1992_TI_Linear_Circuits_Data_Book_Vol_3 1992 TI Linear Circuits Data Book Vol 3

User Manual: 1992_TI_Linear_Circuits_Data_Book_Vol_3

Open the PDF directly: View PDF PDF.
Page Count: 940

Download1992_TI_Linear_Circuits_Data_Book_Vol_3 1992 TI Linear Circuits Data Book Vol 3
Open PDF In BrowserView PDF
~TEXAS

Suggested Retail Price: $14.95

INSTRUMENTS

Linear Circuits
Voltage Regulators/Supervisors,
Comparators, Special Functions,
and Building Blocks

1992

1992

Linear Products

linear Products Quick Reference Guide
Data Book

Contents

Document No.

•

Optoelectronics and
Image Sensors

Optocouplers
CCD Image Sensors and Support
Phototransistors
IR-Emitting Diodes
Hybrid Displays

SOYD002A, 1990

•

Speech System Manuals

TSP50C4X Family
TSP50C10/11 Synthesizer
TSP53C30 Synthesizer

SPSS010, 1990
SPSS011,1990
SPSV006, 1991

•

Interface Circuits

Data Transmission and Control
Circuits, Peripheral Drivers/Power
Actuators, Display Drivers

SLYD006,1991

•

Telecommunications
Circuits

Transmission, Switching, Subscriber,
Transient Suppressors

SCTD001 B, 1991

•

Linear and Interface
Circuits Applications

Op Amps/Comparators, Video Amps,
VRegs, Power Supply Design, Timers,
Display Drivers, Datran, Peripheral
Drivers, Data Acq., Special Functions

SLYA005,1991

•

Mass Storage ICs
Designer's Reference
Guide

Disk Drivers: Read/Write, Servo/System
Control, Interface/Linear, Digital ASIC,
LinASICTM, Applications

SSCA001, 1992

•

Macromodel Data Manual

Level I: Operational Amplifiers,
Voltage Comparators, Building Blocks
Levell!: Selected Operational Amplifiers,
Buildilng Blocks

SLOS047B,1992

January 1992

linASIC is a trademark of Texas Instruments Incorporated.

General Information

..

Comparators

lEI

Thermal Design Considerations

~

..

~~~~~~~~
VRegs/Supervisors and Bldg Blocks
.:II
~~~~~~~~~

~s=p=e=c=ia=I=F=u=n=c=ti=o=n=s==================~~
~~~~~~~~~

~M_e_c_h_a_n_ic_a_I_D_a_t_a____________________~~

Linear Circuits
Data Book
1992
Volume 3
Voltage Regulators/Supervisors, Comparators,
Special Functions, and Building Blocks

~

TEXAS
INSTRUMENTS

IMPORTANT NOTICE
Texas Instruments (TI) reserves the right to make changes to or to discontinue any
semiconductor product or service identified in this publication without notice. TI
advises its customers to obtain the latest version of the relevant information to
verify, before placing orders, that the information being relied upon is current.
TI warrants performance of its semiconductor products to current specifications
in accordance with TI's standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty.
Unless mandated by government requirements, specific testing of all parameters
of each device is not necessarily performed.
TI assumes no liability for TI applications assistance, customer product design,
software performance, or infringement of patents or services described herein.
Nor does TI warrant or represent that license, either express or implied, is granted
under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which
such semiconductor products or services might be or are used.

Texas Instruments products are not intended for use in life-support appliances,
devices, or systems. Use of a TI product in such applications without the written
consent of the appropriate TI officer is prohibited.

Copyright © 1992, Texas Instruments Incorporated
Printed in the U.S.A.

INTRODUCTION
Texas Instruments offers an extensive line of industry-standard integrated circuits designed to provide highly reliable
power supply regulators, supervisors, comparators, special functions, and building blocks. These circcuits represent
processes from standard bipolar through BIDFET, BIFET, IMPACT'", LinCMOS'·, Advanced LinCMOS'·, and
Schottky technologies.
This data book (Volume 3 of 3) provides information on the following types of products:
• Supervisory Circuits
• Switch-Capacitance Voltage Converters
• Shunt Voltage Regulators and Voltage References
• Adjustable Series-Pass Voltage Regulators
• Switching Power Supply and Pulse-Width-Modulated (PWM) Controllers and Regulators
• Fixed Output Series-Pass Voltage Regulators (Positive and Negative)
• Voltage Comparators, Timers, Disk Drive Circuits
• Current Mirrors, Sonar Circuits, Sound Generators
• Video Amplifiers
These products provide critical functions in analog and digital systems that:
• Utilize a wide range of voltages
• Require a constant output voltage regardless of changes in input voltage, output current, and
ambient temperature
• Demand high input-output isolation where analog circuitry must be connected independently of
digital ground
• Need low voltage (Le., battery) regulation
New surface-mount packages (3 to 20 leads) include the thin, small-outline packages (PW) and SOT -89 (PK) plastic
packages that optimize board density with minimum impact of power dissipation capabilities. Test equipment with
handlers and automated assembly bonders strengthen the production capabilities that provide a lower
cost-to-performance ratio. TI continues to enhance quality and reliability of integrated circuits by improvements in
materials, processes, test methods, and test eqUipment. In addition, specifications and programs are continuously
updated. Qualilty and performance are monitored throughout all phases of manufacturing.
The alphanumeric listing in this data book includes all devices contained in Volumes 1, 2, and 3. Products in this book
are shown in BOLD type. Thus, the reader can easily find the particular volume for a given device. Also included are
those new products added to this volume as indicated by a dagger(t). The selection guide includes a functional
description of each device by providing key parametriC information and packaging options. Ordering information and
mechanical data are in the last section of the book.
Complete technical data for all TI semiconductor products are available from your nearest TI Field Sales Office, local
authorized TI distributor, or by writing directly to:
Texas Instruments Incorporated
LITERATURE RESPONSE CENTER
P.O. BOx 809066
Dallas, Texas 75380-9066
We sincerely feel that this new 1992 Linear Circuits Data Book, Volume 3, will be a significant addition to yourtechnical
literature from Texas Instruments.

IMPACT, LinCMOS and Advanced LinCMOS are trademarks of Texas Instruments Incorporated.

v

vi

1-1

Contents
G')
(1)

~

=
a.
OJ

'""

3

a_.
o

Page
Alphanumeric Index ...................................................... 1-3
VRegs/Supervisors and Bldg Blocks - Selection Guide .............. 1-7
VRegs/Supervisors and Bldg Blocks - Cross-Reference Guide ...... 1-13
VRegs/Supervisors and Bldg Blocks - Glossary ...................... 1-15
Comparators - Selection Guide ......................................... 1-19
Comparators - Cross-Reference Guide ................................. 1-23
Comparators - Glossary ................................................. 1-25
Special Functions - Selection Guide ................................... 10...27
Special Functions - Cross-Reference Guide ........................... 1-31

:::J

1-2

ALPHANUMERIC INDEX

AD7524 .................. VOL 2
AD7524M .....•......•...
AD7528 .......•..........
AD7528M ................
AD7628 ..................
ADC0803 ................

VOL 2
VOL 2
VOL 2
VOL2
VOL 2
VOL2
ADC0804
VOL2
ADC0805
VOL2
ADC0808
ADC0808M ............... VOL 2
ADC0809 ................ VOL 2
VOL 2
ADC0820B
ADC0820C
VOL2
ADC0831A
VOL2
ADC0831B
VOL.2
ADC0832A
VOL2
ADC0832B
VOL2
VOL2
ADC0834A
ADC0834B
VOL 2
ADC0838A
VOL2
ADC0838B
VOL2
ICL7135 ................. VOL 2
LF347 .................•. VOL 1
LF347B ..•............... VOL 1
LF351 ....•.........•.... VOL 1
LF353 ...............•... VOL 1
LF411C .•................
LF412C .•.....•......••..
LM101A •.........•...••.
LM107 ••.....•......••..
LM108 .•..•..•...•...•..
LM108A .................
LMll1
LM118 ....•........•....•
LM124 ....•.•..........•
LM139 ••••••••••••••••••
LM139A •••••••••••••••••
LM148 ..............•...
LM158 ..................
LM158A .................
LM185·1.2 ••••
LMI85-2.5 ••••••••••••••••
LM193 ••••••••••••••••••
LM201A •.......•........
LM207 ..................
LM208 ..................
LM208A ....•............
LM211
LM218 .....•............
LM224 ..••.•...•........
LM224A ..•..f...........
LM236·2.5 ••••••••••••••••
LM237 ••••••••••••••••••
LM239 ••••••••••••••••••

! ...........

VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
3-3
VOL 1
VOL 1
3-19
3-19
VOL 1
VOL 1
VOL 1
2-3
2-9
3-27
VOL 1
VOL 1
VOL 1
VOLI
3-3
VOL 1
VOL 1
VOL 1
2-17
2-21
3-19

LM239A •••••••••••••••••
LM248 ..................
LM258 ......••..........
LM258A ....•.•..........
LM285.1.2 ••
LM285-2.5 ••
LM293 ..................
LM293A .................

3-19
VOL 1
VOL 1
VOL 1
2-3
2-9
3-27
3-27

LM301A ..• 't' . . . . . . . . . . ..
LM306 ..................
LM307 ..................
LM308 ..................

VOL 1
3-33
VOL 1
VOL 1

LM308A .................
LM311 ••••••••••••••••••
LM311Y •••
LM318 ..................
LM324 ..................
LM324A .................
LM324Y .................
LM336-2.5 ••t. . . . . . . . . . . ..

VOL 1
3-3
3-3
VOL 1
VOL 1
VOL 1
VOL 1
2-17

LM337 ••••••••••••••••••
LM339 ••••••••••••••••••
LM339A •••••••••••••••••
LM339Y ••••t. . . . . . . . . . . ..
LM348 .....•............
LM358 .......•..........
LM358A ...........•..•..
LM358Y ..•.
LM385-1.2 ••
LM385B-1.2 ••••••••••••••
LM385-2.5 •••••••••••••••
LM385B·2.5 ••••••••••••••
LM393 ••••••••••••••••••
LM393A ••• 't' . . . . . . . . . . ..
LM393Y •••••••••••••••••
LM2900 ..••.............

2-21
3-19
3-19
3-19
VOL 1
VOL 1
VOL 1
VOL 1
2-3
2-3
2-9
2-9
3-27
3-27
3-27
VOL 1

LM2901 ••• 't' .... " . . . . ..
LM29010 ••••••••••••••••
LM2902 ................•
LM2902Q ................
LM2903 .................
LM29030 •••t. . . . . . . . . . . ..
LM2904 ..•..............
LM2904Q .............•..
LM2907 •••••••••••••••••
LM2917 •••••••••••••••••
LM2930-5 ................
LM2930-8 ................

3-19
3-19
VOL 1
VOL 1
3-27
3-27
VOL 1
VOL 1
4-3
4-3
2-25
2-25

LM3302
LM3900
LP111
LP211
LP239
LP311

3-41
VOL 1
3-45
3-45
3-49
3-45

t........ .. . ..

t.............

!.............

f............
f............

•••••••••••••••••
.................

LP339 ••••••••••••••••••
LP2901 •••••••••••••••••
LT1004 •••••••••••••••••
LT1007 .....•....•••..•.
LT1007A ................
LT1009 •••••••••••••••••
LT1013 ..........••...•.
LT1013A ................
LT1013D ...............•
LT1013Y ................
LT1037 .................

3-49
3-49
2-35
VOL 1
VOL 1
2-47
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1

LT1037A .... f .......... .
LT1054 ..... f ......... ..
LT1070 ••••• f .......... .
LT1070HV ... f .......... .
LT1071 •••••••••••••••••

VaLl
2-55

2-77
2-77

MC3423
MC34060 •••••••••••••.••
MC79L05C ••••••••••••••
MC79L05AC •••••••••••••
MC79L12C ••••••••••••••

2-101
2-101
2-117
2-117
2-133
VaLl
4-9
VaLl
VaLl
VaLl
VOL 1
2-147
2-149
2-157
2-157
2-157

MC79L12AC •••••••••••••
MC79L15C ••••••••••••••
MC79L15AC •••••••••••••
MF4A-50 ................
MF4A-l00 .....•.........
MF10A .................
MF10C .................
NE555 •••••• f . . . . . . . . . ..
NE555Y •••.•••••••••••••
NE556 ••••••••••••••••••
NE592 ••••••••••••••••••
NE5532 .................
NE55321 ................
NE5532A ................
NE5532AI ...............
NE5534 .................
NE5534A ................
OP07C
OP07D
OP07Y
OP27A
OP27C
OP27E

2-157
2-157
2-157
VOL 2
VOL 2
VOL2
VOL 2
4-11
4-11
4-33
4-25
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOLI
VOL 1
VaLl
VaLl
VaLl
VOLI

t

LT1071HV ... f .......... .
LT1072 •••••••••••••••••
LT1072HV ... ~ ......... ..
LT1084C •••• ~ •••••••••••
LTC1052 ............... .
MC1445
MC1458
MC1558
MC3303
MC3403

tNew devices added to this volume.

TEXAS

-1!1

INSTRUMENTS
POST OFFICE BOX 655303 ··DALLAS. TEXAS 75265

1-3

ALPHANUMERIC INDEX

OP27G
OP37A
OP37C
OP37E
OP37G
RC4136
RC4558
RC4558Y ................
RC4559
RM4136 ..•.•.•.•.••.•..•
RM4558 .••.••....•..•..•
RV4136
RV4558
SA555
SA556
SE555
SE555C •••••••••••••••••
SE556 ••••••••••••••••••
SE556C •••• • • • • • • • • • • • ••
SE592 ••••••••••••••••••
SE5534 ••.•..•••....•••..
SE5534A •••...••... . • . • ..
SG2524
SG3524 •••••••••••••••••
SN76494 •••••••••••••••••
SN76494A •••••••••••••••
SN76496 •••••••••••••••••
SN76496A ........ • • • • • ••
TL010C ••••••••••••••••••
TL0101 ••••••••••••••••••
TLOll •••••••••••••••••••
TL012 •••••••••••••••••••
TL014A ••••••••••••••••••
TL021 ...................
TL022C .•.•..•.•.•••.•..•
TL022M •..•.••••..••..••
TL026C ..................
TL027C ..................
TL027M •••• • • • • • • • • • • • ••
TL031 ••••••.••..••..•••.
TL031A ••....•..•....•..•
TL032 .......•.•••...•...
TL032A •.••...........•••
TL034 •........••....••..
TL034A .........•••.....•
TL040C ••••••••••••••••••
TL041AC ••• • • • • • • • • • • • ••
TL044C .....•..••••••.•.•
TL044M ...•......•..••.•
TL051 ••.......••••.•..••
TL051A ••..•.••..••••...•
TL052 •.•..•.•..••••.••.•
TL052A •..••.•••..••••.••
TL054 •..••••.•....••.••.

VaLl
VaLl
VaLl
VaLl
VaLl
VaLl
VaLl
VOL I
VaLl
VOL I
VOL I
VaLl
VaLl
4-11
4-33
4-11
4-11
4-33
4-33
4-25
VOL I
VOL I
2-161
2-161
4-37
4-37
4-37
4-37
4-45
4-45
4-49
4-49
4-49
4-49
VOL I
VOL I
4-55
4-63
4-63
VOL 1
VOL I
VOL 1
VOL 1
VOL 1
VOL 1
4-71
4-77
VOL 1
VOL I
VOL 1
VOL 1
VOL I
VOL 1
VOL 1

TL054A ..•••...•...••..•
TL061 •..•••...•....•...
TL061 A •.••....••..••..•
TL061 B •...••••.•••...••
TL062 ..........••....•.
TL062A •••••.•••.••..•..
TL062B .....•.•.•.•..••.
TL064 ..•••••...•••••...
TL064A
TL064B .•..••••••.•.•••.
TL066C ...••.•••.•...•••
TL0661 ••.••.•..•...•....
TL066M ........•...••...
TL066AC ......••...•...•
TL070C .••....•.••......
TL071 ••..•......•.•....
TL071A ............••...
TL071 B •.•••......•.....
TL072 •••..........•.•..
TL072A ••.•..•.....•....
TL072B .•.•.••..•••.••..
TL074 .•.•••......•.....
TL074A ••••.....•..••...
TL074B ...••••.•..•••.•.
TL080C ..•••.•....•.•••.
TL081 .••..•..••...•••••
TL081A ••..••.••.•.••..•
TL081B ..•...•....•...••
TL082 .••......•.•.••...
TL082A .••..••••..••••..
TL082B .••.•••.••......•
TL084 .••••.•.•.•..••...
TL084A •••.••••....••..•
TL0848 ................•
TL087 ...••.....•.•.....
TL088
TL182
TL185
TL188
TL191 •.••. f............
TLSCSI285 •••••••••••••••
TL287 ....•.....•....•..
TL288 ..••••••...••.••..
TL317C •••••••••••••••••
TL430C •••••••••••••••••
TL4301 ••••••••••••••••••
TL431C •••••••••••••••••
TL431 1 ••••••••••••••••••
TL431M .................
TL431AC ••••••••••••••••
TL431AI •••••••••••••••••
TL441AM ••••••••••••••••
TL494 ••••• t' . . . . . . . . . ..
TL494M •••••••••••••••••

VOL 1
VOL 1
VOL I
VOL I
VOL I
VOL I
VOL I
VOL 1
VOL I
VOL I
VOL I
VOL I
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL I
VOL I
VOL 1
VOL I
VOL 1
VOL I
VOL 1
VOL I
VOL I
VOL 1
VOL 1
VOL 1
VOL I
VOL 1
VOL I
VOL 1
VOL 1
VOL I
VOLI
VOL 2
VOL2
VOL2
VOL 2
2-179
VOL 1
VOL 1
2-173
2-185
2-185
2-189
2-189
2-189
2":189
2-189
4-85
2-207
2-215

tNewdevices added to this volume.

TEXAS lJ.J

INSTRUMENTS
1-4

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TL496C .................
TL497AC
TL497AI ... t" .. .. .. . ...
TL499AC ••••••••••••••••
TL500 ••••••••.•••.••.••
TL501
TL502
TL503
TL505C •••••••.•••••••••
TL507 .....•.....•••..••
TL592 ..................
TL592B •••••••••••••••••
TL594C •••••••••••••••••
TL5941 ••••••••••••••••••
TL598 .....
TL598M .................
TL601 •••...•••••.••.•.•
TL604
TL607
TL610
TL712
TL714C •••••••••••••••••
TL721 ••••••••••••••••••
TL750L05
TL750L08
TL750L10
TL750L12
TL750M05
TL750M08
TL750Ml0
TL750M12
TL751L05
TL751 L05M ••••••••••••••
TL751 LOe •••••••••••••••
TL751 L1 0 ...............
TL751L12 ...............
TL751L12M ••••••••••••••
TL751M05
TL751M08
TL751Ml0
TL751M12
TL780·05
TL780-12 ••••••••••••••••
TL780-15 ••••••••••••••••
TL782C
TL782Q
TL783C
TL0808
TL0809
TL851
TL852 ................. .
TL853 •••••
TL1431C •••
TL1431Q
.............. .

r ......... ..

r .......... .

r .......... .

2-223
2-227
2-227
2-235
VOL2
VOL2
VOL2
VOL2
VOL 2
VOL 2
4-99
4-103
2-241
2-241
2-251
2-259
VOL2
VOL2
VOL2
VOL2
3-53
3-57
3-61
2-267
2-267
2-267
2-267
2..,273
2-273
2-273
2-273
2-267
2-267
2-267
2-267
2-267
2-267
2-273
2-273
2-273
2-273
2-281
2-281
2-281
2-287
2-287
2-291
VOL2
VOL2
4-109
4-113
4-119
2-303
2-303

ALPHANUMERIC INDEX

TL1431Y ••••t..... " ...... 2-303

TLC25L2Y

VOL1

TL1451AC " f " " " " " "
TL2217-285 •••••••••••••••
TL2828Y
TL2828Z
TL2829Y
TL2829Z .•...•...........
TL5501 .............•.•..
TL5601 .............•....
TL5602 .•...........•....
TL7702A ••••f . . . . . . . . . . ..
TL7702B •••••••••••••••••
TL7705A
TL7705B
TL7709A
TL7712A •.•••••••••••••••

TLC25L4C
TLC25L4Y
TLC25M2C
TLC25M2Y
TLC25M4C
TLC25M4Y
TLC271 ...•.............
TLC271A ..........•.....

VOL 1
VOL1
VOL1
VOL1
VOL1
VOL 1
VOL 1
VOL 1

TLC271 B ................
TLC272 ...•............•
TLC272A ................
TLC272B ..•.............
TLC274 .................
TLC274A ................
TLC274B ..........•.....
TLC277 .........•.•...••
TLC279 ...•...•...•.....
TLC27L2 ...•....•....•.•
TLC27L2A ......•..•.....
TLC27L2B .•.....•.•..•••
TLC27L4 ...•............
TLC27L4A ......••.•..•.•
TLC27L4B ..•.•.•...•.••.
TLC27L7
TLC27L9 •...••..•.••.•..
TLC27M2 .•...........•..
TLC27M2A ..•.•.......•..
TLC27M2B ••....•........
TLC27M4 ...•••.••.••.•.•
TLC27M4A •...........•..
TLC27M4B •....••........
TLC27M7
TLC27M9 .......•........
TLC339C ••••••••••••••••

VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
3-65

TLC3391 " " . " . " . , , " "
TLC339M

3-65
3-65

TLC339Q
TLC352C
TLC3521
TLC352M

.".".".,,""
••••••••••••••••
•••••••••••••••••
••••••••••••••••

3-65
3-81
3-81
3-81

TLC354C ••• f ........... .
TLC3541 •••••••••••••••••

3-89
3-89

TLC354M " " " " " . " " .
TLC371 C ••••••••••••••••

3-89
3-97

TLC371I . " . " " , , . , , " "
TLC371 M ••••••••••••••••
TLC371Y ••••••••••••••••
TLC372C ••••••••••••••••
TLC3721 •••••••••••••••••
TLC372M
TLC372Q ••••••••••••••••
TLC374C ••••••••••••••••
TLC3741 •••••••••••••••••

3-97
3-97
3-97
3-109
3-109
3-109
3-109
3-119
3-119

2-319
2-337
VOL 1
VOL1
VOL 1
VOL 1
VOL 2
VOL 2
VOL 2
2-343
2-351
2-343
2-351
2-343
2-343
TL7715A •••• f ........... . 2-343
TL7757 •••••f ........... . 2-359
TL7759C ••••••••••••••••• 2-373
TL7770-5 •••••••••••••••• 2-377

::::C:::::::::::

TL7770-12 •••••••••••••••
TL 7770-15 •••••••••••••••
TL33071 .•....•......•..•
TL33071A .••...••..•.....
TL33072 .••........•.••••
TL33072A .•••.•••.......•
TL33074 •..••...••..•....
TL33074A .•••.•.•.......•
TL34071 •..••...•.•....•.
TL34071A .•.•.•••......••
TL34072 ...••...•••.•....
TL34072A ...••..••••..••.
TL34074 •...•...•••......
TL34074A ......••.••.....
TL35071 ....•...•......•.
TL35071A ....•...........
TL35072 .•...............
TL35072A •............•..
TL35074 ....•...••.......
TL35074A ...•..•.........
TLC04 •.........•.......
TLC10
TLC14
TLC20 ....•......•......
TLC139M •••t.... " .......
TLC251C ........•.......
TLC251AC ...•.•...•...•.
TLC251 BC ..•....••.•....
TLC251Y
TLC252C
TLC252Y
TLC254C
TLC254Y
TLC25L2C •..•........•••.

2-377
2-377
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL2
VOL2
VOL2
VOL2
3-65
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1

TLC374M •••
TLC374Q ••••••••••••••••
TLC393C
TLC3931
TLC393M
TLC532A
TLC533A
TLC540
TLC541
TLC542
TLC545
TLC546

f............

3-119
3-119
3-129
3-129
3-129
VOL2
VOL2
VOL2
VOL2
VOL2
VOL2
VOL2

TLC548
TLC549
TLC551C
TLC551Y
TLC552C ••••••••••••••••
TLC555C ••••••••••••••••
TLC5551
TLC555M
TLC555Y •••
TLC556C ••••••••••••••••
TLC5561
TLC556M
TLC556Y ••••••••••••••••
TLC0820A ••••.•••••.•.••
TLC0820B ...............
TLC1078
TLC1079
TLC1125
TLC1225
TLC1540
TLC1541
TLC15501
TLC1551I
TLC2201
TLC2201A
TLC2201B
TLC2201Y
TLC2202A
TLC2202B
TLC2202Y
TLC2272 .••....•.....••.
TLC2272A ...•....••....••
TLC2272Y .......•..•.•.•
TLC2652 .•..•...•....••.
TLC2652A ....•...•...•••
TLC2652Y •••...••....•••
TLC2654 ..•......•....•.
TLC2654A
TLC2654Y ••...•••...••..
TLC3702C •••••••••••••••
TLC37021 ••••••••••••••••
TLC3702M •••••••••••••••

VOL2
VOL 2
4-123
4-123
4-135
4-143
4-143
4-143
4-143
4-153
4-153

::::c::::::::::
.t............

4-153
4-153
VOL 2
VOL2
VOL 1
VOL 1
VOL2
VOL2
VOL2
VOL2
VOL2
VOL2
VOL1
VOL1
VOL1
VOL 1
VOL1
VOL1
VOL1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL 1
VOL1
VOL 1
3-145
3-145
3-145

tNew devices added to this volume.

TEXAS ~

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

1-5

ALPHANUMERIC INDEX ;

t
TLC3702Q
TLC3704C
TLC37041 ••••••••••••••••
TLC3704M •• t ............
TLC3704Q •••••••••••••••
TlC4016 .................
TlC4066 .........•.......
TlC5502-5 ..........•...•
TlC5503-2 .............••
TlC5503-5 .•....•.••.....
TlC5602 ..............•..
TlC5602A ..........•.....
TlC7135
TlC7524
TlC7528
TlC7628
TlC32040
TlC32041
TlC32042
TlC32044
TlC32044M ...............
TlC32045
TlC32046
TlC32047
TlC32071
TlC34058
TlC34075
TlE2021 ........••.......
TLE2021A
TlE2021 B .............•..
TlE2021Y ••.•......•.•...
TlE2022 ..•.••......•••..
TlE2022A .•.....••.......
TlE2022B .....•...•..••..
TlE2022Y •...•..•..••..••
TlE2024 ..........•..••..
TlE2024A .•.....•••......
TLE2024B ................
TlE2024Y ................
TlE2027 ..•.....•••..••..
TlE2027A .......•••......
TlE2037 .•......•...•....
TlE2037A ....•...........
TlE2061 .............•...
TlE2061A ............•...
TlE2061 B ................
TlE2061Y .......•.......•
TlE2062 ....•............
TlE2062A •.....•....•...•
TlE2062B .....•..........
TlE2062Y ...•....•.•....•
TlE2064 .................
TlE2064A ..•...•..•....•.

3-145
3-167
3-167
3-167
3-167
Val 2
Val 2
Val 2
Val 2
Val 2
VOl2
Val 2
VOl2
VOl2
VOl2
VOl2
VOl2
VOl2
VOl2
VOl2
VOl2
VOl2
VOl2
VOl2
VOl2
VOl2
VOl2
Vall
Vall
Vall
Vall
Vall
Vall
Vall
Vall
Vall
Vall
Val 1
Vall
Vall
Vall
Vall
Vall
Vall
Vall
Vall
Vall
Vall
Vall
Vall
Vall
Vall
Vall

TlE2064B ..•...•........
TLE2064Y ••••...••....••
TlE2082 ................
TlE2082A ...............
TlE2082Y ....•..........
TlE2141
TLE2141A ...............
TlE2141Y .....•.........
TlE2142 ...• , ..... ,.....
TLE2142A , .... ,.........
TlE2142Y " , ...•• ,......
TlE2144 ................
TlE2144Y ....... ,",....
TlE2161 ................
TlE2161A
TlE2161B
TlE2227A ...............
TlE2237A
TLE2425C ::
TLE24251 ••••
TLE2425M •••t. . . . . . . . . . ..
TLE2425Y •••t. . . . . . . . . . ..
TLE2426 ••••t. . . . . . . . . . ..
TLE2426Y •••t .......... ,.
uA709C ............... ,.
uA709M .,." ..• ,",.....
uA709AM " , . , . , .. " . , . . .
uA723C
uA723M
uA733C
uA733M
uA741C
uA741 I ..................
uA741M .. ,", ......•....
uA747C
uA747M
uA748C " ....• ,', ..... ,'
uA748M .................
uA2240C •••••••••••••••.
uA7805 ••••
uA7805Q •••• ,...........
uA7806
uA7808
uA781 0
uA7812 •••••••••••••••••
uA7812Q ••••t.. . . ........
uA7815 •••••••••••••••••
uA7818
uA7824
uA7885
uA78L02C •••••••••••••••
uA78L02AC ••••••••••••••
uA78L05C •••••••••••••••

:t: :::::::::::
t............

"t'...........

Vall
VOL 1
Vall
Vall
Vall
Vall
VOL 1
Vall
Vall
VOL 1
Vall
VOL 1
VOL 1
Vall
Vall
Vall
Vall
VOL 1
2--385
2--385
2-385
2-385
2--399
2-399
Vall
Vall
Vall
2-417
2-417
4-165
4-165
VaLl
Vall
Vall
Vall
Vall
Vall
Vall
4-173
2-427
2-427
2-427
2-427
2-427
2-427
2-427
2-427
2-427
2-427
2-427
2-437
2-437
2-437

tNew devices added to this volume.

TEXAS

.JiJ

INSlRUMENTS
1-6

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

t

uA78L05Q •••••••••••••••
uA78L05AC ••••••••••••••
uA78L05AQ •••••••••.•••
uA78L06C •••...•••••••••
uA78L06AC ••••••••••••••
uA78L08C •••..••••••••••
uA78L08AC ••••••••••••••
uA78L09C •••••••••••••••
uA78L09AC ••••••••••••••
uA78L10C ...............
uA78L10AC ••••••••••••••
uA78L12C •••.•••••••••••
uA78L12Q ....t. . . .... . ...
uA78L12AC ••••••••••••••
uA78L12AQ •••t. . .. . .. .. ..
uA78L15C •••••••••..•••.
uA78L15AC
uA78M05C
uA78M05M
uA78M06C
uA78M08C
uA78M09C
uA78M10C
uA78M12C
uA78M12M
uA78M15C
uA78M20C
uA78M24C
uA7905C
uA7906C
uA7908C
uA7912C
uA7915C
uA7918C
uA7924C
uA7952C
uA79M05C
uA79M05M
uA79M06C
uA79M08C
uA79M12C
uA79M12M
uA79M15C
uA79M20C
uA79M24C ···f········· .
UC2842
UC2843 ::::::~:::::::::
UC2844 ......t .......... .
t
UC2845 .................
UC3842 •..•. •t, ••. , ..•• ,'
t
UC3843 ..... ·t···········
UC3844
UC3845

:

:::::):::::::::::

2-437
2-437
2-437
2-437
2-437
2-437
2-437
2-437
2-437
2-437
2-437
2-437
2-437
2-437
2-437
2-437
2-437
2-447
2-447
2-447
2-447
2-447
2-447
2-447
2-447
2-447
2-447
2-447
2-457
2-457
2-457
2-457
2-457
2-457
2-457
2-457
2-465
2-465
2-465
2-465
2-465
2-465
2-465
2-465
2-465
2-475
2-475
2-475
2-475
2-475
2-475
2-475
2-475

VOLTAGE REGULATORS/SUPERVISORS AND BUILDING BLOCKS
SELECTION GUIDE
power supply supervisors

(values specified for TA

SENSE INPUT
SUPPLY

FUNCTION

Sl

5V
9V
12V
15V

Undervoltage Monitor

t

Undervoltage Monitor

5V

Undervoltage Monitor
Dual Undervoltage/
Overvoltage

THRESHOLD
TOLERANCE

01TYP)

(%)

S2

t
t

Overvoltage Monitor

SENSE INPUT
THRESHOLD

-

2.6

-

2.53
4.55
7.6
10.8
13.5

-

-

4.55

TYPE

MC3423

D,JG, P

2-147

1

Open Collector

TL7702A
TL7705A
TL7709A
TL7712A
TL7715A

D,P

2-343

1

Open Collector

TL7702B
D,P

TL7705B
TL7757

5V

-

4.55

5V
12V
15V

t
t
t

4.55
10.9
13.64

PAGE
NO.

PACKAGE

Open Emitter

5

7.53

-

OUTPUT

=25°C)

2.6

Open Collector

1

D, LP, PK,

TL7759C
TL7770·5
TL7770·12
TL7770·15

Open Collector

2-351

vt

2-359

D,P

2-373

DW,N

2-377

t Programmable

t V package is in chip form
(values specified for T A = 25°C)

switched-capacitor voltage converters
CONTROL
TOPOLOGY

OUTPUT
SWITCH

SUPPLY
VOLTAGE
RANGE
(V)

Voltage Mode

Single

3.5-15

QUIESCENT
CURRENT
(NO LOAD)

150

flA

MAXIMUM
CONTINUOUS
I/O

MAXIMUM
FREQUENCY
(kHz)

300mA

35

1.2 Typ

MINIMUM SHUNT
CURRENT TO
MAINTAIN REG

MAXIMUM
SHUNT
CURRENT

20

flA

2.5 Typ
400

400 "A
2.5 to 30

TOLERANCE
(%)

TEMPERATURE
COEFFICIENT
(TVP)

500 "A Typ

2.5 to 36

400 "A Typ

2.5 to 36

450 "A Typ

150mA

PAGE
NO.

LT1054

DW,JG, P

2-55

DEVICE

1

LMI85·1.2
LM285·1.2
LM385B-l.2

2

LM385-1.2

1

LT1004-2.5

1.5

LMI85-2.5
LM285-2.5
LM385B-2.5

20 PPMrC

3

LM385-2.5

2

LM236
LM336

1

LM236A
LM336B

flA Typ
10mA

PACKAGE

(values specified for T A =25°C)

10 "A
20mA

TYPE

(%)
90

shunt voltage regulators/references
REGULAR
VOLTAGE
RANGE
(V)

TYPICAL
CONVERSION
EFFICIENCY

2-3

2-35
D, LP

2-9

2-17

2=47

0.2

15 PPMrC

LT1009

4

120 PPMrC

TL430

LP

TL431

D, JG, LP,

2
1
0.4

25PPMrC
25 PPMrC

PAGE
NO.

PACKAGE

TL431 A

P, PK

TL1431

D, LP, PK,

2-185

vt

2-189
2-303

t V package IS In chip form

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

1-7

VOLTAGE REGULATORS/SUPERVISORS AND BUILDING BLOCKS
SELECTION GUIDE
adjustable series-pass voltage regulators
OUTPUT
VOLTAGE

OUTPUT
CURRENT

Positive Output

2.5
1.5V,

MAXIMUM
(VI-VO)
DIFFERENCE

DEVICE

PACKAGE

PAGE
NO.

D, JG, LP

2-173

1.2to 32

5

35V

TL317

1.25to 125

5

125 V

TL783

1.25 to 35

2

30V

LT1084

-1.2 to -37

4

-40V

LM337

5

38V

uA723

1.5 A
150mA

2to 37

virtual grounds
OUTPUT
VOLTAGE
(V)

TOLERANCE
(%)

100mA
5A

Positive or
Negative Output

(values specified over operating temperature range)

750mA

Positive Output
Negative Output

OUTPUT VOLTAGE
RANGE
(V)

(values specified over operating

OUTPUT
CURRENT
(rnA)
±20

OUTPUT
IMPEDANCE
(Q)
0.0075
0.025

TOLERANCE
(%)

TEMPERATURE
COEFFICIENT
(TYP)

0.8

20 PPMI'C

t Y package IS In chIp form

TEXAS ~

INSlRUMENTS
1-8

POST OFFICE BOX 855303 • DALLAS, TEXAS 75265

DEVICE
TLE2425
TLE2426

2-'291

I 2-133

KC

~

D,J, N, U

temperatur~
PACKAGE

D, LP,

yt

2-417

range)
PAGE
NO.
2-385

I 2-399

VOLTAGE REGULATORS/SUPERVISORS AND BUILDING BLOCKS
SELECTION GUIDE
(values specified for T A = 25°C)

switching power supply controllers and regulators

8e
Ii!
~ $

....t

~

~! !
;j
8!
o ;) ~ °
~j t::!I

:..,

8

a~

I';

f

$ § j
4J
iSr:J
;: Ii ;ifis

~

8

i;f it
X

Voltage-Mode
Pulse-Width
Modulated
Controllers

f

~

4JII;

-

X

i;f

10

I';

E

°

$'"

OW

II;
f...

f

I';

8

X

X

-

-

X

X

-

X

-

Dual

-

300

±250
21

11

-

rx rx
r-r- -

500

-

-

X

-

-

-

2

-

1

X X

X

4

-

X

X

Modulated

X

-

-

X

±1000

500

1

X

-

-

-

X

-

1

r2

-

-

X

Fixed On-TIme
Voltage Mode

X

-

X

X

-

I

'1250

-

1

SG2524
SG3524

PKGS

-

TL598
TL1451A

-

UC2842

-

UC3843

X X
X
X
X

2-149

D, FK, J, N

2-207

D,N

2-241
2-251

D,N

2-319

2-475

UC3842
D,P

UC2845

2-475

UC3844
UC3845
LT1070

40

2

X

-

- - -

-

1

X

-

LT1071
LT1072

1200

40

700

50

10
5
5

-

-

- - -

-

-

2-161

D, FK, J, N

UC2843

UC2844

PAGE NO.

D,N

TL594

rx

Controllers

5000
2500

TL494

r-

1

TYPE

MC34060

-

Current-Mode
Pulse·Width

0

r;

I £io~o~~~&/$
'" :1,!oJQ tplk:~
5

250

0

O:~"'~I~~j~~
;;);t I§qJsf1~.s1';
~~ iii
Ci
'$;o/R

I-

-

$1
§:s

/j&iojS

200

-

g;;4J
rt);):>:

it(j

~ Ibil§(j~f... '
The ratio of the change in output voltage, usually expressed as a percentage of output voltage, to the change in temperature. This
is the average value for the total temperature change.
aVO -

-

± [ VO at TZ - Vo at T1] [ -100%
- -]
VoatZ5°C
TZ- T1

TEXAS

-If

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

1-15

GLOSSARY
VOLTAGE REGULATOR TERMS AND DEFINITIONS
SHUNT REGULATORS
NOTE: These terms and symbols are based on JEDEC and IEC standards for voltage regulator diodes.

Anode
The electrode to which the regulator current flows within the regulator when it is biased for regulation.

Cathode
The electrode from which the regulator current flows within the regulator when it is biased for regulation.

Dynamic Impedance

IZKAI

The quotient of a change in voltage across the regulator and the corresponding change in current through the regulator when it
is biased for regulation.

Noise Voltage (VnZ>
The rms noise voltage with the regulator biased for regulation and with no input ripple.

Reference Input Voltage (Vret> (of an adjustable shunt regulator)
The voltage at the reference input terminal with respect to the anode terminal.

Regulator Current (Iz)
The dc current through the regulator when it is biased for regulation.

Regulator Current near Lower Knee of Regulation Range (lzK>
The regulator current near the lower limit of the region within which regulation occurs; this corresponds to the breakdown knee of
a regulator diode.

Regulator Current at Maximum Limit of Regulation Range (IZM)
The regulator current above which the differential resistance of the regulator significantly increases.

Regulator Voltage (VZ)
The dc voltage across the regulator.

Shunt Regulator
A device having a VOltage-current characteristic similar to that of a voltage-regulator diode. It is normally biased to operate in a
region of low differential resistance (corresponding to the breakdown region of a regulator diode) and develops across its terminals
an essentially constant voltage throughout a specified current range.

Temperature Coefficient of Reference Voltage (aVret>
The ratio of the change in reference voltage to the change in temperature. This is the average value for the total temperature
change.
To obtain a value in ppm/"C:

aVref =

[

Vref at T2 - Vref at Tl] [ 106 ]
Vref at 25°C
T2 - Tl

TEXAS 1JI

INSTRUMENTS
1-16

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

GLOSSARY
VOLTAGE REGULATOR TERMS AND DEFINITIONS
SWITCHING REGULATORS
Current·Mode PWM Control
A PWM control technique in which a second feedback loop is incorporated to accomplish pulse-by-pulse switch current control.

Dead Time
A fixed, load independent off time between output pulses of a switching regulator.
NOTE: This is sometimes referred to as blanking time.

Duty Cycle
The ratio of on time to off time of a switching output, usually expressed as a percentage equal to:

On Time
On Time + Off Time

Parallel Operation
A dual output switching configuration in which both output stages conduct simultaneously.

Pulse·Width·Modulation (PWM) Control
A switching regulation technique in which a fixed frequency is maintained, and regulation is accomplished by changing the output
pulse width to vary the duty cycle.

Push·Pull Operation
A dual output switching configuration in which each output stage conducts alternately.

Single·Ended Operation
A single output switching configuration.

Soft Start
A protection circuit that prevents current surges during power up and protects against false signals that might be generated by the
control circuit when power is applied.

Undervoltage Lockout (UVLO)
A protection circuit that prevents switching outputs from turning on until a certain supply voltage threshold is reached.

Variable Frequency Control
A switching regulation technique in which a fixed output on time or off time is maintained. Regulation is accomplished by changing
the output frequency to vary the duty cycle.

TEXAS

-'!1

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

1-17

1-18

COMPARATORS
SELECTION GUIDE
commercial temperature range

(values specified at TA = 25°C)

POWER SUPPLY
DESCRIPTION

VCC+
NOM

M

I VCCNOM
("I)

RESPONSE
VIO
MAX
(mV)

liB
MAX
(flA)

IOL
MIN
(rnA)

TIME
TYP
(ns)

TYPE

PACKAGE

PAGE
NO.

3-33

single channel
Strobe

12

-6

5

40

100

28

LM306

D, P

Strobe

4-30

0

7.5

0.25

8

115

LM311

D, P, y~

3-3

Low-Power, Strobe

4-30

0

7.5

0.1
-

1.6

1200

LP311

D,P

3-45

Max 16

25

-

Max 16

7

Max 16

Output Enable

5

0

High-Speed

5

0

±1
-

High-Speed

0

-5.2

±1

-

0

3

t

High-Speed, LinCMOS

3-16

6

TL712

D,P

3-53

TL714C

D,P

3-57

TL721

D,P

3-61

200

TLC371C

D,P

3-97

D, DB, P,
PW, y~

3-27

Max 12

dual channel
Low-Power. Bipolar

4-30

0

5

0.25

6

300

LM393

Precision Input

4-30

0

2

0.25

6

300

LM393A

D,P

1.4-18

0

10

200

TLC352C

D,P

3-81

3-16

0

5

t
t

6

High-Speed, LinCMOS

6

200

TLC372C

D,P

3-109

Ultra Low-Power,
Open-Drain Output, CMOS

3-18

0

5

t

6

1100

TLC393C

D,P

3-129

Ultra Low-Power,
Push-Pull Output. CMOS

3-18

0

5

t

4

1300

TLC3702C

D,P

3-145

Low-Power, Bipolar

4-30

0

5

-0.25

6

300

LM339

0, DB, N,
PW, yt

3-19

Precision Input

4-30

0

2

-0.25

6

300

LM339A

0, N

Ultra Low-Power, Bipolar

4-30

0

±5

-0.025

6

8000

LP339

D,N

3-49

Ultra Low-Power,
Open-Drain Output, CMOS

3-18

0

5

t

6

1100

TLC339C

0, N

3-65

Ultra Low-Supply, LinCMOS

quad channel

1.4-18

0

10

200

TLC354C

D,N

3-89

3-18

0

10

t
t

6

High-Speed, CMOS

6

200

TLC374C

0, N

3-119

Ultra Low-Power,
Push-Pull Output, CMOS

3-18

0

5

t

4

1300

TLC3704C

D,N

3-167

Ultra Low-Supply, LinCMOS

t Typically 5 pA

ty

package is in chip form

TEXAS

-1!1

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

1-19

COMPARATORS
SELECTION GUIDE
(values specified at TA = 25°C)

industrial temperature range
POWER SUPPLY
DESCRIPTION

VCC+
NOM

(V)

I

VCCNOM

(V)

RESPONSE
VIO
MAX
(mV)

liB
MAX
(flA)

IOL
MIN
(mA)

TIME
TYP
(ns)

TYPE

PACKAGE

PAGE
NO.

single channel
Strobe
Low-Power, Strobe

dual channel
Industrial LM393

4-30

0

5

0.25

6

300

LM293

D,P

Industrial LM393, Low Offset

4-30

0

2

0.25

6

300

LM293A

D,P

1.4-18

0

10

200

TLC3521

D,P

3--81

High-Speed, LinCMOS

3-16

0

5

6

200

TLC371I

D,P

3-97

High-Speed, LinCMOS

3-16

0

5

t
t
t

6
6

200

TLC3721

D,P

3-109

Ultra Low-Power,
Open-Drain Output

3-18

0

5

t

6

1100

TLC3931

D,P

3-129

Ultra Low-Power,
Push-Pull Output

3-18

0

5

t

4

1300

TLC37021

D,P

3-145

Industrial LM339

4-30

0

5

-0.25

6

300

LM239

D,N

Industrial LM339, Low Offset

4-30

0

2

-0.25

6

300

LM239A

D,N

Ultra Low-Power,
Industrial LP339, Bipolar

4-30

0

±5

-0.025

20

8000

LP239

D,N

3-49
3-65

Ultra Low-Supply, UnCMOS

3-27

quad channel

Ultra Low-Power,
Open-Drain Output

3-19

3-18

0

5

t

6

1100

TLC3391

D,N

1.4-18

0

10

6

200

TLC3541

D,N

3-69

High-Speed, Lin CMOS

3-18

0

10

t
t

6

200

TLC3741

D,N

3-119

Ultra Low-Power,
Push-Pull Output

3-18

0

5

t

4

1300

TLC37041

D,N

3-167

Ultra Low-Supply, LinCMOS

t Typically 5 pA

TEXAS lJ1

INSTRUMENTS
1-20

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

COMPARATORS
SELECTION GUIDE
automotive temperature range

(values specified at T A

POWER SUPPLY
DESCRIPTION

Vcc+
NOM
(V)

I

VCCNOM
(V)

= 25°C)

RESPONSE
VIO
MAX

liB
MAX

(mY)

(flA)

IOL
MIN
(rnA)

TIME
TYP
(ns)

TYPE

PACKAGE

PAGE
NO.

D, DB,
P,PW

3-27

dual channel
Automotive LM393

4-30

0

7

0.25

6

300

LM2903,
LM29030

1.4-18

0

10

200

TLC3521

D,P

3---a1

3-16

0

5

t
t

6

High-Speed, LinCMOS

6

200

TLC3720

D,P

3-109

Ultra Low-Power,
Open-Drain Output

3-18

0

5

t

6

1100

TLC3931

D,P

3-129

Ultra Low-Power,
Push-Pull Output

3-18

0

5

t

4

1300

TLC37020

JG

3-145

Automotive LM339

4-30

0

7

-0.25

6

300

LM2901,
LM29010

D, DB, N,
PW

3-19

Low-Cost LM2901

4-26

0

20

0.5

6

300

LM3302

D,N

3-41

-0.025

Ultra Low-Supply, LinCMOS

quad channel

Ultra Low-Power,
Automotive LP339, Bipolar

0

±5

20

8000

LP2901

D,N

3-49

1.4-18

0

10

t

6

200

TLC3541

D,N

3---a9

Open-Drain Output

3-18

0

5

6

1100

TLC3390

D,N

3---a5

High-Speed, LinCMOS

3-18

0

10

6

200

TLC3740

D,N

3-119

Push-Pull Output

3-18

0

5

t
t
t

4

1300

TLC37040

.J

3-167

Ultra Low-Supply, LinCMOS

5

t Typically 5 pA

TEXAS ~

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

1-21

COMPARATORS
SELECTION GUIDE
military temperature range
POWER SUPPLY

I

(values specified at T A = 25°C)
RESPONSE
TIME
PAGE
TYPE
PACKAGE NO.
TYP

VccNOM

VIO
MAX

MAX

M

M

(mV)

(iJA)

IOL
MIN
(rnA)

4-30

0

5

0.1

6

300

LM193

1.4-18

0

10

6

200

High-Speed, LinCMOS

4-16

0

5

6

High-Speed, LinCMOS

4-16

0

5

t
t
t

Ultra Low-Power,
Open-Drain Output

4-18

0

5

Ultra Low-Power,
Push-Pull Output

4-18

0

Low-Power, Bipolar

4-30

Precision Input

4-30

DESCRIPTION

Vcc+
NOM

liB

(ns)

single channel
Strobe
Low-Power, Strobe

dual channel
Low-Power, Bipolar
Ultra Low-Supply, LinCMOS

D, FK, JG,
P

3-27

TLC352M

FK,JG

3-81

200

TLC371M

D,P

3-97

6

200

TLC372M

FK,JG

3-109

t

6

1100

TLC393M

FK,JG

3-129

5

t

4

1300

TLC3702M

FK,JG

3-145

0

5

-0.1

6

300

LM139

D, FK,J, N

0

2

-0.1

6

300

LM139A

D, FK, J, N

quad channel

Ultra Low-Power,
Open-Drain Output

3-19

4-18

0

5

t

6

1100

TLC339M

D, FK,J, N

3-85

1.4-18

0

10

t

6

200

TLC354M

FK,J

3-89

High Speed, LinCMOS

4-18

0

10

t

6

200

TLC374M

FK,J

3-119

Ultra Low-Power,
Push-Pull Output

4-18

0

5

t

4

1300

TLC3704M

FK,J

3-167

Ultra Low-Supply, LinCMOS

t Typically 5 pA

TEXAS ~

INSTRUMENTS
1-22

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

COMPARATORS
CROSS-REFERENCE GUIDE
Replacements are based on similarity of electrical and mechanical characteristics shown in currently published data.
Interchangeability in particular applications is not guaranteed. Before using a device as a substitute, compare the
specifications of the substitute device with the specifications of the original.
Texas Instruments makes no warranty as tothe information furnished and the buyer assumes all risk in the use thereof.
No liability is assumed for damages resulting from the use of the information contained herein.
Manufacturers are arranged in alphabetical order.

SUGGESTED

LINEAR
TECHNOLOGY

TI

REPLACEMENT

LT1017
LT1018

NATIONAL
LM311
LM339
LM393
LM2901
LM3302
LP339

PMI
CMP04F

TLC352 or TLC3702
TLC352,orTLC3702

DIRECT
TI
REPLACEMENT
LM311
LM339
LM393
LM2901
LM3302
LP339

SUGGESTED
TI
REPLACEMENT
TLC339
TLC393
TLC339
TLC339

DIRECT
TI
REPLACEMENT

SUGGESTED
TI
REPLACEMENT
LM339, LM3302,
LM2901, or TLC339

PAGE
NO.
3-81 /3-145
3-81 /3-145

PAGE
NO.
3-3
3-19/3-65
3-27/3-129
3-19/3-65
3--41
3--49/3-65

PAGE
NO.
3-19/3--41/
3-65

TEXAS ."

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

1-23

1-24

GLOSSARY
COMPARATORS
Average Temperature Coefficient of Input Offset Current (allO)
The ratio of the change in input offset current to the change in free-air temperature. This is an average value for the specified
temperature range.

arlO =

(rIO_at_TA(l»)
- (rIO at TA(2»)
=-,c...:..!.._=-__

--''''':''!''

~

TA(l) - TA(2)
where T A(1) and T A(2) are the specified temperature extremes.

Average Temperature Coefficient of Input Offset Voltage (aVIO)
The ratio of the change in input offset current to the change in free-air temperature. This is an average value for the specified
temperature range.

aVIO =

(VIa
at TA(l») - (VIa at TA(2»)
_ _-=.o....:.,---=-___-,-:,:",

~

TA(l) - TA(2)
where T A(1) and T A(2) are the specified temperature extremes.

Common-Mode Input Voltage (VIc)
The average of the two input voltages.

Common-Mode Input Voltage Range (VICR)
The range of common-mode input voltage that if exceeded will cause the comparator to cease functioning properly.

Common-Mode Rejection Ratio (kCMR. CMRR)
The ratio of differential voltage amplification to common-mode voltage amplification.
NOTE: This is measured by determining the ratio of a change in input common-mode voltage to the resulting change in input offset
Voltage.

Differential Input Voltage (VIO)
The voltage at the non inverting input with respect to the inverting input.

Differential Input Voltage Range (VID)
The range of voltage between the two input terminals that if exceeded will cause the comparator to cease functioning properly.

Differential Voltage Amplification (Avo)
The ratio of the change in output to the change in differential input voltage producing it with the common-mode input voltage held
constant.

High-Level Output Current (lOH)
The current into an output with input conditions applied that according to the product specification will establish a high level at the
output.

High-Level Output Voltage (VOH)
The voltage at an output with input conditions applied that according to the product specification will establish a high level at the
output.

High-Level Strobe Current (IIH(S»
The current flowing into or out oft the strobe at a high-level voltage.

High-Level Strobe Voltage (VIH(S»
For a device having an active-low strobe. a voltage within that range is guaranteed not to interfere with the operation of the
comparator.

Input Bias Current (lIB)
The average of the currents into the two input terminals with the output at the specified level.

Input Offset Current (110)
The difference between the currents into the two input terminals with the output at the specified level.

t Current out of a terminal is given as a negative value.

TEXAS

-'II

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

1-25

GLOSSARY
COMPARATORS
Input Offset Voltage (VIO)
The dc voltage that must be applied between the input terminals to force the quiescent dc output voltage to the specified level.

Input Voltage Range (VI)
The range of voltage that if exceeded at either input terminal will cause the comparator to cease functioning properly.

Low-Level Output Current (IOU
The current into an output with inputconditions applied that according to the product specification will establish a low level at the
output.

Low-Level Output Voltage (VoU
The voltage at an output with input conditions applied that according to the product speCification will establish a low level at the
output.

Low-Level Strobe Current (IIL(S»
The current flowing out oft the strobe at a low-level voltage.

Low-Level Strobe Voltage (VIL(S»
For a device having an active-low strobe, a voltage within the range that is guaranteed to force the output high or low, as specified,
independently of the differential inputs.

Output Resistance (ro)
The resistance between an output terminal and ground.

Response Time
The interval between the application of an input step function and the instant the output crosses the logic threshold voltage.
NOTE: The input step drives the comparator from some initial condition sufficient to saturate the output (or in the case of
high-to-Iow-Ievel response time, to turn the output off) to an input level just barely in excess of that required to bring the
output back to the logic threshold voltage. This excess is referred to as the voltage overdrive.

Strobe Release Time
The time required for the output to rise to the logic threshold voltage after the strobe terminal has been driven from its active logic
level to its inactive logic level.

Supply Current (ICC+. ICC-)
The current into the V cc + or V cc- terminal of an integrated circuit.

Total Power Dissipation (PD)
The total dc power supplied to the device less any power delivered from the device to a load.

NOTE: At no load: PD = Vcc+ • Icc+ + Vcc- • Icc_.

t Current out of a terminal is given as a negative value.

TEXAS -If

INSTRUMENTS
1-26

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SPECIAL FUNCTIONS
SELECTION GUIDE
precision timers
commercial temperature range
DESCRIPTION

(values specified for T A = 25°C)
OUTPUT CURRENT

TIMING
FROM

TO

TYPE

PACKAGES

PAGE
NO.

Single Timer, Bipolar

±200 mA

10 ~s

Hours

NE555

D, P, yt

4-11

Dual Timer, Bipolar

±200 mA

10 ~s

Hours

NE556

D,N

4-33

D, P, yt

4-123
4-135

LinCMOS, Single High-Speed Timer,
1-V Operation

100mA
-10mA

1

~s

Hours

TLC551

LinCMOS, Dual High-Speed Timer,
1-V Operation

100 mA
-10mA

1

~s

Hours

TLC552C

D,N

TLC555C

D,P

1

~s

Hours

TLC555Y

yt

4-143

1

~s

Hours

TLC556C

D,N

4-153

Days

uA2240C

N

4-173

100mA
LinCMOS, Single High-Speed Timer
LinCMOS, Dual High-Speed Timer
Programmable Timer/Counter

-10mA
100mA
-10mA

10 ~s

4mA

t y package is in chip form

automotive temperature range
DESCRIPTION

(values specified for T A = 25°C)
OUTPUT CURRENT

TIMING
FROM

TO

TYPE

PACKAGES

PAGE
NO.

Single Timer, Bipolar

±200mA

10

~s

Hours

SA555

D,P

4-11

Dual Timer, Bipolar

±200 mA

10,"s

Hours

SA556

D,N

4-33

LinCMOS, Single High-Speed Timer

100mA
-10mA

1

'"S

Hours

TLC5551

D,P

4-143

LinCMOS, Dual High-Speed Timer

100mA
-10mA

1

~s

Hours

TLC5561

D,N

4-153

(values specified for T A = 25°C)

military temperature range
DESCRIPTION

OUTPUT CURRENT

TIMING
TO

FROM

TYPE

PACKAGES

Single Timer, Bipolar

±200mA

1

~s

Hours

SE555

D, FK,JG, P

Single Timer, Bipolar

±200mA

1

~s

Hours

SE555C

D, FK, JG, P

Dual Timer, Bipolar

±200mA

1

~s

Hours

SE556

D, FK, J, N

Dual Timer, Bipolar

±200mA

1 '"s

Hours

SE556C

D, FK, J, N

PAGE
NO.

4-11
4-33

LinCMOS, Single High-Speed Timer

100mA
-10mA

1

~

Hours

TLC555M

D, FK, JG, P

4-143

LinCMOS, Dual High-Speed Timer

100 mA
-10mA

1

,"S

Hours

TLC556M

D, FK,J, N

4-153

TEXAS

.J!1

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

1-27

SPECIAL FUNCTIONS
SELECTION GUIDE
current mirrors
DESCRIPTION

(values specified for T A = 25°C)
TEMPERATURE
RANGE

CURRENT RATIO
INPUT TO OUTPUT

INPUT CURRENT
RANGE

TYPE

PACKAGES

Programmable

O°C t070'C

3:1 to 1:15

Variable

TL010C

P

Programmable

-40'C to 85'C

3:1 to 1:15

Variable

TL0101

P

Fixed

O'C to 70'C

1:1

lIlA to 1 mA

. TL011C

LP

Fixed

-40'C to 85'C

1:1

11lAt01 mA

TL0111

LP

Fixed

O'C to 70'C

1:2

1 flA to 1 mA

TL012C

LP

Fixed

-40'C to 85'C

1:2

11lAt01 mA

TL0121

LP

Fixed

O'C to 70'C

1:4

1 IlAt01 mA

TL014AC

LP

Fixed

O'C to 70'C

1:2

21lAt02mA

TL021C

LP

Fixed

-40'C to 85'C

1:2

2 IlAt02 mA

TL021 I

LP

sonar ranging functions

PAGE
NO.

4-45

4-49

(values specified for T A = 25°C)
TYPE

PACKAGES

PAGE
NO.

Control integrated circuit for use in a sonar ranging module, capable of
driving 50-kHz transducers with a simple interface

TL851

N

4-109

Receiver Circuit

Receiver integrated circuit for use in a sonar ranging module

TL852

N

4-113

Control Circuit

Control integrated circuit for use in a sonar ranging module, capable of
driving 40-kHz transducers With a simple interface

TL853

N

4-119

DESCRIPTION

Controller Circuit

floppy-disk control circuits

(values specified for T A = 25°C)
DESCRIPTION

TYPE

PACKAGES

PAGE
NO.

Tape-Read Signal Conditioner

TL041AC

DW,NT

4-77

Disk-Memory Read-Chain Data Comparator

TL712

D,JG, P

3-53

Disk-Memory Read-Chain Data Comparator With MECL III and MECL 1000

TL721

D,JG, P

3-61

differential video amplifiers
(values specified for T A = 25°C)

commercial temperature range
BANDWIDTH
(MHz)

DESCRIPTION

GAIN

TYPICAL
NOISE, vn

TYPE

PACKAGES

PAGE
NO.

Amplifier With 2 Multiplexed Inputs and Wide AGC
Range

60

100 Max

251lV

MC1445

J, N

4-9

Amplifier With Internal Frequency Compensation
and Adjustable/Selectable Gain Options

90

600 Max

121lV

NE592

D,N

4-25

Amplifier With a Wide AGC Range

50

100

121lV

TL026C

D,P

4-55

Amplifier With a Wide AGC Range

50

400 Max

121lV

TL027C

D,J, N

4-63

2-Channel Multiplexed Video Amp

20

600 Max

<51lV

TL040C

D,N

4-71

Similar to NE592 but in an 8-Pin Package

90

600 Max

121lV

TL592

D,P

4-99

Low-Noise Version of NE592 and TL592

90

600 Max

31lV

TL592B

D,N,P

4-103

200

10,100,400

121lV

uA733C

D, N '

4-165

BANDWIDTH
(MHz)

GAIN

TYPICAL
NOISE, vn

TYPE

PACKAGES

PAGE
NO.

Amplifier With Internal Frequency Compensation
and Adjustable/Selectable Gain Options

90

600 Max

121lV

SE592

J

4-25

Amplifier With Internal Frequency Compensation

200

10,100,400

12 flY

uA733M

J, U

4-165

Amplifier With Internal Frequency Compensation

(values specified for T A = 25°C)

military temperature range
DESCRIPTION

TEXAS .J!1

INSlRUMENlS
1-28

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SPECIAL FUNCTIONS
SELECTION GUIDE
logarithmic amplifiers

(values specified for military temperature range)

DESCRIPTION

GAIN

Logarithmic Amplifier

Logarithmic Curve

programmable tone/noise generators

(values specified for TA

DESCRIPTION

TYPE

Complex Sound Generators DeSigned to Provide Low-Cost Digital Tones or Noise
Programmable White-Noise and Attenuation Functions, and Simultaneous Sounds
Under Microprocessor Control
TTL Compatible

frequency-to-voltage-converters

SN76494/
SN76494A
SN76496/
SN76496A

PACKAGES

PAGE
NO.

N

4-37

(values specified for T A

DESCRIPTION

Output Swings to Ground for Zero-Frequency Input
Only One RC Network Provides Frequency Doubling for Low Ripple
8-Pin Version Interfaces Directly to Variable Reluctance Magnetic Pickups

=25°C)

TYPE

PACKAGES

LM2907
LM2917

D,N,P

=25°C)
PAGE
NO.

4-3

TEXAS -If

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

1-29

1-30

SPECIAL FUNCTIONS
CROSS·REFERENCE GUIDE
Replacements are based on similarity of electrical and mechanical characteristics shown in currently published data.
Interchangeability in particular applications is not guaranteed. Before using a device as a substitute, compare the
specifications of the substitute device with the specifications of the original.
Texas Instruments makes no warranty as to the information furnished and buyer assumes all risk in the use thereof.
No liability is assumed for damages resulting from the use of the information contained herein.
Manufacturers are arranged in alphabetical order.

SUGGESTED
TI
REPLACEMENT

INTERSIL

ICM7555

MOTOROLA

MC1445
MC1733
NE555
NE592

SIGNETICS

NE555
NE556
NE592
SA555
SA556
SE555
SE555C
SE5556
SE556C
uA733

TLC555
DIRECT
TI
REPLACEMENT

SUGGESTED
TI
REPLACEMENT

MC1445
uA733
NE555
NE592
DIRECT
TI
REPLACEMENT

SUGGESTED
TI
REPLACEMENT

NE555
NE556
NE592
SA555
SA556
SE555
SE555C
SE556
SE556C
uA733

TLC555
TLC556
TLC555
TLC556
TLC555
TLC555
TLC556
TLC556
uA733

PAGE
NO.

4-143
PAGE
NO.

4-9
4-165
4-11
4-25
PAGE
NO.

4-11/4-143
4-33/4-153
4-25
4-11/4-143
4-33/4-153
4-11/4-143
4-11/4-143
4-33/4-153
4-33/4-153
4-165

TEXAS .If

INSIRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

1-31

1-32

2-1

<
::rJ
CD

ca
til

en

c

"C
CD

_.~

til

..,o
til
Q)

:::J

a.
m

-

a.
ca

-om

()

~

til

2-2

LM18S-1.2, LM28S-1.2, LM38S-1.2, LM38SB-1.2
MICROPOWER VOLTAGE REFERENCES
APRIL

•

1% and 2% Initial Voltage Tolerance

•

Reference Impedance
LM185 ... 0.6 Q Max at 25°C
LM385 ... 1 Q Max at 25°C
All Devices ... 1.5 Max Over Full
Temperature Range

(TOP VIEW)

N C O8 .
NC 2
7
NC 3
6
5
ANODE 4

CATHODE
NC
NC
NC

LPPACKAGE
(TOP VIEW)

•

Very Low Power Consumption

•

Applications:
Portable Meter References
Portable Test Instruments
Battery-Operated Systems
Current-Loop Instrumentation
Panel Meters

•

AUGUST 1991

o PACKAGE

Operating Current Range ... 10 rtA
to 20 mA

•

198~REVISED

ANODE
CATHODE
NC
NC-No internal connection

Designed to Be Interchangeable With
National LM185-1.2, LM285-1.2, and
LM385-1.2

symbol
ANODE

CATHODE

description

These micropower terminal band-gap voltage references operate over a 1D-rtA to 20-mA current range and
feature exceptionally low dynamic impedance and good temperature stability. On-chip trimming provides tight
voltage tolerance. The LM 185-1.2 series band-gap reference has low noise and good long-term stability.
Careful design ofthe LM 185-1.2 series has made the device exceptionally tolerant of capacitive loading, making
it easy to use in almost any reference application. The wide dynamic operating temperature range allows its use
with widely varying supplies with excellent regulation.
The extremely low-power drain of the LM 185-1 .2 series makes it useful for micropower circuitry. These voltage
references can be used to make portable meters, regulators, or general-purpose analog circuitry with battery
life approaching shelf life. Further, the wide operating current range allows them to replace older references with
a tighter tolerance part.
The LM185-1.2 is characterized for operation over the full military temperature range of -55°C to 125°C. The
LM285-1.2 is characterized for operation from -40°C to 85°C. The LM385-1.2 and LM3858-1.2 are
characterized for operation from O°C to 70°C.
AVAILABLE OPTIONS
TA

Vz
TOLERANCE

PACKAGE
SMALL OUTLINE
(D)

PLASTIC
(LP)

2%

LM385D-1.2

LM385LP-1.2

1%

LM385BD-1 .2

LM385BLP-1.2

-40°C to 85°C

1%

LM285D-1.2

LM285LP-1.2

_55°C to 125°C

1%

LM185D-1.2

LM185LP-1.2

O°C to 70°C

The D package IS available taped and reeled. Add the suffix Rtothe device type (e.g.,
LM385DR-1.2).

PRODUCTION DATA information Is current as of publication date. Products
conform to specifications per the terms of Texas Instruments standard
warranty. Production processing does not necessarily include testing of all

parameters.

TEXAS

~

Copyright © 1991, Texas Instruments Incorporated

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-3

LM185-1.2, LM285-1.2, LM385-1.2, LM385B-1.2
MICROPOWER VOLTAGE REFERENCES
schematic
.---------._------._----~------._._------._------~--~--CATHOOE

7.5kO

600kO

200kO

50kO

300kO

100 kO

5000

60kO

L---~------------~----~------~--------~------~--~--ANODE

Component values shown are nominal.

TEXAS ."

INSlRuMENlS
2--4

POST OFFICE BOX 655303 • DALlAS. TEXAS 75265

LM185-1.2, LM285-1.2, LM385-1.2, LM385B1-1.2
MICROPOWER VOLTAGE REFERENCES
absolute maximum ratings over operating free-air temperature range
Reverse current, IR ...................................................................... 30 mA
Forward current, IF ....................................................................... 10 mA
Operating free-air temperature range:
LM185-1.2 .................................. -55°C to 125°C
LM285-1.2 .................................. -40°C to 85°C
LM385-1 .2, LM385S-1.2 ......................... O°C to 70°C
Storage temperature range ....................................................... -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................... 260°C

recommended operating conditions
MIN

MAX

UNIT

10

20000

flA

LM185·1.2

-55

125

LM285-1.2

-40

85

0

70

Reference current, IZ

Operating free-air temperature range, T A

LM385-1.2, LM385S-1.2

°C

electrical characteristics at specified free-air temperature
PARAMETER

Vz

Reference voltage

TEST CONDITIONS

LM1BS-1.2
LM2BS·1.2

TAt

IZ = 10 [lAt020 rnA

25°C

IZ = 10 !-,Ato 20 rnA

25°C

LM38S-1.2

LM3BS8-1.2

UNIT

MIN

TYP

MAX

MIN

TYP

MAX

MIN

TYP

MAX

1.223

1.235

1.247

1.210

1.235

1.260

1.223

1.235

1.247

V

Average temperature
aVZ

coefficient of
reference voltage*

Change in reference
I1VZ

voltage with current

IZ=10!-,At01rnA

IZ = 1 mAt020 rnA

±20

±20

IZ(rnin)
Zz

Long-term change in
reference voltage

1

1

Full range

1.5

1.5

1.5

25°C

10

20

20

25°C

IZ=100!-,A

Minimum reference

Reference impedance

20

25°C

IZ=100[lA

8

10

8

0.2

0.6

0.4

Full range
Vn

Broadband noise
voltage

IZ = 100 [lA,
f= 10 Hz to 10 kHz

25

1.S
60

25°C

rnV

25

±20

±20

±20

Full range

current

pprn/"C

1

25°C

Full range

I1VZ/l1t

±20

15

8

1

0.4

1.5
60

pprn/khr
15

[lA

1
1.5

60

Q

!-'V

t Full range is _55°C to 125°C for the LM185·1.2, -40°C to 85°C for the LM285·1.2, and O°C to 70°C for the LM385-1.2 and LM3858-1.2.

*

The average temperature coefficient of reference voltage is defined as the total change in reference voltage divided by the specified temperature range.

TEXAS

-IJ1

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-5

LM185-1.2, LM285-1.2, LM385-1.2, LM3858-1.2
MICROPOWER VOLTAGE REFERENCES
TYPICAL CHARACTERISTICSt
REVERSE CURRENT

100

I

TA

REFERENCE VOLTAGE CHANGE

vs

vs

REVERSE VOLTAGE

REVERSE CURRENT

I

16

I

=-55'C to 125'C
>

T~ l ~~~~~ to 11d5l61

E
I

oCt

~

::L

1

'E
~
:;,

co

10

/
II

.t:

0

~>

.
a:

V.,

1

5-

0.1

II

12

o

/

V

V
./

o

---

~

8

..g

4

,!g
~

e

'a:*
I

N

>


.

>

.

C>

,!g
~ 1.235

V~

..
..
a:
()

I-"f-"'

~

c

e
.e

tf
1
IL

1.240

1

0.8

"Eco

100

Figure 2

FORWARD VOLTAGE

1.2

10

IR - Reverse Current - mA

0.4

I

>

V"

... v

-r-..

~

.........

1.230

~

N

>

1.225

o

0.01

0.1

10

100

-55 -35 -15

25

45

65

85

105 125

Figure 4

Figure 3

t

5

TA - Free-Air Temperature - 'C

IF - Forward Current - mA

Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TEXAS ~

INSTRUMENTS
2-6

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

LM185-1.2, LM285-1.2, LM385-1.2, LM385B1-1.2
MICROPOWER VOLTAGE REFERENCES
TYPICAL CHARACTERISTICSt
REFERENCE IMPEDANCE
vs
REFERENCE CURRENT
100

IIJIIIIII

NOISE VOLTAGE
vs
FREQUENCY
700

11111

f = 25 Hz
TA = -55°C to 125°C
Cl

.,I
..,.,"'c"

10

\

~
>-c
.,I

\

Q.

.E.,

I~ ~b~I~A

1=1
600 f- TA = 25°C
500
400

"'r--.
r-r-

Cl

~

"e
c

~

.,

r-....

300

.!!l
0

'*

It
I

z

"r--.

N
N

I

200

c

\ .....

>
100

........ r-.

o

0.1
0.01

0.1

10

10

100

100

Figure 5

60

>

.,""I

50

Cl

1~=11~~

g.,

40 -

III

·0

z

"5Q.
"5

0

~

,.

>

I

III

"5
Q.
"5

V

..,0c

V

20

Out ut

1.5

I

.,
C>
g'"

C

-=

30

10

/'

100

!"!!

TRANSIENT RESPONSE

RJ11plll

Jm!1

/

/VI~VO
0.5

-=

0

'Q."
"5

/~

J..

5

Input

/'
0

0.1

tv-

36kQ

.E

o

100 k

Figure 6

OUTPUT NOISE VOLTAGE
vs
CUTOFF FREQUENCY
70

10 k

1k

f - Frequency - Hz

IZ - Reference Current - mA

10

100

o

100

v

500

600

t- Time -IlS

f - Cutoff Frequency - kHz

Figure 8

Figure 7

t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TEXAS

lJ1

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-7

LM185-1.2, LM285-1.2, LM385-1.2, LM385B-1.2
MICROPOWER VOLTAGE REFERENCES
APPLICATION INFORMATION
10-50 flA

Mercury Cell
1.345 V
100kQW.W.
Zero
10 kQ

'-------___-~t-------+--_+--_____~----'
+

Adjust for 12.17 mV
at 25°C Across 450 Q

Type K
Meter

Figure 9. Thermocouple Cold-Junction Compensator

V+

9V

2.3V "V+ ,,30V

500kQ
1.2V

2.7kQ
LM385-1.2

. - - - - -_____~ 1.2 V

Figure 10. Operation Over a
Wide Supply Range

Figure 11. Reference From a 9-V Battery

TEXAS

..tl~

~

.

INSTRUMENTS
2-8

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

LM185-2.5, LM285-2.5, LM385-2.5, LM385B-2.5
MICROPOWER VOLTAGE REFERENCE
D3189. JANUARY 1989-REVISED JANUARY 1992

•

Operating Current Range ... 20 [lA
to 20 mA

o PACKAGE

•

1.5% and 3% Initial Voltage Tolerance

•

Reference Impedance
LM185 ... 0.6 Q Max at 25°C
LM385 ... 1 Q Max at 25°C
All Devices ... 1.5 Q Max Over Full
Temperature Range

•

Very Low Power Consumption

•

Applications:
Portable Meter References
Portable Test Instruments
Battery-Operated Systems
Current-Loop Instrumentation
Panel Meters

•

u

(TOP VIEW)

NC
NC
NC
ANODE

8
7
6
5

2
3
4

CATHODE
NC
NC
NC

LP PACKAGE
(TOP VIEW)
ANODE
CATHODE
NC
NC-No internal connection

symbol

Designed to Be Interchangeable With
National LM185-2.5, LM285-2.5, and
LM385-2.5

ANODE -----I~.JoI-[- - - - CATHODE

description
These micro power terminal band-gap voltage references operate over a 1O-[lA to 20-mA current range and
feature exceptionally low dynamic impedance and good temperature stability. On-chip trimming provides tight
voltage tolerance. The LM18S-2.S series band-gap reference has low noise and good long-term stability.
Careful design of the LM18S-2.S series has made these devices exceptionally tolerant of capacitive loading,
making them easy to use in almost any reference application. The wide dynamic operating temperature range
allows their use with widely varying supplies with excellent regulation.
The extremely low power drain of the LM18S-2.S series makes it useful for micropower circuitry. These voltage
references can be used to make portable meters, regulators, or general-purpose analog circuitry with battery
life approaching shelf life. Further, the wide operating current range allows them to replace older references
with a tighter tolerance part.
The LM38S-2.S and LM38SB-2.S are characterized for operation from O°C to 70°C. The LM28S-2.S is
characterized for operation from -40°C to 85°C. The LM18S-2.S is characterized for operation over the full
military temperature range of -SsoC to 12SoC.
AVAILABLE OPTIONS
PACKAGE
TA

Vz
TOLERANCE

SMALL OUTLINE
(D)

3%

PLASTIC
(LP)

LM385D·2.5

LM385LP-2.5

1.5%

LM385BD-2.5

LM385BLP-2.5

-4DoC to 85°C

1.5%

LM285D·2.5

LM285LP-2.5

-55°C to 125°C

1.5%

LM185D-2.5

LM185LP-2.5

DOC to 7DoC

The D package IS available taped and reeled. Add the suffiX R to the device type (e.g.,
LM385DR·2.5).

PR'ODUCT10N DATA Information Is current 8S of publication date.
Products conform to specifications perthe terms alTexas Instruments
standard warranty. Production processing does not necessarily
Include testing of all parameters.

.JJ1
INSTRUMENlS

Copyright © 1992. Texas Instruments Incorporated

TEXAS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-9

LM185-2.5, LM285-2.5, LM385-2.5, LM385B-2.5
MICROPQWER VOLTAGE REFERENCES
schematic
r---------~------~----~~------

7.SkQ

__

_.------._------~._--~._---

CATHODE

600 kQ

200kQ

500Q

SOOQ

100kQ

500Q

60kQ

~--.-------------~----~~------_.--------._--------

__--~__---ANODE

All component values shown are nominal.

absolute maximum ratings over operating free-air temperature range
Reverse current, IR ...................................................................... 30 mA
Forward current, IF ......................... : ............................................. 10 mA
LM 185-2.5 .................................. -55°C to 125°C
Operating free-air temperature range:
LM285-2.5 ................................... -40°C to 85°C
LM385-2.5, LM385B-2.5 ......................... DOC to 70°C
Storage temperature range ....................................................... -65°C to 15DoC
Lead temperature 1,6 mm (1/16 inch) from cases for 10 seconds .............................. 260°C

recommended operating conditions
MIN

MAX

20

20000

LM185-2.5

-55

125

LM285-2.5

-40

85

0

70

Reference current. IZ
Operating free-air temperature range.

TA

LM385-2.5. LM385B-2.5

TEXAS -1!1

INSlRUMENlS
2-10

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

UNIT
!lA

°c

electrical characteristics at specified free-air temperature
PARAMETER

TEST CONDITIONS

Vz

Reference voltage

Iz ~ 20!lA to 20 mA

25°C

avz

Average temperature coefficient of
reference voltage t

Iz ~ 20 !lA to 20 rnA

25°C

Iz

!:N z

Iz

z

J~
~~~
~

iilOJ

~

20 flA to 1 mA

Change in reference voltage with current

!:NzI~t

Long-term change in reference voltage

Iz(min)

Minimum reference current

Zz

Reference impedance

Vn

Broadband noise voltage

~

1 !lA to 20 rnA

100!lA

Iz ~ 100 !lA,
f ~ 10 Hz to 10 kHz

UNIT

TYP

MAX

MIN

TYP

MAX

MIN

TYP

MAX

2.462

2.5

2.538

2.425

2.5

2.575

2.462

2.5

2.538

±20

±20

25°C

1

±20

ppmtC

2

1.5

2

2

25°C

10

20

20

25°C
25°C

±20

ppm/khr

20

8

20

8

20

0.2

0.6

0.4

1

0.4

1

1.5

1.5
120

120

mV

25
±20

8

Full range
25°C

25

20
±20

V

2

Full range

Full range
~

LM385B-2.5

LM385-2.5

MIN

Full range

Iz~100flA

Iz

LM185-2.5
LM285-2.S

TAt

!lA
Q

1.5
120

flY

t Full range is O°C to 70°C for the LM385-2.5 and LM385B-2.5, -40°C to 85°C for the LM285-2.5, and -55°C to 125°C for the LM185-2.5.

*The average temperature coefficient of reference voltage is defined as the total change in reference voltage divided by the specified temperature range.
r-

...
::c.n

::
e»

-N
n.

:D,?'I
Or-

"::
ON
:lEe»
mCf
:D~

<,?'I
Or-

!:i::
)::lie.,)
C)~

mN

:Den
m~

." r-

m::
:De.,)
me»

:zc.n
~
~

n~

mN


E

ct

I

:l.

I

'E
~

12

II>

10

V

::l

(.)

't!!"

II>

>
II>

a:
I

~

0.1

I

o

V

en

..-- -

c
co

.:::
()

!g
~
c

I

8

/

4

e

~

a:

I
N

......... ",

o

>
I

1.2

'"

en
~

~

g

g
""Eco

0.8

LL

0.6

I
LL

>

2.515

en 2.510

II>

i:0

I
I
I
I
Iz = 20 !LA to 20 rnA

2.520 I-

1.4

>

0.4

l/
......... ~

-

II>

2.505

~

2.500

I

2.495

"ec

a:

~

2.490
2.485

o
0.Q1

/

>N

0.2

0.1

10

100

/

V

-

....

"

"'

V

2.480
-55

~5

-15

5

25

45

65

85

~

Figure 4

Figure 3

Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TEXAS

~

INSTRUMENTS
2-12

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

.....

105 125

TA - Free-Air Temperature - 'C

IF - Forward Current ~ rnA

t

100

IR - Reverse Current - rnA

Figure 1

1.6

10

0.1

0.Q1

VR - Reverse Voltage - V

LM185·2.5, LM285·2.5, LM385·2.5, LM385B·2.5
MICROPOWER VOLTAGE REFERENCES
TYPICAL CHARACTERISTICSt

REFERENCE IMPEDANCE
1000

REFERENCE IMPEDANCE

vs

vs

REFERENCE CURRENT

FREQUENCY
10 k

,1=k4 W~III I I I
TA =MIN 10 MAX

c:

.,
"c
I

\

'"

~
..§

.,

"c~

1k

"C

100

Do

10

'i"-

'*
ex:
I

N

N

0.1
0.01

c:

.,I
c"
.,'"
..§
.,
"c~
J!!
.,ex:

100

"C

I

=
=

Iz 1OO l"A
TA 25°C

/

10

I
N

I'--

0.1

N

-

I"

/

0.1
0.01

100

10

/

V

10

>-c

.,
l!!'"
I

~.,

1000

vs

FREQUENCY

FREQUENCY

TA = 25°C

.,

'"
:t::
'"

~

.,en

800

111111

;'

80

V

'0

-"
Z

T~ ~2~j611

£.j:c...,""

~ 100
I

" r-.

60

Do

:;

600
400

en

::;;

40

~

\

200

~

20

u::

o

o
100

1k

10 k

V

ex:

"C

>

. . . 1/

0

\

'0

10

i ~O~~"II

120

I~ =11101ci ~!

Z

c

FILTERED RMS OUTPUT NOISE VOLTAGE

vs

en
I

1000

Figure 6

NOISE VOLTAGE

~

100

f - Frequency - kHz

Figure 5

1200

/

0.1

Iz - Reference Currenl- rnA

1400

..,--

100 k

-

~

0.1

10

100

f - Frequency - kHz

f - Frequency - Hz

Figure 7

Figure 8

t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TEXAS ~

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-13

LM185-2.5, LM285-2.5, LM385-2.5, LM385B-2.5

MICROPOWERVOLTAGE REFERENCES
TYPICAL CHARACTERISTICSt
TRANSIENT RESPONSE
A

>

4

I

III

t
!'2
.
1
~
'$

.E

3

/"

Output

'\r-

24kQ

2

VI~VO
1

-=-

0

<>

<

It

5

y

Input

o

I

o

A

100

500

SOO

t- TIme -I's

Figure 9
t Data at high and low temperatures are appliClable only within the rated operating free-air temperature ranges of the various devices.

APPLICATION INFORMATION
10 -50 (.IA

+

16 kQ

2 Mercury
Cells

1 MQ

2.SV 100kQW.W.
Zero
LM385·2.5

10 kQ
Adjust for 12.17 mV
at 25'C Across 450 Q

+

TypeK
Meter

Figure 10. Thermocouple Cold-Junction Compensator

TEXAS ."

INSTRUMENTS
2-14

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

LM185-2.5, LM285-2.5, LM385-2.5, LM385B-2.5
MICROPOWER VOLTAGE REFERENCES
TYPICAL CHARACTERISTICS
9V
3.7VsV+s30V

220kQ

2.7kQ
LM385-2.5

2.5V

Figure 11. Operation Over a
Wide Supply Range

Figure 12. Reference From a g-V Battery

TEXAS ~

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-15

2-16

LM236-2.S, LM336-2.S
2.S-V INTEGRATED REFERENCE CIRCUITS
, NOVEMBER 1988-REVISED AUGUST1991

•
•

o PACKAGE
(TOP VIEW)

Low Temperature Coefficient
Wide Operating Current ... 400 I-lA
to 10 mA

N C u S CATHODE
NC 2
7 NC

•
•

0.2-Q Dynamic Impedance

•

Specified Temperature Stability

•

Easily Trimmed for Minimum Temperature
Drift

•
•

± 1%

Tolerance Available

NC

3

6

NC

ANODE

4

5

ADJ

NC-No internal connection
LP PACKAGE
(TOP VIEW)

GJ

Fast Turn-On

u

o

Three-Lead Transistor Package

o

description
The LM236-2.5 and LM336-2.5 integrated circuits
are precision 2.5-V shunt regulator diodes.
These monolithic references operate as a lowtemperature coefficient 2.5-V zener with a O.2-Q
dynamic impedance. A third terminal provided on
the circuits allows the reference voltage and
temperature coefficient to be easily trimmed.

ANODE
CATHODE
ADJ

symbol

ANOoE----.~~L----CATHOOE
AOJ

The series are useful as a precision 2.5-V low-voltage reference (Vz) for digital voltmeters, power supplies, or
operational amplifier circuitry. The 2.5-V voltage reference makes it convenient to obtain a stable reference from
5-V logic supplies. Since the series operate as shunt regulators, they can be used as either positive or negative
voltage references.
The LM236-2.5 is characterized for operation from -25°e to 85°e. The LM336-2.5 is characterized for operation
from ooe to 70 oe.
AVAILABLE OPTIONS
PACKAGE
TA

SMALL OUTLINE

PLASTIC

(0)

(LP)

LM336D-2.5

LM336LP-2.5

LM236D-2.5

LM236LP-2.5

O°C
to
70°C
_25°C
to
S5°C
The D package is available taped and reeled. Add the suffix R to the
device type (i.e., LM336DR-2.5).

PRODUCTION DATA information is current as of publication dale.
Products conform 10 specifications per the terms of Texas

Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.

l.!1
INSTRUMENTS

Copyright © 1991, Texas Instruments Incorporated

TEXAS

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-17

LM236-2.5, LM336-2.5
2.5-V INTEGRATED REFERENCE CIRCUITS
schematic diagram
r---------------------~~--------~~~--CATHODE

24

24

kQ

kQ

6.6kQ

ADJ

All component values are nominal

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Reverse current ......................................................................... 20 mA
Forward current ......................................................................... 10 mA
Operating free-air temperature range:
LM236-2.5 .................................. -25°C to 85°C
LM336-2.5 .................................... O°C to 70°C
Storage temperature range ....................................................... -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or LP package ................ 260°C

electrical characteristics at specified free-air temperature (unless otherwise noted)
PARAMETER

LM236·2.5

TAt

TEST CONDITIONS

MIN
Vz

6VZ(tIT)

6VZ(61)

Reference voltage
Change in reference
voltage with
temperature*
Change in reference
voltage with

I = 1 mA ,LM236, LM336
Z , LM236A, LM336B
Vz adjusted to 2.490 V,
IZ= 1 mA

IZ = 400 IlA to 10 mA

current
6Vz!6t
Zz

t Full range

TYP

LM336·2.5
MAX

MIN

TYP

MAX

2.44

2.49

2.54

2.39

2.49

2.59

2.465

2.49

2.515

2.44

2.49

2.54

Full range

3.5

9

1.8

6

25'C

2.6

6

2.6

10

Full range

3

10

3

12

25'C

20

25'C

0.2

0.6

0.2

1

Full range

0.4

1

0.4

1.4

25'C

UNIT

v
mV

mV

Long-term change
in reference voltage
Reference impedance
IS

IZ = 1 mA
IZ = 1 mA,

f = 1 kHz

ppm/khr

20

Q

-25'C to 85'C for the LM236-2.5 and O'C to 70'C for the LM336-2.5.

t Temperature stability (change in reference voltage with temperature) for these devices is ensured by design. Design limits are specified overthe
indicated temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels.

TEXAS

-1!1

INSTRUMENTS
2-18

POST OFFICE BOX 655303 " DALLAS, TEXAS 75265

LM236-2.S, LM336-2.S
2.S-V INTEGRATED REFERENCE CIRCUITS
TYPICAL CHARACTERISTICS
CHANGE IN REFERENCE VOLTAGE

vs

REFERENCE CURRENT

FREQUENCY

5
TA = J5'C

>

E
I
CD

en

4

V
lL

~

;g
CD

u

c

3

~

.!!
CD

II:

.=

2

CD

en

c
IV
.::

()

I
N

>


1\

200

\

c
I

CD

en
~

~

150

\

CD

en

'0
Z
I

"- f'-..

c

>

100

--

50

4

12
16
Reference Current - mA

20

8

'z -

10

100

1k

10 k

100 k

f - Frequency - Hz

Figure 1

Figure 2
REFERENCE IMPEDANCE

vs
FREQUENCY
100
.'z=1mA
TA = - 55'C to 125'C
OJ
I

J

CD

u

c

10

IV

'tJ
CD

Q.

.E

/

CD

u

c

V

~

.;

-

II:
I

N
N

/

0.1
0.01

0.1

10

100

f - Frequency - kHz

Figure 3

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-19

LM236-2.5, LM336-2.5
2.5-V INTEGRATED REFERENCE CIRCUITS
APPLICATION INFORMATION
2.5-V REFERENCE

2.5-V REFERENCE WITH MINIMUM
TEMPERATURE COEFFICIENT

WIDE INPUT RANGE REFERENCE

5V

5V

VI = 3.5-40V

2.5kO
2.5V
IN457~

LM236-2.5

~~- VO=2.5V

LM236-2.5

10 kot

t Adjust to 2.49 V

*Any silicon signal diode

TEXAS ~

INSTRUMENlS
2-20

680

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

LM237, LM337
3-TERMINAL ADJUSTABLE REGULATORS
NOVEMBER 1981-REVISED NOVEMBER 1991

•

Output Voltage Range Adjustable From
-1.2Vto-37V

LM237, LM337 ... KC PACKAGE
(TOP VIEW)

•
•

10 Capability of 1.5 A Max

OUTPUT
INPUT
~ ADJUSTMENT

Input Regulation Typically 0.01 % Per
Input-Voltage Change

•

Output Regulation Typically 0.3%

•

Peak Output Current Constant Over
Temperature Range of Regulator

•
•

Ripple Rejection Typically 77 dB

The input terminal is in electrical
contact with the mounting base.

TO-220AB

Direct Replacement for National
Semiconductor LM237, LM337

description
The LM237 and LM337 are adjustable 3-terminal negative-voltage regulators capable of supplying in excess
of -1 .5 A over an output voltage range of -1.2 V to -37 V. They are exceptionally easy to use, requiring only
two external resistors to set the output voltage and one output capacitor for frequency compensation. The
current design has been optimized for excellent regulation and low thermal transients. In addition, the LM237
and LM337 feature internal current limiting, thermal shutdown, and safe-area compensation, making them
virtually immune to blowout by overloads.
The LM237 and LM337 serve a wide variety of applications including local on-card regulation, programmable
output voltage regulation, or precision current regulation.

schematic diagram
r-~------~------4r--~~--~------ADJUSTMENT

r-------~----~----~--.-+---~--~----HF~~~~~--~~~OUTPUT

PRODUCTION DATA Information Is current as of publication date.
Products conform to specifications per the terms of Texas
Instruments standard warranty. Production processing does not

necessarily Include testing of all parameters.

TEXAS

~

Copyright © 1991, Texas Instruments Incorporated

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-21

LM237, LM337
3-TERM!NAL ADJUSTABLE REGULATORS
absolute maximum ratings over operating temperature ranges (unless otherwise noted)
Input-to-output differential voltage, VI- Va .................................................. -40 V
Continuous total dissipation at (or below) 25°C free~air temperature (see Note 1) .................. 2 W
Continuous total dissipation at (or below) 90°C case temperature (see Note 1) ................... 15 W
Operating free-air, case, or virtual junction temperature range: LM237 ................. -25°C to 150°C
LM337 .................. O°C to 125°C
Storage temperature range ...................................................... -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................... 260°C
NOTE 1: For operation above 25'C operating free-air or 90°C case temperature, referto Figures 1 and 2. To avoid exceeding the design maximum
virtual junction temperature, these ratings should not be exceeded. Due to variations in individual device electrical characteristics and
thermal resistance, the built-in thermal overload protection rriay be activated at power levels slightly above or below the rated dissipation.

CASE TEMPERATURE
DISSIPATION DERATING CURVE

FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE
2000
~
E
I

c

i.9-

..
C
..
:::J

0

:::J
C

~
0
u

E
E

1800

"'-

1600
1400
1200
1000
800
600

:::J

~

::Ii

16

"'-

~

'""
'"""'""'-"'-

400

KC (TO-220AB) package
Derating factor = 16 mWI'C

200

RaJA - j2.50 C/W

o
25

\

14

I

50

I

75

c
0

:g

125

\

Q.

'iii
.!!!

..

10

Q

:::J

0

8

~
0
u

6

E
:::J
E

4

:::J
C

..

'x

::Ii

I

100

2

o

150

\

\

\
Derating Factor
above 90°C
RaJC-j'C/W

25

T A - Free-Air Temperature - °c

50

= 0.25 WI'C

I

I

75

100

125

TC - Case Temperature - °c

Figure 2

Figure 1

TEXAS

-If

INSlRUMENTS
2-22

\

12

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

\

\
150

LM237, LM337
3-TERMINAL ADJUSTABLE REGULATORS
recommended operating conditions
LM237

Output current, 10

LM337

MIN

MAX

MIN

MAX

lVI-Vol" 40 V,
P,,15W

10

1500

10

1500

lVI-Vol" 10V,
P,,15W

6

1500

6

1500

-25

150

0

125

UNIT

mA

Operating virtual junction temperature, TJ

°C

electrical characteristics over recommended ranges of operating virtual junction temperature
(unless otherwise noted)
TEST CONDITIONS t

PARAMETER
Input regulationl

Ripple rejection

VI - Vo = -3 V to -40 V

MAX

TYP

MAX

TJ = 25°C

0.01

0.02

0.01

0.04

TJ = MIN to MAX

0.02

0.05

0.02

0.07

f= 120 Hz

Vo =-10V,
CADJ = 10 flF

f= 120 Hz

10 = 10 mA to 1.5 A,

IVol,,5V

TJ = 25°C

IVol:.5V

10 = 10 mAto 1.5 A

Output voltage change
with temperature

TYP

Vo =-10V,

Output regulation

LM337

LM237
MIN

MIN

60
66

dB

77

25
0.3%

50
0.3%

0.5%
50

70

IVol:.5V

1%

1.5%

TJ = MIN to MAX

0.6%

Output voltage long-term
drift (see Note 2)

After 1000 h atTJ = MAX and VI- Vo = -40 V

0.3%

Output noise voltage

f = 10 Hzto 10 kHz,

Minimum output current

lVI-Vol ,,40 V

2.5

5

2.5

10

to maintain regulation

IVI- Vol,,10V

1.2

3

1.5

6

Peak output current

IVI- Vol,,15V
TJ=25°C

lVI-Vol" 40 V,

Change in adjustmentterminal current

VI- Vo =-2.5 Vto-40V,
10 = 10 mA to MAX

Reference voltage
(output to ADJ)

VI- Vo = - 3 V to -40 V,
10 = 10 mA to 1.5 A,

P s rated dissipation

TJ = 25°C
TJ = MIN to MAX

1%

0.3%

2.2

1.5

2.2

0.24

0.4

0.15

0.4

-1.225

1%

0.003%

1.5

TJ = 25°C,

mV

0.6%

0.003%

Adjustment-terminal
current

mV

1%

IVol,,5V

TJ = 25°C

%N

60

77

66

UNIT

mA
A

65

100

65

100

J.tA

2

5

2

5

J.tA

-1.250 -1.275 -1.213

-1.25 -1.287
V

-1.2

-1.25

-1.3

-1.2

-1.25

-1.3

Thermal regulation
0.002
0.003
0.04
10-ms pulse
0.02
Initial TJ = 25°C,
%NJ
t Unless otherwise noted, these specifications apply for the following test conditions IVI- Vol = 5 Vand 10 = 0.5 A. For conditions shown as MIN
or MAX, use the appropriate value specified under recommended operating conditions. All characteristics are measured with a O.l-flF capacitor
across the input and a l-flF capacitor across the output. Pulse-testing techniques are used to maintain the junction temperature as close to the
ambient temperature as possible. Thermal effects must be taken into account separately.
Input regulation is expressed here as the percentage change in output voltage per l-V change at the input.
NOTE 2: Since long-term drift cannot be measured on the individual devices prior to shipment, this specification is not intended to be a warranty.
It is an engineering estimate of the average drift to be expected from lot to lot.

*

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS'75265

2-23

LM237, LM337
3-TERMINAL ADJUSTABLE REGULATORS
APPLICATION INFORMATION
LM237
or
LM337

VI

---"'---1
I
I
I
I
C1 -.J.....

---e---- Vo

OUTPUT I----<__

INPUT

C2

-r+

T

I
I
I

-.l
R 1 is typically 120 Q.

R2

= R1

( - Vo -1) where Vo is the output in volts.

-1.25

C1 is a 1"f.lF solid tantalum capacitor required only if the regulator is more than 10 cm (4 in.) from the power supply filter capacitor.
C2 is a 1"f.lF solid tantalum or 1O"f.lF aluminum electrolytic capacitor required for stability.

Figure 3. Adjustable Negative-Voltage Regulator
LM237
or
LM337
RS
INPUT

OUTPUT

ADJUSTMENT

R _ 1.25V
S - ILiMIT

Figure 4. Current-Limiting Circuit

TEXAS ~

INSlRUMENTS
2-24

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Vo

LM2930-S, LM2930-8
3-TERMINAL POSITIVE REGULATORS
APRIL 1983-REVISED AUGUST 1991

•

Input-Output Differential Less Than 0.6 V

•

Output Current of 150 mA

•

Reverse Battery Protection

•

Line Transient Protection

•

40-V Load-Dump Protection

•
•
•
•

Internal Short Circuit Current Limiting

KCPACKAGE
(TOP VIEW)

The common terminal is in electrical
contact with the mounting base.

TO-220AB

Internal Thermal Overload Protection
Mirror-Image Insertion Protection
Direct Replacement for National LM2930
Series

description
The LM2930-S and LM2930-8 are 3-terminal
positive regulators that provide fixed S-V and 8-V
regulated outputs. Each features the ability to
source 150 mA of output current with an
input-output differential of 0.6 V or less. Familiar
regulator features such as current limit and
thermal overload protection are also provided.
The LM2930 series has low voltage dropout,
making it useful for certain battery applications.
For example, the low voltage dropout feature
allows a longer battery discharge before the output
falls out of regulation; the battery supplying the
regulator input voltage may discharge to 5.6 V and
still properly regulate the system and load voltage.
Supporting this feature, the LM2930 series
protects both itself and the regulated system from
reverse battery installation or 2-battery jumps.

LP
SILECT PACKAGE
(TOP VIEW)

INPUT
COMMON
OUTPUT

TO-226AA

,
OCI

Other protection features include line transient protection for load dump of up to 40 V. In this case, the regulator
shuts down to avoid damaging internal and external circuits. The LM2930 series regulator cannot be harmed
by temporary mirror-image insertion.

PRODucnON DATA Information is current as of publication date.
Products conform to speciflcatfons per the terms of Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.

TEXAS ,If

Copyright © 1991. Texas Instruments Incorporated

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-25

LM2930-S, LM2930-8
3-TERMINAL POSITIVE REGULATORS
schematic diagram
INPUT
2kQ

1 kQ

SOOQ

OUTPUT

3kQ

S.2kQ

for

foraV

SV

6200
COMMON~~~--~----

__

~

__

~

__

~

______________

~~

100
____

~+-~

1 kQ
100 ______
____
~

~

All component values are nominal.

absolute maximum ratings over operating free-air temperature ranges (unless otherwise noted)
Continuous input voltage ................................................................... 26 V
Transient input voltage: t = 1 s .............................................................. 40 V
Continuous reverse input voltage ........................................................... -6 V
Transient reverse Input voltage: t = 100 ms ................. ~ ................................. -12 V
Continuous total dissipation (see Note 1) ........................ See Dissipation Rating Tables 1 and 2
Operating free-air, case, or virtual junction temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -40°C to 150°C
Storage temperature range ................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ................................. 260°C
NOTE 1: To avoid exceeding the design maximum virtual junction temperature. these ratings should not be exceeded. Due to variation in individual
device electrical characteristics and thermal resistance. the built-in thermal overload protection may be activated at power levels slightly
above or below the rated dissipation.

, TEXAS ~

INSlRUMENlS
2-26

POST OFFICE BOX 655303 • DALlAS. TEXAS 75265

LM2930-5, LM2930-8
3-TERMINAL POSITIVE REGULATORS
DISSIPATION RATING TABLE 1 - FREE-AIR TEMPERATURE
DERATING
FACTOR

DERATE
ABOVETA

TA = 70'C
POWER RATING

PACKAGE

TA s 2S'C
POWER RATING

KC

2000mW

16 mW/'C

1280mW

LP

775mW

6.2 mWI'C

496mW

DISSIPATION RATING TABLE 2 - CASE TEMPERATURE
PACKAGE

TA s 2S'C
POWER RATING

DERATING
FACTOR

DERATE
ABOVETC

TC = 12S'C
POWER RATING

KC

20W

0.25 WI'C

70'C

6.25W

LP

1600mW

28.6mWI'C

94'C

715mW

recommended operating conditions
MAX

MIN
10

Output curr..nt

TJ

Op ..rating virtual junction t ..mp.. ratur..

-40

LM2930-5 electrical characteristics at 25°C virtual junction temperature, VI
(unless otherwise noted)
PARAMETER
Output voltag ..
Input regulation

TEST CONDITIONSt
10 = 5 mA to 150 mA,

VI = 6 V to 26 V,
TJ = -40'C to 125'C
10 = SmA

= 14 V,

mA

125

'C

= 150 mA

MIN

TYP

MAX

4.5

5

5.5

IVI=9Vt016V

7

25

I VI = 6 V to 26 V

30

80

Ripple rejection

f= 120 Hz

56

Output regulation

10=5mAt0150mA/

14

Output voltage long-term drift:!:

After 1000 hours at TJ = 125'C

Dropout voltage

10=150mA

Output noise voltage

f= 10 Hzto 100 kHz

Output voltage during line transients

VI = -12 Vto 40 V,

Output impedance

10 = 100 mA, 10 = 10 mA (rms). 100 Hz to 10 kHz

Bias current

10

-0.3
4

10 = 150mA
150

Peak output current

mV

mV
mV
V

5.5

ltV
V
mQ

200

10=10mA

V

0.6

60
RL =100 Q

UNIT

dB
50

20
0.32

UNIT

150

7

18

40

300

700

mA
mA

t Pulse-testing techniques are used to mamtaln the lunctlon temperature as close to the ambient temperature as possible. Thermal effects must
betaken into account separately. All characteristics are measured with a 0.1-ItF capacitor across the input and a 1O-ItF capacitor across the output.
:j: Since long-term drift cannot be measured on the individual devices prior to shipment, this specification is intended to be an engineering estimate
of the average drift to be expected from lot to lot.

TEXAS •

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-27

LM2930-S, LM2930-8
3-TERMINAL POSITIVE REGULATORS
LM2930-8 electrical characteristics at 25°C virtual junction temperature, VI
(unless otherwise noted)
PARAMETER

TEST CONDITIONSt
10 = 5 mAto 150 mA;

VI = 6 V to 26 V.

Output voltage

TJ = -40'C to 125'C
Input regulation

= 14 V, 10 = 150 mA
MIN

TYP

MAX

7.2

8

8.8

I VI = 9.4 V to 16 V
1 VI = 9.4 V to 26 V

10=5mA

12

50

50

100

Ripple rejection

f= 120 Hz

52

Output regulation

10 = 5 mA to 150 mA

25

Output voltage long-term drift~

After 1000 h atTJ = 125'C

Dropout voltage

10=150mA

Output noise voltage

f = 10 Hz to 100 kHz

Output voltage during line transients

VI = -12 Vto 40 V.

Output impedance

10 = 100 mA.IO = 10 mA (rms). f= 100 Hzto 10 kHz

Bias current

-0.3

10 = 10 mA

Peak output current

150

mV
V
flV

8.8

V
mQ

300

10=150mA

mV

mV
0.6

90
RL=100Q

V

dB
50

30
0.32

UNIT

4

7

18

40

300

700

mA
mA

t Pulse-teSting techniques are used to malntam the lunctlon temperature as close to the ambient temperature as possible. Thermal effects must
be taken into accountseparately. All characteristics are measured with a O.l-flF capacitor across the input and a 1O-flF capacitor across the output.
~ Since long-term drift cannot be measured on the individual devices prior to shipment. this specification is intended to be an engineering estimate
of the average drift to be expected from lot to lot.

TYPICAL CHARACTERISTICS
table of graphs
FIGURE
Normalized Output Voltage vs Virtual Junction Temperature

1

Output Voltage vs Input Voltage

2

Output Voltage vs Input Voltage

3

Ripple Rejection vs Frequency

4

Ripple Rejection vs Output Current

5

Dropout Voltage vs Virtual Junction Temperature

6

Dropout Voltage vs Output Current

7

Output Impedance vs Frequency

8

Input CurrE1nt vs Input Voltage

9

Line Transient Response

10

Input Current vs Reverse Input Voltage

11

Output Voltage vs Reverse Input Voltage

12

Load Transient Response

13

Bias Current vs Output Current

14

Bias Current vs Virtual Junction Temperature

15

Bias Current vs Input Voltage

16

TEXAS ~

INSlRUMENTS
2-28

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

LM2930-S, LM2930-8
3-TERMINAL POSITIVE REGULATORS
TYPICAL CHARACTERISTICS
LM2930-5
OUTPUT VOLTAGE
vs
INPUT VOLTAGE

NORMALIZED OUTPUT VOLTAGE
vs
VIRTUAL JUNCTION TEMPERATURE
8

1.005

-

vI-'"

1.000

~

.B

""-

/

g
'5 0.995

r

RI = 10dQ
7

>

'5

o

'tI

.~ 0.990
n;

6

III

5

:;

4

I

"

Ol

I

~

\.

a.

..

~

~

0

I

E
o

?

z

3

2

0.985
-VII = 1 r

o

0.980
-60-40-20020406080100120140

o

15

TJ - Virtual Junction Temperature,:, "C

45
30
VI- Input Voltage - V

Figure 1

Figure 2

LM2930-5
OUTPUT VOLTAGE
vs
. INPUT VOLTAGE

RIPPLE REJECTION
vs
FREQUENCY
80

6

IO~50mA I
70 .-- VI- VO=9V

loL50lA

>

..

5

I

Ol

.B

g

4

/

'5a.
'5

/

V

3

?
/
2

'tI

I

c

50

:s..

40

0

'a;

..

-

~

~

'ii.

/

a.

L

\X

a:

30

it

20

/

10

/
2

\

60
III

/

0

I

60

o
4
3
5
VI - Input Voltage - V

6

1

10

100

1k
10k
f - Frequency - Hz

100k

1M

Figure 4

Figure 3

TEXAS ."

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-29

LM2930·S, LM2930·8
3·TERMINAL POSITIVE REGULATORS
TYPICAL CHARACTERISTICS
DROPOUT VOLTAGE

RIPPLE REJECTION

0.6

vs

vs

OUTPUT CURRENT

VIRTUAL JUNCTION TEMPERATURE
0.6

.1

VI- VO=9V
fO=120Hz
TJ = 25°C

0.5

60
CII

>

...'"

"I

I

c

~
~ 0.3

0

..

~

'Qj'

.

40

~

~

~

I-

0..

a.0..

e

c

0.2

20
0.1

~
~

o

O~--~----~--~--~----~--~

o

50

100

150

o

---

Figure 5

TJ =

I

'"

~

150

OUTPUT IMPEDANCE

vs

OUTPUT CURRENT

FREQUENCY
10

~5°C

f=

~

10=50mA
TJ = 25°C

(

CI

..
..
"..
I

0.4

,

u

c

~
'5

0.3

~

0.2

0
0..

0.1

V

V

......---

../"

/

, ./

o

25

II

0..

.5
'5

S::J

0

o

75
100
125
50
10 - Output Current - rnA

150

0.1

0.01 1

/

10

100

1k

10k

f - Frequency - Hz

Figure 7

Figure 8

TEXAS

~

INSTRUMENTS
2-30

I

vs

0.5

..

I
10 = 10 rnA

Figure 6

DROPOUT VOLTAGE

0.6

10 = 50 rnA

25
50
75
100
125
TJ - Virtual Junction Temperature - °C

10 - Output Current - mA

>

10=150mA

'5
0

cr

a:

0.4

POST OFFICE BOX 655303 • OALLAS. TEXAS 75265

100k

1M

LM2930-S, LM2930-8
3-TERMINAL POSITIVE REGULATORS
TYPICAL CHARACTERISTICS
INPUT CURRENT

vs
LINE TRANSIENT RESPONSE

INPUT VOLTAGE
30

R~=10~Q

0>

~



I

I

1\

i

I

L =110 JF

r~

0

I

0

c:

(,)

E

'5
Co
'S

~

::l

,

III

25

6

20 I-- TJ = 25°C
IO=150mA

.. >

TJ = 25°C

\ I

\ /

\J

\V

/ \

>

/

I

III

0>

.l!!

;g

3

'5

Co

5

.E
I

;>

o
40

35

45
50
VI - Input Voltage - V

o

55

o

15

Figure 10

Figure 9

OUTPUT VOLTAGE

INPUT CURRENT

vs

vs

REVERSE INPUT VOLTAGE

REVERSE INPUT VOLTAGE

50

0.1

TJ

=1 25oc

0

E

c:

-50

~

~

(,)

'5Co

-100

.E
I

=

-150

/

~L= ~

1

_ TJ = 25°C



0

I

/

.
III

0>

:t::

~
'5

Co

-0.1

'S

- -

II--'I -

0

I

-?
-0.2

-

~

V

./

-200

-250
-12

-10

-8
-4
-6
VI - Input Voltage - V

-2

o

-0.3
-12

-10

Figure 11

-4
-8
VI - Input Voltage - V

-2

o

Figure 12

TEXAS •

INSlRUMENTS
POST OFFICE BOX 655303 • DALLIIS. TEXAS 75265

2-31

LM2930-5, LM2930-8
3-TERMINAL POSITIVE REGULATORS
TYPICAL CHARACTERISTICS
BIAS CURRENT

vs
LOAD TRANSIENT RESPONSE

..g>

.: >
~ E
-

35

VI- VO=9V
CL = 10 IlF

40

I

0

\

:J . .

I

VI = 14V
TJ = 25'C

30

S. S
o

OUTPUT CURRENT

.~

1;;

00 -40

>

I

f I'- i'oo...
25


E
I



V
./

CD

a:
I

8

i

V- f--

CD

g

4

e

~

..,,/

I

0

N

/

>


:!

>
CD

CI

:!

VV

"Eco

~ 1.235

...cCD

1-'1-"

!0

f

V

.e

u.
u.

1.240

I

0.8

~

I

100

IR - Reverse Current - mA

Figure 1

1.2

10

v

-r--. r--....

~

['.,

CD

a: 1.230

0.4

I
N

>

>

1.225

o

0.Q1

0.1

10

100

-55 -35 -15

IF - Forward Current - mA

5

25

45

65

TA - Free-Air Temperature -

Figure 3

85

105 125

°c

Figure 4

t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TEXAS ~

INSTRUMENTS
2-38

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

LT1004-1.2
MICROPOWER INTEGRATED VOLTAGE REFERENCE
TYPICAL CHARACTERISTICSt
NOISE VOLTAGE

REFERENCE IMPEDANCE

vs

vs

REFERENCE CURRENT

FREQUENCY

100

I 11111111

700

I 1111

I 11111111
I
IZ 100 JlA
600 f- TA 25'C

f = 25 Hz
TA =-55'C to 125'C
Ci

.."
...
..5
..
I

c

10

=
=

1\

'0

l!
>-c
..

\

a.

I

500

1'\1'0.

400

I-

0>

~

"f!c

."'

~

'{:ja:*

'0

z

"r--.

I

I

::
r--... ....

0.1
0.01

........ 1-.
300
200

~

100

1'0.

o
0.1

10

100

10

100

IZ - Reference Current - rnA

1k

10k

100 k

f - Frequency - Hz

Figure 6

Figure 5
OUTPUT NOISE VOLTAGE

vs
CUTOFF FREQUENCY
70
60 -

>::!.

.
I

50

0>

~

-, t=J""'"'

..

'0

30

z"'

~

-'"

V

V

20
10

i-""

C

:i
0

./

100 ",A

40 -

~

II~CLLLUI

I I 1111111
IZ = 100 ",A
TA = 25'C

[...o~

V

o

10

0.1

100

f - Cutoff Frequency - kHz

Figure 7

t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TEXAS •

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-39

LT1004-2.S
MICROPOWER INTEGRATED VOLTAGE REFERENCE
TYPICAL CHARACTERISTICSt
FORWARD VOLTAGE

REVERSE CURRENT

100

I

TA

vs

vs

REVERSE VOLTAGE

FORWARD CURRENT
1.2

I

>I

«::!.
I.

C

tl=IJ~lW

=-55°C to 125°C

..

10

~:::I

U

I

II:
I
II:

0.1

(
o

/

0.5

'"

~

V

1\1

"

0.8

:t::

~

~

'E

!

~~

~
I
II.

>

0.4

o
1.5
2
VR - Reverse Voltage - V

2.5

0.1

0.01

3

10

IF - Forward Current - mA

Figure 9

Figure 8
REFERENCE VOLTAGE

vs
FREE-AIR TEMPERATURE

2.515

>

..
'"
~
.."
i..

2.510

I

~

c

II:
I
N

>

2.505
2.500

./

2.495
2.490

/

,.,..-

-.....

/

2.485

""

""

2.480
-55 -35 -15 5
25 45 65 85 105 125
TA - Free-Air Temperature - °C

Figure 10

t Data at high and low temperatures are applicable only wnhin the rated operating free-air temperature ranges of the various devices.

TEXAS

"J.J

INSIRUMENlS
2-40

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

100

LT1004-2.5
MICROPOWER INTEGRATED VOLTAGE REFERENCE
TYPICAL CHARACTERISTICSt
NOISE VOLTAGE

REFERENCE IMPEDANCE

vs

vs

REFERENCE CURRENT

FREQUENCY
1400

1000
I 11111111

I 11111111

100

~

I
Q)

.,"

>-

I:

I:

"tJ
Q)

Q.

E:

10

I

IZ = 100[lA.
1200 f- TA = 25"C

f = 25 Hz
T A = -55°C to 125°C
CI

1TJIIIIII

1\

I

1000

"\~

800

"'

Q)

'"

~

Q)

"~

~

a::

'0

I:

600

.....

Q)
II)

'{:j*
I

z

r-.
0.1
0.01

400

\

I
I:

>

200

o
0.1

10

100

10

1k

100

IZ - Reference Current - rnA

10 k

lOOk

f - Frequency - Hz

Figure 12

Figure 11
FILTERED OUTPUT NOISE VOLTAGE

vs
OUTPUT FREQUENCY
120

>

""I
'"
.B

_

100

I I 1111111
IZ = 100 IlA
TA=25"C

Q)

;g

RC Low Pass
80

z

"5Q.
"5

0

"tJ

-

60

40

~

1..11

V

~

~

u::

V

lOOIlA

Q)
II)

'0

~

20

f..- ........

o
0.1

10

100

f - Cutoff Frequency - kHz

Figure 13

t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges ot'the various devices.

TEXAS ~

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-41

LT1004
MICROPOWER INTEGRATED VOLTAGE REFERENCE
TYPICAL CHARACTERISTICSt
LT1004-1.2

LT1004-2.5

TRANSIENT RESPONSE

TRANSIENT RESPONSE
A

A

5
1

Output

V

/

>

J\-

~

Cl

J:l

2

!i

1

o

0

%

0

."

.,c:

<

<:

l/'

Output

IV--

24kQ

~

36kQ

VI!VO

5

3

I

VI~VO
~

<:

!iQ.
.E

A

5

o

I

o

A

5

In~ut

Input

.l\

100

A

0
500

100

600

500

t-Tlme-Its

t-Tlme-fls

Figure 15

Figure 14

t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TEXAS

-If

INSlRUMENlS
2-42

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

LT1004-1.2
MICROPOWER INTEGRATED VOLTAGE REFERENCE
APPLICATION INFORMATION
100 pF

24V
600f!S RC
22 kQ

>--...-

12 kQ

Output

~y-J~1-'y __

16.9 kQ

LT1004·1.2

T

O•05 f!F

1.05 kQt

10 kQ

L . r ; ; - L Input

-.J\N'v~__- - H

2N3904

56kQ

-5V

t 1% metal film resistors
Figure 16. Vpp Generator for EPROMs (no trim required)
Network Detail
YSI44201

1"------,
I

RT Network
YSI44201

15V
2.7kQ
5%

Green

I
I
I
I
I
IL _ _302kQ
_ _ _ _ .JI

2765Q
0.1%

10kQ
0.1%

Red

0-10 V
0°C-100°C

LT1004·1.2

10 kQ
0.1%

168.3 Q
0.1%

10kQ
0.1%

Figure 17. QOC to 1QQoC Linear Output Thermometer

TEXAS

~

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-43

LT1004
MICROPOWER INTEGRATED VOLTAGE REFERENCE
APPLICATION INFORMATION
, - - - - - - - - . - VI = 6.5 V to 15 V

5.6kQ

3

-.f-- Vo = 5 V

>"-6_....._ _ _
2

3.01 MQ
1%

150 pF

LT1004-1.2
1 MQ
1%

Figure 18. Micropower S-V Reference
VI",5V

100 f1A

9V

l

510 kQ
Output

LT1004-1.2

1.235 V

50 f1F

LT1004-1.2

Figure 20. Micropower Reference From
9-V Battery

Figure 19. Low-Noise Reference

100kQ

f
R1

3V
Lithium

1684Q

-

5 kQ at 25'Ct

LT1004-1.2
186 Q

1800Q

Thermocouple
Type

J

K
T
5

+

t Quiescent current .. 15 f1A

*Yellow Springs Ins!. Co .• Part #44007
NOTE: This application compensates within ± 1'C from O'G to 60'G.

Figure 21. Micropower Cold-Junction Compensation for Thermocouples

INSTRUMENTS
TEXAS "'"
2-44

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

R1
233 kQ
299kQ
300kQ
2.1 MQ

LT1004
MICROPOWER INTEGRATED VOLTAGE REFERENCE
APPLICATION INFORMATION
LT1084

SV

IN

OUTI--......- - . - - SV

ADJ

SOkQ

300Q
1%

2.SV

LT1004-2.S

LT1004-2.S
100Q
1%

Figure 23. High-Stability 5-V Regulator

Figure 22. 2.5-V Reference
1S V

2 kQt

250 kQ

250 kQ

1--1=====

LT1004-1.2

R1
(see Note A)

Output

Input

10 (see Note A)

-S V

t May be increased for small output currents.
2V
I
1.235 V
NOTE A: R1 - 10 + 10 [lA ,0 = -R-1-

200kQ

LT1004-1.2

60kQ

'-----+-- VCC- s -S V

.

Figure 25. Amplifier With Constant Gain
Over Temperature

Figure 24. Ground-Referenced
Current Source

V+

1.5 V (see Note A)
3kQ
1.235 V

Rs5kQ

LT1004-1.2

NOTE A: Output regulates down to 1.285 V for 10 =

o.

Figure 26. 1.2-V Reference From 1.5-V
Battery

I
1.3 V
0- -R-

Figure 27. Terminal Current Source
With Low Temperature Coefficient

TEXAS ."

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-45

LT1004
MICRO POWER INTEGRATED VOLTAGE REFERENCE
APPLICATION INFORMATION
Battery Output
R1t

1 Mg

1%

12V

I
LO = Battery Low

133 kg

1%
LT1004·1.2

tR1 sets trip point, 60.4 kg per cell for 1.8 V per cell.

Figure 28. Lead·Acid Low-Battery-Voltage Detector
LT1084
VI

Vo

;, :::::

R1

"

Vcc- 1 V
0.015

120g

+

I

~~

"::"

Vo

!>

ADJ

LT1004·1.2

R1

,~
/"
2kg

Vce-

Figure 29. Variable-Voltage Supply

.

TEXAS.

INSTRUMENTS
2-46

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

11
"::"

LT1009
2.S·V INTEGRATED REFERENCE CIRCUIT
D3191 MAYI987-REVISEDAUGUSTI991

•
•

Initial Tolerance . .. 0.2% Max

•

Dynamic Impedance . .. 0.6 Q Max

•
•
•

Wide Operating Current Range

Excellent Temperature Stability

LT1009C, LT10091 ... D PACKAGE

(TOP VIEW)

N c [ J a CATHODE
NC 2
7 NC
6 CATHODE
NC 3·
5 ADJ
ANODE 4

Directly Interchangeable With LM136
Needs No Adjustment for Minimum
Temperature Coefficient

LT1009M ... JG PACKAGE

(TOP VIEW)

description
CATHODE[Ja
NC 2
7
NC 3
6
NC 4
5

The LT1009 is a precision trimmed 2.5-V shunt
regulator featuring low dynamic impedance and a
wide operating current range. A maximum initial
tolerance of ±5 mV is available in the FK, JG, or
LP package and ± 10 mV in the 0 package. The
reference tolerance is achieved by on-chip
trimming, which minimizes the initial voltage
tolerance and the temperature coefficient o.vz'

ADJ
NC
ANODE
NC

LT1009C, LT10091 ... LP PACKAGE

(TOP VIEW)

ANODE

Even though the LT1 009 needs no adjustments, a
third terminal allows the reference voltage to be
adjusted ±5% to eliminate system errors. In many
applications, the LT1009 can be used as a
pin-for-pin replacement for the LM136-2.5, which
eliminates the external trim network.

CATHODE
ADJ

FKPACKAGE

The uses of the LT1009 include a 5-V system
reference, an 8-bit ADC and DAC reference, or a
power supply monitor. The LT1009 can also be
used in applications such as digital voltmeters and
current-loop measurement and control systems.

(TOP VIEW)
W

0

0

J:

ot:i:OdO
ZOZ

E

2.52

.,
I

>

/

4

/

CI

.,

~

I

2.51

CI

to

~

.,
"I!!c
.l!!
.,
rr
.5
.,

:t::

~

.,

2.5

"I!!c

rr

'>*

2.49

I

/

r--.

V

~ .......

2

to
.s::.

0

I

2.48

N

>
I

.,

C
I!!

CI

~

0

10-3

'Eto

0.8

0.6

i:0

I

TJ=125'C .....-

rr

-

25'6

V

~

5

.,
f!.,
.,>
rr

10-4

10-5
0.6

/

/

V

r:::: .....-

r~
/'

----

20

Figure 2

REVERSE CHARACTERISTICS

I

/

4

Figure 1

«

/

~

LL
I
LL

I-""

V TJ =-55'C
-JJJ5'C

1.4
1.8
2.2
VR - Reverse Voltage - V

0.4

>

-

~

V

/

../

0.2

I

o

2.6

0.001

Figure 3

0.1
IF - Forward Current- mA

0.Q1

Figure 4

t Data at the high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TEXAS

~

INSTRUMENTS
2-50

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

10

LT1009
2.S-V INTEGRATED REFERENCE CIRCUIT
TYPICAL CHARACTERISTICS

NOISE VOLTAGE

REFERENCE IMPEDANCE

vs

vs

FREQUENCY

FREQUENCY
250

100

~lz=lmA

TJ=25'C

OJ

.,u
co
".,

200

I

<:

iz~ ~I~W 1

K

~ TJ = -55'C to 125'C

~

10

1\

:><:

Q.

.§

.,
<:
e
2.,

.,I

/

/

u

/

-

II:
I
N

N

0.1
0.01

150

til

co

r--..

ft'".,

'"

·0
Z
I

100

<:

>

0.1

10

50
10

100

100

f - Frequency - kHz

Figure 5

1k
10 k
f - Frequency - Hz

100 k

Figure 6

TRANSIENT RESPONSE

,.

\

2.5

>
I

.,
III

til

\/

2
1.5

:n

!!l

~

SQ.
S

0

0.5

5kQ

Input

1~~

0

""co

SQ.

-=

Output

V

\

ou:U!

I
I
Input

8

4
0

o

20
t - Time - lAS

Figure 7

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-51

LT1009
2.S-V INTEGRATED REFERENCE CIRCUIT
APPLICATION INFORMATION
SVto3SV

Output
10 kQt
Trim

LT1009

tDoes not affect temperature coefficient. Provides ±S% trim range.

Figure 8. 2.S-V Reference
3.6 Vto 40V

62Q

10 kQ

Figure 9. Adjustable Reference With Wide-Supply Range
LT1084

Figure 10. Power Regulator With Low Temperature Coefficient

TEXAS ."
INSTRUMENTS
2-52

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

LT1009
2.5-V INTEGRATED REFERENCE CIRCUIT
APPLICATION INFORMATION
5V
5kQ

5V

n

-5V

-l L

5kQ

LT1009

-5V

Figure 11. Switchable ±1.2S-V Bipolar Reference
1 IlF

10 kQ

VI"SV

2.5V

Figure 12. Low-Noise 2.S-V Buffered Reference

TEXAS •

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-53

2-54

LT1054
SWITCHED-CAPACITOR VOLTAGE CONVERTER
WITH REGULATOR
FEBRUARY 199D-REVISED AUGUST 1991

•
•
•

PPACKAGE
(TOP VIEW)

Output Current ... 100 mA
Low Loss ... 1.1 Vat 100 mA
Operating Range ... 3.5 V to 15 V

F B / S D [ ] 8 VCC
CAP + 2
7 OSC

•

Reference and Error Amplifier for
Regulation

GND

3

CAP-

4

•
•

External Shutdown

•

Devices Can Be Paralleled

•

Pin Compatible With the LTC1044/7660

VREF

6
5

VOUT

ow PACKAGE
(TOP VIEW)

External Oscillator Synchronization
NC

NC
NC

NC
FB/SD

VCC
OSC

CAP +
GND

description
The LT1054 is a monolithic, bipolar, switchedcapacitor voltage converter with regulator. It
provides higher output current and significantly
lower voltage losses than previously available
converters. An adaptive switch drive scheme
optimizes efficiency over a wide range of output
currents. Total voltage drop at 100-mA output
current is typically 1.1 V. This holds true over the
full supply voltage range of 3.5 V to 15 V.
Quiescent current is typically 2.5 mA.
The LT1 054 also provides regulation, a feature not
previously available in switched-capacitor voltage
converters. By adding an external resistive divider,
a regulated output can be obtained. This output is
regulated against changes in both input voltage
and output current. The LT1 054 can also be shut
down by grounding the feedback pin. Supply
current in shut-down is typically 100 !lA.
The internal oscillator of the LT1054 runs at a
nominal frequency of 25 kHz. The oscillator pin
can be used to adjust the switching frequency or
to externally synchronize the LT1054.

(OW)

LT1054CP

-40'C to 85'C

LT105410W

LT10541P

NC

vs
2

-'

I

I

.1

3.5V",VCC",15V

I-- CI = Co = 100 flF

TJ = 125'C

I~

.

>
I

",,-

I~ V
t-- t- TJ = 25'C
V
V
I"" ..,/ ~ V
l /K: V
V V
V
lL ~ J....:-: ~

If)
If)

.9

J
~

l£ ~ V
10

20

""...

+-

I,

TJ =-55'C

'f'
o

PLASTIC
DIP
(P)

LT1054COW

NC

OUTPUT CURRENT

o

O'C to 70'C

VOUT
NC

VOLTAGE LOSS

PACKAGE
TA

NC

NC - No internal connection

AVAILABLE OPTIONS
SMALL
OUTLINE

VREF

CAP-

J1
30

60 70
Output Current - mA
40

50

80

90 100

The OW package is available taped and reeled. Add the
suffix R to the device type, (Le., LT1054COWR).

PRODUCTION DATA Information Is current as of publication date. Products
conform to speCifications per the terms of Texas Instruments standard
warranty. Production processing does not necessarily Include testing of all

parameters.

-iii
INSlRUMENTS

Copyright © 1991, Texas Instruments Incorporated

TEXAS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-55

LT1054
SWITCHED·CAPACITOR VOLTAGE CONVERTER
WITH REGULATOR
functional block diagram
vcc
8
2.5 V

FB/SO --'--*-+--!----1
OSC-7~-+-~---rH

3

GNO

COUTt

5
VOUT

t External capacitors

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) .......................................................... 16 V
Input voltage range, FB/SD terminal .................................................... 0 V to Vee
Input voltage range, OSC terminal ..................................................... 0 V to Vref
Junction temperature (see Note 2): LT1 054C ................................................ 125°C
LT10541 ................................................. 135°C
Operating free-air temperature range: LT1054C ........................................ O°C to 70°C
LT10541 ...................................... -40°C to 85°C
Storage temperature range ...................................................... -55°C to 150°C
Lead temperature, 1,6 mm (1/16 inch) from case for 10 seconds ............................... 260°C
NOTES: 1. The absolute maximum supply voltage rating of 16 V is for unregulated circuits. For regulation mode circuits with VOUT" 15 V, this
rating may be increased to 20 V.
2. The devices are functional up to the absolute maximum junction temperature.

recommended operating conditions
Supply voltage, VCC

I LT1054C

Operating free·air temperature range, T A

I LT10541

TEXAS -If

INSTRUMENTS
2-56

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

MIN

MAX

3.5

15

0

70

-40

85

UNIT
V

'c

LT1054
SWITCHED-CAPACITOR VOLTAGE CONVERTER
WITH REGULATOR
electrical characteristics
PARAMETER

VCC = 7 V, T J = 25°C, RL = 500 Q,

Input regulation

VCC=7Vt012V,

Output regulation

VCC=7V,

RL = 500
RL = 100

Q

Q,

to 500 Q,

Voltage loss, V cc -I Vo 1
(see Note 4)

TAt

MIN

TYpt

MAX

See Note 3

25°C

-4.7

-5

-5.2

See Note 3

Full range

5

25

mV
mV

TEST CONDITIONS

Regulated output voltage, Vo

CI = Co = 100 f-lF tantalum

See Note 3

Full range

10

50

1'0 = 10 mA

Full range

0.35

0.55

110=1oomA

Full range

1.1

1.6

Output resistance

AIO = 10 mA to 100 mA, See Note 5

Full range

Oscillator frequency

VCC = 3.5 Vto 15 V

Full range

Reference voltage, Vref

'ref = 60 f-lA

Maximum switch current
Supply current, ICC

10 = 0

Supply current in shutdown

VFB/SD = 0 V

UNIT
V

V

10

15

Q

15

25

35

kHz

25°C

2.35

2.5

2.65

Full range

2.25

2.75

V
mA

25°C

300

I VCC = 3.5 V

Full range

2.5

3.5

IVcc=15V

Full range

3

4.5

Full range

100

150

mA
f-lA

t Full range IS O°C to 70°C for the LT1054C and -40°C to 85°C for the LT1 0541.
t All typical values are at T A = 25°C.
NOTES: 3. All regulation specifications are for a device connected as a positive to negative converter/regulator with R1 = 20 kQ. R2 = 102.5 kQ.
C, = 10 f-lF (tantalum), Co = 100 f-lF (tantalum) and C1 = 0.002I-'F.
4. For voltage-loss tests, the device is connected as a voltage inverter, with pins 1, 6, and 7 unconnected. The voltage losses may be
higher in other configurations.
5. Output resistance is defined as the slope of the curve (AVO vs Ala) for output currents of 10 mA to 100 mA. This represents the linear
portion of the curve. The incremental slope olthe curve will be higher at currents less than 10 mA due to the characteristics of the switch
transistors.

TEXAS

.J!1

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-57

LT1054
SWITCHED-CAPACITOR VOLTAGE CONVERTER
WITH REGULATOR
TYPICAL CHARACTERISTICS
table of graphs
FIGURE
Shutdown Threshold

vsTA

Free-Air Temperature

1

ICC

Supply Current

vsVCC

Input Voltage

2

10SC

Oscillator Frequency

vsTA

Free-Air Temperature

3

Supply Current in Shutdown

vsVCC

Input Voltage

4

Average Supply Current

vs 10

Output Current

5

lavQ

Output Voltage Loss

VSCI

Input Capacitance

6

Output Voltage Loss

vs fosc

Oscillator Frequency (10 i-lF)

7
8

Output Voltage Loss

vs fosc

Oscillator Frequency (100 i-lF)

Vo

Regulated Output Voltage

vsTA

Free-Air Temperature

9

6V re f

Reference Voltage Change

vs TA

Free-Air Temperature

10

table of figures
FIGURE
Switched-Capacitor Building Block

11

Switched-Capacitor Equivalent Circuit

12

Circuit With Load Connected From VCC to VOUT

13

External Clock System

14

Basic Regulation Configuration

15

Power-Dissipation-Limiting Resistor in Series With CIN

16

Motor Speed Servo

17

Basic Voltage Inverter

18

Basic Voltage Inverter/Regulator

19

Negative Voltage Doubler

20

Positive Doubler

21

100-mA Regulating Negative Doubler

22

Dual Output Voltage Doubler

23

5-V to

24

±

12-V Converter

Strain Gage Bridge Signal Conditioner

25

3.5-V to 5-V Regulator

26

Regulating 200-mA + 12-V to -5-V Converter

27

Digitally Programmable Negative Supply

28

Positive Doubler With Regulation (5-V to 8-V Converter)

29

Negative Doubler With Regulator

30

TEXAS

-If

INSTRUMENTS
2-58

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

LT1054
SWITCHED·CAPACITOR VOLTAGE CONVERTER
WITH REGULATOR
TYPICAL CHARACTERISTICSt
SHUTDOWN THRESHOLD

SUPPLY CURRENT

vs

vs

FREE·AIR TEMPERATURE

INPUT VOLTAGE
5

0.6

>

...........
0.5

I

'C>"
S

g

10

............

0.4

"0

"0
.r:;
UI

0.3

'"

E
I

'-......
..............

C

'-......

~

3

:;

-

u

.............

>C.

~

Q.

"I

If)

l-

e

4

«

VFBiSD

.r:;

;:

Jo

0.2

2

U

0
"0

9

'5

.r:;

If)

0.1

O~

-50

__

~

-25

__

~

__

~

__

~~

__

~

__

~

__..J

o
25
50
75
100
TA - Free·Alr Temperature - 'c

o~

__

o

125

~

__

~

____

~

__

~

____

~

__

5
10
Vec - Input Voltage - V

~

15

Figure 2

Figure 1
OSCILLATOR FREQUENCY

SUPPLY CURRENT IN SHUTDOWN

vs

vs

FREE·AIR TEMPERATURE

INPUT VOLTAGE
120

...~

100

------~VFB/SD=O

I

~

eQ)

80

.... .......

"
W
u.
...o

60

~
.~

o

40

I

-"
UI

o

20

15~--~~~~--~--~--~--~--~

-75

-50

-25
0
25
50
75
T A - Free·Alr Temperature - 'c

100

o

125

o

10
5
Vee -Input Voltage - V

15

Figure 4

Figure 3

t Data at high and low temperatures are applicable only within the rated operating free·air temperature ranges of the various devices.

TEXAS -I!.a

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-59

LT1054
SWITCHED-CAPACITOR VOLTAGE CONVERTER
WITH REGULATOR
TYPICAL CHARACTERISTICS
AVERAGE SUPPLY CURRENT

OUTPUT VOLTAGE LOSS

vs

vs

OUTPUT CURRENT

INPUT CAPACITANCE

140

«

E

1.4

120

I

C
CI)

l::
:::l
U
>-

C.
Q.

/

100

V

:::l

'"

60

E
CI)

~
I

/

40

'"

>
.!'

20

o

/

V

/

o

>

1.0

''""
..J
'"
Jll'"

0.8

I

//

80

rJ)

CI)

1.2

/

1'-.

I( = 100 m

~

1)=50mA

0

V

~
'5Q.
'5

0

/V

I

0.6

I

IO=lLA

0.4

Inverter clnfigLat,ln _
Co = 100 "F Tantalum
10sc 25 ~HZ I
I
20 30 40 50 60 70 80 90 100
CI - Input Capacitance - "F

0.2

20

40

60

o

100

80

i

o

10

10 - Output Current - rnA

Figure 5

Figure 6

OUTPUT VOLTAGE LOSS

OUTPUT VOLTAGE LOSS

vs

vs

OSCILLATOR FREQUENCY

OSCILLATOR FREQUENCY
I.

\

>

>

I

I

'"
'"'"
~

\

.

1\

\

'5Q.
'5

0

o
1

,110 =

r-..
1\

\

\,

-

'"
~
'"
.!!!

~oolmt ~

\

'"

T

~

""

'5
Q.
'5

"-.~ = 5~ ~A..I"'~

o

1~=rmll-

\

I. ~ I I I

....... to-

10=100m~,

1/.1

I:~ = 50~A

!--.

10 = lOrnA
Co

=100 "F

10
fosc - Oscillator Frequency - kHz

o
1

100

III

TEXAS

-III

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

I

10
fosc - Oscillator Frequency - kHz

Figure 8

Figure 7

2-60

~. I

2

2

.9'"

.!

Inverter Configuration
CI = 100 "F Tantalum
Co = 100 "F Tantalum

Inverter Configuration
Ci = 10 "F Tantalum
Co = 100 "F Tantalum

100

LT1054
SWITCHED-CAPACITOR VOLTAGE CONVERTER
WITH REGULATOR
TYPICAL CHARACTERISTICSt
REFERENCE VOLTAGE CHANGE

REGULATED OUTPUT VOLTAGE

vs

vs

FREE-AIR TEMPERATURE

FREE-AIR TEMPERATURE

-4.7

>
I

.
~

CD
CI

:;
Q.

-4.8
-4. 9
-5.0
-5. 1

8." -11.6
~

:; -11.8
CI
CD

100

--

>

E

80

I

-

CD
CI

.
..

V

c
r.

0

CD
CI

~

..

60
40
20
0

/
./

CD

"- .........

c

.;a:e

--- t--

a: -12.0
I

~ -12.2

-25

-40

I

~

>
 100 !As) or a logic high. Diode coupling the restart signal
into FB/SD allows the output voltage to rise and regulate without overshoot. The resistor divider R3/R4 shown
in Figure 15 should be chosen to provide a signal level at FB/SD of 0.7 V - 1.1 V.
FB/SD is also the inverting input of the LT1054 error amplifier, and as such can be used to obtain a regulated
output voltage.

Jl
R3

VIN

+

8

FB/SD

VCC
2.2t;}

2
R4

CAP +

Jl
CIN
10 flF
Tantalum

Restart

-=-

OSC
LT1054

3
4

-=-

7

6

GND

VREF

CAP-

VOUT

R1

R2

5

Shutdown
YOU

C1

For example: To get Vo = -5 V
referred to the ground pin of the LT1 054

R2 = R1

IVOUTI
(

+)

VREF
- - -40mV

2

=20kO

(

I

-5V

+)

I

+1-=-

COUT
100 flF
Tantalum

= 102.6 kOt

2.5V
- - -40mV
2

Where: R1 = 20 kO
VREF = 2.5 V Nominal

t Choose the closest 1% value

Figure 15. Basic Regulation Configuration

TEXAS

"I1

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-65

LT1054
SWITCHED-CAPACITOR VOLTAGE CONVERTER
WITH REGULATOR
APPLICATION INFORMATION
regulation
The error amplifier of the LT1 054 drives the PNP switch to control the voltage across the input capacitor (CIN),
which determines the output voltage. When the reference and error amplifier of the LT1 054 is used, an external
resistive divider is all that is needed to set the regulated output voltage. Figure 15 shows the basic regulator
configuration and the formula for calculating the appropriate resistor values. R1 should be 20 kQ or greater
because the reference current is limited to ± 100 !-IA. R2 should be in the range of 100 kQ to 300 kQ. Frequency
compensation is accomplished by adjusting the ratio of CIN to COUT.
For best results, this ratio should be approximately 1 to 10. Capacitor C1, required for good load regulation,
should be 0.002 f!F for all output voltages.
The functional block diagram shows that the maximum regulated output voltage is limited by the supply voltage.
For the basic configuration, IVOUT I referred to the ground pin of the LT1 054, must be less than the total of the
supply voltage minus the voltage loss due to the switches. The voltage loss versus output current due to the
switches can be found in the typical performance curves. Other configurations, such as the negative doubler
can provide higher voltages at reduced output currents.

capacitor selection
While the exact values of CIN and COUT are non-critical, good-quality low-ESR capacitors, such as solid
tantalum are necessary to minimize voltage losses at high currents. For CIN, the effect of the equivalent series
resistance (ESR) of the capacitor is multiplied by four, since switch currents are approximately two times higher
than output current. Losses occur on both the charge and discharge cycle, which means that a capacitor with
1 Q of ESR for CIN has the same effect as increasing the output impedance of the LT1054 by 4 Q. This
represents a significant increase in the voltage losses. COUT is alternately charged and discharged at a current
approximately equal to the output current. The ESR of the capacitor causes a step function to occur in the output
ripple at the switch transitions. This step function degrades the output regulation for changes in output load
current and should be avoided. A technique is used to parallel a smaller tantalum capacitor with a large aluminum
electrolytic capacitor to gain both low ESR and reasonable cost.

output ripple
The peak-to-peak output ripple is determined by the output capacitor and the output current values.
Peak-to-peak output ripple is approximated as shown:

LlV=~

(5)

2 fC ouT

where:
"'V = p-p ripple
fosc = oscillator frequency
For output capacitors with significant ESR, a second term must be added to account for the voltage step at the
switch transitions. This step is approximately equal to:

(6)

(2IOUT) (ESR of COOT)

power dissipation
The power dissipation of any LT1 054 circuit must be limited so that the junction temperature of the device does
not exceed the maximum junction temperature ratings. The total power dissipation is calculated from two
components, the power loss due to voltage drops in the switches, and the power loss due to drive current losses.
The total power dissipated by the LT1 054 is calculated as shown.

TEXAS -Ill

INSTRUMENlS
2-66

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

LT1054
SWITCHED-CAPACITOR VOLTAGE CONVERTER
WITH REGULATOR
APPLICATION INFORMATION
P "" (Vee - I VOUT I ) louT + (Vee) (louT) (0.2)

(7)

where both Vee and VOUT refer to the ground pin. The power dissipation is equivalent to that of a linear
regulator. Limited power handling capability ofthe LT1 054 packages causes limited output current requirements
or steps can be taken to dissipate power external to the LT1054 for large input or output differentials. This is
accomplished by placing a resistor in series with CI N as shown in Figure 16. A portion of the input voltage is
dropped across this resistor without affecting the output regulation. Since switch current is approximately 2.2
times the output current and the resistor causes a voltage drop when CIN is both charging and discharging, the
resistor chosen is as shown.
Rx = Vx/(4.4 lour)

where:

Vx "" Vee- [(LTl054 voltage loss) (1.3) + I VOUT I]

(8)

and lOUT = maximum required output current. The factor of 1.3 allows some operating margin for the LT1054.
When using a 12-V to -5-V converter at 100-mA output current, calculate the power dissipation without an
external resistor.
P = (12 V

P

= 700

-I -5

Vi ) (100 rnA)

mW + 240 mW

+ (12 V) (100 rnA) (0.2)

= 940 mW

COUT

r

Cl

Figure 16. Power-Dissipation-Limiting Resistor in Series with CIN

At 8JA of 130°C/W for a commercial plastic device, a junction temperature rise of 122°C is seen. The device
exceeds the maximum junction temperature at an ambient temperature of 25°C. To calculate the power
dissipation with an external-resistor (Rx), determine how much voltage can be dropped across Rx. The
maximum voltage loss of the LT1054 in the standard regulator configuration at 100 mA output current is 1.6 V.

Vx

= 12

V - [(1.6 V) (1.3) +

I - 5 V I] = 4.9 V

and

Rx = 4.9 V/(4.4) (100 rnA) = 11 Q

TEXAS ."

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2,-67

LT1054
SWITCHED·CAPACITOR VOLTAGE CONVERTER
WITH REGULATOR
APPLICATION INFORMATION
The resistor reduces the power dissipated by the LT1054 by (4.9 V) (100 mAl = 490 mW, The total power
dissipated by the LT1054 is equal to (940 mW - 490 mW) = 450 mW. The junction temperature rise is 58°C.
Although commercial devices are functional up to a junction temperature of 125°C, the specifications are tested
to a junction temperature of 100°C. In this example, this means limiting the ambient temperature to 42°C. To
allow higher ambient temperatures, the thermal resistance numbers for the LT1054 packages represent
worst-case numbers with no heat-sinking and still air. Small clip-on heat sinks can be used to lower the thermal
resistance of the LT1054 package. Airflow in some systems helps to lower the thermal resistance. Wide PC
board traces from the LT1054 leads helps to remove heat from the device. This is especially true for plastic
packages.
10 V
lN4002

100 kQ
FB/SD
2.
lN5817

10 f'F

8

VCC

+

7

CAP +

OSC

4

6

GND

VREF

CAP-

VOUT

5

"------"'~

Tach
Motor
NOTE: Motor-Tach Canon CKT26-T5-3SAE

Figure 17. Motor Speed Servo

8

FB/SD
2

3

+
10 f'F

-=

4

VCC

CAP +

OSC
LT1054

+
7

T

6

GND

VREF

CAP-

VOUT

5

T+

-=
Figure 18. Basic Voltage Inverter

TEXAS

~

INSTRUMENTS
2-68

T
-=

LT1054

3

5f' F

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

100 kQ
Speed Control

LT1054
SWITCHED-CAPACITOR VOLTAGE CONVERTER
WITH REGULATOR
APPLICATION INFORMATION
VIN

8
FB/SO
2

3

+
10 [!F

VCC

+

T

7

CAP +
LT1054
GNO

VREF

CAp":'

VOUT

6

R1

5

R2

-::-

4

r
-::-

R2

= R1
(

2[!F

OSC

I vOUTI
VREF
- - -40mV
2

+)

VOUT

+
0.002 [!F

100 [!F

= 20 kQ

(

IVOUTI
1.21 V

Figure 19. Basic Voltage Inverter/Regulator

ax
RX
VIN

= -3.5 V TO -15 V
= 2 VIN + (LT1054 Voltage Loss) + (ax Saturation Voltage)

VOUT

Figure 20. Negative Voltage Doubler

TEXAS ."

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-69

LT1054
SWITCHED·CAPACITOR VOLTAGE CONVERTER
WITH REGULATOR
APPLICATION INFORMATION
VIN
3.5 Vto 15 V
1N4001

1N4001

+

+
10 ",F
VOUT

2

3

V/N = 3.5 VTO 15 V
VOUT - 2 VIN - (VL + 2 V Diode)
VL = LT1054 VOlt8,ge Loss

4

8

FB/SD

VCC

CAP +

OSC
LT1054

+

6

GND

VREF

CAP-

VOUT

5
7

Figure 21. Positive Doubler

, TEXAS.

2-70

7

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

T

2",F

LT1054
SWITCHED-CAPACITOR VOLTAGE CONVERTER
WITH REGULATOR
APPLICATION INFORMATION
VIN
3.S Vto lS

2

lOIlF

+

"t...JOIlF

3

FB/SO

VCC

CAP +

OSC

LT10S4
GNO #1 VREF

4

8

v

FB/SO
2

7

VOUT
SET

6

R1
40kQ

S

+ lOIlF

3

-;: 4

+

VCC

OSC
CAP +
LT10S4
GNO
CAP-

#2 VREF
VOUT

8
7

6

HPS082-2810
PIN2
LT10S4 #1

20kQ
S

1N4002
R2
SOOkQ

1N4002

1N4002

.-________~~__--------~-----*--~--1N4002

+T

VOUT
lOUT" 100 rnA MAX

lOOIlF

VIN = 3.5 to 15 V
VOUT MAX - -2 VIN + [LT1054 Voltage Loss +2 (VOlode)]

R2 = Rl

1.21 V

Figure 22. 100-mA Regulating Negative Doubler

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-71

LT1054
SWITCHED·CAPACITOR VOLTAGE CONVERTER
WITH REGULATOR
APPLICATION INFORMATION
VIN
3.5 Vto 15 V
1N4001

1N4001

+

2

VCC

CAP +

OSC

7

+

3

"'1.-=

8

FB/SO

LT1054
GNO

6

VREF
100 ~F

4

5

CAP-

VOUT

lO~F

1N4001

VIN ,,3.5 V to 15 V
+VOUT _ 2 VIN - (VL + 2 VOlode)
-VOUT - -2 VIN + (VL + 2 VDiode)
VL" LT1054 Voltage Loss

~-=1N4001

1N4001

Figure 23. Dual Output Voltage Doubler

5 11F

T

+

1N914

FB/SO
2

+

3

-= 4

CAP +
GNO

8
VCC
OSC

LT1054
#1
VREF

CAP-

7

1N914

VOUT_+12V
'OUT ,,25 rnA

100~F

T

+

+

-1

6

2

5

3

VOUT

8

FB/SO

VCC

CAP +

osc

LT1054
GNO

#2 VREF

7
6
20 kQ

4

CAP-

5

VOUT_-12V
'OUT ,,25 rnA

VOUT
100 flF

'E
-=

Figure 24. 5-V to ±12-V Converter

TEXAS

.Jf

INSTRUMENTS
2-72

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

LT1054
SWITCHED-CAPACITOR VOLTAGE CONVERTER
WITH REGULATOR
APPLICATION INFORMATION
5V
10kQ

+

Input TTL or
CMOS Low -e----VV'v---I
for On

T

40Q

2N2907

Zero Trim
10 kQ

10",F

-=-

301 kQ

200kQ

FB/SO

VCC

, - - - - 1 CAP +

OSC

2

+
10llF

3

4

CAP-

7

5V

u-::-3kQ

LT1054
#1

GNO

8

VREF

VOUT

6

5

-

2N2222

Tantalum

A= 125
For 0 - 3 V Out
From Full-Scale Bridge
Output of 24 mV

Figure 25. Strain Gage Bridge Signal Conditioner.

TEXAS

.Jf

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-73

LT1054
SWITCHED-CAPACITOR VOLTAGE CONVERTER
WITH REGULATOR
APPLICATION INFORMATION
VIN
3.5 Vto 5.5 V

20 kQ

2
+
1 !-IF
1N914
(ALL)

-=-

8

FB/SO

VCC

+

-=-

CAP+

OSC

7

5[lFT

6

R1
20kQ

5

0.002 !-IF

LT1054
10 [IF

GNO

' - - - - 1 CAP-

3

4

8

FB/SO

VCC

CAP +

OSC

LTC1044
GNO

VREF

CAP-

VOUT

R2
125 kQ

2N2219
1N914
1N5817
VIN =3.5 V to 5.5 V
VOUT =5 V
lOUT MAX = 50 rnA

~.R' ( ~O~:~mv ')

.R' (

1.21 V

Figure 26. 3.5-V to 5-V Regulator

TEXAS

-IJ1

INSTRUMENTS
2-74

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

6

5

VREF

VOUT

7

LT1054
SWITCHED·CAPACITOR VOLTAGE CONVERTER
WITH REGULATOR
APPLICATION INFORMATION
12 V

1

p:+

~
2

3

-r-

10 Q
1/2W

Lj~

VCC -

FB/SO

OSC -

CAP+

LT1054
#1
GNO
VREF

CAP-

VOUT

1

8

10 Q
1/2 W

7

R1

0.002 f!F
::0
+

39.2 kQ
R2
200 kQ

S

10 [1F

200[1F

+"" '
-r-

~

~~ HP5082-2810

VCC -

2

7

CAP+

6

-

8

FB/SO

OSC

LT1054
GNO #2 VREF

- 4

CAP-

6
20 kQ

I

5

VOUT

T

T+
o.,..L.-

VOUT=-5V
lOUT = 0-200 rnA

".R' (

~:~mv')

.R' (

1.21 V

Figure 27. Regulating 200-mA + 12-V to -5-V Converter
15 V

11

16

20 kQ

}

Digital
Input

LT1004-2.5
8

FB/SO

VCC

CAP +

OSC

2

+

3

10 [1F

-=-

4

7

LT1054
GNO

VREF

CAP-

VOUT

13

12

20kQ

6
5

1--._-*--- VOUT = -

VIN (Programmed)

Figure 28. Digitally Programmable Negative Supply

TEXAS -If

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-75

LT1054
SWITCHED·CAPACITOR VOLTAGE CONVERTER
WITH REGULATOR
APPLICATION INFORMATION
VIN =SV

+~

SOkQ

VOUT
BV

c:-

2

~~~~~~--~--~~--------~------4
+

10 kQ

0.031l F 10 kQ

FB/SO

VCC

eAP+

ose

LT10S4

3

-=-

4

GNO

VREF

CAP-

VOUT

5V

S.SkQ

8

7
6

5

10 kQ

-=-

2.SkQ

0.1",F

T

Figure 29. Positive Doubler with Regulation (S-V to

a-v Converter)

VIN
3.5Vto15V

2
10 ",F

vee
OSC

LT10S4

3
GNO

10 ",F

+
7

CAP +

+

21lF

8

FB/SO

~-=R1
60kQ

6

VREF
100 ",F

4

5

CAP-

~-::-

VOUT

+

1N4001

R2
1 mQ
-VOUT

VIN=3.5Vto15V
VOUT MAX - 2 VIN + (VL + 2 VOiode)
VL = LT10S4 Voltage Loss

R2 = R1

(

I vOUTI
.
VREF -40 mV
2

+]

= R1

(

IVOUTI

+~

1.21 V

)

Figure 30. Negative Doubler with Regulator

TEXAS ~

INSTRUMENTS
2-76

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

LT1070, LT1070HV
5-A HIGH-EFFICIENCY SWITCHING REGULATORS
OCTOBER 19B8-REVISED OCTOBER 1991

•

Wide Supply Voltage Range:
LT1070HV ... 3 V to 60 V
LT1070 ... 3 Vto 40V

•
•
•
•
•

Low Quiescent Current ... 6 rnA Typ

Operates in Most Switching Configurations

•

Available in Standard KC and KV Packages

•

Can Be Externally Synchronized

KC AND KV PACKAGE
(KV Package Used for illustration)
(TOP VIEW)

§I

Self-Protected Against Overloads

e

Low Shutdown-Mode Supply Current
Floating Outputs in Flyback-Regulated
Mode

AVAILABLE OPTIONS

MAX

KC
PACKAGE

KV
PACKAGE

60V

LT1070HVCKC

LT1070HVCKV

40V

LT1070CKC

LT1070CVKV

-40'C to

60V

LT1070HVIKC

LT1070HVIKV

125'C

40V

LT1070lKC

LT1070lKV

TJ

INPUT
VOLTAGE

O'Cto
100'C

description
The LT1070 is a monolithic, high-efficiency switching regulator. It can be operated in all standard switching
configurations including: step-down (buck), step-up (boost), flyback, forward, inverting, and Cukt. A
high-current, high-efficiency switch is included in the package along with all oscillator, control, and protection
circuitry. Integration of all functions allows the LT1070 to be built in a standard 5-pin KC or KV package. This
makes it extremely easy to use and provides reliable operation similar to that obtained with 3-pin linear
regulators.
The LT1 070 operates with supply voltages from 3 Vto 40 V. The LT1 070HV, a high-voltage version ofthe LT1 070,
operates with supply voltages from 3 V to 60 V. These devices draw only 6 mA of quiescent current, deliver load
power up to 100 W with no external power devices, and by utilizing current-mode switching techniques, they
provide excellent ac and dc input and output regulation.
The LT1070 is much easier to use than the low-power control chips that are presently available and has many
unique features that are not found on these chips. It uses an adaptive saturation-preventing switch drive to allow
very-wi de-ranging load currents with no loss in efficiency. An externally activated shutdown mode reduces total
supply current to 50 flA typical for standby operation. Totally isolated and regulated outputs can be generated
by using the optional flyback-regulation mode built into the LT1 070 without the need for optocouplers or extra
transformer windings.

t A boost-buck-derived regulator circuit patented by Siobodan Cuk.
PRODUCTtON DATA Information is current as of publication date. Products
conform to specificalions per the terms of Texas Instruments standard

wammty. Production processing does not necessarily Include tesling of all

paramelers.

TEXAS

~

Copyright © 1991, Texas Instruments Incorporated

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-77

LT1070, LT1070HV
5-A HIGH-EFFICIENCY SWITCHING REGULATORS
functional block diagram
SW

IN

5-A.75-V
Switch

FB--+-----~~---4

__

----r-------------------------------~--

Shutdown
Circuit

c

0.020

+
0.15V

GND
Resistor value shown is nominal.

TEXAS ."

INSlRUMENTS
2-78

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265 "

LT1070, LT1070HV
5·A HIGH-EFFICIENCY SWITCHING REGULATORS
absolute maximum ratings over operating virtual junction temperature range (unless otherwise
noted)
Supply voltage, VIN (see Note 1): LT1070 ..................................................... 40 V
LT1070HV .................................................. 60 V
Switch output voltage: LT1070 .............................................................. 65 V
LT1070HV ............................................................ 75 V
Feedback input voltage, VFB (transient, 1 ms) ............................................... ±15 V
Continuous total dissipation ................................... See Dissipation Rating Tables 1 and 2
Operating virtual-junction temperature range:
LT1070C, LT1070HVC (normal operation) ........................................ O°C to 100°C
LT1070C, LT1070HVC (short-circuit operation) .................................... O°C to 125°C
LT10701, LT1070HVI ........................................................ -40°C to 125°C
Storage temperature range ....................................................... -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................... 300°C
NOTE 1: Minimum switch-on time lor the LT1 070 in current limit is - 1 f,ls. This limits the maximum input voltage during short-circuit conditions,
in the step-down and inverting modes only, to - 35 V. Normal (unshorted) conditions are not affected. lithe LT1070 is being operated
in the step-down or inverting mode at high input voltages and short-circuit conditions are expected, a resistor must be placed in series
with the inductor.
DISSIPATION RATING TABLE 1
FREE-AIR TEMPERATURE

=

=

PACKAGE

TA " 25'C
POWER RATING

DERATING FACTOR
ABOVE TA = 25'C

TA 100'C
POWER RATING

TA 125'C
POWER RATING

KC and KV

2000 mW

16 mW/'C

800 mW

400 mW

DISSIPATION RATING TABLE 2
CASE TEMPERATURE
PACKAGE

TC" 70'C
POWER RATING

OPERATING FACTOR
ABOVE TC = 70'C

TC = 125'C
POWER RATING

KC and KV

20 mW

250 mWI'C

6.25mW

recommended operating conditions

Input voltage. VIN
Virtual-junction temperature, TJ

MIN

MAX

LT1070C, LT10701

3

40

LT1070HVC, LT1070HVI

3

60

0

100

-40

125

LT1070C, LT1070HVC
LT1070l, LT1070HVI

TEXAS

UNIT
V
'C

.JJ1

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-79

LT1070, LT1070HV
5·A HIGH-EFFICIENCY SWITCHING REGULATORS
electrical characteristics at specified virtual-junction temperature, VIN = 15 V, VFB = Vref, with SW
output open (unless otherwise noted)
reference section
TEST CONDITIONSt

PARAMETER
Vref

Reference voltage

Measured at FB input, Vc = 0.6 V

Reference voltage input regulation

VIN = 3 Vto MAX,

Vc = 0,6V

Til:

MIN

TYP§

MAX

25°C

1.224

1.244

1.264

Full range

1.214

UNIT
V

1.274
0.03

%N

TYP9

MAX

UNIT

3S0

750

Full range

error amplifier section
PARAMETER

TEST CONDITIONSt

IFB

Feedback input current

VFB = Vref

9m

Transconductance

81C = ± 25 !-IA

Source current

Vc = 1.5 V,

Sink Current

TJ*
25°C

MIN

Full range

VFB = O.SV

Vc = 1.5V,

VFB = 1.5 V

High state,

VFB

Low state,

VFB = 1.5 V

VO(C)

Output voltage

AV

Voltage amplification

VC=0.7Vt01.4V

VT(C)

Control threshold voltage

Duty cycle = 0

=1 V

25°C

3000

Full range

2400

4200

6000
7000

25°C

150

Full range

120

25°C

150

Full range

120

400

1,S

2.3

25°C

nA

1100

200

350

200

350

",mho

!-lA

400

0.25

0.3S

0.52

Full range

500

SOO

2000

25°C

O.S

0.9

Full range

0.6

",A
V
VN

LOS

V

1.25

flyback amplifier section
PARAMETER

TEST CONDITIONst

TJ'I:

MIN

TYP§

MAX

UNIT

25°C

0.4

0.45

0.54

V

16.3

17.6

VT(FB)

Normal-/flyback-mode
threshold voltage

Vz

Flyback reference
voltage

=50!-lA
Vc =0.6 V,
IFB =50 !-IA

!NZ

Change in flyback
reference

VC=0.6V
IFB = 0.05 to 1 rnA

IC = -1 !-IA to 1 !-lA,

Flyback reference
voltage input regulation

VC=0.6V,
IFB 50 !-lA,

IC -1 ",A to 1 !-lA,
VIN 3 Vto MAX

25°C

81C s ±10!-lA,

IFB = 50!-IA

25°C

VC= 1.5V,

IFB

gm

Transconductance
Source or sink current

IFB

=

IC = -1 !-IA to 1 !-lA,

=
=

V(SW) = Vz + VIN ± 1 V

=50 !-lA,

I Source
I Sink

25°C

15

Full range

14

25°C

4.5

Full range

V

1S
6.8

8.5

V

0.Q1

0.03

%N

150

300

500

",mho

15

32

50

25

40

70

t .For conditions shown as MIN or MAX, use the appropriate value specified under the recommended operating conditions.
:(: Full range virtual junction temperature is DoC to 100°C for LT1070C and LT1070HVC and -40°C to 125°C for LT10701 and LT1070HVI
§ All typical values are T A = 25°C.

TEXAS .J!I

2-80

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

!-lA

LT1070, LT1070HV
5·A HIGH·EFFICIENCY SWITCHING REGULATORS
electrical characteristics at specified virtual junction temperature, VIN
output open (unless otherwise noted)
.

=15 V, VFB =Vref with SW

output section
PARAMETER
V(BR)SW

Switch breakdown voltage

Ron

Switch on-state resistance

gm

Control-to-switch
transconductance

ISW(lim)

Switch current limit

611N/61SW

Input current increase
during switch turn-on

f

Frequency

td

Flyback sense delay time

Maximum duty cycle

TEST CONDITIONSt
VFB = 1.5V,

I LT1070HV

ISW=5mA
VFB = O.BV,

TJ:I:

VIN=3VtOMAX,ILT1070

Full range

MIN

Duty cycle = BO%, VFB = O.B V

Full range

5

Q

mho
13
A

25

25°C

35

Full range

33

25°C

VFB = 1 V

0.24

B

25°C

VFB = O.B V

UNIT
V

0.15

25°C
Duty cycle = 50%, VFB = O.BV

MAX

75

Full range

ISW = 5A

TYP§

65

90%

25°C

40

35
45
47

92%

mNA
kHz

97%

1.5

Jls

shutdown section
PARAMETER
liN (off)
VT(off)

Input current
Control threshold voltage

TEST CONDITIONSt
VIN = 3 V to MAX,

Vc = 50mV

VIN = 3 V to MAX

TJ:I:

MIN

25°C
25°C

100

Full range

50

TYP§

MAX

UNIT

100

250

flA

150

250
300

mV

total device
PARAMETER
VIN(min)

TEST CONDITIONSt

Minimum input voltage

TJ:I:
Full range

MIN

TYP§

MAX

2.6

3

UNIT
V

Input current
25°C
6
9
mA
VIN = 3 Vto MAX,
VC=0.6V
liN
..
..
..
t For conditions shown as MIN or MAX, use the appropriate value speCified under the recommended operattng condlttons .
:j: Full range virtual junction temperature is O°C to 100°C for LT1070C and LT1070HVC and -40°C to 125°C for LT10701 and LT1070HVI.
§ All typical values are T A = 25°C.

TEXAS ..If

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-81

LT1070, LT1070HV
5-A HIGH-EFFICIENCY SWITCHING REGULATORS
theory of operation
The LT1070 is a current-mode switcher. This means that the switch duty cycle is directly controlled by switch
current rather than by output voltage. Referring to the functional block diagram, the switch is turned on at the
start of each oscillator cycle. It is turned off when the switch current reaches a predetermined level. Control of
output voltage is obtained by using the output of a voltage-sensing error amplifier to set the current trip level.
This technique has several advantages. First, it has immediate response to input-voltage variations, which is
unlike ordinary switchers that have poor input transient response. Second, it reduces the 90° phase shift at
midfrequencies in the energy-storage inductor. This greatly simplifies closed-loop frequency compensation
under widely varying input-voltage or output-load conditions. Finally, it allows simple pulse-by-pulse current
limiting to provide maximum switch protection under output overload or short conditions. A low-dropout internal
regulator provides a 2.3-V supply for all internal circuitry on the LT1070. This low-dropout design allows input
voltage to vary from 3 V to 60 V with virtually no change in device performance. A 40-kHz oscillator is the basic
clock for all internal timing. It turns on the output switch via the logic and driver circuitry. Special adaptive
antisaturation circuitry detects the onset of saturation in the power switch and adjusts driver current
instantaneously to limit switch saturation. This minimizes driver dissipation and provides very rapid turn off of
the switch.
A 1.2-V band-gap reference biases the positive input of the error amplifier. The negative input is brought out for
output-voltage sensing. This feedback pin has a second function when pulled low with an external resistor. It
programs the LT1 070 to disconnect the main error-amplifier output and connects the output pulse with respect
to the supply voltage. This flyback pulse is directly proportional to output voltage in the traditional
transformer-coupled flyback-topology regulator. By regulating the amplitude of the fly back pulse, the output
voltage can be regulated with no direct connection between input and output. The output is fully floating up to
the breakdown voltage of the transformer windings. Multiple floating outputs are easily obtained with additional
windings. A special delay network inside the LT1 070 ignores the leakage inductance spike at the leading edge
of the flyback pulse to improve output regulation.
The error Signal developed at the comparator input is brought out externally. This pin (C) has four different
functions. It is used for frequency compensation, current limit adjustment, soft starting, and total regulator
shutdown. During normal regulator operation, this pin sits at a voltage between 0.9 V (low output current) and
2 V (high output current). The error amplifiers are current-output (gm) types, so this voltage can be externally
clamped for adjusting current limit. Likewise, a capacitor-coupled external clamp will provide soft start. Switch
duty cycle goes to zero if the C pin is pulled to ground through a diode. This places the LT1 070 in an idle mode.
Pulling the C pin below 0.15 V causes total regulator shutdown, with only 50-IlA supply current for
shutdown-circuitry biasing.

TEXAS

2-82

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

LT1070, LT1070HV
5-A HIGH-EFFICIENCY SWITCHING REGULATORS
TYPICAL CHARACTERISTICS
table of graphs
FIGURE

POM

Maximum output power

vs

Input voltage

Vref

Reference voltage

vs

Junction temperature

~Vref

Reference voltage change

vs

Input voltage

IFB

Feedback input current

vs

Junction temperature
Junction temperature

gm

Error amplifier transconductance

vs

IC

Control current

vs

Control voltage

VT(FB)

Normal-/flyback-mode threshold voltage

vs

Junction temperature

IFB
Vz

Feedback input current

vs

Junction temperature

Flyback-mode reference voltage

vs

Junction temperature

td

Flyback sense delay time

vs

Junction temperature

IO(SW)

Switch output current (with switch off)

vs

Switch voltage

D river base cu rrent

vs

Switch output current

Vsat(SW)

Switch saturation voltage

vs

Switch output current

IO(SW)

Switch output current limit

vs

Duty cycle

Maximum duty cycle

vs

Junction temperature

liN (off)

Shutdown-mode input current

vs

Control voltage

liN (off)

Shutdown-mode input current

vs

Input voltage

VT(off)

Shutdown-mode control threshold voltage

vs

Junction temperature

VT(off)

Shutdown-mode control threshold current

vs

Junction temperature

VFB

Feedback input voltage

vs

Feedback input current

VIN(min)

Minimum input voltage

vs

Junction temperature

liN

Input current

vs

Junction temperature

liN

Input current

vs

Input voltage

1
2
3
4
5
6
7
7
8
9
10
11
12
13
14
15
16
17
17
18
19
20
21

table of application circuits
APPLICATION

Totally isolated converter
Flyback converter
Negative input - negative output flyback converter
Forward converter
Driving high-voltage NPN transistor
Driving high-voltage FET
Current-boosted boost converter
Voltage-boosted boost converter
Boost converter (5 V to 12 V)
Negative boost regulator
Negative current-boosted buck converter
Positive current-boosted buck converter
Negative buck converter
Positive buck converter
Negative-to-positive buck-boost converter
Positive-to-negative buck-boost converter
External current limit
External current limit (adjustable)

FIGURE

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

TEXAS •

INSlRUMENTS
POST OFFICE BOX 655303 • DALlAS, TEXAS 75265

2-83

LT1070, LT1070HV
5·A HIGH-EFFICIENCY SWITCHING REGULATORS
TYPICAL CHARACTERISTICS
REFERENCE VOLTAGE

MAXIMUM OUTPUT POWER

vs

vs

INPUT VOLTAGE

JUNCTION TEMPERATURE

100
90
80

;:

....

70

c..

60

I

/

'5
Co
'5

50

I:
:>

40

'x

.

30

I

20

1.248

/

>

0

E

I

- -

Boost /

FIYbal-

::;:

::;:
0

--

c..

j;g.

10

o

Buck Boost
VO=5V

V

.e

10

20
30
VIN - Input Voltage - V

1.244

/'

1.242

,--

-........ I'-......
.............

r:r: 1.240
I

'"

~
> 1.238
1.236

I

o

1.246

.l!!

~

Isolated

..
:ll!'"
~
....,c
I

Buck Boost
VO=30V -

/ /'
/
11/
11//
It ~

~

a

1.250

L

40

1.234
-50

50

o

-25

25

50

75

TJ - Junction Temperature -

Figure 1

100

125

'c

Figure 2
FEEDBACK INPUT CURRENT

vs
JUNCTION TEMPERATURE

REFERENCE VOLTAGE INPUT REGULATION
5

>

E

4

.
...
'"

3

.g>
I

r.

()

~
~

800

I:

'~*a;
>"
:

{
o

500

()

'5Co

/

-4
-5

/'

--- --TJ = 125'C . /

2

I:

e

700



g

~

2500

8.,

2000

t=

1500

C

c
co
I

E

t:n

-

r--- t---

_ dlatC
gm- dVatFB

1.I

I

100

'E
~
::>

3000

'0

I I I I I I I

VFB = 1.5 V (Current Into C pin)
200

II

0

o

'"

e'E -100

J

TJ + 25°C

II

o
o
I

!:!

-200

VFB = 0.8 V (Current Out of C pin)

1000
-300
500

o
-50

-25

-400

o

25

75

50

100

125

o

1.5
2.0
0.5
1.0
Vc - Control Threshold Voltage - V

TJ - Junction Temperature - °C

Figure 6

Figure 5
NORMALIFLYBACK-MODE THRESHOLD VOLTAGE
AND FEEDBACK INPUT CURRENT

vs

JUNCTION TEMPERATURE

JUNCTION TEMPERATURE
-24

Il:

480

~

470

<
I

a>

t:n

41!

460

~

450

~

440

.c

!!!
t=
!...
III

430
420

!!::..

I- 410

.........

\

\

"''"
\.

" """'

III

-20 u.

S-

-18 

400
-50

FLYBACK-MODE REFERENCE VOLTAGE

vs
500

~ 490
.E

2.5

-10

:;
:;

0

0.

....E

.

(,)

.

.c
-8

-6

-4
125

'0

a>

U.
I

22

>
a>

t:n

I

I

.1

- --

RFeedba k = 500 Q

I

21

.B

~

a>
c.>

20

c

~

19 -

...a:

18

~

(,)

RFeedba k = 1 kQ

co

.c

~

u.

17

I
N

RFeedba k = 10 kQ

> 16

III

~

15
-50

-25

o

25

50

75

100

125

TJ - Junction Temperature - °C

TJ - Junction Temperature - °C

Figure 8

Figure 7

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALlAS. TEXAS 75265

2-85

LT1070, LT1070HV
5-A HIGH-EFFICIENCY SWITCHING REGULATORS
TYPICAL CHARACTERISTICS
SWITCH OUTPUT CURRENT
FLYBACK SENSE DELAY TIME

vs

vs

SWITCH VOLTAGE and INPUT VOLTAGE
(WITH SWITCH OFF)

JUNCTION TEMPERATURE
2.2

1000
900

~

..
..'"
..
..
""..

«

2.0

=-I

I

E
1=

/

1.8

0

II>

1.6

V

c

V

If)

u

1.4

J:2

'"I
"

V

ii:

..

1.2

V

I \
VIN,40V

u"
:;

600 I - -

:;

500

Co

1,,-

~

400

(J)

300

~

I

VIN=15V

VIN =3V

~

0

.c

-----

1.0
-50

VIN =55V

~

V

/

Gi

800

C 700

~

200

E

100

0

25

50

75

100

125

0

10

vs

vs

SWITCH OUTPUT CURRENT

SWITCH CURRENT

160

120

I

....
m
.

u

100
80
TJ = -40°C

II>

..

/

60
40
20

V
V

/ ./

>

~

~/ ' 1

'"

>I

.

/

90

100

/
V/
V

/:

~

2

3

1.4

tJI

~

~

/

c
0

~

1i

If)

.c
2

0.6

'liO

If)

I

~
!!!.

TJ" 25°C

~~
o
o

I

-:;;

II>

>
4

0.2

5

4
6
2
IO(SW) - Switch Output Current - A

IO(SW) - Switch Output Current - A

Figure 12

Figure 11

t Average input current is found by multiplying driver base current by duty cycle plus quiescent current.

TEXAS

-III

INSlRUMENTS
2-86

80

1.6

140

e
:;

30 40 50 60 70
Switch Voltage - V

SWITCH SATURATION VOLTAGE

DRIVER BASE CURRENTt

C

20

Figure 10

Figure 9

E

~

0
-25

TJ - Junction Temperature - °C

«

~

.,.,.. \ ..-

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

8

LT1070, LT1070HV
5-A HIGH-EFFICIENCY SWITCHING REGULATORS
TYPICAL CHARACTERISTICS
SWITCH OUTPUT CURRENT LIMIT

MAXIMUM DUTY CYCLE

vs

vs

DUTY CYCLE

JUNCTION· TEMPERATURE

16

96

<{

I

14

~-40'C

'E

:::;

.~

12

C

TJ = O'C
-.;;...~

'5
!l.
'5

0

~

6

'"

4

9

2

;::
I

~
!!?

"""'-

..

L

~
::I

C

92

TJ = 75'IC

91

1

o

o

10

20

30

40 50 60
Duty Cycle %

70

- -----

93

80

90

90
-SO

100

-25

0

::I

vs

...... "..,....
..,...,
..,...,

TJ = -150'C
140

'5 100
!l.

V
I..,...,

..,...,

E:
I

",..

80

IE'

V

.2- 60
:!:

"..,....

.......

130

..,...,V
<{

120

I

C 110
~ 100

V

",..

TJ = -40'C to 125'C

V

'5
!l.
.E

90

I

80

I

IE'

/

VC=O _

.2- 70
:!:

50
40
20

30 40 50 60 70 80
Vc - Control Voltage - mV

90

100

~

/

~

()

20
10

Vc = 50 mV

::I

"..,....

60

o

---

::!.

40

o

125

SHUTDOWN·MODE INPUT CURRENT
INPUT CURRENT

160

120

100

140

::!.

()

75

CONTROL VOLTAGE

180

.
::

50

vs
200

C

25

Figure 14

SHUTDOWN·MODE INPUT CURRENT

I

~

TJ - Junction Temperature - 'c

Figure 13

<{

V

.,.,...,..V

if.

U
>()

r-- r- r-- rr-/

TJ = 125'C

./

94

- -

8

.c

~ I"'- ..........

---- I-- I----- I--~ I----I"'-I-I-hr-

10

()

-

95

r- T =25'C

r

/"
/

o

f..-- r-

/

~

/
10

20

30

40

50

60

VIN - Input Voltage - V

Figure 15

Figure 16

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-87

LT1070, LT1070HV
5-A HIGH-EFFICIENCY SWITCHING REGULATORS
TYPICAL CHARACTERISTICS
CONTROL THRESHOLD VOLTAGE AND CURRENT

400

vs

FEEDBACK INPUT VOLTAGE

JUNCTION TEMPERATURE
(SHUTDOWN MODE)

FEEDBACK INPUT CURRENT

I

--- --

At Pin C:

>

E 350

.,I

I

==
~

,

'0

(5 250
.t:

V

III

e

.t: 200
l-

e'E 150
0

I

....... ~

s:
,£.

I-

>

100
50

r--

o
-50

-350 ~

500

I

-300

-250

-~

-200

~

~

::>
U

450

~

400

'0
III

"[300

.t:

.E

gc

t;

e

co

ill

U

I

I

I

I

I

I

-25

0

25

50

75

100

250

f'.. r-...

200

IJ..

Cll 150
IJ..

F

>

~ut oi Fee~bac~ Pin

r-. -- --

TJ = -40'C

--- -- -- -....
-_J.

100

o

50

125

TJ - Junction Temperature - 'c

o

.

:-- r--

TJ=25:C-

.....

-....

TJ = 125,1C

I

s:

-50

"-

.c

-100 I

-

r--.......

~

0

Vc Is Reduced Until Regulator Current
Is < 300 /lA, Causing Shutdown

'-

, f""... r--.....

'"co
== 350

l-

-150

>

E

(5
.t:

Voltage

U

550

J--'

.--

'"

-400

I Cur;ent

Curren~

co 300

vs

:--

-0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1
IFB - Feedback Input Current - rnA

Figure 18

Figure 17

INPUT CURRENT
MINIMUM INPUT VOLTAGE

vs

vs

JUNCTION TEMPERATURE
(SW OUTPUT OPEN)

JUNCTION TEMPERATURE
2.9

2.8

>

.,I

2.7

- -...... "'......

Ol

Jg
~

..............
..............

E 2.6
::>
E

10

9

.......

witch Current = 0 ......

·c

ii
I
z

->

~

2.5

'"
~

2.4

2.3
-50

-25

0

25

50

7

75

'E
~

6

U

5

::>

~

""

100

125

:;

VIN =60V

--:::::

VIN = 3V

~ 4
I
~

3
2

o
-50

-25

TJ - Junction Temperature - 'c

0

25

50

75

TJ - Junction Temperature - 'c

Figure 20

Figure 19

TEXAS

2-88

-

I

'"

~

I

8

Switch Current = 5 A

"'-

I

r-- Vc = 0.6V

-1!1

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

100

125

LT1070, LT1070HV
5·A HIGH·EFFICIENCY SWITCHING REGULATORS
TYPICAL CHARACTERISTICS
INPUT CURRENT

vs
INPUT VOLTAGEt
15r---~--~----~--~----~--~

14
13r---~--~----~~~----+---~

«

E
I

C

~:I

U

12 r---~__=""""l=-11~---r--~----~--~----+---~

10 I-----r--~-

:;
Q.

.E
I

~

5~--~--~----~--~----~--~

o

10

20

30

40

50

60

VIN - Input Voltage - V

t Under very low output current conditions, duty cycle for most circuits will approach 10% or less.

Figure 21

TEXAS-If

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-89

LT1070, LT1070HV
5·A HIGH·EFFICIENCY SWITCHING REGULATORS
APPLICATION INFORMATION
Optional
Output Filter

r -;::;- - . - - -,
01

1:N

cst

0. 47 /lF

IN

L--I4--"*---~-t-~
_
-15V

SW

LT1070

N = 0.875 = 7:8
ForVO = 15V
FB

GND

C

+

R2

C2
0.Q1 /IF

tCapacitors are required if input lead length exceeds 2 inches.

Switch Voltage

toff -t-"-~.I
~ ton

I

--+i

Secondary Voltage

Figure 22. Totally Isolated Converter

TEXAS

~

INSlRUMENlS
2-90

1

200

·:
/l;

L _ _ _ _ .J1

+ VIN

-_5V

·1

C5

I ~~~~T.f~F

•

+

100/lF

-

11~-J

+ C3

R4
1.5 kQ

1

10/lF

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

LT1070, LT1070HV
5·A HIGH·EFFICIENCY SWITCHING REGULATORS
APPLICATION INFORMATION
VIN _ - . . _ . _ - -.....- - . . - - - - - ,
I
2O-30V
R4
C3
O.47flF
1

1:N.---I~----4....::~,.......~_
01

X

1_ _ _ - - - - .

R1
3.74kO

02
IN

cd
100flF

sw~~e-----~

LT1070

GNO

C

FB

...---------"11---------.

R3

R2
1.24kO

1.5kO
C2
O.15flF

tRequired if input length exceeds 2 inches,

Clamp Turn-On
Spike

VSNUB

*r-flWFl=:!:±.L'

*-

VI

Primary Flyback Voltage = Vo + Vf
LT1070 Switch Voltage
N
" A r e a "a" = Area "b" to Maintain 0 dc V
Across Primary

b

o V ----'.

Secondary Voltage Area "c" = Area "d" to
Maintain 0 dc V Across Secondary

.:1.1

t

of~
o

o

o

=---rIrl111
:IJIt::PRI

~-----,K
~

I

IPRI!

Primary Current

Secondary Current

LT1070 Switch Current

Snubber Diode Current

~ t __
Up_R_II_I_L_LI
VSNUB

Figure 23. Flyback Converter

TEXAS

~

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-91

LT1070, LT1070HV
5·A HIGH·EFFICIENCYSWITCHING REGULATORS
APPLICATION INFORMATION

R6

C3

T1

•
IN
SW

+

01
2N3906

LT1070

-VO
GNO

FB

C

R4
1.24kn

R5
C2
-VIN

tR1 ~ VO-1.6V
200 lAS

Figure 24. Negative Input - Negative Output Flyback Converter
L1

7O!IH

01
T1

R4
C2;::::::

~~ 03

'0..1

.~ Illl MII·~;I 2000;;11
,

• il

IN
VIN _-'::2O-30V

SW

02

~~

Vo

5V
6A

R1
3.74kn

1--.....- - - - '

LT1070

d. 04
C FB

GNO

01

~
R3

~

;:: i::::

R6
330kn

;:::::: C4

R5
1 kn

C3

Figure 25. Forward Converter

TEXAS

~

INSTRUMENTS
2-92

~

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

R2
1.24kn

LT1070, LT1070HV
5·A HIGH·EFFICIENCY SWITCHING REGULATORS
APPLICATION INFORMATION
C1

02

Q1

R1t
(G)

01

IN

01

sw

~.-----------~

VIN

LT1070

10-20 V

IN

-=-

sw 1------------'

LT1070

GNO
GNO

t Sets IB (on) -

:t: Sets IB (off)
Figure 26. Driving High-Voltage
NPN Transistor

Figure 27. Driving High-Voltage FET

R4

co

t ,~J.-I-I:~:f--'--______

L--~J----'

.n.
IN

VIN ---'::-16-24V-

02

N

1

.... I

Vo
28 V

4A

R1
27k.n

sw

+

;:=p:;

C1

LT1070

GNO

C FB

1-----------------.

R3

;:=p:;

R2
1.24 k.n

C2

Figure 28. Current-Boosted Boost Converter

TEXAS

~

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-93

LT1070, LT1070HV
5-A HIGH-EFFICIENCY SWITCHING REGULATORS
APPLICATION INFORMATION
R4
680kO
1W

;:,

~.!aI1F

J--

~~
IN

-..!::-

D2

i

SW

~

-

LT1070

~~

R1
98kO
C FB

GND

R2
1.24kO

R3
10kn

*

C2
0.47 11F

1
}
L1
N= 5
D1

..--

r+

=

Total Inductance 4 mH
Interleave PrImary and
Secondary for Low Leakage
Inductance

Vo

100 V at 300 mA

C1 I1F
200

l

Figure 29. Voltage-Boosted Boost Converter

12V,O.5A
D1

R1
10.7kO
1%

LT1070
FB
GND

+

C3t
100 I1F

C
R3
1 kO

C2
1OOOl1F

+
R2
1.24kO
1%

C1
111F

t Capacitors are required if input lead length exceeds 2 inches.

*Pulse Engineering 92113.

Figure 30. Boost Converter (5 V to 12 V)

TEXAS

,If

INSlRUMENlS
2-94

POST OFFICE BOX 655303 • DALlAS. TEXAS 75265

LT1 070, LT1 070HV
5·A HIGH·EFFICIENCY SWITCHING REGULATORS
APPLICATION INFORMATION

1

~

02 .. ,

I
I--

Rl
27kn

IN

SW

C3 -= =::.+
10 flF ;;

LT1070
C4t ;;=::.+
470 flF

C FB

GNO

;;=::.

VIN
-15V

RO

Cl

;:or: l000flF

(Minimum Load)

~

R3
3.3kn
Ll
200flH

+

g'~flF

R2
1.24kn
01
~

Vo
-28VatlA

I~

t Required if input lead length exceeds 2 inches,

Figure 31. Negative Boost Regulator

/'
Rlt

T1

C3 ;; :;::

R5

01

JMinimum

=

Load 10 mA
Vo
5 Vat 1OA

gQl
2N3906

,n

IN

;:or:+

R4
12kn

1: N

~

---=-

II ~

) ,l='

.1

+
;;:;:: Cl

SW
LT1070
FB
GNO

1
T
C

R2
1.24kn

R3

-VIN

C2

tR1 = VO-O,6V
1 ms

Figure 32. Negative Current-Boosted Buck Converter

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-95

LT1070, LT1070HV
5·A HIGH-EFFICIENCY SWITCHING REGULATORS
APPLICATION INFORMATION
VIN
28V

4700
2W

C3 -::
0.47flF ;;- :::::

R6
4700

•'II J
~

-=-

1:Nl'

C6
0.002 fl F ;:OF
02

• N=0.25

,n.

IN
SW
R2

LT1070

R3
1.24 kil

1 kO

~~ 01

FB
GNO

C

+ C5
;:;:::::100fl Ff

-::::::- Cl
~ -. 0.33 flF

~'
V+
V- LM308
Camp

6

R3
680 k.U

4

;:Oi'

~.~1 flF

7

8'"

3

2OOpF;:Of'

/

R5
5kil

R4
1.24 kil
Rl

\

Vo

~ 5 Vatl0 A

+

""~~
!
t Required if input lead length exceeds 2 inches.
Figure 33. Positive Current-Boosted Buck Converter

TEXAS ."

2-96

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2
000 flF

LT1070, LT1070HV
5·A HIGH·EFFICIENCY SWITCHING REGULATORS
APPLICATION INFORMATION

C2
1000flF
01
C5
100flFt

~ r---I~N----'
LT1070
Q1
2N3906

GNO

C

FB
R3

R2
1.24kQ

C1
VIN
-20 V

t Required if input lead length exceeds 2 inches.

Figure 34. Negative Buck Converter
VIN --.----~......- - - - - - - - - ,

C5
100flFt

+

SW
C3
2.2 flF

LT1070

R1
3.74kQ
FB

GNO

C
R3
470Q

R2
1.24kQ

+ C2
1 flF

R4
10Q
5Va14.5A

L1
100 f1H

C1
1 flF

01

C4
1000flF

100mA
Minimum

t Required if input lead length exceeds 2 inches.

Figure 35. Positive Buck Converter

TEXAS -If

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-97

LT1070, LT1070HV
5-A HIGH·EFFICIENCY SWITCHING REGULATORS
APPLICATION INFORMATION

r-----__*--.---+~~-----.--

Vo
12Vat2A

C4
100J.lFt
LT1070

GNO

C FB

J-----.._--------------'

R3
2.2 k.Q
R2
1.24 k.o

C1
0.22J.lF

t Required if input lead length exceeds 2 inches.

Figure 36. Negative-to-Positive Buck-Boost Converter
03
IN4001

RS
470.0,1 W

...

t.

I

IN

+

t

SW f--

VIN
10-30V

cst
100J.lF

-::-

C4 ;;::i:::
SJ.lF
LT1070

02
IN914

R1
10.7k.o
GNO

....

FB

C

R3
Sk.Q

R4
47k.Q

~

*

+

R2
+ -:::=- C3
1.24k.Q
2J.lF

;:;r:

;: : : ; g.~ J.lF

C1
1000J.lF

-

01

.....
1

....

L1
200 JlH

.1

t Required if input lead length exceeds 2 inches.

Figure 37. Positive-to-Negative Buck-Book Converter

TEXAS ."

INSlRUMENTS
2-98

1
R6
470 k.o

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Vo
-12 Vat2A

LT1070, LT1070HV
5-A HIGH-EFFICIENCY SWITCHING REGULATORS
APPLICATION INFORMATION

IN

sw

LT1070

GND

C

R1

FB

R2

1 kf.!

C1
C2

1000J.lF

1--_____--~t__-¥JIr-____--~t__---

Note that the LT1070 GND pin
Is no longer common to VIN(-)

RS

Figure 38. External Current Limit

Vx
LT1070
R2
GNO

~2V

R1
SOOkn

/

C

t .....
I.....

01

;:

F:

Figure 39. External Current Limit (Adjustable)

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-99

2-100

LT1071, LT1071HV
2.S-A HIGH-EFFICIENCY SWITCHING REGULATORS
JULY 1989-REVISED

•

Wide Supply-Voltage Range:
LT1071HV ... 3 Vto 60 V
LT1071 ... 3Vto40V

•
•
•

Low Quiescent Current ... 6 rnA Typ
Internal 2.S-A Switch

•

Self-Protected Against Overloads

•

Operates in Most Switching Configurations

•
•

Low Shutdown-Mode Supply Current

1991

KC AND KV PACKAGE
(KV Package Used for illustration)
(TOP VIEW)

§I Ii

Few External Parts Required

Floating Outputs in Flyback-Regulated
Mode

•
•

Available in Standard KC and KV Packages
Can Be Externally Synchronized
AVAILABLE OPTIONS

MAX

KC
PACKAGE

KV
PACKAGE

60V

LT1 071 HVCKC

LT1 071 HVCKV

40V

LT1071CKC

LT1 071 CKV

-40°C to

60V

LT1 071 HVIKC

LT1 071 HVIKV

125°C

40V

LT10711KC

LT10711KV

TJ

INPUT
VOLTAGE

O°Cto
100°C

description
The LT1071 is a monolithic, high-efficiency switching regulator. It can be operated in all standard switching
configurations including: step-down (buck), step-up (boost), flyback, forward, inverting, and Cukt. A
high-current, high-efficiency switch is included in the package along with all oscillator, control, and protection
circuitry. Integration of all functions allows the LT1071 to be built in a standard 5-pin KC or KV package. This
makes it extremely easy to use and provides reliable operation similar to that obtained with 3-pin linear
regulators.
The LT1 071 operates with supply voltages from 3 Vto 40 V. The LT1 071 HV, a high-voltage version ofthe LT1 071 ,
operates with supply voltages from 3 V to 60 V. These devices draw only 6 mA of quiescent current, deliver load
power up to 100 W with no external power devices, and by utilizing current-mode switching techniques, provide
excellent ac and dc input and output regulation.
The LT1071 is much easier to use than the low-power control chips that are presently available and has many
unique features that are not found on these chips. It uses an adaptive saturation-preventing switch drive to allow
very-wide-ranging load currents with no loss in efficiency. An externally activated shutdown mode reduces total
supply current to 50 I-lA typical for standby operation. Totally isolated and regulated outputs can be generated
by using the optional flyback-regulation mode built into the LT1071 without using optocouplers or extra
transformer windings.

t A boost·buck·derived regulator circuit patented by Siobodan CUk.
PRODUCTION DATA Information is current as of publication date. Products
conform to specifications per the terms of Texas Instruments standard
warranty. Production processing does not necessarily Include testing of all

parameters.

TEXAS

~

Copyright © 1991, Texas Instruments Incorporated

INSTRUMENTS
POST OFFICE BOX 555303 • DALLAS, TEXAS 75265

2-101

LT1071, LT1071HV
2.S-A HIGH-EFFICIENCY SWITCHING REGULATORS
functional block diagram
SW

IN

2.5-A,75-V
Switch

__----+---------------------------------~-- c
Shutdown
Circuit

0.04Q

+
0.15V

GND
Resistor value shown is nominal.

TEXAS ~

INSlRUMEN1S
2-102

POST OFFICE BOX 655303 ·'DALLAS. TEXAS 75265

LT1071, LT1071HV
2.S-A HIGH-EFFICIENCY SWITCHING REGULATORS
absolute maximum ratings over operating virtual junction temperature range (unless otherwise
noted)
Supply voltage, VIN (see Note 1): LT1071 ..................................................... 40 V
LT1071HV .................................................. 60V
Switch output voltage: LT1071 .............................................................. 65 V
LT1071HV ............................................................ 75 V
Feedback input voltage, VFB (transient, 1 ms) ............................................... ± 15 V
Continuous total dissipation ................................... See Dissipation Rating Tables 1 and 2
Operating virtual-junction temperature range: LT1 071 C, LT1 071 HVC ..................... O°C to 125°C
LT10711,LT1071HVI ..................... -40°C to 125°C
Storage temperature range ....................................................... -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................... 300°C
NOTE 1: Minimum switch-on time for the LT1071 in current limit is - 1 !,S. This limits the maximum input voltage during short-circuit conditions,
in the step-down and inverting modes only, to - 35 V. Normal (unshorted) conditions are not affected. If the LT1071 is being operated
in the step-down or inverting mode at high input voltages and short-circuit conditions are expected. a resistor must be placed in series
with the inductor.
DISSIPATION RATING TABLE 1 - FREE·AIR TEMPERATURE

DISSIPATION RATING TABLE 2 - CASE TEMPERATURE

=

=

PACKAGE

TA s 25"C
POWER
RATING

DERATING
FACTOR
ABOVE TA 25"C

TA 125°C
POWER
RATING

PACKAGE

TC s 70°C
POWER
RATING

DERATING
FACTOR
ABOVE TC 70°C

TC 125"C
POWER
RATING

KC

2000mW

16mWrC

400mW

KC

20W

250mWrC

6.25W

KV

2000mW

16mWrC

400mW

KV

20W

250mWrC

6.25W

=

=

recommended operating conditions

Input voltage, VIN
Virtual-junction temperature, T J

MIN

MAX

LT1071C, LT1071 I

3

40

LT1071 HVC, LT1071HVI

3

60

0

100

-40

125

LT1071C, LT1071HVC
LT1 0711, LT1 071 HVI

TEXAS

UNIT
V
°c

~

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-103

LT1071, LT1071HV
2.S-A HIGH-EFFICIENCY SWITCHING REGULATORS
electrical characteristics at specified virtual Junction temperature, VIN
output open (unless otherwise noted)

=15 V, VFB =Vref with SW

reference section
PARAMETER
Vref

TEST CONDITIONSt
Measured at FB input. Vc = O.S V

Output voltage
Input regulation

VIN = 3 Vto MAX.

Vc = O.SV

TJ;

MIN

TYp!l

MAX

25'C

1.224

1.244

1.264

Full range

1.214

1.274

UNIT
V

0.03

%N

TYP§

MAX

UNIT

350

750

Full range

error amplifier section
PARAMETER
IFB
gm

Til:

VFB = Vref

Full range

Transconductance

t.IC = ±25,..A

Source current

Vc = 1.5V.

VFB= 0.8V

Sink current

Ve = 1.5 V.

VFB= 1.5V

High state.

VFB = 1 V

Low state.

VFB= 1.5V

Output voltage

Av

Voltage amplication

MIN

25'C

Feedback input current

VO(C)

VT(C)

TEST CONDITIONSt

Vc = 0.7 V to 1.4 V

Control threshold voltage

Duty cycle = 0

1100

25'C

3000

Full range

2400

4400

SOOO
7000

25'C

150

Full range

120

25'e

150

Full range

120

400

1.8

2.3

25'C'

200

",mho

350
400

200

nA

,..A

350

0.25

0.38

0.52

Full range

500

800

2000

25'e

0.8

0.9

1.08

Full range

O.S

1.25

J.LA
V
VN
V

fly back amplifier section
PARAMETER
VT(FB)

Flyback threshold
voltage

Vz

Flyback reference

t.VZ

Change in flyback
reference

gm

TEST CONDITIONSt
IFB = 50,..A
IFB= 50 ",A.

Ie = -1 to + 1 ,..A.

Ve = O.SV
Ve = O.SV

TJ:I:

MIN

TYP§

MAX

,UNIT

25'e

0.4

0.45

0.54

V

lS.3

17.S

25'e

15

Full range

14

25'e

4.5

IFB = 0.05 to 1 mAo

Ie = -1 to +1 ,..A.

Flyback reference input
regulation

IFB = 50,..A.
Ie = -1 to +1 ,..A.

VIN = 3 V to MAX.
Ve = O.SV

25'e

Transconductance

IFB = 50,..A.

t.le" ±10,..A

25'e

I

150

18

V

S.8

8.5

V

0.Q1

0.03

%N

300

500

",mho

15
32
Vc = 1.5V.
50
Source
IFB = 50,..A.
Full range
,..A
25
40
70
I Sink
VISWl =VZ+VIN± 1 V
..
..
t For condlllOns shown as MIN or MAX. use the appropriate value specIfIed under the recommended operatIng condHlons .
:j: Full range virtual junction temperature is O'C to 100'C for LT1071C and LT1071HVC and -40'C to 125'C for LT10711 and LT1071 HVI.
§ All typical values are TA = 25'C.
Sink or source current

TEXAS

~

INSTRUMENlS
2-104

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

LT1071 , LT1071HV
2.5-A HIGH-EFFICIENCY SWITCHING REGULATORS
electrical characteristics at specified virtual junction temperature, VIN
output open (unless otherwise noted)

= 15 V, VFB = Vref with SW

output section
PARAMETER
Switch breakdown voltage

V(BR)SW
Ron

Switch on-state resistance

gm

Control-to-switch
transconductance

ISW(lim)

Switch current limit

[l,IIN/[I,ISW

Input current increase
during switch turn-on

f

Frequency
Maximum duty cycle

TEST CONDITIONSt
VFB = 1.5 V,

VIN = 3 Vto MAX,

ISW=5mA
VFB = 0.8 V,

TJ'l:

I LT1071
I LT1071HV

MAX

0.3

0.5

V

4

:.25'C

2.5

5

Duty cycle s 50%

<25'C

2.5

5.5

Duty cycle = 80%

Full range

2

5

25'C
25'C

35

Full range

33

25'C

VFB = 1 V

90%

25'C

Q

mho

Duty cycle s 50%

VFB = 0.8 V

UNIT

75

25'C

VFB = 0.8 V,
See Note 2

TYP§

65

Full range

ISW=2A

Flyback sense delay time

td

Full range

MIN

25

35

40

45

92%

97%

47

A

mNA
kHz

1.5

f!S

shutdown section
PARAMETER
liN (off)
VC(off)

TEST CONDITIONSt

Shutdown mode input current

VIN = 3 V to MAX,

Control threshold voltage

VIN = 3 V to MAX,

Vc = 0.05 V

TJ*

MIN

25'C
25'C

100

Full range

50

TYP§

MAX

100

250

150

250

UNIT

f!A
mV

300

total device
PARAMETER
VIN(min)

Minimum input voltage

liN

Input current

..

TEST CONDITIONSt

TJ*

MIN

Full range
VIN = 3 Vto MAX,

Vc = 0.6V

25'C

TYP§

MAX

2.6

3

V

6

9

rnA

UNIT

..

t For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions .
1= Full range virtual junction temperature is O'C to 100'C for LT1071C and LT1071 HVC and -40'C to 125'C for LT10711 and LT1071 HVI.
§ All typical values are T A = 25'C.
NOTE 2: For duty cycles between 50% and 80%, minimum switch output current is given by ISW(lim) = 1.67 (2-duty cycle).

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-105

LT1071, LT1071HV
2.S-A HIGH·EFFICIENCY SWITCHING REGULATORS
theory of operation
The LT1071 is a current-mode switcher. This means that the switch duty cycle is directly controlled by switch
current rather than by output voltage. Referring to the functional block diagram, the switch is turned on at the
start of each oscillator cycle. It is turned off when the switch current reaches a predetermined level. Control of
output voltage is obtained by using the output of a voltage-sensing error amplifier to set the current trip level.
This technique has several advantages. First, it has immediate response to input-voltage variations, which is
unlike ordinary switchers that have poor input transient response. Second, it reduces the 90° phase shift at
midfrequencies in the energy-storage inductor. This greatly simplifies closed-loop frequency compensation
under widely varying input-voltage or output-load conditions. Finally, it allows simple pulse-by-pulse current
limiting to provide maximum switch protection under output overload or short conditions. A low-dropout internal
regulator provides a 2.3-V supply for all internal circuitry on the LT1 071. This low-dropout design allows input
voltage to vary from 3 V to 60 V with virtually no change in device performance. A 40-kHz oscillator is the basic
clock for all internal timing. It turns on the output switch via the logic and driver circuitry. Special adaptive
antisaturation circuitry detects the onset of saturation in the power switch and adjusts driver current
instantaneously to limit switch saturation. This minimizes driver dissipation and provides very rapid turn off of
the switch.
A 1.2-V band-gap reference biases the positive input of the error amplifier. The negative input is brought out for
output-voltage sensing. This feedback pin has a second function when pulled low with an external resistor. It
programs the LT1071 to disconnect the main error-amplifier output and connects the output of the flyback
amplifier to the comparator input.The LT1071 will then regulate the value of the fly back pulse with respect to
the supply voltage. This fly back pulse is directly proportional to output voltage in the traditional
transformer-coupled flyback-topology regulator. By regulating the amplitude of the flyback pulse, the output
voltage can be regulated with no direct connection between input and output. The output is fully floating up to
the breakdown voltage of the transformer Windings. Multiple floating outputs are easily obtained with additional
windings. A special delay network inside the LT1 071 ignores the leakage inductance spike at the leading edge
of the flyback pulse to improve output regulation.
The error signal developed at the comparator input is brought out externally. This pin (C) has four different
functions. It is used for frequency compensation, current limit adjustment, soft starting, and total regulator
shutdown. During normal regulator operation, this pin sits at a voltage between 0.9 V (lOW output current) and
2 V (high output current). The error amplifiers are current-output (gm) types, so this voltage can be externally
clamped for adjusting current limit. Likewise, a capacitor-coupled external clamp will provide soft start. Switch
duty cycle goes to zero if the C pin is pulled to ground through a diode. This places the LT1 071 in an idle mode.
Pulling the C pin below 0.15 V causes total regulator shutdown, with only 50-f,IA supply current for
shutdown-circuitry biasing.

TEXAS ~

INSlRUMENTS
2-106

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

LT1071, LT1071HV
2.S-A HIGH-EFFICIENCY SWITCHING REGULATORS
TYPICAL CHARACTERISTICS
table of graphs
FIGURE

Reference voltage

vs

Reference voltage change

vs

Input voltage

'FB
gm

Feedback input current

vs

Junction temperature

1
2
2
3
4

Error amplifier transconductance

vs

Junction temperature

5

gm

Error amplifier transconductance

vs

Frequency

Error amplifier phase shift

vs

Frequency

POM
f
Vref

Maximum output power

vs

Input voltage

Switching frequency

vs

Junction temperature
Junction temperature

IC

Control current

vs

Control voltage

VT(FB)

Normal-flyback-mode threshold voltage

vs

Junction temperature

'FB
Vz

Feedback input current

vs

Junction temperature

Flyback reference voltage

vs

Junction temperature

td

Flyback sense delay time

vs

Junction temperature

IO(SW)

Switch (output with switch off) current

vs

Switch voltage

Driver base current

vs

Switch output current

Vsat(SW)

Switch saturation voltage

vs

Switch output current

'O(SW)

Switch output current limit

vs

Duty cycle

Maximum duty cycle

vs

Junction temperature .

"N
liN

Shutdown-mode input current

vs

Control threshold voltage

Shutdown-Mode input current

vs

Input voltage

VT(C)

Shutdown-mode control threshold voltage

vs

Junction temperature

'T (C)

Shutdown-mode control threshold current

vs

Junction temperature

VFB

Feedback input voltage

vs

Feedback input current

Minimum input voltage

vs

Junction temperature

"N

Input current

vs

Junction temperature

"N

Input current

vs

Input voltage

6
6
7
8
8
9
10
11
12
13
14
15
16
17
18
18
19
20
21
22

table of application circuits
APPLICATION

FIGURE

23
24

Totally isolated converter
Boost converter (5 V to 12 V)

TEXAS .IJ.J

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-107

LT1071, LT1071HV
2.S-A HIGH-EFFICIENCY SWITCHING REGULATORS
TYPICAL CHARACTERISTICS
REFERENCE VOLTAGE AND
SWITCHING FREQUENCY

MAXIMUM OUTPUT POWER

vs

vs

INPUT VOLTAGE

JUNCTION TEMPERATURE
1.250

25r-----~----~r---~----~----~

42

1.248
~

>I

20~----~--~+-----+-----4-----4

..
~
..

I

~

~

:;

15r-----t-+---+-~--~----~----~

c: 1.242
f!
oS!
a: 1.240

.

10r---~~~--~~

E

~

41

I

N

.....

".--

~

I

-....... ~

".--

/

...

40 :r

Reference Voltage

39

f!

>

5In~::==:j::::=~;::;;;;:::::~=--1
20

40

30

f!
38 u..
C>
c:
37 :E

1.238

36

1.236

35

50

-50

o

-25

VIN - Input Voltage - V

25

75

50

.
c:

"

-......::::

1.234
10

>u

CT

I'-...

I

'xto
::.

~

/'

1.244

u

~

o
§

1.246

C>

~

J

I

Switching Frequency

~
en

-

34
125

100

TJ - Junction Temperature - °C

Figure 1

Figure 2
FEEDBACK INPUT CURRENT

vs
JUNCTION TEMPERATURE

REFERENCE VOLTAGE INPUT REGULATION
800

5
4

>

3

.

2

E
I

I
TJ=125°c

C>
c:
to

.c:

.

b

0

C>

S

;g

.
..
a;

-1

~

-2

a:

-3

/

/
(
o

700

I

'E 600
~

/ .....'" ~
.........--

-,-

"

0

500

:;

Q,

-...

.5 400

...

TJ = 25°C ./

to

"..

300

I

200

,Q

II>

u..

,/

--

----

!Xl

u..

/

100

o
10

20

30

40

50

60

-50

-25

VIN - Input Voltage - V

o

25

50

75

TJ - Junction Temperature -

Figure 4

Figure 3

TEXAS

~

INSTRUMENTS
2-108

"'-

U

/ // /

-4

-5

~

........-:.. ~/

u

c:

~

TJ ;' -40°C

0

'I!.
0.5

1.0

1.5

2.0

2.5

----- --- --

400
-SO

-25

Vc - Control Threshold Voltage - V

o

---

25
50
75
100
T J - Junction Temperature - ·C

LI.

5-18 -;,
I

-16
-14
-12

C

a~
I

.5

l

-8

..................

m

-10 ~
~

Feedback Input Current _
............. .......... (at Threshold)

~ 420

I

-300

470
460

~-

=0.8 V (Current Out of C Pin)

S

..

i

:f
VFB

500

5-~

If

I

210·
10 M

1M

100 k
f - Frequency - Hz

FigureS

300

180·

I

-1000

-SO

o

D..

120·

I

500

-400

UI

'"

.c

OJ

OJ

-200

..

90·

'\

E 1000

~ -100

:E

III

2000

~

E 1000

8I

=:

60·

8

I

o

,

UI

c

::!.

O·

~

gm (Left Scale)

::l

~ 1500

c(

-30·

I 11111111
I 11111111
I I
Phase Shift (Right Scale)

-6

1m
LI.

-4

125

Figure 8

Figure 7

TEXAS

.If

INSJRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-109

LT1071, LT1071HV
2.S-A HIGH-EFFICIENCY SWITCHING REGULATORS
TYPICAL CHARACTERISTICS
FLYBACK MODE REFERENCE VOLTAGE

FLYBACK SENSE DELAY TIME

vs

vs

JUNCTION TEMPERATURE

JUNCTION TEMPERATURE

23

2.2

22

>

I

I

I

I

RFeedback = 500 Q

II)

til

~

II)

u

20

~

II)

19 -

to

18

c

'!

-r--

21

:!:l

2.0

E

j::

1.8

>to

Q;
Q

..,a:u

RFeedback = 1 kQ

II)

III

c

itI

..,u

V

CII
to

17

N

.a
>-

-

I

16
15
-50

o

-25

25

50

75

100

V

~

,./
1.2

1.0
-50

125

/

./

1.4

u::

.."

RFeedback = 10 kQ

>

./
,/

1.6

II)

.a

/

I
II)

-25

TJ - Junction Temperature - °C

0

25

50

75

100

125

TJ - Junction Temperature - °C

Figure 10

Figure 9
SWITCH OUTPUT CURRENT

vs

DRIVER BASE CURRENTt

SWITCH VOLTAGE AND INPUT VOLTAGE
(WITH SWITCH OFF)

SWITCH OUTPUT CURRENT

vs

1000

80
TJ" 25°C

900

iI

I I

800

VIN =55V

~

600

i

500

~

400

~

300

~
!!!.

200

9

100

o

I

c(

I \

C 700

o

70

E

-

VIN = 15V

~,... ~

I\.

VIN =3V

'"

V

C
~::J

~

0

V

/

II)

50
40

III

to

m
"-

II)

30

>
'1:
Q

o

60

I

VIN\,40V

20
10

o

10

20

30 40 50 60 70
Switch Voltage - V

80

90 100

---

o
o

~

r--

0.4

/'

/'

V

0.8

1.2

V

1.6

IO(SW) - Switch Output Current - A

Figure 12

Figure 11

t Average power driver base current is found by multiplying driver base current by duty cycle plus quiescent current.

TEXAS ."

INSlRUMENTS
2-110

V

/

POST OFFICE BOX 655303 • DALlAS. TEXAS 75265

2

LT1071, LT1071HV
2.5-A HIGH-EFFICIENCY SWITCHING REGULATORS
TYPICAL CHARACTERISTICS
SWITCH SATURATION VOLTAGE

SWITCH OUTPUT CURRENT LIMIT

vs

vs

SWITCH CURRENT

DUTY CYCLE

1.6,..---,---,..--,--....,--..,.--r---,-.....,

>

.,I

'"

~

~
c
o

~::l
~

.s::
~
;:
til
I

~

8


6

C
~

1.0 f---t--+--+--t---b,c.-hoo's-F--l

5

::l

()

t-.. TJI=~"C

:;Q.

0.8 I - - - I - - + - - I - -........"--,~~Vf.--I---+-I

:;

4

r--

0

0.6

.s::

1--t--+--,7f::;r::7"'~

oS

3

'3:
til
I

0.41--+-"7%~t--+--t--+--t--l

3
IO(SW) - Switch Output Current - A

-

::;::et ~

~

--

r.;;;

!a.

0.2 /-:~'--+--I---+--+--t---I--I

2

r-- I- TJ I=12$"C

Ir- J = 25"C

2

~

!a.
'iii
en

7

:!::

.9

o
o

4

10

20

30

40 50 60
Duty Cycle %

70

80

90 100

Figure 14

Figure 13

SHUTDOWN MODE
INPUT CURRENT

DUTY CYCLE (MAX)

vs

vs

JUNCTION TEMPERATURE

CONTROL THRESHOLD VOLTAGE

96

200
180

95

94

.,

;!.

u

>-

()

93

S-

o

/

---

V

i-"""

=-

::l

()

",/

100

:;
Q.

.5
I

~

TJ = - 40"C to 125°C
80

/'

60

0

25

50

75

100

125

o

V

V

I

40
20

-25

L

I

90
-50

,

140

C 120
~

./

92

91

V

V

V

V

160


VC=O

o /"

o

10

20

30

40

50

~

~

".c

100

:;

Curren:..-

til

120

()

At Pin C:

E 350

140

-400

I

>

I

I

II

til

~

~

i

300

vs
JUNCTION TEMPERATURE
2.9

"-

"

250

1

200

~

150

---- -

>I

..

I

...........

I

'"
~ 2.7
:;

:=

r

TJ = 25'C
I

2.8

til

TJ = -40'C
I -

........

Co

-

I

o

125

...........

--......

~

I

TJ = 125'C _

"'"

.5c

~

I

2.5

I

"- .......
.............

'"

........

~ .........

'2

'E
Z
">

50

o
o

0.1

~

Current = 1.25 V

:J

m 100

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
IFB - Feedback Input Current - mA

1

2.3
-50

25
50
75
100
-25
0
TJ - Junction Temperature - 'c

Figure 20

TEXAS

"-

""

2.4

Figure 19

~

INSlRUMENTS
2-112

I
~Switch

.5
E 2.6 r-- Switch Current = 0

I

~

I

FEEDBACK INPUT CURRENT

\: ...........-...

-50

MINIMUM INPUT VOLTAGE

450

350

~

8
-100 I

vs
500

I

150

~

r:

Figure 18

FEEDBACK INPUT VOLTAGE

..

I

200

~

-25
0
25
50
75
100
TJ - Junction Temperature - 'C

Figure 17

40Q,

'0

.c

-50

o

~

a

-250 "

VT(C) is Reduced Until Regulator Current _
is < 300 J,tA Causing Shutdown

VIN - Input Supply Voltage - V

~

-300

_

50

60

---

f.---

--------

-350 

20

~

I

;:

II)

/'

!) 1.244

15

II)

t:

"e

E 10

'S

t:

/"

1.242

I

41

I

N

40

V-

""

a:: 1.240

'xC\l

~

I

>

::;;
5

~
t:

II)

::l

"":::::::

38
37

I

::;;

...J:
I

39

r-....... ~,

V-

Reference Voltage

II)

::l

0

1.246

~

0

D..

I

Switching Frequency

en

0

D..

'5Co
'5

42

cr
II)

It
en
t:

:c

~

;:

1.238

36

1.236

35

1.234
-50

o

-25

VIN - Input Voltage - V

25

75

50

TJ - Junction Temperature -

Figure 1

C/)

I

34
125

100

'c

Figure 2
FEEDBACK INPUT CURRENT

vs
JUNCTION TEMPERATURE

REFERENCE VOLTAGE INPUT REGULATION
800

5
4

>

E
I
II)

en

I

3

TJ = 125'C
./

2

/~

t:

V ___

'"

.c

()
II)

en

~

!)

TJ = -40'C

0
-1

II)

"et:
oS!

-2

/

II)
a:: -3

£::.

~

I

<'

::l

()

-r

500

'S

Co

TJ = 25'C / '

....E

400

.tJ

300

"'"

'tI

I--

II)

V

I 200
III

u.

100

o
10

20

30

40

50

60

"-50

-25

VIN -Input Voltage - V

o

25

50

75

TJ - Junction Temperature -

Figure 4

Figure 3

TEXAS .JJ1

INSlRUMENTS
2-124

- --

---r-....

~

I
o

700

C 600
~

/

-4
"-5

~

~ ,......-/
/ /V /

«t:

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

100

'c

125

LT1072, LT1072HV
1.2S-A HIGH-EFFICIENCY SWITCHING REGULATORS
TYPICAL CHARACTERISTICS
ERROR AMPLIFIER TRANSCONDUCTANCE
AND PHASE SHIFT

ERROR AMPLIFIER TRANSDUCTANCE

vs

vs

JUNCTION TEMPERATURE

FREQUENCY

5000

7000

-r--r--

o 4000

.z:

~ 3500

=

g

_,,'"

" 2500

m

-g
c

0'

I\..

..

"c
"
""c
"c

4000

.I!!

III at C
llVatFB

3000

,='"

1500

I\.

o

-25

180'

75

100

125

10 k

1k

100 k

Figure 6
NORMAL·FLYBACK·MODE THRESHOLD VOLTAGE
AND FEEDBACK INPUT CURRENT

vs

vs

CONTROL VOLTAGE

JUNCTION TEMPERATURE

500

I

I
I
I
I
I
I
VFB = 1.5 V (Current Into C Pin)

200
100

/

0 ......
-100

V

-22 ]"
Ell

-20 u..

~
> 470
E
I

TJ = 25'C

..

460

~

450

!

Feedback Input Voltage
(at Threshold)

---r-r-

~ 440

I

I

.z:
II)

I

f!
~

VFB = 0.8 V (Current Out of C Pin)

........

430

u..
;- 410
>f!
400
0.5
1.0
1.5
2.0
Vc - Control Threshold Voltage - V

2.5

...............

-SO

---

-25
o 25 50 75 100
TJ - Junction Temperature - 'c

Figure 7

~

-18

i

-16

C

-14

8

I

f!

-121
.5
-10 ~

'"
"~
.&>

-8

""""- ........

Ell

o

-- -----

Feedback Input Current _
.............. '""" (at Threshold)

~ 420

-300
-400

~

"

Q.
.5 490
Ell
u.. 480

()

() -200

-24

~

/

0:(

1M

f - Frequency - Hz

CONTROL CURRENT

300

210'
10M

-1000
50

25

Figure 5

o

150'

o

T J - Junction Temperature - 'C

!

D..

120'

E 1000

-50

"

'"

.z:

CI

o

"0

II)

90'

'\

I

500

()

C/)

2000

CI

C
~

.z:

II)

E 1000

I

=
.

60'

r'\

gm (Left Scall1)

0

2000

30'

1\

I

I

"-

-30'

I I

6000

0

II)

~

I 11111111

.z:
E
"- 5000

I

g 3000
8

I 11111111

Phase Shift (Right Scale)

4500

-6

'EII

u..
-4

125

Figure 8

TEXAS

-If

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-125

LT1072, LT1072HV
1.2S-A HIGH-EFFICIENCY SWITCHING REGULATORS
TYPICAL CHARACTERISTICS
FLYBACK MODE REFERENCE VOLTAGE

FLYBACK SENSE.DELAY TIME

vs

vs

JUNCTION TEMPERATURE

JUNCTION TEMPERATURE

23

2.2

22

>

.,I
f!'"
~.,

I

I

I

1/1

-

RFeedback = 500 Q
21
20

(,)

c

i.,

19 I - - RFeedback = 1 kQ

..

16

...

=.

E
1=

r--

.

.Q

a;
c.,

.,c
...
1/1

1.6

V

Ul

..
(,)

.::lL

l.S

>0-

It
(,)

2.0

17

I
N

V

>0-

r--

iL

.."

RFeedback = 10 kQ

I

16
15
-50

o

-25

25

50

75

100

/

i""

,/
1.2

1.0
-50

125

V

./

./

1.4

.Q

>

V

.,I

-25

0

25

50

75

100

125

TJ - Junction Temperature - °C

TJ - Junction Temperature - °C

Figure 9

Figure 10

SWITCH OUTPUT CURRENT

vs

DRIVER BASE CURRENTt

SWITCH VOLTAGE AND INPUT VOLTAGE
(WITH SWITCH OFF)

SWITCH OUTPUT CURRENT

vs

1000

60

1

600

~

700

I

::s

(.)

'5

~

o
'l'i
:t:::

200

E

VIN\, 40
VIN=15V
I \

VIN=3V

400

~

V

......

«

I \
v

~ ... " ' -

E

60

'E
~
::s

~

.,
.....
m
.,
a
(.)

50
40

1/1

"'"

30

.~

20
10

o

10

/

I

100

o

I

70

I

VIN =55V

500

300

re-

I

600 -

~I

I

'TJ" 25°C

900

20

30 40 50 60 70
Switch Voltage - V

SO

90

V

--

"....,

o
o

100

0.4

.,/

O.S

Figure 12

t Average input current is found by multiplying driver base by duty cycle plus quiescent current

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

V

1.2

1.6

IO(SW) - Switch Output Current - A

Figure 11

2-126

....

V
./

1/

2

LT1072, LT1072HV
1.25-A HIGH-EFFICIENCY SWITCHING REGULATORS
TYPICAL CHARACTERISTICS
SWITCH SATURATION VOLTAGE

SWITCH OUTPUT CURRENT LIMIT

vs

vs

SWITCH CURRENT

DUTY CYCLE

1.6 r---r---,---,---,--,..--r---r--,

>

..'"
I

.B

;g
c::

~

8



'"

5
4

.c::
~

3

TJ = - 40'C
~ j
J..
I

r-.

0

TJ=25'C

r-

=- ~ ;::::::-I--.
=t:::::

I

-

I
TJ = 125'C

r--

ll:

rJl
I

~

6

SQ.
S

()

rJl

7

~

rJl

I

0.4

~
!!!.

0.2 h~'---+--t---t--+--f--t---t

2

9

o

2

3
IO(SW) - Switch Output Current - A

o

4

10

20

30

40 50 60
Duty Cycle 0/0

Figure 13

70

80

90

100

Figure 14
SHUTDOWN MODE
INPUT CURRENT

DUTY CYCLE (MAX)

vs

vs

JUNCTION TEMPERATURE

CONTROL THRESHOLD VOLTAGE
200

96

180
95

..

94

V

#-

U

>-

()

93

i!'

V

'"

0

92

V

........V

~

V

160



Vc =0

o

t-

VT(C) Is Reduced Until Regulator Current _
Is < 300 ~A Causing Shutdown

o
-50

I

I

I

I

I

I

-25

0

25

50

75

100

VIN - Input Supply Voltage - V

2.9

-

450

:f'1
~

300

"[

250

>

!'....

TJ = _40°C

1"- r- r--

200

~

150

E

~ 2.7

I

-100

~

o

-50

g

o

125

.E
E 2.6
E
'2

_

r--

Switch Current

"

TJ = 125°C _

Si

I

I

'" '"
~

-""""r--......

Q.

TJ = 25°C
I

I

............

:;

2.5

I

.........

~

-..............

r.......

f'-.. t-....

......
.....

C

'E
Z

m 100
lL

2.4

">

50

o

o

0.1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
IFB - Feedback Input Current - mA

1

2.3
-50

-25

0

25

50

75

TJ - Junction Temperature -

Figure 19

Figure 20

TEXAS ."

INSTRUMENTS
2-128

~

i'-.... Switch Current = 1.25 V

......

:l:!

-

I

>

2.8

01

I

!--

.E

t

..
I

t--

-150

JUNCTION TEMPERATURE

500

,\: t'-..........t-

~

r:.

vs

FEEDBACK INPUT CURRENT

350

~"

:g

MINIMUM INPUT VOLTAGE

vs

!01

-200

t:

Figure 18

FEEDBACK INPUT VOLTAGE

400

-250

~

T J - Junction Temperature - °C

Figure 17

~

--

I.-- f..--

Voltage

I

o

I

-300

200

~

20

:t



POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

100

'c

125

LT1072, LT1072HV
1.25-A HIGH-EFFICIENCY SWITCHING REGULATORS
TYPICAL CHARACTERISTICS
INPUT CURRENT
vs

JUNCTION TEMPERATURE
(SW OUTPUT OPEN)
11
10 -

vJ(C)

=0.16 V

9
oCt

E
I

8

C
~

7

0

6

"

:;

Q.

.5

VIN

=60V

VIN

=3V

-:::

5

I

:1:

4

3
2
1

-50

-25

o

25

75

50

100

125

TJ - Junction Temperature - "C

Figure 21
INPUT CURRENT
vs

INPUT VOLTAGE t
16

l
15 _ Note ihat this Icurrent 10es n01 include
driver current, which is a function of load
14 - current and duty CYClj'
oCt

E

13

I

12

C
~

11

0

10

"
:;
Q.

.5
I

:1:

I

_
-

- --

90% Duty Cycle

-

9

-~

7

-

50% IDuty Cycle

-

8

~

10% buty cy61e

6
0% ID uty Cyrle

5

o

10

20

30

40

50

60

VIN - Input Voltage - V

t Under very low output current conditions. duty cycle for most circuits will approach 10% or less.
Figure 22

TEXAS .JJ1

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-129

LT1072, LT1072HV
1.2S-A HIGH-EFFICIENCY SWITCHING REGULATORS
APPLICATION INFORMATION
Optional
Output Filter
r~---..,

01

*_

+ C3

R4
2.7krl
C5t
25 f.lF

-=- _+ 5V
-

11~-J

II

0.47f.lF

IN

'--_e---.---_._+_-15V
~_

LT1072

=

=

N 0.875 7.8
ForVO=15V

FB

$ 500rl

C

1:1"

R2
C2
0.Q1 f.lF

~

4

;'

Switch Voltage

toff -~~--.!.I

!4-

I

ton ~

Secondary Voltage

t Capacitors are required if input leads" 2 inches.

Figure 23. Totally Isolated Converter

TEXAS

-1!1

INSTRUMENTS
2-130

1

200

f.l:

1

L _ _ _ _ ...J

VIN

GNO

·1

C5

,-~-~Ti:·:

.l

~

;;:r:+_

1

10 f.lF

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

LT1072, LT1072HV
1.25-A HIGH-EFFICIENCY SWITCHING REGULATORS
APPLICATION INFORMATION
l1:1:

5V

1

220"H
~

I

.

IN

01

SW

12 V, 0.25 A

11""1

<

LT1072

R1
10.7kQ
1%

FB
GNO

C

+
C2 -;: :::::
470 "F /'

R3
1 kQ ~

+

T-

f

R2

1.24kQ
1%

C1
1"F

t Capacitor is required if input leads", 2 inches.
:j: Pulse Engineering 52626

Figure 24. Boost Converter (5 Vto 12 V)

TEXAS ."

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-131

2-132

LT1084C
5-A, LOW-DROPOUT, ADJUSTABLE POSITIVE REGULATOR
JULY 1988 - REVISED JANUARY 1992

•
•
•

Adjustable Output ... 1 V to 35 V

KKPACKAGE

(TOP VIEW)

5-A Output Capability
Dropout Voltage
1.5 V at Maximum Current
1 V at Minimum Current

OUT

Input Regulation ••. 0.015% Typ

ADJ

IN

•
•

Output Regulation ... 0.01 % Typ

•

100% Thermal Limit Burn-In

OUT is electrically connected to the case.

description
The LT1084C is a 3-terminal low-dropout
adjustable positive regulator that operates with
higher efficiency than currently available devices
with output loads up to 5 A. Internal circuitry is
designed to operate with a small input-to-output
differential voltage of 1.3 V (typical) and all dropout
voltages are specified as a function of output
current. Dropout voltage reaches a maximum of 1.5 V at maximum output current. On-Chip circuitry holds the
reference voltage constant to within 1%. Current limiting is used to minimize the stress on both the regulator and
power source circuits under overload conditions.
The LT1084C is terminal compatible with older 3-terminal regulators. A 1O-[.tF output capacitor is required, as
in most regulator designs. In P-N-P regulators, up to 10% of the output current is lost as bias (quiescent) current,
but the LT1084C bias current flows into the load, which improves power efficiency.
Typical applications include high-efficiency linear regulators, post regulators for switching power supplies,
constant-current regulators, and battery chargers.

PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms at Texas
Instruments standard warranty. Production processing does not
necessarily Include testing of all parameters.

TEXAS ~

Copyright © 1992, Texas Instruments Incorporated

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-133

LT1084C

5-A, LOW-DROPOUT, ADJUSTABLE POSITIVE REGULATOR
functional block diagram

~~~~----~--------~~------+-----+-------~--~----------+- OUT

ADJ

absolute maximum ratings over operating temperature range (unless otherwise noted)
Input-to-output differential voltage ............................................................ 30 V
Output current, 10 ........................................................................... 8 A
Power dissipation ........................................................... Internally self-limited
Operating virtual-junction temperature range: Control section ........................... O°C to 125°C
Power transistor .......................... O°C to 150°C
Storage temperature range ....................................................... -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................... 260°C

recommended operating conditions
MIN

MAX

0
0

5
125
150

Output current, 10
Operating virtual·junction temperature, T J

I Control section
I Power transistor

TEXAS ..,
INSIRUMENTS
2-134

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

UNIT

A
°C

LT1084C
5-A, LOW-DROPOUT, ADJUSTABLE POSITIVE REGULATOR
electrical characteristics at specified virtual-junction temperature (unless otherwise noted)
PARAMETER

Input regulation

Ripple rejection

TEST CONDITIONS

TYP

MAX

25'C

0.015%

0.2%

Full range

0.035%

0.2%

Full range

0.05%

0.5%

TJt

VI-VO = 1.5 Vto 15 V,

10=10mA

VI-VO = 15Vt030V,

See Notes 1 and 2

VI- VO=3V,
f = 120 Hz,

10 = 5 A (full load),
See Notes 3 and 4

Full range

10 = 10 mA to 5 A (full load),
See Notes 1, 2, and 3

Output voltage change with
temperature
Thermal regulation

tw = 30 ms

Output voltage long-term drift

After 1000 hours atTJ = 125'C

Output noise voltage (% 01 Vol

f= 10 Hzto 10 kHz

Minimum output operating current

VI-VO = 25V

Current limit

VI-VO =5 V
10 = full load

ADJ current

UNIT

dB

0.1%

0.3%

0.2%

0.4%

Full range

'0.5%

TA = 25'C

0.003

0.015

25'C
25'C

0,3%

1%

Full range

tNrel= 1%,

75

25'C

%/W

0,003%

Full range

VI- Vo = 25 V
Dropout voltage

60

Full range

VI-VO = 3V,
Output regulation

MIN

5
5,5

6,5

0,3

0,6

Full range

1.3

25'C

55

Full range

10

mA
A

1.5
120

V

[lA

VI - Vo = 1,5 V to 25 V,
Change in ADJ current

10 = 10 mA to 5 A (full load),

Full range

0.2

5

1.250

1.270

[lA

See Note 3
VI - Vo = 1.5 V to 25 V,
Reference voltage, Vo - V ADJ

10 = 10 mA to 5 A (full load),

Full range

1.225

V

See Note 3

t Full range is O'C to 125'C.
NOTES: 1, Input regulation is expressed as the percentage change in output voltage per I-V change at the input See thermal regulation
specifications for changes in output voltage due to heating effects. Input and output regulation are measured at a constant junction
temperature by low-duty-cycle pulse testing. Use pulses (tw .: 10 lAS, duty cycle s 5%) to limit changes in average internal dissipation,
Output voltage changes due to large changes in internal dissipation must be taken into account separately,
2. Input and output regulation are specified up to the maximum power dissipation of 45 W. Power dissipation is determined by the product
of input-to-output differential voltage and output current Maximum power dissipation is notavailable overthefull input-to-outputvoltage
range, See Figure 2.
3, 10 (full load) is defined on the current-limit graph (Figure 2) as the minimum value of current limiting as a function of input-to-output
differential voltage. Note that 45-W power dissipation is achievable, but only over a limited range of input-to-output differential voltage.
4, Ripple rejection is measured with a 25-IAF capacitor between ADJ and ground and a 25-IAF tantalum capacitor between OUT and
ground,

TEXAS

-If

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-135

LT1084C
5-A, LOW-DROPOUT, ADJUSTABLE POSITIVE REGULATOR
TYPICAL CHARACTERISTICS
POWER DISSIPATION

vs
CASE TEMPERATURE
50
45

"-

40

;:
I

35

i

30

c

Region 1

~

Q.

'iii

..:=

25

D..
I

15

II)

is

Region 1 is limited by the full load current. see Figure 2 and
Notes 2 and 3.

""-

20

ReJC. which is 2.3°C/W.

""'\ "

0

0

Region 3 is limited by the maximum junction temperature of the
control section. The slope is based on the thermal resistance
ReJC. which is O.65°C/W.

Region 3

\s

10

D..

Region 2 is limited by the maximum junction temperature of the
power transistor. The slope is based on the thermal resistance

Region 2

~~

I

I\~I

5

o

40 50

60

70

80

90 100 110 120 130 140 150

TC - Case Temperature - °C

Figure 1
CURRENT LIMIT

RIPPLE REJECTION

vs

vs

INPUT-TO-OUTPUT VOLTAGE

FREQUENCY
100

10

r

7

t'

I

~

6

C
~
:s

5

:::i

()

BO

~

III

"\ ~.- TJ=150°C
~~

~

..
..

.;r:r:

1\\
'\ \\
1\ \'
-\ \

"

4
3
2

IFull Load

'i'i.
Q.

it

10

15

20

25

30

35

50

I",,~

40
30
CADJ = 200 f!F at < 60 Hz
CADJ = 25 f!F at > 60 Hz
lliililill

o
10

VI- Vo - Input-to-Output Voltage - V

Figure 2

100

IIIIIIIII
1k
f - Frequency - Hz

Figure 3

TEXAS ."

INSIRUMENTS
2-136

1"

VI- VO",3V

VI- Vo '" Dropout

10

\

5

60

20

0
0

~'

~

I

TJ=25°C

II

~rIP(pp)1 ~1~i5 VI

70

't:J

c

111111111
Vrlp(PP) = 3 V

Short-Circuit Current

8

"
a:

-.......

r-

10

r-

0

-0.05

:;

~

30
20

0

c::
o

Co

ii:

VO=5V
CADV=25I-'F
Co =251-'F

:---r--

-0.10

"""'"" ~

-0.15

I

-0.20

o

"'J~5A

-

2

3

5

4

o

25

75

50

100

125

150

T J - Junction Temperature - °c

10 - Output Current - A

Figure 4

Figure 5

MINIMUM OPERATING CURRENT

DROPOUT VOLTAGE

vs

vs

INPUT·TO·OUTPUT VOLTAGE

OUTPUT CURRENT

10

2

I

.1

.1

• Specification Point

9



----

3
2

8.

e

~V
--:: ......

.,...< "

o

,.

,

20

25

o
5

10

15

.... v-'
~

'"

./
~

~

V

"- TJ = 25°C

" TJ = 150°C

TJ = 25°C

o

o

-c::

:;

TJ=150o~

--

LT1084C,,*

30

35

o

2

3

4

5

6

10 - Output Current - A

VJ - Vo -Input-to-Output Voltage - V

Figure 6

Figure 7

TEXAS ,If

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-137

LT1084C
5-A, LOW-DROPOUT, ADJUSTABLE POSITIVE REGULATOR
TYPICAL CHARACTERISTICS
ADJ CURRENT

REFERENCE VOLTAGE

vs

vs

VIRTUAL-JUNCTION TEMPERATURE
100

VIRTUAL-JUNCTION TEMPERATURE
1.270 ; - - - , - - - - r - - - - r - - - r - - - r - - - " I

90

vref = Vo - VADJ
1.265t---+--+----t---t---t---;

-

80

«

70

,...----

"I

60

C
~
::0

50

...,

40

U

«0

~

........ ~

......

>

.
I

1.260

CI

~

..

1.255

f
.2!

1.250

~
u

c

a:"

1.245

I

30

l!

>

20

1.240
1.235

10

o

1.230

o

25

50

75

100

125

150

25

0

TJ - Virtual-Junction Temperature - 'C

'$~
0..-

20

-::0 G>
>
00

0

:!::I

~

l\ '"

.A

r

,,>

-5. '"

>;;
.S;

0.2

::s ..
00

0
-0.2

J J

-0.4

I

I

-

Vo = 10V
f--10 =0.2A
CI = 1-fLFTantalum
_
f--Co = 1O-fLF Tantalum

-60
14
13

C

f«I

-.s- .~

::010

4

'S:
::0 G>
00

.E~ 12

o

20

40

60

80

100 120 140 160 180

~7

V

/

2

\

10

20

30

40

50

Figure 11

TEXAS

-1!1

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

./

",/

II II
VO=10V
VI =13 V
Preload = 100 mA

60

t-Tlme-fLS

Figure 10

I

~ I I I

I
o

200

I

CADJ = 1 fLF -

CI = 1 fLF
Co = 10-fLF Tantalum

,

t-Time-fLs

2-138

1,\ I--..

::
6

0

I

1\

-0.6

C

::0

u

~AD~ =0 I A

0.4

CADJ = 1 fLF

-40

g'1

g

0.6

:;:;:::

.e- .;

\

{/"\

-20

:!::c
00

..g'>

CADJ = 0

-

150

OUTPUT TRANSIENT RESPONSE

INPUT TRANSIENT RESPONSE
G»

125

Figure 9

60

g'E 40
~ g

100

TJ - Virtual-Junction Temperature - 'C

Figure 8

:!::I

75

50

70

80

90

100

LT1084C

5-A, LOW-DROPOUT, ADJUSTABLE POSITIVE REGULATOR
APPLICATION INFORMATION
The LT1 084C 3-terminal adjustable regulator is easy to use and has all the protection features that are expected
in high-performance voltage regulators. It is short-circuit protected. Safe-area protection and thermal shutdown
turn off the regulator when the junction temperature exceeds approximately 165°C.
The regulator is terminal compatible with older 3-terminal adjustable devices and offers lower dropout voltage
and voltage reference tolerance. The reference voltage-versus-temperature stability is improved. The only
circuit difference between using the LT1084C and older regulators is the need for an output capacitor for more
stability.

stability
The circuit deSign used in the LT1 084C requires the use of an output capacitor as part of the device frequency
compensation. For all operating conditions, the addition of 150-f.tF aluminum electrolytic or a 22-f.tF solid
tantalum capaCitor on the output ensures stability. Typically, capacitors that are much smaller in value can be
used with the LT1 084C. Many different types of capacitors, with widely varying characteristics, are available that
differ in capacitor tolerance (up to plus or minus 100%), equivalent series reSistance, and capacitor temperature
coefficient. The 150-f.tF or 22-f.tF values will ensure stability.
When ADJ bypassed to improve ripple rejection, the requirement for an output capacitor increases. The 22-f.tF
tantalum or 150-f.tF electrolytic capacitor values cover all cases of bypassing ADJ. Without bypassing ADJ,
smaller capacitors can be used with good results. The recommended capaCitors needed to ensure stability are
listed in the following table:
RECOMMENDED OUTPUT CAPACITOR VALUES
IN

OUT

ADJ

1O-[tF Tantalum or 50-[tF Aluminum

None

22-[tF Tantalum or 150-[tF Aluminum

20 [tF'

Typically, capaCitor values of 100 f.tF are used on the output of many regulators to ensure good transient
response with large load-current changes. Output capacitance can be increased without limit to improve the
stability and transient response of the LT1 084C regulator.
Another stability problem that can occur in monolithic regulators is current-limit oscillations. This problem occurs
during current limiting when the safe-area protection exhibits a negative impedance. The safe-area protection
decreases the current limit as the input-to-output voltage increases. This acts as a negative resistance since
increasing voltage causes current to decrease. Negative resistance during current limiting is not unique to the
LT1084C and is present on all power IC regulators. The value of negative resistance is a function of how fast
the current limit is folded back as input-to-output voltage increases. This negative resistance can react with
capacitors or inductors on the input to cause oscillation during current limiting. Depending on the value of series
resistance, the overall Circuitry may be unstable. This system problem is not necessarily easy to solve; however,
it does not cause any problems with the IC regulator and can usually be ignored.

protection diodes
In normal operation, the LT1084C does not need any protection diodes. Older adjustable regulators required
protection diodes between ADJ and OUT and from OUT to IN to prevent overstressing the IC. The internal
current paths on the LT1 084C ADJ are limited by the internal resistors. Therefore, no protection diode is needed
to ensure device safety under short-circuit conditions even with capacitors on ADJ. See Figure 12.

TEXAS

~

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-139

LT1084C
S-A, LOW-DROPOUT, ADJUSTABLE POSITIVE REGULATOR
APPLICATION INFORMATION
Diodes between IN and OUT are usually not needed. The internal diode between IN and OUT ofthe LT1084C
can handle microsecond surge currents of 50 A to 100 A. Even with large output capacitances, it is difficult to
obtain those values of surge currents in normal operations. Damage can occur only when using high values of
output capacitance (1000 f.tF to 5000 f.tF) with IN instantaneously shorted to ground. A crowbar circuit at IN can
generate those kinds of currents, and a diode from output-to-input is then recommended. Normal power supply
on-off cycling or even connecting and disconnecting in the system will not generate a large enough current to
cause damage. ADJ can be driven, on a transient basis, plus or minus 25 V with respect to OUT without device
degradation. As with any IC regulator, exceeding the maximum input-to-output differential voltage causes the
internal transistors to break down, and the protection circuitry does not prevent this.
01 1N4002 (Optional)
~

1"'1

LT1084C
- i I - IN

1+
T

OUT
AOJ
R1

r

CAOJ
1O !!F

vo

Co
150 !!F

R2
L..

Figure 12
overload recovery
The LT1084C regulator has safe-area protection that decreases the current limit as input-to-output voltage
increases, so the power transistor operates inside a safe region for all values of input-to-output voltage. This
protection is designed to provide some output current at all values of input-to-output voltage up to the device
breakdown.
When power is turned on and IN voltage rises, the OUT follows IN and the input-to-output differential voltage
remains small to allow a large current demand on the regulator to be supplied. With high input voltage and low
output voltage., a problem occurs that is common to older regulators (such as the 7800 series) as well as the
LT1 084C. OUT voltage will not recover after removal of an output short. The load line for such a large load may
intersect the OUT current curve at two points. If this happens, there are two stable OUT operating pOints for the
regulator. With a double intersection, the power supply may need to be cycled to zero and brought up again
to make OUT recover.

ripple rejection
The typical curves for ripple rejection reflect values for a bypassed ADJ. This curve will be true for all values of
output voltage. For proper bypassing and ripple rejection near the values shown, the impedance of the ADJ
capacitor at the ripple frequency should equal the value of resistor R1 (normally 100 Q to 120 Q). The
capacitance of the required ADJ capacitor is a function of the input ripple frequency. The ADJ capacitor should
be 13 f.tF with R1 equal to 100 Q at a frequency of 120 Hz. Only 0.16 f.tF is needed at 10kHz. See Figure 16.

TEXAS ..,
INSTRUMENTS
2-140

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

LT1084C
5-A, LOW-DROPOUT, ADJUSTABLE POSITIVE REGULATOR
APPLICATION INFORMATION
Ripple rejection is a function of OUT voltage for circuits without an ADJ bypass capacitor. The output ripple will
increase directly as a ratio ofthe OUT voltage to the reference voltage (V ONref). For example, the output ripple
will be higher by the ratio of 5 V/1.25 V or four times larger with OUT voltage equal to 5 V and with no ADJ
capacitor. Ripple rejection would be degraded 12 dB from the value shown on the typical curve.

output voltage
The LT1 084C develops a 1.25-V reference voltage between OUT and ADJ (see Figure 13). When resistor R1
is placed between these two terminals, a constant current flows through R1 and through R2 to set the overall
OUT voltage. Normally this current is the specified minimum output current of 10 mA. Since IADJ is very small
and constant when compared with the current through R1, 'ADJ can usually be ignored and represents a small
error.
LT1084C

OUTi---r--.- va

VI-..---lIN
ADJ

Vref

T

R1

R2

Vo = vref (1 +

R2

AT) + IADJR2
Figure 13

output regulation
The LT1 084C is not able to provide true remote-load sensing with only three terminals. Output regulation will
be limited by the resistance of the wire connecting the regulator to the load. The data-sheet specification for
output regulation is measured at the bottom of the package. Negative-side sensing is a true Kelvin connection
that has the bottom of the output divider returned to the negative side of the load. The best output regulation
is obtained when the top of the resistor divider R1 is connected directly to the case or OUT, not to the load. This
is illustrated in Figure 14. If resistor Ri were connected tothe load, the effective resistance between the regulator
and the load would be as shown:
Ref!

= Rp x (R2 + R1)/R1

=

Assuming Rp 0.004 Q per foot (16-gauge wire), this calculation gives 4 mV per foot at a load current of 1 A.
It is important to keep the positive lead between regulator and load as short as possible and use large wire or
circuit-board traces to minimize this problem. Connected as shown in Figure 14, Rp is not multiplied by the
divider ratio.

thermal considerations
The LTi084C regulator has internal power and thermal-limiting Circuitry designed to protect the device under
overload conditions. For continuous normal-load conditions, maximum junction temperature ratings must not
be exceeded. It is importantto give careful consideration to all sources ofthermal resistance from device junction
to ambient. This includes junction-to-case, case-to-heat-sink interface, and heat-sink resistance. New

TEXAS .J!}
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-141

LT1084C
5-A, LOW-DROPOUT, ADJUSTABLE POSITIVE REGULATOR
APPLICATION INFORMATION
thermal-resistance specifications have been developed to more accurately reflect device temperature and
ensure safe operating temperatures. The maximum ratings table and the explanation with Figure 1 provide
maximum junction temperature and thermal resistance for the control section and separately for the power
transistor. Previous regulators used a single junction-to-case thermal resistance specification that was an
average of the two values. This method could allow excessive junction temperatures under certain conditions
of ambient temperature and heat-sink resistance. To avoid this possibility, calculations should be made for both
sections of the device to ensure that both thermal limits are met.
Junction-lo-case thermal resistance is specified from the IC junction to the bottom of the cas.e directly below the
die. This is the lowest resistance path for heat flow. Proper mounting is required to ensure the best possible
thermal flow from this area ofthe package to the heat sink. Thermal compound althe case-to-heat-sink interface
is strongly recommended. If the case of the device must be electrically isolated, a thermally-conductive spacer
can be used, butthe added contribution to thermal resistance must be considered. The KK package is electrically
connected to OUT.
Rp
Parasitic
Line Resistance

LT1084C
IN

OUT

ADJ

~
Connect
R1 to Case
or Output
R2 Terminal

" R1

I

~

'?

1-::-

Con nect R2
to Load

Figure 14
thermal example
Using an LT1 084CCKK regulator (KK plastic package and commercial temperature) and assuming:

=

=

=

VI 9 V (maximum continuous), Va 5 V, 10 5 A,
T A = 75°C, ROHSA = 1°C/W, ROCHS = 0.2Co/W
Maximum thermal resistances: (see Figure 1)

=

0.65°C/W,
Control section ROJC
Power transistor ReJC = 2.3°C/W
Power dissipation under these conditions is equal to:
Po = (VI- Va) (10) (9 - 5) (5) = 20 W

=

Junction temperature is calculated using:
TJ

=TA + Po(ROHSA + ROCHS + ROJcl

Junction temperature for control section:
TJ

=75 + 20(1

+ 0.2 + 0.65) =112°C

Junction temperature for power transistor:
TJ = 75 + 20(1 + 0.2 + 2.3)

=145°C

In both cases, the junction temperature is below the maximum rating for the respective sections.

TEXAS 'III

INSTRUMENTS
2-142

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

LT1084C
5-A, LOW-DROPOUT, ADJUSTABLE POSITIVE REGULATOR
APPLICATION INFORMATION
2 Feet #18 Wlret
(0.015 Q)

LT1084C
OUT 1--------,

IN
ADJ

R2
Vo = 1.25 (1 +R1)
IO=Oto15A
LT1084C
OUT k-----t--'

IN
ADJ

R1
120 Q

R2

t The # 18 wire acts as ballast resistance. insuring current sharing between both devices.

Figure 15. Paralleling Regulators

LT1084C

10llF

R1
121 Q
1%

ADJ

+

VO,,16.5V

OUT

IN

vI

I

+

-::-

150llF
R2
365Q
1%

+

C1t
10 JlF

t C1 improves ripple rejection. Xc should be equal to R1 at ripple frequency.

Figure 16. Improving Ripple Rejection

TEXAS ."

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-143

LT1084C
5-A, LOW-DROPOUT, ADJUSTABLE POSITIVE REGULATOR
APPLICATION INFORMATION

28V

Inpul----<t---t.

1 mH
><-4I-.--,.......-JYY"Y"\-.--,..--.--IIN
+
10000 fLF

10 kO

LT1084C

OUT 1-'--4I~ Output
ADJ

MR1122
2kO

4N28
1 kO

1 MO

I--_+_-JV\/'v--- 28 V

1N914

Figure 17. High-Efficiency Regulator

LT1084C

Rp
(Max Drop 300 mV)

Output
O U T k o - - - -____----~0r----5V

____

ADJ

+
6
+

250
1210

100 pF ......-"'-I.f--,
3650

.....-"Nv__~~l_it___ Return

'------t-~--

Return -

.....------------~t_-----------'

Figure 18. Remote Sensing

TEXAS ~

INSTRUMENTS
2-144

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

LT1084C

5-A, LOW-DROPOUT, ADJUSTABLE POSITIVE REGULATOR
APPLICATION INFORMATION

IN

+

LT1084C
OUT
ADJ

Rl
121 Q

Clt
10 ftF

LT1084C
VO*

IN

OUT I---.-----<~ S V
ADJ

+

121 Q
1%

C2
100 ftF

R2
5kQ

1 kQ
TTL -f-'V'V'v--.---jH

+
100 ftF

2N3904

1 kQ

365 Q
1%

t Needed if device is far from filter capacitors.

*Vo

= 1.25(1

R2

+ AllV

Figure 19. 1.2-V to 1S-V Adjustable Regulator

Figure 20. S-V Regulator With Shutdown
LT1084C

LT1084C

.....--_---1 OUT

OUT~-'---~~--~

IN
ADJ

1.2 kQ

-

IN
ADJ

+

15V

12V

SA

10kQ

Figure 21. Automatic Light Control

Figure 22. Protected High-Current Lamp Driver

TEXAS ."

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-145

2-146

MC3423
OVERVOLTAGE-SENSING CIRCUIT
APRIL

•

Separate Outputs for Crowbar and Logic
Circuitry

•

Programmable Time Delay to Eliminate
Noise Triggering

MARCH 1988

o OR P PACKAGE

vccua
(TOP VIEW)

SENSE 1
SENSE 2
CURR SOURCE

•

TTL-Level Activation Isolated From
Voltage-Sensing Inputs

•

2.6-V Internal Voltage Reference With
Temperature Coefficient Typically O.06%/"C

2
3
4

7
6
5

OUT
VEE
IND OUT
REMOTE ACTIVATE

description
The MC3423 overvoltage-sensing circuit is designed to protect sensitive electronic circuitry by monitoring the
supply rail and triggering an external crowbar SCR in the event of a voltage transient or loss of regulation. The
protective mechanism may be activated by an overvoltage condition at the SENSE 2 input or by application of
a TTL-high level to REMOTE ACTIVATE. Separate outputs are available to trigger the crowbar circuit and to
provide a logic pulse to indicator or power supply control circuitry. The SENSE 2 input provides a direct control
of the output circuitry. The SENSE 1 input controls an internal current source that may be utilized to implement
a delayed trigger by connecting its output to an external capacitor and the SENSE 2 input. This protects against
false triggering due to noise at the SENSE 1 input.
The MC3423 is characterized for operation from DOC to 7DoC.

functional block diagram
VCC

4
__------------------------------------4-~

CURR
SOURCE

SENSE1-----+--~~~

SENSE2~3~--~----~------------_+----~
'--________*---=.8

5
REMOTE
ACTIVATE

PRODUCTION DATA Information Is current as of publication date. Products
conform to speCifications per the terms of Texas Instruments standard

warranty. Production processing does not necessarily include testing of all
parameters.

TEXAS

~

OUT

6
INDOUT

Copyright © 1988, Texas Instruments Incorporated

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-147

MC3423
OVERVOLTAGE-SENSING CIRCUIT
absolute maximum ratings over operating

free~air

temperature range (unless otherwise noted)

Supply voltage, Vee (see Note 1) ................................................ '............ 40 V
Input voltage, SENSE 1 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6.5 V
Input voltage, SENSE 2 ................................................................... 6.5 V
Input voltage, REMOTE ACTIVATE ........................................................... 7 V
Output current, 10 ....................................................................... 300 rnA
Continuous total dissipation .................•......................... See Dissipation Rating Table
Operating free-air temperature range .................................................. O°C to 70°C
Storage temperature range ....................................................... -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................... 260°C
NOTE 1: Voltage values are measured with respect to the VEE terminal.

DISSIPATION RATING TABLE
PACKAGE

TAs25°C
POWER RATING

OPERATING FACTOR
ABOVE T A = 25°C

TA = 70°C
POWER RATING

D
P

725 mW
1000 mW

5.8mW;oC
8.0mW;oC

464mW
640mW

recommended operating conditions
Supply voltage, VCC
High-level input voltage, REMOTE ACTIVATE

40

PARAMETER

TEST CONDITIONS

Output voltage

REMOTE ACTIVATE input
voltage at 2 V, 10 = 100mA

Indicator low-level output voltage

REMOTE ACTIVATE input
voltage at 2 V, 10 = 1.6mA

Threshold voltage of either sense input

TA

= 25°C

TYP

VCC-2.2

VCC-1.8

Temperature coefficient of input threshold voltage

MAX

10 Output current, CURR SOURCE
High-level input current, REMOTE ACTIVATE

VCC

Low-level input current, REMOTE ACTIVATE

VCC

= 5 V, VI = 2 V
= 5 V, VI =0.8 V

Supply current

Outputs open

Propagation delay time, REMOTE ACTIVATE to output

=25°C
TA =25°C
TA

TEXAS

.JLJ

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

0.1

V

UNIT
V

0.1

0.4

V

2.6

2.75

V
%;oC

0.06
SENSE 1 input voltage at 3 V,
CURR SOURCE input
voltage at 1.3 V

V

= 5 V to 36 V (unless

MIN

2.45

UNIT
V

0.5

electrical characteristics over operating free-air temperature range, Vee
otherwise noted)

2-148

MAX

4.5
2

Low-level input voltage, REMOTE ACTIVATE

Output current rate of rise

MIN

0.22

0.3

mA

5

40

I-'A

-120

-180

!lA

6

10

mA

0.5

I-'s

400

mNl-'s

MC34060
PULSE·WIDTH·MODULATION CONTROL CIRCUIT

•
•

Complete PWM Power Control Circuitry

•

Variable Dead Time Provides Control Over
Total Range

•

Internal Regulator Provides a Stable 5-V
Reference Supply

•

Circuit Architecture Provides Easy
Synchronization

•

Direct Replacement for Motorola MC34060

D OR N PACKAGE
(TOP VIEW)

Uncommitted Output for 200-mA Sink or
Source Current

ERROR{IN+
AMP 1 IN-

1

IN+} ERROR
IN- AMP 2

FEEDBACK
DEAD-TIME CTRL

REF
NC

CT
RT
GND

Vcc
C
E

NC - No internal connection

description
The MC34060 incorporates on a single monolithic chip all the functions required in the construction of a
pulse-width-modulation control circuit. Designed primarily for power supply control, the device contains an
on-chip 5-V regulator, two error amplifiers, an adjustable oscillator, and a dead-time control comparator. The
uncommitted output transistor provides either common-emitter or emitter-follower output capability. The internal
amplifiers exhibit a common-mode voltage range from -0.3 V to Vee - 2 V. The dead-time control comparator
has a fixed offset that provides approximately 5% dead time unless externally altered. The on-chip oscillator may
be bypassed by terminating RT (pin 6) to the reference output and providing a sawtooth input to CT (pin 5), or
it may be used to drive the common MC34060 circuitry and provide a sawtooth input for associated control
circuitry in multiple rail power supplies.
The MC34060 is characterized for operation from O°C to 70°C.

functional block diagram
v CC

12

Reference
Regulator

-'1-=.0_ _--1

1------------------

REF

RT ..:;6'--_ _-1
CT
DEAD·TIME CTRL

5

-4'---+-------lf-'---+----l

C

E
ERROR{ IN+
AMP 1
IN- _2_ _ _--1

ERROR{ IN+ 14
AMP 2
IN- ...;1"'3_ _ _-1

GND

FEEDBACK ..-'3_ _ _ _ _ _ _ _-'
All voltage and current values shown are nominal.

PRODUCTION DATA Information is current as of publication date.
Produeis conform to specifications per the terms of Texas
Instruments standard warranty. Production processing does not

necessarily include testing of all parameters.

TEXAS

~

Copyright © 1988, Texas Instruments Incorporated

INSIRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-149

MC34060
PULSE-WIDTH-MODULATION CONTROL CIRCUIT
absolute maximum ratings over operating temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) ............................................................ 42 V
Amplifier input voltage ............................................................... Vee + 0.3 V
Collector output voltage .................................................................... 42 V
Collector output current .................................................................. 250 mA
Continuous total dissipation ........................................... See Dissipation Rating Table
Operating free-air temperature range, T A .............................................. O°C to 70°C
Storage temperature range ....................................................... -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................... 260°C
NOTE 1: All voltage values except differential voltages are with respect to the network ground terminal.

DISSIPATION RATING TABLE
PACKAGE

TA" 25'C
POWER RATING

DERATING
FACTOR

DERATE
ABOVETA

=

TA 70'C
POWER RATING

0

900mW

7.6 mW/'C

31'C

606mW

N

1000mW

9.2 mW/'C

41'C

736mW

recommended operating conditions
Supply voltage. VCC
Amplifier input voltages, VI

MIN

MAX

7

40

V

-0.3

VCC-2
40

V

Collector output voltage, Vo
Collector output current (eaCh transistor)
Reference output current
Current into feedback terminal
Timing capacitor, CT

UNIT

V

200

mA

10

mA

0.3

mA

0.47

10000

nF

1.8

500

kQ

Oscillator frequency, f osc

1

200

kHz

Operating free-air temperature, T A

0

70

'c

Timing resistor, RT

TEXAS .J!.J

INSTRUMENTS
2-150

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

MC34060
PULSE-WIDTH-MODULATION CONTROL CIRCUIT
electrical characteristics over recommended operating free-air temperature range, Vee
f = 25 kHz (unless otherwise noted)

= 15 V,

reference section
PARAMETER

TEST CONDITIONSt

Output voltage (REF)

10= 1 mA

Input regulation

VCC=7Vt040V,

Output regulation

110 = 1 to 10 mA,

Output voltage change with temperature

~TA

Short-circuit output current§

REF = 0,

MIN

TYp:f:

MAX

4.75

5

5.25

2

25

mV

1

15

mV

0.2%

2.6%

TA = 25'C
TA = 25'C

= MIN to MAX
TA = 25"C

UNIT
V

mA

35

oscillator section
TEST CONDITIONSt

PARAMETER

MIN

TYp:f:

Frequency

CT = 0.001 ~F,

RT=47kQ

25

Standard deviation of frequency'l

CT = 0.001 ~F,

RT=47kQ

3%

Frequency change with voltage

VCC = 7 V to 40 V,

TA = 25'C

Frequency change with temperature

CT = 0.001 ~F,
t,TA = MIN to MAX

RT=47kQ,

MAX

UNIT
kHz

0.1%
±2%

dead-time control section (see Figure 1)
TEST CONDITIONS

PARAMETER
Input bias current (DEAD-TIME CTRL)

VI = 0 to 5.25 V

Maximum duty cycle

VI (DEAD-TIME CTRL) = 0 CT = 0.1 rx F,
"I CT = 0.001 IlF,

Input threshold voltage

Zero duty cycle

(DEAD-TIME CTRL)

Maximum duty cycle

I

MIN
RT=12kQ

90%

RT = 47 kQ

TYp:f:

MAX

UNIT

-2

-10

rx A

96%

100%

92%

100%

3

3.3

V

0

error-amplifier section
TYp:f:

MAX

Input offset voltage

Vo (FEEDBACK) = 2.5 V

2

10

Input offset current

Vo (FEEDBACK) = 2.5 V

25

250

nA

Input bias current

Vo (FEEDBACK) = 2.5 V

0.2

1

I-lA

Common-mode input voltage range

VCC=7Vt040V

PARAMETER

Open-loop voltage amplification

t; VO=3V,

RL = 2 kQ,

Vo = 0.5 Vto 3.5 V,

RL = 2 kQ
RL = 2 kQ

Phase margin at unity gain

Vo = 0.5 V to 3.5 V,

Common-mode rejection ratio

VCC = 40V

Output sink current (FEEDBACK)

VID = -15 mV to -5 V,

Output source current (FEEDBACK)

VID=15mVt05V,

UNIT
mV

-0.3
to
VCC-2

Unity-gain bandwidth

..

MIN

TEST CONDITIONS

Vo = 0.5 V to 3.5 V

70

V

95

dB

800

kHz

65'
65

80

dB

V(FEEDBACK) = 0.7 V

0.3

0.7

mA

V(FEEDBACK) = 3.5 V

-2

..

mA

t For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating condltIO~S
.
:f: All tYPical values except "output voltage" characteristics are at TA = 25'C
N
- 2
§ Duration of the short circuit should not exceed one second
L (xn - X)
~ Standard deviallOn IS a measure of the statistical distribullOn about the mean as derived from the formula· a =
-".n-=-'-'I'--_ _
N-l

TEXAS

~

INSlRUMENlS
POST OFFICE BOX 655303

•

OALUlS, TEXAS 75265

2-151

MC34060
PULSE-WIDTH-MODULATION CONTROL CIRCUIT
electrical characteristics over recommended operating free-air temperature range, Vee = 15 V,
f = 25 kHz (unless otherwise noted) (continued)
output section
PARAMETER

TEST CONDITIONS

Collector off-state current

Vc = 40 V, VE = OV,

VCC=40V

Emitter off-state current

VCC=VC=40V,

VE=O

Collector-emitter saturation voltage

I Common emitter

I Emitter follower

MIN

TYpt

MAX

2

100

JLA

-100

!LA

VE=O,

IC = 200 mA

1.1

1.3

VC=15V,

'E =-200 mA

1.5

2.5

TYpt

MAX

4

4.5

UNIT

V

pwm comparator section (see Figure 1)
TEST CONDITIONS

PARAMETER

Input threshold voltage (FEEDBACK)

Zero duty cycle

Input sink current (FEEDBACK)

V(FEEDBACK) = 0.7 V

MIN

0.3

0.7

MIN

TYpt

MAX

6
9

10

UNIT

V
mA

total device
PARAMETER

Standby supply current
Average supply current

TEST CONDITIONS

RTat REF,

IVCC=15V

All other inputs and outputs open

I VCC = 40V

V(DEAD-TIME CTRL) = 2 V,
See Figure 1
RT = 47 kQ,

CT = 0.001 JLF,

15

7.5

UNIT

mA
mA

switching characteristics, TA = 25°e
PARAMETER

Output voltage rise time

TEST CONDITIONS

Common-emitter configuration, See Figure 3

Output voltage fall time
Output voltage rise time

Emitter-follower configuration, See Figure 4

Output voltage fall time

t All tYPical values are at TA = 25°C.

TEXAS ~

INSTRUMENTS
2-152

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

MIN

TYpt

MAX

UNIT

100

200

ns

25

100

ns

100

200

ns

40

100

ns

MC34060
PULSE·WIDTH·MODULATION CONTROL CIRCUIT
PARAMETER MEASUREMENT INFORMATION
VCC=15V

1
<

110

.~

4
Test {
Inputs

3
RT

I

\1
II

-::-

CT

J.

v

r+

1

J.
5 OkQ

6
5

VCC
C
E

DEAD·TIME CTRL
FEEDBACK
MC3460
RT

9
B

150Q
2W
Output 1

J-

CT

IN+
IN14
IN+
13
IN-

<

}

ERROR
AMP 1

}

ERROR
AMP2

REF ~

GND

J.7

~

TEST CIRCUIT

F"DBAC~ )~
DEAD·TIME
CTRL

I
I

4-

."c

::I
0-

£...
~

'uen

Vcc = 15V
TA - 25'C

,.....

40 k
10 k

~~

/1-

0.001 [!F'

-1'%

4k

r-: I"'-;

0% -

1k

0.01

.....

0.11-'F

400

I

"en

100

-

: M t = 1% ~

0

.2

F

/

-~ =CT = 1 F

40
~

10
1k

t Frequency variation

4k
10 k
40k 100k
RT - Timing Resistance - Q

400k

1M

(M) is the change in oscillator frequency that occurs over the full temperature range.

Figure 5
AMPLIFIER VOLTAGE AMPLIFICATION
vs
FREQUENCY

100
90

-

'\.

80
al

'tl
I

VCC =1 15 V
tJ.VO=3V TA = 25'C

........

70

~

C

0

:;

60

~

50

"

Q.

E

..'"

«

40

oS

30

;g

~

~

"-I\.
"- '\.

20
10

o1

'\
10

100

1k

10k

100k

1M

f - Frequency - Hz

Figure 6

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-155

2-156

MC79LOO SERIES
NEGATIVE-VOLTAGE REGULATORS
02565, OCTOBER 1982-REVISEO NOVEMBER 1991

•
•

3· Terminal Regulators

•

No External Components Required

•

Internal Thermal Overload Protection

•

Internal Short·Circuit Current Limiting

•

Direct Replacement for Motorola MC79LOO
Series

•

o PACKAGE
(TOP VIEW)

Output Current Up to 100 mA
OUTPUTDa
INPUTt 2
7
INPUTt 3
6
NC 4
5

NC
INPUTt
INPUTt
COMMON

t Internally connected

Available in 5% or 10% Selections

LP SILENT PACKAGE
(TOP VIEW)

GJ
u

OUTPUT

o

COMMON

o

description

INPUT

This series of fixed negative-voltage monolithic
NC-No internal connection
integrated-circuit voltage regulators is designed
for a wide range of applications, These include
on-card regulation for elimination of noise and
NOMINAL
5%
10%
distribution problems associated with single-point
OUTPUT
OUTPUT VOLTAGE
OUTPUT VOLTAGE
regulation, In addition, they can be used to control
VOLTAGE
TOLERANCE
TOLERANCE
series pass elements to make high-current
-5V
MC79L05AC
MC79L05C
voltage-regulator circuits, One ofthese regulators
-12V
MC79L12AC
MC79L12C
can deliver up to 100 mA of output current. The
MC79L15AC
-15V
MC79L15C
internal current-limiting and thermal-shutdown
features make them essentially immune to overload, When used as a replacementfor a zener diode and resistor
combination, these devices can provide an effective improvement in output impedance of two orders of
magnitude and lower bias current.

equivalent schematic
COMMON

OUTPUT

INPUT

PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms 01 Texas
Instruments standard warr.nty. Production processing does not
necessarily include testing of all parameters.

Copyright © 1991, Texas Instruments Incorporated

TEXAS -IJ.J

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-157

MC79LOO SERIES
NEGATIVE-VOLTAGE REGULATORS
absolute maximum ratings over operating temperature ranges (unless otherwise noted)

Input voltage
Continuous total dissipation

MC79L05

MC79LI2
MC79L15

UNIT

-30

-35

V

See Dissipation Rating Tables 1 and 2

Operating free-air, case, or virtual junction temperature range
Storage temperature range

oto 150

Oto 150

°C

-65 to 150

-65 to 150

°C

260

260

°C

Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds

DISSIPATION RATING TABLE 1 - FREE-AIR TEMPERATURE
TA" 25°C
POWER RATING

DERATING
FACTOR

DERATE
ABOVETA

TA = 70'C
POWER RATING

D

825mW

528mW

775mW

6.6mWI'C
6.2mWI'C

25°C

LPt

25°C

496mW

PACKAGE

t The LP package dissipation rating

is based on thermal resistance measured in still air with the device
mounted in an Augat socket. The bottom of the package was 10 mm (0.375 in.) above the socket.

DISSIPATION RATING TABLE 2 - CASE TEMPERATURE
TC" 25°C
POWER RATING

DERATING
FACTOR

DERATE
ABOVETC

D

1600mW

29.0mWI'C

95°C

725mW

LP

1600 mW

28.6mWI'C

94°C

715mW

PACKAGE

TC = 125°C
POWER RATING

recommended operating conditions

Input voltage, VI

MIN

MAX

MC79L05

-7

-20

MC79L12

-14.5

-27

MC79L15

-17.5

-30

Output current, 10
Operating virtual junction temperature, TJ

0

TEXAS ~

INSlRUMENlS
2-158

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

UNIT
V

100

mA

125

°C

MC79LOO SERIES
NEGATIVE-VOLTAGE REGULATORS
electrical characteristics at specified virtual junction temperature, VI
otherwise noted)
PARAMETER

Output voltage§

TEST CONDITIONSt

MC79LOSC

TJ*

MC79LOSAC

MIN

TVP

MAX

MIN

TVP

MAX

2SoC

-4.6

-S

-S.4

-4.8

-5

-5.2

VI=-7Vto-20V,
10 = 1 mA to 40 mA

Full range

-4.5

-5.5

-4.75

-5.25

VI =-10 V,
10 = 1 mA to 70 mA

Full range

-4.5

-5.5

-4.75

-5.25

VI =-7 Vto-20V
Input regulation
Ripple rejection
Output regulation

=-10 V, 10 =40 mA (unless

25°C

VI = -8 V to -20 V
VI = -8 Vto-18 V,
1=120Hz

40

25°C

10 = 1 mA to 100 mA

150

150

100

49

41

49
60

30

30

Output noise voltage

1= 10 Hz to 100 kHz

25°C

40

40

Dropout voltage

10 =40mA

25°C

1.7

1.7

25°C
Bias current
Bias current change

125°C
VI = -8 V to -20 V

Full range

10 = 1 mA to 40 mA

electrical characteristics at specified virtual junction temperature, VI
otherwise noted)
PARAMETER

Output voltage§

TEST CONDlTIONSt

VI = -14.5 Vto -27 V.
10 = 1 mA to 40 mA
VI = -19V,
10 = 1 mA to 70 mA

Input regulation
Ripple rejection
Output regulation

VI = -14.5 Vto-27V
VI = -16 Vto -27 V
VI = -15 Vto -25 V.
1= 120 Hz

6
5.5

1.5

1.5

0.2

0.1

MC79L12At
MAX

MIN

TV..

MAX

25°C

-11.1

-12

-12.9

-11.5

-12

-12.5

Full range

-10.8

-13.2

-11.4

-12.6

Full range

-10.8

-13.2

-11.4

-12.6

25°C

36

250

250

200

200

42

25°C

37

42
100

50

50

f= 10 Hz to 100 kHz

25°C

80

80

Dropout voltage

10 =40 mA

25°C

1.7

1.7

Bias current change

VI = -16 Vto -27 V
10 = 1 mA to 40 mA

mA

UNIT

V

mV

mV
f!V
V

25°C

6.5

125'C

6

6

1.5

1.5

0.2

0.1

Full range

mA

dB

100

Output noise voltage

Bias current

mV

=-19 V, 10 = 40 mA (unless

TVP

10=1 mAt0100mA
10 = 1 mA to 40 mA

6

MIN

25°C

mV

f!V
V

5.5

MC79L12C
TJ*

V

dB

60

25°C

10 = 1 mA to 40 mA

200

UNIT

6.5

mA
mA

tAli charactenstlcs are measured with a 0.33-f!F capacrtor across the Input and a O.l-f!F capaCItor across the output. Pulse-testing techniques
are used to maintain the junction temperature as clo,se to the ambient temperature as possible. Thermal effects must be taken into account
separately.
Full range virtual junction temperature is O°C to 125°C.
§ This specification applies only lor dc power dissipation permitted by absolute maximum ratings.

*

TEXAS

.Jf

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-159

MC79LOO SERIES
NEGATIVE-VOLTAGE REGULATORS
electrical characteristics at specified virtual junction temperature, VI = -23 V, 10 = 40 mA (unless
otherwise noted)
PARAMETER

TEST CONDITIONst

MC79L15C
TJ*

25'C

MC79L15AC

MIN

TYP

MAX

MIN

TYP

MAX

-13.8

-15

-16.2

-14.4

-15

-15.6

UNIT

VI =-17.5 Vto-30V,
Output voltage§

10 = 1 mA to 40 mA

Full range

-13.5

-16.5 -14.25

-15.75

Full range

-13.5

-16.5 -14.25

-15.75

V

VI =-23V,

10 = 1 mA to 70 mA
Input regulation
Ripple rejection
Output regulation

VI = -17.5 Vto-30 V
VI = -17.5 Vto -30 V
VI = -18.5 V to ·-28.5 V,
1= 120 Hz

10 = 1 mA to 100 mA

25'C
25'C

33

300

250

250
34

39

25'C

10 = 1 mA to 40 mA

300

39
150

75

75

Output noise voltage

1= 10Hz to 100 kHz

25'C

90

90

10 =40mA

25'C

1.7

1.7

25'C

Bias current change

125'C
VI =-20Vto-30V

Full range

10 = 1 mA to 40 mA

dB

150

Dropout voltage
Bias current

6.5

mV

mV
!!V
V

6.5

6

6

1.5

1.5

0.2

0.1

mA
mA

t All characteristics are measured with a 0.33-!!F capacitor across the Input and a 0.1-f,F capacitor across the output. Pulse-tesllng techniques
are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken .into account
~~~

.

:I: Full range virtual junction temperature is O'C to 125'C.
§ This specilication applies only lor dc power dissipation permitted by absolute maximum ratings.

TEXAS ~

INSTRUMENlS
2-160

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

SG2524, SG3524
REGULATING PULSE-WIDTH MODULATORS
,APRIL 1977-REVISED DECEMBER 1991

•
•

Complete PWM Power Control Circuitry

N PACKAGE
(TOP VIEW)

Uncommitted Outputs for Single-Ended or
Push-Pull Applications

•

Low Standby Current ... 8 mA Typ

•

Interchangeable With Silicon General
SG2524 and SG3524

ININ+
OSCOUT
CURR L1M+
CURR L1M-

REF OUT

2

Vee

3
4
5

EMIT2
COL2
COL 1
EMIT 1
SHUTDOWN
CaMP

6
7

description

8
The SG2524 and SG3524 incorporate on single
monolithic chips all the functions required in the
construction of a regulating power supply, inverter, or switching regulator. They can also be used as the control
element for high-power-output applications. The SG2524 and SG3524 were designed for switching regulators
of either polarity, transformer-coupled dc-to-dc converters, transformerless voltage doublers, and polarity
converter applications employing fixed-frequency, pulse-width-modulation techniques. The complementary
output allows either single-ended or push-pull application. Each device includes an on-chip regulator, error
amplifier, programmable oscillator, pulse-steering flip-flop, two uncommitted pass transistors, a high-gain
comparator, and current-limiting and shut-down circuitry.

The SG2524 is characterized for operation from -25°C to 85°C, and the SG3524 is characterized for operation
from O°C to 70°C.

functional block diagram
VCC -'1"'5_....._--1

~

_ _ _ _ _~~_ _ _ _ _ _ _ _ _ _ _ _ _ _ _~16 REF OUT
Vref
COL1
EMIT 1
COL2

RT
CT

6

EMIT 2
OSCOUT

7

Vref
ININ+
Error Amplifier

COMP
CURR LIM +
CURR LlM10
SHUTDOWN

GND

1 kQ
10 kQ

8

Resistor values shown are nominal.
PROOUCTION DATA Information Is currenl as of publication dale. Products
conform to specifications per the terms of Texas Instruments standard
warranty. Production processing does nol necessarily include testing of all

parameters.

TEXAS

.J/1

Copyright © 1991, Texas Instruments Incorporated

INSIRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-161

SG2524, SG3524
REGULATING PULSE·WIDTH MODULATORS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Notes 1 and 2) ..................................................... 40 V
Collector output current .................................................................. 100 mA
Reference output current .............................................. ,.................. 50 mA
Current through CT terminal ............................................................... -5 mA
Continuous total dissipation ........................................... See Dissipation Rating Table
Operating free-air temperature range: SG2524 ....................................... - 25°C to 85°C
SG3524 .......................................... O°C to 70°C
Storage temperature range ...................................................... -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................... 260°C
NOTES: 1. All voltage values are with respect to network ground terminal.
2. The reference regulator may be bypassed for operation from a fixed 5'V supply by connecting the VCC and reference output pins both
to the supply voltage. In this configuration, the maximum supply voltage is 6 V.
DISSIPATION RATING TABLE
PACKAGE

TA S 25'C
POWER RATING

DERATING FACTOR

DERATE
ABOVE TA

TA = 70'C
POWER RATING

TA = 85'C
POWER RATING

N

1000mW

9.2 mW/'C

41'C

736mW

598mW

recommended operating conditions
SG2524

SG3524

MIN

MAX

Supply voltage, VCC
Reference output current
Current through CT terminal

UNIT

MIN

MAX

8

40

8

40

V

0

50

0

50

mA

-0.03

-2

-0.03

-2

mA

1.8

100

1.8

100

kQ

0.001

0.1

0.001

0.1

f.lF

-25

85

0

70

'c

Timing resistor, RT
Timing capacitor, CT
Operating free-air temperature

electrical characteristics over recommended operating free-air temperature range, Vee
(unless otherwise noted)

= 20 V

reference section
PARAMETER

TEST CONDITIONSt

Output voltage

MIN

SG2524
Typt

4.8

MAX

MIN

5

5.2

4.6

Input regulation

VCC=8Vt040V

10

SG3524
TYpt

MAX
5.4

V

20

10

30

mV
mV

Ripple rejection

f=120Hz

66

Output regulation

10 = 0 mA to 20 mA

20

50

20

50

Output voltage change with temperature

TA = MIN to MAX

0.3%

1%

0.3%

1%

Short-circuit output current§

66

100
100
Vref = 0
..
t For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions .
t All typical values, except output voltage change with temperature, are at TA = 25'C.
§ Duration of the short circuit should not exceed one second.

TEXAS "f

INSIRUMENTS
2--162

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

UNIT

5

dB

mA

SG2524, SG3524
REGULATING PULSE-WIDTH MODULATORS
electrical characteristics over recommended operating free-air temperature range,
f = 20 kHz (unless otherwise noted)

Vee

= 20 V,

oscillator section
PARAMETER
fose

TEST CONDITIONSt
CT = 0.001 I-'F,

Standard deviation of frequency§

All values of voltage, temperature,
resistance, and capacitance constant

Mosc

VCC=BVt040V,

Mose

Frequency change with temperature

TA = MIN to MAX

Output amplitude at OSC OUT

TA=25"e

Output pulse duration (width) at OSC OUT

CT = 0.01 I-'F,

TYP;

MAX

UNIT

450

RT= 2 kQ

Frequency change with voltage

tw

MIN

Oscillator frequency

kHz

5%

1%

TA = 25"e

2%
TA = 25°C

3.5

V

0.5

I-'S

error amplifier section
PARAMETER
Via

Input offset voltage

lIB

Input bias current

TEST CONDITIONSt

MIN

VIC =2.5 V

0.5

VIC =2.SV

2

Open-loop voltage amplification
VICR

Common-mode input voltage range

CMMR

Common-mode rejection ratio

B1

Unity-gain bandwidth
Output swing

SG2524
TYP;

72

MAX

MIN

5

10

10

2

10

BO

60

mV

i-

:::: ~

0.11"F

~

Figure 1. General TestCircuit

TEXAS

.Jf

INSlRUMENTS
2-164

2kQ
lW

SHUTDOWN
CT

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

UNIT

Outputs

mV
mV/,C

SG2524, SG3524
REGULATING PULSE·WIDTH MODULATORS
PARAMETER MEASUREMENT INFORMATION
VCC
2kQ
~+-

Circuit
Under
Test

_____-

Output

TEST CiRCUIT

VOLTAGE WAVEFORMS

Figure 2, Switching Times

TYPICAL CHARACTERISTICS
OPEN-LOOP VOLTAGE AMPLIFICATION
OF ERROR AMPLIFIER

OSCILLATOR FREQUENCY

vs

vs

FREQUENCY

TIMING RESISTANCE
1M

90
RF =

m

00

I

c

~

60

RF = 1 MQ

Q.
E

50

RF= 300kQ

"

0

..en

40

;g

30

«

.e

J:
I

>u

.
c

:::J
 I-vo I

Figure 9. Capacitor-Diode-Coupled
Voltage-Multiplier Output Stages

Figure 10. Single-Ended Inductor Circuit

Vo

PUSH·PULL

FLYBACK

Figure 11. Transformer·Coupled Outputs

tThrougtlOut these discussions, references to the SG2524 apply also to the SG3524.

TEXAS

~

INSlRUMENlS
2-170

POST OFFICE BOX 555303 • DALLAS. TEXAS 75255

SG2524, SG3524
REGULATING PULSE-WIDTH MODULATORS
APPLICATION INFORMATIONt
Vee=15V

15 kQ
1N916

Vee

5,~Q

IN5 kQ

0.11lF

5kQ

/1

REF OUT

eOL2

RT

EMIT 2

eT

eURR LlM+

-

SHUTDOWN

eURR LlM-

-

oseOUT

2kQ

\1
/1

O.D1Il F

eOL1

IN+

I

\1

SG2524

eOMP

.-

....1
..... 1

EMIT 1

-

2~rF

1N916

1\

I......

-5V
20mA

I~

~,. 1 N916

-

::::~ 50llF
+

GND

rh
Figure 12. Capacitor-Diode Output Circuit
Vee = 5V

+

100 25
IlF kQ

+

5 kQ

300Q

vee

20mA

SG2524 EMIT 1

5kQ
~~~---.--1__jIN+

COL 1

5kQ
REF OUT

1 MQ

' - - - - - _ _ . - . - - - -15 V

eOL2

2kQ
e-----JV'V\r---__j RT

EMIT 2 1 - - - + - - - - t - - - - - - - - . H - I

f - - - - - - - f eT

eURR LIM +

SHUTDOWN eURR LlMoseOUT

1N916

620 Q
2N2222
510

eOMP

Q

GND
1Q

Figure 13. Flyback Converter Circuit

t Throughout these discussions. references to the SG2524 apply also to the SG3524.

TEXAS -I!}
INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-171

SG2524, SG3524
REGULATING PULSE-WIDTH MODULATORS
APPLICATION INFORMATIONt
Vee =28V

TIP115

0.9mH

5kQ

5V
1A

Vee

5kQ

r - - . I \ / \ , I V - - - - - - . _ - / IN-

EMIT 1 1-----.
SG2524
COL 1

5kQ

.---~~--~--;IN+

+
500JlF

1 - - - - - - _ - - / REF OUT
3kQ
. _ - - A . l ' v " v - - - - - - I RT

f - - - - - - - - I eT

eOL21--__~-~v-~
3kQ
EMIT 2 .-_~~------•

eURR L1M+

1N3880

.-----------t---.....

SHUT eURR L1M- ( - - - - - - - - - - - - .
DOWN
oseOUT
eOMP
GND
50kQ

0.1 Q

Return - -.......I\/\,IV--'

Figure 14. Single-Ended LC Circuit

Vee=28V

5kQ

1 kQ
1W

I---....l..._-,

5kQ

r - - ' V V v - - - -___---IIN-

5kQ

'_-~~r-___-~IN+

EMIT 1 /---+--+-.._--t-I
SG2524
COL 1

1 - - - -__----1 REF OUT
2kQ
. _ - - - ' \ / V ' v - - - - I RT
1 - - - - - - - - - 1 eT

TIR101A

Vee

eOL2

100Q

EMIT 2 / - - - - -......--t-I

eURR LIM + (-----------,

TIP31A

SHUT CURR LIM-t------,
DOWN
OSCOUT
COMP
0.1 Q
GND
0.001
JlF
' - - - - -.. +
20kQ

Figure 15. Push-Pull Transformer-Coupled Circuit

tThroughout these diScussions, references to.!he SG2524 apply also to the SG3524.

TEXAS ."

INSlRUMENlS
2-172

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

+
5V
5A

TL317C
3·TERMINAL ADJUSTABLE REGULATOR
02527, APRIL 1979-REVISED AUGUST 1991

•

Output Voltage Range Adjustable From
1.2 V to 32 V When Used With an External
Resistor Divider

•

Output Current Capability of 100 mA

•

Input Regulation Typically 0.01 % Per
Input-Voltage Change

•
•

Output Regulation Typically 0.5%

DPACKAGE
(TOP VIEW)

INPUTQa NC
OUTPUT 2
7 OUTPUT
OUTPUT 3
6 OUTPUT
ADJUSTMENT 4
5 NC
NOTE: OUTPUT terminals are all internally connected.

Ripple Rejection Typically 80 dB
LP SILECT PACKAGE

description

(TOP VIEW)

The TL317C is an adjustable 3-terminal positivevoltage regulator capable of supplying 100 mA
over an output-voltage range of 1.2 V to 32 V. It is
exceptionally easy to use and requires only two
external resistors to set the output voltage. Both
input and output regulation are better than
standard fixed regulators, The device is packaged
in standard packages that are easily mounted and
handled.

INPUT
OUTPUT
ADJUSTMENT

NC-No internal connection

In addition to higher performance than fixed regulators, this regulator offers full overload protection available
only in integrated circuits. Included on the chip are current-limiting and thermal-overload protection. All overload
protection circuitry remains fully functional even if ADJUSTMENT is disconnected. Normally, no capacitors are
needed unless the device is situated far from the input filter capacitors, in which case an input bypass is needed.
An optional output capacitor can be added to improve transient response. ADJUSTMENT can be bypassed to
achieve very high ripple rejection, which is difficult to achieve with standard 3-terminal regulators.
In addition to replacing fixed regulators, the TL317C regulator is useful in a wide variety of other applications.
Since the regulator is floating and sees only the input-to-output differential voltage, supplies of several hundred
volts can be regulated as long as the maximum input-to-output differential is not exceeded. Its primary
application isthat of a programmable output regulator, but by connecting a fixed resistor between ADJUSTMENT
and OUTPUT, this device can be used as a precision current regulator. Supplies with electronic shutdown can
be achieved by clamping ADJUSTMENT to ground, programming the output to 1.2 V where most loads draw
little current.
The TL317C is characterized for operation from DoC to 125°C.

PRODUCTION DATA information Is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily Include
testing of all parllmeters.

TEXAS

.JJ}

Copyright © 1991, Texas Instruments Incorporated

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-173

TL317C
3-TERMINAL ADJUSTABLE REGULATOR
schematic
r---~----~------~--------~----~---'----------------------------'-INPUT

251 Q

5.6 kQ

1.4 Q

30
pF

2.12 kO

30
pF

5.1 kO

6700

10.8 kQ

~~--~~--~~~~--~--~--~~~~~--~~~---4------------~~--~-OUTPUT
~--JV\I'v--------------

ADJUSTMENT

400

All component values shown are nominal.

absolute maximum ratings over operating temperature range (unless otherwise noted)
Input-to-output differential voltage, VI- Va .................................................... 35 V
Continuous total dissipation ................................... See Dissipation Rating Tables 1 and 2
Operating free-air, case, or virtual-junction temperature range ........................... O°C to 150°C
Storage temperature range ....................................................... -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................... 260°C
DISSIPATION RATING TABLE 1 - FREE-AIR TEMPERATURE
PACKAGE

TA s 25'C
POWER RATING

DERATING FACTOR
ABOVE T A = 25'C

TA=125'C
POWER RATING

D

725mW

5.8mwrc

145mW

LPt
775mW
6.2mwrc
155mW
t The LP package dissipation rating is based on thermal resistance measured in still air with the
device mounted in an Augat socket. The bottom of the package is 10 mm (0.375 in.) above the
socket.
DISSIPATION RATING TABLE 2 - CASE TEMPERATURE
PACKAGE
D

LP

TC " 25'C
POWER RATING

DERATING
FACTOR

1600mW
1600mW

29.6mwrc
28.6mWrC

DERATE
ABOVE TC

TEXAS -'!1

INSTRUMENTS
2-174

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

=

TC 125'C
POWER RATING
740mW
715mW

TL317C
3-TERMINAL ADJUSTABLE REGULATOR
recommended operating conditions
MIN
Input-to-output voltage differential, VI- Vo
Output current, 10
Operating virtual-junction temperature, TJ

MAX

UNIT

35

V

2.5

100

mA

0

125

'c

electrical characteristics over recommended operating virtual-junction temperature range (unless
otherwise noted)
TEST CONDITIONSt

PARAMETER
~

TYP

MAX

TJ

~

25'C

0.01

0.02

10

~

2.5 mA to 100 mA

0.02

0.05

Input regulation (see Note 1)

VI- Vo

Ripple regulation

Vo ~ 10V,
I ~ 120 Hz,
1O-f'F capacitor between ADJUSTMENT and ground

3 V to 35 V

I

VO~10V,

~

MIN

120 Hz
66

~

2.5 mA to 100 mA,

VO,,5V

25

~

25'C

Vo

~5V

0.5%

10

~

2.5 mA to 100 mA

Output voltage change with temperature

TJ

~

O'C to 125'C

Output voltage long-term drift (see Note 2)

After 1000 hours atTJ

Output noise voltage

I

Minimum output current to maintain regulation

VI-VO =35 V

Peak output current

VI-VO ,,35V

VO,,5V

50

VO~5V

1%

mV
mV

1%
~

0.3%

125'C and VI- Vo = 35 V

10Hz to 10kHz,

1.5
100

Change in ADJUSTMENT current

VI - Vo = 2.5 V to 35 V,

10 = 2.5 mA to 100 mA

Reference voltage (output to ADJUSTMENT)

VI-VO = 3 Vto 35 V,
P " rated dissipation

10 = 2.5 mA to 100 mA,

1%

0.003%

TJ = 25'C

ADJUSTMENT current

..

dB

80

10

~

%N

65

TJ

Output regulation

UNIT

1.2

2.5

200

mA
mA

50

100

f'A

0.2

5

f'A

1.25

1.3

V

..

t Unless otherwise noted, these specifications apply forthe follOWing test conditions: VI- Vo ~ 5 Vand 10 = 40 mA. Pulse-testing techniques must
be used that will maintain the junction temperature as close to the ambient temperature as possible. All characteristics are measured with a O.l-f'F
capacitor across the input and a l-f'F capacitor across the output.
NOTES: 1. Input regulation is expressed here as the percentage change in output voltage per l-V change at the input
2. Since long-term drift cannot be measured on the individual devices prior to shipment, this specification is not intended to be aguarantee
or warranty. It is an engineering estimate of the average drift to be expected from lot to lot.

TEXAS

.JJ1

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-175

TL317C
3·TERMINAL ADJUSTABLE REGULATOR
APPLICATION INFORMATION
35V--'--l
VI

Vo
(see Note C)

C1 =0.1 rtF
(see Note A) ~

C1
0.1 rtF

C2 =1 I-'F
(see Note B)

R2

6800

R2
3kQ

1N4002

Figure 2. O-V to 30-V Regulator Circuit

Figure 1. Adjustable Voltage Regulator
Regulator
VI

INPUT

OUTPUT

ADJUSTMENT
C1
0.1 flF
R2
10 kO

D1t
1N4002

R1
4700

Vo
VI
(see Note C)

1--_tt_-'V'I!\r-_-

IlImlt =

~
R1

+ C3

+ C2

_ 11-'F

- 10 flF

Figure 4. Precision Current-Limiter Circuit
t

Dl discharges C2 if output is shorted to ground.

Figure 3. Regulator Circuit
With Improved Ripple Rejection
NOTES: A. Use of an input bypass capacitor is recommended if regulator is far from the filter capacitors.
B. Use of an output capacitor improves transient response but is optional.
C. Output voltage is calculated from the equation: Vo = V ref ( 1 + :: )
where: Vref equals the difference between OUTPUT and ADJUSTMENT voltages.

.
fromlheequatlon:
.
R2 + R3) -lOV
D. Outputvollagelscalculated
Vo =Vref ( 1 +-R-lwhere: Vref equals the difference between OUTPUT and ADJUSTMENT voltages.

TEXAS

-III

INSTRUMENTS
2-176

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TL317C
3·TERMINAL ADJUSTABLE REGULATOR
APPLICATION INFORMATION
R2
1.5 kQ

Rl

Vo = 15 V

470Q

Rl
lN4002

470Q

Regulator
Cl
O.IIlF

R2
5.1 kQ

Figure 5. Tracking Preregulator Circuit

Figure 6. Siow-Turn-On 15-V
Regulator Circuit

24Q

240Q

1.1 kQ

I
Figure 7. 50-rnA Constant-Current
Battery Charger Circuit

1

v-

at

---~_------'

t This resistor sets peak current (100 mA for 6 0).

Figure 8. Current-Limited 6-V Charger

TEXAS -If

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-177

TL317C
3-TERMINAL ADJUSTABLE REGULATOR
APPLICATION INFORMATION
TIP73

500 Q

22 Q

120 Q

1N4002

t
5kQ

t Minimum load current is 30 mAo

t Optional capacitor improves ripple rejection
Figure 9. High-Current Adjustable Regulator

TEXAS ~

INSlRUMENlS
2-178

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TL-SCSI285
FIXED VOLTAGE REGULATOR FOR
SCSI ACTIVE TERMINATION
D3943, NOVEMBER 1991

•

Fully Matches Parameters for Alternative 2
SCSI Active Termination

•

Fixed 2.8S-V Output

•

± 1% Maximum Output Tolerance

N PACKAGE
(TOP VIEW)

•

O.6-V Maximum Dropout Voltage

•

620-mA Output Current

NC
NC

•

± 2% Absolute Output Variation

•

Internal Overcurrent Limiting
Circuitry

•

Internal Thermal Overload
Protection

•

Internal Overvoltage
Protection

HS~~~ ~D.
20 } ~~~T

NC
NC
GND
GND
GND

at TJ= 2SoC

PW PACKAGE
(TOP VIEW)
NC
OUTPUT GNDJ
GND
INPUT~{
HEAT
GND
SINK
GND

'---_.

INPUT
NC

~GND

}~OUTPUT

10

11

HEAT
SINK

HEAT SINK - These pins have
an internal resistive connection to
ground and should be grounded
or electrically isolated.

NC - No internal connection

KCPACKAGE
(TOP VIEW)

description
The TL-SCSI285 is a low-dropout (O.6-V) fixed voltage regulator specifically designed for Small Computer
Systems Interface (SCSI) alternative 2 active signal termination. The TL-SCSI285's O.6-V maximum dropout
ensures compatibility with existing SCSI systems, while providing a wide TERMPWR voltage range. At the
same time, the ±1% initial tolerance on its 2.85-V output voltage ensures a tighter line driver current tolerance,
thereby increasing system noise margin.
The fixed 2.85-V output voltage of the TL-SCSI285 supports the SCSI alternative 2 termination standard while
reducing system power consumption. The O.6-V maximum dropout voltage brings increased TERMPWR
isolation, making the device ideal for battery-powered systems. The TL-SCSI285, with internal current limiting,

typical application schematic
Connector

TERMPWR
S-V 1NS817
Logic _ . .
Supply

I--.... ,-----,

110n
10/0

-- OB(O)
.__-'VI/Ir------- OB(l)

f-er--_.----_~V\/Ior__---

O.lI1F

~ceramic

.__-JV'o/Ir------- ATN
.--'V'0v----- -- BSY
.--'V'0v------- ACK
.--JV'o/Ir------- RST
.--JV'o/Ir------- MSG
.--JV'o/Ir------- SEL
.--JV'o/Ir----- -- C/O
.--JV'o/Ir------- REO
L-.A./V\------ - - 110

+ 2211F
~Tanta"um

AVAILABLE OPTIONS
PACKAGE
TJ

O°C to 125°C

PLASTIC
POWER
(KC)

PLASTIC
DIP
(N)

SURFACE
MOUNT
(PW)t

TL-SCSI28SKC

TL-SCSI28SN

TL-SCSI285PWLE

tThe PW package is only available left-end taped and reeled.

PRODUCTION DATA Information Is current as of
publication date. Products conform to specifications
per the terms of Texas Instruments standard
warranty. Production processing does not
necessanly Include testing of all parameters.

TEXAS .~

Copyright © 1991. Texas Instruments Incorporated

INSTRUMENTS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265

2-179

TL-SCSI285
FIXED VOLTAGE REGULATOR FOR
SCSI ACTIVE TERMINATION
description (continued)
overvoltage protection, ESD protection, and thermal protection, offers designers enhanced system
protection and reliability.
When configured as a SCSI active terminator, the TL-SCSI285 low-dropout regulator eliminates the 220-0
and 330-0 resistors required for each transmission line with a passive termination scheme, reducing
significantly the continuous system power drain. When placed in series with 110-0 resistors, the device
matches the impedance level of the transmission cable and eliminates reflections.
The TL-SCSI285 is characterized for operation from DoC to 125°C virtual junction temperature.

TEXAS ~

INSTRUMENTS
2-180

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TL-SCSI285
FIXED VOLTAGE REGULATOR FOR
SCSI ACTIVE TERMINATION
absolute maximum ratings over operating temperature range (unless otherwise noted)
Continuous input voltage ............................................................. 7.5 V
Continuous total dissipation (see Note 1) ............................. See Dissipation Rating Table
Operating virtual junction temperature range ..................................... -55°C to 150°C
Storage temperature range ................................................... -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................. 260°C
NOTE 1: ReIer to Figures 1 and 2 to avoid exceeding the design maximum virtual junction temperature; these ratings should not be exceeded.
Due to variation in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be
activated at power levels slightly above or below the rated dissipation.
DISSIPATION RATING TABLE
POWER RATING
TA ~25·C
AT
POWER RATING
2000mW
TA
20000 mW
Te
2250mW
TA
11850 mW
Te
775mW
TA

PACKAGE
Ke
N
PW

DERATING FACTOR

=

ABOVE T 25·C
16 mw/oe
182 mw/oe
18.0 mw/oe
94.8 mw/oe
6.4 mw/oe

=

T 70·C
POWER RATING
1280mW
14540 mW
1440mW
7584mW
520mW

=

=

T 85·C
POWER RATING
1040 mW
11810mW
1170mW
6162 mW
423 mW

T 125·C
POWER RATING
400 mW
4645 mW
450 mW
2370 mW
161 mW

Derate above 40°C

DISSIPATION DERATING CURVE

DISSIPATION DERATING CURVE

vs

vs

FREE-AIR TEMPERATURE

CASE TEMPERATURE

24oor-----.-----,-----.------.-----,

~ 2200
I

'"

2000k~
"'~-1~~~+_~~~~~_+----_4

!.~!5 1800
"'"
1600 " "
-"''''
~1400
.~ 1200

~

o
~

E

~

25r-----,-----,-----,------.-----,

~

KC
RSJA 62.5·C/W -!-_ _--\

=

I

,,'-

1000

"

,re::. RSJA =N55 .6•C/W _
' "' "

I

~200

p;;--......

"o
"
C

~

RaJA = 155·Cm ~..........

~

50

75

100

125

10r-~~t-----+---~d------r-----1

"

'xos

51-~~+_-

I
C

c..

O~----~----~----~----~--=-

25

KC
15 I-~--+_--_rl___
-= ReJC = 5.S.C/W

E
E

:;;

I"-

20~--~+_~--~--~---I~--~+_----~

.E

o

600r~~~~~~~+-~~_r-"''''~'''~+_~~~
400

'iii
en

aen
o

"""
~,

800 ____

c

.2
OJ
c..

150

O~----~--~~----~----~--~

25

TA - Free-Air Temperature - ·C

Figure 1

50
75
100
125
TC - Case Temperature _·C

150

Figure 2

recommended operating conditions
Input voltage, VI

I Ke and N packages

Output current, 10

I PW package

Operating virtual junction temperature range, TJ

TEXAS

MIN
3.45

MAX
5.5

0
0
0

620
500

UNIT
V
mA
mA

125

°e

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-181

TL-SCSI285
FIXED VOLTAGE REGULATOR FOR
SCSI ACTIVE TERMINATION
TL-5CSI285KC, TL-5CSI285N electrical characteristics at, VI = 4.5 V, 10 = 500 mA, TJ = 25°C (unless
otherwise noted)
PARAMETER
Output voltage

TEST CONDITIONst
10 = 20 mA to 620 mA,
I TA =TJ = 25°C
VI = 3.45 V to 5.5 V
I TJ=Oto 125°C

Input regulation

VI = 3.45 V to 5.5 V

Ripple rejection

1 = 120 Hz, Vripple = 1 Vpp
10 = 20 mA to 620 mA

Output regulation
Output noise voltage
Dropout voltage

MIN
2.82
2.79

MAX
2.88
2.91

5

15

-62

10 = 20 mA to 500 mA
1 = 10 Hz to 100 kHz

UNIT
V.
mV
dB

5

30

5

30

500

mV
f.'V

10=500 mA

0.6

10=620 mA

0.8

10=0
10 = 27 mA, equivalent 1 line asserted

Bias current

TYP
2.85

2

5

3

6

10 = 500 mA, equivalent 18 line asserted (8 bit)

26

49

10=620 mA

37

62

V

mA

TL-SCSI285PW electrical characteristics at, VI = 4.5 V, 10 = 500 mA, TJ = 25°C (unless otherwise noted)
PARAMETER
Output voltage

TEST CONDITIONSl
10 = 20 mA to 500 mA,
ITA = TJ = 25°C
VI = 3.55 V to 5.5 V
I TJ = 0 to 125°C

MIN
2.82

TYP
2.85

2.79

2.91

Input regulation

VI = 3.55 V to 5.5 V

Ripple rejection

-62

Output regulation

1 = 120 Hz, Vripple = 1 Vpp
10 = 20 mA to 500 mA

Output noise voltage

1 = 10 Hz to 100 kHz

500

Dropout voltage

10= 500 mA

Bias current

10=0
10 = 27 mA, equivalent 1 line asserted
10 = 500 mA, equivalent 18 line asserted (8 bit)

MAX
2.88

5
5

UNIT
V

15

mV

30

mV

0.7

f.'V
V

dB

2

5

3

6

26

49

mA

Pulse-testing techniques are used to maintain the virtual junction temperature as close to the ambient temperature as possible. Thermal effects
must be taken into account separately. All characteristics are measured with a O.l.-f.'F capacitor across the input and a 22-f.'F tantalum capacitor
with equivalent series resistance 01 1.5 n on the output.

TEXAS ~

INSTRUMENTS
2-182

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

Tl-SCSI285
FIXED VOLTAGE REGULATOR FOR
SCSI ACTIVE TERMINATION
COMPENSATION CAPACITOR SELECTION INFORMATION
The TL-SCSI285 is a low-dropout regulator. This means that the capacitance loading is important to the
performance of the regulator because it is a vital part of the control loop. The capacitor value and the equivalent
series resistance (ESR) both affect the control loop and must be defined for the load range and the temperature
range. Figures 3 and 4 can be used to establish the capacitance value and ESR range for best regulator
performance.
STABILITY

ESR OF OUTPUT CAPACITOR

vs

vs

LOAD CURRENT

ESR
0.04 """",."..-r--r-r--r-r--r-r--r--.
E""""",,',',','I Not Recommended
JS:S::Sl Potential Instability
•
Recommended Min ESR

0.035
0.03
0.025

~m---+

0.015

~w----t-

0.01
0.005'"""++-....

0.1

0.2

0.3

0.4

0.5

0.6

0.7

o ~~""","i:iIill2
o 0.5 1 1.5 2

2.5

3

3.5

4

4.5

5

1/ESR

IL - Load Current - A

Figure 4

Applied Load
Current
Load
Voltage

Figure 3

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-183

2-184

TL430C, TL4301
ADJUSTABLE SHUNT REGULATORS
D21

•
•
•

Temperature Compensated

•

Low Output Noise

•

Sink Capability to 100 mA

, JUNE 1976--REVISED AUGUST 1991

LPPACKAGE
(TOP VIEW)

Programmable Output Voltage
Low Output Resistance

CATHODE
ANODE
REF

description
The TL430 is a 3-terminal adjustable shunt
regulator featuring excellent temperature stability,
wide operating current range, and low output
noise. The output voltage may be set by two
external resistors to any desired value between
3 V and 30 V. The TL430 can replace zener diodes
in many applications providing improved
performance
The TL430C is characterized for operation from
O°C to 70°C. The TL4301 is characterized for
operation from -40°C to 85°C.

symbol
REF
ANODE

----I~.JI-r- -

CATHODE

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Regulator voltage (see Note 1) .............................................................. 30 V
Continuous regulator current ............................................................. 150 mA
Continuous dissipation at (or below) 25°C free-air temperature (see Note 2) ................... 775 mW
Operating free-air temperature range: TL430C ......................................... O°C to 70°C
TL4301 ........................................ -40°C to 85°C
Storage temperature range ....................................................... -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................... 260°C
NOTES: 1. All voltage values are with respect to the anode terminal.
2. For operation above 25"C free-air temperature, derate at 6.2 mW/"C.

recommended operating conditions
Regulator voltage, Vz
Regulator curent, IZ
iTL430C

Operating free-air temperature, T A

ITL4301

PRODUCTION DATA InlOlm.tlon Js current II 01 publication dale.
Products conform to specifications pe, the terms of

Texi.

Instrum.nts standard warranty. Production processing do•• not
nec...arily Include tl.llng of all p.,ametert.

MIN

MAX

Vref
2

30

UNIT
V

100

mA

0

70

-40

85

"C

Copyright © 1991, Texas Instruments Incorporated

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-185

TL430C, TL4301
ADJUSTABLE SHUNT REGULATORS
electrical characteristics at 25°C free-air temperature (unless otherwise noted)
TEST

PARAMETER

TL430C

TEST CONDITIONS

FIGURE

Vref

Reference input voltage

1

Vz = Vref,

IZ= 10 mA

aVref

Temperature coefficient of
reference input voltage

1

Vz = Vref,
T A = full range t

IZ= 10 mA,

Iref

Reference input current

2

IZ= 10mA,
R2 = OX>

R1=10kQ,

IZK

Regulator current near lower
knee of regulation range

1

Vz =Vref

Regulator current at maximum

1

Vz = Vref

limit of regulation range

2

Vz = 5 V to 30 V,

Differential regulator resistance
(see Note 4)

1

Vz = Vref,
L\.IZ = (52 - 2) mA

IZM
rz

Noise voltage

2

f = 0.1 Hz to 10Hz

UNIT

MAX

MIN

TYP

2.5

2.75

3

2.6

2.75

2.9

V

120

200

ppml'C

3

10

",A

0.5

2

mA

120

See Note 3

MAX

TYP

3

10

0.5

2

50

50

100

100
1.5

mA
1.5

3

50

VZ=3V
Vnz

TL4301

MIN

3

Vz = 12V

200

200

Vz = 30 V

650

650

t Full temperature range is O'C to 70'C for the TL430C and -40'C to 85'C for the TL4301.
NOTES: 3. The average power dissipation, Vz • IZ • duty cycle, must not exceed the maximum continuous rating in any 10-ms interval.
4. The regulator resistance for Vz > V ref, rz, is given by:
rz

, =Tz (Rl
1 + R2 )

PARAMETER MEASUREMENT INFORMATION
Input-.A..l'v"v---tf--r - - - -...

R1 ~

Input -.A..l'v"v--e--- Vz
r -_ _

R2 ~
TL430

vz

=

Iref

TL430

Vref

~
Vref (1 + :~) + Iref

X

Rl

Figure 2. Test Circuit for Vz > Vref

Figure 1. Test Circuit for Vz = Vref

TEXAS "11

INSlRUMENTS
2-186

Vz

~IZ

.._--...----A
... ~r'

.~IZ

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

Q

50
",V

TLC430C, TL4301
ADJUSTABLE SHUNT REGULATORS
TYPICAL CHARACTERISTICS
SMALL-SIGNAL REGULATOR IMPEDANCE
vs
FREQUENCY
3

a
I
Q)

""

co

"tl
Q)

c.

..5

5

CURRENT
vs
VOLTAGE

160

.l

Vz =

140 I-- TA = 25°C

2.6

120
----'\/\/\~-

10

I
I
I

--L

Vref
R2

'T'
I
I
I

Figure 5. Shunt Regulator

R1
R2

Figure 6. Series Regulator

TEXAS

Figure 7. Current Limiter

-If

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-187

TL430C, TL4301
ADJUSTABLE SHUNT REGULATORS
APPLICATION INFORMATION
V+

V+ --'\NIr-tI..----__- -__-

Vo

IN

OUTi--..--

Vo

GND

R1
R1

R2
R2

Vo = (1 +

:~)

Vo = (1

+~) Vref

Min Vo = Vref + 5

Figure 8. Output Control of a 3-Terminal
Fixed Regulator

Figure 9. Higher-Current Applications

V+

R1

R2
Q1

Low limit = Vref (1 +

~:) + VBE

Higb limit = Vref (1 +

:~)

Figure 10. Crowbar

Figure 11. Vee Monitor

TEXAS .Jf

INSlRUMENTS
2-188

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TL431C, TL431AC, TL4311, TL431 AI, TL431M
ADJUSTABLE PRECISION SHUNT REGULATORS
0241

•

Equivalent Full-Range Temperature

u
u

DPACKAGE
(TOP VIEW)

Coefficient . .. 30 ppmtC

•
•
•
•
•

JULY 1978-REVISEO AUGUST 1991

0.2 Q Typical Output Impedance
Sink Current Capability . .. 1 rnA to 100 rnA
Low Output Noise

CATHODE
ANODE
ANODE
NC

Adjustable Output Voltage . .. Vref to 36 V

8
7
6
5

2
3
4

REF
ANODE
ANODE
NC

JG AND P PACKAGE

Available in a Wide Range of High Density
Packaging Options:
Small Outline (D)
TO-226AA (LP)
SOT-a9 (PK)

(TOP VIEW)

CATHODE
NC
NC
NC

description

The TL431 and TL431 A are 3-terminal adjustable
shunt regulators with specified thermal stability
over applicable automotive, commercial, and
military temperature ranges. The output voltage
may be set to any value between Vref
(approximately 2.5 V) and 36 V with two extemal
resistors (see Figure 16). These devices have a
typical output impedance of 0.2 Q. Active output
circuitry provides a very sharp turn-on
characteristic, making these devices excellent
replacements for zener diodes in many
applications like on-board regulation, adjustable
power supplies, and switching power supplies.

8
7
6
5

2
3
4

REF
NC
ANODE
NC

PKPACKAGE
(TOP VIEW)

REF ANODE CATHODE
LPPACKAGE
(TOP VIEW)

CATHODE

The TL431 is offered in a wide variety of highdensity packaging options that includes an
SOT-89-type package (suffix PK).

ANODE
REF

The TL431C and TL431AC are characterized for
operation from O°C to 70°C, and the TL431 I and
TL431 AI are characterized for operation from
-40°C to 85°C. The TL431 M is characterized for
operation over the full military temperature range
of -55°C to 125°C.

FKPACKAGE
(TOP VIEW)
LU
Cl

0

J:

u~uttu

zuza:z

NC
NC
NC
NC
NC

3

2

4

1

20 19
18

5

17

6

16

7

15

8

14
9 10 11 1213

NC
NC
NC
ANODE
NC

uuuuu
zzzzz
NC-No internal connection
PRODUCTION DATA Information Is current 8S of publication date.
Products conform to specifications per the lerms of Texas Instruments
standard warranty. Production processing does not necessarily Include

testing of all parameters.

Copyright © 1991, Texas Instruments Incorporated

'TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • OALLAS, TEXAS 75265

On products compliant to MILwSTD-88lt Class 8, all parameters are
tested unless otherwise noted. On aU other products, production
processing does not necessarily Include testing of all parameters.

2-189

TL431C, TL431AC, TL431I, TL431AI, TL431M
ADJUSTABLE PRECISION SHUNT REGULATORS
AVAILABLE OPTIONS
PACKAGE
TA

SMALL OUTLINE
(D)

CHIP CARRIER
(FX)

CERAMIC DIP
(JG)

TO-226AA
(LP)

PLASTIC DIP
(P)

SOT-89
(PK)

O°C to 70°C

TL431CD
TL431ACD

TL431CLP
TL431 ACLP

TL431CP
TL431ACP

TL431CPK
TL431ACPK

-40°C to 85°C

TL4311D
TL431AID

TL4311LP
TL431AILP

TL4311P
TL431 AlP

TL4311PK
TL431AIPK

-55°C to 125°C

TL431MFK

TL431MJG

D and LP packages are avaUabletaped and reeled. Add "R" suffix to device type (e.g .• TL431 CDR). PK package IS only available taped and reeled.
No "R" suffix required.

application schematic
Efficient 5-V Precision Regulator
V+

'Ir--e-- Vo = 5 V

Rb
(see Note A)

0.1%

27 kQ

27kQ

0.1%

NOTE A: Rb should provide" 1 rnA cathode current to the TL431.

functional block diagram

symbol

CATHODE

REF (R)
ANODE

(A)'--I~.rj--

CATHODE (K)

ANODE

.

TEXAS ~

INSTRUMENTS
2-190

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TL431C, TL431AC, TL431I, TL431AI, TL431M
ADJUSTABLE PRECISION SHUNT REGULATORS
equivalent schematic
CATHODE----~._----------_.------~~~~--~--------

___,

20 pF

REF

10 kQ

aOOQ
ANODE--~._------~----_.~----~~~--------------_.~

All component values are nominal.

TEXAS

-IJ1

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-191

TL431C, TL431AC, TL431I, TL431AI, TL431M
ADJUSTABLE PRECISION SHUNT REGULATORS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Cathode voltage (see Note 1) ............................................................... 37 V
Continuous cathode current range ............................................. -100 mA to 150 mA
Reference input current range .................................................... -50!tA to 10 mA
Continuous power dissipation ................................. See Dissipation Rating Tables 1 and 2
Operating free-air temperature range, TA: C-suffix..................................... O°C to 70°C
I-suffix ........................ ,........... -40°C to 85°C
M-suffix .................................. -55°C to 125°C
Storage temperature range ....................................................... -65°C to 150°C
Case temperature for 60 seconds: FK package .............................................. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package ................. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG, LP or PK package. . . . . . . . . .. 300°C
NOTE 1: Voltage values are with respect to the anode terminal unless otherwise noted.
DISSIPATION RATING TABLE 1 - FREE-AIR TEMPERATURE
PACKAGE

DERATING FACTOR
ABOVE T A 25°C

=

=

TA = 25°C
POWER RATING

TA = 85°C
POWER RATING

TA 70°C
POWER RATING

TA=125°C
POWER RATING

D

5.8mwrc

725mW

464mW

FK

11 mwrc

1375 mW

880mW

715mW

275mW

JG

8.4 mwrc

1050 mW

672mW

546mW

210mW

LP

6.2mwrC

775mW

496mW

403mW

P

8.0mWrC

1000 mW

640mW

520mW

PK

4.0mwrC

500mW

320mW

266mW

429mW

DISSIPATION RATING TABLE 2 - CASE TEMPERATURE

=

=

=

PACKAGE

DERATING FACTOR
ABOVE TC = 25°C

TC 25°C
POWER RATING

TC 70°C
POWER RATING

TC 85°C
POWER RATING

PK

25 mW/oC

3125 mW

2000mW

2625 mW

recommended operating conditions
Cathode voltage, VKA
Cathode current, IK

TEXAS .Jf

INSTRUMENTS
2-192

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

MIN

MAX

Vref
1

36

V

100

mA

UNIT

electrical characteristics at 25 °C free-air temperature (unless otherwise noted)
TEST

PARAMETER
Vref

Reference input voltage
Deviation of reference input voltage

Vrelldev)
..:lVref

--

LlVKA
Iref

over full temperature range;

Imin

"

"'-<

loll

::l_

IZkal

~

Vrel,

IK

~

10 mA

1

VKA

~

Vrel,

IK

~

10 mA,

2

IK

10 mA

2

Reference input current

2

over full temperature range l
Minimum cathode current

0

VKA

1

for regulation

Off-state cathode current

3

0

i:iZ
~ .~

'~i

BC
;~

~

in cathode voltage

Deviation of reference input current

Irel(dev)

1

Ratio of change in reference
input voltage to the change

Dynamic impedance §

1

TL431M

TEST CONDITIONS

CIRCUIT

MIN

~

10 V

~

Vrel

LlVKA

~

36 V

~

10 V

IK

~

10 mA,

Rl

~

10 kO,

R2 =

00

IK

~

10 mA,

Rl

~

10 kO,

R2 =

00.

~

36 V, Vrel

~

Vrel,

I "

IK

~

~

m

TYP

MAX

UNIT

17

mV

1.4

~2.7

1

-2

~

1.4

~3

1

~2.3

2

8'

~

~

0

1 kHz

30

1.4

~2.7
~2

~1

1

1 mAto 100mA,

5

~

~

mV

-

V

2

4

2

4

~A

0.8

2.5

0.4

1.2

"A

0.4

1.5

0.4

1

0.4

1

mA

0.1

3

0.1

1

0.1

1

~A

0.2

0.9'

0.2

0.5

0.2

0.5

°

'On products compliant to MIL-STO-883, Class B, this parameter is not production tested.
t Full temperature range is ~55°C to 125°C lor the TL431M, ~40oC to 85°C lor the TL4311 and TL431AI, and DoC to 70°C lor the TL431C and TL431AC.
:j:

The deviation parameters V ret{dev) and Iref(dev) are defined 85 the differences between the maximum and minimum values obtained over the rated temperature range. The average full-range
temperature coefficient of the reference input voltage, 0Vref' is defined as:

~Z
'"

MIN

4

-+-,

7!!Tl

~ Ci1~
"'....

TL431C
MAX

TYP

22

VKA ~ Vrel
VKA

MIN

mV

TA = full range t

VKA

MAX

2400 2495 2600 2440 2495 2550 2440 2495 2550
TA ~ lull range t

LlVKA

TL431 I

TYP

ppm) _
I"'Vrel I ( oc~

M8xvrefn·

Vrel(dev) )
Vrel at 250C X 10 6

I

LlTA

Min V,ef

-

-

-

-

-

-:

Vrefldev)

-.!

I
where aT A is the rated operating free-air temperature range of the device.

I..

LlTA~

"'Vref can be positive or negative depending on whether minimum Vref or maximum Vref, respectively, occurs at the 'Iower temperature.
Example: Max Vref = 2496 mV at 30 o e, Min Vref = 2492 mV at oDe, Vref = 2495 mV at 25 De, aTA = 70 De for Tl431e

l>

E

C-t

i!E
m .....
r(")
m~

-t
-Or
:xJ-,="

mw
.....

(")

-l>

en(")

0Z.......
r

en-'="

:c~

xl0 6
I "'V ref I

c~-

23 ppm/DC

Because minimum Vref occurs at the lower teperature, the coefficient is positive,
§The dynamic impedance is defined as:

I zka I = a VKA
alK

When the device is operating with two external resistors, (see Figure 2). the total dynamic impedance of the circuit is given by:

~
~

Iz'l

= -av
al

l )
~ IZkal (1R
+R2

Z-t
-tr

:xJ-'="

m~

C)l>
c~-

S~

OW
:xJ .....
en::

l
...
ID

TEST

PARAMETER

CIRCUIT

Reference input voltage

1

VKA

=

Vref,

IK

=

10mA

Vref(devl

Deviation of reference input voltage
over full temperature range t

1

VKA

=

Vref,

IK

=

10 mA,

Ratio of change in reference

--

input voltage to the change

Ll.VKA

in cathode voltage

Iref

2
2

Reference input current
Deviation of reference input current

Iref(dev)

0

....en

i:iZ

~~

'~i

2t:

over full temperature range:l:
Minimum cathode current

Imin

for regulation

'"N

m

=

TL431AC

MIN

TYP

MAX

MIN

TYP

MAX

2470

2495

2520

2470

2495

2520

mV

5

25

4

15

mV
mV

full range t

=

10 V - Vref

1.4

-2.7

-1.4

-2.7

Ll.KVA

=

36 V - 10 V

-1

-2

-1

-2

2

4

2

4

I'A

0.8

2,5

0.8

1.2

I'A

= 10 mA, Rl =
= 10 mA, Rl =
T A = full range t
IK

10 kn,

R2

IK

10 kn,

R2

1

VKA

=

Vref

=
=

36 V, Vref

VKA

IZkal

Dynamic impedance §

1

VKA
Vref,
f :5 1 kHz

UNIT

Ll.VKA

IK

=

=

=
=

00
00,

0

1 mA to 100 mA,

-

V

javrell

(p)
"~m ~

-

-

-

-

-

I.

X 10
70°C

I zka I

=

0.1

0.5

/LA

.....»

0.2

0.5

0.2

0.5

n

-:

Vre fld9v)

_1.

ATA~

23 ppm/oe

.1 VKA
L1.IK
When the device is operating with two external resistors, (see Figure 2). the total dynamic impedance of the circuit is given by:

Iz' I

L1.V
l)
.11 ~I zka I (1R
+ R2

:z:~-

0.5

Because minimum V ref occurs at the lower teperature, the coefficient is positive.
§The dynamic impedance is defined as:

0 .....

en .....
::::t:r-

0.1

6
~

-renA
-Co)

c: A

"'Vref can be positive or negative depending on whether minimum Vref or maximum Vref, respectively, occurs at the-lower temperature.
Example: Max Vref = 2496 mV at 30°C, Min Vref = 2492 mV at oDe, Vref = 2495 mV at 25 De, L1.TA = 70°C for TL431e

I "'Vref I

m~

0 .....

mA

I
.where .1 T A is the rated operating free-air temperature range of the device.

.....
"'U»
::Co

0.6

I

Min Vref

)::Ii .....

airr-A
mCo)

0.4

-+-,

ATA

enO
-I~

0.7

M8xvrefh-Vrelldev) )
6
Vrel at 25DC X 10

A

c:~

0.4

tFull temperature range is oDe to 70 De for TL431Ae and -40 De to 85°C for TL431AI .
:l:The deviation parameters V ref(dev) and Iref(dev) are defined as the differences between the maximum and minimum values obtained overthe rated temperature range. The
average full-range temperature coefficient of the reference input voltage, oN ref, is defined as:

~

~

TA

c...

10 mA

3

~r'1

~~~

=

Off-state cathode current

;~

~Z

IK

loff

0

::1_

2

TL431 AI

TEST CONDITIONS

Vref

tNref

.

»
.....
Or-

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

:z:~

::c:m .....
G)r-

c: A

r-~
~-:s:

o::c

en

TL431C, TL431AC, TL4311, TL431AI, TL431M
ADJUSTABLE PRECISION SHUNT REGULATORS
PARAMETER MEASUREMENT INFORMATION
Input ---iIN'v-.f--- VKA

Input~'IN\--'f---

VKA

Rl
R2

VKA

-=Figure 1. Test Circuit for VKA

=Vref

_

~ Vrer (1 + :~)

+ Irer x R1

_

Figure 2. Test Circuit for VKA > Vref

Input---iIN'v--'f--- VKA

~

loff

Figure 3. Test Circuit for loff

TEXAS .JJ1

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-195

TL431C, TL431AC, TL431I, TL431AI, TL431M
ADJUSTABLE PRECISION SHUNT REGULATORS
TYPICAL CHARACTERISTICS
table of graphs
FIGURE
Vref

Reference voltage

vs Temperature

4

Iref

Reference current

vs Temperature

5

IK

Cathode current

vs Cathode voltage

loff

Off-State cathode current

vs Temperature

tNref

Change in reference voltage to change in cathode voltage

vs Temperature

Vn

Noise voltage

vs Frequency over a 10-second time-period

AV

Voltage amplification

vs Frequency

II zka II

Reference impedance

vs Frequency

6 and 7
8
9
10and 11
12
13

Pulse response

14

Stability boundary conditions

15

table of application circuits
APPLICATION

FIGURE

Precision shunt regulator

16

Single-supply comparator with temperature-compensated threshold

17

Precision high-current series regulator

18

Output control of a 3-terminal fixed regulator

19

High-current shunt regulator

20

Crowbar circuit

21

Precision 5-V, 1.5-A regulator

22

Efficient 5-V, precision regulator

23

PWM down converter with reference

24

Voltage monitor

25

Delay timer

26

Precision current limiter

27

Precision constant-current sink

28

TEXAS

~

INSlRUMENTS
2-196

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TL431C, TL431AC, TL4311, TL431AI, TL431M
ADJUSTABLE PRECISION SHUNT REGULATORS
TYPICAL CHARACTERISTICSt
REFERENCE INPUT VOLTAGE

2600

vs

FREE-AIR TEMPERATURE t

FREE-AIR TEMPERATURE t
5

Vr~f

VJ. =
2580 t- IK = 10 mA.

>

E
I

IVref

2560

1!l

2540

~

2520

~
::I

2550

V

c

~

.;
a:
I

e

>

«:i.

L

2480

--

'"

2460

0

I"-----..

--..

2420
-50

-25

0

25

50

... r--..

.5
co
u

c

2

i

r--

co

a:

---r-....

2440

3

'SQ.

I

V ef = 2440 mV:J: _

2400
-75

4

I

i:
~

V r ..l = 2495 mV:J:

....-

2500

co
u

kb

R1'= 10
R2 = 00
IK= 10mA

::I

Q.

.5

~V:J:

J

I-- ~

co

0>

REFERENCE INPUT CURRENT

V5

75

J

............
100

-75

-SO

Figure 5
CATHODE CURRENT

CATHODE CURRENT

«

E
I

i:

~::I

0
co

'0
0

.c

1ii

0

I

vs

vs

CATHODE VOLTAGE

CATHODE VOLTAGE
800

I,

VKA = Vref
TA = 25°C

«:i.

75

~::I

50

.c

1ii

/'

~

-2

~

)

.,

'0
0

-25

-100

Imln "400

0

25

-75

600

I

i:

-SO

I

VKA = Vref
TA = 25°C

100

0

/

200

0

I

/

_'It!

0

/

-200
-1

r---

-25
0
25, 50
75
100, 125
TA - Free-Air Temperature - 0(;

Figure 4

125 -

------

o

125

TA - Free-Air Temperature - °C

150

~

o

2

3

-1

r

VKA - Cathode Voltage - V

Figure 6

/
2
o
VKA - Cathode Voltage - V

3

Figure 7

t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
:1=

Data is for devices having the indicated value of Vref at IK = 10 rnA, TA = 25°C.

TEXAS

~

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-197

TL431C, TL431AC, TL431I, TL431AI, TL431M
ADJUSTABLE PRECISION SHUNT REGULATORS
TYPICAL CHARACTERISTICSt
RATIO OF DELTA REFERENCE VOLTAGE TO
DELTA CATHODE VOLTAGE

OFF·STATE CATHODE CURRENT

vs
FREE.AIR TEMPERATURE
2.5
~ -1.15
i! -1.25

/

VI

0.5

o

-75

c

220

..

200

:Ill

180

5:

160

I

\

\

til

~

·0

z
I

;;

TA=25'C

140

\

'\
~

120
100
10

100

1k

10 k

100 k

f - Frequency - Hz

Figure 10
t Data at high and low temperatures are applicable only within the rated operating free·air temperature ranges of the various devices.

TEXAS

~

INSTRUMENTS
2-198

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

125

TL431C, TL431AC, TL431 I, TL431AI, TL431M
ADJUSTABLE PRECISION SHUNT REGULATORS
TYPICAL CHARACTERISTICS
EQUIVALENT INPUT NOISE VOLTAGE
OVER A 10·SECOND PERIOD
6r-~~--~~~~~~-r~~

5~~-+--r-~-+--r-~-+-rl~

~
I

4~~~--r-~-+--r-~-+~~

3&.
lLIM

II

E 21M I IU L.lJlIl
~ r..:JJl JIJ rlnTiJP'&i

~

0
-1

.1 1!IlIl
III

~-2

~

$

I

I

I

_I
I

I

I •

II

-3
-4 r-~-t--t--+-~-+- f

= 0.1 to 10 Hz
= 10mAL

IK

-5

TA= 2soC i
-6L..--'---'-__L---'---'---'L--'"'----'---..J~
o
2
4
6
8
10
t-Tlme-s
19.1 V
1 kQ

VCC

..-_H__
20,00 ",F
TLE2027

820Q
16kQ
16Q

160kQ

33kQ

TEST CIRCUIT

Figure 11

TEXAS

+

INSTRUMENTS
POST OFFICE BOX 655303 • OALLAS. TEXAS 75265

2-199

TL431C, TL431AC, TL431I, TL431AI, TL431M
ADJUSTABLE PRECISION SHUNT REGULATORS
TYPICAL CHARACTERISTICS

SMALL·SIGNAL VOLTAGE AMPLIFICATION
vs

FREQUENCY
60
IK=10mA
TA = 25'C

,-------...---__.- Output

50
ED

'tI
0

~

15 kO

'f\

I

c

40

u

+

~

Q.

E

.,

30



~

~

2300

20

I

>

-'\fI/Ir-e--*--- Output

I

10

'tI

Q.

..5.,
u

c

~

'*

Ix:
I

L-..4>---.--*--- GND

Iii

it.

I

I

TEST CIRCUIT FOR REFERENCE IMPEDANCE

0.1

1k

10 k

100 k

1M

10M

f - Frequency - Hz

Figure 13

TEXAS

~

INSlRUMENlS
2-200

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TL431C, TL431AC, TL431I, TL431AI, TL431M
ADJUSTABLE PRECISION SHUNT REGULATORS
TYPICAL CHARACTERISTICS
PULSE RESPONSE
6

TA~25°CI
Iinput I
220Q

5

Output

>

.,I

til

4

:lll
~

'5

.e-

3

Pulse
Generator
f=100kHz

)utput

::l

50 Q

0

/

"0
C

2

l'O

'5a.

GNO

.E

TEST CIRCUIT FOR PULSE RESPONSE

o

o

2

3

5

4

6

7

t-Tlme- !-,S

Figure 14
150Q

STABILITY BOUNDARY CONDITIONS
100
90
80
<1:
E
I

70

C
~

60

.,

50

.r:.
10

40

I

30

"0
0

u

5-

11K = 10 mA
TA = 25°C

B
Stable

::l

U

=V~ef

AVKA
BVKA=5V
CVKA= 10V
o VKA = 15 Vf

20
10

o

0.001

TEST CIRCUIT FOR CURVE A

CT

St ble

A

At

I

1\

I/ /
ot
II
III I If \
/ V //'

R1=10kQ

,\

0.1
0.01
CL - Load Capacitance - !-,F

\\

~IK

150Q

10
TEST CIRCUIT FOR CURVES B, C, AND 0

Figure 15
t The areas under the curves represent conditions that may cause the device to oscillate. For curves B, C, and D, R2 and V+ were adjusted to
establish the initial VKA and IK conditions with CL = O. VBAIT and CL were then adjusted to determine the ranges of stability.

TEXAS ."

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-201

TL431C, TL431AC, TL4311, TL431AI, TL431M
ADJUSTABLE PRECISION SHUNT REGULATORS
APPLICATION INFORMATION
R (see Note A)
VSATT

vref t__----J--,j..

TL431
Input -'l/\J'Ir---h&

Vth -2.5 V

----<1-----<1--- GND
Yo

~

(1 +

~~) Yref

NOTE A: R should provide" 1 mA cathode current to the
TL431 at minimum VBATT.

Figure 16. Shunt Regulator

VSATT -

Figure 17. Single-Supply Comparator With
Temperature-Compensated Threshold

.....- - - - - - - - - - - - ,
2N222

R
(see Note A).---,,31f\0I\Q,-----r-i

2N222

~0.01

!!F

R1
R2
0.1%

Yo

Vout

0.1%

~

(1 +

~~) Yref

NOTE A: R should provide" 1 mA cathode current to the TL431 at minimum VBATT.

Figure 18. Precision High-Current Series Regulator

TEXAS ~

INSTRUMENlS
2-202

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TL431C, TL431AC, TL431I, TL431AI, TL431M
ADJUSTABLE PRECISION SHUNT REGULATORS
APPLICATION INFORMATION

VeAn

~Vl/v-tt----tl>------1It--

Vo

R1
TL431

R2

TL431
R2

v
Min V

=

(1 + ~~) + Vref

= Vref + 5

V

Figure 19. Output Control of a 3-Terminal
Fixed Regulator

Figure 20. High Current Shunt Regulator

Vo

veATT

C
(see
Nole A)

NOTE A: Refer to the stability boundary conditions in Figure 15 to determine allowable values for C.

Figure 21. Crowbar Circuit

TEXAS ~

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-203

TL431C, TL431AC, TL43U, TL431AI, TL431M
ADJUSTABLE PRECISION SHUNT REGULATORS
APPLICATION INFORMATION
V BATT ~~~IN~~~~O~U~T~
__ VO_SV,1.SA
LM317

VBATT ---tt----/..
Rb
(see Note A) '--____•

S.2kQ
240Q
0.1%
TL431

VO_SV
27kQ
0.1%

TL431

27kQ
0.1%

240Q
0.1%

NOTE A: Rb should provide" I-rnA cathode current to the TL431.

Figure 22. Precision S-V, 1.S-A Regulator

Figure 23. Efficient S-V Precision Regulator

12 V

Vee

6.SkQ
SV

TL431

10 kQ
10kQ
0.1%

X
10kQ
0.1%

Not
Used

S-V Feedback

Figure 24. PWM Downconverter With Reference

TEXAS ~

INSIRUMENTS
2-204

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TL431C, TL431AC, TL431I, TL431AI, TL431M
ADJUSTABLE PRECISION SHUNT REGULATORS
APPLICATION INFORMATION
R3 (see Note A)

6500

12 V - -___-------/\M~~-,

VBATT--~----------~~-'~

R4 (see Note A)

2 kO
R1A

R

TL431

TL431

Lo

Off

..
(
RIB)
w Limit = I + R2B Vref

High Limit

=( I

On

R2B

R2A

RIB)

+ R2B

Delay

LED On When

=R

X C x In (

12 V
)
12 V - Vref

Low Limit < VBATI < High Limit

Vref

NOTE A: R3 and R4 are selected to provide the desired LED
intensity and '" 1 rnA cathode current to the TL431
at the available V +.

Figure 26. Delay Timer

Figure 25. Voltage Monitor

RCL ~
0.1% ----..

VBATT --.....-,(

RS

0.1%
TL431

Figure 27. Precision Current Limiter

Figure 28. Precision Constant-Current Sink

TEXAS

-If

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-205

2-206

TL494
PULSE·WIDTH·MODULATION CONTROL CIRCUIT
02535, JANUARY 1983-REVISEO SEPTEMBER 1991

•
•

Complete PWM Power Control Circuitry
Uncommitted Outputs for 200-mA Sink or
Source Current

•

Output Control Selects Single-Ended or
Push-PUll Operation

•

TL494C, TL4941 •.. D OR N PACKAGE
(TOP VIEW)
ERROR {IN+
AMP 1
INFEEDBACK

REF

DEAD-TIME CTRL

Internal Circuitry Prohibits Double Pulse at
Either Output

•

Variable Dead Time Provides Control Over
Total Range

•

Internal Regulator Provides a Stable 5-V
Reference Supply With 5% Tolerance

•

IN+} ERROR
INAMP 2

OUTPUTCTRL

CT

VCC
C2

RT
GND

E2

C1

E1

AVAILABLE OPTIONS
PACKAGE

Circuit Architecture Allows Easy
Synchronization

description
The TL494 incorporates on a single monolithic
chip all the functions required in the construction
of a pulse-width-modulation control circuit.
Designed primarily for power supply control, this
device offers the systems engineer the flexibility to
tailor the power supply control circuitry to a specific
application.
The TL494 contains two error amplifiers, an
on-Chip adjustable oscillator, a dead-time control
comparator, a pulse-steering control flip-flop, a
5-V, 5%-precision regulator, and output-control
circuits.

TA

SURFACE MOUNT
(0)

PLASTIC DIP
(N)

O°C to 70°C
-40°C to 85°C

TL494CD
TL4941D

TL494CN
TL4941N

The D package is available taped and reeled. Add "ROO suffix to
device type (e.g., TL494CDR).
FUNCTION TABLE
INPUT
OUTPUT
CTRL

OUTPUT FUNCTION

VI"O
VI "HEF

Single-ended or parallel output
Normal push-pull operation

The error amplifiers exhibit a common-mode voltage range from -0.3 V to Vee -2 V. The dead-time control
comparator has a fixed offset that provides approximately 5% dead time when externally altered. The on-chip
oscillator may be bypassed by terminating RT to the reference output and providing a sawtooth input to CT, or
it may be used to drive the common circuits in synchronous multiple-rail power supplies.
The uncommitted output transistors provide either common-emitter or emitter-follower output capability. The
TL494 provides for push-pull or single-ended output operation, which may be selected through the output-control
function. The architecture of this device prohibits the possibility of either output being pulsed twice during
push-pull operation.
The TL494C is characterized for operation from O°C to 70°C. The TL4941 is characterized for operation from
-40°C to 85°C.

PRODucnON DATA information I, current as of publication date. Products
conform to specifications per the terms of Texas Instruments standard
warranty. Production processing does not necessarily include testing of all

parameters.

TEXAS ~

Copyright © 1991, Texas Instruments Incorporated

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-207

TL494
PULSE-WIDTH-MODULATION CONTROL CIRCUIT
functional block diagram
OUTPUTCTRL
(see Function Table)

13

6
RT 5

CT~----~~--------~

-0.1 V

C1

Dead-Time Control
Comparator

E1

DEAD-TIME~
CTRL

C2

Error Amplifier
IN+
IN-

E2
2

Pulse-Steering
Flip-Flop

12

Error Amplifier

VCC

16
IN+
IN-

15
14
r------------

7

REF

r---------4~-------------- GND
~

FEEDBACK _3_ _ _ _ _ _ _---' 0.7 mA

TEXAS

~

INSlRUMENTS
2-208

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TL494
PULSE·WIDTH·MODULATION CONTROL CIRCUIT
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
TL494C

TL4941

UNIT

41

41

V

VCC + 0.3
41

V

Collector output voltage

VCC + 0.3
41

Collector output current

250

250

mA

Supply voltage, VCC (see Note 1)
Amplifier input voltage

Continuous total dissipation

V

See Dissipation Rating Table

oto 70

-40 to 85

"C

-65 to 150

-65 to 150

"C

260

260

"C

Operating free-air temperallJre range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package
NOTE 1: All voltage values, except differential voltages, are with respect to the network ground terminal.
DISSIPATION RATING TABLE
PACKAGE

DERATING
FACTOR

TA s25"C
POWER RATING

DERATE
ABOVETA

TA = 70"C
POWER RATING

TA = 85"C
POWER RATING

D

900 mW

7.6 mW/"C

25"C

608 mW

494 mW

N

1000mW

9.2 mW/"C

41"C

736 mW

598 mW

recommended operating conditions
TL494C
MIN

MIN

UNIT

7

40

7

40

V

VCC-2

-0.3

V

40

VCC-2
40

200

200

Collector output voltage, Vo
Collector output current (each transistor)

V
mA

0.3

mA

1

300

1

300

kHz

0.47

10000

0.47

10000

nF

1.8

500

1.8

500

kQ

0

70

-40

85

"C

Current into feedback terminal

0.3

Oscillator frequency
Timing capacitor, CT

MAX

-0.3

Supply voltage, VCC
Amplifier input voltage, VI

TL4941
MAX

Timing resistor, RT
Operating free-air temperature, TA

TEXAS .JJ1

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-209

TL494
PULSE-WIDTH-MODULATION CONTROL CIRCUIT
electrical characteristics over recommended operating free-air temperature range, Vcc = 15 V,
f = 10 kHz {unless otherwise noted)
reference section
TL494C, TL4941
PARAMETER

TEST CONDITIONSt

Output voltage (REF)

10= 1 mA

Input regulation

VCC=7Vt040V

Output regulation

10=1 mAt010mA

Output voltage change with temperature
Short-circuit output current g

L1TA = MIN to MAX

UNIT

MIN

TYP+

MAX

4.75

5

5.25

2

25

mV

1

15

mV

0.2%

1%

REF= 0

V

35

mA

oscillator section CT = 0.01 f.tF, RT = 12 kQ (see Figure 1)
TL494C, TL4941
PARAMETER

TEST CONDITIONSt

MIN

Frequency

CT = 0.01 ].IF,

Standard deviation of frequency ~

All values of VCC, CT, RT, and TA constant

TYp:f:

RT=12kQ

Frequency change with voltage

VCC = 7 V to 40 V,

TA = 25°C

Frequency change with temperature#

CT =0.01 ].IF,

RT = 12 kQ,

MAX

10

UNIT

kHz

10%
0.1%

L1TA = MIN to MAX

1%

error amplifier section (see Figure 2)
TYp:f:

MAX

Input offset voltage

Vo (pin 3) = 2.5 V

2

10

mV

Input offset current

Vo (pin 3) = 2.5 V

25

250

nA

Input bias current

Vo (pin 3) = 2.5 V

0.2

1

",A

PARAMETER

Common-mode input voltage range

TEST CONDITIONS

VCC=7Vto40V

Open-loop voltage amplification

L1VO=3V,

Unity-gain bandwidth

Vo = 0.5 V to 3.5 V,

Common-mode rejection ratio

1!,v0 = 40 V,

Output sink current (pin 3)

VID = -15 mVto -5 V,

Output source current (pin 3)

VID = 15 mVto 5 V,

RL = 2 kQ,

Vo = 0.5 Vto 3.5 V

MIN

-0.3 to
VCC-2
70

V (pin 3) = 0.7 V

95

dB
kHz

65

80

dB

0.3

0.7

nA

V (pin 3) = 3.5 V

-2
..
t For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating condilions
.
:f: All typical values except for parameter changes with temperature are at TA = 25°C.
§ Duration of the short circuit should not exceed one second.
~ Standard deviation is a measure of the statistical distribution about the mean as derived from the formula: a
# Temperature coefficient of timing capacitor and timing resistor not taken into account.

TEXAS ~

INSTRUMENTS
2-210

V

800

RL = 2 kQ

TA = 25°C

UNIT

POST OFFICE BOX 855303 • DALLAS, TEXAS 75265

nA

N
~
n :::

-2

(Xn - X)
1

N-l

TL494
PULSE-WIDTH-MODULATION CONTROL CIRCUIT
electrical characteristics over recommended operating free-air temperature range,
f = 10kHz (unless otherwise noted)

Vee

= 15 V,

output section
PARAMETER

TEST CONDITIONS

TL494C, TL4941
MIN

TYpt

MAX

Collector off-state current

VCE = 40 V,

VCC =40V

Emitter off-state current

VCC=VC=40V,

VE=O

VE = 0,

IC = 200mA

1.1

1.3

VC=15V,

IE =-200 mA

1.5

2.5

ICommon emitter

Collector-emitter saturation vOltage!

Emitter follower

Output control input current

2

100

IlA

-100

!lA

3.5

VI = Vref

UNIT

V
mA

dead·time control section (see Figure 1)
PARAMETER

TEST CONDITIONS

Input bias current (pin 4)

VI = 0 to 5.25 V

Maximum duty cycle, each output

VI (pin 4) = 0,

CT = O.lIlF,

MIN

MAX

UNIT

-2

-10

!lA

45%

RT= 12kQ

Zero duty cycle

Input threshold voltage (pin 4)

TYpt

3

Maximum duty cycle

3.3

0

V

pwm comparator section (see Figure 1)
PARAMETER

TEST CONDITIONS

Input threshold voltage (pin 3)

Zero duty cycle

Input sink current (pin 3)

V (pin 3) = 0.7 V

MIN

TYpt

MAX

4

4.5

0.3

0.7

MIN

TYpt

MAX

6

10

9

15

UNIT

V
mA

total device
PARAMETER

Standby supply current
Average supply current

TEST CONDITIONS

Pin 6 at REF,

!VCC=15V

All other inputs and outputs open

IVCC = 40V

7.5

See Figure 1

VI (pin 4) " 2 V,

UNIT

mA
mA

switching characteristics, TA = 25°C
PARAMETER

TEST CONDITIONS

Output voltage rise time
Output voltage fall time
Output voltage rise time
Output voltage fall time

Common-emitter configuration, See Figure 3
Emitter-follower configuration, See Figure 4

MIN

TYpt

MAX

UNIT

100

200

ns

25

100

ns

100

200

ns

40

100

ns

t All typical values except for temperature coefficient are at TA = 25°C.

TEXAS ~

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-211

TL494
PULSE·WIDTH·MODULATION CONTROL CIRCUIT
PARAMETER MEASUREMENT INFORMATION
VCC=15V

.J.

~150 0

112
VCC
DEAD·TIME
CTRL

4
Test {
Inputs

3

2W

8

C1

FEEDBACK

E1

RT

C2

CT

E2

-=

O.OlIl F
1

12
16

l-

15

,--ll

'"J

ININ +

1500
2W
Output 1

9

12 kO 6

H~

~

11

-4:Output 2

~

Error
Amplifiers

IN-

OUTPUT
CTRL

REF

-.1L

GND

5OkO

l-7
TEST CIRCUIT

VCC

Voltage
at C1

--------

VCC

Voltage
at C2

-----Voltage
atCT

DEAD·TIME
CTRL

OV

FEEDBACK

I

I
I

0.7 V
1

Duly Cycle

1<11141---1.1>1-1- MAX

0%

---l4--..'!

1

VOLTAGE WAVEFORMS

Figure 1. Operational Test Circuit and Waveforms

TEXAS -If

INSlRUMENTS
2-212

OV

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

*- 0%--.

I

OV

TL494
PULSE·WIDTH·MODULATION CONTROL CIRCUIT
PARAMETER MEASUREMENT INFORMATION
Amplifier Under Test
Feedback
Terminal

REF - - - 1

Figure 2. Amplifier Characteristics

15 V

r

I
I

~tf

68Q
Ea7t;"'output Circuit

-,

2W

I
Output

CL=15pF
(includes probe and
Jig capacitance)

L _ _ _ ..J

~tr

I

I
I
I
I

I

I
I
I

OUTPUT VOLTAGE WAVEFORM

TEST CIRCUIT

Figure 3. Common-Emitter Configuration
15 V

I
I

Output

I

2W

CL = 15 pF
(Includes probe and
Jig capacitance)

I
I

K-t

68Q

I
I
I
I
r

I

~tf

OUTPUT VOLTAGE WAVEFORM

TEST CIRCUIT

Figure 4. Emitter-Follower Configuration

TEXAS ~

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-213

TL494
PULSE-WIDTH-MODULATION CONTROL CIRCUIT
TYPICAL CHARACTERISTICS
OSCILLATOR FREQUENCY AND
FREQUENCY VARIATIONt

vs
TIMING RESISTANCE
100 k
VCC=15V
TA = 25'C

40k

I

'--2%
N

::r::

10 k

==! t=

",-'

I

~

4k

~

"

1k

j

400

0

100

.,

0%= ~

I I II

0.001 f!F

-1%

....

0,01 f!F

I:

cr

...... 1-'

0.1 f!F

u.

'uIII

Aft = 1%

40

~

10
1k

P.

CT -l1-'F

I IIII
4k
10 k
40k lOOk
RT - Timing Resistance -

400k

1M

Q

Figure 5
t Frequency variation (81) is the change in oscillator Irequency that occurs over the lull temperature range.
AMPLIFIER VOLTAGE AMPLIFICATION

vs
FREQUENCY
100
, 90

-

'\.

80
III
'0

I

70

~
u
:E
'li

E

60

I\.

50

.,

40

Jl!

30

-

===! E -1%

0.001 ftF

0%= ~~ 0.01

;

~F

......

~F

0.1

LL

...

VI

.

t

: M = 1%

40

1/
~

CT = 1 ftF

II IIII

10
1k

4k
10 k
40k 100k
RT - Timing Resistance - Q

400k

1M

Figure 5
AMPLIFIER VOLTAGE AMPLIFICATION

vs
FREQUENCY
100

f--90

"\..

80
In

"
I

VCC=1 15V
I'N O=3V TA = 25°C

r--...

70

f\..

'\.

C

0

~

60

:eis.

50

 12 V)

TEXAS -If

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-233

2-234

TL499AC
WIDE-RANGE POWER SUPPLY CONTROLLER
JANUARY 1984-REVISED NOVEMBER 1991

•

Internal Series-Pass and Step-Up Switching
Regulator

•

Output Adjustable From 2.9 V to 30 V

•
•
•
•

1-V to 10-V Input for Switching Regulator

Ds

D OR P PACKAGE
(TOP VIEW)

SERIES IN1
REF
SW REG IN2
SW CURRENT CTRL

4.S-V to 32-V Input for Series Regulator

2
3
4

7
6
5

OUTPUT
GND (PWR)
SW IN
GND

Externally-Controlled Switching Current
No External Rectifier Required

description
The TL499AC is a monolithic integrated circuit designed to provide a wide range of adjustable regulated supply
voltages. The regulated output voltage is adjustable from 2.9 V to 30 V by adjusting two external resistors. When
the TL499AC is ac-coupled to line power through a step-down transformer, it operates as a series dc voltage
regulator to maintain the regulated output voltage. With the addition of a battery from 1.1 V to 10 V, an inductor,
a filter capacitor, and two resistors, the TL499AC operates as a step-up switching regulator during an ac-line
failure.
The adjustable regulated output voltage makes the TL499AC useful for a wide range of applications. Providing
backup power during an ac-line failure makes the TL499AC extremely useful as backup power in microprocessor
memory applications.
The TL499AC is designed for operation from -20°C to 85°C.

functional block diagram
SWIN
6

SW REG IN2 ...,3....._ _ _ _ _ _ _----,

Blocking Diode
8

OUTPUT

Start-Up

7

GND(PWR)

-+-_ _ _ _-'-4 sw CURRENT

L -_ _ _ _ _ _. -_ _ _ _ _ _

Current Sense

CTRL

+
2

SERIES IN1

REF

--=-----~..--_f__4

5
GND

PROOUCTION DATA Information Is current 8S of publication date. Products
conform to specifications per the terms of Texas Instruments standard

warranty. Production processing does not necessarily include testing of all
parameters.

TEXAS

~

Copyright © 1991. Texas Instruments Incorporated

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-235

TL499AC
WIDE-RANGE POWER SUPPLY CONTROLLER
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Output voltage, Va (see Note 1) ............................................................. 35 V
Input voltage, series regulator, VI1 ........................................................... 35 V
Input voltage, switching regulator, Vl2 ........................................................ 10 V
Blocking diode reverse voltage .............................................................. 35 V
Blocking diode forward current ............................................................... 1 A
Power switch current (at SW IN) .............................................................. 1 A
Continuous total power dissipation ..................................... See Dissipation Rating Table
Operating free-air temperature range ................................................ -20°C to 85°C
Storage temperature range ....................................................... -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................... 260°C
NOTE 1: All voltage values are with respect to network ground terminal.
DISSIPATION RATING TABLE
TA s 25'C
POWER RATING

DERATING FACTOR
ABOVE T A = 25'C

o

825mW

6.6 mW/'C

429mW

P

1000mW

8mWrC

520mW

PACKAGE

TA = 85'C
POWER RATING

recommended operating conditions
MIN

NOM

MAX

UNIT

Output voltage, Vo

2.9

30

V

Input voltage, SERIES IN1, Vl1

4.5

32

V

Input voltage, SW REG IN2, Vl2

1.1

10

V

Output-to-input differential voltage, switching regulator, Vo - Vl2 (see Note 2)

1.2

28.9

V

100

mA

500

mA

Continuous output current, 10
Power switch current (at SW IN)
Current-limiting resistor, RCL

150

1000

0

Filter capacitor

100

470

"F

50

150

"H

-20

85

Pass capacitor

0.1

Inductor, L (q s 0.1 0)
Operating free-air temperature, TA
NOTE 2: When operating temperature range
minimum Vo - VI2 is" 1.9 V.

IS

..

TA s 70'C, minimum Vo - VI2

IS "

1.2 V. When operating temperature range

TEXAS ~

INSlRUMENTS
2-236

"F

POST OFFICE BOX 655303 • OALLAS, TEXAS 75265

IS

TA

'c
S

85'C,

TL499AC
WIDE-RANGE POWER SUPPLY CONTROLLER
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER

TEST CONDITIONS

MIN,

Voltage deviation (see Note 3)
Dropout voltage

Switching regulator

-20'C to 70'C

1.2

V

~

-20'C to 85'C

1.9

V

1.8

V

1.26

1.32

V

0.5%

1%
3%

~

Reference voltage change with temperature

TA

~

-20'C to 85'C

~

1 mA to 50 mA

10

Switching regulator

5 V,

10
Vo

~

50 mA

~

3 V,

10~

1 mA

1.2

1%
VO~12V,

VI2 ~ 1.1 V,
RCL ~ 150 Q,

TA

VI2 ~ 1.5V,
RCL ~ 150 Q,

Vo ~ 15V,
TA ~ 25'C

VI2 ~ 6V,
RCL ~ 150 Q,

VO~30V,

TA

~

~

10

25'C

15

mA

65

25'C

Series regulator
Standby current

UNIT

~

VI2

Output current (see Figure 1)

3%

TA

Reference voltage (internal)
Output regulation (of reference voltage)

MAX

2%

TA

Vll~15V,

Series regulator

TYP

100
~3V,

VO~9V,

Switching regulator

VI2

Series regulator

Vll~15V,

Vo

~

9V,

TA

~

RE2

25'C
~

4.7 kQ

15

80

0.8

1.2

flA
mA

NOTE 3: Voltage deviation is the output voltage change in percent that occurs in a change from series regulation to sWitching regulation.
voltage deviation ~ Vo (series reg) - (switching reg) x 100%
Vo (series reg)

TEXAS ~

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-237

TL499AC
WIDE-RANGE POWER SUPPLY CONTROLLER
APPLICATION INFORMATION
rv-v-v-.

TL499AC
SERIES INl

1

1

SERIES INl

~
SWREG IN2

3

3

4

OUTPUT

REF

GND (PWR)

SWREG IN2

SWIN

SWCURRENT
CTRL

GND

8

8
,-----1

6

+

~

Cp = 0.01 flF ;; i::::
~

RCL

OUTPUT

7

'---

= 500 Q

REl

Ie

F = 470 flF

RE2=4.7kQ <
-'-

~

Figure 1. TL499AC Basic Configuration
Table 1. Output Current vs Input and Output Voltages
for Step-Up Switching Regulator With RCL = 150 Q
VO,OUTPUT
VOLTAGE

V12, SWITCHING REGULATOR INPUT VOLTAGE (V)
1.1

1.2

1.3

1.5

(V)

2

1.7

2.5

3

5

6
65

90

50

80

100

9

10, OUTPUT CURRENT (rnA)

30
25
20

25

30

80

100

100

15

20

30

45

55

100

100

100
100

20
15
12

10

15

20

25

30

40

55

70

100

100

10

15

20

25

30·

35

45

65

80

100

100

100

100

9

20

25

25

35

40

50

70

90

6

30

35

40

45

55

75

95

100
Circuit of Figure 1 except:

5

35

40

45

55

70

85

100

100

4.5

35

45

50

60

75

95

100

lOOt

3

55

65 t

75t

95t

lOOt

CF

2.9

60t

70t

75t

lOOt

lOOt

Cp

RCL = 150 Q

= 330 flF
= 0.1 flF

t The difference between the output and input voltage for these combinations is greater than the minimum output-to-input differential voltage
specification at 70'C (1.2 V), but less than the minimum at 85'C (1.9 V).

TEXAS .JJ1

INSTRUMENTS
2-238

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TL499AC
WIDE·RANGE POWER SUPPLY CONTROLLER
APPLICATION INFORMATION
Table 2. Output Current vs Input and Output Voltages
for Step-Up Switching Regulator With RCL = 200 Q
VO,OUTPUT
VOLTAGE

V12, SWITCHING REGULATOR INPUT VOLTAGE (V)
1.1

1.2

1.3

1.5

(V)

1.7

2

2.5

3

5

6

9

50

100

50

70

100

10, OUTPUT CURRENT (rnA)

30
25
20
15

10

15

15

25

30

70

90

100

25

35

45

90

100

100
100

12

10

10

15

20

25

35

45

60

100

100

10

15

20

20

25

30

40

55

70

100

100

100

9

20

20

25

30

35

45

60

80

6

25

30

35

45

50

65

90

100

5

30

35

40

55

60

75

100

100

4.5

35

40

45

55

65

85

100

100t

3

50

55 t

65 t

80t

90t

2.9

50 t

60 t

65t

85t

100t

Circuit of Figure 1 except:
RCL ~ 200 Q
CF ~ 330 flF
Cp~0.1

..

flF

t The difference between the output and Input voltage for these combinations IS greater than the minimum output-to-Input differential voltage
specification at 70'C (1.2 V), but less than the minimum at 85'C (1.9 V).

Table 3. Output Current vs Input and Output Voltages
for Step-Up Switching Regulator With RCL =300 Q
V12, SWITCHING REGULATOR INPUT VOLTAGE (V)

VO,OUTPUT
VOLTAGE

1.1

1.2

1.3

1.5

1.7

2

2.5

3

5

6
40

70

40

55

100

9

10, OUTPUT CURRENT (rnA)

(V)
30
25
20
15

10

10

10

15

20

55

70

100

20

30

35

75

95

100
100

12

10

10

10

15

20

25

35

45

95

100

10

15

15

15

20

25

30

45

55

100

100

100

100

9

15

15

20

25

30

35

50

60

6

25

25

30

35

45

55

70

90

5

30

30

35

45

50

65

85

100

4.5

30

35

40

45

55

70

95

100t

Circuit of Figure 1 except:

3

45

50 t

55 t

70t

90t

CF ~ 330 flF

2.9

45t

50t

60t

75t

95t

Cp ~ 0.1 flF

RCL

~

300

Q

t The difference between the output and input voltage for these combinations is greater than the minimum output-to-Input dlfferenllal voltage
specification at 70'C (1.2 V), but less than the minimum at 85'C (1.9 V).

TEXAS

~

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-239

Tl499AC
WIDE·RANGE POWER SUPPLY CONTROLLER
APPLICATION INFORMATION
Table 4. Output Current vs Input and Output Voltages
for Step-Up Switching Regulator With RCL =510 Q
5

15
12
10

10
10

20

15
25

15
25
30

20
35
40

6

9

30
40
55

50

25
40
55
65
70

.70

75

100

5

6

9

35
35

80

75

90

100
100

85

Table 5. Output Current vs Input and Output Voltages
for Step-Up SWitching Regulator With RCL 0= 1 kQ
VO.-6UTPtjT-T-·----·-··--"--·----Vli:SWITCHING REGULATOR INPUT VOLTAGE (V)

~-- ~ _. f===-=--=-=---VOLTAGE

'1.1

1.2

1.3

1.5

1.7

2

2.5

3

10. OUTPUT CURRENT (rnA)

45

35
50
60
65

40

45

85

40
45

55
60

25

:<0

Iii

15
12

15

10

10

10

10

15

20

9

6

10

10

5

10

10

15

20

20

4.5

15

15

20

25

3

20

25t

30t

2.9

20t

15
251
25 1

25 t

30t

35 t
45 t

15
20
25
30

25
30
35
40

10
20
25
30
35
40
45t

30

Circuit of Figure 1 except:
RCL~

1 kQ

CF = 330 IlF
Cp ~ 0.1 IlF

t The difference between the output and Input voltage for these combinations IS greater than the minimum output-to-Input differential voltage
specification at 70°C (1.2 V). but less than the minimum at 85°C (1.9 V).

TEXAS

INSlRUMENlS
2-240

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TL594C, TL5941
PULSE·WIDTH·MODULATION CONTROL CIRCUITS
02712, APRIL 1988-REVISEO NOVEMBER1991

•
•

Complete PWM Power Control Circuitry

•

Output Control Selects Single-Ended or
Push-Pull Operation

•
•

(TOP VIEW)

Uncommitted Outputs for 200-mA Sink or
Source Current
ERROR {IN+
AMP 1
INFEEDBACK

•

Circuit Architecture Allows Easy
Synchronization

REF
OUTPUTCTRL

CT

VCC
C2

RT
GND

Variable Dead Time Provides Control Over
Total Range
Internal Regulator Provides a Stable 5-V
Reference Supply Trimmed to 1%

IN+} ERROR
INAMP2

DEAD-TIME CTRL

Internal Circuitry Prohibits Double Pulse at
Either Output

•

•

o OR N PACKAGE

E2
E1

C1

AVAILABLE OPTIONS
PACKAGE

Undervoltage Lockout for Low Vee
Conditions

TA

SURFACE MOUNT
(0)

PLASTIC DIP
(N)

O'C to 70'C
-40'C to 85'C

TL594CD
TL5941D

TL594CN
TL5941N

The D package is available taped and reeled. Add "R" suffix to
device type (e.g., TL594CDR).

description
The TL594 incorporates on a single monolithic
chip all the functions required in the construction
of a pulse-width-modulation control circuit.
Designed primarily for power supply control, these
devices offer the systems engineer the flexibility to
tailorthe power supply control circuitry to a specific
application.

FUNCTION TABLE
INPUT
OUTPUT
CTRL

OUTPUT FUNCTION

VI"O
VI"REF

Single-ended or parallel output
Normal push-pull operation

The TL594 contains two error amplifiers, an on-chip adjustable oscillator, a dead-time control comparator, a
pulse-steering control flip-flop, a 5-V regulator with a precision of 1%, an undervoltage lockout control circuit,
and output control circuitry,
The error amplifiers exhibit a common-mode voltage range from -0.3 V to Vee -2 V. The dead-time control
comparator has a fixed offset that provides approximately 5% dead time when externally altered, The on-chip
oscillator may be bypassed by terminating RT to the reference output and providing a sawtooth input to CT, or
it may be used to drive the common circuitry in synchronous multiple-rail power supplies,
The uncommitted output transistors provide either common-emitter or emitter-follower output capability, Each
device provides for push-pull or single-ended output operation with selection by means of the output-control
function, The architecture of these devices prohibits the possibility of either output being pulsed twice during
push-pull operation, The undervoltage lockout control circuit locks the outputs off until the internal circuitry is
operational.
The TL594C is characterized for operation from O°C to 70°C, The TL5941 is characterized for operation from
-40°C to 85°C,

PRODUCTION DATA Information is current as of publication date. Products
conform to specifications per the terms of Texas Instruments standard
warranty. Production processing does not necessarily include testing of all
parameters.

TEXAS

~

Copyright © 1991, Texas Instruments Incorporated

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-241

TL594C, TL594i
PULSE-WiDTH-MODULATION CONTROL CIRCUITS
functional block diagram
OUTPUTCTRL
(see Function Table)

13

6
RT 5
CT -"--T-l--...J
~O.1

V

DEAD-TlME~

CTRL

Error Amplifier 1
IN+ _1_ _ +
IN-

2

1

Pulse-Steering
Flip-Flop

12

Error Amplifier 2
IN+

VCC

Undervoltage
Lockout
Control

~+

15
2
IN- - - -

~_ _ _ _ _~~_ _ _ _
14

FEEDBACK _3_ _ _--~~-~

7

-+
O.7mA

TEXAS

-1!1

INSTRUMENTS
2-242

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

REF
GND

TL594C, TL5941
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
TL594C

TL5941

UNIT

41

41

V

VCC+0.3
41

V

Collector output voltage

VCC+0.3
41

Collector output current

250

250

mA

Supply voltage, VCC (see Note 1)
Amplifier input voltage

Continuous total dissipation

V

See Dissipation Rating Table

Operating free-air temperature range
Storage temperature range

o to 70

-40 to 85

'c

-65 to 150

-65 to 150

'c

260

260

'c

Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds
NOTE1: All voltage values, except differential voltages, are with respect to the network ground terminal.
DISSIPATION RATING TABLE

TA = 70'C
POWER RATING

TA = 85'C
POWER RATING

25'C

608 mW

494 mW

41'C

736 mW

598 mW

TA s 25'C
POWER RATING

DERATING
FACTOR

DERATE
ABOVETA

D

950 mW

N

1000 mW

7.6mwrc
9.2mWrC

PACKAGE

recommended operating conditions
TL594C
MIN

MIN

MAX

UNIT

7

40

7

40

V

-0.3

VCC-2

-0.3

VCC-2

V

Supply voltage, Vce
Amplifier input voltage, VI

TL5941
MAX

Collector output voltage, Vo
Collector output current (each transistor)
Current into feedback terminal

40

40

V

200

200

mA

0.3

mA

0.3
0.47

10000

0.47

10000

nF

1.8

500

1.8

kQ

Oscillator frequency, fosc

1

300

1

500
300

kHz

Operating free-air temperature, TA

0

70

-40

85

'c

Timing capacitor, CT
Timing resistor, RT

TEXAS

-1!1

INSTRUMENTS
POST OFFICE BOX 6S5303 • DALLAS, TEXAS 75265

2-243

TL594C, TL5941
PULSE·WIDTH·MODULATION CONTROL CIRCUITS
electrical characteristics over recommended operating free-air temperature range, Vcc
(unless otherwise noted)

= 15 V,

reference section
TEST CONDITIONSt

PARAMETER
Output voltage (REF)

10 = 1 rnA,

TA=25°C

Input regulation

VCC~

TA=25°C

7 V to 40 V,

Output regulation

10 = 1 to lOrnA,

Output voltage change with temperature

i\.TA = MIN to MAX

Short-circuit output current§

IJref = 0

MIN

TYpt

MAX

4.95

5

5.05

2

25

mV
mV

14

35

0.2%

1%*

10

35

50

MIN

TYpt

MAX

TA=25°C

UNIT
V

rnA

.oscillator section, CT = 0.01 I-tF, RT = 12 kQ (see Figure 2)
TEST CONDITIONst

PARAMETER
Frequency

10

Standard deviation of frequency 11

All values of VCC, CT, RT, and T A constant

Frequency change with voltage

VCC=7Vt040V,

Frequency change with temperature#

i\.TA = MIN to MAX

UNIT
kHz

10%
0.1%

TA = 25°C

5%

amplifier section (see Figure 1)

TYpt

MAX

Input offset voltage, error amplifier

FEEDBACK at 2.5 V

2

10

Input offset current

FEEDBACK ai 2.5 V

25

250

nA

Input bias current

FEEDBACK at 2.5 V

0.2

1

IlA

Common-mode input voltage range,
error amplifier

VCC=7Vt040V

Open-loop voltage amplification, error
amplifier

AVO=3V,

Unity-gain bandwidth

PARAMETER

TEST CONDITIONS

MIN

0.3
to
VCC- 2
RL = 2 kQ,

Vo = 0.5 V to 3.5 V

70

UNIT
mV

V

95

dB

Vo = 0.5 Vto 3.5 V,

RL = 2 kQ

800

kHz

Common-mode rejection ratio, error
amplifier

VCC=40V,

TA = 25°C

65

80

dB

Output sink current (pin 3)

VID = -15 mV to -5 V,

FEEDBACK at 0.5 V

0.3

0.7

rnA

Output source current (pin 3)

VID = 15 mVto 5 V,

FEEDBACK at 3.5 V

-2

rnA

t For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating condltlonSJ

*All tYPical values except for parameter changes with temperature are at TA = 25°C.

§ Duration of the short circuit should not exceed one second.
~ Standard deviation 15 a measure of the statistical distribution about the mean as derived from the formula'
# Temperature coefficient of timing capacitor and timing resistor not taken Into account.

TEXAS -If

INSlRUMENlS
2-244

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

a =

N
- 2
~ (xn - X)
-"n....:="""'--_ _

N- 1

TL594C, TL5941
PULSE·WIDTH-MODULATION CONTROL CIRCUITS
electrical characteristics over recommended operating free-air temperature range, Vee = 15 V,
(unless otherwise noted)
dead-time control section (see Figure 2)
PARAMETER

TEST CONDITIONS
~

Input bias current

VI

Maximum duty cycle, each output

DEAD-TIME CTRL at 0 V

MIN

TYP+

MAX

UNIT

-2

-10

I-'A

3

3.3

TYP+

MAX

2

100

4

200

f,A

-100

flA

0 to 5.25 V
45%

Zero duty cycle

Input threshold voltage

Maximum duty cycle

0

V

output section
PARAMETER

TEST CONDITIONS
VC~40V,

VE

~

OV,

VCC

MIN

~40V

VC~15V,
VE ~ OV,
VCC ~ 1 t03 V,
DEAD-TIME CTRL and OUTPUT CTRL at 0 V

Collector off-state current

Emitter off-state current

VCC

I Common emitter
Collector-emitter saturation voltage IE'
f II
mltter 0 ower

VE

Output control input current

VI

~

~

Vc

~

40 V,

VE

0,

Ve~15V,
~

~

0

Ie

~

200 mA

1.1

1.3

IE

~

-200 mA

1.5

2.5

UNIT

V

3.5

mA

TYP+

MAX

UNIT

4

4.5

REF

pwm comparator section (see Figure 2)
PARAMETER

TEST CONDITIONS

Input threshold voltage, FEEDBACK

Zero duty cycle

Input sink current, FEEDBACK

FEEDBACK

~

MIN

0.5 V

0.3

0.7

V
mA

undervoltage lockout section (see Figure 2)
TEST CONDITIONSt

PARAMETER

MIN

MAX

3.5

6
6.9

TA=25°e

Threshold voltage

HA = MIN to MAX

Hysteresis§

100

UNIT
V
mV

total device (see Figure 2)
PARAMETER
Standby supply current
Average supply current

TEST CONDITIONS
RTat REF,

!VCC=15V

All other inputs and outputs open

I VCC ~ 40V

DEAD-TIME CTRL at 2 V,

MIN

TYP+

MAX

9

15

11

18

12.4

See Figure 2

UNIT
mA
mA

switching characteristics, TA = 25°C
PARAMETER
Output voltage rise time
Output voltage fall time
Output voltage rise time
Output voltage fall time

TEST CONDITIONS

MIN

TYP+

MAX

100

200

Common-emitter configuration, See Figure 3
Emitter-follower configuration, See Figure 4

30

100

200

400

45

100

UNIT

ns

t For conditions shown as MIN or MAX, use the approprrate value speCified under recommended operating conditions.
=1= All typical values except for parameter changes with temperature are at T A ~ 25°C.
§ Hysteresis is the difference between the positive-going input threshold voltage and the negative-going input threshold voltage.

TEXAS

-I!I

INSTRUMENTS
POST OFFICE BOX 655303 • DALu\S. TEXAS 75265

2-245

TL594C, TL5941
PULSE·WiDTH·MODULATION CONTROL CIRCUITS
PARAMETER MEASUREMENT INFORMATION
Amplifier Under Test

'>--+----

FEEDBACK

REF - - - /

Figure 1. Amplifier Characteristics Test Circuit

TEXAS •

INSTRUMENTS
2-246

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TL594C, TL5941
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
PARAMETER MEASUREMENT INFORMATION
VCC=15V

150 Q
2W

12
VCC
DEAD-TIME
CTRL

4
Test {
Inputs

3
12 kQ

8
C1 t-'=--t---....-

FEEDBACK

E1

TL594

6

150 Q
2W

C2

RT

E2

CT

Output 1

9
11

Output 2

10

-::-

ONj
ININ +

Error
Amplifiers

IN13

OUTPUT
CTRL

REF

14

GND
7

50kQ

-::-

TEST CIRCUIT

VCC

Voltage
at C1

--------

OV
VCC

Voltage
at C2

------

OV

Voltage
at CT

.Dead-Time
Control Input

OV

Feedback
Input
0.7V

I
I
I

I

Duty Cycle

I

0%

I..

I

/

I

70

'\.

c
0

60

=aE

50

~
~

«

'"'"
~

~

Vee =1 15 V
6VO=3V TA = 25°e

"

'\.

40
30
20
10

o

1

10

100

1k

"

'\.

10k

~
100k

f - Frequency - Hz

Figure 6

"

1M

t Frequency variation (M) is the change in oscillator frequency that occurs over the full temperature range.

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-249

2-250

TL598
PULSE·WIDTH·MODULATION CONTROL CIRCUIT

"'''')T'''IA'''''' 1991

•
•

D OR N PACKAGE
(TOP VIEW)

Complete PWM Power Control Function
Totem-Pole Outputs for 200-mA Sink or
Source Current

•

Output Control Selects Paralle! or
Push-Pull Operation

•

ERROR {IN+
INAMP 1

16

Variable Dead-Time Provides Control Over
Total Range

•

Internal Regulator Provides a Stable 5-V
Reference Supply, Trimmed to 1%
Tolerance

•

FEEDBACK

14

REF

13

OUTPUTCTRL

CT

12

VCC

RT

11

Vc

SIGNALGND

10

OUT1

9

INPUT
OUTPUT
CTRL
VI
VI

Undervoltage Lockout for Low Vee
Conditions

•
•

Separate Power and Signal GroundS

POWERGND
OUT2

FUNCTION TABLE

On-Board Output Current-Limiting
Protection

•

IN+} ERROR
INAMP 2

DEAD-TIME CTRL

Internal Circuitry Prohibits Double Pulse at
Either Output

•

15

~
~

GND
REF

OUTPUT FUNCTION
Single-ended or parallel output
Normal push-pull operation

TL598Q Has Extended Temperature
Range ... -40°C to 125°C

description
The TL598 incorporates all the functions required in the construction of pulse-width-modulated controlled
systems on a single monolithic chip. Designed primarily for power supply control, the TL598 provides the
systems engineer with the flexibility to tailor the power supply control circuits to a specific application.
The TL598 contains two error amplifiers, an internal oscillator (externally adjustable), a dead-time control
comparator, a pulse-steering flip-flop, a 5-V precision reference, an undervoltage lockout control, and output
control circuits. Two totem-pole outputs provide exceptional rise and fall time performance for power FET
control. The outputs share a common source supply and common power ground pins, which allow system
designers to eliminate errors caused by high, current-induced voltage drops and common-mode noise.
The error amplifier has a common-mode voltage range from 0 V to Vee -2 V. The dead-time control comparator
has a fixed offset that prevents overlap of the outputs during push-pull operation. Synchronous multiple supply
operation may be achieved by connecting pin 6 to the reference output and providing a sawtooth input to pin 5.
The TL598 device provides an output control function to select either push-pull or parallel operation. Circuit
architecture prevents either output from being pulsed twice during push-pull operation. The output frequency
for push-pull applications is one-half the oscillator frequency ( fo = _1__ ). For single-ended applications:
1
2 RTCT
fo = RTCT
The TL598C is characterized for operation from O°C to 70°C. The TL598Q is characterized for operation from
-40°C to 125°C.

PRODUCTION DATA information is current as of publication date. Products
conform to specifications per Ihe terms of Texas Instruments standard

warranty. Production processing does not necessarily include testing of all

parameters.

TEXAS

~

Copyright © 1991. Texas Instruments Incorporated

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-251

TL598
PUlSE-WIDTH-MODULATION CONTROL CIRCUIT
logic diagram (positive logic)
OUTPUTCTRL
(see Function Table)
13

RT
CT

6
5

11 Vc

8

DEAD-TIME
CTRL

OUT1

IN+
IN-

2
9

IN+

16

IN-

15

FEEDBACK

OUT2

10 POWER
12 GND
.----------------------+----------------~VCC

3

Undervoltage
Lockout Control

L-____________~----------------~1~4REF

r-~~~--------------------------------------~7 SIGNAL
GND

--+

0.7mA

TEXAS ."

INSlRUMENTS
2-252

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TL598
PULSE-WIDTH-MODULATION CONTROL CIRCUIT
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) ............................................................ 41 V
Amplifier input voltage, VI ............................................................ Vee + 0.3 V
Collector voltage ........................................................................... 41 V
Output current (each output), sink or source, 10 ............................................. 250 mA
Continuous total dissipation ........................................... See Dissipation Rating Table
Operating virtual junction temperature range, T J: TL598C .............................. O°C to 150°C
TL598Q ............................ -40°C to 150°C
Storage temperature range ....................................................... -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................... 260°C
NOTE 1: All voltage values, except differential voltages, are with respect to the signal ground terminal.
DISSIPATION RATING TABLE
TA s 25°C
POWER RATING

DERATING FACTOR
ABOVE TA = 25°C

D

950 mW

7.6 mW/'C

6.8mW

190mW

N

1150 mW

9.2 mW/'C

736mW

230mW

PACKAGE

TA = 70°C
POWER RATING

TA=125°c
POWER RATING

recommended operating conditions
MIN

MAX

Supply voltage, VCC

7

40

UNIT
V

Amplifier input voltage, VI

0

VCC-2
40

V
V

Output current (each output), sink or source, 10

200

mA

Current into feedback terminal, IlL

0.3

mA

0.00047

10

1.8

500

JlF
kQ

kHz

Collector voltage

Timing capacitor, CT
Timing resistor, RT
Oscillator frequency, fose

ITL598C

Operating free-air temperature, T A

ITL598Q

TEXAS

1

300

0

70

-40

125

°C

-If

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-253

TL598
PULSE-WIDTH-MODULATION CONTROL CIRCUIT
electrical characteristics over recommended operating free-air temperature range, Vcc = 15 V
(unless otherwise noted) (see Note 2)
reference section
TL598C

TEST CONDlTIONSt

PARAMETER

TA; 25'C

Output voltage (REF)

10; 1 mA

Input regulation

VCC;7Vt040V

TYP:(:

MAX

MIN

TYP:(:

MAX

4.95

5

5.05

4.95

5

5.05

5.1

4.9

TA; MIN to MAX

Output regulation

10;1t010mA

Output voltage change with
temperature

6.TA; MIN to MAX

Short·circuit output current§

REF; 0

TL598Q

MIN
4.9

TA; 25'C

2

25

2

22

1

15

1

15

50
0.2%
-48

-10

80

1%

V

5.1

TA; 25'C
TA; MIN to MAX

UNIT

0.2%
-10

-48

MIN

TYp:j:

mV
mV

1%

mA

oscillator section, CT = 0.001 !-IF, RT = 12 kQ (see Figure 1)
TEST CONDITIONSt

PARAMETER
Frequency

MAX

100

Standard deviation of frequency~

All values of VCC, CT, RT, T A constant

Frequency change with voltage

vcc;7vi040V,

Frequency change with temperature#

kHz

10%

TA; 25'C

0.1%

1%

7%

12%

5%

8%

6.TA; MIN to MAX
6.TA; MIN to MAX,

UNIT

CT; 0.01 flF

error amplifier section
TYp:j:

MAX

Input offset voltage

Feedback pin at 2.5 V

2

10

mV

Input offset current

Feedback pin at 2.5 V

25

250

nA

Input bias current

Feedback pin at 2.5 V

0.2

1

flA

PARAMETER

Common-mode input voltage range

TEST CONDITIONS

MIN

0
to

VCC;7Vt040V

UNIT

V

VCC-2
Open·loop voltage amplification

!NO (pin 3); 3 V,

Vo (pin 3) ; 0.5 V to 3.5 V

70

Unity-gain bandwidth

6.VIC; 6.5 V,

Common-mode rejection ratio

VCC;40V,

Output sink current (pin 3)

Feedback pin at 0.5 V

Output source current (pin 3)

Feedback pin at 3.5 V

Phase margin at unity gain

Feedback pin at 0.5 V to 3.5 V,

Supply voltage rejection ratio

Feedback pin at 2.5 V,

..

TA;25'C

95

dB

800

kHz

65

80

dB

0.3

0.7

mA

-2
6.VCC; 33 V,

RL; 2 kQ
RL; 2 kQ

mA
65'

..

t For conditions shown as MIN or MAX, use the appropriate value speCified under recommended operating conditions.

100

dB

r------

:j: All' typical values except for parameter changes with temperature are at T A; 25'C,
N
§ Duration of the short circuit should not exceed one second.
k (xn - X)2
~ Standard deviation is a measure of the statistical distribution about the mean as derived from the formula: a
-=-n_;",1_ __
# Effects of temperature on external RT and CT are not taken into account.
N- 1
NOTE 2: Pulse-testing techniques that will maintain the junction temperature as close to the ambient temperature as possible must be used.

=

TEXAS .JJI

INSTRUMENTS
2-254

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TL598
PULSE-WIDTH-MODULATION CONTROL CIRCUIT
electrical characteristics over recommended operating free-air temperature range, Vee = 15 V
(unless otherwise noted) (see Note 2)
undervoltage lockout section
PARAMETER

TL598C

TEST CONDITIONSt

MIN

TA=25'C

Threshold voltage
Hysteresist

TL598Q

MAX

MIN

MAX

4

6

4

6

LHA= MINto MAX

3.5

6.9

3

6.9

TA = 25'C

100

100

50

30

TA = MIN to MAX

UNIT

V
mV

output section
PARAMETER

Collector off-state current
High·level output voltage
Low·level output voltage
Output control input current

TEST CONDITIONS

MIN

Dead·time pin is connected to

TYP§

MAX

2

100

aV

VCE=40V,

VCC=40V,

VCC=15V,

10 =-200mA

12

Vc = 15 V

10=-20mA

13

VCC=15V,

10 = 200 mA

Vc = 15 V

10 = 20mA

UNIT

IlA
V

2
0.4

V

VI = REF

3.5

mA

VI = 0.4 V

100

IlA

dead-time control section (see Figure 1)
PARAMETER

TEST CONDITIONS
MIN

Input bias current (pin 4)

VI = a to 525 V

Maximum duty cycle, each output

Dead-time control at a V

Input threshold voltage (pin 4)

TL598C
TYP§

-2

MAX

UNIT
MAX

-2

-25

3

3.2

!lA

45%
3

3.3

a

Maximum duty cycle

TL598Q
TYP§

-10

45%

Zero duty cycle

MIN

a

V

pwm comparator section
PARAMETER

TEST CONDITIONS

Input threshold voltage (pin 3)

Dead-time control = a V

Input sink current (pin 3)

V(pin 3) = 0.5 V

MIN

TYP9

MAX

3.75

4.5

0.3

0.7

MIN

UNIT

V
mA

total device (see Figure 1)
TYP§

MAX

Pin 6 at REF,

IVCC=15V

15

21

All other inputs and outputs open

I VCC = 40V

20

26

PARAMETER

Standby supply current
Average supply current

TEST CONDITIONS

Dead-time control at 2 V

UNIT

mA
mA

15

switching characteristics, TA = 25°C
PARAMETER

TEST CONDITIONS

MIN

Output voltage rise time
Output voltage fall time

CL = 1500 pF, VC=15V, VCC=15V, See Figure 2

TYP

MAX

60

150

35

75

UNIT

ns

t For conditions shown as MIN or MAX, use the appropnate value specified under recommended operating conditions.

*Hysteresis is the difference between the positive-going input threshold voltage and the negative-going input threshold voltage.
§ All typical values except for parameter changes with temperature are at T A = 25'C.
NOTE 2: Pulse-testing techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible.

TEXAS

~

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-255

TL598
PULSE-WIDTH-MODULATION CONTROL CIRCUIT
PARAMETER MEASUREMENT INFORMATION
Output

15 V

...----j--+- Vc

12

2

VCC
ERROR ERROR {IN+
INf AMP 1
AMP 2
IN- 15

3

FEEDBACK

4

DEAD-TIME CTRL

1

IN~

50kQ
Test {
Inputs

1:

, -_ _-=5, CT

0.001 rtF

REF

OUTPUT CTRL

Vc
OUT1

12 kQ

7

OUT2

SIGNALGND

POWERGND

-: POWER GND

14

OUTPUT CONFIGURATION

13
11

15 V

8

OUTPUT 1

9

OUTPUT 2

VI~ ~ ::~.FEEDBACK
REF

10

r-

l

MAIN DEVICE TEST CIRCUIT

-

+

ERROR AMPLIFIER TEST CIRCUIT

Figure 1. Test Circuits

--------VC

. _ - - _ Output
CL = 1500 pF

OV

OUTPUT CONFIGURATION

OUTPUT VOLTAGE WAVEFORM

Figure 2. Switching Output Configuration and Voltage Waveform

TEXAS ."

INSTRUMENTS
2-256

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TL598
PULSE·WIDTH·MODULATION CONTROL CIRCUIT
TYPICAL CHARACTERISTICS
OSCILLATOR FREQUENCY AND
FREQUENCY VARIATIONt
vs
TIMING RESISTANCE

AMPLIFIER VOLTAGE AMPLIFICATION
vs
FREQUENCY

80

100 k
Vee -15V

Vee- 15V
!NO - 3V
TA = 25°e

40 k
-2%

N

J:

,..uI

.,c:
".,.l!!

u.
C5

~

·0
III
0
I

u

10 k

,,-

~~ 1%

j

1k

..,III

0.001 flF

0% - l - i""

4k

60

I

o. 01 IlF

c:
0

:;
.~

b.-""-

0.1 flF

:!::

Q.

40

E

400

.

t

: At =1%

100

III

~

I I J II

.,
£1'"
-

U
I:
CI>

"
~

/1-'

~-1%

0.001 !J.F

.... O.OIIlF
0% - f-

4k

C"

U.

(;

1k

'uIII

~

400

u

100

i

0.1 !J.F

Mt = 1%

,

0

III

~

1'>../-

40

===

P'

CT = 1 !J.F

1\

II IIII

10
1k

II IIII

O~~~~~

40k lOOk
4k
10 k
RT - Timing Resistance - Q

400k

1M

lk

__~~~~__~~~~

10k

lOOk

1M

f - Frequency - Hz

t Frequency variation (M) is the change in oscillator frequency that

Figure 4

occurs over the full temperature range.

Figure 3

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-265

2-266

TL750L, TL751L SERIES, TL751 L05M, TL751L12M
LOW-DROPOUT VOLTAGE REGULATORS

•

Very Low Dropout Voltage, Less Than 0.6 V
at 150 mA

•

Very Low Quiescent Current

•

TIL- and CMOS-Compatible Enable on
TL751L Series, TL751 L05M, and
TL751L12M

•

•
•
•
•
•

60-V Load-Dump Protection

Reverse Transient Protection to -50 V
Internal Thermal Overload Protection
Overvoltage Protection
Internal Overcurrent Limiting Circuitry
Less Than 500-[lA Disable (TL751 L Series,
TL75L05M, and TL75L 12M)

terminal assignments
TL750L •.. KC
HEAT·SINK·MOUNTED PACKAGE
(TOP VIEW)

TL750L ... D
SMALL·OUTLINE PACKAGE
(TOP VIEW)

OUTPUTQ8
COMMON 2
7
6
COMMON 3
NC 4
5

INPUT
COMMON
COMMON
NC

INPUT

COMMON
COMMON

INPUT

OUTPUT

The common terminal is in electrical
contact with the mounting base.

TO-226AA

TL751L. .• D
SMALL·OUTLINE PACKAGE
(TOP VIEW)

TL750L ••. P
DUAL·IN·LlNE PACKAGE
(TOP VIEW)

INPUT
NC
COMMON
NC

(TOP VIEW)

OUTPUT

TO-220AB

OUTPUTQa
NC 2.
7
NC 3
6
NC 4
5

TL750L ... LP
SILECT'" PACKAGE

OUTPUTQs
7
COMMON 2
COMMON 3
6
NC 4
5

TL751L .•• P
DUAL·IN·LlNE PACKAGE
(TOP VIEW)

INPUT
COMMON
COMMON
ENABLE

OUTPUTQa
NC 2
7
NC 3
6
NC 4
5

INPUT
NC
COMMON
ENABLE

TL751 L05M, TL751 L 12M .•. FK PACKAGE

TL751 L05M, TL751L12M ... JG PACKAGE

(TOP VIEW)

(TOP VIEW)

I-

::J

~

OUTPUTQ8 .INPUT
NC 2
7 NC
NC 3
6 COMMON
NC 4
5 ENABLE

()::J

zO

NC
NC
NC
NC
NC

4
5
6
7
8

3 2 1 2019
1a
17
16
15
14
9 1011 12 13

NC
NC
NC
COMMON
NC

()Z Z() Z()llLj
()
iii Z
«Z

UJ

NC-No internal connection

SILECT is a trademark of Texas Instruments Incorporated.

TEXAS

-'I}

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Copyright © 1991, Texas Instruments Incorporated
On products compliant to MIL-STD-883, Class 9, all parameters art!
tested unless otherwise noted. On all other products, production
processing does riot necessarily Include testing of all parameters.

2-267

TL750L, TL751L SERIES, TL751 L05M, TL751L12M
LOW-DROPOUT VOLTAGE REGULATORS
description
The TL750L and TL751L series and the TL751 L05M and TL751L12M are low-dropout positive voltage
regulators specifically designed for battery-powered systems. These devices incorporate overvoltage and
current-limiting protection circuitry along with internal reverse-battery protection circuitry to protect both itself
and the regulated system. Both series and the TL751 L05M and TL751 L 12M are fully protected against 60-V
load-dump and reverse-battery conditions. Extremely low quiescent current during full-load conditions makes
these devices ideal for standby power systems.
The TL750L series of fixed-output voltage regulators offer 5-V, 8-V, 10-V, and 12-V options. They are available
in TO-226AA (formerly TO-92) (LP) packages, TO-220AB (KC) packages, 8-pin small-outline plastic packages
(0), and 8-pin plastic dual-in-line packages (P).
The TL751 L series of fixed-output voltage regulators offer 5-V, 8-V, 10-V, and 12-V options with the addition of
an enable input. The enable input, when taken high, places the regulator output in a high-impedance state. This
gives the designer complete control over power up, power down, or emergency shut down. This series is offered
in the 8-pin small-outline plastic package and the 8-pin plastic dual-in-line package.
The TL751 L05M and TL751 L 12M fixed-output voltage regulators also offer 5-V and 12-Voptions with an enable
input. The enable input, when taken high, places the regulator output in a high-impedance state. This gives the
designer complete control over power up, power down, or emergency shut down. This TL751 L_M is offered in
the FK and JG package.

absolute maximum ratings over operating junction temperature range (unless otherwise noted)
TL750L

TL751L
TL751L_M

UNIT

Continuous input voltage

26

26

Transient input voltage, T A = 25'C (see Note 1)

60

60

Continuous reverse input voltage

-15

-15

V
V
V

Transient reverse input voltage: t '" 100 ms

-50

-50

V

825

825

D package
FK package
Continuous total dissipation at (or below) 25'C free-air temperature (see Note 2):

1375

1050

JG package
KC package
LP package

2000
775

Operating virtual junction temperature range

1000
-40 to 150

Storage temperature range

-65 to 150

P package

Lead temperature 1,6 mm (1/16 inch) for 10 seconds

mW

260

1000
-40 to 150

'C

-65 to 150

'C

260

'C

NOTES: 1. The transient Input voltage rating applies for the waveform descnbed In Figure 1.
2. For operation above 25'C free-air temperature, linearly derate the D package at the rate of 6.6 mWI'C, the FK package at 11 mWI'C,
the JG package at 8.4 mWI'C, the KC package at 15.2 mWI'C, the LP package at 6.2 mW/'C, and the P package at 8 mWI'C.

TEXAS ~

INSTRUMENlS
2-268

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TL750L, TL751L SERIES, TL751 L05M, TL751L12M
LOW·DROPOUT VOLTAGE REGULATORS
recommended operating conditions over recommended operating junction temperature range
(unless otherwise noted)
TL75 L05 and TL751 L05M
Input voltage, VI

High-level ENABLE input voltage, VIH

MIN

MAX

6

26

TL75 L08

9

26

TL75 LtO

11

26

TL75_Lt2 and TL751 L12M

13

26

UNITS

V

TL751 Land TL751 L M

2

15

V

I VIL t, TA = 25'C

TL751 Land TL751 L M

-0.3

0.8

V

I VIL t, TA = Full range

TL751LandTL751L M

-0.15

0.8

V

Output current range, 10

TL75_LandTL751L M

0

150

rnA

TL75 L C

0

125

Operating virtual junction temperature, TJ

TL75_L Q

-40

125

TL751L M

-55

125

Low-level ENABLE input voltage

'c

t The algebraic convention, In which the least positive (most negative) value is designated minimum, is used in this datasheetfor ENABLE voltage
levels and temperature only.

TL750L05, TL751 L05, and TL751 L05M electrical characteristics at 25°C virtual junction
temperature, VI =14 V, 10 =10 mA (unless otherwise noted)
PARAMETER
Output voltage
Input regulation

TEST CONDITIONS+
VI = 6 V to 26 V,

TYP

MAX

5

5.2

4.75

5.25
5

10

6

30

VI = 8 V to 18 V,
10 = 5 rnA to 150 rnA

Bias current

J TJ = TJmin to 125'C

MIN
4.80

VI = 6 Vto 26V

Ripple rejection

Output noise voltage

ITJ=25'C

VI=9VtoI6V

Output regulation
Dropout voltage

10 = Oto 150 rnA

60·

1= 120 Hz

65
20

10=10mA

0.2
0.6
500

10 = 150mA
VI = 6 V to 26 V,

10 = lOrnA,

TJ = TJmin to 125'C

V
mV
dB

50

10 = 150mA
1= 10Hz to 100 kHz

UNIT

mV
V
ltV

10

12

I

2

rnA

TL750L08 and TL751L08 electrical characteristics at 25°C virtual junction temperature, VI = 14 V,
10 = 10 rnA (unless otherwise noted)
PARAMETER
Output voltage
Input regulation

TEST CONDITIONS;
VI = 9 V to 26 V,

MAX

8

8.32

7.6

8.4
10

20

25

50

VI=11Vt021V,
10 = 5 rnA to 150 rnA

Bias current

TYP

VI = 10 V to 17 V

Ripple rejection

Output noise voltage

MIN
7.68

VI= 9Vto 26V

Output regulation
Dropout voltage

10 = 0 to 150 rnA

I TJ = 25'C
I TJ = TJmin to 125'C

60·

f=120Hz

65
40

0.2

10=150mA

0.6
500

10 = 150mA
VI = 9 V to 26 V,

10 = 10mA,

TJ = TJmin to 125'C

V
mV
dB

80

10=10mA
1= 10 Hz to 100 kHz

UNIT

mV
V
IlV

10

12

1

2

rnA

·On products compliant to MIL-STD-883, Class B, this parameter is not production tested.
:I: Pulse-testing techniques are used to maintain the junction temperature as closes to the ambient temperature as possible. Thermal effects must
be taken into account separately. All characteristics are measured with a O.I-IlF capacitor across the input and a 10-IlF capacitor, with equivalent
series resistance 01 less than 1 Q across the output.

TEXAS

~

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-269

TL750L, TL751L SERIES, TL751L12M
LOW·DROPOUT VOLTAGE REGULATORS
TL750L10 and TL751L10 electrical characteristics at 25°C virtual junction temperature, VI = 14 V,
10 = 10 rnA (unless otherwise noted)
PARAMETER
Output voltage
Input regulation

TEST CONDITIONSt
VI = 11 Vt026V,

10 =Oto 150mA

MAX

10

10.4

9.5

10.5
25

VI = 11 V to 26 V

30

60

VI = 12 V to 22 V,
10 = 5 rnA to 150 rnA

Bias current

TYP

9.6

10

Output regulation

Output noise voltage

ITJ = TJmin to 125'C

MIN

VI = 12 V to 19 V

Ripple rejection

Dropout voltage

ITJ=25'C

1= 120 Hz

60'

65

10= lOrnA

0.2

10=150mA

0.6
700

10 = 150 rnA
VI=11Vto26V,

10 = 10 mA,

TJ = TJmin to 125'C

V
mV
dB

100

50

1= 10 Hz to 100 kHz

UNIT

mV
V
flV

10

12

1

2

mA

TL750L 12, TL751 L 12, and TL751 L 12M electrical characteristics at 25°C virtual junction
temperature, VI = 14 V, 10 = 10 rnA (unless otherwise noted)
PARAMETER
Output voltage
Input regulation

TEST CONDITIONst
VI = 13Vt026V,

10 = 0 to 150 mA

MAX

12

12.48

11.4

12.6
15

30

20

40

VI=13Vt023V,
10 = 5 mA to 150 mA

Bias current

TYP

VI=13Vt026V
Output regulation

Output noise voltage

I TJ = TJmin to 125'C

MIN
11.52

VI=14VtoI9V

Ripple rejection

Dropout voltage

ITJ=25'C

1= 120 Hz

50'

55
50

0.2

10=150mA

0.6
700

10 = 150mA
VI=13Vt026V,

10 = 10 rnA,

TJ = TJminto 125'C

V
mV
dB

120

10=10mA
1= 10 Hz to 100 kHz

UNIT

mV
V
flV

10

12

1

2

mA

'On products compliant to MIL-STD-883, Class B, thiS parameter IS not producllOn tested.
t Pulse-testing techniques are used to maintain the junction temperature as closes to the ambient temperature as possible. Thermal effects must
be taken into account separately. All characteristics are measured with a O.I-flF capacitor across the input and a 1O-flF capacitor, with equivalent
series resistance 01 less than 1 Q across the output.

TEXAS ~

INSIRUMENTS
2-270

POST OFFICE BOX 655303 • DALIJIS, TEXAS 75265

TL750L, TL751L SERIES, TL751 L05M, TL751L12M
LOW·DROPOUT VOLTAGE REGULATORS
TYPICAL CHARACTERISTICS
TRANSIENT INPUT VOLTAGE

vs
TIME
60

>

50

r\

\

I

'"

Ol

.l!!

~

40

.5

30 It.

'5Q.
C

.'"

'iii
c
j!:

TA l250C I
I
14 V + 46e(-t/O,230)
for t" 5 ms

VI

=

\..

"""-.

""
tr

20

"- """-.

=1 ms

-.............

"""'-

I

>10

o

o

-

100

200

300

400

---500

600

t-Tlme-ms

Figure 1

TEXAS

-'!1

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-271

2-272

TL750M, TL751 M SERIES
LOW-DROPOUT VOLTAGE REGULATORS
SEPTEMBER 1

•

Very Low Dropout Voltage, Less Than 0.6 V
at 750 mA

•
•

Low Quiescent Current

3·LEAD KC PACKAGE
(TOP VIEW)

OUTPUT
COMMON

TTL- and CMOS-Compatible Enable on
TL751 M Series

INPUT
The common terminal is in electrical
contact with the mounting base.

•

60-V Load-Dump Protection

•
•

Overvoltage Protection
Internal Thermal Overload Protection

•

Internal Overcurrent Limiting Circuitry

TO·200AB

description
The TL750M and TL751 M series are low-dropout
positive voltage regulators specifically designed
for battery-powered systems. The TL750M and
TL751 M incorporate on-board overvoltage and
current-limit protection Circuitry to protect both
themselves and the regulated system. Both series
are fully protected against 60-V load-dump and
reverse battery conditions. Extremely low
quiescent current, even during full-load
conditions, makes the TL750M and TL751 M
series ideal for standby power systems.

5·LEAD KC PACKAGE
(TOP VIEW)

@I I
The common terminal is in electrical
contact with the mounting base.

The TL750M series of fixed-output voltage
regulators offer 5-V, a-v, 10-V, and 12-V options
available in 3-lead KC (TO-220AB) plastic
packages.
The TL751 M series of fixed-output voltage
regulators also offer 5-V, a-v, 10-V, and 12-V
options with the addition of an enable input. The
enable input gives the designer complete control
over power-up, allowing sequential power up or
emergency shutdown. When taken high, the
enable input places the regulator output in a
high-impedance state. It is completely TTL- and
CMOS-compatible. The TL751 M series is offered
in 5-lead KC plastic packages.

TO·200AB

NC-No internal connection

The TL750M_ C and TL751 M_Care characterized for operation from O°C to 125°C virtual junction temperature,
and the TL750M_ Q and TL751 M_ Q series are characterized for operation from -40°C to 125°C virtual junction
temperature.

PRODUCTION DATA Informallon Is current liS of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily Include
tesling of all parameters.

TEXAS

-1!1

Copyright © 1990, Texas Instruments Incorporated

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-273

TL750M, TL751 M SERIES
LOW-DROPOUT VOLTAGE REGULATORS
absolute maximum ratings over virtual junction temperature range (unless otherwise noted)
Continuous input voltage ................................................................... 26 V
Transient input voltage (see Figure 1) ........................................................ 60 V
Continuous reverse input voltage .......................................................... -15 V
Transient reverse input voltage: t = 100 ms .................................................. -50 V
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 1) '... ;. . . .. . . . . . .. . .. 2 W
Continuous total dissipation at (or below) 40°C case temperature (see Note 1) .................... 20 W
Operating free-air, case, or virtual junction temperature range ......................... -40°C to 150°C
Storage temperature range ....................................................... -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................... 260°C
NOTE 1: For operation above T A = 25°C and TC = 40°C, refer to Figures 2 and 3. To avoid exceeding the design maximum virtual junction
temperature, these ratings should not be exceeded. Due to variation in individual device electrical characteristics and thermal resistance,
the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

recommended operating conditions over recommended virtual junction temperature range
(unless otherwise noted)
DEVICE

MIN

MAX

6

26

TL75 MOB

9

26

TL75_Ml0

11

26

TL75 M12

13

26

TL75 M05
Input voltage range, VI

High-level ENABLE input voltage, VIH

TL751M

2

15

LOW-level ENABLE input voltage, VIL

TL751M

0

0.8

Output current range, 10

TL75 M

Operating virtual junction temperature range, TJ

750

TL75 M C

0

125

TL75_M Q

-40

125

UNIT

V

V
mA
°c

Tl750M05 and Tl751M05 electrical characteristics, VI = 14 V, 10 = 300 mA, ENABLE at 0 V for
Tl751 M05, TJ = 25°C (unless otherwise noted)
PARAMETER
Output voltage

TEST CONDITIONS (see Note 2)
VI = 6 Vt026V,

10 = Oto 750 mA

5.1

4.9
12

50

VI=8VtoI8V,

f= 120 Hz

10 = 5 mA to 750 mA

Bias current

5.05

10 = 250mA

Ripple rejection

Bias current

MAX

5

10 = 250mA

Output regulation

Output noise voltage

TYP

25

VI = 6 V to 26 V,

Dropout voltage

ITJ = MIN to MAXt

MIN
4.95

10

VI =9Vto 16V,

Input regulation

I TJ = 25°C

50

55
20

0.5

10 = 750 mA

0.6
500
60

10 = 750mA

200

ENABLE VIH " 2 V

mV

mV
V
IlV

75
5

10=10mA

V

dB
50

10 = 500 mA
f= 10Hzto 100kHz

UNIT

mA

!lA

t For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
NOTE 2: Pulse-testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects
must be taken into account separately. All characteristics are measured with a O.I-IlF capacitor across the input and a 10-IlF tantalum
capacitor on the output with equivalent series resistance within the guidelines shown in Figure 4.

TEXAS

~

INSlRUMENlS
2-274

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TL750M, TL751 M SERIES
LOW-DROPOUT VOLTAGE REGULATORS
TL750Moa and TL751MOa electrical characteristics, VI = 14 V, 10 = 300 rnA, ENABLE at 0 V for
TL751 MOa, T J = 25°C (unless otherwise noted)
PARAMETER
Output voltage
Input regulation

TEST CONDITIONS (see Note 2)
VI

~

9 V to 26 V,

VI~10Vto17V,

VI

~

9 V to 26 V,

Ripple rejection

VI~11Vt021V,

Output regulation

10

~

10

~

500 mA

10

~

750 mA

Dropout voltage
Output noise voltage
Bias current
Bias current

f

~

10 ~ 0 to 750 mA

ITJ~25°C

J TJ ~ MIN to MAXt

MIN

TYP

MAX

7.92

8

8.08

7.84

10 ~ 250mA
10

~

f~

120 Hz

250mA
50

5 mA to 750 mA

8.16
12

40

15

68

55
24

0.6
500

10 ~ 750 mA

60

10 = 10 mA

mV

mV
V
IlV

75
5
200

ENABLE VIH '" 2 V

V

dB
80
0.5

10 Hz to 100 kHz

UNIT

mA
IlA

TL750M10 and TL751M10 electrical characteristics, VI = 14 V, 10 = 300 rnA, ENABLE at 0 V for
TL751M10, TJ = 25°C (unless otherwise noted)
PARAMETER
Output voltage

TEST CONDITIONS (see Note 2)
VI

~

11 V to 26 V,

10 ~ 0 to 750 mA

MIN

TYP

MAX

ITJ=25°C

9.9

10

10.1

I TJ = MIN to MAXt

9.8

10.2

12Vto 18V,

10 ~250mA

15

43

VI~11Vt026V,

10 ~250mA

20

75

Ripple rejection

VI ~ 13Vt023V,

f~

Output regulation

10

~

10

~500mA

0.5

10 ~750mA

0.6

Input regulation

Dropout voltage
Output noise voltage
Bias current
Bias current

VI

f

~

10

~

120Hz

50

5 mA to 750 mA

10 Hz to 100 kHz

10~

100

1000

~750mA

60

10mA

mV

mV
V
IlV

75
5
200

ENABLE VIH '" 2 V

V

dB

55
30

UNIT

mA

!lA

t For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
NOTE 2: Pulse-testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects
must be taken into account separately. All characteristics are measured with a 0.1-IlF capacitor across the input and a 1O-IlF tantalum
capacitor on the output with equivalent series resistance within the guidelines shown in Figure 4.

TEXAS

~

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-275

TL750M, TL751 M SERIES
LOW-DROPOUT VOLTAGE REGULATORS
TL750M12 and TL751M12 electrical characteristics, VI
TL751M12, TJ = 25°C (unless otherwise noted)
PARAMETER
Output voltage

=14 V, 10 =300 rnA, ENABLE at 0 V for

TEST CONDITIONS (see Note 2)
VI = 13 V to 26 V,

10.= 0 to 750 rnA

I TJ = 25°C
I TJ = MIN to MAXT

MIN

TYP

MAX

11.88

12

12.12

11.76

12.24

VI = 14 Vto 19V,

10 =250 rnA

15

43

VI = 13Vt026V,

10 = 250 rnA

20

78

Ripple rejection

VI = 13 Vt023 V,

f=120Hz

Output regulation

10 = 5 rnA to 750 rnA

Input regulation

Dropout voltage
Output noise voltage
Bias current
Bias current

50

55
30

0.5

10 =750 rnA

0.6
1000

10 = 750 rnA

60

10 = lOrnA

mV

mV
V
f!V

75
5
200

ENABLE VIH " 2 V

V

dB
120

10 = 500 rnA
f=10Hztol00kHz

UNIT

rnA
f!A

t For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
NOTE 2: Pulse-testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects
must be taken into account separately. All characteristics are measured with a O.l-f!F capacitor across the input and a 1O-f!F tantalum
capacitor on the output with equivalent series resistance within the guidelines shown in Figure 4.

TL751Mxx electrical characteristics, VI = 14 V, 10 = 300 rnA,TJ = 25°C
MIN
Response time, ENABLE to output

50

TEXAS

.Jf

INSTRUMENTS
2-276

TYP

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

MAX

TL750M, TL751 M SERIES
LOW-DROPOUT VOLTAGE REGULATORS
TYPICAL CHARACTERISTICS
TRANSIENT INPUT VOLTAGE

vs
TIME
60

>

50

:!l!'"

40

..

:;

Q.

.E

..

30

=

to

20

~

·iii
c:

-

r-....

...

C
~

TJ 25°C I
I
VI 14 V + 46e(-t/0.230)
for t ~ 5 ms

\

I

~

~

1\

" '"
'-

tr

=1 ms

'-....... ~

I

>-

r---

10

o

o

100

200

400

300

600

500

t-Tlme-ms

Figure 1

CASE TEMPERATURE
DISSIPATION DERATING CURVE

FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE
2000
~

E

1800

I

c:
0

1600

Q.

1400

~

·iii
U>

C

1200

U>

:::I

0

1000

c:
~

800

:::I

0

25

f"-

"-~
"-r'..

0

E
E

:::I

.;(
to

600
400

:;;

Derating factor
200
0
25

~
I

c: 20

iQ.
·iii
U>

C

50

75

~

0

:::I

c:
~

'""

0

0

100

125

TA - Free-Air Temperature - °C

10

~

E
:::I
E
.;(

""-

RaJA - 62.5°C/W

I

15

U>

:::I

= 16 mwrc

I

""-

0

to

:;

'"

150

5

~

Derating factor = 181.8 mwrc
above 40°C
RaJC - 5.5°C/W
0
25

50

I

I

75

100

~

125

150

TC - Case Temperature - °C

Figure 2

Figure 3

TEXAS

~

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-277

TL750M, TL751 M SERIES
LOW·DROPOUT VOLTAGE REGULATORS
PARAMETER MEASUREMENT INFORMATION
The TL751 MXX is a low-dropout regulator. This means that the capacitance loading is important to the
performance of the regulator because it is a vital part of the control loop. The capacitor value and the equivalent
series resistance (ESR) both affect the control loop and must be defined for the load range and the temperature
range. Figures 4 and 5 can be used to establish the capacitance value and ESR range for best regulator
performance.
Figure 4 shows the recommended range of ESR for a given load with a 1O-f.tF capacitor on the output. This figure
shows a maximum ESR limit of 2 Q and a load-dependent minimum ESR limit. For applications with varying
loads, the lightest load condition should be chosen since it is the worst case. Figure 5 shows the relationship
of the reciprocal of ESR to the square root of the capacitance with a minimum capacitance limit of 10 f.tF and
a maximum ESR limit of 2 Q. This figure is used to establish the amount that the minimum ESR limit shown in
Figure 4 can be adjusted for different capacitor values. For example, if the minimum load needed is 200 mA,
Figure 4 suggests an ESR range of 0.8 Q to 2 Q for 10 f.tF. Figure 5 shows that changing the capacitor from
10 f-lF to 400 f-lF can change the ESR minimum by greater than 3/0.5 (or 6). Therefore, the new minimum ESR
value is 0.8/6 (or 0.13 Q). This now allows an ESR range of 0.13 Q to 2 Q, achieving an expanded ESR range
by using a larger capacitor at the output.
'
tilL
Applied Load
Current _ _ _
--1-.1..--',

rl

~~

Load
Voltage

OJ

..
..
a:
..'"
'5i
I

u

C
III

1ii

'iii

en
C
J!
~
':;

SI

2
1.8
1.6
1.4
1.2
1
0.8
0.6

a:
en 0.4
w

0.2 ~
0
0

0.1

0.4
0.6
0.2
0.3
0.5
IL - Load Current Range - A

0.7

0.8

Figure 4. Output Capacitor ESR vs Load Current

TEXAS •

INSTRUMENlS
2-278

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TL750M, TL751 M SERIES
LOW-DROPOUT VOLTAGE REGULATORS
PARAMETER MEASUREMENT INFORMATION
0.04
0.035
0.03
0.025
III

r:r

0.02

~

0.015
0.01
0.005

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

l/ESR

Figure 5. TL751 M1 0 Stability vs ESR

TEXAS •

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-279

2-280

TL780 SERIES
POSITIVE VOLTAGE REGULATORS
02643, APRIL 19S1-REVISED AUGUST 1991

•
•

± 1% Output Tolerance at 25°C

•
•

Thermal Shutdown

•
•

Pinout Identical to uA7800 Series

±2% Output Tolerance Over Full Operating
Range

Internal Short-Circuit Current Limiting

NOMINAL
OUTPUT
VOLTAGE

REGULATOR

5V
12 V
15 V

TL780-05C
TL780-12C
TL780-15C

KC PACKAGE
(TOP VIEW)

Improved Version of uA7800 Series

description
Each fixed-voltage precIsion regulator in this
series is capable of supplying 1.5 A of load
current. A unique temperature-compensation
technique coupled with an internally trimmed
band-gap reference has resulted in improved
accuracy when compared to other 3-terminal
regulators. Advanced layout techniques provide
excellent line, load, and thermal regulation. The
internal current limiting and thermal shutdown
features make. the devices essentially immune to
overload.

The common terminal is in electrical
contact with the mounting base.

TO-200AB

schematic
r-~~------------------~~----'---------------------~----

__----------~--INPUT

'----~------__--~>--

OUTPUT

L-~~--~--~----~----~~~~------~~--~~--------~~------------COMMON

~~o~~~~T~~~o~:1: sl;!~:~~I~~sl;e~~:~!r:~ :lle~::~~~:~,:ea~~

standard warranty. Production processing does not necellarlly Include
testing of all parameters.

-If
INSTRUMENTS

Copyright © 1991, Texas Instruments Incorporated

TEXAS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-281

TL780 SERIES
POSITIVE VOLTAGE REGULATORS
absolute maximum ratings over operating temperature range (unless otherwise noted)
Input voltage " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
Continuous total dissipation at 25°C free-air temperature (see Note 1) " " " , ' , " , " " " ' , " " " "
Continuous total dissipation at (or below) 25°C case temperature (see Note 1) " " " " " " " " " "
Operating free-air, case, or virtual junction temperature range " " " , ' " .. , .. , ...... , ... , O°C to
Storage temperature range .. " ... ",.,." ... "".,."" .. , . " " " " " ... " .. " " , -65°C to
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds " " " , . " . " " " " " " . " " . "

35 V
2W
15 W
150°C
150°C
260°C

NOTE 1: For operation above 25°C free-air or case temperature, refer to Figures 1 and 2. To avoid exceeding the design maximum virtual junction
temperature, these ratings should not be exceeded. Due to variations in individual device electrical characteristics and thermal
resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

FREE-AIR TEMPERATURE
DISSIPATION DER.o.TING CURVE
2000

3:
E 1800
I
I:

.2 1600

...

0.

'iii

1400

i5'" 1200

'"0

'"'"

::J
::J

c: 1000
~
0

0

E

BOO

::J

600

'xl\l

400

E

:;;
I

cP

200

16

'"'"

,

14

c:
.2

...

12

\

\

\

0.

!II

'"'"

i5

i 62,5°C/W1

10

'0"

::J

8

::J

c:

~

~.

0

6

E
::J
E

4

0

"-

I

"-

o
25

3:

'iii

!- Derating factor = 16 mW1°C
RaJA

CASE TEMPERATURE
DISSIPATION DERATING CURVE

50
75
100
125
TA - Free-Air Temperature - °C

'x

'"I

:;;

"-

0

II.

\

\

\

Derating factor = 0.25 wrc
2 I-- above 90°C
ReJC 4°C/W I

i

I

o

150

25

Figure 1

50
75
100
125
Tc - Case Temperature - °C

\

\
150

Figure 2

recommended operating conditions

Input voltage, vI

MIN

MAX

TL780-05C

7

25

TL780-12C

14.5

30

TL780-15C

17.5

30
1.5

A

0

125

°C

Output current, 10
Operating virtual junction temperature, TJ

TEXAS

~

INSlRUMENTS
2-282

POST OFFICE BOX 655303 • DALlAS,!EXAS 75265

UNIT

V

TL780 SERIES
POSITIVE VOLTAGE REGULATORS
TL780-05C electrical characteristics at specified virtual junction temperature, VI =10 V, 10 =500 mA
(unless otherwise noted)
PARAMETER

TEST CONDITIONS

110 = 5 mA to 1 A,
~ VI ~ 7 V to 20 V

Output voltage

TJt

MIN

TYP

MAX

25'C

4.95

5

5.05

O'C to 125'C

4.9

p" 15W,

VI = 7 Vto 25 V

Input regulation

25'C

VI = 8 V to 12 V

Ripple rejection

VI = 8 V to 18 V,

f= 120 Hz

O'C to 125'C

10 = 5 mA to 1.5 A

Output regulation

70

25'C

10 = 250 mA to 750 mA

5.1
0.5

5

0.5

5

85
25

1.5

15

Output resistance

f = 1 kHz

O'C to 125'C

0.0035

10 = 5 mA

O'C to 125'C

0.25

Output noise voltage

f = 10Hz to 100 kHz

25'C

75

Dropout voltage

10 = 1 A

25'C

2

Bias current

25'C

Bias current change
Short-circuit output current

VI = 7 Vto 25 V
D'C to 125'C

10 = 5 mA to 1 A
VI = 35 V

Peak output current

V
mV
dB

4

Temperature coefficient of output voltage

UNIT

mV
Q

mvrc
flV
V

5

8

0.7

1.3

0.003

0.5

mA
mA

25'C

750

mA

25'C

2.2

A

TL780-12C electrical characteristics at specified virtual junction temperature, VI =19 V, 10 =500 mA
(unless otherwise noted)
PARAMETER

Output voltage
Input regulation
Ripple rejection
Output regulation

TEST CONDITIONS

10 = 5 mA to 1 A,

TJt

MIN

TYP

MAX

25'C

11.88

12

12.12

O'C to 125'C

11.76

P,,15W,

VI = 14.5 Vto 27 V
VI = 14.5 Vto 30 V

25'C

VI=16Vt022V
VI=15Vt025V,

f = 120 Hz

O'C to 125'C

10 = 5 mA to 1.5 A

25°C

10 = 250 mA to 750 mA

65

12.24
1.2

12

1.2

12

UNIT

V
mV
dB

80
6.5

60

2.5

36

mV

Output resistance

f = 1 kHz

O'C to 125'C

0.0035

Temperature coefficient of output voltage

10 = 5 mA

D'C to 125'C

0.6

mVrc

Output noise voltage

f = 10Hz to 100 kHz

25'C

180

Dropout voltage

10 = 1 A

25'C

2

flV
V

25'C

5.5

8

0.4

1.3

0.03

0.5

Bias current
Bias current change
Short-circuit output current

VI=14.5Vt030V

10 = 5 mA to 1 A

O'C to 125'C

VI = 35V

Peak output current

Q

mA
mA

25'C

350

mA

25'C

2.2

A

t Pulse-testing techniques are used to maintain the lunctlon temperature as close to the ambient temperature as possible. Thermal effects must
be taken into account separately. All characteristics are measured with a 0.33-flF capacitor across the input and a 0.22-flF capacitor across the
output.

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-283

TL780 SERIES
POSITIVE VOLTAGE REGULATORS
TL780-15C electrical characteristics at specified virtual junction temperature, VI
(unless otherwise noted)
PARAMETER

TEST CONDITIONS
10 = 5 rnA to 1 A,

Output voltage

P,,15W,

VI = 17.5 V to SO V

TJt

MIN

TYP

MAX

25'C

14.85

15

15.15

O'C to 125'C

14.7

VI=17.5VtoSOV

Input regulation

25'C

VI = 20 V to 26 V

Ripple rejection

VI = 18.5 V to 28.5 V,

1=120Hz

O'C to 125'C

10 = 5 rnA to 1.5 A

Output regulation

25'C

10 = 250 rnA to 750 rnA

=23 V, 10 =500 mA

60

15.S
1.5

15

1.5

15

75

UNIT
V
mV
dB

7

75

2.5

45

mV

Output resistance

1= 1 kHz

O'C to 125'C

0.0035

Temperature coefficient of output voltage

10 =5 rnA

O'C to 125'C

0.62

mV/'C

Output noise voltage

1= 10 Hz to 100 kHz

25'C

225

~V

Dropout voltage

10= 1 A

25'C

2

25'C

5.5

Bias current
VI = 17.5 Vto SO V

Bias current change

O'C to 125'C

10 = 5 rnA to 1 A

Short-circuit output current

VI =35V

Peak output current

Q

V
8

0.4

I.S

0.02

0.5

rnA
rnA

25'C

230

rnA

25'C

2.2

A

t Pulse-testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must
be taken into account separately. All characteristics are measured with a O.33-~F capacitor across the input and a O.22-~F capacitor across the
output.

PARAMETER MEASUREMENT INFORMATION

INPUT

=

TL780

Cl 0.33 ~F
(see Note A)

T

OUTPUT
(see Note C)

0

T-=

-=

NOTES: A. Cl is required if the regulator is far Irom the power supply lilter.
B. C2 is not required for stability; however, transient response is improved.
C. Permanent damage can occur if output is pulled below ground.

Figure 3. Test Circuit

TEXAS

-'11

INSlRUMEN1S
2-2/!4

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

=

C2 0.22 J.lF
(see Note B)

TL780 SERIES
POSITIVE VOLTAGE REGULATORS
APPLICATION INFORMATION
INPUT --e---I

",,1",

+ __

R1

'--__

.L.-~...-

OUTPUT

-+

10
10 = (V0/R1) + 10 BIas Current

Figure 4. Positive Regulator in Negative
Configuration (VI Must Float)

Figure 5. Current Regulator

-VO
Figure 6. Output Polarity Reversal Protection Circuit

operation with a load common to a voltage of opposite polarity
In many cases, a regulator powers a load that is not connected to ground but instead is connected to a voltage
source of opposite polarity (e.g., op amps, level-shifting Circuits, etc.). In these cases, a clamp diode should be
connected to the regulator output as shown in Figure 6. This protects the regulator from output polarity reversals
during startup and short-circuit operation.

Figure 7. Reverse-Bias Protection Circuit

reverse-bias protection
Occasionally, there exists the possibility that the input voltage to the regulator can collapse faster than the output
voltage. This could occur, for example, if the input supply is crowbarred during an output overvoltage condition.
If the output voltage is greater than approximately 7 V, the emitter-base junction of the series pass element
(internal or external) could break down and be damaged. To prevent this, a diode shunt can be employed, as
shown in Figure 7.

TEXAS

~

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-285

2-286

TL782C, TL782Q
2-V FIXED POSITIVE VOLTAGE REGULATORS
SEPTEMBER 1987-REVISED NOVEMBER 1991

•

Overvoltage Protection

•
•

Thermal Shutdown Protection

•

Peak Output Current Constant Over
Temperature Range

•

TL782Q Has Extended Temperature Range
of -40°C to 125°C

KCPACKAGE
(TOP VIEW)

Internal Short-Circuit Current Limiting
The common terminal is in electrical
contact with the mounting base,

TO-220AB

description
The TL782C and the TL782Q are fixed 2-V
positive voltage regulators designed to address
industry needs. With superior input and output
regulation, they can regulate input voltages of
4.5 V to 30 V and are capable of supplying up to
1.5 A of load current.
In addition to high performance, the TL782C and TL782Q feature on-board overvoltage and thermal overload
protection circuitry, and the output is current-limit protected.
The TL782C is characterized for operation from DoC to 125°C virtual temperature range. The TL782Q is
characterized for operation from -40°C to 125°C virtual temperature range.

schematic
r-~-----'------'-------~---'--'---------------------------'---------~--'----IINPUT

L-~~----~--~--~--*---*-~~--*-~~--4-----~~---*----------------~--'--OUTPUT

COMMON

PRODUCTION DATA Information is eurrent as of publication date.

Products conform to specifications per the terms ,of Texas Instruments
standard warranty. Production processing does not necessarily include

testing of all parameters.

TEXAS

~

Copyright © 1991, Texas Instrumenls Incorporated

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-287

TL782C, TL782Q
2-V FIXED POSITIVE VOLTAGE REGULATORS
absolute maximum ratings over operating temperature range (unless otherwise noted)
Input voltage .......................... '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 40 V
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 1) ................... 2 W
Continuous total dissipation at (or below) 70°C case temperature (see Note 1) .................... 20 W
Operating free-air, case, or virtual junction temperature range: TL782C ................... O°C to 125°C
TL782Q ................. -40°C to 125°C
Storage temperature range ....................................................... -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................... 260°C
NOTE 1: For operation above 25°C free-air or 70°C case temperature, refer to Figures 1 and 2. To avoid exceeding the design maximum virtual
junction temperature, these ratings should not be exceeded. Due to variations in individual device electrical characteristics and thermal
resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

FREE·AIR TEMPERATURE
DISSIPATION DERATING CURVE
2

:=I
c

1.8
1.6

0

~
Q.
';;;
1/1

i3

1.2

1/1

::I

0

::I

c

0.8

0

0.6

0

E
::I
E

'xco

:Ii

24

"

1.4

~

CASE TEMPERATURE
DISSIPATION DERATING CURVE

0.4
0.2

'"'"
'"'"
'"'"
'"'"

Derating Factor
Above 25°C

25

50

c

I

75

I

125

100

T A - Free-Air Temperature - °c

Figure 1

20

~

0

~
Q.
';;;

16

\

2l

1/1

::I

0

::I

12

'\\

c

1E0

0

E
E

8

::I

= 16 mWrC

RaJA - j2.5 0 C/W

o

:=I

'xco

:Ii

"

150

4

Derating Factor
Above 70°C
RSJC-rC/W

o

25

50

= 250 mWrC

I

I

75

100

"\

125

150

TC - Case Temperature - °c

Figure 2

recommended operating conditions
Input voltage, VI

MIN

MAX

4.5

30

V

1.5

A

Output current, 10
Operating virtual junction temperature, T J

ITL782C

0

125

ITL782Q

-40

125

TEXAS

~

INSlRUMENlS
2-288

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

UNIT

°C

TL782C, TL782Q
2-V FIXED POSITIVE VOLTAGE REGULATORS
electrical characteristics at specified virtual junction temperature, VI
otherwise noted)
PARAMETER
Output voltage

TEST CONDITIONSt
10 = 5 mA to 1 A,

PO'" 15W,

VI = 4.5 V to 30 V

=5 V,

10

= 500 rnA (unless

TJ*
25°C

MIN

TYP

MAX

1.94

2

2.06

Full range

1.9

25
25°C

VI = 8 Vto 12 V
VI = 5 Vto 20 V

15
35

Full range
Vpp=10V,

VI(AV) = 10 V,

f=120Hz

10 = 5 mA to 1.5 A
Output regulation

60

dB

25°C

10 = 250 mA to 750 mA

15
70

10 = 5 mA to 1.5 A
Full range

10 = 250 mA to 750 mA
10 = 5 mA

Output noise voltage

1= 10Hz to 100 kHz

Full range

Bias current

Short-circuit output current

25°C

25

Temperature coefficient
of output voltage

Bias current change

mV

25

VI=8Vt012V
Ripple rejection

V

2.1

VI = 5 Vto 20 V
Input regulation

UNIT

mV

35
0.25

25°C

75

25°C

8

mvrc
fAV
9
10

Full range

mA

1.4

VI = 5 Vto 20 V

Full range

10 = 5 mAto 1 A
VI =2.5V

Peak output current

0.5

mA

25°C

750

mA

25°C

2.2

A

t Pulse-tesllng techniques are used to maintain the vlrtualluncliOn temperature as close to the free-air temperature as possible. All characteristics
are measured with a 0.33-fAF capacitor across the input and a 1-fAF capacitor across the output.

*For the TL782C, full range is O°C to 125°C, and for the TL782Q, full range is -40°C to 125°C.

TEXAS ~

INSIRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-289

2-290

TL783C
HIGH-VOLTAGE ADJUSTABLE REGULATOR
SEPTEMBER 1981-REVISED DECEMBER 1991

•
•
•

Output Adjustable From 1.25 V to 125 V,
When Used With an External Resistor
Divider

KCPACKAGE

(TOP VIEW)

@I

700-mA Output Current

()

0.001 %N Typical Input Regulation

•

0.15% Typical Output Regulation

•
•

76-dB Typical Ripple Rejection

OUTPUT

........_.....t

Fun Short-Circuit, Safe-Operating-Area,
and Thermal Shutdown Protection

•

~ INPUT

ADJUSTMENT

The output terminal is in electrical
contact with the mounting base.
TO-220AB

Standard TO-220AB Package

description
The TL783C is an adjustable 3-terminal
high-voltage regulator with an output range of
1.25 V to 125 V and a DMOS output transistor
capable of sourcing more than 700 mAo It is designed for use in high-voltage applications where standard bipolar
regulators cannot be used. Excellent performance specifications, superior to those of most bipolar regulators,
are achieved through circuit design and advanced layout techniques.
As a state-of-the-art regulator, the TL783C combines standard bipolar circuitry with high-voltage double-diffused
MOS transistors on one chip to yield a device capable of withstanding voltages far higher than standard bipolar
integrated circuits. Because of its lack of secondary breakdown and thermal runaway characteristics usually
associated with bipolar outputs, the TL783C maintains full overload protection while operating at up to 125 V
from input to output. Other features of the device include current limiting, safe-operating-area (SOA) protection,
and thermal shutdown. Even if the adjustment terminal is inadvertently disconnected, the protection circuitry
remains functional.
Only two external resistors are required to program the output voltage. An input bypass capacitor is necessary
only when the regulator is situated far from the input filter. An output capacitor, although not required, will improve
transient response and protection from instantaneous output short circuits. Excellent ripple rejection can be
achieved without a bypass capacitor at the adjustment terminal.

PROOUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
tesHng of all parameters.

TEXAS ~

Copyright © 1991. Texas Instruments Incorporated

INSIRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-291

TL783C
HIGH·VOLTAGE ADJUSTABLE REGULATOR
functional block diagram

~r-----------------+-----------~---+------.r----~~---Vo

OUTPUT

Rl

Vref
ADJUSTMENT

R2

absolute maximum ratings over operating temperature range (unless otherwise noted)
Input-to-output differential voltage, VI- Va ................................................. 125 V
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 1) ................... 2 W
Continuous total dissipation at (or below) 70°C case temperature (see Note 1) .................... 20 W
Operating free-air, case, or virtual junction temperature range ........................... O°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................... 260~C
NOTE 1: For operation above 25°C free-air or 70°C case temperature, refer to Figures 1 and 2, respectively. To avoid exceeding the design
maximum virtual junction temperature, these ratings should not be exceeded. Due to variations in individual device electrical
characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below
the rated dissipation

CASE TEMPERATURE
DISSIPATION DERATING CURVE

FREE·AIR TEMPERATURE
DISSIPATION DERATING CURVE
2000

;:

1800

I

1600

E

c:

I'"

0

:;
.a-III
III

is
III

1400
1200

"c:
"
~

1000

()

600

0

"-f'--.

800

0

E

"E

'xco

::;;

I

50

20

c:

~

0

"-,""-~

200
25

;:

RaJA - 62SCfW

400

o

24

D~rating Falctor = 16 ~wrc

75

~

0..

'iii
.!Il

16

\

c

III

"0

12

~\

"c:

~
0

()

"-f'--.
125

100

TA - Free-Air Temperature -

8

E
E

"

'x

~

:;:
'"

150

4

r-

Derating Factor = 250 mWrC
Above 70°C
RaJC-4'CfW

o
25

'c

50

I

I

75

100

TC - Case Temperature -

Figure 1

Figure 2

TEXAS ~

INSlRUMENTS
2-292

I

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

"~

125

'c

150

TL783C
HIGH-VOLTAGE ADJUSTABLE REGULATOR
recommended operating conditions
MIN
Input-to-output voltage differential, VI- Va
Output current, 10
Operating virtual junction temperature, TJ

electrical characteristics at VI - Vo

UNIT

125

V

15

700

mA

0

125

°C

= 25 V, 10 = 0.5 A, TJ = ooe to 125°C (unless otherwise noted)

PARAMETER

TEST CONDITIONSt

Input regulation*

VI-Va = 20 Vto 125 V,

P " rated dissipation

Ripple rejection

t.VI(PP) = 10V,

Va = 10V,

10 = 15 mA to 700 mA,

TJ = 25'C

10 = 15 mA to 700 mA,

TYP

MAX

TJ = 25°C

MIN

0.001

0.01

TJ = DoC to 125°C

0.004

0.02

f = 120 Hz

Output regulation
p" rated dissipation

66

76

UNIT

%N
dB

Va" 5V

7.5

25
0.5%

VO"- 5V

0.15%

Va" 5V

20

70

Vo"- 5V

0.3%

1.5%

Output voltage change with
temperature

mV
mV

0.4%

Output voltage long-term drift

1000 hours atTJ = 125°C, VI - Va = 125 V,

Output noise voltage

f = 10 Hz to 10 kHz,

Minimum output current to
maintain regulation

VI-Va = 125 V

Peak output current

MAX

See Note 2

0.2%
0.003%

TJ = 25°C

15

VI- VO=25V,

t = 1 ms

VI-Va = 15 V,

t = 30 ms

VI- VO=25V,

t = 30 ms

700

900

VI- Va = 125 V,

t = 30 ms

100

250

mA

1100
715

Adjustment-terminal current
Change in adjustmentterminal current

VI- Vo = 15 V to 125 V,

10 = 15 mA to 700 mA, P " rated dissipation

Reference voltage (OUTPUT
to ADJUSTMENT)

VI- Vo = 10Vto 125 V,
See Note 3

10 = 15 mA to 700 mA, p" rated dissipation,

1.2

mA

83

110

f'A

0.5

5

f!A

1.27

1.3

V

t

Pulse-testing techniques are used to maintain the Junction temperature as close to the ambient temperature as pOSSible. Thermal effects must
be taken into account separately.
* Input regulation is expressed here as the percentage change in output voltage per l-V change at the input.
NOTES: 2. Since long-term drift cannot be measured on the individual devices priorto shipment, this specification is not intended to be aguarantee
or warranty. It is an engineering estimate of the average drift to be expected from lot to lot.
3. Due to the dropout voltage and output current limiting characteristics of this device, output current is limited to less than 700 mA at
input-to-output voltage differentials of less than 25 V.

TEXAS

-If

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-293

TL783C
HIGH-VOLTAGE ADJUSTABLE REGULATOR
TYPICAL CHARACTERISTICS
OUTPUT CURRENT LIMIT

OUTPUT CURRENT LIMIT

vs

vs

INPUT-TO-OUTPUT VOLTAGE DIFFERENTIAL

INPUT-TO-OUTPUT VOLTAGE DIFFERENTIAL

2~--~~--~----~----~-----,

1.8
1.6

f---.......,,~---I----I----I---l

~

1.4

f---fI;~""","-I---I---j----j

'E

1.2

f----tHf---"YI~-__I--__I---l

-

:::;

C
~
:s

U

1
~

0.8 f---#__If----;A.l::-----'1-c-~__I----i
0.6
0.4 H-I----If-----I--I----I-"""-~---l

0.2 H - - I I - - - . , ' - - - _ _ I - - - j - - - - j

25

75

50

100

125

VI- Vo -Input-to-Output Voltage Dlfferentlal- V

VI - Vo - Input-to-Oujput Voltage Differential - V

Figure 4

Figure 3

RIPPLE REJECTION

OUTPUT CURRENT LIMIT

vs

vs

TIME

OUTPUT VOLTAGE

1.6
1.4

ct

"-

1.2

.~

:::;

as
c.

0.8

IX!
'0

I

80

1\

'\

c
.2

..

ti

'ij)

'-....

60

r--...

a:

.!!

0.6

c.
c.

ii:

S

o

I

I

I

.!

VI(AV) - Vo = 25 V
tNI(PP) = 10 V
10= 100 mA
f=120Hz
CO=O
TJ = 25°C

100

..........

I

c~

120

.1

VI-VO= 25V
TC = 25°C

-

-

40

0.4
20
0.2

o

o

10

20

30

40

o

o

10

30

40

50

Figure 6

Figure 5

TEXAS -I!}
INSTRUMENTS
2-294

20

60

70

Vo - Output Voltage - V

Tlme-ms

POST OFFICE BOX 655303 • DA~LAS. TEXAS '75265

80

90

100

TL783C
HIGH·VOLTAGE ADJUSTABLE REGULATOR
TYPICAL CHARACTERISTICS
RIPPLE REJECTION

RIPPLE REJECTION
vs
OUTPUT CURRENT

vs
FREQUENCY
100

100

90
80

I

c

0

-I----

- V"'"

..,
III

60

80

..,

III

60

'"
Q.
'"
a:

50

~

~

'"
a:
'0."
Q.

" '\

70

I

c

'Qj'

'Qj'

~

a:
40

a:

r20
o
o

40

0.

VI(AV) = 25 V
t.VI(PP) = 10 V
Vo = 10V
f=120Hz
Co =0
TJ = 25°C

30 20 10 -

VI(AV) = 25 V
t.VI(PP) = 10 V
VO=10V
10 = 500 mA
TJ=25°C

200

300

400

500

600

700

800

0.Q1

I

0.1

10

101

r--

REFERENCE VOLTAGE

1.30

Cl
I
0

..,

'0."

'50.
'5

/

10-1

.5

10-2

vs
VIRTUAL JUNCTION TEMPERATURE

I

VI = 35V
Vo = 10V
10 = 500 mA
TJ = 25°C

'"

/r----

1000

Figure 8

OUTPUT IMPEDANCE
vs
FREQUENCY

J

100

f - Frequency - kHz

Figure 7

102

'\
\

I

0
100

~

"'\

CO=O

10 - Output Current - mA

C
III

Co = 10 [1F

\..

V

/

V

/
>
I

1.28

~

1.27

o
c

'"
~

1.26

~

1.25

:

,/

I

e
>

0

1.29 r - l l = l o )
10=15mA

-

....-

r--.....

1.24

10-3
1.23
10-4
101

102

104

107

1.22
-75 -50 -25

f - Frequency - kHz

0

25

50

75 100 125 150 175

TJ - Virtual Junction Temperature - °C

Figure 9

Figure 10

TEXAS ."

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-295

TL783C
HIGH-VOLTAGE ADJUSTABLE REGULATOR
TYPICAL CHARACTERISTICS
ADJUSTMENT-TERMINAL CURRENT

DROPOUT VOLTAGE

vs

vs

VIRTUAL JUNCTION TEMPERATURE

VIRTUAL JUNCTION TEMPERATURE
25

90

«::l.

V
/'

VI = 2JV
Vo = Vref
f-10 = 500 mA
88

C
~

86

::l
()

/
V

.,

C
E
'iii

84

::l

'C

/

«
I

'C
.2'

82

80

20

/'

/
V

I

Avl = 10b mV I

>

.,enI

..

15

:=

~
"!5

10 =700 mA
10 =600 mA
10 =500 mA

10

0

Co

e

c

V
o

25

75

50

o

125

100

-75

°c

-0.2

-25

0

25

50

vs

vs
INPUT VOLTAGE

75

100

125

°c

12

----

-......... r--.....

en

~

-0.3

10

«

E
I

........

~ I"-.

"SCo
"S

o

~ ~'I

!

o

25

8

C

~

::l
()

6

"S

%

'"

0

4

I

,2

I I I I I

-O.5~--~--~~--~--~----~--~

50

75

100

125

TJ - Virtual Junction Temperature -

o

150

°c

25

50

75

VI - Input Voltage - V

Figure 14

Figure 13

TEXAS

-1!1

INSTRUMENTS
2-296

--

I I
-50

VIRTUAL JUNCTION TEMPERATURE

.,

;g

f.--

MINIMUM OUTPUT CURRENT
TO MAINTAIN REGULATION

VI =25 V
VO=5V
10 = 15 mA to 700 mA

:5

-

Figure 12

o

~
~

./

V --'
~

TJ - Virtual Junction Temperature -

LOAD REGULATION

-0.1

:::::::::::::

10 =250 mA

Figure 11

I

~

.......

5 \--10 = 100 mA
10=15mA

T J - Virtual Junction Temperature -

";fl

~

.-""

/'

V

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

100

125

TL783C
HIGH-VOLTAGE ADJUSTABLE REGULATOR
TYPICAL CHARACTERISTICS
LINE TRANSIENT RESPONSE

LOAD TRANSIENT RESPONSE

TJ = 25'C

~ 0.4
c
.2

1
c

r

6

Co=O

>

4

g

2
0

I

~
~

0.2

0

o

:> -0.2

c

-2

-?

-4

«

-6

I

o

2

3

4

I

1: 0.8
~ 0.6

VI =35V
Vo = 10V
Co = 1 J.lF
TJ = 25'C

::I

0

:; 0.4

.s-

6
I

.9

0.2
0

0

Tlme-J.ls

40

80

120

160

200

240

Tlme-J.ls

Figure 15

Figure 16

DESIGN CONSIDERATIONS
The internal reference (see functional block diagram) is used to generate 1.25 V nominal (V ref) between the
output and adjustment terminals. This voltage is developed across R1 and causes a constant current to flow
through R1 and the programming resistor R2, giving an output voltage of:
Va = Vref (1 + R2/R1) + ladj (R2)
or
Va - Vref (1 + R2/R1).
The TL783C was designed to minimize ladj and maintain consistency over line and load variations, thereby
minimizing the ladj (R2) error term.
To maintain ladj at a low level, all quiescent operating current is returned to the output terminal. This quiescent
current must be sunk by the external load and is the minimum load current necessary to prevent the output from
rising. The recommended R1 value of 82 Q will provide a minimum load current of 15 mA. Larger values may
be used if the input-to-output differential voltage is less than 125 V (see minimum operating current curve) or
if the load will sink some portion of the minimum current.

bypass capacitors
The TL783C regulator is stable without bypass capacitors; however, any regulator will become unstable with
certain values of output capacitance if an input capacitor is not used. Therefore, the use of input bypassing is
recommended whenever the regulator is located more than four inches from the power-supply filter capacitor.
A 1-~F tantalum or electrolytic capacitor is usually sufficient.

TEXAS ~

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-297

TL783C
HIGH-VOLTAGE ADJUSTABLE REGULATOR
Adjustment-terminal capacitors are not recommended for use on the TL783C because they can seriously
degrade load transient response as well as create a need for extra protection circuitry. Excellent ripple rejection
is presently achieved without this added capacitor.
Due to the relatively low gain of the MOS output stage, output voltage dropout may occur under large load
transient conditions. Addition of an output bypass capacitor will greatly enhance load transient response as well
as prevent dropout. For most applications, it is recommended that an output bypass capacitor be used with a
minimum value of:

Co (IlF)

=15No

Larger values will provide proportionally better transient response characteristics.

protection circuitry
The TL783C regulator includes built-in protection circuits capable of guarding the device against most overload
conditions encountered in normal operation. These protective features are current limiting, safe-operating-area
protection, and thermal shutdown. These circuits are meant to protect the device under occasional fault
conditions only. Continuous operation in the current limit or thermal shutdown mode is not recommended.
The internal protection circuits of the TL783C will protect the device up to maximum-rated VI as long as certain
precautions are taken. If VI is instantaneously switched on, transients exceeding maximum input ratings may
occur, which can destroy the regulator. These are usually caused by lead inductance and bypass capacitors
causing a ringing voltage on the input. In addition, if rise times in excess of 10 V(ns are applied to the input, a
parasitic n-p-n transistor in parallel with the DMOS output can be turned on causing the device to fail. Ifthe device
is operated over 50 V and the input is switched on rather than ramped on, a low-Q capacitor, such as tantalum
or electrolytic should be used rather than ceramic, paper, or plastic bypass capacitors. A Q factor of 0.015 or
greater will usually provide adequate damping to suppress ringing. Normally, no problems occur if the input
voltage is allowed to ramp upward through the action of an ac line rectifier and filter network.
Similarly, if an instantaneous short circuit is applied to the outputs, both ringing and excessive fall times can
result. A tantalum or electrolytic bypass capacitor is recommended to eliminate this problem. However, if a large
output capacitor is used and the input is shorted, addition of a protection diode may be necessary to prevent
capacitor discharge through the regulator. The amount of discharge current delivered is dependent on output
voltage, size of capacitor, and fall time of VI' A protective diode (see Figure 17) is required only for capacitance
values greater than:

Co (IlF) = 3 x 104((VO)2.
Care should always be taken to prevent insertion of regulators into a socket with power on. Power should be
turned off before removing or inserting regulators .

.......
TL783C
INPUT

OUTPUT

ADJUSTMENT

R1

/.i'R2
~

1

vo

r

o

Figure 17. Regulator With Protective Diode

TEXAS "J1

INSlRUMENlS
2-298

POST OFFICE BOX 655303 • DALlAS, TEXAS 75265

TL783C
HIGH-VOLTAGE ADJUSTABLE REGULATOR
load regulation
The current set resistor (R 1) should be located close to the regulator output terminal rather than near the load.
This eliminates long line drops from being amplified through the action of R1 and R2 to degrade load regulation.
To provide remote ground sensing, R2 should be near the load ground.

INPUT

TL783C
OUTPUT

Rllne

Vo
)f

ADJUSTMENT

?

I

R1
R2
)f

Figure 18. Regulator With Current-Set Resistor

APPLICATION INFORMATION
VI = 145 to 200 V

r-

VO=Vref

C+

:~)
TIP150

TL783C
VI=125V

--<~

INPUT

OUTPUT

ADJUSTMENT

R1
82Q

:;or:+
/.

7.5 kQ, 1 W

_ _ oJ

?

120 V, 1.5 W
INPUT

:;0,

OUTPUT 1-............--.- 125 V
ADJUSTMENT
R1
TL783C
82Q

~ R2

o to 8 kQ

R2
8.2kQ,2W

-'-

t

I
I
I
II...

Needed if device is more than 4 inches from filter capacitor

Figure 19. 1.2S-V to 11S-V Adjustable Regulator

TEXAS

Figure 20. 12S-V Short-Circuit-Protected
Off-Line Regulator

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-299

TL783C
HIGH-VOLTAGE ADJUSTABLE REGULATOR
APPLICATION INFORMATION
125V
10
VI = 7010 125 V

100

100

1 kO
TL783C
INPUT
OUTPUT
ADJUSTMENT

INPUT

Vo = 50V
at 0.5 A

1--.----.

OUTPUT 1-__41----_.
Vo = VrefC +

ADJUSTMENT

3.3ka,lW

R2

Figure 21. 50-V Regulator With Current Boost

Figure 22. Adjustable Regulator With Current
Boost and Current Limit
VI

I

I
Load

l=t

I

lflFI

I = Vref
TL783C

~

-=-

R

INPUT
OUTPUT , - -

ADJUSTMENT

R

INPUT
OUTPUT
ADJUSTMENT

<

>R

Figure 23. Current-Sinking Regulator

Figure 24. Current-Sourcing Regulator

TEXAS.~

INSIRUMENlS
2-300

:~)

R1
820

820

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TL783C
HIGH-VOLTAGE ADJUSTABLE REGULATOR
APPLICATION INFORMATION

Vcc

VI = 90V
TL783C

1j.lF

T

INPUT

TL783C

OUTPUT

INPUT

ADJUSTMENT

'"U

OUTPUT

6.250

OUTPUT

ADJUSTMENT

82Q
TL783C
INPUT
OUTPUT I-~t------~

V+

R2

820

'"U

3.9kO

INPUT
VOFFSET = Vref (1 +

=~)

-=

VFigure 25. High-Voltage Unity-Gain Offset Amplifier

--

48V

I
-=

Figure 26. 48-V, 200-mA Float Charger

TEXAS •

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-301

2-302

TL1431C, TL1431Q, TL1431Y

PRECISION PROGRAMMABLE REFERENCE
D3858. DECEMBER 1991

•

o PACKAGE

0.4% Initial Voltage Tolerance

•

0.1-Q Typical Output Impedance

•

Fast Turn-On ... 500 ns

•

Sink Current Capability ... 1 mA to 100 mA

•

Low Ref Pin Current

•

Adjustable Output Voltage ... Vref to 36 V

•

Available in a Wide Range of High Density
Packaging Options:
- Small Outline (D)
- TO-226AA (LP)
- SOT-89 (PK)

(TOP VIEW)

CATHODEuB REF
NC 2
7 ANODE
ANODE
NC

3
4

6
5

:OJ

LP PACKAGE

(TOP VIEW)

ANODE
NC

CATHODE

u

ANODE

L1

REF

NC - No internal connection

PK PACKAGE
(TOP VIEW)

description
The TL 1431 is a 3-terminal precision programable
reference with specified thermal stability over
applicable automotive and commercial
temperature ranges. The output voltage may be
set to any value between Vref (approximately
2.5 V) and 36 V with two external resistors (see
Figure 16). These devices have a typical output
impedance of 0.1 Q. Active output circuitry
provides a very sharp turn-on characteristic,
making these devices excellent replacements for
zener diodes and other types of references in
many applications like on-board regulation,
adjustable power supplies, and switching power
supplies.
The TL 1431 is offered in a wide variety of highdensity packaging options that includes an
SOT-89-type package (suffix PK). It is also offered
in both the automotive temperature range and the
commercial temperature range. The TL1431Q is
characterized for operation over the automotive
temperature range of -40 oe to 125°e. The
TL 1431 e is characterized for operation over the
commercial temperature range of ooe to 70 oe.

o
REF . ANODE

CATHODE

application schematic
Efficient 5-V Precision Regulator

),------4.-- Vo = 5 V

27kQ
0.1%

27kQ
0.1%

Note: Rb should provide", 1 mA cathode current to the TL1431.

AVAILABLE OPTIONS
PACKAGE
TA

SMALL
OUTLINE
(0)

TO-226AA
(LP)

O°C to 70°C

TL1431CD

TL1431CLP

- 40°C to 125°C

TL1431QD

TL14310LP

SOT-89
(PK)

CHIP
FORM
(V)

TL1431CPK
TL1431V

--

D and LP packages are available taped and reeled. Add "R" suffix to device type (e.g .•
TL1431 CDR). PK package is only available taped and reeled. No "R" suffix required. Chips
are tested at 25°C.
PROOUCTION DATA informalion is current as of
publicalion dale. Products confonn to speCifications
per the terms of Texas Inslrumenls slandard
warranty. Production proceSSing does not
necessallly include lesling of all paramelers.

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

Copyright © 1991. Texas Instruments Incorporated

2-303

TL1431C, TL14310, TL1431Y

PRECISION PROGRAMMABLE REFERENCE
functional block diagram

symbol

CATHODE

REF(R)

J.~

(A)~(K)

ANODE

.

CATHODE

REF----I

ANODE

TL1431Y chip information
These chips, properly assembled, display characteristics similar to the TL 1431 (see electrical table for TL 1431Y).
Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be
mounted with conductive epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS

REF (3)

~i

J.~

(2)~

ANODE

Chip Thickness:
15 Typical

- - 46

Bonding Pads:
4 X4 Minimum
Tolerances ± 10%
All Dimensions
Are In Mils

~1~'------------66----------~~~1

I

TEXAS

~

INSTRUMENTS
2-304

POST OFFICE BOX 655303' DALLAS. TEXAS 75265

TJ max = 150°C

CATHODE
(1)

TL1431C, TL1431Q, TL1431Y
PRECISION PROGRAMMABLE REFERENCE
equivalent schematic
CATHODE----~~----------------~------~~--

__~~--------_.--~

Boon
20pF

REF

3.2B kn

4 kn
20 pF

2.4 kn

1 kn

Boon
ANODE---------.~----~------~------~~~--------------_*--~

All component values are nominal.

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265

2-305

TL1431C, TL1431Q
PRECISION PROGRAMMABLE REFERENCE
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Cathode voltage (see Note 1) .......... , .............................................. 37 V
Continuous cathode current range .......................................... -100 mA to 150 mA
Reference input current range ............................................... -50 IlA to 10 mA
Continuous power dissipation .............................. See Dissipation Rating Tables 1 and 2
Operating free-air temperature range, TA: C-suffix ................................... O°C to 70°C
Q-suffix ............................... -40°C to 125°C
Storage temperature range ................................................... -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................. 260°C
NOTE 1: All voltage values are with respect to the anode terminal unless otherwise noted.
TABLE 1. DISSIPATION RATING TABLE
FREE·AIR TEMPERATURE
PACKAGE

D
LP
PK

DERATING FACTOR
ABOVE TA = 2S·C
5.8 mW/oC

TA = 70·C
POWER RATING

TA = 10S·C
POWER RATING

TA = 12S·C
POWER RATING

725 mW

464mW

261 mW

145mW

775mW

496mW

279mW

155mW

500mW

320mW

180mW

100mW

TC= 70·C
POWER RATING

TC = tOS·C
POWER RATING

TC = 12S·C
POWER RATING

2000mW

1125mW

625mW

TA s 2S·C
POWER RATING

6.2 mW/oC
4.0 mW/oC

TABLE 2. DISSIPATION RATING TABLE
CASE TEMPERATURE
PACKAGE
PK

DERATING FACTOR
ABOVE TC = 25·C
25mW/oC

TC s 2S·C
POWER RATING
3125 mW

recommended operating conditions
C·SUFFIX
Cathode to anode voltage, VKA
Cathode current, IK
Operating free-air temperature, TA

MAX

Vref
1
0

TEXAS ."

INSfRUMENTS
2-306

Q·SUFFIX

MIN

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

UNIT

MIN

MAX

36
100

Vref
1

36
100

V
mA

70

-40

125

°C

Tl1431C, TL1431Q
PRECISION PROGRAMMABLE REFERENCE
electrical characteristics at specified free-air temperature, I K
PARAMETER
Vref

TEST CONDITIONS

TA
25°C

Reference input voltage

VKA = Vref

Full range

=10 mA (unless otherwise noted)

TEST
MIN

CIRCUIT

TL1431C
TYP MAX

2490

1

2500

2480

TL1431Q
MIN

TYP

MAX

2510

2490

2500

2510

2520

2470

2530

UNIT
mV

Deviation of reference input
Vref(dev) voltage over full temperature

VKA = Vref

Full range

1

4

15

17

30

mV

6VKA=3Vt036V

Full range

2

-1.1

-2

-1.1

-2

mVIV

1.5

1.9
2.3

1.5

1.9
2.3

flA

range
6V re f
6VKA
Iref

Ratio of change in reference
input voltage to the change
in cathode voltage
25°C

Reference input current

Rl

=

10 kQ, R2 = 00

Rl

=

10 kQ, R2 = co

Full range

2

Deviation of reference input
Iref(dev) current overfull temperature
range
Minimum cathode current
Imin
loff
IZkal

VKA

for regulation

=

Vref to 36 V

Off-state cathode current

VKA = 36 V, Vref = 0

Output impedance!

VKA = Vref, f S 1 kHz,
IK = 1 mA to 100 mA

t Full range

IS

Full range

2

0.2

1.2

0.5

1.2

flA

25°C

1

0.45

1

0.45

1

mA

0.18

0.5
2

0.18

0.5
2

flA

0.1

0.2

0.1

0.2

Q

25°C
Full range
25°C

3
1

O°C to 70°C for C-sufflx deVices and - 40°C to 125°C for Q-sufflx deVices.

The deviation parameters Vref(dev) and Iref(dev) are defined as the differences between the maximum and minimum values obtained over the rated
temperature range. The average full-range temperature coefficient of the reference input voltage aVref is defined as:

(
la

,,( ppm)
Vren
°C

=

Vref(dev)

) X 106

- - - -=--....-;;;.,::- - i f

MaxVref

Vref at 25°C
6TA'

I Vre~cev)

where 6 T A is the rated operating temperature range of the device.

----~-----+~

MinVref

\ ...
aVref can be positive or negative depending on whether miminum Vref or maximum Vref' respectively, occurs at the lower temperature.

§ The output impedance is defined as: IZkal = 6VKA

61K
When the device is operating with two external resistors (see Figure 2), the total dynamic impedance of the circuit is given by:

1z'1 = ~, which

&

is approximately equal to IZkal ( 1 + B2~

)

TEXAS ~

INsrRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-307

Tl1431C,Tl1431Q,TL1431Y
PRECISION PROGRAMMABLE REFERENCE
electrical characteristics at 25°C free-air temperature, I K
PARAMETER
Vref

=10 mA

Reference input voltage

Tl1431Y

TEST

TEST CONDITIONS

UNIT

CIRCUIT

MIN

TYP

MAX

VKA ~ Vrel

1

2490

2500

2510

to.VKA = 3 V to 36 V

2

-1.1

-2

mVN

Rl = 10ka, R2 =00

1.9

f!A

mV

Ratio of change in reference
to.Vref
to.VKA

input voltage to the change

Iref

Reference input current

in cathode voltage
Minimum cathode current

2

1.44

VKA = Vrel to 36 V

1

0.45

1

rnA

loff

Off-state cathode current

VKA = 36 V, Vrel = 0

3

Output impedance!

VKA = Vrel, 1 $1 kHz, IK = 1 rnA to 100 rnA

1

0.5
0.2

f!A

IZkal

.18
0.1

Imin

for regulation

§The output impedance is defined as: IZkal =

~

to.lK
When the device is operating with two external resistors (see Figure 2), the total dynamic impedance 01 the circuit is given by:
Iz'l = to. V , which is approximately equal to IZkal ( 1 + Bl.
~

~

)

PARAMETER MEASUREMENT INFORMATION

Input

Input

R1

Vref L--4-~

R2

1
Figure 1. Test Circuit for VKA = Vref

Figure 2. Test Circuit for VKA > Vref

Input

Figure 3. Test Circuit for loff

TEXAS

~

INSTRUMENTS
2-308

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

a

TL1431C, TL1431Q, TL1431Y
PRECISION PROGRAMMABLE REFERENCE
TYPICAL CHARACTERISTICS
table of graphs
FIGURE
Vref

Reference voltage

vs Temperature

4

Iref

Reference current

vs Temperature

5

IK

Cathode current
Off-state cathode current

vs Temperature

8

vs Temperature

9

vs Frequency

10

loft

vs Cathode vOltage

Ratio of delta reference voltage to delta
t.Vref

cathode voltage

Vn

Noise voltage

AV

Voltage amplification

IZkal

Reference impedance

6 and 7

over a 10-second time-period

11

vs Frequency
vs. Frequency

12
13

Pulse response

14

Stability boundary conditions

15

table of application circuits
APPLICATION

FIGURE
16

Shunt regulator
Single-supply comparator with temperature-compensated threshold

17

Precision high-current series regulator

18

Output control of a 3-terminal fixed regulator
Higher-current shunt regulator

20

Crowbar

21

Precision 5-V, 1.5-A, 0.5% regulator
Efficient 5-V precision regulator

22

PWM down converter with 0.5 % reference

24

Voltage monitor

25

Delay timer

26

Precision current limiter or current source

27

Precision constant-current sink

28

19

23

TEXAS ~

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-309

TL1431C, Tl1431Q, Tl1431Y
PRECISION PROGRAMMABLE REFERENCE
TYPICAL CHARACTERISTICSt
REFERENCE CURRENT

REFERENCE VOLTAGE

vs

vs

FREE-AIR TEMPERATURE

FREE-AIR TEMPERATURE

2.52

2.5
IK = 10mA
Rl=10kQ

Vref = VKA
IK=10mA

~

..

2

oCt

2.51

:::I.

'"
g

- -.....

.'!l

g 2.5 .-

i
I

'!! 2.49

>

2.48
-50

-25

o

25

.........

E
~

1.5

..

"

r-....

-r-- -

0

(.)

'"'"

50

75

~

..

a:

"

100

TA - Free-Air Temperature - ·C

J

0.5

o

125

-50

-25

0
25
50
75
100
TA - Free-Air Temperature - ·C

Figure 4

CATHODE CURRENT

vs

vs

CATHODE VOLTAGE

CATHODE VOLTAGE

I

800

I

I
VKA = Vref
TA = 25·C

VKA = Vref
100 -TA= 25·C

600

oCt

oCt

E

:::I.
I

50

~

..,8o..

E
~

400

..,.."

J

0

0

(

-5
~ -50

0

.c 200
a;

0

/

I

I

)!.

)!.

0

-100

-200

-150

-3

-2

-1

o

2

3

-2

-1

o

2

3

VKA - Cathode Voltage - V

VKA - Cathode Voltage - V

Figure 6

Figure 7

tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TEXAS ~

INSTRUMENTS
2-310

125

Figure 5

CATHODE CURRENT

150

-

.!!

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4

Tl1431C, Tl1431Q, Tl1431Y

PRECISION PROGRAMMABLE REFERENCE
TYPICAL CHARACTERISTICSt
RATIO OF DELTA REFERENCE VOLTAGE TO
DELTA CATHODE VOLTAGE
vs
FREE-AIR TEMPERATURE

OFF-STATE CATHODE CURRENT
vs
FREE-AIR TEMPERATURE
-0.85

.4r---~1--_~1--~--~--~--~--'

VKA

«

=

.35 -Vrel = 0

-0.95

::1

-'"
~
::>

..,..
0

0

~

iii

.3

*
1

......

>

1

.25

,,~
...........

~-1.15

.2

>

~

.15

~ -1.25

>

'"



220

..

200

'"1

1\

OJ

J!! 180

"0

..

>

·0
'" 160
Z

'",
> 140

\

\

\

~

120
100
10

100

10 k

1k

100 k

I - Frequency - Hz

Figure 10

tData at high and low temperatures are applicable only within the rated operating Iree-air temperature ranges of the various devices.

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-311

TL1431C, TL1431Q, TL1431Y

PRECISION PROGRAMMABLE REFERENCE
TYPICAL CHARACTERISTICS

EQUIVALENT INPUT NOISE VOLTAGE
OVER A 10-SECOND PERIOD
6.-'--.--~-r-'--~-r--~'--'
5~1--+--+-~-1--+-~--r,M--1

4r-r.1~~~-r-r-+~~~

~
~

3

1\

1

II

JlIl

2",

~ O·~~~H!tI~~I~~
~

I

"i~

'f',.Jf--+--..

~

-1

~

-2r-~-+--r-~~~~'~1~1~~~

/I

I•

-3~~-+--+-~-1--+-~--~1--1

c

>

,=

-4 r---t--+--+--+---l---10.11010 Hz
-5
IK= 10mAL
TA= 25°C

I

-6~~~--~~~--~~--~~~

o

2

4

6

8

10

1- Time - s

19.1 V

Vcc

Vcc

2000llF

8200
160

AV

= 2VN.

VEE

,
Tesl Circuil lor 0.1-Hz to 10-Hz Equivalent Input Noise Voltage

Figure 11

TEXAS

~

INSTRUMENTS
2-312

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TL1431C, Tl1431Q, TL1431Y

PRECISION PROGRAMMABLE REFERENCE
TYPICAL CHARACTERISTICS

SMALL-SIGNAL VOLTAGE AMPLIFICATION
vs

FREQUENCY
60

i~'=
TA

...
III

50

0

';

.----_---_-Output
+IK

~~

I

c

lOrnA

=25°C

40

~

ii.

E

<

30

\

"



20

I

>

<

~------~~--~~-GND

~

10
Test Circuit for Voltage Amplification

"

o
1k

10 k

100 k
1M
f - Frequency - Hz

10M

Figure 12

REFERENCE IMPEDANCE
vs

FREQUENCY
100
I=IK

= 1 rnA 10 100 rnA

1 kO
, - - -.....- - W l r - -_ __eo--- Output

i= TA = 25°C

a
I

8c
as

10

'2

500

Q.

.E

8

~

Q;

a::

L--~----~-

I

__

~--GND



..
I

CI>

C)

4

Pulse
Generator
f
100kHZ

S
'0

>
;Q.
;

..,c

3

0

..

500

=

2

Output

1/

' - - - - - - - - - -__- - e - - - - G N D

;Q.
.5
Test Circuit for Pulse Response

o

o

3
4
2
t - Time -l1s

5

6

7

t50n

Figure 14
+

STABILITY BOUNDARY CONDITIONS
100

«

E

70

C
~

60

..,

<3

50

.c

40

CI>

0

iU

0

I

:J!.

IK = 10mA
TA= 25°C

A VK A = Vref
90 B VK A = 5V
C VK A = 10V
80
o VKA = 15V

Test Circuit for Curve A
B

Stable

C

1500

Stable

30

~
0

20
10

o
0.001

~

~

Ii

1\

0.01
0.1
CL - Load Capacitance - I1F

10
Test Circuit for Curves B, C, and 0

tThe areas under the curves represent conditions that may cause the device to oscillate. For curves B. C. and D. R2 and V+ were adjusted to
establish the initial VKA and IK conditions with CL = o. VBATTand CL were then adjusted to determine the ranges of stability.

Figure 15

TEXAS ~

INSfRUMENTS
2·314

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TL1431C, TL1431Q, TL1431Y
PRECISION PROGRAMMABLE REFERENCE
APPLICATION INFORMATION

'---Vo

V ref . - - - - 1.....
TL1431
Input ---'VVv---t__

Tl1431

VT = 2.5 V
Vo = (1 + 8.1}V re f
R2
NOTE: R should provide;;, 1-mA cathode current to the TL 1431 at minimum VSAIT-

Figure 16. Shunt Regulator

---~~-'-----GND

Figure 17. Single-Supply Comparator With
Temperature-Compensated Threshold

Tl1431

- Vo

=

(1 +8.1 }Vref
R2

NOTE: R should provide;;' 1-mA cathode current to the TL 1431 at minimum VSAIT-

Figure 18. Precision High-Current Series Regulator

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-315

TL1431C, TL1431Q, TL1431Y

PRECISION PROGRAMMABLE REFERENCE
APPLICATION INFORMATION

t-=0=UT-=--._ Vo

R1

TL1431

R2

v
Min V

= (1 +~pvref

= Vref + 5 V

Figure 19. Output Control of a 3-Termlnal Fixed
Regulator

lO-.----_._---_.- Vo

YeAn -JVVlr--_--_--~_-Vo

R2

Vo = (1 +~~

}Vref
Note: Refer to the stability boundary conditions on Figure 15 to
determine allowable values for the capacitor.

Figure 20. Higher-Current Shunt Regulator

Figure 21. Crowbar

TEXAS ~

INSTRUMENTS
2-316

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

Tl1431C, Tl1431Q, Tl1431Y
PRECISION PROGRAMMABLE REFERENCE
APPLICATION INFORMATION

OUT
f---'-Vo

=SV,l.SA,O.S%

2400
TL1431

0.1%

2400
0.1%

Note: Rb should provide 2 1-mA cathode current to the

TL 1431.

Figure 22. Precision 5-V, 1.5-A, 0.5% Regulator

Figure 23. Efficient 5-V, Precision Regulator

12 V

6.SkQ

Vee

X
Not
Used

-=-

S V Feedback

Figure 24. PWM Down Converter With 0.5% Reference

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-317

TL1431C, TL1431Q, TL1431Y
PRECISION PROGRAMMABLE REFERENCE
APPLICATION INFORMATION

-4~_ _-4>-'vAV3~>--,

VBATT

650
12 V

AlA

Q

---j.-----'I/VI,~--,

TL1431
R

A2A

Low Limit = (1

+:~:)Vref

Off

LEDOn When

Low Limit < VBATT < High Limit
High Limit =

(

1 + :~~

)

V ref
Delay

Note: R3 & R4 are selected to provide the desired LED intensity and" 1
mA cathode current to the TL 1431 at the available V+.

Figure 25. Voltage Monitor

VBATT

RCLO.1%10

--'---1.

= R x C x II

12 V
(12 V) - Vref

Figure 26. Delay Timer

-4>

R1

'-----_---' TL1431

R1

=

10 = Vref

~- 10V)+ +IK

RS

hFE

Figure 27. Precision Current Limiter

Figure 28. Precision Constant-Current Sink

TEXAS ~

INSTRUMENTS
2-318

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TL1451AC
DUAL PULSE-WIDTH-MODULATION CONTROL CIRCUIT
FEBRUARY I 983-REVISED AUGUST 1991

•
•
•
•
•
•
•

DBt, N, NS, OR pwt PACKAGE

Complete PWM Power Control Circuitry

(TOP VIEW)

Completely Synchronized Operation
REF
SCP

CT

Internal Undervoltage Lockout Protection

RT
ERROR
IN+
Wide Supply Voltage Range
{
AMPLIFIER 1 INInternal Short-Circuit Protection
1 FEEDBACK
1 DEAD-TIME CONTROL
Oscillator Frequency ... 500 kHz Max
1 OUTPUT
GND
Variable Dead Time Provides Control Over

ERROR
IN+}
INAMPLIFIER 2
2 FEEDBACK
2 DEAD-TIME CONTROL
2 OUTPUT
VCC

Total Range

•

Internal Regulator Provides a Stable 2.5-V
Reference Supply

t The DB and PW packages are only available left-end taped and reeled
(add LE suffix, i.e., TL1451 ACPWLE)

description
The TL 1451 AC incorporates on a single monolithic chip all the functions required in the construction of two
pulse-width-modulation control circuits. Designed primarily for power supply control, the TL 1451 AC contains
an on-chip 2.5-V regulator, two error amplifiers, an adjustable oscillator, two dead-time comparators,
undervoltage lockout circuitry, and dual common-emitter output transistor circuits.
The uncommitted output transistors provide common-emitter output capability for each controller. The internal
amplifiers exhibit a common-mode voltage range from 1.04 V to 1.45 V. The dead-time control comparator has
no offset unless externally altered and may be used to provide 0% to 100% dead time. The on-chip oscillator
may be operated by terminating RT and CT. During low VCC conditions, the undervoltage lockout control circuit
feature locks the outputs off until the internal circuitry is operational.
The TL1451AC is characterized for operation from -20°C to 85°C.

functional block diagram
VCC

2 DEAD·TIME

RT

CT

~1...:.1_ _ _ _ _ _ _ _ _ _ _ _+9_-1_2_-t-_-._ _----,

CONTROL

10

2 FEEDBACK - - - -........."."'-:-1

2 OUTPUT

COMP

I FEEDBACK - - - -.......--+-11./

16

~~---1----t---~.--t----REF

IS

Scp---r--r-.-.--,

3
ERROR
AMPLIFIER I

1

{ IN+
IN _

DEAD·TIME
CONTROL

+

7

4

1 OUTPUT

_

...::6=-------t============~===~~===~ _J~8 GND

PRODUCTION DATA Information Is current as of publication
date. Products conform to specHlcatlons per the terms of
Texas Instruments standard warranty. Production processing

does not necessarily Include testing of all parameters.

-If
INSlRUMENlS

Copyright © 1991, Texas Instruments Incorporated

TEXAS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2--319

Tl1451AC
.
DUAL PULSE-WIDTH-MODULATION CONTROL CIRCUIT
absolute maximum ratings over operating free-air temperature range
Supply voltage, Vee ....................................................................... 51 V
Amplifier input voltage ......... :............................................................ 20 V
Collector output voltage .................................................................... 51 V
Collector output current ................................... ,............................... 21 mA
Continuous total dissipation ........................................... See Dissipation Rating Table
Operating free-air temperature range ................................................ -20°C to 85°C
Storage temperature range •....................................... .............. -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................... 260°C
DISSIPATION RATING TABLE
TA s 2S'C
POWER RATING

DERATING FACTOR
ABOVE T A = 2S'C

TA = 70'C
POWER RATING

DB

775mW

496mW

403mW

N

1000mW

640mW

520mW

320mW

260mW

448mW

364mW

PACKAGE

NS

500mW

6.2mWI'C
8.0mWI'C
4.0mWI'C

PW

700mW

5.6mW/'C

TA = 85'C
POWER RATING

recommended operating conditions
MIN

MAX

3.6

50

1.05

1.45

V

50

V

Collector output current

20

mA

Current into feedback terminal

45

Supply voltage. VCC
Amplifier input voltage, VI
Collector output voltage,

Vo

UNIT
V

!!A
kQ

Feedback resistor, RF

100

Timing capacitor, CT

150

15000

pF

TIming resistor, RT

5.1

100

kQ

1

500

kHz

-20

85

Oscillator frequency
Operating free-air temperature, T A

electrical characteristics over recommended operating free-air temperature range,
f = 200 kHz (unless otherwise noted)

'C

Vee

= 6 V,
UNIT

reference section
MIN

TYpt

MAX

2.4

2.5

2.6

T A = -20'Cto 25'C

-{).1%

±1%

T A = 25'C to 85'C

PARAMETER
Output voltage (pin 16)
Output voltage change with temperature

TEST CONDITIONS
10 = 1 mA

V

-0.2%

±1%

Input regulation

VCC=3.6Vt040V

2'

12.5

mV

Output regulation

10 = 0.1 mA to 1 mA

1

7.5

mV

Short-circuit output current

VO=O

3

10

30

mA

MIN

TYpt

MAX

undervoltage lockout section
PARAMETER

TEST CONDITIONS

UNIT

Upper threshold voltage (pin 9)

2.72

Lower threshold voltage (pin 9)

2.6

V

10ref = 0.1 mA,

TA= 25'C

V

Hysteresis (pin 9)

80

120

mV

Reset threshold voltage (pin 9)

1.5

1.9

V

t All tYPical values are at TA = 25'C.

TEXAS ~

INSTRUMENlS
2-320

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TL1451AC
DUAL PULSE-WIDTH-MODULATION CONTROL CIRCUIT
electrical characteristics over recommended operating free-air temperature range, Vee
f = 200 kHz (unless otherwise noted) (continued)

= 6 V,

protection control section
MIN

TYpt

MAX

Input threshold voltage (pin 15)

TA = 25°e

0.65

0.7

0.75

V

Standby voltage (pin 15)

No pullup

140

185

230

mV

60

120

mV

-10

-15

-20

flA

PARAMETER

TEST CONDITIONS

Latched input voltage (pin 15)

No pullup

Input (source) current

VI = 0.7 V,

TA = 25°C

Comparator threshold voltage (pins 5 and 12)

1.18

UNIT

V

oscillator section
PARAMETER

TEST CONDITIONS

MIN

TYpt

Frequency

CT = 330 pF,

RT= 10 kQ

200

Standard deviation of frequency

CT = 330 pF,

RT = 10 kQ

10%

Frequency change with voltage
Frequency change with temperature

MAX

UNIT
kHz

Vec = 3.6 V to 40 V

1%

T A = -20 o e to 25°e

-0.4%

±2%

T A = 25°C to 85°C

-0.2%

±2%

TYpt

MAX

dead-time control section
PARAMETER

TEST CONDITIONS

MIN

Input bias current (pins 6 and 11)

1

Latch mode (source) current (pins 6 and 11)

TA = 25°e

-80

Latched input voltage (pins 6 and 11)

10 =40 f'A

2.3

Input threshold voltage at f = 10kHz (pins 6 and 11)

Maximum duty cycle

I'A

flA

-145

V
2.05

Zero duty cycle

UNIT

1.2

1.45

MIN

TYpt

2.25

V

error-amplifier section
PARAMETER

TEST CONDITIONS

MAX

UNIT

Input offset voltage

Va (pins 5 and 12) = 1.25 V

±6

mV

Input offset current

Va (pins 5 and 12) = 1.25 V

±100

nA

Input bias current

Va (pins 5 and 12) = 1.25 V

500

nA

160
1.05

Common-mode input voltage range

to

VCC = 3.6 V to 40 V

V

1.45
Open-loop voltage amplification

70

RF = 200 kQ

Unity-gain bandwidth
Common-mode rejection ratio

60

Positive output voltage swing

V re f-0.1

80

dB

1.5

MHz

80

dB
V

Negative output voltage swing

1

V

Output (sink) current (pins 5 and 12)

VID = -0.1 V,

VO=1.25V

0.5

1.6

rnA

Output (source) current (pins 5 and 12)

VID = 0.1 V,

VO=1.25V

-45

-70

I'A

t All tYPical values are at T A = 25°e.

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-321

TL1451AC
DUAL PULSE-WIDTH-MODULATION CONTROL CIRCUIT
electrical characteristics over recommended operating free-air temperature range,
f = 200 kHz (unless otherwise noted) (continued)

Vcc = 6 V,

output section
PARAMETER

TEST CONDITIONS

MIN

TVPT

Collector off-state current

Vo = 50V

Output saturation voltage

10 = 10mA

1.2

Short-circuit output current

VO=6V

90

MAX
10
2

UNIT

fAA
V
rnA

pwm comparator section
PARAMETER

TEST CONDITIONS

Input threshold voltage at

Zero duty cycle

f = 10 kHz (pins 5 and 12)

Maximum duty cycle

MIN

TVPt

MAX

2.05

2.25

1.2

1.45

MIN

UNIT
V

total device
TVPt

MAX

Standby supply current

Off-state

1.3

1.B

rnA

Average supply current

RT = 10 kQ

1.7

2.4

rnA

PARAMETER

TEST CONDITIONS

t All typical values are at TA = 25'C.

PARAMETER MEASUREMENT INFORMATION

o
s

Test
Input

15

14

)

lOUT

I

13

12

11

10

., 9

6

7

8

TL 1451AC

1

2

3

I

c,t

330 pF

RL
4.7 k{l

I

T
16

~

rr-

CPEf0.47 "F

VCC - 5 V

4

5

I
{j

I

RT
10 k{l

n

~n

~

r.'7

Test
Input

Figure 1. Test Circuit

TEXAS

-If

INSTRUMENTS
2-322

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

RL
4.7 k{l

OUT 2

UNIT

Oscillator Triangle Waveform - - - .

:1 /\.-

2.0 V

Error Amplifier Output 7\:/'s~~A
A---.L\. ~J>r-A ~ /\.
1.6 V
Dead.TImelnputVoltage
V~~??YYV~~ 1.4 V
Short·Clrcult Protection .......-.:--'--~-----=--=-----=-------=--=-----=-----~=.;;t:.....------=:..-.-~~=~=~::::==--=-'":....-~=-~ 1.25 V
Comparator Input Voltage
I
I
I
I
I
H
PWM Comparator Output Voltage
I
- ,-- -

liSIC

Output Transistor Collector
Waveform

~

~

~z

~.~.~d

8C
;~

~r'1

j~"

H

---:i---

Protection Enable TermlnalWaveform
Short·Clrcult Protection
Comparator Output

Power Supply Voltage

i ------------------ i.:::i:--::" -- ~-:- -I
I
I

I

I

I.

I

I

I

U

'pe

-.l

~.: v

I

r=

H
3.6 V

~;{:..J. 2._8_V_T_Y_P_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __
Protection Enable Time, tpe = (0.051 x 106 x Cpe) In seconds

Figure 2. TL 1451AC Timing Diagram

~

!!l==m
::xJ

I

Ir------------------------------------------------__

~

ov

==

~
c:

::xJ

m
m
==
Z
-t

c
c:
~

r-

."

c:
~
m

6==

(J)

Z

-t

i

::xJ

3:
o

~

==
oz~

%

c

c:

E
5
z
o
o
Z

-t

2J

o

r- -t

o!:
-~
2J",

~

N

Col

0 .....
c:~

=io

TL1451AC
DUAL PULSE-WIDTH-MODULATION CONTROL CIRCUIT·
TYPICAL CHARACTERISTICS
TRIANGLE OSCILLATOR FREQUENCY
vs
TIMING RESISTANCE

OSCILLATOR FREQUENCY VARIATION
vs
FREE-AIR TEMPERATURE
3r----.~---.-----.-----.----,

1 M
5V
25°C

VCC
TA
N

C')-

::J:

~

>-

"c

1.':')-

~

.

Q)

'"

IL

::J

~

" 7~1

g

1'\°0

Jg

·u

Cl

.."
..?

o
·u

~ -1r-~~+-----+-----+-----~~~

.
.

C')-

I

.... '" 7,soa
",,°0

o
~ - 2 r-----t-----t-----r-----t---~

~

~I

1 k

1k

4 k

10k

Or-~~~~~~~~~~~~~~

IL

" .0,('

I'

10 k

2

VCC V
RT = 10 kO
CT - 330 pF
fosc - 200 kHz

>

.0,('

::J

.~
"fij

"K,soO

100 k

I
'"

'"

I
>-

?i-

40 k 100 k

-3L-____
-25

400 k 1 M

~

____

0

Figure 3

TIMING CAPACITANCE

I

VCC ~ 5 V
RT - 5.1 kO
TA - 25°C

r--

Q)

~ 2.2

"0

>

____

~

__

75

~

100

TRIANGLE WAVEFORM PERIOD
vs
TIMING CAPACITANCE

11,5

2.4

~

50

Figure 4

TRIANGLE WAVEFORM SWING VOLTAGE

>

____

T A - Free-Air Temperature - °C

RT- Timing Resistance-O

2.6

~

25

VCC - 5 V
RT - 5.1 kO
TA = 25°C

. . . . r-

V

2

Cl

c

·i
VI

§

...
0

1.8
1.6

V

Q)

>
as 1.4

3:

Q)
C. 1.2
c

.!!!
j!:

1/1--

V-

I/V
0.8
10 1

10- 1
104

10 2

105

10 1

CT- Timing Capacitance-pF

Figure 5

10 3

Figure 6

TEXAS ~

INSTRUMENTS
2-324

102

104

CT- Timing Capacitance-pF

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

10 5

TL1451AC
DUAL PULSE-WIDTH-MODULATION CONTROL CIRCUIT
TYPICAL CHARACTERISTICS
REFERENCE OUTPUT VOLTAGE VARIATION
vs
FREE-AIR TEMPERATURE

>

E
I
c

.g

.!!!

30r-----~--------_r--------~--------r_----_,

Vee - 3.6 V
Iref - 1 mA

201---1_--1_--1_--1_-__1

~.

>

E
I
c
o

i

30r-----~--------_r------~--------r_----_,

Vee - 40 V
Iref - 1 mA
201---~1----t-----+-----t-----;

"fi

to

>
8,

REFERENCE OUTPUT VOLTAGE VARIATION
vs
FREE-AIR TEMPERATURE

..

>

101---_--_--_--_-__

o

tJ)

~
o

101---~1----t-----+-----t-----;

>
...

>

:::I
Co

;

o
~ -101-~-1_--1_--1_~~~~__I

c

I!!

~

-20~--~--~--~--~-_4

~

L.-_ _L.-_ _L.-_ _L.-_ _L.-_.......I

.. - 30

~

-10~~-1----1---1--~~7---I

~

-201---1---1_--1---1_-__1

c
I!!
.!

.L

.L

-25

0

25

50

75

I!!

~

-30~

-25

100

_ _ _ _ ___ _ _
0
25
50
75
~

~

Figure 7

DROP-OUT VOLTAGE VARIATION
vs
FREE-AIR TEMPERATURE
1.1

3.0,....--rI - lr--r----.-....,----.-....,........,
I

100

Figure 8

REFERENCE OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE

.

~_~

T A - Free-Air Temperature- °e

T A - Free-Air Temperature - °e

>

~

TA - 25°e

I
Iref - 1 mA

2.51-~f--+--+--+-+-+-+-__I

tJ)

~

~

...

>

2~~~~--+--r-~-~-+-_4

I 0.9

8,

:::I

B

~

"0

~
c

o

>
;

o 1.5 H'-II--t--+--t---t---+--+---f

-..........

0.8

~
""""""""-

eD- 0.7
o

I!!

.;a:

I'--..I'-..

I

i

>

0.6

0.5 H---II--t--+--t---t---+--+---f

5

10

15

20

25

30

35

40

-25

o

25

50

75

100

T A - Free-Air Temperature- °e

vee-Supply Voltage-V

Figure 9

Figure 10

TEXAS .If

INSJRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-325

TL1451AC
DUAL PULSE-WIDTH-MODULATION CONTROL CIRCUIT
TYPICAL CHARACTERISTICS
UNDERVOLTAGELOCKOUT
HYSTERESIS CHARACTERISTICS
vs
SUPPLY VOLTAGE

6

>
I

..

I

TA - 25°C
TA - 85°C
yTA

+

5

>

I
a

I

-20 o e

1:11

>

.
..So

3

;

~

I

w

u

>

2

[i'
.10
8

o
o

200 ~
..
_

!

2. 5

1---.j..,.L---I--=~~.I---+-------I1 00

Hysteresis Voltage
(Right Scale)

3.

i
:!

1-10

!VDE

10 - 10 mA

2~--~--~--~--~--____I0

::J

2
3
4
vce-Supply Voltage-V

-25

5

o

75
50
25
TA-Free-Air Temperature- °C

Figure 11

Figure 12

SHORT-CIRCUIT PROTECTION CHARACTERISTICS
vs
FREE-AIR TEMPERATURE

> 1.30

..

3

>

2.5

>

I

~

Short-Circuit Protection
Latch Reset Supply Voltage
(Right Scale)

~ 1.25
-c

..

Ci
.c
~
~

'--..

i.

1.20

-

Ci

>

Q.
Q.

......
:::J

"- -.. ::::---..

I/)

2

~

l'

.c

~

-.........::::: ~
1.5 I
Comparataor Threshold Voltage
(Left Scale)
:f

~1.15 Short-Circuit Protection

8

I

t

1:11

1.10
-25

I

o

I

I

25

50

I-

75

T A - Free-Air Temperature - °C

Figure 13

TEXAS ."

INSTRUMENTS
2--326

I

i

~

5V

:::J
:::J

I

Threshold Voltage-VTL
(Left Scale)

~

u
0

I
3

.!::oi'

~

u

..!!
Ci

(Left Scale)

-

0

~

1-----+- Threshold Voltage-VTH

~

4

>
E

3.
>~

GI

15

UNDERVOLTAGE LOCKOUT CHARACTERISTICS
vs
FREE-AIR TEMPERATURE
3.5 ...---,.....--,.....--,.....--,.....----., 300

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

1

100

100

~

;

j

f
GI

~
::J

TL1451AC
DUAL PULSE-WIDTH-MODULATION CONTROL CIRCUIT
TYPICAL CHARACTERISTICS
PROTECTION ENABLE TIME
vs

PROTECTION ENABLE CAPACITANCE
18

..,

15

j::

.,

12

'"
c
..,0

9

e

6

I
E

:l5
c
w

.,<>

./

D..

.,

I

..0-

/'"

3

o

V "

V

/

o

100

50

150

200

250

CPE - Protection Enable Capacitance -I'F
scp
15

Vref
16

170 kG

Short·Circuit
Protection

Figure 14

TEXAS ~

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-327

TL1451AC
DUAL PULSE-WIDTH-MODULATION CONTROL CIRCUIT
TYPICAL CHARACTERISTICS
ERROR AMP MAXIMUM OUTPUT VOLTAGE SWING
vs
FREQUENCY

>

2.25

~

2

I

'i

III
CD

OPEN-LOOP VOLTAGE AMPLIFICATION
vs
FREQUENCY
90

Vee ~
TA - 25°e

'5""

III

80

I
c

70

"g

1.75

0

g)

.~

l!!

"0

1.5

>

(J

&. 1.25

'5

o

1'1'"

!E

I-""

 30

.5><

0.75

:E

0.5

....0

20

 >< r'\.

.J/

I II
r Phase Shift
(Right Scale)

100 k

1 M

90°

f-Frequency-Hz
Vre!

39kQ

Rre!
Cre!

39kQ

-=TEST CIRCUIT

Figure 18

TEXAS .Jf

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2--329

TL1451AC
DUAL PULSE-WIDTH-MODULATION CONTROL CIRCUIT
TYPICAL CHARACTERISTICS
CLOSED-LOOP GAIN AND PHASE SHIFT
vs
FREQUENCY
70

60

I

VCC - 5 V
Rret - 15 k!l
Cret = 470 pF
TA

=25°C

50

"0;

A

40

Closed-Loop Gain
(Left Scale) po""' ""r""

Cl

....

C-

o
0

.,:,

..

30

0

U

V

20
A

.V

-

-:> K

~

~
~

o

~

..Jl 1/

If

V

~~

h
~

10

I

I "I

I>c )cr-,
....
/

"""

~~

Jf/

V (Right Scale)

0°
10°

r--.. ...........

t:/

I'

---....

..

-40°

50°

80°

90°

TEXAS

~

INSIRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

~

-30° a..
1!

70°

_:......

:t:
III

-20° ..

-60°

100

2-330

I

Phase Shift

aJ

"C

I
c

I

Cx: 0 47 pF
• 470pF
t:,. 4700 pF

TL1451AC
DUAL PULSE-WIDTH-MODULATION CONTROL CIRCUIT
TYPICAL CHARACTERISTICS
CLOSED-LOOP GAIN AND PHASE SHIFT
vs

FREQUENCY
70

I

VCC - 5 V
Rref - 130 kO
60 Cref - 470 pF
TA - 25°C

Cx:

• 470pF
!'::, 4700 pF

I I II

50
!XI

r

Closed-Loop Gain
Ir (Left Scale)

'C

I
c:

1\

'; 40

CI

c.

0
0

..... 30

..

-0

--

CI>

0

U

20

10

o

-

100

jl/

jll

/\
~

.....
,-.

~

1>-

I FII'

0 47 P

I.

.........

......

-r---.. ~~
.......
........

~~~

---

~

~f"''''
10"""

/

V

~~

..... 1:::'
~

.....

-----

,\
:1'
............

""-

I""-- i'r--r--

-40°

.......

/'

",

Phase Shift
(Right Scale)

t--

-

I'r--

50°

r-.

-60 0
70 0

-80 0
90 0
1M

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-331

TL1451AC
DUAL PULSE-WIDTH-MODULATION CONTROL CIRCUIT
TYPICAL CHARACTERISTICS
CLOSED-LOOP GAIN AND PHASE SHIFT
vs
FREQUENCY
70

60

VCC =5V
Cret= 470 pF
TA = 25'C

50
III
"C

I
c
'ii 40
0

Closed-Loop Gain
(Left Scale)

C-

o
0

....I

-c

30

.......

CD

III

0

~

(j

10

100

",...""

" "I'
"-

20

o

Phase Shift
(Right scal~ , -

~

~

",....

""

/'"

V

- 20

30 0

-50 0

70 0
-80 0

I'---

90 0

1k

100 k

10 k

Vref

39kQ

Cref
39kQ

-=
TEST CIRCUIT

Figure 21

TEXAS ,If

INSlRUMENTS
POST OFFICE BOX 655303 • OALLAS, TEXAS 75265

~
(/j

0

-60 0

f - Frequency - Hz

2-332

10 0

-40 0

",....

.....
............

-

f-

1 M

.,3l

if

TL1451AC
DUAL PULSE-WIDTH-MODULATION CONTROL CIRCUIT
TYPICAL CHARACTERISTICS
OUTPUT SINK CURRENT
vs
COLLECTOR OUTPUT SATURATION VOLTAGE
120

-20°Y-- ~

TA -

110

/

100

«

...
I
c

I /

90

E

I /

80

I

!! 70

""c
iii
...

60
50

:J

40

0

30

So
:J

./

TA - 25°C
,;"

. . - C s 5 0 C-

/

I

I/ /
1/ V

~

(,,)

/'

1//
U/
I'

,

20
10

VCC - 3.6 V

o ~

o

5

15

10

20

Collector Output Saturation Voltage-V

Figure 22
MAXIMUM OUTPUT VOLTAGE SWING
vs
FREE-AIR TEMPERATURE
Vref

Vref -0.01

>

>

I Vref -0.02

g'

'i

r:=

Vref -0.03

:I

'0

>

Vref -0.04

~
o Vref -0.05
E

-------

r--.

Maximum Output Voltage
Swing (Right Scale)
..............

r--.

K

0.9 ~
c

'i

II)

0.8 ..
Cl

:I

i"'--..

o?:'u~r--......

Maximum
Voltage Swing (Left Scale)

~

.~ Vref -0.06

'0

--....
...........

~

I'-

0.7 ~

So
:J

o

0.6 E
:J

E

';(

0.5 ~

::E

Vyom -1

:J

VCC=3.6V
RL = 100 kQ
Vyom +1 = 1.25 V
Vyom -1 1.15 V (Right Scale)
Vyom -1 =1.35 V (Left Scale)

=

TeST CIRCUIT

Vref -0.07
-25

o

25

50

75

100

TA - Free-Air Temperature - °c

Figure 23

TEXAS ~

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-333

TL1451AC
DUAL PULSE-WIDTH-MODULATION CONTROL CIRCUIT
TYPICAL CHARACTERISTICS
OUTPUT TRANSISTOR "ON" DUTY CYCLE
vs
DEAD-TIME INPUT VOLTAGE
0
VCC - 3.6 V

(J
J
> 30

STANDBY CURRENT
vs
SUPPLY VOLTAGE

:1

...

40
50

...~.

60

c

70

'iii

f

I-

~ 80

~

1-c

!!
:; 1.5

(J

~

I
I
I
II

'c

P

1

1

::J

C

"g

c

~
I

~
"g
c

~ 0.5
(j
};}

90
100

I

o

1.5

0.5

TA = 25°C

2

2

2.5

3

3.5

o

4

:1

o

10

Dead-Time Input Voltage-V

_

MAXIMUM CONTINUOUS POWER DISSIPATION
vs
FREE-AIR TEMPERATURE

E

...cI

3:

1200
E 1100

J

Averagelsup I
VCC::: 6 II.
P Y Current
Cr:::330~:r::: lOkQ,

I
c

IS~

<..6

RESET

~_ _
5

RESET

R1
(see Note A)

R2
(see Note A)
RESIN

+-____

~2__~________~~____

~

+-____________

L -__________________

~----1~

GND~4--~--------~~------------------------~------------~
NOTE A: TL7702B: R1 '" 0 Q, R2 '" open
TL7705B: R1 '" 16 kQ, R2 '" 8 kQ

typical timing diagram

Vee and
SENSE

I

VT-

Vres

o I

Output
Undefined

r;..

o

, - - - - ' - - - VTI VT+

I
I
I

V res

!ni r- -1rl!-

~t/1:====-__
RESETi

I
I
I
I

I

td

I--td....

~====~

TEXAS

I

__

~:j2a_

~

INSlRUMENTS
2-352

i

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Output
Undefined

REF

TL7702B, TL7705B
SUPPLY VOLTAGE SUPERVISORS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) .......................................................... 20 V
Input voltage range at RESIN ..................................................... -0.3 V to 20 V
Input voltage range at SENSE: TL7702B ........................................... -0.3 V to 20 V
TL7705B ............................... . . . . . . . . . . .. -0.3 V to 20 V
High-level output current at RESET ...................................................... -30 mA
Low-level output current at RESET ........................................................ 30 mA
Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. See Dissipation Rating Table
Operating free-air temperature range: TL77_ BC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. O°C to 70°C
TL77_BI ....................................... -40°C to 85°C
TL77_BO ..................................... -40°C to 125°C
TL77_ BM ..................................... -55°C to 125°C
Storage temperature range
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -65°C to 150°C
Case temperature for 60 seconds: FK package .............................................. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package .................... 300°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package ................. 260°C
NOTE 1: All voltage values are with respect to the network ground terminal.
DISSIPATION RATING TABLE
PACKAGE

TA s 25'C
POWER RATING

DERATING FACTOR
ABOVE TA 25'C

=

=

TA 70'C
POWER RATING

=

TA 85'C
POWER RATING

=

TA 125'C
POWER RATING

D

725mW

5.8mWre

464mW

377mW

t45mW

FK

1375mW

11.0 mWre

880mW

715mW

275mW

JG

1050mW

8.4 mwre

672mW

546mW

210mW

p

1000mW

8.0mWre

640mW

520mW

200mW

recommended operating conditions
MIN

MAX

3.6

18

V

High-level input voltage at RESIN, VIH

2

18

V

Low-level input voltage at RESIN, VIL

0

0.8

V

Input voltage at SENSE, VI

0

18

Supply voltage, Vee

High-level output current at RESET, IOH
Low-level output current at RESET, IOL
TL77_Be
Operating free-air temperature range, T A

0

V

-16

mA

16

mA

70

TL77_BI

-40

85

TL77_BQ

-40

125

TL77_BM

-55

125

TEXAS

UNIT

'e

lJ1

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-353

TL7702BC, TL7702BI, TL7702BQ, TL7705BC, TL7705BI, TL7705BQ
SUPPLY VOLTAGE SUPERVISORS
electrical characteristics over recommended operating conditions (unless otherwise noted)
TEST CONDITIONSt

PARAMETER
VOH

High-level output voltage, RESET

IOH=-16mA

VOL

Low-level output voltage, RESET

IOL= 16 mA

Vref

Reference voltage

Iref = 500
TL7702B

VT-

Negative-going threshold voltage,

TL7705B

SENSE

TL7702B

MIN

Hysteresis SENSE (VT + - VT _)

II

Input current, RESIN

II

Input current, SENSE

MAX

V

iJA,

TA = 25°e

TA = 25°e

2.48

2.53

2.58

2.505

2.53

2.555

4.5

4.55

4.6

2.48

2.53

2.58

4.45

4.55

4.65

TL7702B

Vee = 3.6 Vto 18 V,

10

TL7705B

TA = 25°e

30
-0.1

VI = Vrefto 18 V

V

V

mV
-10

VI = 0.4 Vto Vee
TL7702B

UNIT

0.4

TL7705B
Vhys

TYP

Vee-1.5

-2

iJA
iJA
iJA

IOH

High-level output current, RESET

VO=18V,

See Figure 1

50

IOL

Low-level output current, RESET

Vo =OV,

See Figure 1

-50

Vres~

Power-up reset voltage

1

IlA
V

lee

Supply current

IOL(RESET) = 2 mA, TA = 25°e
RESIN ,,2V
VSENSE = 15 V,

3

mA

1.8

t All electrical characteristics are measured with 0.1-IlF capacitors connected at REF, eT, and Vee to GND.
~ This is the lowest voltage at which RESET becomes active.

switching characteristics, Vee
PARAMETER

=5 V, CT open, TA = 25°C
FROM
(INPUT)

TO
(OUTPUT)
RESET

tpLH

Propagation delay time from
low-to-high-Ieveloutput

RESIN

tpHL

Propagation delay time from
low-to-high-Ieveloutput

RESIN

tw(min)

Pulse duration, minimum effective

tr

Rise time

tf

Fall time

tr

Rise time

tf

Fall time

TEST CONDITIONS

TYP

MAX

UNIT

270

500

ns

270

500

ns

See Figures 1, 2, and 3
RESET

RESIN

See Figure 2(a)

150

SENSE

See Figure 2(b)

100

ns
75

RESET
See Figures 1, 2, and 3
RESET

TEXAS .JJI

INSlRUMENTS
2-354

MIN

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

150

200

75

150
50

ns
ns

TL7702BM, TL7705BM
SUPPLY VOLTAGE SUPERVISORS
electrical characteristics over recommended operating conditions (unless otherwise noted)
PARAMETER

TEST CONDITIONSt

VOH

High-level output voltage, RESET

IOH =-16mA

VOL

Low-level output voltage, RESET

IOL = 16 rnA

Vref

Reference voltage

Iref = 500 IlA,
TL7702B

VT-

Negative-going threshold voltage

TL7705B

at SENSE input

TL7702B

MIN

Hysteresis, SENSE (VT + - VT _)

II

Input current, RESIN

II

Input current, SENSE

TA = 25°C

TA = 25°C

2.53

2.58

2.505

2.53

2.555

4.5

4.55

4.6

2.48

2.53

2.58

4.45

4.55

4.65

10

TL7705B

TA = 25°C

30
-10
-0.1

VI = Vref to Vee - 1.5 V

High-level output current, RESET

Vo = 18 V

Low-level output current, RESET

VO=O

ICC

Supply current

VSENSE = 15 V,

RESIN", 2V

Power-up reset voltage

IOLRESET = 2 rnA,

TA = 25°C

V

V

mV

VI = 0.4 Vto Vee

IOH

*

2.48

Vee=3.6VtoI8V,

TL7702B

UNIT

V

TL7702B

IOL
Vres

MAX

0.4

TL7705B
Vhys

TYP

Vce-1.5

-2
50
-50

1.8

3

1

J.tA
J.tA
J.tA
IlA
rnA
V

t All electrical characterlsllcs are measured with O.I-IlF capacitors connected at REF, eT, and Vee to GND.

*This is the lowest value at which RESET becomes active.
switching characteristics, Vee

=5 V, CT open, TA =25°C
FROM
(INPUT)

TO
(OUTPUT)

Propagation delay time from
low-to-high-Ieveloutput

RESIN

RESET

tpHL

Propagation delay time from
high-to-Iow-Ievel output

RESIN

tw(min)

Pulse duration, minimum effective

tr

Rise time

tf

Fall time

tr

Rise time

PARAMETER

tpLH

TEST CONDITIONS

MIN

TYP

MAX

UNIT

270

500*

ns

270

500'

ns

See Figures 1, 2, and 3
RESET

RESIN

See Figure 2(a)

150

SENSE

See Figure 2(b)

100

ns
75*

RESET
See Figures 1, 2, and 3

RESET
Fall time
tf
*For products compliant to MIL-STD-883, Class B, these parameters are not producliOn tested.

TEXAS

150

200*

75

150*
50*

ns
ns

.Jf

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-355

TL7702B, TL770SB
SUPPLY VOLTAGE SUPERVISORS
PARAMETER MEASUREMENT INFORMATION
5V
RL
(see Note A)
RESET . _ - - - - - ,

----- -,

I
I
I
I

15 pF
(see Note B)

RESET
15 pF
(see Note B)

RL
(see Note A)

GND

RESET OUTPUT CONFIGURATION

RESET OUTPUT CONFIGURATION

NOTES: A. For IOL and IOH, RL = 10 kQ. For all switching characteristics, RL
B. Includes jig and probe capacitance.

= 511

Q.

Figure 1. RESET and RESET Output Configurations

i4--tw--*i

i4--tw--*i

v:: ~.~V
~==OV

V-

----..J

----..J _____

~==

(a) RESIN

(b) SENSE

WAVEFORMS

Figure 2. Input Pulse Definition

vi

SENSE

I

Volta, ge
Fault

I

\~1'-V-T+--~SS

-----'. 1 - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - · ov

RESIN

1
---......,jI!:

ss

1
1

----+--'"""'-

s~

I
I

:

Irrelevant

tr

IV

0.8 V

--.J~

RESET

tf

I I
I
I

1

I

1

1

1

I

-.j

t

tpLH

1'-_ _ _

1

1'--+--""1-90%

1

1

I

1

.1

~ ~td~

1
I

I

l4-td~

1

1

I

1

:

I

I

Figure 3. Voltage Waveforms

TEXAS

~

INSlRUMENlS
2-356

r_2:!.____

VIL

1

~

I

1

VIH

I

POST OFFICE BOX 655303 • DALlJIS, TEXAS 75265

I

VOH(RESET)

TL7702B, TL7705B
SUPPLY VOLTAGE SUPERVISORS
APPLICATION INFORMATION
VS--------~.---------.-------------~.---- System Supply

8

7

10 kQ

VCC
5
SENSE
RESET

To System
Reset

2
Reset Input _ . __________-=-1
RESIN
(from system)
REF
RT

3

CT

(see Note A)
0.1 ",F

CT

RESET
GND

6

4

To System
Reset
10 kQ

-=NOTE A: When VCC and SENSE are connected tothe same point, it is recommended that series resistance (RT) be added between the time delay
programming capacitor (CT) and the voltage supervisor device pin (CT).
The suggested RT value is given by:
RT > VI - VT -

1

x

,where VI = (the lesser of 7.1 V or VS)

10-3

When this series resistor is used, the td calculation is as follows:
td 1.3-[(1 x 10- 4)

X

RTJ

xCT

1 x 10-4

Figure 4. System Reset Controller With Undervoltage Sensing

TEXAS ~

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-357

2-358

TL7757
SUPPLY VOLTAGE SUPERVISOR
AND PRECISION VOLTAGE DETECTOR
03897, SEPTEMBER 1991

available features
•

Power-On Reset Generator

•

Complementary Reset Output

•

Automatic Reset Generation After Voltage
Drop

•

Precision Threshold Voltage
4.55 V ± 120 mV

•

Low Standby Current ... 20 /lA

•

High Output Sink Capability ... 20 rnA

•

Reset Output Defined When VCC
Exceeds 1 V

•

Comparator Hysteresis Prevents Erratic
Resets

TVPICAL TIMING DIAGRAM
VCC

TVPICAL APPLICATION DIAGRAM

I
I

Vres

5V--_.------_.------,

o~~I~I------~~----~~
I I

II
II

1 k.Q

I
I

RESET 1--....- TL7757

i~
:
J"~;~~

System
Reset

GND

o~~~----------------------~~-

description
The TL7757 is a monolithic supply voltage supervisor designed for use in microcomputer and microprocessor
systems. The supervisor monitors the supply voltage for undervoltage conditions. During power-up. when the
supply voltage. Vee. attains a value approaching 1 V. the RESET output becomes active (low) to prevent
undefined operation. If at any time the supply voltage drops below threshold voltage level (VT_). the RESET
output goes to the active (low) level until the supply undervoltage fault condition is eliminated.
The e-suffix device is characterized for operation from ooe to 70 oe. The I-suffix device is characterized for
operation from - 40 0 e to 85°e. The M-suffix device is characterized for operation from - 55°e to 125°C.
AVAILABLE OPTIONS
PACKAGE
TA

O°C to
70°C

SMALLOUTLINE
(D)

TO-226AA

50T-89

(LP)

(PK)

TL7757CD

TL7757CLP

TL7757CPK

TL77571D

TL7757ILP

TL77571PK

TL7757MD

TL7757MLP

-40°C to
85°C
- 55°C to
125°C

CHIP
FORM
(V)

TL7757V

---

D and LP packages are available taped and reeled. Add 'R' suffiX to deVice
type (e.g., TL7757CDR). Chips are tested at 25°C.

PRODUCTION DATA information is current al of pUblication data.
Products conform to spacifications per the tarms of Telas Instruments
standard warranty. Production processing do.s not necessarily Include
testing of all parameters.

TEXAS ~

IN5rRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Copyright © 1991, Texas Instruments Incorporated
On products compliant to MIL-STD-883, Class B. all parameters
ara testtd unla .. otharwist noted. On all other products,

production processing dOls not necessarily include tasting of all
paramiterl.

2-359

TL7757
SUPPLY VOLTAGE SUPERVISOR
AND PRECISION VOLTAGE DETECTOR
DPACKAGE
(TOP VIEW)
RESET[]8
VCC 2
7
NC 3
6
GND 4
5

LPPACKAGE
(TOP VIEW)
NC
NC
NC
NC

PK PACKAGE
(TOP VIEW)

GND

o

VCC
RESET

VCC

NC - No internal connection

GND

RESET

GND is in electrical contact
with the tab.

TL7757V chip information
These chips, properly assembled, display characteristics similar to the TL7757. Thermal compression or
ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive
epoxy or a gold-silicon preform.

BONDING PAD ASSIGNMENTS
r---------~---------VCC

L - - -_ _----~------_ _-GND

51
BOND PAD
ASSIGNMENTS
1GNDt
2VCC
3 NOT USED
4 RESET

CHIP THICKNESS:
11 TYPICAL
BONDING PADS:
4X4MINIMUM
TJmax = 150 a C
TOLERANCES
ARE ±10%
ALL DIMENSIONS
ARE IN MILS

~1~'------------41----------~~~1

I I
t

I I

Backside of chip has an internal electrical connection to pad 1.

TEXAS

2-360

~

INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265

NO BACKSIDE
METALLIZATION

TL7757
SUPPLY VOLTAGE SUPERVISOR
AND PRECISION VOLTAGE DETECTOR
equivalent schematic

GND

ACTUAL DEVICE
COMPONENT COUNT
Transistors
27
I
Resistors
20
I
Capacitors
2
I

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265

2-361

Tl7757

SUPPLY VOLTAGE SUPERVISOR
AND PRECISION VOLTAGE DETECTOR
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage range, VCC (see Note 1) ........................................ - 0.3 V to 20 V
Offstate output voltage range (see Note 1) ..................................•.... - 0.3 V to 20 V
Output current. .................................................................... 30 rnA
Operating free-air temperature range, TA: C-suffix ................................... O°C to 70°C
I-suffix .................................. - 40°C to 85°C
M-suffix ................................ - 55°C to 125°C
Continuous total power dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. See Dissipation Rating Table
Storage temperature range .................................................. - 65°C t6 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................. 260°C
NOTE 1: All voltage values are with respect to network terminal ground.
DISSIPATION RATING TABLE
DERATING
FACTOR
5.8 mW/oC

DERATE
ABOVE

TA=70°C

TA = 85°C

TA = 125°C

0

TAS25°C
POWER RATING
725mW

TA = 25°e

464mW

377mW

145mW

LP

775mW

6.2 mW/oe

TA = 25°e

496mW

403mW

155mW

PK

500mW
3125mW

4.0 mW/oe

TA = 25°e

320mW

260mW

100mW

25mW/oe

Te = 25°e

2000 mW

1625mW

625mW

PACKAGE

PK

recommended operating conditions
C-SUFFIX
MIN
MAX
Supply voltage, Vee
High-level output voltage, VOH
Low-level output current, IOL

1

7
15

Operating free-air temperature, TA

0

70

I-SUFFIX

UNIT

MAX

1

7
15
20

1

7
15

V
V

20

rnA

-40

85

-55

125

°e

20

TEXAS ~

2-362

M-SUFFIX
MIN
MAX

MIN

INSfRUMENTS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265

Tl7757C
SUPPLY VOLTAGE SUPERVISOR
AND PRECISION VOLTAGE DETECTOR
electrical characteristics at specified free-air temperature
PARAMETER
VTVhys:j:

TEST CONDITIONS

Threshold voltage (negative-

MIN

TYP

25°C

4.43

4.55

going Vee)

Full range

4.4

Hysteresis at Vee input

25°C
Full range

30

VOL

Low-level output voltage

IOL = 20 rnA, Vee = 4.3 V

IOH

High-level output current

Vee = 4.7 to 7 V, VOL = 15 V, See Figure 1

Vres§

Power-up reset voltage

ICC

TAt

40

50

O.S
O.S

25°C

1

Full range

1

25°C
Full range

O.S

Vee=4.3V

25°C
Full range

1400

Vee=4.7Vt07V

60
70

RL = 2.2 K, Vee slew rate s 5 V!~s

Supply current

4.67
4.7

0.1

25°C
Full range

MAX

1
1.2
2000
2000

25°C

40

Full range

45

UNIT
V
mV
V

fIA
V

fIA

switching characteristics at TA = 25°C (unless otherwise noted)
PARAMETER
tpLH
tpHL
tr

Propagation delay time, lowto-high-level output

TEST CONDITIONS
See Figures 2 and 3, Vee slew rate s 5 V/~s

TAt

MIN

25°C

TYP
3.4

See Figures 2 and 3

Rise time

See Figures 2 and 3, Vee slew rate S 5 V!~s

25°C

2

Full range
25°C

0.4

Fall time

See Figures 2 and 3

25°C

0.05

Iw(min)

at Vee for output response

1
1

Full range
Minimum pulse duration

5
5
1
1

Full range
tf

5
5

Full range

Propagation delay time, highto-low-level output

MAX

25°C

5

Full range

5

UNIT
~s

its
~
~s

~s

t Full range is ooe to 70°C.
:j: This is the difference between positive-going input threshold voltage, VT+, and negative-going input threshold voltage, VT_'
§ This is the lowest voltage at which RESET becomes active.

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265

2-363

TL77571
SUPPLY VOLTAGE SUPERVISOR
AND PRECISION VOLTAGE DETECTOR
electrical characteristics at specified free-air temperature
PARAMETER
VT_

TEST CONDITIONS

Threshold voltage (negative-

25°C
Full range

goingVeel
Vhys:l:
VOL
IOH
Vres §

Hysteresis at Vee input
Low-level output voltage
High-level output current
Power-up reset voltage

4.43

4.55

4.4
40
30

Vee = 4.7 to 7V, VOL = 15 V, See Figure 1

25°e
Full range

=2.2 K, Vee slew rate s; 5 V/l1s

TYP

25°C
25°e
Full range

RL

MIN

Full range
IOL = 20 mA, Vee = 4.3 V

Supply current
Vee=4.7Vt07V

MAX
4.67
4.7

50

60

0.1

0.8

70
0.8
1
1

25°C

0.8

1

1400

2000
2100

1.2

Full range
25°e
Full range

Vee = 4.3 V
Ice

TAt

25°C

40

Full range

45

UNIT
V
mV
V

fIA
V

fIA

switching characteristics at TA = 25°C (unless otherwise noted)
PARAMETER

MIN

TYP

MAX

TEST CONDITIONS

TAt

See Figures 2 and 3, Vee slew rate s; 5 V/l1s

25°C
Full range

3.4

tpHL

Propagation delay time, highto-low-level output

See Figures 2 and 3

25°C
Full range

2

5
5

tr

Rise time

See Figures 2 and 3, Vee slew rate s; 5 V/l1s

0.4

1

tpLH

tf

Propagation delay time, lowto-high-Ievel output

Fall time

See Figures 2 and 3

5

25°C

1

Full range
25°e

0.05

Minimum pulse duration

25°C
Full range

at Vee for output response

5
5

t Full range is --40 e to 85°C.
:I: This is the difference between positive-going input threshold voltage, VT+, and negative-going input threshold voltage, VT-.
0

§ This is the lowest voltage at which RESET becomes active.

TEXAS ",

2-364

INSTRUMENlS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265

1
1

Full range
w(minl

5

UNIT
I1s
I1s
I1s
I1s
I1s

TL7757M
SUPPLY VOLTAGE SUPERVISOR
AND PRECISION VOLTAGE DETECTOR
electrical characteristics at specified free-air temperature
PARAMETER
VT_

TEST CONDITIONS

Threshold voltage (negativegoing Vee)

Vhys:j:

Hysteresis at Vee input

MIN

TYP

25°C
Full range

4.43

4.55

25°C

40

Full range

30

Low-level output voltage

IOL = 20 mA, Vee = 4.3 V

IOH

High-level output current

Vee = 4.7 to 7 V, VOL = 15 V, See Figure 1

Vres§

Power-up reset voltage

RL = 2.2 K, Vee slew rate!> 5 V/Jls
Vee =4.3V

Supply current
Vee =4.7Vto 7V

MAX
4.67
4.7

4.35

25°C
Full range

VOL

ICC

TAt

50

60
70

0.1

0.8
0.8

25°C

1

Full range

1

25°C

0.8

1

Full range

1.2

25°C
Full range

2000
2500

1400

25°C

40

Full range

45

UNIT
V
mV
V

JlA
V

JlA

switching characteristics at TA = 25°C (unless otherwise noted)
PARAMETER
tpLH
tpHL
tr

Propagation delay time, lowto-high-Ievel output
Propagation delay time, highto-low-level output
Rise time

TEST CONDITIONS
See Figures 2 and 3, Vee slew rate!> 5 VlJls
See Figures 2 and 3

TAt

MIN

25°C

TYP

MAX

3.4

5-

Full range

6-

25°C

2

55-

0.4

1-

0.05

1-

Full range
See Figures 2 and 3, Vee slew rate!> 5 VlJls

25°C

1-

Full range
tf
Iw(min)

Fall time

25°C

See Figures 2 and 3

1

Minimum pulse duration

Full range
25°C

5-

at Vee for output response

Full range

6-

UNIT
Jls
Jls
Jls
Jls
JlS

-On products compliant to MIL-STD-883, Class B, this parameter is not production tested.
t Full range is -55°e to 125°e.
:j: This is the difference between positive-going input threshold voltage, VT+, and negative-going input threshold voltage, VT_'
§ This is the lowest voltage at which RESET becomes active.

TEXAS

"I

INSTRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265

2-365

TL7757Y
SUPPLY VOLTAGE SUPERVISOR
AND PRECISION VOLTAGE DETECTOR
electrical characteristics at specified free-air temperature
PARAMETER
VT_

TEST CONDITIONS

Threshold voltage (negativegoing Vee)

VhvsT
VOL

Hysteresis at Vee input
Low-level output voltage

IOH

High-level output current
Power-up reset voltage

Vres '"
lee

Supply current

switching characteristics at TA

tpHL

Propagation delay time, highto-low-level output

Ir

Rise time

tf

Fall time

Iw(min)

t

Propagation delay time, lowto-high-Ievel output

TVP

4.43

4.55

40
IOL = 20 rnA. Vee = 4.3 V
Vee = 4.7 to 7 V, VOL = 15 V, See Figure 1
RL = 2.2 K, Vee slew rate s; 5 V/IlS

4.67

50

60

0.1

0.8

0.8
1400

1
2000

UNIT
V
mV
V

IlA
V

40

IlA

MAX

UNIT

=25°C (unless otherwise noted)
TEST CONDITIONS

MIN

See Figures 2 and 3, Vee slew rate s; 5 V/IlS
See Figures 2 and 3
See Figures 2 and 3, Vee slew rate s; 5 V/IlS
See Figures 2 and 3

TVP
3.4

5

Ils

2

5

Ils

0.4

1

0.05

1

Ils
Ils

Minimum pulse duration
5

at Vee for output response

This is the difference between positive-going input threshold voltage, VT+, and negative-going input threshold voltage, VT_'

:j: This is the lowest voltage at which RESET becomes active.

TEXAS ~

INSTRUMENTS
2-366

MAX

1

Vee=4.3V
Vee = 4.7 V to 7 V

PARAMETER
tpLH

MIN

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Ils

TL7757
SUPPLY VOLTAGE SUPERVISOR
AND PRECISION VOLTAGE DETECTOR
PARAMETER MEASUREMENT INFORMATION

RL
1 Kn

+
Pulse

7V

OUT

GND

CL
100 pF
(see Note A)
NOTE A: Includes jig and probe capacitance.

Figure 2. Test Circuit for RESET Output
Switching Characteristics

Figure 1. Test Circuit for Output
Leakage Current

4.8V

Vce ~
v
V

(see Note A)
4.3V

T+,
, .
tpLH--+I I+-90%'
RESET
"

, T,
--., I+-tpHL
'90%
"

1~~o

:

:

5~~k

I

I

I

I

tr~

NOTE A:

I+-

~

I+-tf

Vee slew rate s; 5 J-ls

Figure 3. Switching Diagram

TEXAS ~

INSTRUMENTS
POST OFF'CE BOX 655303· DALLAS. TEXAS 75265

2-367

Tl7757

SUPPLY VOLTAGE SUPERVISOR
AND PRECISION VOLTAGE DETECTOR
TYPICAL CHARACTERISTICS

table of graphs
FIGURE
Vee

Supply voltage

vs Output voltage

1

vs Supply voltage
vs Output current

2
3
4

lee

Supply current

VOL

Low-level output voltage

vs Temperature

5

IOL
VT_

Output current

vs Supply voltage

Threshold voltage (negative-going Vee)

vs Temperature

Vres

Power-up reset voltage

6
7
8
9

tpLH

Propagation delay time low to high

tpHL

Propagation delay time high to low

vs Temperature

vs Temperature

10

TEXAS ~

INSTRUMENTS
2-368

POST OFFICE BOX 655303' DALLAS. TEXAS 75265

TL7757
SUPPLY VOLTAGE SUPERVISOR
AND PRECISION VOLTAGE DETECTOR
TYPICAL CHARACTERISTICSt
SUPPLY CURRENT
vs
SUPPLY VOLTAGE

SUPPLY VOLTAGE
vs
RESET OUTPUT VOLTAGE
8
7

>

6

!!

'"

5

>,..

4

..

2

I

TA
10

= 25°C
=0

TA

~

0

ii.
a.

10

/

V



9

/l

o
o

3
2
4
5
RESET Output Voltage - V

o
o

7

6

.5

1.48

RL

I

=0

Vee

1.44

C
~
::I

1.4
1.36
1.32
1.28

,..
8: 0.040

0

::I

~

0.036

~0.032
0.028
0.024
0.020
-75

.. . /

-

r-.......

120

...,...- ~

I

=4.3/

..

0

>
:;
a.
:;

-25

a;

= 7V

~

!-= 5.5V
~

r--.....

I

Vee

0

25

50

~
= 25°C
.

/

E 100

'"
!!

~

TA

110

>

/'

Vee

7

6

lOW-lEVEL OUTPUT VOLTAGE
vs
lOW-lEVEL OUTPUT CURRENT

0

--50

./

./

5

Figure 2

SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
1.52

4

3

2

Vee - Supply Voltage - V

Figure 1



r.:

Vee

//
V

= 4.3V-

/.~

/'

30

I
..J

=1 V /

20
10

oV

/

o

4

8

12

16

20

10L - Low-Level Output Current - mA

T A - Free-Air Temperature - °e

Figure 3

Figure 4

tOata at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265

2-369

TL7757
SUPPLY VOLTAGE SUPERVISOR
AND PRECISION VOLTAGE DETECTOR
TYPICAL CHARACTERISTICSt
lOW-lEVEL OUTPUT VOLTAGE

120

>
E 100

..'"

vs

FREE-AIR TEMPERATURE

SUPPlVVOlTAGE

I

VCC

OUTPUT CURRENT

vs

= 4.3 V

0.02

I

I
IOl

TA

0.018

= 2.!!'~

!
= 25·C
I

I

0.016

<

.!!!

E 0.014

80

'0

>
'5
Il.

I

~

'5
0

..

a;
>

IOl

...J

0.D1

'5
~0.008

= 8mA

o

40

~

0.012

::J

o

60

I

0

...J

0.006

9

I
...J

0

0.004

20

>

IOl

= 1 rnA
I

o

-50
o
50
100
TA - Free-Air Temperature - ·C

-100

I

0.002

V

o
150

0.75

0.8

0.85
0.9
0.95
Vcc - Supply Voltage - V

Figure 5

Figure 6
POWER-UP RESET VOLTAGE

THRESHOLD VOLTAGE (NEGATIVE GOING Vee)

vs

vs

FREE-AIR TEMPER.ATURE

FREE-AIR TEMPERATURE
1000

4.6
4.59

Rl

Rl

I

...
1:
]

lI

I

4.55

..

900

0>

.!!!

'0
> 850

.!!!

"0

>

950

E

&4.57
4.56

-r--

Qi

I-

4.54

g:

a: 800

r--- r--

Il.

...:.

::;)

;!:

2.

4.53

..
.}
I

I-

> 4.52
4.51
4.5
-100

I

=0

> 4.58

;g

1.05

-50
o
50
100
T A - Free-Air Temperature - ·c

150

750
700

\ ...

""
~

650
600
-100

Figure 7

= 2.2kQ

~

..

'"

-50
o
50
100
T A - Free-Air Temperature _·c

Figure 8

tData at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices,

TEXAS

~

INSTRUMENTS
2-370

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

150

TL7757
SUPPLY VOLTAGE SUPERVISOR
AND PRECISION VOLTAGE DETECTOR
TYPICAL CHARACTERISTICS

POWER-UP RESET VOLTAGE
2

PROPAGATION DELAY
6

ITA = 25°C
RL = 2.2 KQ

1.5

TAI=

4

I

G>

l

VCC -

0)

:l
"6
>

In

J

VCC

.J

>

I~

2S~C

5 r- RL = 2.2 KQ -

/

.5

~

0

>

r/\

I

3
RESET

~G>

\

0)

:l

"6

>

RESET

2

!!!
>
-.5

-1

o
o

-1

0.5

1.5

2

2.5

3

o

2

t - Time - I1s

4

6

8

10

12

14

16

18

t - Time - I1s

Figure 9

Figure 10

TEXAS .~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-371

2-372

TL7759C
SUPPLY VOLTAGE SUPERVISOR
JANUARY 1991-REVISED SEPTEMBER 1991

•
•

o OR P PACKAGE

Power-On Reset Generator

(TOP VIEW)

Automatic Reset Generation After Voltage
Drop

•

N c u e RESET
NC 2
7 RESET
NC 3
6 NC

Precision Threshold Voltage
4.55 V ±120 mV

•
•

GND

4

5

Vcc

Low Standby Current ... 20 [!A
NC - No internal connection

Reset Outputs Defined When Vee
Exceeds 1 V

•
•

True and Complementary Reset Outputs
Wide Operating Temperature Range
O°C to 70°C

•

Wide Supply Voltage Range ... 1 V to 7 V

description
The TL7759C is a monolithic supply voltage supervisor designed for use as a reset controller in microcomputer
and microprocessor systems. The supervisor monitors the supply voltage for undervoltage conditions. During
power-up, when the supply voltage, VCC, attains a value approaching 1 V, the RESET and RESET outputs
become active (high and low, respectively) to prevent undefined operation. If at anytime the supply voltage drops
below the threshold voltage level (VT_), the reset outputs go to the reset active state until the supply voltage has
returned to its nominal value.
The TL7759C is characterized for operation from O°C to 70°C.

functional block diagram
r -________~----------~--~5 VCC

7

4

~---.~---.~--------~~---

RESET

GND

timing diagram
VCC

Output Undefined

Output Undefined
for VCC less than 1 V

PRODUCTION DATA Information Is current as of publication date. Products
conform to specifications per the terms of Texas Instruments standard
warranty. Produetion processing does not necessarily include testing of all

parameters.

TEXAS

~

Copyright © 1991, Texas Instruments Incorporated

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-373

TL7759C
SUPPLY VOLTAGE SUPERVISOR
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) ............................................................ 20 V
Off-state output voltage range: RESET voltage ...................................... -0.3 V to 20 V
RESET voltage ...................................... -0.3 V to 20 V
Low-level output current, IOL (RESET) ..................................................... 30 mA
High-level output current, IOH (RESET) .................................................... -10 mA
Continuous total power dissipation ..................................... See Dissipation Rating Table
Operating free-air temperature range, T A .............................................. O°C to 70°C
Storage temperature range ....................................................... -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................... 260°C
NOTE 1: All voltage values are with respect to the network ground terminal.
DISSIPATION RATING TABLE
TA" 25'C
POWER RATING

DERATING FACTOR
ABOVE T A = 25'C

TA = 70'C
POWER RATING

TA = 85'C
POWER RATING

o

725 mW

5.8mWtC

464mW

377mW

P

1000 mW

8.0mWtC

640mW

520mW

PACKAGE

recommended operating conditions
MIN

MAX

1

7

Supply voltage. V CC
Output voltage, Va (see Note 2)

15

Transistor off RESET voltage
Transistor off RESET voltage

0

Low-level output current. IOL

RESET

24

High-level output current, IOH

RESET

-8

0

Operating free-air temperature, T A

70

UNIT
V
V
mA

'c

NOTE 2: RESET output must not be pulled down below GND potenlial.

electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER

TEST CONDITIONS

I RESET
I RESET

VOL

Low-level output voltage

VOH

High-level output voltage

VT-

Threshold voltage (negative-going V cc)

Vres*

Power-up reset voltage

VCC = 4.3 V

IOH =-8 mA

TA=25'C

Hysteresis at V CC input

IOH

High-level output current

IOL

Low-level output current

ICC

Supply current

4.55

4.67
4.7

50

See Figure 1

VOL = OV
VCC=4.3V

-1
1400

t TYPical values are at TA = 25'C.
* This is the lowest voltage at which RESET becomes active, VCC slew rate" 5 V/f's.
§ This is the difference between positive-going input threshold voltage, VT +, and negative-going input threshold voltage, VT-'

TEXAS ~

2-374

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

V
V
mV

1

VCC=5.5V

INSlRUMENTS

V

60
70

30
VOH = 15V

UNIT

1
1.2

40

VCC=7V,

No load

0.8

TA = O'C to 70'C

TA = O'Cto 70'C

I RESET
I RESET

MAX

0.4

0.8

TA = 25'C

TA=25'C
Vhys§

VCC-1
4.43

TYpt

4.4

T A = O'C to 70'C
RL = 2.2 kQ

MIN

IOL=24 mA

!!A

2000
40

f'A

TL7759C
SUPPLY VOLTAGE SUPERVISOR
switching characteristics at TA = 25°C (unless otherwise noted)
PARAMETER
tpLH

Propagation delay time, low-to-high-Ievel output

tpHL

Propagation delay time, high-to-Iow-Ievel output

FROM

TO

TEST

(INPUT)

(OUTPUT)

CONDITIONS

Vee
Vee

RESET

See Figures 2 and 3t

RESET

See Figures 2 and 4

MIN

TYP

MAX

5
5

tr

Rise time

RESET

See Figures 2 and 4 t

1

tf

Fall time

RESET

See Figures 2 and 4

1

twJminL

Minimum pulse duration

RESET

See Figures 2 and 4

Vee

t Vee slew rate> 5 V/r 5 V/~s.

Figure 1. Test Circuit for Output Leakage Current

Pulse
Generator

4

Figure 2. Switching Diagram

I
VCC
Pulse
Generator

TL7759C
RESET
GND

..I..

R
1 kQ

;:;=::

CL
100 pF*

CL
100 P

t Includes jig and probe capacitance

tlncludes jig and probe capacitance

Figure 3. Test Circuit for RESET Output
Switching Characteristics

Figure 4. Test Circuit for RESET Output
Switching Characteristics

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-375

TL7759C
SUPPLY VOLTAGE SUPERVISOR
APPLICATION INFORMATION
5V

-

O.1!!F±

1

5

Vcc

7

RESET 1---'---4IIr-- System Reset

TL7759C

1 kQ

RESET~
GNO

4

J--------'

Figure 5. Power Supply System Reset Generation

TEXAS

.JJ1

INSlRUMENlS
2-376

POST OFFICE BOX 655303 • DALu\S. TEXAS 75265

TL7770-S, TL7770-12, TL7770-1S
DUAL POWER-SUPPLY SUPERVISORS
OCTOBER 1987-REVISED NOVEMBER

•
•
•
•

•
•
•

ow, J, OR N

PACKAGE
(TOP VIEW)

Power-On Reset Generator
Automatic Reset Generation After Voltage
Drop

1RESIN
1CT
1RESET
1RESET
1VSU
1VSO
1SCR DRIVE
GND

RESET Defined When Vee Exceeds 1 V
Wide Supply Voltage Range ... 3.5 V
to 18 V
Precision Overvoltage and Undervoltage
Sensing
2S0-mA Peak Output Current for Driving
SCR Gates

FKPACKAGE
(TOP VIEW)

2-mA Active-Low SCR Gate Drive for False
Trigger Protection

•

Temperature-Compensated Voltage
Reference

•
•

True and Complementary Reset Outputs

Z IZU5
U5
I
~;E z5>Ri
I-W()()W

1RESET
1RESET
NC
1VSU
1VSO

Externally Adjustable Output Pulse
Duration

9

Vee
2RESIN
2CT
2RESET
2RESET
2VSU
2VSO
2SCR DRIVE

description

4
5
6
7
8

3 2 1 2019
18
17
16
15
14
9 10 11 12 13

2CT
2RESET
NC
2RESET
2VSU

The TL7770 is a monolithic integrated circuit
system supervisor designed for use as a reset
controller in microcomputer and microprocessor
power supply systems. This device contains two
independent supply-voltage supervisors that
NC-No internal connection
monitor the supplies for overvoltage and undervoltage conditions at the VSO and VSU pins, respectively. When V CC attains the minimum voltage of 1 V during
power-up, the RESET output becomes active (low). As V CC approaches 3.5 V, the delay timer function activates
latching RESET and RESET active (high and low, respectively) for a time delay, td, after system voltages have
achieved normal levels. Above VCC 3.5 V, taking RESIN low activates the time delay function, RESET and
RESET, during normal system voltage levels. To ensure that the microcomputer system has reset, the outputs
remain active until the voltage at VSU exceeds the threshold value VT + for a time delay, td, which is determined
by an external timing capacitor such that:

=

td .. 20 x 103 x capacitance
where td is in seconds and capacitance is in farads.
The overvoltage-detection circuit is programmable for a wide range of user designs. During an overvoltage
condition, an internal SCR is triggered, providing 250-mA peak instantaneous current and 25-mA continuous
current to the SCR gate drive pin, which can be used to drive an external high-current SCR gate or an overvoltage
warning circuit.
The TL7770C is characterized for operation from O°C to 70°C. The TL7770M series is characterized for
operation from - 55°C to 125°C. The TL7770Q series is characterized for operation from - 40°C to 125°C.

TEXAS

~

INSIRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Copyright © 1991, Texas Instruments Incorporated
On products compliant to MIL·STD-883, Class B, all parameters

are tested unless otherwise noteel. On all other products,
production processing does not necessarily include lesting of all

parameters.

2-377

TL7770-5, TL7770-12, TL7770-15
DUAL POWER-SUPPLY SUPERVISORS
AVAILABLE OPTIONS
PACKAGE
SMALL OUTLINE
(OW)

TA

CHIP CARRIER
(FK)

CERAMIC DIP
(J)

PLASTIC DIP
(N)

O'C 10 70'C

TL7770-SCDW
TL7770-12CDW
TL7770-1SCDW

TL7770-SCN
TL7770-12CN
TL7770-1SCN

-40'C 10 12S'C

TL7770-S0DW
TL7770-120DW
TL7770-1S0DW

TL7770-S0N
TL7770-120N
TL7770-1S0N

~SS'C

TL7770-SMFK
TL7770-12MFK
TL7770-1SMFK

10 12S'C

TL7770-SMJ
TL7770-12MJ
TL7770-1SMJ

logic diagram (each channel)
VCC ------~~-------------.--------------~---------.-----,

~ 65 f'A (TYP)
CT-----+-+-------+----~~--------~~

RESET

-2.1 V

VSU

RESET
Rl

-1.5 V
R2

RESIN ----~--------------~
-2.6V
VSO------------------------------~---1

1 VSU
DEVICE
TL7770-5
TL7770-12
TL7770-15

2VSU
Rl .

Rl

R2

24kQ
70 kQ
90 kQ

10 kQ
10 kQ
10 kQ

Short
Short
Short

SCR DRIVE
R2

Open
Open
Open

-::

.TEXAS ..,
INSIRUMENlS
2-378

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TL7770-5, TL7770-12, TL7770-15
DUAL POWER-SUPPLY SUPERVISORS
typical timing diagram

I

:-

I

I

I
I

I

__ ~ _____ L _______ ~__

VSU

I
td

r"

I

~

I
I
I

~td

I
I
I

I

I'----JI
I
I
I
I
I
I

-J------I

Vee = 1 V (TYP)

;.-.j-td

I
I
I

1----

VOH

_ _ _ ' -_ _-J _ _ _ _ _

VOL
Undefined Operation
for Vce Less Than 1 V

VT- - - - - - - - - - - - - -

I
I
I
I
I
I

VSO

SCR
DRIVE

[VOH
VOL

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, vee (see Note 1) ............................................................ 20 V
Input voltage range, VI: 1VSU, 2VSU, WSO, and 2VSO .............................. -0.3 Vto 18 V
Low-level output current (1 RESET and 2RESET). IOL ........................................ 20 mA
High-level output current (1 RESET and 2RESET), IOH ...................................... -20 mA
Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. See Dissipation Rating Table
Operating free-air temperature range: TL7770_C ...................................... O°C to 70°C
TL7770_M .................................. -55°C to 125°C
TL7770-Q .................................. -40°C to 125°C
Operating virtual junction temperature range ........................................ -40°C to 150°C
Storage temperature range ....................................................... -65°C to 150°C
Case temperature for 60 seconds: FK package .............................................. 260°C
Lead temperature 1,6 mm (1/16 in) from case for 10 seconds: DW or N package ................ 260°C
Lead temperature 1,6 mm (1/16 in) from case for 60 seconds: J package ....................... 300°C
NOTE 1: All voltage values are with respect to the network ground terminal.
DISSIPATION RATING TABLE
DERATING
FACTOR

TA = 70°C
POWER RATING

TA = 85°C
POWER RATING

TA= 125°C
POWER RATING

656mW

533mW

205mW

880mW

715mW

275mW

11.0mW/"C

880mW

715mW

275mW

9.2mW/"C

736mW

598mW

230mW

PACKAGE

TA" 25°C
POWER RATING

OW

1025mW

8.2 mW/oC

FK

1375 mW

11.0 mW/oC

J

1375 mW

N

1150mW

TEXAS "!1

INSTRUMENTS
POST OFFICE BOX 655303, • DALLAS, TEXAS 75265

2-379

TL7770-5, TL7770-12, TL7770-15
DUAL POWER-SUPPLY SUPERVISORS
recommended operating conditions
Supply voltage, VCC
Input voltage range, VI (see Note 2)

1VSU, 2VSU, 2VSO, 1VSO

MIN

MAX

3.5

18

V

0

18

V

Output voltage (1 CT and 2CT), Vo

UNIT

5

V
V

High-level input voltage range, VIH, 1 RESIN, 2RESIN

2

18

Low-level input voltge range, VIL, 1 RESIN, 2RESIN

0

0.8

V

50

J.tA.

-16

mA

Output sink current (1 CT and 2CT), 10
High-level output current (1 RESET and 2RESET), 10H
Low·level output current (1 RESET and 2RESET, 10L

16

mA

Continuous output current (1 SCR DRIVE and 2SCR DRIVE), 10

25

mA

Operating free-air temperature, T A

TL7770C Series

0

70

TL7770M Series

-55

125

TL7770Q Series

-40

125

..

'c

NOTE 2: The algebraic convenllOn, In which the least positive (most negative) value IS deSignated minimUm, IS used In thiS data sheet for logiC
voltage leve.ls only.

TEXAS ."

INSlRUMENTS
2-380

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TL7770-5C, TL7770-12C, TL7770-15C
TL7770-5Q, TL7770-12Q, TL7770-15Q
DUAL POWER-SUPPLY SUPERVISORS
electrical characteristics over recommended ranges of supply voltage, input voltage, output
current, and free-air temperature (unless otherwise noted)
supply supervisor section
PARAMETER

VOH

High-level output voltage

VOL

Low-level output voltage

TEST CONDITIONSt

IOH ~-15mA

Vee-l .5

SeR DRIVE

IOH

~-20mA

Vee-l .5

RESET

IOL~15mA

4.5

TL7770-12 (12-V sense, lVSU)
TL7770-15 (15-V sense, 1VSU)
Undervoltage threshold

TL7770-5, TL7770-12, TL7770-15
(programmable sense, 2VSU)

at VSU (negative-going)

TL7770-5 (5-V sense, 1VSU)

TA

~

25°e

VT

Hysteresis at VSU
(VT+-VT-)

4.55

10.8

10.9

11.02

13.5

13.64

13.77

10485

1.5

1.515
4.64

TL7770-12 (12-V sense, lVSU)

10.68

11.12

13.36

13.91

1047

1.53

TL7770-5 (5-V sense, lVSU)

15

TL7770-12 (12-V sense, lVSU)

36
TA

~

25°C

V

mV

45

TL7770-5, TL7770-12, TL7770-15
(programmable sense, 2VSU)

V

4.6

TL7770-15 (15-V sense, 1VSU)

TL7770-15 (15 cV sense, lVSU)

UNIT

V

4046

TL7770-5, TL7770-12, TL7770-15
(programmable sense, 2VSU)

Vhys

MAX

0.4

TL7770-5 (5-V sense, 1VSU)

VT-

TYp:i

MIN

RESET

5

Overvoltage threshold

TL7770-5, TL7770-12, TL7770-15

TA~25°e

atVSO

(VSO)

TA

RESIN

VI

~

5.5 V or 004 V

~

2.4 V

~

2.53

MIN to MAX

II

Input current

VSO

VI

IOH

High-level output current

RESET

Vo

IOL

Low-level output current

RESET

VO~O

IOH

Peak output current

SCR DRIVE

Duration

~

2.58

-10
0.5

18V
~

2.63
2.68

2.48

2
50

1 ms

V
~

-50

IlA
IlA
mA

TYp:i

MAX

UNIT

0.8

1

250

total device
TEST CONDITIONSt

PARAMETER

Vres§

Power-up reset voltage

lee

Supply current

1VSO and 2VSO at 0 V

t For conditions shown as MIN or MAX, use the appropriate value specified
t Typical values are at Vee ~ 5 V, TA ~ 25"e.

MIN

VOL ~ 004 V, IOL ~ 1 mA

Vee
1VSU ~ 18 V,
2VSU ~ 2 V,
1RESIN and 2RESIN at Vee,

TA

~

25°e

TA

~

MIN to MAX

5

V
mA

6.5

in the recommended operating conditions.

§ This the lowest voltage at which RESET becomes active.

TEXAS

lJ1

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-381

TL7770·5M, TL7770-12M, TL7770-15M
DUAL POWER-SUPPLY SUPERVISORS
electrical characteristics over recommended ranges of supply voltage, input voltage, output
. current, and free-air temperature (unless otherwise noted)
supply supervisor section
PARAMETER·
VOH High-level output voltage
VOL

Low-level output voltage

TEST CONDITIONSt

MIN

RESET

IOH =-15 mA

VCC-1.5

SCR DRIVE

IOH =-20mA

Vec-1.5

RESET

IOL= 15 mA

TL7770-5M (5-V sense, 1VSU)
TL7770-15M (15-V sense, 1VSU)
Undervoltage threshold
VT-

at VSU (negative-going)

TA = 25'e

TL7770-5M, TL7770-12M, TL7770-15M
(programmable sense, 2VSU)
TL7770-5M (5-V sense, 1VSU)
TL7770-12M (12-V sense, 1VSU)
TL7770-15M (15-V sense, 1VSU)

TA = -55'e TO 125'e

TL7770-5M, TL7770-12M, TL7770-15M
(programmable sense, 2VSU)

4.55
10.9

11.07

13.5

13.64

13.866

1.485

1.5

1.527

4.4

4.646

10.62

11.12

13.36

13.916

1.47

VT

TL7770-15M (15-V sense, 1VSU)

1.542

36
45

TA=25'e

TL7770-5M, TL7770-12M, TL7770-15M
(programmable sense, 2VSU)
TL7770-5M, TL7770-12M, TL7770-15M

TA = 25'e

2.53

(VSO)

TA = MIN to MAX

2.48

RESIN

VI = 5.5 V or 0.4 V

VSO

VI = 2.4 V

High-level output current

RESET

Vo = Vee

Low-level output current

RESET

Vo = 1

Peak output current

SCR DRIVE

Duration = 1 ms

IOH
IOL
IOH

mV

5

atVSO
Input current

V

15

Overvoltage threshold

II

V

4.632

10.8

TL7770-12M (12-V sense, 1VSU)
Hysteresis at VSU
(VT+-VT_)

UNIT
V

TL7770-5M (5-V sense, 1VSU)
Vhys

MAX

0.4
4.5

TL7770-12M (12-V sense, 1VSU)

TYP;

2.58

2.63
2.68
-10

0.5

2
50
-50

250

V

!lA
!lA
",A
mA

total device
PARAMETER
ICC Supply current

TEST CONDITIONSt
1VSU 18V,

2VSU =2V,

MIN

TYP;

1RESIN and 2RESIN at Vee, ITA = 25'C

1VSO and 2VSO at 0 V

ITA = MIN to MAX

..
..
..
t For conditions shown as MIN or MAX, use the appropnate value specified In the recommended operating conditions .

*Typical values are at VCC = 5 V, TA = 25'C.

TEXAS ..,
INSTRUMENTS
2-382

POST OFFICE BOX 655303 • DALlAS, TEXAS 75265

MAX
5
6.5

UNIT
mA

TL7770-S, TL7770-12, TL7770-1S
DUAL POWER-SUPPLY SUPERVISORS
switching characteristics, Vcc = 5 V, CT open, TA = 25°C
PARAMETER

FROM
(INPUT)

TO
(OUTPUT)

tpLH

Propagation delay time,
low-to-high-Ieveloutput

RESIN

RESET

tpLH

Propagation delay time,
high-to-Iow-Ievel output

RESIN

RESET

tr

Rise time

tf

Fall time

tr

Rise time

tf

Fall time

tw(min)

TEST CONDITIONS

MIN

TYP

MAX

UNIT

270

500'

ns

270

500'

ns

See Figure 1

75'

RESET

150
75

RESET

Minimum effective
pulse duration

50'

RESIN

See Figure 2(a)

150

VSU

See Figure 2(b)

100

ns
ns
ns

'On products compliant to MIL-STD-883, Class B, parameters are not production tested.

PARAMETER MEASUREMENT INFORMATION
5V

5V
511

-~~~~

,

Q

1-1

______ ~ G.DJ

_____

15 pF
(see Note A)

I
I
I
.II

RESET _._---,
511

15 pF
(see Note A)

Q

RESET OUTPUT CONFIGURATION

RESET OUTPUT CONFIGURATION
NOTE A: Include jig and probe capacitance.

Figure 1. RESET and RESET Output Configurations

~tw~
I

I

'\-----1---

5V

"V

- - - - OV

(a) RESIN

(b)VSU
WAVEFORMS

Figure 2. Input Pulse Definition

TEXAS

.JJ1

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-383

TL7710-S, TL7710-12, TL7710-1S
DUAL POWER-SUPPLY SUPERVISORS
APPLICATION INFORMATION
vS

System Supply
16

10 kQ

VCC _ _
4
~ 1VSU
1RESET

1

Reset Input
(from system)
RT
(see Note A)

f~

2

To System
Reset

1RESIN

lCT

1RESET
GND

3

B

ToSyslem
Reset

J'"

Q

Pin numbers shown are for the DW, J, and N packages.
NOTE A: When VCC and 1VSU are connected to the same point, it is recommended that series resistance (RT) be added between the time delay
programming capacitor (CT) and the voltage supervisor device pin (1 CT).
The suggested RT value is given by:
RT > VI - VT - , where VI = (the lesser of 7.1 V or VS)

1 x 10-3
When this series resistor is used, the td calculation is as follows:
td

1.3 - [(1 x 10- 4) x RTl x CT

6.5 x 10- 4

Figure 3. System Reset Controller With Undervoltage Sensing

TEXAS ~

INSTRUMENTS
2-384

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLE2425C, TLE24251, TLE2425M, TLE2425Y
PRECISION VIRTUAL GROUND
03824, MARCH 1991, REVISED JUNE 1991

•

2.5-V Virtual Ground for 5-V/GND Analog
Systems

•

Self-Contained in Small Outline, Dual-In-Line
or 3-Terminal TO-226AA Packages

•

High Output-Current Capability
Sink or Source ... 20 rnA Typ

•

Micropower Operation ... 170 J1A Typ

•

Excellent Regulation Characteristics
Output Regulation = ±45 J1V Typ,
10= 0 to ±10mA
Input Regulation = 1.5 JlVN Typ

•
•

Low-Impedance Output ... 0.0075

Typ

OUTPUT REGULATION

description
In signal-conditioning applications using a single
power source, a reference voltage is required for
termination of all signal grounds. To accomplish
this, engineers have typically used solutions
consisting of resistors, capacitors, operational
amplifiers, and voltage references. Texas
Instruments has eliminated all of those
components with one easy-to-use 3-terminal
device. That device is the TLE2425 preCision
virtual ground.
Use of the TLE2425 over other typical circuit
solutions gives the designer increased dynamic
signal range, improved signal-to-noise ratio,
lower distortion, improved signal accuracy, and
easier interfacing to ADCs and DACs. These
benefits are the result of combining a precision
micropower voltage reference and a highperformance precision operational amplifier in a
single silicon Chip. It is the precision and
performance of these two circuit functions
together that yield such dramatic system-level
performance.
The TLE2425 improves input regulation as well
as' output regulation, and in addition reduces
output impedance and power dissipation in a
majority of virtual-ground-generation circuits.
Both input regulation and load regulation exceed
12 bits of accuracy on a single 5-V system.
Signal-conditioning front-ends of data acquisition
systems that push 12 bits and beyond can use the
TLE2425 to eliminate a major source of system
error.
The TLE2425C is characterized for operation
from O°C to 70°C. The TLE24251 is characterized
for operation from -40°C to 85°C. The TLE2425M
is characterized for operation over the full military
temperatu re range of -55°C to 125°C.

PRODUCTION DATA information is current as 01
publication dale. Producls conform 10 speciliealions
per Ihe lerms of Texas Inslrumenls slandard
warranly. Produclion processing does nol
necessarily include lesling of all paramelers.

Q

Macromodel Included

100
VI = 5V
80

~

/

60

g>

40

'"
U

20

J::

-55~C-~

TA =

'"

g
0
"0
>
'5 -20
c.
'5
-40

I

0-60

~

-80

LY2

~~ ~-

II>

o

-7.,"

TA = -40·C

II>

TA = 25°C-

/'
~

?'
-

/ .~

~

I~TA=

-100
-10 - 8 - 6

TA = 125°C
TA = 25°C-

~

125°C

I

t'--TA = -55°C

f - .,.

L

~~

,

,

- 4

- 2

0

2

4

6

8

10

10 - Output Current - rnA

AVAILABLE OPTIONS
PACKAGE
TA

SMALL

CERAMIC

PLASTIC

CHIP

OUTLINE

DIP

TO-226AA

FORM

(D)
(JG)
(LP)
O'C
TLE2425CD
-TLE2425CLP
to
70'C
-40°C
TLE24251D
TLE24251LP
-to
85°C
-55°C
TLE2425MD TLE2425MJG TLE2425MLP
to
125°C

(V)

TLE2425Y

D and LP packages are available taped and reeled in the commercial
temperature range only. Add "R" suffix to device type (e.g.,
TLE2425CDR).

~

Copyright © 1991 , Texas Instruments Incorporated

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-385

TLE2425C, TLE24251, TLE2425M, TLE2425Y
PRECISION VIRTUAL GROUND

Os

:OJ]

D OR JG PACKAGE

LPPACKAGE

(TOP VIEW)

OUT
COMMON
IN
NC

(TOP VIEW)

2

7

NC
NC

3

6

NC

4

5

NC

IN

L1

COMMON

[J

OUT

NC - No internal connection

TLE2425Y chip information
These chips, properly assembled, display characteristics similar to the TLE2425, (see electrical table on
TLE2425Y). Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads.
Chips may be mounted with conductive epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
CHIP THICKNESS:
15 TYPICAL

OUT
COMMON
(2)

BONDING PADS:
4X4MINIMUM
(3)

TJMAX

=150°C

TOLERANCES
ARE ±10%
ALL DIMENSIONS
ARE IN MILS

Note: Both number-2 bonding pads and both number-3 bonding
pads must be bonded out to the corresponding pins.

\-.

90

... 1

I I II II II II II II II II I

TEXAS ~

INSTRUMENTS
2-386

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TLE2425C, TLE24251, TLE2425M, TLE2425Y
PRECISION VIRTUAL GROUND
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Continuous input voltage .............................................................. 40 V
Output current, 10 ................................................................ ±80 mA
Duration of short-circuit current at (or below) 25°C (see Note 1) ........................... unlimited
Continuous total dissipation ........................................ See Dissipation Rating Table
Operating free-air temperature range, TA: C-suffix ................................... O°C to 70°C
I-suffix .................................. -40°C to 85°C
M-suffix ................................ -55°C to 125°C
Storage temperature range ................................................... -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D package ................... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG or LP package ............. 300°C
NOTE1: The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation
rating is not exceeded.

DISSIPATION RATING TABLE
PACKAGE

TA52S·C

DERATING FACTOR

POWER RATING

ABOVE T A 2S·C
5.8 mW/oC

D

725mW

JG

1050 mW

LP

775mW

=

=

TA = 70·C
POWER RATING

TA
8S·C
POWER RATING

8.4mWrC
6.2 mW/oC

=

TA
12SoC
POWER RATING

464mW

377mW

145mW

672mW

546mW

496mW

403mW

210mW
155mW

recommended operating conditions
C-SUFFIX
Input voltage, VI
Operating free-air temperature, TA

I·SUFFIX

M·SUFFIX

MIN
4

MAX
40

MIN
4

MAX
40

MIN
4

MAX
40

0

70

-40

85

-55

125

TEXAS

UNIT
V
°C

~

IN5rRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-387

TlE2425C
PRECISION VIRTUAL GROUND
electrical characteristics at specified free-air temperature, VI = 5 V, 10 = 0 (unless otherwise noted)
PARAMETER

TEST CONDITIONS

Output voltage
Temperature coefficient of
output voltage
Bias current

10=0

Output regulation:!:
(source current)
Output regulation:!:
(sink current)
Long-term drift of output voltage

MAX

UNIT

2.5

2.52
2.53

V

2.47

25°C

20

25°C

170

ppm/oC
250
250

VI = 4.5 V to 5.5 V

1.5

20

VI =4 Vt040 V

25°C
Full range

1.5

25
20

25°C

80

f = 120 Hz, l!.VI(PP) = 1 V
10 = Oto-l0 mA
10=Oto-20mA
10=Otol0mA
10=Ot020mA
l!.t = 1000 h, Noncumulative

-160

Full range

-250

25°C

160

-450

-150

250
450

25°C

-160

15

Full range

-250
-235

25°C
25°C
25°C
25°C

Output noise voltage, rms

f =10 Hz to 10 kHz

25°C

Va to 0.1%,10 = ± 10 mA

CL=O
CL= 100pF

Va to 0.01%,10 = ± 10 mA

CL =0
CL=100pF

VI = 4.5 to 5.5 V, Va to 0.1%

voltage step

VI = 4.5 to 5.5 V, Va to 0.01%
VI=Ot05V, VOtoO.l%
VI = 0 to 5 V, Va to 0.01%

30

55

-30

-50
100

JlVN

JlV

JlV

235

15
7.5

JlV

160
250

65

IIA

dB

-45

Sink current, Va = 5 V
Source current, Va = 0

Output voltage response to input

25

25°C

Short-circuit output current

Output voltage turn-on response

TYP

25°C
Full range

Output impedance

Output voltage response to output
current step

MIN

2.48

Full range

Input regulation

Ripple rejection

TAt
25°C
Full range

22.5

ppm
mQ
mA
JlY

110
25°C

115
180

JlS

180
25°C
25°C

12
30
125
210

Jls
Jls

tFull range is O°C to 70°C.
:!:Sample tested. Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible.
Thermal effects must be taken into account separately.

TEXAS ."

2-388

INSfRUMENTS
POST OFFICE BOX 655303' DALLAS, TEXAS 75265

TlE24251
PRECISION VIRTUAL GROUND
electrical characteristics at specified free-air temperature, VI
PARAMETER

= 5 V, 10 =0 (unless otherwise noted)

TEST CONDITIONS

Output voltage
Temperature coefficient of
output voltage
Bias current

10=0

Output regulation;
(sink current)
Long-term drift of output voltage
Output impedance
Short-circuit output current
Output noise voltage, rms
Output voltage response to output
current step
Output voltage response to input
voltage step
Output voltage turn-on response

250

1.5

250
20
75

25'C

1.5

20
75

25'C

10=Oto-l0mA

-160
-250

-45

160

10 = 0 to -20 mA

25'C

-450

-150

250
450

15

10 =Oto 20mA
L\t = 1000 h, Noncumulative
Sink current, Vo = 5 V

f =10 Hz to 10 kHz

Va to 0.01%, 10 = ± 10 mA

-160
-250

25'C

-235

15

25'C

7.5

25'C
CL=O
CL = 100 pF
CL =0

VI=Ot05V, VOtoO.l%
VI = 0 to 5 V, Vo to 0.01%

30

55

-30

-50
100

t.J.V
t.J.VN

t.J.V

t.J.V

235
22.5

ppm
mQ
mA
t.J.V

110
25°C

CL = 100 pF

VI = 4.5 to 5.5 V, Vo to 0.1%
VI = 4.5 to 5.5 V, Va to 0.01%

65

flA

160
250

25'C

25'C

Source current, Vo = 0

Va to 0.1%,10 = ± 10 mA

25'C
Full range

V

dB

80

25'C
Full range

10 = Ot08 mA

UNIT

ppm/'C

20
170

Full range

f = 120 Hz, L\VI(PPl = 1 V

MAX
2.52
2.53

25'C

Full range

VI = 4 Vt040 V

(source current)

TYP
2.5

25'C

25'C

VI = 4.5 V to 5.5 V

Output regulation;

MIN
2.48
2.47

Full range

Input regulation

Ripple rejection

TAt
25'C
Full range

25'C
25°C

115
180
180
12
30
125
210

t.J.s

t.J.s
t.J.s

tFuil range is -40°C to 85°C.
;Sample tested. Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible.
Thermal effects must be taken into account separately.

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 ' OALLAS. TEXAS 75265

2-389

TLE2425M
PRECISION VIRTUAL GROUND
electrical characteristics at specified free-air temperature, VI = 5 V, 10 = 0 (unless otherwise noted)
TEST CONDITIONS

PARAMETER
Output voltage
Temperature coefficient 01
output voltage
Bias current

10=0

TAT

MIN

TYP

MAX

25°C

2.48

2.5

2.52

Full range

2.47

25°C

20

25°C

170
1.5

20
100

flV

VI = 4.5 V to 40 V

25°C
Full range

1.5

20
100

flVN

1 = 120 Hz, <1VI(PPl = 1 V
10 = 0 to-10 mA

25°C
Full range

-160

10 = 0 to -20 mA

25°C

Long-term drift 01 output voltage
Output impedance

-450

-150

450

15

-250

250

-160
-250

10=Ot020mA

25°C

-235

65

<1t = 1000 h, Noncumulative

25°C

15

25°C
30

7.5
55

-30

-50

Output noi se voltage, rm s

1 =10 Hz to 10 kHz

25°C

VOtoO.1%, 10 =± 10 mA
Vo to 0.01%,10 = ± 10mA

Output voltage response to input

VI=4.5t05.5V, VOtoO.1%

voltage step

VI = 4.5 to 5.5 V, Vo to 0.01%

Output voltage turn-on response

160

25°C

25°C

CL =0
CL = 100 pF
CL =0

160
250

100

flV

flV

235
22.5

ppm
mQ
mA
flV

110
25°C

CL = 100 pF

115
180

fls

180
25°C

VI=Ot05V, VOtoO.1%
VI = 0 to 5 V, Vo to 0.01%

dB

80
-45

Full range

Sink current, Vo = 5 V
Source current, Vo = 0

current step

25°C

10 = 0 to 3 mA

Short-circuit output current

Output voltage response to output

J.lA

25°C
Full range

Ripple rejection

(sink current)

250

VI = 4.5 V to 5.5 V

Output regulationt

Output regulationt

V
ppm/DC

250

Full range

Input regulation

(source current)

2.53

UNIT

25°C

12
30
125
210

fls
fls

tFull range is --55°C to 125°C.
tSample tested. Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible.
Thermal effects must be taken into account separately.

TEXAS ~

INSTRUMENTS
2-390

POST OFFICE BOX 655303' DALLAS. TEXAS 75265

TlE2425Y
PRECISION VIRTUAL GROUND

electrical characteristics at VI
PARAMETER

= 5V, 10 = 0, TA = 25°C (unless otherwise noted)
TEST CONDITIONS

Output voltage
Temperature coefficient of output
voltage
Bias current
Input regulation

MIN

TYP

MAX

UNIT

2.48

2.5

2.52

V
ppm/DC

20
10=0
VI = 4.5 V to 5.5 V

170

VI = 4 Vt040 V
f = 120 Hz, .1.VI(PP) = 1 V

160

1.5

250
20

Output regulation
(source current)=I=

10 = 0 to-l0 mA

-160

1.5
80
-45

lo=Oto-20mA

-450

-150

450

Output regulation
(sink current)=I=

10=Otol0mA

-160

15

160

10=Ot020mA

-235

Ripple rejection

Output impedance
Short-circuit output current
Output noise voltage, rms
Output voltage response to output
current step
Output voltage response to input
voltage step
Output voltage turn-on response

65

235

7.5

22.5

Sink current, Vo = 5 V

30

55

Source current, Vo = 0

-30

-50

f =10 Hz to 10 kHz

20

100

VotoO.l%,10=±10mA

CL =0
CL = 100 pF

110

Vo to 0.01%,10 = ± 10 mA

CL =0
CL = 100 pF

180
180

115

VI = 4.5 to 5.5 V, Vo to 0.1%

12

VI = 4.5 to 5.5 V, Vo to 0.01%

30

VI=Ot05V, VOtoO.l%

125

VI = 0 to 5 V, Vo to 0.01%

210

fIA
JlV
JlVN
dB
JlV
JlV
mil
mA
JlV

Jls

Jls
Jls

=l=Sample tested. Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible.
Thermal effects must be taken into account separately.

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-391

TlE2425C, TlE24251, TlE2425M
PRECISION VIRTUAL GROUND

TYPICAL CHARACTERISTICS

table of graphs
FIGURE
vs

Temperature

1
2

vs

Temperature

3

vs

Input voltage

vs

Temperature

4
5
6

vs

Frequency

Distribution

Output voltage
Output voltage hysteresis
Bias current
Input regulation
Ripple rejection
Output regulation
Output impedance

vs

Frequency

Short-circuit output current

vs

Temperature

Spot noise voltage

vs

Frequency

10
11
12

Wideband noise voltage

vs

Frequency

Output voltage change with current step

vs

Time

13

Output voltage change with voltage step
Output voltage power-up response

vs
vs

Time
Time

Stability range

vs

Load capacitance

14
15
16

TEXAS ~

INSTRUMENTS
2-392

7
8
9

POST OFFICE BOX 655303· DALLAS, TEXAS 75265

TLE2425C, TLE24251, TLE2425M
PRECISION VIRTUAL GROUND

TYPICAL CHARACTERISTICSt
OUTPUT VOLTAGE

vs

DISTRIBUTION OF
OUTPUT VOLTAGE

FREE-AIR TEMPERATURE

24

2.53
VI

100 Units Tested
From 1 Wafer Lot

20

10

2.52

>

;P.
I

16

01

l!!
"0

:;:)

>

12

2.5

'5

Gl
CI

c.
:i

l!!
c

~Gl

2.51

Gl

!l

C

'0

0
8

2.49

I

4

2.49
2.5
2.51
Va - Output Voltage - V

2.47
-75 -50

2.52

OUTPUT VOLTAGE HYSTERESIS

BIAS CURRENT

vs

vs

FREE-AIR TEMPERATURE

INPUT VOLTAGE

=

I

250

II

..I..-

0

1//

-2

>...
I

-6
-8
-10

-N

,,
~

-4

0
0

10 = 0
TA = 25·C

200

KirtP~"

>

Gl
CI

,

J

-25
0
25
50
75
100
TA - Free-Air Temperature - ·C

Figure 2

2

>18

:;"

-

>
4

l!!
"0

/'

V

0

0..

E

=5V
=0

-w

~.I'
End Pomt

V

-~

\

I

,~

,

1\
0

~

W

N

100

1~

150

f ~

"E
~

125

I

--~~

t:i

r;

100

'"
iii
50

o
o

5

10

15

20

~

30

TA - Free-Air Temperature - ·C

VI - Input Voltage - V

Figure 3

Figure 4

35

40

tData at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices.

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655303' DALLAS. TEXAS 75265

2-393

TlE2425C, TlE24251, TlE2425M
PRECISION VIRTUAL GROUND

TYPICAL CHARACTERISTICSt
BIAS CURRENT

vs
FREE-AIR TEMPERATURE
172
170

VI = 5V
10 = 0

168
166

oct

164

::I.

.,

/

162

C

-

/
/

INPUT REGULATION
80

" """

I

10 =0.1.
TA = 25°C

>::I.

60

.,

Cl

c

as
.c

.,

(,)

40

Cl

.~

"0

160

(,)

as

158

iD

>

/

I
I
II

156
154
152

150
-75 -50

20

S
0S

V

0

I

0

-25

0

25

50

75

100

-20

125

./

., . /

0

><1

""

V

S

o

10

20

40

30

TA - Free-Air Temperature - °C

VI - Input Voltage - V

Figure 5

Figure 6

RIPPLE REJECTION

vs
FREQUENCY

OUTPUT REGULATION

90

100
VI = 5V
80

80

co

~

i\

70

.,

"0

I

c
"a;'

.,

.,

20

50

~
~

a:

C.

40

as
.c
(,)

0

U
.,

g>

60

r\

40

0-

30

VI = 5V

10 = 0
TA = 25°C

10
10

100

TA = 25°C-40

0-60

~VI(PP) = 1 V

20

/. ~ ~

0

I

II

~

r10 k
f - Frequency - Hz

100 k

-55~C-~ 'rTt~

TA =

0-

S

o

.,/ ~

.L: ~

V"

17"

~TA

-6

TA = 125°C
TA = 25°C_

""
= 125°C

-80 I - - '-TA = -55°C
-100
-10 -8

L

~~

- 'j I I

1M

t7.:~

TA = -40°C

:; -20

~

ii:

./

60

-4

-2

I
0

2

4

6

10 - Output Current - mA

Figure 7

Figure 8

tData at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices,

TEXAS

~

INSTRUMENTS
2-394

POST OFFICE BOX 655303 " DALLAS. TEXAS 75265

8

10

TLE2425C, TLE24251, TLE2425M
PRECISION VIRTUAL GROUND
TYPICAL CHARACTERISTICSt
OUTPUT IMPEDANCE

100
til

~ II~I~

SHORT-CIRCUIT OUTPUT CURRENT

vs

vs

FREQUENCY

FREE-AIR TEMPERATURE
56

I:~ =1 J

_I



.....
Co)

C

:;
Q.
:;

V

a

V~

0

~

N

0.01

52

0

:;
Q.
:;

'P

0.1

;:
~

G>

Q.

54

a

V

~

46

.c

44

15

V 10 = -10 mA

til

10

100

1k
10 k
f - Frequency - Hz

100 k

IL

\

1\,

J

l\

42

-50

\

-25

0

25

50

75

Figure 9

Figure 10

SPOT NOISE VOLTAGE

WIDEBAND NOISE VOLTAGE

vs

vs

FREQUENCY

FREQUENCY
80

f\

~1000
c

100

125

T A - Free-Air Temperature - °C

1200

I

VII=151~IIIJ

.,

70 TA = 25°C

E

1 Hz To

>:I.

60

G>

50

'"

800

l!!
"0

>

III~

FrequerYllr~:lft1

V "'"

1 Pole Low Pass

JV

40

...... 1-"

G>

II>

600

·0

,

·0
Z
I

",,~

I

40
-75

1M

1400

.,

1

-los- t - Output Source, Vo = 0

VI = 5V

0.001

~G>

I"-

/

50
48

l:!

til

G>

T-r--

YJIOS
Output Sink, Vo = 5 V

.!.

.:;

.9

~

V

:;

10 = 10mA_

.§

E

...z.,c
..c
...§

1\

400

c

>

G>

200

o
1

VI = 5V
TA = 25°C
10

30
20

II

10

~~

o
100

1k
f - Frequency - Hz

10 k

100 k

2 Pole Low Pass
II ill ..l..lilW.ll.

I I I [jlllill

F==~

10

V

100

1k

10 k

100 k

f - Frequency - Hz

Figure 11

Figure 12

tOata at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices.

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265

2--395

TLE2425C, TLE24251, TLE2425M
PRECISION VIRTUAL GROUND

TYPICAL CHARACTERISTICS
OUTPUT VOLTAGE RESPONSE
TO INPUT VOLTAGE STEP

OUTPUT VOLTAGE RESPONSE
TO OUTPUT CURRENT STEP

.

1.SV
4

>
E

..
j

3

2

~

J

500

•

••

E

..

CI

:I

5
So

c5

0

..

.5

Vo Response

-1

CI

'0

>
5Q.
:;

\

~01%

\.
/

..

os

c
os

o
I

~

::::t

-3

-4

•

~

o

150

-1.5 V

I

~

-10 mA
"'f'.
300
450
600
750
t - Time -IlS
.~.

~
900

F
1050

1= Is
150

vs
LOAD CAPACITANCE
20

I

0.1%

r

I

200

I I

VI! 5V
15 I-TA = 2S·C- f--Unstable

Voltage Response

'E"

10

C
2!
5

5

0

IV

....
t""- V

0

5Q.
5 -5
0

Stable

I

0
S

•

•

o

10
t-Time-(.lS

.9 -10
-15

..

Input Voltage Step
0

20

130

-20
10- 6 10- 5 10- 4 10- 3 10- 2 10- 1 100
CL - Load Capacitance - IlF

Figure 15

Figure 16

TEXAS

~

IN5rRUMENTS
2-396

100
t - Time - IlS

TIME

0

~

50

STABILITY RANGE

~ ~ut

'I"

o

~

VI = 4.5V

II

vs

2

5
So

-500

"0.1 %
I

OUTPUT VOLTAGE POWER·UP RESPONSE

=0
CL = 100pF
TA = 250C

..

-4• -VI Step

II

Figure 14

10

j
~

-3 -VI = 4.5V

0

--

/

VI = 5.SV

Figure 13

3

>

0

0.1 %
0

I, Step

"

....0,01 %

-2

..c

-2 -110mA

..c

\

-1

CI

C

0.1 %

Vo Response

.5

•

1=

0

0

Iro.01 %

~

4'1= 10 = 0
3 CL = 100 pF
TA = 25°C
2

>

CL = 100pF
TA = 25°C

;*'

0.1

vs
TIME

~VI = SV

~

"

vs
TIME

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

101

102

TlE2425C, TlE24251; TlE2425M
PRECISION VIRTUAL GROUND

macromodel Information

* TLE2425 OPERATIONAL AMPLIFIER "MACROMODEL" SUBCIRCUIT
* CREATED USING PARTS RELEASE 4.03 ON 08/21/90 AT 13:51
SUPPLY VOLTAGE: 5 V
* REV (N/A)
* CONNECTIONS: INPUT
I COMMON
*
I I OUTPUT
*
*.SUBCKT TLE2425 3I 4I 5I
*
*

OPAMP SECTION
C1
11
12
C2
6
7
87
0
C3
CPSR
85
86
DCM+
81
82
81
DCM83
DC
5
53
DE
54
5
DLP
91
90
DLN
92
90
DP
4
3
ECMR
84
99
EGND
99
0
EPSR
85
0
ENSE
89
2
FB
7
99
+ -10E6 74E6
GA
6
0
GCM
0
6
GPSR
85
86
GRC1
4
11
GRC2
4
12
GRE1
13
10
GRE2
14
10
HLIM
90
0
HCMR
80
1
4
IRP
3
lEE
10
3
IIO
2
0
I1
88
0
Q1
11
89
Q2
12
80
R2
6
9
RCM
84
81
REE
10
99
RN1
87
0
RN2
87
88

21.66E-12
30.00E-12
10.64E-9
15.9E-9
DX
DX
DX
DX
DX
DX
DX
(2,99) 1
POLY(2) (3,0) (4,0) 0 .5 .5
POLY(l) (3,4) -16.22E-6 3.24E-6
POLY(l) (88,0) 120E-6 1
POLY(6) VB VC VE VLP VLN VPSR 0 74. 8E6 -10E6 10E6 10E6
11 12 320. 4E-6
10 99 1.013E-9
(85,86) 100E-6
(4,11) 3.204E-4
(4,12) 3.204E-4
(13,10) 1.038E-3
(14,10) 1.038E-3
VLIM 1K
POLY(2) VCM+ VCM146E-6
DC 24.05E-6
.2E-9
1E-21
13 QX
14 QX
100.0E3
1K
8.316E6
2.55E8
11.67E3

o

1E2 1E2

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-397

!.

TLE2425C, TLE24251, TlE2425M
PRECISION VIRTUAL GROUND

macromodel information (continued)
R01
R02

8
5
63
7
62
99
82
99
1.0
VCM+
VCM-2.3
83
99
VB
9
0
DC 0
VC
DC 1.400
3
53
VE
54
4
DC 1.400
VLIM
7
DC 0
8
VLP
91
DC 30
0
VLN
0
92
DC 30
VPSR
DC 0
0
86
RFB
5
2
1K
RIN
30
1
1K
RCOM
34
4
.1
*REGULATOR SECTION
RG1
20MEG
30
0
RG2
30
31
.2
RG3
31
400K
35
RG4
35
34
411K
RG5
31
25MEG
36
HREG
31
32
POLY(2) VPSET VNSET 0 1E2 1E2
VREG
32
33
DC OV
EREG
33
34
POLY (1) (36,34) 1.23 1
VADJ
34
36
1.27V
HPSET
37
0
VREG 1.030E3
VPSET
38
DC 20v
0
HNSET
39
VREG 6.11E5
0
VNSET
40
DC -20v
0
DSUB
4
34
DX
DPOS
37
38
DX
DNNEG
40
DX
39
.MODEL DX D(IS=800.0E-18)
.MODEL QX PNP(IS=800.0E-18 BF=480)
. ENDS

TEXAS ~

INSTRUMENTS
2-398

POST OFFICE BOX 655303· DALLAS, TEXAS 75265

TlE2426
THE "RAil SPLITTER"
PRECISION VIRTUAL GROUND
D3878. AUGUST 1991

•

1/2 VI Virtual Ground for Analog Systems

•

Self-Contained 3-terminal TO-226AA Package

•

Micropower Operation ... 170 IlA Typ, VI

•

Wide VI Range ... 4 V to 40 V

•

High Output-Current Capability
Sink ... 20 mA Typ
Source ..• 20 mA Typ

•

=5

Excellent Output Regulation ... ±451lV Typ
= -10 mA to 10 mA

10

•

Low-Impedance Output ... 0.0075

•

Noise Reduction Pin (0, JG, and P Packages
Only)

Q

Typ

INPUT/OUTPUT TRANSFER CHARACTERISTICS

description

10r-----~~-----,-------.-------,

In signal-conditioning applications utilizing a single
power source, a reference voltage equal to onehalf the supply voltage is required for termination of
all analog signal "grounds". Texas Instruments
introduces a precision virtual ground whose output
voltage is always equal to one-half the input
voltage, the TLE2426 "rail splitter".

6~------~-----1~----~----~L1

>
I

The unique combination of a high-performance,
micropower operational amplifier and a precisiontrimmed divider on a single silicon chip results in a
precise VONI ratio of 0.5 while sinking and
sourcing current. The TLE2426 provides a low
impedance output with 20 mA of sink and source
capability while quiescently drawing less than 280
j1A of supply current over the full input range of 4
o~------~----~------~------~
to 40 V. A designer need not pay the price in terms
0.5
o
0.25
0.75
of board space for a conventional signal ground
Time - s
solution consisting of resistors, capacitors,
operational amplifiers, and voltage references. The performance and precision of the TLE2426 is availiable in
an easy-to-use, space saving, 3-terminal LP package. For increased performance, the optional8-pin packages
provide a noise-reduction pin. With the addition of an external capacitor (CNR), peak-to-peak noise is reduced
while line ripple rejection is improved.
AVAILABLE OPTIONS

TA

O'C to
70 D C

SMALLOUTLINE

125 D C

PLASTIC
DIP

CHIP
FORM
(V)

(D)

(JG)

(LP)

(P)

TLE2426CD

--

TLE2426CLP

TLE2426CP

TLE24261D

--

TLE24261LP

TLE24261P

TLE2426MD

TLE2426MJG

TLE2426MLP

TLE2426MP

- 40'C to
85'C
- 55'C to

PACKAGE
CERAMIC
PLASTIC
DIP

TLE2426Y

o

and LP packages are available taped and reeled in the commercial temperature range only.
Add "R" suffix to device type (e.g .. TLC2426CDR). Chips are tested at 25 D C.

PRODUCTION DATA inlormation is current as of
publication date. Products conform to speciricalions
per the terms of Texas Instruments standard
warranty. Production processing does not
necessarily inctude testing of, all parameters.

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

Copyright © 1991 • Texas Instruments Incorporated

2-399

TLE2426
THE "RAIL SPLITTER"
PRECISION VIRTUAL GROUND
description (continued)

D, P, OR JG PACKAGE
(TOP VIEW) .

Initial output tolerence for a single 5-V or 12-V
system is better than 1% with 3.6% over the full
40-V input range. Load rejection exceeds 12 bits
of accuracy. Whether the application is for a data
acquisition front-end, analog signal termination, or
Simply a precision voltage reference, the TLE2426
eliminates a major source of system error. The Csuffix devices are characterized for operation from
O°C to 70°C. The I-suffix devices are characterized
from - 40°C to 85°C. The M-suffix devices are
characterized over the full military temperature
range of -55°C to 125°C.

OUT u 8 NOISE REDUCTION
COMMON 2
7 NC
IN 3
6
NC
NC 4
5 NC
NC - No internal connection.

LP PACKAGE
(TOP VIEW)

IN

TLE2426Y chip information

COMMON

These chips, properly assembled, display characteristics similar to the TLE2426. (see electrical
table on TLE2426Y). Thermal compression or
ultrasonic bonding may be used on the doped
aluminum bonding pads. Chips may be mounted
with conductive epoxy or a gold-silicon preform.

OUT

BONDING PAD ASSIGNMENTS
CHIP THICKNESS:
15 TYPICAL
In (3)
BONDING PADS:
4X4 MINIMUM
NOISE
REDUCTION __....-Il_-OUT (1)
(8)

75

COMMON (2)

I~

90

~

I

TOLERANCES
ARE ±10%
ALL DIMENSIONS
ARE IN MILS

Note: Both bonding pads number 1, both number 2, and both
number 3, must be bonded out "to the corresponding
functions pin.

II II II II I I I I II II II I

TEXAS . "

2-400

TJMAX = 150°C

INSfRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TlE2426

THE "RAil SPLITTER"
PRECISION VIRTUAL GROUND
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Continuous input voltage .............................................................. 40 V
Continuous filter trap voltage .......................................................... 40 V
Output current, 10 ................................................................ ±80 rnA
Duration of short-circuit current at (or below) 25°C (see Note 1) ........................... unlimited
Continuous total dissipation ........................................ See Dissipation Rating Table
Operating free-air temperature range, TA C-suffix ................................... O°C to 70°C
I-suffix .................................. -40°C to 85°C
M-suffix ................................ -55°C to 125°C
Storage temperature range ................................................... -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package ............... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG or LP package ............. 300°C
NOTE 1: The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation
rating is not exceeded.
DISSIPATION RATING TABLE
TAs25°C
POWER RATING

DERATING FACTOR

D

725mW

JG

5.8 mWI"C
8.4 mW/oC

LP

1050mW
775mW

P

1000mW

PACKAGE

ABOVE T A

= 25°C

TA = 70°C
POWER RATING

TA = 85°C
POWER RATING

TA = 125°C
POWER RATING

464mW

377mW

145mW

546mW

270mW

6.2 mW/oC

672mW
496mW

403mW

155mW

8.0 mW/oC

640mW

520mW

200mW

recommended operating conditions

Input voltage, VI
Operating free-air temperature, T A

C·SUFFIX
MIN
MAX
40
4
0

70

I·SUFFIX
MAX
40

MIN
4
-40

85

M·SUFFIX
MIN
MAX
4
40
-55

125

UNIT
V

°c

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265

2-401

TlE2426C
THE "RAil SPLITTER" PRECISION
VIRTUAL GROUND
electrical characteristics at specified free-air temperature, VI
PARAMETER

=5 V, 10 =0 (unless otherwise noted)

TEST CONDITIONS

TAt

VI =4V
Output voltage

25°C

VI =5V
VI = 40 V

Output regulation
(sourcing current):!:
Output regulation
(sinking current):!:

TYP

MAX

1.995

2.015

2.48

2.5

2.52

20.5

20.7

20.9

Full range 2.475

VI =5V
Temperature coefficient of
output voltage
Supply current

MIN
1.975

I VI=5V

No load

It'L= 4 to 40 V

10 = 0 to -10 mA

170

250

-45

±160

Full range

350
±250

25°C

-150

±450
±160

10=Oto 10 mA

25'C
Full range

15

10=0 to 20 mA

25°C

65

±235
22.5

±250

Output impedance

25°C

7.5

Noise-reduction impedance

25°C

110

Short-circuit current
Output noise voltage, rms

Output voltage current
step response

Step response

ppm/oC

25

25°C

Full range

10=Oto-20mA

Sinking current, Va = 5 V

25'C

Sourcing current, Va = 0

f= 10 Hz to 10 kHz

CNR=O
CNR = 1(.tF

25'C

Va to 0.1%,10 = ± 10 mA

CL =0
CL = 100 pF

25'C

Va to 0.01%,10 = ± 10 mA
VI=Oto5V,VOtoO.1%
VI = 0 to 5 V, Vo to 0.01%

CL =0
CL" 100 pF
CL= 100 pF

25'C
25'C

20
-20

V

2.525

Full range

25'C

UNIT

26
-47
120
30

(lA

(.tV

(.tV
mQ
kQ
mA
(.tV

290
275
400

(.ts

390
20
160

(.ts

tFull range is O°C to 70'C.
:!:Sample tested. Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible.
Thermal effects must be ta.ken into account separately.

TEXAS ~

2-402

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TlE2426C
THE "RAil SPLITTER" PRECISION
VIRTUAL GROUND
electrical characteristics at specified free-air temperature, VI

Output voltage

=12 V, 10 =0 (unless otherwise noted)

TEST CONDITIONS

PARAMETER

MIN
1.975
6

TYP
1.995
6.05

MAX
2.015
6.1

VI =40 V

20.5

20.7

Vi = 12V

Full range 5.995

20.9
6.105

VI =4V
VI = 12V

25°C

Temperature coefficient of
output voltage
VI= 12V

Supply current

No load

Output regulation

10 = 0 to-l0 mA

(sourcing current):!:
Output regulation
(sinking current):!:

VI = 4 to 40 V

Output noise voltage, rms

Output voltage current
step response

Step response

Full range

35

25°C
Full range

195

25°C

-45

10 = 0 to -20 mA
10=Oto 10 mA

f = 10 Hz to 10 kHz
Vo to 0.1%, 10=±10mA

CNR = IIlF
CL =0
CL = 100 pF

flV

±450

25°C

15

±160
±250

flV

65
7.5

±235
22.5

mQ

25°C
CNR=O

IJA

±160
±250

25°C
25°C
Sourcing current, Vo = 0

250

-150

25°C

Sinking current, Vo = 12 V

V

25°C
Full range

10=Ot020mA

UNIT

ppm/DC

350

Full range

Output impedance
Noise-reduction impedance
Short-circuit current

TAt

25°C
25°C

Vo to 0.01%,10 = ± 10 mA

CL =0
CL = 100 pF

25°C

VI=Oto 12V, VOtoO.l%
VI = 0 to 12 V, Vo to 0.01%

CL=100pF

25°C

110
20

31

-20

-70
120
30

kQ
mA
IlV

290
275
400
390
12
120

Il s

Ils

tFull range is O°C to 70°C.
:!:Sample tested. Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible.
Thermal effects must be taken into account separately.

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-403

TLE24261
THE "RAIL SPLITTER" PRECISION
VIRTUAL GROUND
electrical characteristics at specified free-air temperature, VI
PARAMETER

Output voltage

= 5 V, 10 = 0 (unless otherwise noted)

TEST CONDITIONS
VI =4V
VI =5V

TAt
25°C

VI =.40 V
Full range

VI =5V
Temperature coefficient 01
output voltage
VI=5'V
VI = 4 to 40 V

MIN

TYP

MAX

1.975

1.995

2.015

2.48

2.5

2.52

20.5

20.7

20.9

2.47

UNIT

V

2.53

Full range

25

25°C

170

ppm/oC
250

JlA

Supply current

No load

Output regulation
(sourcing current):!:

10=Oto-10mA

25°C
Full range

-45

±160

10=Oto-20mA

25°C

-150

±250
±450

10=Ot010mA

25°C
Full range

15

±160

65

±250
±235

J.LV

25°C

22.5

mil

Output regulation
(sinking current):!:

10=Ot08mA
10 = 0 to 20 rnA

Full range

350

Output impedance

25°C

7.5

Noise-reduction impedance

25°C

110

Short-circuit current
Output noise voltage, rms

Output voltage current
step response

Step response

Sinking current, Vo = 5 V

25°C

Sourcing current, Vo = 0
1 = 10 Hz to 10 kHz
Vo toO.1%, 10 =± 10 rnA
Vo to 0.01%,10 = ± 10 rnA
VI=Ot05V, VOtoO.1%
VI =Ot05V, Vo to 0.01%

CNR=O
CNR = 1 J.LF
CL = 0
CL = 100 pF

25°C
25°C

CL =0
CL = 100 pF

25°C

CL=100pF

25°C

20

26

-20

-47
120
30

J.LV

kil
rnA
J.LV

290
275
400
390
20
160

ils

ils

tFull range is - 40°C to 85°C.
:!:Sample tested. Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible.
Thermal effects must be taken into account separately.

TEXAS ~

2-404

INSTRUMENTS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265

TlE24261
THE "RAil SPLITTER" PRECISION
VIRTUAL GROUND
electrical characteristics at specified free-air temperature, VI

Output voltage

=12 V, 10 =0 (unless otherwise noted)

TEST CONDITIONS

PARAMETER

VI =4V
VI = 12 V

25°C

Output regulation
(sinking current)*

TYP
1.995

6

6.05

6.1

20.7

20.9

VI = 12 V

Full range 5.985
35

25°C
Full range

195

250
350

10 = 0 to -10 mA

25°C
Full range

-45

±160

10=Oto-20mA

25°C

-150

±250
±450

10=Otol0mA

25°C
Full range

15

25°C

65

±235
22.5

VI = 12V
VI = 4 to 40 V

10=Ot08mA
10=Ot020mA

25°C

7.5

25°C

110

Output noise voltage, rms

Output voltage current
step response

Step response

25°C

Sourcing current, Vo = 0
1 = 10 Hz to 10 kHz
VotoO.l%,10=±10mA

CNR=O
CNR = 1 flF
CL =0
CL = 100 pF

25°C
25°C

Vo to 0.01%,10 = ± 10 mA

CL =0
CL=100pF

25°C

VI = 0 to 12 V, Vo to 0.1%
VI = 0 to 12 V, Vo to 0.01%

CL = 100 pF

25°C

20

31

-20

-70
120
30
290
275
400
390
12
120

J.1A
flV

±160
±250

Noise-reduction impedance
Si nking cu rrent, Vo = 12 V

V

ppm/DC

Full range
No load

UNIT

6.115

Output impedance

Short-circuit current

MAX
2.015

20.5

output voltage

Output regulation
(sourcing current)*

MIN
1.975

VI =40V

Temperature coefficient 01

Supply current

TAt

flV
mil
kil
mA
flV

fls

fls

tFull range is - 40°C to 85°C.
*Sample tested. Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible.
Thermal effects must be taken into account separately.

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-405

TlE2426M
THE "RAil SPLITTER" PRECISION
VIRTUAL GROUND
electrical characteristics at specified free-air temperature, VI = 5 V, 10 = 0 (unless otherwise noted)
PARAMETER

Output voltage

TEST CONDITIONS
VI =4V
VI =5V

TAt
25°C

VI =40V

MIN

TYP

MAX

1.975

1.995

2.015

2.48

2.5

2.52

20.5

20.7

20.9

Full range 2.465

VI =5V
Temperature coefficient of
output voltage

UNIT

V

2.535
ppmJOC

Full range

25

25°C
Full range

170

250
350

10=Oto-10mA

25°C
Full range

-45

±160

10=Oto-20mA

25°C

-150

±450

10=Oto 10 mA

25°C
Full range

15

±160

65

±250
±235

flV

Output impedance

25°C
25°C

7.5

22.5

mQ

Noise-reduction impedance

25°C

110

Supply current
Output regulation
(sourcing current}:j:
Output regulation
(sinking current}:!:

Short-circuit current
Output noise voltage, rms

Output voltage current
step response

Step response

VI =5V
VI =4to 40V

No load

10=Ot03mA
10=0 to 20 mA

Sinking current, Va = 5 V

25°C

Sourcing current, Va = 0

f = 10 Hz to 10 kHz
Va to 0.1%,10 =± 10 mA
Va to 0.01%,10 = ± 10 mA
VI=Ot05V,VOtoO.1%
VI = 0 to 5 V, Va to 0.01%

CNR=O
CNR = 1flF
CL =0
CL=100pF

25°C
25°C

CL=O
CL=100pF

25°C

CL=100pF

25°C

±250

20

26

-20

-47
120
30

JlA
flV

kQ
mA
flV

290
275
400
390
20
120

flS

fls

tFull range is -55°C to 125°C.
.
:j:Sample tested. Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible.
Thermal effects must be taken into account separately.

TEXAS ~

2-406

INSfRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TLE2426M
THE "RAIL SPLITTER" PRECISION
VIRTUAL GROUND
electrical characteristics at specified free-air temperature, VI = 12 V, 10 = 0 (unless otherwise noted)
PARAMETER

Output voltage

TEST CONDITIONS

Output regulation
(sourcing current),!:
Output regulation
(sinking current),!:

MIN

VI =40 V

25°C

6
20.5

VI = 12 V

Full range 5.975

Temperature coefficient 01
output voltage
Supply current

TAt

TVP

1.975

VI =4V
VI = 12V

6.05

6.1

20.7

20.9
6.125

250
350

25°C
Full range

-45

±160

-150

±250
±450

10 = 0 to 10 rnA

25°C
25°C

15

±160

iQ=Ot08mA
10 = 0 to 20 rnA

Full range
25°C

±250
±235

f!V

65

22.5

mQ

No load
10=Oto-l0mA
10=Oto-20mA

7.5

25°C

110

step response

Step response

ppm/DC

35
195

25°C

Output voltage current

V

25°C
Full range

Noise-reduction impedance

Output noise voltage, rms

UNIT

Full range
VI= 12V
VI = 4 to 40 V

Output impedance

Short-circuit current

MAX
2.015

Sinking current, Vo = 12 V

25°C

Sourcing current, Vo = 0
1= 10 Hz to 10kHz
VotoO.l%,10=±10mA
Vo to 0.01%,10 = ± 10 rnA
VI =Oto 12V, VOtoO.l%
VI = 0 to 12 V, Vo to 0.01%

CNR=O
CNR= 1 f!F
CL =0
CL = 100 pF

25°C
25°C

CL =0
CL = 100pF

25°C

CL = 100 pF

25°C

20
-20

31
-70
120
30

IlA
f!V

kQ
rnA
f!V

290
275
400

f!s

390
12
120

f!s

. tFull range is -55°C to 125°C.
:j:Sample tested. Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible.
Thermal effects must be taken into account separately.

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-407

TLE2426Y
THE "RAIL SPLITTER" PRECISION
VIRTUAL GROUND
electrical characteristics at specified free-air tem perature, VI

Output voltage
Supply current
Output regulation
(sourcing current)t
Output regulation
(sinking current)t

=5V,IO =0, TA =25°C(unlessothelWisenoted)

TEST CONDITIONS

PARAMETER

MIN
1.975
2.48
20.5

VI ~4V
VI ~5V
VI ~40V
No load
10 ~ 0 to-10 mA
10~Oto-20mA
10~Oto
10~Oto

10 mA
20 mA

Output impedance
Noise-reduction impedance
Short-circuit current

Sinking current, Vo ~ 5 V
Sourcing current, Vo ~ 0

Output noise voltage, rms

f~10Hzt010kHz

Output voltage current
step response

Step response

CL~100pF

Vo to 0.01%, 10 ~ ± 10 mA

CL ~O
CL ~ 100 pF

VI ~ 0 to 5 V, Vo toO.1%
VI ~O to 5 V, Vo toO.01%

CL ~ 100 pF

VI ~4V
VI ~ 12V
VI ~40V
No load

MIN

TYP

1.975
6
20.5

1.995
6.05
20.7
195
-45
-150
15
65
7.5

10 ~ 0 to -20 mA
10 ~ 0 to 3mA
10~Ot020mA

Noise-reduction impedance
Short-circuit current
Output noise voltage, rms

f ~ 10 Hz to 10 kHz

Output voltage current
step response

Step respon se

UNIT

V

!lA
f!V
f!V
mQ
kQ
mA
f!V

f!s

390
20
160

10~Oto-10mA

Sinking current, Vo ~ 12 V
Sourcing current, Vo ~ 0

MAX
2.015
2.52
20.9
250
±160
±450
±160
±235
22.5

f!s

=12 V, 10 =0, TA =25°C(unlessothelWisenoted)

TEST CONDITIONS

PARAMETER

Supply current
Output regulation
(sourcing current):!:
Output regulation
(sinking current):!:
Output impedance

CNR~O

CNR ~ 1 f!F
CL ~ 0

VotoO.1%,10~±10mA

electrical characteristicsatspecifiedfree-airtemperature, VI

Output voltage

20
-20

TYP
1.995
2.5
20.7
170
-45
-150
15
65
7.5
110
26
-47
120
30
290
275
400

VotoO.1%,10~±10mA

Vo to 0.01%, 10 ~ ± 10 mA
VI~Oto

12V, VOtoO.1%
VI ~ 0 to 12 V, Vo to 0.01%

20
-20
CNR~O

CNR ~ 1 f!F
CL ~ 0
CL ~ 100 pF
CL ~O
CL~100pF
CL~100pF

110
31
-70
120
30
290
275
400
390
12
120

MAX
2.015
6.1
20.9
250
+160
±450
±160
±235

UNIT

22.5

mQ

V

!lA
f!V
f!V

kQ
mA
f!V

f!s

f!s

tSample tested. Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible.
Thermal effects must be taken into account separately.

TEXAS ~

2-408

INSTRUMENTS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265

TlE2426
THE "RAil SPLITTER" PRECISION
VIRTUAL GROUND
TYPICAL CHARACTERISTICS
table of graphs
FIGURE

1,2
3

Output voltage

Distribution

Output voltage change

vs

Free-air temperature

Output voltage error

vs

Input voltage

4

vs

Input voltage

5
6
7

Bias current

vs

Free-air temperature

Output regulation

vs

Output current

Output impedance

vs

Frequency

vs

Input voltage

Short-circuit output current

vs

Free-air temperature

Ripple rejection
Spot noise

vs
vs

Frequency
Frequency

Output voltage response to output current step
Output voltage power-up response

vs

Time

vs

Time

Stability range

vs

Load capaci tance

8

9, 10
11,12
13
14

15
16
17

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-409

TlE2426
THE "RAil SPLITTER" PRECISION
VIRTUAL GROUND
TYPICAL CHARACTERISTICSt
DISTRIBUTION
OF
OUTPUT VOLTAGE

DISTRIBUTION
OF
OUTPUT VOLTAGE
40~----~-------r------~----~

3

2.5

98 Units Tested

98 Units Tested

From 2 Wafer Lots

From 2 Wafer Lots

VI
TA

;fI.

= SV
= 25·C

=

VI
12 V
TA = 25·C

30

2

!(!

'c

::J

'0

1.5

201----1--+"'''"'''''''' **""*+-1------1

Q)

Ol

J!!
c

~

Q)

0-

101----+--H*
0.5

1m

o
2.48

o L...-____......l="'"

2.49

2.5

2.S1

2.52

6.0

6.025

Vo - Output Voltage - V

Figure 1

vs

FREE-AIR TEMPERATURE

INPUT VOLTAGE
4

I

'",[

:;
c.
:;

0

-150

50

75

100

125

o

4

T A - Free-Air Temperature - ·C

V

/

/

0

-1

25

50·V /

/

~

= 12V"

.:t::--:---~

Q)

=0 I
= 25·C

'II

3

~

Ol
C

<3

8

12

/

16

V

20

/

24

28

32

VI - Input Voltage - V

Figure 3

Figure 4

toata at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices.

TEXAS

2-410

6.1

OUTPUT VOLTAGE ERROR

vs
150

E

6.075

Figure 2

OUTPUT VOLTAGE CHANGE

>

6.05

Vo - Output Voltage - V

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

36

40

TLE2426
THE "RAIL SPLITTER" PRECISION
VIRTUAL GROUND
TYPICAL CHARACTERISTICSt
BIAS CURRENT
vs
INPUT VOLTAGE
300

..........::

TA= 25~
200

::I.

E
~

150

.
:::J

U

~~

~/

~
i""

k=:::~ ~

y

::I.

TA= -55°C

1/

E

-

!!! 150

:;

,

VI

I

= 12 V
I.

VI = 5V
VI - 4V

os

50

50

0

o

10

15

20

25

30

35

10 = 0
I
-75 -50 -25

40

25

50

75

100

125

Figure 6
OUTPUT IMPEDANCE
vs
FREQUENCY

OUTPUT REGULATION
vs
OUTPUT CURRENT
100

500
VI = Vor12V
TA = 25°C

Max

0

T A - Free-Air Temperature - °C

Figure 5

t/ !II~I~ o~ ~ ~ I~"
=

I

10
0
10 r-TA = 25°C

250

a

V

"c
os

c

u

.~

'0

g>

II:
:;

-

= 40 V
I

.

VI - Input Voltage - V

~

VI

U

iii 100

5

..V

200

100

0

-

250

c(

TA = 125°C

.S

aJ

v

300

I
10 = 0

250

c(

BIAS CURRENT
vs
FREE·AIR TEMPERATURE

;;
c.
;;

/

"c.

.E
;;

0• •

0.1

c.

;;

/

0

0- 250

I

0.01

-500~----~~----~------~------~

-20

-10

o

10

20

0.001
10

100

1k

10 k

100 k

1M

Frequency - Hz

10 - Output Current - mA

Figure 7

Figure 8

tOata at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices.

TEXAS

~

..

INSTRUMENTS
POST OFFICE BOX 655303· DALLAS. TEXAS 75265

2-411

TLE2426
THE "RAIL SPLITTER" PRECISION
VIRTUAL GROUND
TYPICAL CHARACTERISTICSt
SHORT-CIRCUIT OUTPUT CURRENT

SHORT-CIRCUIT OUTPUT CURRENT

vs

vs

INPUT VOLTAGE

INPUT VOLTAGE

0

1

~

Vo
GNJ
(Output Sourcing)

<

E

E

-20

~

:;
0
:;
c..
:;

\

-40

0
·S

~~A= -ssoc
'-'Rr-

!:!

(3

~

.c

-60

,

UI

UI

9

TA=

-80

25·~ r:::::-

I I

o

5

10

--

TA = 125·C _

15
20
25
30
VI - Input Voltage - V

35

40

5

10

15
20
25
30
Iv - Input Voltage - V

Figure 9

SHORT-CIRCUIT OUTPUT CURRENT

vs

vs

FREE-AIR TEMPERATURE

FREE-AIR TEMPERATURE
40

-10

.. f.--

(Output Sourcing)--I--+-

~ -20r---r-~r-~--~--~---+~-+--~

30

.. f--

::I

~::I -30r---r-~r-~--~--~~-+~~--~
So
::I

::~

2 -40~-1~~~~~-r-~~t--t-~

I-50~--~~~~~~---4---+---+--~

20

~ -60r-~k-~r-~--~-

10

,

~

-70 r---r-~f--"~--I-"""::I,.-L
-80~--~~~~--~--~--~--~--~

-75

-50

-25

0

25

50

75

100

125

o

-

V; = 40'V

--

.1

I.

............

VI = 12V
VI

=

5V

............

VI

=

4V

~

-75

-50

-25

0

25

50

75

TA - Free-Air Temperature - ·C

Figure 11

Figure 12

tData at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices.

TEXAS

i'...

~,

Vo = VI
(Output Sinking)
I
I
I

TA - Free-Air Temperature - ·C

~

INSfRUMENlS
2-412

40

Figure 10

SHORT-CIRCUIT OUTPUT CURRENT

~

35

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

100

125

TlE2426
THE "RAil SPLITTER" PRECISION
VIRTUAL GROUND
TYPICAL CHARACTERISTICS
RIPPLE REJECTION

SPOT NOISE

vs

vs

FREQUENCY

FREQUENCY

100

400

90

al

""0

I- AVI(PP)

= 1V

80 riO = 0
TA = 2S'C
70

0

'.g
Q)
.;;ex:
Q)

D..

60

40

Q.

ii:

/

50

30

V\CN~ =
V

I

c

/

\

\
1\

\

20

~\

I

~ 200

$!I

\

\\'\

g
Q)

UI

\

~

100

./

CNR - 0

o
100

300

::>c

/
V

10

TA = 2S'C

11lF

Ii

. . .V

10

I
I
VI= SVor12V

A

VI = 5 V or 12 V

1k

100 k

10 k

..........

CNR = 0

........

CNR = 11lF

o

1M

10

1

f - Frequency - Hz

Figure 13

E

vs

TIME

TIME

t

$!I

"0

0.1%

= 100 pF
TA = 2S'C

3
0.1%

Output Voltage Response
2

2

>

>

;
Q.
;

I

0

0

-=

-1

Q)

.

0>

\0.01%

c

..c
U
I

~


>

/0.01%

1

10mA

-3 I--- 10 Step
-4

0.01%

2.5

CL

Q)

100 k

3

VI = 5V

0>

10 k

OUTPUT VOLTAGE POWER·UP RESPONSE

vs
1.5 V

4

1k

Figure 14

OUTPUT VOLTAGE RESPONSE
TO OUTPUT CURRENT STEP

>

100

f - Frequency - Hz

o

1000

2000

3000

o

4000

Time - Ils

Figure 15

50
100
Time - IlS

150

200

Figure 16

TEXAS

+

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-413

TLE2426
THE "RAIL SPLITTER" PRECISION
VIRTUAL GROUND
TYPICAL CHARACTERISTICSt
STABILITY RANGE

vs
LOAD CAPACITANCE

~

10t---+-~-+-~-

I

~

8
:;
:;"'o
I

.9

-10 t---t----t--tiBI\fi:

100

101

102

CL - Load Capacitance - JLF

Figure 17

TEXAS

~

INsrRUMENTS
2--414

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TlE2426
THE "RAIL SPLITTER" PRECISION
VIRTUAL GROUND
macromodel information

*
*
*

TLE2426 OPERATIONAL AMPLIFIER "MACROMODEL" SUBCIRCUIT
CREATED USING PARTS RELEASE 4.03 ON 08/21/90 AT 13:51
REV (N/A)
SUPPLY VOLTAGE: 5 V
FILTER
* CONNECTIONS:
I INPUT
I I COMMON
*
I I I OUTPUT
*
I I I I
*.SUBCKT TLE2426
1 345
C1
C2
C3
CPSR
DCM+
DCMDC
DE
DLP
DLN
DP
ECMR
EGND
EPSR
ENSE
FB
GA
GCM
GPSR
GRC1
GRC2
GRE1
GRE2
HLIM
HCMR
IRP
lEE
IIO
I1

Q1
Q2
R2

RCM
REE
RN1
RN2
R01
R02
VCM+
VCMVB

11
6
87
85
81
83
5
54
90
92
4
84
99
85
89
7
6
0
85
4
4
13
14
90
80
3
3
2
88
11
12
6
84
10
87
87
8
7
82
83
9

12
7
0
86
82
81
53
5
91
90
3
99
0
0
2
99
0
6
86
11
12
10
10
0
1
4
10
0
0
89
80
9
81
99
0
88
5
99
99
99
0

21.66E-12
30.00E-12
10.64E-9
15.9E-9
OX
OX
OX
OX
OX
OX
OX
(2,99) 1
POLY(2) (3,0) (4,0) 0 .5 .5
POLY(l) (3,4) -16.22E-6 3.24E-6
POLY(l) (88,0) 120E-6 1
POLY (6) VB VC VE VLP VLN VPSR 0 74.8E6 -10E6 10E6 10E6 -10E6 74E6
11 12 320.4E-6
10 99 1.013E-9
(85,86) 100E-6
(4,11) 3.204E-4
(4,12) 3.204E-4
(13,10) 1.038E-3
(14,10) 1.038E-3
VLIM 1K
POLY(2) VCM+ VCM- o 1E2 1E2
146E-6
DC 24. 05E-6
.2E-9
1E-21
13 QX
14 QX
100.0E3
1K
8.316E6
2.55E8
11.67E3
63
62
1.0
-2.3
DC 0

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-415

TlE2426
THE "RAil SPLITTER" PRECISION
VIRTUAL GROUND
macromodel information (continued)
VC

DC 1.400
DC 1.400
VLIM
7
DC 0
VLP
91
DC 30
VLN
0
92
DC 30
VPSR
0
B6
DC 0
REB
2
5
1K
RIN1
1
3
220K
RIN2
1
4
220K
.MODEL DX D(IS=BOO.OE-1B)
. MODEL QX PNP(IS=BOO.OE-1B BF=4BO)
. ENDS
VE

3
54

53

4
B
0

tOata at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices.

TEXAS ~

INSTRUMENTS
2-416

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

uA723C, uA723M
PRECISION VOLTAGE REGULATORS
Dl 063, AUGUST 1972-REVISED SEPTEMBER 1991

•

1S0-mA Load Current Without External
Power Transistor

•

Typically 0.02% Input Regulation and
0.03% Load Regulation (uA723M)

•
•
•
•

uA723C , , , 0 OR N PACKAGE
uA723M , , , J PACKAGE
(TOP VIEW)

NC
CURR LIM
CURR SENS
ININ+
REF

Adjustable Current Limiting Capability
Input Voltages to 40 V
Output Adjustable From 2 V to 37 V

NC
FREQ CaMP

Vcc+
Vc
OUTPUT

Vz

Vcc-

Direct Replacement for Fairchild f,lA723C
and f,lA723M

NC

uA723M , , , U PACKAGE

description

(TOP VIEW)

The uA723C and uA723M are preCision monolithic
integrated circuit voltage regulators featuring high
ripple rejection, excellent input and load
regulation, excellent temperature stability, and low
standby current. The circuit consists of a
temperature-compensated reference voltage
amplifier, an error amplifier, a 1S0-mA output
transistor, and an adjustable output current limiter,

Vcc+
Vc

IN+
REF

OUTPUT

uA723M , , • FK PACKAGE
(TOP VIEW)

The uA723C and uA723M are deSigned for use in
positive or negative power supplies as a series,
shunt, switching, or floating regulator, For output
currents exceeding 150 mA, additional pass
elements may be connected as shown in
Figures 4 and 5,
The uA723C is characterized for operation from
O°C to 70°C, The uA723M is characterized for
operation over the full military temperature range
of -55°C to 125°C,

CURR LIM
FREQ CaMP

CURR SENS

11.

:2

:2
:J

0
0

a:
0
a:
w
:::> 0 0 0 a:
0 ZZZ LL
20 19
18

CURR SENS
NC
INNC
IN+

NC

16

Vc

15
14
1011 12 13
LL

Vcc+

17

NC
OUTPUT

W 0 00
a: OZZ >

N

>

NC - No inlernal connection

PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Copyright © 1991, Texas Instruments Incorporated
On products compliant to MIL-STD-B83, Class B, all parameters
are lesled unless otherwise noted. On all other products,
production processing does not necessarily include testing of all
parameters.

2-417

uA723C, uA723M
PRECISION VOLTAGE REGULATORS
functional block diagram
FREQCOMP
TemperatureCompensated
Reference Diode

IN-

Vc
Series Pass
Transistor

REF
IN+
Current
Limiter

Regulated
Output

r----..,

VCC-

CURR

liM

CURR
SENS

I
I

D, FK, J, and N

~;kageS Only

I
I

L _ _ _ _ ..J

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Peak voltage from VCC+ to VCC- (tw s50 ms) ................................................ 50 V
Continuous voltage from Vcc+ to Vcc- ...................................................... 40 V
Input-to-output voltage differential ............................................................ 40 V
Differential input voltage to error amplifier .................................................... ±5 V
Voltage between nOninverting input and Vcc- .................................................. 8 V
Current from Vz ......................................................................... 25 mA
Current from REF ........................................................................ 15 mA
Continuous total dissipation (see Note 1) ............................... See Dissipation Rating Table
Operating free-air temperature range:
uA723C ....................................... O°C to 70°C
uA723M .................................... -55°C to 125°C
Storage temperature range ....................................................... -65°C to 150°C
Case temperature for 60 seconds: FK package " " " " " " " " " " " " " " " " " " " " " " " 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J or U package ................. 300°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package ................ 260°C
NOTE 1: Power dissipation ~ [I (standby) + I (rel)l VCC + [Vc - Vallo·
DISSIPATION RATING TABLE
PACKAGE

T AS 25'C POWER
RATING

DERATING FACTOR

DERATE
ABOVETA

TA = 70'C
POWER RATING

0

950mW

7.6mW/'C

25'C

608mW

FK and J

1000 mW

11.0 mW/'C

59'C

880mW

N

1000mW

9.2 mW/,C

41'C

736mW

U

675mW

5,4 mW/,C

25'C

432mW

TA= 125'C
POWER RATING
275mW
135mW

recommended operating conditions
MIN

MAX

9.5

40

V

Output voltage, Va

2

37

V

Input-to-output voltage differential, Vc - Va

3

38

V

150

mA

Input voltage, VI

Output current, 10

TEXAS

~

INSTRUMENTS
2-418

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

UNIT

uA723C, uA723M
PRECISION VOLTAGE REGULATORS
electrical characteristics at specified free-air temperature (see Notes 2 and 3)
TEST CONDITIONS

PARAMETER

uA723C

TAt
MIN

Input regulation

Ripple rejection

Output regulation

MIN

UNIT

TYP

MAX

25'C

0.01%

0.1%

0.01%

0.1%

VI = 12VtOVI =40V

25'C

0,1%

0.5%

0.02%

0.2%

VI=12VtOVI =15V

Full range

0.3%

0.3%

1= 50 Hz to 10 kHz,

Crel= 0

25'C

74

74

f= 50 Hz to 10 kHz,

Cref= 5 flF

25'C

86

86

25'C

~O.O3%

6.8

25'C
VI = 30 V,

10 =0

7.15

7.5

2.3
0.003

25'C

Temperature coefficient of

Full range

output voltage

-0.03%

-0.2%

~O.15%

-0.6%
6.95

7.15

7.35

V

4

2.3

3.5

rnA

0.D15

0.002

0.015'

RSC = 10Q,

Vo = 0

25'C

65

BW = 100 Hz to 10 kHz,

Cref= 0

25'C

20

20

BW = 100 Hz to 10 kHz,

Cref= 5 flF

25'C

2.5

2.5

Output noise voltage

dB

~O.6'%

Full range

Reference VOltage, V ref

Short-circuit output current

MAX

VI = 12 V to VI = 15 V

10 = 1 rnA to 50 rnA

Standby current

uA723M

TYP

65

%/'C
rnA
flV

"'On products compliant to MIL-STD-883, Class S, this parameter IS not production tested.

t Full range lor uA723C is O'C to 70'C and lor uA723M is -55'C to 125'C.
NOTES: 2. For all values in this table, the device is connected as shown in Figure 1 with the divider resistance as seen by the error amplifier s 10 kQ. Unless otherwise

specified, VI = VCC + = Vc = 12 V. VCC- = O. Vo = 5 V, 10 = 1 rnA, RSC = 0, and Cref = O.
3. Pulse-testing techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible.

schematic

500Q

1 kQ

25 kQ

1 kQ

15 kQ

OUTPUT

r

I

100Q

6.2V
Vz

--,
D, FK, J, and N
Packages Only

I

L _ _ _ _ _ .J

30 kQ

+------300Q

5kQ

20 kQ

150

FREQ COMP

f - - - - - - CURR LIM

Q

L -_ _ _ _ _ _

CURR SENS

VCCREF

IN-

IN+

Resistor and capacitor values shown are nominal.

TEXAS

.JJ1

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2--419

uA723C, uA723M
PRECISION VOLTAGE REGULATORS
APPLICATION INFORMATION
Table 1. Resistor Values (kQ) for Standard Output Voltages
OUTPUT
VOLTAGE

M

APPLICABLE
FIGURES
(SEE NOTE 4)

3.0

1,5,6.9,11,

FIXED
OUTPUT
±5%
R1
(kQ)

R2
(kQ)

4.12

3.01

3.57
2.15

OUTPUT
ADJUSTABLE
±100/0 (SEE NOTE 5)
R1
(kQ)

OUTPUT
VOLTAGE

M

P1
(kQ)

P2
(kQ)

1.8

0.5

1.2

100

3.65

1.5

0.5

1.5

4.99

0.75

0.5

2.2

APPLICABLE
FIGURES
(SEE NOTE 4)

FIXED
OUTPUT
±5%

OUTPUT
ADJUSTABLE
±100/0 (SEE NOTE 5)

R1
(kQ)

R2
(kQ)

R1
(kQ)

P1
(kQ)

R2
(kQ)

7

3.57

105

2.2

10

91

250

7

3.57

255

2.2

10

240

-6

3, 10

3.57

2.43

1.2

0.5

0.75

12 (4)
3.6

1,5,6,9,11,
12 (4)

5.0

1,5,6,9,11,
12 (4)

6.0

1,5,6,9,11,

(Note 6)
1.15

6.04

0.5

0.5

2.7

-9

3,10

3.48

5.36

1.2

0.5

2.0

1.87

7.15

0.75

1.0

2.7

-12

3, 10

3.57

8.45

1.2

0.5

3.3

4.87

7.15

2.0

1.0

3.0

-15

3, 10

3.57

11.5

1.2

0.5

4.3

7.87

7.15

3.3

1.0

3.0

-28

3,10

3.57

24.3

1.2

0.5

10

21.0

7.15

5.6

1.0

2.0

-45

8

3.57

41.2

2.2

10

33

12 (4)
9.0

2,4,(5,6,
9,12)

12

2,4,(5,6,
9,12)

15

2,4,(5,6,
9,12)
2,4,(5,6,

28

9,12)
45

7

3.57

48.7

2.2

10

39

-100

8

3.57

95.3

2.2

10

91

75

7

3.57

78.7

2.2

10

68

-250

8

3.57

249

2.2

10

240

NOTES: 4. The R1/R2 divider may be across either Vo or V(ret). If the divider is across V(ret) , use the figure numbers without parentheses.
If the divider is across VO, use the figure numbers in parentheses.
5. To make the voltage adjustable, the R1/R2 divider shown in the figures must be replaced by the divider shown below.

R1
P1
R2

Adjustable Output Circuit
6. For Figures 3,8, and 10, the device requires a minimum of9V between VCC+ and VCC- when Vo is equal to or more positive than

-9 V.

TEXAS

.JJ1

INSTRUMENTS
2-420

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

uA723C, uA723M
PRECISION VOLTAGE REGULATORS
APPLICATION INFORMATION
Table 2. Formulas for Intermediate Output Voltages
Outputs from 2 V to 7 V
See Figures 1,S,6,9, 11, 12 (4)
and Note 4

Vo = V(ref)

R2
Rl + R2

x---

Outputs from 4 V to 2S0 V
See Figure 7
and Note 4

Vo = V(ref)
2

Current Limiting

0.65 V
I(limit) = -R-SC

R2-Rl
Rl

x--- ,

R3 = R4
Outputs from 7 V to 37 V
See Figures 2,4,(S,6,9, 11, 12)
and Note 4

Vo = V(ref) X

Rl +R2
R2

Outputs from -6 V to -2S0 V
See Figures 3, 8, 10 and
Notes 4 and 6

Vo = _ V(ref)
2

Rl + R2

Foldback Current Limiting
See Figure 6

x - - - , I(knee)
Rl

R3 = R4

=

VOR3 + (R3 + R4) 0.65 V
,
RSCR4

R3+R4
I
0.65 V
os=-- X --R4
RSC

NOTES: 4. The R1/R2 divider may be across either Va or V(ref). If the divider is across V(ref)' use figure numbers without parentheses. If the
divider is across Va, use the figure numbers in parentheses.
6. For Figures 3, 8, and 10, the device requires a minimum of 9 V between VCC+ and VCC- when Va is equal to or more positive than

-9V.

INSTRUMENTS
TEXAS ""
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-421

uA723C, uA723M
PRECISION VOLTAGE REGULATORS
APPLICATION INFORMATION

VCC+

Vc

OUTPUT
uA723
REF
Vz
Regulated
CURR LIM t---e-VV\rll- Output,
R3
CURR SENS
Vo
(see Notes
Aand B)

R1

C(ref)

I

OUTPUT
REF uA723

IN+

Vz

CU RR LI M t----4t-'\R/\,S/\,C-tI>- Regu lated
Output,
Vo
CURR SENS
IN+
INVCC- FREQ COMP

R2

R1

R2

100 pF

Figure 1. Basic Low-Voltage Regulator
(Vo = 2 V to 7 V)
NOTES: A. R3 = R1' R2
Rt + R2

for minimum

Figure 2. Basic High-Voltage Regulator
(VO=7Vto37V)

avo.

B. R3 may be eliminated for minimum component count. Use direct connection (Le., R3 = 0).

2kQ
(see Note C)
OUTPUT
REF uA723
VZHt---+-I
R4
3 kQ

IN+

Vc
OUTPUT

2N5001

REF

uA723

Vz

CURR LIM

CURR LIM

CURR SENS

CURR SENS

IN-

Regulated
Output, Vo

VCC- FREQ COMP
R3 =
3 kQ

VCC+

IN+

1----.

IN-

Regulated
Output, Vo

VCC- FREQ COMP
R1

R1

500pF

100 pF

R2

Figure 3. Negative-Voltage Regulator

Figure 4. Positive-Voltage Regulator
(External N-P-N Pass Terminator)

NOTE C: When to-lead uA723U devices are used in applications requiring VZ, an externaI6.2-V regulator diode must be connected in series
with OUTPUT.

TEXAS .J!}

INSIRUMENlS
2--422

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

uA723C, uA723M
PRECISION VOLTAGE REGULATORS
APPLICATION INFORMATION

2N5001
VCC+
VCC+

Vc

OUTPUT \ - - - - .
uA723
REF
Vz
CURR LIM
R1
IN+

1-----.

CURR SENS
IN

Vc

RSC

OUTPUT
REF uA723
Vz

I-----<.-vvv._

Regulated
Output, Vo

R3

CURR LIM

R1

CURR SENS

R4

RSC
Regulated

_1--_.._-___-

FREQ COMP

Output, Vo

R2

R2

Vo

Figure 6. Foldback Current Limiting

Figure 5. Positive-Voltage Regulator
(External P-N-P Pass Transistor)
10kQ
VCC+
1N1826
R4
3 kQ

R2

2N5241
(see Note A)

CURR LIM

R1
IN+

R3
3 kQ

Vc

OUTPUT
REF uA723
Vz
CURR SENS

R2

R3
3kQ

2N5241
(see Note A)

CURR LIM
IN-

VCC- FREQ COMP

R1

Figure 7. Positive Floating Regulator

10kQ

CURR SENS
'-+--+-IIN+

Regulated
Output, Vo

Vc

OUTPUT
REF uA723
Vz

RSC = 1 Q

INVCC- FREQCOMP
500pF

VCCt

R4

500 pF

L-..,~+-+-3_k_Q4_ _- l i -_ _-+_+-- Regulated
Output, Vo

Figure 8. Negative Floating Regulator

NOTE A: When 1O-Iead uA723U devices are used in applications requiring VZ, an externaI6.2-V regulator diode must be connected in series with
OUTPUT.

TEXAS ~

INSlRUMENTS
POST OFFICE BOX 655303 • DALUlS, TEXAS 75265

2-423

uA723C, uA723M
PRECISION VOLTAGE REGULATORS
APPLICATION INFORMATION

3kQ

VCC+

Vc
L= 1.2mH
II (see
Note C)

OUTPUT
r - - - - - - - I REF

uA723

CURR SENS 1---....._ _ _-'

1 kQ

I

1--+-A,;Vv-H--+-4~-

CURR LIM

R1

0.11lF

Vz

Regulated
Output, Vo

1 MQ

R2

Figure 9. Positive Switching Regulator

(see Note A)

REF

2N3997
220 Q
(see Note B)

R2
0.1 IlF

1 kQ

R3
3kQ

OUTPUT
uA723
Vz

2N5004

CURR LIM

1 kQ

CURR SENS
IN+

R1

1 MQ

INVCC- FREQCOMP

R4
3kQ

15 pF

II

1N4005

100"F

I

L=1.2mH
(see Note C)
Regulated
Output, Vo

Figure 10. Negative Switching Regulator
NOTES: A. The device requires a minimum of 9 V between VCC+ and VCC- when Vo is equal to or more positive than -9 V.
B. When 10-lead uA723U devices are used in applications requiring VZ, an external 6.2-V regulator diode must be connected in series
with OUTPUT.
C. Lis 40 turns of No. 20 enameled copper wire wound on Ferroxcube P36/22-3B7 potted core or equivalent, with a 0.009-inch air gap.

TEXAS

-If

INSTRUMENTS
2-424

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

uA723C, uA723M
PRECISION VOLTAGE REGULATORS
APPLICATION INFORMATION

RSC
REF

Regulated
Output, Vo

1---<~'VV'v--'--­

OUTPUT
uA723
Vz
CURR LIM

R1

CURR SENS
IN+

1--.._ _ _-'

IN-

R2

f-+----'\2./\kAQ~_ Input From
Series 54/74 Logic

NOTE' A: A current-limit transistor may be used for shutdown if current limiting is not required.

Figure 11. Remote Shutdown Regulator With Current Limiting

100 Q
VCC+
REF

Vc
OUTPUT

uA723

Vz

(see Note A)

t--_",,1AkAQ~-t-1

2N3997

CURR LIM

R1
IN+

Regulated
Output, Vo

CURR SENS
IN-

1---<1>---,

FREQ COMP
R2

NOTE A: When 10-lead uA723U devices are used in applications requiring VZ, an externaI6.2-V regulator diode must be connected in series with
OUTPUT.

Figure 12. Shunt Regulator

TEXAS

.J!1

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-425

2-426

uA7800 SERIES
POSITIVENOLTAGE REGULATORS
D2154, MAY 1976--REVISED AUGUST 1991

•
•

3-Terminal Regulators'

•
•

Internal Thermal Overload Protection

•

Internal Short-Circuit Current Limiting

•

Output Transistor Safe-Area Compensation

•

Direct Replacements for Fairchild
Series

NOMINAL
OUTPUT
VOLTAGE

Output Current Up to 1.5 A

5V
5V
6V
8V
8.5 V
10V
12V
12 V
15V
18V
24 V

High Power Dissipation Capability

~A7800

description

(TOP VIEW)

The common terminal is in electrical
contact with the mounting base.
TO-220AB

PRODUCTION DATA Information is current as of publieaflon date.
necessarily include testing of all parameters.

uA7805C
uA7805Q
uA7806C
uA7808C
uA7885C
uA7810C
uA7812C
uA7812Q
uA7815C
uA7818C
uA7824C
KC PACKAGE

This series of fixed-voltage monolithic integratedcircuit voltage regulators is designed for a wide
range of applications, These applications include
on-card regulation for elimination of noise and
distribution problems associated with single-point
regulation. Each ofthese regulators can deliver up
to 1.5 A of output current. The internal current
limiting and thermal shutdown features of these
regulators make them essentially immune to
overload. In addition to use as fixed-voltage
regulators, these devices can be fused with
external components to obtain adjustable output
voltages and currents and also as the power-pass
element in preCision regulators, The uA7800C
series is characterized for operation over the
virtual junction temperature range of O°C to
125°C. The uA7805Q and uA7812Q are
characterized for operation over the virtual
junction temperature range of -40°C to 125°C.

Products conform to specifications per the terms of Texas
Instruments standard warranty. Production processing does not

REGULATOR

TEXAS

.JJ1

Copyright © 1991, Texas Instruments Incorporated

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-427

uA7800 SERIES
POSITIVE-VOLTAGE REGULATORS
schematic
r-~----------~~------~----~----~--INPUT

~~---1~------~~--OUTPUT

absolute maximum ratings over operating temperature ranges (unless otherwise noted)
Input voltage:

uA7824C...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 40 V
All others ................................................................... 35 V
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 1) ................... 2 W
Continuous total dissipation at (or below) 90°C case temperature (see Note 1) .................... 15 W
Operating free-air, case, or virtual junction temperature range ........................... -40 to 150°C
Storage temperature range ......................................................... -65 to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................... 260°C
NOTE 1: For operation above 25°C free-air or 90°C case temperature, refer to Figures 1 and 2. To avoid exceeding the design maximum virtual
ju~ction temperature. these ratings should not be exceeded. Due to variations in individual device electrical characteristics and thermal
resistance; the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

TEXAS -1!1

INSlRUMENlS
2--428

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

uA7800 SERIES
POSITIVE·VOLTAGE REGULATORS

2000
1600

,,,

FREE-AIR TEMPERATURE
DISSIPATATION DERATING CURVE

16

"

::::

E 1600

~ 1400

'"Q.

'iii 1200
---___.---+_ Vo = - 15 V
Input
'--_.,.-.J

1N4001

Figure 5. Regulated Dual Supply

TEXAS ."

INSTRUMENTS
2-444

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

uA78LOO SERIES
POSITIVE·VOLTAGE REGULATORS
APPLICATION INFORMATION

Vo

l

:1:
I
-vo
Figure 6. Output Polarity Reversal Protection Circuit

operation with a load common to a voltage of opposite polarity
In many cases, a regulator powers a load that is not connected to ground but instead is connected to a voltage
source of opposite polarity (e.g., op amps, level-shifting circuits, etc.). In these cases, a clamp diode should be
connected to the regulator output as shown in Figure 6. This protects the regulator from output polarity reversals
during startup and short-circuit operation.

1--4....-

Vo

Figure 7. Reverse-Bias Protection Circuit

reverse-bias protection
Occasionally, there exists the possibility that the input voltage to the regulator can collapse faster than the output
voltage. This could occur, for example, if the input supply is crowbarred during an output overvoltage condition.
If the output voltage is greater than approximately 7 V, the emitter-base junction of the series pass element
(internal or external) could break down and be damaged. To prevent this, a diode shunt can be employed, as
shown in Figure 7.

TEXAS .J!1

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-445

2--446

SERIES uA78MOO
POSITIVE-VOLTAGE REGULATORS
JUNE 1976--REVISED SEPTEMBER 1991

•
•

3·Terminal Regulators
Output Current Up to 500 mA

•
•
•

Internal Thermal Overload Protection

•

Internal Short·Circuit Current Limiting

•

Output Transistor Safe-Area Compensation

•

Direct Replacements for Fairchild
Series

No External Components

High Power Dissipation Capability

~A78MOO

NOMINAL
OUTPUT
VOLTAGE

O'C TO 125'C
OPERATING
TEMPERATURE
RANGE

-55'C TO 150'C
OPERATING
TEMPERATURE
RANGE

5V
6V
SV
9V
10V
12V
15V
20V
24V

uA78M05C
uA7SM06C
uA7SMOSC
uA78M09C
uA7SM10C
uA78M12C
uA7SM15C
uA7SM20C
uA78M24C

uA78M05M

Packages

KC

FK,JG

uA7SM12M

description
This series of fixed-voltage monolithic integrated-circuit voltage regulators is designed for a wide range of
applications. These applications include on-card regulation for elimination of noise and distribution problems
associated with single-point regulation. Each of these regulators can deliver up to 500 mA of output current.
The internal current limiting and thermal shutdown features of these regulators make them essentially immune
to overload. In addition to use as fixed-voltage regulators, these devices can be used with external components
to obtain adjustable output voltages and currents and also as the power pass element in preCision regulators.

terminal assignments
uA78M_M ... FK PACKAGE
(TOP VIEW)

uA78M_M •.• JG PACKAGE
(TOP VIEW)

uA78M_C ••. KC PACKAGE
(TOP VIEW)

Z

o

::;;:
::;;:

c O M M a N D s NC
2
7 NC
NC

()O()()()

Z()ZZZ

NC
INPUT

NC

3 2 1 2019
18
4
17
5

NC

NC

6

16

NC

NC

7

NC

S

15
14
9 10 11 12 13

NC

3
4

6
5

OUTPUT
NC

NC
NC-No internal connection

OUTPUT

The common terminal is in electrical
contact with the mounting base.

NC

()I-()()()

z~zzz

TO-220AB

~

PRODucnON DATA information Is current as of publication date.
Products conform to specifications per the terms of Texaslnslruments
standard warranty. Production processing does not necessarily Include
testing of all parameters.

TEXAS

~

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Copyright © 1991, Texas Instruments Incorporated

On products compliant to MIL..sTD·883, Class B,III parametelllif'
tested unless otherwise noted. On all other products, production

processing does not necessarily Include testing of all parameters.

2-447

SERIES uA78MOO
POSITIVE-VOLTAGE REGULATORS
schematic
INPUT
140kO

0.60
--

Resistor values shown are nominal.

TEXAS

.J!1

INSlRUMENlS
2-448

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Oto20kO

SERIES uA78MOO
POSITIVE·VOLTAGE REGULATORS
absolute maximum ratings over operating temperature range (unless otherwise noted)
uA78M05C
THRU
uA78M24C

I uA78M20, uA78M24

Input voltage

uA78M05M
uA78M12M

-40

I All others

35

Continuous total dissipation (see Note 1)

UNIT

V

35

See Dissipation Rating Tables 1 and 2

Operating free-air, case, or virtual junction temperature range
Storage temperature range

Oto 150

-55 to 150

°c

-65 to 150

-65 to 150

°c

Case temperature for 60 seconds

FK package

260

°c

Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds

JG package

300

°c

Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds

KC package

260

°c

NOTE 1: To avoid exceeding the design maximum virtual junction temperature, these ratings should not be exceeded. Due to variations in
individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power
levels slightly above or below the rated dissipation.
DISSIPATION RATING TABLE 1 - FREE·AIR TEMPERATURE
PACKAGE

TA" 25°C
POWER RATING

DERATING FACTOR
ABOVE T A = 25°C

TA = 70°C
POWER RATING

FK

1375 mW

11.0mWrC

880 mW

JG

1050 mW

8.4 mWrC

672 mW

KC

2000mW

16mW/oC

1280 mW

DISSIPATION RATING TABLE 2 - CASE TEMPERATURE
PACKAGE

TC s 50°C
POWER RATING

DERATING FACTOR
ABOVE TC = 50°C

TC = 125°C
POWER RATING

KC

20W

200 mWrC

5W

recommended operating conditions
MIN

MAX

7

25

uA78M06C

8

25

uA78M08C

10.5

25

uA78M09C

11.5

26

uA78M10C

12.5

28

uA78M12C, uA78M12M

14.5

30

uA78M15C

17.5

30

uA78M20C

23

35

uA78M24C

27

uA78M05C, uA78M05M

Input voltage, VI

All devices

Output current, 10
Operating virtual junction temperature, T J

TEXAS

UNIT

V

38
500

uA78M05C thru uA78M24C

0

125

uA78M05M and uA78M12M

-55

150

mA
°C

-IJ1

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-449

r
~
me

·0

<~

62*

O°C to 125°C

25°C

Bias current change

V

oc

men

mS

25°C

Output noise voltage

=!S
<0

5.25

Dropout voltage

en

Ol

MAX

5

25°C to 150°C

mA

iiZl"'l

~~4r
~

TYP

4.S

-55°C to 25°C

0_

~z

-co

UNIT

uA78M05M

MIN

4.75

-cc

0»
CJ) .....

uA78M05C

25°C

25°C

10 ~ 5 mA to 200 mA

= 10 V, 10 = 350 rnA (unless

300

600

mA

0.7

1.4*

A

* On products compliant toMIL-STD-883, Class B, this parameter is not production tested.
t All characteristics are measured with a 0.33-!-tF capacitor across the input and a O.l-!-tF capacitor across the output. Pulse-testing techniques are used to maintain the junctior
temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.
,
*This specification applies only for dc power dissipation permitted by absolute maximum ratings.

uA78M06C,uA78M08C
POSITIVE·VOLTAGE REGULATORS
uA78M06C electrical characteristics at specified virtual junction temperature, VI
10 = 350 mA (unless otherwise noted)
PARAMETER

Output voltage

*

Input regulation
Ripple rejection
Output regulation

TEST CONDITIONS
10 = 5 rnA to 350 rnA

VI = 8 Vto 21 V

TJt

5.75

O°C to 125°C

5.7

VI = 8 Vto 25 V

10 = 200 rnA

25°C

VI = 9 Vto 25 V

VI = 9 V to 19 V,

10 = 100 rnA

O°C to 125°C

59

1 = 120 Hz

10 = 300 rnA

25°C

59

10 = 5 rnA to 500 rnA

25°C

10 = 5 rnA to 200 rnA

Temperature coefficient 01 output voltage

10 = 5 rnA

Output noise voltage

1 = 10Hz to 100 kHz

Short-circuit output current

VI = 9 Vto 25 V

10 = 5 rnA to 350 rnA

6

MAX

6.25
6.3

5

100

1.5

50

UNIT

V
mV
dB

80
20

120

10

60

mV

-1

mV;oC

25'C

45

25'C

2

IlV
V

25'C

4.5

Bias current
10 = 200 rnA,

TYP

V,

O'C to 125'C

Dropout voltage

Bias current change

MIN

25°C

= 11

6

O'C to 125'C

0.8

O'C to 125'C

0.5

VI = 35V

Peak output current

rnA
rnA

25'C

270

rnA

25'C

0.7

A

uA78M08C electrical characteristics at specified virtual junction temperature, VI = 14 V,
10 = 350 mA (unless otherwise noted)
PARAMETER

Output voltage

*

Input regulation
Ripple rejection
Output regulation

TEST CONDITIONS
10 = 5 rnA to 350 rnA

VI = 10.5 Vto 23 V

TJt

7.7

O'C to 125'C

7.6

VI = 10.5 Vto 25 V

10 = 200 rnA

25'C

VI=11Vt025V

VI = 11.5 Vto 21.5 V,

10 = 100 rnA

O'C to 125'C

56

1= 120 Hz

10 =300 rnA

25'C

56

10 = 5 rnA to 500 rnA

25'C

10 = 5 rnA to 200 rnA

Temperature coefficient of output voltage

10 = 5 rnA

Output noise voltage

f = 10Hz to 100 kHz

Short-circuit output current

VI = 10.5 V to 25 V

10 = 5 rnA to 350 rnA

8

MAX

8.3
8.4

6

100

2

50

UNIT

V
mV
dB

80
25

160

10

80

mV

-1

mV;oC

25'C

52

25'C

2

IlV
V

25'C

4.6

Bias current
10 = 200 rnA,

TYP

O'Cto 125'C

Dropout voltage

Bias current change

MIN

25'C

6

O'C to 125°C

0.8

O'C to 125'C

0.5

VI =35V

Peak output current

rnA
rnA

25'C

250

rnA

25'C

0.7

A

tAli charactenstlcs are measured with a 0.33-IlF capacitor across the Input and a 0.1-IlF capacitor across the output. Pulse-testing techniques
are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account
separately.
This specification applies only for dc power dissipation permitted by absolute maximum ratings.

*

TEXAS ."

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-451

uA78M09C, uA78M10C
POSITIVE-VOLTAGE REGULATORS
uA78M09C electrical characteristics at specified virtual junction temperature, VI
10 = 350 mA (unless otherwise noted)
PARAMETER
Output voltage

*

Input regulation
Ripple rejection
Output regulation

TEST CONDITIONS
10 = 5 mA to 350 mA

VI=11.5V to24V
VI = 11.5 V to 26 V

10 = 200 mA

VI=12Vt026V

8.6

O°C to 125°C

8.5

10 = 100mA

O°C to 125°C

56

10 = 300 mA

25°C

56

10 = 5 mA to 500 mA
10 = 5 mA

Dropout voltage
Bias current
10 = 200 mA,

VI = 11 .5 V to 26 V

10 = 5 mA to 350 mA

Peak output current

Output voltage

*

Input regulation
Ripple rejection
Output regulation

TEST CONDITIONS
10 = 5 mA to 350 mA

VI = 12.5 Vto 25 V
VI = 12.5 Vlo 28 V

10 "200mA

VI = 14Vl028V

25

180

10

90

mV

25°C

2

flV
V

25°C

4.6

O'C to 125'C

6
0.8
0.5

mA
mA

25'C

250

mA

25'C

0.7

A

TJt

MIN

25°C

9.6

O°C to 125'C

9.5

25°C
59

25°C

55

25°C

10 = 5 mA to 200 mA

dB

mVrc

O°C to 125°C

10 = 5 mA to 500 mA

mV

58

10 = 300 mA

10 = 5mA

50

-1

10 = 100mA

f = 10 Hz to 100 kHz

2

V

25°C

VI = 15Vto25V,

Output noise voltage

100

UNIT

O°C to 125°C

f= 120 Hz

Temperature coefficient of output voltage

6

80

uA78M10C electrical characteristics at specified virtual junction temperature, VI
10 = 350 mA (unless otherwise noted)
PARAMETER

9.4

O°C to 125'C

VI =35V

MAX

9

9.5

25°C

10 = 5 mA to 200 mA

f = 10 Hz to 100 kHz

TYP

25°C

VI = 13 V to 23 V,

Output noise voltage

Short-circuit output current

MIN

f = 120 Hz

Temperature coefficient of output voltage

Bias current change

TJt
25°C

=16 V,

=17 V,

TYP
10

MAX
10.4
10.5

7

100

2

50

UNIT
V
mV
dB

80
25

200

10

100

mV

O°C to 125°C

-1

mvrc

25°C

64

flV

Dropout voltage

25°C

2

Bias current

25°C

4.7

I VI = 13.5 V to 28 V
I VI = 12.5 V to 28 V

10 = 200 mA

Bias current change
10 = 5 mA to 350 mA

Short-circuit output current

VI = 35V

Peak output current

V
6

O°C to 125'C

0.8

O°C to 125°C

0.5

mA
mA

25°C

245

mA

25'C

0.7

A

t All characteristics are measured with a 0.33-flF capacitor across the input and a 0.1-flF capacitor across the output. Pulse-testing techniques
are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account
separately.
This specification applies only for dc power dissipation permitted by absolute maximum ratings.

*

TEXAS -If

INSTRUMENTS
2-452

POST OFFICE BOX 655303 • OALLAS, TEXAS 75265

uA78M12C, uA78M12M electrical characteristics at specified virtual junction temperature, VI
otherwise noted)
PARAMETER

Output voltage

*

TEST CONDITIONS

VI = 15.5 V to 27 V

-55°C to 150°C

VI = 14.5 V to 27 V

O°C to 125°C

10 = 200 rnA

VI = 16Vt025 V

TYP

MAX

MIN

TYP

MAX

11.5

12

12.5

11.5

12

12.5

11.4
11.4

VI = 15 V to 25 V,
1= 120 Hz

10= 100 rnA
10 = 300 rnA

Output regulation

z

J~
~~4r

8
2

Temperature coefficient of output voltage
Output noise voltage

10=5rnA

8

60

2

30

1= 10 Hz to 100 kHz

Bias current
VI= 15Vt030V
10 = 200 rnA
Bias current change

55

25°C

55

dB
80

55*

80

25

240

25

10

120

10

Peak output current

VI =35 V

120
60

rnV

-4.8*

O°C to 125'C

-1

25°C

75

25°C

2

25°C

4.8

6

-3.6*

mVrC

75

480*

2

2.5

I1V
V

7

rnA

4.8

-55°C to 150°C

0.8

O'C to 125'C

0.8

-55°C to 150'C
10 = 5 rnA to 350 rnA

Short-circuit output current

VI = 14.5 V to 30 V

rnV

55*

O°C to 125°C

25'C to 150'C

Dropout voltage

V

50

-55°C to 150'C

25'C

10 = 5 rnA to 200 rnA

100

-55°C to 25'C

~

j

10 = 5 rnA to 500 rnA

12.6

UNIT

12.6

25°C

VI = 16 V to 30 V
Ripple rejection

uA78M12M

MIN

VI = 14.5 Vto 30 V
Input regulation

.

uA78M12C
TJt
25°C

10 = 5 rnA to 350 rnA

=9 V, 10 =350 mA (unless

0.5

O°C to 125°C

rnA

0.5

25'C

240

25°C

0.7

"0
0.5'

240

600

rnA

0.7

1.4*

A

* On products compliant to MIL-STD-883, Class B, this parameter is not production tested.
t All characteristics are measured with a O.33-I1F capacitor across the input and a O.l-I1F capacitor across the output. Pulse-testing techniques are used to maintain the juncti n
temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.
This specification applies only lor dc power dissipation permitted by absolute maximum ratings.

*

o
CI)

-I

<
m

<:

°c
!:i;x:.
:1> ......

C)CO

m~
mO

:lJ1\)
C)~

c:~

r'"
'"

E~

O~

:lJ1\)

CI):s:

uA78M15C,uA78M24C
POSITIVE-VOLTAGE REGULATORS
uA78M15C electrical characteristics at specified virtual junction temperature, VI
10 = 350 rnA (unless otherwise noted)
PARAMETER
Output voltage

*

Input regulation
Ripple rejection
Output regulation

TEST CONDITIONS

10 = 5 mA to 350 mA

VI=17.5Vt030V
VI=17.5Vt030V

10 = 200 mA

VI = 20 V to 30 V

14.4

O°C to 125°C

14.25

25°C

10=100mA

O°C to 125°C

54

f= 120Hz

10 =300 mA

25°C

54

10 = 5 mA to 500 mA

25°C

10 = 5 mA to 200 mA
10 = 5mA

Output noise voltage

f = 10 Hz to 100 kHz

Dropout voltage
Bias current

Short-circuit output current

MIN

VI = 18.5 V to 28.5 V,

Temperature coefficient of output voltage

Bias current change

TJt
25°C

VI = 17.5 Vto 30 V

10 = 200 mA,
10 = 5 mA to 350 mA
VI =35V

Peak output current

=23 V,

TYP
15

MAX
15.6
15.75

10

100

3

50

UNIT
V
mV
dB

70
25

300

10

150

mV

O°C to 125°C

-1

mVrc

25°C

90

25°C

2

"V
V

25°C

4.8

6

O°C to 125°C

0.8

O°C to 125°C

0.5

mA
mA

25°C

240

mA

25°C

0.7

A

uA78M20C electrical characteristics at specified virtual junction temperature, VI = 29 V,
10 = 350 rnA (unless otherwise noted)
PARAMETER
Output voltage

*

Input regulation
Ripple rejection
Output regulation

TEST CONDITIONS
10 = 5 mA to 350 mA

VI = 23 V to 35 V
VI = 23 V to 35 V

10 = 200 mA

VI = 24 V to 35 V

19.2

25°C

10=100mA

O°C to 125°C

53

10 = 300 mA

25°C

53

10 = 5 mA to 500 mA

25°C

10 = 5 mA to 200 mA

O°C to 125°C

10=5mA
f = 10Hz to 100 kHz

Dropout voltage
Bias current
10 = 200 mA,

VI = 23 Vto 35 V

10 = 5 mA to 350 mA
VI =35V

Peak output current

TYP
20

19

VI = 24 V to 34 V,

Output noise voltage

Short-circuit output current

O°C to 125°C

MIN

f=120Hz

Temperature coefficient of output voltage

Bias current change

TJt
25°C

MAX
20.8
21

10

100

5

50

30

400

10

200

-1.1
110

25°C

2

25°C

4.9

V
mV
dB

70

25°C

UNIT

mV
mVrC
"V
V

6

O°C to 125°C

0.8

O°C to 125°C

0.5

mA
mA

25°C

240

mA

25°C

0.7

A

tAli charactenstlcs are measured With a 0.33-"F capacitor across the Input and a O.l-"F capacitor across the output. Pulse-tesllng techniques
are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account
separately.
This specification applies only for dc power dissipation permitted by absolute maximum ratings.

*

TEXAS ."

INSTRUMENTS
2-454

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

uA78M24C
POSITIVE-VOLTAGE REGULATOR
uA78M24C electrical characteristics at specified virtual junction temperature, VI
10 = 350 mA (unless otherwise noted)
PARAMETER
Output voltage

*

Input regulation
Ripple rejection
Output regulation

TEST CONDITIONS

TJt
25'C

10 ; 5 mA to 350 mA

VI ; 27 V to 38 V

O'C to 125'C

VI = 27 V to 38 V

10 = 200 mA

MIN
23

VI = 28 V to 38 V.

10 = 100mA

O'C to 125'C

50

f= 120Hz

10 = 300 mA

25'C

50

10 = 5 mA to 500 mA

25'C

10 = 5 mA to 200 mA

Temperature coefficient of output voltage

10 = 5mA

Output noise voltage

f = 10Hz to 100 kHz

O'C to 125'C

TYP
24

100

5

50

30

480

10

240

-1.2

Dropout voltage

25'C

2

Bias current

25'C

5

VI = 27 V to 38 V

Short-circuit output current

10 = 5 mA to 350 mA

mV

mV

flV
V

6

O'C to 125'C

0.8
0.5

VI =35V

V

mV/'C

O'C to 125'C

Peak output current

UNIT

dB

70

170

10 = 200 mA.

25

10

25'C

Bias current change

MAX
25.2

22.8

25'C

VI = 28 V to 38 V

= 33 V,

mA
mA

25'C

240

mA

25'C

0.7

A

t All characteristics are measured with a 0.33-flF capacitor across the input and a O. i -flF capacitor across the output. Pulse-testing techniques
are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account
separately.
This specification applies only for dc power dissipation permitted by absolute maximum ratings.

*

TEXAS ~

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-455

2-456

uA7900 SERIES
NEGATIVE-VOLTAGE REGULATORS
0221

•
•

3-Terminal Regulators

NOMINAL
OUTPUT
VOLTAGE

Output Current Up to 1.5 A

•
•

Internal Thermal Overload Protection

•

High-Power Dissipation Capability

•

Internal Short-Circuit Current Limiting

•

Output Transistor Safe-Area Compensation

•

Essentially Equivalent to National LM320
Series

-5V
-5.2V
-6V
-8V
-12V
-15V
-18V
-24V

No External Components

JUNE 1976--REVISEO NOVEMBER 1991

REGULATOR

uA7905C
uA7952C
uA7906C
uA7908C
uA7912C
uA7915C
uA7918C
uA7924C

KCPACKAGE
(TOP VIEW)

description
This series of fixed-negative-voltage monolithic
integrated-circuit voltage regulators is designed to
complement Series uA7800 in a wide range of
applications. These applications include on-card
regulation for elimination of noise and distribution
problems associated with single-point regulation.
Each of these regulators can deliver up to 1.5 A of
output current. The internal current limiting and
thermal shutdown features of these regulators
make them essentially immune to overload. In
addition to use as fixed-voltage regulators, these
devices can be used with external components to
obtain adjustable output voltages and currents
and also as the power pass element in precision
regulators.

PRODUCTION DATA information is current as of publication date.
Products conform to specfficalions per the terms of Texas

Instruments standard warranty. Production processing does not
necessarily Include tesllng of all parameters.

TEXAS

The input terminal is in electrical
contact with the mounting base
TO-220AB

C

,If

Copyright © 1991, Texas Instruments Incorporated

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-457

uA7900 SERIES
NEGATIVE-VOLTAGE REGULATORS
schematic
12Vto18V

SVto8V

--~~--------~~------~------~-COMMON

OUTPUT

6.2V
20kQ

O.2kQ

INPUT
All component values are nominal.

absolute maximum ratings over operating temperature range (unless otherwise noted)
Input voltage, VI: uA7924C ............................................................... -40 V
All others ............................................................... -35 V
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 1) ................... 2 W
Continuous total dissipation at (or below) 90°C case temperature (see Note 1) .................... 15 W
Operating free-air, case, or virtual junction temperature range ............................. 0 to 150°C
Storage temperature range ......................................................... -65 to 150°C
Lead temperature 3.2 mm (1/8 inch) from case for 10 seconds ................................. 260°C
NOTE 1: For operation above 2S'C free-air or 90'C case temperature, refer to Figures 1 and 2. To avoid exceeding the design maximum virtual
junction temperature, these ratings should not be exceeded. Due to variations in individual device electrical characteristics and thermal
resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

TEXAS •

INSTRUMENlS
2-458

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

uA7900 SERIES
NEGATIVE-VOLTAGE REGULATORS

FREE·AIR TEMPERATURE
DISSIPATATION DERATING CURVE
2000
1800

E 1600
I
c
.2 1400

coQ.

'iii 1200
III

III
:l

16

I"-.

;:

Ci

"

:l

0

()

1000
800

400 I-

co
:;

200 I-

c
0

~
Q.

'wIII

"

Ci

~
..

25

,
~

12

\

10

III
:l

0

"

:l
C

~

1"\

Derating factor = 16 mWrc
ReJA ~ 62SCfW

o

\

14

I

600

E
:l
E

'x

;:

I'"

0

c
~

CASE TEMPERATURE
DISSIPATION DERATING CURVE

I

I

I

50

75

100

0

6

E
:l
E

4

:;

Derating factor = 0.25
2 t- above 90'C
ReJA -4'C/W

()

"

'xco

['\,

125

TA - Free-Air Temperature - 'C

Figure 1

"

150

8

\

\

1\

o
25

~

wrc

\

I

I

I

50

75

100

125

150

TA - Free-Air Temperature - 'C

Figure 2

recommended operating conditions

Input voltage, V,

UNIT

MIN

MAX

uA7905C

-7

-25

uA7952C

-7.2

-25

uA7906C

-8

-25

uA7908C

-10.5

-25

uA7912C

-14.5

-30

uA7915C

-17.5

-30

uA7918C

-21

-33

uA7924C

-27

-28
1.5

A

0

125

'C

Output current, 10
Operating virtual junction temperature, TJ

V

TEXAS ~

INSlRUMENTS
POST OFFICE BOX 655303 • OALLAS. TEXAS 75265

2-459

uA7905C, uA7952C
NEGATIVE-VOLTAGE REGULATORS
electrical characteristics at specified virtual junction temperature, VI = -10 V, 10 = 500 mA (unless
otherwise noted)
PARAMETER

Output voltage;

Input regulation
Ripple rejection
Output regulation

TEST CONDITIONS

10 = 5 mA to 1 A,
Ps 15W

VI = -7 Vto -20 V,

VI=-7Vto-25V

uA7905C

TJt

MIN

TYP

MAX

25°C

-4.S

-5

-5.2

DoC to 125°C

-4.75

25°C

VI =-S Vto-12V
f= 120 Hz

VI = -S V to -18 V,
10 = 5 mA to 1.5 A
10 = 250 mA to 750 mA

DoC to 125°C

54

25°C

-5.25
12.5

50

4

15

60
100

5

50

Temperature coefficient of output voltage

10=5mA
f = 10Hz to 100 kHz

25'C

125

Dropout voltage

10 = 1 A

25°C

1.1

O'C to 125°C

Bias current

-0.4

25'C

Bias current change

VI = -7 Vto-25 V

O'C to 125'C

10 = 5 mAto 1 A

Peak output current

25°C

electrical characteristics at specified virtual junction temperature, VI
otherwise noted)
PARAMETER

TEST CONDITIONS

Input regulation
Ripple rejection
Output regulation

VI = -7.2 V to-20V,

10 = 5 mA to 1 A,
Ps15W
VI=-7.2Vto-25V

f=120Hz

J.lV
V

1.5

2

0.15

0.5

O.OS

0.5

mA
mA
A

uA7952C
TJt

O'C to 125'C

MIN

TYP

MAX

-5

-5.2

-5.4

-4.95

25'C

10 = 5 mA to 1.5 A

mV

=-10 V, 10 =500 mA (unless

VI =-8.2Vto-12V
VI = -S.2 Vto-IS V,

mV

mV/'C

2.1

25'C
Output voltage:!:

V

dB

15

Output noise voltage

UNIT

O'C to 125°C
25'C

10 = 250 mA to 750 mA

54

-5.45
12.5

100

4

50

60

UNIT

V

mV
dB

15

100

5

50

mV

Temperature coefficient of output voltage

10 = 5 mA

O'C to 125'C

-0.4

mV/,C

Output noise voltage

f = 10 Hz to 100 kHz

25'C

125

",V

Dropout voltage

10 = 1 A

25'C

1.1

25'C

1.5

Bias current
Bias current change

VI = -7.2 V to -25 V
10 =5 mAto 1 A

Peak output current

O'C to 125'C
25'C

V
2

0.15

1.3

0.08

0.5

2.1

mA
mA
A

t Pulse-testing techniques are used to maintain the juncllon temperature as close to the ambient temperature as possible. Thermal effects must
be taken into account separately. All characteristics are measured with a 2-J.lF capacitor across the input and a 1-J.lF capacitor across the output.
; This specification applies only for dc power dissipation permitted by absolute maximum ratings .

.,

TEXAS ~

INSIRUMENlS
2--460

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

uA7906C, uA7908C
NEGATIVE·VOLTAGE REGULATORS

=-11 V, 10 =500 mA (unless

electrical characteristics at specified virtual junction temperature, VI
otherwise noted)
PARAMETER

Output voltage:!:

Input regulation
Ripple rejection
Output regulation

10 = 5 rnA to 1 A,
P,,15W

VI = -8 V to-21 V,

uA7906C

TJt

TEST CONDITIONS

MIN

TYP

MAX

25'C

-5.75

-6

-6.25

O'C to 125'C

-5.7

VI = -8 V to -25 V

25'C

VI=-9Vto-13V
VI = -9 Vto -19 V,

f= 120 Hz

O'C to 125'C

10 = 5 rnA to 1.5 A

54

25'C

10 = 250 rnA to 750 rnA

-6.3
12.5

120

4

60

UNIT

V

mV
dB

60
15

120

5

60

mV

Temperature coefficient of output voltage

10 = 5 rnA

O'C to 125'C

-0.4

mV/,C

Output noise voltage

f = 10Hz to 100 kHz

25'C

150

Dropout voltage

10 = 1 A

25'C

1.1

flV
V

Bias current

25'C

Bias current change

VI = -8 V to -25 V

O'C to 125'C

10 = 5 rnA to 1 A

Peak output current

25'C

electrical characteristics at specified virtual junction temperature, VI
otherwise noted)
PARAMETER

Output voltage t

Input regulation
Ripple rejection
Output regulation

10 = 5 rnA to 1 A,
P,,15W

VI = -10.5 V to -23 V,

0.08

0.5

rnA
A

uA7908C
TYP

25'C

-7.7

-8

O'C to 125'C

-7.6

25'C

VI = -11 V to -17 V
O'C to 125'C

10 = 5 rnA to 1.5 A

rnA

=-14 V, 10 =500 mA (unless
MIN

VI = -10.5 V to -25 V
VI = -11.5 V to -21.5 V, f = 120 Hz

2
1.3

2.1

TJt

TEST CONDITIONS

1.5
0.15

25'C

10 = 250 rnA to 750 rnA

54

MAX

UNIT

-8.3
-8.4

12.5

160

4

80

V

mV
dB

60
15

160

5

80

mV

Temperature coefficient of output voltage

10 = 5 rnA

O'C to 125'C

-0.6

mV/,C

Output noise voltage

f= 10 Hz to 100 kHz

25'C

200

flV

Dropout voltage

10 = 1 A

25'C

1.1

25'C

1.5

Bias current
Bias current change

VI = -10.5 V to -25 V

10 = 5 mAto 1 A

O'C to 125'C
25'C

Peak output current

V
2

0.15

1

0.08

0.5

2.1

rnA
rnA
A

t Pulse-tesllng techmques are used to maintain the Junction temperature as close to the ambient temperature as possible. Thermal effects must
be taken into account separately. All characteristics are measured with a 2-flF capacitor across the input and a 1-flF capacitor across the output.
:j: This specification applies only for dc power dissipation permitted by absolute maximum ratings.

TEXAS ~

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-461

uA7912C, uA7915C
NEGATIVE-VOLTAGE REGULATORS
electrical characteristics at specified virtual junction temperature, VI
otherwise noted)
PARAMETER

Output voltage*

Input regulation
Ripple rejection
Output regulation

TEST CONDITIONS

10 = 5 mA to 1 A,
VI = -14.5 Vto -27 V,
p" 15W
VI = -14.5 Vto-30V

=-19 V, 10 =500 mA (unless

TJt

uA7912C
MIN

TYP

MAX

25'C

-11.5

-12

-12.5

O'C to 125'C

-11.4

-12.6

25'C

VI = -16 Vto-22 V
VI =-15Vto-25V,

f= 120Hz

O'C to 125'C

10 = 5 mA to 1.5 A

54

25'C

Output noise voltage

10 = 5 mA
f = 10 Hz to 100 kHz

Dropout voltage

10 = 1 A

Bias current change

mV
dB

15

200

5

75

mV

-0.8

mV/'C

25'C

300

25'C

1.1

",V
V

25'C
10 = 5 mA to 1 A

30

V

O'C to 125'C

Bias current
VI = -14.5 V to -30 V

80

3
60

10 = 250 mA to 750 mA
Temperature coefficient of output voltage

5

UNIT

O'C to 125'C

3
0.5

0.06

0.5

2.1

25'C

Peak output current

2
0.04

mA
mA
A

electrical characteristics at specified virtual junction temperature, VI = -23 V, 10 = 500 mA (unless
otherwise noted)
PARAMETER

Output voltage*

Input regulation
Ripple rejection
Output regulation

TEST CONDITIONS

VI =-17.5Vto-30V,

10 = 5 mA to 1 A,
Ps15W

uA7915C
TJt

MIN

TYP

MAX

25'C

-14.4

-15

-15.6

O'C to 125'C

-14.25

VI = -17.5 V to -30 V

25'C

VI = -20 V to -26 V
VI = -18.5 Vto -28.5 V, f= 120 Hz

O'C to 125'C

10 = 5 mA to 1.5 A

25'C

10 = 250 mA to 750 mA
Temperature coefficient of output
voltage

10=5mA

Output noise voltage
Dropout voltage

5

100

3

50

60

V

mV
dB

20

300

8

150

mV

O'Cto 125'C

-1

mVI'C

f= 10 Hzto 100 kHz

25'C

375

",V

10 = 1 A

25'C

1.1

25'C

2

3

0.04

0.5

0.06

0.5

Bias current
Bias current change

54

-15.75

UNIT

VI = -17.5 V to -30 V
10 = 5 mA to 1 A

Peak output current

O'C to 125'C
25'C

2.1

V
mA
mA
A

t Pulse-testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must
be taken into account separately. All characteristics are measured with a 2-",F capacitor across the input and a 1-",F capacitor across the output.
:j: This specification applies only for dc power dissipation permitted by absolute maximum ratings.

TEXAS ,.,
INSTRUMENTS
2-462

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

uA7918C, uA7924C
NEGATIVE-VOLTAGE REGULATORS
electrical characteristics at specified virtual junction temperature, VI
otherwise noted)
PARAMETER

Output voltage;

Input regulation
Ripple rejection
Output regulation

uA7918C

TEST CONDITIONS

10 = 5 rnA to 1 A,
p" 15W

=-27 V, 10 =500 mA (unless

TJt

VI = -21 V to -33 V,

MIN

TYP

MAX

25'C

-17.3

-18

-18.7

O'C to 125'C

-17.1

VI = -21 V to -33 V

-18.9
5

360

3

180

25'C

VI = -24 V to-30 V
f = 120 Hz

VI = -22 Vto -32 V,

O'C to 125'C

10 = 5 rnA to 1.5 A

54

25'C

10 = 250 rnA to 750 rnA

UNIT

V

mV
dB

60
30

360

10

180

mV

Temperature coefficient of output voltage

10 = 5 rnA

O'C to 125'C

-1

mVrC

Output noise voltage

f = 10 Hz to 100 kHz

25'C

450

Dropout voltage

10= 1 A

25'C

1.1

!-IV
V

Bias current
Bias current change

25'C
VI = -21 V to -33 V

O'C to 125'C

10 = 5mAto 1 A

Peak output current

25'C

electrical characteristics at specified virtual junction temperature, VI
otherwise noted)
PARAMETER

Input regulation
Ripple rejection
Output regulation

10 = 5 rnA to 1 A,
p" 15W

VI = -27 Vto -38 V,

O'C to 125'C

VI = -27 Vto -38 V

0.5

mA
mA
A

uA7924C
TYP

-23

-24

-22.8

25'C
O'C to 125'C

10 = 5 rnA to 1.5 A

0.06

MIN

VI =-30Vto-36V
VI = -28 Vto -38 V, f = 120 Hz

1

=-33 V, 10 =500 mA (unless

25'C
Output voltage;

3

2.1

TJt

TEST CONDITIONS

2
0.04

25'C

10 = 250 rnA to 750 mA

54

MAX

UNIT

-25
-25.2

5

480

3

240

60

V

mV
dB

85

480

25

240

mV

Temperature coefficient of output
voltage

10=5mA

O'C to 125'C

-1

mvrc

Output noise voltage

f = 10 Hz to 100 kHz

25'C

600

!-IV

Dropout voltage

10 = 1 A

25'C

1.1

25'C

2

Bias current
Bias current change

VI = -27 Vto-38 V

O'C to 125'C

10 = 5 rnA to 1 A

Peak output current

25'C

V
3

0.04

1

0.06

0.5

2.1

rnA
mA
A

t Pulse-testing techntques are used to matntatn the Junclton temperature as close to the ambient temperature as possible. Thermal effects must
be taken into account separately. All characteristics are measured with a 2-!-IF capacitor across the input and a 1-!-IF capacitor across the output.

t This specification applies only for de power dissipation permitted by absolute maximum ratings.

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-463

2-464

uA79MOO SERIES
NEGATIVE·VOLTAGE REGULATORS
JUNE 1976 - REVISED SEPTEMBER 1991

•
•
•
•
•
•
•

3-Terminal Regulators
Output Current Up to 500 mA
No External Components
High Power Dissipation Capability
Internal Short-Circuit Current Limiting
Output TranSistor Safe-Area Compensation
Direct Replacements for Fairchild fA,A79MOO
Series

NOMINAL
OUTPUT
VOLTAGE

Q'CTO 125'C
OPERATING
TEMPERATURE
RANGE

-55'C TO 150'C
OPERATING
TEMPERATURE
RANGE

-5V
-6V
-SV
-12V
-15V
-20V
-24V

uA79M05C
uA79M06C
uA79MOSC
uA79M12C
uA79M15C
uA79M20C
uA79M24C

uA79M05M

uA79M12M

Package

KC

FK,JG

description
This series of fixed-negative-voltage monolithic integrated-circuit voltage regulators is designed to complement
the uA78MOO series in a wide range of applications. These applications include on-card regulation forelimination
of noise and distribution problems associated with single-point regulation. Each of these regulators can deliver
up to 500 mA of output current. The internal current limiting and thermal shutdown features of these regulators
make them essentially immune to overload. In addition to use as fixed-voltage regulators, these devices can be
used with external components to obtain adjustable output voltages and currents and also as the power pass
element in precision regulators.

terminal assignments
uA79M_M ••• FK PACKAGE
(TOP VIEW)

uA79M_M ••• JG PACKAGE
(TOP VIEW)

uA79M_C ••• KC PACKAGE
(TOP VIEW)

Z

o

:a:
:a:

00000
ZOZZZ

NC
NC
NC
NC
NC

4

1 2019
1S

3

2

5

17

6

16

7

15

S

14
9 10 11 12 13

NC
NC
NC
OUTPUT
NC

COMMONDs NC
7 NC
NC 2
NC 3
6 INPUT
OUTPUT 4
5 NC

OUTPUT
INPUT
COMMON

NC-No inlernal connection

The input terminal is in electrical
contact with the mounting base.

O~OOO

TO-220AB

Za.. ZZZ
~

C

PRODUCTION DATA In'ormatlon Is current as of publication date.
Products conform to specifications per the terms of Tex8sInstruments
standard warranty. Production processIng does not neclssarily Include

testing of all parameters.

TEXAS

.Jq.

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Copyright © 1991, Texas Instruments Incorporated
On prOducts compliant to MIL-STD-883, Class 5, all parameter. are
lested unless otherwise noted. On all other products, production

processing does not necessarily Include testing of all parameters.

2-465

uA79M24C
NEGATIVE-VOLTAGE REGULATORS
schematic
COMMON

4.5 k
to 6.3 k

I
I
I
I
I
I

1.7 k
to 18 k
OUTPUT

__ -1

0.1

0.2
INPUT
Resistor values shown are nominal and in Q.

TEXAS -If

INSTRUMENTS
2-466

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

uA79M20C
NEGATIVE·VOLTAGE REGULATORS
absolute maximum ratings over operating temperature range (unless otherwise noted)
uA79M05C
THRU
uA79M12C

I uA79M20, uA79M24

Input voltage

uA79M05M
AND
uA79M12M

-40

IAll others

-35

Continuous total dissipation (see Note 1)

UNIT

V

- 35

See Dissipation Rating Tables 1 and 2

oto 150

-55 to 150

-65 to 150

-65 to 150

'c

260

°c

300

'c

Operating free-air, case, or virtual junction temperature range
Storage temperature range
Case temperature for 60 seconds

FK package

Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds

JG package

Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds

KC package

260

'c

'c

NOTE 1: To avoid exceeding the design maximum virtual Junction temperature, these ratings should not be exceeded. Due to variations In
individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power
levels slightly above or below the rated dissipation.
DISSIPATION RATING TABLE 1-FREE-AIR TEMPERATURE
PACKAGE

TA,,25'C
POWER RATING

DERATING FACTOR
ABOVE T A = 25'C

TA = 70'C
POWER RATING

TA = 125'C
POWER RATING
275mW

FK

1375mW

11 mW/'C

880 mW

JG

1050mW

8.4mWrC

672 mW

210mW

KC

2000 mW

16 mW/'C

1280mW

400mW

DISSIPATION RATING TABLE 2-CASE TEMPERATURE
PACKAGE

TC" 120'C
POWER RATING

DERATING FACTOR
ABOVE TC 120'C

TC = 125'C
POWER RATING

KC

7,5W

250mwrc

6,25W

=

recommended operating conditions
MIN

MAX

-7

-25

uA79M06C

-8

-25

uA79M08C

-10,5

-25

uA79M12C, uA79M12M

-14,5

30

uA79M15C

-17,5

-30

uA79M20C

-23

-35

uA79M24C

-27

-38

uA79M05C, uA79M05M

Input voltage, VI

Output current, 10

500
uA79M05C thru uA79M24C

Operating virtual junction temperature, T J

uA79M05M, uA79M12M

0

125

-55

150

UNIT

V

mA
'c

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-467

uA79M24C
NEGATIVE-VOLTAGE REGULATORS
electrical characteristics at specified virtual junction temperature, VI = -10 V, 10 = 350 mA (unless
otherwise noted)
uA79M05C
PARAMETER

TJt

TEST CONDITIONS

MIN

25'C
Output voltage*

10 = 5 mA to 350 mA,

MAX

-5

-5.2

O'C to 125'C
25'C

Output regulation

VI = -8 V to-18 V,
f = 120 Hz

10=100mA
10 =300 mA

Temperature coefficient
10 = 5 mA

Output noise voltage

f= 10 Hz to 100 kHz

7

50

7

50

30

3

30

VI = -8 V to -25 V
Bias current change
10 = 5 mA to 350 mA
output

current

50

25'C

54

O'C to 125'C

100

75

50

100

50

mV

-1.5·
mV/'C

-0.4

25'C

125

125

25'C

1.1

1.1

25'C

1

2

1

400·
2.3

fLY
V

2

mA

0.4

O'C to 125'C

0.4

-55'C to 150'C

0.4

O'C to 125'C

VI =-30V

mV

60

-55'C to 150'C

Peak output current

V

dB
54·

60
75

Bias current

Short-circu~

O'C to 125'C

25'C

Dropout voltage

-5.2
-5.25

-55'C to 150'C

of output voltage

UNIT

50·

10 = 5 mA to 500 mA
10 = 5 mA to 350 mA

-5

MAX

3

-55'C to 150'C
Ripple rejection

-4.B

TYP

-5:25

-4.75

VI =-7Vto-25 V
VI =-BVto-18V

MIN

-4.75

-55'C to 150'C

VI =-7Vto-25 V
Input regulation

-4.B

uA79M05M

TYP

mA

0.4

25'C

140

25'C

0.65

0.5

0.65

600

mA

1.4·

A

·On products compliant to MIL-STD-883, Class B, thiS parameter IS not producllOn tested.
t Pulse-testing techniques are used to maintain the virtual junction temperature as close to the ambient temperature as possible. Thermal effects
must be taken into account separately. All characteristics are measured with a 2-fLF capacitor across the input and a 1-fLF capacitor across the
output.
* This specification applies only for dc power dissipation permitted by absolute maximum ratings.

.

TEXAS

..fJ~

~

INSffiUMENlS
2-468

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

uA79M20C
NEGATIVE·VOLTAGE REGULATOR
electrical characteristics at specified virtual junction temperature, VI = -11 V, 10 = 350 mA (unless
otherwise noted)
PARAMETER
Output voltage*

TEST CONDITIONS
10

~

5 rnA to 350 rnA,

VI ~-8Vto-25V

TJt

MIN

25°C

-5.75

DoC to 125°C

Ripple rejection
Output regulation

VI

~-9Vto-19V

VI

~

25°C

110~100mA

-9Vto-19 V,

= 120 Hz
10 = 5 rnA to 500 rnA
10 = 5 rnA to 350 rnA

f

Temperature coefficient of
output voltage

10

Output noise voltage

f

~

110

DoC to 125°C

50

25°C

54

= 300 rnA

25°C

MAX
-6.25
-6.3

7

60

3

40

V
mV
dB

60
80

UNIT

120

55

mV

O°C to 125°C

-0.4

mVrC

25°C

150

I-lV

Dropout voltage

25°C

1.1

Bias current

25°C

1

Bias current change
Short-circuit output current

5 rnA

= 10Hz to 100 kHz

VI
10

=-9 V to -25 V
= 5 rnA to 350 rnA

V
2

DoC to 125°C

0.4

O°C to 125°C

0.4

VI =-30V

Peak output current

t

-6

-·5.7

VI~-8Vto-25V

Input regulation

TYP

rnA
rnA

25°C

140

rnA

25°C

0.65

A

Pulse-testing techniques are used to maintain the virtual junction temperature as close to the ambient temperature as possible. Thermal effects
must be taken into account separately. All characteristics are measured with a 2-I-lF capacitor across the input and a l-I-lF capacitor across the
output.
This specification applies only for dc power dissipation permitted by absolute maximum ratings.

*

TEXAS -III

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-469

uA79M24C
NEGATIVE-VOLTAGE REGULATOR
electrical characteristics at specified virtual junction temperature, VI = -19 V, 10 = 350 mA (unless
otherwise noted)
PARAMETER

Output voltage t
Input regulation
Ripple rejection
Output regulation

TEST CONDITONS

10 = 5 mA to 350 mA,

VI = -10.5 Vto-25 V

TJt

MIN

25'C

-7.7

O'Cto 125'C

-7.6

VI = -10.5 Vto-25 V

25'C

VI =-11 Vto-21 V
VI =-11.5 Vto-21.5 V, 110 = 100 mA

O'C to 125'C

50

25'C

54

lio = 300 mA

f= 120Hz
10 = 5 mA to 500 mA

25'C

10 = 5 mA to 350 mA

Temperature coefficient of
output voltage

10=5mA

Output noise voltage
Dropout voltage

Elias current change
Short-circuit output current

-8

MAX

-8.3
-8.4

8

80

4

50

V
mV
dB

59
90

UNIT

160

60

mV

O'C to 125'C

-0.6

mV/,C

f = 10 Hz to 100 kHz

25'C

200

10 = 5 mA

25'C

1.1

ftV
V

25'C

1

Bias current
\

TYP

2

VI = -10.5 Vto-25 V

O'C to 125'C

0.4

10 = 5 mA to 350 mA

O'C to 125'C

0.4

VI =-30V

Peak output current

mA
mA

25'C

140

mA

25'C

0.65

A

t Pulse-testmg techniques are used to malntam the virtual juncllOn temperature as close to the ambient temperature as possible. Thermal effects

t

must be taken into account separately. All characteristics are measured with a 2-ftF capacitor across the input and a l-ftF capacitor across the
output.
This specification applies only for de power dissipation permitted by absolute maximum ratings.

TEXAS ..If

INStRUMENTS
2-470

POST OFFICE BOX 655303 • DALLAS. TEXAS 75255

uA79M20C
NEGATIVE·VOLTAGE REGULATORS
electrical characteristics at specified virtual junction temperature, VI
otherwise noted)

=-19 V,

uA79M12M

uA79M12C
PARAMETER

TEST CONDITIONS

TJt
25°C

Output voltage*

Input regulation

10 = 5 mA to 350 mA,

-55°C to 150°C

VI = -14.5 Vto -30 V

O°C to 125°C

MIN

TYP

MAX

MIN

TYP

MAX

-11.5

-12

-12.5

-11.5

-12

-12.5

-11.4
-11.4

VI = -14.5 Vto -30 V
25°C

VI = -15 Vto -25 V

Output regulation

VI = -15V to -25 V,
f= 120 Hz

10=100mA
10 = 300 mA

Temperature coefficient

9

80

9

80

5

50

5

50

50

25°C

54

10 = 5 mA

Output noise voltage

I = 10Hz to 100 kHz

65
25°C

54'
240

60
65

45

240

45

-0.8

mVrC

25°C

300

300

960'

25°C

1.1

1.1

2.3

Bias current

25°C

1.5

1.5

3

3

-55°C to 150°C
Bias current change

Short-circuit output
current
Peak output current

VI =-30V

",V
V
mA

0.4

O°C to 125°C

0.4

-55°C to 150°C
10 = 5 mA to 350 mA

mV

-3.6'

O°C to 125°C

Dropout voltage

VI = -14.5 Vto-30 V

mV

dB
60

-55°C to 150°C

01 output voltage

V

50'

O°C to 125°C

10 = 5 mA to 500 mA
10 = 5 mA to 350 mA

-12.6

UNIT

-12.6

-55°C to 150°C
Ripple rejection

10 =350 mA (unless

0.4

O°C to 125°C

mA

0.4

25°C

140

25°C

0.65

0.5'

0.65

600

mA

1.4'

A

'On products compliant to MIL-STD-883, Class B, this parameter IS not production tested.
t Pulse-testing techniques are used to maintain the virtual junction temperature as close to the ambient temperature as possible. Thermal effects
must be taken into account separately. All characteristics are measured with a 2-",F capacitor across the input and a l-",F capacitor across the
output.
* This specification applies only for dc power dissipation permitted by absolute maximum ratings.

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-471

uA79M24C
NEG~TIVE·VOLTAGE

REGULATOR

electrical characteristics at specified virtual junction temperature, VI = -23 V, 10 = 350 mA (unless
otherwise noted)
PARAMETER
Output voltage*
Input regulation
Ripple rejection

TJT

MIN

25°C

-14.4

DoC to 125°C

-14.25

TEST CONDITIONS

10 = 5 mA to 350 mA,

VI =-17.5Vto-30V

VI=-17.5Vto-30V
25'C

VI = -18 Vto-28 V
VI = -18.5 Vto -28.5 V, 110 = 100 mA
f= 120 Hz

DoC to 125'C

50

25'C

54

110 = 300mA

Output regulation

10 = 5 mA to 500 mA
10 = 5 mA to 350 mA

Temperature coefficient of
output voltage

10 = 5 mA

Output noise voltage
Dropout voltage

Short-circuit output current

-15

MAX
-15.6
-15.75

9

80

7

50

UNIT
V
mV
dB

59
65

25°C

240
mV

45

O'C to 125'C

-1

mVI'C

f = 10 Hz to 100 kHz

25°C

375

[J-V

10 = 5 mA

25'C

1.1

25'C

1.5

Bias current
Bias current change

TYP

VI = -17.5 Vto -30 V

O'C to 125°C

10 = 5 mA to 350 mA

O'C to 125'C

VI =-30V

Peak output current

V
3
0.4
0.4

mA
mA

25°C

140

mA

25°C

0.65

A

.t Pulse-testing techniques are used to maintain the virtual Juncllon temperature as close to the ambient temperature as possible. Thermal effects
must be taken into accoul)t separately. All characteristics are measured with a 2-[J-F capacitor across the input and a 1-[J-F capacitor across the
output.
This specification applies only for dc power dissipation permitted by absolute maximum ratings .

*

. TEXAS ~

INSlRUMENlS
2-472

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

uA79M20C
NEGATIVE-VOLTAGE REGULATOR
electrical characteristics at specified virtual junction temperature, VI = -29 V, 10 = 350 mA (unless
otherwise noted)
PARAMETER
Output voltage+

TEST CONDITIONS
10 = 5 mA to 350 mA,

VI = -23 V to -35 V

TJt

MIN

25'C

-19.2

O'C to 125'C

Ripple rejection
Output regulation

2S'C

VI = -24 Vto -34 V
VI = -24 V to -34 V,

110=100mA

O'C to 125'C

SO

f= 120 Hz

110 =300 mA

25'C

54

10 = 5 mA to 500 mA
2S'C

10 = 5 mA

Output noise voltage

f = 10Hz to 100 kHz

12

60

10

70

V
mV
dB

58
300

mV

50

mVrC

2S'C

SOD

2S'C

1.1

IlV
V

2S'C

I.S

VI = -23 V to .,.3S V

3.S
0.4

O'C to 12S'C

10 = S mA to 3S0 mA

UNIT

-1

Bias current

Short-circuit output current

-20.6

O'C to 12S'C

Dropout voltage

Bias current change

MAX
-21

75

10 = 5 mA to 350 mA
Temperature coefficient of
output voltage

-20

-19

VI = -23 V to -35 V
Input regulation

TYP

VI =-30V

Peak output current

0.4

mA
mA

2S'C

140

mA

2S'C

0.6S

A

t Pulse-testing techmques are used to maintain the virtual Junction temperature as close to the ambient temperature as possible. Thermal effects
must be taken into account separately. All characteristics are measured with a 2-IlF capacitor across the input and a l-IlF capacitor across the
output.
+ This specification applies only for de power dissipation permitted by absolute maximum ratings.

TEXAS ..,
INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-473

uA79M24C
NEGATIVE-VOLTAGE REGULATOR
uA79M24C electrical characteristics at specified virtual junction temperature, VI
10 = 350 mA (unless otherwise noted)
PARAMETER

Output voltage*
'Input regulation
Ripple rejection
Output regulation

TEST CONDITIONS

10 = 5 mA to 350 mA,

TJt

VI = -27 V to -38 V

25'C
O'C to 125'C

VI = -28 Vto -38 V,
f= 120 Hz

110=100mA

O'C to 125'C

50

110 = 300 mA

25'C

54

f = 10Hz to 100 kHz

-24

25'C

MAX

-25
-25.2

12

80

12

70

V
mV

300
mV

50

O'C to 125'C

-1

mVI'C

25'C

600

25'C

1.1

flV
V

25'C

1.5

Dropout voltage
Bias current
VI =-27Vto-38V

3.5
0.4

O'C to 125'C

10 = 5 mA to 350 mA

UNIT

dB

58
75

10 = 5 mA to 500 mA
10 = 5 mA to 350 mA

Output noise voltage

TYP

-22.8

25'C

VI = -28 V to -38 V

10 =5mA

Short-circuit output current

-23

VI = -27 V to -38 V .

Temperature coefficient of
output voltage

Bias current change

MIN

=-33 V,

VI =-30V

Peak output current

0.4

mA
mA

25'C

140

mA

25'C

0.65

A

t Pulse-tesltng techniques are used to maintain the junction temperature as close to the ambient temperature as pOSSible. Thermal effects must
be taken into account separately. All characteristics are measured with a 2-flF capacitor across the input and a 1-flF capacitor across the output.
* This specification applies only for dc power dissipation permitted by absolute maximum ratings.

TEXAS

~

INSlRUMENlS
2-474

POST OFFICE BOX 655303 • DALLAS, ,TEXAS 75265

UC2842, UC2843, UC284~ UC2845
UC3842, UC3843, UC3844, UC3845
CURRENT·MODE PWM CONTROLLERS
03175, JANUARY 1989-REVISEO AUGUST 1991

•

o PACKAGE

Optimized for Off·Line and DC·to·DC
Converters

(TOP VIEW}

•

Low Start-Up Current « 1 rnA)

•

Automatic Feed-Forward Compensation

•

Pulse-by-Pulse Current Limiting

•

Enhanced Load-Response Characteristics

•

Undervoltage 'Lockout With Hysteresis

•

Double Pulse Suppression

•

High-Current Totem-Pole Output

•

Internally Trimmed Bandgap Reference

•

500-kHz Operation

•

Error Amplifier With Low Output Resistance

•

Designed to Be Interchangable With
Unitrode UC2842 and UC3842 Series

REF
NC

COMP
NC
VFB
NC
ISENSE
NC
RT/CT

VCC
VC
OUTPUT
GND
POWER
GROUND

NC - No internal connection

P PACKAGE
(TOP VIEW}

C O M P u S REF
VFB
2
7 VCC
ISENSE
3
6 OUTPUT
RT/CT 4
5 GND

description
The UC2842 and UC3842 series of control integrated circuits provide the features that are necessary to
implement off-line or dc-to-dc fixed-frequency current-mode control schemes with a minimum number of
external components. Internally implemented circuits include: undervoltage lockout (UVLO) featuring a
start-up current of less than 1 mA, a precision reference trimmed for accuracy at the error amplifier input,
logic to ensure latched operation, a pulse-width modulation (PWM) comparator (which also provides currentlimit control), and a totem-pole output stage designed to,source or sink high-peak current. The output stage,
suitable for driving N-channel MOSFETs, is low when it is in the off state.
The primary difference between the UC2842-series devices and the UC3842-series devices is the ambient
operating temperature range. The UC2842-series devices operate between - 25°C and 85 DC; the
UC3842-series devices operate between OOC and 70°C. Major differences between members of these
series are the undervoltage lockout (UVLO) thresholds and maximum duty cycle ranges. Typical UVLO
thresholds of 16 V (on) and 10 V (off) on the UC_842 and UC_844 devices make them ideally suited
to off-line applications. The corresponding typical thresholds for the UC_843 and UC_845 devices are
8.4 Von and 7.6 V off. The UC_842 and UC_843 devices can operate to duty cycles approaching 100%.
A duty cycle range of 0 to 50% is obtained by the UC_844 and UC_845 by the addition of an internal
toggle flip-flop, which blanks the output off every other clock cycle.

PRODUCTION DATA is current as of publication date.
Products conform to specifications per the terms of
Texas Instruments standard warranty. Production
processing does not necessarily include testing of all
parameters.

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • OALLAS. TEXAS 75265

Copyright © 1991, Texas Instruments Incorporated

2-475

UC2842, UC2843, UC284~ UC2845
UC3842, UC3843, UC3844, UC3845
CURRENT·MODE PWM ,CONTROLLERS
functional block diagram
Vcc

---"~f----_--------------,

UVLO
~-~~~------~-----------------REF

GND - -.....-e--{

2.5 V

___- - - V C

RT/CT -----1----1

e--- Output
_____ Power
Ground

2R
VFB - - - - - - - I

R
COMP-----------~

ISENSE ----'-----------------------1
NOTE 1. The toggle flip-flop is present only in UC2844, UC2845, UC3844, and UC3845.

TEXAS ~

INSTRUMENTS
2-476

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

UC2842, UC2843, UC284~ UC2845
UC3842, UC3843, UC3844, UC3845
CURRENT·MODE PWM CONTROLLERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage (see Note 2) (ICC < 30 mAl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Self Limiting
Analog input voltage (VFB and ISENSE terminals) ......................... -0.3 V to 6.3 V
Voltage on output pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 35 V
Voltage on VC pin (14-pin package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 V
Supply current, ICC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 30 mA
Output current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 1 A
Error amplifier output sink current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10 mA
Continuous power dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. see Dissipation Rating Table
Output energy (capacitive load) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Jl-J
Operating free-air temperature range, T A: UC284_........................ - 25°C to 85 °C
UC384_ . . . . . . . . . . . . . . . . . . . . . . . . .. O°C to 70°C
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65°C to 150°C
Lead temperature, 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . .. 260°C
NOTE 2: All voltages are with respect to the device GND terminal.
DISSIPATION RATING TABLE
PACKAGE

TA

:5

25°C

POWER RATING

D

950 mW

P

1000 mW

DERATING FACTOR
ABOVE TA - 25°C

TA

85°C

TA - 70°C
POWER RATING

POWER RATING

608 mW

494 mW

640 mW

520 mW

7.6 mW/oC
8.0 mW/oC

a

recommended operating conditions
UC284_
MIN

NOM

Supply voltage, V CC and V C t

UC384_
MAX

MIN

NOM

UNIT

30

V

Voltage on RT ICT input

0

5.5

0

5.5

V

Voltage on VFB and ISENSE inputs

0

5.5

0

5.5

V

Voltage on OUTPUT

0

30

0

30

V

-0.1

1

-0.1

1

Voltage on POWER GROUND t

30

MAX

Supply current, externally limited, ICC

25

25

V
mA

Average output current, 10

200

200

mA

Reference output current

-20

-20

mA

500

kHz

70

°c

Timing capacitance, CT

1

Oscillator frequency
Operating free-air temperature, T A

1
100

-25

85

nF
100

500
0

tThese recommended voltages for Vc and POWER GROUND apply only to the D package.

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-477

UC2842, UC2843, UC284~ UC2845
UC3842, UC3843, UC3844, UC3845
CURRENT·MODE PWM CONTROLLERS
electrical characteristics, VCC = 15 V (see Note 3). RT
(unless otherwise specified)

3.3 nF, TA

10 kO, CT

full range

reference section
PARAMETER

TEST CONDITIONS

Line regulation

10 = 1 mA,
VCC = 12 V to 25 V

Load regulation

10

Output voltage

=

TJ

MIN

=

25°C

= 12 V to 25 V,
= 1 mA to 20 mA
= 10Hz to 10kHz,

VCC

worst-case variation

10

Output noise voltage

f

Output voltage long-term
drift

After 1000 h at T A

TJ

=

5

5.1

V

20

6

20

mV

6

25

6

25

mV

0.2

0.4

0.2

0.4

mV/oC

5.1

4.9

4.82

50

25°C

-30

5.18
50

5

25

-100

-180

-30

UC284_
Typt
MAX

MIN

125°C

Short-circuit output current

UNIT

5.05

4.9

=

UC384_
Typt
MAX

5

1 mA to 20 mA

output voltage

MIN

6

4.95

Temperature coefficient of

Output voltage with

UC284_
Typt
MAX

V
p.V

5

25

mV

-100

-180

mA

oscillator section
PARAMETER
Oscillator frequency
(see Note 4)
Frequency change with
supply voltage
Frequency change with
temperature

TEST CONDITIONS

=

TJ

=

TA

25°C

47

57

12 V to 25 V

0.2%

1%

TMIN to TMAX

5%

5%

1.7

1.7

Peak-to-peak amplitude
at RT/CT

47

UC384_
Typt
MAX

52

=

VCC

MIN

52

57

0.2%

1%

UNIT
kHz

V

error amplifier section
"

PARAMETER
Feedback input voltage

TEST CONDITIONS
COMP at 2.5 V

MIN
2.45

Input bias current
Open-loop voltage
amplification

Vo

=

2 V t04 V

Gain-bandwidth product
Supply voltage rejection
ratio
Output sink current

VCC

=

12Vt025V

VFB at 2.7 V,

COMP at 1.1 V

Output source current

VFB at 2.3 V,

COMP at 5 V

High-level output voltage

VFB at 2.3 V,

Low-level output voltage

VFB at 2.7 V,

RL
RL

=
=

UC284_
Typt
MAX
2.50

2.55

-0.3

-1

MIN
2.42

UC384_
Typt
MAX

UNIT

2.50

2.58

V

-0.3

-2

p.A

65

90

65

90

0.7

1

0.7

1

60

70

60

70

dB

2

6

2

6

mA

-0.5

-0.8

-0.5

-0.8

mA

5

6

5

6

15 kG to GND
1 5 kG to pin 8

0.7

1.1

0.7

dB
MHz

V
1.1

V

tAli typical values are at T J = 25°C.
NOTES: 3. Adjust VCC above the start threshold before setting it to 15 V.
4. Output frequency equals oscillator frequency for the UC_842 and UC_843. Output frequency is one-half oscillator frequency
for the UC_844 and UC_845.

TEXAS ."

INSTRUMENlS
2-478

POST OFFICE BOX 655303 • OAlLAS. TEXAS 75265

UC2842, UC2843, UC2844,. UC2845
UC3842, UC3843, UC384~ UC3845
CURRENT-MODE PWM CONTROLLERS
electrical characteristics. VCC = 15 V (see Note 3). RT
(unless otherwise specified) (continued)

=

10

kn.

CT

=

3.3 nF. TA

=

full range

current sense section
PARAMETER
Voltage amplification
Current sense comparator

threshold
Supply voltage rejection

ratio

TEST CONDITIONS
See Notes 5 and 6
COMP at 5 V,
VCC

=

See Note 5

MIN

UC284_
Typt
MAX

MIN

UC384_
Typt
MAX

2.85

3

3.13

2.85

3

3.15

0.9

1

1.1

0.9

1

1.1

12 V to 25 V, See Note 5

70

Input bias current
Delay time to output

70

UNIT
V/V
V
dB

-2

-10

-2

-10

p.A

150

300

150

300

ns

output section
PARAMETER
High-level output voltage
low-level output voltage
Rise time
Fall time

TEST CONDITIONS

= -20 mA
= -200 mA
IOl = 20 mA
IOl = 200 mA
Cl = 1 nF, TJ =
Cl = 1 nF, TJ =

MIN

UC284_
Typt
MAX

MIN

UC384_
Typt
MAX

IOH

13

13.5

13

13.5

IOH

12

13.5

12

13.5

UNIT
V

0.1

0.4

0.1

1.5

2.2

1.5

0.4
2.2

25°C

50

150

50

150

ns

25°C

50

150

50

150

ns

V

undervoltage lockout section
PARAMETER
Start threshold voltage

TEST CONDITIONS

MIN

UC284_
Typt
MAX

UC_842,

UC_844

15

16

MIN

UC384_
Typt
MAX

17

14.5

16

17.5

UC_843,

UC_845

7.8

8.4

9

7.8

8.4

9

Minimum operating voltage

UC_842,

UC_844

9

10

11

8.5

10

11.5

after start-up

UC_843,

UC_845

7

7.6

8.2

7

7.6

8.2

MIN

UC284
Typt

MAX

MIN

UNIT
V

V

pulse-width-modulator section
PARAMETER
Maximum duty cycle

TEST CONDITIONS

UC384_
Typt
MAX

UC_B42,

UC_843

95%

97%

100%

95%

97%

100%

UC_B44,

UC_845

46%

4B%

50%

46%

4B%

50%

Minimum duty cycle

0

UNIT

0

supply voltage
PARAMETER

TEST CONDITIONS

MIN

Start-up current
Operating supply current

VFB and ISENSE at 0 V

limiting voltage

ICC

t All typical
NOTES: 3.
5.
6.

=

UC284_
Typt
MAX

MIN

UC384_
Typt
MAX

UNIT

0.5

1

0.5

1

mA

11

17

11

17

mA

34

25 mA

34

V

values are at T J = 25°C.
Adjust VCC above the start threshold before setting it to 15 V.
These parameters are measured at the trip point of the latch with VFB at 0 V.
Voltage amplification is measured between the input at ISENSE and the output at COMP with the input changing from 0 V
to O.B V.

TEXAS •

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2--479

UC2842, UC2843, UC2844, UC2845
UC3842, UC3843, UC384~ UC3845
CURRENT·MODE PWM CONTROLLERS
APPLICATION INFORMATION

VFB

COMP

Note: Error amplifier can source or sink up to 0.5 mA

Figure 1. Error Amplifier Configuration

l

ERROR
AMP

'S
(see Note A)

2R

1V
COMPARATOR

"SENSE

RS

GND

Note A: Peak current 115) is determined by the formula:

IS max

1 V

~-

RS

A small RC filter formed by resistor Rf and capacitor Cf may be
required to suppress switch transients,

Figure 2. Current Sense Circuit

TEXAS •

INSTRUMENTS
2-480

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

UC2842, UC2843, UC2844, UC2845
UC3842, UC3843, UC3844, UC3845
CURRENT·MODE PWM CONTROLLERS
APPLICATION INFORMATION

REF
RT
( see

Note Al

RT/CT

;:::1'
GROUND

-=
Note A: For RT

>

5 kD

f

1.72

~-­

RTCT

Figure 3. Oscillator Section

TIMING RESISTANCE
vs
FREQUENCY

DEAD TIME
vs
TIMING CAPACITANCE
100
VCC - 15V
RT ;,: 5 kfl
TA = 25°C

40

II)

::I.

..
..

I
E

j::

10
./

4

/'

,,/'

'tl

co
0

~

0.4 ".....

I

!

0.1
1

4

VCC - 15V
TA - 25°C

I

10

1
40

100

100

CT - Timing Capacitance - nF

11111

1 k

10 k

100 k

1 M

I-Frequency-Hz

Figure 5

Figure 4

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-481

UC2842, UC2843, UC284~ UC2845
UC3842, UC3843, UC3844, UC3845
CURRENT-MODE PWM CONTROLLERS
APPLICATION INFORMATION
open-loop laboratory test fixture
In the open-loop laboratory test fixture shown in Figure 6, high-peak currents associated with loads
necessitate careful grounding techniques. Timing and bypass capacitors should be connected close to the
GND terminal in a single point ground. The transistor and 5-kn potentiometer are used to sample the oscillator
waveform and apply an adjustable ramp to the ISENSE terminal.
,---------._----._----~----------------._----------------------REF

1----....- - -

Vcc

4.7 kO
1 kO
Error Amp
Adjust

5 kO
ISENSE
ADJUST

4.7 kO

.:;.--1----1

-=-

...- - - - - - - - - - - - - - - - - - - - - - Ground

-=Figure 6. Open-Loop Laboratory Test Fixture
shutdown technique
Shutdown of the PWM controller (see Figure 7) can be accomplished by two methods: either raise the
voltage at ISENSE above 1 V or pull the COMP terminal below a voltage two diode drops above ground.
Either method causes the output of the PWM comparator to be high (refer to block diagram). The PWM
latch is reset dominant so that the output will remain low until the next clock cycle after the shutdown
condition at the COMP or ISENSE terminal is removed. In one example, an externally latched shutdown
may be accomplished by adding an SCR that will be reset by cycling VCC below the lower UVLO threshold.
At this point the reference turns off, allowing the SCR to reset.
1 kO

,-"N'v----t..-------1 REF

3300

....---IISENSE

To Current

Shutdown .....

Sense Resistor

-=Figure 7. Shutdown Techniques

TEXAS •

2-482

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

UC2842, UC2843, UC2844, UC2845
UC3842, UC3843, UC3844, UC3845
CURRENT·MODE PWM CONTROLLERS
APPLICATION INFORMATION
A fraction of the oscillator ramp can be resistively summed with the current sense signal to provide slope
compensation for converters requiring duty cycles over 50% (see Figure 81. Note that capacitor C forms
a filter with R2 to suppress the leading-edge switch spikes.

REF~~'-----~'------,

TO.
RT/CT

1 I'F

f-------.

R~1
R2
... ISENSE
ISENSE ~--------------.......-

I

C

nn

RSENSE

Figure 8. Slope Compensation

TEXAS ~

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-483

2-484

3-1

o
o

3

-g
Q)

-or

a
o
-or

tn

3-2

LM111, LM211, LM311, LM311Y
DIFFERENTIAL COMPARATORS WITH STROBES
FEBRUARY 1992

•
•

Fast Response Times

LM111 ..• J PACKAGE
(TOP VIEW)

Strobe Capability

•
•

Maximum Input Bias Current ... 300 nA

•

Can Operate From Single S-V Supply

•

Designed to Be Interchangeable With
National Semiconductor LM111, LM211, and
LM311

NC
EMIT OUT
IN+
INNC
VccBALANCE

Maximum Input Offset Current ..• 70 nA

NC
NC
NC
Vcc+
NC
COL OUT
BALlSTRB

LM111 ... JG PACKAGE
LM211, LM311 ... 0, DB, P, OR PW PACKAGE

description

(TOP VIEW)

The LM 111, LM211, and LM311 are single
high-speed voltage comparators. These devices
are designed to operate from a wide range of
power supply voltages, including ± 15-V supplies
for operational amplifiers and 5-V supplies for logic
systems. The output levels are compatible with
most TTL and MOS circuits. These comparators
are capable of driving lamps or relays and
switching voltages up to 50 V at 50 mAo All inputs
and outputs can be isolated from system ground.
The outputs can drive loads referenced to ground,
VCC+ or VCc-. Offset balancing and strobe
capabilities are available, and the outputs can be
wire-OR connected. Ifthe strobe is low, the output
will be in the off state regardless of the differential
input.

EMIT O U T 0 8
IN+ 2
7
IN- 3
6
Vcc- 4
5

LM111 ... U PACKAGE
(TOP VIEW)

Vcc+
COL OUT
NC
BALlSTRB
BALANCE

The LM111 is characterized for operation over the
full military range of -55°C to 125°C. The LM211
is characterized for operation from -40°C to 85°C,
and the LM311 is characterized for operation from
O°C to 70°C.

LM111 .•. FK PACKAGE
(TOP VIEW)
f--

:::>

o
f-+
ozwz:>z
:iii 0 So

functional block diagram
NC

4

IN+

5
6
7

COL OUT

IN------a

EMIT OUT

NC
INNC

2019
18
17
16
15
14
9 1011 12 13

3

BALANCE - - - - - - - - - ,
BAL/STRB - - - - - ,

IN+----I

Vcc+
COL OUT
BALlSTRB
BALANCE

8

2

1

NC
COL OUT
NC
BALlSTRB
NC

NC-No internal connection

PRODUCTION DATA information Is current as 01
publication
date.
Products
conform
to
specifications per the terms of Texas Instruments
standard warranty. Production processing does
not necessarily Include testing of all parameters.

TEXAS

~

Copyright © 1992, Texas Instruments Incorporated

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-3

LM111, LM211, LM311, LM311Y
DIFFERENTIAL COMPARATORS WITH STROBES
AVAILABLE OPTIONS
PACKAGE
SMALL
OUTLINE
(D)t

SSOP
(DB)

7.5mV

LMS11D

LMS11DBLE

-40'C
to
85'C

SmV

LM211D

-55'C
to
125'C

3 mV

TA

Vlomax
at 2S'C

CHIP
CARRIER
(FK)

CERAMIC
DIP
(J)

CERAMiC
DIP
(JG)

PLASTIC
DIP
(P)

TSSOP
(PW)

LM311P

LM311PWl.E

FLATPACK
(U)

CHIP
FORM

M*

O'C
to
70'C

LMS11Y

LM211P

LM111FK

LM111J

~LM111U

LM111JG

t The D package IS available taped and reeled. Add the suffix R (e.g., LM311DR). 1he DB and PW packages are only aVailable left·end taped and
reeled.

t Chips are tested at 25'C.

schematic
BAl/STRB

3000

BALANCE

3000
- - - -....------ VCC+

1.2 kO

IN+

<

~_t:J

--1

IN-

60D

.000

4kO

I

I I

.~ .,,<> ~

1'\
I

Teo,o",

4)

60~

2500

---L

EMIT OUT

- - VCCIN+
INVCC+
VCC-

Noninverting Input
Inverting Input
Positive supply.voltage
Negative supply voltage

Component Count:

Resistors - 20
Diodes-2
Epifet-1
Transistors - 22

All resistor values shown are nominal.

.TEXAS

-1!1

INSlRUMENTS
3--4

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

LM311Y
DIFFERENTIAL COMPARATOR WITH STROBES
chip information
These chips, properly assembled, display characteristics similar to the LM311 (see electrical table). Thermal
compression or ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted
with conductive epoxy or a gold-silicon preform.

BONDING PAD ASSIGNMENTS

(5)

BALANCE

VCC+
(8)

COL
OUT
(7)

IN+
IN-

-=

BAl/STRB

(1)

VCC-

EMIT
OUT

CHIP THICKNESS: 15 TYPICAL
BONDING PADS: 4 x 4 MINIMUM

TJ max = 150'C
~

~

TOLERANCES ARE ±10%

~

111111111111111111111111111111111111111111111111111

TEXAS

ALL DIMENSIONS ARE IN MILS

-1!1

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-5

LM111, LM211, LM311
DIFFERENTIAL COMPARATORS WITH STROBES
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vcc+, (see Note 1) .......................................................... 18 V
Supply voltage, Vcc-, (see Note 1) ........................................................ -18 V
Supply voltage, Vcc+ - Vce- ............................................................... 36 V
Differential input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ±30 V
Input voltage (either input, see Notes 1 and 3) ............................................... ± 15 V
Voltage from emitter output to Vcc- .......................................................... 30 V
Voltage from collector output to VCC-: LM111 ................................................ 50 V
LM211 ................................................ 50V
LM311 ................................................ 40 V
Duration of output short circuit (see Note 4) ................................................... 10 s
Continuous total dissipation ........................................... See Dissipation Rating Table
Operating free-air temperature range: LM 111 ....................................... -55°C to 125°C
LM211 ........................................ -40°C to 85°C
LM311 .......................................... O°C to 70°C
Storage temperature range ....................................................... -65°C to 150°C
Case temperature for 60 seconds: FK package .............................................. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: J, JG, or U package. . . . . . . . . . . .. 300°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: 0, DB, P, or PW package
260°C
NOTES: 1.
2.
3.
4.

All voltage values, unless otherwise noted, are with respect to the midpoint between vcc+ and VCC-.
Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
The magnitude of the input voltage must never exceed the magnitude of the supply voltage or ± 15 V, whichever is less.
The output may be shorted to ground or either power supply.
DISSIPATION RATING TABLE

PACKAGE

TA,,25°C
POWER RATING

DERATING
FACTOR

DERATE
ABOVETA

TA = 70°C
POWER RATING

TA= 85°C
POWER RATING
317mW

TA = 125°C
POWER RATING

D

500mW

464mW

500mW

5.8mWrC
4.2mWrC

64°C

DB or PW

31°C

336mW

FK

500mW

11.0 mW/oC

105°C

500mW

500mW

275mW

J

500mW

105°C

500mW

500mW

275mW

JG

500mW

90°C

500mW

500mW

210mW

P

500mW

11.0mWrC
8.4mWrC
8.0mWrC

88°C

500mW

500mW

U

500mW

5.4 mW;oC

57°C

432mW

351 mW

135mW

recommended operating conditions
MIN

MAX

3.5

30

V

VCC_+ 0.5

VCC+-1.5

V

LM111

-55

125

LM211

-40

85

LM311

0

70

Supply voltage, Vee + - VecInput voltage (IVcc±I,,15 V)
Operating free-air temperature range, T A

TEXAS

.J!,J

INSlRUMENlS
3-6

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

UNIT

°c

lM111, lM211, lM311
DIFFERENTIAL COMPARATORS WITH STROBES

electrical characteristics at specified free-air temperature, V cC+- = ± 15 V (unless otherwise noted)
PARAMETER

LMlll, LM211

TEST CONDITIONS

TAt
25'C

VIO

Input offset voltage

110

Input offset current

See Note 5

lIB

Input bias current

VO=lVto14V

See Note 5

LM311

TYP+

MAX

0.7

3

Full range

IIL(S)

Low-level strobe
current (see Note 6)

VICR

Common-mode input
voltage range

AVO

Large-signal
differential voltage
amplification

10H

High-level (collector)
output current

25'C

VO=5Vt035V,

RL = 1 kQ

low-level (collectorto-emitter)
output voltage

25'C

40

VOH = 35 V

25'C

VID=-5mV

25'C

VIO = -10 mV

25'C

VCC+ =4.5V,
VCC-= 0,
10l= 8 mA

VID =-6 mV

Full range

VIO = -10 mV

Full range

100

-3

200
0.2

250
300

13
to
-14.5
40

0.23

mV

nA
nA
mA

13.8
to
-14.7

V

V/mV

200

nA

10

~lA

0.5
0.75

UNIT

50
70

100

13.8
to
-14.7

25'C

VIO = 5 mV,

7.5

6

-3
13
to
-14.5

Full range

2

150

Full range

VOH = 35 V

10L= 50 mA

75

25'C

VIO = 5 mV,

MAX

20

Full range
VIOs-l0mV

TYP+

10

10

4

25'C

V (strobe) = 0.3 V,

MIN

4

Full range

Istrobe = -3 mA,

VOL

MIN

0.2

50

0.75

1.5

nA

1.5

0.4

V
0.23

0.4

ICC+

Supply current from
VCC +, output low

VIO = -10 mV,

No load

25'C

5.1

6

5.1

7.5

mA

ICC-

Supply current from
VCC-, output high

VIO = 10 mV,

No load

25'C

-4.1

-5

-4.1

-5

mA

t Unless otherwise noted, all characteristics are measured with BALANCE and BAL/STRB open and the emitter output grounded.
Full range for lMl11 is -55'C to 125'C, for lM211 is -40'C to 85'C, and for lM311 is O'C to 70'C.

+All typical values are at TA = 25'C.

NOTES: 5. The offset voltages and offset currents given are the maximum values required to drive the collector output up to 14 V or down to 1 V
with a pullup resistor of 7.5 kQ to VCC +. These parameters actually define an error band and take into account the worst-case effects
of voltage gain and input impedance.
6. The strobe should not be shorted to ground; it should be current driven at -3 mA to -5 mA, see Figures 13 and 27.

switching characteristics, VCC±
PARAMETER
Response time, low-to-high-Ievel output
Response time, high-to-Iow-Ievel output

= ±15 V,

TA = 25°C
TEST CONDITIONS

RC = 500 Q to 5 V, Cl = 5 pF, See Note 7

MIN

TYP

MAX

UNIT

115

ns

165

ns

NOTE 7: The response time speCified IS for a 1OO-mV Input step With 5-mV overdnve and IS the Interval between the Input step function and the
instant when the output crosses 1.4 V.

TEXAS

~

INSlRUMENTS
POST OFFICE BOX 655303 • DALUlS, TEXAS 75265

3-7

lM311Y
DIFFERENTIAL COMPARATORS WITH STROBES
electrical characteristics at Vcc±

= ±15 V (unless otherwise noted)

PARAMETER

TYP

MAX

Via

Input offset voltage

See Note 5

2

7.5

110

Input offset current

See Note 5

6

50

nA

liB

Input bias current

Va = 1 Vto 14 V

100

250

nA

IILIS)

Low-level strobe current (see Note 6)

Vstrobe = 0.3 V,

VICR

TEST CONDITIONSt

MIN

-3

VIOs-l0mV

Common-mode input voltage range

AVO

Large-signal differential voltage amplification

Va = 5 V to 35 V,

RL = 1 kQ

10H

High-level (collector) output current

Istrobe = -3 mA,

VIO = 5 mY,

VOL

Low-level (collector-to-emitter) output
voltage

IOL=50mA,

VIO =-10mV

13
to
-14.5

13.8
to
-14.7

40

200

VOH = 35 V

UNIT
mV

mA
V
V/mV

0.2

50

nA

0.75

1.5

V

No load
5.1
7.5
mA
Vlo=-10mV,
ICC+ Supply current from V CC +, output low
No load
-4.1
-5
mA
VIO = 10 mY,
ICC- Supply current from V CC _, output low
t Unless otherwise noted, all charactenstlcs are measured With BALANCE and BAL)STRB open and the emitter output grounded.
NOTES: 5. The offset voltages and offset currents given are the maximum values required to drive the collector output up to 14 V or down to 1 V
with a pullup resistor of 7.5 kQ to V CC +. These parameters actually define an error band and take into account the worst-case effects
of voltage gain and input impedance.
6. The strobe should not be shorted to ground; it should be current driven at -3 mA to -5 mA, see Figures 13 and 27.

switching characteristics, VCC±
PARAMETER

= ±15 V,

TA

= 25°C
TEST CONDITIONS

Response time, low-to-high-Ievel output
Response time, high-to-Iow-Ievel output

RC=500Qt05V, CL = 5 pF, See Note 7

..

MIN

TYP

MAX

UNIT

115

ns

165

ns

NOTE 7: The response time speCified IS for a 1OO-mV Input step With 5-mV overdnve and IS the Interval between the Input step function and the
instant when the output crosses 1.4 V.

TEXAS ""
INSlRUMENTS
3-8

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

LM111, LM211, LM311
DIFFERENTIAL COMPARATORS WITH STROBES
TYPICAL CHARACTERISTICSt
INPUT OFFSET CURRENT

vs

FREE-AIR TEMPERATURE

FREE-AIR TEMPERATURE

20
18

_\

'\

c:

-:s

14

I

c:
~

12

u

a:;

10

5'"

\

l\.

16

LMlll
LM211 t

r-11

'S
Q.

.s

Q

I

r--

"\

It!.L

,,~_

~

:;

o
0

20

40

-

60

()

Con~ition 2

I LM311

i

-60 -40 -20

'E

'"

LM111 - - ""'-.
Lr 211t

2

I

I....t. ~-~

~

4

c:

!

LM311

-"

V

<3;

'-.:

I- Condit'i n ~

'r-Y

6

I

'\.

..........

'"

--I---

iii'"

--

.s

1"----.

~

l'r-...

300 I- lMl11
LM211t
250

I'-... ~

I

i I'

.--L-

Condition 2

r-.....

150

-60 -40 -20

TA - Free-Air Temperature - °C

0

"""" I--~

•

lM111
lM211t

o

I---

Condition l ; h

100
r-

I

i',.

...........

LM311

I

VCC+ = ±15 V
Vo =-1 Vto 14 V See Note A

200

50
100 120 140

........

~

350

I

!E

80

I. . . . .

400

I

I

~M31j' - -

450

-- r - - - t -

"\

8

500

I
I
i
VCC±=±15V
_
Vo = 1 V to 14 V
See Note A

I

\

<3;

INPUT BIAS CURRENT

vs

20

40

60

80 100 120 140

TA - Free-Air Temperature - °C

Figure 1

Figure 2
V = 50 V (lMl11, lM211)
40 V (lM311)

VOLTAGE TRANSFER CHARACTERISTICS
60

50
>

.
I

I

r--

~
'S
Q.
'S

0

I

Em:uer Output
30 r
20

I

I

COLLECTOR OUTPUT TRANSFER CHARACTERISTIC
TEST CIRCUIT FOR FIGURE 3

Collector
Output _
Rl" 1 kQ

~

VCC+ = 30V

I

I \

>0

I
I

I \.,

10

-1

lMd11

Rl=600Q~:/

'---

o

.----Ic-.--Output

LM11;
lM211

r! I/'i

I

40

Cl

:!!l

I

VCC+ = 30V
VCC-= 0
TA = 25°C

1 kQ

I

I

i
-0.5

J
o

~

Output
600

a

0.5

VID - Differential Input Voltage - mV

EMITIER OUTPUT TRANSFER CHARACTERISTIC
TEST CIRCUIT FOR FIGURE 3

Figure 3

t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
NOTE A: Condition 1 is with BALANCE and BAL/STRB open. Condition 2 is with BALANCE and BAL/STRB connected to VCC +.

TEXAS

-Ill

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-9

LM111, LM211, LM311
DIFFERENTIAL COMPARATORS WITH STROBES
TYPICAL CHARACTERISTICS
OUTPUT RESPONSE FOR
VARIOUS INPUT OVERDRIVES

OUTPUT RESPONSE FOR
VARIOUS INPUT OVERDRIVES

I

J

100 mV

VCC± = ±15 V
RC = 500 Q 10 5 V
TA = 25'C

>

.,I

s
4

;g

3 1 - - - 5mV_

Co

2

I. ~

f!

s

S
o

f---201mv

\'--.

I

?

-

4
20mV
2mV

iii
VI

-

o

50

100

o

2

slmV

~

I

200

250

300

3S0

....

\

___ 2 mV

I..\..

o

o

t-Time-ns

SO

100

1S0

200

I-Time-ns

Figure 4

Figure 5
VCC+=15V

5V
SOOQ

VCC_=-15V
TEST CIRCUIT FOR FIGURES 4 AND 5

TEXAS •

3-10

Vi

s

-5

?
150

_

3

~V

o

VCC± = ±15V
RC = 500 Q 10 5 V
TA = 25'C

,

5

If'"

01

100mV

INSlRUMEN1S
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

I---

I

I
2S0

300

3S0

LM111, LM211, LM311
DIFFERENTIAL COMPARATOARS WITH STROBES
TYPICAL CHARACTERISTICS
OUTPUT RESPONSE FOR
VARIOUS INPUT OVERDRIVES

!
15

>

10

I

~

~

.g

5 1mV

I

-10
-15

/
--------- ~I
--------- ~/

II

II V
o

I

I

VCC± = ±15 V
RE=2kQto-15V
TA = 25'C

/V

0
-5

-?

I

5

'5
a.
'5

o

20mV

I

I

100 mV

OUTPUT RESPONSE FOR
VARIOUS INPUT OVERDRIVES

/

I'

/

1

-

vcc± = ±15V

15

V>

/

/

0.4

~

~ ~2mV

;g

0

'5
a.
'5

-5

I

O.S

1.0

1.2

5

\

5

o
0.6

\,
\.'\

10

I

I/
0.2

100mV

1.4 1.6

1.B

5JV

,

~
~

20mV -

V

-10

-? -15

o

0.2

t - Time - ns

0.4

-

RE=2kQto-15V
TA=25'C
-

0.6

I
2 rrtV

\.
"I\.

"

O.B

1.0

"-

'- 1.4

1.2

1.6

1.B

t - Time - ns

Figure 7

Figure 6
VCC+=15V

-.---VO
2kQ

VCC_=-15V
TEST CIRCUIT FOR FIGURES 6 AND 7

TEXAS •

INSIRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-11

LM111, LM211, LM311
DIFFERENTIAL COMPARATORS WITH STROBES
TYPICAL CHARACTERISTICS
OUTPUT CURRENT AND DISSIPATION

vs

OUTPUT VOLTAGE

SUPPLY VOLTAGE VCC+

160

800

Vcc± = ±15 V
I - - tsl0s
140
VID =-10 mV
TA 25'C
120

700

=

«

{\

E
I

t:

~

::>

(J

100

60

/

I

40

V

...........

-----

0

500

,.

,9

e

C
~

'5
0..
300 '5
200

f

I

.., ".~

4

E
u.

II)

3

,..

Q.

I

0..

R

::>

C/)

..............

2

I

+

1

(J

!:?

o

o

o

15

5

Figure 9
SUPPLY CURRENT FROM VCC-

vs
SUPPLY VOLTAGE VCC-6

E
I

1

,I

1

VIO = 10 mV or -10 mV
TA = 25'C
-5 -NoLoad

<-'>
(J

>

E

-4

e
u.

~

.,
l::
:s
,..

C -3
(J

Q. -2
0..
:s

C/)

I
I
(J

I

/

..--..-- -

/"

-1

!:?

o
o

10

Vcc+ - Positive Supply Voltage - V

Figure 8

-10

-5

Vcc- - Negative Supply Voltage - V

Figure 10

TEXAS

~

INSlRUMENTS
3-12

V- V--

I

Vo - Output Voltage - V

«

-

VIO=10Il1V

I/ /

(J

0

/

/

::>

100

10

5

+

>

I I
V

VID=-10

(J
(J

I

<:

0..

f)

0

E

5

I

'iii

-

=

E

600

10 (Left Scale)

I
1
TA 25'C
No Load

«

400 is

<'

I

20

V

/

)

0

.2

./

!\

80

6

3l:
Po (Right Scale) ' /

'5

~

SUPPLY CURRENT FROM VCC+

vs

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

-15

15

LM111, LM211, LM311
DIFFERENTIAL COMPARATORS WITH STROBES
APPLICATION INFORMATION
20kQ

1 kQ

-----,

10 kQ

Square Wave
Output
(fanout to two
Series 54 gates
or equivalent)

----,I
I

I

20 kQ

I
I
I
IL _ _ _ _ _ _ _ _ _ _ _ _ _ _ .JI

39kQ

Figure 12. Offset Balancing

Figure 11. 100-kHz Free-Running Multivibrator

1""-----------,
I

I
I
I
I
I
_ _ _ _ _ _ _ .1I

1""---- ------,
I
I

I
I

20kQ

~-+-41-

Input --I-~

Output

TTL Strobe

vccFigure 14. Zero-Crossing Detector

Figure 13. Strobing
5V

82 kQ
240 kQ
Inputt -J\J\/'v-_-_---i--H)I

:j:

-----,
----!-_*_- Output to TTL

47 kQ
82kQ

t Resistor values shown are for a O-to-30-V logic swing and a 15-Vthreshold.
:j: May be added to control speed and reduce susceptibility to noise spikes.

Figure 15. TTL Interface With High-Level Logic

TEXAS

-1!1

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-13

lM111, lM211, lM311
DIFFERENTIAL COMPARATORS WITH STROBES
APPLICATION INFORMATION
100 kQ

5V

2kQ
100 kHz

,------+---1

4.5kQ

10 pF

m-~
Output

Output
to TTL
1 kQ

100 kQ
50kQ

Magnetic
Transducer

Figure 16. Detector for Magnetic
Transducer

Figure 17. 100-kHz Crystal Oscillator

From O/A Network

'---14----.---..-

-------,I

Output

22kQ
Analog
Inputt

hypical input current is 50 pA with inputs strobed off.

Figure 18. Comparator and Solenoid Driver

Figure 19. Strobing Both Input and
Output Stages Simultaneously
Vcc+ =5V
3kQ

500 Q
10 kQ

3kQ

r-----

Output

I

BALANCE

BAL(
STRB

I
Input - t - - - - t

____-+-___-

I

Output
toMOS

+
1.5

~F

10 kQ

VCC_=-10V

Figure 20. Low-Voltage
Adjustable Reference Supply

Figure 21. Zero-Crossing
Detector Driving MOS Logic

TEXAS

~

INSTRUMENTS
3-14

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

LM111, LM211, LM311
DIFFERENTIAL COMPARATOR WITH STROBES
APPLICATION INFORMATION
3.9 kQ
30kQt

1 kQ

1 kQ

. - - ' . - - i - - - - - - - j - - Output

H-__ Input
From TTL

2.7 kQ

t Adjust 10 set clamp level.

Figure 22. Precision Squarer
Vcc+ =5V
5V

5kQ

1 kQ

------,
_____+,

,,,

~~-

From TTL Gate

_____

TTL Output

oJ

Figure 23. Digital Transmission Isolator
VCC+=15V

2kQ

r------,I

Input --YV'v---lf--r.....

I

TL081

I

I
>--;.._+Output
L ______ .JI
1 MQ

VCC- = -15 V

-=

Figure 24. Positive-Peak Detector

TEXAS ."

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-15

LM111, LM211, LM311
DIFFERENTIAL COMPARATOR WITH STROBES
APPLICATION INFORMATION
VCC+=15V

1 MQ

2kQ

Input

-'VVv--t----j

>-ii--4~-

Output

VCC_=-15V

Figure 25. Negative-Peak Detector

3.9 kQ

1 kQ

I
I
I
I

oJ

t R1 sets the comparison level. At comparison, the photodiode has less
than 5 mV across it decreasing dark current by an order of magnitude.

Figure 26. Precision Photodiode Comparator

Inputs

TIL Strobe

:j: Transient voltage and inductive kickback protection

Figure 27. Relay Driver With Strobe

TEXAS

-IJ1

INSlRUMENlS
3-16

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

Output to TIL

LM111, LM211, LM311
DIFFERENTIAL COMPARATOR WITH STROBES
APPLICATION INFORMATION

,..----BAL./STRB

I

-----,

I

300Q
TIP30

100 kQ

Output

100 kQ

10 kQ
Input

---''N\.;--t--t----_.
0.1 [!F

TIP29

IL _ _ _ _ _ _
300 Q

47Q

620Q

L------~-~~+--~~-~~--vcc-

Figure 28. Switching Power Amplifier

~

300kQ

~

VVV.,

~~----~~---+---·--~~---.-vcc+

r----

I

BAL./STRB

<

620Q
TIP30
620Q

TIP29

15 kQ
Reference --Y\/'v---+---....

Outputs

510

Q

15kQ

510n

Input

39 kQ
TIP30

300 kQ

Figure 29. Switching Power Amplifiers

TEXAS .JJ.I

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-17

3-18

LM139,LM239,LM339,LM139A
LM239A, LM339A, LM339Y, LM2901, LM2901 Q
QUADRUPLE DIFFERENTIAL COMPARATORS
D1

•

Single Supply or Dual Supplies

•

Wide Range of Supply Voltage
2 Vto 36 V

•

Low Supply Current Drain Independent of
Supply Voltage. , . 0.8 mA Typ

•
•

0, DB, J, N, OR PW PACKAGE
(TOP VIEW)

OUT CaMP 1
OUT CaMP 2

Vcc
CaMP
CaMP
CaMP
CaMP

Low Input Bias Current . .. 25 nA Typ
Low Input Offset Current . .. 3 nA Typ
(LM139)

•

Low Input Offset Voltage . .. 2 mV Typ

•

Common-Mode Input Voltage Range
Includes Ground

•

Differential Input Voltage Range Equal to
Maximum-Rated Supply Voltage . .. ±36 V

21N21N+
1 IN1 IN+

4

11

7

8

OUT CaMP 3
OUT CaMP 4
GND
CaMP 41N+
CaMP 41NCOMP3IN+
CaMP 31N-

FK PACKAGE
(TOP VIEW)
N,-

Moo::t

0..0..

0..0..

:2:2

:2::2

00

00

1-1-

1-1-

UU

UU

:::J:::JU:::J:::J

•

Low Output Saturation Voltage

•

Output Compatible With TTL, MOS, and
CMOS

oozoo

description
These devices consist offour independent voltage
comparators that are designed to operate from a
single power supply over a wide range of voltages.
Operation from dual supplies is also possible as
long as the difference between the two supplies is
2 V to 36 V and V CC is at least 1.5 V more positive
than the input common-mode voltage. Current
drain is independent of the supply voltage. The
outputs can be connected to other open-collector
outputs to achieve wire-AND relationships.
The LM 139 and LM 139A are characterized for
operation from -55°C to 125°C. The LM239 and
LM239A are characterized for operation from
-25°C to 125°C. The LM339 and LM339A are
characterized for operation from O°C to 70°C. The
LM2901 and LM2901 Q are characterized for
operation from -40°C to 85°C.

PRODUCTION DATA information Is current 8S of publication date.
Products conform to specifications per the terms of Texas
Instruments standard warranty. Production processing does nol
necessarily include testing of all parameters.

DCTOBER 1979-REV1SED NOVEMBER 1991

Vcc

4

NC
COMP2INNC
CaMP 21N+

5
6
7
8

1 2019
18
17
16
15
14
9 10 11 12 13

3

2

GND
NC
COMP4IN+
NC
CaMP 41N-

~~H~~~
C')C')

0..0..

0..0..

::2::2

::2::2

UU

uu

00

00

NC-No internal connection

symbol (each comparator)

TEXAS ~

IN+-~OUT
IN---V

Copyright © 1991, Texas Instruments Incorporated

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-19

lM139, lM239, LM339, LM139A
LM239A, LM339A, LM339Y, LM2901, LM2901 Q
QUADRUPLE DIFFERENTIAL COMPARATORS
AVAILABLE OPTIONS

I

TA

VIO max
at 25"C

O°C
to 70"C

PACKAGE
SMALL OUTLINE
(D)t

SSOP
(08)*

5mV
2 mV

LM339D
LM339AD

LM339DBLE

-25"C to
85"C

SmV
2mV

LM239D
LM239AD

-40"C to
125"C

7mV

LM2901D
LM29010D

-55 'C 10
12S"C

SmV
2mV

LM139D
LM139AD

CHIP CARRIER
(FK)

CERAMIC DIP
(J)

PLASTIC DIP
(N)

TSSOP
(PW)*

LM339N
LM339AN

LM339PWLE

LM239N
LM239AN
LM2901N
LM29010N

LM2901DBLE
LM139FK
LM139AFK

LM139J
LM139AJ

LM139N
LM139AN

t The D package IS available taped and reeled. Add lhe suffix R 10 the device type (.e.g., LM339DR).
t The DB and PW packages are only available left-end taped and reeled.
§ Chips are tested at 25'C. See electrical characteristics.

TEXAS ~

INSlRUMEN1S
3-20

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

LM2901PWLE

CHIP FORM

M§
LM339Y

LM339Y
QUADRUPLE DIFFERENTIAL COMPARATORS
chip information
These chips, properly assembled, display characteristics similar to the LM339 (see electrical table on the
LM339Y). Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. Chips
may be mounted with conductive epoxy or a gold-silicon preform.

BONDING PAD ASSIGNMENTS

IN+
OUT
ININ+

OUT

(10)

IN-

GND
(orVCC_)
CHIP THICKNESS: 15 TYPICAL
BONDING PADS: 4 x 4 MINIMUM
TJmax
~

49

~

1'1'1'1'1'1'1" '1'1'1'1'1'111'1'1'1'1'1'1'1'1'1'1I

TEXAS

=150'C

TOLERANCES ARE ±10%
ALL DIMENSIONS ARE IN MILS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-21

LM139, LM239, LM339, LM139A
LM239A, LM339A, LM339V, LM2901, LM2901 Q
QUADRUPLE DIFFERENTIAL COMPARATORS
schematic (each comparator)
80-[!A
Current
Regulator

IN+
OUT
IN--------------f-------t--------~

GND
(orVcc_)
All current values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, vee (see Note 1) ............................................................ 36 V
Differential input voltage (see Note 2) ...................................................... ±36 V
Input voltage range (either input) .................................................... -0.3 V to 36 V
Output voltage ............................................................................ 36 V
Output current ........................................................................... 20 mA
Duration of output short circuit to ground (see Note 3) ...................................... unlimited
Continuous total dissipation ........................................... See Dissipation Rating Table
Operating free-air temperature range: LM139, LM139A .............................. -55°C to 125°C
LM239, LM239A ............................... -25°C to 85°C
LM339, LM339A ................................. OOG to 70°C
LM2901, LM2901 Q ............................ -40°0 to 125°C
Storage temperature range ....................................................... -65°C to 150°C
Case temperature for 60 seconds: FK package .............................................. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: 0, DB, N, or PW package ........ 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package ..................... 300°C
NOTES: 1. All voltage values, except differential voltages, are with respect to network ground terminal.
2. Differential voltages are at the non inverting input terminal with respect to the inverting input.
3. Short circuits from outputs to VCC can cause excessive heating and eventual destruction.
DISSIPATION RATING TABLE
PACKAGE

TAs25'C
POWER RATING

DERATING
FACTOR

DERATE
ABOVETA

TA 70'C
POWER RATING

=

TA 85'C
POWER RATING
494mW

TA = 125'C
POWER RATING

D
DB

900 mW

7.6mW/'C

31'C

608mW

775mW

6.2 mW/'C

25'C

496mW

403mW

155mW

FK

900 mW

11.0 mW/,C

68'C

880mW

715mW

275mW
275mW

J

900 mW

11.0 mW/'C

68'C

880mW

715mW

N

900 mW

9.2 mW/,C

52'C

736mW

598mW

PW

700 mW

5.6mW/'C

25'C

448mW

364mW

TEXAS

-If

INSTRUMENTS
3-22

=

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

140mW

electrical characteristics at specified free-air temperature, Vee = 5 V (unless otherwise noted)
LM139
TEST CONDITIONSt

PARAMETER

MIN

25'C

Vec=5Vt030V,

VIO

Input offset voltage

110

Input offset current

Vo = 1.4 V

liB

Input bias current

Vo = 1.4 V

Vo = 1.4 V

VIC = VICRmin,

25'C

AVD

0

"

10H

High-level output current

VID = 1 V

~z

VOL

Low-level output voltage

VID=-l V,

~~~

8L:

10L

Low-level output current

~ ~

i!' l"1

*

~

switching characteristics, Vee

~ ~4r
OJ

~

-25

VO=-5Vt05V

I VOH=5V

I VOH=30V

VID=-l V,

IOL=4 mA

-25

VCC-l.5

o to
VCC-2

o to
VCC-2

25'C

0.1

50

150

25'C

16
0.8

V/mV

200

150

400
700

6

RL connected to 5 V through 5.1 kQ,
See Note 4

,

!1A

mV
mA

16
0.8

I

nA
1

2

nA

I

700
6

nA

!

0.1
400

mV

V

1

-55'C to 125'C

-100
-300

Vee- 1.5

200

25
100

o to

2

mA

o
c

»
c

::D
C
""C

TEST CONDITIONS

CL = 15 pF§,

2

UNIT

= 5 V, T A = 25°C

PARAMETER

Response time

1
3

o to

25'C

25'C

MAX

4

-100

-55'C to 125'C

VOL= 1.5V

TYPl

-300

No load
25'C
Supply current (four comparators)
Va =2.5V,
ICC
t All characteristics are measured with zero common-mode input voltage unless otherwise specified.
All typical values measured at TA = 25'C.

~Z

3

MIN

100

25'C

VCC± = ± 7.5 V,

UJ

-1

5

9
25

-55'C to 125'C

-55'C to 125'C

"0

2

-55'C to 125'C

Common-mode input voltage range

Large-signal differential voltage
amplification

MAX

-55'C to 125'C

25'e
VICR

LM139A

TYPl

MIN

TYP

1100-mV input step with 5-mV overdrive

1.3

I TTL-level input step

0.3

§ CL includes probe and jig capacitance.
NOTE 4: The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V.

MAX

r-

UNIT

m

!,s

!:2
"T1
"T1

m
::c
m

z

-t

i>
r-

Or-

0:5:
:5:~

~J~

::Dr-

:!::i:5:

O~

~

w

::D~
C/)>

~

electrical characteristics at specified free-air temperature,

VCC=5Vt030V,
, VIO

LM239, LM339
TYp:j: MAX
MIN

TEST CONDITIONSt

PARAMETER

Input offset voltage

VIC = VICRmin,
VO= 1.4V

110

Input offset current

VO=1.4V

liB

Input bias current

VICR

Common-mode input
voltage range

Vee =5 V (unless otherwise noted)

25°C

2

Full range
25°C

5

(J)

-I

0

AVO

-n

~z

~~~
1ilC
,;~
i"l"1

~~ ~4r
i

Large-signal differential
voltage amplification

-25

I

VOW 5V
VOH = 30V

IOH

High-level output current

VIO = 1 V

VOL

LOW-level output voltage

VIO =-1 V,

10L = 4 rnA

10L

Low-level output current

VIO=-1V.

VOL = 1.5V

ICC

Supply current (four
comparators)

VO=2.5V.
VCC=30V.
No load

No load
VO=15V,

I

LM2901, LM2901Q
TYp:j: MAX
MIN

2

2

50

5

50

5

150

-250

-25

50
200

-250

-25

-250
-500

-400

25°C

o to
VCC-1.5

Oto
VCC-1.5

010
VCC-1.5

Full range

o to
VCC-2

o to
VCC-2

Oto
VCC-2

C:S
:t>N

50

200
0.1

25°C
Full range

50

200
0.1

1
150

Full range
25°C

50

mV

nA
nA

V

400

150

700
6

16
0.8

25
50

0.1

400

150

700
6

2

16
0.8

50

nA

1

jlA

500
700

6
2

16

Response time

rnA

0.8

2

1

2.5

is -40°C to 125°C. All characteristics are measure

Vee =5 V, TA = 25°C
See Note 4

,

rnA

25°C

TEST CONDITIONS
CL = 15 pF§,

::tiN

mV

with zero common-mode input voltage unless otherwise specified.
:j: All typical values measured at TA = 25°C.

RL connected to 5 V through 5.1 kQ.

;g~

V/mV

100

1

t Full range (MIN to MAX) for LM239 and LM239A is -25°C to 85°C, for LM339 and LM339A is O°C to 70°C. and for LM2901

PARAMETER

::tI~CD

c: r-crS
r-W
mW
OJ')
-r~S
mN
W
::tI
mCD
Z}>
:::!r:t>S
r-W
OW
O~
S~

25°C

25°C

switching characteristics,

OW

UNIT

7
15

4

-400

Full range

VCC = 15V,
Va = 1.4 V to 11.4 V.
RL=;,15kQtoVCC

1

150

25°C

(ll

5
9

Full range

VO=1.4V

LM239A, LM339A
TYp:j: MAX
MIN

or-

MIN

TYP

1100-mV input step with 5-mV overdrive

1.3

I TTL-level input step

0.3

§ CL includes probe and jig capacitance.
NOTE 4: The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V.

MAX

UNIT
j.lS

~g

O~-II.

::tIr-

enS
N
CD

c::>
-II.

o

LM339Y
QUADRUPLE DIFFERENTIAL COMPARATOR
electrical characteristics at Vee
,----

=5 V, T A == 25°C (unless otherwise noted)

PARAMETER

TEST CONDITIONSt

MIN

TYP

MAX

2

5

mV

UNIT

Input offset voltage

Vce = 5 V to 30 V,
Vo = 1.4 V

110

Input offset current

Vo = 1.4 V

5

50

nA

liB

Input bias current

VO=1.4V

-25

-250

nA

Via

r

VIC = VICRmin,

o to
VCC-1.5

VICR

Common-mode input voltage range

AVO

Large-signal differential voltage amplification

10H

High-level output current

VIO= 1 V,

[VOL

LOW-level output voltage

VIO=-1 V,

..!.gL

Low-level output current

VIO =-1 V,

VOL= 1.5 V

Vo = 2.5 V,

No load

VO=30V,
No load

VO=15V,

ICC

Supply current (four comparators)

VCC = 15V,

Vo = 1.4 Vto 11.4 V,

RL~15kQtoVCC

25

V
V(mV

100

VOH = 5 V

0.1

50

nA

IOL=4 mA

150

400

mV

6

16

mA

0.8

2

1

2.5

TYP

MAX

----:-mA

1

mA

t All characteristics are measured with zero common-mode input voltage unless otherwise specified.

switching characteristics, Vee

I

I

=5 V, TA = 25°C

PARAMETER

Response time

TEST CONDITIONS

MIN

RL connected to 5 V through 5.1 kQ,

11oo-mv input step with 5-mV overdrive

1.3

CL ,-15 pFt,

I TTL '-level input step

0.3

See Note 4

t CL Includes probe and jig capacitance.

I

UNIT

I

ns

NOTE 4: The response time specified is the interval between tt1e input step function and the instant when the output crosses 1.4 V.

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3--25

3-26

LM193, LM293, LM393, LM293A
LM393A, LM393Y, LM2903, LM2903Q
DUAL DIFFERENTIAL COMPARATORS
JUNE 1976-REVISED NOVEMBER 1991

•
•
•

Single Supply or Dual Supplies

0, DB, JG, P, OR PW PACKAGE

Low Supply Current Drain Independent of
Supply Voltage ... 0.5 mA Typ

•
•

Low Input Bias Current ... 25 nA Typ

•
•

Low Input Offset Voltage ... 2 mV Typ

•
•
•

(TOP VIEW)

Wide Range of Supply Voltage ... 2 to 36 V

1 0 u T D a Vcc
11N- 2.
7 20UT
1 IN + 3·
6 2 INGND 4
5 21N+

Low Input Offset Current ... 3 nA Typ
(LM193)
FKPACKAGE
(TOP VIEW)

c-

Common-Mode Input Voltage Range
Includes Ground

u
z

Differential Input Voltage Range Equal to
Maximum-Rated Supply Voltage ... ±36 V

NC
1 INNC
11N+
NC

Low Output Saturation Voltage
Output Compatible With TTL, MOS, and
CMOS

is uz>z
80

4

1 20 19
18

5

17

3 2

6

16

7

15

8

14
9 10 11 12 13

UO U

description

zz
 - OUT
IN-

PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily

include tesllng of aU parameters.

TEXAS

~

Copyright © 1991, Texas Instruments Incorporated

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-27

lM193, lM293, lM393, lM293A
lM393A, lM393Y, lM2903, lM2903Q
DUAL DIFFERENTIAL COMPARATORS
AVAILABLE OPTIONS
PACKAGE
SMALL
OUTLINE
(D)t

VIO max
at 25'C

TA

SSOP
(DB)*

CHIP
CARRIER
(FK)

CERAMIC
DIP
(JG)

LM393DB

PLASTIC
DIP
(P)

O'C
to
70'C

5mV

LM393D

2mV

LM393AD

LM393AP

-25'C
to
85'C

5mV

LM293D

LM293P

2mV

LM293AD

-40'C
to
125'C

7mV

LM2903D

7 mV

LM29030D

-55'C
to
125'C

5mV

LM193D

LM393P

CHIP
FORM

TSSOP
(PW)*

(Y)§

LM393PW

LM393Y

LM293AP
LM2903DB

LM2903P

LM2903PW

LM29030P
LM193FK

LM193JG
LM1:L_

t The D package IS available taped and reeled. Add the suffix R (e.g . , LM393DR).

*The DB and PW packages are only available left-end taped and reeled. Add suffix LE (e.g., LM393DBLE).
§ Chips are tested at 25'C. See LM393Y for electrical characteristics.

LM393Y chip information
These chips, properly assembled, display characteristics similar to the LM393 (see electrical table on LM393Y).
Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be
mounted with conductive epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS

T.

IN+

(3)

IN-

(2)

OUT
IN+

~INVDDCHIP THICKNESS: 15 TYPICAL

-=49

BONDING PADS: 3.6

x

3.6 MINIMUM

TJmax = 150'C
TOLERANCES ARE ±10%
ALL DIMENSIONS ARE IN MILS
NO BACKSIDE METALLIZATION
PIN (4) INTERNALLY CONNECTED
TO BACKSIDE OF CHIP

~

39

~

111111111111111111111111111111111111111

TEXAS

~

INSlRUMENlS
3-28

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

LM193, LM293, LM393, LM293A
LM393A, LM2903, LM2903Q
DUAL DIFFERENTIAL COMPARATORS
schematic (each comparator)
VCC
(or VCC+)

80-J.tA
Current
Regulator

Component Count:
Epl-SET
1
Diodes
2
Resistors
2
Transistors 30

IN+

IN-

OUT

-----t==~i=======-1

GND
(orVcc_)
Current values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) ............................................................ 36 V
Differential input voltage (see Note 2) ...................................................... ±36 V
Input voltage range (either input) .................................................... -0.3 V to 36 V
Output voltage ............................................................................ 36 V
Output current ........................................................................... 20 mA
Duration of output short-circuit to ground (see Note 3) ...................................... unlimited
Continuous total dissipation ........................................... See Dissipation Rating Table
Operating free-air temperature range: LM193 ....................................... -55°C to 125°C
LM293, LM293A ............................... -25°C to 85°C
LM393, LM393A ................................. O°C to 70°C
LM2903, LM2903Q ............................ -40°C to 125°C
Storage temperature range ....................................................... -65°C to 150°C
Case temperature for 60 seconds: FK package .............................................. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, DB, P, or PW package ........ 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package .................... 300°C
NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.
2. Differential voltages are at the non inverting input terminal with respect to the inverting input.
3. Short circuits from outputs to VCC can cause excessive heating and eventual destruction.

DISSIPATION RATING TABLE
PACKAGE

TA,,25°C
POWER RATING

DERATING
FACTOR

DERATE
ABOVETA

TA = 70°C
POWER RATING

TA=85°c
POWER RATING

TA = 125°C
POWER RATING
145mW

D

725mW

5.8mWrC

25°C

464mW

377mW

DB

525mW

4.2mWrC

25°C

336mW

273mW

N/A

FK

900mW

11.0 mwrc

68°C

880mW

715mW

275mW

JG

900mW

8.4 mwrc

43°C

672mW

546mW

210mW

P

900mW

8.0mWrC

3rC

640mW

520mW

200mW

PW

525mW

4.2mWrC

25°C

336mW

273mW

N/A

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-29

%

electrical characteristics at specified free-air temperature, Vee = 5 V (unless otherwise noted)

a

LM193

TEST CONOITIONSt

PARAMETER

MIN
Vee
Via
110

liB

Input offset voltage

VIC

~

Vo~

Input offset current

~

5 VIa 30 V,

VIC min, Va

25"e
~

1.4 V

AVO

Va

Input bias current

I~r
~~

~l"'l

~ ~4r
5::

(j)

~

1.4 V

Large-signal differential

VO~

1.4Vto 11.4V,
RL" 15 kQ to Vee

voltage amplification

VOH~5V,

IOH

High-level output current

VOL

Low-level output voltage

VOH

~

-25

-100

MAX

2

5

5

50

-25

-250

MIN

LM2903, LM2903Q

TYP

MAX

1

2

5

50

-25

-250

100

-300

TYP

MAX

2

7

5

50

-25

-250

4

9

100

MIN

15
200

150

-400

-400

-500

25°C

Oto
Vee-1.5

Oto
Vee- 1.5

Oto
Vee- 1.5

Oto
Vee- 1.5

Full range

Oto
Vee- 2

Oto
Vee- 2

Oto
Vee- 2

Oto
Vee- 2

25°C

50

UNIT
mV
nA

nA

V

VID~

IOL~4

IOL

Low-level output current

VOL ~ 1.5 V,

ICC

Supply current

RL ~

00

1V

VID~-l

rnA,

VID~

200

50

200

50

200

0.1

25"e

150

25°C
V

1V

0.1
1

Full range

Full range

25°C

I Vee~30V

Full range

400

6

150

V/mV

50

150

700

1
2.5

400

150

50

nA

1

f.'A

1
2.5

400
700

700

6
0.8

0.1

1

400

6
0.8

0.1

50
1

700

25°C

1 Vee ~5V

6
0.8

mV
rnA

1

0.8

2.5

1

rnA

2.5

t Full range (MIN or MAX) lor LM193 is -55°C to 125°C, lor LM293 and LM293A is 25°e to 85°e, lor the LM393 and LM393A is ooe to 70°C, and lor LM2903 and LM2903Q is--40oe to 125°C. All characteristics
are measured with zero common-mode input voltage unless otherwise specified.

*

The voltage at either input or common-mode should not be allowed to go negative by more than 0.3 V. The upper end 01 the common-mode voltage range is Vee+ -1.5 V, but either or both inputs can go to
30 V without damage.

switching characteristics, Vee

=5 V, TA =25°C
TEST CONDITIONS

PARAMETER
Response time

rES:CO
o~~
Ocr
ES:WES:
""0 ION

100

25

m~~

zwr
::j~
ES:
)::orw

)::0

co

):0

)::0

:XJ
"-I

V10-1 V

30 V,

Ol

~

25

LM293A, LM393A

TYP

Vee~15V,

"

~z

3

MIN

9

25°C

voltage rangel

0

-;

5

Full range

(j)

0_

2

Full range

Common-mode input

VieR

MAX

Full range

25"e

I.4V

LM293, LM393

TYP

err
C::ES:ES:
)::oW ....
r COCO
2~~
-n~
r
-nrES:
mES:N
::D NCO

MIN

TYP

RL connected to 5 V through 5.1 kQ,

11 ~O-mY input step with 5-mV overdrive

1.3

CL = 15 pF§,

I TTL-level input step

0.3

See Note 4

§ CL includes probe and jig capacitance.
NOTE 4: The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V.

MAX

UNIT
I's

o

:XJ

en

w

LM393Y
DUAL DIFFERENTIAL COMPARATOR
electrical characteristics at Vee

= 5 V, TA = 25°C (unless otherwise noted)

PARAMETER

VIO

Input offset voltage

110

Input offset current

liB

Input bias current

VICR

TEST CONDITIONS

VCC=5Vt030V,

MIN

VIC = VICRmin,

VO=1.4V

Common-mode input voltage range

TYpt

MAX

2

5

mV

5

50

nA

-25

-250

nA

Oto
VCC-1.5

VCC=5Vt030V

UNIT

1/

AVO

Large-signal differential voltage amplification

VCC=15V,
RL" 15 kQ to VCC

Vo = 1.4 Vto 11.4 V,

10H

High-level output current

VOH = 5 V,

VIO= 1 V

0.1

50

nA

VOL

Low-level output voltage

IOL=4 rnA,

VIO=-1 V

150

400

mV

10L

Low-level output current

VOL= 1.5V,

VIO=-1 V

25

200

V/mV

rnA

6

0.8
Supply current
RL = co,
VCC = 5 V
ICC
t All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified.

1

rnA

TEXAS ~

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-31

3-32

LM306
DIFFERENTIAL COMPARATOR WITH STROBES

•
•

Improved Gain and Accuracy

•

Fanout to 10 Series 54/74 TTL Loads

•

Strobe Capability

•

Short-Circuit and Surge Protection

•

Designed to Be Interchangeable With
National Semiconductor LM306

Fast Response Times

o OR P PACKAGE
(TOP VIEW)

GND[]B

description

IN+
IN-

2
3

7
6

VCC+
OUT
STROBE 2

VCC-

4

5

STROBE 1

functional block diagram

The LM306 is a high-speed voltage comparator
with differential inputs, a low-impedance highsink-current (100 mAl output, and two strobe
inputs. This device detects low-level analog or
digital signals and can drive digital logic or lamps
and relays directly. Short-circuit protection and
surge-current limiting is provided.

STROBE 1
STROBE 2
IN+
OUT
IN-

A low-level input at either strobe causes the output
to remain high regardless of the differential input.
When both strobe inputs are either open or at a high logic level, the output voltage is controlled by the differential
input voltage. The circuit will operate with any negative supply voltage between -3 V and -12 V with little
difference in performance.
The LM306 is characterized for operation from O°C to 70°C.
AVAILABLE OPTIONS
PACKAGE
TA
O°C to 70°C

Vlomax
at 25°C
5MV

SMALL OUTLINE

PLASTICOIP

(0)

(P)

LM306D

LM306P

TEXAS

~

Copyright © 1991, Texas Instruments Incorporated

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75266

3-33

LM306
DIFFERENTIAL COMPARATOR WITH STROBES
schematic
STFlOElE 2
STROElE 1

5kQ

5kQ

6.3V

6.3V
70Q

IN+
OUT

IN-

600Q

GND

Vcc- -~~----'
Resistor values are nominal.

lEXAS.Jf

INSTRUMENTS
3-34

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

LM306
DIFFERENTIAL COMPARATOR WITH STROBES
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vcc+ (see Note 1) ........................................................... 15 V
Supply voltage, Vcc- (see Note 1) ......................................................... -15 V
Differential input voltage (see Note 2) ....................................................... ±5 V
Input voltage (either input, see Notes 1 and 3) ................................................ ± 7 V
Strobe voltage range (see Note 1) .................................................... 0 V to Vcc+
Output voltage (see Note 1) ................................................................. 24 V
Voltage from output to Vcc- ................................................................ 30 V
Duration of output short-circuit to ground (see Note 4) .......................................... 10 s
Continuous total dissipation ........................................... See Dissipation Rating Table
Operating free-air temperature range ................................................. O°C to 70°C
Storage temperature range ...................................................... -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................... 260°C
NOTES: 1.
2.
3.
4.

All voltage values. except differential voltages and the voltage from the outputto VCC-, are with respectto the network ground terminal.
Differential voltages are at the noninverting input terminal with respect to the inverting input.
The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 7 V, whichever is less.
The output may be shorted to ground or either power supply.
DISSIPATION RATING TABLE
PACKAGE
D
p

TA s 25°C

DERATING

DERATE

POWER RATING

FACTOR

ABOVETA

600mW

5.8mWrC
8.0 mWrC

600mW

TA

= 70°C

POWER RATING

464mW
600mW

TEXAS ~

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3--35

LM306
DIFFERENTIAL COMPARATOR WITH STROBES
electrical characteristics at specified free-air temperature, Vcc+ = 12 V, V cc- = -3 V to -12 V (unless
otherwise noted)
PARAMETER

TEST CONDITIONSt

Via

Input offset voltage

Rss2000,

See Note 5

aVIO

Average temperature coefficient of
input offset voltage

RS =50 0,

See Note 5

110

Input offset current

See Note 5

input offset current

liB

Input bias current

Vo = 0.5 V to 5 V
V (strobe) = 0.4 V

MIN

TYP
1.6§

Full range

MAX
5
6.5

Full range

5

20
5

1

7.5

MAX

0.5

5

MIN to 25'C

24

100

25'Cto MAX

15

50

16

25

!J.A

-1.7

-3.2

mA

MIN to 25'C

LOW-level strobe current

Full range

VIL(S)

Low-level strobe voltage

Full range

Full range
2.2

Common-mode input voltage range

VIO

Differential input voltage range

AVO

Large-signal differential voltage
amplification

No load,
Vo = 0.5 V to 5 V

VOH

High-level output voltage

10H =-400 flA

VIO = 8 mV

10L= 100mA

VIO =-7 mV

25'C

IOL = 50 mA

VIO =-7 mV

Full range

1

IOL= 16 mA

VIO =-8 mV

Full range

0.4

High-level output current

VOH = 8 V to 24 V

nN'C

V
0.9

VICR

VCC- = -7 V to -12 V

!J.A

40

25'Cto MAX

High-level strobe voltage

10H

!J.V/,C

1.8

IIL(S)

Low-level output voltage

mV

MIN

VIH(Sl

VOL

UNIT

25'C
See Note 5

Average temperature coefficient of
aliO

TA*
25'C

V

Full range

±5

V

Full range

±5

V
40

25'C
Full range

Vo =7 mV

MIN to 25'C

VIO =8 mV

25'Cto MAX

2.5

V/mV
5.5

0.8

0.02

V

2

2
100

V

!J.A

No load
Full range
6.6
10
mA
Supply current from VCC +
VIO =-5 mV,
ICC+
Full range
-1.9
No load
-3.6
mA
Supply current from VCCICCt Unless otherwise noted, all characteristics are measured with both strobes open.
:j: Full range is O'C to 70'C.
§ This typical value is at VCC+ = 12 V, VCC- = -6 V.
NOTE 5: The offset voltages and offset currents given are the maximum values required to drive the output down to the low range (voLl or up
to the high range (VOH). Thus these parameters actually define an error band and take into account the worst-case effects of voltage
gain and input impedance.

SWitching characteristics, VCC+ = 12 V, Vcc- = -6 V, TA = 25°C
PARAMETER
Response time, low-to-high-Ievel output

RL = 390

°

TEST CONDITIONst
to 5 V,

CL = 15 pF,

MIN
See Note 6

TYP

MAX

28

40

t UnleSS otherwise noted, all characteristics are measured with both strobes open.
NOTE 6: The response time specified is for a 1OO-mV input step with 5-mV overdrive and is the interval between the input step function and the
instant when the output crosses 1.4 V.

TEXAS ~

INSlRUMENTS
3-36

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

LM306
DIFFERENTIAL COMPARATOR WITH STROBES
TYPICAL CHARACTERISTICS
INPUT OFFSET CURRENT

INPUT BIAS CURRENT

vs

vs

FREE·AIR TEMPERATURE

FREE·AIR TEMPERATURE
20

3

«:<.

2.5

I

C
~::J

VCC+"12V
VCC_,,-6V
VO" O.S VtoS V

2

~ t'....

o

'Gi

~

1B

«:<.
I

'~

1.5

16

VCC+"12V
VCC_,,-6V
Vo " O.S V to S V

~
............

14

r-......

C
e:!

12

o.,

10

~

~
...............

"[

.5

r-... '--

.!!!

.........

i'-..

...............

-

r---

m

S

8

I

6

c.
.5

I

Q

~

!Q

4

0.5

2

o
o

10

20

40

30

50

TA - Free Air Temperature -

60

o
o

70

10

40
30
20
50
T A - Free·Alr Temperature -

°c

Figure 1

LOW·LEVEL OUTPUT VOLTAGE

vs

vs

FREE·AIR TEMPERATURE

FREE·AIR TEMPERATURE
1.2

7

...
I

6

'"

~

Sc.
S
o

!
J:

:r:'"

5

VCC+=12V
VCC- = -3 Vto-12 V
_ VID=BmV

---

:.--

-?

I

.~

I

VCC+"12V
VCC_,,-3VtO-12V
I- VIO ,,-B mV

>I

..

'"

~

IOH ,,0

~

O.B

S
a;

0.6

Sc.

0

.

4
IOH " - 400

IOL" 100 rnA

.J

;i:

3

.3

IOL" 50 rnA
0.4

I
.J

-?

2

1

o

20
30
40
50
60
TA - Free·Alr Temperature - °C

70

I

1

I

I

IOL= 16 rnA

0.2

o
10

f--

>

flA

I

:s::

70

Figure 2

HIGH·LEVEL OUTPUT VOLTAGE

>

60

°c

f--

IOL"O

o

Figure 3

10

40
50
20
30
TA - Free·Alr Temperature -

60

70

°c

Figure 4

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-37

LM306
DIFFERENTIAL COMPARATOR WITH STROBES
TYPICAL CHARACTERISTICS
OUTPUT CURRENT

vs
DIFFERENTIAL INPUT VOLTAGE

VOLTAGE TRANSFER CHARACTERISTICS
10

7
VCC+=12V
VCC_=-6V
RL = 00

6

I

S

>

..

I

I

4

Cl

~

~

-

-

TA = O°C - -

,.

<
I

10-2 -

TA=25°C - '

S

10-4

0

10-5

~

2

I

?

2

JJ J

0

[\

.\ I

10-9
-S

2

I
-4

I

I

00,000

f!

vs

FREE·AIR TEMPERATURE

FREE·AIR TEMPERATURE

RL = 00

40,000

I

I
-

0.4
VCC+ = Vo = 12V
VCe-=-6V
VID=-8mV
See Note 7

I

-

0.3

0.2

.... ___ ~=~OV

_____

3

SHORT·CIRCUIT OUTPUT CURRENT

-r- ",,- ~,=-

~

~

vs
80,000 " ' - - " ' - - " " " - - " " - - - ' - 1 - - . " - 1 . - "1
' -. - - "
Vce- = -3 Vto-12V
Vo = 1 t02 V

I

\~

I

Figure 6

LARGE·SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION

--...1'--......

I

TA = 25°C

-3
-2
-1
o
2
VID - Differential Input Voltage - mV

Figure 5

B

TA= 70°C

\

10-6

VCC+=VO=12V
10-8 '- VCC_=-3VtO-12V

-1
o
VID - Differential Input Voltage - mV

-2

~\

10-7

I

-1

~

\

:;

I

g,

~

C
f! 10-3

3

0

.§

V

TA = 70°C ..-/

()

SCo
S

TA=O°C

~

10-1
TA = 2SoC
I
I
~- TA = 70°C

J

I

V

T-

VCC+=1SV

isI 20,000 I---t--~::t=::::::~"";':~:':":;":d

0.1

o
>

<

0L--~-~--~--~--~--~--~

o

10

20
30
40
50
T A - Free·Alr Temperature - °C

60

o
o

70

20

30

40

SO

TA - Free·Alr Temperature - °C

FigureS

Figure 7
NOTE 7: This parameter was measured using a single 5·ms pulse.

TEXAS

"11

INSlRUMENTS
3-38

10

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

60

70

LM306
DIFFERENTIAL COMPARATOR WITH STROBES
TYPICAL CHARACTERISTICS
OUTPUT RESPONSE FOR
VARIOUS INPUT OVERDRIVES

cu&

(ij~

r-- -1-10~mv

~~
e~

~[

.- co

0,5

5

>
I

"\

'\

4

co

'"

~

~

SCo
S

OUTPUT RESPONSE FOR
VARIOUS INPUT OVERDRIVES

20mV

I

3

I

VCC+ = 12V
VCe-=-6V
CL=15pF
RL = 390 Q 105 V
TA = 25°C

1\

\

I

o

~

3

.s-

2

::I

0

\ 5 1mV \2mV

20

4

:;

\. '-.."{.
0

co

'"
~

\

2

?

5

>
I

10mV - ---t

0

1:::::
f~
~'S
i5~

I

3

?

i\

0

40

60

o

100

80

oCt
I

8

+

vs

SUPPLY VOLTAGE VCC+

SUPPLY VOLTAGE VCC-

~

7

,/"

E

,g

C
~::I

0

>'ii
Co
::I

VI
I

+

4

6

oCt

V

I

.-/

4

0
0

3

>

5mV _

E

~

C
2!

IO =5mV

0

V r-

./

2

:;

Vv

/'

>'ii

,/"

Co
::I

./

3

VCC+ = 12V
RL = 00
TA = 25°C

,g

V

5

II

r-

E

V:O:-

0

100

SUPPLY CURRENT FROM VCC-

vs
I
I
I
I
VCC- = - 3 Vlo -12 V
RL = 00
TA = 25°C

E

80

Figure 10

SUPPLY CURRENT FROM VCC+

9

60

"1- Time - ns

Figure 9

10

40

20

1- Time - ns

VI
I

0

2

0

9

9

o

9

o
10

11

12

13

14

15

16

17

o

-2

VCC+ - Posillve Supply Vollage - v

-4

-6

-8

-10

-12

-14

-16

VCC- - Negalive Supply Vollage - V

Figure 11

Figure 12

TEXAS

~

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-39

lM306
DIFFERENTIAL COMPARATOR WITH STROBES
TYPICAL CHARACTERISTICS
TOTAL POWER DISSIPATION

vs
FREE-AIR TEMPERATURE
120

~

VCC+=12V
VCC-=-6V
RL= '"

--

100

I

c

.S!

I'iii

80

J

:iii

VID =-8mV

--

.!!!

o

r--- r--

60

I

VID = 8 mV

40

{!.
I

rP

20

o

o

10

20

30

40

50

TA - Free-Air Temperature - 'C

Figure 13

TEXAS

~

INSlRUMENlS
3-40

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

60

70

LM3302
QUADRUPLE DIFFERENTIAL COMPARATOR
D2402, OCTOBER 1977-REVISED APRIL 1988

D, J, OR N PACKAGE

• Single Supply or Dual Supplies

(TOP VIEW)

• Wide Range of Supply Voltage ... 2
to 28 Volts
• Low Supply Current Drain Independent of
Supply Voltage ... 0.8 mA Typ

OUTCOMPl
OUT COMP 2

OUT COMP 3
OUT COMP 4
GND

Vec

• Low Input Bias Current ... 25 nA Typ

COMP 2 .fIN t"IN+

IN +} COMP 4
IN-

• Low Input Offset Current ... 3 nA Typ

COMP 1 {IN IN +} COMP 3
IN+ -..._ _...r- IN-

• Low Input Offset Voltage ... 3 mV Typ

symbol (each comparator)

• Common-Mode Input Voltage Range
Includes Ground
• Differential Input Voltage Range Equal to
Maximum-Rated Supply Voltage ... ±28 V

NONINVERTING
INPUT IN+ - - - - I
INVERTING
INPUT IN-

• Low Output Saturation Voltage
• Output Compatible with TTL, MOS, and
CMOS

>---OUTPUT

---a

AVAILABLE OPTIONS
SYMBOLIZATION

description

OPERATING

PACKAGE

TEMPERATURE

VIO MAX

at 25°C
DEVICE
This device consists of four independent voltage
SUFFIX
RANGE
comparators that are designed to operate from a
LM3302
D, J, N
- 40°C to 85°C
20mV
single power supply over a wide range of
The D packages are available taped and reeled. Add the suffix R to
voltages, Operation from dual supplies is also
the device type, when ordering. (i.e., LM3302DR)
possible so long as the difference between the
two supplies is 2 V to 28 V and pin 3 is at least
1.5 V more positive than the input common-mode voltage. Current drain is independent of the supply voltage.
The outputs can be connected to other open-collector outputs to achieve wired-AND relationships.

Vcc
r--------~-----(OR

Vcc+)

80-J,

2:

1 20 19
18
17

16
15
14

description

9 1011 12 13

The LP111 , LP211 , and LP311.are a low-power
versions of the industry-standard LM 111,
LM211, and LM311. They take advantage of
stable, high-value, ion-implanted resistors to
perform the same function as the LM311 series,
with a 30: 1 reduction in power consumption but
only a 6: 1 slowdown in response time. Thus,
they are well-suited for battery-powered
applications and all other applications where fast
response times are not needed. They operate
over a wide range of supply voltages, from
± 18 V down to a single 3-V supply with less
than 300 /LA current drain, but are still capable

NC - No internal connection

functional block diagram
BALANCE----------,
BAL/STRB--------.,
NON INVERTING
INPUT IN + - - - - - ;

COL

INVERTING ____-a
INPUT IN-

EMIT

AVAILABLE OPTIONS

TA

VIO MAX

PACKAGE
SMALL OUTLINE

CERAMIC

CERAMIC DIP

PLASTIC DIP

(D)

(FK)

(JG)

(P)

7.5 mV

LP311D

-

LP311JG

LP311 P

7.5 mV

LP211D

-

LP211JG

LP211P

7.5 mV

-

LP111FK

LPll1JG

-

AT 25°C

ooe
to
70°C
-25°C
to
85°C
- 55°C
to
125°C
The D package is available taped and reeled. Add the suffix R to the device type when ordering.
(e.g., LP311 DR)
Copyright © 1987, Texas Instruments Incorporated

PRODUCTION. DATA documents contain information

currant as of publication data. Products conform to

specifications per the terms of Texas Instruments
standard warranty. Production processing does not
nacassarily include tasting of all paramatars.

TEXAS

-1.!1

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-45

LP111, LP211, LP311
LOW-POWER DIFFERENTIAL COMPARATORS WITH STROBES
description (continued)
of driving a 25-mA load. The LP111 , LP211 , and LP311 are quite easy to apply free of oscillation if ordinary
precautions are taken to minimize stray coupling from the output to either input or to the trim pins.
The LP111 is characterized for operation over the full military temperature range of - 55°C to 125°C.
The LP211 is characterized for operation from - 25°C to 85 °e, and the LP311 is characterized for operation
from ooe to 70°C.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee + (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18 V
Supply voltage, Vee - (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 18 V
Differential input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 30 V
Input voltage (either input, see Notes 1 and 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 15 V
Voltage from emitter output to Vee - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 30 V
Voltage from collector output to Vee _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .. 40 V
Voltage from collector output to emitter output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 40 V
Duration of output short-circuit (see Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 40 V
Continuous total dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. See Dissipation Rating Table
Operating free-air temperature range: LP111........................... - 55°C to 125°C
LP211 ............................ -25°C to 85°C
LP311 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ooe to 70°C
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package. . . . . . . .. 260°C
Case temperature for 60 seconds: FK package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package ........... 300°C
NOTES:

1.
2.
3.
4.

All voltage values, unless otherwise noted, are with respect to the midpoint between Vee + and Vee _.
Differential input voltages are at the noninverting input terminal with respect to the inverting terminal.
The magnitude of the input voltage must never exceed the magnitude of the supply voltage of ± 15 V, whichever is less.
The output may be shorted to ground or to either power supply.
DISSIPATION RATING TABLE

PACKAGE

TA $ 25°C

DERATING

DERATE

POWER RATING

FACTOR

ABOVE TA

TA - 70°C
POWER RATING

TA - 85°C
POWER RATING

TA - 125°C
POWER RATING

D

500 mW

5.8 mw/oe

64°C

464 mW

377 mW

FK

1375 mW

11.0 mw/oe

25°C

880 mW

715 mW

275 mW

JG (LP111)

1050 mW

8.4 mw/oe

25°C

672 mW

546 mW

210 mW

JG (LP _11)

825 mW

6.6 mw/oe

25°C

528 mW

429 mW

P

500 mW

8.0 mw/oe

88°C

500 mW

500mW

recommended operating conditions
MIN
Input voltage

(I Vee + I

$15 V)

Supply voltage, Vee+ - Vee-

TEXAS'"

3-46

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

MAX

UNITS

Vee- +0.5

NOM

Vee+- 1.5

V

3.5

30

V

LP111, LP211, LP311
LOW-POWER DIFFERENTIAL COMPARATORS WITH STROBES

electrical characteristics at specified free-air temperature,
PARAMETER
Input offset voltage

VID
110

Input offset current

liB

Input bias current

Low-level output voltage

RS

<

100 kO,

See Note 5

MIN
25°C

Avo

7.5

2

25

10
35

25°e

15

Full Range

=

Vec

<

=

10L

4.5 V,
-10 mV,

25 mA,

Vec- = 0,
10L = 1.6 mA,

Low-level strobe current

Output off-state current

VID> 10 mV,
RL

ICC+

Supply current from V ce +

VIO

lec-

Supply current from Vee-

VIO

=

<

25°e

VeE

=

=
=

- 50 mV,

RL

50 mV,

RL

=
=

nA
nA

0.1

0.7

0.1

0.4

25°e

100

300

MA

25°e

0.2

100

nA

25°e

5 kO

mV

1.5

LPlll

35 V

UNIT

0.4

Full Range

-10mV,

100
150

LP211
LP311

V(strobe) = 0.3 V, VIO
See Note 7

voltage amplification

MAX

2

Full Range

See Note 6

Large signal differential

Typt

Full Range
25°e

See Note 5

VIO

10 (off)

± 15 V (unless otherwise noted)

TEST CONDITIONS

VIO > 10 mV,
See Note 6
VOL

Vee ±

40

100

V

Vim V

00

Full Range

150

300

MA

00

Full Range

-80

-180

MA

t All typical values are at Vee ± = ± 15 V, T A = 25°e.
NOTES: 5. The offset voltages and offset currents given are the maximum values required to drive the output within 1 V of either supply
with a l-mA load. Thus, these parameters define an error band and take into account the worst-case effects of voltage gain
and input impedance.
6. Voltages are with respect to EMIT OUT and Vee _ tied together.
7. The strobe should not be shorted to ground; it should be current driven at 100 MA to 300 MA.

switching characteristics at

Vee ±

± 15 V, T A = 25°e (unless otherwise noted)

PARAMETER

TEST CONDITIONS

Response time

See Note 8

MIN

TYP

MAX

1.2

NOTE 8: The response time is specified for a 100-mV input step with 5-mV overdrive.

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 ' DALLAS, TEXAS 75265

3-47

3-48

LP239. LP339. LP2901
LOW-POWER QUAD DIFFERENTIAL COMPARATORS
OCTOBER 1987-REVISED MAY 1988

D. J. OR N PACKAGE
(TOP VIEW)

•

Ultralow Power Supply Current
Drain ... Typically 60 ,..A

•

Low Input Biasing Current ... 3 nA

•

Low Input Offset Current ... ± 0.5 nA

•

Low Input Offset Voltage ...

mV

CaMP #2

~ IN-

•

Common-Mode Input Voltage Includes
Ground

CaMP # 1

~ IN-

±2

OUT CaMP 1

OUT CaMP 3

OUT CaMP 2

•

Output Voltage Compatible with MOS and
CMOS Logic

•

High Output Sink-Current Capability
(30 mA at Vo = 2 VI

•

Power Supply Input Reverse-Voltage
Protected

•

Single-Power-Supply Operation

•

Pin-for-Pin Compatible with LM239, LM339,
LM2901

OUT CaMP 4

VCC

GND

IN+

IN+
ININ+
IN-

IN+

~

CaMP #4

~

CaMP #3

description
The LP239, LP339, and LP2901 are low-power quadruple differential comparators. Each device consists
of four independent voltage comparators des.igned specifically to operate from a single power supply and
typically to draw 60-,..A drain current over a wide range of voltages. Operation from split power supplies
is also possible and the ultralow power supply drain current is independent of the power supply voltage.
Applications include limit comparators, simple analog-to-digital converters, pulse generators, squarewave
generators, time delay generators, voltage controlled oscillators, multivibrators, and high-voltage logic gates.
The LP239, LP339, and LP2901 were specifically designed to interface with the CMOS logic family. The
ultralow power supply current makes these products desirable in battery-powered applications.
The LP239 is characterized for operation from - 25°C to 85 °C. The LP339 is characterized for operation
from ooe to 70 oe. The LP2901 is characterized for operation from -40 oe to 85°e.
AVAILABLE OPTIONS

TA

PACKAGE

VIO MAX
AT 25°C

SMALL-OUTLINE

PLASTIC DIP

CERAMIC DIP

(D)

(N)

(J)

±5 mV

LP339D

LP339N

LP339J

±5 mV

LP239D

LP239N

LP239J

±5 mV

LP2901D

LP2901N

LP2901J

ooe
to
70°C
-25°C
to
85°C
-40°C
to
85°C

o packages are available taped-and-reeled. Add "R" suffix to device type when
ordering (e.g., LP339DR).

PRODUCTION DATA documents contain information
current as of publication date. Products conform to
specifications per the terms of Texas Instruments
standard warranty. Production processing does not
necessarily include testing of all parameters.

TEXAS

~

Copyright

© 1987, Texas Instruments Incorporated

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-49

LP239, LP339, LP2901
LOW·POWER QUAD DIFFERENTIAL COMPARATORS
schematic diagram (each comparator)
VCC

~__--~--~~OUTPUT

NON INVERTING
INPUT
IN+
INVERTING
INpuT------------~--------~----------~

IN-

L-------~----------------~--------~~~~--GND

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 V
Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 36 V
Input voltage range (either input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 0.3 V to 36 V
Input current, VI :$ -0.3 V (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 50 mA
Duration of output short-circuit to ground (see Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited
Continuous total dissipation (see Note 5) . . . . . . . . . . . . . . . . . . . . . .. See Dissipation Rating Table
Operating free-air temperature range: LP239 . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 25°C to 85 °C
LP339 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ooC to 70°C
LP2901 . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40°C to 85°C
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65°C to 150°C
Lead temperature 1,6 mm (1 (16 inch) from case for 10 seconds: D or N package ........ 260°C
Lead temperature 1,6 mm (1116 inch) from case for 60 seconds: J package ............ 300°C
NOTES:

1. All voltage values, except differential voltages, are with respect to the network ground terminal.
2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
3. This input current only exists when the voltage at any of the inputs is driven negative. The current flows through the collectorbase junction of the input clamping device. In addition to the clamping device action, there is lateral n-p-n parasitic transistor
action. This action is not destructive and normal output states are re-established when the input voltage returns to a value
more positive than -0.3 V at TA = 25°e.
4. ShOrt circuits between outputs to Vee can cause excessive heating and eventual destruction.
5. If the output transistors are allowed to saturate, the low bias dissipation and the on-off characteristics of the outputs keep
the dissipation very small (usually less than 100 mW).

DISSIPATION RATING TABLE
PACKAGE

TA " 25°C
POWER RATING

DERATING FACTOR

TA = 70°C
POWER RATING

POWER RATING

D

950 mW

608 mW

494 mW

J

1025 mW

8.2 mW/oe

656 mW

533 mW

N

1150 mW

9.2 mW/oe

736 mW

598 mW

TEXAS

~

INSTRUMENTS
3-50

TA = 85°C

ABOVE TA = 25°C
7.6 mW/oe

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

LP239, LP339, LP2901
LOW·POWER QUAD DIFFERENTIAL COMPARATORS

recommended operating conditions
LP2901
MIN

MIN

5

30

=
=
=
=

5V

0

eommon-mode input voltage, Vie

Vee

30 V

Vee

Input voltage, VI

Vee

electrical characteristics.

Vee

5

30

5

30

V

3

0

3

0

3

V

0

28

0

28

0

28

V

5V

0

3

0

3

0

3

V

30 V

0

28

0

28

0

28

V

-40

85

-25

85

0

70

°e

Via

110

Input offset current

liB

Input bias current
Common-mode input

VieR

voltage range
Large-signal differential

AVD

voltage amplification

TEST CONDITIONS
RS

VID

Differential input voltage

lee

Supply current

NOTES:

=

5 V to 30 V,

0,

Vo

=

MIN
25°e

2 V,

See Note 6

25°e
Full range

Single supply
Vee

=

15V,

RL

VI_

1 V,

Va

VI+

=
=

0

VI+
VI_

=
=

1 V,

Va

0

Va

=
=

Vo

=
=
=

25°e

OtoVCC- 1.5

Full range

OtoVCC-2

15 k{l
25°e

20

Full range

15

25°e

0.2

0.4 V

25°e

5 V
30 V

±5

±0.5

±5

±1

±15

-2.5

-25

-4

-40

mV
nA
nA

Vim V

30
mA
0.7
nA

0.1

Full range

VI :5 0 lor Vee- on split supplies)
RL = 00 all comparators

UNIT

V
500

2 V

Isee Note 8)

MAX

±2

±9

25°e

See Note 7

TYP

Full range
Full range

Output sink current

Output leakage current

=

Vee

MAX

25 °e (unless otherwise noted)

5 V. TA

PARAMETER
Input offset voltage

NOM

UNIT

MIN

Operating free-air temperature, T A

NOM

LP339
MAX

Supply voltage, Vee
Vee

LP239
MAX

NOM

1
60

I'A

36

V

100

I'A

6. Via is measured over the full common-mode input voltage range.
7. Because of the p-n-p input stage, the direction of the current is out of the device. This current is essentially constant li.e.,
independent of the output state). Therefore, no loading change exists on the reference or input lines as long as the commonmode input voltage range is not exceeded.
8. The output sink current is a function of the output voltage. These devices have a bimodal output section that allows them
to sink Ivia a Darlington connection) large currents at output voltages greater than 1.5 V, and smaller currents at output voltages
less than 1.5 V.

switching characteristics.
PARAMETER
Large-signal response time
Response time

Vee

5 V. TA

25 °e. RL connected to 5 V through 5.1

TEST CONDITIONS
TTL logic swing, V ref

=

MIN
1 .4 V

TYP

kn

MAX

UNIT

1.3

I's

8

I's

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-51

LP239.lP339. LP2901
LOW-POWER QUAD DIFFERENTIAL COMPARATORS
TYPICAL APPLICATION DATA
vcc
vcc

NONINVERTING~.
INPUT
IN+

INVERTING
INPUT
IN -

NONINVERTING
INPUT
IN+

30 k[!

+
OUTPUT
114 LP239. LP339.
OR LP2901

OUTPUT

INVERTING
INPUT
IN114 LP239. LP339.
OR LP2901

FIGURE 2. CMOS DRIVER

FIGURE 1. BASIC COMPARATOR

All pins of any unused comparators should be grounded. The bias network of the LP239, LP339, and LP2901
establishes a drain current that is independent of the magnitude of the power supply voltage over the range
of 2 V to 30 V. It is usually necessary to use a bypass capacitor across the power supply line.
The differential input voltage may be larger than Vee without damaging the device. Protection should be provided
to prevent the input voltages from going negative by more than - 0.3 V. The output section has two distinct
modes of operation: a Darlington mode and a grounded-emitter mode. This unique drive circuit permits the device
to sink 30 mA at Vo = 2 V in the Darlington mode and 700 p.A at Vo = 0.4 V in the ground-emitter mode.
Figure 3 is a simplified schematic diagram of the output section. The output section is configured in a Darlington
connection (ignoring 03). Therefore, if the output voltage is held high enough (above 1 V),01 is not saturated
and the output current is limited only by the product of the hFE of 01, the hFE of 02, and 11 and by the 60-0
saturation resistance of 02. The devices are capable of driving LEDs, relays, etc., in this mode while maintaining
a.n ultra low power supply current of 60 p.A typically.
~~--------------vcc

~-I--....-vo

FIGURE 3. OUTPUT SECTION SCHEMATIC DIAGRAM
Without transistor 03, if the output voltage were allowed to drop below 0.8 V, transistor 01 would saturate
and the output current would drop to zero. The circuit would be unable to pull low current loads down to ground
or the negative supply, if used. Transistor 03 has been included to bypass transistor 01 under these conditions
and apply the current 11 directly to the base of 02. The output sink current is now approximately 11 times the
hFE of 02 (700 p.A at Vo = 0.4 V). The output of the devices exhibit a bimodal characteristic with a smooth
transition between modes.
In both cases, the output is an uncommitted collector. Therefore several outputs can be tied together to provide
a dot logic function. An output pull-up resistor can be connected to any available power supply voltage within
the permitted power supply voltage range, and there is no restriction on this voltage based on the magnitude
of the voltage that is applied to the Vee terminal of the package.

~

TEXAS
INSTRUMENTS
3-52

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TL712

DIFFERENTIAL COMPARATOR
D2741, JUNE 1983-REVISED JULY 1989

D. JG. OR P PACKAGE

•

Operates from a 5-V Supply

•

0 to 5 V Common-Mode Input Voltage
Range

•

Self-Biased Inputs

•

Complementary 3-State Outputs

•

Enable Capability

•

Hysteresis ... 5 mV Typ

•

Response Times ... 25 ns Typ

(TOP VIEW)

NCUB VCC

IN-

2

7

OUT-

IN+

3

6

OUT+

OE

4

5

GND

NC - No internal connection

symbol (positive logic)

description

(7)

0---'--" OUT-

The TL 712 is a high-speed comparator
fabricated with bipolar Schottky process
technology. The circuit has differential analog
inputs and complementary 3-state TTLcompatible logic outputs with symmetrical
switching characteristics. When the output
enable, OE, is low, both outputs are in the highimpedance state. This device operates from a
single 5-V supply and is useful as a disk memory
read-chain data comparator.

1-_",,(6-'.I OUT +

The TL 71 2 is characterized for operation from
OOC to 70°C.

schematics of inputs and outputs
EQUIVALENT OF EACH
DIFFERENTIAL INPUT

EQUIVALENT OF EACH ENABLE INPUT

TYPICAL OF ALL OUTPUTS
---------4t--V CC

VCC-----e---~I-

85 n
NOM

VCC-----~--

8.3 kn

4 kn
NOM
INPUT-"V\/\,o-<•

.----1P

PRODUCTION DATA documants contain information
currant as of publication date. Products conform to
spacifications par tha tarms of Taxas Instrumants
standard warranty. Production ,roc8Ssing doas not
nac8Ssarily includa tasting of all paramatalS.

ENABLE-4~'---I

OUTPUT

TEXAS

~

Copyright

© 1989, Texas Instruments Incorporated

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-53

TL712

DIFFERENTIAL COMPARATOR
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage, any differential input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 25 V
Differential input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 25 V
Enable input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Low-level output current ...................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA
Operating free-air temperature range. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. ooe to 70°C
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package. . . .
300°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package. . . . . . . .. 260°C
NOTES:

1. All voltage values, except differential voltages, are with respect to the network ground terminal.
2. Differential voltage values are at the noninverting terminal with respect to the inverting terminal.

recommended operating conditions
Supply voltage, VCC
Common-mode input voltage, VIC

MIN

NOM

MAX

UNIT

4.75

5

5.25

V

0

5

High-level output current, 10H
Low-level output current, 10L
Operating free-air temperature, T A

electrical characteristics at

0

Vee

V

-1

mA

16

mA

70

·C

5 V, TA

PARAMETER

TEST CONDITIONS

VT

Threshold voltage (VT + and VT -)

Vhys

Hysteresis (VT +

VOH

High-level output voltage

VID - 100 mV,

VOL

Low·level output voltage

VID -

10Z

Off-state output current

II
IIH
IlL

Low-level enable current

'i
ro

Differential input resistance
Output resistance

lOS

Short-circuit output current

ICC

Supply current

MIN
-lOOt

VICR = 0 to 5 V

- VT -)

TYP

MAX
100

-1 mA

t.7

-100 mV, 10L = 16 mA

3.5
0.4

mV
mV

5
10H -

UNIT

V
0.5

V

Vo = 2.4 V

-20

I"A

Enable current

VI = 5.5 V

100

I"A

High-level enable current

VIH = 2.7 V

20

I"A

VIL = 0.4 V

-360

I"A

4

kO

-15
No load

VID = 0,

17

100

0

-85

mA

20

mA

t The algebraic convention, where the more negative limit is designated as minimum, is used in this data sheet for input threshold voltage
levels only.

switching characteristics,

Vee

5 V, TA

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNIT

tpLH

Propagation delay time, low-to-high-Ievel output

TTL load (see Figure 1).

25

ns

tpHL

Propagation delay time, high-to-Iow-Ievel output

See Note 3

25

ns

NOTE 3: The response time specified is for a 100-mV input step with 5-mV overdrive (105 mV total), and is the interval between the
input step function and the instant when the output crosses 2.5 V.

TEXAS

~

INSTRUMENTS
3-54

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TL712

DIFFERENTIAL COMPARATOR
PARAMETER MEASUREMENT INFORMATION
+5 V
2 kQ

OUTPUT--........... -..
IN4148

FIGURE 1. TTL OUTPUT LOAD CIRCUIT

TYPICAL CHARACTERISTICS
OUTPUT RESPONSE FOR VARIOUS
INPUT OVERDRIVES

OUTPUT RESPONSE FOR VARIOUS
INPUT OVERDRIVES

~ee

Vee = 5 V
TTl Load
TA = 25°e

if
> 5
I

CD

!!!'"

4

"0 3

>
...
::l

2

o

1

S::l
I

~O

1,;0 mV

100 mV,
50 mV,
20 mV,

1\

+ OVERDRIVE

VI

(

h I

..IL .L
10

\

/
/
20

1'-1

I

40

o
> 0

~

~

"\

~

\

"-

o

I

I

\' f.\,

o
30

~

g

2

I

100 mV + OVERDRIVE-r--

,

~::l

5 mV-,-

TA = 25°e_

J

>

5
I
~ 4 r--- 100 mV
!!!
3 f-- f-50 mV
20 mV

-'-

WII

If'.

o

1= 5 1V
TTL Load
-

10

20

5 mV

\

'\

30

40

t- Time-ns

t-Time-ns

FIGURE 3

FIGURE 2

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-55

TL712
DIFFERENTIAL COMPARATOR

TYPICAL CHARACTERISTICS
COMMON-MODE
PULSE RESPONSE

4

QJ

'0

Vee = 5 V
TA = 25°e

0

2,Cl
QJ

3

c: co

oo!:!

E0
E>

2

0-

U

::l

,§-

u-

>"

0

>,
Cl

1.7

(5

-

1.65

::l

1.6

0

,

1.55

0

1.5

QJ

19

>

c.

5

>

r~
Vlcn

I---

-=

/
V

o

40

80

120

t-Time-ns
FIGURE 4

~

TEXAS
INSTRUMENTS
3-56

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

140

TL714C
HIGH·SPEED DIFFERENTIAL COMPARATOR
03131, DECEMBER 1988-REVISED JUNE 1989

•

o OR

Operates from a 5· V Supply

P PACKAGE

(TOP VIEWl

•

Self-Biasing Inputs

•

Hysteresis ... 10 mV Typical

•

Response Time . . , 6 ns Typical

•

Maximum Operating Frequency ... 50 MHz
Typical

description

N C [ J 8 VCC
IN2
7 NC
IN+
3
6 OUT
NC 4
5 GND
NC - No internal connection

symbol

The TL 714C is a high-speed differential
comparator fabricated with bipolar Schottky
process technology, The circuit has differential
inputs and a TTL-compatible logic output with
symmetrical switching characteristics.

IN+=t>-

OUT

IN-

The device operates from a single 5-V supply and
is useful as a disk-memory read-chain data
comparator,
The TL714C is characterized for operation from
ODC to 70 DC,

schematic of inputs and output
OUTPUT

EACH INPUT

50

VCC

{J

VCC--~VV~'--------'

OUTPUT

INPUT --'l/II\rlHlf---"

100

GND

{J

---1--+--'

All resistor values shown are nominal.

PRODUCTION DATA documents contain information
current as of publicatio. dat.. Products conform to
specifications par tha terms of Texas Instruments
standard warranty. Production processing does not
necessarily include testing of all parameters.

TEXAS

~

Copyright

© 1989, Texas Instruments Incorporated

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-57

TL714C
HIGH·SPEED DIFFERENTIAL COMPARATOR
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vcc (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V
Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 5 V
Input voltage range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. VCC to GND
Low-level output current, IOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 40 mA
Continuous total power dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . .. See Dissipation Rating Table
Operating free-air temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. O°C to 70°C
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65°C to 1 50°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds. . . . . . . . . . . . . . . . . . . . .. 260°C
NOTES: 1. All voltage values, except for differential voltage, are with respect to the network ground.
2. Differential voltage values are at the non inverting terminal with respect to the inverting terminal.
DISSIPATION RATING TABLE
DERATING

DERATE

POWER RATING

FACTOR

ABOVE TA

TA - 70 D C
POWER RATING

D

500mW

5.8 mW/oC

64°C

464mW

P

500mW

N/A

N/A

500mW

PACKAGE

TA

:5

25°C

recommended operating conditions
PARAMETER
Supply voltage, Vec

MIN

MAX

UNIT

4.75

5.25

V

1.4
Common-mode input voltage, VIC

to

V

Vec -1.4
High-level output current, 10H

-1

mA

low-level output current, 10l

16

mA

70

°c

Operating free-air temperature, T A

0

electrical characteristics over free-air operating temperature range.
PARAMETER

Vee = 5 V (unless otherwise noted)

TEST CONDITIONS

VT

Threshold voltage

Vtws

Hysteresis (VT + - VT-I

VOH

High-level output voltage

VID

VOL

low-level output voltage

VID

Vie

=
=
=

MIN

100 mY,

10H

-100 mY, 10l

= -1 mA
= 16 mA

2

10

2.7

3.4
0.4

lOS

Short-circuit output current

-30

ri

Differential input resistance

2.9

ICC

Supply current

VID

=

Typt

1.4 V to 3.6 V

-100 mY, 10

=

0

MAX

UNIT

±75

mV

30

mV

0.5

V

V
-110

mA

7

12

mA

TYP

MAX

kO

t All typical values are at T A = 25°C.

switching characteristics.

Vee

5 V. TA

PARAMETER

TEST CONDITIONS
VID = ±250 mY, tr = tf = 4 ns,
Cl = 25 pF, Input duty cycle = 50%

f max Maximum operating frequency
tplH

Propagation delay time, low-to-high·level output

tpHL

Propagation delay time, high-to-Iow-Ievel output

tr

Rise time

tf

Fall time

VID = ±100 mY, Cl
See Figures 1 and 2

=

VID = ±100 mY, CL
See Figure 3

=

TEXAS

25 pF,
25 pF,

~

INSTRUMENTS
3-58

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

MIN

50

UNIT
MHz

6
6

12

ns

12

ns

4

8

ns

4

8

ns

TL714C
HIGH·SPEED DIFFERENTIAL COMPARATOR

PARAMETER MEASUREMENT INFORMATION
~

1+-1, S 4 ns

~ j4-lf s 4 ns
---:9~0~%II- - - - - - - 100 mV
VIO
50%
10%1
-100 mV

VID __-"1:~+1:,Jl~ ______ ~::~:V

,.>\----

IPHL~

~IPLH

Vo _ _ _

--Jlr~-v--_-_-_ ::

Vo

VO"

,-,- - - VOL

FIGURE 1. PROPAGATION DELAY TIME,
LOW TO HIGH (tpLHI
~

VIO

14- I,

s 4

FIGURE 2, PROPAGATION DELAY TIME,
HIGH TO LOW hpHLI
~

ns

_ _ _ _.JI:l10%

Ii

100 mV
-100 mV

I4-t+- If

14-+1--- I,
Vo

I+-If S 4 ns

90%t'~-----10~\

} 190%

f 1~-2'-4-V------2-.4-V""\

~,5V

[- -

-

-

VOH

0.5~

------'

" " - - - VOL

FIGURE 3. RISE AND FALL TIMES hr, ttl

TEXAS

'1.!1

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-59

3-60

TL721

DIFFERENTIAL COMPARATOR
D2781, FE8RUARY 1984-REVISED DCTOBER 1988

•

Operates from a - 5,2-V Power Supply

•

Self-Biased Inputs

•

Common-Mode Input Voltage Range
o V to -5.2 V

D, JG, OR P PACKAGE

U

(TOP VIEWI

NC
IN-

•

MECl III and MECl 10 000 Compatible

•

Complementary ECl-Compatible Outputs

•

Hysteresis ... 5 mV Typ

•

Response Times . . . 10 ns Typ

IN+
NC

8

GND

2

7

au. T-

3

6

4

5

aUT+
VCC

NC - No internal connection

symbol
OUT-

description
OUT+

The Tl721 is a high-speed voltage comparator
fabricated with bipolar Schottky t process
technology. The circuit has differential analog
inputs and complementary Eel-compatible logic
outputs
with
symmetrical
switching
characteristics. The device operates from a
single - 5,2-volt supply and is useful as a disk
memory read-chain data comparator,
The Tl721 is characterized for operation from
70 oe,

ooe to

tlntegrated Schottky·Barrier diode-clamped transistor is patented by Texas Instruments. U.S. Patent Number 3,463,975.

PRODUCTION DATA documants contain information
current as of publication date. Products conform to
specifications per the terms of Texas Instruments
standard warranty, Production procassing does not
nacessarily include testing of aU parameters.

TEXAS

~

Copyright

©

1984, Texas Instruments Incorporated

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-61

TL721
DIFFERENTIAL COMPARATOR

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) ........... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -7 V
Input voltage, any differential input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 25 V
Differential input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 25 V
Low-level output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA
Operating free-air temperature range . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . .. ooe to 70 0 e
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65 °e to 150 0 e
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package. . . . . . . . . ..
300 0 e
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: Dar P package ......... 260 0 e
NOTES:

1. All voltage values, except differential voltages, are with respect to the network ground terminal.
2. Differential voltage values are at the noninverting terminal with respect to the inverting terminal.

recommended operating conditions
MIN

NOM

MAX

-5.2

Supply voltage, VCC
High-level output current, IOH
low-level output current, IOl
Operating free-air temperature, T A

0

PARAMETER
Threshold voltage (VT + and VT - )

Vhvs

Hysteresis (VT + - VT - )

VOH

High-level output voltage

Val

low-level output voltage

VICR

Common-mode input voltage range

rjn

Input resistance

ICC

Supply current

V
mA
mA
°C

-5.2 V

electrical characteristics at T A
VT

V

±7
-1
16
70

Common-mode input voltage, VIC

UNIT

TEST CONDITIONS

MIN

TYP

-100 t

VIC = VICR min

MAX

UNIT

100

mV

5
VID = 100 mY,
VID = -100 mY,

Rl = 50 n to - 2 V
Rl = 50 n to - 2 V

-0.96 t
-1.85 t
0

mV

-0.81
-1.65

kn

-13

No load

V
·V

to

-5.2
4
VID = 0,

V

-17

mA

t The algebraic convention, in which the more negative limit is designated as minimum, is used in this data sheet for input threshold and
output voltage levels only.

-5.2 V

switching characteristics at T A
PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNIT

tplH

Propagation delay time, low-to-high-Ievel output

AVID = +200 mV to -200 mV or
-200 mV to +200 mY,

18

ns

tpHl

Propagation delay time, high-to-Iow-Ievel output

Rl = 50 n to - 2 V

18

ns

TEXAS

~

INSTRUMENTS
3-62

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TL721

DIFFERENTIAL COMPARATOR
TYPICAL CHARACTERISTICS
OUTPUT RESPONSES FOR VARIOUS
INPUT OVERDRIVES

OUTPUT RESPONSES FOR VARIOUS
INPUT OVERDRIVES
Vee - -5.2 V
RL - 50 n to -2 V
TA - 25°e

Ql



>
I

Ql

Cl

I

/T.

-1

:!

o

>

10 mV20mV-

'[ -1.5

"--.J

~t; ~

o

-1

:!

v--5 1mV

o

10mV~

.."

>

f-O mV

20m~~

So -

o"
I
o
>

1/ /

.I

,/1

I

~ -2

Cl

1/// 1/;

"-

II

'5
o

Ql

/

10
20
t-Time-ns

30

1.5

.\ \\\

V- 5mV
V- OmV

\' ~
~

\\

I\, \ ....\.
-2

40

FIGURE 1

o

10
20
t - Time-ns

30

40

FIGURE 2
COMMON-MODE
PULSE RESPONSE

Ql

"C

Vee - -5.2 V
TA - 25°e

0

:;

Ql

,Cl
C 

0

5.

-1

0"
to)

I .5
to)

->

-3

-

>
I

-1.6

Cl

~ -1.65

o

>

'5 -1.7

-

fDO
50

-

Ql

VIC

n

Vo

.fl.

f\

A

~

Co

~ -1.75

oI
>

-1.8
o

10

20 30 40 50
t-Time-ns

FIGURE 3

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3--63

TLC139M, TLC339C, TLC3391, TLC339M, TLC339Q
QUADRUPLE MICROPOWER LinCMOS™ COMPARATORS
03135, DECEMBER 1986 - REVISED JANUARY 1991

•

Very Low Power ... 200 flW Typ at 5 V

•

Fast Response Time ... 2.5 fls Typ With
5-mV Overdrive

•

•
•
•

0, J, OR N PACKAGE
(TOP VIEW)

COMP # 1 OUT
COMP #2 OUT

Single Supply Operation:
TLC139M ... 4 V to 16 V
TLC339M ... 4 V to 16 V
TLC339C . , .3 V to 16 V
TLC3391 ... 3 V to 16 V

1

COMP #3 OUT
COMP # 40UT
GND

VDD

High Input Impedance ... 1012

Q

COMP {IN
#2
IN +

IN +}COMP
IN#4

COMP {IN
6
#1
IN +

IN +}COMP
IN#3

Typ
FKPACKAGE

Input Offset Voltage Change at Worst Case
Input Condition Typically 0.23 flV/Month
Including the First 30 Days

(TOP VIEW)
1-1:::l:::l

1-1:::l:::l

00

00

C\J~t)C')C')

On-Chip ESD Protection

""""z""""
VDD

4

1 2019
18

NC
#2INNC
#21N +

5

17

3

description
The TLC 139/TLC339 consists offour independent
differential-voltage comparators designed to
operate from a single supply. It is functionally
similar to the LM 139/LM339 family but uses 1!20th
the power for similar response times. The opendrain MOS output stage interfaces to a variety of
loads and supplies, as well as "wired" logic
functions. For a similar device with a push-pull
output configuration, see the TLC3704 data sheet.
Texas Instruments LinCMOS'" process offers
superior analog performance to standard CMOS
processes. Along with the standard CMOS
advantages of low power without sacrificing
speed, high input impedance, and low bias
currents, the LinCMOS'" process 6ffers extremely
stable input offset voltages, even with differential
input stresses of several volts. This characteristic
makes it possible to build reliable CMOS
comparators.

2

6

16

7

15

8

14
9 10 11 12 13

GND
NC
#41N +
NC
#4IN-

I + t) I +
~~z~~

NC - No internal connection

symbol (each comparator)

NONINVERTING=t>INPUT IN +
OUTPUT
INVERTING
INPUT IN-

AVAILABLE OPTIONS
PACKAGE
TA

VIOmax
at 25'C

SMALL OUTLINE
(D)

CHIP CARRIER
(FK)

CERAMIC DIP
(J)

PLASTIC DIP
(N)
TLC339CN
TLC339QN
TLC339MN

O°C to 70'C

5mV

TLC339CD

-

- 40'C to 85'C

5mV

TLC3391D

-

- 40'C.to 12S'C

SmV

TLC339QD

-

-

- 55'C to 125'C

5mV

TLC339MD

TLC139MFK

TLC139MJ

TLC3391N

The D package is available taped and reeled. Add the suffix R to the device type, (e.g., TLC339CDR).

LinCMOS is a trademark of Texas Instruments Incorporated.

PRODUCTION DATA docum.nts contain inform.tion
curr.nt •• of public.tion d.t•. Products conform to

specifications par the terms of Texas Instruments

standard w.rr.nty. Production proc••sing do •• not
n!'C•••• rily include t••ting of all p.r.meter•.

~

Copyright @1991, Texas Instruments Incorporated

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-65

TLC139M, TLC339C, TLC3391, TLC339M, TLC339Q
QUADRUPLE MICROPOWER LinCMOS™ COMPARATORS
description (continued)
The TLC139M and TLC339M are characterized for operation over the full military temperature range of - 55°C
to 125°C. The TLC339C is characterized for operation over the commercial temperature range of O°C to 70°C.
The TLC3391 is characterized for operation over the industrial temperature range of - 40°C to 85°C. The
TLC3390 is characterized for operation over the extended industrial temperature range of - 40°C to 125°C.

output schematic
OPEN·DRAIN CMOS OUTPUT

~OUTPUT

--J9
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage range, VDD (see Note 1) ............................................. - 0.3 V to 18 V
Differential input voltage (see Note 2) ..................................................... ± 18V
Input voltage range, VI ............................................................ - 0.3 V to VDD
Output voltage range, Vo .......................................................... - 0.3 V to VDD
Input current, I, .......................................................................... ± 5mA
Output current, 10 (each output) ........................................................... 20 mA
Total supply current into VOO terminal ...................................................... 40 mA
Total current out of ground terminal.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 60 mA
Continuous total dissipation ........................................... See Dissipation Rating Table
Operating free-air temperature range: TLC139M .................................... - 55°C to 125°C
TLC339C ....................................... O°C to 70°C
TLC3391 ...................................... - 40°C to 85°C
TLC339M .................................... - 55°C to 125°C
TLC3390 .................................... - 40°C to 125°C
Storage temperature range ....................................................... - 65°C to 150°C
Case temperature for 60 seconds: FK package .............................................. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package ................ 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package ..................... 300°C
NOTES: 1. All voltage values, except differential. voltages, are with respect to network ground.
2. Differential voltages are at the noninverting input with respect to the inverting input.
DISSIPATION RATING TABLE
PACKAGE

TA" 25'C
POWER RATING

=

TA 70'C
POWER RATING

TA 85'C
POWER RATING

=

=

TA 125'C
POWER RATING

D

950mW

7.6mWI'C

608mW

494mW

190mW

FK

1375 mW

11.0 mWI'C

880mW

715mW

275mW

J

1375 mW

11.0 mWI'C

880mW

715mW

275mW

N

1150mW

9.2mWrC

736mW

598mW

230mW

~

TEXAS
INSTRUMENTS
3-66

=

DERATING FACTOR
ABOVE TA 25'C

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC139M, TLC339M
QUADRUPLE MICRO POWER LinCMOS™ COMPARATORS
recommended operating conditions
MIN

NOM

MAX

Supply voltage, VOO

4

5

16

Common-mode input voltage, VIC

a

VOO-1.5
20

low-level output current, 10l
Operating free-air temperature, TA

-55

125

UNIT
V
V
mA
'C

electrical characteristics at specified operating free-air temperature, Vee = 5 V (unless otherwise
noted)
TEST CONDITIONSt

PARAMETER

MIN

TYP

MAX

1.4

5

Via

Input offset voltage

VIC = VICRmin,
VOO = 5 V to 10 V,
See Note 3

Input offset current

VIC

= 2.5 V

25'C
125'C

1

110

Input bias current

VIC

= 2.5V

25'C
125'C

5

liB

25'C
-55'C to 125'C

25'C

Common-mode input
VICR

CMRR

voltage range

Common-mode rejection ratio

kSVR

Supply voltage rejection ratio

Val

low-level output voltage

10H

High-level output current
Supply current

100

(four comparators)

-55'C to 125'C

= VICRmin

VIC

VOO
VID

= 5 V to

=

10 V

Va

No load,

VOO-l
Oto

V

84

-55'C

84

25'C

85

125'C
-55'C

84
84

25'C
-55'C to 125'C

nA

VOO-1.5
dB

dB

300

400

0.8

800
40

125'C
Outputs low

pA
nA

a to

84

25'C

mV

pA
30

25'C

125'C
25'C

= 5V

15

125'C

-1 V,

10l = 6 mA
VIO - 1 V,

10

UNIT

44

mV
nA

1

",A

80
175

!lA

t All characteristics are measured with zero common-mode voltage unless otherwise noted.
NOTE 3: The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V with a 2.5-kil load to
VOO·

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-67

TLC339C
QUADRUPLE MICRO POWER LlNCMOS™ COMPARATOR
recommended operating conditions
Supply voltage, VOO

MIN

NOM

MAX

3

5

16

-0.2

Common-mode input voltage, VIC

V

VOO-1.5
8

Low-level output current, 10L
0

Operating free-air temperature, T A

UNIT

V

20

mA

70

°C

electrical characteristics at specified operating free-air temperature, Voo = 5 V (unless otherwise
noted)
.
PARAMETER

TEST CONDITIONSt

VIO

Input offset voltage

VIC = VICRmin,
VOO ;, 5 V to 10 V,
See Note 3

110

Input offset current

VIC = 2.5 V

TA

MIN

TYP

MAX

1.4

5

25°C
O°C to 70°C

6.5

25°C

1

25°C
liB

Input bias current

VIC = 2.5 V

25°C
VICR

Common-mode input voltage range
O°C to 70°C

CMRR

kSVR

Common-mode rejection ratio

Supply vo~age rejection ratio

.

VIC = VICRmin

VOO = 5 V to 10 V

VOL

Low-level output voltage

VIO=-1V,

10L= 6mA

IOH

High-level output current

VIO = 1 V,

VO=5V

100

5

70°C

0.6

84
84

O°C

84

25°C

85

70°C

85

O°C

85

25°C

300

No load,

Outputs low

O°C to 70°C

dB

dB

400
650

70°C
0.6

70°C
Supply current (four comparators)

nA

V

Oto
VOO-1.5

70°C

25°C

nA
pA

Oto
VOO-1

25°C

25°C

mV

pA
0.3

70°C

UNIT

44

mV

40

nA

1

J.IA

80
100

J.IA

t All characteristics are measured with zero common-mode voltage unless otherwise noted.
NOTE 3: The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V with a 2.5-kQ load
to VO~.

TEXAS ~

INSTRUMENlS
3-68

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TLC3391
QUADRUPLE MICROPOWER LinCMOS™ COMPARATOR
recommended qperating conditions
Supply voltage, VOO
Common-mode input voltage, VIC

MIN

NOM

MAX

3

5

16

-0.2

V

VOO -1.5

Low-level output current, 10L

8

Operating free-air temperature, T A

UNIT

-40

V

20

mA

85

°C

electrical characteristics at specified operating free-air temperature, Voo = 5 V (unless otherwise
noted)
PARAMETER

TEST CONDITIONSt

VIO

Input offset voltage

VIC = VICRmin,
VOO = 5 V to 10 V,
See Note 3

110

Input offset current

VIC = 2.5 V

liB

Input bias current

VIC= 2.5V

TA

kSVR

Supply voltage rejection ratio

VOL

LOW-level output voltage

10H

. High-level output current

100

Supply current (four comparators)

5
7

1

25°C

2
Oto
Voo-1

25°C

84
84

-40°C

84

25°C

85

85°C

85

-40°C

84

25°C

300

VOO = 5 V to 10 V

VIO=-1 V,
10H = 6 mA

85°C

VIO = 1 V,
Vo =5VmA

85°C

No load,
Outputs low

- 40°C to 85°C

25°C

25°C

nA

nA

V

Oto
VOO-1.5

85°C

VIC = VICRmin

mV

pA

5

85°C

UNIT

pA
1

25°C

Common-mode input voltage range

Common-mode rejection ratio

MAX

1.4

85°C

- 40°C to 85°C

CMRR

TYP

- 40°C to 85°C

25°C
VICR

MIN

25°C

dB

dB

400
700

0.8

44

mV

40

nA

1

).lA

80
125

).lA

t All characteristics are measured with zero common-mode voltage unless otherwise noted.
NOTE 3: The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V with a 2.5-kQ load
to VOO.

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-£9
!

TLC339Q
QUADRUPLE MICROPOWER LinCMOS™ COMPARATORS
recommended operating conditions
MIN

NOM

MAX

Supply voltage, VDD

4

5

16

Common-mode input voltage, VIC

0

VOO-1.5

Low-level output current, IOL
Operating free-air temperature, TA

-40

electrical characteristics at specified operating free-air temperature, Vee
noted)
PARAMETER

TEST CONDITIONSt
VIC = VICRmin,
VDD = 5 V to 10 V,
See Note 3

VIO

Input offset voltage

110

Input offset current

VIC

= 2.5 V

liB

Input bias current

VIC

= 2.5 V

MIN

CMRR

kSVR

Common-mode rejection ratio

Supply voltage rejection ratio

VOL

Low-level output voltage

IOH

High-level output current
Supply current

IDD

(four comparators)

VIC

VDD

= 5 V to

5

15

dB

85
84

dB

84
400

25"C
125"C

0.8

800
40

25'C

44

- 40'C to 125'C

nA

VOO-1.5

300

Outputs low

pA
nA

V

Oto

84

125"C

= -1 V,
= 6 mA
VID = 1 V,
Vo = 5V

VOO-1

-40'C
25"C

IOL

mV

Oto

84
84

VID

UNIT

pA
30

25"C
125"C

-40"C
25"C

No load,

10

25'C

125"C

10 V

"C

5

125'C

= VICRmin

125

MAX

1

- 40"C to 125"C

rnA

1.4

25"C
125"C

25"C

V

20

TYP

- 40"C to 125"C

voltage range

V

= 5 V (unless otherwise

25'C

Common-mode input
VICR

UNIT

1
80
125

mV
nA
I-'A
IlA

t All characteristics are measured with zero common-mode voltage unless otherwise noted.
NOTE 3: The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V with a 2.5-kfl load to
VDD·

~

TEXAS
INSTRUMENTS
3-70

POST OFFICE BOX 655303 • OALLAS. TEXAS 75265

TLC139M, TLC339C, TLC3391, TLC339M, TLC339Q
QUADRUPLE MICRO POWER LinCMOS™ COMPARATORS

= 5 V, TA = 25°C (see Figure 3)

switching characteristics, VDD
PARAMETER

TEST CONDITIONS
Overdrive

f
tpLH

Propagation delay time, low-to-high level output

Overdrive

= 10 kHz,
= 15 pF

Overdrive

CL

= 1.4 V step at IN+

f
tpHL

Propagation delay time, high-to-Iow level output

Overdrive

= 10 kHz,
= 15 pF

Overdrive

CL

= 40 mV

pin

Overdrive

Overdrive
Overdrive

= 2 mV
= 5 mV
= 10 mV
= 20 mV
= 40 mV

= 1.4 V step at IN+ pin
f = 10 kHz,
Overdrive = 50 mV
CL = 15 pF

VI
trHL

Transition time, high-to-Iow level output

TYP

MAX

4.5
2.5
1.7
1.2
1.0
1.1
3.6
2.1
1.3
0.85
0.55
0.10

Overdrive - 20 mV
Overdrive

VI

MIN

= 2 mV
= 5 mV
= 10 mV

UNIT

I.IS

I.IS

20

ns

PARAMETER MEASUREMENT INFORMATION
The TLC139 and TLC339 contain a digital output stage that, if held in the linear region of the transfer curve, can cause
damage to the device. Conventional operational amplifier/comparator testing incorporates the use of a servo-loop that
is designed to force the device output to a level within this linear region. Since the servo-loop method ottesting cannot
be used, the following alternatives for testing parameters such as input offset voltage, common-mode rejection, etc.,
are suggested.
To verify that the input offset voltage falls within the limits specified, the limit value is applied to the input as shown
in Figure 1 (a). With the noninverting input positive with respect to the inverting input, the output should be high. With
the input polarity reversed, the output should be low.
A similar test can be made to verify the input of set voltage at the common-mode extremes. The supply voltages can
be slewed as shown in Figure 1 (b) for the VieR test, rather than changing the input voltages, to provide greater
accuracy.
1 V

5V

5.1 kll

5.1 kll

i

t

APPLIED VIO
LIMIT

Vo

APPLIED vlO
LIMIT

~

l

l

(8) VIO with VIC = 0 V

(b) VIO with VIC = 4 V

FIGURE 1. METHOD FOR VERIFYING THAT INPUT OFFSET VOLTAGE IS WITHIN SPECIFIED LIMITS
A close approximation of the input offset voltage can be obtained by using a binary search method to vary the
differential input voltage while monitoring the output state. When the applied input voltage differential is equal but
opposite in polarity to the input offset voltage, the output will change state.

TEXAS

-I!I

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-71

TLC139M, TLC339C, TLC3391, TLC339M, TLC339Q
QUADRUPLE MICROPOWER LinCMOS™ COMPARATORS
PARAMETER MEASUREMENT INFORMATION
Figure 2 illustrates a practical circuit for direct dc measurement of input offset voltage that does not bias the
comparator into the linear region. The circuit consists of a switching mode servo loop in which U1A generates a
triangular waveform of approximately 20-mV amplitude. U1 B acts as a buffer, with C2 and R4 removing any residual
dc offset. The signal is then applied to the inverting input of the comparator under test, while the noninverting input
is driven by the output of the integrator formed by U1 C through the voltage divider formed by R9 and R1 O. The loop
reaches a stable operating point when the output of the comparator under test has a duty cycle of exactly 50%,
which can only occur when the incoming triangle wave is "sliced" symmetrically or when the voltage at the
noninverting input exactly equals the input offset voltage.
Voltage divider R9 and R10 provides a step-up of the input offset voltage by a factor of 100 to make measurement
easier. The values of R5, R8, R9, and R10 can significantly influence the accuracy of the reading; therefore, it is
suggested that their tolerance level be 1% or lower.
vee

R5
1.8 kn. 1%

C3 0.68 "F

U1B
1/4 TLC274CN

C2

U1C

R6

5.1 kll

1/4 TLC274CN

>-............... VIO

R7
1 Mn
R8
1.8 kn. 1%

(X100)

1

INTEGRATOR

C4
.". 0.1 "F

U1A
1/4 TLC274CN
C1
TRIANGLE
GENERATOR

0.1 "F

R2
10 kn
R3
100 kll

R10
100 Il. 1%

R9
10 kll. 1%

FIGURE 2. CIRCUIT FOR INPUT OFFSET VOLTAGE MEASUREMENT
Measuring the extremely low values of input current requires isolation from all other sources of leakage current and
compensation for the leakage of the test socket and board. With a good picoammeter, the socket and board
leakage can be measured with no device in the socket. Subsequently, this open socket leakage value can be
subtracted from the measurement obtained with a device in the socket to obtain the actual input current of the
device.

TEXAS . "
INSTRUMENTS
3-72

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TLC139M, TLC339C, TLC3391, TLC339M, TLC339Q
QUADRUPLE MICROPOWER LinCMOS™ COMPARATORS
PARAMETER MEASUREMENT INFORMATION
Propagation delay time is defined as the interval between the application of an input step function and the instant
when the output reaches 50% of its maximum value. Propagation delay time, low-to-high-Ievel output, is measured
from the leading edge of the input pulse, while propagation delay time, high-to-Iow-Ievel output, is measured from
the trailing edge of the input pulse. Propagation delay time measurement at low input signal levels can be greatly
affected by the input offset voltage. The offset voltage should be balanced by the adjustment at the inverting input
(as shown in Figure 3) so that the circuit is just at the transition point. Then a low Signal, for example 105-mV or 5-mV
overdrive, will cause the output to change state.
VDD

5.1

1'1 "F

1 V----,

INPUT OFFSET VOLTAGE
COMPENSATION ADJUSTMENT
-1 V - - - - - '

TEST CIRCUIT

OVERDRIVE

i
~
-l ----

INPUT 100 mV

I

I
HIGH-TO-LOWLEVEL OUTPUT

LOW-TO-HIGHLEVEL OUTPUT

I
I
I
I

I

I

10%

:-I : I-tTHL
I.---.r tpH L
VOLTAGE WAVEFORMS
NOTE A: CL includes probe and jig capacitance.

FIGURE 3. PROPAGATION DELAY, RISE, AND FALL TIMES
CIRCUIT AND VOLTAGE WAVEFORMS

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-73

I
!

TLC139M, TLC339C, TLC3391, TLC339M, TLC339Q
QUADRUPLE MICROPOWER LinCMOS™ COMPARATORS
TYPICAL CHARACTERISTICS t
INPUT BIAS CURRENT
vs
FREE-AIR TEMPERATURE

DISTRIBUTION OF INPUT
OFFSET VOLTAGE
100
90
80

.,

10

I

VOO - 5 V
VIC - 2.5 V
TA - 25°C

1== VOO
-r-


III

81

a:
o

~

~

c

.g

~

I

I

I

I

VOO - 5 V to 10 V

88
87

<>

a:

~

-ac.

83

o

u

125

SUPPLY VOLTAGE REJECTION RATIO
vs
FREE-AIR TEMPERATURE

~
.~

100

FIGURE 5

COMMON-MODE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
"C

75

T A - Free-Air Temperature - °C

FIGURE 4

III

/

/

~

60

'Po

0

- 5 V
= 2.5 V

C

.'!::

C
;:)

r- VIC
r-

83

--

:I

a:

.,.

80
-75 -50 -25

o

25

50

75

100 125

80
-75 -50 -25

T A - Free-Air Temperature - °C

0

25

50

75

100 125

T A - Free-Air Temperature - °C

FIGURE 6

FIGURE 7

t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

~

TEXAS
INSTRUMENTS
3-74

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TLC139M, TLC339C, TLC3391, TLC339M, TLC339Q
QUADRUPLE MICROPOWER LinCMOS™ COMPARATORS
TYPICAL CHARACTERISTICS t
HIGH-LEVEL OUTPUT CURRENT

HIGH-LEVEL OUTPUT CURRENT
vs

vs

HIGH-LEVEL OUTPUT VOLTAGE

FREE-AIR TEMPERATURE

1000

1000
125°C

TA



.,

.,

....I

i:.

TA

Cl

=

25°C I - -

./

....I

i:.

7

Cl

:E

:E

J:

J:

I

I

9

VOH
0.1

=

9
VOO

0 .. 1

o

2

4

8

6

10

12

14

50

25

16

FIGURE 9

FIGURE 8

LOW-LEVEL OUTPUT VOLTAGE

LOW-LEVEL OUTPUT VOLTAGE
vs

vs

LOW-LEVEL OUTPUT CURRENT

FREE-AIR TEMPERATURE
600

>

>

.,
I

1.25

>
...

:;
O. 75 r--+-~-+--h!!~--,.4----j~+-+---I

400

0

300

Gi
>

.,

....I

O. 5

~

f---+--~-iI-~¥--"joC-

o

I

200

0

.,.

./

/

.-/'

/'

/'
I

....I

....I

I

I

;5

V

/'

::l
Co

....I

>

f--

(5

.,
~

_ VOO = 5 V
IOL = 6 mA

!!

!!

(5

o
Gi
>

1

I

500

Cl

Cl

>
:;
S::l

125

100

75

TA-Free-Air Temperature- °C

VOH-High-Level Output Voltage-V

~

5V

:;

:;

0
Gi
>

VOH

l:

U

U

Voo



__L-~-L__L-J--L~~
6

8

10

12

14 16

18 20

100

o "---"--75 -50 -25

0

25

50

75

T A - Free-Air Temperature -

IOL -Low-Level Output Current-mA

100 125

°c

FIGURE 11

FIGURE 10

t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

"'!1

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-75

TLC139M, TLC339C, TLC3391, TLC339M, TLC339Q
QUADRUPLE MICROPOWER LinCMOS™ COMPARATORS
TYPICAL CHARACTERISTICS t
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
100

I


0.
Q.

:::I

en

1

0

E

1

".-

~

V

40

20
10

o

~
.........2~OC

--/

50

30

80

Il

TA=;r

80

...c1
~

I

Outputs low
No load

90

SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE

fJ. V~

,
IJ

~V

o

/'
".-~

---

-~

f-- r-

-+-:::::

70



---

0.'
Q.

:::I

30

en

125°C

I
I.
VOO - 5 V
No load

1

0

20

E

10

4

6

8

10

12

14

16

-75 -50 -25

~

- .,1

5

= 15 pF
= 5.1 k!l
=

~ .5
.,1-

....., >

4

(Pullup to VOO)

III

-

I- 0

-., .,E
1

I

~

';

o 01
.....Ig.

'"

~&:

-7 >

5 mV

-

2

:::I
Q.

:;

o

o
o

I- 0

2.5

..c01'"'4:i

I

.- 01

:z: '"c.
..... 2
:z:o..

"""-

3.5

3

20 mV-

~

4

8

75

100 125

...

40 mV

-

:::I

S:::I

o

10

12

14

16

I

,

o

2

VOO-Supply Voltage-V

,-

15mJ_
110mVI 20mV-

-

0.5

o

I

OVERORIVE - 2 mV

-

1.5

0.. ...

!---f--

6

50

-

2

1

I
2

-

4

o~.!!!
.,
..... 0

6 c

10 mV

-

0.. ...

...

> ..,1-

OVERORIVE - 2 mV

I

3

25

CL - 15 pF
RL - 5.1 k!l (Pullup to VOO)
TA - 25°C

4.5

~

25°C
1

0

HIGH-TO-LOW-LEVEL
OUTPUT RESPONSE TIME
vs
SUPPLY VOLTAGE
5

J: '"
.5!'-a;

:z:o
6 c

-

FIGURE 13

LOW-TO-HIGH-LEVEL
OUTPUT RESPONSE TIME
vs
SUPPLY VOLTAGE

III

I---i--

TA-Free-Air Temperature-oC

FIGURE 12

CL
RL
TA

-...

OUTPUTS HIGH

o
2

VOO-Supply Voltage-V

6

--...... r--

40 mV

4

6

8

10

12

14

16

VOO-Supply Voltage- V

FIGURE 14

FIGURE 15

t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TEXAS

-1!1

INSTRUMENTS
3-76

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC139M, TLC339C, TLC3391, TLC339M, TLC339Q
QUADRUPLE MICRO POWER LinCMOS™ COMPARATORS
TYPICAL CHARACTERISTICS
LOW-TO-HIGH-LEVEL OUTPUT
PROPAGATION DELAY
FOR VARIOUS OVERDRIVE VOLTAGES

5>

vs
SUPPLY VOLTAGE

5

Sol
::I .,

OCl

Ill!

0 0

»

>

OUTPUT FALL TIME

o

40mV ....
20mV- f-10 mV
5 mV
2 mV

(/)

t:

E
'"

i=

cal
..::: ~ 100

20r-~---+---+--~--4---+---~~

~ 19

mo

;>
0-

30r-~--~~~~~~~--+---~~

.!.

E

VOO = 5 V
CL = 15 pF
RL = 5.1 kn (Pullup to VOO)
TA - 25°C

0

::I
Co

.5

o

3

2

4

10r-~--~--~--~--~--+---~~

RL = 5.1 kn (Pullup to VOO)
TA = 25°C

4

5

tPLH - Low-To-High-Level
Output Propagation Oelay Time-,..s

6

8

10

12

14

16

VOO-Supply Voltage-V

FIGURE 16

FIGURE 17
HIGH-TO-LOW-LEVEL OUTPUT
PROPAGATION DELAY
FOR VARIOUS OVERDRIVE VOLTAGES

5>

5

Sol
::I .,

o Cl
Ill!
0 0

»

>

o

40mV20 mV-10 mV
5 mV
2 mV
VOO = 5 V
CL = 15 pF
RL = 5.1 kn (Pullup to VOO)
TA = 25°C

E
cal
..::: ~ 100

~ f!

~o

:E>
0_

0

::I
Co

.5

o

2

3

4

5

tPHL -High-To-Low-Level Output
Propagation Oelay Time -,..s

FIGURE 18

-1!1

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-77

TLC139M, TLC339C, TLC3391, TLC339M, TLC339Q
QUADRUPLE MICROPOWER LinCMOS™ COMPARATORS
APPLICATION INFORMATION
The inputs should always remain within the supply rails in order to avoid forward biasing the diodes in the electrostatic
discharge (ESO) protection structure. If either input exceeds this range, the device will not be damaged as long as
the input current is limited to less than 5 mA. To maintain the expected output state, the inputs must remain within
the common-mode range. For example, at 25°C with VDD = 5 V, both in"uts must remain between - 0.2 V and 4 V
to assure proper device operation.
To assure reliable operation, the supply should be decoupled with a capacitor (0.1 flF) positioned as close to the device
as possible.
Be careful to note the output and supply current limitations since the TLC139{rLC339 does not provide current
protection. For example, each output can source or sink a maximum of 20 mA; however, the total current to ground
can only be an absolute maximum of 60 mAo This prohibits sinking 20 mA from each of the four outputs simultaneously
since the total current to ground would be 80 mA.
The TLC139 and TLC339 have internal ESO protection circuits that will prevent functional failures at voltages up to
2000 Vas tested under MIL-STO-883C, Method 3015.2; however, care should be exercised in handling these devices
as exposure to ESO may result in the degradation of the device parametric performance.
12 V
SN75603

12 V

114
TLC139/TLC339

5V
(see

5.1 kll

Note Al

~

5.1 kll

100 kll

5

HALF-H DRIVER

v --'oNv---..-I
10 kll

12 V

MOTOR

SN75604
10 kll

MOTOR SPEED CONTROL
POTENTIOMETER
5V
'----I~

10 kll
5V

DIRECTION
CONTROL

HALF-H DRIVER

b

NOTES: A. The recommended minimum capacitance is 10 I'F to eliminate common ground switching noise.
B. Select C1 for change in oscillator frequency.

FIGURE 19. PULSE-WIDTH-MODULATED MOTOR SPEED CONTROLLER

~

TEXAS
INSTRUMENTS
3-78

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TLC139M, TLC339C, TLC3391, TLC339M, TLC339Q
QUADRUPLE MICROPOWER LinCMOS™ COMPARATORS
TYPICAL APPLICATION DATA
5V
•
•
•

5V

MONITORS 5-V RAIL
MONITORS 12-V RAIL
EARLY POWER FAIL WARNING
12 V

10 kll
VCC

5.1 kll

>-......-----004 RESIN

SENSE
TL7705A

REF

RESET t - -.....- - TO I'P
RESET
GND

12 V

TCt

5.1 kll

~

(see ~
Note B)

>-....-- TO I'P INTERRUPT
1/4 "EARLY POWER FAIL"
~

TLC139/TLC339

R2

NOTES:

=

2.5(Rl + R2)
. R2
B. The value of Ct determines the time delay of reset.

A. VUNREG

FIGURE 20. ENHANCED SUPPLY SUPERVISOR
12 V

12 V

Rl
100 kn
(see Note B)

12 V

R2
5 kll
(see
Note C)

5.1 kll
100 kll

5.1 kll

>--......- 12 V

22 kll

100 kG
12 V

100 kn

OUTPUT 1

5.1 kll

I

Cl
0.01 I'F
(see
Note A)

>--......- - OUTPUT 2
1/4 TLC139/TLC339
R3
100 kll
(see Note B)

OUTPUT1~
I

I

I

I
NOTES: A. Select
lIf =
B. Select
C. Select

Cl for a change in oscillator frequency where:
1.85 (100 k{J)Cl
Rl and R3 to. change duty cycle
R2 to change deadtime.

OUTPUT 2 --,

I
I

I

FIGURE 21. TWO-PHASE NONOVERLAPPING CLOCK GENERATOR

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-79

3-80

TLC352C, TLC3521, TLC352M
LinCMOSTM DUAL DIFFERENTIAL COMPARATORS
D2901, SEPTEMBER 1985-REVISED OCTOBER 1990
TLC352C, TLC3521 ... 0 OR P PACKAGE
TLC352M ... JG PACKAGE

•

Single- or Dual-Supply Operation

•

Wide Range of Supply Voltages ... 1.4 V
to 18 V

•

Very Low Supply Current Drain
150 p.A Typ at 5 V
65 p.A Typ at 1.4 V

(TOP VIEW)
O U T O S VDD
(N 2
7
OUT}

COMP {

#1

•

Built-In ESD .Protection

•

High Input Impedance ... 10 12

•

Extremely Low Input Bias Current 5 pA Typ

•

Ultrastable Low Input Offset Voltage

n Typ

IN +

3

6

IN _

GND

4

5

IN

C~~P

+

TLC352M ... FK PACKAGE
(TOP VIEW)
I-

:::J
0

u~u

•

Input Offset Voltage Change at Worst-Case
Input Conditions Typically 0.23 p.V/Month,
Including the First 30 Days

•

Common-Mode Input Voltage Range
Includes Ground

•

Outputs Compatible with TTL, MOS, and
CMOS

•

Pin-Compatible with LM393

0

au

Z"Z
3

NC
# 1 INNC
#1

2

1 2019
18

4
5

17

6

16

8

14

15
9 10 11 12 13

uau

+

u

ZZZ zZ
c.:J

description

N

"<

This
device
is
fabricated
using
LinCMOS'" technology and consists of two
independent voltage comparators, each
designed to operate from a single power supply.
Operation from dual supplies is also possible so
long as the difference between the two supplies
is 1.4 V to 18 V. Each device features extremely
high input impedance (typically greater
than 10 12 m, which allows direct interface to
high-impedance sources. The outputs are nchannel open-drain configurations and can be
connected to achieve positive-logic wired-AND
relationships. The capability of the TLC352 to
operate from a 1.4-V supply makes this device
ideal for low-voltage battery applications.

NC- No internal connection

=t>-

symbol leach comparator)
NONINVERTING
INPUT IN+
INVERTING

OUTPUT

INPUT IN-

The TLC352 has internal electrostatic discharge (ESD) protection circuits and has been ·classified with
a 2000-V ESD rating tested under MIL-STD-883C, Method 3015. However, care should be exercised in
handling this device as exposure to ESD may result in degradation of the device parametric performance.
The TLC352C is characterized for operation from 0 °C to 70°C. The TLC3521 is characterized for operation
over the industrial temperature range of - 40°C to 85 °C. The TLC352M is characterized for operation
over the full military temperature range of - 55°C to 125°C.

LinCMOS is a trademark of Texas Instruments Incorporated.

PRODUCTION DATA documents contain information

Copyright © 1990, Texas Instruments Incorporated

current as of publication date. Products conform to

specifications per the terms of Texas Instruments
standard warranty, Production processing does not
necessarily include testing of all parameters.

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303,. DALLAS. TEXAS 75265

TLC352C, TLC3521, TLC352M
LinCMOS™ DUAL DIFFERENTIAL COMPARATORS
equivalent schematic (each comparator)

I

,-----~r-----~--r~

+

~------------~-r~

I

-------------------1

I
~

I t_t--->--'

~It_t--------------_+------

~I

i51
-'I

~I

~-----'

::1
21

~I~------~t~=~--------~

~I
UI
IL t-------'
____________________
Q

>

(!)

Q

2

~

3-82

~

Q

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC352C, TLC3521, TLC352M
LinCMOSTM DUAL DIFFERENTIAL COMPARATORS

AVAILABLE OPTIONS

TA

VIO MAX

PACKAGE
SMALL-OUTLINE

CHIP-CARRIER
(FK)

CERAMIC DIP
(JG)

PLASTIC DIP

(D)

5 mV

TLC352CD

-

-

TLC352CP

5 mV

TLC3521D

-

-

TLC3521P

5 mV

-

TLC352MFK

TLC352MJG

-

AT 25°C

(P)

O°C
to
70°C
-40°C
to
85°C
-55°C
to
125°C
D packages are availabe taped and reeled. Add "R" suffix to device type, (e.g., TLC352CDR).

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VDD (see Note 1) .................................... : . . . . . . . .. 18 V
Differential input voltage, VID (see Note 2) ..................................... ± 18 V
Input voltage, VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. VDD
Input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 0.3 V to 18 V
Output voltage, Vo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18 V
Input current, II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 5 mA
Output current, 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20 mA
Duration of output short-circuit to ground (see Note 3) ........................... unlimited
Continuous total dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. See Dissipation Rating Table
Operating free-air temperature range: TLC352C . . . . . . . . . . . . . . . . . . . . . . . . . . . .. OOC to 70°C
TLC3521 ........................... - 40°C to 85 °C
TLC352M ......................... - 55°C to 125°C
Storage temperature range ......................................... - 65°C to 150°C
Case temperature for 60 seconds: FK package ................................... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package ........... 300°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package. . . . . . . .. 260°C
NOTES:

1. All voltage values except differential voltages are with respect to network ground.
2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
3. Short circuits from outputs to VDD can cause excessive heating and eventual device destruction.
DISSIPATION RATING TABLE

PACKAGE

TA :5 25°C

DERATING

DERATE

TA = 70°C

POWER RATING

FACTOR

ABOVE TA

POWER RATING

TA - 85°C
POWER RATING

TA - 125°C
POWER RATING

D

500mW

5.8 mW/oC

64°C

464 mW

377 mW

N/A

FK

500mW

11.0 mW/oC

104°C

500 mW

500mW

275 mW

JG

500 mW

8.4 mW/oC

90°C

500 mW

500mW

210 mW

P

500mW

N/A

500 mW

500 mW

N/A

N/A

~

TEXAS
INSTRUMENTS
POST OFFiCe BOX 655303 • DALLAS. TeXAS 75265

3-83

~

_. .-

.- ooof

recommended operating conditions
C-SUFFIX
MIN

Common-mode input voltage, VIC

II VDD
VDD

I-SUFFIX
MAX

MIN

1.4

16

= 5 V

0

= 10 V

Supply voltage, VDD

Operating free-air temperature, T A

NOM

M-SUFFIX

NOM

MAX

MIN

NOM

1.4

16

1.4

16

3.5

0

3.5

0

3.5

0

8.5

0

8.5

0

8.5

0

70

-40

85

-55

125

=n
nW
is:U'I

UNIT

MAX

CN

enn

V

i!~
CI.en
:l>W
.- U'I

V
°C

N

electrical characteristics at specified free-air temperature, VOD

Via

Input offset voltage

110

Input offset current

VIC = VICR min,

See Note 4

MIN

!il
.,,~z
2lrJ)
~-i

g:;or;;i
2 c:~
03::
~

("1'1

~z

~... ~4--

liB

Common~mode

VICR

Low~level

VOL

output voltage
Low~level

10L

output current

Supply current
100

Full range

voltage range

(two comparators)

VIO = -0.5 V,

10L = 0.6 rnA

VIO = -0.5 V,

VOL = 0.3 V

VID = 0.5 V,

No load

25°C

2

5

MIN

2

1

20

0.2

0.2

0.2

1.6
65

150

100

1.6
65

200
1

150
200

200

1.6
65

2N

mV

150

pA

.-

nA

n

nA

mV

~A

en
~

m

tAli characteristics are measured with zero common·mode input voltage unless otherwise noted. Full range is O°C to 70 a e

:::!:=
:I>

rnA

200

mn
=W

mU"l

V

200
1

200

200

UNIT

pA

5
2

200

5

10

5

100

MAX

1
1

200

""1"1.-

10

o to

1

TYP

7

o to

Full range

Full range

MAX

o to
100

""l"looof
TLC352M

TYP

0.6

25°C

25°C

5

5

MAX TA

input

MIN

0.3

25°C

Input bias current

MAX

1

MAXTA

!!l

TLC3521

6.5

Full range

25°C

~

TYP
2

25°C

52':-

1.4 V (unless otherwise noted)

TLC352C

TEST CONDITIONSt

PARAMETER

=

for TLC352C, -40°C to 85°C for TLC3521. and -55°C
to 125°C for TLC352M. IMPORTANT: See Parameter Measurement Information.
NOTE 4: The offset voltage limits given are the maximum values required to drive the output above 1.25 V or below 150 mV with a 10-kQ resistor between the output and VOD' They
can be verified by applying the limit value to the input and checking for the appropriate output state.

C

is:
""CI

:I>
:I>

=
ooof
C

=
en

electrical characteristics at specified free-air temperature, VOO

VIO

',0

',8

Input offset voltage

VIC = VICR min,

See Note 5

Input offset current

~
~

~z

~~

~;o~

s~3:c:~
~!Tl

~z

~i\; Cil..t
~

m

VOL

output voltage
Low-level

10L

output current
Supply current

100

(two comparators)

1

25°C
Full range

V,O = 1 V

I VOH = 5 V
I VOH=15V

V,O = -1 V,

10L = 4 mA

V,O = -1 V,

VOL=1.5V

V,O = 1 V,

No load

MAX

1

5

5

MIN

10

5
2

oto

oto

oto

VOO-l

VOO-l

VOO-l

oto

oto

oto

VOO-l.5

Full range

150

700
6

0.15

Full range

6

20

nA

pA

0.4

nA
1

150

400

400
700

16
0.15

0.3

nA

0.1

700

16

pA

V

1

1
400

mV

VOO-1.5
0.1

0.1

UNIT

10
5

0.6

150

5

1

5

25°C

MAX

1
1

0.3

VOO-l.5

TYP

7
1

Full range

25°C

TLC352M

TYP

1

25°C

25°C

MIN

6.5

MAX TA

voltage range

Low-level

TLC3521
MAX

Full range

25°C

Input bias current

output current

25°C

TYP

MAX TA

High-level
10H

MIN

25°C

Common-mode input

V,CR

TLC352C

TEST CONDITIONSt

PARAMETER

5 V (unless otherwise noted)

6
0.3

mA

16
0.15

0.4

~A

mV

0.3
0.4

mA

tAli characteristics are measured with zero common-mode input voltage unless oth~rwise noted. Full range is OOC to 70°C for TLC352C. -40°C to 85°C for TLC3521. and -55°C
to 125°C for TLC352M. IMPORTANT: See Parameter Measurement Information.
NOTE 5: The offset voltage limits given are the maximum values required to drive the output above 4 V or below 400 mV with a 10-kn resistor between the output and VOO' They
can be verified by applying the limit value to the input and checking for the appropriate output state.

Response time

TEST CONDITIONS
RL connected to 5 V through 5.1 kll,
CL = 15 pFt, See Note 6

I 100-mV input step with 5-mV overdrive
TTL-level input step
I

=i'
n

i:
Q

en
ii!

c

=
>

switching characteristics, VOO = 5 V, TA = 25°C
PARAMETER

r-

r-

MIN

TVP
650
200

MAX

UNIT
ns

t CL includes probe and jig capacitance.
NOTE 6: The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V.

5!ooo4
""1"1 r""I"In
mW
::aU"l
mN

2n

0004·

iaooo4
r-r-

n
nw
Q U"I
i:!::::!
.".
>0004

::a r-

>n
W
ooo4

QU"I

~

UI

::aN

en:!l:

TLC352C, TLC3521, TLC352M
LinCMOSTM DUAL DIFFERENTIAL COMPARATORS
PARAMETER MEASUREMENT INFORMATION
The digital output stage of the TLC352 can be damaged if it is held in the linear region of the transfer
curve. Conventional operational amplifier/comparator testing incorporates the use of a servo-loop that is
designed to force the device output to a level witl:1in this linear region. Since the servo-loop method of
testing cannot be used, the following alternative for measuring parameters such as input offset voltage,
common-mode rejection, etc., are offered.
To verify that the input offset voltage falls within the limits specified, the limit value is applied to the input
as shown in Figure 1 (a). With the noninverting input positive with respect to the inverting input, the output
should be high. With the input polarity reversed, the output should be low.

A similar test can be made to verify the input offset voltage at the common-mode extremes. The supply
voltages can be slewed as shown in Figure 1 (b) for the VICR test, rather than changing the input voltages,
to provide greater accuracy.
A close approximation of the input offset voltage can be obtained by using a binary search method to
vary the differential input voltage while monitoring the output state. When the applied input voltage
differential is equal, but opposite in polarity, to the input offset voltage, the output will change states.
5V

1 V

5.1 k!l

5.1 k!l

va

1
(a) VIa with VIC = 0

(bl VIa with VIC - 4 V

FIGURE 1. METHOD FOR VERIFYING THAT INPUT OFFSET VOLTAGE IS WITHIN SPECIFIED LIMITS

~

TEXAS
INSTRUMENTS
3-86

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TLC352C, TLC3521, TLC352M
LinCMOSTM DUAL DIFFERENTIAL COMPARATORS

PARAMETER MEASUREMENT INFORMATION
Figure 2 illustrates a practical circuit for direct dc measurement of input offset voltage that does not bias
the comparator into the linear region. The circuit consists of a switching-mode servo loop in which U 1 a
generates a triangular waveform of approximately 20-mV amplitude. Ulb acts as a buffer, with C2 and
R4 removing any residual dc offset. The signal is then applied to the inverting input of the comparator
under test, while the non inverting input is driven by the output of the integrator formed by U 1 c through
the voltage divider formed by R9 and Rl0. The loop reaches a stable operating point when the output
of the comparator under test has a duty cycle of exactly 50%, which can only occur when the incoming
triangle wave is "sliced" symmetrically or when the voltage at the noninverting input exactly equals the
input offset voltage.
Voltage divider R9 and R 10 provides a step-up of the input offset voltage by a factor of 100 to make
measurement easier. The values of R5, R8, R9, and Rl 0 can significantly influence the accuracy of the
reading; therefore, it is suggested that their tolerance level be 1 % or lower.
Measuring the extremely low values of input current requires isolation from all other sources of leakage
current and compensation for the leakage of the test socket and board. With a good picoammeter, the
socket and board leakage can be measured with no device in the socket. Subsequently, this open-socket
leakage value can be subtracted from the measurement obtained with a device in the socket to obtain
the actual input current of the device.

Voo
Ulb
1/4 TLC274CN

C2

R5
1.8 kll. 1%

C3 0.68 I'F

R6
5.1 kll

Ulc
114 TLC274CN
>--~t-VIO

R7
1 Mil
240 kll

R8
1.8 kll, 1%

(Xl00)
INTEGRATOR
C4
JO.lI'F

TRIANGLE
GENERATOR

Rl0
100 Il. 1%

R9
10 kll, 1%

R2
10 kll

FIGURE 2. CIRCUIT FOR INPUT OFFSET VOLTAGE MEASUREMENT

TEXAS . .
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-87

TLC352C, TLC3521, TLC352M
LinCMOSTM DUAL DIFFERENTIAL COMPARATORS
PARAMETER MEASUREMENT INFORMATION
Response time is defined as the interval between the application of an input step function and the instant
when the output reaches 50% of its maximum value. Response time, low-to-high-Ievel output, is measured
from the leading edge of the input pulse, while response time, high-to-Iow-Ievel output, is measured from
the trailing edge of the input pulse. Response-time measurement at low input signal levels can be greatly
affected by the input offset voltage. The offset voltage should be balanced by the adjustment at the inverting
input (as shown in Figure 3) so that the circuit is just at the transition point. Then a low signal, for example
105-mV or 5-mV overdrive, will cause the output to change state.
VDD

T 1"F

PULSE
GENERATOR

1 V----.,
10 {l
10 TURN

INPUT OFFSET VOLTAGE
COMPENSA nON ADJUSTMENT

>4-'1"'kll.{l~'----'

-1 V - - - - - '

TEST CIRCUIT

l

OVERDRIVE

INPUT

i=~F---~
I

I----f
I
I
I
I

LOW-TO-HIGHLEVEL OUTPUT

1 50 %
I

100 mV

INPUT

OVERDRIVE

I

----,

f---b.==t

100 mV

f

:

I
HIGH-TO-LOWLEVEL OUTPUT

I
I
I
I
I
1"11

90%
I

I
I I
I I

50%
10%

i4+tf-tf
~
tpHL

VOLTAGE WAVEFORMS
NOTE A: CL includes probe and jig capacitance.

FIGURE 3. RESPONSE, RISE, AND FALL TIMES CIRCUIT AND VOLTAGE WAVEFORMS

~

TEXAS
INSTRUMENTS
3-88

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TLC354C, TLC3541, TLC354M
LinCMOSTM QUADRUPLE DIFFERENTIAL COMPARATORS
02901, SEPTEMBER 1985-REVISED NOVEMBER 1990

•

Single- or Dual-Supply Operation

•

Wide Range of Supply Voltages ... 1.4 V
to 18 V

•

Very Low Supply Current Drain
300 /LA Typ at 5 V
130 /LA Typ at 1.4 V

D OR N PACKAGE
(TOP VIEW)

COMP # 1 OUT
COMP # 2 OUT

VDD
COMP { IN #2
IN +

•

Built-In ESD Protection

•

High Input Impedance . . . 1 0 12 Typ

•

Extremely Low Input Bias Current 5 pA Typ

COMP # 3 OUT
COMP # 4 OUT

GND
IN + COMP
IN - ~ # 4

COMP {IN IN +
#1
IN + -..... _ _..r- IN -

•

Ultrastable Low Input Offset Voltage

•

Input Offset Voltage Change at Worst-Case
Input Conditions Typically 0.23 /LV/Month,
Including the First 30 Days

I

t COMP
f #3

=t>-

symbol (each comparator)
NON INVERTING
INPUT IN+

OUTPUT

INVERTING
INPUT IN-

•

Common-Mode Input Voltage Range
Includes Ground

•

Outputs Compatible with TTL, MOS, and
CMOS

•

Pin-Compatible with LM339

description
This device is fabricated using LinCMOSTM technology and consists of four independent voltage comparators;
each is designed to operate from a single power supply. Operation from dual supplies is also possible if
the difference between the two supplies is 1.4 V to 18 V, Each device features extremely high input
impedance (typically greater than 10 12 m, which allows direct interface to high-impedance sources. The
outputs are n-channel open-drain configurations and can be connected to achieve positive-logic wiredAND relationships. The capability of the TLC354 to operate from a 1.4-V supply makes this device ideal
for low-voltage battery applications.
The TLC354 has internal electrostatic discharge (ESD) protection circuits and has been classified with
a 2000-V ESD rating tested under MIL-STD-883C, Method 3015. However, care should be exercised in
handling this device as exposure to ESD may result in degradation of the device parametric performance.
The TLC354C is characterized for operation from 0 °C to 70°C. The TLC3541 is characterized for operation
over the industrial temperature range of - 40°C to 85 DC, The TLC354M is characterized for operation
over the full military temperature range of - 55°C to 125°C.

LinCMOS is a trademark of Texas Instruments Incorporated.
PRODUCTION DATA documents contain informatiol
curr.nt as of publication date. Product. conform tl
specification. per the term. of Texa. Instrument
standard warranty. Production processing does no
necessarily include te.tin. of an parameters.

Copyright © 1990, Texas Instruments Incorporated

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-89

TLC354C, TLC3541, TLC354M
LinCMOSTM QUADRUPLE DIFFERENTIAL COMPARATORS
equivalent schematic (each comparator)

+

~------------~-r~

r

-------------------,

I
~ I
~ I
~ I

I
I
I
I
I
I
I
I
I
I
I
I
I
____________________

51

:l I
I
~ I
Z I
~I
~ I
U I
IL


TEXAS . "
INSTRUMENTS
3-90

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TLC354C, TLC3541, TLC354M
LinCMOSTM QUADRUPLE DIFFERENTIAL COMPARATORS

AVAILABLE OPTIONS

TA

VIO MAX

PACKAGE
SMALL-OUTLINE
(D)

PLASTIC DIP
(N)

5 mV

TLC354CD

TLC354CN

5 mV

TLC3541D

TLC3541N

5 mV

TLC354MD

TLC354MN

AT 25°C

OOC
to
70°C
-40°C
to
85°C
-55°C
to
125°C
D packages are available taped and reeled. Add "R" suffix to
device type, (e.g., TLC354CDRl.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18 V
Differential input voltage, VID (see Note 2) ..................................... ± 18 V
Input voltage, VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. VDD
Input voltage range .............................................. "
- 0.3 V to 18 V
Output voltage, VO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18 V
Input current, II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 5 mA
Output current, 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20 mA
Duration of output short circuit to ground (see Note 3) ........................... unlimited
Continuous total dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. See Dissipation Rating Table
Operating free-air temperature range: TLC354C ............................. O°C to 70°C
TLC3541 ........................... - 40°C to 85 °C
TLC354M ......................... - 55°C to 125°C
Storage temperature range ......................................... - 65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ................ " . . . .. 260°C
NOTES:

1. All voltage values except differential voltages are with respect to network ground.
2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
3. Short circuits from outputs to VDD can cause excessive heating and eventual device destruction.
DISSIPATION RATING TABLE

PACKAGE

TA "" 25°C
POWER RATING

D

500 mW

N

500 mW

DERATING

DERATE

FACTOR

ABOVE TA

7.6 mW/oC
9.2 mW/oC

84°C
96°C

TA

=

70°C

TA = 85°C

TA - 125°C
POWER RATING

POWER RATING

POWER RATING

500mW

494 mW

190 mW

500 mW

500 mW

230 mW

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-91

!::-t
C-SUFFIX
MIN

Supply voltage, VOO
VOD ~
Common-mode input voltage, V'C

VOO ~
VOO ~

1.4 V
5V
10 V

NOM

1.4
0
0
a

Operating free-air temperature, T A

a

I-SUFFIX
MAX

MIN

16
0.2
3.5
8.5
70

1.4
0
0

Via

~

'"
-i

~

Input offset current

liB

Input bias current

~(J)

i~~
~ c:1"'I

:~ 1"'s:~
1

!nZ

~ Ui.ct
'"

...
~
m

V'C

= V,CR

min,

output current

25°C

VID

output voltage

output current

Supply current
'DD

(four comparators)

=

I VOH = 5 V

1 V

1 VOH

V,D

=

-0.5 V,

'OL

V,D

=

-0.5 V,

VOL

V,D

= 0.5

Low-level
IOL

2

V,

=

= 0.6

= 300

No load

mV

25°C

5

TYP
2

31·

=;::!
en
:.=ow

V

°c

e:-'

"CI-t
........
mn

TLC354M
MAX

MIN

5

1

5
2

o to

o to
0.2
0.1

1

200
1.6
130

400

1

200

100

200
1

300

0.1
1

100

1.6
130

300
400

200
200

1

1.6
130

mV

:11:1

2:

-t

s;:

nA

V

....
n
=
31:

nA

:.=0

nA

~A

mV

mA
300
400

;;:31:
m

~A

common-mode input voltage unless otherwise noted. Full range is OOC to 70 0 e for the TLC354C, -40°C to 85°C for the TLC3541, and
-55°C to 125°C for the TLC354M. IMPORTANT: See Parameter Measurement Information.
NOTE 4: The offset voltage limits given are the maximum values required to drive the output above 1.25 V or below 150 mV with a 10·kO resistor between the output and VOD' They
can be verified by applying the limit value to the input and checking for the appropriate output state.

t All -characteristics are measured with zero

,

pA
20

0.2

W
Cl
_UI
"'1'1 ,p.

UNIT

pA
10

5

200

5

1
1

0.1

MAX

10

o to

100

TYP
2

0.2

1

ClUi
:II:I,p.

I

7

0.6

Full range

Full range

MIN

5

Full range

25°C

3I: W

=~
enn

V

TLC3541
MAX

0.3

25°C
mA

16
0.2
3.5
8.5
125

1

25°C

15 V

MAX

6.5

25°C

Low-level
VOL

TYP

MAX TA

High-level
IOH

MIN

MAX TA

voltage range

NOM

UNIT:

1.4 V (unless otherwise noted I

Full range

Common-mode input

V,CR

1.4
0
0
0
-55

a

25°C

See Note 4

MIN

16
0.2
3.5
8.5
85

-40

25°C

',0

:n-

Z

Input offset voltage

MAX

TLC354C

TEST CONDITIONS t

PARAMETER

M-SUFFIX

NOM

electrical characteristics at specified free-air temperature, VOO

hl

=
..
nn

recommended operating conditions

'"J,
'"

'

"CI

:11:1

:=

=
en
:11:1

electrical characteristics at specified free-air temperature.

Input offset voltage

110

Input offset current

liB

Input bias current

MIN
VIC ~ VICR min,

25'C

See Note 4

"

C/l
....

VOL

f.1Z

~r.n

~-l

~;o~

8o~
C~

output current

output voltage
output current

Supply current

IDD

(four comparators)

l VOH

~

~

-1 V,

10L

VID

~

-1 V,

VOL

VID

~

1 V,

No load

~

4 mA

~

1.5 V

5

2

5

5
2

VOD-1

VOO-1

VOO-1

oto

oto

oto

VOO-1.5

VOO -1.5

VOO-1.5
0.1

Full range
25'C

1

400

150

700
6

0.3

25'C

Full range

150

700

16

6
0.6

0.3

0.8

400
700

16

6
0.6

16
0.3

0.8

nA

nA
1

400

nA

V

0.1

1

mV

pA
20

oto

UNIT

pA
10

oto

150

5

1
1

0.1

MAX

10

1

Full range

TYP

7

0.6

25'C

VID

MIN

oto

25'C

5 V

~ 15 V

2

5

5

Full range

I VOH

TLC354M
MAX

0.3

25'C

VID ~ 1 V

TYP

1

MAX TA

voltage range

MIN

6.5

25'C

Low-level

IOL

2

25'C

Low-level

~
-n_

TLC3541
MAX

MAX TA

High-level

10H
0

TYP

Full range

Common-mode input

VieR

5 V (unless otherwise noted)
TLC354C

TEST CONDITIONS t

PARAMETER

VIO

Voo

0.6
0.8

~A

mV

....

mA

C')

~~

~ Ui~

NOTE 4: The offset voltage limits given are the maximum values required to drive the output above 4 V or below 400 mV with a 10-kG resistor between the output and VOD' They

"'"
"
m

switching characteristics. VOO

can be verified by applying the limit value to the input and checking for the appropriate output state.

Cf)

PARAMETER
Response time

5 V. T A

TEST CONDITIONS

MIN

I 100-mV input step with

CL ~ 15 pF:I=, See Note 5

I

5-mV overdrive

TTL-level input step

TYP
650
200

MAX

UNIT

en

;1

c
c:
>
c

=
c:
....

5!-I

."
ns

CL includes probe and jig capacitance.
NOTE 5: The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V.
:1=

i

....-am

25°C

RL connected to 5 V through 5.1 k{l,

s:
Q

mA

t All characteristics are measured with zero common-mode input voltage unless otherwise noted. Full range is 0 °C to 70°C for the TL354C, - 40°C to 85 °C for the TLC3541, and - 55°C
to 125°C for the TLC354M. IMPORTANT: See Parameter Measurement Information.

~Z

:;"

. " C')

mW

=U'I
m~

i2C')

-I-

>-1

........

C')
C') W

Q

U'I

s::!::

-a-

>-1
=
....

>C')

-I W

~

QU'I

=~

enS:

TLC354C, TLC3541, TLC354M
LinCMOSTM QUADRUPLE DIFFERENTIAL COMPARATORS

PARAMETER MEASUREMENT INFORMATION
The digital output stage of the TLC354 can be damaged if it is held in the linear region of the transfer
curve. Conventional operational amplifier/comparator testing incorporates the use of a servo-loop that is
designed to force the device output to a level within this linear region. Since the servo-loop method of
testing cannot be used, the following alternative for measuring parameters such as input offset voltage,
common-mode rejection, etc., are offered.
To verify that the input offset voltage falls within the limits specified, the limit value is applied to the input
as shown in Figure 1 (a). With the noninverting input positive with respect to the inverting input, the output
should be high. With the input polarity reversed, the output should be low.
A similar test can be made to verify the input offset voltage at the common-mode extremes. The supply
voltages can be slewed as shown in Figure 1 (b) for the VICR test, rather than changing the input voltages,
to provide greater accuracy.
A close approximation of the input offset voltage can be obtained by using a binary search method to
vary the differential .input voltage while monitoring the output state. When the applied input voltage
differential is equal, but opposite in polarity to the input offset voltage, the output will change state.
1V

5V

5.1 kll

5.1 kll

Vo
-4 V

(a) VIO with VIC

=0

1

(b) VIO with VIC - 4 V

FIGURE 1. METHOD FOR VERIFYING THAT INPUT OFFSET VOLTAGE IS WITHIN SPECIFIED LIMITS

TEXAS

~

INSTRUMENTS
3-94

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TLC354C, TLC3541, TLC354M
LinCMOS™ QUADRUPLE DIFFERENTIAL COMPARATORS
PARAMETER MEASUREMENT INFORMATION
Figure 2 illustrates a practical circuit for direct dc measurement of input offset voltage that does not bias
the comparator into the linear region. The circuit consists of a switching-mode servo loop in which U 1a
generates a triangular waveform of approximately 20-mV amplitude. U1b acts as a buffer, with C2 and
R4 removing any residual dc offset. The signal is then applied to the inverting input of the comparator
under test, while the noninverting input is driven by the output of the integrator formed by U 1c through
the voltage divider formed by R9 and R10. The loop reaches a stable operating point when the output
of the comparator under test has a duty cycle of exactly 50%, which can only occur when the incoming
triangle wave is "sliced" symmetrically or when the voltage at the noninverting input exactly equals the
input offset voltage.
Voltage divider R9 and R 10 provides a step-up of the input offset voltage by a factor of 100 to make
measurement easier. The values of R5, R8, R9, and R10 can significantly influence the accuracy of the
reading; therefore, it is suggested that their tolerance level be 1 % or lower.
Measuring the extremely low values of input current requires isolation from all other sources of leakage
current and compensation for the leakage of the test socket and board. With a good picoammeter, the
socket and board leakage can be measured with no device in the socket. Subsequently, this open-socket
leakage value can be subtracted from the measurement obtained with a device in the socket to obtain
the actual input current of the device.
voo
U1b
1/4 TLC274CN

C2

R5
1.8 kll, 1%

C3 0.68 I'F

R6

U1c
1/4 TLC274CN

5.1 kG

>--~

R7
1 MG

(X100)

R8

240 kG

___ VIO

INTEGRATOR

1.8 kG. 1%

C4
10.11'F

C1
0.11'F

TRIANGLE
GENERATOR

R10
100 G. 1%

R9
10 kG. 1%

R2
10 kG

FIGURE 2. CIRCUIT FOR INPUT OFFSET VOLTAGE MEASUREMENT

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-95

TLC354C, TLC3541, TLC354M
LinCMOSTM QUADRUPLE DIFFERENTIAL COMPARATORS
PARAMETER MEASUREMENT INFORMATION
Response time is defined as the interval between the application of an input step function and the instant
when the output reaches 50% of its maximum value. Response time, low-to-high-Ievel output, is measured
from the leading edge of the input pulse, while response time, high-to-Iow-Ievel output, is measured from
the trailing edge of the input pulse. Response-time measurement at low input signal levels can be greatly
affected by the input offset voltage. The offset voltage should be balanced by the adjustment at the inverting
input (as shown in Figure 3) so that the circuit is at the transition point. Then a low signal, for example
105-mV or 5-mV overdrive, will cause the output to change state.
VDD

t

PULSE
GENERATOR

1 JLF

1 V-----,

INPUT OFFSET VOLTAGE
COMPENSATION ADJUSTMENT

10 n >4--"l/1li,--4__- - '
10 TURN
1 kn
-1 V - - - - - I

TEST CIRCUIT
OVERDRIVE

INPUT

LOW-TO-HIGHLEVEL OUTPUT

t
i==-F--I----f
I

I
I
I
I

100 mV

l
INPUT

OVERDRIVE
----,

I

f---l=.==i

100 mV

:

f

I

1 50 %
I

HIGH-TO-LOWLEVEL OUTPUT

I
I
I
I
I
I'IIIJ'IIII--*-tpHL

VOLTAGE WAVEFORMS
NOTE A: CL includes probe and jig capacitance.

FIGURE 3. RESPONSE, RISE. AND FALL TIMES CIRCUIT AND VOLTAGE WAVEFORMS

TEXAS . "
INSTRUMENTS
3-96

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC371C, TLC371I, TLC371M, TLC371Y
LinCMOSTM DIFFERENTIAL COMPARATORS
JULY 1991-REVISED FEBRUARY 1992

•

Single or Dual-Supply Operation

•

Wide Range of Supply Voltages
3 Vto 16 V

•

Very Low Supply Current Drain
75 ~ Typ at5V

•

Fast Response Time ... 200 ns Typ for
TTL-Level Input Step

•
•

D OR P PACKAGE
(TOP VIEW)

aUTOs

ININ +
GND

2
3
4

7

6
5

VDD

NC
NC
NC

NC - No internal connection

Bulit-In ESD Protection

symbol

Extremely Low Input Bias Current
5 pATyp

•

Ultrastable Low Input Offset Voltage

•

Common-Mode Input Voltge Range
Includes Ground

•

Output Compatible with TTL, MOS, and
CMOS

IN+:t>-

OUT

IN-

description
The TLC371 is a voltage comparator fabricated using LinCMOS'" technology and designed to operate from a
single power supply. Operation from dual supplies is also possible if the difference between the two supplies
is 2 V to 18 V. The TLC371 features extremely high input impedance, allowing direct interfacing with
high-impedance sources. The output is in n-channel open-drain configuration.
The TLC371 has internal electrostatic discharge (ESD) protection circuits and has been classified with a 2000-V
ESD rating tested under MIL-STD-883, Method 3015.1. However, care should be exercised in handling this
device as exposure to ESD may result in a degradation of the device parametric performance.
The TLC371 C is characterized for operation from O°C to 70°C. The TLC371I is characterized for operation from
- 40°C to 85°C. The TLC371 M is characterized for operation over the full military temperature range of - 55°C
to 125°C.

equivalent schematic (each comparator)

IN-

IN +
LinCMOS is a trademark of Texas Instruments Incorporated.
PRODUCTION DATA informallon Is cutrenl as of publication date.

Products conform to specifications per the terms of Texas
Instruments standard warranty. Production processing does not

necessarily Include testing of all parameters.

TEXAS

~

Copyright © 1992. Texas Instruments Incorporated

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-97

TLC371V
LinCMOS™ DIFFERENTIAL COMPARATORS
chip information
These chips, properly assembled, display characteristics similar to the TLC371 (see electrical table on
TLC371y). Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads.
Chips may be mounted with conductive epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS

VDD

(3)

IN+
(2)

IN-

T.

GND

57
CHIP THICKNESS: 15 TYPICAL
BONDING PADS: 4 x 4 MINIMUM

TJ max = 150°C
TOLERANCES ARE ",10%
ALL DIMENSIONS ARE IN MILS
NO BACKSIDE METALIZATION

~~~-------------57--------------~.1
1111111111111111111111111111111111111111111111111111111111

TEXAS

~

INSlRUMENTS
3-98

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PIN (4) INTERNALLY CONNECTED
TO BACKSIDE OF CHIP

TLC371C, TLC371I, TLC371M, TLC371Y
LinCMOS™ DIFFERENTIAL COMPARATOR
AVAILABLE OPTIONS
TA

VIOmax
at 25'C

PACKAGE
SMALL OUTLINE
(D)

PLASTIC DIP
(P)

O'C to 70'C

5mV

TLC371CD

TLC371CP

- 40'C to 85'C

5mV

TLC3711D

TLC3711P

- 55'C to 125'C

5mV

TLC371MD

TLC371MP

.

CHIP FORM
(Y)
TLC371yt

.

t Chips are tested at T A = 25'C. See TLC371 Y for electrical characteristics .
The D package is available taped and reeled. Add the suffix "R" to the device type (e.g., TLC371 CDR).

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Voo (see Note 1) ............................................................ 18 V
Differential input voltage, VIO (see Note 2) .................................................. ± 18 V
Input voltage range, VI ............................................................. - 0.3 to 18 V
Output voltage, Vo ......................................................................... 18 V
Input current, II ......................................................................... ± 5 rnA
Output current, 10 .........................................•............................ 20 rnA
Duration of output s.hort circuit to ground (see Note 3) ...................................... unlimited
Continuous total power dissipation ..................................... See Dissipation Rating Table
Operating free-air temperature range: TLC371 C ......................................... 0 to 70°C
TLC371I ..................................... - 40°C to 85°C
TLC371 M ................................... - 55°C to 125°C
Storage temperature range ...................................................... - 65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................... 260°C
NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.
2. Oifferential voltages are at the non inverting input terminal with respect to the inverting input terminal.
3. Short circuits from outputs to VOD can cause excessive heating and eventual device destruction.
DISSIPATION RATING TABLE
PACKAGE

TA,,25'C
POWER RATING

DERATING
FACTOR

DERATE
ABOVETA

TA = 70'C
POWER RATING

TA= 85'C
POWER RATING

TA = 125'C
POWER RATING

D
P

500mW
500mW

5.8mWI'C
8.0mWI'C

64'C
87'C

464mW
500mW

377mW
500mW

145mW
200mW

recommended operating conditions
C-SUFFIX
MIN
Supply voltage, VOD
Common-mode input voltage, VIC
Operating free-air temperature, T A

I VOD =5V

I VOD= 10V

NOM

M-SUFFIX

I-SUFFIX
MAX

MIN

3

16

4

16

0

3.5

0

3.5

8.5

0

8.5

0

8.5

70

-40

85

-55

125

MAX

MIN

3

16

0

3.5

0
0

NOM

NOM

MAX

UNIT
V
V
'C

TEXAS ,If

INSIRUMENlS
POST OFFICE BOX 655303 • OALLAS, TEXAS 75265

3-99

rg

::1(')

Input offset voltage

Via

TAt

TEST CONDITIONS

PARAMETER

VIC = VICR min,

See Note 4

MIN

TLC371C
TYp:I:

MAX

1

5

25°C
Full range

0

."

~z

~~~

at:

~3:
I! 1"1

;~~
i

10H

output current

VOL

output voltage

10L

Low-level
output current

Low-level

100

Supply current

VIO= 1 V
VID=-l V,

10L = 4 rnA

VIO=-l V,

VOL= 1.5V

VID= 1 V,

MAX

1

5

5

10

1

1
1
5
2

25°C
Full range

Oto
VOO-1.5

Oto
VOO-l.5

Oto
VOO-l.5

25°C

0.1

Full range

1

25°C

150

Full range
25°C

400

150

6

16
75

Full range

0.1
150

700
6

150

16
75

200

400
700

6

16

150

nA
nA

nA
3

400

mV

V

1

700

25°C

No load

0.1

75

200

flA
mV
rnA

150
200

flA

tAli characateristics are measured with zero common-mode input voltage unless otherwise noted. Full range is O°C to 70°C for TLC371 C, -40°C to 85°C for TLC371I, and -55°'
to 125°C for TLC371 M. IMPORTANT: See Parameter Measurement Information.
:I: All typical values are at T A = 25°C.
NOTE 4: The offset voltage limits given are the maximum values required to drive the output above 4 V or below 400 mV with a 10-kQ resistor between the output and VOO. The
can be verified by applying the limit value to the input and checking for the appropriate output state.

switching characteristics, Vee = 5 V, TA = 25°C
TEST CONDITIONS

PARAMETER
Response time

MIN

TYP

RL connected to 5 V through 5.1 kQ,

1OO-mV input step with 5-mV overdrive

650

CL = 15 pF§,

TTL-level input step

200

See Note 5

§ CL includes probe and jig capacitance.
NOTE 5: The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V.

MAX

5:....,
0 ....

0(')

pA
20

Oto
VOO-l

UNIT

pA
10

5
0.6

(')(0)

TLC371M
TYp:j:

Oto
VOO-l

I VOH= 5V
IVOH= 15V

MIN

Oto
VOO-l

Common-mode input

High-level

MAX
7

5

MAX

voltage range

1

0.3

25°C

VICR

TLC371I
TYp:j:

1

MAX

Input bias current

liB

MIN

6.5

25°C
Input offset current

110

~
~

r--t
_.
r-

electrical characteristics at specified free-air temperature, Vee = 5 V (unless otherwise noted)

UNIT
(.lS

-i~

;::-t

Or-

-(')

"T1 (0)
"T1 ....,

m ....

:::a ~-

m-t
Zr-t(')

(0)
l>....,
r- ....
(')5:

o

5:

;g
:::a
!t
o
:::a
en

TLC371Y
LinCMOS™ DIFFERENTIAL COMPARATOR
electrical characteristics at Voo

=5 V, TA = 25°C (unless otherwise noted)
TYP

MAX

1

5

mV

Input offset current

1

100

pA

Input bias current

5

100

pA

PARAMETER
VIO

Input offset voltage

110
liB
VICR

Common-mode input voltge range

TEST CONDITIONS

MIN

VIC = VICRmin

oto

V

VOO-1

10H

High-level output current

0.1

VOL

Low-level output voltage

150

10L

Low-level output current

100

Supply current

6

UNIT

nA
400

16

75

mV
mA

150

i.tA

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-101

TLC371 C, TLC371I, TLC371 M
LinCMOS™ DIFFERENTIAL COMPARATOR
PARAMETER MEASUREMENT INFORMATION
The digital output stage of the TLC371 can be damaged if it is held in the linear region of the transfer curve.
Conventional operational amplifier/comparator testing incorporates the use of a servo-loop that is designed to
force the device output to a level within this linear region. Since the servo-loop method of testing cannot be used,
the following alternatives for measuring parameters such as input offset voltage, common-mode rejection, etc.,
are offered.
To verify thatthe input offset voltage falls within the limits specified, the limit value is applied to the input as shown
in Figure1 (a). With the non inverting input positive with respect to the inverting input, the output should be high.
With the input polarity reversed, the output should be low.
A similar test can be made to verify the input offset voltage at the common-mode extremes. The supply voltages
can be slewed as shown in Figure1 (b) for the VieR test, rather than changing the input voltages, to provide
greater accuracy.
5V

1V

ApplledVIO
Limit

1
-=-

ApplledVIO
Limit

-=-

-=(a) VIO WITH VIC

1

-=-

-=-

=0

-=(b) VIO With VIC

-4V

-=-

=4 V

Figure 1. Method for Verifying That Input Offset Voltage Is Within Specified Limits
A close approximation of the input offset voltage can be obtained by using a binary search method to vary the
differential input voltage while monitoring the output state. When the applied input voltage differential is equal,
but opposite in polarity, to the input offset voltage, the output will change states.

TEXAS "J1

INSlRUMENTS
3-102

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC371 C, TLC371I, TLC371 M
LinCMOS™ DIFFERENTIAL COMPARATORS
PARAMETER MEASURMENT INFORMATION
Figure 2 illustrates a practical circuit for direct dc measurement of input offset voltage that does not bias the
comparator in the linear region. The circuit consists of a switching-mode servo-loop in which U1 a generates a
triangular waveform of approximately 20-mV amplitude. U1 b acts as a buffer, with C2 and R4 removing any
residual dc offset. The signal is then applied to the inverting input of the comparator under test, while the
non inverting input is driven by the output of the integrator formed by U1 c through the voltage divider formed by
R9 and R10. The loop reaches a stable operating point when the output of the comparator under test has a duty
cycle of exactly 50%, which can only occur when the incoming triangle wave is "sliced" symmetrically or when
the voltage at the noninverting input exactly equals the input offset voltage.
Voltage divider R9 and R 10 provides a step-up ofthe input offset voltage by a factor of 100 to make measurement
easier. The values of R5, R8, R9, and R1 0 can significantly influence the accuracy of the reading; therefore, it
is suggested that their tolerance level be 1% or lower.
Measuring the extremely low values of input current requires isolation from all other sources of leakage current
and compensation for the leakage of the test socket and board. With a good picoammeter, the socket and board
leakage can be measured with no device in the socket. Subsequently, this open-socket leakage value can be
subtracted from the measurement obtained with a device in the socket to obtain the actual input current of the
device.
Voo

Ulb
1/4 TLC274C

C3
0.S8 fiF

Rs
1.8 kQ, 1%

Ulc
1/4 TLC274C

RS
5.1 kQ
R4
47kQ

R7
1 MQ

VIO
(Xl 00)

Rl
240kQ

-=-

R8
1.8 kQ. 1%

T-=-

Cl
0.1 fiF

Rl0
100 Q, 1%
R3
100Q

R2
10 kQ

C4
0.1 fiF

R9
10 kQ, 1%

-=-

Figure 2. Circuit for Input Offset Voltage Measurement

TEXAS

~

INSIRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-103

TLC371 C, TLC371', TLC371 M
LinCMOS™ DIFFERENTIAL COMPARATOR
PARAMETER MEASUREMENT INFORMATION
Propagation delay time is defined as the interval between the application of an input step function and the instant
when the output reaches 50% of its maximum value. Propagation delay time, low-to-high-Ievel output is
measured from the leading edge of the input pulse, while propagation delay time, high-to-Iow-Ievel output, is
measured from the trailing edge of the input pulse. Propagation delay time measurement at low input signal
levels can be greatly affected by the input offset voltage. The offset voltage should be balanced by the adjustment
at the inverting input (as shown in Figure 3) so that the circuit is just at the transition point. Then a low signal,
for example 105 mV or 5 mV overdrive, will cause the output to change state.
voo

1;

5.1 kO

Input Offset Voltage + 1 V
100
Compensation
10 Turn ~--.A.f'v"v----.---a
Adjustment
1 kO
-1V - - - - '

1 ",F

CL
(see Note A)

TEST CIRCUIT

Overdrive

Overdrive

Input

11,t-----*I -----f

100 mV

90%""'--

I
I
I
I

I
1
1-.1
I

';~~===t-}
I

I
I
Low-to-Hlgh
Level Output

'ppm

1

Hlgh-to-Low
Level Output

I
I
I
I
I

~tf

I

!4

I
I
I
I
I
I
I
I
I

!4

tpLH

10%
1

J.-

tf

tpHL

VOLTAGE WAVEFORMS
NOTE A: CL includes probe and jig capacitance.

Figure 3. Propagation Delay, Rise, and Fall Times Circuit and Voltage Waveforms

TEXAS ~

INSlRUMENTS
3-104

POST OFFICE BOX 855303 • DALLAS, TEXAS 75285

TLC371 C, TLC371I, TLC371 M
LinCMOSTM DIFFERENTIAL COMPARATORS
PRINCIPLES OF OPERATION
LinCMOS'· process
The LinCMOS'· process is a linear polysilicon-gate CMOS process. Primarily designed for single- supply
applications, LinCMOS'· products facilitate the design of a wide range of high-performance analog functions
from operational amplifiers to complex mixed-mode converters.
While digital designers are experienced with CMOS, MOS technologies are relatively new for analog designers.
This short guide is intended to answer the most frequently asked questions related to the quality and reliability
of LinCMOS'· products. If you have any further questions, please contact your local TI sales office.

electrostatic discharge
CMOS circuits are prone to gate oxide breakdown when exposed to high voltages even if the exposure is only
for very short periods of time. Electrostatic discharge (ESD) is one of the most common causes of damage to
CMOS devices. It can occur when a device is handled without proper consideration for environmental
electrostatic charges, e.g., during board assembly. If a circuit in which one amplifier from a dual op amp is being
used and the unused pins are left open, high voltages will tend to develop. If there is no provision for ESD
protection, these voltages may eventually punch through the gate oxide and cause the device to fail. To prevent
voltage build-up, each pin is protected by internal circuitry.
Standard ESD protection circuits safely shunt the ESD current by providing a mechanism whereby one or more
transistors break down at voltages higher than the normal operating voltages but lower than the breakdown
voltage of the input gate. This type of protection scheme is limited by leakage currents which flow through the
shunting transistors during normal operation after an ESD voltage has occurred. Although these currents are
small, on the order of tens of nanoamps, CMOS amplifiers are often specified to draw input currents as low as
tens of picoamps.
To overcome this limitation, TI design engineers developed the patented ESD protection circuit shown in
Figure 4. This circuit can withstand several successive 2-kV ESD pulses, while reducing or eliminating leakage
currents that may be drawn through the input pins. A more detailed discussion of the operation of TI's ESD
protection circuit is presented on the next page.
All input and output pins on LinCMOS'· and Advanced LinCMOS'· products have associated ESD protection
circuitry that undergoes qualification testing to withstand 2000 V discharged from a 1OO-pF capacitor through
a 1500-Q resistor (human body model) and 200 V from a 100-pF capacitor with no current-limiting resistor
(charged device model). These tests simulate both operator and machine handling of devices during normal test
and assembly operations.
voo
R1

Input

_.--_.---"\NIv--+-----+---._ To Protected Circuit
R2

02

01

03

vss-.---.---+--+-----.Figure 4. LinCMOS'" ESO Protection Schematic
Advanced LinCMOS is a trademark of Texas Instruments Incorporated.

TEXAS

~

INSIRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3--105

TLC371 C, TLC371I, TLC371 M
LinCMOS™ DIFFERENTIAL COMPARATOR
input protection circuit operation
Texas Instruments patented protection circuitry allows for both positive- and negative-going ESO transients.
These transients are characterized by extremely fast rise times and usually low energies, and can occur both
when the device has all pins open and when it is installed in a circuit.

positive ESO transients
Initial positive charged energy is shunted through 01 to Vss. 01 will turn on when the voltage at the input rises
above the voltage on the Voo pin by a value equal to the VBE of 01. The base current increases through R2
with input current as 01 saturates. The base current through R2 will force the voltage at the drain and gate of
02 to exceed its threshold level (VT - 22 to 26 V) and turn 02 on. The shunted input current through 01 to Vss
is now shunted through the n-channel enhancement-type MOSFET 02 to Vss. If the voltage on the input pin
continues to rise, the breakdown voltage of the zener diode 03 is exceeded and all remaining energy is
dissipated in R 1 and 03. The breakdown voltage of 03 is designed to be 24 to 27 V, which is well below the gate
oxide voltage of the circuit to be protected.

negative ESO transients
The negative charged ESO transients are shunted directly through 01. Additional energy is dissipated in R1 and
02 as 02 becomes forward biased. The voltage seen by the protected circuit is - 0.3 V to -1 V (the forward
voltage of 01 and 02).

circuit design considerations
LinCMOS'" products are being used in actual circuit environments that have input voltages that exceed the
recommended common-mode Input voltage range and activate the input protection circuit. Even under normal
operation, these conditions occur during circuit power-up or power-down, and in many cases, when the device
is being used for a signal conditioning function. The input voltages can exceed VieR and not damage the device
only if the inputs are current limited. The recommended current limit shown on most product data sheets is
±5 mA. Figures 5 and 6 show typical characteristics for input voltage vs input current.
Normal operation and correct output state can be expected even when the input voltage exceeds the positive
supply voltage. Again, the input current should be externally limited even though internal positive current limiting
is achieved in the input protection circuit by the action of 01. When 01 is on, it will saturate and limit the current
to approximately 5-mA collector current by design. When saturated, 01 base current increases with input
current. This base current is forced into the Voo pin and into the device 100 or the Voo supply through R2
prodUCing the current limiting effects shown in Figure 5. This internal limiting lasts only as long as the input
voltage is below the VT of 02.
When the input voltage exceeds the negative supply voltage, normal operation is affected and output voltage
states may not be correct. Also, the isolation between channels of multiple devices (duals and quads) can be
severely affected. External current limiting must be used since this current will be directly shunted by 01 and
02 and no internal limiting is achieved. If normal output voltage states are required, an external input voltage
clamp is required (see Figure 7).

TEXAS ""
INSTRUMENTS
3-106

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TLC371 C, TLC371I, TLC371 M
LinCMOS™ DIFFERENTIAL COMPARATORS
INPUT CURRENT

INPUT CURRENT

vs

vs

INPUT VOLTAGE

INPUT VOLTAGE

8

10
TA=25°C

7

................

6



o

o
u ~ U OU
z""z>z
3

NC

•

2

1 20 19

15

Outputs Compatible with TTL, MOS, and
CMOS

9 1011 12 13

UO U

•

#2IN-

+ U

zz z ZZ

Pin-Compatible with LM393

(CJ

N

""

description

NC _. No internal connection

This
device
is
fabricated
using
LinCMOS'M technology and consists of two
independent voltage comparators, each
designed to operate from a single power supply,
Operation from dual supplies is also possible if
the difference between the two supplies is 2 V
to 18 V. Each device features extremely high
input impedance (typically greater than 10 1 2
allowing direct interfacing with high-impedance
sources. The outputs are n-channel open-drain
configurations and can be connected to achieve
positive-logic wired-AND relationships,

=t>-

symbol (each comparator)
NONINVERTING
INPUT IN+
INVERTING

OUTPUT

INPUT IN-

m,

The TLC372 has internal electrostatic discharge (ESD) protection circuits and has been classified with
a 2000-V ESD rating tested under MIL-STD-883C, Method 3015.1. However, care should be exercised
in handling this device as exposure to ESD may result in a degradation of the device parametric performance.
The TLC372C is characterized for operation from 0 °C to 70°C. The TLC3721 is characterized for operation
from -40°C to 85°C. The TLC372M is characterized for operation over the full military temperature range
of - 55°C to 125°C. The TLC372Q is characterized for operation from - 40°C to 125°C.

LinCMOS is a trademark of Texas Instruments Incorporated.

PRODUCTION DATA documents contain information
current as of publication date. Products conform to
specifications per the terms of Texas Instruments
standard warranty. Production processing does not
necessarily include testing of all parameters.

TEXAS

~

Copyright © 1990, Texas Instruments Incorporated

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-109

TLC372C, TLC3721, TLC372M, TLC372Q
LinCMOS™ DUAL DIFFERENTIAL COMPARATORS

I
~----~~----~-1-~

+

~------------~-r~

;:

...i!!o
ca

Co

E
o
u

.s:::
u
ca

~

u

'';:

ca

E
CD

'5UI

...
C

CD

iij

>

'5
eCD

I

-------------------,

I
~ I
!l! I
~ I

I
I
I
I
I
I
I
I
I
I
I
I
I
____________________

51

I
Ci! I
::? I
Z I
~I
oJ

~I
U

I
IL

~

c

Q

C

Z

>

(!)

TEXAS.
INSTRUMENTS
3-110

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TLC372C, TLC3721, TLC372M, TLC3720

LinCMOSTM DUAL DIFFERENTIAL COMPARATORS
AVAILABLE OPTIONS
VIO MAX

TA

AT 25°C

PACKAGE
SMALL-OUTLINE

CHIP-CARRIER

CERAMIC DIP

PLASTIC DIP

(D)

(FK)

(JG)

(P)

O°C
to

5 mV

TLC372CD

~

~

TLC372CP

5 mV

TLC372ID

~

~

TLC372IP

5 mV

TLC372MD

5 mV

TLC372QD

70°C
-40°C
to

85°C
-55°C
to

TLC372MFK

TLC372MJG

TLC372MP

~

TLC372QP

125°C
-40°C
to

~

125°C
D packages are available taped and reeled. Add "R" suffix to device type, (e.g., TLC372CDR).

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VOO (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18 V
Differential input voltage, VIO (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 18 V
Input voltage range, VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~ 0.3 V to 18 V
Output voltage, VO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18 V
Input current, II. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 5 mA
Output current, 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20 mA
Duration of output short-circuit to ground (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited
Continuous total dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. See Dissipation Rating Table
Operating free-air temperature range: TLC372C . . . . . . . . . . . . . . . . . . . . . . . . . . . .. O°C to 70°C
TLC3721 . . . . . . . . . . . . . . . . . . . . . . . . . . . ~ 40°C to 85 °C
TLC372M . . . . . . . . . . . . . . . . . . . . . . . . . ~ 55°C to 125°C
TLC372Q . . . . . . . . . . . . . . . . . . . . . . . . . ~40°C to 125°C
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~ 65°C to 150°C
Case temperature for 60 seconds: FK package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds, D or P package ......... 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package '. . . . . . . . . .. 300°C
NOTES: 1. All voltage values except differential voltages are with respect to network ground.
2. Differential voltages are at the noninverting input termi~al with respect to the inverting input terminal.
3. Short circuits from outputs to VDD can cause excessive heating and eventual device destruction.
DISSIPATION RATING TABLE
PACKAGE

TA

:5

25°C

POWER RATING

DERATING

DERATE

FACTOR

ABOVE TA

TA

=

70°C

TA

=

85°C

POWER RATING

POWER RATING

TA

=

125°C

POWER RATING

D

500 mW

5.8 mW/oC

64°C

464 mW

377 mW

145 mW·

FK

500mW

11.0 mW/oC

104°C

500 mW

500 mW

275 mW

8.4 mW/oC

90°C

500mW

500 mW

210 mW

87°C

500 mW

500 mW

200 mW

JG

500 mW

P

500mW

8.0 mW/oC

~

TEXAS
INSTRUMENTS
POST OFF!cE BOX 655303 • DALLAS. TEXAS 75265

3-111

!:': .....

=r-

nn
O~
enn

:s:W
!i!~

0 .....

Cr-

>0
r- .....
electrical characteristics at specified free-air temperature, VOO
PARAMETER

.
'"
-n_
'il

VIO

Input offset voltage

110

Input offset current

liB

Input bias current

TEST CONDITIONS

VIC ~ VICR min,

TAt

10H

Common-mode input

~z

~'" u1~
~

output current

Low-level
VOL

output voltage
Low-level

~

'"N

25°C

voltage range
High-level

10L

Full range

~

VID

I VOH ~ 5 V

1 V

VID~-lV,

~

VID

-1 V,

10L

VOL

~

~

5

MIN

1

1

5

1
1

5

o to

VDD-l

VDD-l

VDD-l

oto

o to

o to

VDD-1.5

VDD-1.5

VDD-l.5

0.1

0.1

150

700

(two comparators)

VII) ~ 1 V,
-

-

25°C

n~
On
W
5:
-a .....

nA

pA

nA

400
700

6

pA

No load
_.

----------

_F_~ang~_

300

150

16

400

150

300
400

----------

~A

mV

mA
300
400

~A

-------

tAli characteristics are measured with zero common-mode input voltage unless otherwise noted. Full range is DoC to 70 0 e for TLC372C, -40°C to 85°C for TLC3721, -55°C to
1"25°C for TLC372M, and -40°C to 125°C for TLC372Q. IMPORTANT: See Parameter Measurement Information.
NOTE 4: The offset voltage limits given are the maximum values required to drive the output above 4 V or below 400 mV with a 10-kO resistor between the output and VOO' They
can be verified by applying the limit value to the input and checking for the appropriate output state.

switching characteristics, VOO

Response time

5 V, TA

= 25°C

TEST CONDITIONS

PARAMETER

RL connected to 5 V through 5.1 kG,
CL = 15 pFt, See Note 5

MIN

TYP

100-mV input step with 5-mV overdrive

650

TTL-level input step

200

MAX

UNIT

ns

t CL includes probe and jig capacitance.
NOTE 5: The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V.

r-

>N
>
.....
o
en

:=

150

16

6

-5:
>~

V

700

16
150

.....

..... N

mV

20

3

400

mW

:=c

1

400

:=n
2

nA

0.1

1

UNIT

10
5

2

o to

6

MAX

10

oto

150

TYP

7

0.6

Full range

25°C

1

5

25°C

1.5 V

MAX

0.3

Full range

4 mA

TLC372MIQ

TYP

1

25°C

IVOH~15V

MIN

mr-

output current
Supply current

IDD

5

MAX

~z

~I"'l

1

MAX
25°C

VICR

MAX

6.5

25°C

0

~~
~;c~
~ c:1"'l

TLC3721

TYP

Full range

....

: ~~

TLC372C
MIN

25°C

See Note 4

52~
:::::: .....

5 V (unless otherwise noted)

TLC372C, TLC3721, TLC372M, TLC372Q
LinCMOSTM DUAL DIFFERENTIAL COMPARATORS

PARAMETER MEASUREMENT INFORMATION
The digital output stage of the TLC372 can be damaged if it is held in the linear region of the transfer
curve. Conventional operational amplifier/comparator testing incorporates the use of a servo-loop that is
designed to force the device output to a level within this linear region. Since the servo-loop method of
testing cannot be used, the following alternative for measuring parameters such as input offset voltage,
common-mode rejection, etc., are offered.
To verify that the input offset voltage falls within the limits specified, the limit value is applied to the input
as shown in Figure 1 (a). With the noninverting input positive with respect to the inverting input, the output
should be high. With the input polarity reversed, the output should be low.
A similar test can be made to verify the input offset voltage at the common-mode extremes. The supply
voltages can be slewed as shown in Figure 1 (b) for the VICR test, rather than changing the input voltages,
to provide greater accuracy.
1V

5V

5.1 k!l

5.1 k!l

Vo

1
(a) VIO with VIC -

(b) VIO with VIC = 4 V

0

FIGURE 1. METHOD FOR VERIFYING THAT INPUT OFFSET VOLTAGE IS WITHIN SPECIFIED LIMITS
A close approximation of the input offset voltage can be obtained by using a binary search method to
vary the differential input voltage while monitoring the output state. When the applied input voltage
differential is equal, but opposite in polarity, to the input offset voltage, the output will change states.

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-113

nC372C, nC3721, nC372M, nC3nO
linCMOSTM DUAL DIFFERENTIAL COMPARATORS

PARAMETER MEASUREMENT INFORMATION
Figure 2 illustrates a practical circuit for direct dc measurement of input offset voltage that does not bias
the comparator into the linear region. The circuit consists of a switching-mode servo loop in which U 1 a
generates a triangular waveform of approximately 20-mV amplitude. U 1 b acts as a buffer, with C2 and
R4 removing any residual dc offset. The signal is then applied to the inverting input of the comparator
under test, while the noninverting input is driven by the output of the integrator formed by U 1 c through
the voltage divider formed by R9 and R 10. The loop reaches a stable operating point when the output
of the comparator under test has a duty cycle of exactly 50%, which can only occur when the incoming
triangle wave is "sliced" symmetrically or when the voltage at the noninverting input exactly equals the
input offset voltage.
Voltage divider R9 and R 10 provides a step-up of the input offset voltage by a factor of 100 to make
measurement easier. The values of R5, R8, R9, and R10 can significantly influence the accuracy of the
reading; therefore, it is suggested that their tolerance level be 1 % or lower.
Measuring the extremely low values of input current requires isolation from all other sources of leakage
current and compensation for the leakage of the test socket and board. With a good picoammeter, the
socket and board leakage can be measured with no device in the socket. Subsequently, this open-socket
leakage value can be subtracted from the measurement obtained with a device in the socket to obtain
the actual input current of the device.
VDD

Ulb
114 TLC274CN

C2

R5
1.8 kll. 1%

C3 0.68 I'F

R6
5.1 kll

Ulc
114 TLC274CN

>--........-VIO

R7
1 Mil

-=

(Xl00)
INTEGRATOR

R8
1.8 kG, 1%

C4

10.11'F
Cl

0.1 I'F

TRIANGLE
GENERATOR

R9
Rl0
100 Il. 1 %

10 kll, 1%

R2

10 kll

FIGURE 2. CIRCUIT FOR INPUT OFFSET VOLTAGE MEASUREMENT

~

TEXAS
INSTRUMENTS
3-114

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC372C. TLC3721. TLC372M. TLC372Q

LinCMOSTM DUAL DIFFERENTIAL COMPARATORS
PARAMETER MEASUREMENT INFORMATION
Response time is defined as the interval between the application of an input step function and the instant
when the output reaches 50% of its maximum value. Response time, low-to-high-Ievel output, is measured
from the leading edge of the input pulse, while response time, high-to-Iow-Ievel output, is measured from
the trailing edge of the input pulse. Response-time measurement at low input signal levels can be greatly
affected by the input offset voltage. The offset voltage should be balanced by the adjustment at the inverting
input (as shown in Figure 3) so that the circuit is just at the transition point. Then a low signal, for example
105-mV or 5-mV overdrive, will cause the output to change state.
VDD

5.1 kn

PULSE
GENERATOR

T

11'F

50 n
1 V -------,
10 n
1 0 TURN >4---'l/iii0_____.------'

INPUT OFFSET VOLTAGE
COMPENSATION ADJUSTMENT

- 1 V ------'

TEST CIRCUIT
OVERDRIVE

INPUT

LOW-TO-HIGHLEVEL OUTPUT

~==-F---i
I

'----f

I
I
I
I
1 50 %

,

100 mV

~
INPUT

OVERDRIVE
-,

I

f---'=-==*

100 mV

:

f

I
HIGH-TO-LOWLEVEL OUTPUT

I
I
I
I
I
1414---t+---- t pHL

VOLTAGE WAVEFORMS
NOTE A: CL includes probe and jig capacitance.

FIGURE 3. RESPONSE, RISE, AND FALL TIMES CIRCUIT AND VOLTAGE WAVEFORMS

TEXAS •
INSTRUMENTS
POST OFFICE SQX 655303 • DALLAS, TEXAS 75265

3-115

TLC372C, TLC3721, TLC372M, TLC372Q
LinCMOSTM DUAL DIFFERENTIAL COMPARATORS
PRINCIPLES OF OPERATION
LinCMOS™ process
LinCMOS'· process is a Linear polysilicon-gate Complementary-MOS process. Primarily designed for singlesupply applications, LinCMOS" products facilitate the design of a wide range of high-performance analog
functions, from operational amplifiers to complex mixed-mode converters.
While digital designers are experienced with CMOS, MOS technologies are relatively new for analog
designers. This short guide is intended to answer the most frequently asked questions related to the quality
and reliability of LinCMOSTM products. If you have any further questions, please contact your local TI sales
office.

electrostatic discharge
CMOS circuits are prone to gate oxide breakdown when exposed to high voltages even if the exposure
is only for very short periods of time. Electrostatic discharge (ESD) is one of the most common causes
of damage to CMOS devices. It can occur when a device is handled without proper consideration for
environmental electrostatic charges, e.g. during board assembly. If a circuit in which one amplifier from
a dual op amp is being used and the unused pins are left open, high voltages will tend to develop. If there
is no provision for ESD protection, these voltages may eventually punch through the gate oxide and cause
the device to fail. To prevent voltage build-up, each pin is protected by internal circuitry.
Standard ESD protection circuits safely shunt the ESD current by providing a mechanism whereby one
or more transistors break down at voltages higher than the normal operating voltages but lower than the
breakdown voltage of the input gate. This type of protection scheme is limited by leakage currents which
flow through the shunting transistors during normal operation after an ESD voltage has occurred. Although
these currents are small, on the order of tens of nanoamps, CMOS amplifiers are often specified to draw
input currents as low as tens of picoamps.
To overcome this limitation, TI design engineers developed the patented ESD protection circuit shown
in Figure 4. This circuit can withstand several successive 2-kV ESD pulses, while reducing or eliminating
leakage currents that may be drawn through the input pins. A more detailed discussion of the operation
of TI's ESD protection circuit is presented on the next page.
All input and output pins on LinCMOS™ and Advanced LinCMOSTM products have associated ESD protection
circuitry that undergoes qualification testing to withstand 2000 V discharged from a 100-pF capacitor
through a 1 500-0 resistor (human body model) and 200 V from a 1OO-pF capacitor with no current-limiting
resistor (charged device model). These tests simulate both operator and machine handling of devices during
normal test and assembly operations.
VDD

R1

INPUT

TO PROTECTED CIRCUIT

R2

D1

D2

D3

Vss
FIGURE 4. LinCMOS" ESO PROTECTION SCHEMATIC

Advanced LinCMOS is a trademark of Texas Instruments Incorporated.

TEXAS •

INSTRUMENTS
3-116

POST OFFICE BOX 855303 • DALLAS. TEXAS 75265

TLC372C, TLC3721, TLC372M, TLC3720
LinCMOSTM DUAL DIFFERENTIAL COMPARATORS

input protection circuit operation
Texas Instruments patented protection circuitry allows for both positive- and negative-going ESD transients.
These transients are characterized by extremely fast rise times and usually low energies, and can occur
both when the device has all pins open and when it is installed in a circuit.

positive ESD transients
Initial positive charged energy is shunted through Q1 to VSS. Q1 will turn on when the voltage at the
input rises above the voltage on the VDD pin by a value equal to the VBE of Q 1. The base current increases
through R2 with input current as Q1 saturates. The base current through R2 will force the voltage at the
drain and gate of Q2 to exceed its threshold level (VT - 22 to 26 V) and turn Q2 on. The shunted input
current through Q1 to VSS is now shunted through the n-channel enhancement-type MOSFET Q2 to VSS.
If the voltage on the input pin continues to rise, the breakdown voltage of the zener diode D3 is exceeded,
and all remaining energy is dissipated in R1 and D3. The breakdown voltage of D3 is designed to be 24
to 27 V, which is well below the gate oxide voltage of the circuit to be protected.

negative ESD transients
The negative charged ESD transients are shunted directly through D1. Additional energy is dissipated in
R1 and D2 as D2 becomes forward biased. The voltage seen by the protected circuit is - 0.3 V to -1 V,
(the forward voltage of D1 and D2).

circuit-design considerations
LinCMOS" products are being used in actual circuit environments that have input voltages that exceed
the recommended common-mode input voltage range and activate the input protection circuit. Even under
"normal" operation, these conditions occur during circuit power-up or power-down, and in many cases,
when the device is being used for a signal conditioning function. The input voltages can exceed VICR and
not damage the device only if the inputs are current limited. The recommended current limit shown on
most product data sheets is ± 5 mAo Figures 5 and 6 show typical characteristics for input voltage vs
input current.
Normal operation and correct output state can be expected even when the input voltage exceeds the positive
supply voltage. Again, the input current should be externally limited even though internal positive current
limiting is achieved in the input protection circuit by the action of Q 1. When Q 1 is on, it will saturate and
limit the current to approximately 5-mA collector current by design. When saturated, Q 1 base current
increases with input current. This base current is forced into the VDD pin and into the device IDD or the
VDD supply through R2 producing the current limiting effects shown in Figure 5. This internal limiting lasts
only as long as the input voltage is below the VT of Q2.
When the input voltage exceeds the negative supply voltage, normal operation is affected and output voltage
states may not be correct. Also, the isolation between channels of multiple devices (duals and quads) can
be severely affected. External current limiting must be used since this current will be directly shunted by
D1 and D2 and no internal limiting is achieved. If normal output voltage states are required, an external
input voltage clamp is required (see Figure 7).

TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-"-117

tLC372C, TLC3721, TLC372M; TLC372Q
LinCMOS™ DUAL DIFFERENTIAL COMPARATORS
INPUT CURRENT
vs
INPUT VOLTAGE
8

TA

INPUT CURRENT
vs
INPUT VOLTAGE .
10

= 2SoC

TA

7

6

... ~ ......

-

symbol (each comparator)
NON INVERTING
INPUT IN+

OUTPUT

INVERTING
INPUT IN-

The TLC374 has internal electrostatic discharge
(ESDI protection circuits and has been classified
with a 2000-V ESD rating tested under
MIL-STD-883C, Method 3015.1. However, care should be exercised in handling this device as exposure
to ESD may result in a degradation of the device parametric performance.
The TLC374C is characterized for operation from 0 °C to 70°C. The TLC3741 is characterized for operation
from - 40°C to 85 DC. The TLC374M is characterized for operation over the full military temperature range
of -55°C to 125°C. The TLC374Q is characterized for operation from -40°C to 125°C.

LinCMOS is a trademark of Texas Instruments Incorporated.

PRODUCTION DATA documents contain information

currant as of publication date. Products conform to

specifications per the terms of Texas Instruments
standard warranty. Production processing does not
necessarily include testing of an parameters.

TEXAS

~

Copyright © 1990, Texas Instruments Incorporated

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-119

TLC374C, TLC3741, TLC374M, TLC374Q
LinCMOSTM QUADRUPLE DIFFERENTIAL COMPARATORS

I

r-----~~----~--r~

+

~------------~-r~

"i:

....oco

.

co

Co

E
o
()
J:

()

co

~
()

"';:;

co

E
QI

J:

()

UI

....I:
QI

iii
>
"S
C"

QI

I

-------------------,

I
~ I
~ I
::i! I

I
I
I
I
I
I
I
I
I
I
I
I
I
____________________

51

...I

I

~I

:: I
Z I
~I
~ I'
o I
IL

~

c
c

Q

Z
Cl

>

TEXAS

~

INSTRUMENTS
3--120

POST OFFICE BOX 655303 " DALLAS. TEXAS 75265

TLC374C, TLC3741, TLC374M, TLC374Q
LinCMOS™ QUADRUPLE DIFFERENTIAL COMPARATORS

AVAILABLE OPTIONS

TA

VIO MAX

PACKAGE
SMALL-OUTLINE

CHIP-CARRIER

CERAMIC DIP

PLASTIC DIP

(D)

(FK)

(J)

(N)

5 mV

TLC374CD

-

-

TLC374CN

5 mV

TLC3741D

-

-

TLC3741N

5 mV

TLC374MD

TLC374MFK

TLC374MJ

TLC374MN

5 mV

TLC374QD

-

-

TLC374QN

AT 25°C

O°C
to
70°C
-40°C
to
85°C
-55°C
to
125°C
-40°C
to
125°C
D packages are available taped and reeled. Add "R" suffix to device type (e.g., TLC374CDR).

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18 V
Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 18 V
Input voltage, VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. VDD
Input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 0.3 V to 18 V
Output voltage, VO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18 V
Input current, II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 5 mA
Output current, 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20 mA
Duration of output short-circuit to ground (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited
Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , See Dissipation Rating Table
Operating free-air temperature range: TLC374C . . . . . . . . . . . . . . . . . . . . . . . . . . . .. OOC to 70°C
TLC3741 . . . . . . . . . . . . . . . . . . . . . . . . . . . - 40°C to 85 °C
TLC374M ......................... - 55°C to 125°C
TLC374Q ......................... -40°C to 125°C
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65°C to 150°C
Case temperature for 60 seconds: FK package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds, D or N package. . . . . . . .. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package ............ 300°C
NOTES: 1. All voltage values except differential voltages are with respect to network ground.
2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
3. Short circuits from outputs to VDD can cause excessive heating and eventual device destruction.
DISSIPATION RATING TABLE
PACKAGE

TA s 25°C

DERATING

DERATE

POWER RATING

FACTOR

ABOVE TA

TA - 70°C
POWER RATING

TA - 85°C
POWER RATING

TA - 125°C
POWER RATING

D

500 mW

7.6 mW/oC

84°C

500 mW

494 mW

190 mW

FK

500 mW

11.0mW/oC

104°C

500mW

500 mW

275 mW

J

500 mW

11.0 mW/oC

104°C

500 mW

500 mW

275 mW

N

500mW

9.2 mW/oC

95°C

500 mW

500mW

230 mW

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • OALLAS. TEXAS 75265

3-121

'f

!:,:-I
=rnn

recommended operating conditions

I\)
I\)

C-SUFFIX
MIN

Common-mode input voltage, VIC

II VDD
VDD

I-SUFFIX
MAX

MIN

3

16

3

= 5 V

0

3.5

= 10V

0

8.5

0

70

Supply voltage, VDD

Operating free-air temperature, T A

NOM

NOM

M-SUFFIX
MAX

MIN

16

0
0
-40

85

NOM

Q-SUFFIX
MAX

MIN

NOM

4

16

4

16

3.5

0

3.5

0

3.5

. 8.5

0

8.5

0

8.5

-55

125

-40

125

UNIT

MAX

s:~
CI.a::o

V

enn
,;!-

V

C;::::!
cn

°C. _ -

»W
C .....
=.a::o

electrical characteristics at specified free-air temperature. VOO
TEST CONDITIONS

PARAMETER

VIO

Input offset voltage

110

Input offset current

VIC ~ VICR min,

TAt

TLC374C
MIN

2S'C

See Note 4

g

~z

liB

~Ul

~-l

~;o~

Common~mode

VICR

8C:~
;~
~t'I'l
~Z

~~~
'"
...
"'"
m

25'C

voltage range

Full range

output voltage
output current
Supply current

100

~ SV

1V

VID

~

- 1 V,

IOL

VIO

~

-1 V,

VOL~1.5V

~ 1S V

(four comparators)

VIO ~ 1 V,

~

4 rnA

5

20

oto
VOO-l

o to

o to

o to

VOO-l.5

VOO-l.5

VOO-l.5

0.1

0.1

150

700

300

1S0

700

16

6
600

300

400
700

16

800

nA
1

400

6
600

16
300

800

nA

V

1

400

nA

~A

mV

rnA
600
800

~A

tAli characteristics are measured with zero common-mode input voltage unless otherwise noted. Full range is aoc to 70 0 e for TLC374C, -40°C to 85°C for TLC3741, -55°C to
12SoC for TLC374M, and-40°C to 12SoC for TLC3740. IMPORTANT: See Parameter Measurement Information.
NOTE 4: The offset voltage limits given are the maximum values required to drive the output above 4 V or below 400 mV with a 10-kO resistor between the output and VOO' They
can be verified by applying the limit value to the input and checking for the appropriate output state.

switching characteristics. VOO

25°C

TEST CONDITIONS

PARAMETER
Response time

5 V. T A

RL connected to 5 V through 5.1 kO,
CL

=

1 5 pF t, See Note 5

MIN

TYP

I 100-mV input step with 5-mV overdrive

650

I

200

TTL-level input step

MAX

UNIT
ns

t CL includes probe and jig capacitance.
NOTE 5: The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V.

_.....

mn

C W

"TI.a::o
"TIS:

;m-l
zr-

In
_W

»
.....
r-.a::o
n C
CI

0.1

1

mV

pA

5
2

UNIT

pA
10

oto

Full range

S

1

VOO-l

6

1

1

oto

Full range

MAX

10

VOO-l

1S0

TYP

7

0.6

25°C

No load

S

MIN

1

Full range

25°C

1

0.3

2S'C

~

MAX

5

-,:1-1
r- r-

TLC374M/O

TYP

1

2SoC

Low-level
IOL

I VOH
I VOH

VID

Low~level

VOL

5

MAX

input

output current

1

MIN

6.S

25'C

High-level
IOH

MAX

MAX

Input bias current

TLC3741

TYP

Full range

25'C

aen
"....

c':-

5 V (unless otherwise noted)

s:
-,:I

»
»
-I

=
=
en
CI

TLC374C, TLC3741. TLC374M, TLC3740

LinCMOSTM OUAORUPLE DIFFERENTIAL COMPARATORS
PARAMETER MEASUREMENT INFORMATION
The digital output stage of the TLC374 can be damaged if it is held in the linear region of the transfer
curve. Conventional operational amplifier/comparator testing incorporates the use of a servo-loop that is
designed to force the device output to a level within this linear region. Since the servo-loop method of
testing cannot be used, the following alternative for measuring parameters such as input offset voltage,
common-mode rejection, etc., are offered.
To verify that the input offset voltage falls within the limits specified, the limit value is applied to the input
as shown in Figure 1 (al. With the noninverting input positive with respect to the inverting input, the output
should be high. With the input polarity reversed, the output should be low.
A similar test can be made to verify the input offset voltage at the common-mode extremes. The supply
voltages can be slewed as shown in Figure 1 (b) for the VieR test, rather than changing the input voltages
to provide greater accuracy.
A close approximation of the input offset voltage can be obtained by using a binary search method to
vary the differential input voltage while monitoring the output state. When the applied input voltage
differential is equal, but opposite in polarity to the input offset voltage, the output will change state.
5V

1 V

5.1 kil

5.1 kil

I

Vo

1

1

1
(a) VIO with VIC

=

Vo

0

(b) VIO with VIC = 4 V

FIGURE 1. METHOD FOR VERIFYING THAT INPUT OFFSET VOLTAGE IS WITHIN SPECIFIED LIMITS

-1!1

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-123

TLC374C, TLC3741,TLC374M, TLC374Q
LinCMOSTM QUADRUPLE DIFFERENTIAL COMPARATORS

PARAMETER MEASUREMENT INFORMATION
Figure 2 illustrates a practical circuit for direct dc measurement of input offset voltage that does not bias
the comparator into the linear region. The circuit consists of a switching-mode servo loop in which U 1 a
generates a triangular waveform of approximately 20-mV amplitude. U1b acts as a buffer, with C2 and
R4 removing any residual dc offset. The signal is then applied to the inverting input of the comparator
under test, while the noninverting input is driven by the output of the integrator formed by U 1c through
the voltage divider formed by R9 and R10. The loop reaches a stable operating point when the output
of the comparator under test has a duty cycle of exactly 50%, which can only occur when the incoming
triangle wave is "sliced" symmetrically or when the voltage at the noninverting input exactly equals the
input offset voltage.
Voltage divider R9 and R 10 provides a step-up of the input offset voltage by a factor of 100 to make
measurement easier. The values of R5, R8, R9, and R10 can significantly influence the accuracy of the
reading; therefore, it is suggested that their tolerance level be 1 % or lower.
Measuring the extremely low values of input current requires isolation from all other sources of leakage
current and compensation for the leakage of the test socket and board. With a good picoammeter, the
socket and board leakage can be measured with no device in the socket. Subsequently, this open-socket
leakage value can be subtracted from the measurement obtained with a device in the socket to obtain
the actual input current of the device.
R5

voo
Ulb
1/4 TlC274CN

C2

1.8

kn.

RS
5.1

kn

1%

C3 0.S8 I'F

Ulc
114 TlC274CN

.>-----....-VIO
(X100)

R7
1 Mn

INTEGRATOR

R8
1.8 kQ, 1%

":"

C4
JO.lI'F

Cl
0.1 I'F

TRIANGLE
GENERATOR

R9
Rl0
100

n.

10

kn.

1%

1%

R2
10 kn

FIGURE 2. CIRCUIT FOR INPUT OFFSET VOLTAGE MEASUREMENT

TEXAS . "
INSTRUMENTS
3-124

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TLC374C, TLC3741, TLC374M, TLC3740
LinCMOSTM OUADRUPLE DIFFERENTIAL COMPARATORS

PARAMETER MEASUREMENT INFORMATION
Response time is defined as the interval between the application of an input step function and the instant
when the output reaches 50% of its maximum value. Response time, low-to-high-Ievel output, is measured
from the leading edge of the input pulse, while response time, high-to-Iow-Ievel output, is measured from
the trailing edge of the input pulse. Response-time measurement at low input signal levels can be greatly
affected by the input offset voltage. The offset voltage should be balanced by the qdjustment at the inverting
input (as shown in Figure 3) so that the circuit is just at the transition point. Then a low signal, for example
105-mV or 5-mV overdrive, will cause the output to change state.
VDD

T

PULSE
GENERATOR

CL

1 V-----,
INPUT OFFSET VOLTAGE
COMPENSATION ADJUSTMENT

1 "F

(see Note Al

10 \l >4---'VV\..._e----'
10 TURN

1 kll

-1 V - - - - - - '

TEST CIRCUIT
OVERDRIVE

INPUT

~==-F---i
I

~
INPUT

I----f
I
I
I
I
1 50 %

LOW-TO-HIGHLEVEL OUTPUT

I

OVERDRIVE
--,

100 mV

100 mV

I

f--_~=i
:

f

I
HIGH-TO-LOWLEVEL OUTPUT

I
I
I
I
I

141+---.1-- tpHL
VOLTAGE WAVEFORMS
NOTE A: CL includes probe and jig capacitance.

FIGURE 3. RESPONSE, RISE, AND FALL TIMES CIRCUIT AND VOLTAGE WAVEFORMS

TEXAS

-1!1

INSTRUMENTS
POST OFFICE BOX 655303 • OALLAS. TEXAS 75265

3-125

TLC374C, TLC3741, TLC374M, TLC3740
LinCMOSTM OUADRUPLE DIFFERENTIAL COMPARATORS

PRINCIPLES OF OPERATION
LinCMOS™ process
LinCMOS'· process is a Linear polysilicon-gate Complementary-MOS process. Primarily designed for singlesupply applications, LinCMOS'· products facilitate the design of a wide range of high-performance analog
functions, from operational amplifiers to complex mixed-mode converters.
While digital designers are experienced with CMOS, MOS technologies are relatively new for analog
designers. This short guide is intended to answer the most frequently asked questions related to the quality
and reliability of LinCMOS'· products. If you have any further questions, please contact your local TI sales
office.

electrostatic discharge
CMOS circuits are prone to gate oxide breakdown when exposed to high voltages even if the exposure
is only for very short periods of time. Electrostatic discharge (ESD) is one of the most common causes
of damage to CMOS devices. It can occur when a device is handled without proper consideration for
environmental electrostatic charges, e.g., during board assembly. If a circuit in which one amplifier from
a dual op amp is being used and the unused pins are left open, high voltages will tend to develop. If there
is no provision for ESD protection, these voltages may eventually punch through the gate oxide and cause
the device to fail. To prevent voltage build-up, each pin is protected by internal circuitry.
Standard ESD protection circuits safely shunt the ESD current by providing a mechanism whereby one
or more transistors break down at voltages higher than the normal operating voltages but lower than the
breakdown voltage of the input gate. This type of protection scheme is limited by leakage currents which
flow through the shunting transistors during normal operation after an ESD voltage has occurred. Although
these currents are small, on the order of tens of nanoamps, CMOS amplifiers are often specified to draw
input currents as low as tens of picoamps.
To overcome this limitation, TI design engineers developed the patented ESD protection circuit shown
in Figure 4. This circuit can withstand several successive 2-kV ESD pulses, while reducing or eliminating
leakage currents that may be drawn through the input pins. A more detailed discussion of the operation
of TI's ESD protection circuit is presented on the next page.
All input and output pins on LinCMOS'· and Advanced LinCMOS'· products have associated ESD protection
circuitry that undergoes qualification testing to withstand 2000 V discharged from a 100-pF capacitor
through a 1 500-0 resistor (human body model) and 200 V from a 1OO-pF capacitor with no current-limiting'
resistor (charged device model). These tests simulate both operator and machine handling of devices during
normal test and assembly operations.
VDD

R1

TO PROTECTED CIRCUIT

INPUT

R2

D1

D2

D3

Vss
FIGURE 4. LinCMOS'" ESD PROTECTION SCHEMATIC

Advanced LinCMOS is a trademark of Texas Instruments Incorporated.

TEXAS •

INSTRUMENTS
3--126

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TLC374C. TLC3741. TLC374M. TLC374Q
LinCMOSTM QUADRUPLE DIFFERENTIAL COMPARATORS

input protection circuit operation
Texas Instruments patented protection circuitry allows for both positive- and negative-going ESO transients.
These transients are characterized by extremely fast rise times and usually low energies, and can occur
both when the device has all pins open and when it is installed in a circuit.

positive ESO transients
Initial positive charged energy is shunted through 01 to VSS. 01 will turn on when the voltage at the
input rises above the voltage on the VOO pin by a value equal to the VSE of 01. The base current increases
through R2 with input current as 01 saturates. The base current through R2 as 01 saturates forces the
voltage at the drain and gate of 02 to exceed its threshold level (VT - 22 to 26 V) and turn on 02. The
shunted input current through 01 to VSS is now shunted through the n-channel enhancement-type MOSFET
02 to VSS. If the voltage on the input pin continues to rise, the breakdown voltage of the zener diode
03 is exceeded and all remaining energy is dissipated in R1 and 03. The breakdown voltage of 03 is designed
to be 24 V to 27 V, which is well below the gate oxide voltage of the circuit to be protected.

negative ESO transients
The negative charged ESO transients are shunted directly through 01. Additional energy is dissipated in
R1 and 02 as 02 becomes forward-biased. The voltage seen by the protected circuit is - 0.3 V to - 1 .0 V,
(the forward voltage of 01 and 02).

circuit-design considerations
LinCMOS'" products are being used in actual circuit environments that have input voltages that exceed
the recommended common-mode input voltage range and activate the input protection circuit. Even under
"normal" operation, these conditions occur during circuit power-up or power-down, and in many cases,
when the device is being used for a signal conditioning function. The input voltages can exceed VICR and
not damage the device only if the inputs are current limited. The recommended current limit shown on
most product data sheets is ± 5 mAo Figures 5 and 6 show typical characteristics for input voltage vs
input current.
Normal operation and correct output state can be expected even when the input voltage exceeds the positive
supply voltage. The input current should be externally limited even though internal positive current limiting
is achieved in the input protection circuit by the action of 01. When 01 is on, it will saturate and limit
the current to approximately 5-mA collector current by design. When saturated, 01 base current increases
with input current. This base current is forced into the VOO pin and into the device 100 or the VOO supply
through R2 producing the current limiting effects shown in Figure 5. This internal limiting lasts only as
long as the input voltage is below the VT of 02.
When the input voltage exceeds the negative supply voltage, normal operation is affected and output voltage
states may not be correct. Also, the isolation between channels of multiple devices (duals and quads) can
be severely affected. External current limiting must be used since this current will be directly shunted by
01 and 02, and no internal limiting is achieved. If normal output voltage states are required, an external
input voltage clamp is required (see Figure 7).

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-127

TLC374C, TLC3741, TLC374M, TLC374Q
LinCMOSTM QUADRUPLE DIFFERENTIAL COMPARATORS

TYPICAL CHARACTERISTICS
INPUT CURRENTt
vs
INPUT VOLTAGE
8
TA

= ksoc

7

«

6

...

S

E
I
c
~

:;

...::s

4

c

3 f---

U

Q.

I

:-

2

o

INPUT CURRENTt
vs
INPUT VOLTAGE

I

V
/

I

V

......
..
....
. ,.. ....

10

....

I
I

,"

8

«

7

...cI

6

:;

S

E

I
I

~

U

...::s

Co

I

I

4

:1

c

I

9

3

2

J

VOO

I

TA = 2SOC
9

o
Voo + 4

VOO + 8

Voo - 0.3

VOO + 12

VI-Input Volage-V

7

--

J

V
./
VOO - O.S

VOO - 0.7

VOO - 0.9

VI-Input Voltage-V

FIGURE 5

FIGURE 6

tThe dashed line identifies an area of operation where some degradation of parametric performance may be experienced.

Voo

RL

i
I

(see Note A)

VREF

Positive Voltage Input Current limit:
RI = +VI - VOO - 0.3 V
SmA
Negative Voltage Input Current limit:
RI = -VI - VOO - (-0.3 V)
SmA
Note A: If the correct output state is
required when the negative
input exceeds VSS, a schottky
clamp is required.

FIGURE 7. TYPICAL INPUT CURRENT-LIMITING CONFIGURATION FOR A LinCMOS" COMPARATOR

TEXAS ~

INSTRUMENTS
3-128

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TLC393C, TLC3931, TLC393M
DUAL MICROPOWER LinCMOS™ VOLTAGE COMPARATORS
• DECEMBER 1986-REVISED JANUARY 1992

•

Very Low Power ... 110!lW Typ at 5 V

•

Fast Response Time ... tpLH = 2.5 !ls Typ
With 5-mV Overdrive

•

Single Supply Operation:
TLC393C .•. 3 V to 16 V
TLC3931 .•. 3 V to 16 V
TLC393M •.• 4 V to 16 V

•

D, JG, OR P PACKAGE
(TOP VIEW)

1 0 U T ( J s VDD
11N- 2
7 2 OUT
1 IN+

3

6

21N-

GND

4

5

21N+

FKPACKAGE
(TOP VIEW)

On-Chip ESD Protection

description
The TLC393 consists of dual independent
micropower voltage comparators designed to
operate from a single supply. It is functionally
similar to the LM393 but uses 1/20th the power for
similar response times. The open-drain MOS
output stage will interface to a variety of loads and
supplies. For a similar device with a push-pull
output configuration, see the TLC3702 data sheet.

NC
11N-

NC

3 2 1 20 19
18
17

16
15
8
14
9 10 11 12 13

1 IN+

NC

Texas Instruments LinCMOS'" process offers
superior analog performance to standard CMOS
processes. Along with the standard CMOS
advantages of low power without sacrificing
speed, high input impedance, and low bias
currents, the LinCMOS'M process offers extremely
stable input offset voltages, even with differential
input stresses of several volts. This characteristic
makes it possible to build reliable CMOS
comparators.

4
5
6
7

NC
2 OUT

NC
21N-

NC

t)ot)+t)

Z

Z

Z

~z

(,!)

NC -

No internal connection

symbol (each comparator)
IN+:[>.
OUT
IN-

The TLC393C is characterized for operation over
the commercial temperature range of O°C to 70°C.
The TLC3931 is characterized for operation over the extended industrial temperature range of - 40°C to 85°C.
The TLC393M is characterized for operation over the full military temperature range of - 55°C to 125°C.
AVAILABLE OPTIONS
PACKAGE
TA

Vlomax
at 25°C

SMALL OUTLINE
(D)

CHIP CARRIER
(FK)

O°C to 70°C

5mV

TLC393CD

-

- 40°C to 85°C

5mV

TLC3931D

-

- 55°C to 125°C

5mV

TLC393MD

TLC393MFK

CERAMIC DIP
(JG)

PLASTIC DIP
(P)

-

TLC393CP

TLC393MJG

TLC393MP

TLC3931P

The D package is available taped and reeled. Add the suffix "Roo to the device type (e.g., TLC393CDR).

LinCMOS is a trademark of Texas Instruments Incorporated.

~~o~~~t~~~n~o~:r: s~::r~:~:~II;e~~~:r:r:: :11e~::~:!~~~m~~~

standard warranty. Production processing does not necessarllylRelude

lesting of all parameters.

TEXAS

~

Copyright © 1992. Texas Instruments Incorporated

INSIRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-129

TLC393C, TLC3931, TLC393M
DUAL MICROPOWER LinCMOS™ VOLTAGE COMPARATORS
schematic
OPEN-DRAIN CMOS OUTPUT

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage range, VDD (see Note 1) ............................................ - 0.3 V to 18 V
Differential input voltage, VID (see Note 2) .................................................. ± 18 V
Input voltage range, VI ............................................................ - 0.3 V to VDD
Output voltage range, Vo .......................................................... - 0.3 V to VDD
Input current, II ......................................................................... ± 5 mA
Output current, 10 (each output) .......................................................... 20 mA
Total supply current into VDD terminal ...................................................... 40 mA
Total current out of ground terminal ........................................................ 40 mA
Continuous total power dissipation ..................................... See Dissipation Rating Table
Operating free-air temperature range: TLC393C ....................................... O°C to 70°C
TLC3931 ..................................... - 40°C to 85°C
TLC393M ................................... - 55°C to 125°C
Storage temperature range ...................................................... - 65°C to 150°C
Case temperature for 60 seconds: FK package .............................................. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package ................. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package .................... 300°C
NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.
2. Differential voltages are at the non inverting input with respect to the inverting input.
DISSIPATION RATING TABLE
PACKAGE
D
FK
JG
p

TA" 25'C
POWER RATING
725mW
1375mW
1050mW
1000 mW

DERATING FACTOR
ABOVE TA = 25°C

TA = 70°C
POWER RATING

TA = 85'C
POWER RATING

TA = 125'C
POWER RATING

5.8mWrC
11.0mWrC
8.4mWrC
8.0mWrC

484mW
880mW
672mW
640mW

377mW
715mW
546mW
520mW

275mW
210mW

TEXAS

~

INSlRUMENTS
3-130

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC393C
DUAL MICRO POWER LinCMOSTM VOLTAGE COMPARATORS
recommended operating conditions
Supply voltage, VDD
Common-mode input voltage, VIC

MIN

NOM

MAX

3

5

16

-0.2

0

electrical characteristics at specified operating free-air temperature, Voo
noted)
PARAMETER

TEST CONDITIONSt

VIO

Input offset voltage

VIC = VICRmin,
VDD = 5 V to 10 V,
See Note 3

110

Input offset current

VIC = 2.5V

liB

Input bias current

TA

VICR

kSVR

Common-mode rejection ratio

Supply voltage rejection ratio

VOL

Low-level output voltage

VID =-1 V,

10L= 6 mA

10H

High-level output current

VID = 1 V,

Vo =5V

IDD

5
6.5

0.3

0.6
Oto
VDD-1

84
84

O·C

84

25'C

85

70'C

85

O·C

85

25'C

300

70'C

No load,

Outputs low

nA

dB

dB

400
650

0.8

70'C
Supply current (both comparators)

nA

V

Oto
VDD -1.5

25'C

25'C

mV

pA

5

70'C

25'C

UNIT

pA

1

70'C

VDD = 5 V to 10 V

'c

MAX

25'C

VIC = VICRmin

70

1.4

25'C

Common-mode input voltage range

mA

TYP

70'C

O·C to 70'C

CMRR

MIN

O·C to 70'C

25'C

V

20

=5 V (unless otherwise

25'C

VIC = 2.5V

V

VDD -1.5

Low-level output current, IOL
Operating free-air temperature, T A

UNIT

22

o'c to 70'C

mV

40

nA

1

!LA

40
50

!LA

t All characteristics are measured with zero common-mode voltage unless otherwise noted.
NOTE 3: The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V.

TEXAS

~

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-131

TLC3931
DUAL MICROPOWER LinCMOSTM VOLTAGE COMPARATORS
recommended operating conditions
Supply voltage, VOO
Common-mode input voltage, VIC

MIN

NOM

MAX

3

5

16

-0.2
-40

electrical characteristics at specified operating free·air temperature, VOO
noted)
PARAMETER

TEST CONDITIONSt

VIO

Input offset voltage

VIC = VICRmin,
VOO=5Vto10V,
See Note 3

110

Input offset current

VIC =2.5V

liB

Input bias current

TA

VICR

kSVR

VOL

Common-mode rejection ratio

Supply voltage rejection ratio

Low-level output voltage

5

7
1

VID =-1 V,
IOH=6mA

5
2

84
84

-40'C

84

25'C

85

85'C

85

-40'C

84

25'C

300

VID = 1 V,
Vo=5VmA

100

Supply current (both comparators)

No load,
Outputs low

25'C

0.8

85'C
22

- 40'C to 85'C

t All characteristics are measured with zero common-mode voltage unless otherwise noted.
NOTE 4: The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V.

TEXAS ~

INSlRUMENTS
3-132

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

nA

dB

dB
400
700

85'C

High-level output current

nA

V

Oto
VOO-1.5

85'C

10H

mV

pA

Oto
VOO-1

25'C

25'C

UNIT

pA
1

85'C

VOO = 5 V to 10 V

'C

MAX

25'C

VIC =,VICRmin

85

1.4

85'C

Common-mode input voltage range

rnA

TVP

25'C

- 40'C to 85'C

CMRR

MIN

- 40'C to 85'C

25'C

V

20

=5 V (unless otherwise

25'C

VIC =2.5V

V

VOO-1.5

Low-level output current, 10L
Operating free-air temperature, TA

UNIT

mV

40

nA

1

~

40
65

~

TLC393M
DUAL MICROPOWER LinCMOSTM VOLTAGE COMPARATORS
recommended operating conditions
MIN

NOM

MAX

Supply voltage, VDD

4

5

16

Common-mode input voltage, VIC

0

V

VDD -1.5

Low-level output current, 10L
Operating free-air temperature, T A

UNIT

-55

V

20

mA

125

°C

electrical characteristics at specified operating free-air temperature, Voo = 5 V (unless otherwise
noted)
PARAMETER

TEST CONDITIONSt

TA
25°C

VIO

Input offset voltage

VIC = VICRmin,
VDD=5Vt010V,
See Note 4

110

Input offset current

VIC = 2.5V

118

Input bias current

VIC =2.5V

VICR

Common-mode input voltage range

kSVR

Supply voltage rejection ratio

5
10

25°C

VIC = VICRmin

VDD = 5 V to 10 V

1

25°C

84

-55°C

84

25°C

85

125°C

84

-55°C

84

25°C

300

10H

High-level output current

VID = 1 V,
VO=5V

125°C

Supply current (both comparators)

No load,
Outputs low

25°C

25°C
- 55°C to 125°C

30

nA

pA

V

84

125°C

pA

Oto
VDD -1.5

25°C

VID=-1 V,
10L= 6 mA

mV

nA

o to
VDD-l

125°C

Low-level output voltage

UNIT

15
5

125°C

VOL

IDD

MAX

1.4

125°C

- 55°C to 125°C

Common-mode rejection ratio

TYP

- 55°C to 125°C

25°C

CMRR

MIN

dB

dB

400

mV

800
0.8

22

40

nA

1

f'A

40
90

f'A

t All characteristics are measured with zero common-mode voltage unless otherwise noted.
NOTE 4: The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V with a 2.5-kQ load to
VDD·

TEXAS ~

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-133

TLC393C, TLC3931, TLC393M
DUAL MICRO POWER LinCMOS™ VOLTAGE COMPARATORS
switching characteristics, Voo = 5 V, TA = 25°C (see Figure 3)
PARAMETER

TEST CONDITIONS

= 2 mV
Overdrive = 5 mV
Overdrive = 10 mV
Overdrive = 20 mV
Overdrive = 40 mV
~erdrive

tpLH

Propagation delay time, low-to-high-Ievel output

f = 10 kHz,
CL = 15 pF

VI

= l.4-V step at IN + pin
= 2 mV
Overdrive = 5 mV
Overdrive = 10 mV
Overdrive = 20 mV
Overdrive =40 mV
Overdrive

tpHL

Propagation delay time, high-to-Iow-Ievel output

f = 10 kHz,
CL = 15 pF

= l.4-V step at IN + pin
f = 10 kHz,
Overdrive = 50 mV
CL = 15 pF
VI

tf

Fall time, output

TEXAS 'If

INSTRUMENlS
3-134

POST OFFICE BOX 655303 • DALUlS, TEXAS 75265

MIN

TYP

MAX

UNIT

4.5
2.5
1.7

jlS

1.2
1.1
1.1

3.6
2.1
1.3
0.85

jlS

0.55
0.10
22

ns

TLC393C, TLC3931, TLC393M
DUAL MICROPOWER LinCMOSTM VOLTAGE COMPARATORS
PARAMETER MEASUREMENT INFORMATION
The TLC393 contains a digital output stage which, if held in the linear region of the transfer curve, can cause
damage to the device. Conventional operational amplifier/comparator testing incorporates the use of a servo
loop that is designed to force the device output to a level within this linear region. Since the servo-loop method
of testing cannot be used, the following alternatives for testing parameters such as input offset voltage,
common-mode rejection ratio, etc., are suggested.
To verify'that the input offset voltage falls within the limits specified, the limit value is applied to the input as shown
in Figure1 (a). With the noninverting input positive with respect to the inverting input, the output should be high.
With the input polarity reversed, the output should be low.
A similar test can be made to verify the input offset voltage at the common-mode extremes. The supply voltages
can be slewed as shown in Figure1 (b) for the VieR test, rather than changing the input voltages, to provide
greater accuracy.
5V

1V

ApplledVIO
Limit

1
-::-

ApplledVIO
Limit

-::-

(a) VIO WITH VIC

-::-

-::-

1
-::-

-::-

-4V

-::-

(b) VIO WITH VIC = 4 v

=0 V

Figure 1. Method for Verifying That Input Offset Voltage Is Within Specified Limits
A close approximation of the input offset voltage can be obtained by using a binary search method to vary the
differential input voltage while monitoring the output state. When the applied input voltage differential is equal,
but opposite in polarity, to the input offset voltage, the output will change states.
Figure 2 illustrates a practical circuit for direct dc measurement of input offset voltage that does not bias the
comparator in the linear region. The circuit consists of a switching-mode servo loop in which U1A generates a
triangular waveform of approximately 20-mV amplitude. U1 B acts as a buffer, with C2 and R4 removing any
residual dc offset. The signal is then applied to the inverting input of the comparator under test, while the
non inverting input is driven by the output of the integrator formed by U 1C through the voltage divider formed
by R9 and R1 O. The loop reaches a stable operating point when the output of the comparator under test has
a duty cycle of exactly 50%, which can only occur when the incoming triangle wave is "sliced" symmetrically or
when the voltage at the noninverting input exactly equals the input offset voltage.
The voltage divider formed by R9 and R 10 provides an increase in input offset voltage by a factor of 100 to
make measurement easier. The values of R5, R8, R9, and R10 can significantly influence the accuracy of the
reading; therefore, it is suggested that their tolerance level be 1% or lower.
Measuring the extremely low values of input current requires isolation from all other sources of leakage current
and compensation for the leakage ofthe test socket and board. With a good picoammeter, the socket and board
leakage can be measured with no device in the socket. Subsequently, this open-socket leakage value can be
subtracted from the measurement obtained with a device in the socket to obtain the actual input current of the
device.

TEXAS -If

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-135

TLC393C, TLC3931, TLC393M
DUAL MICROPOWER LinCMOS™ VOLTAGE COMPARATORS
PARAMETER MEASURMENT INFORMATION

Voo

U1B
1/4 TLC274CN

RS
1.8 kQ, 1%

R6

5.1 kQ
R4
47 kQ

R7
1 MQ

R1
240 kQ

R8
1.8 kQ, 1%

C1
0.1 flF

R10
100Q,1%
R3
100 Q

R9
10 kQ, 1%

R2
10 kQ

Figure 2. Circuit for Input Offset Voltage Measurement

TEXAS .J!.I

INSTRUMENTS
3-136

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

C3
0.68 flF

U1C
1/4TLC274CN

VIO

>-....--+- (X100)

TLC393C, TLC3931, TLC393M
DUAL MICROPOWER LinCMOS™ VOLTAGE COMPARATORS
PARAMETER MEASUREMENT INFORMATION
Propagation delay time is defined as the interval between the application of an input step function and the instant
when the output reaches 50% of its maximum value. Propagation delay time, low-to-high-Ievel output is
measured from the leading edge of the input pulse, while propagation delay time, high-to-Iow-Ievel output, is
measured from the trailing edge of the input pulse. Propagation delay time measurement at low input signal
levels can be greatly affected by the input offset voltage. The offset voltage should be balanced by the adjustment
at the inverting input (as shown in Figure 3) so that the circuit is just at the transition point. Then a low signal,
for example, 105 mV or 5 mV overdrive, will cause the output to change state.
voo

T

Pulse
Generator

Input Offset Voltage
Compensation
Adjustment

1V

1J!F

CL
(see Note A)

100
10 Turn ) + - - W ' v - - - , , - - - Q

-1V - - - - '

TEST CIRCUIT

Overdrive

Overdrive

Input

*t-----t
-----f
I

100 mV

'"p",

,;~~===t+
I

Low-to-HlghLevel Output

90%
Hlgh-to-LowLevel Output

I
I
I
I
I
I

I
I

I
I
I I

I

I I I

I
I

,.-tr

I

tPLH

,..

I
I

I I

--.!I

10%

I

!.- t f

~

tpHL

I 1I

VOLTAGE WAVEFORMS
NOTE A: CL includes probe and jig capacitance.

Figure 3. Propagation Delay, Rise Time, and Fall Time Circuit and Voltage Waveforms

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-137

TLC393C, TLC3931, TLC393M
DUALMICROPOWER LinCMOS™ VOLTAGE COMPARATORS
TYPICAL CHARACTERISTICSt
INPUT BIAS CURRENT

vs

DISTRIBUTION OF INPUT
OFFSET VOLTAGE

FREE·AIR TEMPERATURE

100

10
Voo =5V
VIC = 2.5V
TA = 25' C

90

en

~

:::l

'0
~

f=

80

«c

70

C

E

/

/

I

~

60

::l

()

en
.!!!

50

./

0.1

Dl

.Q

::l

VOO =5V

~ VIC=2.5V

SQ.

40

Z

./

S

30

/'

I

Dl
.=-

0.01

20

,~

o

-5

-4

:I

~N

10
-3

~~,

-2

-1

0

2

3

0.001
4

5

25

50

VIO - Input Offset Voltage - mV

Figure 4

89

100

125

Figure 5

COMMON·MODE REJECTION RATIO

90

75

TA - Free·Alr Temperature - 'C

SUPPLY VOLTAGE REJECTION RATIO

vs

vs

FREE·AIR TEMPERATURE

FREE·AIR TEMPERATURE
90

I-V~oJv

89 I-V 0= 51Vto

88

88

87

87

86

86

85

85

l~V

CI>

.., Dl

o ..,

~ I
co ._
0
E 10
E a:
0 c
()
0

I~

a: CI> 84
a: ·iii
:;; a:

()

83

83

82

82

81

81

80
-75

80
-75

-50

-25

:..--

84

~

0

25

50

75

100

125

-50

-25

0

25

50

75

100

TA - Free·Alr Temperature - 'C

TA - Free-Air Temperature - 'C

Figure 7

Figure 6

t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TEXAS ."

INSlRUMENTS
3-138

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

125

TLC393C, TLC3931, TLC393M
DUAL MICROPOWER LinCMOSTM VOLTAGE COMPARATORS
TYPICAL CHARACTERISTICSt
LOW-LEVEL OUTPUT VOLTAGE

LOW-LEVEL OUTPUT VOLTAGE

vs

vs

LOW-LEVEL OUTPUT CURRENT

FREE-AIR TEMPERATURE

1.5

600

>

>

'"
'"
~

'"
;g

E

I

Cl

19

"5Co
"5

a;

>

a;

'"

>

-l

.3

/'

300

0

'"
;i:

.... /

-l

0.5

200

-l

-l

I

~

/

/

... 1-"'"

0

I

/'

/

400

"5Co
"5

0

;i:

I

500

I

Cl

I

VOO =5V
IOl= 6 mA

.J

~

100

o
2

4

6

8

10

12

14

16

18

20

-75

-50

-25

IOl - low-level Output Current - mA

Figure 8

100

vs

HIGH-LEVEL OUTPUT VOLTAGE

FREE-AIR TEMPERATURE

125

1000

c

c:
0

-

10

l-

c

VOO-VOH=5V

I

......

c:

I I
TA = 85'C

100

f=



75

HIGH-LEVEL OUTPUT CURRENT

1000

"5
0"5
a
a;

50

vs



'"

L

10

'"

-l

......

.J

~

~

Cl

......

Cl

J:

J:

TA = 25'C

I

./

I

:r

:r

9

9
f- VOH =Voo
0.1

o

-I

T

2

4

0.1

6

8

10

12

14

16

25

50

75

100

125

TA - Free-Air Temperature - 'C

VOH - High-level Output Voltage - V

Figure 10

Figure 11

t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TEXAS

.JJ.I

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-139

TLC393C, TLC3931, TLC393M
DUAL MICROPOWER LinCMOSTM VOLTAGE COMPARATORS
TYPICAL CHARACTERISTICS
SUPPLY CURRENT

SUPPLY CURRENT

vs

vs

SUPPLY VOLTAGE

FREE-AIR TEMPERATURE

100
90

40
Outputs Low
No Loads

80
I

..".,..,..

C
60

'"

50

::>
CIl
I
0

40

Co

E

30
20
10

----

V
;: V
11f.,.I-V
h

()

Q.

-lo'c ..,/ ..,/
....
...- - 'K
~=

70

~
::>

Voo =5V
35 I-- No Load

Tl=

ct

:t

TA= -55'C
,./

J--1--

C
~
::>

25

....

"'-r-......
['........ r---.....

()

20

'"

Q.

TA= 85'C_
TA= 125'C

30

I

25'C_

_I-

ct:t

. --....

Co

::>
CIl
I

_

15

0

I). V

.Po

,

10

V
4

6

8

10

12

14

-50

-25

0

.25

I I 1

50

75

100

125

14

16

TA - Free-Air Temperature - 'c

Voo - Supply Voltage - V

Figure 12

Figure 13

LOW-TO-HIGH-LEVEL
OUTPUT RESPONSE TIME

HIGH-TO-LOW-LEVEL
OUTPUT RESPONSE TIME

vs

vs

SUPPLY VOLTAGE

SUPPLY VOLTAGE
5

6
CL = 15 pF
RL = 5.1 kg (Pullup to Voo)
TA = 25'C

-----

UI

:t

I

2

4

-~ 'E"

Overdrive = 2 mV

5lv

3.5

.3, 0a;

3

, c
0
.c .-

2.5

.s

.2'~
::c ..

2

20mV

...Ie
::co.

1.5

6

Q.

2-1

40mV

10

12

14

--

"S

0

8

-+-l

16

-

Overdrive = 2 mV

10lmv

I

!-"

CL=15pF
4.5 I- RL = 5.1 kg (Pullup to Voo)
TA= 25'C
4

!I 1=

;r i;'

,. ~ ,.-

0.5

o

I
5mV

I

10mV
20mV

I
40mV

o

Voo - Supp,ly Voltage - V

2

4

6

8

10

12

Voo - Supply Voltage - V

Figure 14

Figure 15

TEXAS

~

INSTRUMENTS
3-140

r---

Outputs High _

o-75

16

r-..

l""- I""- t--...

5
2

--- -

Outputs Low

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC393C, TLC3931, TLC393M
DUAL MICROPOWER LinCMOS™ VOLTAGE COMPARATORS
TYPICAL CHARACTERISTICS
LOW-TO-HIGH-LEVEL OUTPUT
PROPAGATION DELAY
FOR VARIOUS INPUT OVERDRIVES

5

Sa. >
I
:;

.'"
Q)

0
I

::

~~

JJ

0

S
a.>

.5

E

iO

.'"

~
~

Q)

0==

I

Q)

5

(

(

40mV - . (
20mV - , .
10mV
5mV
2mV

HIGH-TO-LOW-LEVEL OUTPUT
PROPAGATION DELAY
FOR VARIOUS INPUT OVERDRIVES

Sa. >
I
:; Q)

.'"

0
I

J

J

0

100

S
a.>

~

iO

I

~Q)

Q)

'"

2

4

3

,

l

l

0

..

Gl :!::
!!:~

0

o

l

,

VOO = 5V
CL= 15 pF
RL = 5.1 kQ (Pullup to VOO) TA=25°C

100

.5 E

VOO =5V
CL=15pF
RL = 5.1 kQ (Pullup to VOO)
TA = 25° C

0

r-

::

~~

40mV - . \ \
20 mV ---1
10 mV
5m
2mV

o

5

2

3

4

5

tpHL - Hlgh-to-Low-Level Output
Propagation Delay Time - fls

tpLH - Low-to-High-Level Output
Propagation Delay Time - fls

Figure 17

Figure 16
OUTPUT FALL TIME

vs
SUPPLY VOLTAGE

en

T
Q)

E
1=
iO

u.

I

20~~~-1--~---+---+---r---r--,

10

50-mV Overdrive
RL = 5.1 kQ (Pullup to VOO)
TA = 25° C
2

4

6

8

10

12

14

16

Voo - Supply Voltage - V

Figure 18.

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-141

TlC393C, TLC3931, TLC393M
DUAL MICROPOWER LinCMOS™ VOLTAGE COMPARATORS
APPLICATION INFORMATION
The input should always remain within the supply rails in order to avoid forward biasing the diodes in the
electrostatic discharge (ESD) protection structure. If either input exceeds this range, the device will not be
damaged as long as the input cuurent is limited to less than 5 mA. To maintain the expected output state, the
inputs must remain within the common-mode range. For example, at 25°C with Voo =5 V, both inputs must
remain between - 0.2 V and 4 V to assure proper device operation.
To assure reliable operation, the supply should be decoupled with a capacitor (0.1-I-tF) positioned as close to
the device as possible.
The TLC393 has internal ESD-protection circuits that will prevent functional failures at voltages up to 2000 V
as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices,
as exposure to ESD may result in the degradation of the device parametric performance.
12

12 V

v

DIR

sv

EN

(see
NoteA)T
S.l kQ

10 kQ
SV

-'\1\1\_1--1

Motor
12V

1/2 TLC393

DIR
10 kQ

sv

EN

10 kQ

Motor Speed Control
Potentiometer

sv
Direction
Control

6

NOTES: A. The recommended minimum capacitance is 10 l'F to eliminate common ground switching noise.
B. Adjust C 1 for change in oscillator frequency.

Figure 19. Pulse-Width-Modulated Motor Speed Controller

TEXAS -IJ1

INSTRUMENlS
3--142

POST OFFICE BOX 655303 • DALLAS. 1 EXAS 75265

TLC393C, TLC3931, TLC393M
DUAL MICROPOWER LinCMOS™ VOLTAGE COMPARATORS
APPLICATION INFORMATION
SV
• Monitors S-VDC Rail
• Monitors 12-VDC Rail
• Early Power Fall Warning

12 V
SENSE

VCC
12V
SENSE

3.3kQ

SV
10 kQ

>--__--1 RESIN
1 kQ

REF
2.S V . - - - - - - - - - - .
12 V

To flP
Reset

TL770SA

GND

T

CT
(see Note B)

To flP Interrupt
"Early Power Fall"

R1
VUNREG
(see Note A)
R2

(R1 +R2)
NOTES: A. VUNREG = 2 . 5 -R
- 2B. The value of CT determines the time delay of reset.

Figure 20. Enhanced Supply Supervisor

TEXAS ~

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-143

TlC393C, TlC3931, TlC393M
DUAL MICROPOWER LinCMOSTM VOLTAGE COMPARATORS
APPLICATION INFORMATION
12V

12V
Rl
100 Q
(see Note B)

5.1 kQ

12V

5.1 kQ

12V

100kQ

22kQ

100kQ

100kQ

12V

-=-

lOUT

R2
5kQ
(see Note C)

I

5.1 kQ

Cl
0.01 IlF
(see Note A)

20UT

R3
100kQ
(see Note B)

-=-

lOUT

20UT

1'--_ _ _---'1

NOTES: A. Adjust Cl for a change in oscillator frequency where:
l/t = 1.85(100 kQ)Cl
B. Adjust Rl and R3 to change duty cycle.
C. Adjust R2 to change deadtime.

Figure 21. Two-Phase Nonoverlapping Clock Generator

TEXAS

~

INSlRUMENTS
3-144

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC3702C, TLC37021, TLC3702M, TLC3702Q
DUAL MICROPOWER LinCMOS™ VOLTAGE COMPARATORS
-

•

Push-Pull CMOS Output Drives Capacitive
Loads Without Pullup Resistor,
10 = ±8mA

•
•

Very Low Power .•. 100!,AW Typ at 5 V

0, JG, OR P PACKAGE
(TOP VIEW)

u

10UT
11N1 IN+
GND

Fast Response Time ... tpLH = 2.7 !,AS Typ
With 5-mV Overdrive

•

Single-Supply Operation ... 3 V to 16 V
TLC3702M ..• 4 V to 16 V

•

On-Chip ESD Protection

REVISED NOVEMBER 1991

8

VDD

2

7

3
4

6
5

2 OUT
21N21N+

FKPACKAGE
(TOP VIEW)
I-

::l
0
(,)0(')0(')
z~z>z

description
The TLC3702 consists of two independent
micropower voltage comparators designed to
operate from a single supply and be compatible
with modern HCMOS logic systems. They are
functionally similarto the LM339 but use 1/2Oth the
power for similar response times. The push-pull
CMOS output stage will drive capacitive loads
directly without a power-consuming pullup resistor
to achieve the stated response time. Eliminating
the pullup resistor not only reduces power
dissipation, but also saves board space and
component cost. The output stage is also fully
compatible with TTL requirements.

3

NC

4

11N1 IN+

5
6
7

NC

8

NC

2 1 20 19
18

NC
20UT

17

16

NC

15

21N-

NC

14
9 10 11 12 13

(,) 0

(,)

+ (,)

Z Z Z Zz
(!)

~

NC-No internal connection

symbol (each comparator)

Texas Instruments LinCMOS'" process offers
IN+=t>OUT
superior analog performance to standard CMOS
INprocesses. Along with the standard CMOS
advantages of low power without sacrificing
speed, high input impedance, and low bias currents, the LinCMOS'" process offers extremely stable input offset
voltages with large differential input voltages. This characteristic makes it possible to build reliable CMOS
comparators.
AVAILABLE OPTIONS
PACKAGE
TA

VIOmax
at 25'C

SMALL OUTLINE
(D)

O'C to 70'C

5mV

TLC3702CD

- 40'C to 85'C

5mV

TLC37021D

- 55'C to 125'C

5mV

- 40'C to 125'C

5mV

The D package

IS

-

CERAMIC
(FK)

TLC3702MFK

-

CERAMIC DIP
(JG)

PLASTIC DIP
(P)

-

TLC3702CP

-

TLC37021P

TLC3702MJG

-

TLC3702QJG

-

available taped and reeled. Add "R" suffix to the device type (e.g., TLC3702CDR).

LinCMOS is a trademark of Texas Instruments Incorporated.
PRODUCTION DATA Information Is current as of publication date.
Products conform to specifications per the terms of Texas
Instruments standard warranty. Production processing does not
necessarily include testing 01 all parameters.

TEXAS

~

Copyright © 1991, Texas Instruments Incorporated

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-145

TLC3702C, TLC37021, TLC3702M, TLC3702Q
DUAL MICROPOWER LinCMOS™ VOLTAGE COMPARATORS
description (continued)
The TLC3702C is characterized for operation over the commercial temperature range of O°C to 70°C. The
TLC37021 is characterized for operation over the extended industrial temperature range of- 40°C to 85°C. The
TLC3702M is characterized for operation over the full military temperature range of - 55°C to 125°C. The
TLC3702Q is characterized for operation from - 40°C to 125°C.

functional block diagram (each comparator)
VDD

d

IN+

}-

Differential
Input
Circuits
IN-

OUT

9

GND

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage range, VDD (see Note 1) ............................................ - 0.3 V to 18 V
Differential input voltage (see Note 2) ...................................................... ± 18 V
Input voltage range, VI .............................................................. - 0.3 to VDD
Output voltage range, Va ............................................................ - 0.3 to VDD
Input current, II ......................................................................... ± 5 mA
Output current, 10 (each output) ......................................................... ± 20 mA
Total supply current into VDD terminal ...................................................... 40 mA
Total current out of ground terminal ........................................................ 40 mA
Continuous total power dissipation ..................................... See Dissipation Rating Table
Operating .free-air temperature range: TLC3702C ........................................ 0 to 70°C
TLC37021 .................................... - 40°C to 85°C
TLC3702M .................................. - 55°C to 125°C
TLC3702Q .................................. - 40°C to 125°C
Storage temperature range ...................................................... - 65°C to 150°C
Case temperature for 60 seconds: FK package .............................................. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package ................. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package .................... 300°C
NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.
2. Differential voltages are at the noninverting input with respect to the inverting input.
DISSIPATION RATING TABLE
PACKAGE
D
FK
JG
p

TA"25°C
POWER RATING
725mW
1375mW
1050mW
1000mW

DERATING FACTOR
ABOVE TA = 25°C

TA = 70°C
POWER RATING

TA = 85°C
POWER RATING

TA=125°C
POWER RATING

5.8 mW/oC
11.0mWrC

464mW
880mW
672mW
640mW

377mW
715mW
546mW
520mW

N/A
275mW
210mW
N/A

8.4mWrC
8.0mWioC

TEXAS ~

INSTRUMENTS
3--146

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC3702C
DUAL MICROPOWER LinCMOS™ VOLTAGE COMPARATORS

recommended operating conditions
Supply voltage, VDD
Common-mode input voltage, VIC

MIN

NOM

MAX

3

5

16

-0.2

UNIT

V

VDD-1.5

V

High-level output current, 10H

-20

mA

Low-level output current, 10L

20

mA

70

'C

Operating free-air temperature, TA

0

electrical characteristics at specified operating free-air temperature, Voo = 5 V (unless otherwise
noted)
PARAMETER

Via

Input offset voltage

110

Input offset current

liB

Input bias current

TEST CONDITIONSt

TA

VOO=5Vt010V, See Note 3

kSVR

Supply voltage rejection ratio

5

1

70'C

VIC = 2.5V

5

70'C

VIC = VICRmin

VOO=5Vt010V

VOH

High-level output voltage

VIO = 1 V,

10H =-4 mA

VOL

Low-level output voltage

VID =-1 V,

10L= 4mA

100

Supply current (both comparators)

No load,

mV

VOD-1

V

Oto
VOO -1.5

25'C

84
84

O'C

84

25'C

85

70'C

85

O'C

85

25'C

4.5

70'C

4.3

25'C

nA

o to

70'C

25'C

nA
pA

0.6

dB

dB

4.7
210

70'C
Outputs low

UNIT

pA
0.3

25'C

Common-mode input voltage range

Common-mode rejection ratio

MAX

1.2

25'C

VIC = 2.5V

O'C to 70'C

CMRR

TYP

O'C to 70'C

25'C
VICR

MIN

25'C

VIC = VICRmin,

V
300
375

18

o'c to 70'C

40
50

mV

flA

t All characteristics are measured with zero common-mode voltage unless otherwise noted.
NOTE 3: The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V.

TEXAS ~

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-147

TLC37021
DUAL MICROPOWER LinCMOS™ VOLTAGE COMPARATORS
recommended operating conditions
MIN

NOM

MAX

3

5

16

Supply voltage, VOO
Common-mode input voltage, VIC

-0.2

Low-level output current, 10L
-40

electrical characteristics at specified operating free-air temperature, Voo
noted)
PARAMETER

TEST CONDITIONSt

TA

VIO

Input offset voltage

110

Input offset current

VIC =2.5V

liB

Input bias current

VIC =2.5V

VOO = 5 V to 10 V, See Note 3

MIN

7
1

kSVR

Common-mode rejection ratio

Supply voltage rejection ratio

VIC;' VICRmin

VOO=5Vt010V

VOH

High-level output voltage

VIO = 1 V,

10H =-4mA

VOL

Low-level output voltage

VID =-1 V,

10L = 4 mA

100

Supply current (both comparators)

No load,

2

Outputs low

84
84

-40'C

83

25'C

85

85'C

85

-40'C

83

25'C

4.5

85'C

4.3

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

dB

V
210

300
400

18

t All characteristics are measured with zero common-mode voltage unless otherwise noted.
NOTE 3: The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V.

3-148

dB

4.7

- 40'C to 85'C

TEXAS ..,

nA

V

Oto
VOO -1.5

85'C

INSlRUMENTS

nA

Oto
VOO-1

25'C

25'C

mV

pA

5

85'C

25'C

UNIT

pA
1

25'C

CMRR

'C

5

85'C

- 40'C to 85'C

mA

MAX

85'C

25'C

20
85

1.2

- 40'C to 85'C

Common-mode input voltage range

mA

TYP

25'C

VICR

V

-20

=5 V (unless otherwise

25'C

VIC = VICRmin,

V

VOO-1.5

High-level output current, 10H
Operating free-air temperature, TA

UNIT

mV

40
65

fAA

TLC3702M
DUAL MICROPOWER LinCMOSTM VOLTAGE COMPARATORS
recommended operating conditions
MIN

NOM

MAX

Supply voltage, VOO

4

5

16

Common-mode input voltage, VIC

0

Low-level output current, 10L
-55

electrical characteristics at specified operating free-air temperature, Voo
noted)
PARAMETER

VIO

Input offset voltage

110

Input offset current

TEST CONDITIONSt

TA

VOO=5Vt010V, See Note 3

MIN

VIC = 2.5V

5

1

Common-mode input voltage range

kSVR

Common-mode rejection ratio

Supply voltage rejection ratio

VIC = VICRmin

VOO = 5 Vto 10 V

VOH

High-level output voltage

VIO=1V,

10H =-4 mA

VOL

LOW-level output voltage

VID =0-1 V,

10L= 4 mA

100

Supply current (both comparators)

No load,

Outputs low

30

nA

nA

oto
VOO-1
V

oto
VOO-1.5
84

125'C

83

-55'C

82

25'C

85

125'C

85

-55'C

82

25'C

4.5

125'C

4.2

dB

dB

4.7
V
210

300
500

125'C
25'C

mV

pA

5

25'C

25'C

UNIT

pA
15

125'C

- 55'C to 125'C

CMRR

'C

MAX

125'C

25'C
VICR

mA

1.2

25'C
Input bias current

20
125

TYP

25'C

liB

mA

- 55'C to 125'C

VIC = 2.5V

V

-20

=5 V (unless otherwise

25'C

VIC = VICRmin,

V

VOO-1.5

High-level output current, 10H

Operating free-air temperature, TA

UNIT

18

- 55'C to 125'C

mV

40
90

flA

t All characteristics are measured with zero common-mode voltage unless otherwise noted.
NOTE 3: The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V.

TEXAS .JJ1

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-149

TLC3702Q
DUAL MICROPOWER LinCMOS™ VOLTAGE COMPARATORS
recommended operating conditions
MIN

NOM

MAX

3

5

16

Supply voltage, VOO
Common-mode input voltage, VIC

-0.2

UNIT

V

VOO-1.5

V

High-level output current, 10H

-20

mA

Low-level output current, 10L

20

mA

125

'C

-40

Operating free-air temperature, T A

electrical characteristics at specified operating free-air temperature, Voo
noted)
PARAMETER

TEST CONDITIONSt

TA

Input offset voltage

110

Input offset current

VIC =2.5V

liB

Input bias current

VIC =2.5V

MIN

TYP

MAX

1.2

5

25'C

VIC = VICRmin,

VIO

=5 V (unless otherwise

VOO.= 5 Vto 10 V, See Note 3

- 40'C to 125'C
25'C

1

125'C
25'C

25'C
VICR

Common-mode input voltage range
- 40'C to 125'C

CMRR

kSVR

Common-mode rejection ratio

Supply voltage rejection ratio

VIC = VICRmin

VOO = 5 V to 10 V

VOH

High-level output voltage

VIO = 1 V,

10H =-4 mA

VOL

Low-level output voltage

VID =-1 V,

IOL=4 mA

100

Supply current (both comparators)

No load,

Outputs low

84
83

-40'C

83

25'C

85

125'C

85

-40'C

83

25'C

4.5
4.2

210

18

NOTE 3: The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V.

lExAs'"

dB

300
500

- 40'C to 125'C

INSlRUMENTS

dB

V

125'C

POST OFFICE SOX 655303 • DALLAS. TEXAS 75265

pA

4.7

t All characteristics are measured with zero common-mode voltage unless otherwise noted.

3-150

nA

V

25'C

25'C

30

Oto
VOO-1.5

125'C

25'C

pA
nA

Oto
VOO-1

125'C

mV

15
5

125'C

UNIT

mV

40
90

vA

TLC3702C, TLC37021, TLC3702M, TLC3702Q
DUAL MICROPOWER LinCMOS™ VOLTAGE COIOlPARATORS
switching characteristics, VOO

=5 V, T A =25°C

PARAMETER

tpLH

TEST CONDITIONS

Propagation delay time, low-to-high-Ievel output t

f = 10 kHz,
CL = 50 pF

Propagation delay time, high-to-Iow-Ievel output t

f = 10 kHz,
CL = 50 pF

Overdrive = 5 mV

2.7

Overdrive = 10 mV

1.9

Overdrive = 20 mV

1.4

Overdrive = 40 mV

1.1

tf

Fall time

tr

Rise time

f = 10 kHz,
CL = 50 pF

MAX

UNIT

Il S

1.1

Overdrive = 2 mV

4

Overdrive = 5 mV

2.3

Overdrive = 10 mV

1.5

Overdrive = 20 mV

0.95

Overdrive = 40 mV

0.65

VI = 1.4 V step at IN + pin
f = 10 kHz,
CL = 50 pF

TYP
4.5

VI = 1.4 V step at IN + pin

tPHL

MIN

Overdrive = 2 mV

Il s

0.15

Overdrive = 50 mV

50

ns

Overdrive = 50 mV

125

ns

t Simultaneous sWitching of inputs will cause degradation in output response.

TEXAS ."

INSIRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-151

TLC3702C, TLC37021, TLC3702M, TLC3702Q
DUAL MICROPOWER LinCMOS™ VOLTAGE COMPARATORS
PRINCIPLES OF OPERATION
LinCMOS" process
The LinCMOS'" process is a linear polysilicon-gate CMOS process. Primarily designed for single-supply
applications, LinCMOS'" products facilitate the design of a wide range of high-performance analog functions
from operational amplifiers to complex mixed-mode converters.
While digital designers are experienced with CMOS, MOS technologies are relatively new for analog designers.
This short guide is intended to answer the most frequently asked questions related to the quality and reliability
of LinCMOS'" products. If you have any further questions, please contact your local TI sales office.

electrostatic discharge
CMOS circuits are prone to gate oxide breakdown when exposed to high voltages even if the exposure is only
for very short periods of time. Electrostatic discharge (ESD) is one of the most common causes of damage to
CMOS devices. It can occur when a device is handled without proper consideration for environmental
electrostatic charges, e.g., during board assembly. If a circuit in which one amplifier from a dual op amp is being
used and the unused pins are left open, high voltages will tend to develop. If there is no provision for ESD
protection, these voltages may eventually punch through the gate oxide and cause the device to fail. To prevent
voltage buildup, each pin is protected by internal circuitry.
Standard ESD-protection circuits safely shunt the ESD current by providing a mechanism whereby one or more
transistors break down at voltages higher than the normal operating voltages but lower than the breakdown
voltage of the input gate. This type of protection scheme is limited by leakage currents which flow through the
shunting transistors during normal operation after an ESD voltage has occurred. Although these currents are
small, on the order of tens of nanoamps, CMOS amplifiers are often specified to draw input currents as low as
tens of picoamps.
To overcome this limitation, TI design engineers developed the patented ESD-protection circuit shown in
Figure 1. This circuit can withstand several successive 2-kV ESD pulses, while reducing or eliminating leakage
currents that may be drawn through the input pins. A more detailed discussion of the operation of the TI ESD
protection circuit is presented on the next page.
All input and output pins on LinCMOS'" and Advanced LinCMOS'" products have associated ESD-protection
Circuitry that undergoes qualification testing to withstand 2000 V discharged from a 1OO-pF capacitor through
a 1500-Q resistor (human body model) and 200 V from a 100-pF capacitor with no current-limiting resistor
(charged device model). These tests simulate both operator and machine handling of devices during normal test
and assembly operations.

Voo

R1
Input _--_~VVv---4t-----_+_--.- To Protect Circuit
R2

01

02

03

GNO-e-------4t----4t------.-

Figure 1. LinCMOS'M ESD·Protection Schematic
LinCMOS and Advanced LinCMOS are trademarks of Texas Instruments Incorporated.

TEXAS

.J.f

INSTRUMENTS
3-152

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TLC3702C, TLC37021, TLC3702M, TLC3702Q
DUAL MICROPOWER LinCMOS™ VOLTAGE COMPARATORS
input protection circuit operation
Texas Instruments patented protection circuitry allows for both positive- and negative-going ESO transients.
These transients are characterized by extremely fast rise times and usually low energies, and can occur both
when the device has all pins open and when it is installed in a circuit.

positive ESD transients
Initial positive charged energy is shunted through 01 to Vss. 01 will turn on when the voltage at the input rises
above the voltage on the Voo pin by a value equal to the VSE of 01. The base current increases through R2
with input current as 01 saturates. The base current through R2 will force the voltage at the drain and gate of
02 to exceed its threshold level (VT- 22 to 26 V) and turn 02 on. The shunted input current through 01 to Vss
is now shunted through the n-channel enhancement-type MOSFET 02 to Vss. If the voltage on the input pin
continues to rise, the breakdown voltage of the zener diode 03 is exceeded and all remaining energy is
dissipated in R1 and 03. The breakdown voltage of 03 is designed to be 24 to 27 V, which is well below the gateoxide voltage of the circuit to be protected.

negative ESD transients
The negative charged ESO transients are shunted directly through 01 . Additional energy is dissipated in R 1 and
02 as 02 becomes forward biased. The voltage seen by the protected circuit is - 0.3 V to -1 V (the forward
voltage of 01 and 02).

circuit-design considerations
LinCMOS'· products are being used in actual circuit environments that have input voltages that exceed the
recommended common-mode input voltage range and activate the input protection circuit. Even under normal
operation, these conditions occur during circuit power up or power down, and in many cases, when the device
is being used for a signal conditioning function. The input voltages can exceed VieR and not damage the device
only if the inputs are current limited. The recommended current limit shown on most product data sheets is
±5 mA. Figure 2 and 3 show typical characteristics for input voltage versus input current.
Normal operation and correct output state can be expected even when the input voltage exceeds the positive
supply voltage. Again, the input current should be externally limited even though internal positive current limiting
is achieved in the input protection circuit by the action of 01. When 01 is on, it will saturate and limit the current
to approximately 5-mA collector current by design. When saturated, 01 base current increases with input
current. This base current is forced into the Voo pin and into the device 100 or the Voo supply through R2
producing the current limiting effects shown in Figure 2. This internal limiting lasts only as long as the input
voltage is below the VT of 02.
When the input voltage exceeds the negative supply voltage, normal operation is affected and output voltage
states may not be correct. Also, the isolation between channels of multiple devices (duals and quads) can be
severely affected. External current limiting must be used since this current will be directly shunted by 01 and
02 and no internal limiting is achieved. If normal output voltage states are required, an external input voltage
clamp is required (see Figure 4).

TEXAS ~

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-153

TLC3702C, TLC37021, TLC3702M, TLC3702Q
DUAL MICRO POWER LinCMOSTM VOLTAGE COMPARATORS
INPUT CURRENT

INPUT CURRENT

8

vs

vs

INPUT VOLTAGE

INPUT VOLTAGE
10

TA ~ 25 C
0

7
6

ct
E
I

.........

5

C

~

::l

4

/

0

'50-

-=I
=

3
2

j
o

!

......
......,....

............

.... ""

!

8

ct

II

I

7

E
I

C
~::l

6

'50-

4

-=I

3

1

I

5

0

V

=

VOO - 0.3

Voo + 12

/

2

o
VOO+8

VOO+4

VOO

i

TA~25° C

9

VI-Input Voltage - V

/

/

I

...... V
VOO - 0.5

Voo - 0.7

VOO - 0.9

VI - Input Voltage - V

Figure 3

Figure 2
Voo

RI
VI

I
I
I
I
See Note A

t
""

Positive Voltage Input Current Limit:
R _ VI-Voo-0.3 V
15 mA
Negative Voltage Input Current Limit:
RI = -VI- Voo-(-0.3 V)
5 mA

Vref

""

""

NOTE A: If the correct input state is required when the negative input exceeds GND, a Schottky clamp is required.

Figure 4. Typical Input Current-Limiting Configuration for a LinCMOS'M Comparator

TEXAS ~

INSlRUMENTS
3-154

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TLC3702C, TLC37021, TLC3702M, TLC3702Q
DUAL MICRO POWER LinCMOS™ VOLTAGE COMPARATORS
PARAMETER MEASUREMENT INFORMATION
The TLC3702 contains a digital output stage which, if held in the linear region of the transfer curve, can cause
damage to the device. Conventional operational amplifier/comparator testing incorporates the use of a servo
loop which is designed to force the device output to a level within this linear region. Since the servo-loop method
of testing cannot be used, we offer the following alternatives for measuring parameters such as input offset
voltage, common-mode rejection, etc.
To verify that the input offset voltage falls within the limits specified, the limit value is applied to the input as shown
in Figure 5(a). With the noninverting input positive with respect to the inverting input, the output should be high.
With the input polarity reversed, the output should be low.
A Similar test can be made to verify the input offset voltage at the common-mode extremes. The supply voltages
can be slewed as shown in Figure 5(b) for the VieR test, rather than changing the input voltages, to provide
greater accuracy.
A close approximation of the input offset voltage can be obtained by using a binary search method to vary the
differential input voltage while monitoring the output state. When the applied input voltage differential is equal,
but opposite in polarity, to the input offset voltage, the output will change states.
Figure 6 illustrates a practical circuit for direct dc measurement of input offset voltage that does not bias the
comparator in the linear region. The circuit consists of a switching mode servo loop in which IC1 a generates a
triangular waveform of approximately 20-mV amplitude. IC1 b acts as a buffer, with C2 and R4 removing any
residual dc offset. The signal is then applied to the inverting input of the comparator under test, while the
noninverting input is driven by the output of the integrator formed by IC1 c through the voltage divider formed
by R8 and R9. The loop reaches a stable operating pOint when the output of the comparator under test has a
duty cycle of exactly 50%, which can only occur when the incoming triangle wave is sliced symmetrically or when
the voltage at the non inverting input exactly equals the input offset voltage.
Voltage divider R8 and R9 provides an increase in input offset voltage by a factor of 100 to make measurement
easier. The values of R5, R7, R8, and R9 can significantly influence the accuracy of the reading; therefore, it
is suggested that their tolerance level be one percent or lower.
Measuring the extremely low values of input current requires isolation from all other sources of leakage current
and compensation for the leakage of the test socket and board. With a good picoammeter, the socket and board
leakage can be measured with no device in the socket. Subsequently, this open socket leakage value can be
subtracted from the measurement obtained with a device in the socket to obtain the actual input current of the
device.
5V

1V

AppliedVIO
limIt

Applied VIO
limIt

1

1
(b) VIO WITH VIC = 4 v

(a) VIO WITH VIC = 0 V

Figure 5. Method for Verifying That Input Offset Voltage Is Within Specified Limits

TEXAS l!I

INSTRUMENTS
POST OFFICE SOX 655303 • DALLAS. TEXAS 75265

3-155

TLC3702C, TLC37021, TLC3702M, TLC3702Q
DUAL MICRO POWER LinCMOS™ VOLTAGE COMPARATORS
PARAMETER MEASURMENT INFORMATION

Yoo

IC1a
1/4 TLC274CN

C3
0.68 "F

RS
1.8 kQ 1%

IC1c
1/4 TLC274CN

R6
1 MQ

>-----.- YIO

(X100)

R7
1.8 kQ 1%

R1
240kQ

T

C4
0.1 "F

C1
0.1"F

R9
100 Q 1%
R3
100 Q

R8
10 kQ 1%

R2
10kQ

Figure 6. Circuit for Input Offset Voltage Measurement
Response time is defined as the interval between the application of an input step function and the instant when
the output reaches 50% of its maximum value. Response time for the low-to-high-Ievel output is measured from
the leading edge of the input pulse, while response time for the high-to-Iow-Ievel output is measured from the
trailing edge of the input pulse. Response time measurement at low input signal levels can be greatly affected
by the input offset voltage. The offset voltage should be balanced by the adjustment at the inverting input (as
shown in Figure 7) so that the circuit is just at the transition point. Then a low signal, for example 105-mV or 5-mV
overdrive, will cause the output to change state.

TEXAS ~

INSTRUMENTS
3-156

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC3702C, TLC37021, TLC3702M, TLC3702Q
DUAL MICRO POWER LinCMOS™ VOLTAGE COMPARATORS
PARAMETER MEASURMENT INFORMATION

Voo

Pulse
Generator

1V------,
10 Q
10-Turn ~--'N'v---....- - - I
Potentiometer

CL
(see Note A)

-1V
TEST CIRCUIT

Overdrive

Input

*t
1

Overdrive

nml
~~fmv

1~11

Input

-~=====}=f

___

1

'

1

1
1

Low-to-Hlgh
Level Output

High-to-Low
Level Output

1

1

50%

1
1

10%

1

1
1
1
1

1

I

:~

l-.j

1
1

J4

1

t+~----.!-

tpLH

10%

I

J.-

tf

tpHL

VOLTAGE WAVEFORMS
NOTE A: CL includes probe and jig capacitance.

Figure 7. Response, Rise, and Fall Times Circuit and Voltage Waveforms

TEXAS

-'!1

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-157

TLC3702C, TLC37021, TLC3702M, TLC3702Q
DUAL MICROPOWER LinCMOS™ VOLTAGE COMPARATORS
TYPICAL CHARACTERISTICSt
INPUT BIAS CURRENT
vs
FREE·AIR TEMPERATURE

DISTRIBUTION OF INPUT
OFFSET VOLTAGE
200
180
160

10

I

VOO=5V
VIC =2.5V
TA =25' C
698 Units Tested
From 4 Wafer Lots

I:

'0

:;;

I

~

'"

.!!!

L

0.1

III

.t:l
::0

./

::0

0

100

E

/

/

<:

120

:::l

VOO=5V
VIC =2.5V

«I:

140

~

=
=

"SQ.

80

Z

./

.E

60

I

./

]1 0.01
40

~

20

r'J~~

o

-5

-3

-4

-2

~~[ ~tJ.
-1

0

2

3

4

0.001
25

5

50

Figure 8

88

.
"

o "I
~
0
oI: ._

E a:
"'

84
82

90
88

-

/'

84
82

I:

80

80

I

:e

78

78

76

76

74

74

72

72

0

~ .*,
:;; a:
0

70
-75

-50

-25

0

25

50

75

100

125

VOJ=5Jo10t

86

0

0

125

SUPPLY VOLTAGE REJECTION RATIO
vs
FREE·AIR TEMPERATURE

-vioJv

86
III

100

Figure 9

COMMON·MODE REJECTION RATIO
vs
FREE·AIR TEMPERATURE
90

75

TA - Free-Air Temperature - 'C

VIO - Input Offset Voltage - mV

70
-75

;"'-

-50

-25

-0

25

50

75

100

TA - Free-Air Temperature - 'C

TA - Free-Air Temperature - 'C

Figure 11

Figure 10

t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TEXAS ."

INSIRUMENTS
3--158

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

125

TLC3702C, TLC37021, TLC3702M, TLC3702Q
DUAL MICROPOWER LinCMOS™ VOLTAGE COMPARATORS
TYPICAL CHARACTERISTICSt
HIGH·LEVEL OUTPUT VOLTAGE

HIGH-LEVEL OUTPUT VOLTAGE

vs

vs

FREE·AIR TEMPERATURE

HIGH-LEVEL OUTPUT CURRENT

5

voo

vori = 5 Vi
>I

....
""

:r..

IOH =-4mA

til

4.9

til

~
"5
.9::I

4.8

>
~

4.7

.......

~
"5

~

...........

r-........~ ........

0
iii

0
iii
>

~

.............

Co

.E

..............

til

..............

I

~

-0.5
-0.75
-1

"5

..........

l:

:r
:r

-0.25

~

4.6

-1.25

l:

til

:r
I

-1.5

:r

~

-1.75

4.5 ~.......J'-----I_--I._-..L._...J.._...I..._....!.._....J
-75 -SO -25
0
25
50
75
100
125

-2.5

TA - Free-Air Temperature - °C

-5

-7.5

Figure 12

-15 -17.5 -20

Figure 13
LOW-LEVEL OUTPUT VOLTAGE

LOW-LEVEL OUTPUT VOLTAGE

vs

vs

LOW-LEVEL OUTPUT CURRENT
1.5 ,........,..-.,.--,---r---r--r-r--,.-...,---,-r--.

FREE-AIR TEMPERATURE
400

I

I

voo =5V

>

350 r- IOL

j

300

I

~
"5

~

250

~

200

o

!

-10 -12.5

IOH - High-Level Output Current - mA

0.5 1--+-+--.'I----,hH-'---+---+--:.o""""--I--l

I
..J

150

=4 mA

/"

",/

/""

",/

/

V

./

;'

100

~

50

2

4

6

8

10

12

14

16

18

20

o

-75

-SO

IOL - Low-Level Output Current - mA

-25

0

25

50

75

100

125

T A - Free-Air Temperature - °C

Figure 14

Figure 15

t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TEXAS

-If

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-159

TLC3702C, TLC37021, TLC3702M, TLC3702Q
DUAL MICROPOWER LinCMOS™ VOLTAGE COMPARATORS
TYPICAL CHARACTERISTICS
OUTPUT TRANSITION TIME

vs

SUPPLY CURRENT RESPONSE
TO AN OUTPUT VOLTAGE TRANSITION

LOAD CAPACITANCE
250
225

I

r-

I

200

I

UI
C

175 f--

I
II>

E
1=

150
125

'"I

100

Rise Time

V '"

-

V

50

FaliTime ",.".

.".V

i-"'"

§ol
~ ~
ct:
c::S
-()

5

>

5

o

-I

S.&

c5 ~

0

~

200

1

1

\ /

\

/'

25

o
o

VOO =5V
CL = 50 pF
f= 10kHz

Q.E

."

/
,.. .,.,..

75

10 I-

~«

/

C

J!::

I

."./

I

/

C

~UI

V

I

VOO=5V
TA = 25' C

400

600

800

1000

t-Tlme

CL - Load Capacitance - pF

Figure 17

Figure 16
LOW-TO-HIGH-LEVEL OUTPUT RESPONSE
FOR VARIOUS INPUT OVERDRIVES

5

'5>
Q. I
'5 II>Cl

-

0
I~

~~

40 mV ----t
20mV 10mV
5mV
2mV

,.

(

{

5

{

'5>

~

0

II>
Cl

J

~~

J

\

\
l

l
VOO =5V
TA=25'C _
CL = 50 pF

100

>

VOO = 5V
TA=25'C
Ci=50 PF

0

C ~

>
l'i E
c'5 I

e

c. CD
II>CCl

-

2

3

4

0

='"
o ~

1

o

o

5

2

Figure 18

Figure 19

TEXAS

~

INSTRUMENTS
POST OFFICE

3

4

tpHL - High-to-Low-Level Output
Response Time - !is

tpLH - Low-to-Hlgh-Level Output
Response Time -!is

3-160

lit

0

100

~-7
fa&
~.E co

40mV ......\ ,
20mV--I~1
1-10 mV
5mV
2mV

I

I~

J

0

HIGH-TO-LOW-LEVEL OUTPUT RESPONSE
FOR VARIOUS INPUT OVERDRIVES

sox 655303 •

OALLAS, TEXAS 75265

5

TLC3702C, TLC37021, TLC3702M, TLC3702Q
DUAL MICROPOWER LinCMOS™ VOLTAGE COMPARATORS
TYPICAL CHARACTERISTICS
LOW·TO·HIGH·LEVEL
OUTPUT RESPONSE TIME

HIGH·TO·LOW·LEVEL
OUTPUT RESPONSE TIME

vs

vs

SUPPLY VOLTAGE

SUPPLY VOLTAGE
6

CLI=SO~F
TA = 25'C

5~~---+--~--4---+---~~---4

5

Overdrive = 2 mV

......

Gi

§~
, I

4

--

Overdrive = 2 mV

r.........

;= ..

..9"'
0

6

-r~
s::.
..

-~
--

3

SmV

.2' a:

J:S
IS..J::I

-

ifo

I--t--

2

I---

---

20mV

40l mV

2

4

6

10

8

12

14

16

2

Voo - Supply Voltage - V

4

6

8

10

12

14

16

14

16

Voo - Supply Voltage - V

Figure 20

Figure 21

AVERAGE SUPPLY CURRENT
(PER COMPARATOR)

SUPPLY CURRENT

vs

vs

FREQUENCY

SUPPLY VOLTAGE

10000

i=

f::

TA = 25'C
CL = SO pF
VOO = 16V

III



SV

~

100

4V
'<111/

1/

-

10
0.01

i"'"

/1.,;

.... ""

",.,.

0.1

10

3V

2

100

f - Frequency - kHz

4

6

8

10

12

Voo - Supply Voltage - V

Figure 22

Figure 23

TEXAS

,If

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-161

TLC3702C, TLC37021, TLC3702M, TLC3702Q
DUAL MICROPOWER LinCMOS™ VOLTAGE COMPARATORS
TYPICAL CHARACTERISTICSt
SUPPLY CURRENT

vs
FREE-AIR TEMPERATURE
30

25
--

OUT

IN-

AVAILABLE OPTIONS

TA

Vlomax
at 25'C

PACKAGE
SMALL OUTLINE
(0)

CERAMIC
(FK)

O'C to 70'C

5mV

TLC3704CD

-

- 40'C to 85'C

5mV

TLC37041D

-

- 55'C to 125'C

5mV

- 40'C to 125'C

5mV

-

TLC3704MFK

-

CERAMICOIP
(J)

PLASTIC DIP
(N)

-

TLC3704CN

-

TLC3704MJ
TLC3704QJ

TLC37041N

-

The D package is available taped and reeled. Add "R" suffix to the device type (e.g., TLC3704CDR).

LinCMOS is a trademark of Texas Instruments Incorporated.
PRODucnON DATA Information II current I. 01 publication date.
Products conform 10 speciflcatlonl per the terms of Texas

Inltruments standard warranty. Production proceallng does not

nlC"Arity Includ, tesHng of all parameters.

TEXAS

~

Copyright © 1991, Texas Instruments Incorporated

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-167

TLC3704C, TLC37041, TLC3704M, TLC3704Q
QUADRUPLE MICROPOWj:R LinCMOSTM VOLTAGE COMPARATORS
description (continued)
The TLC3704C is characterized for operation over the commercial temperature range of O°C to 70°C. The
TLC37041 is characterized for operation over the extended industrial temperature range of - 40°C to 85°C. The
TLC3704M is characterized for operation over the full military temperature range of - 55°C to 125°C. The
TLC3704Q is characterized for operation from - 40°C to 125°C.

functional block diagram (each comparator)
VDD

d

I

IN+
Differential
Input
Circuits

}-OUT

~

IN-

9

GND

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage range, Voo (see Note 1) .................. ;......................... - 0.3 V to 18 V
Differential input voltage (see Note 2) ...................................................... ± 18 V
Input voltage range, VI .............................................................. - 0.3 to Voo
Output voltage range, Vo ............................................................ - 0.3 to Voo
Input current, II ......................................................................... ± 5 mA
Output current, 10 (each output) ......................................................... ± 20 mA
Total supply current into Voo terminal ...................................................... 40 mA
Total current out of ground terminal ........................................................ 60 mA
Continuous total power dissipation ..................................... See Dissipation Rating Table
Operating free-air temperature range: TLC3704C ........................................ 0 to 70°C
TLC37041 .................................... - 40°C to 85°C
TLC3704M .................................. - 55°C to 125°C
TLC3704Q .................................. - 40°C to 125°C
Storage temperature range .................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 65°C to 150°C
Case temperature for 60 seconds: FK package .............................................. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package ................ 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package ..................... 300°C
NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.
2. Differential voltages are at the noninverting input with respect to the inverting input.
DISSIPATION RATING TABLE
PACKAGE

D

FK
J
N

TA s 25°C
POWER RATING
950mW
1375mW
1375mW
1150mW

DERATING FACTOR
ABOVE TA = 25°C

TA = 70°C
POWER RATING

TA=85°C
POWER RATING

TA = 125°C
POWER RATING

7.SmWrC
11.0 mWrC
11.0mWrC
9.2mWrC

SOBmW
BBOmW
BBOmW
73SmW

494mW
715mW
715mW
598mW

N/A
275mW
275mW
N/A

TEXAS .If

INS1RUMENTS
3-1SB

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLC3704C
QUADRUPLE MICROPOWER LinCMOS™ VOLTAGE COMPARATORS

recommended operating conditions
Supply voltage, Voo
Common-mode input voltage, VIC

MIN

NOM

MAX

3

5

16

-0.2

V

VOO-1.5

High-level output current, IOH
low-level output current, IOl
Operating free-air temperature, T A

UNIT

0

V

-20

mA

20

mA

70

'C

electrical characteristics at specified operating free-air temperature, Voo = 5 V (unless otherwise
noted)
PARAMETER

Via

Input offset voltage

110

Input offset current

TEST CONDITIONSt

TA

MIN

TYP

MAX

1.2

5

25'C

VIC = VICRmin,
VOO=5Vt010V, See Note 3

O'C to 70'C
1

Input bias current

25'C

VIC =2.5V

25'C
Common-mode input voltage range
O'C to 70'C

0.6
Oto
VOO-1

kSVR

Common-mode rejection ratio

Supply voltage rejection ratio

VOH

High-level output voltage

Val

low-level output voltage

100

Supply current (four comparators)

VIC = VICRmin

VOO=5Vt010V

VIO = 1 V,

VIO =-1 V,

10H =-4 mA

V

84

70'C

84

O'C

84

25'C

85

70'C

85

O'C

85

25'C

4.5

70'C

4.3

25'C

IOl=4 mA

25'C

Outputs low

dB

dB

4.7
210

V
300

mV

375

70'C
No load,

nA

Oto
VOO -1.5

25'C
CMRR

nA
pA

5

70'C

VICR

pA
0.3

70'C
liB

mV

6.5

25'C

VIC =2.5V

UNIT

35

O'Cto 70'C

80

flA

100

t All characteristics are measured with zero common-mode voltage unless otherwise noted.
NOTE 3: The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V.

TEXAS

~

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-169

TLC37041
QUADRUPLE MICROPOWER LinCMOS™ VOLTAGE COMPARATORS
recommended operating conditions
MIN

NOM

MAX

3

5

16

Supply voltage, VOO
Common-mode input voltage, VIC

-.0.2

Low-level output current, 10L
-40

electrical characteristics at specified operating free-air temperature, Voo
otherwise noted)
PARAMETER

VIO

Input offset voltage

110

Input offset current

TEST CONDITIONS

VIC

TA

= VICRmin,

MIN

liB

25'C
-40'C to 85'C

CMRR

kSVR

VOH

Common-mode rejection ratio

Supply voltage rejection ratio

High-level output voltage

VOL

LOW-level output voltage

100

Supply current (four comparators)

NOTE 3:

. .
The offset voltage hm~s

VIC

= VICRmin

VOO = 5 V to 10 V

VIO = 1 V,

VID =-1 V,

IOH=-4mA
IOL = 4 mA

1
5

V

25'C

84
84

-40'C

83

25'C

85

85'C

85

-40'C

83

25'C

4.5

85'C

4.3

dB

dB

4.7

210

V
300

80

TEXAS ~

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

mV

400

85'C
25'C

nA

Oto
VOO -1.5

125

INSlRUMENTS
3-170

2
Oto
VOO-1

35

Outputs low

nA
pA

-40'C to 85'C
given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V.

No load,

mV
pA

1

85'C

25'C

UNIT

7

25'C

Common-mode input voltage range

'C

5

85'C

VICR

rnA

MAX

25'C

VIC =2.5V

20
85

1.2

85'C
Input bias current

rnA

TYP

-40'C to 85'C

VIC =2.5V

V

-20

= 5 V, VIC = 0 (unless

25'C

VOO = 5 V to 10 V, See Note 3

V

VOO-1.5

High-level output current, 10H

Operating free-air temperature, TA

UNIT

!lA

TLC3704M
QUADRUPLE MICROPOWER LinCMOS™ VOLTAGE COMPARATORS
recommended operating conditions
MIN

NOM

MAX

Supply voltage, VOO

4

5

16

Common-mode input voltage, VIC

0

Low-level output current, 10L
-55

electrical characteristics at specified operating free-air temperature, Voo
otherwise noted)
PARAMETER

VIO

Input offset voltage

110

Input offset current

TEST CONDITIONS

TA

VOO = 5 V to 10 V, See Note 3

MIN

liB

25'C
-55'C to 125'C

CMRR

kSVR

VOH

Common-mode rejection ratio

Supply voltage rejection ratio

High-level output voltage

VOL

Low-level output voltage

IDO

Supply current (four comparators)

VIC = VICRmin

VOD=5Vt010V

VID = 1 V,

VIO =-1 V,

10H =-4 mA

IOL=4 mA

1

Outputs low

nA

30

nA

pA

V

a to
VOO-1.5
84

125'C

83

-55'C

82

25'C

85

125'C

85

-55'C

82

25'C

4.5

125'C

4.2

25'C

pA

a to
VDD-1

dB

dB

4.7
210

125'C
No load,

mV

15
5

25'C

25'C

UNIT

10

25'C

Common-mode input voltage range

'C

5

125'C

VICR

mA

MAX

25'C

VIC = 2.5 V

20
125

1.2

125'C
Input bias current

mA

TYP

-55'C to 125'C

VIC =2.5 V

V

-20

= 5 V, VIC = 0 (unless

25'C

VIC = VICRmin,

V

VOO-1.5

High-level output current, 10H

Operating free-air temperature, TA

UNIT

V
300

mV

500
35

-55'C to 125'C
NOTE 3: The offset voltage limits given are the maximum values required to dnve the output up to 4.5 V or down to 0.3 V.

80

!-lA

175

TEXAS -111

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-171

TLC3704Q
QUADRUPLE MICROPOWER LinCMOS™ VOLTAGE COMPARATORS
recommended operating conditions
MIN

NOM

MAX

3

5

16

Supply voltage, VOO
Common-mode input voltage, VIC

-0.2

Low-level output current, IOL
-40

electrical characteristics at specified operating free-air temperature, Voo
otherwise noted)
PARAMETER

VIO

Input offset voltage

110

Input offset current

TEST CONDITIONS

TA

VOO = 5 V to 10 V, See Note 3

MIN

Input bias current

25·C
-40·C to 125·C

CMRR

kSVR

VOH

VOL
100

Common-mode rejection ratio

Supply voltage rejection ratio

High-level output voltage

Low-level output voltage

VIC = VICRmin

VOO = 5 V to 10 V

VIO= 1 V,

VID =-1 V,

IOH=-4mA

IOL= 4mA

1

No load,

Outputs low

TEXAS -If

3-172

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

30

nA

pA

V

84
83

-40·C

83

25·C

85

125·C

85

-40·C

83

25·C

4.5

125·C

4.2

dB

dB

4.7
210

V
300

mV

500
35

-40·C to 125·C
NOTE 3. The offset voltage limits given are the maximum values reqUired to drive the output up to 4.5 V or down to 0.3 V.

INSIRUMENlS

nA

Oto
VOO-1.5

25·C

25·C

pA

Oto
VOO-1

125·C
Supply current (four comparators)

mV

15
5

125·C

25·C

UNIT

7

25·C

Common-mode input voltage range

·C

5

125·C

VICR

mA

MAX

25·C

VIC =2.5V

20
125

1.2

125·C
liB

mA

TVP

-40·C to 125·C

VIC =2.5 V

V

-20

= 5 V, VIC = 0 (unless

25·C

VIC = VICRmin,

V

VOO-1.5

High-level output current, IOH
Operating free-air temperature, TA

UNIT

80
175

i!A

TLC3704C, TLC38041, TLC3704M, TLC3704Q
QUADRUPLE MICROPOWER LinCMOS™ VOLTAGE COMPARATORS
switching characteristics, Voo

=5 V, TA = 25°C

PARAMETER

TEST CONDITIONS

=2 mV
Overdrive = 5 mV
Overdrive = 10 mV
Overdrive = 20 mV
Overdrive =40 mV
Overdrive

tpLH

Propagation delay time, low-to-high-Ievel outputt

f = 10 kHz,
CL =50 pF

VI

= 1.4-V step at IN + pin
=2 mV
Overdrive =5 mV
Overdrive = 10 mV
Overdrive = 20 mV
Overdrive = 40 mV
Overdrive

tpHL

Propagation delay time, high-to-Iow-Ievel outputt

f = 10 kHz,
CL = 50 pF

= 1.4-V step at IN + pin
f = 10 kHz,
Overdrive = 50 mV
CL = 50 pF
f = 10 kHz,
Overdrive = 50 mV
CL = 50 pF
VI

tf

Fall time

tr

Rise time

MIN

TYP

MAX

UNIT

4.5
2.7
1.9
1.4

f'S

1.1
1.1
4
2.3
1.5
0.95

f'S

0.65
0.15
50

ns

125

ns

t Simultaneous sWitching of Inputs will cause degradation In output response.

TEXAS

lJ.J

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-173

TLC3704C, TLC37041, TLC3704M, TLC3704Q
QUADRUPLE MICROPOWER LinCMOS™ VOLTAGE COMPARATORS
PRINCIPLES OF OPERATION
LinCMOS'· process
The LinCMOS'· process is a linear polysilicon-gate CMOS process. Primarily designed for single-supply
applications, LinCMOS'· products facilitate the design of a wide range of high-performance analog functions
from operational amplifiers to complex mixed-mode converters.
While digital designers are experienced with CMOS, MOS technologies are relatively new for analog designers.
This short guide is intended to answer the most frequently asked questions related to the quality and reliability
of LinCMOS'" products. If you have any further questions, please contact your local TI sales office.

electrostatic discharge
CMOS circuits are prone to gate oxide breakdown when exposed to high voltages even if the exposure is only
for very short periods of time. Electrostatic discharge (ESD) is one of the most common causes of damage to
CMOS devices. It can occur when a device is handled without proper consideration for environmental
electrostatic charges, e.g., during board assembly. If a circuit in which one amplifier from a dual op amp is being
used and the unused pins are left open, high voltages will tend to develop. If there is no provision for ESD
protection, these voltages may eventually punch through the gate oxide and cause the device to fail. To prevent
voltage buildup, each pin is protected by internal circuitry.
Standard ESD-protection circuits safely shunt the ESD current by providing a mechanism whereby one or more
transistors break down at voltages higher than the normal operating voltages but lower than the breakdown
voltage of the input gate. This type of protection scheme is limited by leakage currents which flow through the
shunting transistors during normal operation after an ESD voltage has occurred. Although these currents are
small, on the order of tens of nanoamps, CMOS amplifiers are often specified to draw input currents as low as
tens of picoamps.
To overcome this limitation, TI design engineers developed the patented ESD-protection circuit shown in
Figure 1. This circuit can withstand several successive 2-kV ESD pulses, while reducing or eliminating leakage
currents that may be drawn through the input pins. A more detailed discussion of the operation of the TI ESD
protection circuit is presented on the next page.
All input and output pins on LinCMOS'· and Advanced LinCMOS'M products have associated ESD-protection
circuitry that undergoes qualification testing to withstand 2000 V discharged from a 1OO-pF capacitor through
a 1500-0 resistor (human body model) and 200 V from a 100-pF capacitor with no current-limiting resistor
(charged device model). These tests simulate both operator and machine handling of devices during normal test
and assembly operations.

Input

VOO

R1

__.-~__.--'VV'v--+------+---._

To Protected Circuit

R2

01

02

03

GNO--.----.---+---+------.-

Figure 1. LinCMOS'M ESD·Protection SchematiC
LinCMOS and Advanced LinCMOS are trademarks of Texas Instruments Incorporated.

TEXAS

~

INSlRUMENTS
3-174

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TLC3704C, TLC37041, TLC3704M, TLC3704Q
QUADRUPLE MICROPOWER LinCMOS™ VOLTAGE COMPARATORS
input protection circuit operation
Texas Instruments patented protection circuitry allows for both positive- and negative-going ESO transients.
These transients are characterized by extremely fast rise times and usually low energies, and can occur both
when the device has all pins open and when it is installed in a circuit.

positive ESD transients
Initial positive charged energy is shunted through 01 to Vss. 01 will turn on when the voltage at the input rises
above the voltage on the Voo pin by a value equal to the VSE of 01. The base current increases through R2
with input current as 01 saturates. The base current through R2 will force the voltage at the drain and gate of
02 to exceed its threshold level (VT - 22 to 26 V) and turn 02 on. The shunted input current through 01 to V ss
is now shunted through the n-channel enhancement-type MOSFET 02 to Vss. If the voltage on the input pin
continues to rise, the breakdown voltage of the zener diode 03 is exceeded and all remaining energy is
dissipated in R 1 and 03. The breakdown voltage of 03 is designed to be 24 to 27 V, which is well below the gateoxide voltage of the circuit to be protected.

negative ESD transients
The negative charged ESO transients are shunted directly through 01. Additional energy is dissipated in R1 and
02 as 02 becomes forward biased. The voltage seen by the protected circuit is - 0.3 V to -1 V (the forward
voltage of 01 and 02).

circuit-design considerations
LinCMOS'· products are being used in actual circuit environments that have input voltages that exceed the
recommended common-mode input voltage range and activate the input protection circuit. Even under normal
operation, these conditions occur during circuit power up or power down, and in many cases, when the device
is being used for a signal conditioning function. The input voltages can exceed VieR and not damage the device
only if the inputs are current limited. The recommended current limit shown on most product data sheets is
±5 mAo Figures 2 and 3 show typical characteristics for input voltage versus input current.
Normal operation and correct output state can be expected even when the input voltage exceeds the positive
supply voltage. Again, the input current should be externally limited even though internal positive current limiting
is achieved in the input protection circuit by the action of 01. When 01 is on, it will saturate and limit the current
to approximately 5-mA collector current by design. When saturated, 01 base current increases with input
current. This base current is forced into the Voo pin and into the device 100 or the Voo supply through R2
producing the current limiting effects shown in Figure 2. This internal limiting lasts only as long as the input
voltage is below the VT of 02.
When the input voltage exceeds the negative supply voltage, normal operation is affected and output voltage
states may not be correct. Also, the isolation between channels of multiple devices (duals and quads) can be
severely affected. External current limiting must be used since this current will be directly shunted by 01 and
02 and no internal limiting is achieved. If normal output voltage states are required, an external input voltage
clamp is required (see Figure 4).

TEXAS

If

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-175

TLC3704C, TLC37041, TLC3704M, TLC3704Q
QUADRUPLE MICROPOWER LinCMOSTM VOLTAGE COMPARATORS
INPUT CURRENT

8
TA

~ 25

vs

INPUT VOLTAGE

INPUT VOLTAGE
10

0

6

E

I

c:

.....

5

~

"
:;

()

Co

.E

4

/

3

I

=

2

j
o

I

......

......
...
....
,....

I

9

"

I
8

«

E

I

7

I

II

1:

6

()

"
:;

5

Co

4

~

V

.E

"

I

=

I

I
II

3

I

2

....V

o

VOO

I

TA~25°C

C

7

«

INPUT CURRENT

vs

VOO+4

Voo + 12

VOO+8

VOO - 0.3

VOO - 0.5

/
Voo - 0.7

VOO - 0.9

VI - Input Voltage - V

VI - Input Voltage - V

Figure 2

Figure 3
Voo

RI
VI

I
I
I
I
See Note A

t
-=-

Positive Voltage Input Current Limit:
R _ VI- Voo-0.3 V
15 rnA
Negative Voltage Input Current Limit :
RI = -VI- Voo-(-0.3 V)
5 rnA

vref

-=-

-=-

NOTE A: If the correct input state is required when the negative input exceeds GND, a Schottky clamp is required.

Figure 4. Typical Input Current-Limiting Configuration for a LinCMOS'· Comparator

TEXAS •

INSlRUMENTS
3-176

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TLC3704C, TLC37041, TLC3704M, TLC3704Q
QUADRUPLE MICROPOWER LinCMOS™ VOLTAGE COMPARATORS
PARAMETER MEASUREMENT INFORMATION
The TLC3704 contains a digital output stage which, if held in the linear region of the transfer curve, can cause
damage to the device. Conventional operational amplifier/comparator testing incorporates the use of a servo
loop which is designed to force the device output to a level within this linear region. Since the servo-loop method
of testing cannot be used, we offer the following alternatives for measuring parameters such as input offset
voltage, common-mode rejection, etc.
To verify thatthe input offset voltage falls within the limits specified, the limit value is applied to the input as shown
in Figure 5(a). With the noninverting input positive with respect to the inverting input, the output should be high.
With the input polarity reversed, the output should be low.
A similar test can be made to verify the input offset voltage at the common-mode extremes. The supply voltages
can be slewed as shown in Figure 5(b) for the VieR test, rather than changing the input voltages, to provide
greater accuracy.
1V

SV

ApplledVIO
Limit

1
-=-

ApplledVIO
Limit

-=-

-=-

1

-=-

-=-

(a) VIO WITH VIC" 0 V

-=-

-4V

-=-

(b) VIO WITH VIC" 4 V

Figure 5. Method for Verifying That Input Offset Voltage Is Within Specified Limits
A close approximation of the input offset voltage can be obtained by using a binary search method to vary the
differential input voltage while monitoring the output state. When the applied input voltage differential is equal,
but opposite in polarity, to the input offset voltage, the output will change states.
Figure 6 illustrates a practical circuit for direct dc measurement of input offset voltage that does not bias the
comparator in the linear region. The circuit consists of a switching mode servo loop in which IC1 a generates a
triangular waveform of approximately 20-mV amplitude. IC1b acts as a buffer, with C2 and R4 removing any
reSidual d.c. offset. The Signal is then applied to the inverting input of the comparator under test, while the
noninverting input is driven by the output of the integrator formed by IC1 c through the voltage divider formed
by R8 and R9. The loop reaches a stable operating point when the output of the comparator under test has a
duty cycle of exactly 50%, which can only occur when the incoming triangle wave is "sliced" symmetrically or
when the voltage at the non inverting input exactly equals the input offset voltage.
Voltage divider R8 and R9 provides an increase in the input offset voltage by a factor of 100 to make
measurement easier. The values of R5, R7, R8, and R9 can significantly influence the accuracy of the reading;
therefore, it is suggested that their tolerance level be one percent or lower.
Measuring the extremely low values of input current requires isolation from all other sources of leakage current
and compensation for the leakage ofthe test socket and board. With a good picoammeter, the socket and board
leakage can be measured with no device in the socket. Subsequently, this open socket leakage value can be
subtracted from the measurement obtained with a device in the socket to obtain the actual input current of the
device.

TEXAS

-If

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-177

TLC3704C, TLC37041, TLC3704M, TLC3704Q
QUADRUPLE MICROPOWER LinCMOS™ VOLTAGE COMPARATORS
PARAMETER MEASURMENT INFORMATION

Voo

ICla
1/4 TLC274CN

C3
0.6SI1F

R5
1.8 kQ 1%

IClc

R6
1 MQ

1/4 TLC274CN

R4
47kQ

>----...-

R7
1.S kQ 1%

Rl
240kQ

T

VIC

(Xl00)

C4
O.lI1F

Cl
O.lI1F

RS
R9
100 Q 1%
R3
100Q

10 kQ 1%

R2
10kQ

Figure 6. Circuit for Input Offset Voltage Measurement
Response time is defined as the interval between the application of an input step function and the instant when
the output reaches 50% of its maximum value. Response time for the low-to-high-Ievel output is measured from
the leading edge of the input pulse, while response time for the high-to-Iow-Ievel output is measured from the
trailing edge of the input pulse. Response time measurement at low input signal levels can be greatly affected
by the input offset voltage. The offset voltage should be balanced by the adjustment at the inverting input (as
shown in Figure 7) so that the circuit is just at the transition pOint. Then a low signal, for example 105-mV or 5-mV
overdrive, will cause the output to change state.

TEXAS ~

INSlRUMENlS
3-178

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TLC3704C, TLC37041, TLC3704M, TLC3704Q
QUADRUPLE MICRO POWER LinCMOS™ VOLTAGE COMPARATORS
PARAMETER MEASURMENT INFORMATION

Voo

Pulse
Generator

lV----,
100
H)-Turn >+---"Nv-~'----I
PotentIometer
-lV

CL
(see Note A)

TEST CIRCUIT

OverdrIve

OverdrIve

Input

*t-----+-----f
I

Low-to-Hlgh
Level Output

100 mV

I
I
I
I
I

I

I
I

I

~

Hlgh-to-Low
Level Output

50%

: 10%

I

.~ '¥~===t+

I
I
I I

-J.,

I
I

I

~

I
I
I
I
I
I
I
I

~14--~

tpLH

10%

tPHL

VOLTAGE WAVEFORMS
NOTE A: CL includes probe and jig capacitance.

Figure 7. Response, Rise, and Fall Times Circuit and Voltage Waveforms

TEXAS ,If

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-179

TLC3704C, TLC37041, TLC3704M, TLC3704Q'
QUADRUPLE MICROPOWER LinCMOS™ VOLTAGE COMPARATORS
TYPICAL CHARACTERISTICSt
INPUT BIAS CURRENT

vs

DISTRIBUTION OF INPUT
OFFSET VOLTAGE
200
180
160

FREE-AIR TEMPERATURE
10

I
VO~=5IV I
VIC =2.5V
TA = 25' C
698 Units Tested
From 4 Wafer Lots

f=

c

I

C

~

120

::;)

'0

...

100

E

80

1l
:I

/

/

~

140

~

VOO =5V

~ VIC=2.5V

L

:I

o

:3

iii
:;

/'

0.1

CL

Z

./

.E

60

I

./

]! 0.01
40
20

o

-5

r
-4

~

I~~

-3

-2

~~[ ~~
-1

0

2

3

4

0.00 1
25

5

50

vs

vs

FREE-AIR TEMPERATURE

FREE-AIR TEMPERATURE
90

I

m
"0

88 f-- VOO = 5 V

..

I

86

m
o "0 84
~ I

-

"0

C

0

0

c

V

.2
1U
a:
c
o
~

88

84
82

80

a:l 78
a: ..
::;; a:

~
>-

78

0

0

82

E

I~

0

voJ

= 5 )to 10

86

I..

~ i
E a:

125

SUPPLY VOLTAGE REJECTION RATIO

COMMON-MODE REJECTION RATIO

I

100

Figure 9

Figure 8

90

75

TA - Free-Air Temperature - 'C

VIO - Input Offset Voltage - mV

t

-

r-

;,,/'

80

76

'ii.
Q,

74

Ul
I

74

...rn

72

76

:I

a:

72
70
-75

-50

-25

0

25

50

75

100

125

70
-75

-50

-25

0

25

50

75

100

TA - Free-Air Temperature - 'C

TA - Free-Air Temperature - 'C

Figure 11

Figure 10

t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TEXAS ."

INSlRUMENTS
3-180

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

125

TLC3704C, TLC37041, TLC3704M, TLC3704Q
QUADRUPLE MICROPOWER LinCMOS™ VOLTAGE COMPARATORS
TYPICAL CHARACTERISTICSt
HIGH-LEVEL OUTPUT VOLTAGE

HIGH-LEVEL OUTPUT VOLTAGE

vs

vs

FREE-AIR TEMPERATURE

HIGH-LEVEL OUTPUT CURRENT

5

voo

vori = 5 Vi
>
I

'"

=t

IOH =-4 mA

Cl

.B

~

Cl

~

~

:;
0
:;

4.8

.3

0

I'-..... t--.. .......

a;

>

............

4.7

1:
Cl
J:

..........

~

-1

.3
:;

i"-.......

I

:r:

-{l.5

:;
c.
:; -{l.75

..... r-.....

0

a;
>

-{l.25

'"

4.9

4.6

c.
.E

1:
Cl
J:

I'--

-1.5

I

:r:

~
4.5
-75

-1.25

-50

-25

25

0

50

75

100

-1.75

-2.5

125

TA - Free-Air Temperature - °C

-5

Figure 12

I

LOW-LEVEL OUTPUT VOLTAGE

vs

LOW-LEVEL OUTPUT CURRENT

FREE-AIR TEMPERATURE
400

>

E

1.25

350 f-

~

~

'g>"

300

:;

250

~

:;
So
:::s

o

200

~

0.5

!

150

~

0.25

j
0
..J
I
..J

I

c.

'5

0.75

a;

I

VOO = 5V
IOL = 4 mA

I

Cl

0

-15 -17.5 -20

vs
1.5

'"
'"

-10 -12.5

Figure 13

LOW-LEVEL OUTPUT VOLTAGE

>

-7.5

IOH - High-Level Output Current - mA

~

I
..J

~

2

4

6

8

10

12

14

16

18

20

,. , . /

./

/'

/'

V

V
./

V

100
50

o

-75

-50

-25

0

25

50

75

100

125

TA - Free-Air Temperature - °C

IOL - Low-Level Output Current - mA

Figure 15

Figure 14

t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TEXAS ~

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-181

TLC3704C, TLC37041, TLC3704M, TLC3704Q
QUADRUPLE MICROPOWER LinCMOSTM VOLTAGE COMPARATORS
TYPICAL CHARACTERISTICS
OUTPUT TRANSITION TIME

vs

SUPPLY CURRENT RESPONSE
TO AN OUTPUT VOLTAGE TRANSITION

LOAD CAPACITANCE
250
225 -

I

200
1/1

e

.,I

175

E
i=
e
~
'iii
e

150

V

I

I

'"

......... V

j!::
I

"......

75

~

. . . 1---'"

Fall Time

100

'"

§- .1
~ ~

/"
,/

125

...........

50

10 -

VOO =5V
CL =50 pF
f = 10 kHz

~1

V

Rise Time

-

I

V

Voo =5V
TA = 25' C

5

0::
0:1

I'"

-u

o

1

1

\ /

\

".,

'"

25

o
o

200

400

600

1000

800

t-Tlme

CL - Load Capacitance - pF

Figure 17

Figure 16
LOW·TO·HIGH·LEVEL OUTPUT RESPONSE
FOR VARIOUS INPUT OVERDRIVES

5

S>
a. I
S .,

r----

ol,gj'"
~~

40 mV ---l
20mV 10mV
5 mV
2mV

J

0

,..

r

(

HIGH·TO·LOW·LEVEL OUTPUT RESPONSE
FOR VARIOUS INPUT OVERDRIVES

5

{

S>

S .,

0'"

l,gj

J

~~

J

J

rE '5

I

CD

VOO =5V
TA = 25' C
CL = 50 pF

0

:1:- '"

o

2

:§

~~~
~a.",

-

I

I

3

4

"\

l
VOO =5V
TA = 25' C
CL=50pF

>E

-

0

l.5 ::'"
,o

~

5

tpLH - Low·to-Hlgh-Level Output
Response Time - f.lS

o

2

3

4

tpHL - High-to-Low-Level Output
Response Time - f.lS

Figure 19

Figure 18

TEXAS ."

INSIRUMENlS
3-182

"\

100

>
E

eO.
.,e'"
a ~

III

0

100

:§

40mv--+' ,
20 mV--I,.1
f-l0mV
5mV
2mV

I

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

5

TLC3704C, TLC37041, TLC3704M, TLC3704Q
QUADRUPLE MICRO POWER LinCMOS™ VOLTAGE COMPARATORS
TYPICAL CHARACTERISTICS
LOW-TO-HIGH-LEVEL
OUTPUT RESPONSE TIME

HIGH-TO-LOW-LEVEL
OUTPUT RESPONSE TIME

vs

vs

SUPPLY VOLTAGE
6.-----.--,---,---r--....--.----,--,
CL = 50 pF
TA = 25'C

6

51--I--+--+--+-+----:l7"~---I

5

a;

j~
, I
~

&!

I

~~
~ I

I

CL = 50 pF
I-- TA = 25'C

a;
41---1--+--+--+-+--1---1--1

~=
J:C

~ ~

SUPPLY VOLTAGE

........
4

--

Overdrive = 2 mV

r--

.9=

5

0

+tft
.c ..

3 1---1--+-

-1--;--1

-~----

3

.2' a:

...1_

la 2t--t-:;;;;;I;=..,--F---i-:;;;;>""'E?-"9------i
J:'S

-

~O

J:'S

ICI.

...IS

-

...............

2

r-- r-- I---

10mV

il: 0

20mV
~

40mV

40mV

2

4

6

10

8

12

14

2

16

Veo - Supply Voltage - V

4

6

8

10

12

14

16

Vee - Supply Voltage - V

Figure 20

Figure 21

AVERAGE SUPPLY CURRENT
(PER COMPARATOR)

SUPPLY CURRENT
vs
SUPPLY VOLTAGE

vs
FREQUENCY
10000

=
-

-

-

TA-25'C
CL=50 pF

I

70

11111111



4V

>
IL
~I-

10
0.01

fo"'"

401---I~~~-+--~=-~~1----+~~

CI.

5V

'lI!

r-

V

..... '

0.1

V

10

131~11
100

2

f - Frequency - kHz

4

6

8

10

12

14

16

Vee - Supply Voltage - V

Figure 22

Figure 23

TEXAS

-1!1

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-183

TLC3704C, TLC37041, TLC3704M, TLC3704Q
QUADRUPLE MICROPOWER LinCMOS™ VOLTAGE COMPARATORS
TYPICAL CHARACTERISTICSt
SUPPLY CURRENT

vs
FREE-AIR TEMPERATURE
30

I

25

"

«"I

C 20
i!!

!3

()

....

.2:- 15
a.
a.
:s

(/I

I

c

10

.fI

..............

--

--------

I

VOO=5V
No Load

Outputs Low

-

--

Outputs High

5

o

-75

-50

-25

0

25

50

75

T A - Free-Air Temperature -

100

125

°c

Figure 24
t Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

APPLICATION INFORMATION
The inputs should always remain within the supply rails in order to avoid forward biasing the diodes in the
electrostatic discharge (ESD) protection structure. If either input exceeds this range, the device will not be
damaged as long as the input is limited to less than 5 mA. To maintain the expected output state, the inputs must
remain within the common-mode range. For example, at 25°C with VDD =5 V, both inputs must remain between
- 0.2 V and 4 V to ensure proper device operation.
To ensure reliable operation, the supply should be decoupled with a capaCitor (0.1 J.tF) that is positioned as close
to the device as possible.
Be careful to note the output and supply current limitations since the TLC3704 does not provide current
protection. For example, each output can source or sink a maximum of 20 mA; however, the total current to
ground can only be an absolute maximum of 60 mA. This prohibits sinking 20 mA from each of the four outputs
simultaneously since the total current to ground would be 80 mAo
The TLC3704 has internal ESD protection circuits that will prevent functional failures at voltages up to 2000 V
as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices
as exposure to ESD may result in the degradation of the device parametric performance.

TEXAS •

INSTRUMENTS
3-184

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TLC3704C, TLC37041, TLC3704M, TLC3704Q
QUADRUPLE MICROPOWER LinCMOS™ VOLTAGE COMPARATORS
APPLICATION INFORMATION
12V

DIR
5V

EN

(see
Note A)

1/2 TLC3704

100kQ
10 kQ
5V

-'VV~>--t

Motor

C1
0.Q1

f'FT

(see Note B)

12 V

DIR

10 kQ
5V

EN

10 kQ
Motor Speed Control
Potentiometer

5V
Direction
Control

~
S1

-=-

SPOT

NOTES: A. The recommended minimum capacitance is 10 f'F to eliminate common ground switching noise.
B. Adjust C1 for change in oscillator frequency

Figure 25. Pulse·Width·Modulated Motor Speed Controller

TEXAS

-If

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-185

TLC3704C, TLC37041, TLC3704M, TLC3704Q
QUADRUPLE MICROPOWER LinCMOSTM VOLTAGE COMPARATORS
APPLICATION INFORMATION
SV
• MonItors 5 VDe Rail
• MonItors 12 VDe RslI
• Esrly Power Fall WarnIng

12V
12V

SENSE

Vee

3.3kQ

10kQ

Sense

>----1 RESIN

1 kQ

TL770SA

REF

RESET

GND

2.SV.----------.

-=-

R2

I

To ,"P Interrupt
"Early Power Fall"

R1

VUNREG
(see Note A) - - - \ N \ r - . . - - - - j

-=-

-=NOTES: A.

VUNAEG

(R1 +R2)
= 2.5~

B. The value of CT determines the time delay of reset.

Figure 26. Enhanced Supply Supervisor

TEXAS

.If

INSIRUMENlS
3-186

SV

POST OFFICE BOX 655303 • DALlAS. TEXAS 75265

eT
(see Note B)

t----

To,"P
Reset

TLC3704C, TLC37041, TLC3704M, TLC3704Q
QUADRUPLE MICROPOWER LinCMOSTM VOLTAGE COMPARATORS
APPLICATION INFORMATION
12 V
R1
100 kQ
(see Note B)

12V

12 V

100 kQ

Output 1

R2
5kQ
(see Note C)

100 kQ

100 kQ

12V

I

C1
0.01 f.tF
(see Note A)

Output 2

R3
100 kQ
(see Note B)

Output 1

Output 2

11.-_ _ _

1

----1

NOTES: A. Adjust C1 for a change in oscillator frequency where:
1/1 = 1.85(100 kQ)C1
B. Adjust Rl and R3 to change duty cycle
C. Adjust R2 to change deadtime

Figure 27. Two-Phase Nonoverlapping Clock Generator

TEXAS ~

INSIRUMENTS
POST OFFICE BOX 665303 • DALLAS, TEXAS 75265

3-187

TLC3704C, TLC37041, TLC3704M, TLC3704Q
QUADRUPLE MICROPOWER LinCMOS™ VOLTAGE COMPARATORS
APPLICATION INFORMATION
VI = 6 V to 16 V
IL = 0.01 mA to 0.25 mA
Vo = 2.5 (R1 + R2)
R2
1/2 TLC3704

VI

100kQ

I

VI

+
100 kQ

100kQ

T

C1
180 !-IF
(see Note A)

IN5818

47 !-IF
Tantalum

"::"

R=6Q
L=1 mH
(see Note 0)

R1

Vo
100kQ
TLC271
(see Note B)

RL
470 !-1FT
"::"

R2
100 kQ

C2
100 pF
100kQ
270kQ
_-.JV\~--

VI

LM385
2.5V

NOTES: A. Adjust C1 for a change in oscillator frequency
B. TLC271 - Tie pin 8 to pin 7 for low bias operation
C. SK9504 - VDS = 40 V
IDS 1 A
D. To achieve microampere current drive, the inductance of the circuit must be increased.

=

Figure 28. Micropower Switching Regulator

TEXAS

~

INSTRUMENTS
3-188

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

"::"

4-1

en

"'C
(I)
(')

-.

-

Q)

-n

c

...-.
o
:J

(')

:J

tn

4-2

LM2907. LM2917
FREOUENCY-TO-VOLTAGE CONVERTERS
D3003, MARCH 1986- REVISED OCTOBER 1988

•

Output Swings to Ground for ZeroFrequency Input

•

Only One RC Network Provides Frequency
Doubling for Low Ripple

•

8-Pin Versions Interface Directly to VariableReluctance Magnetic Pickups

•

Uncommitted Collector and Emitter Outputs
Provide 40-mA Sink or Source Current to
Operate Relays. Solenoids. Meters. or LEOs

LM2907. LM2917 ... 0 OR P PACKAGE
(TOP VIEW)

•

Built-In Hysteresis for Noise Immunity

•

Linearity Typically

•

8-Pin Versions are Fully Protected from
Damage Due to TACH Input Swing Above
VCC and Below Ground

TACH+ [ ] B GND
CAP1
2
7
INCPOtlN +
3
6
VCC
E

4

5

C

LM2907, LM2917 ... 0 OR N PACKAGE
(TOP VIEW)

TACH +
CAP1
CPO
IN+
E
NC
NC

± 0.3%

applications

NC
NC
GND
TACHINVCC
C

NC - No internal connection

Over/under speed sensing
Frequency-to-voltage conversion
Speedometers
Breaker-point dwell meters
Hand-held tachometers
Speed governors
Cruise control
Automotive door-lock control
Clutch control
Horn control
Touch or sound switches

description
The LM2907 and LM2917 are monolithic frequency-to-voltage converters with an output circuit designed
to operate a relay. lamp. or other load when the input frequency reaches or exceeds a selected rate. The
converter (tachometer) section consists of a comparator driving a charge pump and offers frequency
doubling for low ripple. full input protection in 8-pin versions, and an output swing to ground for a zerofrequency input. The output section consists of an operational amplifier. normally operating as a comparator.
that drives an output transistor with both the collector and emitter floating. The circuit can either sink
or source 40 mA of load current.
Two basic configurations of the devices are offered; an 8-pin version and a 14-pin version. The 8-pin versions
have a ground-referenced tachometer input and an internal connection between the tachometer output
and the operational amplifier input. The 8-pin version is well suited to single-speed or single-frequency
switching or fully buffered frequency-to-voltage conversion applications. The more versatile 14-pin versions
provide differential tachometer inputs and uncommitted operational amplifier inputs. In the 14-pin versions.
the tachometer input can be floated and the operational amplifier becomes suitable for active filter
conditioning of the tachometer output.
The LM2917 has an active shunt regulator connected across the power leads. The regulator clamps the
supply voltage so that stable frequency-to-voltage and frequency-to-current conversions are possible with
any supply voltage and a suitable resistor.
The LM2907 and LM2917 are designed for operation from - 40 DC to 85 DC.

PRODUCTION DATA documents contain information
current as of publication date. Products conform to
specifications par the terms of

TalBS

Instruments

standard warranty. Production processing does not
necessarily include testing of all parameters.

-1!1

Copyright © 1986, Texas Instruments Incorporated

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-3

LM2907. LM2917
FREOUENCY·TO·VOLTAGE CONVERTERS
functional block· diagrams
8-PIN VERSIONS
IN- ...;(_7)'--_ _ _ _ _ _ _ _ _ _ _ _-1

TACH+

(1)

(3)

-'(..;;.6):...._--..,~.

VCC

l'

CAPl

CPO/IN +

I

(LM2917 ONLY)

14-PIN VERSIONS
IN- (10)

TACH+

(1)

TACH(4)

VCC ..;(,,-9)'--_.,--1..

IN+

CAPl

I

~

(LM2917 ONLY)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC: LM2907................................................ 28 V
Supply current, ICC: LM2917 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 mA
Coliector-to-emitter voltage. '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 28 V
Operational amplifier input voltage. IN + and IN - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 V to VCC
Tachometer input voltage: 8-pin version TACH + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 V to 28 V
14-pin version TACH+ and TACH- . . . . . . . . . . . . . . . . . . 0 V to VCC
Continuous total dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. See Dissipation Rating Table
Operating free-air temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 40°C to 85 °C
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65°C to 150°C
Lead temperture range 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . 260°C
DISSIPATION RATING TABLE
PACKAGE

TA " 25°C
POWER RATING

DERATING FACTOR
ABOVE TA

=

25°C

D (8 pins)

725 mW

5.8 mW/oC

377 mW

D (14 pins)

900 mW

7.2 mW/oC

468 mW

N

1000 mW

7.7 mW/oC

500mW

P

900 mW

7.2 mW/oC

468 mW

TEXAS

~

INSTRUMENTS
4-4

TA - 85°C
POWER RATING

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

LM2907, LM2917
FREQUENCY·TO·VOLTAGE CONVERTERS
electrical characteristics. Vee

12 V (LM2907). V +

12 V through 470 0 (LM29171. TA

=

25°e

converter (tachometer) section
TEST CONDITIONS

PARAMETER

VT

Input threshold voltage

Vhys

Input hysteresis
(see Note 1)

VIO
liS
VOH
VOL

10

Leakage current, CPO

±15

±40

±10

±15

±40

=

1 kHz

VI

I

=

1 kHz

=

250 mV,

I

=
=

1 kHz

5

15

5

15

1 kHz

3.5

10

3.5

10

0.1

1

0.1

1

=

=

VI

250 mV, I

30

±50 mV

VI or VID

=

125 mV

VI or VID

=

-125 mV

CAP1 and CPO at 6 V

30

8.3
2.3
140

180

140

0.9
I

=

1 kHz. 5 kHz. or 10 kHz

1

1.1

0.3

±1

mV
~A

V

1.2

V

180

240
0.1

0.9

mV

5.0

0.1

See Note 3

UNIT

mV

240

CAP1 and CPO at 3.8 V
CAP1 open, CPO at 0 V,

Gain constant

Nonlinearity (see Note 21

±10

I

VI

Output current, CAP1, CPO

MAX

250 mV,

VID

voltage, CAP1

TYP

250 mV,

I 8-pin versions

voltage, CAP1

MIN

=

I 14-pin versions

Low-level output

MAX

=

I nput offset

High-level output

LM2917

TYP

VI

voltage (see Note 1)
Input bias current

LM2907
MIN

1

1.1

0.3

±1

~A

~A

%

output section
PARAMETER

VIO

Input offset voltage

liS

Bias current

AV

Voltage amplilication

IC

Collector output (sink) current

IE

Emitter output (source) current

Collector-emitter
VCE!sat)

saturation voltage

TEST CONDITIONS

VI
VI
VI
VI

=
=
=
=

6 V,

See Note 3

3.B V,

See Note 3

LM2907
MIN

LM2917

TYP

MAX

3

10

50

6 V

MIN

200

= 1 V,
Vc = VCC,
IC = 5 mA
IC = 20 mA

VE
VE

=
=

0

40

VCC-2

40

-10

IC - 50 mA

3

10

50

500

200

50
0.1

MAX

500

3.8 V

Vc

TYP

0.5
1.5

mV
nA
V/mV

50

mA

-10

mA

0.1

0.5

1

1.5

1
1

UNIT

1

V

NOTES: 1. Hysteresis is the algebraic difference VT + - VT _; offset voltage is the difference in magnitudes 1VT + 1 - 1VT _ I. See
parameter measurement information test circuits.
2. Nonlinearity is delined as the deviation 01 Va at CPO lor f = 5 kHz Irom a straight line delined by the Va at 1 kHz and Va
at 10 kHz, with C1 = 1000 pF, R1 = 68 kO, C2 = 0.22 ~F.
3. Pin 2 must be bypassed with a 0.001-I'F capacitor to prevent oscillation for these tests.

TEXAS . "
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-5

LM2907, LM2917
FREOUENCY-TO-VOLTAGE CONVERTERS
electrical characteristics
zener regulator (LM2917 only) V +

12 V through 470 0, TA

25°C

PARAMETER

MIN

TYP

Vee

Regulated supply voltage

7.56

rs

Series resistance

10.5

avee

Temperature coefficient of regulated supply voltage

MAX

V
15

PARAMETER

MIN

Supply current

TYP

MAX

3.8

6

PARAMETER MEASUREMENT INFORMATION

TACH+

CPO

CAP1

R1

-=TEST CIRCUIT

TACH +

:V:~-15mvV
CAP1

CPO

I

I

I

I
I

I

I

I

I

--..., I

I
I

I

I

VOH

VCC

Z-

HHh H-'xe",~"o~,
-

WAVEFORMS

FIGURE 1. TEST CIRCUIT AND WAVEFORMS

"J1

TEXAS
INSTRUMENTS
4-6

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

VOL

[J

mV/oe

1

total device (LM2907 only) VCC = 12 V, TA
ICC

UNIT

LM2907, LM2917
FREOUENCY·TO·VOLTAGE CONVERTERS
TYPICAL APPLICATION DATA
The LM2907 and LM2917 frequency-to-voltage converter circuits are designed for maximum versatility
with a minimum of external parts. The first stage of these devices is a differential comparator. The singleinput 8-pin versions have one input grounded so that an input signal must swing above and below ground
and exceed the input thresholds to produce an output. This version is specifically for magnetic variablereluctance pickups, which typically provide a single-ended ac output. These single-ended inputs are fully
protected against voltage swings to ± 28 V, which are easily attained by these types of pickups.
The differential-input 14-pin versions provide the option of setting the input reference level and still having
hysteresis around that level to provide excellent noise rejection in any application. The input protection
is removed in the 14-pin versions. Therefore, neither of the differential inputs should exceed the limits
of the supply voltage. An input must not go below ground without a resistance in the lead to limit the
current that will flow in the epi-substrate diode. The charge pump circuit that follows the input stage
produces a dc output voltage proportional to the input frequency. The charge pump circuit (see Figure 2)
consists of a timing capacitor (C1 L an output resistor (R1), and an integrating or filter capacitor (C2). When
the input changes state (due to a suitable zero crossing or differential voltage on the input), the timing
capacitor is either charged or discharged linearly with a constant current of 200 /lA through CAP1 between
two voltages whose difference is VCC/2. Within one-half cycle of the input frequency or a time equal to
1/2f, the change in charge on C1 is equal to (VCC/2)C1. The average amount of current pumped into or
out of the capacitor is:
CAP1 current (average) =

~

= C1 °

V~C

° 2f = VCC ° f ° C1

The output of the charge pump accurately mirrors the CAP1 current into the load resistor (R1) connected
to CPO. If the pulses of current are integrated with a filter capacitor, the output voltage is the average
CAP1 current times R1, and the total equation becomes:
Va = VCC ° f ° C1 ° R1 ° K
where K is the gain factor, which is typically 1.
The size of C2 is dependent only on the amount of ripple allowable and the required response time.

selection of R 1, C 1, and C2
To achieve optimum performance, there are some limitations to be considered in the selection of R1 and
C1. The timing capacitor controls the RC time and provides internal compensation for the charge pump
circuit. For very accurate operation it should be 100 pF or greater. Smaller values, especially at lower
temperatures, can cause an error current through R1. VO/R1 must be less than or equal to the output
current at CPO, which is fixed typically at 180 /lA. If R1 is too large it becomes a significant fraction of
the output impedance at CPO, which degrades the linearity. In addition, ripple voltage must be considered
when selecting R1. The size of C2 is directly affected by the size of R1. An expression that describes
the ripple content at CPO is:
Vripple

VCC
2

0.£2.
° (1
C2

C1
VCcofo200)

volts peak-to-peak

where
C1 and C2 are in farads
VCC is in volts
f is in hertz.

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4-7

lM2907. lM2917
FREOUENCY·TO·VOlTAGE CONVERTERS

TYPICAL APPLICATION DATA
R1 cannot be chosen independently of ripple because response time or the time it takes Va to stabilize
at a new level increases as the size of C2 increases. A compromise between ripple, response time, and
linearity must be chosen carefully. As a final consideration, the maximum attainable input frequency is
determined by Vcc, C1, and Icap (current through CAP1).
f

Icap
max - C1 • VCC

hertz

where
Icap is typically 200 p.A
C 1 is in farads
VCC is in volts.

zener regulator options (LM2917)
For those applications in which an output voltage or current must be obtained independently of supply
voltage variations, the LM2917 can be used. The most important factor in selecting a dropping resistor
for the unregulated supply is that the frequency-to-voltage converter circuit and the operational amplifier
alone require approximately 3 mA at the voltage level set by the zener diode. At low supply voltages there
must be some current flowing in the resistor above the 3 mA circuit current to operate the regulator. As
an example, if the supply voltage varies between 9 and 16 V, a resistance of 470 fl will minimize the
zener voltage variation to typically 160 mV. If the resistance goes under 400 fl or above 600 fl, the zener
variation quickly rises above 200 mV for the same input variation.

Vcc
TACH +

EMITTER·FOLLOWER
OUTPUT

FIGURE 2. MINIMUM-COMPONENT TACHOMETER

-1!1

TEXAS
INSTRUMENTS
4-8

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

MC1445
GATE·CONTROLLED 2·CHANNEL·INPUT VIDEO AMPLIFIER
D2572, JANUARY 1980-REVISED APRIL 1988

J OR N DUAL-IN-LiNE PACKAGE

•

Differential Inputs and Outputs

•

Channel Select Time ... 20 ns Typ

•

Bandwidth Typically 50 MHz

(TOP VIEWI

•

16·dB Minimum Gain

•

Common· Mode Rejection Typically 85 dB

•

Broadband Noise Typically 25 p,V

OUTGATE
IN+ B
IN- B
IN+ A
IN- A
OUT +

NC
NC
NC
NC
NC
VCC+
VCC-

description
NC-No internal connection

The MC 1445 is a general-purpose, gated, dualchannel wideband amplifier designed for use in
video-signal mixing and switching. Channel
selection is accomplished by control of the
voltage level at the gate. A high logic level
selects channel A; a low logic level selects
channel B. The un selected channel will have a
gain of one or less.

FUNCTION TABLE
GATE INPUT

SELECT

H

Channel A

L

Channel B

The MC1445 is characterized for operation from
O°C to 75°C.

block diagram
IN

+ B (3)

IN-B (4)

MUX

IN+A (5)

NON INVERTING
OUTPUT OUT+

(6)

INVERTING
OUTPUT OUT-

IN-A

GATE~(2~1__________~

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC + (see Note 1) ., . . . . . . . . . . . . . . . . . , ......... ,. . . . . . . . . . . . .. 12 V
Supply voltage, VCC - (see Note 1) . , . , , , . , ... , .. , , . . . . . . . . . . . . , ..... , ... , , . .. - 12 V
Differential input voltage, VID (see Note 2) .. , .. , ......... , . . . . . . . . . . . . . . . . . . . . . . ± 5 V
Output current, 10 ... ,.,., ... ,., . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,....... ± 25 mA
Continuous total dissipation .. , . , ... , ....... , .. , , ........ , . ,. See Dissipation Rating Table
Operating free-air temperature. , ..... , ....... , .. , .. , . , . , . . . . . ..
... . . . .. O°C to 75°C
Storage temperature range .,., ... , .. ,.,." .. " . , ........ ,.,., ..... , - 65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package ., .... , .. ,., 300°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: N package . , .. , , . , .. ,. 260°C
NOTES: 1. Voltage values, except differential input voltage, are with respect to the midpoint of Vcc + and VCC _.
2. Differential input voltages are measured at a noninverting input terminal with respect to the appropriate inverting input terminal.

PRODUCTION DATA documents contain inlormation
current as of publication date, Product. conform to
specifications per the tarms of Texa. Instruments
standard warranty, Production processing does not
necessarily include testing of aU parameters.

Copyright © 1983, Texas Instruments Incorporated

TEXAS.

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-9

MC1445
GATE·CONTROLLED 2·CHANNEL·INPUT VIDEO AMPLIFIER
DISSIPATION RATING TABLE
TA :5 '25°C

DERATING

DERATE

TA = 75°C

POWER RATING

FACTOR

ABOVE TA

POWER RATING

J

626 mW

8.2 mW/oC

74°C

615 mW

N

625 mW

N/A

N/A

625 mW

PACKAGE

recommended operating conditions
NOM

MAX

Supply voltage, VCC +

MIN

5

8

V

Supply voltage, VCC-

-5

-8

V

75

°c

Operating free-air temperature range, T A

0

electrical characteristics at Vee +
Large-signal single-ended
AVS

voltage amplification

BW

Bandwidth

VIO

Input offset voltage

110

Input offset current

liB

Input bias current

-5 V, TA

5 V, Vee-

PARAMETER

TEST CONDITIONS
f~125kHz,

Vi

~

20 mV

MIN

TYP

MAX

16

19.5

23

Vi = 20 mV

50
2
15

VOQ
AVOQ

voltage range
Quiescent output voltage
Change in quiescent

Gate input change

output voltage

from 5 V to 0 V

Maximum peak-to-peak
VOPP

output voltage swing

mV

2.5

V

f = 50 kHz

85

dB

25

I'V

input noise voltage

RS = 50!l

threshold voltage

±15

!l

BW

Low-level gate
VTL

V

k!l

125 kHz,

Broadband equivalent

threshold voltage

V

0.1

10

~

VTH

±2.5

25

f

High-level gate

I'A

125 kHz

f

Output impedance

Vn

I'A
30

50 kHz

Input impedance

Zo

rejaction ratio

mV

~

zi

CMRR

dB

f

~

Common-mode

UNIT

MHz
7.5

Common-mode

VICR

UNIT

RL

~

1 k!l

1.5
3

5 Hz to 10 MHz,

~

AVSIA) ;,: 16 dB,

AVSIB)

:5

0 dB

AVSIB) ;,: 16 dB,

AVSIA)

:5

0 dB

1.3
0.2

3

0.4

V
V

IIH

High-level gate current

VI

~

5 V

4

I'A

IlL

Low-level gate current

VI

~

0

4

mA

Propagation delay time,
tpLH

low-to-high-Ievel output
Propagation delay time,

tpHL

high-to-Iow-Ievel output
Transition time,

tTLH

low-to-high-Ievel output
Transition time,

tTHL

high-to-Iow-Ievel output

20 mV,

50% to 50%

6.5

ns

AVI = 20 mV,

50% to 50%

6.3

ns

AVI

~

AVI

~

20 mV,

10% to 90%

6.5

ns

AVI

~

20 mV,

10% to 90%

7

ns

ICC+

Supply current from VCC +

No load,

No Signal

7

15

ICC-

Supply current from VCC-

No load,

No signal

-7

-15

mA

PD

Power dissipation

No load,

No signal

70

150

mW

~

TEXAS
INSTRUMENTS
4-10

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

mA

NE555, NE555Y, SA555, SE555, SE555C
PRECISION TIMERS
01669, SEPTEMBER 1973-REVISEO FEBRUARY 1992

•
•
•
•
•

0, JG, OR P PACKAGE

Timing From Microseconds to Hours

(TOP VIEW)

Astable or Monostable Operation
G N D D 8 VCC
TRIG 2
7 DISCH
6 THRES
OUT 3
5 CaNT
RESET 4

Adjustable Duty Cycle
TTL-Compatible Output Can Sink or
Source up to 200 mA
Functionally Interchangeable With the
Signetics NE555, SA555, SE555, SE555C;
Have Same Pinout

FKPACKAGE
(TOP VIEW)
Cl

0

OZOOO
ZC)Z>Z

SE555C FROM TIIS NOT RECOMMENDED
FOR NEW DESIGNS

NC
TRIG
NC
OUT

description
These devices are precIsion monolithic timing
circuits capable of producing accurate time delays
or oscillation. In the time-delay or monostable
mode of operation, the timed inteNal is controlled
by a single external resistor and capacitor
network. In the astable mode of operation, the
frequency and duty cycle may be independently
controlled with two external resistors and a single
external capacitor.

NC

4

3 2

1 20 19
18

5

17

NC
DISCH

6

16

NC

7

15

8

14
9 10 11 12 13

THRES
NC

Of-Of-O
zwzZz
(j)
0

it!

0

NG-No internal connection

The threshold and trigger levels are normally two-thirds and one-third, respectively, of VCC. These levels can
be altered by use of the control voltage terminal. When the trigger input falls below the trigger level, the flip-flop
is set and the output goes high. If the trigger input is above the trigger level and the threshold input is above the
threshold level, the flip-flop is reset and the output is low. RESET can override all other inputs and can be used
to initiate a new timing cycle. When RESET goes low, the flip-flop is reset and the output goes low. Whenever
the output is low, a low-impedance path is provided between DISCH and ground.
The output circuit is capable of sinking or sourcing current up to 200 mA. Operation is specified for supplies of
5 V to 15 V. With a 5-V supply, output levels are compatible with TIL inputs.
The NE555 is characterized for operation from ODC to 70 DC. The SA555 is characterized for operation from
_40DC to 85 DC. The SE555 and SE555C are characterized for operation over the full military range of -55 DC
to 125DC.
AVAILABLE OPTIONS
PACKAGE

O'C to 70'C

VTHRES max
VCC=15V
11.2 V

-40'C to 85'C

11.2V

SA555D

-55'C to 125'C

10.6V
11.2 V

SE555D
SE555CD

TA

The D package

IS

SMALL OUTLINE
(D)

CERAMIC DIP
(J)

PLASTIC DIP
(P)

CHIP FORM

M

NE555P

NE555D

SA555P
SE555FK
SE555CFK

SE555JG
SE555CJG

SE555P
SE555CP

NE555Y

available taped and reeled. Add the suffix R to the deVice type (e.g., NE555DR).

PRODUCTION DATA Information Is currentss of publication date. Products
conform to specifications per the terms of Texas Instruments standard
warranty. Production processing does not necessarily Include testing of all

parameters.

CHIP CARRIER
(FK)

TEXAS

~

Copyright © 1991, Texas Instruments Incorporated

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-11

NE555, NE555Y, SA555, SE555, SE555C
PRECISION TIMERS
FUNCTION TABLE
RESET

TRIGGER VOLTAGE!

THRESHOLD VOLTAGE!

OUTPUT

DISCHARGE SWITCH

Low

Irrelevant

Irrelevant

Low

On

High

< 1/3 VDD

Irrelevant

High

Off

High

> 1/3 VDD

> 2/3 VDD

Low

High

> 1/3 VDD

< 2/3 VDD

On
As previously established

t Voltage levels shown are nominal.

functional block diagram
Vcc
8

RESET

4

CONT
5
R

6
THRES --1---+--1

R1

>----iR

3

>---

OUT

s
R

TRIG

2

--f----a
R
7
GND

RESET can override TRIG, which can override THRES.
Pin numbers shown are for the D, JG, and P packages only.

TEXAS .J!1

INSlRUMENlS
4-12

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

DISCH

NE555Y
PRECISION TIMERS
chip information
These chips, properly assembled, display characteristics similar to the NE555 (see electrical table for NE555Y).
Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be
mounted with conductive epoxy or a gold-silicon preform.
CO NT

BONDING PAD ASSIGNMENTS

(5)

VCC
(8)

RESET
(4)

R
THRES (",,6)-t--t--f'..

(3)OUT

R

+---------'-'"~) DISCH
(1)

GND

CHIP THICKNESS: 15 TYPICAL
BONDING PADS: 4 x 4 MINIMUM
TJ

max =150 C
0

TOLERANCES ARE ± 10%

1"l1li
42
~I
11111111111111111111111111111'1111111111111

ALL DIMENSIONS ARE IN MILS
PIN (1) INTERNALLY CONNECTED
TO BACKSIDE OF CHIP

TEXAS "'"
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4-13

NE555, SA555, SE555, SE555C
PRECISION TIMERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (See Note 1) ................................•.......................... 18 V
Input voltage (CO NT, RESET, THRES, and TRIG) ............................................. Vee
Output current ......................................................................... ±225 mA
Continuous total dissipation ........................................... See Dissipation Rating Table
Operating free-air temperature range: NE555 ......................................... O°C to 70°C
. SA555 ........................................ -40°C to 85°C
SE555, SE555C .............................. -55°C to 125°C
Storage temperature range ....................................................... -65°C to 150°C
Case temperature for 60 seconds: FK package .............................................. 260°C
Lead temperature 1,6 mm (1 /16 inch) from case for 10 seconds: D or P package ................. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package .................... 300°C
NOTE 1: All voltage values are with respect to network ground terminal.
DISSIPATION RATING TABLE
PACKAGE

DERATING FACTOR
ABOVE T A = 25'C

TA" 25'C
POWER RATING

D

725mW

FK

1375 mW

JG (SE555. SE555C)
JG (SA555, NE555C)
p

TA=70'C
POWER RATING

TA = 85'C
POWER RATING

TA = 125'C
POWER RATING

5.8 mWI'C
11.0 mWI'C

464mW

377mW

N/A

880mW

715mW

275mW

1050 mW

8.4 mW/'C

672mW

546mW

210mW

825mW

6.6 mWI'C
8.0 mWI'C

528mW

429mW

N/A

640mW

520mW

N/A

1000mW

recommended operating conditions
NE555
MIN

MIN

16

4.5

4.5

Supply voltage, VCC
Input voltage (CONT, RESET, THRES, and TRIG)

VCC
0

TEXAS

70

-40

~

INSlRUMENTS
4-14

SE555

MAX

MIN

16

4.5

VCC
±200

±200

Output current
Operating free-air temperature, TA

SA555

MAX

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

85

SE555C

MAX

MIN

18

4.5

Vec
±200
-55

125

-55

MAX
16

UNIT

V
V

Vce
±200

rnA

125

'c

NE555,SA555,SE555,SE555C
PRECISION TIMERS
electrical characteristics, Vee = 5 V to 15 V, TA = 25°C (unless otherwise noted)
PARAMETER

MIN
THRES voltage level

TRIG current

UNIT

TYP

MAX

10

10.6

8.8

10

11.2

2.7

3.3

4

2.4

3.3

4.2

30

250

30

250

Vee=15V

4.8

5

5.2

4.5

5

5.6

Vee = 5 V
TRIG atOV

1.45

1.67

1.9

1.1

1.67

2.2

0.5

0.9

0.5

2

~

0.3

0.7

1

0.7

1

V

RESET at Vee

0.1

0.4

0.1

0.4

RESET atO V

-0.4

-1

-0.4

-1.5

0.3

20

100

20

100

Vee=15V

9.6

10

10.4

9

10

11

Vee = 5 V

2.9

3.3

3.8

2.6

3.3

4

IOL= 10 mA

0.1

0.15

0.1

0.25

IOL=50 mA

0.4

0.5

0.4

0.75

IOL = 100 mA

2

2.2

2

2.5

IOL=200mA

2.5

Vee = 15V
Low-level output voltage
Vee = 5 V

High-level output voltage

MIN

9.4

DISCH switch off-state current
eONT voltage (open circuit)

MAX

Vee = 5 V

RESET voltage level
RESET current

TYP

Vee=15V

THRES current (see Note 2)
TRIG voltage level

NE555, SA555,
SE555C

SE555

TEST CONDITIONS

Vee=15V

0.1

0.35

0.25

0.15

0.4

13.3

No load
No load

12.75

13.3

12.5
3

IOH =-100mA

Supply current
Output high,

0.2

0.15

IOH =-200mA

Vee = 5V
Output low,

0.1

IOL=8 mA
13

V

mA
nA
V

V

V

12.5

3.3

2.75

3.3

10

12

10

Vee =5V

3

5

3

6

Vee=15V

9

10

9

13

Vee = 15V

nA

2.5

IOL=5 mA
IOH =-100mA

V

15
mA

2
4
2
5
Vee = 5V
NOTE 2: ThiS parameter Influences the maximum value of the timing resistors RA and RS In the circuit of Figure 12. For example, when
Vee = 5 V, the maximum value is R = RA + RS - 3.4 MQ, and for Vee = 15 V, the maximum value is 10 MQ.

operating characteristics, Vee = 5 V and 15 V
TEST
CONDITIONSt

PARAMETER

Initial error of timing interval*

Each timer, monostable§
Each timer,

astable~

Temperature coefficient

Each timer, monostable§

of timing interval

Each timer,

Supply voltage sensitivity

Each timer, monostable§

of timing interval

Each timer,

astable~

astable~

NE555, SA555,
SE555C

SE555
MIN

TA = 25'e
TA = MIN to MAX
TA = 25'e

TYP

MAX

0.5%

1.5%
100

90
0.05

UNIT

TYP

MAX

1%

3%

2.25%

1.5%
30

MIN

50
ppm/'e

150
0.2

0.15

0.1

0.5

0.3

Output pulse rise time

eL = 15 pF,

100

200

100

300

Output pulse fall time

TA = 25'e

100

200

100

300

..
..
For conditions shown as MIN or MAX, use the appropriate value specified under recommended operallng conditions .
..

%N
ns

t
* Timing interval error is defined as the difference between the measured value and the average value of a random sample from each process run.
§ Values specified are for a device in a monostable circuit similar to Figure 9, with component values as follow: RA = 2 kQ to 100 kQ, e = 0.1 f!F.
~ Values specified are for a device in an astable circuit similar to Figure 12, with component values as follow: RA = 1 kQ to 100 kQ, C = 0.1 f!F.

TEXAS -If

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4-15

NE555Y
PRECISION TIMERS

electrical characteristics, Vee = 5 Vto 15 V, TA = 25°C (unless otherwise noted)
PARAMETER

THRES voltage level

MIN

TYP

MAX

Vee=15V

TEST CONDITIONS

8.8

10

11.2

Vee=5V

2.4

3.3

4.2

30

250

Vee = 15V

4.5

5

5.6

Vee=5V
TRIGatOV

1.1

1.67

2.2

0.5

2

j.tA

0.3

0.7

1

V

RESET at Vee

0.1

0.4

RESETatOV

-0.4

-1.5

20

100

10

11

3.3

4

IOL= 10mA

0.1

0.25

IOL=50mA

0.4

0.75

IOL = 100 rnA

2

2.5

IOL=200 rnA

2.5

THRES current (see Note 2)
TRIG voltage level
TRIG current
RESET voltage level
RESET current
DISCH switch off-state current

9
2.6

Vee=15V

eONT voltage (open circuit)

Vee =5V

Vee=15V
Low-level output voltage

Vee = 5V

0.1

0.35

IOL = 8 rnA

0.15

0.4

IOH =-100mA

Vee=15V

High-level output voltage

IOL=5 rnA
12.75

IOH =-100mA

Output low,

No load

Output high,

No load

2.75

Supply current

nA
V

rnA
nA
V

V

3.3
10

Vee = 15V

V

V

12.5

IOH =-200 rnA

Vee = 5V

13.3

UNIT

15

Vee=5V

3

6

Vee=15V

9

13

Vee =5V

2

5

rnA

NOTE 2: This parameter mfluences the maximum value of the timing resistors RA and RS m the circuit of Figure 12. For example, when
Vee = 5 V, the maximum value is R = RA + RS - 3.4 MO, and for Vee = 15 V, the maximum value is 10 MO

operating characteristics, Vee = 5 V and 15 V, T A = 25°C (unless otherwise noted)
TEST CONDITIONS

PARAMETER

Initial error of timing intervalt

Each timer, monostable:t:
Each timer, astable 9

Supply voltage sensitivity of timing interval

MIN

TYP

MAX

1%

3%

2.25%

Each timer, monostable:t:

0.1

Each timer, astable§

0.3

Output pulse rise time

UNIT

eL = 15 pF

Output pulse fall time

0.5

tOO

300

100

300

%N
ns

t Timing Interval error IS defmed as the difference between the measured value and the average value of a random sample from each process run.
:t: Values specified are for a device in a monostable circuit similar to Figure 9, with component values as follow: RA = 2 kO to 100 kO, e = 0.1 J.tF.
§ Values specified are for a device in an astable circuit similar to Figure 12, with component values as follow: RA = 1 kO to 100 kO, e = 0.1 J.tF.

TEXAS •

INSlRUMENTS
4-16

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

NE555, SA555, SE555, SE555C
PRECISION TIMERS
TYPICAL CHARACTERISTICSt
LOW·LEVEL OUTPUT VOLTAGE

10
7

>

LOW·LEVEL OUTPUT VOLTAGE

vs

vs

LOW·LEVEL OUTPUT CURRENT

LOW·LEVEL OUTPUT CURRENT
10
7

VCC =5V

>

4

I

I

Q)

en

:I!!

2

TA--55oC -

~

'S

S-

O

a;

>

Q)

/. ~

0.7 P=TA-25oC
0.4

""

0.2

oJ

~

.9
I
oJ

-?

It

0.1
0.07

I

-

Q)

en

2

:I!!

'S
a.
'S

TA = 125°C

.9

0.1
0.07

oJ

0.04

0.4
0.2

~

-?

0.02

TA = 125°C"

~~

~

0.04

~

0.02

0.01

0.01
2

1

4

7

10

20

40

1

70 100

7

4

2

IOL - Low-Level Output Current - rnA

vs
HIGH·LEVEL OUTPUT CURRENT

'S
a.
'S

0

a;
>

.

oJ

~

.9
I
oJ

o

>

-

TA=-55oC

VCC=15V

I-f-"

1.8

----

4

>

TA=-55oC:'-,

Q)

I

2

e
c
Q)

0.7

en

:I!!
TA=25oC~

0.2
TA = 125°C

0.1
0.07
0.04
0.02

1.6

~

.,

1.2

-?

()

-?

....-:~

P'"

0.8
0.6
0.4
0.2

0,01

2

4

7 10

20

40

70 100

I-"'"

TA = 125°C
~

I

:r
I

1

1.4

~

V. If"
~~

l-

TA = 25°C

a.

0.4

70 100

DROP BETWEEN SUPPLY VOLTAGE AND OUTPUT

LOW·LEVEL OUTPUT CURRENT

I

"
~

40

vs
2.0

10
7

20

Figure 2

LOW·LEVEL OUTPUT VOLTAGE

en

10

IOL - Low-Level Output Current - rnA

Figure 1

>

55°C

TA=

0.7

.

a;
>

Il(~

TA= 25oC -

~

0

"

VCC = 10V

4

o

VCC=5Vto15V

1

2

4

7

10

20

40

70 100

IOH - High-Level Output Current - rnA

IOL - Low·Level Output Current - rnA

Figure 3

Figure 4

t Data for temperatures below DOG and above 7DoG are applicable for SE555 circuits only.

TEXAS

-I!}

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4-17

NE555, SA555, SE555, SE555C
PRECISION TIMERS
TYPICAL CHARACTERISTICSt
NORMALIZED OUTPUT PULSE DURATION
(MONOSTABLE OPERATION)

SUPPLY CURRENT

10

1

9 -

E

vs
SUPPLY VOLTAGE

I

I

I

I

Output Low,
NoLoad

8


"t;j

!l
~
2

1.005

\-

j..

\.,- TA = -55"e

a:

\ . - TA = 125"e

r

>

g
~:I

---f..- --'"

-

0.995

C

2

.. 0.990
II)

:;
a.

o

0.985
5

6

7

8

9

10

11

12

13

14

15

10
15
5
Vee - Supply Voltage - V

0

Vee - Supply Voltage - V

Figure 6

Figure 5
NORMALIZED OUTPUT PULSE DURATION
(MONOSTABLE OPERATION)

PROPAGATION DELAY TIME

vs

LOWEST VOLTAGE LEVEL
OF TRIGGER PULSE

vs

FREE-AIR TEMPERATURE
1.015
oU

300

II
vee = 10V

~

II)

c

..E

" 1.010
....-

1.005

'r-r-

g

~
~

a;

a:

g
~:I
C
3:

-r-

---

250

200

a;

c

c

a

~

i01
~

0.995

..

150

0.

~

TA=25°e

I

I

c

~

0.990

TA = 70"e
I

:;
a.

TA = 125"e
0.985
-75

0
-50

-25

0

25

50

75

100 125

0

TA - Free-Air Temperature - "e

0.1 X Vee 0.2 X Vee 0.3xVee 0.4 X Vee
Lowest Voltage Level of Trigger Pulse

Figure 8

Figure 7
t Data for temperatures below D"G and above 7D"G are applicable for SE555 circuits only.

TEXAS ."

INSTRUMENlS
4-18

20

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

NE555,SA555,SE555,SE555C
PRECISION TIMERS
APPLICATION INFORMATION

monostable operation
For monostable operation, any of these timers may be connected as shown in Figure 9. If the output is low,
application of a negative-going pulse to TRIG sets the flip-flop (0 goes low), drives the output high, and turns
off 01. Capacitor C is then charged through RA until the voltage across the capacitor reaches the threshold
voltage of THRES input. If TRIG has returned to a high level, the output of the threshold comparator will reset
the flip-flop (0' goes high), drive the output low, and discharge C through 01.
RA=9.1 kQ

f-- CL = 0.01 flF

r- RL = 1 kQ
See Figure 9
VCC
(5 Vlo 15 V)

IIu

II

'0

5
CONT

:> ......
N

8

3

.g
Output Voltage

Output

J1

/

TRIG
GND

T7

r-

~

RL

THRES
Input

-

CI

RESET
OUT

-

I
CD

VCC

DISCH

IU

Input Voltage

.2:
RA

IIu

u

/

I

/

/

I

Capacitor Volta~e

7

Time - 0.1 ms/div
Pin numbers shown are for the D, JG. and P packages.

Figure 9. Circuit for Monostable Operation

Figure 10. Typical Monostable Waveforms

Monostable operation is initiated when TRIG
voltage falls below the trigger threshold. Once
initiated, the sequence ends only ifTRIG is high at
the end of the timing interval. Because of the
threshold level and saturation voltage of 01,
the output pulse duration is approximately
tw = 1.1 RAC. Figure 11 is a plot of the time
constant for various values of RA and C. The
threshold levels and charge rates are both directly
proportional to the supply voltage, Vee. The timing
interval is therefore independent of the supply
voltage, so long as the supply voltage is constant
during the time interval.
Applying a negative-going trigger pulse
simultaneously to RESET and TRIG during the
timing interval discharges C and re-initiates the
cycle, commencing on the positive edge of the
reset pulse. The output is held low as long as the
reset pulse is low. To prevent false triggering,
when RESET is not used, it should be connected
to Vee.

10~----~----~----~----~----~

en
I

c 10-1
0

~:s

C

CD

10-2

.!!!
:s

a.

:;

.s-

10-3

:s
0
I

~

10-4

10-5
0.001

0.01

0.1

10

100

C - Capacitance - flF

Figure 11. Output Pulse Duration vs Capacitance

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4-19

NE555,SA555,SE555,SE555C
PRECISION TIMERS
APPLICATION INFORMATION

astable operation
As shown in Figure 12, adding a second resistor, RB to the circuit of Figure 9 and connecting the trigger input
to the threshold input causes the timer to self-trigger and run as a multivibrator. The capacitor C will charge
through RA and RB and then discharge through RB only. The duty cycle may be controlled, therefore, by the
values of RA and RB.
This astable connection results in capacitor C charging and discharging between the threshold-voltage level
(~O.67·Vcc) and the trigger-voltage level (~O.33·Vcc). As in the monostable circuit, charge and discharge
times (and therefore the frequency and duty cycle) are independent of the supply voltage.
Vcc
(5 Vto 15 V)

CO NT
4
7

6

RS

2

-=

R~ = 11kQ

I

See Figure 12

8
RL

RESET
DISCH
OUT

3

Output

THRES

-~

TRIG

-I--

-=-

V

/

Pin numbrs shown are for the D, JG, and P packages.

~

\

/

'V

Output Voltage

"'\ A\ A\
0/10/1

\

Capacitor Voltage

I '1

NOTE A: Decoupling CO NT voltageto ground with a capacitor
may improve operation. This should be evaluated for
individual applications.

I

II

Time - 0.5 ms/div

Figure 13. Typical Astable Waveforms

Figure 12. Circuit for Astable Operation

TEXAS "J1

INSlRUMENTS
4--20

I

VCC

GND
CT

I

RS = 3 kQ
r-C=0. 15 fl F

0.01 IlF T
Open
-=(see Note A) 5

RA

I

r- RA= 5 kQ

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

NE555,SA555,SE555,SE555C
PRECISION TIMERS
APPLICATION INFORMATION
Figure 13 shows typical waveforms generated during astable operation, The output high-level duration tH and
low-level duration tL may be calculated as follows:
100k~----~----~----~----~----~

=0.693 (RA + RB) C
tL =0.693 (RB) C
tH

~

10k~----~----~~--~----~----~

I

Other useful relationships are shown below,

~
;

period =tH + tL =0.693 (RA + 2RB) C

1k~----~----~~--~~--~----~

5-

£

1.44

frequency"" - - - - (RA +2RB) C

~

'2

100~----~----~----~----~'---~

c

:::I

Output driver duty cycle

=--L =
tH + tL

Output waveform duty cycle

If

RB
RA + 2RB

~

10r-----~----~~--~----~~--~

£I

-

= ~ =1
tH+tL

0, 1

Low-to-high ratio

= tL

tH

RB
RA +RB

L--_ _ _.l---____..L.-____

0.001

0.D1

~

____

~

____

~

10

~1

100

C - Capacitance - ",F

Figure 14. Free-Running Frequency

missing-pulse detector
The circuit shown in Figure 15 may be used to detect a missing pulse or abnormally long spacing between
consecutive pulses in a train of pulses, The timing interval of the monostable circuit is continuously retriggered
by the input pulse train as long as the pulse spacing is less than the timing interval. A longer pulse spacing,
missing pulse, orterminated pulse train permits the timing interval to be completed, thereby generating an output
pulse as illustrated in Figure 16.
VCC = 5V
RA= 1 kQ
C=0.1",F
See Figure 15

VCC (5 V to 15 V)

4
RESET

Input
2

RA

RL
8
VCC
3
OUT

I I I I

>

Output

TRIG

L

~

I

I

L

L

I I I
I

L

L

Input Voltage

C\I

I

DISCH
5
0.01 t-tF
T

-=

co NT

THRES

7

~

CI

~

~

6

Out put Voltage
TC

-=

A5T3644

/1/1 /I
/I /I /I /I /
I
~ ~ IL V
~
Capacitor Voltape
Time - 0.1 ms/dlv

Pin numbers shown are shown for the D, JG, and P packages.

Figure 15. Circuit for Missing-Pulse Detector

Figure 16. Missing-Pulse Detector Waveform

TEXAS ..,
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-21

NE555,SA555,SE555,SE555C
PRECISION TIMERS
APPLICATION INFORMATION

frequency divider
By adjusting the length of the timing cycle, the basic circuit of Figure 9 can be made to operate as a frequency
divider. Figure 17 illustrates a divide-by-three circuit that makes use of the fact that retriggering cannot occur
during the timing cycle.
I

VCC = 5V
RA=1250Q
C =0.02IlF
See Figure 9

Il Il

l

II Il

l

II Il

l

II

Input Voltage

I--

Output Voltage

L

V'

h

l/

L

n

./~

Iv

l V'

Capacitor Volta9,e
Time - 0.1 ms/dlv

Figure 17. Divide-By-Three Circuit Waveforms

pulse-width modulation
The operation of the timer may be mOdified by modulating the internal threshold and trigger voltages, which is
accomplished by applying an external voltage (or current) to CONT. Figure 18 shows a circuit for pulse-width
modulation. A continuous input pulse train triggers the monostable circuit, and a control signal modulates the
threshold voltage. Figure 19 illustrates the resulting output pulse-width modulation .. While a sine-wave
modulation signal is illustrated, any wave shape could be used.

TEXAS

~

INSTRUMENTS
4-22

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

NE555,SA555,SE555,SE555C
PRECISION TIMERS
APPLICATION INFORMATION
vcc (5Vto 15V)

41
Clock - 2
Input

.~

VCC
OUT

TRIG

3
Output

DISCH
Modulation
Input
(see Note B)

--L

~

RL

8

RESET

CO NT
THRES

.~

~

7

'"..I

6

~

Jl!'"

GND

Tc

~

Pin numbers shown are for the 0, JG, and P packages only.
NOTE B: The modulating signal may be direct or capacitively coupled
to CaNT. For direct coupling, the effects of modulation
source voltage and impedance on the bias of the timer
should be considered.

Time - 0.5 ms/dlv

Figure 18. Circuit For Pulse-Width Modulation

Figure 19. Pulse-Width Modulation Waveforms

pulse-position modulation
As shown in Figure 20, any of these timers may be used as a pulse-position modulator. This application
modulates the threshold voltage, and thereby the time delay, of a free-running oscillator. Figure 21 illustrates
a triangular-wave modulation signal for such a circuit; however, any wave shape could be used.
VCC(5Vto15V)

<

41

8

RESET
2

'--

VCC
OUT

RL ;>

RA

>

:;;

3
Output

TRIG

'"I

..

i

DISCH ~
Modulatlon 5
Inpu t-"- CO NT
(see Note B)

>~

RB
THRES
GND

.l

~
~

-=-C

T

Pin numbers shown are for the 0, JG, and P packages only.
NOTE B: The modulating signal may be direct or capacilively coupled
to CaNT. For direct coupling, the effects of modulation
source voltage and impedance on the bias of the timer
should be considered.

Figure 20. Circuit for Pulse-Position Modulation

Time - 0.1 ms/dlv

Figure 21. Pulse Position-Modulation Waveforms

TEXAS

If

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4-23

NE555,SA555,SE555,SE555C
PRECISION TIMERS
APPLICATION INFORMATION

sequential timer
VCC

8

RA 33kQ
2

2

TRIG

S

0.001
",F

DISCH 7

RB

2

TRIG

0.001
",F

DISCH 7

5

5

4

33 kQ

3

8

RC
3

TRIG
DISCH

7

5

0.D1
",F

Output A

S closes momentarily at t = O.
Pin numbers shown are for the D, JG, and P packages only.

Output B

CB=4.7",F
RB = 100 kQ

Output C

Figure 22. Sequential Timer Circuit
Many applications, such as computers, require signals for initializing conditions during start-up. Other
applications, such as test equipment, require activation of test signals in sequence. These timing circuits may
be connected to provide such sequential control. The timers may be used in various combinations of astable
or monostable circuit connections, with or without modulation, for extremely flexible waveform control. Figure 22
illustrates a sequencer circuit with possible applications in many systems, and Figure 23 shows the output
waveforms.

se, FigUre: 22

J

Output A

It A
w

t~

.-.,

~

.2:

A = 1.1 RACA
1

.I

twBI

:g

>
If)

I

IwB =1 1•1 RBCB

Output B

t

~

Oulput C

twC

~

t C = 1.1 RCCc

~'iO
t - Time - 1 s/div

Figure 23. Sequential Timer Waveforms

TEXAS ..,
INSlRUMENlS
4-24

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

NE592, SE592
DIFFERENTIAL VIDEO AMPLIFIERS
02667, FEBRUARY 1984-REVISEO NOVEMBER 1991

•
•

90-MHz Bandwidth

•

No Frequency Compensation Required

•
•

Adjustable Pass Band

NE592 ... D OR N PACKAGE
SE592 ... J PACKAGE
(TOP VIEW)

Adjustable Gain to 400

IN+
NC
GAIN ADJ 2A
GAIN ADJ 1A

Designed to Be Interchangeable With
Signetics SE592 and NE592
DEVICE
TYPE

TEMPERATURE
RANGE

AVDRANGE
(GAIN OPTION 1)

NE592
SE592

O'C to 70'C
-55'C to 125'C

250-600
300-500

INNC
GAIN ADJ 26
GAIN ADJ 16

VCC-

VCC+

NC
OUT+

NC
OUT-

NC-No internal connection

description

symbol

These devices are monolithic two-stage video
amplifiers with differential inputs and differential
outputs,

GAINADJ { l A
2A----,

Internal series-shunt feedback provides wide
bandwidth, low phase distortion, and excellent
gain stability. Emitter-follower outputs enable the
device to drive capacitive loads, and all stages are
current-source biased to obtain high commonmode and supply-voltage rejection ratios.

IN+---1

f----OUT+

IN-----I

OUT-

GAIN ADJ { l B
Fixed differential amplification of nominally 100 or
2B - - - - - - - - '
400 may be selected without external
components, or amplification may be adjusted
from 0 to 400 by the use of a single external resistor connected between the gain-adjustment pins 1A and 1B.
External frequency-compensating components are required for any gain option.

The devices are particularly useful in magnetic-tape or disk-file systems using phase or NRZ encoding and in
high-speed thin-film or plated-wire memories. Other applications include general-purpose video and pulse
amplifiers where wide bandwidth, low phase shift, and excellent gain stability are required ..
The NE592 is characterized for operation from O°C to 70°C. The SE592 is characterized for operation over the
full military temperature range of -55°C to 125°C,

PRODUCTION DATA information Is current 8S of publication date.
Products conform 10 specifications per the terms of Texas

Instruments standard warranty. Production processing does not

necessarily include testing of all parameters.

TEXAS

-II}

Copyright © 1991, Texas Instruments Incorporated

INSTRUMENTS
POST OFFICE BOX 655303 • DALlAS, TEXAS 75265

4-25

NE592, SE592
DIFFERENTIAL VIDEO AMPLIFIERS
schematic
2.4kQ

+-_-t-!-7

IN+
IN-

--"''--+----+--'

7kQ

GAINADJ{1B
2B

OUT +

7kQ

8 OUT-'..!~-+---.

4

10 kQ

GAINADJ{1A
2A

*-_ _~~5

L-_~~_ _ _~_ _ _ _ _~_ _ _ _

VCe-

All resistor values shown are in ohms and nominal.
In NE592 or SE592, R1 =500 Q, R2 =500 Q.

absolute maximum ratings over operating free-air temperature (unless otherwise noted)
Supply voltage, Vcc+ (see Note 1) ............................................................ 8 V
Supply voltage, Vcc- (see Note 1) .......................................................... -8 V
Differential input voltage ................................................................... ±5 V
Common-mode input voltage ............................................................... ±6 V
Output current ........................................................................... 10 mA
Continuous total power dissipation ..................................... See Dissipation Rating Table
Operating free-air temperature range: NE592 .......................................... O°C to 70°C
SE592 ...................................... -55°C to 125°C
Storage temperature range ....................................................... -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package ................ 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package ..................... 300°C
NOTE 1: All voltage values except differential input voltages are with respect to the midpoint between Vee + and Vee-.
DISSIPATION RATING TABLE
PACKAGE

TA " 25°C
POWER RATING

D

500mW

J

500mW

N

500mW

DERATING
FACTOR

DERATE
ABOVETA

TA=70°C
POWER RATING

N/A
11

mwre
N/A

TEXAS

N/A

500mW

105°e

500mW

N/A

500mW

~

INSTRUMENTS
4-26

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TA = 125°C
POWER RATING
275mW

NE592, SE592
DIFFERENTIAL VIDEO AMPLIFIERS
recommended operating conditions
NE592
MIN

NOM

SE592
MAX

MIN

NOM

MAX

UNIT

Supply voltage, VCC+

3

6

8

3

6

8

Supply voltage, VCC-

-3

-6

-8

-3

-6

-8

V

0

70

-55

125

°c

TEST CONDITIONS

GAIN
OPTIONt

MIN

TYP

MAX

1

300

400

500

2

90

100

110

Operating free-air temperature, T A

electrical characteristics, VCC±

=±6 V, TA = 25°C

PARAMETER

AVD

V

Large-signal differential
voltage amplification

TEST
FIGURE

1

VO(PP) =3 V,

RL = 2 kQ

40

1

UNIT

VN

BW

Bandwidth (-3 dB)

2

90

110

Input offset current

1,2,or3

0.4

3

IlA

liB

Input bias current

1,2,or3

9

20

!lA

VICR

Common-mode input voltage range

3

VOC

Common-mode output voltage

1

RL =

2.9

3.4

V

VOO

Output offset voltage

1

Via =0,

2

VO(PP) = 1 V

00

1,2,or3

±1

1,2,or3

2.4

V
1.5

1
'RL =

00

1

2
0.35

3
Va (PP)

Maximum peak-to-peak output
voltage swing

q

Input resistance

1

1,2,or3

RL = 2 kQ

3

4

20

30

1
2

MHz

V

0.75
V

4

kQ

ro

Output resistance

20

Q

Ci

Input capacitance

2

pF

CMRR

Common-mode rejection ratio

kSVR
Vn

Supply-voltage rejection ratio
(aVCC/aVIO)
Broadband equivalent input noise
voltage

3

VIC =±1 V,

f= 100 kHz

2

3

VIC=±1 V,

f= 5 MHz

2

4

aVCC+ = ±0.5 V,
aVCC-=±0.5V

4

BW = 1 kHz to 10 MHz

tpd

Propagation delay time

2

aVO = 1 V

tr

Rise time

2

aVO = 1 V

Isink(max)

Maximum output sink current

86

dB

60
70

dB

1,2,or3

12

IlV

2

50

1

7.5

2

6

1

10.5

2

4.5

1,2,or3

No signal
Supply current
No load,
ICC
t The gain option is selected as follows:
Gain Option 1 ... Gain Adjust pin 1A is connected to pin 1B, pins 2A and 2B are open.
Gain Option 2 ... Gain Adjust pin 2A is connected to pin 2B, pins 1A and 18 are open.
Gain Option 3 ... All Gain Adjust pins are open.

60

1,2,or3

3

10
10

4
18

ns
ns
mA

24

mA

TEXAS ~

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4-27

NE592
DIFFERENTIAL VIDEO AMPLIFIER
electrical characteristics, Vcc±

= ±6 V, TA =25°C
TEST
FIGURE

PARAMETER

TEST CONDITIONS

Large·signal differential
AVO

voltage amplification

1

VO(PP) =3V,

2

VO(PP) = 1 V

BW

Bandwidth (-3 dB)

110

Input offset current

liB

Input bias current

VICR

Common·mode input voltage range

3

VOC

Common· mode output voltage

1

VOO

Output offset voltage

1

VO(PP)

Maximum peak·to·peak output
voltage swing

1

q

Input resistance

RL= 2 kQ

GAIN
OPTIONt

MIN

TYP

MAX

1

250

400

600

2

80

100

120

UNIT
VN

1

40

2

90

VIC=O

1,2,or3

OA

5

jlA

VIC=O

1,2,or3

9

30

jlA

2.9

3A

1,2,or3
RL =

VIO =0,

±1

2A

00

RL =

V

lor 2
00

1.5
0.35

3
1,2,or3

RL = 2 kQ

3

1
2

MHz

0.75

V
V

4
4

10

V

kQ

30

ro

Output resistance

20

Q

Ci

Input capacitance

2

pF

CMRR

Common·mode rejection ratio

kSVR
Vn

3

VIC = ±1 V,

f= 100kHz

2

3

VIC=±l V,

f= 5 MHz

2

Supply·voltage rejection ratio
(6.VCC/6.VIO)

4

6.VCC+ = ±0.5 V,
6.VCC- = ±0.5 V

Broadband equivalent input noise
voltage

4

BW= 1 kHz to 10 MHz

tpd

Propagation delay time

2

6.VO= 1 V

tr

Rise time

2

6.VO = 1 V

Isinklmax)

Maximum output sink current

TEXAS .Jf

INSTRUMENTS
4-28

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

86

dB

60
70

dB

1,2, or 3

12

I!V

1

7.5

2

6

1

10.5

2

4.5

2

1,2, or 3

Supply current
No load,
No Signal
ICC
t The gain option is selected as follows:
Gain Option 1 ... Gain Adjust pin lA is connected to pin 1B, pins 2A and 2B are open.
Gain Option 2 ... Gain Adjust pin 2A is connected to pin 28, pins lA and 1B are open.
Gain Option 3 ... All Gain Adjust pins are open.

60

1,2, or 3

50

3

10
12

4
18

ns
ns
mA

24

mA

NE592
DIFFERENTIAL VIDEO AMPLIFIER
electrical characteristics over recommended operating free-air temperature range, Vcc±
PARAMETER

TEST
FIGURE

TEST CONDITIONS

Large-signal differential
AVD

voltage amplification

1

VO(PP) =3V

GAIN
OPTIONt

MIN

1

250

600

2

80

120

TYP

MAX

110

Input offset current

1 or 2

6

liB

Input bias current

1 or 2

40

VICR

Common-mode input voltage range

3

1 or 2
RL = 00

VOO

Output offset voltage

1

VIO=O,

VO(PP)

Maximum output voltage
peak-to-peak swing

1

RL = 2 kQ

r;

Input resistance

CMRR

Common-mode rejection ratio

3

VIC=±l V,

kSVR

Supply-voltage rejection ratio
(AVCC/AVIO)

4

AVCC+ = ±0.5 V,
AVCC- = ",0.5 V

ISink(max)

Maximum output sink current

1

!1A
!1A
V

2.8

V

8

kQ

2

50

dB

2

50

dB
mA

1,2, or3

Supply current
1
No load,
No signal
ICC
t The gain option is selected as follows:
Gain Option 1 ... Gain Adjust pin 1A is connected to pin 1 B, pins 2A and 2B are open.
Gain Option 2 ... Gain Adjust pin 2A is connected to pin 2B, pins 1A and 1B are open.
Gain Option 3 ... All Gain Adjust pins are open.

VN

2

1 or 2

f= 100 kHz

1.5

3

UNIT

V

±1

1 or 2

=±6 V

1,2,or3

27

mA

TEXAS -If

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-29

SE592
DIFFERENTIAL VIDEO AMPLIFIER
electrical characteristics·over recommended operating free-air temperature range, VCC±
TEST
FIGURE

PARAMETER

TEST CONDITIONS

Large-signal differential
AVD

1

voltage amplification

VO(PP) =3V

GAIN
OPTIONt

MIN

1

250

600

2

80

120

TYP

MAX

= ±6 V
UNIT
VN

110

Input offset current

1 or 2

5

!!A

liB

Input bias current

1 or 2

40

flA

VICR

Common-mode input voltage range

VOO

VO(PP)

Output offset voltage
Maximum output voltage
peak-to-peak swing

fj

Input resistance

CMRR

Common·mode rejection ratio

kSVR

Supply-voltage rejection ratio
(LlVCC/LlVIO)

ISink(max}

1 or 2

3
1

VID=O,

RL=

1

RL = 2 kQ

3

VIC = ±1 V,

4

LlVCC+ = ±0.5 V,
LlVCC- = ±0.5 V

ex>

Maximum output sink current

No signal
No load,
Supply current
1
ICC
t The gain oplion IS selected as follows:
Gain Option 1 ... Gain Adjust pin 1A is connected to pin 1B, pins 2A and 2B are open.
Gain Option 2 ... Gain Adjust pin 2A is connected to pin 2B, pins 1A and 1B are open.
Gain Option 3 ... All Gain Adjust pins are open.

TEXAS

~

INSTRUMENTS
4-30

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

V
1.5

2

1.2

3

1

V

2.5

V

2

8

kQ

2

50

dB

1 or 2

1= 100 kHz

",1

1

2

50

dB

1,2,or3

2.5

mA

1,2, or 3

27

mA

NE592, SE592
DIFFERENTIAL VIDEO AMPLIFIERS
PARAMETER MEASUREMENT INFORMATION

500

I 1,,0 t.~: ~
-

-

Figure 2

Figure 1

500

--

0.2~!!F

VO+

RL=2 kO

0.2 !!F

Vol kO

1 kO

Figure 4

Figure 3

TEXAS -If

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4-31

4-32

SE556, SE556C, SA556, NE556
DUAL PRECISION TIMERS
D2440, APRIL 1978-REVISED OCTOBER 1988

•

Two Precision Timing Circuits per Package

•

Astable or Monstable Operation

•

TTL-Compatible Output Can Sink or Source Up
to 150 mA

•

Active Pull-Up or Pull-Down

•

Designed to be Interchangeable with Signetics
SE556. SE556C.SA556. NE556

SE556. SE556C ... J PACKAGE
SA556. NE556 ... D. J. OR N PACKAGE
(TOP VIEW)

TIMER{~~~~~
#1

~~~E~}

RESET
CaNT
OUT
RESET
TRIG
OUT
GND -;...._ _r- TRIG

TIMER
#2

APPLICATIONS
Precision Timer from
Microseconds to Hours
Pulse-Shaping Circuit
Missing-Pulse Detector
Tone-Burst Generator
Pulse-Width Modulator
Pulse-Position Modulator

Sequential Timer
Pulse Generator
Time-Delay Circuit
Frequency Divider
Appliance Timer
Industrial Controls
Touch-Tone Encoder

SE556. SE556C ... FK PACKAGE
(TOP VIEW)
(fJ

# 1 CONT
NC

description

NC
# 1 OUT

These devices provide two monolithic.
independent timing circuits of the SE555.
SE555C. SA555. or NE555 type in each
package. These circuits can be operated in the
astable or the monostable mode with external
resistor-capacitor timing control. The basic
timing provided by the RC time constant may be
actively controlled by modulating the bias of the
control voltage input.

I

0

U

(fJ

U O
U UN

"" "" z >""
3

SE556C FROM TI IS NOT
RECOMMENDED FOR NEW DESIGNS

I

IJ.J
a: U
Cf)

I
I-

2

1 20 19

4

18

5

17

6

16

7

15

8

14

#2 THRES
NC
# 2 CaNT
NC
# 2 RESET

9 1011 12 13
(9

a:

0

U

z z

I- (:J

(91-::;)

~o
NN

""""

""
NC-No internal correction

functional block diagram (each timer)
VCC

The threshold and trigger levels are normally
two-thirds and one-third respectively of VCC.
These levels can be altered by use of the control
voltage terminal. When the trigger input falls
below trigger level" the flip-flop is set and the
output goes high. If the trigger input is above the
trigger level and the threshold input is above the
threshold level, the flip-flop is. reset and the
output is low. The reset input can override all
other inputs and can be used to initiate a new
timing cycle. When the reset input goes low, the
flip-flop is reset and the output goes low.
Whenever the output is low, a low impedance
path is provided between the discharge terminal
and ground.

RESET

R

DISCHARGE

GND
Reset can override Trigger, which can override Threshold.

PRODUCTION DATA documents contain information
current as of publication date. Products conform to

specifications per the terms of Texas Instruments

standard warranty. Production processing does
necessarily include testing of all parameters.

nDt

Copyright © 1983, Texas Instruments Incorporated

-II}

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4-33

SE556, SE556C, SA556, NE556
DUAL PRECISION TIMERS

The SE556 and SE556C are characterized for operation over the full military range of - 55°C to 125°C.
The SA556 is characterized for operation from - 40°C to 85 DC, and the NE556 is characterized for
operation from ooC to 70°C.
AVAILABLE OPTIONS

FUNCTION TABLE
PACKAGE

TA
RANGE

Vthres MAX
VCC = 15V

SMALL

CHIP

CERAMIC

PLASTIC

OUTLINE
(D)

CARRIER
(FK)

DIP
(J)

DIP
(N)

NE556J

NE556N

O°C
11.2 V

to

NE556D

70°C
-40°C
11.2 V

to
85°C
- 55°C
to
125°C

10.6 V
11.2 V

SA556D

SA556J

SE556FK

SA556N

RESET
Low

TRIGGER THRESHOLD
VOLTAGEt VOLTAGEt
Irrelevant

On

Irrelevant

High

Off

Low

On

>

2/3 VDD

High

> 1/3 VDD <

2/3 VDD

1/3 VDD

SWITCH

Low

High

1/3 VDD

DISCHARGE

Irrelevant

<
>

High

OUTPUT

As previously
established

tVoltage levels shown are nominal.

SE556J

SE556CFK SE556CJ

The D package is available taped and reeled. Add the suffix R to the device
type (e.g., NE556DR).

absolute maximum ratings over operating free-air temRerature range (unless otherwise noted)
Supply voltage, VCC (See Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . .. 18 V
Input voltage (control, reset, threshold, and trigger) . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . .. VCC
Output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . .. . . . .. ± 225 rnA
Continuous total dissipation .................... , . . . . . . . . . . .. see Dissipation Rating Table
Operating free-air temperature range: SE556, SE556C , ........ , , . . . . . . . . .. - 55°C to 125°C
SA556 ...... , ...................... -40°Cto 85°C
NE556 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ooC to 70°C
Storage temperature range ...................... , ............. ,.... - 65°C to 150°C
Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package. . . . . . . . . . . .. 300°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package..... ... 260°C
NOTE 1: All voltage values are with respect to network ground terminal.
DISSIPATION RATING TABLE

PACKAGE

TA :5 25°C
POWER RATING

DERATING
FACTOR

TA = 70°C
POWER RATING

TA - 85°C
POWER RATING

TA - 125°C
POWER RATING

D

950mW

ABOVE TA - 25°C
7.6 mW/oC

608 mW

494mW

N/A

FK

1375 mW

11.0mW/oC

880 mW

715 mW

275 mW

J (SE556,SE556C)

1375 mW

11.0 mW/oC

880 mW

715 mW

275 mW

J (SA556, NE556)

1025 mW

8.2 mW/oC

656 mW

533 mW

N/A

1575 mW

12.6 mW/oC

1008 mW

819 mW

N/A

N

TEXAS

-1!1

INSTRUMENTS
4-34

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SE556, SE556C, SA556, NE556
DUAL PRECISION TIMERS

recommended operating conditions
SE556
MIN
Supply voltage, Vee

MIN

18

4.5

4.5

Input voltage (control, reset, threshold, and trigger)

Vee
±200

Output current
-55

Operating free-air temperature, T A

125

electrical characteristics at 25 °e free-air temperature.
PARAMETER

SE556C

MAX

MIN

16

4.5

Vee
±200
-55

125

16

UNIT
V
V

Vee
±200

mA

70

°e

0

SE556C. SA556,
UNIT

NE556
TYP

MAX

9.4

10

10.6

8.8

10

11.2

Vec = 5 V

2.7

3.3

4

2.4

3.3

4.2

30

250

30

250

V
nA

Vee=15V

4.8

5

5.2

4.5

5

5.6

Vee = 5 V
Trigger at 0 V

1.45

1.67

1.9

1.1

1.67

2.2

0.5

0.9

0.5

2

p.A

0.7

1

0.7

1

V

0.1

0.4

0.1

0.4

-0.4

-1

-0.4

-1.5

20

100

10

11

0.3
Reset at Vee
Reset at 0 V

9.6

Vee=15V

2.9

Vee = 15 V

Vee = 5 V
VCC=15V

0.3

20

100

10

10.4

9
2.6

3.3

3.8

3.3

4

IOL = 10 mA
IOL = 50 mA
IOL = 100 mA

0.1

0.15

0.1

0.25

0.4

0.5

0.4

0.75

2

2.2

2

2.5

IOL = 200 mA

2.5

Vee = 5 V

Low-level output voltage

Supply current

85

MIN

Discharge switch

High-level output voltage

-40

MAX

off-state current
Control voltage
(open circuit)

4.5

MAX

Vec=15V

Reset voltage level
Reset current

16

TYP

(see Note 2)

Trigger current

MIN

Vee
±200

SE556

TEST CONDITIONS

Threshold current

Trigger voltage level

NE556

MAX

Vee = 5 V to 15 V (unless otherwise noted)
MIN

Threshold voltage level

SA556

MAX

IOL = 5 mA
IOL = 8 mA
IOH = -100 mA

13

IOH = -100 mA
Vee = 15 V

No load
Output high,

Vee = 5V
Vee = 15 V

No load

Vec = 5V

0.1

0.15

0.1

0.25

0.15

0.25

0.15

0.3

13.3

12.75

3

3.3

2.75

mA
nA
V

V

13.3
12.5

12.5

IOH = -200 mA

Vec = 5 V
Output low,

2.5

V

V

3.3

20

24

20

30

6

10

18

20

6
18

26

4

8

4

10

12

mA

NOTE 2: This parameter influences the maximum value of the timing resistors RA and RB in the circuit of Figure 1. For example, when
Vee = 5 V, the maximum value is R = RA + RB
3.4 MO, and for Vee = 15 V, the maximum value is
10 MO.

=

=

TEXAS " ,
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4-35

SE556. SE556C. SA556. NE556
DUAL PRECISION TIMERS

operating characteristics, VCC

5 V and 15 V
TEST

PARAMETER

CONDITIONSt

MIN

Each timer. astable'

timing interval t

Timer 1 -

MAX

0.5

1.5

Each timer. monostable §
Temperature coefficient of
timing interval

Timer 1 -

Supply voltage sensitivity
of timing interval

to MAX

Timer 2

Each timer. monostable §

Timer 1 -

TA = 25°C

Timer 2

1

3

±1
100

150

±10

±10
0.2

%

50

90

0.05

Each timer. astable 1

MAX

±0.5
30

UNIT

TYP

2.25

TA = MIN

Each timer. astable'

MIN

1.5

TA = 25°C

Timer 2

NE556

TYP

Each timer. monostable §

Initial error of

SE556C. SA556.

SE556

0.1

0.15

0.3

±0.1

±0.2

ppm/DC

05

%/V

Output pulse rise time

CL=15pF.

100

200

100

300

Output pulse fall time

TA = 25°C

100

200

100

300

ns

tFor conditions shown as MIN or MAX. use the appropriate value specified under recommended operating conditions.
tTiming interval error is defined as the difference between the measured value and the average value of a random sample from each process
run.
§Values specified are for a device in a monostable circuit similar to Figure 2. with component values as follow: RA = 2 kll tol 00 kll.
C = 0.1 I'F.
1Values specified are for a device in an astable circuit similar to Figure 1. with component values as follow: RA = 1 kll to 100 kll. C = 0.1 I'F.

TYPICAL APPLICATION DATA

Vcc

Vcc

(5 V to 15 V)

OPEN
(See
Note A)

I

CONT

--<

(5 V to 15 V)

RA
VCC

VCC
RL

RESET
DISCH

RS

c

:r

r

DISCH
OUT --4 t-- OUTPUT

OUT

THRES

OUTPUT

THRES

TRIG

TRIG

INPUT
GND

GND

..L

FIGURE 1. CIRCUIT FOR ASTABLE OPERATION
NOTE A: Bypassing the control voltage input to ground with
a capacitor may improve operation. This should
be evaluated for individual applications.

*'

-::-

FIGURE 2. CIRCUIT FOR MONOSTABLE OPERATION

TEXAS " ,
INSTRUMENTS
4-36

RL

RESET

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

SN76494, SN76494A, SN76496, SN76496A
PROGRAMMABLE TONE/NOISE GENERATOR
02801, JUNE 1984 - REVISED JANUARY 1989

• Each Circuit Contains 3 Programmable
Tone Generators

N
DUAL-iN-LINE PACKAGE
(TOP VIEW)

• Programmable White·Noise Generator

D2
D1
DO
READY
WE
CE
AUDiO OUT
GND

• Programmable Attenuation
• Simultaneous Sounds
• Up to 500 kHz Clock Input for SN76494 and
4 MHz for SN76496
• External Audio Input for SN76496 May Be
Summed with Internally Generated Tones

VCC
D3
ClK
D4
D5
D6
D7
AUDIO IN

• The SN76494A and SN76496A are
Interchangeable with the SN76494
and SN76496, Respectively

description
The SN76494 and SN76494A digital complex sound generators are integrated injection logic (l2L) tone
generators designed to provide low-cost tone or noise generation capability in microprocessor systems, The
SN76494 and SN76494A are data-bus-based input-output peripheral devices that interface the
microprocessor through 8 data lines and 3 control lines,
The SN76494 and SN76494A are identical to the SN76496 and SN76496A except that the maximum clock
input frequency for SN76494 and SN76494A is 500 kHz and for SN76496 and SN76496A, it is 4 MHz. A
"divide-by-eight" stage is deleted from the SN76496 and SN76496A circuitry so that only 4 clock pulses are
required to load the data into the SN76494 and SN76494A, compared to 32 pulses for the SN76496 and
SN76496A.
Either of these devices may also be used as a replacement for the SN76489A in all applications if pin 9 is left
open or grounded. The output load must be limited to 10 mA.
When audio input is not desired in the SN76494, SN76494A, SN76496 or SN76496A, the audio input pin
should be grounded.

functional block diagram
AUDIO
OUTPUT
DECODER

IN

DO
D1

02

03
04
05

06
07

INPUT

-'--'--------------1

PRODUCTION DATA documents contain information

current as of publication date. Products conform to

specifications per the terms of Texas Instruments
standard warranty. Production processing does not
necessarily include testing of all parameters.

TEXAS

~

Copyright

©

1984, Texas Instruments Incorporated

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4-37

SN76494,SN76494A, SN76496, SN76496A
PROGRAMMABLE TONE/NOISE GENERATOR
schematics of inputs and outputs

----

Vee

TYPICAL OF ALL OUTPUTS

EQUIVALENT OF CLOCK INPUT

EQUIVALENT OF DATA INPUTS

----

Vee

--oo~'~

20 kO

.
~

----

- --I N P U T Z 20kO

INPUT

"'=

-=

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V
Input voltage, VI: Audio input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.9 V
All other inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Output current at pin 7 ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10 mA
Continuous total power dissipation at (or below) 25°C free-air temperature (see Note 2) . . . . .. 1150 mW
Operating free-air temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O°C to 70°C
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 55°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . .. 260°C
NOTES: 1. All voltage values are with respect to network ground term·inal.
2. For operation above 25°C free-air temperature, derate linearly to 736 mW at 70°C at the rate of 9.2 mW/"C.

recommended operating conditions
SN76494,SN76494A

SN76496, SN76496A

MIN

NOM

MAX

MIN

NOM

MAX

4.5

5

5.5

4.5

5

5.5

V

0.8

V
V

VCC

Supply voltage

VIH
Vil
II

High-level input voltage
low-level input voltage

2

Audio input current

0

VOH

High-level output voltage (pin 4)

IOl

low-level output current (pin 4)

fclock

Input clock frequency

2
0.8
1.8

0

1.8

UNIT

mA
V

5.5

5.5

2

2

mA

0.5

4

MHz

td(WE)

Delay time, CE low to WE low

0

0

ns

tsu

Setup time, data before WE~ or CE~

0

0

ns

th

Hold time, data after READYf

0

0

TA

Operating free-air temperature

0

TEXAS •
INSTRUMENTS
4-38

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

70

0

ns
70

°c

SN76494, SN76494A, SN76496, SN76496A
PROGRAMMABLE TONE/NOISE GENERATOR
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature range (unless otherwise noted)
PARAMETER

TEST CONDITIONS

IOH

High-level output current (pin 4)

IIH

High-level input current (All digital inputs)

III

Vo
VI

CE input

low-level input current

VIB

All other digital inputs
Input bias voltage, audio (pin 9)

VOH

High-level output voltage (pin 7)

VOL

low-level output voltage (pin 4)

MIN

VI: 0
R

= 4.7 kU to VCC

0.5

IOl: 2 rnA

VOPP

Peak-to-peak output voltage (pin 7)

ICC

Supply current

VCC = 5 V,
Attenuation:
Generator under test = 0 dB
All other generators = 30 dB

2 dB NOM
4 dB NOM

Attenuation

See Table 1

8dB NOM
16dB NOM

Ci

t

TYpt

MAX

= 5.5 V
= VCC

UNIT

10

f..\A

10

fLA

-25

-175

-10

-70

0.7

0.9

V

0.25

5.5
0.4

V
V

260

f..\A

mV

1

30
2

50

rnA

3

3

4

5

7

8

9

15

16

17

Input capacitance

15

dB

pF

Typical values are at VCC : 5 V, TA : 25'C.

switching characteristics, Vee

= 5 V, TA = 25°e

PARAMETER

TEST CONDITIONS

tpHl

Propagation delay time, high-to-Iow level ROY
output from CE

tpHl

Propagation delay time high-to-Iow level, ROY
output from WE

tplH

Propagation delay time low-to-high level, ROY
output from ClK

CL: 225 pF,

MIN

Rl = 2 kUto VCC

TYP

MAX

90

150

UNIT
ns

90

ns

90

ns

PARAMETER MEASUREMENT INFORMATION
VCC

SN76494.
SN76494A
116)

2 kO

VCC
16)
PULSE
GENERATOR

(4)

CE

READY
OSCILLOSCOPE

r

~

;.~ 225 pF

GND
(8)

l
FIGURE 1_ tPHL TEST CIRCUIT

TEXAS . .
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4--39

SN76494, SN76494A, SN76496, SN76496A
PROGRAMMABLE TONE/NOISE GENERATOR
pin assignments and functions
SIGNATURE

PIN

1/0

DESCRIPTION

I

Chip Enable. When chip enable is low, the device is operational, input terminals are enabled, and data may be
entered.

CE

6

DO (MSB)

3

I

Dl

2

I

D2

1

I

D3

15

I

D4

13

I

D5

12

I

D6

11

I

D7 (LSB)

10

I

Vee

16

I

Supply voltage (5

GND

8

0

Ground reference

14

I

Input Clock

CLOCK

DO through D7 - Input data bus

V nom)

WE

5

I

Write Enable. When CE is enabled and WE is active (low), input on the data bus is accepted. CE and WE must
be held low until READY returns high (four clock cycles for the SN76494 and SN76494A or 32 clock cycles for
the SN76496 and SN76496A). If WE remains low throughout four additional clock cycles for the SN76494 and
SN76494A (32 clock cycles for the SN76496 and SN76496A) a new write cycle will be initiated.

READY

4

0

When low, READY indicates that a write cycle is in progress; data on the input bus must remain valid until
READY returns high.

AUDIO IN

9

I

Audio input from external source

AUDIO OUT

7

0

Audio Drive Out

PRINCIPLES OF OPERATION
tone generators
Each tone generator consists of a frequency synthesis section and an attenuation section. The frequency
synthesis section requires 10 bits of information (FO-F9) to define half the period of the desired frequency (1).
FO is the most significant bit and F9 is the least significant bit. This information is loaded into a 1O-stage tone
counter, which counts down at an N/2 rate where N is the input clock frequency. When the tone counter
counts down to zero, a borrow signal is produced. This borrow signal toggles the frequency flip-flop and also
reloads the tone counter. Thus, the period of the desired frequency is twice the value of the period register.
The frequency can be calculated by the following:
f

= 4~

for SN76494 and SN76494A, or f

= 3~n

for SN76496 and SN76496A

where N = clock in Hz
n = 10-bit binary number
The output level of each tone/noise generator may be selected by programming a four stage attenuator. The
attenuator values, along with their bit position in the data word, are shown in Table 1. Multiple attenuation
control bits may be true simultaneously. Thus, the maximum attenuation is 30 dB.

~

TEXAS
INSTRUMENTS
. 4-40

POST OFFICE BOX 655012 • DALLAS. TEXAS 75265

SN76494, SN76494A, SN76496, SN76496A
PROGRAMMABLE TONE/NOISE GENERATOR
TABLE 1. ATTENUATION CONTROL
WEIGHT

BIT POSITION
AO

Al

A2

A3

(In dB)

0
0
0

0
0

0

1

2

1

4

1

1

0

0
0

0
0
0

16

1

1

1

1

OFF

8

noise generator
The noise generator consists of a noise source and an attenuator. The noise source is a shift register with an
exclusive OR-feedback network. The feedback network has provisions to protect the shift register from being
locked in the zero state.
TABLE 2. NOISE FEEDBACK CONTROL
FEEDBACK

CONFIGURATION

0

"Periodic" noise

1

"White" noise

Whenever the noise control register is changed, the shift register is cleared. The shift register will shift at one
of four rates as determined by the two NF bits. The fixed shift rates are derived from the input clock.
TABLE 3. NOISE GENERATOR FREQUENCY CONTROL
BITS

SHIFT RATE

NFO

NFl

0
0

0

N/64

1

N/128

1

0

N/256

1

1

Tone generator #3 output

The output of the noise source is connected to a programmable attenuator as shown in Figure 4.

output buffer/amplifier
The output buffer is a conventional operational amplifier summing circuit. It sums the three tone generator
outputs, the noise generator output, and any audio input through pin 9. The output buffer will generate up to
10 mA.
To prevent oscillations in the output buffer, the output (pin 7) should be decoupled. This is done by putting
10 ohms in series with 0.1 f,LF from pin 7 to ground (see Figure 3).

data transfer
The microprocessor selects the SN76494, SN76494A, SN76496, or SN76496A by taking CE low (lOW
voltage). Unless CE is low, no data transfer can occur. When CE is low, the WE signal strobes the contents of
the data bus to the appropriate control register. The data bus contents must be valid at this time.

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-41

SN76494,SN76494A,SN76496, SN76496A
PROGRAMMABLE TONE/NOISE GENERATOR
The SN76494 and SN76494A require approximately 4 clock cycles to load the data into the control register.
The SN76496 and SN76496A require approximately 32 clock cycles. The open-collector READY output is
used to synchronize the microprocessor to this transfer and is pulled to the false state (low) immediately
following the falling edge of CE (or WE when data transfer is initiated by WE). READY will go high upon
completion of the data transfer cycle. The data transfer timing is shown below.
SUBSEQUENT DATA TRANSFER

DATA TRANSFER TIMING

INITIATED BY WE ICE HAS

INITIATED BY CE

REMAINED lOW SINCE lAST
TRANSFER CYCLE)

CE

~Ii\ --------------------------4f$'- _ _ _ _ _ _

1;---.

.......J

....

1
I

I

-.I

I

SN76494.
SN76494A
ClK
SN76496.
SN76496A
ClK

INPUT DATA

00·07

I

I
I

S!_~.,

I

I

MnL...Jn~U n

~ -EJ U'
~

XI

I

-+t ~th

I4-t su

1

n., n., ~_., ,.., r-

L2..J l2..J

t..4' B

U

U

~ ~tsu

00<'1'-;"1--------X
I Y'--J
J'
,
,_ _ _ _ _ _ _ _ _ .
1

.1,

-J

""'----

t WE must be returned high (inactive) within 4 clock pulses for the SN76494 and SN76494A (32 clock pulses for the SN76496 and SN76496A)
after RDY returns high. Otherwise, a new data transfer cycle will be initiated.

FIGURE 2. DATA TRANSFER TIMING
TABLE 4. FUNCTION TABLE
INPUTS

OUTPUT

This table is valid when the
device is:

CE

WE

READY

L

L

L

(1) not being clocked, and

L

H

L

(2) is initialized by pulling WE

H
H

L

H

H
H

and CE high.

TEXAS

~

INSTRUMENTS
4--42

POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

SN76494, SN76494A, SN76496, SN76496A
PROGRAMMABLE TONE/NOISE GENERATOR
CPU interface to SN76494, SN76494A, SN76496 or SN76496A
The microprocessor interfaces with the SN76494, SN76494A, SN76496, or SN76496A by means of the 8 data
lines and 3 control lines (WE, CE and READY). Each tone generator requires 10 bits of information to select
the frequency and four bits of information to select the attenuation. A frequency selection requires a doublebyte transfer, while an attenuator selection requires a single-byte transfer.
If no other control registers on the chip are accessed, a tone generator may be rapidly updated by initially
sending both bytes of frequency and register data, followed by just the second byte of data for succeeding
values. The register address is latched on the chip, so the data will continue going into the same register. This
allows the six most significant bits to be quickly modified for frequency sweeps.

control registers
The devices have 8 internal registers that are used to control the 3 tone generators and the noise source.
During all data transfers to the devices, the first byte contains a 3-bit field that determines the destination
control register. The register address codes are shown in Table 5.
TABLE 5. REGISTER ADDRESS FIELD
R1

RO

DESTINATION
CONTROL REGISTER

R2

1

Tone 1 Frequency
Tone 1 Attenuation

1

Tone 2 Attenuation

1

Tone 3 Attenuation

° ° °
° °
°
°
°
° °
°
°
1

1

Tone 2 Frequency

1

1
1

1

1

1

Tone 3 Frequency
Noise Control

1

Noise Attenuation

data formats
The formats required to transfer data are shown below.
ADDR
I
I RO REG
1 R1 1 R2
F6
BIT 0

DATA
F7

1 Fa 1
BIT 7

FIRST BYTE

UPDATE NOISE SOURCE

I

1

I

R~DIR R2 I

RD RiG

I

F~

x

FB

I NF~HIIF~F1 I
BIT7

UPDATE ATTENUATOR (SINGLE BYTE TRANSFER)
1
BITO

I

(SINGLE BYTE TRANSFER)

ffiTO

I

DATA

F:::2 -::1!:-=F;:-3--,-I_F_4-,-::1:-:-:F;:c5::-,
'-=o::-:--'----x_LI_F_O--,-I_F;:-:1::-::1'-::-c:
BIT 0
SECOND BYTE
BIT 7

ADDR
I
I RO REG
1 R1 1 R2
AO

1 A1

DATA
1 A2

1 A~
BIT 7

I

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4-43

SN76494, SN76494A, SN76496, SN76496A
PROGRAMMABLE TONE/NOISE GENERATOR
TYPICAL APPLICATION DATA

r--(SEE NOTE 3)

C1

C2

~ A~~~~?ER H?---------n1.

I
I

100

"

.

~

I

SN76494A
SN76496
0.1 pF
SN76496A ,~

-=

,

L ___

'

..2.~(~I~L~ _ _

J

NOTE 3: The capacitance values of C1 and C2 are determined by the frequency response desired and the audio amplifier used.

FIGURE 3. EXTERNAL AUDIO OUTPUT INTERFACE
04------------------------------------------------~
CLOCK--------------------------------------------~

03--------------------------------------------,
VCC

02--------------------~

01---------------------i
00---------------------;
VCC

2.5 krl

SELECT ---------I

AUOIOIN----------------------------------------~

07------------~--------------------------~
06------------------------------------------~

05--------~------------------------------------J

NOTES: 4. The data lines must be latched so that the data remains on them at least 32 clock cycles for the SN76496 and SN76496A or (4 clock
cycles for the SN76494 and SN76494A) after the select line goes low.
5. The select pulse should be a negative-going pulse with minimum duration of 150 ns.

FIGURE 4. MICROCOMPUTER PARALLEL PORT INTERFACE

TEXAS •
INSTRUMENTS
4-44

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TL0101, TL010C
ADJUSTABLE-RATIO CURRENT MIRRORS
SEPTEMBER 1983-REVISED APRIL 1988

•
•

(TOP VIEW)

Wide Input current Range:
1 /LA to 3 rnA

•

35-Volt Output Capability

•

High Output Impedance

D8

P DUAL-IN-LiNE PACKAGE

33 Distinct Input-to-Output Emitter Ratios
from 3:1 to 1:15

INPUT
11E
12E
aBE

2
3

7
6
5

4

OUTPUT
OlE
02E
04E

description
The TL01 0 is a Wilson current mirror that provides output current in a selectable fixed ratio to the input
current. The ratio is substantially independent of changes in load, voltages, and temperature. Selecting
the ratio consists of connecting appropriate input-emitter pins and output-emitter pins to ground as shown
in Figure 1.
The TL01 0 is designed to operate with up to 3 mA input current if all three input-emitter pins are used.
It will also operate at voltages up to 35 V.
The TL01 01 is characterized for operation from - 40 DC to 85 DC. The TL01 OC is characterized for operation
from 0 DC to 70 DC.
typical values of current ratio at T A - 25 DC t
EMITTER RATIO
m:nt

1: 15
1: 14
1 :13
1 :12
1: 11
1 :10
1 :9
1:8
2:15
1:7
2:13

CURRENT RATIO

EMITTER RATIO

hF - 10/11
14.1

m:nt

CURRENT RATIO

hF

EMITTER RATIO

CURRENT RATIO

m:nt

hF - 10/11
2.61

= 10/11

13.2
12.3

1:6
2: 11
1 :5

5.78
5.34
4.82

3:8
2:5
3:7

11.4
10.5
9.55
8.62
7.72
7.23
6:71
6.29

3:14
2:9
3:13
1 :4
3:11
2:7
3:10
1 :3

4.53
4.38
4.21

1 :2
3:5
2:3
3:4
1: 1
3:2
2:1
3:1

3.89
3.57
3:40
3:25
2.90

2.43
2.26
1.98
1.64
1.45
1.32
0.99
0.663
0.50
0.332

t m is the number of input emitters used, n is the number of output emitters used.

schematic
(8) OUTPUT
INPUT~(l~)-e

______________~____________________________~

(2)

11E

(3)

12E

(5)

(6)

(7)

OlE

02E

04E
Copyright

PRODUCTION DATA documents contain information

current as of publication date. Products conform to
specifications per the terms of Te.as Instruments
standard warranty. Production processing does not
necessarily include testing of all parameters.

(4)

08E
© 1983, Texas Instruments Incorporated

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-45

no 101, no 1DC

ADJUSTABLE·RATIO CURRENT MIRRORS

absolute maximum ratings over operating free·air temperature range (unless otherwise noted)
Output voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 45 V
Input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5 rnA
Continuous total dissipation at (or below) 25 DC free-air temperature (see Note 2) . . . . . . .. 725 mW
Operating free-air temperature range: TL0101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . _40DC to 85 DC
TL010C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ODC to 70 DC
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65 DC to 150 DC
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............. : . . . . . . .. 260 DC
NOTES: 1. Input and output voltages are with respect to the common terminal. Neither voltage should be more negative than - 0.3 V.
2. For operation above 25°C free-air temperature, derate linearly at the rate of 8.0 mW/oC.

recommended operating conditions
TL0101
MAX

5

Input current per input emitter, II
Operating free-air temperature, T A

UNIT

MAX

35

MIN
5

0.6
0,001

1.7

0.65

1.6

1

0.001

1

mA

-40

85

0

70

°C

Output voltage, Vo
Input voltage, VI

TL010C

MIN

35

V
V

electrical characteristics over recommended ranges of operating free-air temperature and output voltage
(unless otherwise noted)
PARAMETER

VI

hF

Input voltage

Current ratio (10/11)

Temperature coefficient
"hF

of current ratio
Output-to-input isolation

Output threshold
VO(th)
voltage§
ro

Output resistance'

TL0101

TEST CONDITIONSt

MIN

II ;m x 1 p.A
II == m x 10p.A
II == m x 100/lA
II == m x 1 mA

Maximum operating
frequency#

1.1

1.1
1.25
8.13

m:n == 1 :4

3.61

3.89

m:n; 1 :2
m:n == 1: 1

1.84
0.89

m:n ; 2:1

0.46

II ; MIN to MAX,

7.72

8.13

4.05

3.89

4.05

1.98
0.99

2.07
1.08

1.88
0.94

1.98
0.99

2.07
1.04

0.50

0.56

0.475

0.50 0.525

60

dB

1.1

TA ; 25°C
II == m x 10 "A
II ;m x 100/lA

II ; m x 1 mA, RL ; 500 Il

ppm/oC

300

60

TA ; MIN

UNIT

V

7.05
3.64

300
1 kHz

MAX

1.4

1.4
7.72

f ;

TYP*
1

6.97

II ;m x 1 mA
f max

MIN

1

m:n == 1 :8

II ; MIN to MAX

F ; 1 kHz

TL010C
MAX

1.25

II ; MIN to MAX

II ; MIN to MAX

TYP*

1.05
1

1

V

200 min
20 min
2 min

200 min
20 min
2 min

Mil

10

10

MHz

t m is the number of input emitters, n is the number of output emitters. For conditions shown as MIN or MAX, use the appropriate value
specified under recommended operating conditions.
; All typical values are at T A ; 25°C.
§Output threshold voltage is the voltage at which the current ratio is equal to 90% of its value at Vo ; 15 V.
'The output resistance is directly proportional to the number of input emitters divided by the number of output emitters (min).
#Maximum operating frequency is the frequency at which the output current is down 3 dB from its low-frequency value.

~

TEXAS
INSTRUMENTS
4--46

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

no 101, no 1DC
ADJUSTABLE·RATIO CURRENT MIRRORS
TYPICAL APPLICATION INFORMATION
TL010

ml>n
I
(1)

(S)

-+

m

II

+10

n

See Notes 3 and 4
NOTES: 3. Selected emitters must be grounded as close as possible to the package to avoid unstable device behavior.
Using the fixed-Beta model, the current ratio for a current mirror of m input emitters and n output emitters may be calculated as
10

{32n

+

{3(n

+

m)

13 2 m + ({3 + 1) (m + n)
Second-order effects, such as on-chip self-heating, may slightly perturb the observed ratio from the calculated value.

4. At high current levels, a small capacitor (270 pF) may be required between the input and output terminals to improve stability.

FIGURE 1. CURRENT MIRROR SET FOR A CURRENT RATIO OF 2:13
Vcc
RUN

J.

RESET

TL010

ml>n
I
RATE OF
FLOW
DETECTOR

1
(S)

(1)

m

n

OSE'
(5)

I
I
I

~_-,A,-_-.
(4)

SELECTOR

t Adjust for a mirror of 11.9

FIGURE 2. TYPICAL APPLICATION CIRCUIT
In the application shown in Figure 2, the problem is to measure a precise volume of liquid flowing through a
line and shut off the flow with a relay when limit is reached, For the particular volume to be measured and
the pressure detector used, a current gain of 11.9 is required. By setting the TL01 0 for a gain of 10 with the
emitter selection, the exact gain of 11,9 may be obtained by adjusting the pressure-time product control.

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-47

4-48

SERIES no 11, no 12, no 14A, n021
FIXED-RATIO N-P-N CURRENT MIRRORS
02614, FEBRUARY 1984-REVISEO OCTOBER 1988

•

LP PACKAGE

Wide Input Current Range:
1 /LA to 1 mA

GJ':

(TOP VIEWI

•

35-Volt Output Capability

•

High Output Impedance

•

Current-Ratio Tolerances Over Full
Temperature Range;
± 8% for I Suffix
± 7% for C Suffix

•

Typically Less Than ± 1 % Error at 25 DC

n
n

INPUT
COMMON
OUTPUT

INPUT-TO-OUTPUT CURRENT RATIO

TEMPERATURE
RANGE

1 :1

1:2

-40°C to 85°C

TL0111

TL0121

1:4

OOC to 70°C

TL011 C

TL012C

2:1
TL0211

TL014AC

TL021C

description
The TLO 11 , TLO 1 2, TLO 14A, and TL021 are Wilson current mirrors with output currents in fixed proportion
to the input currents and substantially independent of changes in voltage, load, and temperature. These
devices make use of the tight matching properties of identical bipolar transistors on a monolithic integrated
circuit chip to achieve current-ratio accuracy typically better than 98%.
Current mirrors are used extensively in linear integrated circuit designs as active loads for operationalamplifier stages and as current sources for other stages. The TL011 family gives the designer this same
capability with no sacrifice in accuracy or stability.
The TL011, TL012, and TL014A are designed to operate with input currents up to 1 mA and output voltage
up to 35 V. The TL021 is designed for 2 mA and 35 V.

schematics
TL011

TL012
OUT

n014A

n021

OUT

OUT

IN

IN

IN

COM

COM

COM

OUT

IN ~------I

COM

_------..J

symbols
TL011

TL012

1 I> 1

11>2

a

C

0

I--

1-

I

8S

of publication date. Products conform to

a

r--

1-

a

I

I

C

C

PRODUCTION DATA documents contain information

currant

specifications per the terms of Texas Instruments
standard warranty. Production processing does not
necessarily include testing of aU parameters.

21> 1

11>4

r--

1-

TL021

TL014A

C

Copyright

© 1983, Texas Instruments Incorporated

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-49

SERIES n011, n012, n014A, nU21
FIXED·RATION·P·N CURRENT MIRRORS

absolute maximum ratings over operating free·air temperature range (unless otherwise noted)
Output voltage (see Note 1) .................................................. 45 V
Input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5 mA
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 2) . . . . . . .. 775 mW
Operating free-air temperature range: TL011', TL0121, TL021 I . . . . . . . . . . . . . . .. - 40 ~C to 85°C
TL011C, TL012C, TL014AC, TL021C ........ OOC to 70°C
Storage temperature range ......................................... - 65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ...................... 260°C
NOTES: 1. Input and output voltages are with respect to the common terminal. Neither voltage should be more negative than - 0.3 V.
2. For operation above 25°C free-air temperature, derate linearly at the rate of 6.2 mW/oC. The LP package dissipation rating
was based on thermal resistance, ROJA, measured in still air with the device mounted in an Augat socket. The bottom of the
package was 10 mm (0.375 in.) above the socket.

recommended operating conditions
TLO __ C, AC

TLO __ I

MIN

MIN

MAX

5

35

0.002

2 0.002

2

0.001

1 0.001

1

a

70

Output voltage, Vo
Input current, 10
Operating free-air temperature, T A

5

I TL021
I All others

-40

TEXAS •
INSTRUMENTS
4-50

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

MAX
35

85

UNIT
V
mA
°C

electrical characteristics over recommended ranges of operating free-air temperature and output voltage (unless otherwise noted)
PARAMETER

TLOll

TEST CONOITIONS
MIN
II = 1 "A

Typt

TL012
MAX

MIN

Typt

TL014A
MAX

MIN

Typt

1

1

1

11

1.1

1.1

1.25

1.25

1.25

TL021
MAX

MIN

II = 10"A

11

II = 20 "A

Input voltage

11= 100 "A

II = 1 mA

1.4

1.4

hF
(10/11)

TLO_C, AC

V

1.4
1.4

II = 2 mA

I TLO_I

UNIT

1.25

II = 200 "A

Current ratio

MAX

1

II = 2"A

VI

Typt

II = MIN to MAXI

0.92

1

1.08

1.84

2

2.16

3.68

4

4.32

0.46

0.5

0.54

0.93

1

1.07

1.86

2

2.14

3.72

4

4.28

0.465

0.5

0.535

Temperature coefficient
"hF

Output-ta-input isolation

-0

0

en

Output

--i

Q

:!l-

!;lZ

II = MIN to MAX

of current ratio

VOlth) threshold

voltage§

~(J)

II = MIN to MAX,

TLO_I
TLO_C, AC

)1 = M)N to MAX

All

'""'"
~

80

200

80

ro

Output resistance

I = 1 kHz

ppm/DC

200

80

80

dB

1.35

1.35

1.35

1.35

TA = O'C

1.25

1.25

1.25

1.25

1.2

1.2

1.2

1.2

200

100

50

20

10

5

I) = 100 "A

Mn
20

I) = 200 "A
I) =1 mA

V

200

II = 20 "A

~!Tl

~ Ul~

100

TA = -40'C

II = 10"A

-;'Z
en

I = 1 kHz

TA = 25'C

~-l

~;o~
8C~
o~

50

1

2

0.5

I) = 2 mA

2

Maximum operating

f max

frequency1

)1 = MAX

RL = 500 n

10

10

t All typical values are at TA = 25°C.
tFor test conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

§Output threshold voltage is the voltage at which the current ratio is equal to 90% of its value at

1Maximum

Vo

=

15

v.

operating frequency is the frequency at which the output current is down 3 dB from its low frequency value.

10

10

MHz

:!len
> .....

::::!r-

==....
-:a~
=
n ....
eN
2

....

2r:a~

:a .....
mr-

2=
.........
~

t

:&:>
;;~
:ar:aN

==
en ....

SERIES no 11. no 12. no 14A. n021
FIXED-RATIO N-P-N CURRENT MIRRORS

TYPICAL CHARACTERISTICS

0
'';::;

TL011

TL012

CURRENT RATIO
vs
FREE-AIR TEMPERATURE

CURRENT RATIO
vs
FREE-AIR TEMPERATURE

1.05

2.10

1.04

2.08

1.03

2.06

1.02

2.04

.g

1.01

'"

...'"c

2.02

IX:

...c

IX:

1.00

:;

10MA

--.

II = 1 MA

~

0.99

u

1.96

100 MA-

0.97

1.94

0.96

1.92

0.95
-50

-25

o

25

75

50

10MA
11-1 MA

u 1.98

r:::-

1 mA

0.98

1.90
-50

100

-.

2.00

!!

:;

=-

100MA

-

1 mA

-25

o

25

50

75

100

T A-Free-Air Temperature-°c

TA-Free-Air Temperature-OC
FIGURE 1

FIGURE 2

TL014A

TL021

CURRENT RATIO
vs
FREE-AIR TEMPERATURE

CURRENT RATIO
vs
FREE-AIR TEMPERATURE

4.20
4.16

0.52

4.12
4.08

0.51
II = 100MA

0
'';::;

4.04

...'"c

4.00 1 - "\OJ.l.P- ~

:;

3.96

IX:

~

u

3.92

-

-

~ r--

-

0

.~

...c

IX:

_1MA
1 mA

~

0.50

--

,,/

II = 1 MA

-----

100MA

10MA

r--

:;

u

1 mA .........

0.49

3.88
3.84
3.80
-50

0.48
25
75
o
50
T A-Free-Air Temperature-OC

-25

100

-50

-25

25

50

75

T A-Free-Air Temperature-OC
FIGURE 4

FIGURE 3

~

TEXAS
INSTRUMENTS
4-52

o

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

100

SERIES no 11, no 12, no 14A, n021
FIXED·RATIO N·P·N CURRENT MIRRORS
TYPICAL APPLICATIONS INFORMATION
VCC
10 - II
Tl011

!>

1

VARIATIONS IN RL 00 NOT
AFFECT II OR 10 WHEN:

1

II

=

10 ( VCC - VO!thi

RL

+-10

FIGURE 5. BASIC CURRENT BUFFER
Ee = 2 mW/cm 2

+ 12

~

V

10 k!1

10

250 k!1

k{l

TL014A
II

=

10 !LA

1

!>

Tl068

4

TOTAL CIRCUIT POWER DISSIPATION
Idle condition: Po = 1.5 mW typical
On condition: Po - 12.5 mW typical
10 !LA from phototransistor provides a Vo swing of 10 V at 1 mAo

FIGURE 6. PHOTOTRANSISTOR PREAMPLIFIER
VCC
+ 24
V - - - - - - - - -.....- - - - - - - - - ,
TL012

10

700

k{l

{l

1 !> 2
10

o to

RECEIVER

I

k{l

v S --'V\IIr--I

10 V

2N5447

o to

52 kO

250

{l

10 - 4 mA at Vs - 0 V
10 - 22 mA at Vs - 10 V

FIGURE 7. TWO-WIRE LINEAR CURRENT-MODE TRANSMITTER

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-53

4--54

TL026C
DIFFERENTIAL HIGH·FREOUENCY AMPLIFIER WITH AGC
02790, JUNE 1985-REVISEO JULY 1990

•

Low Output Common-Mode Sensitivity to
AGC Voltages

•

Input and Output Impedances Independent
of AGC Voltage

•

Peak Gain ... 38 dB Typ

•

Wide AGC Range ... 50 dB Typ

•

3-dB Bandwidth ... 50 MHz

•

Other Characteristics Similar to NE592 and
uA733

D OR P PACKAGE
(TOP VIEW)

IN+[]8 IN-

AGC
VCC-

2

7

3

6

REF OUT
VCC+

OUT+

4

5

OUT-

symbol
.---"'--'- REF OUT

description

IN+

This device is a monolithic two-stage highfrequency amplifier with differential inputs and
outputs.

OUT-

Internal feedback provides wide bandwidth, low phase distortion, and excellent gain stability. Variable
gain based on signal summation provides large AGC control over a wide bandwidth with low harmonic
distortion. Emitter-follower outputs enable the device to drive capacitive loads. All stages are current-source
biased to obtain high common-mode and supply-voltage rejection ratios. The gain may be electronically
attenuated by applying a control voltage to the AGC pin. No external frequency compensation components
are required.
This device is particularly useful in TV and radio IF and RF AGC circuits, as well as magnetic-tape and
disk-file systems where AGC is needed. Other applications include video and pulse amplifiers where a large
AGC range, wide bandwidth, low phase shift, and excellent gain stability are required.
The TL026C is characterized for operation from 0 °c to 70 °c.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC + (see Note 1) ........... , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 V
Supply voltage, VCC - (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 8 V
Differential input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 5 V
Common-mode input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 6 V
Output current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10 mA
Continuous total power dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . .. See Dissipation Rating Table
Operating free-air temperature . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O°C to 70 0 C
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65 °C to 150 °C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ...................... 260 0 C
NOTE 1: All voltages are with respect to the midpoint between

Vee +

and

Vee _

except differential input and output voltages.

DISSIPATION RATING TABLE
PACKAGE
D
p

PRODUCTION DATA documents contain information
current as of publication date. Products conform to
specifications per the terms of Taxas Instruments
standard warranty. Production processing does not
necessarily include testing of all parameters.

DERATING FACTOR
TA s 25°C
TA - 70°C
POWER RATING ABOVE TA - 25°C POWER RATING
5.8 mW/oC
464mW
725mW
8.0 mW/oC
640 mW
1000 mW

Copyright © 1990, Texas Instruments Incorporated

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-55

H026C
DIFFERENTIAL HIGH-FREOUENCY AMPLIFER WITH AGC

recommended operating conditions
MIN

NOM

MAX

Supply voltage, Vcc +

3

6

8

Supply voltage, VCC-

-3

-6

-8

0

Operating free-air temperature, T A

electrical characteristics at 25°e operating free-air temperature. Vee ±
pin open (unless otherwise specified)
PARAMETER
Large-signal differential
AVD

voltage amplification

AAVD

Change in voltage amplification

Vref
BW

Voltage at REF OUT
Bandwidth (- 3 dB)

110

Input offset current

liB

Input bias current
Common-mode input

VICR
VOC

voltage range
Common-mode output voltage
Change in common-mode

AVOC
VOO

output voltage
Output offset voltage
Maximum peak-to-peak

VO(PP)

output voltage swing

TEST

1
1

VO(PP) = 3 V, RL = 2 kll

Output resistance

CMRR

Common-mode rejection ratio

Supply voltage rejection
kSVR
Vn

ratio (AVCC/AVIO)
Broadband equivalent
noise voltage

MAX

65

85

105

-50
1.3

VO(PP) = 1 V, VAGC - V re! = ± 180 mV

3

1

V AGC = 0 to 2 V, RL =

1

VID = 0, RL =

1

RL = 2 kll

00

5

I'A

30

I'A

3.75

4.25

V

300

mV

0.75

V

V

00

.

4

V

10

30

kO

60

86

3

3

VIC = ± 1 V, f = 5 mHz

4

Il.VCC+ = ±0.5 V,
AVCC- = ±0.5 V

4

BW = 1 kHz to 10 MHz

Il
dB

60
50

70

dB

12

I'V

tpd

Propagation delay time

2

Il.VO = 1 V

6

10

tr

Rise time

2

Il.VO = 1 V

4.5

12

ISink(max)

Maximum output sink current

VID = 1 V, Vo = 3 V

ICC

Supply current

No load, No signal

-111

TEXAS
INSTRUMENTS
4-56

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

V

10

00

VIC = ± 1 V, f = 100 kHz

V/V

0.4

20
3

UNIT

MHz

±1
RL =

V
DC

dB
1.5

50

3.25

1

IN+, or IN-

ro

TYP

VIPP = 28.5 mV, RL = 2 kll,

Input resistance at AGC,
ri

MIN

VAGC - Vref = ±180 mV
Iref = -1 mA to 100 I'A

2

V

± 6 V. VAGe =0. REF OUT

TEST CONDITIONS

FIGURE

70

UNIT

3

ns
mA

4

22

ns

27

mA

TL026C
DIFFERENTIAL HIGH-FREOUENCY AMPLIFER WITH AGC

electrical characteristics over recommended operating free-air temperature range,
VAGC = 0, REF OUT pin open (unless otherwise specified)
TEST

PARAMETER
Large-signal differential
Avo

1

voltage amplification

110

Input offset current

liB

Input bias current
Common-mode input

VICR

Output offset voltage
output voltage swing
Input resistance at AGC, IN +, or IN

ri
CMRR

Common-mode rejection ratio

Supply voltage rejection
kSVR

= 3 V, RL = 2 kfl

VO(PP)

VIO

ISink(max)

Maximum output sink current

ICC

Supply current

= 0, RL =

55

MAX

UNIT

115

V/V

6

I"A

40

I"A

RL

3

VIC -

1.5
2.8

± 1 V, f -

100 kHz

= ±0.5 V,
= ±0.5 V
VIO = 1 V, Vo = 3 V
6. V CC+

V
V

8

kfl

50

dB

50

6.VCC -

1

V

00

= 2 kfl

1

4

ratio (6.VCCI6.VIO)

TYP

±6 V,

± 1

1

Maximum peak-to-peak
VO(PP)

MIN

3

voltage range

VOO

TEST CONDITIONS

FIGURE

Vcc ±

dB

2.8

4

No load, No signal

mA
30

mA

PARAMETER MEASUREMENT INFORMATION
AGC-------r----~

REF OUT

,------r------

0.2 IlF
IN_+......,.,.--......--__--l

IN-

50

n

I-----,.--~~-OUT +

I--------~~---- VO+

l)---"'-------OUT -

~-----~-----VO-

50 n

VO+ + VO-

50

n

50

n

lkn

Voe =

1 kn

2

FIGURE 1
50

FIGURE 2

n
t-------~~- VO+

50

n

lkn

lkn

1 b){ +

FIGURE 3

FIGURE 4

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-57

TL026C
DIFFERENTIAL HIGH·FREQUENCY AMPLIFER WITH AGC

TYPICAL CHARACTERISTICS
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
DIFFERENTIAL GAIN-CONTROL VOLTAGE

> 100
3>

.1

90

~

80

"
!E
C.
E

70 TA
TA

c:

«

60

f

-r--. """~

=: 700,~ ~TA =
=

=
=

.1,

6 V ._
-6 V

_I
OoC

25°C-'"

\\

50

~

40

1
\

30

20
10

o
-200

1

VCC+
VCC-

1

-100

o

\

"'-t--100

200

VAGC - Vref- Differential Gain-Control Voltage-mV

FIGURE 5

TEXAS

~

INSTRUMENTS
4-58

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

H026C
DIFFERENTIAL HIGH·FREOUENCY AMPLIFER WITH AGC

TYPICAL APPLICATION INFORMATION
gain characteristics
Figure 5 shows the differential voltage amplification versus the differential gain-control voltage
(VAGC - Vref)· VAGC is the absolute voltage applied to the AGC input and Vref is the dc voltage at the
REF OUT output. As VAGC increases with respect to Vref, the TL026C gain changes from maximum to
minimum. As shown in Figure 5 for example, V AGC would have to vary from approximately 180 mV less
than V ref to approximately 180 m V greater than Vref to change the gain from maximum to minimum.
The total signal change in V AGC is defined by the following equation.

+

.:lVAGC

Vref

.:lVAGC

360 mV

(1 )

180 mV - (Vref - 180 mY)

However, because VAGC varies as the ac AGC signal varies and also differentially around Vref, then VAGC
should have an ac signal component and a dc component. To preserve the dc and thermal tracking of
the device, this dc voltage must be generated from Vref. To apply proper bias to the AGC input, the external
circuit used to generate V AGC must combine these two voltages. Figures 6 and 7 show two circuits that
will perform this operation and are easy to implement. The circuits use a standard dual operational amplifier
for AGC feedback. By providing rectification and the required feedback gain, these circuits are also complete
AGC systems.

circuit operation
Amplifier A 1 amplifies and inverts the rectified and filtered AGC signal voltage V c producing output voltage
V1. Amplifier A2 is a differential amplifier that inverts V1 again and adds the scaled Vref voltage. This
conditioning makes VAGC the sum of the signal plus the scaled Vref. As the signal voltage increases,
V AGC increases and the gain of the TLC026C is reduced. This maintains a constant output level.

feedback circuit equations
Following the AGC input signal (Figures 6 and 7) from the OUT output through the feedback amplifiers
to the AGC input produces the following equation:
1. AC output to diode D1, assuming sinusoidal signals
(2)

Vo = VOP (sin (wt))
where:
\lOP = peak voltage of Vo
2. Diode D1 and capacitor C1 output

(3)

where:
VF = forward voltage drop of D1
V c = voltage across capacitor C 1

3. A1 output
R2
V1 = - - Vc
R1

(4)

TEXAS

"J1

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-59

TL026C
DIFFERENTIAL HIGH·FREOUENCY AMPLIFER WITH AGC

TYPICAL APPLICATION INFORMATION
4. A2 output (R3 = R4)
R2

Vc

+

R1

R6
2 - - - - Vref
R5 + R6

(5)

Amplifier A2 inverts V1 producing a positive AGC signal voltage. Therefore, the input voltage to the TL026C
AGC pin consists of an AGC signal equal to:

~Vc

(6)

R1

and a dc voltage derived from Vref, defined as the quiescent value of V AGC.
VAGC(q) = 2

R6
R5 + R6

(7)

Vref

For the initial resistor calculations, Vref is assumed to be typically 1.4 V making quiescent V AGC
approximately 1.22 V (VAGC(q) = Vref - 180 mV). This voltage allows the TL026C to operate at
maximum gain under no-signal and low-signal conditions. In addition, with Vref used as both internal and
external reference, its variation from device to device automatically adjusts the overall bias and makes
AGC operation essentially independent of the absolute value of V ref. The resistor divider needs to be
calculated only once and is valid for the full tolerance of Vref.

output voltage limits (see Figures 6 and 7)
The output voltage level desired must fall within the following limits.
1. Because the data sheet minimum output swing is 3 V peak-to-peak using a 2-kO load resistor, the
user-selected design limit for the peak output swing should not exceed 1.5 V.
2. The voltage drop of the rectifying diode determines the lower voltage limit. When a silicon diode is
used, this voltage is approximately 0.7 V. The output voltage Vo must have sufficient amplitude to
exceed the rectifying diode drop. A schottky diode can be used to reduce the Vo level required.

gain calculations for a peak output voltage of 1 V
A peak output voltage of 1 V was chosen for gain calculations because it is approximately midway between
the limits of conditions 1 and 2 in the preceding paragraph.
Using equation 3 (V c = VOP - Vd), Vc is calculated as follows:
Vc = 1 V - 0.7 V
Vc = 0.3 V
Therefore, the gain of A 1 must produce a voltage V1 that is equal to or greater than the total change
in V AGC for maximum TL026C gain change.
With a total change in VAGC of 360 mV and using equation 4, the calculation is as follows:
V1

..iVAGC

R2

0.36

R1

0.3

1.2

If R1 is 10 kO, R2 is 1.2 times R1 or 12 kO.

TEXAS . "
INSTRUMENTS
4-60

POST OFFICE BOX 655303 • DALLAS. TeXAS 75265

TL026C
DIFFERENTIAL HIGH·FREOUENCY AMPLIFER WITH AGC

TYPICAL APPLICATION INFORMATION

Since the output voltage for this circuit must be between 0.85 V and 1.3 V, the component values in
Figures 6 and 7 provide a nominal1-V peak output limit. This limit is the best choice to allow for temperature
variations of the diode and minimum output voltage specification.
The circuit values in Figures 6 and 7 will produce the best results in this general application. Because of
rectification and device input constraints, the circuit in Figure 6 will not provide attenuation and has about
32 dB of control range. The circuit shown in Figure 7 will have approximately 25% variation in the peak
output voltage limit due to the variation in gain of the TL592 device to device. In addition, if a lower output
voltage is desired, the output of the TL026C can be used for approximately 40 mV of controlled signal.

considerations for the use of the TL026C
To obtain the most reliable results, RF breadboarding techinques must be used. A groundplane board should
be used and power supplies should be bypassed with O.l-",F capacitors. Input leads and output leads should
be as short as possible and separated from each other.
A peak input voltage greater than 200 mV will begin to saturate the input stages of the TL026C and, while
the circuit is in the .AGC mode, the output signal may become distorted.
To observe the output signal of TL026C or TL592, low-capacitance FET probes or the output voltage divider
technique shown in Figure 6 should be used.
TL026C

t - - - - - - - - - - - - - - - - - - - - v out

vl _ _ _ _:t,.-

~------------~1~.~a~k~O-~--TOSCOPE
MONITOR

=

2000

=

30 kO

=

10 kG
10 k!l

y, TlOa2

20 kO

=
NOTE: vcc+ = 6 V and VCC- = -6 V for TL026C and amplifiers A1 and A2.

FIGURE 6. TYPICAL APPLICATION CIRCUIT WITH NO ATTENUATION

TEXAS . "
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-61

TL026C
DIFFERENTIAL HIGH·FREOUENCY AMPLIFER WITH AGC
TYPICAL APPLICATION INFORMATION
1N914

R4

R3
10 k!l

10 k!l

'h n082
R5
30 k!l
R6
20 k!l

-=

510 !l
REF
OUT n026C

INI-------VI
VOUT +

IN+50 !l

---+--1 ~";""'::"--I
AGC

TO
SCOPE---.
MONITOR
200 !l

NOTE: Vee +

=

6 V and Vee _

= -

6 V for TL026e and amplifiers A 1 and A2,

FIGURE 7. TYPICAL APPLICATION CIRCUIT WITH ATTENUATION

TEXAS

~

INSTRUMENTS
4-62

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

50 !l

TL027C, TL027M
DIFFERENTIAL HIGH·FREOUENCY AMPLIFIERS WITH AGC
D2888, JUNE 1985-REVISED JULY 199D

•
•

Input and Output Impedances Independent
of AGC Voltage

•

Wide AGC Range ... 50 dB Typ

•

3-dB Bandwidth ... 50 MHz

•

D, J, OR N PACKAGE

Low Output Common·Mode Sensitivity to
AGC Voltages

(TOP VIEW)

IN+
AGC
GAIN ADJ 1 A
GAIN ADJ 2A

INREF OUT
GAIN ADJ 1 B
GAIN ADJ 2B

VCC-

VCC+

NC
NC
OUT + '-1.._ _:..t-' OUT -

Other Characteristics Similar to NE592 and
uA733
NC -

No internal connection

DEVICE FEATURES
GAIN

AGC

Gain Option 1

50 dB

50 dB

Gain Option 2

3B dB

50 dB

symbol
AGe

(21
(31

description

GAIN

{1A

ADJUST

1B

(121

This device is a monolithic two-stage high( 11
frequency amplifier with differential inputs and
IN+
OUT+
outputs. Internal feedback provides wide
(141
INbandwidth, low phase distortion, and excellent
OUTgain stability. Variable gain based on signal
(41
summation provides large AGC control over a
GAIN {2A
'---:":"::!- REF OUT
ADJUST
2B _(:...:1..:,1!-1_ - - I
wide bandwidth with low harmonic distortion.
Emitter-follower outputs enable the device to
drive capacitive loads. All stages are currentsource biased to obtain high common-mode and
supply-voltage rejection ratios. The gain may be electronically attenuated by applying a control voltage
to the AGC pins. No external frequency compensation components are required.
This device is particularly useful in TV and radio IF and RF AGC circuits, as well as magnetic-tape and
disk-file systems where AGC is needed. Other applications include video and pulse amplifiers for which
a large AGC range, wide bandwidth, low phase shift, and excellent gain stability are required.
The TL027C is characterized for operation from 0 DC to 70 DC. The TL027M is characterized for operation
over the full military temperature range of - 55 DC to 125 DC.

PRODUCTION DATA documants contain information
currant as of publication data. Products conform to
spacifications par the terms of Taxas Instruments
standard warranty. Production procassing doas not
nac..sarily includa testing of aU paramatars.

TEXAS

~

Copyright © 1990, Texas Instruments Incorporated

INSTRUMENTS
POST OFFICE BOX 655303 • OALLAS. TEXAS 75265



:>I

100

80

-I"--

70 TA
TA
60

"""'-

,~

ca

:E

«.,

Cl

~

l!l

\

20
10

o
-100

r--- ...........

300

1"-7 ~ l\ TA ;.
TA

200

>

o

0;

150

"E

e

100

C

50

~

\

I

"'--r-100

200

V AGC - V ref - Differential Gain-Control Voltage - mV

0

-200

\

-100

o

\

~ f100

200

VAGC - Vref-Differential Gain-Control Voltage-mV

FIGURE 5

FIGURE 6

TEXAS ~

INSTRUMENTS
4-66

~

c

«>

Ooc

.""~

= /25°C "
= 70°C

TA

II.

VCC+ = 6V
VCC- = -6 V?AIN OPTION 1

350

(5

~

30

,I.

E 250

\\

40

400

15.

25 °C---'"

50

-200

:>
I
c:
0.,0

J
= ooC

=: 700~ ~TA
=

>

VCC+ = 6 V
VCC- = -6 V GAIN OPTION 2

90

DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
DIFFERENTIAL GAIN-CONTROL VOLTAGE

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

n027C, n027M
DIFFERENTIAL HIGH-FREOUENCY AMPLIFIERS WITH AGC
TYPICAL APPLICATION INFORMATION
gain characteristics
Figure 5 and 6 show the differential voltage amplification versus the differential gain-control voltage
(VAGC - Vref). VAGC is the absolute voltage applied to the AGC input and Vref is the dc voltage at the
REF OUT output. As VAGC increases with respect to Vref, the TL027C gain changes from maximum to
minimum. As shown in Figure 5 for example, V AGC would have to vary from approximately 180 mV less
than Vref to approximately 180 mV greater than Vref to change the gain from maximum to minimum.
The total signal change in V AGC is defined by the following equation.
AVAGC = Vref

+

180 mV - (Vref -

180 mY)

(1 )

AVAGC = 360 mV
However, because VAGC varies as the ac AGC signal varies and also differentially around Vref, then VAGC
should have an ac signal component and a dc component. To preserve the dc and thermal tracking of
the device, this dc voltage must be generated from Vref. To apply proper bias to the AGC input, the external
circuit used to generate V AGC must combine these two voltages. Figures 7 and 8 show two circuits that
will perform this operation and are easy to implement. The circuits use a standard dual operational amplifier
for AGC feedback. By providing rectification and the required feedback gain, these circuits are also complete
AGC systems.

circuit operation
Amplifier A 1 amplifies and inverts the rectified and filtered AGC signal voltage V c producing output voltage
V1. Amplifier A2 is a differential amplifier that inverts V1 again and adds the scaled Vref voltage. This
conditioning makes V AGC the sum of the signal plus the scaled Vref. As the signal voltage increases,
VAGC increases and the gain of the TLC027C is reduced. This maintains a constant output level.

feedback circuit equations
Following the AGC input signal (Figures 7 and 8) from the OUT - through the feedback amplifiers to the
AGC input produces the following equations.
1. AC output to diode D 1, assuming sinusoidal signals
Vo

=

(2)

VOP (sin (wt))

where:
VOP = peak voltage of Vo
2. Diode 01 and capacitor C1 output
(3)

where:
VF
Vc

forward voltage drop of 01
voltage across capacitor C 1

3. A 1 output
V1 =

R2
R1 Vc

(4)

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4-67

n027C, n027M
DIFFERENTIAL HIGH-FREOUENCY AMPLIFIERS WITH AGC
TYPICAL APPLICATION INFORMATION
4. A2 output (R3

R4)

R2
VAGC = Vc
R1

+

R1
2 -c.:...;..-Vref
R5 + R6

(5)

Amplifier A2 inverts V1 producing a positive AGC signal voltage. Therefore, the input voltage to the TL027C
AGC pin consists of an AGC signal equal to:
R2 Vc
R1

(6)

and a dc voltage derived from Vref, defined as the quiescent value of V AGC.
VAGC(q) = 2

R6
R5 + R6

(7)

Vref

For the initial resistor calculations, Vref is assumed to be typically 1.4 V making quiescent VAGC
approximately 1.22 V (VAGC(q) = Vref - 180 mY). This voltage allows the TL027C to operate at
maximum gain under no-signal and low-signal conditions. In addition, with Vref used as both internal and
external reference, its variation from device to device automatically adjusts the overall bias and makes
AGC operation essentially independent of the absolute value of Vref. The resistor divider needs to be
calculated only once and is valid for the full tolerance of Vref.

output voltage limits (see Figures 7 and 8)
The output voltage level desired must fall within the following limits:
1. Because the data sheet minimum output swing is 3 V peak-to-peak using a 2-kll load resistor, the
user-selected design limit for the peak output swing should not exceed 1.5 V.
2. The voltage drop of the rectifying diode determines the lower voltage limit. When a silicon diode is
used, this voltage is approximately 0.7 V. The output voltage Vomust have sufficient amplitude to
exceed the rectifying diode drop. A schottky diode can be used to reduce the Vo level required.

gain calculations for a peak output voltage of 1 V
A peak output voltage of 1 V was chosen for gain calculations because it is approximately midway between
the limits of conditions 1 and 2 in the preceding paragraph.
Using equation 3 (V c = VOP - Vd), Vc is calculated as follows:
Vc = 1 V - 0.7 V
Vc = 0.3 V
Therefore, the gain of A 1 must produce a voltage V1 that is equal to or greater than the total change
in VAGC for maximum TL027C gain change.
With a total change in V AGC of 360 mV and using equation 4, the calculation is as follows:
V1

dVAGC

R2

0.36

R1

0.3

1.2

If R1 is 10 kll, R2 is 1.2 times R1 or 12 kll.

TEXAS •
INSTRUMENTS
4-68

POST OFFICE

aox 655303

• DALLAS. TEXAS 75265

TL027C, TL027M
DIFFERENTIAL HIGH-FREQUENCY AMPLIFIERS WITH AGC

TYPICAL APPLICATION INFORMATION

Since the output voltage for this circuit must be between 0.85 V and 1.3 V, the component values in
Figures 7 and 8 provide a nominal 1-V peak output limit. This limit is the best choice to allow for temperature
variations of the diode and minimum output voltage specification.
The circuit values in Figures 7 and 8 will produce the best results in this general application. Because of
rectification and device input constraints, the circuit in Figure 7 will not provide attenuation and has about
32 dB of control range. The circuit shown in Figure 8 will have approximately 25% variation in the peak
output voltage limit due to the variation in gain of the TL592 device to device. In addition, if a lower output
voltage is desired, the output of the TL027C can be used for approximately 40 mV of controlled signal.

considerations for the use of the TL027C
To obtain the most reliable results, RF breadboarding techinques must be used. A ground plane board should
be used and power supplies should be bypassed with O. 1-JlF capacitors. Input leads and output leads should
be as short as possible and separated from each other.
A peak input voltage greater than 200 mV will begin to saturate the input stages of the TL027C and, while
the circuit is in the AGC mode, the output signal may become distorted.
To observe the output signal of TL027C or TL592, low-capacitance FET probes or the output voltage divider
technique shown in Figure 7 should be used.
lN914

Rl

R2

10 kfl

12 kfl

'h TL082

0.1 p.F

---4~----------~r--------------------a

VOUT-

0.1 p.F
VOUT+ ____~~--------~~--------------------~
AGC

50 fl

1.8 kfl
TO
SCOPE----........
MONITOR

200 fl

NOTES:

A. Vcc+ = 6 V and VCC- = -6 V for TL027C and amplifiers A1 and A2.
B. On the TL027. short pin 3 to pin 12 and pin 4 to pin 11. Connect pins 6 and 9 to ground.

FIGURE 7. TYPICAL APPLICATION CIRCUIT WITH NO ATTENUATION

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-69

TL027C, TL027M
DIFFERENTIAL HIGH·FREQUENCY AMPLIFIERS WITH AGC

TYPICAL APPLICATION INFORMATION
1N914

51012

TO
SCOPE--....
MONITOR
20012

NOTES: A. VCC +

=6

V and VCC _

= -6

V for TL027C and amplifiers A 1 and A2.

B. On TL027, short pin 3 to pin 12 and pin 4 to pin 11. Connect pins 6 and 9 to ground.

FIGURE 8. TYPICAL APPLICATION CIRCUIT WITH ATTENUATION

TEXAS •
INSTRUMENTS
4-70

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TL040C
2-CHANNEL MULTIPLEXED VIDEO AMPLIFIER
03002. MARCH 1986-REVISED DECEM8ER 1988

•

o OR N PACKAGE

Designed for Use with the TL041 Magnetic
Field Pulse Detector

(TOP VIEW)
21N+
21N -

liN +
11N -

•

Wide Bandwidth ... 20 MHz Typ

•

Low Noise ... Less than 8 p.V Typ

GAIN ADJUST 1 A

GAIN ADJUST 2B

Independently Adjustable Channel
Gains . . . Up to 450 Typ

GAIN ADJUST 1 B
BIAS OUTPUT

GAIN ADJUST 2A

•
•

No Frequency Compensation Required

•

Internal Voltage Source Eliminates External
Components

•

Input Channel Select Pin is Compatible with
TTl and CMOS

•

VCC(R)

SELECT

VCC
GND
OUT-

GND
OUT+

CHANNEL SELECT TABLE
SELECT

Low Power Dissipation ... 150 mW Typ

CHANNEL

L

1

H

2

description
The TL040 is a two-channel multiplexed video
amplifier designed for use with magnetic pulse
detectors in streaming tape drives. The circuit
design eliminates many external components,
and the D package allows substantial reduction
in circuit board area. The gain of each channel
is a function of the resistance across its gainadjust pins (A-B) with maximum gain occurring
when the terminals are shorted.
The Vee(R) pin provides supply voltage
decoupling required by some designs. The BIAS
OUT pin provides a voltage source for other
circuits that is approximately equal to 112 Vee.

functional block diagram

11N+ .:..(1"')_ _--1

VCC
(111

11N _ .:.:(2:.:.)_ _~"'Q

75 D (12) VCC(RI

(8) OUT+

1 kD

(51 BIAS OUT

21N + .:.;(1:,.:6.:..)_ _I+"

(7. 10) GND

21N _ .:..(1..5;.;.)_ _-c;.,,-

GAIN ADJUST

PRODUCTION DATA documents contein information
current as of publication date. Products conform to
specifications per the terms of Texas Instruments
standard warranty. Production processing does not
necessarily include testing of an parameters.

~

Copyright © 1986, Texas Instruments Incorporated

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4-71

TL040C
2-CHANNEL MULTIPLEXED VIDEO AMPLIFIER
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 14 V
Input voltage range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -0.2 V to VCC + 0.2 V
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600 mW
Operating free-air temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 0 DC to 70 DC
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65 DC to 1 50 DC
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . 260 DC
NOTE 1: All voltageS except differential voltages are with respect to the ground terminals.

recommended operating conditions
Supply voltage, VCC
Common-mode input voltage (diff inputs),VIC
High-level input voltage, SELECT input, VIH

MIN

TYP

MAX

UNIT

10.8
5
2

12
6

13.2
7

V
V

0.8
1.5
70

Low-level input voltage, SELECT input, VIL
Output sink current (diff outputs). Isink

0

Operating free-air temperature, T A

electrical characteristics ofselected channel at TA
otherwise noted)
PARAMETER
AVD

Large-signal differential voltage
amplification
Channel amplification mismatch
Large-signal differential
voltage attenuation

VOC

Common-mode output voltage
Maximum peak-to-peak

VOPP

output voltage swing

BW

Bandwidth (- 3 dB)

110
lIB

Input offset current
Input bias current

Differential output voltage
VOD
Input resistance (differential inputs)
ri
CMRR Common-mode rejection ratio
Supply-voltage rejection
kSVR
Vn
IIH

ratio (.:\.VCC!.:\.VIO)
Broadband equivalent
input noise voltage

TEST

1

Output rise time

ICC

Supply current
Bias output voltage

530

600

V/V

=

50 mV on unselected input

=

RL

00

60

dB

8.5

V

RL

3

VIC
VCC

V to 7 V

60

10.8 V to 13.2 V

50

70

dB

<5

/LV

=

=

V

20
0.1
6
0.2
4
100

00,

=5

VID

=0

4

MHz

3
17

/LA
/LA
V
kll
dB

VIH

= 2.7

V

-0.4

mA

VIL

= 0.4 V

20

/LA

2

':\'VO

=

1 V

15

2
1
1

':\'VO

=

1 V

20
12
6

5

TEXAS •
INSTRUMENTS
4-72

300

4

Select input

tr

UNIT

1

Select input

(differential inputs)

MAX

2
1
1
1

High-level input current,

Propagation delay time
tpd

TYP

1%
.:\. VI

1

4

°c

MIN

1
1

V
mA

12 V, RAB ... 0, RL .. 2 kO(unless

TEST CONDITIONS

FIGURE

Low-level input current,
IlL

= 25 oe, Vee'"

V

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

ns
ns

15
7

mA
V

TL040C
2-CHANNEL MULTIPLEXED VIDEO AMPLIFIER
PARAMETER MEASUREMENT INFORMATION

(3)

_V...,Ik-D_1_~~(1~) 1IN + 1A

1B

SELECT

--'"--4..---f..:.;(200:.1) 11N-

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265

4-73

TL040C
2·CHANNEL MULTIPLEXED VIDEO AMPLIFIER
PARAMETER MEASUREMENT INFORMATION (continued)

50 Q (21
'--'IN''-'''''I 1IN -

OUT +t'(8
...1 -....--VO +
1 kQ

1 kQ

OUT_I'-(9;;.;.1_...._ _ VO _

50 Q(161
,.......'I/VI..--""I2IN +

........'VV,.:.(1",,5""'11 21N50 Q
2A 28
(131 (141

GND
(7. 101

FIGURE 3

(11 11N+
(21 11NOUT + t'(.;;.:81---.~"X""-

Rl

VCC/2

OUTPUT

OUT _ 1-'(",-9:....1.....---'"-(161 21N+
(151 2IN _
2A
(131

28

GND

(141

(7. 101

FIGURE 4
tSelect input must be at proper logic level to select desired input channel.

TEXAS .."
INSTRUMENTS
4-74

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TL040C
2-CHANNEL MULTIPLEXED VIDEO AMPLIFIER
TYPICAL CHARACTERISTICS
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
GAIN-ADJUST RESISTANCE

1000
700
lij

E>

~
~

:>

C6

OJ

VJ

I 200

.,

70

j ~
I OJ
co!::

40

~

 ~

12 V

Vee

0

>

20
10
4

1

40

10

lk

400

100

R - Gain-Adjust Resistance - f!

FIGURE 5
EGS

+12 V

-

r-

-ED~ I I
+

Z

N

I

z

N

TL040

" '"

Ii'

*

~

I
0
Z

'"" '" u >"" "
>"
:::>

!5:
~

f[)

0

"z;;:

-iE- r

I

e
I

~
~

I

U>

e

:!

.,

"

~ iii

U>

0

:;:r:

:;:~
I-

"

e

:::>

";;:z

L

.,

..It:.

1

"
.If
'1\

~

2

3

4

5

6

I

~

'-

""

*
L

TL041

r

+

0

z

I

24 23 22 21 20191817 16 15 14 13

:::>

l-

"~

'-< ~

I
l-

I-

+

n

.,

J

1

HEAD SELECT

7

8

9

10 11 12

~

T"['1' T_
-::~

RDP

+5 V

W/R

FIGURE 6. READ SIGNAL CIRCUIT FOR A STREAMING TAPE DRIVE

TEXAS

-III

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4-75

4-76

TL041AC
TAPE READ SIGNAL CONDITIONER
03024, AUGUST 1987 - REVISED SEPTEMBER 1989

•

•

OW OR NT PACKAGE
(TOP VIEW)

Designed for Signal Processing in
Streaming-Tape Memory Units in
Combination with TL040 Two-Channel
Video Amplifier
Space-Saving LSI Circuits Include:
Two High-Speed Differential Comparators
Time-Domain Filter
Bidirectional One-Shot Multivibrator
Gain-Controlled Video Amplifier with
Differential Inputs and Outputs

GCA IN+
BIAS
AGND

GCA INGADJ
GADJ
EGV
EGS
GCA OUT+
GCA OUTWC IN+
WC INWC OUT
RC IN+
RC IN-

VCCl
BDOS RC
RDP
TDF RC
TP
VCC2
DGND
W/Fi.
RC OUT

•

Amplifier and Comparator
Bandwidth , .. 20 MHz Typical

•

Maximum Data Rate at Read Data Pulse
(RDP) ... 1.4 Mb/s Typical

•

Available in 300-mil Dual-In-Line and "Small
Outline" Plastic Packages

description
The TL041 AC is a magnetic tape read signal conditioner designed for use with the TL040 video amplifier.
When combined, these devices amplify the low-signal output from a streaming-tape playback head and
reconstruct the data as originally written on the tape. The TL041 AC includes a gain-controlled amplifier,
two comparators, read/write select logic, a time-domain filter, and a bidirectional one-shot multivibrator.
The amplifier has differential inputs, differential outputs, and electronic gain control. A special feature of
the electronic gain control is the Electronic Gain Select (EGS), When the EGS input is high, the Electronic
Gain Voltage (EGV) input is driven low and amplifier gain is determined by the value of the resistor connected
between the Gain Adjust (GAOJ) pins. When the EGS input is low, the gain set by the resistor is increased
by an amount determined by the voltage applied to the EGV pin.
To accommodate different magnetic tape output signal levels, the amplifier gain may be switched by logic
at the EGS input, controlled manually with an adjustable voltage at the EGV input, or automatically adjusted
with an automatic gain control (AGC) circuit applying a control voltage to the EGV input.
The comparator functions are controlled by a logic input to the Write/Read (W/R) select input. With the W/R
input low, the read comparator output (usually connected as a zero-crossing detector) is sent to the timedomain filter. When W/R is high, the write comparator output is used to provide write amplitude verification
in a typical read-after-write function.
The time-domain filter helps to ensure the input data is valid. A capacitor in series with a resistor, connected
to the time-domain filter pin (TOF RC), begins charging at the leading edge of an input pulse from the read
comparator. If the input pulse does not remain high for one RC time constant, the pulse is considered invalid
and no signal is passed to the bidirectional one-shot multivibrator (BOOS). However, if the input pulse
remains high for longer than one RC time constant, the pulse is considered valid and the signal is passed
through the time-domain filter to trigger the BOOS. When triggered, the BOOS provides a pulse to the
Read Data Pulse (ROP) output. The ROP output pulse duration is determined by a resistor-capacitor network
connected to the BOOS RC pin.
The TL041 AC is characterized for operation from 0 DC to 70 DC.

PRODUCTION DATA documents contain information

current as of publication date. Products conform to

specifications per the terms of Texas Instruments'
standard warranty. Production processing does not
necessarily include testing of aU parameters.

Copyright

©

1989, Texas Instruments Incorporated

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4--77

TL041AC
TAPE READ SIGNAL CONDITIONER

functional block diagram
VCC1:3l14}
GCA WC WC
OUT+ IN- IN+
Il9} Il6} Il7}

12}

WC
OUT WIR
Il5} Ill}

TOF
RC
17}

IS}

15}

16}

TP

BIAS

WRITE
COMPARATOR , . . . - - - - - - £ _ J

READ
COMPARATORt----------f~

AMPLIFIER

1

AGNO

'1

Il2}
RC
OUT

11S} Il4} Il3}
GCA RC RC
OUT- IN+ IN-

OGNO

BOOS
RC

RDP

FUNCTION TABLE
INPUT CONDITONS
DIFFERENTIAL INPUTS

1/0 NAME

1/0 CONDITION

> RC IN> RC IN+

RC OUT
RC OUT

H

X

RC OUT

Input to time-domain filter

> WC IN> WC IN+

WC OUT

H

WC OUT

L

X

WC OUT

Input to time-domain filter

H

X

L

X

EGV
EGV

Input

EGS

W/R
X
X

WRITE OR READ COMPARATOR
RC IN+
RC IN-

L

X
X
H

WC IN+
WC IN-

TEXAS

"I

INSTRUMENTS
4-78

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

L

L

TL041AC
TAPE READ SIGNAL CONDITIONER

PIN
NAME

DESCRIPTION

NO.

AGND

3

Analog ground

BDOS RC

5

Bidirectional one-shot resistor and capacitor

BIAS

2

Output bias voltage

DGND

10

Digital ground

EGS

20

Electronic gain select

EGV

21

Electronic gain voltage

GCA IN-

24

Gain-controlled amplifier, inverting input

GCA IN+

1

Gain-controlled amplifier, noninverting input

GADJ

22

Gain adjust

GADJ

23

Gain adjust

GCA OUT-

18

Gain-controlled amplifier, inverting output

GCA OUT+

19

Gain-controlled amplifier, noninverting output

RC IN-

13

Read comparator, inverting input

RC IN+

14

Read comparator, noninverting input

RC OUT

12

Read comparator out

RDP

6

Read data pulse

TDF RC

7

Time-domain filter resistor and capacitor

TP

8

Test point

VCC1

4

Analog collector supply voltage

VCC2
WC IN-

9

Digital collector supply voltage

16

Write comparator, inverting input

WC IN+

17

Write comparator, noninverting input

WC OUT

15

Write comparator out

wiFi

11

Write/read

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4-79

TL041AC
TAPE READ SIGNAL CONDITIONER

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage:

VCC1 (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 V
VCC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V
Input voltage range: Amplifier and comparators ................ AGND-0.2 V to VCC1 +0.2 V
Multivibrators and logic .................. AGND-0.2 V to VCC2+0.2 V
Input current: EGV (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 2 mA
Continuous total dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. See Dissipation Rating Table
Operating free-air temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. OOC to 70°C
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from the case for 10 seconds ................... 260°C
NOTES:

1. All voltages except differential voltages are with respect to network ground terminals lAG NO and DGND tied together).
2. Driving EGV high from a low-impedance source I> ± 2 mA capability) with EGS high can result in damage to the device.
DISSIPATION RATING TABLE
PACKAGE

TA

s

25°C

POWER RATING

DERATING FACTOR
ABOVE TA

= 25°C

TA = 70°C
POWER RATING

OW

1350 mW

10.8 mW/oC

864 mW/oC

NT

1700 mW

13.6 mW/oC

1088 mW/oC

recommended operating conditions
MIN

NOM

MAX

UNIT

Supply voltage, VCC1

10.8

12

13.2

V

Supply voltage, VCC2

4.5

5

5.5

V

0.8

V

High-level input voltage, VIH

EGS or W/R

Low-level input voltage, VIL

EGS or W/R

Input voltage, VI

2

EGS

0

10

EGV

0

0.8VCC1

Common-mode input voltage to gain-control amplifier, VIC
High-level output current, IOH
Low-level output current, IOL

4
WC OUT, RC OUT,
TP, or RDP
WC OUT, RC OUT,
TP, or RDP

Pulse duration, tw

TP or RDP

External timing resistance, Isee Note 3)

TDF or BOOS RC

External timing capacitance

TDF or BOOS RCI

Operating free-air temperature, T A

0

TEXAS ~
INSTRUMENTS
POsT OFFiCe BOX 655303 • DALLAS. TeXAs 75265

V

I'A

8

mA

25

kll

1000

nF

70

°C

ns

5
0.01

V

-400

40

NOTE 3: Some high resistance and capacitance combinations may produce abnormal output waveforms.

4-80

V

0.1

TL041AC
TAPE READ SIGNAL CONDITIONER

electrical characteristics at VCC1 = 12 V, VCC2 = 5 V, VIC(GIC) = Vbias, RADJ = 5 kO, EGS at
high level. EGV at 0 V, ri = 50 Q, RL = 2 kQ, T A = 25°C (unless otherwise noted)
gain-controlled amplifier
TEST

PARAMETER
Output offset voltage

VOO

Maximum differential
VOPP

output voltage

0.75

V

Vopp = Vo

3

6

VID = 20 mV,

EGS high

8

14

Vid = 20 mV,

2
2

VOC

Common-mode output voltage

1

VID = 0

1

IIB+ - IIB-

liB

Input bias current

1

Bias output voltage

1

Zo(BIAS)

Bias output impedance

zi
BW

Input impedance

19
90
60

VIC = 2 V to 5 V

80

2
4

dB
5

V

5.8

6.4

V

0.2

3

1.5

2
5

17

3

4

5

(lIB+ + IIB-)/2

3

kSVR

Supply voltage rejection ratio

4

ICC1

Supply current from VCC1

VCC1 = 10.8 V to 13.2 V
No signal
VCC1 = 13.2 V,

50

~A

mA
~A

V
k{)

1

Bandwidth (- 3 dB)

V/V
V/V

Common-mode rejection ratio

VQ(BIAS)

EGV at 4 V
EGV at 9.6 V

V
20

EGS low,

Common-mode input voltage
Input offset current

0.35

VID = 1 V,

VIC

Output current, sink

UNIT

1

CMRR

110

MAX

VOD = Vo

f = 455 kHz

10

TYP

VID = 0,

1

voltage amplification

MIN

1

Large-signal differential
AVD

TEST CONDITIONS

FIGURE

30

k{)

20

MHz

70

dB

32

45

MIN

TYP

MAX

2.7

3.5

mA

logic section
TEST

PARAMETER

FIGURE

VCC2 = 4.5 V,

VOH High-level output voltage
VOL

TEST CONDITIONS
VID = 0.1 V,

10H = -400 ~A
VCC2 = 4.5 V,

Low-level output voltage

VID = 0.1 V,

10L = 8 mA

Common-mode input voltage,
VICR
IIH
IlL

High-level input current
Low-level input current

ICC2 Supply current from VCC2
Response time
Pulse duration of one-shots
tw

(TP, RDP)

V

260

500

120

200

2

comparators

7

EGS

VllEGSl = 2.7 V

W/R

VI(W/R) = 2.7 V

20

EGS

VI(EGS) = 0.4 V

-20

W/R

VIIW/R) = 0.4 V
VCC2 = 5.5 V,

-400
No signal

22

100-mV step,

5-mV overdrive

50

Rext = 5 k{),
Rext = 20 k{),

Cext = 100 pF

360

Cext = 33 pF

460

UNIT

31

mV
V
~A
~A

mA
ns
ns

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-81

TL041AC
TAPE READ SIGNAL CONDITIONER
PARAMETER MEASUREMENT INFORMATION
, - -.....- - . B I A S (PIN 2)
50 \J

50 \J

0.2",F

50 \J

50

n

Voo = VOO with VIO - 0
VOPP - VOO with VIO AVO VOC -

1 V
1 kll

VOO
VID with VID - 20 mV
VOC+ + VOC2

with VIO - 0

FIGURE 1

FIGURE 2

, - -.....- - . B I A S (PIN 21

.----t- BIAS

1 kn

1 kll

FIGURE 4

FIGURE 3

TEXAS . "
INSTRUMENTS
4-82

(PIN 2)

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

1 k\J

TL041AC
TAPE READ SIGNAL CONDITIONER

TYPICAL CHARACTERISTICS
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION

READ DATA PULSE DURATION

vs
CAPACITANCE

.,

C

'"

10

=

50 kfl-

r..

'en"
~

/ VI

80

"0

>

4

=

R

11-

a:''""

]

./ /
/' /

30 kfl-f-,.

~ ~ I k'J I ~fI _ f"\.P<:

"C

co
C

I

«
R

:;
'"

~

VCCl = 12V
TA = 25°C

E

I

.
:;'"

120

~"
100
Co

c:
0

ELECTRONIC GAIN VOLTAGE

";

12 V
VCCl
5V
VCC2
TA = 25°C

40

vs

I

2i

100

'":$.

>

:>

RadiX

'"

i;;

:/ //

:::
is

40
~ l--

c;;
c:

en

0.4

J..-'

~

0.1

I'-R

10 kfl

1---1-

I'-R

5 kfl1

10

4

1

en

.......

---

40

100

/'

60

c:

20

----

=

Radi

5

II

V
/

ky

/

/

J.....-I-'"

I--

Q,

en

400 1000

Capacitance - pF

....= o
I
c

«>

o

2

3

4

5

6

7

8

9

10

VI(EGv)-Electronic Gain Voltage-V

FIGURE 6

FIGURE 5

TYPICAL APPLICATION OAT A
EGS

+12 V

..-

,-E[L I I
+
z
N

I

z
N

~

""z
"
" '" -'"~
~

N

N

>

Tl040

rEC);

f
>

I

~

~

"z

"

::>

>-

" '" "iii'" '"~ "'"z
~

I

I ""
z

~

"

/

I

HE-

~

~

I
24 23 22 21

I

>-

::>

a

::>

a

L

;:r:

*

+

>-

111

-"

20 19 18 17 16 15 14 13

~

2

3

4

5

6

I

HET

I
J.

*

TL041AC

1

"
L.....

n

~

>-

a

+

()

..-

7

8

9

10 11 12

L

~

** *
;;~

RDP

HEAD SELECT

+5 V

-

W/R

FIGURE 7. READ SIGNAL CIRCUIT FOR A STREAMING TAPE DRIVE

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4-83

4-84

TL441 AM
LOGARITHMIC AMPLIFIER
D956, JUNE 1976-REVISED FEBRUARY 1989

J PACKAGE

•

Excellent Dynamic Range

•

Wide Bandwidth

•

Built-In Temperature Compensation

(TOP VIEW)

COMP A2

•

Log Linearity (30 dB Sections) ... 1 dB Typ

•

Wide Input Voltage Range

description
This monolithic amplifier circuit contains four
3D-dB logarithmic stages. Gain in each stage is
such that the output of each stage is proportional
to the logarithm of "the input voltage over the
3D-dB input voltage range, Each half of the
circuit contains two of these 3D-dB stages
summed together in one differential output that
is proportional to the sum of the logarithms of
the input voltages of the two stages. The four
stages may be interconnected to obtain a
theoretical input voltage range of 1 20 dB. In
practice, this permits the input voltage range to
be typically greater than 80 dB with log linearity
of ± 0.5 dB (see application data). Bandwidth
is from dc to 40 MHz.
This circuit is useful in military weapons
systems, broadband radar, and infrared
reconnaissance systems. It serves for data
compression and analog compensation. This
logarithmic amplifier is used in log IF circuitry as
well as video and log amplifiers. The TL441 AM
is characterized for operation over the full
military temperature range of - 55°C to 125°C.

NC
COMP B2
COMP B2'
GND
INPUT B1
OUTPUT Z
OUTPUT Z
INPUT B2

VCCCOMP A2'
INPUT A1
OUTPUT Y
OUTPUT Y
INPUT A2
VCC +
FK PACKAGE
(TOP VIEW)
I

UN
N
>UZZU

U«UUIll

3

2

1 20 19

4

18

5

17

6

16

CA2'
A1
NC

Y

7

15

Y

8

14

CB2'
GND
NC
B1
Z

9 1011 12 13

N
«

+U NIN
III
U Z
U

>

NC - No internal connection

functional block diagram (one half)
A1

IB11---1~--I

Y IZI

A2
IB21--->----I

CA2'
ICB2'1------...J
0< log A 1 + log A2; Z 0< log B 1 + log B2
where: A1, A2, B1, and B2 are in dBV, a dBV = 1 V.
CA2, CA2', CB2, and CB2' are detector compensation inputs.

y

PRODUCTION DATA documents contain information
current as of publication date. Products conform to
specific.tions per the terms of Te••s Instruments
standard warranty. Production proc...ing does not
....... rily include testing of all parameters.

Copyright © 1976, Texas Instruments Incorporated

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-85

TL441 AM
LOGARITHMIC AMPLIFIER
schematic
(8)

VCC+
OUTPUTY
OUTPUTY

INPUT A2
INPUT Al

(10)

(61

)-

(5)

r K

(7)

~)")1 ,,~ K~

k

-(J-

OUTPUTZ

(11)

OUTPUT Z

(9)

INPUT B2

~>~> ~> ~)J~

INPUT Bl

(13

COMPA2

~

, (3)

COMPA2
VCC_

f1

f1

r<

L

(1)

L

(2)

f

r'

0

U

(14)
(15)

~

COMPB2'
COMPB2

Pin numbers shown are for the J package.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltages (see Note 1): VCC + ............................................ 8 V
VCC- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -8 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6 V
Output sink current (anyone output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 mA
Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. See Dissipation Rating Table
Operating free-air temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 55 °C to 125°C
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65°C to 1 50°C
Case temperature for 60 seconds: FK package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package ............ 300°C
NOTE: 1. All voltages, except differential output voltages, are with respect to network ground terminal.
DISSIPATION RATING TABLE

s

DERATING

DERATE

POWER RATING

FACTOR

ABOVE TA

TA - 70°C
POWER RATING

TA - 125°C
POWER RATING

FK

500mW

11.0 mW/oC

104°C

500mW

275 mW

J

500 mW

11.0 mW/oC

104°C

500 mW

275 mW

PACKAGE

TA

25°C

recommended operating conditions
MIN

NOM

MAX

Peak-to-peak input voltage for each 30-dB stage

0.01

1

Operating free-air temperature, T A

-55

125

TEXAS . "
INSTRUMENTS
4-86

POST OFFICE BOX 655303 • OAlLAS. TEXAS 75265

UNIT
V
°C

TL441 AM
LOGARITHMIC AMPLIFIER
electrical characteristics.

Vee +

6V. vee-

-6 V. TA
TEST

PARAMETER

MIN

FIGURE

TYP

MAX

UNIT
mV

Differential output offset voltage

1

±25

±70

Quiescent output voltage

2

5.45

5.6

5.85

DC scale factor (differential output). each 3-dB stage, - 35 dBV to -5 dBV

3

7

8

11

AC scale factor (differential output)

8

DC error at - 20 dBV (midpoint of - 35 dBV to - 5 dBV range)

3

500

Output impedance

200

Rise time, 10% to 90% points, CL = 24 pF

4

Supply current from V CC +

2

Supply current from V CC _

2

-6

Power dissipation

2

123

electrical characteristics over operating free-air temperature range.
Vee - = - 6 V (unless otherwise noted)

14.5

Vee +

6

TEST

PARAMETER

mV/dB

1

Input impedance

MIN

FIGURE

2.6

20

35

ns

18.5

23

mA

-8.5 -10.5
162

mA

201

mW

MAX

UNIT

± 100

mV

V.
TYP

1

Quiescent output voltage

2

5.3

5.85

DC scale factor (differential output) each 30-dB stage, -35 dBV to -5 dBV

3

7

11

ITA = -55°C
ITA = 125°C

dB

!l
!l

Differential output offset voltage

DC error at - 20 dBV (midpoint of - 35 dBV to - 5 dBV range)

V
mV/dB

V
mV/dB

4

3

dB

3

Supply current from V CC +

2

10

31

Supply current from V CC _

2

-4.5

-15

rnA

Power dissipation

2

87

276

mW

mA

PARAMETER MEASUREMENT INFORMATION
Vcc+ vcc-

ICC+

-Vcc+
~Vcc­
ICC-

Vcc+ vcc-

Vcc+ vccA1

v 1-""'---,

A1

A2

v

A2

B1

z

B1

B2

vi-----Q

zl-----

B2

Vo

Po

FIGURE 1

=

1

vcc+ . ICC+ + VCC~ • Icc-

FIGURE 2

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4-87

TL441 AM

LOGARITHMIC AMPLIFIER
PARAMETER MEASUREMENT INFORMATION
Vcc+ Vcc-

Vcc+ VccA1

y

A2

Y

B1

Z

B2

Z

18 mV
100 mV
560 mV

Scale Factor

=

[Vout(560 mV) -Vout(18 mV)] mV

30 dB

IVout(100 mV) -0.5 Vout(560 mV) -0.5 Vout(18 mV)1
Error =

FIGURE 3
Vcc+ VCC-

Vcc+ VCC-

n::

1OO ;"V
OmV

A1

Y

A2

Y

B1

Z

B2

Z

NOTES: A. The input pulse has the following characteristics:
tw = 200 ns. t r :5 2 ns, tf:5 2 ns, PRR :5 10 MHz.
B. Capacitor Ci consists of three capacitors in
parallel: 1 I"F, 0.1 I"F, and 0.01 I"F.
C. CL includes probe and jig capacitance.

FIGURE 4

TEXAS . "
INSTRUMENlS
4-88

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

1000 pF

TEKTRONIX
SAMPLING SCOPE
WITH DIGITAL
READOUT OR
EQUIVALENT

TL441 AM
LOGARITHMIC AMPLIFIER
TYPICAL CHARACTERISTICS
QUIESCENT OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE

DIFFERENTIAL OUTPUT OFFSET VOLTAGE
vs
FREE-AIR TEMPERATURE
60

>

E

I 50
CI>
en

8
7

\

\

l!

'0

>...

>I

40

...'"

'0

~

:::

...
...

0

""

30

::>

Co

::>

0

~I:
~

CI>

~

~

C

20

I

5

>
...
::>

~

Co

:;

...

~

3

I:
CI>

............

I'-.....

~

.!!!

2

::>

:-----...

0

Vcc+ = 6 V
I-VCC- = -6 V
See Figure 2

I

-75 -50 -25

0

25

4

0

VCC+ = 6 V
10 f-- VCC- = -6 V
See Figure 1

o

6

CI>

en

50

75

o

I
I
-75 -50 -25

100 125

T A- Free-Ai r Temperatu re-° C

ii;

.h

S::>

DC SCALE FACTOR
vs
FREE-AIR TEMPERATURE

DC ERROR
vs
FREE-AIR TEMPERATURE

>

12

100 125

2.0

III

l'

1.8

~

10

I:

1.6

>

1.4

6

1.2

'0
...

1.0

a:'"

8

a;

III

~

\

M

I:

~

75

FIGURE 6

.;::

e

50

FIGURE 5

::>

o

25

T A-Free-Air Temperature-°c

~

>E

0

6

..........

r--

-

I:

.&.

§

"...

4

~ 0.6

'" 0.4 I- VCC+=6V
E

VCC+ = 6 V
2 -VCC-=-6V
See Figure 3

o

0.8

I

'1 0.2 I- See Figure 3
I
I
c 0

I

-75 -50 -25

VCC- = -6 V

W

o

25

50

75

100 125

-75 -50 -25

o

25

50

75

100 125

T A-Free·Air Temperature-OC

TA-Free-Air Temperature-OC

FIGURE 8

FIGURE 7

TEXAS

...tI

INSTRUMENTS
POST OFFice BOX 655303 • DALLAS. TeXAS 75265

4-89

TL441 AM
LOGARITHMIC AMPLIFIER

TYPICAL CHARACTERISTICS
OUTPUT RISE TIME
vs
LOAD CAPACITANCE
25

..

20

I:

I

~

'"
E

j.:

15

.~

,/

c::

V

~

~

V

...
:::l

10
S:::l
0

...L

VCC+ = 6 V
5 f-VCC_ = -6 V
r- TA = 25°C
See Figure 4, outputs loaded symmetrically

o

o

5

10

20

15

25

30

CL -Load Capacitance- pF

FIGURE 9
POWER DISSIPATION
vs
FREE-AIR TEMPERATURE
200
180

-:--

160
$:

E 140
I

I:

0

';::;

120

to

.~ 100

is
Q;

;:
0

a.

80
60
40

r- VCC+ = 6 V

20

r- See Figure 3

VCC_=-6V

o

I

I

-75 -50 -25

0

25

50

75

100 125

T A-Free Air Temperature-OC

FIGURE 10

TEXAS •
INSTRUMENTS
4-90

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TL441AM
LOGARITHMIC AMPLIFIER

TYPICAL APPLICA nON DATA
Although designed for high-performance
applications such as broadband radar infrared
detection and weapons systems, this device has
a wide range of applications in data compression
and analog computation.

basic logarithmic function
The basic logarithmic response is derived from
the exponential current-voltage relationship of
collector current and base-emitter voltage. This
relationship is given in the equation:
m· VBE = In [(IC

+

ICES)/ICESl

where:
IC
ICES
m
VBE

=
=
=
=

collector current
collector current at VBE
q/kT (in V -1)
base-emitter voltage

0

The differential input amplifier allows dualpolarity inputs, is self-compensating for
temperature variations, and is relatively
insensitive to common-mode noise.

Four compensation points are made available to
allow slight variations in th~ gain (slope) of the
two individual 15-dB stages of input A2 and B2.
By slightly changing the voltage on any of the
compensation pins from its quiescent value, the
gain of that particular 15-dB stage can be
adjusted to match the other 15-dB stage in the
pair. The compensation pins may also be used
to match the transfer characteristics of input A2
to A 1 or B2 to B 1 .
The log stages in each half of the circuit are
summed by directly connecting their collectors
together and summing through a common-base
output stage. The two sets of output collectors
are used to give two log outputs, Y and Y (or Z
and Z) which are equal in amplitude but opposite
in polarity. This increases the versatility of the
device.
By proper choice of external connections, linear
amplification, linear attentuation, and many
different applications requiring logarithmic signal
processing are possible.

input levels
functional block diagram

CA2·-----

The recommended input voltage range of any
one stage is given as 0.01 V to 1 V. Input levels
in excess of 1 V may result in a distorted output.
When several log sections are summed together,
the distorted area of one section overlaps with
the next section and the resulting distortion is
insignificant. However, there is a limit to the
amount of overdrive that may be applied. As the
input drive reaches ±3.5 V, saturation occurs,
clamping the collector-summing line and
severely distorting the output. Therefore, the
signal to any input must be limited to
approximately ± 3 V to ensure a clean output.
L......----CB2·

output levels

~
OUTPUTS

FIGURE 11

logarithmic sections
As can be seen from the schematic, there are
eight differential pairs. Each pair is a 15-dB log
subsection, and each input feeds two pairs for
a range of 3D-dB per stage.

Differential-output-voltage levels are low,
generally less than 0.6 V. As demonstrated in
Figure 1 2, the output swing and the slope of the
output response can be adjusted by varying the
gain by means of the slope control. The
coordinate origin may also be adjusted by
positioning the offset of the output buffer.

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-91

TL441 AM

LOGARITHMIC AMPLIFIER
TYPICAL APPLICATION DATA
circuits
Figures 12 through 19 show typical circuits using this logarithmic amplifier. Operational amplifiers not
otherwise designated are TLC271. For operation at higher frequencies, the TL592 is recommended instead
of the TLC271.
TYPICAL TRANSFER
CHARACTERISTICS
1.4

"'-'rTTTTTTl,.-,r-rrTTTTlr-1rTTTTTTlr-1rTTT1TI1,.--,rnTrT11t

1.2 HH-+ttlHHH-+ttlHHH-+ttlHHH-+ttlHHH-+ttttt1

>

1.0 ~-H+I!!H---+++H#II--!-++!+I!lI--+-I+ItIlIH""'-+-f-+tttffi
ADJUSTED FOR INCREASED

~

0.8 f---t=tS"tLOttPitiEHA'-1N"tDtf°iifFt-'F--tS'-iE'-tTttHtIH~tttitH-++ttttH

~
/
~ 0.6 H-+t++tllH-+t++tllH-+tWlH-t+tttitH-t+ttttH

...
:::0

~

o

0.4 H-+t++tllH-+t++tllfA-t+tttitf-:,/..r"1=t+tHtl---HH-ttttH
0.2

H-++I+ttIt-+II~tll!I-'9-ttt1fHtt-+1H-ttIllt--+-t+H1ffi

~i-' ADJUSTED FOR MINIMUM

o f--+-I-HoiSlll-+-+,i~ri mliw ZililllrT,E'11

-0.2 L........J....LJ.J..llllL......J....LJ.J..llllL......J-.Ll.J.W1L......J-.Ll.J..W1L......J-.Ll..LJ.WI
10-4
10-3
10-2
10-1
101

Input Voltage- V

- - -....-1 A 1

i

INPUT

Y I-----"Wv--.....f---~W.......,

ORIGIN

1/2

i

n«l

1_~.-___A~2e-~ y__~-_-_-_-_;.-"-_'_A_A~_-_.
__

_ _SLOPE
_____
O_U,PUT
•

FIGURE 12. OUTPUT SLOPE AND ORIGIN ADJUSTMENT

TEXAS . "
INSTRUMENTS
4---92

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TL441 AM
LOGARITHMIC AMPLIFIER
TYPICAL APPLICATION DATA
TRANSFER CHARACTERISTICS
OF TWO TYPICAL INPUT STAGES
0.4

0.3

>I
III

'"
l!l

...

I

"0 0.2

>

1)1

:I

0.

:I

0

0.1

V

o

0.001

0.01

0.1

10

Input Voltage-V

2 kilo 1%

B1

i

INPUT

2 kll. 1%

Z

20 k!l

112
TL441
B2

Z

2 kll. 1 %
2 kll. 1%

~
-

r

OUTPUT

1

FIGURE 13. UTILIZATION OF SEPARATE STAGES

TEXAS

...tf

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4-93

TL441 AM
LOGARITHMIC AMPLIFIER
TYPICAL APPLICATION OATA
TRANSFER CHARACTERISTICS
WITH BOTH SIDES PARALLELED
0.4

0.3

1.,
en

lS

/

~ 0.2

...

V

"
S-

o"

0.1

V

o

0.001

0.01

0.1
Input Voltage-V

2 kll. 1 %

A1

1
1

/
10

2 kll. 1%

y

A2

Y

1

20 kH

Ti.441
B1

Z

INPUT

OUTPUT

2 kH. 1 %

Z

B2

2 kH. 1 %

-=
FIGURE 14. UTILIZATION OF PARALLELED INPUTS

TEXAS •
INSTRUMENTS
4-94

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

1

TL441 AM
LOGARITHMIC AMPLIFIER

TYPICAL APPLICATION DATA
TRANSFER CHARACTERISTICS
0.8
0.7
0.6

>I
Q)

C>

v~

0.5

~

"0

>...

":::1
S-

~

0.4
0.3

V

0

0.2
0.1

/

2 k!l

ORIGIN

2 k!l

2 k!l

-=

20 k!l

SLOPE
5 k!l

OUTPUT

NOTES: A. Inputs are limited by reducing the supply voltages for the input amplifiers to ±4 V.
B. The gains of the input amplifiers are adjusted to achieve smooth transistions.

Figure 15. LOGARITHMIC AMPLIFIER WITH INPUT VOLTAGE RANGE GREATER THAN 80 dB

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303

e

DALLAS. TEXAS 75265

4--95

TL441 AM
LOGARITHMIC AMPLIFIER
TYPICAL APPLICATION DATA
R

y

Al

R

R

R

R

A2

Y
Al
Z

See

A2

Bl Note A

112
Tl441

Y

y

.J.

R

Z

B2

R
R

NOTES:

OUTPUT W
ISee Note Bl

Tl441

...L

R

R

A. Connections shown are. for multiplication. For division, Z and Z connections are reversed.
B. Output W may need to be amplified to give actual product or quotient of A and B.

C. R designates resistors of equal value. typically 2 kS! to 10 kn.
Multiplication: W
Division: W

=

A. B =<>Iog W

= AlB =<>Iog W = log A

=

log A + log B. or W

-log B. or W

=

= a(loga

a (loga A + loga Bl
A

+ loga B)

FIGURE 16. MULTIPLICATION OR DIVISION
nR

INPUT
A

R

R

1/2
Tl441

z

>--4I>-4I..-----t B 1

R

B2

R

Z

=

R

nR

=

1/2
Tl441

OUTPUT
W

=

=

NOTE: R designates resistors of equal value. typically 2 kG to 10 kG. The power to which the input variable is raised is fixed by setting
nR. Output W may need to be amplified to give the correct value.
.
Exponential: W = An => log W = n log A. or W = a(n 109a Al

FIGURE 17. RAISING A VARIABLE TO A FIXED POWER

TEXAS

..Jf

INSTRUMENTS
4-96

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TL441 AM
LOGARITHMIC AMPLIFIERS

TYPICAL APPLICATION OAT A
2 kn

2 kn

INPUT

A

OUTPUT

W

2 kn

NOTE: Adjust the slope to correspond to the base "a".
Exponential to any base: W = a

FIGURE 18. RAISING A FIXED NUMBER TO A VARIABLE POWER
__

~~

____________________

~Al

yl-----'\""'"_--,

INPUT

OUTPUT

1---1--111--4 A2
1 kll

1 kll

TL441

50 11

--_-----------~Bl

INPUT
2

OUTPUT

2

1 kll

1 kO

50 Il

Vcc-

FIGURE 19. DUAL-CHANNEL RF LOGARITHMIC AMPLIFIER WITH 50-dB INPUT RANGE
PER CHANNEL AT 10 MHz

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TE~AS 75265

4-97

4-98

TL592
DIFFERENTIAL VIDEO AMPLIFIER

•

o OR P PACKAGE

a-Pin Version of NE592 ... Saves Printed
Circuit Board Space

•

Adjustable Gain to Typically 400 VN

•

No Frequency Compensation Required

•

Adjustable Pass Band

•

Avo Range ... 250-600 VN

(TOP VIEW)

I N + [ ] a INGAIN ADJ A 2
7 GAIN ADJ B
VccOUT +

3

6
5

4

Vcc+
OUT-

symbol

description
This device is a monolithic two-stage video
amplifier with differential inputs and differential
outputs.

GAINADJA~
IN+

+

OUT+

IN-

-

OUT-

Internal series-shunt feedback provides wide
GAINADJ B
bandwidth, low phase distortion, and excellent
gain stability. Emitter-follower outputs enable the device to drive capacitive loads. All stages are current-source
biased to obtain high common-mode and supply-voltage rejection ratios.
Fixed differential amplification of nominally 400 VN can be selected without external components, or
amplification may be adjusted from 0 to approximately 400 VN by the use of a single external resistor connected
between the gain adjustment pins A and B. No external frequency-compensating components are required for
any gain option.
The device is particularly useful in magnetic·tape or disk-file systems using phase or NRZ encoding and in
high·speed thin-film or plated-wire memories. Other applications include general-purpose video and pulse
amplifiers where wide bandwidth, low phase shift, and excellent gain stability are required.
The TL592 is characterized for operation from

ooe to 70 oe.

Copyright © 1991, Texas Instruments Incorporated

PRODUCTION DATA Information Is current 8S of publication dale.
Products conform to specificalions per the terms of Texas

Instruments standard warranty. Production processing does not
necessarilv include testing of all parameters.

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

. 4-99

Tl592
DIFFERENTIAL VIDEO AMPLIFIER
schematic
r-----~--------~~--------~._----_.------_e------_.~6 Vcc+

__------r-~4~

OUT+

IN+
IN- ...,8'---_
GAIN ADJ { :

_1_-----+-----"
OUT-

5

-'~_ __ I _ - -__

3000

~____~-----_--~~------------~~--------_e------~~3 VCCResistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vcc+ (see Note 1) ............................................................ 8 V
Supply voltage, Vcc- (see Note 1) .......................................................... -8 V
Differential input voltage ................................................................... ±5 V
Voltage range, any input ........................................................... Vcc+ to VccOutput current ........................................................................... 10 mA
Continuous total power dissipation at 70°C ................................................ 500 mW
Operating free-air temperature range .................................................. O°C to 70°C
Storage temperature range ....................................................... -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................... 260°C
NOTE 1: All voltage values except differential input voltages are with respect to the midpoint between VCC+ and VCC-.

recommended operating conditions
MIN

NOM

MAX

Supply voltage, VCC+

3

Supply voltage, VCC-

-3

6
-6

8
-8

V
V

70

'c

0

Operating free-air temperature, T A

TEXAS

-1!1

INSIRUMENlS
4-100

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

UNIT

TL592
DIFFERENTIAL VIDEO AMPLIFIER
electrical characteristics at specified free-air temperature, Vcc± = ±6 V, RL = 2 kQ (unless otherwise
noted)
PARAMETER

TEST
FIGURE

TEST CONDITIOINS

Large-signal differential
AVD
BW

110
liB

voltage amplification
Bandwidth (-3 dB)

1

VO(PP) = 3 V,

2

VO(PP) = 1 V

Input offset current

RL = 2 kQ

voltage

VOC

Common-mode output
voltage

VOO
VO(PP)
zi

Output offset voltage
Peak-to-peak output
voltage swing

Full range
25°C
Full range
25°C

VIC=O

Full range

Common-mode input
VICR

25°C
25°C

VIC=O

Input bias current

TAt

GAIN
OPTIONl
1

1

1
1

RL = 00
RL = 00

RL = 2 kQ

Input impedance

CMRR

ratio

3

VIC=±IV

f= 100kHz
f= 5 MHz

Supply voltage rejection

2.4

2
1

4

kSVR

ratio (AVCc!AVIO)

Vn

Broadband equivalent
input noise voltage

4

tpd

Propagation delay time

tr

Rise time

Isink(max)

Maximum output sink
current

ICC

Supply current

2.9

3.4

0.35

0.75

!-tA

V
V

4
V
kQ

3.6
86
60

Full range

Full range

fAA

V

4

1

1

AVCC- = ±0.5 V

30

2.8

25°C

25°C

9

1.5
3

60

AVCC+ = ±0.5 V,

5

40

2

Full range

VN

±1

25°C

25°C

UNIT

MHz

0.4

6

±1

Full range

600
50

lor 2

f= 100kHz
f= 5 MHz

250

lor2

Full range

Common-mode rejection

600

1

25°C
VOO= 1 V,
f= 1 kHz to 10 MHz

MAX

400

Full range

25°C
VID=O,

TYP

250

lor 2

25°C
3

MIN

dB

50
60
50

1

70
dB

50
12

BW = 1 kHz to 10 MHz

25°C

lor2

2

AVO = 1 V

25°C

2

7.5

ns

2

AVO = 1 V

25°C

2

10.5

ns

1,2,or3
No load,

No signal

4
18

25°C
Full range

3

lor2

!-tV

mA
24
27

mA

t Full range IS DoC to 70°C.

*The gain option "is selected as follows:
Gain Option 1 ... Gain adjust pin A is connected to pin B.
Gain Option 2 ... Gain adjust pins A and B are open.

TEXAS ."

INSlRUMEN1S
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-101

TL592
DIFFERENTIAL VIDEO AMPLIFIER
PARAMETER MEASUREMENT INFORMATION

o~:::
50Q

0.2~Q
--

Figure 1

50

Q

Figure 2

0'2~[tF

VO+

0.2 [tF
VO-

1 kQ

1 kQ

Figure 3

Figure 4

TEXAS -III

INSlRUMENTS
4-102

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

--

TL592B

DIFFERENTIAL VIDEO AMPLIFIER
D2668, JUNE 1985-REVISED APRIL 1988

D8 t OR P PACKAGE

•

Adjustable Gain to 400 Typ

•

No Frequency Compensation Required

•

Low Noise. , . 3 /LV Typ Vn

(TOP VIEW)
I N + [ ] 8 INGAIN ADJ A
2
7
GAIN ADJ B
VCCOUT+

3
4

6
5

VCC+
OUT-

description
D14t OR N PACKAGE

This device is a monolithic two-stage video
amplifier with differential inputs and differential
outputs. It features internal series-shunt
feedback that provides wide bandwidth, low
phase distortion, and excellent gain stability,
Emitter-follower outputs enable the device to
drive capacitive loads, All stages are currentsource biased to obtain high common-mode and
supply-voltage rejection ratios,
The differential gain is typically 400 when the
gain adjust pins are connected together, or
amplification may be adjusted from near 0 to
400 by the use of a single external resistor
connected between the gain adjustment pins A
and B, No external frequency-compensating
components are required for any gain option.

(TOP VIEW)
IN+
NC
NC
GAIN ADJ A
VCCNC
OUT+

INNC
NC
GAIN ADJ B
VCC+
NC
OUT-

NC - No internal connection

t 08 and D 14 are the codes used to differentiate the 8-pin and
14-pin versions, respectively.

symbol
GAIN
ADJUST A - - - - - - ,

The device is particularly useful in magnetic-tape
or disk-file systems using phase or NRZ encoding
and in high-speed thin-film or plated-wire
memories. Other applications include generalpurpose video and pulse amplifiers,

IN+

OUT+

I N - - - - - " .....

OUT-

GAIN
ADJUST B - - - - - - '

The device achieves low equivalent noise
voltage through special processing and a new
circuit layout incorporating input transistors with
low base resistance.
The TL592B is characterized for operation from
OOC to 70°C.

PRODUCTION DATA documents contain information
current 8S of publication date. Products conform to
specifications per the terms 01 Texa. Instrument.
standard warranty. Production processing does not
necessarily include testing of all parameters.

TEXAS

-1!1

Copyright © 1985, Texas Instruments Incorporated

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

4-103

TL5928
DIFFERENTIAL VIDEO AMPLIFIER

schematic
(6)

V

CC+

...._ _-t--"-'(4c:....) OUT+
IN+

(1)

IN- ..;..(8'-'-)-t----I,..----'
(2)

GAIN {
ADJUST

A
B ..!.(7:...c)--jf-_ _--.

(5) OUT-

L-----~----------~----------~~--------~----~~(~3)VCCabsolute maximum ratings over operating free-air temperature (unless otherwise noted)
Supply voltage, Vee + (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8 V
Supply voltage, Vee - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 8 V
Differential input voltage ... . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 5 V
Voltage range, any input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Vee + to VeeOutput current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10 mA
Continuous total power dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . .. See Dissipation Rating Table
Operating free-air temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ooe to 70°C
Storage temperature range . ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65°C to 1 50°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . 260°C
NOTES: 1. All voltage values except differential input voltages are with respect to the midpoint between Vee + and Vee _.
DISSIPATION RATING TABLE
PACKAGE

TA ,.; 25°C

DERATING

DERATE

POWER RATING

FACTOR

ABOVE TA

TA - 70°C
POWER RATING

08

530 mW

5.8 mw/oe

59°e

464mW

014

530 mW

N/A

530 mW

N

530mW

N/A

P

530 mW

N/A

N/A
N/A
N/A

530 mW
530 mW

recommended operating conditions
MIN

NOM

MAX

Supply voltage, Vee +

3

6

8

Supply voltage, Vee-

-3

-6

-8

V

70

°e

0

Operating free-air temperature, T A

TEXAS •
INSTRUMENTS
4-104

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

UNIT
V

TL5928
DIFFERENTIAL VIDEO AMPLIFIER

electrical characteristics at specified free-air temperature.
(unless otherwise noted)
PARAMETER

Large-signal differential
AVD

voltage amplification
Large-signal differential

AVD2

voltage amplification

BW

Bandwidth (- 3 dB)

110

Input offset current

liB

Input bias current
Common-mode input

VICR

voltage range
Common-mode output

VOC
VOO

voltage
Output offset voltage
Peak-to-peak output

VOPP

voltage swing

TEST

1
2

6

V. Vee -

TEST CONDITIONSt

FIGURE

1

Vee + =

= 3 V,
=0
VOPP = 3 V,
RAB = 1 kll
VOPP = 1 V,

RL

VOPP

=

2 kll,

RAB

RL

=

RAB

2 kll,

=

0

25°C

300

400

O°C to 70°C

250

25°C

50
0.4

O°C to 70°C
25°C

1

RL

1

VID

1

RL

=

00

=
=

VOD

0, RAB

=

RL

00,

00

2 kll

RAB

=

0

=

RAB

=

0

1 V,

25°C

±1
±1

25°C

2.4

25°C

O°C to 70°C

Input capacitance

25°C
f
3

= ±1
RAB = 0

VIC

V,

f
f
f

ratio (.1VCC/.1VIO)
8roadband equivalent

Vn

input noise voltage

4
4

.1VCC+
.1VCCBW

tod

Propagation delay time

2

.1VO

tr

Rise time

2

.1VO

Maximum output
Isink(max)
ICC

sink current

Supply current

VID

=

100 kHz
5 MHz
100 kHz
5 MHz

±0.5 V,
±0.5 V, RAB

=

0

1 kHz to 10 MHz

=
=
=

=
=

=
=
=
=

2.9

3.4

0.35

0.75

ooC to 70°C

4

p.A

V
V
V
kll

3.6
30
5
60

p.A

Il
pF

86
60

dB

50
60

25°C

50

O°C to 70°C

50

25°C

70

dB

3

p.V
ns

1 V

25°C

7.5

1 V

25°C

10.5

ns

4

mA

1 V,

No load,

25°C

30

4

25°C

V/V

MHz
5

2.8

O°C to 70°C

UNIT

V/v

1.5
3

2 kn

V

ooC to 70°C
O°C to 70°C

500

40

0°Cto70oC

Ci

kSVR

9

25°C

=

MAX

6

O°C to 70°C
3

RL

13

25°C

ro

Supply voltage rejection

V.

600

25°C

Output resistance

rejection ratio

6

TYP

Input resistance

CMRR

-

MIN

r;

Common-mode

=

Vo

=

3

3 V

No signal

25°C
ooC to 70°C

18

24
27

mA

tRAB is the gain-adjustment resistor connected between gain-adjust pins A and B. If not specified for a particular parameter, its value
is irrelevant to that parameter.

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4-105

TL592B
DIFFERENTIAL VIDEO AMPLIFIER

PARAMETER MEASUREMENT INFORMATION

f----.--- Vo+

I----r-....- - VO+

p..........- ......--Vo_
50 !1

VO+ +Vo_

50n

50 !1

50 n

0.21lF

Voc=
2

FIGURE 2

FIGURE 1

f----....-Vo+

1k!1

1k!1

FIGURE 3

FIGURE 4

~

TEXAS
INSTRUMENTS
4-106

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

1k!1

1 k!1

TL592B

DIFFERENTIAL VIDEO AMPLIFIER
TYPICAL CHARACTERISTICS
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION

LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION

vs

vs

SUPPLY VOLTAGE

GAIN-ADJUSTMENT RESISTANCE

500

1000
RAB = 0
f = 1 kHz

>

400

3;

r- TA = 25°e
See Figure 1

I

/
/'

c
·8300
~
~

ii

~
'"

200

----

V

~

-

400

>I
c

.g

i'-1'1'

'"

1/

C.l

~ 100

3'

ii
E


Vee+- 6 V
6V
Vee
f = 10 kHz
TA=25°e
r See Figure 1

700

>

100

o

10
±3

±4

±5

±6

±8

±7

10
400
4
40
100
RAB - Gain-Adjustment Resistance - n

1

Vee± - Supply Voitage - V

FIGURE 5

1k

FIGURE 6
SUPPLY CURRENT

vs
SUPPLY VOLTAGE
30
No loadl
No signal
25 f-TA = 25°e

V



V

ii
Co

::I

en 10
I
u

9

/

V

/'

/

5

o

±3

±4

±5
±6
±7
Vee±-Supply Voltage-V

±8

FIGURE 7

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4--107

4-108

TL851
SONAR RANGING CONTROL
02760, SEPTEMBER 1983- REVISED MARCH 1988

Designed for Use with the TL852 in Sonar
Ranging Modules Like the SN28827

N DUAL-IN-LiNE PACKAGE

•

Operates with Single Supply

•

Accurate Clock Output for External Use

•

Synchronous 4-Bit Gain Control Output

•

Internal 1.2-V Level Detector for Receive

•

TTL-Compatible

•

Interfaces to Electrostatic or Piezoelectric
Transducers

VCC
XMIT
GND
GCD
GCA
GCB
GCC
REC

•

(TOP VIEW)

BLNK
BINH
INIT
FILT
XTAL2
XTAL1
OSC
ECHO

description
The TL851 is an economical digital1 2 L ranging control integrated circuit designed for use with the Texas
Instruments TL852 Sonar ranging receiver integrated circuit,
The TL851 is designed for distance measurement from six inches to 35 feet, The device has an internal
oscillator that uses a low-cost external ceramic resonator. With a simple interface and a 420-kHz ceramic
resonator, the device will drive a 50-kHz electrostatic transducer,
The device cycle begins when Initiate (INIT) is taken to the high logic level. There must be at least 5 ms
from initial power up (VCC) to the first initiate signal in order for all the device internal latches to reset
and for the ceramic-resonator-controlled oscillator to stabilize, The device will transmit a burst of 16 pulses
each time INIT is taken high,
The oscillator output (OSC) is enabled by INIT, The oscillator frequency is the ceramic resonator frequency
divided by 8,5 for the first 16 cycles (during transmit) and then the oscillator frequency changes to the
ceramic resonator frequency divided by 4.5 for the remainder of the device cycle,
When used with an external 420 kilohertz ceramic resonator, the device internal blanking disables the receive
input (REC) for 3,8 ms after initiate to exclude false receive inputs that may be caused by transducer ringing,
The internal blanking feature also eliminates echos from objects closer than 1,3 feet from the transducer.
If it is necessary to detect objects closer than 1,3 feet, then the internal blanking may be shortened by
taking the blanking inhibit (BINH) high, enabling the receive input, The blanking input (BLNK) may be used
to disable the receive input and reset ECHO to a low logic level at any time during the device cycle for
selective echo exclusion or for a multiple-echo mode of operation,
The device provides a synchronous 4-bit gain control output (12 steps) designed to control the gain of
the TL852 sonar ranging receiver integrated circuit, The digital gain control waveforms are shown in Figure 2
with the nominal transition times from INIT listed in the Gain Control Output Table,
The threshold of the internal receive level detector is 1,2 volts, The TL851 operates over a supply voltage
range of 4,5 volts to 6,8 volts and is characterized for operation from ooC to 40°C,

PRODUCTION DATA documents contain information
cur.. nt as of publication date, Products conform to
specifications per the terms of Texas Instruments
standard warranty, Production processing does not
necessarily include testing of an parameters,

Copyright © 1983, Texas Instruments Incorporated

TEXAS •
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-109

TL851
SONAR RANGING CONTROL
GAIN CONTROL OUTPUT TABLE
STEP

GCD

GCC

GCB

0

L

L

L

L

2.38 ms

1

L

L

L

H

5.12 ms

NUMBER

GCA

TIME (ms) FROM INITIATE

2

L

L

L

L

7.87 ms

3

L

L

H

H

10.61 ms

4

L

H

L

L

13.35 ms

5

L

H

L

H

16.09 ms

6

L

H

H

L

18.84 ms

7

L

H

H

H

21.58 ms

8

H

L

L

L

27.07 ms

9

H

L

L

H

32.55 ms

10

H

L

H

L

38.04 ms

11

H

L

H

H

INIT I

tt

t This is the time to the end of the indicated step and assumes a nominal 420-kHz ceramic resonator.

functional block diagram
FILT

VCC

.(_1_3)_ _ _ _ _--141-_ _ _ _---.(1)

FILTERED SUPPLY
(10)

420-kHz
OSCILLATOR

FREQUENCY
DIVIDER

GAIN STEP
COUNTER

(2)

OSC
XMIT

G
(5)

XTAL 1 ..;.(1.:..1:":')_ _-1
XTAL2

(6)

+

+8.5
+4.5

(7)
(4)

CLR

GCA
GCB
GCC
GCD

CT ;;>208
x,>-....- - - t -....- - - - - - - I C L R CT >16
INTERNAL

r----~--------------' BLANKING
LATCH

-+__---1

BINH ..;.('--15:,:)_ _ _

S
ECHO
LATCH

BLNK ...:.('--16:..:.)_ _ _ _-L.-/r----- 60 at 50 kHz

C1 Q> 500 at 50 kHz
15 PULSES
INPUT - - - - - - SIGNAL

"'c

IIII

-----------

TO""m~

OUTPUT _ _ _ _ _ _ _ _ _ _--J

I

I
I
I

I
I

'-----------

IL-_____________

COMPARATOR _ _ _ _ _ _ _ _ _ _ _ _~I
OUTPUT

FIGURE 1. DETECT-LEVEL MEASUREMENT CIRCUIT AND WAVEFORMS

TEXAS

-1!1

INSTRUMENTS
4--116

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TL852
SONAR RANGING RECEIVER
TYPICAL APPLICATION INFORMATION
GAIN STEP TABLE
STEP

GCA

GCD

GCC

GCB

L

L

L

L

L

L

L

H

1

L

L

H

L

L
L

L
H

H
L

H
L

L

H

L

H

L

H

H

L

2
3
4
5
6

L

H

H

H

L

L

H
L

H
H

L

L

L

H

L

H
H

NUMBER
0

7

8
9

H
L

10

H

11

RECEIVER GAIN
vs
GAIN STEP NUMBERS

100
70
40
20
c
.c;
(!1
~

Q)

>
.;;;
u

,..-

10
7
4

Q)

a:

Q)

2

r-

>
.;:;

.,

-;;;

a: 0.7
0.4
0.2
0.1

f--

o

2

3

4

5 6 7
Gain Steps

8

9 10 11

FIGURE 2

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-117

4-118

TL853
SONAR RANGING CONTROL
02843, DECEMBER 1984- REVISED MARCH 1988

•

N DUAL-IN-LiNE PACKAGE

Designed for Use with the TL852 in Sonar
Ranging Modules Like the SN28828

•

Operates with Single Supply

•

Accurate Clock Output for External Use

•

Synchronous 4-Bit Gain Control Output

•

Internal 1.2-V Level Detector for Receive

•

TTL-Compatible

•

Interface to 40-kHz Piezoelectric or
Electrostatic Transducers

{TOP VIEW}

VCC
XMIT
GND
GCD
GCA
CGB
GCC
REC

BLNK
BINH
INIT
FILT
XTAL2
XTAL 1
OSC
ECHO

description
The TL853 is an economical digital 12L ranging control integrated circuit designed for use with the Texas
Instruments TL852 Sonar ranging receiver integrated circuit.
The TL853 is designed for distance measurement ranging from six inches to 35 feet. The device has an
internal oscillator that uses a low-cost external ceramic resonator. With a simple interface and a 420-kHz
ceramic resonator, the device will drive a 40-kHz piezoelectric transducer.
The device cycle begins when Initiate (lNIT) is taken to the high logic level. There must be at least 5 ms
from initial power up (VCC) to the first initiate signal in order for all the device internal latches to reset
and for the ceramic-resonator-controlled oscillator to stabilize. The device will transmit a burst of 16 pulses
each time INIT is taken high,
The oscillator output (OSC) is enabled by INIT, The oscillator frequency is the ceramic resonator frequency
divided by 10.5 for the first 16 cycles (during transmit) and then the oscillator frequency changes to the
ceramic resonator frequency divided by 4.5 for the remainder of the device cycle.
When used with an external 420-kilohertz ceramic resonator, the device internal blanking disables the receive
input (REC) for 2.46 ms after initiate to exclude false receive inputs that may be caused by transducer
ringing, The internal blanking feature also eliminates echos from objects closer than 1,37 feet from the
transducer. If it is necessary to detect objects closer than 1.37 feet, then the internal blanking may be
shortened by taking the blanking inhibit (BINH) high, enabling the receive input, The blanking input (BLNK)
may be used to disable the receive input and reset ECHO to a low logic level at any time during the device
cycle for selective echo exclusion or for a multiple-echo mode of operation.
The device provides a synchronous 4-bit gain control output (12 steps) designed to control the gain of
the TL852 sonar ranging receiver integrated circuit, The digital gain control waveforms are shown in Figure 2
with the nominal transition times from INIT listed in the Gain Control Output Table.
The threshold of the internal receive level detector is 1,2 volts. The TL853 operates over a supply voltage
range of 4.5 volts to 6.8 volts and is characterized for operation from ooC to 40°C.

PRODUCTION DATA documents contain information
current as of publication datB. Products conform to

specifications per the terms of Texas Instruments

standard warranty. Production processing dOBS not
necessarily include testing of an parametBrs.

TEXAS

~

Copyright © 1984, Texas Instruments Incorporated

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4-119

TL853
SONAR RANGING CONTROL

GAIN CONTROL OUTPUT TABLE
STEP

TIME (ms) FROM INITIATEtt

CGD

GCC

GCB

0

L

L

L

L

1

L

L

L

H

5.2 ms

2

L

L

H

L

7.94 ms

NUMBER

GCA

2.46 ms

3

L

L

H

H

10.69 ms

4

L

H

L

L

13.43 ms

5

L

H

L

H

16.17 ms

6

L

H

H

L

18.91 ms

7

L

H

H

H

21.66 ms

8

H

L

L

L

27.14ms

9

H

L

L

H

32.63 ms

10

H

L

H

L

38.11 ms

11

H

L

H

H

INIT I

tThis is the time to the end of the indicated step and assumes a nominal 420-kHz ceramic resonator.

functional block diagram
FILT

VCC

(13)
(1)
.-------------~----------_t

FI LTERED SUPPL Y
(10)
420·kHz
OSCILLATOR

FREQUENCY
DIVIDER

GAIN STEP
COUNTER

(2)

OSC
XMIT

G

(5)

XTAL 1 ....;(_11...:.)____-1

XTAL 2 -'--'-----I

(6)

+

+10.5
+4.5

(7)
(4)

;X>-+----+.....-------------iCLR

GCA
GCB
GCC
GCD

CT >208
CT >16

INTERNAL
, -_______________---------------' BLANKING
BLANKING
LATCH
BINH

+-__-1

...:.(1.;..;5;.;..)_ _ _ _

S
ECHO
LATCH

BLNK -'("-16.:..;)'--______---j~-"'>----.~--I R
'--_

....

~-----t---------_;R

REC ~(~8)~____________________________+_--._------_I

1-_-...:.:(9:..:.) ECHO

S

GND

...:.(3~)'--________________________________•

TEXAS

-1!1

INSTRUMENTS
4-120

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TL853
SONAR RANGING CONTROL

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Voltage at any pin with respect to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -0.5 V to 7 V
Voltage at any pin with respect to VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -7 V to 0.5 V
. .. 1150 mW
Continuous power dissipation at (or below) 25 °c free-air temperature (see Note 1)
Operating free-air temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 0 °C to 70 °C
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65 °C to 150 °C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ...................... 260 0 C
NOTE 1: For operation above 25°C, derate linearly at the rate of 9.2 mW/oC.

recommended operating conditions
Supply voltage, VCC
High-level input voltage, VIH

I BLNK,

BINH, INIT

Low-level input voltage, VIL

I BLNK,

BINH, INIT

MIN

MAX

4.5

6.8

2.1
5

Operating free-air temperature, T A

a

V
V

0.6

Delay time, power up to INIT high

UNIT

V
ms

40

°c

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature
PARAMETER

TEST CONDITIONS

Input current

BLNK, BINH, INIT
ECHO, OSC, GCA,

High-level output current, IOH

GCB, GCC,GCD
ECHO, OSC, GCA,

Low-level output voltage, VOL

GCB,GCC,GCD

On-state output current

XMIT output

Internal blanking interval

REC input

Supply current, ICC

MAX

UNIT
mA

VOH = 5.5 mA

100

/LA

IOL=1.6mA

0.4

V

Va = 1 V

-140

mA

2.46+

ms

40+

kHz

40+

XMIT output

93.3+

OSC output

Frequency after 16-pulse transmit period

Typt

1

OSC output

Frequency during 16-pulse transmit period

MIN

VI = 2.1 V

XMIT output

kHz

0

I During transmit period

260

I After transmit period

55

mA

tTy pica I values are at VCC = 5 V and T A = 25°C.
+These typical values apply for a 420-kHz ceramic resonator.

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-121

TL863
SONAR RANGING CONTROL

schematics of inputs and outputs
EQUIVALENT OF BLNK, BINH, AND
INIT INPUTS

TYPICAL OF ECHO, OSC, GCA, GCB,
GCC, AND GCD OUTPUTS

XMITOUTPUT
-,--VCC

REF
INPUT

-"""'I'v--e--I

OUTPUT

OUTPUT

500 !l

o

STEP NO.

1

234

5

6

7

8

9

10

11

INIT

GCA
GCB _ _ _ _ _ _~'--_ _ __'

GCC

GCD

FIGURE 1. DIGITAL GAIN CONTROL WAVEFORMS

VCC

---.J

INIT

16 PULSES

XMIT
BINH
BLNK
INTERNAL
BLANKING

_-----11.1.11-_ _ _ _ _ _ _ _ _ _ _ _ _ __
(Ll
(Ll

- - -...1•• ",2.46 ms. l..______________________

_ _ _ _ _ _ _ _ _ _- - ' ' ' ' - - "'1.2 V
REC
(INPUT FROM TL8521

ECHO

FIGURE 2. EXAMPLE OF SINGLE·ECHO·MODE CYCLE WHEN USED WITH THE
TL852 RECEIVER AND 420·kHz CERAMIC RESONATOR

~

TEXAS
INSTRUMENTS
4-122

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TLC551C,TLC551Y
LinCMOS™ TIMERS
002791 FEBRUARY 1984-REVISEO NOVEMBER 1991

•

Very Low Power Consumption ... 1 mW
Typ at Voo = 5 V

•
•

Capable of Operation in Astable Mode

•
•

•

0, DB, P, OR PW PACKAGE
(TOP VIEW)

G N D [ ] S VDD
TRIG 2
7 DISCH
OUT 3
6 THRES
RESET 4
5 CONT

CMOS Output Capable of Swinging Rail to
Rail
High Output-Current Capability
Sink 100 mA Typ
Source 10 mA Typ

functional block diagram
co NT

Output Fully Compatible With CMOS, TTL,
and MOS
Low Supply Current Reduces Spikes
During Output Transitions

5

VOD
8

RESET
4

R

THRES 5-+-i_.........

•
•

Single-Supply Operation From 1 V to 15 V

•

ESD Protection Exceeds 2000 V Per
MIL-STD-883C, Method 3015.2

Functionally Interchangeable With the
NE555; Has Same Pinout

R

TRIG .=.2+-_-<1...-'
R

+-______-'-'"L--Z

description

DISCH

GND

The TLC551 is a monolithic timing circuit that is
Reset can override Trigger, which can override Threshold.
fabricated using TI's LinCMOS™ process. The
timer is fully compatible with CMOS, TTL, and MOS logic and operates at frequencies up to 2 MHz. Compared
to the NE555 timer, this device uses smaller timing capacitors because of its high input impedance. As a result,
more accurate time delays and oscillations are possible. Power consumption is low across the full range of power
supply voltage.
Like the NE555, the TLC551 has a trigger level equal to approximately one-third of the supply voltage and a
threshold level equal to approximately two-thirds of the supply voltage. These levels can be altered by use of
the control voltage terminal. When the trigger input falls below the trigger level, the flip-flop is set and the output
goes high. If the trigger input is above the trigger level and the threshold input is above the threshold level, the
flip-flop is reset and the output is low. The reset input can override all other inputs and can be used to initiate
a new timing cycle. If the reset input is low, the flip-flop is reset and the output is low. Whenever the output is
low, a low-impedance path is provided between the discharge terminal and ground.
While the CMOS output is capable of sinking over 100 mA and sourcing over 10 mA, the TLC551 exhibits greatly
reduced supply-current spikes during output transitions. This minimizes the need for the large decoupling
capacitors required by the NE555.
These devices have internal electrostatic discharge (ESO) protection circuits that will prevent catastrophic
failures at voltages up to 2000 V as tested under MIL-STO-883C, Method 3015.2. However, care should be
exercised in handling these devices, as exposure to ESO may result in degradation of parametric performance.
All unused inputs should be tied to an appropriate logic level to prevent false triggering.
The TLC551 C is characterized for operation from O°C to 70 o e.

Lin CMOS is a trademark of Texas Instruments Incorporated.
PRODUCTION DATA information is current as 01 publication date.
Products conform to speciflcations per the terms of Texas

Instruments standard warranty. Production processing does not

necessarily Include testing of all parameters.

TEXAS

~

Copyright © 1991. Texas Instruments Incorporated

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-123

TLC551C,TLC551Y
LinCMOS™ TIMERS
AVAILABLE OPTIONS
PACKAGE
TA

VDD
RANGE

SMALL
OUTLINE
(D)

D'C to 7D'C

1 Vto lBV

TLC551CD

SSOP
(DB)

PLASTIC DIP
(P)

TSSOP
(PW)

CHIP FORM
(Y)

TLC551CDBLE

TLC551CP

TLC551CPWLE

TLC551Y

The D package is available taped and reeled. Add the suffix R (e.g., TLC551 CDR).
The DB and PW packages are only available left-end taped and reeled.
Chips are tested at 25'C.

FUNCTION TABLE
RESET
VOLTAGEt

TRIGGER
VOLTAGEt

MAX

MAX

>MAX

>MAX

Low

On

>MAX

>MAX

!z
~w

..J Z

c

!!!

«0
:::I c.. .~
UJ
....

:;;

()O

c:

!!!

....

?

:::I

0

0

:I:
()

til

Q

C

Z

CI

1ii

"00

«0 t='" a:

Q)

Iiitil

W

a::

..-.
(j)

c

C

III

.r:.
0

.r:.

(,)

III

~
(,)

;:
III

....z

0

(,)

E
CI)

.r:.

(,)

til

C

CI)

iii
>

·s

C"
CI)

TEXAS ~

INSlRUMENTS
POST OFFICE BOX 855303 • DALLAS, TEXAS 75285

4-125

TLC551Y
LinCMOS™ TIMER
chip information
These chips, properly assembled, display characteristics similar to the TLC551. Thermal compression or
ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive
epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS

~l

-=

VDD
(8)

•

T.

-==

I>r

-=

T

CONT
(5)

RESET
(4)

R
THRES (",,5)+-+--f"o,.

-=== 50
-=
~

•
~

......

~~==~---­
~

(1)
GND

~

Reset can override Trigger. which can override Threshold.

1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1
CHIP THICKNESS: 15 TYPICAL
BONDING PADS: 4 x 4 MINIMUM

TJ max = 150' C
TOLERANCES ARE ± 10%
ALL DIMENSIONS ARE IN MILS
PIN (1) INTERNALLY CONNECTED
TO BACKSIDE OF CHIP

TEXAS ~

4-126

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TLC551C
LinCMOS™ TIMER
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VDD (see Note 1) ............................................................ 18 V
Input voltage range (any input) ....................................................... -0.3 to VDD
Sink current, discharge or output .......................................................... 150 rnA
Source current, output .................................................................... 15 rnA
Continuous total power dissipation ..................................... See Dissipation Rating Table
Operating free-air temperature range .................................................. O°C to 70°C
Storage temperature range ....................................................... -65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ............................... 260°C
NOTE 1: All voltage values are with respect to network ground terminal.

DISSIPATION RATING TABLE
PACKAGE

TA" 25"C
POWER RATING

DERATING FACTOR
ABOVE TA = 25"C

TA = 70"C
POWER RATING

725mW
525mW
1000 mW

5.8mW/"C

464mW
336mW
640mW

0

DB or PW
P

4.2mWrC
8.0mWrC

recommended operating conditions
MIN

MAX

Supply voltage, VOO

1

15

UNIT
V

Operating free-air temperature range, TA

0

70

"C

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4--127

TLC551C
LinCMOS™ TIMER
electrical characteristics at specified free-air temperature, Voo = 1 V
PARAMETER

TEST CONDITIONS

VT

Threshold voltage

IT

Threshold current

Vtrigger

Trigger voltage

Itrigger

Trigger current

Vreset

Reset voltage

Ireset

Reset current
,
Control voltage (open circuit) as a percentage of
supply voltage
Discharge switch on-stage voltage

IOL

=100 [IA

High-level output voltage

MIN

TYP

MAX

0.475

0.67

0.85

Full range

0.45
10

MAX

75

25°C

0.15

Full range

0.1

VOL

low-level output voltage

IOl= 100f'A

IDD

Supply current

See Note 2

0.33
10

MAX

75

25°C

0.4

Full range

0.3

0.7
10

MAX

75

MAX

66.7%

25°C

0.02

Full range

0.6

15

V

V
nA
V

0.2
0.25

Full range
25°C

0.15

0.98
0.03

V

pA

0.5
0.6

Full range

1

0.1

25°C

V

pA

0.2

Full range

25°C

0.425

1

25°C

UNIT

pA

0.45

25°C

MAX
IOH = -10 f'A

0.875

25°C

25°C

Discharge switch off-stage current
VOH

TAt
25°C

100
150

V

[IA

t Full range is O°C to 70°C.
NOTE 2: These values apply for the expected operating configurations in which the THRES terminal is connected directly to the DISCH terminal
or to the TRIG terminal.

TEXAS ~

INSlRUMENlS
4-128

POST OFFICE BOX 655303 • OALLAS, TEXAS 75265

TLC551C
LinCMOS™ TIMER
electrical characteristics at specified free-air temperature, Voo = 2 V
PARAMETER
VT

IT

TEST CONDITIONS

Threshold voltage

Trigger voltage

Itrigger

Trigger current

Vreset

Reset voltage

Ireset

Reset current

TYP

MAX

1.33

1.65

Full range

0.85

IOL= 1 mA

Discharge switch off-stage current
VOH

High-level output voliage

VOL

LOW-level output voltage

IOL= 1 mA

IDO

Supply current

See Note 2

IOH =-300 ilA

0.4

Full range

0.3

0.67
10

MAX

75

25°C

0.4

Full range

0.3

1.1
10

MAX

75

MAX

66.7%

25°C

0.03

1.5

25°C

0.1

MAX

0.5

25°C

1.5

Full range

1.5

0.2

0.07

V
0.3
0.35

65

V
nA

1.9

Full range

V
pA

0.25

Full range

V
pA

1.8

25°C

25°C

0.95
1.05

25°C

Full range

V
pA

75

25°C

25°C

t Full range

1.75

UNIT

10

MAX

Control voltage (open circuit) as a percentage
of supply voltage
Discharge switch on-stage voltage

MIN

0.95

25°C

Threshold current

Vtrigger

TAt

25°C

250
400

V

!lA

O°C to 70°C.
NOTE 2: These values apply for the expected operating configurations in which the THRES terminal is connected directly to the DISCH terminal
or to the TRIG terminal.
IS

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4--129

TLC551C
LinCMOS™ TIMER
electrical characteristics at specified free-air temperature, Vee = 5 V
PARAMETER

VT

TEST CONDITIONS

Threshold voltage

IT

Threshold current

Vtrigger

Trigger voltage

Itrigger

Trigger current

Vreset

Reset voltage

Ireset

Reset current
Control voltage (open circuit) as a percentage
of supply voltage
Discharge switch on-state voltage

IOL= 10mA

Discharge switch off-state current
VOH

High-level output voltage

IOH =-1 mA

TAt

MIN

TYP

MAX

25°C

2.8

3.3

3.8

Full range

2.7
10

MAX

75

25°C

1.36
1.26

10
75

25°C

0.4
0.3

VOL

Low-level output voltage

IOL= 5 mA

IDD

Supply current

10
75

MAX

66.7%

25°C

0.14

Full range
0.1

MAX

0.5

25°C

4.1

Full range

4.1

1.5

V

pA

0.5

V

nA

4.8
V
0.21

Full range

0.4
0.5

0.13

Full range

0.3
0.4

0.08

V

0.3
0.35

Full range

Full range

V

pA

0.6

25°C

25°C
See Note 2

1.96

1.8

MAX

25°C
IOL= 3.2 mA

1.1

25°C

25°C

pA

2.06

MAX

25°C
IOL= 8 mA

1.66

25°C

Full range

V

3.9

25°C

Full range

UNIT

170

350
500

!lA

t Full range is O°C to 70°C.
NOTE 2: These values apply for the expected operating configurations in which the THRES terminal is connected directly to the DISCH terminal
or to the TRIG terminal.

TEXAS ~

INSlRUMENTS
4--130

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TLC551C
LinCMOS™ TIMER
electrical characteristics at specified free-air temperature, Voo
PARAMETER

VT

Threshold voltage

IT

Threshold current

Vtrigger

Trigger voltage

Itrigger

Trigger current

Vreset

Reset voltage

Ireset

TEST CONDITIONS

Reset current
Control voltage (open circuit) as a percentage
of supply voltage
Discharge switch on-state voltage

IOL; 100 mA

TAt

MIN

25'C

9.45

10.55

Full range

9.35

10.65
10

MAX

75

25'C

4.65

Full range

4.55

High-level output voltage

IOH ;-5 mA
IOH ;-1 mA

10
75

25'C

0.4

Full range

0.3

IOL;50 mA

Low-level output voltage

MAX

75

MAX

66.7%

25'C

0.77

100

Supply current

See Note 2

5.35

V

V
pA

1.5
V
pA

1.7
1.8

Full range

UNIT

pA

1.8
10

V

0.1
nA

0.5

25'C

12.5

Full range

12.5

25'C

13.5

Full range

13.5

25'C

14.2

Full range

14.2

14.2
14.6

V

14.9
1.28

3.2
3.6

Full range
0.63

Full range

1
1.3

25'C
IOL;10mA

1.1

25'C

25'C
VOL

MAX

5.45

MAX

25'C
IOL; 100mA

5

25'C

MAX
IOH ;-10 mA

TYP

25'C

25'C

Discharge switch off· state current

VOH

= 15 V

0.12

0.3

360

600

Full range

V

0.4

25'C
Full range

800

[JA

t Full range IS O'C to 70'C.
NOTE 2: These values apply for the expected operating configurations in which the THRES terminal is connected directly to the DISCH terminal
or to the TRIG terminal.

operating characteristics, Voo

=5 V, TA = 25°C (unless otherwise noted)
TYP

MAX

Initial error of timing interval*

VDD;5VtoI5V.

RA; RS; 1 kQ to 100 kQ.

1%

3%

Supply voltage sensitivity of timing interval

CT;O.1 f'F,

See Note 3

0.1

0.5

20

75

15

60

TEST CONDITIONS

PARAMETER

tr

Output pulse rise time

tf

Output pulse fall time

f max Maximum frequency in astable mode

RL; 10 MQ.

CL; 10 pF

RA;470Q.
CT; 200 pF.

RS-200Q.
See Note 3

MIN

1.2

1.8

UNIT

%N
ns
MHz

* Timing Interval error IS defined as the difference between the measured value and the average value of a random sample from each process run.
NOTE 3: RA. RS. and CT are as defined in Figure 1.

TEXAS

-If

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4-131

TLC551Y
LinCMOS™ TIMER
electrical characteristics at Vee

=5 V, TA =25°C

PARAMETER
VT

Threshold voltage

IT

Threshold current

Vtrigger

Trigger voltage

Itrigger

Trigger current

Vreset

Reset voltage

Ireset

Reset current

TEST CONDITIONS

MIN

TYP

MAX

2.8

3.3

3.8

10
1.36

0.4

1.96

V
pA

1.5

10

V
pA

66.7%

Discharge switch on-state voltage

0.14

IOl= 10mA

0.5

0.1

Discharge switch off-state current
High-level output voltage

IOH =-1 mA
IOl= 8 mA

VOL

1.1

V
pA

10

Control voltage (open circuit) as a percentage
of supply voltage

VOH

1.66

UNIT

low-level output voltage

4.1

4.8
0.21

V
nA
V

0.4

IOl= 5mA

0.13

0.3

IOl= 3.2 mA

0.08

0.3

V

170
350
See Note 2
Supply current
IAA
IDD
NOTE 2: These values apply for the expected operating configurations in which the THRES terminal IS connected dIrectly to the DISCH terminal
or to the TRIG terminal.

TEXAS ~

INSTRUMENTS
4-132

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TLC551C
LinCMOS™ TIMER
APPLICATION INFORMATION

Voo

f

0.1

-=-

~
7
Re

6

r;-

T-=-

~F Is

0.1

~F

-1T
-=-

8

CO NT

RL

VOO

RESET
DISCH
OUT

3

OUT

THRES
TRIG
GNO
11

I
-=-

Figure 1. Circuit for Astable Operation

TEXAS ~

INSlRuMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-133

4-134

TLC552C
DUAL LinCMOS™ TIMER
D2796, FEBRUARY 1984-REVISED MAY 1988

•
•

Capable of Operation in Astable Mode

•

CMOS Output Capable of Swinging Rail to
Rail

•

D OR N PACKAGE

Very Low Power Consumption ... 2 mW
Typ at VDD = 5 V

(TOP VIEW)

TIMER{T~;~~
#1

~!~;S}

RESET

High Output-Current Capability
... Sink 100 rnA Typ
... Source 10 rnA Typ

CaNT

TIMER

OUT

RESET

#2

TRIG

OUT

GND -.... _ _...r- TRIG

•

Output Fully Compatible with CMOS, TTL,
and MOS

•

Low Supply Current Reduces Spikes During
Output Transitions

•

High-Impedance Inputs ... 10 12

•

Single-Supply Operation from 1 V to 18 V

•

Functionally Interchangeable with the
NE556; Has Same Pinout

functional block diagram (each timer)
VDD
CONTROL

RESET

R

n Typ
THRESHOLD

description
The TLC552 is a monolithic timing circuit
fabricated using TI's LinCMOS'M process, which
provides full compatibility with CMOS, TTL, and
MOS logic and operation at frequencies up to
2 MHz. Accurate time delays and oscillations are
possible with smaller, less-expensive timing
capacitors than the NE555 because of the high
input impedance. Power consumption is low
across the full range of power supply voltages.

TRIGGER
R

T

. -_ _ _ _ _ _ _ _:7 L - - - :_____

DISCHARGE

GND
Reset can override Trigger and Threshold.
Trigger can override Threshold.

AVAILABLE OPTIONS
SYMBOLIZATION

OPERATING
VTMAX
Like the NE556, the TLC552 has a trigger level
PACKAGE
DEVICE
TEMPERATURE RANGE
at 25°C
approximately one-third of the supply voltage
SUFFIX
and a threshold level approximately two-thirds
QOCt070°C
3.8 mV
TLC552C
D,N
of the supply voltage. These levels can be altered
The
D
packages
are
available
taped
and
reeled.
Add
the
suffix R to
by use of the control voltage terminal. When the
the device type when ordering. (i.e. TLC552CDR)
trigger input falls below the trigger level, the flipflop is set and the output goes high. If the trigger
input is above the trigger level and the threshold
input is above the threshold level, the flip-flop
is reset and the output is low. The reset input
can override all other inputs and can be used to initiate a new timing cycle. If the reset input is low, the
flip-flop is reset and the output is low. Whenever the output is low, a low-impedance path is provided
between the discharge terminal and ground.

While the CMOS output is capable of sinking over 100 milliamperes and sourcing over 10 milliamperes,
the TLC552 exhibits greatly reduced supply-current spikes during output transitions. This minimizes the
need for the large decoupling capacitors required by the NE556.

LinCMOS is a trademark of Texas Instruments.

PRODUCTION DATA documents contain information
current as of publication date. Products conform to

specifications per the terms of Texas Instruments
standard warranty. Production processing does not

necessarily include testing of aU parameters.

TEXAS

~

Copyright © 1984, Texas Instruments Incorporated

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-135

TLC552C
DUAL LinCMDSlM TIMER
description (continued)
These devices have internal electrostatic discharge (ESD) protection circuits that will prevent catastrophic
failures at voltages up to 2000 volts as tested under MIL-STD-883C, Method 3015.2. However, care should
be exercised in handling these devices as exposure to ESD may result in a degradation of the device
parametric performance.
All unused inputs should be tied to an appropriate logic level to prevent false triggering.
The TLC552C is characterized for operation from OOC to 70°C.
FUNCTION TABLE
DISCHARGE

RESET

TRIGGER

THRESHOLD

VOLTAGEt

VOLTAGEt

VOLTAGEt

MAX

MAX

>MAX

>MAX

Low

On

>MAX

>MAX

z
NC
TRIG
NC
NC

ESO Protection Exceeds 2000 V Per
MIL-STD-883C, Method 3015.2

4 321

201~a

5

17

6

16

7
8

15
14

910111213

NC
DISCH
NC
THRES
NC

UI-UI-U
Z ~ Z Zz
l!J
0
a:
U

description
NC - No internal connection

The TLC555 is a monolithic timing circuit that is
fabricated using Tl's LinCMOS'· process, The
timer is fully compatible with CMOS, TTL, and MOS logic and operates at frequencies up to 2 MHz, Compared
to the NE555 timer, this device uses smaller timing capacitors because of its high input impedance, As a result,
more accurate time delays and oscillations are possible, Power consumption is low across the full range of power
supply voltage,
Like the NE555, the TLC555 has a trigger level equal to approximately one-third of the supply voltage and a
threshold level equal to approximately two-thirds of the supply voltage, These levels can be altered by use of
the control voltage terminal. When the trigger input falls below the trigger level, the flip-flop is set and the output
goes high, If the trigger input is above the trigger level and the threshold input is above the threshold level, the
flip-flop is reset and the output is low. The reset input can override all other inputs and can be used to initiate
a new timing cycle, If the reset input is low, the flip-flop is reset and the output is low, Whenever the output is
low, a low-impedance path is provided between the discharge terminal and ground,
While the CMOS output is capable of sinking over 100 mA and sourcing over 10 mA, the TLC555 exhibits greatly
reduced supply-current spikes during output transitions, This minimizes the need for the large decoupling
capacitors required by the NE555.
These devices have internal electrostatic discharge (ESD) protection circuits that will prevent catastrophic
failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2. However, care should be
exercised in handling these devices, as exposure to ESD may result in degradation of parametric performance,
All unused inputs should be tied to an appropriate logic level to prevent false triggering,
The TLC555C is characterized for operation from O°C to 70°C, The TLC5551 is characterized for operation from
- 40°C to 85°C. The TLC555M is characterized for operation over the full military temperature range of - 55°C
to 125°C,
LinCMOS is a trademark of Texas Instruments Incorporated,
PRODUCTION DATA Informalion Is current as of publlcaflon date.
Products conform to specifications per the terms of Texas
Instrumenls standard warranty. Production processing does not
necessarily Include lesllng of all parameters.

TEXAS ~

Copyright © 1991, Texas Instruments Incorporated

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-143

TLC555C, TLC5551, TLC555M, TLC555Y
LinCMOS™ TIMERS
AVAILABLE OPTIONS
PACKAGE
TA

VDD
RANGE

SMALL
OUTLINE
(D)

SSOP
(DB)

CHIP
CARRIER
(FK)

O°C
to
70°C

2V
to
15 V

TLC555CD

TLC555CDBLE

-40°C
to
85°C

3V
to
15 V

TLC5551D

-55°C
to
125°C

5V
to
15 V

TLC555MD

CERAMIC DIP
(JG)

PLASTIC DIP
(P)

TSSOP
(PW)

TLC555CP

TLC555CPWLE

TLC5551P

TLC555MFK

TLC555MJG

TLC555MP

The D package is available taped and reeled. Add the suffix R (e.g., TLC555CDR).
The DB and PW packages are only available left-end taped and reeled.
Chips are tested at 25°C.
FUNCTION TABLE
RESET
VOLTAGEt

TRIGGER
VOLTAGEt

THRESHOLD
VOLTAGEt

MAX

MAX
>MAX

OUTPUT

DISCHARGE
SWITCH

Irrelevant

L

On

Irrelevant

H

Off

>MAX

>MAX

L

On

>MAX



C"
Q)

TEXAS ~

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-145

TLC555Y
LinCMOS™ TIMER
chip information
These chips, properly assembled, display characteristics similar to the TLC555. Thermal compression or
ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be mounted with conductive
epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS

-=-=
-=

VDD

CO NT
(5)

RESET

(4)

( 8)
R
THRES (::.!.5)-j-+--J"...

-=-=
-=-=

(3)OUT

-=

-=-=
-=-=

(1)
GND

I"

64

~

Reset can override Trigger, which can override Threshold.

1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1
CHIP THICKNESS: 15 TYPICAL
BONDING PADS: 4 x 4 MINIMUM

TJ max = 150 0 C
TOLERANCES ARE ± 10%
ALL DIMENSIONS ARE IN MILS
PIN (1) INTERNALLY CONNECTED
TO BACKSIDE OF CHIP

TEXAS

~

INSTRUMENTS
4-146

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TLC555C, TLC5551, TLC555M, TLC555V
LinCMOS™ TIMERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Voo (see Note 1) ............................................................ 18 V
Input voltage range (any input) ....................................................... -0.3 to Voo
Sink current, discharge or output .......................................................... 150 mA
Source current, output .................................................................... 15 mA
Continuous total power dissipation ..................................... See Dissipation Rating Table
Operating free-air temperature range, TA: C-suffix ..................................... O°C to 70°C
I-suffix .................................... -40°C to 85°C
M-suffix .................................. -55°C to 125°C
Storage temperature range ....................................................... -65°C to 150°C
Case temperature for 60 seconds: FK package .............................................. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package .................... 300°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: 0, DB, P, or PW package
260°C
NOTE1: All voltage values are with respect to network ground terminal.

DISSIPATION RATING TABLE
PACKAGE
D
DBorPW

FK
JG
P

=

=

=

TA ,;;25'C
POWER RATING

DERATING FACTOR
ABOVE T A 25'C

TA 70'C
POWER RATING

TA 85'C
POWER RATING

TA 125'C
POWER RATING

725mW
525mW
1375 mW
1050 mW
1000mW

5.8 mW/'C
4.2 mW/'C
11.0 mW/'C
8.4 mW/,C
8.0mW/'C

464mW
336mW
880mW
672mW
640mW

377mW

N/A

715mW
546mW
520mW

275mW
210mW
N/A

=

recommended operating conditions
Supply voltage, VDD
TLC555C
Operating free-air temperature range, T A

MIN

MAX

2

15

0

70

TLC5551

-40

85

TLC555M

-55

125

UNIT

V
'C

TEXAS -If

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4-147

TLC555C, TLC5551
LinCMOS™ TIMERS
electrical characteristics at specified free-air temperature, Voo = 3 V for TLC5551, Voo = 2 V for
TLC555C
TEST
PARAMETER
VT

Threshold voltage

IT

Threshold current

Vtrigger

Trigger voltage

Itrigger

Trigger current

Vreset

Reset voltage

Ireset

CONDITIONS

Reset current
Control voltage (open circuit) as a
percentage of supply voltage
Discharge switch on-stage voltage

IOL~

1 rnA

High-level output voltage

TLC555C
TYP

MAX

MIN

25'C

0.95

1.33

1.65

1.6

Full range

0.85

1.75

1.5

10
75

150

25'C

0.4
0.3

0.67

LOW-level output voltage

IOL~

IDD

Supply current

See Note 2

1 rnA

0.95

0.71

1.05

0.61

1

10

10

MAX

75

150

25'C

0.4

Full range

0.3

1.1

1.5

0.4

2

0.3

1.1

10

10

MAX

75

150

MAX

66.7%

25'C

0.03

0.2

0.03

1.5

pA

0.2
V
nA

120

1.9

1.5

1.9
V

2.5
0.07

V

0.1

0.5
1 :5

V
pA

0.375

0.1

Full range

V

66.7%

0.25

1.5

1.29

1.8

25'C

25'C

UNIT

pA

1.39

25'C

25'C
VOL

2.5

MAX
Full range

MAX
2.4

25'C

MAX

f'A

TYP

10

25'C

IOH ~ -300

TLC5551

MIN

Full range

Discharge switch off-stage current
VOH

TAt

0.3

0.07

0.3
0.4

Full range

0.35

25'C

250

250

Full range

400

500

V

f'A

t Full range IS O'C to 70'C for TLC555C and - 40'C to 85'C for TLC5551.
NOTE 2: These values apply for the expected operating configurations in which the THRES terminal is connected directly to the DISCH terminal
or to the TRIG terminal.

TEXAS ~

INSlRUMENTS
4-148

POST OFFICE BOX 655303 • OALLAS, TEXAS 75265

TLC555C, TLC5551, TLC555M
LinCMOS™ TIMERS
electrical characteristics at specified free-air temperature, Voo = 5 V
PARAMETER

VT

Threshold voltage

IT

Threshold current

Vtrigger

Trigger voltage

Itrigger

Trigger current

Vreset

Reset voltage

Ireset

Reset current

TEST
CONDITIONS

Control voltage (open cicrcuit) as a
percentage of supply voltge
Discharge switch
on-state voltage

IOL=10rnA

Discharge sw~ch
off-state current
VOH

High-level output
voltage

IOH=-1 rnA
IOL=S rnA

TAt

VOL

voltage

MAX

MIN

TYP

MAX

MIN

TYP

MAX

25°C

2.S

3.3

3.S

2.S

3.3

3.S

2.S

3.3

3.8

Full range

2.7

3.9

2.7

3.9

2.7

10

10

10

MAX

75

150

5000

25°C

1.36

Full range

1.26

1.66

IOH =3.2rnA

See Note 2

1.26

1.66

1.96

1.36

2.06

1.26

1.66

10

10

10

75

150

5000

25°C

0.4

Full range

0.3

1.1

1.5

0.4

1.8

0.3

1.1

1.5

0.4

l.S

0.3

1.1

10

10

10

MAX

75

150

5000

MAX

66,7%

66.7%

66.7%

25°C

0.14

0.14

0.5
0.6

0.5

0.14

0.1

0.1

0.1

MAX

0.5

120

120

25°C

4.1
4.1

25°C

4.8

0.21

0.4

0.13

0.3

4.8

4.1

0.21

0.4

0.13

0.3

O.OS

0.3

O.OS

350
500

Full range

0.3

0.5

350
600

V

nA

V
0.4

0.13

0.3

0.6
V

0.45
O.OS

0.3

170

350

0.4

0.35
170

V

pA

0.21

0.4

0.35
170

1.5

4.8

0.5

0.4

V
pA

4.1

0.5

Full range
25°C

4.1
4.1

1.96

0.6

0.6

25°C

Full range

pA

1.8

25°C

Full range

V

2.06

MAX

25°C
Supply current

1.36

25°C

Full range
100

1.96
2.06

UNIT

3.9

25°C

25°C
IOL = 5 rnA

TLC555M

TYP

Full range
Low-level output

TLC5551

TLC555C
MIN

700

J.tA

t

Full range IS O°C to 70°C for TLC555C, - 40°C to 85°C for TLC5551, and - 55°C to 125°C for TLC555M.
NOTE 2: These values apply for the expected operating configurations in which the THRES terminal is connected directly to the DISCH terminal
or to the TRIG terminal.

TEXAS

~

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-149

TlC555C, TlC5551, TlC555M
linCMOSTM TIMERS
electrical characteristics at specified free-air temperature, Voo = 15 V
TEST

PARAMETER

TAt

CONDITIONS
VT

Threshold voltage

IT

Threshold current

Vtrigger

Trigger voltage

Itrlgger

Trigger current

Vreset

Reset voltage

Ireset

Reset current
Control vo~age (open
circuit) as a percentage
of supply voltage
Discharge switch
on-state voltage

High-level output

IOH=-5mA

IOH=-l rnA

VOL

vo~age

Supply current

25°C

9.45

10

10.55

9.45

10

Full range

9.35

10.65

9.35

MAX

10.55

9.45

10

10.55

10.65

9.35

10

10

150

5000

25°C

4.65
4.55

5

5.35

4.65

5.45

4.55

5

5.35

4.65

5.45

4.55

5

10

10

10

MAX

75

150

5000

25°C

0.4
0.3

1.1

1.5

0.4

1.8

0.3

1.1

1.5

0.4

1.8

0.3

1.1

10

10

10

MAX

75

150

5000

66.7%

0.77

0.77

1.7
1.8

1.7

0.77

1.8

0.1

0.1

0.1

0.5

120

120

12.5
12.5

25'C

13.5

Full range

13.5

25'C

14.2

Full range

14.2

12.5

14.2

13.5
14.2

14.9

0.63

1

14.2

14.9

0.12

0.3

1.28

360

600

1.7

V

nA

14.2
14.6

V

14.9
1.28

3.2
3.7

0.63
0.12

0.63

360

1
1.5

0.12

0.3

V

0.3
0.45

0.4

800

3.2
3.8

1
1.4

0.4

FUll range

pA

14.2

1.3

Full range

V

13.5

3.6

25'C

13.5

14.6

14.2
3.2

1.5

12.5

13.5

1.28

25'C

12.5

14.2

12.5
14.6

pA

1.8

MAX
25'C

V

66.7%

25'C

Full range

5.35

1.8

25'C

66.7%

pA

5.45

2SoC

Full range

V

10.65

10

Full range

See Note 2

TYP

75

Full range

UNIT

MIN

MAX

25'C

IOL =50 rnA

TLC555M
MAX

25°C

Full range

IOL=10mA
100

TYP

25°C

IOL= 100 rnA
Low-level output

MIN

25°C

IOH=-10mA

vo~age

MAX

Full range

Discharge switch
off-state current

VOH

TYP

MAX
IOL = 100 rnA

TLC5551

TLC555C
MIN

600

360

900

600
1000

f.IA

t

Full range is O°C to 70'C for TLC555C, - 40'C to 85°C for TLC5551, and - 55°C to 125'C for TLC555M.
NOTE 2These values apply for the expected operating configurations in which the THRES terminal is connected directly to the DISCH terminal
or to the TRIG terminal.

operating characteristics, Voo = 5 V, TA = 25°C (unless otherwise noted)
TEST CONDITIONS

PARAMETER
Initial error of timing interval;
Supply voltge sensistivity of timing interval
tr

Output pulse rise time

tf

Output pulse fall time

f max

Maximum frequency in astable mode

MIN

VDD = 5 V to 15 V, RA = RB = 1 kO to 100 kO,
See Note 3
CT = 0.1 j.lF,
RL= 10 MO,

CL = 10 pF

RA= 470 0, RB=2000, CT = 200 pF, See Note 3

1.2

TYP

MAX

1%

3%

20

75

15

60

2.1

UNIT

ns
MHz

; Timing Interval error IS defined as the difference between the measured value and the average value of a random sample from each process run.
NOTE 3: RA, RB, and CT are as defined in Figure 1.

TEXAS

.Jf

INSlRUMENlS
4-150

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TLC555Y
LinCMOS™ TIMER
electrical characteristics at Voo

=5 V, TA = 25°C

PARAMETER
VT

Threshold voltage

IT

Threshold current

TEST CONDITIONS

Trigger current

Vreset

Reset voltage

Ireset

Reset current

TYP

MAX

2.8

3.3

3.8

10

Vtrigger Trigger voltage
Itrigger

MIN

1.36

0.4

1.96

1.5

0.14

Discharge switch off-state current

0.5

0.1
IOH =-1 rnA
IOL =8 rnA

Low-level output voltage

V
pA

66.7%
IOL= lOrnA

High-level output voltage

V
pA

10

Discharge switch on-state voltage

VOL

1.1

V
pA

10

Control voltage (open circuit) as a percentage of supply voltage

VOH

1.66

UNIT

4.1

4.8
0.21

V
nA
V

0.4

IOL =5 rnA

0.13

0.3

IOL=3.2mA

0.08

0.3

V

170
350
See Note 2
Supply current
IDD
JJA
NOTE 2: These values apply for the expected operating configurations In which the THRES terminal IS connected directly to the DISCH terminal
or to the TRIG terminal.

TEXAS ,If

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4--151

TLC555C, TLC5551, TLC555M
LinCMOS™ TIMERS
APPLICATION INFORMATION
VDD

O.1f!F

±
8
RL

VDD

~
7

RESET
DISCH

3
RS

OUT

OUT

6

[2

THRES
TRIG

5

T

~

T

CONT

GND

11

O.1f!F

Pin numbers are for all packages except FK.

Figure 1. Circuit for Astable Operation

TEXAS ~

INSTRUMENTS
4-152

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

T
-::-

TLC556C, TLC5561, TLC556M, TLC556Y
DUAL LinCMOS™ TIMERS

•

Very Low Power Consumption •.• 2 mW
Typ at Vee = 5 V

D, J, OR N PACKAGE

(TOP VIEW)

•

Capable of Operation in Astable Mode

•

CMOS Output Capable of Swinging Rail to
Rail

•

High Output-Current Capability
Sink 100 mA Typ
Source 10 mA Typ

•

Output Fully Compatible With CMOS, TTL,
and MOS

1 DISCH
1 THRES
1 CONT
1 RESET
1 OUT
1 TRIG

VDD

1

2 DISCH
2THRES
2CONT
2 RESET
2 OUT
2TRIG
FKPACKAGE

(TOP VIEW)

•

Low Supply Current Reduces Spikes
During Output Transitions

•
•

Single-Supply Operation From 2 V to 15 V
Functionally interchangeable With the
NE556; Has Same Pinout

1 CO NT

NC

description
The TLC556 series are monolithic timing circuits
fabricated using the TI LinCMOS'M process, which
provides full compatibility with CMOS, TTL, and
MOS logic and operates at frequencies up to
2 MHz. Accurate time delays and oscillations are
possible with smaller, less-expensive timing
capacitors than the NE556 because of the high
input impedance. Power consumption is low
across the full range of power supply voltages.

1 RESET
NC
1 OUT

4
5
6

3 2

1 20 19

18
17
16

7

15

8

14

9 10 11 12 13

2THRES
NC
2CONT
NC
2 RESET

NC-No internal connection

Like the NE556, the TLC556 has a trigger level approximately one-third of the supply voltage and a threshold
level approximately two-thirds of the supply voltage. These levels can be altered by use of the control voltage
terminal. When the trigger input falls below the trigger level, the flip-flop is set and the output goes high. If the
trigger input is above the trigger level and the threshold ihPut is above the threshold level, the flip-flop is reset
and the output is low. The reset input can override all other inputs and can be used to initiate a new timing cycle.
If the reset input is low, the flip-flop is reset and the output is low. Whenever the output is low, a low-impedance
path is provided between the discharge terminal and ground.
While the CMOS output is capable of sinking over 100 mA and sourcing over 10 mA, the TLC556 exhibits greatly
reduced supply-current spikes during output transitions. This minimizes the need for the large decoupling
capacitors required by the NE556.
These devices have internal electrostatic-discharge (ESD) protection circuits that prevent catastrophic failures
at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015. However, care should be exercised in
handling these devices, as exposure to ESD may result in degradation of the device parametric performance.
All unused inputs should be tied to an appropriate logic level to prevent false triggering.
The TLC556C is characterized for operation from O°C to 70°C. The TLC5561 is characterized for operation from
-40°C to 85°C. The TLC556M is characterized for operation over the full military temperature range of -55°C
to 125°C.
LinCMOS is a trademark of Texas Instruments Incorporated.
PRODUCTION DATA Information is currenl 8S of publication date.
Products conform to specifications per the terms ofTexes Instruments
standard warranty. Production processing does notnecess"lIy Include

testing of all parameters.

TEXAS

~

Copyright © 1992, Texas Instruments Incorporated

INStRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4--153

TLC556C, TLC5561, TLC556M, TLC556Y
DUAL LinCMOS™ TIMERS
AVAILABLE OPTIONS
PACKAGE
TA
RANGE

VDD
RANGE

O'C
to
70'C

2V
to
18 V

TLC556CD

TLC556CN

-40'C
to
85'C

3V
to
18V

TLC5561D

TLC5561N

-55'C
to
125'C

5V
to
18 V

TLC556MD

The D package

IS

SMALL OUTLINE
(D)

CHIP CARRIER
(FK)

CERAMIC DIP
(J)

TLC556MFK

PLASTIC DIP
(N)

CHIP FORM
(Y)

TLC556Y

TLC556MN

TLC556MJ

available taped and reeled. Add the suffix R to the device type (e.g., TLC556CDR).
FUNCTION TABLE

RESET
VOLTAGEt

TRIGGER
VOLTAGEt

THRESHOLD
VOLTAGEt

OUTPUT

DISCHARGE
SWITCH

On

< MIN

Irrelevant

Irrelevant

L

> MAX

MAX

>MAX

>MAX

L

On

> MAX

> MAX



.1

40

......r-

U

<::

V

!!!

'"
G>

'iii

20

cc

i
<::

0

;:

V

10

CI>

E

~1~=10~m!-

\

<::

0

~

.,OJ

300

\

Co

e
I

........

\

200

D..

. J 100

2

"-

tpHL

\,

:t:

.J

CI>

.r:.

-

.,

>a; 400
C

VOO = 5 V,IO = 10 mA

VI

!:'
.,

500

D..

4

I

j::

7

.r:.

~

.. V

III

1 --+-""'" -

I

10(on)" 1 mA
CL-O
TA = 25'C

I

Voo = 2 V, 10 = 1 mA -

c:
I

I

III

70

I

-

tPLH:j:

:t:

u

D..

III

C
-75

-50

-25

0

25

50

75

100

125

o

o

2

T A - Free-Air Temperature - 'C

Figure 1

4

6

8

10

12

14

16

18 20

VOO - Supply Voltage - V
:j: The effects of the load resistance on these values must be

taken into account separately.

Figure 2

TEXAS ."

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-161

TLC556C, TLC5561, TLC556M
DUAL LinCMOS™ TIMERS
APPLICATION INFORMATION

,---_ _
0.,1 fA.F

T

!4--- tL ---.!

I.
I

I4--tH ~

I

VDD----~I~~·~-+I----+_------­

ItpHL~
I
I
I
I

'------1 RESET

2/3 VDD ' \ - - - - - 1 i - - - - 7 - - - - l _ - - - + - - + - - \ - - -

TLC556
.......- - - - f DISCH
RS

1/3 VDD

THRES

---""----,~---------'''''I- + - . < - - - - - - -........

I
I

.......--+---f TRIG

GND

GND------------~I-+-------­

tpLH -jt--+[
CIRCUIT

TRIGGER AND THRESHOLD VOLTAGE WAVEFORM

Figure 3. Astable Operation
Connecting the trigger input to the threshold input, as shown in Figure 3, causes the timer to run as a
multivibrator. The capacitor CTcharges through RA and Rs to the trigger voltage level (approximately 0.67 Voo)
and then discharges through Rs only to the value of the threshold voltage level (approximately 0.33 Voo). The
output is high during the charging cycle (tl-i) and low during the discharge cycle (tU. The duty cycle is controlled
by the values of RA, and Rs, and CT, as shown in the equations below.

tH "" CT (RA + RB) In 2

(In 2

= 0.693)

tL "" CT RB In 2
Period

= tH + tL

"" CT (RA + 2RB) In 2

Output driver duty cycle = _t_L_
tH + tL
Output waveform duty cycle

= ~ "" __R.....Bo:.-_
tH + tL

RA + 2RB

The 0.1-!.tF capacitor at CONT in Figure 3 decreases the period by about 10%.
The formulas shown above do not allow for any propagation delay from the trigger and threshold inputs to the
discharge output. These delay times add directly to the period and create differences between calculated and
actual values that increase with frequency. In addition, the discharge output resistance ron adds to RS to provide
another source of error in the calculation when Rs is very low or ron is very high.
The equations below provide better agreement with measured values.

tH

= CT (RA + RB) In

[3 -exp (

-tpLH
)
CT (RB + ron)

1

+ tpHL

TEXAS ~

INSlRUMENTS
4-162

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TLC556C, TLC5561, TLC556M
DUAL LinCMOS™ TIMERS
APPLICATION INFORMATION
The preceding equations and those given earlier are similar in that a time constant is multiplied by the logarithm
of a number or function. The limit values of the logarithmic terms must be between In 2 at low frequencies and
In 3 at extremely high frequencies. For a duty cycle close to 50%, an appropriate constant for the logarithmic
terms can be substituted with good results., Duty cycles less than 50%
possibly RA s ron. These conditions can be difficult to obtain.

~
H+ L

will require that

f-

< 1 and

L

In monostable applications, the trip point of the trigger input can be set by a voltage applied to CONT. An input
voltage between 10% and 80% of the supply voltage from a resistor divider with at least 500-ftA bias provides
good results.

TEXAS ~

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4-163

4-164

uA733M, uA733C
DIFFERENTIAL VIDEO AMPLIFIERS
0922, NOVEMBER 1970-REVISED APRIL 1988

•

200-MHz Bandwidth

•

250-kQ Input Resistance

•

Selectable Nominal Amplification of 10.
100, or 400

•

No Frequency Compensation Required

•

Designed to be Interchangeable with
Fairchild ,.A733M and ,.A733C

uA733M ... J DUAL-IN-L1NE PACKAGE
uA733C ... D OR N PACKAGE
ITOP VIEW)

IN+
NC
GAIN ADJ 2A
GAIN ADJ 1A

VCCVCC+
NC
NC
OUT + '-1..._~:.t-' OUT -

description

NC - No internal connection

The uA 733 is a monolithic two-stage video
amplifier with differential inputs and differential
outputs.

UA733M ... U FLAT PACKAGE
(TOP VIEW)

Internal series-shunt feedback provides wide
bandwidth, low phase distortion, and excellent
gain stability. Emitter-follower outputs enable
the device to drive capacitive loads and all stages
are current-source biased to obtain high
common-mode and supply-voltage rejection
ratios.
Fixed differential amplification of 10, 100, or
400 may be selected without external
components, or amplification may be adjusted
from 10 to 400 by the use of a single external
resistor connected between 1 A and 1 B. No
external frequency-compensating components
are required for any gain option.

INNC
GAIN ADJ 2B
GAIN ADJ 1B

IN+
GAIN ADJ 2A
GAIN ADJ 1A
VCCOUT +

INGAIN ADJ 2B
GAIN ADJ 1B
""'I..._ _J-'

VCC+
OUT -

symbol
GAIN ADJUST 1A - - - - - - - .
GAIN ADJUST 2A - - - - ,
IN+

OUT+

IN-

OUT-

The device is particularly useful in magnetic-tape
GAIN ADJUST 1B - - - - '
or disc-file systems using phase or NRZ encoding
GAIN ADJUST 2B _ _ _ _---1
and in high-speed thin-film or plated-wire
memories. Other applications include general
purpose video and pulse amplifiers where wide bandwidth, low phase shift, and excellent gain stability
are required.
The uA733M is characterized for operation over the full military temperature range of - 55°C to 125°C;
the uA 733C is characterized for operation from OOC to 70°C.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
uA733M

UA733C

UNIT
V

-8

8
-8

Differential input voltage

±5

±5

V

Common-mode input voltage

±6

+6

10

10

Supply voltage VCC + ISee Note 1)

8

Supply voltage VCC _ (See Note 1)

Output current
Continuous total power dissipation

V
V
mA

See Dissipation Rating Table

o to

Operating free-air temperature range

-55t0125

Storage temperature range

-65 to 150

- 65 to 150

°c

300

300

°c

260

°c

Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds

IJ

or U package

I D or N package

70

°c

NOTE 1. All voltage values, except differential input Voltages, are with respect to the midpoint between VCC + and Vec _.

PRODUCTION DATA documents contain information
curre.t as of publication date. Products conform to

specifications per the tarms of Taxas Instruments

standard warranty. Production processinu does not
necessarily includa testing of all parameters,

~

Copyright © 1979, Texas Instruments Incorporated

TEXAS
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-165

uA133M. uA133C
DIFFERENTIAL VIDEO AMPLIFIERS
DISSIPATION RATING TABLE
PACKAGE

TA:5 25°C
POWER RATING

ABOVE TA

TA = 70°C
POWER RATING

TA - 125°C
POWER RATING

500mW

N/A

N/A

500mW

N/A

500mW

11.0 mW/oe

104°e

500mW

275 mW

N

500 mW

U

500 mW

PARAMETER
Large'signal differential

BW

DERATE

FACTOR

0
J luA733M)

N/A
5.4 mW/oe

electrical characteristics, Vee +

Avo

DERATING

voltage amplification

Bandwidth

6 V, Vee-

TEST

2

500 mW

N/A

432 mW

135 mW

-6 V, TA

=

TEST CONDITIONS

FIGURE
1

N/A
57°e

VOO

RS

=1V

= 50!l

25°e

GAIN
uA733M
OPTIONt MIN TYP MAX

uA733C

MIN

TYP MAX

1

300

400

500

250

400

600

2

90

100

110

80

100

120

3

9

10

11

8

10

12

1

50

2

90

90

3

200

200

UNIT

V/V

50
MHz

110

Input offset current

Any

0.4

3

0.4

5

~A

liB

Input bias current

Any

9

20

9

30

~A

Common·mode
VICR

input voltage range
Common·mode

VOC
VOO

output voltage
Output offset voltage
Maximum peak-to-peak

VOPP

output voltage swing

1

Any

±1

1

Any

2.4

1

1

2&3

1

Any

Input resistance

3

Output resistance

Ci

Input capacitance

CMRR

Common-mode
rejection ratio

3
4

VIC
VIC

=
=

±1 V,

f,;;100kHz

2

±1 V,

f

= 5 MHz

2

Supply voltage
kSVR

rejection ratio
I.:I.VCC/.:I.VIO)
Broadband equivalent

Vn

tpd

tr

input noise voltage
Propagation delay time

Rise time

1

.:I.VCC+
.:I.VCC-

5

2

2

=
=

±0.5 V,

BW

= 1 kHz to

RS

= 500,

10 MHz

Output voltage step
RS

=

1V

= 500,

Output voltage step

=

1V

Maximum output
Isinklmax) sink current
ICC

Supply current

No signal

50

1

0.35

1.5

3

4.7

10

24

4

20

0

2

pF

86

60

3.6

1

10.5

2

4.5

3

2.5

50

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

dB

70

dB

12

~V

7.5
6.0

10

10

ns

12

ns

3.6
10.5
10

4.5
2.5

3.6
16

86
70

70

3

~

k!l

2

7.5

INSTRUMENTS

V

20

6.0

Any

V

250

1

2.5

V

250

2

Gain Optionl ... Gain-adjust pin 1 A is connected to pin 1 B, and pins 2A and 2B are open.
Gain Option 2 ... Gain-adjust pin 1 A and pin 1 B are open, pin 2A is connected to pin 2B.
Gain Option 3 ... All four gain-adjust pins are open.

4--166

0.35

12

t The gain option is selected as follows:

TEXAS

1.5

2.4

70

Any

Any
No load,

3.4

0.6

24

60

2

±0.5 V

2,,9

1.5

20

2

VOO';; 1 V

3.4

4.7

3
ro

2.9

4

2

VOO';; 1 V

V

0.6

3

1

'i

±1

2.5
24

mA

3.6
16

24

mA

uA733M, uA733C
DIFFERENTIAL VIDEO AMPLIFIERS
electrical characteristics, Vee +
ooe to 70°C for uA733e
TEST

PARAMETER

voltage amplification

110
lIB

MAX

1

200

600

250

600

2

80

120

80

120

3

8

12

8

12

UNIT

V/V

6

~A

40

~A

Input resistance

1

1
3

Common-mode

4

rejection ratio

Any

1

rejection ratio

1

(J1VCC/J1VIO)
Maximum output
Isink(max) sink current
ICC

uA733C

5

f:5 100 kHz

VIC ~ ±1 V,

f

Supply current

tThe gain option is
Gain Option 1 ...
Gain Option 2 ...
Gain Option 3 ...

J1VCC+
J1VCC-

~

±0.5 V,

~

±0.5 V

No load,

~

V
1.5

2&3

1.2

1.5

2.5

V

2.8

V
k!l

2

8

8

2

50

50

2

50

50

dB

Any

2.2

2.5

rnA

5 MHz

No signal

±1
1.5

VOO :5 1 V
VIC ~ ±1 V,

±1

1

Any

Supply voltage
kSVR

MIN

40

Maximum peak-to-peak

CMRR

MAX

Voo ~ 1 V

uA733M

Any

output voltage swing

ri

MIN

Any

Output offset voltage

VOPP

GAIN
OPTIONt

Input bias current
input voltage range

VOO

1

-55°C to 125°C for uA733M,

Input offset current
Common-mode

VICR

TEST CONDITIONS

FIGURE

Large-signal differential
AvO

-6 V, TA =

6 V, Vee-

dB

2

Any

27

27

rnA

selected as follows:
Gain-adjust pin 1 A is connected to pin 1 B, and pins 2A and 2B are open.
Gain-adjust pin 1A and pin 1 B are open, pin 2A is connected to pin 2B.
All four gain-adjust pins are open.

schematic
r-------~------------~--------~~------._------_.------~--VCC+

2.4 kll

INPUT 1

G.,t

ADJUST

2A

59011

10 kll

2.4 kll

OUTPUT 1

INPUT 2

5011 5011

"}G.,'

28

7 kn

ADJUST

OUTPUT 2

59011

30011

400

n

L-----------------~------------~~----------~------~-VCCComponent values shown are nominal.

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4-167

uA733M, uA733C
DIFFERENTIAL VIDEO AMPLIFIERS
DEFINITION OF TERMS
Large-Signal Differential Voltage Amplification (AVD) The ratio of the change in voltage between the output
terminals to the change in voltage between the input terminals producing it.
Bandwidth (BW) The range of frequencies within which the differential gain of the amplifier is not more
than 3 dB below its low-frequency value.
Input Offset Current (110) The difference between the currents into the two input terminals with the inputs
grounded.
Input Bias Current (lIB) The average of the currents into the two input terminals with the inputs grounded.
Input Voltage Range (VI) The range of voltage that if exceeded at either input terminal will cause the amplifier
to cease functioning properly.
Common-Mode Output Voltage (VOC) The average of the doc voltages at the two output terminals.
Output Offset Voltage (VOO) The difference between the d-c voltages at the two output terminals when
the input terminals are grounded.
Maximum Peak-to-Peak Output Voltage Swing (VOpp) The maximum peak-to-peak output voltage swing
that can be obtained without clipping. This includes the unbalance caused by output offset voltage.
Input Resistance (q) The resistance between the input terminals with either input grounded.
Output Resistance (ro) The resistance between either output terminal and ground.
Input Capacitance (Ci) The capacitance between the input terminals with either input grounded.
Common-Mode Rejection Ratio (CMRR) The ratio of differential voltage amplification to common-mode
voltage amplification. This is measured by determining the ratio of a change in input common-mode voltage
to the resulting change in input offset voltage.
Supply Voltage Rejection Ratio (kSVR) The absolute value of the ratio of the change in power supply voltages
to the change in input offset voltage. For these devices, both supply voltages are varied wmmetrically.
Equivalent Input Noise Voltage (V n ) The voltage of an ideal voltage source (having an internal impedance
equal to zero) in series with the input terminals of the device that represents the part of the internally
generated noise that can properly be represented by a voltage source.
Propagation Delay Time (tpd) The interval between the application of an input voltage step and its arrival
at either output, measured at 50% of the final value.
Rise Time (tr) The time required for an output voltage step to change from 10% to 90% of its final value.
Maximum Output Sink Current (lsink(max)) The maximum available current into either output terminal when
that output is at its most negative potential.
Supply Current (ICC) The average of the magnitudes of the two supply currents ICC1 and ICC2.

TEXAS .."
INSTRUMENTS
4-168

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

uA733M, uA733C
DIFFERENTIAL VIDEO AMPLIFIERS
PARAMETER MEASUREMENT INFORMATION
test circuits
0.21'F

~,~

2 k!)

50 !)

FIGURE 1

FIGURE 2

FIGURE 3

FIGURE 4
28 18

0.21'F
2 kG

50!)

50!)~+--+-:~.i~ 1,,"j,,"
2A 1A

VOLTAGE AMPLIFICATION ADJUSTMENT

FIGURE 6

FIGURE 5

-1!1

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-169

uA733M, uA733C

DIFFERENTIAL VIDEO AMPLIFIERS
TYPICAL CHARACTERISTICS
PHASE SHIFT
vs
FREQUENCY

PHASE SHIFT
vs
FREQUENCY

5

o

....
~

I

...........

I

.t:

.....

III

..........

3

4

5

:c

i'--.

6

-150

1\

"
7

...

III

........

"
8

9

10

\
\\

-250

l! - 300

11.

-350
-400
-450

N
II

FIGURE 8

VOLTAGE AMPLIFICATION
(SINGLE-ENDED OR DIFFERENTIAL)
vs
TEMPERATURE
1.2

~

-;;;

GAJ 1

1.1

>
g

..

'g>

1.0

a:
c

.g

..

"'"""

GAIN 3

0.9

i:~

""1

GAIN 2

TAI=

u

...

0.8
-75 -50 -25

'"

I

0

25

50

> 1.0
g

..

>
.;::;

"*a: 0.8

75

100 125

L

GAIN 3

~

~AI~ 1 V

..

V

~

/"

I-::::

,/

V

--

./

c

T A - Free-Air Temperature- °C

I--

V
./

/

~ 0.6

/

Q.

E


4

5

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

6

7

IVcc± I-Supply Voltage-V

FIGURE 10

FIGURE 9

4-170

~5OC

U

o
.;::;

GAIN~

..

~

1.4

+1

-;;;

GAIN 2

E

II

VCC+ =6V
VCC- = -6 V



>

C;

'0

70

'E

"tl

~

20

Q)

~

;0

.,
c:

40

.;,

I

~

20

0

>

I I
10 t-VCC+ = 6 V
VCC- = -6 V
t-TA = 25°C
III
o
1
4
10

]>
Cii

I'

I

~

IJl

10
10

>

40

100

400

1 k

4 k

10 k

~

GAIN 3

"tl

~

Radj-Resistance Between G1A and G1B-\]

SUPPLY VOLTAGE

20

24

18

No Load
INo Signal
20
TA = 25°C

1"-+ r--

I+- uA733C-':

I

~

t--.

E

...c:I

.,

E 12
u 10
C.

C.

9

16

/

> 12

>

I

I

~

u

u

I

I

:;

§

Co
::I

400

vs

FREE-AIR TEMPERATURE

IJl

100

SUPPLY CURRENT

vs

E 14

40

FIGURE 12

SUPPLY CURRENT

16

\

f-Frequency-MHz

FIGURE 11

~

\

Co
::I

B
VCC+ = 6 V
6 ~VCC- = -6 V
No Load
4 f---- No Signal

CI)

I

/V

8

V

/'"

V

V

V

k--:::

V

u

9

4

2

o
-75 -50 -25

0

25

50

75

100 125

o
3

TA-Free-Air Temperature- °C

4

5

6

7

8

IVcc± I-Supply Voltage-V

FIGURE 14

FIGURE 13

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4-171

uA733M, uA733C
DIFFERENTIAL VIDEO AMPLIFIERS
TYPICAL CHARACTERISTICS
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE

vs

vs

>

LOAD RESISTANCE

>
I

I

5

CD
Cl

CD
Cl

Vcc+ = 6 V
VCC- = -6 V
TA = 25°C

l!!

"5

~:J 4

SUPPLY VOLTAGE
8

I
I
I
TA = 25°C

!!!

- -r - '

"5 7

>...

S.

So
:J

6

",/

:J

o

o

~

-""co 5

3

~

/V

CD

Il.

S
....

[I

~2 r-:J

1

I

../

3

E
:J
E 2

/'

/'

/'

V

';(

V

co

~

~

/

~

Il.
Il.

!

/

E

,~

S4

....co

....-

/'

co
~
I

1

Il.

~ 0

0
10

40

100

400

1 k

4 k

>

10 k

3

4
5
6
7
IvoPP± I-Supply Voltage-V

Rl-load Resistance-O

FIGURE 15

FIGURE 16

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE

>
~ 6

INPUT RESISTANCE

vs

vs

FREQUENCY

FREE-AIR TEMPERATURE
40

Vcc+ = 6V
VCC- = -6 V
TA = 25°C

Cl

l!!

"5

>
... 5
:J

c: 30
-""

-""
co

"
!!!

I

o 4

CD

c

CD

Il.

25

'iii 20
CD

ex:

1\

co

E 2

g,

E

';(

~

6 V
-6 V

V/

I

Il.
Il.

00
1

2

4

7 10 20 40 70100 200 400
f-Frequency-MHz

-V

10 f--

•. rr

5

t---

o

I

- 60 - 40 - 20 0

1

33C

_.

--

~

f--t

-- - -

I
20

40 60

80 100 120 140

T A - Free-Air Temperature- °C

FIGURE 18

FIGURE 17

TEXAS

./

/ ' Vf f-r----f-G~~t?" ~t-

I

~ 1

~

INSTRUMENTS
4-172

=
=

I

.5

\

:J

15

1

VCC+
VCC-

II)

~

>

,I

35 r---

So
:J

S3
....

8

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

uA2240C
PROGRAMMABLE TIMER/COUNTER
02442, JUNE 1978

•

Accurate Timing from Microseconds to
Days

•

Programmable Delays from 1 Time Constant
to 255 Time Constants

•

Outputs Compatible with TTL and CMOS

•

Wide Supply-Voltage Range

•

External Sync and Modulation Capability

REVISED MAY 1988

N DUAL-IN-LiNE PACKAGE
ITOPVIEW)

OUTPUTS

Vee

00
01
02
03
04
05
06
07

REGULATOR
}
TIME BASE

OUTPUTS

RIC
}
MODULATION
TRIGGER
RESET
GND

INPUTS

description
These circuits consist of a time-base oscillator, and eight-bit counter, a control flip-flop, and a voltage
regulator, The frequency of the time-base oscillator is set by the time constant of an external resistor and
capacitor at pin 13 and can be synchronized or modulatd by signals applied to the modulation input, The
output of the time-base section is applied directly to the input of the counter section and also appears
at pin 14 (time basel, The time-base pin may be used to monitor the frequency of the oscillator, to provide
an output pulse to other circuitry, or (with the time-base section disabled) to drive the counter input from
an external source_ The counter input is activated on a negative-going transition. The reset input stops
the time-base oscillator and sets each binary output, QO through Q7, and the time-base output to a TTL
high level. After resetting, the trigger input starts the oscillator and all Q outputs go low. Once triggered,
the uA2240C will ignore any signals at the trigger input until it is reset,
The uA2240C timer/counter may be operated in the free-running mode or with output-signal feedback
to the reset input for automatic reset, Two or more binary outputs may be connected together to generate
complex pulse patterns, or each output may be used separately to provide eight output frequencies, Using
two circuits in cascade can provide precise time delays of up to three years,
The uA2240C is characterized for operation from OOC to 70°C,
AVAILABLE OPTIONS
SYMBOLIZATION
PACKAGE SUFFIX
DEVICE
uA2240e
N

I
I

PRODUCTION DATA documents contain information
current as of publication date, Products conform to

specifications per the terms of Texas Instruments

standard warranty, Production processing does not
necessarily include testing of an parameters,

OPERATING
TEMPERATURE RANGE
ooe to 70°C

VT MAX at 25°C

2V

Copyright © 1979, Texas Instruments Incorporated

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4--173

uA2240C
PROGRAMMABLE TIMER/COUNTER

functional block diagram
REGULATOR
OUTPUT

Vcc

(15)

(16)

TRIGGER....:(.:.ll:..:)+-e~
VOLTAGE
REGULATOR

RESET ,..;(",1;:;0)+_ _0

7k!1
MODULATION (12)
INPUT
12 k!1

S

RIC .:.(1:..;;3:.:.)+....

_

.......- - - - - i f - - O [ > T

S

<;?P--OI>

IO-_r--OII> T

.--......--1
GND~(9:.:.)~___________~

(1)
~

.

. open-collector outputs

ao

TBO

(2)

(8)

01

07

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vcc (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18 V
Output voltage: QO thru Q7 .................................................. 18 V
Output current: QO thru Q7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10 mA
Regulator output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 5 mA
Continuous dissipation at (or below) 25°C free-air temperature ..................... 650 mW
Operating free-air temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. O°C to 70°C
,Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ...................... 260°C
NOTE 1: Voltage values are with respect to the network ground terminal.

recommended operating conditions
MIN
Supply voltage, VCC (see Note 2)
Timing resistor
Timing capacitor
Counter input frequency (Pin 14)
Pull-up resistor, time-base output

2
2
3
1

Trigger and reset input pulse voltage
Trigger and reset input pulse duration
External clock input pulse voltage
External clock input pulse duration
NOTE 2: For operation with VCC :5 4.5 V, short regulator output to Vcc.

TEXAS

~

INSTRUMENTS
4-174

NOM

4
0.001
0.01

POST OFFiCe BOX 655303 ' DALLAS. TeXAS 75265

1.5
20
3

MAX

UNIT

14
10
1000

Mil

V
JLF
MHz
kll
V
JLs

V
JLs

uA2240C
PROGRAMMABLE TIMER/COUNTER

electrical characteristics at 25°C free-air temperature
PARAMETER
Regulator output voltage
Modulation input open
circuit voltage

TEST
1
2
1

Trigger threshold voltage

1

High-level trigger current

1

Reset threshold voltage
High-level reset current
Counter input Itime basel
threshold voltage
Low-level output current,
00 thru 07
High-level output current,
00 thru 07
Supply current

TEST CONDITIONS

CIRCUIT

TYP

MAX

Vee = 5 V,
Vee = 15 V,

Trigger and reset open or grounded

3.9

4.4

Trigger and reset open or grounded

5.8

6.3

6.8

Vee = 5 V,
Vee = 15 V,

Trigger and reset open or grounded

2.8

3.5

4.2

Trigger and reset open or grounded
Trigger at 2 V,

1
1

Vee = 5 V,

Trigger at

2

Vee = 5 V,

Trigger and reset open or grounded

Vee - 5 V,

Trigger at 2 V,

Reset at

VOL

Reset at

T rigger at

1.4
Reset at

aV

1.4

a V,

2

VOH=15V,

Reset at 2 V,

Trigger at 0 V

1

Vee = 5 V,

Trigger at 0 V,

Reset at 5 V

1

Vee -

Trigger at 0 V,

Reset at 5 V

3

V+ = 4 V

UNIT
V
V

2

V

2

I'A
V

10

aV
aV

< 0.4 V

15 V,

10.5

aV

Vee - 5 V,
Vee - 5 V,
Vee - 5 V,

2

MIN

10

I'A

1

1.4

V

2

4

mA

0.01

15

4

7

13

18

I'A

mA

1.5

operating characteristics at 25°C free-air temperature (unless otherwise noted)
PARAMETER
Initial error of time base t
Temperature coefficient
of time-base -period
Supply voltage sensitivity
of time-base period
Time-base output frequency

TEST
1

Vee = 5 V,

1

TA = ooe to 70°C

1

Vee;;,: 8 V

1

Vee - 5 V,

Propagation delay time
Output rise time
Output fall time

TEST CONDITIONS t

CIRCUIT

Trigger at 5 V,

RL = 3 kll,

MAX

Reset at 0 V

±0.5

±5

Vee = 5V

-200

Vee = 15V

R - MIN,

e - MIN
From trigger input
From reset input

eL = 10 pF

00 thru 07

UNIT
%
ppm/oe

-80
-0.08

see Note 3
2

TYP

MIN

-0.3

%/V

130

kHz

1
0.8

I'S

180
180

ns

tFor conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
tThis is the time-base period error due only to the uA2240e and expressed as a percentage of nominal 11.00 Rei.
NOTE 3: Propagation delay time is measured from the 50% point on the leading edge of an input pulse to the 50% point on the leading
edge of the resulting change of state at QO.

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4-175

uA2240C
PROGRAMMABLE TIMER/COUNTER
PARAMETER MEASUREMENT INFORMATION
VCC

R = 10 kn
(UNLESS OTHERWISE
SPECIFIED)

C= 0.1 "F
(UNLESS OTHERWISE
SPECIFIED)

0.01 "F
CONNECTED FOR OPERATING
CHARACTERISTICS TESTS ONL Y

I

RIC

MOD

VCC

TRIG
REG
OUT

RESET
TIME

20kn

EACH 00 THRU 07 OUTPUT LOAD = 10 kn

FIGURE 1. GENERAL TEST CIRCUIT
VCC

1kn
(DISABLES
OSCILLATOR)

TRIG
REG

3V--n n
ov--.l

LJ

(OPEN)

OUT

RESET

L

INPUT SIGNAL FOR
OPERATING CHARACTERISTICS
TESTS ONLY

EACH 00 THRU 07 OUTPUT LOAD = RL

FIGURE 2. COUNTER TEST CIRCUIT

.

..
.

TRIG

..

(OPEN)

MOD

VCC

V+=4V

REG 1--_--'
OUT

RESET

.
EACH 00 THRU 07 OUTPUT LOAD

= 10 kn

FIGURE 3. REDUCED-POWER TEST CIRCUIT (TIME BASE DISABLED)
'" These connections may be open or grounded for this test.

~

TEXAS
INSTRUMENTS
4--176

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

uA2240C
PROGRAMMABLE TIMER/COUNTER
TYPICAL CHARACTERISTICS
NORMALIZED TIME-BASE PERIOD
vs
MODULATION INPUT VOLTAGE

2.5

'"c

2.0

'E

i=

1.5

-c

'"
.!::!
c;;

E

0

1.0

"I~

0.5

Z
I

o

",

1

2

/

V

/

I

/

/

4
3
5
Modulation Voltage-V

6

FIGURE 4

TYPICAL APPLICATION INFORMATION
Figure 5 shows voltage waveforms for typical
operation of the uA2240C. If both reset and
trigger inputs are low during power-up, the
timer/counter will be in a reset state with all
binary (Q) outputs high and the oscillator
stopped. In this state, a high level on the trigger
input starts the time-base oscillator. The initial
negative-going pulse from the oscillator sets the
Q outputs to low logic levels at the beginning of
the first time-base period. The uA2240C will
ignore any further signals at the trigger input until
after a reset signal is applied to the reset input.
With the trigger input low, a high level at the
reset input will set Q outputs high and stop the
time-base oscillator. If the reset signal occurs
while the trigger input is high, the reset is
ignored. If the reset input remains high when the
trigger input goes low, the uA2240C will reset.

FIGURE 5. TIMING DIAGRAM OF
OUTPUT WAVEFORMS

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4-177

uA2240C
PROGRAMMABLE TIMER/COUNTER
TYPICAL APPLICATION INFORMATION
In monostable applications of the uA2240C, one or more of the binary outputs will be connected to the
reset terminal as shown in Figure 6. The binary outputs are open-collector stages that can be connected
together to a common pull-up resistor to provide a "wired-OR" function. The combined output will be
low as long as anyone of the outputs is low. This type of arrangement can be used for time delays that
are integer multiples of the time-base period. For example, if 05 (2 5 = 32) only is connected to the reset
input, every trigger pulse will generate a 32-period active-low output. Similarly, if 00, 04, and 05 are
connected to reset, each trigger pulse creates a 49-period delay.
In astable operation, the uA2240C will free-run from the time it is triggered until it receives an external
reset signal.
The period of the time-base oscillator is equal to the RC time constant of an external resistor and capacitor
connected as shown in Figure 6 when the modulation input is open (approximately 3.5 V internal, see
Figure 4). Under conditions of high supply voltage (VCC > 7 V) and low value of timing capacitor
(C < 0.1 pF), the pulse duration of the time-base oscillator may be too short to properly trigger the counters.
This situation can be corrected by adding a 300-pF capacitor between the time-base output and ground.
The time-base output (TBO) is an open-collector output that requires a 20-kO pull-up resistor to Pin 15
for proper operation. The time-base pin may also be used as an input to the counters for an external timebase or as an active-low inhibit input to interrupt counting without resetting.
The modulation input varies the ratio of the time-base period to the RC time constant as a function of
the dc bias voltage (see Figure 4). It can also be used to synchronize the timer/counter to an external clock
or sync signal.
The regulator output is used internally to drive the binary counters and the control logic. This terminal
can also be used to supply voltage to additional uA2240C devices to minimize power dissipation when
several timer circuits are cascaded. For circuit operation with an external clock, the regulator output can
be used as the VCC input terminal to power down the internal time base and reduce power dissipation.
When supply voltages less than 4.5 V are used with the internal time base, Pin 15 should be shorted to
Pin 16.
vcc
(16)

vcc

VREG (15)

20 kn

R
(13) RC

T80 (14)

rl:·l
....

uA2240

MF

(12) MODULATOR

OUTPUT
_-.:..;(1-,,1),TRIGGER

_.-'-'(l;';;'O)'R ESET

47 kn

GND
(9)

Sl

FIGURE 6. BASIC CONNECTIONS FOR TIMING APPLICATIONS

TEXAS . "
INSTRUMENTS
4-178

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

5-1

-I

:::r

(I)
.,

3Q)

-c
CD

_.

th

co

::s

o
o
::s

_.

tn

a..

.,CD

a
-.
o

::s

tn

5-2

Thermal Considerations in
Design of Power Supplies
Application Report

T~

INSfRUMENlS
5-3

IMPORTANT NOTICE
Texas Instruments (TI) reserves the rightto make changes to or to discontinue any
semiconductor product or service identified in this publication without notice. TI
advises its customers to obtain the latest version of the relevant information to
verify, before placing orders, that the information being relied upon is current.

TI warrants performance of its semiconductor'products to current specifications
in accordance with TI's standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty.
Unless mandated by govemment requirements, specific testing of all parameters
of each device is not necessarily performed.

TI assumes no liability for TI applications assistance, customer product design,
software performance, or infringement of patents or services described herein.
Nor does TI warrant or representthat license, either express or implied, is granted
under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which
such semiconductor products or services might be or are used.
Texas Instruments products are not intended for use in life-support appliances,
devices, or systems. Use of a TI product in such applications without the written
consent of the appropriate TI officer is prohibited.

Copyright © 1991, Texas Instruments Incorporated

5-4

Thermal Considerations in Design of Power Supplies

Introduction
Power supply circuit designers place emphasis on suppressing transients, improving regulation, and increasing efficiency, yet
minimum effort is concentrated toward thermal considerations and packaging of the power supply. Serious efforts must be given
to thermal design and packaging to minimize power supply failures in the field. If sufficient attention is given to the important
parameters supplied by the semiconductor manufacturers (e.g., maximum junction temperature, junction-to-case, and
junction-to-ambient thermal resistance), proper heat removal can be achieved. Thermal resistance is the temperature difference
between two points divided by the power dissipation, normally stated in °C/W. The reference temperature can be the ambient
temperature or the temperature of a heat sink that is attached to the integrated circuit (Ie) package.
Heat can be transferred from the transistor or integrated circuit package by three methods: conduction, convection, and radiation.
Conduction is the transmission of energy by a medium not involving movement of the medium itself. This method is predominant
in junction to the case or from the case to a heat sink heat transfer from the semiconductor. Length, cross-section, and temperature
differential of the medium are key parameters that determine conduction.
Convection is the transmission of energy or mass by a medium involving movement of the medium itself. This method is
predominant in the transfer of heat from the case to ambient or a heat sink to ambient. Surface conditions, convecting fluids,
velocity, and temperature difference are dominant factors in convection.
Radiation is the emission and propagation of waves transmitting energy through space or some medium. This method is
important in heat transfer from the cooling-fin surface of a heat sink. Thermal emissivity, surface area, and temperature difference
between radiating and adjacent mediums are key factors that determine radiation.

Basic Thermal Circuit and Symbols
Figure 1 illustrates the various heat flow paths, temperatures, and thermal resistances of a steady-state thermal model using a KC
package with formed leads. A popular concept is to display this thermal model as a network of series resistors as shown in Figure 2,
comparing the thermal circuit analogy to an electric circuit. Extending this Ohm's-law concept of this thermal circuit, temperature
is analogous to voltage and thermal resistance to ohmic resistance. Figure 2 provides an expression for:
T J = TA + PO(RaJC + Racs + RaSA)
or TJ = TA + Po(RaJN for a regulator without external heat sink

(1)

where
TJ = junction temperature in °C
T A = ambient air temperature in °C
thermal resistance, junction-to-case in °C/W
RaJC
Racs
thermal resistance, case-to-heat sink °C/W
RaSA =thermal resistance, heat sink-to-ambient in °C/W
RaJA = thermal resistance, junction to am.bient °C/W
Po =power dissipated by semiconductor device in W

=
=

5-5

Junction

r

po\

RaJC

Plastic Flange-Mounted Case

RSJA
RaSA

TA~~""'''''''''''''''''''''''''''''''~'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''---

x

Atmosphere or Ambient

Figure 1. Semiconductor Thermal Model
The junction-to-ambient thermal resistance, RaJA, can be expressed as a sum of thermal resistances listed below:

(2)

RSJA = RaJC + Racs + RaSA

Equation 2 is applicable only when an external heat sink is used. If only a mounting (internal) heat sink is used, or the device does
not have a heat sink, the RaJA is equal to the RaJA specified on the product data sheet. RaJC normally is given on the data sheet
also, and the junction-to-case thermal resistance is a function of the material, size of the package, die area and thickness, and
integrity of the die bond to the case, lead frame, or chip carrier. Recs depends on the package, heat-sink-interface (mounting of
the regulator to the heat sink) area, and integrity of the contact surface. Typical values for Racs for different packages are shown
in Table 1.
Po (Power - W)
TJ, Junction Temperature
TJ>TC

RaJC
TC, Case Temperature
TC>TS

Racs
TS, Heat-Sink Temperature
TS>TA
RaSA
TA, Ambient Temperature
(Reference Temperature)

Figure 2. Basic Semiconductor Heat Sink Steady State Thermal Circuit

5-$

Table 1.

Roes for Different Types of Packages and Mounting Conditions

PACKAGE

METAL·TO·METAL

METAL·TO·METAL WITH
THERMAL COMPOUND

TO-3

O.52'Cf\N

O.14°Cf\N

O.36'Cf\N

1.1°Cf\N

1°Cf\N

1.7'Cf\N

KC
(TO-220)

CONTACT WITH MICA WASHER
ANDTHERMALCOMPOUNOt

t Typical values ex1racted from heat-sink manufacturers curves.

The ROSA found on the heat sink data sheets depends on the attributes of the heat sink and the ambient conditions. Convection
and radiation are heat flow methods affecting the heat sink to ambient thermal resistance.
Typically, the ambient temperature (TAl, maximum junction temperature (TJ), power dissipation (PD), and thermal resistance
from junction-to-case (RoJd are known. To ensure safe operations of any semiconductor, the device junction temperature must
be maintained below the maximum value given on the product data sheet. As with any semiconductor component, these devices
have thermal and electrical limitations that must be adhered to if desired performance and service time are to be achieved. In
addition, improved reliability can be obtained by selecting conservative operating procedures and thermal ranges. Normally, the
electrical and thermal characteristics are interrelated with the actual operating ranges that are heavily dependent on the component
application.

Thermal Design Examples
The following examples are given to illustrate the design procedure in:
1.

Ascertaining the maximum allowable power dissipation of a semiconductor device

2.

Determining the maximum junction-to-ambient air temperature (TAmax) using a mounting (internal) heat sink, or
regulator without internal heat sink

3.

Selecting an external heat sink by calculating the heat sink-to-ambient thermal resistance (ROSN'

To ascertain the maximum allowable power dissipation of a semiconductor device, use equation 3:
(3)

where
TJmax = 150°C (design limit)
TA = 75°C
RaJA = 1/derating value = 1/8.2 mW;oC (DW package) = 121.95°C/W
TJmax = TA + PD(ROJC + RoCS + ROSN
To ascertain the maximum T A for an uA78M12C regulator with an internal heat sink, use equation 4:
TJ
TA
TA
TA

= T A + PD(ROJN
=TJ-PD(ROJA)
= 125 - (0.8 x 62.5)
= 75°C

(4)

5-7

where
PD =0.8W
TJ = 125°C
ROJA = I/derating factor = 1/0.016 = 62SC/W
Derating factor of KC (TO-220) package is 16 mWrC (from uA78M12C data sheet)
To ascertain the heat sink-to-ambient thermal resistance (RaSA) for selection of an external heat sink using the uA7915C regulator,
the heat sink should be mounted metal-to-metal using a thermal compound.
ROSA =

TJ - TA
PD
- ROJC - ROCS

ROSA =

125 - 75
3
- 4 - 1 = 11.7°C/W

(5)

where
PD
TJ
TA
ROJC
ROCS

=3W
= 125°C
= 75°C
= 4°C/W (from the uA7915C data sheet)
= l°C/W from Table 1 (KC or TO-220 case)
ROlA =

TJ - TA
PD
= RO lC + ROCS + ROSA

A Thermalloy 7019 or Staver V3-5 heat sink meets the desired requirements (see Table 3).
Table 2. Available Heat Sinks for TO-3 Packages
MANUFACTURER;

ReSARANGEt

'c/w

STAVER

THERMALLOY

3to 5

V3-5-2

5to B

V3-3-2

8to 13

V1-3, V1-5, V3-3, V3-5, V3-7-96

6004,6053,6054,6214,6216
6002,6003,6015,6016,
6052,6060,6061,6213
6001,6013,6014,6051

Table 3. Available Heat Sinks for KC (TO-220) Packages
MANUFACTURER;

RaSARANGEt

'c/w

STAVER

3t05
5to B
8 to 13

V3-5-2
V3-3-2
V3-3, V3-5

THERMALLOY

. .

6072/6071
6072,7021,7025
6021,6030,6032,7019,7020

All values are typical as determined from charactenstlc curves received from manufacturers .
*t This
table is representative of two heat sink manufacturers; many others are available.

5-8

General Suggestions for Efficient Thermal Management
Suggestions are as follows:

1.

Place regulator components away from heat-dissipating components and mount hardware in an area that provides a
good heat-dissipation path for the regulator.

2.

For applications requiring electrical insulation of the heat sink from the regulator, use a thin (O.003-inch) mica washer.
A thermal lubricant must be placed on both sides of the washer.

3.

If a heat sink with fins is used with the regulator, align the fins in a vertical plane for a more efficient transfer of heat.

4.

Select a heat sink with a mounting surface that has a finish and flatness comparable to the regulator package. Use
thermal compounds to minimize voids, scratches, and imperfections between the mating surfaces. Use of thermal
compounds with an insulating washer is more significant than with a metal-Io-metal contact.

5.

Attach a regulator heat sink to the regulator before soldering and mounting on the PC board. Maximum lead
temperatures are 260°C for ten seconds with plastic packages or 300°C for sixty seconds for ceramic packages at a
distance of 1/16th inch from case.

Conclusion
Thermal considerations in the design of power supplies are straight-forward, and with emphasis on heat reduction and
conservative operating techniques, more efficient and reliable designs will be realized. The design parameters are normally under
the control of the circuit designer and, with compromises, the variables can be controlled to achieve a product that will experience
fewer failures in the field. On the other hand, if the thermal design considerations are overlooked or minimized, many of the power
supply failures in the field may result from an inadequate thermal design approach.

5-9

5-10

6-1

Contents
Page
Ordering Instructions ...................................................... 6-3
Mechanical Data .. .......................................................... 6-5

i:
CD
(")

::r
Q)

_.
-c
::J

(")
Q)

Q)
,...
Q)

6-2

ORDERING INSTRUCTIONS

ORDERING INSTRUCTIONS
Electrical characteristics presented in this data book, unless otherwise noted, apply for the circuit type(s) listed in the
page heading regardless of package. The availability of a circuit function in a particular package is denoted by an
alphabetical reference above the pin-connection diagram(s). These alphabetical references refer to mechanical
outline drawings shown in this section.
Factory orders for circuits described in this data book should include a four-part type number as shown in the following
example.
TL

Example:

598M

J

/883B

Prefix _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _---'
MUST CONTAIN TWO OR THREE LETTERS
SN .......... TI Special Functions or Interface Products
TL, TLE .......................... TI Linear Products
TLC ........... TI Linear Silicon-Gate CMOS Products
STANDARD SECOND-SOURCE PREFIXES
AD ................................. Analog Devices
ADC, LF, LM, LP, or MP ..................... National
LT or LTC .......................... Linear Technology
MC ....................................... Motorola
NE, SA, or SE .............................. Signetics
OP ........................................... PMI
RG, RM, or RV ............................ Raytheon
uA ................................ Fairchild/National
UC .......................... ,............ Unitrode
Unique Circuit Description Including Temperature Range _ _ _ _---'
MUST CONTAIN TWO OR MORE CHARACTERS
(From Individual Data Sheets)
Examples:

10
592
7757

34070
1451AC
2217-285

Package _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

~

MUST CONTAIN ONE OR TWO LETTERS
D, DB, DW, FK, FN, J, JD, JG, KC, KK, KV, LP, N, NS, NT, NW, P, PK, PW, U
(From Pin-Connection Diagrams on Individual Data Sheet)
MIL-STD-883B, Method 5004, Class B - - - - - - - - - - - - - - - - - - - - - - 4
Omit /8838 When Not Applicable

TEXAS ~

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

ORDERING INSTRUCTIONS

Circuits are shipped in one of the carriers below. Unless a specific method of shipment is specified by the customer
(with possible additional costs), circuits will be shipped via the most practical carrier.
Dual-In-Line (J, JD, JG, N, NT, NS, NW, P)
- A-Channel Antistatic or
Conductive Plastic Tubing

Shrink Small Outline (DB)
- Tape and Reel
Thin Shrink Small Outline (PW)
- Tape and Reel

Plug-In (LP)
- Plastic 8ag
- Tape and Reel

Small Outline (0, OW)
- Tape and Reel
- Antistatic or Conductive
Plastic Tubing

Chip Carriers (FK, FN)
- Antistatic or Conductive
Plastic Tubing

Power Tab (KC, KK, KV)
A-Channel Antistatic or
Conductive Plastic Tubing

Flat (U)
- Milton Ross Carriers

INSTRUMENTS
TEXAS "'"
6-4

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

MECHANICAL DATA

0008, 0014, and 0016
plastic small-outline packages
Each of these small-outline packages consists of a circuit mounted on a lead frame and encapsulated within a
plastic compound. The compound will withstand soldering temperature with no deformation, and circuit
performance characteristics will remain stable when operated in high-humidity conditions. Leads require no
additional cleaning or processing when used in soldered assembly.
0008, 0014, and 0016
(16-pln package used for Illustration)
4,00 (0.157)
3,81 (0.150)

Designation per JEDEC Std 30:
PDSO-G8
PDSO-G14
PDSO-GI6

I~

9

8

1,75 (0.069)
1,35 (0.053)

:

5,21 (0.205) -i"If----~
4,60 (0.181)

If.- ~oP~~~s

0,229 (0.0090)
0,190 (0.0075)

0,50 (0.020) x 45° NOM
0,25 (0.010)

--*-6;-~-4J-B-=-C:::J-J=-:J_-B-J:::-:::1_-8--'J
0,203 (0.008)
0,102 (0.004)
0,79 (0.031)
0,28 (0.011)

I I
,

,

:r~

-,.I I.r-

0,51 (0.020)
0,36 (0.014)
7° NOM
4 Places

Pin Spacing
1,27 (0.050)
(see Note A)
DIM
~

8

14

16

AMIN

4,80
(0.189)

8,55
(0.337)

9,80
(0.386)

A MAX

5,00
(0.197)

8,74
(0.344)

10,00
(0.394)

]l

~JtI;
0,51 (0.020)

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTES: A.
B.
C.
D.

Leads are within 0,25 (0.010) radius of true position at maximum material condition.
Body dimensions do not include mold flash or protrusion.
Mold flash or protrusion shall not exceed 0,15 (0.006).
Lead tips to be planar within ±0,051 (0.002) exclusive of solder.

TEXAS ~

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

6-5

MECHANICAL DATA

08008,08014,08016,08020, and 08024
shrink small-04tline packages
These shrink small-outline packages consist of a circuit mounted on a lead frame and encapsulated within a
plastic compound. The compound will withstand soldering temperature with no deformation, and circuit
performance characteristics will remain stable when operated in high-humidity conditions. Leads require no
additional cleaning or processing when used in soldered assembly.
Designation per JEOEC Std 30:
POSO·G8
POSO·G14
POSO·G16
POSO·G20
POSO·G24

OB008, OB014, OB016, OB020, and OB024
(24·pin package used for illustration)

~~

t
2'0...Lr_AX---....-

h=:;:::;:;:::;::;::;:;:::;~qJUUUlfJ

0,05 MIN

i

!
B-4~'+
a

j

L~I$I

0.13@1

Pin Spacing 0,65 NOM (see Note A)

0.015
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS

NOTES: A.
B.
C.
D.
E.

Leads are within 0,25 mm radius of true position at maximum material condition.
Body dimensions do not include mold flash or protrusion.
Mold or flash end protrusion shall not exceed 0,15 mm.
Interlead flash shall be controlled by TI statistical process control (additional information available through TI field office).
Lead tips to be planar within ,,0,05 mm exclusive of solder.

DIM
~

8

14

16

20

24

AMIN

2,70

5,90

5,90

6,90

7,90

A MAX

3,30

6,50

6,50

7,50

8,50

BMAX

0,66

1,30

0,96

0,83

0,68

TEXAS ..,
INSIRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

MECHANICAL DATA

DW016, DW020, DW024, and DW028
plastic small·outline packages
Each of these small-outline packages consists of a circuit mounted on a lead frame and encapsulated within a
plastic compound. The compound will withstand soldering temperature with no deformation, and circuit
performance characteristics will remain stable when operated in high-humidity conditions. Leads require no
additional cleaning or processing when used in soldered assembly.
DW016, DW020, DW024, and DW028
(20-pln package used for illustration)

i
10,65 (0.419)
10,15 (0.400)

I'RRRRt

T

Designation per JEDEC Std 30:
PDSO-G16
PDSO-G20
PDSO-G24
PDSO-G28

A

11

20,

I

7,55 (0.297)
7,45 (0.293)

L;:G):;:;:;:~;::;:;:::;:;::;:,:::;:::;::;:~1~0

L

r

'.

~t :.p~;:.

~:~~""]:r!g-:~-~~-l--.k0,30 (0.012)
0,10 (0.004)

J

0,785 (0.031)
0,585 (0.023)

'[ '[
-+

-.II

~.") "". ~

L

',' ~.". ~

~(=
~
-It 4'
\

0,490 (0.019)
0,350 (0.014)

9,0 (0.354)

±4

,

\"" 7'NOM
4 Places

0,320 (0.013)
0,230 (0.009)

~'
,

~
/

/

~
1 27 (0 050)
,
.
0,40 (0.016)

1,27 (0.050) TP (see Note A)

~
DIM

AMIN
A MAX

16

20

28

24

10,16

12,70

15,29

17,68

(0 AOO)

(0.500)

(0.602)

(0.696)

10,36
(OA08)

12,90
(0.508)

15,49
(0.610)

17,88
(0.704)

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTES: A.
B.
C.
D.

Leads are within 0,25 (0.010) radius of true position at maximum material condition.
Body dimensions do not include mold flash or protrusion.
Mold flash or protrusion shall not exceed, 0,15 (0.006).
Lead tips to be planar within ±0,051 (0.002) exclusive of solder.

TEXAS ~

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

6-7

MECHANICAL DATA

FK020, FK028, FK044, FK052, FK068, and FK084
ceramic chip carrier
Each of these hermetically sealed chip carrier packages has a three-layer ceramic base with a metal lid and
braze seal. These packages are intended for surface mounting on solder leads on 1,27 (0.050) centers.
Terminals require no additional cleaning or processing when used in soldered assembly.
FK package terminal assignments conform to JEDEC Standards 1 and 2.
FK020, FK028, FK044, FK052, FK068, AND FK084
(28-pin used for Illustration)

Designation per JEDEC Std 30:
CQCC-N20
CQCC-N28
CQCC-N44
CQCC-N52
CQCC-N68
CQCC-N84

19

25

0,51 (O.020)
0,25 (O.010)

1r

Index Corner

/'""LI'""I~~LI""L;A""-":U
I

~ 0,51 (O.020)
0,25 (o.o10)

1,14 (O.045)

~ 0,89 (0.035)

j

-I.

t

1,14 (0.045)
0,89 (0.035)

1,27 (0.050) T.P.

2,03 (0.080)
1,63 (0.064)

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTES: A. See next page for A and B dimensions.

. TEXAS ~

INSTRUMENTS
6-8

POST OFFICE BOX 655303· DALLAS. TEXAS 75265

MECHANICAL DATA

FK020, FK028, FK044, FK052, FK068, and FK084
ceramic chip carrier (continued)
JEDEC OUTLINE

NUMBER OF

DESIGNATIONt

TERMINALS

MIN

MAX

MIN

MAX

MS-004-CB

20

MS-004-CC

28

8.69 (0.342)
11.23 (OA42)

9.09 (0.358)
11.63 (OA58)

7.80 (0.307)
10.31 (OA06)

9.09 (0.358)
11.63 (OA58)

1~.32 (0.7ElO) .....
24,43 (0.962) '.'
29.59 (1;)64)

.12.58(0;495)
21.60 (Q.850)
26.60(1.047)

A

> . . . . .•. . •. .

MS~Q~4;CJ,:
,.....5;2··
tl\,78 (0.740)
iMS:004-.CF.,
68 > .····.··23.83(0.938)

MS;004,CG

··i

' , > 8 4 . ".... i··.·.·····28,99(1.141)

B

14;22 (0.560)
(0,858)
27.0Q{I.063)

~.21.80

t All dimensions and notes for the specified JEDEC outline apply.

TEXAS ."

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

6-9

MECHANICAL DATA

FN020, FN028, FN044, FN052, FN068, and FN084
plastic J-Ieaded chip carrier
Each of these chip carrier packages consists of a circuit mounted on a lead frame and encapsulated within an
electrically nonconductive plastic compound. The compound withstands soldering temperatures with no
deformation, and circuit performance characteristics remain stable when the devices are operated in
high-humidity conditions. The package is intended for surface mounting on 1,27 (0.050) centers. Leads require
no additional cleaning or processing when used in soldered assembly.
FN020, FN028, FN044, FN052, FN068, and FN084
(20-PIN package used for illustration)

Designation per JEDEC Std 30:
S-PLCC-J20'
S·PLCC·J28
S·PLCC·J44
S-PLCC·J52
S·PLCC·J68
S·PLCC·J84

0.10 0.004

~ ,~~ (g:g:~l2 Places

6,~ (g:g~~l

--r-

2 Sides (see Note E)

e

~

1.27 (0.050) T.P.
4 Sides

(se. Not. C)

9

10

11

1
--.\

~

R. TYP

i

02, E2
(see Note F)

(see Note F)

+--I----1=-.

.

r:1+i:l1r.:-0.""38"'(;;"0.0::-::1-;:;5)7i@""I"'oC';_E='i@""1

1

~

-L-_+--+_

1+10.38(0.015)@IF-G@1

12 13

LC±J

0.51 (0.020) MIN.

(see Note C)

g:~~ (g:~:l

*

(Includes Lead Finish)

SUM OF DAM BAR PROTRUSIONS
TO BE 0,18 (0.007) MAXIMUM
PER LEAD

,I

I-e-

~-4I11+-

0.64 (0.025) MIN.

1+10.18 (o.OO7)@1 F-G@I
1+10.18 (o.OO7)ijl D-E@I

(see table on following page for additional dimensions)
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTES: B. All dimensions conform to JEDEC Specification MO-047ANAF. Dimensions and tolerancing are per ANSI Y14,5M -1982.
C. Dimensions D1 and E1 do not include mold flash protrusion. Protrusion shall not exceed 0,25 (0,010) on any side, Centerline of center
pin each side is within 0,10 (0.004) of package centerline by dimension B. The lead contact points are planar within 0,10 (0,004),
D, Datums ~ and

1F -

G 1for center leads are determined at datum 1- H -I·

E. Datum ~ is located at top of leads where they exit plastic body.

F. Location of datums

1- A -I and 1- B -I to be determined at datum ~.
1- C -I.

G. Determined at seating plane

TEXAS ."

INSlRUMENlS
6-10

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

MECHANICAL DATA

FN020, FN028, FN044, FN052, FN068, and FN084
plastic J·leaded chip carrier (continued)
JEDEC
OUTLINE

PINS

MO-047AA

20

MO-047AB

28

MO-047AF

84

NOTES A: All dimensions conform to JEDEC Specification MO-047ANAF. Dimensions and tolerancing are per ANSI Y14.5M -1982.
F: Determined at seating plane
C

1- -I.

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

6--11

MECHANICAL DATA

J014
ceramic dual·in·line package
This hermetically sealed dual-in-line package consists of a ceramic base, ceramic cap, and lead frame. Hermetic
sealing is accomplished with glass. The package is intended for insertion in mounting hole rows on 7,62 (0.300)
centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in
the board during soldering. Tin-plated ("bright-dipped") leads require no additional cleaning or processing when
used in soldered assembly.
J014

Designation per JEDEC Std 30:
GDIP-T14

0,63 (0.025) R NOM
~

__---.+--

7,87 (0.310)
7,37 (0.290)

I
Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2017:07:27 18:10:42-08:00
Modify Date                     : 2017:07:27 23:31:39-07:00
Metadata Date                   : 2017:07:27 23:31:39-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:425c408a-2e28-a648-8937-082ef7e7c772
Instance ID                     : uuid:7d2b832e-2fa5-0446-967f-e68a39d78584
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 940
EXIF Metadata provided by
EXIF.tools

Navigation menu