 28 vs VCC vs Temperature 30 29 vs RL 31 vs Temperature 32 Overshoot factor vs CL 33 Vn THD Equivalent input noise voltage vs Frequency 34 Total harmonic distortion vs Frequency 35 B1 Unity-gain bandwidth vs VCC vs Temperature 36 vs VCC 38 . CI 12 !! 8 > 'Sa. 4 "C 0 ,./' ..,.- V "0 .. / V COMMON-MODE INPUT VOLTAGE RANGE LIMITS vs FREE-AIR TEMPERATURE 20 V > '0" 0 u POSITIVE LIMIT CI !! 10 > 'S 5 "C 0 "0 POSITIVE LIMIT a. .5 .. =F E E 15 .. .5 0 I I I NEGATIVE LIMIT ......... -4 .......... -8 0 :::;: .:0 E E ~ 0 ............ I U :> -12 , Vee ± = ± 15 v -10 U ~ -5 I U :> , -15 NEGATIVE LIMIT -16 o 2 4 8 6 10 12 14 -20 -75 16 -50 -25 FIGURE 10 12 "0 !! 8 .s- 4 VOM+ ./ RL~1~ V CI \ > 'S 5 !! 125 ~ --::: ~=12kQ :::J "0 0 ....., 0 0 I .. I > 0 100 I TA = 25°e > 10 > 'S a. 'S 75 16 Vee±=±15V TA = 25°e CI 50 MAXIMUM PEAK OUTPUT VOLTAGE vs SUPPLY VOLTAGE 15 I 25 FIGURE 11 OUTPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE .. 0 TA - Free-Air Temperature - °e IVee ±I- Supply Voltage - V -5 - > RL = 600 n ~ I- RL = 1 k n RL = 2kn -10 - -15 -400 .. RLI" "["-200 ~>-r--- t'<: o """'-- t - - .. 0 E :::J E -4 :::;: -8 'x., 400 ..... I RL = I :::;: 10k~ I ~, VOMI o 2 4 ---- ~2kQ ~-12 -16 200 VIO - Oifferentiallnput Voltage -!tV I-- II.. 6 8 10 12 ......... 14 16 IVee ±I- Supply Voltage - V FIGURE 12 FIGURE 13 t Data at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices. TEXAS . " INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-409 TLOB7, TLOB8, TL287, TL288 JFET·INPUT OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt MAXIMUM PEAK· TO·PEAK OUTPUT VOLTAGE vs FREQUENCY VC~ ~ 1~111~lt ,So ... 20 i 15 ~ E E = 125°C ~ I I I UJll11 10 VCC± '= :;; t .f; ... 20 ~ 15 E ::I E 10 ~ ~ TA ~ = -55°C =±5V I V)\ ~ I 11. 11. ........ r- o 10 k 25 o > 100 k 1M f - Frequency- Hz VCC± MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY 30 = 10kQ TA = 25°C I '" ;g RL :; Co :; o ... ~ ~ ~ E ::I E 25 i"--- o 100 k 1M f - Frequency - Hz 'M ~ I 11. 11. ~ 5 I '" j!! o 10 k 12 a- 10 ...... 8 ::I = ""~~I'-. i"'-, 1\ 1\ :;; 4 ... I' 11111 6 VOM+ " VO~ l', 11. E ::I E 'M ...., I'-. "\ 1\ > ~,..... 100 k 1M f - Frequency - Hz 10 M 2 o o "'- \ I ~ 0 = VCC± ±15V TA 25°C ~~ 0 III =±5V 14 '0 > :; \ VCC± 10 M 16 III 20 10 - MAXIMUM PEAK OUTPUT VOLTAGE vs OUTPUT CURRENT > ~VCC± =±15V 15 1\ 5 FIGURE 15 III j!! 1\ = ±5V FIGURE 14 > TA \ \ 10 k 10M = 2kQ = 25'C RL = ±15V Co :; o I 11. 11. > VCC± :; 5 o I I 11I1111 I j TA ::I > = 2 kQ I~ :; 5 RL MAXIMUM PEAK·TO·PEAK OUTPUT VOLTAGE vs FREQUENCY 30 1\ 10 20 30 '" ~ 40 1101 - Output Current - mA FIGURE 16 FIGURE 17 tData at ,high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices, TEXAS . " 2-410 INSTRUMENTS POST OFFICE BOX 655303 ' DALLAS. TEXAS 75265 50 TL087, TL088, TL287, TL288 JFET·INPUT OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t LARGE-SIGNAL VOLTAGE AMPLIFICATION vs LOAD RESISTANCE MAXIMUM PEAK OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE 16 > ., I 12 V~M+ C) .l!! 15 250 RL = 10kQ > E I <: 0 > SCo S ..., 0. 4 E 150 oc( ., vee ± = ±15 v 0 .l!! 15 E ::l -4 E > 100 ~ 'x :;; V C) 0. .. -- Vee±=±15V :e 0 .>< 200 :;u - 8 Vo = ± 1 V TA = 25°e :> RL = 2kQ 'E I!! ., ;: -8 I VOM- :;; is RL = 2 kQ V 50 V~ !-- Vee ± = ±5 V vI- I 0-12 > C > RL=10kQ -16 -75 - 50 - 25 0 25 50 75 oc( 100 o 0.4 125 10 4 TA - Free·Air Temperature - °e 40 100 RL - Load Resistance - kQ FIGURE 18 FIGURE 19 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY LARGE-SIGNAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE 1000 <: 0 :;u :e 10 5 r---- 0. 10 4 E ., oc( C) .l!! 10 3 ~ 15 > (;j ~ Vee±=±15V RL = 2kQ eL = 25 pF TA = 25°e 10 2 ., I!! !!: 10 1 c I "" '" f'... "'" I'- "" 0... ""- > oc( 100 1k 10 k 100 k f - Frequency - Hz 1\ RL ::: :cU) 0. E ., ., . C) .l!! .<: 0. > = 10 kQ -r---__ oc( In 100 RL 15 = t--. I-- = 2 kQ -----r--....... ~ ""'\"\ 1M 400 :;u :e 30° 90° - -- I <: 0 60° PHASE SHIFT " " :> 0° = Vee + +15V Vo + 10V E ~VD C 0.1 10 > 120° 150° 'E I!! !!: ., 40 c I c > oc( 180° 10 M 10 -75 - 50 - 25 0 25 50 75 100 TA - Free-Air Temperature - °e 125 FIGURE 21 FIGURE 20 t Data at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices. TEXAS -1!1 INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-411 TL087, TL088, TL287, TL288 JFET·INPUT OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt COMMON-MODE REJECTION RATIO vs FREQUENCY COMMON-MODE REJECTION RATIO vs FREE-AIR TEMPERATURE 100 100 III '1::J I 0 90 ~ 80 ..'" a: .. VCC± = ±15V TA = 25"C '\ 0 70 'Q) 60 '1::J 50 ~ C:0 E E '\ '" '\ 40 30 20 ::;; 10 0 VCC+ = ±15V 'o" 90 .. 85 ~C: ~ - 80 E \ 0 I I 95 1 '\ 0 a: a: I a: 0 ::;; '1::J o ~ '" a: VIC = VICR min III 8 r:: a: 75 ::;; o o 10 100 10 k 100 k 1k f - Frequency - Hz 1M 70 -75 10 M - 50 - 25 0 25 50 75 100 T A - Free-Air Temperature -"C SUPPLY-VOLTAGE REJECTION RATIO vs FREE-AIR TEMPERATURE OUTPUT IMPEDANCE vs FREQUENCY 100 110 f-- / Cl / / I u 10 AVD = 10~ / '1::J / L / I 0 -- / .. / / 0 !l '0 > AVO = 1 Q. -- VCC±=±15V TA = 25"C -r a (open loop) ~ 250 n ~ ~ 0.1 1k 98 c. / / - >. - I 0 102 '" / /V N ..'" a: .. 'Q) / .E 106 a: 0 AVO = / ' Q. :; ~ '" '1::J VCC± = ±5V to ±15V III OJ :; Q. :; 10 k 100 k 1M :::I !/) I 94 a: > !/) ... 90 -75 -50 f - Frequency - Hz -25 0 25 50 75 100 T A - Free-Air Temperature - °C FIGURE 24 FIGURE 25 tData at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices. 2-412 125 FIGURE 23 FIGURE 22 .. VCC± = ±5V TEXAS . " INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 125 TL087. TL088. TL281. TL288 JFET·INPUT OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt SHORT-CIRCUIT OUTPUT CURRENT vs TIME SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE 60 60 Vo = 0 TA = 25'e ct E I 40 - - - t---~ f! o - ct E -8 I 'E 8 ~ V / , 20 I: VVID=lV / f! 20 [ :::J C. 'S 40 VID = -1 V -- 0 :; o ----... ·s ~ U i: -20 o .s::: :::J l:! vlD = 1 : - - - - - Ul 0 ."!:! ~ "I: -20 o r- .s::: VI VID=-lV :"-40 :"-40 .9 .9 -60 o -60 2 14 10 12 IVee ±I- Supply Voltage- V 4 6 8 16 vec± = ±15V TA = 25°C o 10 20 30 I I 40 50 60 Time - Seconds FIGURE 26 FIGURE 27 SHORT-CIRCUIT OUTPUT CURRENT vs FREE-AIR TEMPERATURE 60 -+-.. VIO = 1 V ct E 40 I 'E ~ 8 - - r-- I VID = 1 V :::J Il. o I 0 ·s I vce± = ±5V t: - 20 r-VID = -1 V o ..c: VI :"-40 .9 I vcc± = ±5V 20 'S l:! U VCC±=±15V Il---L l~;vo = 0 -60 -75 l I I I I I - vce± = ±15V I I I -50 -25 0 25 50 75 100 TA - Free-Air Temperature - °c 125 FIGURE 28 t Data at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices. TEXAS • INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-413 nOB7, nOBB, n2B7, n2BB JFET-INPUT OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt . SUPPLY CURRENT SUPPLY CURRENT vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 3 3 '\ 2.5 E I 2 "E ~ :::I I () >- 1.5 Q. Co :::I CIl I 2.5 ~ rr c( = 25°e "'--- T A = - 55°e _ "- TA = 125°e LTA c( ...--: :::::::: " .V E I "E 2! 2 I Co :::I CIl I I o J o 0.5 0.5 Vo = 0 No Load 2 4 6 8 10 12 14 o 16 -75 Vo = 0 No Load -50 IVee ±I-Supply Voltage- V -25 0 25 50 75 100 T A - Free-Air Temperature - °e FIGURE 29 SLEW RATE vs vs LOAD RESISTANCE FREE-AIR TEMPERATURE 30 30 ----- SR+ 25 .. ~ / .. .. .. iii SRI-- :::t :> V ~ II: ;: I II: CIl 10 Vee± = ±15V eL = 100 pF TA = 25°e See Figure 1 5 o 0.4 20 I iii I SR + 25 - V 15 II: CIl I I I I I III 4 10 40 RL - Load Resistance - kQ 100 ~. I /' ,/" 15 r-- SR- I f----- f--- 10 5 o -75 -50 -25 0 25 Vee ± = ±15 V RL = 2 kQ eL = 100 pF See Figure 1 I I 50 75 100 125 TA - Free-Air Temperature - °e FIGURE 32 FIGURE 31 t Data at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices. -1!1 2-414 125 FIGURE 30 SLEW RATE ~ = ±5V- ~ () II: Vee± >- 1.5 .9 I = ±15V Q. () 20 i~ -.. Vee ± () .9 .. ~ : ---......., TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TL087. TL088. TL287. TL288 JFET·INPUT OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt OVERSHOOT FACTOR vs LOAD CAPACITANCE 50r-.....~.........., -....................-r..........~.....-, EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY 100 VCC± = ±15V RS = 100Q ~ :><: 70 .,I OJ S > 50 -'\ 1\ (5 ., TA = 25°C See Figure 3 40 III ·0 Z :; 30 Q. .E ., ---+-- 10 1---1+--1 i: a; VIPp=±10mV RL 2 kQ "- 20 > co ·5 = I w TA = 25°C See Figure 1 I <: > O~--~----~--~----~--~--~ 100 150 200 250 300 o 50 10 10 1k 100 100 k 10 k f - Frequency - Hz CL - Load Capacitance - pF FIGURE 33 FIGURE 34 UNITY-GAIN BANDWIDTH vs SUPPLY VOLTAGE TOTAL HARMONIC DISTORTION vs FREQUENCY 3.2 _VCC+=+15V- AVO = 1 E 6 '-" 8 VI f-~- -- '" "0 S > '5 So "I 0 CI) 4 0 - -f--- - - - - r-- - VCC±=±15V - - f- 1-- RL = 2kQ -- --- ---CL = 100 pF TA = 25"C See Figure 1 -4 I 0 > 4 > ---~ I 0 -2 ~ -12 \J / 0.4 0.6 0.8 1.0 \ \ CL = 100pF TA = 25"C See Figure 1 -4 -6 -8 0.2 VCC±=±15V RL = 2kQ 0 > J'J o 0 I I 2 > '5 I -8 -16 '" "0 S f-- I --~ I I CI) I 1.2 t-Time-~s \If\,- II o 2 t - Time - FIGURE 41 3 4 5 6 ~s FIGURE 42 -1!1 TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-417 TL087, TL088, TL287, TL288 JFET·INPUT OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA output characteristics All operating characteristics are specified with 1OO-pF load capacitance. These amplifiers will drive higher capacitive loads; however, as the load capacitance increases, the resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation. The value of the load capacitance at which oscillation occurs varies with production lots. If an application appears to be sensitive to oscillation due to load capacitance, adding a small resistance in series with the load should alleviate the problem. Capacitive loads of 1000 pF and larger may be driven if enough resistance is added in series with the output (see Figure 43). (a) CL = 100 pF, R = 0 (d) CL = 1000 pF, R = 0 (b) CL = 300 pF, R = 0 (e) CL 1000 pF, R (e) CL = 50 g (f) CL = 1000 pF, R = 2 kg FIGURE 43. EFFECT OF CAPACITIVE LOADS +5V - 5V 2kQ (see Note A) NOTE A: CL includes fixture capacitance. FIGURE 44. TEST CIRCUIT FOR OUTPUT CHARACTERISTICS ~ , TEXAS INSTRUMENTS 2-418 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 = 350 pF, R = 0 TL081, TL088, TL281, TL288 JFET·INPUT OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA input characteristics These amplifiers are specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction. Because of the extremely high input impedance and resulting low bias current requirements, these amplifiers are well suited for low-level signal processing; however, leakage currents on printed circuit boards and sockets can easily exceed bias current requirements and cause degradation in system performance. It is good practice to include guard rings around inputs (see Figure 45). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input. Vo Vo (a) NONINVERTING AMPLIFIER (b) INVERTING AMPLIFIER (e) UNITY-GAIN AMPLIFIER FIGURE 45. USE OF GUARD RINGS noise performance The noise specifications in op amp circuits are greatly dependent on the current in the first-stage differential amplifier. The low input bias current requirements of these amplifiers result in a very low current noise. This feature makes the devices especially favorable over bipolar devices when using values of circuit impedance greater than 50 kO. ~ TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-419 2-420 Tl2828Z, Tl2828Y HIGH-TEMPERATURE DUAL OPERATIONAL AMPLIFIERS 03971, DECEMBER 1991 • Operating Free-Air Temperature Range - 40°C to 150°C • • • • Wide Range of Supply Voltages: Single Supply Or Dual Supplies ... 4 V to 30 V Low Input Bias and Offset Parameters Input Offset Voltage ••. 3 mV Typ Input Offset Current ..• 2 nA Typ Input Bias Current ••. 15 nA Typ • Low Supply Current Drain Indepedent of Supply Voltage ... 0.7 mA Typ Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage ... 30 V • Open-Loop Differential Voltage Amplification 100 VlmV Typ Internal Frequency Compensation description These devices consist of two independent high-gain frequency-compensated operational amplifiers that are designed specifically to operate over a wide range of voltages from a single supply. Operation from split supplies is also possible as long as the difference between the two supplies is 4 V to 30 V, and Vce is at least 1.5 V more positive than the common-mode input voltage. The low supply current drain is independent of the magnitude of the supply voltage. Applications include transducer amplifiers, dc amplification blocks, and all the conventional operational amplifier circuits that now can be implemented more easily in single-supply voltage systems. For example, the TL2828Z can be operated on automotive engine blocks directly off the standard 12-V supply with minimal electrical protection. The TL2828Z is characterized for operation over the .extended temperature range of - 40 0 e to 150o e. AVAILABLE OPTIONS TA VIOmax AT 25°C SMALL- PACKAGE PLASTIC CHIP OUTUNE DIP FORM (D) (P) (V) -40·C to 7mV TL2828ZD TL2828ZP TL2828V 150·C D packages are available taped and reelad. Add "R" suffiX to davlce typa (I.a., TL2828ZDR). Tha chip form is tastad at TA = 25·C. PRODUCTION DATA InlonnaJlon is currenl as 01 publication data. Products conlonn 10 speCifications par tha tarms 0' Texas Instrumenls siandard warranlY. ProducJlon processing does nol necassarlly Include tasUng 0' all pallimeters. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 Copyright@1991, Texas Instruments Incorporated 2-421 I I TL2828Z, TL2828Y HIGH-TEMPERATURE DUAL OPERATIONAL AMPLIFIERS symbol (each amplifier) Vcc+ IN+~ IN- TL2828Z ••• D OR P PACKAGE (TOP VIEW) OUT - lOUT [ J S 1 IN2 7 llN+ 3 6 VCC4 5 VCC- VCC+ 20UT 21N21N+ equivalent schematic (each amplifier) r-----------------~--~~--~------~~~~VCC+ OUT IN- IN+ ---+----+--------1----+----' ...-------+- To Other Amplifier L-~~----~~~~--------~--------4---~------~~VCC- TEXAS .." INSTRUMENTS 2-422 POST OFFICE BOX 655303' DALLAS. TEXAS 75265 TL2828Y HIGH-TEMPERATURE DUAL OPERATIONAL AMPLIFIERS chip Information These chips, properly assembled, display characteristics similar to the TL2828Z. Thermal compression bonding may be used on the gold bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform. BONDING PAD ASSIGNMENTS Vcc+ (8) IN+ (3) IN- (2) =t>-+ - 1 OUT (1) IN+(5)~ IN- (6) ~ 2 OUT (7) vcc- (4) CHIP THICKNESS: 15 TYPICAL BONDING PADS: 4 X 4 MINIMUM TJmax = 165°C TOLERANCES ARE ± 10% ALL DIMENSIONS ARE IN MILS PIN (4) INTERNALLY CONNECTED TO BACKSIDE OF THE CHIP TEXAS • INSfRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 2-423 TL2828Z HIGH-TEMPERATURE DUAL OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, Vcc+ (see Note 1) .................................................... 16 V Supply voltage, VCC- ........................................ '......•............... -16 V Differential input voltage (see Note 2) ................................................. ± 32 V Input voltage range, VI (any input) ................................................ -16 to 16 V Input current, II (each input) ........................................................ ± 1 rnA Output current, 10 ............................................................... ± 40 rnA Total current into VCC+ terminal ..................................................... 60 rnA Total current out of VCC- terminal .................................................... 60 rnA Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... unlimited Continuous total dissipation ........................................ See Dissipation Rating Table Operating free-air temperature range, TA ....................................... - 40°C to 150°C Storage temperature range ................................................... -65°C to 165°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................. 260°C NOTES: 1. All voltage values. except differential voltages, are with respect to the midpoint between VCC+ and VCC- when dual supplies are specified (e.g .• VCC± =± 15 V) and with respect to VCC- when a single supply is specified (e.g., VCC =5 V). 2. Differential voltages are at the noninverting input with respect to the inverting input. Excessive current will flow if the input is below Vee-· 3. The output may be shorted to either supply. Temperature andlor supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE D p TA S25·C DERATING FACTOR TA = 70°C POWER RATING ABOVE TA = 25°C POWER RATING 5.8 mW/oC 812mW 551 mW 8.0 mW/oC 1120mW 760mW recommended operating TA = 105°C POWER RATING Input voltage range 232mW 87mW 480mW 320mW 120mW conditions VCC± = ±2.5 V = ± 15 V Vec± Vee± = ±2.5V Vec± = ±15V Operating free-air temperature, TA TEXAS . " INsrRUMENTS 2-424 TA=1SOoC POWER RATING 348mW Supply voltage, Vce ± Common-mode input voltage, VIC TA=12SoC POWER RATING POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 MIN MAX UNIT ±2 -2.5 ± 15 V 0.5 -15 13 -2.5 0.5 -15 13 -40 ISO V V ·C Tl2828Z HIGH-TEMPERATURE DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, PARAMETER VIO TEST CONDITIONS input offset voltage 110 Input offset current liB Input bias current TAt Common-mode input voltage range VIC = 0, Vo = 1.4 V, RS = 50 n Full range 15 25°C 2 RS = 50n High-level output voltage = 1 rnA CMRR voltage amplification Common-mode rejection ratio kSVR Supply-voltage rejection ratio ICC Supply current (total package) Supply current change over Ll.ICC -15 30 -100 -500 0 to 3,5 Full range to 3 3.5 25°C 3.3 3.2 3.7 25°C Full range 3.3 3.2 3.6 25°C 0.8 0.6 _ _ 25°C Full range 0.9 Vo = 1 Vt03.5V, RL =2kn 25°C Full range 25 0.7 100 VIC = VICRmin, Vo = 1.4 V, RS= 50 n 25°C Full range 65 80 VCC = 5Vt030V, Vo = 1.4 V, 25°C Full range 45 65 100 V V 0.7 1.1 V/mV dB dB 65 0.7 Full range Full range operating temperature range nA V Full range 25°C nA 0 IOL = 1 rnA VIC = 0, Vo = 2.5 V, No load ,nV to 1 RL =10kn UNIT /lV/oC 200 Full range Low-level output voltage Large-signal differential 7 0 IOL = 0.1 rnA AVD MAX 10 25°C Full range IOH VOL 3 Full range IOH = 0.1 rnA VOH TYP Full range 25°C VICR MIN 25°C Input offset voltage Temperature coefficient of aVIO vee = 5 V (unless otherwise noted) 140 1.2 1.2 rnA JlA tFull range is - 40°C to 150°C. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2-425 Tl2828Z HIGH-TEMPERATURE DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, V cc± PARAMETER VIO Input offset voltage aVIO Temperature coefficient of input offset voltage =± 15 V (unless otherwise noted) TAt TEST CONDITIONS VIC = 0, Vo =0, RS = 50n MIN TYP MAX 25°C Full range 3 .7 10 Full range 15 UNIT mV /lV/oC 110 Input offset current 25°C Full range 2 30 200 nA liB Input bias current 25°C Full range -15 -100 -500 nA 25°C VICR Common-mode input voltage range RS = 50 n Full range 25°C Full range 10=-0.1 mA VOM+ Maximum positive peak output voltage swing 25°C Full range 25°C Full range 10 =-1 mA 10=-10mA VOM- Maximum negative peak output voltage swing 10=1 mA 10=7mA AVD Large-signal differential voltage amplification CMRR Common-mode rejection ratio kSVR ICC Ll.ICC RL = 2 kn, Vo = - 5 V to 5 V VIC = VICRmin, Vo = 1.4 V, RS=50n VCC = 5Vto30V, Supply-voltage rejection ratio RL =10kn, Vo = I.4V Supply current (total package) Supply current change over operating temperature range VIC = 0, Vo = 0, No load 14.1 14 25°C Full range 25°C Full range 25 0.8 65 50 100 25°C Full range 65 100 -14.4 -14.3 V/mV 75 dB dB 65 Full range 140 POST OFFICE BOX 655303 - DALLAS, TEXAS 75265 V -13.8 0.7 ~ V 13.6 25°C Full range INSTRUMENTS 2-426 13.1 13.1 13 V 25°C Full range tFull range is - 40°C to 150°C. TEXAS 13.5 -15 to 13 13.2 12.8 12.7 -13.7 -13.1 -13.6 -13 -12.9 -12.5 25°C Full range 25°C Full range 10=0.1 mA -15 to 2 2 mA JlA Tl2828Z HIGH-TEMPERATURE DUAL OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, vcc± = PARAMETER SR+ Positive slew rate SR- Negative slew rate Vn VN(PP) TEST CONDITIONS VO; 1 Vt04.5V,AVD ; 1, RL ; 2 knt, CL ; 100 pF Equivalent input noise f ; 10 Hz voltage Peak-to-peak equivalent f ; 10 kHz input noise voltage ±15 V TAt MIN 25°C Full range 0.15 0.1 25°C Full range 0.15 25°C TYP MAX UNIT V/)lS 0.1 39 23 nVl#iZ f ; 0.1 Hz to 10Hz 25°C 0.9 fLV kHz Bl Unity-gain bandwidth RL ; 10 kilt, CL ; 100 pF 25°C 400 ¢m Phase margin RL ; 10 kilt, CL ; 100 pF 25°C 60° tFull range is - 40°C to 150°C. tRL terminates at a V. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-427 Tl2828Y HIGH-TEMPERATURE DUAL OPERATIONAL AMPLIFIERS electrical characteristics at Vcc± = ± 15 V, TA = 25°C (unless otherwise noted) PARAMETER TEST CONDITIONS VIO 110 liB Input offset voltage Input offset current Input bias current VIC = 0, Vo = 0, RS = 50 n VICR Common-mode input voltage range RS = 50n Maximum positive peak output voltage VOM+ swing Maximum negative peak output voltage VOM- swing Large-signal differential voltage amplification CMRR Common,mode rejection ratio kSVR Supply-voltage rejection ratio Supply current (total package) ICC AVO 10=-0.1 rnA 10=-1 mA TYP MAX 3 2 -15 -15 to 13.5 13.2 13.1 12.8 7 30 -100 UNIT mV nA V 14.1 14 V -13.7 -13.6 -12.9 13.6 -14.4 -14.3 -13.8 Vo = 1 Vto-1.5V, RL =2kn 25 100 V/mV VIC = Oto28V,VO = 1.4V,RS=50n VCC = 5Vto30V, Vo = 1.4 V, RL =10kn 65 65 75 100 0.7 dB dB mA 10=-10mA 10=0.1 mA 10= 1 mA 10= 10mA VIC = 0, Vo = 0, No load TEXAS ~ 2--428 MIN INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 V 2 TL2829Z, Tl2829Y HIGH-TEMPERATURE QUADRUPLE OPERATIONAL AMPLIFIERS D3827, APRIL 1991 available features • Free-Air Operating Temperature Range - 40°C to 150°C • Wide Range of Supply Voltages: Single Supply ••. 4 V to 30 V Or Dual Supplies • Low Supply Current Drain Independent of Supply Voltage ... 0.8 mA • Internal Frequency Compensation • Low Input Bias and Offset Parameters at 25°C Input Offset Voltage ... 3 mV Typ Input Offset Current ... 2 nA Typ Input Bias Current ... 15 nA Typ • Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage ... 30 V • Open-Loop Differential Voltage Amplification 100 V/mV Typ at 25°C SUPPLY CURRENT vs FREE-AIR TEMPERATURE INPUT OFFSET CURRENT vs FREE-AIR TEMPERATURE o,g 2 VIC = 0 0.85 -RL= 0 ""E I ;: ~ :::J ... 0.8 0.75 0.7 , / ./ .... -r.......... .",- VCC±= ± 15V ...... I ;: ~ . Ii = ;; is. 0.65 a. 0 :::J I 0.6 0.55 0.5 1.4 a. V 0 9 1.6 :::J 0 0 C/) ./ 0.45 -50 ./ ..,. 1.8 ""c :-- VCC+ = ± 2.SV .5 .............. I ....... g // / ~ VCC± = ± 2.5 V to ± 15 V RL = 10kn 1.2 VIC = 0 Vo 0 = 1 o 50 100 TA - Free-Air Temperature - ·C -so 150 o I 50 100 TA - Free·AirTemperature - ·C 150 description These devices consist of four independent, high-gain frequency-compensated operational amplifiers that are designed specifically to operate from a single supply over a wide range of voltages. Operation from split supplies is also possible as long as the difference between the two supplies is 4 V to 30 V, and Vee is at least 1.5 V more positive than the input common-mode voltage. The low supply current drain is independent of the magnitude of the supply voltage. AVAILABLE OPTIONS PACKAGE TA VIOmax AT2S·C -40°C to 150°C 7mV SMALLOUTLINE (D) PLASTIC DIP (N) TL2829ZD TL2829ZN CHIP FORM (V) TL2829V 'D packages are available taped and reeled. Add "R" suffix to device type, (i.e., TL2829ZDR). PRODUCTION DATA documents contain Information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily Include testing of all parameters. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • OALLAS, TEXAS 75265 Copyright © I 991, Texas Instruments Incorporated 2-429 TL2829Z, TL2829Y HIGH-TEMPERATURE QUADRUPLE OPERATIONAL AMPLIFIERS Applications include transducer amplifiers, doc amplification blocks, and all the conventional operational amplifier circuits that now can be implemented more easily in single-supply-voltage systems. For example, the TL2829 can be operated on automotive engine blocks directly off the standard 12-V supply with minimal electrical protection. The TL2829 is characterized for operation over the extended (Z) temperature range of - 40°C to 150°C. TL2829Z .•• D OR N PACKAGE (TOP VIEW) symbol (each amplifier) lOUT 1 INliN + IN + =t>-VCC+ IN- OUT - VCC + 21N + 21N 20UT VCC- 3 11 4 OUT 41N 41N + GND SIN + SIN - chip information These chips, properly assembled, display characteristics similar to the TL2829. Thermal compression bonding may be used on the gold bonding pads. Chips may be mounted with conductive epoxy or a goldsilicon preform. BONDING PAD ASSIGNMENTS Vcc+ (4) lIN+(S)~ lIN-(2) 2 OUT (7) D= _ - 3IN+(10)~. 3 IN - (9) 40UT(14) 10UT(1) 2IN+(5) 21N- 6 () SOUT(8) =<;J= + 4IN+(12) - 4IN-(13) VCC-(ll) CHIP THICKNESS: 15TYPICAL BONDING PADS: 4X4MINIMUM TJmax= 165°C TOLERANCES ARE± 10% ALL DIMENSIONS AREINMILS ... 61 • 1I1111111I1111111111111111111111111111111111111111111111111111 ~ 2-430 TEXAS INSTRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 TL2829Z, TL2829Y HIGH-TEMPERATURE QUADRUPLE OPERATIONAL AMPLIFIERS equivalent schematic (each ampl ifier) r---------------~--~--~~------.-~~vcc OUT IN- IN+ -------+-------1--------' +----GND TO OTHER AMPLIFIERS TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2-431 TL2829Z, TL2829Y HIGH-TEMPERATURE QUADRUPLE OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, vcc+ (see Note 1) ......................................... ; .......... 16 V Supply voltage, VCC- ............................................................. - 16 V Differential input voltage (see Note 2) ................................................. ± 32 V Input voltage range, VI (any input) ............................................... - 16 to 16 V Input current, II (each input) ........................................................ ± 1 mA Output current, 10' .............................................................. ± 40 mA Total current into VCC+ terminal ..................................................... 60 mA Total current out of VCC- terminal .................................................... 60 mA Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... unlimited Continuous total dissipation ........................................ See Dissipation Rating Table Operating free-air temperature range, TA Z-suffix ............................... - 40°C to 150°C Storage temperature range .................................................. - 65°C to 165°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package .... '" ........ 300°C NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC- when dual supplies are specified (e.g., VCC± = ± 15 V) and with respect to VCC- when a single supply is specified (e.g., VCC = 5 V). 2. Differential voltages are atthe noninverting input with respecttothe inverting input. Excessive currentwill flow if input is brought below VCC-' . 3. The output may be shorted to either supply. Temperature andior supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE o N TAS; 25·C DERATING FACTOR TA = 70·C POWER RATING ABOVETA = 25°C POWER RATING 7.6 mW/oC 1064 mW 722mW 12.6 mW/oC 1764mW 1197mW TA= 100·C TA= 125·C TA= 150·C POWER RATING 494mW POWER RATING POWER RATING 819mW 304mW 114mW 189mW 504mW recommended operating conditions MIN MAX UNIT ±2 ±15 V VCC+ = ±2.5 V -2.5 0.5 VCC± = ± 15 V VCC+ = ±2.5 V VCC+ = ± 15 V -15 -2.5 Supply voltage, VCC + Common-mode input voltage, VIC Input voltage range Operating free-air temperature, TA: Z-suffix TEXAS ~ INsrRUMENTS 2-432 POST OFFICE BOX 655303' DALLAS, TEXAS 75265 13 V -15 0.5 13 V -40 150 °c TL2829Z HIGH-TEMPERATURE QUADRUPLE OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, PARAMETER VIO TEST CONDITIONS Temperature coefficient of input offset voltage 110 Input offset current liB Input bias current TAt MIN 25°C Input offset voltage aVIO Vee = 5 V (unless otherwise noted) 3 Full range Vo = 1.4 V, VIC = 0, RS = 50 Q Full range 15 25°C 2.0 Common-mode input 30 Full range -500 RS = 50Q UNIT mV /lV/oC 200 -12 -100 0 voltage range 7 to Full range 25°C 25°C VICR TYP MAX nA nA 0 to to 3.5 3.5 Full range 0 to 25°C 3.3 Full range 3.2 10H = 1 mA 25°C Full range 3.3 3.2 3.6 10L = 0.1 mA 25°C Full range 0.8 0.6 25°C 0.9 Full range 1.1 25°C Full range 0.7 25°C Full range 50 25°C Full range 65 65 V 3 10H = 0.1 mA VOH VOL High-level output voltage Low-level output voltage laL = 1 rnA AVO CMRR Large-signal differential voltage amplification Common-mode rejection ratio kSVR Supply-voltage rejection ratio ICC Supply current (total package) Supply current change over AICC Va = 1 V to 3.5 V, RL = 2 kQ Va = 1.4 V, VIC = VICRmin, RS = 50 Q VCC = 5 V to 30 V, Va = 1.4 V, RL =10kQ 25°C Va = 2.5 V, VIC = 0, No load V 1 25 65 V 0.7 60 V/mV 81 dB 103 0.6 Full range Full range operating temperature range 3.7 dB 1.2 1.2 140 rnA jlA t Full range is - 40°C to 150°C. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-433 TL2829Z HIGH-TEMPERATURE QUADRUPLE OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Vcc± TEST CONDITIONS PARAMETER VIO =± 15 V (unless otherwise noted) TAt MIN 3 25°C Input offset voltage TYP Full range Temperature coefficient of Vo ;0. aVIO input offset voltage VIC; 0 110 Input offset current liB Input bias current RS ; 50Q. MAX 7 10 Full range 15 25°C Full range 2 25°C mV flVl oC 30 200 -15 -100 -500 Full range UNIT nA nA -15 25°C Common-mode input VICR voltage range to 13.5 RS ; 50 Q V -15 Full range to 10 ;-0.1 mA 25°C Full range 13.2 13.1 10;-1 mA 25°C Full range 13.1 13 14 25°C 12.8 13.6 13 VOM+ Maximum positive peak output voltage swing 10;-10mA Full range 25°C 10;0.1 mA VOM_ Maximum negative peak output voltage swing 10; 1 mA 10; 10mA Large-signal differential AVD CMRR voltage amplification Common-mode rejection ratio kSVR Supply-voltage rejection ratio ICC Supply current (total package) Supply current change over AICC RL ;2kQ. Vo ; -5Vt05V Vo ; 1.4 V. RS ; 50 Q VIC ; VICRmin VCC ; 5 V to 30 V. RL ; 10 kQ. Vo ; 1.4 V Vo ; O. VIC; O. No load operating temperature range 12.7 -13.1 25°C Full range -13.6 -14.3 25°C -12.9 -12.9 25°C 25 Full range 0.8 25°C Full range 50 65 65 -13.8 210 103 Full range 140 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 dB dB 65 0.8 TEXAS ~ V/mV 75 25°C Full range INSTRUMENTS V -13 Full range 25°C Full range V -13.7 -14.4 Full range t Full range is - 40°C to 150°C. 2-434 14.1 3 3 rnA flA Tl2829Z HIGH-TEMPERATURE QUADRUPLE OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, Vee± = ± 15 V (unless otherwise noted) PARAMETER SR + Positive slew rate SR- Negative slew rate Equivalent input noise Vn VN(PP) Bn voltage Peak-to-peak equivalent input noise voltage Unity-gain bandwidth Phase margin at unity- ¢m gain TEST CONDITIONS VCC AVO ¥ = 15 V, Vo = 1 to 4.5 V, = 1, RL = 2kn, CL = 100pF TAt MIN 25°C 0.2 Full range 0.1 25°C 0.25 Full range 0.2 TYP MAX UNIT V/JlS f f = 10 Hz = 10 kHz 25°C f = 0.1 25°C 0.9 JlV kHz Hz to 10 Hz 39 23 RL = 10k.Q+, CL = 100pF 25°C 400 RL = 10 k.Q*, CL = 25°C 60° 100 pF nV/VHz t Full range is - 40°C to 150°C. *RL terminates at 0 V. TEXAS ~ IN srRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2-435 TL2829Y HIGH-TEMPERATURE QUADRUPLE OPERATIONAL AMPLIFIERS electrical characteristics at Vcc± =± 15 V, TA = 25°C PARAMETER TEST CONDITIONS VIO 110 liB Input offset voltage Input offset current Input bias current Vo = 0, VIC = 0, RS = 50 Q VICR Common-mode input voltage range RS = 50Q 10=-0.1 mA 10=-1 mA 10=-10mA 10=0.1 mA Maximum negative peak output voltage 10= 1 mA VOMswing 10 = 10 mA Large-signal differential Vo = 1 Vto-1.5V, RL =2kQ AVD voltage amplification CMRR Common-mode rejection ratio Vo = 1.4 V, VIC = Ot028V, RS=50Q VCC = 5 V to 30 V, Vo = 1.4 V, RL = 10 kQ kSVR Supply-voltage rejection ratio Supply current (total package) ICC Vo = 0, VIC = 0, No load VOM+ Maximum positive peak output voltage swing TEXAS ~ INSTRUMENTS 2-436 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MIN TYP MAX 7 3 2 30 -15 -100 -15 to 13.5 13.2 13.1 12.8 UNIT mV nA V 14.1 14 13.6 -13.7 -14.4 -13.6 -14.3 -12.9 -13.8 V V 25 210 VlmV 65 65 75 103 0.8 dB dB 3 mA TL2829ZD, TL2829ZN, TL2829Y HIGH-TEMPERATURE QUADRUPLE OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS 110 TABLE OF GRAPHS Input offset current liB Input bias current VOM+ High-level output voltage VOM- Low-level output voltage los Short-circuit output current AVO CMRR Differential voltage amplification ksv~ ICC SR+ SR- vs vs vs Temperature Temperature (Vee = ± 2.5 V) Temperature (VCC = ± 15 V) FIGURE 1 2 3 vs Temperature (VCC = ± 2.5 V) 4 vs Temperature (VCC = ± 15 V) 5 vs Temperature (Vee = ± 2.5 V) vs vs Temperature (Vee = ± 15 V) vs vs Temperature (VID.= - 1 V) Temperature 6 7 8 9 10 Common-mode rejection ratio Supply-voltage rejection ratio vs Temperature 11 vs Temperature Supply current Positive slew rate vs vs Temperature 12 13 Temperature 14 Negative slew rate vs Temperature 15 Equivalent input noise voltage Over a 10-second period Temperature (VID..= 1 V) 16 TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-437 TL2829ZD, TL2829ZN, TL2829Y HIGH-TEMPERATURE QUADRUPLE OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS INPUT OFFSET CURRENT vs FREE-AIR TEMPERATURE 2 c( c 1.8 / I ~ :I 1.6 / I 0 Gi :t!0 ... '5 1.4 .E I 0 .::- i""" '" VCC± = ± 2.5 V to ± 15 V RL=10kn 1.2 VIC = 0 Vo = 0 1 1 o -50 50 100 TA - Free-Air Temperature - ·C 150 Figure1 INPUT BIAS CURRENT INPUT BIAS CURRENT vs vs FREE-AIR TEMPERATURE FREE-AIR TEMPERATURE 20 0 VCC± = ± 2.5 V 16 RL = 10 kQ c( 12 I 8 c E ~ :I -2 VIC= 0 Vo = 0 c( c E 0 ~ ~ '5 -4 iii Q. .E -8 / ....... V ~ -12 0 1/1 co / -8 '5Q. -10 .E ~ -12 -14 o 50 100 TA - Free-Air Temperature - ·C 150 ~"" -16 -50 Figure2 L TEXAS ~ POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 V / o 50 100 T A - Free-Air Temperature - ·C Figure3 INSTRUMENTS 2-438 1 -6 iii -16 -20 -50 J VIC = OV -4 Vo = 0 I 4 0 1/1 co VCC± = ± 15 V RL = 10kn 1 1 150 TL2829ZD, TL2829ZN, TL2829Y HIGH-TEMPERATURE QUADRUPLE OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE > MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE vs vs FREE-AIR TEMPERATURE FREE-AIR TEMPERATURE 1.8r-----~r------,------~------_, Vee± = ± 2.5 V > 14.6 r--------r-------,-------,-------:::I Vee± = ± 15 V " Cl 1.6r-----~------~-------+~~~'9 $! ~ :; 1.4r-----~------~~~~~------_1 5" 14.4 1-------I__----~----------:::>~_____:7"'___1 14.2 1----------:I----------:::>~~~~---------1 o 1.2r-----~--~~~~-----+------_1 "'~'"" .~ 1.0 I-----..~~F_------jf-----_I------_I 0.81-------t-----~"""'-----~----=......;;;:_/ .~ 13.8 r--:7""-~r_----~------~------___I ~ E E 13.6 I-------ih""""'--~----'"'----r------~ " :; '" 'x 0.6 1-------,,,;£+-----~I__----~------___1 + :; ~ :; 0.4L-------L-----~------~------~ -50 o 50 150 100 T A - Free-Air Temperature - 50 100 150 ·e MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE vs vs FREE-AIR TEMPERATURE FREE-AIR TEMPERATURE ~ -13.6 r-----~--------r---~---_, Vee ~ $! = ± 2.5V "0 -1.0 Vee± = ± 15 V ~ -13.81-;;;;;;:::~:::;;;;::==T---.....,~:_:;n;;;A1 > :; Q. :; -1.2 '[ :; = 10 rnA 10 0 ... o -14.0 I-------f-------j------_I--------I ~ -1.4 .~ -14.2 1-'.......::----1-------1---------1------___1 ;;; -1.6 lE -14.4 E -1.8 E " 'x :; '" o T A - Free-Air Temperature - MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE " g> z -50 ·e $! " "> ~ 13.2 '--____~L__ _ _ _~_ _ _ _ _ _~_ _ _ _ _ _~ Figure5 Cl Q. ~ Figure4 > -0.8 I "''"" 13.4 h.c:---~I__----~---------I------___1 + '" -14.6 1-------1__------1------=""""=-----___1 :; -2.0 I I I :; 0 -2.2 > -50 1------'f""ooo;;;:-----1--=""""'.....::~------___1 "E 'x :; L-_ _L - L __ _- - '_ _ _ _ _ _- - ' -50 0 50 100 150 ~-14.8 0 50 150 100 TA - Free-Air Temperature - ·e ~ T A - Free-Air Temperature - Figure6 ·e Figure7 TEXAS ." INSTRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 2-439 TL2829ZD, TL2829ZN, TL2829Y HIGH-TEMPERATURE QUADRUPLE OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS SHORT-CIRCUIT OUTPUT CURRENT SHORT-CIRCUIT OUTPUT CURRENT vs vs FREE-AIR TEMPERATURE FREE-AIR TEMPERATURE -14 96 c:.'"0- 94 en 92 a: > en 90 '';ril a: '" g ::I "" 0.85 -............ « I ~ E f! " """ _Vcc = 5Vt030V Vo = 1.4 V 88 -RL= 10kQ 0.7 c:. '"0- 0.65 III 0.4 I I ~ 50 100 TA - Free-Air Temperature - DC .9 0.2 0 a:+ 0.1 en o 50 100 TA - Free-Air Temperature - DC Figure13 POSITIVE SLEW RATE NEGATIVE SLEW RATE vs vs FREE-AIR TEMPERATURE FREE-AIR TEMPERATURE 0.45 en .:!> /' VCC = 15V Vo = 1 V to 4.5 V- -- /" --.... ........ 150 VCC = 5 V Vo = 1 V 103 V -50 o 50 " 100 TA - Free-Air Temperature - DC ~ ......'" .2: ~" 0.41 RL = 2kQ 1 CL = 100 pF Av = 1 0.38 VCC = 15V Vo = 1 V to 4.5 V !!! 0.35 IV a: iii ~ 0.05 o ...... VCC± = ± 2.5 V Figure12 Av = 1 0.3 0.15 / :--............... ~ / 0.45 -50 150 0.35 0I 0.55 CL = 100 pF .. .;;; vcc± = ± 15 V 0.48 iii 0.25 .~ 0.6 U I > !!!IV a: / 0.5 o / -.......... ~ V ::I en RL = 2 kQ 1 .:!- 0.75 ~ U 0.5 0.45 0.8 E 98 86 -50 VIC = 0 r- RL = 0 Z I a: en 150 0.31 0.28 0.25 0.21 0.18 /' /' ....- ./- /" ~ .............. ~ VCC = 5 V Vo= lVt03V 0.11 o -50 Figure14 "" " "'- 0.15 50 o 100 TA - Free-Air Temperature - DC 150 Figure15 TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-441 TL2829ZD, TL2829ZN, TL2829Y HIGH-TEMPERATURE QUADRUPLE OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS EQUIVALENT INPUT NOISE VOLTAGE OVER A 10·SECOND PERIOD 0.62 r - - - - , - - - , - - - - - r - - - , - - - - - , 0.31 ~ I Q) Cl S 0 "0 >Q) III '0 Z - 0.311-----+-+---~-_+_--+-+_IH = Vcc± ± 15V f 0.11010 Hz = - 0.62 ' - - _ - ' -_ _'--_--'-_ _.L..-_--' o 2 4 6 8 10 I - Time - s Figure 16 TEXAS ~ INSTRUMENTS 2-442 POST OFFICE BOX 655303· DALLAS, TEXAS 75265 Tl33071, Tl33072, Tl33074, Tl34071,Tl34072,Tl34074 Tl35071, Tl35072, Tl35074 HIGH-SLEW-RATE, SINGLE-SUPPLY OPERATIONAL AMPLIFIERS D3825. MARCH 1991 - REVISED JULY 1991 available features • Wide Gain-Bandwidth Product ... 4.5 MHz • High Slew Rate ... 13 V/JlS • Fast Settling Time ... 1.1 JlS to 0.1 % • Wide-Range Single-Supply Operation 4 Vt044 V • Wide Input Common-Mode Range Includes Ground (VCC-) • Low Total Harmonic Distortion ... 0.02 % • Low Input Offset Voltage ... 3 mV Max (A Suffix) u8 • Large Output Voltage Swing - 14.7 V to 14 V (With ± 15-V Supplies) • Large Capacitance Drive Capability oto 10,000 pF • Excellent Phase Margin ... 60 0 • Excellent Gain Margin ... 12 dB • Output Short-Circuit Protection 0·8 OR P PACKAGE OFFSET Nl ININ+ Vee _/GND (DUAL, TOP VIEW) 10UT 1 IN - 2 3 7 6 NC Vee + OUT 4 5 OFFSET N2 1 IN + Vec_/GND OW PACKAGE Vee + 21N + 21N - 1 lOUT 4 OUT 41N 41N + 2 OUT Vee+ 20UT 7 3 6 21N521N+ 4 40UT 41N 41N + 1 liN Vee + 21N + Vee_ /GND 31N + 31N 3 OUT NC 5 8 2 N PACKAGE (QUAD, TOP VIEW) (QUAD, TOP VIEW) lOUT 1 IN· liN + u 0·8 OR P PACKAGE (SINGLE, TOP VIEW) 21N 8 Vee_ /GND 31N + 31N 30UT Ne - No internal connection AVAILABLE OPTIONS PACKAGE TA COMPLEXITY O°C SMALL OUTLINE PRIME STANDARD GRADE GRADE PLASTIC DIP STANDARD PRIME GRADE GRADE Single TL34071P TL34071AP TL34071D TL34071AD to Dual TL34072P TL34072AP TL34072D TL34072AD 70 0 e -40 o e Quad TL34074N TL34074DW TL34074ADW Single TL33071P TL34074AN TL33071AP TL33071AD TL33072AD to Dual TL33072P TL33072AP TL33071D TL33072D 105°e Quad TL33074N TL33074AN TL33074DW TL33074ADW -55°e Single TL35071P TL35071AP TL35071D TL35071AD to Dual TL35072P TL35072AP TL35072D TL35072AD 125°e Quad TL35074N TL35074AN TL35074DW TL35074ADW D packages are available taped and reeled. Add "R" suffix to device type (e.g .•TL34071ADR). PRODUCTION DATA documents contain inlormalion current as 01 publication date. Products conlorm to specifications per the terms 01 Texas Instruments standard warranty. Production processing does not necessarily include testing 01 all parameters. TEXAS ~ Copyright © 1991. Texas Instruments Incorporated INsrRUMENTS POST OFFICE BOX 655303· DALLAS. TEXAS 75265 2-443 TL33071, TL33072, TL33074, TL34071,TL34072,TL34074 TL35071, TL35072, TL35074 HIGH-SLEW-RATE, SINGLE-SUPPLY OPERATIONAL AMPLIFIERS description Quality, low cost, bipolar fabrication with innovative design concepts are employed for the TL33071 12/4, TL34071/2/4, and TL35071 12/4 series of monolithic operational amplifiers. This series of operational amplifiers offer 4.5 MHz of gain bandwidth product, 13 V/IlS slew rate and fast settling time without the use of JFET device technology. Although this series can be operated from split supplies, it is particularly suited for single-supply operation, since the common-mode input voltage range includes ground potential (VCC-)' With a Darlington input stage, this series exhibits high input resistance, low input offset voltage, and high gain. The all-NPN output stage, characterized by no dead-band crossover distortion and large output voltage swing, provides high-capacitance drive capability, excellent phase and gain margins, low open-loop high-frequency output impedance, and symmetrical source/sink ac frequency response. The TL33071 12/4, TL34071/1/4, and TL35071/2/4 series of devices are available in standard or prime performance (A-Suffix) grades and are specified over the commercial (O°C to 70°C), industrial/vehicular (- 40°C to 105°C) or military (- 55°C to 125°C) temperature ranges. These low-cost amplifiers are available in single, dual and quad configurations and are pin-compatible wtth the (low-cost) MC33071 1214, MC34071/214, and MC35071/2/4series of amplifiers. Packaging options include standard plastic DIP and SO packages. symbol SINGLE DUAL AND QUAD (PER AMPLIFIER) OFFSET N1 - - - - - - - , IN+ IN+ OUT OUT IN- IN- OFFSET N2 _ _ _- - ' TEXAS ~ INSTRUMENTS 2-444 POST OFFICE BOX655303 • DALLAS, TEXAS 75265 Tl33071, Tl33072, Tl33074, Tl34071,Tl34072,TL34074 TL35071, Tl35072, TL35074 HIGH-SlEW-RATE, SINGLE-SUPPLY OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, VCC+ (see Note 1) .................................................... 22 V Supply voltage, VCC- .............................................................. -22 V Differential input voltage (see Note 2) .................................................. ±44 V Input voltage range, VI (any input) .................................................... VCC± Input current, II (each input) ......................................................... ±1 mA Output current, 10 ................................................................ ±80 mA Total current into VCC+ terminal ..................................................... 80 mA Total current out of VCC- terminal .................................................... 80 mA Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... unlimited Continuous total dissipation ........................................ See Dissipation Rating Table Operating free-air temperature range, TA: TL3307_ ............................... - 40°C to 105°C TL3407_ .................................. O°C to 70°C TL3507_ ............................... - 55°C t0125°C Storage temperature range ................................................... - 65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: 0, OW, N, or P package .......... 260°C NOTES: 1.. All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC-. 2. Differential voltages are at the noninverting input with respect to the inverting input. Excessive current will flow if input is brought below VCC- - 0.3 V. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TA~25°C DERATING FACTOR TA=70oC POWER RATING 725mW POWER RATING 464mW TA= 105°C POWER RATING 261 mW TA= 125°C POWER RATING 145mW OW 1025mW ABOVETA = 25°C 5.8 mWI"C 8.2 mW/oC 656mW 369mW 205mW N p 1150 mW 9.2 mW/oC 736mW 414mW 230mW 1000mW 8.0 mW/oC 640mW 360mW 200mW 0-8 recommended operating conditions TL3407 TL3307 Supply voltage, VCC + jVcc - 5V Common-mode input voltage, VIC j VCC± = ±15V Operating free-air temperature, TA TL3507 MIN MAX MIN MAX MIN MAX ±2 ± 22 0 -15 - 40 2.7 ±2 0 -15 ± 22 2.9 ± 22 2.7 12.9 ±2 0 -15 70 -55 12.7 105 TEXAS 0 12.7 125 UNIT V V DC ~ INsrRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2-445 Tl33071, Tl33072, Tl33074, Tl34071,Tl34072,Tl34074 Tl35071, Tl35072, Tl35074 HIGH-SlEW-RATE,SINGlE-SUPPlY OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Vee± PARAMETER TEST CONDITIONS Input offset voltage Temperature coefficient of "via 110 input offset voltage 0.5 3 25°C Full range 0.5 3 5 VCC =±15V Full range 10 Input offset current VCC=±15V VIC =0, VO=O, RS=50n VCC=±15V VCC= 5V liB A SUFFIX MIN lYPi MAX TAt 25°C VCC = 5 V Via = ± 15V (unless otherwise noted) Input bias current VCC =±15V 25°C voltage range 6 -0.8 300 -2 -0.8 VOH VOL Low-level output voltage Large-signal differential AVD lOS CMRR kSVR voltage amplification RL = 10 kQ RI = 2 kn VCC+ = 5 V, VCC- = 0, RL = 2 k n RL=10kQ RL = 2 kn to 13.2 V -15 V 13.2 V -15V to to 12.S V Va Common-mode = 1 V, Va =0 Sink: VID =-1 V, Va = 0 VIC = VICR min, rejection ratio RS = 50n Short-circuit output current Source: V/D Supply-voltage rejection ratio VCC± = ± 13.5 V to ±16.5V,RS = lOon (AV cc + !tNIO) Va ICC = ± 10 V, RL = 2 kn Supply current (per channel) = 0, No Load VCC+ = 5 V, VCC- = 0, No Load Va = 0, 3.7 4 3.7 4 25°C Full range 13.6 14 13.6 14 13.4 0.1 0.3 0.1 - 14.7 -14.3 -13.5 25°C 50 25 V 100 25 100 -10 -30 20 30 20 30 25°C SO 97 70 97 25°C 80 97 70 97 25°C Full range 3.5 4.5 25°C 3.4 4.4 4.6 mA dB dB 3.5 4.5 4.7 3.4 4.4 4.7 V V/mV 20 -30 Full range 0.3 - 14.7 -14.3 -13.5 -10 25°C jJ.A 13.4 25°C Full range -1.5 V 25°C 25°C Full range nA -2 -15V 12.S V VCC+ = 5 V, VCC-= 0, RL = 2 kO mV -1.6 to Full range High-level output voltage -0.7 UNIT jJ.V/oc 50 -2.3 -1.5 -1.6 Full range 5 7 300 -2.3 -0.7 25°C RS = 500 5 10 -15 V VICR MAX 1.5 1.0 50 Full range 25°C Common-mode input lYPi 6 Full range 25°C NON·A SUFFIX MIN mA 4.6 tFuil range is O°C to 70°C for the TL3407_ devices, - 40°C to 105°C for the TL3307_ devices, and - 55°C to 125°C for the TL3507_ device~. tAli typical values are at TA = 25°C. TEXAS ~ INSTRUMENTS 2-446 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Tl33071, Tl33072, Tl33074, Tl34071,Tl34072,Tl34074 Tl35071, Tl35072, Tl35074 HIGH-SlEW-RATE, SINGLE-SUPPLY OPERATIONAL AMPLIFIERS operating characteristics at vee ± PARAMETER SR+ SR- Positive slew rate Negative slew rate Settling time Vn In Equivalent input noise voltage Equivalent input noise current THO Total harmonic distortion GBW Gain-bandwidth product BW Power bandwidth ¢m Phase margin Gain margin fj C' Zo Differential input resistance Input capacitance Channel separation Open-loop output impedance = ± 15 V, TA = 25°C TEST CONDITIONS VI =-10 V to TYP 8 10 13 1.1 2.2 AV = 1 AV=-l To 0.1% To 0.01% 10V,RL=2kn AVO = -1, 10-V Step I = 1 kHz, A SUFFIX MIN RS = lOOn I = 1 kHz Vo = 2 V to 20 V, RL = 2 kn, 1= 10 kHz AVO = 10, NON-A SUFFIX MAX MIN TVP 8 10 13 1.1 2.2 MAX UNIT V/fls fls 32 32 nVl,!Hz 0.22 0.22 pAl,!Hz 0.02 % 4.5 MHz kHz 0.02 l=lookHz RL = 2kn, AVO = 1, VOg'P) = 20 V, TH =5.0% 200 200 RL RL RL RL CL CL CL CL 60° 40° 12 4 60° 40° 12 4 VIC =0 150 150 Mn VIC =0 I = 10 kHz 2.5 120 2.5 120 pF dB 1= 1 MHz 30 30 Q = = = = 2kQ, 2kQ, 2kQ, 2kQ, 3.5 = = = = 0 300 pF 0 300 pF 4.5 3.5 dB TEXAS ~ INSfRUMENlS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 2-447 2-448 TLC251C,TLC251AC,TLC251BC,TLC251Y PROGRAMMABLE LOW·POWER LinCMOSTM OPERATIONAL AMPLIFIERS JULY 1983--REVISED NOVEMBER 1991 • 08 o OR P PACKAGE Wide Range of Supply Voltages 1.4 Vto 16 V (TOP VIEW) • • True Single-Supply Operation • Low Noise ... 30 nV/vHz Typ at 1 kHz (High Bias) • ESD Protection Exceeds 2000 V Per MIL-STD-833C, Method 3015.1 Common-Mode Input Voltage Range Includes the Negative Rail OFFSET N1 ININ+ 2 3 7 6 BIAS SELECT VDD OUT VDD_/GND 4 5 OFFSET N2 symbol BIAS SELECT - - - - - , description The TLC251C, TLC251AC, and TLC251BC are IN+ low-cost, low-power programmable operational OUT INamplifiers designed to operate with single or dual supplies. Unlike traditional metal-gate CMOS op amps, these devices utilize Texas Instruments OFFSETN1 silicon-gate LinCMOS™ process, giving them OFFSET N2 - - - - , stable input offset voltages without sacrificing the advantages of metal-gate CMOS. This series of parts is available in selected grades of input offset voltage and can be nulled with one external potentiometer. Because the input common-mode range extends to the negative rail and the power consumption is extremely low, this family is ideally suited for battery-powered or energy-conserving applications. A bias-select pin can be used to program one of three ac performance and power-dissipation levels to suit the application. The series features operation down to a 1.4-V supply and is stable at unity gain. These devices have internal electrostatic-discharge (ESD) protection circuits that will prevent catastrophic failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.1. However, care should be exercised in handling these devices as exposure to ESD may result in a degradation of the device parametric performance. Because of the extremely high input impedance and low input bias and offset currents, applications for the TLC251 C series include many areas that have previously been limited to BIFET and NFET product types. Any circuit using high-impedance elements and requiring small offset errors is a good candidate for cost-effective use of these devices. Many features associated with bipolar technology are available with LinCMOS™ operational amplifiers without the power penalties of traditional bipolar devices. Remote and inaccessible equipment applications are possible using the low-voltage and low-power capabilities of the TLC251 C series. AVAILABLE OPTIONS PACKAGE TA VIOmax AT 25"C SMALL OUTLINE (D) PLASTIC DIP (P) lDmV D"C to 7D"C TLC251CD TLC251CP 5mV TLC251ACD TLC251ACP 2mV TLC251 BCD TLC251BCP CHIP FORM (Y) TLC251Y - The D package is available taped and reeled. Add the suffix "ROO to the device type (e.g., TLC251 CDR). Chips are tested at 25"C. LinCMOS is a trademark of Texas Instruments Incorporated. PRODUCTION DATA Information Is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily Include testing of all parameters. TEXAS ~ Copyright © 1991, Texas Instruments Incorporated INSlRUMENlS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-449 TLC251C,TLC251AC, TLC251BC, TLC251Y PROGRAMMABLE LOW-POWER LinCMOS™ OPERATIONAL AMPLIFIERS description (continued) In addition, by driving the bias-select input with a logic signal from a microprocessor, these operational amplifiers can have software-controlled performance and power consumption. The TLC251 C series is well suited to solve the difficult problems associated with single battery and solar cell-powered applications. The TLC251 C series is characterized for operation from DOC to 7DoC. schematic VDD~7------------------'----4~--------__--------~ 8 BIAS --r / SELECT / IN- 6 ~~------+--------------- OFFSET_1______________+--e N1 OFFSET~5~ ____________+--r____r-___ N2 VDD-~ND-4--------------~~---4~~~____--~--------~ TEXAS ~ INSlRUMENlS 2-450 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 OUT TLC251Y PROGRAMMABLE LOW-POWER LinCMOSTM OPERATIONAL AMPLIFIER chip information These chips, properly assembled, display characteristics similar to the TLC251 C. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform. BONDING PAD ASSIGNMENTS VDO BIAS SELECT (8) IN+ INOFFSET N1 OFFSET N2 ~'------' VDD_/GND 48 CHIP THICKNESS: 15 TYPICAL BONDING PADS: 4 x 4 MINIMUM T JMAX = 150'C TOLERANCES ARE ",10% ALL DIMENSIONS ARE IN MILS PIN (4) INTERNALLY CONNECTED TO BACKSIDE OF CHIP 1.......t - - - - - - - 5 5 ~I II II II I II II IIII II II II I TEXAS ,If INSTRUMENlS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-451 TLC251C, TLC251AC, TLC251BC PROGRAMMABLE LOW-POWER LinCMOS™ OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, VDD (see Note 1) ............................................................ 18 V Differential input voltage (see Note 2) ...................................................... ± 18 V Input voltage range (any input) ..................................................... -0.3 V to 18 V Duration of short circuit at (or below) 25°C free-air temperature (see Note 3) .................. unlimited Continuous total dissipation ........................................... See Dissipation Rating Table Operating free-air temperature range .................................................. O°C to 70°C Storage temperature range ....................................................... -65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................... 260°C NOTES: 1. All voltage values, except differential voltages, are wnh respect to VDD-1GND terminal. 2. Differential voltages are at the non inverting input terminal, with respect to the inverting input terminal. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE D P TA = 70'C POWER RATING TA,,25'C POWER RATING DERATING FACTOR ABOVE TA = 25'C 725 mW 5.8mW/'C 464mW 1000mW 8.0mW/'C 640mW recommended operating conditions MIN Supply voltage, VDD VDD = 1.4 V Common-mode input voltage, VIC MAX 16 0 0.2 VDO =5V -0.2 4 VDD = 10V -0.2 VDD = 16V -0.2 9 14 0 70 Operating free-air temperature, TA Bias select pin voltage UNIT V V 'C See Application Information TEXAS ." INSlRUMENTS 2-452 NOM 1.4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC251C, TLC251AC, TLC251BC PROGRAMMABLE LOW·POWER LinCMOSTM OPERATIONAL AMPLIFIERS HIGH·BIAS MODE electrical characteristics at specified free-air temperature PARAMETER TEST CONOITIONS TAt MIN VOO=5V TYP MAX 25·C TLC251C Via Input offset voltage TLC251AC TLC251BC aVIO Vo = 1.4 V, VIC =OV, 25·C RS = 50Q, Full range RL = 10 kQ 25·C Input offset current (see Note 4) liB Input bias current (see Note 4) 0.9 0.34 VOL Low-level output voltage Large-signal differential voltage amplification AVO CMRR KSVR IJ(SELl 100 Common-mode rejection ratio 2 0.39 1.8 2 0.1 0.1 VIC = Voo/2 70·C 7 Va =Voo/2, 25·C 0.6 VIC=Voo/2 70·C 40 Full range -0.2 to 3.5 Vio = 100mV, RL=10kQ Vio =-100mV, IOL=O RL = 10 kQ, See Note 6 VIC = VICRmin 5 300 7 !lVrC 300 600 -0.3 to 4.2 50 -0.2 to 9 600 -0.3 to 9.2 pA V -0.2 to 8.5 V 3.2 3.8 8 8.5 O·C 3 3.8 7.8 8.5 70·C 3 3.8 7.8 8.4 V 25·C 0 50 0 50 O·C 0 50 0 50 70·C 0 50 0 50 25·C 5 23 10 36 O·C 4 27 7.5 42 70·C 4 20 7.5 32 25·C 65 80 65 85 O·C 60 84 60 88 70·C 60 85 60 88 25·C 65 95 65 95 O·C 60 94 60 94 70·C 60 96 60 96 mV V/mV dB Voo = 5 V to 10 V, Va = 1.4 V Input current to bias select pin VUSEL)= 0 25·C -1.4 Vo =Voo/2, 25·C 675 1600 950 2000 VIC =Voo/2, No load O·C 775 1800 1125 2200 70·C 575 1300 750 1700 t Full range NOTES: 4. 5. 6. pA 0.7 Supply-voltage rejection ratio (dVoof,WIO) Supply current mV 2 3 25·C -0.2 to 4 10 6.5 Vo =Voo/2, range (see Note 5) High-level output voltage 0.9 3 25·C UNIT 12 5 6.5 25·C VOH 1.1 25·C to 70·C Common-mode input voltage VICR 10 12 Full range Average temperature coefficient of input offset voltage 110 1.1 Full range VOO = 10V MIN TYP MAX dB JlA -1.9 JlA O·C to 70·C. The typical values of input bias current and input offset current below 5 pA were determined mathematically. This range also applies to each input individually. At Voo = 5 V, Va = 0.25 V to 2 V; at Voo = 10 V, Va = 1 V to 6 V. IS TEXAS ,If INSTRUMENlS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-453 TLC251C,TLC251AC,TLC251BC PROGRAMMABLE LOW·POWER LinCMOS™ OPERATIONAL AMPLIFIERS HIGH·BIAS MODE operating characteristics, Voo =5 V PARAMETER TEST CONDITIONS TA 25°C VI(PP) = 1 V SR Slew rate at unity gain RL = 10 kQ, CL = 20 pF VI(PP) = 2.5 V Vn BOM B1 m Equivalent input noise voltage Maximum oulput swing bandwidth Unity-gain bandwidth VO=VOH, VI = 10 mV, Phase margin operating characteristics, f = 1 kHz, VI =10 mV, RS=1000 CL = 20 pF, RL= 100kO CL = 20 pF f = Bl, CL = 20 pF TA 25'C TEST CONDITIONS VI(PP) = 1 V Slew rate at unity gain RL = 100 kO, CL = 20 pF VI(PP) = 5.5 V BOM Bl m Equivalent input noise voltage Maximum output swing bandwidth Unity-gain bandwidth Phase margin f = 1 kHz, Vo =VOH, VI = 10 mV, VI = 10mV, RS = 1000 CL = 20 pF, RL = 100 kO CL = 20 pF f = 81, CL = 20 pF TEXAS ." INSTRUMENlS 2-456 MAX UNIT 0.43 O'C 0.46 70'C 0.36 25'C 0.40 O'C 0.43 70'C 0.34 25'C 32 25'C 55 O'C 60 70'C 50 25'C 525 O'C 600 70'C 400 25'C 40' O'C 41' 70'C 39' TA 25'C Vn TYP V/lls nV/v'Hz kHz kHz Voo = 10 V PARAMETER SR MIN POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MIN TYP MAX UNIT 0.62 O'C 0.67 70'C 0.51 25'C 0.56 O'C 0.61 70'C 0.46 25'C 32 25'C 35 O'C 40 70'C 30 25'C 635 O'C 710 70'C 510 25'C 43' O'C 44' 70'C 42' V/lls nV/v'Hz kHz kHz TLC251C,TLC251AC,TLC251BC PROGRAMMABLE LOW-POWER LinCMOSTM OPERATIONAL AMPLIFIERS LOW-BIAS MODE electrical characteristics at specified free-air temperature PARAMETER TEST CONDITIONS TLC251C TAt VOO =5V MIN TYP MAX 25'C 1.1 Full range Va = 1.4 V. VOO= 10V MIN 10 TYP 1.1 UNIT MAX 1 10 12 12 ~-.---::- Via Input offset voltage TLC251AC TLC251BC aVIO 110 VIC =OV. 25'C RS = 50Q. Full range RL= 1 MQ 25'C Input bias current (see Note 4) liB 0.24 VOL Low-level output voltage Large-signal differential voltage amplification AVO CMRR KSVR II(SELl 100 Common-mode rejection ratio Supply-voltage rejection ratio (AVOO/AVIO) Input current to bias select pin Supply current t Full range NOTES: 4. 5. 6. 0.26 Va =VOo/2. 25'C 0.1 0.1 VIC =VOO/2 70'C 7 Va =VOo/2. 25'C 0.6 VIC =VOO/2 70'C 40 25'C Full range -0.2 to 3.5 VIO= 100mV. RL= 1 MQ VID = -100 mY. 10L=0 RL= 1 MQ. See Note 6 VIC = VICRmin VOO = 5 V to 10 V. Va = 1.4 V 7 300 Ilvrc 300 0.7 50 600 -0.3 to 4.2 mV 2 3 1 range (see Note 5) High-level output voltage 2 3 -0.2 to 4 5 6.5 1.1 -0.2 to 9 600 -0.3 to 9.2 pA pA V -0.2 to 8.5 V 3.2 4.1 8 O'C 3 4.1 7.8 8.9 70'C 3 4.2 7.8 8.9 25'C VOH 0.9 25'C to 70'C Common-mode input voltage VICR 5 6.5 Full range Average temperature coefficient of input offset voltage Input offset current (see Note 4) 0.9 8.9 V 25'C 0 50 0 O'C 0 50 0 50 70'C 0 50 0 50 25'C 50 520 50 870 O'C 50 700 50 1030 70'C 50 380 50 660 25'C 65 94 65 97 O'C 60 95 60 97 70'C 60 95 60 97 25'C 70 97 70 97 O°C 60 97 60 97 70°C 60 98 60 98 50 mV V/mV dB dB 95 nA VI(SELl = VOO 25'C 65 Va =VOo/2. 25°C 10 17 14 23 VIC =VOO/2. No load O'C 12 21 18 33 70°C 8 14 11 20 jlA is O°C to 70°C. The typical values of input bias current and input offset current below 5 pA were determined mathematically. This range also applies to each input individually. At VOO = 5 V. Va = 0.25 V to 2 V; at VOO = 10 V. Va = 1 V to 6 V. TEXAS ." INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-457 TLC251C, TLC251AC, TLC251BC PROGRAMMABLE LOW-POWER LinCMOS™ OPERATIONAL AMPLIFIERS LOW·BIAS MODE operating characteristics, Voo =5 V PARAMETER TEST CONDITIONS VI{PP) = 1 V SR Slew rate at unity gain RL= 1 MQ, CL = 20 pF VI{PP) = 2.5 V Vn BOM Equivalent input noise voltage Maximum output swing bandwidth f = 1 kHz, VO=VOH, RS = 100Q CL = 20 pF, RL= 1 MQ TA 25'C MIN -.........- ___- >---- OUTPUT OUTPUT N2 IN+----J INPUT BIAS Low Medium High t 1 MQ 100kQ 10 kQ 25kQ GNO Figure 1. Unity-Gain Amplifier Figure 2. Input Offset Voltage Null Circuit TYPICAL CHARACTERISTICS SUPPLY CURRENT SUPPLY CURRENT vs vs BIAS SELECT PIN VOLTAGE SUPPLY VOLTAGE 10000 = = 10000 r---r---r-..,--,---r---r--r----r---r---, .1 Vo VIC = 0.2 VOO No Load TA 25'C ct ::t I 1000 C ~ :l ~ Q. «::t I I 0 High-Bias Versions VOO=16V C ~ :l 100 0 VOO =4V 8: :l :l I .P 100 ~ (/) C 1000 I (/) - VOO = 1.4V 10 ~ I C .P -- 10 o~~~-~~--~~--~~~~ 1 0.1 10 100 o 4 6 8 10 Figure 4 Figure 3 TEXAS ." INSlRUMENTS 2-462 2 12 14 VOO - Supply Voltage - V VB - Bias Select Pin Voltage - V POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 16 18 20 TLC251C,TLC251AC, TLC251BC, TLC251Y PROGRAMMABLE LOW-POWER LinCMOSTM OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS SUPPLY CURRENT vs FREE·AIR TEMPERATURE 10000 is. Q. 100 ::I III I Q E MJlum'E las vJslons r-- 10 o o Low·Blas Versions 10 20 30 40 50 60 70 80 TA - Free-Air Temperature - 'C Figure 5 LOW BIAS LARGE·SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION and PHASE SHIFT vs FREQUENCY 107 too = ldv RL=l MQ TA=25'C c 106 0 :;u iE 105 ... ..3l 90° Q. 150° 180° 0.1 10 100 1k 10k 100k 1M Frequency - Hz Figure 7 HIGH BIAS LARGE·SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION and PHASE SHIFT vs FREQUENCY 107 c 0 106 i .!.! ""Q. E .... '" '" « ~ !c .. l!! ~ 105 104 103 II VOO=10V RL,,10kQ TA ,,25°C " --\, "'-..'" 60° ~ "k 101 I C "- «> 100 1k 10 k 100 k \ '" ~ 1M Figure 8 TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 :g.. s:: I\. Frequency - Hz 2-464 VI 90° ............. 3: s:: Phase Shift (right scale) AVO (left Sdale)" 10 0° 30° 102 0.1 - " 120° 150° 180° 10 M Q. TLC251C, TLC251AC, TLC251BC, TLC251Y PROGRAMMABLE LOW-POWER LinCMOSTM OPERATIONAL AMPLIFIERS APPLICATION INFORMATION latch-up avoidance Junction-isolated CMOS circuits have an inherent parasitic PNPN structure that can function as an SCR. Under certain conditions, this SCR may be triggered into a low-impedance state, resulting in excessive supply current. To avoid such conditions, no voltage greater than 0.3 V beyond the supply rails should be applied to any pin. In general, the op amp supplies should be applied simultaneously with, or before, application of any input signals. using the bias select pin The TLC251 C series has a bias select pin that allows the selection of one of three 100 conditions (10, 150, and 1000 [lA typical). This allows the user to trade-off power and ac performance. As shown in the typical supply current (100) versus supply voltage (Voo) curves (Figure 4), the 100 varies only slightly from 4 V to 16 V. Below 4 V, the '00 varies more significantly. Note that the 100 values in the medium- and low-bias modes at Voo = 1.4 V are typically 2 [lA, and in the high mode are typically 12 [lAo The following table shows the recommended bias select pin connections at Voo = 10 V. BIAS MODE AC PERFORMANCE Low Medium High Low Medium High BIAS SELECT CONNECTIONt voo 0.8 Vto 9.2 V Ground pin TYPICAL IOO:!: 10 (lA 150 (lA lOOOIlA t The bias select pin may also be controlled by external circuitry to conserve power, etc. For information regarding the bias select pin, see Figure 3 in the typical characteristics curves. :j: For IDD characteristics at voltages other than 10 V, see Figure 4 in the typical characteristics curves. output stage considerations The amplifier's output stage consists of a source-follower-connected pullup transistor and an open-drain pulldown transistor. The high-level output voltage (VOH) is virtually independent of the 100 selection and increases with higher values of Voo and reduced output loading. The low-level output voltage (VOU decreases with reduced output current and higher input common-mode voltage. With no load, VOL is essentially equal to the VooJGND pin potential. input offset nulling The TLC251 C series offers external offset null control. Nulling may be achieved by adjusting a 25-kQ potentiometer connected between the offset null terminals with the wiper connected to the device VooJGND pin as shown in Figure 2. The amount of nulling range varies with the bias selection. At an 100 setting of 1000 [lA (high bias), the nulling range will allow the maximum offset specified to be trimmed to zero. In low or medium bias or when the amplifier is used below 4 V, total nulling may not be possible for all units. supply configurations Even though the TLC251 C series is characterized for single-supply operation, it can be used effectively in a split-supply configuration when the input common-mode voltage (V,eR), output swing (VOL and VOH), and supply voltage limits are not exceeded. circuit layout precautions The user is cautioned that whenever extremely high circuit impedances are used, care must be exercised in layout, construction, board cleanliness, and supply filtering to avoid hum and noise pickup, as well as excessive dc leakages. TEXAS ~ INSlRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-465 2-466 TLC252C, TLC25L2C, TLC25M2C, TLC252Y, TLC25L2Y, TLC25M2Y LinCMOS™ DUAL OPERATIONAL AMPLIFIERS JUNE 1983-REVISED SEPTEMBER 1991 • • • Os o OR P PACKAGE A-Suffix Versions Offer 5-mV VIO (TOP VIEW} B-Suffix Versions Offer 2-mV VIO Wide Range of Supply Voltages 1.4 V to 16 V 1 OUT 11N11N+ • True Single-Supply Operation • Common-Mode Input Voltage Includes the Negative Rail • Low Noise ... 30 nV/VHZ Typ at f (High-Bias Versions) VOD_/GND 2 3 7 6 4 5 VDO 2 OUT 21N2 IN + symbol (each amplifier) =1 kHz IN+~ description OUT IN----v-- The TLC252C, TLC25L2C, and TLC25M2C are low-cost, low-power dual operational amplifiers designed to operate with single or dual supplies. These devices utilize the Texas Instruments silicon gate LinCMOS'" process, giving them stable input offset voltages that are available in selected grades of 2, 5, or 10 mV maximum, very high input impedances, and extremely low input offset and bias currents. Because the input common-mode range extends to the negative rail and the power consumption is extremely low, this series is ideally suited for battery-powered or energy-conserving applications. The series offers operation down to a 1.4-V supply, is stable at unity gain, and has excellent noise characteristics. These devices have internal electrostatic-discharge (ESD) protection circuits that will prevent catastrophic failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.1. However, care should be exercised in handling these devices as exposure to ESD may result in a degradation of the device parametric performance. Because of the extremely high input impedance and low input bias and offset currents, applications for the TLC252C series include many areas that have previously been limited to BIFET and NFET product types. Any circuit using high-impedance elements and requiring small offset errors is a good candidate for cost-effective use of these devices. Many features associated with bipolar technology are available with LinCMOS'" operational amplifiers without the power penalties of traditional bipolar devices. General applications such as AVAILABLE OPTIONS PACKAGE TA VIOmax AT 25°C SMALL OUTLINE (D) PLASTIC DIP (P) TLC252CD TLC252CP 10mV O°C to 70°C 5mV TLC252ACD TLC252ACP 2mV TLC252BCD TLC252BCP 10 mV CHIP FORM M TLC25L2CD TLC25L2CP TLC252Y 5 mV TLC25L2ACD TLC25L2ACP TLC25L2Y 2 mV TLC25L2BCD TLC25L2BCP TLC25M2Y 10 mV TLC25M2CD TLC25M2CP 5 mV TLC25M2ACD TLC25M2ACP 2mV TLC25M2BCO TLC25M2BCP The 0 package is available taped and reeled. Add the suffix "R" to the device type (e.g., TLC252CDR). Chips are tested at 25"C. LinCMOS is a trademark of Texas Instruments Incorporated. PRODUCTION DATA information Is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include lestlng of all parameters. TEXAS -'!1 Copyright © 1991, Texas Instruments Incorporated INSlRUMENlS POST OFFICE BOX 655303 • DALLAS, TExAs 75265 2--467 TLC252C, TLC25L2C, TLC25M2C, TLC252Y, TLC25L2Y, TLC25M2Y LinCMOSTM DUAL OPERATIONAL AMPLIFIERS description (continued) transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are all easily designed with the TLC252C series devices. Remote and inaccessible equipment applications are possible using their low-voltage and low-power capabilities. The TLC252C series is well suited to solve the difficult problems associated with single-battery and solar-cell-powered applications. This series includes devices that are characterized forthe commercial temperature range and are available in B-pin plastic dip (P)and the small outline (0) package. The device is also available in chip form (Y). The TLC252C series is characterized for operation from DOC to 7DoC. equivalent schematic (each amplifier) 8 voo~------------------'----4~--------' X}---_ _..:..1,,-,-7 VOO_/GNO ...:.4_____________+~>---+_- __......_4~--' TEXAS ~ INSlRUMENlS 2-468 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 OUT TLC252Y, TLC25L2Y, TLC25M2Y LinCMOSTM DUAL OPERATIONAL AMPLIFIERS chip information These chips, properly assembled, display characteristics similar to the TLC25_2C. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform. BONDING PAD ASSIGNMENTS IN+ (3) IN- (2) OUT IN+ (6) IN- VDD_/GND CHIP THICKNESS: 15 TYPICAL BONDING PADS: 4 x 4 MINIMUM TJMAX '" 150'C TOLERANCES ARE", 10% ALL DIMENSIONS ARE IN MILS PIN (4) INTERNALLY CONNECTED TO BACKSIDE OF CHIP I. .,1 72 II II II II II II II II II II II II II II II TEXAS ." INSTRUMENlS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-469 TLC252C, TLC25L2C, TLC25M2C LinCMOSTM DUAL OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, VDD (see Note 1) ............................................................ 18 V Differential input voltage (see Note 2) ...................................................... ± 18 V Input voltage range (any input) .................................................. :.. -0.3 V to 18 V Duration of short circuit at (or below) 25°C free-air temperature (see Note 3) .................. unlimited Continuous total dissipation ........................................... See Dissipation Rating Table Operating free-air temperature range .................................................. O°C to 70°C Storage temperature range ....................................................... -65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................... 260°C NOTES: 1. All voltage values. except differential voltages, are with respect to VOO_/GNO terminal. 2. Oifferential voltages are at the noninverting input terminal, with respect to the inverting input terminal. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE 0 p DERATING FACTOR ABOVE T A " 25'C TA" 70'C POWER RATING 725 mW 5.8 mWI'C 464mW 1000mW 8.0mWI'C 640mW TA" 25'C POWER RATING recommended operating conditions MIN Supply voltage, VOO VOO = 1.4 V Common·mode input voltage, VIC MAX 16 0 0.2 VOO =5V -0.2 4 VOO = 10V -0.2 9 VOO = 16V -0.2 14 0 70 Operating free-air temperature, T A TEXAS ." INSTRUMENlS 2-470 NOM 1.4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 UNIT V V 'C TLC252C, TLC25L2C, TLC25M2C LinCMOSTM DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Voo TLC252 C PARAMETER TEST CONOITIONSt TLC25_2C Via Input offset voltage TLC25_2AC TYP TLC25M2_C TLC25L2_C MAX MIN TYP MAX MIN TYP MAX 25'C 10 10 10 12 O'C to 70'C 12 12 Va = 0.2 V, 25'C 5 5 5 RS=50Q O'C to 70'C 6.5 6.5 6.5 25'C 2 2 2 O'C to 70'C 3 3 3 TLC25_2BC aVIO MIN = 1.4 V (unless otherwise noted) Average temperature coefficient of Input 2S'C to 70'C 1 25'C 1 1 1 UNIT mV ",V/'C offset voltage 110 Input offset current Va =0.2V liB Input bias current Vo =0.2V VICR voltage range YOM Peak output voltage swing t AvO Large-signal differential voltage 0 to 0.2 VID = 100 mV 2S'C 450 amplification Va = 100 to 300 mV, RS = 50 Q 2S'C 2S'C CMRR Common-mode rejection ratio Va = 0.2 V, VIC = VICRmin 100 Supply current Va = 0.2 V, No load 25'C 600 0 to 0.2 700 450 0 to 0.2 700 300 450 60 700 mV 20 V/mV 77 dB 37S 60 77 25 34 pA V 20 77 pA 1 600 10 60 300 1 600 2S'C 1 300 1 2S'C O'C to 70'C Common-mode input 1 300 O'C to 70'C 200 250 iJ.A .. tAil charactenstlcs are measured uhder open-loop condlttons with zero common-mode Input voltage unless otherwise specified. Unless otherwise noted, an output load resistor is connected from the output to ground and has the following value: for low bias RL = 1 MQ, for medium bias RL = 100 kQ, and for high bias RL=10kQ. t The output will swing to the potential of the VOO_/GNO pin. operating characteristics, Voo =1.4 V, TA =2S o C TLC252_C PARAMETER TEST CONDITIONS Bl Unity-gain bandwidth AV = 40 dB, CL= 10pF, RS = 50 Q SR Slew rate at unity gain Overshoot factor MIN TYP TLC25M2_C TLC25L2_C MAX MIN TYP MAX MIN TYP MAX UNIT 12 kHz 0.001 0.01 VII's 35% 35% 12 12 See Figure 1 0.1 See Figure 1 30% TEXAS ~ INSlRUMENlS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-471 TLC252C, TLC252AC, TLC252BC LinCMOSTM DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Voo = 5 V (unless otherwise noted) PARAMETER TEST CONDITIONS Va = 1.4 V, TLC252C Via Input offset voltage TLC252AC TLC252BC «via VIC=O, RS =50Q, RL = 10 kQ Va = 1.4 V, VIC=O, RS =50 Q, RL = 10 kQ Va = 1.4V, VIC=O, RS=50 Q, RL = 10kQ Average temperature coefficient of input offset voltage 110 Input offset current (see Note 4) Va = 2.5 V, VIC =2.5V liB Input bias current (see Note 4) Va = 2.5 V, VIC =2.5V TAt VOH VOL AVD CMRR kSVR 100 Low-level output voltage RL=10kQ VIO = 100mV, VIO = -100 mY, 10L=0 Large-signal differential voltage amplification Va = 0.25 Vto 2 V, Common-mode rejection ratio VIC = VICRmin Supply-voltage rejection ratio (tNOO/AVIO) VOO = 5 Vto 10V, Supply current (two amplifiers) Va =2.5V, No load RL=10kQ Va = 1.4 V VIC = 2.5 V, MAX 1.1 10 0.9 Full range TEXAS .Jf 2-472 POST orFlcE BOX 655303 • DALLAS, TEXAS 75265 5 6.5 0.23 25°C Full range mV 2 3 25°C to 70°C 1.8 25°C 0.1 70°C 7 25°C 0.6 70°C 40 25°C -0.2 to 4 Full range -0.2 to 3.5 ",V/oC 300 600 -0.3 to 4.2 pA pA V V 25°C 3.2 3.8 O°C 3 3.8 70°C 3 3.8 V 25°C 0 50 O°C 0 50 70°C 0 50 25°C 5 23 O°C 4 27 70°C 4 20 25°C 65 80 O°C 60 84 70°C 60 85 25°C 65 95 O°C 60 94 70°C 60 96 mV V/mV dB dB 25°C 1.4 3.2 O°C 1.6 3.6 70°C 1.2 2.6 t Full range IS O°C to 70°C. 'NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. INSIRUMENlS UNIT 12 25°C range (see Note 5) High-level output voltage TYP Full range Common-mode input voltage VICR MIN 25°C rnA TLC252C, TLC252AC, TLC252BC LinCMOSTM DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Voo = 10 V (unless otherwise noted) PARAMETER TEST CONDITIONS TLC252C Via Input offset voltage TLC252AC TLC252BC (IVIO 110 lIB Vo ~ 1.4 V, 25'C ~ Full range RS ~50 Va ~ 1.4 V, VIC~O, RS ~ 50 Q, RL~10kQ Q, RL 10 kQ Va ~ 1.4 V, VIC~O, RS ~ 50 Q, RL~10kQ Average temperature coefficient of input offset voltage Input offset current (see Note 4) Input bias current (see Note 4) TAt VIC~O, VOL AVO CMRR KSVR 100 Low-level output voltage Large-signal differential voltage amplification Common-mode rejection ratio Supply-voltage rejection ratio (8VOO/8VI0) Supply current (two amplifiers) 10 0.9 25'C 0.29 Va ~ ~ 5 V, ~ VIC 5 V, ~ VIC 5V 5V VIO VIO ~ ~ RL 100 mY, -100 mY, ~ 10L VO~1Vt06V, RL 10 kQ o. a ~ 10 kQ VIC ~ VICRmin VOO~5Vt010V, Va ~ 5 V, No load Va ~ 1.4 V VIC ~ 5 V, mV 2 3 25'C to 70'C Va UNIT 5 6.5 Full range IJ.vrc 2 25'C 0.1 70'C 7 25'C 0.7 70'C 50 25'C -0.2 to 9 Full range -0.2 to 8.5 range (see Note 5) High-level output voltage MAX 1.1 Full range 25'C VOH TYP 12 25'C Common-mode input voltage VICR MIN 300 600 -0.3 to 9.2 pA pA V V 8 8.5 O'C 7.8 8.5 70'C 7.8 8.4 V 25'C 0 50 o'c 0 50 70'C 0 50 25'C 10 O'C 7.5 42 70'C 7.5 32 25'C 65 85 O°C 60 88 70'C 60 88 25'C 65 95 O'C 60 94 70'C 60 96 mV 36 V/mV dB dB 25'C 1.9 4 O'C 2.3 4.4 70'C 1.6 3.4 mA t Full range IS O'C to 70'C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. TEXAS ~ INSlRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-473 TLC252C,TLC252AC,TLC252BC LinCMOSTM DUAL OPERATIONAL AMPLIFIERS operating characteristics, Voo = 5 V PARAMETER TEST CONDITIONS TA MIN 25'C VI(PP) = 1 V SR Slew rate at unity gain RL = 10 kQ, See Figure 1 CL = 20 pF, VI(PP) Vn BOM B1 m Equivalent input noise voltage Maximum output swing bandwidth Unity-gain bandwidth Phase margin f =1 kHz, RS=100Q, VO=VOH, See Figure 1 CL = 20 pF, VI=10mV, CL = 20 pF, VI=10mV, See Figure 3 f= B1, =2.5 V See Figure 2 RL = 10 kQ, See Figure 3 CL = 20 pF, TYP MAX UNIT 3.6 D'C 4 7D'C 3 25'C 2.9 D'C 3.1 7D'C 2.5 25'C 25 25'C 320 O'C 340 70'C 260 25'C 1.7 O'C 2 70'C 1.3 25'C 46' O'C. 47' 70'C 43' V/.".s nV/VHz kHz MHz operating characteristics, Voo = 10 V PARAMETER TEST CONDITIONS VI(PP) SR Slew rate at unity gain RL=10kQ, See Figure 1 CL BOM B1 m Equivalent input noise voltage Maximum output swing bandwidth Unity-gain bandwidth Phase margin f = 1 kHz, RS=100Q, Vo = VOH, See Figure 1 CL = 20 pF, VI = 10 mV, CL = 20 pF, VI = 10mV, See Figure 3 =1 V =20 pF, VI(PP) Vn TA f = B1, = 5.5 V See Figure 2 RL = 10 kQ, See Figure 3 CL = 20 pF, TEXAS ~ INSlRUMENlS 2-474 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 MIN TYP 25'C 5.3 O'C 5.9 70'C 4.3 25'C 4.6 O'C 5.1 70'C 3.8 25'C 25 25'C 200 O'C 220 70'C 140 25'C 2.2 O'C 2.5 70'C 1.8 25'C 49' O'C 50' 70'C 46' MAX UNIT V/.".s nV/VHz kHz MHz TLC25L2C, TLC25L2AC, TLC25L2BC LinCMOSTM DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Voo TEST CONDITIONS PARAMETER Vo = 1.4 V, TLC25L2C VIO "VIO Average temperature coefficient of input offset voltage 110 Input offset current (see Note 4) liB RS = 50Q, RL = 1 MQ VIC =0. Input offset voltage TLC25L2AC RS = 50Q, TLC2SL2BC Input bias current (see Note 4) TAt VIC=O, RS = SO Q, RL = 1 MQ Vo = 2.S V. VOL AVO CMRR kSVR IDO Low-level output voltage VIO = 100 mV, 2S'C 0.1 10L=0 Large-signal differential voltage amplification Vo = 0.25 V to 2 V, Common-mode rejection ratio VIC = VICRmin Supply-voltage rejection ratio (AVOO/AVIO) VOO = 5 V to 10 V, Supply current (two amplifiers) VO=2.5V, No load RL= 1 MQ Vo = 1.4 V VIC = 2.5 V, mV 2 3 1.1 RL= 1 MQ VIO = -100 mV, 0.204 2S'C to 70'C VIC = 2.5 V UNIT 5 6.5 25'C 70'C 7 2S'C 0.6 70'C 50 25'C -0.2 to 4 Full range -0.2 to 3.5 range (see Note S) High-level output voltage 0.9 Full range 25'C VOH 10 Full range Common-mode input voltage VICR MAX 1.1 12 25'C VIC = 2.5 V Vo = 2.S V. TYP Full range RL = 1 MQ Vo = 1.4 V, MIN 25'C VIC =0, VO=I.4V, =5 V (unless otherwise noted) 3.2 .",V!'C 300 600 -0.3 to 4.2 pA pA V V 4.1 O'C 3 4.1 70'C 3 4.2 V 25'C 0 50 O'C 0 50 70'C 0 50 25°C 50 O°C 50 700 70°C SO 380 25°C 65 94 O°C 60 95 70°C 60 95 25'C 70 97 O'C 60 97 70°C 60 98 mV 700 V/mV dB dB 34 25'C 20 O'C 24 42 70°C 16 28 .",A t Full range IS O°C to 70°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. TEXAS • INSlRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-475 TLC25L2C,TLC25L2AC,TLC25L2BC LinCMOSTM DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, VDO PARAMETER TEST CONDITIONS Va = 1.4 V, TLC25L2C Via 110 liB RS =50Q, RL= 1 MQ Va = 1.4 V, VIC=O, Input offset voltage TLC25L2AC RS=50Q, TLC25L2BC aVIO VIC=O, RL= 1 MQ Va = 1.4 V, VIC=O, RS = 50Q, RL= 1 MQ Average temperature coefficient of input offset voltage Input offset current (see Note 4) Input bias current (see Note 4) =10 V (unless otherwise noted) TAt VOH 25'C VOL AVO CMRR kSVR 100 Low-level output voltage MAX 1.1 10 0.9 12 5' 6.5 Full range 25'C 0.235 Full range VIC = 5 V Va = 5 V, VIC = 5 V RL= 1 MQ VIO = 100 mV, VIO = -100 mV, Large-signal differential voltage amplification Va = 1 Vto 6V, Common-mode rejection ratio VIC = VICRmin 10L= 0 RL= 1 MQ Supply-voltage rejection ratio (f>VOO/f>VIO) VOO=5Vtol0V, Supply current (two amplifiers) Va = 5 V, No load VO=l.4V VIC = 5V, TEXAS lJ1 2-476 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 "VI'C 0.1 70'C 8 25'C 0.7 70'C 50 25'C -0.2 to 9 Full range -0.2 to 8.5 300 600 -0.3 to 9.2 pA pA V V 25'C 8 8.9 O'C 7.8 8.9 70'C 7.8 8.9 V 25'C 0 50 O°C 0 50 70'C 0 50 25'C 50 860 O'C 50 1025 70'C 50 660 25'C 65 97 O'C 60 97 70'C 60 97 25'C DoC 70 97 60 97 70'C 60 98 mV V/mV dB dB 25'C 29 46 O'C 36 66 70'C 22 40 t Full range is O'C to 70'C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. INSlRUMENlS mV 2 1 25'C Va = 5 V, UNIT 3 25'C to 70'C range (see Note 5) High-level output voltage TYP Full range Common-mode input voltage VieR MIN 25'C ftA TLC25L2C, TLC25L2AC, TLC25L2BC LinCMOSTM DUAL OPERATIONAL AMPLIFIERS operating characteristics, Voo = 5 V PARAMETER TEST CONDITIONS SR Vn BaM B1 m Equivalent input noise voltage Maximum output swing bandwidth Unity-gain bandwidth Phase margin f = 1 kHz, RS=100g, VO=VOH, See Figure 1 GL = 20 pF, VI = 10mV, GL = 20 pF, VI = 10mV, See Figure 3 f= Bl, TYP 0.43 VI(PP) RL = 100 kg, See Figure 1 MIN TA 25°C OOG RL See Figure 3 GL = 20 pF, MAX UNIT 0.46 V/I'-S nVNHz 60 kHz 600 kHz 40° operating characteristics, Voo = 10 V PARAMETER TEST CONDITIONS Slew rate at unity gain 70 0G 0.51 25°G OOG 0.56 70°C 0.46 See Figure 2 25'G 32 35 RL = 100 kg, 25°C DOG RL = 100 kg, CL= 20 pF, See Figure 1 VI(PP) = 5.5 V Vn BOM Equivalent input noise voltage Maximum output swing bandwidth f = 1 kHz, VO=VOH, See Figure 1 RS = 100 g, GL = 20 pF, 70 0G 25°G B1 Unity-gain bandwidth VI=10mV, GL =20 pF, TYP 0.62 VI(PP) = 1 V SR MIN TA 25°C DOG See Figure 3 O°C 700G MAX 0.67 V/I'-S 0.61 nV/VHz 40 _.. kHz _,------_. 30 635 -~----- 510 -.---,~ 4>m Phase margin = VI 10mV, See Figure 3 f = B1, GL = 20 pF, TEXAS • INSlRUMENlS 2-480 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 UNIT 25°G OOG :w-- 43° 700G 42' -- kHz TLC252Y, TLC25L2Y, TLC25M2Y LinCMOSTM DUAL OPERATIONAL AMPLIFIERS electrical characteristics, Voo =5 V, T A = 25°C TLC252Y TEST CONDITIONS PARAMETER MIN Va = 1.4 V, V'C = 0 V, RS = 50 Q, See Note 6 Via Input offset voltage aVla Average temperature coefficient of input offset voltage ',0 Input offset current (see Note 4) liB Input bias current (see Note 4) V,CR Common-mode input voltage range (see Note 5) VOH High-level output voltage V,O = 100 mV, See Note 6 Val low-level output voltage VID = -100 mV, IOl = 0 AVO Large-signal differential voltage amplification Va = 0.25 V, See Note 6 CMRR Common-mode rejection ratio kSVR 'DO 1.1 10 MIN TLC25M2Y TYP MAX 1.1 10 MIN TYP MAX 1.1 10 UNIT mV 1.1 1.7 livrc Va = VOo/2, V'C = VOO/2 0.1 0.1 0.1 pA Va = VOO/2, V'C = VOo/2 0.6 0.6 0.6 pA -0.2 to 4 -0.3 to 4.2 -0.2 to 4 -0.3 to 4.2 -0.2 to 4 -0.3 to 4.2 V 3.2 3.8 3.2 4.1 3.2 3.9 V 0 50 0 50 0 50 mV 5 23 50 700 25 170 V/mV V'C = V,CRmin 65 80 65 94 65 91 dB Supply-voltage rejection ratio (LIVOO/AV,o) VOO=5Vtol0V, Va = 1.4 V 65 95 70 97 70 93 dB Supply current Vo =VOO/2, V'C =VOD/2, No load PARAMETER Voo 0.02 0.034 0.21 0.56 mA = 5 V, T A = 25°C TLC252Y TEST CONDITIONS MIN I V'(PP) = 1 V Slew rate at Cl = 20 pF, See Note 6 Vn Equivalent input noise voltage f = 1 kHz, RS=100Q BaM Maximum output swing bandwidth Va =VaH, Rl=10kQ Cl = 20 pF, Bl Unity-gain bandwidth V, = 10 mV, Cl = 20 pF f = Bl, Cl = 20 pF V, = 10 mV, Phase margin 3.2 1.4 unity gain -....- 1/2 voo - >----- Vo Vo 100Q (a) SPLIT SUPPLY (a) SINGLE SUPPLY Figure 2. Noise Test Circuit 10 kQ 10kQ 100Q VI -vV'V-W--' 100 Q VI -,,\1'...---1 Vo >--...- Vo 1/2VOO - - - - / Voo(a) SPLIT SUPPLY (a) SINGLE SUPPLY Figure 3. Gain-of-100 Inverting Amplifier TEXAS·~ INSTRUMENTS 2--482 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TlC252C, TlC25l2C, TlC25M2C linCMOSTM DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS SUPPLY CURRENT SUPPLY CURR.ENT vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 10000 10000 Vo = VIC = 0.2 VOO No Load TA = 2S'C «:t «:t 1000 I I 'E 'E ~ ">- 0 -- CD 100 0 >- Ii a. Ii a. J _I. \ VOO = 10V RL= 1 MQ TA =2S'C 0' 30' ~o (left scale) '" Phase Shift (right scale) 60' ~ 101 0.1 0.1 - 10 100 .......... "" 1k Frequency - Hz 90' "-\ 5! '" .s: 120' a. "" 10 k -= :c ..... m Equivalent input noise voltage Maximum output swing bandwidth Unity-gain bandwidth Phase margin operating characteristics, Voo 1 = 1 kHz, RS = 100 Q, Vo :VOH, See Figure 1 GL = 20 pF, VI = 10 mV, GL = 20 pF, VI:l0mV, See Figure 3 1"= Bl, See Figure 2 RL = 10 kQ, See Figure 3 GL = 20 pF, TA 25'G TEST CONDITIONS VI(PP) = 1 V RL: 10kQ, See Figure 1 CL = 20 pF VI(PP) = 5.5 V Vn BOM Bl m Equivalent input noise voltage Maximum output swing bandwidth Unity-gain bandwidth Phase margin 1 = 1 kHz, RS=100Q, VO=VOH, See Figure 1 GL: 20 pF, VI=10mV, GL = 20 pF, VI = 10 mV, See Figure 3 1=81, See Figure 2 RL = 10 kQ, See Figure 3 GL = 20 pF, TEXAS ~ INSlRUMENlS 2-494 MAX UNIT 3.6 4 O'G 70'G 3 25'G 2.9 O'G 3.1 70'G 2.5 25'G 25 25'G 320 O'G 340 70'G 260 25'G 1.7 O'G 2 70"G 1.3 25'G 46' O'G 47' 70'C 44' TA 25'G Slew rate at unity gain TYP VII's nV/v'Hz kHz MHz = 10 V PARAMETER SR MIN POST OFFICE BOX 655303 • DAllAS, TEXAS 75265 MIN TYP MAX UNIT 5.3 O'G 5.9 70'G 4.3 25"C 4.6 O'G 5.1 70'G 3.8 25'G 25 25'G 200 O'G 220 70'G 140 25'C 2.2 O'G 2.5 70'G 1.8 25'C 49' O'G 50' 70'C 46' VII's nV/v'Hz kHz MHz TLC25L4C, TLC25L4AC, TLC25L4BC LinCMOSTM QUAD OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Voo TEST CONDITIONS PARAMETER Vo = 1.4 V, TLC25L4C VIO Input offset voltage TLC25L4AC TLC25L4BC aVIO 110 liB RS = 50 Q, RL= 1 MQ VIC=O, RS = 50Q, RL = 1 MQ Vo = 1.4 V, VIC=O, RS = 50Q, RL= 1 MQ Average temperature coefficient of input offset voltage Input offset current (see Note 4) Input bias current (see Note 4) TAt VO=2.5V, VOH VOL AVO CMRR kSVR IDD Low-level output voltage VIO = -100 mV, Large-signal differential voltage amplification Vo = 0.25 V to 2 V, Common-mode rejection ratio VIC = VICRmin Supply-voltage rejection ratio (~VOO/~VIO) Supply current (four amplifiers) VOO=5Vtol0V, Vo = 2.5 V, No load 0.24 1.1 25°C 0.1 RL = 1 MQ VO=l.4V VIC = 2.5 V, mV 2 3 25°C to 70°C IOL= 0 5 6.5 Full range RL = 1 MQ UNIT 12 25°C VIC = 2.5 V VIO = 100mV, 10 Full range 70°C 7 25°C 0.6 70°C 40 25°C -0.2 to 4 Full range -0.2 to 3.5 range (see Note 5) High-level output voltage MAX 1.1 0.9 25°C Common-mode input voltage VICR TYP Full range VIC =2.5V Vo = 2.5 V, MIN 25°C VIC=O, Vo = 1.4 V, = 5 V (unless otherwise noted) Il 300 600 -0.3 to 4.2 vrc pA pA V V 25°C 3.2 4.1 O°C 3 4.1 70°C 3 4.2 V 25°C 0 50 O°C 0 50 70'C 0 50 25°C 50 O°C 50 680 70°C 50 380 25°C 65 94 O°C 60 95 70'C 60 95 25°C 70 97 O°C 60 97 70°C 60 98 mV 520 V/mV dB dB 25°C 40 68 O°C 48 84 70°C 31 56 !lA t Full range IS O°C to 70°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. TEXAS ." INSlRUMENlS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-495 TLC25L4C, TLC25L4AC, TLC25L4BC LinCMOSTM QUAD OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Voo = 10 V (unless otherwise noted) PARAMETER TEST CONDITIONS Va = 1.4 V, TLC2SL4C Via Input offset voltage TLC25L4AC TLC2SL4BC aVIO Average temperature coefficient of input offset voltage 110 Input offset current (see Note 4) liB Input bias current (see Note 4) VIC=O, RS = 50Q, RL= 1 MQ VO=l.4V, VIC=O, RS = SOQ, RL= 1 MQ Va = 1.4 V, VIC=O, RS =SOQ, RL= 1 MQ TAT VOH VOL AVO CMRR kSVR 100 Low-level output voltage MAX 1.1 10 0.9 Full range 2S'C 0.26 Full range Va = SV, VIC = S V VID = 100 mV, RL= 1 MQ VIO = -100 mV, Large-signal differential voltage amplification Va = 1 Vt06V, Common-mode rejection ratio VIC = VICRmin IOL=O RL = 1 MQ Supply-voltage rejection ratio (t.VOO/t.VIO) VOO = 5 V to 10 V, Supply current (four amplifiers) Va =5V, No load Vo = 1.4 V VIC = 5V, 3 TEXAS ~ 2-496 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 ","V/'C 0.1 70'C 7 2S'C 0.7 70'C SO 25'C -0.2 to 9 Full range -0.2 to 8.S 300 600 -0.3 to 9.2 pA pA V V 25'C 8 8.9 O'C 7.8 8.9 70'C 7.8 8.9 V 25'C 0 SO O'C 0 50 70'C 0 50 25'C 50 870 O'C 50 1020 70'C 50 660 25'C 65 97 O'C 60 97 70'C 60 97 25'C 70 97 O'C 60 97 70'C 60 98 mV V/mV dB dB 25'C 57 92 O'C 72 132 lAA 70'C 44 80 ._- t Full range is O°C to 70'C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. INSTRUMENlS mV 2 1 2S'C VIC =SV S 6.S 2S'C to 70'C Va = SV, UNIT 12 2S'C range (see Note 5) High·level output voltage TYP Full range Common-mode input voltage VICR MIN 2S'C TLC25L4C,TLC25L4AC,TLC25L4BC LinCMOSTM QUAD OPERATIONAL AMPLIFIERS operating characteristics, Voo = 5 V PARAMETER TEST CONDITIONS VI(PP) = 1 V SR Slew rate at unity gain RL= 1 MO, See Figure 1 CL = 20 pF, VI(PP) = 2.5 V Vn BOM B1 m Equivalent input noise voltage Maximum output swing bandwidth Unity-gain bandwidth Phase margin operating characteristics, Voo f = 1 kHz, RS = 100O, Vo = VOH, See Figure 1 CL = 20 pF, VI=10mV, CL = 20 pF, VI = 10 mV, See Figure 3 f= B1, See Figure 2 RL= 1 MO, See Figure 3 CL = 20 pF, TEST CONDITIONS VI(PP) = 1 V Slew rate at unity gain RL = 1 MO, See Figure 1 CL = 20 pF VI(PP) = 5.5 V Vn BOM B1 -_ _ -~I-- >-_ _ Vo -~I-- Vo Voo(a) SINGLE SUPPLY (b) SPLIT SUPPLY Figure 1. Unity-Gain Amplifier 10kQ 10kQ Voo >--*'- 1/2 Voo >--e--- Vo Vo 100 Q (a) SPLIT SUPPLY (a) SINGLE SUPPLY Figure 2. Noise Test Circuit 10kQ 10 kQ 100 VI VI Q 100 Q -VV'rlt--1 -'V\I\.,.....-t 1/2 Voo - - - - 1 Voo(a) SPLIT SUPPLY (a) SINGLE SUPPLY Figure 3. Gain-of-100 Inverting Amplifier TEXAS ~ INSTRUMENTS 2-502 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC254C, TLC25L4C, TLC25M4C, TLC254Y, TLC25L4Y, TLC25M4Y LinCMOSTM QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS SUPPLY CURRENT SUPPLY CURRENT vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 10000 10000 High-Bias Versions «=L «=L 1000 I I C C ~ :l .~ () 100 0. '" '" 0. :l :l I .9 100 >- 0. 0. I c 10 10 .9 o o~~--~~--~~--~~~~~~ o 2 4 6 8 10 12 14 16 18 - I I I High-Bias Versions Mel,um.1ias ve'rslons I--- (,) .?!- C 1000 20 o VOO=10V V'C =OV VO=2V No Load Low-Bias Versions 10 20 30 40 50 60 70 80 TA - Free-Air Temperature - "C VOO - Supply Voltage - V Figure 4 Figure 5 LOW BIAS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION and PHASE SHIFT vs FREQUENCY > E 107 _1_I Voo= 10V RL= 1 MQ TA = 25"C 3> I c: 106 0 ~ (,) 105 !t: 0. E « 104 . ~ \ Ol JS 103 ~ :g (ij .. 102 - 30" " v o (left scale) \ r-- '" "" " '" ........ Phase Shift (right scale) \ ~ ::::: 101 0 I C «> 0.1 0.1 0" 10 100 1k f - Frequency - Hz " 10k 60" = 90" '".,:Jl 120" Q. :.c: J:: 150" 180" 100k Figure 6 TEXAS .J!1 INSlRUMENlS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-503 TLC254C, TLC25L4C, TLC25M4C, TLC254Y, TLC25L4Y, TLC25M4Y LinCMOSTM QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS MEDIUM BIAS LARGE·SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION and PHASE SHIFT vs > .E. > 107 c 106 I i C> :e 105 FREQUENCY « 8. 104 ~ 103 ~ 1! \ _ 102 C I!! ~ VOO = 10V RL= 100kQ TA=25'C ~ Q. E 0' 30' " "Avo (left scale) \ 60° "" I C .c ~ .......... "~ "' «> 0.1 10 lk 100 10k 90' "'-\ '" lOOk 1200 150' " 180° 1M Figure 7 HIGH BIAS LARGE·SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION and PHASE SHIFT vs E 107 c 106 ~ 105 ~ .. 104 = ~ 103 >-I ~ Q. FREQUENCY 102 c 101 .. :E Voo = 10V RL=10kQ TA=25°C ~. "'-"- " 60° ............ "'-. :t 10 100 1k 10 k 100 k i'.. } "" ~ 1M f - Frequency - Hz Figure 8 TEXAS !II 90' ~ ~ INSlRUMENlS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 " !!: .c Phase Shift (right scale) AVO (left Sda'e) " - 0.1 0' 30' 6 2-504 - --\I"--. CI to ~I!! J .1. ~ .c f - Frequency - Hz > !!: !II Phase Shift (right scale) 101 c J .1. 120' 150° 180' 10 M .. ! a. a. TLC254C, TLC25L4C, TLC25M4C, TLC254Y, TLC25L4Y, TLC25M4Y LinCMOSTM QUAD OPERATIONAL AMPLIFIERS APPLICATION INFORMATION latch-up avoidance Junction-isolated CMOS circuits have an inherent parasitic PNPN structure that can function as an SCA. Under certain conditions, this SCR may be triggered into a low-impedance state, resulting in excessive supply current. To avoid such conditions, no voltage greater than 0.3 V beyond the supply rails should be applied to any pin. In general, the op amp supplies should be established simultaneously with, or before, application of any input signals. output stage considerations The amplifier's output stage consists of a source-follower-connected pull up transistor and an open-drain pulldown transistor. The high-level output voltage (VOH) is virtually independent of the 100 selection and increases with higher values of Voo and reduced output loading. The low-level output voltage (Vall decreases with reduced output current and higher input common-mode voltage. With no load, VOL is essentially equal to the Voo_/GND pin potential. supply configurations Even though the TLC25_4C series is characterized for single-supply operation, it can be used effectively in a split-supply configuration if the input common-mode voltage (VieR), output swing (VOL and VOH), and supply voltage limits are not exceeded. circuit layout precautions Whenever extremely high circuit impedances are used, care must be exercised in layout, construction, board cleanliness, and supply filtering to avoid hum and noise pickup as well as excessive dc leakages. TEXAS ..If INSIRUMENlS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-505 2-506 TLC271, TLC271A, TLC271B linCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS 03137, NOVEMBER 1987 - REVISED JUNE 1991 D, JG, OR P PACKAGE (TOP VIEW) • Input Offset Voltage Drift ... Typically 0.111 V/Month, Including the First 30 Days • Wide Range of Supply Voltages Over Spec hied Temperature Range: 0° C to 70° C ... 3 V to 16 V - 40°Ct085°C ... 4Vt016V - 55°Ct0125°C ... 5Vt016V • Single-Supply Operation • Common-Mode Input Voltage Range Extends Below the Negative Rail (C-Suffix and I-Suffix Types) • OFFSET N 1 [ j 8 IN 2 7 IN + 3 6 GND 4 5 FK PACKAGE (TOP VIEW) f- 0 Z W ....J fW low Noise ... 25 nV/¥ZTypicallyat f:: 1 kHz (High-Bias Mode) W (f) (f) (f) LL OLL o~o 20 2m2 • Output Voltage Range Includes Negative Rail • High Input Impedance ... 1012 Q Typical • ESD-Protection Circuitry • Small-Outline Package Option Also Available In Tape and Reel • BIASSELECT VDD OUT OFFSET N2 3 2 1 20 19 NC IN - 4 18 NC 5 17 NC 6 16 IN + NC 7 15 VDD NC OUT NC 14 8 9 Designed-In latch-Up Immunity 10 11 12 13 000"'0 zzzzz <.') fW ~ LL o description NC - No internal connection The TLC271 operational amplifier combines a wide range of input offset voltage grades with low offset voltage drift and high input impedance. In addition, the TLC271 offers a bias select mode that allows the user to select the best combination of power dissipation and ac pertormance for a particular application. These devices use Texas Instruments Silicon-gate LinCMOSTM technology, which provide" offset voltage stability far exceeding the stability available with conventional metal-gate processes. AVAILABLE OPTIONS -".,,- TA ~----"-- ---_ ... -._-- VIOMAX AT 25°C PACKAGE SMALL CHIP CERAMIC PLASTIC OUTLINE CARRIER DIP DIP (D) (JG) - (P) TLC271BCP - TLC271ACP - TLC271CP Vn 25 TLC271 BIP B1 1.7 AVD 23 170 2 mV TLC271 BCD (FK) - to 5mV TLC271ACD - O°C ------ DEVICE FEATURES TYPICALATVDD=5V, TA=25°C 70°C 10mV TLC271CD - - 40°C 2mV TLC271 BID - to 5 mV TLC271AID - - TLC271AIP 85°C -_.---55°C 10mV TLC2711D - - TLC2711P to 125°C 10 mV TLC271MD TLC271MFK TLC271 MJG TLC271MP BIAS-SELECT MODE MEDIUM HIGH LOW -- UNIT PD 3375 525 50 SR 3.6 0.4 0.03 flW V/flS 32 68 nVl-JHz 0.5 0.09 MHz 480 Vim V The D package is available in tape and reel. Add R suffix to the device type (e.g., TLC271 BCDR). LinCMOS is a trademark of Texas Instruments Incorporated. PRODUCTION DATA documents contain information current as 01 publication data, Products conform to Sllecific3tions per the terms d~~se~~~ ~~:!~~~~r~n~~~~~a~stin~~~~~· p~~~~u::!~~. processing TEXAS ~ Copyright © 1991, Texas Instruments Incorporated INSTRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2-507 TLC271, TLC271A, TLC271B linCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS description (continued) Using the bias select option, these cost-effective devices can be "programmed" to span a wide range of applications which previously required BiFET, NFET or bipolar technology. Three offset voltage grades are available (C- suffix and 1- suffix types), ranging from the low-cost TLC271 (10 mY) to the TLC271 B (2 mY) lowoffset version. The extremely high input impedance and low bias currents, in conjunction with good commonmode rejection and supply voltage rejection, make these devices a good choice fOi new state-of-the-art designs as well as for upgrading existing designs. In general, many features associated with bipolar technology are available in LinCMOSTM operational amplifiers, without the power penalties of bipolar technology. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are all easily designed with the TLC271. The devices also exhibit low-voltage single-supply operation, making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input voltage range includes the negative rail. A wide range of packaging options is available, including small-outline and chip carrier versions for highdensity system applications. The device inputs and output are designed to withstand -100-mA surge currents without sustaining latchup. The TLC271 incorporates internal ESD-protection circuits that will prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in the degradation of the device parametric performance. The C-suffix devices are characterized for operation from O°C to 70°C. The I-suffix devices are characterized for operation from - 40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of - 55°C to 125°C. bias select feature The TLC271 offers a bias select feature that allows the user to select anyone of three bias levels, depending on the level of performance desired. The trade-oils between bias levels involve ac performance and power dissipation (see Table 1). Table 1. Effect of Bias Selection on Performance MODE TYPICAL PARAMETER VALUES T A = 25°C, VDD = 5 V HIGH-BIAS RL= 10 kQ MEDIUM-BIAS RL=100kQ LOW-BIAS UNIT RL= 1 MQ Po SR Power dissipation 3.4 0.5 0.05 mW Slew rate 3.6 0.4 0.03 Vn Equivalent input noise voltage at f 25 32 68 V/!'s nV/,fHZ 81 Unity-gain bandwidth 1.7 0.5 0.09 MHz 4>m Phase margin 46° 40° 34° AVO Large-signal differential voltage amplification 23 170 480 = 1 kHz V/mV bias selection Bias selection is achieved by connecting the bias select pin to one of three voltage levels (see Figure 1). For medium-bias applications, it is recommended that the bias select pin be connected to the midpoint between the supply rails. This procedure is simple in split-supply applications, since this point is ground. In singlesupply applications, the medium-bias mode will necessitate using a voltage divider as indicated in Figure 1. The use of large-value resistors in the voltage divider will reduce the current drain of the divider from the supply line. However, large-value resistors used in conjunction with a large-value capacitor will require significant time to charge up to the supply midpoint after the supply is switched on. A voltage other than the midpoint may be used if it is within the voltages specified in the following table. TEXAS ~ INSfRUMENTS 2-508 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC271, TLC271A, TLC271B LinCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS bias selection (continued) VDD Low To the Bias Select Pin 1 MQ BIAS MODE BIAS SELECT VOLTAGE Medium High 1MQ (Single Supply) LOW VDD MEDIUM HIGH 1 Vto VDD-1 V GND Figure 1. Bias Selection for Single-Supply Applications high-bias mode In the high-bias mode, the TLC271 series features low offset voltage drift, high input impedance, and low noise. Speed in this mode approaches that of BiFET devices, but at only a fraction of the power dissipation. Unitygain bandwidth is typically greater than 1 MHz. medium-bias mode The TLC271 in the medium-bias mode features low offset voltage drift, high input impedance, and low noise. Speed in this mode is similar to general-purpose bipolar devices, but power dissipation is only a fraction of that consumed by bipolar devices. low-bias mode In the low-bias mode, the TLC271 features low offset voltage drift, high input impedance, extremely loW power consumption, and high differential voltage gain. ORDER OF CONTENTS TOPIC BIAS-MODE schematic all absolute maximum ratings all all recommended operating conditions electrical characteristics operating characteristics typical characteristics high (Figures 2 - 33) electrical characteristics operating characteristics t)lpical characteristics electrical characteristics operating characteristics typical characteristics medium (Figures 34 - 65) low (Figures 66 - 97) parameter measurement information all application information all TEXAS ~ INsrRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2-509 TLC271, TLC271A, TLC271B LinCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS equivalent schematic VDD P1 IN - Fm _--+-------+1 IN+---~--~~--~ OFFSET N1 OFFSET N2 OUT GND BIAS SELECT absolute maximum ratings over operating free-air temperature (unless otherwise noted) Supply voltage, VDD (see Note 1) ....................................................... 18 V Differential input voltage (see Note 2) ................................................... ± VDD Input voltage range, VI (any input) ..... , ........................................ - 0.3 V to VDD Input current, II. ................................................................... ± 5 mA Output current, 10 ................................................................ ± 30 mA Duration of short-circuit current at (or below) 25°C (see Note 3) ............................ Unlimited Continuous total dissipation ........................................ See Dissipation Rating Table Operating free-air temperature, T A: C-suffix ........................................ O°C to 70°C I-suffix ....................................... - 40°C to 85°C M-suffix ..................................... - 55°C to 125°C Storage temperature range .................................................. - 65°C to 150°C Case temperature for 60 seconds: FK package ........................................... 260°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D and P package ............... 260°C Lead temperature 1 ,6mm (1/16 inch) from case for 60 seconds: JG package .................... 300°C NOTES: 1. All voltage values, except dilferential voltages, are with respect to network ground. 2. Differential voltages are at the noninverting input with respect to the inverting input. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded (see application section). TEXAS ~ INsrRUMENTS 2-510 POST OFFICE BOX 655303' DALLAS, TEXAS 75265 TLC271, TLC271A, TLC271B LinCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS DISSIPATION RATING TABLE PACKAGE D FK JG p TA:O:25°C POWER RATING 725mW 1375mW 1050mW 1000mW DERATING FACTOR TA=70°C ABOVETA= 25°C POWER RATING 5.8 mW/oC 11 mW/oC 8.4 mwrc 8.0 mW/oC TA=85°C POWER RATING 464mW 880mW 672mW 640mW TA= 125°C POWER RATING 145mW 275mW 210mW 200mW 377mW 715mW 546mW 520mW recommended operating conditions C-SUFFIX MIN Supply voltage, VDD Common-mode input voltage, V'C Operating free-air temperature, TA VDD =5 V VDD = 10 V 3 -0.2 I-SUFFIX NOM MAX MIN 16 4 -0.2 -0.2 3.5 8.5 0 70 M-SUFFIX UNIT NOM MAX 16 MIN 5 NOM MAX 16 -0.2 3.5 8.5 0 0 3.5 8.5 V -40 85 -55 125 °C V TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-511 TLC271C, TLC271AC, TLC271BC LinCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS HIGH-BIAS MODE electrical characteristics over recommended free-air temperature range (unless otherwise noted) TEST CONOITIONS PARAMETER TLC271C VIO Input offset voltage TLC271AC TLC271BC «VIO Average temperature coefficient of input offset voltage 110 Input offset current (see Note 4) liB Input bias current (see Note 4) TAt 25°C Full range Vo= 1.4 V. 25°C Full range 25°C Full range 25°C to 70°C 25°C 70°C 25°C 70°C VIC =OV. RS=50n. RL=10kn VO=VOO/2. VIC =VOO/2 Vo= VOO/2. VIC =VOO/2 25°C VICR Common-mode input voltage range (see Note 5) Full range VOH High-level output voltage VOL Low-level output voltage CMRR kSVR II(SEL) 100 VIO = l00mV. RL= 10kn VID = -100 mV. 10L=0 Large-signal differential AVO voltage amplification RL = 10 kn. See Note 6 Common-mode rejection ratio VIC = VICRmin MIN 25°C O°C 70°C 25°C O°C 70°C 25°C O°C 70°C 25°C O°C 70°C VOO=5V TYP MAX 1.1 10 12 5 0.9 6.5 0.34 2 3 VOO= 10V MIN TYP 1.1 0.9 0.39 1.8 -0.2 to 4 -0.2 to 3.5 3.2 25°C O°C 70°C 3 3 0.1 7 0.6 40 -0.3 to 300 600 -0.2 to 3.8 0.1 7 0.7 50 -0.3 to 9 -0.2 to 8.5 8 9.2 7.8 7.8 10 7.5 7.5 65 60 42 32 85 88 65 85 95 60 65 88 95 60 60 94 96 60 60 94 96 Supply-voltage rejection ratio VOO = 5 V to 10 V. (AVOO I AVIO) VO= 1.4 V Input current to bias select pin VI(SEL) =0 25°C -1.4 25°C Supply current VO=VOO/2. VIC =VOO/2. No load 675 775 575 O°C 70°C TEXAS . " 2-512 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 600 pA pA V V 50 50 50 950 1125 750 mV V/mV dB dB ~ -1.9 1600 1800 1300 tFull range is O·C to 70°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. 6. AtVOO =5 V, Vo =0.25 Vto 2 V;atVOO = 10V. Vo = 1 Vt06 V. INSTRUMENTS 300 8.5 27 20 80 84 5 4 4 65 60 60 0 23 mV V 8.5 8.4 0 0 0 36 50 50 50 UNIT ~V/oC 2 4.2 3.8 3.8 0 0 MAX 10 12 5 6.5 2 3 2000 2200 1700 ~ TLC271I , TLC271 AI, TLC271 BI LinCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS HIGH-BIAS MODE electrical characteristics over recommended free-air temperature range (unless otherwise noted) PARAMETER TEST CONOITIONS TLC271I VIO Input offset voltage TLC271AI TLC271BI aVIO liB Input bias current (see Note 4) VIC =OV, RS =50n, RL= 10 kQ 25°C Full range 25°C AVD CMRR kSVR II(SEL) IDD MAX 1.1 10 5 0.34 7 2 5 0.39 7 2 0.1 24 0.6 1000 26 1000 VIC = VDD/2 85°C 200 2000 0.7 220 2000 10L=0 0.1 -0.3 -0.2 to to to to 4 4.2 9 9.2 -0.2 to -0.2 3.5 8.5 V 25°C 3.2 3.8 3 3.8 8 7.8 8.5 85°C 3 3.8 7.8 8.5 85°C 25°C 8.5 0 50 0 50 50 50 0 50 0 0 RL = 10kn, See Note 6 5 23 10 36 -40°C 3.5 32 7 46 85°C 3.5 19 7 31 25°C 65 80 65 85 Common-mode rejection ratio VIC = VICRmin -40°C 60 81 60 87 85°C 60 86 60 88 25°C 65 95 65 95 -40°C 60 92 60 92 85°C 60 96 60 96 VDD=5Vt010V, (~VDD/~VIO) Vo = 1.4 V Input current to bias select pin VI(SEL) = 0 25°C -1.4 VO= VDD/2, 25°C 675 1600 VIC = VDD/2, No load -40°C 950 85°C 525 Supply current V 0 Supply-voltage rejection ratio pA V to -40°C 25°C -40°C pA -0.3 voltage amplification Large-signal differential /J-V/oC 2 25°C VID = - 100 mV, mV 3.5 85°C 25°C VID = 100 mV, UNIT 13 0.9 VO=VOD/2, VIC =VDD/2 Vo = VDD 12, RL = 10 kQ Low-level output voltage 10 TYP 1.8 85°C Full range VOL MIN 3.5 25°C to Common-mode input voltage range (see Note 5) High-level output voltage VOO = 10 V MAX 0.9 Full range 25°C VOH v 13 -0.2 VICR TYP 1.1 25°C Full range of input offset voltage Input offset current (see Note 4) MIN VO= 1.4 V, Average temperature coefficient 110 VOO=5 TAt mV 50 V/mV dB dB -1.9 JJ.A 2000 2200 950 1375 1200 725 1600 2500 JJ.A tFull range is - 40°C to 85°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. 6. At VDD = 5 V, Vo = 0.25 V to 2 V; at VDD = 10 V, Vo = 1 V to 6 V. TEXAS ~ INSTRUMENlS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-513 TLC271M LinCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS HIGH-BIAS MODE electrical characteristics over recommended free-air temperature range (unless otherwise noted) PARAMETER Via Input offset voltage TEST CONOITIONS Vo = 1.4 V, VIC =OV, RS = 50n, 25°C to 125°C liB Input bias current (see Note 4) 1.1 10 VO= VDD/2, VIC =VDD/2 Vo = VDD 12, 25°C 0.1 125°C 1.4 25°C 0.6 VIC = VDD/2 125°C voltage range (see Note 5) 9 -0.3 to to 4 4.2 0 to 3.5 AVD CMRR VID = 100 mY, RL = 10 kn Low-level output voltage Large-signal differential voltage amplification Common-mode rejection ratio 10 _-- mV 12 2.2 /lVioC 0.1 pA -'~"-~-'-- Full range VOL 1.1 '-- r - - 25°C High-level output voltage VOO = 10 V UNIT TYP MAX- 2.1 Common-mode input VOH MIN 12 0 VICR MAX Full range Average temperature coefficient Input offset current (see Note 4) TYP ._--_.. of input offset voltage 110 MIN 25°C RL= 10kn aVIO VOO=5 v TAt 25°C -55°C 3.2 3 3.8 3.8 125°C 3 3.8 25°C 0 10L=0 -55°C 125°C 0 0 RL=10kn, See Note 6 25°C 5 23 -55°C 3.5 35 VID = -100 mY, 15 ------riA -----pA 0.7 --nA 10 35 15 1.8 35 -,-------.--~,---- 0 -'--- -0.3 V to 9.2 .. 9 - --._._ _._---0 V to 8.5 - - - - - - - - - - --_ .. _------ -----8 8.5 -_."._----V 7.8 8.5 .-._-7.8 8.4 1----_._-----------_.50 - 1---_._--_._o 50 . __.. mV 50 50 0 to .. _--- -------~-- 50 ---------0 -----_50 .. _-- ,------10 36 ._----"-"._. Vim V 7 50 ~ ~---- VIC = VICRmin 125°C 3.5 16 7 27 25°C 65 80 65 85 -55°C 60 81 60 87 ------_.. 125°C 60 84 ---.-- ---.... ---- dB 60 86 -----_ .. . -'." 1············_-65 95 -----, kSVR II(SEL) Supply-voltage rejection ratio VDD=5Vtol0V, (tNDD 1 dVIO) VO=l.4V Input current to bias select pin VI(SEL) =0 VO= VDD/2, IDD Supply current "_..... ,,-------- VIC = VDD/2, No load 25°C 65 -55°C 60 90 125°C 60 97 25°C 95 -1.4 25°C ~- 90 97 --._--1---- 1600 1000 2500 475 1100 ---+---.----+.----.+-- 950 2000 -_.-,_.-,-,--,.1475 .. 625 tFull range is - 55°C to 125°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually_ 6. At VDD = 5 V, Vo = 0.25 V to 2 V; at VDD = 10 V, Va = 1 V to 6 V. TEXAS ~ INsrRUMENTS 2-514 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 JlA -1.9 . -1 - - - - - --.------ .. - f-------- 675 ---~--~,-.---- 125°C dB 60 60 ~---- 3000 .. ----, .. 1400 JlA ..... TLC271C, TLC271AC, TLC271BC LinCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS HIGH-BIAS MODE operating characteristics, VDD =5 V TEST CONDITIONS PARAMETER RL = 10kn, SR Slew rate at unity gain VIPP = 1 V CL=20pF, See Figure 98 VIPp=2.5 V Vn Equivalent input noise voltage f = 1 kHz, RS= lOOn, See Figure 99 BaM Maximum output swing bandwidth VO=VOH, CL = 20pF, RL = 10 kn, See Figure 98 Bl 4lm Vi = 10 mY, f = Bl, CL=20pF, See Figure 100 Phase margin operating characteristics, VDD PARAMETER SR Vi=10mV, CL = 20 pF, See Figure 100 Unity-gain bandwidth Slew rate at unity gain RL = 10 kn, CL=20pF, See Figure 98 VIPP = 1 V VIPP =5.5 V f = 1 kHz, BaM Maximum output swing bandwidth Va = VOH, CL = 20 pF, RL = 10 kn, See Fig ure 98 Phase margin O°C 70°C 3 25°C 2.9 MAX UNIT 4 O°C 3.1 70°C 2.5 25°C 25 25°C 320 O°C 340 70°C 25°C 260 V/fls nV/vHz kHz 1.7 MHz 2 O°C 70°C 1.3 25°C 46° O°C 70°C 47° 44° MIN Vi=10mV, CL = 20 pF, See Fig ure 100 --------,-Vi=10mV, f = Bl, CL = 20 pF, See Figure 100 --~-----~----------- TYP 25°C 5.3 O°C 5.9 4.3 70°C Vn 4lm 3.6 TEST CONDITIONS RS=l00n, See Figure 99 Unity-gain bandwidth TYP =10 V Equivalent input noise voltage Bl MIN 25°C 25°C 4.6 O°C 5.1 70°C 3.8 25°C 25 25°C 200 O°C 220 70°C 140 25°C O°C 2.2 70°C 2.5 1.8 25°C 49° O°C 50° 70°C 46° MAX UNIT V/flS nV/..[Hz kHz MHz .. TEXAS • INSTRUMENlS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-515 TLC2711, TLC271AI, TLC271BI LinCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS HIGH-BIAS MODE operating characteristics, VDD =5 V PARAMETER SR Vn TEST CONDITIONS RL=10kn, CL = 20 pF, See Figure 98 Slew rale at unity gain VIPP = 2.5V 25°C -40°C 85"C 2.9 3.5 2.3 Maximum output swing bandwidth VO=VOH, CL=20pF, RL = 10 kn, See Figure 98 Bl Unity-gain bandwidth Vi = 10mV, CL = 20pF, See Figure 100 I/Im Phase margin Vi=10mV, f = Bl, CL = 20pF, See Figure 100 PARAMETER SR Slew rate at unity gain 25"C 25 25°C -40°C 85"C 25°C -40°C 85°C 25°C -40"C 85°C 320 380 250 1.7 2.6 1.2 MAX UNIT V/IlS nV/Mz kHz MHz 46° 49° 43° =10 V TEST CONDITIONS RL=10kn, CL=20pF, See Figure 98 TA MIN TYP VIPP = 1 V 25"C -40°C 85"C 5.3 6.8 4 VIPP =5.5 V 25"C -40°C 85°C 4.6 5.8 3.5 Vn Equivalent input noise voltage f = 1 kHz, RS= 100 n, See Fig ure 99 BOM Maximum output swing bandwidth VO=VOH, CL = 20 pF, RL = 10 kn, See Figure 98 Bl Unity,gain bandwidth Vi = 10mV, CL = 20pF, See Figure 100 I/Im Phase margin Vi = 10mV, f = Bl, CL=20pF, See Figure 100 TEXAS ~ INSTRUMENTS 2-516 TYP VIPP = 1 V BOM operating characteristics, VDD MIN 3.6 4.5 2.8 f=lkHz, Rs= lOOn, See Figure 99 Equivalent input noise voltage .TA 25"C -40"C 85"C POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 - 25°C 25 25"C -40°C 85°C 25°C -40°C 85°C 200 260 130 2.2 3.1 1.7 25°C -40°C 85°C 52° 49° 46° MAX UNIT V/IlS nV/Mz kHz MHz TLC271M linCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS HIGH-BIAS MODE operating characteristics, VDD =5 V TEST CONDITIONS PARAMETER SR RL = 10 kn, CL = 20 pF, See Figure 98 Slew rate at unity gain VIPP = 1 V VIPP = 2.5 V Vn BOM l=lkHz, Rs= lOOn, See Figure 99 Equivalent input noise voltage VO=VOH, CL = 20 pF, RL = 10 kn, See Figure 98 Maximum output swing bandwidth Bl Unity-gain bandwidth Vi=10mV, CL = 20 pF, See Figure tOO ¢Tn Phase margin Vi=10mV, I=Bl, CL = 20 pF, See Figure 100 TA MIN 25°C -55°C 125°C 25°C -55°C 125°C TYP MAX 3.6 4.7 2.3 2.9 3.7 UNIT VlJl.s 2 25°C 25 25°C _55°C 320 400 230 1.7 2.9 1.1 125°C 25°C -55°C 125°C 25°C -55°C 125°C nV/VHz kHz MHz 46° 49° 41° operating characteristics, VDD = 10 V PARAMETER SR Slew rate at unity gain TEST CONDITIONS RL = 10 kn, CL = 20 pF, See Figure 98 VIPP = 1 V VIPP =5.5 V Vn Equivalent input noise voltage f = 1 kHz, RS= lOOn, See Figure 99 BOM Maximum output swing bandwidth VO=VOH, CL = 20pF, RL = 10 kn, See Figure 98 Bl Unity-gain bandwidth Vi=10mV, CL = 20pF, See Figure 100 ¢Tn Phase margin Vi=10mV, f = Bl, CL = 20 pF, See Figure 100 MIN TYP 25°C -55°C 125°C 25°C -55°C 125°C 5.3 7.1 3.1 25°C 25 25°C -55°C 125°C 25°C -55°C 200 280 110 2.2 3.4 125°C 1.6 25°C -55°C 49° 52° 44° 125°C 4.6 6.1 2.7 MAX UNIT VlJl.S nVlVHz kHz MHz TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-517 TLC271, TLC271A, TLC271B linCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)t DISTRIBUTION OF TLC271 INPUT OFFSET VOLTAGE DISTRIBUTION OF TLC271 INPUT OFFSET VOLTAGE 60 753 Amplifiers tel ted f :om 753 Amplifiers 50 VOO = 5 V TA = 25°C P Package 50 ! waf,~r lot, VOO=10V TA = 25°C P Package ~ I !l 40 'c :::I ., '0 30 OJ !1! t: ~., lIB 20 c.. 10 oLLJ..JJI1i -5 -4 -3 -2 -1 0 2 3 Via -Input Offset Voltage - mV 4 illlrn o 5 -5 -4 -3 -2 -1 0 2 3 Via - Input Offset Voltage - mV Figure 2 Figure 3 DISTRIBUTION OF TLC271 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT DISTRIBUTION OF TLC271 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 4 5 60 324 Amplifiers tested 324 Amplifiers tested 50 -;R 0 I .~ 40 I I VOO = 5 V TA = 25°C to 125°C P Package Outliers: (1) 20.5 jJ.VlOC 40 (1) 21.2 t: :::I 1 30~-t--t-~1i1i1lr-t--t-t--t-1 ., '0 30 OJ !1! t: 4i c.. VOO=10V TA = 25°C to 125°C --t--t--t--"1r--t---f P Package ~ .~ t: :::I 8 50 !1! 1.1 20 t: ~ 20r--r-1--+-fu+¥ tI .f 10 o -10 - 8 - 6 - 4 - 2 0 2 4 6 a via - Temperature Coefficient - jJ.v/oc 8 10 ':w. -10 - 8 - 6 - 4 - 2 0 2 4 6 8 a via - Temperature Coefficient - jJ.v/oc Figure 4 Figure 5 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS 2-518 POST OFFICE BOX 655303' DALLAS. TEXAS 75265 10 TLC271, TLC271A, TLC271B linCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS {HIGH-BIAS MODE)t HIGH-LEVEL OUTPUT VOLTAGE HIGH-LEVEL OUTPUT VOLTAGE vs vs HIGH-LEVEL OUTPUT CURRENT HIGH-LEVEL OUTPUT CURRENT 5 16 V10 = 100 mV TA = 25°C > .. I > 8, Cl S > '5 S o > '5 a. '5 0 .e:s 3 0 .. ~ ..J 14 ""'"'- 4 o a; .3 2 1:. 1:. Cl 12 10 8 -- I I ............. ............. 5: I I :I: ~ ........... 6 VOO=10V r-... ....... Cl 5: TA = 25°C I - ............ VOO =16V ......., ............. I V 10 = 100 mV '- "" ....... 4 :I: 0 o > > 2 o O~----~----~----~----~--~ o -10 -2 -4 -6 -8 o -10 -20 -40 -30 IOH - High-Level Output Current - mA IOH - High-Level Output Current - mA Figure 6 Figure 7 HIGH-LEVEL OUTPUT VOLTAGE HIGH-LEVEL OUTPUT VOLTAGE vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 16 > .. 14 I Cl ~ VID = 100 mV RL =10kQ TA = 25°C V 12 '5 10 :; 0 .. ~ ..J 1:. 8 / 6 Cl 5: I 4 :I: ~ / 2 o o 2 / / I ~ V ..J V -......... -2 1 1:. ~~ ~ VOO =10V .............. I -2.1 ....... ............ "- ~ Cl 5:I I - .................... > -1.9 :; a. :; 0 IOH =-5mA V10 =100mV .1 VOO = 5 V '-..... 0 // a. ........... I 8, -1.8 / 0 > > -1.7 -2.2 6 > -2.3 4 6 8 10 12 14 16 -2.4 -75 -50 -25 0 25 50 75 ~ '" 100 125 TA - Free-Air Temperature - °C V 00 - Supply Voltage - V Figure 8 Figure 9 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ~ TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-519 TLC271, TLC271A, TLC2718 LinCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)t LOW·LEVEL OUTPUT VOLTAGE LOW·LEVEL OUTPUT VOLTAGE vs vs COMMON·MODE INPUT VOLTAGE COMMON·MODE INPUT VOLTAGE 700 \ > E t 500 \ \ I 600 ~ '$ So 6 l VOO = 5 V IOL =5mATA = 25°C 500 400 ~ o r- f \ E I 600 500 '$ .9I ~ 400 300 I ~ ~ ....... I --.....:: ~ -- ~ 250 4 o / V IO =-1 V ~VID.-"V "~ ~,... 6 8 2 4 VIC - Common-Mode Input Voltage - V Figure 11 LOW·LEVEL OUTPUT VOLTAGE LOW·LEVEL OUTPUT VOLTAGE vs vs DIFFERENTIAL INPUT VOLTAGE FREE·AIR TEMPERATURE I 900 I IOL =5mA > VIC = WID I 21 TA =25°C I f ~\.VOO= 5 V VOO = 10V 200 I 800 - E I I '"~~ - 700 _ VOO =5 V 600 - U 400 ~ ;I: .9 ~ I ..J o 300 /' /7 ~ ./ J ..........- ..... ."./' ....... ............ / /' .,/ / ..... VOO=10V 200 o > 100 > 100 -4 o VID - Oifferen1iallnput Voltage - V -50 -25 0 25 50 75 100 TA - Free-Air Temperature - °C Figure 12 Figure 13 -2 -6 -8 -10 -75 tOam at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSfRUMENlS 2-520 10 I IOL =5mA VIO =-1 V VIC =0.5V '[ 500 ..J o o ~ 300 ..J -I ____ VIO = -100 mV Figure 10 I > 700 ~;I: "- r--..." r-..... \~ ~ 350 2 3 VIC - Common-Mode Inpu\ VoUage - V 800 o~ !u L 300 > '$ 400 '\ VIO =-1 V ..J 1\\ ~ \VIO = -100 mV ;I: I 450 I W ~ .9 > E -I VOO=10V IOL =5mA TA =25°C POST OFFICE BOX 655303' DALLAS. TEXAS 75265 125 TlC271, TlC271A, TlC271B linCMOSTM PROGRAMMABLE lOW-POWER OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)t LOW·LEVEL OUTPUT VOLTAGE I > I II> 0.8 '" 0.7 ~ 0 > ;; 0.6 .e:> °~ oJ vs LOW·LEVEL OUTPUT CURRENT LOW·LEVEL OUTPUT CURRENT ° > 0.5 / ~ 0.4 0.2 0.1 / o o > .E > I .,I VOO =5V/ VOO=3V~ oJ oJ > VOO = 4 g 0.3 I 3 I V10 =-1 V VIC =0.5 V TA =25°C 0.9 ./ .1 LOW·LEVEL OUTPUT VOLTAGE vs ~ j. // !!! '" g / I V10 =-1 V 2.5 I-- VIC = 0.5 V TA = 25"C VOO=16y 2 ;; .e:> ° 1.5 ~ ~ / ~ V oJ 3 4 5 6 7 IOL - Low-Level Output Current- mA o 8 V ~ V I >00.5 2 L VOO =10Y V o 10 5 15 20 25 30 IOL - Low-Level Output Current- mA Figure 14 Figure 15 LARGE·SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs vs SUPPLY VOLTAGE FREE·AIR TEMPERATURE > 50 ~ 45 I 50r-~r--1---+---+~~~1---+ .§ 40 :=B 35 ii. E c:( 30 g 20 Ri ~ 15 ~ o 10 > c:( 2 4 6 8 10 12 14 16 I I VOO=10V .............. r-., "~ I'-.. 25 I RL =lokn_ '" "- II> E I "'- . . . r-.... r-... voo = 5 V 10 ..... "'"---- ---- 5 0 - 75 - 50 - 25 0 25 50 75 V DO - Supply Voltage - V TA - Free-Air Temperature - °C Figure 16 Figure 17 100 125 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INsrRuMENTS POST OFFICE BOX 655303· DALLAS. TEXAS 75265 2-521 TLC271, TLC271A, TLC271B linCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS (HIGH-BIAS MODE}t COMMON-MODE INPUT VOLTAGE POSITIVE LIMIT INPUT BIAS CURRENT AND INPUT OFFSET CURRENT vs vs FREE-AIR TEMPERATURE SUPPLY VOLTAGE 16 10000 T~ VOO=10V VIC = 5 V See Note 4 1000 ~ ~ o > L 1I liB / > 110 .E / " V '"!!l , , V ::0 C 0 E E , , 0 , :> , 4 / 2 65 85 105 TA - Free-Air Temperature - °e / / / / o 125 2 6 4 10 8 1.2 14 Figure 19 SUPPLY CURRENT SUPPLY CURRENT vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 2 -' 2 vo=voo/2 No load I TA=]? - /' :::I en j// I V ~ /h ,...-~ ~ r---- 0 _0 0.5 looe ~ ..,..- -- V1Q oe I 2 4 6 8 10 12 VDO - Supply Voltage - V ~'"= VOO o _00.5 f-- 0 "'"" "-.. f---- 1------ Jl I-"":j I5 e ~ -- VOO=10V 1'i Q. -- ___ 5V -- , - - - - - -- -~~- r-- -- --- 1----- ~ ---- -------- / o 1-- ~ 5 o . ~ ~ ,...-- ,/ 1'i Q. 14 16 o -75 - 50 - 25 0 25 50 75 100 TA - Free-Air Temperature - "e Figure 20 Figure 21 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices_ NOTE 4: The typical values of input bias current and input offset current below 5 pA were determined mathematically_ TEXAS ~. INSTRUMENTS 2-522 16 VDO - Supply Voltage - V Figure 18 VO=VOo/2 I- No load o V / / V / / o 45 2.5 E ~ 6 0 I 0.1 25 8 "tI 0 "tI s::: 10 '5 Q. I _Q 10 12 / / I ." '5 0) 100 = 2510e 14 L POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 125 TLC271, TLC271A, TLC271B linCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)t SLEW RATE vs SUPPLY VOLTAGE 8 I SLEW RATE vs FREE-AIR TEMPERATURE 8 I 7 Ay= 1 V 'PP = 1 V 6 C L = 20 pF RL =10kQ VI TA = 25°C See Fig u re 98 ~ > 5 I . a: $ 4 ;: '" 1ii 3 I - a: Ul o > 6 l-----"'k--+-~,L--j----+- See, Figure , 99 I .. a: 5 $ ;: '" 1ii I a: 4 3 Ul -- f--- I o V~ / L VI ~ r-; / 2 - /" / Ay= 1 RL =10kQ C L = 20 pF 7 21---+- Voo = 5 V f-- t---j-~--+--t-- 2 4 6 8 10 12 14 O~~--~--~--~--~--~--~~ 16 - 75 - 50 - 25 0 25 50 BIAS SELECT CURRENT vs SUPPLY VOLTAGE MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY I 1111111 9 , - - VOO=10V _ =0 - 2.4 l---If---+--+--j---+---;----r---I J -1.8- /V I 7 '" 6 Qi-l.2 ______ ~---L ------------+---------- -------------Ul ---c------ --- ---- - ------ ------- - ------- c-------- ---- - - ----- '5 5 0 4 .e-:::> :t: 0 11111 3 6 8 10 12 14 16 \ = V TA =25°C rl TA =-55°C \ \ I IIIIIII _R L =10kQ 2 See Figure 98 , ,,- , tiL o 4 II IIIIII TA 125°C 1\ V VOO = 5 V I > ~ i¥' '0 > I , \ \\ 0) .f! -g--r-----V-r----+----- - - ---- ----- 8 > V"'" I 2 125 Figure 23 <:::l .------1---- 100 Figure 22 V'(SEL) VI 75 TA - Free-Air Temperature - °C 10 .. =2.5 V V 00 - Supply Voltage - V l----jl----+--+--j---+-- TA = 25°C iii V,PP 10 V DO - Supply Voltage - V Figure 24 '\. 0 t'- ....... ~~ IIIII 100 1000 f - Frequency - kHz 10000 Figure 25 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 7526S 2-523 TLC271, TLC271A, TLC271B linCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)t UNITY-GAIN BANDWIDTH 3 vs FREE-AIR TEMPERATURE SUPPLY VOLTAGE I \ r-. \ ~ ~ 2.5 = ;: c 2 .c ~ 1.5 rD 1 -75 -50 -25 I 0 '"'"'" 25 50 i'2 1.5 I rD 75 V I . . . r--100 V V .....- / :::> ........ ."./ / c 1 125 o 2 4 8 6 10 12 14 16 TA - Free-Air Temperature - °C Voo -Supply Voltage- V Figure 26 Figure 27 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs vs FREQUENCY FREQUENCY Voo = 5 V g 106 '; r- RL = 10kQ TA = 25°C ~ (,) ~ 105 0° " 1\" 4 ~ 30° = : 10 :c S CD !'.,.Avo Phase Shift 100 VOO=10V RL =10kQ TA =25°C E ....... "'--r-...'"" 0.1 10 2 ~; C I I III 'iii :::> ~ \ c II VI =10 mV C L = 20 pF I- TA = 25°C See Figure 100 :;; \. "I:) as 2.5 I VOO = 5 V VI = 10 mV C L = 20 pF See Figure 100 \ :s! III UNITY-GAIN BANDWIDTH vs If) II> ~ .c ~ 60° . en 900 0. ""~ \ '" "\ 1k 10k lOOk f - Frequency - Hz 1M 120° ~ 103 0° "'\'" " '" '"0 "- ~\ r-- 102 ~ i5 101 c < 180° 10M ""- 1 0.1 10 100 Figure 28 "\ 1k 10 k 100 k i M f - Frequency - Hz 900 Il. ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 150° 180° 10 M tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 2-524 ill II> ::: .c 120° Figure 29 TEXAS 60° Phase Shift I 150° 30° i!: ~o TLC271, TLC271A, TLC271B linCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)t PHASE MARGIN , 53 PHASE MARGIN vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 50 M 51 2' "0 / I :I ...... f. 49 I ...e 47 / / 4 2 6 48 I 46 '"" "" CI "0 c .~ c TA = 25°C See Figure 100 I 8, 300 ~ E ~ 200 '5 Q. .E C \. ~ ~ 100 ':; .B' I\. I \ 25 o 20 r\ .. .!! [\. ... 30 125 VOO =5 V RS = loon TA = 25°C See Figure 99 1\ > I 100 III ~ o '" "'- :I : Voo =5 V VI =10mV "- 75 EQUIVALENT INPUT NOISE VOLTAGE CAPACITIVE LOAD i"'- "" '" 50 vs 50 '" 25 '"" Figure 31 PHASE MARGIN ~ 45 0 "- TA - Free-Air Temperature - °C VDO - Supply Voltage - V 45 "" ~ Q. ,-J o ..1!! .. III V c 'fI V Voo = 5 V Vi = 10 mV C L =20pF See Figure 100 40 60 80 C L - Capacitive Load - pF c > '\ '" i"'- t- o 100 10 100 f - Frequency - Hz 1000 Figure 33 Figure 32 tOam at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INsrRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 2-525 TLC271C, TLC271AC, TLC271BC linCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS MEDIUM-BIAS MODE electrical characteristics over recommended free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS TLC271C Via Input offset voltage TLC271AC TLC271BC aVIO 110 lIB VIC ~OV, 0.9 0.25 Full range 70°C VIC ~ VDD 12 70°C 25°C Common-mode input voltage range (see Note 5) -0.2 to 4 VOL High-level output voltage Low-level output voltage Large-signal differential AVD CMRR VID ~ 100 mV, RL~ 100 kn VID ~ - 100 mV, 10L~0 voltage amplification RL ~ 100 kn, See Note 6 Common-mode rejection ratio VIC ~ VICRmin 1.1 10 0.9 0.26 1.7 2.1 0.1 40 600 -0.3 -0.2 to to 4.2 9 to 3.5 8.5 7 0.7 300 50 600 to 9.2 V 3.2 3.9 8 8.7 O°C 3 3.9 7.8 8.7 70°C 3 4 7.8 8.7 0 ·0 50 50 0 50 V 0 50 0 0 50 25°C 25 170 25 275 O°C 15 15 70°C 25°C 15 65 200 140 91 15 65 320 230 O°C 60 91 60 94 70°C 60 92 60 94 25°C 70 93 70 93 60 92 94 60 92 60 94 V/mV 94 dB (tNDD I t. Via) VO=l.4V O°C 70°C II(SEL) Input current to bias select pin VI(SEL) ~ VDD I 2 25°C Va ~ VDD 12, 25°C 105 280 143 IDD Supply current VIC ~ VDD/2 No load O°C 70°C 125 320 173 400 85 220 110 280 -130 TEXAS ~ 2-526 POST OFFICE BOX 655303' DALLAS, TEXAS 75265 dB -160 tFull range is O°C to 70°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. 6. At VDD = 5 V, Va = 0.25 V to 2V; at VDD ~ 10 V, Va = 1 V to 6 V. INSfRUMENTS mV 50 VDD~5Vtol0V, 60 pA V Suppiy-voitage rejection ratio kSVR pA -0.3 25°C O°C 70°C /AV/oC -0.2 to 25°C mV 2 3 0.1 300 5 6.5 2 7 0.6 UNIT 12 5 -0.2 Full range VOH MAX 3 25°C to Va ~ VDD 12, VIC ~ VDD/2 Va ~ VDD 12, =10V TYP 6.5 25°C 25°C 70°C VDD MIN 12 Full range RS = 50n, RL~ 100 kn 25°C VICR VDD 5 V TYP MAX 1.1 10 25°C of input offset voltage Input bias current (see Note 4) MIN 25°C Full range VO~l.4V, Average temperature coefficient Input offset current (see Note 4) = TAt nA 300 /AA TLC2711, TLC271AI, TLC271BI LinCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS MEDIUM-BIAS MODE electrical characteristics over recommended free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS TLC271I Via Input offset voltage TLC271AI TLC271BI VIC ~O V, RS ~ 50 n, RL~100kn Average temperature coefficient aVIO Input offset current (see Note 4) liB Input bias current (see Note 4) 1.1 VIC ~ VOO/2 25°C Full range 25°C Full range 10 0.9 5 0.25 7 2 3.5 VOL Low-level output voltage CMRR kSVR II(SEL) 10L~0 0.26 24 0.6 1000 26 0.7 1000 200 2000 220 2000 -0.2 -0.3 -0.2 to to to to 4 -0.2 4.2 9 -0.2 9.2 to 3.2 3 3.9 8.7 85°C 3 25°C 4 0 50 0 50 -40°C 0 50 0 50 85°C 0 50 0 50 8 7.8 8.7 7.8 8.7 170 25 275 voltage amplification 15 270 15 390 85°C 25°C 15 130 220 65 91 15 65 Common-mode rejection ratio VIC ~ VICRmin -40°C 60 90 60 93 85°C 60 90 60 94 25°C -40°C 70 93 70 93 60 91 60 91 85°C 60 94 60 94 (t. VOO UNIO) VO~ Input current to bias select pin VI(SEL) 1.4 V = VOO 1 2 Supply current VIC ~ VOO 12, No load 25°C -130 pA V 25°C -40°C 25 VOO~5VtoI0V, pA V 25°C Supply-voltage rejection ratio l!VloC to 8.5 3.9 mV -0.3 -40°C VO~ VOO/2, 100 5 7 2 3.5 85°C 25°C 85°C UNIT 13 0.9 RL = 100kn, See Note 6 Large-signal differential AVO VID ~ - 100 mY, 10 2.1 3.5 RL~100kn 1.1 0.1 Full range VID ~ 100 mY, MAX 0.1 voltage range (see Note 5) High-level output voltage TYP 25°C Common-mode input VOH MIN 1.7 25°C VICR MAX 13 85°C Va ~ Voo 12, VIC ~ VOO 12 Va ~ VOo/2, TYP Full range 25°C to of input offset voltage 110 MIN 25°C Va ~ 1.4 V, Voo= 10V VOL> = 5 V TAt V mV V/mV 94 dB dB -160 nA 25°C 105 -40°C 158 280 400 143 225 300 85°C 80 200 103 260 450 !!A tFull range is - 40°C to 85°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. 6. At VOO = 5 V, Va = 0.25 V to 2 V: at VOO = 10 V, Va ~ 1 V to 6 V. ~ TEXAS INSTRUMENlS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-527 TLC271M LinCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS MEDIUM-BIAS MODE electrical characteristics over recommended free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VO=1.4V. Via (lVIO Input offset voltage TAt 25°C VIC =OV. Rs=50n. RL = 100 kn 25°C to 125°C liB Input bias current (see Note 4) Va = VOO 12. 25°C 0.6 VIC = VOO/2 125°C 0 9 -0.3 to 4 to 4.2 CMRR VIO = - 100 mY. 10L=0 1.1 10 0.1 15 1.8 10 0 to -0.3 to 9 9.2 0 0 to 3.5 to 25°C 3.2 3.9 8 8.7 3 3.9 7.8 8.6 125°C 3 4 7.8 8.8 a 50 0 50 0 50 125°C 50 0 0 50 50 25 275 15 290 15 420 125°C 15 120 15 190 25°C 65 91 65 94 Common-mode rejection ratio VIC = VICRmin -55°C 60 60 89 91 60 60 93 Input current to bias select pin VI(SEL) = VOO 1 2 100 Supply current V 25°C 25 II(SEL) 25°C 70 93 70 60 91 60 93 91 125°C 60 94 60 94 V/mV dB dB .,..160 -130 nA VO= VOO/2. 25°C 105 280 143 300 VIC = VOO/2. No load -55°C 170 440 245 500 125°C 70 180 90 240 tFull range is - 55°C to 125°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. 6. At VOO = 5 V. Va = 0.25 V to 2 V; at VOO = 10 V. VO= 1 V to 6 V. TEXAS . " INSfRUMENlS POST OFFICE BOX 655303· DALLAS. TEXAS 75265 mV 93 -55°C 25°C nA V -55°C 25°C VO= 1.4 V pA 35 V -55°C VOO = 5 V to 10 V. nA 8.5 RL = 100 kn. See Note 6 (,WOO 1 t.vIO) pA 15 0.7 35 voltage amplification Supply-voltage rejection ratio 2-528 UNIT !lV/oc 2.1 -55°C 125°C kSVR MAX 0 170 Large-signal differential AVO VID = 100 mY. RL=100kn Low-level output voltage TYP 12 1.7 1.4 Full range VOL MIN 12 0.1 voltage range (see Note 5) High-level output voltage 10 25°C 25°C VOH 1.1 125°C Va = Voo 12. VIC = VOO/2 Common-mode input VICR MAX mV Average temperature coefficient Input offset current (see Note 4) VOD=10V TYP Full range of input offset voltage 110 VDO=SV MIN flA TLC271C, TLC271AC, TLC271BC linCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS MEDIUM-BIAS MODE operating characteristics, VDD = 5 V PARAMETER TEST CONDITIONS VIPP ~ 1 V RL ~ 100 kn, SR Slew rate at unity gain Vn Equivalent input noise voltage BOM Maximum output swing bandwidth Bl m CL; 20 pF, 25°C -40°C ~~-- f ; 81, See Figure 100 PARAMETER 525 --------------~- _ _ _ _3?~ ________ f----25°C 40° .. ---------1------43° - -40°C .. .. --"----'"' ----'"'-_.,---,-,-----85°C 38° ~-- ~--- ..--- ~--~----~-- TEST CONDITIONS TAt 25°C -40°C 85°C ---25°C -40°C MIN - RL; 100 kn, CL; 20 pF, See Figure 98 VIPP; 1 V 1---VIPP; 5.5 V TYP MAX 0.62 0.77 "- ___~4?~ _ _ 0.56 0.70 Equivalent input noise voltage BOM Maximum output swing bandwidth f; 1 kHz, RS; 100n, See Figure 99 VO;VOH, CL;20pF, RL ; 100 kn, See Figure 98 ------,.- 85°C 0.44 25°C 32 Unity-gain bandwidth Vi; 10mV, CL; 20 pF, See Figure 100 4>m Phase margin f; B1, See Figure 100 nV/v'Hz -----.-~ - ••• - _ TEXAS ~ INSTRUMENTS 2-530 -- ----.,~ -~- Vi;10mV, CL; 20 pF, V/p.s 25°C 35 -kHz -40°C 45 _ .,r-------85°C 25 --,_...,------.-.----,-- ~--~ -25°C 635 --".. _ - , - kHz 40°C 880 -- _ .. .... _- -, .. .. ---85°C 480 -_._ .. -_.._--_._---",._-.. .. 25°C 43° --------40°C 46° 85°C 41° ~--~--,- 81 UNIT ------- ~--- Vn ---- =10 V 1------ Slew rate at unity gain kHz 770 -----.----.-~---.".-------.- 85°C _._---_. ---~- SR kHz --~ ~---- ---- operating characteristics, VOD -------------- f-----~--- ---~-- ------- ----- Vi; 10mV, Phase margin ----7-5---~ -~------ Vi; 10mV, CL ; 20 pF, See Figure 100 Unity-gain bandwidth 55 25°C -40'C 85°C ------~ -~- 81- nV/v'Hz 32 -------'-------- VO;VOH, CL;20pF, RL; 100 kn, See Figure 98 Maximum output swing bandwidth .---~--- POST OFFICE BOX 655303· DALLAS, TEXAS 75265 --~ - • __ . _ ._ _ .m. _____ ." ___ --,---,-~-----.------ TlC271M linCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS MEDIUM-BIAS MODE operating characteristics, VDD =5 V PARAMETER TEST CONDITIONS VIPP = 1 V RL =100 kQ, SR Slew rate at unity gain CL = 20 pF, See Figure 98 VIPP = 2.5 V Vn Equivalent input noise voltage BOM Maximum output swing bandwidth -~------~--~ B1 ¢m .. RS= 100Q, See Figure 99 CL = 20 pF, VO= VOH, RL = 100 kQ, See Figure 98 Vi = 10mV, CL = 20 pF, See Figure 100 Unity-gain bandwidth Vi = 10mV, Phase margin CL = 20 pF, f = B1, See Figure 100 --~---- operating characteristics, VDD PARAMETER TYP MAX UNIT 0.43 - 55°C 0.54 125°C 0.29 25°C 0.40 -55°C 0.50 125°C 0.28 25°C 32 25°C 55 -55°C 80 125°C 40 25°C 525 VlflS nV/"RZ kHz Slew rate at unity gain Vn Equivalent input noise voltage BOM Maximum output swing bandwidth --~ -55°C 850 125°C 330 25°C 40° 43° 36° - 55°C 125°C kHz =10 V TEST CONDITIONS VIPP = 1 V RL = 100 kQ, SR MIN -------~--~~-- -- -- f~= 1 kHz, TA 25°C CL = 20 pF, See Figure 98 f = 1 kHz, VIPP = 5.5 V RS = 100 Q, See Figure 99 VO=VOH, CL = 20 pF, RL = 100 kQ, See Figure 98 TA MIN TYP 25°C 0.62 -55°C 0.81 125°C 0.38 25°C 0.56 -55°C f-125°C 0.35 MAX UNIT VlflS 0.73 25°C 32 25°C 35 - 55°C 50 125°C 20 25°C -55°C 635 960 125°C 440 43° 47° 39° nVlVHZ kHz ~. 81 Unity-gain bandwidth Vi=10mV, CL = 20 pF, See Figure 100 -~ ¢m Phase margin Vi=10mV, f= 81, CL = 20 pF, See Fig ure 100 25°C - 55°C 125°C kHz TEXAS ~ INSTRUMEN1S POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-531 TLC271, TLC271A, TLC271B LinCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)t DISTRIBUTION OF TLC271 INPUT OFFSET VOLTAGE DISTRIBUTION OF TLC271 INPUT OFFSET VOLTAGE 60 50 '#. I ~ c 40 :;) '0 30 II> '" l! c ~ 20 II> CI. 10 101-+-+-++ o L....c±::.!iUEEl -5 -4 -3 -2 -1 0 2 3 VIO -Input Offset Voltage - mV 0 -5 -4 -3 -2 -1 0 2 3 VIO -Input Offset Voltage - mV 4· 5 Figure 34 Figure 35 DISTRIBUTION OF TLC271 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT DISTRIBUTION OF TLC271 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT '#. I .~ c 5 224 Amplifiers tested 224 Amplifiers tested 50 4 I VOO=5V TA = 25°C to 125°C .,.""b+-+--+--I----1 P Package 50 Outliers: ';/!. ~ 40 C :;) VOO=10V I TA = 25°C to 125°C -t--t--t---t----i--I P Package 40 (1) 34.6 V/oC :;) '0 301-+-+-+--r & l!! ~ &. 101--t--+-+-4 10 I--+---I:---t-- oL1...=l::!EE_m -10 -8 -6 20 I---+---ic---+- -4 -2 0 2 4 6 8 10 o L......:::b.:;:::I::::£lillilfrtEl .IIII~-.J -10 -8 -6 -4 -2 0 2 4 6 8 aVIO - Temperature Coefficient - fLv/oc aVIO - Temperaiure Coefficient - fLV/oC Figure 36 Figure 37 toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSfRUMENTS 2-532 POST OFFICE BOX 655303· DALLAS. TEXAS 75265 10 TLC271, TLC271A, TLC271B LinCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)t HIGH-LEVEL OUTPUT VOLTAGE HIGH-LEVEL OUTPUT VOLTAGE vs vs HIGH-LEVEL OUTPUT CURRENT HIGH-LEVEL OUTPUT CURRENT 16 5~----~----~----~----~----, VIO = 100 mV > TA = 25°C > 14 I 4~----+-----+-----+-----+---~ I -....... 8, 12 ~'5 r-.. I VIO =100mV TA =25°C VOO =16V ...... r--...... r--........ 10 Q. ~ 8 ~ 6 ~ 4 -....... r--- VOO=10V ......::.: --......... .2' I ::I: is o > > 2 o o 16 > ., Cl .\! 14 '5 Q. :; 0 .,> S:. Cl J: I 0 HIGH-LEVEL OUTPUT VOLTAGE HIGH-LEVEL OUTPUT VOLTAGE vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE VOO -1.6 VIO = 100 mV RL = 100 k.Q TA = 25°C > / 12 .,I Cl / 10 .\! 6 4 / 2 o 2 V / V / -1.7 ............ -1.8 10H =-5mA VID =100mV - ~ "0 > V / 8 o -40 FIgure 39 ::I: > -30 Figure 38 Qj ..J -20 IOH - High-Level Output Current - mA "0 > -10 10H - High-Level Output Current - mA I r r-- '5 ~ / -1.9 ............... 0 -2 lS:. -2.1 _ ~ VOO =5 V ""'" VOO =10V ............ r-....... i'-- ...... I'...... .2' ~ -2.2 16 -2.4 -75 '" ~ ::I: 14 ~ ............ >0 -2.3 4 6 8 10 12 VDO - Supply Voltage - V " -50 -25 0 25 50 75 100 TA - Free-Air Temperature - °C Figure 40 125 Figure 41 toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-533 TLC271, TLC271A, TLC271B linCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)t LOW-LEVEL OUTPUT VOLTAGE LOW-LEVEL C;>UTPUT VOLTAGE vs vs COMMON-MODE INPUT VOLTAGE COMMON-MODE INPUT VOLTAGE 700 500 \ ~ \ \ I ., 600 i ~ '5 50 6 500 1\ 400 I o 'i > 300 I 450 1\\ '5 400 50 o" ] '" ~"" I o \ 1,\ 350 ~ ~ b-,. "~ VID = -1 V ..J ., I '.... 300 ~ t-.... o -r-::: ~ r-3 2 > 250 o 4 VIC - Common-Mode Input Voltage - V 800 I j o > 600 500 '5 50 6 ] 400 300 ..J~ I ~ V'D"-'·" ""~~~ 2 4 6 8 VIC - Common-Mode Input Voltage - V LOW-LEVEL OUTPUT VOLTAGE LOW-LEVEL OUTPUT VOLTAGE vs vs DIFFERENTIAL INPUT VOLTAGE FREE-AIR TEMPERATURE 900 I IOL =5mA > ., .l!! '"'0 -" > ",V OO =5V 200 700 I r- " 0 - j I - VIC =0.5 V VOO =5 V 600 .3 I'-. ~ ..J I 400 300 V ./V V f-" ""../ .,... ,......... .----- V / ,./'" V VOO=10V ~ 200 ..J ..J 0 >0 100 o o > -2 -4 -6 -8 -10 100 o -75 VIO - Oifferentiallnpul Voltage - V -50 -25 0 25 50 75 100 TA - Free-Air Temperature - DC Figure 45 Figure 44 toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS 2-534 10 I IOL =5mA VID = -1 V 50 500 "~ ....... VOO=10V 800 E VIC = WIO I 21 TA = 25°C \, 1 J '\. / V IO =-l V Figure 43 I I ___ VID = -100 mV Figure 42 I ~ 700 k-- I VOO=10V IOL =5mA TA =25°C - '" '\ r--.. .3 > E g.l!! VIO = -100 mV 1 ..J~ VOO =5 V IOL =5mATA = 25°C POST OFFIc:E BOX 655303 • DALLAS. TEXAS 75265 125 TLC271, TLC271A, TLC271B LinCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)t LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT LOW-LEVEL OUTPUT CURRENT I 3 I 0.9 _V IO =-l V VIC = 0.5V 0.8 - TA =25°C > I III CI i> > I VOO=4~ 'S 0.6 So ::s 0.5 3 0.4 ..9 0.3 • I oJ VOO=3~ // /. ~ 0.2 ° 0.1 > o/ :/ o ~ I VIO =-l V VIC = 0.5 V TA =25°C 2.5 III CI VOO=5y 0.7 °a; LOW-LEVEL OUTPUT VOLTAGE vs i> / 'S So ::s ° ~ ~ VOO =16vj 2 VOO = l i 1.5 hV I oJ >00.5 5 34 2 7 6 V l/ o o 8 ~ 500 I vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE I B350 !5 f 300 C ITA / / W & 250 V III :! 100 =-55.:£ f-" -40°C "",""-!---" O°C ", Y ./ ........ ...;...;;.. V ./ '". /~ hv/ V 6~V // ~ ~ %~ ~ ~ 200 ii 'iii 150 -- ~ 70°C ~ ~85°C 125°C ~ 50 > 500 ~ :8 ~ 350 0.. E 300 C , "" " "'- .e&250 ~ 200 ......... .......VOO=10V ...... ~ VOO =5 V .............. C 150 i'-... 6 8 10 r---.... !:= 100 c 12 14 16 ---- ............ ~ 50 > 4 I , c 400 C 2 450 I I RL = 100 kn_ ~ ~ Q o 30 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION o 0 25 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION I C 20 Figure 47 c 400 > 15 IOL - Low-Level Output Current - mA Figure 46 RL =100kn 450 10 5 IOL - Low-Level Output Current- mA > :/ / ~ / t"-= 0 -75 -50 -25 0 25 50 75 V DO - Supply Voltage - V TA - Free-Air Temperature - DC Figure 48 Figure 49 100 125 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ." INSfRUMENTS POST OFFice BOX 655303 • DALLAS. TexAS 75265 2-535 TLC271, TLC271A, TLC271B linCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)t INPUT BIAS CURRENT AND INPUT OFFSET CURRENT MAXIMUM INPUT VOLTAGE vs vs FREE-AIR TEMPERATURE SUPPLY VOLTAGE 16 10000 /' 100 () . I /' /' -210 -g -!XI , 0.1 25 , , , !!! "0 > :; V 8 6 I , >4 45 65 85 105 TA - Free-Air Temperature - °C o 125 o J ~ 0- 4 SUPPLY CURRENT SUPPLY CURRENT vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 225 300 "'lI 250r-~--+--+--I--~~~-r--4 ~ !!! !s () ~ 15. 0- 150r-~-~~-+~~-~~~-~~ I o :) III 'r\. '\ 175 150 i'-.. ..P '" 125 100 "- ...... ~OO=10V ~I'o... VOO =5 V 8 4 10 12 6 VDO - Supply Voltage - V 14 16 ---- -........... ......... 75 50 50r-~~-+--+--I---I--+--+--4 2 --- 25 o-75 -50 -25 0 25 50 75 100 125 TA - Free-Air Temperature - °C Figure 52 Figure 53 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. NOTE 4: The typical values of input bias current and input offset current below 5 pA were determined mathematically. TEXAS ~ INSTRUMENTS 2-536 16 Vo =Vool 2_ No load ~ I 0 _0 100r-~-b~~~~~=--I-~~--~~ 14 250 VO=VOo/2 No load -f---\---I-- 200r-~--+--+~~~-I--~~~~ / / Figure 51 15. ~ / Figure 50 I ~ !! / / / / / 6 8 10 12 VDO - Supply Voltage - V 2 200 "'l / / 2 , / / 0- .E 400r-~--~--~--~--~--~--~~ 350 10 Cl 110 I as / 12 liB I !s / / 0- ~ T~ =2doc 14 ./ POST OFFICE BOX 655303' DALLAS, TEXAS 75265 TLC271, TLC271A, TLC271B LinCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS. TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)t SLEW RATE 0.9 t.. I . ~ vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 0.9 I '" 1 VIPP = 1 V RL = 100 k.Q C L =20pF 0.7 _ TA =25°C See Figure 99 0.8 - SLEW RATE vs 0.8 t-----...:---t- ~ iii I rx: 0.5 / 0.4 V / .!! rx: 0.6 C/) V / ~ :> / o 2 -+- ~ 0.6 t---I-:-t-'---1'-..::--P..... rx: C/)~ 0.5 rx: 0.4 t---I-7f---+-="-k~..t::--+----"'k--""d C/) 0.3 4 6 8 10 12 Vee - Supply Voltage- V 14 0.21-........1-.....- ......._ ....._ ......_..1.-_....---1 -75 -50 -25 0 25 50 75 100 125 16 TA - Free-Air Temperature - °C Figure 54 Figure 55 BIAS SELECT CURRENT MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs vs SUPPLY VOLTAGE FREQUENCY 10 TA =25°C -270 VI(SEL) = 1/2 Vee - II IIII 9 I -aI - 210 ~ -180 ~ 0-150 ~ ..... 'ii -120 C/) ..-V -- ~ - > I GJ 7 l!! '" '0 6 :; 5 0 4 > .e::> ~TA =-55°C :I: 0 > -60 IIIIIII 3 2 r- -30 R~ ~~~~Il1 See Figure 99 I 1111111 IIIIIII o 2 4 6 8 10 12 Vee - Supply Voltage- V 14 16 \ Vee = 5 V I -90 II II I 11111 TA = 125°C / TA =25°C 8 r-- Vee = 10V -240 ~ I--d-~~-+--~~~~~-+-~ I -300 .. 0.7 t---I"""-::-t-7'~--+--j---,--,------I I / / 0.3 r---,---r---,---,--...,--..,.--.,....-....., 1 Figure 56 \ ~ r--.. ........ ['. 10 100 f - Frequency - kHz 1000 Figure 57 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303· DALLAS. TEXAS 75265 2-537 TLC271, TLC271A, TLC271B LinCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)t UNITY-GAIN BANDWIDTH UNITY-GAIN BANDWIDTH vs vs FREE-AIR TEMPERATURE SUPPLY VOLTAGE 900 1 VOO =5 V VI = 10 mV C L = 20 pF See Figure 101 \ ~ 800 \ ""I ~ 700 li c 600 750 I TA = 25°C See Figure 101 "';' 700 = .. ~ III c 600 'm c:J ~ 500 ._ c ::> "" '""- I m400 300 -75 -50 -25 0 25 50 '" ::> I m i"-. / 450 ------ 75 / 500 100 400 125 1/ / o 4 2 8 6 10 12 14 V DO - Supply Voltage - V Figure 58 Figure 59 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs vs FREQUENCY FREQUENCY Voo =5V RL = 100 kQTA=25°C ~. \ .", Phase Shilt 10 J'a 105 E 30° ~o 100 .: :c "'- ~ 1k 10 k 60° 100 k ~CI 104 ;g 103 .s::. ii .. 120° ~ ! ~ 180° 1M '" "'" 30° ~ '" "'" '" 1 0.1 1 10 100 60° 1k 10 k I - Frequency - Hz f - Frequency - Hz Figure 60 Figure 61 TEXAS ~ POST OFFICE BOX 655303· DALLAS. TEXAS 75265 ~ :3 900 B. ~ 100 k tData at high and low temperatures are applicable only within the rated operating Iree-air temperature ranges 01 the various devices. INSTRUMENTS S .s::. .s::. I\. Phase Shift is 101 I 150° 0° \ 102 c > TA =25°C ~ S ~ 900 B. "~" VOO=10V RL = 100kQ- 5 106 0° ~ r\ 2-538 16 TA - Free-Air Temperature - °C --...." 1 %. 550 V /' / 650 c 'm 0.1 I VI =10mV C L =20pF ~ \ ~ III 800 .1 120° 150° 180° 1M TLC271, TLC271A, TLC271B linCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)t PHASE MARGIN vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 50 M .. 0) .... 44 D. 42 L I ....E 40 38 / Lo 2 V V .~ IV ::;; / L 41 I c = .c I E .... 37 4 6 8 10 12 V DO - Supply Voltage - V 14 35 -75 16 38 EI IV 36 IV 34 .. ::;; .c D. I ....E 32 o 20 ~ "- EQUIVALENT INPUT NOISE VOLTAGE vs CAPACITIVE LOAD FREQUENCY VDD =5 V VI = 10 mV TA = 25°C See Figure 100 - ~ ~ .. > ... 250 z ;; 150 \ I 0) ~ 200 r-....... '0 ""'- " III~DD~5~1 125 III RS= 100 Q TA = 25°C See Figure 99 \ 1\ IV "'- -50 -25 0 25 50 75 100 TA - Free-Air Temperature - °C PHASE MARGIN 30 28 "'- Figure 63 "- .5 ~ vs "'- "- 2' I '" '" VI = 10 mV CL =20pF See Figure 100 Figure 62 ...... l!! 40 I ""'- 300 :! '0 39 D. 44 42 "" .. 0) IV .c ~ 43 '0 I 2'IV I VDD = 5 V 46 c ::;; 45 II VI = 10 mV CL = 20 pF TA =25°C See Figure 100 48 '0 PHASE MARGIN vs r\ a. .5 I'...... t\. C 100 "- 40 60 80 CL - Capacitive Load - pF 'Llf=* .:: " 100 "'-I'., 50 c > o - t-- I 1 10 100 f - Frequency - Hz 1000 Figure 65 Figure 64 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303· DALLAS. TEXAS 75265 2-539 TLC271C, TLC271AC, TLC271BC LinCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS LOW-BIAS MODE electrical characteristics over recommended free-air temperature range (unless otherwise noted) TEST CONOITIONS PARAMETER TLC271C VIO Input offset voltage TLC271AC TLC271BC 110 25°C lIB Input bias current (see Note 4) 0.9 5 25°C 0.24 6.5 2 Full range Low-level output voltage CMRR TYP MAX 1.1 10 5 0.26 6.5 2 fJ.V/ oC 25°C 0.1 70°C 300 8 0.7 300 25°C 7 0.6 VIC = VOO/2 70°C 40 600 50 600 -0.3 -0.2 to to to to 4 -0.2 4.2 9 -0.2 9.2 VID = -100 mV, voltage amplification RL=lMQ, See Note 6 Common-mode rejection ratio VIC = VICRmin to to 3.5 8.5 V 8 7.8 8.9 8.9 3 4.2 0 7.8 8.9 50 0 50 O°C 0 50 0 50 70°C 0 50 50 25°C 50 520 50 0 870 O°C 50 700 50 1030 70°C 50 380 50 660 25°C 65 94 65 97 O°C 60 95 60 97 70°C 60 95 60 97 25°C 70 60 97 70 O°C 60 97 97 70°C 60 97 98 60 98 V dB VOO=5Vto10V, (iNOO 1 AVIO) VO= 1.4 V II(SEL) Input current to bias select pin VI(SEL) = VOO 25°C 65 VO= VOO/2, 25°C 10 17 14 23 100 Supply current VIC = VOO/2, No load O°C 12 21 18 33 70°C 8 14 11 20 TEXAS . " INSTRUMENTS 2-540 POST OFFICE BOX 655303' DALLAS, TEXAS 75265 dB 95 tFull range is O°C to 70°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. 6. AtVOO = 5 V, Vo = 0.25 V to 2 V; atVOO = 10V, Vo = 1 V t06 V. mV V/mV Supply-voltage rejection ratio kSVR pA V 4.1 4.1 70°C 25°C pA -0.3 3.2 3 O°C RL= 1 Mn 0.1 -0.2 25°C mV 3 1 Vo = VOO 12, VIC = VOO/2 Vo = VOO/2, VID = 100mV, UNIT 12 0.9 1.1 70°C 10L=0 Large-signal differential AVO MIN 3 25°C to Full range VOL 10 25°C Full range voltage range (see Note 5) High-level output voltage 1.1 VIC =OV, RS=50n, RL = 1 MQ Common-mode input VOH VOO=10V MAX 12 25°C VICR v TYP Full range of input offset voltage Input offset current (see Note 4) MIN VO=1.4V, Average temperature coefficient aVIO VOO=5 TAt nA fJ.A TLC2711, TLC271AI, TLC271BI LinCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS lOW-BIAS MODE electrical characteristics over recommended free-air temperature range (unless otherwise noted) TEST CONOITIONS PARAMETER TLC2711 VIO Input offset voltage TLC271AI TLC271BI 25°C RS=50Q, Full range RL = 1 MQ 25°C Input offset current (see Note 4) liB Input bias current (see Note 4) 0.24 Low-level output voltage Va = VOO 12, VIC = VOO/2 Va = VOO 12, 25°C 0.1 85°C 24 25°C 0.6 VIC = VOO/2 85°C 200 10L=0 Large-signal differential AVO CMRR voltage amplification Common-mode rejection ratio Supply-voltage rejection ratio kSVR 0.9 5 0.26 2 7 2 26 2000 220 -0.2 -0.3 -0.2 to to to to 4 4.2 9 9.2 to 3.5 8.5 25°C 3.2 4.1 8 8.9 -40°C 3 4.1 7.8 8.9 85°C 3 4.2 7.8 8.9 25°C 0 50 0 0 50 0 50 85°C 0 50 0 50 50 870 50 1550 85°C 50 330 50 585 25°C 65 94 65 97 VIC = VICRmin -40°C 60 95 60 97 85°C 60 95 60 98 97 Supply current V -40°C 900 100 V V 520 VI(SEL) = VOO pA -0.2 to 50 Input current to bias select pin 2000 pA -0.3 50 II(SEL) 1000 0.7 25°C Vo= 1.4 V fl Vio C 0.1 1000 -40°C (,WOO 1 ",-Via) mV 3.5 1 RL = 1 MQ, See Note 6 VOO=5Vtol0V, UNIT 13 5 -0.2 VIO = - 100 mY, 10 1.1 85°C RL = 1 MQ MAX 1.1 3.5 25°C to VIO = 100 mY, TYP 7 Full range VOL 10 Full range voltage range (see Note 5) High-level output voltage 1.1 MIN 13 Common-mode input VOH MAX 0.9 25°C VICR VOO=10V TYP Full range VO= 1.4V, VIC =OV, of input offset voltage 110 MIN 25°C Average temperature coefficient aVIO VOO = 5 V TAt 25°C 70 97 70 -40°C 60 97 60 97 85°C 60 98 60 98 50 mV V/mV dB dB 25°C 65 95 nA VO= VOO/2, 25°C 10 17 14 23 VIC = VOO 12, No load -40°C 16 27 25 43 85°C 17 13 10 18 flA tFull range is - 40 to 85°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. 6. At VOO = 5 V, Va = 0.25 V to 2 V; at VOO = 10 V, Va = 1 V to 6 V. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-541 TlC271M linCMOSTM PROGRAMMABLE lOW-POWER OPERATIONAL AMPLIFIERS LOW-BIAS MODE electrical characteristics over recommended free-air temperature range (unless otherwise noted) PARAMETER TEST CONOITIONS VO=l.4V, V,O Input offset voltage Average temperature coefficient of input offset voltage ',0 Input offset current (see Note 4) liB Input bias current (see Note 4) MIN VOO=5V TYP MAX 1.1 25°C V'C =OV, RS=50n, 25°C to 125°C 25°C 125°C 25°C 125°C VO=VDD/2, V'C =VDD/2 VO=VDD/2, V'C =VDD/2 25°C Common-mode input voltage range (see Note 5) Full range VOH VOL High-level output voltage Low-level output voltage CMRR kSVR "(SEL) V,D = l00mV, RL = 1 Mn V,D = - 100 mV, 'OL=O Large-signal differential AVD voltage amplification RL= 1 Mn, See Note 6 Common-mode rejection ratio V'C = V'CRmin Supply-voltage rejection ratio (,WDD/&V,O) VDD = 5 V to 10 V, VO=l.4V Input current to bias select pin V'(SEL) = VDD VO=VDD/2, 'DD Supply current V'C = VDD/2, No load 10 TYP MAX 1.1 10 12 25°C -55°C 125°C 25°C -55°C 125°C 25°C -55°C 125°C 25°C -55°C 125°C 25°C _55°C 125°C to 4 0 to 3.5 3.2 3 3 50 25 25 65 60 60 70 60 60 0.1 1.4 0.6 9 -0.3 15 35 0 to 4.2 4.1 4.1 4.2 0 0 0 520 1000 200 94 to 9 0 to 8.5 8 7.8 7.8 95 85 97 97 98 25°C 65 10 17 17 30 125°C 7 12 0.1 1.8 0.7 10 -0.3 TEXAS ~ POST OFFICE BOX 655303' DALLAS, TEXAS 75265 15 35 pA nA pA nA V to 9.2 V 8.9 8.8 50 9 0 0 0 870 25 25 65 60 60 70 60 60 1775 380 97 97 91 97 97 98 50 50 50 25°C -55°C INSTRUMENlS fl V/oC 1.4 V 50 50 50 14 28 9 mV V/mV dB dB nA 95 tFull range is - 55°C to 125°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. 6. At VDD = 5 V, Vo = 0.25 V to 2 V; at VDD = 10 V, Vo = 1 V to 6 V. 2-542 UNIT 12 1.4 0 V,CR VOO=10V MIN mV Full range RL = 1 Mn .. I > I r--.. 14 -...... 4 CI I'---- VOO =16V ~ > :; Q. :; I'-.............. i; ........... 3 '- 0 ;; -t .c I VIO = 100 mV TA = 25°C .............. 2 i"--.. VOO=10V I'-......... .............. CI s: I J: 0 > o O~----~----~----~----~--~ o -2 -4 -6 -8 -10 o IOH - Hlgh·Level Output Current- mA -10 -20 -30 IOH - Hlgh·Level Output Current - mA Figure 70 Figure 71 HIGH·LEVEL OUTPUT VOLTAGE vs SUPPLY VOLTAGE HIGH·LEVEL OUTPUT VOLTAGE vs FREE·AIR TEMPERATURE 16 > I II> CI S "0 VOO -1.6 VIO =100 mV 14 - RL =1 Mn TA = 25°C 12 ~ ;; i; ....I 1:. / / 6 J: I / 4 J: 0 > / 2 o o 2 .. -1.7 ........... I CI V S "0 -1.8 > -1.9 :; So ~ / / 8 .J:!> > )/ > 10 :; 0 -40 -2 0 / ............... ~ ~ V 1:. I ~ VOO =5 V ""'-.. .......... ~ I'-.. VOO =10V .............. -2.1 J: I ........ "" -2.2 J: 0 > -2.3 -2.4 -75 , ~ .J:!> V IOH =-5mA Vlo =100 mV "- ~ "" VDO - Supply Voltage - V -50 -25 0 25 50 75 100 TA - Free·Air Temperature - °C Figure 72 Figure 73 4 6 8 10 12 14 16 125 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 2-547 TLC271, TLC271A, TLC271B linCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS (LOW-BIAS MODE)t LOW-LEVEL OUTPUT VOLTAGE vs COMMON-MODE INPUT VOLTAGE LOW-LEVEL OUTPUT VOLTAGE vs COMMON-MODE INPUT VOLTAGE 700 500 > E \ I & 600 \ 1\ !!! ~ [ 8 500 ~ . ~. .I VOO=5 V IOL =5mATA =25°C 1\ I'... 300 ~ 700 I QI E 600 "0 > 500 '; D.. 8 400 ~ . ~. .I I ! \~ ........ ~ 350 ~ 300 > 250 o 4 3 ~~ o r-:: :::::::: r-- / VIO =-1 V ~I'"~:'D~-'5V ~ r-... l..--" VIO = -100 mV ~ 2 6 4 8 VIC - Common-Mode Input Voltage - V Figure 74 Figure 75 LOW-LEVEL OUTPUT VOLTAGE LOW-LEVEL OUTPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE vs FREE-AIR TEMPERATURE I 900 I IOL =5mA > VIC = tvlD 121 TA =25OC E QI :!! ~ VOO=10V 200 700 " 0 -- r-- 1 400 ~ .....I 300 ~ I .....I .....I 200 0 >0 100 VOO = 5 V 600 ,So 500 V /V -...... / . ~ ...-V .. fo""" V V / V VOO=10V > 100 -2 -4 -6 -8 -10 o -75 VIO - Ollferentlallnput Voltage - V -50 -25 0 25 50 75 100 TA - Free-Air Temperature - °C Figure 77 Figure 76 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS 2-548 10 I I - VIC =0.5V '; ~VOO=5V ~~ I IOL =5mA 800 I- V =-1 V IO Dl I I 300 o o \ f'\ VIC - Common-Mode Input Voltage - V I [\.. 1\\ '; 400 VIO = -100 mV 2 ~ 450 :!! o 800 I ~ VIO = -1 V T I .....I >0 > E & "i'..." "~ :::----- 400 I I I I VOO=10V IOL=5mA TA =25°C - POST OFFICE BOX 655303· DALLAS. TEXAS 75265 125 TLC271, TLC271A, TLC271B linCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS (LOW-BIAS MODE)t LOW-LEVEL OUTPUT VOLTAGE I LOW-LEVEL OUTPUT VOLTAGE vs vs LOW-LEVEL OUTPUT CURRENT LOW-LEVEL OUTPUT CURRENT 3 I 0.9 r-- VIO =-1 V VIC =0.5 V 0.8 i--TA = 25°C > I OIl > VOO=4~ > .s0 " 0.5 ~OIl 0.4 ...I ;i: 0 ...I I ...I 0 > Cl VOO=5y .l! "0 0.7 0.6 VOO=3~ / ~ 0.3 0.2 l/ o :/ '# // VOO =16;! ~ g 2 o" 1.5 -.s-" / VOO = 1 7 ~ ~ ...I 4 3 5 6 7 IOL - Low·Level Output Current- rnA V LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 1800 1600 J---f---t--t--vL--b.-L--j---t---l > S RL =1 MQ l1400/--f---t---t----r-+r--j---j--=-+-c-::-I "as 1200 /--f---t----I-----r'-t---j---j-...,...-fo""'----cI 1800 ~ 1600 , i 1000 800 ~ 800 --e 600 ~ iii E ~ 400 ~ i5 I 0 200 10 > iii 0 30 Figure 79 I ~ i5 5 10 15 20 25 IOL - Low-Level Output Current - rnA Figure 78 ~ ~ V / ~ o o 8 > 2000,---,-.....,.---r'--'--""""-"'--""""""'" "0 h I >00.5 2 / / ~ 0.1 o i 2.5 I OIl Cl "S I VID = -1 V VIC =0.5 V TA =25°C 16 600 VOO=10V '" '--.... "-I'--... VOO =5V ........ 400 ........ I'---- ............ ........ ------ 200 0 -75 ~ I'---.. r-- -50 -25 0 25 50 75 100 TA - Free-Air Temperature - °C Figure 80 125 Figure 81 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-549 TlC271, TLC271A,TLC271B UnCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS (LOW-BIAS MODE)t INPUT BIAS CURRENT AND INPUT OFFSET CURRENT MAXIMUM INPUT VOLTAGE vs vs. FREE-AIR TEMPERATURE SUPPLY VOLTAGE 16 10000 !=VOO =10V I-VIC =5 V 1000 sSeeNole4 12 > lIB I ,/ 100 I ,/ :::I & ~ ./ I _Q 10 .5 'tI c , 0.1 25 , , , 8 j V /' 6 I , >- 65 45 85 105 TA - Free-Air Temperature - °C o 125 10 8 12 SUPPLY CURRENT va SUPPLY VOLTAGE FREE-AIR TEMPERATURE 14 / / / ,/ 25 ~V 20 h- Q. Q. 15 .IZ......-:::: I j~ 10 ~ 5 o I 2 /' V ~ V- --:::::: ...... I--- 4 V / /-40°C '/' V --o:c ---/ 25 V ~ ~ 6 8 10 12 VDO - Supply Voltage - V 70aC ..;;.. '! .! ~ 20 a'" 15 '" !r '0 10 .F 16 '\. '~ a. 1 Vo =V oo /2 No load '\ II) 250C 14 "r\. '\ ~OO=10V ........... "-i'-.. ~ VOO =5 V 5 o -75 -50 -25 0 25 - r-- - - 50 f- 75 100 125 TA - Free-Air Temperature - OC Figure 84 Figure 85 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. NOTE 4: The typical values of input bias current and input offset current below 5 pA were determined mathematically. TEXAS ~ INSfRUMENTS 2-550 16 30 TA =-55;- 30 o 6 vs (.) :::I II) / VDO - Supply Vollage - V SUPPLY CURRENT :::I ~ 4 Figure 83 35 ~ 2 / / / Figure 82 VO=VOO/2 40 I- No load C o / V V / V / 2 , V / 4 45 '!I 10 ~ 110 (.) .. ...s / ./ '1 ~ T~ = 2doc 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TlC271, TlC271A,TlC271B linCMOSTM PROGRAMMABLE lOW-POWER OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS (LOW-BIAS MODE)t SLEW RATE 0.07 I I FREE-AIR TEMPERATURE I V V" 0.04 .!! os a: 1 Ul 0.03 a: Ul /' / I ./ 1 :> I .!! 0.04 I--",!""",,-+--t---+--=""""po....::~ V 1 Ul I a: Ul 0.02 0.02 0.01 t----+_-+-_+--+VOO = 5 V VIPP 2.5 V 0.01 0.00 0.07 r----r---,---r---r--,...--.,.---,---. RL 1 MQ C L = 20pF 0.06 t---+~-+Ay=l See Figure 98 0.05 = ./ RL =1 MQ CL = 20pF TA = 25°C See Figure 98 0.05 t vs SUPPLY VOLTAGE Ay=l VIPP = 1 V 0.06 .. SLEW RATE vs = o 2 4 8 6 10 12 14 16 0.00 '-----1-.......--'---'---'-----1-.......-75 -50 -25 0 25 50 75 100 ..... 125 VDO - Supply Voltage - V TA - Free-Air Temperature - DC Figure 86 Figure 87 BIAS SELECT CURRENT MAXIMUM PEAK·TO·PEAK OUTPUT VOLTAGE vs vs SUPPLY VOLTAGE FREQUENCY 150 r- TA =25OC VI(SEL) = V DD ./' 120 '" 180° 1M 30° ~o '", Phase Shilt 60° 1 0.1 10 '" ~ Figure 92 Figure 93 TEXAS ~ POST OFFICE BOX 655303' DALLAS. TEXAS 75265 GI 900 II. I - Frequency - Hz INSTRUMENTS ~ = 100 1k 10k f - Frequency - Hz 1 :E .c ~~ ~ I 150° 0° lOOk tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges 01 the various devices. 2-552 16 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT FREQUENCY "- 12 Figure 91 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT 1\ 10 Voo - Supply Voltage- V Figure 90 "- V / TA - Free-Air Temperature - °C ~ /' / 120° 150° 180° 1M TLC271, TLC271A, TLC271B linCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS (LOW-BIAS MODE)t PHASE MARGIN 42 , I vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 40 I g' 38 I c .. 36 II> as .c Q. / 34 I ....E 32 30 / o / V / / / 35 g' 33 '0 ~ c ~ III ::& 31 as :0 II> Q. 29 I ....E 27 25 o 20 _, VOO = 5V VI = 10 mV C L =20pF See Figure 100 "'" "-"- = 28 f I "'- r\. '\ E 6 8 10 12 14 24 20 -75 16 -50 -25 0 25 50 75 100 VOO - Supply Voltage - V TA - Free-Air Temperature - "C Figure 94 Figure 95 PHASE MARGIN EQUIVALENT INPUT NOISE VOLTAGE vs vs CAPACITIVE LOAD FREQUENCY I VOO=5V VI =10mV TA =25°C See Figure 100 ~ 200 I - f '" '" "'" 125 III ~:> 175 1\ c \ I VOO=5V Rs= 100 0 TA = 25°C See Figure 99 150 ;\ > 125 II> ..!! o Z 100 i""- .. as .c 32 I c .... ~ I 36 .~ I "- ~g' '0 37 , V V 4 2 ""'- ./ = TA 2S"C See Figure 100 '0 as ::& I 'i"-.. VI = 10mV CL =20pF 40 ~ PHASE MARGIN vs "'-r--. :; Q. .5 75 C '" "'" 40 60 80 C L - Capacitive Load - pF 100 -!> 50 I 25 ~ c > o 1 Figure 96 10 100 f - Frequency - Hz 1000 Figure 97 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INsrRuMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-553 TLC271, TLC271A, TLC271B LinCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS PARAMETER MEASUREMENT INFORMATION single-supply versus split-supply test circuits Because the TLC271 is optimized for single-supply operation, circuit configurations used for the various tests often present some inconvenience since the input signal, in many cases, must be offset from ground. This inconvenience can be avoided by testing the device with split supplies and the output../oad tied to the negative rail. A comparison of single-supply versus split-supply test circuits is shown below. The use of either circuit will give the same result. Voo Voo(a) Single-Supply (b) Split-Supply Figure 98. Unity-Gain Amplifier 10kn 100 n 1/2 10kn Voo Voo loon loon Voo(a) Single-Supply (b) Split·Supply Figure 99. Noise Test Circuit 10 kn VI loon 10kn Voo VI Voo+ loon Vo Vo 1/2 Voo CL CL -= ':" VOD_ (a) Single·Supply (b) Split-Supply Figure 100. Gain-of-100 Inverting Amplifier TEXAS ~ INSTRUMENTS 2-554 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC271, TLC271A, TLC271B LinCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS PARAMETER MEASUREMENT INFORMATION Input bias current Because of the high input impedance of the TLC271 op amp, attempts to measure the input bias current can result in erroneous readings. The bias current at normal room ambient temperature is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions are offered to avoid erroneous measurements: 1. Isolate the device from other potential leakage sources. Use a grounded shield around and between the device inputs (see Figure 101). Leakages that would otherwise flow to the inputs will be shunted away. 2. Compensate for the leakage of the test socket by actually performing an input bias current test (using a picoammeter) with no device in the test socket. The actual input bias current can then be calculated by subtracting the "open-socket" leakage readings from the readings obtained with a device in the test socket. One word of caution ... many automatic testers as well as some bench-top op amp testers use the servo-loop technique with a resistor in series with the device input to measure the input bias current (the voltage drop across the series resistor is measured and the bias current is calculated). This method requires that a device be inserted into the test socket to obtain a correct reading; therefore, an "opensocket" reading is not feasible using this method. S 5 CCCC ,o~V.VIC Figure 101. Isolation Metal Around Device Inputs (JG arid P Dual·ln·Line Package) low-level output voltage To obtain low-supply-voltage operation, some compromise is necessary in the input stage. This compromise results in the device low-level output being dependent on both the common-mode input voltage level as well as the differential input voltage level. When attempting to correlate low-level output readings with those quoted in the electrical specifications, these two conditions should be observed. If conditions other than these are to be used, please refer to the Typical Characteristics section of this data sheet. Input offset voltage temperature coefficient Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This parameter is actually a calculation using input offset voltage measurements obtained at two different temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device and the test socket. This moisture will result in leakage and contact resistance which can cause erroneous input offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the moisture also covers the isolation metal itself, thereby rendering it useless. It is suggested that these measurements be performed at temperatures above freezing to minimize error. full power response Full power response, the frequency above which the op amp slew rate limits the output voltage swing, is often specified two ways ... full-linear response and full-peak response. The full-linear response is generally TEXAS ~. INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-555 TLC271, TLC271A, TLC271B LinCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS PARAMETER MEASUREMENT INFORMATION measured by monitoring the distortion level of the output while increasing the frequency of a sinusoidal input signal until the maximum frequency is found above which the output contains significant distortion. The fullpeak response is defined as the maximum output frequency, without regard to distortion, above which full peak-to-peak output swing cannot be maintained. Because there is no industry-wide accepted value for "significant" distortion, the full-peak response is specified in this data sheet and is measured using the circuit of Figure 98. The initial setup involves the use of a sinusoidal input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same amplitude. The frequency is then increased until the maximum peak-to-peak output can no longer be maintained (Figure 102). A square wave is used to allow a more accurate determination of the point at which the maximum peak-to-peak output is reached. (a) f =100 Hz 11 A (b) BOM > f > 100 Hz (e) f A =BOM (d) f> BOM Figure 102. Full-Power-Response Output Signal test time Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume, shorttest-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET devices, and require longer test times than their bipolar and BiFET counterparts. The problem becomes more pronounced with reduced supply levels and lower temperatures. TYPICAL APPLICATION DATA single-supply operation While the TLC271 will perform wel,1 using dual power supplies (also called balanced or split supplies), the design is optimized for single-supply operation. This includes an input common mode voltage Voo range that encompasses ground as well as an output voltage range that pulls down to ground. The supply voltage range extends down to 3 V R4 (C- suffix types), thus allowing operation with R1 supply levels commonly available for TTL and HCMOS; however, for maximum dynamic range, t§!b. R2 16-V single-supply operation is recommended. 1 Vo Many single-supply applications require that a voltage be applied to one input to establish a reference level that is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see Figure 103). The low input bias current consumption of the TLC271 permits the use of very large reSistive values to implement the voltage divider, thus minimizing power consumption. TEXAS 'diP' - 1 E.o1 C R3 :=- -::~ R3 R1 + R3 Vo = (VREF - VI) R4 + VREF R2 Figure 103. Inverting Amplifier With Voltage Reference ~ INSTRUMENTS 2-556 -= VREF= Voo J.lF POST OFFICE BOX 655303' DALLAS. TEXAS 75265 TLC271, TLC271A, TLC271B LinCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA The TLC271 works well in conjunction with digital logic; however, when powering both linear devices and digital logic from the same power supply, the following precautions are recommended: 1. Power the linear devices from separate bypassed supply lines (see Figure 104); otherwise, the linear device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital logic. 2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive decoupling is often adequate; however, RC decoupling may be necessary in high-frequency applications. -t 1+11+11+1 > Power Supply (a) Common Supply Rails Power Supply (b) Separate Bypassed Supply Rails (preferred) Figure 104. Common Versus Separate Supply Rails input offset voltage nulling The TLC271 offers external input offset null control. Nulling of the input offset voltage may be achieved by adjusting a 25-kil potentiometer connected between the offset null terminals with the wiper connected as shown in Figure 105. The amount of nulling range varies with the bias selection. In the high-bias mode, the nulling range will allow the maximum offset voltage specified to be trimmed to zero. In low-bias and mediumbias modes, total nulling may not be possible. VDD GND (b) Split-Supply (a) Single·Supply Figure 105. Input Offset Voltage Null Circuit . TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-557 TLC271, TLC271A, TLC271B LinCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA bias selection Bias selection is achieved by connecting the bias select pin to one of the three voltage levels (see Figure 106). For medium-bias applications, it is recommended that the bias select pin be connected to the mid-point between the supply rails. This is a simple procedure in split-supply applications, since this point is ground. In single-supply applications, the medium-bias mode will necessitate using a voltage divider as indicated. The use of large-value resistors in the voltage divider will reduce the current drain of the divider from the supply line. However,large-value resistors used in conjunction with a large-value capacitor will require significant time to charge up to the supply midpoint after the supply is switched on. A voltage other than the mid-point may be used if it is within the voltages specified in the following table. VDD 1 MQ Low To the Bias Select Pin BIAS MODE BIAS SELECT VOLTAGE (Single Supply) LOW MEDIUM HIGH VDD 1 VtoVDD-1 V GND Medium High 1 MQ Figure 106. Bias Selection for Single-Supply Applications input characteristics The TLC271 is specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction. Exceeding this specified range is a common problem, especially in singlesupply operation. Note that the lower range limit includes the negative rail, whi.le the upper range limit is specified at VDD - 1 V at T A = 25°C and at VDD - 1.5 Vat all other temperatures. The use of the polysilicon-gate process and the careful input circuit design gives the TLC271 very good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as apolysilicon gate) alleviates the polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude. The offset voltage drift with time has been calculated to be typically 0.1 J.l.V/month, including the first month of operation. Because of the .extremely high input impedance and resulting low bias current requirements, the TLC271 is well suited for low-level signal processing; however, leakage currents on printed circuit boards and sockets can easily exceed bias current requirements and cause a degradation in device performance. It is good practice to include guard rings around inputs (similar to those of Figure 101 in the Parameter Measurment Information section). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input (see Figure 107). The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation. noise performance The noise specifications in op amp circuits are greatly dependent on the current in the first-stage differential amplifier. The low input bias current requirements of the TLC271 results in a very low noise current, which is insignificant in most applications. This feature makes the devices especially favorable over bipolar devices when using values of circuit impedance greater than 50 kO, since bipolar devices exhibit greater noise currents. . TEXAS ~ INSTRUMENTS 2-558 POST OFFICE BOX 655303' OALLAS. TEXAS 75265 TLC271, TLC271A, TLC271B linCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA VI---tH;Jy (a) Nonlnverting Amplifier (b) Inverting Amplifier (e) Unity Gain Amplifier Figure 107. Guard Ring Schemes feedback Op amp circuits nearly always employ feedback, and since feedback is the first prerequisite for oscillation, a little caution is appropriate. Most oscillation problems result from driving capacitive loads and ignoring stray input capacitance. A smallvalue capacitor connected in parallel with the feedback resistor is an effective remedy (see Figure 108). The value of this capacitor is optimized empirically. electrostatic discharge protection Figure 108. Compensation for Input The TLC271 incorporates an internal electrostatic Capacitance discharge (ESD) protection circuit that will prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2. Care should be exercised, however, when handling these devices as exposure to ESD may result in the degradation of the device parametric performance. The protection circuit also causes the input bias currents to be temperature dependent and have the characteristics of a reverse-biased diode. latchup Because CMOS devices are susceptible to latchup due to their inherent parasitic thyristors, the TLC271 inputs and output were designed to withstand -100-mA surge currents without sustaining latchup; however, techniques should be used to reduce the chance of latchup whenever possible. Internal protection diodes should not by design be forward biased. Applied input and output voltage should not exceed the supply voltage by more than 300 mY. Care should be exercised when using capacitive coupling on pulse generators. Supply transients should be shunted by the use of decoupling capacitors (0.1 ~F typical) located across the supply rails as close to the device as possible. The current path established if latchup occurs is usually between the positive supply rail and ground and can be triggered by surges on the supply lines and / or voltages on either the output or inputs that exceed the supply voltage. Once latchup occurs, the current flow is limited only by the impedance of the power supply and the forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance of latchup occuring increases with increasing temperature and supply voltages. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-559 I I TlC271, TlC271A, TlC271B linCMOSTM PROGRAMMABLE lOW-POWER OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA output characteristics The output stage of the TLC271 is designed to sink and source relatively high amounts of current (see Typical Characteristics). If the output is subjected to a short-circuit condition, this high current capability can cause device damage under certain conditions. Output current capability increases with supply voltage. 2.5 V CL VIPP= 1 V All operating characteristics of the TLC271 were measured using a 20-pF load. The devices will drive higher capacitive loads; however, as output load capacitance increases, the resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figures 110, 111, and 112). In many cases, adding some compensation in the form of a series resistor in the feedback loop will alleviate the problem . =. . .... ~ .. ..... ~ .... " ... ~ ......... :"'" .... ~ .... " ... ~ ......... :... . L.. ...... ( .............. ..L ....... -!-....... ,.. .. " :·::c::::r::::::r:::::::::::::::x:::::. ·(· ....,. . . .. -2.5V Figure 109. Test Circuit for Output Characteristics .. ~ .... ;... , ....L........ ~ .................. :......... ~ ... . ~ ····:·········i·········i·········r········~·········1 .....~ (a) CL =20 pF, RL =No load .................... .. .. ,.: ........: L........ :.................. ~ ......... :: ........:... . : .,.. .... ..,' j.. ,...... :.,.. ,.... .,., .... , ,....... 'l' .. . ... ·1 .. .. ... ·l ......... ~ .. ,...... ......... j........ ·l· ... .. .. l· .. . . 1·· .. :· ...... ·-:-- .. ·· .. ·( .. ·.... ·.. ·.. ·; .... ·.... ;...... ·.. :.. .. , ... :... , .... ;......... .. , .. , ... " ....... ... , ..... :... , ... ,: ... . ~ = = TA 25°C f 1 kHz ~ : ::::C~:::::::::::::::::::::::::::r::::::r::~ (a) CL = 130 pF, RL = No load (a) CL = 150 pF, RL = No load Figure 110. Effect of Capacitive Loads in High-Bias Mode ......!.......... :.......... '.......... ;......... '......... ,... . ~ . . .... :........ :......... :.................. :......... :... . ....~ ... , .... ~, ........ ~ ... ".... .. ....... l......... ~ .,.. ::::i:::::::f:::::J:::::::::::::::::I::::::::f:::::{:: ... '1' ....... ,:"......... :"..... ,.:"...... '1"~ " ....... ~ ... ,.,... ~ ".. : : (a) CL = 20 pF, RL = No load (a) CL = 170 pF, RL = No load (a) CL =190 pF, RL =No load Figure 111. Effect of Capacitive Loads in Medium-Bias Mode TEXAS ~ INSTRUMENTS 2-560 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TlC271, TlC271A, TlC271B linCMOSTM PROGRAMMABLE lOW-POWER OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA (a) CL = 20 pF, RL = No load (a) CL =260 pF, RL = No load (a) CL =310 pF, RL =No load Figure 112. Effect of Capacitive Loads in Low-Bias Mode Although the TLC271 possesses excellent high-level output voltage and current capability, methods are available for boosting this capability, if needed. The simplest method involves the use of a pullup resistor (Rp) connected from the output to the positive supply rail (see Figure 113). There are two disadvantages to the use of this circuit. First, the NMOS pulldown transistor, N4 (see equivalent schematic) must sink a comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with an on-resistance between approximately 60 nand 180 n, depending on how hard the op amp input is driven. With very low values of Rp, a voltage offset from 0 V at the output will occur. Secondly, pullup resistor Rp acts as a drain load to N4 and the gain of the op amp is reduced at output voltage levels where N5 is not supplying the output current. voo Ip Rp ~ Vo Rp - voo-vo ---=-=---=- - IF + IL + Ip = Ip Pull-up curent required by the op amp (typically 500 ).tA) R2 R1 Figure 113. Resistive Pullup to Increase VOH TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-561 TlC271, TlC271A, TlC271B linCMOSTM PROGRAMMABLE lOW-POWER OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA (HIGH-BIAS MODE) 10kn 0.016 f1F 0.016 11F 5V 10kn 5V :m>-........- '-----------t--------- Low Pass High Pass 5k.Q ...-'INr......------~-_'VIIIr_------~-------- Band Pass R =5 k.Q(3/d-1), (see Note A) NOTES: A. d = damping factor. 1/Q B. Normalized to 10 kn and fC= 1 kHz Figure 114. State Variable Filter Vo (see Note A) 9V 10kn ..ru 9V C=0.1 I1F 9V Vo (see Note B) /'V 10kn F _ 1_.[R1] 0- 4C(R2) R3 R1,100 kn R3, 47 k.Q NOTES: A. Vopp = 8 V B. Vopp =4 V Figure 115. Single-Supply Function Generator TEXAS ~ INSTRUMENTS 2-562 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC271, TLC271A, TLC271B LinCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA (HIGH-BIAS MODE) +5V 10 kQ 100 kQ +5V +5V -5V 10 kQ 95kQ R1,10 kQ (see Note A) -5V NOTE A: CMRR adjustment (must be noninductive). Figure 116. Low-Power Instrumentation Anplifier R 10MQ R 10MQ Vo Bias Select VI 2C 540 pF f NOTCH =_1_ 21tRC R/2 5MQ C 270 pF C 270 pF Figure 117. Single-Supply Twin-T Notch Filter TEXAS ~ INSfRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-563 TLC271, TLC271A, TLC271B linCMOSTM PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS TYPICAL APpLICATION DATA (HIGH-BIAS MODE) VI (see_t----------.._-----e---_t----------. Note A) 100 kn 1.2kn 0.47 jlF 4.7kn TL431 TIP31 20kO 150 0.1 jlF TI5193 250I1F. 25V Vo (see Note B) 47kO 22kO 1100 0.01 jlF NOTES: A. VI = 3.5 to 15 V B. Vo=2.0V.Oto1A Figure 118. Logic-Array Power Supply 12 V H.P. 12V 5082·2835 0.511F Mylar Figure 119. Positive-Peak Detector TEXAS ~ INSTRUMENTS 2-564 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC272, TLC272A, TLC272B, TLC277 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS D3138, OCTOBER 1987-REVISED OCTOBER 1990 • D, JG, OR P PACKAGE Trimmed Offset Voltage: TLC277 ... 500 p,V Max at 25 DC, VDD = 5 V (TOP VIEW) • Input Offset Voltage Drift ... Typically 0.1 p,V/Month, Including the First 30 Days • Wide Range of Supply Voltages Over Specified Temperature Range: oDC to 70 DC ... 3 V to 16 V _40DC to 85 DC ... 4 V to 16 V - 55 DC to 125 DC ... 4 V to 16 V 1 a U T [ ] 8 VDD 1 IN 2 7 2 OUT 6 4 5 2 IN2 IN + (TOP VIEW) f- => 0 uO u ou z z >z Single-Supply Operation • Common-Mode Input Voltage Range Extends Below the Negative Rail IC-Suffix, I-Suffix types) • 3 GND FK PACKAGE • • 1 IN + 3 Low Noise ... Typically 25 nV/y'Hz at f = 1 kHz 1 2019 2 NC 4 18 IN- S 17 NC 6 16 8 14 NC 15 IN+ NC 9 1011 12 13 Output Voltage Range Includes Negative Rail uo Z U Z Z (:J • High Input Impedance ... 10 12 fl Typical • ESD-Protection Circuitry • Small-Outline Package Option Also Available in Tape and Reel • Designed-In Latch-Up Immunity + U Z ~ N NC - No internal connection AVAILABLE OPTIONS Vlomax TA at 25°C O°C to 70°C -40°C to 85°C - 55°C PACKAGE SMALL CHIP CERAMIC PLASTIC OUTLINE CARRIER DIP DIP (D) (P) (FK) (JG) TLC277CD -- -- TLC277CP 2 mV TLC272BCD -- -- TLC272BCP 5 mV TLC272ACD -- -- TLC272ACP TLC272CD -- -- TLC272CP TLC277ID -- -- TLC277IP 2 mV TLC272BID -- -- TLC272BIP 5 mV TLC272AID -- -- TLC272AIP TLC2721D -- -- TLC272IP 500 ~V 10 mV 500 ~V 10 mV ~V TLC277MD TLC277MFK TLC277MJG TLC277MP 10mV TLC272MD TLC272MFK TLC272MJG TLC272MP 500 DISTRIBUTION OF TLC277 INPUT OFFSET VOLTAGE + 1- 473 Units tested from 2 wafer lots -T-t ' ,.,' T 1S-r---n . . -IVDD ~ 5 V ~;o :: ;¥#:'-'I-: & f!c i 10 -r 5 to 125°C o -800 The D package is available in tape and reel. Add R suffix to the device type, (e.g., TLC277CDR). -400 o 800 400 V 10 -Input Offset Voltage - ~V LinCMOS is a trademark of Texas Instruments Incorporated PRODUCTION DATA documents contain information current as of publication date, Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of aU parameters. TEXAS ~ INSTRUMENTS POST OF-FtCE BOX 655303 • DALLAS, TEXAS 75265 Copyright © 1990, Texas Instruments Incorporated 2-565 TLC272, TLC272A, TLC272B, TLC277 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS description The TLC272 and TLC277 dual operational amplifiers combine a wide range of input offset voltage grades with low offset voltage drift, high input impedance, low noise, and speeds approaching that of generalpurpose BiFET devices. ;These devices use Texas Instruments silicon-gate LinCMQS'" technology, which provides offset voltage stability far exceeding the stability available with co~ventional metal-gate processes. The extremely high input impedance, low bias currents, and high slew rates make these cost-effective devices ideal for applications which have previo'usly been reserved for BiFET and NFET products. Four offset voltage grades are available (C-suffix and I-suffix types), ranging from the low-cost TLC272 (10 mV) to the high-precision TLC277 (500 p,V). These advantages, in combination with good common-mode rejection and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs. In general, many features associated with bipolar technology are available on LinCMOS" operational amplifiers, without the power penalties of bipolar technology. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are easily designed with the TLC272 and TLC277. The devices also exhibit low voltage single-supply operation, making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input voltage range includes the negative rail. ' A wide range of packaging options is available, including small-outline and chip carrier versions for highdensity system applications. ' The device inputs and outputs are designed to withstand - 100-mA surge currents without sustaining latch-up. The TLC272 and TLC277 incorporate internal ESD-protection circuits that prevent functional failures at voltages up to 2000 Vas tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in the degradation of the device parametric performance. C-suffix devices are characterized for operation from ooC to 70°C. I-suffix devices are characterized for operation from - 40°C to 85 °C. M-suffix devices are characterized for operation over the full military temperature range of - 55°C to 125°C. ~ TEXAS INSTRUMENTS 2-566 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC272, TLC272A, TLC272B, TLC277 linCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS equivalent schematic (each amplifier) VDD R1 I N - i ........._ _ _-+I P5 IN + P6 --,--+-----t-----' __~-~----+_OUT GND ~ TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-567 TLC272, TLC272A, TLC2728, TLC277 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18 V Differential input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± VDD Input voltage range, VI (any input) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -0.3 V to VDD Input current, II .... , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 5 mA Output current, 10 (each output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . : . . . . . . . . .. ± 30 mA Total current into VDD terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 mA Total current out of ground terminal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 45 mA Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . .. Unlimited Continuous total dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. See Dissipation Rating Table Operating free-air temperature, T A: C-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O°C to 70°C I-suffix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 40°C to 85 °C M-suffix. . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 55°C to 125°C Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65°C to 150°C Case temperature for 60 seconds: FK package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 260°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D and P package ....... 260°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package ........... 300°C NOTES: 1. All voltage 2. Differential 3. The output dissipation values, except differential voltages, are with respect to network ground. voltages are at the noninverting input with respect to the inverting input. may be shorted to either supply. Temperature andlor supply voltages must be limited to ensure that the maximum rating is not exceeded (see application section). DISSIPATION RATING TABLE PACKAGE TA:S 25°C DERATING FACTOR POWER RATING ABOVE T A _25°C D 725 mW FK 1375 mW JG 1050 mW P 1000 mW 5.8 mW/oC 11 mW/oC 8.4 mW/oC 8.0 mW/oC TA = 70°C POWER RATING TA = 85°C POWER RATING TA = 125°C POWER RATING 464mW 377 mW 880 mW 715 mW 275 mW 672 mW 546 mW 210 mW 640mW 520 mW recommended operating conditions C-SUFFIX MIN Supply voltage, VDD Common-mode input voltage, VIC Operating free-air temperature, T A II VDD = 5 V VDD = 10 V NOM I-SUFFIX MAX MIN NOM MIN NOM MAX 3 16 4 16 4 16 -0.2 3.5 -0.2 3.5 0 3.5 -0.2 8.5 -0.2 8.5 0 8.5 70 -40 85 -55 125 0 TEXAS'. INSTRUMENTS 2-568 M-SUFFIX MAX POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 UNIT V V °C TLC272M, TLC277M LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, PARAMETER TLC272M VIO Voo TEST CONDITIONS Input offset voltage TLC277M TAt Vo ~ 1.4 V, VIC ~ 0, RS ~ 50!l, RL 1.4 V, VIC ~ 0, 50!l, RL Vo ~ RS ~ ~ ~ 10 k!l 10 k!l Average temperature coefficient "'VI 0 5 V (unless otherwise noted) MIN 25°C Input offset current (see Note 4) Vo liB Input bias current (see Note 4) Vo 2.5 V, ~ 2.5 V, ~ ~ VIC ~ VIC 2.5 V 2.5 V 25°C 200 Full range 25°C 125°C 1.4 25°C 0.6 125°C 9 25°C voltage range (see Note 5) UNIT mV /"V /"V/oC 2.1 0.1 Common-mode input 500 3750 0 VICR 10 12 125°C 110 MAX 1.1 Full range 25°C to of input offset voltage TYP pA 15 nA pA 35 nA -0.3 to to 4 4.2 V 0 Full range V to 3.5 VOH VOL High-level output voltage Low-level output voltage Large-signal differential AVO voltage amplification CMRR Common-mode rejection ratio VID VID Vo 100 mV, ~ -100 mV, ~ ~ 0.25 V to 2 V, 100 (dVOO/dVIO) ~ 10 k!l 10L ~ 0 RL ~ 10 k!l VIC ~ VICR min Supply-voltage rejection ratio kSVR RL VOO ~ ~ Supply current Vo (two amplifiers) No load 5Vt010V, 2.5 V, Vo VIC ~ ~ 1.4 V 2.5 V, 25°C 3.2 3.8 -55°C 3 3.8 125°C 3 3.8 V 25°C 0 50 - 55°C 0 50 125°C 0 50 25°C 5 23 - 55°C 3.5 35 125°C 3.5 16 80 25°C 65 - 55°C 60 81 125°C 60 84 25°C 65 95 - 55°C 60 90 125°C 60 97 mV V/mV dB dB 25°C 1.4 - 55°C 2 3.2 5 125°C 1 2.2 mA '1 Full range is - 55°C to 125°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. TEXAS . . , INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-569 TLC272M, TLC277M LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, PARAMETER TEST CONDITIONS TlC272M Via Voo Input offset voltage TlC277M Va = 1.4 V, VIC = 0, RS = 50 D, Rl = 10 kD Va = 1.4V, VIC = 0, RS = 50 D, Rl = 10 kD Average temperature coefficient "via 110 liB . Input bias current (see Note 41 TAt MIN 25°C VIC = 5 V Va = 5 V, VIC = 5 V 10 250 800 Full range 4300 25°C 0.1 125°C 1.8 25°C 0.7 125°C 10 25°C Common-mode input voltage range (see Note 51 UNIT mV p.V p.V/oC 2.2 0 VICR MAX 1.1 12 25°C 125°C Va = 5 V, TYP Full range 25°C to of input offset voltage Input offset current (see Note 41 10 V (unless otherwise noted) pA 15 nA pA 35 nA -0.3 to to 9 9.2 V 0 Full range to V 8.5 VOH VOL High-level output voltage Low-level output voltage Large-signal differential AVO voltage amplification CMRR Common-mode rejection ratio Supply-voltage rejection ratio kSVR 100 (C.VOO/t:.VIOI VID = 100 mY, V/D = -100 mY, Va = 1 V to 6 V, RL = 10 kD 10l = 0 RL = 10 kD VIC = VICR min VOO=5Vt010V, Supply current Va = 5 V, (two amplifiersl No load VO=1.4V VIC = 5 V, 25°C 8 8.5 -55°C 7.8 8.5 125°C 7.8 8.4 V 25°C 0 50 -55°C 0 50 125°C 0 50 25°C 10 -55°C 7 50 125°C 7 27 36 25°C 65 85 -55°C 60 87 125°C 60 86 25°C 65 95 -55°C 60 90 125°C 60 97 V/mV dB dB 25°C 1.9 -55°C 3 4 6 125°C 1.3 2.8 t Full range is - 55°C to 125°C. NOTES: 4. The typical val lies of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. ~ 2-570 TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 mV mA TLC2721, TLC272AI, TLC272BI, TLC2771 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature. PARAMETER TEST CONDITIONS TLC2721 TLC272AI VIO Voo Input offset voltage TLC272BI TLC2771 Vo = 1.4 V, VIC = 0, RS = 50!l, RL = 10 k!l VO=1.4V, VIC = 0, RS = 50!l, RL = 10 k!l Vo = 1.4 V, VIC = 0, RS = 50!l, RL = 10 k!l Vo = 1.4 V, VIC = 0, RS = 50!l, RL = 10 k!l Average temperature coefficient 5 V (unless otherwise noted) TAt MIN 25°C of input offset voltage 110 Input offset current (see Note 4) Vo = 2.5 V, VIC = 2.5 V liB Input bias current (see Note 4) Vo = 2.5 V, VIC = 2.5 V 10 13 25°C 0.9 5 230 2000 Full range Full range 3500 25°C 200 Full range mV p.V 2000 25°C 0.1 85°C 24 25°C 0.6 85°C 200 -0.2 voltage range (see Note 5) 500 p.V/oC 1.8 85°C Common-mode input UNIT 7 25°C 25°C VICR MAX 1.1 Full range 25°C to "'VIO TYP 1000 2000 pA pA -0.3 to to 4 4.2 V -0.2 Full range to V 3.5 VOH VOL High-level output voltage Low-level output voltage Large-signal differential AVO voltage amplification CMRR Common-mode rejection ratio Supply-voltage rejection ratio kSVR IDO (Ll.VOO/Ll.VIO) VID = 100 mV, VID = -100 mV, Vo = 0.25 V to 2 V, RL = 10 k!l 10L = 0 RL = 10 k!l VIC = VICR min VOO = 5 V to 10 V, Supply current Va = 2.5 V, (two amplifiers) No load VO=1.4V VIC = 2.5 V, 25°C 3.2 3.8 -40°C 3 3.8 85°C 3 3.8 V 25°C 0 -40°C 0 50 85°C 0 50 25°C 5 23 -40°C 3.5 32 85°C 3.5 19 25°C 65 80 -40°C 60 81 85°C 60 86 25°C 65 95 -40°C 60 92 85°C 60 96 50 mV V/mV dB dB 25°C 1.4 3.2 -40°C 1.9 4.4 85°C 1.1 2.4 mA t Full range is - 40°C to 85 °C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. TEXAS -1/1 INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-571 TLC2721, TLC272AI, TLC272BI, TLC2771 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, PARAMETER TLC2721 TLC272AI Via Voo TEST CONOITIONS Input offset voltage TLC272BI TLC2771 Va = 1.4 V, VIC = 0, Rs = 50 fl, RL = 10 kfl Va = 1.4 V, VIC = 0, RS = 50 fl, RL = 10 kfl Vo = 1.4 V, VIC = 0, RS = 50 fl, RL = 10 kfl VO=l.4V, VIC = 0, RS = 50 fl, RL = 10 kfl Average temperature coefficient "'via 10 V (unless otherwise noted) TAt MIN 25°C Input offset current (see Note 4) Va = 5 V, VIC = 5 V liB Input bias current (see Note 4) Va = 5 V, VIC = 5 V 0.9 5 290 2000 Full range Full range 250 Full range 800 "V 2900 2 25°C 0.1 85°C 26 25°C 0.7 85°C 220 -0.2 voltage range (see Note 5) mV 3500 25°C Common-mode input UNIT 7 25°C 25°C VICR 10 13 25°C 85°C 110 MAX 1.1 Full range 25°C to of input offset voltage TYP "V/oC 1000 2000 pA pA -0.3 to to 9 9.2 V -0.2 Full range to V 8.5 VOH VOL High-level output voltage Low-level output voltage Large-signal differential AVO voltage amplification CMRR Common-mode rejection ratio Supply-voltage rejection ratio kSVR 100 (Ll.Voo/Ll.VIO) VIO = 100 mY, VIO = -100 mY, Va = 1 V to 6 V, RL = 10 kfl 10L = 0 RL = 10 kfl VIC = VICR min VOO = 5Vto 10V, Supply current Vo = 5 V, (two amplifiers) No load Va = 1.4 V VIC = 5 V, 25°C 8 8.5 -40°C 7.8 8.5 85°C 7.8 8.5 V 25°C 0 50 -40°C 0 50 85°C 0 50 25°C 10 36 -40°C 7 46 85°C 7 31 25°C 65 85 -40°C 60 87 85°C 60 88 25°C 65 95 -40°C 60 92 85°C 60 96 V/mV dB dB 25°C 1.9 -40°C 2.8 4 5 85°C 1.5 3.2 t Full range is - 40°C to 85 °c. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. ~ TEXAS INSTRUMENTS 2-572 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 mV mA TLC272C. TLC272AC. TLC272BC. TLC277C LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, PARAMETER TEST CONDITIONS TLC272C TLC272AC Via Voo Input offset voltage TLC272BC TLC277C Va = 1.4 V, VIC = 0, RS = 50 n, RL = 10 kn Va = 1.4 V, VIC = 0, RS = 50 n, RL = 10 kn Va = 1.4V, VIC = 0, 5 V (unless otherwise noted) TAt 25 DC Full range 25 DC 230 2000 200 RL = 10 kn Full range 25 DC RS = 50 n, RL=10kn Full range 110 Input offset current (see Note 4) Va = 2.5 V, VIC = 2.5 V liB Input bias current (see Note 4) Va = 2.5 V, VIC = 2.5 V 12 3000 25 DC 0.1 70 DC 25 DC 7 0.6 70 DC 40 -0.2 voltage range (see Note 5) mV 500 /LV 1500 1.8 Common-mode input UNIT 6.5 25 DC to 70 DC 25 DC VICR 10 5 VIC = 0, of input offset voltage MAX 1.1 0.9 RS = 50 n, "via TYP Full range 25 DC Va = 1.4 V, Average temperature coefficient MIN /LV/DC 300 600 pA pA -0.3 to to 4 4.2 V -0.2 Full range to V 3.5 VOH VOL High-level output voltage Low-level output voltage Large-signal differential AVO voltage amplification CMRR Common-mode rejection ratio Supply-voltage rejection ratio kSVR 100 (,WOO/AVIO) VID = 100 mV, VIO = -100 mV, Va = 0.25 V to 2 V, RL = 10 kn 10L = 0 RL = 10 kn VIC = VICR min VOO = 5 V to 10 V, Supply current Va = 2.5 V, (two amplifiers) No load Va = 1.4 V VIC = 2.5 V, 25 DC ODC 3.2 3.8 3 3.8 70 DC 25 DC 3 3.8 0 O°C 70 DC 25 DC ODC V 50 0 50 0 50 5 23 4 27 70 DC 25 DC 4 20 65 80 ODC 60 84 70 DC 25 DC 60 85 65 95 ODC 60 94 70 DC 25 DC 60 96 1.4 mV V/mV dB dB 3.2 ODC 1.6 3.6 70 DC 1.2 2.6 mA t Full range is 0 DC to 70 DC. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. TEXAS . " INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-573 TLC272C. TLC272AC. TLC272BC. TLC277C LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, PARAMETER TEST CONDITIONS TLC272C TLC272AC Via Voo Input offset voltage TLC272BC TLC277C Va = 1.4 V, TAt VIC = 0, RS = 50 0, RL.= 10 kO Va = 1.4 V, VIC = 0, RS = 50 0, RL = 10 kll VO=l.4V, VIC = 0, RS = 50 0, RL = 10 kO Va = 1.4 V, VIC = 0, RS = 50 0, RL = 10 kll Average temperature coefficient o'VIO 10 V (unless otherwise noted) MIN 25°C Input offset current Isee Note 4) Va = 5 V, liB Input bias current Isee Note 4) Va = VIC = 5 V 5 V, VIC = 5 V 0.9 5 290 2000 Full range Full range 3000 25°C 250 Full range mV ,"V 1900 25°C 0.1 7 25°C 0.7 70°C 50 -0.2 voltage range Isee Note 5) BOO ,"V/oC 2 70°C Common-mode input UNIT 6.5 25°C 25°C VICR 10 12 25°C 70°C 110 MAX 1.1 Full range 25°C to of input offset voltage TYP 300 600 pA pA -0.3 to to 9 9.2 V -0.2 Full range to V 8.5 VOH VOL High-level output voltage Low-level output voltage VIO = 100 mY, RL = 10 kO VIO = -100 mY. IOL = a 25°C 8 O°C 7.8 8.5 70°C 7.8 8.4 a a a 25°C ooc 70°C Large-signal differential AVO CMRR voltage amplification Common~mode rejection ratio Supply-voltage rejection ratio kSVR 100 IAVoo/AVlol Va = 1 V to 6 V, VIC = VICR min VOO = 5Vto 10V, = RL = 10 kO Supply current Va Itwo amplifiersl No load 5 V, Va = 1.4 V VIC = 5 V, 8.5 25°C 10 36 O°C 7.5 42 70°C 7.5 32 25°C 65 85 O°C 60 88 70°C 60 88 25°C 65 95 O°C 60 94 70°C 60 96 V 50 50 V/mV dB dB 25°C OOC 1.9 4 2.3 4.4 70°C 1.6 3.4 t Full range is a °c to 70 DC. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. TEXAS ~ INSTRUMENTS 2-574 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 mV 50 mA TLC272M, TLC277M LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS operating characteristics, VOO 5V PARAMETER TEST CONDITIONS Rl = 10 kO, SR Slew rate at unity gain Cl = 20 pF, See Figure 1 Vn BOM B1 1>m Equivalent input noise voltage Maximum output swing bandwidth Unity-gain bandwidth Phase margin operating characteristics, VOO f = 1 kHz, RS = 100O, Vo = VOH, Cl = 20 pF, Rl = 10 kO, See Figure 1 Vi = 10mV, Cl = 20 pF, See Figure 3 Vi = 10 mV, Cl = 20 pF, TEST CONDITIONS Equivalent input noise voltage BaM Maximum output swing bandwidth B1 1>m Unity-gain bandwidth Phase margin VIPP = 1 V Cl = 20 pF, See Figure 1 Vn f = B1, See Figure 3 MIN TYP MAX UNIT 3.6 4.7 125°C 2.3 25°C 2.9 -55°C 3.7 125°C 2 25°C 25 25°C 320 -55°C 400 125°C 230 25°C 1.7 - 55°C 2.9 125°C 1.1 25°C 46° -55°C 49° 125°C 41° VII''" nV/.JHz kHz MHz 10 V Rl = 10kO, Slew rate at unity gain VIPP = 2.5 V See Figure 2 PARAMETER SR VIPP = 1 V TA 25°C -55°C f = 1 kHz, VIPP = 5.5 V RS = 100O, See Figure 2 Va = VOH, Rl = 10kO, CL = 20 pF, Vi = 10mV, Cl = 20 pF, See Figure 1 See Figure 3 Vi = 10 mV, Cl = 20 pF, f = B1, See Figure 3 TA 25°C MIN TYP MAX UNIT 5.3 -55°C 7.1 125°C 3.1 25°C 4.6 -55°C 6.1 125°C 2.7 25°C 25 25°C 200 -55°C 280 125°C 110 25°C 2.2 -55°C 3.4 125°C 1.6 25°C 49° -55°C 52° 125°C 44° VII''" nV/.JHz kHz MHz ~ TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-575 TLC2721, TLC272AI, TLC272BI, TLC2771 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS operating characteristics. VOO == 5 V PARAMETER TEST CONDITIONS RL SR Vn BaM Bl tPm Slew rate at unity gain Equivalent input noise voltage Maximum output swing bandwidth Unity-gain bandwidth Phase margin = 10 kO, CL = 20 pF, See Figure 1 = 1 kHz, f Equivalent input noise voltage BaM Maximum output swing bandwidth Bl tPm 2-576 Unity-gain bandwidth Phase margin RS = 100O, CL = 20 pF, See Figure 1 Vi = 10 mY, See Figure 3 CL = 10 mY, Vi CL = 20 pF, f = 20 pF, = Bl, See Figure 3 MIN TYP . MAX UNIT 3.6 -40°C 85°C 4.5 2.8 25°C -40°C 2.9 3.5 85°C 2.3 25°C 25 25°C -40°C 320 85°C 250 25°C -40°C 1.7 2.6 85°C 1.2 V/p,s nV/,jHz" 380 25°C 46° -40°C 49° 85°C 43° kHz MHz 10 V TEST CONDITIONS RL Vn = 2.5 V Va = VOH, RL = 10 kO, PARAMETER Slew rate at unity gain VIPP = 1V See Figure 2 operating characteristics. VOO SR VIPP TA 25°C = 10 kO, CL = 20 pF, See Figure 1 f = 1 kHz, VIPP = 1 V VIPP RS = 5.5 V = 100O, See Figure 2 Va = VOH, RL = 10 kO, CL = 20 pF, See Figure 1 Vi = 10 mY, See Figure 3 CL Vi = 10'mV, CL = 20 pF, f = 20 pF, = Bl, See Figure 3 TEXAS • INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TA 25°C MIN TYP MAX UNIT 5.3 -40°C 6.8 85°C 25°C 4 4.6 -40°C 5.8 85°C 3.5 25°C 25 nV/,jHz" 25°C -40°C 200 260 kHz 85°C 130 25°C 2.2 -40°C 3.1 85°C 1.7 25°C -40°C 49° 85°C 46° 52° V/fLS MHz TLC272C, TLC272AC, TLC272BC, TLC277C LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS operating characteristics. VOO 5 V PARAMETER SR Slew rate at unity gain TEST CONDITIONS Rl ~ 10 kll, el ~ 20 pF, See Figure 1 Vn BOM B1 f > , kHz (e) f - BOM (d) f > BOM FIGURE 5. FULL-POWER-RESPONSE OUTPUT SIGNAL test time Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume, shorttest-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET devices and require longer test times than their bipolar and BiFET counterparts. The problem becomes more pronounced with reduced supply levels and lower temperatures. TEXAS ~ INSTRUMENTS 2-580 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC272, TLC272A, TLC272B, TLC277 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS DISTRIBUTION OF TLC272 INPUT OFFSET VOLTAGE DISTRIBUTION OF TLC272 INPUT OFFSET VOLTAGE 50 *'l!l 753 Amplifiers 753 Amplifiers tested from 6 wafer lots VOO - 5 V TA - 25°C P Package VOO - 10 V T A _ 25 0C *' .~ c :::I :::I .. '0 30~--+---~-+---~ 30 QI CI CI l!lc l!lc ~ ~ 201--- --l----I----+--=I= .. 20~-~---~---+--~ : a.. 10 I---+--~---+- 0L....L........Eiil1. 01..-...1-......• -5 -4 -3 -2 -1 0 234 Vlo-lnput Offset Voltage-mV -5-4-3-2-10 5 5 324 Amplifiers tested from 8 wafer lots --+--+---+--+----1 P Package 50 *'.~ I 40 '2 :::I 40 VOO - 10 V TA - 25°C to 125°C P Package Outliers: (1) 21.2 JlV/oC I :::I '0 30 I---+---j---+_ 8, ~u 4 DISTRIBUTION OF TLC272 AND TLC277 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 324 Amplifiers tested from 8 *' k 3 FIGURE 7 DISTRIBUTION OF TLC272 AND TLC277 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT VOO - 5 V 50 TA _ 25°C to 125°C 2 Vlo-lnput Offset Voltage-mV FIGURE 6 '0 -+--+---l---+----I----~--__l P Package I I 40~---+---1--~----~ '2 '0 50 30 I-- +-----+----+--i 20 I---+----j--+_ ~ 1 0 I---l----+----+--i 10 1---+---1---+- 01..-.......-10 -8 -6 -4 -2 ou_iiI'.i1IIIIE 0 2 4 6 8 "'VIO - Temperature Coefficient - Jl V / °C 10 -10-8-6 - 4 - 2 0 2 4 6 810 "'VIO- Temperature Coefficient-JlV/oC FIGURE 8 FIGURE 9 ~ TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-581 TLC272, TLC272A, TLC272B, TLC277 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT 5r---~----~----~----~--~ > I 3. :l 5. ; ~ ~ 12 o ..3 ; 3 k----j-----j----=-...b------r---------1 ~ o 2 ] ~ .i::. til :f :f ::t ::t I I o o > > .. -2 -4 -6 -10 -8 I--- i'-.... -........ 6 r--- 2 -10 -20 -40 -30 IOH-High-Level Output Current-rnA HIGHcLEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE VOO-1.6 .. / "0 > 10 8 :f I 6 4 ::t / ~ 2 o V / / I GI til 2 _I ~ CII .... VOO-1.9 Gi > GI VOO-2.1 0 > -.......... :::J Q. :::J VOO-2.0 ....i::. .......... '-....., VOO - 10 V ............. 0 V I "'- .riP VOO-2.2 I ::t VOO-2.3 0 14 16 ~ ............... " -....... ~ ~ "" ::t 8 10 12 4 6 VOO-Supply Voltage-V IOH - -5 rnA VIO - 100 rnV ~OO - 5V VOO-1.8 .!:: > o ............. > // til 1 VOO-1.7 V Q. ; ........ FIGURE 11 16 VIO - 100 rnV >I 14 ~RL - 10 kO TA - 25°C til :l 12 ~ 4 HIGH-LEVEL OUTPUT VOLTAGE vs SUPPLY VOLTAGE .i::. ~ i'--.. ........VOO - 10 V 'r-...... FIGURE 10 o Gi ii ... '-....., , ............. 8 r- IOH-Hlgh-Level Output Current-rnA ; VIO - 100 rnV - 25°C VOO - 16 V J TA 10 o o O~--~----~----~----~---- o -- f--- > ~O-5V o 1 14 3. 4 I--------f----+ ~ .. 16 VIO - 100 rnV TA - 25°C VOO-2.4 -75 -50 -25 0 25 50 75 100 125 TA - Free-Air Ternperature- °C FIGURE 13 FIGURE 12 t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ~ TEXAS INSTRUMENTS 2-582 POST OFFICE BOX 665303 • DALLAS. TEXAS 75265 TLC212, TLC212A, TLC2128, TLC211 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t LOW-LEVEL OUTPUT VOLTAGE vs COMMON-MODE INPUT VOLTAGE LOW-LEVEL OUTPUT VOLTAGE vs COMMON-MODE INPUT VOLTAGE 700 > E I :!l. ~ 600 > ... ::I aS- 500 Gi > \ --- --1 \ 0 Gi '" ....G> 300 v. . . . I .... ....I ........ 2 3 > 250 4 o Vlc-Common-Mode Input Voltage-V VIO - -100 mV /VIO - -1V -2.5 V KJVIO ~ 700 I :!l. 600 > ; 500 ~ o t; o ] ....~ ....I o > I---- ~ \ 400 :\.. 300 I 900 I I S I ;g ... I 1 ::I Q. ",-VOO - 5 V 500 - 400 ....! VOO - 10 V- I-- ~ ....o 100 -4 -6 -8 -10 300 200 > 100 / V /V ,-- --,~ ....I o VOO - 5 V 600 ; o 'i:J-2 10 I IOL - 5 rnA ~ 800 VIO - -1 V I :!l. 700 ~ VIC - 0.5 V - 200 o o ~ ~t--- LOW-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE IOL - 5 rnA VIC - IVIO/21 TA - 25°C I I FIGURE 15 LOW-LEVEL OUTPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE I 1- 2 4 6 8 Vlc-Common-Mode Input Voltage-V FIGURE 14 800 I V ~r" 300 0 r-::: :::::::: r-- I \~ ~ I I \ 0 ~ 0r-.. o 400 > 350 ,,""-""- -1 VIO - o > \ C) 450 > ; S::I I I > -a -- 400 ....I - -- - - - ' - . \VIO - -100 mV -- .3 ~ .... 500 VOO - 5 V IOL - 5 mATA - 25°C j/ /' ~ V V /' V VOO - 10 V T o -75 -50 -25 Vlo-Differential Input Voltage-V 0 25 50 75 100 125 T A - Free-Air Temperature - °C FIGURE 16 FIGURE 17 t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices . . TEXAS'" INSTRUMENlS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-583 TLC272, TLC272A, TLC272B, TLC277 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT 1.0 I 3.0 I > 0.9 VID - -tV t VIC - 0.5 V TA - 25°C I 0.8 ;g 0.7 1 0.6 = 0 t~ VOO - 5V/ VOO - 4~ VOO - 0.5 3~ ~ L ... .3~ 0.3 #' 1/ 0.1 o 1/ ~ o 1.5 vbo - ~ 1.0 ~ / V .§ I S 0.5 ~ 0.2 o > ~ o > 2 3 4 5 6 7 10L -Low-Level Output Current-rnA l/ 8 ~ 50 :>I RL - 10 kO 45 c 50r-~---+---+--~~~--+---' ~40 I 40r-~---+---¥~~~~--~~ t c( c( 35 30 CD DI 25 u E .=. 30r-~--~~~~~~~--~--~-1 125°C ;g 20r-~--~~~~~--~--+---r--; 10 r-~---CF+---+---+--~--+- I i > lI!! O~~--~--~--~--~--~--~~ o 2 4 6 8 10 12 VOO-Supply Voltage-V 14 16 I 10 5 I RL - 10 kO ~ I I I - VOO - 10 V ~, ""~ "'- ~ --"""'- t-.... VOO - 5 V 15 I l "" 20 ~ Q Q l 30 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE :>I i V FIGURE 19 ~ 60r-~--~---r--~--~--~-_-5~5-0C~ l vj / 10 20 25 5 15 10L -Low-Level Output Current-rnA LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs SUPPLY VOLTAGE CD 10 ~ Y'" FIGURE 18 5 VOO - 1 6 Y I 2.0 :I / ~ 'ii ~ 0.4 I I VIO - -1 V L 2.5 -VIC - 0.5 V TA - 25°C > -- -- r--- r--- 0 -75 -50 -25 0 25 50 75 100 125 TA-Free-Air Ternperature- °C FIGURE 20 FIGURE 21 toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS • INSTRUMENTS 2-584 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC272. TLC272A. TLC2728, TLC277 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t COMMON-MODE INPUT VOLTAGE POSiTIVE LIMIT vs SUPPLY VOLTAGE INPUT BIAS CURRENT AND INPUT OFFSET CURRENT vs FREE-AIR TEMPERATURE 10000 16 ,Voo· 10 V > 14 ./ VIC· 5 V -I ",See Note 4 1000 til c( --'" 12 r=~ Co 0 liB I > ,-\ -r::: :s 10 ./ ./ Co 100 ~= '== TAl. 2~oC -- .. . . ~ .... ,- . § / r--- r--- 110 I g V 10 ~ 0 :i1 C 6 0 / r::: '" , E E 0 , r-- r,L. ~ , 0.1 25 4 U I u - , 8 ~ ./ '> , 0 45 105 65 85 TA - Free-Air Temperature - °C 125 V / 2 2 0 / 4 .. r::: ! ~ t ~ g- , I I I I 14 ! Vo • VOO/2 No load 3 I 1: 3 ~ :s U 2 u > 15. L , SUPPLY CURRENT vs FREE-AIR TEMPERATURE Vo - VOO/2 No load 4 / FIGURE 23 SUPPLY CURRENT vs SUPPLY VOLTAGE E I V V 6 10 12 8 4 VOO-Supply Voltage-V FIGURE 22 c( ~ /V ..5 u V / > 15. ~ "!'-..VDo • 10 V f'.... g- 2 III III I I o ---- -- VOO· 5 V o f} ~r--- ........... f} r--- - r--.. .-.... I I I o 2 6 4 8 10 12 VOO-Supply Voltage-V 14 16 -75 -50 -25 0 25 50 75 100 125 TA - Free-Air Temperature - °C FIGURE 24 FIGURE 25 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. NOTE 4: The typical values of input bias current and input offset current below 5 pA were determined mathematically. TEXAS • INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC272, TLC272A, TLC272B, TLC2l7 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt SLEW RATE vs FREE-AIR TEMPERATURE SLEW RATE vs SUPPLY VOLTAGE 8 .. ~ I ....." II) a: it I 4 \II iii I a: t/J 3 / 2 o o 8~~--~--~--~------------~ AV - 1 71----"'1__-1-- VOO • 10 V _ RL - 10 kO VIPP - 5.5 V CL. 20 pF I 1 I AV· 7 I-VIPP - 1 V RL - 10 kO 6 I-CL - 20 pF TA - 25°C 5 See Figure 1 V /' / V /' 'Ii / /' :> I ~ it 41--~~--+~~~-+-~~~~~+-~ .!! t/J I a: -- I 2 6 I----'""l-..o---+----'"",.,"---+-~+- See Figure 1 4 6 8 10 12 VOO-Supply Voltage-V 14 t/J 2 oL-~--~--~--~--~~--~--~ 16 -75 -50 -25 0 25 50 75 100 125 TA-Free-Air Temperature- °C FIGURE 27 FIGURE 26 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY NORMALIZED SLEW RATE vs FREE-AIR TEMPERATURE 10 1.5 1.4 1.3 ! a: '0 .~ 1.0 ~ 0.9 ~ VOO· 5~ > 8 .. 7 I II) ell .!:: "-~ 0.8 0.7 0.6 0 6 ; 5 > ~ 5 I II11111 - 9 I 1.2 it 1.1 II) iii AV·1 VIPP - 1 VI I f-RL • 10 kO ~O-10VCL· 20 pF 4 \ x: > 3 ~ ~ " 0.5 -75 -50 -25 0 25 50 75 100 125 TA-Free-Air Temperature- °C 2 R~ f--- 1rnn11 ~ 1\ 1.1 1116 kO 1\ See Figure 1 ~ ~ ........ '"r---.,I-- 1111111 10 II II TTTTTJl \\ I I 111111 o T TA - 125°C I/TA - 25°C TA - -55°C ~ I 0 rr ""''\\ VOO - 5 V 0 II VOO - 10 V 100 1000 f-Frequency-kHz 10000 FIGURE 29 FIGURE 28 t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ~ TEXAS INSTRUMENTS 2-586 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC272, TLC272A, TLC272B, TLC277 LinCMoSTM PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt UNITY-GAIN BANDWIDTH vs FREE-AIR TEMPERATURE 3.0 2.5 \ :l: ::E I 2.5 ... .J:. ·i "CI c III 2.0 ID c ·iii ~ 1.5 i: :) I"'"i'-0 25 1.5 ·2 50 I r; t--- 1.0 024 75 100 125 TA-Free-Air Temperature- °C 107 I ::E ~ .1:: :) :l: ·i Cl c N .J:. \ "CI 10 mV CL - 20 pF TA - 25°C See Figure 3 Vi - VOO - 5 V Vi - 10 mV CL - 20 pF See Figure 3 1\ N UNITY-GAIN BANDWIDTH vs SUPPLY VOLTAGE 120° & 104 '" ~ 0 > ~ C'--,. 103 ~"- I"-.., "-1'-- "-1'.. ]i C 10 2 e :EC 30° ;: Phase Shift 10 1 I ~ 150° 180° 1 M 10 M :ctil AVO 60° : III """ ~ C > ·S "'\ o 50 EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY r\. 25 25 FIGURE 35 !! ~ 0 T A - Free-Air Temperature - °C VOO - 5 V Vi - 10 mV TA - 25°C See Figure 3 "- '" '" 42 PHASE MARGIN vs CAPACITIVE LOAD '" """- "'-, t:I. I ~ ~ 44 FIGURE 34 50 ~ ~ Vi - 10 mV I---CL - 20 pF TA - 25°C 1---See Figure 3 I VOO - 5 V Vi - 10 mV CL - 20 pF See Figure 3 100 - ...... C' w I c 100 > t--r- 0 1 10 100 1000 f- Frequency - Hz FIGURE 37 FIGURE 36 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ~ TEXAS INSTRUMENTS 2-588 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC272, TLC272A, TLC2728, TLC277 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA single-supply operation While the TLC272 and TLC277 perform well using dual power supplies (also called balanced or split supplies), the design is optimized for single-supply operation. This design includes an input common-mode voltage range that encompasses ground as well as an output voltage range that pulls down to ground. The supply voltage range extends down to 3 V (C-suffix types), thus allowing operation with supply levels commonly available for TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply operation is recommended. Many single-supply applications require that a voltage be applied to one input to establish a reference level that is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see Figure 38). The low input bias current of the TLC272 and TLC277 permits the use of very large resistive values to implement the voltage divider, thus minimizing power consumption. The TLC272 and TLC277 work well in conjunction with digital logic; however, when powering both linear devices and digital logic from the same power supply, the following precautions are recommended: 1. Power the linear devices from separate bypassed supply lines (see Figure 39); otherwise the linear device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital logic. 2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive decoupling is often adequate; however, high-frequency applications may require RC decoupling. Voo R1 R3 VREF - Voo R1 + R3 R2 Vo -= R3 t. c 01 ~F-= FIGURE 38. INVERTING AMPLIFIER WITH VOLTAGE REFERENCE (a) Common Supply Rails (b) Separate Bypassed Supply Rails (preferred) FIGURE 39. COMMON VS SEPARATE SUPPLY RAILS ~ TEXAS INSTRUMENTS POST OFFICE BOX 655303 • OAlLAS. TEXAS 75265 2-589 TLC272, TLC272A, TLC272B, TLC277 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA input characteristics The TLC272 and TLC277 are specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction. Exceeding this specified range is a common problem, especially in single-supply operation. Note that the lower range limit includes the negative rail, while the upper range limit is specified at VOO -1 Vat T A = 25 DC and at VOO -1.5 V at all other temperatures. The use of the polysilicon-gate process and the careful input circuit design gives the TLC272 and TLC277 very good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate) alleviates the polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude. The offset voltage drift with time has been calculated to be typically 0.1 IN/month, including the first month of operation. Because of the extremely high input impedance and resulting low bias current requirements, the TLC272 and TLC277 are well suited for low-level signal processing; however, leakage currents on printed circuit boards and sockets can easily exceed bias current requirements and cause a degradation in device performance. It is good practice to include guard rings around inputs (similar to those of Figure 4 in the Parameter Measurement Information section). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input (see Figure 40). The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation. noise performance The noise specifications in op amp circuits are greatly dependent on the current in the first-stage differential amplifier. The low input bias current requirements of the TLC272 and TLC277 result in a very low noise current, which is insignificant in most applications. This feature makes the devices especially favorable over bipolar devices when using values of circuit impedance greater than 50 kG, since bipolar devices exhibit greater noise currents. (a} Noninverting Amplifier (b} Inverting Amplifier (e} Unity·Gain Amplifier FIGURE 40. GUARD-RING SCHEMES output characteristics The output stage of the TLC272 and TLC277 is designed to sink and source relatively high amounts of current (see typical characteristics). If the output is subjected to a short-circuit condition, this high current capability can cause device damage under certain conditions. Output current capability increases with supply voltage. All operating characteristics of the TLC272 and TLC277 were measured using a 20-pF load. The devices will drive higher capacitive loads; however, as output load capacitance increases, the resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figure 41 ). In many cases, adding a small amount of resistance in series with the load capacitance will alleviate the problem. TEXAS ~ INSTRUMENTS 2-590 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC272, TLC272A, TLC272B, TLC277 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA Ibl CL - 130 pF, RL - No load lal CL - 20 pF, RL - No load TA - 25°C f - 1 kHz VIPP - 1 V -2.5 V Idl Test Circuit lei CL - 150 pF, RL - No load FIGURE 41. EFFECT OF CAPACITIVE LOADS AND TEST CIRCUIT Although the TLC272 and TLC277 possess excellent high-level output voltage and current capability, methods for boosting this capability are available, if needed. The simplest method involves the use of a pullup resistor (Rp) connected from the output to the positive supply rail (see Figure 42). There are two disadvantages to the use of this circuit. First, the NMOS pulldown transistor N4 (see equivalent schematic) must sink a comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with an on-resistance between approximately 60 fl and 180 fl, depending on how hard the op amp input is driven. With very low values of Rp, a voltage offset from 0 V at the output will occur. Second, pullup resistor Rp acts as a drain load to N4 and the gain of the op amp is reduced at output voltage levels where N5 is not supplying the output current. feedback Op amp circuits nearly always employ feedback, and since feedback is the first prerequisite for oscillation, some caution is appropriate. Most oscillation problems result from driving capacitive loads (discussed previously) and ignoring stray input capacitance. A small-value capacitor connected in parallel with the feedback resistor is an effective remedy (see Figure 43). The value of this capacitor is optimized empirically. TEXAS . " INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-591 TLC272, TLC272A, TLC272B, TLC277 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA c Voo Ip - Pullup current required by the op amp (typically 500 "AI FIGURE 42. RESISTIVE PULLUP TO INCREASE VOH FIGURE 43. COMPENSATION FOR INPUT CAPACITANCE I electrostatic discharge protection The TLC272 and TLC277 incorporate an internal electrostatic discharge (ESO) protection circuit that prevents functional failures at voltages up to 2000 V as tested under MIL-STO-883C, Method 3015.2. Care should be exercised, however, when handling these devices as exposure to ESO may result in the degradation of the device parametric performance. The protection circuit also causes the input bias currents to be temperature dependent and have the characteristics of a reverse-biased diode. latch-up Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC272 and TLC277 inputs and outputs were designed to withstand - 1OO-mA surge currents without sustaining latch-up; however, techniques should be used to reduce the chance of latch-up whenever possible. Internal protection diodes should not, by design, be forward biased. Applied input and output voltage should not exceed the supply voltage by more than 300 mY. Care should be exercised when using capacitive coupling on pulse generators. Supply transients should be shunted by the use of decoupling capacitors (0.1 JLF typical) located across the supply rails as close to the device as possible. The current path established if latch-up occurs is usually between the positive supply rail and ground and can be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the supply voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and the forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance of latch-up occurring increases with increasing temperature and supply voltages. TEXAS • INSTRUMENTS 2-592 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC272, TLC272A, TLC272B, TLC277 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA 10 kll 0.0161'F 0.0161'F 10 kll 10 kll VI_VV<...-t· 5V LOW PASS ~--------+--------- HIGH PASS 5 kll ~~~-------~~-------e----------BANDPASS R - 5 kll (3/d-1), (see Note A) NOTES: A. d = damping factor, l/Q B. Normalized to 10 kll and Ic = 1 kHz FIGURE 44. STATE VARIABLE FILTER 12 V >-..........-VO 100 kll FIGURE 45. POSITIVE-PEAK DETECTOR TEXAS -iii INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-593 TLC272. TLC272A. TLC272B. TLC277 LiaCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA VI (see ~~_ _ _ _ _ _ _ _......_ _ _ _..._ _-.....-_ _ _ _ _ _---, Note A) 1.2 kO TL431 100 kO 20 kO ~-A,/I,IIrlII---I 0.471'F 1 kO TIP31 150 TIS193'-IVVI--------1 250I'F, 25V ;r- Vo (see Note B) 10 kO 47 kO 110 0 22 kO NOTES: A. VI = 3.5 to 15 V B. Vo = 2.0 V, 0 to 1 A FIGURE 46. LOGIC ARRAY POWER SUPPLY Vo (see Note A) JlJ 9V 0.1 I'F 10 kO ">-------Vo (see Note B) 10 kO /'V 47 kO fO - 4C(~2) [:j] R3 NOTES: A. VOpp = B V B. VOpp = 4 V FIGURE 47. SINGLE-SUPPLY FUNCTION GENERATOR TEXAS 'iii INSTRUMENlS 2-594 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC272, TLC272A, TLC2728, TLC277 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL APPLICATION OATA +5 V 10 kll 100 kll >-.....-+--VO 10 kll 10 kll 95 kll R1,10 kll (see Note A) -5 V NOTE A: CMRR adjustment must be noninductive . FIGURE 48. LOW-POWER INSTRUMENTATION AMPLIFIER R >-.....-VO 10 mil '~;1 ~ fNOTCH _ _1_ 2"RC 5 Mil C C 270 pF 270 pF FIGURE 49. SINGLE-SUPPLY TWIN-T NOTCH FILTER TEXAS • INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-595 2--596 TLC274, TLC274A, TLC274B, TLC279 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS 03141, SEPTEMBER 1987-REVISEO OCTOBER 1990 O. J, OR N PACKAGE (TOP VIEW) • Trimmed Offset Voltage: TLC279 , .. 900 /LV Max at 25°C. VDD - 5 V • Input Offset Voltage Drift ... Typically 0.1 /LV/Month. Including the First 30 Days • 4 OUT 41N- lOUT 1 IN- Wide Range of Supply Voltages Over Specified Temperature Range: °C to 70°C ... 3 V to 16 V -40°C to 85°C ... 4 V to 16 V - 55°C to 125°C ... 4 V to 16 V o 1 IN+ 41N+ VDD 21N+ 21N- GND 31N+ 31N- 2 OUT 3 OUT FK PACKAGE (TOP VIEW) • Single-Supply Operation • Common-Mode Input Voltage Range Extends Below the Negative Rail IC-Suffix. I-Suffix types) II- Zm Equivalent input noise voltage Maximum output swing bandwidth Unity-gain bandwidth Phase margin operating characteristics, VOO f = 1 kHz, RS = 1001l, Vo = VOH, CL = 20 pF, RL = 10 kll, See Figure 1 Vi=10mV, CL = 20 pF, See Figure 3 Vi = 10mV, f = B1, CL = 20 pF, See Figure 3 TEST CONDITIONS BOM B1 m Equivalent input noise voltage Maximum output swing bandwidth Unity-gain bandwidth Phase margin VIPP = 1 V CL = 20 pF, See Figure 1 Vn MIN TYP MAX UNIT 3.6 - 55°C 4.7 125°C 2.3 25°C 2.9 -55°C 3.7 125°C 2 25°C 25 25°C 320 -55°C 400 125°C 230 25°C 1.7 - 55°C 2.9 125°C 1.1 25°C 46° -55°C 49° 125°C 41° V/p.s nV/JR"Z kHz MHz 10 V RL = 10 kll, Slew rate at unity gain VIPP = 2.5 V See Figure 2 PARAMETER SR VIPP = 1 V TA 25°C f = 1 kHz, VIPP = 5.5 V RS = 1001l, See Figure 2 Vo = VOH, RL = 10 kll, CL = 20 pF, Vi = 10mV, CL = 20 pF, See Figure 1 See Figure 3 Vi=10mV, f = B1, CL = 20 pF, See Figure 3 TA 25°C -55°C MIN TYP MAX UNIT 5.3 7.1 125°C 3.1 25°C 4.6 -55°C 6.1 125°C 2.7 25°C 25 25°C 200 -55°C 280 125°C 110 25°C 2.2 -55°C 3.4 125°C 1.6 25°C 49° -55°C 52° 125°C 44° V/p.s nV/JR"Z kHz MHz ~ TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2--607 TLC2741, TLC274AI, TLC274BI, TLC2791 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS operating characteristics, VOO ... 5 V PARAMETER SR Slew rate at unity gain TEST CONDITIONS RL ~ CL = 20 10 kll, BOM Bl m Equivalent input noise voltage Maximum output swing bandwidth Unity-gain bandwidth Phase margin f = 1 kHz, See Figure 2 = VOH, = 10 kll, Vo RL Equivalent input noise voltage BOM Maximum output swing bandwidth Bl m 2-608 Unity-gain bandwidth Phase margin = 10011, CL = 20 pF, See Figure 1 = 10 mV, CL = 20 pF, f = Bl, See Figure 3 Vi = 20 pF, MIN TYP MAX UNIT 3.6 -40°C 4.5 85°C 2.8 25°C 2.9 -40°C 3.5 85°C 2.3 25°C 25 25°C 320 -40°C 380 250 85°C 25°C V/p.s nV/.JHz kHz 1.7 -40°C 85°C 2.6 1.2 25°C 46° -40°C 49° 85°C 43° MHz 10 V TEST CONDITIONS = 10 kll, = 20 pF, RL Vn RS = 2.5 V CL PARAMETER Slew rate at unity gain VIPP Vi = 10 mV, See Figure 3 operating characteristics, VOO SR VIPP ~ 1 V pF, See Figure 1 Vn TA 25°C CL See Figure 1 = f 1 kHz, VIPP VIPP RS = TA 25°C = -40°C 1 V = 5.5 V 10011, See Figure 2 Vo RL = VOH, = 10kll, CL = 20 pF, See Figure 1 Vi = CL 10mV, = 20 pF, See Figure 3 = 10 mV, CL = 20 pF, Vi f = Bl, See Figure 3 TEXAS ~. INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 MIN TYP MAX UNIT 5.3 6.7 85°C 4 25°C -40°C 4.6 5.8 85°C 3.5 25°C 25 25°C 200 -40°C 260 85°C 130 25°C 2.2 -40°C 3.1 85°C 1.7 25°C -40°C 49° 85°C 46° 52° V/p.s nV/.JHz kHz MHz TLC274C, TLC274AC, TLC274BC, TLC279C LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS operating characteristics. VOO - 5 V PARAMETER TEST CONDITIONS = = RL SR Slew rate at unity gain eL 10 kO, Vn Equivalent input noise voltage BOM Maximum output swing bandwidth 8.1 cJ>m Unity-gain bandwidth Phase margin = 1 kHz, See Figure 2 Vo RL = 1 V = VOH' = 10 kO, VIPP RS = = 2.5 V 100O, eL = 20 pF, See Figure 1 Vi = 10 mV, See Figure 3 eL = 10mV, eL = 20 pF, f Vi MIN = 20 pF, Bl, See Figure 3 MAX 3 2.9 25°C ooe 3.1 70°C 2.5 25°C 25 25°C ooe 340 UNIT V/p.s nV/.JHz 320 kHz 260 70°C 25°C ooe 1.7 2 1.3 70°C = TYP 3.6 4 70°C 20 pF, See Figure 1 f VIPP TA 25°C ooe 25°C ooe 46° 70°C 44° MHz 47° operating characteristics. VOO .. 10 V PARAMETER TEST CONDITIONS RL SR Slew rate at unity gain = = 10 kO, eL 20 pF, See Figure 1 VIPP VIPP = = 1 V 5.5 V Vn Equivalent input noise voltage f = 1 kHz, See Figure 2 BOM Maximum output swing bandwidth Vo RL = VOH' = 10 kO, eL = 20 pF, See Figure 1 Vi = eL B1 cJ>m Unity-gain bandwidth Phase margin 10 mV, RS = = 100O, 20 pF, See Figure 3 = 10 mV, eL = 20 pF, Vi f = B1, See Figure 3 TA 25°C OOG MIN TYP 4.3 70 0 G 3.8 25°C 25 25°C OOG 200 4.6 5.1 220 140 25°C ooe 2.2 70°C 1.8 25°C OOG 49° 70°C UNIT 5.9 70°C 25°G OOG 70°C MAX 5.3 2.5 V/p.s nV/.JHz kHz MHz 50° 46° TEXAS .." INSTRUMENlS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2--609 TLC274, TLC274A, TLC274B, TLC279 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS PARAMETER MEASUREMENT INFORMATION single-supply versus split-supply test circuits Because the TLC274 and TLC279 are optimized for single-supply operation, circuit configurations used for the various tests often present some inconvenience since the input signal. in many cases, must be offset from ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to the negative rail. A comparison of single-supply versus split-supply test circuits is shown below. The use of either circuit will give the same result. VI VI RL -= -= RL voo(b) Split-Supply (a) Single-Supply FIGURE 1. UNITY-GAIN AMPLIFIER 10 kG 10 kG voo+ 1/2 VOO Vo Vo 100 G -= -= -= (a) Single-Supply (b) Split-Supply FIGURE 2. NOISE TEST CIRCUIT 10 kG 10 kG 100 G VI VI 1/2 VOO CL -= VOO(b) Split-SupplY (a) Single-Supply FIGURE 3. GAIN-OF-100 INVERTING AMPLIFIER TEXAS . . INSTRUMENTS 2-610 POST OFFICE BOX 655303 • OALLAS. TEXAS 75265 TLC27~ TLC274A, TLC274B, TLC279 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS PARAMETER MEASUREMENT INFORMATION input bias current Because of the high input impedance of the TLC274 and TLC279 op amps, attempts to measure the input bias current can result in erroneous readings. The bias current at normal room ambient temperature is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions are offered to avoid erroneous measurements: 1. Isolate the device from other potential leakage sources. Use a grounded shield around and between the device inputs (see Figure 4). Leakages that would otherwise flow to the inputs will be shunted away. 2. Compensate for the leakage of the test socket by actually performing an input bias current test (using a picoammeter) with no device in the test socket. The actual input bias current can then be calculated by subtracting the "open-socket" leakage readings from the readings obtained with a device in the test socket. One word of caution ... many automatic testers as well as some bench-top op amp testers use the servo-loop technique with a resistor in series with the device input to measure the input bias current (the voltage drop across the series resistor is measured and the bias current is calculated). This method requires that a device be inserted into the test socket to obtain a correct reading; therefore, an "opensocket" reading is not feasible using this method. 7 1 QQQQQ Q v- 8 VIC QQQQQ Q - 14 FIGURE 4. ISOLATION METAL AROUND DEVICE INPUTS (J AND N DUAL-IN-L/NE-PACKAGE) low-level output voltage To obtain low-supply-voltage operation, some compromise was necessary in the input stage. This compromise results in the device low-level output being dependent on both the common-mode input voltage level as well as the differential input voltage level. When attempting to correlate low-level output readings with those quoted in the electrical specifications, these two conditions should be observed. If conditions other than these are to be used, please refer to Figures 14 through 19 in the Typical Characteristics of this data sheet. input offset voltage temperature coefficient Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This parameter is actually a calculation using input offset voltage measurements obtained at two different temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device and the test socket. This moisture will result in leakage and contact resistance, which can cause erroneous input offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the moisture also covers the isolation metal itself, thereby rendering it useless. It is suggested that these measurements be performed at temperatures above freezing to minimize error. TEXAS . " INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-611 TLC274, TLC274A, TLC274B, TLC279 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS full-power response Full-power response, the frequency above which the op amp slew rate limits the output voltage swing, is often specified two ways ... full-linear response and full-peak response. The full-linear response is generally measured by monitoring the distortion level of the output while increasing the frequency of a sinusoidal input signal until the maximum frequency is found above which the output contains significant distortion. The full-peak response is defined as the maximum output fre~ency, without regard to distortion, above which full peak-to-peak output swing cannot be maintained. Because there is no industry-wide accepted value for "significant" distortion, the full-peak response is specified in this data sheet and is measured using the circuit of Figure 1. The initial setup involves the use of a sinusoidal input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same amplitude. The frequency is then increased until the maximum peak-to-peak output can no longer be maintained (Figure 5). A square wave is used to allow a more accurate determination of the point at which the maximum peak-to-peak output is reached. la} f - 1 kHz 11 A Ib} BOM > f > 1 kHz. Ie} f - BOM A (d) f> BOM FIGURE 5. FULL-POWER-RESPONSE OUTPUT SIGNAL test time Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume, shorttest-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET devices and require longer test times than their bipolar and BiFET counterparts. The problem becomes more pronounced with reduced supply levels and lower temperatures. TEXAS ~ INSTRUMENTS 2-612 POST OFFice BOX 655303 • DALLAS. TeXAS 75265 TLC274,TLC274A, TLC274B, TLC279 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS DISTRIBUTION OF TLC274 INPUT OFFSET VOLTAGE 50 #. DISTRIBUTION OF TLC274 INPUT OFFSET VOLTAGE 753 Amplifiers VOO - 5 V TA _ 25°C N Package 50 753 Amplifiers VOO - 10 V TA - 25°C N Package I ~ 40~--r~--~-+- "2 ::> o 30~~---1---~-+- CD Cl ,f! C ~ 20~-r~--~-+- CD 11. 10~-+-~--~ 10~-r~--~ oL..-...l-......___ -5 -4 -3 -2 -1 0 234 Vlo-lnput Offset Voltage-mV oL-...L.-......_ -5-4-3-2-10 2 3 4 Vlo-lnput Offset Voltage-mV 5 FIGURE 6 FIGURE 7 DISTRIBUTION OF TLC274 AND TLC279 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT DISTRIBUTION OF TLC274 AND TLC279 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT lots 324 Amplifiers tested VOO - 5 V 50 A - 25°C to 125°C ---1--+----+--+---1 #. N Package ~ .1:: 5 50 N Package #. I 40 40 !l ·2 c ::> ... Outliers: (11 21.2 jtV/oC ::> ~ 30~-r~--~ 0 CD Cl Cl ,f! 30 ,f! C C ~ 20~-r~--~ CD ~ &. 20 CD 11. 10 01-..-..0..11-10 -8 -6 -4 -2 0 2 4 6 8 10 II'VIO- Temperature Coefficient-jtV/oC oL..--- -10 -8 -6 -4 -2 0 2 4 6 8 10 II'VIO - Temperature Coefficient- jt V/ °C FIGURE 9 FIGURE 8 TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-613 TLC274. TLC274A. TLC274B. TLC279 LinCMOSlM PRECISION QUAD OPEATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT 5~--~----~-----r----~--~ > VIO - 100 mV TA - 25°C I 3. B ~... :::J 5 16 ~ ~ 12 ~ 15 3 5:::J o 14 3. 4l-----t----t----t----t--------t 8 1:. 1:. 6 J: J: 1 !l .... 2 en ---- --- o .. ............ .......... o -10 -20 -40 -30 IOH-High-Level Output Current-mA FIGURE 11 HIGH-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE HIGH-LEVEL OUTPUT VOLTAGE vs SUPPLY VOLTAGE 16 VOO-1.6 VID - 100 mV ~ 14 -RL - 10 kO CIl . TA - 25°C en B 12 / "0 > 10 8 Gi 1:. en 4 / ~ 2 o V o 2 / / Q) en .1 > 15 Voo-1.9 5 -.!. VOO-2.1 ~ ~ I'.... I'--........ VOO - 10 V ........... i'-........ 1:. en ~ VOO-2.2 8 10 12 VOO-Supply Voltage-V 14 16 ~ "- ~ ~ "" ::a:: 6 IOH - -5 mA VIO - 100 mV r--..... '-..... o Voo-2.0 V I ~OO - 5V "0 ~ 4 ............ B VOO-1.8 // > !l 6 I ~ VOO-1.7 V Co I ::a:: '- I'---.. ........ '- FIGURE 10 J: ~ VOO - 10 V r-....... o o o~--~----~----~----~----2 -4 -10 -6 -8 IOH-Hlgh-Level Output Current-mA 15 ~ I 4 ::a:: 0 > 2 > o J ............. en I ::a:: ; t----.., I VIO - 100 mV I TA - 25°C VOO - 16 V 10 0 "ii > Q) Voo - 4 V I I VOO-2.3 VOO-2.4 -75 -50 -25 0 25 50 75 100 125 T A -Free-Air Temperature- °C FIGURE 13 FIGURE 12 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 2-614 , TEXAS ~ INSTRUMENlS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC274, TLC274A, TLC274B, TLC279 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t LOW-LEVEL OUTPUT VOLTAGE vs COMMON-MODE INPUT VOLTAGE ~ -'. -1 I ! I 1 VIO - .... .... o ....I I 300~-·~-·-~~~__t o > > 250 300~~--~--~--~--~--~--~~ 2 3 4 LL-L-L-.l::::J::::±:::±::t::::i-l o Vic-Cammon-Mode Input Voltage-V 2 4 > E I CD Cl !!l LOW-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE 500 :J S:J 0 Gi > II) 400 .... 300 ....0 200 0 100 ~ "- "VOO - 5 V -'I~ lr ---t--- --- o o [ I "'0 600 > ... I :J Co :; ! .... ~ _. I -6 1/' /~ V 500 300 1--- -10 Vlo-Oifferentiallnput Voltage-V /' V '"......... t.--r Voo - V 10 V ~ 200 1--- - - -- > 100 rI o -8 /' V VOO - 5 7 - - r---- ....0 ....I 0 --r-- I -4 c--- 1--- 0 Gi 400 > II) r-- - - "-r--- I !!l I i -2 I I IOl - 5 rnA E 800 VIO - -1 V I Q) I-- VIC - 0.5 V Cl 700 I-- > ~-U-+-Itt VOO - 10 V- ....I > 900 I IOl - 5 rnA 700 t--VIC - IV10/21TA - 25 DC 600 "'0 > ... I 10 FIGURE 15 LOW-LEVEL OUTPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE I 8 6 Vic-Cammon-Mode Input Voltage-V FIGURE 14 800 -100 rnV -1 V - 2.5 V ~ ....o -i- 400 VID ~-*->,-+""-- VID - Gi > Q) I I _~VIO o -l-J---! --- o I---t----\ Co :; -+--r--i----+- --1- - 500 ' - 10 V 1-+ I· j ·i-j ~~ =~5~~ - l++- ~ 450 Cl !!l 1 I ,I ! voo I E :J - 100 mV .... .s 'I > "'0 Gi > II) ~ 5m~- :0_-5 ITA - 25 DC >... ... S. 6 -+--+--- -- LOW-LEVEL OUTPUT VOLTAGE vs COMMON-MODE INPUT VOLTAGE -75 -50 -25 0 25 50 75 100 125 T A - Free-Air Temperature - DC FIGURE 17 FIGURE 16 t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ~ TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-615 TLC274, TLC274A, TLC2748, TLC279 LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT 1.0 > +O.~V +-1 VID I - -1I V 0.9 I VIC = ~ 0.8 i T A - 25 C !! _ :; VOO 0.6 o 0.5 ---- ~-- ---~ a; ~ 0.4 o~ 0.3 ..... ~ 0.2 o > 0.1 ~- /' o o 3~ VOO - / ~ M 01 --- - VIO VIC - 0.5 V --~~--~---~---cff > I 2.5 ~ VOO - 5 VL' ~ 0.7 &. 3.0r----r--~----T_--~----r-~ i -a'" > 4,/ / // ... TA - 25°C :::I So :::I o f--- = 1.5 .. ~ ..... ~ - - -- - - .....o i-----t--7'----7f-------+---+-----t 1.0 I 5 0.5 ~---+r:;;,,-L--\_-----__+-----t__--+-__I > - t--- i 2 3 4 7 5 6 IOl-low-level Output Current-rnA o 5 10 15 20 25 IOl -low-level Output Current - rnA LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE 60r--'--~---r--~--r-~--~--~ Rl - 10 kO TA - ~ 50 -55°C :>I 45 c o 40 50~-~~--+--+-~~~4- .~ l;:: ~ 40r---r-~-~~-r~4--~~~ ~ 35 ~ 30 ~ 25 C. e ~ ..W 30~-~-1~'+~~-=~-~--~~ .!:: .!:: > > ~ 20~-~74~~~~-~-+--+--~ ~ o o .~ .~ 2! ~ '" '" ~ 20 ~ RL I ~r-.... o I o I o ~ O~--~~--~--~--~--~--~~ 2 4 6 8 10 12 VOO-Supply Voltage-V 14 16 ........ ............ . . . . r----.r-- VOO - 5 V 15 ;; 10 101-----+---'--,1'+- I 10 kO I - VOO - 10 V 2! o 30 FIGURE 19 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs SUPPLY VOLTAGE >e .. o~--~--~----~--~----~-- 8 FIGURE 18 :>I 5 VOO = -rio ~OV ~-~~-----+-'~+.,.L---+---I 2.0 -.. -- r- r-- 5 ~ 0 -75 -50 -25 0 25 50 75 100 125 TA-Free-Air Ternperature- °C FIGURE 20 FIGURE 21 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS 2-616 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC274, TLC274A, TLC2748, TLC279 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t COMMON-MODE INPUT VOLTAGE POSITIVE LIMIT vs SUPPLY VOLTAGE INPUT BIAS CURRENT AND INPUT OFFSET CURRENT vs FREE-AIR TEMPERATURE 16 10000 TAl. Voo - 10 V VIC - 5 V 1000 1= See Note 4 I liB / 100 '" .. > / ::I Co 10 CD 8 .E 110 I ":!:0 / V / 10 "., I 'c ~ , , , , C: 0 E E --- 6 4 0 (J I (J , 0.1 25 45 85 65 105 o o 125 / / 2 > , 2 / 4 SUPPLY CURRENT vs SUPPLY VOLTAGE 8 7 8~--r---r---~~--- 12 14 16 Vo - VOO/2 No load E 6 . I c 6~--r---r---~~--~~~--- ! (J (J >4 5 :; ::I g- 10 8 ~ I Q. 6 SUPPLY CURRENT vs FREE-AIR TEMPERATURE Vo - VOO/2 No load ~ / / / / FIGURE 23 FIGURE 22 C / / V / / VOO-Supply Voltage-V TA-Free-Air Temperature- °C ~ / CD "0 (J g. 2~oC 14 :l 12 c ~::I / / ~ Co .. > / ~--+---H~r---"~----j-="""""f'-----±~"""I ~ Co ::I III III I I o ~ 2~--r+~~~~~~~--~--~---1 4 3 "'"r---....""- t'-..VOO - 10 V ............ 0 2 ~ o 2 4 6 8 10 12 14 16 -- VOO - 5 V -75 -50 -25 0 ~ r-- 25 -- '- 50 --r---- I-- 75 100 125 T A - Free-Air Temperature - °C VOO-Supply Voltage-V FIGURE 25 FIGURE 24 t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. NOTE 4: The typical values of input bias current and input offset current below 5 pA were determined mathematically. TEXAS • INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-617 TLC274, TLC274A, TLC274B, TLC279 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt SLEW RATE vs FREE-AIR TEMPERATURE SLEW RATE vs SUPPLY VOLTAGE 8 8r-~--'---r--r--~--------' AV'.1 I 7 -VIPP - 1 V RL - 10 kO 6 -CL • 20 pF TA • 25°C 5 - See Figure 1 .. ~ .. I GI 1\1 a: 4 ~ GI iii I a: (/) 3 I 2 V / V / / /" V .. AV - 1 71-----'1'....--+- VOO - 10 V _ RL • 10 kO VIPP - 5.5 V CL - 20 pF 6 I---~~__+-~,L--+---+-- See Figure 1 ~ > I :l1\1 a: ~ 41-----I-__+---'~--=--+---+"'~+"~+---I GI iii I a: (/) -- f 2 Voo - 5 V - 2.5 V t--~-+--+---+--VIPP o o 2 4 6 8 10 12 VOO-Supply Voltage-V 14 OL-~--~--~~--~~--~~ 16 -75 -50 -25 0 25 TA-Free-Air Temperature- °C FIGURE 27 FIGURE 26 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY NORMALIZED SLEW RATE vs FREE-AIR TEMPERATURE 1.5 1.4 1.3 ! a: 1.2 E 1.1 iii -a 1.0 .~ 1& 0.9 E ~ 0.8 10 , AV VIPP I I I Voo-10V- r-RL • CL - ~ VOO· 5~ 1 - 1 V10 kO_ 20 pF 9 - > I GI Cl S "I" 0.7 0.6 125 ::l 5 .. ~ 0 4 I ~ ::c 3 0 > ~ 0.5 -75 -50 -25 0 25 50 75 100 125 TA -Free-Air Temperature- °C II I I :'I. 1\1 7 6 So ::l 1111111 8 '0 > I VOO - 10 V ~, "'J TA • 125°C TA • 25°C TA - -55°C 1\ ~ VOO - 5 V \\ II IIII \ R~ 1.1 1116"kO 2 r--- See Figure 1 I I I I illl o I I ....... II IIII 10 "-~ r--.. 100 1000 f-Frequency-kHz r-....' 10000 FIGURE 29 FIGURE 28 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS • INSTRUMENTS 2-618 POST OF"CE BOX 655303 • DALLAS. TeXAS 75265 TLC274, TLC274A, TLC2748, TLC279 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt UNITY-GAIN BANDWIDTH vs FREE-AIR TEMPERATURE 3.0 :!! I 2.5 .. ..c .1\ "0 ·i "0 c III 2.0 CO c VOO - 5 V Vi - 10 mV CL - 20 pF See Figure 3 1\ :t ·iii Cl b ...I :t :!! I ..c c "\ c ·ca 0 Cl 25 b1.5 ·2 ::J "'" 50 ~ ...I co r-- 1.0 75 100 125 T A - Free-Air Temperature - °C o 2 4 6 107 c VDO - 5 V .g " ~ . I-RL - 10 kO TA - 25°C 0° 100 1k E 30° :E ..c 1/1 60° CD . III J'... 10 k ""~ ~ 100 k 14 16 '" 90° ..c ~ 120° J VOO - 10 106 f-RL - 10 kG TA - 25°C 10 5 ~ ["'-... 103 :! E 102 r-----. ~ ~ "-1"---. " 1"- Phase Shift 10 1 I ~ 150° 180° 1 M 10 M 0 - - - - -- > " ~"- ,\ c I & ~ 300 75 '" 100 125 ~ I"\. ~ Voo - 5 V RS - 1000 TA - 25°C See Figure 2 1\ g : "" 50 EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY "DO 1- 5 V Vi - 10mV TA - 25°C See Figure 3 ~ "'- 25 FIGURE 35 PHASE MARGIN vs CAPACITIVE LOAD ~ 0 T A - Free-Air Temperature - °C FIGURE 34 50 "" '" " ~ :44 ..c Vi - 10 mV r-CL - 20 pF TA - 25°C !----See Figure 3 VOO - 5 V Vi - 10 mV CL-20pFSee Figure 3 \ 1\ 200 ! .5 ~ 1: ~ > ·S '""1\ 20 40 60 80 CL -Capacitive Load-pF 100 -- 'I'- C' w I .;; 100 -I- 0 1 10 100 1000 f-Frequency-Hz FIGURE 37 FIGURE 36 t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS .." 2-620 INSTRUMENTS POST OFFice BOX 655303 • OALLAS. TeXAS 75265 TLC27~ TLC274A, TLC274~ TLC279 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA single-supply operation While the TLC274 and TLC279 perform well using dual power supplies (also called balanced or split supplies). the design is optimized for single-supply operation. This design includes an input common-mode voltage range that encompasses ground as well as an output voltage range that pulls down to ground. The supply voltage range extends down to 3 V (C-suffix types), thus allowing operation with supply levels commonly available for TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply operation is recommended. Many single-supply applications require that a voltage be applied to one input to establish a reference level that is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see Figure 38). The low input bias current of the TLC274 and TLC279 permits the use of very large resistive values to implement the voltage divider, thus minimizing power consumption. The TLC274 and TLC279 work well in conjunction with digital logic; however, when powering both linear devices and digital logic from the same power supply, the following precautions are recommended: 1. Power the linear devices from separate bypassed supply lines (see Figure 39); otherwise the linear device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital logic. 2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive decoupling is often adequate; however, high-frequency applications may require RC decoupling. voo R3 VREF - voo Rl + R3 Vo FIGURE 38. INVERTING AMPLIFIER WITH VOLTAGE REFERENCE (a) Common Supply Rails (b) Separate Bypassed Supply Rails (preferred) FIGURE 39. COMMON VS SEPARATE SUPPLY RAILS TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TeXAS 75265 2-621 TLC274, TLC274A, TLC2748, TLC279 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA input characteristics The TLC274 and TLC279 are specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction. Exceeding this specified range is a common problem, especially in single-supply operation. Note that the lower range limit includes the negative rail, while the upper range limit is specified at VOO - 1 V at T A = 25°C and at VOO -1 .5 V at all other temperatures. The use of the polysilicon-gate process and the careful input circuit design gives the TLC274 and TLC279 very good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate) alleviates the polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude. The offset voltage drift with time has been ca.lculated to be typically 0.1 ,N/month, including the first month of operation. Because of the extremely high input impedance and resulting low bias current requirements, the TLC274 and TLC279 are well suited for low-level signal processing; however, leakage currents on printed circuit boards and sockets can easily exceed bias current requirements and cause a degradation in device performance. It is good practice to include guard rings around inputs (similar to those of Figure 4 in the Parameter Measurement Information section). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input (see Figure 40). The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation. noise performance The noise specifications in op amp circuits are greatly dependent on the current in the first-stage differential amplifier. The low input bias current requirements of the TLC274 and TLC279 result in a very low noise current, which is insignificant in most applications. This feature makes the devices especially favorable over bipolar devices when using values of circuit impedance greater than 50 kO, since bipolar devices exhibit greater noise currents. (a) Noninverting Amplifier (b) Inverting Amplifier (e) Unity·Gain Amplifier FIGURE 40. GUARD-RING SCHEMES output characteristics The output stage of the TLC274 and TLC279 is designed to sink and source relatively high amounts of current (see typical characteristics). If the output is subjected to a short-circuit condition, this high current capability can cause device damage under certain conditions. Output current capability increases with supply voltage. All operating characteristics of the TLC274 and TLC279 were measured using a 20-pF load. The devices will drive higher capacitive loads; however, as output load capacitance increases, the resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figure 41 l. In many cases, adding a small amount of resistance in series with the load capacitance will alleviate the problem. -1!1 2--622 TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC274, TLC274A, TLC274B, TLC279 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA (a) CL - 20 pF. RL - No load (b) CL - 130 pF. RL - No load TA - 25°C f - 1 kHz VIPP - 1 V -2.5 V (c) CL - (d) Test Circuit 150 pF. RL - No load FIGURE 41. EFFECT OF CAPACITIVE LOADS AND TEST CIRCUIT Although the TLC274 and TLC279 possess excellent high-level output voltage and current capability, methods for boosting this capability are available, if needed. The simplest method involves the use of a pullup resistor (Rp) connected from the output to the positive supply rail (see Figure 42). There are two disadvantages to the use of this circuit. First, the NMOS pulldown transistor N4 (see equivalent schematic) must sink a comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with an on-resistance between approximately 60 nand 180 n, depending on how hard the op amp input is driven. With very low values of Rp, a voltage offset from 0 V at the output will occur. Second, pullup resistor Rp acts as a drain load to N4 and the gain of the op amp is reduced at output voltage levels where N5 is not supplying the output current. feedback Op amp circuits nearly always employ feedback, and since feedback is the first prerequisite for oscillation, some caution is appropriate. Most oscillation problems result from driving capacitive loads (discussed previously) and ignoring stray input capacitance. A small-value capacitor connected in parallel with the feedback resistor is an effective remedy (see Figure 43). The value of this capacitor is optimized empirically. TEXAS -1!1 INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2--623 TLC274, TLC274A, TLC274B, TLC279 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA c Voo Rp _ ,..-V",O",O_-...:.V-"O,IF + IL + Ip Ip - Pullup current required by the op amp (typically 500 "A) FIGURE 42. RESISTIVE PULLUP TO INCREASE VOH FIGURE 43. COMPENSATION FOR INPUT CAPACITANCE electrostatic discharge protection The TLC274 and TLC279 incorporate an internal electrostatic discharge (ESD) protection circuit that prevents functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2. Care should be exercised, however, when handling these devices as exposure to ESD may result in the degradation of the device parametric performance. The protection circuit also causes the input bias currents to be temperature-dependent and have the characteristics of a reverse-biased diode. latch-up Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC274 and TLC279 inputs and outputs were designed to withstand - 1OO-mA surge currents without sustaining latch-up; however, techniques should be used to reduce the chance of latch-up whenever possible. Internal protection diodes should not, by design, be forward biased. Applied input and output voltage should not exceed the supply voltage by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators. Supply transients should be shunted by the use of decoupling capacitors (0.1 flF typical) located across the supply rails as close to the device as possible. The current path established if latch-up occurs is usually between the positive supply rail and ground and can be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the supply voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and the forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance of latch-Up occurring increases with increasing temperature and supply voltages. 2-624 . TEXAS . " INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC274, TLC274A, TLC274B, TLC279 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA 10 kO 0.0161'F 0.0161'F 10 kO 5V LOW PASS ' - - - - - - - - - - + - - - - - - - - H I G H PASS 5 kO ~~~------~~------~---------BANOPASS R - 5 kO (3/d-11, (see Note AI NOTES: A. d = damping factor, 1/Q B. Normalized to 10 kll and fc = 1 kHz FIGURE 44. STATE VARIABLE FILTER 12 V >-............-VO 100 kO FIGURE 45. POSITIVE-PEAK DETECTOR ~ TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DA~LAS. TEXAS 75265 2-625 TLC274, TLC274A, TLC274B, TLC279 LinCMOSTM PRECISION QUAD OPEATIONAL AMPLIFIERS TYPICAL APPLICATION DATA VI (see--41..-_ _ _ _ _ _ _ _......_ _ _ _-+__--t....-_ _ _ _ _ _---, Note AI 1.2 k!l 100 k!l TL431 0.47 "F 1 k!l TIP31 15 !l TIS193 '--'1N'v......- -.....- I 250 "F, 25 V 1> 10 k!l Va (see Note BI 47 k!l 110 !l 22 k!l NOTES: A. VI ~ 3.5 to 15 V B. Va ~ 2.0 V, 0 to 1 A FIGURE 46. LOGIC ARRAY POWER SUPPLY Va (see Note AI Sl.S 9V 10 k!l 9V 0.1 "F >-..-.... VO (see Note BI 10 k!l /'V 47 k!l fa - 4C(~21 [~iJ R3 NOTES: A. VOPP ~ 8 V B. VOPP ~ 4 V FIGURE 47. SINGLE-SUPPLY FUNCTION GENERATOR TEXAS 2-626 ~ INSTRUMENlS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC274, TLC274A, TLC274B, TLC279 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA +5 V 10 kG 100 kG >-...........-Vo 10 kG 10 kll 95 kG R1,10kG (see Note AI -5 V NOTE A: CMRR adjustment (must be noninductivei. FIGURE 48. LOW-POWER INSTRUMENTATION AMPLIFIER R R Vo 10 rnG 54~~CPF RI2 fNOTCH _ _1_ 2"RC -::" 5 MG C C 270 pF 270 pF FIGURE 49. SINGLE-SUPPLY TWIN-T NOTCH FILTER TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-627 2-628 LinCMOSTM TLC27L2, TLC27L2A, TLC27L28, TLC27L7 PRECISION DUAL OPERATIONAL AMPLIFIERS 03139, OCTOBER 1987-REVISEO OCTOBER 1990 • 0, JG, OR P PACKAGE Trimmed Offset Voltage: TLC27L7 ... 500 p,V Max at 25°C, VOO = 5 V (TOP VIEWI • Input Offset Voltage Orift ... Typically 0.1 p,V/Month, Including the First 30 Oays • Wide Range of Supply Voltages over Specified Temperature Range: o°C to 70°C ... 3 V to 16 V - 40°C to 85 °C . , . 4 V to 16 V -55°C to 125°C ... 4 V to 16 V VDD 2 OUT 2 IN21N+ FK PACKAGE (TOP VIEWI I::J Cl u O u ClU Z~z>z • Single-Supply Operation • Common-Mode Input Voltage Range Extends Below the Negative Rail IC-Suffix, I-Suffix types) • 1 aUTD8 1 IN2 7 1 IN + 3 6 GND 4 5 3 1 2019 4 18 NC 1 IN- 5 17 2 OUT Ultralow Power .. , Typically 95 p,W at 25°C, VOO = 5 V NC 6 16 NC IN+ 7 15 21N- NC 8 14 NC 9 1011 12 13 • Output Voltage Range Includes Negative Rail • High Input Impedance. , , 1012 • ESO-Protection Circuitry • Small-Outline Package Option Also Available in Tape and Reel • Oe!iigned-In Latch-Up Immunity (l 2 NC Typical NC-No internal connection AVAILABLE OPTIONS Vlomax TA at 25°C OOC to 70°C -40°C to 85°C -55°C p.v PACKAGE SMALL CHIP CERAMIC PLASTIC OUTLINE (D) CARRIER DIP DIP (FKI (JG) (PI - - TLC27L7CP 2 mV TLC27L2BCD - - TLC27L2BCP 5 mV TLC27L2ACD 500 TLC27L7CD - - TLC27L2ACP 10 mV TLC27L2CD - - TLC27L2CP 500 fLY TLC27L71D - - TLC27L71P 2 mV TLC27L2BID - - TLC27L2BIP 5 mV TLC27L2AID - - TLC27L2AIP - TLC27L21P 10 mV TLC27L21D - 500 fLY TLC27L7MD TLC27L7MFK TLC27L7MJG TLC27L7MP 10mV TLC27L2MD TLC27L2MFK TLC27L2MJG TLC27L2MP 30 25 #I :l 20 '2 => '0 15 "m "~ "" '" E 10 5 to 125°C DISTRIBUTION OF TLC27L7 INPUT OFFSET VOLTAGE The D package is available in tape and reel. Add R suffix to the device type, (e.g., TLC27L7CDR). 0 -800 -400 0 400 800 Vlo-lnput Offset Voltage-I'V LinCMOS is a trademark of Texas Instroments Incorporated PROOUCTIOII DATA documents contain information current as of publication data, Products conform to specifications per tho tarms of Te••s Instruments standard warranty. Production processing does not necessarily include testing of .11 paramBlBrs•. TEXAS + Copyright © 1990, Texas Instruments Incorporated INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-£29 TLC27Lt TLC27L2A, TLC27L28, TLC27L7 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS description The TLC27L2 and TLC27L7 dual operational amplifiers combine a wide range of input offset voltage grades with low offset voltage drift, high input impedance, extremely low power, and high gain. These devices use Texas Instruments silicon-gate LinCMOSTM technology, which provides offset voltage stability far exceeding the stability available with conventional metal-gate processes. The extremely high input impedance, low bias currents, and low power consumption make these costeffective devices ideal for high gain, low frequency, low power applications. Four offset voltage grades are available (C-suffix and I-suffix types), ranging from the low-cost TLC27L2 (10 mV) to the high-precision TLC27L7 (500 "V). These advantages, in combination with good common-mode rejection and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs. In general, many features associated with bipolar technology are available on LinCMOS'· operational amplifiers, without the power penalties of bipolar technology. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are easily designed with the TLC27L2 and TLC27L7. The devices also exhibit low voltage single-supply operation and ultralow power consumption, making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input voltage range includes the negative rail. A wide range of packaging options is available, including small-outline and chip carrier vers.ions for highdensity system applications. The device inputs and outputs are designed to withstand - 100-mA surge currents without sustaining latch-up. The TLC27L2 and TLC27L7 incorporate internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in the degradation of the device parametric performance. C-suffix devices are characterized for operation from OOC to 70°C. I-suffix devices are characterized for operation from - 40°C to 85 °C. M-suffix devices are characterized for operation over the full military temperature range of - 55°C to 125°C. TEXAS • INSTRUMENlS 2-630 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC27L2, TLC27L2A, TLC27L2B, TLC27L7 LinCMOSTM PRECISION DUAL OPt:RATlONAL AMPLIFIERS equivalent schematic (each amplifier) VOO -\1+-___ R1 IN ----4-1 P5 P6 +-____+-__...J IN+ _ _ _ .-r---+-----+-OUT GNO TEXAS " , INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-631 TLC27L2, TLC27L2A, TLC27L2B, TLC27L7 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18 V Differential input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± VDD Input voltage range, VI (any input) ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 0.3 V to VDD Input current, II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 5 mA Output current, 10 (each output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 30 mA Total current into VDD terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 mA Total current out of ground terminal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 45 mA Duration of short-circuit current at (or below) 25 DC (see Note 3) . . . . . . . . . . . . . . . . . . .. Unlimited Continuous total dissipation ..................... , . . . . . . . . . .. See Dissipation Rating Table Operating free-air temperature, T A: C-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 0 DC to 70 DC I-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 40 DC to 85 DC M-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 55 DC to 125 DC Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65 DC to 150 DC Case temperature for 60 seconds: FK package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 260 DC Lead temperature 1,6 mm (1116 inch) from case for 10 seconds: D and P package ....... 260 DC Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package ........... 300 DC NOTES: 1. All voltage 2. Differential 3. The output dissipation values, except differential voltages, are with respect to network ground. voltages are at the noninverting input with respect to the inverting input. may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum rating is not exceeded (see application section). DISSIPATION RATING TABLE PACKAGE TA" 25°C POWER RATING 725 mW DERATING FACTOR TA = 70°C ABOVE TA = 25°C 5.8 mW/oC POWER RATING TA = B50C POWER RATING TA = 125°C POWER RATING D FK 464 mW 377 mW 1375 mW 11 mW/oC 880 mW 715 mW 275 mW JG 1050 mW 8.4 mW/oC 672 mW 546 mW 210 mW P 1000 mW 8.0 mW/oC 640 mW 520 mW recommended operating conditions C-SUFFIX MIN Common-mode input voltage, VIC Operating free·air temperature, T A I-SUFFIX MAX NOM M-SUFFIX MAX MIN NOM MAX 3 16 4 16 4 16 -0.2 3.5 -0.2 3.5 0 3.5 10V -0.2 8.5 -0.2 8.5 0 8.5 0 70 -40 85 -55 125 TEXAS 2~32 MIN 5 V Supply voltage, VDD II VDD= VDD = NOM ~ INSTRUMENlS POST OFFICE BOX 655303 • DALLAS, TEXAS 76265 UNIT V V °C TLC27L2C, TLC27L2AC, TLC27L2BC, TLC27L7C LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, PARAMETER TEST CONOITIONS TLC27L2C TLC27L2AC Via Voo -= Input offset voltage TLC27L2BC TLC27L7C Va RS Va RS Va RS Va RS = 1.4 V, = 50 G, = 1.4 V, = 50O, = l.4V, = 50 G, = 1.4 V, = 50 G, 5 V (unless TAt = 0, RL = 1 MG VIC = 0, RL = 1 MG VIC = 0, RL = 1 MG VIC = 0, RL = 1 MG VIC Average temperature coefficient MIN 25°C of input offset voltage 110 Input offset current (see Note 4) Va = 2.5 V, VIC = 2.5 V liB Input bias current (see Note 4) Va = 2.5 V, VIC = 2.5 V MAX 1.1 10 12 25°C 0.9 5 204 2000 Full range Full range 3000 25°C 170 Full range 500 mV I'V 1500 1.1 70°C 25°C 0.1 70°C 7 25°C 0.6 70°C 50 -0.2 Common-mode input UNIT 6.5 25°C 25°C VICR TYP Full range 25°C to "'via otherwise noted) "V/oc 300 600 pA pA -0.3 to to 4 4.2 V -0.2 voltage range (see Note 5) Full range V to 3.5 VOH VOL High-level output voltage Low-level output voltage Large-signal differential AVO voltage amplification CMRR Common-mode rejection ratio Supply-voltage rejection ratio kSVR 100 (AVOO/AVIO) = VIO = VID Va 100 mY, = -100mV, 0.25 V to 2 V, = VIC VOO 10L RL = = = 1 MG 0 1 MG VICR min = = RL Supply current Va (two amplifiers) No load 5 V to 10 V, 2.5 V, Va VIC = = 1.4 V 2.5 V, 25°C OoC 3.2 3 4.1 4.1 70°C 3 4.2 V 25°C 0 50 O°C 0 50 70°C 0 50 25°C 50 700 O°C 50 700 70°C 50 380 25°C OoC 65 94 60 95 70°C 60 95 25°C OoC 70 97 60 97 70°C 60 98 mV V/mV dB dB 25°C 20 34 O°C 24 42 70°C 16 28 p.A tFull range is O°C to 70°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. TEXAS ." INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-633 TLC21L2C, TLC21L2AC. TLC21L2BC. TLC21L7C LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, PARAMETER TEST CONDITIONS TLC27L2C TLC27L2AC Via Voo Input offset voltage TLC27L2BC TLC27L7C Va = 1.4 V, TAt VIC = 0, RS = 50 0, RL = 1 MO Va = l.4V, VIC = 0, RS = 50 0, RL = 1 MO Va = 1.4 V, VIC = 0, RS = 50 0, RL = 1 MO Va = l.4V, VIC = 0, RS = 50 0, RL = 1 MO Average temperature coefficient o'VIO 110 liB Input bias current Isee Note 4) MIN 25°C VIC = 5 V Va = 5 V, VIC = 5 V 10 0.9 Full range 235 25°C Full range 25°C 190 ,N p.V/oC 1 0.1 25°C 8 25°C 0.7 70°C voltage range Isee Note 5) 800 1900 70°C 25°C mV 2000 3000 Full range Common-mode input 5 UNIT 6.5 50 -0.2 VICR MAX 1.1 12 25°C 70°C Va = 5 V, TYP Full range 25°C to of input offset voltage Input offset current (see Note 4) 10 V (unless otherwise noted) 300 600 pA pA -0.3 to to 9 9.2 V -0.2 Full range to V 8.5 VOH VOL High-level output voltage Low-level output voltage VID = 100 mY, VID = -100 mY, RL = 1 MO 10L = a 25°C 8 8.9 O°C 7.8 8.9 70°C 7.8 8.9 a a a 25°C OOG 70°C Large-signal differential AVO voltage amplification CMRR Common-mode rejection ratio Supply-voltage rejection ratio kSVR 100 ILl VOO/LI Via) Va = 1 V to 6 V, RL = 1 MO VIC = VICR min VOO = 5 V to 10 V, Supply current Va = 5 V, (two amplifiers) No load Va = 1.4 V VIC =·5 V, 25°C 50 860 O°C 50 1025 70°C 50 660 25°C ooC 65 97 60 97 70°C 60 97 25°C ooC 70 97 60 97 70°C 60 98 29 V 50 50 V/mV dB dB 25°C ooc 36 46 66 70°C 22 40 tFul1 range is OOC to 70°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. TEXAS ~ 2-634 INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 mV 50 p.A TLC21L21, TLC21L2AI, TLC21L2BI, TLC21L71 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, PARAMETER TEST CONDITIONS TLC27L21 TLC27L2AI VIO Voo Input offset voltage TLC27L2BI TLC27L71 Vo ~ RS ~ Vo VIC Vo = 1.4 V, = 50 Il, = 1.4 V, = 50 Il, = 1.4 V, RS ~ RL RS Vo RS 1.4 V, VIC TAt ~ 0, = 1 Mil = 0, RL = 1 MD VIC = 0, RL = 1 Mil VIC = 0, 50 D, RL 50 D, ~ 1 Mil MIN 25°C of input offset voltage Input offset current (see Note 4) Vo = 2.5 V, VIC = 2.5 V liB Input bias current (see Note 4) Vo = 2.5 V, VIC = 2.5 V 10 0.9 5 240 2000 Full range Full range 3500 25°C 200 Full range mV ~V 2000 25°C 0.1 24 25°C 0.6 85°C 200 -0.2 voltage range (see Note 5) 900 MV/oC 1.1 85°C Common-mode input UNIT 7 25°C 25°C VICR MAX 1.1 13 25°C 85°C 110 TYP Full range 25°C to Average temperature coefficient aVIO 5 V (unless otherwise noted) 1000 2000 pA pA -0.3 to to 4 4.2 V -0.2 Full range V to 3.5 VOH VOL High-level output voltage Low-level output voltage Large-signal differential AVO voltage amplification CMRR Common-mode rejection ratio = VID = VID Vo = 100 (L>VOO/L> VIO) -100 mV, 0.25 V to 2 V, RL 10L RL = = = 1 Mil 0 1 Mil VIC ~ VICR min Supply-voltage rejection ratio kSVR 100 mV, VOO = = 5 V to 10 V, Supply current Vo (two amplifiers) No load 2.5 V, Vo VIC = 1.4 V = 2.5 V, 25°C 3.2 4.1 -40°C 3 4.1 85°C 3 4.2 V 25°C 0 50 -40°C 0 50 85°C 0 50 25°C 50 480 -40°C 50 900 85°C 50 330 25°C 65 94 -40°C 60 95 85°C 60 95 25°C 70 97 -40°C 60 97 85°C 60 98 mV V/mV dB dB 25°C 20 -40°C 31 34 54 85°C 15 26 MA tFull range is -40°C to 85°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. TEXAS • INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-635 TLC27L21, TLC27L2AI, TLC27L2BI, TLC27L71 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, PARAMETER TLC27L21 TLC27L2AI Via Voo TEST CONDITIONS Input offset voltage TLC27L2BI TLC27L71 TAt Va = 1.4 V, RS = 50 n, VIC = 0, Va = 1.4 V, VIC = 0, RS = RL = 1 Mn = 1 Mn VIC = 0, RL = 1 Mn VIC = 0, RL = 1 Mn 50 n, RL Va = 1.4 V, RS = 50 n, VO=l.4V, RS = 50 n, Average temperature coefficient "'VIO of input offset voltage 110 Input offset current (see Note 4) liB Input bias current (see Note 4) 10 V (unless otherwise noted) MIN 25°C Va = 5 V, VIC = 5 V 13 Full range 235 25°C Full range 25°C 190 0.1 26 25°C 0.7 220 85°C Full range ".V ".V/oC 1 25°C voltage range (see Note 5) 800 2900 85°C 25°C mV 2000 3500 Full range Common-mode input 5 UNIT 7 -0.2 VICR 10 0.9 25°C 85°C VIC = 5 V MAX 1.1 Full range 25°C to Va = 5 V, TYP 1000 2000 pA pA -0.3 to to 9 -0.2 9.2 V to V 8.5 VOH VOL High-level output voltage Low-level output voltage Large-signal differential AVD voltage amplification CMRR Common-mode rejection ratio Supply-voltage rejection ratio kSVR IDD (Ll.VDD/Ll.VIO) VID = 100 mY, = VID Va = -100 mY, 1 V to 6 V, RL = 1 Mn IOL = 0 RL = 1 Mn VIC = VICR min VDD = 5 V to 10 V, Supply Current Vo = 5 V, (two amplifiers) No load Va = 1.4 V VIC = 5 V, 25°C 8 -40°C 7.8 8.9 8.9 85°C 7.8 8.9 V 25°C 0 50 -40°C 0 50 85°C 0 50 25°C 50 860 -40°C 50 1550 85°C 50 585 25°C 65 97 -40°C 60 97 85°C 60 98 97 25°C 70 -40°C 60 97 85°C 60 98 Vim V dB dB 25°C 29 46 -40°C 49 86 85°C 20 36 tFul1 range is -40°C to 85°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. TEXAS ~ INSTRUMENTS 2-636 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 mV p.A TLC21L2M, TLC21L7M LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, PARAMETER TEST CONDITIONS TLC27L2M Via Voo Input offset voltage TLC27L7M Va ~ 1.4 V, 5 V (unless otherwise noted) TAt VIC = 0, RS = 50 n, RL = 1 Mn Va = 1.4 V, VIC = 0, RS = 50 n, RL = 1 Mn Average temperature coefficient MIN 25°C of input offset voltage 110 Input offset current (see Note 41 Vo = 2.5 V, VIC liB Input bias current (see Note 4) Va = 2.5 V, VIC = 2.5 V 2.5 V 170 500 Full range 3750 25°C 0.1 125°C 1.4 25°C 0.6 125°C 9 -0.3 25°C Common-mode input voltage range (see Note 5) to to 4 4.2 UNIT mV ~V ~V/oC 1.4 0 VICR 10 12 25°C 125°C ~ MAX 1.1 Full range 25°C to "'via TYP pA 15 nA pA 35 nA V 0 Full range to V 3.5 VOH VOL High-level output voltage Low-level output voltage Large-signal differential AVO voltage amplification CMRR Common-mode rejection ratio Supply-voltage rejection ratio kSVR 100 (Ll.VDo/Ll.VIO) VIO = 100 mY, VIO = -100mV, Va = 0.25 V to 2 V, RL = 1 Mn 10L = 0 RL = 1 Mn VIC = VICR min VOO = 5Vto10V, Supply current Va = 2.5 V, (two amplifiers) No load Va = 1.4 V VIC = 2.5 V, 25°C 3.2 4.1 -55°C 125 DC 3 4.1 3 4.2 V 25 DC 0 50 - 55°C 125 DC 0 50 0 50 25 DC 50 500 - 55°C 25 1000 125°C 25 DC 25 200 65 94 - 55 DC 125 DC 60 95 60 85 97 25°C 70 - 55°C 60 97 125°C 60 98 mV V/mV dB dB 25°C 20 34 - 55 DC 125 DC 35 60 14 24 I'A tFull range is - 55°C to 125 DC. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-637 TLC27L2M, TLC27L7M LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, PARAMETER TLC27l2M VIO Voo TEST CONDITIONS Input offset voltage TlC27l7M Vo RS Vo RS = 1.4 V, = 50 fl, = 1.4 V, = 50 fl, TAt = 0, Rl = 1 Mfl VIC = 0, Rl = 1 Mfl VIC Average temperature coefficient "VIO of input offset voltage 110 Input offset current (see Note 41 liB Input bias current (see Note 41 10 V (unless otherwise noted) MIN 25°C Vo = 5 V, 5 V, VIC VIC = = 5V 5V 25°C 190 Full range 25°C 0.1 1.8 25°C 0.7 125°C 10 25°C voltage range (see Note 51 UNIT mV ,"V ,"V/oC 1.4 125°C Common-mode input 800 4300 0 VICR 10 12 125°C = MAX 1.1 Full range 25°C to Vo TYP pA 15 nA pA 35 nA -0.3 to to 9 9.2 V 0 Full range V to 8.5 VOH VOL High-level output voltage low-level output voltage voltage amplification CMRR Common-mode rejection ratio Vo = 100 (6. VOO/6. ViOl -100 mV, 1 V to 6 V, = VIC Supply-voltage rejection ratio kSVR 100 mV, = VID large-signal differential AVO = VID VOO 10l RL = = = 1 Mfl 0 1 Mfl VICR min = = Rl Supply current Vo (two amplifiersl No load 5 V to 10 V, 5 V, Vo VIC = = 1.4 V 5 V, 25°C 8 8.9 - 55°C 7.8 8.8 125°C 7.8 9 V 25°C 0 50 - 55°C 0 50 125°C 0 50 25°C 50 860 - 55°C 25 1750 125°C 25 380 25°C 65 97 - 55°C 60 97 125°C 60 91 97 25°C 70 - 55°C 60 97 125°C 60 98 V/mV dB dB 25°C 29 46 - 55°C 56 96 125°C 18 30 tFuil range is - 55°C to 125°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. TEXAS • INSTRUMENTS 2-638 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 mV ~A TLC27L2C, TLC27L2AC, TLC27L2BC, TLC27L7C LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS operating characteristics. VOO = 5 V PARAMETER SR Slew rate at unity gain TEST CONDITIONS RL ~ 1 MO. CL ~ 20 pF. See Figure 1 Vn BaM Bl m 1 kHz, BOM Bl ..........- .....-vo >-4IH~-.>-- vo RL voo(b) Split-Supply (a) Single-Supply FIGURE 1. UNITY-GAIN AMPLIFIER 10 kll 10 kll Voo+ 1/2 Voo Vo Vo 100 Il (a) Single-Supply (b) Split-Supply FIGURE 2. NOISE TEST CIRCUIT 10 kO 10 kO 1000 1/2 Voo - - - - I -= Voo- (a) Single-Supply (b) Split-Supply FIGURE 3. GAIN-OF-100 INVERTING AMPLIFIER TEXAS . " INSTRUMENTS 2-642 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC27L2, TLC27L2A, TLC27L2B, TLC27L7 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS PARAMETER MEASUREMENT INFORMATION input bias current Because of the high input impedance of the TLC27L2 and TLC27L 7 op amps, attempts to measure the input bias current can result in erroneous readings. The bias current at normal room ambient temperature is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions are offered to avoid erroneous measurements: 1. Isolate the device from other potential leakage sources. Use a grounded shield around and between the device inputs (see Figure 4). Leakages that would otherwise flow to the inputs will be shunted away. 2. Compensate for the leakage of the test socket by actually performing an input bias current test (using a picoammeter) with no device in the test socket. The actual input bias current can then be calculated by subtracting the "open-socket" leakage readings from the readings obtained with a device in the test socket. One word of caution ... many automatic testers as well as some bench-top op amp testers use the servo-loop technique with a resistor in series with the device input to measure the input bias current (the voltage drop across the series resistor is measured and the bias current is calculated). This method requires that a device be inserted into the test socket to obtain a correct reading; therefore, an "opensocket" reading is not feasible using this method. 8 -- 5 CC C v- CC C - VIC 4 FIGURE 4. ISOLATION METAL AROUND DEVICE INPUTS (JG AND P DUAL-IN-LiNE-PACKAGEI low-level output voltage To obtain low-supply-voltage operation, some compromise was necessary in the input stage. This compromise results in the device low-level output being dependent on both the common-mode input voltage level as well as the differential input voltage level. When attempting to correlate low-level output readings with those quoted in the electrical specifications, these two conditions should be observed. If conditions other than these are to be used, please refer to Figures 14 through 19 in the Typical Characteristics of this data sheet. input offset voltage temperature coefficient Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This parameter is actually a calculation using input offset voltage measurements obtained at two different temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device and the test socket. This moisture will result in leakage and contact resistance, which can cause erroneous input offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the moisture also covers the isolation metal itself, thereby rendering it useless. It is \ suggested that these measurements be performed at temperatures above freezing to minimize error. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-643 TLC27L2, TLC27L2A, TLC27L2B, TLC27L7 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS PARAMETER MEASUREMENT INFORMATION full-power response FUll-power response, the frequency above which the op amp slew rate limits the output voltage swing, is often specified two ways ... full-linear response and full-peak response. The full-linear response is generally measured by monitoring the distortion level of the output while increasing the frequency of a sinusoidal input signal until the maximum frequency is found above which the output contains significant distortion. The full-peak response is defined as the maximum output frequency, without regard to distortion, above which full peak-to-peak output swing cannot be maintained. Because there is no industry-wide accepted value for "significant" distortion, the full-peak response is specified in this data sheet and is measured using the circuit of Figure 1. The initial setup involves the use of a sinusoidal input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same amplitude. The frequency is then increased until the maximum peak-to-peak output can no longer be maintained (Figure 5). A square wave is used to allow a more accurate determination of the point at which the maximum peak-to-peak output is reached. (a) f - 100 Hz 11 A (b) BOM > f > 100 Hz (e) f - BOM (d) f > BOM FIGURE 5. FULL-POWER-RESPONSE OUTPUT SIGNAL test time Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume, shorttest-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET devices and require longer test times than their bipolar and BiFET counterparts. The problem becomes more pronounced with reduced supply levels and lower temperatures. ~ TEXAS INSTRUMENTS 2-644 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 LinCMOSTM TLC27L2, TLC27L2A, TLC27L2B, TLC27L7 PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS DISTRIBUTION OF TLC27L2 INPUT OFFSET VOLTAGE DISTRIBUTION OF TLC27L2 INPUT OFFSET VOLTAGE 70 60 #. 50 I !l ";: ;:) 905 Amplifiers VOO - 5 V TA - 25°C P Package 60 P Package #.I 501----+---~--+---~ !l ";: ... 40 ;:) o 30 B 30 r---+---~_r--~ '0 C 4> "lii c. 401----+---~--+---~ 4> 4> !: 905 Amplifiers VOO - 10 V TA - 25 0C ---i--~---i--~---i--~--t r:: 4> " ~ 201----+---~--+---~ 20 10 oL-................- -5 -4 -3 -2 -1 0 2 3 4 Vlo-lnput Offset Voltage-mV 0&.-................-5 -4 -3 -2 -1 0 2 3 4 Vlo-lnput Offset Voltage-mV 5 FIGURE 7 FIGURE 6 DISTRIBUTION OF TLC27L2 AND TLC27L7 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT DISTRIBUTION OF TLC27L2 AND TLC27L7 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 356 Amplifiers tested 356 Amplifiers tested 60 60 VOO - 5 V TA - 25°C to 125°C '" P Package 50 #. i VOO - 10 V TA - 25°C to 125°C P Package I 50 .~ ...;:)o 5 !l ";: 40 ;:) 40 4> B 30 I----+-----il---+--+r:: 4> " ~ 20r-_r--r-~~- 10 0--..............I11III· -10-8-6-4-20246810 "'VIO- Temperature Coefficient-I'V/oC r-_r--~--+-- 0L.-..J..-~1111/111//11 -10-8-6-4-20246810 "'VIO - Temperature Coefficient -I'V1°C FIGURE 8 FIGURE 9 TEXAS • INSTRUMENTS POST OFFICE BOX 655303 " DALLAS, TEXAS 75265 2-645 TLC27L2, TLC27L2A, TLC27L2B, TLC27L7 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT 16 5r---~----~----~----~----~ VIO - 100 rnV TA - 25°C > .. I 14 I'--. --........ Cl ! '0 > ; ... 12 10 Co :::I o a; 8 r--- .............. > ...... 16 V ~ ............ ~ ~-10V i'-- J:. Cl I 0 - ~ !l 6 :f -..::e. VID - 100 rnV TA - 25°C 4 ::t ~ 2 o o OL---~----~--~----~--~ -10 o -2 -4 -6 -8 IOH-Hlgh-Level Output Current-rnA -20 -40 -10 -30 IOH - High-Level Output Current - rnA FIGURE 10 FIGURE 11 HIGH-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE HIGH-LEVEL OUTPUT VOLTAGE vs SUPPLY VOLTAGE VOO - 1.6 16 > .. 14 !:: 12 >... 10 I Cl ." VIO - 100 rnV RL - 1 MO TA - 25°C :::I .. a; J:. 8 I ::t 0 > 6 4 / 2 o > o 2 V 4 / ; VOO - 1.9 o VOO-2.0 !l VOO-2.1 S:::I V / Cl :f Cl '0 / > ..... .. ! VOO-1.8 V S:::I 0 ~ VOO - 1.7 I-----'!"""'-:--+--+---+ / 0 r----,----,..--r--~-.,..--_r_-r-...., ~ / J:. Cl ~ VOO-2.2 ::t ~ 6 8 10 12 VOO-Supply Voltage-V 14 16 VOO-2.3 ----Io".---t-.-----+--t---"-.,r--+--j------I ........+ - - I ---~I------i"-~+----t--+ =rI1~+j~_--I VOO - 2.4 '--_I...-......I_ ......._-l.._.....1..._~_....--1 -75 -50 -25 0 25 50 75 100 125 T A - Free-Air Ternperature- °C FIGURE 13 FIGURE 12 t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ~ TEXAS INSTRUMENTS 2-646 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC27L2. TLC27L2A. TLC27L2B. TLC27L7 LinCMOS"" PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t LOW-LEVEL OUTPUT VOLTAGE vs COMMON-MODE INPUT VOLTAGE LOW-LEVEL OUTPUT VOLTAGE vs COMMON-MODE INPUT VOLTAGE 700 > E I 8. l!! 600 .. ~ t\ ::::I o~ 500r-~~--~-'--~-r--~~~~ VOO - 5 V - - - IOL - 5 mATA - 25 DC C) ~ .3 ....I o -100 mV 100 \ ] ","'- 400 " -1 V....... VIO I I -1V I - 2.5 V --r----t----r--; ---- I ~ ~ ~r-.. ....... r-::: f::::: > 2 3 -- 250L-1-1--L-L:!~==t=t=1-J o 4 Vlc-Common-Mode Input Voltage-V 2 4 6 8 Vlc-Common-Mode Input Voltage-V FIGURE 14 ~ 700 I III C) ~ 600 I ~. o ~ ::::I 5- LOW-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE c5 ~ .3 ....I ~ 800 +--- I I 1 ~ 300 VOO-10V200 700 g 600 '5 Co '5 o 500 Qj r-- 5 mA VIO - -1 V VIC - 0.5 V - .3 ~ .3 ....I VOO - 5 V 300 Y /V )/ 400 > ~-----~~ 200 fo-' --- V r'" V / /"'" V VOO - 10 V o 100 ~ 100 o o 8. f--- IOL - ~ I '\. VOO - 5 V '\. 400 ....... ] 900 I IOL - 5 mA VIC - IVIO/21 TA - 25 DC I 500 I 10 FIGURE 15 LOW-LEVEL OUTPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE 800 J+ I--++---+---+-----t--------t~ "0 > \VID - - 10 V . IOL - 5 mA - TA - 25 D C - E ~ 450w-~--r-~~ l!! 500 I VO~ > > -2 -4 -6 o -8 -10 VID-Oifferentiallnput Voltage-V -75 -50 -25 0 25 50 75 100 125 T A - Free-Air Temperature - DC FIGURE 17 FIGURE 16 t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS . " INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-647 TLC27L2, TLC27L2A, TLC21L2B, TlC21L7 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t LOW-LEVEL OUTPUT VOLTAGE 1.0 LOW-LEVEL OUTPUT VOLTAGE vs vs LOW-LEVEL OUTPUT CURRENT LOW-LEVEL OUTPUT CURRENT I 3.0 I 0.9 - VID - -1V I VIC - 0.5 V (I) CI O.S -TA - 25°C .. ~ 0 VOO - 0.7 > ... ::J 0::J ... VOO - 4 ~ 0.6 0 VOO - 0.5 Qj > (I) ...I 0.4 0 0.3 ~ ...I 0.2 > 5y t ~ / ... 0.1 o/ o # 1/ VOO - o VOO - 10,/ 1.5 Qj ~ .3 ~ V I 5 0 .5 > 23456 7 IOL -Low-Level Output Current-rnA V o o S LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE ~ 2000r-~--~--~--~~r-~--~~ ~ 2000 ~ ~ RL - 1 MO -+--~c--------t",.c:.--+--=..4=---I c ~ 1600r-~--+--+--V~~~T--r-~ fl .~ 1S00 1600 () ~ 1400r-~--+--+~-h~~-+--~~ ~ 1400 ~ ~ 1200 .--t--+-+--/-+---II---+--="""'~ (I) ~1000r-~--+-+~-~~~-~~~=--i ~ SOOr-~--4~-+'~-b~~-T--=~~ 1& <=c 2! (I) 600 ;e 400 I 200 > SOO .~ 600 1& ~ 2 4 6 S 10 12 VOO-Supply Voltage-V 14 \ 1200 '0 Q 0 \ 16 VOO - 10 V ~ (I) ~I 0 RL - 1 MIJ_ \ ~ 1000 2! Q Q 30 FIGURE 19 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION 0- 7 / 5 10 15 20 25 IOL -Low-Level Output Current-rnA FIGURE 18 1S00 / / .3 1.0 ~ 16vj 2.0 ::J 0- S / ~ I ...I 0 3~ ~ I VIO - -1 V > I 2.5 VIC - 0.5 V TA - 25°C > '-.... "" ~ VOO - 5 V ....... 400 200 r-.... ....... ~ ~ ........... ....... r.......... r-- r- o -75 -50-25 o 25 50 75 100 125 TA - Free-Air Temperature - °C FIGURE 21 FIGURE 20 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS 2-648 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC27L2, TLC27L2A, TLC27L2B, TLC27L7 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt COMMON-MODE INPUT VOLTAGE POSITIVE LIMIT INPUT BIAS CURRENT AND INPUT OFFSET CURRENT vs vs FREE-AIR TEMPERATURE SUPPLY VOLTAGE 10000 16 / .. L- > / 100 :; 10 CI. .E ~ 8 o / 110 () I ./ g. / 10 '0 :!! / § C dI ~ ; , '" "0 liB :; /V II> !! 12 CI. ! 6 E E ; 8 , -/ 4 I -> , ; 45 105 65 85 TA-Free-Air Temperature- DC 2 o o 125 16 SUPPLY CURRENT vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 90 60 TA - Vo - VOO/2 No load 80 -55 D C 70 c( . "I 60 c "I 40 c ~ ~ ::s ::s 50 () () a::s 40 ~ 30 \. '\ ',,- CI. CI. CI. ::s (/) (/) I 30 I 20 Q Q I\. '\ 'I _I ~ooa 10 V ~ ........... ~ '-...... -.............. VOO - 5 V 9 20 Vo - VOO/2 No load \ 50 9 14 FIGURE 23 SUPPLY CURRENT . v 10 12 4 6 8 VOO-Supply Voltage-V 2 FIGURE 22 c( / v / / / / / / () 0.1 25 / ~ 14 ./ c( I c 2~DC TAI- Voo - 10 V VIC - 5 V 1000 ESee Note 4 -- :--- t-- 10 10 0 0 2 10 12 6 8 4 VOO-Supply Voltage-V 14 16 o -75 -50 -25 0 25 50 75 100 125 TA-Free-Air Temperature- DC FIGURE 25 FIGURE 24 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. NOTE 4: The typical values of input bias current and input offset current below 5 pA were determined mathematically. TEXAS • INSTRUMENTS POST OFFICE BOX 665303 • DALLAS. TEXAS 75265 2-649 TLC27L2, TLC27L2A, TLC27L28, TLC27L7 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t SLEW RATE vs SUPPLY VOLTAGE SLEW RATE vs FREE-AIR TEMPERATURE 0.07 AV I = 1 1 VIPP = 1 V Rl = 1 MO Cl = 20 pF TA = 25°C See Figure 1 0.06 ~ :> I 0.05 ! 0.04 - ~ 0.03 a: iii ./ V/ /' /' V ~ :> I !!! ., a: /' 0.04I----"'jo......,.--+-+--+--''''''d~ ~ .! 0.031--f--f+--+=--...t:-"'"""-..t--+-""""",p....-I / I 0.07 ~"""-'""T""--r---'-....,..-..,....-""--....., Rl = 1 MO Cl = 20 pF 0.061----1-:-0.....-+ AV = 1 See Figure 1 0.051-----,1---t"""""-'r''''''-::--+--t---+--+----1 til I ~ 0.02 ~ 0.02 0.011----I---+--+--VOO = 5 V VIPP = 2.5 V 0.01 0.00 1.4 1.3 .., 1.2 CD a: 1.1 ~ CD iii 1.0 "C CD .~ iii 0.9 E 0 0.8 0.001...---1._....1.._......._.1....--1__--1._....1..---1 o 2 6 8 10 12 4 VOO-Supply Voltage-V 14 16 -75 -50 -25 0 25 50 75 100 125 TA - Free-Air Temperature - °C FIGURE 26 FIGURE 27 NORMALIZED SLEW RATE vs FREE-AIR TEMPERATURE MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY 10 , ~ VOO = Av = 1 VIPP = 1 VRl = 1 Mn_ Cl = 20 pF VOO = 10 V 5~ ~ ". 0.7 0.6 8 ., 7 0 . 6 :I 5 -VOO = 5V 0 4 I .t:: > So :I ~ \\1\ > CD Cl ~ 2 9 \ 11111 I I IIIIII I l: 0 r0 > I - 1\ 1\ I IIIIII 1\\ Rl = 1 MO See Figure 1 I '\ 0.5 -75 -50 -25 0 25 50 75 100 125 TA - Free-Air Temperature - °C '< '\ 11111 3 2 TA - 125°C TA - 25°C VTA _ -55°C VOO = 1OV\r--.. I I o 0.1 FIGURE 28 !~ ~ i I IIII ...... 11111 10 f-Frequency-kHz 100 FIGURE 29 toata at high and low temperatures are applicable only within the rated operating free·air temperature ranges of the various devices. -1!1 TEXAS INSTRUMENTS 2~50 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC21L2, TLC21L2A, TLC21L28, TLC21L7 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt UNITY-GAIN BANDWIDTH vs FREE-AIR TEMPERATURE SUPPLY VOLTAGE 150 I I\. ...I -5 'C °i 'C c \ 110 I\. "\ 90 c °iii f'.. / ... 'C !c ~ 10 3 "" - 10 V RL = 1 MO TA = 25°C ~ I-". ~ 102 ~ .... 30° .::: "~vo "'- :c 60° Gl -e- o I VOO - 5 V Vi - 10 mV_ TA = 25°C See Figure 3 "'""'- .s:: 25 r'\. '\ FIGURE 35 I '" '" -e- 24 37 Gl ~ 28 PHASE MARGIN vs CAPACITIVE LOAD ~ ""'" I VOO - 5 V Vi = 10 mV _ CL = 20 pF See Figure 3 - .s:: FIGURE 34 :l 35 I ............... Vi = 10 mV _ CL = 20 pF 40 TA - 25°C See Figure 3 ~ 38 5: .! a. PHASE MARGIN vs FREE-AIR TEMPERATURE "-..... r---.... 5Q. .5 "'""- 40 80 60 CL -Capacitive Load-pF 75 E Gl ~ 50 ':; C' "'" 100 LJ c > 25 o 1 10 100 f-Frequency-Hz 1000 FIGURE 37 FIGURE 36 tO ata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS • INSTRUMENTS 2-652 POST OFFICE BOX 655303 ' DALLAS. TEXAS 75265 TLC27L2, TLC27L2A, TLC27L2B, TLC27L7 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA single-supply operation While the TLC27L2 and TLC27L 7 perform well using dual power supplies (also called balanced or split supplies), the design is optimized for single-supply operation. This design includes an input common-mode voltage range that encompasses ground as well as an output voltage range that pulls down to ground. The supply voltage range extends down to 3 V (C-suffix types), thus allowing operation with supply levels commonly available for TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply operation is recommended. Many single-supply applications require that a voltage be applied to one input to establish a reference level that is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see Figure 38). The low input bias current of the TLC27L2 and TLC27L7 permits the use of very large resistive values to implement the voltage divider, thus minimizing power consumption. The TLC27L2 and TLC27L7 work well in conjunction with digital logic; however, when powering both linear devices and digital logic from the same power supply, the following precautions are recommended: 1. Power the linear devices from separate bypassed supply lines (see Figure 39); otherwise the linear device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital logic. 2. Use proper bypass techniques to reduce the probability of noi~e-induced errors. Single capacitive decoupling is often adequate; however, high-frequency applications may require RC decoupling. voo R3 VREF - Voo R1 + R3 Vo FIGURE 38. INVERTING AMPLIFIER WITH VOLTAGE REFERENCE (a) Common Supply Rails (bl Separate Bypassed Supply Rails (preferred) FIGURE 39. COMMON VS SEPARATE SUPPLY RAILS TEXAS • INSTRUMENlS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-653 TLC27L2, TLC27L2A, TLC27L28, TLC27L7 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA input characteristics The TLC27L2 and TLC27L7 are specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction. Exceeding this specified range isa common problem, especially in single-supply operation. Note that the lower range limit includes the negative rail, while the upper range limit is specified at VOO -1 Vat T A = 25 DC and at VOO -1.5 V at all other temperatures. The use of the polysilicon-gate process and the careful input circuit design gives the TLC27L2 and TLC27L7 very good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate) alleviates the polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude. The offset voltage drift with time has been calculated to be typically 0.1 /LV/month, including the first month of operation. Because of the extremely high input impedance and resulting low bias current requirements, the TLC27L2 and TLC27L 7 are well suited for low-level signal processing; however, leakage currents on printed circuit boards and sockets can easily exceed bias current requirements and cause a degradation in device performance. It is good practice to include guard rings around inputs (similar to those of Figure 4 in the Parameter Measurement Information section). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input (see Figure 40). The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation. noise performance The noise specifications in op amp circuits are greatly dependent on the current in the first-stage differential amplifier. The low input bias current requirements of the TLC27L2 and TLC27L7 result in a very low noise current, which is insignificant in most applications. This feature makes the devices especially favorable over bipolar devices when using values of circuit impedance greater than 50 kfl, since bipolar devices exhibit greater noise currents. (a) Noninverting Amplifier (b) Inverting Amplifier (e) Unity-Gain Amplifier FIGURE 40. GUARD-RING SCHEMES output characteristics The output stage of the TLC27L2 and TLC27L7 is designed to sink and source relatively high amounts of current (see typical characteristics). If the output is subjected to a short-circuit condition, this high current capability can cause device damage under certain conditions. Output current capability increases with supply voltage. All operating characteristics of the TLC27L2 and TLC27L7 were measured using a 20-pF load. The devices will drive higher capacitive loads; however, as output load capacitance increases, the resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figure 41). In many cases, adding a small amount of resistance in series with the load capacitance will alleviate the problem. -I!} TEXAS INSTRUMENTS 2-654 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC27L2, TLC27L2A, TLC27L2B, TLC27L7 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA (b) CL - 260 pF, RL - No load (a) CL - 20 pF, RL - No load 2.5 V Va CL TA - 25°C f - 1 kHz VIPP - 1 V -2.5 V (d) (c) CL - 310 pF, RL - No load Te~t Circuit FIGURE 41. EFFECT OF CAPACITIVE LOADS AND TEST CIRCUIT Although the TLC27L2 and TLC27L7 possess excellent high-level output voltage and current capability, methods for boosting this capability are available, if needed. The simplest method involves the use of a pullup resistor (Rp) connected from the output to the positive supply rail (see Figure 42). There are two disadvantages to the use of this circuit. First, the NMOS pulldown transistor N4 (see equivalent schematic) must sink a comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with an on-resistance between approximately 60 Q and 180 Q, depending on how hard the op amp input is driven. With very low values of Rp, a voltage offset from 0 V at the output will occur. Second, pullup resistor Rp acts as a drain load to N4 and the gain of the op amp is reduced at output voltage levels where N5 is not supplying the output current. feedback Op amp circuits nearly always employ feedback, and since feedback is the first prerequisite for oscillation, some caution is appropriate. Most oscillation problems result from driving capacitive loads (discussed previously) and ignoring stray input capacitance. A small-value capacitor connected in parallel with the feedback resistor is an effective remedy (see Figure 43). The value of this capacitor is optimized empirically. ~ TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-655 TLC27L2, TLC27L2A, TLC27L28, TLC27L7 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA c Voo -,-V""D""D_-..;.V-",O,Rp - IF + IL + Ip Ip - Pullup current required by the op amp (typically 500 ,..A) FIGURE 42. RESISTIVE PULLUP TO INCREASE VOH FIGURE 43. COMPENSATION FOR INPUT CAPACITANCE electrostatic discharge protection The TLC27L2 and TLC27L7 incorporate an internal electrostatic discharge (ESD) protection circuit that prevents functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2. Care should be exercised, however, when handling these devices, as exposure to ESD may result in the degradation of the device parametric performance. The protection circuit also causes the input bias currents to be temperature-dependent and have the characteristics of a reverse-biased diode. latch-up Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC27L2 and TLC27L 7 inputs and outputs were designed to withstand - 1OO-mA surge currents without sustaining latch-up; however, techniques should be used to reduce the chance of latch-up whenever possible. Internal protection diodes should not, by design, be forward biased. Applied input and output voltage should not exceed the supply voltage by more than 300 mY. Care should be exercised when using capacitive coupling on pulse generators. Supply transients should be shunted by the use of decoupling capacitors (0.1 /LF typical) located across the supply rails as close to the device as possible. The current path established ·if latch-up occurs is usually between the positive supply rail and ground and can be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the supply voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and the forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance of latch-up occurring increases with increasing temperature and supply voltages. "'II TEXAS INSTRUMENTS 2-656 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC27L2, TLC27L2A, TLC27L2B, TLC27L7 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA 500 kG 5V 500 kG O.l".F I 500 kG 500 kG FIGURE 44. MULTIVIBRATOR 100 kG 100 kG SET --'l/li'Y-+---1 Voo RESET --'l/li'Y-+---1 100 kG 33 kG -=- NOTE: VOO = 5 V to 16 V FIGURE 45. SET/RESET FLIP-FLOP ~ TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-657 TLC27L2, TLC27L2A, TLC27L2B, TLC27L7 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA Voo 1/2 VI - - - - I >---..---=90 kfl Voo C Xl S1 A TLC4066 1 ANALOG 2 1 9 kfl C X2 S2 A B 2 B SWITCH 1 kfl NOTE: VOO ~ 5 V to 12 V FIGURE 46. AMPLIFIER WITH DIGITAL GAIN SELECTION 10 kfl Voo 20 kfl >--I~-"'-e-- Vo 100 kfl NOTE: VDD ~ 5 V to 16 V FIGURE 47. FULL-WAVE RECTIFIER TEXAS . " INSTRUMENTS 2-658 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 Vo TLC27L2, TLC27L2A, TLC27L2B, TLC27L7 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA 0.0161'F 5V 10 kO 10 kO >-+-+-- Va 112 NOTE: Normalized to Fe = 1 kHz and RL = 10 kO FIGURE 48. TWO-POLE LOW-PASS BUTTERWORTH FILTER R2 100 kO R1 10 kO VOO >-......- - V O 1/2 R1 10 kO R2-=100 kO NOTES: VOD = 5 V to 16 V R2 Va = R1 (VIB-VIA) FIGURE 49. DIFFERENCE AMPLIFIER TEXAS • INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-<;59 2-660 TLC27L4, TLC27L4A, TLC27L4B, TLC27L9 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS D3142, OCTOBER 1987-REVISED OCTOBER 1990 • Trimmed Offset Voltage: TLC27L9 ... 900 /lV Max at 25°C, VDD = 5 V 0, J, OR N PACKAGE (TOP VIEW) 1 OUT • Input Offset Voltage Drift ... Typically 0 ..1 /lV/Month, Including the First 30 Days • Wide Range of Supply Voltages Over Specified Temperature Range: o °C to 70°C , .. 3 V to 16 V - 40°C to 85 °C , .. 4 V to 16 V -55°C to 125°C, .. 4 V to 16 V 1 )N 1 IN + VDD 21N+ 21N2 OUT ~ FK PACKAGE ITOP VIEW) • Single-Supply Operation • Common-Mode Input Voltage Range Extends Below the Negative Rail (C-Suffix, I-Suffix types) • Ultra-Low Power ... Typically 195 /lW at 25°C, VDD = 5 V 3 • Output Voltage Range Includes Negative Rail • High Input Impedance ... 10 12 0 Typical • ESD-Protection Circuitry • Small-Outline Package Option Also Available in Tape and Reel • Designed-In Latch-Up Immunity IN+ NC VDD NC :?IN+ at 25°C O°C to 70°C -40°C to 85°C -55°C 900 ,"V CHIP CERAMIC PLASTIC OUTLINE CARRIER DIP DIP (D) (FKI (J) (N) TLC27L9CD - - TLC27L9CN - - TLC27L4BCN 6 16 8 14 15 41N+ NC GND NC 31N+ #. 30 .,I ~ 25~-+---4---~---+ - - TLC27L4ACN :::> - TLC27L4CN '0~ - - TLC27L91N tn 2 mV TLC27L4BID - - TLC27L4BIN 5 mV TLC27L4AID - - TLC27L4AIN 10 mV TLC27L41D - - TLC27L41N 900 ,"V TLC27L9MD TLC27L9MFK TLC27L9MJ TLC27L9MN 10 mV TLC27L4MD TLC27L4MFK TLC27L4MJ TLC27L4MN 900 ,"V TLC27L91D 17 35 - 5 mV TLC27L4ACD 10 mV TLC27L4CD 18 5 DISTRIBUTION OF TLC27L9 INPUT OFFSET VOLTAGE SMALL 2 mV TLC27L4BCD 1 20 19 NC - No internal connection PACKAGE TA 2 4 9 1011 12 13 AVAILABLE OPTIONS Vlomax ____...r- 4 OUT 4 IN4 IN + GND 31N+ 31N3 OUT 20 ~-+---+----~-+ E 15 I---+---+--~j'" !! : 10 ~--+--+---j- 5 ~-+---+--- to 125°C The 0 package is available in tape and reel. Add R suffix to the device type, ie.g., TLC27L9CDR). Vlo-lnput Offset Voltage-,..V LinCMOS is a trademark of Texas Instruments Incorporated PRODUCTION DATA documants contain information currant as of publication data. Products conform to spacifications por the torms of Taxas Instruments standard warranty. Production processing does not nacassarily include testing of all parameters. -IJ1 Copyright © 1990, Texas Instruments Incorporated TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-661 TLC27L4, TLC27L4A, TLC27L4B, TLC27L9 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS description The TLC27L4 and TLC27L9 quad operational amplifiers combine a wide range of input offset voltage grades with low offset voltage drift, high input impedance, extremely low power, and high gain. These devices use Texas Instruments silicon-gate LinCMOS'· technology, which provides offset voltage stability far exceeding the stability available with conventional metal-gate processes. The extremely high input impedance, low bias currents, and low power consumption make these costeffective devices ideal for high gain, low frequency, low power applications. Four offset voltage grades are available (C-suffix and I-suffix types), ranging from the low-cost TLC27L4 (10 mV) to the high-precision TLC27L9 (900 /lV). These advantages, in combination with good common-mode rejection and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs. In general, many features associated with bipolar technology are available on LinCMOST. operational amplifiers, without the power penalties of bipolar technology. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are easily designed with the TLC27L4 and TLC27L9. The devices also exhibit low voltage single-supply operation and ultralow power comsumption, making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input voltage range includes the negative rail. A wide range of packaging options is available, including small-outline and chip carrier versions for highdensity system applications. The device inputs and outputs are designed to withstand - 100-mA surge currents without sustaining latch-up. The TLC27L4 and TLC27L9 incorporate internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices, as exposure to ESD may result in the degradation of the device parametric performance. C-suffix devices are characterized for operation from 0 DC to 70 DC. I-suffix devices are characterized for operation from - 40 DC to 85 DC. M-suffix devices are characterized for operation from - 55 DC to 125 DC. TEXAS . " INSTRUMENTS 2-662 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC27L4, TLC27L4A, TLC27L4B, TLC27L9 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS equivalent schematic (each amplifier) Voo Rl 'N-i ....... ----+1 IN+ P5 P6 ----+------+---..... .-~---+---------+-OUT N6 N7 R7 GNO TEXAS • INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-663 TLC27L4, TLC27L4A, TLC27L4B, TLC27L9 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature (unless otherwise noted) Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18 V Differential input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. ± VDD Input voltage range, VI (any input) .................... , . . . . . . . . . . . . . . .. - 0.3 V to VDD Input current, II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 5 mA Output current, 10 (each output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 30 mA Total current into VDD terminal .............................................. 45 mA Total current out of ground terminal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 45 mA Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . .. Unlimited Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. See Dissipation Rating Table Operating free-air temperature, T A: C-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. O°C to 70°C I-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 40°C to 85 °C M-suffix .................... ; . . . . . .. - 55°C to 125°C Storage temperature range ......................................... - 65°C to 150°C Case temperature for 60 seconds: FK package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 260°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D andN package . . . . . .. 260°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package ............ 300°C NOTES: 1. All voltage values, except differential voltages, are with respect to network ground. 2. Differential voltages are at the noninverting input with respect to the inverting input. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded (see application section). DISSIPATION RATING TABLE PACKAGE TA s 25°C POWER RATING D FK 950mW 1375 mW J 1375 mW N 1575 mW DERATING FACTOR TA 70°C TA - 85°C POWER RATING TA - 125°C POWER RATING 608 mW 880 mW 494mW 715 mW 275 mW 11 mW/OC 880mW 715 mW 275 mW 12.6 mW/OC 1008 mW 819 mW ABOVE TA = 25 D C 7.6 mW/OC 11 mW/oC a POWER RATING recommended operating conditions C-SUFFIX MIN Supply voltage, VDD Common-mode input voltage, VIC Operating free-air temperature, T A II VDD = 5 V VDD = 10V NOM MIN NOM MAX MIN NOM MAX 3 16 4 16 3.5 4 -0.2 16 -0.2 -0.2 3.5 0 3.5 8.5 -0.2 8.5 0 8.5 0 70 -40 85 -55 125 TEXAS ~ INSTRUMENTS 2-664 M-SUFFIX I-SUFFIX MAX POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 UNIT V V °C TLC27L4C, TLC27L4AC, TLC27L4BC, TLC27L9C LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature. PARAMETER TEST CONDITIONS TLC27L4C TLC27L4AC VIO Voo Input offset voltage TLC27L4BC TLC27L9C Vo = 1,4V, VIC = 0, RS = 500, RL = 1 MO VO=1,4V, VIC = 0, RS = 500, RL = 1 MO Vo = 1,4V, VIC = 0, RS = 500, RL = 1 MO VO=1,4V, VIC = 0, RS = 500, RL = 1 MO Average temperature coefficient aVIO 5 V (unless otherwise noted) TAt MIN 25°C Input offset current (see Note 4) Vo = 2.5 V, VIC = 2.5 V liB Input bias current (see Note 4) Vo = 2.5 V, VIC = 2.5 V 0.9 5 240 2000 Full range Full range 3000 25°C 200 Full range mV I"V 1500 0.1 70°C 7 25°C 0.6 70°C 40 -0.2 voltage range (see Note 5) 900 I"V/oC 1.1 25°C Common-mode input UNIT 6.5 25°C 25°C VICR 10 12 25°C 70°C 110 MAX 1.1 Full range 25°C to of input offset voltage TYP 300 600 pA pA -0.3 to to 4 4.2 V -0.2 Full range V to 3.5 VOH VOL High-level output voltage Low-level output voltage Large-signal differential AVO voltage amplification CMRR Common-mode rejection ratio Supply-voltage rejection ratio kSVR 100 (aVOO/avIO) VID = 100 mV, VIO = -100 mV, Vo = 0.25 V to 2 V, RL = 1 MO IOL = 0 RL = 1 MO VIC = VICR min VOO=5Vt010V, Supply current Vo = 2.5 V, (four amplifiers) No load Vo = 1,4 V VIC = 2.5 V, 25°C 3.2 4.1 O°C 3 4.1 70°C 3 4.2 V 25°C 0 50 O°C 0 50 70°C 0 50 25°C 50 520 O°C 50 680 70°C 50 380 25°C 65 94 O°C 60 95 70°C 60 95 25°C 70 97 O°C 60 97 70°C 60 98 mV V/mV dB dB 25°C 40 68 O°C 48 84 70°C 31 56 I"A tFull range is O°C to 70°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. TEXAS • INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-665 TLC27L4C. TLC27L4AC. TLC27L4BC. TLC27L9C LinCMOS~ PRECISION QUAD OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, PARAMETER TLC27L4C TLC27L4AC Via Voo TEST CONDITIONS Input offset voltage TLC27L4BC TLC27L9C Va = 1.4 V, = 50 G, Va = 1.4V, RS = 50 G, Va = 1.4V, RS = Full range RL = 1 Mil Full range VIC 50 G, Average te.mperature coefficient o'VIO MIN 25°C = 1 Mil = 0, RL = 1 MG VIC = 0, RL = 1 Mil VIC = 0, RL Va = 1.4 V, RS TAt VIC = 0, RS = 50 Il, 10 V (unless otherwise noted) = Input offset current (see Note 4) Va 5 V, VIC = 5 V liB Input bias current (see Note 4) Va = 5 V, VIC = 5 V O.g 5 260 2000 Full range 1200 "V 1900 1 25°C 0.1 70°C 7 25°C 0.7 70°C 50 -0.2 voltage range (see Note 5) mV 3000 210 25°C Common-mode input UNIT 6.5 25°C 25°C VICR 10 Full range 70°C 110 MAX 1.1 12 25°C 25°C to of input offset voltage TYP "V/oC 300 600 pA pA -0.3 to to 9 9.2 V -0.2 Full range to V 8.5 VOH VOL High-level output voltage Low-level output voltage Large-signal differential AVO voltage amplification CMRR Common-mode rejection ratio Supply-voltage rejection ratio kSVR 100 (AVoo/AVIOr VIO = 100 mY, VIO = -100 mY, Va = 1 V to 6 V, RL = 1 Mil 10L = 0 RL = 1 Mil VIC = VICR min VOO = 5Vto 10V, Supply current Va = 5 V, (four amplifiers) No load Va = 1.4 V VIC = 5 V, 25°C 8 O°C 7.8 8.9 8.9 70°C 7.8 8.9 V 25°C OoC 0 50 0 50 70°C 0 50 25°C OoC 50 870 50 1020 70°C 50 660 25°C 65 97 O°C 60 97 70°C 60 97 25°C 70 97 O°C 60 97 70°C 60 98 V/mV dB dB 25°C Ooc 57 92 72 132 70°C 44 80 tFull range is O°C to 70°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. TEXAS • INSTRUMENTS 2-666 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 mV "A TLC27L41, TLC27L4AI, TLC27L4BI, TLC27L91 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, PARAMETER TLC27L41 TLC27L4AI V,O Voo TEST CONDITIONS Input offset voltage TLC27L4BI TLC27L91 Vo RS Vo RS Vo RS Vo RS = 1.4V, = 500, = 1.4 V, = 500, = 1.4 V, = 500, = 1.4 V, = 500, TAt V'C = 0, RL = 1 MO V'C = 0, RL = 1 MO Full range ',0 liB Input offset current (see Note 4) Input bias current (see Note 4) Vo = = 2.5 V, 2.5 V, V'C V'C = = 2.5 V 2.5 V 25°C 240 200 Full range ,"V ,"V/oC 1.1 0.1 85°C 24 25°C 0.6 85°C voltage range (see Note 5) 900 2000 25°C 25°C mV 2000 3500 25°C Common-mode input 5 UNIT 7 200 -0.2 V,CR 10 0.9 B5°C Vo MAX 1.1 13 25°C 25°C to of input offset voltage TVP Full range Full range V'C = 0, RL = 1 MO MIN 25°C V'C = 0, RL = 1 MO Average temperature coefficient o'VIO 5 V (unless otherwise noted) 1000 2000 pA pA -0.3 to to 4 4.2 V -0.2 Full range V to 3.5 VOH VOL High-level output voltage Low-level output voltage Large-signal differential AVO voltage amplification CMRR Common-mode rejection ratio Supply-voltage rejection ratio kSVR 100 (,1 Voo/,1 V,O) = V,O = V,O Va 100 mV, = -100 mV, 0.25 V to 2 V, = V'C VOO IOL RL = = = 1 MO 0 1 MO V,CR min = = RL Supply current Vo (four amplifiers) No load 5Vt010V, 2.5 V, Va V'C = = 1.4 V 2.5 V, 25 DC 3.2 4.1 -40°C 3 4.1 85°C 3 4.2 V 25°C 0 50 -40 DC 85 DC 0 50 0 50 25°C 50 480 -40°C 50 900 85°C 25 DC 50 330 65 94 -40°C 60 95 85°C 60 95 25°C 70 97 -40°C 85 DC 60 97 60 98 mV V/mV d8 dB 25°C 39 68 -40 DC 62 108 85°C 29 52 ,"A tFull range is - 40°C to 85 DC. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. TEXAS • INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-667 TLC27L41, TLC27L4AI, TLC27L4BI, TLC27L91 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature. Voo == 10 V (unless otherwise noted) PARAMETER TEST CONOITIONS TLC27L41 TLC27L4AI Via Input offset voltage TLC27L4BI TLC27L91 Va = 1.4 V, RS = 50O, VIC = 0, RL = 1 Mil Va = 1.4 V, VIC = 0, RS = 50O, RL = 1 Mil 110 liB Input offset current (see Note 4) RL = 1 Mil Full range Va = 1.4 V, VIC = 0, RL = 1 Mil 25°C Full range Input bias current (see Note 4) Va = 5 V, VIC = 5 V 260 25°C 210 26 25°C 0.7 85°C voltage range (see Note 5) Full range p.V p.V/oC 1 0.1 220 -0.2 VICR 1200 2900 25°C 25°C mV 2000 3500 85°C Common-mode input 5 UNIT 7 85°C VIC = 5 V 10 13 25°C to Va = 5 V, MAX 1.1 0.9 25°C Full range VIC = 0, of input offset voltage TYP Full range Va = 1.4 V, RS = 50O, MIN 25°C RS = 50O, Average temperature coefficient "via TAt 1000 2000 pA pA -0.3 to to 9 -0.2 9.2 V to V 8.5 VOH VOL High-level output voltage Low-level output voltage Large-signal differential AVO voltage amplification CMRR Common-mode rejection ratio Supply-voltage rejection ratio kSVR 100 (fl.VODIfl.VIO) VIO = 100 mY, VIO = -100 mY, Va = 1 V to 6 V, RL = 1 Mil IOL = 0 RL = 1 Mil VIC = VICR min VOo=5Vt010V, Supply cunent Va = 5 V, (four amplifiers) No load Va = 1.4 V VIC = 5 V, 25°C 8 8.9 -40°C 7.8 8.9 85°C 7.8 8.9 V 25°C 0 50 -40°C 0 50 85°C 0 50 25°C 50 800 -40°C 50 1550 85°C 50 585 25°C 65 97 -40°C 60 97 85°C 60 98 25°C 70 97 -40°C 60 97 85°C 60 98 V/mV dB dB 25°C 57 92 -40°C 98 172 85°C 40 72 tFull range is -40°C to 85°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. TEXAS • 2-668 INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 mV p.A TLC21L4M, TLC21L9M LinCMOSTM PRECISION QUAD OPEIiATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature. PARAMETER =0 TEST CONDITIONS TLC27L4M VIO Voo Input offset voltage TLC27L9M Vo RS Vo RS = 1.4 V, = 50 {l, = 1.4 V, = 50 {l, RL V (unless TAt VIC = 0, RL = 1 M{l VIC 5 = 0, = 1 M{l Average temperature coefficient MIN 25°C of input offset voltage 110 Input offset current (see Note 4) Vo = 2.5 V, VIC = 2.5 V liB Input bias current (see Note 4) Vo = 2.5 V, VIC = 2.5 V MAX 1.1 10 200 900 12 25°C Full range 3750 25°C 0.1 125°C 1.4 25°C 0.6 125°C 9 25°C Common-mode input voltage range (see Note 5) UNIT mV ",V ",V/oC 1.4 125°C 0 VICR TYP Full range 25°C to "'via otherwise noted) pA 15 nA pA 35 nA -0.3 to to 4 4.2 V 0 Full range V to 3.5 VOH VOL High-level output voltage Low-level output voltage Large-signal differential AVO voltage amplification CMRR Common-mode rejection ratio = VIO = VIO Vo = 100 (AVDO/AVIO) -100 mY, 0.25 V to 2 V, = VIC Supply-voltage rejection ratio kSVR 100 mY, VOO 10L RL = 1 M{l = = 0 1 M{l VICR min = = RL Supply current Vo (four amplifiers) No load 5Vt010V, 2.5 V, Va VIC = = 1.4 V 2.5 V, 25°C 3.2 4.1 -55°C 3 4.1 125°C 3 4.2 V 25°C 0 50 -55°C 0 50 125°C 0 50 25°C 50 480 -55°C 25 950 125°C 25 200 25°C 65 94 - 55°C 60 95 125°C 60 85 25°C 70 97 -55°C 60 97 125°C 60 98 mV V/mV dB dB 25°C 39 68 -55°C 69 120 125°C 27 48 p.A tFull range is - 55°C to 125°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. TEXAS • INSTRUMENTS POST OFFIce BOX 655303 • DALLAS. TeXAS 75265 2-669 TLC27L4M, TLC27L9M LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, VDD PARAMETER TEST CONDITIONS TLC27L4M Via Input offset voltage TLC27L9M Va = 1.4 V, VIC = 0, RS = 500, RL = 1 MO Va = 1.4 V, VIC = 0, RS = 500, RL = 1 MO Average temperature coefficient aVIO 10 V (unless otherwise noted) TAt MIN 25°C Input offset current (see Note 4) Va = 5 V, VIC = 5 V lIB Input bias current (see Note 4) Va = 5 V, VIC = 5 V 210 1200 Full range 4300 25°C 0.1 125°C 1.8 25°C 0.7 125°C 10 25°C Common-mode input voltage range (see Note 5) UNIT mV p.V p.V/oC 1.4 0 VICR 10 12 25°C 125°C 110 MAX 1.1 Full range 25°C to of input offset voltage TYP pA 15 nA pA 35 nA -0.3 to to 9 9.2 V 0 Full range to V 8.5 VOH VOL High-level output voltage Low-level output voltage Large-signal differential AVO voltage amplification CMRR Common-mode rejection ratio Supply-voltage rejection ratio kSVR 100 (Ll.Voo/Ll.VIO) VIO VIO Va = = = RL = 1 MO 100 mY, -100 mY, 1 V to 6 V, 10L = 0 RL = 1 MO VIC = VICR min VOO=5Vtol0V, Supply current Va = 5 V, (four amplifiers) No load Va = 1.4 V VIC = 5 V, 25°C 8 8.9 -55°C 7.8 8.8 125°C 7.8 9 V 25°C 0 50 -55°C 0 50 125°C 0 50 25°C 50 800 -55°C 25 1750 125°C 25 380 25°C 65 97 -55°C 60 97 125°C 60 91 97 25°C 70 -55°C 60 97 125°C 60 98 Vim V dB d8 25°C 57 92 -55°C 111 192 125°C 35 60 tFull range is - 55°C to 125°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually; TEXAS ~ INSTRUMENTS 2-670 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 mV p.A TLC21L4C, TLC21L4AC, TLC21L4BC, TLC21L9C LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS operating characteristics, Vee V 5 PARAMETER TEST CONDITIONS = = RL SR Slew rate at unity gain CL 1 Mil, VIPP TA 25°C = 1V 20 pF, See Figure 1 VIPP = 2.5 V Vn Equivalent input noise voltage f = 1 kHz, See Figure 2 BaM Maximum output swing bandwidth Va RL = VOH, = 1 Mil, CL = 20 pF, See Figure 1 Vi = CL Bl q,m Unity-gain bandwidth Vi CL Vee = 10 mY, = 20 pF, = = Slew rate at unity gain CL 1 Mil, Bl q,m Equivalent input noise voltage Maximum output swing bandwidth Unity-gain bandwidth Phase margin 20 pF, f = Bl, See Figure 3 = f VIPP = 1V 20 pF, See Figure 1 BaM = TEST CONDITIONS RL Vn 100 Il, TYP MAX UNIT 0.03 O°C 0.04 70°C 0.03 25°C 0.03 O°C 0.03 70°C 0.02 25°C 70 25°C OOC 6 70°C 4.5 25°C OOC 100 70°C 65 25°C OOC 34° 70°C 30° Vlp.s nV/.JHz 5 kHz 85 kHz 36° 10 V = PARAMETER SR = See Figure 3 Phase margin operating characteristics, 10mV, RS MIN 1 kHz, VIPP RS = = 5.5 V 1001l, See Figure 2 Va = VOH, RL = 1 Mil, Vi = 10 mY, CL = 20 pF, See Figure 1 CL = 20 pF, See Figure 3 = 10 mY, CL = 20 pF, Vi f = Bl, See Figure 3 TEXAS TA 25°C OOC MIN TYP MAX UNIT 0.05 0.05 70°C 0.04 25°C OOC 0.04 70°C 0.04 25°C 70 25°C 1 Vlp.s 0.05 O°C 1.3 70°C 0.9 25°C 110 .O°C 125 70°C 90 25°C OOC 38° 70°C 34° nV/.JHz kHt kHz 40° ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 . 2-671 TLC27L41, TLC27L4AI, TlC27L4BI, TlC27L91 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS operating characteristics, VOO = 5 V TEST CONDITIONS PARAMETER RL = 1 Mil. SR Vn BOM Slew rate at unity gain CL = 20 pF. See Figure 1 f = 1 kHz. See Figure 2 Equivalent input noise voltage Maximum output swing bandwidth Bl Unity-gain bandwidth .pm Phase margin operating characteristics, VOO Vi = 10 mV. See Figure 3 CL = 20 pF. Vi = 10 mV. f = Bl. See Figure 3 CL = 20 pF. Vn Equivalent input noise voltage BOM Maximum output swing bandwidth .pm Phase margin TEST CONDITIONS CL = 20 pF. See Figure 1 f=lkHz. VIPP = 1 V VIPP = 5.5 V RS = 10011. See Figure 2 Vo = VOH. RL = 1 Mil. CL = 20 pF. See Figure 1 Vi = 10 mV. See Figure 3 CL = 20 pF. Vi = 10 mV. CL = 20 pF. f = Bl. See Figure 3 TEXAS ~ INSTRUMENTS 2-672 MIN TVP MAX UNIT 0.03 0.04 85°C 0.03 25°C -40°C 0.03 0.04 85°C 0.02 25°C 70 25°C -40°C 5 7 85°C 4 25°C 85 -40°C 85°C 130 55 25°C 34° -40°C 38° 28° 85°C V/p.s nV/$z kHz kHz -= 10 V Slew rate at unity gain Unity-gain bandwidth RS = 10011. CL = 20 pF. See Figure 1 RL = 1 Mil. Bl VIPP = 2.5 V Vo = VOH. RL = 1 Mil. PARAMETER SR VIPP = 1 V TA 25°C -40°C POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TA 25°C -40°C MIN TVP MAX UNIT 0.05 85°C 0.06 0.03 25°C -40°C 0.04 0.05 85°C 0.03 25°C 70 nV/$z 25°C -40°C 1 1.4 kHz 85°C 0.8 25°C 110 -40°C 155 85°C 80 25°C -40°C 38° 42° 85°C 32° V/p.s kHz TLC21L4M, TLC21L9M LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS operating characteristics, VOO - 5 V PARAMETER TEST CONDITIONS = = RL SR Vn BaM Bl f > 100 Hz (el f - BOM A (dl f> BOM FIGURE 5. FULL-POWER-RESPONSE OUTPUT SIGNAL test time Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume, shorttest-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET devices and require longer test times than their bipolar and BiFET counterparts. The problem becomes more pronounced with reduced supply levels and lower temperatures. TEXAS . " 2-676 INSTRUMENTS POST OFFice BOX 655303 • DALLAS. TeXAS 75265 TLC27L4, TLC27L4A, TLC27L4B, TLC27L9 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS DISTRIBUTION OF TLC27L4 INPUT OFFSET VOLTAGE DISTRIBUTION OF TLC27L4 INPUT OFFSET VOLTAGE 70 70 905 Amplifiers 60 '#. 50 I Zl VOO - 5 V TA - 25°C N Package 60 905 VOO - 10 TA - 25°C N Package 50 '2 ::I 40 ....0 til B 30 c II) ~ Il. 20 10 t--t--I---f- 10 OL-.............IiliiiIiiIII OL-.....-"""..tlillll1IIIiIIl -5 -4 -3 -2 -1 0 2 3 4 Vlo-lnput Offset Voltage-mV -5 -4 -3 -2 -1 0 234 Vlo-lnput Offset Voltage-mV 5 FIGURE 7 FIGURE 6 DISTRIBUTION OF TLC27L4 AND TLC27L9 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT DISTRIBUTION OF TLC27L4 AND TLC27L9 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 356 Amplifiers tested 356 Amplifiers tested ~ I .~ c ::I '0 5 60 60 VOO - 5 V TA - 25°C to 125°C N Package 50 Outliers: (1) 19.2 p.V/oC 40 (1) 12.1 p.V/oC ~I 50 Zl '2 ::I 40 ....o VOO - 10 V TA - 25°C to 125°C N Package Outliers: (1) 18.7 p.V/oC (1) 11.6 p.V/oC 10 t--t---"f---t- 01 ........... 0 --"""--8-6-4-20246810 "'VIO - Temperature Coefficient - p. V / °C OL-...J..........IIIIIIIIII. -10 -8 -6 -4 -2 0 2 4 6 8 10 "'VIO - Temperature Coefficient - p.V / °C FIGURE 8 FIGURE 9 TEXAS • INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-677 TLC21L4, TLC21L4A, TLC21L4B, TLC21L9 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-L.EVEL OUTPUT CURRENT HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT 16 5~--~----~-----r----~--~ VIO - 100 rnV TA - 25°C > 1 > 1 ...& 4~~~~~~~~-4~~-4~~~ 14 I'--. --- G> III B 12 ~ ~ ~~- 16 V ....i'--. :; 10 c- o o 8 "ii > ~ 6 X 4 .1:III '- ............ VIO - 100 rnV TA - 25°C " '-..... i"-... ~~ - 10V J'-.... 1 :t: ~ o o o~--~----~----~----~--~ o -2 -4 -6 -10 -8 2 -40 -10 -20 ...,30 IOH-High·Level Output Current-rnA IOH-Hlgh-Level Output Current-rnA FIGURE 10 FIGURE 11 HIGH-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE HIGH-LEVEL OUTPUT VOLTAGE vs SUPPLY VOLTAGE 16 VOO-1.6 VIO - 100 rnV RL - 1 MO TA - 25°C ~ 14 & B 12 V o 10 5 ~ 6 X1 4 o > 2 / o 2 / / o Voo-1.9 5 Voo-2.0 V .............. ~~ o I'--.. -...It VOO - 10 V .............. .1: VOO-2.1 ~ .'Il ~ 6 14 16 "" i'.. ......... ~ ~ .......... ~ VOO-2.2 ~ ::I: 8 10 12 VOO-Supply Voltage-V 4 f---- f-- .1 . ~OO - 5V '0 // :t: o B VOO-1.8 -.......... > V 8 "ii .1:III & / '0 > o ~ VOO-1.7 1 IOH - -5 rnA VID - 100 rnV Voo-2.3 VOO-2.4 -75 -50 -25 0 25 50 75 100 125 TA-Free-Air Ternperature- °C FIGURE 13 FIGURE 12 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS.~ INSTRUMENTS 2-678 POST· OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC27L4, TLC27L4A, TLC27L4B, TLC27L9 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt LOW-LEVEL OUTPUT VOLTAGE vs COMMON-MODE INPUT VOLTAGE LOW-LEVEL OUTPUT VOLT AGE vs COMMON-MODE INPUT VOLTAGE 700 ~ I.. 600 500 11 \ \ I > 5Q, o5 Voo - 5 V IOL - 5 mATA - 25°C -- .. > :;, -100 mV I\VIO 500 5 400 I '" ~ 0 " I > t'---......... .... ....I 3 300 0 -..::: f::::::: r-- 2 ______ VIO - ~ .... 1',,"'-.. ""-1 V....... VID - .. iD > 350 -- I \ I~ /VIO - 0 > 250 4 I o Vlc-Common-Mode Input Voltage-V - "~ ~t-.. 2 4 > E 700 . I CJ) :! 600 0 > 5Q, 500 :;, 400 . 0 I--- ~ [\. .. iD > .... 300 ~ ....0 ....I 0 > I FIGURE 15 LOW-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE 900 ! I .. 0 > I 1. :;, Q, [\,.VOO - 5 V 5 VOO - 10 V- ~ - .. ~ -- -6 .9 ....I 200 '----- > 100 0 --1--- --- - - -4 V I ---t-- VOO - 5 V I 500 - - ---iD 400 > .... 300 100 -2 600 0 ~ I .. :! 200 o o I _IOL - 5 mA E 800 VIO - -1 V I __ VIC - 0.5 V 700 CJ) > IOL - 5 mA VIC - IVID/21 TA - 25°C I 10 8 6 Vlc-Common-Mode Input Voltage-V LOW-LEVEL OUTPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE I -100 mV -1V -2.5 V ~VID FIGURE 14 800 I I 1\\ 400 I VOO - 10 V IOL - 5 mA TA - 25°C - I Q, \ .3 .9 ....I o I 450 CJ) -S 1 ~ E ... ~ I J > 1// // ~-- V . . . ,. . . . . . ,.---V ~ --.~--- c---- c---- - - VI .--/ / V - - - VOO - 10 V ---r-----r--- r - - - ~---+----i o -8 -10 Vlo-Oifferential Input Voltage-V -75 -50 -25 0 25 50 75 100 125 T A - Free-Air Temperature - °C FIGURE 17 FIGURE 16 t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS • INSTRUMENTS POST OFFICE BOX S55303 • DALLAS. TEXAS 75265 2-679 TLC21L4, TLC21L4A, TLC21L4B, TLC21L9 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT 1.0 LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT 3.0 I I 0.9 I- VIO - -1 V I VIC - 0.5 V III 0.8 I-TA - 25°C = III -a VOO - 0.7 > :;Q. .. VOO - 4~ 0.6 :::I 0 VOO - 0.5 "i :> III -' 0.4 ~ 0 -' 0.3 I -' 0 0.2 > 1/ 0.1 ~ 3~ L~ ~ l'l" 5y / oi VOO 1.5 l / III -' ~ 1.0 V oS 23456 7 IOL -Low-Level Output Current-rnA 8 o/ o 5 10 15 20 25 IOL -Low-Level Output Current-rnA LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE ~ 2000~·--~--r--'--~---r--~--~~ ~ 2000 ~ c .gIII ~ MO-+----jr-----t~-+-=""""'-_I 1600 t-----t---t--t---17''----bL-+--t-__J ~ 1400t-----t---t--t-~-h~4_-+--~__J 1800 .g 1600 .~ 1200 1---+--+-+-+--f----1I---+--:;;;;....,.,,~ :sQ. 1400 ~ 1200 W1000t-----t---t-+~-~~~-~=_r_~ E1000 :j a. ~ ~ 800~--t-~+_-+.~_b~4_-+-_=~~ '0 > 800 e 600 c 600 15 .~ :E 400 ;E I 200 0 , \ \ 400 ~ :t 0 0 2 4 6 8 10 12 VOO-Supply Voltage-V 14 16 VOO - 10 V '" ~~ ~ VOO - 5V "- o I o 200 0 «> I RL - 1 MO_ III III I!! III 30 FIGURE 19 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs SUPPLY VOLTAGE RL - 1 :/ V FIGURE 18 1800 10;1 / ~ I 6 0 .5 > 16Y VOO - i> 2.0 o lL o I VIO - -1 V > I 2.5 VIC - 0.5 V TA - 25°C & > "-~ I'--- - ............ I'-... r-- r- o -75' -50-25 o 25 50 75 100 125 TA - Free-Air Temperature - °C FIGURE 21 FIGURE 20 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS 2-680 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 LinCMOSTM TLC27L4, TLC27L4A, TLC27L4B, TLC27L9 PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt INPUT BIAS CURRENT AND INPUT OFFSET CURRENT vs FREE-AIR TEMPERATURE 10000 16 Voo - 10 V ./ > 14 VIC - 5 V I / CD 1000 See Note 4 CI as c( .!! 12 CI. 0 liB I > c :; 10 / / CI. ! 100 .5 $ u 110 CD 8 '1:1 I COMMON-MODE INPUT VOLTAGE POSITIVE LIMIT vs SUPPLY VOLTAGE 2~OC TAI- .. ./ g. 10 '1:1 ./ V 0 ~ / C: C as ~ , , 0.1 25 , , , 0 6 0 4 E E u I u "> , 45 105 65 85 TA -Free-Air Temperature- °C / 2 o o 125 / L 16 120 TA - -55°5- Vo - VOO/2 No load 160 ./ 140 ::\, / 1.120 c ! / $100 U riI 14 SUPPLY CURRENT vs FREE-AIR TEMPERATURE 180 8: / FIGURE 23 SUPPLY CURRENT vs SUPPLY VOLTAGE >- / / / / 10 12 4 6 8 VOO-Supply Voltage-V 2 FIGURE 22 c( / / V / V 80 0 60 ~ /" V #. ~ :::::..- Q ~ 40 ~ 20 o ---== V ~ -- ::/' / V 100 c( V / " ~c -- --~ ~ r"" ~ ,...~ 125°C I f 024 6 8 10 12 VOO-Supply Voltage-V 14 .. ::\, 40°C 16 I c ~ ::s >- 60 Q. CI. ::s I '\ 80 U I/) Vo - VOO/2 No load ""- 40 ""- I\. '" '-'DO - 10 V 'i'---.......... ~ Q ............ VOO - 5 V ~ "'r-- - '--- f-- 20 o -75 -50 -25 0 25 50 75 100 125 TA-Free-Air Temperature- °C FIGURE 25 FIGURE 24 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. NOTE 4: The typical values of input bias current and input offset current below 5 pA were determined mathematically. ~ TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-681 TLC21L4, TLC21L4A, TLC21L48, TLC21L9 LinCMOSTM PRECISION QUAD OPEATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t SLEW RATE vs SUPPLY VOLTAGE 0.07 I ~ :> 0.05 I .! 0.04 r~ / ~ 0.03 Cij ./ V ./ V ~ 0.051----I--+--""o,."..,-...:--+---+---+-~+--_____I V :> I .!., 0.041---"I........::-t---j---t--""oo;;;:t-""...... a: V ~ . ..!! 0.031----I---rt--t--"'"oo...t::=---..t:---t--""oe-.;;::-t / I III I 5i ~ 0.02 1.4 1.3 ..., 1.2 CD a: 1.1 ~ .!! III 1.0 "•!:! CD iii 0.9 E 0 0.8 z 0.02 0.011----I--t---t--VOO - 5 V VIPP - 2.5 V 0.01 0.00 0.07.---,.--r--.,.--,....-......,-.....,..-...,....-., RL - 1 MO CL - 20 pF 0.06 1----1""""':-1AV - 1 See Figure 1 I AV - 1 VIPP - 1 V RL-1MO CL - 20 pF TA - 25°C See Figure 1 0.06 SLEW RATE vs FREE-AIR TEMPERATURE 6 8 10 12 024 VOO-Supply Voltage-V 16 0.00 ................----......- .....- ......- .......- ............ -75 -50 -25 0 100 125 TA - Free-Air Temperature- °C FIGURE 26 FIGURE 27 NORMALIZED SLEW RATE vs FREE-AIR TEMPERATURE MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY 10 , ~ VOO - 14 AV VIPP RL CL - VOO - 10 V 5~ 1 - 1 V1 MO 20 pF- 9 > 8 ., 7 .... 6 I CD ~ g) ~ 0 ~ > 0.7 I 5 I--VOO - 5 V 4 lJ I l: ~ 0 " 0.5 -75 -50 -25 0 25 50 75 100 125 TA - Free-Air Temperature - °C 11111 :::I 0 "Y- 0.6 JJlU I :::I Q. ~ ~~ v\ 1\ VOO - 10 > 3 £'l ~ I' L\ 11111 I I III~II f\\ RL - 1 0 2 t-- See Figure 1 I I 111M o 0.1 FIGURE 28 TA - 125°C TA - 25°C VTA - -55 DC ~~ II II 10 f-Frequency-kHz 100 FIGURE 29 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS . " INSTRUMENTS 2-682 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC27L4, TLC27L4A, TLC27L48, TLC27L9 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t UNITY-GAIN BANDWIDTH vs SUPPLY VOLTAGE UNITY-GAIN BANDWIDTH vs FREE-AIR TEMPERATURE 150 l! , I '\ ~ I .c :2 ~c 110 '\. c >- ~ 70 II ...I V 'iii 90 CI .~c 80 ...I 70 ::l ~ III ......... 25 75 100 125 TA-Free-Air Temperature- °C / / I / 50 o 2 4 6 8 10 10 7 ~ II 106 ~ =aE 0° '" ~oo c .g Rl - 1 M!l TA - 25°C 105 - 10 V Rl - 1 M!l TA - 25°C ~ ct 30° "'- ~vo :t: .c "'" ~ ~ 1 k 10 k & 104 II z: 0 > ~C 10 3 1\ ~ .. 2 2! 10 "'" "'~vo "'- I'-.. Phase Shift :t: ~ 0.1 '" ~. ~~ 0.1 1 10 100 1 k 10 k f - Frequency - Hz f - Frequency - Hz FIGURE 32 FIGURE 33 ~ 180° 100 k 1 M tO ata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS • INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-683 TLC27L4, TLC27L4A, TLC27L4B, TLC27L9 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t PHASE MARGIN vs SUPPLY VOLTAGE , 42 !II ~ = I 40 I ./" I c .~ ~ 36 if I E 34 / I iI- 32 / V / /' / / := ~ 36 ! I b 32 . .~ :; ! E iI- '\ 24 V 37 14 20 -75 -50 -25 0 25 50 75 100 125 TA-free-Air Temperature- °C 16 FIGURE 35 I ""- 33 . .~ ~ '"i'- :; 31 ... .. VI .&. ~ 29 E iI- 27 25 ~ "''\.. I EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY PHASE MARGIN vs CAPACITIVE LOAD I'c """'- 28 FIGURE 34 35 ~ I VOO - 5 V Vi - 10 mV_ CL-20pf See figure 3 - if 4 6 8 10 12 VOO-Supply Voltage-V := ! = ... I ......... Vi - 10 mV _ CL - 20 pf 40 TA - 25°C ~ee figure 3 ~ 38 :.. PHASE MARGIN vs FREE-AIR TEMPERATURE ~ "" ~ 'c"", 20 ~ 200 I ~ f 150 > 125 z 100 ! II 1\ VOO - 5 V RS - 100 (J TA - 25°C See figure 2 \ ... .5 "" 175 I .~o "~:*h o I VOO - 5 V Vi - 10 mV_ TA - 25°C See figure 3 1\ 1\ ~ .......r-. 75 1: '"'" 80 40 60 CL -Capacitive Load-pf 100 ..!! .. .~ 50 .l3'I 25 > o c 1 10 100 f-frequency-Hz 1000 FIGURE 37 FIGURE 36 t Data at high''at,d low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ! ~ TEXAS INSTRUMENlS 2-684 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC21L4, TLC21L4A, TLC21L48, TLC21L9 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS single-supply operation While the TLC27L4 and TLC27L9 perform well using dual power supplies (also called balanced or split supplies). the design is optimized for single-supply operation. This design includes an input common-mode voltage range that encompasses ground as well as an output voltage range that pulls down to ground. The supply voltage range extends down to 3 V (C-suffix types). thus allowing operation with supply levels commonly available for TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply operation is recommended. Many single-supply applications require that a voltage be applied to one input to establish a reference level that is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see Figure 38). The low input bias current of the TLC27L4 and TLC27L9 permits the use of very large resistive values to implement the voltage divider, thus minimizing power consumption. The TLC27L4 and TLC27L9 work well in conjunction with digital logic; however, when powering both linear devices and digital logic from the same power supply, the following precautions are recommended: 1. Power the linear devices from separate bypassed supply lines (see Figure 39); otherwise the linear device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital logic. 2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive decoupling is often adequate; however, high-frequency applications may require RC decoupling. voo Rl R3 vREF - voo Rl + R3 R2 Vo -= R3 -:r. c Ol "F -= FIGURE 38. INVERTING AMPLIFIER WITH VOLTAGE REFERENCE (a) COMMON SUPPLY RAILS (b) SEPARATE BYPASSED SUPPLY RAILS (PREFERRED) FIGURE 39. COMMON VS SEPARATE SUPPLY RAILS TEXAS . " INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-685 TLC27L4, TLC27L4A, TLC27L48, TLC27L9 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA input characteristics The TLC27L4 and TLC27L9 are specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction. Exceeding this specified range is a common problem, especially in single-supply operation. Note that the lower range limit includes the negative rail, while the upper range limit is specified at VDD - 1 V at T A = 25°C and at VDD - 1 .5 V at all other temperatures. The use of the polys iii con-gate process and the careful input circuit design gives the TLC27L4 and TLC27L9 very good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate) alleviates the polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude. The offset voltage drift with time has been calculated to be typically 0.1 /LV/month, including the first month of operation. Because of the extremely high input impedance and resulting low bias current requirements, the TLC27L4 and TLC27L9 are well suited for low-level signal processing; however, leakage currents on printed circuit boards and sockets can easily exceed bias current requirements and cause a degradation in device performance. It is good practice to include guard rings around inputs (similar to those of Figure 4 in the Parameter Measurement Information section). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input (see Figure 40). The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation. noise performance The noise specifications in op amp circuits are greatly dependent on the current in the first-stage differential amplifier. The low input bias current requirements of the TLC27L4 and TLC27L9 result in a very low noise current, which is insignificant in most applications. This feature makes the devices especially favorable over bipolar devices when using values of circuit impedance greater than 50 k{l, since bipolar devices exhibit greater noise currents. (al NONINVERTING AMPLIFIER (bl INVERTING AMPLIFIER (el UNITY-GAIN AMPLIFIER FIGURE 40. GUARD-RING SCHEMES output characteristics The output stage of the TLC27L4 and TLC27L9 is designed to sink and source relatively high amounts of current (see typical characteristics). Ifthe output is subjected to a short-circuit condition, this high current capability can cause device damage under certain conditions. Output current capability increases with supply voltage. All operating characteristics of the TLC27L4 and TLC27L9 were measured using a 20-pF load. The devices will drive higher capacitive loads; however, as output load capacitance increases, the resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figure 41). In many cases, adding a small amount of resistance in series with the load capacitance will alleviate the problem. TEXAS . " INSTRUMENTS 2-686 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC27L4, TLC27L4A, TLC27L48, TLC27L9 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA (8) CL - Ib) CL - 260 pF. RL - NO LOAD 20 pF. RL - NO LOAD 2.5 V Vo CL TA - 25°C f - 1 kHz VIPP - 1 V -2.5 V Id) TEST CIRCUIT Ie) CL - 310 pF. RL - NO LOAD FIGURE 41. EFFECT OF CAPACITIVE LOADS AND TEST CIRCUIT Although the TLC27L4 and TLC27L9 possess excellent high-level output voltage and current capability. methods for boosting this capability are available. if needed. The simplest method involves the use of a pullup resistor (Rp) connected from the output to the positive supply rail (see Figure 42). There are two disadvantages to the use of this circuit. First, the NMOS pulldown transistor N4 (see equivalent schematic) must sink a comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with an on-resistance between approximately 60 nand 180 n, depending on how hard the op amp input is driven. With very low values of Rp, a voltage offset from 0 V at the output will occur. Second, pullup resistor Rp acts as a drain load to N4 and the gain of the op amp is reduced at output voltage levels where N5 is not supplying the output current. feedback Op amp circuits nearly always employ feedback, and since feedback is the first prerequisite for oscillation, some caution is appropriate. Most oscillation problems result from driving capacitive loads (discussed previously) and ignoring stray input capacitance. A small-value capacitor connected in parallel with the feedback resistor is an effective remedy (see Figure 43). The value of this capacitor is optimized empirically. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-687 TLC27L4, TLC27L4A, TLC27L4B, TLC27L9 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA c voo Ip VI +IF +- Rp Vo IL. R1 ':' Ip - Pullup current required bV the op amp (typicallv 500 "AI R2 RL ':' FIGURE 42. RESISTIVE PULLUP TO INCREASE VOH FIGURE 43. COMPENSATION FOR INPUT CAPACITANCE electrostatic discharge protection The TLC27L4 and TLC27L9 incorporate an internal electrostatic discharge (ESDI protection circuit that prevents functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2. Care should be exercised, however, when handling these devices, as exposure to ESD may result in the degradation of the device parametric performance. The protection circuit also causes the input bias currents to be temperature dependent and have the characteristics of a reverse-biased diode. latch-up Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC27L4 and TLC27L9 inputs and outputs were designed to withstand - 1OO-mA surge currents without sustaining latch-up; however, techniques should be used to reduce the chance of latch-up whenever possible. Internal protection diodes should not, by design, be forward biased. Applied input and output voltage should not exceed the supply voltage by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators. Supply transients should be shunted by the use of decoupling capacitors (0.1 p.F typical) located across the supply rails as close to the device as possible. The current path established if latch-up occurs is usually between the positive supply rail and ground and can be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the supply voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and the forward resistance of the parasitic thyristor and usually results in the destruction of the device .. The chance of latch-up occurring increases with increasing temperature and supply voltages. , TEXAS ~ INSTRUMENTS 2-688 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC27L4, TLC27L4A, TLC27L4B, TLC27L9 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA 500 kll >---.--- V01 -vi" 5V 500 kll 0.1 p.F >-~-'--------V02LJ1l I 500 kll 500 kll FIGURE 44. MULTIVIBRATOR 100 kll Voo 100 kll SET RESET 100 kll 33 kll -:- NOTE: VOO = 5 V to 16 V FIGURE 45. SET/RESET FLIP-FLOP TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-689 TLC27L4, TLC27L4A, TLC27L4B, TLC27L9 LinCMOST~ PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL APPLICATION· DATA Voo VI - - - - t ~--+---- -=- Voo 90 kO C X1 S1 TLC4066 1 A 1 C X2 S2 9 kO ANALOG A B 2 2 B SWITCH 1 kO NOTE: VOO = 5 V to 12 V FIGURE 46. AMPLIFIER WITH DIGITAL GAIN SELECTION 10 kO Voo 20 kO ........_ Vo >----1~- 100 kO NOTE: VOO = 5 V to 16 V FIGURE 47. FULL-WAVE RECTIFIER TEXAS ~ INSTRUMENTS 2-690 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 Vo TLC27L4, TLC27L4A, TLC27L4B, TLC27L9 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA 0.016 flF 5V 10 kG 10 kG NOTE: Normalized to Fe = 1 kHz and RL = 10 kG FIGURE 48. TWO-POLE LOW-PASS BUTTERWORTH FILTER R2 100 kG VOO R1 10 kG '>--+-R1 10 kG Vo R2-=100 kG NOTES: VOO = 5 V to 16 V R2 Vo = R1 (VIB-VIAI FIGURE 49. DIFFERENCE AMPLIFIER TEXAS ~ INSTRUMENTS POST OFFICE BOX 855303 • DALLAS. TEXAS 75285 2-691 2-692 TLC27M2, TLC27M2A, TLC27M2B, TLC27M7 LinCMOS™ PRECISION DUAL OPERATIONAL AMPLIFIERS 03140, OCTOBER 1987-REVISED OCTOBER 1990 • • • D. JG. OR P PACKAGE Trimmed Offset Voltage: TLC27M7 ... 500 p.V Max at 25°C. VDD = 5 V (TOP VIEW) 2 IN- 5 2 IN + I- ::J uO Z Common-Mode Input Voltage Range Extends Below the Negative Rail IC-Suffix. I-Suffix types) • 6 4 (TOP VIEW) • • 3 GNO FK PACKAGE Single-Supply Operation • 1 IN + Wide Range of Supply Voltages over Specified Temperature Range: o°C to 70°C ... 3 V to 16 V -40°C to 85°C ... 4 V to 16 V -55°C to 125°C ... 4 V to 16 V • • O U T [ ] 8 VOO 1 IN 2 7 2 OUT Input Offset Voltage Drift ... Typically 0.1 p.V/Month. Including the First 30 Days 3 Low Noise ... Typically 32 nV/,jHz at f = 1 kHz Cl ClU >z 1 2019 NC 4 18 IN- s 17 2 OUT NC 6 16 NC 15 21N- 8 14 NC IN+ NC NC 9 1011 12 13 Low Power ... Typically 2.1 mW at 25°C. VDD = 5 V UClU + U zzz ~ Z m Phase margin 10 mV, = 10 mV, CL = 20 pF, Vi = = CL 100 kll, BaM Maximum output swing bandwidth 81 Q>m Unity-gain bandwidth Phase margin = 100 Il, = 20 pF, See Figure 1 = 20 pF, f = 81, See Figure 3 TYP MAX UNIT 0.43 - 55°C 0.54 125°C 0.29 25°C 0.40 -55°C 0.49 125°C 0.28 25°C 32 25°C 55 -55°C 80 125°C 40 25°C 525 -55°C 850 125°C 330 25°C 40° -55°C 44° 125°C 36° = f VIPP TA 25°C = 1 V 20 pF, See Figure 1 Vn RS TEST CONDITIONS RL Equivalent input noise voltage 2.5 V MIN Vlp.s nVI.JHz kHz kHz 10 V PARAMETER Slew rate at unity gain 1 V See Figure 3 operating characteristics, VOO SR = VIPP f = 1 kHz, See Figure 2 Unity-gain bandwidth = 20 pF, See Figure 1 81 TA 25°C 1 kHz, VIPP = 5.5 V RS = 100 Il, = 20 pF, See Figure 2 Va RL = VOH, = 100 kll, CL Vi = CL 10 mV, See Figure 1 = 20 pF, See Figure 3 = 10 mV, CL = 20 pF, Vi f = 81, See Figure 3 TEXAS MIN TYP MAX UNIT 0.62 -55°C 0.81 125°C 0.38 25°C 0.56 -55°C 0.73 125°C 0.35 25°C 32 25°C 35 -55°C 50 125°C 20 25°C 635 -55°C 960 125°C 440 25°C 43° -55°C 47° 125°C 39° Vlp.s nVI.JHz kHz kHz ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-705 TLC27M2, TLC27M2A, TLC27M2B, TLC27M7 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERSPARAMETER MEASUREMENT INFORMATION single-supply versus split-supply test circuits Because the TLC27M2 and TLC27M7 are optimized for single-supply operation, circuit configurations used for the various tests often present some inconvenience since the input signal, in many cases, must be offset from ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to the negative rail. A comparison of single-supply versus split-supply test circuits is shown below. The use of either circuit will give the same result. Vo VI Vo VI RL ':' RL ':' voo(al Single-Supply (b) Split-Supply FIGURE 1. UNITY-GAIN AMPLIFIER 10 kll 10 kll VOO+ 1/2 VOO Vo Vo 100 Il ':' ':' (a) Single-Supply ':' Ib) Split-Supply FIGURE 2. NOISE TEST CIRCUIT 10 kll 10 kll 100 Il VI VI Vo 112 VOO CL VOO(a) Single-Supply (b) Split-Supply FIGURE 3. GAIN-OF-100 INVERTING AMPLIFIER TEXAS .", INSTRUMENTS 2-706 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC27M2, TLC27M2A, TLC27M2B, TLC27M7 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS PARAMETER MEASUREMENT INFORMATION input bias current Because of the high input impedance of the TLC27M2 and TLC27M7 op amps, attempts to measure the input bias current can result in erroneous readings. The bias current at normal room ambient temperature is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions are offered to avoid erroneous measurements: 1. Isolate the device from other potential leakage sources. Use a grounded shield around and between the device inputs (see Figure 41. Leakages that would otherwise flow to the inputs will be shunted away. 2. Compensate for the leakage of the test socket by actually performing an input bias current test (using a picoammeterl with no device in the test socket. The actual input bias current can then be calculated by subtracting the "open-socket" leakage readings from the readings obtained with a device in the test socket. One word of caution ... many automatic testers as well as some bench-top op amp testers use the servo-loop technique with a resistor in series with the device input to measure the input bias current (the voltage drop across the series resistor is measured and the bias current is calculatedl. This method requires that a device be inserted into the test socket to obtain a correct reading; therefore, an "opensocket" reading is not feasible using this method. 8 5 QQ Q v - VIC QQ Q 4 FIGURE 4. ISOLATION METAL AROUND DEVICE INPUTS (JG AND P DUAL-IN-LiNE-PACKAGEl low-level output voltage To obtain low-supply-voltage operation, some compromise was necessary in the input stage. This compromise results in the device low-level output being dependent on both the common-mode input voltage level as well as the differential input voltage level. When attempting to correlate low-level output readings with those quoted in the electrical specifications, these two conditions should be observed. If conditions other than these are to be used, please refer to Figures 14 through 19 in the Typical Characteristics of this data sheet. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-707 nC27M2, nC27M2A, nC27M28, nC27M7 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS PARAMETER MEASUREMENT INFORMATION input offset voltage temperature coefficient Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This parameter is actually a calculation using input offset voltage measurements obtained at two different temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device and the test socket. This moisture will result in leakage and contact resistance, which can cause erroneous input offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the moisture also covers the isolation metal itself, thereby rendering it useless. It is suggested that these measurements be performed at temperatures above freezing to minimize error. full-power response FUll-power response, the frequency above which the op amp slew rate limits the output voltage swing, is often specified two ways ... full-linear response and full-peak response. The full-linear response is generally measured by monitoring the distortion level of the output while increasing the frequency of a sinusoidal input signal until the maximum frequency is found above which the output contains significant distortion. The full-peak response is defined as the maximum output frequency, without regard to distortion, above which full peak-to-peClk output swing cannot be maintained. Because there is no industry-wide accepted value for "signifi'cant" distortion, the full-peak response is specified in this data sheet and is measured using the circuit of Figure 1. The initial setup involves the use of a sinusoidal input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same amplitude. The frequency is then increased until the maximum peak-to-peak output can no longer be maintained (Figure 5). A square wave is used to allow a more accurate determination of the point at which the maximum peak-to-peak output is reached. (0) f - 1 kHz 11 A (b) BOM > f > 1 kHz (e) f - BOM A (d) f> BOM FIGURE 5. FULL-POWER-RESPONSE OUTPUT SIGNAL test time Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume, shorttest-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET devices and require longer test times than their bipolar and BiFET counterparts. The problem becomes more pronounced with reduced supply levels and lower temperatures. TEXAS • INSTRUMENTS 2-708 POST OFFICE BOX 655303 • OALLAS. TEXAS 75265 TLC27M2, TLC27M2A, TLC27M2B, TLC27M7 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS DISTRIBUTION OF TLC27M2 INPUT OFFSET VOLTAGE DISTRIBUTION OF TLC27M2 INPUT OFFSET VOLTAGE 612 Amplifiers 50 ;i. I ,~ c VOO - 5 V -f----+-~f----+----jf----+-__I TA - 25°C P Package 50 612 Amplifiers VOO - 10 V TA - 25°C P Package 40 I---t--t---t--t-;;;::±::::-t---t--t---t----i :::I o Lsml:m::i:c. 01illllll:::lW!!!. -5 -4 -3 -2 -1 0 2 3 4 Vlo-lnput Offset Voltage-mV -5 -4 -3 -2 -1 0 2 3 4 Vlo-lnput Offset Voltage-mV 5 FIGURE 6 FIGURE 7 DISTRIBUTION OF TLC27M2 AND TLC27M7 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT '0 224 Amplifiers VOO - 5 V 50 TA - 25°C to 125°C P Package 40 Outliers: (1) 33,0 flV/oC 301---t--t---t--t- ~ tl 20 I---t--t---t--t- ;i. I J!! '2 :::I ..'" cf 5 DISTRIBUTION OF TLC27M2 AND TLC27M7 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 224 Amplifiers tested VOO - 10 V I TA - 25°C to 125°C -+-+--+-+----1 P Package Outliers: (1) 34,6 flV/oC I 50 ;i. I J!! 40 '2 :::I ~ 30~-t--t---t--~ '" i'! c 8 20 I---t--t---+- cf 10 I--t--t----+- 101--t---1--+-1 Ol-.J......allllillllli_ -10 -8 -6 -4 -2 0 2 4 6 8 10 avlO - Temperature Coefficient - flV / °C oL.....--IIIIr.:di-10 -8 -6 -4 -2 0 2 4 6 8 10 "'VIO- Temperature Coefficient-flV / °C FIGURE 9 FIGURE 8 TEXAS • INSTRUMENTS POST OFFICE BOX 655303 ' DALLAS, TEXAS 15265 2-709 TLC27M2, TLC27M2A, TLC27M2B, TLC27M7 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT 5 16 VIO - 100 mV TA - 25°C > I CD CI > --- I 14 CD CI 4 ~ 12 15'" 0 > ... ::l 3 S::l 0 Gi > CD > VOO - 5 V :; 10 I - - S::l VOO - 4 V .... 2 1:. CI :i: I 0 Gi > CD 8 .... 1:. CI :i: 6 I 4 :I: :I: > > 0 0 .. -10 -40 -20 -30 IOH-High-Level Output Current-mA HIGH-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE 16 VOO-1.6 VIO = 100 mV ~ 14 c-RL = 100 kO CD TA = 25~C CI is 12 :; 10 8 CI I 4 :I: o > / 2 o 15'" > :; S::l 0 a; /V 6 o 2 V / > CD .... / :I: 0 6 .1 ............ ~OO - 5V VOO-1.8 ~ VOO-1.9 8 10 12 VOO-Supply Voltage-V 14 16 IOH - -5 mA VID - 100 mV I -............. ['-........ ~ i'-. ~ VOO-2.0 VOO - 10V ~ VOO-2.1 I'-....... 1:. CI :i: VOO-2.2 I > 4 VOO-1.7 CD CI / S::l :i: I V > 1:. > / o > " FIGURE 11 HIGH-LEVEL OUTPUT VOLTAGE vs SUPPLY VOLTAGE j ~ ~ .......VOO - 10 V "I'- FIGURE 10 a; b---., 2 IOH-Hlgh-Level Output Current-mA o ~ ............ ............ 100 mV - 25°C VOO - 16 V r--.... ~ o o o~--~----~----~----~----10 o -2 -6 -4 -8 -- VID - J TA ~ VOO-2.3 VOO-2.4 -75 -50 -25 0 25 50 ........ '" 75 ~ ~ 100 125 TA -Free-Air Temperature- °C FIGURE 12 FIGURE 13 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ~ TEXAS INSTRUMENTS 2-710 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC27M2, TLC27M2A, TLC27M2B, TLC27M7 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t LOW-LEVEL OUTPUT VOLTAGE LOW-LEVEL OUTPUT VOLTAGE vs vs COMMON-MODE INPUT VOLTAGE COMMON-MODE INPUT VOLTAGE 700 500 1\ > E I \ \ E 600 "'0 > ... CI> ::J Co o:; 500 > ~ E I CI> 450 co > ... ::J -100 mV ...::JCo I o \ ~~ a; > 350 ~ -1 V....... I ~ ....CI> -..... --..:: r::::: -- 2 3 Vlc-Common-Mode Input Voltage-V 800 400 0 """,,""""~ ~ VID - o > 1\\ "'0 400 300 > ~\ ....CI> , ....0 ....I 300 0 > 250 4 o ~/~ VID - //VID - ~VID ~ FIGURE 15 LOW-LEVEL OUTPUT VOLTAGE LOW-LEVEL OUTPUT VOLTAGE vs vs DIFFERENTIAL INPUT VOLTAGE FREE-AIR TEMPERATURE I 900 I I > ... 500 ::J c5 400 ~ a; ~ 300 ~ .3 ....I !] I I !! "'0 600 I : o ~ - ~ !l VOO - 10 V-- r- ~ ....o ....I 400 300 V / /V ;- 500 200 ./ V f--" ./ V ....-V ....... V ,./ V ~_I--- VOO - 10 V 200 o > 100 100 o o VOO - 5 V ::J ~VOO - 5 V 10 I "'0 S- - 2 4 6 8 Vlc-Common-Mode Input Voltage-V I-IOL - 5 mA ~ 800 VID - -1 V I I- VIC - 0.5 V CI> 700 co :: -100 mV -1 V -2.5 V FIGURE 14 I \ I ~~ IOL - 5 mA ~ 700 r VIC - IVID/21 I CI> TA - 25°C co 600 !! I VOD - 10 V IOL - 5 mA TA - 25°C - !! I\VID - a; .3 ....I VOO - 5 V IOL - 5 mATA - 25°C -2 -4 -6 -8 -10 Vlo-Oifferentiallnput Voltage-V o -75 -50 -25 0 25 50 75 100 125 TA -Free-Air Temperature- °C FIGURE 17 FIGURE 16 tO ata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS . " INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-711 TLC27M2, TLC27M2A, TLC27M2B, TLC27M7 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT 1.0 I 3.0 IJ > 1 OIl Cl f--- > VOO - I :! 0.7 0 > ... VOO = 4 ~ 0.6 :J So :J 3~ ~ VOO = 0.5 0 / Qj > 0.4 ....OIl ~ 0.3 .... 0 ....1 0.2 > 0.1 0 o /' o /" l# I 1 VIO - - 1 V VIC - 0.5 V 0.8 :--TA = 25°C 0.9 LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT ~ 1 5y VIO - -1 V VIC - 0.5 V TA - 25°C 2.5 OIl Cl :! ~ / ... ... .l :J Co c5 ~ VOO - 10vj 1.5 0; ~ 1.0 ....o h 1 5 0 .5 > 2 3 4 5 6 7 IOl -low-level Output Current-rnA o 8 V / > !l VOO - 1 6 Y I 2.0 V o V / V 5 10 15 20 25 IOl -low-level Output Current-rnA 30 FIGURE 18 FIGURE 19 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs SUPPLY VOLTAGE LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE ~ 500~~--~--~--~--~--~--~~ ~ 500 ~ 450 I, :>1 Rl - 100 kO_ TA - -55°C Rl - 100 kO +-~+--~I-----t-=_-===:=I 450 35 400~~~-+~-+~~~~~~~+--~ c ·8400 ~ ~ 350 .. ° CJ 350~~~-+~-+~~~~~~~~-; C. ~ ~ 300~~~-+~~~~~~~~~~ OIl ...~ OIl ~ 250 o 250~~~-T7--T.~~~~'-T-~~~ > 200 ia 'E 150~~-.~~~~-r~~~+-~+---1 f f 1 o ~ "" "",- ..... "- ....... VOO ..... 10 V I'---.. 50~~~-+~-+~~~~~+-~+--~ VOO - 5 V ............... r--- o > 50 '" 0 -75 -50 -25 0 25 50 75 100 125' TA-Free-Air Ternperature- °C 1 o~~--~--~--~--~--~--~~ o 2 4 6 8 10 12 14 16 -----.............. ~ ~ 100 is ~ 100~~~~~-+~~~~~+-~+--~ o 150 I , !:! ~ 200~-4~~~~~~~~~~~~1 !c 300 I VOO-Supply Voltage-V FIGURE 21 FIGURE 20 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS 2-712 POST OFFICE BOX 655303 ' DALLAS. TEXAS 75265 TLC27M2, TLC27M2A, TLC27M2B, TLC27M7 LinCMOS™ PRECISION OUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt COMMON-MODE INPUT VOLTAGE POSITIVE LIMIT vs SUPPLY VOLTAGE INPUT BIAS CURRENT AND INPUT OFFSET CURRENT vs FREE-AIR TEMPERATURE 16 14 .,I C> " ,-- . - :; I\. 450 ~ 600 400 1--- -~ I 350 t: 500 ~ ~ 300 16 > 250 III 300 III 200 6150 ,9 100 C. g. I c 100 200 Va - VOO/2 No load - - ~ 1-- ~ "'- ~ :::I U 400 ,9 , 500 Va c VOo/2 No load > C. C. :::I 14 SUPPLY CURRENT vs FREE-AIR TEMPERATURE I u / FIGURE 23 800 f // V - - 1---,-,-- - - 10 12 4 6 8 VOO-Supply Voltage-V 2 SUPPLY CURRENT vs SUPPLY VOLTAGE I: ,/,/ V / 2 FIGURE 22 .. / i/ TA - Free-Air Temperature- °C :; :; g ~ r----- a. .E u f---- !l 12 (5 Co "'C I: I ~51oC A-d'· . . r-= T > VOO - 5 V "VOO - 10 V ......... ~ r-.... ~ I'-I ~- -- 50 0 0 2 8 10 12 4 6 VOO-Supply Voltage-V 14 16 o -75 -50 -25 0 25 50 75 100 125 TA - Free-Air Temperature- °C FIGURE 24 FIGURE 25 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. NOTE 4: The typical values of input bias current and input offset current below 5 pA were dete,mined mathematically. TEXAS . . INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-713 TLC27M2. TLC27M2A. TLC27M2B. TLC27M7 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t SLEW RATE vs SUPPLY VOLTAGE 0.9 I 0.9r-~---r--~--~--~~--~--~ I AV - 1 0.8 r- VIPP - 1 V RL - 100 kG CL = 20 pF ~ > 0.7 r- TA = 25°C I See Figure 1 .. ..... a: .. iii / 0.6 I a: 0.5 en 0.3 V / 0.4 / / ~ :> V 2 O. 71----I"""---+~'_+~-+~--I-~._~-;--~ I ; 0.6 I-----j~_+~_f'~-+'....-+ / a: ~ ~ 0.51---d~~~-+~-+~~~~~+-~ ffi 0.4~--I~~~-+~~~~~+-~~~ en I 0.3 I o AV - 1 RL - 100 kG CL - 20 pF 0.8 01 ~ SLEW RATE vs FREE-AIR TEMPERATURE 14 4 6 8 10 12 VOO-Supply Voltage-V 0.2 '-----'_--1._--'-_......._ ........_ - ' - _......---1 -75 -50 -25 0 25 50 75 100 125 TA - Free-Air Temperature - °C 16 FIGURE 26 FIGURE 27 NORMALIZED SLEW RATE vs FREE-AIR TEMPERATURE MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY 1.4 1.3 ..... a: .. iii 1.2 01 ~ . ~ 1.1 1.0 .!:! iii 0.9 E 0 z 0.8 10 ~yoo - VOO-~ AV VIPP RL CL - 10V 1 > .. I til "-~ f! :::I 5 0 4 :I: 3 0 > ~~ FIGURE 28 VOO - 5 V 1\ 111111 I 1111111 \ 2 f--- RL - 100 kG I I 11-1111 " I I I I I II TA - 125°C TA - 25°C TA - -55°C See Figure 1 0.6 -75 -50 -25 0 25 50 75 100 125 TA-Free-Air Temperature- °C I ~ I I~ :..... II 11- 7 6 So :::I II \ 8 r--- VOO - 10 V "0 > ... 0.7 II 1111 9 - 1V 100 kG 20 pF I ::::: II! 1111 o 1 ~ ....... "'- 10 100 f- Frequency-kHz 1000 FIGURE 29 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS 2-714 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC27M2, TLC27M2A, TLC27M2B, TLC27M7 LinCMOSTM PRECISION DUAL OPEATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t UNITY-GAIN BANDWIDTH vs SUPPLY VOLTAGE UNITY-GAIN BANDWIDTH vs FREE-AIR TEMPERATURE 900 ...~I \ ~ ~ 700 ~ C 1\1 ~ 600 ... 1\1 ~ 600 CI CI ~ "" '" = 400 300 -75 -50 -25 / .~ 650 c ~ ·iii I 0 25 550 / ·2 ~ 50 ~ 500 ... ~ 450 r-- 400 75 o 2 6 4 10 7 c .~ 10 6 5 V Rl - 100 kfl TA - 25°C 1\ ~o 60° ., til 1\1 ~ 900 a. ~~ 100 1k 10 k ~ 100 k ~ 104 1\ ~ :! g 103 1\ 14 16 ~ 180° 1 M 15 ~o ~ '-- "iii .~ 102 Phase Shift ~ " 10 ~ 10 5 ~ :c en 0.1 1 1\1 30° ::: "" 12 I VOO - 10 V Rl - 100 kflTA - 25°C .~ E .. .. 43 "~ ~ "b 41 /"" ,/ .~ ~ 44 if I / 42 I E -e- i'... ""'" ~ :2 / i'... .c Q. I /' L 40 .. s:.. 39 .~ i I VOO - 5 V Vi - 10 mV_ CL - 20 pF See Figure 3 .... Z' " 46 I c ..... 45 I Vi = 10 mV CL - 20 pF _ TA = 25°C See Figure 3 37 "~ ~ " V 38 o 4 6 8 10 12 VOO-Supply Voltage-V 2 .. ! PHASE MARGIN vs CAPACITIVE LOAD EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY .. I'c "i'.. 38 . ~ .. 36 .::l 34 ~ 32 :2 .c Q. .. 250 :>c I \ l!! 1\ '" "" ... '0 ... VOO - 5 V RS - 100 n TA - 25°C See Figure 2 1\ C> 2 \ 150 ::l Co "- c ""I'" 20 300 "6 200 30 o ~ > -e- 28 Il VOO - 5 V Vi - 10 mVTA - 25°C See Figure 3 - '~ 40 125 FIGURE 35 I C> 16 FIGURE 34 44 42 14 35 -75 -50 -25 0 25 50 75 100 T A - Free-Air Temperature - °C 40 60 80 CL -Capacitive Load-pF E .. 100 ""1'.. . . iii > .~ "100 50 > - r- w I c 0 1 100 10 f- Frequency - Hz 1000 FIGURE 37 FIGURE 36 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ~ TEXAS INSTRUMENTS 2-716 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC27M2, TLC27M2A, TLC27M2B, TLC27M7 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA single-supply operation While the TLC27M2 and TLC27M7 perform well using dual power supplies (also called balanced or split supplies), the design is optimized for single-supply operation. This design includes an input common-mode voltage range that encompasses ground as well as an output voltage range that pulls down to ground. The supply voltage range extends down to 3 V (C-suffix types), thus allowing operation with supply levels commonly available for TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply operation is recommended. Many single-supply applications require that a voltage be applied to one input to establish a reference level that is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see Figure 38). The low input bias current of the TLC27M2 and TLC27M7 permits the use of very large resistive values to implement the voltage divider, thus minimizing power consumption. The TLC27M2 and TLC27M7 work well in conjunction with digital logic; however, when powering both linear devices and digital logic from the same power supply, the following precautions are recommended: 1. Power the linear devices from separate bypassed supply lines (see Figure 39); otherwise the linear device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital logic. 2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive decoupling is often adequate; however, high-frequency applications may require RC decoupling. vDD Vo FIGURE 38. INVERTING AMPLIFIER WITH VOLTAGE REFERENCE (a) Common Supply Ralls (b) Sepafate Bypassed Supply Ralls (pfeferred) FIGURE 39. COMMON VS SEPARATE SUPPLY RAILS TEXAS . " INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-717 TLC27M2, TLC27M2A, TLC27M2B, TLC27M7 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA input characteristics The TLC27M2 and TLC27M7 are specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction. Exceeding this specified range is a common problem, especially in single-supply operation. Note that the lower range limit includes the negative rail, while the upper range limit is specified at VDD -1 Vat T A = 25°C and at VDD -1.5 V at all other temperatures. The use of the polysilicon-gate process and the careful input circuit design gives the TLC27M2 and TLC27M7 very good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate) alleviates the polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude. The offset voltage drift with time has been calculated to be typically 0.1 /tV/month, including the first month of operation. Because of the extremely high input impedance and resulting low bias current requirements, the TLC27M2 and TLC27M7 are well suited for low-level signal processing; however, leakage currents on printed circuit boards and sockets can easily exceed bias current requirements and cause a degradation in device performance. It is good practice to include guard rings around inputs (similar to those of Figure 4 in the Parameter Measurement Information section). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input (see Figure 40). The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation. noise performance The noise specifications in op amp circuits are greatly dependent on the current in the first-stage differential amplifier. The low input bias current requirements of the TLC27M2 and TLC27M7 result in a very low noise current, which is insignificant in most applications. This feature makes the devices especially favorable over bipolar devices when using values of circuit impedance greater than 50 kfl, since bipolar devices exhibit greater noise currents. (al Noninverting Amplifier (bl Inverting Amplifier (el Unity-Gain Amplifier FIGURE 40. GUARD-RING SCHEMES output characteristics The output stage of the TLC27M2 and TLC27M7 is designed to sink and source relatively high amounts of current (see typical characteristics). If the output is subjected to a short-circuit condition, this high current capability can cause device damage under certain conditions. Output current capability increases with supply voltage. All operating characteristics of the TLC27M2 and TLC27M7 were measured using a 20-pF load. The devices will drive higher capacitive loads; however, as output load capacitance increases, the resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figure 41). In many cases, adding a small amount of resistance in series with the load capacitance will alleviate the problem. TEXAS "I INSTRUMENTS 2-718 POST OFFICE BOX 655303 • BALLAS, TEXAS 75265 TLC27M2, TLC27M2A, TLC27M2B, TLC27M7 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA (a) cL =20 pF, RL =no load (b) CL =170 pF, RL = no load 2.5 V >-"*---<-- Vo + TA - 25°C f = 1 kHz VIPP = 1 V -2.5 V (e) CL =190 pF, RL =no load (d) Test Circuit FIGURE 41. EFFECT OF CAPACITIVE LOADS AND TEST CIRCUIT Although the TLC27M2 and TLC27M7 possess excellent high-level output voltage and current capability, methods for boosting this capability are available, if needed. The simplest method involves the use of a pullup resistor (Rp) connected from the output to the positive supply rail (see Figure 42). There are two disadvantages to the use of this circuit. First, the NMOS pulldown transistor N4 (see equivalent schematic) must sink a comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with an on-resistance between approximately 60 D and 180 D, depending on how hard the op amp input is driven. With very low values of Rp, a voltage offset from 0 V at the output will occur. Second, pullup resistor Rp acts as a drain load to N4 and the gain of the op amp is reduced at output voltage levels where N5 is not supplying the output current. feedback Op amp circuits nearly always employ feedback, and since feedback is the first prerequisite for oscillation, some caution is appropriate. Most oscillation problems result from driving capacitive loads (discussed previously) and ignoring stray input capacitance. A small-value capacitor connected in parallel with the feedback resistor is an effective remedy (see Figure 43). The value of this capacitor is optimized empirically. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-719 TLC27M2, TLC27M2A, TLC27M2B, TLC27M7 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA c VDD Rp - _ _V.:;D.:;D_-_V-"O,- IF + Il + Ip Ip - Pullup current required by the op amp (typically 500 ",A) FIGURE 42. RESISTIVE PULLUP TO INCREASE VOH Vo FIGURE 43. COMPENSATION FOR INPUT CAPACITANCE electrostatic discharge protection The TLC27M2 and TLC27M7 incorporate an internal electrostatic discharge (ESO) protection circuit that prevents functional failures at voltages up to 2000 V as tested under MIL-STO-883C, Method 3015.2. Care should be exercised, however, when handling these devices, as exposure to ESO may result in the degradation of the device parametric performance. The protection circuit also causes the input bias currents to be temperature-dependent and have the characteristics of a reverse-biased diode. latch-up Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC27M2 and TLC27M7 inputs and outputs were designed to withstand - 1OO-mA surge currents without sustaining latch-up; however, techniques should be used to reduce the chance of latch-up whenever possible. Internal protection diodes should not, by design, be forward biased. Applied input and output voltage should not exceed the supply voltage by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators. Supply transients should be shunted by the use of decoupling capacitors (0.1 p.F typical) located across the supply rails as close to the device as possible. The current path established if latch-up occurs is usually between the positive supply rail and ground and can be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the supply voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and the forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance of latch-up occurring increases with increasing temperature and supply voltages. TEXAS • INSTRUMENTS 2-720 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC27M2, TLC27M2A, TLC27M28, TLC27M7 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL APPLICATION OAT A 1N4148 470 kG 100 kG 5V 1/2 TLC27M2 47 kG ......- >---~>-- 100 kG -=R1 68 kG 100 kG 1 "F Va R2 68 kG C2 2.2 nF C1 2.2 nF NOTES: VOPP ~ 2 V fa = 1 ::--;;;;:;;;;;:~ 2" ,jR1R2C1C2 FIGURE 44. WIEN OSCILLATOR 5V VI----l R NOTES: VI =0 V to 3 V VI IS = R FIGURE 45. PRECISION LOW-CURRENT SINK TEXAS . " INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-721 TLC27M2. TLC27M2A. TLC27M2B. TLC27M7 LinCMOSTM PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA 5V GAIN CONTROL - - - - - - , 1 Mil (see Note A) 1 "F 100 kll +1 ~+10kll ~l-'+----'lM--__--4~) 0.1 "F 1 "F 1 kll 100 kll 100 kll NOTE A.: Low to medium impedance dynamic mike FIGURE 46. MICROPHONE PREAMPLIFIER 10 Mil Voo 1 kll + 115 >------...- Vo 1/2 TLC27M2 nF 100 kll 150 pF NOTES: VOO = 4 V to 15 V VREF = 0 V to VOO-2 V FIGURE 47. PHOTO DIODE AMPLIFIER WITH AMBIENT LIGHT REJECTION TEXAS . " INSTRUMENTS 2-722 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC27M2, TLC27M2A, TLC27M28, TLC27M7 LinCMOSTM PRECISION DUAL 'OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA 1 M!l T ~ r>-~C~:M' T 33 pF -=- 1N4148 100 k!l Vo -=100 k!l NOTES: VOO = 8 V to 16 V Va = 5V, 10mA FIGURE 48. 5-V LOW-POWER VOLTAGE REGULATOR 5V 1 M!l 0.01 "F VI --jf--__..........~-I + 0.22 "F >--~~~~r--VO 1/2 TLC27M2 1 M!l 100 k!l 100 k!l FIGURE 49. SINGLE-RAIL AC AMPLIFIER ~ TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-723 2-724 TLC27M4, TLC27M4A, TLC27M4B, TLC27M9 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS 03143, OCTOBER 1987-REVISED OCTOBER 1990 • D. J. OR N PACKAGE Trimmed Offset Voltage: TLC27M9 , , . 900 pV Max at 25°C, VDD = 5 V (TOP VIEW) • Input Offset Voltage Drift ... Typically 0.1 pV/Month, Including the First 30 Days • Wide Range of Supply Voltages over Specified Temperature Range: o °C to 70°C ... 3 V to 16 V - 40°C to 85 °C , .. 4 V to 16 V - 55°C to 125°C , , . 4 V to 16 V • Single-Supply Operation • Common-Mode Input Voltage Range Extends Below the Negative Rail IC-Suffix, I-Suffix Types) OUT 11N1 IN+ 4 OUT 41N41N+ GND 31N+ 31N3 OUT VDD 21N+ 21N2 OUT FK PACKAGE • (TOP VIEW) t:; II- ~ Z::J I -OUO~ Z" '0 20 - - t - - r-: f ~ ~ 15 -+--+--tf::::::l~It--,-+---1 1: =t0L--'--"*==Ci.Lo..... The D package is available in tape and reel. Add R suffix to the device type, (e.g., TLC27M9CDR). -1200 1200 Vlo-Input Offset Voltage-#,V LinCMOS is a trademark of Texas Instruments Incorporated Copyright © 1990, Texas Instruments Incorporated PRODUCTION DATA documents contain inlormation current as of publication date. Products conform to specifications per the terms 01 Texas Instruments standard warranty. Production processing does not necessarily include testing 01 all parameters, TEXAS . " INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-725 nC27M4, nC27M4A, nC27M48, nC27M9 linCMOSTM PRECISION QUAD OPERATIONAL AMPL1FIERS description The TLC27M4 and TLC27M9 quad operational amplifiers combine a wide range of input offset voltage grades with low offset voltage drift. high input impedance. low noise. and speeds comparable to that of general-purpose bipolar devices. These devices use Texas Instruments silicon-gate LinCMOS'M technology. which provides offset voltage stability far exceeding the stability available with conventional metal-gate processes. The extremely high input impedance and low bias currents make these cost-effective devices ideal for applications that have previously been reserved for general-purpose bipolar products. but with only a fraction of the power consumption. Four offset voltage grades are available (C-suffix and I-suffix types). ranging from the low-cost TLC27M4 (10 mV) to the high-precision TLC27M9 (900 /tV). These advantages. in combination with good common-mode rejection and supply voltage rejection. make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs. In general. many features associated with bipolar technology are available on LinCMOS™ operational amplifiers. without the power penalties of bipolar technology. General applications such as transducer interfacing. analog calculations. amplifier blocks. active filters. and signal buffering are easily designed with the TLC27M4 and TLC27M9. The devices also exhibit low voltage single-supply operation and low power consumption. making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input voltage range includes the negative rail. A wide range of packaging options is available. including small-outline and chip carrier versions for highdensity system applications. The device inputs and outputs are designed to withstand - 100-mA surge currents without sustaining latch-up. The TLC27M4 and TLC27M9 incorporate internal ESD-protection circuits that prevent functional failures at voltages up to 2000 Vas tested under MIL-STD-883C, Method 3015; however. care should be exercised in handling these devices as exposure to ESD may result in the degradation of the device parametric performance. a The C-suffix devices are characterized for operation from °C to 70 OCT The I-suffix devices are characterized for operation from - 40 °C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of - 55°C to 125°C. TEXAS ~ INSTRUMENTS 2-726 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC27M4, TLC27M4A, TLC27M4B, TLC27M9 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS equivalent schematic (each amplifier) VDD -,1+-.. . R1 IN ----+1 P5 P6 IN+ _ _ _-+-_ _ _ _-+-_ _...J ~~--+-----+-OUT N6 N7 R7 GND TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-727 TLC27M4, TLC27M4A, TLC27M4B, TLC27M9 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18 V Differential input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. ± VDD Input voltage range, VI (any input) " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -0.3 V to VDD Input current, II ............. " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 5 rnA Output current, 10 (each output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 30 rnA Total current into VDD terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 rnA Total current out of ground terminal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 45 rnA Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . .. unlimited Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. See Dissipation Rating Table Operating free-air temperature, T A: C-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. OOC to 70°C I-suffix. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 40°C to 85 °C M-suffix . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 55°C to 125°C Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65°C to 150°C Case temperature for 60 seconds: FK package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 260°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D and N package . . . . . .. 260°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package ............ 300°C NOTES: 1. All voltage values, except differential voltages, are with respect to network ground. 2. Differential voltages are at the noninverting input with respect to the inverting input. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded (see application sectionl. DISSIPATION RATING TABLE PACKAGE TA :5 DERATING FACTOR 25°C POWER RATING ABOVE TA = 25°C TA = 70°C TA POWER RATING = 85°C TA POWER RATING = 125°C POWER RATING 950 mW 7.6 mW/oC 608 mW 494 mW FK 1375 mW 11 mW/oC 880 mW 715 mW 275 mW J 1375 mW 11 mW/oC 880 mW 715 mW 275 mW N 1575 mW 12.6 mW/oC 1008 mW 819 mW 0 recommended operating conditions C·SUFFIX MIN 4 16 4 16 3.5 -0.2 3.5 0 3.5 -0.2 8.5 -0.2 8.5 0 8.5 0 70 -40 85 -55 125 MAX MIN 3 16 ~ 5 V -0.2 ~ Supply voltage, VDD Common-mode input voltage, VIC Operating free-air temperature, T A 2-728 II VDD VDD 10 V M-SUFFIX I·SUFFIX MAX MIN NOM NOM TEXAS • INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 NOM MAX UNIT V V °C TLC27M4C, TLC27M4AC, TLC27M4BC, TLC27M9C LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, PARAMETER TEST CONDITIONS TLC27M4C TLC27M4AC VIO Voo Input offset voltage TLC27M4BC TLC27M9C Vo = 1.4 V, RS = 50 n, VIC = 0, Vo = 1.4 V, VIC = 0, RS = 50 n, VO=1.4V, RS = 50 n, Vo = 1.4V, RS = 50 n, RL = 100 RL = 100 TAt kn kn kn RL = 100 k!! Input offset current (see Note 4) Vo = 2.5 V, VIC = 2.5 V liB Input bias current (see Note 4) Vo = 2.5 V, VIC = 2.5 V 5 250 2000 Full range 3000 210 25°C Full range 0.1 7 25°C 0.6 70°C 40 -0.2 voltage range (see Note 5) mV p.V 1500 25°C Common-mode input 900 p.V/oC 1.7 70°C 25°C VICR 0.9 UNIT 6.5 70°C 110 10 Full range 25°C to of input offset voltage MAX 1.1 12 25°C VIC = 0, TYP Full range 25°C Average temperature coefficient o'VIO MIN 25°C VIC = 0, RL = 100 5 V (unless otherwise noted) 300 600 pA pA -0.3 to to 4 4.2 V -0.2 Full range to V 3.5 VOH VOL High-level output voltage Low-level output voltage Large-signal differential AVO voltage amplification CMRR Common-mode rejection ratio Supply-voltage rejection ratio kSVR 100 (dVOO/dVIO) VIO = 100 mV, VIO = -100 mV, Vo = 0.25 V to 2 V, RL = 100 k!! 10L = 0 RL = 100 k!! VIC = VICR min VOO = 5Vto10V, Supply current Vo = 2.5 V, (four amplifiers) No load Vo = 1.4 V VIC = 2.5 V, 25°C 3.2 3.9 O°C 3 3.9 70°C 3 4 V 25°C 0 50 O°C 0 50 70°C 0 50 25°C ooC 25 170 15 200 70°C 15 140 25°C 65 91 O°C 60 91 70°C 60 92 25°C 70 93 O°C 60 92 70°C 60 94 mV Vim V dB dB 25°C 420 1120 O°C 500 1280 70°C 340 880 p.A t Full range is O°C to 70°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. TEXAS """ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-729 TLC27M4C, TLC27M4AC, TLC27M4BC, TLC27M9C LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, PARAMETER TLC27M4C TLC27M4AC VIO Voo TEST CONDITIONS Input offset voltage TLC27M4BC TLC27M9C Vo RS Vo RS Vo RS Vo RS = 1.4 V, = 500, = 1.4 V, = 500, = 1.4 V, = 500, = 1.4 V, = 500, TAt = 0, RL = 100 kO VIC = 0, RL = 100 kO VIC = 0, RL = 100 kO VIC = 0, RL = 100 kO VIC Average temperature coefficient "'via 10 V (unless otherwise noted) MIN 25°C Input offset current (see Note 4) Va = 5 V, VIC = 5 V liB Input bias current (see Note 4) Va = 5 V, VIC = 5 V 0.9 5 260 2000 Full range Full range 3000 220 25°C Full range 1200 p.V p.V/oC 2.1 25°C 0.1 7 25°C 0.7 70°C 50 -0.2 voltage range (see Note 5) mV 1900 70°C Common-mode input UNIT 6.5 25°C 25°C VICR 10 12 25°C 70°C 110 MAX 1.1 Full range 25°C to of input offset voltage TYP 300 600 pA pA -0.3 to to 9 9.2 V -0.2 Full range V to 8.5 VOH VOL High-level output voltage Low-level output voltage Large-signal differential AvO voltage amplification CMRR Common-mode rejection ratio Supply-voltage rejection ratio kSVR 100 (ll.VOO/ll.VIO) = VID = VID Va 100 mY, = -100 mY, 1 V to 6 V, = VIC VDO IOL RL = 100 kO =a = 100 kO VICR min = = RL Supply current Vo (four amplifiers) No load 5 V to 10 V, 5 V, Va VIC = = 1.4 V 5 V, 25°C 8 B.7 O°C 7.B B.7 70°C 7.B B.7 V 25°C 0 50 O°C a 50 70°C 0 50 25°C OOC 25 275 15 320 70°C 15 230 25°C OOC 65 94 60 94 70°C 60 94 25°C 70 93 O°C 60 92 70°C 60 94 V/mV dB dB 25°C 570 1200 O°C 690 1600 70°C 440 1120 t Full range is O°C to 70°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. TEXAS ~ INSTRUMENTS 2-730 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 mV p.A TLC27M41. TLC27M4AI. TLC27M4BI. TLC27M91 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, PARAMETER TEST CONDITIONS TLC27M41 TLC27M4AI Via Voo Input offset voltage TLC27M4BI TLC27M91 Vo RS Va RS Va RS Va RS = 1.4 V, = 50 {J, = 1.4 V, = 50 {J, = 1.4 V, = 50 {J, = 1.4 V, = 50 {J, V'C = 0, RL = 100 k{J -. '10 liB Input bias current (see Note 4) MIN 25°C Va = 2.5 V, V'C = 0, RL = 100 k{J Full range V'C = 0, RL = 100 k{J Full range V'C 2,5 V, V'C = = 2.5 V 2,5 V 250 25°C 210 900 /LV 2000 1.7 25°C /LV/oC 0.1 85°C 24 25°C 0.6 85°C 25°C mV 2000 3500 25°C Common-mode input 5 UNIT 7 200 -0,2 V,CR 10 0.9 85°C = MAX 1.1 13 25°C 25°C to Va TYP Full range Full range of input offset voltage Input offset current (see Note 4) TAt V'C = 0, RL = 100 k{J Average temperature coefficient "'via 5 V (unless otherwise noted) 1000 2000 pA pA -0,3 to to 4 4,2 V -0,2 voltage range (see Note 5) Full range to V 3,5 VOH VOL High-level output voltage Low-level output voltage Large-signal differential AVD voltage amplification CMRR Common-mode rejection ratio = V,D = VID Va = 'DD (~VDD/~V,O) -100 mY, 0,25 V to 2 V, = V'C Supply-voltage rejection ratio kSVR 100 mY, VDD 10L RL = = = 100 k{J 0 100 k{J V,CR min = = RL Supply current Va (four amplifiers) No load 5 V to 10 V, 2,5 V, Va V'C = = 1.4 V 2.5 V, 25°C 3,2 3,9 -40°C 3 3,9 85°C 3 4 V 25°C 0 50 --40°C 0 50 85°C 0 50 25°C 25 170 -40°C 15 270 85°C 15 130 25°C 65 91 -40°C 60 90 85°C 60 90 25°C 70 93 -40°C 60 91 85°C 60 94 mV V/mV dB dB 25°C 420 1120 -40°C 630 1600 85°C 320 800 /LA t Full range is - 40°C to 85 DC. NOTES: 4, The typical values of input bias current and input offset current below 5 pA were determined mathematically, 5, This range also applies to each input individually, TEXAS . . INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-731 TLC27M41, TLC27M4AI, TLC27M4BI, TLC27M91 LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, PARAMETER TEST CONDITIONS TLC27M41 TLC27M4AI Via Voo Input offset voltage TLC27M4BI TLC27M91 Va = 1.4 V, VIC = 0, RS = 50 n, RL = 100 kn Va = 1.4 V, VIC = 0, RS = 50 n, RL = 100 kn Va = 1.4 V, VIC = 0, RS = 50 n, RL = 100 kn Va = 1.4V, VIC = 0, RS = 50 n, RL = 100 kn Average temperature coefficient "via 110 118 Input bias current (see Note 41 TAt MIN 25°C Va = 5 V, VIC = 5 V VIC = 5 V 10 13 Full range 260 25°C Full range 220 25°C 1200 I'V 2900 2.1 25°C I'V/oC 0.1 85°C 26 25°C 0.7 85°C 25°C mV 2000 3500 Full range Common-mode input 5 UNIT 7 220 -0.2 VICR MAX 1.1 0.9 25°C 85°C Va = 5 V, TYP Full range 25°C to of input offset voltage Input offset current (see Note 41 10 V (unless otherwise noted) 1000 2000 pA pA -0.3 to to 9 9.2 V -0.2 voltage range (see Note 51 Full range to V 8.5 VOH VOL High-level output voltage Low-level output voltage Large-signal differential AVO voltage amplification CMRR Common-mode rejection ratio Supply-voltage rejection ratio kSVR 100 (LiVOO/LiVIO) VID = 100 mY, VID = -100 mY, Va = 1 V to 6 V, RL = 100 kn 10L = 0 RL = 100 kn VIC = VICR min VDO=5Vt010V, Supply current Va = 5 V, (four amplifiers) No load VO=1.4V VIC = 5 V, 25°C 8 8.7 -40°C 7.8 8.7 85°C 7.8 8.7 V 25°C 0 50 -40°C 0 50 85°C 0 50 25°C 25 275 -40°C 15 390 85°C 15 220 94 25°C 65 -40°C 60 93 85°C 60 94 93 25°C 70 -40°C 60 91 85°C 60 94 V/mV dB dB 25°C 570 1200 -40~C ·900 1800 85°C 410 1040 t Full range is - 40°C to 85 DC. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5: This range also applies to each input individually. ~ TEXAS INSTRUMENTS 2-732 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 mV I'A TLC27M4M, TLC27M9M LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Voo - 5 V (unless otherwise noted) PARAMETER TEST CONDITIONS TLC27M4M VIO Input offset voltage TLC27M9M Vo = 1.4 V, VIC = 0, MIN 25°C RS = 50 n, RL = 100 kn Vo = 1.4 V, VIC = 0, Full range 25 DC RS = 50 n, RL = 100 kn Full range Average temperature coefficient aVIO TAt Input offset current (see Note 4) Vo = 2.5 V, VIC = 2.5 V liB Input bias current (see Note 4) Vo = 2.5 V, VIC = 2.5 V 210 900 25°C 0.1 125°C 25 DC 1.4 0.6 125 DC 9 25 DC Common-mode input voltage range (see Note 5) UNIT mV p.V p.V/oC 1.7 0 VICR 10 3750 125°C 110 MAX 1.1 12 25°C to of input offset voltage TYP pA 15 nA pA 35 nA -0.3 to to 4 4.2 V 0 Full range V to 3.5 VOH VOL High-level output voltage Low-level output voltage Large-signal differential AVO voltage amplification CMRR Common-mode rejection ratio Supply-voltage rejection ratio kSVR 100 (aVOO/avIO) VIO = 100 mV, VIO = -100 mV, Vo = 0.25 V to 2 V, RL = 100 kn 10L = 0 RL = 100 kn VIC = VICR min VOO=5Vt010V, Supply current Vo = 2.5 V, (four amplifiers) No load Vo = 1.4 V VIC = 2.5 V, 25°C 3.2 3.9 -55°C 125 DC 3 3.9 3 4 V 25°C 0 50 -55°C 0 50 125°C 0 50 25°C 25 170 -55°C 15 290 125°C 15 120 25°C 65 91 -55 DC 60 89 125°C 25 DC 60 91 70 93 -55 DC 60 91 125°C 60 94 mV V/mV dB dB 25"C 420 1120 -55°C 125 DC 680 1760 280 720 p.A t Full range is - 55 DC to 125°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-733 TLC27M4M. TLC27M9M LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, PARAMETER Input offset voltage TLC27M9M Va RS Va RS = 1.4 V, = 50 Il, = 1.4V, = 50 Il, VIC = 0, RL = 100 kll Full range = 0, = 100 kll Full range VIC RL Average temperature coefficient "'via of input offset voltage 110 Input offset current (see Note 41 liB Input bias current (see Note 41 10 V (unless otherwise noted) TAt TEST CONDITIONS TLC27M4M VI(:~ Voo MIN 25°C 25°C Va = 5 V, VIC 5 V, VIC = 5 V = 5 V 25°C 0.1 1.8 25°C 0.7 125°C 10 25°C voltage range (see Note 51 UNIT mV ",V ",V/oC 2.1 125°C Common-mode input 1200 4300 0 VICR 10 220 125°C = MAX 1.1 12 25°C to Va TYP pA 15 nA pA 35 nA -0.3 to to 9 9.2 V 0 Full range V to 8.5 VOH VOL AVD High-level output voltage Low-level output voltage Large-signal differential voltage amplification CMRR Common-mode rejection ratio Supply-voltage rejection ratio kSVR IDD (~VDD/~VIO) = VID = VID Va 100 mV, = 100 mV, 1 V to 6 V, = VIC VDD 10L RL = 100 kll = = 0 100 kll VICR min = = RL Supply current Va (four amplifiers) No load 5 V to 10 V, 5 V, Va VIC = = 1.4 V 5 V, 25°C 8 8.7 -55°C 7.8 8.6 125°C 7.8 8.8 V 25°C 0 50 -55°C 0 50 125°C 0 50 25°C 25 275 -55°C 15 420 125°C 15 190 25°C 65 94 -55°C 60 93 125°C 60 93 93 25°C 70 -55°C 60 91 125°C 60 94 V/mV dB dB 25°C 570 1200 - 55°C 980 2000 125°C 360 960 t Full range is - 55°C to 125°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. TEXAS ~ INSTRUMENlS 2-734 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 mV ",A TLC27M4C, TLC27M4AC, TLC27M4BC, TLC27M9C LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS 5V operating characteristics, VOO PARAMETER TEST CONDITIONS = = RL SR Slew rate at unity gain CL 100 kll, Equivalent input noise voltage BOM Maximum output swing bandwidth Bl -............- .....-Vo >-............- .....-Vo Voo(b) Split-Supply (a) Single-Supply FIGURE 1. UNITY-GAIN AMPLIFIER 10 kn 10 kn Voo+ 1/2 Voo Vo Vo 100n (a) Single-Supply (b) Split· Supply FIGURE 2. NOISE TEST CIRCUIT 10 kn 10 kn 100 n 1/2 Voo - - - - - I Voo(b) Split-Supply (a) Single-Supply FIGURE 3. GAIN-OF-100 INVERTING AMPLIFIER TEXAS . " INSTRUMENTS 2-738 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC27M4, TLC27M4A, TLC27M4B, TLC27M9 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS PARAMETER MEASUREMENT INFORMATION input bias current Because of the high input impedance of the TLC27M4 and TLC27M9 op amps, attempts to measure the input bias current can result in erroneous readings. The bias current at normal room ambient temperature is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions are offered to avoid erroneous measurements: 1. Isolate the device from other potential leakage sources. Use a grounded shield around and between the device inputs (see Figure 4). Leakages that would otherwise flow to the inputs will be shunted away. 2. Compensate for the leakage of the test socket by actually performing an input bias current test (using a picoammeter) with no device in the test socket. The actual input bias current can then be calculated by subtracting the "open-socket" leakage readings from the readings obtained with a device in the test socket. One word of caution ... many automatic testers as well as some bench-top op amp testers use the servo-loop technique with a resistor in series with the device input to measure the input bias current (the voltage drop across the series resistor is measured and the bias current is calculated). This method requires that a device be inserted into the test socket to obtain a correct reading; therefore, an "opensocket" reading is not feasible using this method. 7 -- 1 C QCQQQ CQQCCC 8 -- 14 FIGURE 4. ISOLATION METAL AROUND DEVICE INPUTS (J AND N DUAL-IN-LiNE-PACKAGEI low-level output voltage To obtain low-supply-voltage operation, some compromise was necessary in the input stage. This compromise results in the device low-level output being dependent on both the common-mode input voltage level as well as the differential input voltage level. When attempting to correlate low-level output readings with those quoted in the electrical specifications, these two conditions should be observed. If conditions other than these are to be used, please refer to Figures 14 through 19 in the Typical Characteristics of this data sheet. TEXAS . " INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TeXAS 75265 2-739 TLC27M4, TLC27M4A, TLC27M4B, TLC27M9 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS PARAMETER MEASUREMENT INFORMATION input offset voltage temperature coefficient Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This parameter is actually a calculation using input offset voltage measurements obtained at two different temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device and the test socket. This moisture will result in leakage and contact resistance, which can cause erroneous input offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the moisture also covers the isolation metal itself, thereby rendering it useless. It is suggested that these measurements be performed at temperatures above freezing to minimize error. full-power response Full-power response, the frequency above which the op amp slew rate limits the output voltage swing, is often specified two ways ... full-linear response and full-peak response. The full-linear response is generally measured by monitoring the distortion level of the output while increasing the frequency of a sinusoidal input signal until the maximum frequency is found above which the output contains significant distortion. The full-peak response is defined as the maximum output frequency, without regard to distortion, above which full peak-to-peak output swing cannot be maintained. Because there is no industry-wide accepted value for "significant" distortion, the full-peak response is specified in this data sheet and is measured using the circuit of Figure 1. The initial setup involves the use of a sinusoidal input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is increased until clipping occurs). The sinusoidal wave is then replaced with a square vvave of the same amplitude. The frequency is then increased until the maximum peak-to-peak output can no longer be maintained (Figure 5). A square wave is used to allow a more accurate determination of the point at which the maximum peak-to-peak output is reached. (a) f - 1 kHz 11 A (b) 1 kHz < f < BOM (e) f - BOM (d) f> BOM FIGURE 5. FULL-POWER-RESPONSE OUTPUT SIGNAL test time Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume, shorttest-time environment. Internal. capacitances are inherently higher in CMOS than in bipolar and BiFET devices and require longer test times than their bipolar and BiFET counterparts. The problem becomes more pronounced with reduced supply levels and lower temperatures. TEXAS -1!1 INSTRUMENTS 2-740 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC27M4, TLC27M4A, TLC27M4B, TLC27M9 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS DISTRIBUTION OF TLC27M4 INPUT OFFSET VOLTAGE DISTRIBUTION OF TLC27M4 INPUT OFFSET VOLTAGE l+t IT, 612 Amplifiers tested from 4 wafer lots 50 I .. -a >I 14 g) g) :! 12 > o o Qj Qj j j 6 .i:g) :f :f 4 ::E: ::E: :; 10 So ::I > > .i:g) I I o ~ > VOO· 10 V ""'""- ...... 2 -40 -10 -20 -30 IOH-High-Level Output Current..,..mA FIGURE 11 HIGH-LEVEL OUTPUT VOLTAGE vs SUPPLY VOLTAGE HIGH-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE VOO-1.6 VIO - 100 mV >I 14 I--RL - 100 kO III TA - 25°C g) :! 12 15 / V > :; 10 8 6 I ::E: / ~ 2 o 2 V / ~ VOO-1.7 ~ & :! VOO-1.8 .1 ~ :; VOO-1.9 -.......... So ::I o VOO - 10 V""-., > j VOO-2.1 ~ VOO-2.2 .i:g) IOH - -5 mA VIO - 100 mV '-.... ............... VOO-2.Q Qj / I ~OO - 5V > /V .i:g) :f 4 1 15 / So ::I o r--I-- -.... FIGURE 10 16 j 8 f'.... o o o~--~----~----~----~--~ -10 o -6 -2 -4 -8 IOH-Hlgh-Level Output Current-mA l r--- .............. 15 > :; Co :; o -....... ~~ .16V CD III VIO - 100 mV TA • 25°C ~ "'r--. 8 10 12 6 VOO-Supply Voltage-V 4 14 16 VOO-2.3 ~ ~ ~ ::E: ~ ~ ........ ~ VOO-2,4 -75 -50 -25 0 25 50 75 100 125 TA-Free-Air Temperature- °C FIGURE 12 FIGURE 13 tData at high and low temperatures are applicable only within the rated. operating free-air temperature ranges of the various devices. TEXAS 2-742 ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC27M4, TLC27M4A, TLC27M4B, TLC27M9 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t LOW-LEVEL OUTPUT VOLTAGE vs COMMON-MODE INPUT VOLTAGE LOW-LEVEL OUTPUT VOLTAGE vs COMMON-MODE INPUT VOLTAGE VOO - 5 V IOL - 5 mATA - 25°C > E I > E I ~ 450 :l til '0 ... :J Co ; o > ... S:J -lV ~ -2.5 V ~ ~ o 400 --+-- I I o o ~ ~ 300~-+-~~~~ > > 250 2 3 Vic-Cammon-Mode Input Voltage-V 800 > E 700 I Q) :l I-- ~ 600 >... 500 S:J 400 "\. Qj > Q) ~ 0 ~ 300 LOW-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE IOL - 5 mA V'C - - > IV,0I2 , I ~ 700 - VIC - 0.5 V :l ~ ' "VOO - 5 V ~ 400~~--+~~---~~~ > Q) 10 V ~300 . -- - .sI 200 ~ o _- '--- > i -4 500 Qj ~- 200 -2 S:J VOO - 10 V o o 600 o , -:--!--. .... ... :J ~~. 100 IOL - 5 mA E 800 - VID _ -- 1 V t--~--+--+---+--------:7'1 --~ TA - 25°C -- -, 10 900~~--~--~--~--'---~--r-~ I I ~ 0 2 4 8 6 Vic-Cammon-Mode Input Voltage-V LOW-LEVEL OUTPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE I > LL..L...L-I::::t:::t::±::±::L-1 o FIGURE 15 ~-L-Lf :J ~ 4 FIGURE 14 I '0 0 --+--+-----1 -100 mV Qj ~ til I~--+--~+---+ o Qj .s~ i :J -100 mV 500 -6 100~-t--~---+- o~~--~~--~--~~--~~ -8 -10 VID-Oifferentiallnput Voltage-V -75 -50 -25 0 25 50 75 100 125 TA-free-Air Temperature- °C FIGURE 16 FIGURE 17 t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS . " INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-743 TLC27M4, TLC27M4A, TLC27M48, TLC27M9 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT 1.0 1 > .. I Cl ... 0.6 .. 0.4 :I Co :I 0 'ii > -' 3.0 j 1 >I ~ 0.3 o/ o ~ 500 >I 450 = 3V~ / ~ 0 -' I 0.2 -' 0 > 0.1 ./ ~ .. / l :I VOO "" 10vj S- c5 'ii > ~ 1.5 ~ 1.0 c5 0.5 .sI V vj / / h~ V / o o 8 VOO"" 16 I ~ 2.0 5 15 10 20 25 IOL -Low-Level Output Current-rnA 30 FIGURE 18 FIGURE 19 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs SUPPLY VOLTAGE LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE ~ 500 I I RL = 100 kO TA = -55,:s / / 300 W / ,.......- f-" -40°C f-" ~ 25°C V -:::- ./ /" . / V/ !J ~ ~ ~ 250 > ~ 234 5 6 7 IOL -Low-Level Output Current-rnA is. '0 2.5 > o 400 ~ <> !E 350 .. // VIO"" -1 V VIC = 0.5 V TA "" 25°C Cl ~ c ~ = 4 'j. VOO 0.5 .. VOO"" 5 " / I VOO .I 1 0.9 r-VIO = -1 V VIC = 0.5 V 0.8 r-TA"" 25°C fI '0 0.7 > LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT 200 1/ ~ ~ V- >I 450 c .. .g 400 <> ~ 350 ~ - ~ ..g' 70°C l..---t-'": ~85°C ~ o > 125°C 250 ~ t'--"VOO ...... 'I'.. ........ 200 .~ 150 '--.. VOO = 5 V = 10 V i'--.. ............. i'--- r--...... 2! ~ 100 i:3 I c ~ 6 ~ 300 1ij ~ 4 RL = 100 kO_ , Co %~ 2 I. 8 10 12 VOO-Supply Voltage-V 14 16 50 r-r-- - -- 0 -75 -50 -25 0 25 50 75 100 125 TA-Free-Air Ternperature- °C FIGURE 21 FIGURE 20 tData at high and low temperatures are applicable only within the rated operating free·air temperature ranges of the various devices. TEXAS .." INSTRUMENTS 2-744 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC27M4, TLC27M4A, TLC27M4B, TLC27M9 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt COMMON-MODE INPUT VOLTAGE POSITIVE LIMIT INPUT BIAS CURRENT AND INPUT OFFSET CURRENT VS vs FREE-AIR TEMPERATURE SUPPLY VOLTAGE 10000 16 TAl = 251o C > 1000 Cl ~ 12 > ... 10 105 45 85 65 TA - Free-Air Temperature- °C / 2 o o 125 2 vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 1000 1600 900 = -55°C - 500 C. g. 400 I c 700 I: 1000 u >C. a. :::J 14 SUPPLY CURRENT vs Vo = VOO/2 No load +--+--+-TA / FIGURE 23 SUPPLY CURRENT 1-I: / / / / / 4 6 8 10 12 VOO-Supply Voltage-V FIGURE 22 1400 / / V / V / ' " "" ''''-..VOO - 10 V I'--- VOO = 5 V ....... I'----.rI--- r--. 200 --- 100 o 0 0 2 4 8 10 12 6 VOO-Supply Voltage-V 14 16 -75 -50 -25 0 25 50 75 100 125 TA-Free-Air Temperature- °C FIGURE 24 FIGURE 25 t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. NOTE 4: The typical values of input bias current and input offset current below 5 pA were determined mathematically. ~ TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-745 TLC27M4, TLC27M4A, TLC27M4B, TLC27M9 LinCMOSlM PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t SLEW RATE vs SUPPLY VOLTAGE SLEW RATE vs FREE-AIR TEMPERATURE 0.9 AV I = 1 VIPP = 1 V RL = 100 kO CL = 20 pF TA = 25°C See Figure 1 0.8 .. ~0.7 I / 0.6 ~ CIl Vi I 0.5 / II: (/) / 0.4 V ~ O. 7 t-----i~c-t--7''-+---t----t---,_-,------I :> I / ! 8! AV = 1 RL = 100 kO CL = 20 pF I / ; O. 6 t-----i--c-t--f''<;;:c---P~-t II: V ~ ~ 0.5~~~~~-+-~-~~~-+--1 III I II: III 0.3 / 0.3 o 0.2~~--~--~--~--~~--~--~ 2 4 6 8 10 12 VOO-Supply Voltage-V 14 -75 -50 -25 0 25 50 75 100 125 TA - Free-Air Temperature - °C 16 FIGURE 26 FIGURE 27 NORMALIZED SLEW RATE vs FREE-AIR TEMPERATURE MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY 1.4 1.3 ..... CIl II: ~ 1.2 1.1 CIl Vi 'C 1.0 CIl •J::! c;; E 0.9 10 ,~voo ~.I = voo=~ 10 V AV = 1 VIPP = 1 V RL = 100 kO CL = 20 pF > I CIl Cl ~ 0.8 ... ::l 5 0 4 0.7 Q. '" 0.6 -75 -50 -25 0 25 50 75 100 125 T A - Free-Air Temperature - °C FIGURE 28 - J: 0 \ 10 V II II 11- I I I I I II TA = 125°C TA = 25°C TA = -55°C V ~ VOO I > = VOO II 7 '0 ::l ~ t'... ~ l'-.. 8 6 >... I~ IIIII 9 !!! 0 2 0.4 t-----i--7'I---+--"......:-"'-...t:---t-~'k:---""d 3 I 2 - = 1\ 5 V IIIII IIII111 \ RL = 100 kO See Figure 1 I I I 1-1111 I .::::: IIIIII o 1 ~ "........ 100 10 f-Frequency-kHz 1000 FIGURE 29 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. -111 TEXAS INSTRUMENTS 2-746 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC27M4, TLC27M4A, TLC27M4B, TLC27M9 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t UNITY-GAIN BANDWIDTH vs FREE-AIR TEMPERATURE SUPPLY VOLTAGE 900 I \ I ..c 700 ~ c co ~ 600 1\ '0; CI '2>- 800 I VDD - 5 V VI = 10 mV_ \ ~ 800 .... ~ UNITY-GAIN BANDWIDTH vs 500 I ~ 400 300 -75 -50 -25 ....J: See Figure 3 .;; 750 r- I 700 r-- L '~ 650 c ~ co ~ 600 ""~ '0; CI ~ 0 25 ~ 50 550 / 'c ~ 500 ~ I-75 400 100 125 1/ V o 2 6 4 8 10 12 VDD-Supply Voltage-V FIGURE 30 FIGURE 31 vs vs FREQUENCY 10 7 5 V RL = 100 k{J TA = 25°C r'\, "" 1\ ~ ~ 10 100 1 k 1\ ~ .::: :c ~ II) co ~ f\. ~'\ 0,1 10 k 100 k = 10 V RL = 100 k{JTA = 25°C b 30 0 Phase Shift 16 !VDD = ~D 14 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT FREQUENCY r----... - / T A - Free-Air Temperature - DC lVDD V / 450 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT 1 I ~ '" :) N CL - 20 pF I VI = 10 mV CL = 20 pF TA = 25°C See Figure 3 90 0 180 0 1 M ..c Q. ~ ~ Phase Shift ~~ I~ 0,1 1 10 100 1 k 10 k f - Frequency - Hz f-Frequency-Hz FIGURE 32 FIGURE 33 100 k 180 0 1 M t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS . " INSTRUMENTS POST OFFICE BOX 655303 ' DALLAS, TEXAS 75265 2-747 nC21M4, nC21M4A, nC21M4B, nC21M9 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t PHASE MARGIN vs SUPPLY VOLTAGE 50 II) I .. I c 00, 48 / /'" / 42 I E ~ 40 38 ~- o 42 b,. II> v 2 ./' 5: 2 II. / 14 .. :(l 34 .c 35 -75 -50 -25 0 25 50 75 100 T A --:- Free-Air Temperature - °C 16 VI = 10 mVCl = 20 pF See Figure 3- ~ 300 .. l!! > ..0 250 :>c 125 I ~ 1\ !\ II) ° ""I"\. 30 150 5Co C '\. ~ 100 ""I"" 32 RS = 100 Q TA = 25°C See Figure 2 \ Cl z Vo~ ~ 151~/1 \1 "0 200 ~ 20 "" "" ~ 37 EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY II. o -....... PHASE MARGIN vs CAPACITIVE LOAD "" ~ 36 "" i'... FIGURE 35 ........ .~ "- FIGURE 34 "", 38 39 '" '-.. I i V~o ~ 5 ~ 40 28 ~ 4 6 8 10 12 VOO-Supply Voltage-V Cl ~ "'" 41 .~ / 44 'Ic .. b .. I VOO - 5 V VI = 10 mV TA = 25°C See Figure 3 "' 43 II) ~ Cl ~ :;; 44 ..~ I 46 ~ ..5: if 45 I VI = 10 mV CL = 20 pF TA = 25°C See Figure 3 ~ Cl ~ PHASE MARGIN vs FREE-AIR TEMPERATURE 40 60 80 Cl -Capacitive load-pF .. "- 0; > 0g. " 100 50 w I c > " I 0 1 10 -100 1000 f - Frequency - Hz FIGURE 36 FIGURE 37 t Data at high and low temperatures are applicable only within the rated operatir:lg free-air temperature ranges of the various devices_ -1!1 2-748 TEXAS INSTRUMENTS POST OFFICE BOX 655303 ° DALLAS, TEXAS 75265 TLC27M4. TLC27M4A. TLC27M4B. TLC27M9 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA single-supply operation While the TLC27M4 and TLC27M9 perform well using dual power supplies (also called balanced or split supplies). the design is optimized for single-supply operation. This design includes an input common-mode voltage range that encompasses ground as well as an output voltage range that pulls down to ground. The supply voltage range extends down to 3 V (C-suffix types), thus allowing operation with supply levels commonly available for TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply operation is recommended. Many single-supply applications require that a voltage be applied to one input to establish a reference level that is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see Figure 38). The low input bias current of the TLC27M4 and TLC27M9 permits the use of very large resistive values to implement the voltage divider, thus minimizing power consumption. The TLC27M4 and TLC27M9 work well in conjunction with digital logic; however, when powering both linear devices and digital logic from the same power supply, the following precautions are recommended: 1. Power the linear devices from separate bypassed supply lines (see Figure 39); otherwise the linear device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital logic. 2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive decoupling is often adequate; however, high-frequency applications may require RC decoupling. voo R4 Rl R3 VREF - voo Rl + R3 R2 VI Vo VREF t.Ol ~F-= Vo - (VREF-VI) C R3 -= ~+ vREF FIGURE 38. INVERTING AMPLIFIER WITH VOLTAGE REFERENCE (a) Common Supply Ralls (b) Separate Bypassed Supply Rails (preferred) FIGURE 39. COMMON VS SEPARATE SUPPLY RAilS TEXAS . . INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-749 TLC27M4, TLC27M4A, TLC27M4B, TLC27M9 LinCMOS™ PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA input characteristics The TLC27M4 and TLC27M9 are specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction. Exceeding this specified range is a common problem, especially in single-supply operation. Note that the lower range limit includes the negative rail, while the upper range limit is specified at VOO - 1 V at T A = 25°C and at VOO - 1 .5 V at all other temperatures. The use of the polys iii con-gate process and t.he careful input circuit design gives the TLC27M4 and TLC27M9 very good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate) alleviates the polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude. The offset voltage drift with time has been calculated to be typically 0.1 IN/month, including the first month of operation. Because of the extremely high input impedance and resulting low bias current requirements, the TLC27M4 and TLC27M9 are well suited for low-level signal processing; however, leakage currents on printed circuit boards and sockets can easily exceed bias current requirements and cause a degradation in device performance. It is good practice to include guard rings around inputs (similar to those of Figure 4 in the Parameter Measurement Information section). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input (see Figure 40). The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation. noise performance The noise specifications in op amp circuits are greatly dependent on the current in the first-stage differential amplifier. The low input bias current requirements of the TLC27M4 and TLC27M9 result in a very low noise current, which is insignificant in most applications. This feature makes the devices especially favorable over bipolar devices when using values of circuit impedance greater than 50 kO, since bipolar devices exhibit greater noise currents. Vo (a) Noninverting Amplifier Vo (b) Inverting Amplifier (e) Unity-Gain Amplifier FIGURE 40. GUARD-RING SCHEMES output characteristics The output stage of the TLC27M4 and TLC27M9 is designed to sink and source relatively high amounts of current (see typical characteristics). If the output is subjected to a short-circuit condition, this high current capability can cause device damage under certain conditions. Output current capability increases with supply voltage. All operating characteristics of the TLC27M4 and TLC27M9 were measured using a 20-pF load. The devices will drive higher capacitive loads; however, as output load capacitance increases, the resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figure 41). In many cases, adding a small amount of resistance in series with the load capacitance will alleviate the problem. TEXAS 2-750 ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC27M4, TLC27M4A, TLC27M4B, TLC27M9 linCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA (b) CL - 170 pF, RL - No load (a) CL - 20 pF, RL - No load 2.5 V >-.....---Vo TA - 25°C f - 1 kHz VIPP - 1 V -2.5 V (d) Test Circuit (c) CL - 190 pF, RL - No load FIGURE 41. EFFECT OF CAPACITIVE LOADS AND TEST CIRCUIT Although the TLC27M4 and TLC27M9 possess excellent high-level output voltage and current capability, methods for boosting this capability are available, if needed. The simplest method involves the use of a pullup resistor (Rp) connected from the output to the positive supply rail (see Figure 42). There are two disadvantages to the use of this circuit. First, the NMOS pulldown transistor N4 (see equivalent schematic) must sink a comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with an on-resistance between approximately 60 fl and 180 fl, depending on how hard the op amp input is driven. With very low values of Rp, a voltage offset from 0 V at the output will occur. Second, pullup resistor Rp acts as a drain load to N4 and the gain of the op amp is reduced at output voltage levels where N5 is not supplying the output current. feedback Op amp circuits nearly always employ feedback, and since feedback is the first prerequisite for oscillation, some caution is appropriate. Most oscillation problems result from driving capacitive loads (discussed previously) and ignoring stray input capacitance. A small-value capacitor connected in parallel with the feedback resistor is an effective remedy (see Figure 43). The value of this capacitor is optimized empirically. TEXAS . " INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-751 TLC27M4, TLC27M4A, TLC27M4B, TLC27M9 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA c VDD --,-V..,D..,D_-.,..;V-"O,RR - IF + IL + Ip Ip - Pullup current required by Vo the op amp {typically 500 /tAl FIGURE 43. COMPENSATION FOR INPUT CAPACITANCE FIGURE 42. RESISTIVE PULLUP TO INCREASE VOH electrostatic discharge protection The TLC27M4 and TLC27M9 incorporate an internal electrostatic discharge (ESD) protection circuit that prevents functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2. Care should be exercised, however, when handling these devices as exposure to ESD may result in the degradation of the device parametric performance. The protection circuit also causes the input bias currents to be temperature dependent and have the characteristics of a reverse-biased diode. latch-up Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC27M4 and TLC27M9 inputs and outputs were designed to withstand - 1OO-mA surge currents without sustaining latch-up; however, techniques should be used to reduce the chance of latch-up whenever possible. Internal protection diodes should not, by design, be forward biased. Applied input and output voltage should not exceed the supply voltage by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators. Supply transients should be shunted by the use of decoupling capacitors (0.1 I'F typical) located across the supply rails as close to the device as possible. The current path established if latch-up occurs is usually between the positive supply rail and ground and can be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the supply voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and the forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance of latch-up occurring increases with increasing temperature and supply voltages. TEXAS "JI INSTRUMENTS 2-752 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC27M4, TLC27M4A. TLC27M4B. TLC27M9 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA lN4148 470 k!l 100 k!l 5V 1/4 TLC27M4 47 k!l Vo 100 k!l 1 /LF + Rl 68 k!l 100 k!l NOTES: VOPP = 1 R2 68 k!l C2 2.2 nF Cl 2.2 of 2 V 1 fa = :--;;:;;;;;;;;::;:;:;: 27r .,fR1 R2C1 C2 FIGURE 44. WIEN OSCILLATOR VI----/ R NOTES: VI =0 V to 3 V VI IS = R FIGURE 45. PRECISION LOW-CURRENT SINK TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-753 TLC27M4, TLC27M4A, TLC27M4B, TLC27M9 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA 5V GAIN CONTROL .-----, 1 ~F (see Note A) Ef-'-: 1 M{l 100 k{l -'0,10r.r-k{l-*--.-1 0.1 ~F 1 k{l ~~l 100 k{l 100 k{l NOTE A: Low to medium impedance dynamic mike. FIGURE 46. MICROPHONE PREAMPLIFIER 10 M{l Voo K 1k{l ~~·-M-41i--'--'WV~-----+--1 115 >---e-......- Vo nF 100 k{l 150 pF NOTES: VOO = 4 V to 15 V VREF = 0 V to VOO-2 V FIGURE 47. PHOTO DIODE AMPLIFIER WITH AMBIENT LIGHT REJECTION TEXAS . " INSTRUMENTS 2-754 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC27M4, TLC27M4A, TLC27M48, TLC27M9 LinCMOSTM PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA 1 Mil Voo 33 pF /---------~-.---Vo 1N4148 100 kll 100 kll NOTES: VOO ~ 8 V to 16 V Va ~ 5 V, 10 rnA FIGURE 48, 5-V LOW-POWER VOLTAGE REGULATOR 5V 1 Mil 0.01 I'F VI -1 + 0.221'F {--Vo 114 TLC27M4 -=1 Mil 100 kll 100 kll 10 kll FIGURE 49, SINGLE-RAIL AC AMPLIFIER TEXAS ~ INSTRUMENTS POST oFFICE BoX 655303 • DALLAS, TEXAS 75265 2-75.5 2-756 TLC1078 LinCMOSTM J..lPOWER PRECISION DUAL OPERATIONAL AMPLIFIER 03146. AUGUST 19S5-REVISED JANUARY 1991 • Power Dissipation as Low as 10 IJW Typ per Amplifier D, JG, OR P PACKAGE (TOP VIEW) • Operates on a Single Silver-Oxide Watch Battery, VDD = 1.4 V Min 1 0 U T D 8 VDD 11N- 2 720UT 1 IN+ 3 6 21NGND 4 5 21N+ • VIO ... 450 IJV Max in DIP and SmallOutline Package • Input Offset Voltage Drift ... 0.1 IJV/Month Typ, Including the First 30 Days FK PACKAGE (TOP VIEW) • High-Impedance LinCMOS ,. Inputs liB = 0.6 pA Typ f- ::J U 0 U 0 oU z~z>z • High Open-Loop Gain •.. 800,000 Typ 3 • Output Drive Capability> 20 mA 2 1 20 19 18 17 4 5 • Slew Rate ... 47 V/ms Typ 16 • Common-Modo Input Voltage Range Extends Below the Negative Rail 7 15 8 14 9 10 11 12 13 • Output Voltage Range Includes Negative Rail UOU+U zzzzz (9 • On-Chip ESD-Protection Circuitry ; NC - No internal connection • Small-Outline Package Option Also Available in Tape and Reel symbol (each amplifier) description The TLC1078 operational amplifier offers ultralow offset voltage, high gain, 11 O-kHz bandwidth, 47-V/ms slew rate, and just 150-IJW power dissipation per amplifier. With a supply voltage of 1.4 V, common-mode input to the negative rail, and output swing to the negative rail, the TLC1078C is an ideal solution for low-voltage battery-operated systems. The 20-mA output drive capability means that the TLC1078 can easily drive small resistive and large capacitive loads when needed, while maintaining ultra-low standby power dissipation. Since this device is functionally compatible as well as pin compatible with the TLC27L2 and TLC27L7, the TLC1078 easily upgrades existing designs that can benefit from its improved performance. The TLC1078 incorporates internal ESDprotection circuits that will prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care I N - = f > - OUT IN+ + DISTRIBUTION OF TLC1 078 INPUT OFFSET VOLTAGE 334 Amplifiers 25 = ~ vDD 5 V ---'e---+--I--+--I---I TA 25°C P Package & 20~-+-~-+--~-+-~-4-~ ;JI. =e = is. E d-~r~ IN+ _R1:-+ ----I +-J07 ' ~-----+-----~ OUT GNO . TEXAS. INSTRUMENTS 2-758 012 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC1078 LinCMOSTM /J.POWER PRECISION DUAL OPERATIONAL AMPLIFIER absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, Voo (see Note 1) ............................................................ 18 V Differential input voltage (see Note 2) ....................................................... ±Voo Input voltage range, V, (any input) .................................................. - 0.3 V to Voo Input current, I, (each input) ............................................................... ± 5mA Output current, 10 (each output) .......................................................... ± 30mA Total current into Voo terminal (see Note 3) ................................................. 45 mA Duration of short-circuit at (or below) 25°C (see Note 3) .................................... Unlimited Continuous total dissipation ........................................... see Dissipation Rating Table Operating free-air temperature range, TA: C-suffix ...................................... O°C to 70°C I-suffix ..................................... - 40°C to 85°C M-suffix .................................... - 55°C to 125°C Storage temperature range ....................................................... - 65°C to 150°C Case temperature for 60 seconds: FK package .............................................. 260°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package ................ 260°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package ................... 300°C NOTES: 1. All voltage values, except differential voltages, are with respect to network ground. 2. Differential voltages are at the non inverting input with respect to the inverting input. 3. The output may be shorted to either supply. temperature and/or supply voltages must be limited to ensurethatthe maximum dissipation ratings are not exceeded. DISSIPATION RATING TABLE PACKAGE TA,,25°C POWER RATING DERATING FACTOR ABOVE T A = 25°C TA=70°C POWER RATING 5.8mWrC 11 mWrc 8.4 mWrc 8.0mWrC 464mW 377mW 145mW 880mW 715mW 275mW 672mW 546mW 210mW 640mW 520mW 200mW D 725mW FK 1375mW JG p 1050mW 1000mW TA = 85°C POWER RATING TA = 125°C POWER RATING recommended operating conditions I-SUFFIX C-SUFFIX MIN Supply voltage, VDD Common-mode input voltage, VIC Operating free-air temperature, TA I VDD =5V I VDD = 10V NOM MAX MIN NOM M-SUFFIX MAX MIN NOM MAX 1.4 16 3 16 4 16 -0.2 4 -0.2 4 0 4 -0.2 9 -0.2 9 0 9 0 70 -40 85 -55 125 UNIT V V °C TEXAS . " INSTRUMENTS POST OFFice BOX 655303 • DALLAS. TeXAS 75265 2-759 TLC1078C LinCMOSTM f.lPOWER PRECISION DUAL OPERATIONAL AMPLIFIER electrical characteristics over operating free-air temperature range (unless otherwise noted) TEST CONOITIONS PARAMETER VOO - 5V MIN TA VIO aVIO 110 liB Input offset voltage Temperature coefficient Vo = 1.4 V, VIC=O, RS = 50n, RI=1Mn (see Note 4) Input bias current 25'C 0.1 Va = VOO/2, 70'C VIC = VOO/2 25'C 70'C 7 0.6 40 -0.3 25'C voltage range (see Note 5) VOL AVO Low-level output voltage Large-signal differential voltage amplification CMRR Common-mode rejection ratio kSVR 100 Supply-voltage rejection ratio (AVOO/AVIO) Supply current (two amplifiers) Full range VIO = 100 mY, RL = 1 Mn VIO = -100 mY, IOL = 0 [RL= 1 MQ, See Note 6 VIC = VICR min VOO = 5 V to 10 V, Va = 1.4 V Va = VOO/2, VIC = VOO/2, No load TYP MAX 180 600 950 1.1 70'C (see Note 4) High-level output voltage 450 25'C to Common-mode input VOH 160 MIN 800 -0.2 VICR MAX 25'C Full range of input offset voltage Input offset current VOO - 10V TYP 1 600 -0.2 7 0.7 50 -0.3 to to to to 4 -0.2 4.2 9 -0.2 9.2 to to 3.5 8.5 300 600 pA pA V V 25'C 3.2 4.1 8.2 O'C 70'C 3.2 4.1 8.2 8.9 3.2 4.2 8.2 8.9 8.9 V 25'C 0 O'C 0 25 25 0 0 25 25 70'C 25'C 250 0 525 25 0 25 O'C 250 680 500 850 1010 70'C 200 380 350 660 25'C 70 70 95 O'C 95 75 75 97 97 70'C 70 95 75 97 25'C 75 98 75 98 O'C 75 98 75 98 70'C 25'C 75 98 20 75 34 98 29 46 O'C 24 42 70'C 16 28 36 22 66 40 500 !lV !lVrC 0.1 300 UNIT mV VlmV dB dB !lA NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. 6. AtVOO=5V, VO=0.25Vt02V;atVOO= 10V, Va = 1 Vt06V. operating characteristics TEST CONOITIONS PARAMETER Voo TA SR Vn B1 -~..- VI __- - 10 kfl Vo + VOO 100 II VI Vo + VOO/2 -=- I Cl -=Cl includes fixture capacitance. Cl Includes fixture capacitance. FIGURE 1. SLEW RATE TEST CIRCUIT FIGURE 2. UNITY-GAIN BANDWIDTH AND PHASE MARGIN TEST CIRCUIT TYPICAL CHARACTERISTICS DISTRIBUTION OF TLC1078 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT DISTRIBUTION OF TLC1078 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 70 356 Amplifiers tested from 8 wafer lots 356 Amplifiers tested from 8 wafer lots 60 'if!. ~ 50 '" :E is. 40 VOO = 5 V ---1--+-I--~ TA = 25'C to 125'C , ' I P Package Outliers: (1) 19.2 ~V/'C I 1/1 50 P Package i Outliers :--~1-~ ~is. E (1) 18.7 ~vrc 40 30 8 ~ 20 '" 30 SC lOt-- -+-~--1--+--- -1-'-L ~ i, ,, I I , ,+-J ' ----t-t- I II> ~ IL , I '0 II> I' (1) ,11.6 ~V/'C---- ~-~~- « II> f VOO=10V i ! I TA = 25 0 Ct0125;c---r, 'if!. ~ '0 60 , 20 i I 10 o t-......l--.i.___ ot-......l---IIIIII:CI· -10 -8 -6 -4 -2 0 2 4 6 B uVIO - Temperature Coefficient - ~v/oC 10 -10 -8 -6 -4 -2 0 2 4 6 8 uVIO - Temperature Coefficient - ~V/OC FIGURE 3 10 FIGURE 4 TEXAS . . INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-763 TLC1078 LinCMOSTM J.,lPOWER PRECISION DUAL OPERATIONAL AMPLIFIER TYPICAL CHARACTERISTICSt HIGH-LEVEL OUTPUT VOLTAGE HIGH-LEVEL OUTPUT VOLTAGE vs vs HIGH-LEVEL OUTPUT CURRENT HIGH-LEVEL OUTPUT CURRENT 5r---~----~----~----~--~ VIO TA 16 = 100mV = 25°C > I II> 01 J!! 14 I ....... VIO = 100 mV TA = 25°C -......... ~~= 16V 12 ~ ............ ~ 10 '5 Q. '5 0 lII> .... 1:. 8 r'--- ............ 6 I'---.. ~ = VOO ~ ....... o -4 -2 -6 2 o -10 -8 4 o OL-----~----~----~----~--~ IOH - High-Level Output Current - mA > I II> 01 ~ FIGURE 6 HIGH-LEVEL OUTPUT VOLTAGE HIGH-LEVEL OUTPUT VOLTAGE vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE !0 / L 12 8 6 01 J: I :x: 0 > 4 / 2 o o > VOO -1.7 V I 8. / V / / / V / / ! o VOO -........ -2 1 -J.VOO-2.1 " voo ~ I VIO IOH I "'~ '"'" '" > VOO -2.3 4 8 10 12 6 VOO - Supply Voltage - V 14 16 VOO-2.4 -75 = 100mV = -5mA- = 5V ~ voo = 10 V"""""'" l VOO -2.2 6 / 2 .............. VOO-l.8 ~ ~ '5 VOO -1.9 // 10 'ii > j 1:. ....... ~ ~ ~ -SO -25 0 25 SO 75 100 TA - Free-Air Temperature - °C FIGURE 7 FIGURE 8 t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS " , INSTRUMENTS 2-764 -40 VOO-l.6 VIO = 100mV RL = 1 MQ TA = 25°C 0 > '5 --20 -10 -30 IOH - High-Level Output Current - mA FIGURE 5 16 14 -f--- i'-- DO J: I :x: 0 > 10V POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 125 TLC1078 LinCMOS ™ I-lPOWER PRECISION DUAL OPERATIONAL AMPLIFIER TYPICAL CHARACTERISTICSt LOW-LEVEL OUTPUT VOLTAGE LOW-LEVEL OUTPUT VOLTAGE vs vs COMMON-MODE INPUT VOLTAGE COMMON-MODE INPUT VOLTAGE 700 500 1\ > \ E I III 01 600 ~ ~ 'S ~'" vdd = 5V IOL = 5mA~ TA = 25°C o r\.\ Ii 0 ...I I :: 400 &. I 'S o 500 j 400 I '" > 300 o J ~ '- r-.... VID = -1 V ...I 0 7 450 ~ ~VID = -1oomV Gi > > III 01 \ ........ , I 1\\ \ i,\ 350 ~ ~ ~ ~ r-... --r-::::::::::: -- 2 3 VIC - Common-Mode Input Voltage - V ~ 300 ~ ~ VID = -100 mV / VID = -1 V ~ VID ~ 250 o 4 2 4 6 8 VIC - Common-Mode Input Voltage - V vs DIFFERENTIAL INPUT VOLTAGE FREE-AIR TEMPERATURE 1\ 'S 'S 400 0 '" JIi .3 ... 0 I > E I I III \ '\. 300 !! ~ 'S ..........VDD=5V ! ~ I'- VDD = 10V 200 700 I I - IOL = SmA. -- VDD = 5 V 600 400 Ii0 300 I 200 ...I ./ 500 Gi > III ...I ...I ,./ ~ ........... ........ ......... V /' /"" V V V ........... V VDD = 10V ~~ 0 > 100 > 100 o o I VID = -1 V 800 I - VIC = 0.5 V 01 \ 500 10 LOW-LEVEL OUTPUT VOLTAGE 900 !! i ~ vs 800 ~ I FIGURE 10 LOW-LEVEL OUTPUT VOLTAGE 01 = -2.5V ~~ FIGURE 9 VIC = IVID I 21 > 700 I--- IOL = SmA E TA = 25°C I III 600 I I VDD = 10V IOL = SmA TA = 25°C- o -2 -4 -6 -8 -10 -75 VID - Differential Input Voltage - V -SO -25 0 25 SO 75 100 T A - Free-Air Temperature - °C FIGURE 11 FIGURE 12 125 t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ~ TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-765 TLC1078 Lin CMOS ™ ~POWER PRECISION DUAL OPERATIONAL AMPLIFIER TYPICAL CHARACTERISTICSt LOW-LEVEL OUTPUT VOLTAGE LOW-LEVEL OUTPUT VOLTAGE . vs vs LOW-LEVEL OUTPUT CURRENT 0.9 > 0.8 I 3 =-1 V =0.5 V = 25°C VIO VIC TA VOO ~ =4~ / VOO '5 0.6 Voo 0.5 > GI 0.4 0.3 0 I 5 0.2 > 0.1 o~ o ,# i/ . I RL 600 ~ 400 Q I Q c> ~ 0.5 o /' o ~ 5 10 15 20 25 IOL - Low-Level Output Current - mA 8 vs vs FREE-AIR TEMPERATURE I TA V L / / V// !V I // / / ./V V 200 ,..... TA ~ V ............ ~ -::;~ ~~ 2000 = _55°C............. f--:t::: L I ]i I!! I ..J / SUPPLY VOLTAGE = 1 MQ &1000 .! C / ~~ 30 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION 1200 800 1.5 10i / LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION 1400 ~ = =16;,/ FIGURE 14 > I c 1600 .2 ~ VOO ~ 4 7 2 3 5 6 IOL - Low-Level Output Current - mA 2000 c Voo FIGURE 13 > 1§ 1800 ~ :e =-1 V = 0.5 V = 25°C 2 1 5 ] =3~ // ~ ..J ;i t !t / ~ "ii ..J I =5 V / 01 .! 0.7 0 I VIO VIC TA > 2.5 GI ~ LOW-LEVEL OUTPUT CURRENT - ~ -40°C \ 1 \ --- = O°C 2 4 i'--. 70°C ::::::fs;C Oi :eI!! 1 25°C 14 VOO '" ............... 600 VOO ~ 400 Q 200 16 I - ""-.. ......... r-.... ' ............... =5 V"""'" ........... ........... ......... -- -I'- 0 -75 I = 1 MQ = 10V I c> 6 8 10 12 Voo - Supply Voltage - V \ 25°C 0 o I RL -50 -25 0 25 50 75 100 T A - Free-Air Temperature - °C FIGURE 15 FIGURE 16 t Data at high and low temperatures are applicable only within the rated operating free:air temperature ranges of the various devices. TEXAS'~ INSTRUMENTS 2-766 POST OFFICE BOX 655303 • DALLAS. TEXAS 15265 125 TLC10781 linCMOSTM /JPOWER PRECISION DUAL OPERATIONAL AMPLIFIER TYPICAL CHARACTERISTICSt INPUT BIAS CURRENT AND INPUT OFFSET CURRENT COMMON-MODE INPUT VOLTAGE POSITIVE LIMIT vs vs FREE-AIR TEMPERATURE SUPPLY VOLTAGE 16 10000 _Voo = 10V VIC = 5 V > / 1000 OJ 0> !! 12 -a. "0 liB I / 1: !! 100 ~ > ... / ::J C. V 10 OJ 8 i:. E E 6 ":!!;0 ./ I 10 .5 110 U ~ I ~. TA = 25°C 14 V " ftI ..g! " " " " 0 See Note 4 I >" ." 0.1 25 4 U U " 45 105 65 85 TA - Free-Air Temperature - °C 2 o o 125 / 2 / SUPPLY CURRENT SUPPLY CURRENT vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE \. \ c( ::t. I 120 1----+- 1: ~S1001---+---r--~ 80 ~ ... ::J u U 80~---~--t---~~~--~~~--+--1 ~ D- ::J C. ::J I/) Q 0 ~ 60~~~~~-+~~--~~+---+-~ 9 40~~~~~~~~--~~*-~~~ 4 6 8 10 12 Voo - Supply Voltage - V 14 16 I 60 , ~ "\ ~ 40 I f'...... '-......... VOO = 5"";- 9 16 o -75 -50 -25 I ~OO=10V ~ r-- 20 2 14 Vo = Voo/2 No load \ 140 / 120 100 c( / 4 8 10 12 6 Voo - Supply Voltage - V FIGURE 18 160 i>- / / V / / / FIGURE 17 180r-~--~--~---r--~--~--~-' ::t. I / 0 C V / / V 0 25 50 -- 75 r-- 100 125 TA - Free-Air Temperature - °C FIGURE 20 FIGURE 19 t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. NOTE 4: The typical values of input bias current and input offset current below 5 pA were determined mathematically. TEXAS '"'I INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-767 TLC1078 LinCMOSTM f.lPOWER PRECISION DUAL OPERATIONAL AMPLIFIER TYPICAL CHARACTERISTICSt SLEW RATE 70 .. E I ~ II: I I SLEW RATE vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 70 I = = = = = VIPP 1V 1 MQ 60 '- RL CL 20pF AV 1 50 TA 25°C See Figure 1 40 / 30 /' V .. ./ V V ./ = 1 MQ = 20pF =1 See Figure 1 50 E I ~ II: I 40 30 I I II: en RL CL AV 60 II: en 20 20 I 10 I---+_--+_+----+VOO VIPP 10 O~~--~--~--~--~~--~--~ 0 0 1.4 1.3 1.2 2 ] 0.9 z~ 0.8 -75 -50 -25 0 25 SO 75 100 TA - Free-Air Temperature - °C NORMALIZED SLEW RATE MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs vs FREE-AIR TEMPERATURE FREQUENCY voo-I N =5V = 10V RL =1 V = 1 MQ = 20pF =1 CL AV - > I ""-~ 0.7 0.6 ~ ::J (J I I ~ ~ ~ 0.5 -75 -SO -25 0 25 50 75 100 TA - Free-Air Temperature - °C " 125 10 f - Frequency - kHz FIGURE 24 FIGURE 23 t Data at high and low temperatures are applicable only within the rated operating free·air temperature ranges of the various devices. 2-768 125 FIGURE 22 ~ VOO ii 16 vlPP .. 1en 14 FIGURE 21 , Sl 1.1 II: 10 12 4 6 8 VOO - Supply Voltage - V = 5 V :---+---1 = 2.5 V TEXAS .." INSTRUMENTS POST OFFICE BOX 656303 • DALLAS. TEXAS 75265 100 TLC1078 LinCMOSTM f,lPOWER PRECISION DUAL OPERATIONAL AMPLIFIER TYPICAL CHARACTERISTICSt UNITY-GAIN BANDWIDTH vs FREE-AIR TEMPERATURE SUPPLY VOLTAGE 150 \ I ~ "I\. 110 '\ ~c: .. 90 III c: .; b 'c ~ 30 -75 ~ I I I i I .~ 90 b 'c 80 :::l I 70 m / 125 o 2 8 10 12 4 6 Voo - Supply Voltage - V 14 16 FIGURE 25 FIGURE 26 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs vs FREQUENCY FREQUENCY I - - I I "'" '" "I 1\ = = = 25°C Voo 5V RL 1 MQ ~ TA " E 30° AVO "'" ""~~ UI ..3: .I: 11. 90° Phase Shift 10 k 100 1k f - Frequency - Hz !!: .I: 60° 120° 150° \ 10 ~ !E 105 ii 100 k 180° 1M c( II> 0> 104 ~ :i 103 S Q I Q TA "- "'" 1\ ~ ~ C 102 I!! II> !!:: "" '"" AVO "- Phase Shift 101 > c( 0.1 = = = 25°C Voo 10V RL 1 MQ- c: 106 0 0° 0.1 1 10 100 " ~~ 1k 10k 1\ lOOk 180° 1M f - Frequency - Hz FIGURE 27 t V / V / 60 50 -50 -25 0 25 50 75 100 TA - Free-Air Temperature - °C I 1 100 III -- I . -g ~! I I ~ 110 'j I I m 50 - - I -I-i"", 70 :::l I /' = ~ 120 , I = 10mV CL " 20 pF TA 25°C See Figure 2 N See Figure 2 I I Vi 130 = CL = 20 pF --+ '\' ~ = I I\. 130 140 I I voo 5V Vi 10 mV I N UNITY-GAIN BANDWIDTH vs FIGURE 28 Data at high and low.temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS " , INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-769 TLC1078 linCMOSTM r-tPOWER PRECISION DUAL OPERATIONAL AMPLIFIER TYPICAL CHARACTERISTICSt PHASE MAR~IN vs SUPPLY VOLTAGE 42 , I 40 II) ~ "'"I " II> . :;: . II> II) s: a. VC ,L .- 34 t---· f - ...... I E / V ~ V II) ~ "'"I " 30 .. . II> II) 28 a. I E r· -- ------->- 4 8 10 12 6 Voo - Supply Voltage - V 2 I~ i I_ - - ----- 1 - s: 14 24 --t-- ------- . 1 ]---- :, i = = 20 pF """" I~ ! I 20 -75 16 _I See Figure 2 I I 32 CL :;: I o ~ I .~ <:> 32 36 -- II> <:> ------+-- ~ /' = VOO 5V Vi 10mV .......... I 38 36 1 i See Figure 2 .~ 40 ! I = 10mV CL = 20 pF TA = 25'C Vi PHASE MARGIN vs FREE-AIR TEMPERATURE -50 -25 0 25 50 75 100 T A - Free-Air Temperature - 'C 125 FIGURE 29 FIGURE 30 PHASE MARGIN vs CAPACITIVE LOAD EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY 300 ~ "I S'" '0 ~ '" I " II> 33 ..3l ~ :; TA I Co E ~ 80 ~ 70 I" 60 ·S 1-------+---+--+ "\. '-. I > I I 50 20 I I .E 100 "E 90 II> 29 I 40 60 80 CL - Capacitive Load - pF 100 1 100 10 f - Frequency - Hz FIGURE 32 FIGURE 31 t I 11 3l z '0 31 27 Voo RS '. '\ > .~ ::i 200 =5 V = lOOn = 25'C ! :> 35 -II) ~ I Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS • INSTRUMENTS 2-770 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 1000 TLC1079 LinCMOSTM f.1POWER PRECISION QUAD OPERATIONAL AMPLIFIER 03147, AUGUST 19BB-REVISED JANUARY 1991 D, J, OR N PACKAGE • Power Dissipation as Low as 10 IJ,W Typ per Amplifier (TOP VIEW) 1 OUT 1 IN11N+ VDD 21N+ 21N2 OUT • Operates on a Single Silver-Oxide Watch Battery, VDD = 1.4 V Min • VIO ... 850 IJ,V Max in DIP and SmallOutline Package • Input Offset Voltage Drift ... 0.1 IJ,V/Month Typ, Including the First 30 Days • High-Impedance LinCMOS'M Inputs liB = 0.6 pA Typ 4 OUT 41N41N+ GND 31N+ 4 7 FK PACKAGE (TOP VIEW) • High Open-Loop Gain ... 800,000 Typ I~ ~I • Output Drive Capability > 20 mA ~OUO~ • Slew Rate ... 47 V/ms Typ 3 ~~z."..". 2 1 20 19 • Common-Mode Input Voltage Range Extends Below the Negative Rail • Output Voltage Range Includes Negative Rail • On-Chip ESD-Protection Circuitry 9 1011 12 13 • 14-Pin Small-Outline Package Option Also Available in Tape and Reel ~6Z6~ If-Uf- NC\J 41N+ NC 16 GND 15 NC 14 31N+ I ('1')(") NC - No internal connection description The TLC1079 operational amplifier offers ultralow offset voltage, high gain, 11 O-kHz bandwidth, 47-V/ms slew rate, and just 150-IJ,W power dissipation per amplifier. With a supply voltage of 1.4 V, common-mode input to the negative rail, and output swing to the negative rail, the TLC1 079 is an ideal solution for low-voltage, battery-operated systems, The 20-mA output drive capability means that the TLC1079 can easily drive small resistive and large capacitive loads when needed, while maintaining ultra-low standby power dissipation, Since this device is functionally compatible as well as pin compatible with the TLC27L4 and TLC27L9, the TLC1 079 easily upgrades existing deSigns that can benefit from its improved performance, The TLC1079 incorporates internal ESDprotection circuits that prevent functional failures at voltages up to 2000 V as tested under MILSTD-883C, Method 3015,2; however, care symbol (each amplifier) IN-=t>IN+ OUT + DISTRIBUTION OF TLC1 079 INPUT OFFSET VOLTAGE 40 35 #r 30 :;:: =a 25 « 20 Cl 15 ..l!! E .. ! ..e .. '0 I: 10 0- 5 o '----1..--1"" -1200 -600 o 600 1200 VIO -Input Offset Voltage - ~V LinCMOS is a trademark of Texas Instruments Incorporated. PRODUCTION DATA documenls conlain informalion currenl as of publicalion dale. Producls conform 10 specificalions per Ihe terms of Texas Inslruments standard warranly. Production processing does not necessarily include testing of all parameters. 18 17 Copyright © 1991, Texas Instruments Incorporated TEXAS . " INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-771 TlC1079 linCMOSTM /-lPOWER PRECISION QUAD OPERATIONAL AMPLIFIERS description (continued) should be exercised when handling these devices as exposure to ESD may result in degradation of the device parametric performance. The TLC1 079 design also inhibits latchup of the device inputs and outputs even with surge currents as large as 100 mA. The C- suffix devices are characterized for operation from O°C to 70°C. The 1- suffix devices are characterized for operation from - 40°C to 85°C. The M- suffix devices are characterized for operation over the full military temperature range - 55°C to 125°C. The wide range of packaging options includes small-outline and chip-carrier versions for high-density system applications. AVAILABLE OPTIONS PACKAGE SMALL OUTLINE (0) TA CHIP CARRIER (FK) CERAMICOIP (J) PLASTIC OIP (N) O'C to 70'C TLC1079CD - - TLC1079CN - 40'C to 85'C TLC10791D - - TLC10791N - 55'C to 125'C TLC1079MD TLC1079MFK TLC1079MJ TLC1079MN The D package IS available taped and reeled. Add the suffiX R to the device type (e.g., TLC1079CDR). equivalent schematic (each amplifier) VOO 01 IN-~ Rl 08 IN+ Cl RS all 012 , ~ 07 OUT 02 013 09 R2 01 R3 02 R7 I GNO TEXAS • INSTRUMENlS 2-772 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC1079 linCMOSTM I-lPOWER PRECISION QUAD OPERATIONAL AMPLIFIER absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, Voo (see Note 1) ........................................................... 18 V Differential input voltage (see Note 2) ...................................................... ± Voo Input voltage range, VI (any input) .................................................... - 0.3 to Voo Input current, II (each input) ............................................................... ± 5mA Output current, 10 (each output) .......................................................... ± 30mA Total current into VDD terminal (see Note 3) ................................................. 45 mA Duration of short-circuit current at (or below) 25°C (see Note 3) ............................. Unlimited Continuous total dissipation ........................................... See Dissipation Rating Table Operating free-air temperature range, TA: C-suffix ...................................... O°C to 70°C I-suffix ..................................... - 40°C to 85°C M-suffix ................................... - 55°C to 125°C Storage temperature range ....................................................... - 65°C to 150°C Case temperature for 60 seconds: FK package .............................................. 260°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package ................ 260°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package ..................... 300°C NOTES: 1. All voltage values, except differential voltages, are with respect to network ground. 2. Oifferential voltages are at the noninverting input with respect to the inverting input. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensurethatthe maximum dissipation ratings are not exceeded. DISSIPATION RATING TABLE PACKAGE TAs25°C POWER RATING DERATING FACTOR ABOVE TA = 25°C TA = 70°C POWER RATING TA=85°C POWER RATING TA = 125°C POWER RATING 0 950mW 7.6mWrC 608mW 494mW 190mW FK 1375mW 11 mwrc 880mW 715mW 275mW J 1375 mW 11 mWrc 880mW 715mW 275mW N 1150mW 9.2mWrC 736mW 598mW 230mW recommended operating conditions C-SUFFIX MIN Supply voltage, VOO Common-mode input voltage, VIC Operating free-air temperature, TA I VOO =5V I VOO = 10 V NOM I-SUFFIX MAX MIN 1.4 16 -0.2 NOM M-SUFFIX NOM MAX MIN 3 16 4 MAX 16 4 -0.2 4 0 4 -0.2 9 -0.2 9 0 a 70 -40 85 -55 9 125 UNIT V V °c TEXAS • INSTRUMENlS POST OFFICE BOX 655303 • O!'LLAS. TEX!'S 75265 2-773 TLC1079C LinCMOSTM f.lPOWER PRECISION QUAD OPERATIONAL AMPLIFIERS electrical characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER VIO TEST CONDITIONS 25°C Full range VIC=O, RI=1 MQ 25°C to 70°C Input offset voltage Temperature coefficient Vo = 1.4 V, RS =50 Q, "'VIO of input offset voltage 110 Input offset current (see Note 4) liB Input bias current (see Note 4) voo = 5V MIN TA Va = VOO/2, VIC = VOO/2 VICR MAX 190 850 1200 0.1 70°C 7 25°C 0.6 70°C 40 VOL AVO High-level output voltage low-level output voltage large-signal differential voltage amplification CMRR Common-mode rejection ratio kSVR Supply-voltage rejection ratio (aVOOhWIO) VIO = 100mV, Rl= 1 MO VIO = -100 mY, 10l = 0 Rl= 1 MQ, See Note 6 VIC = VICR min VOO=5Vt010V, Vo = 1.4 V Vo - VOO/2, 100 Supply current (four amplifiers) VIC = VOO/2, No load 1150 1500 7 300 0.7 600 50 -0.2 -0.3 -0.2 -0.3 to to to 4 4.2 9 -0.2 to 9.2 to 600 J.lV pA pA V to 8.5 V 25°C 3.2 4.1 8.2 O°C 70°C 3.2 4.1 8.2 8.9 3.2 4.2 8.2 8.9 8.9 V 25°C 0 25 0 25 O°C 0 0 25 0 25 25 0 25 70°C UNIT J.lVrC 0.1 300 3.5 VOH 200 1 -0.2 Full range VOO=10V MIN TYP MAX 1.1 25°C 25°C Common-mode input voltage range (see Note 5) TYP 25°C 25.0 525 500 O°C 250 700 500 850 1010 70°C 25°C 200 70 380 95 350 75 660 97 mV V/mV O°C 70 95 75 97 70°C 70 95 75 97 25°C 75 98 75 98 O°C 75 98 75 98 70°C 25°C 75 98 40 75 68 98 57 92 O°C 48 84 72 132 70°C 31 56 44 80 dB dB J.lA NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. 6. At VOO = 5 V, Vo = 0.25 V to 2 V; at VOO = 10 V, Va = 1 V to 6 V. operating characteristics PARAMETER SR Vn B1 m Slew rate at unity gain Equivalent input noise voltage Unity-gain bandwidth Phase margin at unity gain TEST CONDITIONS Voo = 5V TA Rl= 1 MO, Cl = 20 pF, VIPP = 1 V, See Figure 1 f=1kHz, RS = 1000 Cl = 20 pF, See Figure 2 CL = 20 pF, See Figure 2 MIN TYP VOO=10V MIN TYP MAX UNIT 25°C 32 O°C 35 47 51 70°C 27 38 25°C 68 85 68 110 nvl/Hz 25°C kHz O°C 100 125 70°C 25°C 65 34° 90 38° O°C 36° 40° 70°C 30° 34° ~ TEXAS INSTRUMENTS 2-774 MAX POST OFFICE BOX 655303 • DALLAS. TEXAS 76265 V/ms TLC10791 LinCMOSTM f..lPOWER PRECISION ,QUAD OPERATIONAL AMPLIFIER electrical characteristics over operating free-air temperature range (unless otherwise noted) TEST CONDITIONS PARAMETER 25'C VIO Input offset voltage )-----=,----:----::;-:---,----1 Vo = 1.4 V, Temperature coefficient RS = 50 Q, aVIO of input offset voltage I 10 Input offset current (see Note 4) ~.~--~-----~ I IB Input bias current (see Note 4) Common-mode input voltage range (see Note 5) VOH High-level output voltage VIO = 100 mY, RL = 1 Mn VOL Low-level output voltage VIO AVO Large-signal differential voltage amplification RL= 1 MQ, See Note 6 25'C -40'C 85'C 25'C -40'C 3.2 3.2 3.2 250 250 150 Vo = VOO/2, 25'C - 40'C 85'C 25'C -40'C 85'C 25'C -40'C 85'C 25'C VIC = VOO/2, No load -40'C 85'C = -100 mY, 10L = 0 CMRR Common-mode rejection ratio VIC = VICR min kSVR Supply-voltage rejection ratio (Il.VOO/Il.VIO) VOO=5Vt010V, Vo = 1.4V Supply current (four amplifiers) TYP MAX 190 850 MIN TYP MAX 200 1150 UNIT ).lV VIC = 0, f-F::-:ul:-:-1c::-ra-,--ng=..e-t-_ _ _ _ _ _ 13_5_0-f-_ _ _ _ _ _1_65_0-l-_ _- I RI = 1 MQ 25'C to 1.1 ).lvrc 85'C 0.1 0.1 pA Vo = VOO/ 2, 85'C 24 1000 26 1000 25'C 0.6 0.7 VIC = VOO/ 2 pA 2000 220 85'C 200 2000 -0.2 -0.3 -0,2 -0.3 25'C to to to to V 4 4.2 9 9.2 -0.2 -0.2 Full range to to V 3.5 8.5 VICR 100 VDD = 10 V VDD - 5 V MIN 4.1 4.1 4.2 0 0 8.2 8.2 8.2 25 25 8.9 8.9 8.9 0 0 V 25 25 f--~8~5'~C~----~0-~2~5-f----~0--2::-:5-1 70 70 70 75 75 75 525 900 330 95 95 95 98 98 98 40 62 29 500 500 250 75 75 75 850 1550 585 97 97 97 75 75 75 98 98 98 57 98 40 68 108 52 mV V/mV dB dB 92 172 72 NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. 6. AtVOO =5V, Vo =0.25Vt02V; atVOO= 10V, VO= 1 Vt06V. operating characteristics TEST CONDITIONS PARAMETER SR Slew rate at unity gain RL = 1 Mn, CL = 20 pF, VIPP = 1 V, See Figure 1 Vn Equivalent input noise voltage f = 1 kHz, B1 Unity-gain bandwidth CL m Slew rate at unity gain Equivalent input noise voltage Unity-gain bandwidth Phase margin at unity gain RL=lMO., CL = 20 pF, VIPP = 1 V, See Figure 1 =5V VOO TA MIN TYP MIN TYP 25°C -55°C 32 41 47 125°C 20 27 63 MAX UNIT V/ms RS = 1000. 25°C 68 68 nv!lHz CL = 20 pF, See Figure 2 25°C -55°C 85 140 110 165 kHz 125°C 25°C 45 70 34° -55°C 39" 38° 43° 125°C 25° 29° f=lkHz, CL = 20 pF, See Figure 2 TEXAS·~ INSTRUMENTS 2-776 VOO=10V MAX POST OFFice BOX 655303 • DALLAS. TeXAS 75265 TLC1079 linCMOSTM fJ,POWER PRECISION QUAD OPERATIONAL AMPLIFIER PARAMETER MEASUREMENT INFORMATION 10 kfi Voo CL includes fixture capacitance. CL includes fixture capacitance. FIGURE 1. SLEW RATE TEST CIRCUIT FIGURE 2. UNITY-GAIN BANDWIDTH AND PHASE MARGIN TEST CIRCUIT TYPICAL CHARACTERISTICS DISTRIBUTION OF TLC1 079 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT DISTRIBUTION OF TLC1 079 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 356 Amplifiers tested 356 Amplifiers 60 = = i!! 50 VOO 5V TA 25°Cto N Package Outliers: ~ ~ (1) 19.2 JlVrC (1) 12.1 JlV/oC ~ 40 50 N Package Outliers: 40 (1) 11.6 JlV/oC '# I i!! ~ ~ c( & 60 VOO = 10 V I TA 25°C to 125oC,----t---t---t---t---t----1 = (1) 18.7 jlV/oC c( '0 & 30~~--~~--~ Sc 30~~--~~--~ S J ~ 20~-r--r--r--~ If 10 ~ +--------'I--+_ 201-----+--1--+--+10 ~--t----1r--+_ OL-..J...........1IIIIIIIIlI 0~...J.........I.--- -10 -8 -6 -4 -2 0 2 4 6 8 "VIO - Temperature Coefficient - JlVrC 10 -10 -8 -6 -4 -2 0 2 4 6 8 "VIO - Temperature Coefficient - JlV/oC FIGURE 3 10 FIGURE 4 ~ TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-777 TLC1079 LinCMOSTM !lPOWER PRECISION QUAD OPERATIONAL AMPLIFIER TYPICAL CHARACTERISTICSt HIGH-LEVEL OUTPUT VOLTAGE HIGH-LEVEL OUTPUT VOLTAGE vs vs HIGH-LEVEL OUTPUT CURRENT HIGH-LEVEL OUTPUT CURRENT 5~----~----~----~----~--~ 16 VID = 100 mV VIO = 100 mV > .. I TA = 25°C > .. 4~----~-~--~----~--~ '" '" ~ ~ ~ ;3 ~ -' r. 3 ~ p....c----~----~---=-~:----t- :::l '5 .. > -' 2 r. J:'" '" I J: 1 t---- ~-~~-~-+-----+----- I - > o -6 -4 ~2 '" 0 .. '" 4 J: I vs VOO-1.6 , j )7 - _ . f---,i I I 0 2 o o / -10 -20 -30 IOH - High-Level Output Current - mA FREE-AIR TEMPERATURE 10~mV J: > mA SUPPLY VOLTAGE 8 6 r. 2 -40 HIGH-LEVEL OUTPUT VOLTAGE 0; > -' . vs RL = 1 MQ TA = 25°C - ........... 4 -- HIGH-LEVEL OUTPUT VOLTAGE 12 10 i'-- ........ FIGURE 6 VID = I ............ VOO = 10 V FIGURE 5 16 14 ~ 6 o o -10 -8 IOH - High-Level Output Current of! (5 > '5 Co '5 ............ J: OL-----~----~----~----~--~ .. ............... '- 0 > > i'--, 10 8 / / V ~: / / / 1-- > I 8, VOO -1.8 of! ~ _. .I ;g '5 VOO -1.9 Co '5 o VOO ~~ -....... -2 VOO -2.1 I I' 10 12 14 16 VOO = 5 V ~ [--........ '" '" "" VOO -2.3 VOO-2.4 -75 Voo - Supply Voltage - V "'- -- " ~ ~ o 8 ~ '""-., J: 6 VID = 100 mV IOH = -5mA I VOO = 10 V"""""" '" VOO -2.2 > 4 Voo ~ 1.7 J: i 2 / V L -50 -25 0 25 50 75 100 TA - Free-Air Temperature - °C FIGURE 7 FIGURE 8 t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS . " INSTRUMENTS 2-778 - 16V ..................... 0; J: o 12 Co 0 TA = 25°C -........... ~~= I ~ ~ 14 ........ POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 125 TLC1079 LinCMOSTM I-lPOWER PRECISION QUAD OPERATIONAL AMPLIFIER TYPICAL CHARACTERISTICSt LOW-LEVEL OUTPUT VOLTAGE vs COMMON-MODE INPUT VOLTAGE LOW-LEVEL OUTPUT VOLTAGE vs COMMON-MODE INPUT VOLTAGE 700 E I I Ql til ---r--+-- 600 ;g I '5 VID = -100 mV Q. '5 500 0 \-----t--,,-+Q; > Ql ....I 3:0 I 400 ....I > 7 450 I-t---t--t---+----IQl -~--J-j-II --t--------f----t-- ! ....I Voo = 5 V IOL = SmA TA = 25"C -~ > j . til ! "0 :: 400 1--\+-- t----+----r------,----+---l--:I I Q. '5 o ~----+-"<--f---+----L-t--~ ! I I -tl-I-- ] 3501--4-'<-+£ 3:o ....I ~ 300 \--+----'.....--"<-1''-+ o > 0 > -j-----+---- 300~--~~--~--~--~--~--~--~ o 2 3 VIC - Common-Mode Input Voltage - V 800 > 700 E I Ql til 600 ~ ~ 500 '5 S:I 0 400 Q; ~ 300 3:0 I FIGURE 10 LOW-LEVEL OUTPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE LOW-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE -+ \,VDO=5V! ' ~-I Voo = 10V 200 - I i . iI i r- I I > .l!l ;g '5 I I o o t -- _-+ ___ -I- __ _ Ql 500 I--t-----I--- -+ --- -b.-c---i---' Q; 4001----+--· ~ ~ ....I 300 I 200 ~ -- 6001---t---r---j-----t------·~-- S:I o ....I - -- -1-------+----- IOL = 5 rnA -I- til t--- > 100 VID = -1 V 800 -- VIC = 0.5 V 7 700 ....I 0 I - 1001---t----~,--~---~-O~~ ____ ~ __ ~ __ ~ __ ~~ FIGURE 11 FIGURE 12 -6 -8 -75 ~ VIO - Differential Input Voltage - V -4 -10 __ -50 -25 0 25 50 75 100 TA - Free-Air Temperature - °C -2 10 900r---~----~--__- -__- - - - - -__--~ ~~~~lII~l IT ....I ....I FIGURE 9 I VIC' 'Voo'" i I '- 2 4 6 8 VIC - Common-Mode Input Voltage - V 4 125 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS -iii INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-779 TlC1079 linCMOSTM IlPOWER PRECISION QUAD OPERATIONAL AMPLIFIER TYPICAL CHARACTERISTICSt LOW-LEVEL OUTPUT VOLTAGE LOW-LEVEL OUTPUT VOLTAGE vs vs LOW-LEVEL OUTPUT CURRENT LOW-LEVEL OUTPUT CURRENT 3 > I 0.9 VIO VIC 0.8 TA II> = -1 V -= 0.5 V = 25°C ~ VOO VOO 0 0.5 Gi > II> 0.4 I 0.2 > = 3~ / ~ 0.3 5 = 4~ 0.1 o/ o IL # // VOO = 16 '" .l1! / ~ VOO = ' 1 0 j 0 1.5 Gi > II> .... ,- o /' o 8 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 2000 1600 ~ 1400~-~~~~-+~-h~~~~~~~ ~ 1400 ~ 'a E 1200 ~ 1800 I 1200 ~~~. +------.r---.L+- 'j" 1000 ~ :! 800 ~ c C 600 E ~ 400 is C '" 0 30 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION 5 > I I FIGURE 14 1600~~~~~-+~-V~47L-+-~~~ 200 ~ FIGURE 13 5I I V ~ / 5 10 15 20 25 IOL - Low-Level Output Current - rnA > ~ h I .... ~ 0.5 2000~~--~--~--~--~--~--~~ 'j" / .... :!:0 ~ > ~ 1800 :t:: i 2 "SQ. "S 2 3 4 5 6 7 IOL - Low-Level Output Current - rnA 1 II> = 5V VOO VIC = 0.5 V TA = 25°C 2.5 I ! "S 0.6 So ::J .... :!: ....0 > I '" .l1! 0.7 I VIO = -1 V ~ is I \ \ 600 ----- -~ '1 voo I'" 1000 800 """ ~ i voo 400 = 10V ~ ~t-..... "~ = 5 V"""'"i"'-....... I C > 0 2 4 12 10 6 8 Voo - Supply Voltage - V 14 16 '" 200 0 -75 = 1 MQ_ RL -50 -25 0 25 50 --............ 75 f--- r--..... r- 100 T A - Free-Air Temperature - 'C FIGURE 15 FIGURE 16 t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices, TEXAS . " INSTRUMENTS 2-780 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 125 TLC1079 LinCMOSTM tJ.POWER PRECISION QUAD OPERATIONAL AMPLIFIER TYPICAL CHARACTERISTICSt INPUT BIAS CURRENT AND OFFSET CURRENT COMMON-MODE INPUT VOLTAGE POSITIVE LIMIT vs vs FREE-AIR TEMPERATURE SUPPLY VOLTAGE 16 10000 1= VOO = 10V I--- VIC = 5V > ./ ~ Q) C> I /' /' .. V Q) V :E C 0 E C III ; ; ; 10 "C 0 'a .::- >... = 110 10 12 e. .E I 2- ~ "0 liB ~ 100 = (.) E 0 See Note 4 ; I () 45 105 65 85 TA - Free-Air Temperature - °C SUPPLY CURRENT vs FREE-AIR TEMPERATURE TA = -55°C/ i 100 /' ~ (.) ~ p ~V ~ 20 o V ~V V 40 o / 2 14 SUPPLY VOLTAGE 120 Q 4 8 10 12 6 Voo - Supply Voltage - V 2 , f\ 100 ./ 60 L vs V / VV /' /-40°C - I--:::: V V oc( ::l. I c: - -- = l--(i:"c (.) .l!- I-- ~ +-- 4 6 8 10 12 Voo - Supply Voltage - V = fII I 20 1--- 16 '\ -+, ~OO=10V - --- t---- ~1-> r----:- - VOO = 5 V 9 125°C I ~~~ 40 r------ Q j.:..:..=. 14 l'.. e. e. J-- j...--- f..-- ~ - '\ 1"- 60 o -75 16 Vo = Voo/2 No load 80 ~ V / L I' SUPPLY CURRENT 140 80 V V .II' 120 1 / L FIGURE 18 ~ 9 L 2 V V V FIGURE 17 Vo = voo/2 160 I--- No load I 4 o o 125 180 I L 6 "> I ; 8 () ; 0.1 25 I 14 I / / 1000 I TA = 25°C --- --+----t-11 -50 -25 0 25 50 75 100 125 T A - Free-Air Temperature - °C FIGURE 19 FIGURE 20 t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. NOTE 4: The typical values of input bias current and input offset current below 5 pA were determined mathematically. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-781 TLC1079C LinCMOS ™ IJ.POWER PRECISION QUAD OPERATIONAL AMPLIFIER TYPICAL CHARACTERISTICSt SLEW RATE 70 '"I E CII 'Iii I III vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 70 I = = = = = VIPP 1V 1 Mil 60 _RL CL 20 pF AV 1 50 TA 25°C See Figure 1 40 a: 1 SLEW RATE vs ./ V /' 30 See Figure 1 ./ V "" / '"I 50 E .. 40 ~ 30 J! a: I I a: III = 1. Mil = 20pF AV =1 RL CL 60 a: III 20 20 I 10 .---1f------+_-+_-+Voo VIPP 10 o 1.4 1.3 1.2 ~ a: . 'C E z 0.9 0.8 4 8 10 12 6 Voo - Supply Voltage - V 14 O~~--~--~--~--~~--~--~ 16 -75 -50 -25 0 25 50 75 100 TA - Free-Air Temperature - °C FIGURE 22 NORMALIZED SLEW RATE MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs vs FREE-AIR TEMPERATURE FREQUENCY ~ VOO = 10V ~ = 5V = = = = VIPP 1V RL 1 Mil CL 20pF AV 1 > I i,. I' I"~ 0.7 0.6 o i I ~ ~ ~'\ 0.5 -75 -50 -25 0 25 50 75 100 TA - Free-Air Temperature - °C O~~~~~--~"~~--~~~~ 125 0.1 FIGURE 23 10 f - Frequency - kHz FIGURE 24 t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS 2-782 125 FIGURE 21 , VOO ~ CII .~ 2 1.1 iii .:s o = 5 V _--1-_-1 =2.5V POST OFFICE BOX 655303 • OALLAS. TEXAS 75265 100 TLC1079 LinCMOSTM f.lPOWER PRECISION QUAD OPERATIONAL AMPLIFIER TYPICAL CHARACTERISTICSt UNITY-GAIN BANDWIDTH vs FREE-AIR TEMPERATURE SUPPLY VOLTAGE 150 = '\ ~ I ~ 110 .. 90 'i c 'OJ ~ 70 c I 'iii 30 -75 ~ 100 .~ 90 k 80 / c ""- ~ / ::;) I rli ....... 70 I 60 I V / / : 50 -50 -25 0 25 50 75 100 T A - Free·Air Temperature - 'C 125 I I o 4 8 10 12 6 Voo - Supply Voltage - V 2 14 16 FIGURE 25 FIGURE 26 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs vs FREQUENCY FREQUENCY = = = 25'C Voo 5V RL 1 MQTA \ ""'-- "" AVO ... a. "" = ..=: a.. .c 60° UI .c '" 90° ~ 1k 10k f - Frequency - Hz 100 C II> Dl 104 ~ 3 ~ 10 ~I!! 102 ~ 101 \ II> 120' ~ 0.1 10 ~ :E 105 ........ E 30° I TA ""- r---.. '-- ""- AVO ........ ""- Phase Shift Q 150' r\ 100k 180' 1M = = = 25'C Voo 10 V RL 1 MQ- c 106 0 0' Phase Shift 1 -gos 1:11 I 50 /v ~ 110 ::;) rli I See Figure 2 I '\. "- ........ "'"~~ \ 0.1 1 10 FIGURE 27 1k 10k f - Frequency - Hz 100 100k 180' 1M FIGURE 28 t Data at high and low temperatures are applicable only within the rated ope(ating free-air temperature ranges of the various devices. TEXAS . " INSTRUMENlS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-783 TLC1079 linCMOS ™ f,lPOWER PRECISION QUAD OPERATIONAL AMPLIFIER TYPICAL CHARACTERISTICSt PHASE MARGIN 42 ..~ S' 'C I vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 38 I C of- .. ..... _:::E / 36 .c a.. 34 ----- I I ....E 32 30 V / /' V en 'C I 35 i 32 I !!! -T I E .... 27 o 20 ~ 28 .c I "- '\. '\ E 14 20 -75 16 -50 -25 0 25 50 75 100 125 TA - Free-Air Temperature - °C FIGURE 29 FIGURE 30 PHASE MARGIN EQUIVALENT INPUT NOISE VOLTAGE vs vs CAPACITIVE LOAD FREQUENCY '""" a.. 29 ~ a.. 300 I I = = = :>c . '\ !\ ... TA 25°C See Figure 2 ~ = = = Voo 5V RS 1000 TA 25°C ~ VOO 5V Vi 10mV .c !~ "'- 24 r---... 31 '" ~ / 4 8 10 12 6 Voo - Supply Voltage - V 2 36 ~ c I 33 25 .. I o C ~ :::E V = = = Voo 5V Vi 10mV CL 20pF See Figure 2 .~ 37 ..~ .. . .. ... /'" I I -~- "', 40 I = = = Vi 10mV CL 20pF TA 25°C See Figure 2 40 PHASE MARGIN vs I 200 en ~ 0 > '" '0 ~ z 'S '" "'" 40 60 80 CL - Capacitive Load - pF "r-. a. .5 100 .. C .!! .~ ::I IT " W I c > I\. 90 " 80 70 60 50 1 100 10 100 f - Frequency - Hz FIGURE 32 FIGURE 31 t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS 2-784 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 1000 TlC2201, TlC2201A, TlC2201B, TlC2201Y Advanced linCMOSTM lOW-NOISE PRECISION OPERATIONAL AMPLIFIERS D3173. NOVEMBER 1988 - REVISED AUGUST 1991 • TLC2201B Is 100% Tested for Noise: 25 nV/...JHz Max at f = 10 Hz 12 nV/...JHz Max at f = 1 kHz • Low Input Offset Voltage ... 200 ~V Max • Excellent Offset Voltage Stability With Temperature ... 0.5 ~VloC Typ • Low Input Bias Current ... 1 pA Typ at TA = 25°C • Fully Specified for Both Single-Supply and Split-Supply Operation • Common-Mode Input Voltage Range Includes the Negative Rail TYPICAL EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY description The TLC2201, TLC2201 A, TLC22018, and TLC2201Y are precision, low-noise operational amplifiers using Texas Instruments Advanced LinCMOSTM process. These devices combine the noise performance of the lowest-noise JFET amplifiers with the dc precision available previously only in bipolar amplifiers. The Advanced LinCMOSTM process uses silicon-gate technology to obtain input offset voltage stability with temperature and time that far exceeds that obtainable using metal-gate technology. In addition, this technology makes possible input impedance levels that meet or exceed levels offered by top-gate JFET and expensive dielectric-isolated devices. ~ :>c .,I 60 so 1 \ til :! '0 40 .,. > '0 z = Sv = loon TA = 2S"C VDD RS 1\ 30 '5 <>. c E ., 20 ~r-- j .~ 10 w The combination of excellent dc and noise performance with a common-mode input voltage range that includes the negative rail makes these devices an ideal choice for high-impedance, lowlevel signal conditioning applications in either single-supply or split-supply configurations. I c > 0 10 1 100 lk 1- Frequency - Hz 10 k The device inputs and outputs are designed to withstand -1 OO-mA surge currents without sustaining latch-up. In addition, internal ESO-protection circuits prevent functional failures at voltages up to 2000 V as tested under MIL-STO-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESO may result in degradation of the device parametric performance. AVAILABLE OPTIONS TA O°C Vn max PACKAGE VIOmax AT2SoC 1 = 10 Hz AT2SoC Vn max 1 = 1 kHz AT2SoC 3S nV/VHz 15 nV/VHz 25 nV/VHz 12 nV/VHz TLC2201BCD to 200 flV 200 flV 70°C 500 flV -40°C 200 flV SMALL- PLASTIC CERAMIC CHIP CHIP OUTLINE DIP DIP CARRIER FORM (D) (P) (JG) (FK) (V) TLC2201ACD TLC2201ACP TLC2201BCP - - TLC2201CD TLC2201CP - 35 nV/VHz 15 nV/VHz TLC2201AID TLC2201AIP - - to 200 flV 25 nV/VHz 12 nV/VHz 85°C 500 flV - -55°C to 200 flV 35 nV/VHz 200 flV 25 nV/VHz 125°C 500 flV - 15 nV/VHz 12 nV/VHz - TLC2201BID TLC2201BIP TLC22011D TLC22011P TLC2201AMD TLC2201BMD TLC2201AMP TLC2201BMP TLC2201AMJG TLC2201 BMJG TLC2201AMFK TLC2201BMFK TLC2201MD TLC2201MP TLC2201MJG TLC2201MFK TLC2201V D packages are available taped-and-reeled. Add "R" suffix to deVice type (e.g .. TLC2201 BCDR). Chips are tested at 25°C. Advanced Lin CMOS is a trademark 01 Texas Instruments Incorporated. PRODUCTION DATA information is current al of publication date. Products conform to specifications per the terms or Texas Instruments standard warranty. Production processing dOls not necessarily Include testing of all parameters. TEXAS ~ Copyright © 1991, Texas Instruments Incorporated INsrRuMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-785 TLC2201, TLC2201A, TLC2201B Advanced LinCMOSTM LOW-NOISE PRECISION OPERATIONAL AMPLIFIERS description (continued) The C-suffix devices are characterized for operation from O°C to 70°C. The I-suffix devices are characterized for operation from -40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of -55°C to 125°C. D, JG, or P PACKAGE U FK PACKAGE (TOP VIEW) NC IN IN + VDD _/GND (TOP VIEW) 00000 2 7 NC VDD + 3 6 OUT 4 5 NC 8 zzzzz 3 2 1 20 19 18 NC 17 16 VDD + NC 15 OUT 14 NC 910111213 00000 zzzzz ~ I o o NC - No internal connection > equivalent schematic (each amplifier) IN + - - - - - ! - - - I - - - , IN -,1+-___ ~--~-----+--OUT Cl --+-1 Ql Q4 Q7 Q8 Ql0 Qll Rl VDD- TEXAS ", 2-786 INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 R2 TLC2201Y Advanced LinCMOSTM LOW-NOISE PRECISION OPERATIONAL AMPLIFIERS chip information These chips, properly assembled, display characteristics similar to the TLC2201. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform. VDD+ (7) BONDING PAD ASSIGNMENTS 1IN_(3)=t?1 IN+ (2) OUT (6) VDD- (4) CHIP THICKNESS: 15 TYPICAL BONDING PADS: 4 X4 MINIMUM TJ max = 150°C TOLERANCES ARE ± 10% ALL DIMENSIONS ARE IN MILS I... 90 ... 1 1111111111111111111111111111111111111111111111 PIN (4) INTERNALLY CONNECTED TO BACKSIDE OF CHIP TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-787 TlC2201, TlC2201A, TlC22018 Advanced linCMOSTM lOW-NOISE PRECISION OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature (unless otherwise noted) Supply voHage, VDD + (see Note 1) ..................................................... 8 V Supply voltage, VDD _ (see Note 1) .................................................... - 8 V Differential input voltage (see Note 2) .................................................. ±16 V Input voltage, VI (any input, see Note 1) ...................... ; .......................... ± 8 V Input current, II (each input) ......................................................... ± 5 mA Output current, 10 ................................................................ ± 50 mA Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... Unlimited Continuous total dissipation ........................................ See Dissipation Rating Table Operating free-air temperature, TA: C-suffix ........................................ O°C to 70°C I-suffix ...................................... - 40°C to 85°C M-suffix .....................................- 55°C to 125°C Storage temperature range .................................................. - 65°C to 150°C Case temperature for 60 seconds: FK package .......................................... 260°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package ............... 260°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package .................. 300°C NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VDD + and VDD _ . 2. Differential voltages are at the noninverting input with respect to the inverting input. .3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TA!>2SoC DERATING FACTOR POWER RATING ABOVE TA = 25°C 5.8mW/oC 11.0 mW/oC D 725mW FK 1375 mW TA =8SoC POWER RATING TA=70°C POWER RATING TA = 125°C POWER RATING 464mW 377mW 880mW 715mW 145mW 275mW JG 1050mW 8.4 mW/oC 672mW 546 mW 210mW P 1000 mW 8.0 mW/oC 640mW 520mW 200 mW recommended operating conditions MIN Supply voltage, VDO+ Common-mode input voltage, VIC Operating free-air temperature, TA C-SUFFIX MAX ±2.3 VOO0 ±8 MIN I-SUFFIX MAX ±2.3 VOO +-2.3 VOO-40 70 TEXAS ." INSfRUMENTS 2-788 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 ±8 MIN M-SUFFIX MAX ±2.3 VOD +-2.3 VOO85 -55 ±8 VOO +-2.3 125- UNIT V V °C TlC2201C Advanced linCMOSTM lOW-NOISE PRECISION OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Voo ± =± 5 V(unless otherwise noted) TYP MAX UNIT VIO Input offset voltage 25°C Full range 100 500 600 flV aVIO Temperature coefficient 01 input offset voltage Full range 0.5 PARAMETER TEST CONDITIONS Input offset voltage long-term drift (see Note 4) 110 TAt RS = 500 VIC = 0, Input offset current liB Input bias current VICR Common-mode input voltage range MIN 25°C 0.001 25°C 0.5 Full range 25°C flV/oC 0.005 100 1 Full range 100 flV/mo pA pA -5 VOM+ Full range RS = SOO 25°C Full range Maximum positive peak output voltage swing RL = 10kO VOM- -4.7 25°C 400 560 RL = 500 kil, Full range Vo = ±4 V, 25°C Full range 300 90 100 Vo = ±4 V, AVO Large-signal differential voltage amplilication CMRR Common-mode rejection ratio Vo = 0, VIC = VICR min, RS = 500 kSVR Supply-voltage rejection ratio ("NOO ± / AVIO) VOO ± = ± 2.3 V to ± 8 V 100 Supply current Vo = 0, RL = 10kn Slew rate at unity gain Vn Equivalent input noise voltage VN(PP) Peak-to-peak equivalent input noise voltage In Equivalent input noise current Gain-bandwidth product m 1 to 2.7 25°C No load 100 100 25°C = 1 Vto 4 V, 0.005 0.5 Full range = 500kO 0.001 1 UNIT /LV/oc 100 25°C Full range RL char~cteristics 0.005 0.5 Full range Vo PARAMETER SR = 50n Large-signal differential operating 0.001 25°C 25°C Maximum low-level VOL = 50n MAX 200 0.5 Full range Maximum high-level VOH RS TYP 80 300 0.5 25°C Full range Common-mode input VICR = 0, VIC MIN 300 Full range long-term drift (see Note 4) TLC2201BC MAX 200 Full range of input offset voltage 110 TYP 80 MIN 25°C Temperature coefficient aVIO TLC2201AC TAt Phase margin at unity gain 0.5 nV/{Hz /LV = 10kHz, . RL = 10 kn, CL = 100 pF = 10 kil, = 100pF RL CL tFull range is O°C to 70°C. NOTES: 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 5. This parameter is tested on a sample basis forthe TLC2201Aand on all devices for the TLC2201 B. For othertest requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters. = TEXAS ~ INSTRUMENTS 2-792 POSTOFFICE BOX 655303' DALLAS. TEXAS 75265 TlC22011 Advanced linCMOSTM lOW-NOISE PRECISION OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Voo ± = PARAMETER TEST CONDITIONS VIO Input offset voltage (lVIO Temperature coefficient 01 input offset voltage Input offset voltage long-term drift (see Note 4) 110 liB ± 5 V (unless otherwise noted) TAt 25°C Full range MIN TYP MAX 100 500 650 Full range RS = 50n VIC = O. 0.001 Input offset current 25°C Full range 0.5 Input bias current 25°C Full range 1 fLV fLV/oC 0.5 25°C UNIT 0.005 150 150 fLV/mo pA pA -5 VICR VOM+ Common-mode input voltage range RS = 50n Maximum positive peak output voltage swing RL = 10 kn VOM- CMER Common-mode rejection ratio 25°C Full range 4.7 -4.7 Full range -4.7 25°C 400 RL = 500kn. Full range 250 Vo = ±4 V. 25°C Full range 90 25°C Full range 90 25°C 90 Full range 85 Vo = ±4 V. Large-signal differential voltage amplilication to 2.7 4.7 25°C Maximum negative peak output voltage swing AVO Full range RL = 10 kn Vo = O. VIC = VICR min. RS = 50n kSVR Supply-voltage rejection ratio (eNOO ± / t1 VIO) Voo ± = ± 2.3 V to ± 8 V 100 Supply current Vo = O. No load V 4.8 V -4.9 V 560 VlmV 100 65 115 dB 85 110 25°C dB 1.1 1.5 Full range 1.5 mA operating characteristics at specified free-air temperature, Voo ± = ± 5 V PARAMETER SR Slew rate at unity gain Equivalent input noise voltage VN(PP) Peak-to-peak equivalent input noise voltage MIN TYP Vo = ±2.3V. RL = 10kn. 2 2.7 Phase margin at unity gain MAX UNIT V/fLS Full range 1.4 1 = 10 Hz 25°C 18 I = 1 kHz 25°C 25°C 8 0.5 25°C 0.7 25°C 0.6 IA/VHZ 25°C 1.9 MHz 25°C 48° I = 0.1 to 1 Hz I = 0.1 to 10Hz Equivalent input noise current Gain-bandwidth product 4>m TAt 25°C CL = 100 pF Vn In TEST CONDITIONS I = 10 kHz. RL = 10 kn. CL = 100pF RL = 10kn. CL = 100pF tFull range is - 40°C to 85°C. NOTE 4: Typical values are based on the input ollset voltage shift observed through 168 hours 01 operating life test at TA to TA = 25°C using the Arrhenius equation and assuming an activation energy 01 0.96 eV. = 150°C nVlVHZ fLV extrapolated TEXAS ." INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-793 TLC2201AI, TLC2201BI Advanced LinCMOSTM LOW-NOISE PRECISION OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Voo ± PARAMETER Via Input offset voltage aVIO of input offset voltage Input offset voltage TEST CONDITIONS 110 Input offset current liB Input bias current VICR Common-mode input voltage range 25°C RS = 50n VIC = 0, output voltage swing AVO CMRR kSVR IDO voltage amplification Common-mode rejection ratio Supply-voltage rejection ratio (Ll.VOO ±/ Ll.VIO) Supply current 0.001 25°C 0.5 80 0.005 0.001 150 1 150 -5 to -5 to 2.7 2.7 25°C 4.7 Full range 4.7 25°C -4.7 Full range -4.7 4.8 4.7 4.8 -4.7 -4.9 Vo = ±4 V, 25°C 400 Full range 250 25°C 90 100 90 RL = 10 kn Full range 65 90 115 90 115 110 85 90 110 VOO± = ±2.3Vto±8V Full range 25°C 85 Full range 85 90 25°C No load Vo = 0, 25°C 400 pA pA V -4.7 560 fLV/mo V 4.7 -4.9 fLV V RL = 500kn Vo = ±4 V, Va = 0, VIC = VICR min, RS = 50n 0.005 0.5 150 UNIT fLV/oC 0.5 1 Full range 200 350 150 25°C output voltage swing Large-signal differential 25°C Full range RL = 10 kn 200 0.5 Full range RS = 50n TLC2201BI MIN TYP MAX 350 Full range Maximum negative peak VOM- 80 Full range Maximum positive peak VOM+ TLC2201AI MIN TYP MAX TAt Temperature coefficient long-term drift (see Note 4) =± 5 V (unless otherwise noted) 560 250 VimV 100 65 dB dB 85 1.1 Full range 1.5 1.1 1.5 1.5 1.5 rnA operating characteristics at specified free-air temperature, Voo ± = ± 5 V PARAMETER SR Vn VN(PP) In Slew rate at unity gain TEST CONDITIONS TAt Va = ±2.3 V, TLC2201AI MIN TYP MAX 25°C 2 2.7 TLC2201BI MIN TYP MAX 2 2.7 RL = 10kn, Equivalent input noise CL=100pF I = 10 Hz voltage (see Note 5) I = 1 kHz Peak-to-peak equivalent I = 0.1 to 1 Hz input noise voltage I = 0.1 to 10Hz Equivalent input noise current UNIT V/fLS Full range .. 1.4 1.4 25°C 18 35 18 25°C 8 15 8 25°C 0.5 0.5 25°C 0.7 0.7 25°C 0.6 0.6 fA/VHZ 25°C 1.9 1.9 MHz 25°C 48° 48° 25 12 nViVHZ fLY I = 10 kHz, Gain-bandwidth product RL = 10 kn, CL = 100 pF iflm Phase margin at unity gain RL = 10 kn, CL = 100 pF tFuli range is - 40°C to 85°C. NOTES: 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating lile test at TA =150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 5. This parameter is testedon asample basis lor the TLC2201Aand on all devices forthe TLC2201 B. For othertest requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters. TEXAS ~ INSTRUMENTS 2-794 POST OFFICE BOX 655303· DALLAS. TEXAS 75265 TLC22011 Advanced linCMOSTM lOW-NOISE PRECISION OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Voo TEST CONDITIONS PARAMETER Via Input offset voltage aVIO Temperature coefficient 01 input offset voltage Input offset current liB Input bias current V,CR Common-mode input voltage range TAt 25°C MIN TYP MAX 100 500 Full range 650 Full range Input offset voltage long-term drift (see Note 4) ',0 = 5 V (unless otherwise noted) = V'C = RS 0, 500 0.001 25°C Full range 0.005 0.5 150 1 25°C Full range flV flVloC 0.5 25°C UNIT 150 fl V/mo pA pA 0 RS = 500 Full range to V 2.7 = VOH Maximum high-level output voltage RL VOL Maximum low-level output voltage 10 = AVD Va RL Va Large-signal differential voltage amplification RL Va RS kSVR Supply-voltage rejection ratio (L\.VDD ± / L\.Via) VDD 'DD Supply current Va V,CR min, No load 2.5 V, operating characteristics at specified free-air temperature, Voo PARAMETER SR Vn TEST CONDITIONS Va Slew rate at unity gain RL Peak-to-peak equivalent input noise voltage In Equivalent input noise current ¢m Phase margin at unity gain = 10 Hz = 1 kHz 1 = O.ltol Hz f = 0.1 to 10Hz f VN(PP) Gain-bandwidth product = 0.5 V to 2.5 V, = 10kO, CL = 100 pF 1 Equivalent input noise voltage f = CL RL 10 kHz, RL = 10 kO, = = CL = 100pF 10 kO, 4.7 4.7 4.8 V 0 50 Full range = 4.6Vto16V = 25°C Full range 25"C a = 1 Vt04 V, = 500 kO, = 1 Vt04 V, = 10kO = 0, V'C = = 500 Common-mode rejection ratio CMRR 10 kO 100pF 50 25"C 150 Full range 100 25'C Full range 25 15 55 25'C Full range 90 110 25'C 90 Full range 85 mV 315 VlmV dB 85 110 dB 1 25°C 1.5 Full range 1.5 mA =5 V TAt MIN TYP 25°C 1.8 2.5 Full range 1.2 MAX UNIT V/flS 25°C 25°C 18 25°C 0.5 8 nV/¥Z flV 25°C 0.7 25°C 0.6 fA/¥Z 25°C 1.8 MHz 25°C 45° tFull range is - 40°C to 85°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. = 150°C extrapolated TEXAS ~ INSTRUMENlS POST OFFICE BOX 655303 ' DALLAS, TEXAS 75265 2-795 TlC2201AI,TlC2201BI Advanced linCMOSTM lOW-NOISE PRECISION OPERATIONAL AMPLIFIERS = 5 V (unless otherwise noted) electrical characteristics at specified free-air temperature, VOO PARAMETER Via TEST CONDITIONS long-term drift (see Note 4) 110 liB VICR output voltage Maximum low-level VOL RS = 50n VIC = 0, output voltage kSVR Va = 1 Vt04 Common-mode Vo = 0, VIC = VICR min, RS = 50n v, 100 Supply current VOO = 4.6Vt016V Va = 2.5V, SR Vn VN(PP) In Slew rate TEST CONDITIONS Va = 0.5 V to 2.5 V, 150 1 4.8 150 4.8 50 0 50 150 315 25°C 90 Full range 85 25°C Full range 90 50 25 110 90 15 pA pA mV 315 100 55 flV/mo V 50 150 100 flV V 4.7 0 25 0.005 0.5 2.7 4.7 UNIT flV/oC 0 to 4.7 4.7 25°C Full range TAt 0.001 150 V/mV 55 15 110 dB 85 110 90 85 85 1 110 1.5 1 1.5 operating characteristics at specified free-air temperature, Voo PARAMETER 0.005 0 to 2.7 25°C Full range No load 350 1 25°C Full range voltage amplilication 80 MAX 200 0.5 Full range RL = 500kn ratio (AVOO ±/ AVIO) 200 TYP 150 25°C 10 = 0 Large-signal differential rejection ratio Supply-voltage rejection 0.5 25°C Full range RL = 10 kn CMRR 0.001 25°C Full range Va = 1 V t04 V, AVO 25°C Full range RL = 10 kn MIN 0.5 25°C RS = 50n TLC2201BI MAX 350 Full range Input bias current Maximum high-level VOH 80 Full range Input offset current Common-mode input voltage range TYP Full range 01 input offset voltage Input offset voltage MIN 25°C Input offset voltage Temperature coefficient aVIO TLC2201AI TAt dB 1.5 1.5 mA =5 V TLC2201AI MIN TYP 25°C 1.8 2.5 Full range 1.2 TLC2201BI MAX MIN TYP 1.8 2.5 MAX UNIT Equivalent input noise RL = 10 kn, CL = 100pF 1= 10 Hz 25°C 18 35 18 25 voltage (see Note 5) I = 1 kHz 25°C 8 15 8 12 Peak-to-peak equivalent I = 0.1 to 1 Hz 25°C 0.5 0.5 input noise voltage I = 0.1 to 10Hz 25°C 0.7 0.7 25°C 0.6 0.6 IA/..fHz 25°C 1.8 1.8 MHz 25°C 45° 45° at unity gain Equivalent input noise current V/fls 1.2 nV/..fHz flV I = 10 kHz, Gain-bandwidth product RL = 10 kn, CL = 100pF 4lm Phase margin at unity gain RL = 10 kil, CL = 100pF tFull range is - 40°C to 85°C. NOTES: 4. Typical values are based on the input offset voltage shift observed through 168 hours 01 operating lile test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy 010.96 eV. 5. This parameter is tested on a sample basis lor the TLC2201Aandon all devices lor the TLC2201 B. Forothertestrequirements, please contact the lactory. This statement has no bearing on testing or nontesting 01 other parameters. TEXAS ~ INSTRUMENTS 2-796 POST OFFICE BOX 655303· DALLAS. TEXAS 75265 TlC2201M Advanced LinCMOSTM LOW-NOISE PRECISION OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Voo ± PARAMETER =± 5 V (unless otherwise noted) TEST CONDITIONS VIO Input offset voltage (lVIO Temperature coefficient 01 input offset voltage TAt 25·C MIN TYP 100 Full range 110 Input offset current liB Input bias current VICR Common-mode input voltage range VOM+ Maximum positive peak output voltage swing 700 Full range VIC ~ 0, Input offset voltage long-term drift (see Note 4) RS ~ son MAX 500 0.5 25·C 0.001 25·C 0.5 Full range 25·C fLV fLV/·C 0.005 500 1 Full range UNIT 500 fLV/mo pA pA -5 RS ~ 50n Full range RL ~ 10 kn VOM- Maximum negative peak output voltage swing AVD Large-signal differential voltage amplification kSVR IDD Supply current -4.7 Vo ~ ±4 V, RL ~ 500kn, Full range 200 Vo ~ ±4 V, 25 C Full range 90 100 45 90 115 85 90 110 ~ Q 10 kn 25·C Full range VDD ± ~ ± 2.3 V to ± 8 V 25°C Full range Vo ~ 0, 25°C Full range No load operating characteristics at specified free-air temperature, Voo ± PARAMETER SR Slew rate at unity gain Equivalent input noise voltage VN(PP) Peak-to-peak equivalent input noise voltage In --"--Vo Va lOon lOon NOTE A: CL includes fixture capacitance. Figure 1. Noise Voltage Test Circuit Figure 2. Phase Margin Test Circuit >--+-..-- Va Vo NOTE A: CL includes fixture capacitance. Figure 3. Slew Rate Test Circuit Figure 4. Input Bias and Offset Current Test Circuit typical values Typical values presented in this data sheet represent the median (50% point) of device parametric performance. input bias and offset current At the picoamp bias current level typical of the TLC2201, TLC2201 A, and TLC2201 S, accurate measurement of the bias current becomes difficult. Not only does this measurement require a picoammeter, but test socket leakages can easily exceed the actual device bias currents. To measure these small currents, Texas Instruments uses a two-step process. The socket leakage is measured using picoammeters with bias voltages applied but with no device in the socket. The device is then inserted in the socket, and a second test measuring both the socket leakage and the device input bias current is performed. The two measurements are then subtracted algebraically to determine the bias current of the device. noise Texas Instruments offers automated production noise testing to meet individual applications requirements. Noise voltage at f = 10Hz and f = 1 kHz is 100% tested on every TLC2201 S device, while lot sample testing is performed on the TLC2201A. For other noise test requirements, please contact the factory. TEXAS . " INSTRUMENTS 2-802 POST OFFICE BOX 655303· OALLAS. TEXAS 75265 TLC2201, TLC2201A, TLC2201B Advanced LinCMOSTM LOW-NOISE PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS table of graphs FIGURE Via Input offset voltage liB Input bias current CMRR VOM VO(PPl Distribution Common-mode rejection ratio Maximum peak output voltage Maximum peak-to-peak output voltage VOH High-level output voltage VOL Low-level output voltage AVD Differential voltage amplification lOS Short-circuit output current IDD SR Supply current Slew rate Gain-bandwidth product 4>m Phase margin Phase shift vs Temperature vs Frequency vs Output current vs Temperature vs Frequency vs Frequency vs Current vs Temperature vs Output current vs Temperature vs Frequency vs Temperature vs Supply voltage vs Temperature Supply voltage Temperature vs Supply voltage vs Temperature Small-signal Large-signal Peak-to-peak equivalent input noise voltage Common-mode voltage vs vs Pulse response VN(PP) vs 0.1 to 1 Hz 0.1 to 10 Hz vs vs vs vs vs Supply voltage ,Temperature Supply voltage Temperature Frequency 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25, 26 27,28 29 30 31 32 33 34 17 TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303· DALLAS. TEXAS 75265 2-803 TLC2201, TLC2201A, TLC2201B Advanced LinCMOSTM LOW-NOISE PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt INPUT BIAS CURRENT vs COMMON-MODE INPUT VOLTAGE DISTRIBUTION OF TLC2201 INPUT OFFSET VOLTAG E 10 16 1 ~ I !!l '2 I 121--I--+--I--f-- :::l Q) E ~ = 6 4 C ~ :> 2 :: 0 o "0 = Voo± ±5 V TA 25°C 8 /" iii 81---4----1--+--+ ; -2 I -4 t c.. l! 4 1---4----1--+ -6 -8 -10~~--~~--~~--~~--~~~ -300 -100 100 300 500 -5 -4 -3 -2 -1 0 234 VIC - Common-Mode Input Voltage - V VIO -Input Offset Voltage - flV Figure 5 Figure 6 INPUT BIAS CURRENT vs FREE-AIR TEMPERATURE COMMON-MODE REJECTION RATIO vs FREQUENCY 300 = 250 ~ ..,III Voo± ±5V Vo 0 VIC = =0 .gI 120 r==:::r~-r-I---:;r-::l 100 I--~k----"'.t---+---+--~ as II: c.. c I ~ C 200 ~ I :> .... 0 150 iii "Sc.. oS 100 I l! 50 o 25 / 45 65 85 V / / 801---+--~~-~+---+--~ 'ij' II: Q) "& ~ c o E E 8I II: II: 601---+---+--~~~~+--~ 401---+---+---+--~+-~~ 201----r---r-~-r---+--~ ::;; o O~ 105 125 ____ 10 ~ 100 ____ ~ 1k ____ ~ ____ 10 k TA - Free-Air Temperature - °C f - Frequency - Hz Figure 7 Figure 8 ~ __ 100 k tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ." INSTRUMENTS 2-804 5 POST OFFICE BOX 655303' DALLAS. TEXAS 75265 ~ 1M TLC2201, TLC2201A, TLC2201B Advanced LinCMOSTM LOW-NOISE PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt MAXIMUM PEAK OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE MAXIMUM PEAK OUTPUT VOLTAGE vs OUTPUT CURRENT ---, --- --- 5 ~\ > I til til !! '0 4 > .. ~ VOM- :; s0" voo± = ±5V TA = 25°C 3 ~ til a. E E " 2 6 > I til F ~ :; a. 2 ~ ~ E E 0 ~ " .. 'r: ;c :::;; VOD±=±5V_ RL = 10 kn -2 :::;; I I :s0 :::;; -4 ~ > o o > 4 -6 2 4 6 1101- Output Current - mA 8 10 -75 -50 -25 0 25 50 75 100 TA - Free-Air Temperature - °C Figure 9 Figure 10 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY HIGH-LEVEL OUTPUT VOLTAGE vs FREQUENCY 125 5 10 I til F ~ :; a. :; o ~ i z" i 8 TA = -55OC 6 I I I II I I I II TA = 125°C 4 \ > A > :; I \\ \ E "E I 2 til til 1\ 4 l! '0 s0" TA = -55OC I I I II 3 ~A ~ 1125~J 1i iii ....I ~L\ I J: 0 > o 100 k f - Frequency - Hz ~\ \ 1:. til :f ~~ VOO±=±5V RL = 10kn 2 ~ 1M Voo = 5V RL = 10kn 10 k Figure 11 ~ '\"- i'~ r-- 100 k f - Frequency - Hz 1M Figure 12 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS . " INSTRUMENTS POST OFFICE BOX 655303· DALLAS, TEXAS 75265 2--805 TLC2201, TLC2201A, TLC2201B Advanced LinCMOSTM LOW-NOISE PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt HIGH-LEVEL OUTPUT VOLTAGE HIGH-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE vs HIGH-LEVEL OUTPUT CURRENT Voo 1\\ t'.. > VOO-2 voo = ~ V\ \ .. I N' VOO-4 \ ~ ;; VOO-6 .a-::> 11:. VOO-l0 I = \ \ \ \ \ 41--~-_+--+--r-~-+--+-~ 31--~-_+--+--r-~-+--+-~ 21--~-_+--+--r-~-+--+-~ voo = 16V\ Cl :r VOO= 5 V RL 10kn voo = 10V \ o VOO-8 3: TA = 25'C VOO-12 ~ VOO-14 VOO-16 \ o \ 2 3 OL-~ 4 __ ~ __ ~~ __ ~ __ ~ __ ~~ -75 -50 -25 0 25 50 75 100 TA - Free-Air Temperature- 'C 5 IOH - High-Level Output Current- mA 125 Figure 14 Figure 13 LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT LOW-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE 1.5 2.0...---r----r----r---.....,.r----." VOO= 5 V > N'.. > I .. I 1.51-----t----t----t---f--1T-"7'----I S "0 g. 1.0 ;; ;; 0. ;; > .a::> o 1.0 I----t----I__--,;~rr:_--I__----I ~ j ! I ..I _V- 0 ~ ....---I-""" ~ j ~ 0.51----I__.,IhiL-I__--I__--I__----I IOL = 5~ ~ Cl .9 0.5 I ..I o 0 > > IOL = 1 mA 8 4 6 2 IOL - Low-Level Output Current- mA 10 o - 75 - 50 - 25 0 25 50 75 100 TA - Free-Air Temperature - 'C Figure 16 Figure 15 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS 2-806 POST OFFICE BOX 655303' DALLAS. TEXAS 75265 125 TlC2201, TlC2201A, TlC2201B Advanced linCMOSTM lOW-NOISE PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY 30° 120 Cl '"0 I c .2 Oi !5 100 " 80 ., 60 15. E -20 10 k 1k f - Frequency - Hz 100 m ~ ~ en., . l1 c.. .i., S ~ ] C ~- i5 150° I 80~~--~--~--~--~--~--~~ -75 15 Vo TA 8 =0 = 25°C E - 4 VID 0 =-100mV ~ '5 Q. '5 o l:! 'is e () 10 Vo 5 VID = -100 mV o ':; l:! ':; c::> =±5 V =0 Voo± 125 SHORT-CIRCUIT OUTPUT CURRENT vs FREE-AIR TEMPERATURE '5 0 -25 0 25 50 75 100 TA - Free-Air Temperature - DC SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE ~ ~ -50 Figure 18 C () Voo = 5 V, RL = 10 kg 901-~~-+-~--r--j--+--~~ Figure 17 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE ~ -4 o ..c r---...... 5) -12 -5 o 2 - 3 VID 4 en I en -10 = 100 mV 5 6 5) 7 8 ----VID ..c en I en -8 ~ -15 - 75 = 100 mV ~ I-- IVoo ±I- Supply Voltage - V - 50 - 25 0 25 50 75 100 TA - Free-Air Temperature - °C Figure 19 Figure 20 125 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENlS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-807 TlC2201, TlC2201A, TlC2201B Advanced linCMOSTM lOW-NOISE PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt SUPPLY CURRENT SUPPLY CURRENT 1.4 vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 1.2 = Vo 0 No Load 1.2 < e I 1.0 ~:s 0.8 ii Q, 0.6 ,., I I.-- fY (,) :s P" -- ~ ./ V .,/ ~~ ~ \ - TA =25°C I I rn c C ?Q, :s I 0.4 0.2 = Vo VDD+/2 No Load J 0 -75 2345678 IVDD RL CL TA Figure 22 SLEW RATE SLEW RATE vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE =25°C "" 1 :> -25 0 25 50 75 100 TA - Free-Air Temperature - °C Figure 21 = 10kO = 100 pF 3 -50 1- Supply Voltage - V 4 V I ~ 0.6 Q, .9 o o ~ ~ 0.8 ~ 0.2 a: ±5V :s (,) c 0.4 VDD± r- t-.. I ~R- r---.. ............. SR + 2 1 rn I r---.. -- " 3 J -..... I a: a: rn rn o o o 2 3 4 5 678 = VDD± ±5V RL 10kO CL 100 pF -75 = = -50 IVDD ±I- Supply Voltage - V -25 0 25 50 75 100 TA - Free-Air Temperature - °C Figure 24 Figure 23 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. .INSTRUMENTS TEXAS "" 2-808 125 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 125 TLC2201, TLC2201A, TLC2201B Advanced LinCMOSTM LOW-NOISE PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 100 160 Voo± = ±5V 75 RL = 10kQ CL=100pF 50 TA = 25°C > E 1 > E . I I .. ~ ~:; 25 S '0 > :; So ,. 0 :; 0-25 0 I I o > J -75 -100 o 40 20 1\ /I, ~ o 7 2 3 \-Time-Ils 456 Figure 25 Figure 26 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE Voo± = ±5V RL = 10 kQ CL = 100 pF TA = 25°C ,. 7 ~ > I CI Voo = 5V RL = 10 kQ CL = 100 pF TA = 25°C 4 .. 2 3 CI S '0 S '0 > :; 0 'S -1 > :; So ,. D- 2 0 I > 60 -20 23456 \- Time -Ils 3 0 ¥I 80 5 4 0 \\/ 100 0 5 I ~ 0 > -50 .. .'. CI D- > I Voo= 5 V RL = 10 kQ CL = 100 pF 120 TA = 25°C 140 I -2 0 > -3 0 -4 -5 -1 o 5 \- Time -Ils 15 20 \- Time-Ils Figure 27 Figure 28 10 15 20 25 30 35 40 o 5 10 25 30 35 40 TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-809 TlC2201, TlC2201A, TlC2201B Advanced linCMOSTM lOW-NOISE PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt PEAK-TO-PEAK EQUIVALENT INPUT NOISE VOLTAGE 0.1 TO 10 Hz PEAK-TO-PEAK EQUIVALENT INPUT NOISE VOLTAGE 0.1 T01 Hz ~ ! ~ Voo± = ±5V TA = 25°C 0.75 :! ~ 0.5 ~ ~ ;; Q. oS ... 0 ~ ~.9. 0.25 ,. ~ ,,;J ~ ... ~ uI ~~ ",vn .....a. \J ~-0.5 I z 0.2 ... i 0 -0.2 II ~ . ~ -0.4 [ -0.8 0.6 0.4 ;; ~ -1 :f o rY , .~ -1 o GAIN-BANDWIDTH PRODUCT 7 8 9 10 2 3 7 8 vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE ~~ N J: I I 2 2 .c :2 .., ~ 1.9 t: 'iii / C) o 2 V 3 4 ./ / V 'G ,. .., 2 2 Q. .c -e ..,'i .. I: CD 10 9 RL = 10 kQ CL = 100 pF ~ VOO± = ±5 V ~~ ~~ VOO= 1.5 5~ ~ "~ t: 0; C) 5 6 7 8 1 - 75 - 50 IVoo ±I- Supply Voltage - V Figure 31 - 25 0 25 50 75 100 TA - Free-Air Temperature - °C Figure 32 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ IN5rRUMENTS 2-810 r'~ 2.5 ::;; 1.8 1 V\ , I~II liMA GAIN-BANDWIDTH PRODUCT 6 Q. m ," V ., " Figure 30 5 RL = 10kQ CL = 100 pF TA = 25°C N I: I, I'V Figure 29 4 J: .. Ihl~ ~ l.AI ~~ . I~ 4 5 6 t-Time-s 3 ::;; I ~ ~ j II I-Time-s 2 2.1 ..,'G,. In -0.6 I fO.75 ~ 0.8 '0 0.25 Voo± = ±5V TA = 25°C .. ~ ~ ... I CI POST OFFICE BOX 655303 - DALLAS, TEXAS 75265 125 TLC2201, TLC2201A, TLC2201B Advanced linCMOSTM LOW-NOISE PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt PHASE MARGIN vs SUPPLY VOLTAGE 50 PHASE MARGIN vs FREE-AIR TEMPERATURE 50 I RL = 10 kQ V f-- CL = 100 pF ~ g' TA = 25 C D 48 / "'0 I c 46 . :::;; CD ::: V .. Ol CD "'0 I 46 c l-:::::: - 'i'.. ........... "E'to :::;; ... - !-- ~ r'-Voo = 5 V CD 44 44 ..c a. I E '" .I .1 1 VOO+=±5V f a. ... 48 CD / .~ ..c ~ '~ I ...E 42 42 RL = 10 kQ CL = 100 pF 40 o 2 3 4 5 6 7 8 40 -75 -50 -25 0 25 50 75 Ivoo ±I- Supply Voltage - V TA - Free-Air Temperature - DC Figure 33 Figure 34 100 125 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. APPLICATION INFORMATION latch-up avoidance Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC2201, TLC2201A, and TLC2201B inputs and outputs are designed to withstand -100-mA surge currents without sustaining latch-up; however, techniques reducing the chance of latch-up should be used whenever possible. Internal protection diodes should not be forward biased in normal operation. Applied input and output voltages should not exceed the supply voltage by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators. Supply transients should be shunted by the use of decoupling capacitors (0.1 J1.F typical) located across the supply rails as close to the device as possible. electrostatic discharge protection These devices use internal ESD-protection circuits that prevent functional failures at voltages at or below 2000 V. Care should be exercised in handling these devices as exposure to ESD may result in degradation of the device parametric performance. TEXAS ~ INSfRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-811 2-812 TLC2202, TLC2202A,TLC2202B, TLC2202Y Advanced LinCMOSTM LOW-NOISE PRECISION DUAL OPERATIONAL AMPLIFIERS 03497, MA V 1990· REVISED AUGUST 1991 • TLC2202B Is 100% Tested for Noise: 25 nVl-vHz Max atf = 10 Hz 12 nVl-vHz Max atf = 1 kHz • Low Input Offset Voltage ••• 500 Jl.V Max • Excellent Offset Voltage Stability With Temperature .•. 0.5 Jl.V/oC Typ • Rall-to-Rall Output Swing • Low Input Bias Current .•. 1 pA Typ atTA = 25°C • Common-Mode Input Voltage Range Includes the Negative Rail description TYPICAL EQUIVALENT INPUT NOISE VOLTAGE The TLC2202, TLC2202A, TLC2202B, and TLC2202Y are precision, low-noise operational amplifiers using Texas Instruments Advanced LinCMOS™ process. These devices combine the noise performance of the lowest-noise JFET amplifiers with the dc precision available previously only in bipolar amplifiers. The Advanced LinCMOS'" process uses Silicon-gate technology to obtain input offset voltage stability with temperature and time that far exceeds that obtainable using metal-gate technology. In addition, this technology makes possible input impedance levels that meet or exceed levels offered by top-gate JFET and expensive dielectric-isolated devices. vs FREQUENCY ~ :> '; • 60 voo= 5v 50 1\ \ J~ 40 iz l Rs=100n TA = 2S"C ~ 30 i .s c 20 1g. 10 w The combination of excellent dc and noise performance with a common-mode input voltage range that includes the negative rail makes these devices an ideal choice for high-impedance, lowlevel signal-conditioning applications in either single-supply or split-supply configurations. ,~ I .; 0 1 10 10 k 100 1k f - Frequency - Hz The device inputs and outputs are designed to withstand -100-mA surge currents without sustaining latch·up. In addition, internal ESD-protection circuits prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in degradation of the device parametric performance. AVAILABLE OPTIONS Vnmax TA Vlomax AT 25°C f = 10 Hz PACKAGE Vnmax f = 1 kHz AT2S"C AT2S"C 12 nV/VHz 15 nV/VHz SMALLOUTLINE (D) CHIP CARRIER (FK) TLC2202BCD ------- O°C SOOIlV 25 nV/VHz to 35 nV/VHz 70°C 500llV 1 mV -40°C 500llV 25 nV/VHz 12 nVlVHz TLC2202BID to 500llV 35 nVlVHz 15 nVlVHz TLC2202AID 85°C 1 mV -55°C 500 IlV to 500llV -- -25 nV/VHz 35 nV/VHz -- - - TLC2202ACD TLC2202CD TLC22021D CERAMIC DIP (JG) CHIP FORM (V) PLASTIC DIP (P) - TLC2202BCP - TLC2202ACP - TLC2202CP TLC2202BIP TLC2202AIP TLC2202Y TLC22021P 12 nVlVHz TLC2202BMD TLC2202BMFK TLC2202BMJG TLC2202BMP 15 nVlVHz TLC2202AMD TLC2202AMFK TLC2202AMJG TLC2202AMP - TLC2202MD TLC2202MJG TLC2202MP 1 mV TLC2202MFK 125°C D packages are available taped·and·reeled. Add "R" suffiX to deVice type (e.g., TLC2202BCDR). Chips are tested at 25°C. Advanced LinCMOS is a trademark of Texas Instruments Incorporated. PRODUCTION DATA Information Is currant as of publication date. PlOducls conform to speclfieallons per Ihe terms of Texas Inslrumenls standard warranty. Production processing does nol necessarlly Include testing of all parameters. TEXAS "" INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Copyright © 1991, Texas Instruments Incorporated On plOducls compliant \0 MIL·STO·883, Class B, all parameters ara tested unless olherwise noled. On all other products, production processing does not necessarily Include testing of all parameters. 2·813 TlC2202, TlC2202A, TlC2202B, TlC2202Y Advanced linCMOSTM lOW-NOISE PRECISION DUAL OPERATIONAL AMPLIFIERS description (continued) C-suffix devices are characterized for operation from O°C to 70°C. The I-suffix devices are characterized for operation from -40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of -55°C to 125°C. o PACKAGE FK PACKAGE (TOP VIEW) (TOP VIEW) J+ ::J 0 000 00 NC NC z_z>z 3 VDD+ 2 OUT 21N21N+ NC 11 18 17 16 15 14 7 8 JG OR P PACKAGE (TOP VIEW) 10UT[]8 l1N- 2 7 1 IN+ 3 6 VDD _/GND 4 5 2 1 2019 NC 20UT NC 21NNC 9 10 11 12 13 000 + 0 _ N ZaZ~Z VDD+ 20UT 21N21N+ I 0 0 > NC - No internal connection equivalent schematic (each amplifier) IN+-----f-----i!---, .-----~--------+--OUT Cl IN-l~-___-~ 01 04 07 08 010 011 R1 VOO-/GNO TEXAS ~ 2-814 INSTRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 R2 TLC2202Y Advanced linCMOSTM LOW-NOISE PRECISION DUAL OPERATIONAL AMPLIFIERS chip information These chips, properly assembled, display characteristics similar to the TLE2202. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform. BONDING PAD ASSIGNMENTS 21N+ 20UT 21NVDDCHIP THICKNESS: 15 TYPICAL BONDING PADS: 4 X4 MINIMUM TJ max =150°C TOLERANCES ARE ±10% ALL DIMENSIONS ARE IN MILS 1__ 100 __ I 111I111111111111111111111111111111111111111I111I111 PIN (4) INTERNALLY CONNECTED TO BACKSIDE OF CHIP TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 2-815 TLC2202, TLC2202A, TLC2202B Advanced LinCMOSTM LOW-NOISE PRECISION DUAL OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, VDD+ (see Note 1) ...................................................... 8 V Supply voltage, VDD- ............................................................... - 8 V Differential input voltage (see Note 2) .................................................. ± 16 V Input voltage, VI (any input) ........................................................... ± 8 V Input current, II (each input) ......................................................... ± 5 rnA Output current, 10 (each output) ..................................................... ± 50 rnA Duration of short-circuit current at (or below) 25°e (see Note 3) ........................... unlimited Continuous total dissipation ........................................ See Dissipation Rating Table Operating free-air temperature range, T A: C-suffix ................................... O°C to 70 0 e I-suffix ................................. - 40 0 e to 85°C M-suffix ............................... - 55°e to 125°C Storage temperature range .................................................. - 65°e to 150°C Case temperature for 60 seconds: FK package .......................................... 260°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package ............... 260°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package .................. 300°C NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VDD+ and VDD- . 2. Differential voltages are at the non inverting input with respect to the inverting input. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE D FK JG P TA !>25°C POWER RATING 950mW 1375 mW 1050 mW 1000mW DERATING FACTOR ABOVE TA = 25°C 7.6mWI"C 11.0 mW/oC 8.4mWI"C 8.0mWI"C TA = 85°C POWER RATING 494mW 715mW 546mW TA=70OC POWER RATING 608mW 880mW 672mW 640mW TA = 125°C POWER RATING 190mW 275mW 210mW 520mW 200mW recommended operating conditions C·SUFFIX MIN MAX Supply voltage, VDD± Common·mode input voltage, VIC Operating free-air temperature, TA ±2.3 Vnn 0 ±8 Vnn+- 2.3 70 I-SUFFIX Von -40 TEXAS ~ INSTRUMENTS 2-816 MAX MIN ±2.3 POST OFFICE BOX 6SS303 • DALLAS. TEXAS 75265 Von ±8 -2.3 85 M-SUFFIX MIN MAX ±2.3 ±8 VDD-55 VDD_±_-2.3 125 UNIT V V °C TlC2202C Advanced linCMOSTM lOW-NOISE PRECISION DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Voo± = ± 5 V (unless otherwise noted) TEST CONDITIONS PARAMETER TA VIO Input offset voltage aVIO Temperature coefficient of input offset voltage Full range Input offset voltage long-term drift (see Note 4) 25°C 110 Input offset current lIB Input bias current MIN 25°C TYP MAX 100 1000 Full range RS ~ 500 VIC ~ 0, 1150 0.5 0.001 25°C Full range 0.005 ltV !!V/oC !!V/mo 0.5 100 25°C UNIT 1 Full range 100 pA pA -5 ~ RS VICR Common-mode input voltage range VOM+ Maximum positive peak output voltage swing VOM- Maximum negative peak output voltage swing RL ~ 500 Full range 10 kO VO~±4V, AVD RL Large-signal differential voltage amplification ~ 500kQ VO~±4V, RL ~ 25°C to 2.7 4.7 Full range 4.7 25°C -4.7 Full range -4.7 25°C 300 Full range 200 25°C 10 kO CMRR Common-mode rejection ratio Vo ~ 0, VIC ~ VICR min, RS ~ 500 kSVR Supply-voltage rejection ratio (C.VDD ±I C.VIO) VDD ± ~ IDD Supply current Vo ~ 0, ± 2.3 V to ± 8 V No load 50 Full range 25 25°C Full range 80 80 25°C Full range 80 80 25°C Full range V 4.8 V -4.9 V 560 Vim V 100 115 dB 110 1.8 dB 2.5 2.5 rnA operating characteristics at specified free-air temperature, VOO± = ± 5 V TEST CONDITIONS PARAMETER SR Slew rate at unity gain Vn Equivalent input noise voltage Vo VN(PP) Peak-to-peak equivalent input noise voltage In Equivalent input noise current Gain-bandwidth product ~ ± 2.3 V, RL ~ 10kO, CL~100pF TA 25°C Full range MIN 1.8 TYP 2.7 1.3 MAX UNIT V/!!s f ~ 10 Hz 25°C 18 f f ~ 25°C 8 ~ 1 kHz 0.1 to 1 Hz 25°C 0.5 f ~ 0.1 to 10Hz 25°C 0.7 25°C 0.6 fAI,fHz f ~ 10 kHz, 25°C 1.9 MHz RL ~ 10 kO, CL ~ 100pF nVl,fHz J.1V RL ~ 10kO, CL ~ 100 pF Phase margin at unity gain 25°C 48° 4lm tFull range IS ooe to 70 oe. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T A ~ 150°C extrapolated to TA ~ 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TEXAS ." INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-817 TlC2202AC, TlC2202BC Advanced linCMOSTM lOW-NOISE PRECISION DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Voo ± PARAMETER VIO TEST CONDITIONS Input offset voltage TA = ± 5 V (unless otherwise noted) TLC2202AC MIN TLC2202BC TYP MAX 25°C Full range 80 500 Full range 0.5 MIN TYP MAX 80 500 650 650 Temperature coefficient aVIO of input offset voltage Input offset voltage long-term drift (see Note 4) 110 Input offset current liB Input bias current voltage range output voltage swing Maximum negative peak VOM- AVD 0.001 25°C 0.5 25°C RS ; 50 n output voltage swing 100 2.7 2.7 25°C 4.7 Full range 4.7 25°C -4.7 Full range -4.7 Large-signal differential Full range 200 voltage amplification Va; ±4 V, 25°C 50 ratio (.1.VOO +/ .1.VIO) Supply current Full range Va ; 0, VIC; VICR min, 25°C RS ; 50n Full range VOO ± ; ± 2.3 V to ± 8 V Vo ; 0, to 4.8 4.7 -4.9 -4.7 25°C 80 80 Full range 80 4.8 300 pA pA V -4.9 V -4.7 560 flV/mo V 4.7 560 200 100 50 115 80 115 110 80 80 110 25 80 25°C No load 100 -5 300 Supply-voltage rejection kSVR 1 -5 to 25°C rejection ratio 100 100 Vo - ±4V, RL ; 500 kn Common-mode 0.005 0.5 1 Full range RL ; 10 kn 0.001 100 RL; 10 kn CMRR 0.005 Full range Maximum positive peak VOM+ 25°C flV flV/o C 0.5 Full range Common-mode input VICR RS ; son VIC; 0, UNIT Vim V 100 25 dB dB 80 1.8 2.5 Full range 1.8 2.5 2.5 2.5 mA operating characteristics at specified free-air temperature, Voo± = ± 5 V PARAMETER SR Vn VN(PP) In Slew rate at unity gain TEST CONDITIONS Vo ; ±2.3 V, TA TLC2202AC MIN TYP 25°C 1.8 2.7 Full range 1.3 TLC2202BC MAX MIN TYP 1.8 2.7 MAX RL ; 10 kn, V/fls 1.3 Equivalent input noise CL; 100pF I ; 10 Hz 25°C 18 35 18 25 voltage (see Note 5) 1 ; 1kHz 25°C 8 15 8 12 Peak-to-peak equivalent 1 ; 0.1 to 1 Hz 25°C 0.5 input noise voltage 1 ; 0.1 to 10 Hz 25°C 0.7 0.7 25°C 0.6 0.6 25°C 1.9 1.9 25"C 48° 48° Equivalent input noise current UNIT 0.5 nV/,[Hz flV IA/,[Hz 1 ; 10 kHz, Gain-bandwidth product RL; 10 kn, CL; 100pF m Phase margin at unity gain TA MIN 25°C 1.8 Full range 1.1 TYP 2.7 MAX UNIT V/flS CL ~ I I I ~ 25°C 18 ~ 1 kHz 0.1 to 1 Hz 25°C 25°C 8 0.5 f ~ 0.1 to 10 Hz 25°C 0.7 25°C 0.6 fA/.JHz I ~ 10 kHz, 25°C 1.9 MHz 25°C 48° ~ 100 pF 10 Hz RL ~ 10kn, CL ~ 100pF RL ~ 10 kn, CL ~ 100pF nV/.JHz flY 'On products compliant to MIL-STD-883, Class B, this parameter is not production tested. tFull range is -55°C to 125°C. NOTE 4: Typical values are based on the input oflset voltage shilt observed through 168 hours of operating life test at TA ~ 150°C extrapolated to T A ~ 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655300 • OALLAS. TEXAS 75265 2-825 TLC2202AM, TLC2202BM Advanced LinCMOSTM LOW-NOISE PRECISION DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, VDD± PARAMETER Via TEST CONDITIONS TA MIN Input offset voltage 110 Input offset current lIB Input bias current VICR voltage range VIC ~ 0, RS ~ son Maximum positive peak output voltage swing ~ ±4V, Large-signal differential RL ~ 500 kn voltage amplilication Va ~ ±4 V, Common-mode rejection ratio ratio (t.VDD ±1t.VIO) Supply current Va ~ 0, to 2.7 2.7 4.7 25°C -4.7 -4.9 -4.7 -4.9 Full range -4.7 560 -4.7 300 560 25°C 300 100 25°C 50 25°C so so Full range so 100 50 115 SO VN(PP) In Slew rate at unity gain ~ ±2.3V, V 115 110 so so 110 V/mV 100 dB dB so 2.5 1.S 2.5 2.5 mA = ±5V TLC2202BM TLC2202AM MIN TYP 25°C l.S 2.7 Full range 1.1 RL ~ 10 kn, 2.5 MAX MIN TYP 1.S 2.7 MAX UNIT VI/-ls 1.1 Equivalent input noise CL ~ 100 pF I ~ 10 Hz 25°C lS 35' lS 25' voltage (see Note 5) I ~ 1 kHz 25"C S 15' S 12' Peak-to-peak equivalent I ~ 0.1 to 1 Hz 25°C 0.5 0.5 input noise voltage I ~ 0.1 to 10Hz 25°C 0.7 0.7 25°C 0.6 0.6 IA/'-'Hz f ~ 10 kHz, 25°C 1.9 1.9 MHz 25°C 4SO 4SO Equivalent input noise current Gain-bandwidth product' .pm Va TA pA 25 Full range TEST CONDITIONS PARAMETER pA V 100 1.S 25°C No load 4.8 4.7 25 SO /-lVlmo V 4.8 Full range /-lV -5 4.7 4.7 Full range Va ~ 0, VIC ~ VICR min, 25°C RS ~ son Full range VDD ± ~ ± 2.3 V to ± S V 500 to operating characteristics at specified free-air temperature, VDD± Vn 1 500 25°C Full range RL ~ 10 kn 500 1 Full range output voltage swing Supply-voltage rejection SR 0.5 -5 RS ~ son 0.001 0.005' 500 25°C UNIT /-lVloC 0.5 0.5 RL ~ 10 kn IDD 750 0.001 0.005' 25°C 25°C Va kSVR 750 Full range Maximum negative peak CMRR 500 Full range Common-mode input AVD 80 TLC220.2BM MIN TYP MAX 80 500 0.5 Full range 01 inp'ut offset voltage long-term drift (see Note 4) VOM- MAX Full range Input offset voltage VOM+ TYP 25°C Temperature coefficient aVIO = ± 5 V (unless otherwise noted) TLC2202AM Phase margin at unity gain RL~10kn, CL ~ 100pF RL ~ 10 kn, CL ~ 100 pF nVl'-'Hz /-lV 'On products compliant to MIL-STD-SS3, Class B, thiS parameter IS not production tested. tFull range is -55°C to 125°C. NOTES: 4. Typical values are based on the input offset voltage shift observed through 16S hours 01 operating Ii Ie test at TA ~ 150°C extrapolated to TA ~ 25°C using the Arrhenius equation and assuming an activation energy 010.96 eV. 5. This parameter is tested on a sample basis lor the TLC2202Aand on all devices lorthe TLC2202B. Forothertestrequirements, please contact the factory. This statement has no bearing on testing or nontesting 01 other parameters. TEXAS ~ 2-S26 INSTRUMENTS POST OFFICE BOX 655303· DALLAS, TEXAS 75265 TLC2202M Advanced LinCMOSTM LOW-NOISE PRECISION DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Voo TEST CONDITIONS PARAMETER = 5 V(unless otherwise noted) TA V[O Input olfset voltage 25'C Full range (lV[O Temperature coefficient of input offset voltage Full range Input offset voltage long-term drift (see Note 4) 25'C [[0 Input offset current [[B Input bias current RS = 50n VIC = 0, MIN TYP MAX 100 1000 1250 0.5 0.001 25'C Full range 0.5 25'C Full range 1 0.005' UNIT }!V }!V/'C }!V/mo 500 500 pA pA 0 V[CR RS = 50n Common-m'ode input voltage range VOM+ Maximum positive peak output voltage swing VOM- Maximum negative peak output voltage swing RL = 10 kn Full range to 25'C 2.7 4.7 Full range 4.7 25'C V 4.8 V 0 Full range 50 Va = lVt04V, 25'C 150 315 75 25 55 Large-signa[ differential voltage amplification RL = SOOkQ VO=lVt04V, Full range AVO RL = 10kn Full range 10 CMRR Common-mode rejection ratio VIC = V[CR min, RS = 50n 25'C 75 Full range 75 kSVR Supply-voltage rejection ratio (t.VOO ± I t. V[o) VOO = 4.6 V to 16 V 25'C Full range 80 80 [DO Supply current Va = 2.5 V, No load 25'C 50 25'C V/mV 110 dB 110 1.7 Full range V dB 2.4 2.4 mA operating characteristics at specified free-air temperature, Voo = 5 V TEST CONDITIONS PARAMETER SR Vn Va = 0.5 V to 2.5 V. Slew rate at unity gain RL = 10 kn, 1= 10 Hz Equivalent input noise voltage Peal-to-peak equivalent input noise voltage In Equiva[ent input noise current Phase margin at unity gain MIN 1.6 Full range 0.9 TYP 2.5 MAX UNIT VII's 25'C 18 f = 0.1 to 1 Hz 25'C 25'C 8 0.5 f=0.ltol0Hz 25'C 0.7 25'C 0.6 fA/*iZ 25'C 1.9 MHz f = 1 kHz VN(PP} Gain-bandwidth product CL=100pF TA 25'C 1= 10kHz, RL = 10 kn, CL = 100 pF RL = 10 kn, nV/*iZ }!V CL = 100 pF 25'C 47° 4>m 'On products compliant to M[L-STO-883, Class B, this parameter IS not production tested. tFull range is -55'C to 125'C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150'C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy 010.96 eV. TEXAS ." INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-827 TlC2202AM, TlC2202BM Advanced linCMOSTM lOW-NOISE PRECISION DUAL OPERATIONAL AMPLIFIERS =5 V (unless otherwise noted) electrical characteristics at specified free-air temperature, Voo PARAMETER Via TEST CONDITIONS Input offset voltage Temperature coefficient "via 01 input offset voltage Input offset voltage long-term drift (see Note 4) 110 Input offset current liB Input bias current VICR voltage range Common-mode input Maximum high-level VOH output voltage Maximum low-level VOL AVD output voltage RS = 50n VIC = 0, kSVR IDD TA MIN MAX 25°C Full range 80 500 Full range 0.5 0 to 2.7 2.7 2SoC 4.7 Full range 4.7 voltage amplilication Va = 1 V 104 V, 25°C Full range 2SoC 10 75 Full range 75 25°C Full range 80 SR Vn VN(PP) In Slew rate at unity gain . 50 315 25 55 Va = 0.5 V to 2.S V, pA pA mV 315 75 V/mV 55 10 110 75 110 dB 75 110 80 80 110 dB 80 1.7 2.4 1.7 2.4 2.4 2.4 mA =5 V TLC2202AM TA SO 50 25 I1V/mo V 0 150 Full range TEST CONDITIONS 4.8 4.7 150 75 operating characteristics at specified free-air temperature, Voo PARAMETER 4.7 I1V V 50 25°C No load Va = 2.5 V, 4.8 0 Full range VDD = 4.6 V to 16 V 500 0 RL = 500 kn Supply current 1 to 25°C VIC = VICR min, RS = 50n SOO 500 Va = 1 V t04 V, ratio (Ll.VDD +/ Ll.VIO) 0.5 1 UNIT I1V/oC 500 Large-signal differential Common-mode 500 0.001 0.005' 0.5 Full range 10 = 0 MAX 80 0.5 Full range RL = 10 kn TVP 750 0.001 0.005' 25°C 25°C RS = 50n MIN 750 Full range 2SoC rejection ratio Supply-voltage rejection TLC2202BM TVP Full range 2SoC RL = 10 kn CMRR TLC2202AM MIN TVP 25°C 1.6 2.5 Full range 0.9 TLC2202BM MAX MIN TVP 1.6 2.5 MAX RL = 10kn, UNIT V/I1S 0.9 Equivalent input noise CL = 100 pF I = 10 Hz 25°C 18 35' 18 25' voltage (see Note 5) 1= 1 kHz 25°C 8 15' 8 12' Peak-to-peak equivalent I = 0.1 to 1 Hz 25°C O.S 0.5 input noise voltage I = 0.1 to 10Hz 25°C 0.7 0.7 25°C 0.6 0.6 IA/VHZ 25°C 1.9 1.9 MHz 25°C 47° 47° Equivalent input noise current nViVHZ I1V f = 10 kHz, Gain-bandwidth product RL = 10kn, CL = 100 pF tl>m Phase margin at unity gain RL = 10 kn, CL = 100 pF 'On products compliant to MIL-STD-883, Class B, this parameter IS not production tested. tFull range is -55°C to 125°C. NOTES: 4. Typical values are based on the input offset voltage shift observed through 168 hours 01 operating lile test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 5. This parameter is tested on a sample basis for the TLC2202A and on all devices lor the TLC2202B. Forother test requirements, please contact the lactory. This statement has no bearing on testing or nontesting of other parameters. TEXAS 2-828 ~ INsrRUMENlS POST OFFICE BOX 655303· DALLAS, TEXAS 75265 TLC2202Y Advanced LinCMOSTM LOW-NOISE PRECISION DUAL OPERATIONAL AMPLIFIERS electrical characteristics, V DO =5 V, T A = 25°C (unless otherwise noted) TEST CONDITIONS PARAMETER VIO MIN Input offset voltage Input offset voltage long-term drift (see Note 4) 110 Input offset current liB Input bias current RS=50n VIC =0, TYP MAX UNIT 100 1000 fLV 0.001 0.005 ).lV/mo 0.5 pA 1 pA 0 VICR Common-mode input voltage range RS=50n to V 2.7 VOH VOL AVO CMRR kSVR 100 Maximum high-level output voltage RL = 10110 Maximum low-level output voltage 10=0 VO= 1 Vl04 V, VO= 1 Vl04 V, RL = 500 110 RL = 10110 Vo = 0, VICRmin, RS=50n Large-signal differential voltage amplification Common-mode rejection ratio Supply-voltage rejection ratio (t.VCC/t.VIO) Supply current 4.7 4.8 0 VOO= 4.6 V 10 16 V, V 50 mV 150 25 315 55 V/mV 75 110 dB 80 110 dB Vo = 2.5 V, No load 1.7 2.4 MAX rnA operating characteristics, VDD = 5 V, T A = 25°C PARAMETER SR Slew rate at unity gain Vn Equivalent input noise voltage VN(PP) TEST CONDITIONS MIN TYP Vo = 0.5 V to 2.5 V, RL = 10110, CL = 100 pF 1.6 2.5 1 = 10 Hz 18 Peak-to-peak equivalent 1 = 1 kHz 1 = 0.1 101Hz 8 0.5 input noise voltage 1 = 0.1 to 10 Hz 0.7 In Equivalent input noise current Bl Gain-bandwidth product 1=10Hz, RL=10kn, CL=100pF 1.9 -______- 100 n Vo (see Note A) . NOTE A: CL includes fixture capacitance. Figure 1. Noise Voltage Test Circuit Figure 2. Phase Margin Test Circuit >-.-___-Vo NOTE A: CL includes fixture capacitance. Figure 4. Input Bias and Offset Current Test Circuit Figure 3. Slew Rate Test Circuit typical values Typical values as presented in this data sheet represent the median (50% point) of device parametric performance. Input bias and offset current At the picoamp bias current level typical of the TLC2202, TLC2202A, and TLC2202B, accurate measurement of the bias current becomes difficult. Not only does this measurement require a picoammeter, but test socket leakages can easily exceed the actual device bias currents. To measure these small currents, Texas Instruments uses a two-step process. The socket leakage is measured using picoammeters with bias voltages applied but with no device in the socket. The device is then inserted in the socket and a second test measuring both the socket leakage and the device input bias current is performed. The two measurements are then subtracted algebraically to determine the bias current of the device. noise Texas Instruments offers automated production noise testing to meet individual applications requirements. Noise voltage at f = 10Hz and f = 1 kHz is 100% tested on every TLC2202B device, while lot sample testing is performed on the TLC2202A. For other noise test requirements, please contact the factory. TEXAS ." INSTRUMENTS 2-830 POST OFFICE BOX 655303· DALLAS. TEXAS 75265 TLC2202, TLC2202A, TLC22028 Advanced LinCMOSTM LOW-NOISE PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS table of graphs Via Input offset voltage lIB Input bias current VOM Maximum peak output voltage VO(PP) Maximum peak-to-peak output voltage VOH VOL AVD lOS Distribution High-level output voltage Low-level output voltage Differential voltage amplification Short-circuit output current CMRR Common-mode rejection ratio IDD Supply current Pulse response SR Slew rate Noise voltage (referred to input) Gain-bandwidth product .pm Phase marg in Phase shift FIGURE 5 vs Common-mode voltage vs Temperature 6 vs Output current 8,9 10 7 vs Temperature vs Frequency 11 vs Frequency 12 vs Current 13 vs Temperature 14 vs Output current 15 vs Temperature 16 vs Frequency 17 vs Tem perature 18 vs Supply voltage 19 vs Temperature 20 vs Frequency vs Supply voltage vs Temperature 21,22 23 24 Small-signal 25,26 Large-signal 27,28 vs Supply voltage 29 vs Temperature 30 0.1 to 1 Hz 31 0.1 to 10 Hz 32 vs Supply voltage 33 vs Temperature 34 vs Supply voltage 35 vs Temperature 36 vs Frequency 17 TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2-831 TLC2202, TLC2202A, TLC2202B Advanced LinCMOSTM LOW-NOISE PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt TLC2202 INPUT BIAS CURRENT DISTRIBUTION OF INPUT OFFSET VOLTAGE COMMON-MODE INPUT VOLTAGE vs 10 1726 amplifiers '$. = 14 Voo± ± 15 V -1--1--1--1--1----,1--1 TA = 25°C 12 P Package I c C 101--+--1--1--+ ~ .. :::I '0., '" ~ ~ c.. 0 81---1--1---+- ~ :; 61---+--+-+ I 41---+-t- !I- 21---+--+ -1000 -600 -200 200 600 -4 -6 -5 -4 -3 -2 -1 0 2 3 4 VIC - Common-Mode Input Voltage - V Figure 6 INPUT BIAS CURRENT MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE vs vs FREE-AIR TEMPERATURE OUTPUT CURRENT > ---- 5 I Voo± = ±5V Vo = 0 VIC = 0 ~ :l ~ '" 4 } I C ., 200 I t: ::J 0 150 III :; 0- .E 100 I !I50 / o 25 "" -2 Figure 5 0- .. 0 -10 1000 300 .!!! 2 -8 VIO - Input Offset Voltage - "V 250 4 0- .E o = 6 1. I l!! = Voo± ±5V TA 25·C 8 V / / ~ ~ ~~ VOO± = ±5V TA = 25·C '\ 3 :~ l 2 E ::J E ~ ==I + == ~ 0 o TA - Free-Air Temperature _·C 2 3 1101 - Output Current - rnA Figure 7 Figure 8 45 65 85 105 5 125 4 toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ", 2-832 INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2202·GlP·18121-8 TLC2202, TLC2202A, TLC2202B Advanced LinCMOSTM LOW-NOISE PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE > ., -5 ~ N' ~ 1-4.5 :; vs OUTPUT CURRENT FREE-AIR TEMPERATURE = ~ '" "'" ~ 10 -4 ., Cl z E :::I .~ .. 6 = Voo± ±5V TA 25°C o .~ MAXIMUM PEAK OUTPUT VOLTAGE vs > I ., S '" "0 > :; .9- "- 4 2 :::I o ........ ~ -3.5 ~ ~ E 0 E .;: -2 = Voo± ±5V _ RL 10kQ = :::I .. ::E I ::E ::e -4 o > I ::E ~ -3 -6 o 2 1101 - > ., 6 8 Output Current - mA 4 25 50 vs vs FREQUENCY FREQUENCY 10 75 100 ~ 8 = -55°C TA "'" I I I II I I I II 6 b ]; TA = 125°C 4 > .,I S'" "0 ~ f\\ \ E :::I E .;: 2 VOO± o 125 5 :; . 0 HIGH-LEVEL OUTPUT VOLTAGE o ::E -25 T A - Free-Air Temperature - °C MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE Q. ~ -50 Figure 10 Cl ~ -75 Figure 9 S ~ :; 10 RL 10 k > :; Q. :; ~~ = ±5V = 10kQ 30 k 0 ;; ~ ..J .r. 4 TA 3 2 \\ \ I ::t: 0 r-..~ > o 300 k \ '" :E I 100 k = -55°C I I I II ~A ~ lJs Jc l 1M ~1\ I"' ,~ = = VOO 5V RL 10kQ 10 k 30 k 100 k 300 k f - Frequency - Hz f - Frequency - Hz Figure 11 Figure 12 1M tDala at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS . " INSTRUMENTS POST OFFICE BOX 655303 - DALLAS. TEXAS 75265 2202·G!P-18121·8 2-833 TlC2202, TlC2202A, TlC2202B Advanced linCMOSTM lOW-NOISE PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt HIGH-LEVEL OUTPUT VOLTAGE HIGH-LEVEL OUTPUT VOLTAGE vs vs HIGH-LEVEL OUTPUT CURRENT FREE-AIR TEMPERATURE Voo T\'. r'\. > VOO-2 I VOO = 5,V\ _\ II> ,\ ~VOO-4 (5 > '5 VOO-6 a. '5 o 11:. VOO = 10V VOO-8 VOO-10 Cl J: I TA = 25·C \ = I II> Cl !! \ ;2 '5 a. '5 \ \ o ~ !l 1:. Cl VOO=16V\ J: VOO-12 2r-~r-~---+---r---r--~--+-~ I ::t: o > VOO-14 VOO-16 VOO = 5V RL 10kn > ::t: 1\ o \ 2 3 4 IOH - High-Level Output Current - rnA ~ __ __ __J -__ -25 0 25 50 75 100 T A - Free-Air Temperature - ·C 0~-...l~~_~ -75 5 -50 ~ ~ ~--...l Figure 13 Figure 14 LOW-LEVEL OUTPUT VOLTAGE LOW-LEVEL OUTPUT VOLTAGE vs vs LOW-LEVEL OUTPUT CURRENT FREE-AIR TEMPERATURE 2.0 r----r---r---r--~r----.. 125 1.5 VOO = 5 V > > I II> Cl !! '0 I II> Cl 1.5 '5 " .s- ~ ~ ~ 0 '" I --- o" 1.0 !l ...J 1.0 '5 .s0 0.5 - IOL = 5:!...- ~ !! ;2 > V V 0.5 I ...J ...J o 0 > > 'OL = 1 rnA o 2 4 6 8 IOL - Low-Level Output Current - rnA 10 -75 -50 Figure 15 -25 0 25 50 75 100 TA - Free-Air Temperature - ·C 125 Figure 16 tpata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ 2-834 INSTRUMENTS POST OFFice BOX 655303 • DALLAS. TexAS 75265 2202-GlP-18/21-8 TlC2202, TlC2202A, TlC2202B Advanced linCMOSTM lOW·NOISE PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY 30· 120 ID "I c 100 0 ~ u ~ 1\ ~ r... AVO 80 60 Cl !9 "0 > E ~ ::: 20 is I C 0 > 110· ] c.. ~ I U S 0S 0 ~ ~ is I 150· c > I 0 ~ c '" "" 100 c:: 0 'u., 80 ., c:: 't> 0 60 ::;: r:. 0 E E = I 0 ~ . 40 ~ ~ 20 ::;: 80 '8 ::p 60 c 0 E E c:: c:: 20 (,) o 10 100 10 k 1k 100 k o 1M 10 Figure 22 SUPPLY CURRENT SUPPLY CURRENT vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 2.5 2 .,.A - ~ ~ ............ :::::::::I..-~ f.-- ~~ ~ f - TA =2SOC \.- ~A = 12SOC r '( >- 'li Q. = Vo VOO+/2 No Load E (,) 1M 100 k Figure 21 = 1.5 10 k 1k f - Frequency - Hz Vo 0 No Load I 100 f - Frequency - Hz 2.5 C ~ :::J "" 40 0 (,) ::;: (,) c:( "" '"" c ., c:: ., = = Voo SV TA 25°C "- 100 .S! U 0 (,) c:: c:: a:I 't> c:: "-~ '0; = Voo± ±5V TA 25°C rTA :::J C/) c:( 2 VOO± E C ~ ;; -r-i"""' VOO 1.5 = ±SV -:-- =SV ~ ::::----. (,) >- = -Ssoc 'li Q. :::J C/) I I 0 0 9 9 o.S o o 0.5 J 3 4 6 IVoo± I - Supply Voltage - V 2 S 7 8 o -75 -50 -25 0 25 50 75 100 125 TA - Free-Air Temperature - °C Figure 23 Figure 24 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS 2-836 ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2202-GlP-22126-7 TlC22D2, TlC22D2A, TlC22D2B Advanced linCMOSTM lOW-NOISE PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 100 75 > 50 E 160 VOOt = t5V RL= 10kn CL = 100 pF TA = 25°C 1\ Vo~ = 51V 140 RL = 10kn CL= 100pF 120 TA = 25°C > E I .. 100 S '0 80 s- 60 I 40 I 8. S ~ :; 25 > :; a. :; 1\ IV 01 0 o (\ a -25 I o 0 > -50 > ~ -75 20 0 1 -100 -20 o 2 3 4 5 6 \ ~ o 7 2 3 4 t - Time - I1S Figure 25 Figure 26 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 5 I A .. I S '0 ;; 0 S::J -1 > :; 0 2 s::J 0 I > 3 01 S 0 '" > 2 01 "0 > 7 Voo = 5V RL = 10 kn CL = 100pF TA = 25°C 4 3 .. 6 5 4 > 5 t - Time - I1S I -2 0 > V[>Dt = t5V RL = 10kn CL = 100 pF TA = 25°C -3 -4 -5 o 5 T I I 10 15 20 0 -1 25 30 35 40 o 10 15 20 t - Time - 119 Figure 27 Figure 28 TEXAS 25 30 35 40 ~ INSTRUMENTS POST OFFICE BOX 655303 - DALLAS, TEXAS 75265 2202-GlP-22126-7 5 t - Time -l1s 2-837 TlC2202, TlC2202A, TlC22028 Advanced linCMOSTM lOW-NOISE PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt SLEW RATE vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 4 RL = 10 kn CL = 100 pF TA = 25°C ~ 3 , .,.,- ~ .. - SR- .--- -- -- / ~ > a: SLEW RATE vs 2 4 .. .s!- ~ - r-- - -.....r-..... -- 3 > I ! a: .. 3 2 t-.. SR- ........ ~ ~ I'--.. 3 1ii 1ii I I a: a: en en o o o 2345678 IVOOt I - Supply Voltage - V -75 -50 -25 0 25 50 75 100 TA - Free-Air Temperature - ·C Figure 29 Figure 30 NOISE VOLTAGE (REFERRED TO INPUn OVER A 10-SECOND INTERVAL NOISE VOLTAGE (REFERRED TO INPUn OVER A 10-SECOND INTERVAL VOOt = ±5V = 0.1 to 1 Hz TA = 25·C 0.75 VOOt = t5V RL = 10kn CL = 100 pF VOO± = ±5V 0.8 f 125 f = 0.1 to 10 Hz TA = 25·C 0.6 0.5 >:I. ~ I 0.25 .. o~ ~ ;g . ~ -0.25 ~ ~~ ~I\ . .V. ,JII4uI \J .l. .M.L .. I T ~ 0 .. > 'z5 0.4 0.2 0 -0.2 I. -0.4 -0.5 ~ II ~ j tll~ I,MI ,j/tJ ~ ,,~ ~f\ IA II ._ I.u y I, I'V rr \II., , 1 .~ -0.6 -0.75 -1 -0.8 o -1 2 3 10 o t- Time-s 4 5 6 t-Time-s Figure 31 Figure 32 4 5 6 7 8 9 2 3 7 8 9 10 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS 2-838 ~ INSTRUMENTs POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2202-GlP-22/26-7 TlC2202, TlC2202A, TlC22028 Advanced linCMOSTM lOW-NOISE PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt GAIN-BANDWIDTH PRODUCT GAIN-BANDWIDTH PRODUCT vs vs SUPPLY VOLTAGE 2.1 = = = N ::!i I U :s = = t= 10kHz RL 10 k.Q CL 100pF TA 25"C :I: N :I: ::!i I 2 U :s -0 "2 £ .c It. .c 15 .~ -0 c co !Xl 1.9 V /' C 'ii Cl 1.8 48" -- ~ 1.5 I----I--l---+---+---f---+--"~.t---l C Cl 4 3 5 6 IVoo± I - Supply Voltage - V 7 _ _ L_ -75 -50 -25 0 25 50 75 100 TA - Free-Air Temperature - "C 8 _L_~_~_~~ Figure 33 Figure 34 PHASE MARGIN PHASE MARGIN vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 125 50" RL ~ 10kh Cl = 100pF TA 25"C -- = ,.,..-V c V 46" ~~ -~ 48" c co ::!i .. 1 1 .1 Voo± = ±5V -..-- f'.-~ Voo= .~ - ~ 5V~ 46" II> -.---. en co .c It. I ~ 'ii 2 .~ ::!i II> en .c - 15 1L-~_~ o 50" . FREE-AIR TEMPERATURE 2.5...---,---r--,---,---r--..,.---r----. t 10 kHz RL 10 k.Q CL = 100pF It. 44" I ....E 44" ....E 42" 42" Rl = 10 k.Q Cl = 100 pF 2 3 4 5 6 7 8 IVoo± I - Supply Voltage - V 40" -75 -50 -25 0 25 50 75 100 TA - Free-Air Temperature - "C Figure 35 125 Figure 36 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 2202-G/P·22126-7 2-839 TLC2202, TLC2202A, TLC22028 Advanced LinCMOSTM LOW-NOISE PRECISION DUAL OPERATIONAL AMPLIFIERS APPLICATION INFORMATION latch-up avoidance Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC2202, TLC2202A, and TLC2202B inputs and outputs are designed to withstand -100-mA surge currents without sustaining latch-up; however, techniques reducing the chance of latch-up should be used whenever possible. Internal protection diodes should not be forward biased in normal operation. Applied input and output voltages should not exceed the supply voltage by more than 300 mY. Care should be exercised when using capacitive coupling on pulse generators. Supply transients should be shunted by the use of decoupling capacitors (0.1 IlF typical) located across the supply rails as close to the device as possible. electrostatic discharge protection These devices use internal ESD-protection circuits that prevent functional failures at voltages at or below 2000 V. Care should be exercised in handling these devices as exposure to ESD may result in degradation of the device parametric performance. TEXAS ." 2-840 INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TexAS 75265 2202·G/P·22I26·7 TLC2272, TLC2272A, TLC2272Y Advanced LinCMOSTM DUAL RAIL-TO-RAIL OPERATIONAL AMPLIFIERS D3981 , NOVEMBER 1991 • • • • • • • Output Swing Includes Both Supply Rails Low Noise ... 9 nVl..fHz Typ at 1 kHz Low Input Bias Current ... 1 pA Typ Single Supply or Split Supply Operating Capability Common-Mode Input Voltage Range that Includes Negative Rail High Gain-Bandwidth Product 2 MHz at 25°C High Slew Rate. , .3 V/J.l.S Typ • Low Input Offset Voltage 950 J.l. V Max at T A = 25°C - TLC2272A 2500 J.l. V Max at T A = 25°C - TLC2272 • Macromodel Included MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE description vs The TLC2272 and TLC2272A are dual rail-to-rail operational amplifiers using Texas Instruments Advanced LinCMOS"" process. These devices offer comparable ac performance to existing CMOS operational amplifiers, but with better noise, input offset voltage, and power dissipation. In addition, the common-mode input voltage range includes the negative rail, while delivering rail-to rail outputs. The Advanced LinCMOSTM process uses a Silicon-gate technology to obtain input offset voltage stability with temperature and time that far exceeds that obtainable using metal-gate technology. In addition, this technology makes possible input impedance levels that meet or exceed levels offered by top-gate JFET and expensive dielectric-isolated devices. SUPPLY VOLTAGE > 16~--~----~--~~---r----~--~ " 0> !1! > '5 c. '5 "0 . 0 12~---+----1---~~--~~--+---~ ". "b Q. ~ 3! Q. E ::s E 'xos ::s 10~---+----4---~~--~----+---~ 8~---+----~~~~--~----+-----~ 6~--~~--4---~~--~----+---~ fL With high input impedance and low noise, the c. 4~--~----~--~----~--~--~ TLC2272 and TLC2272A are excellent for small > 4 6 8 10 12 14 16 signal conditioning for high-impedance sources, IVDD± I - Supply Voltage - V such as piezoelectric transducers. In addition, the rail-to-rail output feature with single or split-supply make these devices great choices for inputs to ADC devices in either the unipolar or bipolar mode of operation. Combining the previous feature with temperature performance, the TLC2272 family can be found in sonobuoys, pressure sensors, temperature control, active VR sensors, accelerometers, and many other applications. o AVAILABLE OPTIONS PACKAGE TA VIO max AT 25°C DoC to 950fLV 70°C 2500 fLV SMALL OUTUNE (D) TLC2272ACD TLC2272CD SSOP (DB) TLC2272DBLE PLASTIC DIP (P) TLC2272ACP TLC2272CP CHIP TSSOP (PW) FORM (V) TLC2272PWLE TLC2272Y D packages are available taped and reeled. Add "R" suffix to device type, (e.g., TLE2272CDR). The DB and PW packages are only available taped and reeled. The chip form (Y) is tested at T A = 25°C. Advanced LinCMOS'" is a trademark of Texas Instruments Incorporated. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. TEXAS ~ Copyright © 1991, Texas Instruments Incorporated INSTRUMENTS POST OFFICE BOX 655303· DALLAS, TEXAS 75265 2-841 lLC2272, lLC2272A, lLC2272Y Advanced LinCMOSTM DUAL RAIL-lO-RAIL OPERATIONAL AMPLIFIERS description (continued) The device inputs and outputs are designed to withstand 1OO-mA surge current without sustaining latch-up. In addition, internal ESD protection circuits prevent functional failures up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in degradation of the device parametric performance. D, DB, P, OR PW PACKAGE (TOP VIEW) 1 0 U T [ j 8 VDD+ 1 IN2 7 20UT 11N+ 3 6 21NVDD--/GND 4 5 21N+ chip Information These chips, properly assembled, display characteristics similar to the TLC2272. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform. BONDING PAD ASSIGNMENTS VDO+ (8) IN+(3)~ - IN-(2) ~OUT(1) OUT (7) - o C\I re 0') <) + Ci a 0 0 > II) a re 0 z ~ 0 > ... .-. co 0) :;: i5. E ::> as 0 Co) J:: I- Co) Z as W ~ Z 0 0.. ::;; 0 Co) :;:; as E 0) J:: NO') 1:. z + I ~ ~ Co) E .~ V> (/) Q) C:"O V> ~ V> ~ 0 BOG .~ ~ ~6 reo Q) '" Co) UI C 0) a; > 'S cO) TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2--843 I TlC272, TlC272A Advanced linCMOSTM DUAL RAll-TO-RAll OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, vDD+ (see Note 1) ..................................................... 8 V Supply voltage, VDD- (see Note 1) .................................................... -8 V Differential input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 16 V Input voltage, VI (any input, see Note 1) ................................................. ±8 V Input current, II (each input) ......................................................... ±5 mA Output current, 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ±50 mA Total current into VDD+ terminal .................................................... ±50 mA Total current out of VDD- terminal ................................................... ±50 mA Duration 01 short-circuit current at (or below) 25°C (see Note 3) ........................... unlimited Continuous total dissipation ........................................ See Dissipation Rating Table Operating free-air temperature range ............................................. O°C TO 70°C Storage temperature range ................................................... -65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................. 260°C NOTES: 1. All voltage values. except differential voltages. are with respect to the midpoint between VOO+ and VOO- for split supplies. 2. Oifferential voltages are at the noninverting input with respect to the inverting input. Excessive current will flow if input is below VOO_-0.3 V. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TAS2S·C DERATING FACTOR POWER RATING ABOVE T 4 = 2S·C 5.8mW/oC D 725mW DB 525mW P PW 1000mW 525mW 4.2mWfOC 8 mW/oC 4.2 mWfOC TA =70·C POWER RATING 464mW 336mW 640mW 336mW recommended operating conditions Supply voltage. VDO + Input voltage range Common-mode input voltage. VIC Operating free-air temperature. TA TEXAS . " INSfRUMENTS 2-844 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 MIN +2.2 MAX +8 VOOVOO 0 VOD+ - 1.5 VOD+-l.5 70 UNIT V V V °C TLC2272C, TLC2272AC Advanced LinCMOSTM RAIL-TO-RAIL DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-alr temperature, Voo+ PARAMETER VIO TEST CONDITIONS Input offset voltage Input offset voltage VOO±=±2.5 V VO=O, RS=50n Input offset current lIB Input bias current 25°C VICR Common-mode input voltage range VOM+ Maximum positive peak output voltage swing Maximum negative peak VOM- output voltage swing AVO Large-signal differential voltage amplilication rid Differential input resistance q ci Zo CMRR kSVR 100 input capacitance Closed loop output impedance 100 0.5 100 100 100 100 1 -0.5 0 to 4.2 to 4 100 100 -0.5 to 4.2 pA pA V 0 to 3.5 4.99 4.93 4.93 4.65 V 4.65 0.01 0.01 0.09 0.09 0.9 0.9 25°C 35 175 1012 35 175 1012 25°C 1012 1012 I = 10kHz, P package 25°C 8 8 1=1 MHz, AV = 10 25°C 140 140 n 25°C 75 75 dB VIC = 2.5 V, IOL = 50 !lA VIC = 2.5 V, 10L = 500 !lA VIC = 2.5 V, IOL = 5 mA VIC =2.5 V, IRL= 10k!} Va =; 1 V to 4 vrRL = 1 Mn'!' 25°C 25°C Common-mode VIC = 0 Vto 2.7 V, rejection ratio Va = 2.5 V, RS= 50n Supply-voltage rejection ratio (aVO[)±faVIO) VOO+ = 4.4 V to 16 V, No load, VIC = VOO/2 25°C Full range Va = 2.5 V, No load 25°C Full range Supply current ",V ",V/mo 100 0 to 4 0 to 3.5 UNIT 0.002 25°C Common-mode input resistance Common-mode 950 1500 4.99 10H = 20!lA IOH = 2OO!lA IOH=lmA MAX 300 0.002 1 Full range TYP ",VloC 25°C Full range RS=50n, 2500 2 0.5 IVIO 1:'>5 mV MIN 2 25°C Full range 25°C TLC2272AC MAX 3000 Full range VIC =0, 110 TYP 300 Full range 01 input offset voltage long-term drift (see Note 4) MIN 25°C Temperature coefficient aVIO TAt =5 V (unless otherwise noted) TLC2272C 80 100 80 80 V V/mV n n pF 100 dB 80 2.2 3 3 2.2 3 3 mA tFull range is O°C to 70°C. :j:Relerenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours perating lile test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy 010.96 eV. TEXAS ." INsrRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2-845 TLC2272C, TLC2272AC Advanced LinCMOSTM RAIL-TO-RAIL DUAL OPERATIONALAMPLIFIERS operating characteristics, VOO+ PARAMETER = 5 V, TA =25°C TEST CONDITIONS TLC2272C MIN TYP MAX Va = 0.5 V to 2.5 V, RL = 10 kat, CL = 100 pFt f = 10 Hz Equivalent input noise voltage Vn f = 1 kHz V Peak-to-peak equivalent input f = 0.1 to 1 Hz N(PP) noise voltage f = 0.1 to 10 Hz Equivalent input noise current I'L Va = 0.5 V to 2.5 V, AVO = 1 Total harmonic distortion RL = 10 kat, AVO = 10 THO + N plus noise f = 20kHz AVO = 100 f = 10 kHz, RL = 10 kaT, Gain-bandwidth product CL = 100 pFt Maximum output-swing Va = 0.5 Vto 2.5 V, AVO = 1, BaM bandwidth RL = 10 kat, CL = 100 pFt Phase margin at unity gain ~m RL = 10 kat, CL = 100 pFt Am Gain margin SR Slew rate at unity gain UNIT 3.6 3.6 VI Jls 50 50 9 nV/{Hz 9 1 1.4 0.6 0.0013% 0.004% 0.00% 1 1.4 0.6 0.0013% 0.004% 0.03% 2.18 2.18 MHz 1 1 MHz 50° 10 50° 10 tReferenced to 2.5 V TEXAS ~ INSTRUMENTS 2-846 TLC2272AC MIN TYP MAX POST OFFICE BOX 655303' DALLAS, TEXAS 75265 JlV fA/{Hz dB TlC2272C, TlC2272AC Advanced linCMOSTM RAll-TO-RAll DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, VOD± PARAMETER VIO TEST CONDITIONS Input offset voltage long-term drift (see Note 4) 110 Input offset current liB Input bias current IVIO 1:55 mV VOM+ 0.002 /lV/mo 25°C 0.5 100 Maximum negative peak 1 100 -5.5 4 -5.5 to 4.2 4 4.2 -5 to to CMRR kSVR 100 3.5 4.99 4.93 -4.91 -4.1 -4.1 25°C 50 300 1012 50 300 1012 25°C 1012 1012 I = 10kHz, P package 25°C 8 8 I = 1 MHz, AV = 10 25°C 130 130 n 25°C 85 85 dB 25°C I RL = 10 kn IRL=lMn Common-mode input resistance output impedance V -4.99 Differential input resistance Closed loop to -4.91 ric! Zo pA -4.99 VO=±4 V input capacitance 100 100 -5 to -5 VIC = 0, 10 = 50 J.lA Large-signal differential voltage amplification ci 1 pA 4.65 AVO Common-mode 100 100 -5 to 100 4.99 4.93 4.65 VIC = 0, 10 = 500 J.lA VIC = 0, 10 = 5 mA ri 0.5 100 25°C output voltage swing VOM- /lV 0.002 3.5 10 = -20 J.lA 10 = -200 J.lA 10=-1 mA 950 1500 UNIT 25°C Full range Maximum positive peak output voltage swing 300 MAX /lV/oC 25°C voltage range 2500 TYP 2 Full range RS=50n, MIN 2 Full range Common-mode input TLC2272C MAX 3000 Full range VIC=O, VO=O, RS=50n 25°C VICR 300 Full range Temperature coefficient aVIO TYP MIN 25°C Input offset voltage of input offset voltage TAt =±5 V (unless otherwise noted) TLC2272C Common-mode VIC = -5 V to 2.7 V, rejection ratio Supply-voltage rejection ratio (tNOO:t"WIO) Vo = 0, RS = 50 n VOO± = ±2.2 V to ±8 V, No load Supply current Vo = 0, No load 25°C 25°C Full range 80 80 25°C Full range 100 2.4 80 80 3 3 V V V/mV n n pF 100 2.4 dB 3 3 mA tFull range is O°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating lile test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303· DALLAS, TEXAS 75265 2-847 TLC2272C, TLC2272AC Advanced LinCMOSTM RAIL-TO-RAIL DUAL OPERATIONAL AMPLIFIERS operating characteristics, VDD± PARAMETER =±5 V, TA =25°C TLC2272C MIN TYP MAX TEST CONDITIONS Vo = ±2.3 V, RL = 10 kn, CL = l00pF f = 10 Hz Equivalent input noise voltage Vn f = 1 kHz Peak-Io-peak equivalent input f = 0.1 to 1 Hz V N(PP) noise voltage f = 0.11010 Hz SR In Slew rate at unity gain Equivalent input noise current Total harmonic distortion THO + N plus noise Gain-bandwidth product BOM m Am Maximum output-swing bandwidth Phase margin at unity gain Gain margin Vo =±2.3 V, RL = 10kn, f = 20 kHz AVD = 1 AVO = 10 AVD = 100 f = 10kHz, RL = 10kn, 3.6 3.6 VI Jli> 50 50 9 9 nV/#fZ 1 1 1.4 0.6 0.0011% 0.004% 0.03% 2.25 2.25 MHz 0.54 0.54 MHz 52° 10 52° 10 dB RL = 10 kn, CL = 100 pF ~ INSTRUMENTS 2-848 UNIT 1.4 0.6 0.0011% 0.004% 0.03% CL = 100pF Vo = ±2.3 V, AVO = I, RL = 10kn, CL = 100pF TEXAS TLC2272AC TYP MAX MIN POST OFFICE BOX 655303' DALLAS. TEXAS 75265 IN fA/#fZ TLC2272Y Advanced LinCMOSTM RAIL-TO-RAIL DUAL OPERATIONAL AMPLIFIERS electrical characteristics at Voo Via 110 liB VICR PARAMETER Input offset voltage Input offset voltage long-term drift (see Note 4) Input offset current Input bias current =5 V, TA =25°C (unless otherwise noted) TEST CONDITIONS 4 4.2 LOW-level output voltage voltage amplification q Common-mode input resistance Common-mode input capacitance Closed loop output impedance Common-mode rejection ratio Supply-voltage rejection kSVR 100 100 IVlol S5mV qd CMRR 1 voltage range Oifferential input resistance Zo 100 -0.5 to High-level output voltage ratio (....VOO I ....VIO) Supply current UNIT flV f!A flV!mo 0.5 0 to Large-signal differential ci 2500 RS = 50n pA pA V 4.99 10H = 200 f!A 10H=lmA 4.93 V 4.65 f!A 0.01 VIC = 2.5 V, 10L = 500 f!A 0.09 VIC = 2.5 V, Va = 1 V to 4 V mV 0.9 VIC = 2.5 V, 10L = 5 mA AVD MAX 300 Common-mode input VIC = 2.5 V, 10L = 50 VOL TYP 0.002 VO=O, RS = 50n 10H = 20 VOH MIN VIC =0, VDD± = ±2.5 V, I RL = I RL = 10 knt 35 1 Mnt 175 10 12 V/mV n 10 12 f = 10kHz f = 1 MHz, AV = 10 VIC = 0 to 2.7 V, Va = 2.5 V, RS = 50 n VOO = 4.4 V to 16 V, No load, VIC = VOO/2 80 n 8 pF 140 n 75 dB dB 100 I Va = 2.5 V, No load 2.2 3 mA tReferenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-849 TlC2272Y . Advanced linCMOSTM RAll-TO-RAll DUAL OPERATIONAL AMPLIFIERS = = electrical characteristics at vOD± ±5 V, TA 25°C (unless otherwise noted) Via PARAMETER Input offset voltage Input offset voltage long-term drift (see Note 4) 110 Input offset current liB Input bias current VICR TEST CONDITIONS MIN VIC;O, VOO±; ±2.5 V, RS ; 500 Common-mode input RS ; 500, IVlol s5mV High-level output voltage 10H ~ 200 Low-level output voltage Large-signal differential voltage amplification qd Differential input resistance ri Common-mode input resistance ci Zo CMRR Common-mode input capacitance Closed loop output impedance Common-mode rejection ratio Supply-voltage rejection kSVR 100 ratio (toVDO / toVIO) Supply current 100 pA 1 100 pA to 4.2 4 !lV/mo 0.5 -5.5 V 4.99 JlA 4.93 V 4.65 -4.99 VIC ~ 0, 10 ~ 50 JlA VIC ~ 0, 10 ~ 500 JlA -4.91 VIC ~ 0, 10 ~ 5 rnA AVO !lV to 10H~lmA VOL UNIT 2500 -5 10H ; 20 JlA VOH MAX 300 0.002 VO;O, voltage range TYP mV -4.1 I RL~ I RL ~ VIC ~2.5V, Va ~ 1 Vt04 V 10knT 50 1 MoT 300 1012 V/mV 0 1012 f ~ 10kHz f ~ 1 MHz, AV VIC ~ 0 8 ~ 10 Ot02.7V, Va ~ 2.5 V, RS ~500 VOO ~ 4.4 V to 16 V, No load, VIC ~ VOO/2 80 130 0 85 dB 100 dB 2.4 Va ; 2.5 V, No load pF 3 rnA tReferenced to 0 V. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA ~ 150°C extrapolated to TA ; 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TEXAS "I INSfRUMENTS 2-850 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TlC2272, TlC2272A Advanced linCMOSTM RAll-TO-RAll DUAL OPERATIONAL AMPLIFIERS table of graphs TYPICAL CHARACTERISTICS RGURE VIO Input offset voltage Distribution 1,2 3,4 6,7 VO(PP) Maximum peak-to-peak output voltage swing vs VIC vs Frequency VID Differential input voltage vs Output voltage AVD Large-signal differential voltage amplification Zo CMRR vs RL 5 8 vs Frequency 9,10 Output impedance vs Frequency II, 12 Common-mode rejection ratio vs Frequency Large-signal pulse response vs Time 14,15,16,17 vs Time 18,19,20,21 Small-signal pulse response vs Frequency 13 22, 23 Vn Input-referred noise voltage THD + N Total harmonic distortion plus noise vs Frequency 25 " COMMON-MODE VOLTAGE J 0.5 II> ~'5 vs , COMMON-MODE VOLTAGE > ~ ----- 0.5 V .,....--- ~~ ~ / ·f V .".."... -1 o 2 3 4 VIC - Common-Mode Voltage - V 5 -6 -S -4 -3 -2 -1 0 2 3 VIC - Common-Mode Voltage - V Figure 4 Figure 3 TEXAS ~ INSTRUMENTS 2-852 1.6 POST OFFICE BOX 655303' DALLAS. TEXAS 75265 4 S TLC2272, TLC2272A Advanced LinCMOSTM RAIL-TO-RAIL DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS DIFFERENTIAL INPUT VOLTAGE MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE SWING > vs vs FREQUENCY OUTPUT VOLTAGE 10 I .. GI DI 9 ~ 8 ~ 7 \ .. 6 s s I-- Voo =SV l 4 ~ ..:. I 2 ...0:; 1 ~ 600 > 400 '; II. .5 200 \. :iii ;c ::E DI S '0 3 .. TA 800 .. Voo E ::I E ~ ~ 0 =SV =2SOC RL =10kQ Voo 1000 , '; ~ , 1200 =10 k.Q TA = 2SoC RL i.. = ±SV 0 ""'\\ ~ -200 I\. 6- 400 ~ -> -600 .... t-- -800 0 10k 100k 1M 0 10M vs vs OUTPUT VOLTAGE LOAD RESISTANCE = ±SV TA =2SOC RL =10 k.Q I 600 200 II. .5 I 0 100 == rl !E 1'i. E L .. c( 10 0) ~ ~ i- 2OO 0 > \ ~ -400 OJ ~ e ~ c I 0 - 600 I -800 Q > c( -1000 -s = ±1 V = 2SOC c :j -> TA 0 GI '; Vo ~ DI S 400 '0 > 1000 > Voo ~ S LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION DIFFERENTIAL INPUT VOLTAGE 800 4 Figure 6 Figure 5 1000 3 2 Vo - Output Voltage - V f - Frequency - Hz -3 -1 3 S Vo - Output Voltage - V 0.1 0.1 10 100 RL - Load Resistance - kQ Figure 7 Figure 8 TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-853 TLC2272, TLC2272A Advanced LinCMOSTM RAIL-TO-RAIL DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION and PHASE MARGIN vs FREQUENCY 80 I'!!' voo = sv RL = 10kn CL = 100pF TA = 25"C III 'U I c oj IS I;: i5. 60 " 40 i"'ooo ~ I "'S• at '0 I' I c I c 4S" 1'1 > AVO !2' 'U ~m ~ 20 13S" 90" I E 180" '2' '" :i 91 r-.... 0" I" -20 '" .... .c tI. I -4S" ~ -40 1k 10k 100k -90" 10M 1M f - Frequency - Hz Figure 9 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION and PHASE MARGIN vs FREQUENCY 80 ~~~ ='±'S'V III 'U I c 60 IE 40 t "'• at ~ i' RL = 10kn CL = 100pF TA = 2S"C r-.... I N~ r--.. 20 180" 13S" 90" I 4S" > ; Avo r--.. '" .c '" tI. 91 0" -4S" 10k 100 k 1M f - Frequency - Hz Figure 10 TEXAS 2-854 2' ....I -20 -40 1k oS :i I' I !2' 'U ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 -90" 10M TLC2272, TLC2272A Advanced LinCMOSTM RAIL-TO-RAIL DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS OUTPUT IMPEDANCE OUTPUT IMPEDANCE vs vs FREQUENCY FREQUENCY 1000 1000r~~~~;II!II~;I~ = Voo = SV TA = 2SOC c: 100 Voo = ±SV TA 25°C II IIII ~100._11 I G> U Ay = 100 C III Q. .§ 'SQ. 'S / 10 AV = 10 0 0 N !i , II III I § i / -g ~ ~ A =100 Av = 10 IIII! AV =1 10~~!I~II~III~II~ElII~~~I~~~!II I .f A =1 IIIII 0.1 100 lk 10 k 100 k 0.1 '--.........L..U.I.w.....................u.w...................L.l..1JW--'--u.J..UOW 100 lk 10 k 100 k 1M 1M f - Frequency - Hz f - Frequency - Hz Figure 11 Figure 12 COMMON-MODE REJECTION RATIO vs FREQUENCY 100 ID "0 I 0 ~ 80 c a: 60 G> "0 0 :;; C 0 40 E E <3 I a: a: =25°C ~~ ~ I Voo = SV 0 :i) TA Voo = SV RL = 10 k.Q CL = 100pF TA = 25°C AV = -1 Voo = ±SV a: "isG> I INVERTING LARGE-SIGNAL PULSE RESPONSE 5 20 :;; 0 o 10 4 r > .. V I DI i 3 > ~\ :; Q. 'S 0 2 I r-- 0 > \ V o 100 1k 10 k 100 k 1M 10 M o f - Frequency - Hz 234 567 t - Time - Ils 8 9 Figure 14 Figure 13 TEXAS . " INSfRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2-855 TLC2272, TLC2272A Advanced LinCMOSTM RAIL-TO-RAIL DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS VOLTAGE·FOLLOWER LARGE·SIGNAL PULSE RESPONSE INVERTING LARGE·SIGNAL PULSE RESPONSE S = ±SY =10 k.Q =100pF =2SoC = -1 Yoo RL CL TA Ay 4 3 > I V\. 2 1\ \ II DI ! ~ !i So :::I 0 I ~ I I II 0 -1 -2 S 4 > I II DI ! ~ !i So :::I , 1 ~ 0 3 ~ \ .~ ......... -4 -s I 2 I J -3 =5Y =10 k.Q =100pF =1 =25°C Yoo RL CL Ay TA o 2 3 4 S 6 7 8 o 9 o 2 t - TIme -Ils Figure 15 = = = 3 I > !i ;- 0 I 0 > 2 I I i 2.S5 i 2.S I ~ \ 1 -1 J\ > 11 I II -2 I-- o I ~ -3 2.45 o 2.4 234 t - 9 ~ 1\ ~ 5 6 7 8 9 o Time -Ils \ 0.5 1 1.5 2 2.5 TEXAS + POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 3 Time -Ils Figure 18 INSfRUMENTS !roo. \J t - Figure 17 2-856 8 = = = -4 -S 7 Yoo = SY RL 10 k.Q CL 100pF TA 25°C Ay = -1 2.6 1\ 0 6 2.65 Yoo ±5Y RL 10 k.Q CL 100pF TA = 25°C Ay = 1 4 I 5 INVERTING SMALL·SIGNAL PULSE RESPONSE S • 4 Time -Ils Figure 16 VOLTAGE·FOLLOWER LARGE·SIGNAL PULSE RESPONSE > 3 t - 3.5 4 r-- 4.5 5 TLC2272, TLC2272A Advanced LinCMOSTM RAIL-TO-RAIL DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE INVERTING SMALL-SIGNAL PULSE RESPONSE 100 > E /\ so I 2.65 = ±SV = 10 k.Q = 100 pF = 2SoC = -1 Voo RL CL TA Av \ /' 1 2.6 > 1 S "0 > :; 0 Do :3 II 1 0 ~ '0 0 > f\. G> E 2.SS G> 01 > '5 Do '5 =SV =10kn =100pF = 25°C =1 voo RL CL TA Av -so 2.5 1 /' r-.... ..... \/ ~ 2.4S -100 V 2.4 o 0.5 1.S 2 2.5 3 3.5 o 4 I-Time-f.Ls Figure 19 1.S O.S 1- Time - f.LS Figure 20 EQUIVALENT INPUT NOISE VOLTAGE vs VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 100 > E FREQUENCY 60 = ±sv =10kn =100 pF f\. =2SoC =1 voo RL CL so TA AV ~> c .'! '0 G> 01 > '5 Do '5 . Z 30 \ '5Do .5 E G> 1 0 1\, G> '0 0 0 > 40 > S "0 50 1 G> 01 -50 ·s.,. w 10 c > -100 o O.S 1- Time - f.Ls 1.S i\ 20 iii > V = = = voo SV TA 25°C Rs 20n o 10 Figure 21 '" r"--r-- 100 1k f - Frequency - Hz 10 k Figure 22 TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-857 TlC2272, TlC2272A Advanced linCMOSTM RAll-TO-RAll DUAL OPERATIONAL AMPLIFIERS· TYPICAL CHARACTERISTICS EQUIVALENT INPUT NOISE VOLTAGE EQUIVALENT INPUT NOISE VOLTAGE OVER A 10 SECOND PERIOD vs FREQUENCY 1000 r-----r-----,-----r----,---, 60 ~> so c I G> 01 ~ 40 . > GI '0 z :; voo=±sv TA = 2S0C RS = 20n 1\\ voo = .sv TA > I ~ ~ \ .. ~-2S0 ;; 20 a. .5-S00 r"- ...... r-. '5 0- 0 G> 1\ w SOO~. .~---+~~-+---~--+_~ .. 2S0 a. .5 .. ~ = c 30 ;: -+_ _-+-_ _+-_--1 f = 0.11010 Hz 2SoC 7S0 10 -7S0 I c > o -1000 10 100 1k f - Frequency - Hz 0 10 k 4 2 Figure 23 vs FREQUENCY LOAD CAPACITANCE 7S c::" . I I I II o 'f £ -Av = 100 .. ~ 'co II 0,01 ~ ~ _I I c .. ...... Rnull = 20n :;; 30 II I lS v, Z + c o 100 k ~ .. ,,~ -:: 10 V / Rnull =0 r-..... -4' - "n,,11 ~oo- ~ct. II 1111 TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 ~ I ...... )' .... RrTli 11111 n - 100 1000 Cl - load Capacitance - pF Figure 26 Figure 25 2-858 ~~ Q, E -e- 1k 10 k f - Frequency - Hz /11 "'it. .c lI j!:0.0001 100 lll~L- -- R!utl=1 ~l~ ~ 4S .~ ~ 1 =-AV = 1 RJJ =-- 01 / 0.001 TA =2SoC -0 ='AV = 10 E 60 ..~ - c 10 PHASE MARGIN vs voo = S V TA = 2S0C Rl = 10kn 0.1 8 Figure 24 TOTAL HARMONIC DISTORTION PLUS NOISE .. 6 t - Time - s 10000 TlC2272, TlC2272A Advanced linCMOSTM RAll-TO-RAll DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS GAIN MARGIN vs LOAD CAPACITANCE 15 TA 12 = 25°C ~ ...... r--. .., m I c .~ 9 :::E c OJ CJ '\ 6 ~, I E oct ........... 3 r-- o 10 100 1000 10000 CL - Load Capacitance - pF Figure 27 TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2-859 2-860 TlC2652, TlC2652A, TlC2652Y Advanced linCMOSTM PRECISION CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS D3157, SEPTEMBER 1988 - REVISED AUGUST 1991 available features 0008, JG, or P PACKAGE Extremely Low Offset Voltage ... 1 IlV Max • Extremely Low Change in Offset Voltage With Temperature ... 0.003IlV/oC Typ • Low Input Offset Current ... 500 pA Max at TA = -55°C to 125°C • Avo ... 135 dB Min • CMRR and kSVR ... 120 dB Min • Single-Supply Operation • Common-Mode Input Voltage Range Includes the Negative Rail • U (TOPVIEWj • CXA IN IN + VDD _ 8 2 3 7 6 CXB VDD + OUT 4 5 CLAMP 0014, J, or N PACKAGE (TOPVIEWj INT/EXT CXB CXA ClKIN ClKOUT NC IN- No Noise Degradation With External Capacitors Connected to VOO- IN + VDD+ OUT NC CLAMP C RETURN VDD- description FK PACKAGE (TOPVIEWj The TLC2652 and TLC2652A are high-precision chopper-stabilized operational amplifiers using Texas Instruments Advanced LinCMOS™ process. This process in conjunction with unique chopper-stabilization circuitry produces operational amplifiers whose performance matches or exceeds that of similar devices available today. I~ xz ~;: «CD GG~~d 2 3 1 20 19 NC 4 18 ClKOUT NC IN- 5 NC 6 17 16 NC 7 15 VDD+ NC 14 OUT 9 10 11 1213 I()za. zoza:::2 () 0 > ::lc( ~-' W() a: () NC - No internal connection AVAILABLE OPTIONS PACKAGE VIO max TA AT 25°C 8-PIN 20-PIN CHIP CERAMIC PLASTIC SMALL- CERAMIC PLASTIC CHIP FORM OUTLINE DIP DIP OUTLINE DIP DIP CARRIER (V) (00081 (JG) (P) (0014) (J) (N) (FK) TLC2652ACN TLC2652CN - TLC2652AIN - TLC26521N - SMALL- DOC to 70°C 1 flV TLC2652AC-BO - TLC2652ACP TLC2652AC-14D 3 flV TLC2652C-BO - TLC2652CP TLC2652C-14 D - TLC2652AIP TLC2652AI-140 TLC26521P TLC26521-14D -40°C to B5°C -55°C to 14-PIN 1 J!V TLC2652AI·BO 3flV TLC26521-BO 1 J!V TLC2652AM·BD TLC2652AMJG TLC2652M-BO TLC2652MJG - - TLC2652AMP TLC2652AM-140 TLC2652AMJ TLC2652AMN TLC2652MP TLC2652M-140 TLC2652MJ TLC2652MN TLC2652Y TLC2652AMFK TLC2652MfK 125°C D008 and D014 packages are available taped and reeled. Add " R" suffiX to device type (e.g., TLC2652AC-8DR). Chips are tested at 25°C. 3 J!V Advanced Lin CMOS is a trademark of Texas Instruments Incorporated. PRODUCTION DATA information is current as of publication date. Products conform 10 specUications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 1991, Texas Instruments Incorporated TEXAS ", INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 On products compliant ttl MIL-STD-883. Clan B. all parameters are tested unless otherwise noted. On all other products, production processing does not net:Bssarily include testing of III parameters. 2-861 TlC2652, TlC2652A Advanced linCMOSTM PRECISION CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS description (continued) Chopper-stabilization techniques make possible extremely high dc precision by continuously nulling input offset voltage even during variations in temperature, time, common-mode voltage, and power supply voltage. In addition, low-frequency noise voltage is significantly reduced. This high precision, coupled with the extremely high input impedance of the CMOS input stage, makes the TLC2652 and TLC2652A an ideal choice for low-level signal processing applications such as strain gauges, thermocouples, and other transducer amplifiers. (For applications that require extremely low noise and higher usable bandwidth, use the TLC2654 or TLC2654A device, which has a chopping frequency of 10 kHz.) The TLC2652 and TLC2652A input common-mode range includes the negative rail, thereby providing superior performance in either single-supply or split-supply applications, even at power supply voltage levels as low as ±1.9 V. Two external capacitors are required for operation of the device; however, the on-chip chopper control circuitry is transparent to the user. On devices in the 14-pin and 20-pin packages, the control circuitry is made accessible to allow the user the option of controlling the clock frequency with an external frequency source. In addition, the clock threshold level of the TLC2652 and TLC2652A require no level shifting when used in the single-supply configuration with a normal CMOS or TTL clock input. Innovative circuit techniques are used on the TLC2652 and TLC2652A to allow exceptionally fast overload recovery time. If deSired, an output clamp pin is available to reduce the recovery time eVen further. The device inputs and output are designed to withstand -100-mA surge currents without sustaining latch-up. Additionally, the TLC2652 and TLC2652A incorporate internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in degradation of the device parametric performance. The C-suffix devices are characterized for operation from O°C to 70°C. The I-suffix devices are characterized for operation from -40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of -55°C to 125°C. functional block diagram DISTRIBUTION OF TLC2652 INPUT OFFSET VOLTAGE 36r---__- -______________ 32 I I I +-+--...----~ IN IN - -+-,-+-------1 1-----'-- CLAMP TA = 25°C-t--FBH_ _-i-_-l-_-I N Package 28 >--~..._---+- OUT ~---, 150 Units tested from 1 wafer lot Voo ± = ± 5 V --li#t--t_-_t_-_\ r---------- "!. ~ 241---+--~4S~--t_--t--_\ '2 ~ 20~--+---+~SH--+---+---1 '0 ~ 16r--+---r1S~--r---+---1 E ~ 12 I---+----t+.~~:.:'-*+..--t---t---\ 81----t---H%%§H---i---l---I I!:; n 41----i--,..,.H Voo _ C RETURN oLUJgi_··:;lilltilll'~. . ~.a.I . =. -3 TEXAS ~ IN5rRUMENTS 2-862 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 -2 -1 0 2 VIO -Input Offset Voltage - J.lV 3 TlC2652Y Advanced linCMOSTM PRECISION CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS chip information These chips, properly assembled, display characteristics similar to the TLE2024. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform. BONDING PAD ASSIGNMENTS CHIP TH/CKNESS: 15 TYP/CAL -=-= -=-= BONDING PADS: 4X4M/NIMUM TJmax= 150°C TOLERANCES ARE±10% ALL D/MENS/ONS AREIN MILS PIN (7) INTERNALLY CONNECTED TO BACKS/DE OF CHIP 1<111 90 ~I 11/11111/111/1/1/1/111/111/1/111/111111111/1/1/1/11111/111/111/111/1/111/1/1/1/111/1/1/1/11 TEXAS ~ INSTRUMENlS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-863 TLC2652, TLC2652A Advanced LinCMOSTM PRECISION CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, VDD+ (see Note 1) ...................................................... 8 V Supply voltage, VDD- (see Note 1) ..................................................... -8 V Differential input voltage (see Note 2) .................................................. ±16 V Input voltage, VI (any input, see Note 1) ................................................. ±8 V Voltage range on ClK IN and INT/EXT pins .............................. VDD _ to VDD _ +5.2 V Input current, II (each input) ...................................................... , ... ±5 mA Output current, 10 ................................................................ ±50 mA Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... Unlimited Current into ClK IN and INT/EXT pins ................................................. ±5 mA Continuous total dissipation ........................................ See Dissipation Rating Table Operating free-air temperature, TA: C-suffix ........................................ O°C to 70°C I-suffix ....................................... -40°C to 85°C M-suffix ..................................... -55°C to 125°C Storage temperature range ........................................... , ....... -65°C to 150°C Case temperature for 60 seconds: FK package .......................................... 260°C lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, or P package ............ 260°C lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J, or JG package .............. 300°C NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VOO + and VOO _ . 2. Oifferential voltages are at the non inverting input with respect to the inverting input. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE 0008 0014 FK J JG N p TAS25°C POWER RATING 725mW 950mW 1375mW 1375mW 1050mW 1575 mW 1000 mW DERATING FACTOR ABOVETA = 25°C TA= 70°C POWER RATING 5.8 mW/oC 7.6 mW/oC 11 mW/oC 11 mW/oC 8.4 mW/oC 12.6 mW/oC 8.0mW/oC TA=85°C POWER RATING 464mW 608mW 880mW 880mW 672mW 100SmW 640mW 377mW 494mW 715mW 715mW 546mW 819mW 520mW TA= 125°C POWER RATING 145mW 190mW 275mW 275mW 210mW 315mW 200mW recommended operating conditions Supply voltage, VOO+ Common-mode input voltage, VIC Clock input voltage Operating free-air temperature, TA UNIT MAX MIN ± 1.9 ±8 ± 1.9 ±8 V VOO- VOO +-1.9 VOO- VOO +-1.9 V VOO-+5 VOO- VOO-+ 5 VOO- VOO_+ 5 V 70 -40 85 -55 125 °C MAX MIN ± 1.9 ±8 VOO- VOO +-1.9 VOO0 TEXAS ~ INSfRUMENTS 2-864 M-SUFFIX I-SUFFIX C-SUFFIX MIN POST OFFICE BOX 655303' DALLAS. TEXAS 75265 MAX TLC2652C, TLC2652AC Advanced LinCMOSTM PRECISION CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, VOO± = ±5 V (unless otherwise noted) PARAMETER Via TEST CONDITIONS Input offset voltage Temperature coefficient aVIO of input offset voltage Input offset voltage longterm drift (see Note 4) 110 Input offset current lIB Input bias current voltage range Maximum positive peak VOM+ output voltage swing Maximum negative peak VOM- output voltage swing Large-signal differential AVO ~ 0, RS ~ 50 n MIN TYP voltage amplification RS ~ 50 n TLC2652AC MAX 3 ~ 10 kn, See Note 5 Va ~ ±4V,RL ~ 10kn MAX 0.5 1 2.35 flV Full range 0.003 0.03 0.003 0.03 flVloC 25°C 0.003 0.06 0.003 0.02 flVlmo 4.35 25°C Full range 2 25°C 4 2 100 100 4 100 100 -5 -5 to to 3.1 3.1 RL 25°C 4.7 Full range 25°C 4.7 -4.7 Full range 25°C -4.7 Full range 120 120 4.8 4.7 4.8 -4.7 -4.9 V -4.7 150 135 Clamp on-state current Clamp off-state current CMRR Common-mode rejection ratio Supply-voltage rejection kSVR 100 25°C frequency 150 dB 130 ratio (llVOO +/ llVIO) Supply current RL Va ~ ~ 25°C Full range 100 kn -4 V to 4 V Va ~ 0, VIC ~ VICR min, RS ~ 50n VOO ± ~ ± 1.9 V to ± 8 V, Va ~ 0, Rs ~ 50 n 450 Hz 450 25 25 25 f.1A 25 25°C 100 100 Full range 100 100 25°C 120 Full range 120 25°C 120 Full range 25°C 120 Full range 140 120 140 120 135 dB 120 1.5 2.4 2.5 1.5 pA dB 120 135 pA V 4.7 -4.9 pA V Internal chopping fch UNIT TYP 0.6 Full range RL ~ 10 kn, See Note 5 MIN 25°C Full range Full range Common-mode input VICR VIC TLC2652C TAt 2.4 2.5 mA tFull range is DoC to 70°C. NOTES: 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test atTA ~ 150°C extrapolated to TA ~ 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 5. Output clamp is not connected. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-865 TlC2652C, TlC2652AC Advanced linCMOSTM PRECISION CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS operating characteristics at specified free-airtemperature, VOO± = ± 5 PARAMETER SR + SR- Positive slew rate at unity gain Negative slew rate at unity gain TEST CONDITIONS Vo RL CL = ±2.3 V, = 10 kn, = 100 pF = 10 Hz Equivalent input noise f VN(PP) voltage (see Note 6) Peak-to-peak equivalent input noise voltage In Equivalent input noise current f = 1 kHz f = 0 to 1 Hz f = 0 to 10 Hz f = 1 kHz f = 10 kHz, RL = 10 kn, CL = 100 pF RL = 10 kn, CL = 100 pF Vn Gain-bandwidth product 4>m Phase margin at unity gain TAt TLC2652C MIN TYP 2 2.8 25°C Full range 1.5 25°C 2.3 Full range 1.8 v TLC2652AC MAX MIN TYP 2 2.8 MAX V/!-'s 1.5 3.1 2.3 3.1 V/!-'s 1.8 25°C 94 94 140 25°C 23 35 25°C 0.8 2.8 23 0.8 2.8 25°C 25°C 0.004 0.004 25°C 1.9 1.9 25°C 48° 48° UNIT nVl,jHz !-'V pA/,jHz MHz tFull range is O°C to 70°C. NOTE 6: This parameter is tested on a sample basis for the TLC2652A. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters. TEXAS ~ INSfRUMENTS 2-866 POST OFFICE BOX 655303' DALLAS, TEXAS 75265 TLC26521, TLC2652AI Advanced LinCMOSTM PRECISION CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS = electrical characteristics at specified free-airtemperature, VOO± ±5 V (unless otherwise noted) PARAMETER Via Input offset voltage aVIO of input offset voltage TEST CONDITIONS Input offset voltage 110 Input offset current liB Input bias current voltage range output voltage swing Maximum negative peak VOMAVO VIC = 0, RS = 50 Q output voltage swing Large-signal differential voltage amplification RL = 10 kQ, See Note 5 Va = ± 4 V, RL = 10 kQ CMRR kSVR 100 Va = -4 V to 4 V Common-mode Va = 0, VIC = VICR min, rejection ratio RS = 50 Q Supply-voltage rejection VOO ± = ± 1.9 V to ± 8 V, ratio (t; VOO ± It; Via) Va = 0, RS = 50 Q Supply current Va = 0, No load 0.5 1 2.95 UNIT ~V 0.03 0.003 0.03 ~V!°C 25°C 0.003 0.06 0.003 0.02 ~V/mo 25°C 2 2 150 150 4 4 150 150 to to 3.1 3.1 25°C 4.7 Full range 4.7 25°C -4.7 Full range -4.7 25°C 120 Full range 120 4.8 4.7 -4.9 -4.7 150 -4.9 135 150 25 25 100 100 Full range Full range 120 25°C Full range Hz ~ 100 120 dB 450 25 120 V 125 25 25°C V -4.7 25°C 25°C 4.8 4.7 Full range Full range pA V 450 120 pA -5 25°C Clamp off-state current MAX 0.003 25°C RL=100kQ TYP Full range Full range RL = 10 kQ, See Note 5 MIN 3 -5 RS = 50 Q frequency Clamp on-state current TLC2652AI MAX 4.95 25°C Internal chopping fch 0.6 25°C Full range Maximum positive peak VOM+ TYP Full range Common-mode input VICR TLC26521 MIN Full range Temperature coefficient long-term drift (see Note 4) TAt 140 100 120 140 dB 120 135 120 135 dB 120 1.5 2.4 1.5 2.5 tFull range is - 40°C to 85°C. NOTES: 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 5. Output clamp is not connected. 2.4 2.5 = 150°C pA mA extrapolated TEXAS,~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-867 TLC26521, TLC2652AI Advanced LinCMOSTM PRECISION CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, VOO± = ± 5 V PARAMETER SR+ SRVn Positive slew rate at unity gain Negative slew rate at unity gain Equivalent input noise voltage (see Note 6) Peak-to-peak equivalent VN(PP) In input noise voltage Equivalent input noise current Gain-bandwidth product 4>m Phase margin at unity gain TEST CONDITIONS Va Rl Cl 1 f f f = = = = = = = ±2.3 v, = 10 kn, = 100 pF TAt TLC26521 MIN TYP 2 1.4 2.8 Full range 25°C 2.3 3.1 Full range 1.7 25°C TLC2652AI MAX MIN TYP 2 2.8 MAX V/iJ.s 1.4 2.3 3.1 V/iJ.s 1.7 10 Hz 25°C 94 94 140 1 kHz 0 to 1 Hz 0 to 10 Hz 25°C 25°C 23 23 35 0.8 0.8 25°C 2.8 2.8 25°C 0.004 0.004 25°C 1.9 1.9 25"C 48" 48" f 1 kHz f 10 kHz, Rl = 10 kn, Cl = 100pF Rl = 10 kn, Cl = 100pF UNIT nVl,fHz iJ.V pA/,fHz MHz ..- tFull range IS - 40"C to 85°C. NOTE 6: This parameter is tested on a sample basis for the TlC2652A. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting 01 other parameters. TEXAS ~ INsrRuMENTS 2-868 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TlC2652M, TlC2652AM Advanced linCMOSTM PRECISION CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, VOO± = ±5 V (unless otherwise noted) TEST CONDITIONS PARAMETER TLC2652M MIN Input offset voltage Via TAt 25°C (see Note 7) of input offset voltage Input offset voltage longterm drift (see Note 4) 110 Inpilt offset current liB Input bias current voltage range Maximum positive peak VOM+ output voltage swing Maximum negative peak VOMAVD = 0, RS = 50 n output voltage swing Large-signal differential voltage amplification = 50n RL = 10 kn, See Note 5 10 kn, See Note 5 RL = Va = ±4V,RL = 10kQ Clamp on-state current Clamp off-state current CMRR Common-mode rejection ratio Supply-voltage rejection kSVR ratio (nVDD ±/ nVIO) RL = Va = -4 Vto 4 V 100kQ = 0, VIC = VICR min, = 50n VDD ± = ± 1.9 V to ± 8 V, Va = 0, RS = 50 n Va RS 3 8 UNIT flV 0.003 0.03' flV/oC 25°C 0.003 0.06' 0.003 0.02' flV/mo 25°C 2 2 500 500 4 4 500 500 -5 -5 Full range to 3.1 to 3.1 25°C 4.7 Full range 4.7 25°C -4.7 Full range 25°C -4.7 120 Full range 120 4.8 4.7 -4.9 -4.7 4.8 135 V 150 dB 120 Hz 450 25°C 25 25 Full range 25 25 f1A 25°C 100 100 Full range 500 500 25°C 120 Full range 120 25°C 120 Full range 25°C 120 140 120 140 120 135 120 120 pA V -4.9 -4.7 150 pA V 4.7 450 25°C frequency MAX 0.03' Internal chopping fch TYP 0.5 0.003 Full range 25°C RS MIN Full range Full range Common-mode input VICR VIC TLC2652AM MAX 3.5 10 Full range Temperature coefficient (lVIO TYP 0.6 135 pA dB dB 1.5 2.4 1.5 2.4 mA 2.5 2.5 Full range • On products compliant to MIL-STD-883, Class B, this parameter is not production tested. tFull range is - 55°C to 125°C. NOTES: 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to T A = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 5. Output clamp is not connected. 7. This parameter is not production tested. Thermocouple effects preclude measurement of the actual Via of these devices in high speed automated testing. Via is measured to a limit determined by the test equipment capability at the temperature extremes. The test ensures that the stabilization circuitry is performing properly. IDD Supply current Va = 0, No load TEXAS ", INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-869 TLC2652M, TLC2652AM Advanced LinCMOSTM PRECISION CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS operating characteristics at specified free-airtemperature, VOO± PARAMETER =±5 TAt TEST CONDITIONS V MIN TYP MAX UNIT \ SR+ SRVn VN(PP) In Positive slew rate at unity gain Vo Negative slew rate CL atunity gain Equivalent input noise voltage Peak-to-peak equivalent input noise voltage Equivalent input noise current Gain-bandwidth product 4>m = ± 2.3 V, RL = 10 k.Q, = 100 pF Phase margin at unity gain 25°C Full range 1.3 25°C 2.3 Full range 1.6 = 10 Hz = 1 kHz = 0 to 1 Hz = Ot010Hz = 1 kHz f = 10 kHz, RL = 10 kQ, CL = 100 pF f f f f f RL '" 10 kQ, CL = 100 pF tFull range is - 55°C to 125°C. TEXAS ~ INSTRUMENTS 2-870 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2 2.8 3.1 25°C 94 25°C 25°C 25°C 23 0.8 2.8 25°C 0.004 25°C 1.9 25°C 48° ViflS V/flS nV/,fHz flV pA/,fHz MHz TLC2652Y Advanced LinCMOSTM PRECISION CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS electrical characteristics at Voo± = ± 5 V, T A = 25°C (unless otherwise noted) VIO PARAMETER Input offset voltage Input offset voltage TEST CONDITIONS long-term drift (see Note 4) 110 liB MIN RS = 50 Q VIC = 0, Input offset current TYP 0.6 MAX 3 UNIT j.1V 0.003 0.006 j.1V/mo pA 2 4 Input bias current pA -5 VICR Common-mode input voltage range to RS= 50n V 3.1 Maximum positive peak VOM+ VOM- output voltage swing Maximum negative peak output voltage swing AVD Large-signal-differential voltage amplification fch Internal chopping frequency CMRR kSVR Inn RL = 10kQ, See Note 5 4.7 4.B V RL = 10 kQ, See Note 5 -4.7 - 4.9 V VO=±4V, RL= 10 kQ 120 150 dB 450 Clamp on-state current RL = 100 kQ Clamp off-state current VO=-4 Vt04 V Common-mode rejection ratio RS=50 Q Supply-voltage rejection Vo = 0, VIC = VICRmin, VDD±=±1.9Vto±BV, ratio (,W DD + iLW 10) Supply current VO=O, Vn = 0, no load RS=50 Q Hz j.1A 25 100 pA 120 140 dB 120 135 dB 1.5 2.4 mA NOTES: 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.096 eV. 5. Output clamp is not connected. operating characteristics at Voo ± SR+ SRVn VN(PP) In ~m PARAMETER Positive slew rate at unity gain Negative slew rate at unity gain Equivalent input noise voltage = ± 5 V, T A = 25°C TEST CONDITIONS VO=±2.3 V, RL = 10 kQ, CL = 100 pF f = 10 Hz MIN TYP 2 2.B V/j.1s 2.3 3.1 V/j.1s 94 23 nV/{Hz Peak-to-peak equivalent f = 1 kHz f = 0 to 1 Hz 0.8 input noise voltage f=Ot010Hz 2.8 Equivalent input noise current Gain-bandwidth product f = 1 kHz f=10kHz, RL=10kQ, Phase margin at unity gain RL = 10 kQ, CL = 100 pF MAX UNIT j.1V pA/{Hz CL=100pF 1.9 48" MHz TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-871 TLC2652, TLC2652A Advanced linCMOSTM PRECISION CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS table of graphs FIGURE Via liB 110 Normalized input offset voltage AVD Input offset current voltage swing Output voltage vs Frequency 8 Chopping frequency Large-signal 9,10 11,12 13 14 15 16 17 18 19 20 21 22 23 24 vs 25,26 Output current Temperature Supply current lOS Short-circuit output current SR Slew rate Peak-to-peak equivalent input noise voltage Equivalent input noise voltage Gain-bandwidth product Phase margin Phase shift vs Frequency vs Temperature vs Supply voltage vs Temperature vs Supply voltage vs Temperature vs Supply voltage vs Temperature vs Supply voltage vs Temperature Small-signal Pulse response ¢m Temperature vs Temperature vs vs IDD Chopping frequency vs Frequency vs Supply voltage vs Temperature vs Supply voltage vs Temperature vs Load capacitance vs Frequency TEXAS ~ INSTRUMENTS 2-872 2 vs vs vs Differential voltage amplification 1 3 4 5 6 7 Chopping frequency Maximum peak output voltage Chopping frequency Vn Common-mode swing fch VN(PP) vs vs Maximum peak-to-peak output VOM Chopping frequency input voltage Input bias current Clamp current VO(PP) vs POST OFFICE BOX 655303· DALLAS, TEXAS 75265 27 28 29 30 31 32 13 TlC2652, TlC2652A Advanced linCMOSTM PRECISION CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt INPUT BIAS CURRENT vs COMMON-MODE INPUT VOLTAGE NORMALIZED INPUT OFFSET VOLTAGE vs CHOPPING FREQUENCY 25 70 > "- 60 '"'" 50 I 2J "0 VDD± = ±5V TA = 25°C VDD ± = ±5 V VIC = 0 TA = 25°C II > a; ~ :; Il. 30 "tI '" .!:! iO E is z :> '" iIi :; .E / 10 I ~ v 10 k 1k 2 3 4 -5 -4 -3 -2 -1 0 VIC - Common-Mode Input Voltage - V 100 k fch - Chopping Frequency - Hz Figure1 Figure2 INPUT BIAS CURRENT vs CHOPPING FREQUENCY INPUT BIAS CURRENT vs FREE-AIR TEMPERATURE 70 60 I :; U '" '" iIi :; 100 VDD±=±5V VDD+=+5V VIC = 0 TA = 25°C Vo = 0 I If i: .'" 10 iIi :; ...,.., Il. .E 20 I ~ 100 r-- ............ "-.... ~ II 10 o 7 '" u~ ,; 30 I I I I 40 =F VIC = 0 I 50 5 I //7 S ;g () 10 nA II 0- E lnA ... .. to 11111111 6 c- .'" I I 11111111 I I TA = 125'C ~ cE E 4 :;; 2 " IINegative Clamp Current 'xto ~ '/ \~ I ii:' c- O > 1 pA 4.4 TA = -55'C S o II 0- 8 '5 /1 :; 10 I 8, II ~ 4.2 85 / MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE Posi'tive Clamp Current 4 65 45 vs E 100 nA 10pA 25 ........ CLAMP CURRENT I 100 pA r--- Figure6 Voo ± = ±5 V TA = 25'C 13 100 k --- --- / Figure5 100 fLA to / OJ ~ 8'5 4.6 4.8 5 o Voo± = ±5V RL = 10 kQ 100 1k f'.: 10k IVol- Output Voltage - V f - Frequency - Hz Figure7 Figure8 100k tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS . " INSTRUMENlS 2-874 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 1M TlC2652, TlC2652A Advanced linCMOS™ PRECISION CHOPPER·STABllIZED OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt MAXIMUM PEAK OUTPUT VOLTAGE MAXIMUM PEAK OUTPUT VOLTAGE vs vs OUTPUT CURRENT OUTPUT CURRENT 5 voo± = ±5 V TA = 25°C > I 01 ~ I 01 4.8 ~ '0 > VOM+ :; c. :; 4.6 0 0 .>< '"0.'" '" 0. E E :::l E E 4.4 :::l 'x '"I ::;; ~ 0 ::;; 4.2 > 4 6.7 0 0.4 0.8 1.2 1.6 2 1101- Output Current - rnA 0 0.8 1.6 1.2 Figure9 Figure 10 MAXIMUM PEAK OUTPUT VOLTAGE MAXIMUM PEAK OUTPUT VOLTAGE vs vs FREE-AIR TEMPERATURE FREE-AIR TEMPERATURE 2 8 > > I I CI> Q) 01 01 ~ 2.5 '0 > 4 > :; c. :; :; c. :; 0 ~CI> 0.4 Ilol-Output Current - rnA 5 ~ 6.9 ~ 0 > '0 7.1 'x '"I 7.3 '0 > :; c. :; voo± = ±7.5 TA = 25°C > Voo ± = ±5 V _ RL = 10 kQ 0 0. E E 0 '"'" 0. Q) Voo± = ±7.5 v RL = 10 kQ 0 E E :::l :::l 'x 'x :E - 2.5 :E '"I '" -4 I :E :E o 0 > > -5 -75 -8 -50 -25 0 25 50 75 100 125 - 75 - 50 T A - Free-Air Temperature - °C - 25 0 25 50 75 100 TA - Free-Air Temperature - °C 125 Figure12 Figure 11 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS + INsrRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-875 TlC2652, TlC2652A Advanced linCMOSTM PRECISION CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY FREE-AIR TEMPERATURE 60 0 120 CD " I 100 I: .2 iii ~ 'li E .. )!! 40 tlI ~ 80 60 <{ 220° 10 M 135 - 75 25 50 75 100 vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE = 25°C Voo ± 450 \\ N J: I >- ..g 460 tlI I: 440 3 4 / ....... V c. o <3 5 6 7 8 =±5 V '\ \ 'is. ""'" I'--l-/ I .c: 2 V [ u.. 430 \ \. c. o 440 ::J 1\ 480 420 \ \\ I .c: _u 410 400 -75 -50 -25 0 25 50 75 IV DO ±I- Supply Voltage - V TA - Free-Air Temperature - °C Figure15 Figure16 100 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS 2-876 125 460 500 420 0 vs 'is. ~ - 25 CHOPPING FREQUENCY C' U - 50 CHOPPING FREQUENCY II> ::J .c: t--.......... :t: 140 Figure14 I 0 "'" Figure13 520 Cl I: ~ TA - Free-Air Temperature - °C N ~ / v I ~ 180° II > l! / ......... f - Frequency - Hz J: >- 145 '0 E ~ 1M TA u 150 =e: 540 I: Vo = ± 4 I: .2 ~Avo 0-20 Voo ± = ±5 V RL = 10 kQ "I 80° PHASE SHIFT > 155 CD !'-.. '0 :! LARGE-SIGNAL VOLTAGE AMPLIFICATION vs POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 125 TLC2652, TLC2652A Advanced LinCMOSTM PRECISION CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt SUPPLY CURRENT SUPPLY CURRENT vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 2 I Vo = 0 '" 1.61-----\---+--+--j--+--=..r-:;:,......f---1 '" E 2! 8,.. -r-.. -- r-- -... ,...- I ! 1.2 I-----\--fl'------t....-""'F-~'+_'= 5 _T a. Q. 0.81---t-ll+---t--+--+---+--+--+_--I I g. 1.2 i - - - VOO ± = ±2.5 V 0.8 VI C C E 0.4 0.4 I---HJ'------t--f---l----i--+--+------t Vo = 0 No Load o 2 3 4 5 6 7 8 -75 - 50 Ivoo ±I- Supply Voltage - V SHORT-CIRCUIT OUTPUT CURRENT SHORT-CIRCUIT OUTPUT CURRENT vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 15 Vo = 0 TA = 25°C :; Q. :; 0 '"E 10 4 E ~ :::J o 5 o o I :; Q. :; VID = -100 mV 0 '5 E ~ VID = -100 mV '5 E ~ -4 o 0 .c VI I VI Voo± = ±5V Vo = 0 8 2! 5 125 Figure18 E 0 - 25 0 25 50 75 100 TA - Free-Air Temperature - °C Figure 17 12 I ~ I c '"E i'--- r-- I o,.. a. ~ 1- 1.6 f--- Voo± = ±5 V E I E - I Voo + = ±7.5V -5 .c -8 I'-. .9 -12 o 2 -- 3 VI I VI -10 VID = 100 mV 4 5 6 .9 7 8 -15 -75 .-- -- VID = 100 mV --~ ~ -50 -25 0 25 50 75 IVoo ±I- Supply Voltage - V TA - Free-Air Temperature - °C Figure 19 Figure20 -- 100 125 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-877 TlC2652, TlC2652A Advanced linCMOSTM PRECISION CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt SLEW RATE vs' FREE-AIR TEMPERATURE SLEW RATE vs SUPPLY VOLTAGE 4 4 SR- "'" 3 1/1 ------ ~ ...... ./" ~+ :1. :> I a;'" SR ~ .......- 3 1/1 .,;: iii SR + :1. :> I ~ 2 II: II: -r-- t-- Voo± = ±5 V RL = 10 kQ _ CL = 100 pF - r--r--. -.......... ............. '" "'~ 2 ~ iii I I II: II: C/) C/) RL= 10kQ CL = 100 pF TA = 25°C o o > E 2 3 4 5 6 7 o 8 -75 Ivoo ±I- Supply Voltage - V -50 -25 0 25 50 75 100 TA - Free-Air Temperature - °C Figure21 Figure22 VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 100 4 75 3 '\ 50 Voo± = ±5 V RL 10 kQ CL = 100 pF TA = 25°C = 1\, > 2 125 IV'" ., I I 8, 25 S '0 ; c.. Cl 0 :; 0-25 S voo± = ±5V RL = 10 kQ CL = 100 pF > TA = 25°C 0 '0 :; ;- 0 -1 I I o > -50 0 II -75 -100 > -2 o l(\n -3 -4 o t - Time -Ils 10 15 20 t- Time-Ils Figure23 Figure24 234 567 5 25 30 35 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices, TEXAS ~ INSTRUMENTS 2-878 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 40 TlC2652, TlC2652A Advanced linCMOSTM PRECISION CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS PEAK-TO-PEAK INPUT NOISE VOLTAGE vs CHOPPING FREQUENCY PEAK-TO-PEAK INPUT NOISE VOLTAGE vs CHOPPING FREQUENCY 5 1.8 > .,"I 1.6 C) )!! '0 ., > 'E z 1.4 Voo± = ±5V RS = 1000 f=0101Hz > TA = 25°C '0 - 1.2 ., 0.8 £ 0.6 os :. 0.4 \ "'os" & " ~ I Ii:' 0.2 a.. Z o o > 2 4 10 6 8 fch .:. Chopping Frequency - kHz 2.1 Rl = 10 kO \ 80 Cl = 100 pF 60 I c:; ::s . 0 a.. \ .s:: :2 !!: 40 . '0 c II] 1.9 ;;, iii .,. / 2 '0 10 GAIN-BANDWIDTH PRODUCT vs SUPPLY VOLTAGE C) .= C ., 8 2 4 6 fch- Chopping Frequency - kHz EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY )!! '5a. o o Figure26 '0 ., '" - ......... Figure25 ~ > \ 2 a.. 100 .,I = 25°C 3 ]; ""- Z >=c TA ., ... .= \ I > = 4 > '5 a.. [ C) )!! '0 Z .= ". I TA = 25°C c Cl I o 1 1.8 10 100 1k o 2 / /" 3 V - 4 / ..-/ 5 6 f - Frequency - Hz IVoo ±I- Supply Voltage - V Figure27 Figure28 7 8 TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303· DALLAS. TEXAS 75265 2-879 TLC2652, TLC2652A Advanced LinCMOSTM PRECISION CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt PHASE MARGIN GAIN-BANDWIDTH PRODUCT vs vs FREE-AIR TEMPERATURE SUPPLY VOLTAGE 2.6 50 2.4 ""-, N J: ::;; 1 2.2 '" U ,. '0 2 2 D.. .J:. -E 'i '0 1.8 'C" 1.6 ~ 1 c . , '" ! 25 50 III 1 E ~ ~ ............ 75 100 125 III 44 PHASE MARGIN PHASE MARGIN vs vs FREE-AIR TEMPERATURE LOAD CAPACITANCE - ~t-- . .'" 40 . .,. 30 "" 1 c .~ '" .J:. D.. 1 I E E ~ ~ 20 ""- ~ 10 Voo ± = ±5 V RL = 10 kQ CL = 100pF 40 - 75 - 50 - 25 ............ ~ o 0 25 50 75 100 125 o 200 400 600 ct - Load Capacitance - T A - Free-Air Temperature - °C Figure31 600 pF Figure32 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS 2-880 8 Voo ± = ±5 V RL=10kQ TA = 25°C '\, 50 ~ '0 ::;; 42 567 4 Figure30 .J:. D.. ~ 3 Figure29 g> .. 2 Ivoo ±I- Supply Voltage - V '0 '" o TA - Free-Air Temperature - °C ~ 46 42 60 48 1 c .~ ::;; ,/" V if 50 .. 44 40 0 V / ::;; '" 1.4 -25 / 46 .~ '\, Cl -50 ",.- TA = 25°C 48 '0 ~ 'iii 1.2 -75 ~Q CL=100pF g> c aJ RL 1= 10 Voo± = ±5V RL = 10kQ_ CL = 100 pF POST OFFICE BOX 655303· DALLAS. TEXAS 75265 1000 TlC2652, TlC2652A Advanced linCMOS™ PRECISION CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS APPLICATION INFORMATION capacitor selection and placement The two important factors to consider when selecting external capacitors CXA and CXB are leakage and dielectric absorption. Both factors can cause system degradation, negating the performance advantages realized by using the TlC2652. Oegradation from capacitor leakage becomes more apparent with increasing temperatures. low-leakage capacitors and standoffs are recommended for operation at TA = 125°C. In addition, guard bands are recommended around the capacitor connections on both sides of the printed circuit board to alleviate problems caused by surface leakage on circuit boards. Capacitors with high dielectric absorption tend to take several seconds to settle upon application of power, which directly affects input offset voltage. In applications where fast settling of input offset voltage is needed, it is recommended that high-quality film capacitors, such as mylar, polystyrene, or polypropylene, be used. In other applications, however, a ceramic or other low-grade capacitor may suffice. Unlike many choppers available today, the TlC2652 is designed to function with values of CXA and CXB in the range of 0.1 j.1F to 1 j.1F without degradation to input offset voltage or input noise Voltage. These capacitors should be located as close as possible to the CXA and CXB pins and returned to either the VOO- pin or the C RETURN pin. Note that on many choppers, connecting these capacitors to the VOO- pin causes degradation in noise performance. This problem is eliminated on the TlC2652. internal/external clock The TlC2652 has an internal clock that sets the chopping frequency to a nominal value of 450 Hz. On 8-pin packages, the chopping frequency can only be controlled by the internal clock; however, on all 14-pin packages and the 20-pin FK package, the device chopping frequency may be set by the internal clock or controlled externally by use of the INT/EXT and ClK IN pins. To use the internal 450-Hz clock, no connection is necessary. If external clocking is desired, connect the INT/EXT pin to VOO- and the external clock to ClK IN. The external clock trip point is 2.5 V above the negative rail; however, the ClK IN pin may be driven from the negative rail to 5 V above the negative rail. If this level is exceeded, damage could occur to the device unless the current into the ClK IN pin is limited to ±5 mA. When operating in the single-supply configuration, this feature allows the TlC2652 to be driven directly by 5-V TTL and CMOS logic. A divide-by-two frequency divider interfaces with the ClK IN pin and sets the chopping frequency. The duty cycle of the > I o external clock is not critical but should be kept CD Cl VDD± = ±5V between 30% and 60%. ~ "0 overload recovery/output clamp When large differential input voltage conditions are applied to the TlC2652, the nulling loop will attempt to prevent the output from saturating by driving CXA and CXB to internally-clamped voltage levels. Once the overdrive condition is removed, a period of time is required to allow the built-up charge to dissipate. This time period is defined as overload recovery time (see Figure 33). Typical overload recovery time for the TlC2652 is significantly faster than competitive products; however, if required, this time can be reduced further by use of internal clamp circuitry accessible through the CLAMP pin. TA = 25°C > ::I a. V ; o I o -5 > > E, V 0 I CD Cl ~ "0 > ; a. ..5 I :> -50 o 10 20 30 40 50 t-Time-ms 60 70 80 Figure 33. Overload Recovery TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALI.AS. TEXAS 75265 2-881 TlC2652, TlC2652A Advanced linCMOSTM PRECISION CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS APPLICATION INFORMATION The clamp is simply a switch that is automatically activated when the output is approximately 1 V from either supply rail. When connected to the inverting input (in parallel with the closed-loop feedback resistor), the closed-loop gain is reduced and the TLC2652 output is prevented from going into saturation. Since the output must source or sink current through the switch (see Figure 7), the maximum output voltage swing is slightly reduced. thermoelectric effects To take advantage of the extremely low offset voltage drift of the TLC2652, care for the thermoelectric effects present when two dissimilar metals are brought (such as device leads being soldered to a printed circuit board). Dissimilar thermoelectric voltages in the range of several microvolts per degree Celsius than the 0.01-I-LVloC typical of the TLC2652). must be taken to compensate into contact with each other metal junctions can produce (orders of magnitude greater To help minimize thermoelectric effects, careful attention should be paid to component selection and circuit board layout. Avoid the use of nonsoldered connections (such as sockets, relays, switches, etc.) in the input signal path. Cancel thermoelectric effects by duplicating the number of components and junctions in each device input. The use of low-thermoelectric-coefficient components, such as wire-wound resistors, is also beneficial. latch-up avoidance Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC2652 inputs and output are designed to withstand -100-mA surge currents without sustaining latch-up; however, techniques to reduce the chance of latch-up should be used whenever possible. Internal protection diodes should not, by deSign, be forward biased. Applied input and output voltages should not exceed the supply voltage by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators. Supply transients should be shunted by the use of decoupling capacitors (0.1 I!F typical) located across the supply rails as close to the device as possible. The current path established if latch-up occurs is usually between the supply rails and is limited only by the impedance of the power supply and the forward resistance of the parasitic thyristor. The chance of latch-up occurring increases with increasing temperature and supply voltage. electrostatic discharge protection The TLC2652 incorporates internal ESD-protection circuits that prevent functional failures at voltages at or below 2000 V. Care should be exercised in handling these devices, as exposure to ESD may result in degradation of the device parametric performance. theory of operation Chopper-stabilized operational amplifiers offer the best dc performance of any monolithic operational amplifier. This superior performance is the result of using two operational amplifiers - a main amplifier and a nulling amplifier - plus oscillator-controlled logic and two external capacitors to create a system that behaves as a single amplifier. With this approach, the TLC2652 achieves submicrovolt input offset voltage, submicrovolt noise voltage, and offset voltage variations with temperature in the nVfOC range. The TLC2652 on-chip control logic produces two dominant clock phases: a nulling phase and an amplifying phase. The term "chopper-stabilized" derives from the process of switching between these two clock phases. Figure 34 shows a simplified block diagram of the TLC2652. Switches A and Bare make-before-break types. During the nulling phase, switch A is closed, shorting the nulling amplifier inputs together and allowing the nulling amplifier to reduce its own input offset voltage by feeding its output signal back to an inverting input TEXAS ~ INSTRUMENTS 2-882 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC2652, TLC2652A Advanced LinCMOS™ PRECISION CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS APPLICATION INFORMATION Main Amplifier IN + _ _ _-+____-; IN - ---.----+---------1 Vo A Figure 34. TLC2652 Simplified Block Diagram node. Simultaneously, external capacitor CXA stores the nulling potential to allow the offset voltage of the amplifier to remain nulled during the amplifying phase. During the amplifying phase, switch B is closed, connecting the output of the nulling amplifier to a noninverting input of the main amplifier. In this configuration, the input offset voltage of the main amplifier is nulled. Also, external capacitor CXB stores the nulling potential to allow the offset voltage of the main amplifier to remain nulled during the next nulling phase. This continuous chopping process allows offset voltage nulling during variations in time and temperature and over the common-mode input voltage range and power supply range. In addition, because the low-frequency signal path is through both the null and main amplifiers, extremely high gain is achieved. The low-frequency noise of a chopper amplifier depends on the magnitude of the component noise prior to chopping and the capability of the circuit to reduce this noise while chopping. The use of the Advanced LinCMOS process, with its low-noise analog MOS transistors and patent-pending input stage design, significantly reduces the input noise voltage. The primary source of nonideal operation in chopper-stabilized amplifiers is error charge from the switches. As charge imbalance accumulates on critical nodes, input offset voltage can increase, especially with increasing chopping frequency. This problem has been significantly reduced in the TLC2652 by use of a patent-pending compensation circuit and the Advanced LinCMOS process. The TLC2652 incorporates a feed-forward design that ensures continuous frequency response. Essentially, the gain magnitude of the nulling amplifier and compensation network crosses unity at the break frequency of the main amplifier. As a result, the high-frequency response of the system is the same as the frequency response of the main amplifier. This approach also ensures that the slewing characteristics remain the same during both the nulling and amplifying phases. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-883 2-884 TLC2654, TLC2654A, TLC2654Y Advanced LinCMOSTM LOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS 03174, NOVEMBER 1988 - REVISED AUGUST 1991 0008, JG, OR P PACKAGE available features (TOP VIEW) • Input Noise Voltage 0.5 f.1V POp Typ, f = Oto 1 Hz 1.5 f.1V pop Typ, f = 0 to 10 Hz 47 nV/...fHZ Typ, f = 10 Hz 13 nVl...fHZ Typ, f = 1 kHz C X A [ ] 8 CXB IN 2 7 VOD + IN + 3 6 OUT VDD _ • High Chopping Frequency ... 10 kHz Typ • No Clock Noise Below 10kHz • No Intermodulation Error Below 5 kHz • Low Input Offset Voltage ... 10 f.1V Max • Excellent Offset Voltage Stability With Temperature ... 0.05 f.1V/oC Max • AVD'" • CMRR ... 110 dB Min • kSVR .•. 120 dB Min • Single-Supply Operation • Common-Mode Input Voltage Range Includes the Negative Rail • 4 CLAMP 5 0014, J, OR N PACKAGE (TOP VIEW) INT/EXT ClKIN ClKOUT CXB CXA NC IN- VOD+ OUT IN + NC CLAMP C RETURN VDD- 135 dB Min FK PACKAGE (TOP VIEW) I~ z w« CD i=: ~ GG~~d '3'2 No Noise Degradation With External Capacitors Connected to VDD- 1 2019 J4 18 17 CLKOUT 5 IN NC 6 16 VDD+ 7 15 NC IN + 8 14 OUT NC NC NC ~~,!..!,~~ () z I()Zo. ClZ :2 Cl => a: > « tud a: () NC - No internal connection AVAilABLE OPTIONS PACKAGE TA O'C to 70'C -40'C to 85'C -55'C to 125'C VIO max AT 25'C S·PIN 20·PIN CHIP CERAMIC PLASTIC SMALL· CERAMIC PLASTIC CHIP FORM OUTLINE DIP DIP OUTLINE DIP DIP CARRIER (V) (DOOS) (JG) (P) (D014) (J) (N) (FK) - - TLC2654ACN - TLC2654CN - - TLC2654AIN - TLC26541N - TLC2654AMJ TLC2654MJ TLC2654AMN TLC2654MN SMALL· IOfLV TLC2654AC-BD 20fLV TLC2654C-8D IOfLV TLC2654AI-BD 20 IN TLC26541-BD 14-PIN TLC2654ACP TLC2654AC-14D TLC2654CP TLC2654C-14D - TLC2654AIP TLC2654AI-14D TLC26541P TLC26541-14D TLC2654AM-14D TLC2654M-14D IOfLV TLC2654AM-BD TLC2654AMJG TLC2654AMP 20fLV TLC2654M-BD TLC2654MJG TLC2654MP TLC2654Y TLC2654AMFK TLC2654MFK D008 and D014 packages are available taped and reeled_ Add "R" suffix to deVice type (e.g., TLC2654AC·8DR). Advanced LinCMOS is a trademark of Texas Instruments Incorporated. PRODUCTION DATA inlormalion is current as 01 publication date. Products conlorm to specifications per the lerms 01 Texas Instruments standard warranty. Production processing does not necessarily include testing 01 all parameters. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303· DALLAS, TEXAS 75265 Copyright © 1991, Texas Instruments Incorporated On products compliant to MIL·STD·883, Class B. all paramelers are tesled unless olherwlse noted. On all other products. production processing does nol necessarily Include testing 01 all parameters. 2-885 TLC2654, TLC2654A Advanced LinCMOSTM LOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS description The TLC2654 and TLC2654A are low-noise chopper-stabilized operational amplifiers using the Advanced LinCMOSTM process. Combining this process with chopper stabilization circuitry makes excellent dc precision possible. In addition, circuit techniques are added that give the TLC2654 and TLC2654A noise performance unsurpassed by similar devices. EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY Chopper stabilization techniques provide for extremely high dc precision by continuously nulling input offset voltage even during variations in temperature, time, common-mode voltage, and power supply voltage. The high chopping frequency of the TLC2654 and TLC2654A provides excellent noise performance in a frequency spectrum from near dc to 10 kHz. In addition, intermodulation or aliasing error is eliminated from frequencies up to 5 kHz. A TtPical 2S0-Hz Copper-Stabilized Operational Amplifier III / ~~bl~~~4 \ "'-10 100 f - Frequency - Hz 1k This high dc precision and low noise, coupled with the extremely high input impedance of the CMOS input stage, make the TLC2654 and TLC2654A ideal choices for a broad range of applications such as low-level, low-frequency thermocouple amplifiers and strain gauges and wide-bandwidth and subsonic circuits. (For applications requiring even greater dc precision, use the TLC2652 or TLC2652A devices, which have a chopping frequency of 450 Hz.) The TLC2654 and TLC2654A common-mode input voltage range includes the negative rail, thereby providing superior performance in either single-supply or split-supply applications, even at power supply voltage levels as low as ±2.3 V. Two external capacitors are required to operate the device; however, the on-Chip chopper control circuitry is transparent to the user. On devices in the 14-pin and 20-pin packages, the control circuitry is accessible, allowing the user the option of controlling the clock frequency with an external frequency source. In addition, the clock threshold of the TLC2654 and TLC2654A requires no level shifting when used in the single-supply configuration with a normal CMOS or TTL clock input. Innovative circuit techniques used on the TLC2654 and TLC2654A allow exceptionally fast overload recovery time. An output clamp pin is available to reduce the recovery time further. The device inputs and output are designed to withstand -100-mA surge currents without sustaining latch-up: In addition, the TLC2654 and TLC2654A incorporate internal ESD-protection circuits that prevent functional failures at voltages up to 2000 Vas tested under MIL-STD-883C, Method 3015; however, care should be exercised in handling these devices, as exposure to ESD may result in degradation of the device parametric performance. The C-suffix devices are characterized for operation from O°C to 70°C. The I-suffix devices are characterized for operation from-40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of -55°C to 125°C. TEXAS .~ INSTRUMENTS 2-886 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC2654, TLC2654A, TLC2654Y Advanced LinCMOSTM LOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIfiERS functional block diagram ,------I IN+ 5"----1------.--------l IN- 4-=--1-f----+------l I I OUT A I~~-l 7 8 VDD _ C RETURN Pin numbers shown are for D014, J, and N packages. TLC2654Y chip information These chips, properly assembled, display characteristics similar to the TLC2654. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform. BONDING PAD ASSIGNMENTS -=-= CHIP THICKNESS: 15 TYPICAL -= BONDING PADS: 4 X 4 MINIMUM -= ';8 TJ max -=-= -= -= TOLERANCES ARE ± 10% ALL DIMENSIONS ARE IN MILS -=-= -=-= =150°C PIN (7) INTERNALLY CONNECTED TO BACKSIDEOFCHIP I" ~I 90 1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-887 TlC2654, TlC2654A Advanced linCMOSTM lOW-NOISE CHOPPER~STABILIZED OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, vDD+ (see Note 1) ..................... , ... '" .......................... 8 V Supply voltage, VDD- (see Note 1) ..................................................... -8 V Differential input voltage (see Note 2) ................................................... ±16 V Input voltage, VI (any input, see Note 1) ................................................ , ±8 V Voltage on ClK IN and INT/EXT pins ................................... VDD _ to VDD _ + 5.2 V Input current, II (each input) .......................................................... ±5 mA Output current, 10 ................................................................. ±50 mA Duration of short-circuit current at (or below) 25°C (see N.ote 3) ........................... unlimited Current into ClK IN and INT/EXT pins ................................................. ±5 mA Continuous total dissipation ........................................ See Dissipation Rating Table Operating free-air temperature range, T A: C-suffix ................................... O°C to 70°C I-suffix ................................. - 40°C to 85°C M-suffix ............................... - 55°C to 125°C Storage temperature range .................................................. - 65°C to 150°C Case temperature for 60 seconds: FK package .......................................... 260°C lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, or P package ............ 260°C lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J or JG package .............. 300°C NOTES: 1. All voltage values. except differential voltages, are with respect to the midpoint between VOO+ and VOO- . 2. Differential voltages are at the noninverting input with respect to the inverting input. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE D008 0014 FK JG N P TA';; 2S·C POWER RATING 725mW 950mW 1375mW 1375mW 1050mW 1150mW 1000mW DERATING FACTOR ABOVE TA = 2S·C 5.8 mW/oC 7.6 mW/oC 11 mW/oC 11 mW/oC 8.4 mW/oC 9.2mW/oC 8mW/oC TA = 70·C POWER RATING 464mW 608mW 880mW 880mW 672mW TA =8S·C POWER RATING 377mW 494mW 715mW 715mW 546mW 598mW 520mW 736mW 640mW TA = 12S·C POWER RATING 14SmW 190mW 275mW 275mW 210mW 230mW 200mW recommended operating conditions C·SUFFIX Supply voltage, VOD+ Common-mode input voltage. VIC Clock input voltage Operating free-air temperature, TA MIN ±2.3 I·SUFFIX MAX ±8 MIN ±2.3 M-SUFFIX MAX ±8 VOO- VOO+-2.3 VOO- VOO+-2.3 VOO- VOO-+ 5 VOO- VOO-+ 5 0 70 -40 TEXAS 85 ~ INSTRUMENTS 2-888 POST OFFICE BOX 655303' DALLAS. TEXAS 75265 MIN ±2.3 MAX ±8 UNIT V VOO- VOO+-2.3 V VOO- VOO-+5 V -55 125 ·C TLC2654C, TLC2654AC Advanced LinCMOSTM LOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Voo ± PARAMETER TEST CONDITIONS Input offset voltage VIO 110 Input offset current lIB Input bias current Common-mode input VICR voltage range VIC output voltage swing output voltage swing Large-signal differential AVD voltage amplification = 0, RS = 50 Q = SOQ = 10 kQ, See Note 6 RL = 10 kQ, See Note 6 Vo = ±4 V, RL = 10 kQ CMRR kSVR IDD Clamp on-state current RL = 100kQ Clamp off-state current Vo = -4 V t04 V Common-mode Supply-voltage rejection Vo = 0, VIC = VICR min, RS = 50Q VDD ± = ± 2.3 V to ± 8 V, ratio (Ll VDD + / Ll VIO) Vo rejection ratio Supply current Vo = 0, = 0, RS No load 10 24 UNIT IlV 0.3 0.004 0.3 llV/oC 25°C 0.003 0.06 0.003 0.02 IlV/mo 25°C 30 30 150 150 50 50 150 150 to 2.7 2.7 25°C 4.7 Full range 4.7 25°C -4.7 Full range 25°C -4.7 Full range 120 120 4.8 4.7 4.8 -4.9 -4.7 -4.9 155 -4.7 135 V 155 V dB 130 kHz 10 25°C 25 25 Full range 25°C 25 25 j.LA 100 100 100 100 25°C 105 Full range 105 110 25°C 110 120 Full range 110 Full range pA V 4.7 10 25°C pA -5 to Full range = 50 Q 4 MAX 0.004 25°C frequency TYP Full range Full range RL MIN 20 -5 RS Internal chopping fch TLC2654AC MAX 34 25°C Full range Maximum negative peak VOM- 5 Full range Maximum positive peak VOM+ TYP Full range of input offset voltage Input offset voltage long-term drift (see Note 5) TLC2654C MIN 25°C (see Note 4) Temperature coefficient aVIO TAt =± 5 V(unless otherwise noted) 110 125 125 125 dB 125 dB 120 1.5 2.4 2.5 1.5 pA 2.4 2.5 mA tFull range is O°C to 70°C. NOTES: 4. This parameter is not production tested full range. Thermocouple effects preclude measurement of the acutal VIO of these devices in high-speed automated testing. VIO is measured to a limit determined by the test equipment capbility at the temperature extremes. The test ensures that the stabilization circuitry is performing properly. 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 6. Output clamp is not connected. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' OALLAS, TEXAS 75265 2-889 TlC2654C, TlC2654AC Advanced linCMOSTM lOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, PARAMETER SR + SRVn VNCPP) In ¢m Positive slew rate at unity gain Negative slew rate at unity gain Equivalent input noise voltage (see Note 7) Peak-to-peak equivalent input noise voltage Equivalent input noise current Gain-bandwidth product Phase margin at unity gain TEST CONDITIONS Vo = ±2.3 V, RL = 10 kG, CL = 100 pF I I I I I I Voo ± = ± 5 V TLC2654C TAt MIN TYP 2 25'C 1.5 Full range 1.3 25'C Full range 2.3 TLC2654AC MAX MIN TYP 1.5 2 MAX V/lJ.s 1.3 3.7 1.7 2.3 1.7 UNIT 3.7 V/lJ.s = 10 Hz 25'C 47 47 75 = 1 kHz = 0 to 1 Hz 25'C 25'C 13 0.5 13 0.5 20 = 0 to 10 Hz = 1 kHz 25'C 1.5 25'C 1.5 0.004 0.004 25'C 1.9 1.9 25'C 48° 48° nV/,[Hz IJ.V pA/,[Hz = 10 kHz, RL = 10 kG, CL = 100pF RL=10kG, CL = 100pF MHz tFull range is O°C to 70°C. NOTE 7: This parameter is tested on a sample basis lor the TLC2654A. For other test requirements, please contact the lactory. This statement has no bearing on testing or nontesting 01 other parameters. TEXAS + INSTRUMENTS 2-890 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC26541, TLC2654AI Advanced LinCMOSTM LOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Vee ± = ± 5 V (unless otherwise noted) PARAMETER Via TEST CONDITIONS long-term drift (see Note 5) 110 Input offset current liB Input bias current Common-mode input VICR voltage range Maximum positive peak VOM+ output voltage swing Maximum negative peak VOMAVO output voltage swing Large-signal differential voltage amplification RS = 500 VIC = 0, CMRR kSVR 100 5 40 30 0.3 0.004 0.3 flV/ o C 25°C 0.003 0.06 0.003 0.02 flV/mo 25°C 30 30 200 50 200 -5 Full range RL = 10 kO, See Note 6 Va = ±4V, RL = 10 kO Clamp on-state current RL = 100kO Clamp off-state current VO=-4Vt04V Common-mode rejection ratio Va = 0, VIC = VICR min, RS = 50.Q Supply-voltage rejection VOO ± = ± 2.3 V to ± 8 V, ratio (,WOO + III Via) Va = 0, RS = 500 Supply current Va = 0, No load 200 to 2.7 2.7 25°C 4.7 Full range 4.7 25°C -4.7 Full range 25°C -4.7 120 Full range 120 4.8 4.7 -4.7 -4.9 155 -4.7 135 155 25 25 25 Full range 25°C Full range 110 25°C dB kHz f!A 100 100 100 100 125 110 125 125 120 125 dB 120 1.5 2.4 2.5 1.5 pA dB 110 110 Full range V 10 25 105 V 125 25°C 105 4.8 -4.9 Full range 25°C 25°C pA V 4.7 10 Full range pA -5 to 25°C frequency 200 50 25°C RL = 10 kO, See Note 6 flV 0.004 Full range RS = 500 UNIT Full range Full range Internal chopping fch 20 TLC2654AI TYP MAX MIN 4 10 TLC26541 TYP MAX Full range of input offset voltage Input offset voltage MIN 25°C Input offset voltage Temperature coefficient aVIO TAt 2.4 2.5 mA tFull range is - 40°C to 85°C. NOTES: 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life testatTA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 6. Output clamp is not connected. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-891 TlC26541, TlC2654AI Advanced linCMOSTM lOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, Voo ± PARAMETER SR+ SRVn VN(PP) In 4>m Positive slew rate at unity gain Negative slew rate at unity gain TEST CONDITIONS Vo = ±2.3 V, RL = 10 kil, CL=100pF =± 5 V TLC26541 TAt MIN TYP 25°C Full range 1.5 1.2 2 25°C Full range 2.3 3.7 TLC2654AI MAX MIN 1.5 TYP 2 MAX V/J.!S 1.2 1.5 2.3 3.7 V/J.!s 1.5 Equivalent input noise f = 10 Hz 25°C 47 47 75 voltage (see Note 7) Peak-to-peak equivalent f = 1 kHz f = 0 to 1 Hz 25°C 13 0.5 20 25°C 13 0.5 input noise voltage f = Ot010Hz 25°C 1.5 1.5 Equivalent input noise current f = 1 kHz 25°C 0.004 0.004 Gain-bandwidth product f= 10 kHz, RL = 10 kil, 25°C 1.9 1.9 25°C 48° 48° Phase margin at unity gain CL = 100 pF RL = 10k>!, CL = 100 pF UNIT nV/#iZ J.!V pA/#iZ MHz tFull range is - 40°C to 85°C. NOTE 7: This parameter is tested on a sample basis for the TLC2654A. For other test requirements, please contact the factory. This statement has no bearing on testing or nontesting of other parameters. ~ TEXAS INSfRUMENlS 2-892 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLC2654M, TLC2654AM Advanced LinCMOSTM LOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Voo ± PARAMETER TEST CONDITIONS Input offset voltage VIO (see Note 4) Input offset voltage long- 110 Input offset current liB Input bias current VICR Common-mode input voltage range Maximum positive peak VOM+ output voltage swing Maximum negative peak VOMAVD output voltage swing Large-signal differential voltage amplification RS = 50Q VIC = 0, CMRR kSVR IDD 5 20 RL = 10 kQ, See Note 6 Vo = ±4 V, RL = 10 kQ J.lV 0.004 0.3' J.lV/oC 25°C 0.003 0.06' 0.003 0.02' J.lV/mo 25°C Full range 30 25°C 50 30 25°C 500 500 50 500 500 -5 to to 2.7 25°C -4.7 -4.9 -4.7 -4.9 Full range -4.7 155 -4.7 135 155 25°C 120 120 4.7 25 25 25 25 25°C 105 rejection ratio Vo = 0, VIC = VICR min, RS = 50Q Full range 105 Supply-voltage rejection VDD± = ±2.3Vto±8V, 25°C 110 ratio (i\.VDD +1 i\.VIO) Vo = 0, Full range 105 V dB 10 25°C Common-mode V 120 Full range Vo = -4 V t04 V 4.8 4.7 10 Clamp off-state current kHz J.lA 25°C 100 100 Full range 500 500 25°C 125 110 125 125 120 125 dB 115 2.4 1.5 2.4 2.5 2.5 pA dB 110 1.5 Full range pA V 4.8 Full range pA 2.7 4.7 4.7 Full range RL = 100kQ No load 40 UNIT 0.3' Clamp on-state current Vo = 0, MAX 10 0.004 25°C RS = 50Q TYP 4 Full range Full range RL = 10 kQ, See Note 6 MIN 50 -5 RS = 50Q frequency Supply current MAX Full range Internal chopping fch TLC2654AM TYP Full range of input offset voltage term drift (see Note 5) MIN 25°C Temperature coefficient aVIO TAt =± 5 V (unless otherwise noted) TLC2654M mA 'On products compliant to MIL-STD-BB3, Class B, this parameter is not production tested. tFull range is - 55°C to 125°C. NOTES: 4. This parameter is not production tested full range. Thermocouple effects preclude measurement of the actual VIO of these devices in high-speed automated testing. VIO is measured to a limit determined by the test equipment capability at the temperature extremes. The test ensures that the stabilization circuitry is performing properly. 5. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 6. Output clamp is not connected. = TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-893 TlC2654M, TlC2654AM Advanced linCMOSTM lOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, Voo ± PARAMETER SR+ SRVn TEST CONDITIONS Positive slew rate at unity gain Negative slew rate at unity gain Equivalent input noise voltage VN(PP) Peak-to-peak equivalent input noise voltage In Equivalent input noise current Gain-bandwidth product Phase margin at unity gain 4>m tFull range IS - 55°C to 125°C. VO=±2.3V, RL = 10kn, CL = 100pF f f f f f f MIN TYP 25°C Full range TAt 1.5 1.1 2 25°C 2.3 3.7 Full range 1.3 = 10 Hz 25°C = 1 kHz 25°C 13 = 0 to 1 Hz 25°C 25°C 0.5 1.5 = 0 to 10 Hz = 1 kHz = 10kHz, RL = 10kn, CL = 100pF RL = 10 kQ, CL = 100 pF TEXAS ~ INSfRUMENTS 2-894 =± 5 V POST OFFICE BOX 655303' DALJ.AS. TEXAS 75265 47 25°C 0.004 25°C 1.9 25°C 48° MAX UNIT VI(.1s V/(.1s nVl'I'HZ (.1V pA/'I'HZ MHz TlC2654Y Advanced linCMOSTM lOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Voo± VIO PARAMETER Input offset voltage Input offset voltage long-term drift (see Note 4) =± 5 V (unless otherwise noted) TEST CONDITIONS MIN RS=50n VIC =0, TVP 5 MAX 20 UNIT 0.003 0.06 fLV/mo fLY 110 Input offset current 30 pA liB Input bias current 50 pA -S VICR Common-mode input voltage range to RS= 50 V 2.7 Maximum positive peak VOM+ VOMAVO fch CMRR kSVR 100 output voltage swing Maximum negative peak output voltage swing Large-signal differential voltage amplification Internal chopping Irequency Clamp on-state current RL =10 kn, See Note 5 4.7 4.8 V RL =10 kn, See Note 5 -4.7 -4.9 V Vo =±4 V, RL = 10 kg 120 155 dB 10 Clamp olf-state current Common-mode rejection ratio Supply-voltage rejection Vo = 0, V'C = VICRmin, VOO ± = ± 2.3 V to ± 8 V, RS=SOn ratio (,lVOO + I,lVIO) Supply current VO=O, RS=50n No load VO=O, Hz 25 RL=100kn VO=-4Vt04V fLA 100 10S 125 110 125 1.S pA dB dB 2.4 mA NOTES: 4. Typical values are based on the input offset voltage shift observed through 168 hours 01 operating lile test at TA = 150°C extrapolated to TA = 2SoC using the Arrhenius equation and assuming an activation energy 010.96 eV. 5. Output clamp is not connected. operating characteristics at Voo± = ±5 V, TA = 25°C SR+ SRVn VN(PP) In "m PARAMETER Positive slew rate at unity gain Negative slew rate at unity gain Equivalent input noise voltage TEST CONDITIONS Vo =±2.3 V, RL = 10 kn, CL = 100 pF input noise voltage I=Ot010Hz 2.3 3.7 13 1=1 kHz I=Ot01Hz TVP 2 47 1= 10 Hz Peak-to-peak equivalent MIN 1.5 O.S 1.S 0.004 Equivalent input noise current 1=1 kHz Gain-bandwidth product 1= 10 kHz, RL = 10 kn, CL = 100 pF 1.9 Phase margin at unity gain RL = 10kn, CL=100pF 48° MAX UNIT V/fLS V/fLs nV/>JHZ fLY pAiMz MHz ~ TEXAS INSTRUMENTS POST OFFICE BOX 655303 • OALLAS. TEXAS 75265 2-89S TLC2654, TLC2654A Advanced LinCMOSTM LOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS table of graphs FIGURE vs Temperature Clamp current vs Output voltage Maximum peak output voltage vs Output current swing vs Temperature 1 2 3 4 5 6 7 8 9 10 vs Frequency 11 vs Frequency vs Frequency vs Tem perature vs Supply voltage 12 13 14 15 16 17 18 19 20 21 22 23 24 Input offset voltage VIO 110 liB YOM Distribution vs' Chopping frequency Normalized input oifsei voltage Input offset current Input bias current Maximum peak-to-peak output voltage VOPP CMRR AVD swing Common-mode rejection ratio Differential voltage amplification fch Chopping frequency IDD Supply current lOS Short-circuit output current SR Slew rate Vn Chopping frequency Common-mode voltage vs Temperature vs Supply voltage vs Temperature vs Supply voltage vs Temperature vs Supply voltage Temperature Large-signal vs Chopping frequency Equivalent input noise voltage vs Frequency Supply-voltage rejection ratio vs Frequency vs Supply voltage noise voltage Gain-bandwidth product Phase margin IPm Temperature vs vs Small-signal Peak-to-peak equivalent input kSVR Chopping frequency vs vs Pulse response VN(PP) vs Phase shift vs Temperature vs Supply voltage vs Load capacitance vs Frequency TEXAS ~ INSTRUMENTS 2-896 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 25,26 27 28 29 30 31 32 13 TLC2654, TLC2654A Advanced LinCMOSTM LOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t NORMALIZED INPUT OFFSET VOLTAGE vs DISTRIBUTION OF TLC2654 INPUT OFFSET VOLTAGE CHOPPING FREQUENCY 20 40 456 Units Tested 16 #. .. I Cl S 'c (5 Qj 12 en II: HI CI> Cl c CI> <> Cii I > '0 !! 30 !! I ::> VOO±=±5V VIC = 0 TA = 25°C >:::l VOO± = ±5V TA = 25°C Packa ~e 20 0 II '5 0- ..,..5., 8 10 V .!::! OJ 0- E •••••••• ~ m 4 z I 0 0 :> o - 20 - 16 - 12 - 8 - 4 0 4 8 12 VIO - Input Offset Voltage - J.l V 16 -10 100 20 Figure 2 INPUT OFFSET CURRENT INPUT OFFSET CURRENT vs vs CHOPPING FREQUENCY FREE-AIR TEMPERATURE 100 Voo± = ±5V <0I Voo± = ±5V VIC = 0 TA = 25°C VIC = 0 I 100 E f! :; 0 f! 80 40 Qj en 0== '5 40 0- ..5 I 1/ 2- ./ 60 0 I I 60 '5 0I I :; U) ..5 <0- 80 E Qj 0== 100 k 10 k Figure 1 140 120 1k fch - Chopping Frequency - Hz 2- V / / / / 20 20 o 100 r- ..,..."" o 1k 10 k fch - Chopping Frequency - Hz 100 k 25 Figure 3 105 45 65 85 TA - Free-Air Temperature - °C 125 Figure 4 tData at high and low temperatures are applicable only within the rated operaling free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2--897 I I TLC2654, TLC2654A Advanced LinCMOSTM LOW·NOISE CHOPPER-STABILIZED OPERATIONAL AMPUFIERS TYPICAL CHARACTERISTICSt INPUT BIAS CURRENT INPUT BIAS CURRENT vs vs COMMON-MODE INPUT VOLTAGE CHOPPING FREQUENCY Voo± = ±5V VIC = 0 TA = 25'C Voo± = +5V TA = 25°C «Co «Q. I I E I!! E I!! ~ u (/) in'" SQ. ~ U 100 (/) SQ. -... I I g= 1k 10 k fch - Chopping Frequency - Hz INPUT BIAS CURRENT CLAMP CURRENT vs vs FREE-AIR TEMPERATURE OUTPUT VOLTAGE lOOI1A E 60 U "---40 r-- ....... ,/ / / r- TA = 25'C / II I positive Clamp Current E 100 nA ~ 10nA Q. E o'" .!: II Ii / II :::I U lnA IINegative Clamp Current I g= 100 pA L.- I 20 10 pA o 25 1 pA 45 65 85 105 TA - Free-Air TemperatUre - 'c 125 4 4.2 4.4 4.6 4.8 IVol- Output Voltage - V Figure 8 Figure 7 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS + INSTRUMENTS 2-898 100 k //V Voo± = ±5V I '5Q. - 100 Figure 6 80 .!!! /' V Figure 5 VOO±=±5V VIC = 0 lXI 20 o 5 100 (/) 40 .!: 10 -5 -4 -3 -2 -1 0 2 3 4 VIC - Common-Mode Input Voltage - V :::I I 60 lXI g= ~ 80 .!!! .!: «Q. , 100 1000 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 5 TlC2654, TlC2654A Advanced linCMOSTM lOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt MAXIMUM PEAK OUTPUT VOLTAGE MAXIMUM PEAK OUTPUT VOLTAGE vs vs OUTPUT CURRENT FREE-AIR TEMPERATURE 5~~--r-----r-----r-----r-----' > > I " ~ Cl I 4.81---+_____-""...,---+_____---+-"'_=---+_____-___ 5 > 4.61-~-+_____--+_____---"'k;----+_____-___I "" ~ ~ 4.41---t-----t-----t------'lJ----l E ::I E. os :::;; -2.5 os 4.21---+_____--+_____--+_____--+_____----'...--1 I :::;; o ~ > 4~----~----~----~----~--~ o ~ 0.4 0.8 1.2 1.6 :; -25 0 25 50 75 100 TA - Free-Air Temperature - °C Figure 10 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE COMMON-MODE REJECTION RATIO vs vs FREQUENCY FREQUENCY 10 140 "o 120 r---.. TA = 25°C I 8 .~ TA = - 55"C ""m c- 11111111 6 I o 'g 1 ~ "8" 4 ';( ~ 40 '" "I' I I 0 60 o 2 80 :::;; C o E E ::I E a:: Q. '\ a: c 100 11111111 I I TA = 125°C o Zos 125 VO~±I=I HI" m o ~ -50 Figure 9 Q. ~ -75 1'01- Output Current - mA :; &. -5 2 l" ~ VOO±=±5V_ RL = 10 kQ 0 ';( :::;; I ~ 5 ~ E 2.5 o &. ';( :e "g> '5 o > 5Q. o 5 100 1k ~ ~ Voo± = ±5V RL = 10 kQ 100 k 10 k f - Frequency - Hz :::;; 20 o 1M o 10 100 1k 10 k f - Frequency - Hz Figure 11 Figure 12 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-899 TlC2654, TlC2654A Advanced linCMOSTM lOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY FREE-AIR TEMPERATURE 120 lD 't> I 100 r-... c ~ 80 .'" PHASjSHIFT Ol 40 ~ 20 ~ l5 0 ............. "'" 60 g '0 t'0vo ............... I CL = 100 pF > ~ . .c \ '" '" E Ol IV 160° 'a Q. IV OJ 154 .~ 12 180° ~ 200° 0 > I .~ 10.2 o I .,.:> 12 u.. 2 3 -......" /' ~ 9.5 \. Ol c \. 9.8 o /V C II> '\ ,g 10 " \ g> 'ji \ \ Co 0 .c ~ 0 I .c / -" "- ./ 456 7 9 8 8.5 - 75 - 50 - 25 0 25 50 75 Ivoo ±I- Supply Voltage - V TA - Free-Air Temperature - °C Figure 15 Figure 16 100 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS 2-900 125 N l!! u.. 9.4 - 25 TA - Free-Air Temperature - °C Figure 13 ~ c j - 50 10.5 '"I 8.,. 152 I 11.4 ::r: Va = ±4 V 158 " -= :E \ 100 k f - Frequency - Hz Voo± = ±5V RL = 10 kn 0:: 120° "'- "" VOO±=±5V RL = 10 kn 0-20 ~ , > E l!! 80° lD 't> I 0 ........ !E E 160 60° .2 Q. LARGE-SIGNAL VOLTAGE AMPLIFICATION vs POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 125 TlC2654, TlC2654A Advanced linCMOSTM lOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt SUPPLY CURRENT SUPPLY CURRENT VS vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 2 2 I = Vo 0 No Load 1.6 1.6 '"E '"E I ~,. ,.<>-<>- E ~,. 1.2 3 4 5 6 7 8 ............ Vo = 0 No Load -75 -50 V -25 0 25 50 75 100 TA - Free-Air Temperature - °C 125 Figure 17 Figure 18 SHORT-CIRCUIT OUTPUT CURRENT SHORT-CIRCUIT OUTPUT CURRENT vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 15 Vo TA 8 =0 = 25°C =±5V =0 VOO± '" E I 10 Vo E 4 =-100mV VIO 0 - ~ :; o 5 o o 1:; ·s VID = -100 mV 2 2 9t: -4 -5 o 0 .c !II I !II t---.. = ±2.5 V o 2 ·s 9t: VOO± 0.4 12 0 ~ Q /voo ±/- Supply Voltage - "5 <>:; r- .P 0 0 1.2 ........... ........... ,. 0 I f-"" !II I 0.4 C ,.~ VOO±=±5V ii <>- 0.8 0.8 Q '" --r-- r-- r-- 0 >- E E r-- I 0 b !II I I VOO± = ±7.5 V .c -8 I"- .9 -12 o 2 - 3 !II :n = 100 mV VID I 4 567 -10 .9 8 f.--15 -75 -50 /VOO ±/- Supply Voltage - V Figure 19 -- VID = 100 mV I---f-- I...--- -- -25 0 25 50 75 100 TA - Free-Air Temperature - °C 125 Figure 20 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 2-901 TlC2654, TlC2654A Advanced linCMOSTM lOW-NOISE CHOPPER·STABILIZED OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt SLEW RATE SLEW RATE vs vs SUPPLY VOLTAGE - 4 5 ~ ....... 1--. SR- - ........... ~R- 4 3 II> II> :> :> :::I. ~ a:: j ., I 2 III /'" I a:: - to- SR+ 10 a:: SR + 2 ~ ~ I a:: III III o o RL CL TA 2 3 4 5 = 10 kQ = 100 pF = 25°C =e 6 7 o - 75 B = = - 50 75 3 \ > 2 125 = = = = Voo± ±5V RL 10 kQ CL 100 pF TA 25°C ~, .,I . Cl = voo± ±5V RL 10 kQ CL 100 pF '0 ~ - 25 0 25 50 75 100 TA - Free-Air Temperature - °C VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 4 ........... = VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 25 !'! --- ---.... Figure 22 I 8, 0 TA -25 15 = = = 25°C > :; Q. :; 0 0 -1 I I > ............. .......... Figure 21 100 50 o - Voo± ±5V RL 10 kQ 100 pF CL Ivoo ±I- Supply Voltage - V o I-- :::I. 3 I S. :s -- FREE-AIR TEMPERATURE 0 > -50 If -75 ':'100 o -2 -4 2 3 t- Time -fis 4 5 \~ -3 6 7 Figure 23 o 5 10 15 20 t- Time-fis 25 30 35 Figure 24 tOala at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices, ~ TEXAS INSTRUMENTS 2-902 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 40 TLC2654, TLC2654A Advanced LinCMOSTM LOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS PEAK-TO-PEAK INPUT NOISE VOLTAGE PEAK-TO-PEAK INPUT NOISE VOLTAGE vs vs CHOPPING FREQUENCY CHOPPING FREQUENCY 1.8 5 ~ I CI> 1.6 01 l!! "0 > . 1.4 Voo ± = ±5 V RS = loon f = 0101 Hz ~ TA = 25°C > CI> Cl l!! "0 z 1.2 '0 z '5 Il. CI> Il. 0.8 i c.. 0.4 gj ii" !:!:. z > .5 as \ CI> '7 .2 - ~ I ii" c.. Z > 4 8 2 6 fch - Chopping Frequency - kHz 10 .. vs FREQUENCy FREQUENCY 140 40 Voo± = ±5V RS = loon IX! T .2 c 100 0 'isCI> 30 'ar a: ., 20 '" E 10 l!! is 60 >. 0. Il. "I '- ... >c 20 VOO + = ± 2.3 V 10 ± 8 V TA =-25°C 1111 I I f - Frequency - Hz 1k f - Frequency - Hz Figure 27 Figure 28 1k kSVR""':: 40 a o 100 kSVR+ til a: > til 10 """~, 80 > W I 1 I"--- r--.. r--.. Cl 1\ .!! ~ 0- 120 '" '5 :; "tI I = 25°C a: z .5 10 SUPPLY-VOLTAGE REJECTION RATIO vs '0 Il. 4 6 8 fch- Chopping Frequency - kHz 2 EQUIVALENT INPUT NOISE VOLTAGE CI> Cl CI> o o Figure 26 S "0 > '" - f'.... Figure 25 ~> I 2 "'c..asCI>" 0.2 o o \ .,. \ 50 c 3 Il. 0.6 I TA = 25°C CI> '5 .,..5as 4 .. CI> '0 Voo± = ±5V RS = 100 n f = 01010 Hz _ I 10 k 10 100 10 k TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-903 TlC2654, TlC2654A Advanced linCMOSTM lOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS . TYPICAL CHARACTERISTICSt GAIN-BANDWIDTH PRODUCT GAIN-BANDWIDTH PRODUCT vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 2.1 2.6 RL = 10 kn CL = 100 pF TA = 25°C N :x: ::;; I .. " U N :x: ::;; J 2 2 Q. oS 1 "cos III 1.9 C 'iii (!l I 1.8 o -" 2.4 / V ,..- V V I .. 2.2 c:; "2 2 Q. .c ;; 'j en 1.8 --- C 1.6 'iii 1.2 -75 2345678 -5\1 :: Figure 29 Figure 30 PHASE MARGIN PHASE MARGIN vs LOAD CAPACITANCE / V ,/' V -- 60 ..e 5l' 40 2' .. 30 Q. 20 os ::;; en os .c f I I ~ "$. 40 = '" ~~ ~ ......... ............. ~ 10 o 2345678 IVoo ±I- Supply Voltage - V o o Figure 31 200 400 600 G.. - Load Capacitance - 800 pF Figure 32 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS 2-904 125 = E 42 ........... Voo± ±5V RL = 10kn TA 25°C 50 '\.. en "cI / 44 -25 0 25 50 75 100 TA - Free-Air Temperature - °C SUPPLY VOLTAGE 46 .~ '" '" vs 5l' ::;; " "- III 1.4 f "cI '" "-"- (!l RL ~ 10 ~n CL = 100 pF TA = 25°C 48 = I\. "cos Ivoo ±I- Supply Voltage - V 50 VOO±=±5V RL = 10kn._ CL 100pF POST OFFICE BOX 655303' DALLAS. TEXAS 75265 1000 TlC2654, TlC2654A Advanced linCMOSTM lOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS APPLICATION INFORMATION capaCitor selection and placement leakage and dielectric absorption are the two important factors to consider when selecting external capacitors CXA and CXB' Both factors can cause system degradation, negating the performance advantages realized by using the TlC2654. Oegradation from capaCitor leakage becomes more apparent with increasing temperatures. low-leakage capacitors and standoffs are recommended for operation at TA = 125°C. In addition, guard bands around the capaCitor connections on both sides of the printed circuit board are recommended to alleviate problems caused by surface leakage on circuit boards. Capacitors with high dielectric absorption tend to take several seconds to settle upon application of power, which directly affects input offset voltage. In applications needing fast settling of input offset voltage, it is recommended that high-quality film capacitors, such as mylar, polystyrene, or polypropylene, be used. In other applications, however, a ceramic or other low-grade capaCitor may suffice. Unlike many choppers available today, the TlC2654 is designed to function with values of CXA and CXB in the range of 0.1 jlF to 1 jlF without degradation to input offset voltage or input noise voltage. These capacitors should be located as close as possible to the CXA and CXB pins and returned to either the Voo- pin or the C RETURN pin. Note that on many choppers, connecting these capacitors to the Voo- pin causes degradation in noise performance, a problem that is eliminated on the TlC2654. internal/external clock The TlC2654 has an internal clock that sets the chopping frequency to a nominal value of 10kHz. On a-pin packages, the chopping frequency can only be controlled by the internal clock; however, on all 14-pin packages and the 20-pin FK package, the device chopping frequency may be set by the internal clock or controlled externally by use of the INT/EXT and ClK IN pins. To use the internal 1O-kHz clock, no connection is necessary. If external clocking is desired, connect the INT/EXT pin to VOO- and the external clock to ClK IN. The external clock trip point is 2.5 V above the negative rail; however, the ClK IN pin may be driven from the negative rail to 5 V above the negative rail. This allows the TlC2654 to be driven directly by 5-V TTL and CMOS logic when operating in the single-supply configuration. If this 5-V level.is exceeded, damage could occur to the device unless the current into the ClK IN pin is limited to ±5 mA. A divide-by-two frequency divider interfaces with the ClK IN pin and sets the chopping frequency. The chopping frequency > I o appears on the ClK OUT pin. III N' overload recovery/output clamp When large differential input voltage conditions are applied to the TlC2654, the nulling loop attempts to prevent the output from saturating by driving CXA and CXB to internally-clamped voltage levels. Once the overdrive condition is removed, a period of time is required to allow the built-up charge to dissipate. This time period is defined as overload recovery time (see Figure 33). Typical overload recovery time for the TlC2654 is significantly faster than competitive products; however, if required, this time can be reduced further by use of internal clamp circuitry accessible through the CLAMP pin. = / voo± ±5V TA 25°C = ~ "[ V ;; o I 0- 5 > > E 0 I III Dl S ~ ;; 0.. .E I-50 o "> 10 20 30 40 50 60 70 80 t- Time - ms Figure 33. Overload Recovery TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-905 TlC2654, TlC2654A Advanced linCMOSTM lOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS APPLICATION INFORMATION The clamp is simply a switch that is automatically activated when the output is approximately 1 V from either supply rail. When connected to the inverting input (in parallel with the closed-loop feedback resistor), the closed-loop gain is reduced, and the TLC2654 output is prevented from going into saturation. Since the output must source or sink current through the switch (see Figure 8), the maximum output voltage swing is slightly reduced. thermoelectric effects To take advantage of the extremely low offset voltage temperature coefficient 01 the TLC2654, care must be taken to compensate for the thermoelectric effects present when two dissimilar metals are brought into contact with each other (such as device leads being soldered to a printed circuit board). It is not uncommon for dissimilar metal junctions to produce thermoelectric voltages in the range of several microvolts per degree Celsius (orders of magnitude greater than the 0.01-ILV/oC typical of the TLC2654). To help minimize thermoelectric effects, careful attention should be paid to component selection and circuit board layout. Avoid the use of nonsoldered connections (such as sockets, relays, switches, etc.) in the input Signal path. Cancel thermoelectric effects by duplicating the number of components and junctions in each device input. The use of low-thermoelectric-coefficient components, such as wire-wound resistors, is also beneficial. latch-up avoidance Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC2654 inputs and output are designed to withstand -100-mA surge currents without sustaining latch-up; however, techniques to reduce the chance of latch-up should be used whenever possible. Internal protection diodes should not be forward biased in normal operation: Applied input and output voltages should not exceed the supply voltage by more than 300 mY. Care should be exercised when using capacitive coupling on pulse generators. Supply transients should be shunted by using decoupling capacitors (0.1 ILF typical) located across the supply rails as close to the device as possible. The current path established if latch-up occurs is usually between the supply rails and is limited only by the impedance of the power supply and the forward resistance of the parasitic thyristor. The chance of latCh-Up occurring increases with increasing temperature and supply voltage. electrostatic discharge protection The TLC2654 incorporates internal ESD-protection circuits that prevent functional failures at voltages at or below 2000 V. Care should be exercised in handling these devices, as exposure to ESD may result in degradation of the device parametric performance. theory of operation Chopper-stabilized operational amplifiers offer the best dc performance of any monolithic operational amplifiers. This superior performance is the result of using two operational amplifiers - a main amplifier and a nulling amplifier - plus oscillator-controlled logic and two external capacitors to create a system that behaves as a single amplifier. With this approach, the TLC2654 achieves submicrovolt input offset voltage, submicrovolt noise voltage, and offset voltage variations with temperature in the nV/oC range. The TLC2654 on-Chip control logic produces two dominant clock phases - a nulling phase and an amplifying phase. The term "chopper-stabilized" derives from the process of switching between these two clock phases. Figure 34 shows a simplified block diagram of the TLC2654. Switches A and Bare make-belore-break types. During the nulling phase, switch A is closed, shorting the nulling amplifier inputs together and allowing the nulling amplifier to reduce its own input offset voltage by feeding its output signal back to an inverting input TEXAS ~ INSTRUMENTS 2-906 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TlC2654, TlC2654A Advanced linCMOSTM lOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS APPLICATION INFORMATION Main IN+ ______- .__________, IN - ______----+----------, >-___ vo A Figure 34. TLC2654 Simplified Block Diagram node. Simultaneously, external capacitor CXA stores the nulling potential to allow the offset voltage of the amplifier to remain nulled during the amplifying phase. During the amplifying phase, switch B is closed, connecting the output of the nulling amplifier to a noninverting input of the main amplifier. In this configuration, the input offset voltage of the main amplifier is nulled. Also, external capacitor CXB stores the nulling potential to allow the offset voltage of the main amplifier to remain nulled during the next nulling phase. This continuous chopping process allows offset voltage nulling during variations in time and temperature and over the common-mode input voltage range and power supply range. In addition, because the low-frequency signal path is through both the null and main amplifiers, extremely high gain is aChieved. The low-frequency noise of a chopper amplifier depends on the magnitude of the component noise prior to chopping and the capability of the Circuit to reduce this noise while chopping. The use of the Advanced LinCMOS process, with its low-noise analog MOS transistors and patent-pending input stage deSign, significantly reduces the input noise voltage. The primary source of non ideal operation in chopper-stabilized amplifiers is error charge from the switches. As charge imbalance accumulates on critical nodes, input offset voltage can increase, especially with increasing chopping frequency. This problem has been significantly reduced in the TLC2654 by use of a patent-pending compensation circuit and the Advanced LinCMOS process. The TLC2654 incorporates a feed-forward design that ensures continuous frequency response. Essentially, the gain magnitude of the nulling amplifier and compensation network crosses unity at the break frequency of the main amplifier. As a result, the high-frequency response of the system is the same as the frequency response of the main amplifier. This approach also ensures that the slewing characteristics remain the same during both the nulling and amplifying phases. The primary limitation on ac performance is the chopping frequency. As the input signal frequency approaches the chopper's clock frequency, intermodulation (or aliasing) errors result from the mixing of these frequencies. To avoid these error signals, the input frequency must be less than half the clock frequency. Most choppers available today limit the internal chopping frequency to less than 500 Hz in order to eliminate errors due to the charge imbalancing phenomenon mentioned previously. However, to avoid intermodulation errors on a 500-Hz chopper, the input signal frequency must be limited to less than 250 Hz. The TLC2654 removes this restriction on ac performance by using a 1O-kHz internal clock frequency. This high chopping frequency allows amplification of input signals up to 5 kHz without errors due to intermodulation and greatly reduces lowfrequency noise. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-907 TlC2654, TlC2654A Advanced linCMOSTM lOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS THERMAL INFORMATION temperature ~oefficient of Input offset voltage Figure 35 shows the effects of package-induced thermal EMF. The TLC2654 can null only the offset voltage within its nulling loop. There are metal-to-metal junctions outside the nulling loop (bonding wires, solder joints, etc.) which produce EM F. In Figu re 35, a TLC2654 packaged in a 14-pin plastic package (N package) was placed in an oven at 25°C at t = 0, biased up and allowed to stabilize. At t= 3 min, the oven was turned on and allowed to rise in temperature to 125°C. As evidenced by the curve, the overall change in input offset voltage with temperature is much less than the specified maximum limit of 0.05 IlV/oC. 8 4 0.04 ~ G> Cl ..... , 0 p- > -4 ii ~ :; I o -0.04 ! -8 Q ,...18 G> ~ ;g VIa a t :; c- .E ~ I -15 0.11lF I 5! -12 > 0 ~ II: 1/ c- .E "I, Jrr l! "0 a o.L 0.11lF Ef V o 3 6 9 12 15 18 21 Time - minutes 24 27 30 Figure 35. Effects of Package-Induced Thermal EMF TEXAS ~ INsrRUMENlS 2-908 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 Vo =Va 11000 TlE2021 , TlE2021A, TlE2021 B, TlE2021Y EXCALIBUR HIGH-SPEED lOW-POWER PRECISION OPERATIONAL AMPLIFIERS 03197, FEBRUARY 1989 - REVISED OCTOBER 1991 available features • Supply Current ... 230 J.lA Max • High Unity-Gain Bandwidth ... 2 MHz Typ • High Slew Rate ... 0.45 V/J.ls Min • Supply Current Change Over Military Temp Range ... 10 J.lA Typ • Specified for Both 5-V Single-Supply and ± 15-V Operation • • High Open-Loop Gain .•• 6.5 V/J.lV (136 dB) Typ • Low Offset Voltage •.. 100 J.lV Max • Offset Voltage Drift With Time 0.005 J.lV/mo Typ • Low Input Bias Current .,. 50 nA Max • Low Noise Voltage ••• 19 nVi.fHZ Typ Phase-Reversal Protection description LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY The TLE2021, TLE2021 A, and TLE2021 B devices are precision, high-speed, low-power operational amplifiers using a new Texas Instruments patent-pending Excalibur process. These devices combine the best features of the OP21 with highly improved slew rate and unitygain bandwidth. 120 III Typ Icc "0 I I Phase Shift ..,6 100 ~ =a ~GO The complementary bipolar Excalibur process utilizes isolated vertical P-N-P transistors that yield dramatic improvement in unity-gain bandwidth and slew rate over similar devices. "" A~i'.. 60 40 ~ e The addition of a patent-pending bias circuit in conjunction with this process results in extremely stable parameters with both time and temperature. This means that a "precision" device remains a precision device even with changes in temperature and over years of use. 20 ~ oI f 0 C > <_20 10 = 100 This combination of excellent dc performance with a common-mode input voltage range that includes I \ "" ~ -\- ""'I'... 1\ 1k 10 k 100 k f - Frequency - Hz 1M . 120· :: .c D. 140· I .... 160· "'" 11 1'...: \ 80· 100· .:: I ,\ I I'. . ;m =46· - vcc± ±lSV RL 10kn CL 30 pF TA 2S·C = = = =2 MHz ........... i'.. 80 E ~ 60· =200 IlA 180· 200· 10 M AVAILABLE OPTIONS PACKAGE TA VIOmax AT 25°C SMALL OUTLINE (D) O·C to 70°C -40°C 200 flY 500 flY SSOP (DBLE) CHIP CERAMIC PLASTIC CARRIER DIP (JG) DIP (FK) TLE2021ACD TLE2021CD (P) 200 flY TLE2021AID TLE2021AIP TLE20211D TLE20211P to 100flV 200 flY TLE2021AMD TLE2021AMFK TLE2021BMJG TLE2021AMJG TLE2021AMP 125°C 500 flY TLE2021MD TLE2021MFK TLE2021MJG TLE2021MP -55°C FORM (PWLE) (V) TLE2021ACP TLE2021CP TLE2021CPWLE TLE2021Y TLE2021CDBLE 500 flY to 85°C CHIP TSSOP The D package is available taped and reeled. Add the suffix R, (e.g., TLE2021CDR). The DB and PW packages are only available left-end taped and reeled. Chips are tested at 25°C. PRODUCTION DATA information i, current as of pUblication data. Products conform to spacification. par the terms of Taxas Instruments ltandard warranty. Production processing does not necessarily include testing of all parameter•. TEXAS ~. INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 Copyright © 1991, Texas Instruments Incorporated 2-909 TLE2021, TLE2021A, TLE2021B, TLE2021Y EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS description (continued) includes the negative rail makes these devices the ideal choice for low-level signal-conditioning applications in either single-supply or split-supply configurations. In addition, these devices offer phase-reversal protection circuitry that eliminates an unexpected change in output states when one of the inputs goes below the negative supply rail. A variety of available options includes small-outline and chip carrier versions for high-density systems applications. The C~suffix devices are characterized for operation from O°C to 70°C. The I-suffix devices are characterized for operation from - 40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of -55°C to 125°C. 0, DB, JG, P, OR PW PACKAGE (TOP VIEW) OFFSET N1 r J 8 IN 2 7 IN + 3 6 VCC _/GND 4 5 FK PACKAGE (TOP VIEW) Z NC Vcc + OUT OFFSET N2 I- W f/) lL OlLOOO zOzzz 3 2 1 20 19 NC IN- 4 18 NC 5 17 IN + NC 7 VCC + NC OUT NC 16 15 8 14 9 1011 12 13 000"'0 zzzzz 0 I 0 0 > NC - No internal connection TEXAS ~ INSTRUMENTS 2-910 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 l- w (/) lL lL 0 TlE2021Y EXCALIBUR HIGH-SPEED lOW-POWER PRECISION OPERATIONAL AMPLIFIERS chip information These chips, properly assembled, display characteristics similar to the TLE2021. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform. BONDING PAD ASSIGNMENTS VCC+(7) ~ IN+(3) + OFFSET N1 (1) IN- (2) _ OFFSET N2 (5) OUT (6) Vcc_/GND (4) CHIP THICKNESS: 15 TYPICAL BONDING PADS: 4 X4MINIMUM TJ max = 150°C TOLERANCES ARE ±10% ALL DIMENSIONS ARE IN MILS PIN (4) INTERNALLY CONNECTED TO BACKSIDE OF CHIP TEXAS ", INSTRUMENTS POST OFFICE BOX 655303· DALLAS. TEXAS 75265 2-911 ~ om ..... "tI>N >r-= ~_N -=~ w Oc:: Z::a ..... >:crr-_m >Ci)N 7 3::C~ "tI0~ r-"tI> :;;m:'" iTimr- .~.~.~ (1).0= OUT g... ,= "tI w 0 ..... =ermm ::aN ~% = i~~~ !~ "tiN ::a~ m-< 52 (I) -z n'1 ~z ~uJ4r Ii> i =e~ o R6 R1 C1 R2 R4 R3 R5 OFFSET N1 1'-11i----+_~ OFFSET N2 -".5_ _ _ _ _ _--' Pin numbers shown are for the D, DB, JG, P, and PW packages. 4 VCC_ /GND Component count: Diodes - 4 Resistors - 7 Capacitors - 4 Transistors - 40 TlE2021, TlE2021A, TlE2021B EXCALIBUR HIGH-SPEED lOW-POWER PRECISION OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, Vcc+ (see Note 1) .................................................... 20 V Supply voltage, VCC- (see Note 1) ................................................... -20 V . Differential input voltage (see Note 2) ................................................. ±0.6 V Input voltage range, VI (any input, see Note 1) .......................................... ±VCC Input current, II (each input) ......................................................... ±1 mA Output current, 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ±20 mA Total current into VCC+ terminal ..................................................... 20 mA Total current out of VCC- terminal ................................................... -20 mA Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... unlimited Continuous total dissipation ........................................ See Dissipation Rating Table Operating free-air temperature range, TA: C-suffix ................................... O°C to 70°C I-suffix ................................ - 40°C to 85°'C M-suffix ............................... - 55°C to 125°C Storage temperature range ................................................... -65°C to 150°C Case temperature for 60 seconds: FK package .......................................... 260°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: 0, DB, P, or PW package ....... 260°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package .................. 300°C NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between Vee + and Vee _. 2. Differential voltages are at the non inverting input with respect to the inverting input. Excessive current will flow if a differential input voltage in excess of approximately ± 600 mV is applied between the inputs unless some limiting resistance is used. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TA S 2SoC POWER RATING DERATING FACTOR ABOVE T A =2SOC = = D 725mW 5.8 mw/oe 464mW DBorPW 525mW 4.2mW/oe 336mW = TA 8S"C POWER RATING TA 7O"C POWER RATING TA 12S"C POWER RATING 377mW 145mW FK 1375mW 11.0 mw/oe 880mW 715mW 275mW JG 1050mW 8.4mW/oC 672mW 546mW 210mW p 1000mW 8.0 mw/oe 640mW 520mW 200mW recommended operating conditions Supply voltage, VCC± . Common-mode Input voltage, VIC Operating free-air temperature, TA I Vce+ I VCC+ = ±5 V = ± 15 V MIN C-SUFFIX MAX NOM MIN I-SUFFIX MAX NOM MIN M-SUFFIX ±2 0 ±20 3.5 ±2 0 ±20 3.2 ±2 0 ±20 3.2 -15 13.5 -15 13.2 -15 13.2 0 70 -40 85 -55 125 NOM MAX UNIT V V °e TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 2-913 TlE2021, TlE2021A EXCALIBUR HIGH-SPEED lOW-POWER PRECISION OPERATIONAL AMPLIFIERS Vee electrical characteristics at specified free-air temperature, PARAMETER Via TEST CONDITIONS Input offset voltage Temperature coefficient of aVIO in put offset voltage Input offset voltage long-term drift (see Note 4) 110 Input offset current liB Input bias current VIC=O, RS=50n TAt MIN VICR AVD CMRR ICC 100 300 25°C 0.005 0.005 f1V/mo 25°C 0.2 3 25 0 -0.3 to to 4 50 a 25 0 to -0.3 3.5 4 to 3.5 4.3 0.7 Full range 4 3.9 0.8 0.85 Va = 1.4 V to 4 V, 25°C Full range 0.3 0.3 1.5 RL = 10kn Common-mode rejection ratio VIC = VICR min, RS=50n 25°C Full range 85 80 110 85 80 110 25°C 105 120 105 120 Full range 100 VCC=5Vt030V Supply current operating temperature range Va = 2.5 V, No load 0.8 0.85 1.5 Full range 5 230 170 230 dB dB 230 230 5 V V/f1V 100 170 nA V 0.3 25°C Full range nA V 4.3 0.7 0.3 f1V to a to 25°C 50 50 3.5 4 3.9 3 3 50 3.5 25°C Full range 0.2 3 Large-signal differential ratio (aVCC +1 aVIO) UNIT f1V/oC 600 voltage amplification Supply current change over alCC MAX 2 RS=50n 600 TYP 2 25°C LOW-level output voltage MIN Full range Full range High-level output voltage Supply-voltage rejection kSVR MAX 850 Full range RL=10kn VOL TYP otherwise noted) TLE2021AC 120 Full range VOH V (unless 25°C Full range 25°C Common-mode input voltage range = 5 TLE2021C f1A f1A tFull range is O°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TEXAS·~ INSTRUMENTS 2-914 POST OFFICE BOX655303 • DALLAS. TEXAS 75265 TlE2021, TlE2021A EXCALIBUR HIGH-SPEED lOW-POWER PRECISION OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Vcc± PARAMETER VIO TEST CONDITIONS TLE2021C TAt MIN 25°C Input offset voltage TYP 120 Input offset voltage long-term drift (see Note 4) 110 Input offset current lIB Input bias current VIC =0, RS = 50 n Common-mode input voltage range Maximum negative peak VOMAVD 0.006 JlV/mo 25°C 0.2 RS=50n 25 kSVR ICC -15 to to to 13.5 14 13.5 14 to to 13.5 ~ICC 14 25°C -13.7 Full range -13.7 25°C 1 1 VIC = VICR min, RS=50n 25°C Full range 100 25°C 105 Full range 100 Supply current change over operating temperature range 14.3 14 13.9 -13.7 14.3 V 1 115 6.5 V/JlV 100 115 dB 96 120 105 120 dB 100 200 300 200 300 Full range Full range V 1 96 25°C -14.1 -13.7 6.5 nA V 13.9 -14.1 nA -15.3 -15 13.5 Full range Vo = 0, No load 50 -15.3 RL=10kn Supply current 25 3 50 to 25°C VCC± = ±2.5 V to ±15 V 3 -15 VO=±10V, ratio (~V CC + / ~ VIO) 50 -15 Full range 0.2 50 Large-signal differential Supply-voltage rejection 3 3 voltage amplification CMRR Common-mode rejection ratio JlV 0.006 25°C Full range output voltage swing 500 UNIT 25°C Full range RL = 10 kn MAX 200 JlV/oC Full range Maximum positive peak VOM+ output voltage swing TYP 80 2 25°C VICR MIN 2 Full range input offset voltage TLE2021AC MAX 500 750 Full range Temperature coefficient of aVIO =±15 V (unless otherwise noted) 6 6 300 300 JlA JlA tFull range is O°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test atTA = 150°C extrapolated to T A = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TEXAS "I INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-915 TlE2021, TlE2021A EXCALIBUR HLGH-SPEED lOW-POWER PRECISION OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Vee PARAMETER Via TEST CONDITIONS TAt TYP 120 Input offset voltage long-term VIC=O. drift (see Note 4) RS=50Q 110 Input offset current liB Input bias current voltage range 0.005 j.!V/mo 25°C 0.2 RS=50Q VOL AVD CMRR 25 ICC -0.3 0 -0.3 to to to 3.5 4 3.5 4 to to 3.2 4 4.3 3.9 0.8 0.7 0.9 Large-signal differential VO=I.4Vt04V. RL = 10 kQ Full range Common-mode VIC = VICR min. RS=50Q 25°C 85 Full range 80 80 25°C 105 105 Full range 100 rejection ratio ratio (~VCC ±/ ~VIO) VCC=5Vt030V operating temperature range 0.3 1.5 0.25 25°C Supply current Supply current change over 0.3 0.8 1.5 85 110 120 V V/j.!V 0.25 110 dB 120 dB 100 170 Full range Full range V 0.9 voltage amplification 25°C 4.3 3.9 0.7 nA V 0 3.2 25°C 50 nA 50 0 Full range Va = 2.5 V. No load ~ICC 25 to 4 3 4 50 25°C Full range 0.2 50 0 Low-level output voltage Supply-voltage rejection kSVR 3 4 25°C RL=10kQ j.!V 600 0.005 Full range High-level output voltage 300 UNIT 25°C Full range VOH MAX j.!V/"C 25°C VICR 600 TYP 100 2 Full range Common-mode input MIN 2 Full range input offset voltage TLE2021AI MAX 950 Full range Temperature coefficient of (lVIO (unless otherwise noted) TLE2021I MIN 25°C Input offset voltage = 5V 230 170 230 6 230 230 6 j.!A j.!A tFull range is -40°C to 85°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TEXAS ~ INSTRUMENTS 2-916 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLE2021, TLE2021A EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONA~ AMPLIFIERS electrical characteristics at specified free-air temperature, PARAMETER TEST CONDITIONS VIO Input offset voltage a.VIO input offset voltage Input offset voltage long-term VIC=O, drift (see Note 4) RS=50n Temperature coefficient of 110 Input offset current liB Input bias current TAt MIN VICR Maximum negative peak VOMAVO ).IV/oC 25°C 0.006 0.006 ).IV/mo 25°C 0.2 25 CMRR 25°C Full range Supply-voltage rejection kSVR ICC ratio (I1VCC ±I I1VIO) -15.3 to 13.5 to 14 to to 13.2 13.2 Supply current change over I1ICC operating temperature range 14.3 14 14.3 -14.1 13.9 -13.7 -14.1 6.5 115 100 96 115 120 105 120 25°C Full range VCC± = ±2.5 V to ±15 V 25°C Full range 105 1 25°C Full range 6.5 V/).IV dB dB 100 200 300 200 300 Full range 7 300 300 7 nA V 0.75 100 nA V -13.6 1 0.75 ).IV V -15 14 . 50 50 -15 VIC = VICR min, RS=50n Vo = 0, No load 25 to 14 100 96 Supply current 50 -15.3 -13.6 3 4 to 13.5 -15 25°C RL=10kn 0.2 -15 Full range VO= 10V, 3 50 13.9 -13.7 voltage amplification 500 4 25°C Large-signal differential Common-mode rejection ratio UNIT 2 Full range 80 MAX 200 2 RS=50n output voltage swing TYP Full range 25°C Full range RL= 10kn 500 850 Full range Maximum positive peak output voltage swing TLE2021AI MIN 25°C Full range Full range VOM+ TLE2021I TYP MAX 120 25°C Common-mode input voltage range vcc± =± 15 V (unless otherwise noted) ).LA ).LA tFull range is -40°C to 85°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TEXAS ." INSTRUMENTS POST OFFICE BOX 655303· DALLAS. TEXAS 75265 2-917 ~ '" PARAMETER Via TEST CONDITIONS Input offset voltage drift (see Note 4) £ .... ~z i~~d ~3: ~lTl ~z 110 Input offset current liB Input bias current VICR voltage range 120 600 RS ~ 50Q 0.005 25'C 0.2 Full range 25'C RS ~ 50Q VOL Full range 25 ~w4r AVD ~ CMRR Large-signal differential 1:; voltage amplification Common-mode rejection ratio Supply-voltage rejection kSVR ICC ~ICC ratio (.1.VCC ±1t,VIO) Va ~ 1.4 V to 4 V. RL ~ 10 kQ VIC ~ VICR min. RS ~ 50Q VCC = 5Vl030V Supply current change over operating temperature range Va ~ 2.5 V. No load MAX 80 200 300 UNIT !lV 2 !lVloC 0.005 0.005 !lV/mo 3 3 0.2 5 50 25 50 25 50 0 -0.3 0 -0.3 to to to to 3.5 4 3.5 4 3.5 0 0 0 to to to 4 4 3.8 0.8 0.3 0.7 25°C 85 Full range 80 25'C 105 Full range 100 0.8 1.5 85 110 120 105 170 Full range 230 120 0.8 1.5 105 170 230 110 dB 120 170 230 9 dB 230 230 9 ::Dr-,",,", OI,)or- :e~ ms m ~ 01,) V V/!lV 100 230 9 V 80 100 -m> :!!m::s: mc~ ::D -g ::D 0.95 85 C :em ,N V 0.1 80 I -gCl)N r--g..J. -gC 4.3 0.7 0.3 0.1 110 nA ~:l:N ;;::" ON 4 0.95 0.3 1.5 - 3.8 0.95 0.1 4 4.3 3.8 0.7 50 nA 3.2 3.2 4.3 3 50 to _r- N :::t_ CCI..J. Oc:::::s: z: ::D~ >:1:'"""' r-_r- >C')m 5 -0.3 25°C Full range 0.2 0 Full range 25°C Supply current TYP to Full range " 300 50 25'C Low-level output voltage 100 MIN 2 3.2 25'C RL ~ 10kQ MAX 5 Full range High-level output voltage TLE2021BM TYP 600 2 25°C Full range VOH MIN , 25'C Common-mode input MAX 1100 Full range VIC ~ O. TLE2021AM TYP Full range input offset voltage Input offset voltage long-term TLE2021M MIN 25°C Temperature coefficient of aVIO TAt om,",,", -g>N C JJA JJA o z: electrical characteristics at specified free-air temperature, Vcc± PARAMETER VIO TEST CONDITIONS Input offsetvoltage Temperature coefficient of !lVIO input offset voltage Input offset voltage long-term drift (see Note 4) 110 liB VIC = 0, RS = 50n Input offset current TAt =± 15 V (unless otherwise noted) TLE2021M MIN MAX 25°C Full range 120 500 1000 Full range 2 0.006 25°C 0.2 3 25 50 Full range 25°C 0- :HZ ;~d Common-mode input VICR voltage range Full range ~C~ ~~ ~z YOM - Maximum negative peak output voltage swing AVD voltage amplification CMRR Common-mode rejection ratio ~Ui4r In ~ Large-signal differential Supply-voltage rejection kSVR ratio (AVCC±I AVIO) ICC Supply current AICC Supply current change over operating temperature range 25°C Full range RL = 10 kn RL = 10 kn VIC = VICR min, RS = son VCC± = ±2.5Vto±ISV No load MAX 40 100 200 0.006 0.2 3 25 50 3 25 50 5 50 50 - 15 - 15.3 to to to to to to 14 13.5 14 13.5 14 -15 -15 -15 to to to 13.2 13.2 14.3 14 13.8 14.3 14 13.8 ~ -13.7 -14.1 -13.7 -14.1 -13.6 -13.6 25°C Full range O.S 25°C 100 Full range 96 25°C 105 Full range 100 6.5 1 0.5 115 100 115 100 105 120 lOS 100 200 300 300 115 200 10 c: dB 300 300 10 V ;::g :::c -~ elrm :::c , N dB 120 300 ~ r- V/!lV 100 200 300 10 6.S 96 120 V c:I O.S 96 Full range Full range 1 6.S nA V 14.3 -13.6 1 nA -15 -15.3 -15 14 13.8 !lV !lV/mo 0.2 5 UNIT !lV/oC 2 -13.7 -14.1 25°C Va = OV, 200 TYP Full range 25°C Va = ±10V, MIN 500 50 13.2 Maximum positive peak YOM + output voltage swing ~l"I'l RS = son 80 TLE2021BM MAX 0.006 -15 -15.3 ~ TYP 5 25°C ." MIN 2 25°C Full range Input bias current TLE2021AM TYP f1A f1A tFull range is - 55°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = lSOOC extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. (1)= "'tIN m....&. Oms "'tIC~ mr-~ ;::gor- ~:e~ -' = O"'tlN Z°....&. r-ms >:e> > ;::g~ s"'tl~ "'tI;::grr-mm N _n "TI-= _(I)N ~ CD m-....&. ;::gOc:l (l)ZS :6o operating characteristics at specified free-air temperature, Vee '" PARAMETER SR Vn Slew rate at unity gain VO=lVt03V, See Figure 1 0.5 ~.U}4r j I-SUFFIX MAX MIN TYP M-SUFFIX MAX MIN 0.5 TYP VlJls f = 10 Hz 25°C 21 50 21 50 21 f = 1 kHz 25°C 17 30 17 30 17 f = 0.1 to 1 Hz 25°C 0.16 0.16 0.16 f = 0.1 to 10Hz 25°C 0.47 0.47 0.47 25°C 0.09 0.09 0.9 pAlVHz MHz Bl Unity-gain bandwidth See Figure 3 25°C 1.2 1.2 1.2 Phase margin at unity gain See Figure 3 25°C 42° 42° 42° operating characteristics at specified free-air temperature, Vee ± PARAMETER Vn UNIT Equivalent input noise ~m SR MAX 0.5 Equivalent input noise current ~2 ~z TYP 25°C g ~rr1 MIN In -< !~~d ~~ C-SUFFIX TA voltage (see Figure 2) Peak-to-peak equivalent VN(PP) input noise voltage -c TEST CONDITIONS =5 V TEST CONDITIONS See Figure 1 TAt 25°C 0.45 0.65 Full range 0.45 Equivalent input noise f = 10 Hz 25°C voltage (see Figure 2) Peak-to-peak equivalent VN(PP) input noise voltage ~:r:= ;:::.,N -ecn ...... r--e> :;:; m--t _m mer- ::xJr-~ cn o = :eN ....... -eCI:I C-SUFFIX TYP Vo = ±10V, JlV =± 15 V MIN Slew rate at unity gain nVlVHz om-t -eXrmom ::xJ>N -r-= ::::j-N _ CI:I ...... oc:Z::xJ-t >:r:rr-_m >C')N I-SUFFIX MAX MIN TYP 0.45 0.65 MAX 50 30 MIN 0.45 TYP 0.65 0.4 0.42 19 19 50 15 30 19 15 . f = 1 kHz 25°C 15 f=0.lt01Hz 25°C 0.16 0.16 0.16 f = 0.1 to 10 Hz 25°C 0.47 0.47 0.47 25°C 0.09 0.09 0.09 In Equivalent input noise current Bl Unity-gain bandwidth See Figure 3 25°C 2 2 2 ~m Phase margin at unity gain See Figure 3 25°C 46° 46° 46° tFull range is O°C to 70°C for the e-suffix devices, - 40°C to 85°C for the I-suffix devices, and - 55°C to 125°C for the M-suffix devices. o M-SUFFIX MAX UNIT V/Jls nV/VHz JlV pAlVHz MHz :em ::xJ "tI ::xJ m o en o Z TLE2021Y EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS electrical characteristics at vee Via =5 V, TA = 25°e (unless otherwise noted) TEST CONDITIONS PARAMETER Input offset voltage Input offset voltage long-term drift (see Note 4) MIN TYP MAX 150 600 ~V ~V/mo 0.005 VIC = 0, RS =50n UNIT 110 Input offset current 0.5 5 nA liB Input bias current 35 60 nA 0 VICR Common-mode input voltage range VOH VOl Maximum high-level output voltage AVD CMRR Maximum low-level output voltage Large-signal differential voltageamplilication Common-mode rejection ratio Supply-voltage rejection kSVR Icc ratio (LI.V cc:t1tN 10) Supply current RS=50n RL=10kn VO= 1.4 Vt04 V, RL= 10kn VIC = VICRmin, RS = 50 n VCC = 5 Vt030 V to 3.5 4 -0.3 to 44.3 0.7 V 0.8 V V 0.3 1.5 85 100 dB 100 115 dB 400 Va = 2.5 V, No load V/flV 500 IlA NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours 01 operating lile test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy 010.96 eV. operating characteristics at Vee SR Vn VN(PP) PARAMETER Slew rate at unity gain Equivalent input noise voltage =5 V, TA = 25°e TEST CONDITIONS VO=l Vt03V 1= 10 Hz 1=1 kHz MIN TYP 0.5 21 17 Peak-to-peak equivalent 1=0.1 to 1 Hz 0.16 input noise voltage I =0.1 to 10 Hz 0.47 MAX UNIT V/flS 50 30 nV/vHZ flV In Equivalent input noise current 0.1 pAlvHZ B1 Unity-gain bandwidth 1.7 MHz m Phase margin at unity gain 47° TEXAS ." INSTRUMENTS POST OFFICE BOX 655303· OALLAS, TEXAS 75265 2-921 TLE2021, TLE2021A, TLE2021B EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS PARAMETER MEASUREMENT INFORMATION 20kn 20kn >----Vo 20kn NOTE A: CL includes fixture capacitance. (a) SINGLE-SUPPLY (b) SPLIT-SUPPLY Figure 1. Slew Rate Test Circuit 2.5 oon ~::n ~ v loon + Va loon Va ". (a) SINGLE-SUPPLY (b) SPLIT-SUPPLY Figure 2. Noise Voltage Test Circuit 10kn 10kn VI 100 n >----..-- Va 10 kn NOTE A: CL includes fixture capacitance. (a) SINGLE-SUPPLY (b) SPLIT-SUPPLY Figure 3. Unity-Gain Bandwidth and Phase Margin Test Circuit TEXAS ." INsrRUMENTS 2-922 POST OFFICE BOX 655303' DALLAS, TEXAS 75265 TLE2021, TLE2021A, TLE2021B EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS PARAMETER MEASUREMENT INFORMATION >----Vo 10 kQ NOTE A: CL includes fixture capacitance. (al SINGLE-SUPPLY (bl SPLIT-SUPPLY Figure 4. Small-Signal Pulse Response Test Circuit typical values Typical values as presented in this data sheet represent the median (50% point) of device parametric performance of initial devices from three wafer lots used for characterization. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-923 TLE2021, TLE2021A, TLE2021B EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS table of graphs FIGURE VIO lIB Input offset voltage Distribution Input bias current vs Common-mode voltage vs Temperature Input current vs Differential input voltage VOM Maximum peak output voltage vs vs Output current VOH High-level output voltage VOL Low-level output voltage II VO(PP) Maximum peak-to-peak output voltage swing AVD Differential voltage amplification lOS Short-circuit output current ICC CMRR SR Temperature vs High-level output current vs Temperature vs Low-level output current vs Temperature vs Frequency vs Frequency vs Temperature vs Supply voltage vs Temperature Supply current vs vs Supply voltage Common-mocle rejection ratio vs Frequency Slew rate vs Temperature Temperature Small-signal Pulse response Large-signal Peak-to-peak equivalent input noise voltage 0.1 to 1 Hz 0.1 to 10 Hz Vn Equivalent input noise voltage vs Frequency 81 Unity-gain bandwidth vs Supply voltage VN(PP) flm Phase margin Phase shift . vs Temperature vs Supply voltage vs Temperature vs Capacitive load vs Frequency TEXAS ~ INSTRUMENTS 2-924 POST OFFICE eox 655303· DALLAS, TEXAS 75265 5 6 7 8 9 10 11 12 13 14 15,16 17 18 19,20 21,22 23 24 25 26 27,28 29,30 31 32 33 34 35 36 37 38 17 TLE2021 , TLE2021A, TLE20218 EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt INPUT BIAS CURRENT DISTRIBUTION OF TLE2021 INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE 20r-~--~--~--~--~~--~--, -40 16 ~ -30 ~ = '2 :::) ~ I I !l 12 r-------1I---+--+--ff.II--+--+-+---I C ~ -25 ':g" = VCC± ±15V TA 25?C -35 -........ I'-.. (J ---..... ............, -20 ........ iii i 81-----11---+-1"'" -15 ..5 I 1'! -10 41---+--H -5 -300 300 o VIO -Input Offset Voltage - /-LV o 600 -15 -10 -5 5 10 o VIC - Common-Mode Input Voltage - V Figure 5 Figure 6 INPUT BIAS CURRENT INPUT CURRENT vs vs FREE-AIR TEMPERATURE DIFFERENTIAL INPUT VOLTAGE -35 -30 c( 'i' -25 C ~ '" -20 (J '" = = '-...... ............ :g I 0.9 0.8 = VCC± ±15V VIC 0 TA 25'C = = c( iii -15 '5 a. ..5 1'! = VCC± ±15V Vo 0 VIC 0 '''-..,. 15 E 0.7 r---..... "-.. -- C 0.6 l!! !5 0.5 (J '5 a. 0.4 ..5 I . : 0.3 -10 0.2 -5 0.1 o -75 -50 -25 0 25 50 75 100 TA - Free-Air Temperature - 'c 125 o o j 0.1 Figure 7 I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 IVIDI- Differenliallnput Voltage - V 1 Figure 8 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS • INSfRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-925 TlE2021, TlE2021A, TlE2021B EXCALIBUR HIGH-SPEED lOW-POWER PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt MAXIMUM PEAK OUTPUT VOLTAGE MAXIMUM PEAK OUTPUT VOLTAGE vs vs OUTPUT CURRENT FREE-AIR TEMPERATURE 16 > I 15 14 " III 01 !! '0 12 > :; Q. :; 10 ... 0 I III 01 ~ 4.75 '0 > :; B::s \ 0 0; NO~ 4.5 1 /'" ~ 2 1: .21 1: 01 I I :f J: J: 4.25 J: 0 0 > /' V V V V V V /'" .... ...--- ~ = 10kn ....---,...- > o o -1 -2 ..:3 -4 -5 -6 -7 4 -75 -50 -25 0 25 50 75 10H - High-Level Output Current - rnA TA - Free-Air Temperature - °C Figure 11 Figure 12 100 tDala at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS . " INSTRUMENTS 2-926 125 TA - Free-Air Temperature - °C HIGH-LEVEL OUTPUT VOLTAGE 0 ~ RL Figure 10 ~ > = ±15 V = 10 kQ = 25°C vcc± Figure 9 !! :; Q. :; 13 -:::::: 14 Q. 6 2 VOM+ r- -I o 8 o 14.5 :; \ I :s0 > POST OFFICE BOX 655303' DALLAS, TEXAS 75265 125 TLE2021, TLE2021A, TLE2021B EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt LOW-LEVEL OUTPUT VOLTAGE LOW-LEVEL OUTPUT VOLTAGE vs vs ---- ---- LOW-LEVEL OUTPUT CURRENT FREE-AIR TEMPERATURE 5 > I II> Vcc = 5 V TA = 25°C I 4 '" > :; co. :; i; ;i: 3 I 2 0 0.5 I -I ......... IOL 1 rnA r-:.:::r--. -- ............... r--.........r---........ IOL =0 ............... Gi ~ ) 0 -I ;i: 0 -I I 0.25 -I 0 0 > > o > 0.75 > :; co. :; Gi -I 15'" as 0 r-.. I II> S "0 I= I r-- > o o 0.5 1.5 2.5 2 IOL - Low-Level Output Current - rnA VCC -75 3 =5 V -50 -25 0 25 50 75 100 125 TA - Free-Air Temperature - °C Figure 13 Figure 14 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs vs FREQUENCY FREQUENCY 5 > .'" 30 I II> S'" ~ :; co. :; o ... ~ Z :ll Il. S ~ 4 !l- .5 3 ...as 20 b 15 E 10 &. Z ~ 2 E ::I \ \ ::I E .;; as E :::;; = = = 25°C \ VCC 5V RL 10 kQ Il. Il. ~ 25 :; TA 0 100 1k '= :::;; ~ 10 k 100 k 5 I Il. Il. [\ 1M vcc± = ±15V RL 10 k.Q o TA = = 25'C 100 1k "'10 k f - Frequency - Hz f - Frequency - Hz Figure 15 Figure 16 100 k 1M tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ." INSTRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2-927 TlE2021, TlE2021A, TlE2021B EXCALIBUR HIGH-SPEED lOW-POWER PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY 10 120 r--..,...---i--~-..,..--r--.,60° > ~ > III '0 I 1---+---180° 6 ~ 80 Q. E -:; ~ - ;g I S I c ~ E I E ~ :::I o 60 l---+---l~.--I---+--H----1120 ~ ~ 20 140° m 1! ~ .---I---t---I----t'~-Hr+--I1600 ,e. :::I 0 '5 0 .c ~ I 6 ~ '0 > 4 ~ 2 ] E =±15V .......... ~ \ Vee f o - =5 V I SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE 12 =0 =25°C TA 125 = 25°C c( E 6 VIO 4 I =-100 mV 8 E ! !i () :; Il. :; 2 0 0 VID Vo 4 =-100 mV = Vee 0 ':; I:! ~ -4 -4 0 .c -6 r-- r-- ........ -8 o 2 ~ ~ VID I =100mV ~ .9 r-+- 4 6 8 10 12 IVee ±I- Supply Voltage - V 14 -8 -12 16 o 5 - It-+-VIO Vo =100 mV =0 10 15 20 Vee - Supply Voltage - V 25 Figure 20 Figure 19 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices, TEXAS ~ IN5rRUMENTS 2-928 '\. Figure 18 Vo 8 TA -10 ---- vee± Figure 17 ~ .9 r-- :--- -75 -50 -25 o 25 50 75 100 TA - Free-Air Temperature - °e I:! -2 ~ 8 GI ~ () :; .i C I C = RL 10 kO +---+--+--~..H_--I eL = 30pF T~ = 25°C -~~~---~--~-~--~~~ 10 100 1k 10 k 100 k 1M f - Frequency - Hz o =10kO ~ 'a 10 c( c '---P~-t---I---+-"rrt---I100 40 RL I POST OFFICE BOX 655303 ' DALLAS, TEXAS 75265 30 TLE2021, TLE2021A, TLE2021B EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS t SHORT-CIRCUIT OUTPUT CURRENT SHORT-CIRCUIT OUTPUT CURRENT vs vs FREE-AIR TEMPERATURE FREE-AIR TEMPERATURE 12 ct E I 8 VCC = 5V VCC± = ±15V Vo = 0 ct E 8 l!! 5 ;; co. ;; 0 VID = -100mV 4 5 ;; CJ ::s 0 0 ~ -4 rn I rn -8 ' .......... 0 .c rn r--.... r-- r-- .9 -12 -75 0 -50 -::.r- .9 VID = 100 mV 1 -25 0 25 50 75 100 TA - Free-Air Temperature - °c ~ 150 <1,., Vo = 0 :--"""""'1"'- -6 -8 - 75 125 - 50 --- - - 25 0 25 50 75 100 TA - Free-Air Temperature - °C SUPPLY CURRENT SUPPLY CURRENT vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 125 225 VCC·±=±15V /'--- ~ ::::::::- ~~ 200 - VI t:::;z::;: ;:..- "3.I / TA = 25°C I 'ii. /; I I C l!! 5 V CJ 100 I-150 VCC± = ±2.5V 125 co. 100 co. :I TA = _55°C I VI I ~ .9 CJ 50 75 50 25 o 2 4 6 8 10 r- 175 2:- ,TA = ,125°C, . ; ; o o ~ Figure 22 200 C VID = 100 mV -4 Figure 21 Vo = 0 No Load "3.I 2 I VI 250 c7l 2 '3 .c co. .l VID = -100 mV Vo = 5V 4 .& .~ ~0 C l!! !. I I C CJ 6 12 14 16 Vo = 0 No Load -75 -50 -25 0 25 50 75 IVcc ±I- Supply Voltage - V TA - Free-Air Temperature - °C Figure 23 Figure 24 100 125 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 2-929 TlE2021, TlE2021A, TlE2021B EXCALIBUR HIGH-SPEED lOW-POWER PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt COMMON-MODE REJECTION RATIO SLEW RATE vs vs FREQUENCY FREE-AIR TEMPERATURE 120 ..... III '0 I .g ~ ~Vee± = ±15V os c a: 0 v- ~ 100 t .. Vee a: = 5~ 60 '0 0 " I ~ :;; c 0 E E 40 0 I TA 10 = 25"C 100 1k 10 k 100 k 1M f - Frequency - Hz " 0.2 o RL eL = 10 kn = 30 pF See Figure 1 - 75 - 50 - 25 0 25 50 75 100 125 TA - Free-Air Temperature - °e VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 2.6 r-----r----,..----,-----,..----r----, Vee = 5 V RL 10 kn eL 30 pF > 2.55 TA 25°C = = = .. See Figure 4 I Dl ~ o 0~--_r----r_--_r----r_~_+---1 I UI Figure 26 ~ ;g 0.4 Figure 25 See Figure 4 I iii I a: 10 M = .. - I =5 V ;;= 100r----r----,..----r----,..----r----, Vee± = ±15V RL = 10 kn eL 30 pF 50 TA = 25°C =e I Vee 0.6 'l :E o . ~ 20 () ,,~ ~ a: () a: a: . :> I =±15 V 0.8 ::l 80 'u I Vee ± > :; 2.51---_r--r_--_r----r_~_+------f Q. :; ~ I o > -50~---+----~--_r----r_~_+--__i o I o > 2.451----+----~--_r----+__~_+--__i -100~--~----~--~----~--~--~ o 20 40 60 80 2.4 ~--~----~--~----~--~--~ 60 o 20 40 80 t-Time-~s t-Time-~s Figure 27 Figure 28 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS • INSTRUMENlS 2-930 POST OFFICE BOX 655303' DALLAS. TEXAS 75265 TlE2021, TlE2021A, TlE2021B EXCAlIBUR HIGH-SPEED lOW-POWER PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 15 > I II> CI VCC±=±15V RL = 10 kO 10 CL = 30pF TA " 25'C See Figure 1 5 '5 a. '5 0 I \ / > I II> CI -5 \ \ I > -10 -15 ~'5 1\ / 0 0 = II l! (j > VCC = 5 V RL 10kO CL = 30pF 3 TA = 25'C -tI~-f---+--t--+----I See Figure 1 o 20 40 t- Time-fis 2~--+---r-~--+-+--r-~ a. '5 o I ~ o 80 60 20 40 60 80 1- Time-fis Figure 29 Figure 30 PEAK-TO-PEAK EQUIVALENT INPUT NOISE VOLTAGE 0.1 T01 Hz PEAK-TO-PEAK EQUIVALENT INPUT NOISE VOLTAGE 0.1T010Hz 0.5 ~ I II> CI l! ~ VCC±=±15V TA = 25'C 0.4 I l g 0.3 (j > II> 0.2 z '5 a. .....5 a! 0.1 .", 0 if' -0.1 .I."" TT ""', ... ~I ilL [T i''''''' "r r ~lJIItL "... 1. '111- ... II> Q.. z > z 0.1 '5 a. .....5 o a! - 0.1 H--Htf+-t--f'--If-4-I-lJ---+lf-l--+tIf-++t-'H--lI-"tH I:\- Z. - 0.2 ~--t-J.++--'--+--r~f--+--+-t--t-~ -0.2 II> "i - 0.3 1----I--+-+---+----1-+----+-+-_+_--I -0.3 I Q.. Q.. 0.3 I---+---t-+--+----jf----I---+-t---l----I 0.2 t---+t--t-tH--+--f----HI-i----;-t----t--t '0 I:\- ~.. VCC± = ±15V A = 25'C --i-+----+-+-_+_--t--l . II> III '0 0.4 II> Q.. -0.4 ~ - 0.4 1----I--+-+---+----1--1----+-+-_+_--I > -0.5 o 2 3 4 5 6 t- Time-s 7 8 9 10 - 0.5 L...-.....L..--l._..1.....-"----l_"j,..--1.._..........L..----1 2 3 4 5 6 7 8 9 10 o t-Time-s Figure 31 Figure 32 TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2-931 TLE2021, TLE2021A, TLE2021B EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt UNITY-GAIN BANDWIDTH EQUIVALENT INPUT NOISE VOLTAGE VS VS FREQUENCY SUPPLY VOLTAGE 200 '" ~> = = 'i' 160 E '0 III > j :; c- .5 5l OJ > 'S .[ 4 = Vcc± ± 15V RS 100n TA 25°C See Figure 2 RL .. I 10kn = = :E: :E ~ CL 30pF TA 25°C Sea Figure 3 3 ~ 'i 'U 120 C co c OJ III 80 ~ \ - k ~ c ::;) 1\ 40 2 ,...I III ---- ~ ~ I c > 0 0 1 10 4 .. I 3 .c .;; 'i 'U UNITY-GAIN BANDWIDTH PHASE MARGIN VS VS FREE-AIR TEMPERATURE SUPPLY VOLTAGE 'c ::;) Il ~ i'-.. VCC± " 14 16 = = = 48 r--.. -.... o 0 25 I c . .... 46 .~ :::E ~ vr=r -25 CI III 'U =±15V ............. ............. m -50 16 RL 10 kn CL 30 pF 25°C TA See Figure 3 f I -75 14 50 r-..... ~ l: 4 8 10 12 6 IVcc ±I- Supply Voltage - V Figure 34 2 q 2 Figure 33 = = C co III c OJ 0 10 k RL 10 kn CL 30pF See Figure 3 :E: :::E 100 1k f - Frequency - Hz 50 III r-..... r-- -- 75 r-- 100 44 .c a.. 42 40 125 I I .....E V / V .-- I o 2 4 6 8 10 12 TA - Free-Air Temperature - °c IVcc ±I- Supply Voltage - V Figure 35 Figure 36 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS 2-932 POST OFFICE BOX 655303 • OALLAS. TEXAS 75265 TLE2021, TLE2021A, TLE2021B EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt PHASE MARGIN vs LOAD CAPACITANCE PHASE MARGIN vs FREE-AIR TEMPERATURE 50 .. ! i' 'U 48 46 I c .. •... 44 I 40 Ea :E 60 RL = 10 kO CL = 30pF See Figure 3 ,1/ r-- j-.. ,/ -- ---VCC= 5 V ..f 50 01 OJ 'U 40 . ... ~r--- RL = 10 kO TA = 25°C See Figure 3 VCC=5V~ c 30 =::::: OJ r-- .c Q. 20 ---- I E .... 10 38 36 - 75 ~ I :::E I I Vcc± = ±15V .~ I-. 42 .c Q. E 'Q. VCC±=±15V J ~ - 50 - 25 0 25 50 75 100 TA - Free-Air Temperature - °c o o 125 20 40 60 80 100 CL - Load Capacitance - pF Figure 37 Figure 38 tOata at high and low temperatu(es are applicable only within the rated operating free-air temperature ranges of the various devices. APPLICATION INFORMATION voltage-follower applications The TLE2021 circuitry includes input protection diodes to limit the voltage across the input transistors; however, no provision is made in the circuit to limit the current if these diodes are forward-biased. Note that this condition can occur when the device is operated in the voltage-follower configuration and driven with a fast, large-signal pulse. It is recommended that a feedback resistor be used to limit the current to a maximum of 1 mA to prevent degradation of the device. Also, remember that this feedback resistor will form a pole with the input capacitance of the device. For feedback resistor values greater than 10 kil, this pole will degrade the amplifier's phase margin. This problem can be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 39). CF = 20t050pF ~IF ~ 1mA >-......-Vo VI --+.,-1-..... Figure 39. Voltage Follower TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2-933 TLE2021 , TLE2021 A, TLE2021 B EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS APPLICATION INFORMATION input offset voltage nulling The TLE2021 series offers external null pins that can be used to further reduce the input offset voltage. The circuit of Figure 40 can be connected as shown if this feature is desired. If external nulling is not needed, the null pins may be left unconnected. ~ _ OFFSETN2 OFFSET N1 5 kQ Vcc- (Split-Supply) 1 kQ GND (Slngle-Supply) Figure 40. Input Offset Voltage Null Circuit TEXAS ..J.lI INSTRUMENTS 2-934 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE2022, TLE2022A, TLE2022B, TLE2022Y EXCALIBUR HIGH-SPEED LOW-POWER PRECISION DUAL OPERATIONAL AMPLIFIERS D3264, MAY 1989- REVISED OCTOBER 1991 available features • • Supply Current ... 500 IlA Max High Open-Loop Gain, ,. 10 VfllV (140 dB) Typ High Unity-Gain Bandwidth ,.. 2.8 MHz Typ • • • High Slew Rate ... 0,7 Vflls Min • • Supply Current Change Over Military Temp Range .. , 37 IlA Typ Offset Voltage Drift With Time 0.005 IlVfmo Typ Low Input Bias Current .,' 50 nA Max • Specified for Both 5-V Single-Supply and ± 15-V Operation • • • Phase-Reversal Protection Low Offset Voltage ... 150 IlV Max Low Noise Voltage . " 19 nVf1Hz Typ at f = 10 Hz description The TLE2022, TLE2022A, and TLE20228 devices are precision, high-speed, low-power operational amplifiers using Texas Instruments patent-pending Excalibur process. These devices combine the best features of the OP221 with highly improved slew rate and unity-gain bandwidth. The complementary bipolar Excalibur process utilizes isolated vertical P-N-P transistors that yield dramatic improvement in unity-gain bandwidth and slew rate over similar devices. The addition of a patent-pending bias circuit in conjunction with this process results in extremely stable parameters with both time and temperature. This means that a "precision" device remains a precision device even with changes in temperature and over years of use. LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION and PHASE SHIFT vs FREQUENCY III 120 I :5 100 r---.. I "- .~ is SO C. E 60 ;g 40 I PHASE SHIFT " ~ """- :l! ;: ~ ~I 20 = = Cl = 30 pF TA = 25·C 0 > <-20 10 100 This combination of excellent -dc performance with a common-mode input voltage range that includes the negative rail makes these devices = 2.S MH "'" f\: !1m """- VCC± ±15 V Rl 10 kQ C f I AV";;- ~Cl 60· = 235 IlA/amplifier Typ ICC '0 = 52·- """- 1k 10 k 100 k f - Frequency - Hz so· 100· :: .-\i\ :.c 120· 1/1 .$ 140. .t:: D. I 160· I \ "I 1M :'\ lS0· 200· 10 M AVAilABLE OPTIONS TA VIOmax AT 25·C SMAll OUTLINE (D) O°C to lOoe -40°C to 85°C CHIP SSOP (DBlE) PACKAGE CERAMIC CARRIER DIP PLASTIC DIP (FK) (JG) (P) 300llV TLE2022ACD 5OOI·tV TLE2022CD 300J.lV TlE2022AID TLE2022AIP 500J.lV TlE20221D TLE20221P TSSOP (PWlE) CHIP FORM (V) TLE2022ACP TLE2022CDBLE TLE2022CP -55°C 150J,lV to 125°C 300 J.lV TLE2022AMD TLE2022AMFK TLE2022AMJG TLE2022AMP 500J.lV TLE2022MD TLE2022MFK TLE2022MJG TLE2022MP TLE2022PWlE TlE2022Y TLE2022BMJG The D package is available taped and reeled. Add the suffix R, (e.g., TLE2022CDR). The DB and PW packages are only available left-end taped and reeled. Chips are tested at 25°C. PRODUCTION DATA is information current as of publication dati. Products conform to specifications par the terms 01 Texas Instruments standard warranty. Production processing does not necessarily include tasting 01 all parameters. TEXAS ~ Copyright © 1991, Texas Instruments Incorporated INSTRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2-935 TlE2022, TlE2022A, TlE2022B EXCAlIBUR HIGH-SPEED lOW-POWER PRECISION DUAL OPERATIONAL AMPLIFIERS description (continued) the ideal choice for low-level signal conditioning applications in either single-supply or split-supply configuration$. In addition, these devices offer phase-reversal protection circuitry that eliminates an unexpected change in output states when one of the inputs goes below the negative supply rail. Available packaging options include small-outline and chip-carrier versions for high-density systems applications. The C-suffix devices are characterized for operation from O°C to 70°C. The I-suffix devices are characterized for operation from -40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of -55°C to 125°C. u 0, DB, JG, P, or PW PACKAGE (TOPVIEWl 10UT 1 IN 1 IN + VCC_/GND 8 2 7 3 6 4 5 VCC+ 20UT 2 IN21N+ FK PACKAGE (TOP VIEW) r+ 050 go z..-z>z ~ NC 11NNC 11N + NC 32120'19 4 18 5 17 6 16 7 15 8 14 9 1011 12,g 000 + 0 ZZZZZ _ Cl -N I 0 0 > NC - No internal connection ~ 2-936 TEXAS INSTRUMENTS POST OFFICE BOX 655303· DALLAS. TEXAS 75265 NC 20UT NC 21NNC TLE2022Y EXCAlIBUR HIGH-SPEED lOW-POWER PRECISION DUAL OPERATIONAL AMPLIFIERS chip information These chips, properly assembled, display characteristics similar to the TLE2022. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mou nte6 with conductive epoxy or a gold-silicon preform. VCC+ (8) IN+(3)~ BONDING PAD ASSIGNMENTS OUT (1) IN-(2) ~ + IN+ (5) OUT (7) IN- (6) Vcc- (4) CHIP THICKNESS: 15 TVPICAL BONDING PADS: 4 X4 MINIMUM ~8 TJ max =150'C TOLERANCES ARE ±10% ~II~!!!I~ i~ ALL DIMENSIONS ARE IN MILS PIN (4) INTERNALL V CONNECTED TO BACKSIDE OF CHIP 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-937 ~ Cm ..... c::>om r->N equivalent schematic (each amplifier) CD Vcc+ 1 ~J O Q~ ~ mC::~ ;:r.I;:r.I ..... >:cr..... _m _C)N ~:c~ or >'N r-(I» -c~ >m ..... smr-c Cm N r-r- 024 -0= '"T1o::::::N I L...[ all OUT "g IN- -< l~jSJ 0_ :HZ ;~~ 012 04 IN+ 01 02 ~. ~~ ~~ .... u}4r m"f~ ;:r.I -c~ (1)0 ..... I t~ 014 ~040 :Ermm = ;:r.IN -c m-< N ;:r.IN ~ (I) ~(T1 ~z ~1» r-= -N -C~N o z R6 06~09 Rl ~ C1 * R2 R4 R3 R5 ~ 15 018 016 VCC_ /GND Component count: Diodes - 8 Resistors - 14 Capacitors - 8 Transistors - 80 )26 r(030 )l I 033 (037 TlE2022, TlE2022A, TlE2022B EXCALIBUR HIGH-SPEED lOW-POWER PRECISION DUAL OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, VCC+ (see Note 1) ..................................................... 20 V Supply voltage, VCC- (see Note 1) .................................................... -20 V Differential input voltage (see Note 2) .................................................. ±0.6 V Input voltage range, VI (any input, see Note1) ........................................... VCC± Input current, II (each input) .......................................................... ±1 mA Output current, 10 (each output) ..................................................... ±30 mA Total current into VCC+ terminal ...................................................... 80 mA Total current out of VCC- terminal .................................................... 80 mA Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... unlimited Continuous total dissipation ........................................ See Dissipation Rating Table Operating free-air temperature range, TA: C-suffix .................................. O°C to 70°C I-suffix ................................. -40°C to 85°C M-suffix ............................... -55°C to 125°C Storage temperature range ................................................... -65°C to 150°C Case temperature for 60 seconds: FK package .......................................... 260°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, DB, P, or PW package ....... 260°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package .................. 300°C NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC + and V CC _ . 2. Differential voltages are at the non inverting input with respect to the inverting input. Excessive current will flow if a differential input voltage in excess 01 approximately ± 600 mV is applied between the inputs unless some limiting resistance is used. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TA 5: 2S·C POWER RATING DERATING FACTOR TA = 70·C POWER RATING D 725mW ABOVE TA = 2S·C 5.8 mWI"C DB, PW 525 mW 4.2 mWI"C 464 mW 336mW TA=8S·C POWER RATING TA = 12S·C POWER RATING 377mW 273 mW 145mW FK 1375mW 11.0 mW;oC 880 mW 715mW 275mW JG 1050mW 672mW 546mW 210mW P 1000 mW 8.4 mW/'C 8.0 mW;oC 640 mW 520mW 200mW recommended operating conditions I-SUFFIX C-SUFFIX MIN Supply voltage, VCC+ Common-mode input voltage, VIC Operating free-air temperature, TA ±2 I VCC : 5 V I VCC+: ±15V 0 -15 0 NOM M-SUFFIX MAX MIN ±20 3.2 13.2 ±2 0 -15 ±20 3.2 13.5 ±2 0 -15 70 -40 85 -55 125 MAX MIN ± 20 3.5 NOM NOM MAX 13.2 UNIT V V 'C TEXAS -111 INsrRUMENTS POST OFFICE BOX 655303'- DALLAS, TEXAS 75265 2-939 ~ electrical characteristics at specified free-air temperature, Vee =5 V(unless otherwise noted) o PARAMETER Via TEST CONDITIONS Input offset voltage Temperature coefficient of aVIO Input offset voltage long-term ~ 0- :HZ i.~~d ~S': i!!!Tl ~z 110 Input offset current lIB Input bias current Common-mode input RS = 50Q voltage range VOH VOL AVO " CMRR Large-signal differential voltage amplification Common-mode rejection ratio Supply-voltage rejection kSVR ICC ratio ("'VCC +1 ",Via) VIC = VICR min, Va = 2.5 V, Supply current change over "'ICC operating temperature range No load UNIT flV :z: ::J::J~ 2 2 2 flV/o C 25°C 0.005 0.005 0.005 flVlmo ;c.::z:::-f r-_r;c.C')m N !:IO::z::: ;;::a I = 25°C 0.5 nA r--e :;;m> _mC") 35 0.4 4 0.3 4 60 33 60 3 3 55 30 50 50 55 nA -e(l)N N m ~ ::J::JC-f (l)r-rOm a -0.3 a -0.3 a -0.3 :EN to to to to to 3.5 4 3.5 4 3.5 to 4 ON a a to to to 3.5 3.5 3.5 4 3.9 4.3 4 4.3 0.8 0.3 25°e 85 Full range 80 25°e Full range 100 0.8 0.4 1.5 100 0.4 87 102 103 450 600 1.5 118 105 dB 120 dB 100 450 600 450 600 7 600 600 7 V V/flV 105 85 600 7 V 0.8 0.85 90 98 Full range -e 4.3 0.5 82 115 ::J::J 0.7 0.5 :E~ m 0.85 1.5 95 V 3.9 0.7 0.85 Full range 4 .= -eN a 3.9 0.7 0.3 Full range 5 5 25°e 25°e Supply current MAX 250 25°C Full range VCC = 5Vt030V TYP 400 25°C Full range RS = 50Q MIN 550 RS = 50Q Va = 1.4Vt04V, RL.= 10kQ TLE2022B MAX 400 Full range Low-level output voltage TYP 600 25°C RL = 10 kQ MIN 800 Full range High-level output voltage TLE2022A MAX 25°C Full range ~w4r ili ~ VIC = 0, TYP Full range 25°C VICR TLE2022 MIN Full range input offset voltage drift (see Note 4) TAt om-f mC")m ::J::J;c.N ):oor-= N -f_g:,N OC::C") -eXr- f1A f1A tFuil range is O°C to 70o e. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to T A = 25°C using the Arrhenius equation. and assuming an activation energy of 0.96 eV. ::J::J m 52 (I) o :z: electrical characteristics at specified free-air temperature, Vcc± PARAMETER Via TEST CONDITIONS drift (see Note 4) 110 , liB VIC = 0, RS = 500 ~ ~i ~4r YOM - Maximum negative peak output voltage swing Large-signal differential fLV/mo 25°C 0.5 AVO CMRR voltage amplification Common-mode rejection ratio Supply-voltage rejection kSVR ratio (AVCC + / A Via) ICC Supply current AICC Supply current change over operating temperature range 25°C 25°C Full range Va = ± 10 V, VIC = VICR min, VCC± RL = 10 kO RS = 500 = ±2.5Vto±15V 35 = 0, No load 60 -15.3 4 0.3 4 33 55 55 - 15 - 15.3 to to to to to 13.5 14 13.5 14 -15 -15 -15 to 13.5 to to 13.5 13.5 14.3 14 -13.7 -14.1 -13.7 -13.7 -13.7 0.8 25°C 95 full range 91 25°C 100 14.3 14 13.9 4 1 106 97 115 103 1.5 109 100 118 105 1 550 9 700 700 700 V c:: V/fLV ::t: dB ..... ......::t:~ m ::c 10 C')~ 112 120 550 700 9 ~ g;J dB 100 550 > V 96 98 Full range 14.3 1.5 93 95 m >< n -13.7 7 nA V 13.9 -13.7 -14.1 -14.1 nA -15.3 14 14 50 50 -15 to 13.9 3 3 30 13.5 Full range Full range 0.4 60 0.8 Full range 5 5 25°C 25°C Va fLV 0.006 Full range RL = 10 kO 150 300 UNIT 0.006 Full range Maximum positive peak YOM + output voltage swing 70 450 MAX 0.006 = 500 i 300 TYP 25°C Full range RS 120 MIN fLV/o C 25°C voltage range MAX 2 -15 VICR 500 TLE2022B TYP 2 25°C ! MIN 700 Full range Input bias current TLE2022A MAX 2 , z 150 Full range Input offset current Common-mode input TYP Full range input offset voltage Input offset voltage long-term TLE2022 MIN 25°C Input offset voltage Temperature coefficient of (lVIO TAt =±15 V (unless otherwise noted) 9 700 700 !iA !iA tFuil range is O°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shiftobserved through 168 hours of operating life testatTA =150°C extrapolated to TA =25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. c::rnN >"'CC) ~mN mN OOn "'C ~ m~~ ::c0~ >:Em ~'N - "'C C) °ON Z:e N >m> ~ ..... n l>-~ 3:"'C~ '» ~ "'C::c~ ~mN -nC) :!!Ci)N m-N ::C0g;J rnzn ~ operating characteristics at specified free-air temperature, Vee SR Vn Slew rate at unity gain Va = 1 Vt03V, Equivalent input noise voltage (see Figure 2) Peak-to-peak equivalent VN(PP) input noise voltage § In Equivalent input noise current 81 ¢m Unity-gain bandwidth Phase margin at unity gain ~~~~ §c ~~ ~l"l'I ~z ~~4r 1:; ~ See Figure 1 TLE2022 TA MIN Vn 25°C 21 50 f = 1 kHz f = 0.1 to 1 Hz f = 0.1 to 10 Hz 25°C 17 30 25°C 0.16 TLE2022B MIN TYP MAX -r-= :::j_N 0.5 0.5 V/JJ.s oeo 21 50 17 30 0.16 21 50 nV/-IHz >:::z:-I r-_r- 17 30 0.16 25°C 0.47 0.47 0.47 25°C 0.1 0.1 0.1 pAl-IHz See Figure 3 25°C 1.7 1.7 1.7 MHz See Figure 3 25°C 47" 47" 47° TEST CONDITIONS Equivalent input noise f f f f See Figure 1 TAt MIN TYP 25°C 0.45 0.65 Full range 0.45 TLE2022A MAX MIN TYP 0.45 0.65 MIN TYP 0.65 MAX UNIT 0.45 ::D "1:J ::D = 10 Hz 25°C 19 50 19 50 19 50 = 1 kHz 25°C 15 30 15 30 15 30 = 0.1 to 1 Hz 25°e 0.16 0.16 0.16 = 0.1 to 10Hz 25°e 0.47 0.47 0.47 I1V nVl-IHz Equivalent input noise current 25°e 0.1 0.1 0.1 pAl-IHz Unity-gain bandwidth See Figure 3 25°C 2.8 2.8 2.8 MHz 4>m Phase margin at unity gain See Figure 3 25°C 52° 52° 52° 0 :e~ m V/l1s 81 ooe to 70 e. -m> :!!m~ mC-I "1:JN 0.45 0.45 >C')m ~:::z:N ;;:::",= "1:J(I)N r-"1:J N ON TLE2022B MAX ::D~ :eN ,= = ± 15 V(unless otherwise noted) TLE2022 z: ::Dr-renOm In tFull range is ::D>N UNIT I1V Va = ±10V, Peak-to-peak equivalent VN(PP) input noise voltage TLE2022A MIN TYP MAX om-l "1:J> fL V/cC 25°C 0.005 0.005 0.005 fLV/mo 25°C 0.5 VIC VCC = 1.4Vt04V, = VICR min, RL RS = 10kQ operating temperature range 35 = 50 Q = 5Vt030V = 2.5 V, No load 4 0.3 4 60 33 30 55 55 -0.3 0 -0.3 0 -0.3 to to to to to 3.5 4 3.5 4 3.5 4 to to to 3.2 3.2 4 4.3 4 4.3 0.7 0.8 0.7 0.9 Full range 0.2 25°C 85 Full range 80 25°C 100 Full range 95 4 1.5 0.5 1.5 0.2 87 103 600 90 118 15 105 105 600 450 600 600 15 15 ca c: V/fLV :J: C"l :J: :D dB 600 >< ~ r- V dB 120 100 450 600 Full range 1.5 85 98 450 0.8 0.2 102 82 115 V 0.9 0.9 0.4 100 4.3 0.7 0.8 nA m 3.9 3.9 nA V a 3.2 3.9 50 50 0 a 3 3 to 0.3 Full range 0.4 60 25°C 25°C Va 5 5 25°C Supply current Supply current change over "'ICC % ... 2 Full range Va fLV 2 Full range 10 kQ UNIT 2 a Low-level output voltage Large-signal differential CMRR = MAX 400 25°C RL TYP 250 = 50Q High-level output voltage MIN 550 Full range VOH TLE2022B MAX 400 25°C ~~ TYP 800 Full range RS MIN 600 25°C &l TLE2022A MAX 25°C Full range "0 -i TYP Full range Full range input offset voltage drift (see Note 4) TLE2022 MIN j.LA j.LA C.-i c:cnr»""'C m r-mN Omc ""'CC~ mr-:D O »::-i -i.r-""'C m OON Zc::::c »c N r-m N »:D:;S""'C-i ""'C:Drr-mm -("')N ." - c m~N :DON cnz~ i electrical characteristics at specified free-air temperature, Vcc± PARAMETER VIO TEST CONDITIONS Input offset voltage Input offset voltage long-term 110 Input offset current liB Input bias current MIN VIC; 0, RS; 50Q TLE2022A TVP MAX 150 500 Full range :;JZ ~~d Common-mode input VICR voltage range §e:~ ~z VOM - ~ ~&l. ~(jj~ AVO ~ CMRR Maximum negative peak output voltage swing Large-signal differential voltage amplification Common-mode rejection ratio Supply-voltage rejection kSVR ratio (t.VCC ± I t.VIO) ICC Supply current Supply current change over t.ICC operating temperature range 25°C Full range 25°C No load 450 5 35 300 to to 13.5 14 4 0.3 4 60 33 60 55 30 55 -15 - 15.3 to to 13.5 14 to 13.5 14 -15 to to to 13.2 13.2 13.2 14.3 14 13.9 -13.7 -14.1 13.9 -13.7 -14.1 -13.7 -14.1 -13.6 -13.6 -13.6 25°C 95 Full range 91 25°C Full range 100 4 1 1.5 7 1 106 97 115 103 109 100 118 105 100 550 700 550 700 30 700 ~::t:r __ m OC)N Z::t: C ::r>,N N rc:n -C::r> ::r> m~- :s:m-l nA I -COr rrm -ON ::!!:e m,N C ::II-C N c:nO~ :e m V ::II 14.3 m V I V 112 dB 120 dB 700 700 30 C;;. z VlflV 550 (") o 10 700 30 i nA I 96 98 Full range 50 1.5 93 95 ::II::II-I -C 14 0.8 mC:~- ::II 14.3 13.9 -N -C:CO N flV - 15 -15.3 -15 14 UNIT fl V/ mo • 3 50 to ::r>(")m r::r>N O rC fl V/oC 3 -15 0.8 Full range 0.4 5 Full range 25°C Va; 0, 150 0.5 Full range VCC±; ±2.5Vto±15V MAX 70 25°C 25°C RS ; 50Q TVP 0.006 RS ; 50Q VIC ; VICR min, MIN 0.006 25°C RL ; 10 kQ 300 0.006 Full range Va ; ± 10 V, MAX 120 25°C Full range RL ; 10 kQ TVP 2 Full range Maximum positive peak VOM + output voltage swing c:>< ("') nV/'<'RZ ):00 r- c::J c: JJ.V In Equivalent input noise current 25°C 0.1 0.1 0.1 pAl'<'RZ 91 Unity-gain bandwidth See Figure 3 25°C 2.8 2.8 2.8 MHz .pm Phase margin at unity gain See Figure 3 25°C 52° 52° 52° tFuli range is - 40°C to 85°C. m V/JJ.s :lJ ::J: C) ::J: 0.-1 c:(I)r>"m r-mN Omc "O~ mr-:lJ0~ ~:e~ --em OON z<::c >c::;;;N r-m N >:lJ:- S"-I ,,:lJrr-mm - ~ 01 ("')N "T1-c iii~N :lJO N (l)Z~ ~ electrical characteristics at specified free-air temperature, Vee =5 V(unless otherwise noted) 0> PARAMETER Via TEST CON DITIONS Input offset voltage Temperature coefficient of °VIO Input offset voltage long-term 110 liB VIC = 0, RS = 50Q Input offset current -i. :HZ ~~d i!lC:~ ~3:: VOL ~ wet AVD ~ CMRR " Large-signal differential voltage amplification 2 2 25°C 0.005 25°C 0.5 5 35 60 Full range Common-mode rejection ratio Supply-voltage rejection kSVR ratio (t.vCC ±/ llVI.O) ICC Supply current Supply current change over lllCC operating temperature range VIC = VICR min, VCC = 5 V to 30 V Va = 2.5 V, 33 55 0.3 3 30 50 4 60 3 55 50 0 -0.3 0 -0.3 to to to to to to 3.5 4 3.5 4 3.5 4 0 0 0 to to to 4 3.2 4.3 4 0.7 0.8 0.3 25°C 85 Full range 80 25°C 100 Full range 95 1.5 0.7 4 0.8 1.5 100 87 115 103 102 450 600 flV/mo nA nA 105 V 600 0.8 1.5 dB 120 450 dB 600 600 37 V V/flV 105 600 37 r-CI)N "'tIN >m> Sms "'tIC~ r-r--I -Or- :c'e CI)"'tIN ON :Eo::J :c m ("') 100 450 >,e "'tI 4.3 0.95 90 118 600 37 __ r~::I:-I O!:i)m Z::I: N V 85 98 Full range flV/oC :!!~m 0.1 82 mC:s :c:c~ mS 0.7 0.5 0.1 "'tIo::JN :c 0.95 0.4 flV c:Xr>(",)m r->N r-e ON mc:;;N 3.8 0.95 0.1 UNIT 3.2 4.3 3.8 3.8 25°C Full range 4 -0.3 Full range 25°C No load 0.005 0.4 0 25°C RS = 50Q MAX 2 0.005 5 Full range Va = 1.4Vt04V, RL = 10kQ TYP 250 25°C Low-level output voltage MIN 400 RS = 50Q RL = 10 kQ MAX 550 3.2 VOH TYP 800 Full range High-level output voltage MIN Full range Full range ~1'T1 ~Z voltage range MAX 400 25°C Input bias current Common-mode input VICR TYP TLE2022B 600 25°C @ MIN TLE2022A 25°C Full range "1l 0- TLE2022 Full range input offset voltage drift (see Note 4) TAt cm-l flA flA tFull range is - 55°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150ac extrapolated to T A = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. en o z electrical characteristics at specified free-air temperature, Vcc± = ±15 V (unless otherwise noted) PARAMETER Via Input offset voltage aVIO input offset voltage TEST CONDITIONS drift (see Note 4) 110 Input offset current liB Input bias current TLE2022 MIN 25°C TYP 150 Full range Temperature coefficient of Input offset voltage long-term TAt = 0, RS = 50n 500 ~z VICR ~c Maximum positive peak VOM + output voltage swing i~~d .~ ~f'!1 ~z voltage range ~(j)~ AVO ~ CMRR Large-signal differential voltage amplification 0.006 flV/mo 25°C 0.5 = 50n Common-mode rejection ratio Supply-voltage rejection kSVR ratio (AVCC +/ AVIO) ICC Supply current Supply current change over AICC operating temperature range 25°C Full range 25°C Full range Va = ±10V, RL VIC = VICR min, RS = 50n VCC± = 10kn = ±2.5Vto±15V 5 = 0, No load 35 4 0.3 4 60 33 60 55 30 55 -15 -15.3 to to to to 13.5 14 13.5 14 13.5 14 -15 -15 -15 to to to 13.2 14.3 14 14 ~ -13.7 -14.1 -13.6 -13.6 -13.6 25°C 95 Full range 91 25°C Full range 100 4 1 97 7 1.5 109 100 103 95 105 98 550 Full range 700 550 700 112 dB 120 550 700 60 dB 700 700 60 V c: c:: ::z;J ::E: ---I tilr- V/flV 100 700 60 10 96 118 V > ~ 1.5 93 115 n 13.9 1 106 V 14.3 13.9 -13.7 -14.1 0.8 nA 13.2 14.3 -13.7 -14.1 0.8 50 nA -15 -15.3 to 14 13.9 3 3 50 to 25°C Full range 0.4 5 Full range 25°C Va flV 0.006 13.2 VOM - 150 300 UNIT 0.006 25°C = 10kn 70 450 MAX 25°C Full range RL 300 TYP flV/ oC Full range MaximiJm negative peak output voltage swing 120 MIN 2 Full range RS MAX 2 25°C Common-mode input TLE2022B TYP 2 -15 -15.3 ~ MIN 700 Full range VIC TLE2022A MAX f1A f1A tFull range is - 55°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life testatTA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. C::E:m c:cn >."f,;S N r-m N Om3: ."C~ mr---I ::z;JOr- ~:e~ --tl= OON z:~N >c:;> r-m3: > ::z;J~ 3:.,,--1 .,,::z;Jrr-mm N _n -n-= _cn N ~ ~ m_N ::z;JO~ cnz:3: ~ operating characteristics at specified free-air temperature, Vee = 5 V (unless otherwise noted) 0> TEST CONDITIONS PARAMETER SR Vn Slew rate at unity gain Vo ~ 1 Vt03 V, Equivalent input noise f f ~ ~ f f voltage (see Figure 2) Peak-ta-peak equivalent VN(PP) input noise voltage See Figure 1 TLE2022 TA 1:; '" ~ TLE2022B MAX MIN TYP 0.5 0.5 10 Hz 25°C 21 21 21 1 kHz 25°C 17 17 17 ~ 0.1 to 1 Hz 25°C 0.16 0.16 0.16 ~ 0.1 to 10 Hz 25°C 0.47 0.47 0.47 MAX UNIT VlflS nV/YHz J.lV 25°C 0.1 0.1 0.1 pAlYHz Unity-gain bandwidth See Figure 3 25°C 1.7 1.7 1.7 MHz 4>m Phase margin at unity gain See Figure 3 25°C 47° 47° 47° TEST CONDITIONS PARAMETER Vee ± TAt SR Vn Slew rate at unity gain Vo ~ ± 10V, Equivalent input noise f f f f voltage (see Figure 2) Peak-to-peak equivalent VN(PP) input noise voltage ~ See Figure 1 25°C Full range = TLE2022 TYP 0.45 0.65 0.4 TLE2022A MAX MIN TYP 0.45 0.65 0.4 MIN TYP 0.45 0.65 -or iTi"fN ::1J-C 0 eno N :e~ m:S MAX UNIT J.lV en 0.1 pAlYHz z MHz ~ 1 kHz 25°C 15 15 15 ~ 0.1 to 1 Hz 25°C 0.16 0.16 0.16 ~ 0.1 tol0Hz 25°C 0.47 0.47 0.47 25°C 0.1 0.1 19 In Equivalent input noise current Bl Unity-gain bandwidth See Figure 3 25°C 2.8 2.8 2.8 4>m Phase margin at unity gain See Figure 3 25°C 52° 52° 52° tFull range is - 55°C to 125°C. >~~ :sm:s -cc~ nV/YHz 25°C 19 N z::C > ,0 r enN ::1J -C ::1J 0.4 10 Hz 19 :::;::c-l __ r rr-l TLE2022B MAX mC::::s ::1J ::1J~ -n~m ± 15 V (unless otherwise noted) MIN -c txlN O",m Equivalent input noise current :HZ ~U14r TYP Bl ~ ~z MIN In --< ~3:': ~1TI TLE2022A MAX 0.5 0- ~~c:::a~d TYP 25°C operating characteristics at specified free-air temperature, ~~ MIN cm-l xr c::: :z:,.om r>N O rO _N VlJ.ls m ~ o TlE2022Y EXCALIBUR HIGH-SPEED lOW-POWER PRECISION DUAL OPERATIONAL AMPLIFIERS electrical characteristics at Vee =5 V, TA =25°e, TEST CONDITIONS PARAMETER VIO (unless otherwise noted) TLE2022Y MIN Input offset voltage Input offset voltage long-term drift (see Note 4) TYP MAX 150 600 0.005 VIC =0, RS = 500 UNIT /lV /lV/mo 110 Input offset current 0.5 5 nA liB Input bias current 35 60 nA 0 VICR Common-mode input voltage range RS=500 to -0.3 to 3.5 4 V VOH VOl Maximum high-level output voltage Maximum low-level output voltage RL = 10 kn AVO Large-signal differential voltage amplification VO= 1.4Vt04 V, RL= 10kO 0.3 1.5 V//lV VIC = VICRmin, RS = 500 85 100 dB 100 115 dB CMRR kSVR ICC Common-mode rejection ratio Supply-voltage rejection ratio (<1VCC:t!<1VIO) Supply current VCC=5Vt030V 4 4.3 0.7 Vo = 2.5 V, No load 450 V 0.8 600 V J.tA NOTE: 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming and activation energy of 0.96 eV. operating characteristics at Vee SR Vn VN(PP) =5 V, TA =25°e PARAMETER Slew rate at unity gain TEST CONDITIONS VO= 1 Vt03V,SeeFigure 1 Equivalent input noise voltage f = 10 Hz MIN TYP MAX 0.5 21 50 17 30 (see Figure 2) f = 1 kHz Peak-to-peak equivalent f = 0.1 to 1 Hz 0.16 input noise voltage f=0.ltol0Hz 0.47 UNIT VI/ls nVl'I'HZ /lV In Equivalent input noise current 0.1 pAl'I'HZ Bl Unity gain-bandwidth See Figure 3 1.7 MHz 'm Phase margin at unity gain See Figure 3 47° TEXAS . " INSTRUMENTS POST OFFICE BOX 655303· OALLAS, TEXAS 75265 2-949 TlE2022, TlE2022A, TlE2022B EXCALIBUR HIGH-SPEED lOW-POWER PRECISION DUAL OPERATIONAL AMPLIFIERS PARAMETER MEASUREMENT INFORMATION 20kn >-~--Vo 20 kn NOTE A: CL includes fixture capacitance. (a) SINGLE·SUPPLY . (b) SPLlT·SUPPLY Figure 1. Slew Rate Test Circuit $oon. 2.5 v 100n ~::n + Vo 100n Vo ':' (a) SINGLE·SUPPL Y (b) SPLlT·SUPPLY Figure 2. Noise Voltage Test Circuit 10kn 10kn 100n VI >--_-Vo 100n >--_-Vo 2.SV 10 kn 10 kn NOTE A: CL includes fixture capacitance. (a) SINGLE·SUPPLY (b) SPLlT·SUPPLY Figure 3. Unity·Gain Bandwidth and Phase Margin Test Circuit TEXAS ~ 2-950 INSTRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 TlE2022, TlE2022A, TlE2022B EXCALIBUR HIGH-SPEED lOW-POWER PRECISION DUAL OPERATIONAL AMPLIFIERS PARAMETER MEASUREMENT INFORMATION >--+-_-Vo >----Vo 10 kn 10 kn NOTE A: CL includes fixture capacitance. (a) SINGLE·SUPPLY (b) SPLlT·SUPPLY Figure 4. Small·Signal Pulse Response Test Circuit typical values Typical values as presented in this data sheet represent the median (50% point) of device parametric performance. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS .15265 2-951 TlE2022,TlE2022A, TlE2022B EXCAlIBUR HIGH-SPEED lOW-POWER PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS table of graphs FIGURE Via Input offset voltage liB Input bias current II Input current YOM Maximum peak output voltage YaH High-level output voltage VOL Low-level output voltage YO(PP) Maximum peak-to-peak output voltage swing AYD Differential voltage amplification lOS Short-circuit output current ICC Supply current CMRR SR Differential input voltage 8 vs Output current vs Temperature Common-mode voltage vs vs High-level output current vs Temperature vs Low-level output current vs Temperature vs Frequency vs Frequency vs Temperature vs Supply voltage vs Temperature vs Supply voltage vs Temperature Common-mode rejection ratio vs Frequency vs Temperature Small-signal Large-signal Peak-to-peak equivalent input noise voltage Yn Equivalent input noise voltage Bl Unity-gain bandwidth I/lm vs vs Slew rate Pulse response YN(PP) Temperature 5 6 7 Distribution Phase margin Phase shift . O.ltolHz 0.1 to 10 Hz vs Frequency vs Supply voltage vs Temperature vs Supply voltage vs Capacitive load vs Temperature vs Frequency TEXAS ~ INSTRUMENTS 2-952 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 10 11 12 13 14 15,16 17 18 19,21 20, 22 23 24 25 26 27,28 29,30 31 32 33 34 35 36 37 38 17 TLE2022, TLE2022A, TLE2022B EXCALIBUR HIGH-SPEED LOW-POWER PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt TLE2022 INPUT BIAS CURRENT TLE2022 DISTRIBUTION OF INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE 20 -50 398 amplifiers tested 16 lot Vee± = ±15V TA = 25'e Vee± = ±15V TA = 25'e P Package -45 «<: E -40 ~ :::I 12 ~ () '0 '" '" E 1: .,'" l~ .~ -35 7 OJ ~ OJ :; 8 ~ Q. -= -30 ~ I Q. ........ ffi 4 - 25 I o - 600 o - 20 -15 Via - Input Offset Voltage - J.l V -10 -5 o 5 10 VIC - Common-Mode Input Voltage - V Figure 5 Figure 6 TLE2022 INPUT BIAS CURRENT INPUT CURRENT - 400 - 200 200 600 400 vs vs FREE-AIR TEMPERATURE DIFFERENTIAL INPUT VOLTAGE -50 1.0 Vee ± = ±15 V 0.9 Va = 0 -45 VIC = 0 «c: I r---- ~ ............ iii :; Q. -= -30 I 0.8 « ~ ~ :l () -35 r------ "~ 'E -40 ~ 15 0.7 E !! 0.6 5 () :; ~ ......... Q. ~ I ~ E -= .: VCC±=±15V VIC = 0 TA = 25'C 0.5 0.4 0.3 0.2 -25 I 0.1 -20 - 75 - 50 - 25 0 25 50 75 100 TA - Free-Air Temperature -"C 125 o o ) 0.1 Figure 7 0.2 0.3 0.4 0.5 0.6 0.7 0.8 IVIDI- Differential Input Voltage - V 0.9 1.0 Figure 8 toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-953 TlE2022, TlE2022A, TlE2022B EXCAlIBUR HIGH-SPEED lOW-POWER PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt MAXIMUM PEAK OUTPUT VOLTAGE YS OUTPUT CURRENT MAXIMUM PEAK OUTPUT VOLTAGE YS FREE-AIR TEMPERATURE 15 16 > I .. 14 ~ 12 = 10 ""III 8 E E 6 ::!i 4 0 > S 2 4 1101- 6 8 10 Output Current - rnA ~ E E " .. 'l( 12 I ::!i 12.5 VCC± = ±15V o 12 -75 14 -25 0 25 50 75 TA - Free-Air Temperature - 100 .......... 4 I III Ol "~ 3 VCC 4.8 S '0 > S0S \ 2 ~ ..5 1: :r: I :r: > > .2' NoLoa~ 4.4 .2' 0 0 -2 -4 -6 / 4.6 0 :r: I :r: o =5 V > 1: -8 -10 4.2 4 - 75 V ./ V V........V - 50 IOH - High-Level Output Current - rnA / ,./ / .....--- ~~10kQ - 25 0 25 50 75 100 TA - Free-Air Temperature - °c Figure 12 Figure 11 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ 2-954 125 °c 5 = = VCC 5V TA 25°C o -50 HIGH-LEVEL OUTPUT VOLTAGE YS FREE-AIR TEMPERATURE 0 ..5 TA = 25°C HIGH-LEVEL OUTPUT VOLTAGE YS HIGH-LEVEL OUTPUT CURRENT '0 ~ RL = 10 kQ > Figure 10 S > S0S 13 ::!i Figure 9 > I I ~ 13.5 5 III Ol ~ -YOM - 8 \ o o 14 0- \ 2 YOM + ;g \ \ I 14.5 ~ \ - VOM- ';( ::!i 0 I III J ~ 0- .." > \ YOM + S 0S .. ............. \ III Ol = VCC± ±15V TA 25°C INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 125 TLE2022, TLE2022A, TLE2022B EXCALIBUR HIGH-SPEED LOW-POWER PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt I.OW-LEVEL OUTPUT VOLTAGE LOW-LEVEL OUTPUT VOLTAGE vs vs LOW-LEVEL OUTPUT CURRENT FREE-AIR TEMPERATURE 5 > I II) Vee = 5 V TA = 25°C t--. r-- I > I 4 II) Cl Cl ~ J! '0 > '5 ~ > '5 > o o o > 0.75 r---.... 0 0 ..J ~r--... 0.5 1.5 2 2.5 Vee -75 3 =5V -50 -25 0 25 50 75 100 125 IOL - Low-Level Output Current - mA TA - Free-Air Temperature - °e Figure 13 Figure 14 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs vs FREQUENCY FREQUENCY > 5 30 II) Cl J! ;g 4 '5< Vee = 5 V RL = 10 kQ Ii:" o TA = 100 ~t-. 25°C 1k 10 k f - Frequency - Hz f - Frequency - Hz Figure 15 Figure 16 100 k 1M tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ." IN SfRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-955 TlE2022, TlE2022A, TlE2022B EXCAlIBUR HIGH-SPEED lOW-POWER PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt TLE2022 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION TLE2022 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION and PHASE SHIFT vs vs FREQUENCY FREE-AIR TEMPERATURE 120...-_-.-_ _,..-_-.-_ _,..-_-.-_--,600 6 > 100 RL ~ 80 0 I = 10 kn -- 5 c 0 60 1000 60 1200 '; ~ .:: :cen is. E ..:ll <., ... > . .c Cl c.. '-..... }! E e 20 3 - 2 ~ = 10 kQ +---t----t---t--V-4-+l180 =30 pF TA = 25°e -20L-______ __ __ o RL eL ~_~ 10 ~ i5 I 0 E I :; o -50 -25 o 25 50 75 100 TA - Free-Air Temperature - De SHORT-CIRCUIT OUTPUT CURRENT SHORT-CIRCUIT OUTPUT CURRENT vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 15 =0 = 25°e 125 =±15V =0 Vee± < E 10 I Vo ~ ~ (5 5 vlD 5 '5 c.. = -100 mV :; o 0 VID =-100 mV VID = 100 mV 0 ·s ~ (3 ~ ~ "- = 5 V___ '\ ~r-- Figure 18 '5 c.. o 'S o -75 1M ~ 8 '" "" Vee Figure 17 Vo TA 10 "'" = ±15V C 15 < Vee± > < ~_~ 1k 10 k 100 k f - Frequency - Hz 100 "'- 'S 1400 I 40 4 - - - -5 .c en r--- :n -10 .9 -15 o 2 4 VID 6 6 10 en = 100 mV r-- I12 14 -5 ~ .c :n r---- -10 .9 -15 - 75 16 - 50 IVee ±I-Supply Voltage - V r-- --- --.:::.,. - 25 0 25 50 75 100 TA - Free-Air Temperature - De Figure 20 Figure 19 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS 2-956 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 125 TlE2022, TlE2022A, TlE2022B EXCALIBUR HIGH-SPEED lOW-POWER PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt SHORT-CIRCUIT OUTPUT CURRENT SHORT-CIRCUIT OUTPUT CURRENT vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 6 15 TA = 25 DC Vcc = 5 V ct E I ct E 10 I VID = -100 mV ~ 5 :; Co :; o o U C I!! u!:i :; Co :; Va = VCC 0 ·S '5 l:! l:! ~ -5 .s::; Va = 0 .9 o 5 10 15 --r-20 2 VIO = 100mV Va = 5V 0 -2 ~ -4 rn -6 0 .s::; VID = 100 mV r--- ----.... rn I rn -10 -15 4 , r- rn I-- 25 .9 -8 -10 - 75 30 - 50 Vcc - Supply Voltage - V '1I C I!! 300 !:i Figure 22 SUPPLY CURRENT SUPPLY CURRENT vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE ~ -- -- ~ f..-- f..-- !.--- ~-- d--./ TA = 25 o TA = 125°C~ TA = - 55°C-l o,.. ..- ~t ~V 400 bI ,V-- '1I C Co 300 a,. 200 Co 200 rn I -- 125 -+--b VCC±=±15V I--l-- Vcc± = ±2.5V I!! u!:i Q. Jl - 25 0 25 50 75 100 TA - Free-Air Temperature- DC 500 Va = 0 No Load -- Figure 21 500 400 VID = 100 mV .......... ~a= 0 I I ~ ~ 100 100 o o o 2 4 6 8 10 12 14 16 va = 0 No Load -75 -50 -25 0 25 50 75 IVcc ±I- Supply Voltage- V TA - Free-Air Temperature - °c Figure 23 Figure 24 100 125 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ." INSTRUMENlS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-957 TLE2022, TLE2022A, TLE2022B EXCALIBUR HIGH-SPEED LOW-POWER PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt TLE2022 COMMON-MODE REJECTION RATIO SLEW RATE vs vs FREQUENCY FREE-AIR TEMPERATURE 120 TA = 25'C al "0 ....... I .!2 100 ~ 'iU c c: ·u0 80 .. c: .. 60 "0 ~ 0 ::;: c0 E E 40 ~ \ 0 () I 20 c: c: * c: ~ ::;: en 0.4 lk 10k lOOk f - Frequency - Hz 1M en 0.2 '\ o 10M Figure 25 Figure 26 VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE VCC± = ±15 V RL 10 kQ CL 30 pF 50 TA = 25'C -I,...--+--_+_--.-f___--I See Figure 4 = = .. I RL = 20 kQ CL = 30 pF See Figure 1 - 75 - 50 - 25 0 25 50 75 100 TA - Free-Air Temperature - 'C 100~--~--~----~---r--~~--~ ~ - c: o 100 VCC = 5 V I () 10 I ,-- o.S I VCC ± = ±15 V ,...-- ::!. :> VCC=~ ~ .~ O.S .. VCC±=±15V ~ 2.S 125 r-----r------,----..,..---...,...----or----..., VCC = 5 V RL 10 kQ CL 30 pF 2.55 TA = 25'C > See Figure 4 I = = Gl ~ Ol S ;g S 0~-~--1--+---+~f___~-4 c.. S o I o > -50~-4---~--+--_+_--I~~-4 g .§. ,. o I o > 2.451-----+--..........--+---+---11--1----1 -100~--~--~----~--~----~--~ o 40 20 t-Time-J.ls 60 2.5 J-----+-----1c----\---+--If---t---i 2.4 ~ __ ~ __--I.____..J.-__.....i..____l..-__..... o 80 Figure 27 40 20 t-Time-J.ls SO Figure 28 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS 2-958 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 80 TLE2022, TLE2022A, TLE2022B EXCALIBUR HIGH-SPEED LOW-POWER PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE > .,I 15 4r---~---r---'----~---r---' Vcc± = ±15V RL = 10 kQ 10 CL = 30 pF TA = 25°C See Figure 1 5 VCC = 5 V RL=10kQ CL 30 pF 3 TA = 25°C See Figure 1 = Ol l!! 0 > ; Q. ; 0 0 I 0 -5 -10 -15 0.4 .l!! 0.3 >., 0.2 Ol '" / / .l!! "0 > ; o o I o > 20 1- Time - IlS 0 40 80 60 Q. .= "'.,'"" £ ..:: .,'" Q. 0 20 40 60 60 1- Time-Ils Figure 29 Figure 30 PEAK-TO-PEAK EQUIVALENT INPUT NOISE VOLTAGE 0.1 TO 1 Hz PEAK-TO-PEAK EQUIVALENT INPUT NOISE VOLTAGE 0.1 TO 10 Hz ~ VCC± = ±15V TA = 25°C 0.5 ., 0.4 .l!! > 0.3 Ol "0 VCC± = ±15V TA = 25°C " >::I. > I z ; 0.1 0 -0.1 .,-' rTf i.,..., .J.. l.l.o.I lill 11IlI. ,10 •• It.. •.1. l 'lIP' I"P -ny 11' ... .Ia. ~1' 0.1 Q. !pili .= 0 "'&'"" - 0.1 ft--HH+-1I-f--Ij-!J.t-'t--l~-I"'tIF-.p-I-+-Hrtt-t £ -0.2 ..:: - 0.2 r--+-'+-t---'-+---+--+--+---/--+----1r-~ -0.3 ~ - 0.31--t--l--+---+---I--+--t--+--lr---I -0.4 Z > -0.5 &" - 0.4 r--+---t--+---+--+--+--t--+-----,r-~ Q. I ~ &" Z o > - 0.5 L....-l---'_ _..........I._-'---'-_"'--"---'......... 2 3 4 5 6 7 8 9 10 o 1- Time-s 2 3 4 5 6 I-Time-s Figure 31 Figure 32 7 6 9 10 TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-959 TlE2022, TlE2022A, TlE2022B EXCALIBUR HIGH-SPEED lOW-POWER PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY SUPPLY VOLTAGE 200 I 4 '" ~> c . vcc± = ± 15 V RS = 100Q TA = 25°C See Figure 2 160 GI Cl S g GI ,l!! 120 0 E. 'E ~ ".,. N :I: ::E I III III c '; 1\ 80 3 2 V V V -- l- /' :J 1\ 40 ,/" b 'c \ GI W I RL = 10 kQ CL = 30 pF TA = 25°C See Figure 3 :6'i "c z ;; Q. UNITY-GAIN BANDWIDTH vs I ~ c > 0 0 1 10 100 1k f - Frequency - Hz 0 10 k Figure 34 UNITY-GAIN BANDWIDTH PHASE MARGIN vs vs FREE-AIR TEMPERATURE SUPPLY VOLTAGE N I 3 J:! :2;: " c '" NI , VCC±= C III III 2 ±15~ I l'--. '; k VCC = 5 V 16 c .. 53 5l' 1'---. "I c f'-... ~ 's, :;; GI In 1-- r--- ~ o III J:! 49 47 45 -25 0 25 50 75 100 TA - Free-Air Temperature - °c 125 / 0I ....E 14 16 r- V 51 ::E I -50 RL = 10 kQ CL = 30 pF TA = 25°C See Figure 3 !! t"-... t-- :J -75 14 55 RL = 10 kQ CL = 30 pF See Figure 3 '", ::E 4 6 8 10 12 IVcc ±I- Supply Voltage - V Figure 33 4 :I: 2 o 2 V 4 V 6 8 10. 12 IVcc ±I- Supply Voltage - V Figure 35 Figure 36 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS 2-960 POST OFFICE BOX 655303' DALLAS, TEXAS 75265 TlE2022, TlE2022A, TlE2022B EXCALIBUR HIGH-SPEED lOW-POWER PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt PHASE MARGIN vs LOAD CAPACITANCE 70 60 ..,g> c '" RL = 10 kn ~ 50 I .~ ~ VCC=5~ 40 30 '" a. E -<> 52 :::--r----r-- .c I TA = 25°C See Figure 3 ~C± = ±15V ::E 5l 54 I ., ~ PHASE MARGIN vs FREE-AIR TEMPERATURE -- ., " C. Q) ,/' . I / 50 .., I ::::-- VCC±=±15V r-- -..... Q) - -- I I-- c 48 'c, :;; ~ ::E .'" 46 Q) .c a. I 20 E 44 --- VCC = 5 V r--.. -<> 42 10 o o RL = 10 kn CL = 30 pF See Figure 3 20 40 60 80 CL - Load Capacitance - pF 100 40 -75 -50 -25 0 25 50 75 TA - Free·Air Temperature - Figure 37 100 125 'c Figure 38 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. APPLICATION INFORMATION voltage-follower applications The TLE2022 circuitry includes input protection CF = 20 to 50 pF diodes to limit the voltage across the input ....-IF $: 1 mA transistors; however, no provision is made in the circuit to limit the current if these diodes are forward-biased. Note that this condition can occur when the device is operated in the voltagefollower configuration and driven with a fast, large>-......-Vo signal pulse. It is recommended that a feedback resistor be used to limit the current to a maximum VCCof 1 mA to prevent degradation of the device. Also, remember that this feedback resistor will Figure 39. Voltage Follower form a pole with the input capacitance of the device. For feedback resistor values greater than 10 kQ, this pole will degrade the amplifier's phase margin. This problem can be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 39). input characteristics The input of any unused amplifiers should be tied to ground to avoid possible oscillation. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-961 2-962 TlE2024, TlE2024A, TlE2024B, TlE2024Y EXCALIBUR HIGH-SPEED lOW-POWER PRECISION QUAD OPERATIONAL AMPLIFIERS 03265, MAY 1989 - REVISED OCTOBER 1991 available features • Supply Current ... 1 rnA Max • High Open-Loop Gain ... 7 V/IlV (137 dB) Typ • High Unity-Gain Bandwidth ... 2.8 MHz Typ • Low Offset Voltage ... 500 IlV Max • High Slew Rate ... 0.45 V/IlS Min • • Supply Current Change Over Military Temp Range ... 50 IlA Typ Offset Voltage Drift With Time 0.0051J.V/mo Typ • Low Input Bias Current ... 50 nA Max • Low Noise Voltage ... 19 nVNHz Typ at f = 10 Hz • Specified for Both 5 VlGnd and Operation • Phase-Reversal Protection ± 15 V description LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION and PHASE SHIFT vs FREQUENCY The TLE2024, TLE2024A, TLE2024B, and TLE2024Y devices are precision, high-speed, lowpower quad operational amplifiers using Texas Instruments patent-pending Excalibur process. These devices combine the best features of the OP421 with highly improved slew rate, unity-gain bandwidth, and input offset voltage. co 120 Typ ICC '"0 I ,2 100 , N I "'- !E 80 ii E The complementary bipolar Excalibur process utilizes isolated vertical P-N-P transistors that yield dramatic improvement in unity-gain bandwidth and slew rate over similar devices. < " ~ "0 > I PHASE SHIFT I" AV"";;-- 60 , 40 ~ 20 "'-I'-... = VCC± ±15 V RL 10 kQ ~ C I o > """ \: ~m = 52~ ""- I'-... = = 30 pF TA = 25'C 0 CL <-20 10 100 This combination of excellent dc performance with a common-mode input voltage range that includes = 2.B MHz f I ~ The addition of a patent-pending bias circuit in conjunction with this process results in extremely stable parameters with both time and temperature. This means that a "precision" device remains a precision device even with changes in temperature and over years of use. 60' = 235 !lA/amplifier 100' .t: :c 'i- !\ ""-,: \ N 1k 10 k 100 k 1M BO' 120' III " ~ .c 140' 0. I 160' 1BO' 200' 10 M f - Frequency - Hz AVAILABLE OPTIONS TA VIOmax AT 25°C PACKAGE CERAMIC SMALL CHIP PLASTIC OUTLINE CARRIER DIP DIP (FK) (J) (N) O°C 500 JlV (OW) TLE2024BCDW to 750 JlV TLE2024ACDW TLE2024ACN 70°C 1000J.lV TLE2024CDW TLE2024CN -40°C 500 JlV TLE2024BIDW TLE2024BIN TLE2024AIDW TLE2024AIN to 750 JlV 85°C 1000JlV -55°C 500 JlV TLE2024BMDW to 750 JlV TLE2024AMDW 125°C 1000J.lV TLE2024MDW CHIP FORM (Y) TLE2024BCN TLE20241DW TLE2024Y TLE20241N TLE2024BMJ TLE2024BMN TLE2024AMFK TLE2024AMJ TLE2024AMN TLE2024MFK TLE2024MJ TLE2024MN The D package is available taped and reeled. Add the suffix R (e.g., TLE2024CDWR). Chips are tested at 25°C. PRODUCTION DATA informalionisturrentasofpublication dati. Products conform to spacifications per the terms of Texas Instruments standard warranty. Production processing does natnac.ssarily include testing olall parameters. TEXAS ~ INSTRUMENTS POST OFFICE SOX 655303 • DALLAS, TEXAS 75265 Copyright © 1991 , Texas Instruments Incorporated 2-963 TlE2024, TlE2024A, TlE2024B EXCAlIBUR HIGH-SPEED lOW-POWER PRECISION QUAD OPERATIONAL AMPLIFIERS description (continued) the negative rail makes these devices the ideal choice for low-level signal conditioning applications in either single-supply or split-supply configurations. In addition. these devices offer phase-reversal protection circuitry that eliminates an unexpected change in output states when one of the inputs goes below the negative supply rail. A variety of available packaging options includes small-outline and chip carrier versions for high-density systems applications. The e-suffix devices are characterized for operation from ooe to 70°C. The I-suffix devices are characterized for operation from -40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of -55°C to 125°C. ow PACKAGE 1 OUT VCC + 21N + 21N20UT NC 1 6 I 4 OUT 41N41N + VCC _/GND 31N + 31N30UT J or N PACKAGE FK PACKAGE (TOP VIEW) (TOP VIEW) ~ ~ (TOP VIEW) I lOUT l1N- ~O()O~ ...-..-2..q...,. 3 2 1 2019 liN + NC 4 18 5 17 VCC+ NC 21N + 6 16 7 15 8 14 41N + NC VCC_/GND NC 31N + 9 10 11 12 13 II-()I-I z::Jz::Jz -0 0"IN ",,,, NC - No internal connection TEXAS ~ INSTRUMENTS 2-964 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VCC + 21N + 21N20UT 6 7 40UT 41N41N + VCC_/GND 31N + 31N30UT TLE2024Y EXCALIBUR HIGH-SPEED LOW-POWER PRECISION QUAD OPERATIONAL AMPLIFIERS chip Information These chips, properly assembled, display characteristics similar to the TLE2024. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform. VCC+(4) IN+(3)~ BONDING PAD ASSIGNMENTS IN-(2 OUT (7) OUT (1) ~ + IN+ (5) IN+(10)~ - IN- 6 () OUT (8) IN-(9)~ + IN+(12) OUT (14) - IN- (13) VCC- (11) CHIP THICKNESS: 15 TYPICAL BONDING PADS: 4X4MINIMUM TJ max = 150°C TOLERANCES ARE ±10% ALL DIMENSIONS ARE IN MILS I.,. 140 -'1 1I1I 1111 II II 111111 II II 111111 11111111111111111111 II 1111 1111 111111 1111 II I PIN (11) INTERNALLY CONNECTED TO BACKSIDE OF CHIP TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-965 cm~ b c:Xr>(,,)m equivalent schematic (each amplifier) '"'" C>N r-O O N -cc:J~ mC:~ :::JJ:::JJ~ :!:i2:!;; _C')N Vcc+ 1 0 0:x: Z,N >(I)~ Q'~ ~~ Q" r--C.?> >m~ Smr-C Cm r-r-N 0 01 024 -0 :!!=:N ml~ t-----il---;r..,039 :::JJ -C~c:J (l)0~ =:r- Z ~d ~~ ~~ mm ::xJN o ~ 00 IN - - ....._-r-i ~ 04 H040 IN+-~~-+~--~r-----+-~-{- 01 Cl 06>--I=209 =* (I) o z 02 R6 R1 -C N ::xJ~ m-< R2 R4 R3 R5 ~ 15 ~26 016 T VCC_ /GNO Component count: Diodes - 16 Capacitors - 16 Resistors - 28 Transistors - 160 [(030 ~ 033 018 I '037 TLE2024, TLE2024A, TLE2024B, TLE2024Y EXCALIBUR HIGH-SPEED LOW-POWER PRECISION QUAD OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, VCC+ (see Note 1) ..................................................... 20 V Supply voltage, VCC- (see Note 1) .................................................... -20 V Differential input voltage (see Note 2) .................................................. ±0.6 V Input voltage, VI (any input, see Note 1) ............................................... VCC± Input current, II (each input) .......................................................... ±1 mA Output current, 10 (each output) ..................................................... ±40 mA Total current into VCC+ terminal ...................................................... 80 mA Total current out of VCC- terminal .................................................... 80 mA Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... unlimited Continuous total dissipation ........................................ See Dissipation Rating Table Operating free-air temperature range,TA: C-suffix ................................... O°C to 70°C I-suffix ................................. -40°C to 85°C M-suffix ............................... -55°C to 125°C Storage temperature range ................................................... -65°C to 150°C Case temperature for 60 seconds: FK package .......................................... 260°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: DW or N package ............. 260°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package ................... 300°C NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC-' 2. Differential voltages are at the noninverting input with respect to the inverting input. Excessive current will flow if a differential input voltage in excess of approximately ±600 mV is applied between the inputs unless some limiting resistance is used. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE DERATING FACTOR OW FK 1375 mW 11.0 mW/oC J 1375mW 1150mW 11.0 mW/oC 880mW 880mW 9.2 mW/oC 736mW N = ABOVE TA 25°C 8.2 mW/oC = = TA s 25°C POWER RATING 1025mW PACKAGE TA 85°C POWER RATING 533 mW TA 70°C POWER RATING 656mW = TA 12SoC POWER RATING 205 mW 715mW 275mW 715mW 598mW 275 mW 230mW recommended operating conditions I·SUFFIX C-SUFFIX MAX MIN ±2 ±20 0 -15 3.5 13.5 0 70 MIN Supply voltage, VCC+ Common-mode input voltage, VIC I Vec = 5 V -' Vec+ = ±15V Operating free-air temperature, TA NOM NOM M-SUFFIX UNIT MAX MIN ±2 ±20 ±2 ±20 0 -15 3.2 13.2 0 -15 3.2 13.2 V -40 85 -55 125 °c NOM MAX V TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303· DALLAS, TEXAS 75265 2-967 ~ electrical characteristics at specified free-air temperature, Vee '" TEST CONDITIONS PARAMETER VIO TAt Input offset voltage Temperature coefficient of (lVIO Input offset voltage long-term ~ 0_ :HZ 110 Input offset current liB Input bias current Common-mode input voltage range VIC = O. RS = son ~f!1~ ~~~ VOL Large-signal differential AVO ~ j CMRR voltage amplification C~m~on-m~de rejeCIJon rafio Supply-voltage rejection kSVR ratio (t.VCC /aVIO) ICC Supply current Supply current change over t.ICC operating temperature range Vo = 1.4 V to 4 V, RL VIC = VICR min, = RS = 10 kn son VCC = 5Vt030V No load TYP MAX 800 UNIT c:>C')~ c>= J,lV °COol:oo ""Cc:C') 2 2 2 J,lV/oC 25°C 0.005 0.005 0.005 J,lV/mo 25°C 0.6 45 0.5 5 40 5 55 60 65 0.4 35 60 -0.3 0 -0.3 0 -0.3 to to to to to 3.5 4 3.5 4 3.5 4 0 0 0 to to to 3.5 3.5 3.5 3.7 4.2 3.9 4.2 0.7 0.8 0.7 0.2 0.1 25°C Full range 80 25°C 98 Full range 93 80 1.5 0.8 0.3 1.5 90 82 92 112 100 103 95 800 1200 15 4.3 V 0.8 800 1200 dB 117 800 dB 1200 1200 15 V V/J,lV 95 1200 15 cnOco :EC') :::J:J m C') Ci) (5 Z 1.5 98 1200 Full range ""C .... rr-om :::J:J 85 115 r-""C> _mC') -m_ SC-4 nA V 0.95 85 >cnol:oo "TI:E~ :::J:J""C0I:00 0.1 82 Z'N ""C 0.7 0.4 m:::J:J:::J:J -4 >::c r- . ~-m -C)N 0::c= m 0.95 0.1 nA CN mIN 3.8 0.95 25°C Full range 4 3.7 50 55 0 3.9 4 4 to 25°C Full range 6 6 Full range 250C Vo = 2.5 V, MIN 1050 25°C Full range Low-level output voltage MAX 1300 son RL = 10 k.Q TYP Full range 25°C High-level output voltage MIN 600 Full range RS = MAX TLE2024BC 8SO Full range ;~d ~~~ TYP TLE2024AC 1100 Full range VOH MIN cm-4 25°C 25°C VICR TLE2024C Full range input offset voltage drift (see Note 4) =5 V(unless otherwise noted) J.lA J.lA tFuli range is OOC to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life testa! TA = 150°C extrapolated to T A = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. electrical characteristics at specified free-air temperature, PARAMETER Via TEST CONDITIONS Input offset voltage Temperature coefficient of aVIO drift (see Note 4) 110 Input offset current liB Input bias current TAt = ± 15 V(unless otherwise noted) TLE2024C MIN VIC = 0, RS = 50 Q TYP TLE2024AC MAX 0- :BZ VICR voltage range ~~c:::o~~ 500 700 ~~ i!!1'!'1 ~z ~u1..t t\; Ol ~ YOM - Maximum negative peak output voltage swing Large-signal differential AVO CMRR kSVR ICC voltage amplification Common-mode rejection ratio Supply-voltage rejection ratio (t.VCC ±i t.VIO) = 10 kQ 2 /lVfOC 25°C 0.006 0.006 0.006 /lV/mo 25°C 0.6 6 50 = ±10V, VIC = VICR min, VCC± RL RS = 10 kQ = 50Q = ±2.5Vto±15V operating temperature range Va = 0, No load 5 0.4 5 60 45 55 - 15 - 15.3 40 to to to to to 14 13.5 14 13.5 14 -15 -15 -15 to to to 13.5 13.5 13.5 13.9 14.1 14 14.2 13.8 14.3 -13.7 -14.1 -13.7 -14.1 -13.6 0.4 25°C 92 Full range 88 25°C 98 Full range 93 2 0.8 4 1 0.8 102 94 105 97 100 103 95 25°C Full range 1050 Full range 20 1400 1400 7 1400 108 c:: dB :l:I ::I: 1050 dB 1400 1400 20 C::I:rc::cn~ »"'Cc::;) 117 1400 20 V C'J-4 98 1050 » r- VI/lV 93 115 V c::J 1 90 112 (") 13.9 -13.6 0.4 V m -13.6 25°C nA >< -13.7 -14.1 Full range nA -15.3 to 13.8 50 55 -15 13.5 13.7 4 4 60 65 25°C 25°C 0.5 6 Full range Full range Va /lV 2 = 50Q Supply current Supply current change over t.lec RL UNIT 2 Full range Maximum positive peak YOM + output voltage swing MAX 750 25°C ~~ TYP 950 Full range RS MIN 1000 25°C Common-mode input TLE2024BC MAX 1200 Full range -0 TYP 25°C -15 -15.3 5l-i MIN Full range Full range input offset voltage Input offset voltage long-term Vee ± om I ' ) m~ 00(") !lA !lA tFull range is O°C to 70o e. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test atTA =150a C extrapolated to T A =25°e using the Arrhenius equation and assuming an activation energy of 0.96 eV. "'C ~ mr--4 :D0r- :=;~~ -"'Cc::;) 001') Z::E~ F=m~ » :l:I~ 3:"'C-4 "'C:D::;:; r-ml') -(")c::;) :!!cnl') :bm <0 m-~ :l:IOc::J en Z (") b operating characteristics at Vee 2l Vn om-l c::>m Phase margin at unity gain See Figure 3 25°C 52° 52° 52° 0 enoc:J :En m V/}lS Bl ooe to 70 e. >en~ r-'"'C> _mn -m~ sq-l '"'Cr-rr-om ::x:J'"'C~ TlE2024AC In tFull range is >:::t:r-"'N 0:::t:= Z'N "'""I- m mIN TlE2024C TYP '"'Cc::n m::x:J~ ::x:J -I "'T'I:E~ =± 15 V MIN >n~ c>= eN 0c:J~ VI}ls 30 See Figure 3 SR 0.5 17 See Figure 3 TAt MAX 21 Phase margin at unity gain =BZ 0.5 TYP 50 Unity-gain bandwidth TEST CONDITIONS MIN 30 Bl PARAMETER MAX 17 4>m g TYP 21 In -< MIN 0.1 operating characteristics at specified free-air temperature, Vee ± TLE2024BC TLE2024AC MAX 0.5 Equivalent input noise current 0_ ~~ TYP ::x:J '"'C ::x:J m ~ en °Z electrical characteristics at specified free-air temperature, Vee = 5 V(unless otherwise noted) PARAMETER Via TEST CONDITIONS Input offset voltage Temperature coefficient of (lVIO drift (see Note 4) 110 liB ~ 0- :HZ ~~d VICR voltage range VOM - Maximum negative peak output voltage swing Large-signal differential AVO .... CMRR voltage amplification Common-mode rejection ratio Supply-voltage rejection kSVR ICC ratio (t. VCC ± / t. Via) = ±2.5Vto±15V operating temperature range 2 Vo = 0, No load 2 25°C 0.005 25°C 0.6 6 45 60 40 55 to to 4 3.5 to 3.5 60 -0.3 to to to 4 3.5 4 0 to to to 3.2 3.2 3.2 4.2 3.9 4.2 0.8 0.7 0.95 25°C 0.2 Full range 0.1 25°C 80 Full range 80 25°C 98 Full range 93 4 1.5 0.8 1.5 0.1 90 82 112 100 85 115 103 30 117 1200 800 1200 30 V/flV :ll ::I: dB c;;,=F -I dB 98 800 V >< ~ rt:D c::: C') 95 85 1200 Full range 1.5 0.1 95 1200 V 0.8 0.95 92 82 800 4.3 0.7 0.4 nA m 0.95 0.3 nA V 3.8 3.7 0.7 50 0 0 3.7 35 5 0 3.9 4 65 -0.3 flV flV/mo 0.4 6 0 -0.3 25°C Full range 5 70 0 0.005 0.5 UNIT flVloC 2 0.005 7 Full range 25°C Supply current Supply current change over t.ICC VCC± = 50n MAX 800 25°C RS TYP 600 Full range VIC ~ VICR min, MIN 850 RS ~ 50n = 10kn TLE2024BI MAX 1050 Full range RL TYP 1300 25°C VO~±10V, MIN 1100 Full range RL = 10 kn TLE2024AI MAX 25°C Full range ~z ~ = 50n TYP Full range 25°C Maximum positive peak VOM + output voltage swing ~W~ i;; RS Input bias current 1!lC:~ ~~ ~l"I VIC ~ 0, Input offset current Common-mode input TLE20241 MIN Full range input offset voltage Input offset voltage long-term TAt 1200 1200 30 f1A f1A tFull range is - 40°C to 85°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life testatTA ~ 150°C extrapolated to T A ~ 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. C:::(I)r:S:--C m cmN Ome;:) -cc~ mr-~- :ll0-l ~:Er­ --em OON ~:E~ r-mt :s:-:ll~- S-C-l -c:llrr-mm -C":I N "T'I-e;:) b~ m~N :llO.j:::o (l)Z:~ ~ electrical characteristics at specified free-air temperature, Vee ± = ± 15 V (unless otherwise noted) TLE20241 I\) PARAMETER Via Input offset voltage (lVIO input offset voltage TEST CONDITIONS Input offset voltage long-term 110 Input offset current liB Input bias current MIN TYP 25°C Full range Temperature coefficient of drift (see Note 4) TAt = 0, RS = 50n 0_ 3lZ i~~d ~~ ~tr'l ~z VICR voltage range YOM - ~uJ4r In AVD ~ CMRR Large-signal differential kSVR ICC voltage amplification Common-mode rejection ratio Supply-voltage rejection ratio (!!"vCC ± / ~ Via) 25°C 0.6 6 Supply current change over 50 60 ~ICC operating temperature range 45 55 40 65 -15 -15.3 to to 13.5 14 13.5 14 13.5 14 -15 -15 -15 to to to Full range 13.7 13.2 14.1 13.9 14 -13.7 -14.1 Full range -13.6 -13.6 -13.6 0.4 = 10kn VIC = VICR min, RS = 50n 25°C Full range 92 25°C Full range 98 25°C 0.4 102 94 112 100 105 97 115 103 1050 1400 1400 50 1400 V V/flV 108 dB 117 1400 50 dB 1400 1400 50 (") o Z 7 1050 :E m :::c -a :::c m C;; 98 1050 -cC~ -ON :!!:E= miN V 93 95 93 r-r-m C'l)0~ 1 90 Full range Full range 1 4 0.8 88 nA V 14.3 -13.7 -14.1 0.8 >m~:s:m . :::c-c.j::lo 13.8 -13.7 -14.1 >C'I).j::Io nA 13.2 14.2 13.7 2 50 Z.N r--c> -15 -15.3 to 13.8 4 60 to 25°C 0::z::~ 5 to RL No load 0.4 to = ±10V, = 0, 5 6 70 Va Va 0.5 7 25°C Full range Supply current flV flV/mo 25°C = ±2.5Vto±15V 700 0.006 = 50n VCC± 500 0.006 25°C = 10 kn 750 950 UNIT 0.006 Full range RL MAX 25°C 13.2 Maximum negative peak output voltage swing TYP flV/oC Full range Maximum positive peak YOM + output voltage swing MIN 2 Full range RS TLE2024BI MAX 2 25°C Common-mode input TYP 2 -15 -15.3 g--< MIN 1000 1200 Full range VIC TLE2024AI MAX cm-t c::>(,,)m C>N r-= O_N -cCO.j::lo me::.::::c:::C-t :!:j::z::r_c:;m f!A f!A tFull range is - 40°C to 85°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA =150°C extrapolated to TA =25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. . operating characteristics at vee =5v, TA =25°e SR Vn Slew rate at unity gain Vo I ~ i , MIN MAX 0.5 0.5 0.5 TYP f = 10 Hz 21 50 21 50 21 50 17 30 17 30 17 30 f = 0.1 to 1 Hz f = 0.1 to 10 Hz 0.16 0.16 0.16 0.47 0.47 0.47 UNIT V/jJS f=lkHz nV/~ j.tV 0.1 0.1 0.1 pAl,[Hz See Figure 3 1.7 1.7 1.7 MHz Phase margin at unity gain See Figure 3 47° 47" 47° operating characteristics at specified free-air temperature, Vee ± TEST CONDITIONS Slew rate at unity gain Vo = ± 10V, Equivalent input noise f f f f voltage (see Figure 2) Peak-to-peak equivalent VN(PP) input noise voltage ... TLE2024BI MAX Unity-gain bandwidth Vn ~@4' Iii TYP Equivalent input noise current SR ~z MIN Equivalent input noise PARAMETER ~3:: ~1"1"1 TLE2024AI MAX Bl ;m ~z ~c: See Figure 1 TYP In -< ~~~~ = 1 Vto 3 V, MIN voltage (see Figure 2) V Peak-Io-peak equivalent N(PP) input noise voltage ~ TLE20241 TEST CONDITIONS PARAMETER = 10 Hz = 1 kHz = 0.1101 Hz = 0.1 1010Hz See Figure 1 TAt 25°C Full range =± 15 V TLE20241 MIN TYP 0.45 0.42 0.7 TLE2024AI MAX MIN 0.45 TYP 0.7 TLE2024BI MAX 0.42 MIN 0.45 TYP 0.7 MAX 19 15 50 V/Jls 0.42 25°C 19 50 19 50 25°C 15 30 15 30 25°C 0.16 0.16 0.16 25°C 0.47 0.47 0.47 UNIT 30 nV/~ JlV m >< n > c: CD c: ::c In Equivalent inpul noise current 25°C 0.1 0.1 0.1 pAl,[Hz :::t: Bl Unity-gain bandwidth See Figure 3 25°C 2.8 2.8 2.8 MHz C) ;m Phase margin at unity gain See Figure 3 25°C 52° 52° 52° tFull range is - 40°C to 85°C. C::;C-t c: Gf,I'>-a m cmN Ome -aC~ m'--:- ::C0-t :!:i:E.-_..!am °ON :z:~e >c::;N .--m-'=" >::c:=:s:-a-t -a::C.-.--mm -nN "T1-e ~ ;:;;~N ::co-'=" Gf,I:Z:~ ~ electrical characteristics at specified free-air temperature, TEST CONDITIONS PARAMETER Via Input offset voltage long-term 110 lIB ~.... 0_ :HZ ~~d -~l!JC:~ ~ = 0, RS = 50U voltage range VOM- Maximum negative peak . output voltage sWing ~@4r In AVD voltage amplification ~ CMRR Large-signal differential 0.005 0.005 flV/mo 6 45 Common-mode .. . rejection raM Supply-voltage rejection kSVR ratio (AVCC ±/ AVIO) ICC Supply current Supply current change over AICC operating temperature range VIC = VICR min, RS = 50U VCC± = ±2.5Vto±15V No load 60 40 55 35 75 0 -0.3 0 -0.3 to to to to to 3.5 4 3.5 4 3.5 4 0 0 0 to to to Full range 3.7 3.2 3.9 0.8 25°C 0.2 0.1 25°C 80 Full range 80 25°C Full range 98 1.5 0.7 4 0.8 82 112 100 92 800 1200 85 115 103 800 95 dB 117 1200 800 1200 50 dB 1200 1200 50 V V/flV 98 1200 50 1.5 85 95 Full range 0.8 0.1 82 93 V 0.95 0.4 1.5 0.1 90 0.7 ::c ::c .. ~:::t:-I _c:;r0:::t:~ z: ,= >(I.)N I r--C-'=" >m> 3: m ..3: -CO r-r--I -Orm ::!!:e mIN ::C-C= (l.)ON 4.3 0.95 0.3 nA V 3.8 0.95 Full range nA 3.2 4.2 3.7 0.7 50 70 -0.3 4.2 4 8 0 3.9 Full range 0.4 to 25°C 25°C Va = 0, 5 9 80 25°C RL = 10kU 0.5 OC~ -C~-'=" mC:::3: flV 0.005 Full range Va = ±10V, 800 O>N UNIT flV/o C Full range RL = 10ka 600 1050 10 25°C MAX 850 2 3.2 Maximum positive peak YOM + output voltage swing TYP c:::Xr>C")m 2 0.6 25°C Full range MIN 1300 25°C RS = 50U MAX TlE2024BM MIN TYP MAX 2 Full range Input bias current i!'1TI ~z VIC 25°C VICR TYP pm-l TlE2024AM 1100 Full range Input offset current Common-mode input MIN Full range input offset voltage drift (see Note 4) TAt TlE2024M 25°C Input offset voltage Temperature coefficient of aVIO Vee =5 V (unless otherwise noted) f1A f1A tFull range is - 55°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life lest at TA = 150°C extrapolated to T A = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. :et'i; m3: ::c -C ::c m g en o z: electrical characteristics at specified free-air temperature, PARAMETER Via TEST CONDITIONS Input offset voltage Input offset voltage long-term ~ 0- 3lZ i~~=l ~~ i!'1Tl ~z ~~..t 110 Input offset current lIB Input bias current VICR ~ VIC = 0, RS = 50Q Maximum positive peak YOM + output voltage swing YOM - Maximum negative peak output voltage swing Large-signal differential AVD CMRR voltage amplification Common-mode rejection ratio Supply-voltage rejection kSVR ICC ratio (L',vcc±/ aVid alec operating temperature range Va = 0, 1200 9SO 700 0.6 6 No load 5 60 45 55 40 8 50 70 -15 -15.3 to to -15 -15.3 to to to to 13.5 13.5 14 13.5 14 14 -15 -15 to to to 13.2 13.2 Full range 13.7 14.1 13.9 14.2 14 13.7 ~ -13.7 -14.1 -13.7 -14.1 -13.6 -13.6 Full range 0.4 25°C 92 Full range 88 25°C 98 Full range 93 2 0.8 4 1 105 97 0.8 102 94 100 1050 Full range 115 103 117 1050 1400 1050 1400 85 1400 85 = c::: V/flV ::I: dB 1400 n > r- V dB 98 1400 85 108 93 95 1400 7 1 90 112 V 13.8 -13.6 0.4 nA V 14.3 -13.7 -14.1 25°C nA - 15.3 -15 13.2 flY flV/mo 4 75 UNIT flV/oC 0.4 9 80 13.8 Full range 0.5 10 25°C 25°C Supply current Supply current change over 500 25°C 50 MAX 750 0.006 25°C VCC± = ±2.5Vto±15V TYP 1000 -15 RS = 50Q MIN 0.006 Full range VIC = VICR min, TLE2024BM MAX 0.006 RS = SOQ RL = 10 kQ TYP 25°C 25°C Full range RL = 10 kQ MIN 2 Full range Va = ± 10 V, TLE2024AM MAX 2 Full range en " voltage range TYP 2 25°C Common-mode input TLE2024M MIN Full range input offset voltage drift (see Note 4) TAt 25°C Full range Temperature coefficient of aVIO Vee ± = ± 15 V(unless otherwise noted) flA flA tFull range is - 55°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to T A = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. ;:x:J --I '"' r- C::I:m c:::'N >enc::::l c~~ Oms "'CC~ mr--I ;:x:Jor- ~:E~ _'c::::I O"'CN zO,j::o. >:E> r-ms >;:x:J~ s"'C-I "'C;:x:Jrr-mm _n N ~_c::::I b Ol N -en m-oI::o ;:x:JO= enzs :b operating characteristics at Vee Ol PARAMETER SR Vn Vo Equivalent input noise f - 10 Hz f = 1 kHz f = 0.1 to 1 Hz f - 0.1 to 10 Hz voltage (see Figure 2) ~z ~ CiJ4r ~ See Figure 1 TLE2024AM MAX MIN TYP MAX TLE2024BM MIN TYP 0.5 0.5 0.5 21 21 21 0.47 0.47 0.1 0.1 pAlv'Hz MHz 1.7 1.7 47° 47° Vn = ±10V. Equivalent input noise f - 10 Hz f = 1kHz f = O.Ho 1 Hz f = 0.1 tol0 Hz voltage (see Figure 2) Peak-to-peak equivalent VN(PP) input noise voltage In Equivalent input noise current Bl Unity-gain bandwidth flm Phase margin at unity gain tFull range is - 55°C to 125°C. See Figure 1 flV 0::E:~ Z,C) TLE2024M TYP 25°C 0.45 0.7 Full range 0.4 _c:;r >mN r-a~ >m> m 3: 3: -aC~ r r .... or m :!!:e mIN =± 15 V MIN -a=~ ==~ 0.1 1.7 Vo 2:j::E: .... 0.47 47° Slew rate at unity gain nVlv'Hz 17 See Figure 3 SR m C 3: 0.16 Phase margin at unity gain TAt VlfJS 17 flm TEST CONDITIONS C>N r= O_N 0.16 Bl PARAMETER >C')m UNIT 17 See Figure 3 operating characteristics at specified free-air temperature, Vee ± MAX 0.16 Unity-gain bandwidth =BZ ~l"l = 1 Vt03 V. Slew rate at unity gain TYP Equivalent input noise current 0_ ~~ TLE2024M MIN In -i i~~~ em .... · C>----Vo 20 ko. NOTE A: CL includes fixture capacitance. (a) SINGLE SUPPLY (b) SPLIT SUPPLY Figure 1. Slew Rate Test Circuit $ 000. 2.5 v 1000. ~::o. + Vo 1000. Vo ':"- (a) SINGLE SUPPLY (b) SPLIT SUPPLY Figure 2. Noise Voltage Test Circuit 10ko. 10ko. 1000. 2.5 V VI >--_-Vo 1000. >-4-..--Vo 10 ko. 10kQ NOTE A: CL includes fixture capacitance. (a) SINGLE SUPPLY (b) SPLIT SUPPLY Figure 3. Unity-Gain Bandwidth and Phase Margin Test Circuit TEXAS ~ 2-978 INSTRUMENTS POST OFFICE BOX 655303· DALLAS, TEXAS 75265 TlE2024, TlE2024A, TlE2024B EXCALIBUR HIGH-SPEED lOW-POWER PRECISION· QUAD OPERATIONAL AMPLIFIERS PARAMETER MEASUREMENT INFORMATION >-~~-vo 10 kQ NOTE A: CL includes fixture capacitance. (a) SINGLE SUPPLY (b) SPLIT SUPPLY Figure 4. Small-Signal Pulse Response Test Circuit typical values Typical values presented in this data sheet represent the median (50% point) of device parametric performance. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-979 TLE2024, TlE2024A, TlE2024B EXCALIBUR HIGH-SPEED lOW-POWER PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS table of graphs FIGURE Via lIB Input offset voltage Input bias current Distribution 5 vs Common-mode voltage 6 vs Temperature Input current vs . Differential input voltage VOM Maximum peak output voltage vs vs VOH High-level output voltage VOL Low-level output voltage II VO(PP) AVD lOS iCC CMRR SR vs High-level output current 11 vs Temperature 12 13 vs Low-level output current Temperature vs vs Frequency 15,16 Frequency 17 vs Temperature vs vs Supply voltage 19,21 Temperature 20, 22 vs Supply voltage 23 vs Temperature 24 Common-mode rejection ratio vs Frequency 25 Slew rate vs Temperature Maximum peak-to-peak output voltage swing Differential voltage amplification Short-circuit output current Supply current Peak-to-peak equivalent input noise voltage Vn Equivalent input noise voltage Bl Unity-gain bandwidth ¢m Phase margin Phase shift 14 18 26 Small-Signal 27,28 Large-signal 29,30 0.1 to 1 Hz 31 0.ltol0Hz 32 vs Frequency 33 vs Supply voltage 34 vs Temperature 35 vs Supply voltage 36 vs Capacitive load 37 vs Temperature 38 vs Frequency 17 TEXAS ~ INSTRUMENlS 2-980 9 10 vs Pulse response VN(PP) Output current Temperature 7 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE2024, TLE2024A, TLE2024B EXCALIBUR HIGH-SPEED LOW-POWER PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt TLE20248 INPUT BIAS CURRENT TLE2024 DISTRIBUTION OF INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE -60 VCC± = ±15V TA = 25°C ;!. 12 ~ -50 N Package C ~ :J :!l C :::l .. f ..~ '0 a. ~ I I 0 8 :: -40 iii 'S a. .E "- --........ I !'! -30 4 -20 -15 -10 -5 o 10 5 VIC - Common-Mode Input Voltage - V Figure 5 Figure 6 TLE20248 INPUT BIAS CURRENT INPUT CURRENT vs vs FREE-AIR TEMPERATURE DIFFERENTIAL INPUT VOLTAGE = = ~ -50 I 'I'--- :J o -40 m i ~ " .E I i'-- ~ !'! -30 = 0.8 oot E 0.7 C 0.6 0 r-- = VCC± ±15V VIC ~ 0 TA 25°C 0.9 ~ :J ............... 15 1.0 = VCC± ±15V Va 0 VIC 0 C ~ ----r-- Via - Input Offset Voltage - fl V -60 ~ '" 0.5 'Sa. 0.4 .E . : 0.3 0.2 0.1 -20 -75 -50 -25 0 25 50 75 100 TA - Free-Air Temperature _·C 125 j o o 0.1 Figure 7 J 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 IVIDI- Differential Input Voltage - V Figure 8 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303· DALLAS. TEXAS 75265 2-981 TLE2024, TLE2024A, TLE2024B EXCALIBUR HIGH-SPEED LOW-POWER PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt TLE2024B MAXIMUM PEAK OUTPUT VOLTAGE TLE2024B MAXIMUM PEAK OUTPUT VOLTAGE vs vs OUTPUT CURRENT FREE-AIR TEMPERATURE 16 > ., Jl! '" ;g 15 14 \ 12 '5 Q. '5 10 "'.," 8 "E E 6 :::;; 4 0 > ~ '5 1Ii &. \ \ 4 10 jlol- Output Current - mA 2 6 12 8 I :::;; 12.5 ~ 12 -75 14 -50 -25 0 25 50 75 100 TLE2024B HIGH-LEVEL OUTPUT VOLTAGE TLE2024B HIGH-LEVEL OUTPUT VOLTAGE vs vs HIGH-LEVEL OUTPUT CURRENT FREE-AIR TEMPERATURE 5 Vec = 5 V TA = 25°C r-.... > I "- 3 VCC = 5 V ., ....... 4 '\ > '5 a. '5 \ 2 4.8 '" Jl! '0 / 4.6 0 l j .r. I ::t: 0 > ,- 4.2 V /' ,....... ~ V ,....... ~r:10kQ / I ::t: 0 No Loay ./' 4.4 :r'" ::t: V > o o -2 -4 -6 -8 -10 4 -75 -50 -25 0 25 50 75 10H - High-Level Output Current- mA TA - Free-Air Temperature - °C Figure 11 Figure 12 100 toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS 2-982 125 TA - Free-Air Temperature - °C Figure 10 0 l., ..J .r..2' VCC±=±15V RL = 10 k.Q TA = 25°C Figure 9 > '5 c. '5 13 :::;; 5 I 13.5 E "E 'x VOM + ;g Q. -VOM- I :::;; I ., 14.5 ~I Il. 'x 1\ VOM+ 0 II Ol Vee = 5 V TA = 25°e , I 4 II Ol B '0 B '0 > :; "'5 0 li ij .... '5 "'5 0 a; I 2 IOL 1 mA I--r--. ............. ............. r---...... IOL = 0 ............. 0.5 j ) :i: ....0, .... 0 :i: .9 .... " 0.25 0 > > o o > 0.75 > 3 I= I I-:--I'-........ > o 0.5 1.5 2.5 2 IOL - Low-Level Output eurrent - mA Vee -75 3 =5V -50 -25 0 25 50 75 100 TA - Free-Air Temperature - °e 125 Figure 13 Figure 14 TLE2024B MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY TLE2024B MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY > 5 . 30 Ol B '0 > 25 :; "- '5 ...., 20 i. 15 0 \ o vee± = ±15V RL = 10 kn TA = 25'e 100 f - Frequency - Hz Figure 15 1k " 10 k 100 k f - Frequency - Hz 1M Figure 16 toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303· DALLAS. TEXAS 75265 2-983 TlE2024, TlE2024A, TlE2024B EXCALIBUR HIGH-SPEED lOW-POWER PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL·CHARACTERISTICSt TLE2024 TLE2024B LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION and PHASE SHIFT LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs vs FREQUENCY FREE-AIR TEMPERATURE 120.----,....-.....,.--..,.---,..--....--..., 60° 10 > !XI "I 100~~~---4----+---_+----~--~ I: I I: .2 B = c. E ~ N' ~ .S! 80r----P~~----+----+~~r---~ ~ .:: E ~. c( III . III III iii "$. 10 ~_~ 1k 100 10 k f! ~ is ~ 1M o I -25 0 25 50 75 100 Figure 18 SHORT-CIRCUIT OUTPUT CURRENT SHORT-CIRCUIT OUTPUT CURRENT vs vs SUPPL Y VOLTAGE FREE-AIR TEMPERATURE 125 15 10 =0 = 25°e c( E 10 I Vee± = ±15V Vo = 0 E ~ <3 5 vlD 5 "S =-100 mV 3- VIO c5 0 =-100 mV 0 '5 l:! o -50 -r---- ---r--....- = 5V Figure 17 'S ~ I o \ TA - Free-Air Temperature - °e f! "S I = = ....... .1l! .c 40~--~---4----~~_+----~1-~ 140° Q. o 8 = 10 kQ ~ r-.... B 100° 60~--~---4~~+----+----~c-~ 120° RL ~ 80° l:! ----- - -5 .c Ul VID :n -10 .9 -15 o 2 4 6 8 10 ~ ~ :n -10 = 100 mV r-- - 12 14 -5 r-.. .9 -15 -75 16 -50 IVee ±I- Supply Voltage - V Figure 19 --- -- ~ = 100mV Figure 20 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS 2-984 POST OFFICE BOX 655303' DALLAS. TEXAS 75265 I -25 0 25 50 75 100 TA - Free-Air Temperature - °e 125 TlE2024, TlE2024A, TlE2024B EXCALIBUR HIGH-SPEED lOW-POWER PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt SHORT-CIRCUIT OUTPUT CURRENT SHORT-CIRCUIT OUTPUT CURRENT vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 6 15 TA = 25°e Vee = 5 V - I 400 125 1000 fo- TA 125 De TA = - 55·e ii = 100 mV ......... ~o= 0 Vee - Supply Voltage - V ~ 100mV = 5V a- '; 2(; 4 ii Co " 00 I 0 400 ~ .9 200 200 = o o o 2 4 6 8 10 12 14 16 Vo 0 No Load -75 -50 -25 0 25 50 75 IVee ±I- Supply Voltage - V TA - Free-Air Temperature - °e Figure 23 Figure 24 100 125 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices, TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-985 TlE2024, TlE2024A, TlE2024B EXCALIBUR HIGH-SPEED lOW-POWER PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt TLE20248 COMMON-MODE REJECTION RATIO vs FREQUENCY SLEW RATE vs FREE-AIR TEMPERATURE 120 VCC±=±15V III " ........ I 0 100 '; a: VCC c 0 'u ~ =5 V 80 CI) ';; a: CI) 0.8 ., ~ ::L ~ 60 "0 ~0 I " ~ 40 - - E E :> ~ "\ 0 (.) I 20 a: a: o TA 10 = 25'C 1k 100 10 k 100 k ... 0.6 ... -:...-- Vee 0.4 0.2 RL o -50 Figure 26 VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE = VCC± ±15 V RL 10 kQ CL 30 pF 50 TA See Figure 4 > 125 2.6.---...,..--r--.....,...---.,...---...,..---., Vee = 5 V RL = 10 kQ CL = 30 pF 2.55 TA = 25°e See Figure 4 I CI) CI) ~ Ol S ~'S 0 -------~---- g -------c-----I--+-+-- 'S :; o I o 2.5 -----------..------ .__._--- --- -- ---"--- 0- 0- > -25 0 25 50 75 100 TA - Free-Air Temperature - °e Figure 25 100r---~----r---~----r---~--~ I - = 20 kQ = f - Frequency - Hz =e =5 V eL 30 pF See Figure 1 -75 1 M10 M = = = 25'C = ±15 V Ul " ::E (.) S., a: ;: CI) iii I a: Vee ± :; o I o -50r---_r----~--_r----~~_r--~ > 2.45 r---_r---'f----+----~~_+-~ -100~--~----~--~----~--~--~ 2.4~-~--.....-~---~-~-~ o 20 40 1- Time -fLs 60 o 80 Figure 27 20 40 1- Time-fLs 60 Figure 28 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS 2-986 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 80 TLE2024, TLE2024A, TLE2024B EXCALIBUR HIGH-SPEED LOW-POWER PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 15 Vcc± = ±15V RL = 10 kQ 10 > .,I 5 Vee = 5 V RL=10kQ = CL = 30 pF TA = 25'e See Figure 1 "0 0 :; Q. :; I ~ :; Q. :; / 0 -5 0 .,I '" g / '" ~ > > I o I o > I > -10 -15 o 20 \- Time CL 30 pF TA = 25'e See Figure 1 3 40 60 o 80 PEAK TO-PEAK EQUIVALENT INPUr NOISE VOLTAGE 0.1 TO 1 Hz 0.5 r--...,..---"-...,--'-r-..,.----,--.,..--,--r-.., 0.4 F "0 0.3 ., > Vee±=±15V TA" 25"C Z 0.1 :; -- ~ ~'" I f ~ Vee± = ±15V 25'e _r---t--t----+---+--;-----t 0.4 '" 0.3 1----t---I-_+_--+--;----j---+--_+_-I__-1 0.2 TA = '" II> ~---H---l-I+____+-+_-++_+---+---I--_1 0.1 Z [ !: _ 80 '0 "- ""~'" 60 PEAK-TO-PEAK EQUIVALENT INPUT NOISE VOLTAGE O.1T010Hz 0.5 r--",,---,,-"""....,.-,..--,--r--,---.,r---, .\'l "0 > ., =t-I---+---l _. _-++ 0.2 - 0.5 ..........I---'_...l-........_ - ' -......._ " ' - - - ' - _ ' - -..... o 3 4 5 6 7 8 9 10 2 \- Time- s Z > - 0.5 L-.-J...--'_...l-....J._..i.-...J-_"--...I-_i.-.... 023 4 5 6 7 8 9 10 \-Time-s Figure 32 Figure 31 TEXAS ~ INSTRUMENTS POST OF FICE BOX 655303 • DALLAS. TEXAS 75265 2--987 TLE2024, TLE2024A, TLE2024B EXCALIBUR HIGH-SPEED LOW-POWER PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY SUPPLY VOLTAGE 200 ~> .," '" ~ >., I '"' = ±15V vcc± RS 100n. TA = 25°C See Figure 2 160 I '""'" In III \ :; 80 3 ., 0; 'm" 40 V -- V /" f-- f- ::J !\ > /' 2 b 'c \ i: 0W N ::t :e ~ Z 'S RL 1= 10 kn. CL = 30 pF TA = 25"C See Figure 3 ~ 120 '0 0.. 4 = 0 .= UNITY-GAIN BANDWIDTH vs 1 m I >" o 10 1 100 1k f - Frequency - Hz o o 10 k N :e I 3 .c: '0 '"" '" 'm" III 2 8 10 12 14 16 Figure 34 UNITY-GAIN BANDWIDTH PHASE MARGIN vs vs FREE-AIR TEMPERATURE SUPPLY VOLTAGE 14 16 55 '" i'-- RL = 10 kn. RL I=10kn. CL = 30 pF See Figure 3 CL 30 pF TA = 25'C See Figure 3 = ., i!:! '"., '"I " :e., In NI '"±15~ J.VCC=1'--5V 1-- b 'c ::J I I'--... '" l"- I-- ~ 53 .~ IV In IV r-- o 49 -25 0 25 50 75 I 0.. I ...E 47 45 -50 V 51 .c: m -75 6 Figure 33 VCC± = 'j; 4 IVcc ±I-Supply Voltage - V 4 ::t 2 100 125 o 2 V 4 r- V 6 8 10 12 TA - Free-Air Temperature -"C IVcc ±I-Supply Voltage - V Figure 35 Figure 36 toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices, TEXAS ~ INSTRUMENTS 2-988 POST OFFICE BOX 655303 ' DALLAS, TEXAS 75265 TlE2024, TlE2024A, TlE2024B EXCAlIBUR HIGH-SPEED lOW-POWER PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt PHASE MARGIN vs LOAD CAPACITANCE PHASE MARGIN vs FREE-AIR TEMPERATURE 70 . 60 l!! 50 54 ~ II> !l' "0 c . .. :iii II> ~ VCC= I .~ ~C± = ±15V 5~ 40 30 Q. E -- ~ r--- .c I RL = 10 kQ TA = 25'C See Figure 3 52 g: l!! 5l' / 50 /~CC±~±~ ---- ---- "0 I r-- c :-- . 48 II> 46 .~ ~ r-- :iii . ~ Q. I 20 E "S- 44 "S- 10 o o 42 r-- -...... VCC = 5 V RL = 10 kQ CL = 30 pF See Figure 3 20 40 60 80 CL - Load Capacitance - pF 100 40 -75 -50 -25 0 25 50 75 100 125 TA - Free-Air Temperature -'C Figure 37 Figure 38 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. APPLICATION INFORMATION voltage-follower applications The TLE2024 circuitry includes input protection diodes to limit the voltage across the input CF = 20to50pF transistors; however, no provision is made in the ..--IF ,,1mA circuit to limit the current if these diodes are forward-biased. Note that this condition can occur when the device is operated in the voltagefollower configuration and driven with a fast, largesignal pulse. It is recommended that a feedback resistor be used to limit the current to a maximum of 1 mA to prevent degradation of the device. Also, remember that this feedback resistor will VCCform a pole with the input capacitance of the Figure 39. Voltage Follower device. For feedback resistor values greater than 10 kQ, this pole will degrade the amplifier's phase margin. This problem can be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 39). input characteristics The input of any unused amplifiers should be tied to ground to avoid possible oscillation. TEXAS ~ INSfRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-989 2-990 TlE2027, TlE2027A EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS 03440, MAY 1990 - REVISED APRil 1991 available features • Outstanding Combination of DC PreciSion and AC Performance: Unity·Galn Bandwidth ..• 15 MHz Typ Vn.••. 3.3 nV/-IHz at f = 10 Hz Typ, 2.5 nVl-IHz at f = 1 kHz Typ VIO ... 25 ~V Max AVD ... 45 V/~V Typ, With RL = 2 kQ, 19 V/~V Typ, With RL = 600 Q • Available In Standard·Plnout Small·Outline Package • Output Features Saturation Recovery Circuitry • Macromodels and Statistical Information description LARGE·SIGNAL DIFFERENllAL VOLTAGE AMPLlFICA1l0N The TLE2027 and TLE2027A contain innovative circuit design expertise and high-quality process control techniques to produce a level of ac performance and dc precision previously unavailable in single operational amplifiers. Manufactured using Texas Instruments state-ofthe-art Excalibur process, these devices allow upgrades to systems that use lower-precision devices, vs FREQUENCY IX! 160 "0 I c 140 o '\"~ '-; ~ 120 ...~ In the area of dc precision, the TLE2027 and TLE2027A offer maximum offset voltages of 100 ~V and 25 ~V, respectively, common-mode rejection ratio of 131 dB (typ) , supply voltage rejection ratio of 144 dB (typ) , and dc gain of 45 V/~V (typ). \ AVO = 153 dB ' \ ~ 80 OJ 60 ~ ",'\~ 1\ 100 GI '\ 1 = 15 MHz '\ i5 I B1 '\ 40 Ac performance is highlighted by a typical unitygain bandwidth specification of 15 MHz, 55° of phase m~in, and noise voltage specifications of 3.3 nV/"rHz and 2.5 nV/'I'HZ at frequencies of 10 Hz and 1 kHz, respectively. VCC± = ±15 V RL = 2kn CL = 100 pF TA= 25°C - 20 '\~ c ~ \ \ o 100 100 k f - Frequency - Hz 0.1 100M 80th the TLE2027 and TLE2027A are available in a wide variety of packages, including the industry-standard a-pin small-outline version for high-density system applications. The C-suffix devices are characterized for operation from O°C to 70°C. The I-suffix devices are characterized for operation from -40°C to 105°e. The M-suffix devices are characterized for operation over the full military temperature range of -55°e to 125°e. AVAILABLE OPTIONS PACKAGE TA O°Cto 70°C -40°C to VIOmax AT 25°C SMALL· OUTLINE (D) 25llV 100 llV 25llV 100 llV TLE2027ACD TLE2027CD TLE2027AID CHIP CARRIER (FK) CERAMIC DIP (JG) -- - --- METAL CAN (Ll - PLASTIC DIP (P) TLE2027ACP TLE2027CP TLE2027AIP TLE20271P 105°C TLE20271D -TLE2027AMP - 55°C to TLE2027AMD TLE2027AMFK TLE2027AMJG TLE2027AML 25llV 125°C TLE2027MD TLE2027MFK TLE2027MJG TLE2027ML TLE2027MP 100llV D packages are avrulable taped and reeled. Add "R" suffix to device type, (e.g., TLE2027ACDR). PRODUCTION DATA documents contain InformatiDn current as of publication date. Products cDnform 10 specificatiDos per the terms DI Texas Instruments standard warranty. Production processing does nDt necessarily Include testing 01 all parameters. - -- TEXAS -- ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 Copyright © 1991, Texas Instruments Incorporated On products comptlant 10 MIL-STO-B83, Class B, all parameters are tested unless otherwise noted. On all other products, prDduction processing dDes not necessarily Include testing 01 all parameters. 2-991 TLE2027, TLE2027A EXCALIBUR LOW;.NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS D, JG, OR P PACKAGE o~o"'o z zzzz OFFSET N1 u 8 OFFSET N2 ININ + 2 7 VCC + 3 6 OUT VCC- 4 5 NC LPACKAGE (TOP VIEW) FKPACKAGE (TOP VIEW) (TOP VIEW) 3 2 OFFSET N2 1 20 19 NC 4 18 NC IN NC IN + NC 5 17 6 16 VCC+ NC 7 15 OUT 8 14 NC Pin 4 of the L package is in electrical contact with the case. 9 10 11 12 13 o Z 1000 OZ Z o > Z NC - No internal oonnection symbol OFFSETN1 IN+ OUT IN- OFFSETN2 TEXAS ~ INSTRUMENTS 2-992 VCC- POST OFFICE BOX 655303· DALLAS. TEXAS 75265 equivalent schematic I OFFS~N22 ~~::::::~~~Il~rl---r--~--~9t------+-~---r-~ Vcc+ OFFSETN!... -,-----, R20 , IN+ OUT - ~62 z ~d ~~ z Ui4r "\:rZl)",, '0- 05 01~ R3t R6f R7fRl0f fR1211R14f I R1Sf I R19f I I I T Vcc- R23UlJJ sR24 I a26 ""D :D m m)( C")C") -> ~r- 0- Z~ O:D ""Dr- mO ~:e ~'-t -Zr°Om Z-N >C'I)C r-mN >:::J:-...J 3:5:"" i ""D:::J:rr-'m -C'I)N :!!""Dc mmN :Dm-...J C'l)c> TLE2027, TLE2027A EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, VCC+ (see Note 1) ............ . .................................... 22 V Supply voltage, VCC- . . . . . . . . . . . . . . . . . . . . . . . . . .. ......... .. . . .. .., ......... .. ··22 V Differential input voltage (see Note 2) ................................................. ±1.2 V Input voltage range, VI (any input) .................................................... VCC± Input current, II (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ±1 rnA Output current, 10 . . . . . . . . . . . . . . . . . . . . . . . . . .. ..... ' . . . . .. .. . . . .. ±50 rnA Total current into VCC+ terminal ....................... ........................... . 50 rnA Total current out of VCC- terminal .................................................... 50 rnA Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... unlimited Continuous total dissipation ........................................ See Dissipation Rating Table Operating free-air temperature range, T A: C-suffix . . . . . . . . . . .. . ................... DoC to 70°C I-suffix ................. . ............. -40°C to 105°C M-suffix ............................... -55°C to 125°C Storage temperature range ................................................... -65°C to 150°C Case temperature for 60 seconds: FK package .......................................... 260°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: 0 or P package ............... 260°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: ,JG or L package .............. 300°C NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC-. 2. Differential voltages are at the noninverting input with respect to the inverting input. Excessive current will flow if a differential input voltage in excess of approximately ±1.2 V is applied between the inputs unless some limiting resistance is used. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not excaeded. DISSIPATION RATING TABLE PACKAGE D FK JG L p TA :;25°C POWER RATING 725mW 1375 mW 1050mW 650mW 1000mW DERATING FACTOR ABOVE TA 25°C = .----.---------.-~:;--. TA =70°C POWER RATING TA = 105°C POWER RATING TA =125°C POWER RATING ----·-S."iJ-n;virc-------·-4"64mW-·--·- ........ 261'mW""-"--{4"ifmw- ......... 11.0mWrC 8.4 mWrC 5.2 mW/oC 8.0mWrC 880mW 672mW 416mW 640mW 495 rnW 378mW 234mW 360mW 275 rnW 210 rnW 130 rnW 200mW recommended operating conditions M-SUFFfX UNIT MAX ± 22 V 11 Common-mode input voltage, VIC TA "'----.+.. -...--.... -.......... ---..- ..+ .............. V TA = Full range - 10.5 10.2 125 "C Operating free-air temperature, ~ _ _ _ _ _ _..._L__...:O.. ___...__ . __.....c•..L. .. _ ........ __......._ .. _.......:_.L••.__'-'_._._.______...:c::::...L. TEXAS ~ INSTRUMENTS 2-994 POST OFFICE BOX 655303' DALLAS. TEXAS 75265 TlE2027C, TlE2027AC EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Vcc± = ±15 V (unless otherwise noted) .-......- - . - . - - - - - - - - - - - - - - . - - - . - - - ----·--·----·----,,-,-T=LC":E=-=2.,.O"'27=-=A=-=Cc----,----, PARAMETER TEST CONDITIONS TAt _ .. __ !!:~2.0:_:_:2.-'7..... C-:""C~+-~~.,-=-:-:c--~= UNIT MIN TYP MAX MIN TYP MAX 2SoC 20 100 10 25 Input offset voltage !lV 145 70 Full range Temperature coefficient of Full range 0.4 1 0.2 1 !lVloC aVIO ... in~u~..()~~!lt~o.I~\J!l ...... __ -. ... - - .... - ..-- .•..- - - - - - . - - - - - f - - Input offset voltage 0.006 25°C 0.006 !lVlmo RS = 50n _ .. _ _lo_n=.g·_te_r_m_d_ri_ft-'..(s_e_e_N_o_te_4.:...)- j 90 6 90 6 25°C Input offset current nA 110 Full range 1- .. _ .. 150 '50 --_..-'.25°C 90 15 90 '5 Input bias current nA Full range ----·-'-.. --·--··-'~~·""-15o ,...--------150· .---.--.-.------.- -··---'-r--=·lT - 13 -11 -13 to 25°C to to to Common·mode input 11 13 11 13 RS = 50Q ~--+---1-0-.5--------~---------I V voltage range -10.5 Full range to to 10.5 10.5 1 - - - - · - · · · - - - - - - - - + - - - - - - - - - · · - - - · - · - 1 - · 25oC 10.5 10.5 V ~~nge RL = 600n RI. .-... -~. Maximum negative peak RL = 600 n i-Fulira~g~ --=·"10··_-'-·- 1RL - -=-2.kn _--. 25°C -12 -13.5 Maximum positive peak OM + output voltage swing VOM- ou tput voI tsWlng ' age 10 ·-·----·--·----I---;,50C-+-"i2-· 2 kn 10 12 v ..._E.l'~~~~:~lI=.~~-..~==~~·i1---=--~_-25°C -10.5 - 13 -10.5 -13 _1 0 · -12 -13.5 V r - -..- - - . - - - - -..- - - I - : - : - - - - - - . -..- - ~-+_F_UI:-:Ir,..a::-'ng::...e+---l-:slc---"C"45=----f_---:11.".01--4-=5---+---1 Va = ± 11 v, RL = 2 kn 25°C ~"9~=;;=:±:i~=~RL ~_.~:~Q ~:-~_:-II-r1l:-n.9-e-+---2: - - - - - - - + - -4- - - - - - 1 . AVD Large·signal differential voltage amplification 25°C -:i"~5-38--f--- 8 Va ,,. ± 10 V, RL- 1 kn Ful7""1r-an-g-e+-·-l 2.5 - -.. - - - - -.........-...-- ..-.f_~-=-"-+--_:_:25°C 2 19 5 r-.._. ___ ...... _. __ . __ .._._f-V.~ = ± , °V, RL ~~put capacitance r=2. ____0pen.loop outP~~~.~an.~~Q. = 0 = 38 19 60~~I-;F:-U_-;;-II.-':.a-.rl-!:!e-.. 1-_-."""'_0::--..:.·50:-..--.--.---g-.--..-.----+r------:..2-:-----.-.8----.==~f-.---1 ._._._~5°C_ pF oC,__+-_,-..0""'0--'1."':-~----+-1-1-=7----1::-:~_ _-I_..:cn=--_I 5-: __ . __ ._..+_3__ CMRR Common·mode VIC = VieR min, +-_ _ _ _ __ dB f--. ___rejec!i<:n_rl'l!~ _____ ~~L:"~O n ____ . _ _ ~UII ra~ge 98 114 Vee± = ±4Vto±18V, 25°C 94 144 110 144 Supply·voltage rejection ratio RS = 50 n 1-: ...-.-- ........................ - .......- ....... -.-----.-.----+----------1 dB kSVR (",VCC ±Ii\VIO) VCC± = ± 4 V to ± 18 V, Full range 92 106 RS = 50Q ··---------·---··----...Jf-"-.·-····-·-·-····-··--·+·-::2--=5°:-:C'-- ---··3=-.8::---=5-=.3-+-----:3:-:.8:----:-4.-=7+---1 ICC Supply current Va = 0, No Load mA Full range 5.6 4.8 I-:::-l::;og- _.____ . . _. ___ tFuil range is O°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TEXAS '" INSTRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2-995 TlE2027C, TlE2027AC EXCAUBUR lOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, Vcc± PARAMETER SR Vn VN(PP) In THO Bl BaM 4>m TEST CONDITIONS TAt Slew rate at unity gain RL = 2kn. CL = 100 pF. 25°C See Figure 1 Full range Equivalent input noise RS = 100 n. f = 10 Hz voltage (see Figure 2) RS = 100 n. f = 1 kHz Peak-to-peak equivalent f = 0.1 Hztol0Hz current 1 = 1 kHz Total harmonic distortion Va = ± 10 V. AVO = 1. See Note 5 25°C RL = 2kn. 25°C Unity-gain bandwidth Maximum output-swing bandwidth Phase margin at unity gain (see Figure 3) 1.7 25°C CL = 100pF RL = 2kn RL = 2kn. CL = 100 pF TYP 2.B MAX B 3.3 4.5 2.5 4.5 2.5 3.B 50 250 50 130 1.5 4 0.6 1.5 0.4 4 MAX 3.3 0.4 MIN 1.7 1.2 <0.002% 1 13 9 nV pAl'I'Hz kHz 25°C 55° 55° POST OFFICE BOX 655303· DALLAS, TEXAS 75265 0.6 nV/'I'Hz MHz 30 TEXAS ~ V/fJ.s 13 30 INsrRUMENTS UNIT <0.002% 25°C tFull range is O°C to lO°C. NOTE 5: Measured distortion 01 the source used in the analysis was 0.002%. 2-996 TLE2027AC TYP 2.B 1.2 25°C f = 10 Hz (see Figure 3) TLE2027C MIN 25°C input noise voltage Equivalent input noise = ±15 V TLE2D271, TLE2D27AI EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Vcc± PARAMETER VIO TEST CONDITIONS Input offset voltage VIC; 0, RS ; 50n 25°C 110 Input offset current lIB Input bias current 25°C Full range 25°C VICR VOM+ voltage range Maximum positive peak output voltage swing Maximum negative peak VOMoutput voltage swing RS ; 50n RL ; 600n RL ; 600n RL ; 2kn Vo ; ± 11 V, RL ; 2 kQ AVD Large-signal differential voltage amplification ci Input capacitance Zo Open-loop output impedance Common-mode CMRR kSVR Ice 0.2 1 flV/o C 0.006 1 0.006 1 flV/ mo 6 90 150 6 90 15 90 15 150 -13 to -11 to to 11 -10.4 13 11 13 25°C Full range 10.5 10.5 10 10 12 V 11 -13 -10.5 -13 -10 -10 25°C Full range -12 -13.5 -12 -13.5 -11 -11 5 Vo ; ± 10 V, RL ; 1 kn 25°C Full range 3.5 1 38 8 2.2 38 Vo ; ±10V, RL; 600n 25°C Full range 2 0.5 19 5 1.1 19 10 25°C 100 rejection ratio Full range 96 Supply-voltage rejection ratio Vce±; ±4Vto±18V, RS ; 50n 25°C 94 (t.Vee ±/ t.VIO) Vec±; ±4Vto±18V, RS ; 50n Full range 90 Supply current Vo ; 0, 25°C Full range V 45 3.5 V/flV 8 8 50 VIC ; VICR min, RS ; 50n No Load 45 2 25°C nA V 12 Full range 25°C nA -13 -10.4 to 10.4 10; 0 90 150 25°C Full range VO; ±10V, RL; 2kn flV 1 -11 to 11 -10.5 UNIT 25 0.4 to 10.4 25°C MAX 105 Full range Full range TYP 10 150 25°C RL ; 2 kn TLE2027AI MIN 180 Full range 25°C Full range Common-mode input TLE20271 TYP MAX 100 20 Full range input offset voltage Input offset voltage long-term drift (see Note 4) MIN 25°C Temperature coefficient of "VIO TAt = ±15 V (unless otherwise noted) 131 117 pF 50 131 n dB 113 110 144 144 dB 105 3.8 5.3 5.6 3.8 4.7 4.9 mA tFull range IS -40°C to 105°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA ; 150°C extrapolated to TA ; 25°e using the Arrhenius equation and assuming an activation energy of 0.96 eV. TEXAS ~ INsrRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-997 TLE20271, TLE2027AI EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, Vcc± PARAMETER SR Vn VN(PP) In Slew rate at unity gain TEST CONDITIONS RL ; 2kQ, CL ; 100 pF, See Figure 1 Equivalent input noise RS ; 100 Q, 1 ; 10 Hz voltage (see Figure 2) RS ; 100 Q, f ; 1 kHz Peak-to-peak equivalent input noise voltage Equivalent input noise current 2.5 3.8 25°C 50 250 50 130 1 ; 10 Hz 1 ; 1 kHz 25°C 1.5 0.4 4 1.5 0.4 4 25°C <0.002% 25°C f ; 0.1 Hz to 10Hz CL; 100pF RL ; 2kQ RL ; 2kQ, CL; 100pF 25°C 7 13 0.6 9 kHz 25°C 55° 55° "I POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 pAl#lZ MHz 30 TEXAS nV 13 30 INSTRUMENTS 0.6 nV/#lZ <0.002% 25°C tFull range is-40°C to 105°C. NOTE 5: Measured distortion 01 the source used in the analysis was 0.002%. 2-998 VIlIS 1.1 4.5 RL ; 2kQ, Phase margin at unity 1.1 UNIT 2.8 2.5 Unity-gain bandwidth (see Figure 3) gain (see Figure 3) 1.7 2.8 4.5 Bl ~ 1.7 3.3 Total harmonic distortion Maximum output-swing 25°C Full range TLE2027AI MIN TYP MAX 8 THD bandwidth TAt 3.3 VO; ±10V, AVD ; 1, See Note 5 BOM = ±15 V TLE20271 MIN TYP MAX TLE2027M, TLE2027AM EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Vcc± PARAMETER V,O TEST CONDITIONS Input offset voltage Temperature coefficient of aVIO input offset voltage Input offset voltage long-term drift (see Note 4) V'C = 0, RS = 50n TAt TLE2027M MIN TYP MAX MAX 100 200 10 25 105 Full range 0.4 l' 0.2 l' jlV/oC 0.006 l' 0.006 l' jlV/mo 6 90 6 90 15 25°C Input offset current liB Input bias current 25°C Full range 150 RS = 50n V Maximum negative peak OM - output voltage swing Large-signal differential voltage amplification -13 -11 to to to to 11 -10.3 13 11 -10.4 13 Input capacitance Zo Open-loop output impedance Common-mode CMRR rejection ratio Supply-voltage rejection ratio (AVCC ±/ AV,O) 10.5 10 RL = 2kn 25°C Full range 12 12 RL = GOon RL = 2kn 25°C Full range Vo = ±10V, RL = 2kn Vo = ± 10 V, RL = 1 kn ICC V'C = V,CR min, RS = 50n RS = 50n VCC± = ±4Vto±18V, Vo = 0, 25°C Full range No Load 11 -10.5 -13 - 11 5 25°C 3.5 Full range 1.8 25°C 25°C 45 10 2 25°C Full range 100 25°C 94 Full range 90 nA nA V V -13 V -12 -13.5 -11 2.5 jlV -13 -10 -12 -13.5 25°C 10 = 0 RS = 50n Supply current to 10.4 10.5 10 VCC± = ±4Vto±18V, kSVR to 10.3 11 -10.5 25°C Full range -10 90 150 25°C Full range Vo = ±10V, RL = 600n ci 15 RL = 600n Vo = ± 11 V, RL = 2 kn AVD 90 -11 Full range Maximum positive peak VOM+ output voltage swing 150 150 25°C voltage range MIN UNIT TYP 20 ',0 V,CR TLE2027AM 25°C Full range 25°C Full range Common-mode input = ± 15 V (unless otherwise noted) 45 3.5 38 8 38 V/jlV 2.2 19 8 5 19 8 50 131 50 131 117 pF n dB 113 96 144 110 144 dB 25°C Full range 105 3.8 5.3 5.6 3.8 4.7 5 mA 'On products compliant to MIL-STD-883, Class B, thiS parameter IS not production tested. tFuil range is -55°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TEXAS ~ INsrRUMENTS POST OFFICE BOX 655303· DALLAS, TEXAS 75265 2-999 TLE2027M, TLE2027AM EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS operating characteristics, VCC± PARAMETER '" ~"" SR . TEST CONDITIONS .,"-,-"'-~ Slew rate at unity gain -----" "- -~ Total harmonic distortion ""_._-"". ~ ~.-'--'-"- ... - = 100 pF, TLE2027AM TLE2027M MIN TYP 1.7 2.8 25°C MAX 1 Full range MIN 1.7 1 TYP MAX bandwidth .-".".---¥~' RS RS 1 = 1000, 1 = 10 Hz = 100 0, 1 = 1 kHz = 0.1 Hz to 10Hz 25°C 25°C = 10 Hz = 1 kHz Vo = ±10V,AVO = 1 25°C 1 V/flS 1, See Note 5 3.3 8' 3.3 4.5' 2.5 4.5' 2.5 3.8' 50 250' 50 130' 1.5 4' O.S' 1.5 4' 0.4 0.6' 0.4 <0.002% 25°C RL = 2 kn, RL = 2kQ CL = 100 pF r 25°C nV/~ nV pAl~ <0.002% 25°C 9' 13 MHz 30 30 kHz 55° 55° 13 ..- " Phase margin at unity RL = 2 kn, CL = 100pF 25°C ,__g~i~~see Figure 3) 'On products compliant to MIL-ST0-883, Class B, this parameter IS not production tested. tFull range is - 55°C to 125°C. NOTi" 5. Measured distortion 01 the source used in the analysis was 0.002%. -.....----.- Vo Vo 4kn Figure 1. Slew Rate Test Circuit 1000 Figure 2. Noise Voltage Test Circuit 10kQ >--+--.....-Vo 2 kO Figure 3. Unity-Gain Bandwidth and Phase Margin Test Circuit Figure 4. Small-Signal Pulse Response Test Circuit NOTE A: C,- includes fixture capacitance. TEXAS . " 2-1000 UNIT 2.8 -.-"-~.~ ,. (see Figure 3) Maximum output-swing -,--. BOM -- . . Unity-gain bandwidth B1 RL = 2kQ, CL See Figure 1 TAt -.--.~- Equivalent input noise Vn '_'_._'~()!.tage (see Figure 2) Peak-to-peak equivalent VN(PP) input noise voltage ..----'"-" Equivalent input noise In current -' --".'. __ ..THD = ±15 V, TA =25°C (unless otherwise noted) . INSTRUMENTS POST OFFICE BOX 655303' OALLAS, TEXAS 75265 TlE2027, TlE2027A EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS PARAMETER MEASUREMENT INFORMATION typical values Typical values as presented in this data sheet represent the median (50% point) of device parametric performance. initial estimates of parameter distributions In the on-going program 01 improving data sheets and supplying more information to our customer, Texas Instruments has added an estimate of not only the "typical" values but also the spread around these values. These are in the form of distribution bars that show the 95% (upper) points and the 5% (lower) points from our characterization of the initial wafer lots of this new device type (see Figure 5). The distribution bars are shown at the pOints where data was actually collected. The 95% and 5% pOints are used instead of ±3 sigma since some of the distributions are not true Gaussian distributions. The number of units tested and the number of different wafer lots used are on all of the graphs where distribution bars are shown. As noted in Figure 5, there were a total of 835 units from 2 wafer lots. In this case, there is a very good estimate for the within-lot variability and a possibly poor estimate of the lot-io-iol variability. This will always be the case on newly released products since there will only be data available from a few wafer lots. The distribution bars are not intended to replace the minimum and maximum limits in the electrical tables. Each distribution bar represents 90% of the total units tested at a specific temperature. While 10% of the units tested fell outside any given distribution bar, this should not be interpreted to mean that the same individual devices fell outside every distribution bar. SUPPLY CURRENT vs FREE-AIR TEMPERATURE 5 Vcc± « E E f = ±15V I = 4.5 a Vo 0 No Load Sample Size 835 Units From 2 Wafer Lots = / 4 g. 3.5 3 95% point on the distribution bar (5% of the devices fell above this point.) 90% of the devices were within the upper and lower points on the distribution bar. ~ I ' !'--- 5% point on the distribution bar (5% of the devices fell beiow this point) V I/) ~ :/ V vV' >- "ii I ~V'""" V 1'1 2.5 -75 -50 -25 0 25 50 75 100 125 150 TA - Free-Air Temperature - 'c Figure 5. Sample Graph with Distribution Bars TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303· DALLAS, TEXAS 75265 2-1001 I, TlE2027, TlE2027A EXCAlIBUR lOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS table of graphs FIGURE Via ~VIO Input offset current liB Input bias current II VO(PP) YOM Time aft~r power o~___... Temperature ---.-.--.....- .. - ... ----.-.-.-- ..-.~-vs Common·mode input voltage Input offset voltage change 110 6 Distribution Input offset voltage vs vs vs Input current vs Large-signal differential voltage amplification vs vs .~.- -- ""---"'--"~ .. -" Load resistance Frequency _-_. _ 12 13- - - - - "m"" •• __ 16,17 18 20 19,21 Temperature __..- .... ..•--_....... _ .._ - - 1--'.'.'.' -,-,,---22 .. Frequency 23 ...--.-.... - ...... -.......-.- ...... --.-....-...... f-- ..-.. 24 vs.. vs --".-.-.-~-,-,-- Output impedance kSVR Supply voltage rejection ratio vs vs Frequency Frequency vs vs Su pply voltage Short-circuit output current Time 28, 29 vs . 30,31 vs Tempera!.'-!r!:.... ____.._ •. Supply voltage vs Tern perature lOS Common-mode rejection ratio -' ICC Supply current Small-signal Large·signal Pulse response 32 33 34 35 _. ----·--·--36--·------ --·-·----37----_._---_.. ..- , - ---_.----_.. vs Frequency 0.1 to 10 Hz Unity-gain·bandwidth vs Load capacitance SR Slew rate vs vs Temperature Supply voltage ¢m Phase margin vs Load capacitance vs Tern perature vs Frequency _._- Supply voltage "--""."~--~,-, TEXAS ." POST OFFICE BOX 655303· DALLAS. TEXAS 75265 __ 38 39 -- _. 40 41 42 ._---_._.---_. INSTRUMENTS 2-1002 26, 27 B1 Phase shift ----,- __._-_.- -······-·-25------ Equivalent input noise voltage Noise voltage (referred to input) vs .. ___. __•••.. . Vn dJ "".-,"-,-,-~ 14, 15 Zo CMRR - - f--..- ........ - 10 ..- f - - - - - ... ----~ AVO 9 f..··-···-· 11 Temperature Differential input voltage Maximum peak-to·peak output voltage ._._---_._ .._._-- _ _v~.•..y!!..~.':1.:~._ ... __ .. _.... vs Load resistance Maximum peak output voltage vs Temperature --- ..-... ._----vs Supply voltage 7,8 -.- 43 19,21 -- TlE2027, TlE2027A EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt TLE2027 INPUT OFFSET VOLTAGE CHANGE DISTRIBUTION OF INPUT OFFSET VOLTAGE TIME AFTER POWER ON vs 12 1568 Amplifiers I = Vcc± ± 15 V t-___ri'!'Rt-t--t--f----I TA 25°C 14 'J!. >::I. = CD '" . "0 :! CD > 5 ii E a oCt . 8 ~ :5 a. .E .E '0 CD c'" / .!!! 0 Package --t--Bffilt.+--i---!---!---I 12 ~ 10 61----j--t--t- CD ..'" CD c .c !:!CD Q. 6 / I 4 I a = 2 -60 -30 0 30 60 90 o o 120 10 Via - Input Offset Voltage - IlV 20 30 Figure 7 INPUT OFFSET VOLTAGE CHANGE INPUT OFFSET CURRENT vs vs TIME AFTER POWER ON FREE-AIR TEMPERATURE 30 Vcc± 5 "0 . = 4 :5a. 3 ..'"'" 2 Gi V a .E .E c .c /' I C ~ = ±15V Sample Size ~ .." 15 a. .E 10 g 5 = 50 Units from 2 Water LoIs 20 I 20 I = a = ±15 V I = 0 TA 25°C -' P Package I = oCt c Vcc± 0 60 . VIC 0 Sample Size 833 Units From 2 Wafer Lots 25 V 8:5 I o o 50 Figure 6 6 > 40 I - Time After Power On - s >::I. '" '" .!!! I = "> 20 V III :; a. ..5 15 ,g! 10 C l!! 30 :; ./ ./ o -12 OJ 0.8 .... r-.., (.) ,/ 5 = I / (.) .!! '" 40 c 30 = VCC± ±15 V VIC 0 I Sample Size 836 Units From 2 Wafer Lots. I - - 50 20 ~ r TA =125"C .5 ~ -0.4 ~ -0.5 -0.8 -1 -1.8 ii:" Q. -1.2 -0.6 o 0.6 1.2 VIO - Oifferentlallnput Voltage - V 1.8 ~ 0 10 k Y'="lmoc Figure 12 ~~ ... 100 k 1M f - Frequency - Hz Figure 13 tData at high and low temperatures are applicable only within the rated operating lree-air temperature ranges of the various devices. TEXAS ~ 2-1004 INSTRUMENTS POST OFFICE BOX 655303' DALLAS, TexAS 75265 10 M TlE2D27, TlE2D27A EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE > 8, ~ > ;; 5 vs LOAD RESISTANCE ~ 14 . Cl /~ / 10 1--- 6 4 2 + :E V ..... II I . Z e e ;c :s VCC:I: = :l:15V = 25·C tJ 1k RL - Load Resistance - Q 10 k > / vee:l: ::: :1:15 V 25·C TA r' II = 100 t I 1k RL - Load Resistance - 10 k Q. Figure 14 Figure 15 MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE MAXIMUM NEGAliVE PEAK OUTPUT VOLTAGE vs vs FREE-AIR TEMPERATURE FREE-AIR TEMPERATURE > = 2kQ I. I .~ 13.2 V / V -13 Vec:!: :: :!:15 v i CIl ~ /. jf ~ 13 o 0 8... 13.3 :s -2 :E From 2 Wafer LoIs ~e 13.1 V i '0 13.4 Sample Size = 832 Units > c.. -4 .. Vcc:!: = ±15V ;; -6 Cl II --I / > -::: :E RL I II > 13.5 . N' I[ -8 c.. V TA I 1;; -10 o / 0 100 J ~ -12 12 8 e :E -= -14 CIl o ~ vs LOAD RESISTANCE "" '0 VI :.: -13.2 :s So ...d ... :ll c.. l l~ -13.4 ~ ; - 'e- V 13 6 • :s e .;c W ... ~ + :E I RL" 2kQ Sample Size = 831 Units From 2 Wafer Lots ~T '" 1\~ ~ -13.8 I ~ 12.9 -75 -50 -25 0 25 50 75 100 125 150 T A - Free·Alr Temperature - ·C $ ~T ~ -14 -75 -50 -25 0 25 50 75 100 125 150 TA - Free-Air Temperature - ·C Figure 16 Figure 17 tData at high and low temperatures are applicable only within the rated operating free··air temperature ranges of the various devices. TEXAS • INSTRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 2-1005 TlE2027, TlE2027A EXCAUBUR lOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICA nON ~ 50 TA 3> vs vs SUPPLY VOLTAGE FREQUENCY 160 =25°C -B !5 ii "".. Rl = 2kQ Rl = 1 kQ "0 I ·8 rl "".. > iii Rl e is = 600Q e • 4 8 12 16 20 IVCC± I - Supply Voltage - V 24 0.1 '\ 250 0 '\ It 275° 100 M 100 k LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs vs LOAD RESISTANCE FREQUENCY 6 40 = ±15V = 25°C / If ID "0 ~ I 3 c 0 '3 0 Ie '[ E "".. 30 D) J -3 !! '0 -6 iii -9 Jj -12 100° "~'" "~ > 20 .. ~ I Q Q -15 > o 400 lk 4k Rl - load Resistance - Q 10k "" 1250 1500 \, Phase Shift is 10 100 ~ 225° '\ 100 III 200 0 ~ LARGE-SIGNAL VOLTAGE AMPLIFICATION TA -18 10 I VCC± = :15 V Rl = 2kQ Cl =' 100 pF TA = 25°C Figure 20 TEXAS .,., POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 ,t i\AVO i'- ~ -~ ~ \ 175° :E .c VI 200° : 6: 225 0 ~ 250° i\.... 1-"" L 20 40 f - Frequency - MHz Figure 21 INSTRUMENTS 2-1006 ,,~ VCC± = ±15V Rl = 2kQ Cl = 100 pF TA = 25°C o .. VI 1750 f - Frequency - Hz Q, ~ 20 1500 :E .c Figure 19 i Q Q 1250 Figure 18 Vcc: I I!I! 40 "" o o 10 ~ :! > ~ . " is 10 I ~ 60 C Q J ~ 100° ) > 20 E :! 80 "'" Phase Shift D) !! '0 75 0 I AVO", E 100 D) !! '0 120 isQ, 30 , I ", 140 c 40 rl E ~ ID I c LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT .... ~/\. 275 70 0 300 0 100 TlE2D27, TlE2D27A EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION > .::!> OUTPUT IMPEDANCE vs vs FREE-AIR TEMPERATURE FREQUENCY l00r---~--'----r---r--~--~---' 60 Vcc± = ±lSV Vcc± = ±1SV 2S·C TA = c 0 c: ~ S 'ii E .,u SO ., ~ '0 > iii .~ 1/ 40 140 "0 120 .~ 100 ., ., 't; 'ar 80 II: :; a. :; 0 of 0.01 L -__-'--__......_ - ' - _ - ' - _ - - ' - _ - - - ' _ - - ' 10 100 1k 10 k 100 k 1 M 10 M 100 M f - Frequency - Hz SUPPLY VOLTAGE REJECTION RATIO vs vs FREQUENCY FREQUENCY 140 VCC± = ±lSV TA = 2S·C _ "r'\. ""- 60 0 120 ., ., '" ~ 100 'ii II: ~ """- >'ii a. ::I o 10 k 100 k 1M TA= 2S"C _ ~ r\.. ~ ...... ~ ...... 80 60 kSVR~ 40 In \ ::;; 0 I\.. kSVR- ~ 20 1k I 0 c 0 100 "0 '-; "r'\. VCC± = ±lSV III II: " C 0 E E 40 0 10 0.1 COMMON-MODE REJECTION RATIO 0 II: II: - Figure 23 "0 ::;; L___ r- Figure 22 , II: 0 I 30 -7S -SO -2S 0 2S SO 7S 100 12S lS0 T A - Free-Air Temperature - ·C III c ~=2kO 8.E I I Q > I 0 "0 V ~L IVV ~ == C 20 ~ r\ 10 M 100 M o 10 100 1k 10 k , ~, ~ 100 k 1M f - Frequency - Hz f - Frequency - Hz Figure 24 Figure 25 10 M 100 M 'Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ", INSTRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 2-1007 TlE2027, TlE2027A EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS SHORT-CIRCUIT OUTPUT CURRENT SHORT·CIRCUIT OUTPUT CURRENT vs vs SUPPLY VOLTAGE SUPPLY VOLTAGE -42 44 VID E 50 Vcc± = ±15 V RL = 2 k.Q CL = 100 pF TA = 25°C _ See Figure 4 ( .. > ., Vcc± = ±15V RL = 2 kQ 10 CL = 100 pF TA = 25°C See Figure 1 5 / / 0) s. ~ 0) ~ 0 > ;; Il. ;; 0 ;; S- I 'I" 0 > 0 0 0 -5 0 > -50 o 400 600 I - Time - ns 200 -15 800 1000 ~ .. I EQUIVALENT INPUT NOISE VOLTAGE NOISE VOLTAGE (REFERRED TO INPUT) OVER A 10-SECOND INTERVAL \ \ S ~., ., 6 '0 Z ;; Il. .E 4 C CI> ~ '5 Iff Vcc± = ±15 V 40 f = 0.11010 Hz 30 TA = 25°C I I - >c 20 ., 10 i 0 I 0) >., \ In -10 '0 z i'- 2 I -40 c > o 1 -50 10 100 lk f - Frequency - Hz 10 k 100 k 0 Figure 36 2 4 6 I - Time - s Figure 37 TEXAS ~ 2-1010 25 50 VCC± = ±15 V RS = loon TA = 25°C See Figure 2 Sample Size = 100 Unils From 2 Wafer LoIs \ 8 20 Figure 35 \ 0) 10 15 I - Time - I1S Figure 34 FREQUENCY ~ 5 0 vs 10 \ \ \ V -10 -100 I 1\ INSfRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 8 10 TlE2027, TlE2027A EXCAlIBUR lOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt UNITY-GAIN BANDWIDTH UNITY-GAIN BANDWIDTH vs vs SUPPLY VOLTAGE LOAD CAPACITANCE 20 16 = 2 kn CL = 100 pF TA = 25·C r--- .......... RL N :I: ::;; 18 N :I: ::;; See Figure 3 .c ;; ..,'i 16 . 8 c OJ 14 ...... <;I ~ ~ 12 o 2 4 6 8 10 4 I I-- r£ 12 14 16 18 20 o 22 100 Figure 38 Figure 39 SLEW RATE PHASE MARGIN vs vs FREE·AIR TEMPERATURE SUPPLY VOLTAGE 58° ~ > iii a: 2.4 IX I / V - ./ 2.2 = = = 2 kn RL CL 100 pF 2S·C TA See Figure 3 56° 54° .. .. .~ . -r-- / 52· ::;; Q) !II 50· .c 'r-- I ....E = ±15V = = 48· 44· 42· 25 50 75 100 125 150 /' / ....... --- / / / 46· AVD 5 RL 2 kO CL=100pF See Figure 1 0 / D.. ----- 1- .• 2 -75 -50 -25 ~ c VCC± 1/1 10000 CL - Load Capacitance - pF 2.8 2.6 - 1000 IVcc± I - Supply Voltage - V 3 ~ iii II '2 10 I ~ r--..... c ~ .. RL = 2 kn TA = 25·C See Figure 3 '0 !II '2 r£ 12 , ;; 'i c os c .; !- ...... .c III Cl VCC± = ±15 V ~ o 2 4 6 8 IVcc± I TA - Free-Air Temperature - ·C Figure 40 - 10 12 14 16 18 20 22 Supply Voltage - V Figure 41 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS "I INSTRUMENTS POST OFFICE BOX 655303· DALLAS. TEXAS 75265 2-1011 TlE2027, TlE2027A EXCAUBUR lOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt PHASE MARGIN PHASE MARGIN vs vs LOAD CAPACITANCE FREE-AIR TEMPERATURE 65· 60· VCC± c '2co> 40· 1\ ::;: . II> co .c: n. I ....E 20· = = = ±15 V RL 2kn TA 25·C See Figure 3 I 60· c \ .. ::;: .~ 1\ ... II> .c: n. " ....... 55· t'- r- ~ " "~ 50· "\ I i i'--. VCC± = ±15 V RL = 2 kn CL = 100pF See Figure 3 45· 40· o· 1\, 35· 100 1000 CL - Load Capacitance - pF -75 -50 -25 0 25 50 75 100 125 150 TA - Free-Air Temperature - ·C 10000 Figure 42 Figure 43 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. APPLICATION INFORMATION macromodel information Macromodel information provided was derived using PSpiceC$} Parts™ model generation software. The Boyle macromodel (see Note 6) and subcircuit in Figures 44 and 45 were generated using the TLE2027 typical electrical and operating characteristics at 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): • • • • • • Maximum positive output voltage swing Maximum negative output voltage swing Slew rate Quiescent power dissipation Input bias current Open-loop voltage amplification • • • • • • Gain-bandwidth product Common-mode rejection ratio Phase margin DC output resistance AC output resistance Short-circuit output current limit NOTE 6: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeiing of Integrated Circuit Operational Amplifiers", IEEE JDurnal of Solid-State Circuits, SC-9, 353 (1974). PSpice is a registered trademark of MicroSim Corporation. Parts is a trademark of MicroSim Corporation. Macromodels, simulation models, or olfiar modals provided by TI, dlrecUy or IndirecUy, ara nol warranled by 11 as lully representing all of Iha spa.ifiealions and oparaling characlerlstics ollha semiconduclor producllo which the modal reJalas. 2-1012 TEXAS . " INSTRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 TLE2027, TLE2027A EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS APPLICATION INFORMATION macromodel Information (continued) 3 din t r02 IN+ IN- ~ 90 hlim +dlp + - _ •.. vip .. vln --4H-+-i 2 5 Vcc- OUT Figure 44. Boyle Macromodel .subekt TLE2027 * e1 11 e2 6 de 5 da 54 1mA ,--i~Mr--*"----, >-~-Vo Figure 46. Voltage-Follower input offset voltage nulling The TLE2027 series offers external null pins that can be used to further reduce the input offset voltage. The circuits of Figure 47 can be connected as shown if the feature is desired. If external nulling is not needed, the null pins may be left disconnected. 1 kn ININ+ VCC- VCC- (a) Standard Adjustment (b) Adjustment with Improved Sensitivity Figure 47. Input Offset Voltage Nulling Circuits TEXAS "I INSTRUMENlS 2-1014 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLE2037, TLE2037A EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DECOMPENSATED OPERATIONAL AMPLIFIERS D3454. MAY 1990- REVISED APRIL 1991 available features • Outstanding Combination of DC Precision and AC Performance: Gain-Bandwidth Product. .. 80 MHz Typ V ... 3.3 nV/..JHz at f = 10 Hz Typ, 2.5 nVHHz at f = 1 kHz Typ VIO ... 25 J1V Max AVD ... 45 V/J1V Typ, With RL = 2 kn, 19 V/J1V Typ, With RL = 600 n • Available in Standard-Pinout Small-Outline Package • Output Features Saturation Recovery Circuitry • Macromodels and Statistical Information Included description The TLE2037 and TLE2037A combine innovative circuit design expertise and high-quality process control techniques to produce a level of ac performance and dc precision previously unavailable in single operational amplifiers. Using the Texas Instruments state-of-the-art Excalibur process, these devices allow upgrades to systems that use lower-precision devices. The TLE2037 and TLE2037A are decompensated versions of the TLE2027 and TLE2027A and are stable to a close-loop gain of 5. In the area of dc precision, these parts offer maximum offset voltages of 100 ~V and 25 ~V, respectively, common-mode rejection ratio of 131 dB (typ), supply voltage rejection ratio of 144 dB (typ), and dc gain of 45 V/~V (typ). The ac performance is highlighted by a typical gain-bandwidth product specification of 80 MHz, 50° of phase margin, and noise voltage specifications of 3.3 nV/..fRZ and 2.5 nV/..fRZ at frequencies of 10Hz and 1 kHz, respectively. LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREQUENCY m 160 'tI I c 140 o r- ~ "1; ~ 120 \ \ 'ii ~ 100 S "'" ;g 80 :! 60 AVD ~ "-~ = 153 dB V "- E ~ GBP 40 is I 20 c ~ = = CL = 100 pF TA = 25°C - VCC± ±15 V RL 2kn - "- ~ o 100 100 k f - Frequency - Hz 0.1 \ 100M Both the TLE2037 and TLE2037A are available in a wide variety of packages, including the industry-standard 8-pin small-outline version for high-density system applications. The e-suffix devices are characterized for operation from ooe to 70 0 e. The I-suffix devices are characterized for operation from -40 0 e to 105°e. The M-suffix devices are characterized for operation over the full military temperature range of -55°e to 125°e. AVAILABLE OPTIONS PACKAGE TA O°Cto V,Omax AT 25°C 25flV 70°C 100 flV -40°C to 25 flV SMALLOUTLINE (D) CHIP CARRIER (FK) CERAMIC DIP (JG) TLE2037ACD -- - TLE2037CD - -- METAL CAN (L) - PLASTIC DIP (P) TLE2037ACP TLE2037CP TLE2037AIP TLE20371D 105°C TLE20371P 100 flV -TLE2037AMD TLE2037AMFK TLE2037AMJG TLE2037AML TLE2037AMP -55°C to 25flV TLE2037MFK TLE2037MJG TLE2037ML TLE2037MP TLE2037MD 125°C 100 flV D packages are available taped and reeled. Add' R" suffix to device type. (e.g .• TLE2037ACDR). TLE2037AID . PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Te.as Inslruments standard warranty. Production processing does not necessarily include testing of all paramelers. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 Copyright © 1991. Texas Instruments Incorporated On products compliant to Mll'STD-BB3, Class S, all paramelers are tested unless olherwise noted. On all other products, production processing does not necessarily include testing of all parameter•• 2-1015 TLE2037, TLE2037A EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DECOMPENSATED OPERATIONAL AMPLIFIERS D, JG, OR P PACKAGE (TOP VIEW) OFFSET N1 ININ + [j8 VCC- FK PACKAGE LPACKAGE (TOP VIEW) (TOP VIEW) O~ONO 2 3 7 6 OFFSET N2 VCC+ OUT 4 5 NC OFFSET N2 zzzzz ~ 3 2 1 20 ~9 NC 4 18 NC INNC IN + NC 5 6 17 16 7 8 15 14 VCC + NC OUT NC 9 10 11 12 13 o Z 1000 OZ Z Z ~ NC - No internal connection symbol OFFSETN1 IN+ OUT IN- OFFSETN2 TEXAS ." Il'lSTRUMENTS 2-1016 POST OFFICE BOX 655303' DALLAS, TEXAS 75265 VCCPin 4 of the L package is in electrical contact with the case. equivalent schematic Q}r IN+ ..., ...,g 0_ :BZ ~~ m i~~~ ~~ >< e(") m> (")r0- 3:~ 1='!'I"I >z ~~4r ~ ~ R26 R18 R19 1 Vcc- -g:C mr- Zo en :!:j=!= mZ CO oCii -gm m::J: :c):IC) :::!::J:-I Oc:nrz-gm >mN r-m C >e~ 3: -g~ -g:c-l ~ ~ '" r-mr_(,,)m -n- N -enc m-c..,) :cO ..... enz> TLE2037, TLE2037A EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DECOMPENSATED OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, VCC+ (see Note 1) .......................... " ....... " .................. 22 V Supply vol!age, V CC- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -22 V Differential input voltage (see Note 2) ................................................. ±1.2 V Input voltage range, VI (any input) ." .......................................... "........ VCC± Input current, 'I (each input) ................................. " " " " +1 mA Output current, 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .±50 mA Total current into VCC± terminal ..................................................... 50 mA Total current out of VCC- terminal .................................................... 50 mA Duration of short-circuit current at (or below) 25°C (see Note 3) .............. : ............ unlimited Continuous total dissipation" ....................................... See Dissipation Rating Table Operating free-air temperature range, TA: C-suffix ................................... O°C to 70°C I-suffix ................................ -40°C to 105°C M-suffix ............................... -55°C to 125°C Storage temperature range ................................................... -65°C to 150°C Case temperature for 60 seconds: FK package .......................................... 260°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D orP package ............... 260°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG or L package .............. 300°C NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC + and VCC- . 2. Differential voltages are at the non inverting input with respect to the inverting input. Excessive current will flow if a differential input voltage in excess of approximately ±1.2 V is applied between the inputs unless some limiting resistance is used. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TAs25·C POWER RATING D 725mW FK 1375mW JG 1050mW L P 650mW 1000mW DERATING FACTOR = ABOVE TA 25°C 5.8 mW/oC .TA = 70·C POWER RATING TA = 105°C POWER RATING TA= 125°C POWER RATING 464mW 261 mW 145 mW 11.0 mW/oC 8.4 mW/oC 880mW 495mW 275mW 672mW 378mW 5.2 mW/oC 416mW 640mW 234mW 360 rnW 210mW 130mW 8.0 mW/oC _._---.._----_ _..... _ ...._--_ ...._... ------------,...... ... 200mW ----.--.,~--------.---. recommended operating conditions I-SUFFIX C-SUFFIX Supply voltage, VCC + . ITA Common .. mode Input voltage, VIC I TA Operating free-air temperature, TA = 25°C = Full range MIN MAX MIN ±4 ± 22 - 11 MIN MAX ±4 ±4 ± 22 11 - 11 11 -11 11 -10.5 10.5 -.. 10.4 10.4 -10.2 10.2 0 70 -40 105 -55 125 TEXAS ~ INSTRUMENTS 2-1018 M-SUFFIX MAX ± 22 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 UNIT V V °C TLE2037C, TLE2037AC EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DECOMPENSATED OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Vcc± = TEST CONDITIONS PARAMETER VIO Input offset voltage aVIO input offset voltage Input offset voltage long-term drift (see Note 4) 110 liB TLE2037C TYP MAX MIN 100 20 TAt 25°C Full range Temperature coefficient of = RS 0, = SOU Input offset current VICR voltage range )lV/oC 25°C 0.006 1 0.006 1 )lV/mo 25°C 6 90 6 SOU 150 15 90 -13 - 11 -- 13 to 11 to 13 to 11 to 13 -10.5 to to Maximum positive peak VOM+ output voltage swing Maximum negative peak VOM- AVO output voltage swing Large-signal differential voltage amplification RL = 2kU RL = 600U RL = 2 kU Vo = ± 11 V, = ± 10 V, RL Vo RL = = Vo = ± 10 V, RL = 1 kn Vo ci Input capacitance Zo Open-loop output impedance Common-mode CMRR rejection ratio Supply-voltage rejection ratio kSVR ICC (t-VCC ±It-VIO) Supply current = ± 10 V, 10.5 10 12.9 12 13.2 25°C RL = -10 -12 -11 2 kU Full range 2SoC 2 kn Full range 2 600 n 25°C Full range -13.5 38 2 V 45 8 -- 38 V/)lV 2.5 -----19 5 19 0.5 2 50 = VICR min, = 50n VCC± = ±4Vto±18V, RS = 50n VCC± = ±4Vto±18V, RS = son 25°C 100 Full range 98 2SoC 94 Full range 92 No Load 10 1 25°C 0, -13 4 10 = 0 = V 13.2 -12 -13.5 -11 45 8 Vo 12.9 -10 25°C VIC RS -10.5 -13 3.5 - 12 nA 11 5 25°C Full range 10.5 10.5 nA V 10 11 Full range 2SoC -10.S Full range 2SoC 90 150 - 11 10.5 600U 15 -10.5 25°C Full range = 90 150 150 Full range RL )lV 1 25°C = 70 UNIT 0.2 Full range RS MAX 25 1 25°C Common-mode input TYP 10 0.4 Full range Input bias current -- TLE2037AC MIN 145 Full range VIC ±15 V (unless otherwise noted) 8 50 131 117 pF n 131 dB 114 144 110 144 dB 25°C Full range 106 3.8 5.3 5.6 3.8 4.7 4.8 rnA tFull range is OOG to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating Hfe test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TEXAS ~ INSfRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 752£5 2-1019 TLE2037C, TLE2037AC EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DECOMPENSATED OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, Vcc± PARAMETER SR Slew rate Equivalent input noise Vn voltage (see Figure 2) Peak-to-peak equivalent VN(PP) input noise voltage Equivalent input noise In current THO Total harmonic distortion Gain-bandwidth product BaM ¢m Maximum output-swing bandwidth Phase margin TEST CONDITIONS TAt RL = 2kO, AVO = 5, CL = 100 pF, See Figure 1 RS = 1000, I = 10 Hz RS = 1000, I = 1 kHz 25°C Full range TLE2037AC MIN TYP MAX 6 7.5 5 3.3 4.5 2.5 3.8 UNIT TYP 7.5 MAX 25°C 3.3 2.5 8 4.5 I = 0.1 Hz to 10 Hz 25°C 50 250 50 130 nV I = 10 Hz I = 1 kHz 25°C 1.5 0.4 4 0.6 1.5 0.4 4 0.6 pAlVHz 25°C <0.002% VO=±10V, AVO = 5, See Note 5 I = 100 kHz, RL = 2kO, CL = 100 pF RL = 2kO RL = 2 kO, CL = 100pF MIN 6 5 25°C 50 76 50 MHz kHz 80 25°C 50° 50° TEXAS ~ POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 nV/VHz 76 80 INSTRUMENTS V/flS < 0.002% 25°C tFull range is O°C to 70°C. NOTE 5: Measured distortion 01 the source used in the analysis was 0.002%. 2-1020 = ±15 V TLE2037C TLE20371, TLE2037AI EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DECOMPENSATED OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Vcc± PARAMETER Via TEST CONDITIONS long-term drift (see Note 4) 110 lIB TLE20371 TYP MAX 20 100 VIC = 0, RS = 50n 25°C Input bias current lS voltage range Maximum positive peak RS = son output voltage swing Maximum negative peak output voltage swing 25°C Full range 2SoC RL = 600n RL = 2kQ RL = 600Q 2SoC RL=2kQ. = 2 kQ Va = ± 10 V, RL = 2 kQ Large-signal differential voltage amplification Va = ± 10 V, RL = 1 kQ Va = ±10V, RL = 600n ci Input capacitance Zo Open-loop output impedance 10 = 0 Common-mode rejection ratio VIC = VICR min, RS = SOQ VCC± = ±4Vto±18V, Supply-voltage rejection ratio RS = SOQ (,WCC±U,vIO) VCC± = ±4Vto±18V, CMRR kSVR Supply current Va = 0, No Load 1 fLV/mo 6 90 lS0 nA lS 90 lS0 nA -13 to to 11 -10.4 13 to 11 -10.4 13 to to 10.4 10.S 12 10.5 10 12.9 13.2 12 13.2 -13 11 -10.S -13 Full range 2SoC Full range 2SoC Full range 2SoC 100 Full range 96 2SoC 94 Full range 90 V 10 4S 3.S 38 8 1.8 2 O.S V -11 4S 2.S 3.5 V -10 -12 -13.S -12 -13.S -11 S to 12.9 10 fLV 0.006 -11 10.4 25 105 UNIT fLV/oC -13 25°C 2SoC RS = SOQ ICC Full range 2SoC 90 lS0 MAX 1 lS0 11 Full range -10.S 2SoC -10 Full range Va = ± 11 V, RL AVD 1 90 25°C Full range Full range VOM- 0.006 25°C Full range 25°C VOM+ 0.2 Input offset current -11 VICR TYP 10 1 0.4 6 Common-mode input TLE2037AI MIN 180 Full range input offset voltage Input offset voltage MIN 25°C Full range Input offset voltage Temperature coefficient of aVIO TAt = ±15 V (unless otherwise noted) 38 V/fLV 2.2 19 S 1.1 19 8 8 pF SO 50 n 131 117 131 dB 113 144 110 144 dB 2SoC Full range lOS 3.8 S.3 5.6 3.8 4.7 4.9 mA tFull range is -40°C to 10SoC. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = lS0°C extrapolated to TA = 2SoC using the Arrhenius equation and assuming an activation energy of 0.96 eV. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303· DALLAS. TEXAS 75265 2-1021 TlE20371, TlE2037AI EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION DECOMPENSATED OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, Vcc± PARAMETER SR Slew rate Equivalent input noise voltage (see Figure 2) Peak-to-peak equivalent YN(PP) input noise voltage Equivalent input noise In current Yn THO Total harmonic distortion Gain-bandwidth product BOM iflm Maximum output-swing bandwidth Phase marg in TEST CONDITIONS TAt RL = 2kn, AYD = 5, eL = 100 pF, See Figure 1 RS = lOOn, I = 10 Hz RS = lOOn, I = 1 kHz 25°e Full range TLE20371 MIN TYP 6 4.7 7.5 TLE2037AI MAX MIN TYP 6 4.7 7.5 MAX UNIT Y/JlS 25°e 3.3 2.5 8 4.5 3.3 2.5 4.5 3.8 nY/% I = 0.1 Hz to 10 Hz 25°e 50 250 50 130 nY 1 = 10 Hz 1 = 1 kHz 25°e 1.5 0.4 4 0.6 1.5 0.4 4 0.6 pAl,fHz' 25°e <0.002% YO = ± 10 Y, AyO = 5, See Note 5 1 = 100 kHz, RL = 2kn, eL = 100pF RL = 2kn RL = 2kn, eL= 100 pF 25°e 50 76 <0.002% 50 76 MHz kHz 25°e 80 80 25°e 50° 50° tFuil range is - 40 0 e to 105°e. NOTE 5: Measured distortion 01 the source used in the analysis was 0.002%. TEXAS ~ INSTRUMENTS 2-1022 = ± 15 V POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLE2037M, TLE2037AM EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DECOMPENSATED OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Vcc± PARAMETER Via TEST CONDITIONS 25°C Full range Input offset voltage Temperature coefficient of aVIO Input offset voltage long-term drift (see Note 4) Input offset current 1,8 Input bias current VIC = 0, RS = 500 .. - Common-mode input voltage range VOM- AVD output voltage swing ftV/ oC 0.006 1 0.006 1 ftV/mo 25°C Full range 6 90 6 90 25°C Full range 15 25°C 150 90 Maximum negative peak output voltage swing Large-signal differential voltage amplification -13 to -11 to -13 to 11 13 11 -10.4 13 -10.3 to to 13.2 12 13.2 11 -13 -10.5 -10 Full range -12 -13.5 25°C -11 Full range 11 -10.5 -13 45 Va = ± 10 V, RL = 1 kO 25°C Full range 3.5 38 Open-loop output impedance 10 = 0 Common-mode rejection ratio V'C = V,CR min, RS = 500 Supply-voltage rejection ratio VCC± = ±4Vto±18V, RS = 500 (,",-VCC ±I ,",-Via) VCC± = ±4Vto±18V, Supply current Va = 0, RS = 500 ICC 12 5 2.5 Zo kSVR 12.9 25°C Full range Va = ± 10 V, RL = 6000 CMRR 10.5 10 Va =±llV,RL = 2kO Va = ±10V, RL = 2kO Input capacitance No load 25°C nA V V -10 V -12 -13.5 -11 1.8 2 nA 10.4 12.9 25°C ci 90 150 -11 to Full range RL = 2kO 15 150 25°C RL = 6000 150 10.5 10 25°C Full range RL = 2kO ftV l' 10.3 VOM+ 105 UNIT 0.2 RS = 500 RL = 6000 MAX 25 l' Full range Maximum positive peak TVP 10 0.4 25°C VICR TlE2037AM MIN 200 Full range input offset voltage ',0 TAt = ± 15 V (unless otherwise noted) TlE2037M TVP MAX MIN 100 20 10 3.5 45 8 38 V/ftV 2.2 5 19 19 25°C 8 8 pF 25°C 50 50 0 25°C Full range 100 25°C 94 Full range 90 131 117 96 131 dB 113 144 110 144 dB 25°C Full range 105 3.8 5.3 5.6 3.8 4.7 5 mA 'On products compliant to Mll-STD-883, Class 8, thiS parameter IS not production tested. tFull range is -55°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TEXAS ~ INsrRUMENTS POST OFFICE BOX 655303· DALLAS. TEXAS 75265 2-1023 TLE2037M, TLE2037AM EXCALIBUR LOW-NOISE HIGH'-SPEED PRECISION DECOMPENSATED OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, Vcc± PARAMETER SR Vn Slew rate In THD input noise voltage Equivalent input noise current Total harmonic distortion Maximum output-swing ¢m 2SoC Full range 4.4- RS = 1000, 1 = 10 Hz Gain-bandwidth product BOM RL = 2kO, AVD = S, CL = 100 pF, See Figure 1 MIN 6- RS = 1000, 1 = 1 kHz Peak-to-peak equivalent VN(PP) TAt Equivalent input noise bandwidth Phase margin TYP 7.S MAX 2SoC S- 3.3 4.S' 2.S 3.S' SO 2S0' SO 130' 4' 1.S 4- 0.6' 0.4 0.6' Vo = ±10V, AVD = S, See Note S 2SoC <0.002% RL = 2kO RL = 2kO, CL = 100 pF 2SoC SO 76 SO kHz SO SO Soo 'On products compliant to MIL-STD-SS3, Class B, this parameter IS not production tested. tFull range is - 55°C to 12SoC. NOTE S: Measured distortion 01 the source used in the analysis was 0.002%. PARAMETER MEASUREMENT INFORMATION 10 kO Vo 1000 NOTE A: CL includes lixture capacitance. Figure 1. Slew Rate Test Circuit Figure 2. Noise Voltage Test Circuit TEXAS .~ INSTRUMENlS 2-1024 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 pAl..fHz MHz Soo 4kO nV 76 2SoC >-"*_--..- Vo nV/..fHz <0.002% 2SoC 4kO UNIT V/l1s 4.S' 1.S 0.4 RL = 2kO, MAX 2.S 2SoC CL = 100pF TYP 7.S 3.3 1 = 10 Hz 1 = 1 kHz 1 = 100 kHz, MIN 64.4- 2SoC 1 = 0.1 Hzt010Hz TlE2037AM TlE2037M TEST CONDITIONS voltage (see Figure 2) = ±15 V TlE2037, TlE2037A EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION DECOMPENSATED OPERATIONAL AMPLIFIERS PARAMETER MEASUREMENT INFORMATION typical values Typical values as presented in this data sheet represent the median (50% point) of device parametric performance. initial estimates of parameter distributions In the on-going program of improving data sheets and supplying more information to our customer, Texas Instruments has added an estimate of not only the "typical" values but also the spread around these values. These are in the form of distribution bars that show the 95% (upper) points and the 5% (lower) points from our characterization of the initial wafer lots of this new device type (see Figure 3). The distribution bars are shown at the points where data was actually collected. The 95% and 5% points are used instead of ±3 sigma since some of the distributions are not true Gaussian distributions. The number of units tested and the number of different wafer lots distribution bars are shown. As noted in Figure 3, there were a total case, there is a very good estimate for the within-lot variability and a variability. This will always be the case on newly released products, from a few wafer lots. used are on all of the graphs where of 835 units from 2 wafer lots. In this possibly poor estimate of the lot-to-lot since there will only be data available The distribution bars are not intended to replace the minimum and maximum limits in the electrical tables. Each distribution bar represents 90% of the total units tested at a specific temperature. And, while 10% of the units tested fell outside any given distribution bar, this should not be interpreted to mean that the same individual devices fell outside every distribution bar. SUPPLY CURRENT vs FREE-AIR TEMPERATURE 5 vcc± = ±15V I Vo = 0 « E C f! 5 () 4.5 No Load I Sample Size = 835 Units ./ 4 VV UJ I 3 V V From 2 Wafer Lots >a. g. 3.5 ~ .k'" V ., i'- 95% point on the distribution bar (5% of the devices fell above this point.) 90% of thtl devices were within the upper and lower points on the distribution bar. 5% point on the distribution bar (5% of the devices fell below this point.) V V 1'1 2.5 -75 -50 -25 0 25 50 75 100 125 150 T A - Free-Air Temperature - ·c Figure 3. Sample Graph with Distribution Bars TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-1025 TlE2037, TlE2037A EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION DECOMPENSATED OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS table of graphs FIGURE Input offset voltage Distribution Input offset voltage change vs 110 Input offset current vs Temperature lIB Input bias current vs Common-mode input voltage vs Temperature Differential input voltage VIO l!.VIO II VO(PP) YOM AVO Time after power on Input current vs Maximum peak-to-peak output voltage vs Frequency vs Load resistance Maximum peak output voltage vs Temperature vs Supply voltage Large-signal differential vs Load resistance voltage amplification vs Frequency vs Temperature Zo CMRR Output impedance vs Frequency Common-mode rejection ratio vs Frequency kSVR Supply voltage rejection ratio vs Frequency vs Supply voltage vs Time lOS ICC Short-circuit output current Supply current -" Vn Temperature vs Supply voltage vs Temperature Small-signal Pulse response -- vs Large-signal Equivalent input noise voltage vs Noise voltage (referred to input) 0.1 to 10 Hz Gain-bandwidth product vs Frequency Supply voltage vs Load capacitance SR Slew rate vs Temperature vs Supply voltage q>m Phase margin vs Load capacitance vs Temperature vs Frequency q, Phase shift TEXAS ~ INSTRUMENTS 2-1026 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 4 5,6 7 8 9 10 11 12,13 14,15 16 18 17,19 20 21 22 23 24, 25 26,27 28, 29 30 31 32 33 34 35 36 37 38 39 40 41 17,19 TLE2037, TLE2037A EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DECOMPENSATED OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt TLE2037 INPUT OFFSET VOLTAGE CHANGE DISTRIBUTION OF INPUT OFFSET VOLTAGE TIME AFTER POWER ON vs 12r----r----~---,-----r----r---_, 1568 Amplifiers = VCC± ±15 V t---t~i--t--t--t----t TA = 25·C 0 Package --+---E 14 'if. I >=. 12 10~--~~~_r--_4----+---~--_4 .,!:! E Ii E I = VIO - Input Offset Voltage - J.lV ., = ±15 V TA = 25·C 2 \I---+---t----IO Package -+1--1 Sample Size 50 Units From 2 Wafer Lots S i-- o 180 -75 -50 -25 0 25 50 75 100 125 TA - Free-Air Temperature - ·C Figure 6 150 Figure 7 toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-1027 TLE2037, TLE2037A EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DECOMPENSATED OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt INPUT BIAS CURRENT INPUT BIAS CURRENT vs vs COMMON-MODE INPUT VOLTAGE FREE-AIR TEMPERATURE 40 35 oct c 60 = VCC± ±15 V TA 25°C = oct c 30 I E ~ 25 " / U .. iii 20 c. .5 'S 15 ,g! 10 III V E ~ 30 . III 20 iii 'Sc. 10 " / -8 -12 ,g! -4 o 4 8 .\ 0 Figure 8 Figure 9 INPUT CURRENT MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs vs DIFFERENTIAL INPUT VOLTAGE FREQUENCY VCC± = ±lS V t g =0 = 2SOC 30 = \ 25 = VCC± ±15 V RL 2 kQ '[ ~ 0.4 - 0.2 ! - - -20 -75 -50 -25 0 25 50 75 100 125 150 TA - Free-Air Temperature - °C 12 > 0.6 ~ .5 VIC - Common-Mode Input Voltage - V VIC TA .... 1---. = -10 o 0.8 40 U ./" L 5 = I ./ = VCC± ±15 V VIC 0 I Sample Size 836 Units From 2 Wafer Lots r--- 50 8 0 'S o ~ J r o 15 Ii 10 Z ~ '[ -0.2 .5 .!:. -0.4 20 ..::eE ';( -0.6 -0.8 \1 TA 1\ = -Ssoc S ~=:= 6:' -1.2 -0.6 o 0.6 1.2 VID - Differential Input Voltage - V 1.8 ~ = 12SOC \~ Q. -1 -1.8 TA 0 10 k Figure 10 100 k 1M 10 M f - Frequency - Hz Figure 11 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS . " 2-1028 INSTRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 100M TLE2037, TLE2037A EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DECOMPENSATED OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE > vs vs LOAD RESISTANCE LOAD RESISTANCE ~ 14 . G> '" ~ I > '5 5' '" 10 8 6 4 / :; c. ~ -10 II o 1/ as ~ -12 I/,I-12 -14 ....as .. .. z'" a.. / V / -8 V ~ as E 'E" 'M -6 / -4 as 2 o :::e Vcc± = ±15V TA = 2S·C II 100 1k RL - Load Resistance - 10 k ~ ... vs vs FREE-AIR TEMPERATURE FREE-AIR TEMPERATURE = ~ 13 / Y... V V ..'" 1,./ I .~ 13.2 '= 10k n MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE ~ :::e JJ 1k RL - Load Resistance - 100 MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE 13.3 E 13.1 '" E = Figure 13 > = o = VCC± ±lSV TA 2S·C Figure 12 Vcc± ±15 V .1 RL 2 kn S'" '0 13.4 Sample Size = 832 Units > From 2 Wafer Lots [ " :::e 0 > n > 13.5 I -2 I .A V -13 S '0 :: -13.2 V~ a. '5 o 81 -13.4 ... ~ 1-" .. > '; 1- 13.6 E 'E" 'M :;! + I l...r a.. V Vcc± = ±lSV J. RL = 2 kn Sample Size = 831 Units From 2 Wafer Lots -13.8 ~ 1'\~ 1'1~ I :::e :::e ~ 12.9 -75 -50 -25 0 25 50 75 100 125 150 T A - Free-Air Temperature - ·C ~ , T -14 -75 -50 -25 0 25 50 75 100 125 150 T A - Free·Alr Temperature - ·C Figure 14 Figure 15 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS . " - INSTRUMENlS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 2-1029 TLE2037, TLE2037A EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DECOMPENSATED OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION ~ vs vs SUPPLY VOLTAGE FREQUENCY 160 50 TA = 25·C :> "I RL = 2kn .2 1U u 5: 40 E 30 iiu .. > ~ E 100 .. RL = 600 Q o 4 8 12 16 20 IVcc± I - Supply Voltage - V vs vs FREQUENCY 30 / 'I I--- " ~ 20 :eQ. 15 l! '0 10 iii .. 5 :t: OJ 0 E 100 M 100· I\~ ~ I I c ~ C o 150· -5 10 k 1 Figure 18 ,, ~ ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS. TE.XAS 75265 .... ~ \/ 10 f - Frequency - MHz 4 Figure 19 TEXAS 175· i"\ VCC± = ±15 V RL = 2 kn CL = 100 pF TA= 25°C -10 400 1k 4k RL - Load Resistance - Q 1\ \~ is 10 125· 1\\ > .~ 2-1030 250· . \Phase ShIft .. > iii is 10 C > 20 ;:: ~ AVO Q. > 60 = Vcc± = ±15V ~ I C 0 c: '1; 'a 50 c E ... 15 40 C I C ~ ~k.Q V iVV ~ a. ~ = 2k.Q 1 1.--- V > .. '0 V~ 01 ~ ... () « Oi 10 .. () 0;: .E '5 a. '5 i--- 0 I ~ -10 I I -100~--~--~--~--~--~--~--~ 30 -75 -50 -25 0 25 50 75 100 125 150 TA - Free-Air Temperature - ·C 10 '0 I 0 120 ~ a: c 100 .!! .. a: .. U 'ii" 80 0 :E C 60 0 E E 0 10 M 100 M SUPPLY VOLTAGE REJECTION RATIO vs vs FREQUENCY FREQUENCY 140 = VCC± ±15V TA 25·C _ , = III '0 I 120 0 " ""' :E 0 100 1k ~ ~ c 100 a: "' 20 10 1M COMMON-MODE REJECTION RATIO 40 o 100 k Figure 21 0 a: a: 10 k Figure 20 " '0 1k f - Frequency - Hz 140 III 100 0 .. a: .. ';; 80 S '0 '" 60 7i ""' "' " "- 10 k 100 k 1M "\~ "\~kSVR"\ ~ > kSVR)\:: >- is. a. ::I 40 I a: 20 > 1/1 ~ 10 M 100 M ... o 10 ~ ~~ ~~ 1/1 \ = ±15 V = 25·C _ VCC± TA 100 1k 10 k 100 k 1M f - Frequency - Hz f - Frequency - Hz Figure 22 Figure 23 10 M 100 M tData at high and .Iow temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS "I INSTRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 2-1031 TlE2037, TlE2037A EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION DECOMPENSATED OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS SHORT-CIRCUIT OUTPUT CURRENT SHORT-CIRCUIT OUTPUT CURRENT vs vs SUPPLY VOLTAGE SUPPLY VOLTAGE -42 44 = 100 mV Vo = 0 TA = 2SoC- = -100mV =0 TA = 25°C VID ;; ./ 4 >a. 3.5 :> il. til I () () .9 .9 4 6 8 10 12 14 16 18 20 22 = 836 Units From 2 Wafer Lots () 2 3 150 I Vo 0 No Load Sample Size E = 125·C = 25·C I I I TA = -55·C ~ ;; 4.5 125 = ±15V = E 2 25 TA - Free-Air Temperature - ·C oCt o o 0 T A - Free-Air Temperature - ·C 5 til I " 0 til = >a. r---- .s:: "i'-- 75 34 Vo 0 No Load () I'...... IV :; 6 E --... // = Vcc± ±15V VID -100 mV Vo 0 _ P Package = = oCt () :; I = Vcc± ±15V VID 100 mV Vo 0 P Package V / V /' V V VI 2.5 -75 -50 -25 0 25 50 75 100 iVcc±l- Supply Voltage - V TA - Free-Air Temperature - ·C Figure 30 Figure 31 125 150 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSfRUMENTS POST OFFICE BOX 655303' DALLAS. TeXAS 75265 2--1033 TLE2037, TLE2037A EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DECOMPENSATED OPERATIONAL AMPLIfiERS TYPICAL CHARACTERISTI~S LARGE-SIGNAL PULSE RESPONSE SMALL-SIGNAL PULSE RESPONSE 15 100 VCC± = ±15 V > A 50 E I .. '" S "0 > :; Co :; 0 1/ 0 I 0 > -50 -100 6 4 .. '" S /~ \ \ "0 > ;; Co ;; 0 / / 0 I -5 0 > '-' -10 1\ \ -15 100 200 300 400 0 4 2 6 8 t - Time - ns I - Time - I1S Figure 32 Figure 33 EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY NOISE VOLTAGE (REFERRED TO INPUT) OVER A 10-SECOND INTERVAL \ 10 50 \ \ \ 8 \\ vcc± = ±15 V AVD = 5 RL = 2 kQ CL = 100pF TA = 25°C o 10 > AVD = 5 10 RL = 2 kQ CL = 100 pF TA = 25°C 5 See FigUrej VCC± = ±15 V RS = 100 Q TA = 25°C See Figure 2 I VCC± = ±15V f= 0.ltol0Hz 40 30 TA = 25°C 1 Sample Size = 100 Units From 2 Wafer Lots - >c 20 I 10 . s'" "0 0 . -10 Z -20 > to '0 i'- -30 2 -40 o 1 -50 10 100 1k f - Frequency - Hz 10 k 100 k 0 4 6 t - Time - s Figure 34 Figure 35 TEXAS ~ 2-1034 2 INSTRUMENlS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 8 10 TlE2037, TlE2037A EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION DECOMPENSATED OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt GAIN-BANDWITH PRODUCT vs SUPPLY VOLTAGE GAIN-BANDWIDTH PRODUCT vs LOAD CAPACITANCE 78 78 = 100 kHz RL = 2 kQ CL = 100 pF n TA = 25·C f N :x:: ::;: ti ::s ..c:: 76 -6 '~ "0 s::: as ttl C '; 74 / / 75 /' ./ ::s - "0 2 0.. = o 2 4 :;; ~ iii 6 s::: as t--." '" " ttl C a; 75 8 10 12 14 16 18 20 74 100 22 ........ r---r-- 1000 10000 IVcc± I - Supply Voltage - V CL - Load Capacitance - pF Figure 36 Figure 37 SLEW RATE vs FREE-AIR TEMPERATURE PHASE MARGIN vs SUPPLY VOLTAGE 52· = = = = Vcc± ±15V AVO 5 RL 2 kQ CL 100 pF See Figure 1 8 7 r--. "0 ~ c V~C~ ~I ~~IV TA = 2S"C 8 ~ .. ~ '0 6 .; 4 ........1-" - _I-' > :; o I if ~ 2 o 10 100 1k 10 k RL - Load Resistance - Q A variety of available package options includes small-outline and chip-carrier versions for high-density system applications. AVAILABLE OPTIONS PACKAGE SMALL OUTUNE (D) TA VIO max AT 2S"C O°C SOO flV to 1.S flV TLE2061ACD TLE2061CD -- 70°C 3mV -40°C SOO flV to 8SoC 1.S flV TLE2061AID 3mV TLE20611D -SsoC SOOflV to 12SoC l.S flV TLE2061AMD 3mV TLE2061MD --- CHIP CARRIER (FK) CERAMIC DIP (JG) -- -- -- ------ -------- TLE2061AMFK TLE2061AMJG TLE2061AMP TLE2061MFK TLE2061MJG TLE2061MP SSOP (DB) TLE2061 CDBLE ------- -- PLASTIC DIP (P) -TLE2061ACP TLE2061CP -- TSSOP (PW) CHIP FORM (V) --- --- TLE2061CPWLE TLE2061Y -- -- TLE2061AIP -- -- TLE20611P -- -- ---- ---- -- D packages are available taped and reeled. Add "R" suffix to device type, (e.g., TLE2061 ACDR).The DB and PW packages are only available leftend taped and reeled. Chips are tested at 2SoC. PRODUCTION DATA information Is curl'9nt as of publication date. Products conform to specifications per the term. of Tual Instruments standard warranty. Production proc81Sing does not necessarily include tasting 01 all parameters. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303· DALLAS. TEXAS 75265 Copyright © 1991. Texas Instruments Incorporated 2-1039 TlE2061, TlE2061A, TlE2061B, TlE2061Y EXCALIBUR JFET-INPUT HIGH OUTPUT-DRIVE IlPOWER OPERATIONAL AMPLIFIERS description (continued) The e-suffix devices are characterized for operation from ooe to 70 oe. The I-suffix devices are characterized for operation from -40 oe to 85°e. The M-suffIx devices are characterized for operation over the full military temperature range 01 -55°e to 125°e. US 0, DB, JG, P, or PW PACKAGE FK PACKAGE (TOP VIEW) (TOP VIEW) OFFSETN1 ININ + VCC _ 2 3 7 6 4 5 Z NC VCC+ OUT OFFSET N2 I- w en lL OlLOOO zOzzz 3 NC INNC IN+ NC 2 1 20 19 4 18 NC S 6 17 7 15 VCC+ NC OUT NC 16 14 8 9 1011 1213 0 Z IONO OZ Z Z I- 0 > W en lL lL NC - No internal connection 0 equivalent schematic ACTUAL DEVICE COMPONENT COUNT Capacitors 3 Diodes 9 Resistors Transistors 42 -+__--, IN+ _ _ _ IN- +-ICC RL = 10 kn VO=Oto2V, RL= 100n Vo = Oto-2V, RL = 100 n Input capacitance Supply-voltage rejection ratio (!!,vCC±1 !'>VIO) --- VIC = VICR min VCC± = ±5Vto±20V, RS = 50n 3.1 Vo = 0, No load -3.7 Full range -3.3 25°C Full range -2.5 -2 -2.7 25°C 15 80 Full range 2 -3.9 25°C 0.75 45 Full range 25°C 0.5 0.5 3 Full range 0.25 25°C 10-~ 25°C 4 V VlmV n pF 280 25°C Full range 65 65 82 25°C 75 93 Full range 75 280 Full range Full range operating temperature range V 2 25°C 25°C Supply current Supply current change over 2.5 25°C 10 = 0 RS = 50 n, CMRR Common-mode rejection ratio f--- Vo = ±2.8V, --- r' r-L-- 25°C Full range RL = 10kQ AVD 3.5 3.3 3.7 Full range n dB dB 325 350 29 flA flA tFull range IS O°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 - DALLAS, TEXAS 75265 2-1043 TlE2061C, TlE2061AC, TlE2061BC EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE flPOWER OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, vee ± TEST CONDITIONS PARAMETER SR Slew rate at unity gain (see Figure 1) Equivalent input noise voltage Vn (see Figure 2) Peak-to-peak equivalent input VN(PP) noise voltage = 100 pF 59 100 25°C 43 60 25°C 1.1 f = 0.1 Hz to 10 Hz 25°C 1 25°C 0.025% CL = 100pF 25°C 1.8 = 100 pF 25°C 1.3 f = 10 kHz, RL = 10kil Unity-gain bandwidth RL = 10 kn, (see Figure 3) RL = 100 n, CL 0.1% 25°C 5 0.01% 25°C 10 Avo = 1, RL = 10kn 25°C 140 Phase margin at unity gain RL = 10 kil, CL = 100pF 25°C 58° (see Figure 3) RL = 100n, CL = 100pF 25°C 75° tFull range IS O°C to 70°C. TEXAS ~ 2-1044 INSTRUMENTS POST OFFICE BOX 655303' OALLAS, TEXAS 75265 UNIT V/JJ.s 25°C f = 1kHz bandwidth MAX RS = 100n AVO = 2, VO(PP) = 2V, ¢m 3.4 RS = 100n Equivalent input noise current Maximum-output-swing TYP 2.2 2.1 f = 10 Hz, f = 1 kHz, Total harmonic distortion BaM MIN CL In Settling time TA 25°C Full range RL = 10 kn, THD B1 = ±5 V nV/% JJ.V fA/% MHz JJ.S kHz TlE2061C, TlE2061AC, TlE2061BC EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J.1POWER OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, vee ± PARAMETER TEST CONDITIONS TLE2061C VIO Input offset voltage Input offset current liB Input bias current MAX 0.6 3 3.9 RS = 50n 0.3 UNIT mV 0.5 1 Full range 25°C ~VloC 6 0.04 25°C ~Vlmo 2 Full range pA 1 25°C 4 Full range Common-mode input voltage range 1.5 2.5 Full range 25°C VICR TYP 0.5 25°C Input offset voltage long-term drift (see Note 4) 110 MIN Full range VIC = 0, Temperature coefficient of input offset voltage TA 25°C Full range 25°C TLE2061AC TLE2061BC "VIO =± 15 V (unless otherwise noted) pA 3 -11 to -12 13 16 nA to nA V -11 Full range to V 13 RL = 10 kn VOM+ Maximum positive peak output voltage swing RL = 600n 13.7 25°C 12.5 13.2 12 -13.2 -13.7 -13 Full range 25°C -12.5 -13 RL = 600n Full range Vo = ±10V, RL = 10 kn Vo = Oto 8 V, RL = 600n Vo = Oto-8V, RL = 600n 30 Full range 20 25°C 25 Full range 10 25°C 3 Full range 1 230 100 Input resistance 25°C 10·~ Input capacitance 25°C 4 Zo Open-loop output impedance kSVR ICC Supply-voltage rejection ratio (liVCC±1 liVIO) VIC = VICR min VCC± = ±5Vto±15V, RS = 50n Vo = 0, No load 72 70 90 25°C 75 93 Full range 75 290 Full range Full range operating temperature range n pF 280 25°C Full range 25°C Supply current Su pply current change over lilCC 25°C RS = 50n, V/mV 25 'i 10 = 0 V -12 25°C ci CMRR Common-mode rejection ratio V 25°C RL=10kn Large-signal differential voltage amplification 13.2 13 Full range VOM- Maximum negative peak output voltage swing AVD 25°C Full range n dB dB 350 375 34 ~ ~ tFull range IS O°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 2-1045 TLE2061C, TLE2061AC, TLE2061BC EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J.1POWER OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, Vcc± PARAMETER SR Vn RL Equivalent input noise voltage f (see Figure 2) f = 10 Hz, = 1 kHz, f = 0.1 Peak-to-peak equivalent input VN(PP) noise voltage In Equivalent input noise current THO Total harmonic distortion Unity-gain bandwidth Bl (see Figure 3) Settling time = 10 kn, tPm bandwidth MIN TYP 2.6 2.5 3.4 CL = 100 pF RS = loon = loon RS Hz to 10 Hz = 1 kHz AVO = 2, VO(PP) = 2V, RL = 10kn, RL = 600n, f f = 10 kHz, RL = 10 kn CL CL = 100pF = 100 pF 0.1% 0.01% Maximum-output-swing BaM TA 25°C Full range TEST CONDITIONS Slew rate at unity gain (see Figure 1) AVO Phase margin at unity gain RL (see Figure 3) RL = 1, = 10 kn, = 600n, RL = CL = 100 pF = 100pF CL 10kn tFull range IS O°C to 70°C. TEXAS ~ INSTRUMENTS 2-1046 = ± 15 V POST OFFICE BOX 655303' DALLAS. TEXAS 75265 MAX UNIT V/v.s 25°C 70 100 25°C 40 60 25°C 1.1 v.V 25°C 1.1 fAl-JHz 25°C 0.025% 25°C 2 25°C 1.5 25°C 5 25°C 10 25°C 40 25°C 60° 25°C 70° nV/-JHz MHz v. s kHz TlE2061C, TlE2061AC, TlE2061BC EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE JlPOWER OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, vee ± = PARAMETER TEST CONDITIONS TLE20S1C VIO Input offset voltage TLE20S1AC liB MAX O.S 3 Input offset current Input bias current 1.S 2.5 0.3 mV 0.5 1 Full range 25°C 6 J.l.V/oC 0.04 J.l.V/mo pA nA pA 25°C Full range 3 25°C 5 1 Full range Common-mode input voltage range UNIT 3.9 Full range 25°C VICR TYP O.S 25°C RS = 50n Input offset voltage long-term drift (see Note 4) 110 MIN Full range VIC = 0, Temperature coefficient of input offset voltage TA 25°C Full range 25°C TLE20S1BC aVIO ± 20 V (unless otherwise noted) 3 -15 to -17 1S.5 21 to nA V -15 Full range to V 1S.5 25°C RL=10kQ Full range VOM+ Maximum positive peak output voltage swing RL = soon VOM- Maximum negative peak output voltage swing RL = SOO n AVD Large-signal differential voltage amplification Vo = ±15V, RL = 10 kn Vo = 0 to 10 V, RL = SOO n VO=Oto-10V, RL = soon 18.7 18 25°C 15 Full range 12 25°C RL = 10kQ 18.2 -18.2 Full range -18 25°C -15 Full range -12 -18.7 25°C 30 20 25°C 25 80 Full range 10 3 20 280 Input resistance 25°C 10-" c' Input capacitance 25°C 4 Zo Open-loop output impedance kSVR Supply-voltage rejection ratio (/1V CC± I /1 V 10) ICC Supply current Supply current change over 10 = 0 25°C RS = son, 25°C 75 Full range 70 25°C 75 Full range 70 VIC = VICR min VCC± = ±5Vto±20V, RS = 50n 25°C Vo = 0, No load Full range V/mV 1 r' CMRR Common-mode rejection ratio V -18 Full range 25°C Full range V 18.1 n pF 280 n 91 dB 93 300 dB 375 400 JJ.A Full range 18 JJ.A operating temperature range tFull range IS O°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. /1ICC TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-1047 TLE2061C, TLE2061AC, TLE2061BC EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE JLPOWER OPERATIONAL AMPLlFJERS operating characteristics at specified free-air temperature, Vcc± PARAMETER SR Vn VN(PP) Slew rate at unity gain TYP 2.8 3.4 Full range 2.5 UNIT V/Jls CL = 100pF RS = loon 25°C 75 100 (see Figure 2) Peak-to-peak equivalent input f = 1 kHz, RS = lOOn 25°C 40 60 f = 0.1 Hz to 10Hz 25°C 1.1 JlV f = 1 kHz 25°C 1.3 fA/{Hz f = 10 kHz, RL = 10kil 25°C 0.025% Cl = 100pF 25°C 2.1 CL = 100pF 25°C 1.6 25°C 5 25°C 10 noise voltage Total harmonic distortion Unity-gain bandwidth (see Figure 3) Settling time AVO = 2, VO(PP) = 2V, RL = 10 kil, RL = 600n, 0.1% 0.01% Maximum-output-swing bandwidth AVO Phase margin at unity gain RL = 10 kn, (see Figure 3) RL = 1, = 600n, RL = 10 kn 25°C 28 CL = 100 pF CL = 100pF 25°C 60° 25°C 70° tFull range IS O°C to 70°C. TEXAS ~ INSTRUMENTS 2-1048 MAX RL = 10 kn, THO m Phase margin at unity gain (see Figure 3) 3.4 RS= 100n 40 RL = 600 n, 0.1% CL=100pF 1.5 RL= 10 kQ 10 40 TEXAS nV/,fHz" 1.1 RL = 10 kQ CL = 100 pF 0.025% 2 5 RL = 600 n, V/flS flV VO(PPl =2V, RL = 10 kQ, CL = 100 pF CL = 100 pF UNIT IA/,fHz" 1= 10 kHz, AVD= 1, RL = 10kn, MAX 1.1 AVD = 2, 0.01% BOM TYP 2.6 70 1=1 Hz Settling time MIN Rs= lOOn 1=0.1 Hz to 10 Hz input noise voltage Equivalent input noise current TEST CONDITIONS CL = 100 pF MHz fls kHz 60 0 70° ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2-1061 TLE2061, TLE2061A, TLE2061B EXCALIBUR JFET-INPUT HIGH-OUTPUT-ORIVE J.LPOWER OPERATIONAL AMPLIFIERS PARAMETER MEASUREMENT INFORMATION 10 kQ vo CL (see Note A) VCCRS RS NOTE A: CL includes fixture capacitance, Figure 1. Slew Rate Test Circuit Figure 2. Noise Voltage Test Circuit 10kn NOTE A: CL includes fixture capacitance, Figure 3. Unity-Gain Bandwidth and Phase Margin Test Circuit typical values Typical values as presented in this data sheet represent the median (50% point) of device parametric performance, input bias and offset current At the picoamp bias current level typical of the TLE2061, TLE2061 A, and TLE2061 B, accurate measurement of the bias current becomes difficult Not only does this measurement require a picoammeter, but test socket leakages can easily exceed the actual device bias currents. To accurately measure these small currents, Texas I nstruments uses a two-step process. The socket leakage is measured using picoammeters with bias voltages applied but with no device in the socket. The device is then inserted into the socket and a second test that measures both the socket leakage and the device input bias current is performed. The two measurements are then subtracted algebraically to determin~ the bias current of the device. TEXAS ~ INsrRUMENTS 2-1062 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLE2061, TLE2061A, TLE2061B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J1POWER OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS table of graphs FIGURE VIO Input offset voltage lIB Input bias current vs Temperature 110 Input offset current vs Temperature VICR Common-mode input voltage range limits Temperature Output current VOM Maximum peak output voltage swing vs vs vs Supply voltage Frequency VO(PP) Distribution vs Maximum peak-to-peak output voltage vs Frequency vs Temperature vs Time vs Temperature Output impedance vs Frequency Common-mode rejection ratio vs Frequency vs Supply voltage AVD Differential voltage amplification lOS Short-circuit output current Zo CMRR ICC Supply current vs Temperature Small-signal Pulse response Vn THD 81 ¢m vs Common-mode voltage Large-signal Noise voltage (referred to input) 0.1 to 10 Hz Equivalent input noise voltage vs vs Frequency vs Supply voltage Total harmonic distortion Unity-gain bandwidth Phase margin Phase shift Frequency vs Temperature vs Supply voltage vs Load capacitance vs Temperature vs Frequency 4 5 6 6 7 8,9 10, 11,12 13,14,15 16 17 18 19 20 21 22 23 24, 25 26, 27 28 29 30,31 32 33 34 35 36 16 TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-1063 TLE2061, TLE2061A, TLE20618 EXCALIBUR JFET-INPUT HIGH.. OUTPUT-DRIVE J.LPOWER OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt TLE2061 INPUT BIAS CURRENT DISTRIBUTION OF INPUT OFFSET VOLTAGE COMMON-MODE INPUT VOLTAGE vs 15 2 736 Amplifiers = '#. I ~ 5 Ci. VIO TA = VCC± ±15V TA 25"C PPackage c( c 10 '! § 0 '0 .!! CD GI :; ... CI 8 a; I .. E c 1.5 I c( J! =0 = 25"C .5 5 Vcc± I I 1! CL 0.5 Vcc± o o '----'-'_"" -4 -3 -2 -1 0 2 VIO -Input Offset Voltage - mV 3 Figure 5 INPUT BIAS CURRENT and INPUT OFFSET CURRENT COMMON-MODE INPUT VOLTAGE RANGE LIMITS = I vs vs FREE-AIR TEMPERATURE FREE-AIR TEMPERATURE > I 8, ! S ~ 1ii ... .5 0 "0 C -g L liB 102 ./' POSITIVE LIMIT :; ./ 3 ;: 10 VCC+ + 1 ~ 0 iii VCC+ ~ " :!! VCC- +4 /110 r!: ~ I - E 2- .. "0 c 101 ./' <3I ./ VCC- +3 o NEGATIVE LIMIT - -> 1! 100 25 45 65 85 105 TA - Free-Air Temperature - ·c 125 Vcc- +2 -75 -50 Figure 6 -25 0 25 50 75 100 TA - Free-Air Temperature _·C Figure 7 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 2-1064 20 = '! 104 . .. - 20 - 15 - 10 - 5 0 5 10 15 VIC - Common-Mode Input Voltage - V 4 Vcc± ±15V VIC 0 ... I = ±1~ Figure 4 105 c( V ~ = ±20V, TEXAS "" INSIRUMENlS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 125 TlE2061, TlE2061A, TlE2061B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J.1POWER OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE > ., ~ ;g MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE vs vs OUTPUT CURRENT OUTPUT CURRENT 20 -- TA = 25°C 18 - vcc± = ±20V 16 '5 ~ o 14 .:w: 12 _ VCC± = ±15V ~ 10 'g 8 D.. 4 + ::;; 2 _VCC±=±5V ~ 0 > '5 D.. '5 .,. 0 .:w: E E = '5 D.. '5 -14 o . " -8 ~ -6 'x ~ -2 _ vcc± I I I -20 -30 -40 -50 -60 ~ 0 o = ±5V I I I 5 10 15 ~ 20 25 30 35 40 10 - Output Current - mA 10 - Output Current - rnA Figure 8 Figure 9 MAXIMUM PEAK OUTPUT VOLTAGE MAXIMUM PEAK OUTPUT VOLTAGE vs vs SUPPLY VOLTAGE SUPPLY VOLTAGE RL = 10kn TA = 25°C 15 -4 ::;; -10 "- -....... E o = 25°C -....... ±20V ~ -12 _ vcc± = ±15V Y 10 ../ 5 ./ ./ ./ ~ VOM+ "" 20 RL > I 15 0 10 ., '" ~ TA y =600n = 25°C V '5 So 5 .,. 0 . ./ ::J 0 .:w: 0 ./ VOM+ ./ V > D.. ::J TA vcc± .:w: 20 ., .\'! '" '0 - Cl ::;; I "5 r-... > -16 ~ 6 > g' -18 '~ -10 E ::J E 'xco ., D.. ~ '::; ~ -20 ./ D.. E E ........... -5 .......... 'xco ........... ::;; -10 r-..... I ::;; 0-15 o 4 6 8 10 I'-- ........... 12 14 VOM- 16 18 ~ ............. I ::;; ........... r-..,VOM- 0-15 > -20 20 o 2 4 6 8 10 12 14 16 l' 18 20 IVcc± I - Supply Voltage - V IVcc± I - Supply Voltage - V Figure ........... ::;; -10 ~ 2 ......... 'xco > -20 ........... -5 ::J 10 Figure 11 TEXAS • INSTRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2-1065 TLE2061, TLE2061A, TLE2061B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J.1POWER OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE MAXIMUM PEAK OUTPUT VOLTAGE 6 RL TA > I " CI 4 vs vs SUPPLY VOLTAGE FREQUENCY = loon =2SoC > :; Co :; .." 2 ~ L V l! 0 > " ;g E E " ';c .. . 6 ~os 0 , -2 '" E "E ';c 4 ::;: 2 Co ~ I -4 £' VOM- o 2 4 6 8 1\ ~ .. - ~ > -6 \ a ~ ::;: ::;: 0 8 :; S- "" Co Vcc± = ±SV RL = 10 kn TA= 2SoC CI l! 0 "" 10 '-.. I- 0.. 10 ~ 0 10 k 100 k 1M f - Frequency - Hz IVcc± I - Supply Voltage - V Figure 12 Figure 13 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE > vs vs FREQUENCY > 30 Vcc± = ±lSV RL = 10kn TA = 2SOC '" l! o > :; Co :; o MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAG E FREQUENCY CI 2S . 20 .. ~ o lS § 10 "" ~ o ~ E ';c co ::;: 5 ~ co ~ t-- f- 30 20 ,~" 10 ::;: !'. £' 1\ 2S 15 .. vcc± = ±20V RL = 10kn TA = 2SOC 3S ~ E \ 40 " E ;g &. :; o "" ~ \ i' 0.. ~ 0 10 k ~ 100 k 1M f - Frequency - Hz Figure "'" 10M 100 k 1M f - Frequency - Hz 14 Figure TEXAS 2-1066 10M ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 15 10M TlE2061, TlE2061A, TlE2061B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE jJ.POWER OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION and PHASE SHIFT ..,III 120 ..\ ~ I c 100 .2 5 01: =a vs FREQUENCY FREE-AIR TEMPERATURE pJASE II> CI ~HIFT 60 .'! 15 > :i! 40 ~ i5 20 ~ I C vcc± = ±1SV Rl = 10kn Cl = 100pF TA = 2S·C 0 > 140·6: I .... 160' 180· 200· 10 k 100 k 1 M 10 M f -Frequency - Hz 100 400 > 80· .......... ~ E CI > i I c > - ~ " ~ Figure C f! 300 TA = 2SOC ~ c II 0.001 10 80 .~ AVD= 1 I- Vcc:t = :t20V IX! / I I III Av D = 10 a. 100 .,. III I . 'll FREQUENCY """ 100 8c vs FREQUENCY VCC:t = :t1SV TA = 2S·C c:: COMMON-MODE REJECTION RATIO vs ~ 260 1--.lt~-t---j--t--t--t---I--1 TA = -55OC 240 I o 2 I I 4 6 8 10 12 14 16 IVcc:t I - Supply Voltage - V Figure 18 20 240 '----'"--'---'-----'----'--.......--'----' -75 -50 -25 0 25 50 75 100 125 TA - Free-Air Temperature - ·C 22 .Figure 23 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ", INSTRUMENTS 2-1068 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TlE2061, TlE2061A, TlE2061B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE f.lPOWER OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 100 100 > E '" 50 .. > E - 50 .. I I CI .!!! '0 > '5 c. CI .!!! ~ 0 '5 c. '5 ~ o o I o > -50 -100 I vcc± = ±5V RL = 10kn CL = 100pF TA = 25°C See Figure 1 V -100 o 2 o 3 t - Time - JLs Figure Figure 24 15 10 3 > > . I 2 CI I I .!!! '0 ~ > '5 '5 c. '5 .e::I I 0 I 0 0 I 5 VCC± = ±1SV RL = 10k!} CL = 100pF TA = 2SoC See Figure 1 CI .!!! 0 0 I 0 VCC± = ±SV RL = 10kn > o -5 > CL= 100pF TA = 2SOC See Figure 1 -1 -2 25 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 4 I 3 2 t - Time - JLs VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE .. - VCC± = ±1SV RL=10kn CL = 100 pF TA = 2SoC See Figure 1 o > -50 -10 -15 S t - Time - Figure 10 15 I o 10 20 30 40 t - Time - JLs JLS 26 Figure TEXAS 27 "I INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-1069 TLE2061, TLE2061A, TlE2061B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE JlPOWER OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS NOISE VOLTAGE (REFERRED TO INPUT) OVER A 10-SECOND INTERVAL EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY 100 ~> VCC± = ±lSV f 0.1 1010Hz = c I 0.51-+.-t-+---f--:ot-lt--+-t-----t----1;-t\-i 80 ~ II) S'" g II) V~~± = 1\ 60 I. . . . . ~ !II '0 z r- 'S ! = ±SV RS = loon TA 2SoC See Figure 2 40 ~ -0.5 1---t----1-+-+-+--+-1--I-I--I----1 ~ .~ w 20 c > 2 3 4 5 6 I-Time-s Figure 7 8 9 10 f - Frequency - Hz 28 Figure TOTAL H)!;RMONIC DISTORTION 0.3 TOTAL HARMONIC DISTORTION vs vs FREQUENCY FREQUENCY 0.6 r-TliTTTTl,"rr-T"'T'TT'Imr---r-n'TTTm--rTTrTTi'rl AVO = 10 = IL'" = = AvO 2 VO(PP) 2V TA 25°C 60° D. I l. 58° 54·~--~~~~--~--~--~--~--~ -75 -50 -25 0 25 50 75 100 125 T A - Free-Air Temperature - °C Figure 36 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. APPLICATION INFORMATION macromodel Information Macromodel information provided was derived using PSpice™ Parts™ model generation software. The Boyle macromodel (see Note 5) and subcircuit in Figure 37 were generated using the TLE2061 typical electrical and operating characteristics at 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): •• •• • • Maximum positive output voltage swing Maximum negative output voltage swing Slew rate Quiescent power dissipation Input bias current Open-loop voltage amplification ••• •• • Unity gain frequency Common-mode rejection ratio Phase margin dc output resistance ac output resistance Short-circuit output current limit NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers",IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). Parts is a trademark of MicroSim Corporation. PSpice is a trademark of MicroSim Corporation. TEXAS'~ 2-1072 INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TLE2061, TLE2061A, TLE2061B EXCALIBUR JFET-INPUT HIGH-OUTPUT-ORIVE IlPOWER OPERATIONAL AMPLIFIERS APPLICATION INFORMATION macromodel Information (continued) 99 din . - - - . , . . . -.. 92 egnd rp vln IN - -+--+-._-4+--' + IN+--~-~~-~--r-~ C1 rd1 vcc- ~~~~ ___4~__~;--r-e~~~________________________5~ + ve OUT .subekt TLE2061 1 2 3 4 5 e1 11 12 1.457E-12 e2 6 7 15.00E-12 de 5 53 dx de 54 5 dx dlp 90 91 dx dln 92 90 dx dp 4 3 dx egnd 99 0 po1y(2) (3,0) (4,0) 0 .5 .5 fb 7 99 po1y(5) vb ve ve vlp vln 0 4.357E6 -4E6 4E6 4E6 -4E6 ga 6 0 11 12 188.5E-6 gem 0 6 10 99 3.352E-9 iss 3 10 de 51.00E-6 hlim 90 0 vlim 1K j1 11 2 10 jx j2 12 1 10 jx r2 6 9 100.0E3 rd1 4 11 5.305E3 rd2 4 12 5.305E3 ro1 8 5 280 ro2 7 99 280 rp 3 4 113.2E3 rss 10 99 3.922E6 vb 90deO ve 3 53 de 2 ve 54 4 de 2 vlim 7 8 de 0 vlp 91 0 de 50 vln 0 92 de 50 .model dx D(Is=800.0E-18) .model jx PJF(Is=2.000E-12 Beta=423E-6 Vto=-l) . ends Figure 37. Boyle Macromodel and Subcircuit TEXAS . " INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-1073 TlE2061, TlE2061A, TlE2061B EXCAlIBUR JFET-INPUT HIGH-OUTPUT-DRIVE JlPOWER OPERATIONAL AMPLIFIERS APPLICATION INFORMATION input characteristics The TLE2061, TLE2061 A, and TLE2061 B are specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to maHunction. Because of the extremely high input impedance and resulting low bias current requirements, the TLE2061, TLE2061A, and TLE2061B are well suited for low-level signal processing; however, leakage currents on printed circuit boards and sockets can easily exceed bias current requirements and cause degradation in system performance. It is a good practice to include guard rings around inputs (see Figure 38). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input. Vo Rl Vo R3 R4 WHERE R3 R4 = R2 Rl Figure 38. Use Of Guard Rings input offset voltage nulling The TLE2061 series offers external null pins that can be used to further reduce the input offset voltage. The circuit of Figure 39 can be connected as shown if the feature is desired. If external nulling is not needed, the null pins may be left disconnected. N2 ..........'I/III,_VCC- Figure 39. Input Offset Voltage Nulling TEXAS ~ INSTRUMENTS 2-1074 POST OFFICE BOX 655303· DALLAS. TEXAS 75265 TLE2062, TLE2062A, TLE2062B, TLE2062Y EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J.LPOWER DUAL OPERATIONAL AMPLIFIERS 03346, OCTOBER 1989 - REVISED NOVEMBER 1991 available features • Excellent Output Drive Capability VO= ±2.5VMinatRL= 1000, VCC± = ±5V Vo = ± 12.5 V Min at RL = 600 0, VCC± = ± 15 V • Low Supply Current ... 280 J.lA Typ Per Amplifier • High Unity-Gain Bandwidth ... 2.1 MHz Typ • High Slew Rate ... 3.4 V/J.lS Typ • Macromodels Included • Wide Operating Supply Voltage Range VCC± = ± 3.5 V to ± 20 V • High Open-Loop Gain ... 280 VlmV Typ • Low Offset Voltage ... 1 mV Max • Low Offset Voltage Drift With Time 0.04 (lV/mo Typ • Low Input Bias Current ... 5 pA Typ description MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE SWING vs LOAD RESISTANCE The TLE2062, TLE2062A, and TLE2062B are JFET-input, low-power, precIsion dual operational amplifiers manufactured using Texas Instruments Excalibur process. These devices combine outstanding output drive capability with low power consumption, excellent dc precision, and wide bandwidth. 10 > v~C~ ~~IV 8 Cl c: ~., In addition to maintaining the traditional JFET advantages of fast slew rates and low input bias and offset currents, the Excalibur process offers outstanding parametric stability over time and temperature. This results in a "precision" device remaining precise even with changes in temperature and over years of use. 1=1 TA = 25°C ~ 6 ./ ..... -- (5 > '5 S- 4 o" f 2 0" The TLE2062, TLE2062A, and TLE2062B are ideal choices for any application requiring excellent dc precision, high output drive, wide bandwidth, and low power consumption. > o 10 100 1k 10 k RL - Load Resistance - Q AVAILABLE OPTIONS PACKAGE TA VIOmax AT 25°C SMALL OUTLINE (0) CHIP CARRIER (FK) CERAMIC DIP (JG) PLASTIC DIP (P) O°C 1 mV -- -- -- -- to 2mV TLE2062ACD -- -- TLE2062ACP lO°C - 40·C 4 mV TLE2062CD -- -- --- -- TLE2062CP -- 1 mV -- to 2 mV TLE2062AID 85°C 4 mV --- -- TLE2062AIP CHIP FORM (Y) TLE2062Y TLE20621P - 55°C 1 mV TLE20621D -- -- -- -- to 2 mV TLE2062AMD TLE2062AMFK TLE2062AMJG TLE2062AMP 125°C 4 mV TLE2062MD TLE2062MFK TLE2062MJG TLE2062MP D packages are available taped and reeled. Add "R" suffix to device type (e.g., TLE2062ACDR). Chips are tested at 25°C. PRODUCTION DATA information is current as of pUblication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testingolall parameters. TEXAS ~ Copyright © 1991 , Texas Instruments Incorporated INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-1075 TlE2062, TlE2062A, TlE2062B, TlE2062Y EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE IlPOWER DUAL OPERATIONAL AMPLIFIERS descri ption (conti nued) A variety of available package options includes smaH-outline and chip carrier versions for high-density system applications. The C-suffix devices are characterized for operation from O°C to 70°C. The I-suffix devices are characterized for operation from -40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of -55°C to 125°C. u D, JG, OR P PACKAGE FK PACKAGE (TOP VIEW) (TOP VIEW) 10UT 1 IN 1 IN + VCC _ + f- 2 8 7 VCC+ 20UT 3 6 21N- 4 5 21N + => 000 0 00 2~2>2 3 2 1 2019 NC 4 18 NC 11N- 5 17 20UT NC 6 16 11N + 7 15 NC 21N - NC 8 14 NC 9 1011 1213 0 2 10 + 0 0222 -N 0 > NC - No internal connection equivalent schematic (each channel) ACTUAL DEVICE COMPONENT COUNT Transistors 42 Resistors 9 Diodes 3 Capacitors 2 IN+ Vcc+ ----+----, IN- R7 600n Component values are nominal. Vcc- ~ TEXAS INSTRUMENTS 2-1076 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TlE2062Y EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J.1POWER DUAL OPERATIONAL AMPLIFIERS chip information These chips, properly assembled, display characteristics similar to the TLE2062. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform. VCC+(8) BONDING PAD ASSIGNMENTS IN+(3)i:k IN-(2) OUT (7) -= -= -= -= -= -= -=- OUT (1) ~. + - IN+ (5) IN- (6) VCC- (4) i • - -=-= -=-= "+ -+ II>< CHIP THICKNESS: 15 TYPICAL - :::70 T BONDING PADS: 4 X 4 MINIMUM -= TJmax=150°C TOLERANCES ARE ± 10% ALL DIMENSIONS AREIN MILS 68 ~I 111111111111111111111111111111111111111111111111111111111111111111111 I" PIN (4) INTERNALLY CONNECTED TO BACKSIDE OF CHIP TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 2-1077 TlE2062, TlE2062A, TlE2062B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J.1POWER DUAL OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, Vcc+ (see Note 1) .................................................... 22 V Supply voltage, VCC- .............................................................. -22 V Differential input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ±44 V Input voltage, VI (any input) .......................................................... VCC± Input current, II (each input) ......................................................... ±1 mA Output current, 10 (each output) ..................................................... ±80 mA Total current into VCC+ terminal ..................................................... 80 mA Total current out of VCC- terminal .................................................... 80 mA Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... unlimited Continuous total dissipation ........................................ See Dissipation Rating Table Operating free-air temperature range, T A: C-suffix ................................... O°C to 70°C I-suffix ................................. -40°C to 85°C M-suffix ................................ -55°C to 125°C Storage temperature range ................................................... -65°C to 150°C Case temperature for 60 seconds: FK package .......................................... 260°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package ............... 260°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package .................. 300°C NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC- . 2. Differential voltages are at the noninverting input with respect to the inverting input. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE D TA,,2SoC DERATING FACTOR POWER RATING 725mW ABOVETA = 25°C 5.8 mW/oC TA=70°C POWER RATING 464mW TA = 85°C POWER RATING 377mW TA= 125°C POWER RATING 145mW FK 1375mW 11 mW/oC 880mW 715mW 275 mW JG p 1050mW 8.4 mW/oC 8 mW/oC 672mW 546mW 210mW 640 mW 520mW 200mW 1000mW recommended operating conditions C-SUFFIX Supply voltage, VCC+ VCC+ Common-mode input voltage, VIC VCC+ VCC+ Operating free-air temperature, TA = ±5 V = ± 15V = ± 20 V UNIT MAX MIN MAX MIN MAX ± 3.5 ± 20 ± 3.5 ± 20 ± 3.5 ± 20 V - 1.6 -11 4 13 - 1.6 -11 4 13 -1.6 -11 4 13 V -15 16.5 -15 16.5 -15 16.5 0 70 40 85 - 55 125 TEXAS ~ INSTRUMENTS 2-1078 M-SUFFIX I-SUFFIX MIN POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 °C TLE2062C, TLE2062AC, TLE2062BC EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE JlPOWER DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Vcc+ - Via TYP MAX TLE2062C 1 5 TLE2062AC 25°C Full range 0.9 25°C 0.7 TLE2062BC eNIO TAt 25°C Full range TEST CONDITIONS Input offset voltage =±s V (unless otherwise noted) RS ; 50 Q VIC; 0, Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) MIN 5.9 Full range Input offset current 25°C Full range 1 liB Input bias current 25°C Full range 3 RL;10kQ 25°C Full range RL; 100Q 25°C Full range VOM+ Maximum positive peak output voltage swing 25°C RL;10kQ VOM- Maximum negative peak output voltage swing RL ; 100 Q Large-signal differential voltage amplification to 4 6 0.8 pA nA 2 pA nA V Va; ±2.8 V, RL ; 10 kQ Va; 0 to 2 V, RL; 100Q VO;Oto-2V, RL; 100Q 3.1 2 -3.7 -3.9 15 2 -2.5 0.75 45 0.5 0.5 3 Full range 0.25 10; 0 25°C RS ; 50Q, 25°C 65 VIC ; VICR min VCC±;±5Vto±20V, Full range 65 25°C 75 RS ; 50 Full range 75 25°C Va; 0, No load V/mV 10 12 4 pF 560 Q Q 82 dB 93 560 Full range Full range operating temperature range V 80 25°C Open-loop output impedance V -2.7 Full range 25°C Zo Supply current 3.7 2.5 25°C 25°C Q V 3.3 Full range 25°C kSVR Supply-voltage rejection ratio (LlVCC±,,~VIO) 4 3.5 -2 Input capacitance CMRR Common-mode rejection ratio to Full range Input resistance Supply current change over -2 to -3.3 ri LlICC - 1.6 Full range 25°C ci ICC I'V/oC I'V/mo -1.6 Full range AVD 3 6 0.04 25°C Common-mode input voltage range mV 3.9 110 VICR 4 4.9 Full range 25°C UNIT dB 620 635 26 f'A f'A tFull range is O°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA; 150°C extrapolated to TA ; 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TEXAS ." INSTRUMENTS POST OFFICE BOX 655303· DALLAS, TEXAS 75265 2-1079 TlE2062C, TlE2062AC, TlE2062BC EXCAlIBUR JFET-INPUT HIGH-OUTPUT-DRIVE JlPOWER DUAL OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, Vcc± SR PARAMETER Slew rate at unity gain (see Figure 1) Equivalent input noise voltage Vn (see Figure 2) RS = 100n 25°C 59 100 = 1000 25°C 43 60 25°C 1.1 25°C 1 f = 1 kHz B1 (see Figure 3) Settling time Maximum-output-swing BaM 4m bandwidth RS Hz to 10Hz 3.4 f = 10 kHz, 25°C 0.025% CL = 100pF 25°C 1.8 RL = 1000, 0.1% 0.01% CL = 100 pF 25°C 1.3 25°C 25°C 10 AVO = 1, RL = 10kO 25°C 140 CL = 100pF 25°C 58° CL = 100 pF 25°C 75° Phase margin at unity gain RL (see Figure 3) RL = 10 kO, = 100O, RL = 10 kQ TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 5 UNIT VliJ.s 2.1 AVO = 2, VO(PP) = 2V, RL = 10 kO, tFull range is O°C to 70 0 e. 2-1080 MAX f = 10 Hz, f = 1 kHz, Equivalent input noise current Unity-gain bandwidth TYP CL = 100 pF = 0.1 Total harmonic distortion MIN 2.2 RL = 10kO, 25°C Full range f THO TAt TEST CONDITIONS Peak-to-peak equivalent input VN(PP) noise voltaae In = ±s V nV/,[Hz iJ.V fA/,[Hz MHz iJ.S kHz TlE2062C, TlE2062AC, TlE2062BC EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE /J.POWER DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, V CC± = ±15 V (unless otherwise noted) TEST CONDITIONS TLE2062C Via Input offset voltage liB 4 RS ; 50 n Input offset current 0.5 Full range mV 1 1.9 6 jlV/oC 25°C 0.04 ilV/ mo 25°C 2 Full range Full range 4 Full range 25°C Common-mode input voltage range pA 1 25°C Input bias current 2 2.9 25°C VIC; 0, UNIT 4.9 nA pA 3 -11 VICR MAX 0.9 Full range Input offset voltage long-term drift (see Note 4) 110 TYP 0.8 25°C TLE2062AC Temperature coefficient of input offset voltage MIN Full range TLE2062BC aVIO t TA 25°C nA -12 to to 13 16 V -11 Full range to V 13 25°C RL ; 10 k.Q Full range VOM+ Maximum positive peak output voltage swing 25°C RL ; 600 n Full range 25°C RL ; 10 k.Q Full range VOM- Maximum negative peak output voltage swing 25°C RL ; 600 n AVD Large-signal differential voltage amplification Full range Vo ; ±10V, RL ; 10 kn VO;Ot08V, RL; 600 n VO;Oto-8V, RL ; 600 n 13.2 13.7 13 12.5 12 -13.2 -13.7 -13 -12.5 25°C 30 20 25°C 25 Full range 10 25°C 3 Full range 1 230 100 Input resistance 25°C 10 12 ci Input capacitance 25°C 4 Zo Open-loop output impedance kSVR Supply-voltage rejection ratio (/lVCC±"tNIO) ICC 25°C Full range 70 25°C 75 RS ; 50n Full range 75 25°C Va; 0, No load n 90 dB 93 625 Full range Full range operating temperature range n pF 560 72 VIC ; VICR min VCC±; ±5Vto±15V, Supply current Supply current change over /lICC 25°C RS ; 50n, V/mV 25 q CMRR Common-mode rejection ratio V -13 -12 Full range 10; 0 V 13.2 dB 690 715 36 JlA JlA tFull tange is O°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA ; 150°C extrapolated to T A ; 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303· DALLAS, TEXAS 75265 2-1081 TlE2062C, TlE2062AC, TlE2062BC EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE IlPOWER DUAL OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, Vcc± = ± 15 V SR Yn PARAMETER Slew rate at unity gain (see Figure 1) Equivalent input noise voltage (see Figure 2) Peak-to-peak equivalent input YN(PP) noise voltage In Equivalent input noise current THO Total harmonic distortion Unity-gain bandwidth Bl (see Figure 3) Settling time BOM ifJm Maximum-output-swing bandwidth TEST CONDITIONS MIN TYP 2.6 2.5 3.4 MAX UNIT CL = 100 pF RS = = loon 25°C loon 25°C 70 40 f = 0.1 Hz to 10Hz 25°C 1.1 flY f = 1 kHz 25°C 1.1 fA/v'Hz 25°C 0.025% RL = 10 kn, f = 10 Hz, f = 1 kHz, AyO = 2, YO(PP) = 2Y, RL = 10 kn, RL = 600 n, RS f = 10 kHz, RL CL CL = 10 kn = 100 pF = 100 pF 25°C 2 25°C 1.5 0.1% 25°C 5 0.01% 25°C 10 AyO Phase margin at unity gain RL (see Figure 3) RL = = RL = 10 kn, CL 600 n, CL = 100 pF = 100pF = 1, 10 kn tFull range is O°C to 70°C. TEXAS ~ INSTRUMENTS 2-1082 TAt 25°C Full range POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 25°C 40 25°C 60° 70° 25°C VlflS 100 60 nVlv'Hz MHz fls kHz TLE2062C, TLE2062AC, TLE2062BC EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J,LPOWER DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-ai r temperature, V CC± = ±20 V (unless otherwise noted) TAt TEST CONDITIONS I TLE2062C VIC Input offset voltage 25°C TLE2062AC RS = 50n Input offset voltage long-term drift (see Note 4) 110 Input offset current liB Input bias current 4 4.9 0.8 25°C Full range 0.5 Full range 25°C 6 0.04 25°C 3 25°C Full range 25°C UNIT mV 1.7 2.6 Full range Common-mode input voltage range 2.6 3.5 f!VloC f!Vlmo pA 1 nA pA 3 nA 5 -15 VICR MAX 0.9 Full range VIC = 0, Temperature coefficient of input offset voltage TYP Full range TLE2062BC aVIO MIN 25°C -17 to to 16.5 21 V -15 Full range V to 16.5 RL = 10 kn 25°C Full range RL = 600 n 25°C Full range VOM+ Maximum positive peak output voltage swing 25°C RL=10kQ -15 Full range -12 25°C 10 kn Full range 30 RL = Vo = 0 to 10 V, RL = 600 n = 0 to - 10 V, RL = 600 n 25°C 25 10 25°C 3 Full range 1 ri 25°C ci Input capacitance 25°C Zo Open-loop output impedance kSVR Supply-voltage rejection ratio (~VCC:t't,vIO) ICC ~ICC 10 = 0 25°C = 50n, VIC = VICR min VCC± = ±5Vto±20V, 25°C 75 Full range 70 25°C Full range 75 RS RS = 50n Supply current Supply current change over Vo = 0, No load operating temperature range V V -18 280 20 Full range Input resistance CMRR Common-mode rejection ratio 18.1 -18 Vo = ± 15 V, Vo 15 12 -18.2 -18.7 25°C RL = 600n Large-signal differential voltage amplification 18.7 Full range VOM- Maximum negative peak output voltage swing AVD 18.2 18 80 V/mV 20 10 12 4 pF 560 n n 91 dB 93 dB 70 25°C Full range 660 Full range 41 730 750 f!A f!A tFull range is O°C to 70 u C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. ~ TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-1083 TlE2062C, TlE2062AC, TlE2062BC EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE IlPOWER DUAL OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, Vcc± = ± 20 V SR Vn PARAMETER Slew rate at unity gain 3.4 UNIT , ~ 10 Hz, RS ~ 100n 25°C 75 100 , ~ 1 kHz, RS ~ 100n 25°C 40 60 , ~ 0.1 Hz to 10 Hz 25°C 1.1 flY f ~ 1 kHz 25°C 1.3 fA/,fHz noise voltage THD 100 pF nV/,fHz , 25°C 0.025% Unity-gain bandwidth CL = 100 pF 25°C (see Figure 3) RL = 600 n, CL = 100pF 25°C 2.1 1.6 MHz Settling time 0.1% 0.01% 25°C 5 10 flS kHz bandwidth ~ 10 kHz, V/flS 2.5 AVD ~ 2, VO(PP) ~ 2V, RL ~ 10 kn, Maximum-output-swing RL = 10 kn 25°C AVD ~ 1, RL = 10 kn 25°C 28 ~ CL = 100pF CL = 100 pF 25°C 60° 25°C 70 0 Phase margin at unity gain RL (see Figure 3) RL = 600 n, 10 kn, tFull range is O°C to 70°C. TEXAS ~ INSfRUMENlS 2-1084 MAX Equivalent input noise voltage Equivalent input noise current ICC 2.5 = 10 kn 25°C Full range -3.7 -3.1 -3.9 RL = lOOn 25°C Full range -2.5 -2.7 Vo = ±2.8 V, RL = 10 kn 25°C Full range 15 Vo = Oto 2 V, RL = lOOn Vo = Oto-2V, RL = lOOn =0 = son, VIC = VICR min VCC± = ±5Vto±20V, RS = son RS 0.75 0.5 25°C Full range 0.25 0.5 Vo = 0, No load V/mV 3 10 12 4 560 82 25°C 75 93 FuJI range 65 560 FuJI range FuJI range operating temperature range 45 65 65 25°C Supply current 80 2 25°C Full range V -2 Full range 25°C 25°C V 3.1 2 10 kSVR Supply-voltage rejection ratio (!>VCC±'!>VIO) Supply current change over 25°C 3.7 3.1 25°C 25°C CMRR Common-mode rejection ratio ICC 3.5 Full range VOM- Maximum negative peak output voltage swing AVD 25°C Full range n pF n dB dB 620 640 54 ~ ~ tFull range is - 40°C to 85°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303· DALLAS. TEXAS 75265 2-1085 TlE20621, TlE2062AI, TlE2062BI EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J.1POWER DUAL OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, Vcc± = PARAMETER Slew rate at unity gain SR (see Figure 1) Equivalent input noise voltage Vn (see Figure 2) Peak-to-peak equivalent input VN(PP) noise voltage Equivalent input noise current In THO Total harmonic distortion Bl Unity-gain bandwidth (see Figure 3) Settling time BOM ¢m Maximum-output-swing bandwidth Phase margin at unity gain (see Figure 3) TAt MIN TYP 25"C Full range 25"C 25"C 2.2 1.7 3.4 TEST CONDITIONS RL = 10 kn, CL = 100pF f = 10 Hz, f = 1 kHz, RS = lOOn RS = lOOn ±5 V 59 43 f = 0.1 Hz to 10 Hz 25"C 1.1 f = 1 kHz 25°C 1 25°C 0.025% 25°C 25°C 25°C 25"C 1.8 1.3 5 10 AVD = 2, Vo(PP) = 2V, RL=10kn, RL = 100 n, 0.1% 0.01% f = 10 kHz, AVD = 1, RL = 10 kn 25"C 140 RL = 10 kn, RL = 100 n, CL = 100 pF CL = 100 pF 25°C 25"C 58" 75° RL = 10 kn CL = 100 pF CL = 100 pF tFull range is - 40"C to 85"C. TEXAS ~ INSTRUMENlS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MAX UNIT V/J.ls 100 60 nV/-,fHZ" J.lV fAI-,fHZ" MHz J.ls kHz TlE20621, TlE2062AI, TlE2062BI EXCAlIBUR JFET-INPUT HIGH-OUTPUT-DRIVE IlPOWER DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air tern perature, V cc+ = ±15 V (unless otherwise noted) - TEST CONDITIONS TLE20621 VIO Input offset voltage TLE2062AI RS ; 50n Input offset voltage long-term drift (see Note 4) 110 Input offset current liB Input bias current TYP MAX 0.9 4 5.3 25°C 0.8 0.5 Full range UNIT mV 1 2.3 6 /lV/oC 25°C 0.D4 /lV/mo 25°C 2 Full range Full range 25°C Full range 25°C Common-mode input voltage range pA 3 nA 5 pA nA 4 -11 VICR 2 3.3 25°C VIC; 0, Temperature coefficient of input offset voltage MIN Full range TLE2062BI aVIO TAt 25°C Full range -12 to to 13 16 V -11 Full range to V 13 25°C RL;10kn Full range VOM+ Maximum positive peak output voltage swing 25°C RL ; 600n Full range 25°C RL;10kn Full range VOM- Maximum negative peak output voltage swing 25°C RL ; 600n AVD Large-signal differential voltage amplification VO; 0 t08 V, RL; 600n VO; Oto-8V, RL ; 600 n 25°C 25 10 25°C 3 Full range 1 Zo Open-loop output impedance Supply current change over t.ICC 10; 0 25°C RS ; 50 n, 25°C 72 VIC ; VICR min VCC±;±5Vto±15V, Full range 65 25°C 75 RS ; 50 n Full range 65 Supply current Vo ; 0, No load operating temperature range V -13 230 20 Full range 25°C ICC -12.5 30 25°C -13.7 -13 -12 Input capacitance V 13.2 12 -13.2 25°C RL ; 10 kn Full range Input resistance kSVR Supply-voltage rejection ratio (t.VCC±"t.VIO) 12.5 Full range ci 13.7 13 VO; ±10V, ri CMRR Common-mode rejection ratio 13.2 100 V/mV 25 10 12 4 pF 560 n n 90 dB 93 25°C Full range 625 Full range 74 dB 690 720 !J.A !J.A tFull range is - 40°C to 85°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T A; 150°C extrapolated to TA ; 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TEXAS + INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-1087 TLE20621, TLE2062AI, TLE2062BI EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J.LPOWER DUAL OPERATIONAL AMPLIFIERS - = ± 15 V operating characteristics at specified free-air temperature, VcC+ PARAMETER SR Vn VN(PP) Slew rate at unity gain (see Figure 1) = 10 kn, f (see Figure 2) Peak-to-peak equivalent input I = 10 Hz, = 1 kHz, f = 0.1 In Equivalent input noise current THO Total harmonic distortion 61 RL Equivalent input noise voltage noise voltage Unity-gain bandwidth (see Figure 3) Settling time ¢m bandwidth Phase margin at unity gain (see Figure 3) CL = 100 pF RS RS = 100n = 100n MIN TYP 2.S 3.4 = 1 kHz AVO = 2, Vo(PP) = 2V, RL = 10 kn, RL = soon, 25°C 40 SO 25°C 1.1 flV . 25°C 1.1 fA/-IHZ 25°C 0.025% 25°C 2 1.5 MHz 5 10 fls kHz = 10 kHz, = 10 kn CL = 100pF CL = 100 pF f RL 25°C = 1, RL = 10 kn 25°C 40 CL CL = 100 pF = 100pF 25°C SOO 25°C 70° tFull range is - 40°C to 85°C. TEXAS ~ INSTRUMENTS 2-1088 25°C 0.01% = 10kn, = soon, V/fls 2.1 100 25°C RL RL UNIT 70 0.1% AVO MAX 25°C Hz to 10 Hz f Maximum-output-swing BaM TAt 25°C Full range TEST CONDITIONS POST OFFICE BOX 655303 ' DALLAS, TEXAS 75265 nV/-IHZ TlE20621, TlE2062AI, TlE2062BI EXCAlIBUR JFET-INPUT HIGH-OUTPUT-DRIVE ~POWER DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, V cc+ - = ±20V (unless otherwise noted) TEST CONDITIONS TLE20621 VIO Input offset voltage TLE2062AI RS = son VIC = 0, Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) 110 Input offset current 118 Input bias current TYP MAX 0.9 4 S.3 2S'C 0.8 0.5 Full range 2S'C 6 0.04 25'C 3 Full range 25'C Full range Common-mode input voltage range Full range 2.6 3.9 2S'C Full range 25'C VICR MIN Full range TLE2062BI aVIQ TAt 25'C Full range -17 to 16.5 21 mV 1.7 3 IlV/'C IlV/mo pA 3 nA 5 nA 5 -15 to UNIT pA V -15 to V 16.5 RL=10kn 25'C Full range RL = 600n 25'C Full range VOM+ Maximum positive peak output voltage swing 25'C RL=10kn Full range VOM- Maximum negative peak output voltage swing 25'C Full range RL = 600 n AVD Large-signal differential voltage amplification Vo = ± 15 V, RL=10kn Vo = 0 to 10 V, RL = 600n Vo = 0 to - 10 V, RL = 600n 80 10 3 20 25'C 25'C Zo Open-loop output impedance niCe Supply current change over operating temperature range RS = 50n, VIC = VICR min Vee± = ±5Vto±20V, RS = 50 Q 25'C Full range 75 25'e 75 Full range 65 25'e No load 10 12 4 pF 560 n n 91 dB 65 93 660 Full range Full range V/mV 1 25'C 10 = 0 Vo = 0, -12 25 25'C V -18 25'C Input capacitance Supply current -18 -15 Full range Full range V 12 -18.2 -18.7 280 Input resistance ICC 18.1 30 20 r; kSVR Supply-voltage rejection ratio (nVce:tfnVIO) 18.7 18 15 25'C Full range ci CMRR Common-mode rejection ratio 18.2 dB 730 755 82 }lA }lA tFull range is - 40'e to 85'e. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150'C extrapolated to TA = 25'C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TEXAS + INSTRUMENTS POST OFFICE BOX 655303 ' DALLAS, TEXAS 75265 2-1089 TLE20621, TLE2062AI, TLE2062BI EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE IlPOWER DUAL OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, Vcc± SR Vn PARAMETER Slew rate at unity gain (see Figure 1) Equivalent input noise voltage (see Figure 2) Peak-to-peak equivalent input VN(PP) In noise voltage Equivalent input noise current THD Total harmonic distortion Bl Unity-gain bandwidth (see Figure 3) Settling time Maximum-output-swing BOM tPm TAT MIN TYP 25°C Full range 2.8 2.1 3.4 TEST CONDITIONS RL = 10 kn, CL = 100 pF I = 10 Hz, RS = lOOn I = 1 kHz, RS = loon I = 0.1 Hz to 10Hz I = 1 kHz AVD = 2, VO(PP) = 2V, RL = 10 kn, I = 10 kHz, RL = 600 n, 0.1% CL = 100 pF RL = 10 kn CL =100 pF 0.01% 40 60 25°C 1.1 flV 25°C 1.3 IA/% 25°C 0.025% 25°C 25°C 2.1 1.6 25°C 5 25°C 10 28 Phase margin at unity gain RL = 10 kn, CL = 100 pF 25°C 60° (see Figure 3) RL = 600 n, CL = 100 pF 25°C 70° POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 V/fls 100 25°C TEXAS ~ UNIT 75 RL = 10 kn INSTRUMENTS MAX 25°C 25°C AVD = 1, bandwidth tFull range is - 40°C to 85°C. 2-1090 = ± 20 V nV/% MHz fls kHz TLE2062M, TLE2062AM, TLE2062BM EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE IlPOWER DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-airtemperature, VCC± = ±5 V (unless otherwise noted) PARAMETER TEST CONDITIONS TLE2062M Via Input ollset voltage liB 5 7 0.9 RS = 50n VIC = 0, 0.7 6 0.04 Input offset current 25"C Full range 1 Input bias current 25"C Full range 3 Common-mode input voltage range V Maximum positive peak OM+ output voltage swing FK, and JG packages o and P RL=10kn 25"C Full range RL = 600 n 25"C Full range 25°C RL = loon Full range 25"C RL = 10 kQ FK, and JG packages o and P packages FK, and JG Large-signal differential voltage amplification mV 3 flV/"C 15 pA 30 -1.6 -2 to to 4 6 flV/ mo pA nA nA V -1.6 packages V Maximum negative peak OM- output voltage swing UNIT 5 Full range 25"C Temperature coefficent of input offset voltage 4 6 25"C Full range AVO MAX 1 Full range 25"C VICR TYP Full range Input offset voltage long-term drift (see Note 4) 110 MIN 25"C TLE2062AM TLE2062BM aVIO TAt 25"C Full range packages o and P packages Full range 25"C RL = 600 n Full range 25"C RL = loon Full range 25"C 3.7 3 2.5 3.6 2 2.5 3.1 2 -3.5 -3.9 -2.5 -2 -3.5 -2.5 -2 - 2.7 15 80 2 1 65 RL = 10 kn Va = 0 to 2.5 V, RL= 600n 25"C Full range 0.5 Va = 0 to - 2.5 V, RL = 600 n 25"C Full range 0.5 Va = Oto 2 V, 25"C RL= loon Full range Va = Oto-2 V, RL = loon V -3 Va = ±2.8 V, Full range V to 4 3.5 1 0.75 16 V V/mV 45 0.5 25"C 0.5 Full range 0.25 3 tFuil range is - 55"C to 125"C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150"C extrapolated to TA = 25"C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TEXAS + INSTRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 2-1091 TLE2062M, TLE2062AM, TLE2062BM EXCALIBUR JFET·INPUT HIGH-OUTPUT-DRIVE JJ,POWER DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, vee± = ±5 V (unless otherwise noted) (continued) PARAMETER TAt TEST CONDITIONS Input resistance 25°C ci Input capacitance 25°C Zo Open-loop output impedance CMRR Common-mode rejection ratio kSVR Supply-voltage rejection ratio ("'VCC ± I ",VIO) ICC Supply current (two amplifiers) "'ICC 560 n 25°C 25°C 65 82 Full range 60 75 93 No load Vo ; 0, UNIT pF RS ; 50n, 25°C Full range MAX 10 12 4 10; 0 VIC ; VICR min VCC±; ±5Vto±20V, RS; 50n Supply current change over operating temperature range (two amplifiers) TYP MIN fj n dB dB 65 25°C Full range 560 Full range 72 620 650 j!A j!A operating characteristics at specified free-air temperature, Vee± = ± 5 V PARAMETER SR Slew rate at unity gain (see Figure 1) Equivalent input noise voltage Vn (see Figure 2) Peak-to-peak equivalent input VN(PP) noise voltage In Equivalent input noise current THO Total harmonic distortion Bl Unity-gain bandwidth (see Figure 3) Settling time Maximum-output-swing BOM .pm TAt TEST CONDITIONS TYP RL ; 10kn, CL ; 100 pF f ; 10 Hz, f ; 1 kHz, Rs; lOon 25°C 59 RS ; lOon 25°C 43 f ; 0.1 Hz to 10 Hz 25°C 1.1 f ; 1 kHz 25°C 1 25°C 0.025% 25°C 25°C 1.8 0.1% 25°C 5 0.01% 25°C 10 AVO; 2, VO(PP) ; 2V, RL ; 10 kn, RL ; 600 n, f ; 10kHz, RL; 10kn CL; 100pF CL; 100pF 3.4 1.3 AVO; 1, RL; 10kn 25°C 140 Phase margin at unity gain RL ; 10 kn, CL ; 100 pF 25°C 58° (see Figure 3) RL ; 600n, CL ; 100 pF 25°C 75° bandwidth tFull range is - 55°C to 125°C. TEXAS ~ INSTRUMENTS 2-1092 MIN 25°C Full range POST OFFICE BOX 655303' DALLAS. TEXAS 75265 MAX UNIT V//-Is nV/{Hz" /-IV fA/{Hz" MHz /-Is kHz TlE2062M, TlE2062AM, TlE2062BM EXCAlIBUR JFET-INPUT HIGH-OUTPUT-DRIVE IlPOWER DUAL OPERATIONAL AMPLIFIERS = electrical characteristics at specified free-air temperature, V cc± ±15 V (unless otherwise noted) Via "Via Input offset voltage TYP MAX TLE2062M 0.9 TLE2062AM 25°C Full range O.S TLE2062BM 25°C Full range 0.5 4 6 2 4 1 3 TEST CONDITIONS Temperature coefficient of input offset voltage VIC; O. RS = son Input offset voltage long-term drift (see Note 4) 110 liB TAt 25°C Full range PARAMETER MIN Full range 25°C VICR Input bias current 25°C Full range 4 Common-mode input voltage range RL=10kf.! 25°C Full range RL = 600n 25°C Full range VO M- Maximum negative peak output voltage swing RL; 600n Large-signal differential voltage amplification ri Input resistance Input capacitance Zo Open-loop output impedance Va; ±10V. RL = 10 kn Va = Oto S V. RL; 600n Vo;Oto-SV. RL;600n pA nA V 16 VIC ; VICR min VCC:!:; ±5Vto±15V, RS = 50n 13.7 12.5 12.5 13.2 25°C Full range 30 V 25°C 25 7 25°C 3 Full range 1 25°C Full range No load 230 100 V/mV 25 10 12 4 n pF n 560 72 90 dB 65 25°C 75 Full range 65 93 625 Full range Full range operating temperature range V 20 Full range 25°C Supply current Va; 0, V to 25°C 10 = 0 RS = 50n, kSVR Supply-voltage rejection ratio (~V CC:t'~Via) ~ICC 40 -12 to 13 13 25°C 25°C CMRR Common-mode rejection ratio Supply current change over nA 11 25°C -13 -13.7 Full range -12.5 25°C -12.5 -13 Full range -11 RL;10kf.! ci to 13 20 -11 VOM+ Maximum positive peak output voltage swing ICC IlV/oC IlV/mo pA 2 Full range AVD 6 25°C Full range -11 mV 0.04 Input offset current 25°C UNIT dB 690 730 97 IJ.A IJ.A tFull range is - 55°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA; 150°C extrapolated to TA ; 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2-1093 TlE2062M, TlE2062AM, TlE2062BM EXCALIBUR JFET·INPUT HIGH-OUTPUT-DRIVE ~POWER DUAL OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, Vcc± PARAMETER SR Slew rate at unity gain (see Figure 1) Equivalent input noise voltage Vn (see Figure 2) Peak-to-peak equivalent input VN(PP) noise voltage In Equivalent input noise current THD Total harmonic distortion Unity-gain bandwidth Bl (see Figure 3) Settling time Maximum-output-swing BaM bandwidth Phase margin at unity gain m Phase margin at unity gain (see Figure 3) VI~s nV/{RZ -- 1.1 ~V f = 1 Hz 1.1 fA/{RZ AVO = 2, f = 10 kHz, VOIPPI = 2 V, RL=10kn, RL= 10 kQ CL = 100 pF 2 RL = 600 Q, CL= 100 pF 1.5 0.025% 5 0.01% Maximum-output-swing bandwidth UNIT f = 0.1 Hz to 10 Hz 0.1% Settling time MAX 10 AVO = 1, RL= 10 kQ 40 RL = 10 kQ, CL= 100pF 60" RL =600n, CL = 100 pF 70" MHz ~s kHz TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-1097 TLE2062, TLE2062A,TLE2062B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE JlPOWER DUAL OPERATIONAL AMPLIFIERS PARAMETER MEASUREMENT INFORMATION 10 kQ Vo VccRS RS NOTE A: CL includes fixture capacitance. Figure 2. Noise Voltage Test Circuit Figure 1. Slew Rate Test Circuit 10kQ 100 Q >-,-_Vo NOTE A: CL includes fixture capacitance. Figure 3. Unity-Gain Bandwidth and Phase Margin Test Circuit typical values Typical values as presented in this data sheet represent the median (50% point) of device parametric performance. input bias and offset current At the picoamp bias current level typical of the TLE2062, TLE2062A, and TLE2062B, accurate measurement of the bias current becomes difficult. Not only does this measurement require a picoammeter, but test socket leakages can easily exceed the actual device bias currents. To accurately measure these small currents, Texas Instruments uses a two-step process. The socket leakage is measured using picoammeters with bias voltages applied but with no device in the socket. The device is then inserted into the socket and a second test that measures both the socket leakage and the device input bias current is performed. The two measurements are then subtracted algebraically to determine the bias current of the device. TEXAS ~ INSTRUMENTS 2-1098 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TlE2062, TlE2062A, TlE2062B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J,LPOWER DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS table ofgraphs FIGURE VIO Input offset voltage Distribution vs Common-mode voltage 118 Input bias current vs Temperature 110 Input offset current vs Temperature Common-mode input voltage range vs Temperature vs Output current vs Supply voltage vs Frequency VICR VOM VO(PP) Maximum peak output voltage swing Maximum peak-to-peak output voltage vs Frequency vs Temperature vs vs Time Temperature Output impedance vs Frequency Common-mode rejection ratio vs Frequency vs Supply voltage vs Temperature AVD Differential voltage amplification lOS Short-circuit output current Zo CMRR ICC Supply current Small-signal Pulse response Large-signal Noise voltage (referred to input) Vn THD 81 .pm 0.1 to 10 Hz Equivalent input noise voltage vs Frequency Total harmonic distortion vs Frequency vs Supply voltage Unity-gain bandwidth Phase margin Phase shift vs Temperature vs Supply voltage vs Load capacitance vs Temperature vs Frequency 4 5 6 6 7 8,9 10, II, 12 13,14,15 16 17 18 19 20 21 22 23 24, 25 26,27 28 29 30,31 32 33 34 35 36 16 TEXAS ~ INSfRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-1099 TlE2062, TlE2062A, TlE2062B EXCAlIBUR JFET-INPUT HIGH-OUTPUT-DRIVE JlPOWER DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt TLE2062 INPUT BIAS CURRENT DISTRIBUTION OF INPUT OFFSET VOLTAGE COMMON-MODE INPUT VOLTAGE vs 15 2 1836 Amplifiers Tested = I :e = VCC± ±15 V TA 25·C P Package '!. .,f! VID = 0 TA = 25·C Lot «c rmI c. E " C) CIl '" 16 '0., ;; Cl 5i ~ c.. I C ~ « s 1.5 I 10 c.. .E 5 o -4 A -3 -2 VCC± i g! 0.5 tIt VCC+ - o 0 2 VIO -Input Offset Voltage - mV 3 i!! vs FREE-AIR TEMPERATURE VIC = ±15 V =0 > I 104 ~ VCC+ + 1 > ;; /' 103 c.. ~ /' liB 102 /' :g. ./110 /' ~ C a E E a /' 101 ,VCC+ "~ VCC- + 4 ./ I "..c VIC+ "5 " 16 ~ / VCC- +3 VIC- 2 > g! 45 65 85 105 TA - Free-Air Temperature - ·C 125 VCC- + 2 -75 -50 -25 0 25 50 75 100 TA - Free-Air Temperature - ·C Figure7 Figure6 toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSfRUMENTS 2-1100 20 VCC+ + 2 VCC± 0 c ..'CIl" ....... FREE-AIR TEMPERATURE !; :l!! II COMMON-MODE INPUT VOLTAGE RANGE C) a; ±1~ vs 105 I = IJ FigureS INPUT BIAS CURRENT and INPUT OFFSET CURRENT E I 5 10 15 0 - 20 - 15 - 10 - 5 VIC - Common-Mode Input Voltage - V 4 Figure4 «c.. ±20V, II ill -1 = POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 125 TlE2062, TlE2062A, TlE2062B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J.1POWER DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE vs OUTPUT CURRENT > 20 " 18 ~ 16 Ol !'! :; -- TA '- 2S0C - vcc± - = ±20V Q. :; 14 "i 12 _ vcc± .~ 10 ~ 8 o -- = ±lSV 0.. .;; ~ " !'! "E 4 2 - vcc± ±s V o o I I -10 -20 ~ -4 I ::0 o -so -30 -40 10 - Output Current - mA -60 > r- VCC± - ±SV I o o I I 10 lS " 20 2S 30 10 - Output Current - mA 40 3S Figure9 MAXIMUM PEAK OUTPUT VOLTAGE vs SUPPLY VOLTAGE MAXIMUM PEAK OUTPUT VOLTAGE vs SUPPLY VOLTAGE 10 V .,./ Y ,,/" V 20 > " !'! VOM+ 0 > SQ. S ..V " E ........... '" '" 'E" I -15 4 .,./ S 6 8 10 12 '", -5 ....... 14 ~ 16 18 ~ ........... ~ I VOM- 20 ~ > V VOM+ 0 ::0 -10 I"-.. V ,./ ,,/" V 'xOJ ...... 2 10 0.. r-...... -5 = 25°C 0 .:.t. OJ 0 k RL = 600 Q TA 15 Ol ./ S o -2 '" Figure8 = 10 kQ TA = 25°C 15 -6 I RL -20 -....... = ±lS V -8 '" E 'x ::0 -10 > VCC± 0.. 6 'x OJ ~ :3 -14 E 0.. 'E" Q. m -12 r- = 2SoC "- :; OJ 0 .:.t. OJ o TA = ±20 V > -16 I Ol "0 > :; Q. :; - I -20 I"-.. N'" -18 rVCC± .~ -10 20 > > .:.t. E 'x :!l! MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE vs OUTPUT CURRENT -15 -20 o 2 4 6 8 10 12 " 14 t--..VOM - 16 IVcc± I - Supply Voltage - V IVcc± I - Supply Voltage - V Figure10 Figure 11 " 18 20 TEXAS ~ INSfRUMENlS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-1101 TlE2062, TlE2062A, TlE2062B EXCAlIBUR JFET-INPUT HIGH-OUTPUT-DRIVE flPOWER DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE MAXIMUM PEAK OUTPUT VOLTAGE vs vs SUPPLY VOLTAGE FREQUENCY 6 RL= 100Q TA = 25°C > .. Cl ~ > :; a. :; ...m 4 / V 2 > ~ VOM+ 10 Vcc± = ±5V RL = 10 kQ TA = 25°C 8 \ 6 0 0 1\ a. E E 4 ::> . ';c :;; I :;; 0 "~ -2 -4 > VOM- -6 > . --- - o 2 4 6 10 vs vs FREQUENCY FREQUENCY > .. § 10 40 S 35 E 5 - 30 o ... 25 ~ 20 ~ 1\ 15 E TA \ = = 25°C \ 1\ ::J E '~ 10 :;; r-.. 0 100 k - 1M a: a. 10M ~ 5 0 10 k '\ ", - f - Frequency - Hz 100 k 1M f - Frequency - Hz Figure14 Figure15 TEXAS ~ INSTRUMENTS 2-1102 vcc± = ±20 V RL 10 kQ :; a: a. 10k - Cl ~ ';( > .. ~ TA = 25°C ~ ~ 10 M 1M MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAG E '[ 15 100 k MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE 25 ~ '-..... I-0 10 k Figure13 Vcc± = ±15 V RL = 10 kQ 20 0' ~ Figure 12 30 a ... . a: a. f - Frequency - Hz :; S- :;; 2 IVcc± I - Supply Voltage - V ~ ~ 8 \ POST OFFICE BOX 655303' DALLAS, TEXAS 75265 10 M TlE2062, TlE2062A, TlE2062B EXCAlIBUR JFET-INPUT HIGH-OUTPUT-DRIVE JlPOWER DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION and PHASE SHIFT 120 \ aJ "tl I c .2 ~ vs FREQUENCY FREE-AIR TEMPERATURE I ~ 100 CI> Cl 3 > "0 :! cCI> 80· ~ c > 0 VCC± = ±15 V RL = 10 k.Q Cl= 100pF TA = 25·C « -20 0.1 10 Rl = 10 kQ 350 VCC± = ±20 v 100 1k 120· ~ \ "" .s:: Q. I .... 160· 180· \ 10 k 100 k 1 M . CI> 140· ii 250 E « 200 "0 > ~ 150 !!! ~ is 100 I 50 - I I I o «> -75 C !!! -50 -25 25 50 ........ f'-.... -- 75 ....... 100 vs ELAPSED TIME FREE-AIR TEMPERATURE 80 I ili 60 C 40 !!! 60 1 I vcc± = ±15V I:-+::-- VIO = -100 mV 40 Vo = 0 - r-- --r-- - :; 20 o 0 § -20 -60 -80 o 0 ~ (; ~ -40 I 20 -20 -- -- VID= (; ~ -40 I / o IVID 10 - ·S Vo = 0 (J () 'SQ. 'S VCC± = ±15 V TA = 25·C ·S 125 SHORT-CIRCUIT OUTPUT CURRENT vs VID = -100 mV () ~ 0 i'.. Figure17 :; 'SQ. 'S ............. TA - Free-Air Temperature - ·C SHORT-CIRCUIT OUTPUT CURRENT ili ~ r---...... -r-- VCC±=±5V Figure16 I I'--. C f - Frequency - Hz 80 -- VCC± = ±15 V Gl Cl 3 c 200· 10 M r--- -- 300 ~ .t: \ "" .2 10 100· \ "" 40 is 400 c i'-.. A~ 60 20 > > ~ PHASE SHIFT ii E « 60· I '\ 80 LARGE-SIGNAL VOLTAGE AMPLIFICATION vs 20 30 40 t - Time - seconds ~ = Tmv 50 60 I-- -60 -80 -75 -50 -25 0 25 10~V_ _ f-" 50 75 100 125 T A - Free-Air Temperature - ·C Figure18 Figure19 TEXAS ~ INsrRuMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-1103 TlE2062, TlE2062A, TlE2062B EXCALIBUR JFET·INPUT HIGH-OUTPUT-DRIVE J.1.POWER DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt OUTPUT IMPEDANCE 35 vs FREQUENCY FREQUENCY 100 '"" = "0 II a 25 011 Avo "co C "i0.E :; 20 1/ ; a: c ~ = 101 0 '~., a: TA = 25°C v~Jll ~III± ~~ 60 ::E 15 AVO = 100 0 I e0 AVO = 1 "", 40 E E 10 ~ 0 0 I I 5 100 a: a: / / o SUPPLY CURRENT SUPPLY CURRENT vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 600 / I /'" o 9 550 L V / / /'" ./ V ./ 675 ./ V'/' V V V 0::> en 575 I 2 , I I 525 4 6 8 10 12 14 16 IVcc± I - Supply Voltage - V 18 20 500 - 75 /' / .. /: V ~ 10 M fo"'" f.-- V / ' VCC±= ±15V /"'" .....--"'" o 9 550 /'" o V ,/" '/ TA = -55°C I' _I, ./ / / 600 Q. I Vcc± = ±20~ /' E 625 ~ ::> .// I, Vo = 0 NO LOAO 1650 ~ V TA = 25°C / 700 /' /"'''' V 525 500 1M vs TA = 125°Y 0::> 1k 10 k 100 k f -Frequency - Hz 100 Figure21 ~ 625 :::::> en 575 10 Figure20 650 Q. o 10 M 1M Vo = 0 NO LOAO 675 I\t\ 0 10 k 100 k f - Frequency - Hz 1k 20 ::E 700 ~ 80 "" = ±20V II IIi-.I I 0 011 "0 0 So ::> 1 Vcc± aJ VCC± ±lS V 30 TA 25°C = COMMON-MODE REJECTION RATIO vs -- ~ Vvcc± = ±5V - 50 - 25 0 25 50 75 100 TA - Free-Air Temperature - °C Figure 23 Figure 22 toata at high and. low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ 2-1104 INSTRUMENTS POST OFFICE BOX 655303 ' DALLAS. TEXAS 75265 125 TlE2062, TlE2062A, TlE2062B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J.lPOWER DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 100 ~ 100 '" 50 ~ ., ., N' S ~ '5 Co :; o '5Co :; -100 I vcc± = ±5V RL = 10 kQ .g -50 vcc± = ±15 V RL = 10 kQ .g -50 V CL = 100 pF CL = 100 pF TA = 25°C See Figure 1 TA = 25°C See Figure 1 -100 o 2 o 3 3 2 t - Time - lis t - Time - lis Figure24 Figure25 VOL TAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE VOL TAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 4 15 3 10 f > > ., 2 01 5 = = = TA = 25°C VCC± ±15 V RL 10kQ CL 100pF See Figure 1 01 ~ S 0 0 > '5 Co '5 > '5 Co '5 0 I o o I 0 ~ 01 ;g o .,I 50 0 0 0 I VCC±=±5V RL = 10kQ > 0 = 100 pF TA = 25°C CL -1 -5 > -10 I I I I See Figure 1 -2 o -15 5 10 15 o 10 t - Time - lis t - Time - lis Figure 26 Figure27 20 30 40 TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-1105 TlE2062, TlE2062A, TlE2062B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J.LPOWER DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS NOISE VOLTAGE (REFERRED TO INPUT) 0.1 TO 10 Hz EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY 100 ~> VCC± = ±15 V TA = 25°C c .. I 0.5 80 1\ VCC±=±5V RS= loon TA = 25°C See Figure 2 [\ 0) S >:I. ;g .. .. 60 "I"- III 0) jg '0 0 Z :; 0 .. > a. -=;: III .. '0 Z r- 40 a; ~0.5 > '5 .,. W 20 I c > 2 3 4 5 6 I-Time-s 7 8 9 10 f - Frequency - Hz Figure28 Figure29 TOTAL HARMONIC DISTORTION TOTAL HARMONIC DISTORTION vs vs FREQUENCY FREQUENCY 0.3 0.6 r-"'I'""T"T'TTI"',"r-"'T""'"l'"T'TTI'MT"""-'-T'"T"T'l'mT--'-"""""""" AVD = 10 AVD = 2 'if!. VO(PP) = 2V TA = 25°C 'if!. I c c o of0 .9III is .~u; 0.2 0.4 J-t-+t+HitI-+++t-tlffi---jI-+Htt+tt---t-t++tM is u u '2 .~ 0 E IV II 0.3 t--t-+tttt-ttt--t-+-H+tttl--1H-t-tttttt--+-t-++HflI VCC±=±5V ~ 0.2 ~ VCC± = ±5V J: S VO(PP)= 2V TA = 250C -+-t-t-tt-ttt+--+-++++ttH--+-++++HH 0.5 J: 0.1 ~ I C J: f- ~ SOURCE SIGNAL o 10 II IIIII 100 II I @ f- 0.1 f=H=m:m==tmW=1H=l+t+tIl=:t1+t1:tm VCC± = ±20 V 1k 10 k f - Frequency - Hz 10k 100 k f - Frequency - Hz Figure 30 Figure31 TEXAS ~ INSTRUMENTS 2-1106 l.I SOURCE SIGNAL I POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 lOOk TLE2062, TLE2062A, TLE2062B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J,LPOWER DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt UNITY-GAIN BANDWIDTH vs SUPPLY VOLTAGE UNITY-GAIN BANDWIDTH vs FREE-AIR TEMPERATURE 2.5 r----,---r--,---.---r--.,.---;---, 2.5 Rl = 10 kn Cl = 100 pF TA = 25·C See Figure 3 N :x: ::;; .:;; ;; -- - 2 'jE "C ~ C '" Cl I: '(ij I--- f- ~ - q i!' 1.5 'c ::J m = = Rl 10 kn Cl 100 pF See Figure 3 1 o 2 4 6 8 10 12 14 16 IVcc± I - Supply Voltage - V 18 1 -75 20 I: Figure33 PHASE MARGIN vs SUPPLY VOLTAGE PHASE MARGIN vs LOAD CAPACITANCE 60· Rl = 10 kn Cl = 100 pF TA = 25·C See Figure 3 ., .:;; '" no 60· ,/' I / 58· c '§ 40· .,'" .:;; '" no ::;; / III 125 VCC± = ±15 V Rl = 10 kn -- TA = 25·C See Figure 3 r'\. ~ ~ r--- .... E 20· 57· 10· 56· 55· 30· I .IV E ""- V /' 59· III \\ 50· '0, :u ::;; -25 0 25 75 100 50 TA - Free-Air Temperature - ·C Figure32 62· 61· -50 o 2 4 6 8 10 12 14 16 IVcc± I - Supply Voltage - V 18 20 o· o Figure34 200 400 600 800 Cl - load Capacitance - pF 1000 Figure35 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSfRUMENTS POST OFFICE BOX 655303' OALLAS. TEXAS 75265 2-1107 TlE2062, TlE2062A, TlE2062B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE IlPOWER DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt PHASE MARGIN vs FREE-AIR TEMPERATURE 66·~--r---r---~--~--~--~--~--~ RL CL = 10 kQ = 100 pF 64· I---M.-+--+--+---+- See Figure 3 c .~ 62.1--~~-~~+--+--1--1--1--' '" :::;; Qj ~ .c 60·~-t--~__+-~~,-1--1---r-, Do I i 58·1---+---+---+-~~-~~~.--r-, 56·1---+--+---+--+--.H-~~---r-, 54·~--~--~--~--~--~--~--~--~ -75 -50 -25 0 25 50 75 100 125 TA - Free-Air Temperature - DC Figure36 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. APPLICATION INFORMATION macromodel information Macromodel information provided was derived using PSpice™ Parts™ model generation software. The Boyle macromodel (see Note 5) and subcircuit in Figure 37 were generated using the TLE2062 typical electrical and operating characteristics at 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): • • • • • • Maximum positive output voltage swing Maximum negative output voltage swing Slew rate Quiescent power dissipation Input bias current Open-loop voltage amplification NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. of Solid-State Circuits. SC-9, 353 (1974). • • • • • • Unity-gain frequency Common-mode rejection ratio Phase margin dc output resistance ac output resistance Short-circuit output current limit E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers", IEEE Journal PSpice and Parts are trademarks of MicroSim Corporation. TEXAS ~ 2-1108 INSfRUMENlS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 TlE2062, TlE2062A, TlE2062B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE JlPOWER DUAL OPERATIONAL AMPLIFIERS APPLICATION INFORMATION macromodel information (continued) din 9 egnd ,...----141--.92 t vb rp hlim + IN- -+---+-_-+1--' 6 IN+ vln + r2 C2 --t---t-+--"--i--' C1 rd1 VCC- -.~-.~_ _4+-_~~~-e~~~_ _ _ _ _ _ _ _ _ _ _ _ 5~ + ve OUT .subekt TLE2062 1 2 3 4 5 e1 11 12 1.457E-12 e2 6 7 15.00E-12 de 5 53 dx de 54 5 dx dlp 90 91 dx dln 92 90 dx dp 4 3 dx egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5 fb 7 99 poly(5) vb ve ve vlp vln 0 4.357E6 -4E6 4E6 4E6 -4E6 ga 6 0 11 12 188.5E-6 gem 0 6 10 99 3.352E-9 iss 3 10 de 51.00E-6 hlim 90 0 vlim 1K j1 11 2 10 jx j2 12 1 10 jx r2 6 9 100.0E3 rd1 4 11 5.305E3 rd2 4 12 5.305E3 ro1 8 5 280 ro2 7 99 280 rp 3 4 113.2E3 rss 10 99 3.922E6 vb 90deO ve 3 53 de 2 ve 54 4 de 2 vlim 7 8 de 0 vlp 91 0 de 50 vln 0 92 de 50 .~del dx D(Is=800.0E-18) .model jx PJF(Is=2.000E-12 Beta=423E-6 Vto=-l) . ends Figure 37. Boyle Macromodel and Subcircuit TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-1109 TLE2062, TL~2062A, TLE2062B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J.lPOWER DUAL OPERATIONAL AMPLIFIERS APPLICATION INFORMATION input characteristics The TLE2062, TLE2062A, and TLE2062B are specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction. Because of the extremely high input impedance and resulting low bias current requirements, the TLE2062, TLE2062A, and TLE2062B are well suited for low-level signal processing; however, leakage currents on printed circuit boards and sockets can easily exceed bias current requirements and cause degraqation in system performance. It is a good practice to include guard rings around inputs (see Figure 38). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input. The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation. Vo Vo Figure 38. Use of Guard Rings TEXAS ~ INSTRUMENTS 2-1110 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 Vo TlE2064, TlE2064A, TlE2064B, TlE2064Y EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE JlPOWER QUAD OPERATIONAL AMPLIFIERS 03367, NOVEMBER 1989 - REVISED NOVEMBER 1991 available features • • Excellent Output Drive Capability VO= ±2,5VMinatRL= 100n, VCC± = ±5 V Vo = ± 12,5 V Min at RL = 600 n, VCC± = ±15V • Macromodels Included • Wide Operating Supply Voltage Range VCC± = ± 3,5 V to ± 20 V • High Open-Loop Gain , .. 280 V/mV Typ Low Supply Current ", 280!lA Typ Per Amplifier • Low Offset Voltage ... 2 mV Max • Low Offset Voltage Drift With Time 0.04 !lv/mo Typ • Low Input Bias Current ... 5 pA Typ • High Unity-Gain Bandwidth, " 2,1 MHz Typ • High Slew Rate ", 3,4 Vi!lS Typ MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE SWING vs LOAD RESISTANCE description The TLE2064, TLE2064A, TLE2064B, and TLE2064Y are JFET-input, high-output-drive, micropower quad operational amplifiers manufactured using Texas Instruments Excalibur process. These devices combine outstanding output drive capability with low-power consumption, excellent dc precision, and wide bandwidth. 10 > Cl V I I I_I ~~IV CC± - TA = 25°C 8 ~" I--I- CI> In addition to maintaining the traditional JFET advantages of fast slew rates and low input bias and offset currents, the Excalibur process offers outstanding parametric stability over time and temperature. This results in a "precision" device remaining precise even with changes in temperature and over years of use. The TLE2064, TLE2064A, and TLE2064B are ideal choices for any application requiring excellent dc precision, high output drive, wide bandwidth, and low power consumption. ~ ./ 6 J..-' "0 > :; S4 ::I o [ o > 2 o 10 100 1 k 10 k RL - Load Resistance - Q AVAILABLE OPTIONS PACKAGE CHIP CERAMIC SMALL PLASTIC VIOmax AT 25°C OUTLINE CARRIER DIP DIP ODG 2mV (D) - (FK) - (J) - (N) - to 70 DC 4mV TLE2064ACO - - TLE2064ACN 6mV TLE2064CD - - TLE2064CN - - TA _40DC 2mV to 85 DC 4 mV TLE2064AID - 6mV TLE20641D - - TLE2064AIN (V) TLE2064V TLE20641N - - 55 DC 2mV - - to 125 DC 4 mV TLE2064AMD TLE2064AMFK TLE2064AMJ TLE2064AMN 6 mV TLE2064MD TLE2064MFK TLE2064MJ TLE2064MN - CHIP FORM D packages are available taped and reeled. Add "R" suffix to device type, (e.g., TLE2064ACDR). Chips are tested at 25'C. Copyright © 1991, Texas Instruments Incorporated PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instrumenls standard warranty. Production processing does not necessarilv include testing 01 all parameters. TEXAS • INSTRUMENTS ,POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2-1111 TlE2064, TlE2064A, TlE2064B, TlE2064Y EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE f.1POWER QUAD OPERATIONAL AMPLIFIERS description (continued) A variety of available options includes small-outline and chip-carrier versions for high-density system applications. The C-suffix devices are characterized for operation from O°C to 70°C. The I-suffix devices are characterized for operation from - 40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of -55°C to 125°C. D, J, OR N PACKAGE FK PACKAGE (TOP VIEW) 1 OUT (TOP VIEW) 4 OUT 41N41N + 9 20UT 3 VCC31N + 31N- 7 2 1 20 19 11N + NC 4 5 18 VCC+ NC 6 7 16 21N + 8 17 15 14 41N + NC VCCNC 31N + 9 1011 1213 NC - No internal connection equivalent schematic (each channel) IN+ ----t----, IN- +----vv.---4-....__ VccAll component values are nominal. Component count: Diodes - 2 Capacitors - TEXAS ~ 2-1112 INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 3 Resistors - 9 Transistors - 42 OUT TLE2064Y EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J.lPOWER QUAD OPERATIONAL AMPLIFIERS chip information These chips, properly assembled, display characteristics similar to the TLE2064. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform. VCC+(4) IN+(3)~+ OUT (1) IN- 2 () U = I N + ( 5 ) OUT (7) IN-(6) IN+ (10) + OUT (8) IN- 9 () OUT (14) IN- (13) ~ BONDING PAD ASSIGNMENTS ~IN+(12) VCC- (11) :::. 73 CHIP THICKNESS: 15TYPICAl T 11!-----_ I... ~I 130 11111111111111 111111 II II 111111 11111111 11111111111111111111 11111111 BONDING PADS: 4X4MINIMUM T J max = 150 0 C TOLERANCES ARE± 10% ALL DIMENSIONS ARE IN MILS PIN(11)INTERNALLY CONNECTED TO BACKSIDE OF CHIP TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-1113 TLE2064, TLE2064A, TLE2064B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE /lPOWER QUAD OPERATIONAL AMPLIFIERS absol ute maxi mum rati ngs over operating free-air temperature range (unless otherwise noted) Supply voltage, VCC+ (see Note 1) .................................................... 22 V Supply voltage, VCC- .............................................................. -22 V Differential input voltage (see Note 2) .................................................. ±44 V Input voltage range, VI (any input) .................................................... VCC± Input current, II (each input) ......................................................... ±1 mA Output current, 10 (each output) ..................................................... ±80 mA Total current into VCC+ terminal ..................................................... 80 mA Total current out of VCC- terminal .................................................... 80 mA Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... unlimited Continuous total dissipation ........................................ See Dissipation Rating Table Operating free-air temperature range, TA: C-suffix ................................... O°C to 70°C I-suffix ................................. -40°C to 85°C M-suffix .............................. -55°C to 125°C Storage temperature range ................................................... -65°C to 150°C Case temperature for 60 seconds: FK package .......................................... 260°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package ............... 260°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package ................... 300°C NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC- . 2. Differential voltages are at the non inverting input with respect to the inverting input. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE DERATING FACTOR D TAS25°C POWER RATING 950mW FK 1375 mW 11.0 mW/oC 880mW 715mW 1375mW 11.0mW/oC 9.2 mW/oC 880mW 715mW 275mW 736mW 598 mW 230 mW PACKAGE N 1150mW ABOVE TA = 25°C 7.6mWrC TA=85°C POWER RATING 494 mW TA=70°C POWER RATING 608mW TA-125°C POWER RATING 190mW 275 mW recommended operating conditions Supply voltage, VCC+ Common-mode input voltage, VIC VCC+ = ±5 V VCC+ = ± 15V VCC+ = ± 20 V Operating free-air temperature, TA I-SUFFIX C-SUFFIX MAX MIN MAX MIN MAX UNIT ±3.5 ± 20 ± 3.5 ± 20 ± 3.5 ± 20 -1.6 4 - 1.6 4 -1.6 4 - 11 -15 13 16.5 -11 -15 13 16.5 -11 -15 13 16.5 V 0 70 -40 85 -55 125 °C TEXAS ~ INSTRUMENTS 2-1114 M-SUFFIX MIN POST OFFICE BOX 655303· DALLAS, TEXAS 75265 V TlE2064C, TlE2064AC, TlE2064BC EXCAlIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J.lPOWER QUAD OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Vee ± = ± 5 V(unless otherwise noted) TYP MAX TLE2064C 25°C Full range 1.2 7 7.9 TLE2064AC 25°C Full range 1.2 25°C 0.8 PARAMETER VIO Input offset voltage TEST CONDITIONS TLE2064BC (lVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) 110 Input offset current liB Input bias current VIC =0, RS =50Q TAt 25°C 0.8 nA pA 2 nA 3 Full range -1.6 -2 to 4 to V 6 -1.6 Maximum positive peak output voltage swing VO=±2.8 V, RL= 10kn Vo = Oto 2 V, RL=100Q RL = 100Q V 25°C 3.5 Full range 3.3 25°C 2.5 3.1 2 -3.7 -3.9 -3.3 -2.5 -2.7 25°C RL = 100Q VO=Oto-2V, to 4 25°C Full range Maximum negative peak output voltage swing Large-signal differential voltage amplification Full range Full range RL=10k.Q AVD IlV;oC IlVimo pA 1 25°C RL=100Q VOM- mV 3.5 6 0.04 Full range RL = 10k.Q VOM+ UNIT 4.4 25°C Full range Common-mode input voltage range 6 6.9 Full range 25°C VICR MIN Full range -2 25°C 15 Full range 2 25°C 0.75 Full range 0.5 25°C 0.5 Full range 3.7 V V 80 45 V/mV 3 0.15 q Input resistance 25°C 1012 Q c· Input capacitance 25°C 4 pF Zo Open-loop output impedance 560 Q CMRR Common-mode rejection ratio kSVR Supply-voltage rejection ratio (/'N CC± I ~ V 10) ICC Supply current (four amplifiers) ~ICC Vol/V02 Supply current change over operating 25°C 10=0 VIC = VICR min, RS = 50Q VCC±=±5Vto±20V, RS = 50Q 65 Full range 65 25°C 75 Full range 75 25°C VO=O, No load AVD = 1000, f = 1 kHz temperature range (four amplifiers) Crosstalk attenuation 25°C 82 dB 93 1.12 Full range dB 1.3 1.3 mA Full range 52 J.lA 25°C 120 dB tFull range is O°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 ' DALLAS, TEXAS 75265 2-1115 TlE2064C, TlE2064AC, TlE2064BC EXCAlIBUR JFET-INPUT HIGH-OUTPUT-DRIVE /lPOWER QUAD OPERATIONAL AMPLIFIERS - = ±5 V operating characteristics at specified free-air temperature, Vcc+ PARAMETER· SR Vn Slew rate at unity gain (see Figure 1) Equivalent input noise voltage (see Figure 2) Peak-to-peak equivalent input VN(PP) noise voltage In Equivalent input noise current THO Total harmonic distortion B1 RL = 10 kn, CL = 100 pF f = 10 Hz, f = 1 kHz, RS = 100Q MIN TYP 2.2 3.4 Full range 2.1 RS = 100n 25°C 25°C 1 25°C 0.025% f = 10kHz, RL = 10 kQ RL = 10kn, CL = 100 pF (see Figure 3) RL = 100n, CL = 100 pF £=0.1% 25°C 25°C £ = 0.01% BaM m 3.4 CL = 100 pF RS = loon RS = lOOn f = 10 kHz, RL = 10kn CL = 100 pF CL = 100 pF = 0.1 °/0 = 0.01% Maximum-output-swing bandwidth TYP 2.2 1.7 f = 1 kHz AVO = 2, £ BaM MIN f = 0.1 Hz to 10 Hz Unity-gain bandwidth Settling time TAt 25°C Full range TEST CONDITIONS f = 10 Hz, f = 1 kHz, Avo = 1, RL = 10 kn Phase margin at unity gain RL = 10 kQ, CL = 100 pF (see Figure 3) RL = 100 Q, CL = 100 pF tFull range is - 40°C to 85°C TEXAS ~ INSTRUMENlS 2-1122 = ±5 V POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MAX UNIT VlflS 25°C 59 43 25°C 1.1 25°C 1 25°C 0.025% 25°C 1.8 1.3 MHz 25°C 5 10 fls 25°C 140 kHz 25°C 58° 75° 100 60 nV/~ flV fA/~ TlE20641, TlE2064AI, TlE2064BI EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE JlPOWER QUAD OPERATIONAL AMPLIFIERS electrical characteristics at specified free-airtemperature, V CC±= ±15 V (unless otherwise noted) PARAMETER TEST CONDITIONS TLE20641 Via Input offset voltage TLE2064AI Temperature coefficient of input offset voltage RS = 50n VIC = 0, Input offset voltage long-term drift (see Note 4) 110 liB TYP MAX 0.9 6 7.3 25°C 0.9 4 5.3 25"C 0.7 Full range Full range 25°C 2 3.3 6 0.04 25°C Input offset current 25°C Input bias current Common-mode input voltage range 25"C RL=10kQ Full range Maximum positive peak output voltage swing 25°C RL = 600Q Full range 25"C RL=10kQ VOM- Full range Maximum negative peak output voltage swing 25"C RL = 600 Q AVD Large-signal differential voltage amplification Vo = ±10V, RL = 10 kQ Va = 0 to 8 V, RL = 600Q VO=Oto-8V, RL = 600 Q Zo Open-loop output impedance Common-mode rejection ratio kSVR Supply-voltage rejection ratio ("'V cc ± ~ '" VIO) ICC Supply current (four amplifiers) 10 = 0 VIC = VICR min, RS = 50Q VCC±=±5Vto±15V, RS = 50Q No load temperature range (four amplifiers) VolIV02 Crosstalk attenuation AVD = 1000, f = 1 kHz 13.2 -13.2 -13.7 10 25°C 3 Full range 1 V V 100 V/mV 25 10 12 4 72 560 90 25"C 65 75 93 Full range 65 Full range V 20 25 25"C 25°C pA -13 25"C 25"C Vo = 0, 12.5 12 Full range 25°C nA 13.7 230 25°C 5 13 30 Input capacitance 3 V 25°C Full range Input resistance CMRR to 13 13.2 -13 ci Supply current change over operating to 16 - 12.5 -12 Full range r; "'ICC -12 to 13 -11 Full range VOM+ -11 mV fl V/o C 4 Full range UNIT fl V/mo pA nA 2 Full range 25"C VICR MIN Full range TLE2064BI ctVIO TAt 25°C Full range 1.25 Full range Q pF Q dB dB 1.4 1.5 mA Full range 148 f1A 25"C 120 dB tFull range is - 40"C to 85"C NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150"C extrapolated to TA = 25"C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303· DALLAS, TEXAS 75265 2-1123 TlE20641, TlE2064AI, TlE2064BI EXCAlIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J.1POWER QUAD OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, Vcc+ = ± 15 V - PARAMETER SR Vn Slew rate at unity gain (see Figure 1) Equivalent input noise voltage (see Figure 2) Peak-to-peak equivalent input VN(PP) noise voltage RL = 10 kn, I = 10 Hz, I = 1 kHz, 100 pF = = 100n Full range 2.1 RS 100n 100 40 60 nV/1HZ flV 25°C 0.025% 25°C 2 1.5 MHz 25°C 5 10 fls 25°C 40 kHz 25°C 60° 70° Unity-gain bandwidth RL (see Figure 3) RL £ £ = = I = 10 kHz, RL 10 kn, CL 600 n, CL = = = 10 kn 100pF 100pF = 0.1% = 0.01% Maximum-output-swing AvO RL RL = = 1, RL = 10 kn 10 kn, 600 n, CL = = 100pF = CL 100pF tFull range is - 40°C to 85°C TEXAS ~ INSTRUMENlS 2-1124 25°C V/flS 70 lA/1HZ AVO = 2, VO(PP) = 2 V, Phase margin at unity gain (see Figure 3) = RS UNIT 1.1 Total harmonic distortion iRZ 0.025% E = 0.1% INSTRUMENTS 2-1128 MIN RL = 10 kQ, MHz ~s kHz TlE2064M, TlE2064AM, TlE2064BM EXCAlIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J.lPOWER QUAD OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Vcc+= - ±15 V (unless otherwise noted) TEST CONDITIONS PARAMETER TLE2064M Via Input offset voltage TLE2064AM Temperature coefficient of input offset voltage Input offset current lIB Input bias current TYP MAX 0.9 6 25°C 0.9 RS = 50 Q V'C = 0, 0.7 Full range 25°C 4 20 AVD 13.7 12.5 12.5 13.2 25°C Full range -13 -13 Va = ±10V, RL = 10 kQ 25°C Full range -12.5 30 20 230 Va = 0 to 8 V, RL = 600 Q 25 100 Va = Oto-8V, RL = 600 Q Full range 7 25°C 3 Full range 1 r; Input resistance 25°C Input capacitance 25°C Zo Open-loop output impedance 10 = 0 25°C CMRR Common-mode rejection ratio VIC = VICR min, kSVR Supply-voltage rejection ratio ("NCC ±I LlVIO) VCC± = ±5Vto±15V, RS = 50Q ICC LlICC RS = 50 Q Va =0, No load temperature range (four amplifiers) V011V02 Crosstalk attenuation 25°C 72 Full range 65 25°C Full range 75 25°C Supply current (four amplifiers) Supply current change over operating -13.7 RL = 600 Q ci AVD = 1000, f = 1 kHz V 12 -13 -12.5 25°C V V Full range Maximum negative peak output voltage swing Large-signal differential voltage amplification to 16 25°C 25°C RL = 10 kQ to 13 -11 to Full range nA -12 13 13 25°C nA pA 40 Full range Full range Maximum positive peak output voltage swing RL = 600 Q VOM- flV/ o C fl V/mo pA Full range RL = 10 kQ VOM+ 6 2 Common-mode input voltage range mV 2 4 0.04 25°C Full range -11 VICR 4 6 Full range 25°C 25°C UNIT 8 25°C Input offset voltage long-term drift (see Note 4) 110 MIN Full range TLE2064BM aVIO TAT 25°C Full range V V/mV 25 10 12 4 pF Q 560 Q 90 dB 93 dB 65 1.25 Full range 1.4 1.5 mA Full range 194 J.lA 25°C 120 dB tFul1 range is - 55°C to 125°C NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T A = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. ~ TEXAS INSTRUMENTS POST OFFICE BOX 655303 ' DALLAS, TEXAS 7526S 2-1129 TlE2064M, TlE2064AM, TlE2064BM EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J.LPOWER QUAD OPERATIONAL AMPLIFIERS - = ± 15 V operating characteristics at specified free-air temperature, Vcc+ ,PARAMETER SR Vn VN(PP) Slew rate at unity gain (see Figure 1) Equivalent input noise voltage (see Figure 2) Peak-to-peak equivalent input noise voltage In Equivalent input noise current THO Total harmonic distortion Bl TEST CONDITIONS RL ~ 10 kn, CL ~ 100 pF f f ~ 10 Hz, RS ~ 1 kHz, RS ~ loon f ~ 0.1 Hz to 10Hz f ~ 1 kHz ~ lOOn 25°C ~ f Unity-gain bandwidth VO(PP) ~ 2V, RL ~ 10kn, CL ~ 100pF (see Figure 3) RL ~ soon, CL ~ 100 pF 10 kHz, RL ~ 10 kn E ~ 0.1% BaM ¢m bandwidth Phase margin at unity gain (see Figure 3) AVO ~ 1, RL RL ~ 10 kn, RL ~ soon, CL ~ 100 pF CL ~ 100pF ~ 10kn tFull range is - 55°C to 125°C TEXAS ~ INSTRUMENTS 2-1130 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TYP 2.S 1.8 3.4 70 40 MAX UNIT VII's nVl,,!Hz I'V 25°C 1.1 fA/,,!Hz 25°C 0.025% 25°C 2 1.5 MHz 25°C 5 10 I's 25°C 40 kHz E ~ 0.01% Maximum-output-swing MIN 1.1 25°C AVO ~ 2, Settling time TA 25°C Full range 25°C SOO 70° TLE2064M, TLE2064AM, TLE2064BM EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE JlPOWER QUAD OPERATIONAL AMPLIFIERS electrical characteristics at specified free-airtemperature, Vcc+= - ±20 V (unless otherwise noted) PARAMETER Via aVIO 110 liB TAt TEST CONDITIONS TYP MAX TLE2064M 25"C Full range 1 6 8 TLE2064AM 25°C Full range 1 TLE2064BM 25°C Full range 0.7 Full range 6 IlV/ o C 0.04 IlV/mo Input offset voltage Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) VIC ~ 0, RS ~ 50 Q MIN Input offset current 25"C Full range 3 Input bias current 25°C Full range 5 -15 VICR Common-mode input voltage range Full range RL~10k.Q VOM+ Maximum positive peak ou.tput voltage swing VOM- AVD Maximum negative peak output voltage swing Large-signal differential voltage amplification RL ~ 600 Q Va ~ ± 15 V, RL ~ 10 kQ Va ~ Oto 10V, RL ~ 600 Q Va ~ 0 to - 10 V, RL ~ 600 Q Full range -12 25°C 30 Full range 20 25°C 25 Full range 10 25°C 3 Full range 1 Zo Open-loop output impedance 10 ~ 0 Common-mode rejection ratio VIC ~ VICR min, ~ 50 Q ICC !lICC RS ~ 50Q Va ~ 0, No load temperature range (four amplifiers) Va 1IV 02 Crosstalk attenuation 80 65 25°C 75 Full range 65 AVD ~ 1000, f ~ 1 kHz V/mV 20 10 12 4 pF 560 Q 75 25°C Supply current (four amplifiers) Supply current change over operating 25°C Full range V 280 25°C RS VCC± ~ ±5Vto±20V, Supply-voltage rejection ratio (!lVCC ± I !lVIO) 12 -18 25°C V 18.1 -18.7 25°C kSVR 15 -17.5 -15 Input capacitance V 187 Full range 25°C Input resistance 40 V -18 'i nA pA nA to 17.5 ci CMRR to 21 25°C 25°C RL ~ 10 kQ to Full range Full range pA 20 -17 16.5 -15 16.5 18 25°C RL ~ 600 Q mV 2.2 4.2 25°C 25"C 4.6 6.6 UNIT Q 91 dB 93 1.32 Full range dB 1.5 1.6 mA Full range 212 J.lA 25°C 120 dB tFuil range is - 55°C to 125°C NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA to TA ~ 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. ~ 150"C extrapolated TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-1131 TlE2064M, TlE2064AM, TlE2064BM EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE IlPOWER QUAD OPERATIONAL AMPLIFIERS operating characteristics, VCC± = ± 20 V, TA PARAMETER = 25°C TEST CONDITIONS SR Slew rate at unity gain (see Figure 1) Vn Equivalent input noise voltage (see Figure 2) VN(PP) Peak-Io-peak equivalent input noise voltage f = 1 kHz, f = 0.1 Hztol0Hz In Equivalent input noise current f = 1 kHz THO Total harmonic di stortion Bl Unity-gain bandwidth (see Figure 3) RL = 10 kQ, f = 10 Hz, RS = 100Q RS = 100Q Maximum-output-swing bandwidth vs vs Output impedance Pulse response Vn THD 7 Phase shift vs Supply voltage vs Temperature vs Load capacitance 32 33 34 35 vs Supply voltage vs Temperature 36 vs Frequency 16 TEXAS ~ INSTRUMENTS POST OFFICE BOX 655012· DALLAS, TEXAS 75265 2-1135 TlE2064, TlE2064A, TlE2064B EXCAlIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J,LPOWER QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt TLE2064 INPUT BIAS CURRENT DISTRIBUTION OF INPUT OFFSET VOLTAGE COMMON-MODE INPUT VOLTAGE vs 20 2 2792 Amplifiers Tested '# I ~ VID TA = VCC± ±15V TA 250C NPackage = 15 Lots 'c" I E ~ c. .. E (.) 10 .!! III ... Cl ~ c .5 !! ...~ 1.5 I ~ ''0.," =0 = 250C VCC± I 5 j! 0.5 0 o II VCC± -8 -6 -4 0 2 4 -2 VIO -Input Offset Voltage - mV 6 8 E ~ ::> Figure 5 INPUT BIAS CURRENT and INPUT OFFSET CURRENT COMMON-MODE INPUT VOLTAGE RANGE vs vs FREE-AIR TEMPERATURE FREE-AIR TEMPERATURE VCC+ + 2 > I 104 ~ VCC++1 !! ... ./ 103 ~ ., .5 0 .... iii 'tI '8 C liB 102 V :;; VCC- +4 /110 . j! 'tI c 101 100 25 i' C ~ I 12 VIC+ ~ (.) ~ ./ ~ VCC- +3 ./ - I VIC- ~ 45 65 85 105 T A - Free-Air Temperature - ·C 125 VCC- +2 -75 -50 -25 0 25 50 75 100 TA - Free-Air Temperature - ·C Figure 7 Figure 6 tData at high and low temperatures are applicable only within the rated. operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS 2-1136 20 Figure 4 VCC± = ±15V VIC = 0 I = ±1~ - 20 - 15 - 10 - 5 0 5 10 15 VIC - Common-Mode Input Voltage - V 105 ~ V = ±20V, POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 125 TlE2064, TlE2064A, TlE2064B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE JlPOWER QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE > " Cl 2l "0 > :; Il. vs vs OUTPUT CURRENT OUTPUT CURRENT > 20 TAl 18 - vcc± 25°C - t--- = ±20V 16 ~ 12 t- vcc± - ±15 V ~ 10 -I-- + > E ::I 6 E 2 f- vcc± = ±5V o o --. I I -10 -20 '-..... VOM- ............ ............ I VOM- '-..... VOM+ "V "j( '-..... I V /' ,/" 0 0.. ........., '-..... r-..., 4 .,,- ,/" :; :; "" 2 10 > ,/" 0 :E -10 ~ = 600 Q = 25°C Cl 0 i'-... TA 15 ,/" -5 RL > ,/ o o o I MAXIMUM PEAK OUTPUT VOLTAGE 10 -20 ~ ~ I vs SUPPLY VOLTAGE -60 = ±5V I MAXIMUM PEAK OUTPUT VOLTAGE "j( ~ -50 -2 I-VCC± Figure9 0.. ::I I :E -4 I...... Figure8 0 "" -8 -6 10 - Output Current - rnA :; Il. ~ 10 - Output Current - rnA > :; -40 -30 = 10 kQ TA = 25°C 15 ~ - __. RL > "0 - "j( 4 20 "Cl 2l = ± 15 V ~ 8 :E o -12 I- VCC± = 25°C Cl "j( ~ -14 "":l ":; E ~ :3 a.. ~ -10 a.. "'" = ±20 V "0 ~ -16 -'" TA f- VCC± ::I 14 "iii ~ -20 " -18 I'-.. ~ Il. :; o MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE -15 -20 o 2 4 6 8 10 12 14 16 1" 18 20 JVcc± J - Supply Voltage - V Supply Voltage - V Figure 10 Figure 11 TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 " DALLAS" TEXAS 75265 2-1137 TlE2064, TlE2064A, TlE2064B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J,LPOWER QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE MAXIMUM PEAK OUTPUT VOLTAGE vs vs SUPPLY VOLTAGE FREQUENCY 6 = 100 n TA = 25°C RL > Q) Cl 4 0 > '5 0. '5 2 "'m " 0. 0 / V !'J ~ VOM+ " ., ';( "'0...," ., "~ -2 -4 - I--- VOM- o > ~ I- 0 10 k 100 k MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs vs FREQUENCY FREQUENCY > = = TA = 25°C 25 .. f- Cl 35 1 30 - vcc± = ±20 V RL = 10 kn TA = 25°C 1\ '5 o 20 "'" m 25 0. § 10 ~ ., 20 Q) 0. E ., ';( 5 E E \ " '~ 0. 0 10 k 15 10 ::;; "- 0:100 k - 1M 0:- 5 '\ ..... 0. 0' 10 M > 0 10 k 100 k 1M f - Frequency - Hz f - Frequency - Hz Figure14 Figure 15 TEXAS ~ INSfRUMENTS 2-1138 10 M 40 .i!! o > ~ > 0:- 0. MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE Vcc± ±15 V RL 10 kn 15 0' 2 Figure13 30 . ::;; ::;; Figure12 10 6 ~ P. ., 1M f - Frequency - Hz 6 4 '50. .:< f\ "E IVcc± I - SUpply Voltage - V 2 Cl 8-" \ 4 ';( 0' !'J g \ 6 E > .. 8 ~ I > = = TA = 25°C Vcc± ±5V RL 10 kn '5 o 0. ~ 10 :g ~ ::;; ::;; 0 ., .,Cl > '5 0. 0 E E > POST OFFICE BOX 655303 ' DALLAS, TEXAS 75265 10 M TlE2064, TlE2064A, TlE2064B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE IlPOWER QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION and PHASE SHIFT 120 \ co "I c 100 .2 ~C. 80 «., 60 vs FREQUENCY FREE-AIR TEMPERATURE I ~ ~ ~ Cl C ., Q; ::: C c > 40 "" ~ '\ \ "\ 20 « -20 0.1 10 ~ 100· .;: 120· ~ ., II> OJ ..c: 140· Il. ..,.I 160· '\ VCC± = ±15 V Rl = 10 kQ Cl = 100 pF TA = 25·C 0 > 80· (5 ~ 60· I PHASE SHIFT E S > LARGE-SIGNAL VOLTAGE AMPLIFICATION vs c .2 'iii :5 C. E 400 Rl = 10 kQ 350 VCC± = ±20V r----r-r-- 300 " 250 «., Cl S VCC±=±15V 200 \ ~ ~ ~ 100 I « 1 o - 75 « - 50 - 25 vs FREE-AIR TEMPERATURE 80 I VID= -100mV C 40 C 40 20 () 20 a 0 ~ '5 Q. '5 VCC± = ±15 V 0 TA = 25·C· '5 ~ 100 l I I-r--VID = -100 mV r-- :----- - '5 Vo = 0 c3" -20 -20 ,!. (; (; ..c: Ul -40 I £l-60 -80 -- . ~ -40 I / o IVID = Tmv 10 125 vcc± = ±15 V Vo = 0 - r---- :; :; ~ 75 ELAPSED TIME 60 a 50 -.. SHORT-CIRCUIT OUTPUT CURRENT ~ '5 Q. '5 25 vs 60 () 0 --- Figure 17 E ~ """" ~ TA - Free-Air Temperature - ·C SHORT-CIRCUIT OUTPUT CURRENT I -r-- 50 I - Vr± =1±5V Figure 16 80 ~ 150 C c > 200· 100 1 k 10 k 100 k 1 M 10 M f - Frequency - Hz I'--.. ~ r-...... (5 > C 180· r-.... 20 30 40 t - Time - seconds 50 £l-60 -80 - 75 60 - 50 - 25 VID = 10~r--- f-- f-- 0 25 .- 50 75 100 125 TA - Free-Air Temperature - ·C Figure18 Figure 19 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS + INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-1139 TlE2064, TlE2064A, TlE2064B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE IlPOWER QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt COMMON-MODE REJECTION RATIO OUTPUT IMPEDANCE 35 vs vs FREQUENCY FREQUENCY 100 "" I-' VCC± = ±15 V TA = 25°C 30 / G> " AVO = C -g'" 20 ~ :; Q. 10t 't; a: Vcc± = ±20V T I ':\ VCC±=±5V 0 ·u G> 'Qj a: 60 '\ 'tI 0 C 0 AVO = 100 40 '\ E E Avo = 1 10 0 0 U N I / 5 100 20 a: a: ::;; u V V o 100k 10 10 M 1M SUPPLY CURRENT SUPPLY CURRENT vs FREE-AIR TEMPERATURE // V TA = 125°0/ f:! V/ V 1.1 V '" o 2 4 '/ I .- Q. u 9 I 1.1 I Y 6 8 10 12 14 16 18 20 1 -75 /" -50 IVcc± I - Supply Voltage - V ./ l/ ' / Vcc± / /TA = -55°C I V / ./ ::> Q. V 1 1/ 1.2 rn / V ./ f:! V vcc± = ± 2 0 / 1.3 5 ./ / E U ", TA = 25°C '// I 100 k Figure20 c: '" 10 k f - Frequency - Hz Vo = 0 NO LOAO Q. 1k 100 SUPPLY VOLTAGE rn '\ f - Frequency - Hz 1.4 1.2 ~ o 10 k 1k vs U ~ ::;; 0 E ~ ., 15 :; I vcc± = ±5V RL = 10 kQ -50 ~ V CL = 100 pF CL = 100 pF TA = 25°C See Figure 1 TA = 25°C See Figure 1 -100 -100 o 2 I - Time - 119 Figure 24 Figure25 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE VOL TAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 10 > ., . '6'" 2 > > :; c. :; '5Co '5 0 5 VCC± = ±15 V RL = 10 kQ CL = 100 pF TA = 25°C See Figure 1 0 0 0 I VCC±=±5V RL = 10kQ CL = 100pF TA = 25°C See Figure 1 > -1 -2 3 15 > I 2 I - Time - 119 3 0 o 3 4 ., . ''"6 -- vcc± = ±15 V RL = 10 kQ -50 o 0 -5 > -10 -15 5 I - Time - I1S 10 15 I I I II o 10 20 30 40 I - Time - 119 Figure26 Figure27 TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2-1141 TlE2064, TlE2064A, TlE2064B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J.LPOWER QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS NOISE VOLTAGE (REFERRED TO INPUT) 0.1 TO 10 Hz EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY 100 ~> VCC± = ±1S V TA = 2SoC c I O.S 80 G> 01 vcc±=±sv RS = 100 Q TA = 2SoC 1\1\ See Figure 2 S >::1. g G> G> 60 1', II> Ol S '0 '0 z 0 r-- :; > a. .E .,G> '0 40 C G> Z "iii > '5 -O.S .,. w 20 c -1~~~--~~--~~ o 2 3 4 S __~~~~~ 6 7 8 9 > 10 I-Time-s f - Frequency - Hz Figure28 Figure29 TOTAL HARMONIC DISTORTION TOTAL HARMONIC DISTORTION vs vs FREQUENCY FREQUENCY 0.3 AVO = 10 AVO = 2 ~ VO(PP) = 2 V TA = 2SoC ~ O.S c o c .g S., VO(PP) = 2 V TA = 2SoC -H-t+t+Ht-t--t-Htlttt---t-t+l-ttIfI .~'iii 0.2 0.4 1--+-t-t+ttttt---+-++++tt+t--HH+t+ttt--l-t-HtlIHl C C 'c0 'gE 0.3 1--+-t-t+ttttt---+-++++tt+t--HH+t+ttt--l-t-!+H1il "iii 0.2 t-+-t+tttttt--t+t++tttt--t-1H+ttItt-t--+'IlIHttl 0.1 t=t+:mm::=++++trtt!=t:1mtM:::1+m!~ u u E VCC± = ±SV " "iii 0 0.1 ~ l- I I 0 J: !i! I- I- ~ SOURCE SIGNAL o 10 II IIIII 100 II I VCC± = ±S V ~ J: VCC± = ±20 V 1k 10 k f - Frequency - Hz 10k 100 k f - Frequency - Hz Figure30 Figure31 TEXAS ~ INSTRUMENTS 2-1142 1/ SOURCE SIGNAL POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 100 k TlE2064, TlE2064A, TlE2064B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J,lPOWER QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt UNITY-GAIN BANDWIDTH vs SUPPLY VOLTAGE UNITY-GAIN BANDWIDTH vs FREE-AIR TEMPERATURE 2.5 2.5 r-----J-~--r--~--r--_r_--r-....., RL = 10 kQ CL = 100 pF N TA = 25·C See Figure 3 J: :0 ..:: -6 .3: 2 ...c - ~ l1I a:J c .OJ - ~~ ~ ~ i..-- ." 2~-1--~~-+--~~~+-+---+--1 ~c l1I a:J c .OJ <;l ~ i..:: <;l ·f 1.5 ::;) ::;) r£ r£ 1.5 ~-1---+---+---+---+---+----f"'o,..,.....J RL = 10 kQ = CL 100 pF See Figure 3 1~~-~-~-~-~-~-~~ 1 o 2 4 6 IVcc± I 8 - 10 12 14 16 18 -75 20 59· ....E c V .~ \ 40· 125 \. ~ :0 ., !II l1I ..:: 30· ............... c.. . ,v I ....E 57· 20· - - 10· 56· 55· 100 VCC± = ±15 V RL = 10kQ TA = 2S·C See Figure 3 l1I // I \ 50· V ./ c.. 58· 75 PHASE MARGIN vs LOAD CAPACITANCE 60· ..:: 50 PHASE MARGIN vs SUPPLY VOLTAGE RL = 10 kQ 61· CL = 100 pF TA = 25·C . See Figure 3 60· l1I 25 Figure33 l1I .,. 0 Figure32 .~ :0 -25 T A - Free·Air Temperature - ·C 62· c -50 Supply Voltage - V o o· 2 4 6 8 10 12 14 16 18 20 o 200 400 600 800 IVcc± I - Supply Voltage - V CL - Load Capacitance - pF Figure34 Figure35 1000 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303· DALLAS, TEXAS 75265 2-1143 TlE2064, TlE2064A, TlE2064B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J.1POWER QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt PHASE MARGIN vs FREE-AIR TEMPERATURE = = RL 10 kQ CL 100 pF See Figure 3 64· ." :e ... .~ 62· II> .<: C. I 60· E 58· ~ 56·r---~--~~---4---H--~~-+--~ 54·L-__ __ __ __ __ __ __ -75 -50 -25 0 25 50 75 100 125 TA - Free-Air Temperature - ·C ~ ~~ ~ ~ ~ ~ ~ Figure36 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TYPICAL APPLICATION OAT A macromodel information Macromodel information provided was derived using PSpice™ Parts™ model generation software. The Boyle macromodel (see Note 5) and subcircuit in Figure 37 were generated using the TLE2064 typical electrical and operating characteristics at 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): • • • • • • Maximum positive output voltage swing Maximum negative output voltage swing Slew rate Quiescent power dissipation Input bias current Open-loop voltage amplification • • • • • • Unity gain frequency Common-mode rejection ratio Phase margin dc output resistance ac output resistance Short-circuit output current limit . To model the TLE2064, TLE2064A, or TLE2064B, use four macromodels in your simulation. NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, Macromodeling of Integrated Circuit Operational Amplifiers, IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). PSpice and Parts are trademarks of MicroSim Corporation. Macromodels, simulation models, or other models provided by II, directly or indirectly, are not warranted by 11 as lully representln~ all 01 the ~:~l~~c~J~~~~r ~~~d°J::~~~t~Ri;~~~c~~d~:cr~'~'li~~ 2-1144 TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TlE2064, TlE2064A, TlE2064B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE IlPOWER QUAD OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA macromodel information (continued) 99 din 9 egnd r------I41--.... 92 rp vln IN- -+---t---#---' IN+ --+---+-...---!----\---' + r01 4 5 VCC- ~~~---~~~~~--~~~------------~ + ve OUT .subekt TLE2064 1 2 3 4 5 el 11 12 1;457E-12 e2 6 7 15.00E-12 de 5 53 dx de 54 5 dx dIp 90 91 dx dIn 92 90 dx dp 4 3 dx egnd 99 poly(2) (3,0) (4,0) .5 .5 fb 7 99 poly(5) vb ve ve vIp vln 4.357E6 -4E6 4E6 4E6 -4E6 ga 6 11 12 188.5E-6 gem 6 10 99 3.352E-9 iss 3 10 de 51.00E-6 hlim 90 0 vlim 1K j1 11 2 10 jx j2 12 1 10 jx r2 6 9 100.0E3 rd1 4 11 5.305E3 rd2 4 12 5.305E3 ro1 8 5 280 ro2 7 99 280 rp 3 4 113.2E3 rss 10 99 3.922E6 vb 9 0 de 0 ve 3 53 de 2 ve 54 4 de 2 vlim 7 8 de 0 vlp 91 0 de 50 vln 92 de 50 .model dx D(Is=800.0E-18) .model jx PJF(Is=2.000E-12 Beta=423E-6 Vto=-1) . ends ° ° ° ° ° ° Figure 37. Boyle Macromodel and Subcircuit TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-1145 TlE2064, TlE2064A, TlE2064B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J.LPOWER QUAD OPERATIONAL AMPLIFIERS APPLICATION INFORMATION Input characteristics The TLE2064, TLE2064A and TLE2064B are specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction. Because of the extremely high input impedance and resulting low bias current requirements, the TLE2064, TLE2064A and TLE2064B are well-suited for low-level signal processing; however, leakage currents on printed circuit boards and sockets can easily exceed bias current requirements and cause degradation in system performance. It is a good practice to include guard rings around inputs (see Figure 38). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input. The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation. Vo Vo Figure 38. Use of Guard Rings TEXAS ~ INSTRUMENlS 2-1146 POST OFFICE BOX 655303· DALLAS. TEXAS 75265 Vo TLE2082, TLE2082A, TLE2082Y EXCALIBUR HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS D3958. AUGUST 1991 available features • 40 VIJls Slew Rate Typ • Wide Supply Range ... ± 2.25 V to ± 22 V • High-Gain Bandwidth Product ... 10 MHz • Input Range Includes the Positive Supply • ± 30 rnA Minimum Short-Circuit Output Current • Macromodel Included • Fast Settling Time ... 400 ns to 10 mV 10-V Step Typ ....... 1.5 Jls to 1 mV OUTPUT VOLTAGE TOTAL HARMONIC DISTORTION PLUS NOISE vs vs FREQUENCY SETTLING TIME 12.S ;fl. 10 " 7.S / S ./'mv 10lmV In '0 Z + c .g (; 0.1 'iii i5 () 'c0 E to :z: 0.01 A~ ~ I ~~~:IRL ~ 121~" / AV = 10, Rl = 600Q ~ I o Z + 0.001 10 100 1k 10 k f - Frequency - Hz \ -S \ -7.S VCC± = ±lSV Vo = 20Vpp I TA = 2S"C . I _I. Filter: 10 Hz to SOO kHz Band Pass o ' .... o 'SQ, ~ I 2.S ~ -2.S > I I- " ~ o > Av = 10, RL = 2 kU' ~ l- :z: V AV - 100, RL _ 600 Q > VCC± = ±lSV RL = 1 kQ CL = 100pFAV = -1 TA= 2 5 " C - Rising Falling ~ ~V 10,mV " -10 -12.S 100 k o O.S 1.S Settling Time - 2 ~s description The TLE2082 and TLE2082A are high-performance, high-speed, internally-compensated JFET-input dual operational amplifiers built using Texas Instruments complementary bipolar Excalibur process. The TLE2082A has a lower input offset voltage than the TLE2082. Both are pin-compatible upgrades to standard industry products. AVAILABLE OPTIONS PACKAGE TA VIO max AT 2S"C O°C to 70°C -40°C to 85°C - 55°C to 125°C 4mV 7mV 4mV 7mV 4mV 7mV SMALLOUTUNE (D) TlE2082ACD TLE2082CD TLE2082AID TLE2082ID TLE2082AMD TLE2082MD CHIP CARRIER (FK) CERAMIC PLASTIC DIP ----- ----- TlE2082AMFK TlE2082MFK TlE2082AMJG TlE2082MJG DIP (P) TlE2082ACP TlE2082CP TlE2082AIP TlE20821P TlE2082AMP TLE2082MP (JG) CHIP FORM (V) TLE2082Y D packages are available taped-and-reeled. Add "R" suffix 10 device type (e.g .. TlE2082ACDR). Chips are tested alTA = 25°C. PRODUCTION DATA Information is current as of publicalion date. Products conform to specifications pe rthe terms atTnas Instruments standard warranty. Production processing does not necessarily include testing 01 all parameters. TEXAS ~ IN5rRUMENlS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 Copyright © 1991. Texas Instruments Incorporated On produciscompliantto Mll-STD·883, all parameters are tested unless otherwise noted. On all other products, processing does not necessarily include testing of parameters. 2-1147 TlE2082, TlE2082A, TlE2082Y EXCALIBUR HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS description (continued) The design features a 30-V/JlS minimum slew rate, which results in a high-power bandwidth. Settling time to 0.1 % of a 1O-V step (1 kO 11 OO-pF load) is approximately 400 ns. Gain-bandwidth product is typically 10 MHz with an 8-MHz minimum. As such, the TLE2082 and TLE2082A offer significant speed and noise advantages at a low 1.5-mA typical supply current per channel. The input current characteristics traditionally associated with JFET-input amplifiers have been maintained. Input offset voltage is graded to a 4-mV maximum. Typically, temperature coefficient of input offset voltage is 2.4 'tlV/oC and typical CMRR and kSVR are 98 dB and 99 dB, respectively. Device performance is relatively independent of supply voltage over the wide ±2.25-V to ±22-V range. The input common-mode voltage range extends from the positive supply down to VCC- + 4 V without significant degradation to dynamic performance. Maximum peak output voltage swing is from VCC+ -1 Vto VCC- + 1 V under light current loading conditions. The output is capable of sourcing and sinking currents internally limited to at least 30 mA and can sustain shorts to either supply. Care must be taken to ensure that maximum power dissipation is not exceeded for long durations. Both the TLE2082 and TLE2082A are available in a wide variety of packages, including both the industrystandard 8-pin small-outline version and chip form for high density system applications. The C-suffix devices are characterized for operation from O°C to 70°C, the I-suffix over the -40°C to 85°C range, and the M-suffix over the full military temperature range of -55°C to 125°C. D, JG, OR P PACKAGE (TOP VIEW) 10UT liN 1 IN + Vcc- FK PACKAGE (TOP VIEW) U 3 6 Vcc+ 20UT 21N- 4 5 21N+ 2 8 7 ~ + 000 So z~z::>z 3 NC liN - 2 1 20 19 4 18 NC 5 20UT NC 6 17 16 1 IN + 7 15 2 IN- NC 8 14 NC 910111213 010+0 zoz~z >o '" NC - No internal connection symbol I N + = [ > - OUT IN- TEXAS -II INSTRUMENTS 2-1148 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 NC TlE2082Y EXCALIBUR HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS Chip information These chips, properly assembled, display characteristics similar to the TLE2082. Thermal compression or ultrasonic bonding may be used on the doped aluminumbonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform. BONDING PAD ASSIGNMENTS 11N+ 1 IN- vccCHIP THICKNESS: 15 TYPICAL BONDING PADS: 4 X4 MINIMUM TOLERANCES ARE ±10% ~1~'------------80------------~~~1 ALL DIMENSIONS ARE IN MILS I I TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-1149 ~ '"o ACTUALOEVICE COMPONENTCOUNT equivalent schematic (each channel) Transistors Resistors Diodes Capacitors VCC+ 01 I R2 I l t 57 37 5 11 Rl c....m-l ,"">c:rmnm -;-I>N -r-= Z-co -etaN c:c:~ -I:a-l C::J:~ N c:>C)= r-::J:ClCI Ccn N -e-e> mm :am >C g -I 0_ :HZ ~~d ~c:~ b~ i!'1'!'l IN_+~·I ::::! os c r- OUT '"" :a 025 en " ~ 02 I 3: -e C m (I) 09 ~(j}~ :I> :I> ~~J~ ~Z z 02S 01 010 R14 C2 VCe- TLE2082, TLE2082A EXCALIBUR HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, VCC+ (see Note 1) .................................................... 22 V Supply voltage, VCC- (see Note 1) ................................................... -22 V Differential input voltage range (see Note 2) .......... , .......................... VCC+ to VCCInput voltage range, V, (any input) ............................................. VCC+ to VCCInput current, " (each input) ................................ , ........................ ±1 mA Output current, 10 (each output) ..................................................... ±80 mA Total current into VCC+ terminal .................................................... 160 mA Total current out of VCC- terminal ................................................... 160 mA Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... unlimited Continuous total dissipation ........................................ See Dissipation Rating Table Operating free-air temperature range, TA: C-suffix ................................... O°C to 70°C I-suffix ................................. -40°C to 85°C M-suffix ............................... -55°C to 125°C Storage temperature range ................................................... -65°C to 150°C Case temperature for 60 seconds: FK package .......................................... 260°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package ............... 260°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package .................. 300°C NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between vcc+ and VCC- . 2. Differential voltages are at the noninverting input with respect to the inverting input. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE 0 FK JG p TA ~ 2S·C POWER RATING 725mW 1375mW 1050mW 1000mW DERATING FACTOR ABOVE TA =2S·C 5.8 mW/oC 11.0 mW/oC 8.4 mWI"C 8.0mW/oC TA =70·C POWER RATING 464mW 880mW 672mW 640mW TA =8S·C POWER RATING 377mW 715mW 546mW 344mW TA =12S·C POWER RATING 145mW 275mW 210mW 200mW recommended operating conditions Supply voltage, VCC+ Common-mode input voltage, VIC Input voltage range Operating free-air temperature, TA VCC±=±5V VCC+ -±15V VCC+=±5V VCC+=±15V M-SUFFIX C-SUFFIX I-SUFFIX MIN MAX MIN MAX MIN MAX ±2.25 ± 20 ±2.25 ± 20 ± 2.25 ± 20 -1 -1 5 -1 5 5 -11 15 -11 15 -11 15 5 -1 5 -1 5 -1 -11 15 -11 15 -11 15 -40 125 0 70 85 -55 UNIT V V V °C TEXAS ." INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-1151 TlE2082C, TlE2082AC EXCAlIBUR HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, PARAMETER VIO Input offset voltage aVIO Temperature coefficient of input offset voltage 110 Input ollset current liB Input bias current TEST CONDITIONS VIC RS = 0, Vo = 0, = 50 Q VIC = 0, Vo See Figure 4 = 0, TAt Common-mode input voltage range RS =± 5 V TLE2082C TYP MAX MIN MAX 4 5.1 25 2.3 25 100 350 175 850 5 100 350 175 850 0.9 7 8.1 Full range 2.3 25°C Full range 25°C Full range 5 = 50 Q 15 5 to -1 5 to -0.9 3.8 25°C Full range 3.7 3.7 25°C Full range 3.6 1.5 25°C Full range 1.5 -3.8 25°C Full range -3.7 25°C -3.7 Full range -3.6 -1.5 25°C Full range -1.5 85 25°C 84 Full range 5 to -1.9 VOM+ Maximum positive peak output voltage swing = -200 JJ.A 10 = -2 mA 10 = -20 mA 10 = 200 VOM- Maximum negative peak output voltage swing JJ.A 10 = 2mA 10 = 20mA RL = 600 Q AVO Large-signal differential voltage amplification VO=±2.3 V RL = 2 kQ RL=10kQ I"j Input resistance ci Input capacitance Zo Open-loop output impedance Common-mode rejection ratio CMRR Supply-voltage rejection ratio kSVR VIC = a VIC = 0, Common mode See Figure 5 Differential f = 1 MHz VIC = VICR min, Vo = 0, RS = 50Q VCC± = ±5Vto±15V, VO=O, RS = 50Q ICC (dVCC +1t.v10) Supply current (both channels) ax Crosstalk attenuation VIC = 0, RL = 2 kQ lOS Short-circuit output current Vo = 0, No load 25°C Full range 25°C Full range 25°C 25°C 25°C 25°C 25°C Full range 25°C Full range 25°C Vo = a TEXAS 15 3.9 2.3 -4.2 -3.7 -3.7 -3.6 -1.5 -1.5 85 84 -4.1 -2.4 91 5 to -1.9 91 95 94 106 2.9 25°C 25°C ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 3.4 82 80 2.7 dB Q 10 12 11 2.5 80 89 pF Q dB 99 2.9 3.4 120 -35 45 V -2.4 106 99 pA V -4.1 100 80 2.7 pA -4.2 90 89 70 68 JJ.V!°C 2.3 100 70 68 82 mV V 3.9 90 10 1.2 11 2.5 80 89 UNIT 4.1 89 95 94 tFull range is O°C to 70°C. 2-1152 4.1 Full range VID = 1 V VID = -1 V MIN 5 to -1 5 to -0.9 3.8 3.7 3.7 3.6 1.5 1.5 -3.8 Full range 10 TLE2082AC TYP 0.65 25°C Full range 25°C VICR vcc± dB 3.4 mA 3.4 120 -35 45 dB mA TlE2082C, TlE2082AC EXCALIBUR HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, V cc± TEST CONDITIONS PARAMETER SR + Positive slew rate RL ~ 2 kQ, CL ~ 100 pF, SR- Negative slew rate See Figure 1 2~V Step, RL 1 kJ:l, 25'C Equivalent input noise f ~ 10 Hz f ~ 10 kHz f ~ equivalent See Figure 3 input noise voltage Equivalent input noise current f ~ 0.1 Hz to VIC ~ 0, f ~ 10 kHz Total harmonic distortion VO(PP) ~ 5 V, AVO ~ 10, THO + N plus noise f ~ 1 kHz, RL ~ 2 kQ, RS ~ 25 Q B1 Unity gain bandwidth 4>m CL ~ ~ 10 mV, RL ~ 2kn, 25 pF, See Figure 2 bandwidth VO(PP) ~ 4 V, AVO ~ -1, RL ~ 2 kQ, CL ~ 25 pF Phase margin at unity VI ~ 10 mV, RL ~ 2kQ, gain CL Maximum BOM VI tFull range is output~swing ~ 38 V/flS 0.25 0.25 0.4 0.4 85 85 13 13 6 6 0.6 0.6 25'C 2.8 2.8 25'C 0.013% 0.013% 25'C 9.4 9.4 MHz 25'C 2.8 2.8 MHz 25'C 56' 56' fls 25'C 25'C 25 pF, See Figure 2 nV/'I'HZ flV 10 Hz In V/fls 23 10 Hz to 10 kHz UNIT 35 38 23 To 1 mV RS ~ 20Q, Vn(PP) TLE2082AC MIN TYP MAX 25'C voltage Peak~to~peak MAX 23 23 To 10mV ~ CL ~ 100 pF Vn TYP 35 25'C Full range Full range AVO ~ -1, Settling time TLE2082C TAt MIN VO(PP) ~ ± 2.3 V, AVO ~ - 1, = ±5 V fA/'I'HZ onc to 70nC. TEXAS • INSTRUMENTS POST OFFICE BOX 655303· DALLAS, TEXAS 75265 2-1153 TlE2082C, TlE2082AC EXCALIBUR HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Vcc± PARAMETER Via Input offset voltage aVIO Temperature coefficient of input offset voltage 110 Input offset current liB TEST CONDITIONS TAt = ±15 V (unless otherwise noted) TLE2082AC TLE2082C MIN TYP 1.1 MAX 7 8.1 RS = 50Q Full range 2.4 25 2.4 25 25°C Full range 25°C Full range 6 100 350 175 900 6 VIC = 0, Va = 0, See Figure 4 100 350 175 900 20 15 15 to to -11 -11.9 15 Full range to -10.9 25°C 13.8 14.1 Full range 13.7 25°C 13.7 13.9 Full range 13.6 25°C 11.5 12.3 Full range 11.5 25°C -13.8 -14.2 Full range -13.7 RS = 50 Q voltage range 10 = -200}lA VOM+ Maximum positive peak output voltage swing 10 = -2 mA 10 = -20 mA 10 = 200}lA VOM- Maximum negative peak output voltage swing 10 = 2 mA 10 = 20 mA RL = 600Q AVD Large-signal differential voltage amplification VO=±10V RL = 2 kQ RL = 10 kQ q Input resistance ci Input capacitance Zo Open-loop output impedance Common-mode CMRR kSVR rejection ratio Supply-voltage rejection ratio ICC (eN CC + I Ll Via) Supply current (both channels) ax Crosstalk attenuation lOS Short-circuit output current VIC = 0 VIC = 0, Common mode See Figure 5 Differential f = 1 MHz VIC = VICR min, Va = 0, RS = 50 Q VCC± = ±5Vto±15V, Va = 0, RS = 50 Q Va = 0, No load 25°C Full range 25°C Full range 25°C Full range 25°C Full range 25°C Full range 85 84 96 95 94 95 109 10 12 7.5 80 Full range 25°C Full range 25°C 79 82 81 2.7 3.1 -30 30 120 -45 48 25°C TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303· DALLAS. TEXAS 75265 mV }lV/oC pA pA V V dB 94 94 25°C 25°C 25°C 25°C 25°C 25°C UNIT V -13.7 -14 -13.7 -13.6 -11.5 -12.4 -11.5 85 96 84 95 109 94 95 118 118 Q 10 12 7.5 2.5 2.5 80 98 80 99 Full range VIC = 0, RL = 2 kQ VID - 1 V Va = 0 VID = -1 V 20 15 15 to to -11 -11.9 15 to -10.9 13.8 14.1 13.7 13.7 13.9 13.6 11.5 12.3 11.5 -13.8 -14.2 -13.7 -14 -13.6 -11.5 -12.4 -11.5 tFull range is O°C to 70°C. 2-1154 MAX 4 5.1 25°C Full range Input bias current Common-mode input TYP 0.7 VIC = 0, Va = 0, 25°C VICR MIN 3.4 3.4 pF Q 80 98 79 82 81 2.7 3.1 -30 30 120 -45 48 dB 99 dB 3.4 3.4 mA dB mA TLE2082C, TlE2082AC EXCALIBUR HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, Vcc± PARAMETER SR + Positive slew rate SR- Negative slew rate Settling time TAt TEST CONDITIONS VO(PP) = 10 V, AVD = -1, RL = 2 kn, CL = 100 pF, See Figure 1 AVD = -1, To10mV 10-V Step, RL = 1 kn, To 1 mV CL = 100 pF 25°C Full range 25°C Full range 45 27 13.7 6 6 0.6 0.6 25°C 2.8 2.8 25°C 0.008% 0.008% h 10 Hz to 10 kHz f = 0.1 Hz to 10 Hz 25°C 'hn 27 30 97 13.7 RS = 20 £1, Peak-to-peak equivalent See Figure 3 input noise voltage Phase margin at unity gain TYP 40 1.5 Vn(PP) VO(PP) = 20 V, AVD = -1, RL = 2 kn, CL = 25 pF VI = 10 mY, RL = 2 kn, CL = 25 pF, See Figure 2 45 30 27 MIN 30 1.5 25°C BaM 27 TLE2082AC MAX 0.4 f = 10 Hz f=10kHz Maximum output-swing bandwidth TYP 40 0.4 Equivalent input noise voltage Equivalent input noise VIC = 0, f = 10 kHz current Total harmonic distortion VO(PP) = 20 V, AVD = 10, THD + N plus noise f = 1 kHz, RL = 2 kn, RS = 25 £1 VI = 10 mY, RL = 2 kn, Unity-gain bandwidth B1 CL = 25 pF, See Figure 2 TLE2082C MIN 30 25°C Vn In = ± 15 V 97 MAX UNIT V/flS V/fls fls nV/fRZ flY fA/fRZ 25°C 8 10 8 10 MHz 25°C 478 637 478 637 kHz 25°C 57° 57" tFull range is O°C to 70°C. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-1155 TlE20821, TlE2082AI EXCAlIBUR HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Vcc± PARAMETER TEST CONDITIONS TAt = ± 5 V (unless otherwise noted) TLE2082AI TLE20821 MIN 25°C TYP 0.9 MAX 7 MIN TYP 0.65 MAX 4 VIO Input offset voltage VIC = 0, Vo = 0,. Full range (lVIO Temperature coefficient of input offset voltage RS = 50 n, Full range 2.4 25 2.4 25 5 100 5 VIC = 0, Vo = 0, See Figure 4 25°C Full range 25°C Full range 15 950 175 15 100 950 175 2 110 liB Input offset current Input bias current 8.5 2 5 to -1 5 Full range to -D.8 25°C 3.8 Full range 3.7 25°C 3.7 Full range 3.6 25°C 1.5 Full range 1.5 25°C -3.8 Full range -3.7 25°C -3.7 Full range -3.6 25°C -1.5 Full range -1.5 25°C VICR Common-mode input voltage range RS = 50n 10 = -200 j.lA VOM+ Maximum positive peak output voltage swing 10 = -2 mA 10 = -20 mA 10 = 200 j.lA VOM- Maximum negative peak output voltage swing 10 = 2 mA 10 = 20 mA RL = 600n AVD Large-signal differential voltage amplification VO=±2.3V RL = 2 kn RL = 10 kn r; Input resistance ci Input capacitance zo Open-loop output impedance Common-mode CMRR ax rejection ratio Supply-voltage rejection ratio (t.VCC+lt.VIO) Supply current (both channels) Crosstalk attenuation lOS Short-circuit output current kSVR ICC 25°C Full range 25°C Full range 25°C Full range VIC = 0 25°C VIC - 0, Common mode 25°C See Figure 5 Differential 25°C f = 1 MHz 25°C VIC = VICR min, Vo = 0, RS = 50 n VCC± = ±5Vto±15V, Vo = 0, RS = 50 n Vo = 0, No load VIC = 0, RL = 2 kn Vo = 0 VID = 1 V VID = -1 V 25°C Full range 25°C Full range 25°C Full range 25°C 85 84 90 89 95 94 5 to -1.9 5 to -1 70 68 82 80 2.7 25°C TEXAS . " INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 to -1.9 4.1 3.8 3.7 3.7 3.6 1.5 1.5 -3.8 3.9 2.3 -4.2 -3.7 -3.7 -3.6 -1.5 -1.5 85 -4.1 -2.4 91 84 90 89 95 94 100 106 2.5 80 89 70 99 2.9 120 -35 45 3.4 3.4 68 82 80 2.7 mV IlVl o C pA pA nA V 5 to -0.8 10 12 11 tFull range is - 40°C to 85°C. 2-1158 5.5 UNIT 4.1 3.9 V 2.3 -4.2 -4.1 V -2.4 91 100 dB 106 10 12 11 2.5 80 89 n pF n dB 99 2.9 120 -35 45 dB 3.4 3.4 mA dB mA TlE20821, TlE2082AI EXCAlIBUR HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, V cc± SR+ SR- Vn Vn(PP} MIN Negative slew rate VO(PP} ~ ± 2.3 V, AVO ~ - 1, RL ~ 2 kn, CL ~ 100 pF, See Figure 1 To 10mV Settling time AVD ~ -1, 2-V Step, RL ~ 1 kn, CL ~ 100 pF To 1 mV Positive slew rate TLE20821 TAt TEST CONDITIONS PARAMETER 25°C Full range TYP 35 TLE2082AI MAX MIN TYP 35 22 22 25°C Full range = ±5 V UNIT V/!Ls 38 38 V/!Ls 22 22 MAX 0.25 0.25 0.4 0.4 85 13 85 6 6 0.6 0.6 25°C 2.8 2.8 25°C 0.013% 0.013% VI ~ 10mV, RL ~ 2kn, CL ~ 25 pF, See Figure 2 25°C 9.4 9.4 MHz VO(PP} ~ 4 V, AVD ~ -1, RL ~ 2 kn, CL ~ 25 pF 25°C 2.8 2.8 MHz 25°C 56° 56° 25°C ~ 10 Hz Equivalent input noise f voltage f~10kHz RS ~ 20n, Peak-to-peak equivalent See Figure 3 f~10Hzto input noise voltage f ~ 10 kHz 0.1 Hz to 25°C 13 25°C !Ls nV/{Hz !LV 10 Hz Equivalent input noise VIC ~ 0, f ~ 10 kHz current Total harmonic distortion VO(PP} ~ 5 V, AVD ~ 10, THD + N plus noise f ~ 1 kHz, RL ~ 2 kn, RS In Bl Unity-gain bandwidth BOM bandwidth Phase margin at unity VI gain CL Maximum output-swing .pm ~ ~ 10 mV, RL ~ 2 kn, 25 pF, See Figure 2 ~ 25 n fA/{Hz tFull range is - 40°C to 85°C. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-1157 TlE20821, TlE2082AI EXCALIBUR HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Vcc± PARAMETER Via Input offset voltage Temperature coefficient of aVIO 110 liB TEST CONDITIONS Input offset current TAt TlE2082AI MIN TYP MAX 25°C 1.1 7 8.5 0.7 2.4 25 6 100 950 175 2.5 VIC = 0, Va = 0, Full range RS = 50 n, Full range input offset voltage Input bias current 25°C VICR Common-mode input voltage range RS = 50n Full range 10 = -200 VOM+ Maximum positive peak output voltage swing VOM- Maximum negative peak output voltage swing 25°C Full range JlA 10 = -2 mA 25°C Full range 10 = -20 mA 25°C Full range 25°C Full range 10 = 200 JlA 10 = 2mA 25°C Full range 10 = 20 mA 25°C Full range 25°C Full range RL '" 600 n Large-signal differential voltage amplification VO=±10V RL = 2 kn r' Input resistance ci Input capacitance 25°C Full range VIC = 0 25°C VIC = 0, Common mode 25°C See Figure 5 Differential 25°C Zo Open-loop output impedance Common-mode rejection ratio AVO 25°C Full range RL = 10 kn CMRR kSVR ICC ax lOS Supply-voltage rejection ratio (,:\VCC+/,:\VIO) Supply current (both channels) Crosstalk attenuation Short-circuit output current , 25°C Full range 25°C Full range VIC = 0, Va = 0, See Figure 4 f = 1 MHz VIC = VICR min, Va = 0, RS = 50n VCC± = ±5Vto±15V, VO=O, Ra = 50n Va = 0, No load VIC = 0, RL = 2 kn VID - 1 V Va = 0 VID = -1 V 25°C 25°C Full range 25°C Full range 25°C Full range 20 15 to -11 15 to -10.8 13.8 13.7 13.7 13.6 11.5 11.5 -13.8 -13.7 -13.7 -13.6 -11.5 -11.5 85 83 95 94 15 to -11.9 95 94 118 80 79 82 80 2.7 25°C 25°C -30 30 tFull range is - 40°C to 85°C. TEXAS ~ INSTRUMENTS 2-1158 = ±15 V (unless otherwise noted) TlE20S21 MIN TYP MAX POST OFFICE BOX 655303' OALLAS. TEXAS 75265 -10.8 13.8 13.7 13.7 13.6 11.5 11.5 -13.8 -13.7 -13.7 -13.6 -11.5 -11.5 85 83 14.1 13.9 12.3 -14.2 -14 -12.4 96 109 95 94 95 94 10 12 7.5 2.5 80 98 120 -45 48 2.4 25 /lV/oC 6 100 950 175 2.5 pA nA 15 to -11.9 80 79 3.4 3.4 82 80 2.7 -30 30 pA V 14.1 13.9 V 12.3 -14.2 -14 V -12.4 96 109 dB 118 1012 7.5 99 3.1 mV 20 15 to -11 15 to UNIT 4 5.5 n pF 2.5 80 98 n dB 99 3.1 dB 3.4 3.4 mA 120 dB -45 48 mA TLE20821, TLE2082AI EXCALIBUR HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, Vcc± = ± 15 V PARAMETER SR+ SR- Positive slew rate Negative slew rate Settling time Vn Vn(PP) TEST CONDITIONS VO(PP) = 10V,AVD = -1, RL = 2 kn, CL = 100 pF, See Figure 1 AVO = -1, To 10mV 10-V Step, RL = 1 kn, To 1 mV CL = 100 pF Equivalent input noise voltage RS = 20 n, Peak-to-peak equivalent See Figure 3 input noise voltage f = 10 Hz f=10kHz f = 10 Hz to 10 kHz f = 0.1 Hz to 10 Hz Equivalent input noise VIC = 0, f = 10 kHz current Total harmonic distortion VO(PP) = 20 V, AVO = 10, THO + N plus noise f = 1 kHz, RL = 2 kn, RS = 25 n VI = 10 mV, RL = 2 kn, Unity-gain bandwidth Bl CL = 25 pF, See Figure 2 In BaM tPm Maximum output-swing bandwidth Phase margin at unity gain VO(PP) = 20 V, AVO = -1, RI = 2 kn, CL = 25 pF VI = 10 mV, RL = 2 kn, CL = 25 pF, See Figure 2 TLE20821 TAt 25°C Full range 25°C Full range MIN 30 24 TYP 40 30 24 45 TLE2082AI MAX MIN TYP 30 24 30 24 40 UNIT V/flS 45 V/flS 0.4 0.4 1.5 1.5 97 13.7 13.7 6 6 0.6 0.6 25°C 2.8 2.8 25°C 0.008% 0.008% 25°C 25°C MAX 97 25°C fls nV/% flV fA/% 25°C 8 10 8 10 MHz 25°C 478 637 478 637 kHz 25°C 57° 57° tFull range is - 40°C to 85°C. TEXAS ~ INSfRUMENlS POST OFFICE BOX 655303 ' DALLAS. TEXAS 75255 2-1159 . TlE2082M, TlE2082AM EXCAlIBUR HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Vcc± PARAMETER Via Input offset voltage (lVIO Temperature coefficient of input offset voltage 110 Input offset current liB Input bias current TEST CONDITIONS TAt Common-mode input voltage range Maximum positive peak output voltage swing 2.3 VIC = 0, Va = 0, See Figure 4 25°C Full range 25°C Full range 25°C Full range IlA 25°C -3.7 Full range -3.5 -1.5 25°C 10 = 2 mA VO=±2.3V RL = 2 kn RL = 10 kn ° q Input resistance ci Input capacitance zo Open-loop output impedance f = 1 MHz CMRR Common-mode rejection ratio VIC = VICR min, Va = 0, RS = 50n VCC± = ±5Vto±15V, Va = 0, RS = 50 n ICC Supply-voltage rejection ratio (AVCC+/AVIO) Supply current (both channels) ax Crosstalk attenuation VIC = 0, RL = 2 kn kSVR lOS Short-circuit output current VIC = VIC - 0, Common mode See Figure 5 Differential Va = 0, No load Va = a 3.8 3.6 3.7 25°C Full range 3.5 25°C 1.5 Full range 1.4 25°C -3.8 Full range -3.6 10 = -2 mA RL = 600n Large-signal differential voltage amplification 5 to -1 VID = 1 V VID = -1 V Full range -1.4 85 25°C Full range 83 25°C 90 Full range 88 25°C 95 Full range 93 25°C 25°C 25°C 25°C 25°C Full range 25°C Full range 25°C Full range 25°C 25 IlV/oC 5 100 pA 15 15 7.5 175 60 nA pA nA 5 to -1.9 5 to -1 5 to -0.8 3.8 3.6 3.7 4.1 3.9 3.5 1.5 1.4 -3.8 -3.6 -3.7 -3.5 -1.5 2.3 -4.2 -4.1 -2.4 -1.4 85 83 90 88 95 93 91 100 106 99 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 mV 7.5 175 60 82 80 2.7 ~ UNIT 4 6.5 100 89 TEXAS INSTRUMENTS MAX 5 70 68 25°C TYP 0.65 2.3 25 . 5 to -1.9 V 4.1 3.9 V 2.3 -4.2 -4.1 V -2.4 91 100 dB 106 10 12 11 1012 11 2.5 80 'On products compliant to MIL-STD-883, Class B, this parameter is not production tested. tFull range is -55°C to 125°C. 2-1160 MIN . 5 Full range to -0.8 10 = 20 mA AVD 7 9.5 Full range 10 = 200 IlA Maximum negative peak output voltage swing 0.9 RS = 50 n, 10 = -20 mA VOM- MAX Full range RS = 50n TLE2082AM TYP VIC = 0, Va = 0, 10 = -200 VOM+ MIN 25°C 25°C VICR = ± 5 V (unless otherwise noted) TLE2082M n pF 2.5 80 70 n 89 dB 68 2.9 120 -35 45 3.4 3.4 82 80 2.7 99 2.9 120 -35 45 dB 3.4 3.4 mA dB mA TLE2082M, TLE2082AM EXCALIBUR HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, V cc± = PARAMETER TAt Positive slew rate VO(PP) ~ ± 2.3 V, AVO ~ - 1, RL ~ 2 k.n, CL ~ 100 pF, SR- Negative slew rate See Figure 1 Settling time AVD ~ -1, 2-V Step, RL ~ 1 kn, CL ~ 100 pF Vn(PP) 35 20 38 25°C 20 38 20 MAX UNIT V/fis V/fis 0.4 OA 85 85 13 13 6 6 0.6 0.6 25°C 2.8 2.8 25°C 0.013% 0.013% 25°C 9A' 9.4' MHz VO(PP) - 4 V, AVO = -1, RL ~ 2 kn, CL = 25 pF 25°C 2.8' 2.8' MHz VI = 10 mV, RL = 2 kn, CL ~ 25 pF, See Figure 2 25°C 56° 56° fis To 1 mV f~10kHz RS ~ 20n, Peak-to-peak equivalent See Figure 3 f = 10 Hz to 10 kHz input noise voltage f = 0.1 Hz to 10 Hz Phase margin at unity 35 20 TYP 0.25 f ~ 10 Hz gain MIN 0.25 Equivalent input noise VIC = 0, f = 10 kHz current Total harmonic distortion VO(PP) ~ 5 V, AVO = 10, THO + N plus noise f = 1 kHz, RL = 2 kn, RS VI = 10 mV, RL = 2 kn, Unity-gain bandwidth Bl CL = 25 pF, See Figure 2 ¢m MAX 25°C Equivalent input noise bandwidth TYP To 10 mV In BOM MIN 25°C Full range Full range voltage Maximum output-swing TLE2082AM TLE2082M TEST CONDITIONS SR+ Vn ±5 V = 25 n 25°C 25°C nV/,!Hz fiV fA/,,!Rz 'On products compliant to MIL-STO-883, Class B, this parameter is not production tested. tFull range is -55°C to 125°C. ~ TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-1161 TLE2082M, TLE2082AM EXCALIBUR HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Vcc± PARAMETER VIO Input offset voltage aVIO Temperature coefficient of input offset voltage 110 Input offset current liB Input bias current TEST CONDITIONS TAt Common-mode input voltage range RS = 50Q, Full range 2.4 25°C Full range 6 25°C Full range 20 RS = 50Q 10 = -200 Maximum positive peak output voltage swing 25°C Full range 25°C Full range JlA 10 = -2 mA 25°C Full range 25°C Full range 25°C Full range 10 = -20 mA 10 = 200 VOM- Maximum negative peak output voltage swing JlA 10 = 2 mA 10 = 20 mA RL = 600 Q Large-signal differential AVO VO=±10V RL = 2 kQ voltage amplification RL = 10 kQ r' Input resistance ci Input capacitance ~ .. CMRR kSVR ICC ax lOS ° 25°C Full range 25°C Full range 25°C Full range 25°C Full range Open-loop output impedance Common-mode rejection ratio f = 1 MHz VIC = VICR min, Vo = 0, RS = 50 Q 25°C 25°C 25°C 25°C 25°C Full range Supply-voltage rejection ratio (l1VCC+/l1VIO) Supply current (both channels) Crosstalk attenuation VCC± = ±5Vto±15V, Vo = 0, RS = 50 Q 25°C Full range Short-circuit output current 1.1 Full range Full range VOM+ VIC = VIC - 0, Common mode See Figure 5 Differential Vo = 0, No load VIC = 0, RL = 2 kQ VIO - 1 V Vo = a VIO = -1 V 25°C Full range 25°C 25°C MAX MIN 7 . 25 MAX 0.7 4 6.5 mV 25 ',lV/oC 100 7.5 175 65 pA nA 15 15 to to -11 -11.9 15 to -10.8 13.8 14.1 13.6 13.7 13.9 13.5 12.3 11.5 11.4 -13.8 -14.2 -13.6 -13.7 -14 -13.5 -11.5 -12.4 -11.4 85 96 83 95 109 93 95 83 95 93 95 93 10 12 7.5 2.5 80 98 -30 30 120 -45 48 TEXAS ~ INSTRUMENTS POST OFFICE BOX 688303 • DALLAS, TEXAS 78268 80 78 99 3.1 20 . 3.4 3.4 pA nA 15 to to -11 -11.9 15 to -10.8 13.8 14.1 13.6 13.7 13.9 13.5 11.5 12.3 11.4 -13.8 -14.2 -13.6 -13.7 -14 -13.5 -11.5 -12.4 -11.4 85 96 118 82 80 2.7 6 15 93 80 78 2.4 100 7.5 175 65 UNIT TVP 9.5 • On products compliant to MIL-STO-883, Class B, this parameter is not production tested. tFull range is -55°C to 125°C. 2-1162 TVP VIC = 0, Vo = 0, VIC = 0, Vo = 0, See Figure 4 TLE2082AM TLE2082M MIN 25°C 25°C VICR = ±15 V (unless otherwise noted) V V V 109 dB 118 10 12 7.5 2.5 80 98 82 80 99 2.7 3.1 -30 30 120 -45 48 Q pF Q dB dB 3.4 3.4 mA dB mA TLE2082M, TLE2082AM EXCALIBUR HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, V cc± TEST CONDITIONS PARAMETER SR+ Positive slew rate VO(PP) ~ 10V,AVO ~ -1, RL ~ 2 kn, CL ~ 100 pF, SR- Vn Negative slew rate See Figure 1 Settling time AVO ~ -1, To 10 mV 10-V Step, RL ~ 1 kn, To 1 mV CL ~ 100 pF Equivalent input noise f ~ 10 Hz voltage f ~ 10 kHz f ~ 10 Hz to ~ 10 kHz 0.1 Hz to RS ~ 20 n, Peak-to-peak equivalent See Figure 3 Vn(PP) f input noise voltage TAt TLE2082M MIN TYP 30 25°C Full range 22 25°C 30 Full range 22 In current VIC ~ 0, f ~ 10 kHz Total harmonic distortion VO(PP) - 20 V, AVO - 10, THO + N plus noise f ~ 1 kHz, RL ~ 2 kn, RS ~ 25 n VI ~ 10 mV, RL ~ 2 kn, Unity-gain bandwidth B1 CL ~ 25 pF, See Figure 2 Maximum output-swing BaM --tl--.....--VO >--tl--.....--VO tlnciudes Fixture Capacitance tlnciudes Fixture Capacitance Figure 1. Slew Rate Figure 2. Unity-Gain Bandwidth and Phase Margin Test Circuit TEXAS ~ INSTRUMENTS 2-1164 POST OFFICE BOX 655303' DALLAS. TEXAS 75265 pA V 2.5 No load mV pA V 7.5 = 0, RS = 50 Q UNIT 15 13.8 Common mode Differential VID 100 175 to = ±5Vto±15V,VO = O,RS = 50Q Va 6 20 11.9 Zo kSVR 7 to = 600Q = 2 kQ = 10 kQ Open-loop output impedance f = 1 MHz Common-mode CMRR VIC = VICR min, Va rejection ratio MAX 1.1 -11 =0 Input resistance TYP rnA rnA TlE2082, TlE2082A EXCALIBUR HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS PARAMETER MEASUREMENT INFORMATION 2kil >---Vo >---e--Vo RS Rs Figure 4. Input Bias and Offset Current Test Circuit Figure 3. Noise Voltage Test Circuit IN IN+ -..-----.----1 -+----.-+----1 >---Vo Cic (Common Mode and Differential) Figure 5. Internal Input Capacitance typical values Typical values presented in this data sheet represent the median (50% point) of device parametric performance. input bias and offset current At the picoampere bias current level typical of the TLE2082 and TLE2082A, accurate measurement of the bias becomes difficult. Not only does this measurement require a picoammeter, but test socket leakages can easily exceed the actual device bias currents. To accurately measure these small currents, Texas Instruments uses a two-step process. The socket leakage is measured using picoammeters with bias voltages applied, but with no device in the sockel. The device is then inserted in the socket and a second test is performed that measures both the socket leakage and the device input bias current. The two measurements are then subtracted algebraically to determine the bias current of the device. ~ TEXAS INsrRUMENTS POST OFFICE BOX 655303· DALLAS. TEXAS 75265 2-1165 TLE2082, TLE2082A EXCALIBUR HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS t/:ible of graphs TYPICAL CHARACTERISTICS FIGURE# via aVIO Input offset voltage Distribution Temperature coefficient of input offset voltage Distribution 110 Input offset current vs Temperature 8,9 Input bias current vs Temperature lIB 8,9 10 VICR VID Common-mode input voltage range vsVCC vs Temperature Differential input voltage vs Output voltage VOM+ Maximum positive peak output voltage vs Output current vs Temperature vs VCC vs Output current 6 7 11 12,13 14 16,17 18 15 Maximum negative peak output voltage vs Temperature VO(PP) Maximum peak-to-peak output voltage swing vs VCC vs Frequency 19 Va Output voltage vs Settling time 20 AVD Differential voltage amplification vs RL vs Temperature 22,23 Zo Output impedance VOM- CMRR Common-mode rejection ratio kSVR Supply-voltage rejection ratio ICC Supply current SR 24 25 vs Frequency 26 vs Temperature 27 vs Frequency 28 vs Temperature 29 vs Supply voltage 30 Vn vs VCC vs Time Slew rate Input-referred noise voltage 21 vs Frequency vs Temperature Short-circuit output current 18 vs Frequency vs Differential input voltage lOS 16,17 31 32,33 34 35 vs Temperature 36 vs Temperature 37,38 vs RL vs Differential input voltage 39 vs Frequency 41 40 vs Noise bandwidth 42 Over a 1O-second time interval 43 Third-octave spectral noise density vs Frequency 44 THD + N Total harmonic distortion plus noise vs Frequency 45,46 B1 Unity-gain bandwidth vs Load capacitance 47 vs Temperature 48 vs VCC vs Load capacitance 50 GBWP Gain bandwidth product Am Gain margin vs Temperature 51 m Phase margin vsVCC vs Load capacitance 52 53 Phase shift vs Frequency 24 Large-signal pulse response, noninverting vs Time 54 Small-signal pulse response ax Crosstalk attenuation vs Time 55 vs Frequency 56 vs Frequency 57 TEXAS ~ INSfRUMENTS 2-1166 49 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TlE2082, TlE2082A EXCALIBUR HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt DISTRIBUTION OF TLE2082 INPUT OFFSET VOLTAGE DISTRIBUTION OF TLE2082 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 20 30 600 Units Tested 18 VCC ±15 V TA 25·C 16 ,·Packalle 310 Amplifiers 27 VCC ±15V TA -55to 24 '·Packalle = = Vcc+ + 0.5 "go . 105 oCt a: I " Q. R~ = 5~Q VCC+ VIC max "f I C> ~ Vcc+ - 0.5 C 104 ~ :::I ~ :; () ~ ~ ~ ]" VCC- + 3.5 103 III OJ ~ r-- -8 iii :; Q. .5 102 ~E VCC- + 3.0 8 Vcc- + 2.5 o E E g! 101 ~ ~ - J. J. ~ I I VIC min r-r--_ - ~ r- - I () 100~~--~--~~--~--~--~~---J o 5 10 15 20 25 30 35 40 45 VCC - Total Supply Voltage (Referred To Vcc-l - V :> Vcc- + 2.0 -75 -55 -35 -15 5 25 45. 65 85 105 125 TA - Free-Air Temperature - °C Figure 10 Figure 11 DIFFERENTIAL INPUT VOLTAGE DIFFERENTIAL INPUT VOLTAGE vs vs OUTPUT VOLTAGE OUTPUT VOLTAGE 400 ~ 400 300 >::L "Cl 200 ;g I I 100 RL= 2kQ "- :; Q. .5 1--, RL= 600 Q g .5 /~ c RL= 10 kQ I / '7 V ~ 1 1 -4 -3 -2 -1 0 2 3 4 5 -' ~ RL= 10 kQ 0 j!!-100 I -400 -5 I RL= 2kQ" Oi VCC± = ±5 V VIC = 0 RS = 50Q I---TA = 25°C 6~0 Q I RL= 600 Q "E I I I I'RL= 2 kQ R = C :> -300 Cl Q. :! f -100 ~ isI -200 200 g" "0 100 > :; RL=10kQ 0 300 ,-- ~V ;r ~ ~-200 c :>-300 -400 -15 RL= 10 kQ I (L= 2kQ / !RL= 600h I· 1 -10 -5 I Vo - Output Voltage - V Figure 12 I Vcc± = ±15V VIC = 0 Rs = 5 0 Q TA = 25°C I o 5 Vo - Output Voltage - V 1 10 Figure 13 toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices, TEXAS 2-1168 ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 TlE2082, TlE2082A EXCAlIBUR HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE > 15 & 13.5 ~ .E! (5 > :; ..... 12 , MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE vs vs OUTPUT CURRENT OUTPUT CURRENT > -15 ................... ~ -13.5 ~ ~ 10.5 ~ ""'f\~ " ~r-.. \ \ o 9 \ 7.5 6 4.5 TA :; ' \ TA = - WC I = 125°C \ I ~ 1\ \ \ \ \ 3 '0 > \ o ~ ! CIl = 25°C .~ I z = 85°C_ TA I 1.5 ::;: o > o VCC± o I = ± 15 V ::;: o -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 10 - Output Current - mA > o VCC± o 5 10 15 tll :; > I 10 14.5 CIl tll ~ 2 10 - 1 14 = > 13.5 r--':Q.5 :; 13 20mA "" = ±5V 10 = 2mA 10 = -2 mA 25 = 85°C I I- vs '5 " ::;: " I- FREE-AIR TEMPERATURE 4 """ t-- FREE-AIR TEMPERATURE Q. CIl Q. TA Figure 15 10 0 I-- vs 5 CIl 20 25°C 1--- \ = 125°C C 10 - Output Current - mA MAXIMUM PEAK OUTPUT VOLTAGE .E! (5 > \\ = ±15 V Figure 14 > ---- I I -1.5 I I TA -9 E "E I \ '\. . . . . ~ -Sr = \ ~ -10.5 ::;: + ~ ......... CIl Q. TA TA -12 = 20 mA = - 20 ,;;:;:--1 11.5 2... 11 ::;: 0 10.5 ~ I = 2 mA 10 - 200 J.lA - 5 -75 -55 -35 -15 5 25 45 65 85 TA - Free·Air Temperature - °c 105 125 - F;:::: -- _.,-- r- VCC± = ±15V 10 -75 -55 -35 -15 5 25 45 65 85 105 125 TA - Free-Air Temperature - °c Figure 16 Figure 17 tDala at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ~ TEXAS INSTRUMENTS POST OFFICE BOX 655303· DALLAS. TEXAS 75265 2-1169 TLE2082, TLE2082A EXCALIBUR HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt MAXIMUM PEAK OUTPUT VOLTAGE vs SUPPLY VOLTAGE > MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY 30 Vcc± = ± 15 V i II> > '" '0 !l > 25 :; o 20 o "'~" :; 0.. :; .e:::J ~ "'0.." "'0..~" E E '" -1 0 ~-+-+---+--'l"'I"""'o;;;:--+--~-+-+-----I :;: I -15~-+-+---+-4-~-~b?~-r-­ :;: ~ -20~-+-+---+-4-~--+--r--P~ . E 10 . :::J \ :;: 1 'ii: o 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 a > 1 i' ~ ~ !lI:!. 5 0.. -25~~-~~-~~-~-~~--L-~ TA = 25°C, 125°C VCC± = ±5V E '." ~ 12 1Ji = -55°C II> :::J RIL 25 oC, 125°C TA 15 U1=1 1 o 100 k IVcc±1 - Supply Voltage - V Figure 18 lilli- J'~ WC t:::! I"""r:~ 1M f - Frequency - Hz 10 M Figure 19 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLI FICATION vs LOAD RESISTANCE OUTPUT VOLTAGE vs SETTLING TIME 12.5 .., 125 III 10 / 10lmv 7.5 > I 5 !l '" '0 2.5 > :; o , 0.. 8 -2.5 \ ... ~ Falling 110\mv -10 -12.5 o VCC± = ±15 V 11)1' > 0.5 1.5 105 ~ / C ~ ::: " 1.1 110 '" oS '0 100 C c V 115 E "mv -7.5 120 C. ~ -5 ~ VCC± = ±15 V RL = 1 kQ CL = 100pFAV = -1 TA = 2 5 ° C - Rising ... I > ~ v'mv II> o I " .2 95 / V 1/ ~Io' VCC± = ±5V ~Ici =10 RS = 50 > < 2 l-'" 90 0.1 Settling Time - Its 10 RL - Load Resistance - kQ Figure 20 Figure 21 tData at high and low temperatures are applicable only within the rated operating lree-air temperature ranges of the various devices. ~ TEXAS INSTRUMENlS 2-1170 Q TA = 25°C POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 100 TlE2082, TlE2082A EXCALIBUR HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE 110 III "0 0 .~ ~ C. E « - 107 = 10kQ IRL c: 104 101 RL -r- = 2 kQ 98 CI> Ol S "0 > 95 ~ 92 l!!CI> 89 E RL ;: Q c «> 86 83 I -- -- "0 117 f - RL = 10 kQ ~ 113 « 109 u C. E I S "0 > 1! 101 Q; 97 Q I 93 ;: I I = ±5V c RL I\. \ I 10 0 ~ ~ C. E « 1! C ~ 80 40 o t-- VCC± « .......... l........ 60· Phase Shift 80· ..... = ±15 V RL = 2kQ C > 40· 20 Q I '""- -2 o t-- CL TA -4 0 / "-l~\ = 100 pF = 25·C I I 10 100 1k 10 k 100 k 1 M 100· ~ \' 140· CI> .."&1! .:: .E ::: :E ... Ul 0- ..,. / c: AV = 100 V / / / V 0- :; f=AV = 10 0:; 0.1 / V / / 0 0 N 0.01 f-- AV ~ 1 / VCC± - ±15 V TA = 2 5 · C - 160· 180· 10 M 100 M / V d I 120· / V 10 yGain "- 6 :-- 100 20· ~ .§ r-- r-.. CLOSED-LOOP OUTPUT IMPEDANCE vs FREQUENCY o 0-....... 12o ~ Figure 23 Figure 22 "0 r- 89 VCC± VO=±10V! 85 -75 -55 -35 -15 5 25 45 65 85 105 125 TA - Free-Air Temperature - ·C «> SMALL-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY III -- = 600 Q I = ±15 V - I 80 -75 -55 -35 -15 5 25 45 65 85 105 125 TA - Free-Air Temperature - ·C 14 --- 105 C CI> i""- t-- ""--. I RL = 2 kQ CI> Ol VCC± Vo ±2.3V = . ..g r- - --- 121 I c: r- '- -- = 600Q 125 III 0.001 10 f - Frequency - Hz I· 100 1k 10 k 100 k I 1M 10 M f - Frequency - Hz Figure 24 Figure 25 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ~ TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-1171 TLE2082, TLE2082A EXCALIBUR HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt COMMON-MODE REJECTION RATIO vs FREQUENCY FREE-AIR TEMPERATURE 100 III "to 90 1 I 0 .1. 80 _VCC± =±5V '; " II: c 0 70 '0; 60 '7.,3 ., 100 I III _'" Vcc± = J 5 V - "'" , 0 C 40 E E 30 0 II: II: 10 ::;; ~ '0; () o 10 100 ., 88 ~ "to 85 0 ::;; C 0 E E 82 79 0 () 76 II: II: ::;; VIC = VICR min Vo 0 I RS = 50n = 73 () 10k 100k f - Frequency - Hz 1M 1k 70 -75 -55 -35 -15 5 25 45 65 85 TA - Free-Air Temperature _·C 10 M Figure 26 SUPPLY-VOLTAGE REJECTION RATIO vs vs FREQUENCY FREE-AIR TEMPERATURE 120 120 III .2 '; II: C 0 ·u., '0; ., II: 80 ----- ~ 60 > ~ Q. a. en" 20 r-- 1 .2 '; I ~ t.VCC± = ±5 V to ±15 V vIC = 0 Vo = 0 0 II: Rs = 50 n > en TA = 25·C I -20 10 100 1k r-- "'" 10 k " 1M 102 ~ 96 ., Ol 90 >,., 0 84 Q. 78 '0; II: "r-... 100 k kSVR+ 108 c .2 ~ 1\\ f - Frequency - Hz 114 II: " "\ I 40 "to " kSVR- Ol S "0 III "-~SVR+ "to 100 105 125 Figure 27 SUPPLY-VOLTAGE REJECTION RATIO 1 = ±15 V VCC±=±5V II: VIC = 0 Vo = 0 RS = 50 n TA = 25·C 20 VCC± 94 II: ~ ~ () 97 c .91 ..2 ::;; 0 1 '; ,~ 50 "to .2 ~ II: "to COMMON-MODE REJECTION RATIO vs a. en" \ "'" 10 M ~ kSVR- V 72 I- VIC = 0 II: > en Y 66 r-- Vo = 0 RS = son 60 -75 -55 -35 -15 5 25 45 65 85 105 125 ;rA - Free-Air Temperature - ·C Figure 29 Figure 28 toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS . " 2-1172 INSTRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 TlE2082, TlE2082A EXCALIBUR HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt SUPPLY CURRENT 4 SUPPLY CURRENT vs vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE 3.5 =0 Vo = 0 VIC 3.8 VIC 3.4 No Load 3.6 oCt E I C ~ :::J 0 >- Ii ":::J tJ) I 0 3.4 3.2 .l.--r- .....-I--- 3 TA ., - 2.8 2.6 9 - = 125°C TA TA oCt E C ~ ~ 0 = 25°C I >Ii ":::J en = -55°C I 0 9 2.4 2.2 2 3.3 =0 = Vo 0 No Load 3.2 ./ 3 2.9 2.8 2.7 / o 2.5 5 7.5 2.5 -75 -55 -35 -15 10 12.5 15 17.5 20 22.5 25 12 6 =5 V =0 .1 = +4.5 V TA = 25°C /'" oCt E I II C ~ ~ = = 0 VIC 25°C 20 _ TA Open Loop No Load / ....- I 15 0 >Ii ":::J 10 tJ) I 4 0 9 - 5 2 -0.5 105 125 _I. VCC± = ±15 V 9 o 85 vs No Load tJ) 65 DIFFERENTIAL INPUT VOLTAGE 10 - Open Loop 8 45 SUPPLY CURRENT 25 C 25 DIFFERENTIAL INPUT VOLTAGE Vcc + _ VCC _ oCt 5 vs VIC 0 = i' :-- Figure 31 14 I I ±5 V TA - Free·Air Temperature - °C SUPPLY CURRENT >Ii ":::J I VCC± 2.6 Figure 30 ~ ~ 0 V ........-r. --.. I. '/ ~ IVcc±1 - Supply Voltage - V E ...., VCC± = ±15 V 3.1 -0.25 o 0.25 VID - Differential Input Voltage - V o 0.5 -1.5 Figure 32 -0.5 o 0.5 VID - Differential Input Voltage - V -1 1.5 Figure 33 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENlS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-1173 TlE2082, TlE2082A EXCALIBUR HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt SHORT-CIRCUIT OUTPUT CURRENT SHORT-CIRCUIT OUTPUT CURRENT 60 vs vs SUPPLY VOLTAGE TIME 50 =0 TA = 25~ Vo 48 .. a: '.." iii VID =1 V .........: I-- Vo VC'i.±~ ~J VCC± = ±15V_ 39 I 37 a: en 1 I I =0 41 ~ ~ -16 180 Figure 35 SHORT-CIRCUIT OUTPUT CURRENT c ~V=1 VCC± = ±15 V i i 1 VO± = ± 10 V (10% - 90%) CL = 100 pF z V / ~ -1 .. '5 > .. Rising Edge j 150 ~AV= 20 v"'~ I I II E C a; > ':; .. FallingE~ .......... -50 0.1 """'" = -1 4 VID - Input Differential Voltage - V 75 1\ i\ 45 30 c 15 10 I III TA = 25°C 60 &if > AV - 1 0.4 90 I = ±15 V VIC = 0 RS = 20 Q 120 In '0 Q. AV VCC± as 105 :; ............. IIIIIIII 135 01 TA = 25°C -40 100k INPUT-REFERRED NOISE VOLTAGE SPECTRAL DENSITY DIFFERENTIAL INPUT VOLTAGE 30 10 10k vs 40 11111 I Figure 39 SLEW RATE 50 = 25°C RL - Load Resistance - Q Figure 38 ... TA 1,\ Falling Edge -50 100 1k TA - Free-Air Temperature - °c ~ Vc C± = ±15V Va± = ±10V I I I VCC± = ±5V Va± = ±2.5 V - "- .... o 10 Figure 40 100 10k 1k f - Frequency - Hz 100k Figure 41 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 2-1175 TLE2082, TLE2082A EXCALIBUR HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS INPUT-REFERRED NOISE VOLTAGE INPUT-REFERRED NOISE VOLTAGE OVER A 10-SECOND TIME INTERVAL vs NOISE BANDWIDTH 1.2 ...---r--..-----,--..-----,--..-----,--..-----,----, VCC± ±15 V f = 0.1 1010Hz ~ 0.9 TA = 25°C +--+-+--+-+--+-+--1 100 >:s. .. > .. 10 CI B = VCC± = ±15 V VIC = 0 RS = 20n TA = 25°C t ;g '0 '0 Z V ..... 10- ~ .! z 0.31--+-+--+-+--+-+--+.--+--1---1 ~ RMS::: .. 0.61----+-+-'-+-+-'-+-+-'-+-+--+--1 ~ '0 1/ pop ~ a: ~ -; -= Q. 1 0.1 -= I -0.31----+-+-'-+-+-'-+-+-'-+-+--+-+1 >'" >'" - 0.6 L-...J..--.,....L.-...J.._.L.-...J.._.L.-...J.._.L.-...J...----J o . 2 3 4 5 6 7 8 9 10 0.01 10 1 100 1k 10k 100k f - Frequency - Hz I - Time - s Figure 43 Figure 42 TOTAL HARMONIC DISTORTION PLUS NOISE THIRD-OCTAVE SPECTRAL NOISE DENSITY vs vs FREQUENCY FREQUENCY -75 ;P. Slarl Frequency: 12.5 Hz -80 _ SlOp Frequency: 20 kHz ./ VCC± = ±15 V VIC = 0 -85 - TA = 25°C III -90 "tI !. -95 ....n..r' ~ '0 Z_100 -105 ..r-U .r~ .. '0 z + / 0.1 7ii i5 .!:! 0 ~ ~ = _111111111 111111111 AV = 10, RL = 600n .. ::t: AV = 100, RL = 600n AV = 100, RL = 2 kn '" ~ 0.01 III 1111. AV = 10, RL = 2 kn lI III + C ::t: -115 10 I- 15 20 25 30 35 40 45 0.001 10 100 1k f - Frequency - Hz Frequency Bands Figure 45 Figure 44 TEXAS ~ INsrRUMENTS 2-1176 ~/ ....... VCC± =±5V Vo = 5Vpp TA = 25°C I I Filter: 10Hz to 500 kHz Band Pa ss Z -110 _ ... '0" .~ POST OFFICE BOX 655303' DALLAS. TEXAS 75265 10k 100k TlE2082, TlE2082A EXCALIBUR HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt UNITY GAIN BANDWIDTH TOTAL HARMONIC DISTORTION PLUS NOISE vs vs FREQUENCY LOAD CAPACITANCE 13 "#. .. III '0 N :x: Z " ,S! 0,1 t: AV ~ = 100, RL = V .c / ..,'i ." V Oi Cl 600 Q is I 11111111 0 ':0" I I11II = 100, RL = 2 kQ = 10, RL = 600 Q AV = 10, RL = 2 kQ AV AV 0 E :x: 0,01 ~ l- :x: 0,001 10 100 11 III 10 ::- '" 9 rlJ 8 = ::l = Z + c 'D " VCC± - ±15 V Vo 20Vpp TA = 25·C I I Filter: 10 Hz 10 500 kHz Band Pass I I- 12 ::;; + I 1k 10 k , - Frequency - Hz 7 100 k VCC± ±15 V VIC = 0 VO=oRL = 2 kQ TA = 25·C o 40 60 80 20 CL - Load Capacitance - pF Figure 46 100 Figure 47 GAIN-BANDWIDTH PRODUCT GAIN-BANDWIDTH PRODUCT vs vs FREE-AIR TEMPERATURE SUPPLY VOLTAGE 13 = ~OO k~Z VIC = 0 Vo = 0 RL = 2 kQ CL = 100 pF _ 13 I, N 12 :x: ::;; ..,U 11 :l E ~ .c 10 'D ..,'i .." III '-... ~ . . . . . . . 'r--... ......... VCC± = 9 ±5~ , I:: '; Cl 8 "-, ..,U 11 ---- 2 ~ ±15V- .c 10 'D l,.--" ..,'i ........................ ........... 12 ::;; :l I=I I .........VCC± N :x: r---. ." III ~ ,= 9 I:: '; Cl 1'- 7 -75 -55 -35 -15 5 25 45 65 85 105 125 TA - Free-Air Temperature - ·C - = = Vo 0 RL 2 kQ _ CL = 100 pF TA = 25·C 8 7 100kHz VIC = 0 o 5 10 15 20 25 (VCC ± ( - Supply Voltage - V Figure 49 Figure 48 tOata al high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices, TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 ' DALLAS, TEXAS 75265 2-1177 TLE2082, TLE2082A EXCALIBUR HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt PHASE MARGIN GAIN MARGIN vs vs LOAD CAPACITANCE TEMPERATURE 90· 10 80· 8 70· ..,Ie ---- - I .c 6 .. ~ :;; .;c c . . .~ :;; /!) .c ~ ....E VCC± =±1SV E 2 r- 20· Vo = 0 RL = 2 kQ I 20 40 60 80 CL - Load Capacitance - pF 100 /!) ~ I.l VCC± = ±SV- CL= 100 pF 5 25 45 65 PHASE MARGIN PHASE MARGIN vs vs SUPPLY VOLTAGE LOAD CAPACITANCE 90· 80· 80· 85 105 125 70· 60· - CL= 2 S p F _ ... 50· 40· c . ... '2' :;; /!) CL = 100 pF .c .... "'"" ~ 60· :::--r--- 50· VCC± = ±Sr;--- 40· ....E 10· 8 12 16 20 o· VIC = 0 r- Vo = 0 r- RL = 2 kQ TA = 2S·C I o IVcc±1 - Supply Voltage - V Figure 52 20 40 60 80 CL - Load Capacitance - pF Figure 53 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ 2-1178 - 1- 20· 10· I-- RL = 2 kQ TA = 2S·C I o· 4 ~t::--- 30· VIC = 0 I- Vo = 0 o VCC± = ±15V _ I 30· 20· I--VIC = 0 Figure 51 90· I ....E VCC± = ±SV Figure 50 II) .c _I • TA - Free-Air Temperature - ·C 70· . :;;;.- ",-.1 10· I-- Vo = 0 RL = 2 kQ I I o -75 -55 -35 -15 TA = 2S·C o o .~ ~ 30· I 1 1 VCC± = ±15V 40· I VIC = 0 II> 5 ~ TA = -55·C Ol TA = -55·C II> / g Ol g "0 > :; Q. :; "0 > 0 I -5 0 > I VCC± = ±15 V AV = 1 RL = 2 kn CL = 100 pF I I 2 3 t - Time - I1s o 0 o I I -10 -15 :; Q. :; TA = 25·C" I 125.C 0 A. 50 ~ -50 \ VCC±=±15V AV = -1 RL = 2 kn CL = 100 pF TA = 25·C -100 4 o 5 0.4 A v 0.8 1.2 1.6 t - Time - I1s Figure 54 Figure 55 SMALL-SIGNAL RESPONSE CROSSTALK ATTENUATION vs vs FREQUENCY FREQUENCY ,...--"'T'"--,---,--,-T"T"T'T"I--'T"""-r-r"'T'"r-T"n'1 80· 140 III "t> I I: III 100· .2 OJ I: ::: .2 100 :c II> en OJ:::J g 3l <1 « ~ I ~ 0.. E 120 "t> I---t-~...-t-+'\H--Nf--+--+-+-t-++t-H 120· Ol ;g " .::. Q. 140· :! E 1!! ~ is I .... I: $ 80 I~ ~ :g .. 2 60 tl VCC± = ±15 V >< til I 40 o «> '--_-'---L--L....J....-U..J...J...J_--'-..J..L......J.,,LJ,......LJ..J....L,..u..J 4 10 I - Frequency - MHz 40 100 180. VIC = 0 RL = 2 kn TA = 25·C 20 10 100 1k 10 k 100 k I - Frequency - Hz Figure 56 Figure 57 tData at high and low temperatures are applicable only within the rated operating Iree-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-1179 TlE2082, TlE2082A EXCAlIBUR HIGH-SPEED JFET-INPUT DUAL OPERATIONAL AMPLIFIERS APPLICATION INFORMATION macromodel information Macromodel information provided was derived using PSpice™ Parts™ model generation software. The Boyle macromodel (see Note 4) and subcircuit in Figure 58 were generated using the TLE2082 typical electrical and operating characteristics at TA = 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): • • • • • • Maximum positive output voltage swing Maximum negative output voltage swing Slew rate Quiescent power dissipation Input bias current Open-loop voltage amplification • • • • • • Unity gain frequency Common-mode rejection ratio Phase margin dc output resistance ac output resistance Short-circuit output current limit NOTE 4: G. R. Boyle. B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers", IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). 99 3 + EGND DIN ,-----14--.92 RP VIN 2 + IN - -+-t--+---~-t--' IN+ -++-+-----:-:-f__--j-------' VCC_~~__----4~-~~-f__.-~+_---------------. VE .SUBCKT TLE2082 1 2 3 4 5 C1 11 12 2.2E-12 C2 6 7 10.00E-12 DC 5 53 DX DE 54 5 DX DLP 90 91 DX DLN 92 90 DX DP 4 3 DX EGND 99 0 POLY (2) (3,0) (4,0) 0 .5 .5 FB 7 99 POLY(5) VB VC VE VLP VLN 0 + 5.607E6 -6E6 6E6 6E6 -6E6 GA 6 o 11 12 333.0E-6 GeM 0 6 10 99 7.436E-9 ISS 3 10 DC 400.0E-6 HLIM 90 o VLIM 1K J1 11 2 10 JX J2 12 1 10 JX BETA=554.5E-6 Figure 58. Boyle Macromodel and Subcircuit PSpice and Parts are trademarks of MicroSim Corporation. Macromodels. simulation modals, or oth.r models provided by n. directly or Indirectly. are not warranted byTI as fully repl'8senting all aftha :::~~C~J~~~~pnr~~~:t~;:~j~~~~~c:!~~:~:r~hs~ 2-1180 TEXAS ~ IN5rRUMENlS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TlE2141, TlE2141A, TlE2141Y EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS 03652, NOVEMBER 1990- REVISED FEBRUARY 1991 available features • • Low V,O .•. 500 I.lV Max at 25°C Single or Split Supply '" 4 V to 44 V • Fast Settling Time •.. 340 ns to 0.1% 400 ns to 0.01% 20-mA Min Short Circuit Output Current • Saturation Recovery ... 150 ns • 30-V/I.lS Min Slew Rate • • High Gain-Bandwidth Product ... 5.9 MHz Large Output Swing ... VCC- + 0.1 V toVCC+-1V • Low Noise: 10 Hz .•. 15 nVNHz 1 kHz ... 10.5 nVl-.fHz • 10,000-pF Load Capability • SLEW RATE EQUIVALENT INPUT NOISE VOLTAGE vs vs LOAD CAPACITANCE FREQUENCY 50 250 ~> \ 40 . > 30 CD ~ a: iii = CD Dl I/O ~ = VCC± ±15V RS loon I/O 1\ 20 I '0 Z :; 1\ Co .5 E CD SR-' a: If) OJ 1\1' ·s>o:r 10 o ~~~:= =~5111I TA w I' I c > 25°C 0.01 0 0.1 CL - Load Capacitance - nF 10 1 10 1k 100 10 k f - Frequency - Hz description The TLE2141 and TLE2141 A are high-performance, internally compensated operational amplifiers built using Texas Instruments complementary bipolar Excalibur process. The TLE2141 A is a tighter offset voltage grade of the TLE2141. Both are pin-compatible upgrades to standard industry products. AVAILABLE OPTIONS PACKAGE VIOmax AT 25·C SMALL· OUTLINE (D) CHIP CARRIER (FK) CERAMIC DIP (JG) PLASTIC DIP (P) 500/J-V 900/J.V TLE2141ACD -40°C to 105°C 500/J-V 900/J-V TLE2141AID ----- ---- TLE2141ACP 70°C TA O°Cto TLE2141CD TLE2141CP TLE2141AIP TLE21411P TLE21411D --55°C to 500/J-V TLE2141AMD TLE2141AMFK TLE2141AMJG TLE2141AMP 125°C TLE2141MD 900/J-V TLE2141MFK TLE2141MJG TLE2141MP D packages are available taped-and-reeled. Add "R" suffix to deVice type, (e.g., TLE2141ACDR). PRODUCTION DATA documents contain Information current I ' of pUblication date. Produetsconform to .pacificationl p.rthetermlol T8xaslnslrum,nts standard warranty. Production processing dOB' not naclISlarlly Include testing of all parametel'S. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 CHIP FORM (V) TLE2141V Copyright © 1991, Texas Instruments Incorporated On products compliant to Mll-STD~883. Clas. B, all parameters ;:d~~i~~ p~~!~~~l~~h:o,:~s~tnn~~:'sa~l~ '~~'uaJ:~srl~gd~i~ii parameters. 2-1181 TlE2141, TlE2141A, TlE2141Y EXCAUBUR lOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS description (continued) The design incorporates a patent-pending input stage that simultaneously achieves low audio band noise of 10.5 nV/1R"Z with a 10-Hz 111 comer and symmetrical 40-V/J.1s slew rate typically with loads up to 800 pF. The resulting low distortion and high power-bandwidth are important in hi-Ii audio applications. A fast settling time of 340 ns to 0.1 % of a 1 O-V step with. a 2-kn /1 OO-pF load is useful in fast actuator/positioning drivers. Under similar test conditions, settling time to 0.01% is 400 ns. The devices are stable with capacitive loads up to 10 nF, although the 6 MHz bandwidth decreases to 1.8 MHz at this high loading level. As such, the TLE2141 and TLE2141A are useful for low droop sample-and-holds and direct buffering of long cables, including 4-20 mA current loops. The special design also exhibits an improved insensitivity to inherent IC component mismatches. as is evidenced by a 500-J.1V maximum offset voltage and 1.7-J.1V/oC typical drift. Minimum common-mode rejection ratio and supply-voltage rejection ratio are 85 dB and 90 dB, respectively. Device performance is relatively independent of supply voltage over the ±2-V to ±22-V range. Inputs can operate between VCC- -0.3 V to VCC + -1.8 V without inducing phase reversal, although excessive input current may flow out of each input exceeding the lower common-mode input range. The all NPN output stage provides a nearly rail-to-rail output swing of VCC_+0.1 V to VCC+-1 V under light current loading conditions. The device can sustain shorts to either supply since output current is internally limited, but care must be taken to ensure that maximum package power dissipation is not exceeded. Both versions can also be used as comparators. Differential inputs of VCC± can be maintained without damage to the device. Open-loop propagation delay with TTL supply levels is typically 200 ns. This gives a good indication as to output stage saturation recovery when the device is over-driven beyond the limits of recommended output swing. Both the TLE2141 and TLE2141A are available in a wide variety of packages, including both the industrystandard 8-pin small-outline version and chip form for high-density system applications. The C-suffix devices are characterized for operation from O°C to 70°C, the I-suffix from -40°C to 105°C, and the M-suffix over the full military temperature range of -55°C to 125°C. TEXAS ~ INSfRUMENTS 2-1182 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TlE2141, TlE2141A, TlE2141Y EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS D, JG, OR P PACKAGE FK PACKAGE (TOP VIEW) (TOP VIEW) 0_000 zzzzz OFFSET N1 u B NC IN- 2 7 VCC+ IN + 3 6 OUT VCC _ 4 3 OFFSET N2 5 2 1 20 19 NC 4 18 NC IN- S 17 7 15 VCC + NC OUT NC 16 IN + NC symbol OFFSETN1 14 8 910111213 o ION 0 ZOZZZ 0 IN+ OUT > IN- NC - No internal connection OFFSET N2 chip information These chips, properly assembled, display characteristics similar to the TLE2141, (see electrical table on page 18). Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform. VCC+ (7) BONDING PAD ASSIGNMENTS OFFSET N1 (1) IN +(3) OUT (6) IN - (2) OFFSET N2 (5) VCC-(4) 64 CHIP THICKNESS: 15 TYPICAL BONDING PADS: 4X4 MINIMUM TJ max =150°C TOLERANCES ARE ±10% I ... 65 I I I ... TEXAS ALL DIMENSIONS ARE IN MILS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 2-1183 ~ ~ ""Cm ..... mnm :IJ>N -r- ..... en--,=," Vcc+ R:l R4 -CCl ..... Oc:~ R14 R7 R18 0- =HZ ~~ ~~~~ ~c IN- ~-Q 01 )04 or 03 Q" IN+ Q~~ ~ 04 R15 ob- /j; .... O~;.1 1-"025 r...: (' R10 07".:}0.- OFFSETN2 C3 "F=C1 ~ OFFSETN1 '" Y03 7 t-... :r R5 C2 C4~ ~19 018 024 0 l(017 020 02~33 020 R11 R12 VCC- ",,035 06W-J 032 07 ... 05 - ""C "T1m -m OUT =M R20 R22 zen >m r-:J: :5::J: ""C' r- en f--(036 R17 :!:iz:;: -0 0- >c; R23 IL 08 R13 016 1t:- ~I 24 1 ~034 t- I ~w..t t-... R16 ~~ ~lTl ~z J-"; 030 02~ I ~,~ ~ 06 I 022'"'-1 ~11L:°2 -< m:e ..... R21 OO~~08~ 0~36J "&l z:IJ ..... Or-r""CO~ :IJ,-'='" R19 ~c en TLE2141, TLE2141A EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, VCC+ (see Note 1) .................................................... 22 V Supply voltage, VCC- .............................................................. -22 V Differential input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ±44 V Input voltage range, VI (any input) ...................................... VCC+ to VCC- - 0.3 V Input current, II (each input) ......................................................... ±1 rnA Output current, 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ±80 rnA Total current into VCC+ terminal ................................................... " 80 rnA Total current out of VCC- terminal .................................................... 80 rnA Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... unlimited Continuous total dissipation ........................................ See Dissipation Rating Table Operating free-air temperature range, T A: C-suffix ................................... O°C to 70°C I-suffix ................................ -40°C to 105°C M-suffix ............................... -55°C to 125°C Storage temperature range ................................................... -65°C to 150°C Case temperature for 60 seconds: FK package .......................................... 260°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package ............... 260°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG or L package .............. 300°C NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC-. 2. Differential voltages are at the noninverting inputwith respect to the inverting input. Excessive currentwill flow if input is brought below VCC_-0.3 V. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TA:52SoC DERATING FACTOR POWER RATING = = = = TA 10SoC POWER RATING TA 70°C POWER RATING TA 12SOC POWER RATING D 725mW ABOVE T A 2SOC 5.8 mW/oC 145 mW 1375mW 11.0 mW/oC 464mW 880mW 261 mW FK 495mW 275mW JG 1050mW 8.4 mW/oC 672mW 378mW 210mW L P 650mW 5.2 mw/oe 416mW 234mW 130mW 1000mW 8.0 mW/oC 640mW 360mW 200mW recommended operating conditions C·SUFFIX Supply voltage, Vce + Cd' IVcc = 5V ommon-mo e Input voltage, VIC /' VCC+ = ±15 V Operating free-air temperature, TA I·SUFFIX M·SUFFIX MIN MAX MIN MAX MIN MAX ±2 + 22 +2 ± 22 2.9 0 2.7 ±2 0 ± 22 0 -15 12.9 -15 12.7 -15 12.7 0 70 - 40 105 -55 125 2.7 UNIT V V °C TEXAS ~ INSfRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 2-1185 TlE2141C, TlE2141AC EXCAlIBUR lOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Vee PARAMETER VIO TEST CONDITIONS Input offset voltage Temperature coefficient of aVIO 110 liB input offset voltage Input offset current Vo = 2.5V. RS = 50Q. TAt TLE2141C MIN TYP MAX 25°C Full range 225 Full range 1.7 25°C Full range VICR voltage range High-level output voltage 10H =-1.5 mA 10H =-15 mA VOL AVD Low-level output voltage Large-signal differential voltage amplification 1000 1300 1.7 100 8 -0.8 150 -2 -0.8 to to to 3.2 3 3.2 Full range 3 0 to 3.9 Full range 3.B 25°C 3.B Full range 3.7 25°C 3.2 Full range 3.2 ~ 2.9 4.1 3.9 4.1 3.8 4 3.B 4 V 3.7 3.7 3.2 3.7 3.2 25°C Full range 75 125 75 125 10L = 1.5 mA 25°C Full range 150 150 225 250 150 150 225 250 IOL=15mA 25°C Full range 1.2 1.6 1.2 1.6 1.7 50 25 nA V 0 to 10L= 150~ 25°C VCC = ±2.5 V, RL = 2 kQ, Full range Vo = lVto-l.5V ~V -0.3 to 25°C -2 -2.1 0 UNIT ~V/oC 100 150 -0.3 2.9 VOH 200 25°C RS = 50Q 10H =-150~ MAX -2.1 0 Common-mode input 1400 TYP 8 Full range Input bias current TLE2141AC MIN 1700 25°C VIC = 2.5 V = 5 V(unless otherwise noted) 1.7 50 220 220 mV V V/mV 25 q Input resistance 25°C 70 70 ci Input capacitance 25°C 2.5 2.5 MQ pF zo Open-loop output impedance f = 1 MHz 25°C 30 Q Common-mode VIC = VICR min, CMRR rejection ratio RS = 50Q Supply-voltage rejection ratio VCC± = ±2.5Vto±15V, kSVR (t.VCC +1 t.VIO) RS = 50Q Vo = 2.5V, No load, Supply current ICC VIC = 2.5 V 25°C Full range 25°C Full range 30 85 80 90 85 25°C Full range TEXAS ~ INSfRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 118 dB 80 106 90 85 tFull range IS O°C to 70°C. 2-1186 118 106 dB 85 3.4 4.4 4.6 3.4 4.4 4.6 mA TlE2141C, TlE2141AC EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, PARAMETER SR+ SR- Positive slew rate Negative slew rate AVO =-1, CL = 500 pF Settling time AVO = -1, 2.5-V Step Equivalent input noise Vn voltage Peak-to-peak equivalent VN(PP) input noise voltage Equivalent input noise In current Total harmonic distortion THO + N plus noise Bl BaM tl>m TEST CONDITIONS RL = 2 kOT, I ToO.l% I To 0.01% RS = 1000, I = 10 Hz RS = 100 Q, I = 1 kHz f = 0.1 Hz to 1 Hz f = 0.1 Hz to 10Hz f = 10 Hz f = 1 kHz Vee =5 V TLE2141AC TLE2141C TA MIN TYP 45 25°C 25°C 25°C 25°C 25°C MAX MIN TYP 45 42 42 0.16 0.22 15 10.5 0.48 0.16 0.22 15 10.5 0.48 0.51 1.92 0.5 0.51 1.92 0.5 MAX UNIT V/~s ~s nVlv'Hz ~V pA/v'Hz Va = 1 V to 3 V, RL = 2 kQT, f=10kHz 25°C Unity-gain bandwidth RL = 2 kot, CL = 100 pF 25°C 5.9 5.9 MHz Gain-bandwidth product RL = 2 koT, CL = 100 pF, 1= 100 kHz 25°C 5.8 5.8 MHz 25°C 6.6 6.6 MHz 25°C 57° 57" Maximum output-swing bandwidth Phase margin at unitygain AVO = 2, RL = 2 kOT, VO(PP) = 2 V, AVO = 1, CL = 100pF RL = 2 kQt, CL = 100pF 0.0052 % 0.0052 % tRL terminates at 2.5 V. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303· DALLAS. TEXAS 75265 2-1187 TLE2141C, TLE2141AC EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Vcc± = PARAMETER VIO TEST CONDITIONS 25°C Full range Input offset voltage Temperature coefficient 01 ir!put offset voltage VIC = 0, RS = son, 110 Input offset current Vo = 0 liB Input bias current aVIO - TAt VICR 1.7 25°C Full range 25°C Full range 7 RS = son Full range 25°C Full range 10 = -150 I1A Maximum positive peak VOM+ output voltage swing 25°C Full range 25°C Full range 10=-1.5 rnA 10=-15mA VOM- AVO tj ci Maximum negative peak output voltage swing Large-signal differential voltage amplification Input resistance Input capacitance Open-loop output impedance Common-mode CMRR rejection ratio Supply-voltage rejection ratio kSVR (AVCC+/ AVIO) Zo lOS Short-circuit output current ICC Supply current 10 = 150 I1A 25°C Full range 10= 1.5mA 25°C Full range 10=15mA 25°C Full range Vo = ±10V 25°C Full range 1 = 1 MHz 25°C VIC = VICR min, Full range RS = 50n 25°C VCC± = ±2.5Vto±15V, Full range RS = son Vo = 0 Vo = 0, -0.7 I VID I VIO = 1V 25°C = -1 V No load 80 90 85 -25 20 - 1.5 - 1.6 -0.7 150 -1.5 -1.6 -15 -15.3 to to 13 13.2 -15 -15.3 to to 12.9 13.1 13.8 14.1 25°C Full range TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303· DALLAS. TEXAS 75265 106 4.5 4.7 nA I1A V V VlmV 65 2.5 30 108 Mn pF n dB 106 -50 31 3.5 I1V V 13.7 14 13.7 13.6 13.1 13.7 13 -14.7 -14.9 -14.6 -14.5 -14.8 -14.4 -13.4 -13.8 -13.3 100 450 75 85 80 90 85 -25 20 UNIT Jl.V/oC 100 30 108 -50 31 3.5 500 800 7 65 2.5 85 MAX 100 150 13.8 14.1 13.7 13.7 14 13.6 13.7 13.1 13 -14.7 -14.9 -14.6 -14.5 -14.8 -14.4 -13.4 -13.8 -13.3 100 450 75 tFull range is DoC to 700 e. 2-1188 TYP 175 1.7 -15 -15.3 to to 13 13.2 -15 -15.3 to to 12.9 13.1 25°C 25°C 25°C RL = 2kn TLE2141AC MIN 1300 Full range 25°C Common-mode input voltage range ±15 V (unless otherwise noted) TLE2141C MIN TYP MAX 900 200 dB rnA 4.5 4.7 rnA TlE2141C, TlE2141AC EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, Vcc± TEST CONDITIONS PARAMETER SR+ SR- Positive slew rate Negative slew rate Settling time Equivalent input noise Vn voltage Peak-to-peak equivalent VN(PP) input noise voltage Equivalent input noise In current Total harmonic distortion THO + N plus noise Bl BOM AVO = -1, 10-V Step RL = 2kn, IToO.l% I To 0.01% = lOOn, I = 10 Hz RS = lOOn, I = 1 kHz I = 0.1 Hz to 1 Hz RS = 0.1 Hz to 10Hz = 10 Hz I = 1 kHz VO(PP) = 20 V, RL = 2 kn, I = 10kHz AVO = 10, I I Unity-gain bandwidth RL = 2kn, CL = 100pF Gain-bandwidth product RL = 2kn, I = 100 kHz CL = 100 pF, Maximum output-swing bandwidth VO(PP) = 20 V, RL = 2 kn, eL = 100pF AVD = 1, Phase margin at unity m \ 40 c = 1000 I ~ \SR+ > 0 > 30 G> ~ IX: -az 1\ 1\ 3: In I IX: In RS G> Dl ~ .!l = ±15V VCC± 20 SR-' 'SCt. .5 i ~I\ iii > '5 10 o ~~~=~ =~5111I TA IT w I' I c > 25°C 0.01 0 0.1 10 10 1 CL - Load Capacitance - nF 100 1k 10 k f - Frequency - Hz description The TLE2142 and TLE2142A are high-performance internally compensated operational amplifiers built using Texas Instruments complementary bipolar Excalibur process. The TLE2142A is a tighter offset voltage grade of the TLE2142. Both are pin-compatible upgrades to standard industry products. AVAILABLE OPTIONS PACKAGE VIO max AT 25°C SMALL· OUTLINE (D) CHIP CARRIER (FK) CERAMIC DIP (JG) METAL CAN (L) PLASTIC DIP (P) O°C to 750 flV TLE2142ACD -- 1200 l1V TLE2142CD - 40°C to 750 flV TLE2142AID --- 105°C 1200 l1V TLE21421D -- ----- ----- TLE2142ACP 70°C - 55°C to 750 flV TLE2142AMD TLE2142AMFK TLE2142AMJG TLE2142AML TLE2142AMP 125°C 1200 l1V TLE2142MD TLE2142MFK TLE2142MJG TLE2142ML TLE2142MP Add 'R" suffix to device type, (e.g., TLE2142ACDR). TA CHIP FORM (V) TLE2142CP TLE2142AIP TLE21421P TLE2142Y o packages are aVailable taped and reeled. PRODUCTION DATA documents contain information currlnt II of publication data. Products conform to .pecifications pe, the terml of Tllxallnstruments standard warranty. Produc;tion proc... lng dOl. not necessarily Include testing 01 an parameteJl. TEXAS ~ IN5rRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 Copyright © 1990 , Texas Ins trumen Is Incorporated On products compliant to MIL-STO-883. Class B. all paramatel'$ are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters. 2-1199 TlE2142, TlE2142A, TlE2142Y EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS description (continued) The design incorporates a patent-pending input stage that simultaneously achieves low audio band noise of 10.5 nV/VHZ with a 6-Hz 1/f corner and symmetricaI40-V/lls slew rate typically with loads up to 800 pF. The resulting low distortion and high power-bandwidth are important in hi-fi audio applications. A fast settling time of 340 ns to 0.1 % of a 10-V step with a 2-kn/100-pF load is useful in fast actuator/positioning drivers. Under similar test conditions, settling time to 0.01% is 400 ns. The devices are stable with capacitive loads up to 10 nF, although the 6-MHz bandwidth decreases to 1.8 MHz at this high loading level. As such, the TLE2142 and TLE2142A are useful for low droop sample-and-holds and direct buffering of long cables, including 4 rnA to 20 rnA current loops. The special design also exhibits an improved insensitivity to inherent IC component mismatches as is evidenced by a 750-IlV maximum offset voltage and1.7-IlV/oC typical drift. Minimum common-mode rejection ratio and supplyvoltage rejection ratio are 85 dB and 90 dB, respectively. Device performance is relatively independent of supply voltage over the ±2-V to ±22-V range. Inputs can operate between VCC_-0.3 V to VCC+-1.8 V without inducing phase reversal, although excessive input current may flow out of each input exceeding the lower common-mode input range. The all-NPN output stage provides a nearly railto-rail output swing of VCC_+0.1 V to VCC+-1 V under light current loading conditions. The device can sustain shorts to either supply since output current is internally limited, but care must be taken to ensure that maximum package power dissipation is not exceeded. Both versions can also be used as comparators. Differential inputs of VCC± can be maintained without damage to the device. Open-loop propagation delay with TTL supply levels is typically 200 ns. This gives a good indication as to output stage saturation recovery when the device is over-driven beyond the limits of recommended output swing. Both the TLE2142 and TLE2142A are available in a wide variety of packages, including both the industry-standard 8-pin small-outline version and chip form for high-density system applications. The C-suffix devices are characterized for operation from O°C to 70°C, the I-suffix from -40°C to 105°C, and the M-suffix over the full military temperature range of -55°C to 125°C. TEXAS ~ INSTRUMENTS 2-1200 POST OFFICE BOX 655303' DALLAS. TEXAS 75265 TlE2142, TlE2142A, TlE2142Y EXCAlIBUR lOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS D, JG, OR P PACKAGE (TOP VIEW) I OUT I IN I IN + VCC- US 2 7 3 6 4 5 21N + a OUT :::l a aa a a 2 1 20 19 z~z>z 3 NC IINNC IIN+ NC IN+=[> + f- VCC+ 2 OUT 2 IN- symbol IN- FK PACKAGE (TOP VIEW) 4 18 5 17 6 16 7 15 8 14 NC 20UT NC 21NNC 9 1011 1213 - ala+a zazz a > Z N NC - No internal connection chip information These chips, properly assembled, display characteristics similar to the TLE2142, (see electrical table on page 18). Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform. BONDING PAD ASSIGNMENTS v (8) VCC+ (3)IIN+ (2) liN - IOUT(I) - (5) 21N + t > - + 2 OUT (7) (6)2IN - (4) VCC- CHIP THICKNESS: 15 TYPICAL BONDING PADS: 4X4MINIMUM TOLERANCES ARE ±10% ALL DIMENSIONS ARE IN MILS ~ TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-1201 l ""Cm-l mnm n>N :::e>:e; ...... r-,~ R1,l R4 R14 R7 Z ~d ~~ z ~~Q INQ1 )Q4 Q6 R19 Q2~ I -r f.¥ I ":~ Q11~ ~ 03 04 "8 t--..Q30 Q2~ ~ R15 r ~ ,7 '" Q3 ~ Q~ I ~~C1 Q~~ $R10 y::: R5 Q12 "Q25 C3 fC2 C4~Q24 ~19 Q18 ~Q36 OUT R12 Vcc- Q35 07 U d 3 2 y::Q17 R11 ~31 06 Q29~33 Q20 ~I 05 >""C ""CO R17 Q28T OC; Z:J: >, r-C'I) 3:~ R23 ~ 08 R16 Q16 24 ",Q34 R13 IN+ :::eC'l) m !i:J: ±-- "'02 (j)~ m- R21 a~~a~bJ "~jl R18 OZN ""Co> R20 R22 C '"T1 m :::e C'I) TlE2142, TlE2142A EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, VCC+ (see Note 1) .................................................... 22 V Supply voltage, VCC- .............................................................. -22 V Differential input voltage (see Note 2) .......................................... VCC+ to VCCInput voltage range, VI (any input) ...................................... VCC+ to VCC- - 0.3 V Input current, II (each input) ......................................................... ±1 rnA Output current, 10' ............................................................... ±80 rnA Total current into VCC+ terminal .................................................... 160 rnA Total current out of VCC- terminal ................................................... 160 rnA Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... unlimited Continuous total dissipation ........................................ See Dissipation Rating Table Operating free-air temperature range, TA: C-sulfix ................................... O°C to 70°C I-suffix ................................ -40°C to 105°C M-suffix ............................... -55°C to 125°C Storage temperature range ................................................... -65°C to 150°C Case temperature for 60 seconds: FK package .......................................... 260°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package ............... 260°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG or L package .............. 300°C NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC-. 2. Differential voltages are at the noninverting input with respect to the inverting input. Excessive currentwill flow if input is brought below VCC_-0.3 V. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TA '" 2SoC POWER RATING DERATING FACTOR TA=10SoC POWER RATING TA = 70°C POWER RATING TA=12SoC POWER RATING D FK 725mW ABOVE TA = 2SoC 5.8 mW/oC 145 mW 11.0 mW/oC 464mW 880mW 261 mW 1375mW 495mW 275mW JG 1050mW 8.4 mW/oC 672mW 378 mW 210 mW L p 650mW 5.2 mW/oC 416mW 234 mW 130 mW 1000 mW 8.0 mW/oC 640mW 360mW 200mW recommended operating conditions C-SUFFIX Supply voltage, VCC + IVCC-5V Common-mode input voltage, VIC I' VCC± = 15V Operating free-air temperature, TA I-SUFFIX M-SUFFIX MIN MAX MIN MAX MIN MAX +2 + 22 +2 + 22 +2 ± 22 0 2.9 0 2.7 0 2.7 -15 12.9 -15 12.7 70 -15 -40 12.7 0 105 -55 125 UNIT V V °C TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-1203 TlE2142C, TlE2142AC EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Vee PARAMETER VIO Input offset voltage aVIO Temperature coefficient of input offset voltage 110 Input offset current liB TEST CONDITIONS Vo = 2.5V, RS = 500, VIC = 2.5 V Input bias current TLE2142C MIN TYP MAX TLE2142AC MIN TYP MAX 25°C Full range 220 200 Full range 1.7 25°C Full range 25°C Full range 8 100 8 100 -0.8 150 -2 -2.1 -0.8 150 -2 -2.1 TAt 25°C VICR Common-mode input voltage range RS = 500 Full range VOH High-level output voltage 10H = - 150 jlA 25°C Full range 10H =-1.5 rnA 25°C Full range 10H =-15 rnA 25°C Full range 25°C Full range 25°C Low-level output voltage 10L = 1.5mA VOL Full range 25°C IoL = 15 rnA Full range Large-signal differential 25°C VCC = ± 2.5 V, RL = 21<0, AVD voltage amplification Full range Vo = lVto-l.5V q Input resistance 25°C Input capacitance 25°C ci Open-loop output impedance f = 1 MHz 25°C Zo Common-mode 25°C VIC = VICR min, CMRR rejection ratio Full range RS = SOO Supply-voltage rejection ratio VCC± = ±2.5Vto±15V, 25°C kSVR Full range (,,w cc ± UNIO) RS = 50n Vo = 2.5 V, No load, 25°C Supply current ICC Full range VIC = 2.5 V 1900 2200 -0.3 to 0 to -0.3 to 3 0 to 2.9 3.9 3.8 3.8 3.7 3.4 3.4 3.2 3 0 to 2.9 3.9 3.8 3.8 3.7 3.4 3.4 3.2 4.1 4 3.7 75 1SO 1.2 50 25 125 150 225 250 1.4 1.5 t Full range is O°C to 70°C. TEXAS ~ INSfRUMENTS POST OFFICE BOX 655303· DALLAS, TEXAS 75265 106 V 125 150 225 250 1.4 1.5 220 8.8 9.2 V Mn pf 0 118 dB 106 6.6 mV V/mV dB 85 6.6 jlA 3.7 1.2 85 80 90 nA V 70 2.5 30 118 IN fJ.V/ oC 4 lSO 50 25 220 UNIT 4.1 75 70 2.5 30 85 80 90 85 1500 1800 1.7 0 to 10L = 150 fJ.A 2-1204 = 5 V(unless otherwise noted) 8.8 9.2 rnA TLE2142C, TLE2142AC EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, PARAMETER SR+ SR- Positive slew rate Negative slew rate AVO = -1, CL = 500 pF Settling time AVO =-1, 2.5-V Step Equivalent input noise voltage Peak-to'peak equivalent VN(PP) input noise voltage Equivalent input noise In current Total harmonic distortion THO +N plus noise Vn Bl ¢m RL = 2 kQt, IToO.l% I To 0.01% RS = 100Q, f = 10 Hz RS = 100Q, f = 1 kHz f = 0.1 Hz to 1 Hz f = 0.1 Hz to 10Hz f = 10 Hz f = 1 kHz Vo = 1 V to 3 V, RL = 2 kQt, f=10kHz AVO = 2, MIN TYP 45 25°C 42 0.16 0.22 15 10.5 0.48 25°C 25°C 25°C 0.51 1.92 0.5 25°C 25°C 0.0052% TLE2142AC MAX MIN TYP 45 42 0.16 0.22 15 10.5 0.48 0.51 1.92 0.5 MAX UNIT V/fls flS nV/'i'Hz flV pAl'i'Hz 0.0052% 5.9 5.9 MHz 25°C 5.8 5.8 MHz RL = 2 kQt, VO(PP) = 2 V, CL = 100 pF 25°C 6.6 6.6 MHz RL = 2 kQt, 25°C 57° 57° RL = 2 kQt, CL = 100pF Gain-bandwidth product RL = 2 kQt, f=100kHz CL = 100 pF, bandwidth Phase margin at unitygain TLE2142C TA 25°C Unity-gain bandwidth Maximum output-swing BaM TEST CONDITIONS Vee = 5 V AVO = 1, CL = 100pF t Note: RL terminates at 2.5 V. TEXAS "'" INsrRUMENlS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-1205 TLE2142C, TLE2142AC EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, VCC± PARAMETER Via Input offset voltage aVIO Temperature coefficient of input offset voltage 110 lIB Input offset current TEST CONDITIONS VIC = 0, RS = son, Vo = 0 Input bias current TAt Common-mode input voltage range 290 Full range 1.7 25°C Full range 25°C Full range 7 RS = son Full range 25°C Full range 25°C Full range 25°C Full range 25°C Full range 25°C Full range 25°C Full range 25°C Full range 10 = - 150 J.LA VOM+ Maximum positive peak output voltage swing 10=-1.5mA 10=-15mA 10 = 150 J.LA Maximum negative peak VOMoutput voltage swing 10= 1.5mA 10=15mA AVD Large-signal differential voltage amplification Input resistance Input capacitance ci Open-loop output im pedance Zo Common-mode CMRR rejection ratio Supply-voltage rejection ratio kSVR (",VCC +/ ",VIO) fj lOS ICC Short-circuit output current Supply current Vo = ±10V RL = 2kn 25°C 25°C 25°C 25°C Full range f = 1 MHz VIC = VICR min, RS = son 25°C VCC± = ±2.5Vto±15V, Full range Rs = son Va = 0 I VID I VID Va = 0, No load = 1V = -1 V TLE2142C TYP MAX MIN 25°C Full range 25°C VICR 25°C -0.7 25°C Full range TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DA~LAS, TEXAS 75265 MAX 275 750 1200 7 -0.7 -50 31 20 9 9.4 nA J.LA V V V/mV Mn pF n dB 106 dB -50 31 6.9 !lV V -14.5 -14.8 -14.4 -13.4 -13.8 -13.3 100 450 75 65 2.5 30 108 85 80 90 85 -25 UNIT !lV/oC 100 150 -1.5 -1.6 -15 -15.3 to to 13 13.2 -15 -15.3 to to 13.1 12.9 14.1 13.8 13.7 14 13.7 13.6 13.3 13.7 13.2 -14.7 -14.9 -14.6 106 6.9 TYP 1.7 100 150 -1.5 -1.6 13.6 13.7 13.3 13.2 -14.7 -14.9 -14.6 -14.5 -14.8 -14.4 -13.4 -13.8 -13.3 100 450 75 65 2.5 30 108 85 80 90 85 -25 20 TLE2142AC MIN 1200 1600 -15 -15.3 to to 13.2 13 -15 -15.3 to to 12.9 13.1 13.8 14.1 13.7 13.7 14 t Full range is O°C to 70°C. 2-1206 =± 15 V (unless otherwise noted) mA 9 9.4 mA TlE2142C, TlE2142AC EXCAlIBUR lOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, Vcc± PARAMETER SR+ SR- = ± 15 V TLE2142C TEST CONDITIONS TA RL = 2kn, Positive slew rate Negative slew rate AVO = - 1, CL = 500 pF Settling time AVO = -1, 10-V Step Equivalent input noise RS = 100n, voltage Peak-to-peak equivalent RS = 100n, I = 1 kHz I = 0.1 Hz to 1 Hz ITo 0.1% 25°C 25°C MIN 30 30 TYP 45 42 0.34 25°C TLE2142AC MAX MIN 30 30 TYP 45 42 0.34 MAX UNIT V/Jls Jls 0.4 0.4 15 10.5 0.48 15 10.5 0.48 0.51 0.51 25°C 1.89 0.47 1.89 0.47 Vo = 20 VPP, RL = 2 kil, I = 10 kHz 25°C 0.01% 0.01% Unity-gain bandwidth RL = 2kn, CL = 100 pF 25°C 6 6 MHz Gain-bandwidth product RL = 2kn, I = 100kHz CL = 100 pF, 25°C 5.9 5.9 MHz BOM Maximum output-swing bandwidth VO(PP) = 20 V, RL = 2 kn, CL = 100pF AVO = 1, 25°C 668 668 kHz ¢m gain RL = 2 kn, 25°C 58° 58° Vn VN(PP) input noise voltage In Bl I = 0.1 Hz to 10Hz Equivalent input noise I = 10 Hz current I = 1 kHz Total harmonic distortion THO + N plus noise Phase margin at unity ITo 0.01% I = 10 Hz AVO = 10, CL = 100pF 25°C 25°C TEXAS nV/{Hz JlV pA/{Hz ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-1207 TLE21421, TLE2142AI EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS = 5 V(unless otherwise noted) electrical characteristics at specified free-air temperature, Vee PARAMETER TEST CONDITIONS Input offset voltage VIO Temperature coefficient of (tVIO .... 110 liB input offset voltage "---,-.~ Input offset current Vo = 2.5 V, n ns .... '"" = "vu, TAt TLE21421 TYP MAX MIN 25°C Full range 220 Full range 1.7 25°C VIC = 2.5 V 25°C Full range High-level output voltage AVD Large-signal differential voltage amplification 1.7 UNIT flV flV/oC 100 8 100 -0.8 200 -2 -0.8 200 -2 -2.2 -2.2 to to to 3 3.2 3 3.2 Full range 0 to -0.3 to 0 to -0.3 to 2.7 2.9 25°C 4.1 4 2.7 3.9 2.9 3.9 3.8 10H =-15 mA 3.4 3.7 10H = 100 f1A 10H = 1 mA 3.8 3.7 RS = 500 Full range ~oC 10L= 15mA 10L = 100 f1A IOL=1mA 3.8 4.1 4 3.4 3.7 V 3.5 125 75 125 150 225 150 225 1.2 1.4 175 225 1.2 1.4 175 225 1.2 50 f1A V 75 Full range 10L = 10 mA VCC = ± 2.5 V, RL = 2 kil, 25°C Vo = 1 V to -1.5 V Full range nA -0.3 3.8 3.7 3.5 10H = 10mA Low-level output voltage 2000 to 10L = 150 f1A 10L = 1.5mA VOL 1500 0 10H = -150 f1A 10H =-1.5 mA VOH MAX 220 -0.3 25°C voltage range TYP 8 Full range 0 VICR 1900 2400 ~ Input bias current Common-mode input TLE2142AI MIN 1.2 50 220 10 220 mV V mV V V/mV 10 q Input resistance 25°C 70 70 ci Input capacitance 25°C 2.5 2.5 MO pF Zo Open-loop output impedance I = 1 MHz 25°C 30 0 Common-mode VIC = VICR min, RS = 500 25°C CMRR kSVR ICC rejection ratio Supply-voltage rejection ratio (t"v CC ± 1t"v10) Supply current VCC± = ±2.5Vto±15V, RS = 500 Vo = 2.5 V, VlQ = 2.5 V No load 30 85 Full range 80 25°C 90 Full range 85 25°C Full range t Full range is - 40°C to 105°C. TEXAS ~ INSfRUMENlS 2-1208 POST OFFICE BOX 655303· DALLAS. TEXAS 75265 118 85 106 90 118 dB 80 106 dB 85 6.6 8.8 9.2 6.6 8.8 9.2 mA TlE21421, TlE2142AI EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, TEST CONDITIONS PARAMETER SR + SR- Positive slew rate Negative slew rate Settling time Equivalent input noise voltage Peak-to-peak equivalent VN(PP) input noise voltage Equivalent input noise In current Total harmonic distortion THO+ N plus noise Vn Bl BaM II> Cl !! "0 0 .. 'x 0 ;g Co ........ '= -14.2 6 9 12 15 18 VCC± - Supply Voltage - V :;: ~-14.6 I' 21 > RL vs vs OUTPUT CURRENT OUTPUT CURRENT ~ -13.4 01 '5 14.2 o - ~ / = 125°C . . . . 1\ ~ = -55°C . . . . r-. + :;: ~ 13.6 - 0.1 -0.4 -1 -4 = -14 l-14.4 ,-TA E = 25°C ~~ -10 . .5 = 25°C II -14.6 1\/V~ ~ :;: -14.8 I P' I :;: ~ -40 -100 -15 0.1 10 - Output Current - mA = -55°C 'I I---- ::J ~ TA 125°1~ 1ft) ~ -14.2 "iii ....... 1' TA 13.8 TA ~ ~A 14 E ::J E :;: J '[ -13.8 .~ 'x.. = ±15 V ~ -13.6 '5 Co '5 ~ VCC± II> = ±15 V > 14.4 o - I MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE ~ c.. VOM- =100 Figure 6 o -= = 2kQ -15 - 75 - 50 - 25 0 25 50 75 100 125 150 TA - Free-Air Temperature - °C 24 I I I I 11111 ~ . ~ RL MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE VCC± = 2kQ- f - - I Figure 5 II> Cl - 00 ::J -18 > 14.6 RL = E ['-... ........VOM- > 3 -- RL VOM+ ~E -13.8 r-...... .......... o 13.8 ". -12 -24 . ....- 14.2 '5 ~ i'-- -6 14.6 01 VOM+ I :;: II> = ±15 V !! .....V ..... Co :;: V V I /' V VCC± > l,.; L II> E E 15 I 12 ". ::J FREE-AIR TEMPERATURE = 2 kQ TA = 25°C 18 - 6 .. vs SUPPLY VOLTAGE RL > '5 Co '5 0 I MAXIMUM PEAK OUTPUT VOLTAGE vs 0.4 4 10 40 100 10 - Output Current - mA Figure 7 Figure 8 tOala at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 2-1219 TLE2142, TLE2142A EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt MAXIMUM PEAK·TO·PEAK OUTPUT VOLTAGE MAXIMUM PEAK OUTPUT VOLTAGE 12.S vs vs SETTLING TIME FREQUENCY I > > ] O.y 1 / ~ V,..,.. AVO = - 1 10 ... = ± 15 V TA-=-2SoC 7.5 ;g o . /' / ;; S- 2.5 '" o iE -2.5 >< -5 I -7.5 ~ -10 ~ /TA =25°C I~ /TA = 125°C ~ \ I ........ ~'" O.1~ \ 0.01% ""\." TA = -55°C / ,"'" Vi--' ............... 0:- Il. -12.S o 200 300 Settling Time (ns) 100 soo 400 ~ I > 4.2 :; So " 0 1-t 4 vs vs OUTPUT CURRENT OUTPUT CURRENT 1400 > TA = 12SOC = -SsoC r--;.t-I- .2' 3.8 ::r: 0 VCC =5 V ~1000 ;g ........ ......... ~" TA ,IJ = 125°C :; 800 So o" .... Qj 600 ~ 400 ~ ......... I,\ I .J 3.6 3.4 -0.1 ~ 200 \ -1 -10 10 - Output Current - mA -100 o 0.1 Figure 11 ~~ j TA = 2SOC P ~ i"- TA = -55°C 10 10 - Output Current - mA Figure 12 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS 2-1220 10 M I III r-.. niffi ..c: ::r: =5 V =e 1200 fA 4M LOW·LEVEL OUTPUT VOLTAGE r-I-r-, '" 1M 400 k f - Frequency - Hz 100 k HIGH·LEVEL OUTPUT VOLTAGE 4.4 S 0 ~ ~ ... Figure 10 VCC III 0 Figure 9 4.6 > I I \ Falling "E = I I ~, ~ ~ 20 Rising o VCC± = ±1~,~ RL 2 kn ~ \ 25 :; Q. :; .ACo1% 5 30 8J .= POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 100 TlE2142, TlE2142A EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt LARGE·SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION , 140 II:! '0 I \ c o ~ 'a 120 vs vs FREE·AIR TEMPERATURE FREQUENCY 120 RL VCC± = ±15 V Vo = ±10V I I = ""..'" ~ .~ e 110 c 100 '0 I .~ i\. RL = 2kQ ~ CD ~ O· 100 " 80 E 70 ii ""g..'" "'-0... "0 > 1! E ~ 1'\ ~ is I ~ is ~ 80 -75 -50 -25 0 25 50 75 100 125 150 TA - Free·Air Temperature - ·C "" 30 0 -10 10 1 100 1k 10 k 100 k f - Frequency - Hz vs FREQUENCY FREE·AIR TEMPERATURE 160· .... 180· 200· 220· 240· 260· 10 M 60 e:; a VCC± = ±15 V Vo = 0 - r--..... 50 VID = 1 o 'S c.. 'S o 40 '@ 0.11--_~-+--7flL_-+-_"<_- (3 :0 o ~ eli I 0.011--_~__+---_+---+_--___\ 30 I / ~ L -____--'-______...J...._ _ _ _ _ _- ' -_ _ _ _- - ' 10 k .. Co. I SHORT·CIRCUIT OUTPUT CURRENT vs ""E 1k 1M ~ 140· ] Figure 14 100.------.-------r------,---~_, 0.001 120· "- I'... "- VCC± = ±15 V RL = 2kQ CL = 100 pF TA = 25·C 20 100· ~ " AVO"- 40 CLOSED· LOOP OUTPUT IMPEDANCE ~ 80· 50 Figure 13 'S So 60· , ~ 60 C > [\.., Phase Shift 10 C 40· ,~ 90 :E 20· ~"- 0 10kQ '-... .:--- ~ "' " E LARGE·SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT 100 k 1M f - Frequency - Hz 10 M """"- '" ."...,.. VID 1- 1 20 -75 -50 -25 0 25 50 75 100 125 150 TA - Free-Air Temperature - ·C Figure 15 Figure 16 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices, TEXAS ~ INSfRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-1221 TLE2142, TLE2142A EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt COMMON-MODE REJECTION RATIO vs FREQUENCY VC~± = T. .",= .~ I: o 100 ~ 80 :;: 60 .. "8 :5 ~ 'n .*, '" o 40 I ~ 20 .. 112 II: "8 ~o 108 E E <3 104 I II: = VICR min .V 1k 100 k 10 k I--.. . 100 -75 -50 -25 1M ~ 0 140 .. 120 o a:: kSVR+ '1ij 108 \ I: kSVR- "~ 'Qj' II: 80 60 ::I 40 ...... '" 20 > rn ... VCC± TA o 10 c o " l106 ~ ..... 1k 10 k 100 k f - Frequency - Hz \ 1M ............ r--- l! g Q. '" 104 Q.. ::I rn 102 I II: ~ I 100 = ±2,5Vto±15V ~ C) ~\ = 25°C '\ .. \ = ±2.5Vto±15V " a:: ~ Q.. I II: Vcc± I 0 100 125 150 V5 110 g 100 75 FREE-AIR TEMPERATURE ..,CD .g ~ Q. 50 SUPPLY-VOLTAGE REJECTION RATIO 160 I 25 Figure 18 ..,CD rn ~ T A - Free-Air Temperature - °C SUPPLY VOLTAGE REJECTION RATIO vs FREQUENCY C) \ VVCC± = ±15V -- I""'- Figure 17 .. I t--::r--""- V \1 IV f - Frequency - Hz l! "0 I Vee == 5V ~ o 100 II: ---.. a:: :;; o VIC I ~ E E _ 120 ..,CD .2 116 I: <3 __ ?t;;o~ v I -..... II: g ±15 V COMMON-MODE REJECTION RATIO vs FREE-AIR TEMPERATURE 10 M 100 -75 -50 -25 0 25 50 75 100 125 150 TA - Free-Air Temperature - Figure 19 ·c Figure 20 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS 2-1222 POST OFFICE BOX 655303' DALLAS. TEXAS 75265 TlE2142, TlE2142A EXCAlIBUR lOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt SUPPLY CURRENT SUPPLY CURRENT vs vs FREE-AIR TEMPERATURE SUPPLY VOLTAGE 7.4 Vo = 0 No Load oct E I 7.0 ..", I E 6.6 ~ ;; ,., () ii. c. 6.2 I " I~ II) I () 9 V V VCC± = :l:1V 5.8 ~ V ~ y V 8 V V J oct -- 7 E E ~ TA = 25°C ;; VCC± = ±2.5 V ,., () - TA = )25 0C I 6 ii. c. TA = -55°C "I II) () 5 9 I Vo = 0 No Load 4 5.4 -75 -50 -25 0 25 50 75 100 125 150 TA - Free-Air Temperature - °C o 4 8 12 20 16 24 iVcc± I - Supply Voltage - V Figure 21 Figure 22 EQUIVALENT INPUT NOISE VOLTAGE EQUIVALENT INPUT NOISE VOLTAGE OVER A 10-SECOND PERIOD vs FREQUENCY 250 750r---~~--~~----r-----r---~ ~> Vcc± = ±15 V f = 0.1 to 10 Hz 500 TA 250C --l---l---l--~ Vcc± = ±15V Rs=100n c = I CI) >c 01 l! "0 I > 250r---r---r---r---r.r-~ CI) 01 CI) II) l! '0 ~ z ;; CI) II) c. .5 '0 z E '5 -250 CI) c. .5 iii > ·sIT f---l---'--l---l---l--~ -500r----r---r---r---r--~ W I c > 0 -750~----~----~----~----~--~ 1 10 100 1k f - Frequency - Hz o 10 k 2 4 6 8 10 t - Time - s Figure 23 Figure 24 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-1223 TlE2142, TlE2142A EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt NOISE CURRENT vs FREQUENCY TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY :.!! ° 8 = Vo 20V(PP) ± 15 Y vCC± TA 25°C ..,'" ·0 z = + c ~ .~ I .le a.. = 0.1 C C ~ :::I ·cu0 E Ay RL .. U '" 1k 10 k f - Frequency - Hz Figure 25 60 .:; 100 Hz INSTRUMENTS POST OFFICE BOX 655303· DALLAS. TEXAS 75265 10 TlE2142, TlE2142A EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt NONINVERTING LARGE·SIGNAL PULSE RESPONSE 15 INVERTING LARGE·SIGNAL PULSE RESPONSE 15 I J TA = ,1~SoC 10 > ~ '" ~ > :; 0 ~AI= 0 > VCC± = ±lS V AVO = 1 RL = 2 kQ CL = 300 pF -10 -15 0 VJ fA/I 12SOC 0 TA = -55°C -5 I I -S ~ 25°C -10 1 4 ~I= vcc± = ±lS V AVO = - 1 RL = 2 kQ CL = 300 pF ; ; = 112S0C 2 3 t - Time - Ils ~/ 0 :; Co :; Co TA = -SSOC TA = 12S0C '" g "0 0 :; ~ TA = -SSOC 5 4> TA = -SSOC 0 > '-rA > '7bA = 2S0C 5 4> TA = 2S0C 10 2SoC -15 0 S 2 3 t - Time - IlS Figure 29 5 4 Figure 30 UNITY·GAIN BANDWIDTH vs SMALL SIGNAL PULSE RESPONSE LOAD CAPACITANCE 100 7 ~ = 1_15~lbl vcc± = ±15 V RL = 2 kQ T =e ... L IVv 50 :I: .c ;; 'i 4> '" ".. .l! ~ :; 50 ::> ~A = 2SoC 'I I l l l 5 TA = 12SoC ~ I: o OJ 4 "\ I: 'iii C1 o I ~- 6 ::;; VCC± = ± lS V AVO = - 1 RL = 2 kQ CL = 300 pF TA = 2SoC SO - 100 o b . 1\ '" 3 rJj 2 ~ ;:) "~ 1 800 400 t - Time - ns 1200 1400 10 100 1000 CL - Load Capacitance - pF 10000 Figure 32 Figure 31 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices, TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-1225 TLE2142, TLE2142A' EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt PHASE MARGIN GAIN MARGIN vs vs LOAD CAPACITANCE LOAD CAPACITANCE 70 I III~~~±== ±lsvlllll I I IIIII AVO =60 1 RL = 2 kn to 00 1111 V = -10Vtol0V III ~ I In 2' 0 ~ SO c 40 c .~ os ::;; c ::;; "E' - ;- TA -- ~ ... TA = - SSOCI J.l 11111 TA = 2S0C ~ = 12S~ ~~ \1" as ...In I\. 30 as '0; .c CI ~ [l. I 20 ~ ~~.... :::;; .... 10 2S0C 10 100' 1000 = ±lS V = 2 kQ 111111 VCC± O~~~~~~~L-~I~~ 10000 o RL 10 CL - Load Capacitance - pF 100 1000 CL - Load Capacitance - pF Figure 33 Figure 34 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices, TEXAS • INSTRUMENTS 2-1226 POST OFFICE BOX 655303' DALLAS, TEXAS 75265 10000 TlE2144, TlE2144A, TlE2144Y EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION QUAD OPERATIONAL AMPLIFIERS D3964, NOVEMBER 1991 available features • Low Noise: 10 Hz ... 15 nVNHz 1 kHz ... 10.5 nVl-{Hz • 10,000-pF Load Capability • 20-mA Min Short-Circuit Output Current • 30-V/f.1S Min Slew Rate • High Gain-Bandwidth Product ... 5.9 MHz • Low VIO ... 1.5 mV Max at 25°C • Single or Split Supply ... 4 V to 44 V • Fast Settling Time ... 340 ns to 0.1% 400 ns to 0.01% • Saturation Recovery 150 ns • Large Output Swing VCC- + 0.1 V to VCC+ -1 V SLEW RATE EQUIVALENT INPUT NOISE VOLTAGE vs vs LOAD CAPACITANCE FREQUENCY 50 \ 40 ., :::I. :> \SR+ . 30 iii 20 \ i\,,\ !! r:r:: ;:: ., SR-\ r:r:: en 10 = ±15 = II = I vCC± o ACL -1 TA 25°C 0.01 0.1 10 f - Frequency - Hz CL - Load Capacitance - nF description The TLE2144 and TLE2144A are high-performance internally compensated operational amplifiers built using the Texas Instruments complementary bipolar Excalibur process. The TLE2144A is a tighter offset voltage grade of the TLE2144. Both are pin-compatible upgrades to standard industry products, AVAILABLE OPTIONS PACKAGE TA VIOmax AT 25°C O°C to 1.5mV 70°C 2.4mV - 40°C to 1.5mV 105°C 2.4mV -55°C to 1.5 mV SMALLOUTLINE (OW) TLE2144COW TLE214410W - CHIP CARRIER (FK) CERAMIC DIP (J) PLASTIC DIP (N) - - TLE2144ACN - - TLE2144CN - -- TLE2144AIN -- - TLE21441N TLE2144AMFK TLE2144AMJ CHIP FORM (V) TLE2144Y TLE2144AMN 2.4 mV TLE2144MDW TLE2144MFK TLE2144MJ TLE2144MN 125°C OW packages are available taped and reeled. Add "R" suffix to device type (e.g., TLE2144COWR). Chips are tested at TA = 25°C. PRODUCTION DATA information Is curront as of publication dato. Products conform to spocilicalions per the torms of Texas Instruments standard warranty. Produclion processing does not necessarily include lesling of all parametors. TEXAS ~ Copyright © 1991, Texas Instruments Incorporated INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-1227 TlE2144, TlE2144A, TlE2144Y EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION QUAD OPERATIONAL AMPLIFIERS description (continued) The design incorporates a patent-pending input stage that simultaneously achieves low audio band noise of 10.5 nV/..JHz with a 6-Hz 1/f corner and symmetrical 40-V/IlS slew rate typically with loads up to 800 pF. The resulting low distortion and high power bandwidth are important in high-fidelity audio applications. A fast settling time of 340-ns to 0.1% of a 10-V step with a 2-kQJ100-pF load is useful in fast actuator/positioning drivers. Under similar test conditions, settling time to 0.01% is 400 ns The devices are stable with capacitive loads up to 10 nF, although the 6-MHz bandwidth decreases to 1.8 MH7 at this high loading !eveL ,A.S such, the TLE2144 and TLE2144A are useful for low-droop sample and holds and direct buffering of long cables, including 4-mA to 20-mA current loops. The special design also exhibits an improved insensitivity to inherent integrated circuit component mismatches as is evidenced by a 1.5-mV maximum offset voltage and 1.7-IlV/oC typical drift. Minimum common-mode rejection ratio and supply-voltage rejection ratio are 85 dB and 90 dB, respectively. Device performance is relatively independent of supply voltage over the ±2-V to ±22-V range. Inputs can operate between VCC_-0.3 V to VCC+-1.8 V without inducing phase reversal, although excessive input current may flow out of each input exceeding the lower common-mode input range. The all-NPN output stage provides a nearly rail-to-rail output swing of VCC_+0.1 V to VCC+-1 V under light current loading conditions. The device can sustain shorts to either supply since output current is internally limited, but care must be taken to ensure that maximum package power dissipation is not exceeded. Both versions can also be used as comparators. Differential inputs of VCC± can be maintained without damage to the device. Open-loop propagation delay with TTL supply levels is typically 200 ns. This gives a good indication as to output stage saturation recovery when the device is overdriven beyond the limits of recommended output swing. 80th the TLE2144 and TLE2144A are available in a wide variety of packages, including the industry-standard 8-pin small-outline version and chip form for high-density system applications. The C-suffix devices are characterized for operation from O°C to 70°C, the I-suffix from -40°C to 105°C, and the M-suffix over the full military temperature range of -55°C to 125°C. J OR N PACKAGE (TOP VIEW) OW PACKAGE (TOP VIEW) 9 40UT 41N41N+ VCC-/GND 31N+ 31N30UT NC lOUT 1 IN11N+ VCC+ 21N+ 21N20UT 1 4 5 ~ _ _r 40UT 41N41N+ VCc-IGND 31N+ 31N30UT FK PACKAGE (TOP VIEW) 11; 1; I ~OOO~ ,-,-z..q..q 3 11N+ NC VCC+ NC 21N+ 2 1 20 19 4 18 5 17 6 16 7 15 14 8 910111213 If-Of- symbol I ~6Z6~ C\I C') NC - No internal connection I N + t > OUT IN- - TEXAS ~ INSTRUMENTS 2-1228 POST OFFICE BOX 655303· DALLAS. TEXAS 75265 41N+ NC VCC-IGND NC 31N+ TlE2144Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION QUAD OPERATIONAL AMPLIFIERS chip information These chips, properly assembled, display characteristics similar to the TLE2144C. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform. BONDING PAD ASSIGNMENTS 21N+ 21N31N+ 31N- (~) + (7) (6) - (1~) + (8) (9) - 2 OUT 3 OUT CHIP THICKNESS: 15 TYPICAL BONDING PADS: 4X4MINIMUM ~~ __-------------140--------------.~~ 11111111111111111111111111111111111111111111111111111111111111111111111 TOLERANCES ARE ± 10% ALL DIMENSIONS ARE IN MILS TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 2-1229 TLE2144, TLE2144A EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION QUAD OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, Vcc+ (see Note 1) .................................................... 22 V Supply voltage, VCC- .............................................................. -22 V Differential input voltage range (see Note 2) ..................................... VCC+ to VCCInput voltage range, VI (any input) ...................................... VCC+ to VCC- - 0.3 V Input current, II (each input) ......................................................... ±1 mA Output current, !o ................................................................ ±80 mA Total current into VCC+ terminal .................................................... 160 rnA Total current out of VCC- terminal ................................................... 160 mA Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... unlimited Continuous total dissipation ........................................ See Dissipation Rating Table Operating free-air temperature range, TA C-suffix ................................... O°C to 70°C I-suffix ................................ -40°C to 105°C M-suffix ............................... -55°C to 125°C Storage temperature range ................................................... -65°C to 150°C Case temperature for 60 seconds: FK package .......................................... 260°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: OW or N package ............. 260°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package ................... 300°C NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC-' 2. Differential voltages are at the noninverting inputwit~ respect to the inverting input. Excessive current will flow if input is brought below VCC_-0.3 V. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TA52S'C POWER RATING OW 1025mW FK 1375mW J N 1375mW 1150mW DERATING FACTOR TA = 70'C POWER RATING = TA = 10S'C POWER RATING 656mW 369mW TA 125°C POWER RATING 205mW 880mW 495mW 275mW 11 mW/oC 880mW 495mW 275mW 9.2 mW/oC 736mW 414mW 230mW ABOVE TA = 2S'C 8.2 mW/oC 11 mW/oC recommended operating conditions C-SUFFIX Supply voltage, VCC + /VCC-5V Common-mode input voltage, VIC / VCC± = ±15 V Operating free-air temperature, TA I-SUFFIX UNIT MAX MIN MAX MIN MAX ±2 ± 22 ±2 ± 22 ±2 ± 22 0 -15 2.9 12.9 0 -15 2.7 12.7 0 -15 2.7 12.7 V 0 70 - 40 105 -55 125 °C TEXAS ~ INSTRUMENTS 2-1230 M-SUFFIX MIN POST OFFICE BOX 655303' DALLAS. TEXAS 75265 V TlE2144C, TlE2144AC EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION QUAD OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, PARAMETER VIO TEST CONDITIONS 2SoC Input offset voltage Full range Temperature coefficient of (lVIO input offset voltage 110 Input offset current liB Input bias current TAt Vo = 2.S V, RS = SOQ, vee TLE2144C TYP MAX MIN o.s 3.8 4.4 Full range Full range 2SoC 25°C VICR RS = 50Q Full range VOL High-level output voltage Low-level output voltage AVD voltage amplification q Input resistance ci Zo CMRR kSVR ICC o.s 3 3.6 1.7 100 8 -0.8 150 -2 -0.8 -2.1 -0.3 to to 3 3.2 0 to 2.9 3.9 0 to -0.3 3 0 3.2 mV 100 150 nA -2 !iA to V to 2.9 3.9 4.1 4.1 10H =-1.5 mA 25°C Full range 3.8 3.7 4 3.8 4 10H =-15 rnA 25°C Full range 3.4 3.4 3.7 3.7 3.4 3.7 IOL = 150!iA 25°C Full range 75 10L = 1.5 rnA 25°C Full range 150 25°C Full range 2SoC VCC = ± 2.5 V, RL = 2 kQ, Vo = 1 Vto-l.5V Full range 1.2 3.8 3.8 V 3.4 75 125 150 225 150 1.2 1.6 1.7 50 25 225 mV 250 1.6 1.7 95 125 150 250 50 UNIT /lV/oC -2.1 J.IA 10L = 15 rnA Large-signal differential MAX 25°C Full range 10H = -150 VOH TYP 8 Full range 0 Common-mode input voltage range TLE2144AC MIN 1.7 2SoC VIC = 2.S V = 5 V (unless otherwise noted) 95 V V/mV 25 70 70 MQ Input capacitance 25°C 25°C 2.5 DF Open-loop output impedance f = 1 MHz 25°C 30 2.5 30 Common-mode rejection ratio VIC = VICR min, RS = 50Q Supply-voltage rejection ratio VCC± = ±2.5Vto±15V, (t.VCC +/ t.VIO) RS = 50Q Vo = 2.5 V, No load, Supply current VIC = 2.5 V 25°C Full range 85 25°C Full range 90 85 118 85 80 25°C Full range Q 118 dB 80 90 85 106 13.2 17.6 18.5 106 13.2 dB 17.6 18.5 mA tFull range is O°C to 70°C. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2-1231 TLE2144C, TLE2144AC EXCAliBUR LOW-NOISE HIGH-SPEED PRECISION QUAD OPERATIONAL AMPLIFIERS operating characteristics, Vee PARAMETER SR+ SR- Positive slew rate Negative slew rate Settlir.gtime Vn B1 m Phase margin vs Load capacitance Phase shift vs Frequency 34 14 TEXAS ~ INSTRUMENTS 2-1244 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TlE2144, TlE2144A EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt TLE2144 INPUT OFFSET CURRENT DISTRIBUTION OF INPUT OFFSET VOLTAGE FREE-AIR TEMPERATURE vs 20 2S0 Units Tested 20 VCC± = ±1SV TA = 2S·C -!--+--!--+---+-+---+--I 18 10 ---- 0 :t: 0 '5 c.. .E I g. 4 =0 =0 8 6 VCC± I-. = ±2.SV c:::::t-VCC± ~ = ±1S V 4 2 o -1.6 -1000 Vo ~ o -0.8 o 0.8 . INPUT BIAS CURRENT c.. .E ~ -600 12S vs vs FREE-AIR TEMPERATURE COMMON-MODE INPUT VOLTAGE o 0 I 150 I VCC± = ± 2.5 V ./ ~/ Vcc± = ±2.5 II> -700 100 INPUT BIAS CURRENT 0 :; 7S Figure 2 I iii SO Figure 1 -900 -800 2S TA - Free-Air Temperature - ·C c C ~ :> 0 VIO - Input Offset Voltage - mV V'C = 0 ~ c.. .E /vCC± = ±15V I .V -1 -1.2 -500 -75 -50 -25 0 25 50 75 100 125 150 - TA = 125·C -0.8 :> -1.4 -3 ...,V ..., V ..., -2.5 V V TA=V- - .--' ~ ~ V .--V~ -2 .--' ~ ~ ........ .-- ~ TA = -5S·C -1.5 -1 -0.5 0 0.5 T A - FreeJAir Temperature - ·C V'C - Common-Mode Input Voltage - V Figure 3 Figure 4 tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 2-1245 TLE2144, TLE2144A EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt MAXIMUM PEAK OUTPUT VOLTAGE 241 I vs SUPPLY VOLTAGE FREE-AIR TEMPERATURE I = RL 2kn 18 I- TA = 2S-C >I 12 ~ '5 Co '5 o ~ -6 ~ -12 ,/"" ~ V ..... VC~± c5 = 1±15V 1 1 I 14.2 .~ ............ R~ = L ~ RL 13.8 .~ -14.2 ::;; RL r-......... is- 14.6 ....... 21 > RL 24 MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE vs vs OUTPUT CURRENT OUTPUT CURRENT ~ -13.4 I I IIIIIII Cl J ;g / &'-13.8 14.2 ~ ~ :; o - '" ~ ~ ..... 1"= -55°C 13.8 ::;; ~ 13.6 = I -14.4 -TA .5x -14.6 = 2SOC = 25°C -0.4 -1 -4 -10 10 - Output Current - mA " II \/ I~ .J :;; I -14.8 ~ I ::;; -40 -100 ~ -15 0.1 = -5SOC 'I I - -r- E :s ~ TA ~ V/rA ~ -14.2 ~~ + TA 125°1 -14 .~ ..... 1"TA - 0.1 ~ = 125°C '~ 14 E :s E 'x = ±15 V i!! -13.6 14.4 :; o " ::;; VCC± If) = ±15 V Co ~ I Figure 6 '5 '" VOM- =100 -15 - 75 - 50 - 25 0 25 50 75 100 125 150 TA - Free·Alr Temperature - °C MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE ~ > = 2kn I 6 9 12 15 18 VCC± - Supply Voltage - V VCC± = 2kn- I - ~ Figure 5 Cl - VOM+ "E VOM- ....... -18 If) I ~E -13.8 j'....... > 14.6 I 14.6 :; ,s. ............ 3 15 1 '" .......... o I ;g I > -24 > ~ i!! VOM+ I is V .... ,/"" o E :s E 'x ./ 6 1- I ~ If) Cl MAXIMUM PEAK OUTPUT VOLTAGE vs 0.4 4 10 10 - Output Current - mA Figure 7 Figure 8 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS 2-1246 ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 40 100 TlE2144, TlE2144A EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt MAXIMUM PEAK·TO·PEAK OUTPUT VOLTAGE vs FREQUENCY MAXIMUM PEAK OUTPUT VOLTAGE vs SETTLING TIME 12.S > I AvO = - 1 10 -VCC±=±lSV TA = 2SoC 7.S > ., Ol "0 > Rising 0 0 Falling Q. E -2.S E .;:c -S ......... :::J '" :::;; I -7.S :::;; 0 -10 > -12.S "0 ,,,, 0.1~ 100 '" 200 300 Settling Time (ns) SOO ~ I :; Q. :; 0 q; > ., 4 ...J ~ Ol ::r 0 1M 400 k ~~ 4M HIGH·LEVEL OUTPUT VOLTAGE vs OUTPUT CURRENT LOW·LEVEL OUTPUT VOLTAGE vs OUTPUT CURRENT 10 M 1400 VCC = S V :e 1200 TA = 125°C " N'1000 !:'+- TA = 25°C g ......... btill 'I' r-. r-::r-r-. 3.8 TA = -SsoC :3 .......... i ' ~ 3.6 3.4 -0.1 11 TA=12SOC w q; 600 3: .3 ~ -10 I ...J -100 ~ 400 ~ 200 I -1 I '[ 800 .......... J: > 0 100 k Figure 10 r-r--.r-. 4.2 'i'-. ~ Figure 9 4.4 Ol 5 f - Frequency - Hz VCC = S v ., !! g ",'\~ TA = -55°C / '" a: c.. 400 ~ 10 :::;; 4.6 > \ "'" § I I I \ 15 c.. E .;:c I I /TA = 2SoC VTA = 125°C ~ 0.01% VCC± = ±lS V RL = 2 kQ I~ ~ 20 "'£f'"" "'\."' o \ 25 > :; Q. :; o ./"' / 2.S "''".," !! / I c .2 ~ :;: Q. 120 vs vs FREE-AIR TEMPERATURE FREQUENCY > 120 \ I I I N' g = ±10V F 110 I 100 ~ c .2 90 E: Q. E 80 ~ \. .-- ., 104 ,:.. "- "" t-. 0. Q. ::I VI I 102 a:: > VI ... o 10 1\ a:: ~ 0. Q. ... VCC± = ±2.5 V to ±15 V III '; a:: > VI ~ Figure 18 III ::I -........ = ±15 V :--....i'- 100 -75 -50 -25 0 25 50 75 100 125 150 T A - Free-Air Temperature - ·C 1M 100 k 10 k f - Frequency - Hz .., VI \ 104 SUPPLY-VOLTAGE REJECTION RATIO ~ > ,:.. -""'::r-- / Figure 17 as I =5 V 0 1k 100 Ol VCC :;; o ., .., a::., i-- a:: a:: 20 :. o I 0 I = VICR min .2 116 1U E 8 VIC I .......... g ..,o" FREE-AIR TEMPERATURE 10 M 100 -75 -50 -25 0 25 50 75 100 125 150 TA - Free-Air Temperature - ·C Figure 19 Figure 20 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-1249 TLE2144, TLE2144A EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt SUPPLY CURRENT SUPPLY CURRENT vs vs FREE-AIR TEMPERATURE SUPPLY VOLTAGE 14.8 Vo = 0 No load c:( ~ I E VCC± = ±1 I ~ 13.2 5 o >il. go I 12.4 IIf (/) I g - 11.6 VJ / ' ---V V V".. I 14 ~ c:( V - 14 E .--'" C ~ 5 VCC± = ±2.5 V 0 >- I - I - TA = 1'25°C TA = 25°C I 12 il. TA = -55°C Il. :::> (/) I 0 10 9 Vo = 0 No load 10.8 -75 -50 -25 0 25 50 75 100 125 TA - Free-Air Temperature - °C 8 150 o 4 8 12 16 20 24 IV cc± I - Supply Voltage - V Figure 21 Figure 22 EQUIVALENT INPUT NOISE VOLTAGE INPUT NOISE VOLTAGE OVER A 1O-SECOND PERIOD vs FREQUENCY 250 750 ~> "I Vcc± = ±15V f = 0.1to10Hz Vcc± = ±15 V Rs=100Q 500 200 CD > OJ "I ll! "0 > 150 CD ll! ;g 0 z s 100 z0 S -250 Il. iii .E .~ " IT 0 CD .!!! C CD W 250 CD OJ .!!! ..5" TA = 25°C 50 >" -500 0 -750 1 10 100 1k f - Frequency - Hz 10 k 0 2 4 t - Time - Figure 23 6 8 s Figure 24 toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS . 2-1250 POST OFFICE BOX 655303· DALLAS. TEXAS 75265 10 TlE2144, TlE2144A EXCAlIBUR lOW-NOISE HIGH-SPEED PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt NOISE CURRENT vs FREQUENCY TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY 8 ., ~ ~ 6 I 1: ~ :::J 4 .,en U '0 Z .E 2 + 'f A= A~~lt ,/11 0.1 £fII is ·C () 'co ~~ Ay f--- RL E ~ 0.01 ~ ~~ 2 10 Frequency - 1k Hz 0.001 10 10 k 100 10 k 1k 100 k f - Frequency - Hz Figure 26 INPUT NOISE VOLTAGE OVER A 1O-SECOND PERIOD 750 SR+- en 20 = 10 rim I- 100 50 a: /V -i-" + o ::c 60 ., iii II Ay SLEW RATE vs FREE-AIR TEMPERATURE ., V Z Figure 25 3: II /~ I f - 30 = 2 kQ til (:. 1 1ii a: RL = 10 = 600 Q ::c TA: 2 • I = 100 V = 600Q, 111111 ./I 0 o 40 Ay RL I, <:: T = ~ 111111 YCC± ± 15Y TA 25·C Z ~\ Co = 20 Y(PP) = = Yo fII '0 .~ ~ ~ K ~ ~~ = YCC± ±15 Y f 0.1 to 10 Hz = 500 TA \ = 25·C >c .,I 250 '" f--SR- !'3 '0 > 0 " fII '0 Z ;; -250 Co (/) YCC:!: 10 o .E = :!:15 Y = = CL = 500 pF -500 -1 AYD RL 2 kQ -75 -50 -25 -750 0 25 50 75 100 125 150 0 2 4 6 T A - Free-Air Temperature - ·C t - Time - s Figure 27 Figure 28 8 10 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-1251 TlE2144, TlE2144A EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt NONINVERTING LARGE·SIGNAL PULSE RESPONSE I TA = 12S'C 10 11:r~ It<., I > ., S ~ Cl ~ '0 INVERTING LARGE·SIGNAL PULSE RESPONSE I = 25 0 I TA = 2S'C 10 b > "4rtTA = -SS'C I 5 Q) TA = -55°C ~ ,/ '0 > Sa. S > Sa. 0 0 '5 0 -s I 0 > VCC± = ±15 V -10 AVO = 1 RL = 2 kQ CL = 300 pF -1S TA = -5SoC 0 ~AI= V~I > \TAlL 125°C -5 VCC± = ±15 V 1 2SoC AVO = - 1 RL = 2 kQ CL = 300 pF ; ; = 112S0C 4 ~AI= 0 2SoC -10 2 3 t - Time - 115 0 I 5SOC TA = TA = 12SOC Cl -15 S 3 2 t - Time - 115 0 Figure 29 4 5 Figure 30 UNITY·GAIN BANDWIDTH SMALL·SIGNAL PULSE RESPONSE vs LOAD CAPACITANCE 100 =e 7 N ~ 50 J: :E IVv ., .., I ~ 1'5 o 'I -0 5 .. 4 CD <: I I ..: vcc± = ±15 V RL = 2 kQ - TA = 12SoC I VCC± = ± 15 V ~ 50 AVO = - 1 RL = 2 kQ CL = 300 pF f\ 'c 3 cO 2 , ~ ~ 'ro o ~- r-;:A = 2SoC ..,'i<: Cl ;g 6 T~ = '-'5~lb ::l r'\ TA = 25°C - 100 o 400 800 t- Time - n5 1200 1 10 1400 100 1000 CL - Load Capacitance - pF , Figure 32 Figure 31 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS 2-1252 ~ INSTRUMENTS POST OFFICE BOX 655303 ' DALLAS, TEXAS 75265 10000 TlE2144, TlE2144A EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION QUAD OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt GAIN MARGIN vs LOAD CAPACITANCE 70 14 12 .., 10 cc I I: .~ . :;; I: 8 "- " '" 6 'iii Cl 4 2 = = = = VCC± ±1S V AVO 1 I II RL 2 kn to 00 V -10Vt010V ~, ~ \ - SsoC ~1\ ,,, '" " 10 !l ~ C SO I: .~ . 40 .. 30 I 20 :;; Q) !II r-- r-.TA = r- J,l - WC I TA 25°C = " r- -r-. ~ TA = 125::;\ ~~ 1\ " .c: 12SoC c. ..J....- .... ~ :;; ~ 10 2SoC 100 1000 CL - Load Capacitance - pF ~ ~ ~~i' -<>- = ±15 V = 2 kn IIIIII VCC± I o 60 !II -- PHASE MARGIN vs LOAD CAPACITANCE o 10000 RL 10 Figure 33 1000 100 CL - Load Capacitance - pF 10000 Figure 34 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 6SS303 ' DALLAS, TEXAS 75265 2-1253 2-1254 TlE2161, TlE2161A, TlE2161B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J.LPOWER OPERATIONAL AMPLIFIERS 03371, NOVEMBER 1989 - REVISED FEBRUARY 1991 available features • Excellent Output Drive Capability Vo ± 2.5 V Min at RL 100 n, VCC± = ±5V Vo ±12.5VMinatRL 600n, VCC± = ±15V • Macromodel Included • Wide Operating Supply Voltage Range VCC± = ±3.5 V to ±20 V • High Open-Loop Gain ... 280 V/mV Typ • Low Supply Current ... 280 f.LA Typ • Low Offset Voltage ... 500 f.LV Max • Decompensated for High Slew Rate and Gain-Bandwidth Product AVD = 5 Min Slew Rate = 10 V/f.LS Typ Gain-Bandwidth Product = 6.5 MHz Typ • Low Offset Voltage Drift With Time 0.04 f.LV/month Typ • Low Input Bias Current ... 5 pA Typ = = = = MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE SWING vs LOAD RESISTANCE description The TLE2161, TLE2161A, and TLE2161B are JFET-input, low-power, precision operational amplifiers manufactured using the Texas Instruments Excalibur process. Decompensated for stability with a minimum closed-loop gain of 5, these devices combine outstanding output drive capability with low power consumption, excellent de precision, and high gain-bandwidth product. In addition to maintaining the traditional JFET advantages of fast slew rates and low input bias and offset currents, the Excalibur process offers outstanding parametric stability over time and temperature. This results in a device that remains precise even with changes in temperature and over years of use. 10 V6c! 1=1 > ~~~ TA = 25°C '" c 8 ~., '" l! "0 6 .s-::> 4 f 2 > "5 L ~ ,.....1-' ~ .. o 0" > o A variety of available options includes sma"outline packages and chip-carrier versions for high-density system applications. 10 100 1k RL - Load Resistance - 10 k n AVAILABLE OPTIONS PACKAGE TA VIOmax AT 25°C O°C 500~V to 1.5mV lO°C 3mV -40°C 500~V to 1.5mV 85°C 3mV -55°C 500~V to 1.5mV 125°C 3mV SMALL· OUTLINE (D) CHIP CARRIER (FK) CERAMIC DIP (JG) METAL CAN (L) PLASTIC DIP (P) - - TLE2161BCP ---- - "'' '"'C'I TLE2161AID - TLE21611D -- -- - TLE21611P TLE2161ACD TLE2161CD - - TLE2161CP TLE2161BIP TLE2161AIP TLE2161 BMJG TLE2161BML TLE2161BMP TLE2161AMD TLE2161AMFK TLE2161AMJG TLE2161AML TLE2161AMP TLE2161MD TLE2161MFK TLE2161MJG TLE2161ML TLE2161MP D packages are available taped and reeled. Add "R" suffix to device type, (e.g., TLE2161ACDR). PRODUCTION DATA documents contain Information current I I of publication date. Products conform to specifications perth. term. ofT8.a. Instruments standard warranty. Production procas,i"g dolt not necessarily include testing of all parameters. TEXAS ~ Copyright © 1991, Texas Instruments Incorporated INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-1255 TLE2161, TLE2161A, TLE2161B EXCALIBUR JFET-INPUT HIGH OUTPUT-DRIVE IlPOWER OPERATIONAL AMPLIFIERS description (continued) The C-suffix devices are characterized for operation from O°C to 70°C. The I-suffix devices are characterized for operation from -40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of -55°C to 125°C. 0, JG, OR P PACKAGE FK PACKAGE (TOP VIEW) (TOP VIEW) INOFFSET" IN+ VCC- ~LJWC LPACKAGE (TOP VIEW) u~uuu NC zzzzz I' 2 7 3 6 VCC+ OUT 4 5 OFFSETN2 NC INNC IN+ NC 3212019 4 18 NC 5 17 6 16 7 15 8 14 VCC+ NC OUT NC ~,10 11 1213 U Z VCCPin 4 of the L package is in electrical contact with the case. I UN U UZ Z Z U > NC - No internal connection equivalent schematic Vcc+ IN+ - _ _-1-_ _-., IN- +-'Nv--+',,- OFFSETN1 OFFSET N2 -1---+-----+ R1 1.1 kn R4 55 kn R2 1.1 kn R7 R5 60 kO 6000 VccAll component values are nominal. . TEXAS ." INSTRUMENTS 2-1256 POST OFFICE BOX 655303· OALLAS. TEXAS 75265 OUT TlE2161, TlE2161A, TlE2161B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE flPOWER OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, Vcc+ (see Note 1) .................................................... 22 V Supply voltage, VCC- .............................................................. -22 V Differential input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ±44 V Input voltage range, VI (any input) .................................................... VCC± Input current, II (each input) ......................................................... ±1 mA Output current, 10 ................................................................ ±80 mA Total current into VCC+ terminal ..................................................... 80 mA Total current out of VCC- terminal .................................................... 80 mA Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... unlimited Continuous total dissipation ........................................ See Dissipation Rating Table Operating free-air temperature range, TA: C-suffix ................................... O°C to 70°C I-suffix ................................. -40°C to 85°C M-suffix ............................... -55°C to 125°C Storage temperature range ................................................... -65°C to 150°C Case temperature for 60 seconds: FK package .......................................... 260°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package ............... 260°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG or L package .............. 300°C NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC-' 2. Differential voltages are at the noninverting input with respect to the inverting input. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TA",2S"C POWER RATING D FK 72SmW 1375mW JG L p DERATING FACTOR ABOVE TA = 2S"C 5.8 mW/oC TA=70"C POWER RATING TA = 8S"C POWER RATING TA = 12S"C POWER RATING 464mW 377mW 145mW 880mW 672mW 715mW 546mW 275mW 1050mW 11.0 mW/oC 8.4 mW/oC 650mW 5.2 mW/oC 416mW 338mW 1000mW 8.0 mW/oC 640mW 520mW 130mW 200mW 210mW recommended operating conditions C-SUFFIX Supply voltage, Vec + Common-mode input voltage, VIC Operating free-air temperature, TA Vec+ VCC+ Vce+ = ±5V = ± 15 V = ± 20 V I-SUFFIX M-SUFFIX UNIT MIN MAX MIN MAX MIN MAX ±3.5 -1.6 ± 20 4 ± 3.5 -1.6 ± 20 ± 3.5 ± 20 V -11 13 -11 4 13 -1.6 -11 V -15 16.5 -15 16.5 -15 4 13 16.5 0 70 - 40 85 - 55 125 °C TEXAS ~ IN5rRUMENTS POST OFFICE BOX 655303' OALLAS, TEXAS 75265 2-1257 TlE2161C, TlE2161AC, TlE2161BC EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE JlPOWER OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, vee ± = ± 5 V (unless otherwise noted) TEST CONDITIONS PARAMETER VIO Input offset voltage 110 liB 3.1 4 TLE2161AC 25°C Full range 0.6 2.6 3.5 1.9 20 Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) VIC = 0, RS = 500 Full range Input offset current Input bias current 1 25°C 3 RL = 100Q RL = 10 kQ VOM- Maximum negative peak output voltage swing Large-signal differential voltage amplification 3.3 25°C Full range 2.5 3.7 25°C -3.7 -3.9 -3.3 -2.5 -2.7 Vo = ±2.8 V, RL = 10 kO 25°C Full range 15 Va = Oto 2 V, RL = 1000 25°C Full range 0.75 0.5 45 25°C 0.5 3 Full range 0.25 Input capacitance 25°C Zo Open-loop output impedance VIC = VICR min, RS = SOQ VCC± = ±5Vto±20V, RS = 500 Supply current Va = 0, No load operating temperature range V -2 80 2 V/mV 1012 4 25°C 10 = 0 V 3.1 2 Full range ci ~ICC V 25°C Full range RL = 100Q nA V - 1.6 to 25°C 25°C Supply current change over to 6 RL = 100Q Va = Oto-2V, kSVR Supply-voltage rejection ratio (!NCC ± I ~VIO) to 4 Full range Input resistance CMRR Common-mode rejection ratio -2 nA pA 2 -1.6 4 3.5 q J!V/mo pA 0.8 Full range VOM+ Maximum positive peak output voltage swing mV J!V/oC 6 0.04 25°C Full range Common-mode input voltage range UNIT 2.4 Full range 25°C RL = 10 k.Q ICC 0.5 u (; Full range AVO TYP MAX 0.8 25°C VICR MIN 25°C Full range TLE2161BC "VIO TAt TLE2161C Q pF Q 280 25°C Full range 65 25°C 75 Full range 75 82 dB 65 93 25°C Full range 280 Full range 29 dB 325 350 J!A J!A tFull range IS O°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TEXAS ~ 2-1258 INSTRUMENTS POST OFFICE BOl( 655303' DALLAS, TEXAS 75265 TlE2161C, TlE2161AC, TlE2161BC EXCAlIBUR JFET-INPUT HIGH-OUTPUT-DRIVE IlPOWER OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, Vee± = ± 5 V (unless otherwise noted) PARAMETER SR Vn RS = (see Figure 2) RS = CL = 100pF = Full range 25°C 1 kHz TYP 59 100 43 60 1.1 Equivalent input noise current t = 1 kHz 25°C 1 Total harmonic distortion AVD = 5, t = 10 kHz, Gai n-bandwidth product t (see Figure 3) t Settling time E = 100 kHz, = 100 kHz, = 0.1% bandwidth Phase margin (see Figure 3) RL = = 25°C 10kn, CL = lOOn, CL = 100 pF 100 pF AVD = 5, RL = 10 kn AVD = = 5, RL RL = = 10 kn, 5, AVD 25°C 25°C 0.01% E - Maximum output-swing RL 25°C CL 100 n, CL = toO pF = 100pF 25°C UNIT V/IlS 5 25°C VO(PP) = 2V, RL = 10kn MAX 10 0.1 Hz to 10Hz In m Phase margin (see Figure 3) AVD = 5, AVD = 5, Rl = 10 kn, CL = 100pF Rl = 600 n, Cl = 100 pF 25°C 72° 78° IS V/!'s RS = lOOn, 1= 10 Hz RS = 100n, I = 1 kHz E = 0.01% tFuil range UNIT nV/..JHz MHz !,s kHz O°C to 70°C. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-1263 TLE21611, TLE2161 AI, TlE2161 81 EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J.lPOWER OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, vee ± = PARAMETER TEST CONDITIONS TLE21611 Via Input offset voltage TLE2161AI 110 liB Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) TAt TYP MAX 25°C Full range o.s 25°C 0.6 3.1 4.4 2.6 MIN Full range TLE2161BI aVIO ± 5 V (unless otherwise noted) VIC = 0, RS = 50n 3.9 O.t> 25°C Full range 25°C 6 fLV/oC fLV/mo pA 25°C Full range 1 Input bias current 25°C Full range 3 2 to Full range nA pA 4 -2 to nA V 6 4 -1.6 Common-mode input voltage range i.9 0.04 Input offset current -1.6 VICR mV 2.7 Full range 25°C UNIT V to 4 RL = 10 kn VOM+ Maximum positive peak output voltage swing RL = 100n Large-signal differential voltage amplification 3.5 25°C 2.5 3.1 2 -3.7 -3.9 -3.1 -2.5 -2.7 Full range RL = 10kn 25°C Full range RL = 100n 25°C Full range VOM- Maximum negative peak output voltage swing AVD 25°C Full range Va = ±2.S V, RL = 10 kn Va = Oto 2V, RL = 100n Va = Oto-2V, RL = 100n 25°C Full range 45 3 25°C Input capacitance 25°C Zo OpenJloop output impedance kSVR Supply-voltage rejection ratio (AVCC ±/ AVIO) ICC AICC VCC± = ±5Vto±20V, RS = 50n Supply current Supply current change over Va = 0, No load operating temperature range 25°C Full range 25°C Full range 1012 4 pF 2S0 n 65 . TEXAS ~ 2-1264 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 n 82 dB 65 75 93 dB 65 25°C Full range 280 Full range 29 tFull range IS - 40°C to 85°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV . INSTRUMENTS V/mV 0.25 25°C VIC = VICR min, RS = 50n SO 0.5 0.5 Input resistance V 2 0.75 ci CMRR Common-mode rejection ratio 15 25°C 25°C Full range V -2 Full range r; 10 = 0 3.7 3.1 325 350 fLA fLA = 150°C extrapolated TlE21611, TlE2161AI, TlE2161BI EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE IlPOWER OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, Vcc± PARAMETER SR Vn Slew rate (see Figure 1) AVO Equivalent input noise voltage RS (see Figure 2) RS Peak-to-peak equivalent input VN(PP) noise voltage In Equivalent input noise current THO Total harmonic distortion Gain-bandwidth product (see Figure 3) Settling time Maximum output-swing BaM 4>m TEST CONDITIONS bandwidth Phase margin (see Figure 3) I = 5, = 1000, = 1000, = 0.1 RL I I = 10 kO, CL = 100pF = 10 Hz = 1 kHz = 1 kHz = 5, I = 10 kHz, I = 100 kHz, I = 100 kHz, E = 0.1% B = 0.01% AVO = 5, AVO = 5, = 5, MIN 7 Full range 5 25°C f AVO TAt 25°C 25°C Hz to 10Hz AVO = ± 5 V (unless otherwise noted) 25°C VO(PP) = 2V, RL = 10kO RL RL = 10 kO, = 100O, 25°C CL CL = = 100pF 100pF 25°C 25°C RL = RL = 10kO, = 1000, RL 25°C 10kO CL CL = 100 pF = 100pF 25°C TYP 10 MAX 59 100 43 60 1.1 1 UNIT V/J1.S nV/% J1.V IA/% 0.025% 5.8 4.3 5 10 420 MHz J1.s kHz 70° 84° tFull range is - 40°C to 85°C. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303· DALLAS, TEXAS 75265 2-1265 TlE21611, TlE2161AI, TlE2161BI EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE JlPOWER OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, vee ± YIO Input offset voltage =± 15 V (unless otherwise noted) TYP MAX TLE21611 25°C Full range 0.6 3 4.3 TLE2161AI 25°C Full range 0.5 1.5 2.9 25°C Full range 0.3 0.5 Full range 25°C 6 0.04 25°C Full range 2 25°C 4 PARAMETER TEST CONDITIONS TLE2161BI aYIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) 110 Input offset current lIB Input bias current YIC = 0, RS = son TAt Common-mode input voltage range 13.2 13 13.7 RL = 6000. 25°C Full range 12.5 13.2 YO = ± lOY, RL = 10kn YO= Ot08Y, RL = 6000. YO=Oto-8Y, RL = 6000. 30 20 230 100 25°C 25 Full range 10 25°C 3 Full range 1 Input resistance 25°C Input capacitance 25°C Zo Open-loop output impedance ICC 10 = 0 YIC = YICR min, RS = 500. AICC YCC± = ±5Yto±15Y, RS =.500. Supply current Supply current change over YO = 0, 3 nA 5 pA nA Y Y 25°C Full range ci No load operating temperature range mY J.l.V!°C J.l.Vfmo pA Y 12 -13.2 -13.7 25°C Full range -13 25°C -12.5 -13 Full range -12 q kSYR Supply-voltage rejection ratio (AYCC ±f AYIO) 16 25°C Full range RL = 6000. CMRR Common-mode rejection ratio 13 -11 RL = 10 kn RL = 10 kn Large-signal differential voltage amplification -12 to to 13 YOM- Maximum negative peak output voltage swing AYD -11 to Full range VOM+ Maximum positive peak output voltage swing UNIT 1.3 Full range 25°C YICR MIN Y YfmY 25 10 12 4 25°C 25°C Full range 65 25°C Full range 75 65 72 0. pF 280 90 0. dB 93 25°C Full range 290 Full range 34 dB 350 375 J.LA J.LA tFull range is - 40°C to 85°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eY. TEXAS ~ INSTRUMENTS 2-1266 POST OFFICE BOX 655303' DALLAS, TEXAS 75265 TlE21611, TlE2161AI, TlE2161BI EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J.1POWER OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, VCC± = ± 15 V (unless otherwise noted) PARAMETER SR Slew rate (see Figure 1) Equivalent input noise voltage (see Figure 2) Peak-to-peak equivalent input VN(PP) noise voltage Equivalent input noise current In Vn THO Total harmonic distortion Gain-bandwidth product (see Figure 3) Settling time TEST CONDITIONS AVO = 5, m MIN TVP 7 5 10 MAX UNIT V//ls RS = lOOn, I = 10 Hz RS = lOOn, I = 1 kHz 25°C 70 40 I = 0.1 Hz to 10Hz 25°C 1.1 /lV 1= 1 kHz 25°C 1.1 IA/VHz 25°C 0.025% 25°C 6.4 5.6 MHz 25°C 5 10 /ls 25°C 116 25°C 72° 78° AVO = 5, I = 10 kHz, I = 100 kHz, I = 100 kHz, E E BaM RL = 10 kn, CL = 100pF TAt 25°C Full range VO(PP) = 2V, RL = 10 kn RL = 10 kn, CL = 100 pF RL = 600 n, CL = 100 pF = 0.1% = 0.01% Maximum output-swing bandwidth AVO = 5, RL = 10 kn Phase margin (see Figure 3) AVO = 5, AVO = 5, RL = 10 kn, CL = 100pF RL = 600n, CL = 100pF 100 60 nVlVHz kHz tFull range is - 40°C to 85°C. TEXAS ." INSTRUMENTS POST OFFICE BOX 655303· DALLAS, TEXAS 75265 2-1267 TlE21611, TlE2161AI, TlE2161BI EXCAlIBUR JFET-INPUT HIGH-OUTPUT-DRIVE JlPOWER OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, vee ± =± 20 V (unless otherwise noted) TEST CONDITIONS PARAMETER TLE21611 VIO Input offset voltage TLE2161AI Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) 110 Input offset current liB Input bias current VIC = 0, mV 0.5 JJ.V/oC 6 0.04 JJ.V/mo 3 pA 3 5 5 -15 to -17 to 16.5 21 nA pA nA V -15 Large-signal differential voltage amplification Full range to 16.5 25°C Full range 18.2 25°C Full range RL = 10 kn 25°C Full range RL = 600n . 25°C Full range VOM- Maximum negative peak output voltage swing VO=±15V, RL = 10kn 25°C Full range Vo = 0 to 10 V, RL = 600n 25°C Full range Vo = 0 to - 10 V, RL = 6000. 25°C Full range r; Input resistance 25°C ci Input capacitance 25°C Zo Open-loop output impedance VIC = VICR min, RS = 500. VCC± = ±5Vto±20V, Supply-voltage rejection ratio (t.VCC ±I t.VIO) RS = 50n Supply current Vo = 0, No load 25°C Full range 25°C Full range 25°C Full range Full range operating temperature range V 18.7 18 15 18.1 V 12 -18.2 -18.7 -18 -15 -12 -18 30 280 20 25 80 10 3 20 V V/mV 1 25°C 10 = 0 CMRR Common-mode rejection ratio t.ICC UNIT 1.3 Full range Common-mode input voltage range Supply current change over 0.3 Full range 25°C Full range RL = 600n ICC 3 4.3 1.6 Full range RL = 10 kn kSVR MAX 0.6 2.9 25°C 25°C VOM+ Maximum positive peak output voltage swing AVD TYP 0.6 25°C RS = 50n 25°C VICR MIN Full range TLE2161B~ m bandwidth Phase margin (see Figure 3) RL f I = 10 kn, CL = 100pF = 10 Hz = 1 kHz 25°C Hz to 10Hz = 1 kHz AVO = 5, I = 10 kHz, I = 100 kHz, I = 100 kHz, I E - 0.1% E - 0.01% Maximum output-swing BaM = 5, TAt VO(PP) = 2V, RL = 10kn RL RL = 10 kn, = 600n, CL CL = 100 pF = 100pF = 5, RL = 10kn AVO = 5, = 5, RL = 10 kn, = 600n, RL CL = 100pF = 100.pF TYP 7 10 MAX UNIT V/Jls 5 75 100 40 60 nVl..fHz 25°C 1.1 JlV 1.3 IA/..fHz 25°C 0.025% 25°C 25°C CL MIN 25°C 25°C AVO AVO 25°C Full range 25°C 6.5 5.7 MHz 5 10 Jls 85 kHz 72° 78° tFull range is - 40°C to 85°C. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 2-1269 TlE2161M, TlE2161AM, TlE2161BM EXCALIBUR JFET-INPUT HIGH-OUTPUT-ORIVE J.lPOWER OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, vee ± PARAMETER TEST CONDITIONS Via 25°C TLE2161AM liB 3.1 0.6 6 2.6 RS = 50n 0.5 Full range Input bias current 25°C Full range 1 25°C 3 Full range iJ-V/ oC iJ-Vlmo pA 15 Full range Common-mode input voltage range mV 1.9 6 0.04 25°C Input offset current UNIT 3.1 Full range 25°C VICR MAX o.s 4.6 25°C Input offset voltage long-term drift (see Note 4) 110 TYP Full range VIC = 0, Temperature coefficient of input offset voltage MIN Full range TLE2161BM aVIO TAt 25°C TLE2161M Input offset voltage =± 5 V (unless otherwise noted) pA 30 -1.6 to -2 to 4 - 1.6 6 nA nA V V to 4 25°C RL = 10 kn VOM+ Maximum positive peak FK, JG, and output voltage swing L packages OandP packages VOM- Maximum negative peak FK, JG, and output voltage swing L packages o and P FK, JG, and Large-signal differential L packages voltage amplification o and P packages 25°C RL = 600n 3.5 3.7 3 2.5 3.6 Full range 2 RL = 100n 25°C Full range 2.5 3.1 RL = 10 kn 25°C Full range 2 -3.7 -3.9 25°C RL = 600n Full range 25°C RL = 100n packages AVO Full range Va = ±2.SV, RL = 10 kn Va = 0 to 2.5 V, RL = 600n Vo = 0 to - 2.5 V, RL = 600 n Va = Oto 2V, RL = 100n Va = Oto-2V, RL = 100n -3 -2.5 -3.5 -2 -2.5 Full range -2 25°C 15 Full range 2 25°C Full range 0.5 25°C 1 TEXAS "I 2-1270 POST OFFIOE BOX 655303' DALLAS. TEXAS 75265 SO 65 1 16 Full range 25°C 0.5 0.75 45 Full range 0.5 25°C 0.5 Full range 0.25 V -2.7 tFull range is - 55°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. INSTRUMENTS V V/mV 3 = 150°C extrapolated TlE2161M, TlE2161AM, TlE2161BM EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J.LPOWER OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Vcc ± (continued) PARAMETER q ci Zo TEST CONDITIONS Input resistance Input capacitance Open-loop output impedance 10 = a CMRR Common-mode rejection ratio VIC = VICR min, RS = 50n kSVR VCC± = ±5Vto±20V, RS = 50n Supply-voltage rejection ratio ICC Supply current ~ICC Supply current change over operating temperature range (~VCC ±I ~VIO) No load Vo = 0, =± 5 V (unless otherwise noted) TAt 25°C 25°C 25°C 25°C Full range 25°C Full range MIN 65 60 75 65 TYP MAX 1012 4 280 82 n pF n dB 93 25°C Full range 280 Full range 39 UNIT dB 325 350 J.lA J.lA tFull range is - 55°C to 125°C. operating characteristics, VCC± = ±5 V, TA = 25 C D PARAMETER TEST CONDITIONS SR Slew rate (see Fig ure 1) Vn Equivalent input noise voltage (see Figure 2) VN(PP) Peak-to-peak equivalent input noise voltage Equivalent input noise current In THO Total harmonic distortion Gain-bandwidth product (see Figure 3) Settling time RL = 10 kn, CL = 100 pF AVO = 5, RS = 100n, 1= 10 Hz RS = 100n, I = 1 kHz I = 0.1 Hz to 10Hz I = 1 kHz AVO = 5, I = 10 kHz, I = 100 kHz, f = 100 kHz, = 0.1% = 0.01% AVO = 5, AVO = 5, AVO = 5, VO(PP) = 2V, RL = 10 kn RL = 10 kn, CL = 100 pF Maximum output-swing bandwidth ~m Phase margin (see Figure 3) TYP 10 59 43 1.1 1 5.8 RL = 10 kn RL = 10 kn, CL = 100 pF RL = 600n, CL = 100pF 70 0 84 0 E MAX UNIT V/l1s nV/-IHz I1V fA/-IHz 0.025% 4.3 5 10 420 RL = 600 n, CL = 100 pF E BOM MIN MHz I1s kHz TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • OALLAS, TEXAS 75265 2-1271 TlE2161M, TlE2161AM, TlE2161BM EXCAlIBUR JFET-INPUT HIGH-OUTPUT-DRIVE JlPOWER OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, vee ± VIO Input offset voltage TYP MAX TLE2161M 0.6 3 6 TLE2161AM 25°C Full range 0.5 25°C 0.3 TEST CONDITIONS TLE216iBM aVIO =± 15 V (unless otherwise noted) 25°C Full range PARAMETER Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) = 0, VIC RS = son TAt MIN Full range 6 0.04 Input offset current 25°C Full range 2 liB Input bias current 25°C Full range 4 25°C Common-mode input voltage range Large-signal differential voltage amplification 13.2 12.5 12.5 25°C Full range RL = 10kn RL = 600n Vo = ±10V, RL = 10 kn 25°C Full range 30 Vo = Ot08 V, RL = 600n 25°C Full range 25 100 7 3 25 = Oto-8V, = ci Input capacitance 25°C Zo Open-loop output impedance 10 .1.ICC =0 VIC = VICR min, RS = son = ±5Vto±15V, = 50n Supply current Supply current change over Vo = 0, 13.7 V 13.2 No load operating temperature range V 230 20 V/mV 1 25°C VCC± RS V 12 25°C -13.2 -13.7 Full range -12.5 25°C -12.5 -13 Full range -12 RL nA V = 600n 25°C 600n Full range nA pA to RL 25°C ICC 16 to 13 Input resistance kSVR Supply-voltage rejection ratio (tNCC ± I AVIO) 13 -11 Full range q CMRR Common-mode rejection ratio -12 25°C Full range Vo fJ.V/oC fJ.V/mo pA 40 - 11 to = 10kn VOM- Maximum negative peak output voltage swing AVD 0.5 20 RL VOM+ Maximum positive peak output voltage swing mV 1.7 Full range 25°C 110 VICR 1.5 3.6 UNIT 1012 4 pF 280 n 25°C Full range 72 65 90 25°C Full range 75 93 65 25°C Full range 290 Full range 46 n dB dB 350 375 fJ.A fJ.A tFull range is - 55°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TEXAS ~ INSTRUMENTS 2-1272 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE2161M, TLE2161AM, TLE2161BM EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE JlPOWER OPERATIONAL AMPLIFIERS operati ng characteristics at specified free-air temperature, Vee ± PARAMETER SR Vn Slew rate (see Figure 1) AVO Equivalent input noise voltage RS (see Figure 2) RS Peak-to-peak equivalent input VN(PP) noise voltage In Equivalent input noise current THD Total harmonic distortion Gain-bandwidth product (see Figure 3) Settling time Maximum output-swing BOM m TEST CONDITIONS bandwidth Phase margin (see Figure 3) I = 5, = 1000, = 1000, = 0.1 RL I I = 10 kO, CL = 100pF = 10 Hz = 1 kHz I VO(PP) = 2V, RL = 10kO RL RL = 10kO, = 6000, MIN TYP 7 10 Full range 5 CL CL = 100 pF = 100 pF = 5, RL = 10 kO AVO = 5, = 5, RL = 10kO, = 6000, RL CL = 100pF = 100 pF 40 UNIT V/flS nV/~ 1.1 flV 25°C 1.1 fA/~ 25°C 0.025% 25°C 25°C CL 70 MAX 25°C 25°C AVO AVO TAt 25°C 25°C Hz to 10 Hz = 1 kHz AVO = 5, I = 10 kHz, I = 100 kHz, I = 100 kHz, £ = 0.1% £ = 0.01% = ± 15 V(unless otherwise noted) 25°C 6.4 5.6 5 10 116 MHz fls kHz 72° 78° tFull range is - 55°C to 125°C. TEXAS ." INsrRUMENTS POST OFFICE BOX 655303 ' DALLAS, TEXAS 75265 2-1273 TlE2161M, TlE2161AM, TlE2161BM EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J1POWER OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, vee ± Input offset voltage TYP MAX TLE2161M 0.6 3 TLE2161AM 25°C Full range 0.6 6 1.6 25°C Full range 0.3 3.6 0.5 Full range 6 0.04 TLE21618M aVIO 110 liB TAt 25°C Full range TEST CONDITIONS PARAMETER VIO =± 20 V (unless otherwise noted) Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) VIC = 0, RS = 50n Input offset current Input bias current 25°C Full range 3 25°C 5 Full range Common-mode input voltage range Full range UNIT mV 1.7 25°C 25°C VICR MIN -15 to -17 to 16.5 21 flV/oC flV/ mo pA 20 nA 40 nA pA V -15 to V 16.5 25°C Full range RL = 10kn VOM+ Maximum positive peak output voltage swing 25°C RL = 600n Full range 25°C RL = 10 kn RL = 600n Large-signal differential voltage amplification Vo = 0 to 10 V, RL = 600n 25°C Full range 25 80 10 3 20 Full range ci Input capacitance 25°C Zo Open-loop output impedance VIC = VICR min, RS = 50n AICC VCC± = ±5Vto±20V, RS = 50n Supply current Vo = 0, No load operating temperature range 25 0 C Full range 65 25°C Full range 65 10 12 4 pF 280 n 75 TEXAS 2-1274 + POST OFFICE BOX 655303' DALLAS. TEXAS 75265 n 91 75 dB 93 25°C Full range 300 Full range 50 tFull range is - 55°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. INSTRUMENTS V/mV 1 25°C 10 = 0 V -18 280 25°C Supply current change over 12 30 20 25°C V -18.2 -18.7 25°C Full range Vo = 0 to - 10 V, RL = 600n ICC 18.1 RL = 10 kn Input resistance kSVR Supply-voltage rejection ratio (AVCC ± / AVIO) 15 Vo = ± 15V, fj CMRR Common-mode rejection ratio 18.7 Full range -17.5 25°C -15 Full range -12 VOM- Maximum negative peak output voltage swing AVD 18.2 17.5 dB 375 400 f!A f!A = 150°C extrapolated TlE2161M, TlE2161AM, TlE2161BM EXCAlIBUR JFET-INPUT HIGH-OUTPUT-DRIVE JlPOWER OPERATIONAL AMPLIFIERS operating characteristics, VCC± = ± 20 V, TA = 25°C PARAMETER TEST CONDITIONS SR Slew rate (see Figure 1) Vn Equivalent input noise voltage (see Figure 2) VN(PP) Peak-to-peak equivalent input noise voltage Equivalent input noise current In THO Total harmonic distortion Gain-bandwidth product (see Figure 3) Settling time RL = 10 kn, AVO = 5, RS = 100a, I = 10 Hz RS = 100a, I = 1 kHz 1= 0.1 Hz to 10Hz CL = 100pF I = 1 kHz AVO = 5, I = 10 kHz, I = 100 kHz, VO(PP) = 2V, RL = 10 ka RL = 10ka, CL = 100pF = 100 kHz, I: = 0.1% RL = 600a, CL = 100 pF I = 0.01% AVO = 5, I: BaM Maximum output-swing bandwidth -~-+--Vo -:- NOTE A: CL includes fixture capacitance. Figure 3. Gain-Bandwidth Product and Phase Margin Test Circuit typical values Typical values as presented in this data sheet represent the median (50% point) of device parametric performance. input bias and offset current At the picoampere bias-current level typical of the TLE2161, TLE2161 A, and TLE2161 B, accurate measurement 01 the bias current becomes difficult. Not only does this measurement require a picoammeter, but test socket leakages can easily exceed the actual device bias currents. To accurately measure these small currents, Texas Instruments uses a two-step process. The socket leakage is measured using picoammeters with bias voltages applied but with no device in the socket. The device is then inserted into the socket and a second test that measures both the socket leakage and the device input bias current is performed. The two measurements are then subtracted algebraically to determine the bias current of the device. TEXAS 2-1276 ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS, TEXAS 75265 TlE2161, TlE2161A, TlE2161B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J,LPOWER OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS table of graphs FIGURE VIO Input offset voltage liB Input bias current 110 Input offset current VICR VOM VO(PPl Distribution vs Common-mode input voltage range limits Maximum peak output voltage swing Maximum peak-to-peak output voltage vs Supply voltage vs Frequency vs Time vs Temperature Output impedance vs Frequency Common-mode rejection ratio vs Frequency vs Supply voltage Supply current vs Temperature Small-signal Pulse response Large-signal Noise voltage (referred to input) 0.1 to 10 Hz Equivalent input noise voltage vs Total harmonic distortion vs Frequency vs Supply voltage Gai n-bandwidth product ¢ Temperature Output current Frequency Short-circuit output current ¢m vs vs Temperature lOS Vn THO Temperature Temperature vs AVO ICC vs vs vs Differential voltage amplification Zo CMRR Common-mode voltage Phase margin Phase shift Frequency vs Temperature vs Supply voltage vs Temperature vs Frequency 4 5 6 6 7 8.9 10.11.12 13.14.15 16 17 18 19 20 21 22 23 24. 25 26.27 28 29 30.31 32 33 34 35 16 TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303· DALLAS, TEXAS 75265 2-1277 TLE2161, TLE2161A, TLE2161B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J.1POWER OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt INPUT BIAS CURRENT vs COMMON-MODE INPUT VOLTAGE TLE2161 DISTRIBUTION OF INPUT OFFSET VOLTAGE TA = '" '#. I ~ ., c I !E C ~ E 0 10 c.. j II) os jjj 'S Il. til ~., 1.5 :I ''0.," oSc 25~C ..5 5 1! Q. VCC± I 0.5 VCC± = -4 -3 -2 -1 0 2 3 Figure 4 Figure 5 INPUT BIAS CURRENT and INPUT OFFSET CURRENT vs FREE-AIR TEMPERATURE COMMON-MODE INPUT VOLTAGE RANGE LIMITS vs FREE-AIR TEMPERATURE 105 VIC I C ~ :I = ±15V =0 > 8. VCC+ + 1 S POSITIVE LIMIT ;g li ~ 103 /' 'S Il. ., ..5 0 "D C ./ os os 102 liB II) jjj /' ...- "D ~ ./110 ;.~ ;. VCC- +4 g E I g c os - I 104 0 "D 20 VCC+ + 2 VCC± Il. ±1~ II - 20 - 15 - 10 - 5 0 5 10 15 VIC - Common-Mode Input Voltage - V 4 VIO -Input Offset Voltage - mV '" I I I o OL----'.."..~"" V = ±20V, / ' '" . / 101 ~ E a NEGATIVE LIMIT ~ VCCo +3 ;> L;" 45 65 85 105 TA - Free-Air Temperature - ·C 125 VCC- + 2 -75 -50 -25 0 25 50 75 100 T A - Free-Air Temperature - ·C Figure 7 Figure 6 toata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ", INSTRUMENTS 2-1278 POST OFFICE BOX 655303' DALLAS, TEXAS 75265 125 TlE2161, TlE2161A, TlE2161B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE IlPOWER OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE vs OUTPUT CURRENT > 1:, 3 "0 > :; c. :; a -: c.. ~ 'w g" > 20 18 I TA r- vcc± = ±20 V = 25°C r-- 16 12 I- Vcc± = ±15V g: c. 8 zg' -8 6 E ::I E -6 ~ -4 > o o r- Vcc± I '0 10 '5 c. '5 5 -20 - -60 I I '" MAXIMUM PEAK OUTPUT VOLTAGE vs SUPPLY VOLTAGE y = 10kn = 25°C "/ V V VOM+ ., 15 3 "0 10 '5 So ::I ........... .. ::;; -10 E ::I E .. i'- r-...... -15 6 8 10 "f'... -5 12 ::;; -10 r--... 14 ~ 16 18 ......... r-..... .......... I VOM- 25 > 20 I"--- .......... "VOM- -15 -20 o 2 4 6 8 10 12 14 16 IVcc± I - Supply Voltage - V IVcc± I - Supply Voltage - V Figure 10 Figure 11 TEXAS VOM+ ..V 'w .......... I ". "/ 0 D- ......... 4 V V ./ 5 0 g: 40 35 y = 600n = 25°C > ". 2 RL TA Ol ", ..V -5 5 20 > ./ o I o o MAXIMUM PEAK OUTPUT VOLTAGE vs SUPPLY VOLTAGE 0 -20 = ±5V Figure 9 ';( > -50 ~ -2 _ Vcc± Figure 8 D- 25 ~ 10 15 20 25 30 10 - Output Current - rnA a E E -40 -30 > ::I I ::;; Ol g: = ±15 V 10 - Output Current - rnA RL TA 15 I I -10 20 > - ±5V = 25°C, ~ L ';( + ::;; ". I ~ -10 4 ., -12 _ Vcc± ":; 2 l!! TA = ±20V -' :: -16 ::I c. -14 10 ~ I ....... ~ -18 - Vcc± "0 ". ';( a - -20 ei 14 E ~ ., MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE vs OUTPUT CURRENT l' 18 20 ~ INSTRUMENTS POST OFFICE BOX 655303 ' DALLAS, TEXAS 75265 2-1279 TLE2161, TLE2161A, TLE2161B EXCALIBUR JFET-INPUT HIGH-OUTPUT-ORIVE J.1POWER OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY MAXIMUM PEAK OUTPUT VOLTAGE vs SUPPLY VOLTAGE > 6 RL = loon > .. 01 TA 4 = 25°C V S '0 > :; 2 II. ~ VOM+ L ~ ~ i 0 to .. == -4 ';c .f ~ ~ I'--. i ~ o - 25 II. ...8 20 ~ . .f 15 § 10 4 8 6 IVcc± I - Supply Voltage - V 2 10 10k 10 M 1M f - Frequency - Hz MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY > \ , \ Vcc± = ±15 V RL = 10 kn TA = 25°C .. 40 ~ 35 30 So ~ o ... 25 ~ 20 - 15 ~ 10 E ~ E == 5 Il. 100 k '" 1M f - Frequency - Hz ii:' .... = = ~ :; 1\ VCC± = ±20 V RL 10 kQ TA 2SoC 01 ~ j ii:' 1\ \, 1\ 5 r--.... Il. 10M ~ 0 10 k Figure 14 100 k 1M f - Frequency - Hz Figure 15 TEXAS 2-1280 100 k MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY I' 0 0 Figure 13 E 10 k " ii:' ~ Figure 12 ~ ~ 1\, 2 == Il. 30 :; ~ .. ';c VOM~ 4 E ~ E ~ > 6 Il. -2 ==I = i Il. E ~ E VCC±=±5V RL = 10 kQ TA 2Soc 8 ...o3l :; ...03l 10rl--rl-I~I~I~II~II--~I-rI'i'i~ii~ii~i--.-rrlniiliimlj & ~ INSfRUMENTS POST OFFice BOX 655303 ' DALLAS, TexAS 75265 - 10 M TLE2161, TLE2161A, TLE2161B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE JlPOWER OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION and PHASE SHIFT vs FREQUENCY .., 120 c 60' \ tIl I " 0 " 80 ii E .. .c: 140· Co '\~ ....I '\ ~ 300 ii E 250 .'!! '0 Ol 200 ~ 150 I-I----r--.... E ol: 160' = Vcc± ±lSV RL 10 kO CL 100 pF TA 2S'C = = = RL = 10 kO 350 c PHASE SHIFT '\ Ol .'!! '0 > .]! :> I\"\. 100 400 > E ';; :E LARGE-SIGNAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE .. Vcc± = ±lS V ............ C .. ~ II: 100 180· l\ \ 200' I c > -so -100 J = = = = = VCC± ±SV AVO s RL 10 kn CL 100 pF 2SoC TA See Figure 1 = ±1S V = = = = VCC± AVO S RL 10 kn CL 100 pF TA 2SoC See Figure 1 \ -100 o 2 t - Time - t - Time - Figure 25 LARGE-SIGNAL PULSE RESPONSE LARGE-SIGNAL PULSE RESPONSE 1S 1- 10 > I > .,I S'" '0 2 S'" '0 > > :; 3- :; Co :; = = = = = 0 > -1 -2 "I VCC± ±S V Avo S RL 10kn CL 100 pF 2SoC TA See Figure 1 I 0 0 3 Ils Figure 24 3 I 2 JLS 4 ., o 3 \. o S S 0 0 0 -S > -10 - 15 10 1S = = = = = VCC± ±1SV AVO S RL 10 kn CL 100 pF TA 2SoC See Figure 1 I I o 10 I - Time - Ils I - Time - Ils Figure 26 Figure 27 20 30 40 TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303· DALLAS, TEXAS 75265 2-1283 TlE2161, TlE2161A, TlE2161B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J.1POWER OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS NOISE VOLTAGE (REFERRED TO INPUT) OVER A 10-SECOND INTERVAL EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY 100 ~ Vcc± = ±lS V f = 0.1 to 10Hz TA = 25°C .. I VCC±=±5V RS 100 Q TA= 25°C See Figure 2 K\ ~ 80 ~ = ~ .. = 01 '0 > "5 S '0 ['..~ 60 z J .; t40 ~ ~ ~ ·S M 20 I -1L-~~_~~ o 2 3 __~~__~~~~~ 4 5 6 I-TIme-s 7 8 9 >'" 10 o 10 1 100 1k f - Frequency - Hz Figure 28 Figure 29 TOTAL HARMONIC DISTORTION TOTAL HARMONIC DISTORTION vs vs FREQUENCY 0.25 1111 FREQUENCY 0.6 r-TlTnmr--r-nTTTlrr--rrrrnm-rTTTT1m . =5 VO(PP) = 2V TA =25°C AVO 'if!. 0.2 AVO = 10 'if!. 0.5 '" § II> ~ ~ 0.15 () 0.4 t--H-ttiittt--t--HtttI:tt--t-Httttt1-t-+tt-H1tI .!:! E iii ::r: ] VCC± 0.1 I IIIII SOURCE SIGNAL 0 l- I = i5 'c0 c ::r: = VO(PP) 2V TA 2SoC +-H-ttHtt--l-j-Htlilt---j-++HtIfl 'o" 0 i5 10 k VcC± 0.05 IS E = ±SV 0.3 1--t-t-t-HtHt--t-t-t-tttlit--J-i-ttttffi-t-t-tffiftl VCC± '" ::r: ill = ~ ±20V 0.2 I o 100 1k 10 k f - Frequency - Hz 10k 100 k f _ Frequency - Hz Figure 30 Figure 31 TEXAS • INsrRUMENlS 2-1284 11' SOURCE SIGNAL ~ 0.1I=Hmlm==1=rn+m~H=m:m:+'I+Im I- I- 10 = ±SV POST OFFICE BOX 655303 • OALLAS. TEXAS 75265 lOOk TLE2161, TLE2161A, TLE2161B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J.LPOWER OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt GAIN-BANDWIDTH PRODUCT GAIN-BANDWIDTH PRODUCT vs FREE-AIR TEMPERATURE VS SUPPLY VOLTAGE 7 = 100 kHz RL = 10 k.Q CL = 100 pF TA = 25·C See Figure 3 f= 100kHz f N J: 6.6 ::IE RL ~~ (; " ." 6.2 £ :; 'i 5.S .. ." C = 10 k.Q = 100 pF 6.2 Q, .c -6 ~ .. 5.S t---t--+--+-""'I-o;;;::--j--+---I---I c /' ID ID C 'Cl= 6.6 t---t--T'""",,"---f"'o...,--+--t-- CL (; i /' / ." ~ ~ ::IE C ~ 5.41--I--t--+--t--+-+---t-~ 5.4 5 5~~--~--~--~--~--~--~~ o 4 8 12 16 IVcc± I - Supply Voltage - V -75 20 -50 -25 0 25 50 75 100 T A - Free-Air Temperature - ·C Figure 32 Figure 33 PHASE MARGIN vs SUPPLY VOLTAGE PHASE MARGIN vs FREE-AIR TEMPERATURE 125 74· c .. .... 73· AVD = 5 RL = 10 kQ CL = 100 pF 72· TA = 2S·C See Figure 3 .~ ::IE I - V V See Figure 3 c .~ .. .. = .c ./ 70· I l "G- 69· 70·1--I--t--+-~-~~~~-t--1 68·t---t--+--+--r-H-~~--I---I 6S· 67· 72·t---t--+~-+~~r--j--+---I---I Q, ~~ E 74.t--~~-+~~--r--j--+---I---I ::IE V til .c Q, = /' 71· AVD = 5 RL 10 kQ 76·1---'l~-t--+--t--+- CL = 100 pF 66·~~--~--~--~--~--~--~~ o 2 4 6 8 10 12 14 16 IVcc± I - Supply Voltage - V 18 20 -75 -50 Figure 34 -25 0 25 50 75 100 TA - Free-Air Temperature - ·C 125 Figure 35 tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303' DALLAS. TEXAS 75265 2-1285 TlE2161,TlE2161A, TlE2161B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE JlPOWER OPERATIONAL AMPLIFIERS APPLICATION INFORMATION macromodel information Macromodel information provided was derived using PSpice® Parts™ model generation software. The Boyle macromodel (see Note 5) and subcircuit in Figures 36 and 37 were generated using the TLE2161 typical electrical and operating characteristics at 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): • • • • • Maximum positive output voltage swing Maximum negative output voltage swing Slew rate Quiescent power dissipation Input bias current Open-loop voltage amplification • • • • • • • Gain-bandwidth product Common-mode rejection ratio Phase margin DC output resistance AC output resistance Short-circuit output current limit din ,..----1<1___ 92 egnd vcc+---'--'---+--~~------' rp + 2 IN- -_-I--t--....ff-l vln + ve IN+ de de Vcc- ____- __--~-~~-r_._~~__-------------5~ + ve OUT Figure 36. Boyle Macromodel NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers",IEEE Journal of Solid-State Circuits. SC-9, 353 (1974). PSpice is a registered trademark of MicroSim Corporation. Parts is a trademark of MicroSim Corporation. TEXAS ~ 2-1286 INSTRUMENlS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLE2161, TLE2161A, TLE2161B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE IlPOWER OPERATIONAL AMPLIFIERS APPLICATION INFORMATION macromodel information (continued) .subekt TLE2161 1 2 3 4 5 e1 11 12 125.4E-14 e2 6 7 5.000E-12 de 5 53 dx da 54 5 dx dlp 90 91 dx dln 92 90 dx dp 43dx agnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5 fb 7 99 poly(5) vb ve va vlp v1n 0 4.085E6 -4E6 4E6 4E6 -4E6 ga 6 0 11 12 201.1E-6 gem 0 6 10 99 3.576E-9 iss 3 10 de 45.00E-6 hlim 90 0 v1im 1K j1 11 2 10 jx j2 12 1 10 jx r2 6 9 100.0E3 rd1 4 11 4.973E3 rd2 4 12 4.973E3 ro1 8 5 280 ro2 7 99 280 rp 3 4 113.2E3 rss 10 99 4.444E6 vb 90deO ve 353de2 va 54 4 de 2 vlim ·7 8 de 0 vlp 91 0 de 50 v1n 0 92 de 50 .modal dx O(Is=800.0E-18) .modal jx PJF(Is=1.000E-12 Beta=480E-6 Vto=-l) .ands Figure 37. Marcomodel Subcircuit TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-1287 TlE2161, TlE2161A, TlE2161B EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE J.LPOWER OPERATIONAL AMPLIFIERS APPLICATION INFORMATION input characteristics The TLE2161, TLE2161A and TLE2161B are specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction. Because of the extremely high input impedance and resulting low bias-current requirements, the TLE2161, TLE2161A, and TLE2161B are well-suited for low-level signal processing; however, leakage currents on printed circuit boards and sockets can easily exceed bias-current requirements and cause degradation in system performance. It is a good practice to include guard rings around inputs (see Figure 38). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input. V, Vo WHERE R3 R4 = R2 R1 Figure 38. Use of Guard Rings input offset voltage nulling The TLE2161 series offers external null pins that can be used to further reduce the input offset voltage. The circuit of Figure 39 can be connected as shown if the feature is desired. If external nulling is not needed, the null pins may be left disconnected. N2 ~VV'v-Vcc­ Figure 39. Input Offset Voltage Nulling TEXAS 2-1288 + INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 TlE2227, TlE2227A EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS 03959, SEPTEMBER 1991 - REVISED DECEMBER 1991 available features • Outstanding Combination of DC Precision and AC Performance: Unity-Gain Bandwidth ... 15 MHz Typ Vn.... 3.3 nV/¥Z at f = 10 Hz Typ, 2.5 nV/¥Z at f = 1 kHz Typ VIO' .. 25 J.lV Typ Avo ... 45 V/J.lV Typ With RL = 2 kQ, 38 V/J.lV Typ With RL = 1 kQ • Available in 16-Pin Small-Outline Wide-Body Package • Output Features Saturation Recovery Circuitry • Macromodels and Statistical Information Included description The TLE2227 and TLE2227A combine innovative circuit design expertise and high-quality process control techniques to produce a level of ac performance and dc precision previously unavailable in dual operational amplifiers. These devices allow upgrades to systems that use lowerprecision devices and are manufactured using Texas Instruments state-of-the-art Excalibur process. In the area of dc precision, the TLE2227 and TLE2227A offer a typical offset voltage of 25 IlV, a common-mode rejection ratio of 131 dB (typ), a supply voltage rejection ratio of 144 dB (typ), and a dc gain of 45 WIlV (typ). Ac performance is highlighted by a typical unitygain bandwidth specification of 15 MHz, 55° of phase margin, and noise voltage specifications of 3.3 nV/~ and 2.5 nV/~ at frequencies of 10 Hz and 1 kHz, respectively. LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREQUENCY .., 160 III I c 140 o r'~ 'i; ~ 120 1\ ~ 100 ., 80 ~ 60 !l2 40 ;: '\ AVO = 153 dB "\ F ~ "\ \ Q. '\ '\ 20 o ~ o 0.1 Bl = 15 MHz '\ C I vcc± = ±15 V RL= 2kn CL = 100 pF TA = 25°C - 10 l1 \ "t 100 1 k 10 k 100 kl M 10 M 100 M f - Frequency - Hz The TLE2227 and TLE2227 A are available in a wide variety of packages, including the industry standard 16pin small-outline wide-body version for high-density system applications. The TLE2227 amd TLE2227A are characterized for operation from O°C to 70°C. AVAILABLE OPTIONS Vlolyp AT 2S c C TA o °C 10 70°C 251lV PACKAGE SMALL·OUTLINE PLASTIC DIP (OW) (PI TLE2227CP TLE2227CDW TLE2227ACP D packages are available taped and reeled. Add "R" suffix to device type (e.g., TLE2227CDWR). PRODUCTION DATA information is current as or publication date. Products conform to specifications per the terms 01 Texas Instruments standard warranty. Production processing dOlls not necessarily include tasting of all parameters. ~ TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Copyright © 1991, Texas Instruments Incorporated On products compliant to Mll·STD·883. Class 8, all parameters are tested unless othelWise noted. On all other products, production processing does not necessarily include tasting of all parameters. 2-1289 TlE2227,TlE2227A EXCAllBUR lOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS P PACKAGE (TOP VIEW) OW PACKAGE (TOP VIEW) NC NC 1 0 U T [ j 8 VCC+ 11N - 2 7 2 OUT 1 IN + 3 6 2 INVCC- 4 5 21N + NC NC VCC+ 11 '--------- 20UT 21N21N+ NC NC NC - No internal connection symbol (each amplifier) IN+~ IN - ----v- OUT ~ TEXAS INSTRUMENTS 2-1290 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 equivalent schematic for 1 channel Vcc+ ~ Q~ ~ Ql0 Q~ R9 Rl R2 Q9 b~j1T R5 Q13 I .-----T Q49'1-, Q6 Q46 C1 IN+ OUT "tl o U> -i 0_ IN- ~6 2lZ ~~ ~~c;:c~~ ""'D ~~ :JJ m 1"tr1 ~z C'") ~U1~ U> t!! !! II f It I! t I I I Q3l Qlr R3 R6 " ~ R7 Rl0 R12 R14 R1B R19 T VccComponent Count: Transistors - 62 Resistors - 24 Capacitors Diodes - 0 4 !~H24 I ~ CI) HZti om z>< C'") Cl=e:: rl=-- r-~ O:JJ ""'Dr- mo ~~ ~I--I -Zr°Om Z-N l=-CI)N r-mN l=- :E~-.J SC)--1 ""'D::Z:::r- r-'m -CI)N ~ I\J ~ :::!!""'DN mmN :JJm-.J Cl)C> • TlE2227, TlE2227A EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, Vcc+ (see Note 1) .................................................... 22 V Supply voltage, VCC- .............................................................. -22 V Differential input voltage (see Note 2) ................................................. ±1.2 V Input voltage range, VI (any input) .................................................... VCC± Input current, II (each input) ......................................................... ±1 rnA Output current, 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ±50 mA Total current into VCC+ terminal ..................................................... 50 mA Total current out of VCC- terminal .................................................... 50 mA Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... unlimited Continuous total dissipation ........................................ See Dissipation Rating Table Operating free-air temperature range, TA ......................................... O°C to 70°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: OW or P package ............. 260°C NOTES: 1. All voltage values, except differential voltages. are with respect to the midpoint between VCC+ and VCC-. 2. Differential voltages are at the non inverting input with respect to the inverting input. Excessive current will flow if a differential input voltage in excess of approximately ±1.2 V is applied between the inputs unless some limiting resistance is used. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TA s25·C POWER RATING DW p 1025mW 1000mW DERATING FACTOR ABOVE T A = 25·C 8.2 mW/oC 8.0 mW/oC TA = 70·C POWER RATING 656mW 640mW recommended operating conditions Supply voltage, VCC + Common-mode input voltage, VIC I I TA = 25°C T A = Full range Operating free-air temperature, TA TEXAS.~ INSTRUMENTS 2-1292 POST OFFICE BOX 655303' DALLAS, TEXAS 75265 MIN MAX ±4 ± 22 11 11 -10.5 10.5 0 70 UNIT V V °C TLE2227C, TLE2227AC EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Vee + - PARAMETER VIO aVIO TEST CONDITIONS TAt Input offset voltage Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) 110 Input offset current liB Input bias current VIC ~O, RS ~50 Q VICR voltage range 25°C Full range 0.4 MAX 1 0.2 1 ).LV/oC 0.006 1 0.006 1 ).LV/mo 25°C Full range 6 90 150 6 90 150 25°C 15 90 15 25°C ~ 50 Q YOM - Maximum negative peak output voltage swing RL ~ 2 kQ RL ~ 1 kQ RL ~ 2 kQ VO~± Large-signal differential AVD voltage amplification c· Input capacitance 20 Open-loop output impedance Common-mode CMRR rejection ratio ~ 2 kQ VO~±10V, RL ~ 1 kQ 10~0 VIC - VICR min, RS ~ 50Q RS~ (.WCC±' ~VIO) VCC±~±4 Supply current Full range RL RL ~ 2 kQ RS ICC 25°C ~ V to± 18 V, 50Q Vto± 18 V, 50Q VO~O, -13 -11 -13 to 11 -10.5 to to 13 11 -10.5 to 13 No load -13 -10.5 -11 -11 25°C 3.5 -13 -10 -12 Full range V 12 11 -12 -13.5 2 V 10.5 10 10 12 Full range nA 10.5 10.5 5 90 nA to to 10.5 25°C ).LV 150 -11 11 -10.5 25°C Full range -10 VO~±10V, Supply-voltage rejection ratio 150 Full range 25°C Full range 11 V, VCC±~±4 kSVR 25°C RL ~ 1 kQ MIN UNIT TYP 25 Full range RS TLE2227AC MAX Full range Maximum positive peak VOM+ output voltage swing MIN TYP 25 25°C Common-mode input =± 15 V(unless otherwise noted) TLE2227C 45 5 V -13.5 45 2 38 3.5 1 V/).LV 38 1 25°C 8 8 pF 25°C 50 50 131 Q 25°C Full range 100 25°C 94 Full range 92 131 100 98 dB 98 144 94 144 dB 25'C Full range 92 7.6 10.6 11.2 7.6 10.6 11.2 rnA tFull range is O°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T A ~ 150°C extrapolated to TA ~ 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-1293 I I .. TlE2227C, TlE2227AC EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, V cc± PARAMETER SR Vn Slew rate RL = 2 kn, CL = 100 pF Equivalent input noise RS= 100n, 1= 10 Hz voltage RS=100n, f = 1 kHz Peak-to-peak equivalent VN(PP) In input noise voltage Equivalent input noise current THD Total harmonic distortion Bl Unity-gain bandwidth BaM 4>m TEST CONDITIONS Maximum output-swing bandwidth Phase margin TYP 1.7 2.8 25°C Full range 1= 10 Hz VO=±10V, AVD = 1, 25'C CL = 100 pF RL = 2 kn CL=100pF 25'C TYP 1.7 2.8 MAX 7 V/fls 8 3.3 8 2.5 4.5 2.5 4.5 50 250 50 250 nV 4 0.6 pAl#lZ 1.5 4 1.5 0.4 0.6 0.4 13 7 13 MHz kHz 30 30 25'C 55' 55' TEXAS ~ POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 nV/#lZ <0.002% 25'C INSTRUMENTS UNIT 3.3 <0.002% tFull range is O'C to 70°C. NOTE 5: Measured distortion 01 the source used in the analysis was 0.002%. 2-1294 MIN 1.2 25'C See Note 5 TLE2227AC MAX 1.2 25'C 1=1 kHz RL = 2 kn, MIN 25'C f = 0.1 Hz to 10Hz RL = 2 kn, TAt = ±15 V TLE2227C TLE2237, TLE2237A EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION NONCOMPENSATED DUAL OPERATIONAL AMPLIFIERS 03957, SEPTEMBER 1991 - REVISED DECEMBER 1991 available features • Outstanding Combination of DC Precision and AC Performance: Gain-Bandwidth Product. .. 80 MHz Typ Vn ... 3.3 nV/{RZ at f = 10 Hz Typ, 2.5 nV/{RZ at f = 1 kHz Typ VIO ... 25 /lV Max AVD ... 45 V//lV Typ With RL = 2 kQ, 38 V//lV Typ With RL = 1 kQ • Available in i6-Pin Small-Outline Wide-Body Package • Output Features Saturation Recovery Circuitry • Macromodels and Statistical Information Included description The TLE2237 and TLE2237A combine innovative circuit design expertise and high-quality process control techniques to produce a level of ac performance and dc precision previously unavailable in dual operational amplifiers. Using the Texas Instruments state-of-the-art Excalibur process, these devices allow upgrades to systems that use lower-precision devices. TLE2237 and TLE2237A are The noncompensated versions of the TLE2027 and TLE2027A. The devices are stable to a closedloop gain of 5. In the area of dc precision, both devices offer an input offset voltage of 25 IlV (typ) , a common-mode rejection ratio of 131 dB (typ), a supply voltage rejection ratio of 144 dB (typ). and a dc gain of 45 V/IlV (typ). The ac performance is highlighted by a typical gain-bandwidth product specification of 80 MHz, 50° of phase margin, and noise voltage specifications of 3.3 nV/~ and 2.5 nV/~ at frequencies of 10Hz and 1 kHz, respectively. LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREQUENCY D:l 160 "I c: 140 .2 \ iO ~ 120 a. ~ 100 ., Cl \ :\ 80 ~ 60 """'"" I V i: '" VCC±=±1SV RL = 2kn CL = 100 pF TA = 25°C - AvO = 153 dB S > "0 ~ GBP ~ 40 I 20 25 \ C > o m~ >C-.,J r-mw S-e~ -e::D;:! r I\) ~ r-mm -C"'.)N :!!C;;N m-w ::DO-.,J cnZ> TlE2237,TlE2237A EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION NONCOMPENSATED DUAL OPERATIONAL AMPLIFIERS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, Vcc+ (see Note 1) .................................................... 22 V Supply voltage, VCC- .......... , ................................................... -22 V Differential input voltage (see Note 2) ................................................. ±1.2 V Input voltage range, VI (any input) .................................................... VCC± Input current, II (each input) ......................................................... ±1 mA Output current, 10 ................................................................ ±50 mA Total current into VCC+ terminal ..................................................... 50 mA Total current out of VCC- terminal .................................................... 50 mA Duration of short-circuit current at (or below) 25°C (see Note 3) ........................... unlimited Continuous total dissipation ........................................ See Dissipation Rating Table Operating free-air temperature range, TA ........................................... O°C to 70°C Storage temperature range ................................................... -65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: OW or P package ............. 260°C NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC-. 2. Differential voltages are at the non inverting input with respect to the inverting input. Excessive current will flow if a differential input voltage in excess of approximately ±1.2 V is applied between the inputs unless some limiting resistance is used. 3. The output may be shorted to either supply. Temperature andlor supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TA'; 25·C DERATING FACTOR POWER RATING DW 1025mW P 1000mW ABOVE TA =25·C 8.2 mW/'C 8.0 mW/'C TA =70·C POWER RATING 656 mW 640 mW recommended operating conditions Supply voltage, VCC + I I Common-mode input voltage, VIC TA = 25'C TA = Full range Operating free-air temperature, TA . TEXAS ~ INSTRUMENTS 2-1298 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 MIN MAX UNIT ±4 ± 22 V -11 -10.5 11 0 10.5 70 V 'c TlE2237C, TlE2237AC EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION NONCOMPENSATED DUAL OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Vee + - PARAMETER VIO aVIO TEST CONDITIONS Input offset voltage Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) 110 Input offset current liB Input bias current RS=50 Q VIC=O, TAt MIN VICR voltage range VOM+ output voltage swing Maximum negative peak YOM - output voltage swing Large-signal differential AVD voltage amplification c' Input capacitance Zo Open-loop output impedance Common-mode CMRR rejection ratio 25°C 0.4 1 0.2 1 J,lVloC 25°C 0.006 1 0.006 1 J,lVlmo 25°C 6 90 150 6 Full range 25°C 90 150 15 90 15 RS =50 Q 150 25°C -11 -13 -11 -13 to 11 to 13 to 11 to 13 to 10.5 10.5 10 10 RL = 2kQ 25°C Full range 12 11 RL = 1 kQ -10.5 25°C Full range -10 12 11 -10.5 VO-±11 v, KL-2KQ VO=±10V, RL = 2 kQ VO=±10V, RL = 1 kQ -12 Full range - 11 25°C Full range 5 25°C Full range 3.5 1 -13 -13 -13.5 -12 -13.5 45 -11 5 45 38 2 3.5 38 8 8 25°C 50 50 VIC - VICR min, RS= 50Q 25°C 100 Full range 98 25°C 94 Full range 92 (t:NCC±1 AVIO) VCC±=±4 Vto± 18 V, VO=O, No load V VIJ,lV 1 25°C RS=50n nA V -10 2 nA V 10=0 Supply-voltage rejection ratio Supply current to 10.5 25°C 90 -10.5 10.5 RL = 2 kQ J,lV 150 Full range RS= 50 Q ICC 25 -10.5 RL = 1 kQ UNIT Full range Full range VCC± - ±4 V to± 18 V, kSVR TLE2237AC TYP MAX MAX Full range Maximum positive peak MIN TYP 25 25°C Common-mode input = ± 15 V(unless otherwise noted) TLE2237C 131 100 pF n 131 dB 98 144 94 144 dB 92 7.6 25'C Full range 10.6 11.2 7.6 10.6 11.2 mA tFull range is O°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. ~ TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-1299 TlE2237C, TlE2237AC EXCALIBUR lOW-NOISE HIGH-SPEED PRECISION NONCOMPENSATED DUAL OPERATIONAL AMPLIFIERS operating characteristics at specified free-air temperature, Vee± = ± 15 V TEST CONDITIONS TAt RL = 2kQ, AVD = 5, CL = 100pF RS = lOOn, 1= 10 Hz 25°C Full range PARAMETER SR Vn VN(PP) Slew rate Equivalent input noise voltage Peak-to-peak equivalent RS = lOOn, f = 1 kHz f = 0.1 Hz to 10Hz 1 = 10 Hz current f = 1 kHz THD Total harmonic distortion Va = ±10V, AVD See Note 5 GBP Gain-bandwidth product Maximum output-swing BaM ifJm bandwidth Phase margin 1 = 100 kHz, = 100 pF RL = 2 kQ, eL RL 25°C = 2kQ RL = 2kQ, 50 25°e eL = 100 pF 25°C tFull range is ooe to 700 e. NOTE 5: Measured distortion 01 the source used in the analysis was 0.002%. TEXAS ." INSTRUMENTS 2-1300 3.3 MIN 6 TYP 7.5 MAX 8 3.3 8 2.5 4.5 2.5 4.5 50 250 50 250 4 1.5 4 0.4 0.6 0.4 0.6 POST OFFICE BOX 655303' DALLAS, TEXAS 75265 76 80 . 50° UNIT V/Jls 1.5 <0.002% 25°e 25°e MAX 5 25°e = 5, TLE2237AC TYP 7.5 5 25°C input noise voltage Equivalent input noise In TLE2237C MIN 6 nV/..fiTz nV pAl..fiTz <0.002% 50 76 MHz 80 kHz 50° uA709AM. uA709M. uA709C GENERAL-PURPOSE OPERATIONAL AMPLIFIERS D942, FEBRUARY 1971 - REVISED MAY 1988 • Common-Mode Input Range . . . ± 10 V Typical • Designed to be Interchangeable with Fairchild p,A709A. p,A709. and p,A709C • uA709AM. uA709M ... J OR W PACKAGE (TOP VIEW) Maximum Peak-to-Peak Output Voltage Swing ... 28-V Typical with 15-V Supplies description These circuits are general-purpose operational amplifiers. each having high-impedance differential inputs and a low-impedance output. Component matching. inherent with silicon monolithic circuit-fabrication techniques. produces an amplifier with low-drift and lowoffset characteristics. Provisions are incorporated within the circuit whereby external components may be used to compensate the amplifier for stable operation under various feedback or load conditions. These amplifiers are particularly useful for applications reqUiring transfer or generation ·of linear or nonlinear functions. The uA 709A circuit features improved offset characteristics. reduced input-current requirements. and lower power dissipation when compared to the uA 709 circuit. In addition. maximum values of the average temperature coefficients of offset voltage and current are specified for the uA 709A. NC NC FREO COMP A NC NC FREO COMP B ININ+ VCCNC VCC+ OUT OUT FREO COMP NC uA709AM, uA709M ... JG PACKAGE uA709C ... D. JG, OR P PACKAGE (TOP VIEW) FREO COMP B [ ] B IN2 7 IN+ 3 6 VCC 4 5 FREO COMP A VCC+ OUT OUT FREO COMP uA709AM. uA709M ... U FLAT PACKAGE (TOP VIEW) NC FREO COMP B ININ+ VCC- ""'1-_ _"" NC FREO COMP A VCC+ OUT OUT FREO COMP NC - No internal connection symbol The uA 709AM and uA 709M are characterized for operation over the full military temperature range of - 55°C to 125°C. The uA 709C is characterized for operation from 0 °C to 70°C, OUTPUT FREQ COMP NONINVER=+}ING INPUT IN+ + OUTPUT INVERTING INPUT IN- FREQ FREQ COMP COMP A B A V AILABLE OPTIONS TA VIO MAX AT 25°C PACKAGE SMALL OUTLINE CERAMIC CERAMIC DIP PLASTIC DIP FLAT PACK (D) (J) (JG) (P) (U) FLAT PACK (W) uA709CD - uA709CJG uA709CP - - uA709MJ uA709MJG uA709MU uA709MW uA709AMU uA709AMW O°C to 7,5 mV 70°C -55°C 5 mV - to 125°C 2 mV uA709AMJ uA709AMJG The D package is available taped and reeled. Add the suffix R to the device type when ordering, (e.g., uA709CDR) PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. ~ Copyright © 1983. Texas Instruments Incorporated TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-1301 uA709AM, uA709M, uA709C GENERAL-PURPOSE OPERATIONAL AMPLIFIERS schematic r--------1~--------------_.--------._--_.----~--VCC+ 10 kn >- 10 k!1 A '-'2 20 w_ ::>1- 0« WIll a: 2 LLle 1-:2; ::>0 ~U B 25 kn 1 kn OUTPUT 30 k!1 3k!1 OUTPUT FREQUENCY COMPENSATION INVERTING INPUT NONINVERTING INPUT 10 k!1 2.4 kn 75kn L---------4-----------~~--4--- VCC- Component values shown are nominal. absolute maximum ratings over operating free-air temperature range (unless otherwise noted) uA709AM uA709M uA709C UNIT Supply voltage V CC + (see Note 1) 18 18 V Supply voltage Vee _ (see Note 1) -18 -18 V ±5 ±5 V ±10 ±10 V 5 5 s Differential input voltage (see Note 2) Input voltage (either input, see Notes 1 and 3) Duration of output short-circuit (see Note 4) Continuous total dissipation See Dissipation Rating Table o to Operating free-air temperature range - 55 to 125 Storage temperature range -65 to 150 - 65 to 150 °e 300 300 °e 260 °e I Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds J, JG, U, or W package Lead temperature 1,6 mm (1116 inch) from case for 10 secondsl Dar P package NOTES: 1. 2. 3. 4. °c All voltage values, unless otherwise noted, are with respect to the midpoint between Vec + and VCC _. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 10 V, whichever is less. The output may be shorted to ground or either power supply. TEXAS . " INSTRUMENTS 2-1302 70 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 uA709AM, uA709M, uA709C GENERAL-PURPOSE OPERATIONAL AMPLIFIERS DISSIPATION RATING TABLE PACKAGE TA :5 25°C POWER RATING DERATING DERATE FACTOR ABOVE TA D 300mW N/A N/A 300 mW N/A 300mW 11.0 mW/oC 123°C 300mW 275 mW JG luA709_M) 300mW 8.4 mW/oC 114°C 300 mW 210 mW JG (uA709C) 300mW N/A 300 mW N/A P 300mW U W N/A N/A 300 mW N/A 300mW N/A 5.4 mWjOC 94°C 300 mW 135 mW 300mW 8.0 mW/oC 113°C 300 mW 200 mW PARAMETER 110 25°C 'i ro CMRA ICC Po TYP* 1 2 = 0, RS = 5011 Full range 1.8 10 3 offset voltage Vo = 0, RS = Full range 4.8 25 6 Input offset current Vo =0 coefficient of input Input bias current input voltage range output voltage swing Full range 3 MAX 5 6 10 kll = VCC± ±15 V VCC± = ±15 V, RL '" 10 kll VCC± = = = ±15 V, AL ±15 V, RL '" 2 kO Vo = = 2 kll ±15V, RL '" 2 kll, 50 100 500 125°C 3.5 50 20 200 Vo = 0, = VIC VCC See Note 5 VICA min = 0.45 2.8 25°C to 125°C 0.08 0.5 25°C 0.1 0 ..2 0.2 0.5 -55°C 0.3 0.6 0.5 1.5 25°C ±8 Full range ±8 25°C 24 Full range 24 25°C 20 Full range 20 25°C = =0 ±15 V, = ±15 V, VCC± =0 ±10 No load, ±10 nA 24 28 24 26 20 45 70 25 70 350 750 150 400 85 185 40 100 150 25°C 80 Full range 80 V 26 20 25 25°C ~A V ±8 28 70 (l 90 dB 70 40 100 25 100 25°C 2.5 3.6 -55°C 2.7 4.5 125°C 2.1 3 25°C 75 108 -55°C 81 135 125°C 63 90 150 150 2.6 V/mV kO 150 110 Full range No load, ±8 45 25°C ±9 Vto ±15 V VCC± Vo 200 -55°C to 25°C 25°C Vo Total power dissipation 50 250 -55°C Common-mode Supply current 10 40 Full range ±10 V Input resistance I~VIO/~VCC) mV nA/oC =0 Vo voltage amplification rejection ratio 25°C -55°C =0 Vo VCC± Output resistance UNIT ~V/oC Large-signal differential Power supply sensitivity kSVS MIN Vo VCC± AVO 0.6 uA709M MAX coefficient of input Maximum peak-to-peak VOpp TYP* RS s 10 kll Common~mode VICR MIN =0 offset current liB uA709AM TEST CONDITIONSt Average temperature "'110 ... ± 9 V to ± 15 V (unless otherwise Vo Input offset voltage Average temperature "'VIO TA - 125°C POWER RATING J (uA709_M) electrical characteristics at specified free-air temperature, Vee ± noted) VIO TA - 70°C POWER RATING ~V/V 5.5 mA 78 165 mW t All characteristics are specified under open-loop with zero common-mode input voltage unless otherwise specified. Full range for uA709AM and uA 709M is - 55°C to 125°C. t All typical values are at V CC ± = ± 1 5 V. NOTE 5: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback. TEXAS . " INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-1303 uA709AM, uA709M, uA709C GENERAL-PURPOSE OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature (unless otherwise noted V CC ± TEST CONDITIONSt PARAMETER Via Input offset voltage VCC± = ±9Vto ±15V,VO = 0 110 Input offset current VCC± = ±g V to ±15 V, Va = 0 liB Input bias current VCC± = ±9 V to ±15V,VO=0 VICR Common-mode input voltage range VOpp MIN 25°C Maximum peak-to-peak AVD ri voltage amplification kSVS Supply voltage sensitivity Total power dissipation 1.5 0.3 2 25°C ±8 ±10 24 28 Full range 24 25°C 20 Full range 20 25°C 15 Full range 12 25°C 50 Full range 35 See Note 5 25°C 25°C No load Va = 0, 500 750 25°C VIC = VICR min VCC = ±9Vto±15V PD 100 25°C Va = ± 10 V Va = 0, 7.5 Full range Input resistance Output resistance ro CMRR Common-mode rejection ratio 2 10 25°C RL ;,: 2 kg RL :5 2 kg, MAX Full range RL = 2 kg Large-signal differential TYP Full range RL ;,: 10 kg output voltage swing ± 15 VI uA709C 65 UNIT mV nA ~A V V 26 45 V/mV 250 kg 150 g 90 dB 25°C 25 200 ~V/V 25°C 80 200 mW t All characteristics are specified under open-loop operation with zero volts common-mode voltage unless otherwise specified. Full range for uA 709C is O°C to 70°C. NOTE 5: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback. operating characteristics VCC± = ±9 V to ± 15 V. TA = 25°C uA709AM PARAMETER uA709M TEST CONDITIONS MIN tr Rise time Overshoot factor VI = 20 mY, RL = 2 kg, UNIT uA709C See Figure 1 II CL CL = 0 = 100 pF TYP MAX 0.3 1 6% 30% PARAMETER MEASUREMENT INFORMATION 10 kn 200 pF OUTPUT 50n OUTPUT INPUT INPUT VOLTAGE WAVEFOflM FIGURE 1. RISE TIME AND SLEW RATE TEXAS • INSTRUMENTS 2-1304 POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 ~s uA741C, uA741I, uA741M GENERAL-PURPOSE OPERATIONAL AMPLIFIERS • • • • • • • Short-Circuit Protection uA741M ... J PACKAGE (TOP VIEW) Offset-Voltage Null Capability NC NC OFFSET N1 ININ+ VccNC Large Common-Mode and Differential Voltage Ranges No Frequency Compensation Required Low Power Consumption No Latch-Up Designed to Be Interchangeable With Fairchild ftA741 NC NC NC Vcc+ OUT OFFSET N2 NC 7 uA741M •.. JG PACKAGE uA741C, uA741 I ... 0 OR P PACKAGE (TOP VIEW) description The uA741 is a general-purpose operational amplifier featuring offset-voltage null capability. The high common-mode input voltage range and the absence of latch-up make the amplifier ideal for voltage-follower applications. The device is short-circuit protected and the internal frequency compensation ensures stability without external components. A low potentiometer may be connected between the offset null inputs to null out the offset voltage as shown in Figure 2. The uA741e is characterized for operation from ooe to 70 oe. The uA741 I is characterized for operation from -40 oe to 85°e.The uA741 M is characterized for operation over the full military temperature range of -55°e to 125°e. OFFSET N1 ( ] 8 NC IN- 2 7 Vcc+ IN+ 3 6 OUT Vcc- 4 5 OFFSET N2 uA741M •.• U FLAT PACKAGE (TOP VIEW) NC NC NC OFFSET N1 ININ+ Vcc+ OUT OFFSET N2 Vcc- uA741M •.. FK PACKAGE (TOP VIEW) symbol Z tu (/) LL OLLOOO zozzz NC INNC IN+ NC 3 2 1 2019 18 17 16 15 14 8 9 10 11 12 13 4 5 6 7 0 Z NC Vcc+ NC OUT NC 0 C\J 0 0 zzz ~ tu (/) LL LL 0 NC-No internal connection PRODucnON DATA Information is currenl as of publication date. Products conform to specifications per the terms 01 Texas Instruments standard warranty. Production processing does not necessarily Include testing of all parameters. Copyright © 1992, Texas Instruments Incorporated TEXAS ." INSIRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-1305 uA741C, uA741I, uA741M GENERAL·PURPOSE OPERATIONAL AMPLIFIERS AVAILABLE OPTIONS PACKAGE TA SMALL OUTLINE (D) O°C to 70°C uA741CD -40°C to 85°C uA7411D CHIP CARRIER (FK) -55°C to 125°C The D package IS CERAMIC DIP (J) CERAMIC DIP (JG) PLASTIC DIP (P) FLAT PACK (U) uA741CP uA7411P uA741MFK uA741MJ uA741MU uA741MJG available taped and reeled. Add the suffix R (e.g., uA741 CDR). schematic r---------~~----~~----------------~~- VCC+ IN - ----------t----+----, OUT IN+ Component Count Transistors 22 Resistors - 11 Diode -1 Capacitor - 1 OFFSETN1 OFFSETN2 L--+----~--+-----~------~----~~----+---VCC- absolute maximum ratings over operating free-air temperature range (unless otherwise noted) uA741C uA741 I uA741M Supply voltage VCC+ (see Note 1) 18 22 22 UNIT V Supply voltage VCC- (see Note 1) -18 -22 -22 V Differential input voltage (see Note 2) ±15 ±30 ±30 V Input voltage any input (see Notes 1 and 3) ±15 ±15 ±15 V Voltage between either offset null terminal (N1/N2) and VCC- ±15 ",0.5 ±0.5 V unlimited unlimited unlimited Duration of output short circuit (see Note 4) See Dissipation Rating Table Continuous total power dissipation Operating free-air temperature range Storage temperature range Case temperature for 60 seconds FKpackage Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds J, JG, or U package Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds D or P package NOTES: 1. 2. 3. 4. Oto 70 -401085 -55to 125 -65 to 150 -65 to 150 -65 to 150 °C 260 °C 260 °C °C All voltage values, unless otherwise noted, are With respect to the midpoint between VCC+ and VCe-. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less. The output may be shorted to ground or either power supply. For the uA741 M only, the unlimited duration of the short circuit applies at (or below) 125°C case temperature or 75°C free-air temperature. TEXAS .." INSlRUMENTS 2-1306 300 260 °c POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 uA741C, uA741I, uA741M GENERAL·PURPOSE OPERATIONAL AMPLIFIERS DISSIPATION RATING TABLE PACKAGE TA" 25'C POWER RATING DERATING FACTOR DERATE ABOVETA 105'C 90'C D 500mW FK 500mW J JG 500mW 5.8mWrC 11.0mWrC 11.0mWrC 500mW 8.4 mW/oC P 500mW U 500mW = = = TA 70'C POWER RATING TA 85'C POWER RATING 64°C 464mW 377mW N/A 105'C 500mW 500mW 275mW 500mW 500mW 275mW 500mW 500mW 210mW N/A 500mW 500mW N/A 57'C 432mW 351 mW 135mW N/A 5.4 mwrc TA 125'C POWER RATING electrical characteristics at specified free-air temperature, Vcc± = ±15 V PARAMETER TEST VIO Input offset voltage VO=O AVIO(adj) Offset voltage adjust range Vo =0 110 liB Input offset curent VO=O Input bias current Vo =0 YOM AVD 25'C ±15 25'C 20 25'C 80 Full range 25'C ±12 Full range ±12 ±12 ±12 voltage swing RL = 2 kQ 25'C ±10 ±10 RL" 2 kQ Full range Large-signal differential RL" 2 kQ 25'C 20 voltage amplification VO=±10V Full range 15 25'C 0.3 Vo =0, See Note 5 25'C Common-mode rejection ratio Supply voltage sensitivity (!NIO/!:NCC) ICC Supply current No load, Vo = 0 PD Total power dissipation No load, Vo = 0 ±15 200 20 80 Full range 70 mV 200 500 1500 ±12 ±13 ±12 ±14 ±10 ±13 V ±13 ±10 200 50 200 V/mV 25 2 0.3 90 70 MQ 2 75 Q 1.4 pF 90 dB 70 30 150 30 150 150 ±25 ±40 ±25 ±40 1.7 2.8 1.7 2.8 Full range 3.3 50 85 100 ",VN 150 25'C 25°C nA ±12 25'C Full range nA V ±12 ±14 mV 500 500 ±13 Full range Short-circuit output current .. 70 25'C VCC=±9Vto ±15V 5 6 1.4 25'C UNIT MAX 1 6 75 25'C VIC = VICR min TYP 800 25'C Input capacitance MIN 300 Full range Ci lOS 25'C RL = 10 kQ ro UA7411, UA741M MAX 7.5 RL" 10 kQ Input resistance kSVS 1 Maximum peak output Output resistance TYP Full range . voltage range 'i CMRR MIN Full range Common-mode input VICR UA741C TAt CONDITIONS 3.3 50 85 mA mA mW 100 t All characteristics are measured under open-loop conditions With zero common-mode Input voltage unless otherwise specified. Full range for the uA741C is O'C to 70'C, the uA741 I is-40°Cto 85°C, and the uA741M is-55°C to 125'C. NOTE 5: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback. TEXAS ~ INSlRUMENlS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-1307 uA741C, uA7411, uA741M GENERAL·PURPOSE OPERATIONAL AMPLIFIERS operating characteristics, VCC:!: PARAMETER tr SR = ±15 V, TA = 25°C uA741C TEST CONDITIONS MIN TYP uA7411, uA741M MAX MIN VI = 20mV, RL=2kQ, 0.3 0.3 Overshoot factor CL = 100 pF, See Figure 1 5% 5% Slew rate at unity gain VI = 10 V, CL = 100 pF, RV 2kQ, See Figure 1 0.5 0.5 PARAMETER MEASUREMENT INFORMATION Output INPUT VOLTAGE WAVEFORM TEST CIRCUIT Figure 1. Rise Time, Overshoot, and Slew Rate APPLICATION INFORMATION N2 ToVCC_ Figure 2. Input Offset Voltage Null Circuit TEXAS ~ INSlRUMEN1S 2-1308 TYP Rise time POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MAX UNIT I'S VII's uA741C, uA741I, uA741M GENERAL·PURPOSE OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICSt INPUT OFFSET CURRENT INPUT BIAS CURRENT vs vs FREE-AIR TEMPERATURE FREE-AIR TEMPERATURE 400 100 90 1 ., '" ~ ;g S ,e. VCC~ = 11SV ±13 - VCC- =-1S V TA = 2S0C ±12 " .,'" ±10 E ±8 I ±9 I / ±7 1 ±6 ~ ±S :;; /" I D- "E 'x :;; '" ~:,... ±11 0 :I!. ..... I ±4 0.1 II / 0.2 0.4 0.7 1 2 4 7 10 RL - Load Resistance - kQ Figure 5 t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. TEXAS .JJ1 INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-1309 uA741C, uA741I, uA741M GENERAL-PURPOSE OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS OPEN·LOOP SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION MAXIMUM PEAK OUTPUT VOLTAGE ±20 > .. I C1 !!! ;g :; Co :; Jeb~ I~ li~ V . a..'" E ::l E vs SUPPLY VOLTAGE > .g I. > ±18 I- Vec_=-15V RL=10kQ ±16 I- TA = 25°e I g ~ ±14 ±6 I ±4 ::;;'" ::;; -? - vcJ = ±110V RL=2 kQ 200 _ TA = 25°e V V ./ ~ k'" V 14 16 L !'l iii ,..... /' / 40 / ~ ~ f\ ~ c 20 I ±2 ......... 0 1k 10 k 100 k J ~ 10 1M o 2 4 f - Frequency - Hz 6 8 10 12 Vee ± - Supply Voltage - V Figure 6 Figure 7 OPEN·LOOP LARGE·SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREQUENCY 107~rTTM~-T~~~~~~~~~ l~g~+=11~JII 106 1--+-+++++ItI-"'-+-+++H+tl---++ VCC- = -15 V Vo =±10V RL=2 kQ TA = 25°C 104 1--If-+1H+fl'l<-,,-t-+H++tIt--+-t+tfflIl--I-t-t-tttttl 102 1--If-+1H+HtI---t-+++H1'It,,--+-t+tfflIl--t-t-t-tttttl f - Frequency - Hz Figure 8 TEXAS ~ INSTRUMENTS 2-1310 I 100 ~ \ ±8 ·x ~ \ ±10 400 ii ~ ±12 0 ". vs FREQUENCY POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 18 20 uA741C, uA741I, uA741M GENERAL·PURPOSE OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS COMMON-MODE REJECTION RATIO vs FREQUENCY ELAPSED TIME 100 III "0 I o ~ a: c o g 'a; a: CD 90 '\ 80 ~~~~ = 115 ~ 11 28 VCC_=-15V BS = 10 kQ TA=25"C 24 C o E E 40 Ol \. \ a: a: :::iii o '" ~ 12 \. 1\ ~ 8 L: 0 I I 30 4 0 > 20 10% 0 ~ I I I I I 10 o - I: '5 o I 16 CD 60 50 90%1 E I '8 f.... 20 > 70 :::iii o OUTPUT VOLTAGE vs tr -4 1 100 10 k 1M o 100M VCC+ = 15 V VCC-=-15V RL= 2 kQ CL=100pF TA = 25"C I' 1.5 0.5 1 2 2.5 t-Time-!-,s f - Frequency - Hz Figure 10 Figure 9 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 8 6 > . 4 '" ~ 2 I - '5 Q, '5 c 0 -2 '" '5 Q, .5 -4 1\ Vo I I L / 0 "0 ~ I / Ol VCC+ = 15V VCC_=-15V RL=2 kQ CL= 100 pF TA = 25"C I I VI I - 1\ \ \ \ L I- -6 -8 o 10 20 30 40 50 60 70 80 90 t-Tlme-!-'s Figure 11 TEXAS ~ INSlRUMENlS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-1311 uA747C, uA747M DUAL GENERAL·PURPOSE OPERATIONAL AMPLIFIERS 0971, FEBRUARY 1971 -REVISED OCTOBER 1990 • No Frequency Compensation Required • Low Power Consumption • Short· Circuit Protection • Offset-Voltage Null Capability • Wide Common· Mode and Differential Voltage Ranges • No Latch-Up • Designed to be Interchangeable with Fairchild p.A747M and p.A747C 0, J, N, OR W PACKAGE (TOP VIEW) IN- OFFSET 1 N1 IN+ OFFSET 1N2 1 VCC+ t OUT NC OUT 2 VCC + t OFFSET 2N1 VCCOFFSET 2N2 IN+ IN- uA747M ... FK PACKAGE (TOP VIEW) description 2 The uA 7 4 7 is a dual general-purpose operational amplifier featuring offset-voltage null capability. Each half is electrically similar to uA 7 41. ~ IUJ en u. + I Uu. ~ ~ 20 The high common-mode input voltage range and the absence of latch-up make this amplifier ideal for voltage-follower applications. The device is short-circuit protected and the internal frequency compensation ensures stability without external components. A low-value potentiometer may be connected between the offset null inputs to null out the offset voltage as shown in Figure 2. =1rtN1 4 18 5 17 6 16 OUT NC NC NC OUT 14 8 9 1011 12 13 + I U ~ ~ 2 2 + I- U U N > en u. N UJ u. 0 symbol (each amplifier) INVERTING INPUT IN- > 15 OFFSET 2N2 The uA747C is characterized for operation from OOC to 70°C; the uA747M is characterized for operation over the full military temperature range of -55°C to 125°C. NONINVERTING INPUT IN + + U U 2019 2 OFFSET 1N2 +- NC - No internal connection tThe two positive supply terminals (1 VCC + and 2 VCC +) are connected together internally. OUTPUT N2 AVAILABLE OPTIONS PACKAGE TA VIO MAX AT 25°C 20-PIN 14-PIN PLASTIC DIP FLAT PACK CHIP CARRIER (O) CERAMIC DIP (J) (N) {WI (FK) 6 mV uA747CD - uA747CN - - 5 mV - uA747MJ - uA747MW uA747MFK SMALL OUTLINE O°C to 70°C -55°C to 125°C The 0 package is available taped and reeled. Add the suffix R to the device type, (i.e., uA747CDR). PRODUCTION DATA documents contain informetion current as of publication date. Products conform to specifications per the terms of Texes Instruments standard warranty. Production procassing doas not necessarily include tasting of an paremoters. Copyright © 1990, Texas Instruments Incorporated TEXAS • INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 On products compliant to MIL-STD-883, Cla"s B. all parameters art tasted unless otherwise noted. On all other products. production processing does not necessarily include testiltff of all paramaters. 2-1313 uA747C, uA747M DUAL GENERAL-PURPOSE OPERATIONAL AMPLIFIERS schematic (each amplifier) r---------------~------~---------------.---VCC+ INVERTING INPUT (IN-) NONINVERTING INPUT (IN+) OFFSET NULL (N2) OUTPUT _-++--____+-____+_, OFFSET NULL (N1) absolute maximum ratings over operating free-air temperature range (unless otherwise noted) uA747C uA747M UNIT Supply voltage, Vee + (see Note 1) 1B 22 V Supply voltage, Vee _ (see Note 1) -1B -22 V Differential input voltage (see Note 2) ±30 ±30 V Input voltage any input Isee Notes 1 and 3) ±15 ±15 V Voltage between any offset null terminal (N1/N2) and Vee- ±0.5 ±0.5 V unlimited unlimited Duration of output short-circuit (see Note 4) eontinuous total dissipation See Dissipation Rating Table o to Operating free-air temperature range 70 -65 to 150 Storage temperature range - 55 to 125 °e -65 to 150 °e Case temperature for 60 seconds FK package 260 °e Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds J or W package 300 °e Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds D or N package NOTES: 1. 2. 3. 4. 260 °C All voltage values, unless otherwise noted, are with respect to the midpoint between Vee + and Vee _. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less. The output may be shorted to ground or either power supply. For the uA747M only, the unlimited duration of the short-circuit applies at (or below) 125°e case temperature or 75°e free-air temperature. DISSIPATION RATING TABLE PACKAGE TA'" 25°C POWER RATING DERATING DERATE FACTOR ABOVE TA e TA - 70 0 POWER RATING D BOO mW 7.6 mW/oe 45°C FK BOOmW 11.0 mW/oe J BOOmW 11.0 mW/oe noe noe N BOOmW 9.2 mw/oe 63°e 736 mW W BOOmW B.O mw/oe 50 0 e 640 mW TEXAS 60B mW BOOmW 275 mW BOOmW 275 mW ~ INSTRUMENTS 2-1314 TA - 125°C POWER RATING POST OFFICE BOX 655303 - DALLAS. TEXAS 75265 200 mW uA747C, uA747M DUAL GENERAL·PURPOSE OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature. Vee + Input offset voltage VIO ~ Va 0 Input offset current liB Input bias current ~ RL ., 10 k!l output voltage swing RL ~ Large-signal differential RL ., 2 k!l, voltage amplification VO~±10V Input resistance Output resistance Ci Input capacitance Common-mode CMRR rejection ratio VIC ~ VICR ~ 25°C 24 24 25°C 20 Full range 20 25°C 25 Full range 15 25°C 0.3" (each amplifier) Po Va 1IV02 5 6 ±15 200 20 80 ±13 500 1500 ±12 ±13 24 20 V 26 20 50 200 200 V/mV 25 0.3 2 2 MO 75 75 !l 25°C 1.4 1.4 pF 25°C 70 70 90 70 gO d8 70 30 150 30 150 pVIV ± 9 V to ± 15 V Full range No load nA 28 24 26 nA V ±12 28 mV mV 200 500 500 UNIT 25°C Full range output current ICC MAX 1 800 Full range Short-circuit Supply current 80 25°C VCC TYP 300 ±12 See Note 6 (Il.VIO/Il.VCC) lOS 20 ±12 Supply voltage sensitivity kSVS ±15 25°C 25°C 2 k!l RL ., 2 k!l r; 25°C Full range 10 k!l Maximum peak-to-peak ro 6 MIN 7.5 25°C RL AVO 1 Full range input voltage range VOpp MAX Full range Common-mode VICR uA747M TYP Full range adjust range 110 MIN 25°C Offset voltage Il.VIO(adj) uA747C TEST CONOITIONSt PARAMETER -15 V 15 V. Vee- 150 25°C ±25 ±40 ±25 ±40 25°C 1.7 2.8 1.7 2.8 3.3 Full range Power dissipation No load, 25°C (each amplifier) Vo ~ 0 Full range Channel separation 150 50 25°C 3.3 85 50 100 85 100 120 120 0 mA mA mW dB t All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range for uA747C is ooC to 70°C and for uA747M is -55°C to 125°C. "On products compliant to MIL-STD-883, Class B, this parameter is not production tested. NOTE 6: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback. operating characteristics. Vee + = 15 V. Vee _ = -15 V. TA = 25 °e PARAMETER tr Rise time Overshoot factor SR Slew rate at unity gain TEST CONDITIONS VI CL ~ ~ RL 100 pF, See Figure 1 VI~10V, CL ~ ~ 20 mY, 100 pF, RL ~ 2 k!l, 2 k!l, See Figure 1 MIN TYP 0.3 MAX UNIT "s 5% 0.5 V/,.s TEXAS • INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-1315 uA747C, uA747M DUAL GENERAL·PURPOSE OPERATIONAL AMPL1FIERS PARAMETER MEASUREMENT INFORMATION >--*-.--fo) OUTPUT INPUT INPUT VOLTAGE WAVEFORM CL = 100 pF TEST CIRCUIT FIGURE 1. RISE TIME. OVERSHOOT. AND SLEW RATE TYPICAL APPLICATION DATA TO VCC- FIGURE 2. INPUT OFFSET VOLTAGE NULL CIRCUIT TYPICAL CHARACTERISTICS INPUT OFFSET CURRENT vs FREE-AIR TEMPERATURE 100 28 ~ ~ 26 vs vs LOAD RESISTANCE FREQUENCY ~ 24 ... S- 22 ~'" 20 "; 18 . co I . '" :ifu ~ ~ '0 :/ 1I . 40 11111 VCC+ = 15 V VCC- = -15 V RL = 10 k!1 TA = 25°C 36 > :; 32 ;- 28 o V 16 co 24 $ 20 co 16 '" 12 ~ \ \ .,;, c.. '" E I E 14 E I ,f, c.. 'xco . ~ J:l ~ > ....... f.--" i""'!-- Vcc+ = 15 V VCC- = -15 V TA = 25°C I / 12 .§ x co 8 :a; I 10 / 8 0,1 c.. c.. 4 > o o 0,2 0.4 0,7 2 4 ~ 100 7 10 1k FIGURE 6 FIGURE 5 OPEN-LOOP LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION E ,,g OPEN-LOOP LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs vs SUPPLY VOLTAGE FREQUENCY 400 107 = 2 k!1 TA = 25°C ">I c 200 " ~ a. /' E 100 .'" V V V V ,/" "iii V c . Ci .. 104 > 10 3 ...'"co '0 ~ "'" "iii '';::: / c .. ~ .... .... 102 Ci 10 1 I 20 Cl > I '" ~ ~ Cl ~ 105 ~ ~ ::: 106 a. E / '';::: co " ./ 40 0 '';::: ~ ~ J!! Vcc+ = 15 V VCC- = -15 V RL = 2 k!1 TA = 25°C c RL co ~ 10 1M f-Frequency-Hz RL -Load Resistance-k!1 > 't--. 100 k 10 k o 2 4 6 10- 1 8 10 12 14 16 18 20 1 10 IVcc±I-Supply Voltage- V 100 '" \ 1 k 10 k 100 k 1 M 10 M 100 M f-Frequency-Hz FIGURE 7 FIGURE 8 TEXAS "" INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-1317 uA747C, uA747M DUAL GENERAL·PURPOSE OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS COMMON-MODE REJECTION RATIO vs FREQUENCY 100 ~ c 90 o 70 ';;; 60 .. 50 .~ a:: ~C: '\, 80 1\ 30 I 20 ::.E (.) 20 > . ... \ 90%1 I en 16 '" '0 I\. \ ,. S,. 1\ 8 0 I \ L 1: 12 >... (.) a:: a:: 24 E 40 o E E o 28 vcd+= 1~V VCC- = -15 V RS = 50Q TA = 25°C £Xl i' .g OUTPUT VOLTAGE vs ELAPSED TIME ~ / 4 10%V o .......... ', -4 1 10 100 1k 20 k I I I 0 10 Vcc+=15V Vcc- = -15 V RL = 2 kQ CL=100pF TA = 25°C I I I o 100 k 1 M 10 M 100 M 1 0,5 f-Frequency-Hz t-Time-lls FIGURE 9 FIGURE 10 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 8 6 >I . ... en '" '0 >... ,. ...,.c. - 11 4 c ...,.'" -2 .= -4 c. ~ I I / 0 Vcc+= 15 V VCC-= -15 V RL =2 kQ CL = 100 pF TA = 25°C :\ I "OUTPUT 2 I I~PUT II 0 "0 1\ \ : I I I 11 - - _\ L ~ -6 -8 o 10 20 30 40 50 60 70 80 t-Time-lls FIGURE 11 TEXAS ~ INSTRUMENTS 2-1318 1,5 POST OFFICE BOX 655303 ' DALLAS, TEXAS 75265 90 2 2,5 uA748C, uA748M GENERAL·PURPOSE OPERATIONAL AMPLIFIERS 0921, DECEMBER 1970-REVISED OCTOBER 1990 uA748C ... 0 OR P PACKAGE uA748M ... JG PACKAGE • Frequency and Transient Response Characteristics Adjustable • Short-Circuit Protection • Offset-Voltage Null Capability • Wide Common-Mode and Differential Voltage Ranges • Low Power Consumption • No Latch-Up • Same Pin Assignments as uA709 (TOP VIEW) Nl/COMP[]8 IN2 7 IN+ 3 6 VCC 4 5 CaMP VCC+ OUT N2 uA748M ... U FLAT PACKAGE (TOP VIEW) NC Nl(COMP ININ+ VCC- description The uA748 is a general-purpose operational amplifier that offers the same advantages and attractive features as the uA 7 41 except for internal compensation. External compensation can be as simple as a 30-pF capacitor for unitygain conditions and, when the closed-loop gain is greater than one, can be changed to obtain wider bandwidth or higher slew rate. This circuit features high gain, large differential and common-mode input voltage range, and output short-circuit protection. Input offset voltage adjustment can be provided by connecting a variable resistor between the offset null pins as shown in Figure 12, NC CaMP - " "_ _r" VCC+ OUT N2 NC - No internal connection symbol COMP Nl/COMP N2 NON INVERTING INPUT IN+ OUTPUT INVERTING INPUT IN- The uA 7 48C is characterized for operation from OOC to 70°C; the uA748M is characterized for operation over the full military temperature range of -55°C to 125°C. AVAILABLE OPTIONS PACKAGE TA 8-PIN VIO MAX lO-PIN SMALL OUTLINE (D) CERAMIC DIP (JG) PLASTIC DIP (P) FlAT PACK 6 mV uA748CD - uA748CP - 5 mV - uA748MJG - uA748MU AT 25°C (U) O°C to 70°C -55°C to 125°C The D package is available taped and reeled. Add the suffix R to the device type, (e.g., uA748CDR). PRODUCTION DATA documants contain information currant as of publication data. Products conform to spacifications par tha tarms of Taxas Instrumants standard warranty. Production procassing doas not nace••arily includa tasting of aU parameters. ~ Copyright © 1990, Texas Instruments Incorporated TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-1319 uA748C. uA748M GENERAL·PURPOSE OPERATIONAL AMPLIFIERS schematic COMP INVERTING --~------r~~~~~~~~~----~------~-'--~~--------------'-­ VCC+ INPUT IN- NONINVERTING INPUT IN+ OUTPUT 34 n OFFSET NULL N2 OFFSET NULL Nl/COMP Resistor values shown are nominal. absolute maximum ratings over operating free-air temperature range (unless otherwise noted) uA748C uA748M UNIT Supply voltage Vee + (see Note 1) 18 22 V Supply voltage Vee _ (see Note 1) -18 -22 V Differential input voltage (see Note 2) ±30 ±30 V Input voltage (either input, see Notes 1 and 3) ±15 ±15 V Voltage range between either offset null terminal (Nl/N2) and Vee- -0.5 to 2 -0.5 to 2 V Duration of output short-circuit (see Note 4) unlimited unlimited eontinuous total power dissipation See Dissipation Rating Table o to Operating free-air temperature range Storage temperature range Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds NOTES: 1. 2. 3. 4. 70 -65 to 150 I I JG or U package D or P package - 55 to 125 °e - 65 to 150 °e 300 °e 260 °e All. voltage values, unless otherwise noted, are with respect to the midpoint between Vee + and Vee _. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less. The output may be shorted to ground or either power supply. For the uA 748M only, the unlimited duration of the short-circuit applies at (or below) 125°e case temperature or 75°e free-air temperature. DISSIPATION RATING TA8LE PACKAGE TA " 25°C POWER RATING DERATING DERATE TA = 70°C TA = 125°C FACTOR ABOVE TA POWER RATING POWER RATING 5.8 mW/oe 8.4 mW/oe 64°e 464mW N/A 90 0 e 500 mW 210mW D 500 mW JG 500mW P 500 mW N/A N/A 500 mW N/A U 500 mW 5.4 mW/oe 57°e 432 mW 135 mW TEXAS . . INSTRUMENTS 2-1320 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 uA748C, uA748M GENERAL-PURPOSE OPERATIONAL AMPLIFIERS electrical characteristics at specified free-air temperature, Vee + ee = 30 pF Via Input offset voltage Va = 0 110 Input offset current Va = 0 liB Input bias current Va = 0 VOM output voltage swing Large-signal differential AVD ri voltage amplification Output resistance Ci Input capacitance CMRR kSVS PD SO 25°C ±12 ±12 RL = 10 kll 25°C ±12 RL '" 10 kll RL = 2 kll Full range ±12 25°C ±10 RL '" 2 kll Full range ±10 25°C 20 Full range 15 25°C 0.3 rejection ratio Va = 0 Supply voltage VCC = ± 9 V to ± 15 V, 200 20 70 Full range 70 5 200 500 500 SO 500 1500 ±12 ±13 ±14 ±12 ±10 nA nA V ±13 ±10 50 200 200 VlmV 25 2 0.3 2 Mil Il 75 1.4 70 90 pF 90 dB 70 25°C 30 150 30 150 sensitivity p.V/V Full range Va = 0 150 150 25°C ±25 ±40 ±25 ±40 No load, 25°C 1.7 2.S 1.7 2.8 output current Supply current mV ±14 ±12 ±13 UNIT V ±12 1.4 25°C MAX 6 75 25°C VIC = VICR min, 1 6 ±13 25°C See Note 5 TYP SOO Full range Va = O. MIN 300 25°C Short-circuit ICC 20 Full range RL '" 2 kll, Va = ±10 V uA74SM MAX 7.5 25°C Common-mode (~Vlo/~Vccl lOS 1 Full range Input resistance ro TYP 25°C input voltage range Maximum peak MIN Full range Common-mode VICR uA74SC TEST CONDITIONS t PARAMETER -15 V, 15 V, Vee- Va = 0 Full range Total power No load, 25°C dissipation Va = 0 Full range 3.3 50 3.3 85 50 100 85 100 mA mA mW t All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range for uA748C is O°C to 70°C and for uA748M is -55°C to 125°C. NOTE 5: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback. operating characteristics, Vee+ PARAMETER tr Rise time Overshoot factor SR Slew rate at unity gain = 15 V, Vee- = -15 V, TA = 25°e TEST CONDITIONS VI = 20 mV, RL = 2 kll, CL = 100 pF, Cc = 30 pF, MIN TYP 0.3 MAX UNIT p.s 5% See Figure 1 VI=10V, RL = 2 kll, CL = 100 pF, Cc = 30 pF, 0.5 V/p.s See Figure 1 TEXAS . " INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2-1321 uA748C, uA748M GENERAL·PURPOSE OPERATIONAL AMPLIFIERS PARAMETER MEASUREMENT INFORMATION N2 (OPEN) I VI OUTPUT ~---OV CC-30pF INPUT VOLTAGE WAVEFORM TEST CIRCUIT FIGURE 1. RISE TIME. OVERSHOOT. AND SLEW RATE TYPICAL CHARACTERISTICS INPUT OFFSET CURRENT vs FREE-AIR TEMPERATURE FREE·AIR TEMPERATURE 100 ... s-'" 0'" .:.: ." '" 'x ." :2 I :2 0 > ~ I- > I ... "0 J ±10 / ±8 ±7 / ±6 ±14 ~ ±10 E '" '" E ±8 'x '" ~ ±6 ~ '" ±12 So'" V ±9 ±18 > ... \ \ 0.. / ~ ±4 :2 ~ ±2 ±5 1- ±4 0.1 0.4 0.7 1 4 2 7 10 f-Frequency-Hz . FIGURE 5 OPEN-LOOP LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION OPEN·LOOP LARGE·SIGNAL 01 FFERENTIAL VOLTAGE AMPLIFICATION vs , vs FREQUENCY SUPPLY VOLTAGE 107 400 RL = 2 kU TA = 25°C 3; I /"" § 200 .~ ;~ :!: 0. E /' 100 iO .;; /" /"" c,) 5 0. 10 E C c: ~ V '" :I: C I 20 104 ~ 103 ~ 10 2 ~ 10 1 ~ C > I C > V II VCC+=15V VCC- = -15 V RL=10Hl Cc = 30 pF TA = 25°C '"g> ±16 1/ ±11 0.. E 'E" -,rrnrr ±20 ±14 >I 12 14 16 18 20 10 100 IVcc±I-Supply Voltage-V 1k r\ 10 k 100 k 1 M 10 M 100 M f-·Frequency-Hz FIGURE 6 FIGURE 7 TEXAS • INSTRUMENlS POST OFFICE BOX 655303 • OALLAS. TEXAS 75265 2-1323 uA748C. uA748M GENERAL·PURPOSE OPERATIONAL AMPLIFIERS TYPICAL CHARACTERISTICS OUTPUT VOLTAGE COMMON·MODE REJECTION RATIO vs FREOUENCY co 100 I 90 '\\ 0 '';:: co a: 80 I: 0 1\ 70 ., 'a;a:., 60 "t:I 0 50 28 VCC+=15V VCC-= -15V RS = 10 kn Cc = 30 pF TA = 25°C "t:I .~ VS ELAPSED TIME 24 > 20 \ ~ 16 /: /: / E 1\ ~ . \ ~ c 40 0 E E 30 0 u I a: 20 12 ::0 E8 o 1\ \ ~ 4 I o 10 100 1k I ~tr -4 0 1 I I 10%/ 10 o 10 k 100 k 1 M 10 M 100 M I I I 0.5 1,5 2 t-Time-j.ls f-Frequency-Hz FIGURE 9 FIGURE 8 VOL TAGE·FOLLOWER LARGE·SIGNAL PULSE RESPONSE 8 6 - > .,~ ...""co 4 > .. . 2 .: -4 '0 ::0 Co ::0 I ~ / '/ 0 "t:I cco -2 VCC+=15V VCC- = -15 V RL = 2 kn CL = 100 pF Cc = 30 pF TA = 25°C 1,\ : '/OUTPUT 0 ::0 Co \ I I I \ INPUT: 1 I L '-- ~ -- \ -6 -8 o 10 20 30 40 50 60 70 t-Time-j.ls FIGURE 10 TEXAS • INSTRUMENTS 2-1324 VCC+ = 15 V VCC- = -15 V RL=2kn CL = 100 pF Cc = 30 pF TA = 25°C I I I I a: :a:u 90%1 E POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 80 90 2.5 uA748C, uA748M GENERAL·PURPOSE OPERATIONAL AMPLIFIERS TYPICAL APPLICATION DATA Vcc'j - 30 pF 400 Mil. BW = 1 MHz Cj - 1 pF. FIGURE 11. UNITY·GAIN VOLTAGE FOLLOWER R2 VI 1. R1 R1 VI R3 R1 • 30 pF CC'" R1 + R2 Rl '" 2 kll Vo -::- 1. -::- R1 • R2 R3 = - - R1 + R2 VCCCOMP N1 N2 FIGURE 12. INVERTING CIRCUIT WITH ADJUSTABLE GAIN COMPENSATION. AND OFFSET ADJUSTMENT TEXAS • INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 2-1325 2-1326 3-1 Contents Page Ordering Instructions ..................................................... 3-3 Mechanical Data ........................................................... 3-5 i: (1) (") :T r» _. ::J (") r» C ar» 3-2 ORDERING INSTRUCTIONS ORDERING INSTRUCTIONS Electrical characteristics presented in this data book, unless otherwise noted, apply for the circuit type(s) listed in the page heading regardless of package. The availability of a circuit function in a particular package is denoted by an alphabetical reference above the pin-connection diagram(s). These alphabetical references refer to mechanical outline drawings shown in this section. Factory orders for circuits described in this data book should include a four-part type number as shown in the following example. Example: TL 598M J Prefix ____________________________________~ MUST CONTAIN TWO OR THREE LETTERS SN .......... TI Special Functions or Interface Products TL, TLE .......................... TI Linear Products TLC ........... TI Linear Silicon-Gate CMOS Products STANDARD SECOND-SOURCE PREFIXES AD ................................. Analog Devices ADC, LF, LM, LP, or MP ................... :. National LT or LTC .......................... Linear Technology MC ....................................... Motorola NE, SA, or SE .............................. Signetics OP ........................................... PMI RC, RM, or RV ............................ Raytheon uA ................................ Fairchild/National UC ....................................... Unitrode Unique Circuit Description Including Temperature Range ________--' MUST CONTAIN TWO OR MORE CHARACTERS (From Individual Data Sheets) Examples: 10 592 7757 34070 1451AC 2217-285 Package ____________________________________________________ MUST CONTAIN ONE OR TWO LETTERS D, DB, DW, FK, FN, J, JD, JG, KC, KK, KV, LP, N, NS, NT, NW, P, PK, PW, U (From Pin-Connection Diagrams on Individual Data Sheet) MIL-STD-8836, Method 5004, Class 6 Omit /883B When Not Applicable TEXAS ,If INSTRUMENlS POST OFFICE BOX 655303 • DALlAS. TEXAS 75265 ~ /8836 ORDERING INSTRUCTIONS Circuits are shipped in one of the carriers below. Unless a specific method of shipment is specified by the customer (with possible additional costs), circuits will be shipped via the most practical carrier. Dual-In-Line (J, JD, JG, N, NT, NS, NW, P) - A-Channel Antistatic or Conductive Plastic Tubing Shrink Small Outline (DB) - Tape and Reel Thin Shrink Small Outline (PW) - Tape and Reel Plug-In (LP) - Plastic Bag - Tape and Reel Small Outline (0, OW) - Tape and Reel . - Antistatic or Conductive Plastic Tubing Chip Carriers (FK, FN) - Antistatic or Conductive Plastic Tubing Power Tab (KC,KK,K\0 - A-Channel Antistatic or Conductive Plastic Tubing Flat (U) - Milton Ross Carriers TEXAS .J!I INSTRUMENTS 3-4 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 MECHANICAL DATA 0008, 0014, and 0016 . plastic small-outline packages Each of these small-outline packages consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high-humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly. D008, D014, and D016 (16-pln package used for Illustration) Designation per JEDEC Std 30: PDSO·G8 PDSO·G14 PDSO·G16 4,00 (0.157) 3,81 (0.150) 9 8 j I~ ~op~::C~s 1,75 (0.069) 1,35 (0.053) 5,21 (0.205) -t'I'----~ 4,60 (0.181) 0,229 (0.0090) 0,190 (0.0075) 0,50 (0.020) x 45' NOM 0,25 (0.010) ~6;-~-~-I:::J-=-I:::J_-I:::J-=-C:l-_C:l-_-8-"j 0,203 (0.008) 0,102 (0.004) 0,79 (0.031) 0,28 (0.011) I I , , :r~ --,.1 I.r- 0,51 (0.020) 0,36 (0.014) 7' NOM 4 Places Pin Spacing 1,27 (0.050) (see Note A) DIM ~ 8 14 16 AMIN 4,80 (0.189) 8,55 (0.337) 9,80 (0.386) A MAX 5,00 (0.197) 8,74 (0.344) 10,00 (0.394) ]l ~t.!; 0,51 (0.020) ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES NOTES: A. B. C. D. Leads are within 0,25 (0.010) radius of true position at maximum material condition. Body dimensions do not include mold flash or protrusion. Mold flash or protrusion shall not exceed 0,15 (0.006). Lead tips to be planar within ±0,051 (0.002) exclusive of solder. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3-5 MECHANICAL DATA 08008,08014,08016,08020, and 08024 shrink small-outline packages These shrink small-outline packages consist of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high-humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly. Designation per JEOEC Std 30: POSQ·G8 POSO-G14 POSO·G16 POSQ·G20 POSQ·G24 OB008, OB014, OB016, OB020, and OB024 (24·pln package used for Illustration) ~---------A ----------~~I )~ f 2'0-'1<-M_AX_----,.--- ~::;::;::;:;::;::::;:-':;::;;tLPJLRJLP j 0,05 MIN j B .... ! ~ L~IEBI 0.13®1 ?f~======~~ ~d Q,gQ W 0,10 £J~ 10' MAX 0,55 Pin Spacing 0,65 NOM (see Note A) Cl 0.015 ALL LINEAR DIMENSIONS ARE IN MILLIMETERS NOTES: A. Leads are within 0,25 mm radius of true position at maximum material condition. B. Body dimensions do not include mold flash or protrusion. C. Mold or flash end protrusion shall not exceed 0.15 mm. D. Interlead flash shall be controlled by TI statistical process conlrol (additional information available through TI field office). E. Lead tips to be planar within ±0,05 mm exclusive of solder. ~ 8 14 16 AMIN 2,70 5,90 A MAX 3,30 6,50 BMAX 0,68 1,30 DIM 20 24 5,90 6,90 7,90 6,50 7,50 8;50 0,98 0,83 0,68 TEXAS .J4.J INSlRUMENlS 3-6 POST OFFICE BOX 655303 • DALUlS, TEXAS 75265 MECHANICAL DATA DW016, DW020, DW024, and DW028 plastic sma"-outline packages Each of these small-outline packages consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high-humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly. DW016, DW020, DW024, and DW028 (20-pln package used for Illustration) i 8-8 8 11+--'8 10,65 (0.419) 10,15 (0.400) T Designation per JEDEC Std 30: PDSO-G16 PDSO·G20 PDSO·G24 PDSO·G28 A---+I r,;:20~==::::'==============1~1 I 7,55 (0.297) 7,45 (0.293) l;CD~:;:;::;::;::;::;:::;:::;::;:;:;::;:;:;::;l~O L ~t r,'~,~~. . . (0,", . " . ~:~;.~r(g_:~_~;-l--;-I~ 0,30 (0.012) 0,10 (0.004) I I .J 0,785 (0.031) 0,585 (0.023) -+ j L 9,0 (0.354) ',' (0,"" 0,490 (0.019) 0,350 (0.014) 0,320 (0.013) 0,230 (0.009) ~ ~ c0 C ~,. ~\"r,~::~, L 'u-' ~ A 1,27 (O.OSO) 0,40 (0.016) 1,27 (0.050) TP (see Note A) ~ 16 20 24 28 10,16 (00400) 12,70 (0.500) 15,29 (0.602) 17,68 (0.696) 10,36 (00408) 12,90 (0.508) 15,49 (0.610) 17,88 (0.704) DIM AMIN A MAX ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES NOTES: A. B. C. D, Leads are within 0,25 (0.010) radius of true position at maximum material condition. Body dimensions do not include mold flash or protrusion. Mold flash or protrusion shall not exceed, 0,15 (0.006). Lead tips to be planar within ±0,051 (0,002) exclusive of solder, TEXAS .JJ1 INSTRUMENTS POST OFFICE sox 655303 • DALLAS, TEXAS 75265 3-7 MECHANICAL DATA FK020, FK028, FK044, FK052, FK068, and FK084 ceramic chip carrier Each of these hermetically sealed chip carrier packages has a three-layer ceramic base with a metal lid and braze seal. These packages are intended for surface mounting on solder leads on 1,27 (0.050) centers. Terminals require no additional cleaning or processing when used in soldered assembly. FK package terminal aSSignments conform toJEDEC Standards 1 and 2. FK020, FK028, FK044, FK052, FK068, AND FK084 (28-pin used for illustration) Designation per JEDEC Std 30: CQCC-N20 CQCC-N28 CQCC-N44 CQCC-N52 CQCC-N68 CQCC-N84 19 25 Index Corner ~ 0,51 (0.020) 0,25 (0.010) 1,14 (0.045) ~ 0,89 (0.035) j -I.. t 1,14 (0.045) 0,89 (0.035) ~ 2,03 (0.080) 1,63 (0.064) 1,27 (0.050) T.P. l ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES NOTES: A. See next page for A and B dimensions. TEXAS ." INSlRUMENlS 3-8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA FK020, FK028, FK044, FK052, FK068, and FK084 ceramic chip carrier (continued) B A JEDEC OUTLINE NUMBER OF DESIGNATIONt TERMINALS MIN MAX MIN MAX MS-o.o.4-CB 20. 8,69 (0.342) 11,23 (0.442) 9,09 (0.358) 11,63 (0.458) 7,80 (0.307) 10,31 (0.406) 9,09 (0.358) 11,63 (0.458) MS-o.o.4-CC '.' 'MS-004;CD MS-004-CE .'. . . .•. . MS,004-CF . •.•. . MS-004-CG 28 '" ,.·•... · ·. (44..(, •.. . ·jl';?ifrn.A4i'il... 1~\{fj(0.~§9) .•• ··.1;?,$aW4~?r. o14:??{Q.P/ilQ) . . . . . .•. .....g • •. . '('. ,v"v IV. lV)1.9,32(6.76.6)(: .12;$8(0.495),14,2?(O;SElO). · ••••.. • ·61:l...,······(?~;a3(p.~38J •.•....... 84, 2M~(1 ,)4:1) ?4,43(O··9~?)?l';~O(o·I:l'!9r .", :29,59 ().,f64) 26,fjO(104?) ·······.~1,80(o:~5~) '1 ( 27;ob (1,C\(l3) t All dimensions and notes for the specified JEDEC outline apply. TEXAS .JJ1 INSlRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3-9 MECHANICAL DATA FN020,FN028,FN044,FN052,FN068,andFN084 plastic J-Ieaded chip carrier Each of these chip carrier packages consists of a circuit mounted on a lead frame and encapsulated within an electrically nonconductive plastic compound. The compound withstands soldering temperatures with no deformation, and circuit performance characteristics remain stable when the devices are operated in high-humidity conditions. The package is intended for surface mounting on 1,27 (0.050) centers. Leads require no additional cleaning or processing when used in soldered assembly. FN020, FN028, FN044, FN052, FN068, and FN084 (20-PIN package used for Illustration) Designation per JEDEC Std 30: S-PLCC-J20 S-PLCC-J28 S·PLCC·J44 S·PLCC·J52 S·PLCC·J68 S·PLCC·J84 ~ -A- D, (see Note B) 1.1018(0007)®IB®1 D-E®I I.L I (Q.002IN./IN) I B I 0.51 (0020) R Max 1.-_~_·~: ~:;:~g=:g:=~=l2=p=la=c=eS=1 cct: ~'~' ~7 ~ r_~ "0' • "@ L!l ~o' • 3 L ·i '1!i~';8 C(1~ @ _0 -1 2 1 20 19 6.~: (g:g~;l '-'-====== .+--1----11' -r 2 Sides (see Note E) ~ r~:t " -i--+--+- • L (~e~3r!! Frl ~'-1C:-0'-:C38:-c: -:eo",~ 2-: ~ -"; "~-=D- :E"@ "'I 10 11 I ~ -.-L 1·10.38(0.015)®IF-G@1 I -L--+---t- (see Note C) i . w 9 R. TYP ,.."----=,---,,cr---:= J l2Jzll 1_ 0.10 0.004 12 13 " Lc±l 0.51 (0.020) MIN. (see Note C) g.~g 19:96:l (Includes Lead Finish) SUM OF DAM BAR PROTRUSIONS TO BE 0,18 (0.007) MAXIMUM PER LEAD 1.10.18 (0.007) i&lil D-E@I (see table on following page for additional dimensions) ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES NOTES: B. All dimensions conform to JEDEC Specification MO·047AA1AF. Dimensions and tolerancing are per ANSI Y14.5M -1982. C. Dimensions D1 and E1 do not include mold flash protrusion. Protrusion shall not exceed 0,25 (0.010) on any side. Centerline of center pin each side is within 0,10 (0.004) of package centerline by dimension B. The lead contact points are planar within 0,10 (0.004). I - H -I. I - H -I is located al top of leads where they exit plastic body. F. Location of datums I - A -I and I - B -I to be determined at datum I - H -I· G. Determined at seating plane I - C -I. D. Datums ~ and ~ for center leads are determined at datum E. Datum TEXAS -If INSIRUMENlS 3-10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA FN020, FN028, FN044, FN052, FN068, and FN084 plastic J-Ieaded chip carrier (continued) JEDEC OUTLINE PINS MO-047AA 20 MO-047AB 28 MO-047AF 84 30,10 (1.185) 30,35 (1.195) 29,21 (1.150) 29,41 (1.141) 27,69 (1.090) 28,70 (1.130) 25,40 (1.000) NOTES A: All dimensions conform to JEDEC Specification MO-047ANAF. Dimensions and tolerancing are per ANSI Y14.5M - 1982. F: Determined at seating plane C 1- -I. TEXAS ." INSTRUMENlS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3-11 MECHANICAL DATA J014 ceramic dual-in-line package This hermetically sealed dual-in-line package consists of a ceramic base, ceramic cap, and lead frame. Hermetic sealing is accomplished with glass. The package is intended for insertion in mounting hole rows on 7,62 (0.300) centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Tin-plated ("bright-dipped") leads require no additional cleaning or processing when used in soldered assembly. J014 Designation per JEDEC Std 30: GDIP-T14 0,63 (0.025) R NOM ~------J'i-- 7,87 (0.310) 7,37 (0.290) I+----~_ 7,11 (0.280) 6,22 (0.245) IW\ 1050 90 0 0,51 (0.020) MIN 1,27 (0.050) NOM l t I~~~ 5,08 (0.200) MAX --Seatlng------I-----.,._+_~ 14 Places ~~ 0,36 (0.014) 0,20(0.008) 14 Places Glass Sealant l Plane -..I ~ 0,69 (0.027) MIN 14 Places 0,58 (0.023) 0,38 (0.015) 14 Places (see Notes B & C) II -+II+-- 3,30 (0.130) MIN 2,54 (0.100) 1,78 (0.070) 4 Places Pin Spacing 2,54 (0.100) T.P. (see Note A) Falls within JEDEC TO-116 and EIA MO-001AAdimensions ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES NOTES: A. Each pin centerline is located within 0,25 (0.010) of its true longitudinal position. B. This dimension does not apply for solder-dipped leads. C. When solder-dipped leads are specified, dipped area olthe lead extends from the lead tip to at least 0,51 (0.020) above seating plane. TEXAS ~ INSTRUMENTS 3-12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA J016, J018, J020, and J022 ceramic dual-in-line These hermetically sealed dual-in-line packages consist of a ceramic base, ceramic cap, and a lead frame. Hermetic sealing is accomplished with glass. These packages are intended for insertion in mounting-hole rows of 7,62 (0.300) centers forthe J016, J018, J020, and 10,16 (00400) centers forthe J022, respectively. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Tin-plated (bright-dipped) leads require no additional cleaning or processing when used in solder assembly. J016, J018, J020, and J022 (22-pin package used for illustration) tf. Designation per JEDEC Std 30: GDIP·T16 GDIP·T18 GDIP·T20 GDIP·T22 tf. 11Il\~·'('OO')NO. '.' i ;"T~ .',n 5.0~CJ100)"-- Sealant ~:~'" ~~~o - S~r~:,neg ~ ... to 22 Places - II 0,36 (0.014) ~\'4- 0,20 (0.008) 22 Places JL l-.I I I -U I l' -J'~ g'~:~ «g:g~~» 0.305 (0.012) MIN 4 Places Pin Spacing 2,54 (0.100) T. P. (see Note A) 0,76 (0.030) M I N ] 18 Places 22 Places (see Notes B & C) 1,27 (0.050) 0,38 (0.015) 4 Places ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES ~ PINS 16 B A MAX MIN MAX MIN MAX 19,18 (0.755) 19,94 (0.785) 7,37 (0.290) 7,87 (0.310) 6,22 (0.245) 7,62 (0.300) 23,1 (d.910) 4,37 (0,29() 7:87(0.3)0) 13,?2 (0.2~9) 7,132 (0.3QO) 6,22 (0.245) 7,62 (0.300) 18 .....•... 20 22 C MIN 23,132 (0.930) '00 ....... 24,76 (0.975) 7,37 (0.290) 7,87 (0.310) 28,0 (1.100) 9,91 (0.390) 10,41 (0.410) 9,65 (0.388) NOTES: A. Each pin centerline is located within 0,25 (0.010) of its true longitudinal position. B. This dimension does not apply for solder-dipped leads. C. When solder-dipped leads are specified, dipped area of the lead extends from the lead tip to at least 0,51 (0.020) above the seating plane. TEXAS -1!1 INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3-13 MECHANICAL DATA J028 ceramic dual-in-line package This hermetically sealed dual-in-line package consists of a ceramic base, ceramic cap, and lead frame. Hermetic sealing is accomplished with glass. The package is intended for insertion in mounting hole rows on 15,24 (0.600) centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Tin-plated ("bright-dipped") leads require no additional cleaning or processing when used in soldered assembly. J028 Designation per JEDEC Std 30: GDIP-T8 GDIP-T14 GDIP-T16 k f - - - - - - - 37,1 (1.460) MAX ~ ~ ~_ 15,49 (0.61.Ql I 0,63 (0.025) R NOM j 14,99 (0.590) r 14,2 (0.560) (0.515) --=--~+-13'1 ~I Glass Sealent 1,27 (0.050) NOM 1,78 (0.070) MAX 28 Places ~-S9""' fY-~ 28 Places 0,36 (0.014) 0,20 (0.008) 14 Places Plane ~~ 4,06 (0.160) 3,17 (0.125) 28 Places 2,54 (0.100) 1,52 (0.060) 4 Places 0,71 (0.028) MIN 28 Places 0,51 (0.020) 0,41 (0.016) 28 Places Pin Spacing 2,54 (0.100) T.P. (see Note A) ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES NOTES: D. Each pin centerline is located within 0,25 (0.010) of its true longitudinal position. E. This dimension does not apply for solder-dipped leads. F. When sOlder-dipped leads are specified, dipped area ofthe lead extends from the lead tip to at least 0,51 (0.020) above seating plane. TEXAS "f INSlRUMENTS 3-14 POST OFFICE BOX 655303 • DAL'-"'S, TEXAS 75265 MECHANICAL DATA JD024 and JD028 ceramic side-braze dual-in-line packages These hermetically sealed dual-in-line packages consist of a ceramic base, metal cap, and side-brazed tin-plated leads. These packages are intended for insertion in mounting-hole rows of 15,24 (0.600) centers. Leads require no additional cleaning or processing when used in solder assembly. JD024 and JD028 (28-pln package used for illustration) r-- =1r- ct. Designation per JEDEC Std 30: GDIP-T24 GDIP-T28 ct. A ~ ~ 'ES-j -+ I~ i 90' 0,36 (0.015) 0,25 (0.008) -'11- ~:;: :~:~;~~ 0,51 (0.020) MIN S;~~~g 5,08 (0.200) MAX +-In-TMl'''1nT'''1!"~;;;:;;:;:;;:;:;;;:;;:~;;:;;:;;::;:;;:;;:;;:;---r I-I JL 1,91 (0.075) MAX 4 Places .1 Pin Spacing 2,54 (0.100) T.P. ~ (see Note A) DIM ~ I. r24 28 15.24 (0.600) 15.24 (0.600) 8 (MAX) 31.8 (1.250) 36.8 (1.450) C(NOM) 15.0 (0.590) 15,0 (0.590) A +0.51 (+0.020) -{).25 (-0.010) 3,18 (0.125) MIN 0,53 (0.021) 0,38 (0.015) ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES NOTE A: Each pin centerline is located within 0,25 (0.010) of its true longitudinal position. TEXAS -III INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 3-15 MECHANICAL DATA JG008 ceramic dual-in-line package This hermetically sealed dual-in-line package consists of a ceramic base, ceramic cap, and lead frame. Hermetic sealing is accomplished with glass. The package is intended for insertion in mounting hole rows on 7,62 (0.300) centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Tin-plated ("bright-dipped") leads require no additional cleaning or processing when used in soldered assembly. JG08 r I" Designation per JEDEC Std 30: GDIP·T8 10,2 (0.400) ----1 9,0 (0.355) ' \ I 0,63 (0.025) R NOM 5,08 (0.200) MAX 1,78 (0.070) 8 Places --;r------- 1r I 0,51 (0.020) MIN _____ Seating Plane ..\ 1..-Q,.~.Ol~ ~ \' 0,20 (0.008) 8 Places ~ 3,30 (0.130) MIN, - J~ 1,6 (0.065) 0,4 (0.015) 4 Places I I U -,J 1-r- Pin Spacing 2,54 (0.100) T.P. (see Note A) ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES NOTE A: Each pin centerline is located within 0,25 (0,010) of its true longitudinal position, TEXAS -1!1 INSfRUMENTS 3-16 POST OFFICE BOX 655303· DALLAS, TEXAS 75265 !o.,~ 0,," 0,38 (0.015) 8 Places MECHANICAL DATA KC003 plastic flange-mount package This package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when the package is operated under high-humidity coriditions. KC003 0,81 (0.032 2,79 (0.110) 2,29 (0.090) ± ± Designation per JEDEC Std 30: R-PSFM-T3 0,08 0.003) 1[ 3 Places 0,64 (0.025) R NOM 2 Places (see Note A) 1,78 (0.070) 1,14 (0.045) 5,34 (0.210) 4,82 (0.190) Pin Spacing 2,79 (0.110) 2,29 (0.090) (see Note B) L 6,35 (0.250) MAX 15,88 (0.6?§.! I 14,22 (0.560) - , 0,64 (o.o25) !4--L~5,8410:236)2 6,86 (0.270 M=I 0,30 (0.012) "'-" 1_ _ _ _ _ 1 * -it ,-L-_--", 2.92-(f11- 5-}- - - - - - 0 .2,03 (O.080) tl ~!0.055) j- 3,56 (0.140) 0,51 (0.020) 4,S;U0.190} 3,56 (0.140) 3,05 (0.120) The center terminal is in electrical contact with the mounting tab. Falls within JEDEC TO-220AB dimensions ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES NOTES: A. Notches and/or mold chamfer mayor may not be present. B. Leads are within 0,13 (0.005) radius of true pOSition (T.P.) at maximum material conditions. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 3--17 MECHANICAL DATA KC005 plastic flange-mount package This package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperaturewith no deformation, and circuit performance characteristics will remain stable when the package is operated under high-humidity conditions. KC005 4,83 (0.190) 3,56 (0.140) 3,96 (0.156) 3,71 (0.146) 14------_____ a 10,67 (0.420) 9,65 (0.380) t 2 Places (see Note A) R-PSFM-T5 3,56 (0.140) 3,05 (0.120) 1,40 (0.055) 0,51 (0.020) 1 6,B6 (0.270) 5,84 (0.230) 0,64 (0.025) R NOM Designation per JEDEC Std 30: - ~ - - ~- 15,88 (0.625) 14,22 (0.560) J 14,27 (0.562) 12,70 (0.500) L Pin Spacing 1,70 (0.067) (see Note B) -. . . . . 11..- 0,76 1,02 (0.040) (0.030) 5 Places J 2,92 (0.115) 2,03 (O.OBO) 0,64 (0.025) 0,30 (0.012) 5 Places ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES NOTES: A. Notches and chamfer mayor may not be present. B. Leads are with 0.13 (0.005) radius of true position (T.P.) at maximum material conditions. TEXAS ~ INSlRUMENTS 3-18 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 MECHANICAL DATA KK003 plastic flange-mount package This package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when the package is operated under high-humidity conditions. KK003 Designation per JEDEC Std 30: X·PSFM·T3 .1 16,26 (0.640) 15,75 (0.620) 5,08 (0.200) r;=====1'1 = L ; , 7 54,57(0.180) (0.180) 4,06 (0.160) 2 Places 15' 20,83 (0.820) 19,81 (0.780) 5,33 (0.210) 4,83 (0.190) 15' NOM 22,35 (0.880) 21,84 (0.860) ~ No~1 r }}- I Mounting Hole 3,18 (0.125) DIANOM ':r-c:=:::r--=:r0-dJ Ie =-==t. 6,35 (0.250) r 7' NOM MAX 2,29 (0.090) 1,78 (0.070) 2,29 (0.090) 1,78(0.070) -iI Jl Lead Spacing 5,08 (0.200) TP ~ 0,89 (0.035) 0,64 (0.025) ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES TEXAS "J1 INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 3-19 MECHANICAL DATA KV005 plastic flange-mount package This package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when the package is operated under high-humidity conditions. rah Designation per JEDEC Std 30: R-PSFM-T5 KV005 ~::~ !g:~:gl 0,64 (0.025) NOM 2 Places (see Note A) .. t- 3,56 (0.140) 3,05 (0.120) 1,40 (0.055) 0,51 (0.020) ------,.-------6,86 (0.270) 5,84 (0.230) 15,88 (0.625) 14,22 (0.560) 21,920 (0.863) MIN 25,4 (1.00) MIN L I Lead Spacing 1,70 (0.067) (see Note B) -I~ -*-----£ JJJ 15,77 (0.621) NOM 18,03 (0.710) NOM 5 'A) / (see 4 Note I &.....,-r--I I 1,02 (0.040) J.-- 0,76 (0.030) 5 Places 2,92 (0.115) 2,03 (0.080) 0,64 (0.025) 0,30 (0.012) It----~- 4,67 (0.184) 4,29 (0.169) 8,59 (0.338) ----i.--------i'I 8,20 (0.323) ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES NOTES: A. Notches and chamfer mayor may not be present. B. Leads are with 0.13 (0.005) radius of true position (T,P.) at maximum material conditions. TEXAS ~ INSlRUMENlS 3-20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA KV007 plastic flange-mount package This package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when the package is operated under high-humidity conditions. KV007 Designation per JEDEC Std 30: R-PSFM-T7 r 3,96 (0.156) DIA 3,71 (0.146) 10,39 (0.409) 10,13 (0.399) 1 4,597 ( 0 . 1 8 1 ) M 4,547 (0.179) 2,87 (0.113) 2,62 (0.103) 3,43 (0.135) 3,17 (0.125) 1,40 (0.055) 1,14(0.045) ~ I --~ 17,58 (0.692) 17,32 (0.682) 1,40 (0.055) 1,14 (0.045) 0,762 (0.030) 0,660 (0.026) 2,79 (0.110) 2,54 (0.100) I.------.!-- 7,75 (0.305) 7,49 (0.295) 7,75 (0.305) --14----+1 7,49 (0.295) 9,52 (0.375) 9,27 (0.365) NOM 0,63 (0.025) 0,38 (0.015) R -------. 20,88 (0.822) 20,62 (0.812) 0,51 (0.020) 0,25 (0.010) - -n -n in \ " 2 PI~~es J~----_~.1_10'211 (0.4020) 10,109 (0.3980) C ALL LINEAR DIMENSIONS ARE IN MILLILMETERS AND PARENTHETICALLY IN INCHES. TEXAS • INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 3-21 MECHANICAL DATA LP003 plastic cylindrical package a This package consists of a circuit mounted on a lead frame and encapsulated within plastic compound. The compound will withstand soldering temperature with no deformation and circuit performance characteristics remain stable when operated in high-humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly. LP003 Designation per JEDEC Std 30: PBCY·W3 r-E ~ Seating Plane t ~,43 (0.135) MIN .~ 5,2110.205) 4,44 (0.175) DIA l oll Jt 1,27 (0.050 ± ± 0,13 0.005) 2,54 ± 0,13 (0.100 ± 0.005) 1,27 (0.050) 4.19 (0.165) 3,17 (0.125) l4-----lol- .2.67 10.105) 2,03 (0.080) F ( s e e Note A) - --=-=::::==:=:::::::'=:======:1==3 ..;: J ============::J ~~5'34 (0.210) 4,32 (0.170) 12,7 (o.sOO) MIN 2,67 (0.1.2§) 2,03 (0.080) 3 Leads 0,43 + 0,13, - 0,03 WIDE 0,38 ± 0,03 THICK (0.017 + 0.005, - 0.001 WIDE 0.015 ± 0.001 THICK) Falls within JEDEC TO·226AA dimensions (T0-226AA replaces TO·92) ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES NOTE A: Lead dimensions are not controlled within this area. TEXAS -If INSTRUMENTS 3-22 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 MECHANICAL DATA N014, N016, N018, and N020 300-mil plastic dual-in-line packages These dual-in-line packages consist of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation and circuit performance characteristics will remain stable when operated in high-humidity conditions. These packages are intended for insertion in mounting-hole rows on 7,62 (0.300) centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Leads require no additional cleaning or processing when used in soldered assembly. Designation per JEDEC Std 30: PDlp·T14 PDIP·T18 PDIP-T16 PDIP·T20 11 N014, N016, N018, AND N020 (20-pln package used for Illustration) 20 10 t ~, ~ 0" . " . NOM ~~ - .t 1050 90' 20 Places J~ L. ro- 0," '0 OW) MIN _ ,-1- I~ """1 I ------~~I Al ~ 1,78 (0.070) MAX 18 Places I 5,08 (0.200) MAX ~ h-rr-,-r-rr-,-r-rr-,-r-rr-.r-rr,-! - - Seating - - r - - - r - - - t 1 Plane -+\\4- 0,36 (0.014) 0,25 (0.010) 20 Places (see Notes B and C) G 4 Places Pin Spacing 2,54 (0.100) T.P. (see Note A) 1 4 - - - - - - - A2 0,533 (0.021) 0,381 (0.015) 20 Places (see Notes B and C) ------~ 1,91 (0.075) 1,02 (0.040) 4 Places VIEW A H 4 Places ~ Pin Spacing 2,54 (0.100) T.P. (see Note A) 0,533 (0.021) 0,381 (0.015) 20 Places (see Notes B and C) ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES NOTES: A. Each pin centerline is located within 0,25 (0.010) of its true longitudinal position. B. This dimension does not apply for solder-dipped leads. C. When solder-dipped leads are specified, dipped area of the lead extends from the lead tipto at least 0,51 (0.020) above seating plane. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3-23 MECHANICAL DATA N014, N016, N018, and N020 300·mil plastic dual·in·line package (continued) DIM ~ MIN A1 A2 B C 0 E F G H MAX MIN MAX NOM MIN MAX MIN MAX NOM MIN MIN MAX MIN MAX 14 18 16 18,0 (0,710) 19,8 (0,780) 20 23,22 (0,914) 19,8 (0,780) 23,4 (0,920) 18,0 (0,710) 24,77 (0,975) 23,62 (0,930) 19,8 (0,780) 25,4 (1,000) 2,8 (0,110) 2,8 (0,110) 4,06 (0,160) 2,80 (0,110) 7,37 (0,290) 7,37 (0,290) 7,37 (0,290) 7,37 (0,290) 7,87 (0,310) 7,87 (0,310) 7,87 (0,310) 7,87 (0,310) 6,10 (0,240) 6,10 (0,240) 6,60 (0,2130) 6,60 (0,260) 6,99 (0,275) 2,0 (0,080) 2,0 (0,080) 2,03 (0,080) 2,0 (0,080) 0,84 (0,033) 0,84 (0,033) 0,89 (0,035) 0,84 (0,033) (see Note A) 0,38 (0,015) (See Note A) 1,68 (0,066) (see Note A) 1,65 (0,065) (see Note A) 0,22 (0,009) 2,54 (0,100) 1,02 (0,040) 0,23 (0,009) 0,38 (0,015) 1,52 (0,060) 2,41 (0,095) 1,91 (0,075) 1,27 (0,050) 6,60 (0,240) 7,11 (0,280) NOTES: A. The 14-pin and 18-pin plastic dual-in-line package is only offered with the external pins shaped in their entirety, and do not have alternate side view dimensions, TEXAS ~ INSTRUMENTS 3-24 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA N022 400-mil plastic dual-in-line package This dual-in-line package consist of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation and circuit performance characteristics will remain stable when operated in high-humidity conditions. This package is intended for insertion in mounting-hole rows on 10, 16 (0.400) centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Leads require no additional cleaning or processing when used in soldered assembly. N022 Designation per JEDEC Sid 30: PDIP-T22 22 10,41 (0.410) 9,91 (0.390) r 0,355 cJl~ ~'"' .,~ (0.01~ 0,203 (0.008) 22 Places (see Noles B and C) 0,51JO.020) f 12 11 I" ~I 28,5 (1.120) MAX L J 3,17(0.125)MINpinSpaCing2~,54(0.100)T.P. (see Nole A) 1,78 (0.070) MAX 22 Places WI-.j h~ 0,84 (0.033) MIN 22 Places 0,533 (0.021) 0,381 (0.015) 22 Places (see Noles B and C) ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES NOTES: B. Each pin centerline is located within 0,25 (0.010) of its true longitudinal position. C. This dimension does not apply for solder-dipped leads. D. When solder-dipped leads are specified, dipped area ofthe lead extends from the lead tip to at least 0,51 (0.020) above seating plane. TEXAS ..1!1 INSlRUMENlS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3-25 MECHANICAL DATA N028 600-mil plastic dual-in-line package This dual-in-line package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand solderil1g temperature with no deformation anp circuit performance characteristics will remain stable when operated in high-humidity conditions. This package is intended for insertion in mounting-hole rows on 15,24 (0.600) centers (see Note A). Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Leads require no additional cleaning or processing when used in soldered assembly. N028 Designation per JEDEC Std 30: PDIP-T28 I~ ~I 36,6 (1.441) MAX 28 15 ,~!;:~.:E::::::::::::: 1:t~J ru f 14 < 24 Places 5,08 (0.200) '------r----' 0,36(0.014) °2~Op(~~~:) ~\.- (see Noles B and C) s~~:~g T j-LJ l t 3,17(0.125) MIN 2;:~~~~:95) MAX 4 Places Pin Spacing 2,54 (0.100) T. P. (see Nole A) ~:~~~!~:~~!l ~k(see Jl ~~:e~~e:nd C) 0,83 (0.095) MAX 24 Places ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES NOTES: A. Each pin centerline is located within 0,25 (0.010) of its true longitudinal position. B. This dimension does not apply for solder-dipped leads. C. When solder-dipped leads are specified, dipped area olthe lead extends from the lead tip to at least 0,51 (0.020) above seating plane. TEXAS ~ INSlRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 3-29 · MECHANICAL DATA P008 plastic dual·in·!ine package This package consists of a circuit mounted on an B-pin lead frame and encapsulated within a plastic compound.The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high-humidity conditions. The package is intended for insertion in mounting-hole rows on 7,62 (0.300) centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Solder-plated lead require no additional cleaning or processing when used in soldered assembly. P008 I. Designation per JEDEC Std 30: PDIP-T8 10,2 (0,400) MAX 8 j 5 Index Dot 7,87 (0.310) 7,37 (0.290) §,§O (0.260) 6,10 (0.240) 1,78 (0.070) MAX 8 Places .5,08 (0.200) MAX Seating Plane ~ Gauge Plane J l[ L .()O~:~~ !g:g~gl ~ 3,17 (0.125) MIN 0,36 (0.014) 0,20 (0.008) 2,54 (0.100) T. P. 6 Places (see Note A) (see Note B and C) I.- 0,533 (0.021) 0,381 (0.015) (see Note B and C) ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES NOTES: A. Each pin centerline is located within 0,25 (0.010) of its true longitudinal position. B. This dimension does not apply for solder· dipped leads. C. When solder·dipped leads are specified, dipped area of the lead extends from the lead tip to at least 0,51 (0.020) above seating plane. TEXAS ~ INSlRUMENTS 3-30 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA PK003 plastic lead-mount package This package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high-humidity conditions. PK003 ~ 4'60(0'181) 4,40 (0.173) J Designation per JEDEC Std 30: PSSO-F3 1,80 (0.071) MAX 0,40 (0.016) NOM __ I ~')~ ""1,,,, f "'1~ 0,480 (0.019) MAX --.. II II+I I I L I --"11 . 1,50 (0.059) NOM 0,80 (0.032) MIN 0,44 (0.017) MAX ~~ 0,53 (0.021) MAX ~ The center lead is in electrical contact with the tab ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES TEXAS -1!1 INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 3-31 MECHANICAL DATA PVV008, PVV014, PVV016, PVV020 shrink small-outline packages These shrink small-outline packages consist of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high-humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly. PW008, PW014, PW016, PW020 (14-pin package used for Illustration) Designation per JEOEC Std 30: POSO·G8 POSO·G14 POSO·G16 POSO·G20 ~ tMQ MQ 0,40 0,10 DETAIL A B 0,65 NOM (see Note A) 1,10 MAX ALL LINEAR DIMENSIONS ARE IN MILLIMETERS NOTES: A. S. C. D. Leads are within 0,25 mm radius of true position at maximum material condition. Sody dimensions include mold flash or protrusion. Mold flash or protrusion shall not exceed 0,15 mm. Lead tips to be planar within ±0,051 mm exclusive of solder. ~ 8 14 16 20 AMIN 2,99 4,99 4,99 6,40 A MAX 3,03 5,30 5,30 6,80 SMAX 0,65 0,70 0,38 0,48 DIM TEXAS ~ INSlRUMENTS 3--32 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 MECHANICAL DATA U010 ceramic flat package This flat package consists of a ceramic base, ceramic cap, and lead frame. Circuit bars are alloy mounted. Hermetic sealing is accomplished with glass. Leads require no additional cleaning or processing when used in soldered assembly. U010 0,153 (0.006) 0,076 (0.003) 10 Leads 1r 0,483 (0.019) 0,381 (0.015) 10 Leads Designation per JEDEC Std 30: GDFP-F10 11- ~ 1,27 (0.050) NOM (see Note A) .,,[ n r II 5,08 (0.200) 25'4(1~:)--I----T---uL-~10~~-U~6 19,0 (0.750) 6,35 (0.250) 5,97 (0.235) 7,62 (0.300) (see Note B) 2,03 (0.080) 1,27 (0.050) 1 Alternate Index Points ~~ r- ~- ---J------------ r- 5 - 8,89 (0.350) "~I L 1,27 (0.050) 0,13 (0.005) ~ ~ r" 0,64 (0.025) 0,00 (0.000) 6,35 (0.250) ........ Falls within JEDEC MO-004AA dimensions ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES NOTES: A. Leads are within 0.13 (0.005) radius of true position (T.P.) at maximum material conditions. B. This dimension determines a zone within which all body and lead irregularities lie. TEXAS ." INSIRUMENlS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 3-·33 MECHANICAL DATA W014 ceramic flat package This hermetically sealed flat package consists of an electrically nonconductive ceramic base and cap and a lead frame. Hermetic sealing is accomplished with glass. Leads require no additional cleaning or processing when used in soldered assembly. W014 0,152 (0.006) 0,076 (0.003) 14 Leads 1r r ----x- 0,483 (0.019) 0,381 (0.015) 14 Leads l r Designation per JEDEC SId 30: GDFP-F14 -+J ~ 1,27 (0.050) NOM 12 Places (see Note A) 1 ~ 8,00 (L15) Base And Seating Plane --T ---- ~]~ -"' :; 1; ;'4' ' ':; -~=. . :; ; :,1-. . :; .;:.i-;;;:,......:;; 7,0 (0.275) ....8=-.- (see Note C) 7 - 2,03 (0.080) 1,27 (0.050) .- 8,00 (0.315) '~[ -.J 1,02 (0.040) 0,51 (0.020) r.---- 8,89 (0.350) _ _... 8,56 (0.337) -----,.. ~ 0,64 (0.025) 0,25 (0.010) 4 Places Fall within JEDEC MO-004AA dimensions ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES NOTES: A. Leads are within 0,13 (0.005) radius of true position (T.P.) at maximum material condition. B. This dimension determines a zone within which all body and lead irregularities lie. C. Index point is provided on cap for terminal identification only. TEXAS .JJ1 INSTRUMENlS 3-34 POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 NOTES NOTES NOTES NOTES - TINorth American Sales Offices TI Authorized North American Distributors ALABAMA: Huntsville: (205) 837-7530 ARIZONA: Phoenix: (602)995-1007 CALIFORNIA: Irvine: (714) 660-1200 Alliance Electronics, Inc. (military product only) Almac Electronics Aose"'lle: (916) 78&-9206 San Diego: (619)278-9600 Santa Ciani: (408)980-9000 Anthem Electronics Arrow (Canada) Woodland Hills: (818) 704-8100 Arrow/Kierulff Electronics Group Future Electronics (Canada) COLORADO: Aurora: (303) 368-8000 CONNECTICUT: Wamngford: (203) 269-0074 GRS Electronics Co., Inc. Hall-Mark Electronics FLORIDA: Altamonte Springs: (407) 260-2116 Fort Lauderdale: (305) 973-8502 Tampa: (813) 882-0017 GEORGIA: Norcross: (404) 662-7900 ILLINOIS: Arlington Heights: (708) 64()..3000 INDIANA: Cannel: (317) 573-6400 Fort Wayne: (219) 482-3311 lex Electronics Marshall Industries Newark Electronics Rochester Electronics, Inc. (obsolete product only (508) 462-9332) Wyle laboratories Zeus Components IOWA: Cedar Rapids: (319) 395-9550 KANSAS: Overtand Park: (913) 451-4511 MARYLAND: Columbia: (301) 964-2003 MASSACtiUSETIS: Waltham: (617) 895-9100 MICHIGAN: Fannlngton Hills: (313) 553-1500 MINNESOTA: Eden Prairie: (612) 828-9300 MISSOURI: St. Louis: (314) 821-8400 NEW JERSEY: Iselin: (908) 750-1050 NEW MEXICO: Albuquerque: (505) 345-2555 TI Distributors ALABAMA: Arrow/Kierulff (205) 837-6955; Hall-Mark (205) 837-8700; Marshall (205) 881-9235; Lex (205) 895-0480. OHIO: Beachwood: (216) 464-6100 Beavercreek: (513) 427-6200 ARIZONA: Anthem (602) 96&6600; Arrow/Kierulff (602) 437-0750; Hall-Mark (602) 437-1200; Marshall (602) 496-0290; Lex (602) 431-0030; Wyle (602) 437-2088. CALIFORNIA: Los AngeleslOrange County: Anthem (818) 775-1333, (714) 769-4444; Arrow/Kierulff (818) 701-7500, (714) 838-5422; Hall-Mark (818) 773-4500, (714) 727-6000; Marshall (818) 878-7000, (714) 458-5301; Lex (818) 880-9686, (714) 587-0404; Wyle (818) 880-9000, (714) 863-9953; Zeus (714) 921-9000, (818) 889-3838; OREGON: Beaverton: (503) 643-6758 Rucklin: (916) 624-9744; NEW YORK: East Syracuse: (315) 463-9291 Fishkill: (914) 897-2900 Melyjlle: (516) 454-6600 Pittsford: (716) 385-6nO NORTH CAROLINA: Charlotte: (704) 527-0930 Raleigh: (919) 876-2725 KANSAS: Arrow/Kierulff (913) 541-9542; Hall-Mark (913) 888-4747; Marshall (913) 492-3121; lex (913) 492-2922. MARYLAND: Anthem (301) 995-6640; ArrowlKierulff (301) 995-6002; Hall-Mark (301) 988-9800; Marshall (301) 622-1118; Lex (301) 59&7800; Zeus (301) 997-1118. MASSACHUSETTS: Anthem (508) 657-5170; ArrowlKierulff (508) 658-0900; Hall-Mark (508) 667-0902; Marshall (508) 658-0810; Lex (508) 694-9100; Wyle (617) 272-7300; Zeus (617) 246-8200. MICHIGAN: Detroft: ArrowlKierulff (313) 462-2290; Hall-Mark (313) 462-1205; Marshall (313) 525-5850; Newark (313) 967-0600; lex (313) 525-8100; Grand Rapids: ArrowlKierulff (616) 243-0912. MINNESOTA: AnttJem (612) 944-5454; ArrowlKierulff (612) 829-5588; Halt-Mark (612) 941-2600; Marshall (612) 559-2211; Lex (612) 941-5280 MISSOURI: Arrow/Kierulff (314) 567-6888; Hall-Mark (314) 291-5350; Marshall (314) 291-4650; Lex (314) 739-0526 NEW JERSEY: Anthem (201) 227-7960; Arrow/Kierulff (201)536-0900, (609)596-8000; GAS (609)964-8560; Halt-Mark (201) 515-3000, (6OO) 235-1900; Marshall (201) 882-0320, (609) 234-9100; lex (201) 227-7880, (6OO) 273-7900 NEW MEXICO: Alliance (505) 292-3360. NEW YORK: Long Island: Anthem (516) 864-6600; ArrowlKierulff (516) 231-1000; Hall-Mark (516) 737-0600; Marshall (516) 273-2424; Lex (516) 231-2500; Zeus (914) 937-7400: Rochester: Arrow/Kierulff (716) 427-0300; Hall-Mark (716) 425-3300; Marshall (716) 235-7620; lex (716) 383-8020; Syracuse: Marshall (607) 785-2345. NORTH CAROLINA: Arrow/Kierulfi (919) 87&3132; Hall-Mark (919) 872-0712; Marshall (919) 878-9882; lex (919) 876-0000 OHIO: Cleveland: Arrow/Kierulff (216) 248-3990; Hall-Mark (216) 349-4632; Marshall (216) 248-1788; Lex (216) 464-2970: Columbus: Han-Mark (614) 888-3313; Dayton: Arrow/Kierulff (513) 435-5563; Marshall (513) 898-4480; lex (513) 439-1800; Zeus (5l3) 293-6162. OKLAHOMA: Hall-Mark (918)254-6110; Lex (918) 622-8000. PENNSYLVANIA: Blue Bell: (215) 825-9500 PUERTO RICO: Halo Rey: (809) 753-8700 Sacramento: Hall-Mark (916) 624·9781; Marshall (916) 635-9700; lex (916) 364-0230; Wyle (916) 638-5282; TEXAS: Austin: (512) 250-6769 Dallas: (214) 917-1264 Houston: (713) 778-6592 UTAH: Salt Lake City: (801)466-8973 San Diego: Anthem (619) 453-9005; ArrowlKierulff (619) 565-4800; Han-Mark (619) 268-1201; Marshall (619) 578·9600; lex (619) 495-0015; Wyle (619) 565-9171; Zeus (619) 277-9681; WASHINGTON: Redmond: (206) 881-3080 San Francisco Bay Area: Anthem (408) 453-1200; Arrow/Kierulff (408) 441-9700; Hall-Mark (408) 432-4000; Marshall (408) 942-4600; lex (408) 432-7171; Wyle (408) 727-2500; zeus (408) 629-4789. TEXAS: Austin: ArrowlKieru!ff (512) 835-4180; Hall-Mark (512) 258-8848; lex (512) 339-0088; Wyle (512) 345-8853; COLORADO: Anthem (303) 79Q-4500; ArrowJKierulff (303) 373-5616; Hall-Mark (303) 790-1662; Marshall (303) 45 H3383; lex (303) 799-0258; Wyle (303) 457-9953. Dallas: Anthem (214) 238-7100; ArrowlKierulff (214) 380-6464; Hall-Mark (214) 553-4300; Marshall (214) 233-5200; lex (214) 247-6300; Wyle (214) 235-9953; Zeus (214) 783-7010; TI Regional Technology Centers CONNECTICUT: Anthem (203) 575-1575; ArrowlKierulff (203) 265-7741; Hatl-Mark (203) 271-2844; Marshall (203)265-3822; Lex (203)264-4700. FLORIDA: Fort Lauderdale: ArrowlKierulff (305) 429-8200; Hall-Mark (305) 971-9280; Marshall (305) 977-4880; Lex (305) 421-6633; Houston: ArrowA


Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2017:07:27 17:20:44-08:00
Modify Date                     : 2017:07:27 22:24:06-07:00
Metadata Date                   : 2017:07:27 22:24:06-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:eee8c7e1-caef-dc40-b857-6e9fa79335d2
Instance ID                     : uuid:49238ca1-2a3f-904c-8f71-ff7da9dc7193
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 1420
EXIF Metadata provided by EXIF.tools

Navigation menu