1994_GI_Power_Semiconductor_Data_Book 1994 GI Power Semiconductor Data Book

User Manual: 1994_GI_Power_Semiconductor_Data_Book

Open the PDF directly: View PDF PDF.
Page Count: 722

Download1994_GI_Power_Semiconductor_Data_Book 1994 GI Power Semiconductor Data Book
Open PDF In BrowserView PDF
."

0

:e

I't)

""'

V)
I't)

....3

n
0

::s

Q.

C

~

0

C

~

»
ta

0
0

....c""'
S.
'"....0::s "I-'
(i) I-'

"

C\
tD

::s
tD

Ql

......
::s

r+

::r

m

C
..,c t-I
-t
3
~
tD

::s
~

"

t-I

0

z

81Ing·1018Y, inc.

MANUFACTURERS REPRESENTATIVES
10495 BANDLEY AVENUE
CUPERTINO, CA 95014-1972
FOR FREE SAMPLES CALL

(408) 342-1200

INTRODUCTION
General Instrument Corporation is a major multinational company manufacturing a wide range of products from data systems, broadband communications and semiconductor products. The corporation, which has
been in existence over 50 years, has manufacturing and sales locations
throughout the world serving all major electronic markets.
The Power Semiconductor Division, a leading producer of discrete semi- .
conductor devices has manufacturing facilities in the United States, Ireland and the Far East. These devices include low and medium power
rectifiers from standard thru ultrafast recovery, bridge assemblies and
transient voltage suppressors. We offer the widest selection of rectifier
package types and junction structures including plastic encapsulated,
glass passivated, superectifier, and surface mounts. Advanced junction
technologies include double diffusion, double diffused fast and ultra-fast
recovery, narrow base epitaxial, PAR and Schottky.
Particular emphasis has been focused on the superectifier product family
including our new super surface mounted devices. The superectifier, when
introduced over fifteen years ago increased rectifier reliability by several
orders of magnitude. Today it still remains unmatched as the cost performance leader in axial leaded rectifiers. Now the superectifier features of
metallurgically bonded junction, glass passivation, and flame retardant
encapsulation are available in our line of super surface mounted rectifiers.
For the ultimate in surface mounted rectifier reliability it's super surface
mount.
The information contained in this data book is intended to provide the
necessary technical and support data to assist the design engineer. It is
our policy to maintain high standards of product manufacturing. The
General Instrument logo (GI), printed on every component, ensures that
it reaches the highest level of quality and reliability. In the complex and
competitive semiconductor industry, high standards of quality using the
latest methods of statistical quality controls are of the utmost importance
since they constitute for our customers, the assurance of reliable product
performance.
Not every application problem can be solved using a standard device, in
this case we often develop special products to meet the customer requirements. If in doubt, call your local Sales Office or our Application Engineering Laboratory for further information.

~General

Instrument

SYMBOLS
CJ ••
IF
I(Av)

Junction Capacitance
DC Forward Current
Average Forward Rectifier Current
10 ..... Stand-by Reverse Leakage Current
Peak Forward Surge Current
IFSM .
Mean Forward Current
10
Reverse Leakage Current
IR
Irr
Reverse Recovery Current
IpPM ..•. Maximum Peak Impulse Current
IRM(REC) Maximum Peak Recovery Current
Maximum Non-Repetitive Reverse Peak Current
IRSM.
On-State TestCurrenl
IT
I~
Rating for Fusing
PM(AV) • Steady State Power Dissipation
Peak Pulse Power Dissipation
PPM •
Recovered Charge
QRR •
Thermal Resistance (Junction to Ambient)
R8JA
R8JC
Thermal Resistance(Junction to Case)
R8JL
Thermal Resistance (Junction to Lead)
Ambient Temperature
TA .•

Tc

·.

...

Case Temperature

Ie! •••• Time Duration

....

tf
TJ ...
TL
Ir . . • .
Irr ••••
TSTG
V(BR) •.
VFM
VFR •••
VR
VRM
VRMS ..
VRRM ••
VRSM ••
Vc
VWM
Vz
Zz .....

...

·.
·.

·.
. ..
·.

...
...

·.
...

Fall Time
Junction Temperature
Lead Temperature
Rise Time
Reverse Recovery Time
Storage Temperature
Reverse Breakdown Voltage
Instantaneous Forward Voltage
Forward Recovery Voltage
Dc Reverse Voltage
Maximum Recurrent Peak Reverse Voltage
RMS Input Voltage
Repetitive Peak Reverse Voltage
Maximum Non-Repetitive Peak Reverse Voltage
Clamping Voltage
Working Stand-off Voltage
Zener Voltage
Dynamic Impedance

DRAWINGS
All dimensions are in inches and (millimeters.)
Figures not to scale.

TEMPERATURES
Ratings at 25°C ambient temperature unless
otherwise specified.
The General Instrument data book is not a document
for official acceptance tests. Relevant is only the
detailed data sheet. which is available on request.
The Manufacturer reserves the right to change the contained
data at any time in order to improve performance and supply
the best product possible.

Notice of ReYision on JEDEC Registered Case Outlines
The following case outlines have undergone a revision of outline names as shown below:
OLPOUTLINE
CASE 1
CASE 25
00-15
00-41
SO-8
TO-3P
8 PIN DIP
16 PIN DIP

NEW OUTLINE
00-201AO
00-204AC
00-204AC
00-204AL
MS-012AA
TO-247AO
MS-001BA
MS-001BB

2

CONTENTS

Generallnlorrnatlon
Introduction. . . .
Symbols ••.••
Contents . . . . .
Numerical Index

1

2
3
5

Quality Assurance

POWER
SEMICONDUCTOR
DIVISION

Introduction. .•
••... ...
Test Conditions . . . • • • • • •
High Reliability-Test Capabilities
Schottky Rectifiers
Quick Selector Guide •. _ . . . .
Axial Plastic Schottky Rectifiers 0.6 to 5.0 AMP
Medium Current Schottky Rectifiers 7.5 to 40 AMP ..

18
19
20

22
25
39

Fast Efficient Rectifiers

DATA BOOK
11 th Edition

Quick Selector Guide • . . . • • • . . . . . . • . • .
Glass Passivated Fast Efficient Rectifiers 1.0 to 6.0 AMP
Fast Efficient Superectllier 1.0 to 5.0 AMP . . . . . . .
Plastic Fast Efficient Rectiliers 1.0 to 3.0 AMP •••••
Medium Current Fast Efficient Rectlliers 6.0 to 30 AMP
SUperectlflers

•••

. 128
.131
.155
.165
.183

Quick Selector Guide . • . . . . . . . . . • • • . . . .
Standard Recovery Superectifiers 0.25 to 2.0 AMP . . .
Fast Recovery Superectifiers 0.5 to 3.0 AMP .
Miniature GPP Plastic Rectilier 1.0 AMP
Glass Rectifiers

.227
.230
.261
.285

Quick Selector Guide • . • . • • • • • .
Standard Recovery Glass Passivated Rectifiers 1.0 to 3.0 AMP
Hi9h Voltage Glass Passivated Rectifiers 1.0 to 3.0 AMP . . .
Fast Recovery Glass Passivated Rectifiers 1.0 to 3.0 AMP ••.

.294
.296
.315
.327

Plastic RectHlers
Quick Selector Guide . . . _ . . . . . . . . • • • . . .
Standard Recovery Plastic Rectifiers 1.0 to 8.0 AMP . .
Fast Recovery Plastic Rectifiers 1.0 to 6 AMP . . . • .

.352
.354
.375

Bridge Rectlliers
Quick Selector Guide . • • • . • . . . . . . • • • •••
Bridge Rectifiers 0.9 to 35 AMP . • . • • . . • • • _ . .
Surface Mounted Bridge Rectifiers 0.5 to 1.0 AMP . . .
SUrface Mounted Rectifiers

.398
.402
.451

Quick Selector Guide . • . . . . . • • . • • • •
Surface Mounted Rectifier 0.5 to 3.0 AMP _ ••
Transient Voltage SUppressor

.461
.464

Axial Leaded Transient Vohage Suppressor 400 to 6500 Watts
Transient Voltage Arrays 300 to 500 Watts ••

.552
.611

Application Notes
Design Guidelines lor Schottky Rectifier. . . .
. • • • . • • . • • • • • . . • . 625
Selecting the Optimum Voltage Transient Suppresor Superectifier . . .
• 629
Typical TransZorb TVS Applications - SCHEMATICS. . . . . . . . . .
. 632
. 635
Superectifier Designs Brings New Level 01 Reliability. . . . • . . . . .
TransZorb TVS Diode Array DA Series 8 and 16 Ping Dual-in-line Package. .
. 639
Failure Modes and Fusing 01 TVS Devices • _ . _ . . • . • • • •
• 641
Effect 01 Lead Wire Lengths on Protector Clamping Voltages ••••.
. 645
The Use 01 TransZorb Diodes with Power MOSFETs. • . • • • • . . .
. 649
Hardening Power Supplies to Une Voltage Transients . . • . . • • • •
. 657
An Effective Transient and Noise Barrier lor Switching Power Supplies
. 661
A Comparison 01 Zener Diodes vs Transient Voltage Suppresors .. .
. 665
Optimizing Placement 01 Board Level Transient Voltage Suppressors .
. 667
Protection 01 Power Supply and Data Lines . . . • . . . • • . • • . .
. 683
Using Rectifier in Vohage Multiplier Circuits . . . . . . • . • • . • • • •
. 687
Transient Voltage Suppressor Ideally suited lor Aulomotive Applications
. 691

-•

I'

I

I

I
It

•
1

~

•

Quiknotes
What is a Silicon Transient Vohage Suppressor? • • • . . . . . . . • • • . . .
Determining Clamping Voltage Levels lor a Broad Range 01 Pulse Currents .•
Using the Power versus Time Curve . . . . • • • . . • . . . . . • • •
Protecting Low Current Loads in Harsh Electrical Environments . • ••
Protecting lor Repetitive Transient Vohages ..

.697
.698
.699
.700
.702

Packaging

Published January, 1994

~ General Instrument

Bulk, Tape and Reel Inlormation
.....•.
Recommended Soldering Procedures . .
Recommended Pad Sizes .
Sales Offices and Distributors
Inlormation . . • • . . • • .

3

.708
.715
.716

.717

I

•-

I

GENERAL INSTRUMENT'S PRODUCT UNE

.•..•
GENERAL INSTRUMENT ISO 9000 APPROVED

ns~

NATIONAL STANDARDS
AUTHORITY OF IRELAND
Glanawln,Dubllna

II

II

- - -DET
-NORSKE
-----VERITAS

Certificate of Registration
of Quality Systems

QUALITY SYSTEM CERTIFICATE

to
I.S./ISO 9002 I EN 29002:1989
The N....... Sl8ndord._rltyofl _ _ ift.. _

C~N•. 28tU

nir. III"",,"'"

11

'l'IIBguAUlTsmDI
of

General Semiconductor Ireland

G/INlHlA.£INSTBUMBNTOFTAlWAN U'IJ.
POWBIl SEMlCONDVCI'OR DWlSlON

Macroom, Co Cork

m'ADCBlAOaOAD,BSlNDBII,
FA/nil, TAlWAN,DIIS &D.C.

manuiacw,..",. of. range of transient voltage
suppressors (diodes)

"'' .JJ17

ISO.,-Jm EN
CNS UflJ ZMU:lJfO
/IS DIII:l'" ASgC QlI-lII'I
1J$ S7Sf..I'All.rl:1JI1

. _ . . _In . .

h.. been • _ _ for compIlnce will the provisions of

........,..."wMJtw..,....,.,..,·..........

!he above 111l1li Standard and

DEVICES.

....

ill

......tar.-Flrm

©

_...

DBSlGN AND MANUFACIfJIlB OF POWER IlBCTIPIBRS AND PROTBCI'ION

Malans. Ra....... of CerUfIed Product. and Companla&

lri . . . . .nd ....

------_--_---.. -

,,,.IISO.IOo/ENtIaOD

.........
.............

aUIII" "Itlllll

~

The technicllNqul,.,.,Im."1IIII ltandl,. I1I!erred 10 IIIIcnJII _ldamlCII. tha ladawlng

...

nldOtlllltMdardl harmGflizechtith ENZlODl: NBN • 50·004; NF x 50.132;
HEN 2647;NS5I02;_ 021 ,008; BS5750:Part2 (ISO 1002-'8..1871; DIN ISOI002:
.... USStandard ANSI/ASQO 082·'1117

.........--<1......... ___ A..-a.., ........ _

..

4

..

.....

NUMERICAL INDEX
1.5KA6.8.A .•.•..•.•......•.... 564

1.5KE22C.CA ................ 592

1.5KE170.A ••••..••••.......... 592

1N4383GP ••...••......••.••••• 244

1.5KA7.5.A .................... 564

1.5KE24.A...•..•............... 592

1.5KE170C.CA ...............592

1N4384GP ..................... 244

1.5KAB.2.A .......•............ 564

1.5KE24C.CA •.•............• 592

1.5KE180.A ....................592

1N4385GP ..................... 244

1.5KA9.1.A ......•.•............ 564

1.5KE27.A......•............... 592

1.5KE 180C.CA ..............592

1N4585GP ..................... 244

1.5KA10.A .•.................... 564

1.5KE27C.CA ................ 592

1.5KE200.A ....................592

1N4586GP ..................... 244

1.5KAll.A ...................... 564

1.5KE30.A.............•..••..•• 592

1.5KE200C.CA...............592

lN4933 .......................... 376

1.5KA12.A ..........•........... 564

1.5KE30C.CA ...............• 592

1.5KE220.A ....................592

1N4933GP ..................... 266

1.5KA13.A ........•............. 564

1.5KE33.A...................... 592

1.5KE220C.CA ...............592

lN4934 .......................... 376

1.5KA15.A ...••...•......••..... 564

1.5KE33C.CA ..••••••.•.••.•• 592

1.5KE250.A ....................592

1N4934GP ..................... 266

1.5KA16.A •.••••.•.........•.... 564

1.5KE36.A...•..•..••••..•.••.•• 592

1.5KE250C.CA ...............592

lN4935 .......................... 376

1.5KA18.A ..•..............•.•.. 564

1.5KE36C.CA •..•.•••..•••••• 592

1.5KE300.A ....................592

1N4935GP ..................... 266

1.5KA20.A ......................564

1.5KE39.A••........•......••••. 592

1.5KE300C.CA ...............592

lN4936 .......................... 376

1.5KA22.A ••.•••••..•....•••.... 564

1.5KE39C.CA •....•••.......• 592

1.5KE350.A ....................592

1N4936GP ..................... 266

1.5KA24.A •.••.•..•......•••.... 564

1.5KE40.A...................... 592

1.5KE35OC.CA ...............592

lN4937 .......................... 376

1.5KA27.A ....•......•.......... 564

1.5KE40C.CA ................ 592

1.5KE400.A ....................592

1N4937GP ..................... 266

1.5KA30.A .••.............•...•. 564

1.5KE43.A....••••......•....••. 592

1.5KE400C.CA ...............592

lN4942 .......................... 328

1.5KA33.A ..•.••...•....•......• 564

1.5KE43C.CA .....••......••• 592

lN3611GP...................... 236

1N4942GP ..................... 268

1.5KA36.A •......••............. 564

1.5KE47.A •.................•... 592

lN3612GP......................236

lN4944 .......................... 328

1.5KA39.A ...•....•............. 564

1.5KE47C.CA ................ 592

lN3613GP...................... 236

1N4944GP ..................... 268

1.5KA43.A ..•................... 564

1.5KE51.A.............••...••.• 592

lN3614GP...................... 236

lN4946 .......................... 328

1.5KE6.8.A ..................... 592

1.5KE51 C.CA •.•.•....••..... 592

1N3957GP...................... 236

1N4946GP ..................... 268

1.5KE6.8C.CA ................ 592

1.5KE56.A•..••.•..•••••••••.••• 592

lN4001 ...........................354

lN4947 .......................... 328

1.5KE7.5.A •..•...•......•••..•. 592

1.5KE56C.CA .....••.•...•••• 592

lN4001GP......................238

1N4947GP ..................... 268

1.5KE7.5C.CA .•••..••.•.••.•. 592

1.5KE62.A....•.....••••.•..•.•• 592

lN4002 ...........................354

lN4948 .......................... 328

1.5KE8.2.A ••.•....•..•...•..... 592

1.5KE62C.CA ............•... 592

1N4002GP......................238

1N4948GP ..................... 268

1.5KE8.2C.CA •••....•.•••.... 592

1.5KE68.A..•••••.••.••.••.••••• 592

lN4003 ...........................354

lN5059 .......................... 298

1.5KE9.1.A ...••.•...•...••••... 592

1.5KE68C.CA •.•••.....•.•... 592

1N4003GP......................238

1N5059GP ..................... 246

1.5KE9.1C.CA ................ 592

1.5KE75.A...................... 592

lN4004 ...........................354

lN5060 .......................... 298

1.5KE10.A ...................... 592

1.5KE75C.CA •..•.•••..•••••. 592

1N4004GP...................... 238

1N5060GP ..................... 246

1.5KE10C.CA ................. 592

1.5KE82,A............•......... 592

lN4005 ...........................354

lN5061 .......................... 298

1.5KEll.A •••..••..•.....•.••... 592

1.5KE82C.CA ........••...... 592

lN4005GP...................... 238

1N5061 GP ..................... 246

1.5KEll C.CA .................592

1.5KE91.A...................... 592

1f't4006 ...........................354

lN5062 .......................... 298

1.5KE12.A ......................592

1.5KE91 C.CA ................ 592

1N4006GP......................238

1N5062GP ..................... 246

1.5KE12C.CA ••.••.•••....•.•. 592

1.5KE100.A.................... 592

lN4007 ...........................354

lN5391 .......................... 358

1.5KE13.A •..........•....•..•.• 592

1.5KE100C.CA .............. 592

1N4007GP......................238

1N5391 GP ..................... 248

1.5KE13C.CA ••....•....••.•.. 592

1.5KE110.A.................... 592

lN4245 ...........................296

lN5392 .......................... 358

1.5KE15.A •..•.....•.•••......•. 592

1.5KE110C.CA .............. 592

1N4245GP......................240

1N5392GP ..................... 248

1.5KE15C.CA ..••.••......••.. 592

1.5KE120.A.................... 592

lN4246 ........................... 296

lN5393 .......................... 358

1.5KE16.A ••..•.••••.....•..•••. 592

1.5KE120C.CA .............. 592

1N4246GP......................240

1N5393GP ..................... 248

1.5KE16C.CA ................. 592

1.5KE130.A.................... 592

lN4247 ...........................296

lN5394 .......................... 358

1.5KE18.A ....•................• 592

1.5KE130C.CA .............. 592

1N4247GP......................240

1N5394GP ..................... 248

1.5KE18C.CA ....••••..•..•••. 592

1.5KE150.A.................... 592

lN4248 ...........................296

lN5395 .......................... 358

1.5KE20.A .•..•.••••...•.•..•••. 592

1.5KE150C.CA .............. 592

lN4248GP...................... 240

1N5395GP ..................... 248

1.5KE20C.CA ••.•.....•....... 592

1.5KE160.A.................... 592

lN4249 ...........................296

lN5396 .......................... 358

1.5KE22.A .....•.•..••.......•.• 592

1.5KE160C.CA .............. 592

lN4249GP......................240

1N5396GP ..................... 248

5

I

NUMERICAL INDEX
lN5397 ........................... 358

lN5627 •••••••••••••••••••••••••• 308

11116478 ...........................470

SKP110,A....................... 606

1N5397GP •••••••••••••••••••••• 248

1N5627GP ..................... 256

11116479 ...........................470

SKP11,A......................... 606

lN5398 ••••••••••••••••••••••••••. 358

lN5817 ••••••.••••••••••••••••••••• 28

1N6480 ...........................470

SKP12,A......................... 606

lN5498GP...................... 248

lN5818 •••••••••••••••••••••••••••• 28

1N6481 ...........................470

SKP13.A......................... 606

lN5399 ...........................358

lN5819 ............................ 28

11116482 ...........................470

SKP14,A......................... 606

1N5399GP...................... 248

lN5820 .•••••••••••••••••.••••••••• 32

11116483 ...........................470

SKP1S,A......................... 606

lN5400 ••••••••••••••••••••.•••••• 360

lN5821 ............................ 32

11116484 ...........................470

SKP16.A......................... 606

lN5401 .••••••••••••••.••••••••••• 360

1N5822 ............................ 32

2KBPOOSM .....................418

SKP17,A......................... 606

lN5402 ••••••••••••••••••••••••••• 360

lN6267.A ••••••••••••••••••••••• 592

2KBP01M .......................418

SKP18,A......................... 606

lN5403 ••••••••••••••.•••••••••••• 360

1N6268.A ••••••••••••••••••••••• 592

2KBP02M .......................418

SKP20,A......................... 606

lN5404 •••••••••••••.••••••••••.•• 360

1N6269,A ••••••••••••••••••••••• 592

2KBP04M .......................418

SKP22.A......................... 606

1N5405 •••••••••••••.••••...•••••• 360

1N6270.A ....................... 592

2KBPOSM .......................418

SKP24.A......................... 606

lN5406 ...........................360

1N6271.A ....................... 592

2KBPOSM .......................418

SKP26,A......................... 606

lN5407 ........................... 360

1N6272.A ••••••••••••••.•••••••• 592

2KBP10M •••••••••••••••••••••••418

SKP28,A......................... 606

lN5408 .••.•.••..••.••••.....••...360

lN6273.A ......••••....•.•.•.•.• 592

21N005G .........................416

SKP30.A......................... 606

lN5415 ...........................340

1N6274.A ••••••••••••••.•••••••• 592

21N01 G ...........................416

SKP33.A......................... 606

1N5416 ...........................340

1N6275.A ....................... 592

21N02G ••••••

416

SKP36,A......................... 606

lN5417 ........................... 340

1N6276,A •••.••.•••••••••••••••• 592

21N04G ...........................416

SKP40,A......................... 606

lN5418 •••••••••••..•••••••••••••• 340

1N62n.A ....................... 592

2W06G ...........................416

SKP43,A......................... 606

lN5419 .•..•.•.•.......••••.•••••. 340

1N6278.A ....................... 592

2IN08G •••.••••.•••....••••.••••••416

SKP45,A......................... 606

lN5420 ...........................340

1N6279.A ••••••••••••••.••••••.• 592

2W1OG ...........................416

SKP48.A ••••••••••••••••••••••••• 606

lN5550 ••••••••••••••••••••••••••• 306

1N6280.A ••.•••••••••••••••••••• 592

3N246 •••••••••••••.•••••••••••••••412

SKPS1.A......................... 606

lN5551 ••••••.•••••••••••••••..••• 306

1N6281.A ••••••••••••••••••••••• 592

3N247 .............................412

SKP54.A ••••••••••••••••••••••••• 606

lN5552 ...........................306

1N6282.A ••••••••••••••••••••••• 592

3N248 ............. _..............412

SKP58,A...................

lN5614 ........................... 300

1N6283,A ••••••••••••••••••••••• 592

3N249 •••••••••••••••••••••••••••••412

SKPSO,A......................... 606

lN5615 ........................... 330

1N6284.A ••••••••••••••••••••••• 592

3N250 .............................412

SKPS4,A......................... 606

lN5615GP...................... 272

1N6285.A ••••••••••••••••••••••• 592

3N251 .............................412

SKP70.A......................... 606

lN5616 .•.•••••••.•••••.•••....••. 300

1N6286.A ....................... 592

3N252 •••••••••••••••••••••••••••••412

SKP7S,A......................... 606

lN5617 ........................... 330

1N6287.A .••.••.•••••••••••••••• 592

3N253 .............................418

SKP78.A......................... 606

lN5617GP...................... 272

1N6288.A ••••••••••••••••••••••• 592

3N254 •••••••••••••••••••••••••••••418

SKP8S.A ••••••••••••••••••••••••• 606

lN5618 ........................... 300

1N6289.A ....................... 592

3N255 .............................418

SKP90.A......................... 606

lN5619 ••••.•••••••..••••••••••••• 330

1N6290.A ....................... 592

3N256 .............................418

6KA24 ............................ 568

lN5619GP •••••.•••••••••••••••• 272

1N6291.A ....................... 592

3N257 .............................418

AGP1S·200 .................... 252

lN5620 ••••••.••••••••.•••.••••••• 300

1N6292.A ....................... 592

3N258 .............................418

AGPtS-400 ...... ,............. 252

lN5621 .•••••••...••••••••••..•••. 330

1N6293.A ••••••••••••••••••••••• 592

3N259 .............................418

AGP1S-600 .................... 252

lN5621GP...................... 272

1N6294.A ••••••••••••••••

592

5KP5.0.A ........................606

AGP1S.aoo .................... 252

lN5622 ...........................300

1N6295.A ....................... 592

SKPS.O.A ........................606

B4OC1000G ................... 408

lN5623 ••••••••••••••••••••••••..• 330

1N6296.A ••••••••••••••••••••••• 592

SKPS.S.A ........................606

B40C15OOG ................... 414

1N5623GP •.••••.••••••.•.•..••• 272

1N6297,A ....................... 592

SKP7.0.A ........................606

B4OC8OOG ••••••••••••••••••••• 402

lN5624 ........................... 308

1N6298.A ....................... 592

5KP7I..A ........................606

B40CSOODM ....

lN5624GP...................... 256

1N6299.A ••••••••••••••••••••••. 592

5KP8.0.A ••••••••••••••••••••••••606

BSOC1500G ................... 414

lN5625 ...........................308

1N6300.A ••••••••••.•••••••••••• 592

SKP8I..A ........................606

BSOC8OOG ..................... 402

1N5625GP...................... 256

1N6301.A ....................... 592

SKP9.0.A ........................606

B8OC1000G ................... 408

lN5626 ........................... 308

1N6302.A ....................... 592

SKP10.A .........................606

BSOC8OODM .................. 404

1N5626GP ••.•••••.••••..••..••• 256

1N6303,A ....................... 592

SKP100,A .......................606

B125C1000G ................. 408

m

••••

6

m

..................

m

...

606

m.m.......

404

NUMERICAL INDEX
B125C1500G ..................414

BYM10-600 ••••.••.••.••••••••• 472

BYW33 ...........................338

BZW04-33 ...................... 574

Bl25CBOOG ......•..•••.•..•••.402

BYM10A-800 ••••••••••••••• ..472

BYW34 ...........................338

BZW04P37 ••••••.•••.••••••••• 574

Bl25CBOODM ...•••.•..••••••.404

BYM10A-l000 ••••••••••••••• 472

BYW35 •••••••••••••••••••.•••••••338

BZW04-37 •••••.•••••••••••••••• 574

B250Cl000G ....••...•.•••..•. 408

BYMll-50 ...................... 474

BYW36 •••••.•••••••••••••••••••••338

BZW04P4O •••••••••••••••••••• 574

B250C1500G ..................414

BYM"-'00 ••••.••..•.•.....••• 474

BYW72 ••• _•••••••••••••••••••••• 346

BZW04-40 •••••••••••••••.•••••• 574

B250CBOOG ....................402

BYMl'-200 .................... 474

BYW73 •••••••••••••••••••••••_••346

BZW04P44 .................... 574

B250CBOODM ................. 404

BYMll-400 ••••••.•.••.•••••.•• 474

BYW74 .•••••••••••.••••••••••••••346

BZW04-44 •••••••••••••••••••••• 574

B3BOC1000G •••.•••..•.•...••• 408

BYM1'-600 •••••••••••••••••.•• 474

BYW75 •••..•••••••••••••.•....•.•346

BZW04P48 ••••••••••••••.••.•. 574

B380C1500G •.••..............414

BYMll-800 •••••••••.•••••••••• 474

BYW76 ••••••••.••••••••••••••.•••346

BZW04-48 ••.••••••••••••••••••• 574

B380CBOOG .................... 402

BYMl'-1000 •••........••.•••• 474

BZW04P5V8 •••••••••••••••••••574

BZW04P53 .................... 574

B3BOCSOODM ................. 404

BYM12-50 •••••••••••••••••••••• 476

BZW04-5V8 •••••••••••••••••••• 574

BZW04-53 •••••••••••••••••••••• 574

BA157GP •••.•••.••..•.•.....••. 264

BYM12-100 •••.•••••.•••••••••• 476

BZW04P6V4 •••••••••••••••••••574

BZW04P58 .................... 574

BA158GP ....................... 264

BYM12-150 ••••.••••••••••.•••• 476

BZW04-6V4 •••••.••••••••••••••574

BZW04-58 •••••••••••••••••••••• 574

BA159DGP ••••••••..••.•••..••• 264

BYM12-200 •••••••••••••••••••• 476

BZW04P7VO •••.•••••••••••••••574

BZW04P64 ••••••••••••.••••••• 574

BA159GP .......................264

BYM12-300 •••••••••••••••••••• 476

BZW04-7VO •••• _••••••••••••..574

BZW04-64 ••.••••••••••••••••••• 574

BY228 ............................. 322

BYM12-400 •••••.•••••.•••••••• 476

BZW04P7V8 •••••••••••••••••••574

BZW04P70 •••••••••••••••••

BY396P ..•••.•••••••••.•••••••••. 386

BYM13-20 ••••••••••••••••..••.• 482

BZW04-7V8 •••••••••~ .........574

BZW04-70 •••••••••••••••••••••• 574

BY397P •.•••••••••••.••••••...•.. 386

BYM13-30 •••••....•••..•••••••• 482

BZW04P8V5 .••••••••••••••••••574

BZW04P78 ••••••.•......•••••• 574

BY398P •••••••.•••••••.•.••••.... 386

BYM13-40 ••..••••••••••••••.••• 482

BZW04-8V5 •••••••••••••.••••••574

BZW04-78 ••••••••••••••••••••.• 574

BY399P ..........................386

BYM13-50 ••••••..•••••••••••••• 482

BZW04P9V4...................574

BZW04P85 ••.••••••••••••••••• 574

BY500-100 .....................388

BYM13-60 .•.•.•••••.••••••••••. 482

BZW04P10 •••••••••••••••••••.•574

BZW04-85 ...................... 574

BY500-200 ••••••••••••••.•••••• 388

BYV26D •••••••••.....•..••.•.••• l36

BZW04-10 ••.•••••••••••••••••••574

BZW04P94 •••••••••••••••••••• 574

BY500-400 .....................388

BYV26E ••••••••••••••••••••••••• l36

BZW04Pll .....................574

BZW04-94 •••••••••••••••••••••• 574

BY500-600 •.••••••••....•••.•.• 388

BYV27-50 •••.•••••••••••••••••• 140

BZW04-1, •••••••••••••••.•• _••574

BZW04Pl02 •••••••••••••••.•• 574

BY500-800 .....................388

BYV27-100 •••.•••..••.....•••. 140

BZW04P13 .•••..•.••.....•.....574

BZW04-102 ••••••••....•.•....• 574

BYM05-50 ••••.•.•••......•••...464

BYV27-150 •••..•.•••.•.••••••• 140

BZW04-13 ......................574

BZW04Pl10 ••.•.••••••••••••• 574

BYM05-100 .................... 464

BYV27-200 •••••••••••••••••••• 140

BZW04P14 ••••••••••••••••..••.574

BZW04-110 •••••••••••••••••••• 574

BYM05-200 .••••••.•..••.•.•••.464

BYV28-50 •••••••••••••••••••••• 146

BZW04-14 ......................574

BZW04Pl28 •••••••••••••••••• 574

BYM05-400 •••.••.•••..•.•..•. .464

BYV28-100 .................... 146

BZW04P15 ••••••••••••••••••••• 574

BZW04-128 .••••••••••••••••••• 574

BYM05-600 .•....•.............464

BYV28-150 ••.•••........•..•.. 146

BZW04-15 •....•..•..•••••••..•. 574

BZW04Pl36 •••••••••••••••••• 574

BYM06-50 ...•....•••••.•••••••.466

BYV28-200 •.•••.•••••.••...•.• 146

BZW04P17 •••••.•••••••..••••••574

BZW04-136 ••••••••••••••••..•• 574

BYM06-100 •••••••.•••.••••••• .466

BYV32-50 •••••••••••••••••••••• 210

BZW04-17 •.••••••••••••••••••••574

BZW04Pl45 .................. 574

BYM06-200 ••••••••••..•••••••.466

BYV32-100 •••••••••••••••••••• 210

BZW04P19._•••••••••••••••••. 574

BZW04-145 .................... 574

BYM06-400 ....................466

BYV32-150 ••••••..•••••••••.•• 210

BZW04-19 ••••••••••••••••••••••574

BZW04Pl54 .................. 574

BYM06-600 .••••.••••••..•••• ..466

BYV32-200 .................... 210

BZW04P20 •••••••••••••••••••• 574

BZW04-154 •••••••.•.•.•••••••• 574

BYM07-50 ••••••••••.•...•..•...468

BYV95A _•.••••••.••••...••.•.•. 334

BZW04-20 ••••••••••••.•.•••••.•574

BZW04P171 .................. 574

BYM07-100 ••••••.••.•••.•••••.468

BYV95B ••••••••••••••••••••••••• 334

BZW04P23 •.•.•••••••••••••••••574

BZW04-171_ •••••••••••••••••• 574

BYM07-150 ••••••••••••••••••. .468

BYV95C •...•••••••••••••••••••.• 334

BZW04·23 •• _•••••••••.•••...••574

BZW04Pl88 •••••••••••••••••• 574

BYM07-200 ••••••••••••••••.•• .468

BYV96D ••••••••••••••.•.•••••• _ 334

BZW04P26 •.•••_•••••••••• _••574

BZW04-188 •••••••••••••••••• _574

BYM07-300 ....................468

BYV96E ......................... 334

BZW04-26 ......................574

BZW04P213 ••••••••• _••••••• 574

BYM07-400 ....................468

BYW29-50 ..................... 198

BZW04P28 .....................574

BZW04-213 •••••••••••••••••••• 574

BYM10-50 ......................472

BYW29-100 .•••••••••••••••••• 198

BZW04-28 ••••••.•••.••••••••••• 574

BZW04P239 •••••••••••••••••• 574

BYM10-100 .................... 472

BYW29-150 ................... 198

BZW04P31 .....................574

BZW04-239 .................... 574

BYM10-200 •••••••••••••••••••.472

BYW29·200 •.••....•...•..••.. 198

BZW04-31 ......................574

BZW04P256 •••••••••••••••••• 574

BYM10-400 •••.•••...•.•••..••. 472

BYW32 ••••••••••••.•••••••••••••• 338

BZW04P33 •••••••••••••••••••••574

BZW04-256 ..............._••• 574

7

574

I

NUIIERICAL INDEX
BZW04P273 ...................574

EGFl B ........................... 492

ES2C •••• _.............._••••••••514

FEPF160T .................. 204

BZ'Ml4-273 ••••••••.•.•••••.••• 574

EGF1C ••••••••••••.••••••••••• 492

ES2D ..............................514

FEPF16FT ..................... 204

BZ'Ml4P299 ••••••••••••••••••• 574

EGFlo ••••••••••••••••••••••••••• 492

ES3A ..............................534

FEPFl6GT••••••••••••••••• 204

BZW04-299 ••.•••••••.•.•••.•.• 574

EGl34A ......................... 468

ES3B .............................534

FEPF16HT .................... 204

BZ'Ml4P342 ...................574

EGL34B ........................ 468

ES3C ............................. .534

FEPFl6JT..................... 204

BZ'Ml4-342 ....................574

EGL34C ••••••••••••••••••••••••• 468

ES3o .............................534

FEP30AP ....................... 222

BZ'Ml4P376 •••••••••••••..•••• 574

EGl34o ••••••••••••••••••••••••• 468

FE1A .............................. 132

FEPSOBP ....................... 222

BZ'Ml4-376 ••.••••••••••••••••• 574

EGL34F •••••••••••••••••••••• 468

FE1B ••••••••••••••••••••••••••••• 132

FEPSOCP ...................... 222

CG1 ................................ 316

EGL34G ••••••••••••••••••••••••• 468

FE1C ..............................132

FEPSOOP ...................... 222

CG2 ................................ 320

EGL41A ......................... 476

FE1o ............................. 132

FEP30FP ...................... 222

CG3 •.••.••...••.•.•................ 324

EGL41B ••••••••••••••••••••••••• 476

FE2A .............................138

FEP30GP••••••••••••••••••••••• 222

oA05CM .........................620

EGL41 C ........................ 476

FE2B ............................. 138

FEPSOHP ..................... 222

oAl2CM •••••••••••••••••.•••••.• 620

EGL41 0 ......................... 476

FE2C ............................138

FEP30JP...................... 222

oAl5CM .........................620

EGL41F ......................... 476

FE2D ............................. l38

FEPF30AP .................... 220

oA24CM .........................620

EGL41G ......................... 476

FESA ..............................144

FEPF30BP ..................... 220

oA05P ............................ 618

EGP10A ......................... 156

FE3B ..............................144

FEPF30CP ..................... 220

oA12P ............................618

EGP10B ••••••••••••••••••••••••• 156

FESC .............................144

FEPF300P ..................... 220

oA15P ............................ 618

EGP10C •••••••••••••••••••••••• 156

FE3o ..............................144

FEPF30FP ..................... 220

oA24P ............................618

EGP10o ••••••••••••••••••••••••• 156

FE5A ..............................148

FEPF30GP .................... 220

oFOOSM ..........................406

EGP10F ••••••••••••••••••••••••• 156

FE5B .............................. 148

FEPF30HP ..................... 220

oFOOSS ..........................454

EGP10G •••••••••••••••••••••••• 156

FE5C ..............................148

FEPFSOJP ..................... 220

oF01M ............................406

EGP2OA ••••••••••••••••••••••••• 158

FE5o .............................. 148

FESBAT ........................ 194

OF01S .......................... ..454

EGP2OB •••••.••••••••••••••••••• 156

FESA .............................. 150

FESBBT ......................... l94

oF02M .••••••••••••••••...•••••••• 406

EGP2OC ••••••••••••••••••••••••• 158

FE6B ..............................150

FESBCT ........................ 194

oF02S •••••.•••••••.••..•••••••••• 454

EGP2Oo ••••••••••••••••••••••••• 158

FESC .............................. l50

FESBOT •••••••••••••••••••••••• 194

oF04M ............................406

EGP20F •••••••••••••••••••••••• 158

FE6D .............................. l50

FESBFT ........................ 194

oF04S ............................454

EGP2OG •••••••••••••••••••••••• l58

FEP6AT••••••••••••••••••••••••• l86

FESSGT ......................... 194

oF06M ............................ 406

EGP30A ......................... l60

FEP6BT.........................l86

FESBHT ......................... 194

oF06S ............................ 454

EGP30B ........................ 160

FEPSCT........................ l86

FES8JT ••••••••••••••••••••••••• 194

oF08M ••••••••••••.••••••.•••••••• 406

EGP30C ••••••••••••••••••••••••• l60

FEPSoT•••••••••••••••••••••••••• l86

FES16AT ....................... 202

oFOSS ............................454

EGP30o ••••••••••••••••••••••••• l60

FEP16AT ........................206

FES16BT ....................... 202

oFl0M ............................406

EGP30F ••.••••••••••••••••••••• 160

FEP16BT ........................206

FES16CT ...................... 202

oF1OS •••••••••••••••••.•••••••••• 454

EGP30G ........................ l60

FEP16CT...................206

FES160T ....................... 202

001 ...............................316

EGP50A ......................... 162

FEP16oT.......................206

FES16FT ....................... 202

oG2 ................................ 320

EGPOOB ••••••••••••••••••••••••• 162

FEP16FT ........................206

FES16GT ....................... 202

oG3 ................................ 324

EGPOOC......................... 162

FEP16GT •••••••••••••••••••••• 206

FES16HT ....................... 202"

EoF1AM •••••••••••••...•••..•.•.448

EGPOOo......................... 162

FEP16HT .......................206

FESl6JT ........................ 202

EOF1AS .........................456

EGP50F ......................... 162

FEP16JT ••••••••••••••••••••••206

FESF8AT ....................... 192

EoF1BM .........................448

EGP50G ........................ 162

FEPF6AT...................... l84

FESFSBT ....................... 192

EOF1BS ••••.•••••••••.•••.•.••. .456

ES1A ............................. 498

FEPF6BT........................ l84

FESFBCT ....................... 192

EoF1CM ••.•••••••••••••••••••••. 448

ES1B •..••••••••••••••••••••••••••• 498

FEPF6CT •••••••••••••••••••••• 184

FESF8oT....................... 192

EoF1CS .........................456

ES1C ............................. 498

FEPF60T ..................... 184

FESFBFT ....................... 192

EoFloM ••.•••••••••••••••••••••.448

ESlo ••••••••••••••••••••••••••••• 498

FEPF1SAT••••••••••••••••••••• 204

FESFBGT....................... 192

EoF1DS .........................456

ES2A .............................. 514

FEPF16BT•••••••••••••••••••• 204

FESFBHT ....................... 192

EGF1A............................ 492

ES2B •••••••••••••••••••••••••••••• 514

FEPF1SCT .....................204

FESF8JT........................ 192

8

NUMERICAL INDEX
FESF1SAT ...................... 200

GBPC106 ..................•.•. 420

GBUSA ••••..•...••••.•.....•••••• 43O

GIS1S ............................. 274

FESF1SBT ...........•......••.. 200

GBPC108 ...................... 420

GBUSB •••••.•••...•••••..••.•.•••430

GIS17 ............................. 274

FESF1SCT .......•........•...• 200

GBPCll0 ...................... 420

GBUSD ••••••••.•..•••••.•..••...•43O

GIS1S ............................. 274

FESF1SDT ..................... 200

GBPCSOOS ....••........•••••• 434

GBUSG •....•••••••...••••••••••••43O

GIS2O ............................. 390

FESF1SFT ••.....••........••.•. 200

GBPCSOl ...................... 434

GBUSJ ..••••••.•...•••.••.••......43O

GIS21 ............................. 390

FESF1SGT ........••.•..•.••... 200

GBPCS02 ...................... 434

GBU6K .•...•••••••.••.•••••••••..430

GIS22 ............................. 390

FESF1SHT ..................... 200

GBPCS04 ...................... 434

GBUSM •..•....•••••....••••••••••430

GIS24 ............................. 390

FESF1SJT ••.....•..•••..•..•... 200

GBPCS06 ...................... 434

GBUSA •••••••••••••••••.••••.•.•.436

GI826 ............................. 390

G1A ••••••••......•..••..•.....••••. 302

GBPCS08 ••••••..••..•.•••..... 434

GBUSB ••....•.••..••••..•..•••••.436

GIS28 ............................. 390

G1B •.......................•.......302

GBPCS10 ..........•.....•..•.• 434

GBUSD •••.....••••••..•.•.••••••.436

GIS50 ............................. 380

G1D •..........••...••..........•••. 302

GBPC12-OOS.W.....••••.••• 440

GBUSG •.••..••••••••...•••••••••• 436

GIS51 ............................. 380

G1G ................................ 302

GBPC12-01.W••••••••••••••. 440

GBUSJ •••••••••••.••••••..••....•.436

GIS52 ............................. 380

G1J .................................302

GBPC12-02.W............... 44O

GBUSK •....•..•••••..••.•••••••..436

GI854 ............................. 380

G1K •.........•.•••••••......•.••••• 302

GBPC12-04.W..•.•••••.••••• 440

GBUSM .•.••••••••••.••••••••••••. 436

GIS56 ............................. 380

G1M .•..•.............••..•..••...•. 302

GBPC12-OS.W..•••.......•.• 440

GF1A ..............................488

GIS58 ............................. 380

G2A •....••...........•.••.•........ 304

GBPC12-OS.W ••.•.•.....••.• 440

GF1B •••••........•..••..••••••••••488

GI910 ............................. 382

G2B ................................ 304

GBPC12·10.W•..•.......•••• 440

GF1D •••••.....•.•••.....••••••••••488

GI911 ............................. 382

G2D .••••.•.••........••..•..•••.... 304

GBPC1S-OOS.W ••••......... 440

GF1G ..............................488

GI912 ............................. 382

G2G ................................ 304

GBPC1S-Ol.W.••..••••••.... 440

GF1J •....••••••••••••.•••••••••...•488

GI914 ............................. 382

G2J .................................304

GBPC1S-02.W.•.••••••.•.... 440

GF1K •••••••...•.•.••••.•••••••••••488

GI91S ............................. 382

G2K •............•••.••••.........••304

GBPC1S-04.W............... 440

GF1M •.•••••••••.•••••••••.......• 488

GI917 ............................. 382

G2M ................................304

GBPC1S-OS.W.•••••....••••• 440

Gll·1200 •.•.•.•.•••.•.•.••••••••31S

GI1001 ........................... 134

G3A ................................310

GBPCl5-0S.W.••••••••..•.•• 44O

Gll·l400 •••••.••••••••.•••••••••31S

Gll002 ........................... 134

G3B ................................ 310

GBPC1S·l0.W•••••••.•..••.. 440

Gll·l600 ........................31S

Gll003 ........................... 134

G3D ................................310

GBPC25-0OS.W............. 440

GI2S0-1 •••••••••••••••••.•..••••• 232

Gll004 ........................... 134

G3G ................................310

GBPC2S-01.W •.....••••••••• 440

GI250-2 ••••••••..•.•••..•..••.••• 232

Glll01 ........................... 142

G3J ................................. 310

GBPC2S·02.W•••••••..•.•.•• 440

GI250-3 ..........................232

Glll02 ........................... 142

G3K •.•.•.•..•.•.....•••....•.•..•.. 310

GBPC2S-04.W............... 440

GI250-4 ••.•.•.•••.••.•••••••••••• 232

Glll03 ........................... 142

G3M ................................ 310

GBPC2S-OS.W ••••••••..•..•. 440

GISOO •••••••••.•••••••.••••••••••••362

Gll104 ........................... 142

G4A ................................ 312

GBPC2S-OS.W •••.•••........ 440

GI501 •••••••••...•••••••.•.•••••••• 3S2

GI1301 ........................... 1S2

G4B •....•...••••••..•.........••••• 312

GBPC2S·10.W............... 44O

GI502 •.••...••••••••••••••••••••.•.362

GI1302 ........................... 152

G4D ................................ 312

GBPC3S-OOS.W •••••••.•.... 444

GI504 ..............................362

GI1303 ........................... 152

G4G ................................312

GBPC3S-01.W..•••..••••.••• 444

GI506 •••••••.••••••••..••••••••••••362

GI1304 ........................... 152

G4J ................................. 312

GBPC35-02.W••••••.••.....• 444

GI50S..............................362

GI1401 ........................... 196

GBLOOS .......................•..422

GBPC35-04.W•.............. 444

GI510 ..............................362

GI1402 ........................... 196

GBL01 ............................422

GBPC35-06.W •••••••..••.•.. 444

GI750 •..•••••••••••••••••••••••..••366

GI1403 ........................... 196

GBL02 ............................422

GBPC35-08.W.••••.••••••••• 444

GI751 ••••••••...••••••••.•.••••••••366

GI1404 ........................... 196

GBL04 ............................422

GBPC35·10.W ••••••••••••••• 444

GI752 ••.•.•••••••••••••••••••••••.•366

GI2401 ........................... 2OS

GBL06 •••..••.•••••.•••••••...•. ..422

GBU4A .......................... 426

GI754 .••.•••••••••••••••••••••••••.366

GI2402 .......................... 2OS

GBL08 ............................422

GBU4B .......................... 426

GI756 ..............................366

G12403 .......................... 2OS

GBL10 •••.••••.•..•••••••..•••....422

GBU4D .......................... 426

GI758 ••••••••••••••••••••••••••••••366

G12404 .......................... 2OS

GBPC100S .••••.............. ..420

GBU4G ••••••••..•••••••••..•.... 426

GIS10 •••••.••••••••••••••••••••••••274

GL34A............................ 464

GBPC101 .......................420

GBU4J .....•••..••.•••...•••••••• 426

GISll •.•••••••••••..••••••••••••••• 274

GL34B ............................ 464

GBPC102 •••...••.•.••••••.•••.• 420

GBU4K •••••••••••.•.•.•••••••••• 42S

GIS12 ..............................274

GL34D ........................... 464

GBPC104 ...........•...........420

GBU4M .....•.•.••....••...•••.•• 42S

GI814 ..............................274

GL34G ........................... 464

9

II
I

NUMERICAL INDEX
GL34J •••••••• ~••••• ~•••••••••••• 464

GP08B ........................... 234

KBL06•••••••••••••_••••••••••••••424

LCE18,A ~ ................. ~... 602

GL41A •••••.•••••••••••••••••••• ~472

GPOSD ........................... 234

KBL08 ........._••••••••••••••••••424

LCE20,A ........................ 602

GL41B ............................472

GPOSG ........................... 234

KBL10............. _..............424

LCE22,A ........................ 602

GL41D ••••.• ~••• ~ •••••••••••.••• 472

GPOSJ ..................~ ........ 234

KBPOOSM .......................412

LCE24,A ................... ~... 602

GL41G ••••.••••••••••••••••••••• ~472

GP10A ........................... 242

KBP01M ._•••••• _••_..........412

LCE26,A ........................ 602

GL41J •••••.••••••••.•••••••••••• ~472

GP10B ........................... 242

KBP02M ._......................412

LCE28,A ........................ 602

GL41K •••••••••••••••••••••••••••• 472

GP10D ........................... 242

KBP04M •••••••••_..............412

LCE30,A ....... ~............... 602

GL41M •••.••••••••••••••••.••••••• 472

GP1OG ........................... 242

KBP06M ........._..............412

LCE33,A ...........~ ........... 602

GL41T ••••.•••••••••••••.•••• ~ •..472

GP10J ............................ 242

KBPOSM .........................412

LCE36,A ........................ 602

GL41Y ••• ~ ••••••••••••••••• ~•••• 472

GP10K .............~ ............ 242

KBP10M .........................412

LCE40,A ...................... ~602

GLL4735 •••••••••••••~ •••••••••• 478

GP10M ........................... 242

KBU4A...._......................428

LCE43,A ...................... ~ 602

GLL4736 •.••••••••••••••••••••••• 478

GP10N ........................... 242

KBU4B............................428

LCE45,A ...~ ..... ~.. ~...... ~602

GLL4737~ ••••••••••••• ~ •••••••• 478

GP100 •••••_ ................... 242

KBU4D •••_......................428

LCE48,A ........................ 602

GLL4738 •.• ~••••••••••••••• ~ ••• 478

GP10T ........................... 242

KBU4G ..._..........~ ..........428

LCES1,A .......~............... 602

GLL4739 •.•••••••~ ••~ •••••••••• 478

GP10V ........................... 242

KBU4J ............................428

LCE54,A ........................ 602

GLL4740.~~ ••••••••••••••••••.• 478

GP10W .......................... 242

KBU4K. ................... ~...~.428

LCE58,A ........................ 602

GLL4741 .••• ~ •••••••••• ~ ••.•••• 478

GP10Y ........................... 242

KBU4M .......................~ ••428

LCE60,A ~ .................... ~ 602

GLL4742~••••••••••••••••••••••• 478

GPl5A ........................... 250

KBU6A.....~ .....................432

LCE64,A ~~~~.. ~.. ~....~ .. 602

GLL4743 •.••••••••••••••••••••• ~478

GP15B ........................... 250

KBU6B............................432

LCE70,A ~ ................. ~... 602

GLL4744 .........................478

GP15D ........................... 250

KBU6D ...........................432

LCE75,A ~ ..... ~ ......~ .. ~ ... 602

GLL4745 ..•••••••••••••••.••••••• 478

GP15G ........................... 250

KBlJ6G ...........................432

LCE60,A ........~ .............. 602

GLL4746 .........................478

GPl5J ............................ 250

KBU6J ............................432

LCE90,A ................... ~... 602

GLL4747 •••••••••.••••••••••••••• 478

GP15K ........................._250

KBU6K. ...........................432

M100A ...... ~ .......... ~ ...~ .. 356

GLL4748 ••••••••••••••••••••••••• 478

GP15M •••••••••_••••••_•••••• _ 250

KBU6M ...........................432

M100B ...........~ .... ~....~ .. 356

GLL4749 •.•••••••..••••••••••••.• 478

GP20A ••••• _••••••••••••••_•••• 254

KBUSA............................438

M100D ..............~..~ .. ~... 356

GLL4750 ••••••••••.••••••••.••••• 478

GP20B ••••••••••••••••••••• _•••• 254

KBUSB............................438

M100G ........................... 356

GLL4751 ....................... ..478

GP20D •••••••••_••••••_••••••_ 254

KBU8D ...........................438

M100J~ .......................... 356

GLL4752 .........................478

GP20G •••••••••••••••••_••••••_ 254

KBU8G .......~......... ~...~ ..438

M100K ......................... ~356

GLL4753 .........................478

GP20J .••.••_•. _................ 254

KBUSJ .... ~ ......................438

M100M .. ~....................... 356

GLL4754 .........................478

GP30A •••••_•••••••.•••••••••••• 258

KBU8K............~ ...........~.438

MB2M ~ .......................... 401

GLL4755 ......................... 478

GP30B •••••••••••••••••~ •• _•••• 258

KBUSM~ .... ~....~.~ ..........438

MB4M ~~... ~.. ~.......... ~ ... 401

GLL4756 ••••••••••••••••••••••••• 478

GP30D •••••••••••••••••••••_•••• 258

LCE6.5,A ................ ~ ......602

MB6M ............................ 401

GLL4757.........................478

GP30G •••••_.................... 258

LCE7.0,A ........................602

MB2S ............................. 453

GLL4758.........................478

GP30J ............................ 258

LCE7.5,A ........................602

MB4S ............................. 453

GLL4759 .........................478

GP30K ............._............ 258

LCES.0,A ........................602

MB6S ........................~... 453

GLL4760 ••••••••••••••••••••••••• 478

GP30M ........................... 258

LCES.5,A ........................602

MBR735 ........................... 44

GLL4761 ......................... 478

ICTES.O, ...................... 598

LCE9.0,A ........................602

MBR745 .~ ..... ~................. 44

GLL4762 ......................... 478

ICTES,C ......................... 598

LCE10,A .....................~••602

MBR750 ........................... 46

GLL4763 .........................478

ICTE10,C ....................... 598

LCE11 ,A._.......~ .............602

MBR760 .~ ........................ 46

GP02-20 .........................230

ICTE12,C._.................... 598

LCE12,A .........................602

MBR1035 ......................... 52

GP02-25 •.•••••••••••••.•.••••••• 230

ICTE15,C ....................... 598

LCE13,A .........................602

MBR1045 .......... ~ ............. 52

GP02-30 ......................... 230

KBLD05 .......................... 424

LCE14,A .........................602

MBR1050 .. ~......~ ..~ .. ~..~. 54

GP02-35 .~ ...................... 230

KBL01 •••••••••• _...... _••••••_ 424

LCE15,A .........................602

MBR1060 .. ~.. ~................. 54

GP02-40 ......................... 230

KBL02 •• _••••••_.........._.... 424

LCE16,A._......................602

MBRl535CT .........~ .. ~..... 68

GP08A ••••.•••••••••••••••••.••••• 234

KBL04 •••••••••• _••••••_........ 424

LCE17,A .........................602

MBRl545CT .....~ ............. 68

10

NUMERICAL INDEX
MBR1550CT..................... 70

MBRF256OCT •...••••.•.•.•..•. 98

P4KA15.A •••••••••••••••••••.•••556

P4KE33C.CA ••••••••••••••••• 570

MBRl560CT..................... 70

MBRF3035PT •••••••••••••••• 104

P4KA16.A •••••••••••••••••••••••556

P4KE36.A ...................... 570

MBRl635 .........................80

MBRF3045PT ••.••••••••••••• 104

P4KA18.A •••••••••••_•••.••••••556

P4KE36C.CA ................. 570

MBRl645 ...••.•..•.••••..•.••.••. 80

MBRF3050PT .•••••.••••••••• 106

P4KA20.A ••••••••••• _••••••••••556

P4KE39.A •••••••••••••••••••••• 570

MBRl650 ...•••..•................ 82

MBRF3060PT ••..••••••.••••• 106

P4KA22.A •••••••••••_..........556

P4KE39C.CA ................. 570

MBRl660 ......................... 82

MBRF4035PT •••••••..••••••• 118

P4KA24.A_ •••••••••_••••••••••556

P4KE43.A •••• _................ 570

MBR2035CT.•.............•..... 88

MBRF4045PT ••••.•.••••••••• 118

P4KA27.A••••••• _••••••••••_••556

P4KE43C.CA ................. 570

MBR2045CT .•.•.••......••..•••.88

MBRF4050PT •••••••••••••••• 120

P4KA30.A•.•••••••••••••••••••••556

P4KE47,A ...................... 570
P4KE47C.CA ••••••••••• _.... 570

MBR2050CT.....................90

MBRF4060PT •••••••••••••••• 120

P4KA33.A •••••••••••••••••••••••556

MBR2060CT.••••.......•••..•.••90

MPG06A ........................ 286

P4KA36.A•••••••_••••••••••••••556

P4KE51,A._ ••••••••••••••••••• 570

MBR2535CT •••.••..••••••••••• 100

MPG06B •••••••••••••••••••..••• 286

P4KA39.A .......................556

P4KE51C.CA ••••••••••••••••• 570

MBR2545CT................... 100

MPG06D ........................ 286

P4KA43.A •••••••••••_•••••• _••556

P4KE56.A ...................... 570

MBR2550CT................... 102

MPG06G •••••••••••••••••••••••• 286

P4KE6.8.A••••••••••_••••••••••570

P4KE56C.CA ........... _.... 570

MBR2560CT................... 102

MPGOSJ •••••.••••••••••....••.•• 286

P4KES.8C.CA••••••••••.••••••570

P4KES2.A •••••••••••• _•••••••• 570

MBR3035PT •....•.....•.•...•• 108

MPG06K ........................ 286

P4KE7.5.A•••.••..••••••••.•••.• 570

P4KE62C.CA ••••••••••••••••• 570

MBR3045PT ................... 108

MPG06M ••••.....•..•...•••••••• 286

P4KE7.5C.CA. •••••••••••• _•• 570

P4KE68.A ...................... 570

MBR3050PT ........•.•..•••... ll0

NSBAT •••••••••••••.•••••••.••••• 372

P4KE8.2.A••••••••••••••••••••••570

P4KE68C.CA ................. 570

MBR3060PT ................... ll0

NSBBT ..................... _.... 372

P4KE8.2C.CA•••••••••••••••••570

P4KE75,A ...................... 570

MBR4035PT ••.•••••.••.•..•..• 122

NSBDT ........................... 372

P4KE9.1.A•••••••••••••••••••••• 570

P4KE75C.CA ................. 570

MBR4045PT •.••.•••....•••.•.. 122

NSBGT ........................... 372

P4KE9.1 C.CA••••••••• _••••••570

P4KE82.A ...................... 570

MBR4050PT •..•.•.........••.. 124

NS8JT ............................ 372

P4KE10.A •••••••••..••••_••••••570

P4KE82C.CA .••_•••••••••••• 570

MBR4060PT •••.••••••..•••••.• 124

NS8KT ........................... 372

P4KE10C.CA. •.•••••••••••••••570

P4KE91.A •••••••••••••••••••••• 570

MBRF735 •••...•.•.......•••.••...40

NSBMT.•••.•••••••••••••••..••••• 372

P4KEll.A •••••.••••••••••••••••• 570

P4KE91C.CA ••••••••••••••••• 570

MBRF745 .•.•••••••••••••••••••••.40

NSF8AT ••••••••••••••••••••••••• 370

P4KEll C.CA. •••••••••_••••••570

P4KE100.A •••••••••••••••••••• 570

MBRF750 ......................... 42

NSF8BT ......................... 370

P4KE12.A••••••••...•.•• _•••••.570

P4KE100C.CA._ .•.••••••..• 570

MBRF760 •••.••••••••••..•.••••... 42

NSF8DT •••••••••••..•••.•..••••. 370

P4KE12C.CA. •••••••••••.•••••570

P4KEll0.A ••••••••••••••.••••• 570

MBRF1035 .......................48

NSF8GT •..•••••••••••••••••••••• 370

P4KE13.A ••••••••••• _•••••••••• 570

P4KEll0C.CA ••••••••••••••• 570

MBRF1045 •••••....••....•.......48

NSF8JT •••••••••.•••••••..•.••••• 370

P4KEl3C.CA. .................570

P4KEl20,A •••••••••••••••••••• 570

MBRF1050 .••.••••••.•..•...•••.• 50

NSF8KT ......................... 370

P4KE15.A ............... _••••••570

P4KEl20C.CA ••••••••••••••• 570

MBRF1060 ....................... 50

NSF8MT ........................ 370

P4KEl5C.CA. •.••. _••••••••••570

P4KEl30.A •••••••••••••••••••• 570

MBRFl535CT ..•.••.••••...•... 64

P300A ••....•.••••••.••••••••••••• 364

P4KE16.A •••••••••••••••••••••••570

P4KEl30C.CA ••••••••••••••• 570

MBRFl545CT .................. 64

P300B ............................ 364

P4KE16C.CA. .................570

P4KEl50.A .................... 570

MBRFl550CT .................. 66

P300D •••••• _•••••••••••••••••••• 364

P4KE18.A •••••••••••••••••••••• .570

P4KEl50C.CA ............... 570

MBRFl560CT ••••••••.•••••••.• 66

P300G •••••••••••••••••••••••••••• 364

P4KE18C.CA. •••••••••••••••••570

P4KEl60,A .................... 570

MBRFl635 ....................... 76

P300J ••••••••.•••••••••••••••••••• 364

P4KE20.A •••••••••••••••••••••••570

P4KEl60C.CA ............... 570

MBRFl645 •.••.•......•••...••••. 76

P300K ••••••••••••••••.•••..•..••. 364

P4KE2OC.CA. ••••••••.•••••••.570

P4KEl70.A •••••••••••••••••••• 570

MBRFl650 •.••.••••.....•••.••.•• 78

P300M •••••..•••••••••••••••••••• 364

P4KE22.A •••••••••••••••••••••••570

P4KEl70C.CA ••••••••••••••• 570

MBRFl660 ....................... 78

P4KA6.8.A ..................... 556

P4KE22C.CA.._ ••••••••••••••570

P4KEl80.A .................... 570

MBRF2035CT .................. 84

P4KA7.5.A •..••..•••••••••..••• 556

P4KE24.A.......................570

P4KEl80C.CA._ •••••••••••• 570

MBRF2045CT •••••••••••••.•••• 84

P4KAB.2,A •••..••...•••.••••••• 556

P4KE24C.CA. .................570

P4KE200,A •••••••••••••••••••• 570

MBRF2050CT ..•......•.•...•.•86

P4KA9.1.A •..•.•••.•.••.••••••• 556

P4KE27.A.......................570

P4KE200C.CA ••••• _•• _•••• 570

MBRF2060CT .................. 86

P4KA10.A .••••••••.••••.••••••• 556

P4KE27C.CA. .................570

P4KE220.A •••••••••••••••••••• 570

MBRF2535CT ..................96

P4KAll.A •••••••••••••••••••••• 556

P4KE30.A •••••••.••••••••••••••• 570

P4KE220C.CA ••••••••••••••• 570

MBRF2545CT ••••••..•••••••••. 96

P4KA12.A .••••••••••••••••••••• 556

P4KE3OC.CA••••••••••••••••••570

P4KE250.A •••••••••••••••••••• 570

MBRF2550CT •........•..••..•• 98

P4KA13.A .••••••••••••••••••••• 556

P4KE33.A••••••••••••••••.•.••..570

P4KE250C.CA ••••..••••••• _ 570

11

NUMERICAL INDEX
P4KE300.A .....................570

PSKE12.A ...................... 588

PSKE91C.CA..................588

RG3o ........................... _342

P4KE300C.CA................ 570

PSKE12C.CA ................. 588

PSKE100.A .....................588

RG3G ............................. 342

P4KE350.A .....................570

P6KE13.A ...................... 588

PSKE100C.CA.... _..........588

RG3J ........._................... 342

P4KE350C.CA................570

P6KE13C.CA ................. 588

PSKE110.A .....................588

RG3K ...._....................... 342

P4KE400.A ..................... 570

PSKE15.A ...................... 588

PSKE110C.CA................588

RG3M_ .......................... 342

P4KE400C.CA................570

PSKE15C.CA ................. 588

PSKEl20.A.....................588

RG4A ............................. 344

P6OOA............................. 368

PSKE16.A ...................... 588

PSKE120C.CA................588

RG4B ........ _................... 344

P6OOB.............................368

PSKE16C.CA ................. 588

PSKEl30,A..... _..............588

RG4o ............................. 344

PSOOo ............................ 368

PSKE1S.A ...................... 588

PSKE130C.CA................588

RG4G ............................. 344

PSOOG ............................ 3S8

P6KE1SC.CA ................. 588

PSKEl50,A............._......588

RG4J ......... _................. _ 344

PSOOJ .............................368

PSKE18.A ...................... 588

PSKEl50C.CA._._..........588

RGF1A ........................... 490

PSOOK............................. 368

PSKE18C.CA ................. 588

PSKEl60.A .....................588

RGF1B ........................... 490

PSOOM ............................ 368

psKE20.A ...................... 588

PSKE160C.CA................588

RGF1 D........................... 490

PSKA6.8.A ...................... 560

P6KE20C.CA ............... _588

PSKEl70,A.....................588

RGF1G .......................... 490

PSKA7.5.A ......................560

psKE22.A ...................... 588

PSKEl70C.CA............... .588

RGF1J ........................... 490

PSKA6.2.A ...................... 560

PSKE22C.CA ................. 588

PSKEl80.A._..................588

RGF1 K .. _....................... 490

PSKA9.1.A ......................5S0

PSKE24.A ...................... 588

PSKE180C.CA.... _..........588

RGF1M ................._....... 490

PSKA10.A....................... 5S0

PSKE24C.CA ................. 588

PSKE200,A.....................588

RGl34A ...................._... 466

PSKA11.A ....................... 560

PSKE27.A ...................... 588

PSKE200C.CA................588

RGl34B .... _................... 466·

PSKA12.A ....................... 560

P6KE27C.CA ................. 588

PSKE220.A .....................588

RGl34o ......................... 466

PSKA13.A....................... 560

PSKE30.A ...................... 588

PSKE220C.CA................588

RGl34G ......................... 466

PSKA15.A....................... 560

PSKE30C.CA ................. 588

PSKE250.A..... _..............588

RGl34J .......................... 466

PSKA1S.A ....................... 560

PSKE33.A ...................... 588

PSKE250C.CA................588

RGl41A ................_....... 474

PSKA18.A ....................... 560

PSKE33C.CA ................. 588

PSKE300.A .....................588

RGl41 B ......................... 474

PSKA20.A....................... 560

PSKE36.A ...................... 588

PSKE3OOC.CA................588

RGl41 0 ......................... 474

PSKA22.A....................... 560

PSKE36C.CA ................. 588

PSKE350,A.....................588

RGl41G ........ _............... 474

PSKA24.A....................... 560

PSKE39.A ...................... 588

PSKE350C.CA................588

RGl41J .......................... 474

PSKA27.A ....................... 560

P6KE39C.CA ................. 588

PSKE400.A .....................588

RGl41K ......................... 474

PSKA30.A....................... 560

P6KE43.A ...................... 588

PSKE400C.CA................588

RGl41M ........................ 474

PSKA33.A....................... 560

PSKE43C.CA ................. 588

RG1A..............................332

RGP02-12E ................... 262

PSKA36.A.......................560

PSKE47.A ...................... 588

RG1B..............................332

RGP02-14E ................... 262

PSKA39.A....................... 560

PSKE47C.CA ................. 588

RG1o .............................332

RGP02-16E ................... 262

PSKA43.A.......................560

PSKE51.A ........ _............ 588

RG1G ................._......_..332

RGP02-18E ................... 262

PSKES.8.A ......................588

P6KE51C.CA ................. 588

RG1J .._.........._..............332

RGP02-2OE .. _............... 262

PSKES.8C.CA................. 588

PSKE56.A ........ _............ 588

RG1K.........................._••332

RGP10A ...................._._ 270

PSKE7.5.A ......................588

PSKE56C.CA ................. 588

RG1M .............................332

RGP10B ......................... 270

PSKE7 .5C.CA................. 588

PSKE62.A ...................... 588

RG2A..............................336

RGP1OD ........................ 270

PSKEB.2.A ......................588

PSKE62C.CA ................. 588

RG2B.......... _..................336

RGP10G ........................ 270

PSKE8.2C.CA................. 588

PSKE68.A ...................... 588

RG2o._ ..........................336

RGP1OJ ......................... 270

PSKE9.1.A ......................588

PSKE68C.CA ................. 588

RG2G .............................336

RGP10K ......................... 270

PSKE9.1 C.CA................. 588

P6KE75.A ...................... 588

RG2J ..............................336

RGP10M ..._.. _............... 270

PSKE10.A.......................560

PSKE75C.CA ................. 588

RG2K .............................336

RGP15A ......................... 276

PSKE10C.CA.................. 588

PSKE82.A ...................... 588

RG2M .............................336

RGP15B .... _................... 276

PSKE11.A.......................588

PSKEB2C.CA ................. 588

RG3A..............................342

RGP150 _...................... 276

PSKE11C.CA.................. 588

PSKE91.A ...................... 588

RG3B..............................342

RGP15G ........................ 276

12

NUMERICAL INDEX
RGPl5J .......................... 276

Sl B ................................ 494

SA15C.CA ......................578

SA78.A........................... 578

RGP15K •........................ 276

Sl 0 ................................ 494

SA16.A ...........................578

SA78C.CA ..................... 578

RGP15M .........•............... 276

SlG ................................ 494

SA16C.CA ......................578

SASS.A........................... 578

P.GP20A .................•....•.. 278

SlJ ................................. 494

SA17.A ...........................578

SA85C.CA ..................... 578

RGP20B ..•....•................. 278

S2A ................................ 510

SA17C.CA ......................578

SA90.A........................... 578

RGP200 ......................... 278

S2B ................................ 510

SA18.A ...........................578

SA90C.CA ..................... 578

RGP20G ......................... 278

S20 ................................ 510

SA18C.CA ...................... 578

SA 100.A......................... 578

RGP20J .•........................ 278

S2G ................................ 510

SA20.A ...................,.......578

SA100C.CA ................... 578

RGP25A ......................... 280

S2J ................................. 510

SA20C.CA ......................578

SA 11 O.A ......................... 578

RGP25B .•....................... 280

S2K ................................ 510

SA22.A ...........................578

SA110C.CA ................... 578

RGP250 ......................... 280

S2M ............................... 510

SA22C.CA ......................578

SA 120.A......................... 578

RGP25G ......................... 280

S3A ................................ 530

SA24.A ...........................578

SA 120C.CA ................... 578

RGP25J .......................... 280

S3B ................................ 530

SA24C.CA ......................578

SA130.A......................... 578

RGP25K ......................... 280

S30 ................................ 530

SA26.A ...........................578

SA130C.CA ................... 578

RGP25M ...........•..•.......... 280

S3G ................................ 530

SA26C.CA ......................578

SA1S0.A ......................... 578

RGP30A ....•..••................ 282

S3J ................................. 530

SA28.A ...........................578

SA150C.CA ................... 578

RGP30B ......................... 282

S3K ................................ 530

SA28C.CA ......................578

SA 160.A......................... 578

RGP300 ...................•..... 282

S3M ............................... 530

SA30.A ...........................578

SA160C.CA ................... 578

RGP30G ...................•..... 282

SA5.0.A .......................... 578

SA30C.CA ......................578

SA 170.A......................... 578

RGP3OJ .........................• 282

SA5.0C.CA ................... 578

SA33.A ...........................578

SA170C.CA ................... 578

RGP30K .....................••.. 282

SA6.0.A .......................... 578

SA33C.CA ......................578

SAB5.0........................... 585

RGP30M .......•..............••. 282

SA6.0C.CA .................... 578

SA36.A ...........................578

SAB10 ............................ 585

RMPG06A •.........••...•...... 288

SA6.5.A .......................... 578

SA36C.CA ......................578

SAB12 ............................ 585

RMPG06B ...•..............••.. 288

SA6.5C.CA .................... 578

SA40.A ...........................578

SAB15 ............................ 585

RMPG060 ...................... 288

SA7.0.A .......................... 578

SA40C.CA ......................578

SAB18 ............................ 585

RMPG06G ........•...•......... 288

SA7.0C.CA .................... 578

SA43.A ...........................578

SAB24 ............................ 585

RMPG06J ....•..•..............• 288

SA7.5.A .......................... 578

SA43C.CA ......................578

SAB28 ............................ 585

RS1A ..........••.........•........496

SA7.5C.CA .................... 578

SA45.A ...........................578

SAC5.0 .......................... 586

RS1B .....................•........496

SA8.0.A. ......................... 578

SA45C.CA ......................578

SAC6.0 .......................... 586

RS10 ..........••..•.••............496

SA8.0C.CA .................... 578

SA48.A ...........................578

SAC7.0 .......................... 586

RS1G ..............................496

SA8.5.A .......................... 578

SA48C.CA ......................578

SACB.O .......................... 586

RS1J ............................... 496

SAS.5C.CA .................... 578

SA51,A ...........................578

SACB.5 .......................... 586

RS2A ..•••••••.....•..•.......•..•.512

SA9.0.A .......................... 578

SA51C.CA ......................578

SAC10 ........................... 586

RS2B .............................. 512

SA9.0C.CA .................... 578

SA54.A ...........................578

SAC12 ........................... 586

RS20 .............................. 512

SA10.A........................... 578

SA54C.CA ......................578

SAC15 ........................... 586

RS2G .............................. 512

SA10C.CA ..................... 578

SA58.A ...........................578

SAC18 ........................... 586

RS2J ............................... 512

SA11.A ........................... 578

SA58C.CA ......................578

SAC22 ........................... 586

RS2K .............................. 512

SA11C.CA ..................... 578

SA60.A ...........................578

SAC26 ........................... 586

RS3A .............................. 532

SA12.A........................... 578

SA60C.CA ......................578

SAC30 ........................... 586

RS3B .............................. 532

SA 12C.CA ..................... 578

SA64.A ...........................578

SAC36 ........................... 586

RS30 .............................. 532

SA13.A ........................... 578

SA64C.CA ......................578

SAC45 ........................... 586

RS3G .............................. 532

SA 13C.CA ..................... 578

SA70.A ...........................578

SAC50 ........................... 586·

RS3J ............................... 532

SA14.A ........................... 578

SA70C.CA ......................578

SB020 .............................. 26

RS3K ..............................532

SA14C.CA ..................... 578

SA75.A ...........................578

SB030 .............................. 26

SlA................................. 494

SA15.A ........................... 578

SA75C.CA ......................578

SB040 .............................. 26

13

NUMERICAL INDEX
SBl20 •••••••.•••••••••••.•.•••••••.• 30

SMAJ7.5.A ........... _........ 502

SMAGB,J6.0C.CA ..........522

5MBG.J36.A._.. _........... 518

SBl30............................... 30

SMAJ8.0.A ... _................ 502

SMAS.5,A ............... _......518

5MBG.J36C.CA ........_... 522

SB140............................... 30

SMAJ8.5.A ............... _.._ 502

5MBG.J6.5C.CA ............522

5MBG,J40.A ........._.. _... 518

SBl50 •..•••••••••.••••••••••••••••.. 30

SMAJ9.0.A_ ................... 502

5MBG.J7.0,A.. ........._..... 518

5MBG.J4OC.CA._ .......... 522

SB160 ............................... 30

SMAJ10,A ...................... 502

5MBG.J7.0C.CA ............522

5MBG.J43.A .................. 518

SB320 ••••.••.•••••••••....•.•••••••. 34

SMAJ11.A ...................... 502

5MBG.J7.5,A.. ............. _.518

5MBG.J43C.CA._ ........ _ 522

SB330 ............................... 34

SMAJ12.A ...................... 502

5MBG.J7.5C.CA ............522

5MBG,J45.A .................. 518

SB340 ............................... 34

SMAJ13.A ...................... 502

5MBG.Ja.O.A.•• _••_.........518

5MBG.J45C.CA ............. 522

SB350 ............................... 34

SMAJ14,A ...................... 502

5MBG.Ja.OC.CA ............522

5MBG,J48.A .................. 518

SB360............................... 34

SMAJ15.A .................... _ 502

5MBG.Ja.5.A.••_.............518

5MBG.J48C.CA ............. 522

SB520...............................36

SMAJ16,A ...................... 502

5MBG,Ja.5C.CA ._ .........522

5MBG,J51.A ......... _....... 518

SB530 ...............................36

SMAJ17,A ...................... 502

5MBG.Ja.O,A....... _......... 518

5MBG.J51C.CA ........... _ 522

~B540 ............................... 36

SMAJ18.A .................... _ 502

5MBG.J9.0C.CA ............522

5MBG.J54,A._.. _........... 518

SB550............................... 36

SMAJ20.A ...................... 502

5MBG.J10.A. ..................518

5MBG.J54C.CA ........ _... 522

SB560 ............................... 36

SMAJ22.A .................... _ 502

5MBG,J1OC.CA ._..........522

5MBG.J58.A._............... 518

SBL1030 ........................... 58

SMAJ24.A ...................... 502

5MBG.J11.A. ............... _.518

5MBG,J58C.CA............. 522

SBL1040 ........................... 58

SMAJ26.A ...................... 502

5MBG.J11C.CA ......... _..522

5MBG.J60.A .................. 518

SBL1030CT ...................... 62

SMAJ28.A ...................... 502

5MBG.J12.A._ ............. _.518

5MBG.J6OC.CA............. 522

SBL1040CT ......................62

SMAJ30.A ...................... 502

5MBG.J12C.CA .............522

5MBG.J64.A .................. 518

SBLl630CT ...................... 74

SMAJ33,A ...................... 502

5MBG.J13.A................... 518

5MBG.J64C.CA ............. 522

SBLl640CT ...................... 74

SMAJ36.A ...................... 502

5MBG.Jl3C.CA .............522

5MBG.J70.A .................. 518

SBl2030PT ......................94

SMAJ40.A ...................... 502

5MBG.J14.A...._.......... _.518

5MBG.J7OC.CA ............. 522

SBl2040PT ...................... 94

SMAJ43.A ...................... 502

5MBG.Jl4C.CA ..... _......522

5MBG.J75.A ............._... 518

SBL3030PT .................... 114

SMAJ45.A ...................... 502

5MBG.J15.A._ ............. _.518

5MBG.J75C.CA............. 522

SBL3040PT .................... 114

SMAJ48.A ...................... 502

5MBG.J15C.CA .............522

5MBG.J78.A .................. 518

SBLF1030 ........................ 56

SMAJ51.A ...................... 502

5MBG.J16.A............_..... 518

5MBG.J78C.CA._ .......... 522

SBLF1040 ........................ 56

SMAJ54.A ...................... 502

5MBG.J16C.CA .............522

5MBG.J85.A .................. 518

SBLF103OCT .................... 60

SMAJ58.A ...................... 502

5MBG.J17.A. ....... _......... 518

5MBG.J85C.CA ............. 522

SBLF1040CT....................60

SMAJ60.A ...................... 502

5MBG.Jl7C.CA ..... _......522

5MBG.J90.A .................. 518

SBLFl630CT.................... 72

SMAJ64,A ...................... 502

5MBG.J18.A...................518

5MBG.J9OC.CA ............. 522

SBLFl640CT.................... 72

SMAJ70,A ...................... 502

5MBG.Jl8C.CA .............522

5MBG.J100.A ................ 518

SBLF2030PT ....................92

SMAJ75.A ...................... 502

5MBG.J20.A. .................. 518

5MBG,J100C.CA ........... 522

SBLF2040PT .................... 92

SMAJ78.A ...................... 502

5MBG.J20C.CA .............522

5MBG.J110,A_ .............. 518

SBLF3030PT.................. 112

SMAJ85,A._ ................... 502

5MBG.J22,A...................518

5MBG.J110C.CA .._....... 522

SBLF3040PT .................. 112

SMAJ90.A ...................... 502

5MBG.J22C.CA .............522

5MBG,Jl20,A .......... _.... 518

SD241P .......................... 116

SMAJ1 OO,A .................... 502

5MBG.J24.A...................518

5MBG,Jl20C.CA .. _....... 522

SGL41-20 .......................482

SMAJ110.A .................... 502

5MBG.J24C.CA .............522

5MBG.Jl30.A ................ 518

SGL41-30 ....................... 482

SMAJl20.A .................... 502

5MBG.J26.A...................518

5MBG.Jl30C.CA ........... 522

SGL4140 ....................... 482

SMAJ130,A.................... 502

5MBG.J28C.CA .............522

5MBG.Jl50.A ................ 518

SGL41-50 .......................482

SMAJl50.A .. _................ 502

5MBG.J28.A._ ..... _......... 518

5MBG.Jl50C.CA ........... 522

SGL41-60 .......................482

SMAJl60.A .................... 502

5MBG.J28C.CA .............522

5MBG.Jl60,A ................ 518

SMAJ5.0.A .....................502

SMAJl70.A .................... 502

5MBG.J30.A._ ..... _...... _.518

5MBG.Jl60C.CA ........... 522

SMAJ6.0.A .....................502

5MBG.J5.0.A ................. 518

5MBG.J3OC.CA ._..........522

5MBG.Jl70,A ................ 518

SMAJ6.5.A ..................... 502

5MBG.J5.0C.CA ............ 522

5MBG.J33.A._ ..... _......... 518

5MBG.Jl70C.CA .. _....... 522

SMAJ7.0.A ..................... 502

5MBG.J6.0.A_ ............... 518

5MBG.J33C.CA .............522

SMCG,J5.0.A........_....... 538

14

NUMERICAL INDEX
SMCG.J5.0C.CA •••••••••••. 542

SMCG.J33.A •••••••••••••••••• 538

SMCG,JI70C.CA ...........542

SMCG,J6.0.A ................. 538

SMCG,J33C.CA ••.•••••••.•. 542

SMDA05.C .....................616

SUF30J .......................... 178
TGL41-6.8.A .................. 484

SMCG,J6.0C.CA •..•..••..•. 542

SMCG,J36,A ••...••••••••••••• 538

SMDAO.5C-8 ..................616

TGL41-7.5.A .................. 484

SMCG.J6.5.A ........•..•.....538

SMCG.J36C.CA •••••••••••.• 542

SMDAI2-8 ......................616

TGL41-8.2,A .................. 484

SMCG,J6.5C.CA ...•.......• 542

SMCG.J40.A ••.•.••.....••.••• 538

SMDAI2.C .....................616

TGL41-9.1.A .................. 484

SMCG.J7.0.A .................538

SMCG.J40C.CA ............. 542

SMDAI5-8 ......................616

TGL41-10,A ................... 484

SMCG.J7.0C.CA ............542

SMCG,J43.A .................. 538

SMDAA5.C .....................616

TGL41-11.A ................... 484

SMCG.J7.5.A ................. 538

SMCG.J43C.CA ............. 542

SMDA24-8 ......................616

TGL41-12.A ................... 484

SMCG.J7.5C.CA .•.•.•..•.•. 542

SMCG.J45.A .................. 538

SMDA24.C .....................616

TGL41-13,A ................... 484

SMCG.J8.0.A ••••••......•••.• 538

SMCG.J45C.CA............. 542

SRP100A........................378

TGL41-15.A ................... 484

SMCG.J8.0C.CA ............542

SMCG.J48.A .................. 538

SRP100B ........................378

TGL41-16.A ................... 484

SMCG.J8.5.A .••••••.••••••••• 538

SMCG.J48C.CA ............. 542

SRP100D .......................378

TGL41-18,A ................... 484

SMCG.J8.5C.CA ............542

SMCG.J51.A .................. 538

SRP100G .......................378

TGL41-20,A ................... 484

SMCG,J9.0.A .••••••••.•..•.•• 538

SMCG,J51C.CA ............. 542

SRP100J ........................378

TGL41-22.A ................... 484

SMCG.J9.0C.CA ............ 542

SMCG.J54.A .................. 538

SRP100K........................378

TGL41-24,A ................... 484

SMCG,Jl0.A ..................538

SMCG,J54C.CA ............. 542

SRP300A........................384

TGL41-27.A ................... 484
TGL41-30.A ................... 484

SMCG.Jl0C.CA .............542

SMCG.J58,A .................. 538

SRP300B ........................384

SMCG,Jll.A .................. 538

SMCG,J58C.CA............. 542

SRP300D .......................384

TGL41-33.A ................... 484

SMCG.JllC.CA ............. 542

SMCG.J60.A .................. 538

SRP300G .......................384

TGL41-36.A ................... 484

SMCG,J12.A ..................538

SMCG,J60C.CA............. 542

SRP300J ........................384

TGL41-39.A ................... 484

SMCG,J12C.CA .............542

SMCG.J64,A .................. 538

SRP300K........................384

TGL41-43.A ................... 484.

&MCG.JI3.A ..................538

SMCG.J64C.CA ............. 542

SRP600A........................392

TGL4147.A ................... 484

SMCG,J13C.CA .............542

SMCG.J70.A .................. 538

SRPSOOB........................392

TGL41-51,A ................... 484

SMCG.JI4.A ..................538

SMCG,J7OC.CA............. 542

SRP600D .......................392

TGL41-56.A ................... 484

SMCG.JI4C.CA ............. 542

SMCG,J75,A .................. 538

SRP600G .......................392

TGL41-62.A ................... 484

SMCG,J15.A ..................538

SMCG,J75C.CA ............. 542

SRPSOOJ ........................392

TGL41-68,A ................... 484

SMCG.JI5C.CA ............. 542

SMCG,J78,A .................. 538

SRP600K........................392

TGL41-75.A ................... 484

SMCG.JI6.A ..................538

SMCG.J78C.CA ............. 542

5812 ...............................500

TGL41-82,A ................... 484

SMCG,J16C.CA ............. 542

SMCG.J85.A .................. 538

5813 ...............................500

TGL41-91,A ................... 484

SMCG.JI7.A .................. 538

SMCG,J85C.CA ............. 542

5814 ...............................500

TGL41-100.A ................. 484

SMCG.JI7C.CA .............542

SMCG.J90,A .................. 536

5815 ...............................500

TGL4H 10.A ................. 484

SMCG.JI8.A .................. 536

SMCG.J9OC.CA............. 542

5816 ...............................500

TGL41-120.A ................. 484

SMCG,J16C.CA ............. 542

SMCG.Jl00.A ................ 538

5822 ...............................516

TGL41-130.A ................. 484

SMCG.J20.A ..................538

SMCG.Jl00C.CA........... 542

5823...............................516

TGL41-150.A ................. 484

SMCG.J20C.CA .............542

SMCG,Jll0.A ................ 538

5824 ...............................516

TGL41-160.A ................. 484

SMCG,J22.A ..................536

SMCG.Jll0C.CA........... 542

5825 ...............................516

TGL41-170.A ................. 484

SMCG,J22C.CA .............542

SMCG.JI20,A................ 538

5826 ...............................516

TGL41-180.A ................. 484

SMCG.J24.A .................. 538

SMCG.JI20C.CA........... 542

5832...............................536

TGL41-200.A ................. 484

SMCG.J24C.CA ............. 542

SMCG.JI30.A ................ 538

5833 ...............................536

TMPG06-6.8,A ............... 552

SMCG.J26.A .................. 538

SMCG.Jl30C.CA........... 542

5834 ...............................536

TMPG06-7.5,A ............... 552

SMCG,J26C.CA .............542

SMCG.Jl50,A................ 538

5835 ...............................536

TMPGOS-8.2,A ............... 552

SMCG.J26.A ..................536

SMCG,JI50C.CA ........... 542

SS36...............................536

TMPG06-9.1.A ............... 552

SMCG,J28C.CA ............. 542

SMCG.JI60.A ................ 538

SUFI5G ......................... 172

TMPGOS-l0.A ................ 552

SMCG,J30.A ..................538

SMCG,JI60C.CA........... 542

SUFI5J .......................... 172

TMPG06-11.A ................ 552

SMCG,J3OC.CA .............542

SMCG.JI70,A ................ 538

SUF3OG ......................... 178

TMPG06-12.A ................ 552

15

NUMERICAL INDEX
TMPG06-13.A ................552

TPSMB22.A ................... 526

UG06B............................I66

Wl0G ............................. 410

TMPG06-15.A ................ 552

TPSMB24.A ................... 526

UG06C ........................... 166

ZGL41-100 ..................... 480

TMPG06-16.A ................ 552

TPSMB27.A ................... 526

UG06D ........................... 166

ZGL41-110 ..................... 480

TMPG06-18.A ................552

TPSMB30.A ................... 526

UG1A. ............................. I68

ZGL41-120 ..................... 480

TMPG06-20.A ................ 552

TPSMB33.A ................... 526

UG1B.............................. I68

ZGL41-130 ..................... 480

TMPG06-22.A ................ 552

TPSMB36.A ................... 526

UG1C .............................168

ZGL41-140 ..................... 480

TMPG06-24.A ................ 552

TPSMB39.A ................... 526

UG1D ............................. I68

ZGL41-150 ..................... 480

TMPG06-27.A ................ 552

TPSMB43.A ................... 526

UG2A..............................174

ZGL41-160 ..................... 480

TMPG06-30.A ................ 552

TPSMCS.8.A .................. 546

UG2B.............................. 174

ZGL41-170 ..................... 480
ZGL41-180 ..................... 480

TMPG06-33.A ................ 552

TPSMC7.5.A .................. 546

UG2C ............................. 174

TMPG06-36.A ................ 552

TPSMC8.2.A .................. 546

UG2D ............................. 174

ZGL41-190 ..................... 480

TMPG06-39.A ................ 552

TPSMC9.1.A .................. 546

UG4A. ............................. 180

ZGL41-200 ..................... 480

TMPG06-43.A ................ 552

TPSMC10,A ................... 546

UG4B.............................. 180

TPSMA6.8.A................... 506

TPSMCll.A ................... 546

UG4C ............................. 180

TPSMA7.5.A ................... 506

TPSMCI2.A ................... 546

UG4D ............................. I80

TPSMAS.2.A. .................. 506

TPSMCI3.A ................... 546

UGSAT ........................... I90

TPSMA9.1.A................... 506

TPSMCI5.A ................... 546

UGSBT ........................... I90

TPSMA10.A .................... 506

TPSMCI6.A ................... 546

UGSCT ........................... 190

TPSMAll.A.................... 506

TPSMCI8.A ................... 546

UG8DT ........................... 190

TPSMA 12.A.................... 506

TPSMC20.A ................... 546

UG18ACT .......................214

TPSMA 13,A....................506

TPSMC22,A ................... 546

UGI8BCT.......................214

TPSMAI5.A .................... 506

TPSMC24.A ................... 546

UGI8CCT.......................214

TPSMAI6.A .................... 506

TPSMC27.A ................... 546

UGI8DCT.......................214

TPSMAI8.A.................... 506

TPSMC30.A ................... 546

UG30APT .......................218

TPSMA20.A .................... 506

TPSMC33.A ................... 546

UG30BPT .......................218

TPSMA22.A....................506

TPSMC36.A ................... 546

UG30CPT.......................218

TPSMA24.A .................... 506

TPSMC39.A ................... 546

UG30DPT .......................218

TPSMA27.A ....................506

TPSMC43,A ................... 546

UGFSAT ......................... I88

TPSMA30.A ....................506

UF4001 .......................... 170

UGFSBT ......................... 188

TPSMA33.A .................... 506

UF4002 .......................... 170

UGF8CT ......................... 188

TPSMA36.A ....................506

UF4003 .......................... 170

UGFSDT ......................... I88

TPSMA39.A .................... 506

UF4004 .......................... 170

UGFI8ACT.....................212

TPSMA43.A....................506

UF4005 .......................... 170

UGFI8BCT.....................212

TPSMBS.8.A ................... 526

UF4006 .......................... 170

UGF18CCT ....................212

TPSMB7.5.A ...................526

UF4007 .......................... 170

UGF18DCT ....................212

TPSMBS.2.A................... 526

UF5400 .......................... 176

UGF30APT .....................216

TPSMB9.1.A ................... 526

UF5401 .......................... 176

UGF30BPT .....................216

TPSMB10.A .................... 526

UF5402 .......................... 176

UGF3OCPT.....................216

TPSMB11.A .................... 526

UF5403 .......................... 176

UGF30DPT.....................216

TPSMBI2,A .................... 526

UF5404 .......................... 176

w005G ...........................410

TPSMBI3.A .................... 526

UF5405 .......................... 176

WOO1G ...........................410

TPSMBI5.A ....................526

UF5406 .......................... 176

w002G .......................... .410

TPSMBI6.A .................... 526

UF5407 .......................... 176

WOO4G ...........................410

TPSMBI8.A .................... 526

UF5408 .......................... 176

w006G ...........................410

TPSMB20.A .................... 526

UG06A ........................... I66

WOOSG ...........................410

16

•
QUALITY ASSURANCE

_General
------Instrument--17

QUALITY ASSURANCE
CUSTOMER INFORMATION
INTRODUCTION
Quality and Reliability of the Power Semiconductor Division extends its services to the areas
of materials and product analysis, statistical quality control, reliability evaluation, quality inspection and development of new test methods.
Headquartered in New York, it assumes the responsibility for the development, implementation and administration of the Quality Assurance and statistical quality control programs for
all operations of the Division, both domestic and foreign.
At our manufacturing plants, rigid and extensive in-process statistical quality controls are utilized such that the quality and reliability of our products are consistent and repeatable. The
laboratories of our facilities are equipped with the latest high-level instrumentation and
staffed with skilled technicians and engineers.
Professional expertise and the most modern scientific equipment maintains our position of
excellence and leadership as the foremost producer of semiconductor devices, and assures
that the quality levels of our products, from inspection and test of raw materials to final approval of completed devices, meet the highest standards of the industry.

We offer•••
•
•
•
•

Top-flight specialists and modern facilities.
Experienced Test and Reliability Engineers.
Statistical Quality Control.
Fully equipped laboratories able to perform all types of scientific investigation.

SERVICES OF THE MATERIALS AND DEVICE ANALYSIS SECTION
• Testing, inspection and evaluation of materials utilizing the facilities of the electrical,
mechanical, high-reliability and chemical analysis departments of our laboratories.
• Research and development of testing methods.
• Inspection of materials to ensure compliance by suppliers and contractors to specifications.
• Failure analysis to determine the cause of breakdown in materials or components.
• Qualification testing of military devices in accordance with applicable military specifications. The laboratories are qualified to perform testing to MIL-S-19500, MIL-STD-750,
MIL-STD-202, and also are qualified to MIL-STD-883 tests under MIL-M-38510. Qualification approvals (QPL listing) were awarded by the United States, Canadian and West German Departments of Defense.

18

TEST CONDITIONS

OPERATING LIFE
Conditions: Rated voltage,
rated current, for 1000 hours
at rated maximum junction temperature

SOLDERABILITY
Conditions: 95% coverage within
1.2 mm of device body.

DC BLOCKING
Conditions: Rated voltage for 1000 hours
at rated maximum junction temperature
in inert environment.

TEMPERA TURE CYCLING
Conditions: - 65 °C to +175°C.

STORAGE LIFE
Conditions: Rated maximum ambient
temperature for 1000 hours in inert
environment

SHOCK
Conditions: 5 blows of 1500g's.

LEAD PULL
Conditions: Axial pull to destruction.

VIBRATION (CONSTANT)
Conditions 20 g's at 60 Hz ± 20 Hz.

LEAD FATIGUE
Conditions: number of 90-degree
bends with 0.5 kg weight attached
to lead.

ACCELERA TlON
Conditions: 20,000 g's.

MOISTURE RESISTANCE
Conditions: 85°C, 85% Relative
Humidity for 1000 hours.

SALT ATMOSPHERE
Conditions: 5% solution for
24 hours at 40 °C.

FLAMMABILITY
Conditions: Encapsulating compound,
General Instrument's proprietary
formulas, GI-48 or GI-5A is self-extinguishing, recognized and registered
by Underwriters' Laboratories, U.S.
under 94V-O rating.

19

•

HIGH RELIABILITY-TEST CAPABILITIES
• Barometric Pressure:

• Vibration Noise:

This equipment simulates low atfT/()spheric
pressure encountered in non-pressurized
environments up to 200,000 feet.

Measures the afT/()unt of electrical noise
produced by the devices under vibration
from 9-5kHz and 0-70g.

• Humidity:

• Non-Operating Life:

This equipment evaluates units in an accelerated
manner, and fT/()nitors the effects of their
resistance to high humidity and heat conditions.
Typical RH of 90 to 98% is achieved.

To determine the effects on devices at elevated
temperatures. Temperature ranges up to 300 °C.

• Operating Life Test:

• Salt (Spray) and Salt Atmosphere:

to screen and eliminate marginal devices and

The equipment provides an accelerated
laboratory corrosion test simulating the effects of
seacoast atfT/()spheres. Salt concentration and
velocity per day can be maintained between
10,000 and 50,000 mgm/m2/day. Salt Atmosphere - Salt spray 5%- 20% salt solution.

eliminate fT/()rtality.

To operate the devices under Intended condition

• Steady State Operating Life
• Reverse Bias Operating Life
• Intermittent Operating Life

• Solderability - Lead Integrity
(Lead Tension):

• Thermal Shock Temp.-Cycllng:
This test determines the resistance of devices to
exposure at extremely high and low temperatures.
Chamber limits - 7if>C to 25(J> C.

Determine the solderability on all devices from a
to 400°C.
Lead Tension - Designed to check the
capabilities of the devices to withstand straight
pulls.

• Mass Spectrometer Leak Detector
(Fine Leak):
To determine the effectiveness (or the hermeticity)
of the seal on devices with internal cavities which
are evacuated or contain air or gas. Machine limits
1 - 10 -9 to 10 - 10 -6atm.

• Lead Integrity (bending stress):

• Gross Leak:

• Lead Integrity (lead torque):

Check the quality of leads, welds and seals of the
devices to withstand bends under specific
weights.

Determine seal leak greater than 10 - 10.6ATM
cc/Sec.

Check the devices, leads and seals for
resistance to twisting fT/()tion. Equipment limits
from.5 cmkg to 100 mkg.

• Constant Acceleration:
Determines the effects of a centrifugal force on
devices up to 700,OOOg under space environment
(refrigerated vacuum).

• HI-Power Microscopic Inspection:

• Shock:

• Bond Strength:

Examine Internal and external construction of
our devices up to 600 times.

Subjects the devices to conditions resulting from
sudden applied forces or abrupt changes in fT/()tion produced by rough handing, transportation or
field operation from 10 to 4,500g.

This determines strength of lead bonding
between the active area of the device and
connecting packaging lead.

• Vibration Fatigue:
Tests the effects of vibration within the frequency
range of 60 Hz at 0-70g.

20

I

SCHOTTKY RECTIFIERS
0.6 TO 40 AMPERES



LOW CURRENT AXIAL SCHOTTKY RECTIFIERS
89020
TYPE

111••

8BD4O
PACKAGE

8BI20

IN&817

111..

1hru

8811D
1111811
1l().2)4Ai.

Ml'GD6

1_

88320

S8&20

1hru

1hru

SB36D
1l().3)IAD

1_2

S8&1D
D~D1AD

SB520

111..

In

3n

Vfl02O(V)

88020

1.0
8BI3)

IlM01AD
3.0

lN5817

81320

lN511!O

VR-3O(V)

58030

SBI30

lN51118

SB330

lN5821

SB530

VIHO(V)

58040

SBI40
SBI50

lN51119

SB340

lN5822

SB540

lOlA)

D.6

VfloSO(V)
VRoSO(V)

88550

81310
81310

SB160

5n

SB560

MEDIUM CURRENT SCHOTTKY RECnFIERS
SINGLE RECTIFIERS
IIB_

SBLfltBD

1hru

II..

1hru

1hru

IIBR7111

88LflOlD

SBL1D40

IIBAFltB5
1hru
IlBAFlDlIII

111..

MBRmo

....

MBR1D1111

MBRF1IDD

IIBR1IDD

PACKAGE

1T()'22QAC

T().22OAC

fT().22QAC

~3)AC

~3)AC

~3)AC

~3)AC

To.22OAC

BARRIER
HEIGHT

HIGH

IIBRF135
TYPE

111..

SBLl030

1!BR1035

MBRF1135

MBR1135

HIGH

HIGH

LOW

LOW

HIGH

HIGH

HIGH

lOlA)
VfI-3O(V)

7Jl

71>

Ion

10.0
SBLl000

Ion

1M

18.0

18.0

VfI-35(V)

1IBRF735

MBR735

MBRF1005

MBR1005

MBRFI635

MBRI635

VR"5(V)
VfloS1I(V)

MBRF745

MBR745

MBRF1045

MBR1045

_1645

MBRI645

MBRF750

MBR750

IIBRF11EO

MBR1C1iO

_1610

MBRI650

VI1-611(V)

MBRF760

MBR760

IIBRF1060

MBR1060

MBRF16111

MBR1160

SBLF1030

VR.. O(V)

SBLF1040

S8Ll040

-----------------------------GD~l~mem
22

MEDIUM CURRENT SCHOTTKY RECTIFIERS

DUAL RECTIFIERS
TYPE
PACKAGE
BARRIER
HEIGHT
IO(A)
'lR-30(V)

... ... ... ... ...

SBLAIllOCT SBL1030CT IIBRF1SI5CT IIBR1SI5CT SBLF1130CT SBLFII30CT II1IAFJD35CT IIIIR2SISCT IIBRf2535CT II_CT
Ihru
Ihru
Ihru
Ihru
Ihru
SBLAOIOCT SBL1040CT IIBRF1510CT IIBR1510CT SBLF1M1CT SIL1.0CT IIBRFlO100CT 1I1IRID100CT II_OCT IIIIR25I1CT
fT().22OAB
1T0-220A8
ITO-22MB
TO-22OAB
TO-22DAB
ITO-22DAB
TO-22DAB
ITO-22DAB
TO-22OAB
TO-220A8
HIGH
15.0

LOW
10.0
SBLF1030CT

LOW

S8Ll030CT

SBLF1040CT

S8Ll040CT

10~

lOW

lOW

HIGH

HIGH

15~

16»
SBLF1S1OCT

16.0
S8L1630CT

20~

2D~

SBLFl640CT

SBLI640CT

MBRF1511SCT MBR1511SCT

'lR-35(VO
VRo4O(V)

HIGH

VRo6O(V)
VR-60(V)

HIGH
30.0

MBRF2D35CT MBR2C11SCT MBRF2535CT MBR2535CT
IIBRF2J45CT MBR2015CT M8RF2545CT M~
MBRF2050CT MBR2CIiOCT MBRF2550CT MBR2550CT
MBRF2000CT MBR2060CT MBRF2500CT MBR2560CT

MBRFI54SCT MBRI54SCT
MBRF1l5OCT MBRll50CT
MBRF1560CT MBRl560CT

VR-45(V)

HIGH
30.0

MEDIUM CURRENT SCHOTTKY RECTIRERS

TYPE

PACKAGE
BARRIER
HEIGHT
10(1\1
VR030(V)

DUAL RECTIFIERS CONT.

... ...

...

lOW

lOW

lOW

lOW

20.0
SBLF2030PT

2O~

30~

S8L3l30PT

30.0
SBLF3C11OPT

SBL3030PT

SBlF2040PT

S8L3l4IlPT

S8LF301OPT

SBL3iMOPT

VR-45(V)
VR-50(V)
VRo6OjV)

HIGH
30.0

HIGH
30.0

II_Pi
SD241P
TO-Zl7AD
HIGH
30.0

MBRF3C115PT MBR3C115PT

VRo35(V)
VRo4O(V)

...

S8LF2IDOPT SBl.203IPi SBLRIIIIOPT SBL.1IDOPT 1 1 - 1/8R3CII5PT
II..
II..
SIIIROIOPT SBL2II4OPi SBLPaOIOPT SBL.101OPT IIBRPaOIOPT IIBRlII&OPT
ITO-3P
TO-247AD
ITO-3P
TO-Zl7AD
ITO-3P
TO-217AD

MBRF3OI5PT MBR3015PT
MBRF31I6OPT M8R311&OPT
MBRF3I15OPT MBR3I15OPT

-

BI..
II..
IIB_IlPi 1I8Rl1I60PT
TO-247AD
ITO-3P

HIGH
40.0

HIGH
4M

MBRF4035Pi M8R4C115PT
8DZI1P

MBRF_PT M8R4015PT
MBRF4Il50PT M8R4I15OPT
MBRF40IIOPT MBR41160PT

---------------W
WQ.
a:::::i:

FIG. 4 -

io""'"

/

I-

.01

.20
10

en

0.1

1.0

0.'

.....
""" "1'00.

I

ToI_25"C

10

40 80 100

REVERSE VOLTAGE VClTS

~

V
.001

"

FIG. 5 - MAXIMUM NON·REPETITIVE PEAK
FORWARD SURGE CURRENT
25

o

20

40

60

60

100

120

PERCENT OF RATED PEAK
REVERSE VOLTAGE ,'II.

140

W

a:w
:::)a:

I

1.0~

.10

I

I

I

III I

O>~ 20

a!:I!
~

~

T, .75"C

I

/1

I

25

.

a:!Z
Ow
1La:
",a:
<:::)
wO

"'-

15
10

TJ- TJ max.

B.3ms SINGLE HALF SINE·WAVE
JEDEC METHOD

""

~

........ r---

0..

I

.JII'

I

I
10

I"''"

~ 1000

20

50

100

NUMBER OF CYCLES AT 60 Hz
U

I

~.

0

0

10

S

110

1 to

14

FIG 5 • TYPICAL JUNCTION CAPACITANCE

PERCENT OF RATED PEAK
REVERSE VOLTAGE ,'Yo

400

'a

200

I

-

r--.. .....

w

~ 100

~

o

~

80

J

T..-25 C
f_l.0MHz
Vsig _ SOm Vp-p

"'"

6(1

40

10
0.1

'.
0.'

1.0

4

10

REVERSE VOLTAGE, VOLTS

--------------CDGenerallnsbument
29

40

80

100

58120 THRU 58160
MINIATURE SCHOTIKY BARRIER RECTIFIER
VOLTAGE RANGE - 20 to 60 Volts
CURRENT - 1.0 Ampere
FEATURES
0o-204AL

f

1.0 (25.4)

IIIN
.107 (2.7) ~ 1
.080(2.0)

1+

!

.20~5.2)

.160 (4.1)

t

t

1.0(25.4)
.034 (.86) ~..

.028 (.71)

IIIN

I

..

Dimensions in inches
and

(millimeters)

• Plastic package has Underwriters Laboratory
Flammability Classifications 94V-O
• Metal to silicon rectifier, majority
carrier conduction
• Low power loss,
high efficiency
• High current capability,

IOWVF
•
•
•
•

High surge capacity
Epitaxial construction
Guardring for transient protection
For use in low Voltage, high frequency inverters,
free wheeling, and polarity protection applications
• High temperature soldering guaranteed:
250 oC110 seconds/.37S" (9.Smm) lead
lengths/Sibs., (2.3kg) tension

MECHANICAL DATA
Case: JEDEC DQ-41 Molded Plastic
Terminals: Plated axial leads, solderable per MILSTD-7S0, Method 2026
Polarity: Color band denotes cathode
Mounting Position: Any
Weight: 0.012 ounces, .34 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25'C ambient temperature unless otherwise specified.
Resistive or inductive load.
SYMBOLS SB120

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
.375", (9.5mm) Lead Length See FIg.l
Peak Forward Surge Current,
8.3ms single half sine-wave superimposed
on rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage
at 1.0A (NOTE 2)
Maximum Instantaneous Reverse Current at
Rated DC Blocking Voltage (NOTE 2) TA=25°C
TA=100°C
Typical Thermal Resistance (NOTE 1)
Operating Junction Temperature Range
Storage Temperature Range

VRRM
VRMS
Voc

20
14
20

SB130

SB140

SB150

SB160

UNITS

30
21
30

40
28
40

50

60
42
60

Volts
Volts
Volts

35
50

I(AY)

1.0

Amps

IFSM

40.0

Amps

VF
IR
IR
R8JL
TJ
TSTG

0.50
0.5
1U.U

::I.

15.0
-65 to +125
-65 to +150
-65 to +150

NOTES:
I.Thermal Resistance Junction to Lead P.C. Board Mounting .375' (9.5 mm) Lead Lengths.
2.Pulse Test: Pulse Widlh-3OOJ1S. Duty Cycle=2.0%.
30

0.70

Volts

rnA
rnA
°CIW
°C
°C

RATINGS AND CHARACTERISTIC CURVES S8120 THRU S8160
FIG. 2 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS
20

.,:
z

FIG. 1 - FORWARD CURRENT DERATING CURVE

W
0::
0::

1.0

r\ i\
8Bl~ \
i\ \

::J

o

.75

Oil)

o::W
<0::

~~

~~
W

.SO

W

.25

RESISTIVE OR INDUCTIVE LOAD
."iJ75" (9.5mm) LEAD LENGTH

o

>

<

.J'

~...

-

L'

8Bl50
THRU
SBl60

J i

o

50

25

\

100

75

~::;g88140
SB160::

\

:

150

125

175

;

0.1
.1

LEAD TEMPERATURE, ·C

I

.3

I

TJ_25°C

, PULSE WIDTH.300I"', e% DUTY CYCLE

.5

.7

.9

1.1

1.3

1.5

1.7

1.9

2.1

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS
FIG. 38 - TYPICAL REVERSE CHARACTERISTICS

FIG. 3A - TYPICAL REVERSE CHARACTERISTICS

100

100

88120
8B13O
S8140

I

0

i~

to;u;;

.,:

~

Z

88150 THRU SBI

A

I

0

W
0::
0::

,

::J

o

mil)
0

ffi~

TJ-75~

iri~

0::::E

II)~

/

0-

TJ.l50~·

1 .0

....... .'/

.1 0

,,'

1-

l........ 1/:/

~ TJ_l2fi"C

5;1
w::E

/

Z

~
1

I-TJ_75~

Z

~

TJ-25~

~

.0 1

II)

"'7

1.#'" [ /

T"..25"C

z
.001

.00 1
20

40

60

80

100

120

140

20

40

60

80

100

120

140

PERCENT OF RATED PEAK REVERSE VOLTAGE ,'II.
FIG. 5 - MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT

PERCENT OF RATED PEAK REVERSE VOLTAGE ,'II.
FIG. 4 - TYPICAL JUNCTION CAPACITANCE

.,:
z
W
0::

a::

::J

o

0.1

0.4

1.0

10

40

80 100

4

6

810

20

40

60 80100

NUMBER OF CYCLES AT 60Hz

REVERSE VOLTAGE, VOLTS

---------------.Generallnstrument
31

•
'

8Bl50~

SB130
~Bl4D

a.
W::;;
a:«
CI)-

TJ

~

J

~

z

«

0.1

r--

/

J

1.0

-"

V

«

LEAD TEMPERATURE.·C
FIG. 3 - TYPICAL REVERSE
CHARACTERISTICS

10

!/

LL~

~

,

,

~CI)

a: w
Oa:

150

I

10

a:

"-

125

I

IS8320 llhru s8l40

0.4

1.0

4.0

40 80 100

10

REVERSE VOLTAGE VOLTS

PERCENT OF RATED PEAK
REVERSE VOLTAGE ,%

FIG. 5 -

MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT

~
"- ~

T"'T~l

III

'JEDEC
.JIM SINGLE
HALF INNEoWAYE
METHOD

i"

..........
.....1'-

..

,. .

. ,..

NUMBER OF CYCLES AT 60 Hz

----------------Ci General Instrument
35

58520 THRU 58560
HIGH CURRENT SCHOTTKY BARRIER RECTIFIERS
VOL TAGE - 20 to 60 Volts CURRENT - 5.0 Amperes
FEATURES
OD-201AO

f

.210 (5.3)
.190 (4.8)
OIA.

1.0 (25.4)

T'

L/

t

.375 (9.5)
.285f·2)

1.0 (25.4)

.052 n.3)
•048 n.2)

... T'

• Plastic package has Underwriters Laboratory
Flammability Classification 94V-O
. • Metal to silicon rectifier, majority
carrier conduction
• Low power loss,
~
high efficiency
• High current capability,
lowVF
""""
• High surge capacity
'"
• Epitaxial construction
• Guardring for transient protection
• For use in low voltage, high frequency inverters,
free wheeling, and polarity protection applications
• High temperature soldering guaranteed:
250°C/10 seconds/.375" (9.5 mm) lead lengths at
Sibs., (2.3 kg) tension

MECHANICAL DATA
Dimensions in inches
and

(millimeters)

Case: JEOEC 00-201 AD Molded Plastic
Terminals: Plated axial leads, solderable per MILSTD-750, Method 2026
Polarity: Color band denotes cathode
Mounting Position: Any
Weight: 0.04 ounces, 1.12 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperawre unless o1herwise specified.
Resistive or inductive load.
SYMBOLS 8B520

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
.375", 9.5mm Lead Length See Fig.1
Peak Forward Surge Current, 8.3ms single
half sine-wave superimposed on rated load
(JEDEC Method) at rated TL
Maximum Instantaneous Forward Voltage at 5.0A
Maximum Instantaneous Reverse Current at
Rated DC Blocking Voltage
TA=25°C
(NOTE 2)
TA=100·C
Typical Thermal Resistance (NOTE 1)
Operating Junction Temperature Range
Storage TelT1l!erature Range

VRRM
VRMS
Voc

SB530

SB540

8B550

SB560

UNITS

30
21
30

40
28
40

50
35
50

60
42
60

Volts
Volts
Volts

20
14
20

I(AV)

IFsM
VF
IR
IR
R8JL
TJ
TSTG

5.0

150.0
0.55

0.67
0.5
50.0

15.0
-65 to +125
-65 to +150

NOTES:
1. Thermal Resistance Junction to Lead Vertical P.C. Board Mounting, .375· (9.Smm) Lead Leng1h.
2. Pulse Test: Pulse Wld1h=300IlS, Duty Cycle=2%.
36

Amps

25.0
10.0
-65 to +150

Amps
Volts

rnA
rnA

OCIW
·C
·C

RATINGS AND CHARACTERISTIC CURVES 58520 THRU 58560

FIG. 2 -

MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT

300

250

W
a:w
~a:
ooW

CJUJ
I-

FIG. 1 -

Z

W

a:
a:

FORWARD CURRENT DERATING CURVE

Ooo

a:W
«
a:
~~

l"l

4.0

20
1.0

CJ

THRU

SIB~

W

«
a:

.3rrT"

>

20

«

I

rOllEr,
40

60

THRU- fSB560

",

r\

RESISTIVE OR INDUCTIVE lOAD

W

Sd5501

,"r\

S~52~ "

3.0

fr ~

a:~

150

3:"'a:z

100

««

5.0

~

U

200

00.

I'\..

80

100

OW
u.a:
l<:a:
«~
wU

...............

B.3ms SINGLE HALF SINE-WAVE

JEDEC METHOD

r--

I-

50

0.

10

r\

-

100

50

20

NUMBER OF CYCLES AT 60Hz

150

120

TJ-TJ max.

r--.. r-..

FIG. 4 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

LEAD TEMPERATURE, °C
I-

Z

W

40

a:
a:

THRU
r--- r-- !!B520
SB540

~

U

o

FIG. 3 - TYPICAL REVERSE
CHARACTERISTICS
20

'TJ-125°C~

~'

...Z

W
a:
a:
~
U
Woo
ooW
a: a:
Ww

>0.
W~

a:«
oo~..J
O:::!
W~
z

",..

1.0

oo

6«

~

.10

W

(/)

~

.01

f---

'/

U.
0-

W

1000
800
600

U
Z

5
o

20

~

«

SB520·SB540 '

U

SIl55f.SB5~0
60

80

100

L
.4

.5

.6

.7

.8

.9

II"

-

120

IIII

...

I

--- --

200

140

0.1

PERCENT OF RATED PEAK REVERSE
VOLTAGE ,Of.

~~.250C

f-1.OMHZ

-

400

100
40

I

.3

FIG. 5 - TYPICAL JUNCTION CAPACITANCE

«

.001

.2

4000

~

----

I

0.1

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

2000

-~ ~

T".25CC
. \,~l8cr~lg~~Lr'jLS

I

«
l-

V

TJ-25°C -

SB550THRU r-SB58,

Z

'" "'

/

,~

F

oo~

I~

[/1'

Z

«
I-

~ffi
u.o.

Z

TJ_75cC

«
I-

1.0

/ I

0

~~

~

"

/

\

a:

....l-1.. ~17

10

10

.AfIIi'

~B5n~w

Vslg-50m'lp-p

........
,--....,;; ~
iii;

S8550-S9S60
0.4

1.0

10

40

80 100

REVERSE VOLTAGE, VOLTS

---------------<:0:

(!)

2.0

........... ......

>

«
50

100

r--.

0..

25
1

5

10

100

50

20

NUMBER OF CYCLES AT 60Hz

1\

UJ

-

TJ-TJmax.

..............

i\

UJ

Ci

O:Z
OUJ

\.

0:::;

f2 «

8.3ms SINGLE HALF
SINE·WAVE
(JEDEC METHOD)

~...:

,

OU)

""""- .....

100

««

8.0

o

00..
0:::;

,

0:
0:

:J

125

FIG. 4-TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS
50

150
I-

CASE TEMPERATURE, 'C

Z

I

UJ

0:
0:

o

"

0- ~ ~5"C"!
~
/.

TJo12S"C

:J
10

o

0:

,
"' / "
h I( ITJ

«

FIG. :z. TYPICAL REVERSE
CHARACTERlSllCS

~~

offi
u..o..

10

U)::;

:J«
o
UJ

...:
z
UJ

«

I-

Z

1.0

, ,

UJU)
~UJ

~1,1

.3

PULSE WIDTH 300.6 2% Duty Cycle

A

~

~

~

3

~

1~

INSTANTANEOUS FORWARD VOLTAGE.
VOLTS

1/

FIG. 5-TVPICAL JUNCTION CAPACITANCE
4000

U)~

6~
UJ::;

!

V

z
«

I-

«

2

TJ = 75 D C

~~ o.

Z

1/ /

Z

o

I

I

U)

0:
0:

L

I

«
I-

:J

~ffi

Z

TJ = 12S"C

".

02S'C

1.0

/ ' TJ = 25"C

u..

u.i
0

Z
«

.01

I-

U)

I-

Z

0

«
0..
«

I'

2000

Cl.

1000
600

m

---

TJ= 25"C
F= 1MHz
Vsig" 50mVp-p

....

~

...........

0

200
.001

o

~

~

00

00

WO

1~

PERCENT OF RATED PEAK
REVERSE VOLTAGE ,"10

1~

100
0.1

0.4

1.0

10

....
~

80 100

REVERSE VOLTAGE. VOLTS

---------------eGeneralInstrument
41

MBRF750 AND MBRF760
SCHOTTKY RECTIFIER
VOLTAGE RANGE - SO and 60 Volts
CURRENT - 7.S Amperes
FEATURES
IT0-220

.13 •• 008
13.3 to.2)

.. 0·107t.008
12.7 t O.2)

• Isolated plastic package has Underwriters Laboratory Rammability Classification 94V-0
• Metal to silicon rectifier,
~
majority carrier conduction
• Low power loss, high efficiency
..
• High current capability, low VF
• High surge capacity
,
• Epitaxial construction
• For use in low voltage, high frequency inverters,
free wheeling, and polarity protection applications
• High temperature soldering guaranteed: 250°CI1 0
seconds/.25", (6.35mm) from case
• Guardring for transient protection
• Intemallnsulation: 1.5k VRMS

MECHANICAL DATA
PINl~

c=.e

PIN 2 O---+!-l
(Case Positive)

STANDARD POLARITY

Dimensions in inches and (millimeters)

Case: ITO-220 Fully Overmolded Plastic
Terminals: Leads Solderable per MIL-STD-750,
Method 2026
Polarity: As marked
Mounting Position: Any
Mounting Torque: 5 in. - lb. max.
Weight: .08 ounces, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperabJre unless otherwise specified. Resistive or inductive load.

Maximum Recurrent Peak Reverse Voltage
Maximum Working Peak Reverse VoHage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current at
Tc=125°C
Peak Repetitive Forward Current (Square Wave, 20 KHz)
at Tc=125°C
Peak Forward Surge Current, 8.3ms single half sinewave superimposed on rated load (JEDEC Method)
Peak Repetitive Reverse Surge Current (NOTE 3)
Maximum Instantaneous
IF=7.5A, Tc=125°C
Forward VoHage at (NOTE 2)
IF=7.5A, Tc=25°C
Maximum Instantaneous Reverse Current at Tc=125°C
Rated DC Blocking Voltage (NOTE 2)
Tc=25°C
Voltage Rate of Change (rated VR)
Typical Thermal Resistance (NOTE 1)
Operating Junction Temperature Range
Storage Temperature Range
NOTES:

1. Thermal Resistance Junction \0 Case.
2. Pulse Test: 300j.1S Pulse Width. 2% Duty Factor.
3. 2.0j.1S Pulse Width. 1=1.0 KHz.
42

SYMBOLS

MBRF7S0

MBRF760

UNITS

VRRM
VRWM
Voc

50
50
50

60
60
60

Volts
VoHs
Volts

I(AV)

7.5

Amps

IFRM

15.0

Amps

IFSM
IRRM

150.0
0.5
0.65
0.75
50.0
0.5
1000
3.5
-65 to +150
-65 to +175

Amps
Amps

VF
IR
dv/dt
R8JC
TJ
TSTG

Volts
mA
rnA
V/IJS

"CIW
°C
°C

RATINGS AND CHARACTERISTIC CURVES MBRF750 AND MBRF760
FIG. 3 ·MAXIMUM NON-REPETIVE PEAK
FORWARD SURGE CURRENT
175
150
W
C)(/)

r:
~

10.0

ffi

«

a.0

1\

6.0

:;:0..

~::;:

LL
W
(!)

«

100

"" ...... r-... ....

4.0

2.0

0..

25
1

o
o

50

100

5

10

20

50

100

NUMBER OF CYCLES AT 60Hz

i\

>

«

,

r---.... r-.....

50

wU

.~

..........

75

~

«

ffi

a:::;:

f"'....

:;:f-

O(/)

a: w

125

««
a:z
OW
u..a:
,<:ex:
«::J

a:
a:

a

a:w
::la:
(j)W
00..

FIG. 1-FORWARD CURRENT DERATING CURVE

II

a.3ms SINGLE HALF SINE WAVE
(JEDEC METHOD)
T" ..TJIT18X.

FIG. 4-TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS
50

150
f-

CASE TEMPERATURE, ·C

Z

/

W

ex:
ex:
::J
U

o

l/

10

ex:
«

FlO. 2· TYPICAL REVERSE

~~

CHARACTERISTICS

...

Oa:
u..il:

0

/

V

(j)::;:

~ T...15O"C

6«

-

-

1-----

.-

1.0

w

I--

r:
z
W

T.... 125·C

z

«
f-

~

l.,....oo- ~

1.0

z

«
f-

a:
a:

~

::J

o. 1

U

T....75OC . / .",

PULSE WIDTH = 300 u s -

2% Duty Cycle
.3

.4

.5

.6

.7

.8

.9

1.0

FIG. 5- TYPICAL JUNCTION CAPACITANCE
4000

If

z

./

«
ff-

/

TJ = 25·C

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

0.1

6;!
W::;:
z
«

.2

.1

~~

ffiffj
iii ~
~~

I

(j)

.J

T...2SOC
.01

V

z

f

o

V

20

2000

U
Z

1000
BOO

«
fU
«
0..
«

en

.001

u..

c.
u.i

U
40

60

80

100

120

PERCENT OF RATED PEAK
REVERSE VOLTAGE ,%

BOO

--

ITJJ II~

........

~;~~omvp-p I

400

I""-....

200

140
100
0.1

0.4

1.0

10

REVERSE VOLT AGE. VOLTS

~
40

""'"

80 100

- - - - - - - - - - - - - - - - CD General Instrument
43

MBR735 AND MBR745
SCHOTTKY RECTIFIER

VOLTAGE RANGE - 35 and 45 Volts

CURRENT - 7.5 Amperes
FEATURES

TO-220AC
.420110.67)
•380 19.65)

~ :m~tg:~

.15513.941 DIA
....1 •. 05511.40)
.14SJ3.681
'-r---:--+.045 U.l4J

-'1
1

PIN

:n~:tm~f
ft ~ ~
.600124)

1
~N. 6~;:.:::Sl·7S) t:m !~ :-:3.;:-:l~ 81·,. .13_) 0l-2S-~-

11==+="11

.640 U6.2S1

.36019.141

P

-..."....

:I4Oi3.S6i

t

"'11·:m:g:::l

- . - . .210(5.33]
.19014.831

j.S6D (124.22i +JoI\X.
.SJOlt 461

'~mBi!+

•

•

• Plastic package has Underwriters Laboratory
Flammability Classifications 94V-0
• Metal to silicon rectifier,
~;,
majority carrier con.~~
duction
"'
.
• Low power
.
~~
loss, high efficiency
.~,~
• High current capability,low VF
"",
• High surge capacity
'"
• Epitaxial construction
• For use in low voltage, high frequency inverters,
free wheeling, and polarity protection applications
• High temperature soldering guaranteed:
2S0°C/10 seconds/.2S", (6.3Smm) from case
• Guardring for transient protection

<- .110(2.791
....09012.29]

ICASE POSITIYE!
PIN 1 + ~
STANDARD POLARITY PIN 2 -~CAsE

Dimensions in inches and (millimeters)

MECHANICAL DATA
case: JEDEC TO-220 Molded Plastic
Terminals: Leads Solderable per MIL-STD-750,
Method 2026
Polarity: As marked Mounting Position: Any
Weight: .08 ounces, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25"C ambient temperature unless olherwise specified. Resistive or Inductive load.

Maximum Recurrent Peak Reverse Voltage
Maximum Working Peak Reverse VoHage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current at
Tc=105°C
Peak Repetitive Forward Current(Square Wave, 20 KHz)
at Tc=105°C
Peak Foward Surge Current,8.3rns single haH slnewave superimposed on rated load (JEDEC Method)
Peak Repetitive Reverse Surge Current (NOTE 3)
Maximum Instantaneous
IF=7.5A, Tc=125°C
Forward Voltage at
IF=15A. Tc=125°C
IF=15A. Tc=25°C
Maximum Instantaneous Reverse Current at
Rated DC Blocking Voltage
Tc=125°C
(NOTE 2)
Tc = 25°C
Voltage Rate of Change (rated VR)
Maximum Thermal Resistance, (NOTE 1)
Operating Junction Temperature Range
Storage Temperature Range
NOTES:

1. Thermal Resistance Junction to Case.
2. Pulse Test: 300jJS Pulse Wldlh. 2% Duty Factor.
3. 2.0jJS. 1.0 KHz.
44

SYMBOLS

MBR735

MBR745

UNITS

VRRM
VRWM
Voc

35
35
35

45
45
45

Volts
Volts
Volts

I(AV)

7.5

Amps

IFSM

15.0

Amps

IFSM
IRRM

150.0
1.0
0.57
0.72
0.84

Amps
Amps

15.0
0.1
1000
3.0
-65 to +150
-65 to +175

rnA
rnA

VF

IR
dv/dt
R8JC
TJ
TSTG

Volts

V/IJ.S
°CIW
°C
°C

RATINGS AND CHARACTERISTIC CURVES MBR735 AND MBR745

FIG. 3 -MAXIMUM NON-REPETIVE PEAK
FORWARD SURGE CURRENT
175

II

8.3ms SINGLE HALF SINE WAVE
(JEDEC METHOD)

5"",...,
FIG. 1 -

~

z

W
0:
0:

10.0

()

8.0

::>

,

oU)

o:W
«0:

~~

~~

6.0

4.0

t"......

5

5

i\

2.0

100

50

10

I

a:

0:

TJ

::>

o
0:
«

FIG. 2- TYPICAL REVERSE
CHARACTERISTICS

~~

/~

'/

h

U):;;;

::>«

o

10

W

~
1.0

::>

1

30~

PULSE WIDTH
2"0 Duty Cycle

8

7

FIG. 5 -

TYPICAL JUNCTION CAPACITANCE

4000

~~

w:;;;

z
«

V

~

V

u..
Q.

2000

W

TJ=25°C

()

.0 1

Z

~
U)

800

0

600

«
Q.
«

I'"

1000

«

~

z

--

~ ~l
I

400

...........

200

80

100

120

PERCENT OF RATED PEAK
REVERSE VOlTAGE ,%

140

I

""'"

()

60

I

TJ-25"C
f.... 1MHz
Vsig".50mVp-p

.00 1

40

10

INSTANTANEOUS FORWARD VOLTAGE.
VOLTS

V

20

9

J '" 75"C

U)~

z
«

r /TJ" 25"C

I

II/ /

Z

~

/

I

I

~
U)

a:
a:

~:2 01

~V

Z

z
«

I"

. / ~5'C'"

125'C&

«
~

TJ - 125 c C

V

o

10

offi
u..Q.

10

~~
a: 0:
~~

100

~
~

~

Z

()

o

50

so
W

Z
W

20

~

FIG. 4 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

150

CASE TEMPERATURE, 'C

".

....

NUMBER OF CYCLES AT 60Hz

1\

«

"'- r-..

0

~

W

«

5

,

CD

a:
W
>

TJ-TJmax.

i"I'

FORWARD CURRENT DERATING CURVE

100
0.1

04

10

1

.....
40

80100

REVERSE VOLTAGE. VOLTS

- - - - - - - - - - - - - - - - CD Generallnsburnent
45

MBR750 AND MBR760
SCHOTTKY RECTIFIER
VOLTAGE RANGE - 50 and 60 Volts CURRENT - 7.5 Amperes
FEATURES
TD-220AC

:j

0111.

t

t
1

.640116.26J
PIN

P~N

I

.:20 115·15J

.mf.m

-+I

+

O,;1)
·t• 53gI;
0
.3~lu;
.32018.13J

j

.06
.05511.401

.0~ll.I4j

.6001.241
.51

5

T·

6ll

l

i2i54'i'"t

11iOif.56i
t

1.163
1.103 128.u21
..
.5601124.221
.530113.461

I'~~~ ~::;~

·BHU+
• 141 .36

.21015.]]]
.19014.831

•
I

1

+it

J"".,.

• Plastic package has Underwriters Laboratory
Flammability Classification 94V-O
• M~I.to siliC?n rectifier,>iI',.
maJOnty camercon'~.
<."
duction
• Lowpower
'
loss, high efficiency
"'.
• High current capabUity, low VF
~,~c
• High surge capacity
'>.,
• Epitaxial construction
• For use in low voltage, high frequency inverters,
free wheeling, and polarity protection applications
• High temperature soldering guaranteed:
250°C/10 secondSl.25", (6.35mm) from case
• Guardring for transient protection

<.

MECHANICAL DATA

.09012.291

o---u

ICASE POSITIVEJ PIN 1 +
STANDARD POlflRITY PIN 2 -~[IfSE

Dimensions In Inches and (millimeters)

CBse: JEDEC TO-220 Molded Plastic
Terminals: Leads Solderable per MIL-STO-750,
Method 2026
Polarity: As marked
Mounting Position: Any
Weight: .08 ounces, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
~tings at 2S"C ambient 1Bmperature unless olherwlse specified.

Resistive or Inductive load.

Maximum Recunent Peak Reverse Voltage
Maximum Working Peak Reverse Voltage
Maximum DC Blocking Voltage
Maximum Average Forwaro RectHIed Cunent at
Tc=125°C
Peak Repetitive Forward Cunent (Square Wave, 20 KHz)
at Tc=125°C
Peak Forwaro Surge Cunent, 8.3ms single haH slne-wave superimposed on rated load (JEDEC Method)
Peak Repetitive Reverse Surge Cunent (NOTE 3)
Maximum Instantaneous Forwaro Voltage at
(NOTE 2)
IF=7.5A, Tc=125°C
IF-7.5, Tc=25°C
Maximum Instantaneous Reverse Cunent at Te=25°C
Rated DC Blocking Voltage (NOTE 2)
Tc=125°C
Voltage Rate of Change (rated VR)
Typical Thermal Resistance (NOTE 1)
Operating Junction Temperature Range
Storage Temperature Range

SYMBOLS

MBR750

MBR76D

UNITS

VRRM
VFWJS
Voo

50
50
50

60

Volts
Volts
Volts

I(AVJ

7.5

Amps

IFRM

15.0

Amps

IFSM
IRRM

150
0.5

Amps
Amps

VF

0.65
0.75
0.5
50.0
1000
3.0
-65 to +150
-65 to +175

Volts

IR
dvldt
R8JC
TJ
TSTG

NOTES:
1. Thermal ResistanCe from Junction 10 Case.
2. Pulse Test: 300l1li PLJse Widlh. 2% Duty Factor.
3. 2ps Pulse Wldlh. 1-1.0 KHz.

46

60
60

mA
mA
Vf!Js
"CIW
OC

°C

RATINGS AND CHARACTERISTIC CURVES MBR750 AND MBR760

FIG. 3 ·MAXIMUM NON·REPETIVE PEAK
FORWARD SURGE CURRENT
175

W

150

::JO:
UlW

125

"'Vl
O:W
FIG. 1 -

f-'

z

FORWARD CURRENT DERATING CURVE

a:
a:

"

f"""'oo

00.
0:::;;

10.0

W

I :.'

........... .....
I'-o~

100

««

~

:;:;e:

::J

o:z
OW

B.O

U

a: W

« 0:
:;:;W

6.0

~«

4.0

......

~o:

«::J

.........

50

wU

0.

o:~

\

2.0

NUMBER OF CYCLES AT 60Hz

\

W

>
«
50

100

100

50

20

10

W

'«a:"

75

L1.a:

\

OUl

FIG.4 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

150

,

50

f-

CASE TEMPERATURE, "C

Z

./

W
0:
0:

L

::J
U

o

10

0:

«
~~

FlO. 2· TYPICAL REVERSE
CHARACTERISTICS

Ul:2
::J«

e-- T.... 15O"C

e:
Z
W
0:
0:

1.0

-

a

..,.,.

T... 125"<:

,

offi
L1.0.

10

/

10

W

J!.

Z

«
fz
«
f-

~V

I

Ul

::J

0.1

U

~~

FIG. 5 -

Ul~

.7

10

TYPICAL JUNCTION CAPACITANCE

I

4000

::J--'
oo:!

W::;;

z

«
fz
«

2% Duty Cycle
.4

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

r...75"<: . /V

ffiffi

>0.
~::;; O. 1

TJ:: 25°C
PULSE WIDTH = 300", -

/

~

/

L1.

~

r...25"<:
01

/

U
Z

f-

Ul

«

800
600

«
«

/

/

20

0.

U
40

60

80

100

120

1000

U

f-

Z

.001

2000

c.

W

--

I

II

L5"~ lil
!.1MHz

r--.

Vsig=50mVp-p

400

!""'....

200

140
100
0.1

PERCENT OF RATED PEAK
REVERSE VOLTAGE ,%

04

10

10

.... ~
40

80100

REVERSE VOLTAGE, VOLTS

- - - - - - - - - - - - - - - - 
• High current capability, low VF
'" ",
• High surge capacity
. '.. .
• Epitaxial construction
• Guardring for transient protection
• For use in low voltage, high frequency inverters, free
wheeling, and polarity protection applications
• Intemallnsulation: 1.5K VRMS
• High temperature soldering guaranteed: 250OC/10
secondsl.25"(6.35mm) from case

MECHANICAL DATA
+

PINl~

. . .4° REF.. ..

PIN 2 ~~
(Case Positive)

STANDARD POLARITY

Dimension In inches and (millimeters)

Case: ITO-220 Fully Over Molded Plastic
Tennlnals: Leads Solderable per MIL-STO-750,
Method 2026
Polarity: As marked
Mounting Position: Any
Mounting Torque: 5 in-lb. max.
Weight: .08 ounces, 2.24 gram

Ratings at 25°C ambient temperalllre unless otherwise specified.
Resistive or inductive load.

Maximum Recurrent Peak Reverse Voltage
Maximum Working Peak Reverse Voitage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current at Tc=l33°C
Peak Repetitive Forward Current,
(Square Wave 20 KHz) at Tc=133OC
Peak Forward Surge Current
8.3ms single half sine-wave superimposed
on rated load (JEDEC Method)
Peak Repetitive Reverse Surge Current (NOTE 2)
Voltage Rate of Change (rated VR)
Maximum Instantaneous
IF=1.0A, Tc=25°C
Forward Voltage at (NOTE 1)
IF=10A, Tc=125°C
IF=20A, Tc=125°C
IF=20A, Tc= 25°C
Maximum Instantaneous Reverse Current at Rated
DC Block Voltage (NOTE 1)
Tc=125°C
Tc=25°C
Typical Thermal Resistance, Junction to Case
Operating Junction Temperature Range
Storage Temperature Range
NOTES: 1. Pulse Test Pulse Width 300118, Duty Cycle 2%.

2.2.0118 Pulse Width, 1=1.0 KHz.
50

SYMBOLS

MBRFt050

MBRF1060

UNITS

VRRM
VRWM
Voc
I(AV)

50
50
50

60
60
60
10.0

Volts
Volts
Volts
Amps

IFRM

20.0

Amps

IFSM
IRRM
dvldt

150.0
0.5
1000
0.80
0.70
0.85
0.95

Amps
Amps

50.0
0.15
2.2
-65 to +150
-65 to +175

rnA
rnA

VF

IR
R8JC
TJ
TSTG

VIlIS
Volts

0C/W
°C
°C

RATINGS AND CHARACTERISTIC CURVES MBRF1050 AND MBRF1060

FIG 2.• MAXIMUM NON·REPETITIVE PEAK
FORWARD SURGE CURRENT
176

FIG. l-FORWARD CURRENT DERATING CURVE

,

12

,

\

UJ

(!)

..:

a:
UJ

:;(

o

UJ
CJ(J)
a:UJ
:Ja:
UlUJ
Oil.
a:::;;
..:«
?:...:
a:z
oUJ
lLa:
"a:
«::>
UJU

150

125

I

""-

"

100

75

i'o.
i"ol'-~

--..... ~ .....

50

Cl.

25

10

FIG. 4- TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

o

50

50

150

100

fo-

CASE TEMPERATURE, ·C

./

Z

W
a:
a:
::>
U

I-'
TJ = 1500 C

10

/~

/

..... ~

0

a:
«
?:Ul
a: W
offi
lLo..
Ul::;;
:J«
0
UJ
Z
«

FIG. 2· TYPICAL REVERSE
. CHARACTERISTICS
10

125 C

Tc

~

...:
z

0

0

..
, ....

•••••

0 ••••
.~

V
T J = 25° C

I

I

If

~

0.1. 1

~

i--"'" ~

TJ

0-

.2

.3

/

I
PULSE WIDTH =- 300
2<>/0 Duty Cycle

j..lS

~

.4

.5

.6

.7

.B

.9

1.0

INSTANTANEOUS FORWARD VOLTAGE.
VOLTS

75° C

FIG. 5-TYPICAL JUNCTION CAPACITANCE
4000

'"

z

. / V" TJ -

fo-

z

/ I

1.0

r"

fo-

..:
..:

, ,

«
f0Ul

1.0

0.1

~

.

z

UJ
a:
a:
:J
U
UJUl
UlUJ
a: a:
UJUJ
>Cl.
UJ::;;
a:..:
Ul::>-'
o:::!
UJ::;;

100

50

20

NUMBER OF CYCLES AT 60Hz

.01

f0-

Ul

lL

2000

U
Z
«

1000
BOO

a
W

25°C

f0-

~

.....

G

«
0..
«
U

TJ =

- ...

600
400

200
.001 0

2~O C

t-1.0MHz
Vsig ..50mVp-p

.......
....... 1"-

20

40

60

80

100

120

PERCENT OF RATED PEAK
REVERSE VOLTAGE ,'II.

140
100
0.1

0.4

1.0

10

REVERSE VOLTAGE, VOLTS

40

""

80 100

- - - - - - - - - - - - - - - i t General Instrument
51

MBR1035 AND MBR1045
SCHOTTKY RECTIFIER
VOLTAGE RANGE - 35 and 45 Volts CURRENT - 10.0 Amperes
FEATURES
T0-220AC
.19014.831

.16014.061

. 420 (10.671
• .380 19.651 '

.155 (3.941 DIA
.145p.681

F==+==~

PIN P1"

...1 +-.05511.401
~

'--.-_-:--+_

.15013~81l

.1ffiWl
t 1

.l]011:m1 -

61fif.ii6i

~
t

.037 (0.941
-+1 I' .02710.691

+--+ .210 (5.331

1

.:-:32,.-:0!,..,18,--.13_1-..."."9----'--

j

1

1.163 129. 541
1.103 (28.021
.025
.560 1124.22i + MAX •
•530113.461

I

.5751~61l

.360 (9.141

1

1

:o451l.I4J

.60011 .241

ft

.640116.261
.;20115 .751

j

J

'~+II+
.01410.361

• Plastic package has Underwriters Laboratory
Flammability Classifications 94V-O
• Metal to silicon rectifier,
.
majority carrier conduction ~..
'..'
• Low power loss,
high efficiency
• High current capability, low VF
, ~
• High surge capacity
"'~, "
'-"0
• Epitaxial construction
• For use in low voltage, high frequency inverters,
free wheeling, and polarity protection applications
• Guardring for transient protection
• High temperature soldering guaranteed: 2S0°C/1 0
seconds/.2S"(6.3Smm) from case

MECHANICAL DATA

.110(2.791
.09012.291

.190 (4.831

(CASE POSITIVE!
PIN 1 + C>-----L..J.
STANDARD POLARITY PIN 2 -~[RSE

Dimensions in inches and (millimeters)

Case:JEDEC TO-220 Molded Plastic
Tenninais: Leads Solderable per MIL-STD-7S0,
Method 2026
Polarity: As marked
Mounting Position: Any
Weight: .08 ounces, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambientlllmperature unless otherwise specified.
Resistive or inductive load.

Maximum Recurrent Peak Reverse Voltage
Maximum Working Peak Reverse Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current at
Tc=125°C
Peak Repetitive Forward Current,
(Square Wave 20 KHz) at Tc=135°C
Peak Forward Surge Current
8.3ms single ha~ sine-wave superimposed
on rated load (JEDEC Method)
Peak Repetitive Reverse Surge Current (NOTE 2)
Voltage Rate of Change at (rated VR)
Maximum Instantaneous
IF=10A, Tc=125°C
Forward Voltage (NOTE 1)
IF=20A, Tc=125°C
IF=20A, Tc=25°C
Maximum Instantaneous Reverse Current at rated
DC Blocking Voltage (NOTE 1)
Tc=125°C
Tc=25°C
Maximum Thermal Resistance, Junction to Case
Operating Junction Temperature Range
Storage Temperature Range

SYMBOLS

MBR1035

MBR1045

UNITS

VRRM
VRWM
Voc

35
35
35

45
45
45

Volts
Volts
Volts

I(AV)

10.0

Amps

IFSM

20.0

Amps

IFSM
IRRM
dv/dt

150.0
1.0
1000
0.57
0.72
0.84

Amps
Amps

15.0
0.1
2.0
-65 to +150
-65 to +175

rnA
rnA

VF

IR
R8JC
TJ
TSTG

NOTES: 1. Pulse Test: Pulse Width 300!lS. Duty Cycle 2%.
2. 2.0!lS Pulse Width. f=1.0 KHz.

52

V/IJS
Volts

°CIW
°C
°C

RATINGS AND CHARACTERISTIC CURVES MBR1035 AND MBR1045

FIG 3 • MAXIMUM NON·REPETITIVE
SURGE CURRENT
175

w
a:w

150

elm

FIG 1 • FORWARD CURRENT DERATING CURVE
12

~

10

i:J!

,

a:

:::)

0

om
a:UI
c..
w:;
a:$
m ...
:::)

~

I

'~~

8<
w

./

V

,

~ffi
a:
a:
Ow

FIG. 2- TYPICAL REVERSE
CHARACTERISTICS

0

100

50

50

CASE TEMPERATURE: C

~
w

'"

20

FIG 4· TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

150

100

50.

10

NUMBER OF CYCLES AT 60 Hz

\

~

............ t--..

""''''''

wO

\

UI
UI

iil~
fi!~

I

~

.01

V

2000

u.

""

l00c

~

600

w

T....25"C

0
Z

~

~

....

T;2506
f-1.0MHz
Volg-5Omllp-p

600
400

c..
<
0

~

200
.001

o

20

40

60

80

100 120

140

100
0.1

PERCENT OF RATED PEAI(
REVERSE VOLTAGE ,%

..... "'"
0.4

1.0

4

10

40

90 100

REVERSE VOLTAGE, VOLTS

- - - - - - - - - - - - - - - (iGenerallnstrument
53

MBR1050 AND MBR1060
SCHOTTKY RECTIFIER
VOLTAGE RANGE - 50 and 60 Volts CURRENT - 10.0 Amperes
FEATURES
T0-220AC
190 (483)

M : ISO (4:0S)
...1 •. 055 (1.40)

t

tl
.3:oi9~~
•15013.811
.13013.301

1

.640116.261

PIN

P~N

1

.60011.241
.5?5(fSlI

.320 (8.13)

.:20 (15 .751
.16014.061
:I4ii1f.56j

.045 U.141

+

~

116 H29 5~1
1.10 3128.021

t

r'"~~'

.,025
MAX.

.5301t 461

+1 I' ~i~ ~:~:l
+--+ .210 (5.331
.190 (4.831

. 022 (0.561 ..
.014 (0.361

-

I..

.110(2.791
.09012.29)

PIN 1 • ~
STANDARD POLARITY PIN 2 - ~cffsE
ICASE POSITIVEI

Dimensions in inches and (millimeters)

• Plastic package has Underwriters Laboratory
Flammability Classifications 94V-O
• Metal to silicon rectifier,
.,~,
majority carrier conduction .~
...... ,
• Low power
..,.
loss, high efficiency
"
'• High current capability, low V F . ~ .
• High surge capacity
~. '--.
• Epitaxial construction
".,
• For use in low voltage, high frequency inverters,
free wheeling, and polarity protection applications
• Guardring klr transient protection
• High temperature soldering guaranteed: 250°C/1 0
seconds/.2S- (6.3Smm) from case

MECHANICAL DATA
Case: JEDEC TO-220 Molded Plastic
Terminals: Leads Solderable per MIL-STD-750,
Method 2026
Polarity: As marked Mounting Position: Any
Weight: .08 ounces, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C amblenttemperalUre unless otherwise specified.
Resistive or inductive load.

Maximum Recurrent Peak Reverse Voltage
Maximum Working Peak Reverse Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
Tc=133°C
Peak Repetitive Forward Current,
(Square Wave 20 KHz) at Tc=133°C
Peak Forward Surge Current
8.3ms single half sine-wave superimposed
on rated load (JEDEC Method)
Peak Repetitive Reverse Surge Current (NOTE 2)
Voltage Rate of Change at (rated VR)
Maximum Instantaneous
IF=10A, Tc=25°C
Forward Voltage (NOTE 1)
IF=10A, Tc=125°C
IF=20A, Tc=125°C
IF=20A, Tc=25°C
Maximum Instantaneous Reverse Current at rated
DC Blocking Vo~age (NOTE 1)
Tc=125°C
Tc=25°C
Maximum Thermal ReSistance, Junction to Case
Operating Junction Temperature Range
Storage Temperature Range

SYMBOLS

AfBR1050

AfBR1060

UNffS

VRRM
VRWM
Voc

50
50
50

60
60
60

Volts
Volts
Volts

I(AV)

10.0

Amps

IFSM

20.0

Amps

IFsM
IRRM
dv/dt

150.0
0.5
1000
0.80
0.70
0.85
0.95

Amps
Amps

50.0
0.15
2.0
-65 to +150
-65 to +175

mA
mA
°CIW
°C
°C

VF

IR
R8JC
TJ
TSTG

NOTES:

1. Pulse Test: Pulse Width 300j.ls, Duty Cycle 2%.
2. 2.0J.lS Pulse Width. 1=1.0 KHz.
54

V/~

Volts

RATINGS AND CHARACTERISTIC CURVES MBR1050 AND MBR1060

FIG. 2 • MAXIMUM NON·REPETITIVE PEAK
FORWARD SURGE CURRENT
175

FIG. 1 -

W
c.:JUl
cr:W
:Jcr:
UlW

FORWARD CURRENT DERATING CURVE

150

" "-

OCL

cr:::;;
<{<{

,

\

\

I

"-

125
100

I'!I...

""-

~,.:

cr:Z
OW
u.cr:
:.::cr:
<{:J

wU

,

.......

75
50

10

\

50

100

--i'"oo..

,...

CL

20

50

100

NUMBER OF CYCLES AT 60Hz
FIG. 4 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

150
50

I-

CASE TEMPERATURE, °C

U
0

~

Ul::;;
:::><{
0
W
Z
<{

TJ = 12S"C

I

~

01

I

I"""

~~

ffiffi

~ 0...
cr:::;;
Ul::!:

01

........

....-

i--""'"

/' V

~

TJ = 25°C

I

<{
Ul

U

I

/

PULSE WIDTH 300,.ts
2°0 Duty Cycle

10

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

TJ = 75°C

FIG. 5 -

TYPICAL JUNCTION CAPACITANCE

4000

6~

f

w;2

V

Z

<{

<{
IUl

/ I

10

I-

cr:
cr:
:::>

IZ

If

IZ

10

/

, ,

~Ul

U.CL

'"

Z
W

TJ" 150°C
10

cr: W
0::5

10

/

V

I

cr:
<{

FIG. 2· TYPICAL REVERSE
CHARACTERISTICS

,.:

/

Z
W
cr:
cr:
:J

/ 'V

1

TJ"25"C

U.

2000

U

Z
<{

1000

0<{

600

a.
W
I-

Z

,

CL

1

TJ=2s c

1.1,0 MHz

Vsig=50mVp·p=

800
400

i"'-

«

U

200

......

00 1

20

40

60

80

100

120

r-

100

PERCENT OF RATED PEAK
REVERSE VOLTAGE.%

01

04

10

10

40

80100

REVERSE VOLTAGE, VOLTS

- - - - - - - - - - - - - - - - (i General Instrument
55

SBLF1030 AND SBLF1040
SCHOTTKY RECTIFIER
VOLTAGE RANGE - 30 and 40 Volts
CURRENT - 10.0 Amperes
FEATURES
IT0-220

.13 1.008
[3.310.21

.+

.-$.

.

-.67 MAX.
(171

-

1

.103 MAX.
(2.61 1.

1
2 _ _ _ ,.._
I ,I
.051'.008 I I I I I
(1.3'0.21' I
.547',016
•• 107 L008
•. 004
(13.9' 0.4)
(2.7 1 0.21
.029-.008 ,iBiJ,
(o.75!g·2 1 ' I ...
' -~•
40 REF.
.028 •. 008,1 +

.L

II, !
1"0.1 I

.... -

lID

'*'

t
I

• Isolated plastic package has Underwriters Laboratory Flammability Classification 94V-O
• Isolated overmolded package
• Metal to silicon rectifier,
~
majority carrier conduction
• Low power
loss, high efficiency
\
• High current capability, low V F " ' \
• High surge capacity
• Epitaxial construction
• Guardring for transient protection
• For use in low voltage, high frequency inverters,
free wheeling, and polarity protection applications
• High temperature soldering guaranteed:
250°C110 secondsl.25", (6.35mm) from case
• Intemal Insulation: 1.5k VRMS

MECHANICAL DATA

..... (o./:!:O.2)

lID

+
+
PIN 1 : - - t A
PIN 2

0--+rJc:..

(Case Positive)
Dimensions in inches and (millimeters)

Case: ITO-220 Fully Overmolded Plastic
Terminals: Leads Solderable per MIL-STD-750,
Method 2026
Polarity: As marked
Mounting Position: Any
Mounting Torque: 5 in -Ibs max.
Weight: .08 ounces, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at25'C ambient temperature unless otherwise specified.
Resistive or Inductive load.

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward
Rectified Current
Peak Forward Surge Current, 8.3ms single
r,alf sine·wave superimposed on rated load
JEDEC Method)
Maximum Instantaneous Forward Voltage
IF=10A, (NOTE 2)
Maximum Average Reverse Current at
Tc=25D C
rated DC BlockingVoltage p~r legjNOTE 2} Tc=100°C
Typical Thermal Resistance (NOTE 1)
Operating Junction and Storage Temperature Range

SYMBOLS

SBLF1030

SBLF1040

UNrrB

VRRM
VRMS
Voc

30
21
30

40
28
40

Volts
Volts
Volts

ICAV)

10.0

Amps

IFSM

250.0

Amps

VF

0.60
1.0
50.0
3.5
-40 to +125

Volts

IR
R8JC
TJ, TSTG

NOTES:

1. Thermal Resistance from Junction to Case.
2. Pulse Test: 300).lS Pulse Width, 2% Duty Factor.

56

rnA
°CIW
·C

RATINGS AND CHARACTERISTIC CURVES SBLF1030 AND SBLF1040

FIG. 2 • MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT
8.31nS SINGLE HALF SINE WAVE
(JEDEC METHOD)

TJ""TJmax.

250

"- , r-..

FIG.1·
FORWARD CURRENT DERATING CURVE

I

~

~

..........
f".. .....

\

1
o

5

~
50
100
CASE TEMPERATURE. ·C

\

'0

"'"

20

50

'00

NUMBER OF CYCLES AT 60Hz

FIG. 4 • TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

150

~

'00

Z

IU

a:
a:

,...

::J

o

~

/

'0

~ffl

FIG. 3 • TYPICAL
REVERSE CHARACTERISTICS

~ffi

I

LLIL

'00

(/)~

::J<

faz

./

-

<

~

",

~

j",oo"""l

I

.0'

-

TJ I: 25·C
PULSE WIDTH' 300"._
2'IiI Duty Cycle
~---:.5.6
.8.9

.3
.<
INSTANTANEOUS FORWARD VOLTAGE.
VOLTS

2

,.,. T, • 7S'C

FIG. 5 • TYPICAL JUNCTION CAPACITANCE
<000

V

...a.

"

.......... r--.

2000

W

T,=25"C

(.)

Z

'000
100

0

600

<
~

...,

I

Iii

TJ'" 100·C- I--

"'"

'0

<
IL
<
(.)

-'

II
"'1'-

ITJ

I. ~51d

t:l" 1M!:iZ
Vaig = 50mVp-p

"

<00
200

.0,
:!O

00

60

10

'00

'20

'<0

'00

PERCENT OF RATED PEAK
REVERSE VOLTAGE.%

0.'

0.<

'.0
'0
REVERSE VOLTAGE. VOLTS

<0

10'00

----------------(D General Instrument
57

SBL1030 AND SBL1040
SCHOTTKY RECTIFIER
VOLTAGE RANGE - 30 and 40 Volts
CURRENT - 10.0 Amperes
FEATURES
TO-220AC

.420110.67)
.300 19.651

.......,.'U~~4'81~
4.

. 15513.94) DIA
....1 ' .05511.40)
'-r---:--+.04511.14)
.145.!3.68)

t

i

. l

.640 U6.26)
.620 U5.75)

.15013~8lJd
ft
.36019.14)
.1]0 11~) -

.320 18.133
1 163 29

.160t.OG) 1 1'1 03 1128 5042!))
:I4013.56i
..

1

1

.025
].5601l24.22i + MAX.
.530It 4G )

t

+11,:m~~:~;~
+--+ .21015.33)
.19014.831

1

.600 (l .24)
.575114.611

MECHANICAL DATA

.02210.56) .. + .11012.19)
.014 (0.361 . . .09012.291

(CASE POSITIVE>
PIN 1 • ~
STANDARD POLARITY PIN 2 -~CASE

• Plastic package has Underwriters Laboratory
Flammability Classifications 94V-O
• Metal to silicon rectifier,
. I,'
majority carrier conduction ~""""
• Low power loss,
'"
high e f f i c i e n c y ,
• H~h current capa,t>i6ty, low VF",~
• High surge capacity
"" • Epitaxial construction
,',
• For use in low voltage, high frequency inverters,
free wheeling, and polarity protection applications
• High temperature soldering guaranteed:
2S0°C/10 seconds/.2S", (6.3Smm) from case
• Guardring for transient protection

Case: JEDEC TO-220 Molded Plastic
Terminals: Leads Solderable per MIL-STD-750,
Method 2026
Polarity: As marked
Mounting Position: Any
Weight: .08 ounces, 2.24 gram

DifTl8nsions in inches
and
(millifTl8ters)

CROSS REFERENCE GUIDE
GI
SBL1040

FWI
ERC62-004

SHINDENGEN
S5S4M

SBL1030

SSS3M

MAXIMUM RATINGS AND CHARACTERISTICS
Ratings at 25'C ambient temperature unless otherwise specified. Resistive or inductive load.

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at Tc=110°C
Peak Forward Surge Current, 8.3rns single
half sine-wave superimposed on rated load
(JEDEC Method)
Maximum Instantaneous Forward Voltage at
IF=10A, Tc=25OC (NOTE 2)
Maximum Instantaneous Reverse Current at Tc=25°C
Rated DC Blocking Voltage (NOTE 2)
Tc=100°C
Typical Thermal Resistance (NOTE 1)
Operating and Storage Temperature Range
NOTES:
1. Thermal Resistance from Junction to Case.
2. Pulse Test: 300115 Pulse Width, 2% Duty Cycle.
58

SYMBOLS

SBU030

SBLt040

UNITS

VRRM
VRMS
Voc

30
21
30

40
28
40

Volts
Volts
Volts

I(AY)

10.0

Amps

IFsM

250.0

Amps

VF

0.60
1.0
50.0
3.0
-40 to +125

Volts

IR
R8JC
TJ,TsTG

rnA

OCIW
°C

RATINGS AND CHARACTERISTIC CURVES SSL 1030 AND SSL 1040

FIG. 2 • MAXIMUM NON·REPETITIVE PEAK
FORWARD SURGE CURRENT
300
I
I
1
T...TJrnax.
8.3ms SINGLE HALF
SINE WAVE
(JEDEC METHOD)

250

W

Cl(/)

§~
FIG. 1 -

....-

m
a:

a: ~

10.0

a:

\

::>

()
8.0
O(/)

~ ffi 6.0

a:

~....-

,

0..

o~
u.. 4.0

150

fS m100
u.a:
loCa:

\

a: W

200

(/)W
00..

FORWARD CURRENT DERATING CURVE

;5 i3

'"

..........

ffi

2.0

1\

>
<{
o

o

50

100

I I

.............
.......... ........

50

~

0..

5

10

20

100

50

NUMBER OF CYCLES AT 60Hz

~

<{

I

:---.. .....

W

Cl

I

FIG. 4 - TYPICAL REVERSE
CHARACTERISTICS
150

10 0

fZ

CASE TEMPERATURE, °C

w
a:
a:

::>

()

~

/

10

~fB

FIG. 3 - TYPICAL REVERSE
CHARACTERISTICS

fSffi

100

I

u.o..

(/)::;;
::> <{

oW

If

10

Z

<{

.."

fZ

TJ " 1000 C :::;;

~
Z

....Z

./

10

W

a:
a:

....

::>
()

w(/)
(/)w
a: a:
Ww
>0..
W::!i'

.Y

-t

<{

==

.01

FIG. 5 -

::>..J
o:::!

L

w::!i'
<{

u. 2,000

~

z
Z

0.5

0.6

0.7

0.8

0.9

/

..... ~

c.

W

TJ=25°C

1,000
Z
800
<{
800
f(3
()

0.1

l-

(/)

~

<{

./

TYPICAL JUNCTION CAPACITANCE

-

4,000

(/)-

I-

-1._--L_
OA

TJ " ?5°C

1.0

a:<{

<{

0.3

PULSE WIDTH = 300/.15 _
2% Duty Cycle

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

Y'I
, / "'"

L.

0.2

-

TJ = 25"C

400

0..

<{
()

./

200

.01

'-0

40

60

80

100

120

140

100

0.1

PERCENT OF RATED PEAK
REVERSE VOLTAGE ,%

0.2

0.4

2

4

10

20

40

REVERSE VOLTAGE. VOLTS

- - - - - - - - - - - - - - - - CD GeneraL Instrument
59

8(HOO

SBLF1030CT AND SBLF1040CT
SCHOTTKY RECTIFIER
VOLTAGE RANGE· 30 and 40 Volts CURRENT· 10.0 Amperes
FEATURES
ITO-22OCT

.13 t .008
13.3 to.2)

.+ .... ~ -

.103

~X. lYr+ft-J·
~ P~N ~

+117)

12.6)

d, !
I' +1 I'

.051t.008
U.3 t O.2) "I'
I~
(13.9 t 0,4)
029 •• 004
•
-.00# •
10.15tH:!)
ii'
2.54

~ 40REF.~
... ....

"II

,.10H.008
12.1 t O.2)

.028t.008
(0.7:1:0.2) ...

• Isolated Plastic package has Underwriters Laboratory Rammability Classifications 94V-O
• Metal to silicon rectifie.r,
majority carrier conduction
• Low power loss,
high efficiency
• High current capability, low VF
• High surge capacity
• Epitaxial construction
• For use in low voltage, high frequency inverters,
free wheeling, and polarity protection applications
• Dual rectifier construction, positive center-tap
• Guardring for transient protection
• Internal Insulation: 1.Sk VRMS
• High temperature soldering guaranteed:250°C/1 0
secondsl.2S"(6.3Smm) from case

MECHANICAL DATA

IDI 

FORWARD CURRENT DERATING CURVE

12.5

10.0

0

OUl
a: W
<{a:
3:~
a:::;
fr<{
W
Cl
<{
a:
W
>
<{

\

7.5

,
\

5.0

,

150

a

50

1,0

0

0,1

~
~

--

Z
LLJ
a:
a:
:::>

Z
<{
Ul

./

10

a:
<{
3:Ul
a: W

i"""

I
I

~

F",-75°C

0.1
0.2

..,
ioo"'"

~~~~r;IDTH ~ 300 I.J S -

/

2% DUTY CYCLE

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

INSTANTANEOUS FORWARD VOLTAGE.
VOLTS

.. -

II

FIG. 5 • TYPICAL JUNCTION CAPACITANCE PER LEG

w

Tc = 25°C

IL
a.

-'

~ ~

TJ-25°C
t_l.0 MHz
Vsig_50mVp-p

2000

ui

V

~

1000

«

800

6«

f0-

~

n.
<{

o
.DOl

60

......... '

/

Z
<{
IUl

40

100

I-

I--"""

20

50

L

otE
u..n.

L.J....

.01

J

Ll~ 111

~

Ul::>
:::><{
1.0
0
W
Z
<{

W~

fo-

20

I-

4000

z<{

10

50
150

TJ~l~

f:=

~

'------~-

5

i

i"'--.

FIG.4 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

FIG. 3- TYPICAL REVERSE
CHARACTERISTICS (PER LEG)

f--

r--..

~j- ~U U

,

10

WUl
Ul W
a: a:
Ww
>n.
W~
a:<{
Ul:::>-'
O:::!

I

II
I

NUMBER OF CYCLES AT 60Hz

~

100

-

I

50

0
0

W
a:
a:
:::>

t"-r-. r--

100

--

CASE TEMPERATURE. °C

..:z

t".....

I·

~

200

~

2.5

o

T...TJmBX.

250

W
ClUl
a:W
:::>a:
UlW
on.
a:::>
<{<{
3:":
a:Z
OW
u..a:
",a:
<{:::>
wO
n.

60

100

120

600
400

20 0

100
01

140

PERCENT OF RATED PEAK
REVERSE VOLTAGE,%

04

10

10

"

........
40

REVERSE VOLTAGE. VOLTS

----------------8Generallnstrument
61

80100

SBL1030CT AND SBL1040CT
SCHOTTKY RECTIFIER
VOLTAGE RANGE - 30 and 40 Volts CURRENT - 10.0 Amperes
FEATURES
rD-220AB

r-

-+1

•j

.15013.81)
•130(3.30)

-p-

.640(16.26)
.620(15.75)

1 PIN
2 3

•
.160 [4.06)

1

:mo:56i

.36019.141
.320 (8.131

-LJ

~
. 41
3
1.10 3 128.021

t

+

l

.5601124.221
.530113.46)

1

"'III:~~~~::;l

.022 (0.5S).

:omo.m

,:~m§lB
.210(5.33)
.190 (4.B3)

ICASE POSITIYE!
STANDARD POLARITY

• Plastic package has Underwriters Laboratory
Rammability Classifications 94V-O
• Metal to silicon rectifier,
" ,_
majority carrier COnduction~-'-'/'-'
19014831
:16014:061
• Low power l o s s " . " ~
I .055 (1.40)
high efficiency
"
-"
.o4S1i.l4J
• High current capability, low VF
~'
,~
• High surge capacity
, - ,.
.60011.24)
".
.575114.611 • Epitaxial construction
• For use in low voltage, high frequency inverters,
free wheeling, and polarity protection appfications
• Dual rectifier construction, positive center-tap
• Guardring for transient protection
• High temperature soldering guaranteed:250°C/1 0
secondsl.25"(6.35mm) from case

1

MECHANICAL DATA

:;, .11012.79)
.09012.29)

case: JEDEC TO-220 Molded Plastic
Terminals: Solderable per MIL-STD-750,
PIN 1 ~PIF
Method 2026
PIN 3CASE
Polarity: As marked
Mounting Position: Any
Weight: .08 ounces, 2.24 gram

Dimensions in Inches

CROSS REFERENCE GUIDE

and

(millimeters)

GI
SBL1040CT

FUJI
ESAC82-004

SHINDENGEN

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISnCS
Ratings at 25'C ambient temperature unless otherwise specified.
Resistive or inductive load.

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at Tc=95°C
Peak Forward Surge Current, 8.3ms Single
half sine-wave superimposed on rated load
(JEDEC Method)
Maximum Instantaneous Forward Voltage
Per Leg at IF=5.0A,Tc=25°C (NOTE 2)
Maximum Instantaneous Reverse Current at Tc=25°C
rated DC Blocking Voltage per leg (NOTE 2)
Tc=100°C
Typical Thermal Resistance per leg (NOTE 1)
Operating Junction and Storage Temperature Range
NOTES:

1. Thermal Resistance from Junction to Case per leg.
2. Pulse Test: 300).lS Pulse Width, 2% Duty Cycle.

62

SYMBOLS

SBU030CT

SBU040CT

UNITS

VRRM
VRMS
Voc

30
21
30

40
28
40

Volts
Volts
Volts

I(AV)

10.0

Amps

IFsM

175.0

Amps

VF

0.55
0.5
50.0
3.0
-40 to +125

Volts

IR
R8JC
TJ.TSTG

rnA
°CIW
°C

RATINGS AND CHARACTERISTIC CURVI:S SSL 1030CT AND SSL 1040CT

FIG. 2 • MAXIMUM NON·REPETITIVE PEAK
FORWARD SURGE CURRENT PER LEG
----,-----

300

T".TJmaJC.

FIG. 1 ~

Z

lU
a:
a:
::J

250

lU
C)(fJ
a:lU
::Ja:
ullU
00..
a::2
««

FORWARD CURRENT DERATING CURVE

12.5

150

a:z
OlU
LLa:
",a:
«::J
lU()

10

Oul
a:lU
«a:
'i:li'
a::;<
~«
lU
c:J
«
a:
lU
>
«

,

~

7.5

\

,

I

200

'i:~

()

B.3ms SINGLE HALF SINE WAVE
(JEDEC METHOD)

r-.......

r--.... r-....

!

100 :1

"""

50

0..

10

,
150

100

50

CASE TEMPERATURE, "C

I-

Z

lU
a:
a:
::J

()

./

10

0

a:
«
'i:ul
a: lU
offi
LLo..
ul::;
::J«
0
lU
Z
«
Iz
«
Iul

FIG. 3 -TYPICAL REVERSE
CHARACTERISTICS (PERLEG)
10

~

~

Z

1.0

lU
a:
a:
::J

==
....

lUul
UllU
a: a:
lUlU
>0..

'~:;;'

I~ ~.
-.

()

lU:2
a:«
Ul::J-'
o=!
lU:2
z
«
Iz
«
Iul

T...

TJ.75"C

I

.2
..

-

""

I "

10

0.1

~

--"""

"

~

~

100

FIG. 4· TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS PER LEG

\
50

~!-

50

20

NUMBER OF CYCLES AT 60Hz

i\

2.5

r---.. "'-- r- r--

1

.3

T..-25"C
PULSE WIDTH-3DD,..
2% DUTY CYCLE
,5.8

.4

.B.9

-

1.0

-

1.1

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

,;
0.1

FIG. 5· TYPICAL JUNCTION CAPACITANCE PER LEG

f=:::

"T....25-<:

LL

~

C-

"."

.Q1

1T

4000

f_l.0MHz
Vsig-5DmVI>P

2000

ui
()

Z

~

T

T.. _28'C

1000

«

800

0

600

I-

«
0..
«

400

()

200

•001

o

20

40

60

SO

100

120

.......

140
100
0.1

PERCENT OF RATED PEAK
REVERSE VOLTAGE ,%

0.4

10

10

I'.
40

80 100

REVERSE VOLTAGE, VOLTS

- - - - - - - - - - - - - - - - - - - ( 1 General Instrument
63

MBRF1535CT AND MBRF1545CT
SCHOTTKY RECTIFIER
VOLTAGE RANGE - 35 and 45 Volts CURRENT - 15.0 Amperes
FEATURES
ITO-220CT

.13 < .008
13.310.2)
• • • • • 67 MAX.
•

.

, 1

.103 MAX.
---rr:6J"1

PIN
1 2 3

.LI

(1.3~~42)

CO.75:!:8:~)

__

1 __

.0511.008 I'.

.029!:008

-

(17)

i

'

I! I' ! .5312 MIN.

,

1.1

I~

: ... : ... :

.. ,.10H.008
12.7'0.2)

2. S4

~
4°REF.
.028 <.008,1 ..
.,. ...
.. ... CO.7 to.2)
""<.
8.3rn. SINGLE HALF SINE WAVE
(JEDEC METHOD)

I

IL

,

0::<

120

o:z
OW
u.o:
x: 0:
«:::J
wO

,~

o:IL

II TTTTm
.......

3:~

,

16.0

r--....

OIL

20.0

0:
0:

140

MBRF1550CT AND MBRF1560CT
SCHOTTKY RECTIFIER
VOLTAGERANGE-50and60 Volts CURRENT-15.0Amperes
FEATURES
ITO-220CT

.13 •• 008
(3.3 to.21

r

. . . . . . . 67 MAX.

-

71

.103 MAX.

•

•

~4+,I,-I

.L

1

I,
I,
.051 •• 008 1'.
(1.3'0.21 111+
.547'.016
02S +.004
(13.9' 0.4)
•
-.008
£O.75:!:8:~)
1... :,..:
2.54

I

I" I'
."1

~ 4° REF.
0# ....

...,.

"" '*' ""

.. ,.10,. .008
12.7'0.21

.028 '.008

• Isolated plastic package has Underwriters Laboratory Flammability Classifications 94V-O
• Metal to silicon rectifier,
majority carrier conduction
• Low power loss,
high e f f i c i e n c y ,
• High current capability, low VF
• High surge capacity
• Epitaxial construction
• For use in low voltage, high frequency inverters,
free wheeling, and polarity protection applications
• High temperature soldering guaranteed:
250°C/10 seconds/.25", (6.35mm) from case
• Guardring for transient protection
• Intemal Insulation: 1.5k VRMS

'CO.7!:O.21

MECHANICAL DATA

PIN2
PINl-~

PIN3-~E
(CASE POSITIVE I

STANDARD POLARITY

Dimensions in inches
and
(millimeters)

case: ITO-220 Molded Plastic
Terminals: Leads Solderable per MIL-STO-750,
Method 2026
Polarity: As marked Mounting Position: Any
Mounting Torque: 5 in. - lb. max.
Weight: .08 ounces, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified.
Resistive or inductive load.
SYMBOLS

Maximum Recurrent Peak Reverse Voltage
Maximum Working Peak Reverse Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at Tc=105°C
Peak Repetitive Forward Current (Square Wave,
20 KHz) at Tc=105°C per leg
Peak Forward Surge Current. 8.3ms single half sinewave superimposed on rated load (JEDEC Method)
Peak Repetitive Reverse Surge Current (NOTE 3)
Maximum Instantaneous Forward IF=7.5A,Tc=125°C
Voltage Per Leg at (NOTE 2)
IF=7.5A, Tc=25°C
Maximum Instantaneous Reverse Current Tc=125°C
at Rated DC Blocking Voltage per leg Tc=25°C
(NOTE 3)
Voltage Rate of Change, (Rated VR)
Typical Thermal Resistance per leg (NOTE 1)
Operating Junction Temperature Range
Storage Temperature Range
NOTES: 1. Thermal Resistance from Junction 10 Case per leg.
2. Pulse Test: 300j.lS Pulse Width. 2% Duty Cycle.
3. 2.011s Pulse Width, 1.0 KHz.
66

VRRM
VRWM
Voc

MBRF1550CT MBRF1560CT

50
50
50

60
60
60

UNITS

VoHs
VoRs
Volts

ICAV)

15.0

Amps

IFRM

15.0

Amps

IFSM
IRRM

150.0
0.5
0.65
0.75
50.0
0.5

Amps
Amps

VF
IR

dv/dt
R8JC
TJ
TSTG

1000
3.5
-65 to +150
-65 to +175

Volts
rnA

V/IJ.S
°CIW
°C
°C

RATINGS AND CHARACTERISTIC CURVES MBRF1550CT AND MBRF1560CT

FIG. 2 - MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT PER LEG
160

140

W

,..:

~

a::;:'
««
:S:,..:
a:Z
OW
... a:
",a:
«::J
wO

a:
a:

16.0

~

0(1}

a: w
«a:

:s: ~ 12.0
~«

8.0

W

«

4.0

«

" '" i'-..

80

60

40 1

5

o
o

50

~

100

10

r-- r'-1'"

20

100

50

NUMBER OF CYCLES AT 60Hz

1\

<:l

a:
W
>

,,~

100

0..

~

a::;:,

~

00..

20.0

3

TJ=TJ max.

120

Cf)W

FIG. l-FORWARD CURRENT DERATING CURVE

PER LEG (JEDEC METHOD)

..........

<:l(J)

a:w
::Ja:

I B.3ms SINGLE HALF SINE WAVE

r-...

FIG. 4 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS PER LEG
50

150

""'ZW

CASE TEMPERATURE. "C

a:
a:
:::J

0

./
TJ = 1250 C

10

lL

~

L

0

a:
«
:s:en
a: W

FIG. 3 - TYPICAL REVERSE CHARACTERISTICS PER LEG

TJ

en:;:,

Z
a:
a:
::J

1.0

W

I.--"'"
125" C

0.1
.1

W(I)
(l}W

a: a:

~

Ww
>0..

W:;:,
a:«
Cf)::J...J

0.1

/
V

"

I /

>-

Cf)
~

0

.2

I"
.3

TJ = 25° C

PULSE WIDTH "" 300fJ-s

2% Duty Cycle

.4

.5

.6

.7

TJ

W:;:,

......

FIG. 5 - TYPICAL JUNCTION CAPACITANCE PER LEG

75° C

~

z

«

~

.01

~
II'TJ~

...

0.

2S'C

0

Z
«

""'U
«
0..
«

/

'.+

r-- t-

f = lMHz
~slg " 50mVp-p

800
600

,

400
,

200

./

20

1000

-.l
LLl
IT J.'25"C

0

jI'

o

2000

W

,
.001

40

60

BO

100

1.0

.9

.8

INSTANTANEOUS FORWARD VOLTAGE.
VOLTS

4000

0=0'

""'«z
""'(I)~

I

:::J«
W
Z
«
>Z
«

0

I"TJ ~

,..:

/

"'0..

150¢ C

-'

I

offi

-""

10

120

PERCENT OF RATED PEAK
REVERSE VOLTAGE,%

140

I

100
0.1

0.4

1.0

10

i'oo..

"....
40

80 100

REVERSE VOL TAGE. VOLTS

---------------(iGenerallnsbument
67

MBR1535CT AND MBR1545CT
SCHOTTKY RECTIFIER
VOLTAGE RANGE - 35 and 45 Volts CURRENT - 15.0Amperes
FEATURES
• Plastic package has Underwriters Laboratory
T0-220AB
Flammability Classifications 94V-O
•190(4.83)
• Metal to silicon rectifier,
..
~11.160 (4.06)
majority carrier COnduction~i"
.. ,.,
....1 ' .05511.40)
•
Low
power
loss
.;:l",,:.' ,
+
I·04Stl.l41
high efficiency
.
.' "",.150 (3.81)
.1]0 (3.:!l!J
.600 [1 .241
• High current capability, low VF
' ,~
ft
.575 (14.611
• High surge capacity
"
"
.640116.26)
.360Is.14)
.620 (15.75)
.320 (8.13)
• Epitaxial construction
"
• For use in low voltage, high frequency inverters,
!
PIN
2 3
41.163 (29.54)
free wheeling, and polarity protection applications
.16"ii14.06i
1.103 (28.02)
J1Oi3.56j
• High temperature soldering guaranteed:
.560 (124.22)
t
250°C/10 seconds/.25", (6.35mm) from case
] .530113.(6)
• Guardring for transient protection

j

1

1

1

l£

f

1

.037 (0.94)
"II'.027W.6')

..

. .

·:Am~:lB
.210(5,331
.190 (4.831

MECHANICAL DATA

.02210.56) . . . . 110(2.791
.01410.36) ... 090(2 291

(CASE POSITIVE) PIN 1 ~PI~2
STANOARO POLARITY PIN 3CASE

Dimensions in inches
and

(millimeters)

Case: JEDEC TO-220 Molded Plastic
Terminals: Leads Solderable per MIL-STD-750,
Method 2026
Polarity: As marked
Mounting Position: Any
Weight: .08 ounces, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless o1herwise specified.
Resistive or inductive load.

Maximum Recurrent Peak Reverse Voltage
Maximum Working Peak Reverse Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at Tc=105°C
Peak Repetitive Forward Current per diode at Tc=1 05°C
(Rated VR, Sguare wave, 20KHz 1
Peak Forward Surge Current 8.3ms single half sinewave superimposed on rated load (JEDEC Method)
Peak Repetitive Reverse Surge Current (NOTE 3)
Maximum Instantaneous Forward Voltage
Per Leg at
IF=7.5A,Tc= 125°C
(NOTE 2)
IF=15A,Tc=125°C
IF=15A.Tc=25°C
Maximum Instantaneous Reverse Current at Rated
DC Blocking Voltage per leg
Tc=125°C
Tc = 25°C
Voltage Rate of Change at (Rated VR)
Maximum Thermal Resistance per leg (NOTE 1)
Operating Junction Temperature Range
Storaoe Temoerature Rance
NOTES:
1. Thermal Resistance Junction to Case.
2. Pulse Test: 300i'S. Pulse Wid1h. 2% Duty Factor.
3. 2.0i'S. Pulse Wid1h 1,0 KHz.

68

SYMBOLS

MBR1535CT

MBR1545CT

UNITS

VRRM
VRWM
Voc

35
35
35

45
45
45

Volts
Volts
Volts

ICAV)

15.0

Amps

IFRM

15.0

Am~

IFSM
IRRM

150.0
1.0

Amps
Amps

VF

0.57
0.72
0.84

Volts

IR
dv/dt
R8JC
TJ
TSTG

15.0
0.1
1000
3.0
-65 to +150
-65 to +175

rnA

V/IJS
°CIW
°C
°C

RATINGS AND CHARACTERISTIC CURVES MBR1535CT AND MBR1545CT

FIG. 2 - MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT PER LEG
160

140

W

19(J)

a:w

120

~a:

FIG. 1 -

I-'
~

011.

a::;;;

100

««
3:1-'

160

Den

"",
i\

a: w

« ffi12 a
3:11.

1§~

LL

19

«

a:
W
>
«

40
o

a:z
OW
LLa:

80

wO

60

~a:
«~

11.

,

o

50

t'-....

-

r-

r\

-t-

r---.... ........

10

z

o
o
a:
«

TJ

10

TJ

25°C

01

Pu Isa Width",300p,s_
Duty Cycle=2%

/ II

1

8

7

19

1.0

75"C

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

V

FIG. 5 - TYPICAL JUNCTION CAPACITANCE PER LEG

-

400 0

F

u..

l/

Z

. . . .V

I-

Z

1/

.1. .L

I-

en

«

«

./

~

~

Z

«

f-.-

~...J

L.

Z

I"

oo:!
w:;;;

100

«

,

01

50

I-

~

ffiffj

~Ltt

20

/
VTJ

I

10

Z

o
~~

J

W

125"C

a:
a:

~~

/

en:;;;

o~«

125°L

/

offi
LLIl.

W

~~

10

~~

FIG. 3 - TYPICAL REVERSE CHARACTERISTICS PER LEG

z

I

l"- t-..

.L::.

~

I-'

,

FIG. 4 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS PER LEG

W

-

I

r--~

a:
a:

TJ

I

L-

50

CASE TEMPERATURE, °C

10

(J=TJ~~X'

I

........

_

NUMBER OF CYCLES AT 60Hz

150

100

8.3ms SINGLE HALF SINE WAVE
PER LEG (JEDEC METHOD)

40 I

._+-

80

W

T~--·T-rnTJT

enW

FORWARD CURRENT DERATING CURVE

200

a:
a:
~
o

"- ..........

1

t--

TJ - 25 0 C

I-

en

a.

W
~

100 0

«

80 0

I-

o
«

Z

11.

«
o
20

40

00

80

lOa

120

PERCENT OF RATED PEAK
REVERSE VOLTAGE ,Of..

1~

200 0

.1 .1.1
TJ=25°C
f.. 1.0MHz

r-- t-,...

J

Vsig",50mVp-p

60 0
40 0

20 0

10 0
01

-=---0.4

1.0

10

"40

80 lOa

REVERSE VOLTAGE, VOLTS

----------------(iGeneralInsbument
69

MBR1550CT AND MBR1560CT
SCHOTTKY RECTIFIER
VOLTAGE RANGE - 50 and 60 Volts CURRENT - 15.0 Amperes
FEATURES
TO-220AB
~ :16014.0 I

...1 •. 05511.40)

.mlUlil

l

1

t

.640 116.2Gl
.620115.75)

1 PIN
2 3

•
.16"ii14.iiGi

:I4ii1f.56j

t

1

.360 [9.14)
.320 [8.13)

[L.241

.600
.575 [14.61)

1

l

f
(t46)
l'~'~'"

3 [29.541
!..!h.=
1.10 3 [28.02)
.530

-+1 I' :g~~ ~::;l

1

-p- ~

.150 [3.81)
.130 [3.301

.. ':Am iN
22•

•210 [5.33)
.190 (4.83)

:g1m:;~\+

~

• Plastic package has Underwriters Laboratory
Flammability Classifications 94V-O
• Metal to silicon rectifier,
majority carrier conduction
• Low power loss,
high efficiency
• High current capability,low VF
• High surge capacity
• Epitaxial construction
• For use in low voltage, high frequency inverters,
free wheeling, and polarity protection applications
• High temperature soldering guaranteed:
250·C/10 seconds/.25", (6.35mm) from case
• Guardring for transient protection

.110 [2.79)
.090[2.291

(CASE POSITIVE) PIN 1 ~PI~ 2
STANOARO POLARITY PIN 3CASE

Dimensions in inches
and
(miUimeters)

MECHANICAL DATA
Case: JEDEC TO-220 Molded Plastic
Terminals: Leads Solderable per MIL-STD-750,
Method 2026
Polarity: As marked
Mounting Posit/on: Any
Weight: .08 ounces, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperalure unless otherwise specified.
Resistive or Inductive load.

Maximum Recurrent Peak Reverse Voltage
Maximum Working Peak Reverse Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at Tc=105°C
Peak Repetitive Forward Current (Rated VR. Sq. Wave.
20KHz) at Tc=l 05°C
Peak Forward Surge Current, 8.3ms single haH sinewave superimposed on rated load (JEDEC Method)
Peak Repetitive Reverse Surge Current (NOTE 3)
Maximum Instantaneous Forward Voltage
per leg at
IF=7.5A,Tc=25°C (NOTE 2)
IF=7.5A, Tc=125°C
Maximum Instantaneous Reverse Current at Rated
DC Blocking Voltage per leg at
Tc=25°C
Tc=125°C
Voltage Rate of Change (Rated VR)
Typical Thermal Resistance per leg (NOTE 1)
Operating Junction Temperature Range
Storage Temperature Range
NOTES: 1. Thermal Resistance from Junction to Case per leg.
2. Pulse Test: 3OOJ.LS Pulse Width. 2% Duty Factor.
3. 2.0J.LS Pulse Width. f= 1.0KHz.
70

SYMBOLS

MBR1550CT

MBR1560CT

UNITS

VRRM
VRWM
Voc

50
50
50

60
60
60

Volts
Volts
Volts

I(AV)

15.0

Amps

IFRM

15.0

Amps

IFsM
IRAM

150.0
0.5

Amps
Amps

VF

0.75
0.65

Volts

IR
dv/dt
R8JC
TJ
TSTG

1.0
50.0
1000
3.0
-65 to +150
-65 to +175

rnA
V/IJ.S
0C!W
OC
OC

RATINGS AND CHARACTERISTIC CURVES MBR1550CT AND MBR1560CT

FIG. 2 • MAXIMUM NON·REPETITIVE PEAK
FORWARD SURGE CURRENT PER LEG
160

.......
'40

W
a::w
:::la::
(flW
ou.
a:::2
««

"'"
,..:

FIG. 1 -

z

FORWARD CURRENT DERATING CURVE

~20

\

«

:;: 12

a::
au..

8

~

4

"a::«
«

" ...... r" . . .

100

a::z
OW
u..a::
><:a::
«:::l
wU

U 16

o
a::

100

..........

40

10

1

~

150

./

f-

(fl:2
:::l«
0
W
Z
«

~C
i,....-'"
~c~ 12S C
i,....-'"
.",.

f-

Z

I

a::
:::l

01

ffiffi

Gj ~

~~
15;1

.,;'

.1

,

Ti~2SoC

PULSE WIDTH

/

~

~f3

"

I

10

«
f(fl

O

a:

.2

.3

.4

.5

.6

.7

.8

--

TJ - 750 C

/
~"-rJ ~ 2S

V
.0 1

f(fl

Z

~
.00 1

u..

o

c.
u.i

C

U
Z
«

,

f-

0
«

u.

2000

1000
800
600

I

I

1.0

I II
I

.+

T)2S!C
f= lMHz
Vsig = 50mVp-p

r--. ....

400

«

U

V
20

.9

FIG. 5· TYPICAL JUNCTION CAPACITANCE PER LEG
4000

Z

~ 300.~s-

2% Duty Cycle

INSTANTANEOUS FORWARD VOLTAGE.
VOLTS

0.1

w:2

«
fz
«

/

u..~

10

./

V

10

a::
«
:;:(fl
W
oa:: a::

FlO. 3. TYPICAL REVERSE CHARACTERISTICS
PER LEO

U

100

FIG. 4· TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS PER LEG
50

0

1.0

so

NUMBER OF CYCLES AT 60Hz

W
a::
a::
:::l
U

Z
W

r--r-.

20

Z

,..:

r-....

60

~

50

.....

60

U.

~

•

TJ-TJmBX.

:;:,..:

a::
:::l

W

'20

8.3m. SINGLE HALF SINE WAVE
PER LEG (JEDEC METHOD)

......... .....

200

1'",
40

60

60

100

120

PERCENT OF RATED PEAK
REVERSE VOLTAGE ,%

140

100

01

0.4

10

10

40

80100

REVERSE VOLTAGE. VOLTS

---------------(iGenerallnstrument
71

SBLF1630CT AND SBLF1640CT
SCHOTTKY RECTIFIER
VOLTAGE RANGE - 30 and 40 Volts CURRENT - 16.0 Amperes
FEATURES

ITO-220CT
.IS8± .008
13'- .008
(3.3 ±0.2)

,.189 MAX.
1, .40SMAX'I!14±.02)_
110 3) •
I
14.8)

ill
.d MAX.
.+' V-+ ----ml

i'(~
I

.103 MAX.
12.6)

•

PIN

1 2 3

1...\1

II

I

1
1 -

.051'.008 Ii'
11.3!0.2) I ," I .§47~.01t!
004
(13f 0.4)
.029+.
-.QQ8 •
i
2.54
10.75±8J)
:... i

I'"I I

.. ,.10H.008
12.7 1 0.2)

~
4°REF. .028 •. 008·11+
... ...
... "10.710.2)
DJlr:p1Cl

I

......

40RE~

.......

PIN 1-~N2
prN3-~+
STANDARD POLARITY

Dimensions In inches
and
(millimeters)

• Isolated Plastic Package has Underwriters Flammability Classification 94V-O
• Isolated overmolded package
• Metal to silicon rectifier,
majority carrier conduction
• Low power loss,
high efficiency
• High current capability, low VF
• High surge capacity
• Epitaxial construction
• For use in low voltage, high frequency inverters,
free wheeling, and polarity protection applications
• High temperature soldering guaranteed:
2S0°C/1 0 seconds/.2S", (6.3Smm) from case
• Guardring for transient protection
• Internal Insulation: 1.SK VRMS

MECHANICAL DATA
Case: Isolated TO-220CT Fully Overrnolded Plastic
Tenninals: Leads Solderable per MIL-STO-7S0,
Method 2026
Polarity: As marked
Mounting PosUlon: Any
Mounting Torque: Sin. - Ibs. max.
Weight: .08 ounces, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25'C ambient temperature unless 01llerwise specified.
Resistive or Inductive load.

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at Tc=95°C
Peak Forward Surge Current, 8.3rns single half slnewave superimposed on rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage
per leg IF=8.0A (NOTE 2)
Maximum Instantaneous Reverse Current at Tc=25°C
Rated DC Blocking Voltage per leg
Tc=100°C
Typical Thermal Resistance (NOTE 1)
Operating Junction and Storage Temperature Range
NOTES:

1. Thermal Resistance from Junction to Case per leg.
2. Pulse Test: 30011S Pulse Width, 2% Duty Factor.

72

SYMBOLS

SBLF1630CT

SBLF1640CT

UNITS

VRRM
VRMS
Voc

30
21
30

40
28
40

Volts
Volts
Volts

I(AV)

16.0

Amps

IFSM

250.0

Amps

VF

0.55
0.5
50.0
2.2
-40 to +125

Volts

IR
R8JC
TJ,TsTG

rnA

oelW
°C

RATINGS AND CHARACTERISTIC CURVES SBLF1630CT AND SBLF1640CT

~
Z

FIG. 2 • MAXIMUM NON·REPETITIVE PEAK
FORWARD SURGE CURRENT PER LEG
300

8.3m. SINGLE HALF SINE WAVE
PER LEG (JEDEC METHOD)

W

'"c:

::::l

250

o

~

z

20.0

'"'"o

16.0

0'"

",w

12.0

<'"

i5~

8.0



< «
~
c:

I"-

o

'"«a.w

,

o

o

50

100

I

l"

100

1.1.

w

<

I.........

......... r--.....

~

50

0

1

5

~

W

<

~

~~

\

~~

1.1.

200

::::lC:
f/J W 150

,

W

::::l

~ en
c:W

FIG. 1-FORWARD CURRENT DERATING CURVE

T~TJmax.

10

...

20

100

50

NUMBER OF CYCLES A,T 60 Hz

FIG. 4 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS PER LEG
150

100

~
Z

CASE TEMPERATURE. 'C

w

c:
c:

::>

o
o

/'

10

/

c:

~~

FlO. 3- TYPICAL REVERSE
CHARACTERISTICS, PER LEO

C:c:

Ow

100

1.1.

1.

a.

",::;;
::> « 1.0

l

o

w

1.

Z

«

~
Z

T, = 1000":;'"

w

I-

",

Z

I-

'"::>'"

'"Z

0

"'W
"'c:
Ww
>a.
W:::;;

l"'"

V

1.0

"'<
"':::;
::::l...J

o.

111

TJ

-

25 0 C

PULSE WIDTH ,.,. 300 f,l.S
2% Duty Cycle

.3

.4

.5

.6

.7

.8

.9

INSTANTANEOUS FORWARD VOLTAGE.
VOLTS

,..... T, = 750 C

FIG.S-TYPICAL JUNCTION CAPACITANCE PER LEG
4000

OW:::;;
Z

1.1.

V

<

I-

Q.

K-25O~

Z

<

I

.2

w'"

I-

.L

«

10

0.1

'"Z

Z

«

I-

0

«
a.
«

L

-

2000

ui
0

T,

..ll
250lC I I

f = 1MHz
~

Vsig

1'-1"-

1000
800

~

5OmVp-p

600

"

400

0

200
0.01

o

20

40

60

80

100

120

PERCENT OF RATED PEAK
REVERSE VOLTAGE ,%

140

100
0.1

0.4

1.0

4

10

40

801 00

REVERSE VOLTAGE, VOLTS

- - - - - - - - - - - - - - - ~Generallnsbument
73

SBL1630CT AND SBL1640CT
SCHOTTKY RECTIFIER
VOLTAGE RANGE - 30 and 40 Volts CURRENT -16.0 Amperes
FEATURES
TO-220AB

.420 (10.67),
.38019.65)
"

1F:::!::=91

P~H 3

1

•

.16~

J4ifl3.56j

t

+ 1 1'.02710.69)
1

..

,:m~ml

...--. .21015.33)
.19014.83)

.3:019~:
.320IB.13)

J

.600 JS.24)
.575114.611

!

3 129.5 )
!..lli.m.W
1.10 3 128.02)

1

f

j""'~.'"

.530It 46 )

.03710.94)

1

.15013.81)
.13013.30)

i

t

.640116.26)
.620115.75)

....

.19014.83)
.160 14.06)
.05511.401
.045 11.I~)

~

~

1

-:nI '

.15513.94) 01A
.145p.6B)
•

.02210.56).
.014 (0.36)

I!-

• Plastic package has Underwriters Laboratory
Flammability Classifications 94V-O
• Metal to silicon rectifier,
majority carrier conduction
• Low power loss,
high efficiency
• High current capability, low VF
• High surge capacity
• Epitaxial construction
• For use in low voltage, high frequency inverters,
free wheeling, and polarity protection applications
• High temperature soldering guaranteed:
2S0°C/10 seconds/.2S", (6.3Smm) from case
• Guardring for transient protection

MECHANICAL DATA
.110 12.79)
.09012.29)

ICASE POSITIVE) PIN 1 ~PI~ 2
STANDARD POLARITY PIN 3CASE

Case: JEDEC TO-220 Molded Plastic
Terminals: Leads Solderable per MIL-STD-750,
Method 2026
Polarity: As marked
Mounting Position: Any
Weight: .08 ounces, 2.24 gram
Mounting Torque: 5 in. - Ibs. max.

Dimensions in inches and (millimeters)

CROSS REFERENCE GUIDE
GI
SBL1640CT

SHINDENGEN

FUJI
ESAD82·004

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at25'C ambient temperature unless otherwise specified.
Resistive or inductive load.

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at Tc=95°C
Peak Forward Surge Current, 8.3ms single
haH sine-wave superimposed on rated load
(JEDEC Method)
Maximum Instantaneous Forward Voltage
per leg IF=8.0A (NOTE 2)
Maximum Instantaneous Reverse Current at Tc=25°C
rated DC Blocking Voltage per leg
Tc=100°C
Typical Thermal Resistance per leg (NOTE 1)
Operating Junction and Storage Temperature Range

SYMBOLS

SBL1630CT

SBL1640CT

UNITS

VRRM
VRMS
Voc

30
21
30

40
28
40

Volts
Volts
Volts

IIAV}

16.0

Amps

IFsM

250.0

Amps

VF

0..55
0.5
50.0
3.0
·40 to +125

Volts

IR
ReJC
TJ,TsTG

NOTES:
1. Thermal Resistance from Junction to case per leg.
2 Pulse Test: 300j.lS Pulse Width, 2% Duty Factor.

74

rnA

"CIW
·C

RATINGS AND CHARACTERISTIC CURVES SSL 1630CT AND SSL 1640CT

300

FIG. 1 _ FORWARO CURRENT DERATING CURVE
20.0

16.0

Off]

~~ ...ffi

12.0

f2UJ «

8.0

,

!

150

OUJ

100

«:;)

50

...UJO

4.0

o

50

100

CASE TEMPERATURE,

,

I

I

~ ......
i"'o

--. r----.
5

1\

«

o

««
~~
a::z

200

8.3ms SINGLE HALF SINE WAVE
PER LEG (JEDEC METHOD)
TJ-TJm&X.

1.1.0::
><:0::

C)

~

0:::;

1\

0:::;

ffi

UJ
C)(Il
O::UJ
:;)0::
(IlUJ
0'"

250

FIG. ? • MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT PER LEG

10

r-.. """

20

50

100

NUMBER OF CYCLES AT 60Hz

~

Fig. 4- TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS PER LEG

150

tZ
UJ

·c

100

0::
0::

:;)

o
o

.J'

10

V-

0::

~ffl

FIG. 3- TYPICAL REVERSE
CHARACTERISTICS, PER LEG

!§ffi
1.1. ...

100

I

(Il:;

:;)«

o

II

1.0

W

Z

~
UJ

TJ .,00.:...10

~
Z

V

I

~

0::

a::
:;)

.2

~TJ

2% Duly Cycle

.3

.4

/

1

-

1.1. 2000
Q.

ui
0
Z

E

TJ:!.5·C

«
~
C3

...«

./

«
0

./
20

40

.7

.8

.9

FIG.5-TVPICAL JUNCTION CAPACITANCE PER LEG

I/"

o

.6

oWC

4000

.0

.5

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

V

/

PULSE WIDTH = 300 ~s

I

o. 1

o

TJ = 25°C

I

~

60

80

100

PERCENT OF RATED PEAK
REVERSE VOLTAGE ,%

120

140

TJ = 25°C
f= lMHz
Vsig = 50mVp-p

...

1000
800
800
400
200

100
0.1

0.4

1.0

10

40

80'00

REVERSE VOLTAGE, VOLTS

---------------ilGenerallnstrument
75

MBRF1635 AND MBRF1645
SCHOTTKY RECTIFIER
VOLTAGE RANGE - 35 and 45 Volts CURRENT - 16.0 Amperes
FEATURES
• Isolated plastic package has Underwriters Laboratory Flammability Classifications 94V-O
• Metal to silicon rectifier,
~
majority carrier conduction
• Low power loss
high efficiency
"
• High current capability, low VF
"• High surge capacity
• Epitaxial construction
• For use in low voltage, high frequency inverters,
free wheeling, and polarity protection applications
• High temperature soldering guaranteed:
250°C/10 seconds/.25", (6.35mm) from case
,.107' .000
12.7'0.21 • Guardring for transient protection
• Intemal Insulation: 1.5k VRMS

IT0-220

.13 LOOO
(3.3 to.21

.103 MAX.

MECHANICAL DATA
+

PIN 1 0------,
PIN2~

STANDARD POLARITY

(Case Positive)
Dimensions in inches and (millimeters)

Case: ITO-220 Molded Plastic
Tenninals: Leads Solderable per MIL-STD-750,
Method 2026
Polarity: As marked
Mounting Position: Any Mounting Torque: 5 in. -Ibs. max.
Weight: .08 ounces, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at25'C ambient temperature unless o1herwise specified. Resistive or inductive load.

Maximum Recurrent Peak Reverse VoRage
Maximum Working Peak Reverse Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at Te=125°C
Peak Repetitive Forward Current, (Square Wave,
20 KHz) at Te= 125°C
Peak Forward Surge Current
8.3ms single half sine-wave superimposed
on rated load (JEDEC Method)
Peak Repetitive Reverse Surge Current (NOTE 2)
Voltage Rate of Change at (Rated VR)
Maximum Instantaneous Forward Voltage at
(NOTE 1)
IF=16A, Te=125°C
IF=16A, Te= 25°C
Maximum Instantaneous Reverse Current
Te=125°C
at Rated DC Blocking Voltage (NOTE 1)
Te= 25°C
Typical Thermal Resistance, Junction to Case
Operating Junction Temperature Range
Storage Temperature Range
NOTES:
1. Pulse Test: 300flS Pulse Wid1h, 2% Duty Cycle.
2. 2.0flS Pulse Wid1h, 1.0 KHz.

SYMBOLS

MBRF1635

MBRF1645

UNrrs

VRRM
VRWM
Voc

35
35
35

45
45
45

VoRs
Volts
Volts

I(Av)

16.0

Amps

IFsM

32.0

Amps

IFSM
IRSM

150.0
1.0
1000

Amps
Amps
V/IJS

0.57
0.63
40.0
0.2
2.0
-65 to +150
-65 to +175

Volts
Volts
rnA

dv/dt

VF
IR
R8JC
TJ
TSTG

76

°CIW
°C
°C

RATINGS AND CHARACTERISTIC CURVES MBRF1635 AND MBRF1645

FIG. 2 • MAXIMUM NON·REPETITIVE PEAK
FORWARD SURGE CURRENT
150

125

W
II:W
:::lll:
enw

Q.

Z

I

I-

en

11:11:

/

I

<

TJ = 125"C

:::l
0

<

1.0

I-

.-

O:!
W~
Z

/

en~

~ TJ·15O"C

;/' .""

'-'

, ,

4:

~ffl

all:

100

....

'-'

~

I

:::l

o
FIG. 3 -TYPICAL REVERSE
CHARACTERISTICS

100

50

FIG. 4- TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

W
II:
II:

..., "

20

50

150

CASE TEMPERATURE, ·C

./

W

NUMBER OF CYCLES AT 60Hz

~

1

I

...........

~..--

OW

IT

(JEDEC METHOD)

75

<4:

r

8.3",. SINGLE HALF SINE WAVE

Oil.

,

W

100

"'- . . r-.."

I

T".. TJnwt.

.....

200

~

100

0.1

0.4

1.0

4

10

40

so

REVERSE VOLTAGE, VOLTS

- - - - - - - - - - - - - eGenerallnstrument
77

100

MBRF1650 AND MBRF1660
SCHOTTKY RECTIFIER
VOLTAGE RANGE - 50 and 60 Volts CURRENT - 16.0 Amperes
FEATURES
IT()..220

• Isolated Plastic package has Underwriters Laboratory Rammability Classifications 94V-O
• Metal to silicon rectifier,
~
majority carrier conduction
• Low power loss,
high efficiency
. '.
• High current capabDity, low VF
'.
• High surge capacity
• Epitaxial construction
• For use in low voltage, high frequency inverters,
free wheeling, and polarity protection apptications
• High temperature soldering guaranteed:
250°C/10 seconds/.25", (6.35mm) from case
• Guardring for transient protection
• Intemal Insulation: 1.5k VRMS

MECHANICAL DATA

DllTI8nslons In inches and (mllUlTI8ters)

Case: ITO-22O Molded Plastic
Terminals: Leads Solderable per MIL-STO-750,
Method 2026
Polarity: As marked
Mounting Position: Any Mounting Torque: 5 in. -Ibs. max.
Weight: .08 ounces, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient 1emperalllre unless otherwise specified.
Resistive or inductive load.
For capecitive load, dera1e current by 20%.

Maximum Recurrent Peak Reverse Voltage
Maximum Working Peak Reverse Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current at Tc=125°C
Peak Repetitive Forward Current, (Square Wave,
20 KHz) at Tc=125°C
Peak Forward Surge Current S.3ms single half sinewave superimposed on rated load (JEDEC Method)
Peak Repetitive Reverse Surge Current (NOTE 2)
Voltage Rate of Change at (Rated VR)
Maximum Instantaneous Forward Voltage at
(NOTE 1)
IF=16A, Tc=125°C
IF=16A, Tc=25°C
Maximum Instantaneous Reverse Current at rated
DC Blocking Voltage
Tc=125°C
(NOTE 1)
Tc=25°C
Typical Thermal Resistance, Junction to Case
Operating Junction Temperature Range
Storage Temperature Range

SYMBOLS

MBRF1650

MBRF1660

UNITS

VRRM
VRWM
Voc
I(AV)

50
50
50

60
60
60
16.0

Volts
Volts
Volts
Amps

IFRM

32.0

Amps

IFSM
IRRM
dv/dt

150
0.5
1000

Amps
Amps

VF

0.62
0.75

Volts
Volts

IR

50.0
1.0
2.0
-65 to +150
-65 to +175

rnA

R9JC
TJ
TSTG

NOTES:

1. Pulse Test: 300/IS Pulse Width. 2% Duty Cycle.
2. 2.01'8 Pulse Width. 1.0 KHz.
78

VIlIS

OCIW
°C
°C

RATINGS AND CHARACTERISTIC CURVES MBRF1650 AND MBRF1660

FIG. 2· MAXIMUM NON·REPETITIVE PEAK
FORWARD SURGE CURRENT
160

~
~ m 140
..........
a:w
:::la:

li

,

20.0

a:
a:
:::l

16.0

o
om

a: ~ 12.0

12«

4.0

:;(

0

~~

100

OW
a:

80

~o

80

LL

;'i~

40

r"o,

.........

........

1

10

\

o

100

50

~~

........ ~

20

50

100

NUMBER OF CYCLES AT 60Hz

~

W

I~

~

a:z

~

~~

a:::;; 8.0

w
~
a:

120

~~

FIG. 1-FORWARD CURRENT DERATING CURVE

W

m~

T.....T.. max.
B.3ms SINGLE HALF SINE WAVE
(JEDEC METHOD)

FIG, 4-TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

150
f-

CASE TEMPERATURE,·C

50

Z
w
a:
a:
:::l

o
o

v

/

10

a:

«
~ff3

FIG. 3- TYPICAL REVERSE
CHARACTERISTICS

I

Oa:

If

u.~
00::;;

10

-

6w «

- T J - 15O"C

I

1.0

Z

io-"'"

«
f-

"". ~.I'=125OC

z

«

I

f-

m
~
0.1

./

TJ '" 25°C

"

PULSE WIDTH = 300 I-l S
2% Duty Cycle

A
~
•
3
•
•
LO
INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

2

r,,::: 75'"C . /

TJ" 25°C

/

2

FIG, 5-TYPICAL JUNCTION CAPACITANCE
4000

u.. 2000
c.
ui

~

~

~

1

TJ

r-- -r-.

I
~ ~5' cl

I

f"" .1MHz
Vsig = 50mVp-p

1000

~800
(3 600

«400

If

n.

«
o

~

.001

o

V
20

40

60

80

100

120

PERCENT OF RATED PEAK
REVERSE VOLTAGE.%

............

200

r"'-r-.

140
100
0.1

0.4

1.0

10

40

60100

REVERSE VOLTAGE, VOLTS

---------------CBGenerallnsbument
79

MBR1635 AND MBR1645
SCHOTIKY RECTIFIER
VOLTAGE RANGE - 35 and 45 Volts CURRENT - 16.0 Amperes
FEATURES

TO-220AC

• Plastic package has Underwriters Laboratory
Flammability Classifications 94V-O
• Metal to silicon rectifier,
majority carrier conduction
• Low power loss,
high efficiency
• High current capabHity, low VF
• High surge capacity
• Epitaxial construction
• For use in low voltage, high frequency inverters,
free wheeling, and polarity protection applications
• High temperature soldering guaranteed:
250°C/10 secondS/.25", (6.35mm) from case
• Guardring for transient protection

MECHANICAL DATA

+1 I':C~ ~g::;~
.21015.331
.19014.831

(CASE POSITIVEI PIN 1 ., o----,.J;.
STANDARD POLARITY PIN 2 -~CRsE

Dimensions In Inches an(J (millimeters)

Case: JEDEC TO-220 Molded Plastic
Terminals: Leads Solderable per MIL-STD-750,
Method 2026
Polarity: As marked
Mounting Position: Any
Weight: .08 ounces, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient I9mperallue unless olherwise specified.
Resistive or Induative load.
SYlfBOL.S

Maximum Recurrent Peak Reverse Voltage
Maximum Working Peak Reverse Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at Tc=125OC
Peak Repetitive Forward Current, (Rated VR, Sq. Wave
20 KHz) at Tc=125OC
Peak Forward Surge Current
8.3ms single half sine-wave superimposed
on rated load (JEDEC Method)
Peak Repetitive Reverse Surge Current (NOTE 2)
Voltage Rate 01 Change, (rated VR)
Maximum Instantaneous Forward Voltage (NOTE 1)
IF.. leA, Tc..25°C
IF=16A, Tc=125°C
Maximum Instantaneous Reverse Current at
rated DC Blocking Voltage
Tc=25°C
(NOTE 1)
Tc=125°C
Maximum Thermal Resistance (NOTE 3)
Operating Junction Temperature Range
Storaae Temoerature Ranae
NOTES:
1. Pulse Test Pulse Widlh 300118, Duty Cycie 2%.
2. 2.0118 Pulse Widlh, 1.0 KHz.
3. Thermal Resistance from Junction 1D Case.

VRRM
VRWM
Voc

45
45
45

Volts
Volts
Volts

I(AV)

16.0

Amps

IFRM

32.0

Amps

IFSM
IRRM
dv/dt

150
1.0
1000

Amps
Amps
V/IJS

VF

0.63
0.57

Volts

IR

0.2
40.0
1.5
-65 to +150
-65 to +175

rnA

R8JC
TJ
TSTG

80

UNITS

35
35
35

OCIW
°C
°C

RATINGS AND CHARACTERISTIC CURVES MBR1635 AND MBR1645

FIG. 2· MAXIMUM NON·REPETrrlVE PEAK
FORWARD SURGE CURRENT
150

W
a:W
:::>a:
ooW
co..
a::::E
««
3:~
a:Z
OW
",a:
:.::a:
«:::>
wU

125

0(1)
~

FIG. 1 -

FORWARD CURRENT DERATING CURVE

z

~

,

20

a:
:::>
U
18
coo
a: w
~ffi12
a: 0..

f2 ~

~

8

W

o«

W

~

,

"

..........

00

110

.........

25

5

10

~

W

-

-

~

:::>«
0
W
Z
«
Z
«
~

0.1

~ ~J"75'C

Z

~
Z

«

'"c.

Iii

f-

(3

.......

«0..
«
U

"..10"'"
.01

I.......... V
o

20

I

=25°C

pULse WIDTH::: 300 jJs
2% Duty Cycle

.3

.4

.5

.6

.8

.7

.9

1.0

TJ" 25'C

TYPICAL JUNCTION CAPACITANCE

,

- .....

2000

I

~

ui

U
Z
«

0.1

~

.2

FIG. 5 5000
4000

5:;j
w:::E

TJ

INSTANTANEOUS FORWARD VOLTAGE.
VOLTS

. / V"

1.0

/

1

I
.1

ffiffi

-

./V V

L

I

f-

U

~~

/

1.0

00

~l3

100

, ,

""

TJ = 125"C

a:
a:
:::>

G:i~

10

~oo

~

10.0

I

"'~
00:;:

./

II

......
.,-1"""
V'

TJ= 125"C

a: W
Oa:

I:: TJ " 15O"C"

50

FIG. 4 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

""Z

100

20

NUMBER OF CYCLES AT 60Hz

W
a:
a:
:::>
U
C
a:

FIG. 3 - TYPICAL REVERSE
CHARACTERISTICS

r-.

0..

50

CASE TEMPERATURE. ·C

........ ~

50

1110

100

~

'75

~

4

a:

100

TJ- TJmax.
8.3ms SINGLE HALF SINE WAVE
(JEDEC METHOD)

1000

T,-25'C
1-1.0 MHz
Vsig-5DmVp·p

800
600

......

400

200

.......

I
40

60

80

100

120

PERCENT OF RATED PEAK
REVERSE VOLTAGE .%

140

100
0.1

0.4

1.0

10

40

60 100

REVERSE VOLTAGE. VOLTS

---------------(iGenerallnstrument
81

MBR1650 AND MBR1660
SCHOTTKY RECTIFIER

VOLTAGE RANGE - 50 and 60 Volts

CURRENT - 16.0 Amperes
FEATURES

TO-220AC

.420 (10.67)
.380 [9.65)

.15513.94) OIR
.14SJ3.68)
•

+
.pgl3.81)

·jfl~~)

:j

•
4.
•• 055[1.401
.045 (1.l41

J

.60011.24)

.360[9.14)
.32018.131

116 HZS

I £!."¥"""-''-

+11·:m~g::;l
.210[5.33)
.190[4.83)

1

l

5!l1

1"'.'.';;

1.103128.02)

.530 I t 461

_

:mii4.6ii

:m~~:m·

+~t

Ja~~,

.09012.29)

(CASE POSITIVEl PIN 1 + e>------t..:,
STANDARD POLARITY PIN 2 - ~[ASE

Dll1I9nsions In inches and (millimeters)

• Plastic package has Underwriters Laboratory
Rammability Classifications 94V-O
• Metal to silicon rectifier,
'"'
majority carrier con~'
..
duction
"'• Low power loss,
high efficiency
'''\,
• High current capability, low VF
~\" ~
• High surge capacity
"",
• Epitaxial construction
• For use in low voltage, high frequency inverters,
free wheeling, and polarity protection applications
• High temperature soldering guaranteed:
250°C/10 seconds/.25", (6.35mm) from case
• Guardring for transient protection

MECHANICAL DATA

case: JEDEC TO-220 Molded Plastic
Terminals: Leads Solderable per MIL-STD-750,
Method 2026
Polarity: As marked
Mounting Position: Any
Weight: .08 ounces, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25'C ambient temperature unless otherwise specified.
ReSistive or Inductive load.

Maximum Recurrent Peak Reverse Voltage
Maximum Working Peak Reverse Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at Tc=125°C
Peak Repetitive Forward Current (Rated VR. Sq. Wave.
20 KHz) at Tc=125°C
Peak Forward Surge Current. B.3ms single half slnewave superimposed on rated load (JEDEC Method)
Pead Repetitive Reverse SurgeCurrent (NOTE 3)
Maximum Instantaneous Forward Voltage
Per Leg
IF=16A. Tc=25°C
IF=16A. Tc=125°C (NOTE 2)
Maximum Instantaneous Reverse Current at Tc= 25°C
rated DC Blocking Voltage
Tc=125°C
Voltage Rate of Change (Rated VA)
Maximum Typical Thermal Resistance (NOTE 1)
Operating Junction Temperature Range
Storage Temperature Range

SYMBOLS

MBR1650

MBR16BO

UNITS

VRRM
VAWM
Voc

50
50
50

60
60
60

Volts
Volts
Volts

ICAV)

16.0

Amps

IFAM

32.0

AmPS

IFSM
IAAM

150.0
0.5

Amps
Amps

VF

0.75
0.65
1.0
50.0
1000
3.0
-65 to +150
-65 to +150

Volts

IA
dv/dt
R8JC
TJ
TSTG

NOTES:

1. Thermal Resistance from Junction 10 Case.
2. Pulse Test: 300flS Pulse Wid1h, 2% Duty Factor.
3. 2.0flS Pulse Wid1h, 1=1.0 KHz.
82

rnA
V/IJS
°CIW
°C
°C

RATINGS AND CHARACTERISTIC CURVES MBR1650 AND MBR1660

FIG. 2 • MAXIMUM NON·REPETITIVE PEAK
FORWARD SURGE CURRENT
160

W

140

C)cI)

FIG. 1 -

FORWARD CURRENT DERATING CURVE

O:W
(1)W 120

"'" "

:::>0:
OD.

~

,

20.0

W

0:
0:
:::>

16.0

°ex: w

000

~ffi

12.0

40

0:
W

~

100

50

100

o:Z
OW
u.o:
:,.:0:
<{:::>

80

a.

60

wO

,

80

W

~

~t-=

\,

0:D.

12 ~

0::::;
<{<{

TJ-TJ max.

"-

8.3ms SINGLE HALF SINE WAVE
(JEDEC METHOD)

'"

roo..

~

........

10

1

150

50

IZ
0:

°o

v

/

10

,

0:

«
~ffl

FIG. 3 - TYPICAL REVERSE
CHARACTERISTICS

00:

0:
0:
:::>

1.0

f

u.~

10

00:::;

-

:::>«

o

TJ'~ 150"C

I

1.0

UJ

Z

«

I-

""""'"
~ ~J'=125OC

Z

«

I

I00

II

~

°

Woo
(1)W
0:0:
Ww
>0.
W:::;

0.1

.2

./

To! '" 75°C

o:<{
:::>..J

00- 0.1

.3

TJ'" 25°C
PULSE WIDTH" 300,us
2% Duty Cycle

.4

.5

.6

.7

.8

.9

,;'

FIG. 5 -

TYPICAL JUNCTION CAPACITANCE

I I II

W:::;

Z
<{

./

I-

Z
<{
~

1.0

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

0=
I00

100

FIG. 4 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

0:
:::>

W

50

20

NUMBER OF CYCLES AT 60Hz

UJ

t-=
z

...... ~

40

CASE TEMPERATURE, DC

-

i".

~

T.. - 25°C

L 15'~ I "

r-- .... r-.

~

f=.lMHz
Vsig = 50mVp-p

.01

/

........ ....

V

001
Q

20

40

60

80

100

...

120

PERCENT OF RATED PEAK
REVERSE VOLTAGE ,%

100
0.1

0.4

1.0

10

40

80 100

REVERSE VOLTAGE, VOLTS

---------------~Generallnsbument
83

MBRF2035CT AND MBRF2045CT
SCHOTTKY RECTIFIER
VOLTAGE RANGE - 35 and 45 Volts

CURRENT - 20.0 Amperes
FEATURES

IT0-220CT

.13 '.008

(3.3±0.21

-+ .+
,

.103 MAX.

,

.67 MAX.

1 piN 3

(17)

-'>

-

1

~IIT
.051 • .008 I'. I '
(13'0.21 III· I .5471,016

I" I' (13.9 0.4)
, + 1 I' 1 _
8JI :~:*:~.54
~
40REF.
.028 '.008
_....
-"'(0.710.2)

029 +.004
.
-.008
CO.75 1

1

""tplll1
_ ...4 0 REF._ ..

• Isolated plastic package has Underwriters Laboratory Flammability Classification 94 v-O
,
• Metal to silicon rectifier,
majority carrier conduction
• Low power loss, high efficiency
, .',
• High current capability, low VF
,'
• High surge capacity
-- ,
• Epitaxial construction
'
• Guardring for transient protection
• For use in low voltage, high frequency inverters,
free wheeling, and polarity protection applications
• High temperature soldering guaranteed: 250°C/10
seconds/.25", (6.35mm) from case
• Internal Insulation: 1.5k VRMS

.. ,.107±.008
(2.7 1 0.21
..

MECHANICAL DATA
Case: Isolated TO-220CT Fully Overmolded Plastic
Tenninals: Leads Solderable per MIL-STO-750,
Method 2026
Polarity: As marked Mounting Position: Any
Mounting Torque: 5 in. - Ibs. max.
Weight: .08 ounces, 2.24 gram

PIN1-~2

+

PIN 3-~
STANDARD POLARITY
(POSITIVE CTJ

Dimensions in inches and (millimeters)

MAXIMUM RA TlNGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25'C ambient temperature unless otherwise specified, Resistive or Inductive load.
For capacitive load, derate current by 20%.

Maximum Recurrent Peak Reverse Voltage
Working Peak Reverse Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at Tc=135°C
Peak Repetitive Forward Current per diode leg
(Rated VR, Sq. wave, 2.0KHz) at Te=135°C
Peak Forward Surge Current
8.3ms single half sine-wave superimposed
on rated load (JEDEC Method)
Peak Repetitive Reverse Surge Current (NOTE 3)
Maximum Instantaneous
Forward Voltage Per Leg
IF= 10A, Tc = 125°C
(NOTE 2)
IF= 20A, Tc=25°C
IF= 20A, Tc=125°C
Maximum Instantaneous Reverse Current at
rated DC Blocking Voltage per element Tc = 25°C
Te =125°C
Voltage Rate of Change (Rated VR)
Typical Thermal Resistance per element (NOTE 1)
Operating Junction Temperature Range
Storage Temperature Range

SYMBOLS

MBRF2035CT

MBRF2045CT

UNrrB

VRRM
VRWM
VDC

35
35
35

45
45
45

Volts
Volts
Volts

I(AV)

20.0

Amps

IFRM

20.0

Amps

IFSM
IRRM

150.0
1.0

Amps
Amps

VF

0.57
0.84
0.72

Volts

IR
dv/dt
ReJC
TJ
TSTG

NOTES: 1. Thermal Resistance from Junction to Case per leg.

2. Pulse Test: 300flS Pulse Widlh, 2% Duty Factor.
3, 2.0flS, Pulse Widlh 1-1 KHz,
84

0.1
25.0
1000
2.2
-65 to +150
-65 to +175

mA
V/~

°CIW
°C
DC

RATINGS AND CHARACTERISTIC CURVES MBRF2035CT AND MBRF2045CT

FIG. 2 • MAXIMUM NON· REPETITIVE PEAK
FORWARD SURGE CURRENT PER LEG
160

~
UJ

,

20.0

\

a: w

« ffi

~(l.

12.0

a:::!:

12 «

8.0

""

120

~

100

~ffi
u.o:

aD

[i! ~

4.0

UJ

~

~

~,.:

,

50

100

~~
wU

...............

60

i'oo...

a.

40

m

5

1

i"'o
60

W

""

100

NUMBER OF CYCLES AT 60Hz

FIG. 4· TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS PER LEG

150

...

50

>-

CASE TEMPERATURE, ·C

Z

:::l
()

I

I

W

a:
a:

TJ= 125C C /
10

~

10'

/

0

a:

«

FIG. 3· TYPICAL REVERSE
CHARACTERISTICS, PEn LEG

~en

,

a: W
Oa:

/

u.~

100

t==

-

,.

en::!:

:::l«

TJ = 150°C

0

/

I'
TJ = 25°C

1.0

UJ

i""""":

Z

«
I-

~

TJ = 125°C

,/

Z

«

I

I-

en
~

J

0.1.1

TJ = 75°C

0

2% Duty

1

.2

.3

.4

.5

.6

.7

L

.8

.9

1.0

0

L

1 I

r"""-

u.i

()

Z

«
13
«
(l.
«
()
I-

......
1

I

ele

TJ..25"C

2000

a.

V
TJ = 25°C

.0

300 ~s _

0

FIG. 5 • TYPICAL JUNCTION CAPACITANCE PER LEG
4000

1

t

PULSE WIDTH

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

U.

V
20

V

fV!~~~V:""

"'"T"

1000
800
600
400

........

200
40

60

80

100

t'-..

120 140

PERCENT OF RATED PEAK
REVERSE VOlTAGE ,"10

•

"'1"-1"-

....

\

UJ

Cla:«

=>0:

SI~GLE H~LF ~IN~ JA~E

8.3m.
PER LEG (JEDEC METHOD)
TJIII'TJmax.

0:

,
\,

FIG. 1-FORWARD CURRENT DERATING CURVE
~

20.0

\

W

0:
0:
::>

16.0

()

~ ffl12.0


-T,

i'...

10

CASE TEMPERATURE, ·C

100

........

NUMBER OF CYCLES AT 60Hz

--

100

FIG. 2 - MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT PER LEG

Z

z~

i""""


<

100

50

a:
a:

;:)

250

~

UJ 200

8.3rns SINGLE HALF SINE WAVE
PER LEG (JEDEC METHOD)

,

o

a:W
;:)a:
Ul w

~~
«
at
a:
~

l

00

300

W

1\

8

FIG. 2 • MAXIMUM NON·REPETITIVE PEAK
FORWARD SURGE CURRENT PER LEG

..:
z

150

150

c..

"" ......

'"

100

....

--

50

0

I.,:· .
,",

~
W

CASE TEMPERATURE, 'C

1"--

T.. _T"mBX.

1

10

........ r--I"'!!

20

50

100

NUMBER OF CYCLES AT 60 Hz

FIG. 4· TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS PER LEG

FIG. 3· TYPICAL REVERSE
CHARACTERISTICS, PER LEG

...:

100

Z

100

w

a:
a:
o

~

;:)

/'

10

o

/

a:

~
Z
W

TC-100"~

10

a:
a:

~~
a: a:

V

Ow

u.c..
(/):::I!

;:)

o

;:) 0(

W(/)

o
W

~

(/)W

a: a:
Ww
>c..
W:::I! 1.0

~

a:<
(/):::;

II

Z

~

io"""T,-7SOC

Z

~

I

(/)

;:)~

Z

~i
z
~
z
~

I

1.0

0.1

.2

V

T.. == 25°C
PULSE WIDTH = 300 ....
2%. Duty Cycle
;3

.4

.5

.6

.7

.8

.9

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

K' -25"C~

0.1

II

FIG.5·TYPICAL JUNCTION CAPACITANCE PER LEG

(/)

Z

4000

/

II.
0.

-.lil

2000

r-r-

W

0.01
Q

20

40

80

80

100

120

PERCENT OF RATED PEAK
REVERSE VOLTAGE,%

140

T, ~ 25. IC I I
1-1MHz
Vsig = 5OmVP1>

0
Z

1000

0

800

<
I-

800

<
c..

400

~

~

<

I'

0

200

100
0.1

0.4

1.0

10

40

REVERSE VOLTAGE, VOLTS

- - - - - - - - - - - - - - - (iGenerallnstrument
93

80 100

SBL2030PT AND SBL2040PT
SCHOTTKY RECTIFIER
VOLTAGE RANGE - 30 and 40 Volts

CURRENT - 20.0 Amperes
FEATURES

070 REF
•
1

r;:'

. (I 90)

0

• Dual rectifier construction, positive center-tap
TO-247AD
• Plastic package has Underwriters Laboratory
Flammability Classifications 94V-O
• Metal to silicon rectifier,
majority carrier con.323(B.2)
.313(7.9)
203 (5.16)
duction
.193 (4.90) .245 .2)
.225(5.7)
iFf==4~~.:imn:
Low power loss,
'!!.
+ .170
high efficiency
~
• High current capability, low VF
(4.3)
~ 10·TYP.
"i' BOTH SIDES
• High surge capacity
.B40 (21.3)
E't
. I
tt
.B20i20.0)
•
PI aXla
cons
ruc'Ion
---....!...+
-.--1I",~rr:l"IWI~·.~fii~~f1~iti:m~~:
For
use
in
low
voltage, high frequency inverters,
-I'REF
~
1 I ,
free wheeling, and polarity protection applications
.160+(4.1) 1 -:::1 1
High temperature soldering guaranteed:
' 1 ::~m:~~:
:~~:g:~~
.140 (3.5) I
) from case
.7~5(20.2)
I
I
250 0 C
110 secon d
s/.17",(4.3mm
• 775(19.7)
I
• Guardring for transient protection

r
"

-

I'REf-~-

~ ..I

•

'\

,

.

•

1
!

•

MECHANICAL DATA

1........ 1 .. ,.048(1.22)

.225(5.7)
.205(5.2)

.04411.12) - - - - - - - - - - - - - - - - - - -

ICase PositiYe) PIN 1 ~ PIN 2
STRNORRD POLARITY PIN3~E

Dimensions in Inches
and
(millimeters)

Case:JEDEC TO-247AD Molded Plastic
Terminals: Lead solderable per MIL-STD750, Method 2026

Polarity: As marked
Mounting Position: Any
Weight: 0.2 ounces, 5.6 gram
Mounting Torque: 10 in. - Ibs. max.

CROSS REFERENCE GUIDE
GI
SBL2040PT

FUJI
ESA83-004

SHINDENGEN

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25'C ambient temperature unless otherwise specified. Resistive or inductive load.

Maximum Recurrent Peak Reverse Voltage
Maximum RMS VoRage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at Tc=105'C
Peak Forward Surge Current, 8.3ms single
half sine-wave superimposed on rated load
(JEDEC Method)
Maximum Instantaneous Forward Voltage
per leg IF=10.0A (NOTE 2)
Maximum Instantaneous Current at
Tc=25'C
Rated DC Blocking Voltage per leg
Tc=100'C
Typical Thermal Resistance per leg (NOTE 1)
Operating Junction and Storage Temperature Range

SYMBOLS

SBL2030PT

SBL2040PT

UNITS

VRRM
VRMS
Voc

30
21
30

40
28
40

Volts
Volts
Volts

I(Av)

20.0

Amps

IFSM

250.0

Amps

VF

0.55
1.0
50.0
1.5
-40 to +125

Volts

IR
R8JC
TJ,TsTG

NOTES: 1. Thermal Resistance from Junction to Case per leg.
2. Pulse Test: 300flS Pulse Width, 2% Duty Factor.

94

rnA

'cm
°C

RATINGS AND CHARACTERISTIC CURVES SBL2030PT AND SBL2040PT

FIG. 2 • MAXIMUM NON·REPETITIVE PEAK
FORWARD SURGE CURRENT PER LEG
300

,8.3ms SINGLE HALF SINE WAVE
,PER LEG (JEDEC METHOD)

FIG. 1 -

W
a:w
:::la:
(l)W
011.
a:::;:
««
:;:~
a:z
OW
u.a:
~a:
«:::l
wl>

FORWARD CURRENT DERATING CURVE

~
20. 0

\

a:
:::l
l> 16.0
o(/)
a: W
«a:
0::;

u.«

W

8.0

o
«
a::

4.0

W

,

~

~~12 0

«

,

o

o

50

100

200

I"-

5

1

~

a:
a:
:::l
l>
o
a:

l-

10

z
~
z

V"

I

f

1.0

«
~

TJ = 25°C

I

(I)

.01

PULSE WIDTH = 300J..ls
2% DUTY CYCLE

I
.2

/

.3

U.

a.

0.1

.,
./
.01
80

100

.8

.7

.9

I

120

PERCENT OF RATED PEAK
REVERSE VOLTAGE ,%

140

l>
Z
«
IU
«
11.
«
l>

I I

~l..l

M5"'C
1=1.0
MHz
Vsig=50mVp-p

2000

r""-r-.

ill

60

.6

FIG. 5· TYPICAL JUNCTION CAPACITANCE PER LEG

(/)

40

.5

4000

/ " TJ=2SoC

?O

.4

INSTANTANEOUS FORWARD VOLTAGE
VOLTS

"""'"

.......TJ " 75:C

,

~

100

"

t::.:

I-

1.0

50

~~

~f3

oW

./

20

100

a: a:
Ow
u.1l.
(I)::;:
:::l«

T.I = 100°C

10

FIG. 4· TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS PER LEG

150

100

10

r--

NUMBER OF CYCLES AT 60Hz

FIG. 3- TYPICAL REVERSE
CHARACTERISTICS, PER LEG

~

.... r---.. ......

50

zW

Z

........

100

o

CASE TEMPERATURE, 'C

W
a:
a:
:::l
l>
W(/)
(/)W
a: a:
Ww
>11.
W::;:
a:«
(/):::l--'
O:::!
W::;:
z
«
Iz
«

I

"-r-..

150

11.

~

>

TJ-TJmax.

~

0(1)

z

~

250

1000
800
600

1'-

400

,

200

100
0.1

0.4

1.0

10

40

80 100

REVERSE VOLTAGE, VOLTS

- - - - - - - - - - - - - - - (DGeneralInstrument
95

MBRF2535CT AND MBRF2545CT
SCHOTTKY RECTIFIER
VOLTAGE RANGE - 35 and 45 Volts CURRENT - 30.0 Amperes
FEATURES
IT0-220CT

.13 '.008
(3.3 <0.2)

... r

-

~X. >iN~

.103
(2.6)

1.

~

-

T

.ats- 1\,d!!
I .547<,016

.OS!!
(1.3'0.2)
029 •• 004
• -.008 • • 1

I' I' (13.9' 0.4)

CO.75:!8Jl

I,.. I

.. ,.107'.008
(2.7<0.2)

2.54

:

~.. 4 REF...." ....028
'.008,
W.7:!:O.21
D

~

• Isolated plastic package has Underwriters Laboratory Flammability Classifications 94V-O
• Metal to silicon rectifier,
majority carrier conduction
• Low power, loss, high efficiency
• High current capability, low VF
' "
• High surge capacity
• Epitaxial construction
• For use in low voltage, high frequency inverters,
free wheeling, and polarity protection applications
• High temperature soldering guaranteed:
2S0°C/l0 seconds/.2S", (6.3Smm) from case
• Guardring for transient protection
• Intemal Insulation: 1.Sk VRMS

4-

MECHANICAL DATA

lID ,*11'"
......4D REF..... -..

PIN1-~IN2

PIN 3STANDARD POLARITY
(POSITIVE tTl

Dimensions in inches and (millimeters)

Case: Isolated TO-220CT Fully Overrnolded Plastic
Terminals: Leads,'solderable per MIL-STD-750,
Method 2026
Polarity: As marked Mounting Position: Any
Mounting Torque: Sin. - lb. max.
Weight: .08 ounces, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25·C ambient temperature unless otherwise specified. Resistive or inductive load,
For capacitive load, derate current by 20%.

Maximum Recurrent Peak Reverse Voltage
Maximum Working Peak Reverse Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at Tc=130°C
Peak Repetitive Forward Current per leg (rated VR,
Square Wave, 20 KHz) at Tc=130°C
Peak Forward Surge Current 8.3rns single half sine-wave
superimposed on rated load (JEDEC Method)
Peak Repetitive Reverse Surge Current (NOTE 3)
Maximum Instantaneous Forward Voltage
Per Leg IF=30A, Tc=25°C (NOTE 2)
IF=30A, Tc=125°C
Maximum Instantaneous Reverse Current at Tc=25°C
Rated DC Blocking Voltage per leg (NOTE 2) Tc=125"C
Typical Thermal Resistance, (NOTE 1)
Voltage Rate of Change (rated VR)
Operating Junction Temperature Range
Storage Temperature Range
NOTES: 1. Thermal Resistance from Junction to Case per leg.
2. Pulse Test: 300flS Pulse Width, 2%, Duty Factor
3. 2.0flS. Pulse Width 1 KHz.
96

SYMBOLS

MBRF2535CT

MBRF2545CT

UNITS

VRRM
VRWM
Voc

35
35
35

45
45
45

Volts
VoRs
Volts

I(AV)

30.0

Amps

IFRM

30.0

Amps

IFSM
IRRM

150.0
1.0

Amps
Amps

VF
IR
IR
R8JC
dv/dt
TJ
TSTG

0.82
0.73
0.2
40.0
1.8
1000
-65 to + 150
-65 to +175

VoRs
rnA
rnA
°CIW

V/IJ.S
°C
DC

RATINGS AND CHARACTERISTIC CURVES MBRF2535CT AND MBRF2545CT

FIG. 2 • MAXIMUM NON·REPETITIVE PEAK
FORWARD SURGE CURRENT PER LEG
150

W
CJ(/)
a:w
:Ja:
ulW
ou.
a:::;

£a:
~

.,.:

.2

.3

.4

.5

.6

.7

~


U

o

UJ
C-'Vl
a:UJ
::>a:
tIlUJ
Oa.
a::;
<{<{

FIG. 1-FORWARD CURRENT DERATING CURVE
30

~

125

,~

'"I

100

.......... ...

75

.............

:i:"":

a:Z
OUJ
u..a:
><:a:
<{::>
UJU
a.

24

\

til

a: UJ
<{a:
UJ
:i:
a:a.
0:;
u..<{
UJ
C-'
<{
a:
UJ
>
<{

18

,

50

o

o

50

\

100

o

5

1

~

Z

UJ
a:
a:
::>

TJ

.A'
....:
Z

UJ
a:
a:
::>

TJ

'

-

125'~

Oa:
u..~
::><{
UJ
<{

,," "'

1.0

~

I

~

0.1

I

~

I
PULSE WIDTH - 300 ,tS
2% Duty Cycle

.2

.3

.4

.5

.7

.6

/
u..
a.
u.i
U
Z
<{

./

<{
~

0.1

~

til

~

Z

TJ

.01

o

".

"",. ~

~

~

1.0

FIG. 5 • TYPICAL JUNCTION CAPACITANCE PER LEG
~oo

Z

.9

.8

INSTANTANEOUS FORWARD VOLTAGE.
VOLTS

tIl~

6;;j
UJ:;

25"" C

I

.1

TJ ~ 75' C "

~

I

<{

~~ 1.0

TJ

~

Z

til

a: a:
~UJ

",V

Z

10

~~

<{

I

til:;

o

u

Z

,

~f3

150 C

1250 C

-

10

",

~

V

a:
<{

C

100

50

,

50

150

FIG. 3 - TYPICAL REVERSE
CHARACTERISTICS PER LEG

"'"

~

W

1'0""

FIG. 4· TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS PER LEG

u
o

I-- TJ

~~

NUMBER OF CYCLES AT 60Hz

CASE TEMPERATURE. 'C

100

-- .....

25

\

12

•

8.3l1li SINGLE HALF SINE WAVE
PER LEG (JEDEC METHOD)
T.,.T,ImBX.

i3

25' C

<{
a.
<{

.Y'"

2000

I II

i""-oo..

TJ - 25" C
f - 1MHz
Vsig - 50mVp-p

...... ~

""

1000
~O

'"

600

!"oo.

400

.....
i""

U
200

W

~

100

HO

PERCENT OF RATED PEAK
REVERSE VOLTAGE.%

I II

1~

100

0.1

0.4

1.0

10

~

~

100

REVERSE VOLTAGE. VOLTS

--------------- 09012 29)
(CASE POSITIVE) PIN1

' ,

~PI~2
-

STANDARD POLARITY PIN 3-

Dimensions in inches and (millimeters)

CASE

• Plastic package has Underwriters Laboratory
Flammability Classifications 94V-O
• Metal to silicon rectifier,
majority carrier conduction
• Low power loss,
high efficiency
• High current capability, low VF
• High surge capacity
• Epitaxial construction
• For use in low voltage, high frequency inverters,
free wheeling, and polarity protection applications
• High temperature soldering guaranteed:
250°C/10 seconds/,25", (6,35mm) from case
• Guardring for transient protection

MECHANICAL DATA
Case: JEDEC TO-220 Molded Plastic
Terminals: Leads, solderable per MIL-STD-750,
Method 2026
Polarity: As marked
Mounting Position: Any
Weight: ,08 ounces, 2,24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°0 ambient tempera1Ure unless otherwise specified, Resistive or inductive load,

Maximum Recurrent Peak Reverse Voltage
Maximum Working Peak Reverse Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at Tc=130°C
Peak Repetitive Forward Current per leg (rated VR,
Square Wave.20 KHz) at Tc=130°C
Peak Forward Surge Current
8,3ms single half sine-wave superimposed
on rated load (JEDEC Method)
Peak Repetitive Reverse Surge Current (NOTE 3)
Maximum Instantaneous Forward Voltage
per leg
IF= 30A, Tc=25°C
IF= 30A, Tc=125°C (NOTE 2)
Maximum Instantaneous Reverse Current at
Rated DC Blocking Volltage per leg (NOTE 2) Tc=25°C
Tc=125OC
Maximum Thermal Resistance (NOTE 1)
Voltage Rate of Change (rated VR)
Operating Junction Temperature Range
Storage Temperature Range
NOTES:
1, Thermal Resistance from Junction to Case per leg,
2, Pulse Test:300flS Pulse Width, 2%, Duty Factor,
3, 2,OflS. Pulse Width, f=l KHz,
100

SYMBOLS

MBR2535CT

MBR2545CT

UNffS

VRRM
VRWM
Voc

35
35
35

45
45
45

Volts
Volts
Volts

I(AV)

30,0

Amps

IFRM

30,0

Amps

IFSM
IRRM

150,0
1,0

Amps
Amps

VF

0,82
0,73

Volts

IR

0,2
40,0
1,5
1000
-65 to + 150
-65 to +175

rnA

R8JC
dv/dt
TJ
TSTG

OCIW
V/us
°C
°C

RATINGS AND CHARACTERISTIC CURVES MBR2535CT AND MBR2545CT
FIG. 2 • MAXIMUM NON·REPETITIVE PEAK
FORWARD SURGE CURRENT PER LEG
.&0

.2

UJ
l')(J)
O::UJ

..:z
UJ

FIG. 1 -

30

0::
0::

100

~~
<{<{

75

B.3mo SINGLE HAlF SINE WAVE
PER LEG (JEOEC METHOD)
T.".ToImax.

"-

r-...

\,

"

O::Z
OUJ
u..o::

0

UJU

25

~§
0..

,

5

\
so
100
CASE TEMPERATURE, ·C

U50

TJ ::: 125°C
10

If

00::
u..g:
:::J<{

/.V

TJ::: 25C>C

,

<{

0

..", ~

I

J

/ /

(/):2

10

UJ
Z
<{

~

K"'2!:;'-

'00

~

..",

3:Ul
o::UJ

'50·C

50

--

50

0::

~TJ"

20

f-

Z
UJ

:::J

--I

10

I-ot-

FIG. 4· TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS PER LEG

U
0

'00

. . . r--. r---

NUMBER OF CYCLES AT 60Hz

0::
0::

FIG. 3 - TYPICAL REve.flSE
CHARACTERISTICS PER LEG

I

1'""

3:":

\

[5 24

:::> ex::
UlUJ

FORWARD CURRENT DERATING CURVE

.~

f-

Z

I

f-

(/)

~
0.'

TJ" 75·C

~

I.

I

<{

II

I

PULSE WIDTH::: 300,us
2%Duty Cycle

.3

.4

.6

.7

.8

.9

1.0

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

,/

FIG. 5· TYPICAL JUNCTION CAPACITANCE PER LEG

r---

./

.....

I
!

I

I I II.

TI" 25· C
f= 1MHz
Vsig ::: 50mVp-p

.....

TJ " 25·C

.0

,

o

~

~
20

40

..."
60

......

""'"
80

.....
100

120

PERCENT OF RATED PEAK
REVERSE VOLTAGE ,%

100
0.'

04

, 0

'0

40

80100

REVERSE VOLTAGE, VOLTS

--------------a:

,

FIG. 1-FORWARD CURRENT DERATING CURVE

~
a:

30

C,)

•

oen
a:W

l

~~

12

..:a:

!r~
W

~

\

~~

120

•
100

60

>

~

"" "-r"o

~~

:S:~ 100

I
II I

~~

80

Q.

6()

U'iB

,

40

I"

8.3 ms Smgle Ha"
Sine-Wave per leg
IJEDEC Melhod)

..... 1"-

,

OW

~

0

W

140

a:Z

,

a:
::>

Cl

~,

r-.......
........

1

10

...... ~~~
50

20

100

NUMBER OF CYCLES AT 60Hz
FIG. 4- TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS PER LEG

160

..:

so
Z
W
a:
a:
::>

..A' " ~
./

t
TJ

125"C/ f'~

-

10

C,)

--

I

I-

CASE TEMPERATURE, 'C

0

a:
<(I)
:S:w
a: a:

FIG. 3- TYPICAL REVERSE
CHARACTERlSllCS, PRE LEG
100

(I)::;;
::><
0
W
Z
<
IZ
<
I(I)

lSO' C

., ~
!i

/1;'

Ow
LL.Q.

- TJ

TJ

-

12se C

.,.~ .-

10

W

a:
a:
::>

1.0

/

?;

0.1. 1

C,)

~~

ffif.ljQ. 1.0

TJ

-

TJ

-

25;> C

I

PULSE WIDTH - 300 Jl..S
2"0 Duty Cycle
-

.2

.3

.4

.5

.6

I

i

.7

.8

I
.9

75' C

FIG. 5 • TYPICAL JUNCTION CAPACITANCE PER LEG

W::;;

~!5

4000

:::d

@~

~

z

1.0

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

>

g
<

I

j

",

,

TJ

25' C "

0.1

In
?;

~

-

ta2000

.".

...... .... ~ ...

ui

~

.-

;::

1000
800

~

::

<

II
)
0

" """~

C,)

200
.01 0

20

40

60

80

100

120

PERCENT OF RATED PEAK
REVERSE VOLTAGE ,%

I I

TJ - 25 C
1- 1MHz
VSIQ - SOmVp-p

140
100
0.1

0.4

1.0

4

10

40

80 100

REVERSE VOLTAGE, VOLTS

- - - - - - - - - - - - - - - (iGenerallnstrument
103

MBRF3035PT AND MBRF3045PT
SCHOTTKY RECTIFIER
VOLTAGE RANGE - 35 and 45 Volts
CURRENT - 30.0 Amperes
FEATURES
ITo-3P

um:w
.095[2.4)

• Dual rectifier construction, positive center-tap
• Isolated plastic package has Underwriters Laboratory Flammability Classifications 94V-O
• Metal to silicon rectifier,
majority carrier conduction
• Low power loss, high efficiency
• High current capability, low VF
• High surge capacity
• Epitaxial construction
,
• For use in low voltage, high frequency inverters,
free wheeling, and polarity protection applications
• High temperature soldering guaranteed: 250°C,
.17 (4.3mm) lead length at 5lbs. (2.3kg) tension
• Guardring for transient protection
• Internal Insulation: 1.5k VRMS

MECHANICAL DATA
(Positive tTl PIN 1 ~
STANDARD POLARITY PIN 3 ~PiN 2

Dimensions In Inches and (millimeters)

Case: ITO-3P Fully Overrnolded Plastic
Tennina/s: Lead solderable per MIL-STD-750,
Method 2026
Polarity: As marked Mounting Position: Any
Mounting Torque: 5 in. - lb. max.
Weight: .47 ounces, 13.2 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25"C ambient temperature unless otherwise specified. Resistive or inductive load.

Maximum Recurrent Peak Reverse Voltage
Maximum Working Peak Reverse VoHage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at Tc=105°C
Peak Repetltve Forward Current per leg ( rated VR,
Square wave, 20 KHz) at Tc=1 05°C
Peak Forward Surge Current, 8.3rns single half sine
-wave superimposed on rated load (JEDEC Method)
Peak Repetitive Reverse Surge Current (NOTE 3)
Maximum Instantaneous IF= 20A, Tc= 125°C (NOTE 2)
Forward Voltage
IF=30A, Tc=25°C
per leg at
IF=30A, Tc=125°C
Maximum Instantaneous Reverse
Current at Rated DC Blocking
Tc=25°C
Voltage per leg at (NOTE 2)
Tc=125°C
Typical Thermal Resistance (NOTE 1)
Voltage Rate of Change (rated VR)
Operating Junction Temperature Range
Storaae Temperature Ranae
NOTES: 1. Thermal Resistance from Junction to Case per leg.

2. Pulse Test: 300j.lS Pulse Width, 2% Duty Factor.
3. 2.0j.lS Pulse Width, f= 1.0KHz

104

SYMBOLS

MBRF3035PT

MBRF3045PT

UNITS

VRRM
VRWM
Voc

35
35
35

45
45
45

Volts
Volts
Volts

I(AV)

30.0

Amps

IFRM

30.0

Amps

IFSM
IRSM

200
2.0
0.60
0.76
0.72

Amps
Amps

1.0
60.0
1.7
1000
-65 to +150
-65 to +175

rnA

VF

IR
R8JC
dv/dt
TJ
TSTG

Volts

°CNoI

VlIJB
°C
°C

RATINGS AND CHARACTERISTISC CURVES MBRF3035PT AND MBRF3045PT

FlO. 2 - MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT "'lR LEG

300
.....

•l.~

S'N~L£ HL J'NJ.WU

'I

JEDEC METHOD

T...T" .....

............... ......

FIG. 1 - FORWARD CURRENT DERATING CURVE
30

~

,,

18

12

I'
0

0

100

50

2

~

f---

f-

L

10

s:en
w

:::J«

TJ ~ 150"

0

W

1.0

'"

«

f-

Z

TJ = 125"C

«
f-

en
~

~~

.",

/~75'C

:::J-'

z

LL2000

f-

oZ

r-

a.
Oli

«

Z

0.1

en
~

~s-

2°·0 Duty Cycle

•

A

~

•

J

•

600
400

T....

•

1~

'"

Jc

!

f-1.0MHz!.
Vsig_50mVpop

.......

~

«
o

TJ = 25°C

..,. /
20

soD

o

[L

-...

1000

~

f-

J

en::'>

0

«

100

I

L

offi
LLo..

II:
II:
:::J

Wen
en
w
II: a:
Ww
>0..
W::,>
II:«
en-

50

/.7
TJ~125"G~ /'TJ ~ 25"G

II:

100

10

30

II:
«

FIG. 3 -TYPICAL REVERSE
CHARACTERISTICS, PER LEG

W

20

J.;""A"

Z

0
0

~

10

50

W

~
Z

5

FIG. 4 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS PER LEG

10

II:
II:
:::J

./'

3

NUMBER OF CYCLES AT 60Hz

CASE TEMPERATURE, "C

=

--

1'0

\.

TJ '" 25"C

200
40

SO

80

100

120

140
100

PERCENT OF RATED PEAK
REVERSE VOLTAGE.%

0.1

0.4

1.0

10

40

80 100

REVERSE VOLTAGE. VOLTS

---------------itGenerallnstrument
105

MBRF3050PT AND MBRF3060PT
SCHOTTKY RECTIFIER
VOLTAGE RANGE - 50 and 60 Volts
CURRENT - 30.0 Amperes
FEATURES
ITO-3P
.598 (15.2)
.582 (14.81

~"

\' II

,

381(97)
:366(9:3J •

2 715.
~
.18014. 5)

r L-$

•

.800120.2)
.700(19.8)

_l

1

.449
111.4)

r'
!~ f!1.-~!
~0'5)
,I Ii I I
PIN
1

PIN
2

PIN
3

145(3.7)

.14213.G!
.12613.4) I 1

I

.09812.5)
.083[2.2)

I

I ------L-

I I+!

.043 n.11.

l.3J

~~r
.8

.7
.670U7.0
I .S30UG.0

Wlli:iiJ
.09512.41

• Dual rectifier construction, positive center-tap
• Isolated plastic package has Underwriters Laboratory Flammability Classifications 94V-O
• Metal to silicon rectifier,
majority carrier conduction
• Low power loss, high efficiency
• High current capability,low VF
• High surge capacity
• Epitaxial construction
• For use in low voltage, high frequency inverters,
free wheeling, and polarity protection applications
• High temperature soldering guaranteed: 250°C,
.17 (4.3mm) from case
• Guardring for transient protection
• Internal Insulation: 1 .5k VRMS

I.. I I

.031£0.81
.224 IS. 7011+--->1+-.... 224 IS. 70)
.205IS.20)
.20515.20)

(Positive eTl PIN 1 ~
srANDARD POLARITY PIN 3 ~PIN 2

Dimensions in inches and (millimeters)

MECHANICAL DATA
Case: ITO-3P Fully Overmolded Plastic
Terminals: Lead Solderable per MIL-STD-750,
Method 2026
Polarity: As marked Mounting Position: Any
Mounting Torque: 5 in. - lb. max.
Weight:.47 ounces, 13.2 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25'C ambient temperature unless otherwise specified. Resistive or inductive load.

Maximum Recurrent Peak Reverse Voltage
Maximum Working Peak Reverse Vo~age
Maximum DC Blocking Voltage
Maximum Average Forward Rectified
Current at Tc=105°C
Peak Repetitve Forward Current per leg ( rated VR,
Square wave, 20 KHz) at Tc=1 05°C
Peak Forward Surge Current, 8.3ms single half slnewave superimposed on rated load (JEDEC Method)
Peak Repetitive Reverse Surge Current (NOTE 3)
Maximum Instantaneous Forward IF=20A, Tc=25°C
Voltage per leg at (NOTE 2)
IF=20A, Tc=125DC
Maximum Instantaneous Reverse
Current at Rated DC Blocking
Tc=25DC
Voltage per leg (NOTE 2)
Tc=125°C
Typical Thermal Resistance (NOTE 1)
Vo~age Rate of Change (rated VR)
Operating Junction Temperature Range
Storace Temoerature Rance
NOTES:
1. Thermal Resistance from Junction to Case per leg.
2. Pulse Test: 300j.lS Pulse Width, 2% Duty Factor.
3. 2.0j.lS Pulse Width, f=1.0 KHz.
106

SYMBOLS

MBRF3050PT

MBRF3060PT

UNITS

VRRM
VRWM
Voc

50
50
50

60
60
60

Volts
Volts
Volts

I(AV)

30.0

Amps

IFRM

30.0

Amps

IFSM
IRSM

300.0
1.0
0.75
0.65

Amps
Amps

5.0
100.0
1.7
1000
-65 to +150
-65 to +175

rnA

VF
IR
R8JC
dv/dt
TJ
TSTG

Volts

°CIW
V/J.LS
°C
DC

RATINGS AND CHARACTERISTIC CURVES MBRF3050PT AND MBRF3060PT
FIG. 2 - MAXIMUM NON-REPETlTIVE PEAK
FORWARD SURGE CURRENT PER LEG
300

FIG. 1-FORWARD CURRENT DERATING CURVE

I-'

z

w

30

U

<{<{

\

a:
a:
:::J

W
ClUJ
a:W
:::JiI:
UlW
OCl.
a:::;;

24

250
200

a:Z

OW
LLa:
",a:
<{:::J
wU

\
50

.......

r-..

~

100

Cl.

o

5

1

10

150

100

e.:Z

--

w

a:
a:

125" C

t==T,

L

>Cl.

~::;;

_....

---

10

~~

,

I

LLCl.

~-

<{

f--

I

Z

Ul
.j

0.2

T - 25° C
~ULSE WIDTH =

300~s-

2% Duty Cycle

.4

.6

.8

1.0

1.2

1.4

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

,/

Ul~

FIG. 5-TYPICAL JUNCTION CAPACITANCE
PER LEG

:::J...J

4000

V

Z

<{

f-f--

II I

Z

0.1

W::;;

<{

II

I

f--

TJ = 75" C

I

Z

<{

1.0

/ Tj =25°C

Ifl

:::J<{

oW

~
T, ~ 125" C

oo::!

Z

/

10

a: a:
OW
Ul::;;

150" C

L

/

U

o
cr:

FIG. 3 - :TYPICAL REVERSE
CHARACTERISTICS PER LEG

I-'
z
w
a:
a:
:::J
U
WUl
Ul W
a: a:
Ww

100

FIG. 4-TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS
PER LEG

:::J

~T,

50

20

NUMBER OF CYCLES AT 60Hz

CASE TEMPERATURE. °C

100

r--.. ..... "'1-0

50

1\

100

•

r--.I'-

150

1\
o

SI~GLE HALF'SI~E-~~V~

8.3m.
(JEDEC Method)
Tj" 125" C

~I-'

\

o

"'- ~

LL

2000

U
Z

1000

a.
W

0.1

Ul
~

.01

o

f--

/

G
<{

V
20

40

60

80

Cl.

1111

M.O MHz I
Vsig_50mVp_p

I"- I"-

~

BOO

<{

TJ - 25° C

.........

--

600
400

<{

100

120

PERCENT OF RATED PEAK
REVERSE VOLTAGE.%

140

U

TJ

~

200

100

0.1

0.4

1.0

4

10

1'0.
25" C

i"o""
40

80 100

REVERSE VOLTAGE. VOLTS

- - - - - - - - - - - - - - - ~Generallnstrument
107

MBR3035PT AND MBR3045PT
SCHOTIKY RECTIFIER
VOLTAGE RANGE - 35 and 45 Volts
CURRENT - 30.0 Amperes
FEATURES
TO-247AD
•• 645 (16.4) ,
•625 (15. 9)

~

+----+1

.0?109:~Fd- .193(4.90)
.

rt

~

,
-

' .

~10'TYP.
f

..m
(i 90)
.

07

.

1

~

~

.323(8.2)

~ .31317.9)

245(6.2)

·.225!5.7)t

-

1

-

.142(3.6)
.138(3.5)
•

(4.3)

+

BOTH SIDES
.840(21.3)

,

~

1" REF =\==-+"'I-rr'==;:-~ 1" REF

.:~~:g:~~

.020tO.8)lI.n-n,."~1411ti·.~ffi~~f'i~2DI~m~:

l

~I 1

!

!
I_I ..

.16-k; :
.140 (3.5) 1

:;~m~:~l
.. 0.030 (.76)
.020 (51)

:1

I
.225 (5. 7)
.205(5.2)

(Cast Positive)

.127(3.221
.117(2.97)

• Dual rectifier construciton, positive center-tap
• Plastic package has Underwriters Laboratory
Flammability Classifications 94V-O
• Metal to silicon rectifier, •
majority carrier conduction
• Low power loss,
r:i
high efficiency
.. ~".
• High current capability, low VF
.
..,,'~.• High surge capacity
"''...., ••.•
'• Epitaxial construction
• For use in low voltage, high frequency inverters,
free wheeling, and polarity protection applications
• High temperature soldering guaranteed:
250°C/10 seconds, .17 (4.3mm) from case
• Guardring for transient protection

MECHANICAL DATA

0. 048 (1.22)

.044 (1.12)

PINl~PIN2

STANDARD POLARITV PIN 3 ~E

Dimensions in inches and (milfimetersj

Case:JEDEC TO-247AD Molded Plastic
Tenninals: Lead solderable per MIL-STD-750,
Method 2026
Polarity: As marked
Mounting Position: Any
Weight: 0.2 ounces, 5.6 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25'C ambient temperature unless otherwise specified. Resistive or inductive load.

Maximum Recurrent Peak Reverse Voltage
Maximum Working Peak Reverse Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at Tc=105°C
Peak Repetitve Forward Current per leg (rated VR,
Square wave, 20 KHz) at Tc=105°C
Peak Forward Surge Current, 8.3ms single
half sine·wave superimposed on rated load
(JEDEC Method)
Peak Repetitive Reverse Surge Current (NOTE 2j
Maximum Instantaneous Forward Voltage
per leg
IF=20A,Tc=125°C (NOTE 3)
IF=30A, Tc=25°C
IF=30A, Tc=125°C
Maximum Instantaneous Reverse Current
at Rated DC Blocking Voltage
Tc=25°C
per leg (NOTE 3)
Tc=125°C
Maximum Thermal Resistance (NOTE 1)
Voltage Rate of Change at (Rated VR)
Operating Junction Temperature Range
Storaae Temoerature Ranae

SYMBOLS

MBR3035PT

MBR3045PT

UNITS

VRRM
VRWM
Voc

35
35
35

45
45
45

VoRs
VoRs
Volts

IIAV)

30.0

Amps

IFRM

30.0

Amps

IFsM
IRSM

200.0
2.0

Amps
Amps

VF

0.60
0.76
0.72

Volts

IR
R8JC
dv/dt
TJ
TSIG

NOTES: 1. Thermal Resistance from Junction to Case per leg.
2. 2.01'S, Pulse Width, f=1.0 KHz.
3. Pulse Test: 3001'S Pulse Width, 2% Duty Factor.
108

1.0
60.0
1.4
1000
-65 to +150
-65 to +175

mA

°CIW
VI',JJ3

°C
°C

RATINGS AND CHARACTERISTIC CURVES MBR3035PT AND MBR3045PT

FIG. Z • MAXIMUM NON-REPmTIVE PEAK
FORWARD SURGE CURRENT PER LEG
300

-rTIIIII

..:
z

W
ex:
cr
:J
0

FIG. 1 - FORWARD CURRENT DERATING CURVE
36

,,

30

OU>

crW
«cr 2.
~~
cr:2
~« 12
W
<:)
«
cr
W
>
«
o

2DC

150

i'"

I

100

"""

50

J

0..

~

o1

o

f\

100

-

10

~I- i'-~~

20

50

100

NUMBER OF CYCLES AT 60Hz

~
50

!
......... ~~

r--- ~

~..:

crz
OW
u.cr
><:cr
«:J
wO

I,

·8.3rn1 SINGLE HAlF SINE WAVE
PER LEG (JEDEC METHOD)
T...TJm&X.

250

W
~(jJ
crw
:J([
UlW
00..
cr:2
««

FIG. 4· TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS PER LEG
150

50
f-

CASE TEMPERATURE, ·C

Z

W
cr
:J
([

0

10

0
([

«
~Ul
crW
offi
u.o..
Ul:2
:J«
0
W
Z
«

FIG. 3' - TYPICAL REVERSE
CHARACTERISTICS PER LEG
100

~TJ- 150°",...,-:

I'

~

~

I

1

1.0

I

I

f-

..... TJ ~ 125°C

Z

«
fUl
~

t---II---;i--;--t--j-

P-ULSE WIDTH ~ 300
2% Duty Cycle

~s -

01 L--IJ21..-.-1.L--1.--.-!-5--.6~-~~.8~--;~~1.0

""

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

"""'~75.C

FIG, 5 • TYPICAL JUNCTION CAPACITANCE PER LEG
4000

u..

C.

2000

T..25!c

r-- I-

.0 1

.Y
m

40

W

«

800

600
400

0..

«
o

TJ = 25°C

00

1000

5«

~

.J'

~

Vslg_SOmVp-p-

j""..... 1'00

ui
1

ii

1-1.0 MHz..!. _'-

100

120

PERCENT OF RATED PEAK
REVERSE VOLTAGE ,'Yo

140

20 0

100
01

04

1.0

10

40

80100

REVERSE VOLTAGE, VOLTS

- - - - - - - - - - - - - - - - @)Generallnsbument
109

MBR3050PT AND MBR3060PT
SCHOTTKY RECTIFIER
VOLTAGE RANGE - 50 and 60 Volts CURRENT - 30.0 Amperes
FEATURES
• Dual rectifier construction, positive center-tap
• Plastic package has Underwriters Laboratory
Flammability Classifications 94V-O
•
Metal
to silicon rectifier,
.323[8. J
.313 [1.9J
majority carrier con.142[3.6J
duction
.138[3.51
• Low power loss,
.170
high efficiency
[4.3J
• High current capability, low VF
.840 [2L3J
• High surge capacity
.820,[20.81
.086 [2.18J
• Epitaxial construction
-.-L+.-~_n~+~14Iti.offi76n[~1.9m31
f
l'REf-- 1 ' REF
• For use in low voltage, high frequency inverters,
~
.121[3.221
free wheeling, and polarity protection applications
~ +1 0: ~~:~~:~;
.117[2.971
.140 [3.SJ I
• High temperature soldering guaranteed:
.lli..!lW
I
250·C/10 seconds, .17 (4.3mm) from case
.775(19.71
I

TO-247AD

.

1 '16~:~1,,'1

1

I_I

~
.205[5.2J
[Case P•• itiveJ PIN
STANDARD POLARITY PIN

+

0·048(1.22J
.044 [1.12J

1~PIN2
3~E

Dimensions in inches and (millimeters)

MECHANICAL DATA
-----------...;...--...;...-----

Case:JEDEC TO-247AD Molded Platsic
Terminals: Lead solderable per MIL-STD-750,
Method 2026
Polarity: As marked
Mounting Position: Any
Weight: 0.2 ounces, 5.6 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25·C ambient lemperawre unless olherwise specified.
Resistive or inductive load.

Maximum Recurrent Peak Reverse Voltage
Maximum Working Peak Reverse Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at Tc=125°C
Peak Repetitve Forward Current per leg (rated VR,
Square wave, 20 KHz) at Tc=l 05°C
Peak Forward Surge Current, 8.3ms single
half sine-wave superimposed on rated load
(JEDEC Method)
Peak Repetitive Reverse Current (NOTE 3)
Maximum Instantaneous Forward Voltage
Per Leg at IF=20A, Tc=125°C (NOTE 2)
IF=20A, Tc=25OC
Maximum Instantaneous Reverse Current at Tc=25°C
rated DC Blocking Voltage per leg (NOTE 2)
Tc=125°C
Maximum Thermal Resistance (NOTE 1)
Voltage Rate of Change (rated VR)
Operating JunctionTemperature Range
Storaoe Temoerature Ranoe
NOTES:
1. Thermal Resistance from Junction to Case per leg.
2. 300flS Pulse Widlh, 2% Duty Factor.
3. 2.0flS Pulse Widlh. f= 1.0 KHz.
110

SYMBOLS

MBR30S0PT

MBR3060PT

UNITS

VRRM
VRWM
Voc

50
50
50

60
60
60

Volts
Volts
Volts

11AV)

30.0

Amps

IFRM

30.0

Amos

IFSM
IRSM

300.0
1.0

Amos
Amps

VF
IR
R8JC
dv/dt
TJ
TSTG

0.65
0.75
5.0
100.0
2.0
1000
-65 to + 150
-65 to +175

Volts

rnA
°CIW

V/IJS
·C
°C

RA TlNGS AND CHARACHTERISTIC CURVES MBR3050PT AND MBR3060PT

FIG. 2 - MAXIMUM NON-REPmTIVE PEAK
FORWARD SURGE CURRENT PER LEG
300

W
t')(j)

..:z
w

FIG. 1 -

FORWARD CURRENT DERATING CURVE

6

~

OUl
a: W
«a:
3:~
a:::;

f2«

~~
««

,

a:
a:

<.J

a:w
::) a::
UlW

0

24

I:1
200

100

~3

50

r-....

«

a:
W
>
«

50

100

130

'" !'or-.

o1

'.

I'-

5

10

~

<.J

o

a:

FIG. 3 - TYPICAL REVERSE
CHARACTERISTICS

./

10

r - - Tc = 1S00C

10

IZ

«

TJ = 25°C

I-

Ul

Z

~

<.J

PULSE WIDTH ~ 3OO~T2% Duty Cycle

I

01

10

3

~~

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

TC=75°C/

ffiffi

w::>

V

Z

«

/

1

Tc = 25°C

1- ,I

o

Y
?O

lL

2000

<.J

1000

«

800

0

600

a.
u.i

,

Z

I-

«
Il.
«

~

00

00

TYPICAL JUNCTION CAPACITANCE
PER ELEMENT

4000

/

Z

00 1

FIG.5 -

. f --

5~
«
t;

...

«

I'"Tc =125°C

a:
a:

IZ

V

/

~«

oW
z

1.,...000'"

[U a.. a 1
a:::>
Ul:'!

100

~ffl

a: a:
Ow
lLll.
Ul::>

10

W

50

...:
Z

W

" .~

20

100

150

a:
a:

10

i ' I'--~

FIG.4 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS
PER ELEMENT

CASE TEMPERATURE, °C

..:Z

I '.

NUMBER OF CYCLES AT 60Hz

\

0

I I II

Il.

\

6

I

T".TJmBX.

~

W
t')

I

I

8.31118 SINGLE HALF SINE WAVE
PER LEG (JEOEC METHOO)_

150

3:"':
~~

lLa:

\

2

250

.~

100

120

PERCENT OF RATED PEAK
REVERSE VOLTAGE.%

140

<.J

!---.

.........

T...25·C

I
1

fii!!.~~l.oP1>

.......

400

.......
I'-

200

100
0.1

04

10

10

40

80 100

REVERSE VOLTAGE, VOLTS

- - - - - - - - - - - - - - - (iGenerallnsbument

",

SBLF3030PT AND SBLF3040PT
SCHOTTKY RECTIFIER
VOLTAGE RANGE - 30 and 40 Volts CURRENT - 30.0 Amperes
FEATURES
ITO-3P

'I

.598(15.2)
.582(14.8)

:;:~~~:~~

II

.2015.2)

.19(~

~ CIla~f~5° +--+1
.06(1.5)

~

.100(4.5)

---.--

~~t

10"

Wiiilll
.095 (2.4)

-II

• Dual rectifier construction, positive center-tap
• Isolated Plastic (1500 VRMS) package has Underwriters Laboratory Flammability
Classifications 94V-O
• Metal to silicon rectifier,
majority carrier conduction
• Lowpower
loss, high efficiency
• High current capability, low VF
• High surge capacity
• Epitaxial construction
• For use in low voltage, high frequency inverters,
free wheeling, and polarity protection applications
• High temperature soldering guaranteed:
250°C/10 seconds,17 (4.3mrn) from case
• Guardring for transient protection
• Internal Insulation: 1.5k VRMS

:gigi:7td)

(PositiVi! cn PIN 1 ~
STANDARD POlARIIV PIN 3 ~PIN 2

Dimensions in inches

and
(millimeters)

MECHANICAL DATA
Case: ITO-3P Fully Overmolded Plastic
Terminals: Lead solderable per MIL-STD-750)
Method 2026
Polarity: As marked
Mounting Position: Any
Mounting Torque: 5 in.- lb. max.
Weight: .47 ounces, 13.2 ounces

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25'C ambient temperature unless otherwise specified.
Resistive or inductive load.

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at Tc=100'C
Peak Forward Surge Current, 8.3ms single
half sine-wave superimposed on rated load
(JEDEC Method)
Maximum Instantaneous Forward Voltage
per leg at IF=15A, Tc=25°C (NOTE 2)
Maximum Instantaneous Reverse Current at Tc=25°C
Rated DC Blocking Voltage per leg (NOTE 2) Tc=100°C
Maximum Thermal Resistance (NOTE 1)
Operating Junction and Storage Temperature Range
NOTES:
1. Thermal Resistance from Junction to Case per leg.
2. Pulse Test: 300J.lS Pulse Width, 2% Duty Factor.
112

SYMBOLS

SBLF3030PT

SBLF3040PT

UNITS

VRRM
VRMS
Voc

30
21

40
28
40

Volts
Volts
Volts

30

I(AV)

30.0

Amps

IFSM

275.0

Amps

VF

VoRs

IR
R8JC

0.55
1.0
75.0
2.5

TJ,TsTG

-40 to +125

rnA
°CIW
°C

RATINGS AND CHARACTERISTIC CURVES SBLF3030PT AND SBLF3040PT

FIG. Z - MAXIMUM NON-REPETlTIVE PEAK
FORWARD SURGE CURRENT PER LEG
300

FIG. 1 -

~

z
W
a:
a:
:::l

FORWARD CURRENT DERATING CURVE

\

24

3:11.

a:Z
OW
!La:
:.:a:
«:::l
wU

I'-....

..... ~

~

~

«

,

6.0

;(
50

100

100

......

50

11.

~

12

W
C)

ffi

.........

200

3:~

30

~~

8.3mo SINGLE HALF SINE WAVE
PER LEG (JEOEC METHOD)

T,,..T,, max.

a:~
«« 150

oen
a: W

« ffi

~

011.

36

()

250

W
C)(/)
a:W
:::la:
enW

5

10

"

~

20

~~

50

100

NUMBER OF CYCLES AT 60Hz

1\,.u

FIG. 4 - TYPICAL FORWARD
CHARACTERISTICS PER LEG

~

100

Z

CASE TEMPERATURE, "C

W

a:
a:

:::l

()

o

a:

~ffi
a: a:

FIG. 3 - TYPICAL REVERSE
CHARACTERISTICS PER LEG

100

/

0

12~

I

en~

:::l«

f(

oW
Z
«
r-

1.0

Z

~

Tc= tOOele...........

Z
W
a:
a:
:::l

10

~

V

~

Wen
en
W
a:
a:
Ww

Tc = 7S D C

>11. 1.0

W~

",

,

~

!L

W~

r-

«
ren

C-

~

«

/

()

T. '2S"C

/'

./
20

40

SO

80

100

120

PERCENT OF RATED PEAK
REVERSE VOLTAGE."-

140

-.....

J-c

T...

Z
«

1000

U
«
11.
«
U

600

r-

~

o

0.5

o.s

0.7

.08

I

2000

u.i

0.1

.01

0.4

FIG. 5 - TYPICAL JUNCTION CAPACITANCE
PER LEG
4000

0=
Z

0.3

INSTANTANEOUS FORWARD VOLTAGE.
VOLTS

a:«
en:::l...J

z

.01

0.2

()

-

TJ· 2S"C
PULSE WIDTH = 3OOjJs_
2'\b DUTY CYCLE

I

I

800

~ ~!~.~mvP1>

1"'-- ...

400

200

100
0.1

0.4

1.0

10

40

so 100

REVERSE VOLTAGE, VOLTS

~-------------- (it Generallnstnament
113

SBL3030PT AND SBL3040PT
SCHOTTKY RECTIFIER
VOLTAGE RANGE - 30 and 40 Volts CURRENT - 30.0 Amperes
FEATURES
TO-247AD

.323IS.2J
.31317.9l
.14213.6)
.USI3.s)
.170
14.3)
.8411121.3)
.S20,(20.S)

l'REF..!....-

~ .1

-~ l'REF
~

•. 11813.01
.108(2.7)

..J I

- +

-l L, ,I
,160+IU) , :
.14013.5) I

.m.rnl.ll

.. ,:~~~ !~~: .77T·7)
IC••o Positive)

,

'[

.OS612.18)
.076 11.'3)

.12713.221
.11712.971

[

• Dual rectifier construction, positive center-tap
• Plastic package has Underwriters Laboratory
Rammability Classifications 94V-O
• Metal to silicon rectifier,
majority carrier conduction
• Low power loss,
high efficiency
• High current capability, low VF
• High surge capacity
• Epitaxial construction
• For use in low voltage, high frequency inverters,
free wheeling, and polarity protection applications
• High temperature soldering guaranteed:
250°C/10 seconds,17 (4.3mm) lead lengths at
Sibs., (2.3kg) tension
• Guardring for transient protection

MECHANICAL DATA

[
1+-+[ .. • .04811.22)
.225 IS. 71
.04411.121
.20sIS.21

PINl~PIN2

STANDARD POLARITY PIN 3 ~E

Dimensions In Inches

Case:JEDEC TO-247AD Molded Plastic
Tenninais: Lead solderable per MIL-STD-750,
Method 2026
Polarity: As marked
Mounting Posit/on: Any
Weight: 0.2 ounces, 5.6 gram

and

CROSS· REFERENCE GUIDE

(milHmeters)
GI
SBL3030PT
SBL3040PT

FUJI

SHINDENGEN
S30SC3M
S30SCAM

ESAD83-004

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient IBmperarure unless o1herwise specified.
ReSistive or inductive load.

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at Tc=100·C
Peak Forward Surge Current, 8.3ms single
half sine-wave superimposed on rated load
(JEDEC Method)
Maximum Instantaneous Forward Voltage
per leg at IF=15A, Te=25·C (NOTE 2)
Maximum Instantaneous Reverse Current at Te=25·C
Rated DC Blocking Voltage per leg (NOTE 2) Tc=100ac
Maximum Thermal Resistance (NOTE 1)
Operating Junction and Storage Temperature Range
NOTES:
1. Thermal Resistance from Junction 10 Case per leg.
2. Pulse Test: 300115 Pulse Wid1h, 2% Duty Factor.
114

SYMBOLS

SBL3030PT

SBL304DPT

UNITS

VRRM
VRMS
Voc

30
21
30

40
28
40

Volts
Volts
Volts

I(AV)

30.0

Amps

IFsM

275.0

Amps

VF

0.55
1.0
75.0
2.0
-40 to +125

Volts

IR
R8JC
TJ,TsTG

rnA
·CIW
·C

RATINGS AND CHARACTERISTIC CURVES SBL3030PT AND SBL3040PT

FIG. 2 • MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT PER LEG
300

FIG.1- FORWARD CURRENT DERATING CURVE

UJ
(!len
a:UJ
::Ja:
enUJ
00..
a:::;;
««
~~
a:z
OUJ
!La:
~a:
«::J
UJO

~

Z

UJ
a:
a:
::J
o
oen
a: UJ

« ffi

~o..

36
30

\

2'

a:~

~«
UJ
(!l
«
a::
UJ

,

\

12

50

100

..........

200

~

........

150

'-. -..
r-.. ........

50
0
1

5

\

1JU

a:

FIG. 3 - TYPICAL REVERSE
CHARACTERISTICS PER LEG

~f3

~

V"

z

T..

=75°C ".,

,

-

TJ 25°C
PULSE WIDTH ~ 300"._
2% DUTY CYCLE

I

~

UJ~

a:«
en::J..J
o:::!
UJ::;;
z
«
....z
«
ten

I

'I
1.0

~

>0.. 1.0

100

/

0

a: a:
OUJ
!Lo..
en::;;
::J«
oUJ
z

100

T.. = 10QO C......-'

50

100

o
o

10

20

FIG. 4 - TYPICAL FORWARD
CHARACTERISTICS PER LEG

~

UJ
a:
a:
::J
0
UJ en
enUJ
a: a:
UJUJ

10

NUMBER OF CYCLES AT 60Hz

z
UJ
a:
a:
::J

~

~

0..

CASE TEMPERATURE, ·C

Z

I

.01

0.2

io"""

0.3

0.4

0.5

0.6

0.7

.08

.09

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS
FIG. 5 -

TYPICAL JUNCTION CAPACITANCE
PER LEG

4000

V

0.1

If"

LL

·r. ~ 25°C

a.

~

«

5«

./
~

0..

«
o

.01

o

~o

40

60

80

2000

100

120

PERCENT OF RATED PEAK
REVERSE VOLTAGE ,%

1000
800

..........

rJ.c

u.i

~

I

~~

100

6.0

~

8.3. . SINGLE HALF SINE WAVE .
PER LEG (JEDEC METHOD)
T~T.. mu.

.........

250

i=f.l.0M

t--

. . . r-.

VsIg-SOmVp-p

600
400

....

200

140
100
0.1

0.'

1.0

10

40

80100

REVERSE VOLTAGE, VOLTS

- - - - - - - - - - - - - - - 
<

50

.........

10

\

a.
LU::;
a:«
00_

II

~

TJ = 125·C

120

PERCENT OF RATED PEAK
REVERSE VOLTAGE.%

140

100
0.1

F= 1MHz

°t T

111,,"= 5
0.4

1.0

2

10

P

20

40

REVERSE VOLTAGE, VOLTS

--------------eGenerallnstrument
117

100

MBRF4035PT AND MBRF4045PT
SCHOTTKY RECTIFIER
VOLTAGE RANGE - 35 and 45 Volts CURRENT - 40.0 Amperes
FEATURES
ITD-3P

Lllil:W
.095 [2.4J
..II :g~: ::7~JJ
(Positive eTl PIN 1 ~
STANDARD PDLRRIT~ PJN 3 ~PiN 2

Dimensions in inches and (millilTl8ters)

• Dual rectifier constrution, positive center-tap
• Isoated plastic package has Underwriters Laboratory Flammability Classifications 94V-O
• Metal to silicon rectifier,
majority carrier conduction
• Low power loss,
high efficiency
• High current capability, low VF
• High surge capacity
• Epitaxial construction
• For use in low voHage, high frequency inverters,
free wheeling, and polarity protection applications
• Guardring for transient protection
• Internal Insulation: 1.5k VRMS
• High temperature soldering guaranteed: 250°C/10
seconds .17"(4.3mm) from case

MECHANICAL DATA
Case: ITO-3P Fully Overmolded Plastic
Terminals: Leads solderable per MIL-STD-750,
Method 2026
Polarity: As marked Mounting Position: Any
Mounting Torque: 5 in. -lb. max.
Weight:.47 ounces, 13.2 ounces

MAXIMUM RAnNGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25'C ambient temperature unless otherwise specilied. Resistive or inductive load.

Maximum Recurrent Peak Reverse Voltage
Maximum Working Peak Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at Tc=120oC
Peak Repetitive Forward Current per leg (Rated VR,
Square wave, 20 KHz) at Tc=120°C
Peak Forward Surge Current, 8.3ms single half sinewave superimposed on rated load (JEDEC Method)
Peak Repetitive Reverse Surge Current (NOTE 3)
Maximum Instantaneous Forward Voltage
per leg at
IF=20A, Tc=25°C (NOTE 2)
IF=20A, Tc=125°C
Maximum Instantaneous Reverse Current at Tc=25°C
Rated DC Blocking Voltage per leg (NOTE 2) Tc=125°C
Typical Thermal Resistance (NOTE 1)
Voltage Rate of Change (Rated VR)
Operating Junction Temperature Range
Storaoe Temoerature Ranae
NOTES: 1. lhennal Resistance from Junction 10 Case per leg.
2. Pulse Test: 300).lS Pulse Width, 2% Duty Factor.
3. 2.0).IS Pulse Width, 1-1.0 KHz.
118

SYMBOLS

MBRF4035PT

MBRF4045PT

UNITS

VRRM
VRWM
Voc

35
35
35

45
45
45

'Volts
Volts
Volts

I(AV)

40.0

Amps

IFRM

40.0

Amps

IFSM
IRRM

400
2.0

Amps
Amps

VF
IR
ReJC
dv/dt
TJ
TSTG

0.70
0.60
10.0
100.0
1.6
1000
-65 to +150
-65 to +175

Volts

rnA
°CIW

V/tJS
°C
°C

RATINGS AND CHARACTERISTIC CURVES MBRF4035PT AND MBRF4045PT

FIG. 2 • MAXIMUM NON-REPETmVE PEAK
FORWARD SURGE CURRENT PER LEG
400

W
C)(/)
a:W
::Ja:
(/)W

FIG. 1-FORWARD CURRENT DERATING CURVE
~

Z

a:::;:
««

40
U
QUl
a: W

OW
LLa:
~a:
«::J

a:
a:

~~

::J

~

a:

,

~

ffi 30

0..

0::<
W
C)

«

,

10

«
o

50

100

I~

1

........

............

200

~

~

r.. t . .
l-

0..

100

1

10

20

50

100

NUMBER OF CYCLES AT 60Hz

1\

>

o

~

T...TJmax.

wU

~

U.«2O

ffi

300

~H~LF ~INJ

8.3mo
vJAJi
PER LEG (JEDEC METHOD)_

00..

50

W

~

FIG. 4· TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS PER LEG

150

CASE TEMPERATURE. "C

~Ul !.II/IJ~~~

FIG. 3 ·fTYPICAL REVERSE
CHARACTERISTICS PER LEG

:S:w
a: a:

10

10

Ow
u.o..

(/)::;:

::J«

.......
~

~

Z
W

i"""

ow
z
«
fz

~

a:
a:

Ul

I..,..

WUl

.3

4000

oo:!
w::<

z
z

-

.4

.5

.8

.7

.8

.9

1.0

FIG. 5 • TYPICAL JUNCTION CAPACITANCE PER LEG

Ul~

::J-'
f-

-

J ____ ~_'__2_%--'~_U.T_Y ~~~_--L._

INSTANTANEOUS FORWARD VOLTAGE.
VOLTS

~::<

«

0.1 "-__

~.,

l/

0.1

Z

~

TJ "25"C

f-I-~+-~f---II-- PULSE wrOTH = 300/.ls

f-

Ul w
a: a:
>0..

I

«

::J

U

Ww

J

/

0.01

r-J..

u. 2000
a.

t

u.i

«

U

f-

Z

Ul
~

«

f-

~

1/ 20

0.001 0

U
40

60

80

100

120

«
Il.
«

"'ro-

T,_25"C'

..........

r--- ...

1000 ='-1.0MH"
800
600

=

Vslg-5OmVP1>

400

140 U

200

PERCENT OF RATED'PEAK
REVERSEVOLTAGE,%
100
0.1

0.4

1.0

4

10

40

80100

REVERSE VOLTAGE, VOLTS

- - - - - - - - - - - - - - - (i) General Instrument
119

MBRF4050PT AND MBRF4060PT
SCHOTTKY RECTIFIER
VOLTAGE RANGE - 50 and 60 Volts CURRENT - 40.0 Amperes
FEATURES
ITD-3P

UiiiiiJ .

.095(2.41

(Poaitive

en

• Dual rectifier constrution, positive center-tap
• lsoated plastic package has Underwriters Laboratory Flammability Classifications 94V-O
• Metal to silioon rectifier,
majority carrier conduction
• Low power loss,
high efficiency
• High current capabUity, low VF
• High surge capacity
• Epitaxial construction
• For use in low voltage, high frequency inverters,
free wheeling, and polarity protection applications
• Guardring for transient protection
• Intemal Insulation: 1.5k VRMS
• High temperature soldering guaranteed: 250°C/10
seconds .17"(4.3mm) from case

PIN 1 ~

STANDARD POLARITY PIN 3 Oo--+f-lpUt 2

Dimensions In Inches and (mllllrneters)

MECHANICAL DATA
Cas.: ITO-3P FuUy Overmolded Plastic
T.nninals: Leads solderable per MIL-STO-750,
Method 2026
Polarity: As marked Mounting PosH/on: Any
Mounting TorqcJfl: 5 in. - lb. max.
W.ight: .47 ounces, 13.2 ounces

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient 19mperabJJe unless o1herwise specified.
Resistive or Inductive load.
SYMBOLS

Maximum Recurrent Peak Reverse Voltage
Maximum Working Peak Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at Tc=120'C
Peak Repetitive Forward Current per leg (Rated VR,
Square wave, 20 KHz) at Tc=120'C
Peak Forward Surge Current, 8.3ms Single half slnewave superimposed on rated load (JEDEC Method)
Peak Repetitive Reverse Surge Current (NOTE 3)
Maximum Instantaneous Forward Voltage
per leg
IF=20A, Tc..25°C (NOTE 2)
IF=20A Tc=125°C
Maximum Instantaneous Reverse Current at Tc=25°C
Rated DC Blocking Voltage per leg (NOTE 2) Tc=125°C
Typical Thermal Resistance (NOTE 1)
Voltage Rate of Change (Rated VR)
Operating Junction Temperature Range
StorajHI TemP!lIature Range

VRRM
VRWM
Voc

UNm;

Volts
Volts
Volts

40.0

Amps

IFRM

40.0

Amps

IFsM
IRRM

400.0
1.0

Amps
Amps

IR
R8JC
dv/dt
TJ
TSTG

120

IIBRF4(JfOPT
60
60
60

I(AY)

VF

NOTES: 1. Thermal Resistance from Junction 10 Case per leg.
2. Pulse Test: 300f1S Pulse Width, 2% Duty Factor.
3. 2.of1S Pulse Width, 1-1.0 KHz.

1IBRF4050PT
50
50
50

0.80
0.70
10.0
100.0
1.6
1000
-65 to +150
-65 to +175

Volts
rnA
oelW
V/IJS
°c
°c

RATINGS AND CHARACTERISTIC CURVES MBRF4050PT AND MBRF4060PT
FIG. 2 • MAXIMUM NON·REPETITIVE PEAK
FORWARD SURGE CURRENT PER LEG
400

UJ

<.:J(J)

FIG. 1-FORWARD CURRENT DERATING CURVE

..:
Z

50

13

40

UJ
a:
a:

[1,

<.:J


<:a:


::J0.. 0.1
UJ::>
a:
Z


,

««
3:~
a:z

,

ow
.... a::
a.

"

100

2

5

zw

a:
a:
:::J

100_~

U

~ffl

a: a::
Ow
.... a.
"'::>
:::J«

10

ow

",

~

a:
a:
:::J

z

".

«

I-

~

10~J~~
~

Z

«

~~

ffiffj

V

>a.

~::> 0.1

'"~

,"

0.1

-

L - - . _ _ _,--_-,I_-..JI'--_-'---'-_

.3

~

~

TJ-25'C

H/'-+-+-4- ~~';;'~T~'g~~L~ 300 ~s

I-

U

.4

.5

.6

.7

.8

.9

10

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

~

FIG.5-TYPICAL JUNCTION CAPACITANCE PER LEG

"'~

5;!
w::>

4000

z

«
I~

~

o
a:

FIG. 3 - TVPICAL REVERSE
CHARACTERISTICS PER LEG

w

100

80

FIG. 4 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS PER LEG

t-"

~

20

10

180

CASE TEMPERATURE. 'C

z

..... .... "'~Ioo

NUMBER OF CYCLES AT 60Hz

~

100

80

~

2CO

>(a:
«:::J
wU

'"

....0-

/

0.01

W

I-

U

Z

«

Z

'"

I-

0

I

l/

0.001 0

«
a.
«

20

40

eo

eo

100

PERCENT OF RATED PEAK
REVERSE VOLTAGE ,%

120

140

U

"""--

2000

1""

TJ~25.b

' - - 1-1.0 MHz
1000
::::::: Vaig-5OmVP1>

............ ......

~

800

SOO
400

T....25OC

200

100
0,1

0,4

1.0

10

40

80100

REVERSE VOLTAGE, VOLTS

- - - - - - - - - - - - - - - eGenerallnsbument
123

I

Urns
Hk.F SlNE1WM
PER LEG (JEDEC METHOD

w

MBR4050PT AND MBR4060PT
SCHOTTKY RECTIFIER
VOLTAGE RANGE· 50 and 60 Volts CURRENT· 40.0 Amperes
FEATURES
T0-247AD

.l2l 8.

.l1317.91
.142(l.6]
iFf=;=§~··!l8(l.S]

.170
(4.l]

.840[21.l]

I"REF-f-

, .1
•

,
-I"REF

,

·:~~:g:~i
,.0lO 1.16)
.0201.511

.820l20.8]lI.,-n,..~I-!IIJ-j·.~m~~i'i~~[1~ffi~~

l

·16"b
.140 (l.S)
.79S(20.2]
.77SCl9.7]

1

~III

I

.127Cl.22)
.11712.97)

1

• Dual rectifier construciton, positive center-tap
• Plastic package has Underwriters Laboratory
Flammability Classifications 94V-O
• Metal to silicon rectifier,
majority carrier conduction
• Low power loss,
high efficiency
• High current capability, loW VF
• High surge capacity
• Epitaxial construction
• For use in low voltage, high frequency inverters,
free wheeling, and polarity protection applications
• Guardring for transient protection
• High temperature soldering guaranteed: 250°C/1 0
secondsl.17"(4.3mm) from case

1

1-1 •
225 (S 7]
:205IS.2]

,.048 CI.22]
.044 (1.12]

IC••• Po.itive] PINI~PIN2
STRNDARD POLRRITY PIN l ~E

Dimensions In Inches and (millimeters)

MECHANICAL DATA
Case: JEDEC TO-247AD Molded Plastic
Terminals: Leads Solderable per MIL-STD-750,
Method 2026
Polarity: As marked
Mounting Position: Any
Weight: 0.2 ounces, 5.6 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25'C ambient temperature unless otherwise specified.
Resistive or inductive load.

Maximum Recurrent Peak Reverse Voltage
Maximum Working Peak Reverse Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at Tc=120·C
Peak Repetitive Forward Current per leg (Rated VR,
Square wave, 20 KHz) at Tc=120·C
Peak Forward Surge Current, 8.3ms single half sinewave superimposed on rated load (JEDEC Method)
Peak Repetitive Reverse Surge Current (NOTE 3)
Maximum Instantaneous Forward Voltage
per leg at
IF=20A, Tc=25·C (NOTE 2)
IF=20A, Tc=125·C
Maximum Instantaneous Reverse Current at Tc=25·C
Rated DC Blocking Voltage per leg (NOTE 2) Tc=125·C
Typical Thermal Resistance (NOTE 1)
Voltage Rate of Change at (Rated VR)
Operating Junction Temperature Range
Storaae Temoerature Ranae
NOTES:
1. Thermal Resistance from Junction to Case per leg.
2. Pulse Test: 30011S Pulse Width. 2% Duty Factor.
3. 2.011S Pulse Width, 1=1.0 KHz.

124

SYMBOLS

MBR4050PT

MBR4060PT

UNITS

VRRM
VRWM
Voc

50
50

60
60
60

Volts
Volts
Volts

50

I(Av)

40.0

Amps

IFRM

40.0

Amps

IFSM
IRRM

400.0
1.0

Amps
Amps

VF
IR
R8JC
dv/dt
TJ
TSTG

0.80
0.70
10.0
100.0
1.4
1000
-65 to +150
-65 to +175

Volts
rnA
°CIW

V/IJS
·C
·C

RATINGS AND CHARACTERISTIC CURVES MBR40SOPT AND MBR4060PT
FIG. 2 • MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT PER LEG

++

400 '

'rm'U;";SINGLE HAu: SINE WAVE

,

UJ

(!)(fJ

FIG. 1 -

~

««

3:~

a:z
OUJ

40

~~
u.
UJ

30

a:

UJ

",a:
«:J
UJ<')
Il.

\

20

5

\

(!)

«

u.a:

1\,

O(/)

a: UJ
« ffi
3:1l.

...

a:::';

a:
a:

:J

T T

Oil.

zUJ

<.)

"11

T .... r' t-l-lJI:

PER LEG (JEDEC METHOD)

':.J~J"'~ ~ . l. L~~

I'

a:UJ 300,
:Ja:
(/)UJ

FORWARD CURRENT DERATING CURVE

I

f--~.t--!-·t l' ~.

'0

l\

~

50

,00

10

FIG.4 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS
PER LEG

'50

.,:

CASE TEMPERATURE. "C

Z
UJ

a:

a:

I-._-t-'OO§€_~
--!~-.

~I--'

/'

:J
<.)
o
a:

FIG. 3- TYPICAL REVERSE
CHARACTERISTICS PER LEG

~[3

a: a:
OUJ

'0

~

u.1l.

Tc = 15QOC

(/)::';

:J«

oUJ
z

"""'"

«

""""'"
.."". ..--'TC = 125°C

I-

Z

~

Tc ~ 75"C ' "

r-4000

~ 25"C
U.

C.

<.)

Z

«
U
«
Il.
«

I-

o

V

?O

40

2000

W

,
,

60

80

100

120

PERCENT OF RATED PEAK
REVERSE VOLTAGE ,%

I

;

TJ = 25"C
PULSE WIDTH =
2% D~TY CY1LE

-

300". I

..~3.L.-7--..J.~5-~--';--""'-"'9~--r,0

FIG. 5 -

/
If"TC

f--,It---+---I
f--I-f--jC---j

o,

INSTANTANEOUS FORWARD VOLTAGE .
VOLTS

.".
.~

./

"O~~/~~~_~t·,·~·::..:.~~~-

«
l-

(/)

00

20

NUMBER OF CYCLES AT 60Hz

140

U

1000

TYPICAL JUNCTION CAPACITANCE
PER LEG

- .....

j
T._25"C

.! _I
Vsig-5On,VI>P

r-

1-1.0 MHz

800

600
400

......
i'

200

'DO
0.'

04

, 0

'0

40

BO 100

REVERSE VOLT AGE. VOLTS

--------------.Generallnstrument
125

I

126

I

FAST EFFICIENT
RECITFIERS
1.0 AMPERE TO 30.0 AMPERES
SEE
NEW

ISOLATED
PACKAGES

-""

TA.

0.8

Tl.

A~blent I'-...

I'-...

Temperature

0 .•

~~

Mounted on PC. Boards.

0.2

Lengths on .47in 2
(12 mm J) Copper Pad~

w

it

"

M

25

50

76

100

-

0

"- r"... ~

.375 (9.5mm) Lead

00

0

'\.

I

0.4

10

Le~d

Temperature

"\.

~ffi

~5

FIG. 2 • MAXIMUM NON·REPETITIVE PEAK
FORWARD SURGE CURRENT

FlO. 1 • MAXIMUM FORWARD CURRENT
DERATINO CURVE
1.2

0

-r-

5 ~ Pw= 1Oms, Half Sinewave
TJ.TJ max

r--

175

160

I

r-TLLLIIIII'

~

125

~

:

111111
5

TEMPERATURE. C

10

50

100

NUMBER OF GYCLES AT 60 HZ

FIG. 3· TYPICAL REVERSE LEAKAGE
CHARACTERISTICS
FIG. 4· TYPICAL INSTANTANEOUS FORWARD
VOLTAGE CHARACTERISTICS

1,000

\

I

0

TA=16S'C

I

-'

.TJ.2SC

/
,/

2
1

== =

~

Pulse Width.30Gus

2%IDUty

.......

TA-2S"C

I

I

0.5

1

1.5

2

CY~1e

I

I

25

3

I_

.J
35

INSTANTANEOUS FOWARD VOLTAGE. VOLTS
0.0 1

o

20

40

80

80

100

120

140

PERCENT OF PEAK REVERSE
VOLTAGE. %

FIG.6 • TYPICAL JUNCTION CAPACITANCE
FIG. 5 • TYPICAL TRANSIENT THERMAL

100

-

0

50
20

0

10

0

5

f=I.0MHz

Vsig=50mVp·p
TJ=2S"C

~

Mounted on p,e. Boards.
.37S· (9.5mm) Lead
Lengths on .47in2

2'

(12mm2) Copper Pads

1
0.01

0.1

1

10

100

1
0.1

HEATING TIME (SEC)

0.5

5

10

50

100

REVERSE VOLTAGE. VOLTS

- - - - - - - - - - - - - - - (iGenerallnstrument
131

I

FE2A THRU FE2D
MINIATURE GLASS PASSIVATED FAST EPITAXIAL RECTIFIER
Voltage - 50 to 200 Volts Current - 2.0 Amperes
FEATURES
•
•
•
•

OCJ..204AP

.034 (.861 ,
.028 (,711

•
•
•
•

+

•

Glass passivated cavity-free junction
Superfast recovery times-epitaxial construction
Low forward voltage, high current capability
Capable of meeting environmental standards
of MIL-S-19S00
'"
Hermetically sealed ~"''"
Low leakage
High surge capability
- ~,
High temperature metallurgically
-'"
bonded, no compression contacts
High temperature soldering guaranteed:
3S0OC/10 seconds/,37S", (9.Smm) lead length at
Sibs., (2.3kg) tension

MECHANItAL DATA

Dimensions in inches and (millimeters)
• Brazed-lead assembly Is covered by Patent No. 3,930,306 of 1976

Case: JEDEC DO-204AP Unitized glass hemetically
sealed
Terminals: Plated Axial leads, solderable per MILSTD-7S0, Method 2026
Polarity: Color band denotes cathode
Mounting Position: Any
Weight: 0.002 ounce, 0.6 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at2S'C ambient temperature unless otherwise specified.
Resistive or Inductive load.
SYMBOLS

Maximum Recurrent Peak Reverse Voltage
VRRM
Maximum RMS Voltage
VRMS
Maximum DC Blocking Voltage
Voc
Maximum Average Forward Rectified Current
.375", (9.5mm) Lead Lengths at TL=75°C
I(AVJ
Peak Forward Surge Current
8.3ms single half sine-wave superimposed
on rated load (JEDEC Method) TA= 55°C
IFSM
Maximum Instantaneous Forward Voltage at 1,0A
VF
Maximum DC Reverse Current TA=25°C
at Rated DC Blocking Voltage
TA=100°C
IR
Maximum Reverse Recovery Time (NOTE 1)
TJ=25°C (NOTE 1)
TRR
Typical Junction Capacitance (NOTE 2)
CJ
Typical Thermal Resistance (NOTE 3)
RaJA
Operating Junction and Storage
TJ,TsTG
Temperature Range
NOTES;
1. Reverse Recovery Test Conditions: IF=0.SA,IR=I.0A, recover to 0.2SA.

FE2A
50
35
50

FE2B

FE2C

FE2D

UNITS

100
70
100

150
105
150

200
140
200

Volts
Volts
Volts

2.0

Amps

50.0
0.95
2.0
50.0

Amps
Volts

35.0
45.0
60.0
-65 to +175

ns
pf
°CIW
°C

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Voc.
3. Thennal Resistance from Junction to Ambient, .375" (9.Smm) Lead Lengths, mounted on P.C. Board with .47in.2(12mm2)
oopper peds.
138

I1A

RATINGS AND CHARACTERISTIC CURVES FE2A THRU FE2D
FIG. 1 -

REVERSE RECOVERY TIME CHARACTERISTIC AND TEST DIAGRAM
10

NONINDUCT1VE

NON IN~UCTIVE

(.1

+O.SA

H

1\)
NONINDUCTIVE

-

OSCILLOSCOPE
(NOTE 1)
-1.0

NOTES: ,. Rise Time = 7ns max., Input Impedance =
1 megohm. 22pF
2. Rise Time = 10ns max., Source Impedance

~

W

u::

L

V

,

~-

JL

f----

" .. 79"x.79"x.04"1 Cu
~
2.S'20mmx20Jnmx10mmti
TL
"
..... Lk-

~~
«

1.5

~,.:

~

'"

0.&

LL

Wa:

II"

~

1

oiDa:

RESISTIVE OR
LOAD

INOUCT~E

~i3

SETT)ME
---i1cmiBASE FOR IOns/em

50 ohms,

.I

§fil
Wa:
a:W

-0.25

18PPrQX'l

FIG.a - MAXIMUM FORWARD
CURRENT DERATING CURVE

o

trr~

~

D.U. T.

(.)

_ saVee
-

,

~-

500

25

>

LEAD TEMPERATURE,' C

<

75

100

, I

a:
W

SO

"-

125 ISO

175

FIG. 3 - TYPICAL REVERSE CHARACTERISTICS

FIG. 4 • TYPICAL INSTANTANEOUS

1.OO0~~~'~~~~!~lm

FORWARD CHARACTERISTICS

(/)

W

a:

50

W
Il.
~

<

I-

l/

10.0

Z
a:
a:
:l
W

U

/

o

a:
~

10

a:

o

>--

IL
(/)

@

..

I

:l

0.1

~-

75"C;

TJ

PUI:~ ~1~lt: Cy~~~ p s

::

Z

<

I-

Z

20

40

60

~
~

100 120 140

80

.01

I
0.4 0.6

PERCENT OF RATED PEAK
REVERSE VOLTAGE, %

FIG. 6 -

W
a:
a:
:l

U

W
O(/)
a:W
:la:
(/)W

60
50
40

T.I.TJ max.

U
Z

<

20

IL

(3

r--.. r--..

<
Il.
<
U

TJ

f = 1MHz
Vsig '" 50mVp-p

60

....... ~

45

......

30

.... 1'00

15

10

;;)

Il.

1.0

2.0

5.0

10

20

50

1.6

I 1"12~!~11

0

:.:

1.6

111111

f",~
75

I-

.........

1.4

TYPICAL JUNCTION CAPACITANCE

u.i

I'I'-oi"o

«

:::a:

IL
Co

JEDEC METHOD

Oil. 30
a:~

1.2

90

~.3ms SIN~LE HALF SINE·WAVE

............. ........

1.0

105

FIG. 5 - MAXIMUM NON-REPETITIVE
PEAK FORWARD SURGE CURRENT

..:
z

0.8

INSTANTANEOUS FORWARD
VOLTAGE, VOLTS

100

.1

.5

1

2

5. 10

20

"

50 100 200

500 1000

REVERSE VOLTAGE, VOLTS

NUMBER OF CYCLES AT 60Hz

(8 General Instrument
139

BYV27-50 THRU BYV27-200
MINIATURE GLASS PASSIVATED FAST EPITAXIAL RECTIFIER

Voltage - 50 to 200 Volts

Current - 2.0 Amperes
FEATURES
• Glass passivated cavity-free junction
• Superfast recovery times-epitaxial construction
• Low forward voltage, high current capability

DO-204AP

.034 [,86) •

• Capable of meeting environmental standards
of MIL-S-19500
• Hermetically sealed
• Low leakage
• High surge capability
• High temperature metallurgically
bonded, no compression contacts
• High temperature soldering guaranteed:
3S0°C!1 0 seconds/.37S", (9.Smm) lead length at
Sibs., (2.3kg) tension

..

.028 (,71)

.150 (3.8)
.090(2.3)

,I

MECHANICAL DATA
Case: JEDEC DO-204AP Unitized glass hermetically
sealed
Terminals: Plated Axial leads, solderable per
MIL-STD-7S0, Method 2026
Polarity: Color band denotes cathode
Mounting Position: Any
Weight: 0.02 ounce, 0.6 gram

Dimensions in inches and (millimeters)
• Or.ned·lead assembly is covered by Patent No. 3.930,306 of 1976

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25'C ambient temperature unless otherwise specified.
Resistive or inductive load.
SYMBOLS

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Minimum Reverse Breakdown Voltage at lOOftA
Maximum Average Forward Rectified Current
.375", (9.5mm) Lead Lengths at Tl=85°C
Peak Forward Surge Current
1Oms single half sine-wave superimposed
on rated load TA=175°C
Maximum Instantaneous Forward
TJ=175°C
Voltage at 3.0A
TJ=25°C
Maximum DC Reverse Current TA=25°C
at Rated DC Blocking Voltage
TA=165°C
Maximum Reverse Recovery Time (NOTE 1)
TJ=25°C
Typical Junction Capacitance (NOTE 2)
Typical Thermal Resistance (NOTE 3)
Operating Junction and Storage
Temperature Range

VRRM
VRMS
Voc
VSR

BYV27-50 BYV27·100 BYV27-150 BYV27·200

50
35
50
55

100
70
100
110

150
105
150
165

200
140
200
220

UNITS

Volts
Volts
Volts
Volts

I(Av)

2.0

Amps

IFsM

Amps

IR

50.0
0.88
1.07
1.0
150.0

TRR
CJ
RElJL

25.0
45.0
20.0

nS
pf
°CIW

TJTsTG

-65 to +175

°c

VF

NOTES:
l.Reverse Recovery Test Conditions: IF=0.5A,IR=1.0A, recoverto 0.25A.
2.Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.
3.Thermal Resistance from Junction to Lead at .375" (9.5mm) Lead Lengths, both leads attached to heatsinks.
140

Vo~s

ftA

RATINGS AND CHARACTERISTIC CURVES BYV27-50 THRU BYV27-200
FIG. 1 - REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM
10n
500
NON INDUCTIVE

NONINDUCTIVE

-0.5A

,

!\

50 V""

-0.25

I

(-)
OSCILLOSCOPE
(NOTE 1)

t--1.0

NOTES. 1. Rise 'TIme" 7ns max., Input Impedance"
1 megohm. 22pF.
2. Rise Time: 10ns maK., Source Impedance = 50 ohms.

::::>

u

,

O.U. T.

(-)

.z.. tlppmJl.

F1G.2· MAXIMUM FORWARD
CURRENT DERATING CURVE

z

w

0::
0::

~1I

SET TIME

I

~iD

~ffi

V

0::0.

s:~

w

st
0::

w

il:

I--

~

BASE FOR 10ns/em 1 em

TEMPERATURE °C

FIG. 3 - TYPICAL REVERSE CHARACTERISTICS
(f)

~
w

FIG.4· TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

100

TJ'" 175Q C

0.

50

::;

(f)

C5

~

0::

U

~

t-'
Z

T,

I~ 150'~

w
w
2

0

Z

w

::::>

-

U

ill

0



o

0::

W

s:l

25°C

~

::::>

Z

Z

(f)

ow
Z

0. 1

Z

(f)

~

~

0.0 1
20

40

60

80

100

120

140

0,4

f/J

~

90

CURRENT
60

75

r-w

50

0::
0::

::::>

U

40

~

LL

0.

0::

30

a:

10ms SINGLE HALF WINE-WAVE
T.... 175'C

0

0.

45

(3

30



0.8

FIG_ 6 - TYPICAL JUNCTION CAPACITANCE

~ FIG. 5 - MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE

Z

On

PERCENT OF RATED PEAK
REVERSE VOLTAGE. %

~



o. 1

TJ= 25°C

1

(f)

T,

:

. Pulse Width - 300U5
2% DulyCydc

1.0

~
0::
o
LL

0::

>

/

U

(f)

W
0::

10.0

::> 0.5
«()

~~

t\

If
J

~J

INDUCTIVE

-1.0
NOTES: 1. Rise Time =; 7ns max., Input Impedance =
1 megohm, 22pF.
2. Rise Time = 10ns max., Source Impedance = 50 ohms.

OUl

~

-0.25

f------,

I-I

FIG.2 - MAXIMUM FORWARD
CURRENT DERATING CURVE

I--.'rr--l

500

SETTIME
---11cmi-BASE FOR 10nsiem

LEAD TEMPERATURE, °C
FIG. 3 -

TYPICAL REVERSE CHARACTERISTICS

.,.:
W

a:
a:

::>

()

W

Cl

«

[lJ

•

Z

TI" 150°C

ffi 50.0
0..

::;;

«
w

a:
a:
::>

~[lJ
~ffi

ffii3
>a:

()

a

a:

l...I

TJ ~looo.C
1.0

i
12

~()
Ul~

::>

ow

TJ

o

250G

0.1

...... ~

5l

Z

Z

.01

o

FIG. 4 Z

a:
::>

50

w
Clen
a:w
::>a:
enw
00..
a:::;;
««
;3:

40

w
a:
()

40 60

80

100

120 140

a:
0
u..
:.:

«
w
0..

2% DUTY CYCLE

~

FIG. 6 -

a.3nws,JLE1LJ.JAJJ
JEDEC METHOD

u..

1.0

1.2

1.4

1.6

75

TYPICAL JUNCTION CAPACITANCE

I'~

u.i

;

() 60

1"-""

1'1'

Z

«

I- 45

~~

0

«
0..
«
()

I"

10

30

TJ

5.0

10

20

50

100

NUMBER OF CYCLES AT 60Hz

0.1

0.5

1.0

2.0

5.0 10

20

=25°C

f= 1MHz
Vsig = SOmVp-p

1'",
15

1.0

1.8

c.

AT T...ToImRX.

20

0.8

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT

r--... ......

I
0.4 0.6

90

30

I

0.1

~~0,O1
20

PERCENT OF PEAK REVERSE
VOLTAGE, VOLTS

60

PULSE WIDTH = 300j.1 S

~

~

.,.:

TJ" 25°C

::>

Z

~

/

1.0

Ul

Z

~

V

~10.0

10

Wo..

Ul::;;

FIG. 4 - TYPICAL INSTANTANEOUS
FORWARDCHARACTERBnCS

50

NIIU
100 200

500 1000

REVERSE VOLTAGE, VOLTS

(i General Instrument
143

FE3A THRU FE3D
GLASS PASSIVATED FAST EPITAXIAL RECTIFIER
Voltage - 50 to 200 Volts Current - 3.0 Amperes
FEATURES

*

•
•
•
•

G4

1

1.0 MIN.
(25.4)

.180 (4.6) ,
.115 (2.9)

!

1

.300 (7.6)

•
•
•
•
•

T'

.042 0.07)
.038 (,962) ,

..

Glass passivated cavity-free junction
Superfast recovery times-epitaxial construction
Low forward voltage, high current capability
Capable of meeting environmental standards
of MIL-S-19500
Hermetically sealed
Low leakage
High surge capability
High temperature metallurgically
bonded, no compression contacts
High temperature soldering guaranteed:
3S0°C/10 seconds/.37S", (9.Smm) lead length at
Sibs., (2.3kg) tension

1

1.0 MIN.
(25.4)

1
Dimensions in inches and (millimeters)
• BlaZed-lead assembly is covered by Patent No. 3.930,306 of t976

MECHANICAL DATA
Case: Unitized glass hermetically sealed
Terminals: Plated Axial leads, solderable per MILSTD-7S0, Method 2026
Polarity: Color band denotes cathode
Mounting Position: Any
Weight: 0.037 ounce, 1.04 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25'C ambient temperature unless otherwise specified.
Resistive or inductive loa:--d"-,_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __
FE3B
FE30
SYMBOLS
FE3A
FE3C
UNITS

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
.375", (9,5mm) Lead Lengths at TA=55°C
Peak Forward Surge Current
8.3 ms single half sine-wave superimposed
on rated load (JEDEC Method) TA=55°C
Maximum Instantaneous Forward
Voltage at 3,OA
Maximum DC Reverse Current TA=25°C
at Rated DC Blocking Voltage
TA=100°C
Maximum Reverse Recovery Time (NOTE 1) TJ=25°C
Typical Junction Capacitance (NOTE 2)
Typical Thermal Resistance (NOTE 3)
Operating Junction and Storage
Temperature Range

VAAM
VAMS
Voc

50
35
50

100
70
100

150
105
150

200
140
200

Volts
Volts
Volts

I(Av)

3.0

Amps

IFSM

125.0

Amps

VF

Volts

IA
TAA
CJ
RElJA
REJJL

0.95
5.0
50.0
35,0
100.0
55,0
20,0

°CIW

TJTsTG

-65 to +175

°C

NOTES:
1. Reverse Recovery Test Conditions: IF=0.5A, IR=1 ,OA, recover to 0.2SA.
2. Measured at 1.0 MHz and applied reverse voltage of 4,0 Volts.
3. Thermal Resistance from Junction to Ambient, and/or Leads, ,375" (9,Smm) Lead Lengths mounted on P.C. board.
144

f!A
ns
pf

RATINGS AND CHARACTERISTIC CURVES FE3A THRU FE3D

FIG. 1 - REVERSE RECOVERY TIME CHARACTERISTIC AND TEST DIAGRAM

f---

10n
NON INDUCTIVE

SOQ
NON INDUCTIVE

+O.SA

,

'n

---I

"-

D.U. T.

(+)
SOVdc

-0.25

I

(-)

1Q

~N~~CTIVE

OSCILLOSCOPE

\

(NOTE I)

\ l/

-1.0

NOTES: 1. Rise Time ~ 7ns max., Input Impedance =
, megohm, 22pF.
2. Rise Time'" 10ns max., Source Impedance = 50 ohms.

~

1'\

",

""
o

----1

SETTIME
BASE FOR 10ns/em 1em

,

RESISTIVE OR
INDUCTIVE LOAD

f----

!'\

0.375". (9.5mm) LEAD LENGTH

o

25

50

75

100 125 150 175

AMBIENT TEMPERATURE,"C

FIG. 3 - TYPICAL REVERSE CHARACTERISTICS

1.000~~

FIG. 4 - TYPICAL FORWARD CHARACTERISTICS

en

50.0

W

W
el 100
a:
~O

a:

W
0.

::;;

w
a:

V

10.0

L..".oo""

"""...........

""'-..

~

....

'a

200 . '

W
~

150.

f"
[5
1f
(§

r-.""

III'
T,I= jJJ II

,..
........ ""

100.

f = 1MHz
Vsig = 50 mVp-p

r--..~

0.

~

,;:

w

a.

10

20

50

.5

100

10

20

50

100

200

500 1000

REVERSE VOLTAGE. VOLTS

NUMBER OF CYCLES AT 60 Hz

- - - - - - - - - - - - - - - - (DGenerallnsbument
147

I

FE5A THRU FE5D
GLASS PASSIVATED FAST EPITAXIAL RECTIFIER
Voltage - 50 to 200 Volts Current - 5.0 Amperes
FEATURES

*

•
•
•
•

D0-204AP

•
•
•
•

.180 (4.6) •
.115 (2.9)

•

Glass passivated cavity-free junction
Superfast recovery times-epitaxial construction
Low forward voltage, high current capability
Capable of meeting environmental standards
of MIL-S-19500
Hermetically sealed
Low leakage
High surge capability
High temperature metallurgically
bonded, no compression contacts
High temperature soldering guaranteed:
3S0°C/10 seconds/.37S", (9.Smm) lead length at
Sibs., (2.3kg) tension

.042 (1.07), ..
.0381.962)

MECHANICAL DATA
Case: Unitized glass hemetically sealed
Tenninals: Axial leads, solderable per MIL-STD7S0, Method 2026
Polarity: Color band denotes cathode
Mounting Position: Any
Weight: 0.037 ounce, 1.04 gram

Dimensions in inches and (millimeters)
·8tszed.Jead assenmb/y to Patent No. 3,930,306 of 1976

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25'C ambient temperature unless otherwise specified.
Resistive or Inductive load.
SYMBOLS

Maximum Recurrent Peak Reverse Voltage
VRRM
Maximum RMS Voltage
VRMS
Maximum DC Blocking Voltage
Voc
Maximum Average Forward Rectified Current
.375", (g.5mm) Lead Lengths at TL=55°C
I(AV)
Peak Forward Surge Current
8.3ms single half sine-wave superimposed
on rated load (JEDEC Method) TA=55°C
IFSM
Maximum Instantaneous Forward Voltage at 5.0A
VF
Maximum DC Reverse Current
TA=25°C
at Rated DC Blocking Voltage
TA=100'C
IR
Maximum Reverse Recovery Time (NOTE 1)
TJ=25°C
TRR
Typical Junction Capacitance (NOTE 2)
CJ
Typical Thermal Resistance (NOTE 3,4)
RaJA
RaJL
Operating Junction and Storage
TJ,TsTG
I
Temperature Range

FE5A

FESB

FESC

FESD

UNITS

50
35
50

100
70
100

150
105
150

200
140
200

Volts
Volts
Volts

5.0

Amps

135.0
0.95
5.0
50.0

Amps
Volts

35.0
100.0
55.0
20.0
-65 to +175

NOTES:
1. Reverse Recovery Test Conditions: iF=0.5A, IR=1.0A, recover to 0.25A.
2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Voc.
3. Thermal Resistance from Junction to Lead, .375" (9.5mm) Lead Lengths, both leads attached to heatsinks.
4. Thermal Resistance from Junction to Ambient, .375"(9.5) Lead Lengths mounted on P.C.
148

J.lA
ns
pf
°C/W
°C

RATINGS AND CHARACTERISTIC CURVES FE5A THRU FE5D
FIG.2 - MAXIMUM FORWARD
CURRENT DERATING CURVE
FIG. 1 -

~

10 ()

NON INDUCTIVE

NONINDUCTIVE

T

r........

Trr_

-ILI_
~.315'" 9.5mm

SOVdc
lappfOX I

-0.25

,

t-+--+--t---;A--

~

OSCILLOSCOPE
(NOTE 1)

RESISTIVE OR
INOYTIVE LOAD

I

-1.0
NOTES: 1. Rise Time 7ns max., Input Impedance =
, megohm. 22pF
2. Rise rime 10ns max., Source Impedance

FIG. 3 -

SET TIME
co

BASE FOR 10nslcm

50 ohms.

en

::::>

"::;;

w

0::
0::

«
~ffl

!z

TJ-125'C

10

~

0::
0::

::::>
()

)

o

0::

TJ-lilO"C

~

~

~()

10. 0

W

I

ffi(§
>0::

/

«

100



ow

~

::::>

Z

~
z

100. 0

w

0::

w"en::;;

50
75
100 125 150
LEAD TEMPERATURE,' C

FIG. 4 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

TYPICAL REVERSE CHARACTERISTICS

w

':l ffi

25

1 em

~ 1,000

w

~

I

1-

---i

z

()

~

,~

+O.5A

D.U.T.

(0)

_

6

REVERSE RECOVERY TIME CHARACTERISTIC AND TEST DIAGRAM

500

@
Z
«
f-

L/

TJ-25'C

0.1

«

0.1

Pulse Width = 300 jJ S
1% Duty Cycle

Z

«
f-

f-

en
~

0.01

I

en

I
o

~

20

40

60

80

100

120

.01

0.8

0.4 0.6

140

1.0

1.2

1.4

1.6

1.8

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

PERCENT OF RATED PEAK REVERSE VOl..TAGE, %
FIG. 5 - MAXIMUM NON-REPETITIVE
PEAK FORWARD SURGE CURRENT
~

175

II

Z

W

0::
0::

::::>
()

150

..........

IT

.................

r-....

I

FIG. 6 -

TJ..TJmax

8.3ms SINGLE HALF SINE-WAVE
JEDEC METHOD

' ....

'-

~ 200

ui

5.0
NUM~ER

10

20

1111

r"-r-o

TJ = 25"C
fo: lMHz

f-

U

50

100

Vsig ::; 50mVp-p

~ ....

Z

«

«
«
()

2.0

.....

() 150

-r-...... ....

!l.

1.0

TYPICAL JUNCTION CAPACITANCE

250

100

r.....

50

r.....
.5

1.0

2.0

5.0

10 20

50

100 200

500

REVERSE VOLTAGE. VOLTS

OF CYCLES AT 60Hz

.. General Instrument
149

1000

FE6A THRU FE6D
GLASS PASSIVATED FAST EPITAXIAL RECTIFIER
Voltage - 50 to 200 Volts Current - 6.0 Amperes
FEATURES
•
•
•
•

DO-204AP

1

•
•
•
•

1.0 MIN •

.180 (4.6) ,
.115 (2.9)

(25.4)

~

1

•

.300 C7 .6)

.042 (1.07)
.038 (,962) ,

r'1

..

Glass passivated cavity-free junction
Superfast recovery times-epitaxial construction
Low forward voltage, high current capability
Capable of meeting environmental standards
of MIL-S-19500
Hermetically sealed
Low leakage
High surge capability
High temperature metallurgically
bonded, no compression contacts
High temperature soldering guaranteed:
350°C/10 seconds/.375", (9.5mm) lead length at
5 Ibs., (2.3kg) tension

1.0 MIN •

(25.4)

MECHANICAL DATA

1

Case: Unitized glass hemetically sealed
Terminals: Plated Axial leads, solderable per MILSTD-750, Method 2026
Polarity: Color band denotes cathode
Mounting Position: Any
Weight: 0.037 ounce, 1.04 gram

Dimensions in inches and (millimeters)
• Brazed -lead assembly is covered by Parem No. 3,930,306 of 1976

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25'C ambient temperature unless otherwise specified.
Resistive or inductive load.

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
.375", (9.5mm) lead lengths at TL=55°C
Peak Forward Surge Current
8.3ms single half sine-wave superimposed
on rated load (JEDEC Method) TA=55°C
Maximum Instantaneous Forward Voltage at 6.0A
Maximum DC Reverse Current
TA=25°C
at Rated DC Blocking Voltage
TA=100°C
Maximum Reverse Recovery Time (NOTE 1)
TJ=25°C
Typical Junction Capacitance (NOTE 2)
Typical Thermal Resistance (NOTE 3,4)
Operating Junction and Storage
Temperature Range

SYMBOLS

FE6A

FE6B

FE6C

FE6D

UNITS

VRRM
VRMS
VDC

50
35
50

100
70
100

150
105
150

200
140
200

Volts
Volts
Volts

I(Av)

6.0

Amps

IFSM
VF

Amps
Volts

IR

135.0
0.975
5.0
50.0

TRR
CJ
ReJA
ReJl

35.0
100.0
55.0
18.0

ns
pf

°CIW

TJTsTG

-65 to +175

°C

NOTES:
1. Reverse Recovery Test Conditions: IF=0.5A, IR=I.0A, recover to 0.25A.
2. Measured at 1.0 MHz and applied reverse voltage of 4.0 VDC.
3. Thermal Resistance from Junction to Lead at .375" (9.5mm) Lead Lengths, both leads attached to heatsinks.
4. Thermal Resistance from Junction to Ambient, 375" (9.5mm) Lead Lengths mounted on P.C. board.
150

I!A

RATINGS AND CHARACTERISTIC CURVES FE6A THRU FE6D

FIG. 1 -

oW
u::

REVERSE RECOVERY TIME CHARACTERISTIC AND TEST DIAGRAM

\--_.

101,;1
NON INDUCTIVE

500
NONINOUCTIVE

+O.SA

~

r-,-,---,-,---,·-

FIG. 2 - MAXIMUM AVERAGE
FORWARD CURRENT DERATING

[3

90
~~r---If.--+

W II:
II:W

~~
..::..::
~ r:
o
i'iJ
u.1I:

D.U. T.
SOVdC
lapprox I

-0.25

(-J

t--t--t-.+-*

OSCILLOSCOPE
(NOTE 1)

WII:
<=
..::
W

25

oU.

100

W
II:
II:
:::J

I

-

~~
~~

~~
..::..::

75

a.

~ ffi 10
Wa.

W
II:
II:
:::J

50

LEAD TEMPERATURE. ·C

FIG. 4 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

100

..::
~[3

r:
z

25

>
..::

100

(J)
W
II:
W

W
0:

0:

150

IZ
0:

o:<{

,/'

THRU

~

1.

10.0

(f)::;'

..:
z

i\..

125

AMBIENT TEMPERATURE, 'C

EGP20A

a..

F

Wa..

~

100

W

0:
W

::'::(f)

IZ

75

50

(f)

.,.;

CJ

<{

50

FIG. 4 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

<{

~O

25

>
<{

TYPICAL REVERSE CHARACTERISTICS

W

<{w
Wo:
..J w

W

f-----

1000

w

0:
0:
:J

0

0:

·10

I

EGP30A THRU EGP30G
GLASS PASSIVATED FAST EFFICIENT RECTIFIER
Voltage - 50 to 400 Volts Current - 3.0 Amperes
FEATURES
• Glass passivated cavity-free junction
• Superfast recovery times for high efficiency
• Low forward voltage,
high current ~
capability
----...
• Low leakage
~~ __
• High surge capability
--• High temperature metallurgically bonded, no
compression contacts
• Plastic package has Underwriters Laboratories
Flammability Classification 94V-O
• High temperature soldering guaranteed:
300°C/10 seconds/.375", (9.5mm) lead length at
5 Ibs., (2.3kg) tension

DO-201AA
MODIFIED

•210 [5.31
.190 [4.831

DIA.

L.I

f

1.0 (25.41

MIN.

=-+-

.375 (9.51
.285 [1.2J

--~-

1

1.0 (25.4J
•. 042 Cl.01J ,
.037[,94J

=-L

Dimensions in inches and (millimeters)

MECHANICAL DATA
Case: JEDEC DO-201M (Modified) Molded
plastic over glass
Terminals: Plated Axial leads, solderable per MILSTD-750, Method 2026
Polarity: Color band denotes cathode
Mounting Position: Any
Weight: 0.03 ounce, 0.8 gram

• Glass-plasUc encapsulMon technique is covered by Patent No.
3,996,602 of t976; brazed -lead assembly /0 Patent No. 3,930,306 of
®

'(Not to JEDEC Dimensions)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 2S'C ambient temperature unless otherwise specified.
Resistive or inductive load.
EGP
SYMBOLS 30A

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
.375", (g.5mm) Lead Lengths at TA=55°C
Peak Forward Surge Current
8.3 rns single hall sine-wave superimposed
on rated load TA=55°C
Maximum Instantaneous Forward Voltage at 3.0A
Maximum DC Reverse Current TA=25°C
at Rated DC Blocking Voltage
TA=125°C
Typical Reverse Recovery Time (NOTE 1) TJ=25OC
Typical Junction Capacitance (NOTE 2)
Typical Thermal Resistance (NOTE 3)
Operating Junction and Storage
Temperature Range
NOTES:

VRRM
VRMS
Voc

50
35
50

EOP
30B

EGP
30C

EOP
30D

EGP
30F

fOP
300

UNITS

100
70
100

150
105
150

200 300
140 210
200 300

400
280
400

Volts
Volts
Volts

3.0

I(AV)

IFSM
VF
IR
TRR
CJ
RaJA
TJTsTG

125.0
0.95

1.25
5.0
100
50.0

Amps
Volts

55.0

)JA
ns
pI
°CIW

-65 to +150

DC

90.0

55.0

1. Reverse Recovery Test Conditions: IF=O.SA,IR =1.0A,lrr=.2SA.
2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.
3. Thermal Resistance from Junction to Ambient, .37S"(9.Smm) lead lengths, P.C. board mounted.
160

Amps

RATINGS AND CHARACTERISTIC CURVES EGP30A THRU EGP30G
FIG. 1 -

REVERSE RECOVERY TIME CHARACTERISTIC AND TEST DIAGRAM
10'

NON INDUCTIVE

NONINDUCTIVE

W

u::::

3.0

\.

i=en
Ow 2.5
Wa:
a:W

[~~-tr-ID-.u.T~."\
_- SOVOc

-0.25 f--\l---+--+-~

(appro). .

20

««

15

Ow

L1.a:

OSCILLOSCOPE
(NOTE 1)

SET TIME
--i'
BASE FOR 10ns/cm lcm

50 ohms

1\

\

I\,

.
1.0

Wa: 05
(!):J
0
a:

1-

6~3~~~~~~;~~~~D LENGT~
o

W

>
«

I\.

RESISTIVE OR

«0

-1.0

NOTES 1 Rise Time 7ns max Input Impedance
1 megohm 22pF
2 Rise Time lOns max. Source Impedance

~~

~~

(-

FIG. 3 -

FIG.2 - MAXIMUM FORWARD
CURRENT DERATING CURVE

o

__ Irr.---';

~

50,,:

25

50

75

100

125

150

175

AMBIENT TEMPERATURE. °C

FIG. 4 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTTCS

TYPICAL REVERSE CHARACTERISTICS

10001~~

100. 0

en
W

a:
W

-

0..

::;

100

«

!z

_ EGP30A
THAU
EGP30D

10. 0

V

~

W

a:

a:

:J

o
o

a:

~

I I

1.0

EGP30F,

EGP30G

a:

ou.
en

6
W

O,'~~

Z
t-

«

.01 "'0-~2~0--4-':0-~60:-~80:----:"O:-:O-~''::-20::--C'~40

Z

150

w

I

FIG. 6 -

o

JEDEC METHOD

125

(!)en
a:W
:J a: 100
enW

............ .......

00..

a:::;

««

~

75

o

50

l£

25

«
W

180
C-

r--. r-. . .

O

«
0..
«

-

90

5.0

10

20

50

'~

1.8

f= 1MHz
Vsig = SOmVp-p

..... ~

EGP30F

EGP30G
30

1

100

II

.5

2.0

5.0

10

20

I

EGP30A
EGP30D

i"oo.

1.0

I

TJ = 25°C

.........

60

o
2.0

1.6

TYPICAL JUNCTION CAPACITANCE

r--..~

0

0..
1.0

1.4

I'.

150

0
Z
«
120
t-

............... I--..

1.2

~

L1.

ui

u.

1.0

220

ITJJ IIIII

8.3ms SINGLE HALF SINE-WAVE

W

0.8

INSTANTANEOUS FORWARD
VOLTAGE. VOLTS

a:

:J

0.6

OA

FIG. 5 - MAXIMUM NON-REPETITIVE
PEAK FORWARD SURGE CURRENT

a:

Pu Ise Width = 300 fJ. S 2% Duty Cycle

1/

,01

PERCENT OF RAlED PEAK
REVERSE VOLTAGE, %

r:
z

TJ "25°C

«
t-

en

175

III

1

z

50

f::::WJ

100

200

500 1000

REVERSE VOLTAGE, VOLTS

NUMBER OF CYCLES AT 60Hz

- - - - - - - - - - - - - - - (iGenerallnstrument
161

I

EGP50A THRU EGP50G
GLASS PASSIVATED FAST EFFICIENT RECTIFIER
Voltage - 50 to 400 Volts Current - 5.0 Amperes
FEATURES
• Glass passivated cavity-free junction
• Superfast recovery times for high efficiency
• Low forward
voltage, high-"~
current capability
---""
• Low leakage
--.......-• High surge capability
• High temperature metallurgically bonded, no
compression contacts
• Plastic package has Underwriters Laboratories
Flammability Classification 94V-O
• High temperature soldering guaranteed:
300°C/10 seconds/.37S", (9.Smm) lead length at
Sibs., (2.3kg) tension

D0-201AA
MODIFIED

t

.210 [5.3J
.190 [4.83l

1.0 (25.4J

OIA.

MIN.

L.I

=-+-

.375 [9.5l
.285 n.2l

-L

t

r

1.0 [25.4l
,.042 n.07).
.037[.94J

..

'(Not to JEDEC Dimensions)

Glass·plasHe eneapsulaHon technique Is covered by Patent No.
9,996,602 of 1976; brazed -lead assembly 10 Patent No. 9,930,306 of

1976

~.

MECHANICAL DATA
Case: JEDEC DO-201AA (Modified) Molded
plastic over glass
Terminals: Axial leads, solderable per MIL-STD7S0, Method 2026
Polarity: Color band denotes cathode
Mounting Position: Any
Weight: 0.03 ounce, 0.8 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratin9s at 25°C ambient temperature unless otherwise specified.
Resistive or inductive load.
SYMBOLS

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
.37S", (9.Smm) Lead Lengths at Tl=SSoC
Peak Forward Surge Current
8.3 rns single half sine-wave superimposed
on rated load Tl=SSoC
Maximum Instantaneous Forward Voltage at S.OA
Maximum DC Reverse Current TA = 2SoC
at Rated DC Blocking Voltage TA = 12SoC
Maximum Reverse Recovery Time (NOTE 1) TJ=2Soc
Typical Thermal Resistance (NOTE 3)
Typical Junction Capacitance (NOTE 2)
Operating Junction and Storage
Temperature Range
NOTES:

VRRM
VRMS
Voc

EGP
50A

EGP
SOB

EGP
SOC

EGP
500

EGP
50F

EGP
50G

UNITS

SO
3S
SO

100
70
100

lS0
lOS
lS0

200 300
140 210
200 300

400
280
400

Volts
Volts
Volts

IFSM
VF

Amps

S.O

I(AV)

lS0.0

I

0.9S

1.2S

Amps
Volts

IR
TRR
R8JL
CJ

S.O
SO.O
SO.O
20.0
100.0

ns
°C\W
pf

TJTsTG

-6Sto +lS0

°C

1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, Irr=.25A.
2. Measured al 1.0 MHz and applied reverse voltage of 4.0 Volts.
3. Thermal Resistance from Junction to Lead at .375", 9.5mm Lead Lengths, both leads to heatsink.
162

f!A

RATINGS AND CHARACTERISTIC CURVES EGP50A THRU EGP50G
FIG. 1 -

50 ~)
NON INDUCTIVE

W

u:

---f

:.-.-~ trr

10 ()
NON INDUCTIVE

Wac
a:w

@~

4

3:...:-

3

'""'"

««

.S'Ovdc.
(approx.)

H

i"""-- r-....

tffl

+Q,5A

D.U.T.

(~I

.=10.2 - MAXIMUM FORWARD
CURRENT DERATINO CURVE

o

REVERSE RECOVERY TIME CHARACTERISTIC AND TEST DIAGRAM

10

·0.25

OSCILLOSCOPE

NONINDUCTIVE

~~,

,

.. ,

(NOTE 1)

-1.0
NOTES: 1. Rise Time 7ns max, Input Impedance
1 megohm. 22pF
2. Rise Time = 10ns max., Source Impedance

-J. .

a:Z
Ow
LL a: 2
wac

«0
a:
W
>
0

_ _~

«

--i ,cm ! -

0

SET TIME
BASE FOR 10nolcm

50 ohms

"

,

i\

RESISTIVE OR
INDUCTIVE LOAD

0

25

75

50

100

125

'\

150

175

LEAD TEMPERATURE,· C

FIG. 3 - TYPICAL REVERSE CHARACTERISTICS

FIG. 4 -

1000

~

-iLl-

~.:i75'" 9.5mm

en

TYPICAL FORWARD CHRACTERISTICS

100

W

W
a:
~O
en~

::>
0"':wZ
ZW
«a:
f-a:
Z::>
«0
f-

en

a:
W
Cl.
::;;

EGP50A
THRU
EGP50D

«

100

fZ

-

10.0

W

T.... l5O"C

I

~

1.0

a:
oLL

en

::>

./

T...25'C

0.1

oW
z
«
f-

'/

0.1

~

I
o

~

20

40

60

80

100

120

0.4 0.6

3:

a:
0
LL
~

0.8

1.0

1.2

1.4

1.6

1.8

INSTANTANEOUS FORWARD
VOLTAGE, VOLTS
FIG. 6 -

175

TYPICAL JUNCTION CAPACITANCE

220

II

75

Pulse Width = 300,Us2% Duty Cycle

I

.01

140

REVERSE VOLTAGE, %
FIG. 5 - MAXIMUM NON-REPETITIVE
PEAK FORWARD SURGE CURRENT

100

TJ = 25°C

Z

PERCENT OF RATED PEAK

125

I--

II

a:

T...100"C

=1==

EGP50F
EGP50G _

o

1.0

.01

150

/

o

~

fZ
W
a:
a:
::>
0
W
a:
enW
OCl.
a:::;;
««

~, ~

10.0

a:
a:
::>

~ .......

I

I

11111

TA '" 55°C

1S0

8.3ms SINGLE HALF SINE-WAVE
JEDEC METHOD

.......

LL
Q.

~

...

150

'~

ui

o

...............

50

Z

120

~

90

~

........

Cl.
«
o

r----I'-o

"'- ...

....... "'"

EGPSOA
EGP50D

.......

60

j

~

EGP50F

EGP50G
25

30

«
W
Cl.
10

20

50

100

NUMBER OF CYCLES AT 60Hz

i"'"

II
.5

V

1.0

2.0

5.0

10 20

TJ = 25°C
f= 1MHz
Vsig '" 50mVp-p

~
50 100 200

500 1000

REVERSE VOLTAGE. VOLTS

il General Instrument
163

I

164

PLASTIC FAST EFFICIENT
RECTIFIERS
1.0 AND 3.0 AMPERES

~General

-----165

Instrument--

I

UG06A THRU UG06D
MINIATURE ULTRAFAST PLASTIC RECTIFIER
Voltage - 50 to 200 Volts Current - 0.6 Amperes
FEATURES
MPG06

f

.100 (2.54)
.090 [2.29)

r

1.0 (25.4)

LIi-J.L-i

-----:t~.12513.18)

~

• Ideally suited for use in very high frequency
switching power supplies, inverters and as free
wheeling diodes
• Plastic package has Underwriters Laboratories
Flammability Classification 94V-O
• Ultrafast 15 nanosecond reverse
recovery times
~
• Soft recovery characteristics
• Excellent high temperature switching
• Nitride oxide passivated junction
• High temperature soldering guaranteed:
265°C/10 seconds/.375", (9.5mm) lead length at
5Ibs., (2.3kg) tension

1.0 125.41

.0251.635J
.0231.584J

+

l

Dimensions in inches
and

(ml/limeters)

MECHANICAL DATA
Case: Molded plastic over a
passivated junction
Tenninais: Plated Axial leads, solderable per
MIL-STO-750, Method 2026
Polarity: Color band denotes cathode
Mounting Position: Any
Weight: 0.0064 ounce, 0.181 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25'C ambient 1emperature unless o1herwlse specified. Resistive or Inductive load.

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
.375", (9.5mm) Lead Lengths at TL=75°C, Fig. 1
Peak Forward Surge Current
8.3 ms single half sine-wave superimposed
on rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage at O.SA
Maximum DC Reverse Current
TA=25°C
at Rated DC Blocking Voltage
TA=100·C
Maximum Reverse Recovery Time (NOTE I)TJ=25°C
Maximum Reverse Recovery Time
TJ=25°C
(NOTE 2)
TJ=100°C
Maximum Stored Charge
TJ=25°C
(NOTE 2)
TJ=100°C
Typical Junction Capacitance (NOTE 3)
Typical Thermal Resistance (NOTE 4)
Operating Junction and
Storage Temperature Range

SYMBOLS

OO06A

00068

1JG06C

UG06D

UNITS

VRRM
VRMS
Voc

50
35
50

100
70
100

150
105
150

200
140
200

Volts
Volts
Volts

I(AV)

O.S

Amps

IFsM

40.0

Amps

VF

Volts

ORR
CJ
RaJA

0.95
5.0
100.0
15.0
25.0
35.0
8.0
20.0
10.0
SO.O

TJ,TsTG

-55 to +150

°0

IR
TRR
TRR

NOTES:

1. Reverse Recovery Test Conditions: IF =0.5A, IR -1.0A, recover to O.25A.
2. TRR and QRR measured on LEM 1es1er IF ..o.6A: VR = 30V, dildt=50 AllIS.
3. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.
4. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Leng1hs.

166

f1A
ns
ns
nC
pf
°CIW

RATINGS AND CHARACTERISTIC CURVES UG06A THRU UG06D

IE

i
...
0

FIG. 1 • FORWARD CURRENT DERATING CURVE

,,,,

~. r--r-r-.,..-r-.,..-r-...,

FIG. 2 • MAXIMUM NON·REPETITIVE PEAK
FORWARD SURGE CURRENT

~7I

It

Ii £m

£

140

TYPICAL JUNCTION CAPACITANCE
FIG. 5 -

ui

c..l 60
Z

~30

UF4001 thru
UF4004

~

(320

~E

5.0

o
u.

U'a.i

PERCENT OF RATED PEAK REVERSE VOLTAGE, %

100

NON INDUCTIVE

NONINOUCTIVE

50Vdc
-

1

5

10

20

REVERSE VOLTAGE, VOLTS

60

100

20

D.U.T.

!apprOIl'

,-,

50

\

100

\

- 0.25
10

0.5

10;0

+05.A

NONINDUCTIVE

0.2

5.0

NUMBER OF CYCLES AT 60 Hz

REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM

,+ ,

i=
c..l
z

1.0

500

UF4005t1vu.)f r"'~
UF4007

o

'0.1

0.8

MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT

20

W
(!l

Z

~

I

I
0.6

()

0

~ 10
c..l
Z

~ too..

W

"'~
:::l

«

FIG. 4 -

Wo:
.J w
W

~

W

a.
::;

1.0

Z

UF4001
THRU UF4IOO4

ffl0:

FIG.1 - FORWARD CURRENT DERATING CURVE

OSCILLOSCOPE
(NOTE 11

NOTES 1 Rise Time = 7ns max
1 megohm. 22pF
2 Rise Time
10ns max Scurce Impedance ""
50 ohms
;0:

~

\
- 10

\J

SET TIME

~'cml--

BASE FOR ,Ons/em

(i General Instrument
171

"

ioo"'"

• • •

SUF15G AND SUF15J
GLASS PASSIVATED
ULTRA FAST EPITAXIAL RECTIFIER
Voltage· 400 and 600 Volts Current· 1.5 Amperes
FEATURES
• Plastic package has Underwriters Laboratory
Flammability Classification 94V-0
• Glass passivated chip junctions
• Superfast recovery times for
~
high efficiency
• High forward surge capability
--• Low Leakage
• Low Power Loss
• High temperature soldering guaranteed: 260°C
for 10 seconds at .37S" (9.Smm) lead lengths at
Sibs. (2.3kg) tension

DD-201AD

.210 (5.3)
.190 (4.8)
DIA.

LI 1+

---f--

MECHANICAL DATA
1.0 (25.4)

.05211.3) , +
.0480.2)

T'

Dimensions in inches and (millimeters)

case: JEDEC DO-201 AD molded epoxy
Terminals: Plated Axial leads solderable per MILSTD-7S0, Method 2026
Polarity: Color band denotes cathode
Mounting Position: Any
Weight: 0.04 ounces, 1.1 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified.

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current,
.37S" (9.S mm) lead lengths at TA=SO°C
Peak Forward Surge Current, 8.3ms single half sinewave superimposed on rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage at I.SA
Maximum Peak Reverse Current
TA=2SoC
at rated Peak Reverse Voltage
TA=100°C
Maximum Reverse Recovery Time (NOTE1)
Typical Thermal Resistance (NOTE 2)
Operating Junction Temperature Range
Storage Temperature Range

SYMBOLS

SUFl50

SUFl5J

UNITS

VRRM
VRMS
Voc

400
280
400

600
420
600

Volts
Volts
Volts

I(AV)

1.S

Amps

IFSM
VF

SO.O
1.80
10.0
100
3S.0
6S.0
-40 to +1 SO
-40 to +IS0

Amps
Volts

IR
TRR
RaJA
TJ
TSTG

NOTES:
1. Reverse Recovery Test Condition: IFmO.5A, IR=I.0A, IRR=O.25A.
2. Thermal Resistance from Junction to Ambient a1.375" ( 9.5mm) lead length. P.C. board mounted.

172

uA
nS
°CfW
°C
°C

RATINGS AND CHARACTERISTIC CURVES SUF15G AND SUF15J
FIG. 2 "MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT

FIG. 1 "FORWARD CURRENT DERATING CURVE

,

1.5
1.25

\

'\

0.75

o.5
5

0

Device Mounted on
p.e. Board with
5mm x 5rnm Cu leafs
Lead Length -.375"
(9.5mm)

at

r\

r\.
~

I I I I
20

40

60

80

100

120

140

160

2

AMBIENT TEMPERATURE, 'C

10

20

30

50

100

!i

100

0:
0:

30

UJ

a[E

~!!f!!!!T""'00'C.E:

10

t--TJ-25~

§

;Pulse Width_300p.s
2% Du1yCyclo

~[3

.-

0:0:

;;;T. .25~

OUJ

u.c..
",:::0

8<

0.'

UJ

!

O.Ol~~
00

5

NUMBER OF CYCLES AT 60 Hz

1oo~~~

00

3

FIG 4" TYPICAL INSTANTANEOUS FORWARD
CHARACTERISTICS

FIG. 3 "TYPICAL REVERSE CHARACTERISTICS

~~~

-.....

TJ-Toimax.
8.3ms Single Hatr
Sine-Wave
1= (JEDEC Methodl

~

rn

~

;:;

PERCENT OF RATED PEAK REVERSE VOLTAGE, %

.0.1

0.03
0.0

1LL
0 .•

0.8

1.2

2 .•

1.6

2.8

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

FIG. 5 "TYPICAL TRANSIENT THERMAL IMPEDANCE
FIG. 6" TYPICAL JUNCTION CAPACITANCE
1,000

~
u.i

200

Z

100

0

<
C

UJ

100

500

~

50

c..

~

20

~

10

:::0

0:
UJ
:I:

~

25"C

r..

70

~

TJ-2:5"C

-.........

f_1.0mHz
Vsig-50mV~p

I'

~

too

1
0.01

1~.1

11111
0.1

1

10

100

0.2

0.5

1

2

5

10

REVERSE VOLTAGE, VOLTS

HEATING TIME, SEC

it General Insbument
173

I

UG2A THRU UG2D
ULTRAFAST PLASTIC RECTIFIER
Voltage - 50 to 200 Volts
Current - 2.0 Amperes
FEATURES
DO-204AC

f

+

1.0

,.034 (,86)
.028 (,71)

MIN.

-+.300 (7.6)
.230 r.8)

f +1

1.0

1,·140(3.6)
.104 (2.6)

• Ideally suited for use in very high frequency switch·
ing power supplies, inverters and as free wheeling
diodes
• Plastic package has Underwriters Laboratories
Flammability ClaE3ification 94V·O
• Ultrafast 15 nanosecond reverse
recovery times
____
• Soft recovery characteristics
------..
• Excellent high temperature switching
• Nitride oxide passivated junction
• High temperature soldering guaranteed: 265°C/10
seconds/.375", (9.5mm) lead length at 5lbs.,
(2.3kg) tension

MIN.

(25.4)

MECHANICAL DATA

1
Dimensions in inches
and
(millimeters)

Case: DO-204AC molded plastic over a passivated
junction
Terminals: Plated Axial leads, solderable per
MIL-STD-750, Method 2026
Polarity: Color band denotes cathode
Mounting Position: Any
Weight: 0.015 ounce, OAgram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25'C ambient temperature unless otherwise specified. ResistiJe or inductive load.
SYMBOLS

Maximum Recurrent Peak Reverse VoHage
VRRM
Maximum RMS Voltage
VRMS
Maximum DC Blocking Voltage
Voc
Maximum Average Forward Rectified Current
.375", (9.5mm) Lead Lengths at TL =75°C, Fig. 1
I(Av)
Peak Forward Surge Current
8.3 rns single half sine-wave superimposed
IFsM
on rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage at 2.0A
VF
Maximum DC Reverse Current
TA=25°C
at Rated DC Blocking Voltage
TA=100°C
IR
Maximum Reverse Recovery Time INOTE " TJ=25°C TRR
Maximum Reverse Recovery Time
TJ=25°C
(NOTE 2)
TJ=100°C
TRR
Maximum Stored Charge
TJ= 25°C
(NOTE 2)
TJ=100°C
ORR
Typical Junction Capacitance (NOTE 3)
CJ
Typical Thermal Resistance (NOTE 4)
RaJA
Operating Junction and
Storage Temperature Range
TJ,TsTG

UG2A

UG2B

UG2C

UG20

50
35
50

100
70
100

150
105
150

200
140
200

NOTES:
1. Reverse Recovery Test Conditions: IF=0.5A. IR =1.0A, recover to 0.25A.
2. TRR and ORR measured on LEM tester: VR = 30V, dildt=50 AlfIS IF = 2.0A.
3. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.
4. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths.

174

UNITS

Volts
Volts
Volts

2.0

Amps

80.0

Amps

0.95
5.0
200.0
15.0
25.0
35.0
10.0
22.0
20.0
45.0

Volts

-55 to +150

°C

itA
ns
ns
nC
pf

°CIW

RATINGS AND CHARACTERISTIC CURVES UG2A THRU UG2D
FIG. 2 - MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT

100

FIG. 1 - FORWARD CURRENT DERATING CURVE

g

!z
~ u~--+--3~--+---+---+---+---1

-

50
30

5c

20

Y!
y,

~

8.3mB Single Hal Sine WiNe

u

5

~

3
2

~

~

11.

w

~

r.....TJI11IX.

,

I

°oL--~--~--~--~~~~~~~,n

~

2

3

5

10

20 30

50

100

NUMBER OF CYCLES AT 60 Hz
TEMPERATURE, "C
FIG. 4 - TYPICAL REVERSE CHARACTERISTICS
FIG. 3- TYPICAL INSTANTANEOUS FORWARD
CHARACTERISTICS

!iw

100

II!

50

~

20
10

a
~'"

a:!I!
!2~

·T,.l00,,(; /

,

5
2

a<

.5

~

.2
.1

",::E

!!!!

JEDECMothod

~

.05

[!!

.02
.01

./

,T'.-26"C

PULSE WlDTIi-3OO¢l
2% DUlY CYCLE

I

I

=
~OI~_

II

o.ocu 0

.4
.6
.8
1
1.2
1.4
1.6
INSTANTANEOUS FORWARD VOLTAGE, VOLTS

2D

ao

.to

80

100

t20

'140

PERCENT OF RATED PEAK REVERSE VOLTAGE, %

FIG 5 - REVERSE SWITCHING CHARACTERIS1ICS
FIG. 6 - TYPICAL JUNCTION CAPACITANCE
100

TJ025'\~

50

f_1DMHz

V.ig-SOmV~

u:

!!:.20
w

o

~ 10
(3
~

5

~
1

25

50

75

100

125

150

175

.1

JUNCTION TEMPERATURE, 'C

.5

1

10

50 100

REVERSE VOLTAGE, VOlTS


<

em

0

20

f-.-

40

60

80 100

120 140 160

AMBIENT TEMPERATURE,·C

tOns/em

FIG. 4 - TYPICAL FORWARD CHARACTERISTICS
FIG. 3 - TYPICAL REVERSE CHARACTERISTICS

100

100

'"a:
W

TJ.125"C

10

,

V

W
Q.
::Ii

-

<

-

10

fZ

~~=lhru=

W

::l

I.

C,)

J

o

TJ • 25'C

a:

U

a:

~

~

'"o

I

::l
W

~<

0.1

(I

0.1

Z

t;;
0.Q1
0.4
40

60

80

100 120 140

150

::l
C,)

W
(!)

a:",
::lW
"'a:
OW
a:Q.
<::Ii
:;:<
a:
0
u.

'"C
Pulse Width = 300 ~s_
Duty. Cycle •

I

;?;

20

~

A

a:
a:

TJ = l00"C

a:
a:

~

UF5400lhru /
UF5404,

20

50

100

NUMBER OF CYCLES AT 60 Hz

UF64001hru

~5404

"

...

UF6400
UF5404

~~~~

II 1111
0.5

1"'-0 ...

I"'-or-.

~
5 10

50100

500 1,000

REVERSE VOLTAGE, VOLTS

- - - - - - - - - - - - - - - (ilGenerallnsbument
177

I

•

• •

SUF30G AND SUF30J
GLASS PASSIVATED
ULTRA FAST EPITAXIAL RECTIFIER
Voltage - 400 and 600 Volts Current - 3.0 Amperes
FEATURES
• Plastic package has Underwriters Laboratory
Flammability Classification 94V-O
• Glass passivated chip junctions
• Superfast recovery times for high efficiency
• High forward surge capability

P-600

oI..

-+1

360 [9.11
.340 [8.6)

: t~: ~~~:~~OS$

1

-==~_co,~

•

• High temperature soldering guaranteed: 260°C
for 10 seconds at .375" (9.5mm) lead lengths at
5 Ibs. (2.3kg) tension

1.0 MIN.

X

.360 [9.11

05211.31 ,
.04811.2)

+

~
1.0 MIN.
[25.4)

!

Dimensions In inches and (millimeters)

MECHANICAL DATA
Case: Void-free molded epoxy
Terminals: Plated Axial leads solderable per MILSTD-750, Method 2026
Polarity: Color band denotes cathode
Mounting Position: Any
Weight: 0.07 ounces, 2.1 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless o1ilerwise specified.

Maximum Recurrent Peak Reverse Voltage
Maximum RMS VoRage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current, .200·
j5.0mm)Lead Lengths at TA=60°C
Peak Forward Surge Current, 8.3ms single half sinewave superimposed on rated load (JEDEC Method)
Maximum Instantaneous Forward VoRage at 3.0A
Maximum Peak Reverse Current
TA=25°C
at rated Peak Reverse VoHage
TA=100°C
Maximum Reverse Recovery Tir.;e (NOTE1)
Typical Thermal Resistance (NOTE 2)
Operating Junction Temperature Range
Storage Temperature Range

VRRM
VRMS
Voc

400
280
400

600
420
600

I(AV)
IFSM
VF
IR
TRR
RaJA
TJ
TSTG

3.0

Amps

80.0
1.80

2.0

10.0
100
35.0
25.0
-40 to +150
-40 to +150

NOTES:

1. Reverse Recovery Test Condition: IF=0.5A, IR=1.0A, IRR=O.25A.
2. Thermal Resistance from Junction to Ambient at .200· (5.0mm) lead lengths with both leads at1ached to heat sink.

178

Volts
VoRs
Volts

Amps
VoHs

uA
nS
°CIW
·C
·C

RATINGS AND CHARACTERISTIC CURVES SUF30G AND SUF30J
FIG 2 - MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT

"'G 1 - FORWARD CURRENT DERATING CURVE

!z
~
0:

3.0

ao

_

2.0

tffi
wo:

,

1.0

~

5mm

0a

~

20

5mm

40

00

60

100

Cl CIl

20

::>0:
r.JJ W

10

120

~~

~u.
'"~"-

~

140

160

a

10

TJ-l00'C

~

~

1

5

10

0:
0:
::>

30

o

10

<.J

o:~
f(~

>"w:::;

~:::;

0.01

aw <
Z

~

;!;

o

20

40

60

80

30

50

100

-'
/.

~UF3OJ

.....

-

'==

CIl:::;

TJ-25'(:

100

120

140

0.3

o. 1 I '

Z

0.03

CIl

0.01

~

0.001

20

SUF30G

~CIl

ww

~
CIl

3

FIG 4 - TYPICAL FORWARD CHARACTERISTICS
100

0:0:

~

2

~

W

0:

0.1

I

3

wCll

CIlW



&! ~ ..
iil~
~

8.3ms Single Half Sine WI1N8

JEDEC Method

4( 10

~
II:

F=

I

T...T. rrax.

12

~ •

1

TEMPERATURE, 'C

3

102030SJ

&

NUMBER OF CYCLES AT 60 Hz
FIG. 4· TYPICAL REVERSE CHARACTERISTICS

FIG.2· TYPICAL INSTANTANEOUS FORWARD
CHARACTERISTICS

,

T•• l00'C,

lQC

~
I.

T,~I00"

I

II I

,,,.~

T•• 25"C

;~
.02
.01

1

'II
.4

.6

.8

1

1.2

1.4

~01

1.6

INSTANTANEOUS FORWARD VOLTAGE, VOLIS

o

'"

..

eo

eo

""

120

'40

PERCENT OF RATED PEAK REVERSE VOLTAGE, %

FlO 5· REVERSE SWITCHING CHARACTERISTICS
80

FIG. 6 • TYPICAL JUNCTION CAPACITANCE
100

T...25"C ~
f.l.0MHz
Vslg.5Om Vp.p

50

1

25

80

75

100

125

150

175

.1

TEMPERATURE 'C,

.5

1

5

10

50 100

REVERSE VOLTAGE, VOLTS

---------------(DGenerallnsburnent
1B1

182

I

MEDIUM CURRENT
FAST EFFICIENT
RECTIFIERS
6.0 TO 30.0 AMPERES
SEE
NEW

ISOLATED
PACKAGES

~General

-----183

Instrument .....

FEPF6AT THRU FEPF6DT
FAST EFFICIENT GLASS PASSIVATED RECTIFIER
Current - 6.0 Amperes

Voltage - 50 to 200 Volts

FEATURES
ITO-220CT

.13 ••008
13.3 '0.21

I

.103 MAX.

1 P!" 3

~'-Tr-rir-*-,

I I! -547.016
r
• -'- - 'I. i 1(13.9' 0.4)

I!.

.051'.008
(1,3'0.21 Ii I'
004
•
.029!:008 ,
CO.75.UJ
i i

.~.54

,.107 !.008
[2.7'0.21

~
4°REF.
.028 •• 008,1 ..
..,. ...
..,. ... (O.7!O.21
r:m

'*"'"

::: :~~~.
(CaY_)
(Standard Polaoity)

• Dual rectifier construction, positive center-tap
• Isolated Plastic package has Underwriters Laboratory Flammability Classification 94V-O
• Glass passivated
chip junctions
• Superfast recovery
times for high efficiency
• Low powerloss
• Low forward voltage, high current capability
• For use in low voltage, high frequency inverters,
free wheeling and polarity protection applications
• High temperature soldering guaranteed:
250°C, .25", (6.35mm) from case for 10 seconds
• Internal Insulation: 1.5k VRMS

MECHANICAL DATA
Case: ITO-220 fully overmolded plastic
Tenninais: Plated Lead solderable per MIL-STD750, Method 2026
Polarity: As marked
Mounting Position: Any
Mounting Torque: 5 in.-Ib. max.
Weight: 0.08 ounce, 2.24 gram

Dimensions in Inches and millimeters

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25'C ambient temperature unless otherwise specified. Resistive or Inductive load.

SYMBOLS

Maximum Recurrent Peak Reverse Voltage
VRRM
Maximum RMS Voltage
VRMS
Maximum DC Blocking Voltage
Voc
Maximum Average Forward Rectified Current
.375", (9.5mm) Lead Lengths at Tc=l OO°C
I(Av)
Peak Forward Surge Current
8.3ms single half sine-wave superimposed
on rated load (JEDEC Method) TA=55°C
IFSM
Maximum Instantaneous Forward Voltage per leg
at3.0A
VF
Maximum DC Reverse Current
TA=25°C
at Rated DC Blocking Voltage
TA=100°C
IR
Maximum Reverse Recovery Time (NOTE 1)
per leg
TJ=25°C
TRR
Typical Thermal Resistance (NOTE 2)
R8JC
Operating Junction and Storage
Temperature Range
TJTsTG
NOTES:
1. Reverse Recovery Test Conditions: IF=0.5A. IR=1.0A, recover to O.25A.
2. Thermal Resistance from Junction \0 Case per leg.

184

FEPF6AT

50
35
50

FEPF6BT

FEPF6CT

100
70
100

150
105
150

FEPF60T

200
140
200

UNrrs

Volts
Volts
Volts

6.0

Amps

100.0

Amps

0.975
5.0
50.0

Volts

35.0
4.0

ns
°CfW

-55 to +150

°C

IJA

RATINGS AND CHARACTERISTIC CURVES FEPF6AT THRU FEPF6DT

FIG. 2 - MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT PER LEG
150

FIG. 1 ~

Z

125

10.0

::J
U

Clen
a: w '00
::Ja:
enW

8.0

oen

~:::! 6.0

"-

~~

f? ~

4.0

w

~

2.0

,,

w

o

o

50

100

1-""""" ........

TJ-TJmax.

75

:i:~

a: z

OW

- I

1""'1'-1'-

"""--

50

..... 1'-


«

fi ~

««

II

8.3m. Single Half Sine-Wave
(JEDEC Method)

W

W

a:
a:

IIII

FORWARD CURRENT DERATING CURVE

a.

0

5

I

10

20

50

100

NUMBER OF CYCLES AT 60Hz

150

CASE TEMPERATURE, ·C
FIG. 4 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS PER LEG

~
Z

40

W

a:

20

a:

TJ-l~5"C

::J

U

10

o

FIG. 3- TYPICAL REVERSE
CHARACTERISTICS PER LEG

~

I
I
I II



oo

4:

0..

~

W

~

50

100

(JEDEC Method)

............. ........

TJ",TJmax.

...

75

4:4:

\

0

100

II

8.3m. Single Half Sine-Wave

W

a:
a:

-......

50

I

r- i'- ..

a:

~~ 25
wU

\

0

0..

5.0

2.0

1.0

10

20

50

100

NUMBER OF CYCLES AT 60Hz

150

CASE TEMPERATURE, ·C

z...:

FIG. 4· TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS PER LEG

,

40

W

~

20

~

o
o

FIG. 3- TYPICAL REVERSE
CHARACTERISTICS PER LEG

10.0

~

3:ffl

100

TJ-25OC
4.0

g; ffi 2.0

I

~~

~

W

a:
a:

10

~

o

-.......

TJ-125~

i"""'"

Z
4:

~

~ffl

.2

4:

tii~

(!)

",

-TJ,'01l"C

.1

UJ

Wo..

0.8

1.0

1.2

1.4.

1.6

1.8

FIG.5· TYPICAL JUNCTION CAPACITANCE PER LEG

01'
0..

~

0.1

Q.

uj

o

Z

4:

tZ
4:
t-

en
~

0.4 0.6

PULSE WIDTH.300~.
2% DUTY CYCLE

60

ll!2
en~
~

I

I

t.O

~~
~~

oW

I

I

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

Wa:
J

1.0

oW

i-""'"

W

4:

I

I

I{

0..0..

Z

1/

/

T.... 125"C/

,.

./

20

40

.-

4:

TJ.25"C--

t-

,~

TJ.2S'C

0

O

r-...

4:

0..

4:

.01

o

0

Z

60

80

100

120

140

o

f.1MHz
Voig • 50mVp-p

1'-0..

0

PERCENT OF RATED PEAK
REVERSE VOLTAGE ,Of.
.2

5'.0

20

5.0

10

20

50 100 200

500

1000

REVERSE VOLTAGE, VOLTS

- - - - - - - - - - - - - - - (fj General Instrument
187

UGF8AT THRU UGF8DT
ULTRAFAST GLASS PASSIVATED RECTIFIER
Voltage - 50 to 200 Volts Current - B.O Amperes
FEATURES
• Isolated plastic package has Underwriters Laboratories Flammability Classification 94V-0
• Internal insulation resistance 1.5k VRMS
• Ideally suited for use in very high frequency switching power supplies, inverters and as a free wheelingdiodes
~
• Ultrafast 20 nanosecond reverse
recovery times
• Soft recovery characteristics
.
. '. ,
• Excellent high temperature switching
• Glass passivated chip junction
• High temperature soldering guaranteed: 250°C/1 0
seconds at terminals

IT0-220
.13 , .008
13.3 tD. 2)

.. ,.107 •• 008
12.7tO.2)

.

PIN 10----,
PIN 2 O--tot-l
STRNDARO POLARITY

Dimensions in inches and (millimeters)

MECHANICAL DATA
Case: ITO-220 Fully overmolded plastic
Terminals: Plated axial leads, solderable per
MIL 750, Method 2026
Polarity: As marked
Mounting Position: Any
Weight: 0.08 ounce, 2.24 gram
Mounting Torque: 5 in. - Ibs. max.

sm -

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient lemperature unless otherwise specified. Resistive or inductive load.

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
atTc=100°C
Peak Forward Surge Current
8.3 ms single half sine-wave superimposed
on rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage at 8.0A
20A
5.0A,TA=150°C
Maximum DC Reverse Current
TA=25°C
at Rated DC Blocking Voltage
TA=100°C
Maximum Reverse Recovery Time (NOTE 1)TJ=25°C
Maximum Reverse Recovery Time
TJ=25°C
(NOTE 2)
TJ=100oc
Maximum Stored Charge
TJ=25°C
(NOTE 2)
TJ=100°C
Typical Junction Capacitance (NOTE 3)
Typical Thermal Resistance (NOTE 4)
Operating and Storage
Temperature Range
NOTES:

SYMBOLS

UGFBAT

UGFBBT

UGFBCT

UGFBDT

UNITS

VRRM
VRMS
Voc

50
35
50

100
70
100

150
105
150

200
140
200

Volts
Volts
Volts

I(AV)

8.0

Amps

IFsM

150.0

Amps

ORR
CJ
R8JC

1.00
1.20
0.95
10.0
300.0
20.0
30.0
50.0
20.0
45.0
45.0
4.5

trJ,TSTG

-55 to +150

VF

IR
TRR
TRR

1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, recover to 0.25A.
2. TRR and ORR measured on LEM Iester:IF=8.0A, VR=30V, di\dl=50 AlfiS.
3. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.
4. Thermal Resistance from Junction to Case.
188

Volts

f1A
ns
ns
nC
pf
°CIW
°C

RATINGS AND CHARACTERISTIC CURVES UGF8AT THRU UGF8DT
FIG. 2 • MAXIMUM NON·REPETITIVE PEAK
FORWARD SURGE CURRENT

FIG. 1 • FORWARD CURRENT DERATING CURVE
12

1000

!i
~

10

G
w

~

75

100

200

~ ~ 100

r ....T.. mIX.

r-....

mw

~~

50

~

20

~

10

~«

1\

\

50

8.3na Single Hal Sine Wave
JEDEC Method

elm

\

25

500

5

1~

150

125

50

10

I

100

NUMBER OF CYCLES AT 60 Hz

CASE TEMPERATURE ('C)
FIG. 3· TYPICAL INSTANTANEOUS FORWARD
CHARACTERISTICS

FIG. 4 • TYPICAL REVERSE CHARACTERISTICS

!iw

Ir
Ir

0

1000
500

Tc·125"C

200
100

Tc.loQ;c-

G

YTJ025~
PULSE WIDlH-300JOS

2'IC. DUlY CYCLE

==
_

1

0
0
5
2
1

II

1
5

I

1
.4

.6

T,.25"C

5
2
1

.8

1

1.2

1.4

1.8

1
0

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

o

20

40

60

80

100

120

140

PERCENT OF RATED PEAK REVERSE VOLTAGE, %
FIG 5· REVERSE SWITCHING CHARACTERISTICS
FIG. 8· TYPICAL JUNCTION CAPACITANCE

'00
u.

50

a.

w'"

~'"
~

tT..-25"C

~ f.l.0MHz
(3
vsig-som Vp-p
~ to

«
o

o

25

50

75

101)

125

150

,

175

JUNCTION TEMPERATURE,'C

~,

0.2

1).6

'0

'"

REVERSE VOLTAGE, VOLTS

50

""

----------------CiGenerallnstrument
189

UG8AT THRU UG8DT
ULTRAFAST GLASS PASSIVATED RECTIFIER
Current· 8.0 Amperes

Voltage • 50 to 200 Volts

FEATURES
TO-220AC

-.mla~l
-+1 •. o~~ IHil

j-I-l~

.....-.1-50-t-;-.
81-i)

·IJOq,~)

ft

.bkm
.140 (3.5&

"11·~~~m:r,l

_ _ .210(5.331
.190(4.831

(CASE

1

.575 (14.611

l
~r
1.103
(28.021

t

I

.GOO(1~.24)

.36019.14)
.320 (8.131

.620 (15.751

PIN P~N~

_

POSITI~EI

1.5GO U24.221
.53013.461

:ml~:~l·ll!::.
I"
PIN I

• Plastic package has Underwriters Laboratories
Flammability Classification 94V-O
• Ideally suited for use in very high frequency
switching power supplies, inverters and as a free
wheeling diodes
• Ultrafast 20 nanosecond reverse
recovery times
• Soft recovery characteristics
• Excellent high temperature switching
• Glass passivated chip junction
• High temperature soldering guaranteed: 250°C110
seconds at terminals

MECHANICAL DATA
.110(2.791
.090(2.29)

+~

STANDIIRD POLARITY PIN 2 - ~ CASE

Dimensions in inches and (milHmeters)

Case: JEDEC TO-220AC molded plastic
Terminals: Plated axial leads, solderable per
MIL-STD-750, Method 2026
Polarity: As marked
Mounting Position: Any
Weight: 0.08 ounce, 2.24 gram
Mounting Torque: 5 in. - Ibs. max.

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25'C ambient temperature unless otherwise specified. Resistive or inductive load.

SYMBOLS
Maximum Recurrent Peak Reverse Voltage
VRRM
Maximum RMS Voltage
VRMS
Maximum DC Blocking Voltage
Voc
Maximum Average Forward Rectified Current
at Tc=100·C
I(AV)
Peak Forward Surge Current
8.3 ms single half sine-wave superimposed
IFSM
on rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage at 8.0A
20A
VF
5.0A, TJ=150·C
Maximum DC Reverse Current
TA=25a C
at Rated DC Blocking Voltage
TA=100·C
IR
Maximum Reverse Recovery Time (NOTE 1)TJ=25·C TRR
Maximum Reverse Recovery Time
TJ=25°C
(NOTE 2)
TJ=100·C
TRR
Maximum Stored Charge
TJ=25°C
(NOTE 2)
TJ=100°C
ORR
Typical Junction Capacitance (NOTE 3)
CJ
Typical Thermal Resistance (NOTE 4)
R9JC
Operating Junction and Storage
Temperature Range
TJ, TSTG
NOTES;
1. Reverse ReooveryTest Conditions: IF=0.5A,IR=I.0A, reooverto 0.25A.
2. TRR and ORR measured on LEM IBslBr: VR=30V, dN:tt=50 AI)JS IF=B.OA.
3. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.
~. Thermal Resistance from Junction to Case.

190

UGBAT
50
35
50

UGBBT
100
70
100

UGBCT
150
105
150

UGBDT
200
140
200

UNITS
Volts
Volts
Volts

8.0

Amps

150.0

Amps

1.00
1.20
0.95
10.0
300.0
20.0
30.0
50.0
20.0
45.0
45.0
4.0
-5510 +150

Volts
Volts

J.lA
ns
ns
nC
pf
°CIW
°C

RATINGS AND CHARACTERISTIC CURVES UGBAT THRU UGBDT
FIG. 2 - MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT

FIG. 1 - FORWARD CURRENT DERATING CURVE
12

1000

10

8.3mI Single Hall Sino Wav.

JEDECMothod
T~TJmax.

i\
\
2S

SO

75

r--...

\

12S

100

\

5

150

10

50

I

100

NUMBER OF CYClES AT 60 Hz

CASE TEMPERATURE ('C)
FIG. 4 - TYPICAL REVERSE CHARACTERISTICS

FIG. 3 - TYPICAL INSTANTANEOUS FORWARD
CHARACTERISTICS

0

VI

1000

-=

T.t-25"C

PULSE WIDTH-300pS
2% DUlY CYCLE
_
1

I

I

I

1
.4

0.01

.6

.8

1

1.2

1,4

O~~~--~--~--*---~--~~~
o
20
40
80,
80
100
120 140

1.6

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

PERCENT OF RATED PEAK REVERSE VOLTAGE, 0/0
FIG 5 - REVERSE SWITCHING CHARACTERISTICS
FIG. 6 - TYPICAL JUNCTION CAPACITANCE
'00

TJ025"C

F=

211

50'

75

100

125

150

t-l.0MHz
Voigo5Om VI>P

...

175

,

JUNCTION TEMPERATURE, 'C

REVERSE VOLTAGE, VOlTS

.

...

---------------.GeneralInsbument
191

FESF8AT THRU FESF8JT
FAST EFFICIENT GLASS PASSIVATED RECTIFIER
Current· 8.0 Amperes

Voltage • 50 to 600 Volts

FEATURES
IT0-220

.131.008
[3.3 to. 21

• Isolated Plastic package has Underwriters Laboratory Aammability Classification 94V-0
•
Glass passivated chip junctions
.1581.008
405 toflX
[4'.021
18' MAX
• Low power loss
14J:Oj'f"1
I....... ~
• Low leakage,
high voltage
• High surge capability
• Superfast recovery times
for high efficiency
• High temperature soldering guaranteed: 250°C,
.25", (6.35mm) from case for 10 seconds
... ,.107:.008
•
Internal
Insulation: 1.5K VRMS
[2.110.21 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __

MECHANICAL DATA
Case: ITO-220 fully overmolded plastic
Tetminals: Plated Lead solderable per MIL-STD750, Method 2026
Polarity: As marked
Mounting Position: Any
Mounting Torque: 5 in.- Ibs. max.
Weight: 0.08 ounce, 2.24 grams

.... ..4° REF. ... .....
PIN1·~

P[N2-~
(Cas. P08ftiw)
Standanl Polarity

IFESFSI

Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25'C ambient temperature unless o1herwise specified.
Resistive or inductive load.
FESF FESF FESF FESF FESF FESF FESF FESF
SYMBOLS BAT

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at Tc=100°C
Peak Forward Surge Current
8.3ms single half sine-wave superimposed
on rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage at 8.0A
Maximum DC Reverse Current
Tc=25°C
at Rated DC Blocking Voltage
Tc=100°C
Maximum Reverse Recovery Time (NOTE 2)
TJ=25°C
Typical Junction Capacitance (NOTE 1)
Typical Thermal Resistance (NOTE 3)
Operating Junction and Storage
Temperature Range

VRRM 50
VRMS 35
Voc 50

BBT

BCT

TJTsTG

NOTES:

1. Measured at 1 MHz and applied reverse vol rage of 4.0 volts.
2. Reverse Recovery Test Conditions: IF=O.5A, IR= 1.0A, recover to O.25A.
3. Thermal Resistance from Junction to Case.
192

BGT

BHT

8JT UNI7S

I>.rTp;
I>.rTp;

125.0
0.95

1.3

1

1.5

10.0
500.0

IR
TRR
CJ
R8JC

BFT

8.0

I(AV)

IFSM
VF

BOT

100 150 200 300 400 500 600 Volts
70 105 140 210 280 350 420 Volts
100 150 200 300 400 500 600 Volts

35.0

!LA
50.0

85.0
3.0
-55 to +150

Volts

I

60.0

ns
pf

°CIW
°C

RATINGS AND CHARACTERISTIC CURVES FESF8AT THRU FESF8JT SERIES
FIG.2-MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT
150

B.3msec single sine wave
(JEDEC method)
125

FIG. 1 ~

z

FORWARD CURRENT DERATING CURVE

10.0

W

HJATSIINK
Tc

a:

§o

\

cen

6.0

\~

40

FREE~TA

W
(!l

<{

2.0

0:

INDUCTIVE OR

W

>
<{

REISISTIIVE IOA~

o

o

50

en

..............

100

o:W
::JO:
en ~

75

~t-"

50

u..a::

2.5

T"..TJmBX •

r--.

I""'ioo.

~

r-.....

........ r--~

---

~§

wO

ll.

10

'l\
r-- r-- r-- ~

100

FIG. 4-TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

~

150

Z

,,,,' .'

40

W
0:

a:

20

::J
0

!----·TJ-125°CL

\ VA ~~

C

,;"

l/

~

::J
0
w

10

.

.",....-, 0..:';oo.soo"

"'~\ ..\'l.'i>~

~~'-!-

I

1.0

Z
<{

~ =

<{w
Wo:
w

~

-

..J

Wil.

I •

~

.2

!

PULSE WIDTH-25"C

2%JUTYCl

'li, if

~'(l"\~/

.2

_'fr:rJS
~

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

o:<{ 1.0
.~
Wo
>0:

.4

.8

.6

FIG 5 -

1.0

12

1.4

1.6

E

t--

1.8

TYPICAL JUNCTION CAPACTIANCE

1000

~~

C/l::;
::J

lbr)

0

W

Z

I-

01_ 500-600V

I

I:. ,-

u:

f--

en::;

<{

:=v-t--

.ti 'l l

.4

I-

<{

)(.en

,.

I

1111

I-

~~-

=-'fr

(!l

I

Ow
lLll.
C/l::;
::J<{
0
W
Z
<{

100

~

TJ_2SOC

~fZ
a: 0:

FIG.3 - TYPICAL REVERSE
CHARACTERISTICS

.".
.,~

A'

I

0:

zW

100

50

20

NUMBER OF CYCLES AT 60Hz

TEMPERATURE. ·C

0:
0:

I

o:z
OW

~~

&? ~

C)

~~

'.0

W
a: a:
«

W

0.1

lL
Cl

W

0
Z
<{

Z

<{

500
200

I-

0<{

I-

en

~

~

oC

f-- ", ••?JJ
.01

~

20

40

Il.

V~-.j

<{
0

'.P'I
60

eo

100

120

100

.....

:--1-0 ...

,5Q.400V

5OO-6OOV

50

.......

140

PERCENT OF RATED PEAK
REVERSE VOLTAGE ,%

20

I-

TJ
f

10
0.1

:

=

~

I

25°
1MHz

Vsig = SOmVp-p

0.5

1.0

5.0

10.0

50

REVERSE VOLTAGE, VOLTS

- - - - - - - - - - - - - - - (iGenerallnstrument
193

100

2.0

FES8AT THRU FES8JT
FAST EFFICIENT GLASS PASSIVATED RECTIFIER
Voltage - 50 to 600 Volts
Current - B.O Amperes
FEATURES
T0-220AC

OIA.

t

1

PIN

~

.1~

.04511.14)

W:mi'i4:61i
l
1
i

·l]r~~)

1

J:iiOi336i
f

I-:' . 4:
....1 • .05511.40)

.150 (3.81l

.640116.261
.620115,7S)

PI"

..

• Plastic package has Underwriters laboratory Rammability Classification 94V-O

.6001.24)

.360(9.141
.320(8.131

1.163 :29.54)
1.luJ (28.021

• Glass passivated chip junctions
• low leakage,
high voltage
• High surge capability
• Superfast recovery times
for high efficiency
• High temperature soldering guaranteed: 250°C,
.25", (6.35mm) from case for 10 seconds

MECHANICAL DATA

1·'"°·-''
.530y.46)

I.:mm:::l

+1
+--+ .210(5.31)
.190(4.8 I

case: JEDEC TQ-220AC fully overmolded plastic
Terminals: Plated lead solderable per MIL-STD-

:~U~·Ul+I!.
~)
•
.090(2.29)

750, Method 2026

Polarity: As marked
Mounting Position: Any
Mounting Torque: 5 in.- Ibs. max.
Weight: 0.08 ounce, 2.24 grams

PINl+C>--LJ,
PIN 2 - o--w-JCAS~
(Cas. Paslivo)
Slandanl Polarity
.

~

Dimensions in inches and millimeters

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless olherwise specified.
Resistive or inductive load.

FEB
BVIBOL.BBAT

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at Tc-100°C
Peak Forward Surge Current
8.3ms single half sine-wave superimposed
on rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage at 8.0A
Maximum DC Reverse Current
Tc-25·C
at Rated DC Blocking Voltage
Tc=100·C
Maximum Reverse Recovery TIme (NOTE 2)
TJ-25·C
Typical Junction Capacitance (NOTE 1)

VRRM 50
VRMS 35
Voc 50

FEB
BST

FEB
BCT

Typical Thermal Resistance (NOTE 3)
Operating Junction and
·Storage Temperature Range

TJTsTG

NOTES:
1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.
2. Reverse Recovery Test Conditions: IF~O.5A, IR- 1.0A, recover to 0.2SA.
3. Thennal Resistance from Junction to Case.

194

FEB
86T

FEB
BHT

FEB
NT UNn-B

-",,>8

8.0

Amps

125.0
0.95

1.3

I

1.5

10.0
500.0

IR
TRR
CJ
R8JC

FEB
8FT

100 150 200 300 400 500 600 Volts
70 105 140 210 280 350 420 Volts
100 150 200 300 400 500 600 Volts

I(AV)

IFsM
VF

FEB
BDT

"A

os

50.0

35.0
85.0

Volts

I

60.0

3.0

pf
·CIW

-55 to +150

·C

RATINGS AND CHARACTERISTIC CURVES FESBAT THRU FESBJT SERIES

FIG.2 -

MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT

a.3mse~ smgle Sine wavJ.

150

FIG. 1 -

FORWARD CURRENT DERATING CURVE

(JEDEC method)

-......... r-......

125
W

Cl UJ lOa

TJ..TJrnalC.

r-- ... t'-

eew
:::Jee

roW

~~

r-IE:ATSIf..SK
TC

1\,.
I"- ~

0

o

50

50

a:

25

W ()
0..

0

u.

~§

T"

INbuc~,V" ~R
RESISTIVE" L('A(,

5: ~
eez
OW

2.0

1.0

I"'- t-

100

~

""""

~

~
Z

ee
ee
:::J

10,0

.~

TJ_2SOC

()

o
a:

4.0

I

~fil

FIG.3 - TYPICAL REVERSE
CHARACTERISTICS

I

~ IL.'

ee ee 2.0
OW
LLo..

100

100

~

., ...
1; ..... "
.,.
\ VI!'r'J 17
./ 1/;

TJ.125"C_
20 I---

W

TEMPERATURE.OC

ro

I

NUMBER OF CYCLES AT 60Hz
FIG. 4-TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS
~'~
I

40

150

mo

~

1\

l"- I....

. . .r-. r-... ....

««

~
FA!=E A..MBI~N·r.

I'-..
75

J

UJ:::; 1.0

,

~
I

.30Q.400V

_

~
i

,

.1- S()'200V , _

fj Il Il

I

SQ().600V

:::J«

fil

~

zW

ee
ee
:::J

()

C'-'

W
Cl
«
><=UJ
«W
Wee
--'w
Wo..
UJ:::;
ee«
Wo
>ee
~()

~

10.0

<-

r=:~'1JfJ
~~

,4

FIG 5
1000

.6

.8

1.0

12

1.4

1.6

~
I

1.8

Z

't.200
u.i
()

«

fUJ

z
«
f-

,~

-.!!:::.f-- .c

(3

!P"'j
-~ ~zdl'"
40

60

80

«
0..
«
()

100

-

TYPICAL JUNCTION CAPACTIANCE

500

~:2 I::::::::

0.1

f-

20

PULSE WIDTH.25"C
2% D,UTY CYfLE

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

I
7'

.01

.1

.2

V

~

~

~iill 'I

f-

~

"-

II :~ ';

.2

V,;PC ~

UJ~

:::J
0
W
Z
«

~

~
::::;; t=

-".

,4

f-

... ~...,z!fC ~ ~
~~.
~":::
I-!>O:
~

1.0

~

~"-

~

~ 1-1-

5O-4OOV

SOO·600V

50

......

120

PERCENT OF RATED PEAK
REVERSE VOLTAGE ,'Yo

r--...

'--

100

20

~

TJ

'=

too

2S.1I

f -= 1MHz
Vsig = SOmVp-p

lU

0.1

O,S

1.0

S.O

10.0

50

100

REVERSE VOLTAGE, VOLTS

{i General Instrument
195

2,0

GI1401 THRU GI1404
FAST EFFICIENT GLASS PASSIVATED RECTIFIER
Voltage - 50 to 200 Volts Current - 8.0 Amperes
FEATURES

---I'I ..'US(4'S~J

TO-220AC
.420(10,61J

.

155 (3 94J

1"'T.ffi-W~·I.r·~~·~DIR
\-._380-±(9....,.65,...JT.,,'mI4..r5.~(3'mr6BJ
•

___

.150

1
1I:;9=~2Fl1.~
PI"

PIN

.140t56J

(3~81J I-!

.IJO(3.~J~

fl

P=l=='II.640 !1626J
I
:mus:75i

• Plastic package has Underwriters Laboratory
Flammability ClassHication 94V-O
• Glass passivated cavHy-free junction
• Low power loss
• Low leakage
• High surge capability
• Superfast recovery times
for high efficiency
• High temperature soldering guaranteed:
2S0°C,.2S", (6.35mm) from case for 10 seconds

(4. J
055(1.40J
.045 (1.14J

1

.600n .24J

1

:mTIii:ill

.360l9.14J
•320

t.13J

flU
(29.~4J i
.1 (2B. 2J

.025
.560 (124.221 + MAX •
•530 (t46J

1
"I I' :g~~

m:::l

...--... .'UO(H~J
0(. J

MECHANICAL DATA

:~mSJI!· t. ~J
.090(2.29J

Case: JEDEC TO-220AC molded plastic
Tenninals: Plated Axial leads, solderable per
MIL-STD-7S0, Method 2026
Polarity: As marked
Mounting Position: Any
Mounting Torque: Sin. - Ibs. max.
Weight: 0.08 ounce, 2.24 gram

PINf.O---U
PIH2' ~CRSE
(Case PosHivo)

Stand... Polarity
IG114011

Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified.
Resistive or inductive load.

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at Tc=125°C
Peak Forward Surge Current
8.3ms single half sine-wave superimposed
on rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage at
IF=4A, TJ=100·C
IF=8A, TJ=100·C
IF=4A. TJ=25·C
IF=8A, TJ=25·C
Maximum DC Reverse Current
Tc=25·C
at Rated DC Blocking Voltage
Tc=100·C
Maximum Reverse Recovery Time (NOTE 1)
TJ..25·C
Typical Junction Capacitance (NOTE 2)
Typical Thermal Resistance (NOTE 3)
Operating Junction and Storage
Temperature Range

SYMBOLS

011401

011402

011403

011404

UNITS

VRRM
VRMS
Voc

50
35
50

100
70
100

150
105
150

200
140
200

Volts
Volts
Volts

I(AV)

8.0

Amps

IFSM

125.0

Amps

Volts

IR

0.800
0.895
0.900
0.975
5.0
150.0

TRR
CJ
R8JC

35.0
85.0
2.5

nS
pf
·CIW

VF

TJ.TsTG

..

NOTES:
1. Measured al 1 MHz and applied reverse voltage of 4.0 voils.
2. Reverse Recovery Test Conditions: IF= 0.5A. IR=1.0A. recover to 0.25A.
3. Thermal Resistance from Junction to Case.

196

·55 to +150

ItA

·C

RATINGS AND CHARACTERISTIC CURVES GI1401 THRU G11404
FIG.2 -

MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT

150

SIl1
W

a:

(/)

::J

0

"c.
u.i

l)

TJ:::25"C

0.1

W

SOD

0

Z

Z

<{

f-

i!

~

Z

<{

200

0

<{

f-

0..

(/)

<{

~

r-- ~ ..

~

100

0
.0

o

20

40

60

80

100

120

140

50

PERCENT OF RATED PEAK
REVERSE VOLTAGE.%
20

""

I- T,.25'C
l.l.0MHz

VSirsotli

10
.1

.5

1.0

5.0

10.0

so

100

REVERSE VOLTAGE. VOLTS

------t...:.
STANDARD POLARITY PIN 2 - ~CIfSE

Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified.
Resistive or inductive load.
SYMBOLS

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
atTc= 125°C
Peak Forward Surge Current
10ms single hall sine-wave superimposed
TJ=150·C
Maximum Instantaneous Forward Voltage
IF=20A, TJ=25·C
IF..8A, TJ-150·C
Maximum DC Reverse Current
Tc=25·C
at Rated DC Blocking Voltage
Tc=100·C
Maximum Reverse Recovery Time (NOTE 2)
Typical Junction Capacitance (NOTE 1)
Maximum Thermal Resistance (NOTE 3)
Operating Junction and Storage
Temperature Range

BYW29-50 BYW29-100 BYW29-1S0 BYW29-200 UNITS

VRRM
VRMS
Voc

50
35
50

100
70
100

150
105
150

200
140
200

Volts
Volts
Volts

I(AV)

8.0

Amps

IFSM

100.0

Amps

IR
TRR
CJ
R8JC

1.3
0.8
10.0
500.0
25.0
45.0
3.0

TJ,TsTG

-55 to +150

VF

NOTES:

1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.
2. Reverse Recovery Tes! Conditions: IF=1A to VR=30V. with dVdI=100A/Jls.
3. Thermal Resistance from Junction to Case~

198

Volts

IJA
ns
pI
·CIW
·C

RATINGS AND CHARACTERISTIC CURVES BYW29·50 THRU BYW29·200
FIG.3 10
W

o~

C!lCfl
a: W 8 0
::Ja:
CflW

~ §,

FIG. 1 - FORWARD CURRENT DERATING CURVE

<{«

LLa:

W

R~SIS~IVEIOR INDU~TIJE LO~D

::J

U

40

LL<{
W

~

o

,

0

1.0

10.0

5.0

2.0

20

50

100

NUMBER OF CYCLES AT 60HZ
FIG. 4 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

i\

W

'l'

'"

20

80

2.0

a:

~ r---.. .....

U-

~

~ffi

~~

~G

1\

60

OCfl
a:W

""""""

10ms SINGLE HALF
SINE-WAVE

>c:a:

8.0

a:
a:

i'

40

OW

0--:
Z

"'- I '

60

5:>-'
a:Z

10.0

MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT

o

50

en
w
a:

150

100

40

w

0

:i:
<{

10

./

/

U-

CASE TEMPERATURE. °C

0--:
Z
W

a:
a::

"7

3.0

::J

U

o

TYPICAL REVERSE
CHARACTERISTICS

FIG. 2 -

--

Tc ,,125°

'o£Cfl
<{W
Wa:
-'w
wuCfl:i:

a:<{
Wo
>a:
~S,2
Cfl:i:
::Jo--:

Z

,
I

TJ = 25° C
Pulse Width = 25° C
2% Duty Cycle

I

1

~

Z

~

~
~

.03

I

01
04

0.5

06

07

0.8

09

10

11

12

INSTANTANEOUS FORWARD VOLTAGE, VOLTS
10

FIG. 5 - TYPICAL JUNCTION CAPACITANCE

Oz
Ww
Za:

80

~a:

Z::J

<{U

LL
n.

I-"

Cfl
~

03

ow

c

TC""~OOOC

i""""

100

een

/

::J

~

~

10

~
a:

tODD

W

a:

W

10

-01

o

20

U
Z

60

U

50

~

,-

TJ>I'25"C

70

"

....... ~

l

rJ25.c
f = lMHz
Vsig = 50mVpRp

....

~

~

<{

U

40

60

80

100

120

140

PERCENT OF RATED PEAK REVERSE VOLTAGE ,%

.........

40

r--.....

30

20
0.1

0.2

0.5

1.0

2.0

50

10

20

50

REVERSE VOLTAGE, VOLTS

- - - - - - - - - - - - - - - -'
z
W

a:
a:

160

\

::J
()

om

12.0

O::!:

80

a: W
""a:
~W
a:"-

i\r...

""
""

Resistive or

4.0

o

3

'r\.

W

a:
W
>

2

o

'TTT

i\
150

100

50

80.

fZ
W

20

30

100

50

a:
a:

a

TJ'"'125ac:~

10.

t5 a:

-TYPICAL REVERSE
CHARACTERTISTICS

IL.~

I

'f I

4.

6"
w

1.0

Z

~

...:
z

W
a:
a:

:J

Z

~

W

-

a:

0.4

0.6

J200V-'
_300-400V
.5OQ.600V

... PULSE WIDTH.300",,_

O.S

DUTYrCLE

1.0

1.2

I

1.4

1.6

INSTANTANEOUS FORWARD VOLTAGE. VOLTS

FIG. 5 - TYPICAL JUNCTION CAPACITANCE

~

1000

V,i:fiG

ll!u

~~.

, .. •
hi I 21

.4

~

100

T....25"C

I

II-

J fj ';' l

en:::.

1000

~.::'

"i -'
Ii /.J l /
/

2Q

~8l

FIG. 3

.,

I

I

40.

~

500

.... ""

(/)~
:J

0
W

""Z
""

10

Fig. 4- TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

CASE TEMPERATURE, 'C

Z

5

NUMBER OF CYCLES A r 60 Hz

IL""

C!l

50

IL

Co

ui

-_50·200V

1.0

f-

=

~

()

300-600V

f-

(/)

TJ=2j:,

~

0.1

o

20

40

60

80

200 r--5O().600V

""f""
""

100

......

i3

,

"VV

Z

"-

~.~

......

()

"
100

50400V

120

50

140

20 I- TJ.25'C

PERCENT OF RATED PEAK
REVERSE VOLTAGE."

f.l.~MHz

VSir5(:mi~p,

I

10.0
0.1

0.5

1.0

5.0

10.0

50

REVERSE V9LTAGE. VOLTS

e Generallnsbument
201

100

FES16AT THRU FES16JT
FAST EFFICIENT GLASS PASSIVATED RECTIFIER
Voltage • 50 to 600 Volts Current· 16.0 Amperes
FEATURES
rD-220AC

.........

-+1 • .045
.05511.40)
(1.14)

DIA.
~

t

.15013.811

1

.ITrn:m

-p-

.640116.26)
PI"

P~N

1

.;20115.75)
.~

:i4'iil336i

t

1163

l.1u~

.36019.14)
.32018.13)

,.11·:mm:::l

::I

.60011241

:s75T!.Wi

1

!

9.54)j
[28.02)

It

r"'' ' '
,530

+--+ .21015.33)

• Plastic package has Underwriters Laboratory
Flammability Classification 94V-O
• Glass passivated chip Junctions
• Low power loss
• Low forward voltage,
high current capability
• High surge capability
• Superfast recovery times,
for high efficiency
• High temperature soldering guaranteed:
250°C, .25", (6.35mm) from case for 10 seconds

:

46)

.~+
.0141 .36) II!. .11012.79)

MECHANICAL DATA

.09012.29)

:mfi4.83l

case: JEDEC T0-220AC molded plastic

PINl+~

Terminals: Plated axial leads, solclerable per

1'IN 2 • ~CASE

MIL-STD-750, Method 2026
Polarity: As marked
Mounting PositIon: Any
MountIng Torque: 5 in. - Ibs. max.
WeIght: 0.08 ounce, 2.24 gram

(Case Posl;ve)
Standard Polarity
IFES1SI

Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25·C ambient temperature unless oth8rwise specified.
Resistive or inductive load.

FEB
BYMBOLB 16AT
VRRM 50
VRMS 35
Voc 50

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
atTc-100·C
I(AV)
Peak Forward Surge Current
8.3ms single half sine-wave superimposed
on rated load (JEDEC Method)
IFsM
Maximum Instantaneous Forward Voltage at 16A
VF
Ma.ximum DC Reverse Current
Tc-25°C
at Rated DC Blocking Voltage
Tc=100·C
IR
Maximum Reverse Recovery Time (NOTE 2)
TJ=25°C
'TRR
Typical Junction Capacitance (NOTE 1)
CJ
Typical Thermal Resistance (NOTE 3)
R8JC
Operating Junction and Storage
Temperature Range
TJTSTG
NOTES:
1. Measured at 1 MHz and applied reverse voltage of 4.0 vohs.
2. Reverse Reoovery Test Conditions: IF=O.5A, IRc1.0A, reoover to 0.25A.
3. Thermal Resistanoe from Junction to Case.
202

FEB

FEB

FEB

FEB

FEB

FEB

FEB

1681 16CT 1601 16FT 16GT 16HT 16JT UNn-B

100 150 200 300 400 500 600 Volts
70 105 140 210 280 350 420 Volts
100 150 200 300 400 500 600 Volts

Amps

16.0

250.0
1.3

0.975

I

1.5

10.0
500.0
35.0

j.IA
50.0

175.0
1.5
-55 to +175

Amps
Volts

I

145.0

ns
pf
°CIW
°C

RATINGS AND CHARACTERISTIC CURVES FES16AT THRU FES16JT SERIES
FIG.2 -

MAXIMUM NON REPETITIVE PEAK
FORWARD SURGE CURRENT

3OO...--.......""'"T""'"T-r-T"1"',.,..,.--T"""-r--r-.......................
'2501.:::---1-+++-1-++1+ 8,3m, JGLE
............ ....
........... f""'IIIIIIIII.

LJ s,U.H!

JEDEC METHOD
.- T....TJ max.

w
2OO1---~~.d~++~--+_~~~~~
o::w
1-."",
::JO::
~ ~ 501---I-+++H::pIII...............
...,...-+---1,..-I-II-I-+-I-+l

(!len

Ag. I-FORWARD CURRENT DERATING CURVE

--

20

t-=

z

W

0::
0::

16

Q

Den

o::W

12

~~

6

f2~
w

(!l

4

«

0::
W

«>

u.0::

~§ 50
wQ

a.

I'~

«0::

--~-

o::z
OW

~

::J

?i~
;:t-=

o,~-~~-L~~~-~-L-~~~

2

',,-

Resistive or

'rrr

~
50

100

10

~~

«

Z
w

~

()

~~

a:«

~()

«

.~

...,

IZ

.4

=

f1.. ;

.1

en

Q

0.4

0.6

PULSEWIDTHo3OO",,_

1.0

O.S

1.2

1.4

1.6

TYPICAL JUNCTION CAPACITANCE

I-

,

U

60

80

«
a.
«

V

100

Q

120

5O-4OOV

~~"'"

«

. . .1'. . . . .V'
40

~

200 '~50Q.600V

Z

TJ.~-:"

Z

20

!

L--lVU'il.L..l~'i!..-.-.LIf_i.LD_U_TY.LCjYC_L_EL-I...,l

u.
Q.

u.i

~ 3IJIl.6OOV

«

o

• 3IJIl.6OOV

~.,

500

I-

0.1

§~IIl~"~~I.~"~5().§2OOV~'-'
_30Q.400V

1.0

FIG. 5 -

-I-- 5Q.2OOV

1.0

I

~,:I I I

1000

,. .....

::J
Z

J

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

V,!:pG

en~

T..25"C

I

r-~-~f-'~IJr~,Li
~t~~~~,~-r---4

0.2

t.-'"

10

~~

ow

I

4,

~

100

',At'

~

Z
@«
~

~

100

: I----IT..-,-25-oC-+':~--+v...,r,.....,
J#/-:.4~~""'+l/-.".j

:>W

...,:

..

50

~

en::;:

I-- ~ ..'2&-C
10;:::'.1-..... r;t
~
.0

30

/ . , ~.

Z

1000

«
~ffl
~ffi

20

M. r--t~--r--r----~/~.~~~~~!~~,

I-

FIG. 3 -TYPICAL REVERSE
CHARACTERTISTICS

w


o

«

,

~

40

50

100

150
125

'"

~

~

.........

1'-""
20

SO

~
1.0

f=:

<'f",oo,C

20

-'
ffh ~~( , /

T..... 125"C {

10.0

T,-25'C=

4.0

I

'i
.
I

1.0
.4

«
CI)

.2

,
'ii' ;

Z

~

.L

fl

1/

.6

.4

/"

;~~~V500-600V

PULSE WIDTH.2S'C
2% DIUTY C~CLE

if

.S

1.0

1.2

1.4

i

1.6

1.8

FIG. 5 - TYPICAL JUNCTION CAPACITANCE PER LEG
1000

500

.r

SO·200V
__ 300-600V

;;

0.1

...

~,.

-S0400V
_500-600V

Q.

ui

/

U

200

«
U
«a.
«

100

Z

«
ICI)
~

.01

=tf
m

~

V
~

U

M

100

120

1~

........

~

SO

20

PERCENT OF RATED PEAK
REVERSE VOLTAGE ,%

::: ...

-I"-

I-

-

i"o

TJ=25"C
f.. 1.0MHz
Vsig",50mVp-p

~

10
.1

11 IL
.S

1.0

S.O

10.0

50

100

REVERSE VOLTAGE, VOLTS

- - - - - - - - - - - - - - - - - CD General Instrument
205

==

I

I:. ,.' .'

.1

----

I'

11# III

2.0

I-

I-

~ :;:...

.........V
_

100

.,

....
.'
~
~

f

A II' i '

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

l:!~

Z

10.0

I

.2

w
wa.

I-

5.0

40

a:
«CI)
3: w
a: a:
Ow
... a.
CI)::E
::1«
0
W
Z
«

100

CI)::E
::I
0
W
Z
«

i'. t-.....

FIG. 4 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS PER LEG

FIG.3 TYPICAL REVERSE
CHARACTERISTICS

CI)::E
a:«
Wo
>a:

2.0

150

0

... --:'/.~OCZ ~
E==il"

':

NUMBER OF CYCLES AT 60Hz

U

10.r

TJ""TJ max.

~I'-

'"

w
a:
a::
::I

,~

JEDEC METHOD

I"""-

75

Z

W
a::
a::
::I
U
W
Cl
«
">'CI)
«W
Wa:
....J

I,

B.3ms SINGLE HALF SINE-WAVE

100

1.0

CASE TEMPERATURE, ·C

Z

I

f'. ~

50

i\

o

175

Cl(J)

I

200

Z

tr

W
a:w
::I a:
Cl)W
oa.
a::::E
««
3:~
a:z
OW
... a::
~a:
«::I
wU
a.

FORWARD CURRENT DERATING CURVE

2.0

FEP16AT THRU FEP16JT
FAST EFFICIENT GLASS PASSIVATED RECTIFIER
Current - 16.0 Amperes

Voltage - 50 to 600 Volts

FEATURES
T~220AB

• Dual rectifier construciton, positive centertap
• Plastic package has Underwriters Laboratory
Flammability Classification 94V-O
• Glass passivated chip junctions
• Low power loss
• Low forward voltage,
high current capability
• High surge capability
• Superfast recovery times
for high efficiency
• High temperature soldering guaranteed:
2S0°C,.2S", (6.3Smm) from case for 10 seconds

--:"1.160 (4.0 )

.osHt-401
.14

...1 • .04

-

+

-p- ~

.15013.8l)
.13013.30)

.60011.24)
.575 (14.61)

.36019.14)
.32018.13)

1

1

I """"'l""OC-

1
[t46)
r~~'

3 [29.54)
~
1.10 3128.02)
.530

~I I·:g~~~::::
. I ·:~~~:tm

.02210.56).
:omo.m I .+.

.110 [2.79)
.09012.29)

MECHANICAL DATA

_ _ .21015.33)
.190 (4.83)

Case: JEDEC TO-220-AB molded plastic
Tenninals: Plated Leads solderable per
MIL-STD-7S0, Method 2026
Polarity: As marked
Mounting Position: Any
Mounting Torque: Sin. - Ibs max
Weight: 0.08 ounce, 2.24 gram

PJN1~

PIH3~CASE
(C... Positive)
FEP16

1

Dimensions In Inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25'C ambient temperature unless otherwise specified.
Resistive or Inductive load.

FEP FEP FEP FEP FEP FEP FEP FEP
SYMBOLS 16AT 168T 16CT 160T 16FT 16GT 16HT 16JT, UNITS

Maximum Recurrent Peak Reverse VoHage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at Te=100°C
Peak Forward Surge Current
8.3ms single half sine-wave superimposed
on rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage per leg
at8.0A
Maximum DC Reverse Current
Te=25°C
at Rated DC Blocking Voltage
Te=100°C
Maximum Reverse Recovery Time (NOTE 2)
per leg
TJ= 25°C
Typical Junction Capacitance per leg (NOTE 1)
Maximum Thermal Resistance (NOTE 3)
Operating Junction and Storage
Temperature Range
NOTES:

VRRM 50
VRMS 35
Voe 50

100 150 200 300 400 500 600 Volts
70 105 140 210 280 350 420 Volts
100 150 200 300 400 500 600 Volts

I(Av)

16.0

Amps

IFSM

200.0

Amps

VF

0.95

IR
TRR
CJ
R8JC
TJTSTG

1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.
2. Reverse Recovery Test Conditions: IF=O.5A, IR=1.0A, recover to 0.25A.
3. Thermal Resistance from Junction to Case per leg.
206

1.3

\1.5

10.0
500.0
35.0

I

85.0
3.0

-55 to +150

. Volts
~

50.0

I

60.0

ns
pf
°CIW
°C

RATINGS AND CHARACTERISTIC CURVES FEP16AT THRU FEP16JT
FIG.2 - MAXIMUM NON-REPETITIVE PEAK

FORWARD SURGE CURRENT PER LEG
200

FIG. 1 ~

175
W
CJC/l
a:W
:::Ja: 150
C/lW

FORWARD CURRENT DERATING CURVE

20.0

Z

~

I' I'..

00.

W
~

16.0

~~

8.0

W

4.0

~~
CJ

W

o

a.

~

50
2.0

1.0

1\
50

"'"

a:Z
OW 100
u.a:
'>t.a:
«:::J 75
Wt)

\t\,.

o

5.0

40

.. ..-

1==

-

0

W
Z
«
fZ
«

~

-.L t=- 1..."...00- ~...

"o,,?J>oC

C/l~

~

V,dfC I/'"
/~

0.1

.6

PULSE WIDTH.25'C

'I
.8

i

2% ~UTY CiCLE
1.0

u.

c.
ui

1.2

1.4

1.6

1.8

5O-400v
_5QO.800V

200

f-

t)
Z
«

~

C3

100

«

C/l

f-

~1-,.'J.~oC

.01

.4

5OO-6OOV

500

~,

...~ I

Z
Z

.11

~iili

.1

i- -

FIG. 5 - TYPICAL JUNCTION CAPACITANCE PER LEG

6O-400V

«

f-

.•

6O-2OOV._
3OO-4OOV

1000

I--

W

,

il :, i

1---1
_ _ I

INSTANTANEOUS FORWARD VOLTAGE. VOLTS

~ I--- 500-600V

:::J

1.0

I

~

J 'J rl L'" I

.2

-..:

l/

If #I~'

2.0

.,

~

T"..25OC=

I

.2

C/l

.~

4.0

.4

f-

~t)

0

10.0

Ow
u.o.
C/l::;
:::J«

100

.,1..::-'

f

A' 1/.#
T_ 125OC t
~ 4f.. 1(
I

20

~Sl
a: a:

TYPICAL REVERSE

CHARACTERISTICS PER LEG

W
a:
a:
:::J
t)
10.0
W
CJ
«
'>t.C/l
«W
Wa:
--'w
WOo
C/l::;
a:«
Wo 1.0
>a:

100

FIG. 4 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS PER LEG

r:-

r:-

50

150

100

Z
W
a:
a:
:::J
t)
0
a:

z

t-.r-,
20

10

I

"'-r-....

NUMBER OF CYCLES AT 60Hz

CASE TEMPERATURE, 'C

FIG.3 -

ATT".,.TJmax.

~I'-

:3:r:-

«
a:

>
«

I'

a:::;
« « 125

i\

:::J
t)
o C/l120
a: W
«a:

11
8.3ms SINGLE HALF SINE·WAVE
JEDEC MElHOD

~
o
20

40

~

«

?
80

...

.. ~
~ r~

a.

«
t)

80

100

120

PERCENT OF RATED PEAK
REVERSE VOLTAGE ,%

50

140
20

I-

I--i..';'.!~
Vsig_50mVp-p

I

10
.1

I I II
.5

1.0

5.0

10.0

50

100

REVERSE VOLTAGE. VOLTS

CD General Insbument
207

2.0

GI2401 THRU GI2404
GLASS PASSIVATED FAST EFFICIENT RECTIFIER
Current - 16.0 Amperes

Voltage - 50 to 200 Volts

FEATURES
• Dual rectifier construction, positive centertap
• Plastic package has Underwriters Laboratory
Flammability Classification 94V-O
• Glass passivated chip junctions

TO-220AB
19014.83)
+-lIGOI4.06)
055 !l.40)
->
.045 (1.!4l

I •.

*

-p- ~

.15013.81J
.13013.30)
.640 !l6.261
.620US.7S)

1

.36019.141
.32018.13)

1

P~N 3 .160,.J,.....,.,
11101_.1_63_129.54)-!1
<4.001
:I4Ol3.56i
t

.

• Low power
loss
• High surge capability
• Superfast recovery
times for high efficiency
• High temperature soldering guarenteed:
250°C, .25",(6.35mm) from case for 1 0 seconds

.600 J5.241
.575 !l4.61)

j.~"'U

3128.02)

•.'"

.530It 46 )

11.. "11.:m:~::;l
·:m~ml

:gm~:m+ I ..
....

MECHANICAL DATA

.110 (2.79)
. 090(2.29)

Case: JEDEC TO-220-AB molded plastic
Terminals: Plated Lead solderable per MIL-STD-

<---+ .210 (5.331
.190(4.83)

750, Method 2026

l'INl-~

Polarity: As marked
Mounting Position: Any
Mounting Torque: 5 in. - Ibs max
Weight: 0.08 ounce, 2.24 gram

PIN3-~r
(Case Positive)

STANDARD POLARITY
IGI24011

Dimensions in inches and millimeters

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified.
Resistive or inductive load.
For capacitive load, derate current by 20%.
SYMBOLS

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at Tc=125°C
Peak Forward Surge Current
8.3ms single half sine-wave superimposed
on rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage per leg
IF=4A, TJ =100°C
IF=8A, TJ=100°C
IF=4A, TJ=25°C
IF=8A, TJ=25°C
Maximum DC Reverse Current
Tc=25°C
at Rated DC Blocking Voltage
Tc=100°C
Maximum Reverse Recovery Time per leg (NOTE2)
Typical Junction Capacitance per leg (NOTE 1)
Maximum Thermal Resistance (NOTE 3)
Operating Junction and Storage
Temperature Range

VRRM
VRMS
VDC

GI2401

GI2402

GI2403

GI2404

UNITS

50
35
50

100
70
100

150
105
150

200
140
200

Volts
Volts
Volts

I(AV)

16.0

Amps

IFSM

125.0

Amps

VF
IR
TRR
CJ
RElJC
TJTsTG

NOTES:
1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.
2. Reverse Recovery Test Conditions: IF =0.5A, IR=I.0A, recover to 0.25A.
3. Thermal Resistance from Junction to Case per leg.
208

0.800
0.895
0.900
0.975
5.0
150.0
35.0
85.0
1.75
-55 to +150

Volts
5.0
500.0

flA
ns
pf
°CIW
°C

RATINGS AND CHARACTERISTIC CURVES GI2401 THRU GI2404
FlG.2 -

MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT PER LEG

.50
8.3msec single sme wa.... '

'25
L1J

~~

Fig. l-FORWARO CURRENT OERATING CURVE
f-'

20

~~

1\

U

12

~ffi

a::CL

&: ~
UJ
a::
UJ

AMBIENT AIR RATING, TA

4.0

~

o

I

I I

o

--r--.. .....

~
75

I

I

LL.

I

a::

~§

i""o

,

25

UJO

a..

1.0

2.0

5.0

10.0

20

50

NUMBER OF CYCLES AT 60Hz

\

FIG. 4 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS PER LEG

so
'I)

~ 40
UJ
CL
:;; 20

150

100

50

50

!

a::Z
OUJ

\

B.O

C)

«

I

1'...


L1J
a::

(/J

::J

oL1J
Z

"-

I

0.1

ui

u

«

z

f-

Z

 .090(2.291

case: JEDEC TO-220A8 molded plastic
Terminals: Plated Lead solderable per MIL-STD750, Method 2026
Polarity: As marked
Mounting Position: Any
Mounting Torque: 5 in. - Ibs. max
Weight: 0.08 ounce, 2.24 gram

___ .210 (5.331
.190 (4.831

PIN l-o---toI-t...::.
PIN3-~CASE

PIN2

(Standard Polarity)

'IBYV32-501
Dimensions In inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25'C ambient temperature unless otherwise specified.
Resistive or inductive load.
SYMBOLS

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at Tc=120°C
Peak Forward Surge Current
1Oms single half sine-wave superimposed
TJ=150C
Maximum Instantaneous Forward Voltage per leg
at IF=20A,
IF=5.0A, TJ=1 OO°C
Maximum DC Reverse Current
Tc=25°C
at Rated DC Blocking Voltage
Tc=100°C
Maximum Reverse Recovery Time per leg (NOTE 2)
TJ=25°C
Typical Junction Capacitance (NOTE 1)
Maximum Thermal Resistance per leg (NOTE 3)
Operating Junction and Storage
Temperature Range

BYV32-50

VAAM
VAMS
Voc

50
35
50

BYV32-100

BYV32-150 BYV32-200 UNITS

100
70
100

150
105
150

200
140
200

VoHs
Volts
Volts

I(AV)

18.0

Amps

IFSM

150.0

Amps

IA

1.15
0.85
10.0
600.0

TAA
CJ
R8JC

35.0
45.0
3.0

ns
pf
°CIW

TJTsTG

-55 to +150

°C

VF

NOTES:
1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.
2. Reverse Recovery Test Conditions: IF=1.0A to VR=30V, with di/dt=100Alfls.
3. Thermal Resistance from Junction to Case per leg.
210

Volts

ItA

RATINGS AND CHARACTERISTIC CURVES BYV32-50 THRU BYV32-200
FIG. 2· MAXIMUM NON·REPETITIVE PEAK
FORWARD SURGE CURRENT PER LEG
150

FIG. 1 - FORWARD CURRENT DERATING CURVE
200
I-'
Z

18.0

a:
a:

16.0

W

:::J
U
0'"

a:

12.0

8.0

lL<{

W

~

a:

T...1WC
10ms SINGLE HALF
SINE·WAVE

,..""

.............

o

50

100

r--.

"""'"

10

5.0

20

50

NUMBER OF CYCLES AT 60HZ
FIG. 4 • TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS
PER LEG

:\

INDUCTIVE OR RESISTIVE LOAD

o

I""'"

2.0

1.0

~

4.0

w

iii'

~

25

~

~ffi

a:"-

"-

i\

W

0::;;

"

100

'"a:w
W

150

"::;;

CASE TEMPERATURE, ·C

I

<{

t-="
Z

10

w

a:
a:

:::J

U

I

o

FIG. 3 - TYPICAL REVERSE
CHARACTERISTICS PER LEG

0:

~
olL

1.0

a:

1000

Te
0

=

:::J
'"@
o.

J
1/
1,......00'

z

T,
25°C
Pulse Width 3OOl's
2% DUTY CYCLE

1

1"
z
1"

100°C

'"~ 11
.0

0.4

0.6

0.8

1.0

12

1.4

1.6

1.8

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS
FIG. 5 - TYPICAL JUNCTION CAPACITANCE
PER LEG

0
60

Te =

lL

25OC~

ill
U
Z

r

1"
o

.-

it

JJII

0,

f = lMHz
Vsig = 50mVpp

'"

Q.

40
30

I'--..
r""r-

<{

U

20

1
20

40

60

80

100

120

140

-

10

PERCENT OF RATED PEAK
REVERSE VOLTAGE ,%

0

1.0

2,1]

4.0 5.0

10

20

50

100

200

500

REVERSE VOLTAGE, VOLTS

- - - - - - - - - - - - - - - eGenerallnstrument
211

100

I

UGF18ACT THRU UGF18DCT
ULTRAFAST RECTIFIER
Voltage - 50 to 200 Volts Current - 18.0 Amperes
FEATURES

IT0-22OCT
.13 •. 008
13.3 '0.2l

... ,.10H.008
12.7' 0.2l

PIN1~N2

PIN3~
(Standard Polarity)

Dimensions In inches and (millimeters)

• Isolated plastic package has Underwriters Laboratories Flammability Classification 94V-O
• Internal insulation resistance 1.5k VRMS
• Ideally suited for use in very high frequency
switching power supplies, inverters and as a free
wheeling diodes
• Ultrafast 25 nanosecond
recovery times
• Soft recovery characteristics
• Excellent high temperature switching
• Glass passivated chip junctions
• High temperature soldering guaranteed: 250°C/10
seconds at terminals

MECHANICAL DATA
Case: ITO-220CT Fully overmolded plastic
Terminals: Plated leads solderable per MIL-STD750, Method 2026
Polarity: As marked
Mounting Position: Any
Mounting Torque: 5 in. - Ibs. max.
Weight: 0.08 ounce, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25'C ambient temperature unless otherwise specified. Resistive or inductive load.

SYMBOLS
Maximum Recurrent Peak Reverse Voltage
VRRM
Maximum RMS Voltage
VRMS
Maximum DC Blocking Voltage
Voc
Maximum Average Forward Rectified Current
at Tc=105°C
I(AV)
Peak Forward Surge Current
8.3 ms single half sine-wave superimposed
IFSM
on rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage per leg
at:
9.0A
20A
VF
5.OA, TJ=100°C
Maximum DC Reverse Current
TA=25°C
at Rated DC Blocking Voltage per leg TA=100°C
IA
Maximum Reverse Recovery Time (NOTE 1)
TRA
Maximum Reverse Recovery Time
TJ=25°C
(NOTE 2)
TJ=100°C
TAA
Maximum Stored Charge
TJ=25°C
(NOTE 2)
TJ=100°C
OAA
Typical Junction Capacitance (NOTE 3)
CJ
Typical Thermal Resistance (NOTE 4)
R8JC
Operating Junction and Storage
Temperature Range
TJTsTG

UGF18ACT UGF188CT UGF18CCT UGF18DCT

50
35
50

NOTES: 1. Reverse Recovery Test Conditions: IF=0.5A,IR=1.0A, recover to O.25A.
2. TRR and QRR measured on LEM tester:IF=9.0A, VR=30V, dildt=50 AlI'S
3. Measured at 1.0 MHz and appiied reverse voltage of 4.0 Volts.
4. Thermal Resistance from Junction to Case per element.
212

100
70
100

150
105
150

200
140
200

UNITS

Volts
Volts
Volts

18.0

Amps

175.0

Amps

1.10
1.20
0.95
10.0
300.0
20.0
30.0
50.0
20.0
45.0
30.0
4.5
-55 to +150

Volts

~
nS

ns
nC
pf

°CIW
°C

RATINGS AND CHARACTERISTIC CURVES UGF18AT THRU UGF18DT

!z
~

24

is

20

Iilu.
ti

FIG. 2- MAXIMUM NON.fIEPETlTlVE PEAK FORWARD
SURGE CURRENT PER LEG

FIG. 1 • FORWARD CURRENT DERAnNO CURVE

,..,

B.3n Single Half Sine W.e

JEDEC Method

12

~
u.

B

~

4

r---..

1\

lI!l!!

ii

r ...T.lmax.

,

16

U)

,

1\

w
w

;c

"'"'"

0

o

25

50

75

100

125

0

150

I

175

,

CASE TEMPERATURE (OCI

1

PULSE W1DTHo3DOJIS

~

I
1

12

1.4

1.6

0.2

O. 1
0.05
0.02
0.01
0

INSTANTANEOUS FORWARD VOLTAGE, VOLTS
FIG 5· REVERSE SWITCHING CHARACTERISTICS PER LEG
~
5Or-.-~~~~~~-.
ffi

50~""~""~~~~~~~~~-1

~

401-....t-....1-=~1o-".F-....t-....1--1

i>c
l~
~
~
~

~

.

it

!1c

75

100

125

150

50

80

100

120

140

..

10~~=-_ _~~~1-----I-....

50

40

'00

15

25

20

FIG. 6- TYPICAL JUNCTION CAPAcrrANCE PER LEG

~~~~e~~!~E~:J

30

o

PERCENT OF RATED PEAK REVERSE VOLTAGE, %

I-

w

T.-25"O

1

~

.8

2

a~
!li o.5
0)

.6

5

U)~

§

i!
.•

T.. I25'C

lok"-

T••

50

I!!::E

II

1

1110

a

2% DUTY CYCLE

2
1

10

Ii ~

T..-25"C

5

30

a

=
50

is~

~

5

•

1000

ffi

~
1£

10

F1G.4· TYPICAL REVERSE CHARACTERISTICS PER LEG

FIG. 3- TYPICAL INSTANTANEOUS FORWARD
CHARACTERISTICS PER LEG

0

I

NUMBER OF CYCLES AT 60 Hz

II)

w

~

~

T...26"O
r-'.1.0MHz
r- Vlig-5Om Vp-p

.

10

o •

175
1
0.1

JUNCTION TEMPERATURE, ·C

0.2

0.1

I.

II)

..

100

REVERSE VOLTAGE, VOLTS

-------------------------------@)~e~lmdrumem
213

I

UG18ACT THRU UG18DCT
ULTRAFAST RECTIFIER
Voltage - 50 to 200 Volts Current - 18.0 Amperes
FEATURES
rO-220AB
190(4.%3)
.160(4. 6)

__I1. ·855l1.4~
. 45 1.14

.~

.no 0.30)

19~:
_l_

.3:0
.320(8.13)

""'¥""~-

..1

+11.~m~:~;:

':A~~\ml

(533
'--''':1'''90''''[4'''':0''')

1.163 29.54)
1. 03 (20.02)

l

-

1

.600 (1 .24)
.575 (114•61 )

¥"I--:<'--

(t46)

l.560 1124.22)
.530

• Plastic package has Underwriters Laboratories
Rammability Classification 94V-O
• Ideally suited for use in very high frequency
switching power supplies, inverters and as a free
wheeling diodes
• Ultrafast 25 nanosecond reverse
recovery times
• Soft recovery characteristics
• Excellent high temperature switching
• Glass passivated glass junctions
• High temperature soldering guaranteed: 250°C/10
seconds at terminals

MECHANICAL DATA
.022(0.56). . . .110[2.79)
.014(0.36)
.090(2.29)

PIN2
[CASE POSITIVE) PIN 1-~
STANDARD POLARITY PIN 3-o---+f-ICAsE

Dimensions in Inches and (millimeters)

Case: JEDEC TO-220AB molded plastic
Tenninals: Plated leads solderable per MIL-STD750. Method 2026
Polarity: As marked
Mounting Position: Any
Mounting Torque: 5 in. - Ibs. max.
Weight: 0.08 ounce. 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.
SYMBOLS

Maximum Recurrent Peak Reverse Voltage
VRRM
Maximum RMS Voltage
VRMS
Maximum DC Blocking Voltage
Voc
Maximum Average Forward Rectified Current
at Tc=10SoC
I(AV)
Peak Forward Surge Current
8.3 ms single half sine-wave superimposed
IFSM
on rated load (JEDEC Method) per leg
Maximum Instantaneous Forward Voltage per leg
g.DA
at:
20A
VF
S.DA. TJ=100°C
Maximum DC Reverse Current
TA=25°C
at Rated DC Blocking Voltage per leg TA=100°C
IR
Maximum Reverse Recovery Time (NOTE 1)
TRR
Maximum Reverse Recovery Time
TJ=2SDC
(NOTE 2)
TJ=100DC
TRR
Maximum Stored Charge
TJ=25DC
(NOTE 2)
TJ=100°C
ORR
Typical Junction Capacitance (NOTE 3)
CJ
Typical Thermal Resistance (NOTE 4)
R8JC
Operating Junction and Storage
Temperature Range
iTJ.TSTG

UGI8ACT

so
3S
SO

NOTES: 1. Reverse Recovery Test Condltions: IF=0.5A.IR=I.0A. recover to 0.25A.
2. TRR and ORR measured on LEM tester :IF=9.0A VR=30V. di\dt=50 AljUl
3. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.
4. Thermal Resistance from Junction to case per element

214

UG1BBCT
100
70
100

UGI8CCT
1S0
10S
1S0

UGI8DCT
200
140
200

UNITS
Volts
Volts
Volts

18.0

Amps

17S.0

Amps

1.10
1.20
0.9S
10.0
300.0
20.0
30.0
SO.O
20.0
4S.0
30.0
4.0
-55 to +150

Volts

!LA
ns
ns
nC
pf
°CIW
DC

RATINGS AND CHARACTERISTIC CURVES UG18ACT THRU UG18DCT
FIG. 2 • MAXIMUM NON-REPETmVE PEAK
FORWARD SURGE CURRENT PER LEG

FIG. 1 • FORWARD CURRENT DERATING CURVE

8.3"" Singlo Hal Sino Wave

,

JEDECMoIhod

r"..TJITIIIC.

~

~

........ r-- 100.

,

1

4
0
25

50

75

100

125

150

.

•
175

OJ

OJ

'00

OJ

NUMBER OF CYCLES AT 60 Hz

CASE TEMPERATURE "C
FIG. 4 • TYPICAL REVERSE CHARACTERISTICS PER LEG
3 • TYPICAL FORWARD CHARACTERISTICS PER LEG

!i

1000
500

Tc.I25"C]

200
100
50

~

a:

Tc.'oQ;:c-1

50>20
ww
UJ a:: 10

a: w
~ ~

6

UlQ

2
1

II! ~

i§

§ :::EO.5
Z

~

<

T,-25"C

02

O. 1
0.05

~ 0.02
~

.6

.4

.8

1

12

1.4

1.6

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

I

0.01
0

a

20
40
60
80
100
120 140
PERCENT OF RATED PEAK REVERSE VOLTAGE, %

FIG 5· REVERSE SWITCHING CHARACTERISTICS PER LEG

~

FIG. 8· TYPICAL JUNCTION CAPACITANCE PER LEG

60

'00

5O~--~--~--~~~~~--r-~

r~:~

~:!!30t-=m~

VsIgo5Om VP'P

w711

>c:

i~

•

•
•

:!!

~

,25

50

75

100

125

,

176

JUNCTION TEMPERATURE, 'C

0.1

Q.I

U

10

ID

10

100

REVERSE VOLTAGE, VOLTS

----------------(8 General Instrument
215

I

UGF30APT THRU UGF30DPT
ULTRAFAST RECTIFIER
Voltage - 50 to 200 Volts Current - 30 Amperes
FEATURES
ITD-3P
~

:::i~
cha~r~5 .--.1

.06(1. 51

Wlli::W
.0!/!i(2.4J

• Isolated Plastic material used carries Underwriters
Laboratory Flammability Classification 94V-0
• Internal Insulation: 1.5k VRMS
• Ideally suited for use in very
high frequency switching
power supplies, inverters
as a free wheeling diodes
• Ultrafast 30 nanosecond recovery times
• Low leakage current
• Glass passivated junction
• Soft recovery characteristics
• Excellent high temperature switching
• High temperature soldering guaranteed:
250 °C/10 seconds at terminals

MECHANICAL DATA
"I' :g~:~:7:~J
PINI~

PIN 3~Pi"it2

Cass: ITO-3P Fully overmolded plastic
Terminals: Plated leads solderable per MIL-STD- 750,
Method 2026
Polarfty: As marked

(CASE POSITIVE)
STANDARD POLARITY

Mounllng Position: MY

Dimensions In inches and (millimeters)

Mounting Torque: 10 in.-Ib. max.
Weight: 0.037 ounce, 1.04 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25DC ambient temperature unless otherwise specified. Resistive or Inductive load.

SYMBOLS
Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at Te=120'C
Peak Forward Surge Current
8.3 ms Single half sine-wave superimposed
on rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage per leg at:
15A
30A
lOA, TJ=IOO DC
Maximum DC Reverse Current
TA=25 DC
at Rated DC Blocking Voltage per leg
TA=100DC
Maximum Reverse Recovery Time Per Leg (NOTE 1)
Maximum Reverse Recovery lime TJ=25DC
Per Leg (NOTE 2)
TJ=IOODC
Maximum Stored Charge
TJ=25 DC
Per Leg (NOTE 2)
TJ=100DC
Typical Junction Capacitance Per Leg (NOTE 3)
Typical Thermal Resistance (NOTE 4)
Operating Junction and Storage
Temperature Range

VRRM
VRMS
Voe

UGF30APT UGF308PT UGF30CPT UGF30DPT
50
100
150
I 200
35
70
105
I 140
50
100
150
I 200

UNITS
Volts
Volts
Volts

I(AV)

30.0

Amps

IFSM

300.0

Amps

VF
IR
TRR
TRR
ORR
CJ
R8JC
TJ,TSTG

NOTES: 1. Reverse Recovery Test Conditions: IF =0.5A,IR =1.0A, recover to 0.25A.
2. TRR andd ORR measured on LEM tester: VR =30V, cli\dt=50 A/fJ.S IF = 15.0A
3. Measured atl.0 MHz and applied reverse voltage of 4.0 Volts.
4. Thermal Resistance from Junction to Case per element.

216

1.0
1.15
.85
15.0
800.0
20.0
35.0
50.0
22.0
50.0
75.0
1.5
-55to +150

Volts

ftA
ns
n:s
nC
pf
DC!W
DC

RATINGS AND CHARACTERISTIC CURVES UGF30APT THRU UGF30DPT
FIG. 1 • FORWARD CURRENT DERATING CURVE

1.'"

!z ..
~
a::

,

ac

3l

u..

..

!!,!

;1 I.
§cn

it

W

1
_\

,

0

:;c

.........

as

0

50

75

100

12&

fff-

".

160

CASE TEMPERATURE "C

FIG. 3- TYPICAL INSTANTANEOUS FORWARD
CHARACTERISTICS PER LEG

!;i

100

~

a
~[3

2
1

f

~
;!:

~

~3

Ii

10

:i!03)

50

100

FIG.4- TYPICAL REVERSE CHARACTERISTICS PER LEG

~

I. ::Ii:l0

T..25'C
PULSE WIDTH.300J'll 2% DUTY CYCLE
-

~C§

",a:

a~

"':::;;'5

~<

!i

aa::

L

T..T~max'l

NUMBER OF CYCLES AT 60 Hz

W

!i

a:: a::
f2~

...

8._ Single Hall Sino WIINO
JEDEC Method

0

a::

50
20
10

a::

~

1\

,.

~
w
~

FIG. 2·IIAXIIIUII NON-REPETITIVE PEAK FORWARD
SURGE CURRENT PER LEG

!l!

.2

i~

1
.05

02

I

~

,

I

~

,01 1

.4
.6
.8
1
1.2
1.4
1.6
INSTANTANEOUS FORWARD VOLTAGE, VOLTS

I
~

~

~

~

~

~

~

PERCENT OF RATED PEAK REVERSE VOLTAGE, %
FIG 5· REVERSE SWITCHING CHARACTERISTICS PER LEG
130

eo

FIG. 6· TYPICAL JUNCTION CAPACITANCE PER LEG
00

trr20AlJIS

110

5Ot--t--t-::::;;;I,"",,""'1I-+YOrr lciotAl~s
I

trr5OlAJ~

t£==-t--t--f-::::~~":B'ti'f 100Jv~
trr150NJ.I.S

2Of-

pr;=-.....III!::c.._t"""!i~'rl',! Orr ~J.l'

I

It..l!'

.!'i~-somVP:P.

.n

t--~~~-~~f-~QrrroN~

1
2B

50

75

100

125

150

175

.1

JUNCTION TEMPERATURE, 'C

.5

1

5

10

50

100

REVERSE VOLTAGE, VOLTS

- - - - - - - - - - - - - - - (DGenerallnstrument
217

I

UG30APT THRU UG30DPT
ULTRAFAST RECTIFIER
Voltage - 50 to 200 Volts Current - 30.0 Amperes
FEATURES
TD-247AD
.l23(8•

•ml7.9J
.142(3.6)
.llan.S)

•

.840(21.3)
,.8201'20.81
- 1 ' REF

rREF-'-

, +1

.11~n.O)

.108(2.7)
,.030 (.761
.020 (.511

086 (2J8)

-r--ru",
_-,-y-++-I,..I '.07611.931

t. t

·1-6O(4.1l:
.140 (3.51 I

.2IillW
+

.170
(4.31

1

-:;:1

.127(3.22)
.117 (2.97)

I

• Plastic material used carries Underwriters Laboratory Flammability Classification 94V-0
• Ideally suited for use in very
high frequency switching
power supplies. inverters and as
a free wheeling diodes
• Ultrafast 15 nanosecond recovery typical
• Low leakage current
• Glass passivated chip junctions
• Soft recovery characteristics
• Excellent with temperature switching
• High temperature soldering guaranteed:
250 °C/10 seconds at terminals

.775 119.71
I~I

.225(5.71

•

MECHANICAL DATA

4. 048 (1.22)

.04411.121

.205{5.2}

(Case Positive) PIH1~ ___;!:,PIN2
STANDARD POLARITY PIN3~E

Dimensions in inches and (millimeters)

Case: JEDEC TO-247-AD molded plastic
Tenninals: Lead solderable per MIL-STD202. Method 208
Polarity: As marked
Mounting Position: Any
Mounting Torque: 10 in.-Ib.max.
Weight: .2 ounce. 5.6 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 2S"C ambient temperature unless otherwise specified. Resistive or inductive load.
SYMBOLS

Maximum Recurrent Peak Reverse Voltage
VRRM
Maximum RMS Voltage
VRMS
Maximum DC Blocking Voltage
Voc
Maximum Average Forward Rectified Current
at Tc=120°C
ICAV)
Peak Forward Surge Current
8.3 ms single half sine-wave superimposed
IFSM
on rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage
per leg at
15A
30A
VF
10A
TJ=100°C
Maximum DC Reverse Current at TA =25°C
Rated DC Blockina Voltaae per lea TA =1 OO°C
IR
Maximum Reverse Recovery Time Per Leg (NOTE1
TRR
Maximum Reverse Recovery lime
TJ=25°C
Per Leg (NOTE 2)
TJ=100°C
TRR
Maximum Stored Charge
TJ=25°C
Per Leg (NOTE 2)
TJ=100°C
ORR
Typical Junction CapaCitance Per Leg (NOTE 3)
CJ
Typical Thermal Resistance (NOTE 4)
R8JC
Operating Junction and Storage
Temperature Range
TJTsTG

UG30APT

50
35
50

UG30BPT

I
1

I

NOTES: 1. Reverse Recovery Test Conditions: IF =O.SA.IR = 1.0A. recover to 0.2SA.
2. TRR and ORR measured on LEM tester: IF=1S.0A. VR=30V. di\dI=SO A\I1S
3. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.
4. Thermal Resistance from Junction to case per element
218

100
70
100

UG30CPT

UG30DPT

UNITS

150
105
150

200
140
200

Volts
Volts
Volts

I
1

I
30.0

Amps

300.0

Amps

1.0
1.15
0.85
5.0
800.0
20.0
35.0
50.0
22.0
50.0
150.0
1.0
-55to 150

Volts

uA
ns
ns
nC
pf
°CIW
°C

RATINGS AND CHARACTERISTIC CURVES UG30APT THRU UG30DPT
FIG. 2- MAXIMUM NON-REPI;TlTlVE PEAK FORWARD
SURGE CURRENT PER LEG

FIG. 1 • FORWARD CURRENT DERATING CURVE

m

1.1l1lD

38

a:

a ..
!i!
IL.

........

..

ticn
~I!!

\
\
\

,.

il ,.

,

~

IL.

W

~
~

00

25

76

'"

IDO

125

CASE TEMPERATURE ("C)

!i

~uu,

,~,~~

G
wen
"'W
a: a:

i==

w

1

i

~1

Z

#.

~
~

I
.4

.6

.8

1

1.2

1.4

1.6
CI.01

INSTANTANEOUS FORWARD VOLTAGE, VOlTS
FIG 5· REVERSE SWITCHING CHARACTERISTICS PER LEG
130

60

90

1

235102030150

IDO

,

~

,

=

.

..

'"

~

'"

~

~

1~

PERCENT OF RATED PEAK REVERSE VOlTAGE, %
FIG. 8- TYPICAL JUNCTION CAPACITANCE PER LEG

trr20Alps

110

T...T~"""·I

w~

> 210
~~
",a:

i3~

:01

JEDEC Method

1.000

100

:!;,.25"C

8.3"" Singl. Hall Sino Wave

-

-

FIG.4· TYPICAL REVERSE CHARACTERISTICS PER LEG

~
a:

,
I

-

NUMBER OF CYCLES AT 60 Hz

FIG. 3- TYPICAL INSTANTANEOUS FORWARD
CHARACTERISTICS PER LEG

1:~

I.

176

''''

-

100

1

a" lOO1A1""
I

50

50

trr5Qf'Y~

40

trr100N/lS

- T....25OC

trr150ArJlS

f-l.0MHz

,

70

QrrsoN)lI

50

Vaig-5Om Vp-p

0

5

Q"2OA/",,

30

10

1

25

50

75

100

125

150

175

.1

JUNCTION TEMPERATURE, ·C

.5

1

5

10

50

100

REVERSE VOlTAGE, VOlT8

----------------(DGenerallnstrument
219

I

FEPF30AP THRU FEPF30JP
FAST EFFICIENT GLASS PASSIVATED RECTIFIER
Current - 30.0 Amperes

Voltage - 50 to 600 Volts

FEATURES
ITD-3P
.598(15.21
.582114.8J

'I
.366(9.31

•• 381(9.7J

I
---i-

~

wm:nJ
.095(2.41

• Dual rectifier construction, positive centertap
• Isolated Plastic package has Underwriters Laboratory Flammability
Classification 94 V-O
• Glass passivated
chip junctions
• Superfast recovery
times,high voltage
• Low forward voltage,
high current capability
• Low thermal resistance
• Low power loss, high efficiency
• High temperature soldering guaranteed: 250°C,
.17", (4.3mm) from case for 10 seconds
• Internal Insulation: 1.5k VRMS

MECHANICAL DATA

PIN1~

~

::
PIN 3 •
CASE
(C". Poshive) PIN 2
(Standanl Polarity)

IFEPF30 I

DilTlBnsions in inches and (millimeters)

Case: ITO-3P Fully overmolded plastic
Tennlnals: Plated leads solderable per MIL-STD750, Method 2026
Polarity: As marked
Mounting Position: Any
Mounting Torque: 10 in.-Ib. max.
Weight: 0.47 ounce, 13.2 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 2S·0 ambient temperature unless otherwise specified. Resistive or inductive load.

FEPF FEPF FEPF FEPF FEPF FEPF FEPF FEPF
SYJlBOLS 30AP 30BP

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at Tc=100°C
Peak Forward Surge Current
8.3ms single half sine-wave superimposed
on rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage
at 15.0A per leg
Maximum DC Reverse Current
Tc=25°C
at Rated DC Blocking Voltage
Tc=100°C
Maximum Reverse Recovery Time (NOTE 2)
per leg
TJ=25°C
Typical Junction Capacitance per leg (NOTE 1)
Thermal Resistance (NOTE 3)
Operating Junction and Storage
Temperature Range

VRRM 50
VRMS 35
Voc 50

aocp

30DP 30FP 30GP 30HP 30JP UNITS

100 150 200 300 400 500 600 Volts
70 105 140 210 280 350 420 Volts
100 150 200 300 400 500 600 Volts

I(Av)

30.0

Amps

IFsM

300.0

Amps

VF

0.95

IR
TRR
CJ
RaJC
TJ,TsTG

NOTES:
1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.
2. Reverse Recovery Test Conditions: IF=O.SA, IR=I.0A, recover to 0.2SA.
3. Thermal Resistance from Junction to Case per leg.
220

I

1.3

I 1.5

10.0
500.0
35.0

J

175.0
2.0

-55to 150

Volts

IJA
50.0

I

145.0

ns
pf
°C/w
°C

RATINGS AND CHARACTERISTIC CURVES FEPF30AP THRU FEPF30JP SERIES

FIG.2 _ MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT PER LEG
300

W
(!J(I)

~

250

a:W

FIG. 1 -

~

ffi

a:
a:

a

FORWARD CURRENT DERATING CURVE

30

«

a:Z
ow
u.a:
""a::

\

3:~

~«
12

(!J

«

~

6.0

o

TT'V, OR, RErSTr rDl
50

o

~

\~
'\

a:~

>
«

~

T...T.. max.

...... r-.,

r-.

150

~

3:~

a: W
« a: 2.

ffi

200

O~
~

36

0(1)

W

iil ffi

I
8.3ms SINGLE HALF SINE-WAVE
JEDEC METHOD

Cl.

a

50

2.0

1.0

5.0

10.0

FIG. 2 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS PER LEG

,

eo.

150

~

Z

40.

a::
a::

20.

W

I

I

/

T"'125"C;~

::J

U

~f3

a:: a::
Ow

I

W

~

(!J

::.;

- 1 ?,?!J.c
i--

W

WCl.
(I)~

a:«
Wo
>a:
~U

10

~
?;

~

l.".,o'" ~

"". ~ ... I"
j.o .... [it

l/

I

!~

:

Ifiil

.1

0.2

...,

:

P' TJ"25"C

l-

~~

I

J2OOV~

"

0.'

0.6

a500-600V

.f

I PULSEWIDTH-300",,_

~DUTYrvCLEI

0 .•

1.2

1.0

1.4

1.6

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

1?,fi:tG
FIG. 5 - TYPICAL JUNCTION CAPACITANCE PER LEG
1000

(I)~

-- "'"

::J

0

W
Z
«

/'

...

-30Q..400V

Z

U

W
«
""(I)
«W
Wa:
...J

10

..

Z
100

.~

J f:

u.Cl.

5«

I

I
4.

(I):;

~
Z

.~

VI. /~

a:

1000

~

~,.

;

10.

a

FIG.3 - TYPICAL REVERSE
CHARACTERISTICS PER LEG

::J

100

50

20

NUMBER OF CYCLES AT 60Hz

CASE TEMPERATURE. ·C

W
a:
a:

I

I"r--I'-

o

i\

100

100

u.C-

-_50-200V

1.0

~ ~3QO.6OOV

U
Z

I-

Z

.,

«

I-

(I)

TJ'~-:"

?;
0.'

....f......o

20

40

60

500

ui

""

80

«

I-

(3

'/

100

120

~

200 , _500-600V

«
«
u

5O-4OQV

....~'"

Cl.

100

140

50

""

PERCENT OF RATED PEAK
REVERSE VOLTAGE,%
20

I- TJ.25"C
f.1.'MHz

v·1~m~~PI

10.0
0.1

0.5

1.0

5.0

10.0

50'

100

REVERSE VOLTAGE. VOLTS

- - - - - - - - - - - - - - - @jGenerallnstrument
221

FEP30AP THRU FEP30JP
FAST EFFICIENT GLASS PASSIVATED RECTIFIER
Current - 30.0 Amperes

Voltage - 50 to 600 Volts

FEATURES
T0-247AD
.078 REF
(1.981

ri' :_

• Dual rectifier construction, positive centertap
• Plastic package has Underwriters Laboratory
Flammability Classification 94V-O
• Glass passivated chip junctions
• Superfast recovery times,
high voltage
• Low forward voltage,
high current capability
• Low thermal resistance
• Low power loss, high efficiency
• High temperature soldering guaranteed:
250°C,.17", (4.3mm) from case for 10 seconds

.840[21.31

+I I

.160 £4.11"
.140 (3.51 t

.. ,.010 [.761
.020 [.511

'.076
(l:m
086 (2181
.127(3.22)
• 17(2.971

.~t
.775[19.71
t

L--'I_I
.225[5.71
.205(5.21

..

,.048(1.221
.04411.121

MECHANICAL DATA
Case: JEDEC TO-247-AD molded plastic
Terminals: Plated Leads solderable per MIL-STD750, Method 2026
Polarity: As marked
Mounting Position: Any
Mounting Torque: 10 in. - Ibs. max
Weight: 0.2 ounce, 5.6 gram

PIN1~

PI"3~E

(c... Posbivo)
PIN 2
(Standard Polarity)

IFEP30 I

Dimensions in Inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISnCS
Ratings at 25·C ambient temperature unless otherwise specified.
Resistive or inductive load.
FEP FEP FEP FEP FEP FEP FEP FEP
SYMBOLS 30AP 30BP 30CP 30DP 30FP 30GP 30HP 30JP UNITS

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at Tc=100·C
Peak Forward Surge Current
8.3ms single haH sine-wave superimposed
on rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage per leg
at 15.OA
Maximum DC Reverse Current
Tc=25°C
at Rated DC Blocking Voltage
Tc= 100·C
Maximum Reverse Recovery Time (NOTE 2)
per leg
TJ=25·C
Typical Junction Capacitance per leg (NOTE 1)
Typical Thermal Resistance (NOTE 3)
Operating and Storage Temperature Range
Temperature Range

VRRM 50
VRMS 35
Voc 50

100 150 200 300 400 500 600 Volts
70 105 140 210 280 350 420 Volts
100 150 200 300 400 500 600 Volts

I(Av)

30.0

Amps

IFSM

300.0

Amps

VF

0.95

IR
TRR
CJ
R8JC
TJTsTG

NOTES:
1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.
2. Reverse Recovery Test Conditions: IF=O.5A, IR=1.0A. recover to O.25A.
3. Thermal Resistance from Junction to Case per leg.
222

1.3

1.5

10.0
500.0

Volts

!!A

1.0

ns
pf
oCJW

-55 to +150

°C

35.0
175.0

50.0
145.0

RATINGS AND CHARACTERISTIC CURVES FEP30AP THRU FEP30JP
FIG.2 -MAXIMUM NON·REPETITIVE PEAK
FORWARD SURGE CURRENT PER LEG
300

FIG. 1 -

W
OCW
::>OC
(/)W

FORWARD CURRENT DERATING CURVE

~

~

OC::;;
««

~le

30

W
('J

24

'\

I'

12

8.3ms SINGLE HALF SINE-WAVE
JEDEC METHOD

'

150

6.0 I-INDUCTIVE OR RESI-STIVE LOAD

>

«
o

o

~

100

50

OC
OC
::>
<.)

~
Z

u..o..

(/):::;

W

::>«

ow

100

20

r-~--r_I~~/~V~i~~~~~
T....

,25.C;~V ~ /

J

,/

-

r- , ..\'l.5' C

.

~ ';:::"

10

.. 500-GOOV

Z

(/):::;

....

./
1-.... I "

Z

~

'----"~...' ,.",i'!........i_LI(_2-.J.,.L...D_UTY---l,I_YC_L_E',--'---,

II :1

0.4

0.2

0.6

,.

. ' PULSE WIDTH-3001'5

0.8

1.0

1.2

1.4

1.6

FIG. 5· TYPICAL JUNCTION CAPACITANCE PER LEG

~

1000

u..

c.
u.i

~3(J().600V

<.)

,

«

I--

(/)

40

60

80

500

Z

«

100

-S0-400V

I--

TJ":r:...' V
. . .1/~

~

20

1

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

Z

o

~~~/~~.~'~~-+--+-~--4

~

-.... 50-2OOV

0

.4

~

(/)

V\~

~<.)

J It:i 1/
J
1.0 §.~50-SJ200V-'

~

,

~

"Y:(/)

L

I

_3()()...400V

Z

('J

0.1

r---.,---,----r--,,~/-,-.,--.~

OC

~~
OCoc

a:
a:

1.0

, ...
~~
....

40

10

Ow

I--

50

o

1000

::>
W
Z
«

20

FIG. 4. TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS PER LEG

150

'c

FIG.3 - TYPICAL REVERSE
CHARACTERISTICS PER LEG

0

«
a..
«
<.)
120

140

PERCENT OF RATED PEAK
REVERSE VOLTAGE ,%

_50~600V

200

~ it.

I'-- "1-0

100

.........

It

50

,
20

'-

- ;?;.~~~z

"",

Vsig_50mVp-p

I I I II

10
.1

.5

1.0

5.0

10.0

50

,00

REVERSE VOLTAGE, VOLTS

- - - - - - - - - - - - - - - - (ll General Instrument
223

I

r-. ...

NUMBER OF CYCLES AT 60Hz

W

«
«W
Woc
-'w
Wo..
(/):::;
oc«
Wo
>oc

...... I"--

+-1---

~
Z

::>
<.)
W

~

10

100

CASE TEMPERATURE,

.....

50

!\

IIIIIIII

,-

TJ=TJ max.

I

r\

«

ffi

ocz
OW
u..OC
"y: OC
«::>
W<.)
a..

\

a::::;

~«

"-

200

~~

000
a: W

« a:

I

!

00..
36

a:
a:

5

~

250

('J(/)

100

224

SUPERECTIFIERS
0.25 TO 3.0 AMPERES
50 VOLTS TO 4000 VOLTS

~General

-------225

Instrument

I

SUPERECTIFIER
.25 to 3.0 Amperes 50 Volts to 4000 Volts
Solid Brazing, Low
Resistance, Excellent
Surge Capabilities
Brazed- Temp.BOO C

cavity-Free
(Glass-Passivated
Junction)

Completely
Encapsulated
Brazed

Opaque Glass

UL Recognized
Rame-Retardant
Molding Compound
(UL94V-O)

Introduction
No other .25 to 3.0 Ampere rectifiers of any kind - plastic, glass, or metal - can match
(or even approach) SUPERECTIFIER's combination of features .. .the result of General
Instrument's unique glass-plastic construction:

• Brazed at greater than 6000C at both leads and die-eliminates all soft solders
• Exclusive UL recognized flame-retardant epoxy molding compound rated 94V-O, the
highest available
• Patented glass passivation
• Reliability proved equal to military requirements
• Hermetically sealed construction
• Cost effective construction at plastic prices
General Instrument's SUPERECTIFIER is exactly that...a super rectifier. There is nothing
else in the world like it.
In cell construction, most other rectifiers rated up to 3.0 Amperes are soft soldered or
are only pressure contacted and silastic passivated. SUPERECTIFIER uses a patented
brazed construction and glass passivation to seal its junction hermetically.
In device encapsulation, again SUPERECTIFIER is the only one that won't go up in
flames. It is one of the few rectifiers using an exclusive flame-RETARDANT molding compound, rated UL94V-O, the highest rating available. Other plastiC rectifiers use flameENHANCING compounds. Here again, SUPERECTIFIER's superiority Is manifest. With this
construction it exceeds environmental standards of MIL-5-19500.
In summary, SUPERECTIFIER is the world's only rectifier with totally brazed construction,
with a patented glass paSSivated junction, and with flame-retardant molding encapsulation.

226

FAMILIES OF GENERAL INSTRUMENT
SUPERECTIFIER
Glass Passivated Junction Plastic Rectifiers 0.25 to 1.5 AMPERES
Types:

lN3611GPthru lN3614GP
lN4001GP thru 1N4007GP
1N4245PG thru 1N4249GP
1N5059GP thru 1N5062GP
1N5391 GP thru 1N5399GP
GI250- 1 thru G1250-2
GP02-20 thru GP02-40
GP08A thru GP08J
GP10A thru GP10V
GP15A thru GP15M

Features:
• High Temperature Metallurgically Bonded
• Plastic Package has Underwriters Laboratory Classification 94V-0
• Glass Passivated Junction overmolded in epoxy packages for
easy handling
• 10 rated current operation at 55°C Ambient Temperature with no
Thermal Runaway
• Capable of meeting Environmental Standards of MIL-S-19500
• High Temperature Soldering Guaranteed 350"CI10
Secondl.375", 9.5mm Lead Length at 5lbs. 2.25kg Tension
• Tin Plated Axial Leads, Solderable per MIL-STD-202 Methad 208

Glass Passivated Junction Plastic Rectifiers 2.0 to 3.0 AMPERES
Features:

Types:

1N5624GP thru 1N5627GP
GP20A thru GP20J
GP25A thru GP25M
GP30A thru GP30M

• High Temperature Metallurgically Bonded
• Plastic Package has Underwriters Laboratory Classification 94V-0
• Glass Passivated Junction overmolded in epoxy packages for
easy handling
• 10 rated current operation at 55 C Ambient Temperature with no
Thermal Runaway
• Typical less than 1 J.t A
• Capable of meeting Environmental Standards of MIL-S-19500
• Tin Plated Axial Leads, Solderable per MIL-STO-202 Method 208
• High Temperature Soldering Guaranteed 350 °Cll 0
SecondI.375", (9.5mm) Lead Length at 51bs (2.25kg) Tension

o.

Fast Recovery Glass Passivated Junction Plastic Rectifiers 0.50 to 3.0 AMPERES
Types:

1N4942GP thru 1N4948GP
RGP02-12E thru RGP02-20E
RGP10Athru RGP10M
RGP15A thru RGP15M
RGP20Athru RGP20J
RGP25A thru RGP25M
RGP30A thru RGP30M
BA 157GP thru BA 159GP

Features:
•
•
•
•
•
•
•

High Temperature Metallurgically Bonded
Fast switching for High Rectification Efficiency to 100kHz
Plastic Package has Underwriters Laboratory Classification 94V-0
Capable of meeting Environmental Standards of MIL-S-19500
Includes all Advantages of the SUPERECTIFIER Design
Tin Plated Axial Leads, Solderable per MIL-STO-202 Method 208
High Temperature Soldering Guaranteed: 350 ° Cll0
Secondl.375", (9.5mm) Lead Length at 5lbs. (2.25kg ) Tension

227

QUICK GUIDE TO SUPERECTIFIERS
RGPQ2'
·12EIhN
-20E

-2Oflru

DO"z04AL

DO-200tAL

0.5
55

0.25
55

TYPE
CASE
lo(A)
4PTA(C")
VR-l000(V)
VR-1211D(V)
VR-1411D(V)
VR.I600IV)
VR.1811D(V)
VR.2OIIO(V)

GP12!lO
·lhu-4

GP02

TYPE

-40

D.25
75

GI250-1
RGI1!-12E
RGD2·14E
RGD2·16E
RGD2·18E
RGD2·2OE

GP02-20
GP02·25
GP02-30
GP02·35
GP02.4D
15
3.0

VR-25ODIv)
VR-3000(V)
VR.351101V)
VR-4DII01V)
SURGE(A)
20
VF(V)
IB
FAST RECOVERY

CASE
Io(A)
4PTA("C)

D04:OCAL

GI25D-2
GI250-3
GI25D-4
15
3.5

BA157GP'
hu
BY1!i1GP'

GPOBA
IhN

GP10A

GPO&J

GP10M

DO-204AL

DO-2fMAL

0.5
55

OB
55
GPOSA
GP08B
GPIlBO
GP05G

00-204AL
1.0
55
GP10A
GP111B
GP100

VR-~

VR-lOO(V)
VR.3XI(V)
VR-3I1D(V)
VR-4IIO(V)
VRo5OO(V)
VR-6OO(V)
VR'8DD(V)
VR.IOIID(V)

lN3611GP
hu
lN3614GP&
lN3957GP

lN4001GP
hu
lN4OO7GP

lN4mGP
III..
lN4249GP

lN4933GP'

DO-2o.tAL

DO"zOo&AL

DO-204AL

D04:04AL

1.0
1110

1.0
55

lN3611GP

1.0
75
lN4IIOIGP
lN4II02GP
lN4D03GP

lN4245GP

1.0
75
IN41133GP
lN4934GP
lN41135GP

GP10G

IN3612GP

lN4II04GP

lN4248GP

IN41136GP

GPIIIJ
GP10K
GP1DM

IN3613GP
lN3614GP
lN3957GP

lN4II05GP
IN4II06GP
lN4007GP

lN4247GP
IN4248GP
IN4249GP

IN4937GP

30
1.1

30
1.1

25
12

30
1.2

~N

BAI57GP

~"'

lN4937GP'

GPDeJ

BAI56GP
BAI59DGP
BAI59GP

GP10NwY

VRooO>1000Y

20
1.3

25
13

30
1.1

QUICK GUIDE TO SUPERECTIFIERS
'TYPE
'CASE
Io(A)
4PTA(C,)
VR.5O(V)
VR.IIID(V)
VR.2OO(V)

IN4383GP
hu
IN4586GP

lN5062GP

IN5059GP

AGPI5·2OD
III..
AGPI!H!IlO

GPI5A
hu
GPI5M

IN539IGP
hu
IN5399GP

RGPI5A'
liN
RGPI5M'

DOw2CMAC

DO-Z04AC

DO-2CMAC

DO-2O&AC

DO-204AC

DO·2Q4AC

1.0
55

1.0
55

1.5
55

1.5
55
IN539IGP
IN5392GP
IN5393GP
IN5394GP
IN53956P
IN5396GP
IN5397GP
IN5398GP

Ih..

IN4383GP

IN5059GP

AGPI5-200

1.5
55
GP15A
GPI58
GPI5D

VR.3001V)
VR.411D(V)

IN4384GP

IN5060GP

AGPI5-4DO

GPI56

VR·5II01V)
VR·600IV)
VR-600Iv)
VR.IOIID(V)

IN43856P
IN4585GP
IN4586GP

I N5061GP
IN5062GP
IN5399GP

AGPI5-600
AGP15·800

GPI5J
GPI5K
GPISM

-

SURGE(A)
50
VI""'1.o
VFIVI
FAST RECOVERY

50
1.2

50

50

V,-1.1

1.1

50
1.4

GP20J

~"'

RGP20A
hu
RGP2OJ'
2.0
55
RGP20A
RGP20B
RGP20D

RGP25A
IhN
RGP25M'
DD201AO
2.5
55
RGP25A
RGP25B
RGP25D

IN51124GP
IhN
IN5627GP
DD20IAD
3.0
70

IN51124GP

GP30M
DD20IAD
3.0
55
GP30A
GP30B
GP30D

1.5
55
RGPI5A
RGPI58
RGPI5D

2.0
55
GP20A
GP2DB
GP20D

RGPI56

GP20G

RGP20G

RGP25G

IN5625GP

GP30G

RGPSOG

RGPI5J
RGP15K
RGPI5M

GP2IIJ

RGP211J

RGP25J
RGP25K
RGP25M

IN5626GP
IN5627GP

GPSIIJ
GP30K
GP30M

RGP311J
RGP30K
RGP30M

50

65
1.1

65
1.3

65
1.3

100
t.0

125
1.1

125
1.3

1.3

228

GP20A

GPSOA
~N

RGP3OA'
IhN
RGPSD'
DD201AD

3.0
55
RGP30A
RGP311B
RGP30D

GLASS RECTIFIER PROCESS
Diffused Slice

MOLYBDENUM HEA T SINKS

COPPER
LEADS

COPPER
LEADS

ALUMINIZED DIE
BRAZED AT 700 'C

"p"
1-Diffuse a PN junction into a slice of silicon.

LEADS BRAZED TO MOL YBDENUM HEA TSINKS
4. Braze the die between two molybdenum heat sinks
to which leads have been attached at approximately 7OO"C.

EVAPORATED
ALUMINUM
GLASS BODY AND PASSIVATION

2-Evaporate aluminum on both sides
of the slice to make metallurgical contact.

5-Clean the as~embly by chemir:a'1y etch!ng, washing and drying.
6-Apply glass In the for,,! of!l ffit to the die and molybdenum assembly.
7-Melt the glass by heating In an oven to approximately 600 'C.

9

TIN PLA TED
LEADS

I'..'
11.,\

C:~

I?!?~I\·
TIN PLA TED
LEADS

,;------+-'

OVERMOLDED FLAME-RETARDANT EPOXY

SAND BLASTED
ROUND DICE

3-Sandblast the slice to produce a round beveled die.

8-0vermold glass passivated construction with UL recognized flame-retardant
94V-O classification epoxy.
9-Perform finishing operations such as lead tinning, electrical testing and marking.

Package Design
The small size of the superect1fler with Its capability up to 3 Amperes permits packing densities In electronic assemblies
and equipment, while Increasing reliability. Only high temperature brazing operations are used to withstand the 6OO'C
required to melt and fuse the glass. This technique eliminates solder construction and 1remendously enhances mechanical strength and temperature cycling capability. Increasing operat1ng and storage temperature range while reducing
thermal resistance.

Reliability
Speclfled reliability data on Superect1fler devices are available from the General Instrument Semiconductor Components Reliability Department. Tr.e basic design of the superect/fler devices and the strict positive controls over
materials and manufacturing processes provide assurance of failure-free performance under the most severe condlt1ons. Processing facilities have been geared to follow the procedural requirements of Military standard 750 and are
capable of withstanding environmental extremes In excess of MIL-S-19500. Assurance of production uniformity and
reliability Is provided by a test technique called 'Operat1onal Load Line Test1ng', which has proven product reliability
with over 1 Billion SUperectlfiers now In use.

229

GP02-20 THRU GP02-40
MINIATURE HIGH VOLTAGE GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER
Voltage - 2000 to 4000 Volts
Current - 0.25 Amperes
FEATURES
D0-204AL

-r
1.0 (25.4)

MIN

.107 (2.71 .,
.080(2.0)

,.

I

+

.205'5.2)
.180(4.1)

----L-

t

1.0(25.4)

.034(.88) ~.
.028(.71)

MIN

I

• High temperature metallurgically bonded constructed rectifiers

~.-.

• Plastic package
has Underwriters Lab~.
".
oratory Aammability Classifi-" ". . ...'"
cation 94V-O
• Glass passivated cavity-free junction
• Capable of meeting environmental standards of
MIL-8-19500
• High temperature soldering guaranteed: 350°C/10
seconds/.375",(9.5mm) lead length at 5 Ibs.,
(2.3kg) tension

'"

MECHANICAL DATA

Dimensions in inches and (millimeters)
• Glass-piaSlic encapsulation technique is covered by Palenl No.
3,996,602 of 1976 and brazed·1ead assembly tl Patenl No. 3,930,306
of 1976

~®

~
. '

Case: JEDEC DO-204AL Molded plastic over glass
Tenninals: Plated Axial leads, solderable per MIL8TO-750, Method 2026

Polarity: Color band denotes cathode
Mounting Position: Any
Weight: 0.012 ounce, .3 gram

MAX/MUM RATINGS AND ELECTRICAL CHARACTERiSTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.
For capacitive load. derate current by 20%.

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
.375", (9.5mm) Lead Lengths at TA=55°C
Peak Forward Surge Current
8.3ms single half sine-wave superimposed
on rated load (JEDEC Method) at TA=55°C
Maximum Instantaneous Forward Voltage at 1.0A
Maximum DC Reverse Current
TA= 25°C
at Rated DC Blocking Voltage
TA=100°C
Typical Reverse Recovery Time (NOTE 2)
Typical Junction Capacitance (NOTE 1)
Typical Thermal Resistance (NOTE 3)
Operating Junction and
Storage Temperature Range

GP02

GP02

GP02

GP02

GP02

SYMBOLS

-20

·25

·30

·35

-4D

UNffS

VRRM
VRMS
Voe

2000·
1400
2000

2500
1750
2500

3000
2100
3000

3500
2450
3500

4000
2800
4000

Volts
Volts
Volts

I(AV)

0.25

Amps

IFsM
VF

Amps
Volts

IR
TRR
CJ
ReJA

15.0
3.0
5.0
50.0
2.0
3.0
130.0

TJ,TsTG

-65 to +175

°C

NOTES:

1. Measured at 1 MHz and applied reverse voltage of 4.0 Volts.
2. Reverse Recovery Test Conditions: IF=O.SA, IR= 1.0A. Irr=.2SA.
3. Thermal Resistance from Junction to Ambient at .37S" (9.Smm) Lead Lengths, P.C. Board Mounted.
230

IJ.A
fl.S
pf
°CIW

RATINGS AND CHARACTERISTIC CURVES GP02·20 THRU GP02·40

FIG. 2 -

TYPICAL INSTANTANEOUS FORWARD
CHARACTERISTICS

10

0

w

LL

i=en
UW
Wa:
a:W
OQ.
a:::<
««
::a:f-oifi
u..a:
Wa:
C)::l
«u
a:
W

,

FIG. 1 - FORWARD CURRENT
DERATING CURVE
.25

V

""
"

.20
.15
.10

"I"

SINGLE PHASE
HALF WAVE 60Hz

.05 r RESISTIVE OR

INDUCTIVE LOAD
0.375" (9.5mm) LEAD LENGTHS

>

«

25

50

75

100

125

TJ = 25°C
PULSE WIDTH = 300
2% DUTY CYCLE

I

150

J

175

.01

AMBIENT TEMPERATURE, °C

j.Js

1.0

2.0

3.0

4.0

5.0

6.0

7.0

B.O

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS
FIG. 3 - MAXIMUM NON-REPETITIVE
PEAK FORWARD SURGE CURRENT
5

j,

8.3ms SINGLE HALF SINE-WAVE

r-...

FIG. 4 -

JEDEC METHOD

I"

u..a.

. Tj-TJrnax

W

D.

"

U
Z
«
fG
«Q.
«
U
z

....

0

10.0

1.0

100

NUMBER OF CYCLES AT 60Hz

5.0

-......

a:
a:
WW
w::<
a:«
enO
::la:
AU
wz::<

10.0

~t-="

Zz
«w
f-a:
en a:
z::l
-u

1.0

1- ~

TJ = 25°C

~

......

3.0

a

2.0

u
z
::l
...,

1.0

VSi~: b~~~p-p-

~~

~

i=

1.0

0.4

FIG. 5 - TYPICAL REVERSE
CHARACTERISTICS
TJ::: 100G e

>Q.

I

~

4.0

0.1

wen
enw

TYPICAL JUNCTION CAPACITANCE

6.0

4.0

10

.....

40

100

REVERSE VOLTAGE, VOLTS

-

FIG. 6 -

SUPERECTIFIER

CAVITy·rREE
(GLASS·PASSIVATED
JUNCTION)

0.1

~ f:=TJ - 25'C
.01

I........ """
20

40

60

80

100

120

140

~~~:~~GEkiED

PERCENT OF RATED PEAK
REVERSE VOLTAGE ,%

BRAZED CONSTRUCTION

OPAQUE

GLASS

---------------CiGenerallnsbument
231

•

G1250-1 THRU G1250-4
MINIATURE HIGH VOLTAGE GLASS PASSIVATED
JUNCTION RECTIFIER
Voltage - 1000 to 4000 Volts
Current - 0.25 Amperes
FEATURES
• High temperature metallurgically bonded constructed rectifiers

DO-204AL

• Plastic package
has Underwriters Laboratory Flammability Classification 94V-0

-t
1.0 (25.4)
.107(2.7)
.080(2.0)

-.-

• Glass passivated cavity-free junction

MIN

.1

1+ ~

• Capable of meeting environmental standards of
MIL-8-19500

.205 (5.2)
.160(4.1)

• High temperature soldering guaranteed: 350°C/10
seconds/.375", (9.5mm) lead length at 5 Ibs.,
(2.3kg) tension

-+-

t

1.0 (25.4)

MIN
.034(.86) •
. 028 (.71)

t

+

MECHANICAL DATA
Dimensions in inches and (millimeters)
• Glass-plastic encapsulation technique is covered by Patent No.
3,996.602 01 1976 and brazed -lead assembly to Patent No. 3.930.306
011976

~®
. . '

Case: JEDEC DO-204AL Molded plastic over glass
Tenninals: Plated Axial leads, solderable per MIL810-750, Method 2026

Polarity: Color band denotes cathode

Mountlng_Hlon, Any
Weight: 0.012 ounce, .3 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERiSTICS
Ratings at 2SoC ambient temperature unless otherwise specified. Resistive or inductive load.
For capacitive (oad. derate current by 20%.

SYAfBOLS

G1250-1

G1250-2

G1250-3

GI250-4

UNrrs

Maximum Recurrent Peak Reverse Vo~age

VRRM

1000

2000

3000

4000

Vo~s

Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
.375", (9.5mm) Lead Lengths at TA = 75°C
Peak Forward Surge Current
8.3ms single half sine-wave superimposed
on rated load at TA=75°C (JEDEC Method)

VRMS
VDC

700
1000

1400
2000

2100
3000

2800
4000

Vo~s

I(Av)

IFsM
Maximum Instantaneous Forward Voltage at 0.25A
VF
Maximum DC Reverse Current
TA =25°C
at Rated DC Blocking Voltage
TA=100°C
IR
Typical Reverse Recovery Time (NOTE 2)
TRR
Typical Junction Capacitance (NOTE 1)
CJ
Typical Thermal Resistance (NOTE 3)
R8JA
Operating Junction and
Storage Temperature Range
TJ,TsTG

0.25

Amps

15.0

Amps

3.5
5.0
50.0

Volts

2.0
3.0
130.0

IJ.S
°CIW

-65 to +175

°C

NOTES:
1. Measured at 1 MHz and applied reverse vollage of 4.0 Volts.
2. Reverse Recovery Test Conditions: IF =O.SA. IR =1.0A. Irr=O.2SA.
3. Thermal Resislance from Junction to Ambient at .37S· (9.Smm) Lead Lengths, P.C. Board Mounted.
232

Volts

p.A
pf

RATINGS AND CHARACTERISTIC CURVES G1250-1 THRU G1250-4
FIG. 2 - MAXIMUM NON-REPETITIVE
PEAK FORWARD SURGE CURRENT
IS

o

UJ

u:

t=en
OUJ
UJa:
a:UJ

FIG. 1 - FORWARD CURRENT
DERATING CURVE

\.

.20

b..

"

s: r=, 0

...

.05

1\

0
25

~

50

75

100

""

\

SINGLE PHASE
HALF WAVE 60Hz
RESISTIVE OR
INDUCTIVE LOAD
0.375" (9.5mm) LEAD LENGTHS

~G
a:

SINGLE HALF SINE-WAVE
JEDEC METHOD

TJ-TJ max

\.

~~1 5

UJ

la.3mS
I"'~

.2 5

««

gj~
"-a:
LLI a:

~

125

150

10

100

NUMBER OF CYCLES AT 60Hz

175

AMBIENT TEMPERATURE. °C

FIG. 3 - TYPICAL INSTANTANEOUS FORWARD
CHARACTERISTICS
10

FIG. 4 - TYPICAL JUNCTION CAPACITANCE

V

6.0 ,--,-......T"TTTn--...--,-....rnnr---,-,-rr"TTl

"

"'--

II

~ 5.0 I -...... t"-..

o

I

~ 40 r--t--++i+t-tttr--....----'~Io;;::-+-H+ttit---ll--t--t-+t+ttf

5

TJ - 25°C
PULSE WIDTH =

IT~ I~ 25'C

f " I MHz
VSig '" 50mVp-p

UJ

300~s

1',,1"-

it 3.0 f--+-+-++I+I-tt--f-++tf""';ti---t-t-H-tlH'f1

2% DUTY CYCLE

t3~ 20 r---r--t-H-t-Ht+t---t--t-t-ttttit--t""'ot,,-;-1-tt-tH
r--....
t=

~

J

.01

1.0 1.5

10 t--+--+-++-H-t+t--t-++-t-t-tttt----t-t-H-HM

...,

:::l
2.0 2.5

3.0 3.54.0

4.55.0

5.56.0

6.5 7.0

7.5 B.O

0.1

INSTANTANEOUS FORWARD VOLTAGE. VOLTS

0.4

1.0

4.0

10

40

REVERSE VOLTAGE. VOLTS

FIG. 5 - TYPICAL REVERSE
CHARACTERISTICS

UJen
enUJ
a: a:
UJUJ

10

Fig. 6-SUPERECTIFIER

f-TJ" 100'C

>c..

~~
enO

1.0

:::la:

00

~::E
~

r=

~iE
ti~

TJ=25~C

0.1

-J,.-I"""'"

~ G .01
20

40

60

80

100

120

140

~~~:~~~EkiED

PERCENT OF RATED PEAK
REVERSE VOLTAGE.%

BRAZED CONSTRUCTION

OPAQUE
GLASS

---------------tlGeneralInstrument
233

100

GP08A THRU GP08J
MINIATURE GLASS PASSIVATED JUNCTION
PLASTIC RECTIFIER
Voltage - 50 to 600 Volts
Current - 0.8 Amperes
FEATURES

*

DD-204AL

-r
1.0 (25.41
NIN

~I
.080(2.01

1+ +I
.205t5.2)
_160(4.11

--L-

t

1.0 (25.4)
NIN
.034(. 86 1.

I

+

.028(.711

'"

• High temperature metallurgically bonded constructed rectifiers
.
~,
• Plastic package
has Underwriters Lat>.:,""",,, ~
oratory Flammability Classifi.~ .
cation 94V-0
-----• Glass passivated cavity-free junction
• 0.8 Ampere operation at TA= 55°C with no thermal runaway
• TypicallR less than 0.11lA
• Capable of meeting environmental standards of
MIL-S-19500
• High temperature soldering guaranteed: 350°C/1 0
seconds/.375", (9.5mm) lead length at 5 Ibs.,
(2.3kg) tension

MECHANICAL DATA

Dimensions in inches and (millimeters)
• Glass-plastic encapsulation technique is covered by Patent No.
3,996,6020"976and brazoo-l6adassemblytoPatentNo. 3.930,306

011976

~
•

~

®

•

Case: JEDEC DO-204AP Molded plastic over glass
Tenninals: Plated Axial leads, solderable per MILSTD-750, Method 2026
Polarity: Color band denotes cathode
Mounting Position: Any
Weight: 0.012 ounce, .3 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz Resistive or inductive load.
For capacitive load, derate current by 20%.

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
.375", (9.5mm) Lead Lengths at TA =55°C
Peak Forward Surge Current
8.3ms single half sine-wave superimposed
on rated load (JEDEC Method) at TA=55°C
Maximum Instantaneous Forward Voltage at 0.8A
Maximum Full Load Reverse Current Full Cycle
Average 375" (9.5mm)Lead Lengths at TA=55°C
Maximum DC Reverse Current
TA=25°C
at Rated DC Blocking Voltage
TA=125°C
Typical Reverse Recovery Time (NOTE 1)
Typical Junction Capacitance (NOTE 2)
Typical Thermal Resistance (NOTE 3)
Operating Junction and
Storage Temperature Range

SYMBOLS

GP08A

GP088

GP08D

GP08G

GP08J

UNITS

VRRM
VRMS
Voc

50
35
50

100
70
100

200
140
200

400
280
400

600
420
600

Volts
Volts
Volts

I(AV)

0.8

Amps

IFsM
VF

25.0
1.3

Amps
Volts

IR(AV)

iJA

IR
TRR
CJ
R8JA

30.0
5.0
50.0
2.0
8.0
45.0

J.1S
pf
°CIW

TJ,TsTG

-65 to +175

°C

NOTES:
1. Measure on IF..o.5A,IR=1.0A.lrr=.25A.
2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.
3. Them1a1 Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths. P.C. Board Mounted.
234

iJA

RATINGS AND CHARACTERISTIC CURVES GP08A THRU GP08J

FIG. 1 - FORWARD CURRENT
DERATING CURVE

I-

FIG. 2 TYPICAL INSTANTANEOUS FORWARD
CHARACTERISTICS

Z

10

cr:
cr:
::>

~

0.8

~ f3

06

~
cr:
cr:
::>

W

r""--

U

~ffi
gj ~

04

u..«

""

..... r.....

02

~
cr:

r""-- r.....

f- RESEISTIVE OR INDUCTIVE LOAD.

0
20

40

80

60



20

Uen

Ww

15

l'

'" I'

8.3ms SINGLE HALF SINE-W AVE
JEDEC METHOD

en::;:

u..Q.
ui
U

~

C)cr:
cr: W
::>a..

0«

FIG. 4 - TYPICAL JUNCTION CAPACITANCE

TJ.TJmax

Z

~

«
u
z

cr:

~

cr:
0

u..
l£
«
W

50

1'f

1"1'

10

100

5.0

0

;:::

TJ.25"C
f.1.0MHz
Vsig • 50 Vp-p

...... ""
5.0

U

Z

6

8 10

20

..,

::>

40 60 80100

a..

lL

1.0

1.0

NUMBER OF CYCLES AT 60Hz

100

10

REVERSE JUNCTION POTENTIAL VOLTS

FIG. 5 - TYPICAL REVERSE CHARACTERISTICS
FIG. 6 CAI/ITy-rREE

IGlASS.P~G~~V~6E~

SUPERECTIFIER

__/I--I-

BRAZED-TEMP;a. 6OO"C,

~_---''..-

UL RECOGNIZED

~~L~~~E~'6R~t~JNO
IUL 94V-0)

If.

~~~:~~~~kiEO

PERCENT OF RATED PEAK REVERSE VOLTAGE ,%

BRAZED CONSTRUCTION

OPAQUE

GLASS

---------------e Generallnsburnent
235

1N3611GP THRU 1N3614GP AND 1N3957GP
MINIATURE GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER
Voltage - 200 to 1000 Volts
Current -1.0 Ampere
FEATURES
DO-204AL

-t
1.0 (25.4)
.107(2.7)
.080(2.0)

MIN

I.!

.1

.20~5.2)
.160(4.1)

-t1.0 (25.4)

MIN

I

.034(.86)..
.028(.71)

+

• High temperature metallurgically bonded constructed rectifiers
• Plastic package
~~
...........
has Underwriters Lab'. '" ....
oratory Flammability Classifi.....' ..
cation 94V-O
• Glass passivated cavity-free junction
• 1.0 Ampere operation at TA=7SoC with no thermal
runaway
• TypicallR less than 0.1 11 A
• Capable of meeting environmental standards of
MIL-S-19S00
• High temperature soldering guaranteed: 3S0°C/10
seconds/.37S", (9.Smm) lead length at Sibs.,
(2.3kg) tension

MECHANICAL DATA

Dimensions in inches and (millimeters)
" Glass-p/asllc encapsuIa/iQn technique is covoredbyPatenlNo. 3,996,602 of 1976
and blazed ·lead assembly 10 Patent No. 3,930,306 of 1976

~
~.

®

•

Case: JEDEC DO-204AL Molded plastic over glass
Tenninals: Plated Axial leads, solderable per
MIL-STD-7S0, Method 2026
Polarity: Color band denotes cathode
Mounting Position: Any
Weight: 0.012 ounce, .3 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient lemperature unless otherwise specified. 60 Hz, resistive or inductive load.
For capacitive load, derate current by 20%.
tN
SYMBOLS 3611GP

• Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
• Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
.375", (9.5mm) Lead Lengths at TA=75°C
·Peak Forward Surge Current
B.3rns single half sine-wave superimposed
on rated load (JEDEC Method)
Maximum Inslantaneous Forward Voltage at 1.0A
• Maximum DC Reverse Current
TA=25°C
at Rated DC Blocking Voltage
TA=150°C
Typical Reverse Recovery lime (NOTE 1)
Typical Junction Capacitance (NOTE 2)
Typical Thermal Resistance (NOTE 3)
Operating Junction and
Storage Temperature Range

VRRM
VRMS
Voc

200
140
200

tN
36t2GP

tN
3613GP

tN
3614GP

tN
3957GP

UNITS

400
2BO
400

600
420
600

BOO
560
BOO

1000
700
1000

Volts
Volts
Amps

I(AV)

1.0

Amps

IFSM
VF

Amps
Volts

IR
TRR
CJ
RaJA

30.0
1.0
1.0
300.0
2.0
10.0
45.0

TJ,TsTG

-65 to +175

°C

NOTES:
1. Reverse Recovery Test Conditions: IF=O.5A, IR = 1.0A, Irr =.25A.
2. Measured at 1.0 MHz and applied reverse voltage of 4.0 VollS.
3. Thermal Resistance from Junction to Ambient at .375· (9.5mm) Lead Lengths, P.C. Board Mounted •
• JEDEC Registered Values

236

~

!lS
pf
°CIW

RATINGS AND CHARACTERISTIC CURVES
1N3611GP THRU 1N3614GP AND 1N3957GP

FIG. 2 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

FIG. 1- FORWARD CURRENT
DERATING CURVE
0

u:

i=en

0.8

00..

0.8

OW
Wa::
a::W
a::::;;
~

-

I-

OaJ
LLa::

0.4

Cl::J

0.2

Wa::

..:0

g;LLo..ffi

~
SINGLE PHASEHALF WAVE
60Hz

>

50

75

100

'.0

fil~

0.'

Z Z

0.2

~a

~

RESISTIVE OR

25

en::;;

~~

""'\

INDUCTIVE LOAD
0375· j9 5mm\ LEAD LENGTHS

a::
W

125

150

175

AMBIENT TEMPERATURE

en

~

5

0

"

2.0

4.0 6.0

I

Pulse WIdth = 300 /J. S
2% Duty CYCle

I
0.6

O.B

1.0

l§

~~
40

1.2

1.'

1.6

~~ 50'llml~11
.E:

a..

20

J

TJ - 25°C

ui

TJ-TJmax.

10

I

L..

.0'
.02

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

r----~

TJ" 25°C
f= lMHz

Vsig = SOmVp-p

'O~~~~~II~~~~II~~~~~

~Z 50~
~

1.0

I :'

I

FIG. 4 - TYPICAL JUNCTION CAPACITANCE

I I

~

"""

'Ii 100 r--.-'"T1rrrr.r-,-"'"T1rTTT--;--'-T"TTT"I1

B.3ms SINGLE HALF
SINE-WAVE (JEDEC Method)

"-

II"'"

0.1

.Q1

FIG. 3 - MAXIMUM NON-REPETITIVE
PEAK FORWARD SURGE CURRENT

Of'

4.0

2.0

::J":

"-

..:

~

'0

~ffl

..:..:
a::

0

~

~

w

~-+~++~H--4-++44H+--4-4~~

1.~ 1.L--L-L...LJJ..J..U,.L
o _l-L.J....LJJJ,Lio_-L-LLJ.lllJ,oo

60 80100

NUMBERS OF CYCLES AT 60Hz

REVERSE VOLTAGE, VOLTS
~

Z

FIG. 6 - SUPERECTIFIER

FIG. 5 - TYPICAL REVERSE CHARACTERISTICS

W

a::
a::

::J
U

4.0

ffi ffi

10

BRAZED-TEMP .. 6OO"C

wen
enw

>0..

W::;; 0.4

a::..:

enO

65

0 .,

~~

.0'

~

Z

~

en
Z

.0' L-_ _L.._--..JL-_.....I._ _....L_ _..L_ _...L_--l
0

2C

'0

60

80

'00

120

140

COMPLETELY
ENCAPSULATED
BRAZED CONSTRUCT'O"

OPAQUE

GLASS

PERCENT OF RATED PEAK REVERSE VOLTAGE ,%

- - - - - - - - - - - - - - - pIastic 9ncapsulalfon IIlchnlque is CDvollld by Patent No. 3,996,602 011976
and brazed -lead assembly 10 Parenl No. 3,930,306011976

~ ®

MDunff",,_HiDn, Any
Weight: 0.012 ounce, 0.3 gram

."

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.
For capacitive load, derate current by 20%.

IN

"Maximum Recurrent Peak Reverse Voltage
"Maximum RMS Voltage
"Maximum DC Blocking Voltage
"Maximum Average Forward Rectified Current
.375", (9.Smm) Lead Lengths at TA=7SoC
"Peak Forward Surge Current
S.3rns single half sine-wave superimposed
on rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage at 1.0A
"Maximum Full Load Reverse Current, Full Cycle
Average .375", (9.Smm) Lead Length TA= 75°C
TA=2SoC
'Maxlmum DC Reverse Current
at Rated DC Blocking Voltage
TA=12SoC
Typical Reverse Recovery lime (NOTE 1)
Typical Junction Capacitance (NOTE 2)
Typical Thermal Resistance (NOTE 3)
'Operating Junction and Storage Temperature Range

IN

IN

IN

IN

IN

UNrrS

100 200 400 600 SOO 1000
70 140 2S0 420 560 700
100 200 400 600 SOO 1000

Volts
Volts
Volts

VRRM
VRMS
Voe

50
35
50

I(Av)

1.0

Amps

IFSM
VF

30.0
1.1

Amps
Volts

IR(Av)

30.0
5.0
50.0
2.0
S.O
45.0
-65 to +175

}!A

IR
TRR
CJ
RSJA
TJ,TsTG

NOTES: 1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, Irr= 0.25A.
2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Voo.
3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted .
• JEDEC Registered Values

238

IN

SYilBOI.S 4OD1GP 4DOZGP 4OD3GP 41J1J4GP 4D05GP 40D1JGP 4OD7GP

}!A

!IS
pf
°CIW

°c

RATINGS AND CHARACTERISTIC CURVES 1N4001GP THRU 1N4007GP

FIG. 2 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS
20

FIG. 1 - FORWARO CURRENT
DERATING CURVE

0

W

1.0

u::

i=en
Uw
Wa:
a:W
00..
a:::!!

l\.,

.6

3: .
a: I-

.4

SINGLE PHASE

Wa:

.2

60Hz
RESISTIVE OR
INDUCTIVE LOAD

'\

(!l::J
c(U

a:
W

0
0

>
c(

25

50

75

100

125

::Jc(

~~

Za:
en

.01
0.6

175

FIG. 4 20

8.3~:1 SINGLE HALF

,

SINE-WAVE (JEDEC Method)

"-

~
~

L~~.'

"-

I'

TJ - 25°C
Pulse Width = 300/.15
2% DUly Cycle I

l
0.8

1.0

1.2

1.4

.'

1.6

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

FIG. 3 - MAXIMUM NON-REPETITIVE
PEAK FORWARD SURGE CURRENT

~

.02

Z

AMBIENT TEMPERATURE

30

"

01

~ 130•

\.

150

t...o"

1/

1.0

!li

Cu Leafs

HALF WAVE

4.0
2.0

O~ .. 0.4
Z 0.2

'5'~~;5~~)

c(c(

offi
"-a:

~~
a: a:
Ow
u.. a..
en::!!

L = .375" (9.Smm)

~~

.8

10

o
a:

TYPICAL JUNCTION CAPACITANCE

-

r- -I"-

10
8.0
6.0

TJ=25°C
f= 1MHz
Vsig - 50mVp-p

Z

~ 4.0

C3
~

~ ....

2.0

c(
U
1.0
0.1

0.4

1.0

10

40

80 100

REVERSE VOLTAGE, VOLTS

5.0
1.0

2.0

4.0 6.0

10

20

40

6080100

NUMBERS OF CYCLES AT 60Hz

~

FIG. 6 - SUPERECTIFIER

Z
W

a:
a:

::J
U

wen
enW
a: a:
WW
>0..
W::!!

FIG. 5 -

TYPICAL REVERSE CHARACTERISTICS
BRAZED-TEMP

10

-

1.0

a:c(

~~OA

;at

6000C

TJ-100°C

fil201
Z::;:

~
Z
c(
I-

en
Z

.,.

0.'

TJ -' 25°C

~:i'c!f~~~mED

I

.01
o

20

40

60

aD

100

120

BRAZED CONSTRUCTION

140

OPAQUE
GLASS

PERCENT OF RATED PEAK REVERSE VOLTAGE.%

---------------(D General Instrument
239

1N4245GP THRU 1N4249GP
MINIATURE GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER
Voltage - 200 to 1000 Volts Current -1.0 Ampere
FEATURES
• High temperature metallurgically bonded constructed rectifiers
• Plastic package
~
has Underwriters Lab"
oratory Flammability Classi'
fication 94V-0
• Glass passivated cavity-free junction
• 1.0 Ampere operation atTA=55°C with no thermal runaway
• Capable of meeting environmental standards of
MIL-S-19500
• High temperature soldering guaranteed:
350°C/10 seconds/.375", (9.5mm) lead length at
5 Ibs., (2.3kg) tension

DO-204AL

-r
1.0 (25.4)

.107(2.7)
.080(2.0)

-.MIN

.1

I· ~

.205(5.2)

.180(4.1)

---.i....-

t

1.0 (25.4)

MIN

.034(.86) •
.028 (.71)

+

!

Dimensions in inches and (millimeters)

MECHANICAL DATA
• Giassplastic encapsulation tecIIn/qUe Is covered by Patent No. 3.996,602 of t976 and
bll2«1-/8ad assenb/y to Parent No. 3,930,306 0/1976

~

~

Case: JEDEC DO-204AL Molded plastic over glass
Tenninals: Plated Axial leads, solderable per
MIL-STD-750, Method 2026
Polarity: Color band denotes cathode
Mounting Position: Any
Weight: 0.012 ounce, .3 gram

:XlMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25'C ambient 1emperature unless otherwise specified. 60 Hz Resistive or inductive load.
For capacitive load, deralll current by 20%.

1N
SYMBOLS 4245GP

• Maximum Recurrent Peak Reverse Voltage
VRRM
• Maximum RMS Voltage
VRMS
• Maximum DC Blocking Voltage
Voc
• Maximum Average FOnNard Rectified Current
.375", (9.5mm) lead lengths at TA=55DC
I(Av)
• Peak FOnNard Surge Current
8.3rns single hall sine-wave superimposed
on rated load (JEDEC Method)
IFsM
• Maximum Instantaneous FOnNard Voltage at 1.0A
VF
• Maximum Full load Reverse Current Full Cycle
Average .375" (9.5mm) lead length TA=55°C
IR(AV)
• Maximum Reverse Current at Rated TA=25°C
DC Blocking Voltage
TA=125°C
IR
Typical Junction Capacitance (NOTE 1)
CJ
Typical Thermal Resistance (NOTE 2)
R8JA
• Operating Junction Temperature Range
TJ
• Storage Temperature Range
TSTG

200
140
200

1N
4246GP

1N
4247GP

1N
424BGP

1N
4249GP

UNrr5

400
280
400

600
420
600

800
560
800

1000
700
1000

Volts
Volts
Volts

1.0

Amps

25.0
1.2

Amps
Volts

50.0
1.0
25.0
8.0
45.0
-65 to +160
-65 to +175

!1A

NOTES:
1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.
2. Thermal Resistance from Junction to Ambient at .375" (9.Smm) lead lengths, P.C. Board Mounted .
• JEDEC regls1ered values
240

IJA
pi

OCIW
DC
DC

RATINGS AND CHARACTERISTIC CURVES 1N4245GP THRU 1N4249GP

FIG. 2 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS
10

FIG.1 -

FORWARD CURRENT DERATING CURVE

o

1.0

W

\.

f-(/J
(.Jw
Wac
a:w
Oel.
a::::;
««

a:

I

I\.

0

SINGLE-PHASE,

HALF-WAve,6OHz,

\.

\.

.6

:;::,..:

IN~~S6~T~~El~~D- r--

;:3

~

n

z

I

100

la

\

1~

~ (f)
a:w
::Ja:
(/Jw

~~

20

15

"""

1.4

1.6

1.8

FIG. 4 - TYPICAL JUNCTION CAPACITANCE
30

I I IIII
TJ = 25°C

~INE-WAVE (JEDEC METHOD)

U.

0.

10

f = 1.0MHz
Vsig = 5OmVp-p

t--....

u.i

........

10

()

z

r--.r-.

~

(3

«
11.

~3
el.

1.2

C

~J~TJmax.

««

OW
LLa:
:<0 a:

1.0

8.3ms SINGLE HALF

:;::,..:
a: Z

0.8

INSTANTANEOUS FORWARD VOLTAGE.
VOLTS

_

FIG. 3 - MAXIMUM NON-REPETITIVE
PEAK FORWARD SURGE CURRENT
I I I

-

~

0.6

In

=

TJ ~ 25'C

PULSE WIDTH = 300l-lS 2% DUTY CYCLE

I
.01

AMBIENT TEMPERATURE

25

f-

(/J

1\
m

0.1

~

za:

I\.

«

~

;::

X

w
>

1.0

LLel.
(f):::;
::J«
8~
zZ

37~~:~;H~ LE~ I---

\,1

a:Z
OW
LLa:
wac
",::J
«(.J
a:

-

~i3
~ ffi

«
()

5

I
10

10

100

REVERSE VOLTAGE. VOLTS

NUMBER OF CYCLES AT 60Hz

FIG. 6 -

..:
z

100

SUPERECTIFIER

FIG. 5 - TYPICAL REVERSE CHARACTERISTICS

w
a:
a:

10

BRAZED· TEMP,. 6OO"C

::J
()

-

W(/)

en w

1.0

>11.

.4

a:«
~~
O(.J

01

a: a:
ww

w:::;;

~ ~

«

I-

z

~

r-TJ - 100"e

TJ

.04

-

= 25°C

~

.01

o

20

40

60

80

100

120

140

COMPLETELY
ENCAPSUlATED
BRAZED CONSTRUCTION

O""QUE
GLASS

PERCENT OF RATED PEAK REVERSE VOLTAGE .%

~

---------------.GeneralInstrument
241

GP10A THRU GP10Y
MINIATURE GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER
Voltage - 50 to 1600 Volts Current - 1.0 Ampere
FEATURES
• High temperature metallurgically bonded constructed rectifiers
• Plastic package
~
... , .•.•.•..
has Underwriters Lab.....
oratory Flammability Classifi-' ",
.
cation 94V-0
• Glass passivated cavity-free junction
• 1.0 Ampere operation at TA=55°C with no thermal runaway
• Typical IR less than 0.1 J.L A
• Capable of meeting environmental standards of
MIL-S-19S00
• High temperature soldering guaranteed:
3S0°CI1 0 seconds/.37S", (9.Smm) lead length at
Sibs., (2.3kg) tension

DO-204AL

-----r
1.0 (25.4)

.107(2.7)
.080(2.0)

MIN

_I

1*~
!
.205(5.2)
.160(4.1)

-t-

1.0(25.4)

.034(.86).
.028(.71)

*

MIN

I

'"

MECHANICAL DATA

Dimensions in inches and (millimeters)

Case: JEDEC DO-204AL molded plastic over glass
Terminals: Plated Axial leads, solderable per

·GIas&-p/asli:encapsulallonleChnlqueiscoveredbyPatentNo. 3,996,60201 1978
IIJId b/82JJd-/eadlJSS8ntJ/ytoPatentNo.3,930.306ofI976

MIL-STO-7S0, Method 2026

Polarity: Color band denotes cathode
Mounting Position: Any
Weight:0.0120unce,.3gram

~

~~AI:X/AlUAl

RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 2SOC ambienl temperature unless otherwise specified.
Single phase, half wave 60Hz. resistive or inductive load.
For capacitive load, derate current by 20%.

Maximum Recurrent Peak Reverse Voltage
Maximum Average Forward Rectnied Current
.375", (9.5mm) Lead Lengths (see lig. 1)
Peak Forward Surge Current
8.3ms single half sine-wave superimposed
on rated load (JEDEC Method)
Maxi mum Instantaneous Forward Voltage at 1.0A
Maximum Full Load Reverse Current, Full Cycle
Average, .375", (9.5mm) Lead Lengths at TA=75°C
Maximum DC Reverse Current
TA=25°C
at Rated DC Blocking Voltage
TA=125°C
Typical Reverse Recovery lime (NOTE 1)
Typical Junction Capacitance (NOTE 2)
Typical Thermal Resistance (NOTE 3)
Operating Junction and Storage Temperature Range

SYllBOf.S

IAIBIDIGIJIKIMINlalTIVIWIYI

UNI1S

VRRM

50 to 1600 Volts, See Fig 5.

Volts

~.O

I(Av)

IFSM
VF

30.0
1.1

I

IR(Av)
IR
TRR
CJ
R9JA
TJ,TsTG

B.O

I

-65 to +175

I

1.2

30.0
5.0
50.0
2.0
7.0
45.0

I

NOTES:
1. Reverse Recovery Test Condition: IF=O.SA, IR=1.0A, Irr=.25A.
2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volls.
3. Thermal Resislance from Junction to Ambient at .375" (9.Smm) Lead Lengths, P.C. Board Mounted.
242

Amps

25.0

I

1.3

Amps
Volts
I1A

I

5.0

-65 to +150

I1A
I1S
pI
°cm
°C

RATINGS AND CHARACTERISTIC CURVES GP10A THRU GP10Y

FIG. 1 -

z>-'

FORWARD CURRENT DERATING CURVE

~

~

GP10Nthru
GP10Y':"":- ~

I"'" ~

I I I

III

.SINGLE
. PHASE
I J HALF
I -WAVE 60Hz

"'"

RESISTIVE OR INDUCTIVE LOAD.
.375" (9.5mm) LEAD LENGTHS

20

80

80

"-

~

"

~~p1L IGP10M

I' ~

I"

100

w
a:
a:
::l
0
w
ClUl
a:w
::la:

120

AMBIENT TEMPERATURE, °C

20

UlW
00.

",,,,

15

0

10

a::;;
;;
a:

""" "

140

25

I.L

180

•

'"'W"

180

0.

10

100

NUMBER OF CYCLES AT 60Hz

FIG. 3 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

FIG. 4 -

TYPICAL REVERSE CHARACTERISTICS
0

20

IZ

10

W

a:
a:

1..-:.- '::;;/. ~~;'

:::I

0
0

a:

2.0

:!:en

1.0

<{

a: W
Oa:
u.~

)

-

-

f--

f---

z>-'

w
a:
a:
::l
o
wen
UlW
a: a:

~I

Z

~

-

125°C

.......

ioo"'"

1..,....0-

TJ = 75°C

/

>0.

en::<

w:;;

0

a:",
::la:

- ~ GP10A to GP10J
•
_ GPK1Q to GP10Q - GP10T to GP10Y

#.

.2

~!/

<{

IZ

TJ

-

WW

:::I<{

W

,.0

l==

0.1

UlO

o. 1

00

\!i~

'"

<{

I-

I-

;::

/

Z

en
~

1111

•
J

.02
.01
.6

.7

TJ

Ul

Z

TJ

0;

0

25 °:"

V

.01

25°C

Pulse Width = 300/.1 5
2% Duty Cycle
..

.8

.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

INSTANTANEOUS FORWARD VOLTAGE
VOLTS

.001

20

40

60

80

100

120

140

PERCENT OF RATED'PEAK REVERSE VOLTAGE. %

Fig. 5 -MAXIMUM RECURRENT PEAK REVERSE VOLTAGE
GP10A - 50V
GP10B - 100V
GP10D - 200V
GP10G - 400V
GP10J - 600V
GP10K - 800V
GP10M - l000V
GP10N - 1100V
GP10Q - 1200V
GP10T - l300V
GP10V - 1400V
GP10W - 1500V
GP10Y - 1600V

FIG. 6 - TYPICAL JUNCTION CAPACITANCE
20

~ 10
u.i B.0

t::;: ~ ""'~

TJ

~ ~5ocl

I

t-l.0MHz
Vslg_50mVp-p=

~ 6.0

'"ot: 4.0

'('j2.
"

......

I"

•..... 1....

0.

0

__ GP10A to GP10J

--GP10K to GP10Q

1.0
0.1

--GP10T to GP10Y
0.4

1.0

4.0

10

40

REVERSE VOLTAGE, VOLTS

- - - - - - - - - - - - - - - .. General Instrument
243

100

1N4383GP THRU 1N4385GP
1 N4585GP AND 1 N4586GP
MINIATURE GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER
Voltage - 200 to 1000 Volts Current· 1.0 Ampere
FEATURES
• High temperature metallurgically bonded constructed rectifiers
• Plastic package
has Underwriters Laboratory Flammability Classification 94V-0
• Glass passivated cavity-free junction
• 1.0 Ampere operation at TA=100°C with no thermal runaway
• Capable of meeting environmental standards of
MIL-S-19S00
• High temperature soldering guaranteed:
3S0°C/10 seconds/.37S", (9.Smm) lead length at
Sibs., (2.3kg) tension

D0-204AC

t

..

1.0

,.0341.86)
.028 [.111

MIN.
125.4)

300t6J
.

23

T·

8

1.0

J ..

1

1,·14013.6)
.10412.6)

MIN.

125.4J

1

MECHANICAL DATA
Dimensions In inches and (millimeters)
• G/assflIIJS/Ic BIICBpBUIa/lon lBChnique is coveted by Pal.", NIl. 3,99/l,602 of 1976
and bnJzod -lead lSS8fJilIy 10 Patent No. 3,930,306 of 1978

Case: JEDEC DO-204AC Molded plastic over glass
Tennlna/s: Plated Axial leads, solderable per
MIL-STD-7S0, Method 2026
Polarity: Color band denotes cathode
Mounting Position: Any
Weight: O.01S ounce,O.4 gram

• ~. ®
~
MAXIMUM RAnNGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified. Single half wave. 60 Hz. resistive or inductive load.
For capacitive load. dera1e current by 20%.
IN
SYMBOLS 4383GP

• Maximum Recurrent Peak Reverse Voltage
VRRM
• Maximum RMS Voltage
VRMS
• Maximum DC Blocking Voltage
Voc
• Maximum Average Forward Rectified Current
.37S", (9.Smm) Lead Lengths at TA=100°C
I(Av)
• Peak Forward Surge Current
S.3ms single half sine-wave superimposed
on rated load (JEDEC Method) at TA=100°C
IFSM
Maximum Instantaneous Forward Voltage at 1.0A
VF
Maximum DC Reverse Current
TA=2SD C
at Rated DC Blocking Voltage
TA=1SOD C
IR
• Typical Reverse Recovery Time (NOTE 2)
TRR
Maximum Full Load Reverse Current Full Cycle
Average at .37S"(9.Smm) Lead Lengths TA=1 OO°C
IR(AV)
Typical Junction CapaCitance (NOTE 1)
CJ
Typical Thermal Resistance (NOTE 3)
R8JA
• Operating Junction and
Storage Temperature Range
TJ,TsTG

200
140
200

27S

IN

IN

IN

IN

4384GP

4385GP

4585GP

4586GP

UNITS

400
2S0
400

600
420
600

SOO
S60
SOO

1000
700
1000

Volts
Volts
Volts

2S0

1.0

Amps

SO.O
1.0
S.O
2SO.0
2.0

Amps
Volts

22S
1S.0
2S.0

jJA
~S

200

-6Sto +17S

NOTES: 1. Measured at t.o MHz and applied reverse voltage of 4.0 Volts.
2. Reverse Recovery Test Conditions: IF=O.5A. IR=1.0A. Irr= 0.25A.
3. Thermal Resistance from Junction to Ambientat.375" (9.5mm) Lead Lengths. P.C. Board Moun1ed .
• JEDEC regis1ered vakJes
244

200

jJA
pf
°CIW
°C

RATINGS AND CHARACTERISTIC CURVES 1N4383GP THRU 1N4385GP
1N4585GP AND 1N4586GP

FIG. 2 - MAXIMUM NON·REPETITIVE
PEAK FORWARD SURGE CURRENT
FIG. 1 • FORWARD CURRENT
DERATING CURVE

1.0

0

W

u::

0.9

f=en
Ow
wc::
C::w
00.
c::::'
<{<{
3: c::l-

0.8

0.6

\

0.5
0.4

O~

"-C::
wC::
CJ::>
<{a
c::
w
>
<{

z
w
c::
c:::.:
::><{
Ow
wOo
CJen
c::w
::>c::

,\
\

0.7

0.3

\

,

SINGLE PHASE
HALF WAVE
60Hz
RESISTIVE OR
INOUCTIVE LOAD
.375", (9.&rnmJ LEAD LENGTHS

0.2
0.1

25

50

75

100

125

50

r=

enw

40

lm

~

TAo100·C

1",

........

30

20

"""'' ' '

00.

c::::'
<{<{

3:

~

\

"I:

8.3ms SINGLE HALF
SINE-WAVE (JEDEC Method)

I~

10

c::

0
"-

,

150

10

1.0

100

NUMBER OF CYCLES AT 60Hz

175

200

AMBIENT TEMPERATURE, 'C
FIG. 3· TYPICAL INSTANTANEOUS FORWARD
CHARACTERISTICS
20

0

10

c::

W

~18

C::c::
Ow

"-0.

en::'

/

1.0

@r=
I

0.1

4.0

wen
(/)w

1.0

c::c::
LULU
> a..

~~

TJ = 25°C
Pulse Width - 300J,.! S

2% Duty Cycle

1- 0

en
~

L

1

.01

0.4

J
0.8

1.0

~

1.2

1.4

0.1

00

Z
1.6

INSTANTANEOUS FORWARD
VOLTAGE, VOLTS
FIG. 5 -

3li!

.4

~ ~ .04

I

0.6

FIG. 4 10

c::
c::
::>

o

::><{

Zz
<{w
I-C::
zC::
<{::>

I-

Z

/

~
~

TYPICAL JUNCTION CAPACITANCE

.01

TYPICAL REVERSE CHARACTERISTICS

-

TJ = 125°C

TJ - 75°C

~
......,...
20

TJ = 25°C

40

60

80

100

f-120

140

PERCENT OF RATED PEAK REVERSE VOLTAGE ,%
FIG. 6 -

SUPERECTIFIER

100~~.

....

"0.

~

TJ

=2S·C

r-..... ...

~u 10~~~~~~~~~~~~JI
~

<:~
o

_

>-

f=1MHz

Vsig = 50mVp-p

I 1 1 11111

COMPLETELY
ENCAPSULATED
BRAZED CONSTRUCTION

II III

OPAQUE
GLASS

1.0 ......-.l..-J.....J.-LJL...L.LJ.J...._....L.......L....L..J....u..w
1.0
10
100

REVERSE VOLTAGE, VOLTS

---------------CiGenerallnsbument
245

1 N5059GP THRU 1 N5062GP
MINIATURE GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER
Voltage - 200 to 800 Volts
Current - 1.0 Ampere
FEATURES

*

• High temperature metallurgically bonded constructed rectifiers
• Plastic package
has Underwriters Laboratory Flammability Classification 94V-O
• Glass passivated cavity-free junction
• 1.0 Ampere operation at TA=75°C with no thermal runaway
• Typical IR less than 0.1 11 A
• Capable of meeting environmental standards of
MIL-S-19500
• High temperature soldering guaranteed:
350°C110 seconds/.375", (9.5mm) lead length at
5 Ibs., (2.3kg) tension

DO-2D4AC

1

+

1.0

,.0341.8&J
.0281.71l

MIN.
125.4J

1
f

.](l0 O.&J

.2

T·o +1
J

3

1.0

I'

.14013.&J
.10412.&J

NIN.
125.4J

1

MECHANICAL DATA

Dimensions in inches and (millimeters)
'Giass-piastfcencapsulationlllChniqueisco,,,redbyParenrNo.3,996,602011976and
brazed-ieadassembIyIOPatentNo.3,930,30601t976

Case: JEDEC DO-204AC Molded plastic over glass
Tenninals: Plated Axial leads, solderable per MILSTD-750, Method 2026
Polarity: Color band denotes cathode
Mounting Position: Any
Weight: 0.015 ounce, 0.4 gram

.'
' ®
~
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient I9mpera1Ure unless o1herwise specified. 60 Hz Resistive or inductive load.
For capacitiVe load, derate current by 20%.

SYMBOLS

'Maximum Recurrent Peak Reverse Voltage
VRRM
Maximum RMS Voltage
VRMS
'Maximum DC Blocking Voltage
Voc
'Maximum Average Forward Rectified Current
.37S", (9.Smm) Lead Lengths at TA=7SoC
I(Av)
'Peak Forward Surge Current
B.3ms single hall sine-wave superimposed
on rated load (JEDEC Method)
IFsM
'Maximum Instantaneous Forward Voltage at 1.0A
TA=7SoC
VF
'Maximum Full Load Reverse Current, Full Cycle
Average, .37S" (9.5mm) lead Lengths at TA=2SoC
TA=7SoC IR(AV)
'Maximum DC Reverse Current
TA=2SoC
TA=17SoC
at Rated DC Blocking Voltage
IR
Typical Reverse Recovery lime (NOTE 1)
TRR
Typical Junction Capacitance (NOTE 2)
CJ
Typical Thermal Resistance (NOTE 3)
ReJA
'Operating Junction and
Storage Temperature Range
TJ,TsTG

1NSOS9GP

1NS060GP

1NS061 GP

1NS062GP

UNITS

200
140
200

400
2BO
400

600
420
600

BOO
S60
BOO

Volts
Volts
Volts

1.0

Amps

So.o

Amps

1.2

Volts

s.o
1S0.0
s.o
300.0
2.0
1S.0
2S.0

pI
°CIW

-6Sto +17S

°C

NOTES:
1. Reverse Recovery Test Conditions: IF=O.5A, IR=1.0A, recover to O.25A.
2. Measured at 1 .0 MHz and applied reverse vollage of 4.0 Voc.
3. Thermal Resislance from Junction to Ambient at .375" (9.5mm) Lead Leng1hs, P.C. Board Mounled .
• JEDEC Registered Value
246

J.lA
J.lA
f.lS

RATINGS AND CHARACTERISTIC CURVES 1N5059GP THRU 1N5062GP

FIG. 2 - MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT
50

'"

FIG. 1 - FORWARD CURRENT
DERATING CURVE

r\.
i\.

11111

TJ..TJrnax.

B.3ms Single Half
Sine-Wave (JEDEC Method)

~

I' .....

'\

SINGLE PHASE
HALF WAVE
60Hz
RESISTIVE OR
INDUCTIVE LOAD
0.375" (9.5mm) LEAD LENGTHS

25

50

75

100

\
125

o

1'\

150

1.0

100

10

NUMBER OF CYCLES AT 60Hz

175

AMBIENT TEMPERATURE, °C

FIG. 3 - TYPICAL INSTANTANEOUS
FOWARD CHARACTeRISTICS

FIG. 4 - TYPICAL JUNCTION CAPACITANCE
30

~

10

0

a:
«en
:S:w
a: a:
Ow
u.a.
en::;
:::>«
owI-ZZ
«w
I-a:
Za:
«:::>
I-U
en

u.

a.

_I

25.JdH

f = m 1.0 MHz
Vsig = 50 mVp-p

U
Z
«
I0
«
a.
«
U

I

0.1

T,

W

/

1.0

r---..

10

1.0

~

-

TJ = 2S"C

I

1.0

Pulse Width = 300 jJ S 2% Duty Cycle

-

.01
.6

.4

.8

1.0

1.2

1.4

10

100

REVERSE VOLTAGE, VOLTS
1.6

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS
FIG. 6 - SUPERECTIFIER
FIG. 5 - TYPICAL REVERSE CHARACTERISTICS

en
enw
LU

10

ffi ffi

>a.
W::;

a: «
:::> a:

1.0

rnO

.4

OU

~~

;:.,.:

0'

~ 1504

tn~

~5

BRAZED· TEMP ~ 6OO-c

4.0

.01

20

~~~i~ckfEO

40

60

80

100

'20

'40

BRAZED CONSTRUCTION

OPAQUe
GLASS

PERCENT OF RATED PEAK REVERSE VOLTAGE ,%

--------------- e General Instrument
247

1 N5391 GP THRU 1 N5399GP
MINIATURE GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER
Voltage - 50 to 1000 Volts
Current - 1.5 Amperes
FEATURES
• High temperature metallurgically bonded constructed rectifiers
• Plastic package
has Underwriters Laboratory Flammability Classification 94V-0
• Glass passivated cavity-free junction
• 1.5 Ampere operation at TA=70°C with no thermal
runaway
• TypicallR less than 0.1 J.1A
• Capable of meeting environmental standards of
MIL-S-19500
• High temperature soldering guaranteed: 350°C/10
seconds/.375", (9.5mm) lead length at 5lbs.,
(2.3kg) tension

DD-204AC

t

..

1.0
MIN.

,.034 ('86J
.028 ('71l

-+.30017.6J
.2l0r·OJ

t

1.0
MIN.
(25.4J

,·140(3.6J

1 .104(2.6J

1
Dimensions in inches and (millimeters)
'GIastH>IasIIc.ncapoulation tschniqu. ls coveted by PalrmtNo. 3,996,802011976
and btazod -lead assembly 10 Paten! No. 3,930,306 011976

~
•

.

~ ®

MECHANICAL DATA
Case: JEDEC DO-204AC Molded plastic over glass
Tenninais: Plated Axial leads, solderable per MILSTD-750, Method 2026
Polarity: Color band denotes cathode
Mounting Position: Any
Weight: 0.Q15 ounce,O.4 gram

~AXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient tempera1Ure unless o1herwise specified. Single phase, half wave 60 Hz. resistive or inductive load.
For capacitive load, derate current by 20%.
1N53 1N53 1N53 1N53 1N53 1N53 1N53 1N53 1N53

SYMBOLS 9tGP 92GP 93GP 94GP 95GP 96GP 97GP 98GP 99GP

•
•
•
•

Maximum Recurrent Peak Reverse Voltage
VRRM SO
Maximum RMS VoHage
VRMS 35
Maximum DC Blocking Voltage
Voc 50
Maximum Average Forward Rectified Current
,37S", (9.5mm) Lead Lengths at TL=70°C
I(AV)
• Peak Forward Surge Current
8.3ms single half sine-wave superimposed
on rated load (JEDEC Method)
IFSM
• Maximum Instantaneous Forward Voltage
at 1.5A,TA=70°C
VF
• Maximum DC Reverse Current TA=2SoC
at Rated DC Blocking Voltage TA=1S0°C
IR
• Maximum Full Load Reverse Current
Full Cycle Average, 375", (9.5mm)
Lead Length atTA=70°C
IR(AV)
Typical Reverse Recovery Time (NOTE 2)
TRR
Typical Junction CapaCitance (NOTE I)
CJ
Typical Thermal Resistance (NOTE 3)
ReJA
• Operating Junction and
Storage Temperature Range
TJ.TsTG

1.S

Amps

50.0

Amps

1.4
S.O
300.0

Volts

300.0
2.0
15.0
30.0

flA

-65 to +175

NOTES: 1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Voc.
2. Reverse Recovery Test Condition: IF-D.5A, IR=1.0A, Irr=O.25A.
3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

248

UNITS

100 200 300 400 SOO 600 800 1000 Volts
70 140 210 280 350 420 S60 700 Volts
100 200 300 400 500 600 800 1000 Volts

flA

J.1S
pf
°CIW
OC

RATINGS AND CHARACTERISTIC CURVES 1N5391GP THRU 1N5399GP

z

~

a:
::>

AG. 2· TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

FIG. 1 - FORWARD CURRENT
DERATING CURVE

.,:
2.0

o

,---.",----r----,,--,--,,---,

w

u:

~fB
wa:

U

o
a:
~ fB
a: a:

10

a: w 1.0

~~


50

40

U

w
ClUJ
a:W
::>a:
UJW
OQ.
a:::i;

1

0.1

30

II
.Q1

.4

.6

.8

1.0

1.2

1.4

1.6

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

FIG. 4 -

PEAK FORWARD SURGE CURRENT

"

2% Duty Cycle

aU

w


>

.,:

TJ~25'C =~

~.,:

Ow

",::i;
Cl<:

-'
UJ

a:
a:
::::>

FIG. 1 - FORWARD CURRENT
DERATING CURVE
150

0

~ff1
UJa:

125

a:UJ
Oa.
a:::;;

100

~>-'
07-

15

''\

.50

~~

,
\

.25

~

25

50

r-.... r-...

40

75

100

125

30

...........
....... r--.

20

~

a:

ou..

TJ-TJ max.

10

B.3ms SINGLE HALF
SINE-WAVE
(JEDEC METHOD)

lI(

;;'i

SINGLE PHASE
HALF WAVE
_
60Hz RESiSTIVE OR
INDUCTIVE LOAD
0.375". (9.Smm) LEAD LENGTHS

~U

a:
UJ
>

~~

i\.

(!l::::l

50

(!lCll

~~

u..~
UJa:

UJ
a: UJ
::::>a:
CIlUJ

"\

'!!

u..

u

FIG. 2 - MAXIMUM NON-REPETITIVE
PEAK FORWARD SURGE CURRENT

1.0

a.

~

150

2.0

4.0 6.0 8.0 10

20

40 60 80 100

NUMBER OF CYCLES AT 60Hz

175

AMBIENT TEMPERATURE, °C
FIG. 4 FIG. 3 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

>-'
z

30

10

UJ
a:
a:

u..

::::l

Q.

U

o

a:

TJ = 150°C

~ f:3
a: a:
OUJ
u..a.
CIl::;;

r-..... ..... ,..

U
Z

~

I-

5.0

U
~

1

I /

a.

~

TJ = 2S"C

U

~

>-Z

f=1.0MHz
Vsig = 50 mVp-p

1.0
1.0

~

Pulse Width = 300 /.ls
2% Duty Cycle

f-.

?:

III
I II

10

Z

CIl

I

TJ = 25"C

W

~

10

::::l~

oUJ

J

TYPICAL JUNCTION CAPACITANCE

5.0

10

50

100

REVERSE VOLTAGE, VOLTS

1
6

8

10

12

14

16

INSTANTANEOUS FORWARD VOLTAGE. VOLTS

>-zUJ
a:
a:
::::>
u
UJCIl
CIlUJ
UJUJ
iii ~

FIG. 5 -

FIG. 6 -

TYPICAL REVERSE CHARACTERISTICS

BRAZED· TEMP ;r; 6OO"C

0.4

a:~

!~!!!lii~!iiiii~~~~~;;I;;;~~;;iI

~2
Ou

0.1

a:a:
~
>-~
ICIl

.01 ~--,,l;,----:4LO--.l60--J80'---10LO--.J12LO--'40

~ ~ .04

Z

SUPERECTIFIER

PERCENT OF RATED PEAK REVERSE VOLTAGE ,%

COMPLETELY
ENCAPSUlATED
BRAZED CONSTRUCTION

OPAQUE
GLASS

- - - - - - - - - - - - - - - • General Instrument
251

I·

,·:i

I

AGP15-200 THRU AGP15-800
MINIATURE GLASS PASSIVATED JUNCTION PLASTIC
CONTROLLED AVALANCHE RECTIFIER
Voltage - 200 to 800 Volts
Current - 1.5 Amperes
FEATURES
D0-204AC

i

1.0
NIN.

..

,.0341.86)
.0281.711

+

.30017.6)
•230 8 )

f·
t

1.0
NIN.
125.4)

,0140(3.61

1 .10412.6)

1
Dimensions in Inches and (millimeters)

• High temperature metallurgically bonded constructed rectifiers
• Controlled Avalanche characteristic combined
with the ability to dissipate reverse power
• Plastic package
has Underwriters
oratory Flammability Classification 94V-O
• Glass passivated cavity-free junction
• 1.5 Ampere operation at T A=55°C with no thermal
runaway
• TypicallR less than 0.1 11 A
• Capable of meeting environmental standards of
MIL-8-19500
• High temperature soldering guaranteed: 350°C/10
seconds/.375", (9.5mm) lead length at 5Ibs.,
(2.3kg) tension

Lab-~

'Glass-plaslicem;apsulallon tec/lnlque Is covered by Patent No. 3,996,602 or 1976 and
btaZed-iead assembly to Patent No. 3,930.306 of 1976

MECHANICAL DATA
Case: JEDEC DO-204AC Molded plastic over glass
Tenninals: Plated Axial leads, solderable per MIL8TD-750, Method 2026

Polarity: Color band denotes cathode
Mounting Position: Any Weight: 0.0154 ounce,.4 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 2S'C ambient 1emperalUre unless otherwise specified. Resistive or inductive load.
For capacitive load, derate current by 20%.
SYMBOLS
AGPI5-200 AGP/5-400 AGPI5-600 AGPI5-800

Maximum Recurrent Peak Reverse Voltage
VRRM
Maximum RMS Voltage
VRMS
Maximum DC Blocking Voltage
Voc
Minimum Avalanche Breakdown Voltage at 100 Il A
VBR
Maximum Avalanche Bleakdown Voltage at 100 Il A
VBR
Maximum Peak Power DiSSipation in the
Avalanche Region 20 u.s Pulse
PRM
Maximum Average Forward Rectified Current
.375", (g.5mm) Lead Lengths at TA=55°C
I(Av)
Peak Forward Surge Current, 8.3ms single hall sine
wave superimposed on rated load (JEDEC Method)
IFSM
Maximum Instantaneous Forward Voltage at 1.5A
VF
Maximum Reverse Current
TA=25°C
at Rated DC Blocking Voltage
TA=150°C
IR
Maximum Full Load Reverse Current, Full Cycle
Average, .375", (9.5mm) Lead Length at TA=55°C
IR(AV)
Typical Reverse Recovery Time (NOTE 2)
TRR
Typical Junction Capacitance (NOTE 1)
CJ
Typical Thermal ReSistance (NOTE 3)
RaJA
Operating Junction and Storage Temperature Range TJ,TsTG

200
140
200
240
500

400
280
400
450
750

600
420
600
675
1000

252

UNITS

VoRs
Volts
Volts
VoRs
Volts

500.0

Watts

1 .5

Amps

50.0
1.1
5.0
200.0

Amps
Volts

100.0
2.0
15.0
25.0
-65 to +175

!lA
IJ.S

NOTES: 1. Measured at 1 MHz and applied reverse vol1age of 4.0 Volts.

2. Reverse Recovery Test Conditions: IF= O.SA, IR= 1.0A, recover to 0.2SA.
3. Thermal Resis1ance from Junction 10 Ambient at .375" (9.Smm) lead Lengths,

800
560
800
880
1200

p.e. Board Mounted.

!lA

pI

°CIW
°C

RATINGS AND CHARACTERISTIC CURVES AGP15-200 THRU AGP15-800

o

150

1\

W

u::

t3cn

125

~~

O~ 1.00
0::::'
««

~t-'

OZ

LLll!
Wa:

.50

ffi

0::

"

~

~

50

75

en:;:

8

'125

"

150

~

175

~

FIG. 4 -

~
0::

~

TJ-TJ max.

wt)

!~~~~~~~~~~~~~~~~~~~~
_

~~O"~

SINEiWYi

1

~

:....

8.3ms SINGLE HALF

0..

Z

(111111 METHfDl l

;::

en

100

10

1

TYPICAL REVERSE CHARACTERISTICS

TJ:: 125°C

at)

\li ~

LLO::

~§

16

10~~~1!~~~~~~~~~~~~~~~~~

1.0

iiJ0::«
~ 0.4
0::0::

"""

3:t-'"
O::Z
OW

14

4.0

f3

Ww

i""-

0:::;: 10

««

12

INSTANTANEOUS FORWARD VOLTAGE. VOLTS

......

00..

01

10

w

::>0::
enw

I

«
f-.

en

MAXIMUM NON-REPETlTVE PEAK FORWARD
SURGE CURRENT

o::w

I

01

~

100

w
(!len

Q

Z

AMBIENT TEMPERATURE, °C

FIG. 3

TJ =: 25 C
Pulse Width = 300 J.1 s
2% Duty Cycle

Z

'\

100

10

OW
LLa..

0.375;'. (9.5mml LEAD LENGTHS
25

tB

::>«

60Hz RESISTIVE OR
INDUCTIVE LOAD

.25

,
If'

0::0::

HALF WAVE

«t)

10

W

t)

SINGLE PHASE

(!l::>

Z

0::
0::
::>

o

"r\.\

75

FIG. 2 - TYPICAL INSTANTEOUS
FORWARD CHARACTERISTICS

t-'

FIG. 1 - FORWARD CURRENT
DERATING CURVE

~

TJ075°C

_

_

.04

_

TJ o,25°C

.01 L....._...-J~_--l_ _......I.._ _....L._ _..L
1 _ _.L._---1
a
20
40
60
80
100
120
140

PERCENT OF RATED PEAK REVERSE VOLTAGE ,%

NUMBER OF CYCLES AT 60Hz

en
S
3:

FIG. 5-MAXIMUM NON·REPETITIVE REVERSE
AVALANCHE POWER DISSIPATION

W

lODeJ
8QO
600

~

400

a:::-

$:
W

I

t)

FIG. 6 -

~

.......

200

1

«
>

100
60
40

W

20

iiJ0::

"
~

BRAZED· TEMP

;t;

6000C

25°C

"""

80

«
W
en
0::

0

~

Z

:5

T}

~

SUPERECTIFIER

~

.........

...
COMPLETELY
ENCAPSULATED
BRAZED CONSTRUCTlO~

10
10

20

40

100

200

400

1000 2000

4000

10000

OPAOUE
GLASS

PULSE DURATION, MICROSECONDS

- - - - - - - - - - - - - - - - 
ClW::;:

W-

lLCl-

UJ::;:
:::lC

t-1.0MHz

........

it

Vsig..50mVp-p

10

U

0.3

<
f<
f-

50

J

0.1

50

10

100

REVERSE VOLTAGE, VOLTS
03

J

01

060.7

08

0.9

1.0

1.1

1.2

13

FIG. 6 - SUPERECTIFIER

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

BRAZED-TEMP

FIG. 5 - TYPICAL REVERSE
CHARACTERISTICS.

;J!

6OO"C

10

•

T".12rC

T,..76*C

.....

2

~~"f~i(ilfED

BRAZED CONSTRUCTIO~

OPo\QUE
GLASS

0

.....

.-

T..~- I - -

1

o

20

40

eo

10

100

120

140

PERCENT OF RATED PEAK\~EVERSE VOLTAGE. %

- - - - - - - - - - - - - - - Ci) General Instrument
257

I:

GP30A THRU GP30M
GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER
Voltage - 50 to 1000 Volts Current - 3.0 Amperes
FEATURES

*DO-201AD

• High temperature metallurgically bonded constructed rectifiers ~
• Plastic package
,
~
has Underwriters Lab~
oratory Rammability Classification 94V-0
"
• Glass passivated cavity-free junction in
00-201 AD package
• 3.0 Ampere operation at TA= 55°C with no thermal runaway
• TypicallR less than 0.1 11 A
• Capable of meeting environmental standards of
MIL-S-19500
• High temperature soldering guaranteed:
350°C!10 seconds/.375", (9.5mm) lead length at
5 Ibs., (2.3kg) tension

f

.210(5.31

.1~I~~·81

r

1.0125.41

L,......I-i·_-+
1+ t - .37519.51

~
1.0 (25.41

.05211.31
.04811.21

T

+

Dimensions in inches and (miUimeters)
• GIasr>p/asIic .~.JIon IeChI1ique Is covel8d by Parent No. 3,!196,602 of 1976
and b/azed-loadassemb/yIllPatenrNo.3.930.306ofl976

~
• ~

®

MECHANICAL DATA
Case: JEOEC 00-201AO Molded plastic over glass
Tenninais: Plated Axial leads, solderable per
MIL-STO-750, Method 2026
Polarity: Color band denotes cathode
Mounting Position: Any
Weight: 0.04 ounce, 1.12 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25"C ambient 1empera1Ure unless otherwise specifred.
60 HZ,resistive or inductive load.
For capacitive load, dera1e current by 20%.

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
.37S", (9.Smm) Lead Lengths at TA=SSoC
Peak Forward Surge Current
8.3ms single half sine-wave superimposed
on rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage at 3.0A
Maximum Reverse Current
TA=25°C
at Rated DC Blocking Voltage
TA=lS0°C
Maximum Full Load Reverse Current, Full Cycle Average
.37S", (9.Smm) lead Length TA=SSoC
Maximum Reverse Recovery Time (NOTE 2) TJ=2Soc
Typical Junction Capacitance (NOTE1)
Typical Thermal Resistance (NOTE 3)
Operating Junction and Storage Temperature Range

OP

OP

OP

OP

OP

OP

OP

SYMBOLS 30A

308

300

30G

30J

30K

lOll UNITS

VRRNI SO
VRMS 3S
Voc SO

100 200 400 600 800 1000 Volts
70 140 280 420 S60 700 Volts
100 200 400 600 800 1000 Volts
3.0

I(Av)

IFSM
VF

12S.0
1.2

I

1.1

IR

5.0
100.0

IR(AV)
TRR
CJ
RaJA
TJ,TsTG

100.0
3.0
40.0
lS.0
-6Sto +17S

NOTES:

1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.
2. Reverse Recovery Test Conditions: IF..o.5A,IR-l.0A.lrr=.25A.
3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths. P.C. Board MOl.l1ted.
258

AIfllS

Amps
Volts

JlA
JlA
¢)
pf

ocm
°C

RATINGS AND CHARACTERISTIC CURVES GP30A THRU GP30M

FIG.2 • MAXIMUM NON·REPETITVE PEAK
FORWARD SURGE CURRENT

o

FIG. 1- FORWARD CURRENT
DERATING CURVE

UJ

u::

"'"

i=(/)

&3 UJ 4.0
a: a:
o ~3.0

I I
~

a:~

~

SINGlE PHlsE
HALF WAVE
RESISTIVE OR
INDUCTIVE LOAD
0.375"(9.5mm) LEAD LENGTHS

-: 2.0

.........

a:f-

OZ
u. W 1.0

UJ~

(!):::>
~U

0

25

UJ

50

75

100

TJosTJ max•

i'o...

.....

125

1.0

i'...

150

50

100

10

~

:::>

UJ rn 1.0
rnUJ
a: a:
UJUJ

,,-

/

> a.

.4

rn 0

a:«
0

"

:I
U

10

~ffl

T... 125'<:

a:
a:

a:
a:

U
0

4.0

UJ

30

Z

UJ

0.3

f-

I

0.1

~
rn

~'G'~~iWIDTH-300"" -

I

«

~

2% DUlY CYCLE

...

.02

-

T...75"O

T...~·C-

"i"""

~

r--

.01

o

ti
~

10

FIG. 4 - TYPICAL REVERSE
CHARACTERISTICS

i-'

Z

5.0

NUMBER OF CYCLES AT 60 Hz

175

100

«

8.3ms SINGLE HALF·WAVE
SINE·WAVE (JEDEC) METHOD

10

FIG. 3- TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

Z

r.....

AMBIENT TEMPERATURE.·C

>
«

UJ

i""

20

40

80

80

100

120

140

PERCENT OF RATED PEAK'REVERSE VOLTAGE.%

03

I

01
0.6

I

0.7

0.8

09

10

1.1

1.2

1.3

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS
FIG. 6 FIG. 5 -

SUPERECTIFIER

BRAZEO-TEMP

TYPICAL JUNCTION CAPACITANCE

~

600"(;

100

u..

a.
u.i

50

-

U
Z

~
«a.

13

-.

TJ_25OC

t:=
<3 ~
10

f_l.0MHz

Vsig=50mVp-p

-~

5.0

1.0

6.0

10

50

~~~mJmED

100

BRAZED CONSTRUCTION

REVERSE VOLTAGE, VOLTS

OPAQUE
GLASS

- - - - - - - - - - - - - - - ~ General Instrument
259

•
260

FAST -RECOVERY
SUPERECTIFIERS
0.5 AMPERES THRU 3.0 AMPERES
50 VOLTS TO 2000 VOLTS

_General
.....- - - - - - Instrument - 261

I

RGP02-12E THRU RGP02-20E
MINIATURE GLASS PASSIVATED JUNCTION FAST
SWITCHING PLASTIC RECTIFIER
Voltage - 1200 to 2000 Volts Current - 0.5 Amperes
FEATURES
D0-204AL

f

1.0 (25.4)

MIN

.107(2.7)
.080(2.0)

_I

1+

!

~
.205(5.2)
.160(4.1)

--±-

t

1.0(25.4)
.034 (.86).
.028 (.71)

+

MIN

I

+

• High temperature metallurgically bonded constructed rectifiers
• For use in high frequency rectifier circuits
• Plastic package
has Underwriters Laboratory Flammability Classification 94V-O
• Fast switching for high efficiency
• Glass passivated cavity-free junction
• 0.5 Ampere operation at TA= 55°C with no thermal runaway
• TypicallR less than 0.1 ~ A
• Capable of meeting environmental standards of
MIL-S-19500
• High temperature soldering guaranteed:
350°C110 seconds/.375" (9.5mm) lead length at
5 Ibs. (2.3kg) tension

Dimensions in inches and (millimeters)
• GIas&pIasti; encapsutalion IIldmlque Is ", ..md by Palent No. 3,996.602 01 t976
and blaZed ·lead assembly to Patsm No. 3.930.306 01 t976

~@

•••

MECHANICAL DATA
Case: JEDEC DO-204AL Molded plastic over glass
Tennina/s: Plated Axial leads, solderable per MILSTD- 750, Method 2026
Colo< bam denotes _,,",ode
Mounting Position: Any
Weight: 0.012 ounce, .3 gram

_rity,

mlMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient 1empera1ure unless otherwise specified. Resistive or Inductive load.

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
.Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
.375", (9.5mm) Lead Lengths at TA=55°C
Peak Forward Surge Current
8.3ms single half sine-wave superimposed
on rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage at 0.1A
Maximum DC Reverse Current
TA=25°C
at Rated DC Blocking Voltage
TA=125°C
Maximum Reverse Recovery Time (NOTE 1)
TJ=25°C
Typical Junction Capacitance (NOTE 2)
Typical Thermal Resistance (NOTE 3)
Operating Junction and
Storage Temperature Range

SYMBOLS

RGP02
·11£

RGP02
·14E

RGP02
·16E

RGP02
·1BE

RGP02
-2OE

UNITS

VRRM
VRMS
Voc

1200
840
1200

1400
980
1400

1600
1120
1600

1800
1260
1800

2000
1400
2000

Volts
Volts
Volts

I(Av)

0.5

Amps

IFsM
VF

Amps
Volts

IR

20.0
1.8
5.0
50.0

TRR
CJ
RaJA

300.0
5.0
50.0

nS
pi
°CIW

TJ,TsTG

·65 to +175

°C

NOTES: 1. Reverse Recovery Test Conditions: IF=0.5A. IR=1.0A. Irr =.25A.
2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.
3. Thermal Resistance from Junction to Ambient at .375' (9.5mm) Lead Lengths. P.C. Board Moun1ed.

262

jJA

RATINGS AND CHARACTERISTIC CURVES RGP02-12E THRU RGP02-20E


,"

u

w(/)

TJ = 125°C1 _

FIG. 4 -MAXIMUM NON·REPETITIVE PEAK
FORWARD SURGE CURRENT
25
I I IIIII
TJ = 55o'C

I--

(/)w

a: a:

ww

(/)w

00..
a::; 15

w:;

a:<

:::>a:

~~

am

ILa:
",a:
<:::>

~

1

0.1

roo.

~,..:

I--

./

AU

"-i'

«

TJ ~ 75'C= I -

(/)0

z

20

:::>a:
1.0

>0..

<
~

8.3m s SINGLE HALF
SINE WAVE (JEDEC METHOD)

w

a? ffl

10

.....

......

~

~u 5.0

<

~

(/)

~
.01

,
o

TJ

~

~

25"C
~=--=c

~

20

o

I----"

1.0

10

100

NUMBER OF CYCLES AT 60 Hz

40

60

80

100

120

140

PERCENT OF RATED PEAK REVERSE VOLT AGE ,%
FIG.6-SUPERECTIFIER
FIG. 5 - WPICAL JUNCTION CAPACITANCE
CAVITY-n~EE

(GLASS-PASSIVATED
JUNCTION)

Ii.

a.

ui
U

5.0

r-...

Z

<

~

u
<
0..
<

U

fo: 1 MHz
Vsig = 50mVp-p

1.0
1.0

6.0

10

50

100

REVERSE VOLTAGE, VOLTS

COMPLETELY
ENCAPSULATED
BRAZED CONSTRUCT ION

OPAQUE

GLASS

- - - - - - - - - - - - - - - <& General Instrument
263

I·'·
'~

1.2

INSTANTANEOUS FORWARD VOLTAGE. VOLTS

?

AMBIENT TEMPERATURE.·C

/

.•

=
-

TJ

2% ~UTY ~YCLE I

~

<

~

./

,

01

<

"-r'\.

---

,

:::>
U

0.2

0.1

10

a:
a:

BA157GP THRU BA159GP
MINIATURE GLASS PASSIVATED JUNCTION FAST SWITCHING
PLASTIC RECTIFIER
Voltage - 400 to 1000 Volts Current - 0,5 Ampere
FEATURES

*---D0-204AL

• High temperature metallurgically bonded constructed rectifiers
• For use in high frequency rectifier circuits
• Plastic package
has Underwriters Laboratory Flammability Classification 94 V-O
• Fast switching for high efficiency
• Glass passivated cavity-free junction
• 0.5 Ampere operation at TA=55°C with no thermal runaway
• TypicallR less than 0.1 J.I. A
• Capable of meeting environmental standards of
MIL-S-19500
• High temperature soldering guaranteed:
350°C/10 seconds/.375", (9.5mm) lead length at
Sibs., (2.3kg) tension

-r
1.0 (25.4)

.107(2.7)
.080(2.0)

IIIN

.1

1+ ~

~
.205(5.2)
.160(4.1)

~

t

1.0 (25.4)

IIIN
.034 (.86) •
.028 (.71)

+

!

MECHANICAL DATA

Dimensions in inches and (millimeters)

Case: JEDEC DO-204AL Molded plastic over glass
Tenninals: Plated Axial leads, solderable per MILSTD-750, Method 2026
Polarity: Color band denotes cathode
Mounting Position: Any
Weight: 0.012 ounce,O.3 gram

•GIass.,,_encapsuIaIIan IlH:hnIque Is covered by Patent No. 3,996,602 0/ 1976 and
blazed -lead aJJSJHItJIy til Pa/srt lID. 3.930.306 011976

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient IemperalUre unless otherwise specified. Resistive or inductive load.

Maximum Recurrent Peak Reverse VoRage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
.375", (9.Smm) Lead Lengths at TA=SSoC
Peak Forward Surge Current
10rns single half sine-wave superimposed
on rated load at TA=25°C
Maximum Instantaneous Forward Voltage at 1.0A
Maximum DC Reverse Current
at Rated DC Blocking Voltage
Maximum Reverse Recovery Time (NOTE 1)
Typical Junction CapaCitance (NOTE 2)
Typical Thermal Resistance (NOTE 3)
Operating Junction and
Storage Temperature Range

SYMBOLS

BAf57GP

BAf58GP

8A159OGP

8A159GP

UNTrS

VRRM
VRMS
Voe

400
280
400

600
420
600

800
560
800

1000
700
1000

Volts
VoRs
VoRs

I(AV)

0.5

Amps

IFSM
VF

20.0
1.5

Amps
Volts

IR
TRR
CJ
RaJA
TJ,TsTG

5.0
150

-

IlA

nS
pf
°CIW

-65 to +175

°C

500

NOTES:

1. Reverse Recovery Test Conditions: IF= 0.5A, IR= I.M, recover to 0.25A.
2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Voc.
3. Thermal Resistance from Junction 10 Ambient at .375' (9.5mm) Lead Lengths, P.C. Board Mounted.
264

I

15.0
50.0

250

500

RATINGS AND CHARACTERISTIC CURVES SA 157GP THRU SA 159GP

FIG. 2 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

o

w
LL

o.5
0.4

~~
,0::«

0.3

Ow 0.2
LLa:

~G

w

25

50

75

_

100

1.0

~[B
a: a:

03754 (9.5mm) LEAD LENGTHS

~

~

If'

OW

RESISTIVE OR
INDUCTIVE LOAD

O. 1

j

a:

Wa:

a:

25°C

Pulse Width ~ 300p.s 1% Duly Cycle

:::J
()
o

125

I

LLIl.

1\

S'f-C

a:Z

:: T,

w
a:
a:

" I'-....r\.

f=(f)

&3 ~
a:w

10

f-C

Z

FIG. 1 - FORWARD CURRENT
DERATING CURVE

(f)::;:

:::J«

"~

Z

>f
Z
>f
(f)

I

1/

.0 1

.6

.4

1.0

1.2

1.4

1.6

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

AMBIENT TEMPERATURE, °C
FIG. 3 - MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT
20

f-C

Z

w
a:
a:
:::J
()
w
(!)(f)
a:w
:::Ja:
(f)W
011.

a:::;:
,:e«
S'
a:

15

"

~~

FIG. 4 - TYPICAL JUNCTION CAPACITANCE
100

.....

T•• 2S·C
10ms Single Hall
~e- Wave at rated load

I'

0

LL
~

«w

-....

10

'

0

~

...

....
T.

25°C

f 1 MHz
Vsig = 50 MVp-p

5.0

11.

1.0

o

1.0
2.0

1.0

4.0 6.0

10

20

40

60

100

III

10

100

REVERSE VOLTAGE, VOLTS

NUMBER OF CYCLES AT 60 Hz
FIG. 6 -

REVERSE RECOVERY TIME CHARACTERISTIC
AND TEST CIRCUIT DIAGRAM

to-

100

500
NONINDUCTIVE

NONINDUCTIVE
+O.5A

FIG. 6 - SUPERCTIFIER

t,,-

~

D.U.T.

I

(+)
_
-

50Vdc
(approx.)
(-)

-0.25

10
NONINDUCTIVE

OSCILLOSCOPE
(NOTE 1)

t J
\ /

-1.0A

NOTES 1. Rise nrre-7n. max. Input Impedance1 megaohm 22pF.
2. Rise lime-l0ns max. Sourcelmpedanoe-

~cml

SET TIME BASE FOR
SO/lOOns/em

COMPLETELY
ENCAPSULATED
BRAZED CONSTRUCTION

OPAQUE
GLASS

5Oohma.

- - - - - - - - - - - - - - ~ General Instrument
265

I;
I

.8

~

175

150

.1

oW

1 N4933GP THRU 1 N4937GP
MINIATURE GLASS PASSIVATED JUNCTION FAST
SWITCHING PLASTIC RECTIFIER
Voltage - 50 to 600 Volts
Current - 1.0 Ampere
FEATURES
DD-204AL

-r
1.0 (25.4)

.107(2.7)
.080(2.0)

MIN

.1

1+- - }I - .205(5.2)
.180(4.1)

-+-

t

1.0(25.4)

MIN

I

.034 (.86)...
.028(.71)

'"

Dimensions in Inches and (milHmeters)

• High temperature metallurgically bonded constructed rectifiers
• For use in high frequency rectifier circuits
• Plastic package
~~.
has Underwriters Laboratory Flammability Classifi. ,
cation 94V-0
" •• ~
• Fast switching for high efficiency'~
• Glass passivated cavity-free junction
• 1.0 Ampere operation at TA=75°C with no thermal
runaway
• Typical IR less than 0.1 ~ A
• Capable of meeting environmental standards of
MIL-S-19500
• High temperature soldering guaranteed: 350°C/10
seconds/.375", (9.5mm) lead length at 5 Ibs.,
(2.3kg) tension

MECHANICAL DATA
• G/aSSfl/aSlfC_lation loclmlqu. Is ctWfllfld by Patent No. 3.996.602 of 1976
and brazed -lead a_y by Pal.", No. 3,930,306 of 1976

Case: JEDEC

DO-204AL Molded plastic over glass

Terminals: Plated Axial leads, solderable per MILSTD-750, Method 2026

~
. . '

®

Polarity: Color band denotes cathode
Mounting Position: Any
Weight: 0.D12 ounce, 0.34 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25·C ambient temperature unless otherwise specified. Resistive or inductive load.

1N
SYMBOLS 4933GP

• Maximum Recurrent Peak Reverse Voltage
VRRM
• Maximum RMS Voltage
VRMS
• Maximum DC Blocking Voltage
Voe
• Maximum Average FOnNard Rectified Current
•37S", (9.Smm) Lead Lengths at TA=7SoC
I(Av)
• Peak FOnNard Surge Current
8.3rns single haH sine-wave superimposed
on rated load (JEDEC Method)
IFsM
• Maximum Instantaneous FOnNard Voltage at t.OA
VF
• Maximum DC Reverse Current TA=2SoC
at Rated DC Blocking Voltage
TA=12SoC
IR
• Maximum Reverse Recovery Time (NOTE 1)
TJ=2Soc
TRR
Typical Junction Capacitance (NOTE 2)
CJ
Typical Thermal Resistance (NOTE 3)
RaJA
• Operating Junction and
Storage Temperature Range
TJ,TsTG

SO
3S
SO

1N

1N

1N

1N

4934GP

4935GP

4936GP

4931GP

UNITS

100
70
100

200
140
200

400
280
400

600
420
600

Volts
Volts
Volts

1.0

Amps .

30.0
1.2
S.O
100.0

Amps
Volts

200.0
1S.0
SO.O

nS
pf
°CIW

-6Sto +17S

OC

NOTES: 1. Reverse Recovery Test Conditions: IF=1.0A, VR=30 VollS.

2. Measured at 1.0 MHz and appned reverse voltage of 4.0 VollS.
3. Thermal Resistance from Junction 10 Ambient at .375* (9.5mm) Lead Lenglhs, P.C. Board Mounted.
* JEDEC Registered Values
266

IlA

RATINGS AND CHARACTERISTIC CURVES 1N4933GP THRU 1N4937GP

!zw

FIG. 2 - TYPICAL FORWARD CHARACTERISTICS

cr:

10.0

" . io"""'"

a:
:::l
U

o

FIG. 1 -

w

o

FORWARD CURRENT DERATING CURVE

1.0

0.50

:::l<{

RESISTIVE OR INDUCTIVE LOAD
0375" (9 5mm) LEAD LENGTHS

25

50

75

100

125

01

ow

Z
<{
fZ
<{
f-

~

150

'I
-

en

TJ - 25°C
PULSE WIDTH - 300/182% DUTY CYCLE

I

0.6

Z

175

I
I
1 I

AMBIENT TEMPERTURE. °C

FIG. 3 -

~

offi
u.,,-

en:;;,

~

0.25

/

10

~f{l

'""

0.75

a:
<{

0.8

10

12

1.6

1.4

20

1.8

INSTANTANEOUS FORWARD VOL TAGEYOL TS

TYPICAL JUNCTION CAPACITANCE

10.0

FIG. 4 -

TYPICAL REVERSE CHARACTERISTICS

20
U.
Q.

W

o

r:

5.0

W

o

a:
a:
:::l

TJ-25OC
f-1.0MHz
Vsig-50mVp-p

o
<{
"<{

~

10.0

Z

Z
<{
f-

I

1.0
1.0

5.0

10.0

U

wen
enW
a: a:
WW
>"W:;;,

J
50

lOG

REVERSE VOLTAGE. VOLTS

TJ

,. ....

~

I-

125'C -

10

a:<{

FIG. 5 -

enO

REVERSE RECOVERY TIME CHARACTERISTIC
AND TEST CIRCUIT DIAGRAM

<{
f-

~o

;ow
NON

TJ

:::la:

J

01

Z

INDUCTI~E

<{
f-

UNIT

en

UNDER TEST

TJ

."

z

~2n

01

·OW

NON·INDUCTIVE
JOVOc
CONSTANT VOLTAGE

A_TEKTRONIX 545A

I(

PLUG IN

PRE AMP P6000PAOeE:" OR EOI IVALENT

INDUCTANCE

1.0A

'FM

~

38

R?_TEN IW

~

/
o

20

40

60

80

100

120

140

FIG. 6 -

,on,

SUPERECTIFIER

INP"'RALlEL
TA • 2S +

CAVITy-rREE
(GLASS·PASSIVATED
JUNCTION)

~o"C FOR RECTIFIER

~~

i(t)

r---

PERCENT OF RATED PEAK REVERSE VOLTAGE, %

o.:!+'-......:=~--4-----4-....--o

RI-ADJUSTEDFQR, 4 11 BETWEEN
POINT 20FRELAYANDRECTIFIER

25'C

I

./

SUPPlY

r-

75'C -

, V

aU
Wz:;;'

~1Vd'~50L
I,,, I

\1

V

.........

.....

f-"'"

VI

'RM(REC)

I I
COMPLETELY
ENCAPSULATED
BRAZED CONSTRUCTION

--j1CMi- SET TIME BASE FOR
1
50/l00ns/em

I

OPAQUE
GLASS


«

.25

30

"'\t\

AESISTIVE OR
INDUCTIVE LOAD
0.375" (95mm) LEAD LENGTHS

25

75

50

100

125

W
a:
a:
:J
0",
WW
C)a:
a: W
:J<1.

25

20

",:::;
0«
a:
«
3:
a:

'"

150

15

6.0
1.0

FIG. 4 -

~ 5.0

"':::;

i3

@~ ~~~~~~~r;0~~~J
Pulse Width;;: 300 j..I.S
2% Duty Cycle

1.2

1.4

TJ = 25°C
f.'.QMHz

.-

Illt~V!>~

1.0
1.0

C=1:.=±==±==c=r=j
1.0

TYPICAL JUNCTION CAPACITANCE

«
<1.
«
o

TJ = 25°C

.8

60 100

o
z

:J«

.6

40

0 ......... ~

~'.O~~/~
~ffl

.4

20

ui

a: a:
"-<1.

~

4.0 0.6 10.0

30

Ow

.01

2.0

NUMBER OF CYCLES AT 60Hz

~10.

~

.........

0

i 10~~~~~~~~~~~~~~
«

.... ~
.... 1'-0

"-

175

FIG. 3 - TYPICAL INSTANTEOUS
FORWARD CHARACTERISTICS

0.1

"

10.0

AMBIENT TEMPERATURE. °C

.:

TJ "' 55°C
B.3ms SINGLE HALF SINE-WAVE
(JEDEC METHOD)

.:
z

5.0

10.0

50

'DO

REVERSE VOLTAGE, VOLTS

1.6

INSTANTANEOUS FORWARD VOLTAGE. VOLTS

FIG. 5 -

REVERSE RECOVERY TIME CHARACTERISTIC
AND TEST CIRCUIT DIAGRAM

500

100

NON INDUCTIVE

NQNINDUCTIVE
+ 05A

DVT

\

,
/

- 0 25

10

NOTES 1 Rise Time = 7ns max
1 megohm 22pF
2 Rise Time;;: 10ns ma~
50 ohms

~NOTE

SUPERECTIFIER

.-

'I

OSCilLOSCOPE

NONINDUCTIVE

FIG. 6 CAVITY-fREE
(GLASS·PASSIVATED
JUNCTION)

11

·10
Source Impedance ==

I'l.I

-1

'em

f-

COMPLETELY
ENCAPSUlA.TEO
BRAZED CONSTRUCTION

OPAQUE
GLASS

--------------'t«l!ii'-."- - plaslicencapsulaJlonlllchnlquelscoveredbyParenlNo.3.996.602ofI976and
btaled-leadassenblyby Palent No. 3.930,30601 1976

~
. . ,

®

case:

JEDEC DO-204AL Molded plastic over glass
Tenninals: Plated Axial leads, solderable per MILSTD-750, Method 2026
Polarity: Color band denotes cathode
Mounting Position: Any
Weight: 0.012 ounce, 0.3 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25"C ambient 1emperature unless olherwise specified. Resistive or inductive load.

RGP RGP RGP RGP RGP RGP RGP
SYMBOLS 10A

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
.375", (9.5mm) Lead Lengths at TA=55°C
Peak Forward Surge Current 8.3rns single half sine-wave
superimposed on rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage at 1.0A
Maximum Full Load Reverse Current, Full Cycle Average
.375", (9.5mm) Lead Length TA=55°C
Maximum DC Reverse Current
TA=25°C
at Rated DC Blocking Voltage
TA=150°C
Maximum Reverse Recovery Time TJ=25°C (NOTE 1)
Typical Junction Capacitance (NOTE 2)
Typical Thermal Resistance (NOTE 3)
OJ>erating Junction and Storage Temperature Range

VRRM 50
VRMS 35
Voe 50

10B

100

10G

10K

10M

UNITS

Volts
Volts
Volts

I(AV)

1.0

Amps

IFSM
VF

30.0
1.3

Amps
Volts

IR

100.0
5.0
200.0

pA

IR
TRR
CJ
R9JA
TJ,TsTG

150

250
15.0
50.0
-65 to +175

NOTES:
1. Reverse Recovery Test Conditions: IF=<>.5A, IR=1.0A, recover 10 O.25A.
2. Measured at 1.0 MHz and applied reverse vollage of 4.0 VO/IS.
3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lenglhs, P.C. Board Mounted.
270

10J

100 200 400 600 800 1000
70 140 280 420 560 700
100 200 400 600 800 100

500

pA
nS
pI
°CIW
°C

RATINGS AND CHARACTERISTIC CURVES RGP10A THRU RGP10M

...:
zw
a:
a:

........

;:)

t)

0

W

75

a:ffi
a:=:<

50

5Wwen
Oa.
<{<{

s:a:

25

0
U.
W
w

25

>
<{

t)

"1\

RESISTIVE DR
INDUCTIVE LOAD
0.375" (9.5mm) LEAD LENGTHS

(!)
<{

a:

a:
a:

:::l

100

u::

FIG. 2 - MAXIMUM NON·REPETITIVE PEAK
FORWARD SURGE CURRENT

~
w

FIG. 1 - FORWARD CURRENT
DERATING CURVE

100

75

50

~

125

TJ-TJ max.
8.3ms SINGLE HALF·WAVE
SINE·WAVE (JEDEC) METHOD
I

I

6

~

150

II'

810

20

40 60 80 100

NUMBER OF CYCLES AT 60 Hz

175

AMBIENT TEMPERATURE, 'C
FIG. 4 -TYPICAL JUNCTION CAPACITANCE
100

FIG.3 _ TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS
1-'

Z

u.

c.

10.0

w

a:

uj

ao

Z

t)

a:

<{

t::l0.a

T....25'C

~

a:

~~

........... ....

1.0

()

a: a:

Ow
u.a.

en=:<

/

;:)<{

@

0.1

Z

T,_25'C

~L~~~lg~~~~' !

1.0
1.0

~

100

10.0

REVERSE VOLTAGE, VOLTS

Z

~~

I
.01
.4

.6

.8

1.0

1.2

1.4

1.6

INSTANTANEOUS FORWARD VOLTAGE, VOLTS
FIG.6-SUPERECTIFIER

,

FIG. 5 - REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM
101!
NONINOUCTlve

SOli

NONINDUCTIVE

_
-

+O.SA

(GLASS-PASSIVATED
JUNCTION)

1

O.U.T

1<1
ItDVdC

CAVITY·fREE

/

-0.25

\approx.)

I-I
OSCilLOSCOPE
(NOTE lJ

-1.0A

I\, )

~~g;g~cffED

NOTES: 1. Rise Time • 7ns max .• Inpul Impedance =
1 megohm. 22pF.

BRAZED CONSTRUCTION

2. Rise Time = 10ns max., Source Impedance =

OPAQUE

GLASS

50 ohms.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (DGenerallnstrument
271

1N5615GP THRU 1N5623GP
GLASS PASSIVATED JUNCTION FAST
SWITCHING PLASTIC RECTIFIER
Voltage - 200 to 1000 Volts
Current - 1.0Ampere
FEATURES
DD-204AC

r

+

1.0
MIN.

-+-

,.0341.86)
.028 (.71l

.300 (7.6)
.23015.8)

t

1.0
MIN.

+1

I'

.14013.6)
.104(2.61

(25.4)

1
Dimensions in inches and (millimeters)

• High temperature metallurgically bonded constructed rectifiers
• Plastic package
has Underwriters Laboratory Flammability Classification 94V-O
• Fast switching for high efficiency
• Glass passivated cavity-free junction
• 1.0 Ampere operation at TA=55°C with no thermal
runaway
• Capable of meeting environmental standards of
MIL-S-19500
• High temperature soldering guaranteed: 350°C/10
seconds/.375", (9.5mm) lead length at5lbs.,
(2.3kg) tension

M_E_C
.....H_~_N_l_C.....:A_L_D_A_T._ll_
Case: JEDEC DO-204AC Molded plastic over glass
Tenninals: Plated Axial leads, solderable per MILSTD-750, Method 2026

.G/ass-pllsllclHlCl/fJlUlatlonlOChn/qll.isCOWllOdbyPatenlNo.3,996,602oft976and _ _ _ _ _ _ _ _ _ _
btalBd -lead .....nt>~ by Patent No. 3,930,306 of 1976

~®

~/MUM

. , .
.

PoIBIfIy,Colo,band deootes_ode

Mounting Position: Any
Weight: 0.015 ounce, .4 gram

RAnNGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambientlemperature unless olherwise specified. Resistive or inductive load.
1N
SYMBOLS 5615GP

• Maximum Recurrent Peak Reverse Voltage
VRRM
• Maximum RMS Voltage
VRMS
• Maximum DC Blocking Voltage
Voc
• Maximum Average Forward Rectified Current
.375", (9.5mm) Lead Lengths at TA=55°C
I(AV)
• Peak Forward Surge Current
8.3ms single hall sine-wave superimposed
on rated load (JEDEC Method)
IFSM
Maximum Instantaneous Forward Voltage at 1.0A
VF
Maximum DC Reverse Current
TA=25°C
at Rated DC Blocking Voltage
TA=100·C
IR
• Maximum Reverse Recovery Time (NOTE 1)
TJ=25·C
TRR
Typical Junction Capacitance (NOTE 2)
CJ
Typical Thermal Resistance (NOTE 3)
RaJA
• Operating Junction and
Storage Temperature Range
TJ,TsTG

200
140
200

150

1N
5617GP

1N
5619GP

1N
56Z1GP

1N
56Z3GP

UNIrS

400
280
400

600
420
600

800
560
800

1000
700
1000

Volts
Volts
Amps

150

1.0

Amps

50.0
1.2
0.5
25.0

Amps
Volts

250
25.0
30.0
-65 to +175

NOTES:
1. Reverse Reoovery Test Conditions: IF~0.5A, IR=1.0A, Irr=
«

50

75

100

\

10

\

125

1.0

150

30
~

)",

a:

TJ = 25°C
Pulse Width ::e~

V

0.1

1 % Duty cycleL~

""'"

10.0

o
Z
«
.....
C3
«
D.
«
o

L

z
«

~

TJ" 25°C

W

::l«

I

r"'...

"0-

10

a: a:
Ow
"-D.
(I):::;:

~

60 BO 100

FIG. 4-TYPICAL JUNCTION CAPACITANCE

10

o
o

oW
Z
«
.....

40

FIG. 3 -TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

::l
~ f3

20

175

Z

W

2.0 4.0 6.0 8.0 10.0

NUMBER OF CYCLES AT 60 Hz

AMBIENT TEMPERATURE, 'C

~

a:
a:

..................

20

RESISTIVE OR
INDUCTIVE LOAD.
O.37S"(9.Smm) LEAD LENGTHS.

W

CJ

i-.....,f-f-,I+H'HoI::---t-H+1--H1tl

30

1--.-' ~
Vsig

=

1 MHz,_
50mVp-p

I

I

II
.6

.4

.1

1.0

.01

.B

1.0

12

1.4

10.0

1.0

16

100

REVERSE VOLTAGE, VOLTS

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

FlG.I-REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM
500

NONINDUCTIVE

Ion
NONINDUCTIVE

+O.5A

~-'-D-L-'.-T--~~--------------'

l'~vDC

-=- (..,.,.0.)

,

i\

/'r'

-0.25

(-)

111
NONINDUCTIVE

OSCilLOSCOPE
{NOTE 1)
-1.0A

NOTES: ,. Rise Time = 7ns max

1 megohm. 22pF.
2. Rise Time = 10ns max Source Impedance
so ohms.

~ 1I

=

- - - - - - - - - - - - - - it Generallnsbument
273

GI810 THRU GI818
GLASS PASSIVATED JUNCTION
FAST SWITCHING PLASTIC RECTIFIER
Voltage - 50 to 1000 Volts
Current - 1.0 Ampere
FEATURES
• High temperature metallurgically bonded constructed rectifiers
• Plastic package
has Underwriters Laboratory Flammability Classification 94V-O
• Fast switching for high efficiency
• Glass passivated cavity-free junction
• 1.0 Ampere operation at TA=75°C with no thermal
runaway
• Typical IR less than 0.1 J.I. A
• Capable of meeting environmental standards of
MIL-S-19500
• High temperature soldering guaranteed: 350°C110
seconds/.375", (9.5mm) lead length at 5Ibs.,
(2.3kg) tension

DO-204AC

1

..

1.0

,.034 [.B6)
.028 !.71J

-+MIN.

.300 [1.61

.23T·

81

1.0
MIN.
[25.41

.. ,
,·14013.6)

1 .104[2.6)

1

MECHANICAL DATA

Dimensions in inches and (millimeters)

Case: JEDEC DO-204AC Molded plastic over glass
Terminals: Plated Axial leads, solderable per MILSTD-750, Method 2026
Polarity: Color band denotes cathode

• G/ass-pl1ISItc encapsv_ technique is co",md by Patent No. 3,996,602011976
and brazed -lead assembly by Palllnl No. 3,930,306 of 1976

~®

~XlMUM

JIounti... _ _, Any
Weight: 0.015 ounce, 0.4 gram

. . '

RA17NGS AND ELECmlCAL CHARACTERISTICS

Ratings at 25°C ambientlemperature unless otherwise specified.
Resistive or inductive load.

GI
SYMBOLS 810

Maximum Recurrent Peak Reverse Vonage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average FOnNard Rectified Current
.375", (9.5mm) Lead Lengths atTA=75°C
Peak FOnNard Surge Current
8.3ms single haW sine-wave superimposed
on rated load (JEDEC Method) TA=75°C
Maximum Instantaneous Forward Voltage at 1.0A
Maximum DC Reverse Current TA=25°C
at Rated DC Blocking Voltage TA=100°C
Maximum Reverse Recovery Time (NOlE 1)
Typical Junction Capacitance (NOlE 2)
Typical Thermal Resistance (NOlE 3)
Of>erating Junction and Storage Temperature Range

VRRM 50
VRMS 35
Voc 50

GI
811

GI
812

GI
814

GI
817

GI
818 UNffS

100 200 400 600 800 1000
70 140 280 420 560 700
100 200 400 600 800 1000

Volts
vons
Volts

I(AV)

1.0

Amps

IFSM
VF

30.0
1.2
10.0
100.0
750.0
25.0
30.0
-65 to +175

Amps
Volts

IR
TRR
CJ
R9JA
TJ,TsTC

NOTES:
1. Reverse Recovery Test Conditions: IF=1.0A, VR=30V.
2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.
3. Themial Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.
274

GI
816

IJA
nS
pI
·CIW
·C

RATINGS AND CHARACTERISTIC CURVES GI810 THRU GI818

FIG. 2"":TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

fB

FIG. 1-FORWARD CURRENT DERATING CURVE

10

rr:
W

a.

b-.

::;;:
<:: 30

. . . r--.,

Z

w

;-.....

......

'FfESISTIVE OR INDUCTIVE LOAD
0.375" (9.5mm) LEAD LENGTHS
20

00

40

00

L

f-

......

1m

~

~

.....

1~

rr:
rr:

:::>

,

160

V

10

()

o

rr:

~ 03

180

AMBIENT TEMPERATURE. °C

rr:

oLL

en

J

0.1

TJ = 25°C

I

:::>

8

FIG. 3- TYPICAL JUNCTION CAPACITANCE

z

100

~
Z

50

""

LL
0-

ui

~

t-1.0MHz
Vsig_50mVp-p
'TJ =25'C'_

....

()

~ 10

TJ " 25°c
Pulse Width = 30011 s

If

.01
0.4

Z

0.6

2% Duty Cycle
0.8

1.0

1.2

1.4

16

18

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

FIG. 4 -

C3

if.

I

j'..... ~

z

(3

03

5

MAXIMUM NON- REPETITIVE PEAK
FORWARD SURGE CURRENT

40

r:
z

IIIII TALtllll1

w

rr:
rr:

:::>

5

10

50

~ffi
(!)rr:

100

rr:w

REVERSE VOLTAGE. VOLTS

:::>a.

30

"'- ~ .... ~

8.3ms Single Half
Sine-Wave (JEDEC Method)

20

CIl::;;:

0<::
<::

FIG. 5- REVERSE RECOVERY TIME CHARACTERISTIC
AND TEST CIRCUIT DIAGRAM

i'-.... ........

rr:

s:

10

rr:
0

sow
"'''

LL

NON·INDUCTIVE

UNIT

2

UNDERTEST

10

20

40 60

100

NUMBER OF CYCLES AT 60 Hz
1.0AdcFROM
CONSTANT
VOLTAGE SUPPLY
::IIPPLE· 3mV,ms MAX

~fl

.ow
NON·INDUCTIVE

FIG. 6 -

SUPERECTIFIER

C,

~F

CAVITY-FREE
(GLASS-PASSIVATED
JUNCTION)

Zoull'hll MAX.
DClo2~Hl

A-TEKTRONIX 545A. K PLUG IN
PRE AMP. P6000 PROBE OR eQUIVALENT

R2-TEN·1W lOti 1% CARBON CORE
IN PARALLEL

~~~~~~~i~:~=~~ ~!E~~EEREN

TA ",

~JO·CFORRECTIFIER

INDUCTANCE", 38pH

.:It!-

.+t.:50lv~s -f-+-

-~ \tv
\VI

COMPLETELY

I I
I_

ENCAPSULATED
BRAZED CONSTRUCTION

OPAQUE
GLASS

SET TIME BASE FOR

~5OI100nslcm

- - - - - - - - - - - - - - - @)Generallnstrument
275

RGP15A THRU RGP15M
GLASS PASSIVATED JUNCTION
FAST SWITCHING PLASTIC RECTIFIER
Vo/fage - 50 to 1000 Volts
Current - 1.5 Ampere
FEATURES
D0-204AC

1

..

1.0
MIN.

,.0341.861
.028 (.711

-+.300 (7.6)
.23015.81

1 +1

1.0
MIN.
125.41

,·14013.61
1 .10412.61

1

• High temperature metallurgically bonded constructed rectifiers
~
• Plastic package
has Underwriters Laboratory Flammability ClassIfIcation 94V-0
• Glass passivated cavity-free junction
• 1.5 Ampere operation at T A=55°C with no thermal
runaway
• Typical IR less than 0.1 11 A
• Capable of meeting environmental standards of
MIL-S-19500
• High temperature soldering guaranteed: 350°C/10
seconds/.375", (9.5mm) lead length at 5 Ibs.,
(2.3kg) tension

MECHANICAL DATA

Dimensions in inches and (millimerers)
• G1e5jl/astic eflCllllSlJlalfon technique is coveredby Patent No. 3,996,602011976 and
btazed ·lead assembly to Patent No. 3.930,306 of t976

Case: JEOEC 00-204AC Molded plastic over glass
Terminals: Plated Axial leads, solderable per MILSTO-750, Method 2026

~®
I

Polarity: Color band denotes cathode
llountlng "..1/1",,, A",
Weight: 0.015 ounce, 0.4 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 2S"C ambient temperature unless otherwise specified. Resistive or inductive load.
RGP RGP
SYMBOLS 15A 15B

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage

VRRM 50
VRMS 35

Maximum DC Blocking Voltage
Maximum Average Forward RectHied Current
.375", (9.5mm) Lead Lengths at T A=55°C
Peak Forward Surge Current
8.3ms single half sine-wave superimposed
on rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage at 1.5A

Voe

50

RGP
150

RGP
15G

RGP
15J

100 200 400 600
70 140 280 420
100 200 400 600

RGP
15K

800 1000 Volts
560 700 Volts
800 1000 Volts

I(AV)

1.5

Amps

IFSM
VF

50.0
1.3

Amps
Volts

IR

5.0
200.0

/lA

Maximum DC Reverse Current
TA=25°C
at Rated DC Blocking Voltage
TA=150°C
Maximum Full Load Reverse Current, Full Cycle Average
.375", (9.5mm) Lead Length T A=55°C
Maximum Reverse Recovery 11 me (NOTE 2) TJ=25°C
Typical Junction CapaCitance (NOTE 2)
Typical Thermal Resistance (NOTE 3)

IR(AV)
TRR
CJ
RaJA

Operating Junction and Storage Temperature Range

TJ,TsTG

100.0
150

250
25.0
30.0
-65 to +175

NOTES: t. Measured at 1.0 M Hz and applied reverse voltage of 4.0 Volts.
2. Reverse Recovery Test Conditions: IF=.SA, IR=I A, Irr=.25A.
3. Thermal Resistance from Junction to Ambient at .375" (9.Smm) Lead Lengths, P.C. Board Mounted.

276

RGP
15M UNITS

500

/lA
nS
pf
°CIW
°C

RATINGS AND CHARACTERISTIC CURVES RGP15A THRU RGP15M

FIG. 2-FORWARD CURRENT
DERATING CURVE

FIG. 1- REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM
lOU

5011
NONINQUCTIVE

NON INDUCTIVE

+O.5A

O.U.T

(+1

_ 50 Vdc
-

a

1\
\

t
I

(-I
111

"

a~ 1.00

(NOTE 11
-1.0A

NOTES 1. Rise Time-7ns max. Input lfT1l8dance1 mogaohm 22pF.
2. Rise Ti~10ns max. Source Impedance50 ohms.

~
a:
a:

~

.75

I\, .J

w~50

~a
w

~

I

RESISTIVE OR
INDUCTIVE LOAD
O.375'(9.5mm) LEAD LENGTHS

.25

;(
25

I.

"' '\

f2w

FIG. 3- TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

f-""

r\.

~~

.!!; f-""
a: Z

OSCILLOSCOPE

NONINDUCTIVE

"\

CD 1.25

~~

I'

-0.25

(approx.)

1.50

W

u::

50

75

100

125

'\.
150

AMBIENT TEMPERATURE,'C

10

FIG. 4- TYPICAL JUNCTION CAPACITANCE

aa

100

/'

a:

~ffi

1.0

.....

u..Q.

a: a:

Ow

u..a.

ur

T'-~

CD::!:
::l":

@

U
Z

J

0.1

~

U

Z

~

10

I-:::
~

........ T,-25"C
~

f_l.0MHz

Vsig-5OmVP-P

it

Z

~

I

~

<3

PULSE WIDTH-300"" f--2% DUTY CYCLE

01
.4

.6

.8

1.0

1.2

1.4

1.6

i.o

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

1.0

10

100

REVERSE VOLTAGE, VOLTS

FIG, 5 - MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT
50
W

(!lCD 40
a:W

FIG. 6 - SUPERECTIFIER

i '~

BRAZED· TEMP .. 6OO"C

::lao

CDw

aa.
a:::;:
..:..:

~!z'

Ow

30

..........
20

u..a:
:.:a:

~a

a.

10

...... ~

8.3mB SINGLE HALF.WAVE
_ ~INE.WAVE (JEDEC) METHOD
T'"rl'lllllll

o
1.0

2.0

4.0 6.0

a.oo

I
20

~~~~:~mED

40 60 80 100

BRAZED CONSTRUCTION

NUMBER OF CYCLES AT 60 Hz

OPAQUE
GLASS

fj General Instrument
277

175

RGP20A THRU RGP20J
GLASS PASSIVATED JUNCTION
FAST SWITCHING PLASTIC RECTIFIER
Voltage • 50 to 600 Volts Current· 2.0 Amperes
FEATURES

f

.210 (5.31
.190 t4.831
DIA.

1.0 (25.41

MIH.

1-1

-!
-t-

.315 (9.51
.285 (1.21

r

1.0 (25.41

.042C1.01I,
.037 (.941

..

Dimensions in inches and (millimeters)

• High temperature metallurgically bonded constructed rectifiers
• Plastic package
~
has Underwriters Lab~
oratory Flammability Classifi...~
cation 94V-0
---• Fast switching for high efficiency
• Glass passivated cavity-free junction
• 2.0 Ampere operation at TA=SSoC with no thermal
runaway
• TypicallR less than 0.1 ~A
• Capable of meeting environmental standards of
MIL-S-19500
• High temperature soldering guaranteed: 350°C/10
secondsl.37S", (9.Smm) lead length at Sibs.,
(2.3kg) tension

MECHANICAL DATA
• Glas&flIasrJc encapsu/alion fIlChn/qlJ9 Is cow"edby Patent No. 3,996,602 of 1976 and

case: Mold ed pi astic over glass

b/aZed-/ead_ybyPatentNo. 3,930,306 of 1976

Tenn;nals: Plated Axial leads, solderable per MILSTD-7S0, Method 2026
Polarity: Color Band denotes cathode
Mounting Position: Any
Weight: 0.03 ounce, 0.8 gram

•®

~
•

•

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified. Resistive or Inductive load.

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
.375", (9.5mm) Lead Lengths at TA=55°C
Peak Forward Surge Current
8.3ms single half sine-wave superimposed
on rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage at 2.0A
Maximum DC Reverse Current
TA=25°C
at Rated DC Blocking Voltage
TA=125°C
Maximum Full Load Reverse Current, Full Cycle
Average, 375" (9.5mm) Lead Length TA=55°C
Maximum Reverse Recovery Time (NOTE 2)
TJ=25°C
Typical Junction Capacitance (NOTE 1)
Typical Thermal Resistance (NOTE 3)
Operating Junction and Storage Temperature Range

RGP

RGP

RGP

RGP

SYMBOLS

20A

20B

20D

20G

RGP
20J

UNn'S

VRRM
VRMS
Voc

50
35
50

100
70
100

200
140
200

400
280
400

600
420
600

Volts
Volts
Volts

I(AV)

2.0

Amps

IFSM
VF

Amps
Volts

IR

80.0
1.3
5.0
100.0

IR(AV)

100.0

j.iA

TRR
CJ
RaJA
TJ,TsTG

150
35.0
22.0
-65 to +175

NOTES: 1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.
2. Reverse Recovery Test Conditions: IF=O.5A, IR=I.0A, Irr=D.25A.
3. Thermal Resistance from Junction to Ambient at.375· (9.5mm) Lead Lengths, P.C. Board Mounted.

278

j.iA

250

nS
pf

°CIW
°C

RATINGS AND CHARACTERISTIC CURVES RGP20A THRU RGP20J

FIG. 1 -

REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM

son

100
NONINDUCTIVE

NON INDUCTIVE

~
l'+~VDC

-

+ a.SA

\

,

DUT

/'

025

(_lOX)

II

I-I

osell LOSCOPE

11/

NQNINDUCTIVE

(NOTE 11

"V

IDA
NOTES' 1 Rise Time ::; 7ns max
1 megohm. 22pF
2 Rise T,me::; lOns max Source Impedance '"
50 ohms

o

t 13

2.0

,~

LUo::

FIG. 3 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

~

Z

LU
0::
0::

o
0::

~13
0::0::
oLU
Z
«
fZ
«
f-

««

1.0

o f5

0.5

"-0::
LUo::



..... ~

AMBIENT TEMPERATURE. 'C

«
FIG. 3 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

..:
z

10

W

0:
0:

:::J

FIG. 4 - TYPICAL JUNCTION CAPACITANCE

U

o

a:

~ffl
0:0:

i/

1.0

100
U.
Q.

Ow
u.o..
UJ:2

:::J «
@
Z
«
I-

/

0.1

Z

PULSE WIDTH

300,u s

==

1% DUTY CYCLE

.01
0.6

0.8

1.0

1.2

1.4

t)

10

U

5

«
0..
«

TJ "'- 25°C

0.4

Io,.oMHz

Voigii,il

«
l-

Z
Z

0;;:

U

«

~

50

u.i

10

1

-

TJ" 25'C

50

100

REVERSE VOLTAGE. VOLTS

1.6

INSTANTANEOUS FORWARD VOLTAGE. VOLTS

FIG.6 - SUPERECTIFIER

FIG. 5 - MAXIMUM NON-REPETITIVE
PEAK FORWARD SURGE CURRENT
100

CAVITy-rREE
(GLASS·PASSIVATED
JUNCTION)

-.... I'---

0

TJ-TJmax.
8.3ms SINGLE HALF SINE-WAVE
10

JEDECI METrO~ I I I I II
10

50

100
COMPLETELY
ENCAPSULATED

NUMBER OF CYCLES AT 60Hz

BRAZED CONSTRUCTION

OPAQUE

GLASS

- - - - - - - - - - - - - - f)Generallnsbument
281

180

I,
,.

RGP30A THRU RGP30M
GLASS PASSIVATED JUNCTION
FAST SWITCHING PLASTIC RECTIFIER
Voltage - 50 to 1000 Volts
Current - 3.0 Amperes
FEATURES
• High temperature metallurgically bonded constructed rectifiers
• Plastic package
has Underwriters Lab.....
oratory Flammability Classifi--....
cation 94 V-O
• Glass passivated cavity-free junction i
• 3.0 Ampere operation at TA=55°C with no thermal
runaway
• TypicallR less than 0.1 IJ. A
• Capable of meeting environmental standards of
MIL-S-19500
• Fast switching for high efficiency
• High temperature soldering guaranteed:
350°C/10 seconds/.375", (9.5mm) lead length at
5 Ibs., (2.3kg) tension

OD-201AO

f

.210 [5.31
.190 [4.81
OIA.

LI

r

1.0 [25.41

1+

t

.375 [9.51
.28SC·21

1

1.0 [25.41
.052 (1.31 , +
.04811.21

MIIN.

MECHANICAL DATA

Dimensions in inches and (millimeters)
'G!lISSjllaslicencapsulalion technirpJe /scovetedby Paten/No. 3,996,60201 / 976 and
bnJzed -lead /lSIleI1UIy III Parent No. 3,930,306 of 1976

Case: JEDEC DO-201AD Molded plastic over glass
Tenninals: Plated Axial leads, solderable per MILSTD-750, Method 2026

~®

~AXIMUM
. '

Polarity: Color band denotes cathode
_ntI09 _ _' A",
Weight: 0.04 ounce, 1.12 gram

RAnNGS AND ELECTRICAL CHARACTER/Sncs

Ratings at 25°C ambient1emperature unless otherwise specified. Resistive or inductive load.

RGP RGP RGP RGP RGP RGP RGP
SYMBOLS30A

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
.375", (9.5mm) Lead Lengths at TA=55°C
Peak Forward Surge Current 8.3rns single half sine·wave
superimposed on rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage at 3.0A
Maximum DC Reverse Current TA=25°C
at Rated DC Blocking Voltage TA=125°C
Maximum Full Load Reverse Current, Full Cycle Average
.375", (9.5mm) Lead Length TA=55°C
Maximum Reverse Recovery Time (NOlE 2) TJ=25°C
Typical Junction Capacitance (NOTE1)
Typical Thermal Resistance (NOlE 3)
Operating Junction and Storage Temperature Range

VRRM 50
VRMS 35
Voc 50

30B

300

300

30K

30M

UNITS

Volts
Volts
Volts

I(AV)

3.0

Amps

IFSM
VF

125.0
1.3
5.0
100.0

Amps
Volts

IR
IR(AV)
TRR
CJ
RaJA
TJ,TsT(

J.IA
J.IA

100.0
250

150

60.0
16.0
-65 to +175

NOTES:
1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.
2. Reverse Recovery Test Conditions: IF-0.5A, IR- 1.0A, Irr- .25A.
3. Thermal Resistance from Junction 10 Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

282

30J

100 200 400 600 800 1000
70 140 280 420 560 700
100 200 400 600 800 1000

500

nS
pf
°CIW
°C

RATINGS AND CHARACTERISTIC CURVES RGP30A THRU RGP30M

FIG. 3 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

f-'
Z

10

W
0:
0:

::::>

o

U

FIG. 1 - FORWARD CURRENT
DERATING CURVE

w
iI

f=oo
U

w
wo:

o

0:

~

4

ffi

I"

10

0:0:

OW

O:w
0"-

~

0:::;;

« «

2

~f-'

OZ
LL~
wo:
(j::::>

0

«U
0:
w

::::>«

"'

RESISnVEOR
INDUCnVE LOAD
0.375" (9.5mm) LEAD LENGTHS

1

25

50

75

100

o
w

"-......

125

T....25"C
PULSE WIDTHo3OO)'S
2% DUTY CYCLE

/

1

Z

~

~175

Z

~~

150

AMBIENT TEMPERATURE,·C

~

,

LL"-

00::;;

.L
.01

1
.4

1.0

1.2

1.4

1.6

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

,FIG.2 - MAXIMUM NON-REPETITIVE
PEAK FORWARD SURGE CURRENT

FIG. 4 - TYPICAL JUNCTION CAPACITANCE
100

LL

c.

!-.

,.....

uj50

~

U
Z

r--

~
U
~

I==~ TJ~TJmax.
10

TJ.25"C
t-1MHZ
Vsig.50mVp-p

<3

8.3.. SINGLE HALF
SINE·WAVE (JEDEC METHOD)
5

10

50

100

5

NUMBER OF CYCLES AT 60 Hz

FIG. 6 FIG. 5 -

5011
NON INDUCTIVE

10

50

100

REVERSE VOLTAGE, VOLTS

REVERSE RECOVERY TIME CHARACTERISTIC
AND TEST CIRCUIT DIAGRAM

SUPERECTIFIER

CAVITy·rREE
IGLASS·PASSIVATED
JUNCTION)

10!1
NONINDUCTIVE

+O.SA

I"'

D.U.T.

(+)

_ 50 Vdc
-

(appro)!..)

I

-0.25

(-)

111
NONINDUCTIVE

'I

OSCILLOSCOPE
(NOTE 1)

NOTES: ,. Rise Time == 7ns max., Input Impedance =
1 megohm. 22pF.
2. Rise Time = 10ns max., Source Impedance ==
50 ohms.

~~~:k~GEk:;:ED
-1.0A

\...V

BRAZED CONSTRUCTION

OPAQUe
GLASS

--------------

«

o~_L~

o

25

__

SO

~~

75

__

100

L_~~.

125

150

175

AMBIENT TEMPERATURE, °C

FIG. 4 - TYPICAL JUNCTION CAPACITANCE
u.

3°r--r-rrTOTnr--,rorTTTTm

~

101'---,

c.
ui

FIG.3· TYPICAL INSTANTANEOUS FORWARD
CHARACTERISTICS
0

A ~

0

i3

~

I- 5.0

.L.

Z

~

0

- TJ = 150°C / I
1/'

'"

1. 0

a:
«CIl
~w
a: a:
Ow
u.a.
CIl::!;
:::J«
0
W o. 1
Z
«
IZ
«
ICIl

If

==

Pulse Width'" 300j.J. S ~
Duty Cycle ~ 2%

I

FIG. 5 - TYPICAL REVERSE CHARACTERISTICS

WCIl
CIlW
a: a:
WW
>a.
W::!;
a: «
CIlO
:::Ja:

Ou
~~

I

.0 1

.4

·.6

.8

~ 25°C

f= lMHz

REVERSE VOLTAGE, VOLTS

TJ '" 25°C

I

~

TJ

::J
Vsig = 50mVp-p
.., 1.0 L...__L-.L..L..J....I-'-LJIl-__'--L...J...J....I..L.LlJ
1.0
5.0
10
50
100

I-

U

r---+-~,,~~--r-~~~

o
Z

Z
W
a:
a:
:::J

~~~~~~II~~~~~II

1.0

1.2

1.4

1.8

INSTANTANEOUS FORWARD VOLTAGE
VOLTS

ZZ
~~

~§
_u

1.0
.4

.04

TJ-25°C _

.01'-0--.,1,20---'4'-0-....,60~-~8~0-....,,0~0-....,,~20=--,:-'40·

PERCENT OF RATED PEAK REVERSE VOLTAGE.%

----------------CDGenerallnsbument
287

RMPG06A THRU RMPG06J
MINIATURE GLASS PASSIVATED JUNCTION FAST
SWITCHING PLASTIC RECTIFIER
Voltage - 50 to 600 Volts Current- 1.0 Ampere
FEATURES

.100 (2.54)
.090 (2.29)

• Plastic package has Underwriters laboratory
Flammability Classification 94 v-o
• low forward voltage drops, high current
capability
• Glass passivated chip junctions
• High Surge Capability
• 1.0 Ampere operation
at T A=2SoC with no thermal runaway
• Typical IR less than 0.1 iJ. A
• High temperature soldering guaranteed:
2S0°C/10 seconds/.37S", (9.Smm) lead length at
Sibs., (2.3kg) tension

1

r

1.0 (25.4)

L\ 1+---+t-.125 (3.18)

.~

1

1.0 (25.4)
.025 I. 635) , +
.0231.584)

T

MECHANICAL DATA
Case: Molded plastic over glass passivated chip
Terminals: Plated Axial leads, solderable per
Mll-STO-7S0, Method 2026

Dimensions in inches
and
(millimeters)

Polarity: Color band denotes cathode
Mounting Position: Any
Weight: 0.0064 ounce, .181 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient1emperature unless otherwise specified.
Resistive or inductive load.

SYAIBOLS
VRRM
VRMS
Voc

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current •. 375"
(9.5mml Lead length at T A=25°C
I AV
Peak Forward Surge Current
8.3ms single haW sine-wave superimposed
on rated load (JEDEC Method) T A=25°C
IFsM
Maximum Instantaneous Forward Voltage at 1.0A
VF
Maximum DC Reverse Current TA=25°C
at Rated DC Blocking Voltage
IR
TA=125°C
Typical Junction Capacitance (NOTE 1)
CJ
Typical Reverse Recovery Time (NOTE 2)
TJ=25°C
TRR
Typical
Thermal Resistance
Maximum (NOTE 3)
R8JA
02_erating Junction and Storage Temperature Range TJ.TsTG

RMPG

RMPG

RMPG

RMPG

06A
50
35
50

06B
100
70
70

06D
200
140
200

06G
400
280
400

I
I
I

I
I
I

I
I

J

I

I
I

06J
600
420
600

UNfrS
Volts
Volts
Volts

1.0

Amps

40.0
1.3
5.0
50.0
6.6

Amps
Volts

150
67.0
85.0
-55 to +150

NOTES:
1. Measured atl.0 M Hz and applied reverse voltage of 4.0 Volts.
2. Reverse Recovery Test CondilDns: IF= O.SA. IR=I.0A. Irr = 0.2SA.
3. Thermal Resistance from Junction to Ambient at .37S" (9.Smm) Lead Lengths. P.C. Board Mounted.

2BB

RMPG

IlA
pf

I

200

nS
°CfW
DC

RATING AND CHARACTERISTIC CURVES RMPG06A THRU RMPG06J

FIG. 2 - MAXIMUM NON REPETITIVE
PEAK FORWARD SURGE CURRENT

w

~ fil
:::la:
UJW
o~
~«

FIG. 1 • FORWARD CURRENT
DERATING CURVE

o

w

1.0

r--.-'--.--+-"-~~
I--k+-':

~~

0.8

I--l""d~

««
~t-:"

0.6 I
r

u::
i=UJ

faa:W~
a ifi

"-a:
~~
«u
a:
w
>

«

1.2

40

1'ori::-1r-t-II-I-+-tt++--+-l-+-H-H-1

30 1oc-4-':~~~f#-I-+"""'+H.4-U

~ ~ 20 1---+-H~IoIdf#-~!IoI.d+H~
ow
u.a:

:.::§
;5u

10

Load

0..

--f~~.Jo..,...j-+--+-I

(JEDEC Method)
1.0

0.4

10

I'

100

NUMBER OF CYCLES AT 60Hz

0.2

25

50

75

100

125

150

175

AMBIENT TEMPERATURE, °C
FIG. 4 -

TYPICAL JUNCTION CAPACITANCE

"-3Or--~rr",,.,rr--r-r-r--r."TTT1
a.

ui
U
Z

~6~ 10!~~~I!II!1~~~!l1l1l

o

FIG. 3· TYPICAL INSTANTANEOUS FORWARD
CHARACTERISTICS
30

5.0

i=

~

0

"

~

:::l
"'"") 1.0

/ /
l/J

TJ: 150°C

1.0

/ II

o. 1

I

.4

Pulse Width = 30011 s
Duty Cycle = 2%

wUJ
UJw
a: a:
WW
>0..
W:2
a:«
UJO
:::It!:

AU

wz:2
« .

I
.6

.8

1.0

12

5.0

10

50

100

TJ == 25°C

I

.01 1/

SOmVp·p

=

r-.

tljlt--~H-H~

REVERSE VOLTAGE, VOLTS

I

I

Vsig

1.0

I

I

I

TJ ~ 25°C
f= lMHz

1.4

1.6

1.8

INSTANTANEOUS FORWARD VOLTAGE
VOLTS

1-1-

ZZ

«w
I-a:
UJa:
z:::l

-u

30
10

FIG. 5 -

TYPICAL REVERSE CHARACTERISTICS

-,

§

~

TA- 25°C -

I--

-

4.0
TA - 150°C

1.0
.4
0.1
.04
.01

TA

20

---

40

60

100°C

80

100

120

140

PERCENT OF RATED PEAK REVERSE VOLTAGE ,%

- - - - - - - - - - - - - - - CD Generallnsbument
269

290

GLASS PASSIVATED
RECITFIERS
0.2 AMPERE TO 3.0 AMPERES
50 VOLTS TO 7600 VOLTS

...._ _ _ _ _ _

291

(DGeneraL
Instrument _ _

I

GLASS PASSIVATED RECTIFIER
0.2 to 0.3 Amperes 50 Volts to 7600 Volts
Device Design
The Glass Passivated Rectifier is a hermetically sealed, cavityfree, diffused junction rectifier with
unsurpassed operating and surge characteristics at high temperature.
Cavityfree construction with a specially developed extremely pure glass in direct contact with
the silicon junction plus durable heat sink design obviate the need for solder joints and
compression contact parts. The carefully matched expansion characteristics of the glass and
metal parts in combination with the direct contact of the glass and silicon junction make the
active rectifying elements impervious to surface contamination, moisture or other external
chemical agents. Further, the long term degradation associated with organic junction protection is avoided.
There are many steps necessary to produce such a device:

Diffused Slice

~
~"N.

1-Diffuse a PN junction into a slice of silicon.

"p"

Metallized Slice
2-Evaporate aluminum on both sides of
the slice to make metallurgical contact.

EVAPORATED
ALUMINUM

3-Sandblast the slice to produce a round beveled die.

SAND BLASTED
ROUND DICE

292

COPPER
LEADS

LEADS BRAZED TO MOLYBDENUM
4. Braze the dis belWflfln two molybdenum heat sinks
to which leads have been attached at approximately 700 ·C.

5-Clean the assembly by chemically etching.
washing and drying.

LEADS BRAZED TO MOL YBDENUM

6-Apply glass in the form of a frit to the die and
molybdenum assembly.
GLASS PASSIVATED RECTIFIER

7-Melt the glass by heating in an oven to
approximately 600 • C.
GLASS BODY & PASSIVATION FIRED AT 6OO'C
8-Overmold glass passivated construction
with UL recognized flame-retardant
94 V-O classification epoxy.

Package Design
The small size of the glass package with Its capability up to 3 Ampere permits greater packing
densities in electronic assemblies and equipment, while Increasing reliability. Furthermore. only
high temperature brazing operations are used to withstand the 600 C required to melt and fuse
the glass. This technique eliminates solder construction and tremendously enhances mechanical strength and temperature cycling capability. increasing operating and storage temperature range while reducing thermal resistance.

Reliability
Specified reliability data on Glass Passivated Rectifier devices are available from the General Ins'trument Semiconductor Components Division Reliability Department. The basic design of the
Glass Passivated rectifier and the strict positive controls over materials and manufacturing
processes provide assurance of failure free performance under the most severe conditions.
Processing facilities have been geared to follow the procedural requirements of Military Standard 750.Glass Passivated rectifiers are capable of withstanding environmental extremes in excess of MIL-S-19500E and of meeting requirements of MIL-STD-883. MIL-Q-9858 and MIL-I-45208.
Assurance of production uniformity and reliability is provided by a test technique called "Operational Load Line Testing." which has proven product reliability with over 1 Billion Glass Passivated
rectifiers now in use.

293

I

FAMILIES OF GENERAL INSTRUMENT
GLASS PASSIVATED RECTIFIERS

Glass Passivated Junction Recltlflers 1.0 to 3.0 AMPERES
I}tplN4245thru lN4249
1N5059 thru 1N5062
1N5614 thru 1N5622
1N5550 thru 1N5554
1N5624 thru 1N5627
G1AthruG1M
G2AttvuG2M
G3AttvuG3M
G4AttvuG4M

FeoIures:
• Glass Passivated JunctiOn
• High Mechanical Strength
• Storage up to 200°C
• Voidless Construction
• Hermetically Sealed
• Avalanche Operation
• Low Leakage
• High Conductance
• Tin Plated Axial Leads, Solerable per MIL-STD-'lSOI2026

Glass Passivated Fast Recovery Junction Rectifiers 1.0 to 3.0 AMPERES
Type$:

lN4942thru lN4948
lN5615thru lN5623
lN5415thru lN5420
RG1AthruRG1M
RG2A thru RG2M
RGaA thru RG3M
RG4A thru RG4M
BVV95 thru BVV96
BVW32 thru BVW36
BVW72 thru BVW76

FeoIures:
• Glass PaSSivated Junction
• Fast Switching for High Rectification Efficiency to 100 kHz
• High Mechanical Strength
• Low Leakage
• Hermetically Sealed
• Storage up to 20(J>C
• Tin Plated Axial Leads, Solderable per MIL-STD-7S0/2026

High Voltage Glass Passivated Junction Rectifiers 1.0 to 3.0 Amperes
Type$:

CG1.DGl
CG2.DG2
CG3.DG3
GIl-I200 thru Gil-16m

Features:
• All Advantages of a Hermetically Sealed Glass Passivated
Junction
• Specially designed for ClamperlDamper Applications in
Television/CRT circuitry
• Low Leakage, VR ratings of 1400 volts to 1600 volts
• High Mechanical Strength
• Tin Plated Axial Leads, Solderable per MIL-STD-7S0I2026

294

,-...

QUICK GUIDE TO GLASS PASSIVATED RECTIFIERS
lYPE
CASE
10("1
IPTAlc)
VRoSCl(V)
VRolDO(V)
VR-2DO(V)

,-

... ...
... ,-

ING42'

...

INSel4

INSel5

'"561.

INSel7

GIG

RGIG

INSel8

'"5620
I-

IN581t
IN5121
I_

RGIJ
IIGIK
RGIII

50
1.2

t.2

GlJ
GlK
GIll
50
1.1

I-

D0204AP
1.0
&5

D0204AP

I00204AP

t.o

t.o

55

&5

00204AP
t.O
&5

IN424&

1"'842

,-

'"5614

IN424&

IN4844

I_

VR-5DO(V)
VR-6DO(V)
VR-3DO('I)
VRoI~

,_,

,-

IN4217
1IN4248

IIN4047
I",1M8

25
t.2

10

50

1.3

t.2

SURClE{A1
VF(V)

...

IIGIA"
IIGIII'
00204AP
t.O
&5
IIGIA
IIGIB
IIGID

I-

VR-3DO('I)
'IR-4DO(V)

...

GIA
GIll
00204AP
1.0
100
GIA
GIB
GlD

INSel5'

I00204AP
t.O
&5

50

10
1.3

QUICK GUIDE TO GLASS PASSIVATED RECTIFIERS
TYPE
CASE
Io(A)

TAlC)
VRoSCl(V)
VII-lDO(V)

001
and
001
00204AP
1.5
55

...

RG2A'

...

CG2

IN5e24

RG211'

..d
DG2

IN5627

D0204AP

D0204AP

D0204AP

2.0
70

2.0
50

G2B
G2D

2.0
55
RG2A
RG2B
RG2D

G2G

RG2G

IN5625

IN555I

G2J
G2K
G2M

RG2J
RG2K
RG211

IN5626
lN5827

INS552

G2A

VRo2OO(V)
VR..sOO(V)
VR-4OO(V)
VR-5OO(V)
VR-6DO(V)
VR-aDO(V)
VII-I~

VII>lOOO(V)
SURGE(A)
VF(V)

G2A

G2M

OOIIDGI

IIw
GI'R3
3.0

,70

...

...

...

...

...

IN5650

IN5415'

G3A

G4A

RG3A'

lN5552
GPR4
3.0
55

IN542O'
GPR4
3.0
55
IN5415
IN5416
IN5417

G3M

G~

RG~'

GPR3
3.0
70

GPR4
3.0
70

G3A

GSB
GSD

G4A
G4B
G4D

GPR3
3.0
55
RG3A
RG3B
RGSD

RG4M
GPR4
3.0
50
RG4A
RG4B
RG4D

IN5418
IN5419

G3G

G4G

RG3G

RG4G

lN5420

G3J
GSK

00

RG3J

ROO
RG4K
RG411

125
1.1

100
1.3

100

CG3IDG3
100

1.3

t.2

IN5550

fuu

G3M

RG4A

CG2IDG2

40

50

50

40

1.0

1.2

1.3

1.1

125
1.0

100
121

Fut_ory

295

80

1.1

125
1.1

eGa

..d

DG3
GPR3
3.0
50

1 N4245 THRU 1 N4249
MINIATURE GLASS PASSIVATED JUNCTION RECTIFIER
Voltage - 200 to tODD Volts Current- 1.0 Ampere
FEATURES
• High temperature metallurgically bonded constructed rectifiers

D0-204AP

• 1.0 Ampere operation
at T A=55°C with
no thermal runaway
• TypicallR less than 0.1 IL A

f

.0341.86) . . .
.028 1.711

1.0125.4)

~

• Hermetically sealed package
• Capable of meeting environmental standards of
MIL-S-19500

Jo

16.U
MAX.

• High temperature soldering guaranteed: 350°C/1 0
seconds/.375", (9.5mm) lead length at 5 Ibs.,
(2.3kg) tension

L-.l

I

t

1.0I 2S.4)

r'

MECHANICAL DATA
Case: JEDEC DO-204AP One piece glass
Terminals: Plated Axial leads, solderable per

Dimensions in inches
and
(millimeters)

MIL-STD-750, Method 2026

• Brazed·11JIJd assembly is covered by Palent No. 3,930,306 0/7976

Polarity: Color band denotes cathode
Mounting Position: Any
Weight: .02 ounce, .56 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Radngs at 25°C ambient temperature unless otherwise specified.
Single phase, half wave, 60 Hz, resistive or inducdve load. For capacidve load, derale current by 20%.

"Maximum Reament Peak Reverse VoRage
Maximum RMS VoRage
"Maximum DC Blocking Voltage
"Maximum Average Forward RectHied Current
.375", (9.5mm) Lead Lengths at TA=55°C
"Peak Forward Surge Current
B.3ms single han sine-wave superimposed
on rated load (JEDEC Method)
"Maximum Instantaneous Forward Vohage at 1.0A
"Maximum Full Load Reverse Current, Full Cycle
Average .375", (9.5mm) Lead Lengths at T A=55°C
"Maximum Reverse Current
TA=25°C
at Rated DC Blocking Va Rage
TA=125°C
Typical Junction Capacitance (NOTE 1)
Typical Thermal Resistance (NOTE 2)
"Operating Temperature Range
"Storage Temperature Range

SYMBOl..S lN4245
200
VRRM
140
VRMS
200
Voc

IN4246
400

2BO
400

lN4247
600
420
600

IN4248

BOO
560

BOO

IN4249
1000
700
1000

UNITS
Volts
Volts
VoRs

I(AVl

1.0

Amps

IFsM
VF

50.0
1.2

Amps
Volts

IR(Av)

50.0
1.0
25.0
15.0
40.0
-65 to +160
-65 to +200

IlA

IR
CJ
R8JA
TJ
TSTG

NOTES:
1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.
2. Thermal Resistance from Juncdon to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounled.
"JEDEC RegiSlered Values

296

IlA
pf

·CIW
·C
·C

RATING AND CHARACTERISTIC CURVES 1N4245 THRU 1N4249

FIG. 2 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS
20

0

FIG. 1 1.0

o

f=

Or;]

f=

0
W
a: 00
OW
a: a:
«W
:;::<1.
a:::!'

\.

0.8

I\.

Wa:
a:W

\.

~~ 0.6

~;-:

0.4

~G

0.2

«

u.1ooZ
::JW
Oa:
Wa:
Z::J
«0
IZ
«

\.

\

u.a:
Wa:
a:
W
>

'\:
\.

60Hz
RESISTIVE OR
INDUCTIVE LOAD 375"
(9.5mm) LEAD LENGTH

o

o

25

50

75

I-

100

125

150

W

<.') 00 40

a:W
::Ja:
ooW
~~
««

I"

,.....

I

05

175

-

2S"C

TJ

PULSE WIDTH 300~S 2"'0 DUTY CYCLE

-

I

0.6

08

12

1.0

14

1.6

18

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

FIG. 4 - TYPICAL JUNCTION CAPACITANCE

"811~s SINLTHD m

30

SINE-WAVE (JEDEC METHOD

I

t--...

I II

"'"

U.

1"1'

0. 10.0

TJ

c

2S C C

W

..........

30

:;::;-:

a: z
OW
u.a:
",a:
~3

I

10

~

MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT

50

50

.01

00

1\

AMBIENT TEMPERATURE. 'C
FIG. 3 -

/

0"-

««

o i5

~

10.0

u::

I\,

W

u.

W

FORWARD DERATING CURVE

20

o
Z

«
l-

r-..."

t)

«

<1.

«

o

10

<1.

f = lMHz
VSIG :: SOm Vp~p max.

1.0
10.0

1.0

1.0

10.0

100

100

REVERSE VOLTAGE, VOLTS

NUMBER OF CYCLES AT 60Hz

...:
Z
W

a:
a:
::J

o

FIG. 5 - TYPICAL REVERSE CHARACTERISTICS
10.0
TJ - 125°C

4.a

wOO
Cf)W

a: a:
WW
> <1.
w::!'
a:«

~~

L

1.0

-

0.4

01

00

!;l!:E

04

~
Z
«

.01

I-

00

1

TJ - 7S"C

....
o

20

TJ ,25'C
40

60

80

100

120

140

PERCENT OF RATED PEAK REVERSE VOLTAGE ,%

Z

---------------eGeneralInstrument
297

I

1N5059···THRU 1N5062
MINIATURE GLASS PASSIVATED JUNCTION RECTIFIER

Voltage - 200 to 800 Volts

Current~ 1.0 Ampere

FEATURES
• High temperature metallurgically bonded constructed rectifiers
• 1.0 Ampere operation at TA=75°C
with no thermal runaway
• TypicallR less than 0.1 11 A
• Hermetically sealed package
'"'*">
• Glass passivated cavity-free junction DO-204AP
package
• Capable of meeting environmental standards of
MIL-S-19500
• High temperature soldering guaranteed:
350°C/10 secondsl.375", (9.5mm) lead length at
5 Ibs., (2.3kg) tension

DO-204AP

.034(,861.
.028 (,711

+

MECHANICAL DATA
Dimensions in inches

and

(millimeters)
• Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976

case:JEDEC D0-204AP One piece glass
Tenninals: Axial leads, solderable per
MIL-STD-750, Method 2026
Polarity: Color band denotes cathode
Mounting Position: Any
Weight: .02 ounce, .56 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at25'C ambient temperature unless otherwise specified.
Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.
SYIIBOLS

'Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
'Maximum DC Blocking Voltage
'Maximum Average Forward Rectified Current
.375",(9.5mm) Lead Lengths at TA=75°C
'Peak Forward Surge Current
8.3ms single half sine-wave superimposed
on rated load (JEDEC Method)
'Maximum Instantaneous Forward Voltage at 1.0A
'Maximum Full Load Reverse Current, Full Cycle
Average .375". (9.5mm)
TA=25°C
Lead Lengths at
TA=75°C
'Maximum DC Reverse Current
TA=25°C
at Rated DC Blocking Voltage
TA=175°C
Typical Reverse Recovery Time (NOTE 1)
Typical Junction Capacitance (NOTE 2)
Typical Thermal Resistance (NOTE 3)
'Operating and Storage Temperature Range

VRRM
VRMS
Voc

IN5059
200
140
200

IN5060
400
280
400

IN5061
600
420
600

I
I
I

IN5062
800
560
800

UNITS

Volts
Volts
Volts

I(AV)

1.0

Amps

IFSM
VF

50.0
1.2

Amps
Volts

5.0
IR(AV)

150 .

I

100

!LA

200

I1A

5.0
IR
TRR
CJ
ReJA
TJ,TsTG

300

I
2.0
15.0
40.0
-65 to +175

NOTES:
1. Reverse Recovery Test Conditions: IF=a:
rlJW

T" = 75°C
8,3ms Single Halt
Sine-Wave (JEDEC Method)

"-roo.

W

"

~§
wO

10

a.

\.

125

150

o
1.0

10.0

100

NUMBER OF CYCLES AT 60Hz

175

AMBIENT TEMPERATURE, °C

FIG. 4 - TYPICAL JUNCTION CAPACITANCE

FIG. 3 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

r--r-r...,.,TnT-""""""'I'T"TT
I"'"

30 ....
0

ITJ I~

u.

ui

oc.

J

.0

15!d
10.0~1ti.

z

<{
f-

a
<{
1

,

<{

o

-

TJ '" 25 c G

1.0

.8

1.2

1.4

FIG. 5 -

a: <{ 1.0
rlJO

65

0.4

r:

0.1

~~
~

~ a:i04

ti~
~a

.01

---

o

FIG. 6 -

TYPICAL REVERSE CHARACTERISTICS

1000
800
600

W

0
Z

TJ~125°C

~

20

<{rIJ
...Jf<{f><{
<{~

-

W •
rlJa:
a:w

TJ = 75°C

W~

[iio
a:

60

80

100

100

<{

-

a.

120

W

MAXIMUM NON-REPETITIVE REVERSE
AVALANCHE POWER DISSIPATION

i""'""

400

200
100
80
80

i"""'o-

'- I"""-~
l"iiio..

40
TJ = 25°C

~

TJ~25°C

....

20

a.

I
40

'---'--L-L.L.ll.UJ

10.0

1.6

I

ffi ffi

>a.
W::;

~"..u.LU
1111

REVERSE VOLTAGE, VOLTS

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

W rIJ 10.0
rlJW
~
4.0

f-1.0MHz
Vsig ...50mVp-p

1.0

-

2% Duty Cycle

.01
.6

1.0

Pulse Width = 3001-1 s -

I
.4

~

a.

J

10

140

10

PERCENT OF RATED PEAK REVERSE VOLTAGE, %

20

40 60 80100 200 400 600 1000 2000 4000 10000

PULSE DURATION MICROSECONDS

---------------(jGenerallnsburnent
299

I

1N5614 THRU 1N5622
MINIATURE GLASS PASSIVATED
MEDIUM-SWITCHING JUNCTION RECTIFIER
Voltage - 200 to 1000 Volts
Current - 1.0. Ampere
FEATURES
DO-204AP

.034 (,86).

+

.028 (,71)
OIA.

• High temperature metallurgically bonded constructed rectifiers
.,'
• 1.0 Ampere operation
""""'"
at T A= 55°C with
no thermal runaway
• Typical IR less than 0.1 11 A
• Hermetically sealed package
• Capable of meeting environmental standards of
MIL-S-19500
• High temperature soldering guaranteed:
350°C/l0 seconds/.375", (9.5mm) lead length at
5 Ibs., (2.3kg) tension

MECHANICAL DATA
Dimensions in inches
and
(milUmetersj
• Brazed·lead assembly Is covered by Patent No. 3.930.306 of 1976

Case: JEDEC DO-204AP One piece glass
Terminals: Plated Axial leads, solderable per
MIL-STD-750, Method 2026

Polarity: Color band denotes cathode
Mounting Position: Any
Weight: .02 ounce, .56 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 2SoC ambient temperature unless otherwise specified.
60 Hz. resistive or inductive load. For capacitive load. derate current by 20%.

sneocs

lN5614

lN5616

lN5618

lN5620

lN5622

UNITS

VRRM
VRMS

200
140

400
280

600
420

800

1000

Voks

560

700

Voks

'Maximum DC Blocking Vokage

Voc

200

400

600

800

1000

Voks

'Minimum Reverse Breakdown Vokage at 50 11 A

VBR

220

440

660

880

1100

Voks

"Maximum Recurrent Peak Reverse Vottage
Maximum RMS Voltage

Maximum Average Forward Rectified Current
.375", (9.5mm) Lead Lengths at T A=55DC
'Peak Forward Surge Current
8.3ms single haW sine-wave superimposed
on rated load (JEDEC Method)
'Maximum Instantaneous Forward Voltage at 1.0A
'Maximum DC Reverse Current TA=25'C
at Rated DC Blocking Voltage TA=100'C
TA=200'C
'Maximum Reverse Recovery Time (NOTE 1)
Maximu m Junction Capacitance (NOTE 2)
Typical Thermal Resistance (NOTE 3)
'Operating Junction Temperature Range
'Storage Temperature Range

I(Av)

1.0

Amps

IFSM
VF

50.0
1.2
0.5
25.0
1500
2.0

Amps
Volts

IR
TRR
CJ
RaJA
TJ
TSTG

45.0

35.0

25.0 I 20.0
40.0
-65 to +175
-65 to +200

NOTES: 1. Reverse Recovery Test Conditions: IF=0.5A, IR=I.0A, Irr=.2SA.
2. Measured at 1 M Hz and applied reverse voltage of 12 volts.
3. Thermal Resistance from Junction to Ambient at .37S" (9.Smm) Lead Lengths, P.C. Board Mounted.
"JEDEC Registered Values

300

I1A

15.0

I1s
pf

'CIW
'C
DC

RATING AND CHARACTERISTIC CURVES 1N5614 THRU 1N5622

FIG. 2- MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT

~

Of'

FIG. 1 - PORWARD CURRENT
DERATING CURVE

z

UJ
cr:
cr:

100

"r'\.

::J
U
Cl
UJ

75

LL

tffl
UJcr:
a: W

50

~~

1\

.q:.q:

~
o

25

60Hz
RESISTIVE OR
INDUCTIVE LOAD

U.

(!)

25

50

75

100

125

1\

150

AMBIENT TEMPERATURE, °C

~

FIG. 3- TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

~~

1()()

I
FIG. 4- TYPICAL JUNCTION CAPACITANCE

10.0
30

cr:
cr:
:::l

U
Cl

"-

u.
TJOO1SOOC

cr:

~ffl

uj10. 0

J

10

II

I"

c.

t-~.h I

~

c.J
Z

cr:cr:

.q:

fr~

!::

(/)::;;

c.J 5.0

:::l.q:

j

1

Z

~
~~

"

10

>

@

TA = 55°C
.8.3ms ~INGLE HALF
SINE-WAVE (JEOEC
Method)

NUMBER OF CYCLES AT 60 Hz

175

.q:

aJ

"'"

1\

0375"119 5m7 LEA~ LENG~HS

UJ
.q:
cr:
UJ

"

I

~

T,-25"C

f.1.0MHz

Vsig_SOmVp-p

U

I

PULSE WIDTH-300~.

1.0

2% DUlY CYCLE

01
4

r----

f--

.q:

8

10

12

1.4

5.0

1.0

10.0

50

100

REVERSE VOLTAGE. VOLTS

1.6

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

~

FIG. 5- TYPICAL REVERSE CHARACTERISTICS

Z

UJ
cr:
cr:

a

UJ(/)
(/)UJ

10.0
4.0 ~ T,.125"C

a:: a:

10

~~

0.4

UJUJ

-

cr:.q:

(/)0

55

~~
~
Z

~
~

0 .1
.04

TJ -75OC

T,j -2SOC

0

20

"----

I

.01
40

60

80

100

120

140

PERCENT OF RATED PEAK REVERSE VOLTAGE.%

- - - - - - - - - - - - - - - ;.;.,

DO-204AP

• 034 1.86) ,

t

..

• 028 1.71l

1.0125.4)
MIN

OIA.

~
.210
16.U

• TypicallR less than 0.1 II. A
'"
• Capable of meeting environmental standards of
MIL-S-19S00
• High temperature soldering guaranteed:
3S0°C/10 seconds/.37S", (9.Smm) lead length at
Sibs., (2.3kg) tension

I4AX.

~

I

1.0ItS.4)

r'

MECHANICAL DATA
Case: JEDEC DO-204AP One piece glass
Terminals: Plated Axial leads, solderable per

Dimensions in inches

and
(millimeters)

MIL-STD-7S0, Method 2026

Polarity: Color band denotes cathode
Mounting Position: Any
Weight: .02 ounce, .56 grams

• Brazed-lead assBmbly is covered by Patent No. 3,930,306 of 1976

MAXIMUM RA TlNGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified.
60Hz, resistive or inductive load.
For capacitive bad, derate current by 20%
SYMBOLS GfA

Maximum Recurrent Peak Reverse Vottage
Maximum RMS Vottage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current, .37S"
_(9.Smm) Lead Length at TA=100°C
Peak Forward Surge Current
8.3ms single haR sine-wave superimposed
on rated load (JEDEC Method)
Maximum Instantaneous Forward Vottage at 1.0A
Maximum Full Load Reverse Current, Full Cycle
Average, .37S", (9.Smm) Lead Length at TA=100°C
Maximum DC Reverse Current
TA=2SoC
at Rated DC Blocking Vottage
TA=1S0°C
Maximu m Reverse Recovery Time (NOTE 1) TJ=2Soc
Typical Junction Capacitance (NOTE 2)
Tfl>/cal Thermal Resistance (NOTE 3)
Operating Junction and Storage Temperature Range

VRRM
VRMS
Voc

GIB

IRIAV)
IR
TRR
CJ
R8JA

TJ,TsTG

GfG

GfK

GfM UNrrS

Amps

SO.O
1.1

1.2 \

200.0
2.0
100.0
2.0
1S.0
40.0
-6Sto +17S

NOTES:
t. Measured with IF=O.SA, IR=l.OA, Irr=.25A.
2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Voc.
3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

302

GfJ

1.0

I(AV)

IFSM
VF

GfD

SO \ 100 \ 200 \ 400 600 \800 \1000 Volts
3S \ 70 \140 \ 280 420 \S60 \ 700 Votts
so \70 \200\400 600 \800 \1000 Votts

Amps
Votts
~

I1A
f.1S
pf
°CIW
°C

RATINGS AND CHARACTERISTIC CURVES G1A THRU G1M

FIG. 2- MAXIMUM NON·REPETITIVE PEAK
FORWARD SURGE CURRENT
50

FIG. 1- FORWARD CURRENT
DERATING CURVE

01'"

I"-

TJ..TJm3X.
18.3ms SINGLE HALF
SINE-WAVE (JEOEC I
Method)

"

0
Capacitive Loads

~

5.0 / : : :
("",IAv.'0/

20
0.375" (9.5mm) LEAD LENGTHS
25

50

75

100

10

125

I

FIG. 3- TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

~

FIG. 4- TYPICAL JUNCTION CAPACITANCE

10.0

Z

Ii!
a:

0

~

ac
a:

~fB'

u..
.0.

T,.150"C

0

uj10.0
U
Z

j

a: a:

Ow
u..o..

~
U

rn::!E

:::l<{

@

I

j

1

Z

~
~;;!;

100

NUMBER OF CYCLES AT 60 Hz

AMBIENT TEMPERATURE,·C

PULSE WIDTH-3001'"

fl
4

6.

~'"

0,-- f.1.0MHz

-

Vsig-50mVp-p

u

-,
.0 1

~
<{

T,.25"C

III
U5.b 1

1.0

2% DUTY CYCLE
.6

1.0

1.2

1.4

1.0

5.0

10.0

50

100

REVERSE VOLTAGE, VOLTS

1.6

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

~

w
a:
a:

a

FIG. 5- TYPICAL REVERSE CHARACTERISTICS

10.0
4.0

=

~ TJ-125'"C

-

wrn

mw

a: a:

ww
ijj ~

1.0
0.4

a:<{

T,.75"C

mo

55 0.1
~~04
;::
Z

~

;;!;

.01

0

~
~

.

T,.25"C
~

~

50

50

~

f----m

~

PERCENT OF RATED PEAK REVERSE VOLTAGE. %

- - - - - - - - - - - - - - - (DGenerallnsbument
303

G2ATHRU G2M
MINIATURE GLASS PASSIVATED JUNCTION RECTIFIER
Voltage - 50 to 1000 Volts Current- 2.0 Amperes
FEATURES
• High temperature metallurgically bonded
constructed rectifiers
• Glass passivated cavity-free junction in
DO-204AP package,
• Hermetically sealed case "'«',«,
• 2.0 Ampere operation
""""'_
at TA=7SoC with no ther~".
mal runaway
.,."'"<\.,,,

DO-204AP

.0341.86) •

.-

.0281.711
DlA.

• TypicallR less than 0.1 11 A
• Capable of meeting environmental standards of
MIL-S-19S00
• High temperature soldering guaranteed:
3S0°C/10 seconds/.37S", (9.Smm) lead length at
Sibs., (2.3kg) tension

MECHANICAL DATA
Case: JEDEC DO-204AP One piece glass
Terminals: Plated Axial leads, solderable per

Dimensions in inches
and
(millimeters)

MIL-STD-7S0, Method 2026

Polarity: Color band denotes cathode
Mounting Position: Any
Weight: .02 ounce, .S6 grams

• Brazed·lead ssssmbly is covered by Patent No. 3,930,306 of 1976

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at2S"C ambientlemperature unless otherwise specified.
60 Hz, resistive or inductive load.
For capacitive load, derate current by 20%
SYMBOLS

Maximum Recurrent Peak Reverse VoRage
Maximum RMS VoRage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current, .375"
(9.5mm) Lead Length at TA=75"C
Peak Forward Surge Current
8.3ms single haW sine-wave superimposed
on rated load (JEDEC Method)
Maximum Instantaneous Forward Va Rage at 2.0A
Maximum Full Load Reverse Current, Full Cycle
Average, .375", (9.5mm) Lead Length at T A=1 OO·C
Maximum DC Reverse Current
TA=25·C
at Rated DC Blocking VoRage
TA=150·C
Maximum Reverse Recovery Time (NOTE 1) TJ=25·C
Typical Junction Capacitance (NOTE 2)
Typical Thermal Resistance (NOTE 3)
Operating Junction and Storage Temperature Range

VRRM
VRMS
Voc

G2A

G2B

G2D

IRlAYt
IR
TRR
CJ
RaJA
TJ,TsTG

I

G2K

G2M UNn-B

800 1000 Volts
560 700 Voks
800 1000 VoRs
Amps.

50.0
1.2

1.1
100.0
1.0
100.0
2.0
15.0
40.0
-65 to +175

NOTES:
1. Measured with IF=O.SA, IR=I.0A, Irr=.25A.
2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Voe.
3. Thermal Resistance from Junction to Ambient at .375" (9.Smm) lead Lengths, P.C. Board Mounted.

304

G2J

2.0

IfAV)

IFSM
VF

G2G

50 11001200 400 600
35 I 70 1140 280 420
50 1100 I 200 400 600

Amps
Volts

IIA
IIA
I1S

111
·CIW
·C

RATINGS AND CHARACTERISTIC CURVES G2A THRU G2M

FIG.2-MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT

o~

FIG. 1 ._. FORWAr:n CUfm,:~'T
DEFIAllNG CUf:IJF

0

w

~ en

u::

f=en

Uw
wa:
a:w

00.

a:::;
««

3: .
a: IO~

u.a:
wa:
(!)::J
«U
a:
w

"

40

a:W
::Ja:

2.0

enw
@~

1.5

TJ",TJmax.
8.3ms Single Half Sine-Wave
(JEDEC Melhodl

30

..........

«<{

3:.-:

~~ 20

1.0

~i'oo

u.a:
0.: a:

0.5

;;S 13

10

0.

25

SO

75

100

125

150

175

10

AMBIENT TEMPERATURE,"C

>
«

100

NUMBER OF CYCLES AT 60 Hz

FIG. 3- TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

.-:
Z

FIG. 4- TYPICAL JUNCTION CAPACITANCE

10

W

c::

30

a:
::J
U

I--..

o

a:

VI

T... 15O"C

~[fl. 10

W

u.Q.

en::;

(3

I

J

1

10

U
Z
<{
I-

Ow

8Z

I II

TJ.25"C:

Q.

a: a:

::J<{

I

r--. ...

U.

5

~

TJ=25"C

<{
U

<{

1-1.0 MHz
Vsig=50mVp..p

~

~

~

PULSE WIDTH..:lOO~.
2% DUTY CYCLE

II
1

.2

.4

.8

.8

1.0

1.2

10

50

100

REVERSE VOLTAGE, VOLTS

1.4

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

.-:
Z

~

FIG. 5- TYPICAL REVERSE CHARACTERISTICS
10

a:
::J
U

F

.

wen
~~

1.0

w::;

.4

WW
>0.

TJ.125"C

a:«

eno

T,..75"C

::J a: 0.1

8~

Z::; .04

~
Z

~
~

TJ-25"C

r---

r

.01

0

20

40

60

80

100

120

140

PERCENT OF RATED PEAK REVERSE VOLTAGE ,%

----------------~Generallnstrument
305

I

1 N5550 THRU 1 N5552
GLASS PASSIVATED JUNCTION RECTIFIER
Voltage - 200 to 600 Volts Current - 3.0 Amperes
FEATURES
•
•
•
•

Glass paSSivated cavity-free junction
High temperature metallurgically bonded
Hermetically sealed package
Capable of meeting
environmental
standards of
MIL-S-19500
• Medium switching for
good efficiency
• High temperature soldering guaranteed:
350·C/10 seconds/.37S", (9.Smm) lead length
at Sibs., (2.3kg) tension

f

1.0Io4IN.

.180 (4.61 •
.1300.31

(25.41

!

OIA.

1
1

.300(7.61
Io4AX.

.042 0.071
.038 (.9621 •
DIA.

4-

1

1.0 MIN •

(25.41

1

MECHANICAL DATA
Case: One piece glass
Terminals: Plated Axial leads, solderable per
MIL-STO-750 Method 2026

Polarity: Color band denotes cathode
Mounting Position: Any
- - - - - - - - - - - - - - - - - - Weight: .037 ounce, 1.04 grams
Dimensions in inches and (millimeters)

• Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified.
60Hz. resistive or inductive load.
For capacitive load, derate current by 20%.

'Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage

SYMBOLS

1N555D

1N5551

1N5552

1UNITS

VRRM

200

400

600

Volts

VRMS
Voc
VBR

140

280

Volts

200
240

400
460

420
600

'Maximum DC Blocking Voltage
'Minimum Reverse Breakdown Voltage at SO Il A
'Maximum Average Forward Rectified Current
.37S", (9.Smm) Lead Lengths at TA=SSoC
Peak Forward Surge Current
8.3ms single half sine-wave superimposed
on rated load (JEDEC Method)
, Maximum Instantaneous Forward Voltage at 3.0A
'Maximum DC Reverse Current TA=2SoC
at Rated DC Blocking Voltage TA=100°C
TA=200°C
'Maximum Junction CapaCitance (NOTE 2)
'Maximum Reverse Recovery Time (NOTE 1) TJ=2Soc
Typical Thermal Resistance (NOTE 3)
'Operating Junction and
Storage Temperature Range

660

Volts
Volts

I(AV)

3.0

Amps

IFSM
VF

100.0

Amps

1.0
1.0
2S.0
1S00.0

Volts

IR
CJ
TRR
R8JA
TJ.TsTG

1S0

120
2.0
1S.0
-6Sto +200

100

Il A
pi

Il s
°CIW
°C

NOTES:
1. Reverse Recovery Test Conditions: IF~0.5A, IR~I.0A, Irr~0.25A.
2. Measured at 1 MHz and applied reverse voltage of 12.0 volls.
3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, with both leads mounted between heat sinks .
• JEDEC Registered Values
306

RATINGS AND CHARACTERISTIC CURVES 1N5550 THRU 1N5554

FIG. 2 200

FIG. 1 - FORWARD CURRENT
DERATING CURVE

, TJ-TJ max.

"'-""-'!IIi::-r:;:TL:-,7L~EA;;;D~T;:;E;;;M;;P;;;E;;~A;T;:;U;;:R;;;~---'

@

5.n

LL

40 1--+--+--~~t--r---«lDt1'IL~

::la:

3.0 "'-+--'k:-r--T"~r-­

",,,,

§Wa:f3

a:W
o ~

~«

w



50

«

75

100

........

wO
"-

10.0
1.0

a:
W

-

50

~>-'

T~~:~~ri~~E -.p::-3"k:-r.....t-

J,J.'

8.3ms Single Half Sine
Wave (JEDEC Method)

100

a:w
enw

L = .375" (9.Smm)

~~ 2.0

MAXIMUM NON-REPETITIVE
PEAK FORWARD SURGE CURRENT

125

150

175

5.0

200

10.0'

50

100

NUMBER OF CYCLES AT 60 Hz

TEMPERATURE.oC

Fig. 4-TVPICAL JUNCTION CAPACITANCE

I

100
TJ = 25°C
50

.......... ,...."

U.

0.

ui

'.l.oMHz

Voig.1iOmV1>9

1"'"

o
z

o
Cf.

('j

50

~

...1

....z
w

TJ " 150°C

10.0

a:
a:
::l

()

o

a:

~en
g~
u.~

en::;
::l",
ow
Z

'....z"
'"~
~

3. a

..l.

Lif

a

o. 3

L

~

25°C

30

==
Pulse Wrdth = 3001-15
2% Duty Cycle

TJ" 12SoC-

=
-

0.6

0.8

1.0

1.2

1.4

t-

I

II

0

-

1--,

0.4

100

IL
!I

1
0.2

!0-

...

I

1

50

TYPICAL REVERSE CHARACTERISTICS

TJ=1500~

I

.03

10.0

10.0

..L

11 1

a.1

S.n

~

REVERSE VOLTAGE. VOLTS
FIG. 5 -

TJ

t-- ...

10.0i

.0
1.0

A

,

.......... ......

~

Fig. 3-TVPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

a. 1

1.6

TJ "

75~C

j

INSTANTANEOUS FORWARD VOLTAGE.
VOLTS

I'

1

o

IL ~
20

40

60

ott!"!. I"
TJ "2SoC- t--

-,

80

100

120

140

PERCENT OF RATED PEAK REVERSE VOLTAGE. '"

- - - - - - - - - - - - - - - -'

a.
ui

Z


5.0

NUMBER OF CYCLES AT 60 Hz

«

ffi

-

...

60Hz
RESISTIVE OR
INDUCTIVE LOAD
0.375"(9.5mm) LEAD LENGTHS

00

....

-FIG. 3- TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

....
TJ :: 25°c

r--....

f-l.0MHz

~

..... ~i'-

V.ig-50rT"I'1l
0

30

t-'
z
w

10.0

::J
U

3.0

./

A

~

5.0
1.0

5.0

,

a:
a:

If

TJ::; 150°C /

~ffll.o
a: a:

100

/

/

o
a:

50

10.0

REVERSE VOLTAGE. VOLTS

t-'

FIG. 5- TYPICAL REVERSE CHARACTERISTICS

z

Ow

lLa.

(/):;:

::J«

o

w

I

O.3

z

f-

Z

I

O. 1

4.0

w(/)

/ I

«

«

13

I

I

fQ ~

10

if; ~

0.4

Pulse Width::; 300 f.1 s

WW

2% Duty Cycle

a:«

ti
z

(/)0

55

I

.03

.0 1
.02

I

I

I

I
0.4

0.6

~~

«f-Z

01

04

r---

__
TJ.~25·C
____~____~__~_____~1__~____~

01~~~

0.8

1.0

1.2

1.4

'.6

INSTANTANEOUS FORWARD VOLTAGE. VOLTS

~
Z

311

0

20

40

60

80

100

120

140

PERCENT OF RATED PEAK REVERSE VOLTAGE."

G4A THRU G4J
GLASS PASSIVATED JUNCTION RECTIFIER
Voltage - 50 to 600 Volts Current - 3.0 Amperes
FEATURES
• High temperature metallurgically bonded
constructed rectifiers
• Glass passivated cavity-free junction
• Hermetically Sealed package

f

• 3.0 Ampere operation c""~"".'"
at TA=75·C with no thermal runaway

1.0 MIN .
(25.41

•180 (4.61 ,
.130 (3.31

!

OIA

• TypicallR less than 0.1 11 A
""
• Capable of meeting environmental standards of ~
MIL-S-19500
• High temperature soldering guaranteed:
350·C/10 seconds/.375", (9.5mm) lead length at
5 Ibs., (2.3kg) tension

1

.30011.61
MAX.

.042 (1.071,
.0381.9621
CIA.

4-

l

1.0 MIN •
(25.41

1

MECHANICAL DATA
Case: One piece glass
Terminals: Plated Axial leads, solderable per

Dimensions in inches
and
(millimeters)

MIL-STO-750, Method 2026

Polarity: Color band denotes cathode
Mounting Position: Any
Weight: .037 ounce,1.04 grams

• Brazed·lead assembly is covered by Patent No. 3,930,306 of 1976

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25'C ambient temperature unless otherwise specified.
60 Hz, resistive or inductive load.
For capacitive load, derate current by 20%
SYMBOLS

Maximum Recurrent Peak Reverse Vottage
Maximum RMS Vottage
Maximum DC Blocking Voltage
Maximum Average Forward RectHied Current, .375(9.5mml Lead Length at TA=70'C
Peak Forward Surge Current
8.3ms single haH sine-wave superimposed
on rated load (JEDEC Method)'
Maximum Instantaneous Forward Vottage at 3.0A
Maximum Full Load Reverse Current Full Cycle
Average, ,375-, (9.5mm) Lead Length at TA=70'C
Maximum Average Reverse Current al Peak T A=25·C
Reverse Vottage TA=100·C
Maximum DC Reverse Current
TA=25·C
at Rated DC Blocking Vottage
TA=100·C
Typical Reverse Recovery Time (NOTE 2) TJ=25·C
Typical Junction Capacitance (NOTE 1)
Typical Thermal Resistance (NOTE 3)
Operating Junction and Storage Temeerature Range

VRRM
VRMS
Voc

G4A

G4B

G4D

G4G

G4J

UNffS

50
35
50

100
70
100

200
140
200

400
280
400

600
420
600

Votts
Volts
Votts

I(AV)

3.0

AlTlls

IFSM
VF

100.0
1.1

Amps
Votts

IRIAV\

200,0
5.0
100.0
1.0
100.0
3.0
40.0
15.0
-65 to +175

I1A

IR(AV)
IR
TRR
CJ
RaJA
lJ.TSTG

IlA

I1A
I1B
pi
·CIW

NOTES:
1. Measured at 1 MHz and app~ed reverse voltage of 4.0 Volts.
2. Reverse Recovery Test Conditions: IF~0.5A. IR=I.0A. Irr=.25A.
3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths with both leads mounted be\Ween heatsinks.
312

·C

RATINGS AND CHARACTERISTIC CURVES G4A THRU G4M

FIG. 2 200

Ocn
a:w

Fig. 1 -FORWARD CURRENT DERATING CURVE

~

UJ

a:
a:
::J

()

I TJ.TJm:':Jl1

8 3ms Single Half Sine
Wave (JEOEC MethOd,

100

-

::Ja:

4. 0

i"'..

3.0

Ulw

~

"''''

a:w

~ffi

~~ 2. 0

u.'"
w

MAXIMUM NON-REPETITIVE
PEAK FORWARD SURGE CURRENT

~

1. 0

~

0

a:
w

~~

"

r-...

««
5:>-,
a:Z
OW
,,-a:

......

60Hz
RESISTIVE OR
INDUCTIVE LOAD
0.375"(9.5mm) LEAD LENGTHS
50

25

100

75

50

~

~~

WO

~

"-

150

125

10.0

~

1.0

5.0

10.0

50

100

NUMBER OF C YC LES AT 60 Hz

175

Fig. 4-TYPICAL JUNCTION CAPACITANCE

AMBIENT TEMPERATURE. 'C

I

100
TJ

=

25 Q C

50

........... I-....

"0.

W
()

z

It
«

()

r-

10.0

Z

-"

A

150°C

10.0

5.0
1.0

5.0

a:
a:

::>
3.0

0

a:
5:01
a: UJ

J ,

'"

offi

"-0..

FIG. 5 -

I

30

TJ
10.Q

::>'"

0

Z

0.3

'"

r-

OO

~

I

I

'z"

r-

/ I

0.1

.03

L

I

.01
0.2

Pulse Width.: 300 f.1 s
2% Duty Cycle

0.6

100

r-r

./

TJ" 125°C- I--

0

-~

I
0.4

0::;;"""-

-

Ul::>i
UJ

50

TYPICAL REVERSE CHARACTERISTICS

TJ '" 25°C

/'

1.0

10.0

~

REVERSE VOLTAGE, VOLTS

UJ

()

-.... r-... .......

u

50

~

....

;::

Fig. 3-TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

TJ

'.1.0MHz
V oig • 5OmVP1>

0.8

1.0

1.2

1.4

TJ "- 75°C

o. 1

1.6

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

r--

1

l.,.....o-' ~
o

20

40

60

.-,.. 0
TJ

80

,..

2re- '--100

120

140

PERCENT OF RATED PEAK REVERSE VOLTAGE. %

- - - - - - - - - - - - - - - ~ General Instrument
313

314

HIGH VOLTAGE GLASS
PASSIVATED RECTIFIERS
1.0 AMPERE TO 3.0 AMPERES
1200 VOLTS TO 1600 VOLTS

(DGeneral
-----Instrument .....
315

I

CG1 AND DG1
MINIATURE CLAMPER I DAMPER GLASS PASSIVATED
JUNCTION RECTIFIER
Voltage - 1400 to 1500 Volts
Current - 1.5 Amperes
FEATURES
--* -DO-204AP
.034 (.86).

+

.028 (.711

DI"-

Dimensions In Inches
and
(millimeters)

• Specially designed for clamping circuits horizantal deflection systems and damper applications
• High temperature metallurgically bonded constructed rectifiers
• Glass passivated cavityfree junction in DO-204AP package
• 1.5 Ampere operation ~"
atTA=50°Cwithno
~
thermal runaway
• TypicaliR less than 0.1 Il A
'
• Hermetically sealed package
• Capable of meeting environmental standards of
MIL-S-19500
• High temperature soldering guaranteed:
350°C/10 seconds/.375", (9.5mm) lead length at
5 Ibs., (2.3kg) tension

MECHANICAL DATA
Case: JEDEC DO-204AP One piece glass
Terminals: Plated Axial leads, solderable per
MIL-STD-750, Method 2026

• Btaz9d-lsad assembly is covered by Patent No. 3,930,306 of 1976

Polarity: Color band denotes cathode
Mounting Position: Any
Weight: .02 ounce, .56 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25'C ambient temperature unless otherwise specified.
60 Hz, resistive or inductive load. For capacitive load. derate current by 20%.

SYMBOLS

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
.375", (9.5mm) Lead Lengths at TA=50'C
Peak Forward Surge Current 8.3ms Single half sine
-wave superimposed on rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage at 1.0A
Maximum DC Reverse Current TA=25·C
at Rated DC Blocking Voltage TA=100·C
Maximum Full Load Reverse Current Full Cycle
Average, .375", (9.5mm) Lead Length
TA=100·C
Maximum Reverse Recovery Time (NOTE 1) TJ= 25·C
Typical Junction Capacitance (NOTE 2)
Typical Thermal Resistance (NOTE 3)
Operating Junction and Storage Temperature Ranae

VRRM
VRMS
Voc

OGI
1500
1050
1500

CGl
1400

980
1400

Volts
Volts
Volts

I(AVI

1.5

Amps

IFsM
VF

40.0
1.1
5.0
100

Amps
Volts

IR

TRR
CJ
R8JA
TJ TSTG

IlA

50.0

IR(Av)
15.0

20.0

15.0
40.0
-65 to +175

NOTES;
1. Reverse Recovery Test Conditions: IF=O,SA. IR=50ma.
2. Measured at 1 MHz and applied reverse voltage of 4.0 Vee.
3. Thermal Resistance from Junction to Ambient at .37S" (9.Smm) Lead Lengths, P.C. Board Mounted.

316

UNITS

IlA
Ils
pf
·CIW
·C

RATINGS AND CHARACTERISTIC CURVES CG1 AND DG1
FIG. 2 - MAXIMUN NON REPETITIVE
PEAK FORWARD SURGE CURRENT

FIG. 1- FORWARD CURRENT
DERATING CURVE

100

NUMBER OF CYCLES AT 60Hz
FIG. 4- TYPICAL JUNCTION CAPACITANCE
30

50

75

100

125

a.

«
tO
«a.
«

10.0

UJ

u

::l
U

TJ' \50"e

o
a:

~oo
UJ

J

1.0

/

TJ'2~

«

a:
a:

::l

FIG. 5- TYPICAL REVERSE CHARACTERISTICS
10.0

U

~TJ=125(1C

UJ 00 4.0

~

I

~01

~

10

~

Z

00

50

Z

UJ

J

00:::;:
::l
0.1

10

REVERSE VOLTAGE, VOLTS

,

a:

offi
LLa.

Z

10

U
Z

a:
a:

o
UJ

J

ui

FIG. 3- TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS
~
Z

'!J ,k5!6

f == 1.0MHz
Vsig = 50mVp-p

1'1'"

LL

150 175

AMBIENT TEMPERATURE, °C

.......

ooUJ

II

Pulse Width =- 300J,1 S
1% ~uty eye,l.

II
.4

.6

.8

1.0

1.2

1.4

1.6

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

a: a:
>a.

UJ UJ 1.0

~~

OA

000
::la:

OU 0.1

~:E
~

Z

«

Iiiz

TJ - 25"e
.04

.01

l~

o

20

40

60

80

100

120

140

PERCENT OF RATED PEAK REVERSE VOLTAGE ,%

FIG. 6 - REVERSE RECOVERY TIME CHARACTERISTIC AND TEST DIAGRAM
INPUT

~6::,:sl

INPUT
PULSE GENERATOR
HP MODEL 214
OR EOUIVALENT

J-C:sL
SOUARE WAVE

OUTPUT
CURRENT PROBE TEKTRONIX TYPE 134
OR EQUIVALENT TO OSCILLASCOPE

OUTPUT

idfr,
r,;;-

1--

- - - - - - - - - - - - - - - ::a:
«::l
wU

20

"'~

8.3ms Single Half Sine-Wave
(JEOEC Method)

I"~

,

COl/ron

~i'

"""I'""

r-...... r-..

TJ-TJ max.
At Rated Load

err!'li

10

I

TA"25°C
At No Load

.........

0..

~ 6 25
«

a:::;;
««

30

~...:

OW·50

a:
W
>

40

1'-0""

10

100

NUMBER OF CYCLES AT 60Hz
40

20

60

120

140

AMBIENT TEMPERATURE, °C

FIG. 4 -

FIG. 3 - TYPICAL INSTANTANEOUS
FOWARD CHARACTERISTICS

TYPICAL JUNCTION CAPACITANCE

30

t'......

10.0

u.

n
ui

TJ" 150°C

f= 1MHz
Vsig = 50mVp-p

U

J

0

ITJtlJJill

I"'"

10

Z
«
t-

O
«
0..
«

TJ = 25°C

J

j

1

-

10

TJ = 25°C
Pulse Width = 30011 s 2% Duty Cycle

II
.0 1
.4

U

I

.6

.8

1.0

1.2

1.4

100

REVERSE VOLTAGE, VOLTS

1.6

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS
FIG. 5 -

W(I)
(l)W
a: a:
WW

TYPICAL REVERSE CHARACTERISTICS

10
4.0

ETJ

.

125"e

>0..

w::;;

a:«
(1)0
::la:
OU
WZ::;;
~...:
ZZ
«W
t-a:
(/Ja:
Z::l
-U

1.0

0.4

•
TJ -

0.1
.04
.01
0

-20

40

60

TJ 25°

I
BO

100

120

140

PERCENT OF RATED PEAK REVERSE VOLTAGE.'"

- - - - - - - - - - - - - - - (DGeneralInstrument
319

CG2 AND DG2
MINIATURE CLAMPER I DAMPER GLASS PASSIVATED
JUNCTION RECTIFIER
Voltage - 1400 to 1500 Volts
Current- 2.0 Amperes
FEATURES

* DO-204AP
.034(.86]
.0281.711

I

+

OIA.

Dimensions in Inches
and
(millimeters)

• BrazB

15.0

I

I1A
20.0

I1s

15.0

pi

40.0

·CIW

-65 to +175

·C

NOTES:
1. Measured with IF=0.5A, IR=50mA.
2. Measured at1 M Hz and applied reverse voltage of 4.0 Voc.
3. Thermal Resislance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P .C. Board Mounted.

320

I1A

200.0

iR(Av)

Operatina Junction and Storaae Temperature Ranoe

Volts
Volts

I(Av)

IR

Typical Thermal Resistance (NOTE 3)

UNrrs
Volts

RATINGS AND CHARACTERISTIC CURVES CG2 AND DG2
FIG. 2 - MAXIMUN NON REPETITIVE
PEAK FORWARD SURGE CURRENT

Of'.

TA! 25!C
NO LOAD

~

o

............. i'
FIG. 1 - FORWARD CURRENT
DERATING CURVE

~

0

.........
~ ........

....TJmax.

8.3ms SINGLE HALEV

(J~6~~~:~~d(

Capacitive +"",,,.~-.e~d--+--t
Loads
5.0
Ipk/IAV:: 10
20 --'~-+~~

•

I

I I

"'/1
10

.r----I

100

NUMBER OF CYCLES AT 60Hz

0.375 (9.Smm) LEAD LENGTHS

25

50

75

100

125

150

175

FIG. 4- TYPICAL JUNCTION CAPACITANCE

AMBIENT TEMPERATURE. °C
30

1-0...
LL

0.

ui

I

It 11

.......

TJ o 250C
f = 1.0MHz
Vsig = 50mV p-p

10

U
Z

10

~

Z

UJ

a:
a:

«
t-

FIG. 3- TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

O

c:
«

5

u

:l
U

o

~ en
a: a:

TJ:: 150°C
1.0

/

V

10

TJ = 25°C

LLa.

Z

«
t;
~

Z

I
O. 1

01

UJ

U10~!!i~~~~m
TJ:: 125°C

§UJen
enUJ
a: a:
ww

Pulse Width:: 300/J 5

.4

.6

FIG. 5- TYPICAL REVERSE CHARACTERISTICS

a:

/

:l«

z
«
t-

100

~

OUJ

en:2:

o
UJ

50

REVERSE VOLTAGE. VOLTS

3:UJ

.8

1.0

2%DulyCyclo
1.2

1.4

1.6

en
Z

PERCENT OF RATED PEAK REVERSE VOLTAGE.%

enO

:la:

INSTANTANEOUS FORWARD VOLTAGE.
VOLTS

no

~~

>a.
~

Z

:-'"
E~

~~

I

03

II
04

0.2

06

--......

WW

a: a:
;::a:

I

.D1

i""'"
50

T.-7S·C

«::::l

r-""

WU

0.. 0

0.8

1.0

1.2

1.4

:;;;a:

16

::::l~

~a:
Xo

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

10

~lL

5

J=EA
INPUT

INPUT

_+200J.1F
.10V

PULSE GENERAlDR
HP MODEL 214

OR EQUIVAI.ENT

10

50

DUTY CYCLE. PERCENT

FIG. 6 - REVERSE RECOVERY TIME CHARACTERISTIC AND TEST DIAGRAM

OUTPUT

'5-

....... 105

1-

,

I

SQUARE WAVE
OUTPUT
CURRENT PROBE TEKTRONIX lYPE 134
OR F()I /IVAI FNT TO OSCJLLASCOPE

---------------(DGenerallnsbument
323

100

eG3 AND DG3
CLAMPER I DAMPER GLASS PASSIVATED
JUNCTION RECTIFIER
Voltage - 1400 to 1500 Volts
Current - 3.0 Amperes
FEATURES
• Specially designed for clamping circuits horizontal deflection systems and damper applications
• High temperature metallurgically bonded constructed rectifiers

25D (6.3) ,

.110 (4-3)

I

I>A.

DIA.

Dimensions in inches

• Glass passivated
'"
cavity-free junction
~"
• 3.0 Ampere operation
at T A=SO°C with no
thermal runaway
• TypicallR less than 0.1 11 A
."
• Hermetically sealed package
• Capable of meeting environmental standards of
MIL-S-19S00
• High temperature soldering guaranteed:
3S0°C/10 seconds/.37S", (9.Smm) lead length at
Sibs., (2.3kg) tension

and

MECHANICAL DATA

(millimeters)

• 8razlJd-leac/ assembly Is coverlJd by Patent No. 3.930.306 of
1976

Case: One piece glass
Terminals: Plated Axial leads, solderable per
MIL-STD-7S0, Method 2026

Polarity: Color band denotes cathode
Mounting Position: Any
Weight: .04 ounce, 1.1 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified.
60 Hz. resistive or inductive load. For capacitive load, derate current by 20%.

Maximum Recurrent Peak Reverse Voltage
Maxi mum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
.375", (9.5mm) Lead Lengths at TA=50·C
Peak Forward Surge Current 8.3ms single half sine
-wave superimposed on rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage at 3.0A
Maximum DC Reverse Current TA=25·C
at Rated DC Blocking Voltage TA=100·C
Maximum Full Load Reverse Current Full Cycle
Average, .375", (9.5mm) Lead Length
TA=70°C
Maximum Reverse Recovery Time (NOTE 1) TJ=25°C
Typical Junction Capacitance (NOTE 2)
Typical Thermal Resistance (NOTE 3)
Operatina Junction and Storaoe Temperature Ranoe

SYMBOLS

eG3

DG3

UNITS

VRRM
VRMS
Voc

1400
980
1400

1500
1050
1500

Volts
Volts
Volts

I(Av)

3.0

Amps

IFSM
VF

100.0
1.2
5.0
100.0

Amps
Volts

IR
IR(Av)
TRR
CJ
R8JA
TJ TSTG

200.0
15.0

20.0

40.0
20.0
-65 to +175

NOTES:
1. Measured with IF=O,5A. IR=50mA,
2. Measured at 1 MHz and applied reverse voltage of 4.0 Voc.
3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) lead Lengths, P .C. 80ard Mounted.

324

IlA
IlA
Ils
pf
°CIW
·C

RATINGS AND CHARACTERISTIC CURVES CG3 AND DG3

f-

Z

FIG. 2 - MAXIMUM NON-REPETITIVE
PEAK FORWARD SURGE CURRENT

200

w

TA·50°C

a:
a:

8.3ms SINGLE HALF-SINE WAVE
(JEDEC Method)

::0

U

f-

di

FIG. 1- FORWARD CURRENT DERATING CURVE

100

W

l?Ul

a:
a:

a:W
~
50

ffi

::0

U

4.0

o

w

u::

3.0

:i!on.ffi

2.0

BtB
a:::;;

~



FIG. 4 - TYPICAL REVERSE CHARACTERISTICS
20

AMBIENT TEMPERATURE. 'C

10

~

FIG. 3 -MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT

Z
UJ
a:
a:

30

~

Z
UJ

a:
a:

:l

20

Uen
UJUJ

~ ....

~ffi

iil~
c«

U
UJen
enUJ
a: a:
UJUJ
>~
UJ::ii
a:«

~ r--..

10

OU
UJZ::ii
«
IZ
«

1.0

TJ = 7S"C

,

./

,

"

0.1

en

0

6

8

10

20

40

~

60 80 100

NUMBER OF CYCLES AT 60 Hz
.01

20

FIG. 5 - TYPICAL JUNCTION CAPACITANCE
30

u..

D-

UJ::;;

0:«

::JO:
00

~~

10

«

TJ

, ./

U)O

WC==

0.1

I-

0

Z

"-

«

10

..., "

I-

100

U)

Z

NUMBER OF CYCLES AT 60 Hz

TJ 25"7
1

-

-

/
FIG. 5 30

.......
"-

a.

W

o1

TYPICAL JUNCTION CAPACITANCE

I

1'..

1
TJ •

2!"~

20

40

60

80

100

140

REVERSE RECOVERY TIME CHARACTERISTIC
.AND TEST CIRCUIT DIAGRAM

100

5OC!

NQNINDUCTIVE

NONINOUCTI'IE

+ 0 5/1.

0
Z

«
I0
«D«

120

PERCENT OF RATED PEAK REVERSE VOLT AGE. %
FIG. 6 -

10

0

"\

DVT

/'
- 025

10

0

10

REVERSE VOLTAGE, VOLTS

100

I

OSCILLOSCOPE

NONINDUCTIVE

f_l.0MHz
Vsig • SOm Vp-p

lNOTE 11

NOTES 1. Rise Time;o 70S max. Input Impedence::;
1 megohm, 22 pF.
2. Rise Time = IOns max. Source Impedance =
50 ohms.

\
.. 10

--11

\
cmr.-

II

SET TIME BASE FOR
SO/lOOns/em

~ General Instrument
331

RG1 A THRU RG1 M
MINIATURE GLASS PASSIVATED JUNCTION
FAST SWITCHING RECTIFIER
Voltage - 50 to 1000 Volts Current - 1.0 Ampere
FEATURES
• High temperature metallurgically bonded
constructed rectifiers
• Hermetically sealed case
• Glass passivated cavity-free junction in a
00-204AP package " ' "
• 1.0 Ampere
atTA=55°C with no
thermal runaway
• Typical IR less than 0.1 11 A
• Capable of meeting environmental standards of
MIL-S-19500
• Fast switching for high efficiency
• High temperature soldering guaranteed:
350°C/10 seconds/.375", (9.5mm) lead length at
5 Ibs., (2.3kg) tension

DO-204AP
.034 (.86J ,
.028 (.711

operation~'

+

OIA.

MECHANICAL DATA
Case: JEOEC 00204AP One piece glass
Terminals: Plated Axial leads, solderable per

Dimensions in inches
and

(millimeters)

MIL-STO-750. Method 2026

Polarity: Color band denotes cathode
Mounting Position: Any
Weight: .02 ounce, .56 grams

• 8razsd·lead BSSsmb/y Is cov.,sd by Patont No. 3.930.306 of 1976

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 2S'C ambient temperature unless otherwise specified.
Resistive or inductive load.
SYMBOLS RG1A RG18 RG1D RG1G RG1J RG1K RG1M UNn-B

VRRM 50 I 100 I 200 I 400 I 600 80011000 Voks
VRMS 35 I 70114012801420 5601700 Volts
Voc 50 11001200/4001600 80011000 Volts

Maximum Recurrent Peak Reverse Vokage
Maximum RMS Vokage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current, .375"
(9.5mm) Lead Length at TA=55·C
Peak Forward Surge Current
8.3ms single haH sine-wave superimposed
on rated load (JEDEC Method)'
Maximum Instantaneous Forward Voltage at 1.0A
Maximum Full Load Reverse Current,
FuU Cycle Average, .375", (9.5mm)
TA=25·C
Lead Length at
TA=100·C
Maximum DC Reverse Current
at Rated DC Blocking Voltage
Maximum Reverse Recovery Time (NOTE 1) TJ=25·C
Typical Junction Capacitance (NOTE 2)
Typical Thermal Resistance (NOTE 3)
Operating Junction and Storage Temperature Range

IIAV)

1.0

Amps

IFSM
VF

30.0
1.3

Amps
Volts

IR(AV)

1.0
100.0

I1A

2.0

IlA

IR
TRR
CJ
R9JA
TJ,TsTG

150

1200 2501 500
15.0
50.0
-65 to +175

NOTES:
1. Reverse Recovery Test Conditions: IF=O.SA. IR=I.0A, Irr=.25A.
2. Measured at 1.0 MHz and applied reverse vokage of 4.0 Voc.
3. Thermal Resis1ance from Junction to Ambient at .37S" (9.Smm) Lead Lengths. P.C. Board Mounted.

332

nS
pf
·CIW
·C

RATINGS AND CHARACTERISTIC CURVES RG1A THRU RG1M

FIG. 2 - MAXIMUM NON-REPETITIVE
PEAK FORWARD SURGE CURRENT
30

,...:

"

zw

a:
a:

FIG. 1 - FORWARD CURRENT
DERATING CURVE

o

W

u:

::::>

~

1.0 r--""-T""O~,-r;;-;:;:;;:,;;;,;;:-;::;;---,

§13
~ ffi

.8

Cla:
a:W

.4

LLa:

"-.......i'r-.

10

o

1---I-...-1f--+--+--+.......::.r--I

a:
W
>

1.0

2.0

4.0 6.0 8.010.0

100

125

FIG. 4 -

FIG. 3 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

,...:
Z

20

a:
a:
:l

o

0
WUJ
UJW
WW
>0.
W::;:

o

/

~ 13,.0

TJ

.-

w

:l
a:

= 25~C

a: a:

a: a:

OW
LLo.

/
1.0

TJ

UJO

J

0.1

,V

:la:
00
WZ::;:

-

120

REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM

o

G
~
0.

1--+--t.......r::~t--t--t----1

00.

~~

fD

IIIII

/

025

lapprox.l

1_>
1\1

NONINDUCTIVE

f= lMHz
VSIG = 50mVp-p max.

1.0
1.0

I I I5.0II"10.0
II

OSCILLOSCOPE
(NOTE 11

10'

50

REVERSE VOLTAGE, VOLTS

100

NOTES' 1 Rise Time -'- 7ns max Input Impecli\llCf!
1 megohm. 22pF
2 Rise Time = IOns max Source Jrnpe(lancc
50ohrr1s

[\.. /

I

~ lm1 ~ ~g'~()~~r~..~('~~SE'

- - - - - - - - - - - - - - - (I GeneralInsbument
333

FOR

BYV95 AND BYV96 SERIES
MINIATURE GLASS PASSIVATED JUNCTION FAST SWITCHING RECTIFIER
Voltage - 200 to 1000 Volts Current -1.5 Amperes
FEATURES
• High temperature metallurgically bonded
constructed rectifiers
• Hermetically sealed case
• Glass passivated cavity-free junction in a
DO-204AP package .~ __ _
• 1.5 Ampere operation
at TA=55·C with no
thermal runaway
• TypicallR less than 0.1 11 A
• Capable of meeting environmental standards of
MIL-S-19500
• Fast switching for high efficiency up to 100 KHz
• High temperature soldering guaranteed:
350·C/10 seconds/.375", (9.5mm) lead length at
5 Ibs., (2.3kg) tension

DO-204AP

.034 £.861.
.0281.711

+

CIA.

MECHANICAL DATA
Case: JEDEC DO-204AP One piece glass
Terminals: Plated Axial leads, solderable per

Dil7len&ons in inches
and

MIL-STD-202, Method 208
Polarity: Color band denotes cathode
Mounting Position: Any
Weight: .02 ounce, .56 grams

(l7lillil7leters)
• Bnlzed.Iead assembly Is covered by Palent No. 3,930,306 01 1976

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25·C ambient temperature unless otherwise specified.
Resistive or inductive load.

SYMBOLS BYV95A BYV95B BYV9SC BYV96D BYV96E

Maximum Recurrent Peak Reverse VoRage
Maximum RMS VoRage
Maximum DC Blocking Voltage
Minimum Avalanche Breakdown VoRage at 100 I' A
Maximum Average Forward RectHied Current
.375", (9.5mm) Lead Lengths at TA=55·C
Peak Forward Surge Current, 10ms single half sinewave superimposed on rated load at TJ=165°C
Maximum Instantaneous Forward
VoRage at 3.0A
TA=25·C
TJ=165·C
Maximum Full Load Reverse Current,
Full Cycle Average, .375", (9.5mm) TJ=25·C
Lead Length at
TJ=165·C
Maximum DC Reverse Current
at rated DC Blocking VoRage
TA=25·C
Maximum Reverse Recovery Time (NOTE 1)TJ=25·C
Typical Junction Capacitance (NOTE 2)
Typical Thermal Resistance (NOTE 3)
Operatlng Junction Temperature Range
Storage Temperature Range
NOTES:

VRRM
VRMS
Voc
VBR

200
140
200
300

400
280
400
500

600
420
600
700

800
560
800
900

1000
700
1000
1100

UNa'S

Volts
VoRs
VoRs
Volts

I(AV)

1.5

AIIllS

IFsM

35.0

Amps

VF

1.6
1.35

VoRs

1.0
150.0

IR(Av)

IR
TRR
CJ
R9JA
TJ
TSTG

2.0
250

I!A
300

10.0
50.0
-65 to +175
-65 to +200

1. MeasLKed with IF=O.5A, IR=1.0A, Irr = .25A.
2. Measured at 1 MHz and apptied reverse vollage 014.0.Voc.
3. Thermal Resistance from Junciton to Ambient at .375" (9.5mm) Lead Lengths, P .C. Board Mounted.

334

I'A

nS
pf
·CIW
·C

·C

RATING AND CHARACTERISTIC CURVES BYV95 AND BYV96 SERIES
FIG. 2 - MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT

FIG. 1 - FORWARD CURRENT
DERATING CURVE

,...:

zW

cr:

2.0

0:

=>

U

°u:

1. 5

c:r:~

1. 0

W

I"

i=(/)
UW
wa:
0::;

25r--1-+-+~+H~--r-~-r++~

~

0:<1:

~
0:
ou..

O. 5

~

0

2°r---~-+~Ht~~~t-rt++tH

"'!'-

" f'

'5 r---~_+~Httt_--t-'!"IIi:t-t++tH

RESISTIVE OR
INOUCTIVE LOAD

w

.......

'"

0.375;(9.~ LEADILENGfS

a:

25

LU

""

50

75

100

125

150

NUMBER OF CYCLES AT 60HZ

175

FIG. 4 - TYPICAL REVERSE CHARACTERISTICS

AMBIENT TEMPERATURE, °C

0

10.0

FIG. 3 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

T.,

125°C

r-

0

TJ,", loo

o9/ /

'"

0

TJ '" 25°C
T,

I

II

,

.'
I
.0

,

Pulse Width '" 300",5

I

2% Duty.Cycle_
1,4

'JJ

./

1.6

,

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

0

0

'"

20

t-

T, - 25D~

-

40

60

80

100

11

120

140

FIG. 6 - REVERSE RECOVERY TIME CHARACTERISTIC
AND TEST CIRCUIT DIAGRAM

T)~Ullll

1"'0-1""'",

o

75°C

..1

PERCENT OF RATED PEAK REVERSE VOLTAGE."

FIG. 5 - TYPICAL JUNCTION CAPACITANCE

u..
c.
W

,

IL

f:= 1MHz

500

Vsig = 5OmVp·p

NONINDUCTIVE

f--

'on

NON INDUCTIVE

+05A

U

z
f!

Irr ......

~

D.U.T

u
rtlcal Thermal Resistance (NOTE 3)
Operating Junction and Storage Temperature Range

VRRM
VRMS
Voc

RG2A RG2B RG2D RG2G RG2J RG2K RG2M UNITS

SO 1100 200 400 600 800 1000 Vohs
3S I 70 140 2S0 420 S60 700 Vohs
so 1100 200 400 600 SOO 1000 Vohs

IIAv)

2.0

Amps

IFSM
VF

SO.O
1.3

Amps
Vohs

IR(AV)

1.0
100.0

I1A

IR
TRR
CJ
R8JA
TJ,TsTG

S.O
200 250 500

ISO

15.0
50.0
-65 to +175

NOTES:
I. Measured with IF=0.5A, IR = I.OA, Irr= .25A.
2. Measured at 1 M Hz and applied reverse voltage of 4.0 Voc.
3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) lead lengths, P.C. Board Mounted.

336

I1A
nS
pf
°CIW
°C

RATINGS AND CHARACTERISTIC CURVES RG2A THRU RG2M
FIG.3 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

1-"
Z
W

r:
zw

a::
a::
::::l

20

a::
a::
::::l

FIG. 1 - FORWARD CURRENT
DERATING CURVE

/"

10.0

o

Cl

2.0 , - - , . , . . - . , . - - - . - - - . . . - - , . - - ,

a::

~ 13 1.0

o
o

W

u::

~Sl
~oa.ffi

1.5

f--.p",'k--"'d--+--+---j

1.0

i--+--+"'..:"'fI"''d---+---j

oW

25°C

2% Duty Cycle

..:

~..:

IZ

..:

05

o

~

Pulse Width'" 300/J.s

/

0.1

Z

a:::2
a::

TJ

a:: a::
OW
LLa.
U):2
::::l":

IU)

LL

I

Z

w

~
a::

.01

I
.4

0.375 (9.Smm) LEAD LENGTHS

w

25

;;c

50

75

100

125

.6

.8

1.2

1.0

1.4

1.6

1.8

2.0

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

175

150

FIG. 4 -

AMBIENT TEMPERATURE. °C

TYPICAL REVERSE CHARACTERISTIC

20
10.0

FIG.2 - MAXIMUM NON-REPETITIVE
PEAK FORWARD SURGE CURRENT

r:

Z

W
(!)U)
a::W
::::la::
U)W
Oa.
a::::;
..:..:

40

1'"

a::
a::
::::l

a.

.".

0

WU)
U)W
a:: a::
WW
>a.
W:2
a::..:
U)O
::::la::
00
WZ:2

i'

30

"" "' ....

~r:

a::Z
OW
LLa::
",a::
..:::::l
wO

....

w

50

20

,

5.0

J

01

..:

I-

10.0

50

U)

100

TJ = 25°C

~

,

".

~

20

60

60

1"-0 ...

TJ = 25"C

SOli

10[1

NONINDUCTIVE

NONINDUCTIVE

t

~

120

140

OSA

1\

10

U
Z

(3

100

FIG. 5- REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM

...........

"-

40

PERCENT OF RATED PEAK REVERSE VOLTAGE, %

TYPICAL JUNCTION CAPACITANCE

30

W

75"C

Z

.01

LL

=:

~

NUMBER OF CYCLES AT 60 Hz

FIG. 5 -

TJ

,."..

I-

TA = 55"C
8.3ms Single Half
Sine-Wave (JEDEC Method)

1.0

125°C

1.0

..:

10

~

TJ

1'1

5

_

~
..:
o

-

'D.U.T.

50 Vdc
(approx)

1/

- 025

1-)
HI

NON
INDUCTIVE

f-1.0MHz
VSIG = 50mVp-

10

OSCILLOSCOPE
INOTE 11

,

max.
50

REVERSE VOLTAGE, VOLTS

100

NOTES 1 Rise Time _ 7n~ max Inpul Imperlanc:p,
1 megohm. 22pF
2 Rise Time -" 10ns max Source Impedance _
50 ohms

337

-lOA

1'- /

I

----.11cmt-- ~~i()i~r~~(':~,A~.;t FOH

I

BVW32 THRU BVW36
MINIATURE GLASS PASSIVATED JUNCTION
FAST SWITCHING RECTIFIER
Voltage - 200 to 600 Volts Current- 2.0 Amperes
FEATURES
(c.

• High temperature metallurgically bonded
constructed rectifiers
• Hermetically sealed case
• Glass passivated cavity-free junction in a
DO-204AP package "'"
• 2.0 Ampere operation
at TA=55°C with no
thermal runaway
• Typical IR less than 0.1 11 A
• Capable of meeting environmental standards of
MIL-S-19500
• Fast switching for high efficiency
• High temperature soldering guaranteed:
350°C/10 seconds/.375", (9.5mm) lead length at
5 Ibs., (2.3kg) tension

DO-204AP

.0341.861.
.028 1.711

+

DlA.

MECHANICAL DATA
case: JEDEC DO-204AP One piece glass
Terminals: Plated Axial leads, solderable per

Dimensions in inches

and

(milOmeters)

MIL-STD- 750, Method 2026

Polarity: Color band denotes cathode
Mounting Position: Any
Weight: .02 ounce, .56 grams

' _ _ assembIyIsCOVOllldbyPaJent No. 3.930.306 011976

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified.
Resistive or inductive load.
SYMBOLS BYW32

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
.375", (9.5mm) Lead Lengths at TA=55·C
Peak Forward Surge Current
10ms single haW sine-wave superimposed
on rated load at TA=25°C
Maximum Instantaneous Forward Voltage at 1.0A
Maximum DC Reverse Current
at Rated DC Blocking Voltage
Maximum Full Load Reverse Current
Full Cycle Average, .375", (9.5mm)
TA=25°C
Lead Length
TA=100°C
Maximum Reverse Recovery TIme (NOTE 1) TJ=25·C
Typical Junction Capacitance (NOTE 2)
TYllical Thermal Resistance (NOTE 3)
()peratina Junction Temperature Range
Storage Temperature Range

VRRM
VRMS
Voc

200
140
200

BYW33

I
I
I

300
210
300

BYW34

I
I
I

400
280
400

BYW35

1
I
I

500
350
500

J

I
I

BYW36

UNITS

600
420
600

Voks
Voks
Volts

I(AVI

2.0

Amps.

IFSM
VF

40.0
1.2

Amps
Volts

IR

5.0

I1A

IR(AV)

5.0
50.0
200
15.0
50.0
-65 to +175
-65 to +200

j1A

TRR
CJ
RaJA
TJ
TSTG

NOTES:

I. Measured with IF=0.5A. IR-I.OA. Irr=25A.
2. Measured at I MHz and applied reverse voltage of 4.0 Voc.
3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

338

nS
pf
·CIW
·C
·C

RATING AND CHARACTERISTIC CURVES BYW32 THRU BYW36

FIG. , - MAXIMUM NON-REPETITIVE
PEAK FORWARD SURGE CURRENT

FIG. 1 - FORWARD CURRENT
DERATING CURVE

f--'

Z

~

50

2.0

'"

a:
:::J

o

@

1.5

u::

f=(f)
Ow
Wac
a:W

~

~

~~
~-

0

~

~

I-I
.2

50'Vdc

DSCILLOSCOPE

j

NOTE 1

-tOA

10

100

FREQUENCY kHZ

1000

NOTm
1 RISE TIME := 7nSEC MAX., INPUT IMPEDANCE = 1 MEGOHM, 22pF.
2. RISE TIME = 1DnSEC MAX., SOURCE IMPEDANCE = 50 OHM.

339

trr"I

~.25A

(APPRDX.)

10
N.I

j+""

1\

LW

I

1N5415 THRU 1N5420
GLASS PASSIVATED JUNCTION FAST
SWITCHING RECTIFIER
Voltage - 50 to 600 Volts Current- 3.0 Amperes
FEATURES
•
•
•
•

Glass passivated cavity-free junction
High temperaturae metallurgically bonded
Hermetically sealed package
Capable of meeting
environmental
standards of
MIL-S-19500
• Fast switching for
high efficiency
• High temperature soldering guaranteed:
350·C/10 seconds/.375", (9.5mm) lead length
at 5 Ibs., (2.3kg) tension

f

1.0 MIN.
(25.41

.180 (4.61 ,
.130 (3.31

!

DlA.

1
.300(7.61
MAX.

.042 11.071
.0381.9621 •
OIA.

4-

l

1.0 MIH •
(25.41

MECHANICAL DATA

1

Csse:One piece glass
Terminals: Plated Axial leads, solderable per MIL-

Dimensions in inches and ( mimmeters)

STD-750, Method 2026

Polarity: Color band denotes cathode
Mounting Position: Any
Weight: .037 ounce, 1.04 grams

• Brazed·/ead assombly Is covered by Patenl No. 3.930.306 0/1976

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings al2SoC ambienl temperature unless otherwise specified.
Resistive or inductive load.

'Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
'Maximum DC Blocking Voltage
'Minimum Reverse Breakdown Voltage at 50 ~ A
'Maximum Average Forward Rectified Current
.375", (9.5mm) Lead Lengths at TA=55·C
Peak Forward Surge Current
8.3ms single half sine-wave superimposed
on rated load (JEDEC Method) atTA=100·C
Maximum Instantaneous Forward Voltage at 3.0N
at9.0A
Maximum DC Reverse Current
·TA-25·C
at Rated DC Blocking Voltage
TA=100·C
·TA=175·C
'Maximu m Junction Capacitance (NOTE 2)
'Maximum Reverse Recovery lime (NOTE 1) TJ-25·C
Typical Thermal Resistance (NOTE 3)
'Operating Junction and Storage Tell'fl8rature Range

SYlf8Ot.S 1N5415 1NS416 1NS417 1NS418 1NS419
100
400 500
50
200
VAAM
35
70
140
280 350
YAMS
50
100
200
400 500
Voc
55
440 550
110
220
VBA
I(AV)

IFSM
VF
IR
200
CJ
TRR
RaJA
TJ,TsTG

600
420
600
660

3.0

80.0
1.10
1.50
1.0
20.0
2.0
175 1150
120 1110 1 100
400
150
1250
22.0
-65 to +175

NOTES:
I. Reverse Recovery Tesl Conditions: IF=O.SA, IA= 1.0A, Irr=2SA.
2. MeasIHd all MHzand appUed reverse voltage of 12.0 volls.
3. Thermal Resistance from Junction to Ambienl al.37S" (9.Smm) Lead Lengths, with both leads to heat sink.
'JEDEC Registered Values

340

1NS420 UNITS
Voks
Voks
Voks
Vo~s

Amps

Amps
Voks
IlA
IlA
mA
pf
nS

·CIW
·C

RATINGS AND CHARACTERISTIC CURVES 1N5415 THRU 1N5420

FIG. 2 - MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT
200
8.3ms SINGLE HALF-WAVE I I
SIN E-WAVE (JEOEC) METHOD

FIG. 1 - FORWARD CURRENT DERATING CURVE
4.0

I'......

'"'~

2.0

~08" )( O.S" )( 040'''

1'..

50

25

75

100

125

~
150

00..
a:~

50

~

-'
a:z
OW
11..0:
""a:
«::>
wO
0..

~mm' 20mm' Imm CU)-

RESISTIVE OR
INDUCTIVE LOAD
0.375"(9.5mm) LEAD LENGTHS

1.0

100

a:w
::>a:
enw

I = .375" (9.5mm)

3.0

w


50

j

r=

T..25"O
_
PULSE WlDTH-3IlO""

10
1.0

2% DUTY CYCLE

5.0

10.0

30

0.1

~

.05

en

~

~

-

FIG. 5- TYPICAL REVERSE CHARACTERISTIC!>

I

20

;'!
Z
;'!

100

50

REVERSE VOLTAGE. VOLTS

F=

::>«
0
w
z

'1'--1"-

f.1.0MHz
Vsig_50mVp-p

/

T,.1/
10.0

....

w'"
rnw

II

I--"

!--"p

T.. 125"O

a: a:

WW

>0..

j

.01
0.4

w~

0.6

0.8

1.0

1.2

1.4

1.6

1.B

a:«
",0
::>a:

2.0

~~

FIG. 6 - REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM

son

10 n

NONINOUCT

../'"V

.01

~V

T.a-7SOC

0.1

,..
I

-1.0

.-

~~

-0

-0.25
NON·
INDUCT(VE

1.0

00

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

o

20

40

....... T25"C 1
60

80

100

120

PERCENT OF RATED PEAK
REVERSE VOLTAGE, %

341

140

RG3A THRU RG3M
GLASS PASSIVATED JUNCTION
FAST SWITCHING RECTIFIER
Voltage - 50 to 1000 Volts Current - 3.0 Amperes
FEATURES
• High temperature metallurgically bonded
constructed rectifiers
• Glass passivated cavity-free junction
• Hermetically sealed package
• 3.0 Ampere operation

1

1.0 MIN.
125.4)

~~~~:~~:~r~~~way''''''~~~'4

!

,. 1

.250 (6.3) "
.170 (4.3)

• Typical IR less than 0.1 11 A
• Capable of meeting environmental standards of
MIL-S-19S00
• Fast switching for high efficiency
• High temperature soldering guaranteed:
3S0°C/10 seconds/.37S", (9.Smm) lead length at
Sibs., (2.3kg) tension

4-

CIA.

.05211.3),.
.04811.2)

1.0 MIN.
125.4)

1

CIA.

MECHANICAL DATA
Dimension in inches

Case: One piece glass
Terminals: Plated Axial leads, solderable per

and

(millimeters)

MIL-STO-7S0, Method 2026

Polarity: Color band denotes cathode
Mounting Position: Any
Weight: .04 ounce, 1.1 grams

• Brazed·11JBd assembly is covered by Palent No. 3.930.306 of 1976

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 2SoC ambient temperature unless otherwise specified.
Resistive or inductive load.
SYMBOLS RG3A RG3B RG3D RG3G RG3J RG3K RG3M UNITS

Maximum Recurrent Peak Reverse Vokage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
.375", (9.5mm) Lead Lengths at T A=55°C
Peak Forward Surge Current
S.3rns single haR sine-wave superimposed
on rated load (JEDEC Methodf
Maximum Instantaneous Forward Voltage at 3.0A
Maximum Average Reverse Current
TA= 25°C
at Rated Peak Reverse Vokage
TA=100°C
Maximum DC Reverse Current
at Rated DC Blocking Voltage T A=25°C
Maximum Reverse Recovery Time (NOTE 1) TJ=25°C
Typical Junction Capac~ance (NOTE 2)
Typical Thermal Resistance (NOTE 3)
Operating Junction and Storage Temperature Range

VRRM
VRMS
Voc

50
35
50

100
70
100

220
140
200

400
2S0
400

600
420
600

SOO 1000 Volts
560 700 Volts
SOO 1000 Volts

I(AV)

3.0

Amps

IFSM
VF

100.0
1.3
2.0
100.0

Amps
Volts

IR(Av)
IR
TRR
CJ
R8JA
TJ,TsTG

Jlf\

IIA

5.0
150

250

400

40.0
22.0
-65 to +175

NOTES:
1. Reverse Recovery Test Conditions: IF=O.SA, IR=1.OA, Ir=.2SA.
2. Measured at 1 MHz and applied reverse voltage of 4.0 Voc.
3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) lead lengths, with both leads attached to heat sink.

342

500

nS
pf
°CIW
°C

RATINGS AND CHARACTERISTIC CURVES RG3A THRU RG3M

FIG. 1 -

FIG. 2- MAXIMUM NON· REPETITIVE PEAK
FORWARD SURGE CURRENT

FORWARD CURRENT DERATING CURVE

4.0

r--.....
.............

~

RESISTIVE OR
INDUCTIVE LOAD
0.375"(9.5mm) LEAD LENGTHS
25

50

"' '-....,

100

75

125

150

175

AMBIENT TEMPERATURE. °C

10

1~.0~--~~~~5.~0~~~10L---~--~-L~LJ-LL,UOO

FIG. 3-TYPICAL JUNCTION CAPACITANCE
100

~
uI

-

50

o

z
«f-

FIG. 4- TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

......

30

--......

f-C

r..+-

TJ-25OC

w

=>

0

30

/

II I

0

a:

10

50

~[il

a: a:

100

1.0

(/)::;:

=>«

0

I

03

«
f-

~~

Z

«
f-

1.0

,.

0
w(/)

......

11:11:

WW 1.0

>a.

."...

V

TJ,",100OC

I

03

.."

L;'"

V

Cl)W

I

/
01
0.2

I

I I
0.4

PULSE WID H_300""
2% DUTY CYCLE
0.6

0.8

1.0

1.2

1.4

16

INSTANTANEOUS FORWARD VOLTAGE. VOLTS

W::;:

11:«
Cl)0
=>11:

TJ ..75°C

FIG. 6 -

00

-~

UJZ::;:
f-

II I

01

~

=>

Z

I

(/)

w

a:
a:

.«

I

I

W

Z

~
Z

T,-25°C

LLa.

TYPICAL REVERSE CHARACTERTISTICS

T,-125°C

J

OW

REVERSE VOLTAGE, VOLTS

20

'l

Z

Vsig • 50m Vp-p

FIG. 5 -

/

10

a:
a:

f-1.0MHz

10

I

. / r7'"
TJ1I'15O"C

jo...,.,

l5

it«
o

NUMBER OF CYCLES AT 60 Hz

..,,1

lO

«

10(1

NON INDUCTIVE

NONINDUCTIVE

CI)

(+)

~

.01

"

./
20

"

40

f-- 1,,--1

50!!

T,-.25°C _

f-

REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM

_
-

+05A

,

'\

DUT

50 Vdc

/
II

-0.25

(approx.)
(- )

60

80

100

PERCENT OF RATED PEAK
REVERSE VOLTAGE, %

120

140

lit
NONINDUCTIVE

OSCILLOSCOPE
(NOTE 1)

-lOA
NOTES. 1 Rise Time == 7ns max
1 megohm. 22pF
2_ Rise Time;;; 10ns max Source Impedance ==
50 ohms .•

343

\ l/

RG4A THRU RG4J
GLASS PASSIVATED JUNCTION FAST SWITCHING RECTIFIER
Voltage - 50 to 600 Volts Current- 3.0 Amperes
FEATURES
• High temperature metallurgically bonded
constructed rectifiers
• Glass passivated cavity-free junction
• Capable of meeting environmental standards of
MIL-S-19S00
• Fast switching for
fast efficiency
~~
.
• 3,0 Ampere operation
at TA=SO°C with no
thermal runaway
• TypicallR less than 0.1 11 A
• Hermetically sealed package
• High temperature soldering guaranteed:
3S0°C/10 seconds/.37S", (9.Smm) lead length at
Sibs., (2.3kg) tension

<-"

f

. 180 14.6J •
.130 (3.3J
OIA.

1.0 MIN.
125.4J

!

1

.30017.6J
MAX.

I
.042 11.07J ..
•038 1.962 J •
OIA.

1

1.0 MIN •
125.4J

I

MECHANICAL DATA
Case: One piece glass
Terminals: Plated Axial leads, solderable per

Dimensions in inches
and
(mi/imeters)

MIL-STO-7S0, Method 2026

Polarity: Color band denotes cathode
Mounting Position: Any
Weight: .037 ounce, 1.04 grams

• Brazed-lead assembly Is cov9red by Pa/9m No. 3.930,306 of 1976

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified_
Resistive or inductive load.
SYIIBOLS

Maximum Recurrent Peak Reverse Vo~age
Maximum RMS Vo~age
Maximum DC Blocking Voltage
Maximum Average Forward RectHied Current
.375", (9.5mmt Lead Lengths at T A=50°C
Peak Forward Surge Current
8.3ms single haW sine-wave superimposed
on rated load (JEDEC Method)
Maximum Instantaneous Forward Vo~age at 3.0A
Maximum Reverse Current
at Rated DC Blocking Voltage T A=25°C
Maximum Average Reverse Current
TA=25°C
at Peak Reverse Voltage
TA=100°C
TyQlcal Junction Capac~ance (NOTE 2)
Maximum Reverse Recovery Time (NOTE 1) TJ~25°C
TyQlcal Thermal Resistance (NOTE 3)
Op_erating Junction and Storage Temperature Range

VRRM
VRMS
VDC

RG4A

RGG

RG4D

RG4G

RG4J

UNrrs

50

100
70
100

200
140
200

400
280
400

600
420
600

Volts

35
50

Vo~s

Voh

I(Av)

3.0

Amps

IFsM
VF

100.0
1.3

Amps
Volts

IR

5.0
2.0
100.0
50.0

I1A

IRIAVI
CJ
TRR
R8JA
TJ,TsTG

150

I
22.0
-65 to +175

NOTES:
1. Reverse Recovery Test Conditions: IF=O.SA, IR=1.0A, Irr=25A_
2. Measured atl MHz and applied reverse voltage of 4.0 volts.
3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, with both leads to heat sink.

344

250

IlA
pf
nS
°e/W
°C

RATINGS AND CHARACTERISTIC CURVES RG4A THRU RG4M

Fill. 1-FORWARD CURRENT DERATING CURVE

FIG. 2 -

MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT

~ r----r--r-r-rTTTITO---T~.-"5-0~"C--~-rrrM

..........

8.3ms Single Half Sine-Wave

...........

~Cf.) 100
a:W
::>a:

..........

..........
RESISTIVE OR
INDUCTIVE LOAD
O.376"(9.!imm) LEAD LENGlHS

0

25

100

75

50

enw
ij!!i

__

r----r--r-+_~++++--~~~~+-~HH

a:Z
Ow
... a:

~

150

~~~~~~~liit~(J~E~D~EC~M~el~hO~d~I~~~
__

~~

~

125

50

~~

wU

175

tl..

AMBIENT TEMPERATURE. 'C

1.0

5.0

10.0

50

100

NUMBER OF CYCLES AT 60 Hz

Fill. 3-TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS
20

./

~~

/

1

......J.

......--"1f--Hf-'l'4oI:I-++- TJ "

0

25 C

4°1-__-r~-r~HH~~+_+-~++~

........

~ 20 -- v(;{i0Irrn ~

II
f--

loo~~

'5.60~
ui

~

3

Fig. 4-TYPICAL JUNCTION CAPACITANCE

TJ ~ 25°C
Pulse Width - 30011
~ 2% DUTY CYCLE

,J

J
0.6

0.8

1.0

I

1.4

~

10

W
tl..

:!;

'"a:o
U

2

~

>-"

0

~

6

a:

-

U

'0

2_

w

1.0

2.0

4.0 6.0 10.0

20

40 60 100

en

o

..!Z

~ .0

INSTANTANEOUS FORWARD VOLTAGE.
VOLTS

1/

TJ. o::7!?°C_

06

::>

1.6

2/

0

~

TI"T- -

/

20

40

60

Fig. 6-TEST CIRCUIT DIAGRAM AND REVERSE RECOVERY TIME CHARACTERISTICS
N.I

10 n
N.I

-1,,+ .SA

'\
V

-2.5A

NOTES:
1. RISE TIME 7ns MAX. INPUT IMPEDANCE ~ , MEGOHM, 22pF.
2. RISE TIME - lOns MAX, SOURCE IMPEDANCE = 50 OHM

345

-, OA

\. /

80

100

120 140

PERCENT OF RATED PEAK
REVERSE VOLTAGE, %

~

50U

12J5"C _ _

,

a:
w
>

~
en

TJ"

4

::>

I

1.2

en

Z

REVERSE VOLTAGE. VOLTS

1
0.4

Fig. 5-TYPICAL REVERSE
CHARACTERISTICS

J

4cm~

SET TIME BASE FOR
50/100ns/cm

I

BYW72 THRU BYW76 SERIES
GLASS PASSIVATED JUNCTION FAST
SWITCHING RECTIFIER
Voltage - 200 to 600 Volts Current - 3.0 Amperes
FEATURES
• High temperature metallurgically bonded
constructed rectifiers
• Glass. passivated cavity-free junction
• Hermetically sealed package
• 3.0 Ampere operation

t
.250 (6.31,
.170 (4.31

~~~~:~~?r~~t:Way""~

I

• Typical IR less than 0.1 II- A
-• Capable of meeting environmental standards of
MIL-S-19S00
• High temperature soldering guaranteed:
3S0°C/10 seconds/.37S", (9.Smm) lead length at
Sibs., (2.3kg) tension

CIA.

.05211.31,
•04811.21

..

1.0 MIN•
(25.41

1

DIA.

MECHANICAL DATA
Case: One piece glass
Terminals: Plated Axial leads, solderable per MIL-

Dimensions in inches

and

STO-7S0, Method 2026

(millimeters)

Polarity: Color band denotes cathode
Mounting Position: Any
Weight: .04 ounce, 1.1gram

• Brazed·teed asStmlb/y Is covered by Palent No. 3,930,306 01 t976

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified.
Resistive or inductive load.

Maximum Recurrent Peak Reverse Vokaae
Maximum RMS Vokaae
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
.37S", (9.Smm) Lead Lengths at TA=4SoC
Peak Forward Surge Current
1Oms single haW sine-wave superimposed
on rated load
Maximum Instantaneous Forward Vokage at 3.0A
Maximum Average Reverse Current at
Rated Peak Reverse Voltage TA=100°C
Maximum DC Reverse Current
at Rated DC Blocking Vokage TA= 2SoC
Maximum Reverse Recovery Time (NOlE1) TJ=2SDC
Typical Junction Capacitance (NotE 2)
Typical Thermal Resistance (NOTE 3)
Operating Junction Temperature Range
Storage Temperature Range

SYIIIIOLS

BYW72

VRRM
VRMS
Vac

200
140
200

BI'W73

I
I
I

300
210
300

I
I
I

BI'W74

BYW75

BI'W7II

t.WIrS

400
280
400

SOO
3S0
SOO

600
420
600

Voks·
Voks
Voks

I(Av)

3.0

Amps

IFsM
VF

60.0
1.1

Ar1JlS_
Voks

18(AV)

SO.O

IlA

IR
TRR
CJ
R9JA
TJ
TSTG

S.O
200.0
40.0
22.0
-6Sto+17S
-6S to +300

IlA
nS
pi
°CIW
DC
DC

NOTES:
1. Reverse Recovery Test Conditions: IF=O.5A, IR=1.0A, Irr = 2M.
2. Measured at 1 MHz and applied reverse voltage of 4.0 Voo.
3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, with both leads attached to heat sink.

346

RATING AND CHARACTERISTIC CURVES BYW72 THRU BYW76
FIG. 2 - MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE
CURRENT

f-"
Z

200

W

FIG. 1 - FORWARDI CURRENT DERATING CURVE

I
INE·WAVE (JEDEC) METHOD

U

§~

........

RESISTIVE OR
INDUCTIVE LOAD
O.37S'(9.5mm) LEAD LENGTHS
50

25

air_load

100

W
(9(J)

'"

1

11'0msSIN~LE~AL~'W~JeI

II:
II:
:J

CIJ W

........

-r--

~

T'.'~ r--_

II:

a

...........

150

125

100

.......... T,.25"C ._

.....

~«

..........

75

.......

50

@~

,=

LL
~

«W

175

a.

AMBIENT TEMPERATURE, ·C

I If!

10
1

10

FIG. 3 - TYPICAL JUNCTION CAPACITANCE

50

100

NUMBER OF CYCLES AT 60 Hz

100

FIG. 4 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

u..
n. 50

0

f"""o,

u.i

I

U

z

i'f
rt
«
u

............

u

. / '7

10
f-"
Z

........

T,.25"C
t-1.0MHz

10

II:
II:
:J

U

T,.l5O"C

I

3.0

I I

II:

~ fB

5
100

50

OW

CIl:2

T.... 12S"C

f-"

:;:,
U

WCIl
CIlW
WW

>a.

--

,,

W

II: II:

",""

-= "F

iT'.y

~

I

lr-

o1
0.2

1.0

II:«

T....7S"C.

CIlO

-=

I

I 1/

1

I

I

W:;;:

I

I I
0.4

PULSE WIDTH-300JIS
2% DUTY CYCLE
06

12

1.0

0.8

1.4

1.6

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

t:

FIG. 6 - REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM

:;:'II:

AU

-'

~~

i'f
Z
i'f
CIl

i'f
z
i'f
CIl

I

I

Z

~.-

Z

I

0.3

W

FIG. 5 - TYPICAL REVERSE CHARACTERISTICS

II:
II:

T,-2S'C

u..a.

6«
10

10

/

II: II:

REVERSE VOLTAGE, VOLTS

20

I

L

o

10

...""

W

' " i"oo~

V.ig.5OmVp-p

1

I

~'

.10

SOIl

100

NONINDUCTIVE

NONINDUCTIVE

=

..T,.25"C
__

~

c~

io"""

,.
.D1

o

"

20

_
-

f

(+1

50 Vdc

+05A

i\

D.UT

/

-0.25

:t

(approx.)

(-I
40

60

80

100

120

PERCENT OF RATED PEAK
REVERSE VOLTAGE, %

140

111
NON·
INDUCTIVE

OSCI LL.OSCOPE
(NOTE 1I

\
-1.0A I

NOTES: 1. Rise Time = 7ns max, Input Impedance ""

1 megohm, 22pF
2. Rise Time = 'On5 max., Source Impedance

50 ohms.

347

=

I

\ ./

I

I

348

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

PLASTIC RECTIFIERS
1.0 AMPERE TO 8.0 AMPERES
50 VOLTS TO 1000 VOLTS

I

...._ _ _ _ _ _
349

(DGeneral
Instrument _ _

PLASTIC RECTIFIERS
7.0 Ampere to 8.0 Amperes 50 to 7000 Volts
Principle of Construction
General Instrument has produced Plastic Rectifiers successfully for many years. The key factor
In the production of our Plastic Rectifiers is the double nail head construction concept.
The small size allows many sub assemblies to be processed simultaneously in batch form.
This method ensures General Instrument to produce high volumes of rectifiers economically.
The diode construction consists of the following steps:

1 - DiffuSing a PN junction into a slice of silicon.

Diffused Slice

~
~'N'
'P'

2 - Metallizing the slice of silicon.

Metallized Slice

Gold and
Nickel Plating

"-

Sandblasted Round Dice

Scribed Wafer

3 - Scribing and breaking the slice into individual dies,
for the 1.0 Ampere devices we use a sandblast technology
for the 3.0 thru 25.0 Ampere devices we use a saw technology.

""'" .......

,

I

\

\

I
J
.....

V

--

10'

350

PLASTIC RECTIFIERS
4 - Soldering the die between two Double Nail Head Leads.

Soft Solder
Double Nail Head Lead

Silicon Die
Soldering between Double Head Lead

Soft Solder

5 - Cleaning the assembly by chemical etching.
washing and drying.

Double Nail Head Lead

6 - Passivating the finished rectifier with silas tic.

Silastic Coating

Silicon Die

7 - Overmo/ding by General Instrument proprietary 48 flame

Plastic Body Soft Solder

retardant molding compound.

8 - Lead tinning. electrical testing. marking and packing.

Silastic

Silicon Die

Double Nail Head Plastic Rectifier

351

I

FAMILIES OF GENERAL INSTRUMENT
PLASTIC RECTIFIERS
Miniature Plastic Rectifiers 1.0 to 1.5 AMPERES
Types:
lN4001 thru lN4007
M100A thru M100M
lN5391 thru lN5399

Features:
• Low Cost
• Diffused Junction
• Low Leakage
• High Current Capability
• Easily Cleaned with Freon, Alcohol, Chlorothene and similar Solvents
• Plated axial leads, solderable per MIL-STD-750, Method 2026
• Case: Jedec DO-204AL
• High Temperature Soldering Guaranteed 2500(;110 Secondsl.37S"
(10mm) Lead Length at 51bs (2.25 kg) Tension

Plastic Power Rectifiers 3.0 to 8.0 AMPERES
Type.s:
1N5400 thru 1N5408
P300A thru P300M
GI500 thru GI51 0
GI750 thru GI758
P600A thru P600M
NS8AT thru NS8MTo

Features:
• High Surge Current Capability
• Void-Free Plastic Packages
• High Current Operation
• Typicallr less than. 11lA
• High Temperature Soldering Guaranteed 250,oC110 Seconds/.375"
(10mm) Lead Length at 5 Ibs (2.25 kg) Tension
• This series uses glass passivated chip junctions.

Fast Recovery Plastic Rectifiers 1.0 to 6.0 AMPERES
Types:
BV396P thru BV399
1N4933 thru 1N4937
BV500- 100 thru BV500-800
SRP100A thru SRP100K
G1820 thru GI826
SRP300A thru SRP300K
GI850 thru G1856
SRP600A thru SRP600K
GI910thru GI917

Feotures:
•
•
•
•
•

High Surge Current Capability
Void-Free Plastic Packages
High Current Operation
Typicallr less than 1.0 ~
High Temperature Soldering Guaranteed 2S00(;110
Secondsl.375" (10mm) Lead Length at 5 Ibs (2.25 kg) Tension
• Controlled Soft Recovery Guarantees on SRP100A thru
SRP100K, SRP300A thru SRP300K, BY500-100 thru BY500800 and SRP600A thru SRP600K series
• Plated axial/eads, so/derab/e per MIL-STD-750, Method 2026

352

QUICK GUIDE TO PLASTIC RECTIFIERS
TVPE

lN4OO1

1.Il00A

' 'U

Ml00M

lN4OO7

CASE
lo(A)
OTA("C)
VA- 5O(V)
VR.l1lO(V)
VR.2OO(V)
VR.31lO(V)
VR.4OO(V)
VR.51lO(V)
VR.6OO(V)
VR.6OO(V)
VR.l000(V)
SURGE(A)
VF(V)

DO-Zl4Al

lN4933'
1IYu
lN493r

IIYu

SRP100A'
lhru
SRP100K"

DO-Zl4Al DO-204AL DO-Zl4Al

lN5391
llru
lN5399
D02_L

75
lN4OO1
IN_

1.0
100
Ml00A
M1008

1.0
75
lN4933
lN4934

1.0
55
SRP100A
SRP1008

1.5
150m
lN5391
lN5392

lN4003

1.11000

lN4935

SRPl00D

lN5393

lD

lN400C
lN4005
lN4006
lN4007
30
1.1

Ml00G

lN4936

M10QJ

lN4937

Ml00K
1110011
50

SRP100G
SRP10QJ
SRPlOOK

30
1.2

1.0/1.1

30
1.3

lN5394
lN5395
lN5396
lN5397
lN5396
lN5399
50
lA

lN5400
1IYu
lN54Q8
D0201AD
3.0
55
lN5400
lN5401
lN54Q2
lN5403
lN5404
lN5405
lN54Q8
lN5407
lN54Q8

GI500

P300A
1IYu
P300M
D0201AD
3.0
55
P300A
P300B

D0201AD
3.0
95

P300D

GI502

90
G1910
G1911
G1912

P300G

GI504

P30QJ

GI506
GI506
GI510
100
.1.1

P3OOl(

P300M

200

200
1.1

1.2

lhru
G~10

G~

GI501

GI91O'

"'"

0191r
1J0201AD
3D

G1850'
1IYu
GI856'
DD201AD
3.0
90
01850
Iliasl

SRP3OQA'
1IYu
SRP300K
D0201AD
3.0
55
SRP300A

BY396P'
lhru
BY399P'
DD201AD
3.0
50

SRP300B
SRP300D

BY396P

G1852

G1914

G1854

SRP31lOG

BY398P

G1916
GI917

G1856

SRP30QJ
SRP3OOl(

BY399P

100
1.25

150
1.25

100
1.3

100
1.25

BY397P

Fast Recovery

I
QUICK GUIDE TO PLASTIC RECTIFIERS
BY51JO.l00'
TYPE
CASE
lo(A)
OTA("C)
VR.5O(V)
VR.l1lO(V)
VR.2OO(V)

"'"

BY5OO-81lO'
DD201AD
5D

45

1!V!iOQ.l00
BY500·2OO

GI750
1IYu
G1756
P600
6.0

"=

G_
lhru

P600M

GI826'

P600

60
G/75O
G/751
G1752

60
P600A
P600B
P600D

P600
5.0
55

P600G
P600K
P600M
400
.911.0

VR.41lO(V)
VR.60O(V)

BY51JO.4OO
BY5QO.601)

G1754
G1756

VR.8OO(V)
VR.l000(V)

BY5OO-6OO

G1756

200

400
.flI.95

SURGE(A)
VF(V)

1.35

6.0

P60QJ

FastReccvely

353

SRP6OOA'
fIru
SRP600K'

NseAT
1IYu
NS6MT

P600

6.0

T().22QAC
8.0

G1822

55
SRP600A
SRP600B
SRP600D

NseAT
NS88T
NSBDT

G1824
GI826

SRP600G
SRP60QJ

NS8GT
NS&IT

SRP600K

NSBKT
NS6MT
115
1.1

GI820
GI821

300
1.0

300
1.3

lOOT.

1 N4001 THRU1 N4007
MINIATURE PLASTIC RECTIFIER
VOLTAGE - 50 to 1000 Volts CURRENT - 1.0 Ampere
FEATURES
DO-204AL

-r
.107 (2.7)
.080(2.0)

.1

1.0 (25.4)
IIIN

I.--}-I
.205(5.2)
.160(4.1)
~

t

1.0 (25.4)

• The plastic package carries Underwriters Laboratory Flammability Classification 94V-O
• Low cost construction utilizing void-free molded
~...
plastic technique
• Double Diffused junction
.--______ .
• Low leakage
-____.
• High current capability
• Easily cleaned with Freon, Alcohol, Chlorothene
and similar solvents
• High temperature soldering guaranteed: 250°C/1 0
secondsl.37S",(9.Smm) lead lengths at Sibs.,
(2.3kg) tension

IIIN
.034(.86)..
.028 (.71)

I

.j.

MECHANICAL DATA

ea..: JEDEC D0-204Al, molded plastic

Terminals: Plated axial leads, solderable per
MIL-STO-750, Method 2026
Dimension in inches
and
(millimeters)

Polarity: Color band denotes cathode end
Weight: 0.012 ounce, 0.3 gram
Mounting Position: Any
Handling Precautions: None

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25"C ambient temperature unless otherwise specified.
Single phase, half wave, 60 Hz, resistive or inductive load.
For capacitive load, derate current by 20%.

SYMBOLS

"Maximum Recurrent Peak Reverse Voltage
"Maximum RMS Voltage
"Maximum DC Blocking Voltage
"Maximum Average Forward Rectified Current
.375", (9.5mm) lead lengths at TA=75°C
"Peak Forward Surge Current
S.3rns single half sine-wave superimposed on
rated load (JEDEC Method)
"Maximum Instantaneous Forward Voltage at 1.0A
"Maximum Full Load Reverse Current
Full Cycle Average .375", (9.5mm) lead lengths at
TL=75°C
"Maximum DC Reverse Current TA= 25"C
at Rated DC Blocking Voltage TA=100"C
Typical Reverse Recovery Time (NOTE 1) TA=25°C
Typical Junction Capacitance (NOTE 2) TJ =25°C
Typical Thermal Resistance (NOTE 3)
Maximum DC Blocking Voltage Temperature
"Operating Junction and Storage Temperature Range

VRRM
VRMS
VOC

1N
4001

1N
4002

1N
4003

1N
4004

1N
4005

1N
4006

1N
4007

UNITS

50
35
50

100 200 400 600 SOO 1000
70 140 2S0 420 560 700
100 200 400 600 SOO 1000

Volts
Volts
Volts

llAY)

1.0

Amps

IFSM
VF

30.0
1.1

Amps
Volts

IR(AV)

30.0
5.0
50.0
30.0
15.0
50.0
+150
-50 to +175

IJA

IR
TRR
CJ
R8JA
TA
TJ,TSTG

NOTES:
1. Measured on Tektronix Type "S" recovery plu9~n. Tektronix 545 Scope or equivalent,lFM = 20mA, IRM =lmA.
2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.
3. Thermal Resistance from Junction to Ambient at. 375" (9.5mm) lead lengths, P.C. Board mounted .
•JEOEC Re9istered Value
354

IlA

I1S
pF
°CIW
°C
°C

RATINGS AND CHARACTERISTIC CURVES 1N4001 THRU 1N4007

FIG. 2 - TYPICAL FORWARD CHARACTERISTICS
FIG. 1 - FORWARD CURRENT
DERATING CURVE

20

a
a:

10

~ffl

a: a:

~

Ow
u..o..
en::;
:J«

If'

10

@~ 04

~

15

I-

Z:J

60Hz
RESISTIVE OR
INDUCTIVE LOAD
0.375" (9.5mmJ LEAD LENGTHS

.2

~

J

02
O·

~0
en

04

Z

.01

25

50

75

100

125

150

30

W
CJen
a:W
:Ja:
enw
00..

a:::;

25

20

MAXIMUM NON-REPETITIVE PEAK FORWARD
SURGE CURRENT

'"

W
CJen
a:W
:Ja:
enW

Sine-Wave

00..

'"

3:~
15

10

0..

5
4

1

6

810

a:::;

..... ~

0..

~
Z

w

o

100
60

wen
enW

4

LU W

1. 0

a: a:

....

>0..

W::;

a:«

TJ1~:C

enO

4

:Ja:

10

~

200

=

60
40

~
~

20

Z::;

~
~

II 1111
1.0

en
2

4

10

"

20

40

TJ '" 25°C
NON-REPETITIVE

sou ARE
di

dt
.02 .04

-

.04

Z

.4

I

600
400

@2 o. 1
f _ 1.0 MHz
Vsig. 50M Vp-p

 .5A,IR=<>.1A, Irr=.25A
3. Thermal Resistance from Junction to Ambient at • 375" (9.5mm) lead lengths, P.C. Board mounted.

356

Amps

1.0

I(AY)

1.1

Amps
Volts

(JA
(JA
(.IS
pF
°CIW
OC

RATINGS AND CHARCTERISTIC CURVES M100A THRU M100M

FIG. 2 - TYPICAL INSTANTANEOUS
FORWARDCHARACTERISl1CS

r::z
FIG. 1 -

o

W

FORWARD CURRENT DERATING
CURVE

a::
a::

./

o

u:

,

a::

§~

~~

10

Wa::
a::W

~~

08

r::

Ow
Ul::;;;

is <{

r-

02

W

>
<{

RESISTIVE
60H, OR

25

Z

T\

INDUCTIVE LOAD

50

75

.,

10

2% Duty Cycle

f-

<{
fUl

r---

125

150

01
04

~

375" (9.5mm) LEAD LENGTH

o

TJ 25°C
PULSE WIDTH 300IJs

I

<{

'\

04

CJ~

<{O
a::

I

01

Z
W

015

~~

u.Cl.

\

06

1

10

a:: a::

~

<{<{

~

./

10

~

o

12

W

20

06

08

10

12

14

16

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

175

AMBIENT TEMPERATURE, ·C
FIG. 3 - MAXIMUM NON-REPETITIVE
PEAK FORWARD SURGE CURRENT

r::

zW

50

a::
a::
~

0

40

,~

~a::

(JEDEC Method)

i'

W

CJUl
a::",

30

10 0

~

TJ-TJmax

~

I'... r-....

20

20

f-

10

(3

TJ

<{
<{

o

1.'.0 •
- VjlaiTIimp

1C

U.

10

>.::
<{
W

2S"C

Cl.

;;::

a::
0

40

Z

<{

UlW

60

u.i

o

OCl.

a::::>
<{<{

Fig. 4-TYPICAL JUNCTION CAPACITANCE

831115 SINGLE HALF SINE-W AVE

2

4

10

20

40

100

REVERSE VOLTAGE, VOLTS
2

Cl.

6

8 10

20

40

60 80 100

NUMBER OF CYCLES AT 60 Hz

FIG. 6_ PEAK FORWARD SURGE CURRENT

r::

z

1000

~

§

Fig. 5- TYPICAL REVERSE CHARACTERISTICS
10

-

o

WUl
UlW
a:: a::

UJ UJ
>Cl.

1.0

W::>
a::<{
UlO
~a::

00

0.1

<{

.04

~~

.01

;;::r::

100

<{~

wO
Cl.

Z

~
Ul

200

a::Z
OW
u.a::
>.::a::

TJ

~
o

20

40

60

80

100·

25'C

-

1-

120

140

600
400-

OCl.

a::::>
<{<{

TJ .1 ,00,C

f-

Z

W
CJUl
a::W
~a::
UlW

~
~

60

i-

40

-

!-20
10

01

TJ "25°C
NON-REPETITIVE
SQUARE PULSE!
;

,02 .04

=

200 /-JS

I

0.1

0.4

0.2

1.0

2

10

PULSE DURATION,MILLISECONDS

PERCENT OF RATED PEAK REVERSE VOLTAGE.%

---------------eGeneralInstrument
357

I

1N5391 THRU 1N5399
MINIATURE LOW CURRENT PLASTIC RECTIFIER
CURRENT - 1.5 Amperes

VOL TAGE - 50 to 1000 Volts

FEATURES
• High surge current capability
• Plastic package has Underwriters Laboratory
Flammability Classification 94V-O
• 1.5 Ampere
operation at
TL= 70°C with
no thermal runaway
• TypicallR less than 0.1J,JA
• Low cost construction utilizing
void-free molded plastic technique
• High temperature soldering guaranteed:
250°C/10 seconds/.375",(9.5mm) lead
length at 5 Ibs., (2.3kg) tension

DO-204AL

------r
.107(2.7)
.080 (2.0)

\.0 (25.4)
IIIN

.1

1+~
I
.205(5.2)
.180(4.1)

--.i..-

t

1.0 (25 .4)

IIIN

.034(.86).
.028(.71)

+

I

+

MECHANICAL DATA

ea..:JEDEC D0-204AL. molded plastiC

Terminals: Plated axial leads, solderable per MILSTO-750, Method 2026
Polarity: Color band denotes cathode end
Weight: 0.012 ounce, 0.3 gram
Mounting POSition: Any

Dimensions /n inchtes

and
(miD/meters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25'C ambient temperature unless otherwise specified.
60 Hz, resistive or inductive load.

m

BnIBOLS 5391

m

m

m

5392 5393 5394

m

m

m

m

m

5395 S396 5397 539B 5399 UNITS

"Maximum Recurrent Peak Reverse Voltage
VRRM SO 100 200 300 400 SOD 600 SOD 1000 VoHs
"Maximum RMS Voltage
VRMS 35 70 140 210 2S0 3S0 420 560 700 Volts
"Maximum DC Blocking VoHage
Voe SO 100 200 300 400 SOD 600 SOD 1000 Volts
"Maximum Average Forward Rectified Currant
.SOO, (12.7mm) lead lengths at TL=70OC
I.S
Amps
I(AY)
"Peak Forward Surge Currant
S.3ms single half sine-wave superimposed on
rated load (JEDEC Method)
SO.O
Amps
IFsM
"Maximum Instantaneous Forward Voltage
at I.SA, TA=70°C
1.4
Volts
VF
" Maximum DC Reverse Currant TA=2SoC
S.O
at Rated DC Blocking Voltage TA= lSOOC
300.0
IR
IlA
"Maximum Full Load Reverse Currant Full Cycle
Average,.37S",(9.Smm) Lead Length at TL=70·C IR
300.0
IlA
Typical Reverse Recovery Time (NOTE 2)
2.0
TRR
IJS
Typical Junction Capacitance (NOTE 1)
IS.0
pF
CJ
Typical Thermal Resistance (NOTE 3)
RaJA
SO.O
°CIW
"Maximum DC Blocking Voltage Temperature
·C
TA
+1 SO
"Operating Junction Te.mperatura Range
-SO to +170
OC
TJ
"Storage Temperatura Ran!!e
-SO to +17S
OC
TSTG
NOTES: 1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Voc.
2. Measured with IF=0.5A, IR=D.l A, Irr= .25A.
3. Thermal Resistance from Junction to Ambient at ,375" (9.5mm) lead lengths, P.C. Board mounted.
"JEDEC Registered Value.
358

RATINGS AND CHARACTERISTIC CURVES 1N5391 THRU 1N5399

FIG. 2 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

~
Z

w
ex:
ex:

FIG. 1 - FORWARD CURRENT DERATING
CURVE
2.4

/

o
o

RESI~~7JE OR ~ ~
(A

ex:
~ ill
a: ex:
OW

INDUCTIVE LOAD

:-t-t--t-

V

10

::J

,-...-,r---,.--,.--,--,-..,

pS
....0o.::.:l......

20

(5~~ : ~~m)

.L

1.0

L

LLa.

en::;:

Cu leafs

6«

TJ
25°C
PULSE WIDTH :0 300", s
1% DUTY CYCLE

I
1

0.1

Z

w

«
fZ

«

25

50

75

100

125

150

I

I

I

1.0

1.2

1.4

LI

.01

~
Z

0.4

0.6

0.8

1.6

INSTANTANEOUS FORWARD VOLTAGE.
VOLTS

175

LEAD TEMPERATURE, °C
FIG. 3 - MAXIMUM NON-REPETITIVE
PEAK FORWARD SURGE CURRENT

~

Z
w
a:
a:
::J

o

50

40

~

(!len
30

O~
~<

20

LL

(JEDEC METHOD) TL. 7O'C

...

w

a:W
::Ja:

Fig. 4-TYPICAL JUNCTION CAPACITANCE
100

8.3 ms SINGLE HALF SINE-WAVE
C.

W

r-

0
Z

j'....

enW

«
f0

~

«
a.
«

3:

a:

o
LL
a.

TJ= 25°C

o::mtt..

20

f.l,O"~LJ!!l

V lig • 5OmVP1>

lO
6

0

10

:.:

«
w

60
40

.1

.2.4

1.0

2.0 4.0

10

20

40

100

REVERSE VOLTAGE. VOLTS
2

6

B 10

6 0 80 100

20 40

NUMBER OF CYCLES AT 60 Hz

~

~

FIG. 5- TYPICAL REVERSE CHARACTERISTICS
10

Il:

a

W(/)

ww
~~

.4

Il:",

~ IE 0.1
@2
z::;:

.0'

Z

.01

~

~
~

L_-L_ _L_-1_ _:L_-=---:-~--=
0

~

~

~

~

~

m

m

PERCENT IlF RATED PEAK REVERSE VOLTAGE ,'II.

-------------(DGenerallnsbument
359

•

1 N5400 THRU 1 N5408
MEDIUM CURRENT PLASTIC RECTIFIER
CURRENT - 3.0 Amperes
VOLTAGE - 50 to 1000 Volts
FEATURES
• High surge current capability
• Plastic package has Underwriters Laboratory
Flammability Classification 94V-O
• Void-free molded plastic
package
• 3.0 Ampere operation at
TL= 105°C with no thermal runaway
• Typical IR less than 0.1 jJ.A
• High temperature soldering guaranteed:
2S0°C/10 seconds/.37S" ,(9.Smm) lead
length at 5 Ibs., (2.3kg) tension

DO·201AD

f

~

.190 (4.81

r

1.0 (25.41

OiA.

LI

1+

t

.375 (~.51
.285f·21

1.0 (25.41
.05211.3)
•048 (1.21

,

MECHANICAL DATA

T

.

CBse:JEDEC bO-201AD Molded plastic
TerminBls: Plated Axial leads, solderable per
MIL-STD-7S0, Method 2026
PolBrity: Color Band denotes cathode
Weight: 0.04 ounce, 1.1 gram
Mounting Position: Any

Dimensions in inches

and

(millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified.
60 Hz, resistive or inductive load.
For capacitive load, derate current by 20%.

m

m

S'lllSOLS 5400 5401

m

m

5402 5403

m

54D4

m

m

m

m

540S 5406 5407 5408 UNt7S

"Maximum Recurrent Peak Reverse Vo~age

VRRM

SO

100

200

300

400

SOO

600

800 1000 Vo~s

"Maximum RMS Voltage

VRMS

3S

70

140

210

280

3S0

420

S60

"Maximum DC Blocking Vohage to TA-1S0°C

Voc

50

100

200

300

400

SOO

600

"Maximum Average Forward Rectified Current
.S", (12.Smm) lead lengths at TL=10SoC

I(Av)

3.0

Amps

"Peak Forward Surge Current
8.3ms single haW sine-wave superimposed on
rated load (JEDEC Method)

IFSM

200.0

Amps

VF

1.2

Votts

IR

10.0
SOO.O

jlA

IR(Av)

SOO.O

jlA

CJ
RaJA

28.0

pF

1S.0

·CIW

TA

+1S0

·C

TJ

+SOto +170
-SO to +17S

·C

"Maximum Instantaneous Forward Voltage
at3.0A
" Maximum DC Reverse Current TA=2S·C
at Rated DC Blocking Voltage TA=1S0·C
"Maximum Full Load Reverse Current FuR Cycle
Average, .S", (12.S mm) Lead Length
atTL=10SoC
Typical Junction Capacitance (NOTE I)TJ=2SoC
"Typical Thermal Resistance (NOTE 2)
Maximum DC Blocking Vohage Temperature
"Operating Junction Temperature Range
"Storage Temperature Range

TSTG

NOTES:
1. Measured at 1.0 MHz and applied reverse vollage of 4.0 Volts.
2. Thermal Resislance from Junction to Ambient at .375" (9.5mm) lead lengths. P.C. Board mounted.
"JEDEC Registered Value

360

700 Volts
800 1000 Volts

·C

RATINGS AND CHARACTERISTIC CURVES 1N5400 THRU 1N5408

FIG. 2-MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT
UJ

(!len
o:W
::>0:
enW
FIG. 1 -

Cl
W

8.0

u::
~ fil

7.0

Wo:
o:w
~~

6.0

««

5.0

O~

4.0

~~

u.o:

~~

3.0

«0

0:

2.0

~

>

«

/

r"

"- "'-

....... to...

~ ••!iIl'" (12.7

min)

T•• A_T~..
0.375 (D.Iimm) Load

1.0

Le'f" ~.c.

40

-;:-; 60

H

to-

~1

Cycle

,,0:
«::>
wO

50
40
1.0

~

r--... ~ ~
~

'"

3.0

20

5.0 7.0 10

30

50 70 100

\.

'=

160

140

2.0

NUMBER Of CYCLES AT 60Hz

H~~r--.; ~ \
~

120

(J~W

....

0..

Load
100

80

60

..... ~

ft:i! 100

TL _ Both l..ad~ to
Heal Sink wi1h
Length. (I) ....fIown

I

T._105·C

8.3ms SINGLE HALF
SINE-WAVE

o:z

R..I.,.,. OIlndudivrl .....

~ 7""'~ng

200

:l:~

L ••031· (.79 .nin)

I'.
""
-I '"""" ....."-...... ....
.., ...... ......

W

~
~«

Cl

FORWARD CURRENT DERATING CURVE

~ \. :w (8.3 Rinl' ~

400

FIG. 4 -

TYPICAL JUNCTION CAPACITANCE

180

I

100

TEMPERATURE,OC
50

FIG. 3 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

u.a.
0
Z

en

~

U

30

::2;

«
~

10

«

W

Z

«
0..
«

/

10

0

f = 1MHz

VSi9rTITI

W

0:
0:
::>

o

3.0

-

I

Cl

10

10

TJ = 25°C
PULSE WIDTH 300~s2% DUTY CYCLE

I

0:

~

FIG. 5 -

au.

03

I

Wen
enw
0:0:
ww
>0..
W::2;
0:«

I

01

~

Z

«
~

eno

.03

~

«~
~Z

.01

0.6

0.8

1.0

1.2

1.4

1.6

Zw
«0:

1.8

"

..",.1"""

./

1.0

T•• 100·0

::>0:
00
Wz::2;

0.4

100

TYPICAL REVERSE CHARACTERISTICS

10

aW

~

50

REVERSE VOLTS, VOLTS

0:

3

TJ~""

W

100

ffi0..

....... ,...

I
T.

o

25-C

0.1

~o:

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

en::>
~O

.01

1..--- ~

o

20

40

60

80

100

120

140

PERCENT OF RATED PEAK REVERSE
VOLTAGE.%

- - - - - - - - - - - - - - - (iGenerallnstrument
361

GI500 THRU GI510
MEDIUM CURRENT PLASTIC RECTIFIER
VOL TAGE - 50 to 1000 Volts CURRENT - 3.0 Amperes
FEATURES
• High surge current capability
• Plastic package has Underwriters Laboratory
Flammability Classification 94V-O

DO-201AD

f

.210 [5.3)
.190[4.8)
DIR.

LI I·

1.0125.4]
MIN.

1
t

.315 [9.5)

~
1.0 (25.4)

.05211.3]
.04811.2]

T

Dimensions in inches
and
(millimeters)

• TypicallRless
~
than 0.1 ~A
• Void-free molded plastic package
--..
• High current operation of 3 Amperes
at TA= 95°C with no thermal runaway
• High temperature soldering guaranteed:
250°C/10 secondsl.375",(9.5mm) lead lengths at
51bs., (2.3kg) tension

MECHANICAL DATA
case: JEOEC 00-201 AD Mo.lded plastic
Terminals: Plated Axial leads, solderable per MILSTO-750, Method 2026
Polarity: Color Band denotes cathode
Welghf:O.04ounce, 1.1 gram
Mounting PoSition: Any

MAXIMUM RA TlNGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified.
60 Hz. reslstiw or Inductiw load.
For capacitive loed. derate current by 20%.

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
.375". (9.5mm) lead lengths aITA= 9500
Peak Forward Surge Current
S.3ms single half sane-wave superimposed on
rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage TJ= 2SoC
at9.4A
TJ=17SoC
Maximum DC Reverse Current
TA=2SoC
at Rated DC Blocking Voltage
TA=10O"C
Typical Junction Capacitance (NOTE 2)
TJ=25°C
Typical Reverse Recovery llme (NOTE 3)
Typical Thermal Resistance (NOTE 1)
Operating Junction Temperature Range
Storage Temperature Range

VRRM SO
VRMS 35
Voc 50

100 200 400 600 SOD 1000 Volts
70 140 2S0 420 560 700 Volts
100 200 400 600 SOO 1000 Volts

IIAV)

3.0

Amps

IFSM

100.0
1.1
1.0
5.0
SO.O
2S.0
2.S
15.0
-so to +1 SO
-so to +17S

Amps

VF
IR
CJ
TRR
R8JA
TJ
TSTG

NOTES:
1. Thermal Resistance frem Junction to applied at ambient .375" (9.5mm) lead lengths. P.C. Board mounted.
2. Measured at 1MHz and applied reverse voltage of 4.0 volts.
3. Reverse Recovery Test Conditions: IF=O.5A, IR=I.0A,lrr= 0.25A.
362

Volts

vA
pF

IJ.S

0CN/

00
°C

RATINGS AND CHARACTERISTIC CURVES GI500 THRU GI510

FIG. 2 W

:::Ja:

8.0 r-'-"-=,...~-r:--r--r=---'r-r-""':'':-'

(f)

7.0

~~

6.0

s:~

a:::;; 5.0

12
«
LUr:

4.0

200

ClUJ
a:LU

FIG. 1 - FORWARD CURRENT DERATING CURVE

o

MAXIMUM PEAK FORWARD
SURGE CURRENT

en W

~~
««
s:r:
a:Z

1-7~;--f"'~+--f!~"""';.q

8 3ms SINGLE HALF
SINE-WAVE lJEDEC Method)

100
NON-REPETITIVE

r--...

50

OLU
u.a:

1-t-t-''1''''oE::+-if--1''~r+-I---l-I-H

t--

~§

m3.0 I-+-+-+-+-"~"""+--N~++++-l
a:
~

LUO
Cl.

LUa:a:

10

i"IooLU I

T... l5O'"C_

""111n-..t.l"'-

-JTrnrfl

i"50

10

>:::J
«0

100

NUMBER OF CYCLES AT 60Hz
180

FIG. 4 -

TYPICAL JUNCTION CAPACITANCE

100
U.

a.
ui

50

I

0

FIG. 3 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

Z

«

TJ = 25°C

t(3

«Cl.
«

100

~

f.l.0MHz

VS,g·i'li

.......... ~

10

0

tZ

LU
a:

10

30

/

a:

:::J

o

10

TJ

50

100

REVERSE VOLTAGE. VOLTS

2S"C

o

a:

~ ff3

3.0

~ffi
u..Cl.

1.0

I

TJ 25"C
Pul$e WIdth

FIG. 5 -

300115

Z

:::J«

oLU

~

tZ

a:
:::J

0.1

LUUJ
UJLU
a: a:
LULU
>Q.. 1.0

- --

o

Iii
~

10

0.3

Z

«

«

TYPICAL REVERSE CHARACTERISTICS

t-

1% Duty Cycle

UJ::;;

.03

~

~~
UJO

:=J

.01

0.6

T•• 100·C

0.8

1.0

12

1.4

1.6

1.8

a:

0.1

00

2.0

~~

I - - I-T•• 2S'C

«

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

t-

Z

«

to-

UJ
~

.01

I

i-""""
20

40

60

80

100

120

140

PERCENT OF RATED PEAK REVERSE VOLTAGE.""

--------------~"

."\..

• High Surge Current Capability

.360t.1J

.052 !l.31.
•048!l.21

...

• High temperature soldering guaranteed:
250OC/10 seconds/.375",(9.5mm) lead lengths at
5Ibs., (2.3kg) tension

~
1.0 MIN•
(25.41

1

MECHANICAL DATA
C8se:Void-free Molded plastic

Terminals: Plated Axial leads, solderable per MILSTD-750, Method 2026

Dimensions in inches
and
(millimeters)

Polarity: Color Band denotes cathode
Weight: 0.07 ounce, 2.1 grams
Mounting Position: Any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25·C ambient temperature unless otherwise specified.
60 Hz, resistill8 or inductill8 load.
For capacitill8 load. derate current by 20%.
SYMBOLS G1750 GI751 Gl752 Gl754 Gl756 GI758 UNJ1S

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current at
TA=SOOC P.C. Board Mounting (FIG. 1)
TL=60°C .125", (3.1Smm) Lead Lengths (FIG.2)
Peak Forward Surge Current
S.3rns single half sine-wave superlfTllosed on
rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage at S.OA
100A
Maximum DC Reverse Current
TA=25°C
at Rated DC Blocking Voltage
TA=1000C
Typical Junction Capacitance (NOTE 2)
Typical Thermal Resistance (NOTE 1)
Operating Junction and Storage Temperature Range

VRRM
VRMS
Voc

50
35
50

I(Av)

IFsM
VF
IR

CJ
R8JL
TJ.TsTG

NOTES:
1. Thermal Resistance from Junction to Lead at .50"(12.7mm) lead lengths.
with both leads attached to heat sinks.
2. Measured at 1.0 MHZ and applied r8118rS8 VOltage of 4.0 volts.
366

100
70
100

200
140
200

400 SOO
2S0 420
400 SOO

SOO
560
SOO

S.O
22.0

400.0
0.90
1.25
5.0
1.0
300.0
10.0
-50 to +150

Volts
Volts
Volts

Amps

Amps
0.95
1.30

Volts

I1A

rnA
pF

°CIW
°C

RATINGS AND CHARACTERISTIC CURVES GI750 THRU GI758

FIG. 1 -

FIG. 2 -

MAXIMUM FORWARD CURRENT
DERATING CURRENT

a

20

MAXIMUM FORWARD CURRENT
DERATING CURVE

40

60

80

100

120

140

160

180

200

LEAD TEMPERATURE °C
20

40

60

80

100

120

140

160

180

200

FIG. 4 -

AMBIENT TEMPERATURE °C
FIG. 3· TYPICAL INSTANTANEOUS FORWARD
CHARACTERISTICS

TYPICAL REVERSE CHARACTERISTICS

100

1000

f-

Z
w

0::
0::

fZ
100

UJen
enw
0::0::

~

>0.

0::

eno

~~

o

offi
"-a.

I

0

1.0

~o::

00

~~

en::;;;

f- I-

~«

ow
z
«
f-

t- I"""

Ww

o

«
~ffl

I

10

o

~

W

0::
0::

TJ ' 100°C

~

.~

f- f.0

«

25 C

TJ

~

TJ - 25°C
Pulse Width = 300~s
2% DUTY CYClE

0.1

«
f-

en
Z

Z

«
fen

01

Z

6

.8

10 1.2

1.4

1.6

fZ

w

40

60

80 100 120

140

FIG. 6 - TYPICAL STEADY STATE
THERMAL RESISTANCE
40
35

60("~::+:+:l~~~~

w

30

w

Z
«ff-f-

25

O::w

00;;:

20

enw

0::

15

0

~

o

en«

(!len

Wo

~o::

g~
;;:

0

«...,

::;;;0

10

0::0::

w

0::

ou..

I
f-

>0::

«
w

5.0

~""

~fI"
~fI"

Single lead to hoalllnk,

r- insignHIcant heal flow
through

'4',

lead

~fI"

\
.)

...J...J

««

a.

20

1.8 .0

INSTANTANEOUS FORWARD
:.' VOLTS
VOLTAGE
FIG. 5 - MAXIMUM PEAK FORWARD
SURGE CURRENT

0::
0::

o

PERCENT OF RATED PEAK REVERSE VOLTAGE. %

I

o. 1

~

~
~

.....

~

"" ""..

.250

.375

"."..",.

-

r~i-·~k,

~

~

.125

--

.500

.625

.750

.875

1.0

EQUAL LEAD LENGTHS TO HEAT SINK INCHES

NUMBER OF CYCLES AT 60Hz

--------------eGeneralInsbument
367

P600A THRU P600M
HIGH CURRENT PLASTIC RECTIFIER
VOLTAGE - 50 to 1000 Volts CURRENT - 6.0 Amperes
FEATURES

o

_I

• Plastic package has Underwriters Laboratory
Flammability Classification 94V-O
• High Current Capability
• Diffused Junction

I...340 (8.GJ
360 (9.11

~

• Completely Insulated Case

1

• Uniform Molded Body

1.0 MIN.

-=k

..

"',

"\,'\

• High temperature soldering guaranteed:
250°C/10 secondsl.37S",(9.Smm) lead lengths at
Sibs., (2.3kg) tension

.360 (9.ll

:~i~ !t:n '

\'"

• High Surge Current Capability

T

1(f5~1~'

1

MECHANICAL DATA

case: Void-free molded plastic
Terminals: Plated Axial leads, solderable per MILSTD-7S0, Method 2026

Dimensions in Inches

Polarity: Color Band denotes cathode

and

(miIUrneters)

Weight: 0.07 ounce, 2.1 grams
Mounting Position: Any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 2S0C ambient temperature unless otherwise specified.

60 Hz, resistive or inductive load. For capacitive load, derate current by 200/0.

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current at
TA=60°C .375" (9.5mm) Lead Lengths (FIG 1)
TL=60°C .125" (3.18mm) Lead Lengths (FIG 2)
Peak Forward Surge Current
8.3rns single half sine-wave superimposed on
rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage at 6.0A
100A
Maximum DC Reverse Current
TA=25°C
at Rated DC Blocking Voltage
TA=100OC
Typical Junction Capacitance (NOTE 2)
Typical Thermal Resistance (NOTE 1)
Operating Junction and Storage Temperature Range

VRRM 50
VRMS 35
Voc 50

100 200 400 600 800 1000 Volts
70 140 280 420 560 700 Volts
100 200 400 600 800 1000 Volts

I(AV)

6.0
22.0

IFSM

400.0
0.90
1.30
5.0
1.0
300.0
10.0
-50 to +150

VF
IR
CJ
R8JL
TJ.TsrG

Amps

I

NOTES:
1. Thermal Resistance from Junction to lead at .5O"(12.7mm) lead lengths. with both leads attached to heat sinks.
2. Measured at 1.0 MHZ and applied reverse VOltage of 4.0 volts.

368

AqIS
1.0
1.4 Volts

f1A

rnA
pF
"C/W

OC

RATINGS AND CHARACTERISTIC CURVES P600A THRU P600M

FIG. 1 - FORWARD CURRENT
DERATING CURVE

FIG. 2 - FORWARD CURRENT
DERATING CURVE
~5-(3.18~"i)~ ~ RESISTIVE OR INDUCTIVE LOAD_
L-.25"(6.3Smm)

I

NI.

IIIW

~

~

L-.375'(9.5nm)

I I I J'1'ao

40

60

80

100

120

140

160

180

~

~~.

I I I I I

t±t:l:tt:t:ttfjt±t:t:N±t±±l
o
20

~

i'"

L-.626-l15.8mm)

a

I 160,Hl I I I I
BOTH LEADS ATIACHED
TO HEAT SINKS WITH LENGTHS AS SHOWN L

200

20

40

AMBIENT TEMPERATURE DC

60

80

100

120

140

160

180· 200

LEAD TEMPERATURE DC

FIG. 3 - TYPICAL INSTANTANEOUS FORWARD
CHARACTERISTICS

FIG. 4 - TYPICAL REVERSE CHARACTERISTICS

100~

100

.:
z

.JI

a:
a:

:::J

10

0

~

§

I

w

/

wm
mw
a: a:
wW
>11.
W::!!
11:«
rna

TJ " 25'C

PULSE WIDTH = 300 jJ S

2 "" DUTY CYCLE

-

-

TJ = lOOg

~

1.0

:::JII:

00

Wz::!!

«

,

0.1
.6

m
w

a:
w
a.
::!!

«

.8

a:

~200

a:

:.::

I1ia.

m
~

1.0

1.2

1.4

1.6

.01

1.8 2.0

o

20

40

60

80

100

120

FIG. 6 - TYPICAL THERMAL RESISTANCE VS LEAD LENGTH

.....

a:

PERCENT' OF RATED PEAK
REVERSE VOLTAGE,%

a
~

8.3 ms Single Half Sine-Wave

JEDEC Method

-

t-

o

z
~

T.-1WC

100

-

f3 ~
a:o

....

::!!
II:

o

W

I

1.0

2.0

5.0

10

20

50

100

io'"

10

BOTH LEADS TO HEAT SINK,
EQUAL LENGTH

...J •

«

io"

i"'"

"

I- 20

!!2~

.....

"'"

SINGLE LEAD TO HEAT SINK.
_ INSIGNIFICANT HEAT FLOW
THROUGH OTHER LEAD

40

w

TJ 25~~

.....

......

:::J300

o

1il

I-

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS
FIG. 5 - MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT

I-

ffi400
a:

0.1

«

600
500

I

TJ = 25°C

IZ

a

o

.1

.2

.3

.4

.5

.6

.7

.8

.9

1.0

EQUAL LEAD LENGTHS TO HEAT SINK INCHES

I-

NUMBER OF CYCLES AT 60 Hz

.. General Instrument
369

NSF8AT THRU NSF8MT
HIGH CURRENT GLASS PASSIVATED RECTIFIER
CURRENT - B.O Amperes

VOL TAGE - 50 to 1000 Volts

FEATURES
• Fully Isolated Overrnolded Package

ITD-220

• Plastic package has Underwriters Laboratory
Rammability Classification 94V-O
• High surge current capability
• High current capability

• Low forward voltage
• Glass passivated chip junction
• Intemallnsulation: 1.5k VRMs\
• High temperature soldering guaranteed:
265°C/10 seconds .160" (4.06 mm) lead lengths
at 5 Ibs/ (2.3 kg) tension

MECHANICAL DATA
PIN 10----,

Case: ITO-220 fully overrnolded plastic

PIN2~

(Case Positive)
Standard Polarity

Tenninals: Plated Lead solderable per MIL-STD750. Method 2026

Dimensions in Inches

Polarity: As marked

and

(millimeters)

Weight: .08 ounces, 2.24 gram
Mounting Position: Any
Mounting Torque: 5 in. - Ibs. max.

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified.
60 Hz. resistive or inductive load.
For capacitive load, derate current by 20%.

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at T0=1 OO"C
Peak Forward Surge Current
8.3ms single haH slOe-wave superimposed on
rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage at 8.0A
Maximum Reverse Current
Tc=25OC
at Rated DC Blocking Voltage Tc=100°C
Typical Junction capacitance (NOTE 2)
Typical Thermal Resistance (NOTE 1)
Operating Junction and Storage Temperature Range

VRRM 50
VAMS 35
Voc 50
I(AY)

8.0

Amps

IFSM
VF

175.0
1.1
10.0
100.0
55.0
3.0
-55 to +150

Amps

IR
CJ
R8JC
TJ,TSTG

NOTES:
1. Thermal Resistance Junction to Case.
2. Measured at 1.0 MHz and applied reverse voltage of 4.0 volts.

370

100 200 400 600 800 1000 Volts
70 140 280 420 560 700 Volts
100 200 400 600 800 1000 Volts

Volts

IIA
pF
"C/W
OC

RATINGS AND CHARACTERISTIC CURVES NSF8AT THRU NSF8MT
FIG: 3 • MAXIMUM NON·REPETITIVE PEAK
FORWARD SURGE CURRENT
175

150

UJ
a:
enUJ
Oa. 100
a:::;;

Fig. 1- FORWARD CURRENT DERATING CURVE
...:

10

Z

UJ
a:

a::

8.0

r\

;j

U
oen

a: UJ 6.0
«a:

60Hz RESISTIVE OR
INDUCTIVE LOAD

UJ

2.0

o

o

"f'...

r'-..r-.
i'

........

75

25

\

50

5

\

100

-r-- -

....

50

wU

a.

n

ITJ.TJL.I

8.3ms SINGLE HALF SINE-WAVE
(JEDEC Methodl

«;j

,

~ ~ 40

~

a:Z
OUJ
lLa:
"a:

'\ \..

~~
a:
UJ
>
«

««
5:....-

~

10

20

50

100

NUMBER OF CYCLES AT 60 Hz
Fig. 4- TYPICAL REVERSE CHARACTERISTICS

150

100

CASE TEMPERATURE. ·C

I

0

Fig. 2- TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

-

0

400

.0

200

V

IZ
UJ

100

ao

40

a:

UJ

10

~

gjffi

.0

II

20

-

TJ = 25°C

/

.2
.1

4.0

UJ

2.0

6«
Z

~
~

I

II

--

..... " Tc = 25°C
I

60

80

100

120

140

Fig 5- TYPICAL JUNCTION CAPACITANCE

0.4

lL
Q.

I

I
.6

40

Tc ='75°C

IJ

120

0.1

-

I

-'

PERCENT OF RATED PEAK REVERSE VOLTAGE.%

1.0

0.2

..-

~~

20

«

~

I--

- r---I-'

PULSE WIDTH" 300" S 2'11 DUTY CYCLE

lLa.

en::;;

-

0

,

a:

a:
«en

I--"

l/

I-- l-- I-"TC" l00·C IJ

100

f'

ui

U
Z

I
.8

1.0

1.2

1.4

1.6

1.8

2.0

INSTANTANEOUS FORWARD VOLTAGE.
VOLTS

«

80

1',

I-

0

60

U

40

«a.
«

TJ'25"C

......

l.l.OMHz
Vsig-6OmP-P
20

"""""

IIIIII1
0.1

0.4

1.0

4.0

10

40

100

400

REVERSE VOL TAGE. VOLTS .%

-----"J....:,
STANDARO POLARITY PIN 2 - o---tot-lCiSE

Polarity: As marked

Dimensions in inches and (millimeters)

Mounting Torque: 5 in. - Ibs. max.

Weight: 0.08 ounce, 2.24 gram
Mounting Position: Any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 2S·C ambient temperature unless otherwise specified.
60 Hz. resistive or inductive load.
For capacitive load. derate current by 20%.

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current at
Tc.. l00·C
Peak Forward Surge Current
8.3ms single haW sine-wave superimposed on
rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage at 8.0A
Maximum Reverse Current
at Rated DC Blocking Voltage Tc=25·C
Tc-l00°C
Typical Junction Capacitance (NOTE 2) TJ=25°C
Typical Thermal Resistance (NOTE 1)
Operating Junction and Storage Temperature Range

VRRM 50
VRMS 35
Voc 50
I(AV)

8.0

Amps

IFSM
VF

175.0

Amps
Volts

IR

10.0
100.0
55.0

j!A

3.0
-55 to +150

·cm

CJ
R9JC
TJ,TsTG

NOTES:
1. Thermal Resistance from Junction to Case.
2. Measured at 1 MHz and applied reversed voltage of 4.0 volts.

372

100 200 400 600 800 1000 Volts
70 140 280 420 560 700 Volts
100 200 400 600 800 1000 Volts

1.1

pF
°C

RATINGS AND CHARACTERISTIC CURVES NSBAT THRU NSBMT

FIG. 3 - MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT
175

150

W
a:W

Fig.1-FORWARD CURRENT DERATING CURVE
..,:

Clen
enw

00. 100

Z

W

0:
0:

~

8.0

oen

a: UJ 6, 0
«0:

~~
fr ~ 4 0
2. 0

«~

"-

0.

11

~ r-..

--

t--...

75

50

i"- t'-

wO

-

25

~

0:
0
50

5

1\

W

>
«

'"'"

««

\.

_L.

60Hz RESISTIVE OR
INDUCTIVE LOAD

W

a::'
3:..:
o:Z
OW
u.o:
:.:a:

,,

\

o

«Cl

125

~a:

10

ITJ 'TJ~I

8.3mB SINGLE HALF SINE·WAVE
JEDEC METHOD

100

10

20

50

100

NUMBER OF CYCLES AT 60 Hz

150

Fig. 4- TYPICAL REVERSE CHARACTERISTICS

CASE TEMPERATURE, ·C

I

.0G

0

Fig. 2- TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

-

D

400

,

200

IZ
W

i

J.--:t:

i

100

i

0

!
i

.0

a:

aa:o
0:

«

~ffl

offi
u.o.

,

20

I
t

10

I

~

.2

.'

en:' 4.0

5«

2.0

,I

~

1.0

V

~

o.~

w
Z

«

...

-

,

i

!
Q.

.6

I

---

20

40

Tc = 25°C
nO

80

-'

100

120

140

100

I'

W

I

o.,

o

I--- ~

Fig. 5- TYPICAL JUNCTION CAPACITANCE
120
U.

,

IL

PERCENT OF RATED PEAK REVERSE VOLTAGE,,,,"

«

D._

Tc ='75"C

-

TJ • 2S·C
PULSE WIDTH = 300 IJ S 2~ OUT.,. CYCLE

il

..1.

~

I-- I----

.0
40

V

f--:'" ~ r-""TC' l00·C . ,

0
Z

80

0

60

0

40

«
I.B

1.0

1.2

1.4

1.6

1.B

2.0

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

«
0.
«

I'~
T...25"C

.........

f.1.OMHz
V.igo5OlTI'"P
20

11I11111

o
0.1

0.4

1.0

4.0

10

40

100

400

REVERSE VOLTAGE, VOLTS

---------------~Generallnstrument
373

1000

374

FAST RECOVERY
PLASTIC RECTIFIERS
1.0 AMPERE TO 6.0 AMPERES
50 VOLTS TO 800 VOLTS



z
«f-

40

60 80100

NUMBER OF CYCLES AT 60Hz

75

100

125

150

175

FIG. 4 -

TYPICAL INSTANTANEOUS FORWARD
CHARACTERISTICS

AMBIENT TEMPERATURE, °C

20

20

TYPICAL JUNCTION CAPACITANCE

"'"'

20
10

Z

T~ ~ ~5JCI II

.....

f-

UJ
II:
II:

::>
()

V

I

30

o

II:

«

:5;CIl

/

1.0

II:~

U
«
a..

0"
u.c.

f= 1 MHz
Vsig = 50mVp-p

«

(/lE

::>«
o
UJ

e.>
10

100

Z

REVERSE VOLTAGE, VOL1s

TJ = 25 c C
PULSE WIDTH = 300J..l S
1% DUTY CYCLE

I

0.1

«fZ

FIG. 5 -

0.3

.0 3

~

REVERSE RECOVERY TIME CHARACTERISTIC
AND TEST CIRCUIT DIAGRAM

I

(/l

~

.01
0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

"'''

~w
NOI\IINDUCTl~E

INSTANTANEOUS FOWARD VOLTAGE, VOLTS

UNIT

UNOEI'lTEST

• o AIle HIOIoI
CONSTANT
VOLTAGE SUPPLY

RiPPLE.

A-TE"'TRONIX

!I~SA

K PLUG IN

PREAI,IPP6OO(lPROaeQREOUIVALENT

A,-AOJUSTEDFQR 14 II BETWEEN

1\1(1)

di/dt

~ l--'"

Al-TEN.\ W Ion \',CARBC,NCORf.
IN ""'RAllEL

1.0

~

TA" 2S· ~O'C FOR RECTIFIER

POINT 20FRElAYAI'tORECTIFIEA
INOUCTAI'tCE ~ J8,.~

IFM 1.0

FIG. 5- TYPICAL REVERSE CHARACTERISTICS

JmVrmsM"~

=SO AljJS

.10

r-"'".I

J
I

1\

.01 '----::l~-_:'::-----':----'---..1---.L-.-.....J
o
20
40
60
80
100
120
140

\ J
IRM (REC) 2.0

PERCENT OF RATED PEAK REVERSE VOLTAGE ,"10

to'

- - - - - - - - - - - - - - - (DGenerallnstrument
377

SRP100A THRU SRP100K
MINIATURE SOFT RECOVERY
FAST SWITCHING PLASTIC RECTIFIER
VOL TAGE - 50 to 800 Volts CURRENT - 1.0 Ampere
FEATURES
• High surge current capability
• Plastic package has Underwriters Laboratory
Rammability Classification 94V-0
• Void-free molded plastic in 00-41 package
• 1.0 Ampere opera- .. _
tion at TA=SSoC with ______
no thermal runaway
~.
• Fast switching for high efficiency
~
• High temperature soldering guaranteed:
250°C/10 seconds/.37S",(9.Smm) lead lengths at
5 Ibs., (2.3kg) tension

DD-204AL

f

1.0 (25.4)
.107(2.7)
.080(2.0)

IIIN

.1

1+ ~
--:r:-:.205(5.2)
.160(4.1 )

..J.-

t

1.0(25.4)
.034 (.86).
.028 (.71)

+

MECHANICAL DATA

MIN

ea..:JEOEC 00-204AL, molded plastic

I

...

Terminals: Plated Axial leads, solderable per
MIL-STD-750, Method 2026
Polarity: Band denotes cathode
Mounting Position: Any
Welght:0.012 ounce, 1.3 gram

Dimension in inches

and

(millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified.
Resistive or inductive load.

SRP
SYIf8OI.S 100A

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
.375", (9.5mm) lead lengths at TA=55°C
Peak Forward Surge Current
8.3ms single half sine·wave superimposed on
rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage at 1.0A
Maximum DC Reverse Current TA=25°C
at Rated DC Blocking Voltage TA=100°C
Maximum Reverse Recovery Time (NOTE 2) TJ= 25°C
Typical Junction Capacitance (NOTE 1) TJ=25°C
Typical Thermal Resistance (NOTE 3)
Operating Junction Temperature Range
Storage Temperature Range

VRRM
VRMS
Voc

50
35
50

SRP
1008

100
70
100

SlIP
100D
200
140
200

SliP SRP
1000 100J

400 600
280 420
400 600

I(AY)

1.0

IFSM
VF

30.0
1.3
10.0
200.0
100
12.0
41.0
-50 to +125
·50 to +150

IR
TRR
CJ
RaJA
TJ
TSTG

NOTES:

1. Measured at 1 MHz and applied reverse voltage of 4.0 wits.
2. Reverse Recovery Test Conditions: IF=0.5A,IR=1.0A,lrr=.25A.
3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) lead lengths, P.C. Board mounted.
378

SliP
100K
800
560
800

UNITS
Volts
Volts
Volts

Amps
Amps
Volts

I

!lA
200

nS
pF
°CIW
°C
°C

RATINGS AND CHARACTERISTIC CURVES SRP100A THRU SRP100K

FIG. 1 -

FORWARD CURRENT DERATING CURVE

FIG. 2 -

125
30

1 00 t---+3o,d-'~+

f-'

OU)

Z

a: W
«a:
'S:W
a:::>
«0

W

25

75

a:
W
a:
>
::>.><<(
o Q.'S:

20

50

WU)w

.25

0::;'-'

~~~

~~ ~

~« ~

0.375" (9 Smm) LEAD LENGTH

20

40

60

80

20

"

~

11111
810

20

40

6080100

NUMBER OF CYCLES AT 60 Hz

V

0

Z

8.3ms SINGLE HALF
SINE-WAVE
(JEDEC Method)
6

FIG.3 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

f-

""
TJ '" 125°C

10

o
u.

AMBIENT TEMPERATURE, "C

IIJllvJ M

15

'S:
a:

140

100

MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT

FIG. 4 -

I

TYPICAL REVERSE CHARACTERISTICS

W

a:
a:
::>

o

o
a:
«

~~

offi
u.a.
U)::;'

::>«

WUl
UlW

0

I

,0
I

f-

PULSET~I~~~~ 300j.15

/

Z

1

-

1% DUTY CYCLE

f-O:
UlO:

Z::>
-0

Z

«
f-

-

TJ = 100"C

",.,.

~

111

TJ;: 2S C
Q

"6

0·'
02
01

U)

Z

1(1

UlO

::>0:
00
wZ2
~~
ZZ
«w

3

oW
«

0:0:
WW
>a.
w::;,
or«

"I

20

3

I

,I
0.6

FIG. 5 -

40

60

flO

100

120

140

PERCENT OF RATED PEAK
REVERSE VOLTAGE ,"10
08

10

12

1.4

16

1B

20

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS
FIG. 6 TYPICAL JUNCTION CAPACITANCE

REVERSE RECOVERY TIME CHARACTERISTIC AND TEST DIAGRAM

500

100

NON INDUCTIVE

NON INDUCTIVE

+ 05t>

l~~vdc

DUT

lapprox I

\

,

\

i,..oo'

V

- 025

,0
NONINDUCTIVE

f= 1 MHz
VSlg = SOmVp-p

10

REVERSE VOLTAGE, Volts

100

OSCILLOSCOPE
(NOTE 1)

NOTES 1 Rise Time = 7ns max
1 megOhm. 22pF
2 Rise Time = lOns max
50 ohms

[\
-10

I

I

\V

Source Impedance '::"

SO/lOOns/em

CD General Instrument
379

GI850 THRU GI858
SOFT RECOVERY, FAST SWITCHING PLASTIC RECTIFIER
VOLTAGE - 50 to 800 Volts
CURRENT - 3.0 Amperes
FEATURES
• High surge current capability
• Plastic package has Underwriters Laboratory
Flammability Classification 94V-O
• Fast switching for
~____
high efficiency
---~
• Void-free molded plastic package ----___
• High current operation
• High temperature soldering guaranteed:
250°C/10 seconds/.375",(9.5mm) lead lengths at
5lbs., (2.3kg) tension

D0-201AD

f

.210 (5.3)
.190 (4.8)

DLI

1.0 (25.4)

1+
r

T'

- --ltf--.375 (9.5)
•285f·2)

MECHANICAL DATA
1.0 (25.4)

.052 (1.3) • +
.04811.2)

Case:JEDEC DO-201AD molded plastic
Terminals: Plated Axial leads, solderable per
MIL-STD-750, Method 2026
Polarity: Color band denotes cathode
Mounting Position: Any
Weight: .04 ounce, 1.1 gram

T'

Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25"C ambient temperature unless otherwise speCified.
Resistive or inductive load.
SYIIBO/.S GI850 G/851 GI852 G/8S4 GI856 GI868 UNITS

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Non-repetitive Peak Reverse Voltage
Maximum Average Forward Rectified Current
.375", (9.5mm) lead lengths at TA=90°C
Peak Forward Surge Current
8.3ms single half sine-wave superimposed on
rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage
at
3A TJ=25°C
9.4A TJ=175°C
Maximum DC Reverse Current
TA=25°C
at Rated DC Blocking Voltage TA=100°C
Typical Junction Capacitance TJ=25°C (NOTE 1)
Maximum Reverse Recovery Time (NOTE 2)
TJ=2Soc
Maximum Reverse Recovery Current (NOTE 2)
Typical Thermal Resistance (NOTE 3)
Operating Junction and Storage Temperature Range

VRRM
VRMS
Voc
VRSM

50
35
50
75

100
70
100
150

200
140
200
250

400
280
400
450

600
420
600
650

Volts
Volts
Volts
Volts

I(AV)

3.0

Amps

IFSM

100.0

Amps

VF
IR
CJ
TRR
IRM(REC)
R8JA
TJ,TsTG

150

150

1.25
1.10
10.0
200
28.0

Volts
250 300

200.0
2.0
15.0
-SO to +150

NOTES:

1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.
2. Reverse Recovery Test Conditions: IF=1.0A, VR=30V, dVdt=50Al!1S.
3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) lead lengths, with both leads to heat sink.

380

800
510
800
880

500

IIA
pF
nS
Amps
°CIW
°C

RATINGS AND CHARACTERISTIC CURVES GI850 THRU GI856

FIG. 1 - FORWARD CURRENT

fil

8.0.--_..,-_D_E_RT A_T_I_N_Gr C_U_R_V,E_ _-.--_...._---,

u::

TL·A_T"""",alu18
L- • .25'" (8.3 min)

i= (/)

[il ~

a::W

~~

««

~..:

6.0

W

200

a::w

t---I""'""'o;df-+-+---if-a::~
««
iilffi

4.0 1--..---;;;t=-=r....;:;::~:::=';.:;::.:'F;.:;::.:f=...;~

2.0

~..:

1oo
50
•

i--+-:=-:--+--r" .-,......,...3OiiiI~-+----i

~§

wU

10L-_~~~~~_~~Li-LLU~

0..

>

a

«

90

70

50

110

130

•

a::z
ow
!La::

~a
a::

w

r--r-,-T""r"TTTII"-------,

(!)(/)

00..

offi

~~

FIG. 2 - MAXIMUM PEAK
FORWARD SURGE CURRENT

5.0

1.0

10

50 100

NUMBER OF CYCLES AT 60 HZ

170

TEMPERATUREOC

FIG. 4 - TYPICAL REVERSE CHARACTERISTICS

.--,...-

10

TA

FIG. 3 - TYPICAL INSTANTANEOUS

=l00"C

FORWARD CHARACTERISTICS
100

..:
z

30

::l

10

w
a::
a::

U

-

-- V-

/

a::
~(/)
a:: W
offi
!Lo..

--

3.0

I

1.0

TJ

(/)~

::l«
0
W
Z

0.1
..

0

~

--

TA -50'C

"

-'

",

2S'C

.01

25°C

Pulse Width

20

= 300"" s

40

60

80

100

120

140

2% Duty Cycle

0.3

PERCENT OF RATED PEAK REVERSE VOLTAGE.%

...Z«

0.1

(/)

.03

I

;:-:

~

~~

1.0

..

FIG. 5 - TYPICAL JUNCTION CAPACITANCE
100

1

.01
.04

0.6

0.8

1.0

1.2

1.4

--,1.6

!L
0-

1.8

W

50

TJ = 2S'C

U
Z

INSTANTANEOUS FORWARD VOLTAGE. VOLTS

...

«
U
«
0..
«

10

r

........ ... ~

f.l.oMHz
V oIg • 5OmVp-p

U

5.0
1.0

5.0

10

50

100

REVERSE VOLTAGE. VOLTS.%

- - - - - - - - - - - - - - (iGenerallnstrument
381

I

GI910 THRU GI917
SOFT RECOVERY, MEDIUM-SWITHING PLASTIC RECTIFIER
CURRENT - 3.0 Amperes
VOLTAGE - 50 to 800 Volts
FEATURES
DD-201AD

f

.210 (5.3)
.19014.81
DIA.

..

LI

.05211.31
.04811.2)

1.0125.41
MIN.

1
t

1+

.37519.51
.285C·21

• High surge current capability
• Plastic package has Underwriters Laboratory
Rammability Classification 94V-O '~
• Void-free molded plastic package
.,".,
"• High current operation of 3.0 Amperes at T A=90°C
"
• Fast switching for high efficiency
~
• High temperature soldering guaranteed: 2S0°C/10"-,,
seconds/.37S",(9.Smm) lead lengths at S i b s . , "
(2.3kg) tension

f

1.0 125.41
MIN.

1

•+

Dimensrons in inches
and

(millimeters)

MECHANICAL DATA
Case:JEDEC DO-201AD molded plastic
Terminals: Plated Axial leads, solderable per
MIL-STD-7S0, Method 2026
Polarity: Color Band denotes cathode
Mounting POSition: Any

Weight: 0.04 ou nee, 1.1 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25'C ambient temperature unless otherwise specified.
Resistive or inductive load.
SYMBOLS Gl910

Maximum Recurrent Peak Reverse Vo~age
Maximum RMS Vo~age
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
.37S", (9.Smm) lead lengths at TA=90°C
Peak Forward Surge Current
8.3ms Single haH sine-wave superimposed on
rated load (JEDEC Method)
Maximum Instantaneous Forward 3.0A TJ=2SoC
Voltage at
9.4A TJ=17SoC
Maximum DC Reverse Current TA=2SoC
at Rated DC Blocking Voltage TA=100OC
Typical Junction Capacitance (NOTE 1) TJ=2Soc
Maximum Reverse Recovery Time TJ=2SoC (NOTE 2)
Maximum Reverse Recovery Current
Typical Thermal Resistance (NOTE 3)
Operating Junction and Storage TelTlJlElrature Range

VRRM
VRMS
Voc

SO
35
50

GJ911

GJ912

G1914 Gl916

GJ917

UNITS

100
70
100

200
140
200

400 600
280 420
400 600

800
560
800

Volts
Vo~s

Volts

I(AV)

3.0

Amps

IFSM

100.0
1.2S
1.10
10.0
300.0
28.0
7S0
2.0
1S.0
-SO to +150

Amps

VF
IR
CJ
TRR
IRM(REC
R8JA
TJ,TsTG

NOTES:
1. Measured at 1 MHz and applied reverse IIOltage of 4.0 Volts.
2. Reverse Recovery Test Conditions: IF= 1.0A, VR=30V, dVdt=so AI}u;.
3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) lead lengths, both leads to a heat sink.

382

Volts

IiA
pF
nS
Amps
0C!W
·C

RATINGS AND CHARACTERISTIC CURVES GI910 THRU GI917

FIG. 2 -

W
Clen
a::w
:la::
enW
011.
a:::;:
««
:1:"':
a::z
OW
lI..a::
~a::
«:l
wO
11.

FIG. 1 - FORWARD CURRENT DERATING CURVE

..,:
Z
w
a::
a::
:l
0
oen
W
a::
«a::
W
:1:
a:: 11.
0::;:
lI..«
W
Cl
«
a::
W
>
«

4.0

H
2.0

200

MAXIMUM FORWARD SURGE
CURRENT

;III

~l'1

100

NON-REPETITIVE

~:.:t:

50

1.0

5.0

AMBIENT TEMPERATURE °C

'0

TA·l00"C

~~
WW

~

1.0

>11.
w::;:
a::«
enO
:la::

r"

......

TA" 50°C

1...0-'" ~.025·C

00
~~

V

10

0
0

0.1

en
~

a::
«en
:1: w
a:: a::
Ow
lI..ll.
en:;
:l«
0
W
Z
«
t-

.0'

3.0

J

1.0

0.1

FIG. 6 TJ "25°C
Pulse Width - 300J,Ls2% Duty Cycle

I

20

40

60

80

120

II~ va

60Hz

"'"

lOll

>OW
iliON INDUCTIVE

~w

UNIT
UNDER TEST

.03

~

rO.t.clo::FRClM

.01
0.4

•

CONSTANT
VOLTAGE SUPf'lY
RIPPLE _Jrr\\lrmsMAX

0.6

O.~

1.0

1.2

1.4

1.6

1.8

INSTANTANEOUS FORWARD VOLTAGE
VOLTS
FIG. 5 - TYPICAL JUNCTION CAPACITANCE

50

ilt)
1.0A IFM

I--TJ "25°C
f= lMHz.
Vslg = 5OmVp-p

10 1.0

5.0

--I

10

1'-..
50

R<,_ TEN·' W 10

INPARAttEl

Rl-AOJUSTEOFOR , . n BETWEEN
POINT 2 Of REtAY AND ReCTIFIER
INDUCT"NeE - 38~H

Z

«
o

KPtUGIN

PRE AMP P6000 PROBE OR eOUlvALENT

lI..Q. 'OO

~
U
~

Zour 1,0",.1.)(
DCI02kIU

MINIMIZE "Ll LEAD LENGTHS
"'-TEKTRONI~S'S'"

ti

140

REVERSE RECOVERY TIME CHARACTERISTIC
AND TEST CIRCUIT DIAGRAM

Z

«
ten

100

PERCENT OF RATED PEAK REVERSE VOLTAGE.%

-

0.3

I

10'"

«
tz
«
t-

30

Z

100

FIG. 4 - TYPICAL REVERSE
CHARACTERISTICS

...,:
z
W
a::
a::
:l
o
wen

100

w
a::
a::
:l

50

10

NUMBER OF CYLES AT 60Hz

1.0

FIG. 3 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

t-

- ...

~

REPETITIVE

8.3ms SINGLE HALF
SINE WAVE IJEDEC Method)

10

2.0A IRM (REC )

100

REVERSE VOLT AGE. VOLTS

n ", CARBVN CORE

TA- 2S~~O"CFORREcnFIER

di/dl = SOAI iL.s

IV

r--

~rH

"

~

L.".oo

....

V

--/lcmj..-SET TIME BASE FOR
1oons/em

~ Generallnsbument
383

SRP300A THRU SRP300K
SOFT RECOVERY, FAST-SWITCHING PLASTIC RECTIFIER
VOL TAGE - 50 to 800 Volts CURRENT - 3.0 Amperes
FEATURES
• High surge current capability
• Plastic package has Underwriters Laboratory
Ramrnability Classification 94V-O
• Void-free molded plastic package
• 3.0 Ampere opera- ",,tion at TA=55°C with
~
no thermal runaway
If;~;ftn~.~
• Fast switching for high efficiency
~
• High temperature soldering guaranteed:
""250°C/10 seconds/.375 ,(9.5mm) lead lengths at
5 Ibs., (2.3kg) tension

DO-201AD

f

.21015.31
.19014.81
DIR.

r

1.0 (25.41

LI

1+

t

.37519.51

M

~
1.0 125.41

.05211.31
.04811.21

I

+

MECHANICAL DATA

T

Csse:JEDEC DO-201AD molded plastic
Temrinals: Plated Axial leads, solderable per
MIL-STD-750, Method 2026
Polarity: Color Band denotes cathode
Mounting Position: Any
Weight: 0.04 ounce, 1.1 grams

Dimension in inches
and
(millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 2SoC ambient temperature unless otherwise specified.
Resistive or inductive load.

SRI'
SYMBOtS 300A

Maximum Recurrent Peak Reverse Voltage
Maximum RMS VoHage
Maximum DC Blocking Voltage
Maximum Average Forward RectHied Current
.375", (9.5mm) lead lengths at TA=55°C
Peak Forward Surge Current
B.3ms single half sine-wave superimposed on
rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage at 3.0A
Maximum DC Reverse Current
TA=25OC
at Rated DC Blocking Voltage
TA=I00°C
Maximum Reverse Recovery Time (NOTE 2) TJ=25°C
Typical Junction Capacitance (NOTE 1)TJ=25°C
Typical Thermal Resistance (NOTE 3)
Operating Junction Temperature Range
Storage Temperature Range

VRRM
VRMS
Voc

50
35
50

SRI'
3008

SlIP
3000

SRI' SlIP
300G 300J

SRI'
300K

UN17S

100
70
100

200
140
200

400 600
2BO 420
400 600

BOO
560
BOO

Volts
Volts
Volts

I(AY)

3.0

Amps

IFSM
VF

150.0
1.3
10.0

Amps
Volts

IR
TRR
CJ
R8JA
TJ
TSTG

100

200
100

300 400
150
150 200
2B.0
15.0
-50 to +125
-50 to +150

NOTES:
1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.
2. Reverse Recovery Test Conditions: IF=O•• SA, IR=I.0A, Irr=.2SA.
3. Thermal Resistance from Junction to Ambient at .37S" (9.Smm) lead lengths with both leads to heat sink.

384

SOD
200

~
nS
pF
°CIW

OC
°C

RATINGS AND CHARACTERISTIC CURVES SRP300A THRU SRP300K

z>-'
w

FIG. 2-MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT

F1G.1-FORWARD CURRENT DERATING CURVE

cr:
cr:

,----,----,--..,.---r--....,----,-----,

4.0'

::J

oW

u::

~~

o

W

200

cr:w
::>cr:
enw
00..
cr::::;:
««

100

CJen

U

~

~>-'"

f----+-""....d---''.....E"....~~-___+--_+_-'-~

20

i'-.""""!-..

50

015

cr:::;:

i«
o

"-cr:
><:cr:
«::>
wU

CAPACITIVE

LOADS~"~~./_~~--"~~~~--+-~

1.0·

20/

"w

L=O.3";5~, (9.5m~)

~
cr:

20

w

«>

60

8.3ms SINGLE HALF

80

100

120

fl~r WAVE I (JEDrC ~ETH?~)

10

140

1.0

~

«

W

cr:
cr:
::l

~

W
0..

V

:::;:
10

wen
enw
cr:cr:

Z

cr:

(J)

I

1.0

TJ

,

::lcr:

00

~~

SOOC

-

7'

V
..",. 10···\ ~ 250C

.-'"

0.1

«

I-

Z

0.3

::>

@
z 0.1

~
~~

w::;:
enO

cr:«

~

it

1.0

>0..

II

3.0

o

cr:

I

100°C

WW

W

-'
Z

FIG. 2 - MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT

FIG. 1 - FORWARD CURRENT DERATING CURVE

w

a::
a::

0

::::>

200

U

ow

Ul

u::

-'

Z

V

w

a::

a::

::::>

U

o

0

P

T,

a::

~fD
a:: a::

ow

LLo..

UJ::;;

::::>«
ow

1

1.0

UJ
~

,

PULSE WIDTH", 300p.s -

2% Duty Cycl.

i...-""'r

.1

,

Z

Z

==

25°C

TJ - 25°C

a.s

7

;'f
;'f

0

.1

IJ 1
20

1J5

I

m
0.4

40

60

80

100

120

140

PERCENT OF RATED PEAK
REVERSE VOLTAGE, %
Q.6

o.a

1.0

1.2

1.4

1.6

1.8

2.0

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

FIG. 5 - TYPICAL JUNCTION CAPACITANCE
100
LL
Q.

u.i

U
Z

;'f

50

r-t-t-

u
rt«

....

TJ "" 25°C
f ~ lMHz

u

Vsig
10
1.0

I

50~VP-P

5JJ

10

"

r"o1"50

100

REVERSE VOLTAGE, VOLTS

_ _ _ _ _ _ _ _ _ _ _ _ _ _ eGeneralInstrument
387

BY500-100 THRU BY500-800
SOFT RECOVERY, FAST SWITCHING PLASTIC RECTIFIER
VOLTAGE - 100 to 800 Volts
CURRENT - 5.0 Amperes
FEATURES
DO-201AD

f

.210(5.3)
.190(4.8)
DIA.

r·

1.0 (25.4)

LI 1+

t

.375 (9.5)
• 285r2)

1

1.0 (25.4)

.052 n.3)
.048 (1.2)

T·

+

Dimensions In inches
and

(millimeters)

• High surge current capability
• Plastic package has Underwriters Laboratory
Rammabmty Classification 94V-O
• Fast switching for high efficiency
• High current operation
at Tl=45°C
• Void-free molded plastic package ...
• High temperature soldering
guaranteed: 250°C/10 seconds 1.375",
(9.5mm) lead lengths at 5 Ibs., (2.3kg) tension
• Especially designed for applications such as
Switch Mode Power Supplies, Inverters, Converters, TV Scanning, Ultrasonic-Systems, Speed
controlled DC Motors, Low RF Interference and
Free Wheeling Rectifiers

MECHANICAL DATA
Case:JEDEC DO-201AD molded plastic
Terminals: Plated Axial leads, solderable per
MIL-STO-750, Method 2026
Polarity: Color Band denotes end
Mounting Position: Any
Weight: .04 ounce, 1.1 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25D C ambient temperature unless otherwise specified. Resistive or inductive loed.
Sl'IIBOLS BY5III).111D 8YfDO.211D 8Y5DIJ.411D 8 _ 8Y6t/UDD

Maximum Recurrent Peak Reverse Voltage
100
VRRM
Maximum RMS Voltage
70
VRMS
Maximum DC Blocking Voltage
100
VOC
Maximum Average Forward Rectified Current
.375", (9.5mm) lead lengths at TL=45°C
I(AV)
Peak Forward Surge Current
10ms single hail sine-wave superimposed on
rated load at TA=25°C
IFSM
Maximum Repetitive Peak Forward Surge
IFRM
Maximum Instantaneous Forward Voltage at 5.0A
VF
Maximum DC Reverse Current
TA=25°C
at Rated DC Blocking Voltage
TA=100°C
IR
Maximum Reverse Recovery Time (NOTE 3) TJ=25°C TRR
Maximum Reverse Recovery Current (NOTE 3)
IRM(REC)
Typical Junction Capacitance TJ=25°C (NOTE 2)
CJ
Typical Thermal Resistance (NOTE 1)
R9JA
Operating Junction Temperature Range
TJ
Storage Temperature Range
TSTG

200
140
200

400
280
400

600
420
600

UNITS

Volts
Volts
Volts

5.0

Amps

200.0
10.0
1.35
10.0
1.0
200.0
2.0
28.0
15.0
-50 to +125
-50 to +150

Amps
Amps
Volts

NOTES:

1. Thermal Resistance from Junction to Ambient at 375",( 9.5mm) lead lengths with both leads to heat sink.
2. Measured at 1 MHz and applied reverse voltage of 4.0 vollS.
3. Reverse RecoveryTesl Conditions: IF=l.0f\. VR=3DV, dVdt=50AljlS.
388

800
560
800

jJA
rnA
nS
Amps
pF

"CIW
°C
°C

RATINGS AND CHARACTERISTIC CURVES BY500-100 THRU BY500-BOO

Fig 2 -TYPICAL REVERSE CHARACTERISTICS

'.~

IZ

FIG. 1 - FORWARD CURRENT
DERATING CURVE

o

6.0

0::
e::
=>

m~
o::e::

5.0 I--!--'l~-.f--+4.01--1--1--+.300.4-

0::«

-

~

3~

5l:
«0
e::
w

1.0

WW

>"w:::;;

5:>-,

:a:

TJ = l00"C

u

r---.---~-~--r---r-"'"

w

u::

;:::00
Ow
we::
e::w
0"e::::2:

10

W

z:::;;

«
z

«

.01

I-

10

20

CI)

Z

a

20

40

60

80

100

40

-

.......

200

O::W
::J a:

100

~~
««

50

ooW

5:>-'

FIG. 3 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

wO

10ms SINGLE HALF SINE·WAVE
at RATED LOAD

"-

10
5.0

50

10

100

TJ '" 25°C

50

FIG. 5 - TYPICAL JUNCTION CAPACITANCE

I

1.0

100

PULSE WIDTH - 300p.s
1% DUTY CYCLE

u..
C.

W

0.5

W

U

(S

.05

0.4

.......

V5>9 ~I 5O'l"i- P
10

5.0

I

.01

-

~TJ"'25°
f = 1MHz

ct.'"

I

0.1

50

o
z

I

Z

~

!o-

NUMBER OF CYCLES AT 60 HZ

V

~[3

00

=2S°C I I IIIII

1.0

e::

''""

I

REPETITIVE ........

>-'

Z

140

NON.JeJTI~IJe1
.

T.

SO

0

120

~

e::z
Ow
u..0::

~gs

100

e::e::
OW
u.."00::2:
=>«

100

FIG. 4 - MAXIMUM PEAK
FORWARD SURGE CURRENT

w

10

80

REVERSE VOLTAGE."

140

CJoo

Z

60

PERCENT OF RATED PEAK

TEMPERATURE °C

0
0

"
.-.- ~J=25°C

I-

0~~~-4~~_~_~~~~~

w
e::
e::
=>

TJ=50"C

1.0
0.6

0.8

1.0

1.2

14

1.6

1.8

5.0

10

50

100

REVERSE VOLTAGE, VOLTS

2.0

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

~ General Instrument
389

GI820 THRU GI828
HIGH CURRENT FAST SWITCHING PLASTIC RECTIFIER
CURRENT - 5.0 Amperes
VOLTAGE - 50 to 800 Volts
FEATURES
• Plastic package has Underwriters Laboratory
Flammability Classification 94V-O
• High surge current capability \ " \ . ,
• High current operation
• Fast switching for
high efficiency
• Diffused junction
• Completely insulated case
"
';,
• Uniform molded body
• High temperature soldering guaranteed:
\
250°CI1 0 seconds/.375" ,(9.5mm) lead lengths at
5 Ibs., (2.3kg) tension

.360(9.11
(8.6)

1

1.0 MIN.

(25.4)

.360t.1I
•34l8.6)

1.0 MIN.

MECHANICAL DATA

(25.4)

1

Case: Void-free molded plastic
Tenn/nals: Plated Axial leads, solderable per MILSTD-750, Method 2026
Polarity: Color Band denotes cathode
Mounting Position: Any
Weight: 0.07 ounce, 2.1grams

Dimensions in inches
and
(millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 2SoC ambient temperature unless otherwise specified.
Resistive or inductive load.
SYIIIIOLS G/820 GI821

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Non-repetHive Peak Reverse Voltage
Maximum Average Forward Rectified Current
.375", (9.5mm) lead lengths at TA=55·C
Peak Forward Surge Current
8.3ms single half sine-wave superimposed on
rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage
at S.OA
at 1S.7A TJ=1S0·C
Maximum Reverse Current TA=2SoC
at Rated DC Blocking Voltage TA=100·C
Typical Junction Capacitance TJ=2S·C (NOTE 3)
Maximum Reverse Recovery Time (NOTE 1)
TJ=2S·C
Maximum Reverse Recovery Current (NOTE 1)
Typ~ITherrnaIRes~tance(NOTE~

Operating Junction and Storage Temperature Range

VRRM
VRMS
Voc
VRSM

50
35
SO
75

100
70
100
150

GIB22 GI824 GI826 G1828 UNITS

200
140
200
2SO

400
280
400
450

600
420
600
650

800
560
800
880

Volts
Volts
Volts
Volts

I(AY)

5.0

Amps

IFsM

300.0

Amps

IR
CJ

1.10
1.05
10.0
1.0
300.0

TRR
IRMCREe)
R8JA
TJ,TSTG

200.0
2.0
10.0
-SO to +150

VF

NOTES:
1. Reverse Recovery Test Conditions: IF=1.0A, VR= 30V, dildt = SOAll's.
2 Thermal Resistance from Junction to Ambient at .37S· (9.Smml lead lengths, with both leads to heat sink.
3. Measured at 1 MHz and applied reverse voltage of 4.0 volts. .
390

Volts

IJA

rnA
pF
nS
Amps
·CIW
·C

RATINGS AND CHARACTERISTIC CURVES GI820 THRU GI826

FIG. 1 - FORWARD CURRENT DERATING CURVE
7.0

-

D UJ6.0

...,;: ""-

a:w

.....

a: 0..

0::;;

u. « 4.0
WI-

C~tiv!t Loads Ground plane

IpkIIAV-1I:

...... ~

~ffi5 0 ....... ~

1£ -

1" x 1" Copper
(25.4mm x 25.4mm)

V,

I •

~

I'

a: a:
Wa:
> ::::l2.0

«0

_

'~+:

5.0

Jt;,vr,ace .·e.
"'"""" I:K
J
..... """ 1'00 l:"llI
.05:'(1.27~ml ~
.....
"'" I""" ~~
i'o..:
1

~

~~30

FIG. 2 - FORWARD CURRENT DERATING CURVE
20

1 1 1 1 1 1 1 1

RESISTIVE OR
INDUCTIVE LOAD

IN r-

1.0

1 I"
III'
40

20

60

80

100

120

140

160

75

180

165

85

FIG; 4 -

FIG. 3 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS
400

IZ
W
a:
a:
::::l

0

200

20

a:W
Oa:

10

UJ::;;

4.0

I-

Z
«

I-

UJ
~

UJw

a:::;;
««

::;,..:-

250

OW

u.a:
l<:a:
«::::l

200

0..

150

wO

I

2.0

300

I

"'- ""-. .....

a:Z

/

0

350

a:W
::::la:

TJ = 25°C
PULSE wrOTH = 300~ 5
1% DUTY CYCLE
:

LL.~

W
Z
«

ClUJ

If

~UJ

::::l«

W

Del.
40

Cl
a:
«

400

......

.LI '

100

MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT
a'.3m. SINGLE HALF
1
SINE-WAVE (JEDEC METHOD

0.4

I

......
I"'

......

...... V

TJ = 25°C

i'.......

t)'"",

'" -

T._125"C ,

100

1/

1.0

175

LEAD TEMPERATURE °C

AMBIENT TEMPERATURE °C

5

10

f"""..

...... "'"
.....
r--. 1-0"",

20

"'"

50

NUMBER OF CYCLES AT 60Hz

I

0.2

I

0.1

I

0.6

FIG. 6 - TYPICAL REVERSE
CHARACTERISTICS
0.8

1,0

1.2

1.4

1.6

1.8

2.0

I-

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS
FIG. 5 -

I15

1

.,

~

10

T._l00·C

a:
a:
::::l

TYPICAL THERMAL RESISTANCE

U

20

Z
w

o

~ f3

,

~

10

a: a:
Ww

>0..

T._50·C

~~

".

UJO

10_·11'..... ·'_. I."

ioo"""

r"

"".. i"""

::::la:

10

.,

5.0

""

00

"" ""

10-"

~:i

.3

.4

.5

.6

T._ 250C

«
IZ

«

t;
.2

01

.7

.8

.9

~

1.0

EQUAL LEAD LENGTHS TO HEAT SINK, INCHES

01 ' - - - - _ .

20

40

60

80

100

120

140

PERCENT OF RATED PEAK
REVERSE VOLTAGE, %

" General Instrument
391

100

SRP600A THRU SRP600K
HIGH CURRENT SOFT RECOVERY FAST·
SWITCHING PLASTIC RECTIFIER
VOLTAGE· 50 to 800 Volts CURRENT· 6.0 Amperes
FEATURES

o

_I

• Plastic package has Underwriters Laboratory
Flammability Classification 94V-O

~
• High surge current
capability
• High Current Operation
• Void-free molded plastic package
'>,~",
• Fast switching for high efficiency
,", :""""
• High temperature soldering guaranteed:
250°CI1 0 seconds/.375" ,(9.5mm) lead lengths at
5 Ibs., (2.3kg) tension

I..

36019.11
.340(8.61

1

1.0 MIN.
125.41

-J-.36019.11

~+
.04811.21

~

MECHANICAL DATA

1.0 MIN.
125.41

case: Void-free molded plastic

1

Tennlna/s: Plated Axial leads, solderable per MILSTD-750, Method 2026
Polarity: Color band denotes cathode
Mounting Position: Any
Weight: 0.07 ounce, 2.1grams

Dimensions in Inches
and

(millimeters)

MAXIMUM RAnNGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified.
Resistive or inductive load.
For capacitive load, derate current by 20%.

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking VoRage
Maximum Average Forward Rectified Current
.375", (9.5mm) lead lengths at TA=SSOC
Peak Forward Surge Current
B.3ms single half sine-wave superimposed on
rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage at S.OA
Maximum DC Reverse Current TA=2SOC
at Rated DC Blocking Voltage TA= 100°C
Maximum Reverse Recovery Time (NOTE 1) TJ= 25°C
Typical Junction Capacitance (NOTE 2) TJ= 2SOC
Typical Thermal Resistance (NOTE 3)
Operating Junction Temperature Range
Storage Temperature Range

SRP

SlIP
SYIIJOi.S 600A

SlIP
6D08

SlIP
6000

SlIP
600G

SlIP
600J

6OO/C

UNITS

50
35
50

100
70
100

200
140
200

400 600
280 420
400 SOO

BOO
560
BOO

Volts
Volts
Volts

VRRM
VRMS
Voc

s.o

I(AY)

IFsM
VF
IR
TRR
CJ
R8JA
TJ
TSTG

100

300.0
1.3
10.0
1.0
100
150
150 200
300.0
10.0
-so to +125
-SO to +150

NOTES:
1. Reverse Recovery Test Conditions: IF=O.5A,IR=1.0A, Irr=.25A.
2. Measured at 1 MHz and applied reverse voltage of 4.0 Volts.
3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) lead lengths, with both leads to heat sink.

392

Amps

Amps
Volts
j.iA
mA

200

nS
pF
°CIW
OC
OC

RATINGS AND CHARACTERISTIC CURVES SRP600A THRU SRP600K

FIG 1 7.0

~ ffi50
a:Q.

....

-

0:;
IL

+

.....

« 4.0

11110153.0
«a:

~

.....

""" .....
f""'o

~~2.0

~

l/'I

OU)
«a:

16

(25.4mm x 25.4min)

0:::;

12

~~

I..... Iloo.:
1'0

«0

~

..

+

«0 4.0

I

120

100

140

160

~;,,,,::I"'!IiO

I-"""!;' ~ .kS" (8.

Z

400

40

a:

20

a: W
Oa:

10

~en

IL~
en::!

40

W

2.0

~<

I-~

Oen 350
a:W
:la:
enW 300

co.

o

o

W

~

L

100

a::;
««
250
~....a:Z
OW
1La: 200

I

/

TJ • 25-C
PULSE WIDTH = 300jJ 5
1% DUTY CYCLE

"'-

I

..............

""

I

~

I"~

......

"

I)o~

i'......

100

I

1.0

5.0

2.0

I

TJ = 2S"C

/

150

10

.........

r-...

...... r--..

20

r-.

... .... 1'SO

NUMBER OF CYCLES AT 60Hz

Z

~

....

T... I25"'C

«:l

.

MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT
813ms SlNG~E HALF
SINE-WAVE (JEDEC METHOD

~a:

O
w
0..

1.0

~~

LEAD TEMPERATURE 'C

",W

(40mm x 40mm x 'mn) Cu

1"'0....
I "'"

. - i .....

F'G. 4 -

'00

a:
a:
::l

i'...

'OJ

0k-~_~_~~~~~~~~~-~~"'''~
7f)
80
85
90
95
100
105 110 115
120
125

180

FIG. 3 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

200

'O

1.8" x " .8" xll.4° -

~_~l~.~'~82iIS='="'~"'~1~i"""""-:~'-~~---~~'~~i~~

AMBIENT TEMPERATURE 'C

I-

'or

~,'Ot;;"'~I!1ooo1.r--.=--IIooo..-~..........
o;::-+--l--+--i

,I.

8.0

>::l

~

60

~w~

~'t~

......... L~
~~.~~
... - '
--""""""iO: ";'-,,\'--l--1f---t--

~ •• 31S

OZ

I
.05O"(1.27mmIMIN

~

60

l?<
WI-

~,l-,-

1.0

40

~~

surtice .-re.:~

'\..

..... ~
20

a:w

~ff(
p,on'.j:
6.0-1
. Ground
, .. x,'', COPPeI

~ ~~

FORWARD CURRENT DERATING CURVE

20

RESISTIVE n~ DH--t~ECOM'~ENDEDINDUCTIVE LOAD
PC BOARD
IpkllAv."
MOUNTING

.....

c en s ,o '1'0
a:w

FIG 2

FORWARD CURRENT DERATING CURVE

OA

I

I

0.2

1/

FIG. 6 - TYPICAL REVERSE
CHARACTERISTICS

O.

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

\z

INSTANTANEOUS FORWARD VOLTAGE.
VOLTS
.
FIG. 5 0

TYPICAL THERMAL RESISTANCE

I I

a: a:

lCI_.l('... ·I_.

~ffi

>0.

io'"

~~

.3

~

01

.....
T.- 25°C

Z

~

io'"
.2

lA-SO"

~

io-"
.1

... ,...

~~

eno
:la:
00

~

10

ww

t;~

0
5.0

TA.100·C

o

io-"

~

5

10

W

a:
a:
:l

.4

.6

.1

.8

.9

~

1.0

EQUAL LEAD LENGTHS TO HEAT SINK, INCHES

.01
20

40

60

60

100

120

140

PERCENT OF RATED PEAK
REVERSE VOLT AGE. %

(8 General Instrument
393

'DO

394

FULL-WAVE
BRIDGE RECTIFIERS
0.5 AMPERE TO 35.0 AMPERES
50 VOLTS TO 7000 VOLTS

•

_________
395

-'

Z
W
a:
a:
:::l

10.0

WUl
UlW
a: a:
WW
>CL
W::;;
a:<{
UlO
:::la:
00
W::;;
Z>-,
>'fz
Zw
>'fa:
Ula:
Z:::l
-0

-

-

TA ""100 D C
1.0

.-"

V

a:

~[B

100

120

J

0.1

5:>-'
20

I

I
D.6

o.a

1.0

T,_25'C
10mS SINGLE SINE·WAVE

Lfi.

40

oW

20

~

8.0

............

,_25
>'f 10.0 5~f~1.0MHz

........

10

1.4

FIG. 6 - TVPICAL JUNCTION CAPACITANCE
PER BRIDGE ELEMENT

Z

..........

1.2

100
60

.......

.......

•

'I

0.4

50

30

./

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

FIG. 5 - MAXIMUM NON-REPETITIVE PEAK FORWARD
CURRENT PER BRIDGE ELEMENT

.......... ........

140

I

1.0

140

PERCENT OF RATED PEAK REVERSE VOLTAGE.%

40

120

~J ~ 25°CI

.01
80

100

PULSE WIDTH'" 300I!s
2%Duty Cycle

25 D C

60

80

1/

a: a:
OW
u.CL
Ul::;;
:::l<{
0
W
Z
>'f
Z
>'f
Ul

40

20

a:Z
OW
U-a:
><:a:
<{:::l
wO
CL

=
==

~

TA

60

0
0

0.1

.01

W
('JUl
a:W
:::la:
UlW
OCL
a:::;;
100j1.F
04

~\

1_.06" rl.5mml

I

"'1

I'~

P.h.B.

f\..)

I

.51 IN x .511N
COPI ERPII S (13mm x l:iinm)
20

40

60

80

r

i'-.

02

30

11.

1.0

2.0

4.0 6.0

10.0

20

40

60

80

100

120

140

60

10.0

r
Z
W
a:
a:
:J
0

a:

1/

I

I

1.0

~fB

a: a:
OW
u..1l.
(/)::;;
:J«
0
W
Z

'" "'"

40

Is .51
IN x .511N
(13mm x 13mm)

U

~

10

"

I

FIG. 4 - TYPICAL FORWARD
CHARACTERISTICS
PER BRIDGE ELEMENT

r-...

20

~

p.e.B.

AMBIENTTEMPERATURE,OC

10rnl! SINGLE SINE·WAVE
·T,-125·.

..........

~

h';'l-.06" .5mm1

140

60

40

[\..

1\..\

04

20

FIG. 3 -MAXIMUM NON·REPETrTIVE PEAK FORWARD
SURGE CURRENT PER BRIDGE ELEMENT

50

n

.>10¥

COPPERPA

120

.

06 ~"-IO-IO¥

II "11
-"'1\. )

I

NOUCTIVELOAO-

~
~'

CAPACITIVE LOAdIl

f-'-'- ~ 0:10pF

AMBIENT TEMPERATURE. °C

r
Z
W
a:
a:
:J
U
W
el(/)
a:w
:Ja:
(/)w
011.
a:::;;
5l:«
:s:a:
0
u..
~
«
w

~.

08

l
100

I 50 1060Hz. RESISTIVE OR

I-

J50to 80 Hz

I-

:J

10

...

10

J

0.1

'"
'"
Z

(/)

I

~

100

NUIMBER OF CYCLES AT 50 Hz

r

I

.Ill

T,.-25·C I - - =300"._

PULSE WIOTH
outy

Cj'.

o.a

0,4

I
1.2

lJJ

1,4

INSTANTANEOUS FOWARD VOLTAGE,

FIG. 5 - TYPICAL JUNCTION CAPACITANCE
PER BRIDGE ELEMENT

FIG. 6 - TYPICAL REVERSE CHARACTERISllCS
PER BRIDGE ELEMENT

100

10.0

~ff3 8.0
a: a: 4.0 I-- TJ _100

"""

u..
a.
ui
U

~

10

(3

ct

T,,_25"C
F=i~I:0MH.

~ Vaig -

WW
> 11.
w:2
a: «
(/)0
:J a:

~~

OU

50m Vp-p

,4

Z IJ.J

0.1

~ i3

1.0

10

100

.JI'
T.. _26-o

~

:::;
Iii"

[J2

ill

1.0

~

Ii

2

~~ ~~

U

,...

1.0

~~

i1 ~-

«

2.0

o

20

40

60

80

100

120

140

PERCENT OF RATED PEAK
REVERSE VOLTAGE. %

REVERSE VOLTAGE, VOLTS

- - - - - - - - - - - - - - eGenerallnstrument
405

DF005M THRU DF10M
MINIATURE GLASS PASSIVATED
SINGLE - PHASE BRIDGE RECTIFIER
VOL TAGE - 50 to 1000 Volts CURRENT - 1.0 Ampere
FEATURES

0
,. .

.130(3.3)
120 (3.05)

.04511.14)

.00)
_ _-:lr·28S17.24)

~~5]:.:)
,. . _J__

•

I

•

~

.24516.2)

I'

r

COJ -~-

+

1

• This series is UL recognized under component
index, file number E54214
• Plastic material used carries Underwriters Laboratory flammability recognition 94V-O
Glass passivated chip Junctions
~
• Surge overload rating of
,..,
50 Amperes peak
I '}
• Ideal for printed circuit board
I
High temperature soldering guaranteed:
260°C 110 seconds at 5 Ibs., (2.3kg) tension

.300 (7.6)

.335 (8.5ll
--':"::.3""20:'::(8"'".:::127-)_ .

Ihr-r--T""1-;

nFoffi'lm

..!!lli.lll

MECHANICAL DATA

.15013.8ll

Case: Molded plastic
Tenninals: Plated Lead solderable per MIL-STD750, Methro 2026
Polarity: Polarity symbols marked on body
Weight: 0.04 ounce, 1.0 gram
Mounting Position: Any

Dimensions in inches
and

(millimeters)

MAXIMUM RA TlNGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25'0 ambient temperature unless otherwise specified.
60 Hz, resistive or Inductive load.
SYMBOLS

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Output Rectified CUrrent
atTA=40OC
Peak Forward Surge Current Single slne-wave
superimposed on rated load (JEDEC Method)
Rating for fusing (k8.3Sms)
Maximum Instantaneous Forward Voltage drop
per leg at 1.0A
TA=2SoC
Maximum Reverse Current
at Rated DC Blocking Voltage per leg
TA=12SoC
Typical Junction Capacitance per leg (NOTE 1)
Typical Thermal Resistance (NOTE 2)
Operating Junction and Storage Temperature Range

VRRM
VRMS
Voc
I(AY)

& JIi JI, fJM JIM fl.. ,0,:,
SO
35
50

1.0

Amps

Amps
A2sec

IFSM

so.o

121

10.0

VF

1.1
S.O
SOO.O
2S.0
40.0
-55 to +1 SO

IR
CJ
R8JA
TJ,TsTG

NOTES:

1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.
2. Thermal Resistance from Junction to Ambient mounted on P.O. Board with 0.5" x 0.5" (13mmx13mm) Copper Pads.

406

UNITS

100 200 400 600 800 1000 Volts
70 140 280 420 560 700 Volts
100 200 400 600 800 1000 Volts

Volts

JJA
pF
°CIW
OC

RATINGS AND CHARACTERISTIC CURVES DFOO5M THRU DF10M
FIG. 2 • MAXIMUM NON-REPETITlVE PEAK
FORWARD SURGE CURRENT
PER BRIDGE ELEMENT
60

,

50

FIG. 1 - DERATING CURVE FOR
OUTPUT RECTIFIED CURRENT
1.0

"

40

Iii-- h-;:!08" .11.&nLl

30

II

i\. " ~~ t·c.~
J. J
X
\COPPERPADS
.s11N .s11N (13mm

'\

l~

..........

1.0

r--

2.0

4.0

6.0

10.0

20

60

100

FIG. 4 - TYPICAL FORWARD
CHARACTERISTICS
PER BRIDGE ELEMENT
10.0

~
Z

,

w

OR
INDUCTIVE LOAD

a:
a:

1\
100

80

40

NUMBER OF CYCLES AT 60 Hz

6O'H;'REll.~ TIV

60

.........

o

~

'r-..~i\.
40

........... ......

10

13 mm)

r\

20

r-....

20

X

I

T....
SINGLE SINE·WAVE
(JEDEC METHOD)

120

140

::>
()

150

/

a:

•

J

Cl

AMBIENT TEMPERATURE. °C

1.0

<{(f)

5:w
a: a:

Ow

FIG. 3 - TYPICAL REVERSE
CHARACTERISTICS
PER BRIDGE ELEMENT

u.o..

(f)::;;

::><{

ow

100

I

0.1

Z

<{

f-

Z

(f)

w

a:
w

TJ.I25'C

0..

::;;

~

...--'" I--'

10.0

a:

<{

- ---

f-

~u~ WIDTH-300~S -

I

(f)

~

I

.01

0.6

0.4

()

2% DUTY CYCLE
0.8

1.0

1.2

1.4

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

~
~

Z

FIG. 5 -

a:
a:

100

w
1.0

::>
()
W
(f)

a:
w

>
w

a:
T".25"C

(f)

5

0.1

V ..

TYPICAL JUNCTION CAPACITANCE
PER BRIDGE ELEMENT

1"'00.

,

.....

u.
a.

ui
()

~

T....25'C
10 b- f.l.0MHz

~v,1g

f-

Z

(3

W

i"""'--- 1' ...

_ 6OmVP1>

~

fZ

<{
()

<{

f-

(f)

Z
.01

o

1.0
20

.. 0

60

80

100

120

140

1.0

PERCENT OF RATED PEAK
REVERSE VOLTAGE,,,

10

100

REVERSE VOLTAGE, VOLTS

- - - - - - - - - - - - - - (iGenerallnsbument
407

B40C 1000G THRU B380C 1000G
MINIATURE GLASS PASSIVATED
SINGLE - PHASE BRIDGE RECTIFIER
Voltage - 65 to 600 Volts Current - 1.0 Ampere
FEATURES
I~I

~I

.160(5.6)

-L

IT

Cr)

1.0 MIN.

.0321.811
.028 (.111

II.

- - t .O&Oll.52)
.020(0.511

• Glass passivated chip junctions
• Plastic package has Underwriters Laboratory
Flammability Classification 94V-O
• High case dielectric
strength
'IIl::: .~.~
• TypicallR less than 0.1 1.1. A
• High overload surge current
~
• Ideal for printed circuit board
• High temperature soldering guaranteed: 260°C/10
seconds/.375", (9.5mm) lead length at 5 Ibs.,
(2.3kg) tension

&"--,~~,

MECHANICAL DATA

Dimensions in inches and (miD/meters)

Case: Molded plastic
Tenninals: Plated Leads solderable per MIL-STO750, Method 2026
Mounting Position: Any
Weight: 0.05 ounce, 1.3 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified. 50Hz or 60 Hz. resistive or inductive load.
SYMBOLS

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Input Voltage R + C-Load
Maximum Average Forward Output Current for
free air operation at TA=45°C
R + L-Load
C-Load
Maximum DC Blocking Voltage
Maximum Repetitive Peak Reverse Voltage
Maximum Peak Working Voltage
Maximum Non-Repetltve Peak Voltage
Maximum Repetive Peak Forward Surge Current
Peak Forward Surge Current Single Sine wave on
rated load (JEDEC Method) at TJ=125·C
Rating for Fusing at TJ=125C (k100ms)
Minimum Series Resistor C-Load @ VRMS = ±1 0%
Maximum Load Capacitance +50%
-10%
Maximum Instantaneous Forward Voltage Drop
per leg at 1.0A
Maximum Reverse Current at rated Repetitive
Peak Voltage per leg TA=25·C
Typical Thermal Resistance (NOTE 1)
Operating Junction Temperature Range
Storage Temperature Range

VRRM
VRMS
I(AV)
Voe
VRRM
VRWM
VRSM
IFRM

B411
BBO
B125
B25Q
B38t1
C 1QQQG C 1QQQG C 1QQQG C 1QQQG C 1QQQG

UNITS

200
125

65
40

65
90
90
100

IFsM
12t
Rt

1.0

CL

5000

125
80

125
180
180
200

1.2
1.0
200
300
300
350
10.0

400
250

600
380

Volts
Volts

400
600
600
600

600
800
900
1000

Amps
Volts
Volts
Volts
Volts
Amps

2.0

45.0
10.0
4.0

8.0

12.0

Amps
A2see
Ohms

2500

1000

500

200

I1F

VF

1.0

Volts

IR
R8JA
TJ
TSTG

10.0
36.0
-40 to +125
-40 to +150

ItA
OCIW
°C
·C

NOTES: 1. Thermal Resistance from Junction to Ambient mounted on P.C Board at .375" (9.5mm) Lead Lengths with 0.2"xO.2"
(5.5mm x 5.5mm) Copper Pads.

408

RATINGS AND CHARACTERISTIC CURVES
B40C 1000G THRU B380C 1000G

1.2

FIG. 2. DERATING CURVES FOR
OUTPUT RECTIFIED CURRENT
B40C 1000G.•• B38CIC 1000G

FIG. 1 • DERATING CURVE
OUTPUT REACTlF1ED CURRENT
B40C 1000G••• B125C1000G
_ _. r - " , - - ' - - ' - - r - ,

--r--r--r-.,

1.2 ....."""'I~...

..J
..J

20

~

U.

40

60

80

100

120

140

AMBIENT TEMPERATURE, °C
40

60

80

100

120

140

FIG. 4· TYPICAL FORWARD CHARACTERISTICS
PER BRIDGE ELEMENT

AMBIENT TEMPERATURE, °C

20

ITJ
10.0

FIG. 3· TYPICAL REVERSE CHARACTERISTICS
PER BRIDGE ELEMENT

r:

=

/.IS

Z

10.0

W

a:
a:

1

~

w(f)
(f)w
a:
a:
WW
>"W::;:

U

T... l000c

",0
~a:

a:

V

~fil

Ow
u."(f)::;:
0

W

Z

;!

0.1

.Q1

-

./

40

......

0"-

OW
u.a:

"a:

«~

wU
"-

I

.01
60

80

120

100

140

0.4

D.6

0.8

1.0

1.2

1.4

INSTANTANEOUS FORWARD VOLTAGE, VOLTS
FIG. 6 - TYPICAL JUNCTION CAPACITANCE
PER BRIDGE ELEMENT

50

C)'"

a:::;:
..:«
s:r:
a:Z

,

~

T....26..C

FIG. 6· MAXIMUM NON-REPETmvE PEAK FORWARD
CURRENT PER BRIDGE ELEMENT

~a:

0.1

;!
(f)

PERCENT OF RATED P'EAK REVERSE VOLTAGE ,%

a:UJ

I

Z

40

20

",W

I

~«

UJ~

W

Ul

a: a:

OU

Z~
-u

I

I

0

---

1.0

a:«

Zr:
;!Z
ZUJ
;!a:
",a:

/

25.1C

I=PU~~ED~~:~;ci~

30

r...... .......

-

............

20

T. = 125'C
.-J!;INGLE SIN"·W~V E
10
(JEjCMetj)

.......

r-.
2.0

1-++++H+*""-++++-f++I--+-++liHI

1.0 L........................&L-.....L......L.L......L-.....L-.J.............
1.0

2.0

4.0

6.0

10.0

20

40

60

100

1.D

NUMBER OF CYCLES AT 50Hz

2.0 4.0

10.0

20

40

100

REVERSE VOLTAGE, VOLTS

- - - - - - - - - - - - - - - (BGenerallnstrument
409

W005G THRU W10G
MINIATURE GLASS PASSIVATED SINGLE - PHASE
BRIDGE RECTIFIER
VOL TAGE - 50 - 1000 Volts CURRENT - 1.5 Amperes
FEATURES
I~I

---'-1
.220(5.61
.16015.61

• This series is UL recognized under component
index, file number E54214
• Glass passivated chip junctions
• Plastic material used carries Underwriters Laboratory flammability recognition 94V-O
• High case dielectric strength
• TypicallR less than 0.1 11 A
• High overload surge capability
• Ideal for printed circuit board
• High temperature soldering guaranteed:
260°C/10 secondsl.375", (9.5mm) lead
length ISlbs., (2.3 kg) tension

1

1

1.0 MIN.
(25.4)

.0321.811
.028 [.711

,II.

_1

--t

.06011.52)

.02010.511

MECHANICAL DATA

case: Molded plastic
Terminals: Plated Leads solderable per MIL-STO750, Method 2026
Mounting Position: Any
Weight: 0.04 ounce, 1.1 gram

Dimensions in inches
and

(millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified.
60 Hz, resistive or inductive load.

Maximum Recurrent Peak Reverse VoHage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current at
.375",(9.5mm) lead length at TA=25OC
Peak Forward Surge Current Single sine-wave
superimposed on rated load (JEDEC Method)
Rating for fusing (t<8.3ms)
Maximum Instantaneous Forward Voltage Drop
per leg at 1.0 Ampere
Maximum DC Reverse Current at Rated
TA=25·C
DC Blocking Vohage per leg
TA=125·C
Typical Junction Capacitance per leg (NOlE 1)
Typical Thermal Resistance (NOlE 2)
Operating Junction Temperature Range
Storage Temperature Range

VRRM 50
VRMS 35
Voc 50

100 200 400 SOO 800 1000 VoHs
70 140 280 420 560 700 VoHs
100 200 400 SOO 800 1000 VoHs

I(AV)

1.5

Amps

IFSM

SO.O
10.0

A2sec

121
VF
TJ
CJ
RaJA
TJ
TSTG

1.0
5.0
500.0
14.0
3S.0
-55 to +150
-55 to +150

NOTES:
1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.
2. Thermal Resistance from Junction ID Ambient at .375', 9.5mm lead length P.C. Board mounting.

410

Amps

Volls
jJ.A
pF
·CIW
OC
·C

RATINGS AND CHARACTERISTIC CURVES W005G THRU W10G
FIG.1 • DERATING CURVE
OUTPUT RECTIFIED CURRENT

..:
z

FIG. 2· MAXIMUM NON-REPEmIVE PEAK
FORWARD SURGE CURRENT
PER BRIDGE ELEMENT
80

w
a:
a:
:::l

50

w

40

o

~~
~ r......

(!)U1

a:w
:::la:
II.)W

~~

IpI!./1AY -

«

t---l--t--+--'"

::a:

,per Leg)

ou.

°OL--~~-~L-~~--L~~-L--L~,~~

30

I--

10

<
w

a

0.

FIG. 3· TYPICAL REVERSE CHARACTERISTICS
PER BRIDGE ELEMENT

.

V

10.~

..:
Z

w:o
a:<
11.)0
:::la:
0 0

TAo • 100'C

a:
0.

I

2

1

20
We/)
II.)W
a: a:
ww

1m

1-1

(~EUEC :-,"'''''d\

><:

AMBIENT TEMPERATURE, 'C

50

I--

20

.-"

5.0

alQ.

I

<
:0
a:
w

100

J:

I-

,iI""

.5
.2
.1

1.0

10.0

HEATING TIME (SEC)

- - - - - - - - - - - - - - - eGenerallnsbument
411

100

KBP005M THRU KBP10M
3N246 THRU 3N252
MINIATURE GLASS PASSIVATED
SINGLE - PHASE RECTIFIER BRIDGE
VOL TAGE - 50 to 1000 Volts CURRENT - 1.5 Amperes
FEATURES

.60005.241
.56004.221

+

l

.* M1

,(16.25)

034(8 6)
:02817:61

•

---~

iI Ij

II

.500 02.701
460 nU81l

_±3

.50 MIN
112.71

,

'........

14+'+.060'
'II+- (1.521
I

L

,

.160 (Ul
.140 (3.61

MECHANICAL DATA

·;;;r.;;;;;:[-lle+elle-]1.105(2.li71
.180(:.571.
..
I ..
. .085(2.161

--

• This series is UL recognized under component index, file number E54214
• Plastic package has Underwriters Laboratory flammability recognition 94V-O
• Glass passivated chip junctions
• Surge overload rating 30 Amperes peak
• Ideal for printed circuit board,
• High temperature soldering
guaranteed:260°C 110 seconds
at 5 Ibs., (2.3kg) tension

I

Polarity shown on front side of case:

positive lead by beveled corner

Case: Molded plastic
Terminals: Plated Lead solderable per
MIL-STO-750, Method 2026
Polarity: Polarity symbols marked on case
Mounting postition: Any
Weight: 0.06 ounce, 1.70 gram

Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified.
60 Hz, resistive or inductive load.
SI'III/OLS

• Maximum Recurrent Peak Reverse Voltage
• Maximum RMS Voltage
• Maximum DC Blocking Voltage
Maximum Average Forward Output Rectified Current
atTA=40°C
• Peak Forward Surge Current Single half sine-wave
superimposed on rated load (JEDEC Method) TJ=150°C
Rating for fUSing (k8.35ms)
• Maximum Instantaneous Forward Voltage drop
1.0A
per leg at
1.57A
• Maximum DC Reverse Current
TA=25°C
at Rated DC Blocking Voltage per leg
TA=125°C
Typical Junction Capacitance per leg (NOTE 1)
Typical Thermal Resistance (NOTE 2)
·Operatlng Junction and Storage Temperature Range

VRRM
VRMS
Voc

_ _111_ KIII'fHM KIII'fIIIII KIII'rIIII KBPlIII
1INIfI

50
35
50

____

tOO 200 400 600 800 1000 Volts
70 140 280 420 560 700 Volts
100 200 400 600 800 1000 Volts

I(Av)

1.5

IFSM

30.0
10.0
1.0
1.3
5.0
500.0
15.0
28.0
-5510 +150

12t
VF
IR
CJ
ReJA
TJ,TsTG

3NIIIiI_,1HrS

NOTES:
1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.
2. Thermal Resistance from Junction to Ambient mounted on P.C. Board with, .47" x .47" (12mm x12mm) Copper Pads•
• JEDEC Registered Values

412

Amps

Amps
A2sec
Volts
jJA
pF
°CIW
°C

RATINGS AND CHARACTERISTIC CURVES KBPOO5M THRU KBP10M /
3N246 THRU 3N252

FIG. 2 - MAXIMUM NON-REPETITIVE
PEAK FORWARD SURGE CURRENT
60 ;

so

FIG. 2 - DERATING CURVE
OUTPUT RECTIFIED CURRENT

""

I-

Z

W

1.4

~(/)

1.2

a:
a:

I-U W

60Hz Resistive or
Inductive Load

"- ["'Iloo,.

O-<{

t; W

.8

ClWCl
.6

:;: <{

.4

--'
--'
~
"-

.2

<{>

Ipk ~ 10 IAVG. -~
Ipk = 20 IAVG.

>-'- I-

PCBoanI

-

Mounted with

I

I

I

20

40

-('('(\

20

I-

1.0 CYCLE

1.0

2.0

"'"

80

~

120.

100

'"

5.0

'j"C

10.0

1-0

.... 10..

20

50

FIG. 4 ·1YPlCAL FORWARD CHARACTERISTICS
PER BRIDGE ELEMENT

20

~

fZ
W
a:

~
140 150

10.0

TJ = 25 C C
Pulse Width = 300 j.1 S
t% Duty Cycle

I

/'

~

a:

AMBIENT TEMPERATURE, °C

~

U

r.7

0

a:
<{

I

:;:(1)

a: W 1.0

I

offi
"-fi(I):;'
~<{

0
W
Z
<{
fZ
<{
f-

FIG. 3 ·1YPICAL REVERSE CHARACTERISTICS
PER BRIDGE ELEMENT
10.0
::TA ~ 125°C

J

0.1

(I)

I

~

wU)
U)W
a: a:
WW
>fi- 1.0
W:;,
a:<{
U)O

I

~

.,

I

.01

TA = 1OQoC

0.4

0.6

1.0

0.8

1.2

1.4

1.6

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

~a:

OU

WZ:;'
<{ .
I-f- 0.1
zZ
<{W
f-a:
U)a:

FIG. 5 -

Z~

,,- ~

01

o

20

40

~

-

60

"-

a.

TA = ~5°C

80

100

TYPICAL JUNCTION CAPACITANCE
PER BRIDGE ELEMENT

60
1
00mlmE_

,..-

-U

120

100

NuMBER OF CYCLES AT 60Hz

....... ~ I"

60

TJ =

Single Sine~Wave
IJEDEC Method)

"-

....... N

........

r---r-., """'"

t--t

-

10

~

V ........ \".::

IPe{ L"lj)

I

--r--..... ....

o

"'"

.... ~I-o
TA-40"C

30

.47 IN x.471N

"'"'- "V K.

~~~'5C~~~~~LOADS

Oa:<{

a:CO ~ ffi

I

r-..... :"..
r-..... ~=~~.::>
...... r-... "-

~~~ 1.0

r--....

I

/

["'Iloo,.

zcoffi
W

.............

40

1.6

40

W 20 ~---~~~~~-+-~~~-+-~++~
~

r-....

-0-';

140

~10.0 ~~~~mm~lmll~~mll

PERCENT OF RATED PEAK
REVERSE VOLTAGE,%

C3

6.0

;t

4.0

C3

2.0 f1.0

~J= =,~~~

Vsig '" SOmVp-p

.2

.4

1.0

2

4

10

20

40 100

REVERSE VOLTAGE,VOLTS

- - - - - - - - - - - - - - - eGeneralInstrument
413

B40C 1500G THRU B380C 1500G
MINIATURE GLASS PASSIVATED SINGLE· PHASE BRIDGE RECTIFIER

Voltage - 65 to 600 Volts

Current - 1.5 Amperes
FEATURES

1,·38819.86)'1
•348 IS. 84)

~I

.16015.6)
~

I
1

1. 0 MIN.
125.4)

.0321.811
.028 Ull

,II.

_1

--t

• Plastic package has Underwriters laboratory Aammability Classification 94V-0
• High case dielectric
..
strength
V,;::~~,
• TypicallRlessthanO.1l1 A
<:::,:::,~
• High overload surge current
"~
• Ideal for printed circuit board
.~
• High temperature soldering guaranteed: ~
260°C/10 secondsJ.375", (9.5mm) lead length at
5 Ibs., (2.3kg) tension

.06011.52)

MECHANICAL DATA

.02010. 5ll

Case: Molded plastiC
Tenninals: Plated Leads solderable per MIL-STD750, Method 2026
Mounting Position: Any
Weight: 0.04 ounce, 1.1 gram

t

.34818.841
.30817.821

!

Dimensions In inches and (miNimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified. 50 Hz or 60 Hz, resistive or inductive load.
SYMBOLS

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Input Voltage R + C-Load
Maximum Average Forward Output Current for
free air operation at TA=45°C
R + L-Load
C-Load
Maximum DC Blocking Voltage
Maximum Repetitive Peak Reverse Voltage
Maximum Peak Working Voltage
Maximum Non-Repetitve Peak Voltage
Maximum Repetive Peak Forward Surge Current
Peak Forward Surge Current Single Sine wave on
rated load at TJ=125°C
Rating for Fusing at TJ=125°C (1<100ms)
Min.Series Resistor C-Load @ VRMS = ±1 0%
Maximum Load Capacitance +50%
-10%
Maximum Instantaneous Forward Voltage Drop
per leg at 1.5A
Maximum Reverse Current at rated Repetitive
Peak Voltage per leg TA=25°C
Typical Thermal Resistance (NOTE 1)
Operating Junction Temperature Range
Storage Temperature Range

VRRM
VRMS

I(AV)
Voc
VRRM
VRWM
VRSM
IFRM

B4D

BBD

B125

C1500B

C1~

B250
C15000

8380
C15000

UNITS

C1~

65
40

125
80

200
125

400
250

600
380

Volts
Volts

400
600
600
650

600
800
800
1000

Amps
Volts
Volts
Volts
Volts
Amps

65
90
90
100

IFSM
12t
Rt

1.0

CL

5000

125
180
180
200

1.6
1.5
200
300
300
350
10.0

2.0

SO.O
12.5
4.0

8.0

12.0

Amps
A2sec
ohms

2500

1000

500

200

I1F

VF

1.0

Volts

IR
RaJA
TJ
TSTG

10.0
36.0
-40 to +125
-40 to +150

°CIW
°C
°C

I1A

NOTES: 1. Thermal Resistance from Junction to Ambient mounted on P.C Board at .375" (9.5mm) Lead Lengths with 0.2·xO.2"

(5.5mm x 5.5mm) Copper Pads.

414

RATINGS AND CHARACTERISTIC CURVES B40C 1500G THRU B380C 1500G

FIG. 2 • DERATING CURVE
OUTPUT RECTIFIED CURRENT
B250 1500G•.. B38OC 15000

FIG. 1 - DERATING CURVE
OUTPUT RECTIFIED CURRENT
FOR B40C 1500G... B125C l500G

,

1.6

I.-+-,

RESISTIVE OR 1
INDUCTIVE LOAD

"' ' I

~~t-.-.,

P.C.B.

'-.

c

CAPACITIVE ~
'\ :...
LOADS
.
...,..

1.6

1

lit

Z

w

I-

~Im)

~~

::JUa::

a..

OW

.... Wa..
::Ju::::i:
0;::: <{

~~~I~dl~.±

wuw

(5.5rnm x 5.5mrn) -

'"

1.4

I-

a::

1io.3J5··

I If

t-H<500F . "t-I--' 51JO.~--"

RESISTIVE OR

1.2

- .....

p.e.B.

'\,.

~

f-?APACITIVE
LOAD

1.0

~~~
rn~~
5: «

1\., \.

'I\.

~

-",

Ii

"'"!II

.4

-'
-'

1\.\

"

ir

.2

IlL
~

I"-

~

o
20

40

60

80

"

20

120

100

140

10.0
>-"
Z
w
a::
a::
:::l
U
0
a::

10.0

> a..

w::i:
a::<{

T•• 1DO"C

....,....

U)O

w~

-

,/'"

40

o a..

a::::i:
«<{
5:>-"
a::Z
OW
(La::

30

20

~a::

<{:::l
wU
a..

1.0

80

...... .......

T... 125"C

'rEr.ri)

1.0

I

I

II

D1

60

10 rna SINGLE SINE-WAV
10

J

0.1

~

40

.......... ~

2.0

I

I

U)

100

120

140

0.4

4.0

6.0

0.6

0,8

1D

100
60

Lfi

E

~

40

U 20
TJ.25·C
Z
;:> 10.0 ~ f.l.0MHz

......

~

r-....

<{
U

6.0
4.C

......... fo..

Vsig - 50", Vpl'

2.0

I
10.0

1.4

FIG. 6 - TYPICAL JUNCTION CAPACITANCE
PER BRIDGE ELEMENT

ill

..........

1.2

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

PERCENT OF RATED PEAK REVERSE VOLTAGE.%
FIG. 5. MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT
PER BRIDGE ELEMENT
50

140

/

~ 2% Duty CyCI.

TN"'25"'C

20

w
CJU)
a::W
::Ja::
U)W

TJ = 25°C
~ Pulse Width::: 300/J S

0

w
Z
;:>
Z
;:>

0.1

.01

120

a:: a::
OW
(La..
U)::i:
:::l<{

::Ja::
OU
z>-"
;:>z
Zw
;:>a::
U)a::
Z::J
-U

100

80

If

~fD

----

1.0

60

20

FIG. 3 • TYPICAL REVERSE CHARACTERISTICS
PER BRIDGE ELEMENT

I-

40

AMBIENT TEMPERATURE, ·C
FIG. 4 • TYPICAL FORWARD CHARACTERISTICS
PER BRIDGE ELEMENT

AMBIENT TEMPERATURE, ·C

wU)
U)W
a:: a::
WW

f-

.~

CJWCJ

1\

(9.5mm)

I22IN x .22 IN}
" " (6.6mm x 6.5mm) -

,

il

ii

~375"-

COPPER PADS

I"

-~

1

I ..... h

I'\,.'NDUCT'VE LOAD
I-

1.0
20

40

60

100

.2

NUMBER OF CYCLES AT 50 Hz .

A

1D

2.0

4.0

10.0

20

40

100

REVERSE VOLTAGE, VOLTS

- - - - - - - - - - - - - - - .. General Insbument
415

2W005G THRU 2W10G
MINIATURE GLASS PASSIVATED SINGLE- PHASE
BRIDGE RECTIFIER
VOL TAGE - 50 to 1000 Volts CURRENT - 2.0 Amperes
FEATURES
• This series is UL recognized under component
index, file number E54214
• Glass passivated chip junctions
• Plastic package has Underwriters Laboratory
flammability recognition 94V-O A"
• High case dielectric strength ¥~~
• TypicallR less than 0.5 Jl A
,,-,~~~
• High overload surge capability
"-~~~
• Ideal for printed circuit board
____~>
• High temperature soldering guaranteed: 260°C
for 110 seconds 1.375" (9.5mm) lead
lengthS/5Ibs., (2.3 kg) tension

r

1.0 MIM.

125.41

_1

-•. 06011.521

~II.

.0281.711

.020[0.511

MECHANICAL DATA
Case: Molded plastic
Terminals: Plated leads, solderable per MIL-STD750, Method 2026
Mounting Position: Any
Weight: 0.05 ounce, 1.3 gram

Dimensions in inches
and

(miHimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25"C ambient temperature unless otherwise specified.
60 Hz, resistive or inductive load.

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
.375", (9.5mm) lead length (SEE FIG. 1)
Peak Forward Surge Current Single sine-wave
superimposed on rated load (JEDEC Method)
Rating for fusing (1<8.3ms)
Maximum Instantaneous Forward Voltage drop
per leg at 2.0 Amperes
Maximum DC Reverse Current at Rated
TA=25°C
DC Blocking Voltage per leg
TA=125°C
Typical Junction Capacitance per leg (NOTE 1)
Typical Thermal Resistance (NOTE 2)
Operating Junction Temperature Range
Storage Temperature Range

VRRM
VRMS
Voc

50
35
50

100 200 400 600 800 1000 Volts
70 140 280 420 560 700 Volts
100 200 400 600 800 1000 Volts

I(AVJ

2.0

Amps

IFSM

60.0
15.0

Amps
A2sec

1.1

Volts

5.0
500.0

~
~
pF
°CIW
°C
°C

I2t
VF
IR
CJ
R8JA
TJ
TSTG

40.0

20.0
I
40.0
-55to+150 (
-55 to +150

NOTES:
1. Measured at 1.0 MHz and applied reverse voltage 014.0 volts.
2. Thermal Reslstence from Junction to Ambient at .375", 9.5mm lead length for P.C. Board mounting.

416

RATINGS AND CHARACTERISTIC CURVES 2W005G THRU 2W10G

FIG. 2 • MAXIMUM NON·REPETITIVE PEAK FORWARD
SURGE CURRENT PER BRIDGE ELEMENT
,.:
~

FIG. 1 • DERATING CURVE
OUTPUT RECTIFIED CURRENT

2.4,.....-:.,:..:.-,.-r---r.:..:...-'r.:..:...,:-..,--,.-,

0:
0:

50

::>

o

w

40

o:w
"''''
:::JC:

30

~~
a.

",0
::>0:
0 0

I
I
I
SIfl~I: ;In~~~ave
(JEOEC

o

~

10

0:

Metllod~

2.0 4.0 6.0 10.0 20
40
60
NUMBER OF CYCLES AT 60 Hz

100

0:

V

+-25·J
E
F= 2% Duly Cycle
Pulse Width

300fLS

:::>

T" • 100'C

o

Cl

I

0:

1.0

~~

1.0

I

0:0:

Ow

u.a.

"'''
:::><

I--"""

0.1

ow
Z

;:
<
,...

'"

20

40

60

80

100

120

140

PERCENT OF RATED PEAK REVERSE VOLTAGE

.%

'"

FIG. 5 • TYPICAL JUNCTION CAPACITANCE
PER BRIDGE ELEMENT

100

--

20

Z

.1

O.B

1.0

1.2

1.4

1.6

'

..

~

i!.
w

,

o
Z

.<

(36.0

1.0

II
0.6

100

;:10.0
4.0

.0 1
0.4

INSTANTANEOUS FORWARD VOLTAGE, VOLTS
FIG .... TYPICAL TRANSIENT THERMAL IMPEDANCE

60
~ 40

O 2 .0

J

o. 1

Z

."
.01 0

~

.......... ........

1.0 Cycle

20

,.:

TA _ 25"C_ -

ri

..........

FIG. 4 • TYPICAL FORWARD CHARACTERISTICS
PER BRIDGE ELEMENT

!!i!"

;:~
ZZ

-0

"- .........

-I~

~
~

AMBIENT TEMPERATURE, ·C

"- ......

~~

TJ .. 25'C
f .. 1MHz

V"r '15,0~1~~ir
.2

.4

II> a.

5().400V

1.0

2.0 4.0

10.0

~YIII
20

40

o:~

100

REVERSE VOLTAGE. VOLTS

.1.0::,-L-'-'-lill,!--'-'-l.L~1.-;:0-L.LLWf.'0!-:.0:;--'-...Ll~,O~O
HEATING TIME, SEC

CD Generallnsbument
417

2KBP005M THRU 2KBP10M
3N253 THRU 3N259
GLASS PASSIVATED SINGLE - PHASE BRIDGE RECTIFIER
VOL TAGE - 50 to 1000 Volts
CURRENT - 2.0 Amperes
FEATURES
•
125

x

45°

(3.2i'-..y-

+ ~ i,
II , ,

.460111.681
.420110.671

1

I---

I

.640 MIlt
(16.25)

• This series is UL recognized under component
index, file number E54214
• Plastic package has Underwriters Laboratory
flammability recognition 94V-O
• Glass passivated chip junctions
• TypicallR less than 0.1 J.L A
• Built -in printed circuit board
stand-offs

L.500 (12.70:-,)
.~ :4~f:1.68jl_

.600115.241
.560114.221

"

I I

• High case dielectric strength
• Ideal for printed circuit board
• High temperature soldering guaranteed:
260°C 110 seconds at 5 Ibs., (2.3kg) tension

.50 MIN

112.7)

'.......1• • 160(4.1)

1<+1+.060 ,
.034(8.6) 'II'" 11.52)
.028(7.6)

I

140 (J 6)
•.

MECHANICAL DATA

1-+-11--)110512.671
I
.08512.16)

Case: Molded plastiC
Terminals: Plated leads solderable per MIL·STD750, Method 2026
Mounting postitian: Any
Weight: 0.06 ounce, 1.70 grams

I
Polarity shown on front side of case:
positive lead by beveled corner

Dimensions in inches and (mlNlmeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25'C ambient temperature unle88 otherwise specified.
60 Hz Reslstiw or inductiw load.
2KBP

SI'MBOI.S _I/05Il

"Maximum Recurrent Peak Reverse Voltage
"Maximum RMS Voltage
·Maximum DC Blocking Voltage
·Maximum Average Forward Output Rectified Current
atTA=55°C
"Peak Forward Surge Current Single half slne·wave
superimposed onrated load (JEDEC Method)
Rating for fusing (k8.35ms)
• Maximum Instantaneous Forward Voltage drop
per leg at 3.14A
• Maximum DC Reverse Current
TA=25OC
at Rated DC Blocking Voltage per leg
TA=125°C
Typical Junction Capacitance per leg (NOTE 1)
Typical Thermal Resistance (NOTE 2)
·Operatlng Junction and Storage Temperature Range

VRRM 50
VRMS 35
Voc 50

2KBP 2KBP

0111 _l12li
3H254

2KBP

__

2KP8 ZKBP
DBII _DBII
3N257

ZKBP

1011 UN/1S
3N259

100 200 400 600 800 1000 Volts
70 140 280 420 560 700 Volts
100 200 400 600 800 1000 Volts

I(AV)

2.0

Amps

IFsM

60.0
15.0

Amps
A2sec

1.1
5.0
500.0
25.0
30.0
·55 to +165

Volts

12t
VF
IR
CJ
R8JA
TJ,TSTG

NOTES:
1. Measured at 1.0 MHz and applied reWr88 voltage of 4.0 Volts•.
2. Thennal Resistance from Junction to Ambient mounted on P.C. Board with, .47" x .47" (l2mm x12mm) Copper Pads.
• JEDEC Registered Values

418

I1A
pF

ocm
OC

RATINGS AND CHARACTERISTIC CURVES
3N253 THRU 3N259 /2KBPOO5M THRU 2KBP10M

FIG.1-DERATING CURVE FOR
OUTPUT RECTIFIED CURRENT

FIG. 2 - MAXIMUM NON-REPETITIVE PEAK FORWARD
SURGE CURRENT PER BRIDGE ELEMENT

~

Z

60

W

.0

I"..

"-

~

z

W

0:

0:
::l

"

I

\

r\.1\

"-

U

'\

r-...

::l
0..

'" ~.

1. 0

I- ~APACITIVE

L~

Ipk ~ 201AVG. "-(Per Leg)

~

~

.",

C!l

~~

~

~
~

0

0..

1.0

\. ~

>
«

'---I
6.0

1.0 CYCLE

I

10.0

20

40

60

100

FIG. 4 - TYPICAL FORWARD CHARACTERISTICS
PER BRIDGE ELEMENT

'\.

~

"\:

~
"- 1"\:"'-

o
120

140

AMBIENT TEMPERATURE, °C

20

Z

W

V

10.0

0:

0:
::l
U

N

100

4.0

........

rYYl

o;s·C

2.0

'- r--.. r-.....

NUMBER OF CYCLES AT 60Hz

'-"'80

~

Single Sine-Wave
(JEDEC Method)

~

\.\
'\.

TA

10

~

60

......

20

0:

0.5

40

r--....

3:

aLL

0:
w

20

...........

W

C!l CJl 40
O:W
::l0:
CJl W 30

_

~'\
).

W

«

P.~~~~~

['-..

50

U

««

""":~:: ~oOi::~---:-

0:

-

(12mmx 12mrn)
c-rPad.

"

"-

':if2
«::;;

::l

I I I 1_

60Hz Resistive or
Inductiv~Load

0:
0:

I

~

I-

3:«

I I I

I

"It\.
I,\: l/

1. 5 " ,

a 0:
~~

I I

o

"

160

I

0:

~f2

170

~ffi
LLo..

1.0

f:: T, ~ 25°?

CJl::;;
::l«

aW
Z

«

I

I

Pulse Width = 300 J.1 S

2% Duly Cycle
.01

I-

Z

~

FIG. 3 - TYPICAL REVERSE CHARACTERISTICS
PER BRIDGE ELEMENT
10.0

TA = 125°C

WCJl
CJlW
0:0:
WW

TJ = 100°C

>0..

w::;;

0:«
CJla
::l0:
au
Wz::;;

~~
ZZ

1.0

-

CJl
Z

0.1

./

LL

C.

ui

U

.01

TA~25°C

Z

I..,;"

40

60

80

100

0.4

0.6

0.8

1.0

1.2

1.4

'
60 0 0 ! I B _
40

...........

20

~ 10.0
(3
8.0

1'--'20

0.2

FIG. 5 - TYPICAL JUNCTION CAPACITANCE
PER BRIDGE ELEMENT

0.1

«W
1-0:
CJlO:
z::l
-u

o

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

120

«0..
«

140

U·

PERCENT OF RATED PEAK
REVERSE VOL TAGE,%

4.0
2.0

r-~4-H4~~~+4~~ ~;~~;
Vsig

=50mVp-p

1.0
.1

.2

.4

1.0

2.0 4.0

10.0

20

40

100

REVERSE VOLTAGE, VOLTS

- - - - - - - - - - - - - - - - (iGenerallnsbument
419

GBPC1005 THRU GBPC110
GLASS PASSIVATED SINGLE-PHASE BRIDGE RECTIFIER
VOLTAGE - 50 to 1000 Volts
CURRENT - 3.0 Amperes
FEATURES
:~l;c~2!
.158 (4.01)

.142 (3.S1)DIA.

I

.

• This series is UL recognized under component index, file number E54214
.630 116.001 ,
.590114.981 .445(11.301
I'
.405(10.291

+---A
.445 (11.301
.405(10.29)

1

-1..-=I:J!;;~~~~~'~.0:94~(:2.-::4)X450
.040 1l.02ltyp.

J.R--r-T

.032 (. 811 DIA.+ +.028 (. 711

• Glass passivated chip junctions
• Plastic package has underwriters Laboratory flammability recognition
• High case dielectric strength
of 1500 VRMS

• TypicallR less than 0.1 ~ A
•

High surge current capability

• Ideal for printed circuit boards
• High temperature soldering guaranteed:
260°C /10 seconds! .375" (9.5mm) lead lengths
151bs., (2.3 kg) tension

MECHANICAL DATA

case: Molcled plastic
Dimensions In inches
and

(mlIHmeters)

Terminals: Plated leads solderable per MIL-STD750, Method 2026
Mounting Position: Bolt down on heat-sink with
silicone thermal compound between bridge and
mounting surface for maximum heat transfer with
number 6.0 screw
Mounting Torque: 5.0 in.-Ib. max.
Weight:0.1 ounces, 2.8 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified.
60 Hz, resistive or inductive load. For capacitive load, derate by 20%.
SYIIIIOts

GBPC GBPC Gl'lJC GB/IC GBPC GBPC GBPC
11106 107 1112 104 106 168 110 UNITS

Maximum Recurrent Peak Reverse Voltage
VRRM 50
Maximum RMS Bridge Input Voltage
VRMS 35
Maximum DC Blocking Voltage
Voe 50
Maximum Average Forward
Te= 60·C (NOTE 1)
Rectified Output Current at
TA= 2500 (NOTE 2)
I(Av)
Peak Forward Surge Current Single sine-wave
superimposed on rated load (JEDEC Method)
IFSM
Rating for fusing (t

,!-I. .t-Sink Mounting,

0.
1-",
00:

....I' 1"-"

OW

0:0.
<~
~<

'.D

0: •
01-

Wo:
"0:
<::>

Ambient T.mp8ralur~. TA" ~
I p.e.B. Mounting,
.375", 9.5mm Lead Lengths
80 Hz R•• lstive 01

I

ffiO

:c

Ind·t;Vj Ljd J

D

D

50

Ul W

40

::>0:

~~
«

~

"

1' .... ,~
i'
I' ~

5D

-

i--"""'r•• 1~5'C

Z

W

0:
0:
::>
0
w.,
.,w
0:0:

lD

>0.

I.D

Ww
w~

20

"'0:
<::>

I'~

I
I.D C,ol.

~~

fVY\

- 1--1
II

~ 0

[

I

......

Single Half Sine-Wave

1

DrD
1.0

'I"DEC, ".'jcd) ,

2.0

4.0 6.0

10.0

20

40

NUMBER OF CYCLES AT

60

100

eo Hz

FIG. 4 • TYPICAL FORWARD CHARACTERISTICS
PER BRIDGE ELEMENT
.D
I
I TJ • '~'C
10.0

E Pul•• Width. 300
~

'ffi"

0:
0:
::>
0
0
0:

1=

ILl

/'

2% Duly Cyc'.

J"

I.D

~:

0:0:
Ow
u. ..

o:g

"'~
::><
0

"'0:
::>0
0_

w

w~

Z

Z

~

30

~~

FIG. 3· TYPICAL REVERSE CHARACTERISTICS
PER BRIDGE ELEMENT

'"

Tc·60·C

r:

"

1"- ........

1&D

lDD

TEMPERATURE. 'C

..

o:w
"'"

AI. Plate

~

u. Z
W I.D

W

4.0· JI 4.0· •• 11- THK: _
(10.5 x 10.5 x 0.3 om)

::>w '.D

D.l

~

D.l

Z

Z

~

~

OJ

'"~

T•••o·c
.Dl

".
o

~

-

.Dl
0.4

1

20

40

80

80

100

120

140

0.8

I

0.8

1.0

1.2

1.4

1.1

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

PERCENT OF RATED PEAK
REVERSE VOLTAGE ,"10

FIG ••• TYPICAL TRANSIENT
THERMAL IMPEDANCE
FIG ••• TYPICAL JUNCTION CAPACITANCE
PER BRIDGE ELEMENT

100

i

i3
:...

lDD
ID
~

40

W

20

~
~

0.

I

1.0

I

Ul::;

l:!~
UlO

1.0

00

0.5

::::.a:
!ii!~

;!:
z
;!:

::::.<

ow

;!:

-

0.1

Ul

;!;

.01

-

Z

;!;

,
a

-1-

.. - 5O-400V._
eoo-,OOOV

20

40

I

0.1

Z

;:Ul

1--- ~T...25·C

T,-25'C
PULSE WIDTH-300ps 2% Duty Cyct•.

60

6IJ

100

120

11

.01
0.4

0.6

O.S

1.0

1.2

IA

1.6

INSTANTANEOUS FORWARD VOLTAGE,VOLTS

140

PERCENT OF RATED PEAK REVERSE VOLTAGE ,%

FIG.6 • TYPICAL TRANSIENT THERMAL IMPEDANCE

FIG.S • TYPICAL JUNCTION CAPACITANCE
PER BRIDGE ELEMENT

~

lOOOI~~~II~~!!II~~~~
~ ~ i-- I~ iob~~

'li,6IJO
~4DO
200

w

1I

«

OlOO~
_ _
60

1'1:

<3

:f~l:~
I

-

100

o
z

al fil

a:~

~

II

a:

IO.~,--.2~A~ww'.0~2~.OJ4J~~,U~-0-2O~U4O~.'00

W

::t:
I-

REVERSE VOLTAGE, VOLTS

1.0

10.0

100

HEATING TIME (SEC)

• General Instrument
423

KBL005 THRU KBL 10
GLASS PASSIVATED SINGLE-PHASE BRIDGE RECTIFIER
VOLTAGE - 50 to 1000 Volts
CURRENT - 4.0 Amperes
FEATURES

I'

.770(lU8)
.730(8.54)

_-f r
.835(18.13)

"815 15.82),

+ '" '"
or-- Lmr-tlr-'1ltr-rtr.l

I III
m.r',
i
1.1

LO
125.4)

11:», 1-1»0,,,,,
.04811.221

• This series is UL recognized under component
index, file number ES4214
• Plastic material used carries Underwriters Laboratory Flammability Classification 94V-O
• High case dielectric
strength of 1S00VRMS
• Ideal for printed circuit board
• Reliable low cost construction
utilizing molded plastic technique
• Glass passivated chip junctions
• Surge overload rating of 200 Amperes peak
• High temperature soldering guaranteed:
2S0° C 110 seconds 1 .37S", (9.Smm) lead length
1 Sibs., (2.3 kg) tension

.180 (4.57)

+ 'n---,--;--.,.,

.ON (236)

0.83(1.85)

Jft-H-tll~

MECHANICAL DATA
Case: Reliable low cost construction utilizing

.240(8.00)

molded plastic technique
Dimensions In inches
and
(millimeters)

Terminals: Plated leads solderable per MIL-STD7S0, Method 2026

Mounting Position: Any
Weight: 0.2 ounce, S.6 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz. resistive or inductive load.
For capacitive load. derate current by 20%.

KBL
Maximum Recurrent Peak Reverse Vokage
Maximum RMS Vokage
Maximum DC Blocking Voltage
Maximum Average Forward Output
Current at
TA=50·C
Peak Forward Surge Current Single haW sine-wave
superimposed on rated load (JEDEC Method)
Maximum Instantaneous Forward Vokage drop
per leg at 4.0A
Maximum DC Reverse Current
TA-25·C
at Rated DC Blocking Vottage per leg
TA=125·C
Typical Thermal Resistance per leg (NOTE 1)
Operating Junction and Storage Temperature Range

SYllBOt.S OOS
VRRM 50
VRMS 35
Voc 50

KBL

KBL

KBL

KBL

KBL
UNITS
Voks
VOks
Voks

I(Av)

4.0

Amps

IFSM

200.0

Amps

VF
IR
R9JA
rrJ.TSTG

1.1
5.0
1.0
20.0
-50 to +150

NOTES:
I.Thermal Resistance from Junction to Ambient at .375" (9.5mm) lead lenghlS on a P.C. 80ard
with .5"X.5" (12mmx12mm) with copper pads.

424

KBL

01
D2
D4
OS
DB
10
100 200 400 600 800 1000
70 140 280 420 560 700
100 200 400 600 800 1000

Voks
I1A
mA
·CIW
·C

RATINGS AND CHARACTERISTIC CURVES KBLOO5 THRU KBL 10

FIG. 2 -.;. TYPCIAL INSTANTANEOUS FORWARD
CHARACTERISTICS PER ELEMENT
100
I-

Z
W

a:
a:

::>

0

H••t.ink
3.0' sq .•. OO' Thk

0

I"

"-

(7.5cm1!x.15cm)

"

Copper Plate

P.C. Board mounted

with .375' (9.5mm)

~CIl

4. 0

CIl~

.-

2.0

aW::><

O. 4

~

~"

I"~

~

,0.7

0.8

0.9

1.0

= 300 III

UIY jIO.-

1,1

1.2

1.3

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

t50

tOO

2%r

f/

O. I
0.6

~

so

TJ'25'C PulH Widln

I

0.2

~

Resistive 01
Inductive Load

,
'I

I.0

I-

Lead Lengths

0o

~l!!
IL~

-

z
.<

60Hz

I

0

a:

~ r'-o

0

0

Q

mount.~ o~

~

1/

20

o

FIG, 1 - DERATING CURVE FOR
OUTPUT RECTIFIED CURRENT

~

AMBIENT, TEMPERATURE·C

FIG. 4 - TYPICAL REVERSE
CHARACTERISTICS
10

W

a:
::>

a:

o

~~

I

~

To· 'OO-C

WCIl

i--- ~

10

WW

>Q.

l!!~

FIG. 3 - MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT

175~
ISO

125
100

CIlO

::>a:
00

~:E

-<

"

to-...

Z

~

1""0""

f.::::.

-

I-

TJ'15O"C
SINGLE SINE-WAVE
JEDEC METHOD

01

~
0

2

TA·25-C
40

60

80'Ob

'20

140

PERCENT OF RATED PeAK REVERSE VOLTAGE, %

~

75

r-..

FIG. 5 - TYPICAL JUNCTION CAPACITANCE
PER ELEMENT

"'"

50

25
10

20

100

NUMBER OF CYCLES AT 60 Hz

0.1

05 1.0

5 10

REVERSE VOLTAGE, VOLTS

425

SO lGO

GBU4A THRU GBU4M
GLASS PASSIVATED SINGLE-PHASE BRIDGE RECTIFIER
VOL TAGE - 50 to 1000 Volts CURRENT - 4.0 Amperes
FEATURES
• This series is UL recognized under
component index, file number ES4214
• Plastic package has Underwriters Laboratory Flammability Classi- •
fication 94V-O
• High case dielectric
strength of 1S00 VRMS
'.
• Ideal for printed circuit
~~
.. "'..
board mounting
• Glass passivated chip junctions
'-"-• High surge overload rating
• High temperature soldering guaranteed:
260°C/10 seconds/.37S", (9.Smm) lead
length/Sibs., (2.3kg) tension

~

.130(3.]0]

MECHANICAL DATA

(5.33) (5.33) (5.33)

[4.i3) i4.ii5 i4.ii3i

case: Reliable low cost construction utilizing
molded plastic technique
Terminals: Plated leads solderable per MILSTD-7S0, Method 2026
Mounting Position: Any (NOTE 4)
Mounting Torque: S in. lb. max.
Weight: 0.01S ounce, 4.0 gram

Polarity shown on front side 0' case.
positive Iud Ity beveled comer

Dimensions in inches
and

(miNimeters)

MAXIMUM RAnNGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load, 60 Hz. For capacitive load, derate current by 20%.
GBU

4A
VRRM 50

S'IIIBOLS

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Tc=100oC (NOTE 1)
Output Current at
TA=4O°C (NOTE 2)
Peak Forward Surge Current Single sine-wave
superimposed on rated load (JEDEC Method)

VRMS 35
Voc 50

4B

4D

4G

4J

4K

4M

UNITS

100 200 400 600 800 1000 VoRs
70 140 280 420 560 700 Volts
100 200 400 600 800 1000 VoRs

I(AV)

4.0
3.0

IFSM

150.0

Amps

12t

93.0

A2sec

1.0

Volts

Rating for fusing (t<8.3ms)
Maximum Instantaneous Forward Voltage drop
per leg at 4.0A

VF

Maximum DC Reverse Current at
TJ=25°C
Rated DC Blocking Voltage per leg
TJ=125°C
IR
Typical Junction Capacitance per leg (NOTE 3)
CJ
Typical Thermal Resistance from Junction to Case(NOTE 1) ReJC
(per leg)
Junction to Ambient (NOTE 2) ReJA
Operating Junction and Storage Temperature Range
TJ,TsTG

Amps

5.0
500.0

I

101.0

46.0

~
pF

2.5
22.0

°CIW

-55 to +150

°c

Notes: 1. Unit case mounted on 1.6"x1.6"xO.06" THK (4.0x4.0xO. 15cm) AI. Plate.
2. Units mounted on P,C. Board with .5"x.5" (1.2mmx12mm) copper pads and .375"(9.5mm) lead lengths.
3. Measuned at 1.0 MHz and applied neverse voltage of 4.0 volts.
4. Recommended mounting position Is to bolt down on heatsink with silicone thermal compound for maximum heat transfer
with number 6.0 screw.

426

RATINGS AND CHARACTERISTIC CURVES GBU4A THRU GBU4M

!iw

FIG.' • DERATING CURVE OUTPUT RECTIFIED CURRENT
4.0

a:
a:
::::l

r-r-....,...,...,......---or1I1-o-,-.....,

t:;

c..
I-rn
::::lw
Oa:
ow
a:c..

~

150

a:
::::l
o
w
(!l rn
100
a:w
::::la:
rnw

3.01-+-............+

o

FIG. 2 - MAXIMUM NON-REPETITIVE PEAK FORWARD
SURGE CURRENT PER BRIDGE ELEMENT

!z

2.0 I-t-t-HH-+~:-+

~~
« «

~

~~

i"'o."

o

~

SO

100

I"'-

~S~IeSin.Wa

(JED.fCMO'rod)

~
w
c..

O~~~~~~~~~~~~~~~

..... ~

If--l eve
TJ"II1SO"C I

u.

w

r--...

rln
-tI

SO

o

~
~w

I'..

0

1.0

2.0

4.0 6.0 10.0

20

40 60

100

NUMBER OF CYCLES AT 60Hz

150

TEMPERATURE, 'C
FIG. 4 - TYPICAL FORWARD CHARACTERISTICS
PER BRIDGE ELEMENT

FIG. 3 - TYPICAL REVERSE CHARACTERISTICS
PER BRIDGE ELEMENT

100

500

100

!i
w

--

a:
a:

awrn

10

a: a:

5.0

CIlw

~~
w:::ii

a:«
rnO
::::la:

.1-""

T.-12S·C=

50

I-'

zw

1=

a:
a:
::::l
0

a:

z

~
rn

~

Z

_.....t:soc ..... ........

o. 1

~

.01

I

1.0

z

0.5

~~
~

I

~rn

a:ll:!
Ow
u.c..
rn:::ii
::::l«
0
w

1.0

00

/

10.0

0

...
o

-

5G-4OOV
6tJO.1000V _ _

20

40

60

80

100

120

~
rn

I

-

T.,..2S·C
PULSE WIDTH-300~.
2% Duty Cycle
-

I

0.1

;!l;

I

-

.01
0.4

140

INSTANTANEOUS FORWARD VOlTAGE,VOlTS

0.6

0.8

1.0

1.2

1.4

1.6

PERCENT OF RATED PEAK REVERSE VOLTAGE, %

FlG.8 - TYPICAL TRANSIENT THERMAL IMPEDANCE
FIG.5 - TYPICAL JUNCTION CAPACITANCE
PER BRIDGE ELEMENT

'a

1000
600

W

400

z
~

200

0

0



20

0

10

0

a:

FIG. 1 - DERATING CURVE FOR
OUTPUT RECTIFIED CURRENT

TA. P.C.B.
MOUNTED ON
.47" X .47"
(12mm x 12mm)

"-

_C:':-"adS

2.O"xl.11"x.3"
\. AL.pLATE
,(5.Ocmc4c:mxO.8crrl

r"

:::>«

0

W

"

60 Hz RESISTIVE OR
INDUCTIVE LOAD

T...25"C
PULSE WIDTHo3OOl1"
1% DUTY CYCLE

V

1.0

f-

0.4

«

0.2

f-

en
~

-

I

'I

0.1
0.6

~

0.7

0.8

0.9

1.0

1.1

1.2

1.3

INSTANTANEOUS FORWARD VOLTAGE. VOLTS

~~

~

FIG. 4 - TYPICAL REVERSE
CHARACTERISTICS

150

100

50

I

I

Z

~

~

4.0

Z

«

"- ~
o
o

~ffl

a: a:
Ow
u.a.
en:2

HEATSINK
MOUNTING, T.

\

I"

1/

j

...:

10

Z

TEMPERATURE °C

-

W

a:
a:

:::>
o

f--TC-l00"C

....-...-

I

FIG. 3 - MAXIMUN NON-REPETITIVE PEAK
FORWARD SURGE CURRENT
200
175

W
elen
a:W
~a:
enW
Oa.
a::2

150
125

««

!:~

a:Z
OW
u.a:
"a:
«~
wO
a.

100

'"

r-.... I'-..

I II

T.. l6O'C

SINGLE SINE·WAVE
(JEDEC METHOD)

..........

/

TA

20

""- I""'-

"

FIG. 5 -

....

:0

5°C

80

100

140

120

U.

25
20

TYPICAL JUNCTION CAPACITANCE
PER ELEMENT

250

50

10

60

PERCENT OF RATED PEAK REVERSE VOLTAGE ,"10

.......

75

40

100

50

a.
ui
0

200

11~. .

"-......

Vsig-50mVp-p

150

I'r-.,

Z

«
f13
«
a.
«

NUMBER OF CYCLES AT 60Hz

0

Jc III

n1-1MHz

100

r-.....~

50

0.1

0.5

1.0

5

10

50

100

REVERSE VOLTAGE. VOLTS

- - - - - - - - - - - - - - - (DGenerallnstrument
429

GBU6A THRU GBU6M
GLASS PASSIVATED SINGLE-PHASE BRIDGE RECTIFIER
VOLTAGE - 50 to 1000 Volts CURRENT - 6.0 Amperes
FEATURES
.14013.56)

1lOiTI1ii

.OZORlT'll'l

.m
.210
:no

"'1_ .DI8(.46)
.022(.5&J

.210

T9ij :tiIi
(S.U) (5.33)(5.33)

i4.i3j i4iii ii.i3i

• This series is UL recognized under
component index, file number ES4214
• Plastic package has Underwriters Laboratory Rammability Classi~
fication 94V-O
• High case dielectric
strength of 1500 VRMS
• Ideal for printed circuit
" ' ,
board mounting
.." "
• Glass passivated chip junctions ~, .
• High surge overload rating
• High temperature soldering guaranteed:
260°C/10 seconds! .37S", (9.Smm) lead
length/Sibs., (2.3kg) tension

MECHANICAL DATA

Polarity sbW\ on frCM\t stu of cue.
pe.itift t..d by Hwled corMr

Case: Molded plastic
Terminals: Plated leads solderable per MIL-

STO-750, Method 2026
Mounting Position: Any (NOTE 3)
Mounting Torque: S in. lb. max.
Weight: 0.015 ounce, 4.0 grams

Dimensions in inches
and
(miHimeters)

MAXIMUM RA17NGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified. Resistive or Inductive load, 60 Hz. For capecltive load,derate current by 20%.

SI'II8CtS

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified
Te=1000C (NOTE 1)
Output Current at
Peak Forward Surge Current Single sine-wave
SUperllTllOsed on rated load (JEDEC Method)

6A

VRRM 50
VRMS 35
Voe 50

6B

60

GBU
6G

6J

6K

6M

UNfTS

100 200 400 600 800 1000 Volts
70 140 280 420 560 700 Volts
100 200 400 600 800 1000 Volts

Amps

I(AV)

6.0

IFSM
I~

175.0

Amps

127.0

A2sec

VF

1.0
5.0
500.0

Volts

Rating for fusing (t<6.3rns)
Maximum Instantaneous Forward Voltage drop
per leg at 6.0A
Maximum DC Reverse Current at
TJ=25"C
Rated DC Blocking Voltage per leg
TJ=125°C
Typical Junction CapacHanoe per leg (NOTE 2)
Typical Thermal Resistance per leg from
Junction to Case (NOTE 1)

R8JC

2.2

°CIW

Operating Junction and Storage Temperature Range

TJ.TSTG

-55 to +150

°C

IR
CJ

211.0

I

94.0

~
pF

Noles:
1. Units case mounted on 2.6"x1.4"xO.06" THK (6.5x3.5xO.15 em) /iJ. Plate. heatsink.
2. Measured at 1.0 MHz and applied reverse voltage "f 4.0 volts.
3. Recommended mounting position is to bolt down on heatsink with silicone thermal compound for maximum heat transfer with
number 6.0 screws.

430

RATINGS AND CHARACTERISTIC CURVES GBU6A THRU GBU6M

FIG. 2 - MAXIMUM NON-REPETITIVE PEAK FORWARD
SURGE CURRENT PER BRIDGE ELEMENT

FIG.1 - DERATING CURVE OUTPUT RECTIFIED CURRENT

~oJNTI~G.

HelT-siNK
2.6".1.4'•.06'" THK
(6.5x3.5x.15cm)
AI. PLATE

t

,.:

~

Z

W

\

60Hz RESISTIVE OR INDUCTIVE LOAD

a

50

II:
II:
::l

150

W
(!JUl

125

\.

,,

100

150

"'"

II:w
::lll:

UlW

CQ.

11::::;:

100

«

~

r. .)so-c I

Single Sine Wave
(JEDEC Mlhod)

'\

0

1\

a

175

75

0

-: 'P-1L.
i""'1"-~
...............

u.

"<
W

50

r---

Q.

CASE TEMPERATURE,"C

25
1.0

5.0

2.0

FIG. 3 - TVPICAL REVERSE CHARACTERISTICS
PER BRIDGE ELEMENT

10.0

50

20

100

NUMBER OF CYCLES AT 60Hz

500

100

~l.oo~

w

50

T.. 125·C

WUl
UlW
Ww
>Q.
w:::;:

10

!it

II:
II:
::l
0

FIG. 4· TYPICAL FORWARD VOLTAGE
CHARACTERISTICS PER BRIDGE ELEMENT
100

t=

,

L

11:11:

11:<
UlO

::lll:

00

II

1.0

!:i;!:li

~
~
;e;

-.
~

0.1

,
.01
a

--

20

40

5OV-4OOV
6OOV·I000V
60

-

T...25·C
PULSE WIDTH-3001'" 2% Duty Cycle

T;"2S'C

80

---

100

120

I
140

PERCENT OF RATED PEAK REVERSE VOLTAGE, %

.0 1
0.4

0.6

0.8

1.0

1.2

1.4

1.6

INSTANTANEOUS FORWARD VOLTAGE,VOLTS
FIG.5 • TYPICAL JUNCTION CAPACITANCE
PER BRIDGE ELEMENT
FIG.S· TYPICAL TRANSIENT THERMAL IMPEDANCE

.1

1.0

10.0

100

HEATING TIME (SEC)

- - - - - - - - - - - - - - - eGenerallnstrument
431

•

KBU6A THRU KBU6M
GLASS PASSIVATED SINGLE·PHASE BRIDGE RECTIFIERS
VOLTAGE· 50 to 1000 Volts CURRENT· 6.0 Amperes
FEATURES

.935123.1l
~.835(22.1)
I I
.....

.160(4.1)
.1.6

1 t

ill

I

I

.28011.11
.185(4.7) t!!S(4.2J
.HiS (4.2)
..--..1

45·
085(2.2)

--- ~.
~f

.0'l511.91R. TVP

f

I

-t

II

I

1.w..IM!
I
I

I

Ii

I

.240 (6.0Q)
.200(5.08)

ification 94V-O
• High case dielectric strength
of 1500 VRMS

,

• Ideal for printed circuit board
• Reliable low cost construction
utilizing molded plastic technique

,
I

L'
:Wo!!!l'

06511.11

.4

(2.!LACES)

1.0

125.41
MIN

I

..

•

•'/60 .1oom.1I

.668J6.81

r 'I

• This series is Ul recognized under component
index, file number ES4214
• Plastic material used carries Underwriters laboratory Flammability Class-

.180(4.5)

• Glass passivated chip junctions
• Surge overload rating of 250 Amperes peak
• High temperature soldering guaranteed:
250°C 110 seconds 1 .375", (9.Smm)
lead length 1 Sibs., (2.3 kg) tension

MECHANICAL DATA
Dimensions in inches
and
(millimeters)

Case: Reliable low cost construction utilizing
molded plastic technique
Terminals: Plated leads solderable per Mll-STD750, Method 2026
Mounting Position: Any (NOTE 3)
Mounting Torgue: 5 in. lb. max.
Weight: 0.3 ounce, 8.0 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at25·C ambient1emperatuTe unless otherwise specified. 60 Hz Resistive or inductive load.
For capacitive load, dera1e current by 20%.

KBU KBU KBU KBU KBU KBU KBU

SYMBOLS 6A

Maximum Recurrent Peak Reverse Voltage
VRRM 50
Maximum RMS Voltage
VRMS 35
Maximum DC Blocking Voltage
VDC 50
Maximum Average Forward Rectified
Tc=100·C
Output Current at
TA=40·C
I(AV)
Peak Forward Surge Current Single haH sine-wave
superimposed on rated load (JEDEC Method)
IFSM
Maximum Instantaneous Forward Voltage drop
per leg at S.OA
VF
Maximum DC Reverse Current
TA=25·C
at Rated DC Blocking Voltage per leg
TA=125°C
IR
Typical Thermal Resistance per leg (NOTE 1)
R9JC
(NOTE 2)
RaJA
Operating Junction and Storage Temperature Range
TJ,TsTG

6B

60

60

6J

6M UNffS

250.0

Amps

1.0
5.0
1.0
4.7
18.0
-50 to +150

Volts
I1A
mA

NOTES:
1. Thermal Resis1ance from Junction to Case with units mounted on a 2.6"x1.4x.06" THK
(6.Scm. x 3.Scm. x .15cm.) AI. Plate.
2. Thermal Resis1ance from Junction to Ambient with units in free air. P.C. board mounted on .5"sq.(12mm2 )
Cu. pads, .375"(9.5mm) lead lengths.
3. Recommended moun1ed position is to bolt down on heatsink with silicone thermal compound for maximum
heal transfer with number 6 screw.

432

6K

100 200 400 SOO 800 1000 Volts
70 140 280 420 5S0 700 Volts
100 200 400 SOO 800 1000 Volts
S.O
S.O
ArTlls

°CIW
°C

RATINGS AND CHARACTERISTIC CURVES KBU6A THRU KBU6M

FIG. 1 - DERATING CURVE FOR
OUTPUT RECTIFIED CURRENT
I-

"

w

a:
a:
::J

U

oen
a:w

4.0

~~

l2~

HEAT-SINK
MOUNTING. Te

~

P.C.BOARD
MOUNTED.T.
.375'(9.5rrm)LEADLENGlH

«a:

"-

Ii

w

CJ

a:

I I

I I I 1 1 1
50

:t

100

40

W

a:
a:
::J

'L
20

o

L

10

o
a:

~ [3

a: a:
Ow

~150

0

w

100

...:
z

,
r-.."

~

2.Or-- WIlH .&c.5(12mmxl2mm) COPPER PADS

«

FIG. 2 - TYPICAL INSTANTANEOUS FORWARD
CHARACTERISTICS PER ELEMENT

,,

6.0

Z

/

4.0

II

U-Il.

en::;;:

o::J«

TEMPERATURE °C

/

10

TJ" 25°C
PULSE WIDTH'" 30Dt1s

2% Duty Cyel.

W

Z

«
z

FIG. 3 - TYPICAL REVERSE
CHARACTERISTICS

...:
z

10

a:
a:
::J

TA

, 1o- - - 20

40

=:

250

25°C

60

225

80

100

120

Oil.

175

I I III

u.i

100

a:::2
««

~...:

~..l

~

U
Z
«
IU
«Il.
«
U

140

W
CJen

200

FIG. 5 - TYPICAL JUNCTION
CAPACITANCE PER ELEMENT

U.
0-

01

J

TJ = 25°C

a8

0.7

0.9

10

1.1

12

13

a:z
u-a:
",a:
«::J
wU

150

OW

i"""-

f= 1MHz
Vsig - 50mVp-p

r-.""

125

~

"" ~

I I I

TJ:;: 150°C
SINGLE SINE·WAVE
(JEDEC Method)

"

~

1"'-

Il.

100

75

50

10

'"

r--..

20

1"-""
50

NUMBER OF CYCLES AT 60Hz

I II

10

5

I

FIG. 4 - MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT

a:w
PERCENT OF PEAK REVERSE VOLTAGE.% ::Ja:
enW

400

J

~

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

~

~-1

02

0.6

-

--:r.,o 100°C

U

0.4

«
Ien

I

w

I-

==
==

10

d
50

100

REVERSE VOLTAGE. VOLTS

- - - - - - - - - - - - - - - (I General Insbument
433

100

GBPC6005 THRU GBPC610
GLASS P.ASSIVATED SINGLE - PHASE BRIDGE RECTIFIER
VOLTAGE - 50 to 1000 Volts CURRENT - 6.0 Amperes
FEATURES

:3L!c::
.158 (4.01)

.

.142 (3.61)OIA.

• Glass passivated chip junctions
.S30 116.00) ,
.5S0 114. S8) .445 m.30)
.405110.29)

• This series is UL recognized under component
index, file number E54214
• Plastic package has carries Underwriters Laboratory flammability recognition 94V-O

.445111.30)
.405110.29)

.S30 I1S.00)
.590 (14.S8)

1tH-+Be

!

.128 (3.25)
.048 (1.22)
.042 (1.07)
.038(0.06)

• High case dielectric strength
of 1500 VRMS
• Typical IR less than 0.5 11 A
• High surge current capability
• Ideal for printed circuit boards

OIA .....

• High temperature soldering guaranteed:
260°C 11 0 seconds at 5lbs., (2.3 kg) tension

MECHANICAL DATA
Case: Reliable construction utilizing molded plastic
technique

Terminals: Plated leads solderable per MIL-STDDimensions In inches
and
(millimeters)

750, Method 2026

Mounting Position: Bolt down on heat-sink with
silicone thermal compound between bridge and
mounting surface for maximum heat transfer with
number 6.0 screw
Mounting Torque: 5.0 in. - lb. max.
Weight: 0.1 ounces, 2.8 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, daralB current by 20%.
O8/IC O8/IC GP8C GlJ/IC GlJ/IC O8/IC G/IPC

S_OI.S 6005 601

Maximum Recurrent Peak Reverse Vokage
Maximum RMS Bridge Input Vokage
Maximum DC Blocking Voltage
Maximum Average Forward
Tc=50°C (NOTE 1)
Rectified Output Current at
TA=40°C (NOTE 2)
Peak Forward Surge Current Single sine-wave
superimposed on rated load (JEDEC Method)

VAAM 50
YAMS 35
Voc 50
I(AV)

IFSM
Rating for fusing (1<8.3ms)
I~
Maximum Instantaneous Forward Vokage Drop
per leg at 3.0 Amperes
VF
Maximum DC Reverse Current at Rated
TA=25°C
.DC Blocking Vokage per leg
TA=125°C
IA
Typical Junction Capacitance per leg (NOTE 3)
CJ
Typical Thermal Resistance from Junction to Case (NOTE 1) R8JC
Operating Junction Temperature Range
TJ
Storage Teflllerature Range
TSTG

602

604

606

60B

Amps
1'.2sec

175.0
127.0

Volts

1.0
5.0
500.0
186.0

I

90.0

8.0
-55 to +150
-55 to +150

NOTES: 1. Unit mounted on 5.S"x S.0"x.11" thick (14x 15xO.3 cm) AI. plate.
2. Unit mounted on P.C. board at .375" ,9.5mm lead lengths with .5"x.5"(12mmx12mm) Copper pads.
3. Measured at 1 MHz and applied reverse voltage of 4.0 valls.

434

610 UNffS

100 200 400 600 800 1000 Voks
70 140 280 420 560 700 Voks
100 200 400 600 800 1000 Voks
6.0
Amps
3.0

I1A
pF
°cm
°C
°C

RATINGS AND CHARACTERISTIC CURVES GBPC6005 THRU GBPC610

~
W

FIG. 1 • DERATING CURVE
OUTPUT RECTIFIED CURRENT
8.0

I<
I<

::J
~

t-(I)

::JW
01<

O~ 4.0

i~
I<

~

W

CO

<
I<
W

:c

2.0

.
.... ~

I

p.e.B. Mounting,

~U) 160
IIl.

~~

~ ~

1.0

z

0.1

00
~~
~

~

10

50

a

~
.01

5OV-400V
8OOV-IOOOV

F~

/

a

---

I

I

T...25·C

~~

100

PER BRIDGE ELEMENT

a

,.... ,

a [T... l fO.:,-<

50

20

FIG. 4· TYPICAL FORWARD CHARACTERISTICS

PER BRIDGE ELEMENT

10

""-

NUMBER OF CYCLES AT 60Hz

FIG. 3· TYPICAL REVERSE CHARACTERISTICS

!i
~

10

5

2.0

CASE TEMPERATURE, OC

500

-

ioo-.

~

80Hz RESISTIVE OR INDUCTIVE LOAD

a

~

U

=

T';'25'C
PULSE WIDTH0300~.
1% DUTY CYCLE

I

, I
o

40

20

60

80

100 120 140

PERCENT OF RATED PEAK REVERSE VOLTAGE ,%

~

.01
0.4

0.6

0.8

1.0

1.2

1.4

I.e

INSTANTANEOUS FORWARD VOLTAGE.vOLTS
FIG.S • TYPICAL JUNCTION CAPACITANCE

FlG.6· TYPICAL TRANSIENT THERMAL IMPEDANCE

PER BRIDGE ELEMENT

~~ lOO'II~1
w
501=

20
~ 10.0

ia:~fa

5.0

~

.2

~ml~HIE;II~11
~

i "O~~II~II~II~~II
.5

.2

A

1.0

2.0 4.0 10.0 20 40

100

.1 L-J..ULlWIL.J..UUWIL.LJ.liJJJlL.llWIIUi

REVERSE VOLTAGE, VOLTS

.01

.1

1.0

10.0

100

HEATING TIME, SEC

«

aW

~

«

~t~r';IDTH =300 JJI -

/

1C

2'1\ DUTY CYCLE

I-

04

«
I-

02

~

01

Z

150

100

2,0

Z

'"

TEMPERATURE 'C
FIG. 3 - TYPICAL REVERSE
CHARACTERISTICS
~

0

10

a:

~

50

::>

20

u

,

iDUCTIVELOi

o

40

a:
a:

~

I
60 Hz RESISTIVE OR

0

>
«

t-'

z
w

\

N

«a:

~~

100

HEAT SINK '1/,1\.
MOUNTING. T.
3.O"8q.xl2"THK AL.PLATE\
(7.5c:mlq.x.3cm THK)

a:
a:
::>
u
~136 .0

I
0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

10

z

w
a:
a:
:::l

Tc

U

w'"
~~
ww

-

=l00"C
~

1.0

~

FIG. 4 -

>0..

w::;;

a:«

30

",0
:::la:

W

AU

0",

~
Z
«
I-

o~

a: w 25o
:::la:

~~ 0.1

",w

TA

'/
.01

'"Z

o

20

40

eo

60

=25°C

~~
««

200

a::

150

100

Ow
u..a::

:;:~

120

140

PERCENT OF RATED PEAK REVERSE VOLTAGE ."FIG. 5 - TYPICAL JUNCTION
CAPACITANCE PER ELEMENT

........
IJ..

~
«
I-

:Em

J251c
Jl i"~

100

~§
wU

.........

llJJJ J

SINbUE
(JEDEC Method)

r-... ....

TJ

...

........

100

.........

150 C

....... i"--

0..

50

10

TJ

I. 1.0 MHz
VIis· 60m VP1>

Q.

Z

20

50

NUMBER OF CYCLES AT 60Hz

Z

o
~
u

0

«

0
5

10

50

I

MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT

100

REVERSE VOL TAGE. VOLTS

it Generallnsburnent

100

GBPC12,15,25 SERIES
HIGH CURRENT GLASS PASSIVATED SlNGLE·PHASE BRIDGE RECTIFIER
FEATURES
• This series is UL recognized under component index, file number E54214
I-"]i!t~~~~~~-l. The plastic package has Underwriters Laboratory
I
flammability recognition 94V-O
• Integrally molded heatsink provide very low thermal resistance
for maximum heat dissipation
• Universal 3-way terminals; snap-on, wire wrap-around, or
P.C. board mounting
• Surge overload ratings to 300 Amperes
• Glass passivated chip junctions
_ _ _---' • TypicallR less than 0.3 ~ A
• High temperature soldering guaranteed:
260°C 11 0 seconds at Sibs., (2.3 kg) tension

MECHANICAL DATA
case: Molded plastic with heatsink integrally mounted in the
bridge encapsulation
Tennlna's: Either plated .2S" (6.3Smm). Faston lugs or plated
copper leads .040" (1.02mm) diameter. Suffix letter OW" added to
indicate leads.(ex. GBPC1200SW)
Mounting Position: Bolt down on heat-sink with silicone thermal
compound between bridge and mounting surface for maximum
heat transfer efficiency with number 10 screw
Polarity: Polarity symbols molded on body
Mounting Torque: 20 in. lb. max. Weight: .S3 ounce 1S grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz. resistive or inductive load.
For capacitive load. derate current by 20%.

GBPC12, 15,25
SYIIBOLS DOS

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward
GBPC12
Rectified Output Current
GBPC15
(SEEFIG.1)
GBPC25
Peak Forward Surge Current Single
GBPC12
sine-wave superimposed on
GBPC15
rated load (JEDEC Method)
GBPC25
Rating (non-repetitive. for t
GBPC12
greater than 1 ms and less
GBPC15
than 8.3 ms) for fusing
GBPC25
Maximum Instantaneous
GBPC12 IF=6.0A
Forward Voltage drop per GBPC15 IF=7.5A
leg at
GBPC25 1F=12.5A
Maximum Reverse DC Current at Rated TA=25°C
DC Blocking Voltage per leg
TA=125OC
RMS Isolation Voltage from case to leads
Typical Junction Capacitance per leg (NOTE 2)
Typical Thermal Resistance per leg (NOTE 1)
Operating Junction Temperature Range
Storage Temperature Range

VRRM
VAMS
Voc

50
35
50

I(AY)

IFSM

12t

111

02

IU

06

VF

1.1

IR
VISO
CJ
R9JC
TJ
TSTG

5.0
500.0
2500.0
300.0
1.9
-55 to +150
-55 to +150

NOTES: 1. Thermal Resistance from Junction to Case per leg.
2. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

440

DB

10

100 200 400 600 800 1000
70 140 280 420 560 700
100 200 400 600 800 1000
12.0
15.0
25.0
200.0
300.0
300.0
160.0
375.0
375.0

LWn'S

Volts
Volts
Volts
Amps

Amps

Amptfsec
Volts

IJA
Volts
pF

0C!W
°C
°C

RATINGS AND CHARACTERISTIC CURVES GBPC12,15,25 SERIES

FIG 2· MAXIMUM OUTPUT RECTIFIED CURRENT
FIG. 1 • MAXIMUM OUTPUT RECTIFIED CURRENT

I

00
W

00

a:

a:

W

0..

::E

W

35

0..

00(

::E

......

......

30

W

Z
w

::l

0

GBPC25

25

I::l
0..
I::l

,"V

20

0

~a:
0
u.

15

10

~

...... "~

I

-

25

50

I
I

00(

100

125

150

G~PC151

...... ~

I

~

RthS-Aol.0·C/W
15

-- --

r-

I

5.0

o
175

10

30

20

200

40

50

60

70

-.........

..........

"""'-

W

~

~

r-

GBPC12
RthS-Aol_0'C/W

10

a:

~

75

-r--I....
I I i"""-o.

W

Cl

~ ~I

:'I~:~stt:w

0

r

I

20

0

6"x2.2"lc2.2"
AI·Finned plal.-

\.

00(

~

I
I

'\

'-

-GB~CI2

W

W

I::l
0..
I::l

I

V

GBPC15

Cl

a:

0

5"x4-x3" Al-Finned plate

0

a:

::l

I

I

f-GBPC25
RthS-Ao 0_5'C/W
25

a:
a:

S-x6"x4.9" At-Finned plate

/

f--

30

00(

Z

a:
a:

I

60 Hz Resistive
or Inductive L.oad

W

.........

80

90

100

AMBIENT TEMPERATURE, "C

CASE TEMPERATURE,·C

I
FIG 4 • TYPICAL REVERSE CHARACTERISTICS
500

FIG 3 • MAXIMUM POWER DISSIPATION
80

JPACIT~VE
I

J

I

/

/

100

J

Z

/

f",.

/

,

J

o

50

0

10

woo
OOW
a: a:
ww
>0..
w::E
a: 00(
000
:::>a:

1_0

z::E

j5
j5

/,11'
Y

z

00

V

~

,,'

0_1

...

TJ-25"C

..,.
10

20

r-

@~

~!~TIVElINDUCTIVE _

'//

20

... ....

10.- ~

a:
a:

::l

J/

~~

30

, .10-

W

II

40

.- -

T.... I50·C_

I-

~

I

50

o

I
\./

60

10

II

LOAD \

TJ.TJm&X.

70

T.,.125"C

40

.01

20

AVERAGE OUTPUT CURRENT, AMPERES

-50V-4OQ\l

-

[,,40

60

60

-600V·1000V
100

120

140

PERCENT OF RATED PEAK REVERSE VOLTAGE ,%

(8 Generallnsbument
441

RATINGS AND CHARACTERISTIC CURVES GBPC12,15,25 SERIES

FIG.5- TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS PER BRIDGE ELEMENT

UJ

ll!

FIG. 6-TYPICAL TRANSIENT THERMAL IMPEDANCE

100

100

~

a.

~

::;
.!1.:.;,'3~6~="....:....J=-11i211

AS .13m8.611_\
.692117.6)1'

EPOXY CASE

.840(21.31
.140118.81
.j.

L -_ __

GBPC-W
FIG.9
I

1.135(28.81
1.115 [28.31 '

HOLE FOR

'10Ser ...

...1:132118.6IL
~6921l7 .61 1Ai:

1

--f-

-+~
-

..

.042(1.071,..
.038(,971

1.135(28.81 .132118.61
1.115,[8.31 .692(17.61'"

-.i....-.....
I

AC

.410m.91
.430110.91

r l-

I

1.25
[31.81
..
'---'''-!--f-r.LL..., MIN.
.31011.871 r
.29017.361
•__
--f-')I=.....-'-''''iF
"''_ _ _ _ METAL HEAT SINK
,

+

\

--t-

_l_

EPOXY CASE

Dimensions in inches and (millimeters)

Notes:
1. Corrosion resistant terminals designed with .250 female quick connectors for wrap around or snap-on.
2. A thin film of silicone thermal compound is recommended between the bridge case and mounting
surface for improved thermal conduction.
3. Higher dielectric strengths availbable. Consult factory.

- - - - - - - - - - - - - - - (DGenerallnstrument
443

I

GBPC35005 THRU GBPC3510
HIGH CURRENT GLASS PASSIVATED SINGLE-PHASE
BRIDGE RECTIFIER
FEATURES
• This series is UL recognized under component index, file
number ES4214
• The plastic package has Underwriters Laboratory flammability
recognition 94V-O
• Integrally molded heatsink provide very low thermal resistance
for maximum heat dissipation
• Universal 3-way terminals; snap-on, wire wrap -around, or
P .C. board mounting
• Surge overload ratings to 400 Amperes
• Glass passivated chip junctions
- - - - - ' • Typical IR less than 0.3 JL A
• High temperature soldering guaranteed:
260°Cf10 seconds at Sibs., (2.3 kg) tension

MECHANICAL DATA
case: Molded plastic with heatsink integrally mounted in the
bridge encapsulation

Terminals: Either nickel plated .2S" (6.3Smm) Faston lugs
or plated copper leads .040" (1.02mm) diameter. Suffix letter "W"
added to indicate leads.(ex. GBPC3S10W)
Mounting Position: Bolt down on heat-sink with silicone thermal
compound between bridge and mounting surface for maximum
heat transfer efficiency with number 10 screw
Polarity: Polarity symbols molded on body
Mounting Torque: 20 in.- lb. max. Weight: .S3 ounce, 1S grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 2S·C ambient temperature unless otherwise specified. SO Hz. resistive or inductive load.
Fe, capacitive load, derate current by 20%.

GBPC35
005

SYAfiOLS

Ot

Maximum Recurrent Peak Reverse Voftage
50
VRRM
Maximum RMS Voltage
35
VRMS
Maximum DC Blocking VoRage
50
Voc
Maximum Average Forward
Rectified Output Current at Tc=50°C (NOTE 1)
I(AV)
Peak Forward Surge Current Single sine-wave superimposed on rated load (JEDEC Method)
IFsM
Rating (non-repetitive, for t greater than 1 ms and less
than S.3 ms) for fusing
I~
Maximum Instantaneous Forward Voltage drop per
leg at 17.5 Amps
VF
Maximum DC Reverse Leakage Current
TA=25°C
at Rated DC Blocking Voftage per leg
TA-125°C
IR
RMS Isolation Voftage from case to leads
VISO
Typical Junction Capacitance per leg (NOTE 2)
CJ
Typical Thermal Resistance from Junction to Case
per leg (NOTE 1)
R9JC
Operating Junction and Storage Temperature Range
TJ,TsTG

02

04

08

to

UNITS

VoRs
VoHs
VoHs

35.0

Amps

400.0

Amps

660.0

Amp.2sec

1.1
5.0
500.0
2500.0
300.0

VoRs

1.4
-55 to +150

°CfW
°C

NOTES: 1. Bridge mounted on a 9"x3.S"x4.S"(22.9x8.9xll.7cm) AI-Finned Heatsink.
2. Measured at 1 M Hz and applied reverse voltage of 4.0 volts.

444

06

100 200 400 600 SOO 1000
70 140 2S0 420 560 700
100 200 400 600 SOO 1000

J.lA
Volts
pF

RATINGS AND CHARACTERISTIC CURVES GBPC35005 THRU GBPC3510

FIG 2" MAXIMUM OUTPUT RECTIFIED CURRENT
FIG. 1 "MAXIMUM OUTPUT RECTIFIED CURRENT
III
W

W
Il.
::E

35

,,

'\.

"

zW..=

30

a:
a:

::J

0

25

::J

Il.
I-

W
Il.

:;

"z
..=
w

a:
a:
::J
0

::J

a:

~
a:
u.

"

"
"

OR INDUCTIVE LOAD
20

40

60

SO

" "'

100

15

W
>

\.

60Hz RESISTIVE

W

""

20

a:

",

5.0

;;;:

:"...

25

Cl 19·0

I\.

Cl

120

r--

W

",

10.0

W

a:

I

0

I'

15

Rth8-A.o.6 CC/W

I

60 Hz Resistive
or Inductive l.oad

::J

Il.
I-

0

C

30

....... .....
~

I-

'-

211

::J

a:

BRIDGE MOUNTED
ON A 9"x3.5"x4.8" f-(22.9x8.9xl1.7cm):-1-AL·FINNED HEATSINK

~

I-

0

-

36
III
W

a:

140

5.0

o

10

20

30

40

50

60

70

SO

90

100

AMBIENT TEMPERATURE, 'C

160

CASE TEMPERATURE, 'C

I
FIG 4 " TYPICAL REVERSE CHARACTERISTICS
500

FIG 3 "MAXIMUM POWER DISSIPATION
SO

'"
S
~

70

CAPACIT~E
I- TJ. TJ max.

8

60

IXl

u.

o
z
o

~

;;;
III
Ci

~

50

I

J/
I"'.

~~

3D

W

:;:

o

,

,.r--

--~""
T.... I50·C_

50

-

W

a:
a:
::J

1/

0

10.0

Will
IIlW

a: a:

WW
>Il.
W::E

a: "
",0

::Ja:

1.0

00

~~~~TIVElINDUCTIVE _

!;l:!:i

If/

20

10

Z

~

JI{'

W

~a:

I-

I"

4D

a:

~

100

/

,
,I

.. """

T.... I25·C

/

\./
I
/

u.i

;;:

II

LOAD,

z
;5

.'l
IV

III

l!:

~
T....25·C

"

0.1

~

o

10

20

3D

4D

o

AVERAGE OUTPUT CURRENT, AMPERES

-50V-4DDV
_ _ 600V_1000V

i..I" ....

.01

20

4D

60

60

100

120

140

PERCENT OF RATED PEAK REVERSE VOLTAGE ,"10

- - - - - - - - - - - - - - - (DGenerallnstrument
445

RATINGS AND CHARACTERISTIC CURVES GBPC35005 THRU GBPC3510
FIG.5- TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS PER BRIDGE ELEMENT

In

~

UI

FIG. a-TYPICAL TRANSIENT THERMAL IMPEDANCE

100

100

~

D.

~

~

ffi0:

~

10.0

UI

~

C§

0:

:;)

o

D.

C

0:

~
oLL

:!!

1.0

~

0:

UI

In

o

I

0.1

z

15z
~

j!:

.g

TJ.25·C
PULSE WIDTHo3OOta
1% DUTY CYCLE
::::::

UI

~

100"

..J

0:

:;)

10.0

UI

~

0:

J

.01

0.4

0.6

1.0

0.1
0.8

1.4

1.2

1.0

1.0

0.1

.01

1.6

10.0

HEATING TIME (SEC)
INSTANTANEOUS FORWARD VOLTAGE, VOLTS

400
300

~Ul

a:

/

1.0

a:

FIG. 3 • TYPICAL REVERSE
CHARACTERISTICS
PER BRIDGE ELEMENT

TYPICAL JUNCTION CAPACITANCE
PER BRIDGE ELEMENT

30

TJ ~25°C ~
11.0

~

./

en

~

LL
C.

25

u.i
~

20

~
U

15

........
1'-0...

....... ....,..

«~ 10.0

U

TJ

5.0
20

40

60

80

100

~

t..........

25°C

f = 1.0MHz

0.1

I I~WI ~ 5Om1VP'j

120

PERCENT OF RATED PEAK
REVERSE VOLTAGE.%

0.1

1.0

10.0

100

200

REVERSE VOLTAGE, VOLTS

C8 GenerallnstlUment
449

450

SURFACE MOUNT
BRIDGE RECTIFIER
0.5 AMPERE TO 1.0 AMPERE

50 VOLTS TO 1000 VOLTS
SEE
NEW

ISOLATED
PACKAGES

451

I

452

•

•

MB2S THRU MB6S
MINIATURE GLASS PASSIVATED SINGLE-PHASE
SURFACE MOUNT BRIDGE RECTIFIER
VOLTAGE· 200 to 600 Volts CURRENT - 0.5 Amperes
FEATURES

I -

-

• Plastic package has Underwriters Laboratory Flammability Recognition 94V-O

I

BH3[3,;

1~

• Glass passivation chip junctions

~.1"57)

• High surge overload rating: 30 amperes peak

.095(2.41)

11- -

-<>H:3E:JL

• Saves space on printed circuit board

ll ·~--I
+-- .145(3.66)

"I

• High temperature soldering guaranteed:260°C/1 0
seconds at 5 Ibs. (2.3kg) tension

.212(6.91)
.252(6.40)

MECHANICAL DATA
Case: Molded Plastic over passivated junctions
Terminals: Plated leads solderable per MIL-STD750, Method 2026

Polarity: Polarity symbols marked on body
Weight: .0078 ounce, 0.22 gram
Mounting Position: Any

Dimensions in inches and (millimeters)

MAXIMUM RA TINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load.

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward OUtput Rectified
Current at TA=40·C - on Glass-Epoxy P.C.B.
- on Ceramic P.C.B.
Peak Forward Surge Current 8.3m sec Single Half SineWave superimposed on Rated Load (JEDEC Method)
Rating for Fusing (1<8.35ms)
Maximum Instantaneous Forward Voltage Drop
per Element at O.4A
Maximum DC Reverse Current at
TA=25·C
Rated DC Blocking Voltage per element
TA=125·C
Typical Junction Capacitance per element (NOTE 1)
Typical Thermal Resistance (NOTE 2)
Operating Junction and Storage Temperature Range

SYMBOLS

1IB2S

1IB4S

1IB6S

UNmJ

VRRM
VRMS
Voc

200
140

400
280
400

600
420
600

Volts
Volts
Volts

I(Av)

0.5
0.8

Amps

IFsM
12t

30.0
3.8

Amps
A 2s

VF

1.0

Volts

IR
CJ
R8JL
R8JA

5.0
500
25.0
20.0
75.0
-55 to +150

TJ, TSTG

NOTES: 1. Measured at 1.0 MHz and applied reverse voltage of 4.0 volts.
2. Thermal Resistance from Junction to Lead and lor Ambient, P.C. board
mounted on .047 in.2 (12mm2) copper pads.

453

200

IJ.A
pF

·CIW
DC

I

DF005S THRU DF10S
MINIATURE GLASS PASSIVATED SINGLE - PHASE
SURFACE MOUNT BRIDGE RECTIFIER
VOLTAGE-SO to 1000 Volts CURRENT-1.0Ampere
FEATURES

(I 20)

I

.205 (5.21
.195 (5.0)

~'j';

• This series is UL recognized under component
index, file number E54214

I

.310t7.9)
.291(1.4)

I

.255(6.5)
.245[6.2)

• Plastic package has Underwriters LaboratOry_
flammability recognition 94V-O
• Glass passivated chip junctions
• High Surge overload rating - 50 amperes peak
• Ideal for printed circuit board
• High temperature soldering guaranteed:
260°C 110 seconds at Sibs., (2.3kg) tension

I

:11 JIJJU=~==U

t::'2.0131.330)
'I.2411

:out:33OI

.003 (.0761...
.404(10.3)
.386(9.10)

I

.025(.6351-

~:;<45'

I

.335(8511
.120 (8.m

to

111.040
.010 11.524)
n.OlG)

~~------l

cD:::,~:~)

MECHANICAL DATA

case: Molded Plastic
Terminals: Plated leads solderable per MIL-STD750, Method 2026
Polarity: Polarity symbols marked on body

Dimensions in inches
and

Weight: 0.04 ounce, 1.0 gram

(miHimeters)

Mounting Position: Any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°0 ambient temperature unless otherwise specified.

Resistive or Inductive load.

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Output Rectified Current
atTA=JmoC
Peak Forward Surge Current Single half sine-wave
superimposed on rated load (JEDEC Method)
Rating for fusing (t
W

0:

en

~

::J
W

0.6

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

en

0

TJ = 25°C
PULSE WIDTH:: 300/.1 5
2% DUTY CYCLE

I

en

0:
0:
W

I

0.1

Z
 a::
~()

I

en:::;

1000

-TJ '125°C

I

~ffl

a:: a::
Ow

u..a.

TYPICAL JUNCTION CAPACITANCE
PER BRIDGE ELEMENT

30

-'.0

TJ '25°C

~

,

./

"

~

25

W
~

20

..........
~

«
Ii3 15
«
a.
« 10.0
()

.......

I,:: 1.0MHz

40

60

80

100

120

vsog'

140

PERCENT OF RATED PEAK
REVERSE VOLTAGE."

........

TJ = 25°C

5.0

0.1

20

....

0.1

1a

10.0

somtPT

""

100

REVERSE VOLTAGE. VOLTS

- - - - - - - - - - - - - - - eGenerallnstrument
457

200

458

~EMOUNT
SUPERECTIFIERS
0.5 AMPERE TO 3.0 AMPERES
50 VOLTS TO 1600 VOLTS

•

(it General
--------Instrument-459

®

Mo/ybdsnum Slugs

PATENTED'

SoHd Brazing. Low Resistance.
Excellent Surge CapabiHties
Brazed- Temp. >600 ·C

Glass-plastic encapsulation technique is COvtflred
by Patent No. 3.996.602 of 1976; brazed-lsad
assembly to Patent No. 3.930,306 of 1976

Matte Tm-Lead Plated
Copper Disk

UI-Recognized
Flame Rfltarrlent
Molding Compound

Our surface mount SUPERECTIFIER has redefined the
In device encapsulation. our surface mount
concept of time and space. Passivated silicon
SUPERECTIFIER uses a flame-RETARDANT molding compound, rated UL94V-o. the highest rating available. In
SUPERECTIFIERs (1 N6478-1 N6484 a1Cl GL41A-GL41Y)
Qfe 1..QArtI~. 50-1600 VeBR) leadless. surface mounted
fact. It Is the only plastic rectifier that exceeds environdevices that provide new space options. from inmental standards of MIL-5-19500.
creased surface density to reduced board size.
In summary. the General Instrument surface mount
Component placement speeds can be an order of
SUPERECTIFIER Is the world's only rectifier with totally
magnl1ude higher. our surface mount SUPERECTIFIERs
brazed construction. with a patented glass passivated
Junction. and with flame-retardant molding encapFeature:
Brazing at greater than 600 Deg C at both terminal and sulation.
dle-ellmlnates all soft solders.
Exclusive UL recognized tlame-retardant epoxy moldIng compound rated 94V-o, the highest available
rating. (hermetically sealed cons1ructlon.)
No other 1.0 Ampere rectifier of any kind - plastic. glass
or metal - con match our surface mount SUPERECTIFIER
features.
The way we make our surface mount SUPERECTIFIER Is
what makes them the best.
In eall construction, most other rectifiers rated up to 1.0
ampere are soldered or are only pressure contacted.
Our surface mounted SUPERECTIFIER Is made Into an entirely solid unit with leads and cell brazed at temperatures greater than 600 Deg C. All other rectifiers fall at
half that temperaturel
Conventional plastic rectifiers use either varnish. silicon
rubber or a thin film of silicon oxide to protect the junction. Our surface mount SUPERECTIFIER uses a patented
glass passivation to seal 118 Junction hermetically.

- - - - - - - - - - - - - - (ilGenerallnstrument
460

SURFACE MOUNT SUPERECTIRERS
Surface Mount Superectifiers
Features:
• High Temperature Metallurgically Bonded
• Plastic Package has Underwriters Laboratory Flammability Classification 94V-O
• Glass Passivated Junction
• Capable of meeting Environmental Standards of MIL-S-19500
• High Temperature Soldering guaranteed for all present methods, including wave and vapor
reflow soldering
Tvpes:
1NB478-1N6484................. 1.0 Amp. Standard Rscovsry Tims
GL41A-GL41Y. ................••. 1.0 Amp. Standard Rscovsry Tims
RGL41A-RGL41M......•......• 1.0 Amp. Standard Rscovsry Tims
EGL41A-EGL41G ..........•.•• 1.0 Amp. Standard Rscovsry Tims
GL34A-GL34J ....................5.0 Amp. Standard Rscovsry Tims

RGL34A-RGL34J .....•.........5.0 Amp.
EGL34A-EGL34G ..............5.0 Amp.
GF1A-GF1 M.............•.....•... 1.0 Amp.
RGF1A-RGF1M .•............... 1.0 Amp.
EGF1A-EGF1 D •.............•... 1.0 Amp.

Standard Rscovery Tims
Standard Rscovery Tims
StandatrJ Recovery Tims
Standard Recovery Tims
Standard Recovery Tims

QUICK GUIDE TO SURFACE MOUNT SUPERECTIFIERS

,_...
IN8478

TYPE

...

GlAIA

RGlAIA'

CASE
lo(A)

BlIAIA+

In

GlAIM
RGL41M'
1JO.213AB 1JO.213AB 00·213AB
1.0
1.0
1.0

In

In

RGU4J'
1Xi-213AA

EGL34G+
DO-213AA

o.s

o.s

0.5

75
G1.M\

55

75

IIGlMB

EGL34B
EGU«:

75

75

5&

75

v....5O(V)

INI478
lN8478

GlAIA
GlA1B

1IGIAIA
RGl41B

1_

G1.41D

RGLIID

I_'

G1.4IG
G1.41J
Gl.41K
G1.41M
GL41T
GL41Y
30

RGLI1G
RGLI1J
1IGIAIK
RGLI1M

BlIA1A
BlIA1B
BlUIC
BlIA1D
BlIA1F
BlU1G

1.1n.2

u

,_,_,_

v1l-8OO(YI

vR-8OO(YI

vR-1000('1)
VRa13OO(Y1
VRa18OO(Y1
SURGE (A)
V(V)

30
1.0

30

-' -

In
GI.34J
DO-213AA

atTl1"Cl

vR-'00(V)
vR-'5OM
vR-2OO(V)
vR-SOCi(YI
vR-4OO(V)

G1.M\

In
BlUla.
1JO.213AB
1.0

GIlI4B
ClI.3C)

GL34G

GI.34J

30
l.on.25

10
1.1

-- EClI.3C)

RGU4G

EIlL34F
EGL34G

IIGlMJ

10
13

10
1.25

QUICK GUIDE TO SURFACE MOUNT SUPERECTIRERS
(CONT.)

TYPE
CASF

In (A)
BIT ('C)
V,...5O(V)
V....IOD(V)
V....15O(V)
V,...2OO{V)
V,.-300(V)
V0=400M
V,.=600(V)
V,.=600(v)

v'" lOOD(V)
SURGE A
V(v1
, Fast Recovery

GFIA

'RGFIA

+ EGFIA

GFIM

RGFIM

EGFIG

"nn.~14BA

"()()'214RA
1.0

th,u

1.0
125
GFIA
GFIB

th,u

55

RGFIA
RGFIB

th,u

"nn..~14RA

1.0
75
EGFIA
EGFIB

EGFIC
GFID

RGFID

GFIG
GFIJ
GFIK
GFIM
30
1.111.2
+Ultrafast Recovery

RGFIG
RGFIJ
RGFIK
RGFIM
30
1.3
"Modified

EGFID

30
1.011.25

- - - - - - - - - - - - - - (iGeneralInstrument
461

•

462

Surface Mount Selector Guide
Series

Type

Voltage (V)

GL34

Rectifier

50-600

RGL34

Rectifier

50-600

O.5A

150/250

MELFIDO-213AA

EGL34

Rectifier

50-400

0.5A

50

MELFIDO-213AA

Current or Power

trr (ns)

Package
MELFIDO-213AA

O.5A

1N647S

Rectifier

50-1000

1.0A

MELFIDO-213AB

GL41

Rectifier

50-1600

1.0A

MELFIDO-213AB

RGL41

Rectifier

50-1000

1.0A

150-500

MELFIDO-213AB

EGL41

Rectifier

50-400

1.0A

50

MELFIDO-213AB

GLL4735

Zener

6.2-91

1.0 Watt

MELFIDO-213AB

ZGL41

Zener

100-200

1.0 Watt

MELFIDO-213AB

TGL41

TVS

6.S-200

400 Watt Peak

MELFIDO-213AB

SGL41

Schottky

20-60

1.0A

MELFIDO-213AB

Sl

Rectifier

50-600

1.0A

SMAIDO-214AC

RS1

Rectifier

50-600

1.0A

150-250

SMAIDO-214AC

ES1

Rectifier

50-200

1.0A

15

SMAIDO-214AC

SS1

Schottky

20-60

1.OA

SMAIDO-214AC

SMAJ

TVS

6.S-170V

400 Watt Peak

SMAIDO-214AC

GF1

Rectifier

50-1000

1.0A

GF lIDO-214BA

RGF1

Rectifier

50-1000

1.0A

150-500

GFlIDO-214BA

EGF1

Rectifier

50-200

1.OA

50

GFlIDO-214BA

S2

Rectifier

50-1000

l.5A

RS2

Rectifier

50-S00

1.5A

150-500

5MBID0214AA

ES2

Rectifier

50-200

2.0A

20

5MBIDO-214AA

SS2

Schottky

20-60

2.0A

5MBIDO-214AA

5MBID0214AA

5MBJ,G

TVS

5.0-170

600 Watt Peak

5MB/DO-214AA

S3

Rectifier

50-1000

2.5A

SMCIDO-214AB

RS3

Rectifier

50-S00

2.5A

150-500

SMCIDO-214AB

ES3

Rectifier

50-200

3.0A

20

SMCIDO-214AB

SS3

Schottky

20-60

3.0A

SMCIDO-214AB

SMCJ,G

TVS

5.0-170

1500 Watt Peak ---

SMCIDO-214AB

463

•

BYM05-50 THRU BYM05-600
GL34A THRU GL34J
SURFACE MOUNT GLASS PASSIVATED JUNCTION RECTIFIER
Voltage - 50 to 600 Volts
Current - 0.5 Amperes
FEATURES
OD-213AA

~SOLDERABLE EIIDS!

r

1a t.land
2nd8and

r--r1

,

I

.022 (.559)
.01"40£)

(
(

,I

.145(3.6831
.131(3.321)

MECHANICAL DATA

Dimensions In Inches and (millimeters)
·~BIlCIlp/lUIa/IonlBChnlquelscovetedbyPa/entNo. 3,996,6020/1976;
-

• For surface mounted applications
• High temperature metallurgically
.......
bonded
~
• Glass passivated junction
• Plasticpackage has Underwriters Laboratory Flammability Classification 94V-O
• Capable of meeting environmental standards of
MIL-S-19500
• High temperature soldering guaranteed:
450°C/5 seconds at terminals.Complete device
submersible temperature of 260°C for 10 seconds in solder bath

-leadBJlSlHl6lylD Pa/entNo. 3,930,306 011976

~
'

•

~

®

•

Case: Molded plastic over glass
Tenninals: Plated Terminals, solderable per
MIL-STD-750, Method 2026
Polarity: Two bands indicate cathode
1st band denotes device type 2nd band denotes voltage type
Any Handling Precautions: None
Wetght:0.036 gram, 0.0014 ounce

Mou~ting Position:

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 2SoC ambient temperature unless o1herwlse specified. eo Hz. resistive or Inductive load. For capacitive load, derate currant by 20%.
SYMBOLS

Standard recovery time device: 1st band is white
Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
atTT=75°C
Peak Forward Surge Current
8.3rns single half sine·wave superimposed
on rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage at 0.5A
Maximum DC Reverse Current
TA=25OC
at Rated DC Blocking Voltage
TA=125°C
Maximum Full Load Reverse Current, Full Cycle
Average at TA=75°C
Typical Junction Capacitance (NOTE 1)
Maximum Thermal Resistance RthJL (NOTE 2)
RthJA (NOTE 3)
Operating Junction and
Storage Temperature Range
Polarity Color Bands (2no Band)

-50

BYIIOS
·200

-100

-400

·600

UNn'S

VRRM
VRMS
Voc

GL34A GL34B GL34D GL34G GL34J
100
200
400
600
50
420
35
70
140
280
50
100
200
400
600

Volts
Volts
Volts

I(AV)

0.5

Amps

IFSM
VF
IR

10.0
1.2
5.0
50.0

IR(Av)
CJ
R8JL
R8JA

20
7.0
70.0
150.0

TJ,TsTG
Gray

I Red

-65 to +175
Orange iVellow

NOTES: 1. Measured at 1 MHz and app6ed reverse voltage of 4.0 Voe.
2. Thermal resistance junction to terminal, 5.0mm2 copper pads to each terminal.
3. Thermal reliistance junction to ambient, 5.0mm2 copper pads to each terminal.

464

11.3

Amps
Volts

IlA
IlA
pF
OCIW
°C

IGreen

RATINGS AND CHARACTERISTIC CURVES BYM05-50THRU BYM05-600
GL34A THRU GL34J

FIG. 2 - MAXIMUM NON-REPETITIVE
PEAK FORWARD SURGE CURRENT

o

f"

fiG. 1 - fORWARD CURRENT DERATING CURVE

w

u::

i=1I)

Ow
wa:
a:w

00..
a:~
<{<{
~.

0.5

'\

0.4

0.3

,

wa:
C)::J
<{o
a:
w

50Hz

o

~

....
...........

~
TA= 75°C

\.

o.2
0:1

~INGLE HALF SINE-WAVE

(JEDEC Method)

" '\

0:1-

offi
u.a:

8.3ms

RESISTIVE OR
INDU~TIV~ ~OAD

25

50

75

125

100

I II

--~~
150

4

175

a8

10

II

20

40 6080 10n

NUMBER OF CYCLES AT 60Hz

TERMINAL TEMPERATURE, °C

r:
z
w

a:
0:
::J

FIG. 3 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS
0

FIG. 4 - TYPICAL JUNCTION

==

=Pulse Width := 3OO,u 5
2% Duty Cycle

o
o

0:

~f:J

/

1.0

If

........

I-

TJ = 25°C

o
<{

n.

•

.....

<{

o

Z

~

TJ = 25°C
10

o
z<{

I

ow
~
I-

Iii

u.a.
ui

a: 0:
Ow
u.n.
(1):::;
::J <{ o. 1

<{

~PACITANCE

0

1

.0 1
.4

.6

1.2

1.0

.6

1.4

10

1.6

50

100

REVERSE VOLT AGE, VOLTS

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

FIG. 5 - TYPICAL REVERSE CHARACTERISTICS

mID
0: a:

10

a:<{

(1)0

1.0

00

.4

r:

01

::Ja:

~~
~

~~

Iii ~04
~ i3

-__:":--~--~-~:__-=-_:_:!:___:c'
20
40
60
80
100
120
140

.01 ' : - -

PERCENT OF RATED PEAK REVERSE VOLT AG E. %

- - - - - - - - - - - - - - - (iGeneralInstrument
465

BYM06-50 THRU BYM06-600
RGL34A THRU RGL34J
SURFACE MOUNT GLASS PASSIVATED FAST SWITCHING JUNCTION RECTIFIER
Voltage - 50 to 600 Volts Current - 0.5 Amperes
FEATURES
D0-213AA

Ir
-

l " 2Bond
nd BIInd

I

"1
J'

.066

I
I 1.524J

1

.o221.559J
.o18(40£J

I"

W

i~£J

f--- Dz - -

• For surface mounted applications
~
• High temperature metallurgically
bonded
~
• Glass passivated junction
.
• Plastic package has Underwriters Laboratory Flammability Classification 94V-O
• Capable of meeting environmental standards of
MIL-S-19500
• Fast switching for high efficiency
• High temperature soldering guaranteed: 450°C/5
seconds at terminals. Complete device submersible temperature of 260°C for 10 seconds in solderbath

I

---+,---

--L_
"

.145 (3.6831

.1Jl13.127J

by Palent No. 3,996,602 of
,976;lJtalH.INdllSSlllllbJytoPateflINo.3,930,306o',976

MECHANICAL DATA

'G1IJss.p/asIIc IIIt:IIp/IUIaI/n technique Is _

~
•

•

•®

Case: Molded plastic over glass
Tennlnsls: Plated terminals, solderable per
MIL-STD-750, Method 2026
Polarity: Two bands indicate cathode
1st band denotes device type 2nd band denotes voltage type
Mounting Position: Any Handling Precautions: None
Weight: 0.036 gram, 0.0014 ounce

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings al25·"C ambient temperature unless otherwise specified. Resistive or inductive load.
SYMBOLS

Fast switching device: 18t band is Red
Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
atTT=55°C
Peak Forward Surge Current
8.3rns single haH sine-wave superimposed
on rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage at 0.5A
Maximum DC Reverse Current
TA=25°C
at Rated DC Blocking Voltage
TA=125°C
Maximum Full Load Reverse Current, Full Cycle
Average,atTA=55~

Maximum Reverse Recovery Time (NOTE
TA=25°C
Typical Junction Capacitance (NOTE 2)
Maximum Thermal Resislance (NOTE 3)
(NOTE 4)
Operating Junction and
Storage Temperature Range
Polarity Color Bands (2 11U Band)

-so

-100

BYAf06
-200

400

-600

UNITS

VRRM
VRMS
Voe

RGL34A RGL34B RGl34D RGL34G RGL34J
50
100
200
400
600
35
70
140
280
420
100
200
400
600
50

Volts
Volts
Volts

I(Av)

0.5

Amps

IFSM
VF

Amps
Volts

IR

10.0
1.3
5.0
SO.O

IR(AV)

30.0

TRR
CJ
RaJL
RaJA

150
4.0
70
150.0

1)

Gray

Red

Orange

NOTES: 1. Reverse Recovery Test Conditions IF-D.5A, IR=1.0A, Irr= .25A.

2. Measured at 1 MHz and applied reverse voltage 014.0 Volts.
3. Thermal resistance lrom junction to 1Brminal. 5mm2 copper pads 10 each 1Brmlnal.
4. Thermal resistance from junction to ambient, 5mm2 copper pads to each terminal.

nS
pF

°CIW

-6510 +175

TJ.TsTG

466

I 250

""
""
°C

Veilow

I

G180n

RATINGS AND CHARACTERISTIC CURVES BYM06-S0 THRU BYM06·600
RGL34A THRU RGL34J
FIG. 2 - MAXIMUM NON-REPETITIVE
PEAK FORWARD SURGE CURRENT
W

12
8.3ms SINGLE HALF
SINE-WAve (JEDEC Method)

O(J)

~~

10

(J)W

FIG. 1 - FORWARD CURRENT
DERATING CURVE

6

" "'"

I III

TA'= 75 D C

......

OW

LLa:

~§

'\
RESISTIVE OR
INDUCTIVE LOAD

50

8

<{ <{
~~

a:Z

"\

25

0<1.

a:::;;

75

W<.)
<1.

2468102040'3080100

""I'"

100

125

150

NUMBER OF CYCLES AT 60Hz

FIG. 4 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

175

TERMINAL TEMPERATURE, °C

10

~

Z
W
a:
a:

3.0

~

0

a:

FIG. 3 - TYPICAL. REVERSE CHARACTERISTICS

Z

/'

r- Pulse Width = 300.u s

::;)

U

/

2% Duty Cycle

1.0

<{(J)

W

~W

a:
::;)
<.)

LL<1.

a:

a: a:
Ow

I

0

W

Z

•

0.3

(J)::;;
::;)<{
0.1

I

<{

f-

Z

<{
f-

.03

(J)

I

~
.01~

__

~

____- 4____- L____- L____

____

~

__

60

80

100

120

140

0.2

PERCENT OF RATED PEAK REVERSE VOLTAGE."

FIG. 6 SOli
NON INDUCTIVE
LL

ui

~
<{

I-

o
<{

5

r--

s:

l(;~vde

TJ

25°C
f - lMHz

....Vsig-50mVp.p

-

10

100

REVERSE VOLTAGE, VOLTS

+ OSA

1

1.2

1.4

1.6

I"
I
II

- 025
111

50

1.0

tOU
NQNINOUCTIVE

NONINDUCTIVE

<{

(J

5

(approx.)

0.8

REVERSE RECOVERY TIME CHARACTERISTIC
AND TEST CIRCUIT DIAGRAM

( -)

r--....

<1.

0.6

~D'U'C~~----------'

Q.

r---

0.4

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

FIG. 5 - TYPICAL JUNCTION CAPACITANCE
10

T,025O,

I

~

.01

40

20

~

OSCILLOSCOPE
(NOTE 11

\

=

NOTES: 1. Rise Time 7ns max. Input Impedance =
1 megohm. 22pF.
2. Rise Time = 10ns max .. Source Impedance
50 ohms .•

467

'J

- 10

=

-

lem

SET TIME BASE FOR
SO/lOOns/em

BYM07-50 THRUBYM07-400
EGL34A THRU EGL34G
SURFACE MOUNT GLASS PASSIVATED FAST EFFICIENT JUNCTION RECTIFIER
Voltage - 50 to 400 Volts Current - 0.5 Amperes
FEATURES

~*

,t.~~

r

-

DO-213AA

.. ENDS~1

1•• ..:LDERABLE

f'2"'"

d

r
1

,

I

.022(.55,)
.016(406)

+tID'
~-r-'
0,"

.066

-_0:1--

I

(
(

I

.14513.683)
.ml3.l27)

• For surface mounted applications
• High temperature metallurgically
~
bonded
~
• Glass passivated junction
• Plastic package has Underwriters Laboratory Flammability Classification 94V-O
• Ultrafast switching for high efficiency
• High temperature soldering guaranteed: 4S0°C/S
seconds at terminals. COl'll>Iete device submersible temperature of 260°C for 10 seconds in solderbath

MECHANICAL DATA

Dimensions In Inches and (millimeters)
'BIa1Jld.Iead assembly Is covel8d by Patent No. 3,930.306 of 1976 and glass COIIJIOsiion by PalM No. 3,752.701 of 1973

Case: Molded plastic over glass
Tenninals: Plated terminals, sok:lerable per
MIL-STO-7S0, Method 2026
Polarity: Two bands indicate cathode
lsi band denotes device type 2nd band denotes voltage type
Mounting PosUion: Any Handling Precautions: None
Weight: 0.036 gram, 0.0014 ounce

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings al25°C amblenttemperarure unless otherwise specified. ResistiVe or Inductive load.

SYMBOLS

Fast Efficient device: 1st band Is Green
Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
atTT-75°C
Peak Forward Surge Current,
8.3ms single half sine·wave superimposed
on rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage at 0.5A
Maximum DC Reverse Current
TA-25°C
at Rated DC Blocking Voltage
TA=125·C
Maximum Reverse Recovery Time (NOTE 1) TJ=25·C
Typical Junction Capacitance (NOTE 2)
Maximum Thermal Resistance (NOTE 3)
(NOTE4)
Operating Junction and Storage Temperature Range
Polarity Color Bands (2 nd Band)

VRRM
VRMS
Voc

BYM07
·150
-4110 UNITS
·100
·200 -3DO
EGl34A EGL34B EGL34C EGL34r EGL34F EGl34G

-so

50
35
50

100
70
100

150
105
150

200 300
140 210
200 300
0.5

I(AV)

IFSM
VF
IR
TRR
CJ
R9JL
RaJA
TJ,TsTG
Gray

1 Red

10.0
1.25
I 1.35
5.0
50.0
50.0
4.0
70.0
150.0
·65 to +175
I Pink J Orange IBrown IYel10w

NOTES: 1. Reverse Recovery Test Conditions: IF= 0.5A, Ir- 1.0A, Irr - .251\

2. Measured at 1 MHz and applied reverse voltage of 4.0 Volts.
3. Thermal resistance from junction to !erminal, 5.0mm2 copper pads to each !erminal.
4. Thermal resistance from junction 10 ambient, 5.0mm2 copper pads 10 each terminal.

468

400
280
400

Volts
Volts
Volts
Amps

Amps
Volts
j1A
nS
pF
·C/W
·C

RATINGS AND CHARACTERISTIC CURVES BYM07-50 THRU BYM07-400
EGL34A THRU EGL34G

o

W

u::

f=w
~~

a:W

.5

1111

I\.

.4

~~

Ow

"-a:
Wa:
C)::J
«U
a:
W

8.3rr.s SINGLE HALF

'"

I\.

00-

~~

FIG.2 - MAXIMUM NON·REPETITIVE
PEAK FORWARD SURGE CURRENT

FIG. 1 - FORWARD CURRENT
DERATING CURVE

.3

'\

.2

«>

~

100

75

50

25

t--.... .....T._75·C

~

RESISTIVE OR
INDUCi'VE LOrD

.1

!'SINE'WAVE (JEDEelierili

'\

125

150

2 4

6 810

20

406080100

NUMBER OF CYCLES AT 60Hz

175

TERMINAL TEMPERATURE, 'C

r:
z
w

a:
a:
::J

FIG. 3 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS
10

1===
I--

U

o

FIG. 4 - TYPICAL JUNCTION CAPACITANCE

Pulse Width = 300 fl S

10

2%Du1yCycle

a:
~ ffl1.0
a: a:

"Co

./

u.i

U

z

«
f-

Ow

"-0-

I

w:2

::J«

@

(3

«0«

J

0.1

~
«

TJ"25°C

Z

~
~

'"

fo; 1MHz

Vsig_50mVp_p

r--

t--...
~

U

Z

=

10

.6

.8

1.0

1.2

1.4

50

100

REVERSE VOLTAGE, VOLTS

I
.01.4

•

TJ"250 C.#

1.6

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

r:

z

~

a:
::J
U
Ww
wW
a:
a:
WW
>0-

~~
wO

::Ja:

OU

FIG. 5 - TYPICAL REVERSE CHARACTERISTICS
10
T,

1nno

1.0

..
O. 1

~~
~

z
«

~
Z

•

:TJ

.0'
.01

0

20

40

60

25°C

80

100

120

140

PERCENT OF RATED PEAK REVERSE VOLTAGE. %

(8 General Instrument
469

1N6478 THRU 1 N6484
SURFACE MOUNT GLASS PASSIVATED JUNCTION RECTIFIER
Voltage - 50 to 1000 Volts Current - 1.0 Ampere
FEATURES
• For surface mounted applications
,
• High temperature metallurgically
bonded
• Glass passivated junction
• Plastic package has Underwriters Lab.
oratory Flammability Classification 94V-O
• Capable of meeting environmental standards of
MIL-S-19500
• High temperature soldering guaranteed:
450°C/5 seconds at terminals. Complete device
submersible temperature of 265°C for 10 seconds in solder bath

D0-213AB

I

-

-- °2 --

1
I'

1

.022(.5591
.018(.4571

(
(

,I

.285 (5.2071
.ISS (4.699)

Dimensions in inches and (millimeters)

MECHANICAL DATA

case: Molded plastic over glass

'Glass-p/asllcencapsulaJlon 1IlChnIq/JIJ II covered by Patent No. 3,996,602 of
1976;~/IIlIlBIIIbIyto PaIlllllNo. 3,930,306 011976

Terminals: Plated terminals, solderable per MILSTO-750, Method 2026
Polarity: Two bands indicate cathode
1st band denotes device type 2nd band denotes voltage type

~Ql)

-

...

-'Ant _ _ None

Weight: 0.116 gram, 0.0046 ounce

•••

:X,MUM RA17NGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient 1emperature unless otherwise specified. 60 Hz, resistive or Inductive load.
For capacitive load, dera1e current by 20%.

1N

Standard recovery time device' 1st band is White
• Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
• Maximum DC Blocking Voltage
• Maximum Average Forward Rectified Current at
TT=75°C
• Peak Forward Surge Current
8.3ms single half sine-wave superimposed
on rated load (JEDEC Method) TA=75°C
• Maximum Instantaneous Forward Voltage at 1.0A
TA=75°C
TA=25°C
• Maximum DC Reverse Current
TA=25°C
at Rated DC Blocking Voltage
TA=125°C
• Maximum Full load Reverse Current, Full Cycle
Average at TA=75OC
Typical Junction Capacitance (NOTE 1)
• Maximum Thermal Resistance (NOTE 2)

SYMBOLS 6478

VRRM
VRMS
Voc

50
35
50

1N

1N

1N

6478 6480

1N

6481

6482

(NOTE 3)

I(Av)

1.0

Amps

IFsM

30.0

Amps

IR

1.0
1.1
10.0
200

IR(AV)
CJ
RaJl
RaJA
TJ,TsTG

100.0
15
20.0
SO.O
-65 to +175
Gray

Red Orange Yellow Grean

NOTES: 1. Measured at 1 MHz and appUed reverse voltage of 4.0 VOC.

2. lhennal resistance from junction 10 terminal, 6.0mm2 copper pads to each 1enninal.
3. lhennal resistance from junction 10 ambient, 6.0mm 2 copper pads 10 each terminal.
• JEDEC Registered Values
470

1N

100 200 400 600 800 1000 Volts
70 140 280 420 560 700 Volts
100 200 400 600 800 1000 Volts

VF

• Operating Junction and Storage Temperature Range
Polarity Color Bands (2nd Band)

1N

6483 6484 Utm'S

Volts

J1A
J1A
pF

0C!W
OC
Btue

VIolet

RATINGS AND CHARACTERISTIC CURVES 1N6478 THRU 1N6484

FIG. 2 - MAXIMUM NON-REPETITIVE
PEAK FORWARD SURGE CURRENT

,

t-"

FIG. 1 - FORWARD CURRENT
DERATING CURVE
0

Z

W
a::
a::
:::l

W
'-'Ul
a::W
:::la::
UlW

r\.

'\

««

100

~

111

~ ,...

TA - 75~C

15

"'\

125

150

10

3:

a::

5.0

0

II.

"

~

..

75

20

8.3ms SINGLE HALF
SINE-WAVE (JEDEC methOd)

00..

a:::E

RESISTIVE OR
INDUCTIVE LOAD

50

"

25

()

6

25

30

175

4

0..

TERMINAL TEMPERATURE. ·C

6

8

10

20

40

60 80100

NUMBER OF CYCLES AT 60 Hz

FIG. 4- TYPICAL JUNCTION CAPACITANCE

...
Z

W

FIG. 3 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

a::
a::
:::l

Pulse Wldlh

o

~ffl

-

Z

J

Ul::i
:::l « 0 1

13

~

1/1

Vsig-50mVp"p

()

«
U
«
0..
«
()

tSffi

tii

f.l.0MHz

I-

1L0..

i

TJ . 25°C

10

ui

j

1.0

II II
...... r--

II.
0.

300J,.lr.

2D>o Duty Cycle

()

a:

30

10

TJ

2S"C

•
10

I

.0 1

.4

.6

50

100

REVERSE VOLTAGE. VOLTS
.8

, 0

12

'4

, 6

INSTANTANEOUS FORWARD VOLTAGE.
VOLTS
FIG. 5- TYPICAL REVERSE CHARACTERISTICS
10

"T.

100'C

1.0
.4

04
.01

-

"T. ·2S·C

0.1

t0

t
·20

~
40

60

~

80

~
100

i
120

-.J
140

PERCENT OF RATED PEAK REVERSE VOL TAGE,%

- - - - - - - - - - - - - - - (iGenerallnstrument
471

BYM10-50 THRU BYM10-1000
GL41A THRU GL41Y
SURFACE MOUNT GLASS PASSIVATED JUNCTION RECTIFIER

Voltage - 50 to 1600 Volts

Current - 1,0 Ampere
FEATURES

D0-213AB

1ID:

E..IlE ElliS

rl;~~.d 1

--1'--

-+

:~~~

f-1+1.....I--:::'02:::-27:1.5",;59,;")--+I-l-l~~-.
.0181.457)

+--,

.20515.207)
•185 (4.699)

-

-,--

-- '

I ~2=DI :.D08(.201 I
0

,

.

• For surface mounted applications
• High temperature metallurgically
,
bonded
• Glass passivated junction
• Plastic package has Underwriters Lab~
oratory Flammability Classification 94V-0
• Capable of meeting environmental standards of
MIL-S-19500
• High temperature soldering guaranteed: 450°C/5
seconds at terminals.Complete device submersible temperature of 265°C for 10 seconds in solderbath

MECHANICAL DATA

Dimensions in inches and (millimeters)

Case: Molded plastic over glass
Terminals: Plated Terminals, solderable per MILSTD-750, Method 2026
Polarity: Two bands indicate cathode

'GJus.p/asIIc B/lCIIjlIJU/alion IIlchnIque Is CI1WIIIld by Parent No. 3.996,602 of
19711;brazod.lead IIB8eIIIbIy 11/ Pa/elll No. 3,930,306 of 1976

~
. . ' @

, . . . . . .Position:
. . . "'""''''''
...... Precautions:
" " ' ' ' ' ' - ' ' 'None
''
Mounting
Any Handling
Weight: 0.116 gram, 0.0046 ounce

:XlMUM RAnNGS AND ELECTRICAL CHARACTERlSncs
Ratings al250C ambient temperature unless otherwise specified. 60 Hz. resistive or inductive load. For capacitive load, derate current by 20%.
SYllBOi.S

Standard recovery device: 1st band is White
Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Curren
SEE FIG. 1
Peak Forward Surge Current
8.3ms single half sine-wave superimposed
on rated load (JEDEC Method)
Maximum Instantaneous Forward
Voltage at 1.0A

BYM1D
,1011 -20/1

-50

...fO/I

-60/1

BYM1DA
-80/1 10/10

UNITS

GL41 A GL41B GL410 GL41G GL41J GL41K GL41M GL41T GL41Y

VRRM 50
VRMS 35
Voc

100 200 400 600 800 1000 1300 1600
70 140 280 420 560 700 910 1120
100 200 400 600 800 1000 1300 1600

50

Volts
Volts
Volts

I(AV)

1.0

Amps

IFSM

30.0

Amps

VF
TA-25°C
TA=125°C
IR
Maximum Full Load Reverse Current
Full Cycle Average at TA =75°C
IR(AV)
Typical Junction Capacitance (NOTE 1)
CJ
Maximum Thermal Resistance (NOTE 2)
R8JL
R8JA
(NOTE 3)
Operating Junction and
Storage Temperature Range
TJ, TSTG
Polarity Color Bands (2 nd Band)

1.1

Maximum DC Reverse Current
at Rated DC Blocking Voltage

10.0
50.0

I

1.2

Il A

30.0
15.0
30.0
75.0

Gray

I Red

NOTES: 1. Measul8d at 1 MHz and applied reverse voltage of 4.0 Voc.
2. lhennall8sistance from junction to tanninal, 6.0mm 2 copper pads to each tennlnal.
3. lhennall8sistance from junction to ambient, 6.0mm2 copper pads to each tanninal.

472

IlA
pF

°C/W
-65 to +150

-65 to +175
Orange Yellow Green

Volts

Blue

Violet

Whh Brawn

°C

RATINGS AND CHARACTERISTIC CURVES BYM1D-50 THRU BYM1D-1000
GL41A THRUGL41M

FIG. 2 - MAXIMUM NON-REPETITIVE
PEAK FORWARD SURGE CURRENT

FIG. 1 - FORWARD CURRENT DERATING CURVE
100,...._~_-~-.,.--r--,

.75~-I--'l:-~----;A--+---I

50~-I--+-~-~-+---I

25~-I--+--+-~-~---I
60Hz
RESISTIVE OR
INDUCTIVE LOAD
O~~-~-~--L-~~
25
50
75
100
150
175

4

125

TERMINAL TEMPERATURE,

w
a:
a:

10

~
_

Pulse Width

FIG. 4 - TYPICAL JUNCTION CAPACITANCE

300J.,ls

2% Duty Cycle

30

::>

~[3

1.0

~ ....

' / OL41K·Y

I

LL

a.

W
()

OW

Z

I

LLo..

oW
Z
«
f-

I

~
GL41A.J

a: a:

en:::;:
::> «

40 6080 100

C

()

o
a:

20

FIG. 3 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

~

z

0

6 8 10

NUMBER OF CYCLES AT 60Hz

0.1

«

TJ

~ 25~C

10

f-l.0MHz
Vsig-50mVp'p

•

,

f-

/TJO;;25"C

a«
0..

«
()

Z

~01

en
~

1.0

1.2

1.4

'0

1.6

50

100

REVERSE VOLTAGE, VOLTS

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

FIG. 5 - TYPICAL REVERSE CHARACTERISTICS
~~

era:
ww

10

>0..

en 0
::>er

10

O()
~~

~~ 0'

~m
~~

.04

~6

.01,::=

l~"--.::':_ _~_--L_ _-'-:-_-'~_:+':-_-'
20

40

60

80

100

120

140

PERCENT OF RATED PEAK REVERSE VOL TAGE.%


«
~

'"

~~75

\ j

50 ohms

125

~~

\
_ 1.0

t ff3
wo::

I

- 025
10

1.50

W

ii:

.6

1.0

.8

1.2

1.4

~

«
o

1.6

INSTANTANEOUS FORWARD VOLTAGE, VOLTS
10

FIG. 5 - MAXIMUM NON-REPETITIVE
PEAK FORWARD SURGE CURRENT

~

FIG. 5- TYPICAL REVERSE CHARACTERISTICS

z

30

f' ~

8.3ms

SI~~LE HA~f SINE-WAVE
(JEDEC Method)

100

REVERSE VOL TAGE, VOLTS
W
0::
0::

::J

L!,~}

~

o
wen
en
w
0::0::

ww
>0..

.4

~~

0.1

w::!;
0::«

~

TJ = 100"C
1.0

TJ • 25°

00

~~04

~

Z
2

4

6 8 10

20

40 60 60 100

NUMBER OF CYCLES AT 60Hz

~

Z

.01 " , , -

a

20

40

60

80

100

120

140

PERCENT OF RATED PEAK REVERSE VOLTAGE,%

- - - - - - - - - - - - - - (It General Instrument
475

BYM12-50 THRU BYM12-400
EGL41 A THRU EGL41G
SURFACE MOUNT GLASS PASSIVATED FAST EFFICIENT JUNCTION RECTIFIER
Voltage - 50 to 400 Volts
Current - 1.0 Ampere
FEATURES
D0-213AB

r

1
I'

lBt lMd
2"Bond

"1

--LI

·~~w:

:m

( 2.6671

--+---

(
2.4iii

I

-L_'

I -i---:-.---,
I 0,.0. :]081.20) I

.022(.559)
.0181.(57)

.205 15.207)
.185 (4.6991

Dimensions in inches and (millimeters)

• For surface mounted applications
• High tel'llJerature metallurgically
,
bonded
• Glass passivated junction
.
• Plastic package has Underwriters L a b - "
oratory Aamrnability Classification 94V-O
• Superfast recovery times for high efficiency
• Capable of meeting environmental standards of
MIL-S-19500
• Ultra fast switching for high efficiency
• High temperature soldering guaranteed:
450°CI 5 seconds at terminals. Complete device
submersible temperature of 265"0 for 10 seconds
in solder bath

MECHANICAL DATA

'GJass.pIasMc encapsuIaIIon technique Is COII9red by Patent No.
3,996,602 of 1978; braz9d.lead assembly to Patent No. 3,930,308 of

1978

~
• • • Ql)

·~XlMUM

Case: Molded plastic over glass
Terminals: Solderable per MIL-STO-750, Method 2026
Polarity: Two bands indicate cathode
, . . . . . . Position:
. . . . . . .Any
." " "
' ' ' ' ' ' 'Precautions:
' ' ' ' ' ' ' ' - 'None
'''
Mounting
Handling
Weight: 0.116 gram, 0.0046 ounce

RA77NGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25'0 ambient lemperature unless otherwise specified. Resistive or inductive load.
BY"'~

SYIIIBOL~

Fast efficient devices:

lSI

band is green

-5D

-100

-1511

·200

300

-400

EGL
41A
50
35
50

EGL
418
100
70
100

EGL
41C
150
105
150

EGL EGL
410 41F
200 300
140 210
200 300

EGL
41G
400
280
400

Maximum Recurrent Peak Reverse Voltage
VRRM
Maxi mum RMS Voltage
VRMS
Maximum DC Blocking Voltage
Voe
Maximum Average Forward Rectified Current at Tt=75·C IIAV)
Peak Forward Surge Current, 8.3ms single haH sinewave superimposed on rated load (JEDEC Method)
IFSM
Maximum Instantaneous Forward Voltage at 1.0A
VF
Maximum DC Reverse Current
TA-25·C
at Rated DC Blocking Voltage
TA=125'C
IR
Maximum Reverse Recovery Time (NOTE 1) TJ=25·C
TRR
Typical Junction Capacitance (NOTE 2)
CJ
Maximum Thermal Resistance RlhJL (NOTE 3)
R9JL
RlhJA (NOTE 4)
R9JA
Operating Junction and Storage Temperature Range irJ,TSTG
Polarity Color Bands (2 00 Band)
Gray
NOTES:

1. Reverse Recovery Test Conditions: IF. O.5A, IR = 1.0A, Irr = O.25A.
2. Measured at 1 MHz and applied reverse voltage of 4.0 Volts.
3. Thermal resistance junction kl terminal, 6.0mm2 copper pads to each terminal.
4. Thermal resistance junction to ambient, 6.0mm2 copper pads to each terminal.
476

1.0
30.0
1.0

Red

1.25

5.0
50.0
50
15.0
30.0
'60.0
-65 to +175
Pink I Orange Brown Vellow

UNITS

Volts
Volts
Volts
Amps
Amps
Volts
ILA
nS
pF
·CIW
·C

RATINGS AND CHARACTERISTIC CURVES BYM12-50 THRU BYM12-400
EGL41A THRU EGL41G

~

W
I!:
I!:

1.De

::)
(J

1\

o

w

u:
~[fJ

WI!:
ex: W

li1~
«<0:
3:
I!:

oLL

.75

50

w

~ [fJ

en

\

o

«

50

100

75

w

Oa.
I!:::;

«

\

RESISTIVE OR
INDUCTIVE LOAD

W

25

::)I!:

25

(9

,

FIG. 2 - MAXIMUM NON-REPETITIVE
PEAK FORWARD SURGE CURRENT
o·

FIG. 1 - FORWARD CURRENT
DERATING CURVE

z

125

0

"

<0:

~~, 5

LL I!:
l<: I!:

« ::)
~O

~

>

TERMINAL TEMPERATURE.

10

5

4

40 60 80100

20

C

FIG.3 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

~

Z

8 10

NUMBER OF CYCLES AT 60Hz

UJ
0

6

.....

175

150

25

W

"- --.

OUJ

I!:

«

TA" 75°C
8.3ms Single Half
Sine-Wave (JEDEC Method)

FIG. 4 -

TYPICAL JUNCTION CAPACITANCE

10

I!:
I!:
::)

o
o

I!:

~[fJ

t:==ISYM12-S0 thru
~ BYM12-200
EGL41A- .

1.0

EGl41D

.L...

~YM12.300 ,~
thru BYM12-40Q

I!: 0::
LLa.

en
Z

I

I

en::;
::)«

o
UJ
z
«
fZ
«
f-

•

EGl41F·EGl41G

OW

I I

0.1

I

-

TJ = 25 D C

PUI~W~: ~~~ MS

::

I I

10

01
1.2

1.0

.8

1.4

1.8

50

100

REVERSE VOLTAGE, VOLTS

INSTANTANEOUS FORWARD VOLTAGE. VOLTS
~
Z

FIG. 5- TYPICAL REVERSE CHARACTERISTICS

UJ

I!:
I!:

10

::)

o
wen
enW

.4

I!: I!:
WW

>a.

10

W::;
I!:

«

enO

4

::)I!:

000.1

~~
~04

t;;

0

20

40

60

80

100

120

140

Z

PERCENT OF RATED PEAK REVERSE VOLTAGE.%

(i) General Instrument
477

GLL4735 THRU GLL4763
1.0 WATT SURFACE MOUNT GLASS PASSIVATED ZENER
Voltage - 6.2-91.0 Volts Power Rating - 1.0 Watt
FEATURES
• Plastic package has Underwriter Labaoratory Flammability Classification 94 V-O
~
• For surface mounted applications
• Glass paSSivated chip j u n c t i o n /
• Low zener impedance
• Excellent clamping capability
• High temperature soldering guaranteed: 250°C!10
seconds! at terminals

DO-213AB

{r~T~'jt~_
I
I

I

.022 (.559)
.018(.457)
.205(5.2011
.185 (4.699)

--+.'
_

'

I 1

...... 11,.0,
_

_

MECHANICAL DATA

:.~08('20) I

Case:JEDEC DO-213AB Molded plastic over passi
vated junction
Terminals: Solder plated, Solderable per MIL-STD750, Method 2026
Polarity: Red band denotes cathode
Mounting Position: Any Handling Precautions: None
Weight: 0.116 grams, 0.0046 ounce

.

Dimensions in inches
and
(millimeters)
Ratings at 25"C ambient temperature unless otherwise specified.

OPERATING JUNCTION AND STORAGE TEMPERATURE RANGE· 55"C to +150"C
'Nominal
Zener
Vohage
atlzr
Vz
Volts

Type

GLL4735
GLL4736
GLL4737
GLL4738
GLL4739
GLL4740
GLL4741
GLL4742
GLL4743
GLL4744
GLL4745
GLL4746
GLL4747
GLL4746
GLL4749
GLL4750
GLL4751
GLL4752
GLL4753
GLL4754
GLL4755
GLL4756
GLL4757
GLL4758
GLL4759
GLL4760
GLL4761
GLL4762
GLL4763

6.2
6.8
7.5
8.2
9.1
10
11
12
13
15
16
16
20
22
24
27
30
33
36
39
43
47
51
56
62

68
75
62
91

Maximum
DC
Power
Disslptlon
at TT=75"C
PO

Wahs
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1,0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

Maximum Dynamic
Impedence
Test
Current
Izr
mA

Zzral
Izr
Ohms

ZzKal

41.0
37.0
34.0
31.0
26.0
25.0
23.0
21.0
19.0
17.0
15.5
14.0
12.5
11.5
10.5
9.5
6.5
7.5

2.0
3.5
4.0
4.5
5.0
7.0
6.0
9.0
10.0
14.0
16.0
20.0
22.0
23.0
25.0
35.0
40.0
45.0

700
700
700
700
700
700
700
700
700
700
700
750
750
750
750
750
1000
1000

7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.7
3.3
3.0
2.0

50.0
60.0
70.0
60.0
95.0
110.0
125.0
150.0
175.0
200.0
250.0

1000
1000
1500
1500
1500
2000
2000
2000
2000
3000
3000

Maximum DC Reverse
Leakage Current

Maximum
surge
Current

Maxlllllm
Forward
Vohage
at200rnA

(NOTE II
IZK
mA

IR
uA

1.0
1.0
0.5
0.5
0.5
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25

10.0
10.0
10.0
10.0
10.0
10.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0

Ohms

'Standard Voltage Tolerance ±10%, SuffiX A±5%

NOTE 1: Surge Current is a non-repetitive, 8.3 mS pulse width square wave or
equivalent sine-wave superimposed on Izr per JEDEC method.
478

~:Ik

VF
Vohs

3.0
4.0
5.0
6.0
7.0
7.6
6.4
9.1
9.9
11.4
12.2
13.7
15.2
16.7
16.2
20.6
22.8
25.1

730.0
660.0
605.0
550.0
500.0
454.0
414.0
360.0
344.0
305.0
285.0
250.0
225.0
205.0
190.0
170.0
150.0
135.0

27.4
29.7
32.7
35.6
38.8
42.6
47.1
51.7
56.0
62.2
69.2

125.0
115.0
110.0
95.0
90.0
60.0
70.0
65.0
60.0
55.0
50.0

1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.11
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2

VR
Vohs

m

RATINGS AND CHARACTERISTIC CURVES GLL4735 THRU GLL4763

FIGURE 2 -

FIG. 1 -

z

TYPICAL ZENER IMPEDANCE

TJ

MAXIMUM CONTINUOUS POWER DISSIPATION

c::

25°C

(rms) ::: 0 1 IZ (de)

1.00

\

o

~(jj

0.75

lOa

m

om
ffi~

\

0.5

~~

a.

w
m
a:
w

0.25

t-il
1.
p.e.

10

\

\

Board mounted on

anmxjrnrruc2m'j' Cu. pad"

[U
a:

025

.50

75

100

125

~

a:
a:
:::>

150

FIG. 4 -

Ww
>Q.
w::;;

10

aJ

:n~

Z

Z

ff)

~

Pulse Width - 300 /.1 S

L

«

TYPICAL REVERSE CHARACTERISTICS

---

20

TJ = 2S"C

60

80

100

2% Duty Cycle

I

.01

500

PERCENT OF RATED ZENER VOLTAGE, %

TJ '" 25°C

l-

200

TJ -100"C~

0.02
0.01 0

~B

/

I-

100

0.5

~~ 0.2
;: ~ 0.1
~
0.05

/.

«

50

2
1

a:«
m0
:::>a:

01

20

10
5

wm
mw
a: a:

Cl

@

10

175

FIG. 3 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

10

a

IIZT, ZENER TEST CURRENT, rnA

u

a:
~ff3
a: a:
OW
LLa.
m::;;
:::>«

5

0.5 1.0

TERMINALS TEMPERATURE, °C

Z
w

.':'•• 62". -

1.0

~

I
.4

.6

.8

1.2

1.0

'"

1.6

INSTANTANEOUS
FORWARD VOLTAGE, VOLTS
I-

Z

FIG. 5 -

TYPICAL TEMPERATURE COEFFICIENTS

w

i3

u::
W
o

LL

110
90

U

70

~~
:::>~~

50

a:
w

30

::;;

10

./

......

.L
.JI'

a.

w

.....

Vzat Izt

I-

g

10

20

30

40

50

60

70

80

90

100

Vz. ZENER VOLTAGE, VOLTS

- - - - - - - - - - - - - - - eGenerallnstrument
479

•

ZGL41-100 THRU ZGL41-200
1.0 WATT SURFACE MOUNT GLASS PASSIVATED ZENER
Voltage - 100 - 200 Volts Power Rating - 1.0 Watt
FEATURES
• Plastic package has Underwriters Labaoratory
Flammability Classification 94 V-O

DO-213AB

• For surface mounted applications
~LDERA8LE ENDS~

I

-

.. - _ _ 02

• Glass passivated junction
• Low zener impedance
• Excellent clamping capability

-(

.

I

1

.022 (,5591
.018(.4571

,I

.205 (5.207)
•185 (4. "91

• High temperature soldering guaranteed:
250"0/10 seconds/at terminals

.

MECHANICAL DATA
Case:JEDEC DO-213AB molded plastic over
passivated junction

Terminals: Solder plated solderable per MIL-STD750, Method 2026

Dimensions in inches
and
(millimeters)

Polarity: Red band denotes cathode
Mounting Position: Any
Handling Precautions: None
Weight: 0.116 grams, 0.0046 ounce

MAXIMUM RA TINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25'C ambient IIImperature unless otherwise specified.
OPERATING JUNCTION AND STORAGE TEMPERATURE RANGE ·55'C to +150'C

MAXIMUM
'NOillNAl

TYPE·

IlAXIIUIi DYNAIIC
IllPEDANCE

DC

ZENER
POWER
VOLTAGE DlSSlPAllON
TEST
at T1=75'C CURRENT
atlzT
PO
VZ
l;zratlzT
IzT
Volts
Watts
mA
0IIns

IIAXIIUII DC REVERSE
LEAKAGE CURRENT

.XIIIIII
SURGE
CURRENT

..

IIAXIIUII
FORWARD
VOLTAGE
at 200mA

(NOlEI1

IZK

IR

Ohms

mA

la

@l

at

VF

)1A

VR
Volts

mAde

VallS

ZGL41-100

100

1.0

3.7

250

3100

0.25

1.0

76.0

10.0

1.5

ZGL41-110

110

1.0

3.4

300

4000

0.25

1.0

83.6

9.1

1.5

ZGL41-120

120

1.0

3.1

380

4500

0.25

1.0

91.2

8.3

1.5

ZGL41-130

130

1.0

2.9

450

5000

0.25

1.0

98.8

7.7

1.5

ZGL41-140

140

1.0

2.7

525

5500

0.25

1.0

106.4

7.1

1.5

ZGL41-150

150

1.0

2.5

600

6000

0.25

1.0

114

6.7

1.5

ZGL41-160

160

1.0

2.3

700

6500

0.25

1.0

121.6

6.3

1.5

ZGL41-170

170

1.0

2.2

800

6750

0.25

1.0

129.2

5.9

1.5

ZGL41-180

180

1.0

2.1

900

7000

0.25

1.0

136.98

5.6

1.5

ZGL41-190

190

1.0

2.0

1050

7500

0.25

1.0

144.4

5.3

1.5

ZGL41-200

200

1.0

1.9

1200

8000

0.25

1.0

152

5.0

1.5

• Slandard Voltgage Tolerance ±10%, Suffix A ±-5%.
NOTEI:Surge Current is a non-repetitve, 8.3mS pulse width square wave or equivalent sine-wave superimposed on IZT
JEDEC Method.

480

RATINGS AND CHARACTERISTIC CURVES ZGL41·100 THRU ZGL41·200

FIG. 2 FIG. 1 -

MAXIMUM CONTINUOUS POWER DISSIPATION

TJ - 25°C

1.00

z
o

2000

\

i=

«
0..

0.75

Ci5
(fJ

r\

0.5

0.25

w

(fJ

75

100

10
05 10

\.

125

\

w

a:
a:

150

10

5

iU~

2

55
w-

/

(fJ::;;

I

/

0.1

01

Z::E

0.2

~~

0.1

=

TJ "25°C

I

50

100

200

500

TJ"00"C~

----

0.01 0

Z

«
fz
«

20

1
0.5

~~ 0.05
lii§
~U 0.02

u..o..

~

10

~~

~<5

o

f(fJ

W(fJ
WW

u

:::>«
ow

10

FIG. 4 - TYPICAL REVERSE CHARACTERISTICS

fiG. 3 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

1.0

50

175

:::>

a:
~~
a: a:
Ow

20

Izr, ZENER TEST CURRENT, rnA

TERMINAL TEMPERATURE."C

r:
z

_,vz,.,17~~

20

P.C. B;'rd rnou~ted on
Bmmx8mmx2mm Cu. pads
50

Vz 180V
• Vz .15~~

50

rJJL

a:
w
>
w
a:

500
200
100

\

3:«
03:
0..

IZ (rms) . 0.1 IZ (d.C):

,VZ": ..

1000

O(fJ

ffi~

TYPICAL ZENER IMPEDANCE

20

TJ

60

1" 25°C_

60

100

PERCENT OF RATED ZENER VOLTAGE, %

Pulse Width ~ 300,us 2% Duty Cycle

I

-

I
.8

1.0

1.2

16

1.4

INSTANTANEOUS
FORWARD VOLTAGE, VOLTS
f-

FIG. 5 -

TYPICAL TEMPERATURE COEFFICIENTS

Z

W

U

220

W

200

u

180

u::
u..

o
~~
:::>~
~~
a:

",-

w

120

::E

100

&

~

",-

150

0..

W
f-

~

Vzatlzl

JfI'

80
100

""

~

" "

""

110 120 130

140

150

160

170

180

190200

Vz, ZENER VOLTAGE, VOLTS

- - - - - - - - - - - - - - - (D General Instrument
481

•

BYM13-20 THRU BYM13-60
SGL41-20 THRU SGL41-60
SURFACE MOUNT SCHOTTKY RECTIFIER
Voltage - 20 to 60 Volts Current - 1.0 Ampere
FEATURES
• For surface mounted applications
• Plastic material used carries Underwriters Laborataory Flammability Classifications 94V-O
• Metal to silicon rectifier,
-.,
majority carrier conduction
• Low power loss, high efficiency
.
• High current capability, low VF
.
• For use in low voltage, high frequency inverters,
free wheeling and polarity protection applications
• High temperature soldering guaranteed:
250°C/10 seconds at terminals

DD-213AB

JFFit~ID
I
I

.0'8(.4571
.205 (5.207)
.185 (4.699)

I

1

-0
02"'D, ~.OO8 (.20)

I

MECHANICAL DATA
Case: J EDEC DO-213AB molded plastic
Tennlnals: Solder Plated solderable per MIL-STD750, Method 2026
Polarity: Two bands indicate cathode
1sl band denotes device type 2nd band denoles voltage type
Mounting Position: Any
Handling Precautions: None
Weight: 0.116 gram, 0.0046 ounce

Dimensions in inches
and
(millimeters)

MAXIMUM RAnNGS AND ELECTRICAL CHARACTERISnCS
Ratings at 25°C ambient 1emperalure unless otherwise specified.
Resistive or Inductive load.

BYNl3
SYMBOLS

-20

-30

-4/1

-511

-60

UNTrS

Schottky devices: 1st band is orange
SGL41·20 SGL41·30 SGL41·40 SGL41-50 SGL4HIO
60
Volts
Maximum Recurrent Peak Reverse Voltage
20
30
40
50
VRRM
Maximum RMS Voltage
42
Volts
14
21
28
35
VRMS
Volts
Maximum DC Blocking Voltage
40
60
20
30
50
Voc
Maximum Average Forward Rectified Current
(SEE FIG. 1)
Amps
I(AV)
1.0
Peak Forward Surge Current
8.3ms single half sine-wave superimposed
Amps
on rated load (JEDEC Method)
30.0
IFsM
Volts
Maximum Instantaneous Forward Voltage at 1.0A
.50
VF
I .70
Maximum Reverse Current
0.5
TJ=25°C
at Rated DC Blocking Voltage
mA
10
TJ=100°C
IR
Typical Junction Capacitance (NOTE 1)
110.0
80.0
pF
CJ
I
Maximum Thermal Resistance RthJL (NOTE 2)
30.0
R8JL
0c/w
R8JA
75.0
RthJA (NOTE 3)
Operating Junction Temperature Range
-55 to +125
TJ
°C
I -55 to +150
Storage Temperature Range
-55 to +150
°C
TSTG
Polarity Color Bands (2 00 Band)
Gray
Redl
Orangel YeUowl Green
NOTES:

1. Measured at 1 MHz and applied reverse voltag~ of 4.0 V:!f..
2. Thermal resistance Junction to terminal, .024 In (6.omm copper pads to each terminal.
3. Thermal resistance Junction to ambient, .0241n2 (6.omm2) copper pads to each terminal.
482

RATINGS AND CHARACTERISTIC CURVES BYM13·20 THRU BYM13·60
SGL41·20 THRU SGL41·60
FIG. 2 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

r

Z

W

~

FIG. 1 -

ll!a:

1.0 , . . -. .-

:::l

o
a:

....

:::l

<1:",

~ '" .751--+---t
a: W
..:a:

3: w

f2~
~

W

25

oW

100

125

r

175

en
Z

TERMINAL TEMPERATURE, °C

SGL41-20
SGL41-30
SGL41-40

-

l

0.1

1

.3

.5

t-- rt-- r -

.7

_

SGL41-50
SGL41-6D

.91.11.3151.71.921

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS
FIG. 38 -- TYPICAL REVERSE CHARACTERISTICS

FIG. 3A - TYPICAL REVERSE CHARACTERISTICS
100

Puise Width.300""
2% Duty Cydo

,

..:

150

TJ-25"C

Z
Z

75

50



J

en:;: 1. 0

:::l":

.251-_+-_+_-+_-+--'~--'~+------l

0..
W:;:
a:..:
en:::l--'
o:::!

~

1.0

Tj

.10

75° C

1

1-

w:;:

z

""
W:::!
a:: 15
Ula::

5!.l
W:::!

Zt-=

~~
f!'8!
Ul;:,

;;:;0

10

\.

I--- !-T.... l00·C

.4
T....25·C

0.1
.04

.01

o

20

40

(UL94 v-o)

~~I-

4
1.0

~~AOUE

UL RECOGNIZED FLAME.RETARDANT
MOLDING COMPOUND

60

60

100

120

140

PERCENT OF RATED PEAK REVERSE VOLTAGE. %

A:fRl

ENCAPSULATED
BRAZED CONSTRUCTION

SOLID BRAZING
LOW RESISTANCE. EXCELLENT
SURGE CAPABILITIES

- - - - - - - - - - - - - - - (iGenerallnstrument
489

•

RGF1A THRU RGF1M
SURFACE MOUNT GLASS PASSIVATED
FAST SWITCHING SILICON RECITFIER
VOLTAGE - 50 to toDD Volts CURRENT - 1.0 Ampere
FEATURES
D0-214BA

..

.040(1.02)

.1

I_~

.181(4.75) ~

.096(2.441

:::'::~~~:~:

-.L.~=r-'"-t=~!e=-l

~TYP. II

_ -_______,

• Plastic Package has Underwriters Laboratory
Flammability Classification 94 v-o
• Ideal for surface mounted automotive applications
• High temperature metallurgically bonded constructed rectifiers
• Glass passivated junction
• Built-in strain relief
• Easy pick and place
• Fast switching for high efficiency
• High temperature soldering guaranteed:
450°C/5 seconds at terminals
• Complete device submersible temperature of
265°C for 10 seconds in solder bath

~
:~::~:~~

'
.196(4.981
.226(5.741

Glass-Plaelit; encapsulation techn;q1Hl is covefMl by Patent No. 3.996.602 of

'976;brazetJ.lead assembly to Patent No. 3,930,306 011976.

,

---------M-E-C-H-A-H-l-,C-,A-L-D-A-r;-j4Case: JEDEC DO-214AB molded plastic over
glass paSSivated junction
Terminals: Solder plated solderable per MILSTD-750, 2026
Polarity: Color band denotes cathode
Standard Packaging: 12mm tape
(EIA SrD RS-481)
Weight: 0.0048 ounces, 0.120 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at2S0C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load.
SI'IIBOLS IIGF1A 1IGF18 I/GF1D RGFIG RGFIJ IIGF1K RGFIII

Maxi mum Recurrent Peak Reverse Voltage

VRRM

50

100

Maximum RMS Voltage

VRMS

35
50

Maximum DC Blocking Voltage

Voc

Maxi mum Average Forward Rectified Current
atTL=120oC

I(AV)

Peak Forward Surge Current 8.3ms single half sinewave superimposed on rated load (JEDEC method)
Maximum Instantaneous Forward Voltage at 1.0A

UNITS

200

400

600

SOO 1000

Volts

70

140

560

Volts

200

2S0
400

420

100

600

SOO 1000

700

Volts

1.0

Amps

IFSM

30.0

Amps

VF

1.30

Volts

IR(AV)

50.0

IlA

Maximum Full Load Reverse Current,
Full Cycle Average, TA=55°C
Maximum DC Reverse Current

TA=25°C

at Rated DC Blocking Voltage

TA=125°C

Maxi mum Reverse Recovery li me (NOTE
Typical Junction Capacitance (NOTE

5.0

2)

Maximum Thermal Resistance (NOTE 3)
Operating Junction and Storage Temperature Range

150

250

500

IlA
ns

CJ

S.5

pF

R9JL

30.0

·C/W

TJ,TsTG

-65 to +175

·C

NOTES: 1. Reverse Recovery Test Conditions: IF.D.5A, IA-1.0A. Irr=0.25A.
2. Measured at 1.0 MHz and Applied Vr-4.0 volts.
3. P.C. board mounted on 5.0mm2 (.013mm thick) copper land areas.

490

100

IR
Trr

1)

RATINGS AND CHARACTERISTIC CURVES RGF1A THRU RGF1M

0_".

FIG 1-REVERSE RECOVERY TIME CHARACTERISTIC
AND TEST CIRCUIT DIAGRAM

...,
(-I

w

u::

I-r... -...j

100

NONINDUCTIVE

NONNDUCTIVE

O.V.T

25Voc
(appro •.)

~ ~ 1.01-+-+-+-~11~1Ii::H-1+H-+H-+H
~~

iIt ~~ H-+I1;~
.............~,+r-o.--+''''''N:-+-H-H
~
0.5

-0...

(-I

FIG 2- FORWARD CURRENT
DERATING CURVE

o

RESISTIVE CIA

~~
~

.......

NOTES: 1. Rise Time = 7ns max. Input Impedance = lmegohmn. 22pF.
2. Rise Time = 10ns max. Source Impedance = 50 ohms.

t.::J

~""

0 l-C_OP_PE_R--"LA.:..N"O"":..;::.
....
-'-_~~...L...I....LJ~

0

~

·1.0

.....

~~~=~l'=NTEOON5~m'

100

110

....~~~ ~'~n~!n

120

130

140

150

160

176

LEAD TEMPERATURE, "C

lOt. tern

FIG 4 - TYPICAL JUNCTION CAPACITANCE
.~

. r,:~5-C-

FIG 3 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

•f

10

. MHz

Vsil = 5OmVp·p

lOr-...

t"PULSE WIDTHoo3OOJ

I
20

FIG. 4 - TYPICAL JUNCTION
CAPACITANCE

EGF1A-D

0

8 8 10

175

160

10

z~

iilill

4

""' ....

NUMBER OF CYCLES AT 60 Hz

FIG. 3 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

w

JjDE1C

2

1

LEAD TEMPERATURE:C

a:
a:
;:)

1'Iloo.

TL_125"C
8.3rns SINGLE HALF SINE-WAVE

1

1.2

CAVITY FREE
(GLASS PASSIVATED JUNCTION)

I

1.4

1,6

1.8

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

FIG. 5 - TYPICAL REVERSE CHARACTERISTICS
10
... 125"C

4

~

""..

1.0

.4
T...25"C
0.1
.04
.01

o

-

- '20

'rJ-

COMPLETELY
ENCAPSULATED
BRAZED CONSTRUCTION

~

40

SO

SO

100

120

140

PERCENT OF RATED PEAK REVERSE VOLTAGE, %

- - - - - - - - - - - - - - - (I Generallnsbument
493

•

• p. R • E. L· I • M • I • N • A • R. Y •

S1A THRU S1J
SURFACE MOUNT RECTIFIER
VOLTAGE - 50 to 600 Volts CURRENT - 1.0 Amperes
FEATURES
•
•
•
•
•

For surface mounted applications
_
Low profile package
Built-in strain relief
Easy pick and place
Plastic package has Underwriters
Laboratory Flammability Classification 94V-O
• Glass passivated chip junction
• High temperature soldering:
250°C/10 seconds at terminals

D0-214AC
.05211.32)
.05811. 471

1

f

.100(2.54)
.110(2.79)

1_ . 157 (3.99) _ _1

1

.177(4.50)

t

MECHANICAL DATA

.07811.98)
~ ~----~------~

Case: Molded plastic
Terminals: Solder plated, solderable per MIL-STD-

l
1- OOS 1.127) :
max.

I

750, Method 2026

Polarity: Indicated by cathode band
Standard Packaging: 12mm tape

+ _____________.1 ,.194(4.93).
I .208(5.281

(EIA STD RS-481)

Dimensions In Inches

Weight: 0.002 ounces, 0.064 gram

and

(millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25·C ambient temperature unless otherwise specifl8d.
Single phase, half wave, 60 Hz, resistive or inductive load.
For capacitive load, derate current by 20%.

Maximum Recurrent Peak Reverse Voltage
Maximum RMS voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at TL=110·C
Peak Forward Surge Current
.8.3ms single hall sine-wave superimposed on
rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage at 1.0A
Maximum DC Reverse Current
TA=25·C
at Rated DC Blocking Voltage
TA=125·C
Typical Reverse Recovery li me (NOTE 1)
Typical Junction Capacitance (NOTE 2)
Typical Thermal Resistance (NOTE 3)

SYMBOLS

S1A

VRRM
VRMS
Voc

50
35
50

SfB
100
70
100

S1D
200
140
200

S1G
400
280
400

SfJ
600
420
600

UNITS
Volts
Volts
Volts

I(AV)

1.0

Amps

IFSM

30.0

Amps

VF

1.10
1.0
50.0
1.8
12.0
27.0
75.0
-55 to +150

Volts

IR
Trr
CJ
R9JL
R9JA
Operating Junction and Storage Temperature Range TJ,TsTG

NOTES:
1. Reverse Recovery Test conditions: IFcO.5A, IR=1.0A, Irr=0.25A.
2. Measured at 1.0 MHz and applied Vr=4.0 volts.
3. 5.0mm2 (.013mm thick) land areas.
494

I1A
I1s
pI
·CIW
·C

RATINGS AND CHARACTERISTIC CURVES S1A THRU S1J
FIG 2 - MAXIMUM NON REPETITIVE
PEAK FORWARD SURGE CURRENT

FIG. 1 - FORWARD CURRENT DERATING CURVE

o

,

1.2

!Y
!!,

~ffl

a:: ffi
~!i

0.8

.2o;~. (s.o.l,~ xo!s ",I I
t- ;nchos(o.o13mm)

f2 ~

wa:

~

~

a

0.4

,

t--'

100

t--

20

40

60

....

\

1

191

0.2

-

~

Thick Copper Land Areas

~~ 0.6

a:!z

,

, ,

r- 8.3ms Single HaH
t-- Sine-Wave

~
80

100

120

1\

140

f-- TJ-TJ",""
2

I II

0.001

o

20
10

~ en

@~
~!5

=

0.2

~ 0

0.1

0.0 5
0.0 2

140
PERCENT OF PEAK REVERSE VOLTAGE. %

100

120

200

=' Un;.; Mounted
=~::.\~E~~"

I
0.6

0.8

1.2

1.4

1.6

1.8

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

FIG.5- TRANSIENT THERMAL IMPEDANCE

soc

..",.

2

O.Ob.4
80

100

~~ 0.5

TJ-25~

60

50

21-

TJ _75CC

40

20

5

gs~

TJ=12S'C

20

10

100
50

~
<

f2~

-

5

FIG 4 - TYPICAL INSTANTANEOUS FORWARD
CHARACTERISTICS

100

1

I II

NUMBER OF CYCLES AT 60 Hz

FIG 3 - TYPICAL REVERSE CHARACTERISTICS

1~

-

11.1

160

LEAD TEMPERATURE. "C

'--

........

FIG. 6 - TYPICAL JUNCTION CAPACITANCE

100

On

mil

50

~

T....25OC

'a



SO

a:
a:
:>

f--

CI.,

a:w
:>a:
.,W

30

........

0'"

20

0

0

~ffi

a:'"
0... 2<

" '"

RESlsnVEOR

0.5

~g~~'::'DL~~~NTED ON 5.Dmm' ........
COPPER lAND AREAS
r-=1
I -I
I

.

W

~

a:

-~I

W

I

~

a: 2

~

...0
'"...<

~

I

"-

10

W

1.0

""'"

10

100

NUMBER OF CYCLES AT 60Hz

LEAD TE""PERATURE;C
FIG.3 • REVERSE RECOVERY TIME CHARACTERISTIC AND
TEST CIRCUIT DIAGRAM
NQNfoIOUCTlVE

r--.~

«

........

'"

...

Tl=120·C

W

........

0"
a: W

SIN~~

40

I
8.3m.
HALF SINE-WAVE
AT RATED LOAD (JEDEC METHOD)

FIG.4 • TYPICAL JUNCTION CAPACITANCE
30

'00

NONtlOUCTlVE

,-,

_.,
,-,

10

25VK

NOTES:I.A.I!T_7.. rnI,II.lnpo,rt........-'m.go/Wm.22V.

--

'I'

z.RMor_'O"tnu.s....-~fiOohna.

FIG. 5 • TYPICAL FORWARD CHARACTERISTICS

T,.25'C

.....

101.0MHz

30

Vaig-50mVp-p

•

1.0
1.0

~

10

5

10

SO

100

REVERSE VOLTAGE, VOLTS

~

Z

W

a:
a:
:>
a:

~[ll

FIG.6 • TYPICAL REVERSE CHARACTERISTICS

~/

0
0

't'J

T... 1SO'C
1.0

a: a:
Ow
.,2
:><

~

J-2lj'C

......

30
10

0

J

0

W.,
IIlW
WW

a: a:

I

I II

W

Z

~

Z

a:
a:
:>

0.1

> ...

w2
a:<
:>a:
oQ

PULSE WlD'TH-3OOia
DUlY CYCLE-2%

Z

~

~2

i!r;

.0

~

I

.,~

,I I
.4

.6

l:

.6

1.0

1.2

1.4

1.6

.

1.6

-

T..150'C

1.0
.4

.,0

III

I

III

W

~~

0.1
.04
.01

20

_ T..l00·C

-

40

60

'I

T..25·C

100

120

PERCENT OF RATED PEAK REVERSE VOLTAGE, %

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

(i General Insbument
497

140

ES1A THRU ES1D
SURFACE MOUNT ULTRAFAST RECTIFIER
VOLTAGE - 50 - 200 Volts CURRENT - 1.0 Ampere
FEATURES
• Plastic package has Underwriters Laboratory
Flammability Classification 94V-O
_
• For surface mounted applications
• Low profile package
Ideally suited for use in
:~~gg:~:
very high frequency switching power supplies,
inverters and as free wheeling diodes
• Ultrafast 15 nanosecond recovery times
!-1_--'-.-15-7+-(3-.9-9-)--.'----1!--..!...-- • Low forward voltage
.17714.50)
• Low leakage current
, DOS ( 152) • Glass passivated junction
I
.0121.305)
• High temperature soldering guaranteed:
250OC/1 0 seconds on terminals
I

DO·214AC

.0520.32)
.0580.47)

I

1

•

1

t

.07811.98)

°T m

.09

29 )

.03010.7S)rl..---1
.OSO(1.52)

-

I !-

MECHANICAL DATA

rlOO~)i

II.., _______.1,.19414.93)
I
I

.208(5.28)

Dimensions in inches
and
(millimeters)

Case: JEDEC DO-214AC molded plastic over
passivated junction
Terminals: Solder plated, solderable per MIL-STD750, Method 2026
Polarity: Color band denotes cathode band
Standard Packaging: 12mm tape (EIA STD RS-481)
Weight: 0.002 ounces, .064 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25·C ambient temperature unless otherwise specified. Resistive or inductive load.

SYMBOLS

EStA

Maximum Recurrent Peak Reverse Vottage

VRRM

Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
atTL-120·C
Peak forward Surge Current
8.3ms single haH sine-wave superimposed on
rated load (JEDEC Method)

VRMS
VDC

50
35

Maximum Instantaneous Forward Vottage at 0.6A
at1.0A
Maximum DC Reverse Current
TA=25·C
at Rated DC Blocking Voltage
TA=100·C
Maximum Reverse Recovery Time (NOTE 1)
Maximum Reverse Recovery Time
(NOTE 2)
Maximum Stored Charge
(NOTE 2)

TA=25·C
TA=100· C
TA=25·C
TA",100·C

Typical Junction Capacitance (NOTE 3)
Maximum Thermal Resistance (NOTE 4)
Operating and Storage Temperature Range

50

EStB
100
70
100

EStC
150
105
150

EStD
200
140

UNITS

200

Volts

Volts
Volts

I(Av)

0.6

Amps

IFSM

30.0

Amps

IR

0.865
0.920
5.0
100

TRR

15.0

Il A
nS

Trr

25.0
35.0

nS

10.0
25.0

nC

VF

Volts

ORR
CJ
R8JL
RaJA

10.0

pF

35.0
85.0

·CIW

TJ,TsTG

-55 to +150

·C

IF~0.5A. IR=1.0A. Irr=0.25A.
2. TRR and QRR measured on LEM lester: IF=O.SA. VR=30V. dVdt=50 AlliS.
3. Measured at1.0 MHz and applied reverse voltage of 4.0 volts.
4. P.C. board mounted on 5.0mm2 (.013mm thick) copper pad areas.

NOTES: 1. Reverse Recovery Test conditions:

498

RATINGS AND CHARACTERISTIC CURVES ES1A THRU ES1D
FIG 1 • REVERSE RECOVERY TIME CHARACTERISTIC AND TEST DIAGRAM
....
NONNOUCT1VE

t-T~

100
NONINOUCT1VE

...j

bfjl
Wa:

I·j

r- ~

1

a: W

" "-

0

OD..

a: ~

<>25

(apptOJI·1

1.2

y:;

o~.

I·j

25V~

FIG 2 -MAXIMUM AVERAGE
FORWARD CURRENT RATING

ow

~

-

0

t5 ~ •.f-.~_

LLa:

~~

·1.0

• RESISTIVE OR INDUCTIVE lOAD.

~(.)

NOTES: 1. Rise Time'" 7ns max. Input Impedance = lmegohmn, 22pF
2. Rise Time = 10ns max. Source Impedance = 50 ohms.

.• _.-'LANO.....

I\,

.

W

80

~

90

100

110

I

I

120

130

~
140

\

150

LEAD TEMPERATURE, C

FIG 3 • TYPICAL REVERSE CHARACTERISTICS
1000

==..,. - r

FIG 4 • TVPICAL FORWARD CHARACTERISTICS

= T.. 12S'C

=

5

I

.~

= T..85·C

'"

J

1
T,,_25 'C

./

I

.1

.01

!i
W

30

a:
a:

25

(.)

20

O. 0
0.4

o

"Ill
(/)~

IE~
~
a:

20

40

60

80

100

120

,

0.8

12

1.4

1.6

1.8

FIG 8 • TYPICAL JUNCTION CAPACITANCE
FIG 5 • MAXIMUM NON·REPETITIVE
PEAK FORWARD SURGE CURRENT

'T!!~~.Ib

~ALF ISINUAJ.e1

........

~

8

IS

........ .......

10

10

I"~

r--..

6

20

r-..

4

"'"

2
0
0.1

2

I I

f=1.0MHz
Vsig = 5OmVp--p

IS!3!l SINGLE
JEDEC METHOD

00(

D..

0.6

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

0
LL

"W

•

l

140

PERCENT OF RATED PEAK REVERSE
VOLTAGE,%

::;)

W
a:w
::;)a:

T...2S·C
PULSE WIDTH-:we;;;:
2% DUTY CYCLE

50

0.5 1

5

10

50 100

5001,000

100

REVERSE VOLTAGE, VOLTS

NUMBER OF CYCLES AT 60 Hz

• General Instrument
499

SS12 THRU SS16
SURFACE MOUNT SCHOTTKY BARRIER RECTIFIER
VOLTAGE· 20 TO 60 Volts CURRENT· 1.0 Ampere
FEATURES
• Plastic package has Underwriters Laboratory
Flammability Classification 94V-O
• For surface mounted applications
• Low profile package
• Built-in strain relief
_
• Metal to silicon rectifier,
majority carrier conduction
• Low power loss, high efficiency
• High current capability, low VF
• High surge capacity
• Epitaxial construction
• For use in low voltage high frequency inverters,
free wheeling, and polarity protection applications
• Guardring for transient protection
• High temperatur soldering guaranteed:
250°C/10 seconds on terminals

DO-214AC

.052(1.32)

f

1

.100(2.541
.110(2.79)

1

1_ . 157 (3.99)_1
.177(4.50)

_

•• 006 1.152)
.0121.3051

--tr---.----t-----,
.078(1.98)
.090T29)

I

rArl[--~1-!--lIJ
L

I

.030(0. 76)r+j~
.060(1.52)

1'1-;:005 (.127) :
II'

max.

I

MECHANICAL DATA

1..._ _ _ _ ___+,1,.194(4.93)
I .208(5.28)

Case: JEDEC DO-214AC molded plastic
Terminals: Solder plated solderable per MIL-STD-

Dimensions in inches and (millimeters)

750, Method 2026

Polarity: Color band denotes cathode
Standard Packaging: 12mm tape
(EtA STD RS-481)

Weight: 0.002 ounces 0.064 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 2S0C ambient temperature unless otherwise specified.
Resistive or inductive load.

SYIIBOLS
Maximum Recurrent Peak Reverse Voltage
Maximum RMS voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
atTL (See Figure 1)
Peak forward Surge Current
8.3ms single half sine-wave superimposed on
'rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage at 1.0A
(NOTE 1)

Maximum DC Reverse Current (NOTE 1) TA=25·C
at Rated DC Blocking Voltage
TA=100·C
Maximum Thermal Resistance (NOTE 2)
Operating Junction Temperature Range
Storage Temperature Range

VRRM
VRMS
Voc

SS12
20
14
20

SS13
30
21
30

5514
40
28
40

SS15
50
35
50

SS16
60
42
60

UNITS
Volts
Volts
Volts

I(AV)

1.0

Amps

IFSM

30.0

Amps

VF

0.50

0.75

Volts

5.0

mA

0.5
IR
R9JL
R9JA
TJ
TSTG

NOTES:
1. Pulse Test with PW=300JUlec, 2% Duly Cycle.
2. Mounted on P.C. Board with S.Omm2 (.013mm thick) copper pad areas.

500

10.0
35.0
95.0

-65 to +150
-65 to +125
-65 to +150

·C/W
·C
·C

MAXIMUM RATINGS AND CHARACTERISTIC CURVES SS12 THRU SS16

,n

FIG. 1 • FORWARD DERATING CURVE
C

1.0

w

I I I 1\

u::
§~

1111

Wa:
a:W
CQ.
a::::;;

«

~..,:

~

a:
a:
:::l

10.0

1516

C

a: a:
Ow
a..
",:::;;
:::l<

LL

EJ

50

50

ro

00

00

8815.16

I

Z

~

f:!:

1001W1001001~150

T,.25·C
PUL8E WIDTH.OOO""
2% DUTY CYCLE

I

O. 1

'"~

LEAD TEMPERATURE, 'C
FIG.3A • TYPICAL REVERSE
CHARACTERISTICS

.5

.3

.1

.7

1.1

.9

1.3

1.ll.. 1.7

1.9

2.1

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS
FIG 3B·TYPICAL REVERSE CHARACATERISTICS

100

100

f== I-~8812
THRU
I--

JJ

1.0

oW

P.C. Bead mounted on
5.0mm" _land.,...
0

~

a:

RESISTIVE OR
INDUCTIVE LOAD

Wa:
CJ:::l
<()
a:
W

"

()

~el

0.5

I.'

I I
1= 8812·14

W

III

8812·14

015
LLa:
~

FIG.Z· TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS
00

T,.125·C

8814

..,:
Z
W
a:
a:
:::l

f--

•

8815.16

10

()

W'"
"'W
a: a:

T...75·C

~

Ww

>Q.

W:::;;
a:<
:::l-'
0=
W:::;;

/

1-

.JIIi

"'-

z
f:!:
z
f:!:

T...25·C

'"~

V

T...150·C
1.0

___ io"""
_T[125'C

~

.10
T,.75·C

r/

•

~

V 1/

.01

'/

T...25"C

.00 1
00

~

60

100

80

1~

100

.001

PERCENT OF RATED PEAK
REVERSE VOLTAGE,,,

FIG.4 • TYPICAL JUNCTION CAPACITANCE

400

()

(3

c::

40

Z

f:!:

<
()

..,:

I

1-1.0M",
Vsig.50mVp-p
8812·14,

200
100
00
50

::::::........

.......

8815,16

4

80

100

100

1~

Z

50

r--T"""T"TI"T"TIITrn
1111--'-1"'T'""II1""""11""""
II

~

~ I--

~ '"

30

a:w
:::la:

~

10

ATRATEDT,
8.3mS 81NGLE HALF 8INE·WAVE
JEDEC METHOD

1--+--1F!'tooH-++1I1--I-~+I+l.J.j

"'w

......

~~

«

~
oLL

10
1.0

60

a:
a:
:::l

W

~

0.4

40

()

00

0,1

00

FIG 5 • MAXIMUM NON·REPETITIVE PEAK
FORWARD SURGE CURRENT

I

T,.ks·c l

LL
0.
W

o

PERCENT OF RATED PEAK REVERSE VOLTAGE ,%

~

00 100

'"<
W

Q.

REVERSE VOLTAGE, VOLTS

O~~~-L~LUL-_L-LJ-LLU~

1

4

6 8 10

00

~

60 00 100

NUMBER OF CYCLES AT 60 Hz

- - - - - - - - - - - - - - - - it Generallnsbument
501

SMAJ5.0 THRU SMAJ170A
SURFACE MOUNT TRANSIENT VOLTAGE SUPPRESSOR
VOLTAGE· 5.0 to 170 Volts 400 Watt Peak Power Pulse
FEATURES
• For surface mounted applications

DO·214AC

• Low profile package
.05211.32)
.058(1.47)

1

• Built-in strain relief

f

I

I

1

I

1_

• Glass passivated junction

.11012.79)

I
I

• Available in unidirectional only

~

I
I

• Excellent clamping capability
• Low inductance

.157(3.99) _ _1
.177[4.50)
_
,.0061.152)

-""'tr--- r ---+----.

• Fast response time: typically less than 1.0ps
from 0 volts to BV min.

.012 £.305)

• Repetition rate (Duty Cyee) : 0.01%

.07811.98)

~ ,.r--~~--~

• Typical 10 less than lIlA above 10V

l
.005 1.1271 :
max.

• High temperature soldering guaranteed:
250°C/1 0 seconds at terminals

I

_ - - - - - -.... 1,.19414.93)
I

.208[5.28)

MECHANICAL DATA
Case: JEDEC DO-214AC low profile molded plastic
Dimensions in inches
and
(millimeters)

Tennlnals: Solder plated, solderable per MIL-STD750, Method 2026
Polarity: Indicated by cathode band

Weight: .002 ounces, .064 gram
Standard Packaging: 12mm tape per
(EIA std RS-481-1)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings a125"0 ambienllemperalure unless olherwise specified.

Peak Pulse Power Dissipation at TA=25°C (NOTE 1,2,5) Fig.l
Peak Forward Surge Current per Figure 5
(NOTE 3)

Peak Pulse Current Current on 1011 OOOI1S waveform (NOTE
Steady State Power Dissipation (NOTE 4)
Operating Junction and Storage Temperature Range

I, FIG.2)

NOTES:
1. Non-repetitive currenl pulse, per Fig.3 and derated above TAa25"C per Fig. 2.
2. Mounted on 5.0mm2 copper pads to each terminal.
3. 8.3ms single haH sine-wave duty cycle=4 pulses per minutes maximum.
4. Lead temperature aI75"C=Tl.
5. Peak pulse power waveform is 10/10001'S.

502

SYlfSOl.S

VALUE

PPPM

Minimum 400

IFsM
IpPM
PM(AV)

40.0
See Table 1
1.0
-55 to +150

UNITS
Watts

Amps
Amps
Watts

ELECTRICAL CHARACTERISTICS AT 25"C

TABLE 1

Device

Working Peak
Device
Reverse Voltage
Marking Code Vwu(VoIts)

Breakdown Voltage
V(BR} (Volts) at
Min.
Max.
IT mA

MaxlllNlm Clamping
Voltage at /_
VC(Vo/t$)

(NOTES)

MaxlllNlm
Peale Impulse
SUrge CuITelll/pPII
(N07£5) (AfT¥IS)

MaxlllNlm
Reverse
Leakage
at Villi

IDf.AJ

SMAJ5.0
SMAJS.OA
SMAJ6.0
SMAJ6.0A

AD
AE
AF
AG

S.O
S.O
6.0
6.0

6.40
6.40
6.67
6.67

7.30
7.0
8.1S
7.37

10
10
10
10

9.6
9.2
11.4
10.3

41.6
43.S
3S.1
38.8

800
800
800
800

SMAJ6.5
SMAJ6.SA
SMAJ7.0
SMAJ7.0A

AH
AK
AL
AM

6.S
6.5
7.0
7.0

7.22
7.22
7.78
7.78

8.82
7.98
9.S1
8.60

10
10
10
10

12.3
11.2
13.3
12.0

32.S
35.7
30.1
33.3

SOO
200
200

SMAJ7.5
SMAJ7.SA
SMAJ8.0
SMAJ8.0A

AN
AP

8.33
8.33
8.89
8.89

10.3
9.21
10.9
9.83

1.0
1.0
1.0
1.0

14.3
12.9
IS.0
13.6

28.0
31.0
26.5
29.4

100
100
SO.O
50.0

sao

AR

7.S
7.S
8.0
8.0

SMAJ8.S
SMAJ8.SA
SMAJ9.0
SMAJ9.0A

AS
AT
AU
AV

8.S
8.S
9.0
9.0

9.44
9.44
10.0
10.0

11.S
10.4
12.2
11.1

1.0
1.0
1.0
1.0

IS.9
14.4
16.9
IS.4

2S.1
27.7
23.6
26.0

10.0
10.0
S.O
5.0

SMAJ10
SMAJ10A
SMAJll
SMAJllA

AW
AX
AY
AZ

10
10
11
11

11.1
11.1
12.2
12.2

13.6
12.3
14.9
13.5

1.0
1.0
1.0
1.0

18.8
17.0
20.1
18.2

21.2
23.5
20.0
22.0

5.0
5.0
5.0
5.0

SMAJ12
SMAJ12A
SMAJ13
SMAJ13A

BD
BE
BF
BG

12
12
13
13

13.3
13.3
14.4
14.4

16.3
14.7
17.6
15.9

1.0
1.0
1.0
1.0

22.0
19.9
23.8
21.5

18.1
20.1
16.8
18.6

5.0
5.0
5.0
5.0

SMAJ14
SMAJ14A
SMAJ15
SMAJ15A

BH
BK
BL
BM

14
14
15
15

15.6
15.6
16.7
16.7

19.1
17.2
20.4
18.5

1.0
1.0
1.0
1.0

25.8
23.2
26.9
24.4

15.5
17.2
14.8
16.4

5.0
5.0
5.0
5.0

SMAJ16
SMAJ16A
SMAJ17
SMAJ17A

BN
BP
BR

16
16
17
17

17.8
17.8
18.9
18.9

21.8
19.7
23.1
20.9

1.0
1.0
1.0
1.0

28.8
26.0
30.S
27.6

13.8
15.3
13.1
14.5

5.0
5.0
5.0
5.0

SMAJ18
SMAJ18A
SMAJ20
SMAJ20A

BS
BT
BU
BV

18
18
20
20

20.0
20.0
22.2
22.2

24.4
22.1
27.1
24.5

1.0
1.0
1.0
1.0

32.2
29.2
35.8
32.4

12.4
13.7
11.1
12.3

5.0
5.0
5.0
5.0

SMAJ22
SMAJ22A
SMAJ24
SMAJ24A

BW
BX
BY
BZ

22
22
24
24

24.4
24.4
26.7
26.7

29.8
26.9
32.6
29.5

1.0
1.0
1.0
1.0

39.4
35.5
43.0
38.9

10.1
11.2
9.3
10.3

5.0
5.0
5.0
5.0

SMAJ26
SMAJ26A
SMAJ28
SMAJ28A

CD
CE
CF

CG

26
26
28
28

28.9
28.9
31.1
31.1

35.3
31.9
38.0
34.4

1.0
1.0
1.0
1.0

46.6
42.1
60.0
45.4

8.6
9.5
8.0
8.8

5.0
5.0
5.0
5.0

SMAJ30
SMAJ30A
SMAJ33
SMAJ33A

CH
CK
CL
CM

30
30
33
33

33.3
33.3
36.7
36.7

40.7
36.8
44.9
40.6

1.0
1.0
1.0
1.0

53.5
48.4
59.0
53.3

7.5
8.3
6.8
7.5

5.0
5.0
5.0
5.0

SMAJ36
SMAJ36A
SMAJ40
SMAJ40A

CN
CP

36
36
40
40

40.0
40.0
44.4
44.4

48.9
44.2
54.3
49.1

1.0
1.0
1.0
1.0

64.3
58.1
71.4
64.5

6.2
6.9
5.6
6.2

5.0
5.0
5.0
5.0

43
43

47.8
47.8
50.0
50.0

58.4
52.8
61.1
5S.3

1.0
1.0
1.0
1.0

76.7
69.4
80.3
72.7

5.2
5.7
5.0
5.5

5.0
5.0
5.0
5.0

SMAJ43
SMAJ43A
SMAJ45
SMAJ45A

AO

BO

CO
CR

CS
CT
CU
CV

45
45

503

•

ELECTRICAL CHARACTERISTICS AT 25"C
BlNlrdown Voltage

"llCodII
SMAJ48
SMAJ48A
SMAJ5l
SMAJ51A

ew
ex
ey

:Jn8I/J {VoIsJ,.,.at

IIlII

IT RIA

C/

,.,rE5I

,.,rElIJ

lna.AJ

ez

48
48
51
51

53.3
53.3
56.7
56.7

65.1
58.9
69.3
62.7

1.0
1.0
1.0
1.0

85.5
77.4
91.1
82.4

4.7
5.2
4.4
4.9

5.0
5.0
5.0
5.0

SMAJ54
SMAJ54A
SMAJ58
SMAJ5BA

RD
RE
RF
RG

54
54
58
58

60.0
60.0

73.3
66.3
78.7
71.2

1.0
1.0
1.0
1.0

96.3
87.1

64.4
64.4

4.2
4.6
3.9
4.3

5.0
5.0
5.0
5.0

SMAJ60
SMAJ60A
SMAJ64
SMAJ64A

RH
RK
RL
RM

60
60

66.7
66.7
71.1
71.1

81.5
73.7
86.4
78.6

1.0
1.0
1.0
1.0

3.7
4.1
3.5
3.9

5.0
5.0
5.0
5.0

SMAJ70
SMAJ70A
SMAJ75
SMAJ75A

RN
RP
RO
RR

70
70

95.1
86.0
102

1.0
1.0
1.0
1.0

125
113
134
121

3.2
3.5

75
75

77.8
77.8
83.3
83.3

3.3

5.0
5.0
5.0
5.0

SMAJ78
SMAJ7BA
SMAJ85
SMAJ85A

RS
RT
RU
RV

78
78
85
85

86.7
86.7
94.4
94.4

104

1.0
1.0
1.0
1.0

139
126
151
137

2.9
2.2
2.6
2.9

5.0
5.0
5.0
5.0

SMAJ90
SMAJ90A
SMAJ100
SMAJ100A

RW
RX
RY
RZ

90
90
100
100

100
100

111
111

122
111
136
123

1.0
1.0
1.0
1.0

160
146
179
162

2.5
2.7
2.2
2.5

5.0
5.0
5.0
5.0

SMAJ110
SMAJ110A
SMAJ120
SMAJ120A

SD
SE

110
110
120
120

122
122
133
133

149
135
163
147

1.0
1.0
1.0
1.0

196
177
214
193

2.0

2.0

5.0
5.0
5.0
5.0

130
130
150
150

144
144
167
167

176
159

1.0
1.0
1.0
1.0

231

1.7
1.9
1.5
1.6

5.0
5.0
5.0
5.0

160
160

178
178
189
189

1.4
1.5
1.3
1.4

5.0
5.0
5.0
5.0

SMAJI30
SMAJI30A
SMAJI50
SMAJ150A
SMAJI60
SMAJI60A
SMAJ170
SMAJ170A

SF
SG

SH
SK
SL

SM
SN
SP

SO
SR

64
64

170
170

92.1
106

95.8
115

204

185
218
197
231

1.0
1.0
1.0
1.0

209

103.0

93.6
107.0

96.8
114.0
103.0

209

268
243
287
259
304

275

3.0

2.3
1.9

APPLICATION NOTES
Recommended Pad Layout
The pad dimensions should be 0.01 0" longer than the contact
size in the lead axis. This allows a solder fillet 10 form. see figure below. Contact factory for soldering methods.

MODIRED J-BEND
1~095·(2.38~

Df~~~u

1+--+1-.050'"

(1.27) min.

This device is designed specifically for transient voltage suppression from threats generated by ESO for
board level load switching components.
The wide leads assure a large surface contact for
good heat dissipation, and a low resistance path for
surge current flow to ground.
This series is designed to optimize board space and
for use with surface mount technology automated assembly equipment.
They can be easily mounted on printed circuit boards
and ceramic substrates to protect sensitive components from transient voltage damage.

(Dimensions in inches and (milHmeters)

CD General Instrument
504

MAXIMUM RATINGS AND CHARACTERISTIC CURVES SMAJ SERIES

FIG. 2 - PULSE RATING CURVE

FIG. 1 • PEAK PULSE POWER RATING CURVE
100

W

;=
~
<
W

l"'toI..LlIlII 111111111 IIUIUD~!!.~~INFIG.3

10

'"
CL

l

""'

I ~~~;';Z~~~;;~

~

II:

1111111 111111111

::::

"-

MM' LAND AREAS
0.1
0.1

"" 1'-.
~

iooIJ.IlIIl

r---l

'"

11111111

10
100
fdo PULSE WIDTH

1.Oms

lOms

25

50

75

100

"

125

150

175

200

TAAMBIENTTEMPERATURE rC)

FIG. 3 • PULSE WAVEFORM
150

-

T....25 D C
PULSE WIDTH

~d)

i.

r-- defined as that point where

-+-~-10iJ.S8C

~~EAKVALUE
f_
100

:

r-- the peak current decays to

-

1--50%ofl....

-

FIG. 4 • TYPICAL JUNCTION CAPACITANCE
10000

~

TJ-25"C
HALF VALUE ......

.-

2

50

0

f-1.0MHz
Vs' -SOmVp-p

_f,

10x1ooo WAVEFORM
AS DEFINED BY R.E.A.

:=:'td

-

Q..

I...

1000

ui

I "'"
•

Ueasureda1
Zero

<.)

~

2

~

f, TIME (mS)

100

'a:"'

50

:l

40

Z

II:
W

:lll:

_

Stand-ott

_

VOhagoVwM
III

(JEDEC Method)

<.)

ClUl
II:w

~~easured.t

B.3mS Single Half Sine-Wave

W

30

=

"-

<.)

FIG. 5 • MAX ... UM NON·REPETITIVE
PEAK FOWARD SURGE CURRENT

r--

T....TJ max

II 11111

K !'.

10
1251020
V(.R~

50

100200

BREAKDOWN VOLTAGE, VOLTS

(l)w

eCL

a::=!

«
;=

i'oo....

20

i'i"o

II:

0

u.

'"Lli

10

CL

o

1

2

4

10

20

.to

100

NUMBER OF CYCLES AT 60Hz

Ci Generallnsburnent
505

•

TPSMA6.8 THRU TPSMA43A
AUTOMOTIVE SURFACE MOUNT
TRANSIENT VOLTAGE SUPPRESSOR
VOL TAGE· 6.8 - 43.0 Volts 400 Watt Peak Pulse Power
FEATURES
DO·214AC

f

.100(2.541
.110(2.791

1

• Plastic package has Underwriters Laboratory Flammability Classification 94V-O
• Easy pick and place
• Available in unidirectional only
• Low profile package
• Built-in strain relief
• Exclusive G.I. P.A.R. chip construction
• Repetition rate (duty cycle): 0.01%
• Excellent ciampi ng capability
• Low incremental surge resistance
• Fast response time: typically less than 1.0ps from
o volts to BV min.
• TypicallD less than 1~ above 10V at TA=150°C
• Designed to handle all under the hood surface mount
applications
• High temperature soldering: 250°CI1 0 seconds at
terminals

Dimensions In Inches
and
(mlnlme/elS)

MECHANICAL DATA
Case: JEDEC DO-214AC Molded plastic
Weight: 0.002 ounces, 0.064 grams
Terminals: Solder plated; solderable per MIL·STD750, Method 2026

Polarity: Color band denotes positive end (cathode)
Standard Packaging: 12mm cavity Tape
(EIA STD RS-481)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 2S·C ambient temperature unless otherwise specified.

RATINGS
Peak Power Dissipation on 1011 OOOIlS waveform,
(NOTES 1. 2 FIG. 3)
Peak Power Pulse Current on
10/1000lls waveform (NOTE 1. FIG. 1)
Peak Forward Surge Current 8.3ms single half sine-wave
Superimposed on rated load (JEDEC Method) (NOTE 3)
Instantaneous Forward Voltage at 50A (NOTE 3)
Operating Junction and Storage
Temperature Range

SYIIBOLS

VALUE

PPPM

Minimum 400

Watts

IpPM

See Table 1

Amps

IFSM
VF

40.0
3.5

Amps
Volts

TJ,TsTG

-65 to +185

·C

NOTES:
1. Non-repetitive current pulse, per Fi~3 and derated above T A=25OC per Fig. 2.
2. Mounted on p.e. board with 5.0mm copper pads attached III each terminal.
3. Measured on 8.3ms single half sine-wave or equivalent square wave, duty cycle=4 pulses per minutes maximum.

506

UNITS

ELECTRICAL CHARACTERISTICS (TA=2SOC unless otherwise noted)
Max}mum

Revers.

De""'. Types

De""'.
Marlllng Code

TPSMA6.8
TPSMAS.8A
TPSMA7.5

Breakdown Vonag.

S/an6-0ff
Voltage

V(BR} Volts (HOTEt)

Rev.",.
Lsakage

at Villi

Maximum Rev.",.
Lsakage., Villi
TA=I5/FC

Maximum
/'Nk_
SIHg.CUrIllllI
}PPII (NOTE 2)
(Amp.)

Maximum
Clamping
Volags at IPPM
VcIVo")

MIn

Max.

stir (mA)

VIIII(V0")

IO("A)

/O()1A)

ADP

6.12

7.48

10.0

5.50

37.0

6.45

7.14

10.0

5.80

300.0
300.0

1000.0

AEP

1000.0

38.1

10.5

AFP

6.75

8.25

10.0

6.05

150.0

500.0

34.2

11.7

TPSMA7.5A

AGP

7.13

7.88

10.0

6.40

150.0

500.0

35.4

11.3

TPSMA8.2

AHP

7.38

9.02

10.0

6.63

50.0

200.0

32.0

12.5

TPSMA8.2A

AKP

7.79

8.61

10.0

7.02

50.0

200.0

33.1

12.1

TPSMA9.1

ALP

8.19

10.00

1.0

7.37

10.0

50.0

29.0

13.8

TPSMA9.1A

AMP

8.65

9.55

1.0

7.78

10.0

50.0

29.8

13.4

TPSMA10

ANP

9.00

11.00

1.0

8.10

5.0

20.0

26.7

15.0

TPSMA10A

APP

9.50

10.50

1.0

8.55

5.0

20.0

27.6

14.5

TPSMA11

AoP

9.90

24.7
25.6

TPSMA12
TPSMA12A

ASP
ATP

10.80
11.40

13.20

1.0

9.40
9.72

1.0
1.0

16.2

10.50

1.0
1.0

5.0

ARP

12.10
11.60

8.92

TPSMA11A

23.1

12.60

1.0

TPSMA13

AUP

11.70

14.30

TPSMA13A

AVP

12.40

13.70

TPSMA15
TPSMA15A

AWP

13.50

AXP

TPSMA16

AYP

TPSMAl6A

10.8

15.6

1.0

5.0
5.0

10.20

1.0

5.0

23.9

17.3
16.7

1.0

10.50

1.0

5.0

21.0

19.0

1.0

11.10

1.0

5.0

22.0

18.2

1.0

1.0
1.0

18.2

22.0

1.0

12.10
12.80

5.0

14.30

16.30
15.80

5.0

18.7

21.2

14.40

17.60

1.0

12.90

1.0

5.0

17.0

23.5

AZP

15.20

16.80

1.0

13.60

1.0

BOP

16.20

19.80

1.0

14.50

1.0

17.8
15.1

22.5

TPSMA18

5.0
5.0

TPSMA18A

BEP
BFP

17.10
18.00

18.90

1.0

15.30

1.0

22.00

19.00

1.0
1.0

BHP

19.80

21.00
24.20

16.20
17.10

15.7
13.7
14.4

25.5
29.1

BGP

1.0
1.0

5.0
5.0
5.0

1.0

17.80

1.0

5.0

12.5

27.7
31.9

TPSMA22A

BKP

20.90

23.10

1.0

18.80

1.0

5.0

13.1

30.6

TPSMA24

BLP

21.60

26.40

1.0

19.40

1.0

5.0

11.5

34.7

22.80
24.30

25.20

1.0

20.50

1.0

5.0

12.0

33.2

1.0
1.0

21.80
23.10

1.0
1.0

5.0
5.0

10.2
10.7

39.1

25.70

29.70
28.40

43.5

TPSMA20
TPSMA20A
TPSMA22

26.5

TPSMA24A

BMP

TPSMA27
TPSMA27A

BNP
BPP

TPSMA30

BOP

27.00

33.00

1.0

24.30

1.0

5.0

9.2

TPSMA30A

BRP

28.50

31.50

1.0

25.60

1.0

5.0

9.7

41.4

TPSMA33

BSP

29.70

36.30

1.0

26.80

1.0

5.0

8.4

47.7

TPSMA33A

BTP
BUP

31.40

34.70

1.0

28.20

1.0

5.0

TPSMA36

1.0
1.0

29.10
30.80

5.0

8.7
7.7

52.0

BVP

39.60
37.80

1.0

TPSMA36A

32.40
34.20

1.0

5.0

8.0

49.9

TPSMA39

BWP

35.10

42.90

1.0

31.60

1.0

5.0

7.1

56.4

TPSMA39A

BXP

37.10

41.00

1.0

33.30

1.0

5.0

7.4

53.9

TPSMA43

BYP

38.70

47.30

1.0

34.80

1.0

5.0

6.5

61.9

TPSMA43A

BZP

40.90

45.20

1.0

36.80

1.0

5.0

6.7

59.3

NOTES:
1. V (BR) measured after IT applied for 300I'S, IT=Square Wave Pulse or equivalent.
2. Surge Current Waveform per Figure 3 and Derate per Figure 2.
3. All terms and symbols are consistant with ANSI/IEEE C62.35.

507

37.5

45.7

•

RATINGS AND CHARACTERISTIC CURVES TPSMA6.8 THRU TPSMA43A

FIG.1 • PEAK PULSE POWER RATING CURVE

FIG.2· PULSE DERATING CURVE

I'...

"
•

!d. PULSE WIDTH. sec

26

10

"'
7&

""

100

126

~
160

zoo

176

To. AMBIENT TEMPERATURE. ·C

FIG.3 • PULSE WAVEFORM

-r+- "-'0iL".

'50

~ P..kV,luo

'00

'" 1-

,..

FIGA· TYPICAL JUNCTION CAPACrrANCE

TA_2S·C
Pulso Width (Id) Is dotined
as that point where the peak
current decays to 50% of

~

I

I

T0I"25'<:
t-t.OMHz
Vsig-5GmVp-p

I

VR -'::~d.
ZeroSia•

/H'HV'IUO-~
• 01.000,",
Waveform
as defined by R.E.A

50

0

Fold

'"

I~

I. TIME.mS

~

=
-

FIG. 5 ·MAXNUM NON-REPETl11VE
PEAK FORWARD SURGE CURRENT

eor--'-'rTTTTnr--'-'rTTTnn
8.3ms U~gl' Half Sine-Wave
(JEDEC Mo"'od)
TJ-TJ max.

VRMo_rod
• Stand-oll
Voltage (\IWM)

11111111

II 11111
'0 ..

'0
VIBR~

50

100

zoo

BREAKDOWN VOLTAGE. VOLTS

O,L--J-J-L~LU,~.--~~-J_~~LU~,oo

NUMBER OF CYCLES AT 60Hz

- - - - - - - - - - - - - - - ~Generallnsbument
508

•

509

S2A THRU S2M
SURFACE MOUNT RECTIFIER

VOLTAGE· 50 to 1000 Volts

CURRENT· 1.5 Amperes
FEATURES

• Plastic package has Underwriters Laboratory
Flammability Classification 94 V-O
• For surface mounted applications
• Low profile package
_
• Built-in strain relief
• Easy pick and place
• Glass passivated chip junction
• High temperature soldering:
250·C/10 seconds at terminals

DO·214AA
.077(1.961

f

1

.130 (3.301
.155 (3.941

1_ . 160 (4.061 _ _1

1

.180 (4.571

_

.086 J18)
.096(2.44)

l

Case: JEDEC DO-214AA molded plastic over
passivated junction
Terminals: Solder plated solderable per MIL-STD750, Method 2026
Polarity: Ind(cated by cathode band
Standard Packaging: 12mm tape
(EIA STD RS-481)
Weight: 0.003 ounces, 0.093 gram

Ar--~---~

.030~--I
.060(1.27)

MECHANICAL DATA

•• 006(.1521
.012 (.3051

- .....__ ,.....__-+-__-.

I

I

1:(.102)
.008(.203)1.205(5.21)
',' .220 (5.59)

I•

Dimensions In Inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings aI2S·C ambienllemperature unless otherwise specified.
60 Hz, Resistive or inductive load.
For capacitive load, derate current by 20%.

S'fIIBOLS SlA

Maximum Recurrent Peak Reverse Voltage
Maximum RMS voltage
Maximum DC BlOCking Voltage
MaximumAverage Forward Rectified Current
at TLzl00·C (NOTE 3)
Peak Forward Surge Current
8.3ms single half sine-wave superimposed on
rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage at 1.5A
Maximum DC Reverse Current
at Rated DC Blocking Voltage

VRRM

50

VRMS

35
50

Voc

TA-25·C
TA=125·C

510

Volts

100 200 400

600

800 1000

Volts

S2II

UNITS
Volts

Amps

IFSM

50.0

Amps

VF

1.15

Volts

1.0
125.0

!1A

TJ,TsTG

NOTES:
1. Reverse Recovery Test conditions: IF=O.SA, IR=1.0A, Irr-0.2SA.
2. Measured at 1.0 MHz and applied Vr=4.0 volts.
3. S.Omm2 (.013mm thick) land areas.

S2IC

800 1000
560 700

SID

1.5

CJ
R9JL
R9JA

Operating Junction and Storage Temperature Range

S2J
600
420

SIB

I(AV)

IR
T r,

Typical Reverse Recovery Time (NOTE 1)
Typical Junction Capacitance (NOTE 2)
Maximum Thermal Resistance (NOTE 3)

BIG

100 200 400
70 140 280

2.0
30.0
20.0
100.0
-55 to 150

I1s
pF
·CIW
·C

RATING AND CHARACTERISTIC CURVES S2A THRU S2M
FIG 1 • FORWARD CURRENT DERATING CURVE
FIG 2· MAXIMUM NON·REPETITIVE
PEAK FORWARD SURGE CURRENT

~

W
0:
0:

1.5

~

l"-

::::l

o

~~

;;:W

~~
LL<
w

1.0

o

W

"w::;:
0:<

~~
oQ

0.1

~::;:

~
Z

~

'"

i:;

,~

.01

--

20

40

60

I
80

I

100 120 140

PERCENT OF RATED PEAK
REVERSE VOLTAGE,,,

.. General Instrument
511

•

RS2A THRU RS2K
FAST SWITCHING SURFACE MOUNT RECTIFIER
VOLTAGE - 50 to 800 Volts CURRENT - 1.5 Amperes
FEATURES
• Plastic package has Underwriters Laboratory
Flammability Classification 94 V-O

DO-214AA
.077U.96)

f

1

.13013.30)
.15513.94)

1
1_.16014.06)--+1
.18014.57)

-+,
t

.03010. 76)r1---1
.080(1.27)
~,
~

• Low profile package
• Built-in strain relief
• Easy pick and place
• Glass passivated junction

.006 !.l52)
.0121.305)

• Fast switching for high efficiency
• High temperature soldering:
250°Cf10 seconds at terminals

.084(2.13)
.096 11"441 r~

• For surface mounted applications

J.

rt.OO;~!

I ____._00_8_1_.2_03...) I .20515.211
" '.220 15.59)

Dimensions In Inches and (millimeters)

MECHANICAL DATA
Case:JEDEC DO-214AA molded plastic over
passivated junction
Terminals: Solder plated solderable per MIL-STD750, Method 2026
Polarity: Indicated by cathode band
Standard Packaging: 12mm tape

(EIA STD RS-4B1)

Weight: 0.003 ounces, 0.093 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified.
Resistive or inductive load.

SYM8OC.S RS2A

Maximum Recurrent Peak Reverse Voltaae
Maximum RMS Voltaae
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at TL~100·C (NOTE 3)
Peak forward Surge Current
8.3ms single haH sine-wave superimposed on
rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage at 1.5A
Maximum DC Reverse Current
TA=25°C
at Rated DC Blocking Voltage
TA-125°C
Maximum Reverse Recovery Time (NOTE 1)
Typical Junction Capacitance (NOTE 2)
Maximum Thermal Resistance (NOTE 3)
Operating Junction and Storage Temperature Range

VRRM
VRMS
Voc

50
35
50

RS28
100
70
100

RS2D
200
140
200

RS2G RS2J

400 600
280 420
400 600

RS2K
800
560
800

UNITS

Volts
Volts
Volts

IfAV)

1.5

Amps

IFSM

50.0

Amps

VF

1.30
5.0
200.0

Volts.

IR
Trr
CJ
RaJL
RaJA
TJ,TsTG

NOTES:
1. Reverse Recovery Test conditions: IF=0.5A, IR-l.0A, Irr=O.25A.
2. Measured at 1.0 MHz and applied Vr-4.0 volts.
3. 5.0mm2 (.013mm thick) land areas.

512

150

250
50.0
20.0
100.0
-55 to 150

500

uA
ns
pF
°CIW
°C

RATING AND CHARACTERISTIC CURVES RS2A THRU RS2K
FIG 1 - FORWARD CURRENT DERATING CURVE

FIG 2 - MAXIMUM NON-REPETITIVE
PEAK FORWARD SURGE CURRENT

~
W
~

1.5

"

:::)

o

Coo
~ ~ 1.0

;;:W

~~

W

~

I"-

0.5

~

50 60

70

80

90

:::)

40

~

8.3mS SINGlE HAlF
SINE·WAVE I I

~ErEC METHOD)

"

""

TL_l00'C

II II

W

50

o

RESISTIVE OR
INDUCTIVE LOAD
P.C. board mounted on 5.0mm2
COPPER LAND AREAS

",0..

~
w

'"'"

.....

II

""

100

10

100 110 120 130 140 150

LEAD TEMPERATURE, ·C

NUMBER OF CYCLES AT 60 Hz

FIG 3 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

FIG 4 - TYPICAL JUNCTION CHARACTERISTICS
100

~
LL

"- 50

ui
0

z

/

~

0

I"-

~

«
0

If

T,.25·C
f=1.0MHz
Vsig 5OmVp-p

10

=

=

T,.25·C
PULSE WIDTH-3OIlt0..

tnff
5Q

...

0.1

!~~ii~~~ii;~~i~~~~!

'-...::..-1.._ _.1.-_--'-_ _-'-_--'-_ _.1-_--'
20

40

60

80

100

120

(.)

NOT£s:I.RHn..,..7MrnIIX.Irlpul:I~1rr.golrM,22pF.

2.RinTi"",an.mu:.Sourc.I~50omr..

140

PERCENT OF RATED PEAK REVERSE VOLTAGE, %

.. Generallnsbument
513

•

ES2A THRU ES2D
FAST EFFICIENT SURFACE MOUNT RECTIFIER
VOLTAGE - 50 to 200 Volts CURRENT - 2.0 Amperes
FEATURES
• Plastic package has Underwriters Laboratory
DO-214AA
Flammabillity Classification 94 v-o
• For surface mounted applications
Low profile package
.130 (3.30) • Built-in strain relief
.155(3.94) • Easy pick and place
Glass passivated junction
!---'---t---'--+---'t.-- • Superfast recovery times for high efficiency
160 (4.06)----4
• Low power loss, high efficiency
.180 (4.57)
• High temperature soldering:
,.006 (.152)
250"C/10 seconds at terminals

f

.017U.96)

1

1 •

1_.

-~t.----r---t----,

.084(2.13)

.096 (1"44)

rr

•

.012 (.305)

MECHANICAL DATA
L

Case: JEDEC DO-214AA molded plastic over

II

passivated junction

.030(0.76)rl-l
1't.0041.102)
.060(1.27)
.008 (.203) .205 (5.211
1+'- - - - - - - . " . 2 2 0 ( 5 . 5 9 )

I

Dimensions in inches and (millimeters)

Terminals: Solder plated solderable per MIL-STD750, Method 2026

Polarity: Color band denotes cathode
Standard Packaging: 12mm tape
(EtA STD RS-4B1)

Weight: 0.003 ounces, 0.093 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at25"C ambient temperature unless otherwiss specitied.
Resistive or inductive load.

SYMBOLS
Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward RectHied Current
at TL~110"C
Peak Forward Surge Current
8.3ms single half sine-wave superimposed on
rated load (JEDEC Method)

VRRM
VRMS
Voc

Maximum Reverse Recovery Time
(NOTE 2)

TA=25·C
TA=100"C

Maximum Stored Charge
(NOTE 2)

TA=25"C
TA=100"C

Typical Junction Capacitance (NOTE 3)
Maximum Thermal Resistance (NOTE 4)

ES2C
150
105
150

ES2D
200
140
200

UNITS
Volts
Volts
Volts

2.0

Amps

IFSM

50.0

Amps

VF

0.90

Volts

TA=25"C
TA=100"C

Maximum Reverse Recovery Time (NOTE 1)

ES2B
100
70
100

I(AV)

Maximum Instantaneous Forward Voltage at 2 .OA
Maximum DC Reverse Current
at Rated DC Blocking Voltage

ES2A
50
35
50

IR

10.0
350

TRR

20.0

Il A
ns

Trr

30.0
50.0

ns

ORR
CJ
R8JL

Operating Junction and Storage Temperature Range TJ,TsTG
Noles:
1. Reverss Recovery Test conditions: IF-O.SA, IR=I.0A, Irr=0.2SA.
2. TRR and ORR measured on LEM tester: VR-30V, dildt-50 A/fJS IF=2.0A.
3. Measured at 1.0 MHz and applied reverse voltage of 4.0 volls.
4. S.Omm2 (.013mm thick) land areas.

514

10.0
25.0
25.0

nc

20.0

pF
"CIW

-55 to +150

"C

RATING AND CHARACTERISTIC CURVES ES2A THRU ES2D
FIG 1 - REVERSE RECOVERY TIME CHARACTERISTIC AND TEST DIAGRAM

....

NONrNOUCTIVE

FIG. 2-FORWARD CURRENT
DERATING CURVE

.an

NONNOUCTlVE

0."

3.0

\

\

(·1

"Y"
-.1

,

•1

(,1

'\..,

,

I'r'-'1 I\..

~

J

·1.0

NOTES: 1. Rise Time = 7ns max. Input Impedance = lmegohmn, 22pF.
2. Rise Time = 10ns max. Source Impedance '" 50 ohms.

RESISTIVE i:JR INDUCTIVE LOAD ,

"

P.C.m.rdllllllllBdonS.omm"

o COPPER LAND AREAS
eo 90 100 110

120 13D 140 150

LEAD TEMPERATURE. C
FIG 3 - TYPICAL REVERSE CHARACTERISTICS
1000

FIG 4 - TYPICAL FORWARD CHARACTERISTICS
T... l00·C

~

10.0

i::=== ==='T....7S·C

I"

J

1.0
T....25·C

T....2S·C
1
PULSE WIDTH-300JLS
2% DUlY CYCLE

0.1

1

.01
20

40

eo

eo

100

120

~

=

•

I

.01
0.4

140

0.6

0.8

1.0

1.2

1.4

1.8

1.8

INSTANTANEOUS FORWARD
VOLTAGE.VOLTS

PERCENT OF RATED PEAK REVERSE
VOLTAGE, %

FIG 6 - TYPICAL JUNCTION CAPACITANCE
FIG 5 - MAXIMUM NON-REPETITIVE
PEAK FORWARD SURGE CURRENT

!i
W
0:
0:
:::>

eo
50

(.)

W
(!len
o:w
:::>0:
en W

40

00..
0:::;

3D

~

20

,.;<

"U'i

UL~

............. I"--..

II I

8.3ms SINGLE HALF SINE·WAVE
(JEDEC METHOD)

'a

50

W

(.)

Z

~

r"-I'-

......... ......

60

(.)

if
C3

"""

40

"-

T...2S·C

I.MHz

3D

..........

20

1' ...

10

10

...... I'-

0..

10

20

50

100

.1

NUMBER OF CYCLES AT 60 Hz

I

Vsig-50mVp-p

.5

1

5

10 20

50 100 200

i
5DO 1000

REVERSE VOLTAGE. VOLTS

- - - - - - - - - - - - - - - - S

IFSM

50.0

Amps

VF

0.50

0.70

Volts

10.0

rnA

0.5
IR
R8JL
R8JA
TJ
TSTG

NOTES:

I. Pulse Test wilh PW-300 IJS8c, 2% Duty Cycle.
2. 5.0mm2 (.OI3mm thick) land areas.

516

20.0
20.0
100.0

-65 to +125
-65 to +150
-65 to +150

0C!W
°C
"C

MAXIMUM RATINGS AND CHARACTERISTIC CURVES SS22 THRU SS26
FIG.2- TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS
50

T••25'C

a
w

2.0

~rn
Ww
a:ffi
all.
a::::;
eC<

1.5

u:

~~
Ow
u.a:
wa:
(!I::l
<0
a:
w

I" I

>
-<

°50

RES IsnVEOR
INDUCTiVELOAD
P.C. board mounted on S.Omm2
COPPER LAND AREAS

60 70

80

..""

S522·24

-'

/

Ow
u.ll.
en:::;
::l<
I,

",

/

10.0

a:
~rn
a:~

1\

1.0

0.5

a:
a:

::l
o
a

S825.26

S522-24

t.,....oo'

w

IIII
1111

I III

~~~~lg~~300~

~

FIG. 1-FORWARD CURRENT DERATING CURVE

/

1.0

o
w

/

I"-- S825,26

z

,

~
~

I'

I

I

~

90 100 110 120 130 140 150

J"

J

0.1

.3

.2

LEAD TEMPERATURE, 'C

I

.4

.5

.6

.7

.8

.9

1.0

1.1

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS
FIG.S - TYPICAL REVERSE
CHARACTERISTICS

FIG.4 - TYPICAL JUNCTION CAPACITANCE
500
400
300

10

-

,

-T,.'00"C/
~ ~

1.0

200

I~

'"

J

u.

"-

u.i

z

0

50
40
30

~

20

i5
~

~.

'f'

./~

o. 1

"

I

T..75"C

......

TJ=25"C
f= 1.0MHz
Vsig = 5OmVp-p

100

0

, ,

,~

~,

•

-SS22-24
-

I

_"8825.26

10
5
0.1

.,.~/

.01

T,-25'C
~

Z

r---S825,26- r--

~

w
a:
a:
::l
°rn
ww
(!I a:
a:w
::lll.
rn::t
a<
a:

I

I

I

60

80

100

.001
20

40

10

40

80 100

REVERSE VOLTAGE, VOLTS

8522-24-

-' /

4

1.0

0.4

~,

120

140

PERCENT OF RATED PEAK
REVERSE VOLTAGE,,,

~

a:
0
u.

FIG 5 - MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT
50
40

"'"

.....

30

r"~

20
10

illWI ro', II

B.3mS SINGLE HALF SINE·WAVE
(JEDr

0
2

4

6 B 10

20 40 60 80 100

NUMBER OF CYCLES AT 60 Hz

• General Jnsbument
517

5MBG AND 5MBJ 5.0 THRU 170,A SERIES
UNIDIRECTIONAL SURFACE MOUNT TRANSIENT VOLTAGE SUPPRESSOR

VOLTAGE - 5.0 - 170 Volts Peak Pulse Power - 600 Watts
FEATURES
DO·214AA
MODIFIED J.BEND
.017[1.96)

f

.083(2.1111

.130(3.301
.155r·941

~----+I

L

'--.180 (4. 57l

t

.084(2.m

:iii6i2':'m
j

,d---;---IIJ

.03010.1G)n-1
.06011.27)

i

&1.102)1,
.0081.2031 1,.20515.211

~ Typlcal..BallgB--

I

• For surface mounted applications in order to
_
optimize board space
• Low profile package
• Built-in strain relief
• Glass passivated junction
• Low inductance
• Excellent clamping capability
• Repetition Rate (duty cycle): 0.01%
• Fast response time: typically less than 1.0ps
from 0 volts to BV for unidirectional types
• Typical 10 less than 11J.A above 10V
• High temperature soldering:
250OCJ1 0 seconds at terminals
• Plastic package has Underwriters
Laboratory Flammability Classification 94V-0

.220 (5.59)

DO-21SAA
GULL WING

MECHANICAL DATA
Case: JEOEC 002141 00215 Molded plastic over
pasSivated junction

Terminals: Solder plated, solderable per
MIL-STO-750, Method 2026

Polarity: Color band denotes positive end
(cathode)

Standard Paclcaging: 12mm tape
(EIA STD RS-481)

Weight 0.003 ounces, 0.093 gram

f-

Schemetlc Symbol

Dimensions In inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 2S"C ambient temperature unless otherwise specified.

Peak Pulse Power Dissipation on 10/1000l1s
waveform (Notes 1, 2, Fig. 1)
Peak Pulse Current on 10/1000l1s
waveform (Note 1, Rg. 3)
Peak forward Surge Current
B.3ms single half sine-wave superimposed on
rated load (JEDEC Method) (Notes 2,3)
Maximum Instantaneous Forward Voltage at 50A (Note 3, 4)
Operating Junction and Storage
Temperature Range

VALUE

UNITS

PPPM

Minimum 600

Watts

IpPM

See Table 1

Amps

IFSM

100.0

Amps

VFM

See Note 3, 4

Volts

TJ. TSTG

-55 to +150

·C

NOTES:
t.
2.
3.
4.

Non-repetitive current pulse, per Fig.3 and derated above TA-2S"C per Fig. 2.
Mounted on S.Omm 2 (.OI3mm thick) land areas.
Measured on 8.3ms, single hall sine-wave or equivalent square wave, duty cycle=4 pulses per minute maximum.
VF-3.SV lorSMB-S.O thru 5MB-90 devices and VF S.OV IorSMB-tOO thru 5MB-t70 devices.

518

Sr._.

ELECTRICAL CHARACTERIS11CS AT TA=2SoC (unl... otherwl•• noted)

GuI/Wlng
Lead
S MBG5.0
S M~G5.0A
S MBG6.0
S MBG6.0A
S MBG6.5
S MBG6.5A
5MBG7.0
S MBG7.0A
S MBG7.5
S MBG7.5A
S MBG8.0
S MBG8.OA
5MBG8.5
5MBG8.5A
5MBG9.0

Oellfce
IIIIrklng
•.l'....~ , . . .

5MBJ5.0
5MBJ5.0A
5MBJ6.0
SMGJ6.0A
5MBJ6.5
5MBJ6.5A
5MBJ7.0
5MBJ7.0A
5MBJ7.5

COd/!
KO
KE

Vo'''''
V(SII) (VolII)
(HOTEl)
j~l"'~
6.4017.55
6.4017.25

JIulmum Clamping
VO'BfI. ./IpIW
Vc(VolII}

a/Jr./!II&

V_lVoIfsl

II/OTE 21 (Amosl

10

5.0

800.0

62.5

5.0
6.0

800.0

65.2
52.6

800.0
500.0

KF

6.67/8.45

10
10

KG
KH
KK

6.6717.67

10

6.0

7.2219.14

10
10

6.5
6.5

KL

7.7819.86

KM
KN

7.78/8.95
8.33/10.67
8.3319.58

10
10
1.0

7.0
7.0
7.5
7.5

7.22/8.30

'nlm.t'

800.0

500.0
200.0
200.0

58.3
48.7
53.6

9.6
9.2
11.4
10.3
12.3
11.2
13.3
12.0

100.0
100.0

45.1
50.0
42.0
46.5

15.0
13.6

14.3
12.9

5MBJ7.5A

KP

5MBJ8.0
5MBJ8.0A

KO
KR

8.89/11.3

1.0
1.0

8.0

8.89/10.2

8.0

50.0
50.0

40.0
44.1

5MBJ8.5

KS

9.44/11.9

1.0

8.5

20.0

37.7

15.9

5MBJ8.5A
5MBJ9.0

KT
KU

9.44/10.8

1.0
1.0

8.5
9.0

20.0
10.0

41.7
35.5

14.4
16.9

10.0
5.0

39.0

15.4

31.9
35.3

18.8
17.0

5.0
5.0
5.0

29.9
33.0

20.1
18.2

27.3
30.2
25.2
27.9

22.0
19.9

10.0/12.6

1.0

5MBJ9.0A

5MBJ9.0A

KV

10.0111.5

1.0

9.0

5MBG10
5MBG10A

5MBJ10
5MBJ10A

KW
KX

11.1/14.1

1.0
1.0

10
10

5MBGll
5MBG11A

5MBJ11
5MBJ11A

KY
KZ

12.2115.4
12.2/14.0

1.0
1.0

11
11

5MBG12

5MBJ12

LO

13.3116.9

1.0

12

5MBG12A
5MBG13
5MBG13A

5MBJ12A
5MBJ13
5MBJ13A

LE
LF
LG

13.3/15.3

1.0
1.0
1.0

12
13
13

5.0

5MBG14

5MBJ14

LH

15.6/19.8

5.0

LK

15.6/17.9

14

5.0

23.3
25.8

25.8

5MBJ14A

1.0
1.0

14

5MBG14A
5MBG15

5MBJ15

LL

16.7/21.1

1.0

15

5.0

22.3

26.9

5MBG15A

5MBJ15A

LM

16.7/19.2

1.0

15

24.0

24.4

5MBG16

5MBJ16

LN

17.8/22.6

1.0

16

5.0
5.0

5MBG16A
5MBG17
5MBG17A

5MBJ16A
5MBJ17
5MBJ17A

LP
LO
LR

17.8/20.5
18.9/23.9

1.0
1.0
1.0

16
17

5MBG18
5MBG18A
5MBG20

5MBJ18

LS

20.0/25.3

5MBJ18A
5MBJ20

LT
LU

20.0/23.3

5MBG20A

5MBJ20A

LV

22.2/25.5

5MBG22
5MBG22A

5MBJ22
5MBJ22A

LW
LX

24.4/30.9
24.4/28.0

5MBG24

5MBJ24

LY

26.7/33.8

5MBG24A
5MBG26

5MBJ24A
5MBJ26

LZ
MD

26.7/30.7

5MBG26A

5MBJ26A

5MBG28
5MBG28A

11.1/12.8

14.4/18.2
14.4/16.5

5.0

5.0
5.0

23.8
21.5
23.2

20.8

28.8

17
18

5.0
5.0
5.0
5.0

23.1
19.7
21.7

26.0
30.5
27.6

18.8

18
20

5.0
5.0

20.5
16.7

32.2
29.2
35.8

1.0

20

5.0

18.5

32.4

1.0
1.0

22
22

5.0
5.0

15.2
16.9

39.4
35.5

1.0

24

5.0

14.0

43.0

1.0
1.0

24
26

5.0

28.9/36.6

5.0

15.4
12.4

38.9
46.6

ME

28.9/33.2

1.0

26

5.0

14.2

42.1

5MBJ28
5MBJ28A

MF
MG

31.1/39.4

5MBJ30

MH

33.3/42.2

28
28
30

5.0
5.0

5MBG30

1.0
1.0
1.0

5.0

12.0
13.2
11.2

50.0

31.1/35.8

45.4
53.5

5MBG30A
5MBG33

5MBJ30A
5MBJ33

MK
ML

33.1/38.3
36.7/46.5

1.0
1.0

30
33

5.0
5.0

12.4
10.2

46.6
59.0

5MBG33A

5MBJ33A

MM

36.7/42.2

1.0

33

5.0

11.3

53.3

5MBG36
5MBG36A

5MBJ36
5MBJ36A

MN
MP

40.0/50.7

1.0

36

1.0

36

9.3
10.3

64.3

40.0/46.0

5.0
5.0

5MBG40

MO
MR

44.4/56.3

40
40

8.4

44.4/51.1

1.0
1.0

5.0

5MBG40A

5MBJ40
5MBJ40A

5.0

9.3

71.4
64.5

5MBG43

5MBJ43

MS

47.8/60.5

1.0

43

5.0

7.8

76.7

5MBG43A

5MBJ43A

MT

47.8/54.9

1.0

43

5.0

8.6

69.4

5MBG45

5MBJ45

MU

50.0/63.3

1.0

45

5.0

7.5

80.3

5MBG45A

5MBJ45A

MV

50.0/57.5

1.0

45

5.0

8.3

72.7

48

5.0

7.0

85.5

48
51

5.0
5.0

7.7
6.6

77.4
91.1

5MBG48
5MBG48A

18.9/21.7

22.2/28.1

1.0
1.0
1.0

58.1

5MBJ48

MW

53.3/67.5

MX

53.3/61.3

1.0
1.0

5MBG51

5MBJ48A
5MBJ51

MY

56.7171.8

1.0

5MBG51A

5MBJ51 A

MZ

56.7/65.2

1.0

7.3

82.4

5MBJ54

NO

60.0176.0

1.0

51
54

5.0

5MBG54

5.0

6.2

95.3

5MBG54A

5MBJ54A

NE

60.0/69.0

1.0

54

5.0

6.9

87.1

519

•

ELECTRICAL CHARACTERIS7ICSAT25"C

5MBGSB
5MBGSBA
5MBG60
5MBG60A
5MBG64
5MBG64A
5MBG70
5MBG70A
5MBG75
5MBG75A
5MBG78
5MBG78A
5MBG85
5MBG85A
5MBG90
5MBG90A
5MBG100
5MBG100A
5MBGll0
5MBGll0A
5MBG120
5MBG120A
5MBG130
5MBG130A
5MBG150
5MBG150A
5MBGl60
5MBG160A
5MBG170
5MBG170A

5MBJ58
5MBJ58A
5MBJ60
5MBJ60A
5MBJ64
5MBJ64A
5MBJ70
5MBJ70A
5MBJ75
5MBJ75A
5MBJ78
5MBJ78A
5MBJ85
5MBJ85A
5MBJ90
5MBJ90A
5MBJ100
5MBJ100A
5MBJll0
5MBJll0A
5MBJ120
5MBJ120A
5MBJ130
5MBJ130A
5MBJl50
5MBJ150A
5MBJ160
5MBJl60A
5MBJ170
5MBJ170A

NF
NG
NH
NK
NL
NM
NN
NP
NO
NR
NS
NT
NU
NV
NW
NX
NY
NZ
PO
PE
PF
PG
PH
PK
PL
PM
PN
PP
PO
PR

64.4181.6
64.4n4.1

66.7184.5
66.7n6.7

71.1180.1
71.1181.8
77.8188.6
77.8188.5
83.31105.7
83.3/95.8
86.71109.9
66.7/99.7
94.41119.2
94.41108.2
1001126.5
1001115.5
1111141.0
1111128.0
1221154.5

1221140.5
1331169.0
133/153.0
144/182.5

1441165.5
1671211.5
167/192.5

1781226.0
1761205.0
189/239.5
1891217.5

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

SB
SB

60
60
64
64
70
70
75
75
78
78
85
85
90
90
100
100
110
110
120
120
130
130
150
150
160
160
170
170

5.8
6.4
5.6
6.2
5.3
5.8
4.8
5.3
4.5
4.9
4.3
4.7
3.9

5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

4.4
3.8
4.1
3.4
3.7
3.0
3.4
2.8
3.1
2.6
2.9
2.2
2.5
2.1
2.3
2.0
2.2

103.0
00.6
107.0
96.8
114.0
103.0
125
113
134
121
139
126
151
137
160
146
179
162
196
177
214
193
231
209
289
243
267
259
304
275

NOTES:
1. V(BR) measured after IT applied for 300118 IT = Square Wave Pulse or equivalent.
2. Surge Current Waveform per Figure 3 and Derate per Figure 2.
3. A TransZorb TVS is normally selected according 10 the reverse ·Stand Off Voltage· (VWM) which should be equal 10 or greater
than the D.C. or continuous peak operating voltage level.
4. All terms and symbols are consistant with ANSI/IEEE C.S2.35 specifications.

APPLICATION NOTES
These surface mountable packages are designed specifically for transient voltage suppression. The wide leads assure a large surface contact for good heat dissipation, and a low resistance path for surge currenl flow 10 ground. These high speed transient voltage suppressors can be used 10 effectively pro1Bct sensitive componenls such as integrated circuiIB and MOS devices.
A SOOW (SMB) device is normally selec1Bd when the threat of transients is from ligh1Bning-induced transients conduc1Bd via extemal
leads or VO lines. II is also used to pro1Bct againsl switching transients induced by large coils or induslrial motors. System impediance at component level in a system is usually high enough 10 Omit the currenllo within the peak pulse current (Ipp) rating of this
series.

RECOMMENDED PAD SIZES
The pad dimentions should be 0.010· (.25mm) longer than the contact size, in the lead axis. This allows a solder fillet 10 form, see
figure below. Contact factory for soldering methods.

GULL· WING

MODIRED J-BEND

dfO'09O"tJ

(idistance••qua"a~~6,::so.D8to
16.)
T

-

~I

I.-

2.28MM)

(4.2mm)

.1:'(2.16mm)

5'(2.2mm)

--I

0.050'(1.27mm)

520

~ 0.070" (1.78...)

MAXIMUM RATINGS AND CHARACTERISTIC CURVES 5MBG AND 5MBJ SERIES
FIG. 1 - PEAK PULSE POWER RATING CURVE

FIG. 2 - PULSE RATING CURVE

I'

\..

" ,
"
~

\..

'\

10~s

25

Id. PULSE WIDTH. SEC

50
75 100 125 150 175
r.. AMBIENT TEMPERATURE ·C

200

FIG. 4 - TYPICAL JUNCTION CAPACITANCE

6,000

FIG.3 - PULSE WAVEFORM

50

-~r-'O~'OC
-1_

-

Peak Value

00

I -~ V

Pulse Width (Id)

-

.. thOl poirrtwINre.he peek

cunent docayo •• 50% of

·tiiimf~

4,000

is dotlned

-

u.

HalfV"U..~~_

c.

w

-r--- 2 'G"OOOJ'l

Waveform
udtllnodb\f R.EA

'-. Zero Bias (OV)

1,000

()

z
;5

u

0:

0=1d

o

2
~

-

V. M.asu~'di:

Ip.

50

-_

TJ-25'C

1-':OMHz

T.-25'C

«
()

3

I-~::.:t"

cJ

TIME,mS

/

Voltage

~

100

10

1

2

10 20

100200

VWM, REVERSE STAND-OFF VOLTAGE, VOLTS

- - - - - - - - - - - - - - - - 0

,

I\..

Q.

o

"-<
~

Id. PULSE WIDTH. SEC

o

25

50

75

100 125

150 175

200

TA AMBIENT TEMPERATURE, 'C

FIG. 4 • TYPICAL JUNCTION CAPACITANCE

6,000

FIG. 3 • PULSE WAVEFORM

150

-

....l:"" U=1OJlsec

T,,-2S-C

4,000

PULSE WIDTH (Id) i. defined
as that pOint where the peak
current decays to 50% of I......

2,000

100 ~.!.AKVAWE

"
50

:--

0

o

...

HALFVALUE-i2

""....
Id~

/

II.

1,000

ui

800
600

<.)

z

--""

;:

1011000j.&s Waveform
as defined by R.E.A

""""'"

1.0

--

2.0

0

~
-<
<.)

0'" _

,..

400
200

J
4.0

3.0

T..-25"C ...

f-I.OMHz
Vsfgoo50mVp.p

'"

\
-

1\

~

/

~=rod@,

-

,,

40

..=
z

FIG. 5 • MAX... UM NON·REPETlTlVE PEAK FORWARD
SURGE CURRENT

200

W

20

T,...TJ max

W
0::
0::

B.3mS Single haH sine-wave

10 1

JEDEC Method

::;)
<.)

:i!

,

\.

Voltage

100
80
60

T, TIME (mS)

1111111
VR M••sured @
Zen> Bia. (OV)

2

10

20

100 200

Vwu, REVERSE STAND·OFF VOLTAGE, VOLTS

100

::;)t/)

t/)W
00::
o::W

50

i"""'ooo..

i'
0

....

IL

"-<
W

Q.

:i

.E

5

10

50

100

NUMBER OF CYCLES AT 60Hz

<8 Generallnsbument
525

I

TPSMB6.8 THRU TPSMB43A
AUTOMOTIVE SURFACE MOUNT
TRANSIENT VOLTAGE SUPPRESSOR
VOLTAGE - 6.B - 43 Volts 600 Watt Peak Pulse Power
FEATURES
• Plastic package has Underwriters Laboratory
Rammability Classification 94V-O _
• Easy pick and place
• Low profile package
• BuiH-in strain relief
• Available in unidirectional only
• Exclusive G.I. PAR. chip construction
• Repetition Rate (duty cycle): 0.01%
• Excellent clamping capability
• Low incremental surge resistance
• Fast response time: typically less than 1.0ps
from 0 volts to BV
• Typical 10 less than 1J,IA above 10V at TA=150°C
• Designed to handle all under the hood surface
mount application
• High temperature soldering:
250°C/10 seconds at terminals

DO-214AA

.077(1.96J

f

1

.13013.30J
.155 (3.94J

1

1_·16014.06J_1
.18014.57J
-+ ,.006(.152J
--,tr---.---+----. .01H.305J
.086 (2.18J

.096(t~J ~A---~-~--~

---1

I

.030(0.76Jrl
rt.0041.102J
.050 (1. 27J
.0081.203J .2OS (5.211
I'"- - - - - - - - + · " . 2 2 0 (5.59J

l

MECHANICAL DATA
Case: JEDEC DO-214M Molded plastic over
passivated junction
Tenninals: Solder plated, solderable per
MIL-STD-750, Method 2026
Polarity: Color band denotes positive end
(cathode)
Standard Packaging: 12mm tape
(EIA STD RS-481)
Weight: 0.003 ounces, 0.093 gram

Dimensions In Inches
and

(mlDlmeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 2S"C ambient temperature unless othelwise specified.

Peak Pulse Power Dissipation on 10/1 00011B
waveform (NOTES 1.2. FIG. 1)
Peak Pulse Current on 1011 000 I1B
waveform (NOTE 1. FIG. 3)
Peak Forward Surge Current
8.3ms single half sine-wave superimposed on
rated load (JEDEC Method) (NOTES 2.3)
Instantaneous Forward Voltage at 50A (NOTE 3)
Operating Junction and Storage
Temperature Range

SYIfBOLS

VALUE

PPPM

Minimum 600

Watts

IpPM

See Table 1

Amps

IFSM

70.0

Amps

VF

3.5

Volts

TJ,TSTG

-65 to +185

OC

NOTES:

1. Non-repelltive curre~ pulse, per Fig.3 and derated above TA=2S"C per Fig. 2.
2. Mounted on S.Omm (.013mm thick) land areas per figure.
3. Mounted on 8.3ms single hall slne-wave duty cycle=4 pulses per minute maximum.

S26

ELECTRICAL CHARACTERISTICS AT TA=25"C (unless otherwise noted)

Device

DevIce Breakdown Voltage
Marking V(BRI Volts ~1£ 11
Code
Min. I Max.
atlr mA

TPSMB6.8

KDP

TPSMB6.8A

KEP

TPSMB7.5

KFP

TPSMB7.5A

KGP

TPSMB8.2

KHP

TPSMB8.2A
TPSMB9.1

KKP
KLP
KMP

TPSMB9.1A
TPSMB10

KNP

TPSMB10A

KPP

TPSMBll

KOP

TPSMBllA

KRP

TPSMB12

KSP

TPSMB12A

KTP

TPSMB13

KUP

TPSMB13A

KVP

TPSMB15

KWP

TPSMB15A
TPSMB16

KXP
KVP

TPSMBl6A

KZP

TPSMB18

LOP

TPSMB18A

LEP

TPSMB20

LFP

TPSMB20A

LGP

TPSMB22

LHP

TPSMB22A

LKP

TPSMB24

LLP

TPSMB24A
TPSMB27

LMP

TPSMB27A
TPSMB30

LPP
LOP

TPSMB30A

LRP

TPSMB33

LSP

TPSMB33A

LTP

TPSMB36

LUP

TPSMB36A
TPSMB39

LVP
LWP

LNP

TPSMB39A

LXP

TPSMB43

LVP

TPSMB43A

LZP

6.1217.48
6.4517.14
6.75/8.25
7.1317.88
7.38/9.02
7.79/8.61
8.19/10.0
8.65/9.55
9.00/11.0
9.50/10.5
9.90/12.1
10.5/11.6
10.8/13.2
11.4/12.6
12.4/13.7
12.4/13.7
13.5/16.5
14.3/15.8
14.4/17.6
15.2/16.8
16.2/19.8
17.1/18.9
18.0/22.0
19.0/21.0
19.8/24.2
20.9/23.1
21.6/26.4
22.8/25.2
24.3/29.7
25.7/28.4
27.0/33.0
28.5/31.5
29.7/36.3
31.4/34.7
32.4/39.6
34.2/37.8
35.1/42.9
37.1/41.0
38.7/47.3
40.9/45.2

Reverse
SlantJ.off Voltage
VWI/ (Volts)

Maximum
Reverse
Ll!llkage
atVWI/
IDJlA)

MaxlllXlm
PeakPu/se
Surge CUrrent Ipl'll
(/101£1) (AIrp)

MaxImum CIBn¥Jlng
Voltage at /Pi'll
Vc(VoIts}

10.0

5.50

500

1000.0

5.80

500

1000.0

56
57

10.8

10.0
10.0

6.05

250

500.0

51

11.7

10.0

6.40

250

500.0

53

11.3

10.0
10.0
1.0

6.63

100

200.0

48

12.5

7.02
7.37

100
25

200.0
50.0

50
44

1.0
1.0

7.78
8.10

25
5.0

50.0

45

12.1
13.8
13.4

20.0

40

1.0

8.55

5.0

20.0

41

15.0
14.5

1.0

8.92

2.0

5.0

37

16.2

1.0

9.40

2.0

5.0

38

15.6

1.0

9.72

2.0

5.0

35

17.3

1.0

10.2

2.0

5.0

36

16.7

1.0

11.1

2.0

5.0

32

19.0

1.0

11.1

2.0

5.0

33

18.2

1.0

12.1

2.0

5.0

27

22.0

1.0
1.0

12.8
12.9

2.0
2.0

5.0
5.0

28
26

21.2
23.5

1.0

13.6

2.0

5.0

27

22.5

1.0

14.5

2.0

5.0

23

26.5

1.0

15.3

2.0

5.0

24

25.2

1.0

16.2

2.0

5.0

21

29.1

1.0

17.1

2.0

5.0

22

27.7

1.0

17.8

2.0

5.0

19

31.9

1.0

18.8

2.0

5.0

20

30.6

1.0

19.4

2.0

5.0

17

34.7

1.0

20.5

2.0

5.0

18

33.2

1.0

21.8

2.0

5.0

15

39.1

1.0

2.0

5.0

16

1.0

23.1
24.3

2.0

5.0

14

37.5
43.5

1.0

25.6

2.0

5.0

14.4

41.4

1.0

26.8

2.0

5.0

12.6

47.7

1.0

28.2

2.0

5.0

13.2

45.7

1.0

29.1

2.0

5.0

11.6

52.0

1.0
1.0

30.8

2.0
2.0

5.0

31.6

5.0

12.0
10.6

56.4

1.0

33.3

2.0

5.0

11.2

53.9

1.0

34.8

2.0

5.0

9.6

61.9

1.0

36.8

2.0

5.0

10.1

59.3

NOTES:
1. VIBR) measured after IT applied for 300",s, IT=Square Wave Pulse or Equivalent.
2. Surge current Waveform per Figure 3 and Derate per Figure 2.
3. All terms and symbols are consistant with ANSI/IEEE C62.35.

527

10.5

49.9

MAXIMUM RA TlNGS AND CHARACTERISTIC CURVES TPSMB 6.8 THRU TPSMB 43A

!i~

FIG.1 • PEAK PULSE POWER RATING CURVE

~
CC

W
CJ

100

~~

75

B~

tM!

FIG. 2· PULSE DERATING CURVE

"- ~
""

h

~i

~i
Ww

..

~Q

..

~

"'!!:
~-

td. PULSE WIDTH. sec

"'" "-

50

00

~

50

75

~

"

m

~
~

~

m

TA. AMBIENT TEMPERATURE. 'C
FIG.3 • PULSE WAVEFORM
50

...:. ;+-, If., 10 ~ oec
~PeakValU8

00

,-1-

FIG.4· TYPICAL JUNCTION CAPACITANCE

TA-25"C

_
_

Pulse Wodth (III) is defined
as thai point _
the peak

-

currant decayo to 50% of
Ipp

""""IIiii: V __

TJ-25"C

2=

HOHVioiu;;:.1e!..~.

50

10.
1-1.0 MHz

Vsig..5OmVp-p

'

VR

M~~~~@

Zero Bias

.. dMined bJ ~.E.A.

=111

"
/\.

3

2
~ TIME.mS

==
==
-

10

FIG. 5 • MAXIMUM NON-REPETITIVE
PEAK FORWARD SURGE CURRENT

VRMeasured
@Stand-oII
Voitago(VWj

II 11111
10

20

60

tOO

200

VIBR).BREAKOOWN VOLTAGE. VOLTS

200
8.3mS Single Half Sine-Wave
JEDEC Melhod
TJ.T"""",

-2

3

5

10

20

30

50

100

.. General Instrument
528

•

529

S3A THRU S3M
SURFACE MOUNT RECTIFIER
VOLTAGE - 50 to 1000 Volts CURRENT - 3.0 Amperes
FEATURES
• Plastic package has Underwriters Laboratory
Flammability Classification 94 v-o

D0-214AB

• For surface mounted applications

.11512.92)

f

1

• Low profile package

.220(5.59)
.245(6.22)

I-~--I
.28017.11)

• Built-in strain relief

1

• Easy pick and place
• Glass passivated chip junction

-+ ,.0061.152)
.012 (,305)

--,t..----,..---+----.

• High temperature soldering:
260°C/1 0 seconds at terminals

~ ~----~----~~
.008(2.44)

MECHANICAL DATA
t004 (,102)1
.008 (.203) 1,.30517.75)
.......-------+" .320(8.13)

Case:JEDEC DO-214AB molded plastic over
passivated junction
Terminals: Solder plated solderable per MIL-STD750, Method 2026
Polarity: Color denoted cathode

Dimensions In Inches and (millimeters)

(EIA STD RS-481)

·Typical Range

Weight: 0.007 ounces, 0.21 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified.
60 Hz. resistive or inductive load.
For capacitive bad. deralll current by 20%.

SYIIBOLS S3A

Maximum Recurrent Peak Reverse Voltage
Maximum RMS voltage
Maximum DC Blocking Vo~age
Maximum Average Forward Rectified Current
at T L=75°C (NOTE 3)
Peak forward Surge Current
8.3ms single half sine-wave superimposed on
rated load (JEDEC Method)
Maximum Instantaneous Forward Vo~age at 2.5A
Maximum DC Reverse Current
TA=25DC
at Rated DC Blocking Vo~age
TA=125DC
Typical Reverse Recovery Time (NOTE 1)
Typical Junction Capacitance (NOTE 2)
Maximum Thermal Resistance (NOTE 3)

VRRM
VRMS
Voc

Operating Junction and Storage Temperature Range

TJ.TsTG

UNITS

Volts
Volts
Volts

3.0

Amps

IFSM

100.0

Amps

VF

1.15
10.0
250.0
2.5
60.0
10.0
60.0
-55 to +150

Volts

CJ
R8JL
RaJA

530

S38 S3D S3G S3J S3K 83M
100 200 400 600 800 1000
70 140 280 420 560 700
100 200 400 600 800 1000

I(AV)

IR
T r,

NOTES:
1 Reverse Recovery Test conditions: IF=0.5A. IR=I.0A. Irr=0.25A.
2. Measured at 1.0 MHz and applied Vr-4.0 vollS.
3. 8.0mm2 (.OI3mm thick) land areas.

50
35
50

IlA
IlS
pF
DC/W
DC

RATINGS AND CHARACTERISTIC CURVES S3A THRU S3M
FIG. 2-MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT
FIG 1 - FORWARD CURRENT DERATING CURVE

z

200

I I

UJ

~
UJ

3.5

a:
a:

:::>

2.5

Coo
~ ~

2.0

;;:UJ

~ 1.5

UJ
Cl

1.0

a:
UJ
::(

0.5

g;

c(

60

70

80

-

roo.

10..

,,~

r n E l l i D ,R,E'f

50

100

o

RESISTIVE OR
~
INDUCTIVE LOAD
P.C. BOARD MOUNTED ON 8.Omm'

LL.c(

TL-95·C

a:

No- ~I
I [10""
I I
I I

3.0

o

gj

.....

90

8.3mS SINGLE HALF SINE·WAVE
(JEDEC METHOD)

~

NUMBER OF CYCLES AT 60 Hz

100 110 120 130 140 150

LEAD TEMPERATURE, 'C

FIG 4 - TYPICAL JUNCTION CHARACTERISTICS

FIG 3 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

1.1.

Q.

ui

100

100~_
50

0

10...

z

~

.....
z

30

:::>

0
C

a:
~oo
a: UJ
o~
1.1.,,00::;:

,

3.0

0.3

II

z

~

00

=

10

1

•

100

50

REVERSE VOLTAGE, VOLTS

=

UJ

~

t=1.0MHz
Vsig 5OmVp~p

10

5

T•• 25·C
~
PULSE WIDTHo3OOjIS
2% DUTY CYCLE
-

0

'"

TJ",,2S"C

1/

1.0

:::>c(

Z

"c(
0

/

10

.....

0c(

~

UJ

a:
a:

100

50

10

,~

I , , , ,

FIG 5- TYPICAL REVERSE CHARACTERISTICS

0.1

~

I--- ,-T•• 12S'C
.03

II

'I
.01
0.6

0.7

0.8

0.9

1.0

1.1

1.2

-

1.3

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

20

T••25'C
40

60

80

100

120

140

PERCENT OF RATED PEAK REVERSE VOLTAGE,,,

"

• High temperature soldering:

250"C/10 seconds at terminals

MECHANICAL DATA
Case: JEDEC DO-214AB molded plastic over
paSSivated junction

Terminals: Solder plated solderable per MIL-STDDimensions In inches and (millimeters)

'Typical Range

750, Method 2026

Polarity: Color band denotes cathode
Standard Packaging: 16mm tape
(EtA STD RS-4B1)

Weight: 0.007 ounces, 0.21 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25"C ambient temperature unless otherwise specified. Resistive or inductive load.

SYM8OL.S RS3A

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at TL=75·C
Peak Forward Surge Current
8.3ms single haH sine-wave superimposed on
rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage at 2.5A
Maximum DC Reverse Current
TA=25"C
at Rated DC Blocking Voltage
TA=125°C
Maximum Reverse Recovery TIme (NOTE 1)
Typical Junction Capacitance JNOTE 2)
Maximum Thermal Resistance (NOTE 3)
Operating Junction and Storage Temperature Range

VRRM
VRMS
Voc

50
35
50

RS3B

I
I
I

100
70
100

RS3G RS3J

RS3D

I
I
I

200
140
200

I
I
I

400 I 600
280 I 420
400 I 600

I
I
I

RS3K

UNITS

800
560
800

Volts
Volts
Volts

hAV}

3.0

Amps

IFsM

100

Amps

VF

1.3
10.0
250

Volts

IR
Trr
CJ
RaJL
RaJA
TJ,TsTG

NOTES: 1. Reverse Recovery Test conditions: IF-0.5A, IR-l.0A, Irr-D.25A.
2. Measured at 1.0 MHz and applied Vr=4.0 volts.
3. 8.0mm2 (.013mm thick) land areas.

532

I

150
60.0
10.0
60.0
-55 to +150

250 I 500

IlA
ns
DF

·CIW
·C

RATING AND CHARACTERISTIC CURVES RS3A THRU RS3K
FIG 2 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

FIG 1 - FORWARD CURRENT DERATING CURVE

~

""L J

IT,

r- ~~~~~~~~AD
P.C. board mounted on 8.0mm2
r- COPPER LAND AREAS

"~S·C"

~~~

I--

50

"T" = 2S"(

100

150

200

tl_ljs-c

!i!ffl
:::la:
UlW

100

CQ.

a:~
~

-

a:!z
OW
u.a:
",a:
«:::l
wO

75

..I.

I ' ....

.

PULSE~',:,.;::~~'

JII
.........

~!f_T'f~r~LE

I"

J.LUI

1.2

1.8

.-

=

1.8

INSTANTANEOUS FORWARD VOLTAGE,
VOLTS

B.3rns SINGLE HALF SINE-WAVE
(JEDEC METHOD)

125

. T,=":w"C

0. 1

FIG 3 - MAXIMUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT
150

rr

•

LEAD TEMPERATURE, 'c

W

'1')

,

FIG 4 - TYPICAL REVERSE
CHARACTERISTICS
100

-r- ...

i"""~

50
25

Q.

,"-

TJ = 12S'C

0
10

2

20

50

•

100

NUMBER OF CYCLES AT 60 Hz

D.:.

~

~

~

r1

TJ.7S"C

FIG 5 - REYERSE RECOVERY TIME CHARACTERISTIC AND TEST DIAGRAM
IOn

un

NONINDUCTIVE

NONIllOUCTIVE

f+TRR...j

.....

....

TJ=2S"C

1

-1.0

~

NOTES; 1. Rise Time" 7ns max. Input Impedance'" 1megohmn, 22pF.
2. Rise Time'" 10n8 max. Source Impedance = 50 ohms.

10ns

t-1cm

"0 1

20

40

60

eo

100

120 140

PERCENT OF RATED PEAK
REVERSE VOLTAGE, %

- - - - - - - - - - - - - - - CD General Instrument
533

ES3A THRU ES3D
SURFACE MOUNT ULTRAFAST RECTIFIER
VOLTAGE - 50 to 200 Volts CURRENT - 3.0 Amperes
FEATURES
• Plastic package has Underwriters Laboratory
Rammability Classification 94 v-o
~
• For surface mounted applications
...---.-_+-_...----..__..--_ • Low profile package
Built-in strain relief
. 220{5. 59) • Easy pick and place
.245(6.22) • Superfast recovery times for high efficiency
Glass passivated chip junction
!---'--+--'---+--.!..-- • High temperature soldering:
~-I
250°CI1 0 seconds at terminals
.200(1.11)
OD-214AB

.11512.92)
.121(3.07)1

f

•

1 •

1-

,:~~~ ~:!~~~

--r---.-----4I-----+.....
t
.084(2.13)
.088(2.44)

~

1;(.102)1
.000 (.203)

I

.305(1.75)

+--------+. " .320{0.13)
Dimensions in inches and (millimeters)
*TypICal Range

MECHANICAL DATA
Case: JEDEC DO-214AB molded plastic over
passivated junction
Tennlnals: Solder plated soldrable per MIL-STD750, Method 2026
Polarity: Color band denotes cathode
Standard Packaging: 16mm tape
(EIA STD RS-481)

Weight: 0.007 ounces, 0.21 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Rathgs at 25'C ambient lemperature unless otherwise specified. Resistive or inductive load.

Maximum Recurrent Peak Reverse Voltage
Maximum RMS Voltage
Maximum DC Blocking Voltage
Maximum Average Forward Rectified Current
at Tl=100·C
Peak Forward Surge Current
8.3ms Single half sine-wave superimposed on
rated load (JEDEC Method)
Maximum Instantaneous Forward Voltage at3.0A
Maximum DC Reverse Current
TA=2SoC
at Rated DC Blocking Voltage
TA=100·C
Maximum Reverse Recovery TIme (NOTE 1)
Maximum Reverse Recovery TIme TA=2SoC
(NOTE 2)
TA=100·C
Maximum Stored Charge
TA=2S· C
(NOTE 2)
TA=100 °C
Typical Junction Capacitance (NOTE 3)
Typical Thermal Resistance (NOTE 4)

SYJllBOLS

ES3A

VRRM
VRMS
Voc

SO
3S

so

ES38
100
70
100

I
I
I

ES3C
1S0
10S
150

I
I
I

ES3D
200
140
200

UNITS

Volts
Volts
Volts

I(AV)

3.0

Amps

IFSM

100

Amps

VF

0.90
10.0
SOO
20.0
30.0
SO.O
1S.0
3S.0
4S.0
12.0
47.0
-55 to +1S0

Volts

IR
Trr
Trr

ORR
CJ
R8JL
R9JA
Operating Junction and Storage Temperature RangE TJ,TsTG

NOTES: 1. Reverse Reoovery Test Conditions: IF=O.5A. IR=1.0A. Irr=O.25A.

2. TRR and QRR measured on LEM lesler: VR=30V. dlldt=50 A/jlS IF=3.0A.
3. Measured at 1.0 MHz and applied reverse voltage of 4.0 volts.
4. 8.Omm2 (.013mm thick) land areas.

534

~
ns

ns
nc
pF

OCIW
·C

RATING AND CHARACTERISTIC CURVES ES3A THRU ES3D
FIG 1 • REVERSE RECOVERY TIME CHARACTERISTIC AND TEST DIAGRAM

000
NONfliDUCTIVE

FIG 2 ·MAXlMUM AVERAGE
FORWARD CURRENT RATING
3.0

"'" INDUCTIVE
NON

2.6

--,

2.0

(,1
25Voc
(applOll.)

('1

1.0

I\.

I\.

r~

\

RESISTIVE OR
INDUCTIVE LOAD

p.e. BOARD MOUNTED ON B.OmmI

0.5

COPPER lAND AREAS

NOTES: 1. Rise Time:: 7ns max. Input Impedance'" lmegohmn, 22pF.
2. Rise Time:: 10n5 max. Source Impedance:: 50 ohms.

r-

~

60 90 100 110 120 130 140 150

LEAD TEMPERATURE: C
FIG 3· TYPICAL REVERSE CHARACTERISTICS

FIG 4· TYPICAL FORWARD CHARACTERISTICS

1000

100.0
III

W

--

J .... ' [lO'C_

100

t!l

~1Il

~W
... a:
W~
1Il::o
a:...:

!!;!fi!

!i!Q
1Il::O

8!i
Ww

...:

!i
W
::;)

0

ca:
a:

12III

Za:

~!5
,..;0
~
l!:

I

1.0

~

'I

1.0

/

10.0

a:
a:

~

T....7: j'C

10

W
a:
W
a..
::0

::;)

.~

0.1

0
W
Z

T.>.25'C

TJ025'C
PULSE WIDTH-3CXlJ1s
2% DUTY CYCLE

0.1

~

~
l!:

~

•

III

.01

I

.01
20

40

60

60

100

120

OA 0.6

140

FIG 5· MAXIMUM NON·REPETmVE
PEAK FORWARD SURGE CURRENT

!i
W
a:
a:

~~.\Ixrc

I

I

1.0

12

lA

1.6

1.8

1~.-'-rn~~-'TTnmrr--'TOTnm--r"~~

..

~~~!I!C

,

I I

90 ...,
r.........+I+HlrH--I-l-H-ttlfI-H 1-1.0104",
Vslg.5OmVp-p
75 I-+-IPhI:tmf--H-I+

I I II

8.3ms SINGLE HALF SINE·WAVE

125

0.8

INSTANTANEOUS FORWARD
VOLTAGE,VOLTS
FIG 8 • TYPICAL JUNCTION CAPACITANCE

PERCENT OF RATED PEAK REVERSE
VOLTAGE.YOLTS,%

JEDEC METHOD

::;)

0

100
W
(!Jill
a:W
::;)a: 75
IIlW

"...:

~~

50

0

~

25

u.

"...:a..W

.............

'" '""' ...

.......... -.
10

r--i-

20

50

100

.1

.5

1

5

10

20

50 100 200

500 1000

REVERSE VOLTAGE, VOLTS

NUMBER OF CYCLES AT 60 Hz

::

~
II.

j
5
10
NUMBER OF CYCLES AT 60Hz

50

100

- - - - - - - - - - - - - - (&Generallnstrument
541

•

SMCG AND SMCJ 5.0 THRU 170C,CA SERIES
BIDIRECTIONAL SURFACE MOUNT TRANSIENT VOLTAGE SUPPRESSOR

VOLTAGE· 5.0 - 170 Volts

Peak Pulse Power- 1500 Watts
FEATURES

DO-214AB
.11512.921
.:12113. 071

1

• For surface mounted applications in order to
optimize board space.

MODIFIED J-BEND

• Low profile package

f

• Built-in strain relief

.22015.591
.2451'.221

• Glass passivated junction
• Excellent clamping capability
• Low inductance

t

• Repetition Rate (duty cycle):0.5%

l

• Fast response time: typically less than 5.0nS
from 0 volts to BV for bidirectional types

:~~~g:~~: ,j----:----liJ

• Typical 10 less than 1 ~ above 10V
• High temperature soldering:
250°C/10 seconds at terminals

DO-215AA

• Plastic package has Underwriters Laboratory
Flammability Classification 94V-0

GUll. WING

MECHANICAL DATA

*

CBse: JEOEC 002141 00215 molded plastic over

~

.2&0(6.60)

passivated junction

Terminals: Solder plated. solderable per

~S ~) MIL-STO-750. Method 2026
.o75(l""'~L"'(O.'0) Standard Packaging: 16mm tape
.)
.02416.10)

7T

(EtA STD RS-481)

SEATING

Weight: .007 ounces. 0.21 gram

PlANE

......1I1IItlo .ymbol

Dimensions In Inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Electrical characteristics apply in both directions.
Ratings at 25°C ambient temperature unless otherwise specified.

Peak Pulse Power Dissipation on 1011 OOOl1s
waveform (Notes 1• 2)
Peak Pulse Current on 1011 000118
waveform (Note 1. Fig. 3)
Operating Junction and Storage
Temperature Range
NOTES:
1. Non-repetitive current pulse, per Fig.3 and derated above TA=25"C per Fig. 2.
2. Mounted on 8.0mm2 copper pads to each terminal.

542

Sl'MIJOLS

VALUE

UNITS

PPPM

Minimum 1500

Watts

IPPM

See Table 1

Amps

TJ.TsTG

-50 to +150

°C

_...

ELECTRICAL CHARACTERIST1CS AT TA=25°C (um-oth«wIse/lOled)
......um
IIodffllld

D••Ie.

J.B.nd
Lsod

Marking
COdo

BrNk_n Vollago
V(BR) VO's(NOTf I)
Min lilax

SMCG5.0C
SMCG5.0CA
SMCG6.0C
SMCG6.0CA
SMCG6.5C

SMCJ5.0C
SMCJ5.0CA
SMCJ6.0C
SMCJ6.0CA
SMCJ6.5C

GOD
GOE

6.4017.25

GOF
GOG
BOH

6.6718.45

SMCG6.5CA
SMCG7.0C
SMCG7.0CA
SMCG7.5C

SMCJ6.5CA
SMCJ7.0C
SMCJ7.0CA
SMCJ7.5C

BOK
GOL
GOM
BON

7.2218.30

8.33110.67

1.0

7.5

SMCG7.5CA

SMCJ7.5CA

BOP

8.3319.58

SMCG8.0C

SMCJ8.0C

BOO

8.89/11.3

1.0
1.0

7.5
8.0

SMCG8.0CA

SMCJ8.0CA

BOR

1.0

SMCG8.5C
SMCG8.5CA

SMCJ8.5C
SMCJ8.5CA

BOS
BOT

8.89110.2
9.44/11.9

SMCG9.0C
SMCG9.0CA
SMCG10C

SMCJ9.0C
SMCJ9.0CA
SMCJ10C

Gull-Wing
Load

6.4017.55

6.6717.67
7.2219.14
7.7619.86
7.7818.95

""SlaIJd.o"VIlIIago
BllrmA VIII/(Vo's)
10
10
10

5.0
5.0
5.0

10
10
10
10
10

6.0
6.5
6.5
7.0
7.0

""Loa.
lit VIII/

loi\LA)
1000
1000
1000
1000

SOO
500
200
200
100
100

PNkPuIN

SUr". c.....", IpP/l
(NOTE 2) (Amp,)
156.2
163.0
131.6
145.6
122.0
133.9
112.8
125.0
104.9

......... Clamplng
VllIIagolltlPl'll
Vc(VDls)
9.6
9.2
11.4
10.3
12.3
11.2
13.3
12.0
14.3

116.3
100.0

12.9

50

8.0

50

110.3

13.6

1.0

8.5

95.3

9.44110.8

1.0

8.5

25
20

104.2

15.9
14.4

BOU

10.0/12.6

1.0

9.0

10

88.7

16.9

BOV
BOW

10.0/11.5
11.1114.1

1.0
1.0

9.0
10

10
5.0

97.4
79.8

15.4
18.8

5.0

88.2
74.6
82.4

17.0
20.1
18.2

15.0

SMCG10CA

SMCJ10CA

BOX

11.1/12.8

1.0

SMCG11C
SMCG11CA
SMCG12C

SMCJllC
SMCJ11CA

GOY
GOZ

1.0
1.0

10
11
11

5.0
5.0

SMCJ12C

BEO

12.2115.4
12.2114.0
13.3/16.9

1.0

12

5.0

68.2

22.0

SMCG12CA
SMCG13C

SMCJ12CA
SMCJ13C

BEE
GEF

13.3/15.3

1.0

12

75.3

19.9

14.4118.2

1.0

13

5.0
5.0

63.0

SMCG13CA

SMCJ13CA

GEG

14.4116.5

1.0

13

5.0

69.7

23.8
21.5

SMCG14C
SMCG14CA

SMCJ14C

BEH

14

5.0

BEK

15.6/19.8
15.6/17.9

1.0

SMCJ14CA

1.0

14

5.0

58.1
64.7

25.8
23.2

SMCG15C

SNCJ15C

BEL

16.7/21.1

1.0

15

5.0

55.8

26.9

SMCG15CA

BEM
GEN

16.7119.2
17.BI22.6

1.0

15

5.0

61.5

24.4

SMCG16C

SNCJ15CA
SMCJ16C

1.0

16

5.0

52.1

28.B

SMCG16CA

SMCJ16CA

GEP

17.BI20.5

SMCJ17C
SMCJ17CA

GEO
GER

18.9/23.9
18.9/21.7

1.0
1.0

16
17

5.0

SMCG17C
SMCG17CA

57.7
49.2

1.0

17

5.0
5.0

53.3

26.0
30.5
27.6

SMCG16C
SMCG1BCA

SMCJ18C
SMCJ18CA

BES
BET

20.0125.3
20.0123.3

1.0
1.0

18
18

5.0
5.0

46.6
51.4

32.2
29.2

SMCG20C

SMCJ20C

GEU

22.212B.1

1.0

20

5.0

41.9

35.8

SMCG20CA

SMCJ20CA

GEV

22.2125.5

1.0

20

5.0

46.3

32.4

SMCG22C

SMCJ22C

BEW

24.4130.9

5.0

SMCJ22CA

BEX

24.4128.0

1.0
1.0

22

SMCG22CA

22

5.0

3B.1
42.2

39.4
35.5

SMCG24C

SMCJ24C

1.0
1.0

24
24

5.0

SMCJ24CA

BEY
BEZ

26.7/33.8

SMCG24CA

34.9
3B.6

43.0
38.9

SMCG26C

SMCJ26C

BFD

28.9/36.6

1.0

26

5.0

32.2

46.6

SMCG26CA
SMCG28C

SMCJ26CA

BFE
GFF

2B.9/32.2
31.1/39.4

1.0
1.0

26
28

5.0
5.0

35.6
30.0

42.1

SMCJ28C

SMCG28CA
SMCG30C
SMCG30CA

SMCJ28CA
SMCJ30C

GFG
BFH

31.1/35.B
33.3142.2

33.0
26.0

SMCG33C

33.3/38.3
36.7146.9

1.0

33

SMCG33CA
SMCG36C

SMCJ33C
SMCJ33CA
SMCJ36C

BFK
BFL

28
30
30

5.0

SMCJ30CA

1.0
1.0
1.0

BFM
BFN

36.7142.2
40.015.07

1.0
1.0

33
36

5.0
5.0
5.0

SMCG36CA

SMCJ36CA

BFP

40.0146.0

1.0

36

5.0

25.8

58.1

SMCG40C
SMCG40CA

SMCJ40C
SMCJ40CA

BFO

1.0
1.0

40
40

5.0
5.0

21.0
23.2

71.4

BFR

44.4156.3
44.4/51.1

SMCG43C

SMCJ43C

BFS

47.BI60.5

1.0

43

5.0

19.6

76.7

SMCG43CA
SMCG45C

SMCJ43CA

BFT

47.8154.9

1.0

43

21.6

69.4

SMCJ45C

GFU

50.0163.3

1.0

45

5.0
5.0

18.7

80.3

SMCG45CA

SMCJ45CA

GFV

50.0157.5

1.0

45

5.0

20.6

72.7

SMCG48C

SMCJ48C
SMCJ4BCA

GFW
GFX

53.3/67.5

SMCG48CA

53.3/61.3

1.0
1.0

48
48

5.0
5.0

17.5
19.4

85.5
77.4

26.7/30.7

5.0

5.0
5.0

31.0
25.2
28.1
23.3

so.o
45.4
53.5
48.4
59.0
53.3
64.3

64.5

SMCG51C

SMCJ51C

GFY

56.7171.8

1.0

51

5.0

18.5

91.1

SMCG51CA
SMCG54C

SMCJ51CA

GFZ

56.7165.2

1.0

51

5.0

1B.2

82.4

SMCJ54C

GGO

60.0176.0

1.0

54

5.0

15.6

98.3

SMCG54CA

SMCJ54CA

GGE

60.0169.0

1.0

54

5.0

17.2

87.1

543

•

ELECTRICAL CHARACTERlSnCS AT TA=25"C (Un""

IMd

SMCJ58C
SMCJ58CA

SMCG64C
SMCG64CA
SMCG70C
SMCG70CA
SMCG75C
SMCG75CA
SMCG78C
SMCG78CA
SMCG85C
SMCG85CA
SMCG90C
SMCG90CA
SMCGlOOC
SMCG100cA
SMCG110C
SMCG110CA
SMCG120C
SMCG120CA
SMCG130C
SMCG130CA
SMCG150C
SMCG150CA
SMCG160C
SMCGl60CA
SMCG170C
SMCG170CA

1lA11ID:.

Code

IMd

SMCG58C
SMCG58CA
SMCG60C
SMCG60CA

GGF
GGG
GGH
GGK

SMCJ60C
SMCJ60CA
SMCJ64C
SMCJ64CA
SMCJ70C
SMCJ70CA
SMCJ75C
SMCJ75CA
SMCJ7BC
SMCJ78CA
SMCJ85C
SMCJ85CA
SMCJ90C
SMCJ90CA
SMCJ100C
SMCJ100cA
SMCJ110C
SMCJllOCA
SMCJ120C
SMCJ120CA
SMCJ130C
SMCJ130CA
SMCJ150C
SMCJ150CA
SMCJ160C
SMCJ160CA
SMCJ170C
SMCJ170CA

GGl
GGM
GGN
GGP
GGO
GGR
GGS
GGT
GGU
GGV
GGW
GGX
GGY
GGZ
GHD
GHE
GHF
GHG
GHH
GHK
GHL
GHM
GHN
GHP
GHO
GHR

64.4181.6
64.4174.6
66.7/84.5
66.7176.7
71.1180.1
71.1181.8
77.8198.6
77.6189.5
83.31105.7
83.3/95.8
86.71109.9
86.7/99.7
84.41119.2
84.41108.2
1001126.5
100/115.5
1111141.0
1111128.0
1221154.5
1221140.5
1331189.0
1331153.0
1441182.5
1441165.5
1671211.5
1671192.5
176/226.0
1781205.0
1891239.5
1891217.5

.IIrlntAl
1.0
1.0

--'
56
56

1.0
1.0

eo

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

64
64
70
70
75
75
78
78

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

90
90
III
100
110

60

85
85

110
120
120
130
130
150
ISO
160
160
170
170

_liiwlI
5.0
5.0
5.0
5.0

IfflJrEfl/........
14.6
16.0
14.0
15.5
13.2
14.6
12.0
13.3
11.2
12.4
10.8
11.4
9.9
10.4

5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0

0""'" noled}
VcIV"'}
103.0
93.6
107.0
96.8
114.0
103.0
125
113
134
121
139
126
lSI
137

9.4
10.3
8.4
9.3
7.7
8.4
7.0
7.9
6.5
7.2
5.6
6.2
5.2
5.8
4.9
5.5

5.0
5.0
5.0
5.0
5.0

160
146
179
162
196
177
214
193
231
209
289
243
287
259
304
275

NOTES:
1. V(BR) measured after lrapplied for 300 US. IT = Square Wave Pulse or equivalent
2. Surge curren1 Waveform per Figure 3 and Derate per Figure 2.
3••A TransZorb TVS is normally selected according to the reverse 'Stand Off Voltage"(VWM) which should be equal to
or greater than the DC or continuous peak operating voltage lavel.
4. All terms and symbols are consistant wi1h ANSI 1 IEEE C.62.35 specifications.

APPLICATION NOTES
This series of TransZorb transient vollage suppressors, available in sma" oudine mounlable packages, is designed to optimize
board space. Packaged for use with surface mount tBchnology au10matBd assembly equiptment, these parts can be placed on
printed circuit boards and ceramic substrates 10 protect sensitive components from Iransient voltage damage. The wide leads assure a large surface conlact for good heat dissipation, and a low rasislance path for surge currant ftow to ground. These high
speed transient voltage suppressors can be used to effectively' protect sensitive components such as inlegratBd circuits and MOS
devices.
A 1500W (SMC) device is normally selectBd when the threat of transients is from lightening induced transients, conducted via extBrnalleads or 110 lines. it is also used to protBct against switching transients induced by large coils or industrial motors. Source
impediance at component level in a system is usually high enough to limit the current within the peak pulse current (Ipp) rating of
this series. In an overstress condition, the failure mode is a short circuit

RECOAfMENDED PAD SIZES
The pad dimentions should be o.ot 0"(.25mm) longer than the contact size, in the lead axis. This allows a solder fi"etto form, see
figure below. Conlact factory for soldering methods.

GULL- WING

"ODIRED J-BEND

(Pad distanc•••qUallaY~~lf~ S O
to 16.)
-----o8

T

D~5'(317mm)
-I I-

~ 0"9O"~
4.83mm)

(7.87mm)

~5'(3.17mm)

--I

0.050"(1.27mm)

544

~ 0.070" (1.78mm)

MAXIMUM RATINGS AND CHARACTERISTIC CURVES SMCG AND SMCJ SERIES

n

FIG. 1 • PEAK PULSE POWER RATING CURVE

100 _ _

flO. 2· PULSE RATING CURVE

~
\..

'\

~
~

I'
\..
10jJS
!d. PULSE WIDTH. SEC

25

50

75

"

100 125 150 175 200

TAAMBIENTTEMPERATURE. OC

FIG. 4· TYPICAL JUNCTION CAPACITANCE
FI0.3 • PULSE WAVEFORM

so

- -....._V....

TA-25'C

I-- Pulse WodIh (td) 10 dollnod
~11O~_ I-- .. 1hoI paint whore1he peak

00

1--_~to_aI

Ippl

=

.JI!U!I:::-•

;/HoB VoIu..

. -r--

SO

2

.. definod by ~.E.A.

io=ld

o

2

t. TIME.mS

3

M

"

K

1°o• •

101L-.L2...LL.LLLII111..0-20..L..I...L.1.IW1JLOO-20..J...J0U400
VWM.REVERSESTAN~FVOLTAGE.VOLTS

- - - - - - - - - - - - - - - tlGenerallnstrument
545

•
!

TPSMC6.8 THRU TPSMC43A
AUTOMOTIVE SURFACE MOUNT
TRANSIENT VOLTAGE SUPPRESSOR
VOLTAGE - 6.8 - 43 Volts 1500 Watt Peak Pulse Power
FEATURES
• Plastic package has Underwriters Laboratory
Flammability Classification 94V-O
•
• Easy pick and place
• Available in unidirectional only
• Low profile package
• Built-in strain relief
• Exclusive G.I. P.A.R. chip construction
• Repetition Rate (duty cycle): 0.05%
• Excellent clamping capability
• Low incremental surge resistance
• Fast response time: typically less than 1.0ps
from 0 volts to BV
• TypicallR less than 1jJA above 10V atTA=150°C
• Designed to handle all under the hood surface
mount application
• High tempera~ure soldering:
250°C/10 seconds at terminals

DO-214AB

.11512.92)

f

1

.22015.59)
.24516.22)

1

I-~----+I
.28017.11)

.0061.152)
.0121.305)

'--

, I

.

I'

.03010.76)r"j
.004 !.l02)
' 30517 75)
.06011.52)
I
.0081.203)
II
•
• Typical Range
.32018.13)

J..

MECHANICAL DATA

.

Case: JEDEC DO-214AB Molded plastic over
passivated junction

Terminals: Solder plated, solderable per
MIL-STD-750. Method 2026

Dimensions in inches
and
(millimeters)

Polarity: Color band denotes positive end
(cathode)

Standard Packaging: 16mm tape
(EIA STD RS-4B1)

Weight: 0.007 ounces. 0.21 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified.

SYAf8OL.S

VALUE

Peak Pulse Power Dissipation on 1011 OOO~s
waveform (NOTES 1, 2, FIG. 3)

PPPM

Minimum 1500

Watts

Peak Power Pulse Current on 10/1000~s
waveform (NOTE 1, FIG. 1)

IpPM

See Table 1

Amps

IFSM

200.0

Amps

VF

3.5

Vohs

TJTsTG

-65 to +185

°C

Peak forward Surge Current
8.3ms single half sine-wave superimposed on
rated load (JEDEC Method) (NOTES 2, 3)
Instantaneous Forward Voltage at 100A (NOTE 3)
Operating Junction and
Storage Temperature Range

NOTES:
1. Non-repetitive current pulse, per Fig.3 and derated above TA=25°C per Fig. 2.
2. Mounted on 8.0mm 2 copper pads to each terminal.
3. Measured on 8.3ms single half sine-wave, or equivilent squarewave, duty cycle=4 pulses per minute maximum.

546

ELECTRICAL CHARACTERISTICS st TA=25"C (unless otherwise noted)
TA=1IHrC

Device
TPSMC6.8
TPSMC6.8A
TPSMC7.5
TPSMC7.5A
TPSMC8.2
TPSMC8.2A
TPSMC9.1
TPSMC9.1A
TPSMC10
TPSMC10A
TPSMC11
TPSMC11A
TPSMC12
TPSMC12A
TPSMC13
TPSMC13A
TPSMC15
TPSMC15A
TPSMC16
TPSMC16A
TPSMC18
TPSMC18A
TPSMC20
TPSMC20A
TPSMC22
TPSMC22A
TPSMC24
TPSMC24A
TPSMC27
TPSMC27A
TPSMC30
TPSMC30A
TPSMC33
TPSMC33A
TPSMC36
TPSMC36A
TPSMC39
TPSMC39A
TPSMC43
TPSMC43A

Device Breakdown Voltage
Marlcing V(BR) Volls (NOTE 1)
Code
Mm. / Max.
at Ir (IlIA)
DDP
DEP
DFP
DGP
DHP
DKP
DLP
DMP
DNP
DPP
Dap
DRP
DSP
DTP
DUP
DVP
DWP
DXP
DYP
DZP
EDP
EEP
EFP
EGP
EHP
EKP
ELP
EMP
ENP
EPP
Eap
ERP
ESP
ETP
EUP
EVP
EWP
EXP
EYP
EZP

6.12/7.48
6.4517.14

6.75/6.25
7.1317.88

7.38/9.02
7.79/8.61
8.19/10.0
8.65/9.55
9.00/11.0
9.50/10.5
9.90/12.1
10.5/11.6
10.8/13.2
11.4/12.6
12.4/13.7
12.4/13.7
13.5/16.5
14.3/15.8
14.4 /17.6
15.2/16.8
16.2/19.8
17.1/18.9
18.0/22.0
19.0/21.0
19.8/24.2
20.9/23.1
21.6/26.4
22.8/25.2
24.3/29.7
25.7/28.4
27.0/33.0
28.5/31.5
29.7/36.3
31.4 /34.7
32.4/39.6
34.2/37.8
35.1 /42.9
37.1/41.0
38.7/47.3
40.9/45.2

10
10
10
10
10
10
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

MaxImum

Reverse

Maximum
PelkPu/se

.,L::::Y:,.AI

SIitgII CUmHll/pPII
(NOTE 1/1 fAnp)

Reverse

Stantkff Voltage
VI\III (Volts)
5.50
5.80
6.05
6.40
6.63
7.02
7.37
7.78
8.10
8.55
8.92
9.40
9.72
10.2
11.1
11.1
12.1
12.8
12.9
13.6
14.5
15.3
16.2
17.1
17.8
18.8
19.4
20.5
21.8
23.1
24.3
25.6
26.8
28.2
29.1
30.8
31.6
33.3
34.8
36.8

500.0
500.0
250.0
250.0
100.0
100.0
25.0
25.0
10.0
10.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0

NOTES:
1. V(BR) measured after iT applied for 300l1s. iT~Square Wave Pulse or equivalent.
2. Surge current Waveform per Figure 3 and Derate per Figure 2.
3. All terms and symbols are consistant with ANSI/IEEE C62.3S.

547

1000.0
1000.0
500.0
500.0
200.0
200.0
50.0
50.0
25.0
25.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0

139
143
128
132
120
124
109
112
100
103
93.0
96.0
87.0
90.0
79.0
82.0
68.0
71.0
64.0
67.0
56.5
59.5
51.5
54.0
47.0
49.0
43.0
45.0
38.5
40.0
34.5
36.0
31.5
33.0
29.0
30.0
26.5
28.0
24.0
25.3

Maximum
ClBmp/ng
Vollll9.flat /pp
Vc(VoJrs}
10.8
10.5
11.7
11.3
12.5
12.1
13.8
13.4
15.0
14.5
18.2
15.6
17.3
16.7
19.0
18.2
22.0
21.2
23.5
22.5
26.5
25.2
29.1
27.7
31.9
30.6
34.7
33.2
39.1
37.5
43.5
41.4
47.7
45.7
52.0
49.9
56.4
53.9
61.9
59.3

•

MAXIMUM RATINGS AND CHARACTERISTIC CURVES TPSMC 6.8 THRU TPSMC 43A

iat
:!! aU

FlCU • PEAK PULSE POWER RATING CURVe

a: CJ

Be

FlO. 2· PULSe DERATING CURVE
'00

I'-

~i

'-

f~ ,.
Q.~

~;!;

~i

..

~~

21

~i

if
~::.
~

!d. PUlSE WIDTH. sec

"-

00

2S

50

75

'" I'- ,

100

125

150

17&

200

TA. AMBIENT TEMPERATURE. 'C
FIG.3· PULSE WAVEFORM

so

-~~'0~'"
-1""""Value

00

"""IiiO: V

TA025'C

r- Pulse WICHh (Id) is dalinod
r- .. that point whore tho peak
r- -Ipp decays to5O'll.oI

FIG.4· TYPICAL JUNCTION CAPACITANCE

..

'

-

Vsig.5OmVP1>

H..,Viol......!eI!!':k.·

_ r---

2. 1011CODps

SO

. . dalinod bI' ~.E.A.

Ftd

o

T.,..zS'C
l.l.0MHz

2
t,TIME(mS)

3

'!i.

w
~.

4

,..
"-

1S ...

/\.

a :::::::
==
-

2IlO

8.3mS SINGLE HAlF SINE.WAVE

••

.IEDEC METHOD

r...TJm8x-

-

Meas~~O

ZoroBIu

~
Q.

FIG. 5· MAXIMUM NON-REPETmVE
PEAK FORWARD SURGE CURRENT

10

VA

YAM_red
@Stand..H

VoItago

IV....,

II 11111
to

act

10

100

200

V!BA!oBREAKDOWN VOLTAGE. VOLTS

50

100

NUMBER OF CYCLES AT 60Hz

548

•

549

550

TRANSIENT VOLTAGE
SUPPRESSORS
General Instrument Transient
Voltage Suppressors are the stateof -the-art in semiconductor surge
protection for modern electronic
equipment.
These products
employ the same semiconductor
technology that is used in high
speed integrated circuits.
Because TVS devices are semiconductors, there is no inherent wear
out mechanism. They are designed
to provide protection against a/l
types of transient threats from ESD
to induced lightning. When over-

stressed, they short circuit at the
changing voltage and protect the
associated equipment. With proper device selection, they will not
affect circuit performance nor,
degrade with repeated transient
events. Their wide range of voltage selections accommodate al/
low voltage circuit applications.

General Instrument TVS units are
available in five power ranges:
400, 500, 600, 7500, and 5,000 watts
with a wide variety of voltages.

Cit GeneraL
Instrument
551

•

TMPG06-6.8 THRU TMPG06-43A
AUTOMOTIVE TRANSIENT VOLTAGE SUPPRESSOR
VOLTAGE- 6.8 to 43 Volts 400 Watt Peak Pulse Power
FEATURES
• Plastic package has Underwriters Laboratory Flammability Classification 94V-O
'\
• Exclusive G.!. PAR chip construction
• 400W Peak Pulse Power capability on
10/1 OOOILS waveform
• Excellent clamping capability
• Low incremental surge resistance
• Fast response time: typically less
than 1.0 ps from 0 volts to BV
• Typical 10 less than 1OIL A above 10V at T J=1S0°C ~
• High temperature soldering guaranteed: 300°C/10
seconds/.37S", (9.Smm) lead length/Sibs., (2.3 kg)
tension
• Designed to handle under the hood applications

-r
1.0 (25.4)

.100(2.54)
.090 (2.29)

MIN

.1

!
-.-

1+

.125 (3.18)
.115 (2.92)

~

t

1.0(25.4)

!

YIN
.025 (.635).
.022 (.559)

+

MECHANICAL DATA
Case:Molded plastiC over a passivated junction
Terminals: Axial leads, solderable per MIL-STD7S0, Method 2026
Polarity: Color band denotes positive end (cathode)
Mounting Position: Any
Weight: 0.0064 ounce, .181 gram

Dimensions in inches

and
(millimeters)

MAXIMUM RATINGS AND CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified.

RATING

Peak Power Dissipation on 10/1 OOOI-lS
waveform (NOTE I, FIG. I)
Peak Pulse Power Current on 10/1 OOOl-ls
waveform (NOTEI.2, FIG. 3)
Steady Slate Power Dissipation at Tl=75°C
Lead Lengths .25', (S.33mm) (NOTE 2)
Peak Forward Surge Current, 8.3ms Single Half
Sine-Wave Superimposed on Rated Load
(JEDEC Method) (NOTE 3)
Instantaneous Forward Voltage at 25A (NOTE 3)
Operating Junction and
Storage Temperature Range

SYMBOL

VALUE

UNITS

PPPM

Minimum 400

Watts

IpPM

See Table 1

Amps

PM(AV)

1.0

Watts

IFSM
VF

40.0

Amps

3.5

Volts

TJ,TsTG

-65 to +185

°C

NOTES:
1. Non-repetitive current pulse, per Fig. 3 and derated above TA= 250C per Fig. 2.
2. Mounted on Copper Leaf area of 1.57 in2 (40mm2).
3. Measured on 8.3ms single half sine·wave or equivalent square wave, duty cycle=4 pulses per minute maximum.

552

ELECTRICAL CHARACTERISTICS (TA= 25°C unless otherwise noted)
Breakdown Voltage
V(IIII
VOkS!NOI'Ell
DEVICE TYPE

at IT
(mA)

Maximum

Reve...
Sland off
VoRage
V.,.,.
(Volts)

Maximum
Reverse
Leakage
at V.,.,.
lo(jJ.A)

T.F1SQ<>C
Maximum
Reverse
Leakage
ltV....
lo(l'A)

Maximum
Peak Pulse
Currant
I....
(Amps)

Maximum
Clamping
Voltage at I....
Vc(VoRs)

tNOI'E~

Temperature
Coefficient

"

ViBAI
(%f"C)

MIN

MAX

TMPGOS-S.8

S.12

7.48

10.0

5.50

300

1000

39.8

10.8

0.057

TMPGOS-S.8A

S.45

7.14

10.0

5.80

300

1000

41.0

10.5

0.057

TMPGOS-7.5

S.75

8.25

10.0

S.05

150

500

3S.8

11.7

O.OSO

TMPGOS-7.5A

7.13

7.88

10.0

S.40

150

500

38.1

11.3

0.OS1

TMPGOS-8.2

7.38

9.02

10.0

S.S3

50.0

200

34.4

12.5

0.OS5

TMPGOS-8.2A

7.79

8.S1

10.0

7.02

50.0

200

35.5

12.1

0.OS5

TMPGOS-9.1

8.19

10.0

1.0

7.37

10.0

50.0

32.2

13.8

0.OS8

TMPGOS-9.1A

8.S5

9.55

1.0

7.78

10.0

50.0

32.1

13.4

0.OS8

TMPGOS-10

9.00

11.0

1.0

8.10

5.0

20.0

28.7

15.0

0.073

TMPGOS-10A

9.50

10.5

1.0

8.55

5.0

20.0

29.7

14.5

0.073

TMPGOS-11

9.90

12.1

1.0

8.92

2.0

10.0

2S.5

1S.2

0.075

TMPGOS-11A

10.5

11.S

1.0

9.40

2.0

10.0

27.S

15.S

0.075

TMPGOS-12

10.8

13.2

1.0

9.72

1.0

5.0

24.9

17.3

0.07S

TMPGOS-12A

11.4

12.S

1.0

10.2

1.0

5.0

25.8

1S.7

0.078

TMPGOS-13

11.7

14.3

1.0

10.5

1.0

5.0

22.S

19.0

0.081

TMPGOS-13A

12.4

13.7

1.0

11.1

1.0

5.0

23.S

18.2

0.081

TMPGOS-15

13.5

1S.3

1.0

12.1

1.0

5.0

19.5

22.0

0.084

TMPGOS-15A

14.3

15.8

1.0

12.8

1.0

5.0

20.3

21.2

0.084

TMPGOS-1S

14.4

17.S

1.0

12.9

1.0

5.0

18.3

23.5

0.08S

TMPGOS-1SA

15.2

1S.8

1.0

13.S

1.0

5.0

19.1

22.5

0.08S

TMPGOS-18

1S.2

19.8

1.0

14.5

1.0

5.0

1S.2

2S.5

0.088

TMPGOS-18A

17.1

18.9

1.0

15.3

1.0

5.0

1S.9

25.5

0.088

TMPGOS-20

18.0

22.0

1.0

1S.2

1.0

5.0

14.8

29.1

0.090

TMPGOS-20A

19.0

21.0

1.0

17.0

1.0

5.0

15.5

27.7

0.090

553

•
I

ELECTRICAL CHARACTERISTICS ( TA =25°C unless otherwise noted)
Breakdown Vonage
V(oo)
VoH" (NOTE 1)
Device Type

MIN

at IT
(mAl

MAX

Reverse
Stand off
vonage
VVOI
(Vons)

Maximum
Reverse
Leakage
at V...
io()LA)

Tc=150"C
Maximum
Reve,..
Leakage
at V...
IO(I1A)

Maximum
Peak Pulse
Current
I....

(Amps)

Maximum
Raverse
Vonage at I....
Vc(Vono)

Maximum
Temperalure
Coefficient
of
V(1II)
(%I"C)

INOlE~

TMPG06-22

19.8

24.2

1.0

17.8

1.0

5.0

13.5

31.9

0.092

TMPG06-22A

20.9

23.1

1.0

18.8

1.0

5.0

14.1

30.6

0.092

TMPG06-24

21.6

26.4

1.0

19.4

1.0

5.0

12.4

34.2

0.094

TMPG06-24A

22.8

25.2

1.0

20.5

1.0

5.0

13.0

33.2

0.094

TMPG06-27

24.3

29.7

1.0

21.8

1.0

5.0

11.0

39.1

0.096

TMPG06-27A

25.7

28.4

1.0

23.1

1.0

5.0

11.5

37.5

0.096

TMPG06-30

27.0

33.0

1.0

24.3

1.0

5.0

9.9

43.5

0.097

TMPG06-30A

28.5

31.5

1.0

25.6

1.0

5.0

10.4

41.4

0.097

TMPG06-33

29.7

36.3

1.0

26.8

1.0

5.0

9.0

47.7

0.098

TMPG06-33A

31.4

34.7

1.0

28.2

1.0

5.0

9.4

45.7

0.098

TMPG06-36

32.4

39.6

1.0

29.1

1.0

5.0

8.3

52.0

0.099

TMPG06-36A

34.2

37.8

1.0

30.8

1.0

5.0

8.6

49.9

0.099

TMPG06-39

35.1

42.9

1.0

31.6

1.0

5.0

7.6

56.4

0.100

TMPG06-39A

37.1

41.0

1.0

33.3

1.0

5.0

8.0

53.9

0.100

TMPG06-43

38.7

47.3

1.0

34.8

1.0

5.0

7.0

61.9

0.101

TMPG06-43A

40.9

45.2

1.0

36.8

1.0

5.0

7.3

59.3

0.101

NOTES:
1. VBR measured after IT applied for 300 115. IT = Square Wave Pulse or equivalent.
2. Surge Current Waveform per Figure 3 and Derated per Figure2.
3. All terms and symbols are consistant with ANSI/IEEE C62.35.

554

RATING AND CHARACTERISTIC CURVES TMPG06-6.B THRU TMPG06-43A
FIGURE 2 100

0:
Q.

~

Co

FIGURE 1 - PEAK PULSE POWER RATING VERSUS PULSE TIME CURVE
100

::l

O~

Wl25~

W

i Z
~~
II: W

10

W

50

'", '\

~~

W

CI)

75

-

OW

shown in Figure 3

ri

...0
...::l
...><
<
...
...l

~<0

...~

2S

50

75

100

125

150

TA, AMBIENT TEMPERATURE, ·C
0.1
1.0ms

100..

1.0!1S

FIGURE 3 -

PULSE WAVEFORM

-

I--

:::;:::e::::

p-

1&",==

A

"

",

~

./
....... ,.......,.

V

\

2
10/1000!JSacWava!orm_

jdefinedtRE.Aj _
100

....

~

~. 1d--t
1.0

1't'MZeroBi..
...uredat _

~

HaIfValue-..!eP

50

o

,

~,m

2.0

1-

f= 1.0 MHz
Vsig = 5OmVp-p

1\

TA=2S'C
Pulse WIdth (td) is defhed _

/-p...IV" "

100

UNIDIRECTIONAL

TJ=2S"C

10"'j' -

I'

•

Measured at
Stand-OIl

Voltage

3.0

"'roN)

4.0

t, TIME,ms
rn

~
3:

FIG_ 5.sTEADY STATE POWER DERATING

..£ ~ 25"(6_33nm)

0.75

l!lII:

~

0.50

:0.001
t-

\

0.25

,

4Ommx4CJmmc:1mm
_heatainks
(1_58"xl.58"x_0401

~

FORWARD SURGE CURRENT

~

Resistive or

Inductive Load

o

o

2S

50

75

200

I\,,

I

60HZI

100

20

FIGURE 8 - MAXIMUM NON-REPETITIVE

1\

I I

~

10

V(BR), BREAKDOWN VOLTAGE, VOLTS

W

1<
~

1.0

I I r\

~

!fen

10

CURVE
1.00

200

10000

150

..... et::::•.

175

FIG.4-TYPICAL JUNCTION CAPACITANCE

10ms

!d, PULSE WIDTH, SEC

'"

100

125

150

,....",

J"""oo

~

175

....

TL=75-C
8.3ms Single Half Sine~Wave
(JEDEC Method)

200

Tl, LEAD TEMPERATURE, -C

2

4

6

8

10

20

40

80 80 100

NUMBER OF CYCLES AT 60 Hz

- - - - - - - - - - - - - - - (lGenerallnstrument
555

P4KA6.8 THRU P4KA43A
AUTOMOTIVE TRANSIENT VOLTAGE SUPPRESSOR
VOLTAGE- 6.B to 43 Volts 400 Watt Peak Pulse Power
FEATURES
• Plastic package has Underwriters laboratory
Flammability Classification 94V-O
• Glass passivated junction
• Exclusive G.!. PAR chip construction
• 400W Peak Pulse Power
capability on 1011 000 lIS waveform
• Excellent clamping
capability
• Repetition Rate (duty cycle):0.01%
• low incremental surge resistance
• Fast response time: typically less
than 1.0 ps from a volts to BV for unidirectional
• Typical 10 less than 10 I1A above 10V at T J=1S0°C
• High temperature soldering guaranteed:
300°C/10 seconds/.37S", (9.Smm) lead
length/Sibs., (2.3 kg) tension
• Designed to handle under the hood applications

DO-2D4AL

-r
1.0 (25.4)

.107(2.7)
.080(2.0)

MIN

"I

1+ ~

~
.205(5.2)
.180(4.1)

--L-

t

1.0(25.4)

MIN

.034 (.86) •
.028 (.71)

+

!

MECHANICAL DATA
Case: JEDEC DO-204Al molded plastic over
paSSivated junction
Dimensions in inches

Terminals: Plated Axial leads, solderable per

and

MIL-STD-7S0, Method 2026

(millimeters)

Polarity: Color band denotes positive end
(cathode)

Mounting POSition: Any
Weight: 0.012 ounce, 0.3 gram

MAXIMUM RATINGS AND CHARACTERISTICS
Ratings at2S0C ambient temperature unless otherwise specified.

RATING

Peak Pulse Power Dissipation on 10/1000 }1s
waveform (NOTE 1. FIG. 1)
Peak Pulse Current on 1011 000 }1s waveform
(NOTE 1. FIG. 3)
Steady State Power Dissipation at TL=75°C
Lead Lengths .375", (9.5mm) (NOTE 2)
Peak Forward Surge Current, 8.3ms Single HaH
Sine-Wave Superimposed on Rated Load
(JEDEC Method) (NOTE 3)
Maximum Instantaneous Forward Voltage at 25A
Operating Junction and Storage Temperature Range

SYMBOL

VALUE

UNITS

PPPM

Minimum 400

Watts

(PPM

SEE TABLE 1

Amps

PM(AV)

1.0

Watts

(FSM
VF
TJ.TsTG

40.0
3.5
-65 to +185

Amps
Volts
°C

NOTES:
1. Non-repetitive current pulse. per Fig. 3 and derated above T A= 2SoC per Fig. 2.
2. Mounted on Copper Leaf area of 1.S7 in 2 (40mm2) per Figure S.
3. Measured on 8.3ms single half sine-wave or equivalent square wave, duty cycle=4 pulses per minutes maximum.

Ravo...

Maximum

stand... "
VoHago
V...
(Volts)

Laakago
at V...
~(~A)

T,p15O"C
Maximum
Rave ...
Leakaga
at V""
101l'A)

5.50
5.80
6.05
6.40
6.63
7.02
7.37
7.78
8.10
8.55
8.92
9.40
9.72
10.2
10.5
11.1
12.1
12.8
12.9
13.6
14.5
15.3
16.2
17.0
17.8
18.8
19.4
20.5
21.8
23.1
24.3
25.6
26.8
28.2
29.1
30.8
31.6
33.3
34.8
36.8

300
300
150
150
50.0
50.0
10.0
10.0
5.0
5.0
2.0
2.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

1000
1000
500
500
200
200
50.0
50.0
20.0
20.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0

Bra.kdown VoHaga
VtBflI
VoHs {MOTE 11

DEVICE TYPES

P4KA6.8
P4KA6.8A
P4KA7.5
P4KA7.5A
P4KA8.2
P4KA8.2A
P4KA9.1
P4KA9.1A
P4KA10
P4KA10A
P4KAll
P4KAllA
P4KA12
P4KA12A
P4KA13
P4KA13A
P4KA15
P4KA15A
P4KA16
P4KA16A
P4KA18
P4KA18A
P4KA20
P4KA20A
P4KA22
P4KA22A
P4KA24
P4KA24A
P4KA27
P4KA27A
P4KA30
P4KA30A
P4KA33
P4KA33A
P4KA36
P4KA36A
P4KA39
P4KA39A
P4KA43
P4KA43A

MN

MAX

6.12
6.45
6.75
7.13
7.38
7.79
8.19
8.65
9.00
9.50
9.90
10.5
10.8
11.4
11.7
12.4
13.5
14.3
14.4
15.2
16.2
17.1
18.0
19.0
19.8
20.9
21.6
22.8
24.3
25.7
27.0
28.5
29.7
31.4
32.4
34.2
35.1
37.1
38.7
40.9

7.48
7.14
8.25
7.88
9.02
8.61
10.0
9.55
11.0
10.5
12.1
11.6
13.2
12.6
14.3
13.7
16.3
15.8
17.6
16.8
19.8
18.9
22.0
21.0
24.2
23.1
26.4
25.2
29.7
28.4
33.0
31.5
36.3
34.7
39.6
37.8
42.9
41.0
47.3
45.2

at IT
(mA)

10.0
10.0
10.0
10.0
10.0
10.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

R.verse

NOTES:
1. VIBR) measured after iT applied for 300 flS. IT=Square Wave Pulse or equivalent
2. Surge Current Waveform per Figure 3 and Derated per Figure 2.
3. AII1erms and symbols are consistant with ANSI/IEEE C62.35.

557

Maximum

Poak Pulsa
Current

.....

{NOIE~

(Amps)

39.8
41.0
36.8
38.1
34.4
35.5
32.2
32.1
28.7
29.7
26.5
27.6
24.9
25.8
22.6
23.6
19.6
20.3
18.3
19.1
16.2
16.9
14.8
15.5
13.5
14.1
12.4
13.0
11.0
11.5
9.9
10.4
9.0
9.4
8.3
8.6
7.6
8.0
7.0
7.3

Maximum
!llIIlmum
Clamping
Tampendura
VOHag ........ Coefficient
01
VII')
('II/"C)
Vc (Volts)

10.8
10.5
11.7
11.3
12.5
12.1
13.8
13.4
15.0
14.5
16.2
15.6
17.3
16.7
19.0
18.2
22.0
21.2
23.5
22.5
26.5
25.5
29.1
27.7
31.9
30.6
34.2
33.2
39.1
37.5
43.5
41.4
47.7
45.7
52.0
49.9
56.4
53.9
61.9
59.3

0.057
0.057
0.060
0.061
0.065
0.065
0.068
0.068
0.073
0.073
0.075
0.075
0.076
0.078
0.081
0.081
0.084
0.084
0.086
0.086
0.088
0.088
0.090
0.090
0.092
0.092
0.094
0.094
0.096
0.096
0.097
0.097
0.098
0.098
0.099
0.099
0.100
0.100
0.101
0.101

I

RATINGS AND CHARACTERISTIC CURVES P4KA6.8THRU P4KA43

FIGURE 2 100

f\\

fIO.1·PEAK PULSI! POWER RATING CURVE
100

Non-Repetitive
Pulse Waveform
shown in Figure 3
TA "" 25"C

~

Ii
w
~

0

PULSE DERATING CURVE

"

10

Do

.,
,.
..J

P4:KA8-8

:>

thru

Do

C
W

""

'\..

W

P4KA43A
1.0

,,~

Do

2

II:

25

Do

50

75

100

125

150

175

200

TA, AMBIENT TEMPERATURE, 'C
O.,,..,S

1.0f.lS

10J.l.S

100J.l.s

.

10m,

1.oms

III, pu.se WIDTH, SEC

FIGURE 3 -

F10.4·TYPICAL ~UNCTION CAPACrrANCE
UNIDIRECTIONAL

10

PULSE WAVEFORM

.J

150

100

~

"

50

'-

:s:

.....
2.0

100
1.0

t

= 375~ (9.5mm)

,

050

'--

\.

c_heatlinko

\.
\

0.25

W

~
25

..

75

200

\.

4Ommx4Cmn1ll:1mm

w

o

100

F1G.G-MAXIMUM NON-REPETITIVE
PEAK FORWARD SURGE CURRENT
UNIDIRECTIONAL

(1.58'.1.511"••0401

o

10

VeeR), BREAKDOWN VOLTAGE, VOLTS

!c

I

"

4.0

0.75

2

~

-

3.0

-

Mouuredal
Stand-OIl
Voltage (VIM)

If - - - -

t, TIME,ms

i :~.
~

=

I

\.

.11:
.~

-

i"finod"'R":~
o-k1

100

~

!;C

Measured at

ZeroBI.

FIG. 5.sTEADY STATE POWER DERATING
CURVE

rn

,
" '-"" ~~
......

10 11000~ Wavefonn_

1.0

~

10,000

.-

.v'

I--

f=1.0MHz
Vsig = SOmVp-p

HalfValue-lpp

"

"'-

0

:==::s:~-

e:;;:vahJe

I II

T, =1 2S

-

TA=25"C
PulseWIdIh(td)isdeflned, _

-. +:.,'''''''_ I--

100

125

\

150

"'"-

i"'"""

r\
175

Tl=7S'C
8.3ml Single Half Sine-Wave

200

(JEDEC Method)

TL, LEAD TEMPERATURE (·C)

2

4

6

a

10

20

40

60 60 100

NUMBER OF CYCLES AT 60 Hz

- - - - - - - - - - - - - - - (iGenerallnstrument
558

I

559

P6KA6.8 THRU P6KA43A
AUTOMOTIVE TRANSIENT VOLTAGE SUPPRESSOR
600 Watt Peak Pulse Power
VOLTAGE - 6.8 to 43 Volts
FEATURES
DO-204AC

I'

.14013.61
.104(2.61

• Plastic package has Underwriters Laboratory
Flammability Classification 94V-O
• Glass passivated chip junction
• Exclusive G.I. PAR construction
• 600W Peak Pulse Power surge capability on
10/1000 II-S waveform
• Excellent clamping _ _ _ _
capability
. . , __ ~
• Repetition Rate (duty cycle): 0.01%
• Low incremental surge resistance
• Fast response time: typically less
than 1.0 ps from 0 volts to BV for unidirectional.
• Typical 10 less than lOll-A above 1 OV at 175°C
• High temperature soldering guaranteed:
300°C/10 seconds/.37S", (9.Smm) lead
length/Sibs., (2.3 kg) tension
• Designed to handle under the hood applications

MECHANICAL DATA
Dimensions in inches

and
(millimeters)

Case: JEDEC DO·204AC molded plastic over
passivated junction

Terminals: Plated Axial leads, solderable per
MIL-STD-7S0, Method 2026

Polarity: Color band denotes positive end
(cathode)

Mounting Position: Any
Weight: O.Q1S ounce, 0.4 gram

MAXIMUM RATINGS AND CHARACTERISTICS
Ratings at 25'C ambient temperature unless otherwise specified. Resistive or inductive load.

RATING

Peak Pulse Power Dissipation at Tp=l ms
(NOTE 1, FIGURE 1)
Pulse Pulse Current on 10/1000 I1s waveform
(NOTE 1, FIG.3)
Steady State Power DiSSipation at T L=75·C
Lead Lengths .375", (9.5mm) (NOTE 2)
Peak Forward Surge Current, 8.3ms Single Half
Sine-Wave Superimposed on Rated Load
(JEDEC Method) (NOTE 3) Unidirectional Only
Maxi mum Instantaneous Forward Vottage at 50 A (NOTE 3)
Unidirectional Only
Operating Junction and Storage Temperature Range

SYMBOL

VALUE

UN"S

PPPM

MinlmumSOO

Watts

IpPM

SEE TABLE 1

Amps

PM(AV)

5.0

Watts

IFSM

70.0

Amps

VF
TJ,TsTG

3.5
-S5 to +185

Volts
·C

NOTES:
1. Non-repetitive current pulse, per Fig. 3 and derated above TA=25'C per Fig. 2.
2. Mounted on Copper Leaf area of 1.57 in2 (40mm2) per Figure 5.
3. Measurvd on 8.3ms single half sine-wave, or equivalent square wave, duty cycle

= 4 pulses per minules maximum.

ELECTRICAL CHARACTERISTICS (TA= 250C unless otherwise noted)
Br.akdown Vollage

DEVlCETVPE

PSKAS.8
PSKAS.8A
PSKA7.5
PSKA7.5A
PSKA8.2
PSKA8.2A
PSKA9.1
PSKA9.1A
PSKA10
PSKA10A
PSKA11
PSKA11A
PSKA12
PSKA12A
PSKA13
PSKA13A
PSKA15
PSKA15A
PSKA16
PSKA1SA
P6KA18
P6KA18A
PSKA20
P6KA20A
PSKA22
PSKA22A
P6KA24
PSKA24A
PSKA27
PSKA27A
PSKA30
PSKA30A
PSKA33
PSKA33A
PSKA3S
PSKA3SA
PSKA39
PSKA39A
PSKA43
PSKA43A

ViBRl

lilT

VoI1s(N01EII

(mA)

MIN

MAX

S.12
S.45
S.75
7.13
7.38
7.79
8.19
8.S5
9.00
9.50
9.90
10.5
10.8
11.4
11.7
12.4
13.5
14.3
14.4
15.2
lS.2
17.1
18.0
19.0
19.8
20.9
21.6
22.8
24.3
25.7
27.0
28.5
29.7
31.4
32.4
34.2
35.1
37.1
38.7
40.9

7.48
7.14
8.25
7.88
9.02
8.S1
10.0
9.55
11.0
10.5
12.1
11.S
13.2
12.S
14.3
13.7
lS.3
15.8
17.6
16.8
19.8
18.9
22.0
21.0
24.2
23.1
2S.4
25.2
29.7
28.4
33.0
31.5
3S.3
34.7
39.S
37.8
42.9
41.0
47.3
45.2

10
10
10
10
10
10
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

T..,15O"C
Maximum

Maximum

Reverse
S1and oft

Maximum
Reverse

Atve ...

Voltage
V...
(VoMs)

Leakage
III V...
b(IlA)

Leakage

IoN

IIVw
ID()LA)

""'"~
(Ampo)

5.50
5.80
S.05
S.40
S.S3
7.02
7.37
7.78
8.10
8.55
8.92
9.40
9.72
10.2
10.5
11.1
12.1
12.8
12.9
13.S
14.5
15.3
16.2
17.1
17.8
18.8
19.4
20.5
21.8
23.1
24.3
25.S
2S.8
28.2
29.1
30.8
31.6
33.3
34.8
3S.8

500
500
250
250
100
100
25
25
10
10
5
5
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0

1000
1000
500
500
200
200
100
100
50
50
20.0
20.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0

59.7
Sl.4
58.1
57.1
51.S
53.3
4S.7
48.1
43.0
44.5
39.8
41.3
37.3
38.S
35.9
35.4
29.3
30.4
27.4
28.7
24.3
25.6
22.2
23.3
20.2
21.1
18.S
19.4
lS.5
17.2
14.8
15.S
13.5
14.1
12.4
12.9
11.4
12.0
10.4
10.9

NOTES:
1. VBR measured after IT applied for 300 lls. IT ~ Square Wave Pulse or equivalent.
2. Surge Current Waveform per Figure 3 and Derate per Figure 2.
3. All terms and symbols are consistant with ANSIIIEEE CS2.35.

561

PoakPulse
Curr.nt

Maximum

Mulmum

Clamping
T.ml*lIure
VolIIgollloN Coanltlont
01
V(III!
(%/"C)
Vt(VDMs)

10.8
10.5
11.7
11.3
12.5
12.1
13.8
13.4
15.0
14.5
16.2
15.S
17.3
lS.7
19.0
18.2
22.0
21.2
23.5
22.5
26.5
25.2
29.1
27.7
31.9
30.S
34.7
33.S
39.1
37.5
43.5
41.4
47.7
45.7
52.0
49.9
5S.4
53.9
Sl.9
59.3

0.057
0.057
O.OSl
O.OSl
0.OS5
0.OS5
0.OS8
0.OS8
0.073
0.073
0.075
0.07S
0.07S
0.078
0.081
0.081
0.084
0.084
0.086
0.08S
0.088
0.088
0.090
0.090
0.092
0.092
0.094
0.094
0.09S
0.09S
0.097
0.097
0.098
0.098
0.099
0.099
0.100
0.100
0.101
0.101

I

RATINGS AND CHARACTERISTIC CURVES P6KA6.8 THRU P6KA43A
FIGURE 2 - PULSE DERATING CURVE

FIGURE 1 - PEAK PULSE POWER RATiNG VERSUS PULSE TiME CURVE
100

,

100

1\.
! 2~-:C

:'

;

75

" ,

10

I\.

0

1\

1.0
25

o. 1
I.WS

.

,~

III

i/.Ts

S

Om.

S

o

'm •

o

25

75

50

100

125

6000

150

Pulse Width (td) is defined. _

~P"k'V.1ue

~, 1-'I'

50

TA=25"C

4000

=::=:::~-

2000

TJ=2S"C

""1\

1000

.

..

"

II.

a.

ui

10f1~ecWaveform_

~
~

_1 delln":t A.E1 by

........

~
tS
c3

....

0-"
2.0

1.0

"'

-

-

~:i~'~~~VP-P
I

-

1"11"

_

Measured at

Zero Bias

eoo
soo

Hal Value ~ Ipp

~

175

FIG.4-TYPICAL JUNCTiON CAPACITANCE
UNIDIRECTIONAL

FIGURE 3 - PULSE WAVEFORM

...... r+-:H"10~r

150

,

TA, AMBIENT TEMPERATURE, ·C

td, PULSE WIDTH, SEC

100

"-

3.0

4.0

"-

400

MeaSU!.dat

I'

Stancl-OII

200

Voltage (Villi)

100

'0

so

t, TIME,ms

40

20

FIG, 5-sTEADY STATE POWER DERATING
CURVE

rn

~

;:

~
~
rn

I

\

200

1\

a:w

\

1.25

I I

r

::>a::
Cl)W
co..
a::::;

UJO
a..

175

200

TL. LEAD TEMPERATURE, ·C

,METHOD

I

::

50

;:~

a:Z

\
25

20

FlG.8-MAXIMUU NOtHlEPETlTlVE
PEAK FORWARD SURGE CURRENT
UNDIRECTlONAL

W

(!JCI)

\

4Omrnx40mrnw:1mm
cqlp8r heal sinks
(1.58"x1.58"x.0401

W

a..

1\

375" (9.5mm)

2.5

'<

~

!-

-'-I I--

f(

~

10

V(BfI), REVERSE VOLTAGE, VOLTS

e-~

0
a:

~

1.0

\
3.75

rn

~

10

5.0

r- ....

10
5

10

50

100

NUMBER OF CYCLES AT 60Hz

- - - - - - - - - - - - - - eGenerallnstrument
562

200

•

563

1.5KA6.8 THRU 1.5KA43A
AUTOMOTIVE TRANSIENT VOLTAGE SUPPRESSOR
VOLTAGE- 6.8 to 43 Volts
1500 Watt Peak Pulse Power
FEATURES

.210 [5.31

.1~I~~·81

1

r

1.0 (25.4]

LIj....LIL...i---7t-1+
.375 ['.5]

~

• Plastic package has Underwriters Laboratory
Flammability Classification 94V-O
• Glass passivated chip junction
"
• Repetition Rate (duty cycle): 0.05% ~
• Exclusive G.I. PAR chip construction
",
• 1500W Peak Pulse Power
capability on 10/1000 I1S waveform
• Excellent clamping capability
'"
• Low incremental surge resistance
"
• Fast response time: typically less
'\
than 1.0 ps from 0 volts to BV for unidirectional
",
• Typical 10 less than 20 JIA above 10V at TJ=150°C
• High temperature soldering guaranteed:
300°C/10 seconds/.375", (9.5mm) lead
length/5Ibs., (2.3 kg) tension
• Designed to handle under the hood applications

1.0 [25.4)

.042 n.07), +
.038(0.98)

1

MECHANICAL DATA

14 1N.
_

Case: Molded plastic over passivated junction
Terminals: Plated Axial leads, solderable per
MIL-STD-750, Method 2026

Polarity: Color band denotes positive end
Dimensions in inches
and
(millimeters)

(cathode)

Mounting Position: Any
Weight: 0.045 ounce, 1.2 grams

MAXIMUM RATINGS AND CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified.

P.ATlNG

Peak Pulse Power Dissipation on 10/1 OOOI1S waveform
(NOTE 1, FIGURE 1)
Peak Pulse Current at TA=25OC on 10/1000 j.Ls waveform
(NOTE 1, FIG. 3)
Steady State Power Dissipation at TL=75·C
Lead Lengths .375", (9.5mm) (NOTE 2)
Peak Forward Surge Current, 8.3ms Single Half
Sine-Wave Superimposed on Rated Load
(JEDEC Method) (NOTE 3)
Maximum Instantaneous Forward Voltage at 1OOA (NOTE 3)
Operating Junction and Storage Temperature Range

SYMBOL

VALUE

UN"S

PPPM

Mlnlmum1500

Watts

IpPM

SEE TABLE 1

Amps

PM(AV)

5.0

Watts

IFSM
VF
TJ,TsTG

200
3.5
-65 to +185

Amps
Volts
·C

NOTES:
1. Non-repetitive current pulse, per Fig. 3 and derated above TA=25°C per Fig. 2.
2. Mounted on Copper Leal area 01 0.79 in2 (20mm2 ), Figure 5.
3. 8.3ms single hall sine·wave or equivalent square wave, duty cycle=4 pulses per minutes maximum.

ELECTRICAL CHARACTERISTICS (TA= 25"C unless otherwise noted)
TJ=ISOoC

Breakdown VoHag.
VI""!
Vohs"""""

DMCETVPE

1.5KA6.8
1.5KA6.8A
1.5KA7.5
1.5KA7.5A
1.5KA8.2
1.5KA8.2A
1.5KA9.1
1.5KA9.1A
1.5KA10
1.5KA10A
1.5KA11
1.5KAllA
1.5KA12
1.5KA12A
1.5KA13
1.5KA13A
1.5KA15
1.5KA15A
1.5KA16
1.5KA16A
1.5KA18
1.5KA18A
1.5KA20
1.5KA20A
1.5KA22
1.5KA22A
1.5KA24
1.5KA24A
1.5KA27
1.5KA27A
1.5KA30
1.5KA30A
1.5KA33
1.5KA33A
1.5KA36
1.5KA36A
1.5KA39
1.5KA39A
1.5KA43
1.5KA43A

MIN

MAX

6.12
6.45
6.75
7.13
7.38
7.79
8.19
8.65
9.00
9.50
9.90
10.5
10.8
11.4
11.7
12.4
13.5
14.3
14.4
15.2
16.2
17.1
18.0
19.0
19.8
20.9
21.6
22.8
24.3
25.7
27.0
28.5
29.7
31.4
32.4
34.2
35.1
37.1
38.7
40.9

7.48
7.14
8.25
7.88
9.02
8.61
10.0
9.55
11.0
10.5
12.1
11.6
13.2
12.6
14.3
13.7
16.3
15.8
17.6
16.8
19.8
18.9
22.0
21.0
24.2
23.1
26.4
25.2
29.7
28.4
33.0
31.5
36.3
34.7
39.6
37.8
42.9
41.0
47.3
45.2

atrr
(mA)

10
10
10
10
10
10
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

Reverse
Stand-o"
Vohag.
at V...
(Voha)

Maximum

Maximum

Maximum
P.ak Pulse

Maximum
Clamping

Reverse

Current
I....

Vohogo at I...

lJ1akago
at V...
IJI)lA)

Reverse
lJ1akag.
at V...
la()lA)

""""~
(Amps)

Vc

5.50
5.80
6.05
6.40
6.63
7.02
7.37
7.78
8.10
8.55
8.92
9.40
9.72
10.2
10.5
11.1
12.1
12.8
12.9
13.6
14.5
15.3
16.2
17.1
17.8
18.8
19.4
20.5
21.8
23.1
24.3
25.6
26.8
28.2
29.1
30.8
31.6
33.3
34.8
36.8

500
500
250
250
100
100
25.0
25.0
10.0
10.0
5.0
5.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0

2000
2000
1000
1000
400
400
100
100
50.0
50.0
20.0
20.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0

149
153
137
143
129
133
117
120
107
111
99.5
103
93.2
96.5
84.8
88.6
73.3
76.0
68.6
71.6
60.8
64.0
55.4
58.2
50.5
52.7
46.5
48.6
41.2
43.4
37.0
38.9
33.8
35.3
31.0
32.3
28.6
29.9
26.0
27.2

10.8
10.5
11.7
11.3
12.5
12.1
13.8
13.4
15.0
14.5
16.2
15.6
17.3
19.0
18.2
22.0
21.2
23.5
23.5
22.5
26.5
25.2
29.1
27.7
31.9
30.6
34.7
33.2
39.1
37.5
43.5
41.4
47.7
45.7
52.0
49.9
56.4
53.9
61.9
59.3

NOTES:
1. VSR measured after IT applied for 300 I's. IT = Square Wave Pulse or equivalent.
2. Surge current Waveform per Figure 3 and Derate per Figure 2.
3. All terms and symbols are consislant with ANSI/IEEE C62.3S.

565

Maximum
Temperature
Coofllclonl

01
V~

tv""

"",,C)

0.057
0.057
0.061
0.061
0.065
0.065
0.068
0.068
0.073
0.073
0.075
0.076
0.076
0.078
0.081
0.081
0.084
0.084
0.086
0.086
0.088
0.088
0.090
0.090
0.092
0.092
0.094
0.094
0.096
0.096
0.097
0.097
0.098
0.098
0.099
0.099
0.100
0.100
0.101
0.101

•

RATINGS AND CHARACTERISTIC CURVES 1.5KA6.8 THRU 1.5KA43A
f

:.

FIGURE 2-PULSE DERATING CURVE
100

~

AGURE 1 • PEAK PULSE POWER RATING VERSUS PULSE TIME CURVE

t\.

Non-Repetitive

" '\

Pulse Waveform
shown in Figure 3

T~I;;,25°C

"

I'\.

1.0, _

__

25

1._

100,..

1.011-&

100

75

",,-

125

150

175

200

TA.AMBIENTTEMPERATURE, "C

0.1 LJ.-L..-LJ.JWJJL.J.-L..-LJ.Jl..l.UILl-L.LLUliIL.J-LJ.J..UliIL.J-LJ.J..L.llllI

O.11J.S

50

t\..

10ms

III. PULSE WIDTH. SEC
FIG.4-TVPICAL JUNCTION CAPACITANCE
UNIDIRECTIONAL
20.000

FIGURE 3 - PULSE WAVEFORM

-

150

~:tf=10PSOC

f---

100

I--

-

~P8akVaIU8

Moasuredal--';
6,000
4,000

-rt= F-'ppn

u.
a.

"-

I'.... ~ .-

--

........

o!+-td~

10 11000llsec Waveform_

7da1ln.,\by

R.E.~

W

-2,000

~

1.000
600

~
~

HaJfValue-lpp

50

II

10.000

::::::::::,TA_25'C
Pulse WIdth (tel) Is de1ined _

-

tS
i3

..kI

ZeroBI..

ttt-

T,=25'C
f= 1.0 MHz
Vslg = somvp-p

~

II

'"

V\

!l.Ndal
stand-Off
VoIlagoCVIIII)

'"

600

400
2.0

1.0

4.0

3.0

t.TIME.ms

200
100
1.0

FIG. I14TWV ST.IIrE POWER DERATING
CURVE

i

~~

200

\.

;

........ .......

........

8.3ms SINGLE HALF SINE-WAve

(JEDEC METHOD)

TL.7S'C

~

20mmx20mmc1nm
Cq:Jpef heat sinks

100

FIG. 8 • M AXM UM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT

~

= 1375, (9 Smm)

20

V(BR), REVERSE VOLTAGE, VOLTS

\.
!

10

I

\.

(O.B"lIO.8"x.ll4O")

~

\

25

50

75

100

125

150

~
175

10

200

1

TL , LEAD TEMPERATURE,"C

5

10

50

100

NUMBER OF CYCLES AT 60Hz

---------------
0

::I
IL
l<

IL

IL

IL

<
W

;=

T...25'0 ~-:-:±::-:-

.1

Pul.. _

(lei) io dolinod

a thIII point where the _
II-- ~-.!..~ =.k
:r:nt dlcays 10 _

_i':'

O kVaW

I.

: - - Han Value -Ipp

~I

50
1011000,... Waveform as dofirwd by
ANSIIIEEE C62.35

r-

o
o

2

4

3

t. TIME.rns
td • PULSE TIME - sec

FIGURE 4 - MAXIIUM NON-REPETITIVE PEAK
FORWARD SURGE CURRENT

FIGURE 3 - PULSE DERATING CURVE

'00

~

~

"z~ ... r-p~kJ...!.r I'
ffi"e
Ow
J
....
".
z<
w ....
(Single Pulse)

a:z
a:w
oa:
a: W
OIL
a:
W

::10

~
IL

"

~

I""~

Average Power

.

"- I'~

~

I
I

"'~\ ...
~

TL -Lead Langth_318-

'"
2fi

60

7S

100

126

150

NUMBER OF CYCLES AT 60 Hz

175

TL.lEAD TEMPERATURE. "C

FIGURE 5 - PULSE WAVEFORM

!

150

I ~

~

H_t

-

Puis•.Wdlh

~~t!~,;;j

.... that point where the
.,peak currant decays to
50%01 Ipp
-

!St~.k Value
PP -H!I Val':'

~
2

50

100

150

.... r...

510203060

1\

I

•o

"

,

J

11 1111

TWOVJ1TwoL
8.3ms Single Hal Sine Wav_
(JEDEC METHOD)

200

t. TIME. ms

569

'00

•

P4KE6.8 THRU P4KE400CA
GLASS PASSIVATED JUNCTION TRANSIENT VOLTAGE
SUPPRESSOR
VOLTAGE- 6.8 to 400 Volts
440 Watt Peak Pulse Power
FEATURES

DO-204AL

-r
1.0 (25.4)

.101(2.7)
.080(2.0)

"I

IIIN

1+~
I
.205(5.2)
.180(4.1)

-L..

t

1.0 (25.4)

IIIN
.034(.8&)....
.028(.71)

I

""

Dimensions in Inches
and
(millimeters)

• Plastic package has Underwriters Laboratory
Flammability Classification 94V-0
• Glass passivated junction in 00-41 package
• 400W Peak Pulse Power capability on 1011 000
ILs waveform
• Repetion Rate (duty cycle):
0.01%
~
....
• Excellent clamping
. ' .. , .. '. '.
capability
'. "
• Low incremental surge resistance'· ..
• Fast response time: typically less
than 1.0 ps from 0 volts to BV for unidirectional
and 5.0 nS for bidirectional types
• Typical 10 less than 1 IL A above 10V
• High temperature soldering guaranteed:
265"C/l0 seconds/.375", (9.5mm) lead
length/5Ibs., (2.3 kg) tension

MECHANICAL DATA
Case:JEOEC 0Q-204AL molded plastic over
passivated junction
Terminals: Axial leads, solderable per
MIL-STO-750, Method 2026
Polarity: Color band denotes positive end (cathode)
except bi-directional types
Mounting Position: Any
Weight: 0.012 ounce, 0.3 gram

DEVICES FOR BIDIRECTIONAL APPLICATIONS
For BI-dIr8cUoIIII use C or CA Sulllllor types P4KE7.5llvu types P4KIl44O (II. P4KE7.5C, P4~A). EJoctrIcII .h.,acllrlsU.SlppJy In both dIrIctIons

MAXIMUM RATINGS AND CHARACTERISTICS
Ratings at25"C ambient temperature unless otherwise specified.

RATING

Peak Power Dissipation at TA=25°C 10/1000 its waveform
(NOTE 1. FIG. 1)
Peak Pulse Current at TA=25OC on 1011 000 itS waveform
(NOTE I, FIG. 3)
Steady State Power Dissipation atTL=75OC
Lead Lengths .375", (9.5mm) (Note 2)
Peak Forward Surge Current, B.3ms Single HaR
Sine-Wave Superimposed on Rated Load
(JEDEC Method) (NOTE 3) Unidirectional Only
Maximum Instantaneous Forward Voltage at 50 A for
Unidirectional Only (NOTE 3)
Operating Junction and Storage Temperature Range

SYMBOL

VALUE

UNITS

PPPM

Minimum 400

Watts

IpPM

SEE TABLE 1

Amps

PM(AV)

1.0

Watts

IFSM

40.0

Amps

VF
TJ,TsTG

3.5
-55 to +175

Volts

NOTES: 1. Non-repetitive current pulse, per Fig. 3 and derated above TA = 25"C per Fig. 2.
2. Mounted on Copper Leaf area of 1.57 in2 (40mm2) per Figure 6.
3. 8.3ms single haH sine-wave or equivalent square wave, duty cycle=4 pulses per Minutes maximum.

"C

Breakdown Voltage
Reverse
alIT
(mA)

VIBRl
VoRs"""",}
Devlc.

P4KE6.8*
P4KE6.8A*
P4KE7.5
P4KE7.5A
P4KE8.2
P4KE8.2A
P4KE9.1
P4KE9.1A
P4KE10
P4KE10A
P4KEll
P4KEllA
P4KE12
P4KE12A
P4KE13
P4KE13A
P4KE15
P4KE15A
P4KE16
P4KE16A
P4KE18
P4KE18A
P4KE20
P4KE20A
P4KE22
P4KE22A
P4KE24
P4KE24A
P4KE27
P4KE27A
P4KE30
P4KE30A
P4KE33
P4KE33A
P4KE36
P4KE36A
P4KE39
P4KE39A
P4KE43
P4KE43A
P4KE47
P4KE47A
P4KE51
P4KE51A
P4KE56
P4KE56A
P4KE62
P4KE62A
P4KE68
P4KE68A
P4KE75
P4KE75A

MIN

MAX

6.12
6.45
6.75
7.13
7.38
7.79
8.19
8.65
9.00
9.50
9.90
10.5
10.8
11.4
11.7
12.4
13.5
14.3
14.4
15.2
16.2
17.1
18.0
19.0
19.8
20.9
21.6
22.8
24.3
25.7
27.0
28.5
29.7
31.4
32.4
34.2
35.1
37.1
38.7
40.9
42.3
44.7
45.9
48.5
50.4
53.2
55.8
58.9
61.2
64.6
67.5
71.3

7.48
7.14
8.25
7.88
9.02
8.61
10.0
9.55
11.0
10.5
12.1
11.6
13.2
12.6
14.3
13.7
16.5
15.8
17.6
16.8
19.8
18.9
22.0
21.0
24.2
23.1
26.4
25.2
29.7
28.4
33.0
31.5
36.3
34.7
39.6
37.8
42.9
41.0
47.3
45.2
51.7
49.4
56.1
53.6
61.6
58.8
68.2
65.1
74.8
71.4
82.5
78.8

10
10
10
10
10
10
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

Stand-oll
VoRage
V...
(VoRs)

Maximum
Rove ...
Loakage
II V...
10 iNOTE ~ ()LA)

5.50
5.80
6.05
6.40
6.63
7.02
7.37
7.78
8.10
8.55
8.92
9.40
9.72
10.2
10.5
11.1
12.1
12.8
12.9
13.6
14.5
15.3
16.2
17.1
17.8
18.8
19.4
20.5
21.8
23.1
24.3
25.6
26.8
28.2
29.1
30.8
31.6
33.3
34.8
36.8
38.1
40.2
41.3
43.6
45.4
47.8
50.2
53.0
55.1
58.1
60.7
64.1

1000
1000
500
500
200
200
50
50
10
10
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0

,.. not available as bidirectional devices

571

Maxlmm
Peak Pulse
Current

Maximum
Clamping
Voltage aI

Ipp

Ipp

1.... 2J
(Amps)

Vc(VoRs)

38
40
36
37
33
35
30
31
28
29
26
27
24
25
22
23
19
20
18
19
16
17
14
15
13
14
12
13
11
11.2
10
10
9
9
8
8.4
7.4
7.8
6.8
7.1
6.2
5.0
5.7
6.0
5.2
5.5
4.7
5.0
4.3
4.6
3.9
4.1

Maximum
Temperature
CooIIlclenl

"v(8RJ

10.8
10.5
11.7
11.3
12.5
12.1
13.8
13.4
15.0
14.5
16.2
15.6
17.3
16.7
19.0
18.2
22.0
21.2
23.5
22.5
26.5
25.5
29.1
27.7
31.9
30.6
34.7
33.2
39.1
37.5
43.5
41.4
47.7
45.7
52.0
49.9
56.4
53.9
61.9
59.3
67.8
64.8
73.5
70.1
80.5
77.0
89.0
85.0
98.0
92.0
108
103

(%C)

0.057
0.057
0.061
0.061
0.065
0.065
0.068
0.068
0.073
0.073
0.075
0.075
0.076
0.078
0.081
0.081
0.084
0.084
0.086
0.086
0.088
0.088
0.090
0.090
0.092
0.092
0.094
0.094
0.096
0.096
0.097
0.097
0.098
0.098
0.099
0.099
0.100
0.100
0.101
0.101
0.101
0.101
0.102
0.102
0.103
0.103
0.104
0.104
0.104
0.104
0.105
0.105

•

Breakdown VoHage
V(aRj
VoHs(llOl"E')

Devlc.

P4KE82
P4KE82A
P4KE91
P4KE91A
P4KE100
P4KE100A
P4KEll0
P4KEll0A
P4KE120
P4KE120A
P4KE130
P4KE130A
P4KE150
P4KE150A
P4KE160
P4KE160A
P4KE170
P4KE170A
P4KE180
P4KE180A
P4KE200
P4KE200A
P4KE220
P4KE220A
P4KE250
P4KE250A
P4KE300
P4KE300A
P4KE350
P4KE350A
P4KE400
P4KE400A
P4KE440
P4KE440A

MIN

73.8
77.9
81.9
86.5
90.0
95.0
99.0
105
108
114
117
124
135
143
144
152
153
162
162
171
180
190
198
209
225
237
270
285
315
332
360
380
396
418

at IT
(mA)

MAX

90.2
86.1
100
95.5
110
105
121
116
132
126
143
137
165
158
176
168
187
179
198
189
220
210
242
231
275
267
330
315
385
368
440
420
484
462

Maximum

Rave""

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

R.verse

Stand· off
VoHage

Maxlmm
Poak Pulse
CU"lnt

v"..

....kage
at v"..

(IIOI"E~

(Volts)

10 IIDI£~bLA)

(Amps)

66.4
70.1
73.7
77.8
81.0
85.5
89.2
94.0
97.2
102
105
111
121
128
130
136
138
145
146
154
162
171
175
185
202
214
243
256
284
300
324
342
356
376

5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0

NOTES:
1. VSR measured after IT applied for 300 I's. IT - Square Wave Pulse or equivalent.
2. Surge Current Waveform per Figure 3 and Derated per Figure 2.
3. For Bidirectionallypes having VR of 10 volts and less, the 10 limit is doubled.
4. All terms and symbols are consistsnt with ANSIIIEEE C62.35.

572

Iw

3.6
3.7
3.2
3.4
2.9
3.1
2.7
2.8
2.4
2.5
2.2
2.3
2.0
2.0
1.8
1.9
1.7
1.8
1.6
1.7
1.5
1.53
1.16
1.22
1.11
1.16
0.93
0.97
0.79
0.83
0.70
0.73
0.95
1.0

Maximum
Clamping
Voltage at

Vc (VoHs)

Maximum
Temperature
COefficient
olV{IIR)
(%C)

118
113.0
131
125
144
137
158
152
173
165
187
179
215
207
230
219
244
234
258
246
287
274
344
328
360
344
430
414
504
482
574
548
631
602

0.105
0.105
0.106
0.106
0.106
0.106
0.107
0.107
0.107
0.107
0.107
0.107
0.108
0.108
0.108
0.108
0.108
0.108
0.108
0.108
0.108
0.108
0.108
0.108
0.110
0.110
0.110
0.110
0.110
0.110
0.110
0.110
0.110
0.110

Iw

RATINGS AND CHARACTERISTICS P4KE6.8 THRU P4KE400CA

FIGURE 2 - PULSE DERATING CURVE
Q:

,00

Q.

r\.

C

FIGURE 1 - PEAK PULSE POWER RATING VERSUS PULSE TIME CURVE

'00

Non-Repetitive
Pulse Waveform
shown in Figure 3
TA
250(;

~

~;,t
::J

-

OW

'I\.
75

"\

o~

8: Z
!!:-~
CC w

rl

~

!zW

"

50

t\..

~~

'0

~

"-(!l

lJj~ 25

I!.II

I~'O •
s= • • •
0.'
O.1fJ.S

1.0.,.5

'00""

'0..

1,Oms

,",0

ili
IL

~

Z

W

-H-:··''''i -

CC
CC
::J

'00

U

~

~
"-

~"-

.........

];-

::=~s':::p-

'0.000

..

..

10/1000llsecWavefonn_

i

...........

delo" Iby R.E.~

-

.f==

I~
I

e-kl

'.0

2.0

3.0

I, TIME, ms

s:~
~
~
!ll
o

'.00

0.75

!

CC

~

\

050

~

W

\

- OD=O
,

'r"

\

1

_ 40mm x 4Dmm x 1mm. Cu

~
en

'iS8" x

~ 0.25

~
o

25

50

'DO

rrr

~

II

"""~

M"'U~aI ZeroBi.

"- ['1.-<;

•

Measured at
Sland-Off
Voltage (Villi)

~

I
,1.0

r:
z

\

Ul

a:
a:

::J

1\

\

x .040"

75

=

I

o

Ul


than 1.0 ps from 0 volts to BV for unidirectional
and S.O ns for bidirectional types
• Typical 10 less than 1 II. A above 10V
• High temperature soldering guaranteed: 26soC/10 seconds/.37S", (9.Smm) lead length/Sibs., (2.3 kg) tension

IIIN

I

..

Dimensions In inches
and
(millimeters)

MECHANICAL DATA
Case: JEOEC 00-204AL Molded plastic over passsivated junction
Terminals: Plated Axial leads, solderable per
MIL-STO-7S0, Method 2026
Polarity: Color band denoted positive end
(cathode) except bidirectional types
Mounting Position: Any
Weight: 0.012 ounce, 0.3 gram

DEVICES FOR BIDIRECTIONAL APPLICATIONS
For Bidirectional use Suffix Letter "B." (ex. BZW04PSV8B)
Electrical characteristics apply in both directions.

MAXIMUM RATINGS AND CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified.

RATING

Peak Pulse Power Dissipation on 1011 000 lls waveform
(NOTE 1. FIG. 3»
Peak Pulse Current on 10/1000 llS waveform
(NOTE 1. FIG. 3)
Steady Pulse State Power Dissipation atTL=75·C
Lead Lengths .375", (9.5mm) (NOTE 2)
Peak Forward Surge Current, 8.3ms Single HaH
Sine-Wave Superimposed on Rated Load
(JEDEC Method) (NOTE 3) Unidirectional Only
Maximum Instantaneous Forward Voltage at 50A
(NOTE 3) Unidirectional Only
Operating Junction and Storage Temperature Range

SYMBOL

VALUE

UNITS

PPPM

Minimum 400

Watts

IpPM

SEE TABLE 1

Amps

PM(AV)

1.0

Watts

IFSM

40.0

Amps

VF
TJTsTG

3.5
-65 to +175

Volts
·C

NOTES:
1. Non-repetilive current pulse, per Fig. 3 and deraled above T A_25°C per Figure 2.
2. Mounted on Copper Leaf area of 1.57 in2 (40mm2) Figure 6.
3. 8.3ms single half sine-wave or equivalent square wave, duty cycle=4 pulses per minutes maximum

Breakdown Voltage
VCSR)
Volts (NOTE 1)
Daviee Type

BZW04P5V8
BZW04-5V8
BZW04P6V4
BZW04-6V4
BZW04P7VO
BZW04-7VO
BZW04P7V8
BZW04-7V8
BZW04P8V5
BZW04-8V5
BZW04P9V4
BZW04P10
BZW04-10
BZW04P11
BZW04-11
BZW04P13
BZW04-13
BZW04P14
BZW04-14
BZW04P15
BZW04-15
BZW04P17
BZW04-17
BZW04P19
BZW04-19
BZW04P20
BZW04-20
BZW04P23
BZW04-23
BZW04P26
BZW04-26
BZW04P28
BZW04-28
BZW04P31
BZW04-31
BZW04P33
BZW04-33
BZW04P37
BZW04-37
BZW04P40
BZW04-40
BZW04P44
BZW04-44
BZW04P48
BZW04-48
BZW04P53
BZW04-53
BZW04P58
BZW04-58
BZW04P64
BZW04-64
BZW04P70
BZW04-70
BZW04P78
BZW04-78

MIN

MAX

6.45
6.45
7.13
7.13
7.79
7.79
8.65
8.65
9.50
9.50
10.5
11.4
11.4
12.4
12.4
14.3
14.3
15.2
15.2
17.1
17.1
19.0
19.0
20.9
20.9
22.8
22.8
25.7
25.7
28.5
28.5
31.4
31.4
34.2
34.2
37.1
37.1
40.9
40.9
44.7
44.7
48.5
48.5
53.2
53.2
58.9
58.9
64.6
64.6
71.3
71.3
77.9
77.9
86.5
86.5

7.48
7.14
8.25
7.88
9.02
8.61
10.0
9.55
11.0
10.5
12.1
13.2
12.6
14.3
13.7
16.5
15.8
17.6
16.8
19.8
18.9
22.0
21.0
24.2
23.1
26.4
25.2
29.7
28.4
33.0
31.5
36.3
34.7
39.6
37.8
42.9
41.0
47.3
45.2
51.7
49.4
56.1
53.6
61.6
58.8
68.2
65.1
74.8
71.4
82.5
78.8
90.2
86.1
100
95.5

at IT
(mA)

Reverse
Stand."ff
Vohage

Maximum
Reverse
Leakage
at V""
ID(NOTE') !!LA)

V""
(VaHs)

10.0
10.0
10.0
10.0
10.0
10.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

5.80
5.90
6.40
6.40
7.02
7.02
7.78
7.78
8.55
8.55
9.4
10.2
10.2
11.1
11.1
12.8
12.8
13.6
13.6
15.3
15.3
17.1
17.1
18.8
18.8
20.5
20.5
23.1
23.1
25.6
25.6
28.2
28.2
30.8
30.8
33.3
33.3
36.8
36.8
40.2
40.2
43.6
43.6
47.8
47.8
53.0
53.0
58.1
58.1
64.1
64.1
70.1
70.1
77.8
77.8

1000
1000
500
500
200
200
50.0
50.0
10.0
10.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0

575

Maximum
Peak Pulse

Current

lee
(NOTE 2)

(Amps)

38.0
38.0
35.4
35.4
33.0
33.0
30.0
30.0
27.6
27.6
25.7
24.0
24.0
22.0
22.0
19.0
19.0
17.8
17.8
16.0
16.0
14.5
14.5
13.0
13.0
12.0
12.0
10.7
10.7
9.60
9.60
8.80
8.80
8.00
8.00
7.40
7.40
6.70
6.70
6.20
6.20
5.70
5.70
5.20
5.20
4.70
4.70
4.30
4.30
3.90
3.90
3.50
3.50
3.20
3.20

Maximum
Clamping
VaHageat
Ipp
Vc (VaHs)

10.5
10.5
11.3
11.3
12.1
12.1
13.4
13.4
14.5
14.5
15.6
16.7
16.7
18.2
18.2
21.2
21.2
22.5
22.5
25.2
25.2
27.7
27.7
30.6
30.6
33.2
33.2
37.5
37.5
41.5
41.5
45.7
45.7
49.9
49.9
53.9
53.9
59.3
59.3
64.8
64.8
70.1
70.1
77.0
77.0
85.0
85.0
92.0
92.0
103
103
113
113
125
125

Maximum
Temperature
CoaffJcJent
oIV(BR)

(%C)

.057
.057
.061
.061
.065
.065
.068
.073
.073
.075
.075
.078
.078
.081
.081
.084
.084
.086
.086
.088
.088
.090
.090
.092
.092
.094
.094
.096
.096
.097
.097
.098
.098
.099
.099
.100
.100
.101
.101
.101
.101
.102
.102
.103
.103
.104
.104
.104
.104
.105
.105
.105
.105
.106
.106

•

Breakdown Vonaga
V,".,

vons (NOTE 1)
Devlee

BZM4P85
BZM4·85
BZM4P94
BZM4·94
BZM4Pl02
BZM4-102
BZM4Pl10
BZM4·110
BZM4P128
BZM4-128
BZM4P136
BZM4-136
BZM4P145
BZM4-145
BZM4Pl54
BZM4·154
BZM4P171
BZM4-171
BZM4P188
BZM4-188
BZM4P213
BZM4-213
BZM4P239
BZM4·239
BZM4P256
BZM4-256
BZM4P273
BZM4-273
BZM4P299
BZM4-299
BZM4P342
BZM4-342
BZM4P376
BZM4-376

MIN

95.0
95.0
105
105
114
114
124
124
143
143
152
152
161
161
171
171
190
190
209
209
237
237
266
266
285
285
304
304
332
332
380
380
418
418

aliT
(rnA)

MAX

110
105
121
116
132
126
143
137
165
158
176
168
187
179
198
189
220
210
242
231
275
263
308
294
330
315
352
336
385
368
440
420
484
462

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

Rev.,..

Maximum

Sland·oIf
VoHaga
VWM
(Vons)

Reverse

85.5
85.5
94.0
94.0
102
102
118
111
128
128
136
136
145
145
154
154
171
171
188
188
213
213
239
239
256
256
273
299
299
299
342
342
376
376

Leakage
alV_

10 ,NOTE',

,!'A)

5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0

NOTES:
1. VBA measured after IT applied for 300 I's. IT = Square Wave Pulse or equivalent.
2. Surge CUrrent Waveform per Figure 3 and Derated per Figure 2.
3. All terms and symbols are consistent with ANSI/IEEE C62.35.
4. For bidirectional devices with VWM of 10 volts and less, the 10 limit is doubled.

576

Maximum
PeakPulo.
Current
Ipp

Maximum
Clamping
Vonagaal
Ipp

INaIE»
(Amps)

2.90
2.90
2.60
2.60
2.40
2.40
2.20
2.20
2.00
2.00
1.80
1.80
1.70
1.70
1.60
1.60
1.50
1.50
1.40
1.40
1.50
1.50
1.50
1.50
1.20
1.20
1.20
1.20
0.90
0.90
0.90
0.90
0.80
0.80

Maximum
Temperature

Codlelenl
oIV,B.)

Vc(VoH.)

(%C)

137
137
152
152
165
165
179
179
207
207
219
219
234
234
246
246
274
274
301
301
344
344
384
384
414
414
438
438
482
482
548
548
603
603

.106
.106
.107
.107
.107
.107
.107
.107
.108
.108
.108
.108
.108
.108
.108
.108
.108
.108
.108
.108
.110
.110
.110
.110
.110
.110
.110
.110
.110
.110
.110
.110
.110
.110

RATINGS AND CHARACTERISTICS BZW04P5V8 THRU BZW04-376
FIGURE 2 -

c:
g,
FIGURE 1 - PEAK PULSE POWER RATING VERSUS PULSE TIME CURVE

!zw

~iI!

"'

75

::J

OW-

o~
-Z

~~

~~

"

r\.

50

~a::

PULSE DERATING CURVE

~,

100

I\.

"' "\

D.(!I

~~ 25

5~

... w
><0

...~

25

SO

75

100

125

~

150

175

TA AMBIENT TEMPERATURE (" C)
FIO.4-TYPICAL JUNCTION CAPACITANCE
UNlDIREC110NAL

10J'S

tel, PULSE WIDTH, SEC

IFIGURE 3 -

_

PULSE WAVEFORM

r-

T...25"C
Pulse Wldtho300J'S
2% Duty Cycle

150

-+

+:h101l

TA",2S'C
S&C

-

-

_

::~:::::!~~-

-

10000

current decays to 50% of IP~-

~~aakValu.

100

~'\. F-'ppm

'" ......

..

HalfValua-lpp

'"..... ~

50

10 11000pS8C Wavetorm_

ide....dtRE~ -

'" ::""-..

=
-==

.-kt

o +-

Id--iO

1.0

3.0

2.0

1.00

I I

3t

~

i

0.75

a::

~

0.50

W

~

~
~

I

0.25

~

~

I

1-

,

50

lOa

200

40
30

~

100

125

150

.-

20

~

75

20

50

~

I I

25

10

FlO.8-MAXIMUM NON-REPETITIVE
PEAK FORWARD SURGE CURRENT
UNiDIRI!CTlONAL

\

CDP:r' Heal Sinks

ResistIve or
Inductive Load

0
0

2

1.0

V,,,,, BREAKDOWN VOLTAGE, VOLTS

40mm x 40mm x 1mm
(1.5S" x 1.58" x .040")

h

•

Measured at
Stand-Off
Voltage (VIM)

100

(95L)'
~~ ~
I , ~37~ .•

I'

f-

I, TIME,ms

~

~

4.0

FlO. 5-STEADY STATE POWER DERATING
CURVE



11.

~11.
f

TA=2S"C

"'"
HaHValue-~

I'

:;...-;

50

.......

O-td~

2

10 11~sec Wavefonn_
as defined by R.EA
_

--

-.l

-.l

0
11

5

10

50

100

NUMRE" OF CYCLES AT 60Hz

2.0

1.0

-.l

,-k!

3.0

4.0

t. TIME. ms

FIG. 5-STEADV STATE POWER DERATING CURVE
1.6

I' ~

1.4

1.2
~

0.8
0.6

0.4
0.2

,.r

"

375" (9 5mm)' ' "

:~~
40mm x 40mrn x 1mm Cu
(158" x 1 58" x .040")

I

I

I

I

25

50

i'S

100

~

"
125

150

TL, LEAD TEMPERATURE, 'C

'"

Ii'S

200

CD General Instrument
581

•

RATINGS AND CHARACTERISTIC CURVES SA5.0 THRU SA 170CA

FIG. 8-INCREMENTAL CLAMPING VOLTAGE CURVE

FIG. 7-INCREMENTAL CLAMPING VOLTAGE CURVE

UNIDIRECTIONAL

UNIDIRECTIONAL

1

~
«
30

I

~:~v:.,~

SA170

6YO·Yo·Y....

~':'0+=
SA70

V

20

I-""

10
8.
6.0
5.0
4.0
3.

I
j

50
40
30

.LSAS4

V

V

i-'

I
f

/SA40
SA30

V

i..-' ......

2.0

./1/

V

1.0
0.8
0.6
0.5
0.4
0.3

IL

SA24

L( I I

IL

i

/~;~

V

V ~V ~,L=

~

~.~:
SA9.0

i-"

0.2
0.11-'
0.50.7 1.0

1::::=

40
30

I

2.0 304.05.07.0 10

.... _ _ Current

20

I

1.
0.8
0.6
0.5
0.4
0.3

/

I
V

1/

V

V

SA9.0
SA5.0

I--

f--"

V
::;.-

2.0 3.04.05.07.0 10

'... _ _ CUrrent

V

SA70C

j

J

i

~

V

VSA15C

i

L.
i-""~9.~C

...... f--"

'0:~=r=~t;

SAII.5C

0.2

1
8.
6.0
5.0
4.0
3.0
2.0

liVC-Vc·VCffiJ

SAl70C
SA110C

20

SASOC

1--"SA24C

30 4050

BIDIRECTIONAL
8
80
50
40
30

:;..--

20
.~

FIG. tI-INCREIiENTAL CLAMPING VOLTAGE CURVE

SA40C

0.1
0.5 0.7 1.0

V

1.0
0.8
0.6
0.5
0.4
0.3

SA110C

V

k...-

f-""

SA1S-

0.1
0.50.7 1.0

30 4050

V

2.0

5A4O

V

.~

8 x20 Impulae

6Yo·Yo·Y....

f

SA70

V

SA24

2.0

SA170C

~Waveform:

10
8.
6.0
5.0
4.0
3.0

./
....-1-""

10
8.0
6.
5.0
4.0
3.0

III

0.2

20

3.

6Yo·Yo·Y"'" SA110

20

FIG. 8-INCREMENTAL CLAMPING VOLTAGE CURVE
BIDIRECTIONAL

~

10x~=r:uE

SA170

/

I

SA7~

./

SA40C

SA24C
SA15C

V

1.0
0.8
0.6
0.5
0.4
0.3

./

I--

r-

~.OC

V

./

f-"

SAII.5C

0.2

2.0 3.04.05.0 7.0 10

.... _k _

20

30

0.1
0.5 0.7 1.0

50

Cu,...,••Ampe

2.0 3.04.05.07.0 10
.... _ _

20

30

50

CurnnI~

- - - - - - - - - - - - - - (!}Generallnstrument
582

RATINGS AND CHARACTERISTIC CURVES SA5.0 THRU SA 170CA
FIG. 1CHNSTANTANEOUS FORWARD
VOLTAGE CHARACTERISTICS CURVE
2.5

II III
f-

T,=25·C

(Unidirectional Only)

0.1

0.2

0.5

11111111 II I
11111111 II I
lu 20
5.0
_ _ cu......
-Ampo
1.0

2.0

1

FIG. 11-BREAKDOWN VOLTAGE
TEMPERATURE COEFFICIENT CURVE

V.-A_SIond-OffV-,-Volls

•
APPLICATION
This TransZorb TVS series is a low cost. SOO watt commercial and industrial product for use in applications where space is a premium and where large voltage transients can permanently damage voltage-sensitive components.
The response time of TransZorb TVS clamping action Is instantaneous (1 x 10.9 second for unidirectional and 5 x 10.9 for bidirectional); therefore, they can protect integrated circuits, MOS devlces,hybrids, and other voltage-sensitive semiconductor components.

---------------ilGenerallnsb'ument
583

SAB5.0 THRU SAB28 SERIES
UNIDIRECTIONAL TRANSIENT VOLTAGE SUPPRESSOR
Voltage- 5.0 to 28 Volts 500 Watt Peak Pulse Power
FEATURES
• Plastic package has Underwriters Laboratory
Flammability Classification 94V-O
• Glass passivated junction
• Repetition Rate (duty cycle): 0.01%
• SOOW Peak Pulse Power Surge capability on
10/1 OOOILS waveform
• Excellent clamping
capability
• Low incremental surge resistance
• Fast response time: typically less
than 1.0 ps from 0 volts to BV min.
• Ideal for Data and Bus Line applications
• High temperature soldering guaranteed: 26soC/10 seconds/.37S", (9.Smm) lead
length/Sibs., (2.3 kg) tension

DO-204AC / CASE 25

1.(lO (25.4)

MIN.

1
.255 (6.47)
.240 (6.09)

f

1.00(25.4)

MIN.
.028(.71

DIA

I

Dimensions in inches
and
(millimeters)

MECHANICAL DATA
Case: Molded plastic over a passivated junction
Terminals: Plated Axial leads, solderable per MILSTO-7S0, Method 2026

Polarity: Color band denotes positive end (cathode)
Mounting Position: Any
Weight: 0.0353 ounce, 1.0 gram

MAXIMUM RATINGS AND CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified.

RATING

SYMBOL

VALUE

UNITS

PPPM

Minimum 500

Watts

PM(AV)

1.0

Watts

IpPM

SEE TABLE 1

Amps

IFSM

70.0

Amps

TJTsTG

-65 to +175

·C

Peak Pulse Power DiSSipation on
10/1000118 waveform (NOTE 1. FIGURE 11
Steady State Power Dissipation, TL= 75°C
at Lead Lellgths .375".J9.Smm)·
Peak Pulse Current at TAm2S·C on 10/1 OOO~s
waveform (NOTE 1. FIGURE 3)
Peak Forward Surge Current, 8.3ms Single Half
Sine-Wave Superimposed on Rated Load for Unldirectional only (JEDEC Method) (NOTE 2)
Operating Junction and Storage
Temperature Range

NOTES:
1. Non-repetitive current pulse. per Fig. 3 and dera1ed above TA- 250C per Fig. 2.

2. Measured on 8.3ms single half sine·wave or equivalent square wave, duty cyc!e=4 pulses per minute maximum.

584

RATING AND CHARACTERISTIC CURVES SAB5.0 THRU SAB28 SERIES
FIGURE 1 • PEAK PULSE POWER RATING CURVE

~IOO_

l

ci

100

~

~c

,.

w

'"::>
<
'"
..J

0.
W
0.

E

Q.
Q.

0.

"-

0.1

~

t!J

j5
z

~

I.~

O.11lS

["'..

\.

~

,.

FIGURE 3· PULSE WAVEFORM

2!1

~

HaH Valu.

150

175

~

~

-.lIf

~

1Ox 1000 Waveform
as defined by R.E.A.

~

e-k1

0

.,

cS

2

10

20

loo'mum
FIG_ 5-TYPICAL INSTANTANEOUS
FORWARD VOLTAGE

O·,I!ftM
1A

500

1.8

1.8

•

(JEDEC Method)
TJ=TJ max.

10

0

__~-L__L-~~
12

200

I ~.~ms s~e Ha~ Si~e-~~! I

.
1.0

100

FIGURE 6· MAXIMUM NON-REPETITIVE
PEAK FORWARD SURGE CURRENT

100

"UL~~

50

VMW, RATED STAND-OFF VOLTAGE, VOLTS

t, TIME,ms

0.8

125

-

....
en

200

8.3~S SINGLE HALF SINE-WAVE

enW

I\,
'\

copper heat sinks
('.58"".51"1.0401

«

:>

100

FlG.8-IIAXIMUM NON-REPETITIVE
PEAK FORWARD SURGE CURRENT
UNIDIRECTIONAL

4OmmX4Ommc1mm

;;:

0

....«
....en

20

VIBR), BREAKDOWN VOLTAGE, VOLTS

r\

!~i

0.

II:

10

5.0

0

«

•

"-

rTfTiil1
2

i=

\.

T,.25'C
~ l.l.0MHz

t, TIME,ms

........
«

,

~

100

<3

o-kl

Measured at
Stand·Off
Voltago (YMW)

O-Id--o

iii

_

~

1,000

"-..... ' /

50

ZeroBi..

'!;,
HalValue-tpp

0.

i"-

2,000

Pulse WKIIh (td) is damed _

F-Ippm

'1
::J

~
0.

-

TA=2S"C
Ill

25'~tt-

1111111~ Measured at

150

175

",II:
«::J

wC,)

0.

200

5

TL, LEAD TEMPERATURE (OC)

10

50

100

NUMBEH OF CYCLES AT 60Hz

~

--------------eGenerallnstrument
591

1.5KE6.8 THRU 1.5KE400CA
GLASS PASSIVATED JUNCTION TRANSIENT VOLTAGE
SUPPRESSOR
VOLTAGE - 6.8 to 440 Volts 1500 Watt Peak Pulse Power
FEATURES
1.5KE

r

1.00(254)

MIN.

I

.205 (5.2071",
.190 (4.826)

DlA.

.375 (9.527)
.360 (9.146)

r
I

1.00(25.4)

MIN.

".042(1.07)
.038(.958)
DlA.

Dimensions In inches

and

(millimeters)

• Plastic package has Underwriters Laboratory Flammability Classification 94V-O
• Glass passivated chip junction in Molded Plastic
package
• 1500W Peak Pulse Power
capability on 10/1 000 ILS waveform
• Repetition rate (duty cycle): O.OS%
• Excellent clamping capability
• Low incremental surge resistance
• Fast response time: typically less
than 1.0 ps from 0 volts to BV for unidirectional
and S.O nS for bidirectional types
• Typical 10 less than 11J.A above 10V
• High temperature soldering guaranteed: 300'C/1 0
seconds/.37S", (9.Smm) lead length/Sibs., (2.3 kg)
tension

MECHANICAL DATA
Case: Molded plastic over passivated junction
Terminals: Plated Axial leads, solderable per
MIL-STO-7S0, Method 2026

Polarity: Color band denotes positive end
(cathode) except bidirectional

Mounting Position: Any
Weight: 0.04S ounce, 1.2 grams

DEVICES FOR BIDIRECTIONAL APPLICATIONS
For Bidirectional use C or CA Suffix for types 1.SKE6.8 thru types 1.SKE440 (ex. 1.SKE6.8C,
1.SKE400CA). Electrical characteristics apply in both directions.

MAXIMUM RATINGS AND CHARACTERISTICS
Ratings at 25·C ambient temperature unless otherwise specified.

RATING

Peak Pulse Power Dissipation on 10/1000 I1S
waveform (NOTE 1)
Peak Pulse Current on 10/1000 I1S wavefom1
(NOTE 1, FIG. 1)
Steady State Power Dissipation at TL=75·C
Lead Lengths .375", (9.5mm) (NOTE 2)
Peak Forward Surge Current, 8.3ms Single HaH Sine-Wave
Superimposed On Rated Load (JEDEC Method) (NOTE 3)
unidirectional
Maximum Instantaneous Forward Current at 50.0A for
uniddlrectlonal only (NOTE 3)
Operating Junction and Storage Temperature Range

SYMBOL

VALUE

UNITS

PPPM

Minimum 1500

Watts

IpPM

SEE TABLE 1

Amps

PM(AV)

5.0

Wans

IFSM

200

Amps

VF
TJ,TsTG

3.515.0
-65 to +175

Volts
'C

NOTES: 1. Non-repetitive current pulse, per Fig. 3 and derated above T A= 25·C per Fig. 2.
2. Mounted on Copper Leaf area of 0.79 in2 (2Omm2) per Figure 5.
3. Measured on 8.3ms single half sine·wave or equivalent square wave, duty cycle =4 pulses per minutes maximum.

ELECTRICAL CHARACTERISTICS at (TA=25°C unless otherwise noted)

JEDEC
TYPE
NUMBER

lN6267
lN6267A
lN6268
lN6268A
lN6269
lN6269A
lN6270
1N6270A
lN6271
lN6271A
lN6272
lN6272A
lN6273
lN6273A
lN6274
lN6274A
lN6275
lN6275A
lN6276
lN6276A
lN6277
lN6277A
lN6278
lN6278A
lN6279
lN6279A
lN6280
lN6280A
lN6281
lN6281A
lN6282
lN6282A
lN6283
lN6283A
lN6284
lN6284A
1N6285
1N6285A
lN6286
lN6286A
lN6287
1 N6287A
lN6288
lN6288A
lN6289
lN6289A
1 N6290
lN6290A
1 N6291
lN6291A
lN6292
lN6292A
lN6293
lN6293A
lN6294
lN6294A
1 N6295

GENERAL
PART
NUMBER

Breakdown Voltag'
VIlli!
INOIEII

(VoUs)

MIn

+1.5KE6.8
+1.5KE6.8A
+1.5KE7.5
+1.5KE7.SA
+1.SKE8.2
+1.5KE8.2A
+1.SKE9.1
+1.5KE9.1A
+1.5KE10
+1.5KE10A
+1.5KEll
+1.5KEll A
+1.5KE12
+1.5KE12A
+1.5KE13
+1.5KE13A
+1.5KE15
+1.5KE15A
+1.5KE16
+1.5KE16A
+1.5KE18
+1.5KE18A
+1.5KE20
+1.5KE20A
+1.5KE22
+1.5KE22A
+1.5KE24
+1.5KE24A
+1.5KE27
+1.5KE27A
+1.5KE30
+1.5KE30A
+1.5KE33
+1.5KE33A
+1.5KE36
+1.5KE36A
+1.5KE39
+1.5KE39A
+1.5KE43
+1.5KE43A
+1.5KE47
+1.5KE47A
1.5KE51
1.5KE51A
1.5KE56
1.5KE56A
1.5KE62
1.5KE62A
1.5KE68
1.5KE68A
1.5KE75
1.5KE75A
1.5KE82
1.5KE82A
1.5KE91
1.5KE91A
1.5KE100

6.12
6.45
6.75
7.13
7.38
7.79
8.19
8.65
9.00
9.S0
9.90
10.5
10.8
11.4
11.7
12.4
13.5
14.3
14.4
15.2
16.2
17.1
18.0
19.0
19.8
20.9
21.6
22.8
24.3
25.7
27.0
28.5
29.7
31.4
32.4
34.2
35.1
37.1
38.7
40.9
42.3
44.7
45.9
48.5
50.4
53.2
55.8
58.9
61.2
64.6
67.5
71.3
73.8
77.9
81.9
86.5
90.0

Rev.....

llulmum

at IT

Stand 011

Rever..
Leakage
at V""
10 JIIOI'E51 (pA)

Maximum
PoakPulso
Cu...ntl.,.
JIIOI'E_
(Amps)

Maximum
Clamping
Vonag.at ....

(mA)

Voltage
V""
(Vons)

5.50
5.80
6.05
6.40
6.63
7.02
7.37
7.78
8.10
8.55
8.92
9.40
9.72
10.2
10.5
11.1
12.1
12.8
12.9
13.6
14.5
15.3
16.2
17.1
17.8
18.8
19.4
20.5
21.8
23.1
24.3
25.6
26.8
28.2
29.1
30.8
31.6
33.3
34.8
36.8
36.1
40.2
41.3
43.6
45.4
47.8
50.2
53.0
55.1
58.1
60.7
64.1
66.4
70.1
73.7
77.8
81.0

1000
1000
500
SOO
200
200
50
50
10
10
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0

139
143
128
132
120
124
109
112
100
103
93.0
96.0
87.0
90.0
79.0
82.0
68.0
71.0
64.0
67.0
56.5
59.5
51.5
54.0
47.0
49.0
43.0
45.0
38.5
40.0
34.5
36.0
31.5
33.0
29.0
30.0
26.5
28.0
24.0
25.3
22.2
23.2
20.4
21.4
18.6
19.5
16.9
17.7
15.3
16.3
13.9
14.6
12.7
13.3
11.4
12.0
10.4

10.8
10.5
11.7
11.3
12.5
12.1
13.8
13.4
15.0
14.5
16.2
15.6
17.3
16.7
19.0
18.2
22.0
21.2
23.5
22.5
26.5
26.2
29.1
27.7
31.9
30.6
34.7
33.2
39.1
37.5
43.5
41.4
47.7
45.7
52.0
49.9
56.4
53.9
61.9
59.3
67.8
64.8
73.5
70.1
80.5
77.0
89.0
85.0
98.0
92.0
109
104
118
113
131
125
144

MsI

7.48
7.14
8.25
7.88
9.02
8.0
10.0
9.55
11.0
10.5
12.1
11.6
13.2
12.6
14.3
13.7
16.5
15.8
17.6
16.8
19.8
18.9
22.0
21.0
24.2
23.1
26.4
25.2
29.7
28.4
33.0
31.5
36.3
34.7
39.6
37.8
42.9
41.0
47.3
45.2
51.7
49.4
56.1
53.6
61.8
58.8
68.2
65.1
74.8
71.4
82.5
78.8
90.2
86.1
100.0
95.5
110

10
10
10
10
10
10
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

593

Vc (Vons)

llulmum
Temperature
CooftlclnatofVIlRl
(Ve)

0.057
0.057
0.061
0.061
0.065
0.065
0.068
0.068
0.073
0.073
0.075
0.075
0.076
0.078
0.081
0.061
0.084
0.084
0.066
0.066
0.068
0.089
0.090
0.090
0.092
0.092
0.094
0.094
0.096
0.096
0.097
0.097
0.098
0.098
0.099
0.099
0.100
0.100
0.101
0.101
0.101
0.101
0.102
0.102
0.103
0.103
0.104
0.104
0.104
0.104
0.105
0.105
0.105
0.105
0.106
0.106
0.106

•

ELECTRICAL CHARACTERISTICS at (TA=25"C unless otherwise noted)
GENERAL
JEDEC
TYPE
NUMBER

1N6295A
1N6296
1N6296A
1N6297
1N6297A
1N6298
1N6298A
1N6299
1N6299A
1N6300
1N6300A
1N6301
1N6301A
1N6302
1N6302A
1N6303
1N6303A

PART

Brelkdown Voltage
V(IIII
(VolIs)

lilT

MIn

....

(mA)

95.0
99.0
106
108
114
117
124
136
143
144
152
153
162
162
171
180
190
196
209
225
237
270
285
315
333
360
380
396
418

105
121
116
132
126
143
137
165
158
176
168
167
179.
198
189
220
210
242
231
275
263
330
315
385
368
440
420
484
462

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

NUMBER

1.5KE100A
1.5KE110
1.5KE110A
1.5KE120
1.5KE120A
1.5KE130
1.5KE130A
1.5KE150
1.5KE150A
1.5KE160
1.5KE160A
1.5KE170
1.5KE170A
1.5KE180
1.5KE180A
1.5KE200
1.5KE200A*
1.5KE220
1.5KE220A*
1.5KE250
1.5KE250A
1.5KE300
1.5KE300A
1.5KE350
1.5KE350A
1.5KE400
1.5KE400A
1.5KE440
1.5KE440A

1fIJII!1'

~

standDil
Volllgo
V...
(VolIs)

85.5
89.2
94.0
97.2
102
106
111
121
128
130
136
138
145
146
154
162
171
175
185
202
214
243
256
284
300
324
342
356
376

IlUlmum

_It

llulmum
I'IIkPuIlt

MaxImum
Cllmplng

Leakag.

CUrrent..,.

Volag.at ....

(Amps!

Vc (VoIIs)

11.0
9.5
9.9
8.7
9.1
8.0
8.4
7.0
7.2
6.5
6.8
6.2
6.4
5.8
6.1
5.2
5.5
4.3
4.6
5.0
5.0
5.0
5.0
4.0
4.0
4.0
4.0
2.38
2.50

137
158
152
173
165
187
179
215
207
230
219
244
234
258
246
287
274
344
328
360
344
430
414
504
482
574
548
631
602

ltV..
.. (lI0II51

IlIA)

5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0

_II

llulmum
T.mpenlure
Cotlllcltnlol VIIIRl
(%I'C)

0.106
0.107
0.107
0.107
0.107
0.107
0.107
0.108
0.106
0.106
0.108
0.108
0.108
0.108
0.108
0.108
0.108
0.108
0.108
0.110
0.110
0.110
0.110
0.110
0.110
0.110
0.110
0.110
0.110

NOTES:
1. VBR measured after IT applied for 300 us. IT=Square Wave Pulse or equlvalenl
2. Surge current Waveform per Figure 3 and Derate per Rgure 2.
3. VF=3.5V max.,IF=100A(1.5KE6.8 thru 1.5KE91A)
VF=5.0 V max., IF=100A (1.5KE100 thru 1.5KE440A) per 1/2 Square or equivalent Sine Wave.
PW·8.3ms, Duty Cycle· 4 Pulses per minute maximum.
4. All terms and symbols are consistent with ANSI/IEEE CA62.35.
5. For bidirectional types with VR 10 volts and less, the io limit is doubled.
* Bidirectional versions are UL approved under component across the line protection, ULV1414 file number El08274.
(1.5KE200CA, 1.5KE220CA)
+ UL listed for Telecom applications protection, 497B, file number El33766 for both unidirectional and bidirectional devices

APPLICATION
This series of Silicon Transient Suppressors is used in applications where large voltage transients can permanenUy damage voltage-senSitive components.
The TransZorb diode can be used in applications where Induced lighting on rural or remote transmission lines presents a hazard
to electronic circuitry (ref: R.E.A. specification P.E. 60).
This TransZorb TVS diode has a pulse power rati~of 1500 watts for one millisecond. The response time of TransZorb TVS diode
clamping action is eflectively instantaneous (1 x 10 seconds bidirectional) ; therefore, they can protect integrated circuits, MOS
devices, hybrids, and other vo~age sensitive semiconductors and components. TransZorb TVS diodes can also be used in series
or parallel to increase the peak power ratings.

594

RATINGS AND CHARACTERISTIC CURVES 1.5KE6.8 THRU 1.5KE400CA
c:
g

F1G.1.PEAK PULSE POWER RATING CURVE
100

FIGURE 2 -

100

""

Non~Repetltive

"'r\.

Pulse Waveform
shown In F igu re 3

"'"

0

PULSE DERATING CURVE

"-r\.

r-...

1.0

"'I\.

"'\.

III

III

o
0.1J'S

1.D!'"

1.Oms

10D!'"

25
10ms

tp. PULSE WIDTH

FIGURE 3 -

50

"
50

:!:::::~~:-:::

5000

-

HaHValu£o IPP

-

--

""

t;=td_
o

.

1.0

"'" "

15
i3

as defined by R.E.A.

....

3.0

~

50

Ii:

3.75

!ll!!l

25

0

100
50

V.- Ratad ....... r....
Stand'()ff Voltage

20
10
5.0

4.0

W

~W

...
i"'---

10

50

20

100

200

V,SR), BREAKDOWN VOLTAGE, VOLTS

'"

500

.375" (9.5mm)

&0=0

F1G.8-MAXIMUM NON.flEPETmve
PEAK FORWARD SURGE CURRENT
UNiDIFIECTIONAL

\

2Oml1'llC2Ommx1mm
cappar heat links
(O.8"xO.S'x.D4O')

(1.

~

r\
\
t'"

0

~

V.=O==

FIG. 5.sTEADY STATE POWER DERAT1NG
CURVE

rJl

a:

~.

~

t,TIME(ms)

s:
~

i"-..

Unidirectlonal----::
Bidirectional
.-

~2OO

10x1000Waveform

2.0

-

:-

u.2000
Q.

~5OO

.-

TYPICAL JUNCTION CAPACITANCE

10000

w1000
o

" ---

200

FIG.4·TYPICAL JUNCTION CAPACITANCE

T..:!5"C
_
_ Pulse Widlh (td» i. dolined _

..:--:-value

00

FIGURE 4 -

PULSE WAVEFORM

.... ~:tf=1OpS9C

50
75
100 125
150
175
TA, AMBIENT TEMPERATURE, 'C

1.25

I

Iii

I

!

25

20•

\

W
C!JUl
a:W
:::>a:
UlW

\

75

100

125

... ""

a:~

««

3:":

\
50

100

8.3m,' SINGLE HALO S'NE.WAVb
JEDEC METHOD
~
T....TJm&X.

00-

\

'

................ """

'50

\.

175

50

a:Z
OW
u..a:
""a:
«:::>

UNIDIRECTIONAL ONLY

wO
0-

20

TL, LEAD TEMPERATURE, 'C

1.

III,.
NUMBER OF CYCLES AT SOHz

595

50

'00

•

RATINGS AND CHARACTERISTIC CURVES 1.5KE6.8 THRU 1.5KE400CA

FIG. 7-INCREMENTAL CLAMPING VOLTAGE CURVE
UNIDIRECTIONAL

FIG. 8-INCREMENTAL CLAMPING VOLTAGE CURVE
UNIDIRECTIONAL

1

~WaVefOrm:

60
50

~

8 x20 Impulse
lJ.VC-VC-VIDRl

40
30

I..

I

j

V

20

-(I .!
'~3O
/'

1.5KE100
L-

...-f-"'

10
8.0
6.0
5.0
4.0
3.0

1.5KE75

k"

2.0

V

1.0
,j 0.8


.Ampa

15KE7.5C

.2

1.SKE7

0.2

°J~'<.5-';0~.7;'-';,';;.0~'-:;'2.no""3;\.0;;4~.0;;5!";.0"'7;';.oM'0:;--'-~20,;l3OJ44l0;;;50

0.1
0.5 0.7 1.0

2.0

3.04.05.07.0 10

20

30

Ipp, Peak Pul•• Current .Ampe

Ipp, Peak PUIH Current lAmpe

- - - - - - - - - - - - - - - ~ General Instrument
596

RATINGS AND CHARACTERISTIC CURVES 1.SKEB.B THRU 1.SKE400CA

~

FIG. 11-1NSTANTANEOUS FORWARD
VOLTAGE CHARACTERISTICS CURVE

~
<

t- Note: For units with V.. > 2OOV,
Pulse width. 3OOf1s

i.
0 '2

f2
~
~

Unidirectional
Bidirectional

0.8

/-'

0

(Unidirectional Only)

z

en

...... f-': V'

2%OuIyCycIo
T...25"C

lw3 0.4
i5

FIG. 12-8REAKDOWN VOLTAGE
TEMPERATURE COEFFICIENT CURVE

2D

.0

0

0.1

0.2

0.5

1.0

2.0

5D

10.20

50

100

0
10

INSTANTANEOUS FORWARD CURRENT.AMPERES

20

50

100

200

500

VB•• BREAKDOWN VOLTAGE, VOLTS

•

- - - - - - - - - - - - - - - (iGeneralInsbument
597

ICTE5.0 THRU ICTE15C SERIES
TRANSIENT VOLTAGE SUPPRESSOR
Voltage- 5.0 to 15 Volts
1500 Watt Peak Pulse Power
FEATURES
• Plastic package has Underwriters Laboratory
Flammability Classification 94V-O
• Glass passivated chip junction
• Repitition Rate (duty cycle): 0.05%
• 1500W Peak Pulse Power Surge capability on
10/1000l1swaveform ~
• Excellent clamping
capability
_
• Low Incremental Surge Resistance
• Fast response time: typically l e s s than 1.0 ps from 0 volts to BV for unidirectional
and 5.0ns for bidirectional
• Ideal for Data and Bus Line applications
• High temperature soldering guaranteed: 265°C/l0 seconds/.375", (9.5mm) lead
length/5Ibs., (2.3 kg) tension

Dimensions in inches
and
(millimeters)

MECHANICAL DATA
Case: Molded plastic over a passivated junction
Terminals: Plated Axial leads, solderable per MILSTD-750, Method 2026

Polarity: Color band denotes positive end except
for bidirectional types

Mounting Position: Any
Weight: 0.053 ounce, 1.5 gram

MAXIMUM RATINGS AND CHARACTERISTICS
Ratings at 25·C ambient temperature unless otherwise specified.

RATING

Peak Pulse Power Dissipation on
1011 OOOIlS waveform (NOTE 1. FIGURE 1)
Steady State Power Dissipation, TL= 75°C
at Lead Lengths .375", (9.5mm)Peak Pulse Current on 10/1000115
waveform jNOTE 1. FIGURE 3)
Peak Forward Surge Current, 8.3ms Single HaR
Sine-Wave Superimposed on Rated Load for Unldirectional only (JEDEC Method) (NOTE 2)
Maximum Instantaneous Forward VoRage
at 100 Amps for unidirectional only (NOTE 2)
Operating Junction and
Storage Temperature Range

SYMBOL

VALUE

UNITS

PPPM

Minimum 1500

Watts

PM(AV)

5.0

Watts

IpPM

See Table 1

AITlPs

IFsM

200.0

Amps

VF

3.5

Volts

TJTsTG

-65 to +175

·C

NOTES:
1. Non-repetitive current pulse, per Fig. 3 and derated above TA- 250C per Fig. 2.
2. 8.3ms single half sine-wave. duty cycle = 4 pulses per minute maximum.

RATING AND CHARACTERISTIC CURVES ICTE5.0 THRU ICTE15C SERIES

FIGURE 1 • PEAK PULSE POWER RATING CURVE

FIGURE 2· PULSE DERATING CURVE

~

I'

a:
w

~

'-

"

w

~

::l

0..

!I:

~

0..

E

"' :"'\. '-

"

a.
a.

0..

0.1
0.1,..

1.q1s

1q1s

10nt0

1oq.s

0

25

!d, PULSE WIDTH, sec.

~

it~

i

I'

75

100

125

150

"'

175

200

TA,At.eENTTEMPERATURE ('C)
FIGURE 4 • TYPICAL JUNCTION
CAPACITANCE (Unl-dlrectlonal Typal

FIGURE 3· PULSE WAVEFORM

W

50

HalfValue-1pp

~:t~~~~~~j2~~~::~::1

501~El"""~~~~~.'~t~~i--~
lOxl000 Waveform as defined

R.E.A.

o~--~~t~~~__L-~__~__~I~~-I
2

t, TIME,ms

'00L-~~~UW

12

FIGURE 5· TYPICAL JUNCTION
CAPACITANCE (BI-$OC

1i!

!z'w

100

TA AMBIENT TEMPERATURE (OC)

tp. PULSE WIDTH

150

75

50

25

10m.

1.Oms

TJ.25"C

40,000

f--

:::

'.1.0 MHZ

Voiga50mVp-p _

rr:
rr:

::J
U
W

~

'-

::J

_

H~Value.JEp

2 -1----+--1----1
1I--f---4-........
~01...........
.,....+- ~dofinodlbyR.E~. _
....

D..

/,

50 II--f-~~-+-+- 10/1000lJS8cWaveforrn_

~
D..
f

....

•

ol+-td1.0

3.0

2.0

4.0

t,TIME,ms

100 L-...J....L.u.JJJJI_..L..L..L.J..LLW........J
1
2
5
10 2D
50 100 200
FIGURE 5 -

8

1'I\..

6

2

F1Cl1.....AXIllUIl NONoREPETmVE

~
t •. 375"

4

V(8RI, REVERSE VOLTAGE, VOLTS

STEADY STATE POWER DERATING

(9Smml

~I

"'

20mm )( 20mm x 1mm Cu
x .040

r.s·· o.s·'

400

i\..

350

,

w
rr:w
:orr:
(/)w

"u:

I\.

0

TL, LEAD TEMPERATURE, 'C

PEAK FORWARD SURGE CURRENT
-._-

~

300

a.-sl~LE~1

f' "-

00..

"

JU

SINE·WAVE (JEDEC) METHOD

1'1"-

rr::2 250

««

f'.....

:;:~

rr:z
ow 200
"-0:
",rr:
«::J 150
wU

I"- r-..

t-

0..

100 1

2

3

5

10

2D

30

50

100

NUMBER OF CYCLES AT 60Hz

- - - - - - - - - - - - - - eGeneralInstrument
609

APPLICATIONS NOTE:
Transient Voltage Suppressors may be used at various points in a circuit
to provide various degrees of protection. The following is a typical linear
power supply with transient voHage suppressor units placed at different
points. All provide protection of the load.

Transient Voltage Suppressor 1 provides maximum protection. However,
the system will probably require replacement of the line fuse (F) since it
provides a dominant portion of the series impedance when a surge is
encountered.
Transient VoHage Suppressor 2 provides excellent protection of circuitry
excluding the transformer (T). However, since the transformer is a large
part of the series impedance, the chance ofthe line fuse opening during the
surge condition is reduced.
Transient VoHage Suppressor 3 provides the load with complete protection.
It uses a unidirectional Transient Voltage Suppressor, which is a cost
advantage. The series impedance now includes the line fuse, transformer,
and bridge rectifier (B) so failure of the line fuse is further reduced. If only
Transient VoHage Suppressor 3 is in use, then the bridge rectifier is
unprotected and would require a highervoHage and current rating to prevent
failure by transients.
Any combination of these three, or anyone of these applications, will
prevent damage to the load. This would require varying trade-offs in power
supply protection versus maintenance (time changing the fuse).
An additional method is to utilize the Transient VoHage
Suppressor units as a controlled avalanche
bridge. This reduces the parts count and
incorporates the protection within the
bridge rectifier.
The wattage ratings are available in
400 watts (P4KE, BZW04)
500 watts (SA series),
600 watts (P6KE),
1500 watts (1.5KE Series) and
5000 watts (5KP Series).

I

FIGURE 2

For voltage ranges not seen on specification
sheet, please consult factory or the nearest sales office.

610

+

I

TRANSIENT VOLTAGE
SUPPRESSOR ARRAYS
300 WATTS TO 500 WATTS
5.0 VOLTS TO 24.0 VOLTS

•

611

SMDA05 THRU SMDA24 SERIES
SURFACE MOUNT DIODE ARRAY
TRANSIENT VOLTAGE SUPPRESSOR
VOLTAGE - 5.0 to 24.0 Volts 300 Watt Peak Pulse Power
FEATURES
• Plastic package has Underwriters Laboratory
Flammability Classification 94V-O

MS-012AA

• Glass passivated junctions in
a surface mount array package

••••
.

• Repetition Rate (duty cycle): .01%

• 300W Peak Pulse Power surge capability on

8.0/2011S waveform
• Excellent clamping capability
• Low incremental surge resistance
• Ideal for Data and Bus Line Applications
• Fast response time: typically less than 1.0ps
from 0 volts to BV for unidirectional and
5.0ns for bidirectional
IILLIIETERS

IILUMETERS

INCHES

DIM MIN MAX MIN MAX
A 4.78 5.00 0.188 0.197
B
C

D
F

3.81
1.35
0.35
0.67

4.01
1.75
0.46
0.77

0.150
0.053
0.014
0.026

DIM
G

J

0.158
0.069
0.018
0.030

K

L

P

INCHES

MIN I MAX MIN MAX
1.27 BSC
0.19 0.22
0.10 0.20
4.82 5.21
5.79 6.20

0.050 BSC
0.007 0.009
0.004 0.008
0.169 0.206
0.228 0.244

• High temperature soldering guaranteed:
265°C for 5 seconds

MECHANICAL DATA
Case: JEDEC MS-012AA molded plastiC
surface mount

Terminal:Solderable per MIL-STD-750,
Method 2026
NOTES:
1. -T - is seating plane.
2. Di~.nsion 'A' is datum.
CM.Ol""
3. P06llional tolerance for leads: '-L-._.....,."":...c...=>.
4. Conlrolnng dimensions is in inches but shown in millimeters.

1.1 ....

1i.@1

L-.

Polarity: Beveled side denotes cathode side for
unidirectional only, Pin number 1 marked with
a colored dot on top of case
Mounting Position: Any
Weight: .04 ounces, 1.0 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 250 C ambient temperature unless olhecwise specified.
Raring

Peak Power Dissipation at TA=25°C on 8.0/20115
waveform (NOTE 1. FIG. 1)
Peak Power Pulse Current at T A=25°C, on
8.0/20IlS waveform (NOTE 1. FIG. 3)
Operating Junction and Storage Temperature Range
NOTES:
1. Non-repetitive current pulse, per F'cg.3 and derated above T ,,=25OC per Fig. 2.
2. Mounted on Copper Leaf areas of .045·x.030· (1_14x.07Smm) per leg_
3. 8.3ms single half sine-wave, duty cycle = 4 pulses per minute maximum.

Symbol

Value

Unl,.

PPPM

Minimum 300

Watts

IpPM
TJ,TsTG

See Table 1
-50 to +150

Amps

'c

DEVICES FOR BIPOLAR APPLICATIONS
For Bi-directional application use devices with suffix C.
All electrical characteristics apply in both directions.

ELECTRICAL CHARACTERISTICS AT TA=2SOC

I

WORKING PEAK
DEVICE

REVERSE

MARKING

STAND-OFF

I

MINIMUM

~~~~:~~~

MAXIMUM

I

MAXIMUM

MAXIMUM

MAXIMUM:I

CLAMPING

I

CLAMPING

REVERSE!,

JUNCTION

i'

VOLTAGE

LEAKAGE

CAPACITANCE

;.ll

= lmA

VOLTAGE

:f---"N:::UMB=E:::R'--_ _ _CO=D:=E'---1_-'V:.::O:::LT:.:A:.::G:::E_-+,_...:.(NOTE 1)

AT 1...1A

PART

UNIDIRECTIONAL

VA_

IT

I

Vc

BVA

(NOTE 2)

l--c:-_-,a"-I-O~I",R=cECT1ON==AL=:-_ _-+-__V",,Oocll=.S_ - f_ _V",O",IIS=:-_+-_-,V:.::o=WS,--_
'f--=S:::M-=DA,-,O":5'--~_ _,:,SD=-,A-,-_+-_~5.",O_ _+-_-",6.,,,0_ _+--_-,9,-,.8,,--_.

j~SMD05C

SDB

i

soc

SMDA12

5.0
12.0

6.0
13.3

9.8
19.0

I
I

ATI_5A

i

I CURRENT AT V....
"""i_-'("'NOT=:=E-"'3)'--_

Vc (NOTE 2}

I

Volts

.

11.0 ---l--

·~O24.0

10

CJ

II

PF:I

~A

100
~~!
100;
400
il
1.0'
185
II

:f-~S~M~D~Al~5C~_ _ _~SD~F,--_+-_ _1~5~.0~ __+-_ _1~6~.7_ _+--_~2~4",.0_ _~ _ _~3~0.",0_~_ _~1~.0,--_~,_ _~180~80'--_
·f-"'S"'M"'D'-'A2::::4'--_ _ _"'SD"'G"-._+-_-'2::::4"'.0'--_+-_~2"'6"'.7_ _+_--'4""3."'0_ _f-_-'"5"'5."-0_-1 _ _-'I"'.0'--_+-_--==--_ _ '1
SMDA242C
SOH
24.0,
26.7
43.0
1
55.0
,
1.0
631

i

NOTES: 1. VSR measured at pulse width of 300(.ls. sq. wave or equivalent.
2. Surge current waveform per Figure 3 and derate per Figure 2.
3. Junction capacitance measured at 1.0 MHz and applied VR=O volts.

CIRCUIT DIAGRAM
UNIDIRECTIONAL
SMDA05
SMDA15

BI-DIRECTIONAL
SMDA12
SMDA24

SMDA05C
SMDA15C

SMDA12C
SMDA24C

•
SOLDER PAD GEOMETRY

TOOO O

0.045":t .0.005
(1.14t.127)

0245"(622)
M'N

NOTES:
1. Controlling dimension is in inches. but shown in (millimeters).

I

O.l60"tO.OOS"
(4 06 ±. 127)

loooo-L
613

RATING AND CHARACTERISTIC CURVES SMDA05 THRU SMDA24 SERIES

FIGURE 1 • PEAK PULSE POWER RATING CURVE

~

FIGURE 2· PULSE DERATING CURVE

1'-.

10gm

Itt..

a:
w

"

~ '~~~!I~~~I
~ ~~~II~~II~~II~"II~~II
~

I\.

~

"' '-.
Itt..

0.. 0.1

lO.011_L-_.J....I...LLWIIL.-J....I...LLWIIL.-.L..I...LL
"""

11-1$

1(\1.8ec

100psec

1ms

10ms

25

'd, PULSE DURATION, SEC

T,III2S·C
Pulse Duralion (td) Is defined
as that point where the peak'
current decays to 50% of I"

I.

!:!

B·'00 -.

j

SO

100

125

"

150

175

200

1000

~­ =1 ..!!:!2'1s••

~

75

FIGURE 4· MAXIMUM JUNCTION CAPACITANCE

FIGURE 3 • PULSE WAVEFORM

.,e. ,so

~

50

TA, AMBIENT TEMPERATURE, OC

Un",dional
BM;tirectionalo

.peak Value IRSM

•• , , /
•

.L

I.

'1--- 111

,0

.W Value
/.

II

-Jtt.
2

""'"
20

".0 MHz

I

Me.sur.d@

I-f--

.8J20JAS Waveform
as defined by
ANSI/IEEE C62.35

30

40

SO

70

10

" Tlma ""

Zero Bias

II I

I II
1

~

".2SOC

L

10

20

50

100

VIllA). BREAKDOWN VOLTAGE, VOLTS

- - - - - - - - - - - - - - (iGenerallnstrument
614

APPLICATION NOTES (CONT.)
and differential mode protection as illustrated below. Its compact size makes it ideal for high density circuits. such as laptop computers and hand
held terminals .

Typical applications for SMDA series include protecting signal lines from electrostatic discharge
and similar transient voltage threats. The SMDA
suppressor can be used for both common mode

.EiQ...1- Common Mode Protection - Protects Line to Ground
/Signal Lines

\

*
(unidirectional)
SMDA

~

"

Digital I
Analog
DriverReceiver

Digital I
Analog
DriverReceiver

,
I.

\

*

r-

--

-- ....

'-

(unidirectional
SMDA
L-

EiQ...2..- Differential Mode Protection - Protects Line-to-Line

•

Signal Lines

~_-ISMOA-C

..

.

, '
,

615

(bidirectional)

• p. R· E· L· I· M· I • N • A· R.

v·

SMDA05C-8 THRU SMDA24C-8
SURFACE MOUNT DIODE ARRAY
TRANSIENT VOLTAGE SUPPRESSOR
VOLTAGE - 5.0 - 24 Volts 300 Watt Peak Power
FEATURES
• Plastic package has Underwriters Laboratory
Flammability Classification 94V-0

MS-012BA

• Monolithic TVS junctions in
a SO-14 package (JEDEC MS-012-AB)
• Repetition Rate (duty cycle): .01%
• 300W Peak Power reverse surge capability
• Excellent clamping capability
• Protection for eight data lines

~
~
,
.

• Fast response time: typically less than 5.0ns
from 0 volts to BV.
IILIJIIErEAS

DIM
A
B
e

0
F

8.56
3.81
1.35
0.35
0.67

8.74
4.01
1.75
0.46
0.77

IIWMmRS

INCHES

MIN MAX MIN MAX
0.337
0.150
0.053
0.014
0.026

0.344
0.156
0.069
0.018
0.030

DIM
G

J
K
L

P

INCHES

MIN I MAX MIN MAX
1.27 Bse
0.19 0.22
0.10 0.20
4.82 5.21
5.79 6.20

0.050 Bse
0.007 0.009
0.004 0.008
0.189 0.206
0.228 0.244

NOTES:
1. -T- is seating plane.
I~ "0(0.010)
2. Dimension ·A· is dalUm.
3. Positional tolerance for leads:
(g IV
4. Controlling dimensions are in inches but shown in millime1ers.

1....1

• High temperature soldering guaranteed:
265°C for 5 seconds

MECHANICAL DATA
Case: JEDEC MS-012-AB molded plastiC
surface mount array

Terminal: Solderable per MIL-STD-750,
Method 2026

Polarity: Bidirectional
Mounting Position: Any
Weight: .07 ounces, 1.75 gram

MAXIMUM RA TINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 2S0C arnbienllemperalUre unless olherwise specified.
RATING

Peak Power Dissipation at TA=25°C 8.0/20115 wave form
Peak Power Pulse Current at T A=25°C,
SMDA05C - 8
8.0/20115 waveform
SMDA12C - 8
SMDA15C - 8
SMDA24C - 8
Operating Junction and Storage Temperature Range

SYMBOL

VALUE

UNrrs

PPPM

Minimum 300
20.0
15.0
12.0
7.5
-50 to +125

Watts

IpPM

TJ.TsTG

Amps

DC

NOTES:
1. Non-repetitive current pulse, per Fig.3 and derated abcve TA=25"C per Fig. 2.
2. Mounted on Copper Leaf areas of .045,,)( .030· (1.14x .076mm) per leg.

BIPOLAR APPLICATIONS
All electrical characteristics apply in both directions.

ELECTRICAL CHARACTERISTICS @ 2SOC

TABLE 1

PART
NUMBER

DEVICE

REVERSE

MARKING
CODE

STAND-OfF
VOLTAGE

MAXIMUM

MAXIMUM

MAXIMUM

MAXIMUM

CLAMPING
VOLTAGE
lI ....tA
Vo [IIO'IE~

CLAMPING

REVERSE

JUNCTION

VOLTAGE

LEAKAGE
CURRENT al VWIA
ID

CAPACITANCE
(NOTES)
CJ

Volta

V.1la

uA

pf

9.B

11.0
24.0
30.0
55.0

100.0
1.0
1.0
1.0

350
150
120
100

'YIIIIIl
VOlte
6.0
13.4
16.7
26.7

·Y. .
Volta

Jll.DlREcnONAL

SMDAOSC-8
SMDA12C-8
SMDA15C-8
SMDA24C-8

MINIMUM
BREAKDOWN
VOLTAGE@I.0mA
(NOTE1l

5.0
12.0
15.0
24.0

SEe
SED
SEF
SEH

atl..,.SA
VC(N01E2)

19.0
24.0
43.0

·Application note: Due to the topology of the SMOA anay the Vrwm and V(br)
specifications also apply to the clflerentlal voltage between ..y two da.

NOTES: 1. V(BRlmeasured at pulse width 01 30/l11S. sq. wave or equiValent.
2. Surge ClJrrent waveform per Figure 3 and derate per Figure 2.
3. Junction capacilance measured at 1.0 MHZ and applied VR=O volts.

line pine. Hence. the SMDA12CS is designed to -see- a maximum voltage
excufSlon of +I~ 6 volta between any two data lines.

SOLDER PAD GEOMETRY

CIRCUIT DIAGRAM

T0 0 0 0 0 0 0 1-

0."'- '.0.00'
(1.14±.127)

T
O.160"±o.OO5"

0.245" (6.22)

lDDDDDD0 cn
4

·:

I--

O.05O"TVP
(1.27)

NOTES:
1. Controlling dimension are in inches, but shown In (millimeters).

RA TING AND CHARACTERISTIC CURVES FOR SMDA05C-S THRU SMDA24C-S

100

~!z

I"-

'*w
;;:; a: 7S

III..

(!la:

",

z=>

~~
a:0
w a:

Ow

~

50

w3:

"'0

I'

50.
0. '" 2S
",<


o
a:

150

-H
H

...

I

I

T..-25"C

Peak Value I.," -

Puloo Duration (td) is dolineel
as that point wI.... the peak
l-our18nt decoys to 50% 01 loP

100

,,

;
~
W

~~

I'

HaN VaIue-.ls!.
/.

0.

i

lim.

"10

20

30

J.I8 Waveform..
._

.. dolined by

.....

I
I
0

2

1"-

50

•

FIGURE 2 - PULSE DERATING CURVE

FIGURE 1 - PEAK PULSE POWER RAnNG CURVE

10

ANSUIEEE C62.35 _

..

50

t,lIme((is)

617

10

80

200

i

DA05P THRU DA24P
UNIDIRECTIONAL 16-PIN DIP
TRANSIENT VOLTAGE SUPPRESSOR ARRAY
VOLTAGE - 5.0 - 24.0 Volts 500 Watt Peak Pulse Power
FEATURES
MS-001SS

• Plastic package has Underwriters Laboratory
Flammability Classification 94V-O
• Glass passivated junctions
in 16-pin DIP
• Repetition Rate (duty cycle): 0.01%
• 500W Peak Pulse Power capability on 8/20118
waveform
• Excellent clamping capability
• Common ground configuration
• Ideal for Data and Bus Line Applications
• Fast response time: typically less than 1.0ps
from 0 volts to BV min.
• High temperature soldering guaranteed;
250°C for 5 seconds

MECHANICAL DATA
Case:JEDEC MS-001-BB Molded plastic 16-pin
DIP

Terminals: Solder plated solderable per MIL-STD750 Method 2026

Dimensions in inches
and
(millimeters)

Polarity: Unidirectional only. Pin number 1 marked
with a colored dot on top of case. Pins #'s 1,8,9,
and 16 are common ground.
Mounting Position: Any
Weight: 0.04 ounces, 1.0 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings al2SoC ambienllemperalure unless otherwise specified.

Peak Pulse Power Dissipation at TA=25°C, 8.0/2011s
waveform, (NOTE 1. FIG. 1)
Peak Power Pulse Current at TA=25DC, on 8.0/2011s
waveform (FIGURE 3. NOTE 1)
Peak Forward Surge Current ,8.3ms single half sine-wave
superimposed on rated load (JEDEC Method) (NOTE 2)
Operating Junction and Storage Temperature Range
NOTES:
1. Non-repetitive current pulse. per Fig.3 and derated above TA=2SOC per Fig. 2.
2. 8.3ms single half sine-wave. duty cycle = 4 pulses per minute maximum.

SYIIBOLS

VALUE

UNITS

PPPM

Minimum 500

Watts

IpPM

See Table

Amps

IFSM
TJ,TsTG

10.0
-50 to +150

Amps
DC

MAXIMUM RATINGS AND CHARACTERISTIC CURVES DAD5 THRU DA24P
FIG. 1 - PEAK PULSE POWER RATING CURVE

FIG. 2 - PULSE DERATING CURVE

'\..

"'\,

~

"

Id. PULSE TIME. SEC

25

50

75

"

100

~

125

~

150

175

l!OO

TA. AMBIENT TEMPERATURE. 'C

FIG. 3 - PULSE WAVEFORM

;f.

,..:
z
w
a:
a:

--+
100

:::l

o

1+-:•. '' ' ' - I-~

PeaklvaJue

~

:::l

0.

50

-

TA=25"C
Pulse Width (td)isdelined. _

a.

ui
0

z
~

~

V-D.
1.000

~
13
c3

L!'alf Vak.la "l-P

~~F\,,:~~RM-

f"""ooo. l"""-

100

V-v...

ANSVIEEE C62.35 -

"-"I

!

LL

-

:::c!~::-=~~

~pm

"I'\.

W

~

FIG. 4 - TYPICAL JUNCTION CAPACITANCE
10.000

150

III

1'/,.5

10

50

VWM. STAND-OFF VOLTAGE. VOLTS
0

I. TIME.ms

ELECTRICAL CHARACTERISTICS AT TA=2SOC
PART
NUMBER

STAND-oFF
VOLTAGE

MINIMUM
BREAKDOWN
VOLTAGE
.AT1mA

MAXIMUM
REVERSE
LEAKAGE
CURRENT'
ATlIMw

MAXIMUM
CLAMPING
VOLTAGE
ATlppc10A
NOTE 2

MAXIMUM
JUNCTION
CAPACITANCE
NOTE 3
C
pF

VMw

l'tBR)

.ID

Vc

VOLTS

VOLTS

IlA

VOLTS

DA05P

5.0

6.0

200

12.5

880

DA12P

12.0

13.3

2

25.0

440

DA15P

15.0

16.7

2

33.0

400

DA24

24.0

26.7

2

52.1

275

NOTES

1. V(BR) measured at.pulse width of 300IlS. s~. wave or equivalent
2. Surge current waveform per Figure 3 and dera1B per Figure 2.
3. Junction capacitance measured at 1.0 MHz and app6ed VR..o volts.

Unidirectional 12 Line Array
OND

OND

619

GND

CIRCUIT DIAGRAM

•

DA05CM THRU DA24CM
BIDIRECTIONAL 8-PIN DIP
TRANSIENT VOLTAGE SUPPRESSOR ARRAY
VOLTAGE - 5.0 - 24.0 Volts 500 Watt Peak Pulse Power
FEATURES
MS-001BA

• Plastic package has Underwriters laboratory
Flammability Classification 94V-O
• Glass passivated junctions
in a-pin DIP
• Repetition Rate (duty cycle): 0.01%
• 500W Peak Pulse Power capability on a/20ILS
waveform
• Excellent clamping capability
• Common ground configuration
• Ideal for Data and Bus line Applications
• Fast response time: typically less than 5.0ns
from 0 volts to BV min. for unidirectional

.QW9.Ul
.015(0.3.)

• High temperature soldering guaranteed;
250·C for 5 seconds

MECHANICAL DATA
CBse: JEDEC MS-001AB molded plastic a·pin DIP
Terminals: Solder plated solderable per Mll-STD750 Method 2026
Polarity: Bidirectional only. Pin number 1 marked
with a colored dot on top of case. Pins 1 and a
are common ground (Notched end)
Dimensions in inches
and
(millimeters)

Mounting Position: Any
Weight 0.04 ounces, 1.0 gram

MAXIMUM RA TINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 2S"C ambient temperature unless otherwise specified.

Peak Pulse Power Dissipation on 8.012011s
waveform, (FIGURE 1. NOTE 1)
Peak Power Pulse Current on 8.0/2011s
waveform (FIGURE 3. NOTE 1)
Operating Junction and Storage Temperature Range
NOTES:
1. Non-repetitive current pulse. per Fig.3 and derated above TA=2S"C per Fig. 2.

SYIIBOI.S

VAI.UE

UNn"S

PPPM

Minimum 500

Watts

IpPM
TJ,TsTG

See Table
-50 to +150

Amps
·C

MAXIMUM RA TINGS AND CHARACTERISTIC CURVES DA05CM THRU DA24CM
FIG.I· PEAK PULSE POWER RATING CURVE

FIG. 2· PULSE DERATING CURVE

'"..a.w

~

100

u.
0 ...

0:

~

.. z

75

"- \.

""

~~

..

a.

CJO:

'"w

~

6

~o:

a.

I'\.

50

0:0

~

w

00:

a.

~~

25

-'0

::lao

a.
~
w
a.

Id, PULSE TIME, SEC

00

25

50

75

"- t\.

100

125

'\150

175

200

TA AMBIENT TEMPERATURE ,·C

FIG. 4· TYPICAL CAPACITANCE
DA05CM - BIDIRECTIONAL

FIG. 3· PULSE WAVEFORM

...

150

w

0:
0:
::l

100

()

w

~
a.

::l

..'"

50

j

0

=1

10,000

TA",25"C

=F tf="O~S~C=

Z

PULSE DURATION
(td) is defined as that point
where the peak current

=PEAKVALUE
~IRSM

u.

E

u.i

decays 10 50% of IPP

()

z
~

HALF VALUE-IPP
2

..

20

30

40

50

Id, TIME

I

I IIIII
VJ;}y

11:

WAVEFORM
AS DEFINED BYANSI/IEEE C62.35

10

I

=1=

Q

8/20~

w
a.

1,000

60

70

()

'00

I

I I rNJ r"o...

,j

eo

"b.5

~s

1

V·V""

,111
10

50

VVM, STAND·OFF VOLTAGE, VOLTS

ELECTRICAL CHARACTERISTICS @ 2SOC

PART
NUMBER

REVERSE
STAND·OFF
VOLTAGE

MINIMUM
BREAKDOWN
VOLTAGE
AT1.0MA
NOTE 1

MAXIMUM
REVERSE
LEAKAGE
CURRENT
ATVMW

VMW

V(BR)

10

VOLTS

VOLTS

itA

MAXIMUM
CLAMPING
VOLTAGE
ATlpp:10A

MAXIMUM
JUNCTION
CAPACITANCE
NOTE 3

NOTE 2

Vc
VOLTS

CJ
pF

DA05CM

5.0

6,0

400.0

12.5

500

DA12CM

12.0

13.3

4.0

25.0

385

DA15CM

15.0

16,7

4.0

33.0

300

DA24CM

24.0

26.7

4.0

52.1

200

NOTES
1. V{BR) measured at pulse width of 3001'5. sq. wave or equivalent.
2. Surge current waveform per Figure 3 and derate per Figure 2.
3. Junction capacitance measured atl.0 MHZ and applied VR=O volts.

621

•

CIRCUIT DIAGRAM
Bidirectional 6 Line Array
GND
DAQ5CM
DA12CM
DA15CM
DA24CM

APPLICATION NOTES
Figure 1 - Data LIne - Bidirectional Protection/Unidirectional Line Protection

Data
Une

{ ~:::~~
GND

Une 2
Une 1

rr4:::::::===~~-

'--------t--

PCB
Suggested Trace Layout for a Single-Layer Board
Data Une Protection
Suggested Trace Layout for a Single-Layer Board

Figure 2 - Power Bus - Bidirectional Protection/Unidirectional Line Protection

Power Bus

{~~

1=::>---_

+5V

GND

PCB

Power Bus Protection
Suggested Trace Layout for a Double-Sided Board
Suggested Trace Layout for a Single-Layer Board

622

APPLICATION NOTES

_______
623

INsrB barrier height.The low- ct>B- line
SBl series uses a nichrome battier metal with
a barrier height of ct> B =0.64 eV. The high- ct>
B MBR series uses a nichrome-platinum barrier metal to achieve barrier height (ct> B =
0.71 eV). Both series are guard-ring
protected against excessive transient voltages.
Both the low- and high-barrier-height
Schottky devices are valuable in a variety

assuming 90% of the total chip area is
active.

of applications. When the true operating
temperature of the Schottky rectHier exceeds 125·C, the high-barrier-height
series must be used to avoid thermal
runaway. This occurs when excessive
self-heating of the rectHier causes large
leakage currents, resuhing in additional
self-heating. The process becomes a
form of positive thermal feedback and may
lead to damage in the rectifier or inappropriate functioning of the circuit utilizing
the device.

Total die area x 0.9 = active area

The calculation of 10 is done graphically
(Graph 1). A minimum of three low-current
room-temperature forward voHage drop Vf
measurements are needed. This data is
graphed on semi-log paper (Graph 1)
where the vertical axis (log scales) is the
current and the horizontal axis (linear
scale) is the measured Vf. When these
points are graphed, the resuh should be a
true straight line. If the graph curves
downward (see the dotted line on the left
side of Graph 1), it indicates that the
lowest measurement current is being affected by the rectHier's room temperature
leakage. In this case, the current level at
which the Vf measurements are taken
should be increased to 'swamp" out the
contribution of low level leakage on the
measurement. If the current levels are
raised excessively, the series resistance
of the device in question will influence the
measurements. This causes a downward
curve as represented by the dotted
line on the right side of Graph 1. Again,
the results should yield a true straight line.

Using a high-barrier-height (MBR) component prevents this anomaly, but
sacrifices higher forward voltage. Operating the low barrier height (SBl) series at
a junction temperature of 125" C or less
prevents thermal runaway from occurring.
If the junction temperature (Tj) in the application can be kept below 125· C, a
decision on the use of a low- or high-barrier-height Schottky device must be made.
The following procedure has been
developed to provide an analytical method
of selecting the most efficient Schottky
barrier device for a given application.

calculating The Barrier Height
( <\IB) of Schottky Rectifiers

10.000

Calculating the barrier height of a Schottky
rectHier where cjI B is not given is a
straightforward process. The following
two equations will yield an excellent engineering approximation of the barrier
height,cjI B:

cjlB=(-KTlq)LN(JlR*T)

Jo - 10 I acIive .,.. (em") (2)
1000

1. '00
.:i 10

(1)

,

1

,

,.. leakage current error

10 point
10 = 10 IACTIVE AREA (cm2)

cjI B

=barrier height (eV)
K =Boltsman's constant =

o

(2)

I ACTIVE AREA (em 2)

200

250

The point where the line intercepts the
vertical axis is the current at zero volts
(10). Jo is then calculated:
10

0

tOO
150
V,mV

Calculation of Jo (cu"ent density at zero volts)

To solve Equation One, the current density
Jo (Equation Two) must be found first:

=I

50

Graph 1

8.62 x 105 eVlo K
T = ambient temperature in degrees Kelvin
10 = current density at zero volts
R* =Richardon's constant'" 112 Icm 2 k?I 0 = forward current at zero volts

10

(3.J

=I

0

I ACTIVE AREA (cm2 )

(2)

(2)

This result is then placed into the first
equation:

General Instrument provides the active
area of its Schottky die in its product literature. if a manufacturer does not supply
this information, decapsulating the device
under question and measuring it with a
precision caliper can provide an approximation of the active Schottky area,

cpJJ

=(-KTlq)LN (10 IR*T 2)

(I)

The results of the calculation are usually
in the range of 0.6 eV to 0.8 eV. Results

626

well outside this range indicate either a
defective rectifier, measurement, or calculation error.
100

50

Selecting Efficient Schottky
Devices
Normalized graphs of the low (SBl) and
high (MBA) barrier height processes are
provided. The vertical axis on all graphs
is i~ amperes per square centimeter (AI
cm). The horizontal axis provides forward voHage drop for the low and high
barrier parts. Two additional graphs have
the horizontal axis labeled for reverse voltage (Vr) for both the low and high barrier
series. The graphs for the low barrier
(SBl) series parts have curves for operation at 75 ·C, 100·C and 125 ·C.

-<
0.5

0.2

0.3 0.4
VoIla

0.5

0.6 0.7

FIgure 3
Dis area current versus forward voltage drop
barrier height = 0.71

0.5

~ 0.1
D (PdrojlBL)

+ (1-D)(PdrojlBL)+ =

D (Pd"BH

+ (I-D) (Dd"BH)

Pdt= Pdr
0.01 0

10

20

vons

30

40

(1)

+ Pdr

(2)

Pdf =IrxVr

Figure 2
Voltage versus die area leakage barrier
height = 0.64 volts

(3)
(4)

D = duty cycle forward conduction

These curves may be used in two ways.
If the die size, barrier height, temperature
and forward current (If) are known, Vf can
be graphically calculated. Using the
leakage curves, and knowing the reverse
voltage (Vr) to which the device will be
subjected, it is possible to find the
leakage current. Conversely, if the circuit parameters are set, the2 curves will
provide the die size in Alcm equations,
making it possible to analytically select
either a Iow- or high-barrier-height rectifier for maximum circuit efficiency.
Most Schottky rectifiers are used in
switch mode power supplies.

I-D = duty cycle reverse blocking

Ir =forward current
Ir= reverse current

Pdf = power dissipation inforward
Pdr

=power dissipation in reverse

Pdt = total power dissipation

Vr

=forward voltage drop

Vr = reverse voltage

To select a Schottky rectifier that yields
maximum efficiency, it is necessary to
determine the "duty cycle equilibrium
point," orthe duty cycle point at which both
a low- and high-barrier-height part will dissipate precisely the same amount of
power:

C\>
C\>

627

BL = low barrier height

BH = high barrier height

The following is an example of the use
of this equation:
Given the need for a 30-volt Schottky
capable of operating at 10 amperes, the
choice is between a SBl1 040 ( .Bl =
0.64) or a MBR1045 (.BH = 0.71). These
two devices were chosen for convenience
in this example ~ecause of their equal die
size (0.04ncm active area).
The equilibrium point must be calculated
for 75'C, 100'C and 125' C. For
demonstration purposes, only the 75'C
equilibrium po.int will be calculated in
detail; the other two points are calculated
in the same manner. The reverse leakage
(Ir) and forward voltage drop (VI) are
derived from Graphs 1 through 4 using
the temperature, die size and. B given
above.
For the low-ba"ier-helght SSL 1040:

=

=

Pdr VrX1r watts
(4)
30 V x (1.9 x 10- 3 A) = 0.057 W
Pdr =IfxVf=watts
(3) (3)
10 A x 0.46 V = 4.6 W

Rgure4
Die area cunent
versus forward voltage drop barrier
height - 0.64

150

~125

high barrier height

1100
l!
~

75

~

FigureS
Duty cycle equilibrium point
MBRt 045 versus
5BL104O

low barrier height

50

For the hlgh-barrler-helght MBR1045:
Pdr = Vrxlr = watts
(4)--30
Vx(1.43x10 4 A) = 4.29 X lO-J W
Pdf =1!xV!=watts
(3)
10Ax0.565 V= 5.65 W

250!--7.:10-~20::---;30=--40±-~50"'--~60
Percentage 01 Duty Cycle

Solving for the equilibrium point at 75' c:

LOW BARRIER
HIGH BARRIER
(D x PdfIjlBL) + [(I-D) x PdrljlBL} =
(Dx,PdfIjlBH) + [(1-D)XdrljlBH.]
(Dx4.6 W) + [(1-D)0.057WJ =
(Dx5.65W) + [(1-D)0.00429WJ
0.05271 1.1027 D
D = 0.0478
D% = 0.0478 x 100
duty cycle equilibrium point, D = 4.78%
Switching loss is assumed to be equal on
both sides of the equation and thus is
ignored. This procedure is then repeated
for 100'C and 125 'C. After calculating
the equilibrium point for 100 'c and 125'
C, the results are:

=

TEMP

7'?C

DUTY CYCLE
EQUIBRIUM
POINT %
4.78%

100'C

15.93%

12rC

52.42%

The results of these calculations are
graphed in Figure 5.To the left of the equilibrium curve, the high-barrier-height
MBR1045 is most efficient; to the right of
the equilibrium curve, the low-barrierheight SBl1040 is more efficient. This is
easy to understand because the high-bar

rier-height part exhibits lower reverse
power loss and at a low duty cycle more
time is spent in the reverse mode.
With the duty cycle higher than the equilibrium point, the part spends a larger percentage of time in the forward mode, and
the low-barrier-height type part has a
lower Vf and the forward power losses are
reduced.
With knowledge of the application, including expected duty cycle and temperature,
it is possible to choose the most efficient
Schottky barrier rectifier,l constructing a
graph similar to Figure 1.
It is thus easy to graph the duty cycle
versus temperature, as in Figure 5, and by
knowing the application (expected duty
cycle and temperature), make the intelligent choice of the most efficient Schottky
rectifier for the application in question.
This analysis technique enables the
design engineer to make an efficient and
cost-effective choice of Schottky rectifier
in duty-cycle-based systems. In addition,
light has hopefully been shed on the difference in design philosophies between
the low- and high- .B style of Schottky
rectifiers.

628

SELECTING THE OPTIMUM
VOLTAGE TRANSIENT SUPPRESSOR
Although the published data for several transient suppressors may appear
similar enough to make the devices seem Interchangeable. careful analysis can
rule out nearly Identical parts whose use could prove dsastrous.
Jon R. Schleisnef, Senior Marketing Engineer

• Maximum peak pulse surge current
(IPPM), the maximum current that the
suppressor is guaranteed to withstand
without incurring damage. This parameter
is usually characterized with a 1 millisecond exponential waveform.

Transient voltage suppressors (TVS) are
specialized zener diodes intended to
clamp the voltage appearing across a line,
thereby preventing transient spikes from
damaging sensitive components. They
accomplish this conducting when the voltage across the line exceeds the zeneravalanche rating. Because transient
voltages can be quite high, suppressors
must be able to handle large avalanche
currents. This means that care must be
taken in the construction of the package
and assembly process to ensure that the
suppressor can tolerate high energy
levels for short periods.

NIaxImum clamping voltage (VcJ, The
maximum voltage that can appear across
the suppressor when the maximum rated
surge current is flowing through it.
• Maximum breakdown-voltage temperature coefficient!, . (%V(BR/.· C),
the maximum allowable change in the
breakdown voltage as a function of the
temperature.

Design Criteria
The best way to demonstrate the selection
process is through a hypothetical example. In this example, the device to be
protected is an integrated Circuit, lex ,
which is designed to operate on a nominal
rail voltage of 15 volts, and which has an
absolute maximum voltage rating of 22
volts. The first step in the selection
process is to determine the energy
(joules) or power (watts) contained in the
surge against which the device is to be
protected, and the duration of that surge .

Typical transient voltage suppressors
carry peak ratings of 400, 600, 1500 or
5000 watts. These wattages translate to
0.55, 0.80, 2.10 or 7.00 joules of energy
during a 1-millisecond period. Avalanche
ratings generally range from a few volts to
several hundred volts. Key operating
parameters include:

• Breakdown voltage ~BRJJ.the voltage
at which a given device breaks down in its
avalanche mode. This voltage is usually
characterized at a test current (I I ) of 1
milliamp and is often specified as a range
with minimum (V(BR) min) and maximum
(V(BR) max) voltages listed.
• Working sfllnd off reverse voltage v(BR)
the voltage at which the device's
leakage current is measured. This voltage is always at least 10 percent lower
than the mimimum breakdown voltage.
Suppressors with a breakdown-voltage
rating of less than 10 volts can exhibit
leakage currents as high as 1 milliamp, but
suppressors with higher breakdown
ratings typically exhibit leakage currents
of 5 microamps or less.

629

TranSients are by definition nonrepetitive,
with energy levels that are difficult to ascertain. Moreover, they generally result
from an unexpected failure elsewhere in
the system or from natural phenomenon
such as lightning. Because of this, determining energy content and duration of the
surge is the most difficult step in the transient-suppressor selection process.
Some surges, however, are predictable.
The surge produced by a solenoid driver
is a good example. Ifthe inductance ofthe
coil is known and the load on the solenoid
is defined, it is possible to calculate or
measure the duration and magnitude of
the surge. Whenever poSSible, a "hands

20

fluctuations,. the minimum breakdown voltage would have to be based on
the lowest expected temperature. The
resulting voltage would determined by
multiplying the difference between the expected temperature and room temperature by the temperature coeffiCient.

t

i 1oI l - - - - ' l : - - - - - - ~

a

WAVESHAPE

~

0L---~0~.5~-~Ti~me-,~m~se~c--

O.5IpK

<

IT
to----r-I

on" measurement of the worst-case transient condition should be made. For the
sake of discussion, assume that the transient being presented to lex has a peak
current of 20 amps with a classic exponential decay, as shown in Figure 1, and a
duration of 0.5 milliseconds, measured at
50 percent of the peak current.

VcmVa

_ [,

'~~R

'PK

1.0

0.5

. 'PK (tit)

~

'PK sin (11: I) e·1I<

0.86

~

'PKsin ([rul] I)

0.637

t>

I

Energy =

J~

Vc (I) , (I) AI = K Vc , 1:

Figure 3
The energy contained in a transient pulse
depends on its wave shape

With the minumum and maximum permissible breakdown voltages in hand, examine the clamping-voltage ratings
published in the manufacturer's data
sheets to identify suppressors falling
within the required range. It is possible
that there is no device that falls well within
the upper and lower limits. If the device
with the closest voltage rating falls about
the upper voltage limit, a very close examination of its parameters must be
made. Most reputable semiconductor
manufacturers apply a one-percent
guardband around voltage ratings as a
safety margin. In this example, the
guardband raises the absolute maximum
rail voltage from 22 volts to 22.22 volts.

~80

75

1.4

0.5 IPK

,:

j

'PK e·ll1 .44<

1

~,
-.--

With this data in hand, the next step is to
examine manufacturer's data sheets to
find a transient suppressor able to handle
the anticipated surge. The breakdown
voltage and maximum reverse surge current ratings published in the data sheets
are key selection criteria. Since Ie x has
a nominal 15-volt operating voltage, the
minimum breakdown. voltage must be
greater than 15 volts. However, since it
carries a 22-volt absolute maximum voltage rating, the suppressor's maximum
breakdown voltage must be less than 22
volts. The foregoing assumes a relatively
stable ambient temperature, such as that
usually experienced in an office environment. If the product in which lex is used
is expected to see wider temperature

KFACTOR

1

I-=-

Figure 1
WavefQrm of an exponentlal-decay transient pulse
with a peak current and a O.S-millisecond pulse
width at the half-peak-current point

EQUATION

]x 008 V

~~~~~-+'50~~~~100~~

Percent of 'pp max.

FIgure 2
The clamping characateristic of a typical transient suppressor
630

Using Ohm's law and a 22-voH clamping
voltage, this translates to:

This small increase may not seem like
much, but can make the difference in
selecting a transient suppressor.

I

= PIV = 792122 =36 amps

Since the anticipated peak reverse current
with a O.S-millisecond time constant is 20
amps, it is clear that a P6KE device can
easily withstand the anticipated peak
power of the surge.

Selecting the Best Transient
Suppressor
Consider a situation in which the only suppressor that comes close to meeting the
protection need of IC carries a maximum
clamping-voltage rating of 22.S volts. The
actual voltage at which the suppressor will
clamp depends on the actual current flowing through it, as shown in Figure 2, and
can be predicted using the following
equation:

2.

Calculate the energy in joules contained in the transient and compare it to
the maximum energy rating of the transient suppressor. The energy in the transient, of course, depends on its wave
shape, as shown in Figure 3. The amount
of energy a given transient suppressor
can handle, on the other hand, depends
on its energy rating and the duration of the
pulse, as shown in Figure 4. In this example, the waveform has an exponential
shape with a 20-amp peak current and a
O.S-millisecond half-peak-power point.
Using these data, the energy calculations
are as follows:

Vc - [(lPPM -IRJ / (lpPM) ] x (O.08)V=Vc
For the sake of discussion, consider the
General Instrument type P6KE16A transient suppressor, which carries a 22.S-volt
maximum clamping-volt~ge rating.

22.5 - [(27 - 20)127J x 0.08 (22.5) =22.03
volts
Although the resuHing clamping voltage is
still greater than the 22-volt absolute maximum voltage rating carried by IC x, it is
well within the 22.22-volt rating provided
by the one-percent guardband. Thus, although carrying a maximum clampingvoltage rating O.S volt higher than the
maximum voltage rating carried by ICx ,
this suppressor can be safely used in this
application.
The same, however, cannot be said of all
22.S-voH suppressors. Another device in
the same family, the P4KE16A, has slightly different current ratings and yields considerably different results:
22.5 - [(19 - 20)119J x 0.08 (22.5) = 22.59
volts
Clearly, with a 22.S9-volt clamping voHage, this device cannot be used because
it exceeds the maximum clamping-voltage
rating plus guardband of ICx .
The next step in the selection process is
to verify the transient suppressor's power
rating. There are two approaches that can
be taken:

E

=Vc (t) x I(t) x A(t) - KV c x I x t

where, in this example,

Vc =2V
I =20A
t = 0.5 msec

K = 1.4 (from Figure 3)
Thus E = 1.4 x 22 x 20 x (0.5 x 10-3) =
0.308J

The maximum single-pulse energy rating
for a P6KE series is 0.83 joules for a pulse
of 1 millisecond duration. Referring to
Equation 4, the energy rating for a O.S-millisecond pulse becomes 0.7 x 0.83 J, or
0.S81 joules. Clearly, then, a P6KE
device can easily handle the 0.308-joule
energy contained in the anticipated transient pulse.

r

Figue4
Enery-hand/ing capacity
of a transient
vo/atage suppressor as a
function ofthe
transient's
duration

8.0

;;. 4.0

~ 2.0
.£

il

1.0

's!05~---~

~ 0.~5

z

O.I2.S

1.

Since the waveform of the transient is
a classic exponential decay with a O.S-millisecond duration at the half-peak current
point, a graphic plot of peak power versus
time can be used. This graph is often
published in manufacturer's data sheets
and if it is available for the device under
consideration, one need only compare the
anticipated current against the current
shown in the graph. Using the peakpower versus time graph published for the
P6KE series suppressors, it can be seen
that with a O.S-millisecond time-constant
decay, a P6KE device can handle a peak
power of 792 watts.

O.0625!NIOO;;--:'.:10----!l-L.--:;O~.I-~
Pulse Duration. msec

Conclusion
The above example assumes a nonrepetitive transient, or, if repetitive, each
pulse is separated from the others by an
interval of least 20 seconds. Under these
conditions, however, the procedures outlined provide a straightforward and reliable method of selecting the best transient
voltage suppressor for a given application.
631

APPLICATION NOTES

TransZorb TVs are characterized by the reverse stand-off
voltage (VMW). They are synonymous with the integrated or
micro circuit power supply voltage. The breakdown voltage
[V(BR~ is that point at which the TransZorb TVS is in ava-

lanche breakdown. This is temperaturecoellicient. Allowance
has been made in establishing the minimum breakdown voltage at 25"C to provide a safe operation over the full temperature range of -65"C to + 150"C.
r--------.-----------.~----o~D

r-----------~----_+--._----+_-1----~r_+_--1_-o~G

TRANSIENT{

ENVIRONMENT

-+__1-_......___1-'
-r--r-~-4r-r--------+~~~4---~
~--~--~--4-~------------~--------~----~

________-4__+-__

~-oGND

nanoseconds will cause destruction. Placing TransZorb TVSs across
the signal lines to ground will keep unwanted transients out of the
Data and Control Buses. TransZorb TVSs which are shunted across the
power lines maintain a continuous operating voltage during AC line
surges and switching transients.

The TransZorb TVS on the signal and input power lines prevent microprocessor system failures caused by transients (electrostatic charges),
AC power surges, or during switching of the power supply to ON or
OFF. A static discharge can exceed 10,OOOV for 10 microseconds with
a 60 Amp current potential. 10V applied to a typical T2L circuit for 30

Transients generated on the line can vary from a few microseconds to
several milliseconds duration and up to 10.000 volts. This threat of
potential energy has given rise to high noise immunity integrated
circuits. High immunity and super high immunity circuits are prone to
damage by noise transients as a result of the power being dissipated
by the substrate input diode. Excess current passing through the input
diode can cause an open circuit condition or slow degradation of the
circuit performance. TransZorb TVSs located on the signal line can

The TransZorb TVSs protect the internal MOSFET from transients introduced on the power supply line. When interfaced with bipolar TTL
ci rcuits, the same power supply is often used. A common practice is to
place a series protection diode from source to gate, but this does not
offer protection from source to ground and is usually limited on peak
power dissipation. A TransZorb TVS is required on each voltage supply
line to the integrated circuit.
.

absorb this excess energy. For some circuit applications a low capaci-

tance unit may be required, which is available upon request.
+v
Totem pole output circuits often generate
current spikes requiring decoupling capacitors. While maintaining circuit continuity. the TransZorb TVS is capable of absorbing the energy pulse as well as
eliminating noise spikes due to such
things as cross-talk, etc. A clamp diode in
the IC substrate is limited in conduction
BI·POLAR
CIRCUIT
current, <100 mA, providing a minimum
1------.11----11111• protection.
-v

632

APPLICATION NOTES
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ DC LINE APPLICATIONS _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __

The TransZorb TVS on the power line prevents IC failures caused by transients
(electrostatic discharge), power supply
reversals or during switching of the power
supply to on or off.

'------' ----------~----~
REGULATED
de

The TransZorb TVS placed in the output of a voltage
regulator can often replace many components
associated with a protection circuit such as a crowbar circuit. It may also be required to protect the bypass transistorfrom
voltage spikes across the collector to emitter terminals.

-=

Typical power sources employing the TransZorb TVS fOf trA'"'slent protection.
R

~NC
+1!iV

!

L~~

leTE·1!

~

TO
LOAD

INPUT

The TransZorb TVS is chosen in which the reverse stand-off voltage is
equal to or greater than the DC output voltage. For certain applications
it may be more desirable to replace the series resistor (R) with an inductor. In most applications. a fuse in the line is desirable. Elimination of a
transformer will require an LC filter on the line for most industrial applications, when the TransZorb TVS is placed on the input to the power
supply and with an input voltage greater than 40 volts.

-lOY

+5'

The TransZorb TVSs protect the internal MOSFET from transients
introduced on the power supply line. When interfaced with bipolar TTL
circuits. the same power supply is often used. A common practice is to
place a series protection diode from source to gate. but this does not
offer protection from source to ground and is usually limited on peak
power dissipation. A TransZorb TVS is required on each vollagesupply
line to the integrated circuit.

- - - - - - - - - - - - - - - S I G N A L LINE A P P L I C A T I O N S - - - - - - - - - - - - - - - -

A TransZorb TVS on the output of an Op-amp will prevent a voltage
transient, due to a short circuit or an inductive load, from being transmitted into the output stage. Fig. A is for linear circuits whereas Fig. B
may be required for reducing effective capacity at the output. The
TransZorb TVS and a blocking diode is available as a Single unit.

~.J5t
-=

(A)

(B)

TOINDucnVElOADOR
SWITCHING CIRCUIT

F

IN

ry~l1N---"
Ie LINE DRIVE TO RECEIVE

':'"

Input states are vulnerable to low energy, high voltage static discharges
or crosstalk transmitted on the signal wires. Limited protection is provided by the clamp diode or an input network within the IC substrate.
The diodes, however, must have a breakdown voltage greater than the
supply voltage (Vee) and are limited in current capacity.

}

OUT

Transients generated on the line can vary from a few microseconds to
several milliseconds duration and up to 10,000 volts. This threat of
potential energy has given rise to high noise immunity integrated
circuits. An independent study· has found that high immunity and
super high immunity circuits are prone to damage by noise transients
as a result of the power being dissipated by the substrate input diode.
Excess current passing through the input diode can cause an open
circuit condition or a slow degradation of the circuit performance.
1 ;.msZorb TVSs located on the signal line can absorb this excess
f~nergy.

'T!.e Rad!o & ElectrOniC Engineer. Vol. 43. No.4, April 1973,

.---.---0
Very high transient
voltages are generated when an indue-=- ':'
tive load is disconnected, such as motors, relay coils and solenoids. The TransZorb TVS
provides protection for the output tmnsistor as well as the IC, eliminating a reSistor/capacitor network. The Iem; series TransZorb TVS is
capable of dissipating the full load current for short duration pulses
«8.3 msec). For longer pulses, the TransZorb TVS is available in stud
or press fit package.

TransZorb TVSs can be used in series or parallel to increase their power
hl'l:ndltng capability. No precautions are required when using TransZorb
TVSs in a series string since power diSSipation for two or more devices
of the same type is equally shared. When using TransZorb TVSs in
parallel .t is necessary for the units to be closely matched (approx.
o 1 volt of each other) in order for equal sharing to lake place. Matched
sets can be ordered from the factory for an additional charge.

633

TYPICAL TRANSZORB TVS APPLICATIONS
CircuilBr, ,lker

Aircraft
Bus

Figure 2-

Figure 1-2BV D.C. Supply Protection

A.C. Supply Protection

Rl

J"

5V

]

>-_______-+-_L-ooad

Load

Rl Spoiler
Resistor

Rl

Figure 3-Breakdown VoRage Rectifier Protection

Figura 4-Braakdown Voltage Rectifier Protection·

115V

J.......------A

+
Load

Figure 6-Circuit Protection from Overvoltage
Supply Power

Figura 5-115V A.C. Supply Protection

Balanced Line

Unbalanced Line

~
~

DC Motor

Figure 7-EMI limiting

~---......-...,
24V DC'

*
RelayCoil

Relay Coil

Figure B-Relay and Contactor Transient Limiting

IL,.

When signal is on
a carrier which doesn't
change polarity

'WiII not appreciably affect the "drop out" time of the relay or contactor.
•• Main18in short leada on TVS devices to optimize alfecdveneas.
634

To Improve
Insertion

Loss

Figura 9-R.F. Coupling

Low capacitance
TransZorb TVS
Alternating Signal
··LCEISAC

SUPERECTIFIER DESIGN BRINGS
NEW LEVEL OF RELIABILITY TO
SURFACE MOUNT COMPONENTS
by, Joseph M. Beck,
Sr. Applications Engineer

Surface Mount technology is here to stay.
turers would have to re-think their approach to device fabrication. Yes,
After years of plodding through cautious excomponents needed to be smaller; but
perimentation, many manufacturers now have
fully automated production lines in place.
they also needed to be more reliable.
These production
At General Instrument,
lines place circuit
the development of
components
at
speeds that until
~~f~~,
new surface mount
recently would have
~~~~D
components is not
been unthinkable.
;:tI''""9--+- g:::::o"
something that is taken
Finally being realized
~~:.""''''''
lightly. It is realized
SOLOEIIAILLE
are the benefits of
that in orderto produce
"""
.."
what was once cona truly reliable surface
sidered a "Voo 000"
mount product one
manufacturing techmust first consider aU
nology.
relevant aspects of the
Component manufactechnology.
Only
turers have learned a ' -_ _ _ _ _ _ _ _ _ _ _ _--' when this process has
great deal over the
been completed can a
Figure 1 - SUPERECTIFIER construction
product be developed
past several years as
well. Initially most
which is surface
surface mount components were nothing
mountable, and inherently reliable.
more than retrofit, lead formed versions of
Surface Mount Superectifier-®
their conventional leaded, through-hole
General Instrument manufactures surface
counterparts. For most manufacturers this
was the quickest and least costly method of mount rectifiers in the popular MELF (metalized electro face) package style. These
"developing" a line of surface mountable comdevices, denoted as SUPERECTIFIERS,
ponents.
are available with a wide variety of electrical characteristics. The main difference,
It was soon discovered, however, that this
however, between these rectifiers and
approach to component assembly would
other MELF style devices lies in the area
be unacceptable. Surface mount technolof device construction. Figure 1 shows
ogy placed new demands upon circuit
the unique construction employed in the
components. Electrically, the same power
manufacture of the SUPERECTIFIER.
was being required from smaller and
The construction of the SUPERECTIFIER
smaller packages. Package geometries
does not internally utilize any soft solders.
and dimensions became critical in relation
All interconnects are accomplished by the
to pick and place equipment and circuit
use of a high temperature brazing process
board mounting. In addition, the construc(600·C). Hence, any chances of solder
tion of these devices needed to be such
void occurrence or internal solder reflow
that they would suffer no ill effects when
during circuit board processing are
subjected to the rigors of the new assembeliminated. In addition, the silicon rectifier
ly environment that surface mount techjunction is completely encapsulated by a
nology presented. Encountered in this
cavity-free glass. This glass encapsulaenvironment was extremely high-speed
tion ensures that the rectifier junction is
pick and place eqUipment, component adhermetically isolated from humidity ancl
hesive attachment, immersion in molten
other harmful environmental intrusions.
solder and rapid temperature changes associated with reflow soldering processes.
The resultant sub-assembly could be conAll this meant that component manufacsidered to be a fully functional surface
MOLDING

.

635

aging. This type of construction utilizes a
non-transparent glass body which is

mount rectifier. In fact, many component
manufacturers offer MELF devices which
have this appearance; namely, an oblong
glass bead with two protruding metal end
terminations. However, In order that the
device have a uniform shape, the General
Instrument sub-assembly is over molded
with epoxy. The result is a smooth, perfectly cylindrical package.

PICK-UP

1

00

Two Sizes

•

Two different size SUPERECTIFIER
MELF packages are available. General
Instrument designation GL34 and GL41
are for 0.5 ampere and 1.0 ampere rectifier types, respectively. JEDEC
mechanical specifications DO-213AA
and D0213AB detail the dimensions of
the GL34 and GL41, respectively. Figure 2 gives these package dimensions.

Figure 3.

Non-uniform MELF outlines
often characterized by pitting and surface
irregularities. The irregularities make it
difficuH for a vacuum pick-up to form a tight
seal around the device body. The result is
that components are often dropped onto
the production room floor instead of being
placed on the targeted circuit board.
General Instrument solves these
problems with a smooth surface and perfectly cylindrical package outline.

ffiI----WLP
11- '
~
•

----I___....1
A

_

Bonding Pads .-The geometries and
dimensions of bonding pads are critical
to the proper mounting, soldering and
overall performance of all surface mount
components. Figure 4 gives the recommended pad layouts for GL34 and GL41
MELF outlines. Use ofthese pad layouts
will be primary assistance in the following three areas:

GLA1

1)().213M
DIM. MIN MAX
A
.130 .1~
B
.063 .067
C
.016 .022

1

1)().21»'B
MIN MAX
.189 .205
.Q9.I .1Da
.016 .022

NOTE: ALL DIMENSIONS IN INCHES

FIgure 2

Dimensional outline
• Surface mount technology by nature
dictates that smaller component packages
dissipate the same power as their larger
through-hole counterparts. Hence, adequate bonding pad land area is required in
order to aid the component package in the
dissipation of this power. The recommended pad layouts provide the needed
land area for GL34 and GL41 devices to
operate safely at their maximum ratings.

MANUFACTURING
CONSIDERATIONS
Pick and Place--Surface mount SUPERECTIFIERS are supplied on tape and reel
in accordance with JEDEC standard RS481A. Removal of the devices from the
embossed carrier tape is easily accomplished by all vacuum pick-up
mechanisms which utilize a compliant tip.
The compliant tip will form a tight seal
around the cylindriGal MELF design once
contact with the device has been made.
This is not always the case, however,
when MELF devices with a non-uniform
package outline are used. Figure 3 shows
two such MELF outlines. Figure 3A is a
device with a concave package outline.
This type of package is difficult to consistently remove from the carrier tape as the
exact position of pick-up on the component body is critical. Figure 3B is that
of the most common form of MELF pack-

• Component adhesive attachment allows the package to shift slightly from its
original placement position prior to adhesive curing. In addition, most adhesives tend to spread during the curing
process which also may allow package
misalignment. The geometry of the
recommended pad layouts will tend to
minimize such movements. This assumes, of course, that the package was
originally positioned correctly.
• During reflow soldering, solder surface
tension can have a significant effect on the
movement and final position of com636

ponents in relation to their
bonding pads. The recommended pad layouts will actually make use of the solder
surface tensions to bring MELF
devices into alignment with the
two bonding pad land areas.
This means that MELF devices
which are initially placed in
slight misalignment on their
bonding pads will reposition
themselves during solder reflow
until a position of alignment is
reached.

~.-­
I~ : ~~UMPADOU

.§j
:Jd . ~E~PAD~'

III

-I · I- ~ """'''''''''' ....

t:"'1.-. _

'CON.
NECfINQ ClRCUtTIV' SMALLER
tHANTMECOMPOHENTPADS

c..r---

tjj!

C!I
FOR LNlGE BUSS ATTACH
MENT USE A SOLDER MASK
TO REDUCE EFFECTIVe PAD

SI"

TO REDUCE R.ASHING OR
M~

Soldering-Surface mount
SUPERECTfFIERS
are
capable of withstanding all
present forms of wave and
reflow soldering. The following
guidelines should be followed,
however, in order to ensure
overall package integrity:

DIMENSION

GL34

GL41

A
8
C
D
E
F
G

.069
.063
.069
.138
.207
.016
.138

.100
.100
.100
.200
.300
.025
.200

H

I

.03510.080 .050 10 .125

.048 min

.075 min

NOTE: ALL DIMENSIONS IN INCHES

Figure 4
Recommended pad layout

• GL34--Maximum temperature at device and terminations
not to exceed 400'C for 5
PARTflUIiBEA
CUAAEfIT(A)
YOLTAGE(V)
TARlIIS)
PACKAGE
seconds. Complete device
submersible temperature not to
GENERAL PURPOSE
exceed 260'C for 10 seconds in
solder bath.
Gl34A-J
0.5
so.eoo
Gl34
• GL41--Maximum temperalN6478-84
1.0
50-1000
GL41
ture at device end terminations
GL41A·Y
1.0
50-1600
GL41
not to exceed 450'C for 5
seconds. Complete device
FAST RECOVERY
submersible temperature not to
RGl34A.J
0.5
GL34
50-600
150-2SO
exceed 265' C for 10 seconds
RGL41MI
1.0
50-1000
150-500
GL41
in solder bath.
General Instrument's surface
ULTRA FAST RECOVERY
mount SUPERECTIFIERS comEGL41A-G
1.0
GL41
SO.O
bine superb electrical performance
EGl34A-G
0.5
SO.O
Gl34
with unmatched levels of reliability.
The construction of the SUPERECTIFIER virtually eliminates all
problems associated with highspeed pick and place of MELF
components. In addition, SUPERECTIFIER construction ensures that performance and reliabifity are never compromised when the
device is subjected to the demands of surface mount assembly techniques or when other
seemingly harmful environments are encountered. Quite simply, no other surface mount rectifier
comes close to offering all the advantages of the SUPERECTIFIER MELF.
All surface mount components are small and save space. However, performance and reliabifity
should never be considered necessary trade-offs in order to utifize surface mount technology. Use
of General Instrument surface mount SUPERECTIFIERs requires no such sacrifices; no trade-offs.

637

638

TRANSZORB® TVS DIODE ARRAY
DASERIES
8 AND 16 PIN DUAL-IN-LINE PACKAGE (DIP)
by
David W. Hutchl.ns

Introduction

Electrical Parameters

The SMDA and DA family of transient voltage suppressors (TVS) are designed for protection of multiple power
bus lines or 1/0 ports at the printed circuit board (PCB)
level. Packaged in a standard 8 or 16 pin plastic DIP,
devices are available in either 5.0 to 24 volts. They are
designed to be used for multiple protection of 5.0 to 24
volt logic circuits, memories, line drivers/receivers and
microcomputers. Combining several protectors in a single package minimizes board space and helps in the
coordination of input protection· within a defined area of I
the PCB, Figure 1"

These devices are designed to be used in applications that
have multiple power or data line inputs. Each transient
voltage protector is capable of dissipating up to 500 watts of
peak pulse power for an 8/20J1S impulse waveform. The
individual chips, within the package, are capable of dissipating the full peak pulse power. A peak pulse power versus
time curve is provided for other pulse widths. In this case,
the pulse width (duration) is defined from the point of the
initial impulse to the 50% decay point of the peak impulse
value.
There are two ground leads for the 8 pin DIP and four
ground leads for the 16 pin DIP to allow for the higher
current conduction during a transient event. The internal
ground leads are capable of diverting transient currents
simultaneously from a.1I protector inputs. For best results,
the PCB ground path to these terminal pins should be tied
together using as large a land area as possible, Figure 1. In
this way the return !ine impedance will be kept to a
minimum, reducing the possibility of a voltage overshoot
experienced with fast rise time transients.
The SMDA and DA series devices are to be used in
those applications where the transient events are nonrepetitive or are less than a .01% duty cycle. For transient events longer than 10ms or continuous pulses, the
standard individual axial lead or surface mount device is
recommended. These special applications require some
level of average power dissipation rating beyond the
design considerations of the SMDA and DA devices.

PCB
Data Une Protection
Suggested Trace Layout for a Single-Layer Board
Using SMDA050

Figure 1

Induced voltage transients from residual lightning, relays,
small motors, inductive load switching and electrostatic
discharge (ESD) are clamped protecting sensitive components. Both unidirectional and bidirectional devices are
available for positive, negative or plus and minus operating
circuit voltages, respectively. The TVS array protects 4 or
6 lines within an 8 pin package and 8 or 12 lines within a 16
pin package.

639

The unidirectional types are designed to clamp both positive and negative transients. In the forward direction, the
devices will clamp the voltage below 2 volts depending upon
the transient current. The bidirectional types are symetrical
and will clamp the transient voltage to the same value in
both directions. The actual clamping voltage will vary with
the transient current. For reference, the data sheets
provide the maximum clamping voltage for a 10 ampere
impulse using an 8/20!J.S waveform.

In those applications where the SMDA suppressor is
protecting I/O ports, the individual chip capacitance is
given at 0 voRs, 1MHZ' These are maximum values to
help in the calculation of the amount of loading that can
be expected for signal loss or the added capacitance for
long line networking systems. Lower capacitance
devices are available in discrete form such as in the
LCE or SAC series types for very high speed applications.

GND

E~~~~=fa5~~~~~F=

Applications
A typical application using the SMDA series devices is
at the PCB interface close to the input contacts on the
edge connector, Figure 1. At this location, the transient
currents are diverted back to the source via the shortest
route. Location of the SMDA TVS at one side of the
PCB is also recommended. Protection of the power bus
lines as suggested at the edge of the PCB followed by
110 port protection,
Figure 2.

Data Uno

{~:~F~~~~:;::;:~~~
GND

r"U..:~~~...:>..~~yCt;:wT-"1.j

Line 2 ! : = : I - - - -........
Uno 1

"-L",~;":c,..J

'_'BU.{::~
+5V

GND

PCB

PCB
Data Una Protection
Multiple-Layer PCB
Using DA05CP

Figure 3
These devices can also be used within the PCB for protection of individual circuit components. Additional caution is
given when designing for protection of individual components. Coordination olthe Vcc bus lines and the I/O ports are
important. A differential voRage between input pin terminals
can cause component upset or even damage. These
voltage differences can be attributed to improper protector
selection orthe length of land traces to the protector. These
traces can cause a high voltage to exist during a fast
transient that will exceed the clamping voltage of the TVS.
Traces leading to and from the
TVS protector should be
kept as short as possible to minimize voltage differences.
Ground returns should be as large as possible such as a
buried ground plane or surface area to reduce any series
lead inductance.

Additional data lin.. on tho back sldo.

Power Bus and Data Une Protection
Suggested Trace Layout for a Double-Sided Board
Using
SMDA05 fer Power Bu.
SMDAOSC fer Data Line

Figure 2
It is important to keep the unprotected lines with the highest
transient current away from the protected lines to avoid
possible transient voRage crossover. Where this is not
possible, the unprotected lines should cross at 900 to the
protected lines, Figure 3.

640

FAILURE MODES AND FUSING OF TVS DEVICES
by
David W. Hutchins

Introduction
Transient voltage suppressors (TVS) will fail if they are
subjected to conditions beyond their designed limits. It is,
therefore, important to understand the types of failure
modes of TVS devices before designing them into a circuit
application. There are three basic types of failure modes:
shorts, open and degraded (outside of the speCification
limits). Although the silicon avalanche junction transient
voltage suppressor (SAJTVS) will first fail short in most
applications, there is always one transient event that will
cause it to open initially. In this case, the transient energy
is large and of short duration that the silicon chip itself
explodes.
When a TVS device does short, follow-on operating
current may cause the device to open. Fusing of the line
is recommended in all applications. Shorted devices will
start to conduct current away from the circuit or system
affecting its performance. Open devices are transparent
to the circuit/system and will not usually distribute circuit
functions. In either case, it is difficult to determine if the
TVS device is still functioning while in the circuit. Degraded
TVS devices are most difficult to detect in the circuit.
These can be devices with high leakage currents which
may not adversely affect circuit performance, except
under elevated operating temperatures. All three types of
failure modes are discussed in this application note along
with the design practices for fusing the line when a device
does fail.

Words have different meanings to different people which
is the case with the term "Fail Safe". A TVS device cannot
assure a fail safe environment. By nature, a TVS device
will fail when subjected to a transient beyond its designed
capability. If the circuit or system is not properly fused, a
shorted TVS device can become a safety hazard
conducting operating currents through the return path.
Even with the proper design-in and adherence to good
engineering practices, this term should not be used in
describing the function of the protection network. Quite
often, the unknown transient threat along with some olthe
guess work regarding the sizing (Peak Pulse Power
Rating) of the TVS device will suggest some level of risk
in the overall protection system. The risk, in this case, is
the trial and error method used to guarantee proper TVS
device selection versus its location. This type of selection
process may take some time to accomplish when the
transient threat cannot be fully defined. "Fail Safe" may be
used in conjunction with a complete systems approach,
but not with a component such as a TVS device.
Failure Modes
TVS devices will fail in one of three modes. These are
shorts, opens and degraded devices. In most applications,
the preferred method of failure is a short. A short is
defined when the TVS device has a resistance value of
less than 1 ohm at adcvoltage of 0.1 volts(ref.IEEElANSI

+

With the thought that a TVS device can fail, there are
some additional terms that designers would like to impose
on the protector to ease this problem. One such term is
a "Fail Safe" condition. The term "Fail Safe" implies some
level of safety which cannot be used in connection with the
TVS device. Due to the very nature of the unknown
transient threat, there are no 100% guarantees. "Fail
Safe" is one of the most misunderstood terms regarding
transient protection. It is important to define the term and
discuss why it should not be used in reference to a TVS
device.

DC Power
BusUne

Protected
Equipment
or

Component

Figure 1. Current Path for Shorted Surge Suppressor

641

C62.35). In the more practical world, a shorted device will
start to conduct a significant amount of operating current
to ground, Figure 1.
The actual current shunted to ground will depend upon the
resistance in the line ahead of the TVS device. For the
power line, this could mean a significant amount of current
depending upon the available current from the power
supply or source. With data lines, this can be somewhat
limited but will depend upon the operating current of the
circuit. Data lines operating in the milliampere range are
more difficult to fuse. In either case, it is important to
provide some type of fusing in the line to open up the
circuit when a TVS device does short, Figure 2.

Devices that degrade are more difficult to detect. These
types of failed devices will exhibit an increase in the
reverse leakage current under normal operating voltages
(equivalent to the stand-off voltage). According to IEEE!
1- Current - Amps.
1.000

~

100

~~

10
0.1

1/

10

-

--...:;

100

1,000

t - Clearing Time - Sec.
- S A Type.

+----'
DC Power
Bus Line

Power Input

- - 1.5KE Type.

Figure 3. Clearing Time for TransZorb TVS Device Fail Open Condition

Fuse

ANSI C62.35, a degraded failure mode has occurred
when the avalanche junction surge suppressor has a
stand-by current greater than the maximum specified. On
the power bus line, this level of current may not be noticed
until the leakage current reaches the upper limit of the
power supply current or when the unit shorts from the
increased current conduction. For data lines, this value
may be much less due to the fact that there can be loss of
data transmission of information. A device will act as a low
impedance shunt path to ground.

PCB

Figure 2. Fuse Location Relative to TVS Device

The fusing element must take into consideration two
possibilities. First is the ability to handle the required
transient current without interrupting the circuit functions.
Second, it has to be able to open the line when the TVS
device does short.
An open TVS device is defined as a diode that has a
breakdown voltage V(BR greater than 150% of the
pretested value at an applied test current (Ip) (ref. IEEE!
ANSI C62.35). Forthis test. the unit must be taken out of
the circuit for verification. An open device in the circuit will
not exhibit any of the standard electrical characteristics
such as leakage current or clamping voltage. Once out of
the circuit, the TVS device can be tested on a curve tracer
for verification of the open condition.
In an improperly fused circuit, a device that has been
shorted can become open after an applied operating
current is allowed to conduct through the device for a
period of time. Figure 3 shows the fusing currents and
time durations for each of the major axial lead type
package. When this occurs, there is usually some visible
evidence in the form of a burn mark on or within the device
indicating an open unit.

As discussed earlier, "Fail Safe" is discouraged in the
description of a failure mode for TVS devices. For some,
the term can be a desirable characteristic in that the unit
will protect up to a specific level. To others it can mean
that the device should provide protection because of the
fail short or open condition. While both may be true, the
TVS device should not be described as a fail safe product
due to fact that no one can guarantee a specific type of
device failure mode. The transient threat and the location
of the transient voltage suppressor in the equipment will
also have a major influence on the type of failure mode. In
some applications, the transient currents and impulse
waveform cannot be completely defined. As a result, the
correct TVS device may not be designed in. In this case,
the TVS device application is a trial and error method as
suggested earlier. A TVS device is designed to withstand
a specific level (power) of transient threat as defined by a
peak pulse power rating versus pulse width curve, Figure
4.

Most manufacturers will provide a peak pulse power
versus time curve on their individual product data sheets.
This will provide the designer with the maximum power
limit within a product family or series of devices. It is up

642

to the circuit or system designer to translate this product
information into the appropriate threat level. Threat levels
should always be defined in terms of the peak current
amplitude and impulse waveform rather than calculate
100

!I

I

10

I

i...
lI
rl
lOOns

1...

10.,.

100.,.

1""

10ms

III -- Pulse Time - sec

tion. It is the transient current that will cause the TVS
device to fail in a shorted mode. Device shorts can occur
at the semiconductor chip junction surface interface or
within the bulk material. This type of short will appear as
a burn spot onthe junction surface or as a dark spot on the
top/bottom of the silicon Chip. The bulk type of device
short will be a function of the amount of transient current
that was passed through the silicon chip. The burn spot
can be as small as a pin hole in the die and as large as a
funnel hole of a few millimeters in diameter. In both cases
there is evidence of remelted semiconductor material. Its
size will usually depend upon the current amplitude of the
transient and any additional follow-on current that is
present over a short period of time. Longer pulses will
usually remelt the solder material which can bridge the
silicon chip causing the shorted condition. In this case,
removing the solder bridge will allow the TVS device to
recover and appear as a good device.

Figure 4. Peak Pulse Power vs. Pulse Time

the energy of the TVS device from the power curve.
Energy is not a key parameter here due to the fact that the
energy contained within the transient event is not the
energy deposited in the TVS device. Equatingthe transient
current threat to the peak pulse current rating of the TVS
will ensure proper device selection and the continuous
operation of the protector in the application. There will,
however, be those applications in which the actuaitransient
current cannot be defined. At best, the identification of the
source of the threat is necessary; that is, lightning,
switching, ESD or NEMP. From this information, the
manufacturer can provide the direction for initial product
selection.
Product selection begins by equating the circuit operating
voltage to the stand-off voltage of the TVS device, Table

1.

TABLE 1
Avalanche Junction
Selection Process
DEVICE PARAMETERS

CONDITIONS

1) Stand-Off Voltage

>

Operating Voltage

2) Peak Pulse Current

>

Transient Current

3) Clamping Voltage

<

Voltage Protection

Next, as discussed above, it is necessary to equate the
transient current to the peak pulse current of the TVS
device. The transient current must always be less than
the peak pulse current of the TVS for continuous opera-

643

Follow-on current after a TVS device has failed short can
become a safety or circuit performance problem. For
these reasons, it is suggested that a fuse or fusible link be
inserted in the line ahead of the TVS device on both the
power and data line applications. Selection as well as
location of a fusing element is important. From Figure 3,
it is possible to determine the 12t value necessary to select
the fuse for any follow-on current. As this data is defined
as the clearing time for a TVS device to open up for a
continuous applied current, it is necessary to select a fuse
with an 12f characteristic below the device capability.
Location ofthe fuse is best closestto the TVS device in the
series line for board level protection, Figure 2. For
equipment and high level systems protection, the fusing
element can be a circuit breaker located at the point of
power entry. At this location, the power and transient
currents are terminated at the point of power entry input
to the equipment preventing any additional problems
such as safety hazard, data errors, or component damage.
One of the most difficult problems is the identification and,
sometimes location of the failure. In-line tests are often
used as the checkout procedure for the system/circuit's
performance. With a transient voltage suppressor, this
may not be the best solution. The first step is the
identification of problem area; that is, power bus or data
line. The second step is to perform a visual inspection to
locate the failed device or see evidence of a burn spot on
a component. The third step is to apply powerto the circuit
for performance testing and test for any loss of data. If
there are any major problems, trippingOf a circuit breaker
(CB) or a blown fuse will indicate some type of line
problem. Trace the line to the problem area. When a CB
or fuse does function, it's best not to reset the CB or
replace the fuse but to locate the source of the problem.
With data lines, this can be somewhat difficult if the fusing
link does not function due to improper sizing.

644

EFFECT OF LEAD WIRE LENGTHS ON
PROTECTOR CLAMPING VOLTAGES
by
O. Melville Clark and Joseph J. Pizzlcaroli
Originally presented at the Federal Aviation Administration-Florida Institute of Technology Workshop on Grounding and Lightning Technology
March, 1979-Melbourne, Florida

Abstract

Under high current pulse conditions. excessive
lead lengths on suppressor components can be responsible for destruction of the protected circuit.
This is caused by voltage build-up across the small
but finite amount of inductance in the interconnecting leads of the protector. Some suppressor devices

have been tested and observed to have more than
twice the specified clamping voltage which was
subsequently shown to be caused by inductive
effects. Problems and corrective measures are
illustrated and discussed in this paper.

SEMICONDUCTOR FAILURE THRESHOLDS

EQUIVALENT CIRCUIT OF PROTECTOR

MaS and small area geometry semiconductors
are particularly vulnerable to the effects of transient voltages. Unfortunately there has been very
little information published on this subject. The
work reported by Van Keuren' illustrates how
fragile CMOS and TTL devices can be. Minimum
failure pulse voltage thresholds are shown in Table I.
Electrostatic Discharge (ESD) failures of MaS
microcircuits have been measured by Gallace and
Pujol2. Comparisons among several suppliers indicate that failure levels can be a function of manufacturing technique. Repeated step stressing of a
sample of 25 CD4011AF type devices shows that at
a given stress level devices would eventually fail,
as shown in Figure 1.

The equivalent circuit of a silicon transient suppressor,
such as the TranSZorb@ TVS is shown in Figure 2. All
parameter values are fixed by manufacturing processes
and device construction except L 1, the inductance
resulting from the lead wires connecting the protector
across the circuit for which protection is intended.
Normal wiring practice resuhs in lead lengths of the
order of centimeters. In some power installations this
has been observed to be of the order of feet.

L, ~ External Inductance

TABLE I
Minimum Failure Threseholds of CMOS and TTL

~

Pulse Width
Device
Type

20psec

55107
55109

22V
36V

2psec

l"...,c

.. Internal Inductance

R, - Electrical Impedance
R:t - Se" Heeling R••lstance

0.21'sec 0.1l'sec .025I'sec
C

C - Capacitance

22V
60V

16V
38V

5404

30V
20V

54L30

SOV
50V

120V
90V

FIGURE 2-Equivalent Circuit of Protector

.

]

10

;r

Predicted Failure

9

Curve

g

8

~

The inductance within an axial leaded part, as
represented by L2, is of the order of 10-8 hen rys
while the inductance within a modular assembly can
be one to two orders of magnitude greater, depending
on the design and the number of subcomponents.
The capacitance of a silicon avalanche suppressor
can vary over an order of magnitude, depending on
the degree of reverse biasing.

s
Minimum Failure
Threshold

TRANSIENT VOLTAGE RISE-TIMES
Pulse VoHage (Vons)

FIGURE 1-Streas Failure of CD4011F

645

a. EMP: Voltage rise-times of EMP (Electromagnetic
Pulse) transients, as generated by high altitude
nuclear detonations, are 5kVlnsec. The presence of
even a small amount of inductance in the protector

circuit can have very profound results on the effectiveness of a protector device. This is illustrated with
the oscillographs in Figures 3 and 4.

INDUCTIVE EFFECTS IN COMPONENT LEADS
a. Calculation: The inductance in a straight wire
appears, at first glance, to be very small and insigniftcant. Assuming a value of 1JlH/m for a straight
wire, most lead wires have inductance values in the
nanohenry region. The voltage drop developed across
an inductor under pulse conditions is expressed as:

Vert: 200Vldly.

di
V(t) = L dt

Horlz: 10nsee/dlv.

where L is inductance in henrys

~!

is the rate change of current

FIGURE 3- 7.5 em Lead Wires

Vert: 200Vlc!lv.

Horiz: lOnsac/dly.

FIGURE 4-Zero Length Lead Wires

In Figure 3, a 30V TransZorb TVS in the 00-13 package was pulsed with a 100A 4kVlnsec rise-time transient. With 7.15 cm leads on each end, at which current
was injected and voltage measured, the overshoot
voltage is Slightly greater than 800V. The energy
under this curve is calculated to be 70Jljoules, sufficient energy to destroy most types of MOS and some
TTL devices. By reducing the lead length to zero and
repeating the pulsing, the overshoot voltage is reduced to about 200V. The energy under this curve is
less than 1lljoule, below the destruct threshold of
MOS and TTL devices.

For the fast rise-times of EMP as shown above,
the associated problems are obvious; however, for
the slower rise-time of switching and induced lightning the degree of exposure and protection required
can be defined only after carefully studying all boundary conditions.
b. Case Study: In the following application, a silicon
transient suppressor is being used to both regulate the
voltage to power a telecommunications repeater and
also provide transient suppression. The schematic is
shown in Figure S. This is one of two repeaters
powered and protected by the sa",,, component.

TranaZorb

Tolecom Repeater with Protection

b. Lightning and Inductive Switching: From
measurements made on 120V ac power systems.
MartzlofP has proposed a waveform with a frequency
of 100kH. The lightning stroke, which is usually reported with current rise-times ranging from 1 to 3J,Jsec
has been more recently measu red by Llewellyn'to be as
low as SOOnsec. Transients on shipboard ac power
systems have been defined by MIL-STD-1339 as
having transient rise-times of 1.SfJsec.
Normal wiring practices are usually considered
adequate for protection of electronic circuitry.
"Normal" and "adequate" are relative terms and
usually prevail under conditions in which equipment
performance is acceptable. What is normal and
adequate protection for vacuum tubes is not the
same for power semiconductor devices. Protection
for microcircuits is also quite different from power
semiconductors. With increased usage of microprocessors and other small area geometry semiconductors, eqUipment is becoming more vulnerable to
transient voltages, under both single pulse and
646
repetitive pulse conditions.

FIGURE 5-Telecom Repeater With Protection

The microcircuitry used in this equipment has
some well defined failure levels; 20V in the positive
direction and 6.SV in the negative direction. The
suppressor has a well defined clamping voltage in the
avalanche direction under a specified rise-time. The
forward polarity measurements are specified at 100A
with an 8.4 msec, 'h sine wave pulse. To determine
higher current capability, pulse tests were made with a
1.2 x SOfJsec waveform. During the process of taking
data, small differences in lead length in the protection
circuit were observed to have profound effects on the
suppression capability of the device. Measurements
extended over the range from 100A to SOOA with lead
lengths from the body of the device of zero/1.0 cm and
2.0 cm. Tests were made on a molded 1.l5kW TransZorb®. The peak clamping voltage was plotted against
pulse current as shown in Figure 6.
After tests were made with zero, 1.0 cm and 2.0 cm
lead lengths, the plastiC body was carefully cut away
leaving only the cell containing the junction and the
leads. Voltage measurements were then made across

the cell, virtually eliminating inductance within the
package. A lead length of 2 cm has a peak clamping
voltage of 4V at 100A and 13.5V at 500A. By contrast,
the cell only has a peak clamping voltage of 1.3V at
100A and 3V at 500A. Voltage probe placement for
taking measurements is shown in Figure 7.

6

20m
I..Hd
Lengt~

14

2
0

L

kcm

r-

z.ro

I..Hd
Length

L /
L L

8

6
4

v:::::Vr-

-:::: f:---

-

2

0

100

200

--

300

IT-

CLAMPING VOLTAGE OF AC PROTECTOR

In power systems, it is quite easy to place a modular assembly protector in a convenient mounting location rather than the most effective one, especially
in retrofit applications. These components are sometimes bulky and do not always conveniently fit the
desired location. To illustrate reduced effectiveness in
an ac power transient suppressor, a module was
measured for peak clamping voltage having lead
lengths of 24 in., 48 in., and 72 in. Pulse currents were
100A, 200A, 300A and 400A with a waveform of 1.2 x
50llsec. Lead length vs additive peak clamping voltage
plotted here is that value above the normal clamping
voltage with zero lead length.

Loed

Length

~ ~I

400

OnIV-

500

600

PUI. . Curren1 (Ampo)

FIGURE 6-Clamping Voltage vs Pulse Current

14-----~---1 em

100

150

200

250

300

350

400

Addttive Peak Clamping Yo"age (Volts)

FIGURE 8-Lead Length vs Clamping Voltage

14-------~-----~
Voltage Probe Placement

FIGURE 7-Voltage Probe Placement

Voltage drops across the lead wires contributing to
peak clamping voltage can be attributed to both resistive and inductive components. Calculations were
made for both resistive and inductive voltage drops for
a 1.0 cm .040 in. dia. copper wire at pulse current
levies from 100A to 500A. Rise-time is 1.2fJsec. This
data is shown in Table II.

Note that the additive clamping voltage can be down
in the range of 35V at 100A for 24 in. leads extending
up to 350V at 400A for 72 in. leads. An oscillograph
depicting optimum protection at 100A and 400A is
shown in Figure 9. The 100A pulse is being clamped at
about 215V and 400A pulse at 265V. The peak clamping voltage is substantia:'y increased by the inductive
effects of 72 in. leads as shown in Figure 10. In this
oscillograph, the 100A pulse produced a peak of about
320V and 400A pulse produced a peak of about 615V.
The inductive overshoot illustrated in Figure 10 is
quite profound by comparison with Figure 9.

TABLE II
Pulse Current Level and Voltage Drop

Pulse
Current
(Amps)
100
200
350
500

Measured
Voltage Drop
(Volts)
.75
1.3
2.3
3.3

Calculated
Resistive
Voltage Drop
(Volts)
.019
.038
.066
.095

Calculated
Inductive
Voltage Drop
(Volts
0.83
1.66
2.91
4.16

Note that the calculated inductive voltage drop
compares favorably with the measured voltage drop
while the resistive component contributes less 647
than 10% of the total.

Vert: 100V/div.
Horiz: :!psec/dlv.

FIGURE 9-AC Protector, Optimum Protection

boards, a ground plane on one or both sides of the
board has been used by the author as a method for
optimizing protector clamping.
Since voltage drop across the lead length is a function of the transient rise-time, it may be feasible to
add series inductance between the transient source
and the protector to reduce the rise-time and subsequently the peak clamping voltage. A TransZorb®
used for 5V logic protection was tested with a 300A
pulse having a 1.2 x 50/Jsec waveform with voltage
measurements made at 2.0 cm from each end of the
body of the device. This is shown in Figure 12, peaking at 24V. Placing a 12J.1H choke ahead of the suppressor to reduce the rise-time, reduced the peak to
19V and using 24J.1H reduced the peak to 17V. These
curves are also shown in Figure 12.

Vert: IDDVldlv.
Horlz: 2psec/dlv.

FIGURE IO-AC Protector, 72 In. Leads

CLAMPING VOLTAGE
OF MICROCIRCUIT PROTECTOR
An leT -5 type TransZorb TVS , designed for protecting low vo.ltage_logic circuits, was pulsed at levels of
100A, 200A, 300A, 400A and 500A with a 1.2 x 50J.lsec
waveform. Voltage drop was measured across the
leads at distances of zero, 1.0 cm and 2.0 cm from
the body of the package, adding a total of 4.0 cm
.030 dia. straight wire contributing to inductance
and subsequently adding to the peak clamping voltage. A graph plotting total lead length vs. peak
clamping voltage is shown in Figure 11.

Vert: 5V1div.
Horlz: 50Dnsec/div•

FIGURE 12-Comparitlve Clamping Voltages

IL

/

I

I

/

/

II

I

/
/

e-~f--lf ;j~

/
~~/

I V/
I I / //
I I / /
10

15

/

/

L

CONCLUSION
Inductive effects can be, and often are, a source
of abnormally high peak clamping voltages compared
to the inherent capability of a transient voltage suppressor. These high clamping voltages can cause
failure of vulnerable electronic components; thus
a suppressor capable of providing adequate protection can be rendered useless due to poor insertion
methods. So it behooves the design engineers working on both mechanical layout and circuit design to
be acutely aware of inductive effects and the problems which they can cause along with corrective
measures in order to optimize transient voltage protector components.

/'

20

25

Peak Clamping Voll8ge Above BV (Voila)

FIGURE II-Lead Length vs. Peak Clamping Voltage

These curves are plotted as additive above the
breakdown voltage (BV) at 1mA, which was 6.3V for
the device tested. The clamping voltages increase with
pulse current using zero lead length due both to the
electrical impedance and thermal self-heating effect
on the silicon pn junction. Observe that the clamping
voltage covers a very broad range, from 3.6V above
BV to 24V above BV depending on peak current and
insertion method.

References

I. E. Van Keuren, "Effects of EMP Induced Transients on Integrated Circuits", IEEE Electromagnetic Compatibility
Symposium Record, October, 1975.
2. L. Ganace & H.J. Pujol, "The Evaluation of CMOS StaticCharge Protection Networks and Failure Mechanisms
Associated With Overstress Conditions as Related to Device
Life", presented at the 1977 Reliability Physics Symposium.
April, 1977.

REDUCING INDUCTIVE EFFECTS
The most obvious method of reducing inductive
effects and thus optimizing protector capability is to
reduce lead wi re lengths in the protector circuit. If
it is not possible to reduce the conductor length, other
options are available. Inductance in a given length of
conductor can be reduced by replacing a small diameter wire with a wide strip conductor. On circuit

3. F.D. Martzloff, "A Guidance on Transient Overvoltages
in Low-Voltage AC Power Circuits". GE Report No.
77CRD221, September, 1977.
4. Sigrid K. llewellyn, "Broadband Mag/letic Field Waveforms
Radiated fm!/l Light'wlg," Masters Thesis, Florida Institute
ofTechnology, 1977.

648

THE USE OF
TRANSZORB® DIODES
WITH POWER MOSFETS
by
Jon D. Paul
and
Bill Roehr

ABSTRACT
Power MOSFETs have a more rapid cost vs. breakThe TransZorb diode serves a dual application; a
transient protector and an ancillary snubber. A dedown voltage tradeoff than do bipolar devices. Transign approach is given and successful designs are
sient Voltage Suppressor TransZorb® Diodes may be
described.
used to reduce the voltage stress on the MOSFET so
that a considerably lower cost device may be used.

"

18

All off-line power electronic systems are subject
to unwanted transient voltages. These originate from
two sources: trC!nsients on the incoming ac line and
transients generated in the system by the rapid
switching of the power switch. The usual design
procedure with bipolar switches calls for allowing
generous voltage margins between the maximum
anticipated circuit voltage and the breakdown rating
of the transistor. The penalties are not too severe.
Increasing a bipolar's breakdown rating causes a
reduction in current gain and switching speed. The

w

~ 1.0

«

rds40nl ex

~ 0.9

0.8

Z

o o.7

VS 22

~

iii

ll!

Chip Area = 30000 MIL'

w

a?

0.6

/

::l

o

"?

O.5

z

« 0.4

/

a:

o

O. 3

i

j

0.2

1

..J
..J

0
0

/

To 27

/

l00V

200V

::l 12 -

;.:

7

TO-3 Package

i= 10
z

«

::l

0

8

/

Ol

8l

6

y

I-

/

0

~

4

W

u

a:

2

0..

o
o

"(

/

/
• BIPOLARS (hFE>7at5A)

.
~V"
...100

200

~
300

~;

400

500

Effect 01 Voltage Rating On FET Price
FIGURE 2
rORIFT

gain, however, can be restored and speed improved
with a modest increase in die area.
The MOSFET displays several properties which
cause protection requirements to differ from those
of the bipolar junction transistor (BJT). Figure 1
shows the direct tradeoff in on-resistance with breakdown voltage, for a fixed die size. To maintain a constant on-resistance and current rating as voltage
increases requires a rapidly increasing die size.
The price picture for BJT's and FET's is shown in
Figure 2. It is evident that when using FET's, reduction of the required voltage specification is a critical
and very cost effective task for the design engineer.

I-----crBULK

t--

\

400V

J~" -

I-

rCH

300V

....,g

(Prices: June, 1984)

en

J

\

~UMfu' _

I

eVossOR BVcEo, BREAKDOWN VOLTAGE

/

V
...........

/

14

,1.1

"FETS (~os,ON': 0.3 to 0.40)

CIl

a: 16
«

0

1.2
1. 1

"j<>

20

I. Need For Transient Protection

500V

600V

700V

BVoss, BREAKDOWN VOLTAGE
Drain-Source On-Resistance vs Voltage Breakdown
FIGURE 1

649

,

25

It should be noted that the mechanism of breakdown also markedly differs between the MOSFET
and BJT. Figure 3 shows the Zener-like property of
the FET. The high voltage drop across the device
results in high dissipation and usually destruction,
should operation occur even for nanosecond intervals in the avalanche breakdown region. Operation
in avalanche breakdown is not advisable for a bipolar
either, but it can usually sustain some energy in the
BVCEOCaual mode. Circuits are usually designed to limit
peak voltage below BVCEO. At low currents, however,
most bipolars can handle voltages up to the BVCBO
limit which may approach two times the BVCEO limit.
The operating limits for a FET and a comparably
rated bipolar device are shown in Figure 4. Properly
snubbed, the bipolar can operate with a very comfortable margin for transients.

,:.... Rated BVoss 200V Min.
I

20

(200V rated part-86 piece
sample from one vendor)

rn

t-

Z

:::>

15

u-

o

a:

ljl10

::<
:::>

z

5

o
195

200
205
210
BVoss, BREAKDOWN VOLTAGE (VOLTS)

215

FET Avalanche Vollage Distribution
FIGURE 5

Summarizing the discussion, the need to protect
FETs with some voltage limiting device is compelling because:
1. It is expensive to design in voltage margins.
2. FETs display a sharp breakdown characteristic
of low energy capability.
3. The breakdown voltage can be expected to be
very close to the specified voltage rating for
most of the population.

Typical FET Breakdown Characteristics
FIGURE 3
_ 12

!
t-

1--

Z

:::!

B.O

II. Need For Ancillary Snubber
A . MOSFET circuit has somewhat more critical
snubbing requirements than does a corresponding
bipolar circuit. As disC\Jssed in the previous section,
the FET cannot dependably withstand any transients
if they exceed the FET breakdown voltage, whereas the bipolar is somewhat more forgiving.
The transient problem is intensified by the fast
switching of the FET. The specified FET current rise
time is several times faster than that of the bipolar
(for example 30ns vs. 300ns) and in practice FET
circuits usually switch faster than bipolar circuits.
These fast rise times generate ringing in the stray
wiring inductances between thesnubberand the FET
as well as in the residual inductance and resistance
of the snubbing circuit causing the FET to suffer
short duration (20-1oons) transients. These transients
are observed by probing right at the FET package,
rather than at the snubbing point. Figure 6 shows
typical waveforms encountered in a MOSFET SMPS.
The clamping effect of the protective device is
evident on the Vos waveform.
Using the protector in this fashion is termed an
"ancillary snubber". It is an additional snubbing
device intended to clamp any fast transients which
remain after the application of the main snubber. By
reducing peak voltage, a lower cost FET can then be
used. Dissipation in the ancillary snubber should
ordinarily be a small fraction, typically 10%, of the
main snubbing .power in order to remain within the
protector steady state power ratings.
It is important that the protection device be
mounted as close as possible to the FET drain and

L J I J.
... FET (BVos. = 450V)

\

~

BIP6LAR

a:

I(BVeE~ = 4~OV)
~i

!

:::>

()

a:

o

t!:Q 4.0

VBE,o'"

rn

~

a:

t-

~Cl.

t----

./

VBEr-IV

1\

I

c'

1.0 To 5.0V ---

~~+,\Tl

00

200

400

600

800

1000

VOS'OK'. PEAK DRAIN-SOURCE VOLTAGE (VOLTS)
VeE,p,,, PEAK COLLECTOR-EMITTER VOLTAGE (VOLTS)
Maximum Reverse Bias (Turn-Off) Safe Operating Area
FIGURE-4

In addition, the FET breakdown voltage has a significant temperature coefficient-approximately
0.5V/o C for a 400V part-which must be considered
in the design. The BVCEO breakdown of a BJT is
essentially independent of temperature.
The close tolerance of observed MOSFET breakdown voltage is shown in Figure 5. This is a histogram
of a sample of 86 parts rated at 200V. Note the nonexistent margin for error due to the tight distribution
of units just above the specification minimum. The
mean of this sample is 208.8 volts, with a standard
deviation of 3 volts. Experience with bipolars has
indicated that a margin of 50 volts is not uncommon.
650

MOV

ZENER

TVS

GASSUAGE
ARRESTOR

Range 01
Vollagel

12-4700

3·200

5-400

90·1.000

Vollage
Spec
Increment.

1(}-25%

5-10%

10%

20%

10%

5%

5%

15%

'Clamp
Ratlo@lOA

1.85
(13 J)

1.65
No Spec

1.25
(15 J)

2.55

Capacitance
(200V
Device)

150pF

30pF

30pF

1.2pF

Medium
To Low

Low

Medium

Medium

Good
To SOW

Good
To lOW

Not
Applicable

Gradual
Shift In
Breakdown

Open Or
Short
Circuit

Short
Circuit

Gradual
Decrease In
Protection

Bipolar
Only

Unipolar
& Bipolar

Unipolar
& Bipolar

Bipolar
Only

Good For
Mains Use,
Not
Suitable
FET
Protection

No Spec
For
Transient
Use

Ideal For
SMPS
Switch

After Ignition
Enters Arc Mode
With Low Voltage
Drop-Requires
Zero Current To
Extinguish

DEVICE

Tolerance

Price

Very Low

Steady

Waveforms Of 450W SMPS
FIGURE 6

State Power

(y,W

Dissipation
Capability

For 10 J
Device)

Failure

Mode

source leads to minimize the lead inductance (Ld.
Doing this is critical because any package or lead
inductance will cause the FET to suffer an additional
transient voltage over that of the device clamp voltage (Ve). That is, the drain source voltage, Vos, is
given by:
Vos = Ve + Ld).l/at
For example, a 5 Amp pulse rising in 5ns will cause
Ii 10V increase in Vos over Ve for a lead inductance
of only 10nH, about 1'h" of AWG #18 wire. Thus the
rating of the FETwili have to be increased to accomodate this overshoot.

Polarity

Other
Properties
And Notes

'Defined as VdV BR measured for a particular unit.

Protective Device Comparison
TABLE 1.

DeBus

III. Choice Of Protective Device And Circuit

The ideal device to insure operation of the FET
within its limits would have these properties:
1. Low clamping ratio-to allow optimum utilization of the available FET safe operating area
while abruptly limiting just below FET breakdown.
2. Low capacitance-to take best advantage of the
inherently fast FET switching.
3. Low cost-to reduce overall systems cost by
reducing FET cost without excessive protective
device cost.
4. Sustantial steady-state power rating-to permit
use of the transient protection device to
"mop-up" any remaining repetitive voltage
transients after application of snubbing techniques.
5. A variety of close tolerance breakdown voltages-to closely match the FET requirement.
6. Low inductance and fast switching-to clip
short (30ns) spikes which can be FET-fatal!
7. Shorted catastrophic failure mode-to save the
relatively expensive FET under extreme overload.
Table 1 compares the various protection devices
available. The MOV is too soft in its clamp property
and is specified in large voltage increments. The
standard Zener is not rated for clamp properties and
is not fail-safe. Gas tubes are unsuitable due to their
arc conduction mode and wide breakdown variation,
The Transient Voltage Suppressor (TVS) or TransZorb Diode, if properly specified and selected, is the
only device which can fulfill the requirement.

Load

Drive

FET ProlecUon Drain To Gate-Not Recommended
FIGURE 7

A suggested technique which has been proposed
by FET manufacturers for protection is shown in
Figure 7: A Zener rated below the FET breakdown
(minus Vgstonl) is placed from drain to gate. During a
transient the FET is turned on and can handle a much
higher current than the Zener diode alone. The configuration has some serious problems:
1. Limited Zener availability at high voltages.
2. Zener capacitance can induce an unwanted
dv/dt turn-on of the FET which could be fatal.
3. Increased power dissipation in the FET.
651

Experience has taught that a protection diode from
drain to source is better as shown in Figure 8. Note
that a gate to source Zener is always advisable, regardless of the drain voltage breakdown protection
scheme.

industry. The key specifications are the range of
breakdown voltage (V BR), usually specified at 1 mA,
and the maximum clamping voltage (Ve) usually
specified at the rated power level of the diode. The
clamping voltage is specified for a 10 x 1000l1S impulse (10I1S rise, 1000l1S decay to the 50% point)
developed by the U.S.A. Rural Electrification Agency
(R.E.A.) to simulate lightning surges on telephone
lines. The measured voltage is the sum of the breakdown voltage and a non-linear IR drop; both components are temperature sensitive. Since the specifications do not fit a snubber/clipper application, additional data and some data manipulation is necessary
in order to determine if a diode will fit a particular
requirement.
Figure 9 shows the voltage (Ve) and current (Ipp)
waveforms for the 10 x 1000 impulse used for the
standard clamping voltage test on a 200 volt breakdown device. The voltage wave shows the increase in
voltage above the breakdown voltage of the diode
at 25° C. The initial rise in voltage is the result of diode
resistance. The slow rise to the peak value of 46V at
about 800l1s after pulse application is caused by the
temperature rise of the junction. The major temperature dependent voltage change is caused by the
temperature coefficient of the avalanche breakdown
voltage.

DeBus

Load

Q

FET Protection Drain To Source-Preferred Circuit
FIGURE 8

250
240

IV. Selecting The Transient Voltage Suppressor
Selecting the rating of the protector is a nontrivial task. Th is is caused by the lack of correspondence between the manner in which the TVS diodes
are specified versus the service conditions experienced in the application. The TVS must be selected
on these criteria:
1. Minimum breakdown voltage must exceed maximum bus voltage under worst case conditions.
The peak bus for a high line (135/270V) condition is 191/382 volts.
2. Maximum clamping voltage (Ve) at the peak
applied TVS currents should be under the
MOSFET minimum breakdown voltage. Peak
TVS current will approximate peak switch
current. For a supply with an 8 Amp switch
current, TVS peaks of 3-5 Amp are typical.
Ve must be determined for the TVS at its
operating current at the extremes of the
expected ambient temperature. The MOSFET
temperature coefficient must also be considered.
3. The TVS continuous power dissipation must be
sufficient to handle the average power experienced by the TVS because of the repetitive current pulse applied.
Specifications for Transient Voltage Suppressor
Diodes are generally keyed toward suppressing a
large single shot impulse. The format was developed
years ago using standards devised by the telephone

230

220

210

200

Clamping Voltage Response For A 10 x 1000 Impulse
FIGURE 9

The waveforms of Figure 9 do not permit an accurate observation of the IR drop. A short test pulse is
needed. Figure 10 shows the current and voltage
waves when a pulse of about 511S width is applied.
225

220

215

210

205

200

Clamping Voltage Response for a Sus Pul..
FIGURE 10
652

0.9 ohms. At currents different from the specification,
t. V may be found by adding an IR drop correction
term to the voltage from Equation 1.
The resistance RB varies somewhat proportionately
with diode breakdown voltage as shown on Figure 13.
This data can be used directly to estimate voltage
levels for diodes in the 100 t0200 volt range. Notethat
RB of a 200 volt diode is over twice that of a 100 volt
part. Consequently, diodes with breakdowns over
200 volts are usually made by stacking die. For example, a 400 volt part is composed of two 200 volt
diodes. The data of Figure 13 is therefore useful in
estimating clamping levels for all diodes with breakdowns over 100 volts.

Some thermal effects are evident because the voltage
does not track the fall in current; however, by reading
the voltage at the peak of the current wave, the temperature contribution is small. Thus the IR drop is
only 13 volts at the specified test condition of 5.5A.
Note that the temperature contributed component
of voltage rise is almost three fourths ofthe total. This
proportion has been found to be roughly the same
regardless of the TVS diode voltage. Therefore, a
more reasonable estimate of the voltage rise (t. V)
above breakdown under short pulse conditions (Le.,
negligible instantaneous heating) can be found from:
t.V = (VCI10

1)

x 10001 - V(BR)max)/4

1.0

The voltage from Equation 1 is roughly correct for
the test current Ipp specified fortheclamping level Vc.
Typical data supplied by the manufacturer is shown
in Figure 11. It indicates a fairly constant resistance
at currents above one ampere. At low currents the
avalanche resistance increases rapidly with decrease-

~
UJ

~
..:

ITi

1 5K'E200A

is

.6

V

I-

CIl

~

a:
:.::

18

:.::

.8

Q.

20

z

.4

...J

~ .2

..:

:i!00

16
14

V

~ 12

a:

0/ V

'/
~

~

8

00

..:

..:
w

u1
~
w

~

I-

...J

o
>
:>

1400
.......
-g 1200
o

: 1000
c

-a

800

CD

Q.

> 600
400
200
OT---~--~--~--_r--_+--_+--~--~----r-~

o

2

3

456
IT (nH)

7

8

Figure 6 - Peak Voltage at Load VS. TVS Series Inductance
ESD Simulations: Receiver Case

677

9

10

3000~--~--~----~--~--~----~---,--~

:

~ 2000 .....
"0

o
o

·········1·················I·················r···············1·················:·················j·················1·················

1000 .............' ............ ··l·················~·················f·················j·················i··················1·············· ...
j

i

iii

!

-I

1_. -~- I--~_-4---~ ~---~---~---

~

__

00:

-2000--

-I---L--~--r---!---~--J----

-3000+----r----r----r--~----;----+----+---~

o

2

4

6
8
10
Time (nanoseconds)

12

14

16

Figure 7 - Transient Plot for Run ESDI
1500~----~----~----~------~----~-----,

1000
-0

o

o

500

-I

-0
CI)

01

o

.2
(5

~

~

,

,

-500 .............. ······:·······················t·······················:·······················t···········..··········:····..·................

-1000 - - -

-+---l----~---T----r----

-1500+-----+-----+-----+-----+-----+---~

o

2

4
6
8
Time (nanoseconds)

Figure 8 - Transient Plot for Run ESDS

678

10

12

80r.---~----~--~--~----~---':----~---'

60

;;'-'

-0
0
0

~

C

.0t-

III

Cl
.E 20 '"
-0
> 0
.::I.

\

0

III

Q..

-20
-40

\.
0

40

20

60

80

100

120

140

160

Time (nanoseconds)
Figure 9 - Transient Plot for Run ESD9

10000
9000

~~~~~~~~r~~~f~~~~r~~l~~~~~

8000
>
' - ' 7000

.......
-0
0
0

~

6000

.
__ ··__ ·······-1···················
.
: ·····················t.'.·······················
.
C 5000 .. ---··--·-------·-····~·-······-·;····-··-- ..-f·--·-····
III

:
:
:
4000 .__ ....................:-................ __.... ;......···-------·······l·---·----··---··--····-t-·····-······.......... +.•---.......•...•.• --.•
-0
.......................i.......................!.......................
1.......................
> 3000
.::I.
0
2000 ··_-_·················t·········..············f····--·······__ ·_···_--j·· __ ···················1·······_-_····....o_···t·······················
III

Cl

.E

L.. . . . . . . . . . _. . . . . . . . . . .

Q..

1000

......................1.......................:.........·············r·····················l..···················T······················

0 ·······················;······················r···················-r···················T·····················r·····················
-1000+-----~-----r----~------r-----+-----~

o

50

100

150

200

Time (nanoseconds)
Figure 10 - Transient Plot for Run ESDIA

679

250

300

70=---~--~~--~--~--~--~--~--~~

··..·f·············+············j·..············;···········.. ·j···············j..············t·······UVtZ····

68

;

·r:. . . .·r:. . . . . . : r!. . . . . . r!. . . . . . r!. . . ·1-yl·0. .

>

101;10

-r............

..-.. 66 .......... ·t..............;............
'-'

........... .1... ..........1..............1..............1.............J..............l..............l..............J. . . . J..QjL. .......

==:~~I~~.t~l==~J~~;~+~~~==
r. . . -.

5 8 ..............~ ..............:.......
1

:.i

...-r.............+... -....
1

·1......·-....·l--..Rr;~·6"O..·*;:;s..··i i i CL=~70 pF

56+---~--~~~~---+'---+'--~·---·~·--~'--~

o

2

4

3

5

7

6

9

8

10

LT (nH)

Figure 11 • Peak Voltage at Load vs. TVS Series Inductance
ESD Simulations: Driver Case

70
60

...... 50
>
.....,
-0
0
0

40

..J

"0 30

~
~ ............············i·-·····················

•••••••••••••••••••• ""•••••••••••••••••••••••• j.•••••••••••••••••••••••• i ........................

~-.~-~t~=-~t~~-~~L==t~~~t==~=
r. . . . ·. . . r. . . . . . . +. . . . . . . . . . .

·t. . . . . . . . . . . ·

Q)
. . . . . . . . . r . ·..................
.E 20
-0
> 10 .......................+........................~.................... ..+.............--.........~--- ..----...-...........~........................

11/

::t
0
11/

D..

!

!

:

!

!

0 ·······················t························!·····................... ~.......................~ ........................~........................

----+----+---4---~-----.-

-10
-20

0

50

200
100
150
Time (nanoseconds)

Figure 12 • Transient Plot for Run ESD14

680

250

300

1400.-----~----~------,-----~----~----_,

1200 +......................;.. /
~ 1000

·-i········· -_···········i·······,,·,.. ···.... o'····i·.······ .................•..i ...•.......................i· .. ·· .................. j

"0

o

.3

800



.E
(5

>

~

.::t.

o
("'I.
"

V

")~i'oo

It

ty,

B~

Undefined State
(Reverse)

The voHage at which the part
goes into reverse breakdown at a
specified test current, usually 1 or 10 milliamps_

n§..V(BRJ -

683

Thyristor Surge Suppressor B..llB. - The
voltage at which the Thyristor Surge
Suppressor device begins to conduct
current, equivalent to the TVS BVR.
Thyristor Surge Suppressor \laQ- The
voltage at which, when reaching the
specified lBO, causes the device to "fire"
or "fold back" in the low-voltage forward
mode.
Thyristor Surge Suppressor IB.Q. - The
required current at VBO that causes the
devices to "break over or fold back".
Dl.S.Yc
- The maximum specified voltage at Ipp, the TVS max clamping voltage.
TIlSJPPM - The max rated current to test
the VC parameter.
Thyristor Surge Suppressor vt - The voltage drop across the device at the
specified It, after the device folds back.
11- The specified current at which Vt is
tested.
10 - This is a leakage spec with VWAfBet to
less than BVR or V(BR) on TVS or Thyristor Surge Suppressor devices.
Thyrjstor Surge Suppressor IH - This is
a spec. that is unique to "Thyristor Surge
Suppressor" technology. After the
device has been "fired," when the current
starts to decay and passes below a critical value (usually several hundred milliamps), the device turns off and resumes
its normal high impedance state
There is no TVS equivalent to IH (holding
current). This function is important; it
places certain critical limitations on application of the Thyristor Surge Suppressor device. Consider a power supply
output with a 1-amp current limit. If this
line is protected with a Thyristor Surge
Suppressor device with an IH=500mA,
problems will arise. If the is fired, it will
never shut off. The available current
from the power supply is greater than IH,
hence the part will stay turned on until
power is momentarily removed. This
classic condition requires attention
whenever designing in a Thyristor Surge
Suppressor device in a protection system.
This aspect of Thyristor Surge Suppressor device performance makes it ideal for
protection of data lines from lightning
and other true transient voltage conditions. Typical data lines have current
limiting set rather low. The telephone
system in North America has a current
limit of 250mA, so maintaining IH250mA
will ensure device turn-off after the passage of the transient.
Fig. 1 & 2 highlight differences in TVS
and Thyristor Surge Suppressor device
performance.

The following figures provide an explanation of circuit applications:

Data Line

Input

Ou....

-7"-

RGURE1.
The simp/9st and most dif9Ct application of a Tliytistor
Surge Suppr9ssor d9vic9 across a medium to slow data h.
If a positiw transient strik9 exceeds veo with suflicient lBO,
thl Thyristor SUTg9 Suppr9ssor d9viCII win firI, absorbing the

transilnt.

-

Figure 2
The same approach as Figure 1 with the addition
of steering diodes to absorb bidirectional transients. Most transients are bidirectional in nature.

f

FFr'

Figure 3
This is a further extension of Figure 2. With the
terminals marked T (Tip), R (Ring), and G
(Ground), this becomes the classic telephone line
protection scheme.

684

c

>IW

'"

0
In

Oul

1 J

01

Figure 4
This is data line protection where the tum on transient approaching VBO (225 -260Vj cannot be
tolerated. The resistor limits the cummt through
the TVS to VBO - VCIR, the duration of this pulse
is typically less than 1 usee, so a small TVS can
be used.

In

OUi

Figure 7

This is a power supply protection circuit. Th9
open col19ctor of Q1 is connected to the power
source at the input and should be used to shut off
the pow9r supply output for a f9W millis9COndS.
This p9rmits th9 cu"ent through the Thyristor
Surge Suppr9ssor d9vic9 to fall below IH before
restart b9gins.

Oul

o
In

RgureS
Similar to Figur9 4, but d9signed to hav9 reduced
parasitic capacitanC9 across th9 data line.

Oul

FigureS
This circuit is 9quiva/ent to Figure 7 with the addition of TVS clamp at th9 output. This pr9vents
VBO from appearing at th9 protection circuit's output.

Rgure6
This circuit is a bidirectional v9rsion of Figur9 4
with th910w capacitanC9 benefits of Figure 5.

General Instrument's Power Semiconductor Division will support
your design efforts and assist in applying these new solid state
protection devices. More protection performance for your dollarthat is our goal.

685

Using Rectifiers In
Voltage MultiplierCircuits
By Joseph M. B9Ck
Sr. Applications Engineer

Systems designs frequently
call for a high voltage, low current power source that needs
only minimal regulation. A few
familiar examples are CRT circuits, electrostatic copiers,
and photoflash applications.
Required voltages typically
range from 10 to 30KV and the
current demand rarely exceeds 5 milliamperes.

Rgure1A
Basic multipliercltr:uits.Half-wave Voltage Doubler
R.1

c,

CR,

When your design requires
this type of power source, you
may want to consider a voltage
muHiplier Circuit. They are inexpensive, easy to design,
versatile, and can provide virtually any output voltage that is
an odd or even multiple of the
input voltage.
This article explores the basic
operation of multiplier circuits
and discusses guidelines for
electronic component selection. .Since General Instrument Corporation is the
industry's leading manufacturer of rectifier products, we
will place special emphasis on
selecting rectifier diodes for
multiplier circuits.

:--e,

CR.

R,2

Rgure1B
Basic multiplier circuits.Full-wave Voltage Doubler
As

C,

e,

Figure1C
Basic multiplier circuits. Half-wave Voltage Tripier

BASIC OPERATING PRINCIPLES
Most voltage muHiplier circuits, regardless of
their topology, consist chiefly of rectifiers and
capacitors. Figure 1 shows three basic multiplier circuits.

A wide variety of alternating signal inputs are
used with multiplier circuits. The most popular
are sine and square wave inputs. For
simplicity, this discussion will be limited to sine
wave inputs; the calculations become somewhat more involved with asymmetrical signals.

The operating principle of all three circuits is
essentially the same. Capacitors connected
in series are charged and discharged on alternate half-cycles of the supply voltage. Rectifiers and additional capacitors are used to
force equal voltage increments across each of
these series capacitors. The multiplier
circuit's output voltage is simply the sum of
these series capacitor voltages.

VoUage Doublers· Figure 1A shows a halfwave voltage doubler circuit. It functions as
follows. On the negative half-cycle of the input
voltage, capacitor C1 charges, through rectifier CR1, to a voltage of Vm. On the positive
half-cycle, the input voltage, in series with the
voltage of C1 (Vc1 =Vm). charges capacitor C2

686

500

100

NONINDUCTIVE

NONINDUCTIVE

Although half-wave and full-wave multiplier
circuits can provide equivalent output voltages, there are some fundamental differences that should be considered. First, the
full-wave circuit has the advantage of higher
output ripple frequency (twice that of the halfwave circuit). In addition, the full-wave circuit
provides better voHage regulation than the
half-wave circuit, since the latter relies upon
one capacitor (C1 in figure 1A) to provide the
charging energy to a single DC load capacitor
(C2 in figure 1A). The full-wave circuit, however requires that the secondary side of the
transformer be capable of wIthstanding high
voHages (approximately 1/2 of the output.v~H­
age). For this reason, the half-wave multiplier
is usually the preferred circuit when high voltage outputs (Vo=kilovoHs) are required.

NOTES 1 Rise Time =7ns max. Input Impedance =
1 megohm.22pF
2 Rise nme = 10n5 rna.. Source Impedance =
50 ohms.

+0.5A

o

1\

1
I

-0.25

,

1\
-1.0A

Figure 2
Reverse r9COvery
time characteristic
and test circuit
diagram

1/
J

l/

-t 'cm l_ SET TIME BASE FOR
50/100ns/em

DESIGN GUIDELINES

through rectifier CR2 to the desired output
voltage of 2Vm_ Capacitor C1, which aides in
the charging of capacitor C2, sees alternating
current ("AC Cap") while C2 sees only direct
current ("DC cap"). In this circuit, the output
voltage and the input signal have the same
ripple frequency.

capacitor selection· The size of capacitors
used in muHiplier circuits is directly proportional to the frequency of the input signal.
Capacitors used in off-line, 60Hz applications
are usually in the range of 1_0 to 20uF while
those used in higher frequency applications,
say 10KHz, are typically in the range of .02 to
.06uF. In practice, it is usually easier, and less
costly, to use the same large capacitance
value for all capacitors, both "AC" and "DC"
type. The overall capacitive reactance of the
circuit must be conSidered, however, to determine the largest permissible value.

The same operating principle extends to the
full-wave voltage doubler circuit of figure 1B.
On the negative half-cycle of the input voltage,
capacitor C2 is charged through rectifier CR2
to a voltage of Vm. On the positive half-cycle,
capacitor C1 is also charged to a voltage of
Vm, through rectifier CR1. The series voltages of capacitors C1 and C2 (Vc1 =VC2=V~)
yield the desired output voltage: 2Vm. In thiS
case, capacitors C1 and C2 are "DC
capacitors"; they see no alternating current.
The output ripple frequency of the full-wave
doubler is twice that of the input signal.

The voltage rating of capacitors is determined
solely by the type of multiplier circuit. In the
half-wave doubler circuit of figure 1A, C1 must
be capable of withstanding a maximum voHage of Vm, while C2 must withstand a voltage
of 2Vm. In the full-wave doubler circuit of
figure 1B, both C1 and C2 must withstand
voHages of Vm. The half-wave voltage tripler
of figure 1C requires C1 to withstand a voltage
of Vm and both C2 and C3 to withstand voltages of 2Vm. A good rule ofthum~ is to. select
capaCitors whose voltage rating IS approximately twice that of the actual peak applied voltage. For example, a capacitor which
will see a peak voHage of 2Vm should have a
voltage rating of approximately 4Vm.

Voltage Tripier· Higher output voltages are
possible through the use of a half-wave voltage tripler circuit, shown in figure 1C. T~is
circuit operates as follows. On the negative
half- cycle of the input voltage, capacitor C1
charges through rectifier CR1 to a voltage of
Vm. On the positive half-cycle, the input voltage, in series with the stored voltage on C1
(VC1=Vm), charges capacitor C2 through rectifier CR2 to a voltage of 2Vm. On the next
negative half-cycle, the charge on C1 is
replenished. At the same time, the input voltage, in series with the store~ voltage on C2
(Vc2=2Vm), charges capaCitor C3 through
CR3 to a voltage of 2Vm (Vc3=Vb-Va=(Vm
+VC2)-Vc1=2Vm). Vc1 and Vc3, in series,
provide the output voltage of 3Vm. In this
case, the output ripple frequency is equal to
that of the input signal.

Rectifier Diode Selection
Several basic device parameters
should be considered:
RepetitIVe Peak Reverse Vonage (V"m) Repetitive peak reverse voltage is the maximum allowable instantaneous value of
reverse voltage across the rectifier diode. Applied reverse voltages below this maximum
value will produce only negligible leakage cur-

687

The reverse recovery time (trr) specification is
very dependent upon the circuit and the conditions being used to make the measurement.
Several industry standard trr test circuits exist
(figure 2 is the test circuit used for the GP0240). Therefore, it's very important to note
which test circuit is being referenced, as the
same device may measure differently on different test circuits. Furthermore, the trr
specification should be used for qualitative,
not quantitative purposes, since conditions
specified for trr measurement rarely reflect
those found in actual "real life" circuit operation. The trr specification is most valuable
when comparing two or more devices that are
measured on the same circuit, under the same
conditions.

rents through the-device. Voltages In excess of this maximum value, however, can
cause circuit malfunction --- and even permanent component damage --- because
significant reverse currents will flow through
the device. For example, General
Instrument's GP02-40 rectifier diode has a
peak reverse voltage rating (Vrrm) of 4,000
volts, maximum. Applied reverse voltages
of 4KV or less will produce a maximum
reverse leakage current, IR, of 5
microamperes through the device when
operated at room temperature (25 • C). In
most cases, this leakage current is considered negligible, and the device is said to
be completely blocking (IR=O).
In the case of the three circuits of figure 1,
the maximum reverse voltage seen by each
rectifier diode is 2Vm. So devices must be
selected with reverse voltage (Vrrm) ratings
of at least 2Vm.

Figure 3 shows the relationship between forward current and trr in the GP02-40. As you
can see, decreasing current flow in the multiplier circuit makes it possible to use higher
input frequencies. An increase in current flow
has the opposite effect. Ideally, the multiplier
network load should draw no current.

Reverse Recovery Time (t«) • In general
terms, reverse recovery time is a measure
of the time needed for a rectifier diode to
reach a state of complete blocking (IR=O)
upon the application of a reverse bias.
Ideally, this time should be zero. In reality,
however, there's a finite period of time in
which a stored charge at the diode junction
must be "swept away" before the device can
enter its blocking mode. This stored charge
is directly related to the amount of forward
current flowing through the device just prior
to the application of the reverse bias. Fortunately, since operating currents are very
low in multiplier circuits, reverse recovery
times are kept to a minimum. Nevertheless,
trr plays an important role in multiplier
design.

Peak FOlWard Surge Current (lfSm)· Apeak
forward surge current rating is given for most
rectifier diodes. Most often, this rating corresponds to the maximum peak value of a
single half- sine wave (50 or 60Hz) which,
when superimposed upon the devices rated
load current (JEDEC method), can be conducted, without damage by the rectifier. This
rating becomes important when considering
the large capacitance associated with multiplier circuitry.

Surge currents can develop in multiplier circuits, due to capacitive loading effects. The
large step-up turns ratio between primary and
secondary of most high voltage transformers
causes the first multiplier capaCitor (C1,
secondary side) to be reflected as a much
larger capacitance into the primary. For example, a transformer with a turns ratio of 25
will cause a 1.0 uF capacitance to be reflected
into the primary circuitry as a capacitance of
(1.0)(25) uF, or 625uF. At circuit turn-on, large
currents will be developed in the primary side
as this effective capacitance begins charging.

When selecting rectifier diodes, the frequency of the input signal to the multiplier
network must be considered. For symmetrical signal inputs, the device chosen must be
capable of switching at speeds faster than
the rise and fall times of the input. If the
reverse recovery time of the rectifier is too
long, the efficiency and regulation of the
circuit will suffer. In the worst case, insufficient recovery speeds will result in excessive device heating, as reverse power loses
in the rectifier become significant. Continued operation in this mode usually results
in permanent damage to the device.

On the secondary side, significant surge currents can flow through the rectifiers during
initial capaCitor charging at turn-on. The addition of a series resistance (Rs in figure 1) can
greatly reduce these current surges, as well

688

1~r-------------~~--~
GP02-40

HIGHER ORDER CASCADE
MULTIPLIER

Reverae Recovery Time (1Ir)

500

va.

Forward Current (10)

Still higher voltages are possible by using the
cascade multiplier circuit shown in figure 4.
The output voltage is calculated as:

200

I:

Vo

=(n)(Vm), as IL -- 0

eq.2

where n = number of capacitors or diodes,
assuming equal value capacitors, ideal diodes
and symmetrical signal input.
In theory, one can obtain any incremental output voltage increasing the value of n. In practice, however, voltage regulation and
efficiency become increasingly poor as n increases. The potential for voltage arcing must
also be considered as the value of n increases, and when higher output voltages are
required. Careful mechanical design can minimize arCing, to a large extent.

1DL-__-L~--~--~--~--~
1D
100 200
500 1000
/0 (mUIIA'I1ps)

Figure 3

T" as a function of forward cu"ent

as those in the primary circuitry. For example,
the GP02-40 has a forward surge rating, Ifsm,
of 15 amperes. Considering a maximum
secondary voltage of 260 Vrms, 60Hz, the
calculation of Rs is as follows:
RS ~ Vpeaklljsm
eq.1
RS ~ (1.41)(260)115
RS ~24.4 ohm

From a pure circuits standpoint, voltage multipliers are relatively easy to design. The
selection of circuit components, however, is
one facet of the "overall design" that should
not be taken for granted or trivialized. Careful
consideration of all component parameters is
the only way to ensure both reliable and predictable circuit performance. Put another way,
ideal circuits require ideal circuit components.
v.

(n·1jVrn

Other Parameters· Of lesser significance
are the forward current rating, 10, and maximum forward voltage, Vf.
Forward current, 10 • As stated earlier, in the
ideal multiplier configuration the load will draw
no current. Ideally, the only significant current
flow through the rectifiers occurs during
capacitor charging. Therefore, devices with
very low current ratings (hundreds of milliamperes) can be used. It must be noted,
however, that the forward current and forward
surge current ratings are related, since both
are a function of silicon die area. Generally
speaking, devices with a high surge current
rating, Ifsm, will also have a high forward
current, 10, rating, and vice versa.
Forward VoUage, VI-In practice, the forward
voltage drop, Vf, of the rectifiers does not have
a significant effect on the multiplier network's
overall efficiency. For instance, the GP02-40
has a typical forward drop of 2.0 volts when
measured at a current of 100 milliamperes. A
haH wave doubler with an 8KV output will have
less than .05 percent (2x2V/8KV) loss in efficiency due to the forward voltage drops.

689

F/gure4

Cascade multiplier

To find the ideal rectifier for your voltage multiplier, consult the General Instrument Power

Semiconductor Dlvlalon "",. Book. You CIIn
obtain a copy by phoning 516-847-300D or by
writing to Genllt'81 Inatrument Corp., Power
Semiconductor Division, 10 Melville Pllrk
Road, Melville, NY 11747

Transient Voltage Suppressors Ideally
Suited for Automotive Applications or
Harsh Environments
Gloria M.Luna
Automotive Applications Engineer

The combination of durability and high
temperature performance has come
together in the form of General
Instrument's new, patented PAR (Passivated Anisotropic Rectifier)" process.
Transient voltage suppressors produced
by this process exhibit high tempera~ure
reverse bias stability, excellent transient
energy capability, and low dynamic impedance, and are ideally suited .for the
harsh environments of automotive applications.ln a standard diffused junction
process there are several conditions
present that could affe~t the integrity .~f
a device. These conditions become cntlcal to the performance of the device as
the junction temperature is inc~e~sed
and the device is stressed to the limits of
its operation. They include the presence
of a high field at the surface of the junction when a voltage is applied. The
electric field (V/cm) that occurs over the
depletion layer of. !i device det~rmines
the voltage capability of the device:

A

~
N-

B

~SiliconDiOXide
~,

p.

c

o
Figure 1

E(x)= dV(x)

dX

PROCESS TECHNOLOGY

This field is not only present in the bulk
of the device but also at the surface.
When this electric field sees ionic contaminants on top of the surface and along
the edge of the die, the contaminants will
ionize and the resulting charge will distort the original field. This distortion can
increase local leakage current and cause
localized breakdown as well as thermal
runaway. By growing an oxide directly
on the surface of the junction layer, these
contaminants can be eliminated. In addition, by employing a positive bevel
angle construction, the field at the surface would be diminished to a point
where it could not contribute to device
degradation. General Instrument e~­
gineers have combined these features In
a process that provides reliable devices
under the high temperature conditions of
the automotive environment as well as
one that lends itself to state-of-the-art
semiconductor manufacturing processes. Thus came the development of the
PAR process.
"patented by General Instrument

As illustrated in Figure 1(A), we begin
with a P+ device and an N- surface layer.
We then diffuse in a shallow N+ layer,
deposit and subsequently etch a silicon
nitride layer that functions as a n:rask as
shown in Figure 1(B). The resulting pattern is then anisotropically etched to form
a mesa structure on the top side of the
wafer. By utilizing this anisotropic
process we are able to achieve a uniform
45 degree angle all around each die.~e
oxidize the silicon surface where there IS
no nitride, which results in a grown
silicon dioxide layer that is ten times as
thick as the silicon nitride. This oxide
layer forms around the mesas ~ut n~t on
the original nitride as shown In Figure
1(C). As the N+ layer is driven deeper
into the junction, a phenomenon occurs
which results in a curvature between the
N+ and the N- surface layers as illustrated by Figure 1(0). This curvature
is essential in achieving higher breakdown voltages. The final step includes
the removal of the top silicon nitride layer
and the sintering of a metalization layer
690

composed of titanium, nickel, and silver
deposited on the top and bottom surfaces. This is also illustrated In Figure
1(0).
E=v

;r

Eodgo = g§Y

= 10V/IL

2.5m

Econtor = 25V = 25 V/fl

10DY

"'ijL

,

,

,

259'- __ "--- -------- .
-_-_-_-_-_-_-_~~l

DY

Flgur.2(A)
Eodgo = 25V

= 10V/IL

2.5m

Econtor = .25V = 25 V/IL
1j.L

junction (greater than1 OV/u).ln contrast,
the equipotential lines for a standard diffused junction device are illustrated in
Figure 2(B). With the breakdown occuring at the edge of the junction, the incidence of high leakage and localized
breakdown associated with field distortion is increased, particularly when the
device Is exposed to extreme environmental and operating conditions. In addition, this tailored junction affords the
following advantages:
1. By having the breakdown occur over
the large bulk area of the device, large
energy surges can be safely handled
without damage or deterioration to the
device.
2. By modifying the edge of the device,
the results under high temperature
reverse bias are excellent.

AUTOMOTIVE TRANSIENTS
Figure 2(8)

This process Is notable for the following reasons:

1.

Reverse current measurements
remain stable and uniform.

2. Complete stability during high
temperature reverse bias and thermal
cycling

3.

Low electrical contact resistance.
This process results in several important features unique to the PAR
construction. First, particle contamination is virtually eliminated by the use of a
grown oxide to passivate the junction.
Second, by utilizing a positive bevel
angle construction, we are able to lower
the field at the surface. Due to the fact
that the reverse breakdown voltage of a
device is determined by the width of the
high ohmic region, the curvature of the
N+/N- junction becomes an important
design criteria in obtaining higher breakdown voltages at the surface of the
silicon. This promotes a breakdown
along the bulk of the junction rather than
atthe edge. As illustrated in Figure 2(A),
the curviture of the junction results in an
increase in the distances of the equipotential lines at the surface. By calculation, all of the breakdown occurs at the
bulk of the device rather than at the edge
because the field at the edge does not
excede the critical value of the layers of
material outside of the silicon near the

Electronic devices that operate in the
automotive environment are subjected to
very extreme conditions. Temperature,
humidity, exposure to various liquids,
vibration, voltage changes, and surge
voltages are just some of the factors to
be considered in the automotive environment. Temperatures can rise to as high
as 200 degrees C in the engine compartment and as low as -20 degrees C. As a
result, it is necessary that any electronic
device be able to withstand these conditions and operate within reasonable
limits so as not to degrade the performance of any system it may be operating
in. Transients in the automotive environment cover a wide range of energy levels
and time durations, as illustrated in Figure 3. These transients are distributed
throughout the electrical system of an
automobile and can occur at any time.

60Vmin
LOAD
DUMP (mSec)

+85V
NOise

-13V REVERSE
BATTERY
(J.LSec)

SUPPLY VOLTAGE

Flgur.S
Possible automotive supply voltage variations

691

Some of the most serious types of transients are:

LOAD DUMP TRANSIENT

1. A load dump transient occurs when
the alternator load is suddenly dropped
due to battery disconnection. Voltages
can range from 30 to 125V for up to 400
ms. This is considered the worst of all
types of transients and was made a test
requirement for all electrical systems
and modules designed for the automotive industry back in the 1970's. See
Figure 4

Typical VaiutIII
Vp~-70V

T=200mSec

36.8%Vp

Figure 4

2. Transient voltages generated when
the inductive loads (relays, solenoids,
and switches) are turned off. See Figure5.
INDUCTIVE LOAD TRANSIENT

3. Transient voltages generated when
the ignition switch is turned off.4. Transient voltages generated by inductive or
capacitive coupling when electrical
equipment (such as the ignition system)
is turned on.
By connecting a transient voltage suppressor across the output of a circuit or
connecting them within the circuit, you
can protect delicate components and
systems by clamping these transient voltages. Because the failure threshold
level of a system Is determined by its
weakest component, it is wise to insure
that a TVS would be able to withstand all
of these conditions.

~~--~----~~--~I---------36.8%Vp

Typical Valu..

Vp =-79.V

T=200mSec

FigureS

RESULTS OF HTRB TESTING
AT 80% RATED VOLTAGE

RELIABILITY
Due to this increased focus on reliability
under harsh environmental conditions,
the ability to quantify reliability has become an important criteria in selecting
components.Failure modes fall into two
broad categories--those related to
defects in the silicon die, and those related to packaging of the die. Die defects
relate to field distortion, oxide defects,
surface charge or microcracking. By
using devices manufactured with the
PAR process, the incidence of these
types of failures is greatly reduced.
These failures can be provoked by high
temperature reverse bias testing. In this
test, the devices are reverse biased by
applying 80% of the rated reverse voltage to the device and heating the device
to at least 150 degrees C. This test can
run anywhere from 250 to 1000 hours to
insure device durability.Shown in Figure
6 are the results of HTRB testing on PAR
produced transient voltage suppressors

0.1

............. '! •. " .•.•..•....

:

:

!

:

:

1................f.........

I

•..•••••••••••} ...............

10

............. ~ .... - •••••••••• ~ •••••••••••••• . : .

!

~

! ...............;:.................,
o

.!....•....•....
!

• ••••••• ~ •••••••••••••

,.'.',' . . . . . . +. . . . . . .+...... . :..............+. . . . . ..

~

•••••••••••••• ~ ••••••••••••.•• i .•••••••••

!...............!'.............

~ : =~~~~~--~~~~~t~-~::~t-~~~:
!._....... +.............
u...... · ··········. ···i···u...........

10

n...

:

!

!

:

:
:

;
;

....~ ............... ~.................!............... +.............
;

:

2.3

:

181

111

.

TEMPERATURE

Figure 6
Definition: Failures> 5J,I.A IR at 25'C
Failure Rate - - fails /1 rfhi

692

rated at 6.BV, 36V, and 100V. In addition,
reverse leakage remains within a very
tight distribution and very little drift is
observed in values before and after
test.Packaging defects can occur from
fatiguing of the bond or the presence of
atmospheric vapor onto the die surface.
Particularly in the automotive environment, semiconductor devices can be
subject to thermal and electrical stress
causing cracking, separation or voiding
of the bond between the die and the lead.
These conditions can lead to degrading
operation and eventually, thermal
runaway.By thermally cycling the device
from low (typically -65 degrees C) to
elevated temperatures (typically 150
degrees to 170 degrees C) with a dwell
time of 5 minutes at each temperature,
the bond can be stressed to the point of
failure to insure the integrity of the
device. The results of temperature
cycling for PAR devices is shown in
Figure 7.

RESULTS OF TEMPERATURE CYCUNG TESTING

~

;:

;:

·

,

:

..:

i~

············f········.··.·.·.·..·.... ··f ...... ·.·.··............J~
:

·:·
10000

.........................! ........................~.............. ......

DELTA
ATj=25'C

130'0

FIT = 100 parts/millie
failure rate

Figure 7

PART NUMBERS
The devices are available in three different power
ranges utilizing the following part numbers:
P4KA (400 Watts) 6.BV to 43V
P6KA (600 Watts) 6.BV to 43V
1.5KA (1500 Watts) 6.BV to 43V
6KA24 (6500 Watts) 24V
TPSMA (400 Watts Surface Mount) 6.BV to 43V
TPSMB (600 Watts Surface Mount) 6.BV to 43V
TPSMC (1500 Watts Surface Mount) 6.BV to 43V

693

694

QUIKNOTES ™

I

I
695

GI Transient Suppressor QulkNote'" Serlea: No. 100

What is a Silicon Transient Voltage Suppressor?
and How Does It Work?
O.M. Clark and F.B. Hartwig

Transient voltage suppressors (TVSs) are
devices used to protect vulnerable circuits from electrical overstress such as that caused by electrostatic discharge, inductive load switching and induced lightning.
Within the TVS, damaging voltage spikes are limited
. by clamping or avalanche action of a rugged silicon pn
junction which reduces the amplitude of the transient
to a nondestructive level.
In a circuit, the TVS should be "invisible" until
a transient appears. Electrical parameters such as
breakdown voltage (V(BR) ), standby (leakage) current
(ID), and capacitance should have no effect on normal
circuit performance.
The TVS breakdown voltage is usually 10%
above the reverse standoff voltage (VR), which
approximates the circuit operating voltage to limit
standby current and to allow for variations in V (SR)
caused by the temperature coefficient of the TVS.
When a transient occurs, the TVS clamps instantly to
limit the spike voltage to a safe level, called the clamping voltage (Ve), while conducting potentially damaging current away from the protected component.

Eie..2.

Transient current is diverted to ground through TVS;
the voltage seen by the protected load is limited to the clamping
voltage 'eve' of the TVS.

K

ran5ient
Voltaee

+

Clamped
~ansient

Transient
Current

TVSs are designed, specified and tested for
transient voltage protection, while a zener diode is
designed and specified for voltage regulation. For transient protection, the deSigner's choice is a TVS.

.EiaJ.,.
Transients of severa' thousand volts can be'clamped' to a safe 'eve'
by the TVS.

!\ Tran5ient Peak

,,
,
,,

'\\

I

\
\

\

\

\

\ IC Failure threshold
+30V t - - - - j " " " " - - - " r - - - - - - I

+2OV
+12V

"
11(S Clamping
1 - - - -....... Vol.age (Ve)

t---..J

Normai operating

The surge power and surge current capability
of the TVS are proportional to its junction area. Surge
ratings for silicon TVS families are normally specified
in kilowatts of peak pulse power (Pp) during a given
waveform. Early devices were specified with a
10/1000jJs waveform (10jJs rise to peak and 1000jJs
exponential decay to one half peak), while more recent
product introductions are rated for an 8/20jJs test
waveform. Power ratings range from 5kW for
10/1000jJs, down to 400W for 8/20jJs. This power is
derived from the product of the peak voltage across
the TVS and the peak current conducted through the
device.
(continued)

voltage
Time

TransZorb® is a registered trademark of General Instrument
696

01 Transient S\lpprassor QulkNote'" Series: No. 100

What is a Silicon Transient Voltage Suppressor?
and How Does It Work?

Packaging covers a broad spectrum according the
need. Discrete axial leaded components are available
in peak pulse power ratings of 400W, SOOW, 600W,
1.SkW and SkW. The higher power devices are most
frequently used across power buses.

(cont.)

For lower power, high density applications,
suppressor arrays are available in both DIP and small
outline surface mount configurations. Arrays are normally used across data lines for protecting 110 ports
from static discharge. Specialized low capacitance
TVSs are available for use in high data rate circuits to
prevent signal attenuation.

&Q.
TransZorb@transient voltage suppressors
are offered in axial, surface mount and array packages.

TVSs have circuit operating voltages available
in increments from SV up through 376V for some
types. Because of the broad range of voltages and
power ratings available, (as well as the universal presence of transient voltages) TVSs are used in a remarkably wide variety of circuits and applications.
Integrated circuits normally feature on-Chip
protection which is usually provided by internal
resistor- diode networks or SeRs. There is insufficient
space on a microchip to provide more than minimal
protection, so the higher power, external protection of
a TVS should be added in those applications where
damaging transient voltage threats exist.
The loss to US industry due to transient voltages exceeds $10 billion per year. TVS devices are an
important part of the solution.
General
Instrument
and
General
Semiconductor Industries Inc. have combined to
become the world's leading supplier of silicon TVS
protection.

I'·
j

~

I

697

GI TransIent Suppressor QulkNote lM Series: No.101

Determining Clamping Voltage Levels
for a Broad Range of Pulse Currents
0.1,4. Clark and F.B. Hartwig

In TransZorb® transient voltage suppressor
(TVS) data sheets, all clamping voltage (Ve) levels are
specified at maximum rated peak pulse current (Ipp).
How do you interpolate the Vc levels for transient currents (Ip) other than the rated maximum?
This figure is easily calculated using the parameters on the data sheet with the formula:
Vc

=(lp/lpp)(Vc max - V(BR) max) + V(BR) max
Where:

=teet pulee current
=max rated pulee current
Vc max =maximum epecified

The curves derived from measured data are
compared with calculated values in figure 1. Surge
tests were performed for a 30 piece sample at 25°C
ambient with a 10/1 OOOIlS waveform.
Note that the curves based on actual surge
data have a more shallow slope than those from the
calculation, indicating that the devices are conservatively rated and that the formula shown provides a sufficient level of confidence for worst- case design.

Ip

E.!.e.1

Ipp

Vc vs Ip for 5MBJ10A and 5MBJ64A
Calculated and Measured

clamping voltage
V(BR) max =upper limit of
breakdown voltage

SM6J64A ISM6Jl0A
Clamping Voltage V6. 7. Peak Pul6e Current
r-----------------.IIO

This calculation assumes a linear increase in
Vc between V(BR) and Ve max, which is realistic.
Figure 1 illustrates the fiVe vs Alp relationship for two
voltage levels, 10V and 64V, in the 5MB 600W series
between V(BR) and Vc as determined by this formula.
Results are linear as expected. V(BR) max is used in
this calculation as it is the upper limit of specified
breakdown voltage.

~

<5

100:>

~
90,

20

Ii>

........
~

8Oa'\

- Meas.

~15

<§

2 "Meas.

a'\IO~-....25%~--~---~---¥
ImA
100%
75%

50'.

In those instances where V(BR) max is not
given on the data sheet, it can be closely approximated. For "A" suffix parts, multiply the minimum V(BR) by
1.11 and for nonsuffix parts, multiply by 1.22 to obtain
the maximum V(BR).

Percent Ipp
- 5MBJ64A calculated
- - 5MBJ64A measured
- 5MBJ10A calculated
- " 5MBJ10A measured

TransZorb® is a registered trademark of Generallnslrumenl Corp.

698

GI Transient Suppressor QulkNote™ Series: NO.102

Using the Power vs Time Curve
O.M. Clark and F.B. Hartwig

How can the maximum transient power and
current capability for silicon transient voltage suppressors (TVS) be derived for conditions other than the
10/1 OOOI-iS pulse specified on data sheets?
Most TransZorb® TVSs are rated for
10/1000I-lS non-repetitve pulse waveforms (101-ls being
the front time and 1000l-ls being the time from start to
decay to one- half of the peak value), which is an early
telecom transient waveform. Real world transients will
have varying pulse widths depending on the source.
Various standards describe other waveforms to reflect
these origins. For example, lEe 801- S describes a
lightning threat to data lines approximating 1.21S0I-ls.
The graph in figure 1 relates peak pulse
power with time for 600W suppressors; similar curves
exist for TVSs rated at other power levels. At 1000l-ls

Eie.1

the maximum pulse power (Pp) is 600W, the rating
condition of the device. The graph illustrates that at·
SOI-lS, the rating is 2100W and at 10,OOOl-iS (10ms), Pp
rating is down to approximately 200W. This applies to
all devices in the 600W series regardless of their operating voltage.
Under shorter pulse widths a TVS will sustain
higher pulse currents (Ip). For a width of SOI-lS, for
example, a TVS will sustain 3.S times its rated Ip at
1000l-lS, 600W. Thus the peak Ip of an 5MBJ12A
would increase from 30.2A at 10/1 OOOI-iS to 10S.7A at
1.2/S0I-ls. The current rating of an 5MBJ64A would
increase from S.8A to 20.3A.
Increasing the pulse width to 10,OOOl-iS will
reduce the Ip rating by a factor of .33 since the Pp is
reduced to 200W. An 5MBJ12A with an Ip of 30.2A at
1000l-ls would be reduced to an Ip of 9.9A for a
10,OOOilS duration.

Peak Pulse Power vs Pulse Time

This method can be applied to derive the Pp
and the Ip of a TVS from any other series (such as
400W, SOOW, 1.SkW, SkW,) using its published power
vs pulse time curve.
Most TVSs, including the examples shown
here, are rated for 10/1 OOOI-iS double exponential
waveforms. For one-half sine wave pulses, derate to
7S% of the exponential waveform value and for square
wave pulses, derate to 66%.

I
TransZorb® is a registered trademark of General Instrument
699

GI Transient Suppressor QulkNote™ Series: No.103

Protecting Low Current Loads in Harsh
Electrical Environments
O. M. Clark and F. B. Hartwig

Today's sophisticated electronic systems feature sensors, transducers and microcontrollers which
are often placed in harsh environments having exposure to lightning, heavy load switching and other damaging transients.
To protect these vulnerable circuit elements
from electrical overstress, high power silicon transient
voltage suppressors (TVSs) are usually the first
choice as illustrated in figure 1.

Note that the voltage clamping action of the·
TVS results in a voltage divider whereby the open circuit level of the transient appears across the combination of the source impedance and the TVS device.
Thus the TVS clamping voltage is subtracted from the
transient voltage leaving a net source voltage of 100V.
When the clamping voltage is high compared to the
transient peak voltage, the surge current is significantly reduced.
This circuit can be protected with a SkWrated suppression device such as the SKP28A
TransZorb® TVS which will easily sustain the surge
current.
An alternate and more economical approach
is to add a series resistor to effectively increase the
source impedance thus limiting surge current as illustrated in figure 2. Since the current drawn by the
transducer under normal operation is small «20mA
typical), performance is not adversely affected by
reduction in supply current.

.EieYrtl..
A 5kW TVS is required to handle the high surge current.

Consider as an example, a pressure transducer which operates at 28V, placed in an environment in which it encounters a transient voltage of
140V peak, having a .source impedance of 2 ohms
and a duration of 10/1 OOOl.ls. The failure threshold of
the transducer is 40V, therefore the TVS must clamp
at 40V or less. The current delivered by this transient
is:
I

=(l40V- 4OV)/ZQ =BOA

TransZorb@ is a registered trademark of General Instrument
700

.EieI.!m2

Series resistor reduces transient current allowing a much smaller
TVS to be used.

01 Transient Suppressor QulkNote™ Series: No.103

Protecting Low Current Loads in Harsh
Electrical Environments
For a small load current, 10mA, the voltag.e drop
across the added resistance is minimal, about .2SV for
a 2S ohm resistor. Adding this resistor reduces the
surge current to:
1= (l40V- 4OV)/(2.Q + 250) = 3.7A

This is less than one-tenth the surge current
without the resistor. A TVS with lower power rating is
able to· handle the resulting current. In this case a
SOOW suppressor, such as the SA28A TransZorb@
TVS, replaces the SkW device, saving board space
and cost.
An SA28A was chosen in this example since
its current rating for a 10/1 OOOIJS pulse is 11 A, easily
withstanding the 3.7A surge calculated above.
Although the maximum clamping voltage for the

SA28A is given on the data sheet as 4S.4V, the
reduced surge current is 33% of the suppressor's
peak capability, hence the clamping voltage would be
approximately 38V, within our stated limit. (Reference
QuikNote™ No.101)
Carbon composition resistors are recommended for this application, as they have sufficient energy
capability for the pulse condition. Steady state power
dissipated by the resistor (E x I) is 0.25W requiring a
O.SW rated resistor for adequate margin.
The examples given are for 2SoC ambients.
For elevated temperatures, derate accordingly.
Protected circuits derived within these guidelines
should be fully evaluated under operating and threat
conditions before use.

701

01 TransIent Supprassor QulkNota"" SerIes: NO.104

Protecting for Repetitive Transient Voltages
O.M. Clark and F. B. Hartwig

While lightning may not strike twice in the
same place, in circuits which involve power switching,
relays, or motor control, components may be continually subjected to very short transient voltages occurring at regular intervals. A TransZorb® transient voltage suppressor (TVS) will effectively limit the transient
voltage to a safe level, but some guidelines are needed for selecting the TVS which must handle this repetitive stress.
The average steady state power which the
TVS will dissipate can be calculated for recurring short
pulse widths. This average power must be within the
steady state power rating of the TVS selected for the
application. For example, in a motor drive circuit, the
switching of current through the inductance of the
motor winding continuously generates a pulse which
has a 4j.lS duration and a 25A peak current at a frequencyof 120 Hz.

In this application a surface mount TVS, part
number 5MBJ6.5A, is initially selected to protect the
control inputs of the motor drive circuitry because it
will clamp the single-pulse voltage to a maximum level
of 11.2 volts. But will this suppressor survive the continuous (120 times per second) application of this transient?
Puln interval, the invere;e of the frequency, i6:

11120 puln/eec =.0083 eec
Peak puln power ie the clamping voltage multiplied I>y the
pulee current:
Pp

=11.2V x 25A =280N

Average power can I:1e cloeely eetimated I>y multiplying the
peak power timee the ratio of the pulee width to ite interval:

P avg = 280W x (.0000046 / .00836)
=0.134W

The 5MBJ6.5A will dissipate at least one watt
steady state on a typical printed circuit board. Thus
the calculation shows that the suppressor safely dissipates the average power generated in the motor drive,
and clamps the transient voltage to a safe level. The
SMAJ6.8A device is another option for this application.

1.....~--8.3me----..1

E!sl!m.1
Repetitive transient generated by motor winding inductance

TransZom@ is a registered trademark of General Instrument Corp.

702

GI Transient Suppressor QulkNote™ Series: No.104

Protecting for Repetitive Transient Voltages (cont.)
Circuit board layout and engineering practices
which provide adequate heat sinking for the suppressor should be observed. Higher power dissipation can
be achieved by sizing mounting pads proportionately.
Where this is not practical, or if calculation results in
average dissipation greater than can be safely handled, a transient suppressor with a higher steady state
power rating should be selected.
Derating must be observed for operation at
elevated temperatures since all electrical ratings are
normally specified at 25°C. For the described electrical
conditions an ambient temperature of 75°C will provide 60% of the rated steady state capability.
SV.,ady
State
(Average)

The average power calculation shown here is
generally valid for pulses up to 10J.LS in duration,
occurring at intervals in the range of 100 to 1000J.LS.
Longer pulse durations approaching 1ms or more may
be sustained only if the interval increases correspondingly.
It may not be possible to determine the exact
conditions (current amplitude, pulse width, etc.) in
repetitive pulse environments, so some experimentation may be required to optimize the suppressor selection.

100
75

Power

50
(%of
Rated
Power)

25

o
T-Temperature -' C
L=50' C at Device Mounting Surface

~
Temperature derating for steady-state power dissipation

703

704

PACKAGING
BULK AND REEL
ALSO

RECOMMENDED
SOLDERING
PROCEDURES AND
SURFACE MOUNT
PAD SIZES

I
705

706

PACKAGING CODES

PACKAGE
CODE
2
3

4
5
6

7
8
9
10
11
12
13
14
15
16

17
18
19
20
21

22
23
24
26

27
28
30
32
35
36

37
38

39
40
41
42
43

44

PACKAGING DESCRIPTION
Bulk
5MB, 12mm Tape, 7" Diameter Plastic Reel
26mm Horizontal Taping and Ammo Packing
52.4mm Horizontal Tape, 13" Diameter Paper Reel Class I
5MB, 12mm Tape, 13" Diameter Paper Reel
Avisert, Cathode Up, Cathode Arst Off Reel
SMC, 16mm Tape, 7" Diameter Plastic Reel
Avlsert, Cathode Up, Cathode First Off Ammo Pack
SMC, 16mm Tape, 13" Diameter Paper Reel
Avisert, Cathode Down, Anode First Off Reel
SMA, 12mm Tape, 7" Diameter Plastic Reel
Avisert, Cathode Down, Anode First Off Ammo Pack
SMA, 12mm Tape, 13" Diameter Paper Reel
Panasert, Cathode Up, Cathode Arst Off Reel
Panasert, Cathode Up, Anode Off Arst, Ammo Pack
Panasert, Cathode Up, Cathode Arst Off Ammo Pack
GF1, 12mm Tape, 7" Diameter Plastic Reel
Panasert, Cathode Down, Anode First Off Reel
GF1, 12mm Tape, 13" Diameter Paper Reel
Panasert, Cathode Down, Anode First Off Ammo Pack
Panasert, Cathode Up, Cathode First of Reel, Lead Coat (Plastic DO-204AL only)
Bulk Pack for Special Axial-Leaded Formed Devices
52.4mm Horizontal Tape Ammo Pack, Class I
Panasert, Cathode Up, Cathode First out of Ammo Box, Lead Coat (Plastic D0-204AL only)
GL41 SMD 12mm Tape, 13" Diameter Paper Reel
DFS Bridge,16mm Tape, 13" Diameter Paper Reel
SpeCial Carton Packing method for Tube Packaging Products
0.5A Bridge SMD, 8mm Tape, 13" Diameter Paper Reel
GL34 SMD, Smm Tape, 7" Diameter Paper Reel
Bulk, Axial-Leaded Conductive Packaging
Standard Horizontal Reel, Class I (Metric 52.4mm) Conductive Packaging
Bulk, T0220, T03P Conductive Tubes
Bulk, Conductive Packaging for Bridge Rectifier
Miscellaneous Non-Standard T&R Packaging
Euroform, Reel, Cathode First Off Reel, Lead Coated
Euroform, Ammo Pack, Cathode First Out of Box, Lead Coated
Euroform, Reel, Cathode Last Off Reel, Lead Coated
Euroform, Ammo Pack, Cathode Last Out of Box , Lead Coated
52.4mm Horizontal Tape, 13" Diameter Paper Reel, 5mm Component Spacing
for D0201 Packages

45

Anti-Static Tube Packaging for T0220, T03P, DFM, SMDA and Arrays

46
48

GL41 SMD 12mm Tape, 7" Diameter Plastic Reels

50

GL34 SMD 8mm Tape, 7 " Diameter Plastic Reels
MPG06 Pseudo Radial Tape, Cathode Arst Out of Ammo Pack

Also available for aI/ packaging Electro-Static-Protection by adding the number "50" to the existing codes.
For example, "51" would be Bulk, Electro-Static Packaging. "54" would be TIR, Electro-Static Packaging.

707

I

GI TAIWAN BULK PACKAGING

TABLE 3

QUANllTY PEn
PACKAGING

lOX SIZE

PACKAOING

DEVICE TYPE

GROSS WEIGHT

INCtES

CM

EA.

LIS.

KG

BDDD
400D
2000
20DD
20DD
1000

0.55
1.03
0.78
0.77
0.77
0.87

025
0.47
1.87
1.89
1.89
1.82

4DDD

3.85
4.41
3.75
3.15
2.3812.20

1.75
2.0
1.7
1.43
1.0&'1.0
2.312.4
1.7
1.89
0.87

GI.34 SURFACE MOUNT
G1.41 SURFACE MOUNT
GFI SURFACE MOUNT
SMA SURFACE MOUNT
5MB SURFACE MOUNT
SMC SURFACE MOUNT

PAPER BOX
PAPER BOX
PAPER BOX
PAPER BOX
PAPER BOX
PAPER BOX

8.0x3.5xl.0
8.0 x 3.51 1.0
8.0 x 3.3 x.87
8.0 x 3.3 x .87
8.0 x 3.3 x .87
8.0 x3.3 x.87

ZO.3 x 8.8 x 2.54
ZO.3 x 8.8 x 2.54
20.3 x 8.4 x 2.2
20.3 x 8.4 x 2.2
20.3 x8.4 x 2.2
20.3 x 8.4 x 2.2

0015
00201AD
D02D4AP
002D4MB
D0411MPGD8

PAPER BOX
PAPER BOX
PAPER BOX
PAPER BOX
PAPER BOX
PAPER BOX
PAPER BOX
PAPER BOX
PAPER BOX

11.75 x 5.125 x 2.5
11.75x5.125x2.5
11.75 x 5.125 x2.5
11.75 x 5.125 x2.5
11.75x5.125x2.5
11.75 x5.125 x 2.5
11.75 x 5.1251 2.5
11.75 x 5.125 x2.5
11.75 x 3.5 x 1.0

29.8 x 13.0 x8.3
29.8 x 13.0 x8.3
29.8 x 13.0 x8.3
29.81 13.0x6.3
29.8 I 13.0x8.3
29.8 x 13.0 x 8.3
29.8 x 13.0 x 8.3
29.8 x 13.0 x6.3
29.8 x 8.8 x 2.54

5DDD
5DDD
3OOOI2ODD
1500
750
2000

19.0 LENGTH
20.5 LENGTH
20.5 LENGTH

48.2 LENGTH
52.0 LENGTH
52.0 LENGTH

50
50
30

0.12
0.3D6
0.572

O.DS

G4/G3
GP20
PeOO
PeKE
OF-MiOF-Il
TO-22D. CT
TIXIP

ANTI-sTATIC PLASTIC TUBES
ANTI-sTATIC PLASTIC TUBES
ANTI-sT.ux: PLASTIC TUBES

1500
400D

5.07/5.29
3.75
3.72
1.93

0.14
0.28

WG

PLASTIC BAGS

100

0.37

0.17

KBPMI2KBPM
GBU4,6,8
GBl
GSPCI2-35W

ANTI-sTATlC PVC TRAY
ANTI-sTATIC PVC TRAY
ANTI-sTATIC PVC TRAY
PAPER BOX

12.5 x 6.5 x 1.25
12.5.6.1 x 1.0
12.5.6.1.1.0
12.5 x ,2.5".7

31.7. 16.5 x 3.17
30.9 xI5.5.2.5
30.9 x 15.5 .2.5
31.7x31.7x4.3

120
250
400
100

0.53
2.42
2.20
4.83

0.24
1.1
1.0
2.1

GSPC1,G8PC8
K8l
G8PC12-35
KBU4.6.8

PAPER BOX
ANTI-sTATIC PVC TRAY
PAPER BOX
ANTI-sTATlC PVC TRAY

7.S x7.5x 1.43
12.2X6.1 xl.5
12.5 x 12.5 x 1.7
12.2 X8.1 x 1.5

19.0 x 19.0x3.6
3D.9x 15.5 x 3.8
31.7x31.7x4.3
30.9 x 15.5 x 3.8

100
300
100

1.2511.48
4.19
4.85
4.63

.57/.67

25D

1.9
2.2
2.1

GIIRELAND BULK PACKAGING
DEVICE TYPE

PACKAGING

CASE 1 (Da!01A)
CASE 7 (0015)
CASE 25 (0015)

PAPER BOX
PAPER BOX
PAPER BOX

SMOA(SO-8)
8 PIN DIP ARRAY
18 PIN DIP ARRAY

ANTI-sTATlC PLASTIC TUBES
ANTI-sTATIC PLASTIC TUBES
ANTI-STATlC PLASTIC TUBES

QUANllTY PER
PACKAGING

lOX SIZE

GROSS WEIGHT

INCHES

CII

EA.

LIS_

KG

8.8x3.1 xU
8.8x3.1 xU
8.8 x 3.1 x.l.8

22.5 x 8.0 x 4.5
22.5 x8.0x4.5
22.5 x8.0 x4.5

1000

1500
1500

1.23
1.38
1.50

.56
.628
.677

19.71.125
19.7x.62
19.71.62

5Ox.32
SOx 1.6
50xU

100
50
25

.032

.014

.101
.104

.047

.046

AMMO BOX PACKAGING

TABLE 4
AvaUable
Product Oudinas
D0-41,MPGD6
D02D4AP, 00-lS
D02D4AP, 00-41,
MPGD6,D01S
D02D1AD, G3,G4,GP2C
P600
Radial (Avisert,
GP10-E, RGP10-E
Panasert, Eurofonn) 00-41
Tape, Ammo Pack
Pseudo IRadial
MPGD6
Tape, Ammo Pack

Packaging
26mm Horizontal
Tape, Ammo Pack
S2mm Horizontal
Tape, Ammo Pack

Packaging
Codas
Pkg3
Pkg 23

PkgS,lS,
41
PkgSO

Dimension
"A"
9.7"
(247mm)

Dimension
1.7
(44mm)

Dimension
"C"
"3.7"
(9Smm)

10.0"
(2S4mm)

3.1"
(79mm)

4.3"
(llOmm)

13.4"
(340mm)
13.4"
(340mm)

1.S"
(47mm)
1.S"
(47mm)

7.9"
(200mm)
7.9"
(200mm)

708

"B"

Quantity

Box
3.0K
1.SK
3.0K
2.0K
1.0K
0.3K
2.SK
2.Sk

GI TAIWAN HORIZONTAL TAPE-REEL PACKAGING
A. AxIal 1ea<1Bd deVIces an> packed In acootdIIrrce wtlh EtA Standard RS-29I1-E and /he dlagfIUIIS riven below WIIIdr refer 10 /lies.. specI'callons.

TABLE 1
COMPONENT
CASE TYPE

...

UNITS
PER REEL

1.5KA(PAR)
D01S
D0201AD
D0204AP
D0204M8
0041

2000
4000
1400
4500

TAPE
SPACING
"8" FIG. 1

COMPONENT
SPAaNG
"A" FIG. 1

mm

In.

mm

In.
2.06
2.06
2.06
2.06
2.06
2.06

52.4
52.4
52.4
52.4
52.4
52.4

2.06

52.4

REEL
DIMENSION
"D"FIG.2

mm

In.

13.0
330
13.0
330
13.0
330
13.0
330
13.0
330
13.0
330
13.0
330
13.0
330
7113.0 1781330

MAX. OFF
ALIGNMENT
"E"FIG.1

In.

mm

.047
.047
.047
.047
.047
.047
See FiS. 12
.047
See Fig. 12

1.2
1.2
1.2
1.2
1.2
12

GROSS WEIGHT
PER REEL

kg.

lbe.
7.1
5.00
4.9
5.4
4.6
5.5
1.95
5.214.4
.3111.39

3.2
2.29
2.22
2.44
2.07
2.51
.885
2.3612.02
.14/.63

5500
1500
160012000
.50011500

.200
.200
.395
.200
.200
200
.472
.395
.157

5.0
5.0
10.0
5.0
5.0
5.0
12.0
10.0
4.0

OL34 Surf_ Mount

2500

.157

4.0

7113.0 178/.!3O

See Fig. 12

.471

.214

0L41 Surf_ Mount

150015000

.157

4.0

7113.0

1781330

See Fig. 12

.6211.49

.281/.68

OP1OERlldlal
OP1OE
OP20
MP006
MPOO6Rlldlal
PlOD

2500
5500
1400
5500
2500
800
1800n5OO
75013200
95013500

.500
.200
.395
.200
.500
.395
.157
.157
.472

12.7
5.0
10.0
5.0
12.7
10.0
4.0
4.0
12.0

13.0
13.0
13.0
13.0

330
330
330
330

.079

sooo

DFS Surf_ Mount
G3JG4
GF1 Surf_ Mount

SMA Surface Mount
SMa Surface Mount
sue Surface Mount

2.06
2.06
2.06

52.4
52.4
52.4

2.06

52.4

13.0
330
7.0/13.0 178/.!30
7.0/13.0 178/.!3O
7.01330 178/13.0

.047
.047
.047
.080
.047
SeeFiS·12
See Fig. 12
See Fig. 12

1.2

2.0
1.2
1.2
1.2
2.0
12

3.0
4.4
4.9
3.8
3.0
5.3
.241.99
241.99
.4411.39

1.34
1.99
2.22
1.71
1.34
2.39
.111.45
.111.45
.201.63

GIIRELAND HORIZONTAL TAPE / REEL PACKAGING
COMPONENT
CASE TYPE

UNITS
PER REEL

In.

H.

1400

CASE 1 (1.5KE)
CASE 710015
CASE 251 0015
D0214AA/215AA!SMB)
D0214AB1215AB ISMe)
SMDA(SO-8!
.5A BRIDGE ISMD!

COMPONENT
SPACING
"A" FIG. 1

4000

4000

looof.!ooo
3000
100012500
3000

TAPE
SPAaNG
"8" FIG. 1

mm

.395
.200
.200
.157
.472
.315
.315

mm

In.

10
5.0
5.0
4.0
12.0
8.0
8.0

2.06
2.06
2.06

52.4
52.4
52.4

REEL
DIMENSION
"D"FIG.2

In.

mm

14.0
356
14.0
356
14.0
356
7.0/13.0 1781330
330
13.0
7.0/13.0 1781330
13.0
330

Component
Body Diameter
Omm toSmm
(0' to .197')
Omm to5mm
(0" to 197')
S.Olmm to 10mm
(.197' to .394')

Components Spacing
'A'(Lead to Lead)
S.Omm ± O.Smm
(.197"±.02O")
S.Omm ± O.Smm
(197' ± .020')
10mm± O.Smm
(.394' ± .020')

I

In8ideTape
Spacing "8'
26mm ± 0.75mm
(1.024' ± .030)
S2.4mm ± 1.Smm
(2.052' ± .059')
52.4mm± 1.5mm
(2.062' ±. 059')

...

i

f

ctMILATIVE
PITCH

.047
1.2
.047
1.2
.047
1.2
see fig. 12
seelig. 12
see fig. 12
see fig. 12

GROSS WEIGHT
PER REEL

lbe.

kg,

4.9
5.0
5.0
1.43
1.43
.73/1.12
1.43

2.22
2.29
2.29
.65
.65
.33/.51
.65

'E'

!..on"U.D)

I I-

Not to
Exceed 1.5mm
(.059') over
6 Consecutive

Dimenskms in inchss and (mHUmsters)
NIX OFF
All6llMEllr

-;;r!CUlTEI
BOtH SIDES

Cumulative
Pitch Tolerance

(TIlLE U

.156 (4.0) NU:.
.o31"1.791"X.

--";;L'-;';-

*,258(5,35)
.111(5.00)

mm

The 'C' dimension of FIg.2 I. belW8en Ihe
flanges of the component reel and .hall be
.059'(1.5) to .31S"(8.00) greater Ihan Ihe
overaD taped component widlh 'W".

!IO"t5'!..

I

In,

COMPONENT AND INSIDE TAPE SPACING

TABLE 2

T

MAX. OFF
ALIGNMENT
"E''FIG.l

~
.197(5.011
709

FIG. 2

I

PACKAGING FOR RADIAL TAPING

PKG8
PKG12
PKG16
PKG20
PKG41
PKG43

FJG.4

REEL PACKAGING

AMMO BOX PACKAGING

AVISERT

PANASERT

PKG6
PKG8
PKG10
PKG12

PKG14
PKG16
PKG18
PKG20

EUROFORM
PKG40
PKG41
PKG42
PKG43

-I"C"1Arbor Hole Die.
30tS... 10
U.1Blt 0.1971

f:
CORE OIA.
:14.9 to 102

11.37 TO 4.021

55 ~X.
(2.17 ~X.I

330

~X.

-U3.0~X.I-

FIG. II" REEL DIMENSIONS

"C" Dimension between the reel flanges shall be governed by the overall width of the taped components
and shall be 1.Smm(O.057) to 8.0mm(O.31S") greater than the overall width
Package per EIA Standard RS-468-A. Available on reels or fan fold box (ammo pack) ..
All dimensions in mH6mefBrs and (inches)

710

AU dimensions in millimeters and (inches)

RGURE 6· EUROFORM
9.7 (.382)
8.5 (.334)

~
4.35

".0'

~-J

(•.040)

(0.21)

r

• COMPONENT
ALIGNMENT

2.72 (.107) BODY DIA.
2.03 (.OBO)

;&9

23.0
(g6)
(.905)

! .-t J I

1.40 MAX.

~

20.5
i8.5

(.807)
(.728)

75'.°0
:'....,

~

(.590)

0.9 (.035)
0.5 (.020)

10.0 MAX.
(.394)

Available tor GP10 products only utilizing 0.65mm (0.25") diameter leads for Euroform Tape and Reeling by adding
suffix -E" (GP1 OGE. 1N4004GPE). Lead coating is standard.

RGURE 7· PANASERT
".0'
(•. 040)

I

• COMPONENT
ALIGNMENT

2.72 (.107) BODY DIA.
2.03 (.080)

32.0 (1.26)
23.0 (.905)

tiT.

1.40 MAX.

~

5.5 MIN.

(.2m

~~~====~==~~-~~
9.75 (.384)
8.70 (.343)

0.9 (.035)
0.5 (.020)

19.0 (.748)
17.2 (.6n)

USER DIRECTION FEED

FIGURE 8 • A VlSERT

•

±2.0~

(•.040)

0'II11 -

1.40MAX.

~J@JJ._
I

: . - 13.0 (.512)-J
12.4 (.488)

II

• COMPONENT
ALIGNMENT

(.OS5)

~

2.0 MAX.
(.079)

19.0 (.748)
17.2 (.677)

9.75 (.384)
4.3(.169) DIA. 8.70(.343)
3.7(.146)

Available only for 0-41 style products utilizing 0.65mm (0.25") or O.76mm (.030) diameter leads for Panasert and Avisert
Tape and Reeling. Lead coating is not available.
Standard polarity cathode oriented away from sprocket holes (Optional polarity cathode oriented toward sprocket holes)

711

0.9 (.035)
0.5 (.020)

I

FIG.9 - PSEUDO RADIAL

12.7 (.54)
11.7 (.46)
2.54 (.0011
2.29 (.090)
DIA.

10.002.0
(10.00 •. 080)

\

t

'

·COMPONENT
ALIGNMENT

t

f

.66 (.026)
.56 (.022)
DIA.

1.0 (.040) MAX.

2051.80?)
19.5 (.767)

t

4.3 (.169)
3.7 (.145) DIA.

t
1.

0.6 (.025)

~~M''''
-

Dimensions in inches
and
(millimeters)

1.4 (.055) MAX.

Available only for MP606 product utilizing O.6mm diameter leads.
Maximum cumulative pitch tolerance: 1.0mm/20 pitch.

712

SURFACE TAPE REEL MOUNT PACKAGING
P

per EIA Standard R8-481·1 &·2

RMln •

• TopClMlr
tape thlCkn86S (11)
0.10

Bending radius
See Nota 2. Table 1

(.~ax.

J

18.4 max.
(.724 max)

2.0
(0.079)
AvaIlable
178 ± 2.0
(7.00!.079)

Embossed
carrier _ _ _ _ ' ....

_ I ---J

+-1lJo-+_-r..L,".I--50';'M-in-.-

-J

330 ± 2.0
(13.0± .079
Diameters)

tape

(1.969 min.)

_.:...l----P'-..-.13 0.5
cavity

<20

(0.512 .020)

20.2 min.
(0.795 min.)

Embossed

12.4 -0.0

(0.488~::

---1

FIG. /I

FIG. 10
TABLES
D

To.SIzt

Product

MM

(.059~.:I\I

1.75:1: 0.10
(.069:1: .004)

'_Size

Max.

Uln.

F

aMM

GL34

E

Po
4.0:1:10
(.157:1: .004)

8, 12.16

Type

I

1.5'JI

al
4.2
(.165)

Dl
1.0
(.39)

See Notal
Table 2

Mo.

P2

K
2.4
(.094)

(~·~t:gg~)

GL41

AI Oimonolo"" in Millirno1orl and (IndI..)

AoBoKo

t
0.400
(.016)

Constant
Dimensions
MIn.
R

W

25
(.994)

8.0:1: .30
(.315:1:.012)

~

~
.~

12MM

8.2
(.323)

5.5:1:0.051
(217:1:.002)

1.5

SMa-

(.059)

~
5MC

o.:s--

16MM

12.1
(.476)

7.5:1: 0.051
(.295:1: .002)

3.15:1:.10
(124:1:.004)

2.54:1:.10
(.100:1:-004)
2.87:1:.10
(.105:1:.004)

Ii.1'O~~)
·8:1:0.0
(.150:1:.003)

1 ...

P

l.~i2O:.~21
2.0:1:0.051
(.079!:.002)

30
(1.81)

4.0:1:0.10
(1.57:1:.004),

variable
Dimensions

12.0:1:.008
(473:1: .008)
8.0:1:.10
(.315:1:.004)
16.0:1:0.2
(.630:1:.008)

4.0:1:0.10
(.57:1:.004)

12.0:1:0.10
(.472:1: .004)

..

NOTES: 1. Ao eo Ko are doterrruned by co_en! slz•• Tho clearanco boIween tho """lJOI1OI1I and tho cavity must bo wtth,n 0.05 min. to 0.5 max. lor SMM tape and 0.05

_onto

min. to 0.850 max. for 12MM tape. In addition. tho

2. Tape and

"""""nonto connot rotate more than 20 _In tho d_ned aavity.

wli POOl around rodl.. 'R" without damage.

+- P o _

~

81 --+

i

i
I

t
tr--++-~---j

Ko

1

Note 1
...:..-----:"111 Table 1

For Machine Refrerence onlyL---.......L--+.....:.~~~--:..-~t--:=--_....JI
Including Dlaft ands Radii
Concentric Around Bo
FIG. 12

User DirectIOn of Feed
713

•

1

r-

For components
2.0mm x 1.2mm
and large!

CATHODE

ANODE
Device
Polarization

I

GI RECOMMENDED SOLDERING PROCESSING FOR SURFACE MOUNT AND
AXIAL-LEADED COMPONENTS

INFRARED REFLOW SOLDERING (IR)
WAVE SOLDERING
Soldaring with IR has the hlghaslylelds duo to conlrolled hoollng ralos and
solder liquidus times. Only the dwaU tim. and peak temperature limitations

Wave soldering has the highest solder temperatures and heat transfer rates
thai are imposed by omaN resin molded parts like transistors, intagtatad
circuits and surface mount components. The profile has short dwell time in
the solder pot and high preheat to minimize thermal shock In ceramic
components and temperature problems with resi'l molded parts.

250

P

200

232'C WAVE TEMPERATURE

IT

100'C MAXIMUM, 70-80' PREFERRE,DII

w

of resin molded components need to be considered.

NATURAL
COOLOOWN

200

Y

160'CFIRST WAVE

0:

:> 150

~

SECQNDWAVE

w

0-

::i 100

i!!

50
TIME IN MINUTES
TIME IN MINUTES

IR Reflow Solder Profile

Wave Soldering Profile

VAPOR PHASE REFLOW SOLDERING
Vapor phase sokiering has the second highest heat transfer rate so care must
be used. Preheating the assembly and minimizing the dweU Ume above the
solder liquidus temperature is needed for minimum defects.

212'C
200

P
w

0:

~

150

0:
W

0-

100

"...
W

50

2
TIME IN MINUTES

Vapor Phase Profile

General Instrument Recommended Soldering Processes
for Surface Mount and Axial-Leaded Components

714

GI RECOMMENDED MINIMUM MOUNTING PAD LAYOUT SIZES FOR THE
MELF SURFACE MOUNT RECTIFIER

o

A

~

F.SLOTWIDTH

r-~:~ ~W,,~'O.

In I

r----t=JG~

~~

~~IONALPADSIZE

-1 =r- ~
c....s---'
H

c::-L---,

DIMENSION
A
B
C
D
E

F
G
H

FOR LARGE BUSS ATTACH·
MENT USE A SOLDER MASK
TO REDUCE EFFECTIVE PAD
SIZE

WHERE POSSIBLE MAKE CONNECT.
ING CIRCUITRY SMALLER THAN THE
COMPONENT PADS TO REDUCE
FLASHING OR MISCUEING

GL34
DO·213AA
.069 (1.75)
.063 (1.60)
.069 (1.75)
.138 (3.50)
.207 (5.26)
.016 (.406)
.138 (3.50)
.03510.080
(.89102.03)
.048 (1.22) min

GL41
DO·213AB
.100 (2.54)
.100 (2.54)
.100 (2.54)
.200 (5.08)
.300 (7.62)
.025 (.635)
.200 (5.08)
.05010.125
(1.27103.17)
.075 (1.90) min

NOTE: ALL DIMENSIONS IN INCHES AND (MILLIMETERS)

General Instrument Recommended Minimum Mounting Pad Layout Sizes
for the MELF Surface Mount Rectifiers

I

715

GI RECOMMENDED MINIMUM MOUNTING PAD LAYOUT SIZES FOR THE
SURFACE MOUNT RECTIFIER AND THE FLAT PACK

.058 MIN
(1.47
MIN)

~

1

t

.094 MAX
(2.38 MAX)

-r-C!J CJ

.083 MIN

(1.27 MIN)

.208 REF

SMA/DO-214AA

.121 MIN
(3.07 MIN)

rti

J (:::-{L;t

.050MIN{~

(3.07 MIN)

~

I

L- -

.106MAX
(2.69 MAX)

,-

rti
L;JJ'

.220 REF

5MB/DO-214AA

-I .185 MAX I.. 1(4.69 MAX) I.

r:i
W

L

.060 MIN)
MIN
(1.52

t

t:l
W

1 I
_

--r--[1j

T:~I_ .060MI~

.052 MIN

t

(1.52 MIN)

(1.32 MIN)

.092 MAX
(2.33 MAX)

CJ

i L~
.226 REF

.320 REF

SMC/D0214AB

.047 MIN

GF1/DO-214BA

--.J

,~

(1.20MIN)¥ _ _

.060 MIN
(1.52 MIN)

I

ffi

I

I

I
I
I

I
I
I

I

T

1

.404 MAX
(10.26 MAX)

I

~£J----[}
,

~'

L

.

..J

.205 (5.2)
1.195 (5.0) -,

DFS BRIDGE

DIMENSIONS IN INCHES
AND (MILLIMETERS)

General Instrument Recommended Minimum Mounting Pad Layout
Sizes for the Flat Pack Surface Mount Rectifiers
716

PSD SALES OFFICE
HEADQUARTERS:
10 Melville Park Road, Melville, NY 11747
Tel: (516) 847-3000
Northeast Regional Seles Office
General Instrument Corporation
10 Melville Park Road
Melville, NY 11747
Tel: (516) 847-3200

Central Regional Sales Office
General Instrumem Corporation
85 West Algonquin Rd.
Suite 300
Ar1lngton Heights, IL 60005
Tel: (708) 364-5880
Fax: (708) 364-0649

Southeast Regional Sales Office
General Instrument Corporation
6855 Jimmy Carter Blvd.
Suite 2250
Norcross, GA 30071
Tel: (404) 446-1265
Fax: (404) 446-1286

Western Regional Sales Office
General Instrument Corporation
8222 South 48th St.
Suite 250
Phoenix, AZ 85044
Tel: (602) 438-6840
Fax: (602) 438-684416836

UNITED STATES
ALABAMA
Group 2000 Sales
655 Gallatin Street
Suite 100
Huntsville, 35801
Tel: (205) 536-2000
Fax: (205) 533-5525
ARIZONA
O'Donnell Assoc. S. W. Inc.
2432 West Peoria Ave.
Suite 1026
Phoenix, 85029
Tel: (602) 944-9542
Fax: (602) 861-2615
O'Donnell Assoc. S. W. Inc.
11449 N. Copper Springs
Trail, Tucon, 85737
Tel: (602) 797-2047
Fax: (602) 742-6039

CALIFORNIA (cont.)
Select Electronics
14730 Beach Blvd.
SUite 106, Bldg. F
La Mirada, 90638
Tel: (714) 739-8891
Fax: (714) 739-1604
Solid State Sales
1770 Orange Ave.
Costa Mesa, 92627
Tel: (714) 650-8414
Fax: (714) 650-8415

FLORIDA
Graham Assoc. Inc.
9123 North MHitary Trail
Suite 103
Palm Beach Gardens,
33410
Tel: (407) 622-4049
Fax: (407) 622-4595

CANADA
Pipe- Thompson Ltd.
5468 Dundas St. West
SUite 206
ISlington, Ontario
M9B6E3
Tel: (416) 236-2355
Fax: (416) 236-3387

CALIFORNIA
Ewing-Foley Inc.
895 Sherwood Ave.
Los Altos, 94022
Tel: (415) 941-4525
Fax: (415) 941-5109

Pipe- Thompson Ltd.
17 Brandy Creek Cresent
Kanata, Ontario
K2M2B8
Tel: (613) 591-1821
Fax: (613) 591-0461

Ewing-Foley Inc.
185 Linden Ave.
Auburn, 95603
Tel: (916) 885-6591
Fax: (916) 885-6594

Davetek Marketing
107-3738 North Fraser
Way
Burnaby, British Columbia
V5J5GI
Tef: (604) 430-3680
Fax: (604) 435-5490

ProSales
8745 Magnolia Ave.
SuiteD
Santee, 92071-4592
Tel: (619) 596-2190
Fax: (619) 596-2194

COLORADO
Meridian Marketing, Inc.
6801 South Emporia St.
Suite 203
Englewood, 80112
Tel: (303) 790-7171
Fax: (303) 790-2744

Graham Assoc. Inc.
P.O. Box 771628
Winter Garden, 34777-

1628
Tel: (407) 656-9369
Fax: (407) 656-6972
Graham Assoc. Inc.
P.O. Box 397
Melbourne, 32902-0397
Tel: (407) 773-6631
Fax: (407) 773-6576
Graham Assoc. Inc.
14101 Martin Sr. Drive
Dade City, 33525
Tel: (904) 523-0996
Fax: (904) 523-0998

FLORIDA (cont.)
Graham Assoc. Inc.
11190 N.W. 40th St.
Coral Springs, 33065
Tel: (305) 341-5102
Fax: (305) 341-5118
GEORGIA
Group 2000 Sales
655 Engineering Dr.
Suite 140
Norcross, 30092
Tel: (404) 729-1889
Fax: (404) 729-1896
ILLINOIS
Metcom Assoc.
Two Talcott Rd.
Patk Ridge, 60068
Tel: (708) 696-1490
Fax: (708) 696-2568
INDIANA
Valentine Assoc. Inc.
1030 Summit Drive
Carmel, 46032
Tel: (317) 846-0008
Fax: (317) 846-0255
IOWA
Lorenz Sales, Inc.
5270 North Place
N.E. Cedar Rapids, 52402

Tel: (319) 377-4666
Fax: (319) 377-2273

717

•

PSD SALES OFFICE
KANSAS
Lorenz Sales, Inc.
8645 College Boulevard, Suite 220
OVerland Park, 66210
Tel: (913) 469-1312
Fax: (913) 469-1238

Lorenz Sale, Inc.
1530 Maybelle
WIChita, 67212
Tel: (316) 721-0500
Fax": (316) 721-0566

KENTUCKY
Valentine Assoc.
3215 Brentwood Dr.,
Henderson, 42420
Tel: (~) 826-9444
Fax: (502) 826-9108
MASSAa-IUSETTS

Power Component Sales, Inc.
352 Boston Tumpike
Shrewsbury, 01545
Tel: (508) 754-9840
Fax: (508) 754-9858

NEW MEXICO

OKLAHOMA

TEXAS (cont.)

O'Donnell Assoc. Southwest
Inc.
3200 CarlIsle Blvd. N.E.
SUite 104
Albuquerque 87110
Tel: (505) 889-4522
Fax: (505) 889-4598

Corrptech Sales
18700 WoodbriarLane
Catoosa, 74015
Tel: (918) 266-1966
Fax: (918) 266-1808

Corrptech Safes
1325 South 77th SunshIne Strfp
Apt. E-2
HarlIngen, 78550
Tel: (512) 421-4501
Fax: (512) 421-3265

OREGON

Electronic Sources Inc.
6700 S. W. 105th
Suite 305
Beaverton, 97005
Tel: (503) 627-0838
Fax: (503) 627-0238

O'Donnell Assoc. Southwest
Inc.
5959 Gateway West
Suite 558
EI Paso, 79925
Tel: (915) 778-6429
Fax: (915) 778-2581

PENNSYLVANIA

WASHINGTON

Bresson Assoc.
107 Forrest Ave.
Narberth, 19072
Tel: (215) 664-6460
Fax: (215) 664-7020

Electronic Sources Inc.
1603116thAve. N.E. #115
Suite 115
Bellevue, 98004
Tel: (206) 451-3500
Fax: (206) 451-1038

NEW YORK

Neptune Electronics Co. Inc.
255 Executive Dr.
Suite 211
Plainview, 11803
Tel: (516) 349-1600
Fax: (516) 349-1343
Quality Components
116 East Fayette St.
Manlius, 13104
Tel: (315) 682-8885
Fax: (315) 682-2277
Quality Components
3343 Harlem Rd.
Buffalo, 14225
Tel: (716) 837-5430
Fax: (716) 837-0662

PUERTO RICO

Isla Car/be Electro Safes Inc.
Calle Afejandrfno
C#5 Villa Clementina
Guaynabo, 00657
Tel: (809) 720-4430
Fax: (809) 720-1097

MICHIGAN

Rathsburg Assoc.
41100 Bridge Street
Novi,48375
Tel: (810) 615-4000
Fax: (810) 615-4001
MINNESOTA

Hanna-Und Ltd.
5909 Baker Rd.
Suite 510
Minnetonka, 55345
Tel: (612) 931-1242
Fax: (612) 931-3015

NORTH CAROLINA

Group 2000 Sales
875 Walnut Street
Suite 310
Cary, 27511
Tel: (919) 481-1530
Fax: (919) 481-1958

NEBRASKA
2801 Garfield St
Uncoln, 68502
Tel: (402) 475-4660
Fax: (402) 474-7094

WISCONSIN

Metcom Assoc.
237 South Curtis Rd.
West Allis, 53214
Tel: (414) 476-1300
Fax: (414) 476-4368

TEXAS

Comptech Sales
2401 Gateway Dr.
Suite 114
Irving, 75063
Tel: (214) 751-1181
Fax: (214) 55D-8113

OHIO

Makin & Assoc.
3165 Unwood Rd.
Cincinnati, 45208
Tel: (513) 871-2424
Fax: (513) 871-2524

Corrptech Safes
11130 Jol/yville Rd.
Suite 200
Austin, 78759
Tel: (512) 343-0300
Fax: (512) 345-2530

MISSOURI

Lorenz Sales, Inc.
10176 Corporate Square Dr.
St Louis. 63132
Tel: (314) 997-4558
Fax: (314) 997-5829

cont.

Makin & Assoc.
32915 Aurora Rd.
Solon, 44139
Tel: (216) 248-7370
Fax: (216) 248-7372

MEXICO
Clber Electronics S.ADE C. V.
Arbol207
Colonia Chapa/ita Sur

C_P.450OO
Guadalajara, Jallsco
Tel: 52-36-47-5217
Fax: 52-36-22-9394

Comptech Sales
15415 Katy Freeway
Suite 209
Houston, 77094
Tel: (713) 492-0005
Fax: (713) 492-6116

Makin & Assoc.
6400 Riverside Dr.
Bldg. A
Dublin, 43017
Tel: (614) 793-9545
Fax: (614) 793-0256

- - - - - - - - - - - - - e General Instrument
718

EUROPEAN DISTRIBUTORS AND AGENCIES
AUSTRIA
Key Components
EIeIdronk Handelsges.
mbH
Heiigenkreuzerstr. 51
A· 2393 Sinendorf
(Vienna)
Tel.: 021237 83 61· 0
Telefax: 02123 76 63
Burisch
EIefdronk· Bauleile
GmbH
LeopoIdauerstr. 29
A·1210 Vl9nna
Tel.: 021772 00
Telex: 111082
Telefax.: 021772 02 77
BELGftJlI1 HOLLAND
Rodefco B.V.
Takkebijsters 2
NL·4817 Breda
Tel.: 07&78 49 11
Telex: 54195
Telefax: 076171 0029
Rodelco N.ViS.A.
Umburg Stirum 243
8-1780 Wemmel
Tel.: 0021460 05 60
Telex: 24610
Telefax: 021460 02 71

CZECH REPUBLIC
Samhech spoI s.r.o.
Electronic Distribution
K prokopavce 19
32321 Pilsen

DENIIARK
Tech Partner AlS
Sybaekvej 33
OK· 8230 Aabyhoj
Tel.: 086125 00 55
Telefax; 086125 28 55
FINLAND
mElectronic
Componerts
Distribution GmbH 7 Co.
Tyopajakatu 5
SF· 00581 Helsinki
Tel: 07/391 00
Telex: 12 53 56
Telefax: 07/01 5639

FRANCE
C.C.!.
5 Rue Marcellin
Berthelot
92164 Antony
Tel.: (1) 46 74 47 00
Telex: 203881
Telefax: (1) 40 96 92 96
3D
6- 9 Rue Ambroise
Croizat
91120 Palaiseau
Tel.: (1) 64 472929
Telex: 603341
Telefax: (1) 64 47 00 84
CP Electronique
BPNoOl
78 420 Carrieres/Seine
Tel: (1) 3086 22 00
Telefax: (1) 39 1461 36
SILEC D.E.L.
8, Rue des Freres
Bertrand
B.P.59
69632 Venissieux Codex
Tel.: (16) 78 00 86 97
Telex: 340189
Telefax: (16) 78 09 02
91
Dicel
24, Ave J. Masset
69009 Lyon
Tel.: 788340 20
Telefax: 78 43 41 05
GERMANY
Betronik GmbH
Grunewaldstr.39A
12165 Berlin
Tel.:03017912889
Telafax: 030n 92 76 60
Enatechnik GmbH
Schillerstr. 14
25451 Quickbom
Tel.: 041 06/6 12· 0
Telefax: 041 06161 22 68
RSC· Hable~er GmbH
Industriestr. 2
75228 Ispringen
Tel.: 072 31180 10
Telefax: 072 311822 82
Sinus Electronic GmbH
SchIeWweg 6
74257 Untereisesheim
Tel.: 071 3214941 44
Telefax: 071 321437 50

GERIIANY conI.
Spoerle Electronic
Max· Planck· SIr. 1· 3
63303 Dreieich
Tel.: 061 0313040
Telefax: 06 103130 43 44

ITAlYcont.
Idac Camel S.r.l.
Via Saveli. 3
35129 Padova
Tel.: 04Q18075616
Fax: 04QI8075626

Semhron W.Rock GmbH
1m Gut 1
79790 Kussaberg
Tel.: 077 42180 01· 0
Telefax: 077 42169 01

ScefS.r.l.
Via Stelvio. 9
20026 Novate Mianese
(MQ
Tel.: 021354 62 52
Telefax: 021354 22 62

GREECE
l.edar
9, L.Koromila
GR· 11745 Athens
Tel.: 09/2194 05
Telex: 2215 27
Telefax: 09/23 96 98

NORWAY
Bexab Norge NS
Slynga2
N- 2001 I.Jllestrom
Tel.: 063183 38 00
Telefax: 063183 20 07

ISRAEL
Rapac Electronics Ud.
7KehHat Saloniki Street
IL· 69513 Te~ Aviv
Tel.: 0341932 72
Telefax: 034/932 72

PORTUGAL
COMPONENTA Lda
Rua LIAs de Carnoes
128
1300Usboa
Tel.: 1362 1283/84
Telex: 61562
Telefax: 1363 76 55

ITALY
DistribLtors:
Adimpex S.r.l.
SS.I6- Via Adriaticakm
314
P.O. Box 116
60022 CasteHidardo
(AN)
Tel.: 0711781 90 12 r.a.
Telefax: 071n81 90 77

SOUTH AFRICA
HI· Q Electronics
97 Bedford Avenue
Benoni 1500
Tel.: 011/4202911
Telefax: 01114202914

SPAIN
Ami/llllS.A.
Avda de VaHadolid 47D
29008 Madrid
Tel.: (91) 542090&'541
5402
Telex: 45550
Telefax: (91) 2 48 79 58

Aha
Via Matteo di Giovanni,
6
50143 Flrenze
Tel.: 055171 7402
Telefax: 055170 56 58
Consystem S.r.!.
Via Gramsci, 156
20037 Pademo
Dugnano(MO
Tel.: 02/99 0419 7718
Telefax: 02/99 041981

AQL
General Palanca 26
28045 Madrid
Tel.: (910 467 75 12
Telefax: (91) 530 29 34

Distrel S.r.!.
Via Rizzo, 8
20151 Milano
Tel.: 02138 00 1087
Telefax: 02138 00 11 54 .

SUTELCO SA
Pier de Zaragoza 23
29028 Madrid
Tel.: (91) 355 86
03102/01
Telefax: (91) 355 8120

SWEDEN
Bexab Sweden AS
Kemislvagen lOA
S- 18325 Tally
Tel.: 08/630 88 00
Telefax: 081732 70 58
SWITZERLAND
EbatexAG
Hardslr.72
CH· 5430 Wettingen
Tel.: 056'27 5111
Telefax: 056/27 1924
UNITED KlNGDOIl

DisIrtluIors:
Fame. Electronic
Components
ArmleyRoed
Leeds
LS12200
Tel.: OS 32179 01 01
Telefax: 05 32163 34 04
Future House
PoyIe Road
Cofnbrock
SL30El
Tel.: 07 53168 70 00
Telefax: 07 53168 91 00

UNITED KINGDOII
conI.
Young ECC Electronics
Knaves Beach Estate
High Wycombe
Bucks
HP10gay
Tal.: 06 28181 0727
Telex: 848661 HYE UK
Talefax: 06 28181 0807
RS Componerts Ltd.
PoBox 99

Corbv

Norfhants
NN179RS
Tal.: 05 36'20 1234
Tefax: 34 2512
TaIefax: 05 36120 15 01
UNITED KINGDOM
Agents:
Rodgers Agencies
124 0Iby Drive
BeHast BT5 6BB
Northem Ireland
Tal.: (Belast) 704985
Telefax: (Belfast) 79 25
63

Hunter Electronic
Compcnerts Ltd.
Un~ 3, Centrel Estate

Denmark Street
Maidenhead
Betks SL6 7BN
Tel.: 06 28175911
Telefax: 06 28175611
Polar Electronics Ltd.
Cherry Court Way
Leighton Buzzard
BedsLU7ffl
Tel.: OS 251377093
Telex: 825238
Telefax: 05 2513783 67
Polar North
14 Howard Court
Manorpark Avenue
ManorpaJk
Runcom
Cheshire
WA71SJ
Tel.: 09 28157 90 09
Telefax: 09 28157 91 23

-------------eGenerallnstrument
719

•

POWER SEMICONDUCTOR DIVISION
N.A. AUTHORIZED DISTRIBUTORS
DISTRIBUTOR

ADDRESS

CITY/STATE

TELEPHONE NO.

ACI Electronics

200 Newtown Road

Plainview, NY 11803

(516) 293-6630

Advent Electronics

1865 Miner st.

Des Plaines, IL 60016-8416

(708) 298-4210

All American

16085 N.W. 52nd Avenue

Miami, FL 33014

(305) 621-8282

Arrow Electronics

25 Hub Drive

Melville, NY 11746

(516) 391-1300

Bell Industries

11812 San Vicente, Su~e 300

Los Angeles, CA 90049

(310) 826-2355

Digi-Key Corp.

701 Brooks Ave. S.

Thief River Falls, MN 56701

(218) 681-6674

Future Electronics

237 Hymus Boulevard

Pointe Claire, CN H9R5C7

(514) 694-7710

Garrett Instruments

3130 Skyway Dr. Suite 701

Santa Maria, CA 93455

(805) 922-0594

HamlitonlHalimark Electronics

11333 Pagemill Road

Dallas, TX 75243-8399

(214)343-5000

Hammond Electronics

1230 W. Central Avenue

Orlando, FL 32805

(407) 849-6060

Jaco Electronics

145 Oser Avenue

Hauppauge, NY 11788

(516) 273-5500

Newark Electronics

4801 N. Ravenswood

Chicago, IL 60640

(312) 784-5100

NEP Electronics

805 Mittie Drive

Wood Dale, IL 60191

(708) 595-8500

Nu-HorizonsElectronics

6000 New Horizons Blvd.

Amityville, NY 11701

(516) 226-6000

Pioneer-Standard Electronics

4800 E. 131st Street

Cleveland, OH 44105

(216) 587-3600

Pioneer-Technologies, Inc.

15810 Gaither Drive

Galthersberg, MD 20877

(301) 921-3864

Solid State

46 Ferrand Street

Bloomfield, NJ 07003

(201) 429-8700

Seymour Electronics

357 Crossways Park Drive

Woodbury, NY 11797-2042

(516) 496-7474

Tailron Components Inc.

25202 Anza Drive

Valencia, CA 91355

(800) 247-2232

Taylor Electronics

1000 W. Donges Bay Road

Mequon, WI 53092

(414) 241-4321

Note: AS OF AUGUST 1994, THE SINGAPORE SALES OFFICE ADDRESS WILL BE:
80, Marine Parade Road
#07-09 Parkway Parade
Singapore 1544
(the telephone and fax numbers will remain unchanged)

--------------(1 Generallnsbument
720

GENERAllNSTRUM ENT CORPORATION
Power Semiconductor Division Headquarters:
10 Melville Park Road, Melville, N.Y. 11747
Tel: 516-847-3000
NORTH AMERICAN SALES OFFICES
North Eastern Regional Sales Office:
10 Melville Park Road, Melville N.Y. 11747
Tel: 516-847-3200
South Eastern Regional Sales Office;
6855 Jimmy Carter Blvd ., Suite 2250, Norcross,

GA,30071 (404)446-1265' FAX: 404-446-1286
Central Regional Sales Office:
85 W. Algonquin Road, Suite 300,
Arlington Heights, IL 60005 (708)364-5880
FAX: 708-364-0649
Western Regional Sales Office:

8222 South 48th Street, Suite 250, Phoenix, AI
85044 (602) 438-6840 ' FAX: 602-438-6844
EUROPEAN SALES OFFICES
European Headquarters. German SaLes Office *:

General Instrument Deutschland
GmbH,Freischutzstrasse 96,

81927 Munchen, Fed. Rep. of Germany
Tel: 49 (0) 89/ 95997-0' Telex: 26 2435
FAX: 49 (0) 89/957-0489

France. Spain, and Portugal:
General Instrument France. 9/11 Rue G. Enesco,

94008 Creteit Cedex, France Tel: 33 (1) 43771263
FAX: 33 (1) 43991524
Italy, Greece and Turkey:
General Instrument Italia S.r.l., Via Cantu 11,
20092 Cinisello Balsamo, Milano, Italy
Tel: 39 (02) 66010274/ 285/ 287 ' Telex: 320348
FAX: 39 (02) 66010324

United Kingdom and Ireland:
General Instrument (UK) Ltd ., Power
Semiconductor Div., Colne House Business Centre,

Colne House, Highbridge Estate, Uxbridge,
UB81LX, United Kingdom
Tel: 44 (0) 895/272911'Telex: 919084 EURO G
FAX: 44 (0) 895/ 270049
fAR EAST SALES OFFICES

Taiwan:
General Instrument of Taiwan, ltd., 233 Pao Chiao
Road, Hsin Tien, Taipei, Taiwan Tel: 9113860

FAX: 9-011-8862-917-5991
Hong Kong:
General Instrument H.K. Ltd ., Unit 211, Tower II,
South Seas Centre, 75 Mody Road, Tsimshatsui

East. Kowloon, Hong Kong Tel: (852) 722-6577
FAX: (852) 723-9239
Japan:
General Instrument Japan, Ltd., SF, 4-1-13
Toranomon, Minato-ku, Tokyo, Japan 105
Tel: 81-3-3437-0281 . FAX: 81-3-3434-3938
Singapore:
General Instrument S'Pore PTE Ltd ., 1 Marine
Parade Central, #03-09 Parkway Builder's Centre,
Singapore, 1544 Tel: (65) 3444711
Telex: RS 24424' Fax: (64) 3446878

*Any European countries not listed, please contact the
European Headquarters

~ General Instrument

Power Semiconductor Division



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2017:07:16 17:58:38-08:00
Modify Date                     : 2017:07:16 18:30:48-07:00
Metadata Date                   : 2017:07:16 18:30:48-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:eb80e809-3f43-8b49-b31e-5d6620329702
Instance ID                     : uuid:5c89dc8e-51c6-0f41-90d6-01a922d1bb3f
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 722
EXIF Metadata provided by EXIF.tools

Navigation menu